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Abstract

Modern technology allows for access to large amounts of data. However, this data
is only useful if we can structure it, extract information, and learn connections
and relationships between different data points. To achieve this, it is essential to
represent the data in a way that facilitates organization and knowledge extraction.
Depending on what we want to do with the data, different characteristics of the
chosen representation method may be more or less important. In this thesis, we
develop approaches for learning image representations that possess certain desirable
characteristics: disentanglement, compositionality, and specification.

Disentanglement implies that the representation should model factors of variation
of the underlying data generating process. Learning these factors will allow the
representation to model different data points in a concise manner and potentially
allows us to learn novel interrelations and dependencies. Compositionality postulates
that representations are constructed from independent concepts in a hierarchical
manner. Finally, specification means that we can focus our learning capabilities on
a single task or goal, allowing us to spend the full representation capacity to model
individual and complex objects in isolation.

Our first approach introduces an approach utilizing a Generative Adversarial
Network (GAN) to learn disentangled representations from visual data. Our model
learns meaningful and interpretable concepts, e.g. object classes and characteristics,
on its own without supervision. Adding a small amount of supervision allows
for more control over the learned representations while still allowing the model
to learn unlabeled concepts from the data itself. In our second approach, we
learn compositional representations that allow a GAN to model complex visual
scenes consisting of multiple different objects. Experiments show that the model
generalizes to several novel settings such as more or fewer objects, novel object
positions and sizes, and novel object-attribute combinations. We also identify
several shortcomings of current evaluation methods for these kinds of visual scenes
and introduce a novel evaluation metric that correlates well with human perception.
Finally, we show how we can use GANs to learn object-specific representations
from only a few data points. By making use of several implicit biases and specific
data augmentation methods we can learn good representations from only a single
example. We can learn even better representations if we have slightly more (e.g.
15) training examples available. The learned representations are, by design, highly
specific to the given object but only need very limited training data.

The models we introduce in this thesis each address one specific representation
characteristic that we believe is useful for many different tasks. These represen-
tations can not only be used for knowledge discovery but also allow for a more
structured approach to modeling complex environments or complex objects without
access to large data sets. We highlight the connections between all three of our ap-
proaches and highlight several directions for future research. Specifically, we identify
different ways to combine our approaches such that the resulting representations
benefit from the advantages of the individual characteristics.
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Zusammenfassung

Moderne Technologien ermöglichen den Zugriff auf große Datenmengen. Diese
sind jedoch nur nützlich, wenn daraus Strukturen und Beziehungen gelernt werden
können. Um dies zu erreichen, müssen die Daten auf eine Weise repräsentiert werden,
die die Wissensextraktion erleichtert. Je nach Anwendungsfeld können verschiedene
Eigenschaften einer Repräsentationsmethode mehr oder weniger wichtig sein. Wir
entwickeln Ansätze zum Lernen von Bildrepräsentationen, die bestimmte vorteilhafte
Eigenschaften besitzen: Entflechtung, Kompositionalität und Spezifikation.

Entflechtung bedeuted, dass die Repräsentation die Faktoren des zugrunde lie-
genden Datenerzeugungsprozesses modellieren sollte. Das Erlernen dieser Faktoren
ermöglicht es der Repräsentation, verschiedene Datenpunkte auf prägnante Weise
zu modellieren und erlaubt es neuartige Zusammenhänge und Abhängigkeiten zu
erlernen. Kompositionalität postuliert, dass Repräsentationen aus unabhängigen
Konzepten in einer hierarchischen Weise konstruiert werden. Spezifikation bedeutet,
dass wir unsere Lernfähigkeiten unseres Modells auf ein einziges Ziel fokussieren
können, was es uns ermöglicht, die volle Repräsentationskapazität für die Modellie-
rung einzelner komplexer Objekte zu verwenden.

Unser erstes Modell ist ein “Generative Adversarial Network” (GAN) das
entflochtene Repräsentationen von visuellen Daten lernt. Unser Modell lernt sinn-
volle und interpretierbare Konzepte, z.Bsp. Objektklassen und -eigenschaften ohne
Überwachung. Das Hinzufügen einer kleinen Menge an Überwachung ermöglicht eine
bessere Kontrolle über die gelernten Repräsentationen. In unserem zweiten Ansatz
lernen wir kompositionelle Repräsentationen, die es einem GAN erlauben, komplexe
visuelle Szenen zu modellieren, die aus mehreren verschiedenen Objekten bestehen.
Experimente zeigen, dass das Modell zu verschiedenen neuartigen Kombinationen,
wie neuartigen Objektpositionen und -größen sowie neuartigen Objekt-Attribut-
Kombinationen, generalisiert. Wir identifizieren mehrere Schwachstellen aktueller
Bewertungsmethoden für diese Art von visuellen Szenen und stellen eine neue Me-
trik vor, die stark mit der menschlichen Wahrnehmung korreliert. Schließlich zeigen
wir, wie wir GANs verwenden können, um objektspezifische Repräsentationen aus
nur wenigen Datenpunkten zu lernen. Indem wir das Modell durch einen Einfluss-
induzierenden Bias unterschiedlich ausrichten und duch spezifische Methoden zur
Datenerweiterung können wir gute Repräsentationen von wenigen oder einem ein-
zigen Beispiel lernen. Die gelernten Repräsentationen sind hochspezifisch für das
jeweilige Objekt, benötigen aber nur sehr wenige Trainingsdaten.

Unsere entwickelten Modelle adressieren jeweils eine spezifische Eigenschaft
von Repräsentationen, von der wir glauben, dass sie für viele verschiedene Aufga-
ben nützlich ist. Diese Repräsentationen können nicht nur zur Wissensentdeckung
verwendet werden, sondern ermöglichen auch einen strukturierteren Ansatz zur
Modellierung komplexer Umgebungen oder Objekte ohne Zugang zu großen Da-
tensätzen. Wir zeigen Verbindungen zwischen unseren drei Ansätzen und zeigen
mehrere Richtungen für zukünftige Forschung auf. Insbesondere präsentieren wir
verschiedene Möglichkeiten, unsere Ansätze so zu kombinieren, dass die resultie-
renden Repräsentationen von den Vorteilen der einzelnen Merkmale profitieren.
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Chapter 1

Introduction

Imagine being asked to calculate LXXXVII - XLI? What if you were asked to
calculate V×CL? Most people would convert these numbers to the Arabic numerals
first and only then calculate 87−41 or 5×150 respectively. While these calculations
are simple, more complex calculations might require manual (written) calculations
which are much easier to do with Arabic numerals. If an automatic calculator is
used, chances are that it would be better to represent the calculations as 0101 0111
- 0010 1001 and 0000 0101× 1001 0110 respectively, as most calculators work with
a binary representation. Clearly, some representations for numbers are better than
others for some tasks.

Other examples also highlight the importance of choosing good representations.
The current Latin alphabet which is widely used consists of comparatively few
“simple” symbols. These symbols on their own are meaningless, but by combining
these symbols in the right order we can obtain words that represent real objects or
abstract concepts. Other writing systems, e.g. Egyptian hieroglyphs, on the other
hand, have individual symbols for real-world objects and concepts. As a result, the
Latin alphabet is much smaller than other alphabets but can still represent the
same (or even more) concepts.

All these examples show how important it is to have good representations
for a given concept. The representation’s characteristics directly affect how well
subsequent tasks can be solved. Different representations might also vary in
size, in their interpretability and editability, their ease of use, and many other
characteristics. While the definition of a “good” representation is task dependent,
Bengio et al. [2013] have identified a number of desirable characteristics that learned
representations should possess. In this thesis, we examine three of these desirable
characteristics – disentanglement, compositionality, and specificity – and propose
approaches for how we can learn representations that possess these characteristics.

Disentanglement means that different parts of the representation encode different
data generating factors, making the representation interpretable and controllable.
For example, a typical human’s face could be represented by various characteristics
(eye color, hair color, shape of the nose, etc.) and a disentangled representation
would represent each of these characteristics individually. Compositionality implies
that the representation is made up of several different parts that encode distinct
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parts of the environment, e.g. individual objects. This helps with modeling complex
environments and allows generalization to novel layouts and scenes. For example,
given an image depicting a group of people we could model each face’s characteristics
individually and use the combination of these individual representations to represent
the full image. Finally, specificity describes representations that are specifically
learned for a single concept, e.g. a single object or scene. Through this, we can learn
detailed representations of complex objects and structures from very little data
and with little previous knowledge. For example, we could learn a representation
specifically for one individual face to model different characteristics, e.g. emotions,
in great detail and specifically tailored to that face.

We choose to focus on these three characteristics as they positively affect various
learning and modeling processes. Furthermore, each of these characteristics directly
addresses weaknesses or challenges in the other two characteristics. While we do
not examine this, it is also possible to combine these characteristics to learn even
more powerful representations. For example, a compositional representation could
be constructed from several disentangled representations, which, in turn, could be
learned specifically for different kinds of objects. As such, while this thesis develops
and evaluates these three properties in isolation, we identify several promising
directions through which these representation characteristics can be combined in
future research directions.

1.1 Research Questions

Generative models are powerful models with more capabilities than e.g. discrim-
inative models. In contrast to discriminative approaches, generative models can
learn representations without any available labels in a completely unsupervised way.
While this makes them potentially useful for many domains, learning good repre-
sentations without labels is difficult and, to a degree, ill-defined as the quality of a
given representation is difficult to evaluate without a task. To address this, there are
a number of inductive biases and qualities that are generally considered to be useful
and “good” for representations, independent of any downstream tasks [Bengio et al.,
2013]. This thesis addresses the question of how we can learn representations that
possess some of these desirable characteristics and whether these properties can be
helpful for different tasks. We study Generative Adversarial Networks (GANs) as
our basic generative model and examine the following questions:

Disentangled representations (Chapter 3): How can we learn disentan-
gled representations with GANs? We examine what kinds of inductive
biases and architectural designs we need to learn disentangled representations. We
also evaluate how many labels – if any – are necessary for this and what kinds of
underlying factors we can learn in this way. Finally, we look into how interpretable
and meaningful the learned representations are and how we can evaluate them.

Compositional representations (Chapter 4): Can GANs learn compo-
sitional representations that decompose the underlying distribution?
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We study how we can learn representations with GANs that allow us to explicitly
control various aspects of image generation in complex environments by structuring
the environment as a composition of individual objects. We examine whether these
representations generalize to novel settings or distributions and how we can evaluate
these representations in a quantitative, automatic manner.

Object-specific representations (Chapter 5): Can we use GANs to learn
representations specifically for a single object from limited data? We
investigate how much data is necessary to learn a representation of a single given
object and how we can reduce the amount of necessary data and still obtain good
representations.

1.2 Contributions of this Thesis

The focus of this work is on studying Generative Adversarial Nets (GANs) for
learning good representations of images. The main contributions of this work are:

Disentangled representations (Chapter 3): We develop a framework for
learning disentangled representations with GANs based on no or very
few labeled data points. Our novel GAN architecture can learn disentangled
representations for both inference at test time and image generation and translation.
The model is able to learn data generating factors without any provided labels
but can also be “steered” to learn specific factors based on very few labeled data
points (e.g. only 100 labeled images for the MNIST data set). For inference,
the learned representations can be used to extract data that possesses specific
characteristics or features (e.g. specific foreground objects, background colors,
contrast, ...) that were learned during training. Additionally, we can control
the image generation process based on the disentangled factors and can use the
inference and generation capabilities jointly to translate a given image where we
only change specific characteristics (e.g. the class label) while keeping everything
else unchanged (e.g. the background).

Compositional representations (Chapter 4): We intoduce a novel archi-
tecture and evaluation metric for learning compositional representations
with GANs. Learning compositional representations with GANs enables us to
generate complex scenes with explicit control over object identities, locations, and
sizes. To evaluate these representations we develop a new evaluation metric for
generative text-to-image synthesis models that evaluates both text-image alignment
and image quality in a compositional manner. User studies show that our metric
closely reflects the ranking obtained from humans whereas other popular scores
predict a different ranking.

Object-specific representations (Chapter 5): We show that we can learn
useful representations for a single given object from only very little
training data without any prior or external knowledge. Based on only
a single training data point we can learn representations that can be used for tasks
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such as image generation, image harmonization, image animation, and more. If we
have more information about the given object (e.g. 15 data points) we show how
we can learn even better representations that allow us to perform tasks such as
character reposing and animation.

1.3 Thesis Outline

This thesis is split into six main parts, consisting of an introduction (Chapter 1)
and background (Chapter 2) chapter, three chapters that introduce our main
approaches to representation learning (Chapter 3, Chapter 4, and Chapter 5),
and a conclusion (Chapter 6) in which we discuss our approaches and point to
future research directions. Chapter 3 (disentangled representations), Chapter 4
(compositional representations), and Chapter 5 (object-specific representations)
all follow the same structure. We first give some general information about the
chapter’s representations’ characteristics we are looking into as well as necessary
information about the chapter’s background and related work. This is followed by
two sections in which we introduce our specific approaches and their respective
results. After this, we discuss the advantages and disadvantages of our approaches
and critically evaluate them in the context of other approaches. We conclude each
of these three chapters with a short section about overall results and trends as well
as possible future work in the specific area of the given chapter.
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Chapter 2

Background

In this chapter, we will introduce the general framework of Generative Adversarial
Networks (GANs) and how they can be used for representation learning. We will
first describe what representation learning is and what the different approaches to
representation learning are. Following this, we describe what GANs are and how
the unconditional variant differs from the conditional one.

2.1 Representation Learning

Many tasks can be very easy or very hard depending on how data is represented
[Goodfellow et al., 2016] and, therefore, having good representations of data is
essential for efficient use of this data. This is not only true for representations in
neural networks, but also in daily life. For example, calculating with numbers in
Arabic numeral representations is much easier for humans than doing calculations
with binary representations, but the same is not necessarily true for computers.
Other examples are many operations in computer science (e.g. accessing or inserting
elements) which can be more or less efficient depending on the used representation
(e.g. an array or a linked list). Representation learning generally describes different
approaches and methodologies to learn “good” representations, where the meaning
of “good” and the form of the learned representations are usually defined by a
given use case.

When deep neural networks are used to process data they implicitly learn
representations of the data across their different layers. What kind of representation
is learned usually depends on the final task. If the task is, e.g., image classification,
then the last hidden layer in a neural network tries to learn a representation
that makes the different classes linearly separable. Depending on the task and
the way a neural network is trained will affect the characteristics of the learned
representations and what they can be used for. Bengio et al. [2013] introduce
several prior representation properties that are generally considered to be “good”
regardless of the task. For data points x and y and their respective representations
f(x) and f(y) these properties include, among others:

• Smoothness: if x ≈ y then that implies f(x) ≈ f(y). While this prior is
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present in many models it is not clear how well modern deep learning models
implement this [Szegedy et al., 2014].

• Hierarchical organization: concepts in the real world can be described by
other concepts, where more abstract concepts are higher in the hierarchy and
are made up of more basic concepts. This prior is explicitly implemented in
deep learning models.

• Manifolds: even if the input data is high-dimensional, the probability mass of
many natural distributions concentrates around smaller-dimensional regions
[Lu et al., 1998; Vasconcelos and Lippman, 2005]. This holds true for natural
images and is exploited in many algorithms such as auto-encoders and other
manifold inspired algorithms.

• Temporal and spatial coherence: observations that are close to each other
either in time or space tend to be correlated and often result in only a small
move along the manifold distribution [Becker and Hinton, 1992].

• Sparsity: given input x, only a small part of the data generating factors are
usually relevant. This can be implemented by a representation that is mostly
zero and only non-zero for relevant factors x [Olshausen and Field, 1996].

However, depending on the task at hand, many other advantageous properties may
exist.

Representation learning approaches can usually be clustered into supervised
and unsupervised approaches. Supervised approaches provide a label for each
input and the goal is to learn a mapping from the input data to the provided
labels (e.g. classification and regression). In unsupervised approaches no labels are
available and the goal is to learn a representation of the data that could be useful
for downstream tasks (e.g. clustering and outlier prediction). Semi-supervised
learning is a mixture of these two approaches where we have labels for some of
the data but also data for which no labels are available. Recently, an approach
called self-supervised learning applies traditional supervised learning approaches to
unlabeled data by extracting labels from the data “for free”, usually by withholding
part of the data and training the network to predict the missing part. Our models
for using GANs for representation learning make use of supervised [Hinz et al., 2019,
2021b,a], semi-supervised [Hinz and Wermter, 2018a], and unsupervised training
[Hinz and Wermter, 2018b; Hinz et al., 2021b]. For completeness, we also include a
brief section about self-supervised training in this chapter.

2.1.1 Supervised Representation Learning

Supervised representation learning usually deals with solving a specific task, e.g.
image classification. During training, we have access to labels for each training
instance and train the network to predict the correct label(s) for each training data.
For many applications, these labels may be difficult to obtain automatically and,
thus, need to be obtained manually through human labor.

When the task is well-defined and enough labeled data is available supervised
learning algorithms typically lead to better results than unsupervised learning
algorithms. However, obtaining enough labels can be costly and time-consuming.
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This is especially the case when expert knowledge is needed to obtain labels (e.g. in
the medical domain). As such, algorithms that can learn useful properties of data
even without labels have gained in popularity in the last years, especially since a
lot of data is available “for free” on the internet.

2.1.2 Unsupervised Representation Learning

Unsupervised representation learning deals with data for which no labels are
available. The goal is to learn properties about the data distribution that might
be useful for downstream tasks such as clustering or density estimation. One
of the simplest approaches to unsupervised representation learning is through
dimensionality reduction, i.e. to embed the input data into a lower-dimensional
representation. E.g., by training a neural network to reconstruct the input data
from this representation the network learns to remove redundancies from the input
data and only encode “abstract” information [Kramer, 1991; Hinton and Zemel,
1993; Vincent et al., 2010]. These learned representations can be used as input for
subsequent tasks such as classification and clustering.

More recently, several approaches explore unsupervised representation learning
via mutual information maximization. The mutual dependence between two random
variables x and y quantifies how much information can be gained about one of
the variables by observing the other one and measures (informally) the difference
between the product of the two marginal distributions P (x) and P (y) and the joint
distribution P (x, y). By maximizing the mutual information between different views
of the same data point we hope to increase the amount of “information” encoded
in the representation. Several approaches have examined this, both with GANs
[Chen et al., 2016; Hinz and Wermter, 2018b] and for traditional representation
learning evaluated on downstream tasks (usually classification) [Hjelm et al., 2019;
Bachman et al., 2019; Tschannen et al., 2020].

2.1.3 Semi-Supervised Representation Learning

Semi-supervised learning is a mixture of supervised and unsupervised learning.
In this setting, we usually have a small amount of labeled data and a large
amount of unlabeled data available. The goal is to make use of the unlabeled
data to increase the final performance on the task defined by the labeled data.
Discriminative semi-supervised approaches can mostly be classified as graph-based,
entropy-based, consistency-based, or rely on co-training. Graph-based approaches
[Zhu and Ghahramani, 2002; Weston et al., 2012] work under the assumption that
similar points in the data space (based on some predefined distance metric) should
have the same label. Entropy-based approaches [Grandvalet and Bengio, 2005;
Rosenberg et al., 2005] encourage the model to make very confident predictions about
all data points, regardless of whether labels are available or not. For the supervised
training the prediction should be the same as the label, while for unlabeled data
points the model is simply trained to have low entropy in its prediction (i.e. it does
not matter which class it predicts for a given unlabeled data point, as long as it
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is sure about its prediction). Consistency-based approaches [Belkin et al., 2006;
Bachman et al., 2014] work on the assumption that small perturbations to the input
(e.g. adding a small amount of noise to the image) should not change the model’s
prediction. Co-training [Blum and Mitchell, 1998; Zhou and Li, 2005] assumes that
we have multiple views of the same data which contain enough information on their
own to classify the input correctly. These models can be combined with generative
models to potentially further increase the final performance [Kingma et al., 2014;
Odena, 2016; Denton et al., 2016; Paige et al., 2017].

2.1.4 Self-Supervised Representation Learning

Self-supervised learning is a variant of supervised learning in which the labels
are not obtained manually. Broadly speaking, there are two ways in how these
models are usually trained. One approach is to withhold some part of the data
and train the model to predict the missing data, e.g. by training a network to
predict a missing word in a sentence [Mikolov et al., 2013] or to add color to a
black-and-white image [Zhang et al., 2016]. The second approach transforms the
data somehow and trains the network to identify the applied transformation, e.g.
by training a model to identify the correct order of sentences [Lan et al., 2020] or
by rotating an image and training the network to identify the angle around which
the image was rotated [Gidaris et al., 2018]. Both approaches define a proxy loss
through which the network is trained in the hope that the network learns some
semantic representation along the way.

2.2 Generative Models

Generative versus Discriminative Models When talking about machine
learning models we can broadly distinguish between discriminative and generative
models. The main difference between these two kinds of models lies in the kind of
distribution they learn. Given some input data x ∈ X (e.g. images) and labels y ∈ Y
(e.g. class labels), discriminative models learn a conditional distribution P (y|x).
Generative models, on the other hand, learn either a joint distribution P (x, y) over
the input data and labels or, in the absence of labels, learn a distribution P (x) of
the data itself.

As a consequence, discriminative models learn a mapping from the input data
x to the output data y. Since the model learns a conditional distribution, the full
model capacity can be used to learn a decision boundary to correctly classify or
regress y given the input x. Because of this, discriminative models tend to perform
better than generative models at tasks such as classification and regression.

Learning a generative model is generally considered to be more difficult than
learning a discriminative model since the model capacity can not solely be dedicated
to learning a decision boundary. While discriminative models only learn this
boundary between data samples, generative models generally try to learn how
the data is distributed throughout the data space. When labels are available,
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generative models can, in theory, perform the same tasks as discriminative models
since P (y|x) = P (x, y)/P (x). The advantage of generative models is that they offer
capabilities that discriminative models to do not possess, such as generating new
data from the data distribution, learning joint probabilities, and offering a natural
way of learning something about the data structure without available labels. As
such, generative models can be applied to tasks such as unsupervised learning,
clustering, dimensionality reduction, density estimation, and much more.

Explicit versus Implicit Generative Models Generative models can be
further divided into explicit and implicit models [Goodfellow, 2016]. Explicit
models define an explicit density function P (x) of the distribution. These models
can be trained via maximum likelihood estimation, i.e. for a model with parameters
θ the model’s parameters can be optimized such that they maximize the likelihood
of the observed training data. Explicit models can be evaluated by calculating
the likelihood they assign to a held-out test set and many explicit models learn a
data representation that can be used for down-stream tasks such as classification
or clustering.

The main challenges here lie in defining a model that can capture the complexity
of the training data while still being computationally tractable to optimize. To
achieve this, models are either constructed in a way that guarantees a computational
tractable density (usually at the cost of parameter efficiency [Dinh et al., 2015,
2017] or sampling speed [Van Den Oord et al., 2016; Van den Oord et al., 2016]), or
in a way that allows a tractable approximation of the density (usually at the cost
of not having an exact likelihood [Ackley et al., 1985; Kingma and Welling, 2014]).

Implicit models, on the other hand, do not define an explicit density function, but
instead only allow for sampling from the data distribution: x′ ∼ pmodel(x). These
models are usually trained by comparing the samples from the real distribution
x ∼ p(x) to samples from the model x′ ∼ pmodel(x). They offer fast sampling from
the data distribution and the sample quality often has a higher (perceptual) quality
compared to explicit models [Blau and Michaeli, 2018]. However, since they do not
model a density it is difficult to evaluate implicit models quantitatively [Shmelkov
et al., 2018]. GANs are currently one of the most popular implicit generative models
and we will go into more detail in the next sections.

2.2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] are a form
of implicit generative model and allow for drawing samples x′ from the learned
distribution pmodel(x). A GAN consists of two neural networks (see Figure 2.1),
usually referred to as discriminator D and generator G, which are trained with
opposing objectives. The generator takes as input random noise z sampled from a
pre-defined distribution (usually a uniform U(−1, 1) or normal distribution N (0, 1))
and transforms it into a sample x′: G : z → x′. The discriminator D takes as input
data samples from either the real distribution x ∼ preal(x) or samples generated by
the generator x′ ∼ pgenerator(x) and classifies these samples as either real or fake:
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Figure 2.1: Overview of a Generative Adversarial Network (GAN). The generator
takes as input a noise vector z and transforms it into a data sample x′. The
discriminator takes as input either a real data sample x or a generated sample x′

and classifies it as real or generated (adversarial loss). Both the generator and the
discriminator are trained with the adversarial loss.

D : x→ {0, 1}.
The discriminator is trained to classify real images as real and generated images

as generated. The discriminator’s cost function is:

J(D) = −Ex∼pdata(x)
[
logD(x)

]
− Ez∼pz

[
log(1−D(G(z))

]
. (2.1)

Since the generator is trained to generate samples that are classified as real by the
discriminator a straightforward approach would be to treat the approach as a zero-
sum game in which the sum of both networks’ cost would be zero: J(G) = −J(D).
Since the generator can not affect the discriminator’s response to the real data this
would result in the following cost function for the generator:

J(G) = Ez∼pz
[
log(1−D(G(z))

]
. (2.2)

5
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J
(G

)

D(G(z))

Figure 2.2: When the discriminator classifies
inputs as fake with high certainty (D(G(z)) ≈ 0)
the gradients of Equation 2.2 are close to zero,
while the gradients of Equation 2.3 provide more
information in this case.

However, this loss function
(Equation 2.2) is not ideal, since the
gradients of this cost saturate when
the discriminator classifies gener-
ated samples as fake with high cer-
tainty (see Figure 2.2). In other
words, the generator would not get
“useful” feedback (based on the gra-
dients) when it generates very bad
data but would get “useful” feed-
back only when it already generates
very good data. At the beginning
of the training, the generator usu-
ally does not produce good data, so
it would be more useful to receive
good feedback from the discrimina-
tor early on in training. To address
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this, the most commonly taken ap-
proach is to not flip the sign of the cost function but rather to flip the target
of the generator’s cost. In Equation 2.2, the generator’s goal is to minimize the
probability of the discriminator’s prediction being correct (on the generated data).
Instead, we now train the generator to maximize the probability of the discriminator
making wrong predictions on the generated data. The generator’s cost function
then becomes:

J(G) = −Ez∼pz
[
log(D(G(z))

]
. (2.3)

Note that this loss function is mostly heuristically motivated with the motivation
of providing strong gradients to whichever network is “losing” at a given moment.
The two networks are then trained alternately, i.e. while optimizing the parameters
of one of the two networks the other network’s parameters stay fixed.

Challenges in Training GANs In the computer vision setting, GANs are
often employed to generate new images from a given distribution (e.g. faces, birds, or
buildings). While GANs show impressive results for image generation [Brock et al.,
2019], they still suffer from several drawbacks. Training GANs is relatively unstable
and highly dependent on the chosen hyperparameters [Arjovsky and Bottou, 2017;
Mescheder et al., 2018]. If the discriminator becomes too strong, the resulting
gradients will not provide enough signal for the generator to learn. On the other
hand, if the discriminator is too weak, the generator might not get enough feedback
to learn to generate good samples. Several approaches such as adding noise to the
discriminator [Arjovsky and Bottou, 2017], penalizing discriminator weights [Roth
et al., 2017], updated losses [Arjovsky et al., 2017], gradient penalties [Gulrajani
et al., 2017], and normalization approaches [Miyato et al., 2018] try to improve the
training stability.

Additionally, GANs sometimes suffer from mode collapse, which means that
the generator may learn to produce only a very small number of different (highly
realistic) samples, i.e. maps large parts of z to the same generated sample. Several
approaches try to address this, e.g. by preventing the generator from overfitting
to a given discriminator’s state [Metz et al., 2017], by adding an additional loss
[Srivastava et al., 2017] or by forcing the generator explicitly to map different noise
vectors z to different parts of the data distribution [Mao et al., 2019b]. Another
challenge is mode dropping in which the generator does not learn full support of
the data distribution and instead covers only part of it [Arora and Zhang, 2018;
Bau et al., 2019]. Approaches to this are usually similar to approaches that try to
solve the mode collapse problem [Mroueh et al., 2017; Sinha et al., 2020].

Despite the challenges in training GANs, they show promising results in many
different applications such as image generation, image-to-image translation, image
editing, super-resolution, animation, inpainting, and many more. Their capability
to generate sharp and realistic images makes them the model of choice for many
applications in which image quality is of high importance. Outside of generating
images they have also shown their applicability to tasks such as semi-supervised
learning [Odena, 2016; Donahue et al., 2017; Dumoulin et al., 2017; Li et al., 2017a;
Donahue and Simonyan, 2019], video generation [Saito et al., 2017; Tulyakov et al.,
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Figure 2.3: Overview of a conditional Generative Adversarial Network (cGAN).
Compared to a normal Generative Adversarial Network (Figure 2.1), conditional
Generative Adversarial Networks have an additional conditioning variable c (e.g. a
class label) which is used as input for both the discriminator and the generator.

2018; Saito et al., 2020], and audio and speech synthesis [Donahue et al., 2019;
Bińkowski et al., 2020].

2.2.2 Conditional Generative Adversarial Networks

Mirza and Osindero [2014] introduced the conditional GAN variant in which both
the generator and the discriminator are conditioned on additional information (see
Figure 2.3). This additional information can take the form of e.g. class labels,
textual descriptions, or images. Using this additional information allows applying
the GAN framework to tasks such as class-conditional image generation [Mirza
and Osindero, 2014], text-to-image synthesis [Reed et al., 2016b], image-to-image
translation [Isola et al., 2017; Zhu et al., 2017a], and many more.

In the most basic form [Mirza and Osindero, 2014] the noise vector z and
the conditioning information c are simply concatenated and fed as input to the
generator: G : (z, c)→ x′. Likewise, the generated or real images and the respective
conditioning information c are concatenated and used as input to the discriminator:
D : (x, c)→ {0, 1}. The used loss terms stay unchanged:

J(D) = −Ex∼pdata(x),c
[
logD(x, c)

]
− Ez∼pz ,c

[
log(1−D(G(z, c), c)

]
, (2.4)

J(G) = −Ez∼pz ,c
[
log(D(G(z, c), c)

]
. (2.5)

When the conditioning information is more complex, e.g. a textual description or an
image, the conditioning information is usually embedded into a lower dimensional
representation first.

How exactly the conditioning information is used as input for the discriminator
and generator is a critical design choice and can affect the final performance. Only
concatenating the conditioning information with the input at the very lowest layer
for both the discriminator and the generator often does not lead to the best results.
Several approaches explore methods to improve the conditioning in GANs. This can,
e.g., be achieved by incorporating higher-level interactions [Miyato and Koyama,
2018] or an additional contrastive loss term [Kang and Park, 2020] between learned
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representations and the conditioning information in the discriminator. Alternatively,
the conditioning information can be used by an additional classifier network [Odena
et al., 2017] which is trained to correctly classify the real data and can be used
as additional training signal for the generator. Finally, many approaches feed
the conditioning information into various layers of both the discriminator and the
generator [Zhang et al., 2017b, 2018a; Karras et al., 2019, 2020b] or learn specific
features that are used as normalization throughout various layers of the generator
[Park et al., 2019].
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Chapter 3

Disentangled Representations

As we have seen previously (Section 2.1), there are many characteristics that may
be useful for learned representations. Many of these characteristics can be seen as
priors that can help to disentangle the underlying factors of variation of a given data
distribution. This is made explicit with the concept of disentangled representations
[Bengio et al., 2013] which encode different, independent data generating variables
in different parts of the learned representations. Disentanglement can make the
learned representation more interpretable, easier to modify, and has the potential
to make other downstream tasks easier to solve [Morcos et al., 2018]. We will first
give an overview of what disentangled representations are and how they can be used
and evaluated. Following this, we will show two approaches to learning and using
disentangled representations with GANs. We conclude with a critical discussion of
our approaches and how they are related to recent developments in the broader
community.

3.1 Disentangled Representations

A common assumption is that a data point, which is sampled from a distribution,
is encoded by several latent variables that describe the properties of this data
point. These latent variables encode the various data generating factors that define
all data points in the distribution. Consider, for example, the MNIST data set
[LeCun et al., 1998] which consists of images depicting a single digit on an uniform
background. Simply put, the latent variables for this distribution could be the class
(0 – 9), position (xy-coordinate), rotation (angle), and width (in pixels) of a given
digit. Knowing the values for each of these variables would enable us to visualize
the given image.

Definition of Disentangled Representations An intuitive definition of
disentangled representations is that they should encode each latent data generating
factor in a way that makes it independent of the other latent variables, e.g. by
representing each latent variable in a disjoint part of the representation. We assume
that an observation x is generated from some latent factors zi via p(x|zi) and a
disentangled representation would represent these individual latent factors {zi}
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in a disjoint and interpretable manner [Do and Tran, 2020]. For example, the
representation of a given MNIST digit’s class should not be influenced by its position
and width. However, finding a concrete definition of disentangled representations is
difficult [Higgins et al., 2018]. This is partly because outside of synthetic data sets
it is often not even clear what constitutes a data generating factor. The common
desideratum is, therefore, to try and learn a model that disentangles as many data
generating factors as possible while discarding as little information as possible in
the process.

Higgins et al. [2017] define disentanglement through independence, i.e. two
latent variables are disentangled if they are mutually independent. However,
this definition is quite restrictive and ignores many realistic settings in which
intuitively disentangled characteristics of objects are still strongly correlated (e.g.
gender and facial hair) [Träuble et al., 2020]. To address this, Higgins et al.
[2018] propose a more general definition of disentanglement in which changing
one specific disentangled variable only affects a specific property in the generated
data point, while leaving all other properties unchanged. While this definition
removes the requirement of mutual independence it is very abstract which limits
its applicability across different domains and evaluation approaches. Suter et al.
[2019] examine disentanglement from the view of it being the property of a causal
process, i.e. the different data generating variables do not affect each other (but
may still be correlated). Do and Tran [2020] define disentanglement through the
concepts of informativeness (the mutual information between a data point and
its representation), separability (different parts of the representation share no
information about the data), and interpretability (by providing some predefined
concepts). Overall, however, many approaches do not follow a rigid definition
of disentanglement, but rather define representations as disentangled if they are
interpretable [Chen et al., 2016; Sepliarskaia et al., 2019].

Evaluation of Disentangled Representations Since there is no clear defini-
tion of what constitutes a disentangled representation it is challenging to evaluate
disentangled representations across different domains and models. As a consequence,
visual inspection and interpretability are often the standard metrics [Bengio et al.,
2013; Chen et al., 2016; Eastwood and Williams, 2018]. Several evaluation metrics
exist for datasets in which the ground truth information about the data generating
factors is available [Higgins et al., 2017; Eastwood and Williams, 2018]. However,
these metrics are limited to synthetic data sets and can not be used for real-world
data for which the exact data generating factors are unknown.

Some metrics try to evaluate disentangled representations in the sense that
changing one part of the disentangled representation should change one generative
factor while being invariant to all other generative factors [Higgins et al., 2017;
Kim and Mnih, 2018; Eastwood and Williams, 2018]. Other metrics approach the
evaluation from the perspective that a change in a data generating factor should
only affect a specific part of the disentangled representation [Kumar et al., 2018;
Chen et al., 2018]. Sepliarskaia et al. [2019] introduce a metric that combines both
previous approaches. Other evaluation metrics focus on invariance [Goodfellow
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et al., 2009; Cohen and Welling, 2015] or equivariance [Lenc and Vedaldi, 2015].
Do and Tran [2020] provide a more detailed overview of recent evaluation metrics.
Note, however, that many (especially older) evaluation metrics do not correlate
strongly with perceptual (qualitative) disentanglement [Abdi et al., 2019]. In the
following two sections we introduce our approaches for learning and evaluating
disentangled representations with GANs.

3.2 Unsupervised Learning of

Disentangled Representations

This section presents our work Inferencing based on unsupervised learning of
disentangled representations by Tobias Hinz and Stefan Wermter published in 2018
at the European Symposium on Artificial Neural Networks (pp. 61 – 66).

3.2.1 Introduction

Learning meaningful representations of data is an important step for models to
understand the world [Bengio et al., 2013]. Recently, the Generative Adversarial
Network (GAN) [Goodfellow et al., 2014] has been proposed as a method that
can learn characteristics of data distributions without the need for labels. GANs
traditionally consist of a generator G, which generates data from randomly sampled
vectors Z, and a discriminator D, which tries to distinguish generated data from real
data x. During training, the generator learns to generate realistic data samplesG(Z),
while the discriminator becomes better at distinguishing between the generated
and the real data x. As a result, both the generator and the discriminator learn
characteristics about the underlying data distribution without the need for any
labels [Radford et al., 2016]. One desirable characteristic of learned representations
is disentanglement [Bengio et al., 2013], which means that different parts of the
representation encode different factors of the data-generating distribution. This
makes representations more interpretable, easier to modify, and is a useful property
for many tasks such as classification, clustering, or image captioning.

To achieve this, Chen et al. [2016] introduced a GAN variant in which the
generator’s input is split into two parts z and c. Here, z encodes unstructured noise
while c encodes meaningful, data-generating factors. Through enforcing high mutual
information between c and and the generated images G(z, c) the generator is trained
using the inputs c as meaningful encodings for certain image characteristics. For
example, a ten-dimensional categorical code for c could represent the ten different
digit classes in the MNIST data set. Since no labels are provided the generator has
to learn by itself which image characteristics can be represented through c. One
drawback of this model is that the only way to perform inference, i.e. map real data
samples into a (disentangled) representation, is to use the discriminator. However,
there is no guarantee that the discriminator learns good representations of the data
in general, as it is trained to discriminate between real and generated data and may
therefore focus only on features that are helpful for discriminating these two, but
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are not necessarily descriptive of the data distribution in general [Donahue et al.,
2017]. Zhang et al. [2017a] tried to enforce disentangled representations in order to
improve the controllability of the generator. The latent representation is split up
into two parts encoding meaningful information and unknown factors of variation.
Two additional inference networks are introduced to enforce the disentanglement
between the two parts of the latent representation. While this setup yields a better
controllability over the generative process it depends on labeled samples for its
training objective and can not discover unknown data-generating factors, but only
encodes known factors of variation (obtained through labels) in its disentangled
representation.

Donahue et al. [2017] and Dumoulin et al. [2017] introduced an extension
which includes an encoder E that learns the encodings of real data samples. The
discriminator gets as input both the data sample x (either real or generated) and
the according representation (either Z or E(x)) and has to classify them as either
coming from the generator or the encoder. The generator and the encoder try to
fool the discriminator into misclassifying the samples. As a result, the encoder
E learns to approximate the inverse of the generator G and can be used to map
real data samples into representations for other applications. However, in these
approaches the representations follow a simple prior, e.g. a Gaussian or uniform
distribution, and do not exhibit any disentangled properties.

Our model, the Bidirectional-InfoGAN, integrates some of these approaches by
extending traditional GANs with an encoder that learns disentangled representations
in an unsupervised setting. After training, the encoder can map data points to
meaningful, disentangled representations which can potentially be used for different
tasks such as classification, clustering, or image captioning. Compared to the
InfoGAN [Chen et al., 2016] we introduce an encoder to mitigate the problems of
using a discriminator for both the adversarial loss and the inference task. Unlike
the Structured GAN [Zhang et al., 2017a] our training procedure is completely
unsupervised, can detect unknown data-generating factors, and only introduces one
additional inference network (the encoder). In contrast to the Bidirectional GAN
[Donahue et al., 2017; Dumoulin et al., 2017] we replace the simple prior on the latent
representation with a distribution that is amenable to disentangled representations
and introduce an additional loss for the encoder and the generator to achieve
disentangled representations. On the MNIST, CelebA [Liu et al., 2015], and SVHN
[Netzer et al., 2011] data sets we show that the encoder does learn interpretable
representations which encode meaningful properties of the data distribution. Using
these we can sample images that exhibit certain characteristics, e.g. digit identity
and specific stroke widths for the MNIST data set, or different hair colors and
clothing accessories in the CelebA data set.

3.2.2 Methodology

Our model, shown in Fig. 3.1, consists of a generator G, a discriminator D, and an
encoder E, which are implemented as neural networks. The input vector Z that is
given to the generator G is made up of two parts Z = (z, c). Here, z is sampled from
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Figure 3.1: High-level overview of the Bidirectional-InfoGAN. The generator G
generates images from the vector (z, c) and tries to fool the discriminator into
classifying them as real. The encoder E encodes images into a representation and
tries to fool the discriminator D into misclassifying them as fake if its input is a
real image while trying to approximate P (c|x) if its input is a generated image.

a uniform distribution, z ∼ U(−1, 1), and is used to represent unstructured noise
in the images. On the other hand, c is the part of the representation that encodes
meaningful information in a disentangled manner and is made up of both categorical
values ccat and continuous values ccont. G takes Z as input and transforms it into
an image x, i.e. G : Z → x.

E is a convolutional network that gets as input either real or fake images and
encodes them into a latent representation E : x→ Z. D gets as input an image x
and the corresponding representation Z concatenated along the channel axis. It
then tries to classify the pair as coming either from the generator G or the encoder
E, i.e. D : Z × x→ {0, 1}, while both G and E try to fool the discriminator into
misclassifying its input. As a result the original GAN minimax game [Goodfellow
et al., 2014] is extended and becomes:

min
G,E

max
D

V (D,G,E) = Ex∼Pdata
[logD(x,E(x))] + EZ∼PZ [log(1−D(G(Z), Z))],

where V (D,G,E) is the adversarial cost as depicted in Fig. 3.1.
In order to force the generator to use the information provided in c we max-

imize the mutual information I between c and G(z, c). Maximizing the mu-
tual information directly is hard, as it requires the posterior P (c|x) and we
therefore follow the approach by Chen et al. [2016] and define an auxiliary dis-
tribution E(c|x) to approximate P (c|x). We then maximize the lower bound
LI(G,E) = Ec∼P (c),z∼P (z),x∼G(z,c)[log E(c|x)]+H(c) ≤ I(c;G(z, c)), where LI(G,E)
is the mutual information depicted in Fig. 3.1. For simplicity reasons we fix the
distribution over c and, therefore, the entropy term H(c) is treated as a constant.
In our case E is the encoder network which gets images generated by G as input
and is trained to approximate the unknown posterior P (c|x). For categorical ccat
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Figure 3.2: Images sampled from the MNIST test set. (a) Each row represents
one value of the ten-dimensional code c1, which encodes different digits despite
never seeing labels during the training process. (b) Images with maximum and
minimum values for c2 and c3 for each categorical value from c1.

we use the softmax nonlinearity to represent E(ccat|x) while we treat the posterior
E(ccont|x) of continuous ccont as a factored Gaussian. Given this structure, the
minimax game for the Bidirectional-InfoGAN (BInfoGAN) is then

min
G,E

max
D

VBInfoGAN(D,G,E) = V (D,G,E)− λLI(G,E)

where λ determines the strength of the impact of the mutual information criterion
LI and is set to 1.0 in all our experiments.

3.2.3 Experiments

We perform experiments on the MNIST, the CelebA [Liu et al., 2015], and the
SVHN [Netzer et al., 2011] data set. While the final performance of the model
is likely influenced by choosing the “optimal” characteristics for c this is usually
not possible, since we do not know all data-generating factors beforehand. When
choosing the characteristics and dimensionality of the disentangled vector c we
therefore mostly stick with the values previously chosen by Chen et al. [2016].

On the MNIST data set we model the latent code c with one categorical variable
c1 ∼ Cat(K = 10, p = 0.1) and two continuous variables c2, c3 ∼ U(−1, 1). During
the optimization process and without the use of any labels the encoder learns to use
c1 to encode different digit classes, while c2 and c3 encode stroke width and digit
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Figure 3.3: Images sampled from the (a) CelebA and (b) SVHN test sets. Each
row shows images sampled according to one specific categorical variable ccat which
represents a learned characteristic.

rotation. Fig. 3.2a shows images randomly sampled from the test set according to
the ten different categorical values. We can see that the encoder has learned to
reliably assign a different categorical value for different digits. Indeed, by manually
matching the different categories in c1 to a digit type, we achieve a test set accuracy
of 96.61% (±0.32%, averaged over 10 independent runs) without ever using labels
during the training, compared to Chen et al. [2016] (unsupervised) with an accuracy
of 95%, and Zhang et al. [2017a] (semi-supervised, 20 labels) with an accuracy of
96%. Fig. 3.2b shows images sampled from the test set for different values of c2

and c3. We see that we can use the encodings from E to now sample for digits
with certain characteristics such as stroke width and rotation, even though this
information was not explicitly provided during training.

On the CelebA data set the latent code is modeled with four categorical codes
c1, c2, c3, c4 ∼ Cat(K = 10, p = 0.1) and four continuous variables c5, c6, c7, c8 ∼
U(−1, 1). Again, the encoder learns to associate certain image characteristics with
specific codes in c. This includes characteristics such as the presence of glasses,
hair color, and background color and is visualized in Fig. 3.3a.

On the SVHN data set we use the same network architecture and latent code
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representations as for the CelebA data set. Again, the encoder learns interpretable,
disentangled representations encoding characteristics such as image background,
contrast and digit type. See Fig. 3.3b for examples sampled from the SVHN test
set. These results indicate that the Bidirectional-InfoGAN is indeed capable of
mapping data points into disentangled representations that encode meaningful
characteristics in a completely unsupervised manner.

3.2.4 Conclusion

We showed that an encoder coupled with a generator in a Generative Adversarial
Network can learn disentangled representations of the data without the need for
any explicit labels. Using the encoder network we maximize the mutual information
between certain parts of the generator’s input and the images that are generated from
it. Through this the generator learns to associate certain image characteristics with
specific parts of its input. Additionally, the adversarial cost from the discriminator
forces both the generator to generate realistic looking images and the encoder to
approximate the inverse of the generator, leading to disentangled representations
that can be used for inference.

The learned characteristics are often meaningful and humanly interpretable,
and can potentially help with other tasks such as classification and clustering.
Additionally, our method can be used as a pre-training step on unlabeled data sets,
where it can lead to better representations for the final task. However, currently we
have no influence over which characteristics are learned in the unsupervised setting
which means that the model can also learn characteristics or features that are
meaningless or not interpretable by humans. In the future, this can be mitigated by
combining our approach with semi-supervised approaches, in which we can supply
a limited amount of labels for the characteristics we are interested in to exert
more control over which data-generating factors are learned while still being able
to discover “new” generating factors which do not have to be known or specified
beforehand.

3.3 Semi-supervised Learning of

Disentangled Representations

This section presents our work Image generation and translation with disentangled
representations by Tobias Hinz and Stefan Wermter published in 2018 at the IEEE
International Joint Conference on Neural Networks (pp. 5519 – 5526).
© 2018 IEEE, reprinted with permission.

3.3.1 Introduction

The introduction of Generative Adversarial Networks [Goodfellow et al., 2014]
(GANs) provided a way to generate realistic images through a model that can
be trained in an unsupervised fashion. While it has been observed that images
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produced by GANs can be sharp and realistic, the original GAN model does not
provide any control over what kind of image is generated. Furthermore, it does
not provide a way to modify existing data samples, but can only generate new
ones. Since then, GANs have been extended to also support or handle tasks such as
image-to-image translation and controllable image generation, two tasks that require
the modeling of high-dimensional data and a certain amount of understanding
about the content of images.

Image-to-image translation takes as input some image and tries to “translate”
it into a different domain. This can, for example, include changing the overall
style of the image [Isola et al., 2017], translating the objects within the image into
similar ones [Zhu et al., 2017a; Liu et al., 2017] or manipulating certain aspects
of the image, e.g. by changing facial characteristics [Lample et al., 2017; Shen
and Liu, 2017]. One difficulty in image-to-image translation is that it is often an
unsupervised problem, i.e. we do not have a ground truth of what the translated
image should look like. If we have, for example, the image of a male face and want
to translate it into a female face, we usually have no image to compare it with and
there are many different ways in which a male face could be modified to look more
like a female one. Additionally, many current techniques need to train individual
translators for each domain. This quickly becomes unfeasible as the number of
domains increases, since for k domains k(k − 1) translators would be needed.

Controllable image generation is a related problem in which we want to exert
some control over what kind of image is generated. This could for example mean
specifying what kind of a digit is generated or whether a generated face should be
male or female [Mirza and Osindero, 2014; Spurr et al., 2017; Zhang et al., 2017a].
This is usually achieved by providing a label to the generator and discriminator.
Since the discriminator gets correctly labeled data samples from the real data
distribution it learns to associate the labels with specific features in the images. In
order to fool the discriminator the generator then learns to generate images that
correspond to the provided labels. While this requires a (partially) labeled training
set, it provides us with more control over what kind of images are generated and
has also been shown to improve the image quality [Salimans et al., 2016].

So far, many of the methodologies focus on either image generation or image
translation, but can rarely do both tasks. However, working in the domain of
images there is conceptually not a big difference between translating images from
one domain into another, or generating a new image according to certain conditions.
Furthermore, many of the systems that perform image translation need distinct
translators for individual domains – an approach that does not scale well with
multiple domains. Additionally, many of the approaches need labeled training
images for each of the domains they work with. Finally, most image translation
methods encode the image information in entangled representations without easy
access to the domain information or sometimes even exclude the domain information
entirely from the image representation.

Our approach, on the other hand, aims at performing both, generating new
images and translating between multiple domains with only one model. It does only
need few labeled training samples and encodes all information into the representation
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for the generator to use. Information important for the respective domains is
encoded in a disentangled manner and we can even detect unknown data-generating
factors without the need for any labels. For this, we make use of a generator G
that generates an image X from a vector Z, and an encoder E that encodes images
X into a representation Z. In order to gain control over the images, Z is divided
into two parts (u, c). Here, u encodes image characteristics that we do not want to
model explicitly, while c encodes characteristics that we want to control, e.g. which
digit of the MNIST data set should be generated.

We then train the encoder to encode provided labels into c and all other
information into u, while the generator is trained to construct realistic images from
(u, c). This methodology already offers the possibility of translating images by using
the encoder to get an image representation Z = (u, c), changing c to the desired
domain (e.g. changing the image class) and using the generator to generate the
translated image. To also offer a way to generate new data samples we introduce a
discriminator D that takes as input the representation Z and the according image
X and tries to determine if the pair (Z,X) came from the generator or the encoder.
Both the encoder and the generator try to build pairs (X,Z) that are classified
incorrectly by the discriminator. This has two beneficial effects: firstly, it encourages
the encoder and the generator to learn inverse functions of each other [Dumoulin
et al., 2017] which should minimize the reconstruction error X − G(E(X)), and
secondly, it forces the generator to generate meaningful and controllable images
from randomly sampled Z.

To summarize: we propose a model that can do both controllable image genera-
tion and image-to-image translation between multiple domains based on information
encoded within the representation. We only need very few labeled training examples
(less than 2% on all tested data sets) and can even detect unknown data-generating
factors, which can also be used for controllable image generation and translation.
All information is directly encoded in the latent representation in a disentangled
manner to which both the generator and the encoder have unrestricted access at
all times during training.

3.3.2 Related Work

Mirza and Osindero [2014] introduced conditional GANs by supplying both the
generator and the discriminator with labels. Perarnau et al. [2016] train two
encoders with the help of a previously trained conditional generator where one
encoder maps the image into a representation while the second encoder maps the
image into a condition (e.g. the class label). Using the learned representation of an
image a new condition can be specified to translate the original image. However,
this approach only trains the encoder after the generator has already been trained,
limiting the possibilities of interaction between the generator and the encoders.
Additionally, all real data that is used during training the encoders needs to be
labeled. Both Donahue et al. [2017] and Dumoulin et al. [2017] suggest training
the encoder jointly at the same time as the generator. While this offers ways of
encoding images, it does not offer any controllability over what kind of images are
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generated, nor does it offer the possibility to translate images into other domains.

Chen et al. [2016] introduced GANs for disentangled representations. Training
proceeds completely unsupervised and the model learns to disentangle underlying
data-generating factors, which are modeled directly in the latent representation.
These disentangled representations can then be used to control what kinds of images
are generated. However, there is no control over which data-generating factors
are learned and they do not necessarily coincide with human-interpretable factors
(e.g. class labels). Spurr et al. [2017] extended this setting by incorporating some
labels into the training process. Through this they have more control over which
data-generating factors the generator learns, while still being able to also learn
unlabeled or unknown data-generating factors. In addition to the generator and
discriminator Li et al. [2017b] use a classifier to achieve a controllable generator.
The data distribution is characterized by the classifier and the generator, while the
discriminator only focuses on distinguishing between real and generated samples.
However, all three systems lack the capability of mapping existing images into latent
representations, i.e. they do not offer the possibility of image-to-image translation.
Hinz and Wermter [2018b] introduced a model that learns disentangled representa-
tions for both generated and real data. While this model learns representations for
existing data it can not translate between different domains and there is no control
over which kind of data-generating factors are learned.

Zhang et al. [2017a] developed a model that is capable of both generating new
images and translating existing ones. For this they split up the latent representations
into two parts, encoding label information and other (unstructured) information.
The labels are used for semi-supervised training and two additional inference
networks are introduced which map images into the two parts of the representation.
However, the model can only translate images based on the labels that are originally
supplied, i.e. it cannot learn new data-generating factors and it needs individual
inference networks for different parts of the representation. Choi et al. [2018] can
also perform multi-domain image translation within one model, but require a fully
labeled training set or the need to employ a specifically developed technique to
deal with samples that are not fully labeled.

Shen and Liu [2017] model the image manipulation operation as learning the
residual, i.e. learning the “difference image” between the original and the translated
image. For this, they need two networks for each attribute in order to model inverse
operations, e.g. one network to add eyeglasses and one network to remove glasses.
Lample et al. [2017] use an encoder-decoder architecture for manipulating certain
attributes of faces while keeping the rest of the image constant. This is achieved by
making the representations invariant to the attributes, i.e. a representation encodes a
face without the learned attributes and the generator gets the “base” representation
plus the desired attributes. They need labels for each image during training and
can also not detect novel data-generating factors. The procedure also imposes
constraints on the representation, since it cannot encode the respective attributes
which might have negative impacts on the quality of the learned representations.
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Figure 3.4: The encoder gets as input an image from the training set and possibly
the associated label. It then encodes the image into a latent representation which
is used by the generator to reconstruct the image. The generator gets as input a
latent representation (either from the encoder or randomly sampled) and generates
an image from it, while the encoder tries to reconstruct c from the image. The
discriminator tries to determine whether pairs of latent representation and image
come from the encoder or the generator.

3.3.3 Methodology

Our model consists of a generator G, an encoder E, and a discriminator D. The
generator takes as input a vector Z and transforms it into an image X, while the
encoder takes as input an image X and maps it into a latent representation Z.
The discriminator takes as input both an image X and a latent representation Z,
and tries to determine whether the pair came from the generator or the encoder.
Figure 3.4 gives a high-level overview over our model. The latent representation
Z is split up into two parts (u, c), where u encodes unstructured information and
noise, while c encodes structured information and data-generating factors such as
for example class labels.

G and E work together in that E takes as input an image, maps it into a
latent representation, and G uses this representation to generate an image from it.
Alternatively, the generator gets as input a randomly sampled representation Z
and transforms it into an image from which the encoder tries to infer c. This is
to ensure that the generator indeed uses the information provided in c as well as
to detect previously unknown data-generating factors. The discriminator and its
adversarial loss are used to improve the image quality and to encourage G and E
to model inverse functions.

In order to ensure that the latent representation Z encodes the information
that is needed to reconstruct the original image, we minimize the reconstruction
loss, where E is the encoding part and G takes the role of the decoder:

min
G,E

Lrec(G,E) = EX∼Pdata
[||X −G(E(X))||22].

In contrast to other approaches, we do not condition the generator on additional
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labels to control the image generation process, but instead encode all the necessary
information directly within the latent representation Z, more specifically in c. To
achieve this, c is made up of both categorical values ccat and continuous values ccont
and the generator learns to associate these values with certain attributes or charac-
teristics. To achieve this, we maximize the mutual information I(c,G(u, c)), i.e. the
mutual information between c and the images generated from (u, c). Maximizing
the mutual information directly is hard as it requires the posterior P (c|x), and we
therefore follow the approach by Chen et al. [2016] and define an auxiliary distribu-
tion E(c|x) to approximate P (c|x), where E is parameterized by our encoder. We
then maximize the lower bound

max
G,E

LI(G,E) = Ec∼P (c),u∼P (u),X∼G(u,c)[log E(c|X)]

+H(c) ≤ I(c;G(u, c)).

For simplicity reasons, we fix the distribution over c and, therefore, the entropy
term H(c) is treated as a constant.

While this approach is completely unsupervised and can detect meaningful
characteristics that are encoded through c by itself, it has the drawback that we
cannot specify certain characteristics that we want to be encoded within c (e.g.
class labels). To remedy this, we introduce an additional cost, i.e. for a small subset
of labeled data points we train E in a supervised manner to encode the provided
information within c:

min
E

Lsup(E) = −
∑
i

yi log(y∗i )

where yi are labels such as class labels or characteristics like hair color or the
presence of glasses and y∗i are the encoder’s predictions. Crucially, this process is
only used to “guide” the encoder into associating certain specified information with
given parts of c. Since the generator and the encoder are trained in a joint fashion
(for maximizing the mutual information I(c,G(u, c)) and the reconstruction loss),
the generator quickly picks up on the characteristics and their associated encodings
and generates images with similar characteristics for similar encodings.

As a result, we only need comparatively few labeled data points for this process
and the data points need not even be fully labeled. For example, if we have an
image of a person’s face with a given label that indicates the presence or absence
of a smile, we can use this label to train the encoder to associate the presence or
absence of a smile with a given part of c while ignoring the parts of c that encode
other information. This also means that we can still use the model to learn to
encode unlabeled characteristics within c while using other parts of c to encode
predetermined characteristics.

Finally, to ensure that the images generated by G are realistic, that E and G
learn to model inverse functions, and that E models u according to the chosen
distribution we use a discriminator D. This discriminator tries to determine
whether a pair of a latent representation and the associated image, i.e. either
((u, c), G(u, c)) or (X,E(X)), comes from the encoder E or the generator G. Both
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Figure 3.5: Development of generator and encoder accuracy averaged over ten
independent runs for the different data sets. The dotted lines represent the encoder
accuracy, while the continuous lines depict the error of the generator, i.e. percentage
of inaccurately generated images.

E and G try to learn transformations that make the discriminator mis-classify their
representation-image pair, i.e.

min
G,E

max
D

Ladv(D,G,E) = EX∼Pdata
[logD(X,E(X))]

+EZ∼PZ [log(1−D(G(Z), Z))].

This leads to our final objective function for training the whole model:

min
G,E

max
D

L(D,G,E) = λ1Lsup + λ2Lrec − λ3LI + λ4Ladv,

where λi, i = 1...4 are used to weight the impact of the individual loss terms. Given
this model, we can now encode real or generated images into a latent representation
Z = (u, c). The characteristics learned in c are either specified through a limited
amount of labeled training data or discovered in an unsupervised way by G and E.
We can now use G to generate new images with given characteristics specified by c.
We can also use G and E for image-to-image translation by obtaining the represen-
tation of a given image through E, modifying image characteristics by changing
values in c, and generating the new image with updated image characteristics.

3.3.4 Experiments

We test our model on the MNIST, the SVHN, and the CelebA data set. On the
MNIST and the SVHN data set the labeled information consists of class labels (digit
type), while on the CelebA data set the labeled information contains attributes such
as hair color and gender. For each data set we train a classifier to quantitatively
assess the controllability of our generator and qualitatively examine the model’s
capability to translate images from the respective test sets.

On the MNIST data set we model u as a 16-dimensional vector, while c consists
of a 10-dimensional categorical variable ccat which encodes class information and
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Figure 3.6: (a) Image generation and (b) image translation, both performed by a
model trained with 100 labels.

two continuous variables c1, c2 ∼ U(−1, 1). At regular intervals during the training
process we generate 500 new images of each class by specifying ccat accordingly
and use a previously trained classifier (99.43% accuracy on the MNIST test set)
to classify them. The development of the generator’s accuracy (averaged over
10 independent runs) is depicted in Figure 3.5, and Table 3.1 gives the average
accuracy at the end of training. We can see that for 50 and 100 samples the generator
generates the desired digits with a very high accuracy and some generated samples
are shown in Figure 3.6a.

Table 3.1: Errors (%) of generated samples on MNIST.

Model

num labels
20 50 100

Triple-GAN [Li et al., 2017b] 3.06 1.80 1.29

SGAN [Zhang et al., 2017a] 1.68 1.23 0.93

Ours 6.29 ± 4.08 1.09 ± 0.89 0.66 ± 0.17

When we use only 20
labeled samples the gen-
erator sometimes ”mixes
up“ two classes (e.g. 4
and 9), which then leads
to a lower accuracy of
only roughly 80%. The
chances of this happening are around 50% and this explains the comparatively low
generator accuracy when only 20 labels are used. This problem does not occur
when marginally more samples are used and for 50 labeled samples this problem did
not occur anymore. Zhang et al. [2017a] achieve a good performance even with 20
labels but have to use two distinct inference networks, one for the class information
and one for the unstructured part of the representation. Spurr et al. [2017], who
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only focus on learning a controllable generator, report that they need a minimum
of 132 labels to achieve their goal.

Not only do we have control over what kind of digit is generated by the generator,
but we can also control the stroke width and digit rotation by modifying c1 and c2.
These characteristics were identified without any labels by maximizing the mutual
information between c1, c2, and the images generated from them. Figure 3.6a also
shows these characteristics by interpolating c1 from -1 to 1 in the first five columns
and c2 in the last five columns.

Figure 3.7: Image interpolation: the first
and last columns are images sampled from
the MNIST test set, the intermediate
columns are linear interpolations.

Figure 3.5 also shows the develop-
ment of the encoder’s accuracy mea-
sured on the test set. We can see that
the accuracy approaches around 96%
for 50 and 100 labels. While this is not
the optimal known state-of-the art for
this number of labels we still achieve
reasonable performance even though
this is not our main training criterion.
Other approaches that outperform ours
with the same amount of labels usually
focus explicitly on the encoder accuracy
and the system is trained to determine
the digit classes. Our model, on the other hand, does not only encode the digit
identity, but also other information about the image such as general style, stroke
width, and digit rotation.

Finally, we show that we can translate images from the test set into other classes
in Figure 3.6b and interpolations between test set images in Figure 3.7. The first
column in Figure 3.6b depicts images from the MNIST test set, while the other
columns show the translation of that image to other digit classes. We can see that
general style information as well as stroke width and digit rotation are consistent
across the translations. In Figure 3.7, the first and last columns show images from
the MNIST test set, while the intermediate columns depict linear interpolations
between the two images. We see that the interpolations progress smoothly and
often change class identities around midway through the interpolation, when the
“class label” in the representation has the same probability for the respective start
and end classes.

Table 3.2: Errors (%) of generated samples.

Data Set SVHN CelebA

Number of Labels 500 1000 5000 500 1000 2000

Error (%) 32.64 25.61 18.76 37.43 30.92 26.95

Standard Deviation 4.36 2.06 3.32 3.10 5.30 2.75

On the SVHN data set we
model u as a 128-dimensional vec-
tor, while c consists of four categor-
ical variables and four continuous
variables. We use ccat1 to encode
the class information (10 classes),
while the other three categorical variables are five-dimensional. Again, we track
the performance of the generator during training with the help of a previously
trained classifier (94.51% accuracy on the test set). Figure 3.5 shows that the
accuracy of both the generator and the encoder increases with the amount of labels,
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(a) Representations are kept constant in
each row while the variable encoding class
information changes across the columns.

(b) The first and last columns are images sam-
pled from the SVHN test set, the intermediate
columns are linear interpolations.

Figure 3.9: (a) Image generation and (b) image interpolation, both performed by a
model trained with 1000 labels.

while Table 3.2 shows the average performance of the generator after training is
completed. We achieve a reasonably good performance with only 1000 labeled
samples, as opposed to Spurr et al. [2017] who need more than 7000 labeled samples
to achieve a similar generator accuracy.

Figure 3.8: Image translation: the first column
contains randomly sampled images from the
SVHN test set, while the other columns are
translated images where the variable encoding
class information is changed across columns.

Figure 3.9a shows samples of
different classes generated by the
generator. We can see that stylis-
tic information is kept constant
across the different classes. This
indicates that ccat1 indeed cap-
tures the label information, while
the rest of the representation Z
encodes other stylistic informa-
tion. Figure 3.8 shows transla-
tions of images from the SVHN
test set. Again, we can see that
the stylistic information is con-
served across the different images,
while the digit is controlled by
ccat1 . Figure 3.10 shows transla-
tions where only one of the contin-
uous variables is changed across
columns. Here, we show examples
of two of the continuous variables,
which learned to encode the digit
size and the contrast. These factors were learned completely unsupervised and
without any supplied labels. Finally, Figure 3.9b shows interpolations between
images from the test set. Again, the interpolations progress in a smooth manner
and, as before, the digit identity changes around midway through the interpolation.

On the CelebA data set we also model u as a 128-dimensional vector. Since
the CelebA data set has no class labels as such, we choose to encode the facial
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digit size contrast

Figure 3.10: Image translation: the first column of each block shows randomly
sampled images from the SVHN test set. The other columns are translated images
where one of the continuous variables ccont is changed from -1 to 1.

attributes hair color, gender, smiling and pale skin within c. It therefore consists
of a five-dimensional categorical variable ccat1 encoding hair color (bald, black,
blond, brown, gray), and three two-dimensional categorical variables for the other
three attributes. Additionally, we use four continuous variables to encode other
(unknown) characteristics. We make sure that our labeled subset of training data is
roughly balanced according to the individual labels. This means that approximately
one fifth of the labeled samples are sampled from each of the five hair colors, while
also ensuring that the samples are split somewhat evenly for the other attributes.
The one exception to this rule is the class of bald faces, since they are all male.

Figure 3.5 shows how the accuracy of the generator develops for different
amounts of labels averaged over 10 independent runs and detailed results can
be found in Table 3.2. The graph only shows the accuracy for generated images
according to the characteristics black, blond, brown hair; smiling, not smiling; male,
female. This is because we found that the generator often fails to generate the
characteristics bald and gray hair correctly. Additionally, images labeled with pale
skin in the CelebA data set tend to be “very” pale. While our generator generates
images with pale skin, it was usually not “pale enough” for our classifier to classify
correctly and it was therefore also left out, but can be qualitatively seen in the
generated images. Due to this, we also do not depict the accuracy of the encoder on
the training data, since the labels on the CelebA data set are not always accurate
and sometimes contradict each other (e.g. there are also images that are labeled
with multiple hair colors). Still, for the mentioned characteristics we achieve a good
accuracy with only 2000 samples, whereas Spurr et al. [2017] report the need for
more than 30000 images to achieve a stable training performance.

Figure 3.11 shows images generated according to different settings of c, while
Figure 3.13 shows image translations according to the same characteristics. We can
see that the characteristic bald does not work very well (especially for women). The
reason for this is most likely that the labeling on the CelebA data set is not always
correct and many images that are labeled as bald are not actually bald (more than
25% of the images labeled as bald are also labeled as gray hair and there are no
bald women in the CelebA data set). We also observe that the attribute gray hair
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bald black blond brown gray smile no smile male female pale not pale

Figure 3.11: Image generation (model trained with 1000 labels): in each row the
latent representation u is kept constant and only the categorical variables are
changed across the columns.

often leads the generator to increase the depicted person’s age, since there is a high
correlation between gray hair and age in the CelebA data set (only 380 of 8499
images with the label gray hair are also labeled as young).

On the other hand, the characteristic blond hair works better for women than
for men. Again, this is most likely due to the fact that more women than men in
the CelebA data set are blond (28234 vs. 1749) and blond hair tends to be more
“pronounced” for women. Other characteristics such as smiling and gender are
modeled very accurately. Finally, Figure 3.12 shows translations according to some
of the continuous variables which were trained completely without labels. We can
see that they learned to encode information such as the amount of applied make-up,
the size of the face, and skin tone.

Finally, the image translations do not always translate the face identity correctly,
i.e. we can see that the facial features change slightly between the original image
and the translated ones. This is most likely due to the fact that our reconstruction
loss is only a small part of the overall loss and the adversarial loss is usually the
dominating factor. As a result, high level features such as e.g. facial orientation are
reconstructed correctly, while more detailed features are sometimes lost. We find
that we can increase the fidelity of the translations by increasing the weight λ2 of
the reconstruction loss, however, this leads to a slight drop in the accuracy of the
generator. At the moment there therefore exists a trade-off between the fidelity of
the translations and the accuracy of the generator.
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face size skin tonemake-up

Figure 3.12: Image translation: the first column of each block contains randomly
sampled images from the CelebA test set. The other columns are translated images
where only one of the continuous variables is changed from -1 to 1.

baldoriginal black blond brown gray smile no smile male female pale not pale

Figure 3.13: Image translation: the first column contains randomly sampled images
from the CelebA test set while the other columns are translated images where
individual categorical variables are changed across columns.

3.3.5 Conclusion

We developed a system that is capable of both image-to-image translation and
controllable image generation. We make use of an encoder which encodes existing
images into a latent representation and a generator which takes as input a latent
representation and generates an image from it. The latent representation is split up
into two parts encoding unstructured information and structured information such
as class labels. The structured information is encoded in a disentangled manner and
by maximizing the mutual information between this disentangled representation
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and the images generated from it, we can detect unknown data-generating factors.
By specifying the structured information, the image generation process can be
controlled, making it useful for generating new images and translating images by
adapting the latent representation obtained through the encoder. A discriminator
taking as input both a representation and the corresponding image improves the
quality of the generated images and encourages the encoder and the decoder to
learn inverse function of each other.

Compared to other state-of-the-art image generation and translation systems
we can do both, controllable image generation and image-to-image translations
with one model. We can translate between multiple domains without the need for
multiple encoder-decoder pairs and can even detect novel data-generating factors,
which can then be used as additional information for the image generation and
translations tasks. For all this we only need a small amount of labeled training
samples and we can also make use of only partially labeled data. We test the
system on the MNIST, SVHN, and CelebA data sets and show that it is capable
of both image translation and controllable image generation across these different
data sets. We also find that the system does learn unlabeled data-generating factors
such as digit size and rotation or image contrast, which enables us to generate and
translate images where we can specify these characteristics, even without any labels
provided for them in the training data.

3.4 Intermediate Discussion

Section 3.2 and Section 3.3 show how we can use GANs to learn and use disentangled
representations. While we show good results in both unsupervised and semi-
supervised settings, learning and using disentangled representations comes with
several challenges which we will discuss here. Some of these challenges come from the
difficulty of defining and evaluating disentangled representations (see Section 3.1).
Additionally, we look into the question of whether disentangled representations can
be learned in a completely unsupervised fashion in the first place Locatello et al.
[2019b] and how useful disentangled representations actually are for downstream
tasks [Locatello et al., 2019a; Van Steenkiste et al., 2019].

Unsupervised Learning of Disentangled Representations In Section 3.2
we show how we learn disentangled representations in an unsupervised fashion and
Section 3.3 shows additional results of attributes that were learned without any
labels. However, recent work shows that it may be impossible to learn disentangled
representations in a completely unsupervised manner and that, instead, inductive
biases are needed for both the model and the data set [Locatello et al., 2019b].
These inductive biases take the form of, e.g., choosing data sets that may have
clearly interpretable factors and tuning hyperparameters of the chosen models until
they learn the given factors.

This is indeed the case for both our approaches (Section 3.2 and Section 3.3).
We train our models on commonly used data sets (MNIST [LeCun et al., 1998],
SVHN [Netzer et al., 2011], and CelebA [Liu et al., 2015]) which contain “simple”

35



objects (digits or faces) that have humanly interpretable attributes (e.g. class
labels for digits and hair color for faces). We choose our hyperparameters for the
different models (model architecture, optimization parameters, size and form of the
disentangled representation, ...) manually such that we achieve “good” disentangled
representations. For this, we train the models with different hyperparameters and
visually inspect the results until we find hyperparameters that result in interpretable
representations that learn characteristics that we expect (e.g. class labels). Through
this, we introduce a strong implicit bias in the sense that we define what we want
the model to learn on a meta-level and then fine-tune the model’s hyperparameters
in an external loop until we reach the desired results.

If we only look at the loss that is optimized during training, and specifically the
mutual information which is our proxy for learning disentangled representations, we
observe that the models reach very high mutual information between images and
learned representations for many hyperparameter settings. Therefore, based only
on the mutual information, it would seem that the model has learned disentangled
representations. However, if we visually inspect the learned representations and look
for the results that we desire a priori, only a small subset of the hyperparameters
actually learn disentangled representations as expected by us.

This shows the challenges of working with disentangled representations while
lacking a clear definition of them. Instead, for many data sets the community has
converged on a set of characteristics that a disentangled representation should model,
and then proceeded to fine-tune the hyperparameters of different models until the
desired goal is reached. Indeed, Locatello et al. [2019b] show that disentangled
representations can not be found without access to ground truth labels, that “good”
model hyperparameters often do not transfer to other data sets, and that even
seemingly innocuous things such as the random seed chosen at train time might
influence the form of the learned disentangled representation.

On the other hand, disentangled representations occur, to a degree, consistently
in deep neural networks through regularization and other implicit biases such as
enforcing translation and scale invariance [Achille and Soatto, 2018]. The hypothesis
is that this is somewhat related to the information bottleneck [Tishby et al., 1999;
Tishby and Zaslavsky, 2015] in the sense that learning disentangled representations
can help with compression. However, whether the resulting representations are
indeed “disentangled” is again strongly dependent on the used definition. As such,
whether disentangled representations can actually be learned in a completely unsu-
pervised manner might ultimately dependent on the definition of “disentanglement”
in the given context.

Evaluating Disentangled Representations As discussed previously in Sec-
tion 3.1, evaluating disentangled representations is also a challenging task. In
Section 3.2 we evaluate the disentangled representations quantitatively on the
MNIST data set by using the disentangled representation to predict the digit within
each image. All other results were evaluated visually. We performed more quanti-
tative analyses in Section 3.3 by using pre-trained convolutional neural networks to
evaluate generated images. However, as alluded to in the previous paragraph, all of
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our evaluation was done either visually or based on pre-defined, manually chosen
characteristics that we wanted to be represented in a disentangled manner. As a
consequence, our quantitative evaluation is limited to factors of variation which
we were aware of before training the networks. We also show that it is possible
to discover previously unknown factors of variation through visual inspection (see
e.g. Figure 3.12). However, no quantitative evaluation for these characteristics was
performed in our experiments and different persons might judge and evaluate the
unsupervised learned characteristics differently.

Locatello et al. [2019b, 2020a] show that it is challenging to choose which model
performs better than others for disentangled representation learning on a given
data set. Different evaluation metrics give different results, partly due to the
unclear definition of what disentangled representations are in the first place. Visual
inspection of the learned representations is biased, hard to reproduce, and relies
on the made assumptions about the data generating factors. As such, arriving at
a generally accepted way to evaluate disentangled representations might not be
possible until a generally applicable definition for disentangled representations is
available. Until then, most evaluations will likely rely on visual inspections or use
metrics and evaluation procedures specifically for the intended downstream task.

Disentangled Representations for Downstream Tasks One of the central
hypotheses with respect to disentangled representations is that they are useful for
many different downstream tasks [Bengio et al., 2013]. While several methods have
shown that the learned representations can be useful for downstream tasks such as
controllable image synthesis, most of these methods are evaluated on tasks that
were known in advance. As discussed previously, this means that these approaches
were most likely fine-tuned on a meta-level by the respective researchers to learn
representations that perform well on the chosen task.

But what if the task is not known a priori? Are disentangled representations
still useful for a range of tasks that they were not specifically trained for? Locatello
et al. [2019b, 2020b] do not find that disentangled representations are always
helpful for downstream tasks despite achieving good scores on several evaluation
metrics for disentangled representations. Van Steenkiste et al. [2019] find that
disentangled representations improve the abstract visual reasoning capability of
several models. It seems likely that disentangled representations will be helpful
for some tasks, but not all tasks. However, which tasks generally benefit from
disentangled representations (without knowing the task at train time) is difficult
to predict and will likely depend on the used definition of disentanglement, the
implicit biases that are present in the model design and data set, and the used
evaluation metrics.

3.5 Summary

We showed how we can learn disentangled representations in an unsupervised
(Section 3.2) or semi-supervised manner (Section 3.3) and what we can do with
these disentangled representations on several data sets. However, in Section 3.4
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we identified several challenges in the definition and evaluation of disentangled
representations that also apply to our approaches. The “unsupervised” learning
of disentangled representations is not actually unsupervised but depends on the
choice of model architecture, hyperparameters, and data set, all of which is done
manually. As such, the unsupervised learning is actually supervised on a meta-level
and the learning is only unsupervised in the inner loop of model optimization.
Furthermore, the evaluation of disentangled representations has several challenges
and, to date, there is no clear “winner” in the field of metrics for evaluating
disentangled representations. Instead, evaluation is often done manually based on
visual results and depends on the practitioner’s definition of disentanglement.

However, even if disentanglement is only defined individually for different
tasks and data sets, it is still desirable for specific tasks and interpretability.
Even if the definition of disentanglement might not transfer between different
domains and different evaluation metrics might be needed for different tasks and
models, disentanglement can still be useful when used correctly. Several approaches
have shown that in specific domains we can achieve representations that encode
interpretable factors in distinct parts of the representations. If we have a concrete
goal (e.g. image editing) with concrete priors that we want to be encoded in a
disentangled manner, then this is certainly possible (to a degree). While we may
not be able to claim that learning disentangled representations is a completely
unsupervised manner is possible, future work should focus on how we can learn
disentangled representation with as little prior knowledge and implicit biases as
possible, how we can unite different notions of disentanglement across tasks and
data sets, and how we can go beyond visual evaluation of disentanglement.

Another challenge is that it is often unclear which degree of disentanglement is
desired. The original definition we used implies that disentangled representations
should model all data generating factors, however small or negligible they might be.
This would not only mean disentangling foreground from background, or one object
from another object but also that all factors that model each individual object (e.g.
size, shape, texture) should be disentangled. Once we introduce more than one
object into the environment this becomes increasingly complex, especially since
objects differ in their complexity and, thus, the number of data-generating factors
per object. One approach towards dealing with complex environments would be to
model the environment in a compositional manner where each object is represented
explicitly via its own representation. We follow this approach in Chapter 4 and
introduce several approaches for learning compositional representations that are
capable of explicitly modeling individual objects. In the future, these explicit object
representations could be combined with the approaches developed and discussed
in this chapter in order to learn disentangled object representations that can be
combined to model complex and realistic environments.
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Chapter 4

Compositional Representations

As we discussed in Chapter 3, learning disentangled representations becomes in-
creasingly difficult once multiple objects and complex environments are introduced.
To address this, it might be useful to model objects individually instead of learning
a single representation for some global input. In this chapter, we introduce our
approaches to learning compositional representations which we define as repre-
sentations that explicitly model individual parts within a larger context. These
distinct representations can then be combined to create more complex contexts.
We illustrate compositional representations in the setting of complex visual scenes
that contain several individual objects. This is in contrast to Chapter 3 where the
context always consists of a single object from one domain (e.g. digits or faces). We
first describe what compositional representations are in our setting and why they
might be useful. After this, we show our approach to learning compositional repre-
sentations and how they can be evaluated. We conclude with a critical discussion
and place our approaches within the context of current literature.

4.1 Compositional Representations

Many image data sets are neatly pre-processed such that they only contain images
that show a single object located in the image center. This is often referred to as
“center bias” [Tseng et al., 2009]. However, the real world is more complex than
that, and images often contain different objects which might partially occlude or
interact with each other and are often not positioned in the image center. Rather
than disentangling all these individual objects and interactions within a single
representation it makes sense to learn individual representations for each of the
objects. These individual representations can then be composed to represent
complex visual scenes.

This is similar to humans, who naturally decompose complex scenes into individ-
ual objects and model boundaries between objects and possible interactions [Spelke,
1990; Hupé et al., 1998]. Humans not only decompose scenes into individual objects
but also have an additional understanding of how individual objects are made up
of smaller parts [Hoffman and Richards, 1984; Biederman, 1987]. Indeed, Lake
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et al. [2017] claim that compositionality is one of the central paradigms of human
intelligence and Greff et al. [2020] identify compositionality as a key ingredient for
generalization. Early computer vision models have been inherently compositional
[Fidler and Leonardis, 2007], however, most current computer vision models rely
on deep neural networks which do not model concepts in a compositional manner
[Tokmakov et al., 2019; Greff et al., 2019]. There are, to date, very few neural
network models that address compositionality and evaluation of compositionality
for computer vision and deep neural networks is still in its infancy [Andreas, 2019].

Disentangled representations (Chapter 3) learn one representation for one input
where different characteristics of the input are represented in disjoint parts of the
representation. In contrast to this, compositional representations model individual
parts of a context explicitly in different representations. As such, we can use
compositional representations to model e.g. images that either contain several
objects of a single domain (e.g. several digits distributed across an image) or,
even more challenging, images that contain several objects of distinct domains (e.g.
humans, cars, and dogs). Other approaches have already made use of the advantages
of compositional representations, though, similar to disentangled representations,
there is no clear definition of them. We now give a brief overview of different
approaches to compositional representations before describing how we define and
use them in our work.

Part-based Compositional Representations Part-based compositional rep-
resentations [Yuille and Mottaghi, 2016] model individual objects via their char-
acteristics or parts, e.g. by representing a given object through a composition of
color and shape. Mobahi et al. [2014] use compositional representations for tasks
such as image morphing and scene alignment. Their compositional representations
model color, appearance, and shape of a given image, and the three compositional
parts can be reused between tasks and images. Tabernik et al. [2016] define repre-
sentations as compositional if representations at a later modeling stage explicitly
model combinations of representations at early stages, while Tang et al. [2017]
model compositionality through an And-Or Graph that characterizes subpart-part
compositions. Wang and Yuille [2015] use semantic segmentation maps to learn
part-based compositional representations of animals while Tokmakov et al. [2019]
use category-level attribute annotations in order to decompose representations of
objects into visual parts such as color or more abstract concepts such as symmetry.
However, relying only on part-based representations does not automatically lend
itself to the extended use-case of modeling several objects within a given context.

Object-based Compositional Representations Object-based compositional
representations model complex scenes by representing individual objects explicitly.
These individual object representations can then be used to compose novel scenes.
Chang et al. [2017] use compositional representations to model individual objects
in complex scenes to predict future object states. Each representation for a given
object encodes various object properties such as position, velocity, and mass. With
the help of these representations, they can model physical interactions between
individual objects based on current and past object states. Stone et al. [2017]
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model compositionality by training representations to be partially invariant to
individual objects by introducing a novel loss function. What constitutes an object
is defined through labeled masks at train time. Gao et al. [2016] use videos to
learn object-based representations. In this case, the learning signal comes from
temporally nearby image frames which are used to train the model to learn similar
representations for object-like regions. Several current approaches try to learn
unsupervised object-based representations from multiple images based on single
[Greff et al., 2019; Burgess et al., 2019; Engelcke et al., 2020] or multiple views [Li
et al., 2020a] of the same scene. While these approaches explicitly model several
objects within a given context, they are often based on discriminative frameworks.
In contrast, our approaches use generative models for learning to model images
that contain multiple objects.

Compositional Representations in Our Approaches Our approaches use
object-based compositional representations to model complex scenes that contain
several objects. We represent these individual objects explicitly by using different
model parameters to model either objects or the image background. In this context,
a given model learns representations where each representation R consists of a set
of sub-representations ri for different objects i and one representation rb for the
image background: R = ∪iri ∪ rb. These representations R are what we refer to as
compositional representations.

We partly address the second view of compositional representations (part-based)
by conditioning each object representation ri not only on an object class but also
on additional attributes (where available) such as color and position. Note that our
approaches to compositional representations are supervised and need labeled data
for what kind of objects are present in a given scene. Nevertheless, our approaches
are some of the first generative models that explicitly represent several objects in a
given scene with compositional representations.

Advantages of Compositional Representations Compositional representa-
tions have several advantages compared to traditional representations. As we do
not learn one single representation that encodes knowledge about the whole context
the learning itself becomes easier, as individual representations focus on individ-
ual objects. Compositional representations also lend themselves to representing
contexts in a compositional way. They also offer the advantage of reusability, as
representations of a given object – once learned – can be used in different contexts.
Finally, compositional representations might be useful for tasks such as visual
reasoning, as interactions between individual objects can be represented explicitly
via relations between different representations [Locatello et al., 2020c].

4.2 Learning Compositional Representations

This section presents our work Generating multiple objects at spatially distinct
locations by Tobias Hinz, Stefan Heinrich, and Stefan Wermter published in 2019
at the International Conference on Learning Representations.
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4.2.1 Introduction

Understanding how to learn powerful representations from complex distributions is
the intriguing goal behind adversarial training on image data. While recent advances
have enabled us to generate high-resolution images with Generative Adversarial
Networks (GANs), currently most GAN models still focus on modeling images that
either contain only one centralized object (e.g. faces (CelebA), objects (ImageNet),
birds (CUB-200), flowers (Oxford-102), etc.) or on images from one specific domain
(e.g. LSUN bedrooms, LSUN churches, etc.). This means that, overall, the variance
between images used for training GANs tends to be low [Raj et al., 2017]. However,
many real-life images contain multiple distinct objects at different locations within
the image and with different relations to each other. This is for example visible
in the MS-COCO data set [Lin et al., 2014], which consists of images of different
objects at different locations within one image. In order to model images with these
complex relationships, we need models that can model images containing multiple
objects at distinct locations. To achieve this, we need control over what kind of
objects are generated (e.g. persons, animals, objects, etc.), the location, and the
size of these objects. This is a much more challenging task than generating a single
object in the center of an image.

Current work [Karacan et al., 2016; Johnson et al., 2018; Hong et al., 2018b;
Wang et al., 2018a] often approaches this challenge by using a semantic layout as
additional conditional input. While this can be successful in controlling the image
layout and object placement, it also places a high burden on the generating process
since a complete scene layout must be obtained first. We propose a model that
does not require a full semantic layout, but instead only requires the desired object
locations and identities (see Figure 4.1). One part of our model, called the global
pathway, is responsible for generating the general layout of the complete image,
while a second path, the object pathway, is used to explicitly generate the features
of different objects based on the relevant object label and location.

The generator gets as input a natural language description of the scene (if
existent), the locations and labels of the various objects within the scene, and a
random noise vector. The global pathway uses this to create a scene layout encoding
which describes high-level features and generates a global feature representation
from this. The object pathway generates a feature representation of a given object
at a location described by the respective bounding box and is applied iteratively
over the scene at the locations specified by the individual bounding boxes. We then
concatenate the feature representations of the global and the object pathway and
use this to generate the final image.

The discriminator, which also consists of a global and object pathway, gets
as input the image, the bounding boxes and their respective object labels, and
the textual description. The global pathway is then applied to the whole image
and obtains a feature representation of the global image features. In parallel, the
object pathway focuses only on the areas described by the bounding boxes and
the respective object labels and obtains feature representations of these specific
locations. Again, the outputs of both the global and the object pathway are merged
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and the discriminator is trained to distinguish between real and generated images.
In contrast to previous work we do not generate a scene layout of the whole

scene but only focus on relevant objects which are placed at the specified locations,
while the global consistency of the image is the responsibility of the other part of
our model. To summarize our model and contributions: 1) We propose a GAN
model that enables us to control the layout of a scene without the use of a scene
layout. 2) Through the use of an object pathway which is responsible for learning
features of different object categories, we gain control over the identity and location
of arbitrarily many objects within a scene. 3) The discriminator judges not only
if the image is realistic and aligned to the natural language description, but also
whether the specified objects are at the given locations and of the correct object
category. 4) We show that the object pathway does indeed learn relevant features
for the different objects, while the global pathway focuses on general image features
and the background.

4.2.2 Related Work

Having more control over the general image layout can lead to a higher quality of
images [Reed et al., 2016a; Hong et al., 2018b] and is also an important require-
ment for semantic image manipulation [Hong et al., 2018a; Wang et al., 2018a].
Approaches that try to exert some control over the image layout utilize Generative
Adversarial Nets [Goodfellow et al., 2014], Refinement Networks (e.g. Chen and
Koltun [2017]; Xu et al. [2018a]), recurrent attention-based models (e.g. Mansimov
et al. [2016]), autoregressive models (e.g. Reed et al. [2016c]), and even memory
networks supplying the image generation process with previously extracted image
features [Zhang et al., 2018c].

One way to exert control over the image layout is by using natural language
descriptions of the image, e.g. image captions, as shown by Reed et al. [2016b],
Zhang et al. [2018a], Sharma et al. [2018], and Xu et al. [2018b]. However, these
approaches are trained only with images and their respective captions and it is not
possible to specifically control the layout or placement of specific objects within
the image. Several approaches suggested using a semantic layout of the image,
generated from the image caption, to gain more fine-grained control over the final
image. Karacan et al. [2016], Johnson et al. [2018], and Wang et al. [2018a] use
a scene layout to generate images in which given objects are drawn within their
specified segments based on the generated scene layout. Hong et al. [2018b] use
the image caption to generate bounding boxes of specific objects within the image
and predict the object’s shape within each bounding box. This is further extended
by Hong et al. [2018a] by making it possible to manipulate images on a semantic
level. While these approaches offer a more detailed control over the image layout
they heavily rely on a semantic scene layout for the image generating process, often
implying complex preprocessing steps in which the scene layout is constructed.

The two approaches most closely related to ours are by Reed et al. [2016a] and
Raj et al. [2017]. Raj et al. [2017] introduce a model that consists of individual
“blocks” which are responsible for different object characteristics (e.g. color, shape,

43



etc.). However, their approach was only tested on the synthetic SHAPES data set
[Andreas et al., 2016], which has only comparatively low variability and no image
captions. Reed et al. [2016b] condition both the generator and the discriminator
on either a bounding box containing the object or keypoints describing the object’s
shape. However, the used images are still of relatively low variability (e.g. birds
[Wah et al., 2011]) and only contain one object, usually located in the center of
the image. In contrast, we model images with several different objects at various
locations and apply our object pathway multiple times at each image, both in the
generator and in the discriminator. Additionally, we use the image caption and
bounding box label to obtain individual labels for each bounding box, while Reed
et al. [2016b] only use the image caption as conditional information.

4.2.3 Approach

For our approach, the central goal is to generate objects at arbitrary locations
within a scene while keeping the scene overall consistent. For this we make use of a
generative adversarial network (GAN) [Goodfellow et al., 2014]. A GAN consists
of two networks, a generator and a discriminator, where the generator tries to
reproduce the true data distribution and the discriminator tries to distinguish
between generated data points and data points sampled from the true distribution.
We use the conditional GAN framework, in which both the generator and the
discriminator get additional information, such as labels, as input. The generator G
(see Figure 4.1) gets as input a randomly sampled noise vector z, the location and
size of the individual bounding boxes bboxi, a label for each of the bounding boxes
encoded as a one-hot vector lonehoti , and, if existent, an image caption embedding ϕ
obtained with a pretrained char-CNN-RNN network from Reed et al. [2016b]. As a
pre-processing step (A), the generator constructs labels labeli for the individual
bounding boxes from the image caption ϕ and the provided labels lonehoti of each
bounding box. For this, we concatenate the image caption embedding ϕ and the
one-hot vector of a given bounding box lonehoti and create a new label embedding
labeli by applying a matrix-multiplication followed by a non-linearity (i.e. a fully
connected layer). The resulting label labeli contains the previous label as well
as additional information from the image caption, such as color or shape, and is
potentially more meaningful. In case of missing image captions, we use the one-hot
embedding lonehoti only.

The generator consists of two different streams which get combined later in the
process. First, the global pathway (B) is responsible for creating a general layout
of the global scene. It processes the previously generated local labels labeli for
each of the bounding boxes and replicates them spatially at the location of each
bounding box. In areas where the bounding boxes overlap the label embeddings
labeli are summed up, while the areas with no bounding boxes remain filled with
zeros. Convolutional layers are applied to this layout to obtain a high-level layout
encoding which is concatenated with the noise vector z and the image caption
embedding ϕ and the result is used to generate a general image layout fglobal.

Second, the object pathway (C) is responsible for generating features of the
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Figure 4.1: Both the generator and the discriminator of our model consist of
a global and an object pathway. The global pathway focuses on global image
characteristics, such as the background, while the object pathway is responsible for
modeling individual objects at their specified location.

objects flocali within the given bounding boxes. This pathway creates a feature map
of a predefined resolution using convolutional layers which receive the previously
generated label labeli as input. This feature map is further transformed with a
Spatial Transformer Network (STN) [Jaderberg et al., 2015] to fit into the bounding
box at the given location on an empty canvas. The same convolutional layers are
applied to each of the provided labels, i.e. we have one object pathway that is
applied several times across different labels labeli and whose output feeds onto the
corresponding coordinates on the empty canvas. Again, features within overlapping
bounding box areas are summed up, while areas outside of any bounding box
remain zero.

As a final step, the outputs of the global and object pathways fglobal and flocali

are concatenated along the channel axis and are used to generate the image in
the final resolution, using common GAN procedures. The specific changes of the
generator compared to standard architectures are the object pathway that generates
additional features at specific locations based on provided labels, as well as the
layout encoding which is used as additional input to the global pathway. These two
extensions can be added to the generator in any existing architecture with limited
extra effort.

The discriminator receives as input an image (either original or generated),
the location and size of the bounding boxes bboxi, the labels for the bounding
boxes as one-hot vectors lonehoti , and, if existent, the image caption embedding ϕ.
Similarly to the generator, the discriminator also possesses both a global (D) and an
object (E) pathway respectively. The global pathway takes the image and applies
multiple convolutional layers to obtain a representation fglobal of the whole image.
The object pathway first uses a STN to extract the objects from within the given
bounding boxes and then concatenates these extracted features with the spatially
replicated bounding box label lonehoti . Next, convolutional layers are applied and
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the resulting features flocali are again added onto an empty canvas within the
coordinates specified by the bounding box. Note, similarly to the generator we
only use one object pathway that is applied to multiple image locations, where the
outputs are then added onto the empty canvas, summing up overlapping parts and
keeping areas outside of the bounding boxes set to zero. Finally, the outputs of
both the object and global pathways flocali and fglobal are concatenated along the
channel axis and we again apply convolutional layers to obtain a merged feature
representation. At this point, the features are concatenated either with the spatially
replicated image caption embedding ϕ (if existent) or the sum of all one-hot vectors
lonehoti along the channel axis, one more convolutional layer is applied, and the
output is classified as either generated or real.

For the general training, we can utilize the same procedure that is used in the
GAN architecture that is modified with our proposed approach. In our work we
mostly use the StackGAN [Zhang et al., 2018a] and AttnGAN [Xu et al., 2018b]
frameworks which use a modified objective function taking into consideration the
additional conditional information and provided image captions. As such, our
discriminator D and our generator G optimize the following objective function:

min
G

max
D

V (D,G) = E(x,c)∼pdata [logD(x, c)]+E(z)∼pz ,(c)∼pdata [log(1−D(G(z, c), c))],

where x is an image, c is the conditional information for this image (e.g. labeli,
bounding boxes bboxi, or an image caption ϕ), z is a randomly sampled noise vector
used as input for G, and pdata is the true data distribution. Zhang et al. [2018a]
and others use an additional technique called conditioning augmentation for the
image captions which helps improve the training process and the quality of the
generated images. In the experiments in which we use image captions (MS-COCO)
we also make use of this technique.1

4.2.4 Evaluation and Analysis

For the evaluation, we aim to study the quality of the generated images with a
particular focus on the generalization capabilities and the contribution of specific
parts of our model, in both controllable and large-scale cases. Thus, in the following
sections, we evaluate our approach on three different data sets: the Multi-MNIST
data set, the CLEVR data set, and the MS-COCO data set.

Multi-MNIST

In our first experiment, we used the Multi-MNIST data set [Eslami et al., 2016] for
testing the basic functionality of our proposed model. Using the implementation
provided by Eslami et al. [2016], we created 50,000 images of resolution 64× 64 px
that contain exactly three normal-sized MNIST digits in non-overlapping locations
on a black background.

1More detailed information about the implementation can be found in the Appendix.
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Figure 4.2: Multi-MNIST images generated by the model. Training included only
images with three individual normal-sized digits. Highlighted bounding boxes and
yellow ground truth for visualization.

As a first step, we tested whether our model can learn to generate digits at the
specified locations and whether we can control the digit identity, the generated
digit’s size, and the number of generated digits per image. According to the results,
we can control the location of individual digits, their identity, and their size, even
though all training images contain exactly three digits in normal size. Figure 4.2
shows that we can control how many digits are generated within an image (rows
A–B, for two to five digits) and various sizes of the bounding box (row C). As a
second step, we created an additional Multi-MNIST data set in which all training
images contain only digits 0–4 in the top half and only digits 5–9 in the bottom half
of the image. For testing digits in the opposite half, we can see that the model is
indeed capable of generalizing the position (row D, left), i.e. it can generate digits
0–4 in the bottom half of the image and digits 5–9 in the top half of the image.
Nevertheless, we also observed that this does not always work perfectly, as the
network sometimes alters digits towards the ones it has seen during training at the
respective locations, e.g. producing a “4” more similar to a “9” if in bottom half of
the image, or generating a “7” more similar to a “1” if in top half of the image.

As a next step, we created a Multi-MNIST data set with images that only
contain digits in the top half of the image, while the bottom half is always empty.
We can see (Figure 4.2, row D, right) that the resulting model is not able to generate
digits in the bottom half of the image (see Figure B.1 in the Appendix for more
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details on this). Controlling for the location still works, i.e. bounding boxes are
filled with “something”, but the digit identity is not clearly recognizable. Thus,
the model is able to control both the object identity and the object location within
an image and can generalize to novel object locations to some extent.

To test the impact of our model extensions, i.e. the object pathway in both
the generator and the discriminator as well as the layout encoding, we performed
ablation studies on the previously created Multi-MNIST data set with three digits at
random locations. We first disabled the use of the layout encoding in the generator
and left the rest of the model unchanged. In the results (Figure 4.2, row E, left), we
can see that, overall, both the digit identity and the digit locations are still correct,
but minor imperfections can be observed within various images. This is most likely
due to the fact that the global pathway of the generator has no information about
the digit identity and location until its features get merged with the object pathway.
As a next test, we disabled the object pathway of the discriminator and left the
rest of the model unmodified. Again, we see (row E, right) that we can still control
the digit location, although, again, minor imperfections are visible. More strikingly,
we have a noticeably higher error rate in the digit identity, i.e. the wrong digit is
generated at a given location, most likely due to the fact that there is not object
pathway in the discriminator controlling the object identity at the various locations.
In comparison, the imperfections are different when only the object pathway of the
generator is disabled (row F, left). The layout encoding and the feedback of the
discriminator seem to be enough to still produce the digits in the correct image
location, but the digit identity is often incorrect or not recognizable at all. Finally,
we tested disabling the object pathway in both the discriminator and the generator
(see row F, right). This leads to a loss of control of both image location as well
as identity and sometimes even results in images with more or fewer than three
digits per image. This shows that only the layout encoding, without any of the
object pathways, is not enough to control the digit identity and location. Overall,
these results indicate that we do indeed need both the layout encoding, for a better
integration of the global and object pathways, and the object pathways in both the
discriminator and the generator, for optimal results.

CLEVR

In our second experiment we used more complex images containing multiple objects
of different colors and shapes. The goal of this experiment was to evaluate the
generalization ability of our object pathway across different object characteristics.
For this, we performed tests similar to [Raj et al., 2017], albeit on the more
complex CLEVR data set [Johnson et al., 2017]. In the CLEVR data set objects
are characterized by multiple properties, in our case the shape, the color, and the
size. Based on the implementation provided by Johnson et al. [2017], we rendered
25,000 images with a resolution of 64× 64 pixels containing 2− 4 objects per image.
The label for a given bounding box of an object is the object shape and color
(both encoded as one-hot encoding and then concatenated), while the object size is
specified through the height and width of the bounding box.

48



Figure 4.3: Images from the CLEVR data set. The left image of each pair shows
the rendered image according to specific attributes. The right image of each pair is
the image generated by our model.

Similar to the first experiment, we tested our model for controlling the object
characteristics, size, and location. In the first row of Figure 4.3 we present the
results of the trained model, where the left image of each pair shows the originally
rendered one, while the right image was generated by our model. We can confirm
that the model can control both the location and the objects’ shape and color
characteristics. The model can also generate images containing an arbitrary number
of objects (forth and fifths pair), even though a maximum of four objects per image
was seen during training.

The CLEVR data set offers a split specifically intended to test the generalization
capability of a model, in which cylinders can be either red, green, purple, or cyan
and cubes can be either gray, blue, brown, or yellow during training, while spheres
can have any of these colors. During testing, the colors between cylinders and
cubes are reversed. Based on these restrictions, we created a second data set of
25,000 training images for testing our model. Results of the test are shown in
the second row of Figure 4.3 (again, left image of each pair shows the originally
rendered one, while the right image was generated by our model). We can see that
the color transfer to novel shape-color combinations takes place, but, similarly to
the Multi-MNIST results, we can see some artifacts, where e.g. some cubes look a
bit more like cylinders and vice versa. Overall, the CLEVR experiment confirms
the indication that our model can control object characteristics (provided through
labels) and object locations (provided through bounding boxes) and can generalize
to novel object locations, novel amounts of objects per image, and novel object
characteristic combinations within reasonable boundaries.

MS-COCO

For our final experiment, we used the MS-COCO data set [Lin et al., 2014] to
evaluate our model on natural images of complex scenes. In order to keep our
evaluation comparable to previous work, we used the 2014 train/test split consisting
of roughly 80,000 training and 40,000 test images and rescaled the images to a
resolution of 256× 256 px. At train-time, we used the bounding boxes and object
labels of the three largest objects within an image, i.e. we used zero to three
bounding boxes per image. Similarly to work by Johnson et al. [2018] we only
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considered objects that cover at least 2% of the image for the bounding boxes.
To evaluate our results quantitatively, we computed both the Inception Score (IS,
larger is better), which tries to evaluate how recognizable and diverse objects within
images are [Salimans et al., 2016], as well as the Fréchet Inception Distance (FID,
smaller is better), which compares the statistics of generated images with real
images [Heusel et al., 2017]. As a qualitative evaluation, we generated images
that contain more than one object, and checked, whether the bounding boxes
can control the object placement. We tested our approach with two commonly
used architectures for text-to-image synthesis, namely the StackGAN [Zhang et al.,
2017b] and the AttnGAN [Xu et al., 2018b], and compared the images generated
by these and our models.

In the StackGAN, the training process is divided into two steps: first, it learns
a generator for images with a resolution of 64× 64 px based on the image captions,
and second, it trains a second generator, which uses the smaller images (64× 64 px)
from the first generator and the image caption as input to generate images with a
resolution of 256 × 256 px. Here, we added the object pathways and the layout
encoding at the beginning of both the first generator and the second generator and
used the object pathway in both discriminators. The other parts of StackGAN
architecture and all hyperparameters remain the same as in the original training
procedure for the MS-COCO data set. We trained the model three times from
scratch and randomly sampled 3 times 30,000 image captions from the test set
for each model. We then calculated the IS and FID values on each of the nine
samples of 30,000 generated images and report the averaged values. As presented
in Table 4.1, our StackGAN with added object pathways outperforms the original
StackGAN both on the IS and the FID, increasing the IS from 10.62 to 12.12 and
decreasing the FID from 74.05 to 55.30. Note, however, that this might also be
due to the additional information our model is provided with as it receives up to
three bounding boxes and respective bounding box labels per image in addition to
the image caption.

We also extended the AttnGAN by Xu et al. [2018b], the current state-of-the-
art model on the MS-COCO data set (based on the Inception Score), with our
object pathway to evaluate its impact on a different model. As opposed to the
StackGAN, the AttnGAN consists of only one model which is trained end-to-end
on the image captions by making use of multiple, intermediate, discriminators.
Three discriminators judge the output of the generator at an image resolution of
64× 64, 128× 128, and 256× 256 px. Through this, the image generation process
is guided at multiple levels, which helps during the training process. Additionally,
the AttnGAN implements an attention technique through which the networks focus
on specific areas of the image for specific words in the image caption and adds an
additional loss that checks if the image depicts the content as described by the
image caption. There, in the same way as for the StackGAN, we added our object
pathway at the beginning of the generator as well as to the discriminator that
judges the generator outputs at a resolution of 64× 64 px. All other discriminators,
the higher layers of the generator, and all other hyperparameters and training
details stay unchanged. Table 4.1 shows that adding the object pathway to the
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Model Resolution IS ↑ FID ↓

GAN-INT-CLS [Reed et al., 2016b] 64× 64 7.88± 0.07 60.62

StackGAN-V2 [Zhang et al., 2018a] 256× 256 8.30± 0.10 81.59

StackGAN [Zhang et al., 2018a] 256× 256 8.45± 0.031 74.05

PPGN [Nguyen et al., 2017] 227× 227 9.58± 0.21

ChatPainter [Sharma et al., 2018] 256× 256 9.74± 0.02

Semantic Layout [Hong et al., 2018b] 128× 128 11.46± 0.092

HDGan [Zhang et al., 2018d] 256× 256 11.86± 0.18 71.27± 0.123

AttnGAN [Xu et al., 2018b] 256× 256 23.61± 0.214 33.10± 0.113

StackGAN + Object Pathways (Ours)5 256× 256 12.12± 0.31 55.30± 1.78

AttnGAN + Object Pathways (Ours) 256× 256 24.76± 0.43 33.35± 1.15

1 Recently updated to 10.62± 0.19 in its source code.
2 When using the ground truth bounding boxes at test time (as we do) the IS increases to

11.94± 0.09.
3 FID score was calculated with samples generated with the pretrained model provided by

the authors.
4 The authors report a “best” value of 25.89 ± 0.47, but when calculating the IS with

the pretrained model provided by the authors we only obtain an IS of 23.61. Other
researchers on the authors’ Github website report a similar value for the pretrained
model.

5 We use the updated source code (IS of 10.62) as our baseline model.

Table 4.1: Comparison of the Inception Score (IS) and Fréchet Inception Distance
(FID) on the MS-COCO data set for different models. Note: the IS and FID values
of our models are not necessarily directly comparable to the other models, since
our model gets at test time, in addition to the image caption, up to three bounding
boxes and their respective object labels as input.

AttnGAN increases the IS of our baseline model (the pretrained model provided
by the authors) from 23.61 to 24.76, while the FID is roughly the same as for the
baseline model.

To evaluate whether the StackGAN model equipped with an object pathway
(StackGAN+OP) actually generates objects at the given positions we generated
images that contain multiple objects and inspected them visually. Figure 4.4 shows
some example images, more results can be seen in the Appendix in Figures B.2
and B.4. We can observe that the StackGAN+OP indeed generates images in which
the objects are at appropriate locations. In order to more closely inspect our global
and object pathways, we can also disable them during the image generation process.
Figure 4.5 shows additional examples, in which we generate the same image with
either the global or the object pathway disabled during the generation process.
Row C of Figure 4.5 shows images in which the object pathway was disabled and,
indeed, we observe that the images contain mostly background information and
objects at the location of the bounding boxes are either not present or of much less
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Figure 4.4: Examples of images generated from the given caption from the MS-
COCO data set. A) shows the original images and the respective image captions, B)
shows images generated by our StackGAN+OP (with the corresponding bounding
boxes for visualization), and C) shows images generated by the original StackGAN
[Zhang et al., 2017b]2.

detail than when the object pathway is enabled. Conversely, row D of Figure 4.5
shows images which were generated when the global pathway was disabled. As
expected, areas outside of the bounding boxes are empty, but we also observe that
the bounding boxes indeed contain images that resemble the appropriate objects.
These results indicate, as in the previous experiments, that the global pathway
does indeed model holistic image features, while the object pathway focuses on
specific, individual objects.

When we add the object pathway to the AttnGAN (AttnGAN + OP) we can
observe similar results3. Again, we are able to control the location and identity of
objects through the object pathway, however, we observe that the AttnGAN+OP,
as well as the AttnGAN in general, tends to place objects corresponding to specific
features at many locations throughout the image. For example, if the caption
contains the word “traffic light” the AttnGAN tends to place objects similar
to traffic lights throughout the whole image. Since our model only focuses on
generating objects at given locations, while not enforcing that these objects only
occur at these locations, this behavior leads to the result that the AttnGAN+OP
generates desired objects at the desired locations, but might also place the same
object at other locations within the image. Note, however, that we only added the
object pathway to the lowest generator and discriminator and that we might gain
even more control over the object location by introducing object pathways to the
higher generators and discriminators, too.

In order to further evaluate the quality of the generations, we ran an object
detection test on the generated images using a pretrained YOLOv3 network [Redmon
and Farhadi, 2018]. Here, the goal is to measure how often an object detection
framework, which was trained on MS-COSO as well, can detect a specified object

2Generated with the model from: https://github.com/hanzhanggit/StackGAN-Pytorch
3Examples of images generated by the AttnGAN+OP can be seen in the Appendix in Fig-

ures B.3 and B.5.
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at a specified location.4 The results confirm the previously made observations: For
both the StackGAN and the AttnGAN the object pathway seems to improve the
image quality, since YOLOv3 detects a given object more often correctly when the
images are generated with an object pathway as opposed to images generated with
the baseline models. The StackGAN generates objects at the given bounding box,
resulting in an Intersection over Union (IoU) of greater than 0.3 for all tested labels
and greater than 0.5 for 86.7% of the tested labels. In contrast, the AttnGAN
tends to place salient object features throughout the image, which leads to an even
higher detection rate by the YOLOv3 network, but a smaller average IoU (only
53.3% of the labels achieve an IoU greater than 0.3). Overall, our experiments on
the MS-COCO data set indicate that it is possible to add our object pathway to
pre-existing GAN models without having to change the overall model architecture
or training process. Adding the object pathway provides us with more control over
the image generation process and can, in some cases, increase the quality of the
generated images as measured via the IS or FID.

Discussion

Our experiments indicate that we do indeed get additional control over the image
generation process through the introduction of object pathways in GANs. This
enables us to control the identity and location of multiple objects within a given
image based on bounding boxes and thereby facilitates the generation of more
complex scenes. We further find that the division of work on a global and object
pathway seems to improve the image quality both subjectively and based on
quantitative metrics such as the Inception Score and the Fréchet Inception Distance.

The results further indicate that the focus on global image statistics by the
global pathway and the more fine-grained attention to detail of specific objects by
the object pathway works well. This is visualized for example in rows C and D of
Figure 4.5. The global pathway (row C) generates features for the general image
layout and background but does not provide sufficient details for individual objects.
The object pathway (row D), on the other hand, focuses entirely on the individual
objects and generates features specifically for a given object at a given location.
While this is the desired behavior of our model it can also lead to sub-optimal
images if there are not bounding boxes for objects that should be present within
the image. This can often be the case if the foreground object is too small (in
our case less than 2% of the total image) and is therefore not specifically labeled.
In this case, the objects are sometimes not modeled in the image at all, despite
being prominent in the respective image caption, since the object pathway does not
generate any features. We can observe this, for example, in images described as
“many sheep are standing on the grass”, where the individual sheep are too small to
warrant a bounding box. In this case, our model will often only generate an image
depicting grass and other background details, while not containing any sheep at all.

Another weakness is that bounding boxes that overlap too much (empirically

4See Appendix for more details on the procedure and the exact results.
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Figure 4.5: Examples of images generated from the given caption from the MS-
COCO data set. A) shows the original images and the respective image captions, B)
shows images generated by our StackGAN+OP (with the corresponding bounding
boxes for visualization) with the object pathway enabled, C) shows images generated
by the our StackGAN+OP when the object pathway is disabled, and D) shows
images generated by the our StackGAN+OP when the global pathway is disabled.

an overlap of more than roughly 30%) also often lead to sub-optimal objects at
that location. Especially in the overlapping section of bounding boxes we often
observe local inconsistencies or failures. This might be the result of our merging
of the different features within the object pathway since they are simply added
to each other at overlapping areas. A more sophisticated merging procedure
could potentially alleviate this problem.Another approach would be to additionally
enhance the bounding box layout by predicting the specific object shape within
each bounding box, as done for example by Hong et al. [2018b].

Finally, currently our model does not generate the bounding boxes and labels
automatically. Instead, they have to be provided at test time which somewhat
limits the usability for unsupervised image generation. However, even when using
ground truth bounding boxes, our models still outperform other current approaches
that are tested with ground truth bounding boxes (e.g. Hong et al. [2018b]) based
on the IS and FID. This is even without the additional need of learning to specify
the shape within each bounding box as done by Hong et al. [2018b]. In the future,
this limitation can be avoided by extracting the relevant bounding boxes and labels
directly from the image caption, as it is done for example by Hong et al. [2018b],
Xu et al. [2018a], and Tan et al. [2019].

4.2.5 Conclusion

With the goal of understanding how to gain more control over the image generation
process in GANs, we introduced the concept of an additional object pathway.
Such a mechanism for differentiating between a scene representation and object
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representations allows us to control the identity, location, and size of arbitrarily
many objects within an image, as long as the objects do not overlap too strongly. In
parallel, a global pathway, similar to a standard GAN, focuses on the general scene
layout and generates holistic image features. The object pathway, on the other
hand, gets as input an object label and uses this to generate features specifically
for this object which are then placed at the location given by a bounding box The
object pathway is applied iteratively for each object at each given location and
as such, we obtain a representation of individual objects at individual locations
and of the general image layout (background, etc.) as a whole. The features
generated by the object and global pathway are then concatenated and are used to
generate the final image output. Our tests on synthetic and real-world data sets
suggest that the object pathway is an extension that can be added to common
GAN architectures without much change to the original architecture and can, along
with more fine-grained control over the image layout, also lead to better image
quality.

4.3 Evaluating Compositional Representations

This section presents our work Semantic object accuracy for generative text-to-image
synthesis by Tobias Hinz, Stefan Heinrich, and Stefan Wermter published in 2020
in IEEE Transactions on Pattern Analysis and Machine Intelligence.

4.3.1 Introduction

Generative adversarial networks (GANs) [Goodfellow et al., 2014] are capable of
generating realistic-looking images that adhere to characteristics described in a
textual manner, e.g. an image caption. For this, most networks are conditioned
on an embedding of the textual description. Often, the textual description is used
on multiple levels of resolution, e.g. first to obtain a course layout of the image at
lower levels and then to improve the details of the image on higher resolutions. This
approach has led to good results on simple, well-structured data sets containing a
specific class of objects (e.g. faces, birds, or flowers) at the image center.

Once images and textual descriptions become more complex, e.g. by containing
more than one object and having a large variety in backgrounds and scenery settings,
the image quality drops drastically. This is likely because, until recently, almost all
approaches only condition on an embedding of the complete textual description,
without paying attention to individual objects. Recent approaches have started
to tackle this by either relying on specific scene layouts [Johnson et al., 2018] or
by explicitly focusing on individual objects [Hinz et al., 2019; Li et al., 2019d]. In
this work, we extend this approach by additionally focusing specifically on salient
objects within the generated image. However, generating complex scenes containing
multiple objects from a variety of classes is still a challenging problem.

The most commonly used evaluation metrics for GANs, the Inception Score
(IS) [Salimans et al., 2016] and the Fréchet Inception Distance (FID) [Heusel et al.,
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2017], are not designed to evaluate images that contain multiple objects and depict
complex scenes. In fact, both of these metrics depend on an image classifier (the
Inception-Net), which is pre-trained on ImageNet, a data set whose images almost
always contain only a single object at the image center. They also do not evaluate
the consistency between image description and generated image and, therefore,
can not evaluate whether a model generates images that actually depict what is
described in the caption. Even evaluation metrics specifically designed for text-
to-image synthesis evaluation such as the R-precision [Xu et al., 2018b] often fail
to evaluate more detailed aspects of an image, such as the quality of individual
objects.

As such, our contributions are twofold: first, we introduce a novel GAN ar-
chitecture called OP-GAN that focuses specifically on individual objects while
simultaneously generating a background that fits with the overall image description.
Our approach relies on an object pathway similar to Hinz et al. [2019], which
iteratively attends to all objects that need to be generated given the current image
description. In parallel, a global pathway generates the background features which
later on get merged with the object features. Second, we introduce an evaluation
metric specifically for text-to-image synthesis tasks which we call Semantic Ob-
ject Accuracy (SOA). In contrast to most current evaluation metrics, our metric
focuses on individual objects and parts of an image and also takes the caption
into consideration when evaluating an image. Image descriptions often explicitly
or implicitly mention what kind of objects are seen in an image, e.g. an image
described by the caption “a person holding a cell phone” should depict both a
person and a cell phone. To evaluate this, we sample all image captions from the
COCO validation set that explicitly mention one of the 80 main object categories
(e.e. “person”, “dog”, “car”, etc.) and use them to generate images. We then use
a pre-trained object detector [Redmon and Farhadi, 2018] and check whether it
detects the explicitly mentioned objects within the generated images. We perform
a user study over several current text-to-image models and show that SOA is highly
compatible with human evaluation whereas other metrics, such as the Inception
Score, are not.

We evaluate several variations of our proposed model as well as several state-of-
the-art approaches that provide pre-trained models. Our results show that current
architectures are not able to generate images that contain objects of the same
quality as the original images. While some models already achieve results close to
or better than real images on scores such as the IS and R-precision, none of the
models comes close to generating images that achieve SOA scores close to the real
images. However, our results and user study also show that models that attend
to individual objects in one way or another tend to perform better than models,
which only focus on global image semantics.

4.3.2 Related Work

Modern architectures are able to synthesize realistic, high-resolution images of many
domains. In order to generate images of high resolution many GAN [Goodfellow

56



et al., 2014] architectures use multiple discriminators at various resolutions [Zhang
et al., 2018a]. Additionally, most GAN architectures use some form of attention for
improved image synthesis [Xu et al., 2018b] as well as matching aware discriminators
[Reed et al., 2016b] which identify whether images correspond to a given textual
description.

Originally, most GAN approaches for text-to-image synthesis encoded the textual
description into a single vector which was used as a condition in a conditional GAN
(cGAN) [Reed et al., 2016b; Zhang et al., 2018a]. However, this faces limitations
when the image content becomes more complex as e.g. in the COCO data set [Lin
et al., 2014]. As a result, many approaches now use attention mechanisms to attend
to specific words of the sentence [Xu et al., 2018b], use intermediate representations
such as scene layouts [Johnson et al., 2018], condition on additional information
such as object bounding boxes [Hinz et al., 2019] or perform interactive image
refinement [Sharma et al., 2018]. Other approaches generate images directly from
semantic layouts without additional textual input [Karacan et al., 2016; Park et al.,
2019]or perform a translation from text to images and back [Sah et al., 2018; Qiao
et al., 2019b].

Direct Text-to-Image Synthesis Approaches that do not use intermediate
representations such as scene layouts use only the image caption as conditional
input. Reed et al. [2016b] use a GAN to generate images from captions directly and
without any attention mechanism. Captions are embedded and used as conditioning
vector and they introduce the widely adopted matching aware discriminator. The
matching aware discriminator is trained to distinguish between real and matching
caption-image pairs (“real”), real but mismatching caption-image pairs (“fake”),
and matching captions with generated images (“fake”). Cha et al. [2019] modify
the sampling procedure during training to obtain a curriculum of mismatching
caption-image pairs and introduce an auxiliary classifier that specifically predicts
the semantic consistency of a given caption-image pair. Zhang et al. [2017b, 2018a]
use multiple generators and discriminators and are one of the first ones to achieve
good image quality at resolutions of 256 × 256 on complex data sets. Zhang
et al. [2018d] have a similar architecture as Zhang et al. [2017b] with multiple
discriminators but only use one generator while Huang et al. [2019b] generate
realistic high-resolution images from text with a single discriminator and generator.

Xu et al. [2018b] extend Zhang et al. [2018a] and are the first ones to introduce an
attention mechanism to the text-to-image synthesis task with GANs. The attention
mechanism attends to specific words in the caption and conditions different image
regions on different words to improve the image quality. Yin et al. [2019] extend this
and also consider semantics from the text description during the generation process.
Zhu et al. [2019] introduce a dynamic memory part that selects “bad” parts of the
initial image and tries to refine them based on the most relevant words. Li et al.
[2019a] refine the attention module by having spatial and channel-wise word-level
attention and introduce a word-level discriminator to provide fine-grained feedback
based on individual words and image regions. Qiao et al. [2019a] decompose the
text-to-image process into three distinct phases by first learning a prior over the
text-image space, then sampling from this prior, and lastly using the prior to
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generate the image.
Text-to-Image Synthesis with Layouts When using more complex data

sets that contain multiple objects per image, generating an image directly becomes
difficult. Therefore, many approaches use additional information such as bounding
boxes for objects or intermediate representations such as scene graphs or scene
layouts which can be generated automatically [Li et al., 2019c; Jyothi et al., 2019;
Li et al., 2019b]. Reed et al. [2016c] and Reed et al. [2016a] build on Reed et al.
[2016b] by additionally conditioning the generator on bounding boxes or keypoints
of relevant objects. Raj et al. [2017] decomposition textual descriptions into basic
visual primitives to generate images in a compositional manner. Johnson et al.
[2018] introduce the concept of generating a scene graph based on a caption. This
scene graph is then used to generate an image layout and finally the image. Similar
to Johnson et al. [2018], Hong et al. [2018b] use the caption to infer a scene layout
which is used to generate images. Liu et al. [2019] predict convolution kernels
conditioned on the semantic layout, making it possible to control the generation
process based on semantic information at different locations.

Given a coarse image layout (bounding boxes and object labels) Zhao et al.
[2019] generate images by disentangling each object into a specified part (e.g.
object label) and unspecified part (appearance). Hinz et al. [2019] generate images
conditioned on bounding boxes for the individual foreground objects by introducing
an object pathway that generates individual objects. Li et al. [2019d] update the
grid-based attention mechanism Xu et al. [2018b] by combining attention with
scene layouts. Additionally, an object discriminator is introduced which focuses
on individual objects and provides feedback whether the object is at the right
location. Huang et al. [2019a] refine the grid-based attention mechanism between
word phrases and specific image regions of various sizes based on an initial set of
bounding boxes. Sun and Wu [2019] introduce a new feature normalization method
and fine-grained mask maps to generate visually different images from a given
layout. Li et al. [2019f] generate images from scene graphs and allow the model to
crop objects from other images to paste them into the generated image. Vo and
Sugimoto [2020] generate a visual-relation scene layout based on the caption. For
this, they introduce a dedicated module which generates bounding boxes for objects
at a given caption in order to condition the network during the image generation
process.

Semantic Image Manipulation Finally, there are methods that allow hu-
mans to directly describe the image in an iterative process or that allow for direct
semantic manipulation of images. Sharma et al. [2018] condition generation process
on a dialogue describing the image instead of a single caption. Hong et al. [2018a]
facilitate semantic image manipulation by allowing users to modify image layouts
which are then used to generate images. Lee et al. [2018] allow users to input object
instance masks into an existing image represented by a semantic layout. El-Nouby
et al. [2019] generate images iteratively from consecutive textual commands, Cheng
et al. [2020] provide interactive image editing based on a current image and instruc-
tions on how to update the image, and Li et al. [2019e] generate individual images
for a sequence of sentences. Mittal et al. [2019] do interactive image generation but
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Figure 4.6: Overview of our model architecture called OP-GAN. The top row shows
a high-level summary of our architecture, while the bottom two rows show details
of the individual generators and discriminators.

do not use text as direct input but instead update a scene graph from text over
the course of the interaction. Nam et al. [2018]; Zhou et al. [2019], and Yu et al.
[2019] modify visual attributes of individual objects in an image while leaving text
irrelevant parts of the image unchanged.

4.3.3 Approach

A traditional generative adversarial network (GAN) [Goodfellow et al., 2014]
consists of two networks: a generator G which generates new data points from
randomly sampled inputs, and a discriminator D which tries to distinguish between
generated and real data samples. In conditional GANs (cGANs) [Mirza and
Osindero, 2014] both the discriminator and the generator are conditioned on
additional information, e.g. a class label or textual information. This has been
shown to improve performance and leads to more control over the data generating
process. For a conventional cGAN with generator G, discriminator D, condition
c (e.g. a class label), data point x, and a randomly sampled noise vector z the
training objective V is:

min
G

max
D

V (D,G) = E(x,c)∼pdata [log D(x, c)]+

E(z)∼pz ,(c)∼pdata [log(1−D(G(z, c), c))].
(4.1)
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We use the AttnGAN [Xu et al., 2018b] as our baseline architecture and add
our object-centric modifications to it. The AttnGAN is a conditional GAN for text-
to-image synthesis that uses attention and a novel additional loss to improve the
quality of the generated images. It consists of a generator and three discriminators
as shown in the top row of Figure 4.6. Attention is used such that different words
of the caption have more or less influence on different regions of the image. This
means that, for example, the word “sky” has more influence on the generation of
the top half of the image than the word “grass” even if both words are present in
the image caption.

Xu et al. [2018b] also introduce the Deep Attentional Multimodal Similarity
Model (DAMSM) which computes the similarity between images and captions. This
DAMSM is used during training to provide additional, fine-grained feedback to the
generator about how well the generated image matches its caption. We adapt the
AttnGAN architecture with multiple object pathways which are learned end-to-end
in both the discriminator and the generator, see B and C in Figure 4.6.

These object pathways are conditioned on individual object labels (e.g. “person”,
“car”, etc.) and the same object pathway is applied multiple times at a given image
resolution at different locations and for different objects. This is similar to the
approach introduced by Hinz et al. [2019]. However, Hinz et al. [2019] only use one
object pathway in the generator at a small resolution and only one discriminator
was equipped with an object pathway. In our approach, the generator contains three
object pathways at various resolutions (16× 16, 64× 64, and 128× 128) to further
refine object features at higher resolutions and each of our three discriminators is
equipped with its own object pathway, see D in Figure 4.6.

For a given image caption ϕ we have several objects which are associated
with this caption and which we represent with one-hot vectors σi, i = 1...n (e.g.
σ0 = person, σ1 = car, etc.). Each object pathway at a given resolution is applied
iteratively for each of the objects σi. The location is determined by a bounding
box describing the object’s location and size. Each object pathway starts with an
“empty” zero-tensor ρ and the features that are generated (generator) or extracted
(discriminator) are added onto ρ at the location of the specific object’s bounding
box. After the object pathway has processed each object, ρ contains features at
each object location and is zero everywhere else.

For the generator, we first concatenate the image caption’s embedding ϕ, the
one-hot label σi, and a randomly sampled noise vector z. We use this concatenated
vector to obtain the final conditioning label ιi for the current object σi:

ιi = F(ϕ, z, σi), (4.2)

where F is a fully connected layer followed by a non-linearity (A in Figure 4.6).
The generator’s first object pathway (B.2 in Figure 4.6) takes this conditioning

label ιi and uses it to generate features for the given object at a spatial resolution of
16×16. The features are then transformed onto ρ into the location of the respective
bounding box with a spatial transformer network (STN) [Jaderberg et al., 2015].
This procedure is repeated for each object σi associated with the given caption ϕ.
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The global pathway in the first generator also gets the locations and labels ιi
for the individual objects. It spatially replicates these labels at the locations of the
respective bounding boxes and then applies convolutional layers to the resulting
layout to obtain a layout encoding (B.1 in Figure 4.6). This layout encoding, the
image caption ϕ, and the noise vector z are used to generate coarse features for
the image at a low resolution.

At higher levels in the generator, the object pathways are conditioned on the
object features of the current object and the one-hot label σi for that object (C.2 in
Figure 4.6). For this, we again use an STN to extract the features at the bounding
box location of the object σi and resize the features to a spatial resolution of
16× 16 (second object pathway) or 32× 32 (third object pathway). We obtain a
conditioning label in the same manner as for the first object pathway (Equation 4.2),
replicate it spatially to the same dimension as the extracted object features, and
concatenate it with the object features along the channel axis. Following this, we
apply multiple convolutional layers and upsampling to update the features of the
given object. Finally, as in the first object pathway, we use an STN to transform
the features into the bounding box location and add them onto ρ. The global
pathway in the higher layers (C.1 in Figure 4.6) stays unchanged from the baseline
architecture [Xu et al., 2018b].

Our final loss function for the generator is the same as in the original AttnGAN
and consists of an unconditional, a conditional, and a caption-image matching part.
The unconditional loss is

Luncon
G = −E(x̂)∼pG [log D(x̂))], (4.3)

the conditional loss is

Lcon
G = −E(x̂)∼pG,(c)∼pdata [log D(x̂, c))], (4.4)

and the caption-image matching loss is LDAMSM
G [Xu et al., 2018b] which measures

text-image similarity at the word level and is calculated with the pre-trained models
provided by Xu et al. [2018b]. The complete loss for the generator then is:

LG = Luncon
G + Lcon

G + λLDAMSM
G , (4.5)

where we set λ = 50 as in the original implementation.
As in our baseline architecture, we employ three discriminators at three spatial

resolutions: 64 × 64, 128 × 128, and 256 × 256. Each discriminator possesses a
global and an object pathway which extract features in parallel (D in Figure 4.6).
In the object pathway we use an STN to extract the features of object σi and
concatenate them with the one-hot vector σi describing the object. The object
pathway then applies multiple convolutional layers before adding the extracted
features onto ρ at the location of the bounding box.

The global pathway in each of the discriminators works on the full input image
and applies convolutional layers with stride two to decrease the spatial resolution
(D.1 ). Once the spatial resolution reaches that of the tensor ρ we concatenate the
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two tensors (full image features and object features ρ) along the channel axis and
use convolutional layers with stride two to further reduce the spatial dimension
until we reach a resolution of 4× 4.

We calculate both a conditional (image and image caption) and an unconditional
(only image) loss for each of the discriminators. The conditional input c during
training consists of the image caption embedding ϕ and the information about
objects σi (bounding boxes and object labels) associated with the image x, i.e.
c = {ϕ, σi}. In the unconditional case the discriminators are trained to classify
images as real or generated without any influence of the image caption by minimizing
the following loss:

Luncon
Di

= −E(x)∼pdata [log D(x)]− E(x̂)∼pG [log(1−D(x̂))]. (4.6)

In order to optimize the conditional loss we concatenate the extracted features with
the image caption embedding ϕ along the channel axis and minimize

Lcon
Di

= −E(x,c)∼pdata [log D(x, c)]

−E(x̂)∼pG,(c)∼pdata [log(1−D(x̂, c))].
(4.7)

for each discriminator. Finally, to specifically train the discriminators to check
for caption-image consistency we use the matching aware discriminator loss [Reed
et al., 2016b] with mismatching caption-image pairs and minimize

Lcls
Di

= −E(x,σ)∼pdata,(ϕ)∼pdata [log(1−D(x, c))], (4.8)

where image x and caption ϕ are sampled individually and randomly from the data
distribution and are, therefore, unlikely to align.

We introduce an additional loss term similar to the matching aware discriminator
loss Vcls(D) which works on individual objects. Instead of using mismatching image-
caption pairs, we use correct image-caption pairs, but with incorrect bounding
boxes and minimize:

Lobj
Di

= −E(x,ϕ)∼pdata,(σ)∼pdata [log(1−D(x, c))]. (4.9)

Thus, the complete objective we minimize for each individual discriminator is:

LDi = Luncon
Di

+ Lcon
Di

+ Lcls
Di

+ Lobj
Di
. (4.10)

We leave all other training parameters as in the original implementation [Xu et al.,
2018b] and the training procedure itself also stays the same.

4.3.4 Evaluation of Text-to-Image Models

Quantitatively evaluating generative models is difficult [Theis et al., 2016]. While
there are several evaluation metrics that are commonly used to evaluate GANs,
many of them have known weaknesses and are not designed specifically for text-
to-image synthesis tasks. In the following, we first discuss some of the common
evaluation metrics for GANs, their weaknesses, and why they might be inadequate
for evaluating text-to-image synthesis models. Following this, we introduce our
novel evaluation metric, Semantic Object Accuracy (SOA), and describe how it
can be used to evaluate text-to-image models in more detail.

62



Current Evaluation Metrics
Inception Score and Fréchet Inception Distance Most GAN approaches are
trained on relatively simple images which only contain one object at the center (e.g.
ImageNet, CelebA, etc). These methods are evaluated with metrics such as the
Inception Score (IS) [Salimans et al., 2016] and Fréchet Inception Distance (FID)
[Heusel et al., 2017], which use an Inception-Net usually pre-trained on ImageNet.
The IS evaluates roughly how distinctive an object in each image is (i.e. ideally the
classification layer of the Inception-Net has small entropy) and how many different
objects the GAN generates overall (i.e. high entropy in the output of different
images). The FID measures how similar generated images are to a control set
of images, usually the validation set by calculating the distance in feature space
between generated and real images. Consequently, the IS should be as high as
possible, while the FID should be as small as possible.

Both evaluation metrics have known weaknesses [Borji, 2019; Barratt and
Sharma, 2018]. For example, the IS does not measure the similarity between
objects of the same class, so a network that only generates one “perfect” sample for
each class can achieve a very good IS despite showing an intra-class mode dropping
behavior. Li et al. [2019d] also note that the IS overfits within the context of
text-to-image synthesis and can be “gamed” by increasing the batch size at the
end of the training. Furthermore, the IS uses the output of the classification layer
of an Inception-Net pre-trained on the ImageNet data set. This might not be the
best approach for a more complex data set in which each image contains multiple
objects at distinct locations throughout the image, as opposed to the ImageNet
data set which consists of images usually depicting one object in the image center.
Figure 4.7a shows some exemplary failure cases of the IS on images sampled from
the COCO data set.

The FID relies on representative ground truth data to compare the generated
data against and also assumes that features are of Gaussian distribution, which
is often not the case. For more complex data sets the FID also still suffers from
the problem that the image statistics are obtained with a network pre-trained on
ImageNet which might not be a representative data set. Finally, neither the IS nor
the FID take the image caption into account during their evaluation.

VS similarity and R-precision Zhang et al. [2018d] introduce the visual-
semantic similarity (VS similarity) metric which measures the distance between a
generated image and its caption. Two models are trained to embed images and
captions respectively and then minimize the cosine distance between embeddings
of matching image-caption pairs while maximizing the cosine distance between
mismatching image-caption pairs. A good model then achieves high VS similarity
between a generated image and its associated caption.

Xu et al. [2018b] use the R-precision metric to evaluate how well an image
matches a given description or caption. The R-precision score is similar to VS
similarity, but instead of scoring the VS similarity between a given image and
caption it instead performs a ranking of the similarity between the real caption and
randomly sampled captions for a given generated image. For this, first, an image is
generated conditioned on a given caption. Then, another 99 captions are chosen
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(a) Examples when IS fails for COCO im-
ages. The top row shows images for which
the Inception-Net has very high entropy in
its output layer, possibly because the im-
ages contain more than one object and are
often not centered. The second row shows im-
ages containing different objects and scenes
which were nonetheless all assigned to the
same class by the Inception-Net, thereby neg-
atively affecting the overall predicted diver-
sity in the images.

(b) Examples when R-precision fails for
COCO images. The top row shows images
from the COCO data set. The middle row
shows the correct caption and the bottom
row gives examples for characteristics of
captions that are rated as being more sim-
ilar than the original caption.

Figure 4.7: Visualization of shortcomings of (a) the Inception Score (IS) and (b)
the R-precision as evaluation metrics for text-to-image tasks.

randomly from the data set. Both the generated images and the 100 captions are
then encoded with the respective image and text encoder. Similar to VS similarity
the cosine distance between the image embedding and each caption embedding is
used as proxy for the similarity between the given image and caption. The 100
captions are then ordered in descending similarity and the top k (usually k=1)
most similar captions are used to calculate the R-precision. Intuitively, R-precision
calculates if the real caption is more similar to the generated image (in feature
space) than 99 randomly sampled captions.

The drawback of both metrics is that they do not evaluate the quality of
individual objects. For example the real caption could state that “a person stands
on a snowy hill” while the 99 random captions do not mention “snow” (which
usually covers most of the background in the generated image) or “person” (but
e.g. giraffe, car, bedroom, etc). In this case, an image with only white background
(snow) would already make the real caption rank very highly in the R-precision
metric and achieve a high VS similarity. See Figure 4.7b for a visualization of this.
As such, this metric does not focus on the quality of individual objects but rather
concentrates on global background and salient features.

Classification Accuracy Score Ravuri and Vinyals [2019] introduce the
Classification Accuracy Score (CAS) to evaluate conditional image generation
models, similar to Shmelkov et al. [2018]. For this, a classifier is trained on images
generated by the conditional generative model. The classifier’s performance is then
evaluated on the original test set of the data set that was used to train the generative
model. If the classifier achieves high accuracy on the test set, this indicates that
the data it was trained on is representative of the real distribution. The authors
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find that neither the IS, the FID, nor combinations thereof are predictive of the
CAS, further indicating that the IS and FID are only of limited use for evaluating
image quality.

Caption Generation Hong et al. [2018b] suggest evaluating text-to-image
models by comparing original captions with captions obtained from generated
images. The intuition is that if the generated image is relevant to its caption,
then it should be possible to infer the original text from it. To this end, Hong
et al. [2018b] use a pre-trained caption generator Vinyals et al. [2016] to generate
captions for each synthesized image and compare these to the original ones through
standard language similarity metrics, i.e. BLEU, METEOR, and CIDEr. Except
for CIDEr, these metrics were originally developed to evaluate machine translation
and text summarization methods and were only later adopted for the evaluation of
image captions.

One challenge with this caption generation approach is that often many different
captions are valid for a given image. Even if two captions are not similar, this does
not necessarily imply that they do not describe the same image Anderson et al.
[2016]. Furthermore, it has been shown that metrics such as BLEU, METEOR,
and CIDEr are primarily sensitive to n-gram overlap which is neither necessary nor
sufficient for two sentences to convey the same meaning [Giménez and Màrquez,
2007; Anderson et al., 2016; Madhyastha et al., 2019] and do also not necessarily
correlate with human judgments of captions [Vinyals et al., 2016; Kilickaya et al.,
2017]. Finally, there is no requirement that captions, either real or generated, need
to focus on specific objects. Instead, captions can also describe the general layout
of a given scene (e.g. a busy street with lots of traffic) without explicitly mentioning
specific objects. Some of these limitations might potentially be overcome in the
future by novel image caption evaluation metrics that focus more on objects and
semantic content in the scene [Anderson et al., 2016; Madhyastha et al., 2019;
Agarwal et al., 2020].

Other Approaches In contrast to the IS, which measures the diversity of a
whole set of images, the diversity score [Zhao et al., 2019] measures the perceptual
difference between a pair of images in feature space. This metric can be useful
when images are generated from conditional inputs (e.g. labels or scene layouts)
to examine whether a model can generate diverse outputs for a given condition.
However, the metric does not convey anything directly about the quality of the
generated images or their congruence with any conditional information. Chen
and Koltun [2017]; Wang et al. [2018a], and Park et al. [2019] run a semantic
segmentation network on generated images and compare the predicted segmentation
mask to the ground truth segmentation mask used as input for the model. However,
this metric needs a ground truth semantic segmentation mask and does not provide
information about specific objects within the image.

Semantic Object Accuracy (SOA)

So far, most evaluation metrics are designed to evaluate the holistic image quality
but do not evaluate individual areas or objects within an image. Furthermore,
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except for Caption Generation and R-precision, none of the scores take the image
caption into account when evaluating generated images. To address the challenges
and issues mentioned above we introduce a novel evaluation metric based on a
pre-trained object detection network. The pre-trained object detector evaluates
images by checking if it recognizes objects that the image should contain based on
the caption. For example, if the image caption is “a person is eating a pizza” we
can infer that the image should contain both a person and a pizza and the object
detector should be able to recognize both objects within the image. Since this
evaluation measures directly whether objects specifically mentioned in the caption
are recognizable in an image we call this metric Semantic Object Accuracy (SOA).

Some previous works have used similar approaches to evaluate the quality of
the generated images. Hinz et al. [2019] evaluate how often expected objects (based
on the caption) are detected by an object detector. However, only a subset of
the captions is evaluated and the evaluated captions contain false positives (e.g.
captions containing the phrase “hot dog” are evaluated based on the assumption
that the image should contain a dog). Sah et al. [2018] introduce a detection
score that calculates (roughly) whether a pre-trained object detector detects an
object in a generated image with high certainty. However, no information from
the caption is taken into account, meaning any detection with high confidence
is “good” even if the detected object does not make sense in the context of the
caption. Deng et al. [2018] use a pre-trained object detector to calculate the mean
average precision and report precision-recall curves. However, the evaluation is
done on synthetic data sets and without textual information as conditional input.
Zhao et al. [2019] use classification accuracy as an evaluation metric in which they
report the object classification accuracy in generated images. For this, they use a
ResNet-101 model which is trained on real objects cropped and resized from the
original data. However, in order to calculate the score, the size and location of each
object in the generated image must be known, so this evaluation is not directly
applicable to approaches that do not use scene layouts or similar representations.
Vo and Sugimoto [2020] use recall and intersection-over-union (IoU) to evaluate the
bounding boxes in their generated scene layout but do not apply these evaluations
to generated images directly.

SOA Since we work with the COCO data set we filter all captions in the
validation set for specific keywords that are related to the available labels for objects
(e.g. person, car, zebra, etc). For each of the 80 available labels in the COCO
data set we find all captions that imply the existence of the respective object and
generate three images for each of the captions. The supplementary material gives
a detailed overview of how exactly the captions were chosen for each label. We
then run the YOLOv3 network [Redmon and Farhadi, 2018] pre-trained on the
COCO data set on each of the generated images and check whether it recognizes
the given object. We report the recall as a class average (SOA-C), i.e. in how many
images per class the YOLOv3 on average detects the given object, and as an image
average (SOA-I), i.e. on average in how many images a desired object was detected.
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Specifically, the SOA-C is calculated as

SOA-C =
1

|C|
∑
c∈C

1

|Ic|
∑
ic∈Ic

YOLOv3(ic), (4.11)

for object classes c ∈ C and images i ∈ Ic that are supposed to contain an object
of class c. The SOA-I is calculated as

SOA-I =
1∑

c∈C |Ic|
∑
c∈C

∑
ic∈Ic

YOLOv3(ic), (4.12)

and

YOLOv3(ic) =

{
1 if YOLOv3 detected an object of class c

0 otherwise
. (4.13)

Since many images can also contain objects that are not specifically mentioned (for
example an image described by “lots of cars are on the street” could still contain
persons, dogs, etc) in the caption we do not calculate a false negative rate but
instead only focus on the recall, i.e. the true positives.

SOA-Intersection over Union Several approaches (e.g. Hinz et al. [2019];
Li et al. [2019d]; Hong et al. [2018b]; Zhao et al. [2019]; Vo and Sugimoto [2020])
use additional conditioning information such as scene layouts or bounding boxes.
For these approaches, our evaluation metric can also calculate the intersection over
union (IoU) between the location at which different objects should be and locations
at which they are detected, which we call SOA-IoU. To calculate the IoU we use
every image in which the YOLOv3 network detected the respective object. Since
many images contain multiple instances of a given object we calculate the IoU
between each predicted bounding box for the given object and each ground truth
bounding box. The final IoU for a given image and object is then the maximum of
the values, i.e. the reported IoU is an upper bound on the actual IoU.

Overall this approach allows a more fine-grained evaluation of the image content
since we can now focus on individual objects and their features. To get a better
idea of the overall performance of a model we calculate both the class average
recall/IoU (SOA-C/SOA-IoU-C) and image average recall/IoU (SOA-I/SOA-IoU-I).
Additionally, we report the SOA-C for the forty most and least common labels
(SOA-C-Top40 and SOA-C-Bot40) to see how well the model can generate objects
of common and less common classes.

4.3.5 Experiments

We perform multiple experiments and ablation studies. In a first step, we add the
object pathway (OP) on multiple layers of the generator and to each discriminator
and call this model OPv2. We also train this model with the additional bounding
box loss we introduced in Subection 4.3.3. When the model is trained with the
additional bounding box loss we refer to it as BBL.
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Table 4.2: Inception Score (IS), Fréchet Inception Distance (FID), and R-precision
on the MS-COCO data set. Results of our models are obtained with generated
bounding boxes. Scores for models marked with † were calculated with a pre-trained
model provided by the respective authors.

Model IS ↑ FID ↓ R-precision (k=1) ↑

Original Images 34.88± 0.01 6.09± 0.05 68.58± 0.08

AttnGAN [Xu et al., 2018b]† 23.61± 0.21 33.10± 0.11 83.80

[Huang et al., 2019a] 23.74± 0.36 86.44± 3.38

ControlGAN [Li et al., 2019a] 24.06± 0.60 82.43

AttnGAN + OP [Hinz et al., 2019]† 24.76± 0.43 33.35± 1.15 82.44

MirrorGAN [Qiao et al., 2019b] 26.47± 0.41 74.52

Obj-GAN [Li et al., 2019d]† 24.09± 0.28 36.52± 0.13 87.84± 0.08

HfGAN [Huang et al., 2019b] 27.53± 0.25

DM-GAN [Zhu et al., 2019]† 32.32± 0.23 27.34± 0.11 91.87 ± 0.28

SD-GAN [Yin et al., 2019] 35.69 ± 0.50

OP-GAN (Best Model) 27.88± 0.12 24.70 ± 0.09 89.01± 0.26

OPv2, 0 obj 26.80± 1.01 30.01± 1.81 83.87± 1.22

OPv2, 1 obj 27.68± 0.47 26.18± 0.27 87.37± 0.60

OPv2, 3 obj 27.78± 0.50 26.45± 0.40 87.74± 1.08

OPv2, 10 obj 27.66± 0.34 26.52± 0.44 87.73± 0.98

OPv2 + BBL, 0 obj 24.60± 1.25 33.03± 0.76 81.27± 1.45

OPv2 + BBL, 1 obj 26.34± 0.55 26.59± 1.04 86.42± 0.60

OPv2 + BBL, 3 obj 26.52± 0.47 26.74± 1.08 87.08± 0.60

OPv2 + BBL, 10 obj 26.48± 0.58 26.83± 1.10 86.80± 0.56

OPv2 + MO, 0 obj 24.32± 1.65 35.36± 1.95 79.75± 1.87

OPv2 + MO, 1 obj 27.36± 0.49 25.06± 1.11 88.33± 0.81

OPv2 + MO, 3 obj 27.65± 0.37 24.96± 1.12 89.13± 0.42

OPv2 + MO, 10 obj 27.59± 0.43 24.94 ± 1.09 89.14 ± 0.41

OPv2 + BBL + MO, 0 obj 21.84± 0.83 45.79± 1.16 72.71± 1.75

OPv2 + BBL + MO, 1 obj 27.61± 0.67 26.19± 0.82 87.85± 0.25

OPv2 + BBL + MO, 3 obj 28.04 ± 0.65 25.91± 1.03 88.90± 0.24

OPv2 + BBL + MO, 10 obj 27.90± 0.79 25.80± 1.01 89.00± 0.17

Different approaches differ in how many objects per image are used during train-
ing. If an image layout is used, typically all objects (foreground and background)
are used as conditioning information. Other approaches limit the number of objects
during per training [Johnson et al., 2018; Hinz et al., 2019]. To examine the effect
of training with different numbers of objects per image we train our approach
with either a maximum of three objects per image (standard) or with up to ten
objects per image, which we refer to as many objects (MO). When training with a
maximum of three objects per image we sample randomly from the training set
at train time, i.e. each batch contains images which contain zero to three objects.
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Table 4.3: Caption Generation with CIDEr and Semantic Object Accuracy on Class
(SOA-C) and Image Average (SOA-I) on the MS-COCO data set. Results of our
models are obtained with generated bounding boxes. Scores for models marked
with † were calculated with a pre-trained model provided by the respective authors.

Model CIDEr ↑ SOA-C ↑ SOA-I ↑

Original Images 0.795± 0.003 74.97 80.84

AttnGAN [Xu et al., 2018b]† 0.695± 0.005 25.88 39.01

AttnGAN + OP [Hinz et al., 2019]† 0.689± 0.008 25.46 40.48

Obj-GAN [Li et al., 2019d]† 0.783± 0.002 27.14 41.24

DM-GAN [Zhu et al., 2019]† 0.823 ± 0.002 33.44 48.03

OP-GAN (Best Model) 0.819± 0.004 35.85 50.47

OPv2, 0 obj 0.760± 0.004 26.04± 1.47 37.56± 1.27

OPv2, 1 obj 0.798± 0.013

OPv2, 3 obj 0.805± 0.011

OPv2, 10 obj 0.806± 0.006 33.82± 0.69 48.39± 1.01

OPv2 + BBL, 0 obj 0.735± 0.029 24.00± 2.13 34.01± 2.89

OPv2 + BBL, 1 obj 0.783± 0.006

OPv2 + BBL, 3 obj 0.793± 0.013

OPv2 + BBL, 10 obj 0.794± 0.015 33.19± 0.40 48.24± 0.68

OPv2 + MO, 0 obj 0.695± 0.015 21.15± 1.47 30.24± 2.36

OPv2 + MO, 1 obj 0.789± 0.008

OPv2 + MO, 3 obj 0.807± 0.014

OPv2 + MO, 10 obj 0.805± 0.013 33.46± 1.01 47.93± 1.56

OPv2 + BBL + MO, 0 obj 0.626± 0.025 16.55± 1.81 22.76± 2.17

OPv2 + BBL + MO, 1 obj 0.791± 0.009

OPv2 + BBL + MO, 3 obj 0.810± 0.009

OPv2 + BBL + MO, 10 obj 0.814 ± 0.007 34.51 ± 1.12 48.90 ± 0.72

If an image contains more than three objects we choose the three largest ones in
terms of area of the bounding box. When training with up to ten objects per image
we slightly change our sampling strategy so that each batch consists of images that
contain the same amount of objects. This means that, e.g., each image in a batch
contains exactly four objects, while in the next batch each image might contain
exactly seven objects. This increases the training efficiency as most of the images
contain fewer than five objects.

As a result of the different settings we perform the following experiments:

1. OPv2 : apply the object pathway (OP) on multiple layers of the generator
and on all discriminators, training without the bounding box loss and with a
maximum of three objects per image.

2. OPv2 + BBL: same as OPv2 but with the bounding box loss added to the
discriminator loss term.
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3. OPv2 + MO : same as OPv2 but with a maximum of ten objects per image.

4. OPv2 + BBL + MO (OP-GAN ): combination of all three approaches.

We train each model three times on the 2014 split of the COCO data set. At
test time we use bounding boxes generated by a network [Li et al., 2019d] as the
conditioning information. Therefore, except for the image caption no other ground
truth information is used at test time.

4.3.6 Evaluation and Analysis

Table 4.2, Table 4.3, Table 4.4, and Table 4.5 give an overview of our results for
the COCO data set. The first half of the table shows the results on the original
images from the data set and from related literature while the second half shows
our results. To make a direct comparison we calculated the IS, FID, CIDEr, and
R-precision scores ourselves for all models which are provided by the authors. As
such, the values from AttnGAN [Xu et al., 2018b], AttnGAN+OP [Hinz et al.,
2019], Obj-GAN [Li et al., 2019d], and DM-GAN [Zhu et al., 2019] are the ones
most directly comparable to our reported values since they were calculated in the
same way.

Note that there is some inconsistency in how the FID is calculated in prior works.
Some approaches, e.g. Li et al. [2019d], compare the statistics of the generated
images only with the statistics of the respective “original” images (i.e. images
corresponding to the captions that were used to generate a given image). We, on
the other hand, generate 30,000 images from 30,000 randomly sampled captions
and compare their statistics with the statistics of the full validation set. Many of
the recent publications also do not report the FID or R-precision. This makes a
direct comparison difficult as we show that the IS is likely the least meaningful
score of the three since it easily overfits [Li et al., 2019d] and due to the reasons
mentioned in Subection 4.3.4. We calculate each of the reported values of our
models three times for each trained model (nine times in total) and report the
average and standard deviation. To calculate the SOA scores we generate three
images for each caption in the given class, except for the “person” class, for which
we randomly sample 30,000 captions (from over 60,000) and generate one image for
each of the 30,000 captions.

Quantitative Results

Overall Results As Table 4.2 and Table 4.3 show, all our models outperform the
baseline AttnGAN in all metrics. The IS is improved by 16− 19%, the R-precision
by 6− 7%, the SOA-C by 28− 33%, the SOA-I by 22− 25%, the FID by 20− 25%,
and CIDEr by 15− 18%. This was achieved by adding our object pathways to the
baseline model without any further tuning of the architecture, hyperparameters,
or the training procedure. Our approach also outperforms all other approaches
based on FID, SOA-C, and SOA-I. While there are two approaches that report a
IS higher than our models, it has previously been observed that this score is likely
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Table 4.4: Comparison of the recall values for the different models. We used
generated bounding boxes to calculate the values. Numbers in brackets show scores
when the object pathway was not used at test time.

Model SOA-C / IoU SOA-I / IoU

Original Images 74.97 / 0.550 80.84 / 0.570

AttnGAN [Xu et al., 2018b] 25.88 / −− 39.01 / −−
AttnGAN + OP [Hinz et al., 2019] 25.46 / 0.236 40.48 / 0.311

Obj-GAN [Li et al., 2019d] 27.14 / 0.513 41.24 / 0.598

DM-GAN [Zhu et al., 2019] 33.44 / −− 48.03 / −−

OPv2 33.82 (26.04) / 0.207 48.39 (37.56) / 0.270

OPv2 + BBL 33.19 (24.00) / 0.210 48.24 (34.01) / 0.270

OPv2 + MO 33.46 (21.15) / 0.214 47.93 (30.24) / 0.275

OPv2 + BBL + MO 34.51 (16.55) / 0.217 48.90 (22.76) / 0.278

Table 4.5: Comparison of the recall values for the different models. We used
generated bounding boxes to calculate the values. Numbers in brackets show scores
when the object pathway was not used at test time.

Model SOA-C-Top40 / IoU SOA-C-Bot40 / IoU

Original Images 78.77 / 0.546 71.18 / 0.554

AttnGAN [Xu et al., 2018b] 37.47 / −− 14.29 / −−
AttnGAN + OP [Hinz et al., 2019] 39.77 / 0.308 11.15 / 0.164

Obj-GAN [Li et al., 2019d] 39.88 / 0.587 14.40 / 0.438

DM-GAN [Zhu et al., 2019] 47.73 / −− 19.15 / −−

OPv2 48.34 (36.53) / 0.260 19.31 (15.55) / 0.152

OPv2 + BBL 47.96 (32.96) / 0.261 18.43 (15.04) / 0.159

OPv2 + MO 47.84 (28.15) / 0.264 19.07 (14.15) / 0.163

OPv2 + BBL + MO 49.70 (22.19) / 0.269 19.32 (10.91) / 0.165

the least meaningful for this task and can be gamed to achieve higher numbers
[Barratt and Sharma, 2018; Li et al., 2019d]. Our user study also shows that the
IS is the score that has the least predictive value for human evaluation.

We also calculated each score using the original images of the COCO data set.
For the IS we sampled three times 30,000 images from the validation set and resized
them to 256 × 256 pixels. These images were also used to calculate the CIDEr
score. To calculate the FID we randomly sampled three times 30,000 images from
the training set and compared them to the statistics of the validation set. The
R-precision was calculated on three times 30,000 randomly sampled images and
the corresponding caption from the validation set and the SOA-C and SOA-I were
calculated on the real images corresponding to the originally chosen captions.

As we can see, the IS is close to the current state of the art models with a value

71



Figure 4.8: Comparison of images generated by different variations of our models.

of 34.88. It is possible to achieve a much higher IS on other, simpler data sets, e.g.
IS > 100 on the ImageNet data set [Brock et al., 2019]. This indicates that the IS
is indeed not a good evaluation metric, especially for complex images consisting of
multiple objects and various locations. The difference between the R-precision on
real and generated images is even larger. On the original images, the R-precision
score is only 68.58, which is much worse than what current models can achieve
(> 88).

One reason for this might be that the R-precision calculates the cosine similarity
between an image embedding and a caption embedding and measures how often the
caption that was used to generate an image is more similar than 99 other, randomly
sampled captions. However, the same encoders that are used to calculate the
R-precision are also used during training to minimize the cosine similarity between
an image and the caption it was generated from. As a result, the model might
already overfit to this metric through the training procedure. Our observation is
that the models tend to heavily focus on the background to make it match a specific
word in the caption (e.g. images tend to be very white when the caption mentions
“snow” or “ski”, very blue when the caption mentions “surf” or “beach”, very green
when the caption mentions “grass” or “savanna”, etc.) This matching might lead to
a high R-precision score since it leads, on average, to a large cosine similarity. Real
images do not always reflect this, since a large part of the image might be occupied
by a person or an animal, essentially “blocking out” the background information.
We see a similar trend for the CIDEr evaluation where many models achieve a score
similar to the score reached by real images. Regardless of what the actual reason
is, the question remains whether evaluation metrics like the IS, R-precision, and
CIDEr are meaning- and helpful when models that can not (as of now) generate
images that would be confused as “real” achieve scores comparable to or better
than real images.
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The FID and the SOA values are the only two evaluation metrics (that we
used) for which none of the current state of the art models can come close to the
values obtained with the original images. The FID is still much smaller on the
real data (6.09) compared to what current models can achieve (> 24 for the best
models). While the FID still uses a network pre-trained on ImageNet it compares
activations of convolutional layers for different images and is, therefore, likely
still more meaningful and less dependent on specific object settings than the IS.
Similarly, the SOA-C (SOA-I) on real data is 74.97 (80.84), while current models
achieve values of around 30− 36 (40− 50). Since the network used to calculate the
SOA values is not part of the training loop the models can not easily overfit to this
evaluation metric like they can for the R-precision. Furthermore, the results of the
SOA evaluation confirm the impression that none of the models is able to generate
images with multiple distinct objects of a quality similar to real images.

Impact of the Object Pathway To get a clearer understanding of how the
evaluation metrics might be impacted by the object pathway we calculate our
scores for a different number of generated objects. More specifically, we only apply
the object pathway for a maximum given number of objects (0, 1, 3, or 10) per
image. Intuitively, we would assume that without the application of the object
pathway the IS and FID should be decreased, since the object pathway is not used
to generate any object features and the images should, therefore, consist mostly
of background. Additionally, we can get an intuition of how important the object
pathway is for the overall performance of the network by looking at how it affects
the R-precision, SOA-C, and SOA-I.

As Table 4.2 and Table 4.3 show, all models perform markedly worse when
the object pathway is not used (0 obj). We find that the models trained with up
to ten objects per image seem to rely more heavily on the object pathway than
models trained with three objects per image. For models trained with only three
objects per image (OPv2 and OPv2 + BBL) the IS decreases by around 1− 2, the
R-precision decreases by around 4− 5, the SOA-C (SOA-I) decreases by around
7 − 9 (11 − 14), CIDEr decreases by around 6 − 8%, and the FID increases by
around 4− 7. On the other hand, models trained with up to 10 objects suffer much
more when the object pathway is removed, with the IS decreasing by around 3− 6,
the R-precision decreasing by around 9 − 15, the SOA-C (SOA-I) decreasing by
around 12 − 18 (17 − 28), CIDEr decreasing by around 16 − 30%, and the FID
increasing by around 10 − 20. These results indicate that the object pathways
are an important part of the model and are responsible for at least some of the
improvements compared to the baseline architecture.

Impact of Bounding Box Loss Adding the bounding box loss to the object
pathways has a small negative effect on all scores, but does slightly improve the
IoU scores (see Table 4.4 and Table 4.5). Note that the weighting of the bounding
box loss in the overall loss term was not optimized but simply weighted with the
same strength as the matching aware discriminator loss Lcls

D . It is possible that
the positive effect of the bounding box loss could be increased by weighting it
differently.

Impact of Training on Many Objects Training the model with up to ten

73



Figure 4.9: Comparison of SOA scores: SOA per class with degree of a bin reflecting
relative frequency of that class.

Figure 4.10: Generated images and objects recognized by the pre-trained object
detector (YOLOv3) which was used to calculate the SOA scores. The results
highlight that, like most other CNN based object detectors, YOLOv3 focuses much
more on texture and less on actual shapes.

objects per image has only minor effects on the IS and SOA scores, but improves the
FID and R-precision. However, we observe that the models trained with only three
objects per image slightly decrease in their performance once the object pathway is
applied multiple times. Usually, the models trained on only three objects achieve
their best performance when applying the object pathway three times as at training
time. Once the model is trained on up to ten objects though, we do not observe
this behavior anymore and instead achieve comparable or even better results when
applying the object pathway ten times per image.

SOA Scores Table 4.4 shows the results for the SOA and SOA-IoU. The
SOA-I values are consistently higher than the SOA-C values. Since the SOA-I is
calculated on image average (instead of class average like the SOA-C) it is skewed
by objects that often occur in captions and images (e.g. persons, cats, dogs, etc.).
The SOA values for the most and least common 40 objects (Table 4.5) show that the
models perform much better on the more common objects. Actually, most models
perform about two times better on the common objects showing their problem
in generating objects that are not often observed during training. For a detailed
overview of how each model performed on the individual labels please refer to the
supplementary material.

When we look at the IoU scores we see that the Obj-GAN [Li et al., 2019d]
achieves by far the best IoU scores (around 0.5), albeit at the cost of lower SOA
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Figure 4.11: Comparison of images generated by our model (OP-GAN ) with OPs
switched on and off.

scores. Our models usually achieve an IoU of around 0.2− 0.3 on average. Training
with up to ten objects per image and using the bounding box loss slightly increases
the IoU. However, similar to previous work [Hinz et al., 2019; Li et al., 2019d] we
find that the AttnGAN architecture tends to place salient object features at many
locations of the image which affects the IoU scores negatively.

When looking at the SOA for individual objects (see Figure 4.9) we find that
there are objects for which we can achieve very high SOA values (e.g. person, cat,
dog, zebra, pizza, etc.). Interestingly, we find that all tested methods perform
“good” or “bad” at the same objects. For example, all models perform reasonably
well on objects such as person and pizza (many examples in the training set) as well
as e.g. plane and traffic light (few examples in the training set). Conversely, all
models fail on objects such as table and skateboard (many examples in the training
set) as well as e.g. hair drier and toaster (few examples in the training set).

We found that objects need to have three characteristics to achieve a high
SOA and the highest SOA scores are achieved when objects possess all three
characteristics. The first important characteristic is easily predictable: the higher
the occurrence of an object in the training data, the better (on average) the final
performance on this object. Secondly, large objects, i.e. objects that usually cover
a large part of the image (e.g. bus or elephant), are usually modeled better than
objects that are usually small (spoon or baseball glove). The final and more subtle
characteristic is the surface texture of an object. Objects with highly distinct
surface textures (e.g. zebra, giraffe, pizza, etc.) achieve high SOA scores because
the object detection network relies on these textures to detect objects. However,
while the models are able to correctly match the surface texture (e.g. black and
white stripes for a zebra) they are still not capable of generating a realistic-looking
shape of many objects. As a result, many of these objects possess the “correct”
surface texture but their shape is more a general “blob” consisting of the texture
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and not a distinct form (e.g. a snout and for legs for a zebra). See Figure 4.10 for
a visualization of this.

This is one of the weaknesses of the SOA score as it might give the wrong
impression that an 80% object detection rate means in 80% of the cases the object
is recognizable and of real-world quality. This is not the case, as the SOA scores are
calculated with a pre-trained object detector which might focus more on texture
and less on shapes of objects [Geirhos et al., 2019]. Consequently, the results of
the SOA are more aptly interpreted as cases where a model was able to generate
features that an independently pre-trained object detector would classify as a given
object. The overall quality of the metric is, therefore, strongly dependent on the
object detector and future improvements in this area might also lead to more
meaningful interpretations of the SOA scores.

Figure 4.8 shows images generated by our different models. All images shown
in this paper were generated without ground truth bounding boxes but instead use
generated bounding boxes [Li et al., 2019d]. The first column shows the respective
image from the data set, while the next four columns show the generated images.
We can see that all models are capable of generating recognizable foreground objects.
It is often difficult to find qualitative differences in the images generated by the
different models. However, we find that the models using the bounding box loss
usually improve the generation of rare objects. Training with ten objects per image
usually leads to a slightly better image quality overall, especially for images that
contain many objects.

As we saw in the quantitative evaluation, the object pathway can have a large
impact on the image quality. Figure 4.11 shows what happens when (some of) the
object pathways are not used in the full model (OPv2 + BBL + MO). Again, the
first column shows the original image from the data set and the second column
shows images generated without the use any of the object pathways. The next three
columns show generated images when we consecutively use the object pathways,
starting with the lowest object pathway and iteratively adding the next object
pathway until we reach the full model. When no object pathway is used (first
column) we clearly see that only background information is generated. Once the
first object pathway is added we also get foreground objects and their quality gets
slightly better by adding the higher-level object pathways.

User Study In order to further validate our results, we performed a user study
on Amazon Mechanical Turk. Similar to other approaches [Zhang et al., 2018a; Yin
et al., 2019; Hong et al., 2018b] we sampled 5,000 random captions from the COCO
validation set. For each caption, we generated one image with each of the following
models: our OP-GAN, the AttnGAN [Xu et al., 2018b], the AttnGAN-OP [Hinz
et al., 2019], the Obj-GAN [Li et al., 2019d], and the DM-GAN [Zhu et al., 2019].
We showed each user a given caption and the respective five images (without time
limit) from the models in random order and asked them to choose the image that
depicts the given caption best. We evaluated each image caption twice, for a total
of 10,000 evaluations with the help of 200 participants.

Table 4.6 shows how often each model was chosen as having produced the best
image given a caption (variance was estimated by bootstrap [Efron, 1992]). This
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Table 4.6: Human evaluation results (ratio of 1st by human ranking) of five models
on the MS-COCO data set given a caption.

AttnGAN-OP [Hinz et al., 2019] 14.65%± 0.35

AttnGAN [Xu et al., 2018b] 16.80%± 0.43

Obj-GAN [Li et al., 2019d] 20.96%± 0.33

DM-GAN [Zhu et al., 2019] 22.42%± 0.41

OP-GAN (ours) 25.17% ± 0.43

evaluation reveals that the human ranking closely reflects the ranking obtained
through the SOA and FID scores. One notable exception are the two worst
performing models (AttnGAN and AttnGAN-OP), which we measure to perform
similar according to the SOA and FID scores, but obtain different results in the user
study. We find that the IS score is not predictive of the performance in the user
study. The R-precision and CIDEr are somewhat predictive, but predict a different
ranking of the top-three performing models. Overall, we find that our OP-GAN
performs best according to both the SOA scores and the human evaluation. As
hypothesized in Subection 4.3.4 we also observe that the FID and SOA scores are
the best predictors for a model’s performance in a human user evaluation.

Qualitative Results

Figure 4.12 shows examples of images generated by our model (OPv2 + BBL +
MO) and those generated by several other models [Zhu et al., 2019; Li et al., 2019d;
Hinz et al., 2019; Xu et al., 2018b]. We observe that our model often generates
images with foreground objects that are more recognizable than the ones generated
by other models. For more common objects (e.g. person, bus or plane) all models
manage to generate features that resemble the object but in most cases do not
generate a coherent representation from these features and instead distribute them
throughout the image. As a result, we notice features that are associated with an
object but not necessarily form one distinct and coherent appearance of that object.
Our model, on the other hand, is often able to generate one (or multiple) coherent
object(s) from the features, see e.g. the generated images containing a bus, cattle,
or the plane.

When generating rare objects (e.g. cake or hot dog) we observe that our model
generates a much more distinct object than the other models. Indeed, most models
fail completely to generate rare objects and instead only generate colors associated
with these objects. Finally, when we inspect more complex scenes we see that
our model is also capable of generating multiple diverse objects within an image.
As opposed to the other images for “room showing a sink and some drawers” we
can recognize a sink-like shape and drawers in the image generated by our model.
Similarly, our model can also generate an image containing a reasonable shape of a
banana and a cup of coffee, whereas the other models only seem to generate the
texture of a banana without the shape and completely ignore the cup of coffee.
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Figure 4.12: Comparison of images generated by our model (OP-GAN ) with images
generated by other current models.

4.3.7 Conclusion

In this paper, we introduced a novel GAN architecture (OP-GAN ) that specifically
models individual objects based on some textual image description. This is achieved
by adding object pathways to both the generator and discriminator which learn
features for individual objects at different resolutions and scales. Our experiments
show that this consistently improves the baseline architecture based on quantitative
and qualitative evaluations.

We also introduce a novel evaluation metric named Semantic Object Accuracy
(SOA) which evaluates how well a model can generate individual objects in images.
This new SOA evaluation allows to evaluate text-to-image synthesis models in more
detail and to detect failure and success modes for individual objects and object
classes. A user study with 200 participants shows that the SOA score is consistent
with the ranking obtained by human evaluation, whereas other scores such as the
Inceptions Score are not. Evaluation of several state-of-the-art approaches using
SOA shows that no current approach is able to generate realistic foreground objects
for the 80 classes in the COCO data set. While some models achieve high accuracy
for several of the most common objects, all of them fail when it comes to modeling
rare objects or objects that do not have an easily recognizable surface structure.
However, using the SOA as an evaluation metric on text-to-image models provides
more detailed information about how well they perform for different object classes
or image captions and is well aligned with human evaluation.

4.4 Intermediate Discussion

Section 4.2 shows that using compositional representations for GANs has advantages
such as higher image quality, better generalization, and more control over the
generation process. Section 4.3 focuses more on how we can improve the automatic
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evaluation of object-based compositional representations in generative models by
introducing the novel Semantic Object Accuracy (SOA) score. We now focus on
several open challenges for compositional representations and generative models
and how they might be addressed in the future.

Evaluation of Compositional Representations Previous evaluation metrics
for compositional representations focused only on discriminative tasks such as image
classification but were not able to evaluate images generated from compositional
representations. We introduced a score – Semantic Object Accuracy (SOA) –
that, for the first time, evaluates the alignment between generated images and
textual descriptions based directly on objects mentioned specifically in the textual
description [Hinz et al., 2020]. SOA allows for a more explicit evaluation of
compositional representations as it explicitly evaluates the different compositional
parts (in our case objects). Through this, we can determine which objects (i.e.
which parts of the compositional representations) are modeled better or worse
compared to other objects. This allows us to identify specific criteria (e.g. size and
texture) that are helpful for better modeling individual objects.

However, SOA does not solve all challenges with evaluating image quality,
image-text alignment, and compositional representations. Strictly speaking, SOA
only evaluates whether a pre-trained object detector detects a specific object within
a given image. Whether the detected object is of “good” quality depends on
the used object detector (see e.g. Figure 4.10). SOA also does not evaluate the
image background or whether interactions between objects are modeled correctly.
Furthermore, SOA does not evaluate “false positives”, i.e. it does not evaluate
whether the image contains objects that were not specifically mentioned in the text
caption. This was, to a degree, a conscious decision on our part, as many images
can be realistic despite containing objects that were not explicitly mentioned in
the caption. For example, an image generated from the caption “This image shows
a kitchen” may very well contain a fridge and microwave, despite these objects
not being explicitly mentioned in the caption. However, it is unlikely (though
not impossible) that this image contains, e.g., a “zebra” or a “motorbike”. As we
found it difficult (if not impossible) to manually decide and label which object
combinations in a given image are realistic or not we decided to focus only on real
positives as a proxy of image-text alignment. Our user study shows that this still
results in strong alignment with human perception while making it possible to
easily scale the SOA to even more challenging datasets as e.g. done by Zhang et al.
[2021] who apply the SOA to the challenging LN-COCO data set [Pont-Tuset et al.,
2020].

Similar to disentangled representations, another challenge with evaluating com-
positional representations is the fact that it is not necessarily always clear what
constitutes an “object”. In our evaluation “objects” were defined by the available
labels in the data set, but of course individual “objects” often consist of other
“objects” (e.g. a car consists of tires, chassis, ...). We do, therefore, not evaluate
compositionality in the part-based sense, but only in the object-based sense. How
to evaluate compositional representations in this setting is likely dependent on the
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task at hand, available labels, and the practitioner’s implicit assumptions about
what “objects” are in the given domain.

Overall, just as evaluating image generation in itself is already a challenging
problem [Theis et al., 2016], evaluating compositional representations and image-
text alignment are challenging in their own ways [Hinz et al., 2020; Frolov et al.,
2021]. Current evaluation methods only address small areas of evaluation (e.g.
only image quality, only image-text alignment, ...) and we need a combination of
different metrics to evaluate different quality aspects. Other evaluation metrics, e.g.
generalization to unseen compositional representations (e.g. combining objects in a
scene that were not seen together at train time or placing objects at locations not
seen at train time) are only evaluated visually [Hinz et al., 2019] or, most often,
are not evaluated at all [Casanova et al., 2020]. The SOA is a first step to a more
robust and humanly interpretable evaluation metric that is well aligned with human
perception and allows for quality evaluation both on a global image perspective
and for individual objects.

Required Labeling The number of labels needed to learn compositional rep-
resentations can directly affect their popularity and long-term success. Fewer
requirements for labels will likely increase the adoption of compositional representa-
tions while requiring many hand-annotated labels will likely reduce it. Our current
approach requires bounding boxes for all objects which requires either manual
annotation or a network that can predict the bounding boxes (likely also trained on
manual bounding box labels). Ideally, we would like to reduce the number of needed
labels. Currently, some approaches try to leverage attention mechanisms in order to
learn object-based representations with only textual guidance [Lee et al., 2018; Li
et al., 2019d] but these approaches typically do not learn compositional representa-
tions. Nguyen-Phuoc et al. [2020], Ehrhardt et al. [2020], and Van Steenkiste et al.
[2020] learn object-based representation in a completely unsupervised way but only
show results on synthetic or low-resolution data sets. A promising future direction
would be to look into how we can apply generative models with the necessary
inductive biases for object-based modeling to learn compositional representations
of complex natural scenes without the need for manual labels.

Structure of Compositional Representations It is still an open question
what the best structure for compositional representations in the GAN framework
looks like and how to condition the generator and discriminator on them. In our
approaches, we learn individual representations for each object and one additional
representation for the background. In the generator, all these representations
are then concatenated to generate the final output. The discriminator also gets
a concatenation of all learned representations at the last layer to make its final
decision. Overall, this might not be the best way, as this limits interactions between
the different objects and the background since all of them are learned in isolation.
This could be addressed by examining different representation merging approaches
that do not rely on simple concatenation at a late stage of the model.

As mentioned in Subection 2.2.2, different GAN frameworks use different con-
ditioning mechanisms. Our approaches use a very simple form of conditioning
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that is given to the discriminator once at a late stage of the model. Exploring
other mechanisms [Odena et al., 2017; Miyato and Koyama, 2018; Kang and Park,
2020] of incorporating the conditioning information, in our case both textual and
object-specific, might help the discriminator to learn higher-order interactions
between objects and, as a consequence, learn better representations. Furthermore,
the generator also learns the low-level object representations in isolation, which
might limit the learning capabilities. Investigating early-stage fusion techniques for
representations in the generator might also lead to increased performance in this
case.

4.5 Summary

Compositional representations are a powerful way of modeling complex objects
or scenes. They allow for modularity, reusability, and more explicit control over
how the world is represented. We show in Section 4.2 how they can improve
the quality and generalization capabilities of modeling contexts that consist of
individual objects. However, our model needs data where the individual objects are
labeled with a class label and a bounding box, which limits its applicability in the
real world. How our model learns compositional representations is also likely not
ideal, as it learns the representations for individual objects in isolation. As such,
future approaches should address these challenges by reducing the dependency on
labeled data and by incorporating techniques that allow for interactions between
representations at train time.

Section 4.3 illustrates the weaknesses of some of the current evaluation metrics
and introduces a new metric that addresses several of the current shortcomings. Our
metric can evaluate certain aspects better than other metrics, allows us to identify
characteristics that make learning of compositional representations easier, and also
aligns better with human evaluations. However, as noted in Section 4.4, there
are still several weaknesses that need to be addressed to improve the quantitative
evaluation of compositional representations.

Despite these challenges in learning and evaluating compositional representations,
we believe that compositional representations are an important part of learning to
represent the real world. They have several advantages compared to traditional
representations learned by current deep neural networks (see Section 4.1) and are
able to naturally model complex contexts. Future work should look into how we
can use powerful deep neural networks to learn useful compositional representations
without the need for large-scale human annotations. The inherently hierarchical
learning approach taken by current deep neural networks lends itself to be extended
to learn hierarchical compositional representations. This could potentially lead to
a combination of part-based and object-based compositional representations where
lower layers learn part-based representations which are combined to object-based
representations on higher layers.

The potential usefulness of compositional representations is strongly dependent
on the quality of the learned object representations. In this chapter, the object
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representations were learned as part of a larger model that is trained on a large
data set of complex scene layouts. However, since the learned representations are
compositional we could, theoretically, also use already learned object representations
in a plug-and-play manner. If the object representations are “good enough” this
could improve the final model quality and would potentially make it possible to
extend the model with data about objects that were not seen during training.
This approach could also help with objects that are difficult to learn from a given
data set (e.g. because they are too small or there are too few samples). In the
next chapter (Chapter 5) we develop several approaches to learning object-specific
representations, i.e. representations for a single object, from little data.
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Chapter 5

Object-Specific Representations

In our previous approaches (Chapter 3 and Chapter 4) we trained our models
on large data sets of images containing many different objects. However, many
applications and domains do not need or provide large data sets, e.g. when we work
with specific artistic drawings or want to learn a model for a single, specific object.
Additionally, we showed in Section 4.3 that learning object representations can be
challenging for some objects, e.g. when they have a complex shape or only take
up a small part of the image. To address these challenges, it is beneficial to train
a model to only learn a representation of the given context we are interested in.
This can help reduce the amount of data that is needed and can yield a highly
specialized model for the given context. Since the representation is learned for
a specific object we can also process our training data specifically for this object
(e.g. such that it takes up a reasonably large area of the image). We now describe
different ways in which this problem can be approached, before presenting our two
approaches and their position in the current literature in more detail.

5.1 Single-Object Representations

Traditional Generative Adversarial Networks (GANs) need thousands of training
samples in order to learn a good representation that allows for sampling from the
training distribution. However, in certain domains, e.g. drawings by a certain artist
or medical image data, we do not have a lot of data available. Furthermore, for
some tasks, e.g. editing a single image or harmonizing contents into a single image,
we might not necessarily need a network that was trained on a large data set. In
these cases it might be useful to train a model on only the relevant data, even
if there is only very little data available. In the limit this could mean training
a model on a single image or on several images of a single object. Being able
to do this would allow more specialization of a given model, reduce the required
amount of training data, and could help in making the resulting models smaller
more parameter efficient.

Single-Object Representations In this chapter we use the term “single-object
representation” to define the representation(s) that are learned by a model that was
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trained on only a single object. We make no limitations of what exactly constitutes
an “object” in this case: it could be a single object from a given domain (e.g. a
chair or a face), but also a more complex “object” such as a landscape or a building.
In the extreme case this could mean that the model is only trained on a single data
point (Section 5.2). Alternatively, it could also mean that the model is trained
on several different views of the given object, e.g. by changing the viewpoint or
pose of the given object (Section 5.3). There are several different ways in how this
challenge can be addressed, differing in the kind of data that we have available, the
models and implicit biases that we choose, and the task that we want to solve.

Training Data The exact nature of the available training data strongly affects
what the model can learn about the given object. The available training data can
differ in how much information a single data point contains (e.g. 2D vs. 3D) and
in how much training data we have available (only one view or multiple views).
In the most restrictive setting we might only have a single 2D image without any
additional information as training data [Shaham et al., 2019; Hinz et al., 2021b].
This can be extended by providing multiple views of the given object (e.g. from
different viewpoints) to provide more knowledge about the object [Mildenhall et al.,
2020; Poursaeed et al., 2020; Hinz et al., 2021a]. Alternatively the data that we
get as input might already contain 3D information, e.g. by being represented as
a point cloud or voxels [Sitzmann et al., 2019a]. Finally, we might have a time
component in the data that provides us with even more information, e.g. how the
object behaves throughout time [Li et al., 2020c]. In our approaches we work with
2D images in both a single-view (Section 5.2) and a multi-view (Section 5.3) setting.

Models and Implicit Biases Depending on the input data, the object we
want to model, and the downstream task different models and implicit biases might
be most useful. GANs can be trained to learn good representations from a single
or few data points [Shaham et al., 2019; Hinz et al., 2021a,b; Vinker et al., 2020;
Benaim et al., 2020; Shocher et al., 2019]. However, they mostly rely on standard
convolutional neural networks and often do not learn a 3D representation of the
data. Current implicit models [Sitzmann et al., 2019b, 2020b; Mildenhall et al.,
2020], on the other hand, have a strong implicit bias towards representing objects
in a continuous 3D manner. However, it is challenging to scale them to larger and
more complex objects or scenes and the sampling at test time can take a long
time. Our approaches are based on GANs and make no assumption about the
3D structure of the learned object. We discuss potential approaches to address
this, e.g. by combining traditional GANs and implicit models, in the discussion
(Section 5.4).

5.2 Learning Representations from a

Single Data Point

This section presents our work Improved techniques for training single-image GANs
by Tobias Hinz, Matthew Fisher, Oliver Wang, and Stefan Wermter published in
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2021 at the IEEE Winter Conference on Applications of Computer Vision (pp.
1300 – 1309).

5.2.1 Introduction

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] are capable of
generating realistic images [Brock et al., 2019] that are often indistinguishable from
real ones [Karras et al., 2020b]. The resulting models can be used for different
tasks, such as unconditional and conditional image synthesis [Karras et al., 2019;
Hinz et al., 2019], image inpainting [Demir and Unal, 2018], and image-to-image
translation [Isola et al., 2017; Zhu et al., 2017a]. However, most GANs are trained
on large datasets, typically consisting of tens of thousands of images which can be
time-consuming and expensive. In some cases, it might be preferable to train a
generative model on a small number of images or, in the limit, on a single image.
This is useful if we want to obtain variations of a given image, work with a very
specific image or style, or only have access to little training data. The recently
proposed SinGAN [Shaham et al., 2019] introduces a GAN that is trained on a
single image for tasks such as unconditional image generation and harmonization.

SinGAN is trained in a multi-stage and multi-resolution approach, where the
training starts at a very low resolution (e.g. 25× 25 pixels) at the first stage. The
training progresses through several “stages”, at each of which more layers are
added to the generator and the image resolution is increased. At each stage all
previously trained stages (i.e. the generator’s lower layers) are frozen and only
the newly added layers are trained. We find that exactly how multi-stage and
multi-resolution training is handled is critical. In particular, training only one stage
at a given time limits interactions between different stages, and propagating images
instead of feature maps from one generator stage to the next negatively affects
the learning process. Conversely, training all stages end-to-end causes overfitting
in the single image scenario, where the network collapses to generating only the
input image. We experiment with this balance, and find a promising compromise,
training multiple stages in parallel with decreased learning rates, and find that this
improves the learning process, leading to more realistic images with less training
time. Furthermore, we show how it is possible to directly trade-off image quality
for image variance, where training more stages in parallel means a higher global
image consistency at the price of less variation.

We also conduct experiments over the choice of rescaling parameters, i.e. how we
decide at which image resolution to train at each stage. We observe that the quality
of the generated images, especially the overall image layout, quickly degrades when
there are not enough training stages with small resolution. Our experiments show
that lower stages with smaller resolutions are important for the overall image
layout, while higher stages with larger resolution are important for the final image
texture and color. We find that we only need relatively few training stages with
high-resolution images in order to still generate images with the correct texture. As
a consequence, we put a higher weight on smaller resolution images during training
while using fewer of the stages to train on high-resolution images.
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Finally, since our model trains several stages in parallel, we can introduce a
task-specific fine-tuning stage which can be performed on any trained model. For
several tasks we show how to fine-tune the trained model on a given specific image to
further improve results. This shows benefits with as few as 500 additional training
iterations and is, therefore, very fast (less than two minutes on our hardware).

Combining these proposed architecture and training modifications enables us to
generate realistic images with fewer stages and significantly reduced overall training
time (20-25 minutes versus 120-150 minutes in the original SinGAN work). To
summarize, our main contributions are:

1. We train several stages in parallel with different learning rates and can trade-
off the variance in generated images vs. their conformity to the original
training image.

2. We do not generate images at intermediate stages but propagate features
directly from one stage to the next.

3. We improve the rescaling approach for multi-stage training, which enables us
to train on fewer stages.

4. We introduce a fine-tuning phase which can be used on pre-trained models to
obtain optimal results for specific images and tasks.

5.2.2 Related Work

Learning the statistics and distribution of patches of a single image has been known
to provide a powerful prior since the empirical entropy of patches inside a single
image is smaller than the empirical entropy of patches inside a distribution of
images [Zontak and Irani, 2011]. By using this prior, many tasks such as inpainting
[Ulyanov et al., 2018; Zhang et al., 2019], denoising [Zontak et al., 2013], deblurring
[Michaeli and Irani, 2014], retargeting [Mastan and Raman, 2019, 2020], and
segmentation [Gandelsman et al., 2019] can be solved with only a single image. In
particular, image super-resolution [Yang et al., 2019; Huang et al., 2015; Glasner
et al., 2009; Shocher et al., 2018; Bell-Kligler et al., 2019] and editing [Cho et al.,
2008; Dekel et al., 2015; He and Sun, 2012; Mechrez et al., 2019; Tlusty et al., 2018;
Mao et al., 2019a] from a single image have been shown to be successful and a
large body of work focuses specifically on this task. Recent work also shows that
training a model on a single image with self-supervision and data augmentation
can be enough to learn powerful feature extraction layers [Asano et al., 2020].

Approaches that train GAN models on single images are still relatively rare
and are usually based on a bidirectional similarity measure for image summariza-
tion [Simakov et al., 2008]. Some approaches do not use natural images, but instead
train only on texture images [Jetchev et al., 2016; Zhou et al., 2018; Bergmann
et al., 2017; Li and Wand, 2016]. At this time, only few models are capable of being
trained on a single ‘natural’ image [Shaham et al., 2019; Shocher et al., 2019; Vinker
et al., 2020]. Other novel approaches target applications such as image-to-image
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Figure 5.1: Overview of our model (ConSinGAN). We start training at ‘Stage 0’
with a small generator and small image resolution. With increasing number of
stages both the generator capacity and image resolution increase.

translation with only two images as training data [Lin et al., 2020; Benaim et al.,
2020].

The work most relevant to our approach is SinGAN [Shaham et al., 2019] which
is the only model that can perform unconditional image generation after being
trained on a single natural image. SinGAN trains both the generator and the
discriminator over multiple stages of different image resolutions as it is useful to
learn statistics of image patches across different image scales [Bagon et al., 2008].
The output at each stage is an image which is used as input to the next stage and
each stage is trained individually while the previous stages are kept frozen.

5.2.3 Methodology

We now describe our findings in more detail, starting with the training of a multi-
stage architecture, followed by best practices we found for scaling learning rate and
image resolutions at different stages during training.

Multi-stage Training Multi-scale image generation is of critical importance
[Shaham et al., 2019], however, there are many ways in which this can be real-
ized. SinGAN only trains the current (highest) stage of its generator and freezes
the parameters of all previous stages. ProGAN [Karras et al., 2018] presents a
progressive growing scheme that adds levels with all weights unfrozen, and more
recently [Karnewar and Wang, 2020; Karras et al., 2019] train the entire pyramid
jointly.

In this work, we investigate whether the model can be trained end-to-end, rather
than with training being fixed at intermediate stages, even in the single image
task. However, we find that training all stages leads to overfitting (see Figure 5.3),
i.e. the generator only generates the original training image without any variation.
We develop a novel progressive growing technique that trains multiple, but not all,
stages concurrently while simultaneously using progressively smaller learning rates
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at lower stages. Since we train several stages of our model concurrently for a single
image we refer to our model as ‘Concurrent-Single-Image-GAN’ (ConSinGAN).

Training ConSinGAN starts on a coarse resolution for a number of iterations,
learning a mapping from a random noise vector z to a low-resolution image (see
“Generator: Stage 0” in Figure 5.1). Once training of stage n has converged, we
increase the size of our generator by adding three additional convolutional layers.
In contrast to SinGAN, each stage gets the raw features from the previous stage as
input, and previous layers are not fixed. We add a residual connection [He et al.,
2016] from the original features to the output of the newly added convolutional
layers (see “Generator: Stage 1” in Figure 5.1). We repeat this process N times
until we reach our desired output resolution. We add additional noise to the features
at each stage [Isola et al., 2017; Zhu et al., 2017b] to improve diversity. In our
default setting, we jointly train the last three stages of a generator (see “Generator:
Stage N” in Figure 5.1). While it is possible to train more than three stages
concurrently, we observed that this rapidly leads to severe overfitting (Figure 5.3).

We use the same patch discriminator [Isola et al., 2017] architecture and loss
function as the original SinGAN. This means that the receptive field in relation
to the size of the generated image gets smaller as the number of stages increases,
meaning that the discriminator focuses more on global layout at lower resolutions
and more on texture at higher resolutions. In contrast to SinGAN we do not
increase the capacity of the discriminator at higher stages, but use the same number
of parameters at every stage. We initialize the discriminator for a given stage n
with the weights of the discriminator of the previous stage n− 1 at all stages. At a
given stage n, we optimize the sum of an adversarial and a reconstruction loss:

min
Gn

max
Dn
Ladv(Gn, Dn) + αLrec(Gn). (5.1)

Ladv(Gn, Dn) is the WGAN-GP adversarial loss [Gulrajani et al., 2017], while the
reconstruction loss is used to improve training stability (α = 10 for all our experi-
ments). For the reconstruction loss the generator Gn gets as input a downsampled
version (x0) of the original image (xN) and is trained to reconstruct the image at
the given resolution of stage n:

Lrec(Gn) = ||Gn(x0)− xn||22. (5.2)

The discriminator is always trained in the same way, i.e. it gets as input either a
generated or a real image and is trained to maximise Ladv. Our generator, however,
is trained slightly differently depending on the final task.

Task Specific Generator Training For each task we use the original image
xn for the reconstruction loss Lrec. The input for the adversarial loss Ladv, however,
depends on the task. For unconditional image generation the input to the generator
is simply a randomly sampled noise vector for Ladv. However, we found that if the
desired task is known beforehand, better results can be achieved by training with a
different input format. For example, for image harmonization, we can instead train
using the original image with augmentation transformations applied as input. The
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intuition for this is that a model that is used for image harmonization does not
need to learn how to generate realistic images from random noise, but rather should
learn how to harmonize different objects and color distributions. To simulate this
task, we apply random combinations of augmentation techniques such as additive
noise and color transforms to the original image xN at each iteration. The generator
gets the augmented image as input and needs to transform it back to an image
that should resemble the original distribution.

Learning Rate Scaling The space of all learning rates for each stage is large
and has a big impact on the final image quality. At any given stage n, we found
that instead of training all stages (n, n − 1, n − 2, ...) with the same learning
rate, using a lower learning rate on earlier stages (n− 1, n− 2, ...) helps reduce
overfitting. If the learning rate at lower stages is too large (or too many stages are
trained concurrently), the model generator quickly collapses and only generates
the training image (Figure 5.3). Therefore, we propose to scale the learning rate η
with a factor δ. This means that for generator Gn stage n is trained with learning
rate δ0η, stage n− 1 is trained with a learning rate δ1η, stage n− 2 with δ2η, etc.
In our experiments, we found that setting δ = 0.1 gives a good trade-off between
image fidelity and diversity (see Figure 5.3 and Figure 5.4).

Improved Image Rescaling Another critical design choice is around what
kind of multiscale pyramid to use. SinGAN originally proposes to downsample the
image x by a factor of rN−n for each stage n where r is a scalar with default value
0.75. As a result, SinGAN is usually trained on eight to ten stages for a resolution
of 250 width or height. When the images are downsampled more aggressively (e.g.
r = 0.5) fewer stages are needed, but the generated images lose much of their global
coherence.

We observe that this is the case when there are not enough stages at low
resolution (roughly fewer than 60 pixels at the longer side). When training on
images with a high resolution, the global layout is already “decided” and only
texture information is important since the discriminator’s receptive field is always
11×11. To achieve a certain global image layout we need a certain number of stages
(usually at least three) at low resolution, but we do not need many stages a high
resolution. We adapt the rescaling to not be strictly geometric (i.e. xn = x0×rN−n),
but instead to keep the density of low-resolution stages higher than the density of
high-resolution stages:

xn = xN × r((N−1)/log(N))∗log(N−n)+1 for n = 0, ..., N − 1 (5.3)

For example, with a rescaling scalar r = 0.55 we get six stages with the following
resolutions and we observe that our new rescaling approach (second line) has more
stages with smaller resolutions compared to the original rescaling approach (first
line):

25×34, 38×50, 57×75, 84×112, 126×167, 188×250,

25×34, 32×42, 42×56, 63×84, 126×167, 188×250.
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Model Confusion ↑ SIFID ↓ Train Time # Stages # Paramers

ConSinGAN 16.0%± 1.4% 0.06± 0.03 24 min 5.9 ∼660,000

SinGAN 17.0%± 1.5% 0.09± 0.07 152 min 9.7 ∼1,340,000

Table 5.1: Results of our user study and SIFID on images from the Places dataset.

To summarize our main findings, we produce feature maps rather than images at
each stage, we train multiple stages concurrently, we propose a modified rescaling
pyramid, and we present a task-specific training variation.

Input Random Samples

Figure 5.2: Example of unconditionally generated images showing complex global
structure generated by ConSinGAN.

5.2.4 Results

We evaluate ConSinGAN on unconditional image generation and image harmo-
nization in detail. For space reasons we focus on these two applications but note
that other applications are also possible with ConSinGAN. We show examples of
other tasks such as image retargeting, editing, and animation in the supplementary
material.

Unconditional Image Generation

Since our architecture is completely convolutional we can change the size of the
input noise vector to generate images of various resolutions at test time. Figure 5.2
shows an overview of results from our method on a set of challenging images that
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Number of Concurrently Trained Stages Number of Concurrently Trained Stages

1 2 3 4 5 6 1 2 3 4 5 6

δ = 0.1 δ = 0.5

Figure 5.3: Effect of learning rate scale δ and concurrently trained stages for a
model with six stages. Images are randomly selected.
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Figure 5.4: Effect of the learning rate scale δ during training of ConSinGAN.

require the generation of global structures for the images to seem realistic. We
observe that ConSinGAN is successfully able to capture these global structures,
even if we modify the image resolution at test time. For example, in the Stonehenge
example, we can see how “stones” are added when the image width is increased
and “layers” are added to the aqueduct image when the image height is increased.

Ablation We further examine the interplay between the learning rate scaling
and the number of concurrently trained stages (Figure 5.3) and evaluate how
varying the learning rate scaling δ (Subection 5.2.3) affects training (Figure 5.4).
As we can see in Figure 5.3, training with a δ = 0.1 leads to diverse images for most
settings, with the diversity slightly decreasing with a larger number of concurrently
trained stages. When training with δ = 0.5 we observe a large decrease in image
diversity even when only training two stages concurrently. As such, the number of
concurrently trained stages and the learning rate scaling δ offer a trade-off between
diversity and fidelity of the generated images.

Figure 5.4 visualizes how the variance in the generated images increases with
decreasing δ for a model with three concurrently trained stages. For example, when
we look at the top left example (Marina Bay Sands), we observe that for a δ = 0.5
the overall layout of the image stays the same, with minor variations in, e.g., the
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Figure 5.5: Comparison of the effect of the number of trained stages and rescaling
method during training. Images are randomly selected.

Model Random ↑ Paired ↑ SIFID ↓ Train Time Stages Params

ConSinGAN 56.7%± 1.9% 63.1%± 1.8% 0.11± 0.06 20 min 5.9 ∼660K

SinGAN 43.3%± 1.9% 36.9%± 1.8% 0.23± 0.15 135 min 9.1 ∼1.0M

Table 5.2: Results of our user studies and SIFID on images from the LSUN dataset.

appearance of the towers. However, with a δ = 0.1, the appearance of the towers
changes more drastically and sometimes even additional towers are added to the
generated image. Unless otherwise mentioned, all illustrated examples and all
images used for the user study where generated by models for which we trained
three stages concurrently with δ = 0.1.

Baseline comparisons We compare our model to the SinGAN [Shaham et al.,
2019] model in Figure 5.6. For SinGAN, we show the results of both the default
rescaling method (8-10 stages) and our rescaling method (5-6 stages). In the first
example we observe that SinGAN struggles to model recurring structures (faces) in
the generated images. In the second example we observe a loss of global structure
independent of the number of stages trained. Our multi-stage training helps ensure
a more consistent global structure.

Figure 5.5 further highlights the advantages of our approach by showing a
detailed comparison of the images each model generates after being trained with
the new or old rescaling technique. Each column depicts three randomly sampled
images from each model. We can see the positive effect of the rescaling technique
for both models, regardless of the number of trained stages. Furthermore, we can
see that our model retains better global coherence in both cases.

Quantitative evaluation The Fréchet Inception Distance (FID) [Heusel et al.,
2017] compares the distribution of a pre-trained network’s activations between a
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sets of generated and real images. The Single Image FID (SIFID) is an adaptation
of the FID to the single image domain and compares the statistics of the network’s
activations between two individual images (generated and real). In our experiments,
we found that SIFID exhibits very high variance across different images (scores
range from 1e− 06 to 1e01) without a clear distinction of which was “better” or
“worse”. In this work, we focus mostly on qualitative analyses and user studies for
our evaluation but also report SIFID for comparison.

We performed quantitative evaluations on two datasets. The first dataset is the
same as the one used by SinGAN, consisting of 50 images from several categories
of the ‘Places’ dataset [Zhou et al., 2014]. However, many of these images do not
exhibit a global layout or structure. Therefore, we also construct a second dataset,
where we take five random samples from each of the ten classes of the LSUN dataset
[Yu et al., 2015]. This dataset contains classes such as “church” and “bridge” which
exhibit more global structures. We train both the SinGAN model and our model
for each of the 50 images in both datasets and use the results for our evaluation.

Input Generated Images
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Figure 5.6: Comparison of Sin-
GAN and ConSinGAN.

Image Diversity We evaluate the diversity
in our images compared to the original SinGAN
model using the same measure as SinGAN: for a
given training image we calculate the average of
the standard deviation of all pixel values along
the channel axis of 100 generated images. Then,
we normalize this value by the standard devia-
tion of the pixel values in the training image. On
the data from the ‘Places’ dataset, SinGAN ob-
tains a diversity score of 0.52, while our model’s
diversity is similar with a score of 0.50. When
we increase the learning rate on lower stages by
setting δ = 0.5 instead of the default δ = 0.1
we observe a lower diversity score of 0.43 as the
model learns a more precise representation of
the training image (Figure 5.4). On the LSUN
data, SinGAN obtains a much higher diversity
score of 0.64. This is due to the fact that it
often fails to model the global structure and the
resulting generated images differ greatly from
the training image. Our model, on the other hand, obtains a diversity score of 0.54
which is similar to the score on the ‘Places’ dataset and indicates that our model
can indeed learn the global structure of complex images.

User Study: ‘Places’ We follow the same evaluation procedure as previous
work [Isola et al., 2017; Shaham et al., 2019; Zhang et al., 2016] to compare our
model with SinGAN on the same training images that were used previously in
[Shaham et al., 2019]. Users were shown our generated image and its respective
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training image for one second each and were asked to identify the real image. We
reproduced the user study from the SinGAN paper with our own trained SinGAN
and ConSinGAN models. As we can see in Table 5.1 our model achieves results
similar to the SinGAN model. However, our model is trained on fewer stages
and with fewer parameters and obtains a better SIFID score of 0.06, compared
to SinGAN’s 0.09. Furthermore, the images generated by ConSinGAN often still
exhibit a better global structure, but one second is not enough time for users to
identify this.

User Study: ‘LSUN’ Since the images from the LSUN dataset are much
more challenging than the images from the ‘Places’ dataset we do not compare
the generated images against the real images, but instead compare the images
generated by SinGAN to the ones generated by ConSinGAN. We generate 10
images per training image, resulting in 500 generated images each from SinGAN
and ConSinGAN, and use these to compare the models in two different user studies.

In both versions, the participants see the two images generated by the two
models next to each other and need to judge which image is better. We do not
enforce a time limit, so participants can look at both images for as long as they
choose. The difference between the two versions of the user study is how we sample
the generated images. In the first version (“random”) we randomly sample one
image from the set of generated images of SinGAN and ConSinGAN each. This
means that the two images likely come from different classes (e.g. ‘church’ vs.
‘conference room’). In the second version (“paired”) we sample two images that
were generated from the same training image. We perform both user studies using
Amazon Mechanical Turk, with 50 participants comparing 60 pairs of images for
each study.

Table 5.2 shows how often users picked images generated by a given model
for each of the two settings. We see that users prefer the images generated
by ConSinGAN in both settings and that, again, our model achieves a better
SIFID. This is the case even though our model only trains on six stages, has fewer
parameters than SinGAN, and takes less time to train. The images from LSUN vary
in difficulty and global structure. This might explain why our model performs even
better in the paired setting since this setting guarantees that we always compare
the two models on images of the same difficulty. Overall, our experiments show
that ConSinGAN allows for the generation of more believable images, especially
when they exhibit some degree of global structure, with less training time and a
smaller model than SinGAN.

Image Harmonization

We now show results on image harmonization examples and compare our model to
SinGAN and Deep Painterly Harmonization [Luan et al., 2018] for high-resolution
images.

Training Details We train ConSinGAN with the same hyperparameters for all
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SinGAN [Shaham et al., 2019] ConSinGAN
Original Naive 8-10 Stages 3 Stages 3 Stages Fine-tuned

Figure 5.7: Image harmonization with SinGAN and ConSinGAN

images without any fine-tuning of hyperparameters for the different images. The
general architecture is the same as for unconditional image generation, however, we
only train the model for exactly three stages per image. We train for 1,000 iterations
per stage and randomly sample from different data augmentation techniques to
obtain a “new” training image at each iteration as described in Subection 5.2.3.
When we fine-tune a model on a given specific image we use a model trained on
the general style image and use the target image directly as input (instead of the
style image with random augmentation transformations) to train the model for an
additional 500 iterations.

Comparison with SinGAN Figure 5.7 shows comparisons between SinGAN
and ConSinGAN. The first two columns show the original images we trained on
and the naive cut-and-paste images that are the input to our trained model at
test time. The next three images show the results of a trained SinGAN model,
where the first two are the results of a fully trained model. We insert the naive
image at all stages of the model and choose the two best results, while the third
image is the result when we train SinGAN on only three stages. The final two
columns show the results of the ConSinGAN. Training ConSinGAN takes less than
10 minutes for a given image when the coarse side of the image has a resolution
of 250 pixels. Fine-tuning a model on a specific image takes roughly 2-3 minutes.
Training SinGAN takes roughly 120 minutes as before, since we need to train the
full model, even if only some of the later stages are used at test time.

We see that ConSinGAN performs similar to or better than SinGAN, even though
we only train ConSinGAN for 3 stages. ConSinGAN also generally introduces
fewer artifacts into the harmonized image, while SinGAN often changes the surface
structure of the added objects. See for example the first row in Figure 5.7, where
SinGAN adds artifacts onto the car, while ConSinGAN keeps the original objects
consistent. When we fine-tune the ConSinGAN model on specific images we can
get even more interesting results, as, e.g., the car gets absorbed much more into the
colors of the overall background. The bottom two rows of Figure 5.7 show results
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ConSinGAN
Original Naive DPH [Luan et al., 2018] 4 Stages Fine-tuned

Figure 5.8: Image harmonization comparison with Deep Painterly Harmonization
(DPH) and ConSinGAN on high resolution images

when we add colorful objects to black-and-white paintings. When training SinGAN
on only three stages like ConSinGAN it usually fails completely to harmonize the
objects at test time. Even the images harmonized after training SinGAN on 8-10
stages often contain some of the original colors, while ConSinGAN manages to
completely transfer the objects to black-and-white versions. Again, further fine-
tuning ConSinGAN on the specific images leads to an even stronger “absorption”
of the objects.

Comparison with DPH Figure 5.8 shows comparisons between ConSinGAN,
adapted to harmonize high-resolution images, and Deep Painterly Harmonization
(DPH) [Luan et al., 2018]. The images have a resolution of roughly 700 pixels on the
longer side, as opposed to the 250 pixels used by the SinGAN examples. In order
to produce these high-resolution images, we add another stage to our ConSinGAN
architecture, i.e. we now train four stages, and training time increases to roughly
30-40 minutes per image. This is in contrast to many style-transfer approaches and
also DPH, which have additional hyperparameters such as the style and content
weight which need to be fine-tuned for a specific style image.

We can see that the outputs of ConSinGAN usually differ from the outputs of
DPH, but are still realistic and visually pleasing. This is even the case when our
model has never seen the naive copy-and-paste image at train time, but only uses
it at test time. In contrast to this, DPH requires as input the style input, the naive
copy-and-past input, and the mask which specifies the location of the copied object
in the image. Again, fine-tuning our model sometimes leads to even better results,
but even the model trained only with random image augmentations performs well.
While our training time is quite long, we only need to train our model once for a
given image and can then add different objects at different locations at test time.
This is not possible with DPH, which needs to be retrained whenever the copied
object changes.

96



5.2.5 Conclusion

We introduced ConSinGAN, a GAN inspired by a number of best practices dis-
covered for training single-image GANs. Our model is trained on sequentially
increasing image resolutions, to first learn the global structure of the image, before
learning texture and stylistic details later. Compared to other models, our approach
allows for control over how closely the internal patch distribution of the training
image is learned by adjusting the number of concurrently trained stages and the
learning rate scaling at lower stages. Through this, we can decide how much
diversity we want in the generated images. We also introduce a new image rescaling
approach that allows training on fewer image scales than before. We show that
our approach can be trained on a single image and can be used for tasks such as
unconditional image generation, harmonization, editing, and animation while being
smaller and more efficient to train than previous models.

5.3 Learning Representations for a Single Object

from a Few Labelled Examples

This section presents our work CharacterGAN: Few-Shot Keypoint Character Ani-
mation and Reposing by Tobias Hinz, Matthew Fisher, Oliver Wang, Eli Shechtman,
and Stefan Wermter.

5.3.1 Introduction

Modifying and animating artistic characters is a task that often requires experts to
manually create many instances of the same character in different poses, which is a
time-consuming and expensive process. Using video frame interpolation methods
can reduce the overhead, but these methods do not leverage character-specific priors
and so can only be used for small motions. Similarly, warping input frames directly
with 2D handles cannot account for disocclusions or appearance changes between
poses. In this work we have two main goals: (1) to generate high quality frames of
an animated character based on a small number of examples, and (2) to generate
these images based on a sparse set of keypoints that can be easily modified in real
time.

To address both issues, we propose to train a conditional Generative Adversarial
Network [Goodfellow et al., 2014] (GAN) architecture that allows us to create new
images of a character based on a set of given keypoint locations. We show that,
with the right form of implicit biases, such a model can be trained in a few-shot
setting (i.e., 10s of training images). In character animation, each training image
has to be created manually, making it expensive to acquire the number of images
required for training most conditional GAN models [Isola et al., 2017], and unlike
recent work on single image generative models [Shaham et al., 2019], we desire
precise control over the generated image.
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Input Input

Figure 5.9: We train a generative model in a low-data setting (8 to 15 training
samples) to repose and animate characters based on keypoint positions. The first
row shows video results (indicated throughout the paper by ), of our method
driven by linearly interpolating input keypoints. Please view with Adobe Acrobat
to see animations. The second and third rows show interpolated frames generated
by our method between a single start and end frame (left and right columns)

Our method consists of GAN that is trained on 8 – 15 images of a given character
and its associated keypoints in different poses. One of the key challenges is that it
is difficult for the model to learn which parts of a character should be occluded
by other parts. E.g. when the hand of a humanoid character moves in front of the
torso, either the hand should be visible at all times (if it is in the foreground) or
only the torso should be visible if the hand moves “behind” the torso. To learn
this ordering in a purely data-driven approach we need many images which we do
not have in our setting. Instead, we propose to use user-specified layers for our
keypoints, i.e. each keypoint lies in a given layer and we can introduce an ordering
over those layers. For example, a humanoid character could be described by three
layers, consisting of 1) the arm and leg in the “back” (i.e. occluded by the torso
and other arm and leg), 2) the torso and head which are occluded by one arm
and one leg and occlude one arm and one leg, and 3) the other arm and leg which
occlude every other part of the character. Our model processes each of these layers
independently, i.e. generates features for each layer without knowing the location
of the keypoints in the other layers. We then use an adaptive scaling approach,
conditioned on all keypoints, to spatially scale the features of each layer, before
concatenating and using them to generate the final image.

Additionally, we can train our generator to predict the mask for a generated
character which we found to be a robust way to identify and automatically fix
unrealistic keypoint layouts at test time. Our model naturally learns to associate
the keypoints with roughly semantically meaningful body parts for each layer, and
can handle discrete state points that arise as a function of keypoint locations (e.g.,
switching between a profile facing left or right). Finally, to improve image quality,
we use a patch-based refinement step [Barnes et al., 2009] on the generated images
based on [Jamriska, 2018].
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We show via a number of qualitative and quantitative experiments that our
resulting model allows for real-time reposing and animation of diverse characters
and that our layering approach outperforms the more traditional conditioning
approach of using all keypoints at once. Since we assume no prior knowledge about
the modeled character our model can be applied to any shape and does not require
additional data such as a 3D model or a character mesh. This allows our model to
be applied in domains for which only limited data is available (e.g. artistic drawings
or sprite sheets) without the need for additional manual input besides the keypoint
labels. In summary, we introduce the following main contributions:

• We show that it is possible to train a GAN on only few images (8 – 15) of a
given character to allow for few-shot character reposing and animation. By
only conditioning the training on keypoints (instead of e.g. semantic maps)
the trained model allows for character reposing in real-time without expert
knowledge.

• By using a layered approach that explicitly encodes the ordering of different
keypoints our model is able to model occlusions with only very limited training
data.

• We introduce a mask connectivity constraint, where a jointly predicted mask
can be used at test time to automatically fix keypoint layouts for which the
model produces unrealistic outputs.

5.3.2 Related Work

Conditional GANs take as input some form of label which makes it possible to
control the output of the generator to varying degrees and has also been shown
to help with the training process. The label input can come in several forms,
such as class conditioning [Mirza and Osindero, 2014], semantic maps [Isola et al.,
2017], keypoints [Reed et al., 2016a], or bounding boxes [Hinz et al., 2019, 2020].
However, most conditional GANs are trained with large datasets and are applied
to broader domains, whereas we are interested in animating a specific character.
In the following, we first focus on approaches in how to leverage small amounts of
data to train GANs and conclude with a section about how the chosen conditioning
method directly affects how the model can be used at test time.

Few-Shot Learning with GANs One promising approach to few-shot learning
with GANs is to use fine-tune GANs that are pre-trained on large datasets. This
can be achieved by fine-tuning a given model [Wang et al., 2018b], by only training
parts of the pre-trained model [Noguchi and Harada, 2019; Robb et al., 2020; Mo
et al., 2020; Li et al., 2020b], or transfering knowledge between different - but
related - domains [Wang et al., 2020; Zhao et al., 2020a]. However, these methods
still rely on a model that is pre-trained on a large dataset in a very similar domain.
As opposed to this we do not fine-tune a pre-trained model on a small dataset but
instead train our model from scratch on limited available data.

Recent approaches show that applying data augmentation techniques during
training of GANs directly is useful, especially when the dataset is small [Tran et al.,
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Figure 5.10: Our model processes keypoints which are split into individual layers.
The resulting features for each keypoint layer are then scaled, concatenated, and
used to generate the final image.

2020; Karras et al., 2020a; Zhao et al., 2020b,c]. One of the main insights of these
approaches is that it is not sufficient to only augment real images since this leads
the discriminator to learn that these augmented images are part of the real data.
We also make heavy use of data augmentation in our training process but use
much less data (8 – 15 images) than the approaches mentioned here (usually 100+
images).

It is also possible to learn useful features from only a single image [Zontak and
Irani, 2011; Asano et al., 2020] and that tasks such as texture synthesis [Jetchev
et al., 2016; Li and Wand, 2016; Bergmann et al., 2017; Zhou et al., 2018], image
retargeting [Shocher et al., 2019], inpainting and segmentation [Ulyanov et al., 2018;
Gandelsman et al., 2019], and unconditional image synthesis [Shaham et al., 2019;
Hinz et al., 2021b] are possible with only a single image. Other approaches train
GANs for image-to-image translation with only one pair of matching images [Lin
et al., 2020; Benaim et al., 2020; Park et al., 2020; Vinker et al., 2020]. However, a
model trained on just a single image without any other information can only generate
limited variations of the training input. Therefore, we propose to increase the
available information by slightly increasing the training set’s size, which increases
the model’s capability to generate more variations of a learned object.

Editability An important characteristic of models for character reposing and
animation is how the character is controlled. Existing approaches use driving videos
[Siarohin et al., 2019], learn a distribution over poses for inbetweening [Poursaeed
et al., 2020], or map puppets to skeletons [Dvorožňák et al., 2018]. However, it is
difficult to achieve a desired pose exactly with these approaches [Siarohin et al.,
2019; Poursaeed et al., 2020] or requires expert knowledge to obtain the required
training data [Dvorožňák et al., 2018]. Another approach is to condition the model
on a semantic label map [Chan et al., 2019; Vinker et al., 2020] which can be
changed at test time to reflect the new layout. However, modifying semantic maps
or edge maps is not something that can be done on-the-fly, but instead takes time
and skill. Finally, one could start with the character in a given pose and warp or

100



stretch it until it reaches the desired pose [Liu et al., 2014] which might lead to
unrealistic results if the end pose is too different from the starting pose. Given the
previous limitations we only condition our model on high-level keypoints which are
provided for a given character, making it easy and fast to generate new poses at
test time by moving keypoints.

5.3.3 Methodology

In this section we describe our approach and how the model can be used at test
time.

Input Requirements

In this work, we focus on character animation and reposing, where the images show
the same character in different poses from the same viewpoint. Since our goal is
to work in low data scenarios, we focus on cases with a small amount of images
of the given character. Furthermore, the individual images can depict discrete
appearance variations, e.g. different facial expressions. We do not make any other
prior assumptions about the structure of the character. Our method requires an
input image set, keypoints per image, keypoint connectivity information (essentially
a skeleton), and a layer ordering for the keypoints. This information can be obtained
easily as we only need labels for very few images. While the keypoints have to be
labeled manually for each image, all other information is image independent and,
thus, only needs to be defined once.

We experimented with various ways to input keypoints to the network, such as
as individual channels, but found that representing keypoints as RGB Gaussian
blobs performed the best. This also means that the input condition always has
the same input dimensionality, independent of the number of keypoints, which is
helpful as our model uses the same parameters to process these individual layers.
Each keypoint is defined by a position {x, y}, three randomly chosen color values
for the three RGB channels, and the values σ and r, where σ represents the falloff
of the Gaussian distribution we use for blurring the keypoint, and r represent the
radius of the final keypoint, which we define later. Discrete keypoints are modelled
with individual RGB values, and in cases where different keypoints overlap we sum
the respective colors.

Model

Our model consists of a generator and a discriminator (see Figure 5.10). The gen-
erator generates the image based on the keypoint locations while the discriminator
is trained to distinguish between real and fake image-keypoint pairs. Finally, we
apply a patch-match [Barnes et al., 2009] based refinement step to improve the
final quality of the generated images.

Generator and Discriminator We base our architecture on pix2pixHD [Wang
et al., 2018a]. However, while the discriminator is similar to the original pix2pixHD
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discriminator, we add several implicit biases to the generator reflecting our prior
knowledge about the problem. Concretely, we know that the modeled characters
are inherently three-dimensional, i.e. if some body parts are occluded by others
they still exist even though they may not be visible. To address this, we split our
characters into different layers, e.g. representing the “left” side of the character (e.g.
left arm and leg), the “middle” part of the character (e.g. head and torso) and the
“right” side of the character (e.g. right arm and leg). These layers can be modeled
individually and can then be composed to form a final image. To model this, our
generator processes each keypoint layer individually and learns a representation of
each keypoint layer (see Figure 5.10).

Intuitively, we could set some features to zero if they are occluded by other
features. For example, if the left hand is “behind” the torso for a given image,
zeroing out the features for the left hand might make it easier for the generator to
generate a realistic image. Conversely, if the right hand is “in front of” the torso,
zeroing out the torso features at the location of the right hand might improve the
performance. To address this, we incorporate an adaptive scaling technique [Park
et al., 2019] in which we scale the features of each layer before concatenating them.
For this, we first learn an embedding of the keypoints and their layers (“Global” in
Adaptive Scaling of Figure 5.10). Based on this embedding we then learn scaling
parameters for each keypoint layer and use them to scale the features of each each
layer. These scaled layer features are then concatenated and used to generate the
final image.

Our discriminator takes the keypoint conditioning k concatenated with an
RGB image as input and classifies it as either real or fake. We use two patch-
discriminators [Isola et al., 2017], one of which operates on the full resolution
image, while the second operates on the image down-scaled by a factor of two. We
use a feature matching and an adversarial loss during training as defined by the
pix2pixHD model [Wang et al., 2018a]. The adversarial loss is the standard GAN
loss Ladv:

min
G

max
D
Ladv = E(k,x)[logD(k, x)]+

E(k)[log(1−D(k,G(k))]
(5.4)

where k is the keypoint condition and x is the corresponding real image. The
feature matching loss Lfm stabilizes training by forcing the generator to produced
realistic features at multiple scales and is defined as:

min
G
Lfm = E(k,x)

T∑
i

1

Ni

[||D(k, x)−D(k,G(k))||1] (5.5)

where T is the number of layers in the discriminator and Ni is the number of
elements in each layer. We add a perceptual loss [Johnson et al., 2016; Zhang et al.,
2018b] to further improve the image quality. We use a VGG net to extract features
from real and generated images and compute the perceptual loss Lperc as defined
by [Johnson et al., 2016]. Our final loss is the combination of these losses:

min
G

max
D
Ladv + Lfm + Lperc. (5.6)
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Dataset SinGAN [Shaham et al., 2019] ConSinGAN [Hinz et al., 2021b]

PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

Watercolor Man 18.03 ± 0.09 0.149 ± 0.0032 21.65 ± 0.32 0.102 ± 0.0151

Watercolor Lady 18.03 ± 0.09 0.159 ± 0.0024 25.49 ± 0.14 0.070 ± 0.0012

Sprite Man 17.14 ± 0.08 0.156 ± 0.0063 23.19 ± 0.17 0.087 ± 0.0045

Dog 15.01 ± 0.28 0.195 ± 0.0078 19.24 ± 0.27 0.125 ± 0.0089

Ostrich 16.54 ± 0.03 0.200 ± 0.0023 23.30 ± 0.18 0.103 ± 0.0020

Cow 13.58 ± 0.03 0.220 ± 0.0016 18.71 ± 0.12 0.133 ± 0.0037

Dataset DeepSIM [Vinker et al., 2020] CharacterGAN

PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

Watercolor Man 21.92 ± 0.03 0.066 ± 0.0002 24.33 ± 0.05 0.042 ± 0.0002

Watercolor Lady 26.21 ± 0.04 0.048 ± 0.0006 28.27 ± 0.03 0.037 ± 0.0003

Sprite Man 22.08 ± 0.07 0.071 ± 0.0001 25.23 ± 0.02 0.038 ± 0.0006

Dog 20.08 ± 0.07 0.087 ± 0.0010 22.22 ± 0.04 0.062 ± 0.0006

Ostrich 21.54 ± 0.13 0.079 ± 0.0006 23.80 ± 0.09 0.063 ± 0.0005

Cow 17.65 ± 0.03 0.115 ± 0.0013 19.59 ± 0.01 0.085 ± 0.0005

Table 5.3: Results of cross validation for the different models.

Patch-based Refinement To further improve the final result we apply a
patch-based refinement algorithm that replaces generated patches with their closest
real patch. In our case, given a real and a generated image, for each patch in
the generated image, we find the closest patch in the dataset of all real images
using the Patch Match approximate nearest neighbor algorithm [Barnes et al.,
2009; Hertzmann et al., 2001], and replace the generated patches with their real
equivalent [Texler et al., 2020]. We found that this approach often improves the
sharpness and general image quality over the output of the generator (Figure 5.14).

Data Augmentation We employ both affine transformations and thin-plate-
spline augmentation [Vinker et al., 2020]. We use a mixture of horizontal and
vertical translations and horizontal flipping and randomly sample a subset from
these augmentation approaches at each training iteration. Thin-plate-spline (TPS)
augmentation was introduced by Vinker et al. [2020]. For this approach, the image
is modeled as a grid and each grid point is then shifted by a random distance
sampled from a uniform distribution. After this, a TPS is used to smooth the
transformed grid into a more realistic warp. Using TPS augmentation results in
warped images where parts of the image are stretched and elongated, adding further
variation to the training data. All augmentations are applied to the given image
and the associated keypoints and skeleton.
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CharacterGAN CharacterGAN

Dataset No Layer, No Scaling Layer, No Scaling

PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

Watercolor Man 23.81 ± 0.15 0.049 ± 0.0050 24.29 ± 0.02 0.044 ± 0.0004

Watercolor Lady 28.23 ± 0.01 0.038 ± 0.0002 28.27 ± 0.05 0.037 ± 0.0003

Sprite Man 24.63 ± 0.12 0.041 ± 0.0020 25.12 ± 0.01 0.039 ± 0.0004

Dog 21.71 ± 0.10 0.068 ± 0.0007 22.14 ± 0.05 0.064 ± 0.0005

Ostrich 22.95 ± 0.04 0.068 ± 0.0007 22.97 ± 0.04 0.067 ± 0.0004

Cow 18.95 ± 0.08 0.094 ± 0.0021 19.52 ± 0.01 0.086 ± 0.0009

Watercolor Man Sprite Man Ostrich

Watercolor Lady Dog Cow

Table 5.4: Ablation study: results of cross validation for different parts of our
model.

Editability

After our model is trained it offers a straightforward way to modify the pose of the
character. Given an image of the character the user can drag keypoints to novel
positions and the generator will generate the character in the new pose. We can
also easily switch between different discrete states, and we provide two ways to
do this. First, it can be handled completely automatic where the discrete state is
determined solely by keypoint positions (e.g., for facing left vs right). Second, we
provide the ability to have specific keypoints for individual states, such as smile
vs frown, so a user can choose the desired expression at inference time. We also
allow the user to optionally enable a mask-based connectivity correction. In this
case, if the user positions keypoints too far from their input distribution, such that
they could lead to unrealistic or undesired results, we can automatically modify
the keypoint locations to achieve more realistic results.

Ensuring Mask Connectivity If the image background is of uniform color
(e.g. white), or we have a segmentation network, we can automatically extract a
foreground-background mask. We can use this mask as additional conditioning
information during training, i.e. in this case the generator does not only generate
the RGB image but also the mask, while the discriminator gets as input an image
and its associated keypoints and mask.
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Original Generated Original Generated Original Generated Original Generated

Figure 5.11: Examples from our model which was trained on only 8 – 12 images
for each of the characters. Odd columns show the original image and our intended
modifications, even columns show the output of our model.

SinGAN ConSinGAN DeepSIM CharacterGAN Ground
w/o layer w/ layer Truth

Figure 5.12: Qualitative examples of reconstructing held-out test images based on
their keypoint locations.

At test time, if a keypoint is moved in a way that results in a layout that is
too different from the ones seen at train time it can happen that the generator
generates either “disconnected” body parts (e.g. the hand is not connected to the
body) or introduces unwanted artifacts. Since the generator predicts the mask
for the generated character we can use connected component analysis [Fiorio and
Gustedt, 1996; Wu et al., 2005] to check whether the generated mask is connected.
We found two cases that often lead to a disconnected mask; if the disconnected part
contains a keypoint the resulting character will be ripped apart or, alternatively,
if the disconnected part does not contain a keypoint the generated image will
often contain unwanted artifacts. In either case, we fix the result by automatically
moving nearby keypoints in an iterative procedure until the predicted mask is fully
connected again.

Given the last moved keypoint that caused the a disconnected region to appear,
we identify the closest keypoint and move this keypoint in the same direction as
the keypoint moved by the user by a fraction δ of the absolute distance. If δ = 1
the keypoint is moved exactly in the same direction and by the same amount as
the original keypoint and if δ = 0 no keypoints are moved automatically at all. We
found that a default of δ = 0.5 achieved good results in a single iteration in most
cases, however, this process can be repeated iteratively until the mask is connected
(Figure 5.15).
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DAIN DeepSIM Ours Input DAIN DeepSIM Ours Input

Figure 5.13: Comparison of our approach to frame interpolation [Bao et al., 2019]
and DeepSIM [Vinker et al., 2020] using the displayed input frames ( ).

5.3.4 Experiments

Baselines To compare our approach we adapt three generative baseline models
from the single-image domain to our setting. SinGAN [Shaham et al., 2019] and
ConSinGAN [Hinz et al., 2021b] are trained on only a single image for tasks such
as image generation and harmonization. Both models are trained in a multi-stage
manner where the image resolution increases with each stage. While SinGAN trains
each stage in isolation and freezes all previous stages, ConSinGAN trains the whole
model end-to-end. We adapt both models by additionally conditioning the training
at each stage on the image keypoints, i.e. each stage gets as input the keypoint
condition in the respective image resolution. DeepSIM [Vinker et al., 2020] trains a
model specifically for image manipulation, where the conditioning input consists
either of edge-maps, semantic labels, or a combination of both. The model is
trained on only a single instance of an image and its conditioning information. We
adapt the DeepSIM model to our setting by replacing the edge-map conditioning
with keypoints, i.e., instead of the edge-map the input to the model is a map of
keypoint locations.

Experiments We perform experiments on several different characters, including
humans and animals. Our data comes from different sources such as drawings by
artists [Dvorožňák et al., 2018] and characters taken from sprite sheets. For our
characters we have 8 – 15 images which we manually label with keypoint locations,
but we also show that our model is able to handle larger datasets. Our model itself
can generate images in real-time and takes about 0.01 seconds for one image on an
NVIDIA RTX 2080Ti (0.4 seconds on CPU). One iteration of evaluating the mask
connectivity takes about 0.00002 seconds on CPU and the patch based refinement
takes about 0.6 seconds (1.8 seconds on CPU).

Quantitative Evaluation

To the best of our knowledge there are no established quantitative evaluation metrics
for few-shot character animation. Shaham et al. [2019] introduced the Single-Image
FID (SIFID) score to evaluate single-image generative models. However, Hinz et al.
[2021b] report large variance in the SIFID scores and Robb et al. [2020] report that
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models in the few-shot setting overfit to the FID metric. Other approaches use
LPIPS [Zhang et al., 2018b] to compare a generated image with its ground truth
counterpart. We use the Peak Signal-to-Noise Ratio (PSNR) and LPIPS as metrics
to evaluate our model.

Generated Refined Generated Refined

Figure 5.14: Effects of patch-based refinement
(please view on screen and zoomed in).

To evaluate our model
we design an N -fold cross-
validation for a given character
with N images. Given a charac-
ter we train our model N times
on N − 1 images were each im-
age in the dataset is left out of
training exactly once. At test
time we generate the left-out image based on its keypoint layout and calculate
the PSNR and LPIPS between the generated and ground-truth image. For each
character we run the full N -fold cross-validation three times and report the average
and standard deviation across the three runs. We perform all our quantitative
evaluations without using the patch refinement step to evaluate the models directly.
Some examples are shown in Figure 5.12.

Original Predicted Mask Before Fix Fixed

Figure 5.15: Enforcing mask connectivity at test
time results in more realistic images.

Table 5.3 shows the results
of our model compared to the
baselines. Our model achieves
the best LPIPS and PSNR for
all characters. We observe that
the PSNR is not always pre-
dictive of the (perceptive) qual-
ity of the generated image. In
particular, SinGAN and Con-
SinGAN often generate images
where the character exhibits dis-
connected body parts (e.g. the
feet are not connected to the
main body), but this is not rep-
resented in the PSNR, as feet
and legs cover a relatively small
area of the image.

Table 5.4 shows ablation studies with our model, where we train the same
model without any layering, and with layering but no adaptive scaling. We can
see that the layering approach improves the performance in all cases but for the
“Watercolor Lady” character. This character is the only character of these that does
not include occlusions, i.e. none of the bodyparts overlap each other which supports
our hypothesis that the layering approach is mainly helpful for modeling occlusions
in the low-data setting. Finally, adding the adaptive scaling further improves the
performance, albeit not as much as the keypoint layering.
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No Layer Layer No Layer Layer

Figure 5.16: Comparison of layered vs non-layered
at occlusions/overlaps.

Qualitative Evaluation

Figure 5.11 shows visualizations
of our model’s capabilities on
several different characters. All
examples in this figure are trained
on sprite sheets which contain 8
– 12 examples of the given char-
acter in different poses. Our
model learns to generate realis-
tic samples of four-legged ani-
mals, two-legged animals, and
humanoid shapes. Furthermore,
we see that our model can han-
dle the movement of keypoints
that relate to relatively small
character parts (e.g. individual
feet) as well as keypoints that
represent large body parts (e.g.
head and torso). Even when we move multiple keypoints, the resulting image is
realistic, adheres to the novel keypoint layout, and leaves areas of the character
that were not modified unchanged. Figure 5.14 shows the effect of the patch-based
refinement algorithm which often improves small details of the generated images.

Figure 5.17: Visualization of
what different layers learn ( ).

Figure 5.9 and Figure 5.13 show how our
model can be used for character animation. We
use the poses from the training set as starting
point and linearly interpolate the keypoints to
generate the intermediate frames. Our model
produces smooth and realistic results. We note
that these intermediate keypoint locations could
also be derived from other data e.g. by extracting
keypoints from driving videos [Aberman et al.,
2018]. For comparison, we also show the results
of a recent general purpose frame-interpolation
model DAIN [Bao et al., 2019].

Mask-based Keypoint Refinement When
moving certain keypoints to a new location we
sometimes observe that this leads to “rips” in
the generated character since the keypoint is too far away from the main body and
such a configuration does not occur in training data. This can usually be fixed
by moving the connected body part in the same direction as the original keypoint.
Figure 5.15 shows examples of rips in the generated character (first two rows) and
introduced artifacts (third row). The first column shows the original image and
user specified modifications. The second and third columns show the predicted
mask and generated image. The last column shows our model’s final output after
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Number of Training Images

5 15 89 5 15 85

Figure 5.20: Here we show how performance improves with more training images ( ).

the respective connected keypoint was moved automatically. We can see that by
enforcing the mask connectivity constraint we can get more realistic results in all
cases.

Layered vs Non-layered Architecture Figure 5.16 shows qualitative com-
parisons between images generated by our architecture while using either our
layered approach or a traditional, non-layered approach. As discussed previously,
our layered approach is beneficial when several keypoints overlap in the 2D space,
e.g. if a hand passes in front of a body or if two body parts are very close to each
other. Figure 5.17 visualizes the features that our model learns for each keypoint
layer. As we can see the model learns to only model the relevant keypoints and
their associated body parts for each layer.

Figure 5.18: Discrete appearance changes
based on keypoint location ( ).

Automatic Appearance Switching
Our model does not only learn to asso-
ciate discrete keypoints with given fea-
tures, but also learns to associate differ-
ent features with a keypoint based on
its location relative to other keypoints.
Figure 5.18 shows several examples in
which we can see that individual parts
get “flipped” as a function of the loca-
tion of that keypoint with respect to the others. As in our previous examples, the
features of unrelated keypoints are unaffected by this.

Appearance-specific Keypoints Figure 5.19 shows how our model is able
to switch between discrete appearance states for given keypoints. Each of the
characters shows different visual features during training which we encode as
different keypoint conditions. At test time we can switch between these different
states to combine novel poses with any of the discrete visual expressions. Note
that, again, our model learns to associate good features with the given keypoints,
allowing us to model the poses independently of the discrete keypoint states.

Scaling to Larger Datasets While we show that our model performs well
with only 8 – 15 training images, we also evaluate our model on characters for
which we have more training images (≥ 50). Figure 5.20 shows how our model
scales with larger datasets. We see that more data is especially helpful when there
are overlaps and occlusions. While the models trained on only 5 or 15 images have

109



difficulty modeling this (e.g. when the hand moves in front of the body), the models
which are trained on more images perform much better.

Original Generated Original Generated

Figure 5.19: Discrete appearance change
based on keypoint selection. In this exam-
ple, the user not only moves keypoints to
generate a new pose, but switches the IDs of
keypoints to change expression, such as the
color and rotation of the characters’ faces.

Limitations Our model addresses
the main challenge of correctly mod-
eling (dis)occlusions based on limited
training data. However, our model
still has no explicit understanding
about any underlying 3D representa-
tion of the character and Figure 5.20
shows how modeling occlusions gets
worse with fewer training images. This
could be addressed by future work, e.g.
by adding known character priors into
the model or by incorporating some
form of 3D understanding.

5.3.5 Conclusion

In this work we show how to train GANs on few examples (8 – 15 images) of a given
character for few-shot character reposing and animation. The model is easy to use,
requires no expert knowledge, and our layering approach produces realistic results
for novel poses and occlusions. We can perform character reposing in real-time
through moving around keypoints and can animate character by interpolating
keypoints. In the future, this can be used with other approaches, e.g. by extracting
keypoints from driving videos for character animation. Through the use of a
predicted foreground mask we can also automatically fix keypoint layouts that lead
to unrealistic character poses. Finally, we show that our model learns discrete state
changes based on keypoint locations, associates keypoints and their layers with
semantic body parts, and scales to larger datasets.

5.4 Intermediate Discussion

We showed that it is possible to learn a useful representation for a single object from
only a single data point Section 5.2. By training a GAN on a single image we can
use the resulting representation for tasks such as unconditional image generation,
image harmonization, image editing, and many more. However, training a model on
only a single data point might be overly restrictive if we have more than one data
point available. In Section 5.3 we show that we can use a small number of data
points to learn good representations of a given object (in our case characters) for
tasks such as reposing and animation. These approaches can be applied to many
domains and are especially useful when we only have limited training data available.
Additionally, we assume no previous knowledge about the task or underlying data
but instead learn everything from scratch purely from the available data. This
makes it easy for users without domain specific knowledge to apply these approaches
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and obtain good results without fine-tuning or domain-specific design. However, our
approaches still have two main shortcomings: they only learn a 2D representation
of the underlying objects and they do not incorporate external knowledge into the
learning process. We now talk about these two challenges and how they could be
addressed in the future and how our current approaches could be combined with
compositional representations (Section 4.1).

2D versus 3D Representation Our introduced approaches are based on GANs
built with convolutional layers and are only trained with 2D images from a single
viewpoint. As such, our models develop no 3D understanding of the objects they
model. This makes it difficult to model certain aspects (e.g. occlusions in Section 5.3)
and limits the application to tasks such as relighting and changing perspectives.
An important future direction is, therefore, to incorporate 3D knowledge into our
generative models. This could be done by either training the models on a 3D
representation of the input data (e.g. point clouds or voxels [Sitzmann et al., 2019a])
or by adding certain inductive biases to the model architecture as done in implicit
models [Mildenhall et al., 2020].

One promising direction is to combine implicit models with GANs. Traditional
GANs can generate high-resolution images, are good at modeling textures, and are
fast at generating new images at test time. However, they often overfit to textures
instead of object shapes [Geirhos et al., 2019; Hinz et al., 2020] and are usually
trained on 2D data with no inductive bias towards modeling the data from a 3D
perspective. Implicit models, on the other hand, have an inductive bias towards
modeling objects in a 3D manner and can model complex object shapes [Zhang
et al., 2020]. However, implicit models are much slower at generating an image at
test time, most current implicit models are only trained on synthetic data sets, and
learning a general representation to quickly learn individual objects is still in its
infancy [Sitzmann et al., 2020a; Tancik et al., 2020].

There are some early approaches at combining the advantages of implicit and
traditional convolutional models. All of them focus on incorporating a 3D inductive
bias into the generator while the discriminator is a 2D convolutional neural network
as in traditional GANs. Schwarz et al. [2020] and Chan et al. [2020] replace the
generator with an implicit model which learns a 3D representation from which
the final 2D image is generated. Niemeyer and Geiger [2020] also use an implicit
model in the generator, but only generate a low resolution 3D volume which is
then used by a convolutional network to render the final image. However, these
novel approaches often rely on synthetic data sets or on data that comes from a
single domain, e.g. faces or cars, and have difficulty in modeling complex image
backgrounds. More work is needed to improve the performance of these models to
more complex data sets, e.g. by a tighter integration between convolutional and
implicit models in the generator.

Incorporating External Knowledge One of the main drawbacks of learning
a model from very little training data is that the model is constrained in the
amount of knowledge it can learn. E.g., when the model is trained on only a single
image of a human character it can only learn low-level features but no semantic
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knowledge. As a consequence, the model will not understand the difference between
e.g. an “arm” and a “head”. However, if the model had a general understanding of
a humanoid body it would be able to learn a much better representation, even if
only provided with little training data. One important future direction is, therefore,
to examine different approaches of how we can incorporate external knowledge
about a given object or concept while training or fine-tuning a model on a given
instance of that concept or object.

There are several possible ways this could be achieved. One approach could be
to fine-tune existing models on a given object. This could be achieved by using
meta-learning to learn a good “base” model for a given domain and then fine-tune
or train this model on a given instance of the domain. One could also train a
model on a large-scale data set to develop a general “understanding” of the context
before adapting it to the given object. Another direction would be to incorporate
strong inductive or explicit biases into the model architecture. These could be
of general nature, e.g. 3D representations and object permanence or they could
be more specialized and contain specific domain knowledge. Whatever the final
approach will look like exactly, adding external semantic knowledge to models
trained on very little data will likely drastically improve their performance and
applicability to many different tasks.

Combination with Compositional Representations In the future, these
learned representations of a single given object could naturally be combined with
compositional representations. There are already some approaches that go into
this direction. Niemeyer and Geiger [2020] use an implicit model as generator and
use the implicit model iteratively to generate features for different objects. These
objects are then rendered to a 2D image. Guo et al. [2020] use a purely implicit
model to render more complex scenes that consist of individually controllable
objects. Different implicit models are trained on the individual objects. However,
these approaches are still limited to either quite simple data [Niemeyer and Geiger,
2020] or have strong data requirements and need a large amount of individual
object training data [Guo et al., 2020]. We believe that exploring ways in which
we can learn object specific representations in an efficient manner and use these
representations to learn good and generalizable compositional representations are
an important future direction of research.

5.5 Summary

We showed that it is possible to learn useful representations from a very limited
number of training samples. Even if, in the limit, we only have a single data point
for training we can still learn a representation that facilitates tasks such as image
generation and harmonization (Section 5.2). If we scale this to a slightly larger
training data set (e.g. 15 data points), the results become even better and open up
applications such as character reposing and animation (Section 5.3). Being able
to learn good representations makes it possible to apply these models in domains
were large data sets are difficult to obtain, e.g. for specific artistic styles, manual
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drawings, or in the medical domain. We also address several shortcomings, e.g. not
incorporating 3D biases and the lack of external semantic knowledge, and suggest
approaches how these shortcomings can be addressed in the future. Finally, we
believe that an integration of compositional representations with representations
specifically for individual objects is a promising future research direction that
should be explored in more detail.

As alluded to in Chapter 3 and Chapter 4, these object-specific representations
can potentially be useful for many other tasks and representations. For example,
by making the representations highly specific we can define disentanglement on a
per-object basis instead of having to find a generally applicable definition. Object-
specific representations can also be combined with compositional representations
to further increase their capabilities and generalization qualities. In the future,
object-specific representation could be used as building blocks of more complex
models, allowing for more flexibility and potentially making them extensible to
novel objects when they are required.
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Chapter 6

Conclusion

Learning good representations of data is one of the most crucial tasks of machine
learning. Without a good representation, many tasks can not be solved efficiently,
knowledge can not be transferred between domains, and it is difficult to extract
and understand learned knowledge. Much of the success of current deep learning
approaches is based on the fact that these approaches learn good, hierarchical
representations that are useful for many tasks. This thesis expands on current
approaches to use generative models to learn representations that possess certain
properties, including disentanglement and compositionality, deemed useful for many
tasks.

6.1 Thesis Summary

This thesis addressed three characteristics that we would like representations to
possess. We now summarize our contributions based on the original research
questions posed in Chapter 1.

Disentangled representations (Chapter 3): How can we learn disentan-
gled representations with GANs? We show that we can learn disentangled
representations without or with very few labels by maximizing the mutual infor-
mation between a learned representation and the training data. One of the key
decisions is how to structure the representations and what kinds of prior distribu-
tions are assumed for the disentanglement. Here, we divide our representations
into two parts: the first part is used to model underlying noise and variations
that do not follow a clear structure. The second part models the data generating
factors and is learned by maximizing the mutual information between itself and the
training data. We show that we can use both continuous and discrete distributions
to learn different forms of data generating factors.

Our experiments show that we can learn many different underlying data generat-
ing factors, such as class labels, background characteristics, colors, etc. The learned
data generating factors are partly – but not always – interpretable by humans. We
evaluate our disentangled representations qualitatively by visualizing the images
associated with specific representations. Additionally, we perform quantitative
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evaluations by using pre-trained networks and show that specific changes in the
disentangled representations correspond to specific changes in the associated images.

Compositional representations (Chapter 4): Can GANs learn compo-
sitional representations that decompose the underlying distribution?
We introduce approaches to learn compositional representations with GANs. These
compositional representations explicitly model individual objects based on class
labels and additional characteristics such as size and location. By training these
models end-to-end on large data sets we learn good representations for a large set
of distinct objects. Through these individual representations, we can control the
position and identity of individual objects, allowing for the modeling and generation
of more complex scenes than previously possible.

Our experiments show that these representations generalize to novel settings.
We perform several studies on controllable (synthetic) data sets and show that the
model can generalize to modeling objects at locations at which it has not seen them
during training, can model more or fewer objects than seen at train time, and can
also model objects at sizes not seen during training. Furthermore, the model even
generalizes to novel object characteristics, e.g. modeling objects in a color it has
only observed on other objects at train time.

We introduce a novel evaluation metric – Semantic Object Accuracy (SOA) –
that evaluates how well individual objects are modeled in a larger context. For
this, we evaluate whether objects that should be in a given generated image are
actually detected by a pre-trained object detector. Based on this score we identify
a number of different characteristics that help when modeling individual objects,
such as object size and texture, and also illustrate that modeling objects explicitly
leads to better results than modeling objects implicitly.

Object-specific representations (Chapter 5): Can we use GANs to learn
representations specifically for a single object from limited data? Our
experiments show that we can learn good representations for specific tasks such as
image harmonization and editing from only a single training data point. If we have
a few more training samples (e.g. 15) we can learn representations of a specific
object that allow us to achieve good results on tasks such as reposing and animation.
These results highlight the power of learning object-specific representations that
focus all their capacity on modeling a single specific object.

We identify several important approaches to learn good representations from only
limited data. One approach relies on the limited receptive field of a convolutional
neural network. By restricting the size of the receptive field of the discriminator
and training the model on several different image resolutions we can learn good
representations of individual image patches without overfitting to the image. Using
these image patches we can generate new images or modify a given one. Another
approach relies on specific kinds of data augmentation to artificially increase the
size of the training data set. We show that both approaches lead to good results
when applied correctly and in well-chosen domains.

116



6.2 Discussion and Future Research Directions

This thesis introduced several approaches to learn good representations with Gener-
ative Adversarial Networks (GANs). While we made progress in several important
directions there are still many open questions and research directions. We now
discuss some of the limitations of our current approaches and how they could be
addressed in the future.

What Makes a Good Representation We identified a number of properties
that make a representation “good” for specific tasks. Our approaches demonstrate
how we can learn disentangled representations with minimal supervision in specified
domains. Enforcing disentanglement allows us to extract previously unknown
knowledge about the data generating factors from the learned representations,
enables fine-grained control over the data generating process, and allows for in-
terpretable representations. Furthermore, we show how the use of compositional
representations enables us to model much more complex environments while giving
us explicit control over individual objects and their various characteristics such as
location and shape. Finally, object specific representations allow us to spend all
of the representation’s capacity on modeling a single individual object, making it
possible to learn meaningful representation from only very little training data. We
show the beneficial effects of these three representation characteristics in isolation,
however, there is still more to be done in order to obtain “good” representations.

Bengio et al. [2013] propose many more characteristics that might be beneficial.
However, different characteristics might be more or less important depending on the
task the representations are used for, the data they are trained for, and the model
architecture that is used. Many current approaches focus specifically on a few
properties and set out to learn representations that possess these and perform well
on a chosen task. Relatively little research exists that actually explicitly evaluates
different representation properties and their effect on different tasks. Moreover,
even if different properties are evaluated for their impact, there exist hardly any
studies that evaluate how different combinations of representation characteristics
affect each other. This is partly due to the fact that most representation learning
approaches only focus on one specific aspect or characteristic of a representation and
partly due to the fact that evaluating second or third-order interactions between
representation properties becomes increasingly difficult. This is further exacerbated
by the many different and sometimes conflicting definitions of popular characteristics
such as disentanglement. To address this, future work should address both the clear
definition of specific representation properties and how to evaluate those properties
quantitatively across different domains.

Combine Our Approaches For all that we criticized in the previous para-
graph, we actually did exactly that. We look into three different approaches for
representation learning and evaluate them in isolation on tasks that are appropriate
for the given representation characteristics. However, all of our approaches are
conceptually “easy” to combine. Our final approach deals with learning object-
specific representations from little data. The learned representations are highly
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specialized for a given object. These approaches could, of course, be extended by or
combined with our approaches to learn disentangled representations. Through this,
we could get disentangled object-specific representations. We could even define
“disentanglement” differently depending on the kind of object we are learning. This
could help address the difficulty in defining disentanglement, since we would not
need to define and evaluate it on a global level, but could use it on an object
specific level with a definition and evaluation specifically suited to the object we
are currently working with.

Once we have disentangled object-specific representations we could of course
combine several of them to create compositional representations that can model
environments that consist of these different kinds of objects. We could also use a dif-
ferent notion of disentanglement to learn compositional disentangled representation
where disentanglement could be modeled on an object level. Alternatively, we could
apply compositional representations to learning object-specific representations by
using the compositional approach to learn part-based representations of a given
object. As we see, there are many different ways in which our approaches can be
combined. We can even combine them multiple times by applying the different
concepts on a part-based, object-based, and scene-based level. Future work should
look into all of these possibilities and how they might further improve the quality
of learned representations.

6.3 Conclusion

In conclusion, this thesis contributes several approaches for improved representa-
tion learning with Generative Adversarial Networks (GANs). We evaluate several
implicit biases and training procedures to incorporate disentanglement, composi-
tionality, and object specialization into the learned representations. Our results
show that learning disentangled representations is possible with only minimal super-
vision as long as we are confined to a specific domain where we can clearly define
disentanglement. Once these conditions are met our approaches learn meaningful
representations were different – interpretable – data generating factors are encoded
in distinct parts of the representations. Furthermore, we highlight the limitations of
current disentangled representations in the context of complex environments com-
prising several different objects. To approach this problem we develop an approach
for learning compositional representations in which different objects are encoded
explicitly. We show that our approach is able to learn representations for complex
environments that are difficult to model with traditional, i.e. non-compositional
representations. Finally, we develop models that can learn object-specific rep-
resentations. These models spend all their representation capacity on learning
the characteristics of a single object or concept. Through this, we are able to
learn powerful but specific representations from only very limited training data
without any previous domain knowledge. We evaluate all our approaches on several
computer vision and image generation tasks and show that they lead to meaningful
improvements compared to current state-of-the-art baselines. Future work should
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look into combining several of these characteristics to learn even more powerful
representations and examine approaches to incorporate implicit biases for the real
world 3D structure into generative models.
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Appendix A

Publications Originating from
this Thesis

The following publications – listed in chronological order – were used directly for
this thesis.

• Hinz, T., Wermter, S. (2018). Inferencing based on unsupervised learning of
disentangled representations. In European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (pp. 61-66).
Used for Section 3.2.

• Hinz, T., Wermter, S. (2018). Image generation and translation with disen-
tangled representations. In IEEE International Joint Conference on Neural
Networks (pp. 5519-5526).
Used for Section 3.3.
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Appendix B

Supplementary Material

B.1 Learning Disentangled Representations

This section gives more details about our experiments outlined in Section 3.3.

B.1.1 Implementation Details

The generator is implemented as a deconvolutional neural network, while the
encoder and the discriminator are convolutional neural networks. For the SVHN
and the CelebA data sets we use the same architecture, while we use slightly smaller
networks for the MNIST data set. For an overview of the used architectures see
Table B.1.

In our experiments the weight λ1 for the supervised loss was set to 10 to
ensure that the encoder learns the labeled data correctly, the weighting λ2 of the
reconstruction loss was set to 1, and λ3 and λ4 were linearly increased from 0 to 1
during the first 1000 (10000) iterations on the MNIST (SVHN, CelebA) data set.
We train the model for 50000, 150000 and 300000 iterations respectively on the
MNIST, the SVHN, and the CelebA data set. The learning rate is 0.0001 for the
discriminator and 0.0003 for the generator and the encoder, and the batch size is
64 in all experiments. For training, we use the Adam optimizer [Kingma and Ba,
2015] with β1 = 0.5 and β2 = 0.999.

Since we only use a small amount of labeled data, we initially favor drawing
labeled samples from the training set. In the beginning of the training process the
probability of drawing labeled data is therefore one. During the first 1000 (10000)
iterations on the MNIST (SVHN, CelebA) data set this probability is linearly
decreased until it reaches the actual labeled sample ratio in the data set. For our
latent representation, u is sampled from a uniform distribution U(−1, 1), while c is
split up into categorical and continuous variables ccat and ccont. For the categorical
variables we use the softmax activation in the final layer, while the continuous
variables are modeled as a factored Gaussian.
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Table B.1: Overview of our network architectures.

MNIST SVHN / CelebA

Discriminator

dropout with probability 0.3 after each layer

image X

3x3 conv. 64, BN, ELU, stride 2 4x4 conv. 64, BN, ELU, stride 2

3x3 conv. 128, BN, ELU, stride 2 4x4 conv. 128, BN, ELU, stride 2

4x4 conv. 256, BN, ELU, stride 2

FC 512, BN, ELU FC 1024, BN, ELU

representation Z

1x1 conv. 64, BN, ELU, stride 1 1x1 conv. 64, BN, ELU, stride 1

1x1 conv. 128, BN, ELU, stride 1 1x1 conv. 128, BN, ELU, stride 1

1x1 conv. 256, BN, ELU, stride 1

FC 512, BN, ELU FC 1024, BN, ELU

concatenate across channel axis

FC 1024, BN, ELU FC 1024, BN, ELU

FC 1, Sigmoid FC 1, Sigmoid

Generator

FC 3136, BN, ELU FC 2048, BN, ELU

reshape 7x7x64 reshape 4x4x128

4x4 deconv. 128, BN, ELU, stride 2 4x4 deconv. 128, BN, ELU, stride 2

4x4 deconv. 64, BN, ELU, stride 1 4x4 deconv. 64, BN, ELU, stride 2

4x4 deconv. 32, BN, ELU, stride 2

4x4 deconv. 1, Sigmoid, stride 2 3x3 deconv. 3, Sigmoid, stride 1

Encoder

3x3 conv. 32, BN, ELU, stride 1 3x3 conv. 32, BN, ELU, stride 1

3x3 conv. 64, BN, ELU, stride 2 3x3 conv. 64, BN, ELU, stride 2

3x3 conv. 128, BN, ELU, stride 2 3x3 conv. 128, BN, ELU, stride 1

3x3 conv. 256, BN, ELU, stride 2

3x3 conv. 512, BN, ELU, stride 2

FC 1024, BN, ELU FC 1024, BN, ELU

FC output layer FC output layer

B.2 Learning Compositional Representations

This section gives more details about our experiments outlined in Section 4.2 and
also shows additional results.

B.2.1 Implementation Details

Here we provide some more details about the exact implementation of our experi-
ments.
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Multi-MNIST and CLEVR

To train our GAN approach on the Multi-MNIST (CLEVR) data set we use the
Stage-I Generator and Discriminator from the StackGAN MS-COCO architecture1.
In our following description an upsample block describes the following sequence:
nearest neighbor upsampling with factor 2, a convolutional layer with X filters
(filter size 3× 3, stride 1, padding 1), batch normalization, and a ReLU activation.
The bounding box labels are one-hot vectors of size [1, 10] encoding the digit identity
(CLEVR: [1, 13] encoding object shape and color). Please refer to Table B.2 for
detailed information on the individual layers described in the following. For all
leaky ReLU activations alpha was set to 0.2.

In the object pathway of the generator we first create a zero tensor OG

which will contain the feature representations of the individual objects. We then
spatially replicate each bounding box label into a 4× 4 layout of shape (10, 4, 4)
(CLEVR: (13, 4, 4)) and apply two upsampling blocks. The resulting tensor is
then added to the tensor OG at the location of the bounding box using a spatial
transformer network.

In the global pathway of the generator we first obtain the layout encoding.
For this we create a tensor of shape (10, 16, 16) (CLEVR: (13, 16, 16)) that contains
the one-hot labels at the location of the bounding boxes and is zero everywhere else.
We then apply three convolutional layers, each followed by batch normalization and
a leaky ReLU activation. We reshape the output to shape (1, 64) and concatenate it
with the noise tensor of shape (1, 100) (sampled from a random normal distribution)
to form a tensor of shape (1, 164). This tensor is then fed into a dense layer,
followed by batch normalization and a ReLU activation and the output is reshaped
to (−1, 4, 4). We then apply two upsampling blocks to obtain a tensor of shape
(−1, 16, 16).

At this point, the outputs of the object and the global pathway are concatenated
along the channel axis to form a tensor of shape (−1, 16, 16). We then apply another
two upsampling blocks resulting in a tensor of shape (−1, 64, 64) followed by a
convolutional layer and a TanH activation to obtain the final image of shape
(−1, 64, 64).

In the object pathway of the discriminator we first create a zero tensor
OD which will contain the feature representations of the individual objects. We
then use a spatial transfomer network to extract the image features at the locations
of the bounding boxes and reshape them to a tensor of shape (1, 16, 16) (CLEVR:
(3, 16, 16)). The one-hot label of each bounding box are spatially replicated to a
shape of (10, 16, 16) (CLEVR: (13, 16, 16)) and concatenated with the previously
extracted features to form a tensor of shape (11, 16, 16) (CLEVR: (16, 16, 16)). We
then apply a convolutional layer, batch normalization and a leaky ReLU activation
to the concatenation of features and label and, again, use a spatial transformer
network to resize the output to the shape of the respective bounding box before
adding it to the tensor OD.

In the global pathway of the discriminator, we apply two convolutional

1 https://github.com/hanzhanggit/StackGAN-Pytorch
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layers, each followed by batch normalization and a leaky ReLU activation and
concatenate the resulting tensor with the output of the object pathway. After this,
we again apply two convolutional layers, each followed by batch normalization and
a leaky ReLU activation. We concatenate the resulting tensor with the conditioning
information about the image content, in this case, the sum of all one-hot vectors.
To this tensor we apply another convolutional layer, batch normalization, a leaky
ReLU activation, and another convolutional layer, to obtain the final output of the
discriminator of shape (1).

Similarly to the procedure of StackGAN and other conditional GANs we train
the discriminator to classify real images with correct labels (the sum of one-hot
vectors supplied in the last step of the process) as real, while generated images with
correct labels and real images with (randomly sampled) incorrect labels should be
classified as fake.

MS-COCO

StackGAN-Stage-I For training the Stage-I generator and discriminator (images
of size 64× 64 pixels) we follow the same procedure and architecture outlined in
the previous section about the training on the Multi-MNIST and CLEVR data
sets. The only difference is that we now have image captions as an additional
description of the image. As such, to obtain the bounding box labels we concatenate
the image caption embedding2 and the one-hot encoded bounding box label and
apply a dense layer with 128 units, batch normalization, and a ReLU activation to
it, to obtain a label of shape (1, 128) for each bounding box. In the final step of the
discriminator when we concatenate the feature representation with the conditioning
vector, we use the image encoding as conditioning vector and do not use any
bounding box labels at this step. The rest of the training proceeds as described
in the previous section, except that the bounding box labels now have a shape of
(1, 128). All other details can be found in Table B.2.

StackGAN-Stage-II In the second part of the training, we train a second
generator and discriminator to generate images with a resolution of 256 × 256
pixels. The generator gets as input images with a resolution of 64 × 64 pixels
(generated by the trained Stage-I generator) and the image caption and uses them
to generate images with a 256 × 256 pixels resolution. A new discriminator is
trained to distinguish between real and generated images.

On the Stage-II generator we perform the following modifications we use the
same procedure as in the Stage-I generator to obtain the bounding box labels.
To obtain an image encoding from the generated 64 × 64 image we use three
convolutional layers, each followed by batch normalization and a ReLU activation
to obtain a feature representation of shape [−1, 16, 16]. Additionally, we replicate
each bounding box label (obtained with the dense layer) spatially at the locations of
the bounding boxes on an empty canvas of shape [128, 16, 16] and then concatenate

2Downloaded from https://github.com/reedscot/icml2016
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it along the channel axis with the image encoding and the spatially replicated
image caption embedding. As in the standard StackGAN we then apply more
convolutional layers with residual connections to obtain the final image embedding
of shape [−1, 16, 16], which provides the input for both the object and the global
pathway.

The generator’s object pathway gets as input the image encoding described
in the previous step. First, we create a zero tensor OG which will contain the
feature representations of the individual objects. We then use a spatial transformer
network to extract the features from within the bounding box and reshapes those
features to [−1, 16, 16]. After this, we apply two upsample blocks and then use a
spatial transformer network to add the features to OG within the bounding box
region. This is done for each of the bounding boxes within the image.

The generator’s global pathway gets as input the image encoding and uses
the same convolutional layers and upsampling procedures as the original StackGAN
Stage-II generator. The outputs of the object and global pathway are merged
at the resolution of [−1, 64, 64] by concatenating the two outputs along the channel
axis. After this, we continue using the standard StackGAN architecture to generate
images of shape [3, 256, 256].

The Stage-II discriminator’s object pathway first creates a zero tensor
OD which will contain the feature representations of the individual objects. It gets
as input the image (resolution of 256× 256 pixels) and we use a spatial transformer
network to extract the features from the bounding box and reshape those features
to a shape of [3, 32, 32]. We spatially replicate the bounding box label (one-hot
encoding) to a shape of [−1, 32, 32] and concatenate it with the extracted features
along the channel axis. This is then given to the object pathway which consists of
two convolutional layers with batch normalization and a LeakyReLU activation.
The output of the object pathway is again transformed to the width and height
of the bounding box with a spatial transformer network and then added to OD.
This procedure is performed with each of the bounding boxes within the image
(maximum of three during training).

The Stage-II discriminator’s global pathway consists of the standard
StackGAN layers, i.e. it gets as input the image (256 × 256 pixels) and applies
convolutional layers with stride 2 to it. The outputs of the object and global
pathways are merged at the resolution of [−1, 32, 32] by concatenating the two
outputs along the channel axis We then apply more convolutional with stride 2 to
decrease the resolution. After this, we continue in the same way as the original
StackGAN.

AttnGAN On the AttnGAN3 we only modify the training at the lower layers
of the generator and the first discriminator (working on images of 64× 64 pixels
resolution). For this, we perform the same modifications as described in the
StackGAN-Stage-I generator and discriminator. In the generator we obtain the
bounding box labels in the same way as in the StackGAN, by concatenating

3https://github.com/taoxugit/AttnGAN

127



the image caption embedding with the respective one-hot vector and applying a
dense layer with 100 units, batch normalization, and a ReLU activation to obtain
a bounding box label. In contrast to the previous architectures, we follow the
AttnGAN implementation in use the gated linear unit function (GLU) as standard
activation for our convolutional layers in the generator.

In the generator’s object pathway we first create a zero tensor OG of shape
(192, 16, 16) which will contain the feature representations of the individual objects.
We then spatially replicate each bounding box label into a 4× 4 layout of shape
(100, 4, 4) and apply two upsampling blocks with 768 and 384 filters (filter size=3,
stride=1, padding=1). The resulting tensor is then added to the tensor OG at the
location of the bounding box using a spatial transformer network.

In the global pathway of the generator we first obtain the layout encoding
in the same way as in the StackGAN-I generator, except that the three convolutional
layers of the layout encoding now have 50, 25, and 12 filters respectively (filter
size=3, stride=2, padding=1). We concatenate it with the noise tensor of shape
(1, 100) (sampled from a random normal distribution) and the image caption
embedding to form a tensor of shape (1, 248). This tensor is then fed into a dense
layer with 24,576 units, followed by batch normalization and a ReLU activation
and the output is reshaped to (768, 4, 4). We then apply two upsampling blocks
with 768 and 384 filters to obtain a tensor of shape (192, 16, 16).

At this point the outputs of the object and the global pathways are
concatenated along the channel axis to form a tensor of shape (384, 16, 16). We
then apply another two upsampling blocks with 192 and 96 filters, resulting in a
tensor of shape (48, 64, 64). This feature representation is then used by the following
layers of the AttnGAN generator in the same way as detailed in the original paper
and implementation.

In the object pathway of the discriminator we first create a zero tensor OD

which will contain the feature representations of the individual objects. We then
use a spatial transfomer network to extract the image features at the locations of
the bounding boxes and reshape them to a tensor of shape (3, 16, 16). The one-hot
label of each bounding box is spatially replicated to a shape of (−1, 16, 16) and
concatenated with the previously extracted features. We then apply a convolutional
layer with 192 filters (filter size=4, stride=1, padding=1), batch normalization and
a leaky ReLU activation to the concatenation of features and label and, again, use
a spatial transformer network to resize the output to the shape of the respective
bounding box before adding it to the tensor OD.

In the global pathway of the discriminator we apply two convolutional
layers with 96 and 192 filters (filter size=4, stride=2, padding=1), each followed by
batch normalization and a leaky ReLU activation and concatenate the resulting
tensor with the output of the object pathway. After this, we again apply two
convolutional layers with 384 and 768 filters (filter size=4, stride=2, padding=1),
each followed by batch normalization and a leaky ReLU activation. We concatenate
the resulting tensor with the spatially replicated image caption embedding. To
this tensor we apply another convolutional layer with 768 filters (filter size=3,
stride=1, padding=1), batch normalization, a leaky ReLU activation, and another
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convolutional layer with one filter (filter size=4, stride=4, padding=0), to obtain
the final output of the discriminator of shape (1). The rest of the training and all
other hyperparameters and architectural values are left the same as in the original
implementation.
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Multi-MNIST CLEVR MS-COCO-I MS-COCO-II

Optimizer Adam (beta1 = 0.5, beta2 = 0.999)
Learning Rate 0.0002 0.0002 0.0002 0.0002

Schedule: halve every
10 20 20 20

x epochs
Training Epochs 20 40 120 110
Batch Size 128 128 128 40
Weight Initialization N (0, 0.02) N (0, 0.02) N (0, 0.02) N (0, 0.02)
Z-Dim / Img-Caption-Dim 100 / 10 100 / 13 100 / 128 100 / 128
Generator

Image Encoder
Conv (fs=3, s=1, p=1) 192
Conv (fs=4, s=2, p=1) 384
Conv (fs=4, s=2, p=1) 768
Concat with image

(1024, 16, 16)
caption and bbox labels

Conv (fs=3, str=1, pad=1) 768
4 × Res. (fs=3, s=1, p=1) 768

Object Pathway
OG Shape (256, 16, 16) (192, 16, 16) (384, 16, 16) (192, 64, 64)
Upsample (fs=3, s=1, p=1) 512 384 768 384
Upsample (fs=3, s=1, p=1) 256 192 384 192
Output Shape (256, 16, 16) (192, 16, 16) (384, 16, 16) (192, 64, 64)

Global Pathway
Layout Encoding

Conv (fs=3, s=2, p=1) 64 64 64
Conv (fs=3, s=2, p=1) 32 32 32
Conv (fs=3, s=2, p=1) 16 16 16

Dense Layer Units 16,384 12,288 24,576
Upsample (fs=3, s=1, p=1) 512 384 768 384
Upsample (fs=3, s=1, p=1) 256 192 384 192
Output Shape (256, 16, 16) 192, 16, 16) (384, 16, 16) (192, 64, 64)

Concat outputs of object
(512, 16, 16) (384, 16, 16) (768, 16, 16) (384, 64, 64)

and global pathways
Upsample (fs=3, s=1, p=1) 128 96 192 96
Upsample (fs=3, s=1, p=1) 64 48 96 48
Conv (fs=3, s=1, p=1) 1 3 3 3

Generator Output (1, 64, 64) (3, 64, 64) (3, 64, 64) (3, 256, 256)
Discriminator

Object Pathway
OD Shape (128, 16, 16) (96, 16, 16) (192, 16, 16) (192, 32, 32)
Conv (fs=4, s=1, p=1) 128 96 192 192
Conv (fs=4, s=1, p=1) 192
Output Shape (128, 16, 16) (96, 16, 16) (192, 16, 16) (192, 32, 32)

Global Pathway
Conv (fs=4, s=2, p=1) 64 48 96 96
Conv (fs=4, s=2, p=1) 128 96 192 192
Conv (fs=4, s=2, p=1) 384
Output Shape (128, 16, 16) (96, 16, 16) (192, 16, 16) (384, 32, 32)

Concat outputs of object
(256, 16, 16) (192, 16, 16) (384, 16, 16) (576, 32, 32)

and global pathways
Conv (fs=4, s=2, p=1) 256 192 384 768
Conv (fs=4, s=2, p=1) 512 384 768 1,536
Conv (fs=4, s=2, p=1) 3,072
Conv (fs=3, s=1, p=1) 1,536
Conv (fs=3, s=1, p=1) 768
Concat with

(522, 4, 4) (397, 4, 4) (896, 4, 4) (896, 4, 4)
conditioning vector

Conv (fs=3, s=1, p=1) 512 384 768 768
Conv (fs=4, s=4, p=0) 1 1 1 1

Table B.2: Overview of the individual layers used in our networks to generate images of
resolution 64× 64 / 256× 256 pixels. Values in brackets (C, H, W ) represent the tensor’s shape.
Numbers in the columns after convolutional, residual, or dense layers describe the number of
filters / units in that layer. (fs=x, s=y, p=z) describes filter size, stride, and padding for that
convolutional / residual layer. 130



B.2.2 Additional Examples of Multi-MNIST Results:
Training and test set over complementary regions

1, 3, 76, 4, 99, 3, 55, 9, 53, 4, 6

6, 3, 56, 9, 91, 2, 18, 4, 69, 4, 1

5, 9, 18, 0, 94, 5, 54, 4, 67, 2, 6

9, 0, 06, 7, 13, 4, 20, 3, 72, 7, 8

9, 7, 21, 6, 13, 7, 94, 1, 55, 5, 3

9, 2, 17, 6, 44, 2, 14, 8, 32, 2, 4

6, 5, 45, 9, 69,4, 53, 0, 11, 0, 7

3, 8, 27, 3, 04, 3, 94, 8, 1 9, 6, 6

Figure B.1: Systematic test of digits over vertically different regions. Training set
included three normal-sized digits only in the top half of the image. Highlighted
bounding boxes and yellow ground truth for visualization. We can see that the
model fails to generate recognizable digits once their location is too far in the
bottom half of the image, as this location was never observed during training.

B.2.3 Additional Examples of MS-COCO Results:
StackGAN

Figure B.2 shows results of text-to-image synthesis on the MS-COCO data set with
the StackGAN architecture. Rows A show the original image and image caption,
rows B show the images generated by our StackGAN + Object Pathway and the
given bounding boxes for visualization, and rows C show images generated by
the original StackGAN (pretrained model obtained from https://github.com/

hanzhanggit/StackGAN-Pytorch). The last block of examples (last row) show
typical failure cases of our model, where there is no bounding box for the foreground
object present. As a result our model only generates the background, without the
appropriate foreground object, even though the foreground object is very clearly
described in the image caption. Figure B.4 provides similar results but for random
bounding box positions. The first six examples show images generated by our
StackGAN where we changed the location and size of the respective bounding boxes.
The last three examples show failure cases in which we changed the location of the
bounding boxes to “unusual” locations. For the image with the child on the bike,
we put the bounding box of the bike somewhere in the top half of the image and
the bounding box for the child somewhere in the bottom part. Similarly, for the
man sitting on a bench, we put the bench in the top and the man in the bottom
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half of the image. Finally, for the image depicting a pizza on a plate, we put the
plate location in the top half of the image and the pizza in the bottom half.

B.2.4 Additional Examples of MS-COCO Results:
AttnGAN

Figure B.3 shows results of text-to-image synthesis on the MS-COCO data set with
the AttnGAN architecture. Rows A show the original image and image caption,
rows B show the images generated by our AttnGAN + Object Pathway and the
given bounding boxes for visualization, and rows C show images generated by
the original AttnGAN (pretrained model obtained from https://github.com/

taoxugit/AttnGAN). The last block of examples (last row) show typical failure
cases, in which the model does generate the appropriate object within the bounding
box, but also places the same object at multiple other locations within the image.
Similarly as for StackGAN, Figure B.5 shows images generated by our AttnGAN
where we randomly change the location of the various bounding boxes. Again, the
last three examples show failure cases where we put the locations of the bounding
boxes at “uncommon” positions. In the image depicting the sandwiches we put the
location of the plate in the top half of the image, in the image with the dogs we
put the dogs’ location in the top half, and in the image with the motorbike we put
the human in the left half and the motorbike in the right half of the image.
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Figure B.2: Additional StackGAN examples.
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Figure B.3: Additional AttnGAN examples.
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A group of people 
standing on top of a 
snow covered slope

A

B

A red double decker 
bus on the street 
next to a car

A herd of zebra 
running around 
a dirt field

A young child holding 
onto a kite while 
standing on a green 
grass covered field

Adjacent computer 
screens near the 
keyboard show 
different displays

A

B

A sandwich with 
meat, vegetables 
and dressing is 
sitting on a plate

A

B

A young man 
sitting on top of 
a white bench

A big slice of 
cheese pizza 
on a white plate

A little boy riding 
his bike and 
wearing a helmet

Figure B.4: StackGAN examples with random locations.

A desk with several 
monitors under it and 
two computers and a 
laptop on top of the desk

A

B

A group of sheep 
walking down a path 
with a few stopping to 
eat grass along the side

An open lap top 
computer on a wooden 
desk and two note 
pads also on the desk

A busy road in London 
shows several red busses 
and smaller cars as pedes-
trians walk next to them

A man with a nametag 
in a suit and tie and two 
women holding glasses 
on each side of him

A

B

A man kneeling down 
in the snow next to 
his small son on skis

Two sandwiches on whole
wheat bread filled with
meat cheddar cheese
slices alfalfa sprouts and
green leafy lettuce

A

B

A man on a path with a
child on his back walking
two dogs with other
people in the background

A man a motorcycle
that is on a road that
has grass fields on both
sides and a stop sign

Figure B.5: AttnGAN examples with random locations.
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B.2.5 Object Detection on MS-COCO Images

To further inspect the quality and recognizability of the generated objects, we
ran a test on object detection using a YOLOv3 network Redmon and Farhadi
[2018] that was pretrained on the MS-COCO data set4. We use the Pytorch
implementation from https://github.com/ayooshkathuria/pytorch-yolo-v3

to get the bounding box and label predictions. We follow the standard guidelines
and keep all hyperparameters for the YOLOv3 network as in the implementation.
We picked the 30 most common training labels (based on how many captions
contain these labels) and evaluate the models on these labels, see Table B.3.

In the following, we evaluate how often the pretrained YOLOv3 network rec-
ognizes a specific object within a generated image that should contain this object
based on the image caption. For example, we expect an image generated from
the caption “a young woman taking a picture with her phone” to contain a person
somewhere in the image and we check whether the YOLOv3 network actually
recognizes a person in the generated image. Since the baseline StackGAN and
AttnGAN only receive the image caption as input (no bounding boxes and no
bounding box labels) we decided to only use captions that clearly imply the presence
of the given label (see Table B.3). We chose this strategy in order to allow for a
fair comparison of the resulting presence or absence of a given object. Specifically,
for a given label we choose all image captions from the test set that contain one
of the associated words for this label (associated words were chosen manually, see
Table B.3) and then generated three images for each caption with each model.
Finally, we counted the number of images in which the given object was detected
by the YOLOv3 network. Table B.4 shows the ratio of images for each label and
each model in which the given object was detected at any location in the image.

Additionally, for our models that also receive the bounding boxes as input, we
calculated the Intersection over Union (IoU) between the ground truth bounding
box (the bounding box supplied to the model) and the bounding box predicted by
the YOLOv3 network for the recognized object. Table B.4 presents the average IoU
(for the models that have an object pathway) for each object in the images in which
YOLOv3 detected the given object. For each image in which YOLOv3 detected
the given object, we calculated the IoU between the predicted bounding box and
the ground truth bounding box for the given object. In the cases in which either
an image contains multiple instances of the given object (i.e. multiple different
bounding boxes for this object were given to the generator) or YOLOv3 detects
the given object multiple times we used the maximum IoU between all predicted
and ground truth bounding boxes for our statistics.

Figure B.6 visualizes how the IoU and recall values are distributed for the
different models, and Table B.4 summarizes the results with the 30 tested labels.
We can observe that the StackGAN with object pathway outperforms the original
StackGAN when comparing the recall of the YOLOv3 network, i.e. in how many
images with a given label the YOLOv3 network actually detected the given object.
The recall of the original StackGAN is higher than 10% for 26.7% of the labels,

4Pretrained weights from the author, acquired via: https://pjreddie.com/darknet/yolo/
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Label Occurrences Words in captions

Person 13773 person, people, human,

man, men, woman,

women, child

Dining table 3130 table, desk

Car 1694 car, auto, vehicle, cab

Cat 1658 cat

Dog 1543 dog

Bus 1198 bus

Train 1188 train

Bed 984 bed

Pizza 906 pizza

Horse 874 horse

Giraffe 828 giraffe

Toilet 797 toilet

Bear 777 bear

Bench 732 bench

Label Occurrences Words in captions

Umbrella 727 umbrella

Elephant 708 elephant

Chair 632 chair, stool

Zebra 627 zebra

Boat 627 boat

Bird 610 bird

Aeroplane 602 plane

Bicycle 600 bicycle

Surfboard 595 surfboard

Kite 593 kite

Truck 561 truck

Stop sign 522 stop

TV Monitor 471 tv, monitor, screen

Sofa 467 sofa, couch

Sandwich 387 sandwich

Sheep 368 sheep

Table B.3: Words that were used to identify given labels in the image caption for
the YOLOv3 object detection test.

while our StackGAN with object pathway results in a recall greater than 10% for
60% of the labels. The IoU is greater than 0.3 for every label, while 86.7% of the
labels result an IoU of greater than 0.5 (original images: 100%) and 30% have an
IoU of greater than 0.7 (original images: 96.7%). This indicates that we can indeed
control the location and identity of various objects within the generated images.

Compared to the StackGAN, the AttnGAN achieves a much greater recall, with
80% and 83.3% of the labels having a recall of greater than 10% for the original
AttnGAN and the AttnGAN with object pathway respectively. The difference
in recall values between the original AttnGAN and the AttnGAN with object
pathway is also smaller, with our AttnGAN having a higher (lower) recall than
the original AttnGAN (we only count cases where the difference is at least 5%) in
26.7% (13.3%) of the labels. The average IoU, on the other hand, is a lot smaller
for the AttnGAN than for the StackGAN. We only achieve an IoU greater than 0.3
(0.5, 0.7) for 53.3% (3.3%, 0%) of the labels. We attribute this to the observation
that the AttnGAN tends to place seemingly recognizable features of salient objects
at arbitrary locations throughout the image. This might attribute to the overall
higher recall but may negatively affect the IoU.

Overall, these results further confirm our previous experiments and highlight
that the addition of the object pathway to the different models does not only enable
the direct control of object location and identity but can also help to increase the
image quality. The increase in image quality is supported by a higher Inception
Score, lower Fréchet Inception Distance (for StackGAN) and a higher performance
of the YOLOv3 network in detecting objects within generated images.
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Figure B.6: Recall and IoU values in the YOLOv3 object detection test.

B.3 Evaluating Compositional Representations

This section gives more details about our experiments outlined in Section 4.3 and
also shows additional results.

B.3.1 Information about Captions for SOA

Table B.5 gives a detailed overview of how we chose the captions for each label to
calculate the Semantic Object Accuracy (SOA) scores. The second column shows
how many captions we found in total for the given label. The third column shows
which words we filtered the captions for to obtain captions for the given label. This
means that we chose all captions that contained at least one of those words as a
valid caption for the given label. In the fourth column we show (were applicable)
which words were explicitly excluded when looking for captions for the given label.
Finally, the last column shows some examples of “false positives”, i.e. captions
that are included in the set of captions for the given label even though they do
not necessarily explicitly ask for the presence of the given label as understood by
humans.

B.3.2 Inspection of YOLO Predictions

Figure B.7 shows generated images with the ground truth bounding boxes (red)
provided as input to the model and the bounding boxes detected by YOLO (blue).
When the Intersection over Union (IoU) is small (right column) we observe that
this is usually due to the fact that the generated object is much larger than the
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Label
Orig. Img. StackGAN StackGAN + OP AttnGAN AttnGAN + OP
Recall IoU Recall Recall IoU Recall Recall IoU

Person .943 .824 .355 .451± .019 .624± .012 .598 .610± .008 .276± .006
Dining table .355 .774 .007 .022± .004 .734± .011 .069 .045± .022 .490± .018
Car .433 .792 .012 .047± .007 .622± .020 .006 .063± .010 .144± .043
Cat .715 .821 .021 .104± .100 .622± .008 .423 .430± .066 .350± .012
Dog .703 .819 .068 .150± .007 .601± .004 .450 .488± .048 .311± .007
Bus .747 .877 .161 .393± .031 .794± .009 .352 .416± .032 .374± .006
Train .900 .835 .133 .310± .033 .700± .007 .393 .438± .110 .355± .036
Bed .775 .789 .032 .141± .018 .701± .001 .539 .552± .030 .505± .002
Pizza .912 .842 .119 .485± .101 .786± .004 .444 .660± .054 .395± .016
Horse .933 .842 .129 .330± .048 .585± .039 .532 .619± .027 .300± .006
Giraffe .972 .857 .173 .467± .035 .606± .030 .472 .650± .084 .365± .030
Toilet .898 .826 .005 .122± .021 .690± .010 .201 .220± .021 .224± .011
Bear .381 .859 .015 .120± .018 .720± .036 .319 .303± .028 .357± .010
Bench .828 .798 .001 .030± .008 .627± .034 .094 .094± .031 .308± .018
Umbrella .912 .762 .001 .023± .009 .578± .030 .060 .063± .017 .154± .053
Elephant .940 .867 .060 .414± .069 .688± .033 .350 .500± .141 .353± .006
Chair .757 .755 .014 .039± .004 .488± .039 .070 .093± .005 .225± .001
Zebra .972 .875 .732 .781± .023 .686± .017 .870 .766± .063 .315± .022
Boat .795 .709 .077 .010± .011 .594± .021 .168 .202± .027 .206± .020
Bird .837 .781 .059 .097± .027 .500± .066 .322 .357± .042 .250± .020
Aeroplane .912 .812 .125 .223± .043 .667± .026 .499 .415± .010 .320± .035
Bicycle .825 .760 .007 .053± .020 .558± .052 .170 .191± .013 .233± .024
Surfboard .873 .780 .030 .067± .019 .459± .056 .104 .110± .025 .143± .016
Kite .772 .633 .029 .057± .028 .426± .086 .260 .162± .068 .120± .018
Truck .887 .832 .082 .243± .062 .717± .022 .378 .367± .027 .393± .019
Stop Sign .527 .874 .001 .261± .057 .780± .011 .070 .124± .048 .101± .014
TV Monitor .818 .833 .037 .264± .005 .765± .016 .529 .435± .314 .243± .066
Sofa .878 .794 .012 .087± .024 .628± .044 .170 .191± .057 .329± .028
Sandwich .792 .796 .045 .139± .049 .628± .014 .340 .370± .054 .318± .031
Sheep .943 .727 .004 .091± .006 .460± .011 .250 .304± .037 .116± .022

Table B.4: Results of YOLOv3 detections on generated and original images. Recall
provides the fraction of images in which YOLOv3 detected the given object. IoU
(Intersection over Union) measures the maximum IoU per image in which the given
object was detected.

originally provided bounding box. This agrees with our hypothesis that the reason
for the relatively small IoU numbers for our model is because it tends to put salient
object features even at locations outside of the provided bounding box. Note that
our model rarely generates the desired object at a location completely different
from the provided bounding box. Rather, it tends to increase the object’s size,
especially when the provided bounding box is small. However, we can also see
that most objects are not clearly recognizable to humans even though they are
“correctly” detected by the YOLO network. This is in line with our observation that
YOLO, like many other CNNs, tend to be focused on textural cues much more
than on shapes. As a result, future improvements in object detection models can
also help increase the information provided by our SOA score.
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B.3.3 Model Architecture

Table B.6 and Table B.6 show our model’s architecture. We train our model on
four NVIDIA GeForce GTX 1080Ti GPUs. Training one model takes between two
and four weeks, depending on the exact setting.

B.3.4 Further Results

Table B.8 and Table B.9 show the detailed results of the YOLOv3 detection network
on the individual labels for all models.
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Table B.5: Words that were used to identify given labels in the image caption for
the YOLOv3 object detection test (plural of each word also included, different
forms of spelling also included).

Label # Sent. Words in Captions Excluded Strings False Positives

Person 61586
person, people, human,
man, men, woman,
women, child, children

A sign advertising an eatery in
which people can eat burgers.

Dining Table 7678 table, desk
A sweet dish is kept in a
bowl on a table mat.

Cat 6609 cat, kitten
A double parking meter
decorated with cat art

Dog 5614 dog, pup
hot dog, hotdog,
hot-dog, cheese dog,
chili dog, corn dog

Two stuffed dogs under a blanket
looking at a picture book.

Train 5397 train
A red train engine sits
on the tracks

Bus 4027 bus
The sign is pointing the
direction of the bus route.

Clock 3870 clock

Giraffe 3866 giraffe
A woman standing in front
of a giraffe pen

Pizza 3655 pizza
Would you prefer fresh
basil on your pizza or sans basil?

Horse 3615 horse
A close-up of a man
hating the horses face.

Elephant 3133 elephant
toy elephant,
stuffed elephant

Outdoor art display of elephant
sculptures of various colorings.

Zebra 3070 zebra
An animal that is part horse and
part zebra by another horse.

Bed 2923 bed
A large truck has a
flat bed trailer attached

Boat 2819 boat, ship
a upside down boat is
on top of a big hil

Toilet 2796 toilet
You can pick either toilet
stall in this clean restroom.

Bird 2691 bird
a clock with a painting of a
bird on a branch on it

Skateboard 2665 skateboard

Car 2650 car, auto

train car, car window,
side car, passenger car,
subway car, car tire,
rail car, tram car,
street car, trolly car

A museum sign showing
the main entrance and car park

Bench 2633 bench
Laptop 2376 laptop
Surfboard 2270 surfboard
Truck 2213 truck

Umbrella 2107 umbrella
a man playing with a white
ball on a red umbrella

Kite 2025 kite kite board, kiteboard

Sports Ball 2001 ball
Female tennis player looks on as
she waits for the ball serve

Cake 2012 cake cupcake

Cow 1981 cow
A young boy sitting on
top of a cow statue.

Bicycle 1920 bike, bicycle
motorbike, motor bike,
motorcycle, dirt bike

A man drives his bike taxi
with luggage in the back.

Chair 1884 chair
Frisbee 1775 frisbee

Bear 1740 bear
teddy bear, stuffed bear,
care bear, toy bear

a very old panda bear doll
with a handkerchief
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Sandwich 1649 sandwich

Sheep 1626 sheep
furniture shaped like sheep
on a open field

Vase 1597 vase
Bowl 1570 bowl toilet bowl
Sink 1529 sink

Stop Sign 1491 stop sign
That sign almost looks like
a stop sign with no words on it.

Banana 1466 banana

Monitor 1437 monitor, tv, screen
Four cell phone on a wooden table
with their screens on.

Skis 1419 skis

Hot Dog 1717
hot dog, chili dog,
cheese dog, corn dog

Fire Hydrant 1408 hydrant
Sofa 1404 sofa, couch
Teddybear 1284 teddybear

Aeroplane 1195
plane, jet,
aircraft

Mountaineous view as seen
from a jet airliner

Tie 1062 tie to tie
Tennis Racket 993 racket
Cell Phone 956 cell phone, mobile phone
Refrigerator 949 refrigerator, fridge

Cup 902 cup
A table with measuring cups
and bowls on it

Broccoli 840 broccoli
Donut 805 donut

Bottle 766 bottle
A toy hot dog and
ketchup bottle on a table

Suitcase 736 suitcase
Snowboard 732 snowboard

Book 731 book
A large open room has an
overhead book shelf

Remote 670 remote
Traffic Light 645 traffic light
Keyboard 603 keyboard
Apple 510 apple pineapple
Oven 506 oven microwave oven

Motorcycle 495
motorcycle, dirt bike,
motorbike, scooter

A group of dirt bike racers in a row

Carrot 463 carrot
Scissor 450 scissors
Parking Meter 430 parking meter
Microwave 416 microwave
Orange 378 oranges
Knife 376 knife

Fork 363 fork
A large fork sculpture stands in
the water as a large boat passes

Baseball Bat 322 baseball bat
Toothbrush 267 toothbrush
Wine Glass 264 wine glass
Backpack 220 backpack, rucksack
Spoon 206 spoon

Handbag 107 handbag, purse
Items from a handbag laid
out neatly on a carpet

Toaster 89 toaster
Potted Plant 81 potted plant
Mouse 72 computer mouse
Baseball Glove 39 baseball glove
Hair Drier 35 hair drier
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Figure B.7: Examples of our model and YOLOv3 predictions on the generated
images. The bounding boxes in red are the bounding boxes provided to the network
at test time for the given objects. The blue bounding boxes are the bounding boxes
provided by YOLOv3 for the given object. When the Intersection over Union (IoU)
is small (right column) we observe that this is usually due to the fact that the
generated object is much larger than the originally provided bounding box. Only
in few cases is the generated object at a completely different location than the
provided red bounding box.
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Table B.6: Overview of the individual layers used in our networks to generate images
of resolution 256 × 256 pixels. Values in brackets (C, H, W ) represent the tensor’s
shape. Numbers in the columns after convolutional, residual, or dense layers describe the
number of filters / units in that layer. (fs=x, s=y, p=z, BN=B) describes the filter size,
stride, padding, and batch norm for that convolutional / residual layer. Everything not
specifically mentioned or explained (e.g. RNN-Encoder, DAMSM) is the same as in the
AttnGAN [Xu et al., 2018b].

Optimizer: Adam (β1 = 0.5, β2 = 0.999)

Activation Functions
Relu (RL), Leaky
RL (LR), Gated

Linear Unit (GLU)
Attention Mask see AttnGAN
Upsample Block

Upsampling Nearest Neighbor
Conv (fs=3, s=1, p=1, BN=1) X,GLU

Residual Block
Conv x 2 (fs=3, s=1, p=1, BN=1) X,GLU , X
Add original input to output

of previous conv
Prepare Label

Input Shape (Label σi) (81, )
Dense (BN=1) 100, RL
Reshape (100, 1, 1)
Replicate (100, X,X)

Initial Generator

Global Pathway Input
noise, sentence
emb, layout enc

Input Shape (304, )
Dense (BN=1) 49152, GLU
Reshape (1536, 4, 4)
Upsample x 2 (fs=3, s=1, p=1) 768, 384

Object Pathway Input object labels σi
Prepare Label (100, 4, 4)
Upsample x 2 (fs=3, s=1, p=1) 768, 384
Transform with STN

Concat Pathways (768, 16, 16)
Upsample x 2 (fs=3, s=1, p=1) 192, 96
Output Shape (96, 64, 64)

Generator 128× 128
Global Pathway Input (96, 64, 64)

Input Shape (96, 64, 64)
Attention Mask (96, 64, 64)
Concatenate (192, 64, 64)
Residual x 3 192

Object Pathway Input
object labels σi
prev G output

Input Shape (Label σi) (81, ), (96, 64, 64)
Prepare Label (128, 16, 16)
Extr Obj Feat w/ STN (96, 16, 16)
Concatenate (224, 16, 16)
Upsample x 2 (fs=3, s=1, p=1) 192, 96
Transf Obj Feat w/ STN (192, 64, 64)

Concat Pathways (288, 64, 64)
Upsample (fs=3, s=1, p=1) 96
Output Shape (96, 128, 128)

Generator 256× 256
Global Pathway Input (96, 128, 128)

Input Shape (96, 128, 128)
Attention Mask (96, 128, 128)
Concatenate (192, 128, 128)
Residual x 3 192

Object Pathway Input
object labels σi
prev G output

Input Shape (Label σi) (81, ), (96, 128, 128)
Prepare Label (128, 32, 32)
Extr Obj Feat w/ STN (96, 32, 32)
Concatenate (224, 32, 32)
Upsample x 2 (fs=3, s=1, p=1) 192, 96
Transf Obj Feat w/ STN (192, 128, 128)

Concat Pathways (288, 128, 128)
Upsample (fs=3, s=1, p=1) 96
Conv (fs=3, s=1, p=1, BN=1) 3, Tanh
Output Shape (3, 256, 256)
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Table B.7: Overview of the individual layers used in our networks to generate images
of resolution 256 × 256 pixels. Values in brackets (C, H, W ) represent the tensor’s
shape. Numbers in the columns after convolutional, residual, or dense layers describe the
number of filters / units in that layer. (fs=x, s=y, p=z, BN=B) describes the filter size,
stride, padding, and batch norm for that convolutional / residual layer. Everything not
specifically mentioned or explained (e.g. RNN-Encoder, DAMSM) is the same as in the
AttnGAN [Xu et al., 2018b].

Learning Rate 0.0002
Training Epochs 120
Batch Size 24
Z-Dim / Img-Caption-Dim 100 / 256
Layout Encoder

Input Shape (100, 16, 16)
Conv (fs=3, s=2, p=1, BN=0) 50, LR
Conv x 2 (fs=3, s=2, p=1, BN=1) 25, LR, 12, LR
Output Shape (12, 2, 2)

Discriminator 64× 64
Global Pathway

Input Shape (3, 64, 64)
Conv (fs=4, s=2, p=1, BN=0) 96, LR
Conv (fs=4, s=2, p=1, BN=1) 192, LR
Output Shape (192, 16, 16)

Object Pathway
Input Shape (3, 64, 64)
Extract Object Feat w/ STN (3, 16, 16)
Concatenate with labels σi (84, 16, 16)
Conv (fs=4, s=1, p=1) 192, LR
Transform Object Feat w/ STN (192, 16, 16)
Output Shape (192, 16, 16)

Concat Pathways (384, 16, 16)
Conv x 2 (fs=4, s=2, p=1, BN=1) 384, LR, 768, LR
Concat w/ Sentence Embedding (1024, 4, 4)
Conv (fs=3, s=1, p=1, BN=1) 768, LR
Conv (fs=4, s=4, p=1, BN=1) 1, Sigmoid

Discriminator 128× 128
Global Pathway

Input Shape (3, 128, 128)
Conv (fs=4, s=2, p=1, BN=0) 96, LR
Conv (fs=4, s=2, p=1, BN=1) 192, LR
Output Shape (192, 32, 32)

Object Pathway
Input Shape (3, 128, 128)
Extract Object Feat w/ STN (3, 32, 32)
Concatenate with labels σi (84, 32, 32)
Conv (fs=4, s=1, p=1) 192, LR
Transform Object Feat w/ STN (192, 32, 32)
Output Shape (192, 32, 32)

Concat Pathways (384, 32, 32)

Conv x 4 (fs=4, s=2, p=1, BN=1)
384, LR, 768, LR
1536, LR, 768, LR

Concat w/ Sentence Embedding (1024, 4, 4)
Conv (fs=3, s=1, p=1, BN=1) 768, LR
Conv (fs=4, s=4, p=1, BN=1) 1, Sigmoid

Discriminator 256× 256
Global Pathway

Input Shape (3, 256, 256)
Conv (fs=4, s=2, p=1, BN=0) 96, LR
Conv (fs=4, s=2, p=1, BN=1) 192, LR
Output Shape (192, 64, 64)

Object Pathway
Input Shape (3, 256, 256)
Extract Object Feat w/ STN (3, 64, 64)
Concatenate with labels σi (84, 64, 64)
Conv (fs=4, s=1, p=1) 192, LR
Transform Object Feat w/ STN (192, 64, 64)
Output Shape (192, 64, 64)

Concat Pathways (384, 64, 64)

Conv x 6 (fs=4, s=2, p=1, BN=1)
384, LR, 768, LR

1536, LR, 3072, LR
1536, LR 768, LR

Concat w/ Sentence Embedding (1024, 4, 4)
Conv (fs=3, s=1, p=1, BN=1) 768, LR
Conv (fs=4, s=4, p=1, BN=1) 1, Sigmoid
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Table B.8: Results of YOLOv3 detections on generated and original images. Recall
provides the fraction of images in which YOLOv3 detected the given object. IoU
(Intersection over Union) measures the maximum IoU per image in which the given
object was detected. No ground truth information besides the caption was used for
all measurements.

Label
Orig. Img. AttnGAN AttnGAN + OP DM-GAN Obj-GAN OP-GAN (Ours)

Recall IoU Recall Recall IoU Recall Recall IoU Recall IoU

Person 0.953 0.624 0.698 0.730 0.357 0.840 0.708 0.640 0.793 0.289

Dining Table 0.379 0.566 0.104 0.061 0.453 0.094 0.031 0.600 0.157 0.495

Cat 0.868 0.644 0.734 0.697 0.264 0.790 0.632 0.653 0.656 0.339

Dog 0.813 0.610 0.651 0.778 0.323 0.764 0.846 0.695 0.850 0.355

Train 0.826 0.627 0.491 0.654 0.370 0.463 0.641 0.670 0.561 0.377

Bus 0.848 0.651 0.615 0.665 0.511 0.766 0.685 0.804 0.793 0.366

Clock 0.900 0.502 0.469 0.184 0.359 0.528 0.649 0.587 0.587 0.077

Giraffe 0.949 0.662 0.581 0.725 0.486 0.829 0.679 0.585 0.868 0.368

Pizza 0.876 0.630 0.793 0.847 0.363 0.883 0.683 0.737 0.893 0.449

Horse 0.891 0.611 0.650 0.723 0.528 0.827 0.634 0.685 0.827 0.328

Elephant 0.937 0.647 0.373 0.653 0.522 0.705 0.476 0.737 0.665 0.360

Zebra 0.915 0.650 0.902 0.882 0.420 0.909 0.921 0.735 0.931 0.407

Bed 0.732 0.601 0.704 0.661 0.472 0.796 0.655 0.573 0.754 0.444

Boat 0.736 0.502 0.211 0.284 0.208 0.244 0.136 0.557 0.323 0.198

Toilet 0.912 0.591 0.281 0.325 0.315 0.178 0.382 0.750 0.543 0.238

Bird 0.797 0.551 0.358 0.430 0.284 0.637 0.546 0.612 0.554 0.267

Skateboard 0.822 0.427 0.040 0.119 0.126 0.153 0.164 0.536 0.127 0.116

Car 0.752 0.488 0.143 0.202 0.124 0.336 0.196 0.430 0.310 0.102

Bench 0.760 0.547 0.107 0.079 0.311 0.216 0.339 0.637 0.259 0.225

Laptop 0.876 0.617 0.071 0.252 0.337 0.229 0.027 0.425 0.349 0.323

Surfboard 0.794 0.414 0.140 0.091 0.218 0.225 0.117 0.548 0.321 0.172

Truck 0.835 0.631 0.472 0.524 0.442 0.622 0.413 0.685 0.634 0.341

Umbrella 0.884 0.548 0.074 0.150 0.177 0.292 0.230 0.591 0.381 0.213

Kite 0.822 0.410 0.291 0.163 0.310 0.302 0.370 0.384 0.414 0.160

Sports Ball 0.507 0.161 0.112 0.064 0.027 0.295 0.198 0.297 0.165 0.004

Cake 0.726 0.570 0.471 0.365 0.206 0.385 0.286 0.626 0.423 0.305

Cow 0.886 0.598 0.425 0.566 0.472 0.649 0.365 0.638 0.614 0.341

Bicycle 0.686 0.546 0.281 0.251 0.284 0.498 0.249 0.503 0.486 0.297

Chair 0.717 0.566 0.175 0.142 0.157 0.269 0.070 0.257 0.258 0.130

Frisbee 0.803 0.350 0.025 0.018 0.050 0.061 0.099 0.625 0.101 0.025

Bear 0.638 0.637 0.812 0.794 0.431 0.800 0.712 0.761 0.737 0.341

Sandwich 0.674 0.630 0.505 0.634 0.310 0.508 0.585 0.568 0.667 0.402

Sheep 0.910 0.593 0.303 0.403 0.239 0.545 0.573 0.642 0.559 0.251

Vase 0.858 0.600 0.114 0.152 0.468 0.175 0.150 0.306 0.276 0.271

Bowl 0.675 0.633 0.315 0.113 0.170 0.212 0.066 0.598 0.330 0.216

Sink 0.712 0.431 0.075 0.128 0.127 0.144 0.165 0.340 0.184 0.102

Stop Sign 0.874 0.608 0.183 0.225 0.207 0.522 0.510 0.830 0.591 0.292

Banana 0.788 0.578 0.552 0.593 0.208 0.433 0.287 0.572 0.444 0.308

Monitor 0.754 0.594 0.278 0.225 0.477 0.445 0.385 0.759 0.606 0.213

Skis 0.576 0.315 0.010 0.023 0.057 0.023 0.023 0.512 0.040 0.146

Hot Dog 0.711 0.621 0.404 0.355 0.227 0.452 0.371 0.671 0.592 0.332

Fire Hydrant 0.927 0.613 0.414 0.256 0.388 0.420 0.274 0.666 0.426 0.282

Sofa 0.834 0.584 0.253 0.179 0.259 0.397 0.221 0.470 0.331 0.292

Teddy Bear 0.806 0.643 0.637 0.688 0.336 0.615 0.410 0.707 0.455 0.328

Aeroplane 0.916 0.575 0.612 0.382 0.211 0.571 0.297 0.513 0.665 0.318

Tie 0.800 0.574 0.138 0.074 0.157 0.095 0.113 0.385 0.117 0.117

Tennis Racket 0.830 0.432 0.019 0.044 0.071 0.048 0.141 0.518 0.058 0.093
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Cell Phone 0.590 0.513 0.036 0.054 0.067 0.105 0.134 0.563 0.264 0.201

Refrigerator 0.881 0.631 0.593 0.252 0.408 0.456 0.409 0.518 0.558 0.375

Cup 0.706 0.586 0.061 0.054 0.022 0.131 0.040 0.430 0.067 0.137

Broccoli 0.756 0.575 0.130 0.137 0.240 0.255 0.248 0.601 0.528 0.267

Donut 0.854 0.655 0.076 0.089 0.213 0.138 0.207 0.712 0.304 0.297

Bottle 0.782 0.590 0.072 0.047 0.020 0.148 0.027 0.002 0.069 0.053

Suitcase 0.851 0.612 0.049 0.043 0.407 0.070 0.118 0.662 0.122 0.318

Snowboard 0.746 0.411 0.055 0.030 0.085 0.101 0.080 0.356 0.073 0.114

Book 0.628 0.500 0.006 0.032 0.340 0.064 0.007 0.390 0.051 0.184

Remote 0.619 0.440 0.014 0.015 0.120 0.123 0.044 0.488 0.038 0.133

Traffic Light 0.942 0.450 0.607 0.565 0.409 0.724 0.619 0.559 0.653 0.215

Keyboard 0.783 0.495 0.397 0.083 0.064 0.687 0.095 0.701 0.350 0.154

Apple 0.588 0.593 0.054 0.021 0.162 0.119 0.121 0.709 0.140 0.237

Oven 0.699 0.606 0.067 0.074 0.520 0.174 0.055 0.338 0.213 0.304

Motorcycle 0.910 0.597 0.422 0.409 0.396 0.476 0.206 0.528 0.629 0.363

Carrot 0.590 0.537 0.081 0.045 0.097 0.083 0.044 0.545 0.116 0.153

Scissor 0.654 0.616 0.047 0.066 0.238 0.071 0.024 0.242 0.116 0.261

Parking Meter 0.816 0.600 0.222 0.114 0.323 0.535 0.658 0.759 0.582 0.300

Microwave 0.849 0.568 0.066 0.027 0.326 0.120 0.062 0.518 0.074 0.144

Orange 0.826 0.617 0.024 0.113 0.104 0.303 0.084 0.677 0.406 0.208

Knife 0.577 0.537 0.017 0.018 0.085 0.015 0.011 0.148 0.037 0.069

Fork 0.675 0.574 0.029 0.083 0.092 0.029 0.052 0.489 0.095 0.124

Baseball Bat 0.653 0.397 0.018 0.010 0.022 0.011 0.105 0.395 0.021 0.078

Toothbrush 0.557 0.505 0.036 0.102 0.157 0.025 0.107 0.554 0.091 0.160

Wine Glass 0.888 0.583 0.194 0.119 0.086 0.177 0.076 0.275 0.111 0.110

Backpack 0.620 0.529 0.024 0.049 0.000 0.107 0.093 0.000 0.041 0.000

Spoon 0.545 0.533 0.069 0.066 0.000 0.055 0.032 0.000 0.091 0.000

Handbag 0.537 0.583 0.014 0.014 0.000 0.042 0.021 0.000 0.043 0.000

Toaster 0.093 0.598 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000

Potted Plant 0.753 0.574 0.068 0.048 0.000 0.092 0.035 0.000 0.112 0.000

Mouse 0.804 0.537 0.076 0.024 0.067 0.145 0.095 0.636 0.096 0.167

Baseball Glove 0.667 0.514 0.006 0.006 0.001 0.042 0.083 0.591 0.020 0.198

Hair Drier 0.050 0.158 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table B.9: Results of YOLOv3 detections on ablations of our model. Recall
provides the fraction of images in which YOLOv3 detected the given object. IoU
(Intersection over Union) measures the maximum IoU per image in which the given
object was detected. No ground truth information besides the caption was used for
all measurements.

Label
OPv2 OPv2 + BBL OPv2 + MO OPv2 + BBL + MO

Recall IoU Recall IoU Recall IoU Recall IoU

Person 0.783 0.279 0.769 0.278 0.789 0.288 0.771 0.286

Dining Table 0.095 0.462 0.126 0.453 0.106 0.466 0.106 0.467

Cat 0.699 0.336 0.725 0.330 0.702 0.337 0.697 0.330

Dog 0.831 0.342 0.790 0.330 0.745 0.330 0.827 0.351

Train 0.645 0.390 0.699 0.388 0.642 0.389 0.654 0.379

Bus 0.756 0.372 0.721 0.372 0.785 0.384 0.802 0.361

Clock 0.489 0.096 0.542 0.130 0.542 0.098 0.401 0.097
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Giraffe 0.796 0.337 0.853 0.356 0.819 0.353 0.831 0.365

Pizza 0.853 0.428 0.883 0.427 0.837 0.433 0.822 0.437

Horse 0.769 0.313 0.774 0.315 0.789 0.331 0.789 0.327

Elephant 0.684 0.368 0.722 0.373 0.658 0.356 0.646 0.363

Zebra 0.946 0.393 0.953 0.404 0.955 0.396 0.941 0.406

Bed 0.806 0.457 0.742 0.466 0.747 0.456 0.765 0.464

Boat 0.315 0.207 0.224 0.196 0.244 0.232 0.290 0.214

Toilet 0.523 0.252 0.533 0.246 0.455 0.256 0.473 0.250

Bird 0.610 0.258 0.650 0.261 0.628 0.249 0.619 0.264

Skateboard 0.162 0.081 0.156 0.076 0.097 0.095 0.131 0.113

Car 0.274 0.119 0.236 0.109 0.198 0.129 0.286 0.112

Bench 0.240 0.229 0.180 0.228 0.255 0.236 0.256 0.225

Laptop 0.324 0.309 0.237 0.293 0.201 0.299 0.298 0.317

Surfboard 0.268 0.149 0.215 0.152 0.266 0.144 0.266 0.170

Truck 0.585 0.341 0.560 0.333 0.590 0.343 0.593 0.338

Umbrella 0.130 0.178 0.189 0.183 0.163 0.187 0.219 0.210

Kite 0.354 0.120 0.518 0.123 0.340 0.104 0.427 0.157

Cake 0.448 0.280 0.424 0.295 0.510 0.305 0.486 0.309

Sports Ball 0.067 0.005 0.095 0.004 0.192 0.004 0.128 0.004

Cow 0.611 0.298 0.623 0.324 0.621 0.332 0.645 0.340

Bicycle 0.401 0.280 0.368 0.245 0.447 0.283 0.472 0.290

Chair 0.138 0.133 0.150 0.134 0.250 0.141 0.262 0.138

Frisbee 0.066 0.024 0.052 0.029 0.043 0.035 0.063 0.022

Bear 0.749 0.348 0.754 0.351 0.739 0.345 0.758 0.354

Sandwich 0.648 0.380 0.656 0.380 0.613 0.390 0.716 0.394

Sheep 0.617 0.245 0.578 0.217 0.573 0.247 0.596 0.254

Vase 0.182 0.181 0.187 0.210 0.154 0.204 0.239 0.220

Bowl 0.238 0.223 0.215 0.202 0.298 0.223 0.300 0.213

Sink 0.196 0.131 0.172 0.106 0.206 0.090 0.195 0.113

Stop Sign 0.584 0.279 0.453 0.280 0.494 0.237 0.449 0.270

Banana 0.464 0.274 0.517 0.289 0.426 0.280 0.504 0.284

Monitor 0.510 0.209 0.502 0.225 0.535 0.222 0.581 0.225

Hotdog 0.481 0.297 0.443 0.305 0.478 0.311 0.576 0.322

Skis 0.021 0.111 0.037 0.121 0.042 0.115 0.039 0.127

Sofa 0.274 0.304 0.289 0.284 0.324 0.334 0.270 0.309

Fire Hydrant 0.456 0.290 0.411 0.298 0.386 0.311 0.360 0.295

Teddy Bear 0.595 0.339 0.608 0.344 0.582 0.350 0.621 0.341

Aeroplane 0.701 0.315 0.642 0.321 0.599 0.283 0.634 0.310

Tie 0.132 0.098 0.085 0.120 0.112 0.103 0.088 0.103

Tennis Racket 0.044 0.073 0.042 0.066 0.070 0.087 0.041 0.095
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Cell Phone 0.199 0.156 0.100 0.137 0.147 0.150 0.189 0.171

Refrigerator 0.435 0.373 0.438 0.376 0.522 0.366 0.539 0.366

Cup 0.047 0.083 0.078 0.111 0.060 0.091 0.078 0.134

Broccoli 0.418 0.243 0.468 0.243 0.448 0.232 0.436 0.261

Donut 0.234 0.247 0.248 0.246 0.277 0.287 0.305 0.278

Bottle 0.079 0.023 0.076 0.009 0.103 0.028 0.140 0.026

Suitcase 0.100 0.271 0.084 0.289 0.129 0.308 0.117 0.296

Book 0.015 0.141 0.022 0.135 0.033 0.148 0.041 0.142

Snowboard 0.085 0.102 0.067 0.105 0.072 0.106 0.089 0.127

Remote 0.060 0.080 0.066 0.096 0.089 0.120 0.051 0.141

Traffic Light 0.696 0.160 0.608 0.163 0.703 0.164 0.600 0.175

Keyboard 0.375 0.147 0.494 0.147 0.484 0.167 0.375 0.156

Oven 0.141 0.304 0.172 0.308 0.213 0.322 0.206 0.317

Apple 0.227 0.215 0.160 0.163 0.164 0.199 0.160 0.217

Motorcycle 0.590 0.376 0.515 0.335 0.420 0.346 0.501 0.345

Scissors 0.045 0.196 0.105 0.264 0.079 0.271 0.119 0.239

Carrot 0.080 0.151 0.093 0.163 0.106 0.160 0.106 0.155

Parking Meter 0.553 0.300 0.305 0.263 0.449 0.288 0.481 0.327

Microwave 0.150 0.184 0.120 0.190 0.080 0.184 0.078 0.142

Orange 0.323 0.186 0.335 0.179 0.308 0.201 0.314 0.195

Knife 0.035 0.090 0.040 0.099 0.028 0.095 0.036 0.053

Fork 0.096 0.084 0.098 0.118 0.067 0.088 0.095 0.121

Baseball Bat 0.016 0.056 0.022 0.038 0.019 0.047 0.039 0.050

Toothbrush 0.041 0.170 0.082 0.204 0.063 0.172 0.094 0.181

Wine Glass 0.153 0.101 0.160 0.090 0.155 0.080 0.145 0.110

Backpack 0.049 0.000 0.020 0.000 0.045 0.000 0.051 0.000

Spoon 0.093 0.000 0.107 0.000 0.075 0.000 0.078 0.000

Handbag 0.001 0.000 0.015 0.007 0.014 0.000 0.026 0.000

Toaster 0.006 0.000 0.001 0.000 0.000 0.000 0.001 0.000

Mouse 0.073 0.083 0.077 0.103 0.047 0.108 0.084 0.124

Potted Plant 0.065 0.000 0.055 0.000 0.085 0.000 0.075 0.000

Baseball Glove 0.041 0.042 0.029 0.210 0.033 0.211 0.022 0.137

Hair Drier 0.002 0.000 0.000 0.000 0.000 0.000 0.002 0.000

B.4 Learning Representations from a Single Data

Point

This section gives more details about our experiments outlined in Section 5.2.
Figure B.8 shows more examples of unconditional image generation for both
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Input ConSinGAN SinGAN

Figure B.8: Unconditional image generation with ConSinGAN and SinGAN. All
ConSinGAN models were trained on six stages, all SinGAN models were trained on
eight – ten stages. We can see how ConSinGAN is able to model the global image
structure better in most cases, despite being trained on fewer stages than SinGAN.

ConSinGAN and SinGAN [Shaham et al., 2019]. Our ConSinGAN models were
trained on six stages while the SinGAN models were trained with the default scaling
factor of 0.75 for eight – ten stages per image. Despite this we can see that the
ConSinGAN is capable of modeling the global image layout better than SinGAN
in most cases. Training a ConSinGAN model takes roughly 20-25 minutes on our
hardware (NVIDIA GeForce GTX 1080Ti), while training a SinGAN model takes
roughly 2 hours.
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Input ConSinGAN SinGAN

Figure B.9: Unconditional image generation with ConSinGAN and SinGAN. We
show images were we scale the input noise map by a factor of two along each side
and along both sides. The ConSinGAN models were trained on six stages, while
the SinGAN models were trained on eight – ten stages.

Figure B.9 and Figure B.10 show results of unconditional image generation
with different aspect ratios and resolutions. Scaling in the horizontal direction
usually works better for both models. Scaling in the vertical direction is much more
challenging for both models, however, the ConSinGAN handles this better than
the SinGAN.
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Input ConSinGAN SinGAN

Figure B.10: Unconditional image generation with ConSinGAN and SinGAN. We
show images were we scale the input noise map by a factor of two along each side
and along both sides. The ConSinGAN models were trained on six stages, while
the SinGAN models were trained on eight – ten stages.
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Number of Concurrently Trained Stages

1 2 3 4 5 6 1 2 3 4 5 6

δ = 0.1 δ = 0.5

Figure B.11: Interplay between learning rate scaling δ and the number of concur-
rently trained stages for models that were trained on a total of six stages on different
images. We can see how the image diversity usually decreases with increasing δ or
increasing number of concurrently trained stages. All images are randomly sampled.

B.4.1 Number of Concurrently Trained Stages and Learn-
ing Rate Scaling

Figure B.11 shows more visualizations of the interplay between the learning rate
scaling δ and the number of concurrently trained stages. Again, we observe that
image diversity decreases with increasing δ and increasing number of concurrently
trained stages, leading to complete overfitting when trained end-to-end.
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Figure B.12: Comparison between our updated and the original rescaling method.
We can see that both models benefit from the updated rescaling method and can
generate realistic images with fewer stages. All images are randomly sampled.

B.4.2 Comparison of Original and
Improved Rescaling Method

Figure B.12 and Figure B.13 show more examples of how the image quality develops
with an increasing number of stages for the original and our improved rescaling
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Figure B.13: Comparison between our updated and the original rescaling method.
We can see that both models benefit from the updated rescaling method and can
generate realistic images with fewer stages. All images are randomly sampled.

method. Note that the ConSinGAN starts to generate realistic images after already
5-6 stages while the SinGAN usually needs more than 7 stages.
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B.4.3 Image Harmonization

Figure B.14 shows further comparisons between SinGAN and ConSinGAN on the
image harmonization task. We can see that ConSinGAN often performs better
despite being trained on fewer stages than SinGAN. SinGAN is also not able
to transform color objects into black-and-white images, while this is no problem
for ConSinGAN. Figure B.15 and Figure B.16 show more comparisons between
ConSinGAN and Deep Painterly Harmonization (DPH) [Luan et al., 2018] on image
harmonization tasks of images with higher resolution. Note that DPH needs the
target image and mask as input for its algorithm, while ConSinGAN is trained with
randomly augmented images and only sees the target image at test time (except
for the fine-tuned case).
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SinGAN ConSinGAN

Original Naive 8 – 10 Stages 3 Stages Fine-tuned

Figure B.14: Comparison of ConSinGAN and SinGAN on image harmonization.
Our model often produces better results despite being trained on fewer stages.
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ConSinGAN

Original Naive DPH 4 Stages Fine-tuned

Figure B.15: Comparison of ConSinGAN and Deep Painterly Harmonization (DPH)
on high-resolution image harmonization. Images from DPH taken from their official
Github implementation. In contrast to DPH, our model does only see the naive
image during training if we fine-tune it (last column), but not for our general
training procedure (fourth column).
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ConSinGAN

Original Naive DPH 4 Stages Fine-tuned

Figure B.16: Comparison of ConSinGAN and Deep Painterly Harmonization (DPH)
on high-resolution image harmonization. Images from DPH taken from their official
Github implementation. In contrast to DPH, our model does only see the naive
image during training if we fine-tune it (last column), but not for our general
training procedure (fourth column).
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Input ConSinGAN SinGAN Input ConSinGAN SinGAN Input ConSinGAN SinGAN

Figure B.17: Images from the ‘Places’ data set used in our user study.

B.4.4 Images From User Studies

Figure B.17 and Figure B.18 show the images that were used in the two user studies
on the ‘Places’ and ‘LSUN’ data sets respectively.
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Input ConSinGAN SinGAN Input ConSinGAN SinGAN Input ConSinGAN SinGAN

Figure B.18: Images from the ‘LSUN’ data set used in our user study.
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SinGAN ConSinGAN

Original Naive 9 / 11 Stages 6 Stages Fine-tuned

Figure B.19: Editing images with SinGAN and ConSinGAN. Note that the SinGAN
model is trained on 9 – 11 stages, while ConSinGAN is only trained for 6 stages

B.4.5 Image Editing

Figure B.19 shows some examples of the image editing task with SinGAN and
ConSinGAN. We trained the full SinGAN model (9 and 11 stages respectively)
and chose the best results. The ConSinGAN was trained on only six stages and
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with only 1,000 iterations per stage, as opposed to 2,000 iterations per stage at
the SinGAN. We can observe that both models have strengths and weaknesses.
SinGAN is usually better at merging background objects (e.g. the sky in the stone
image) but also introduces many artifacts, e.g. it changes the texture of the stone
in many cases even in places where no editing took place. Furthermore, its texture
is very repetitive when large ares are changed, e.g. the leaves in the changed areas
of the tree.

ConSinGAN, on the other hand, does not change the structure in areas that
are not edited and exhibits none of the repetitiveness in the features. However,
it sometimes fails to merge the background as successfully as SinGAN does, see
e.g. again the sky in the stone image. We can also see that ConSinGAN tends
to adhere more closely to the layout of the edited image and mainly rounds and
smooths the edges along edited areas. SinGAN changes more of the image which
can sometimes look more realistic, but might not always be desired if the changes
were done carefully and the artist wants the model to adhere to his changes as
exactly as possible. Also note that we did not experiment with any hyperparameters
for ConSinGAN for the image editing task and it might be possible to achieve
better results by finding better hyperparameters.

B.4.6 Other Approaches We Explored

Multiple Discriminators at Each Stage Similar to other work, e.g. InGAN
[Shocher et al., 2019], we tried using several discriminators at each stage. This can
potentially be helpful for tasks such as unconditional image generation at different
resolutions (see Figure B.9 and Figure B.10). To test this we adapted our model
so that the generator is trained with multiple discriminators at each stage. We
generate images at different fixed resolutions, e.g. by scaling the width and height
of the input noise map by factors 0.5, 1.0, 1.5, and 2.0. As a result, the generator
generates several images at each iteration which are used as inputs for several
discriminators (one for each resolution).

Each of the discriminators is trained on only one specific resolution where the
‘real’ image is a rescaled version of the original image. We observed that this
does indeed often lead to improved results for the unconditional generation of
various resolutions. However, for other applications, the results were inconsistent
– sometimes it improved things, sometimes it did not. Since training several
discriminators at each stage increases the training time considerably we decided to
not use this approach in the default settings of our method.

Adaptive Number of Training Iterations at Each Stage At the moment,
each stage is trained for a pre-defined number of iterations, e.g. 2,000 iterations for
unconditional image generation and 1,000 iterations for image harmonization. We
believe it is unlikely that each stage has to learn the same amount of information,
especially since each stage is initialized with the weights of the previous stage.
It should therefore, in theory, be possible to train each stage only for as long as
necessary, thereby potentially reducing the training time even more. We tried this
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by measuring how much the generated image changes during the training of each
stage (similar to what Karras et al. [2020b] did in Fig. 8) and to stop training a
given stage when it does not change the output of a given image much compared
to previous iterations. Again, this approach sometimes led to good results with
reduced training iterations, but the results were inconsistent. However, we believe
that this is a worthwhile direction and better approaches might make it possible
to achieve good results with considerably fewer iterations on some (all) stages of
training.

Further Improve Global Image Layout We also tried several other ap-
proaches to further improve the global image layout, especially from complex
images. One idea is to add a second task for the discriminator, so that it not only
has to decide whether a given image patch is real or not, but also where in a given
image the patch is located (roughly). We implemented this by adding a “location
loss” to the discriminator so that it also had to predict the location of a given image
patch. To prevent overfitting we split the input image into nine equal rectangles
(3× 3) and the discriminator had to predict (for the real image only) where a given
image patch is from. The generator was then trained to fool the discriminator into
both predicting that the image patches of the generated images are real and to
being able to correctly predict their location, too.

Our second approach was to add a second discriminator with increased receptive
field to the higher stages. The idea is that this second discriminator could then
still judge the global layout (and not only texture/style) even at higher resolutions.
To reduce the computational burden we did not increase the convolutional filter as
such, but used dilated convolutions instead. However, training still takes longer
since we have to train a second discriminator at higher stages.

Both approaches had mixed results, with the added discriminator with dilated
convolutions overall performing better than the location loss. The location loss often
did not clearly improve the global layout and sometimes led to reduced diversity
in the generated images. On the other hand, using an additional discriminator
with dilated convolutions on higher stages often did actually improve the global
consistency, but on average the improvements were not big enough to warrant the
extra training time. We still feel that these, or similar, avenues should be further
studied, since enforcing better global layout in this manner might enable us to train
on even fewer stages, thereby negating the more expensive training and possibly
even speeding up the overall training time.

Data Augmentation To increase the diversity in the generated images we
experimented with applying basic augmentation techniques to the original training
image. At each iteration we applied simple transformations such as horizontal
mirroring, taking a random crop (consisting of at least 95% of the original image),
slight rotation (±5 degrees), slight zooming, etc. However, this considerably
worsened the final results in our tests, since the discriminator was apparently
not able to learn a good image representation and the generated images showed
several artifacts (uneven textures/surfaces, no straight lines, etc). Improving/fine-
tuning the used augmentation techniques or finding a more appropriate (sub-)set
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Input ConSinGAN SinGAN

Figure B.20: Results when the models fail to learn the global image layout. The
SinGAN models were trained on eight – ten stages, the ConSinGAN models were
trained on three – five stages. Note that increasing the number of stages and/or
the learning rate scaling δ for the ConSinGAN models improves the learned image
layout.

of augmentation techniques for this task might improve results.

Different Normalization Approaches and Activation Functions We also
experimented with different normalization approaches, both for the input im-
age/noise and for the network architecture. Our generator gets as input either
the original training image (normalized to a range [−1, 1]) for the reconstruction
loss and noise sampled from a random normal distribution (N (0, 1)) for the un-
conditional image generation. As such, the input to our generator comes from
two slightly different distributions. We tried both normalizing the input image
so that it more closely resembles a normal distribution and sampling the noise so
that it follows more closely the image distribution (e.g. by sampling from U(−1, 1).
However, both approaches did not improve the image quality or training progress
and the training does, in fact, not seem to suffer from the two slightly different
input distributions.

We also tried using other normalization techniques besides batch normalization
in the network architecture. We tried both layer normalization [Ba et al., 2016]
and pixel normalization [Karras et al., 2018], where layer normalization did not
improve the results and pixel normalization made the results considerably worse.
In the end we were able to completely remove any normalization layers for the
unconditional image generation, which had the positive benefit of further speeding
up the training. We also experimented with other activation functions besides leaky
ReLU [Maas et al., 2013], such as ELU [Clevert et al., 2016], SELU [Klambauer
et al., 2017], and PRELU [He et al., 2015]. PRELU usually led to similar or better
results, but also slowed down training since it introduces an additional parameter.
Both ELU and SELU had negative effects on the final result and in the end we
kept the leaky ReLU activation function, since it works almost as well as PRELU
but does not slow down the training.
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B.4.7 Failure Cases

Figure B.20 shows examples of trained models that did not learn a correct global
layout of the training image. Note that the SinGAN models were trained for the
full eight – ten stages, while the ConSinGAN models were only trained for three –
five stages. Increasing the number of trained stages to the default of six for the
ConSinGAN increases the image quality.

B.4.8 Optimization and Implementation Details

Preprocessing We first rescale the input image so that its longer side has a
resolution of 250 pixels for stage N and its shorter side a resolution of 25 pixels for
stage 0. We then resize the origninal image to the resolutions of the intermediate
stages according to Equation 3 of the original paper. The image is normalized to
values in range [−1, 1] during training.

Network Architecture Our discriminator and each stage of our generator
consist of three convolutional layers with 64 filters each and a filter size of 3× 3.
Both the discriminator and the generator have two additional layers taking an
image (or the noise mask) as input and extracting features, and mapping features
to images (generator) or loss space (discriminator) respectively.

We use the Leaky ReLU (LReLU) activation function [Maas et al., 2013]. When
BN is not used, we observe that the parameter LReLUα which sets the negative slope
in the LReLU does have some impact on the convergence and the final results for
different tasks. For all unconditional image generation tasks we set LReLUα = 0.05,
while setting LReLUα = 0.3 for other tasks such as image harmonization.

Optimization At each stage we optimize our model for 2,000 iterations (uncon-
ditional image generation) or 1,000 iterations (image harmonization and editing).
We use the WGAN-GP loss [Gulrajani et al., 2017] with a gradient penalty weight
of 0.1. The learning rate starts with η = 0.0005 at each stage for both the generator
and the discriminator and gets multiplied with 0.1 after 80% of iterations steps at
each stage. Optimization is done with Adam [Kingma and Ba, 2015] with β1 = 0.5
and β2 = 0.999. We train three stages concurrently with a learning rate scaling of
δ = 0.1 for the lower stages.

During each iteration we first perform three gradient steps on the discriminator.
We found that we could speed up training by only performing one gradient update on
the generator during each iteration, but scaling it by a factor of 3. The scalar for the
reconstruction loss in the generator is α = 10.0. We use the leaky ReLU activation
with a negative slope of 0.05 for image generation and 0.3 for image harmonization.
We do not use batch normalization for unconditional image generation, but found
it useful in the generator (but not the discriminator) for other tasks such as image
harmonization and editing.

Training Time Training takes around 20-25 minutes for unconditional image
generation and 10 minutes for image harmonization for a 250× 250 pixel image on
an NVIDIA GeForce GTX 1080Ti compared to training a SinGAN model which
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takes on average 120-140 minutes on the same hardware. One of the reasons for
this is that we only need to train our model on 5-6 stages for good results, while the
original SinGAN needs 8-10 stages. However, even when both models are trained
on the same number of stages we observe that it still takes less time to train our
model, possibly because we do not generate an image after each stage (as SinGAN
does) and do not rely as much on BN.
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B.5 Learning Representations for a

Single Object from Few Examples

This section gives more details about our experiments outlined in Section 5.3.

B.5.1 Keypoint Modification

Figure 5.11 shows more examples of keypoint modifications with CharacterGAN.
Figure B.22 and Figure B.23 show images generated based on linearly interpolated
keypoint positions between a start and end-frame, generated by our model, SinGAN
[Shaham et al., 2019], ConSinGAN [Hinz et al., 2021b], and DeepSIM [Vinker et al.,
2020].

B.5.2 Mask Connectivity

Figure 5.15 shows how the final image quality can be improved by ensuring that
the generated mask is connected.

B.5.3 Discrete States

Figure 5.18 shows how CharacterGAN switches between discrete states based on
keypoint locations.

B.5.4 Data and Reconstructions

Figure B.26 and Figure B.27 show the reconstructions of our CharacterGAN and its
ablations for all training images we used for the quantitative evaluation. Figure B.28,
Figure B.29, and Figure B.30 show the reconstructions of all baseline models for
all training images we used for the quantitative evaluation.

B.5.5 Implementation Details

Our model is based on pix2pixHD architecture [Wang et al., 2018a], with 32
convolutional filters in the first layer of the generator and 64 convolutional filters
in the first layer of the discriminator. We train our models on images of resolution
250× 250 pixels. Our batch size is 5 and we train for 16,000 iterations, which takes
about 60-80 minutes on an NVIDIA RTX 2080Ti. We use the Adam optimizer
[Kingma and Ba, 2015] and a learning rate of 0.0002 (beta1 = 0.5) for the generator
and discriminator which we linearly reduce during the last 8,000 iterations. We use
instance norm [Ulyanov et al., 2016] in both the discriminator and generator. The
generator uses rectified linear units (ReLU) as non-linearity, while the discriminator
uses leaky ReLU with a negative slope of 0.2.

Our generator takes as input the conditioning information (250× 250 pixels)
and applies several convolutional layers with stride 2 until we reach a resolution of
16× 16 with 1, 024 channels. We then apply nine residual blocks, each with 512
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filters to this, before using transposed convolutional layers to upsample the data to
the original resolution of 250× 250 pixels. Our adaptive normalization technique is
similar to SPADE [Park et al., 2019], however, we use different conditioning layers
for each of the keypoint layers. We use two patch discriminators, one operating on
the original input (250× 250 pixels) and one operating on a downsampled version
of the input (125× 125 pixels). Both discriminators consist of five convolutional
layers, of which the first three have a stride of two and the final two a stride of
one.
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Original Generated Original Generated Original Generated Original Generated

Figure B.21: Examples from our model which was trained on only 12 – 18 images
for each of the characters. Even columns show the original image and our intended
modifications, odd columns show the output of our model.
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Figure B.22: We show interpolated frames generated by our baselines and Char-
acterGAN between a single start and end frame (left and right columns) whose
keypoint layouts are contained in the train set. All intermediate image are gener-
ated from linear interpolations of the start and end keypoint layouts and are not
contained in the train set. For better comparison with the baselines we do not use
the patch-based refinement step on our model for these visualization.
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Figure B.23: We show interpolated frames generated by our baselines and Char-
acterGAN between a single start and end frame (left and right columns) whose
keypoint layouts are contained in the train set. All intermediate image are gener-
ated from linear interpolations of the start and end keypoint layouts and are not
contained in the train set. For better comparison with the baselines we do not use
the patch-based refinement step on our model for these visualization.
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Original Predicted Mask Before Fix Fixed Original Predicted Mask Before Fix Fixed

Figure B.24: Enforcing mask connectivity at test time results in more realistic
images.
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Original Interpolations

Figure B.25: Discrete states based on keypoint location. The first column shows
the original image and intended modifications. The rest of the columns show the
generated images, based on linear keypoint interpolations between the start image
and the final keypoints locations based on the intended modifications.
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CharacterGAN - Watercolor Man CharacterGAN - Watercolor Lady CharacterGAN - Sprite Man
No Layer No Scaling Full Original No Layer No Scaling Full Original No Layer No Scaling Full Original

Figure B.26: Qualitative examples of reconstructing held-out test images based on
their keypoint locations.
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CharacterGAN - Dog CharacterGAN - Ostrich CharacterGAN - Cow
No Layer No Scaling Full Original No Layer No Scaling Full Original No Layer No Scaling Full Original

Figure B.27: Qualitative examples of reconstructing held-out test images based on
their keypoint locations.
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Watercolor Man Watercolor Lady
SinGAN ConSinGAN DeepSIM CharacterGAN Original SinGAN ConSinGAN DeepSIM CharacterGAN Original

Figure B.28: Qualitative examples of reconstructing held-out test images based on
their keypoint locations.
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Sprite Man Dog

SinGAN ConSinGAN DeepSIM CharacterGAN Original SinGAN ConSinGAN DeepSIM CharacterGAN Original

Figure B.29: Qualitative examples of reconstructing held-out test images based on
their keypoint locations.
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Ostrich Cow

SinGAN ConSinGAN DeepSIM CharacterGAN Original SinGAN ConSinGAN DeepSIM CharacterGAN Original

Figure B.30: Qualitative examples of reconstructing held-out test images based on
their keypoint locations.
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F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, and O. Bachem.
A sober look at the unsupervised learning of disentangled representations and
their evaluation. Journal of Machine Learning Research, 21:1–62, 2020b.

F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszko-
reit, A. Dosovitskiy, and T. Kipf. Object-centric learning with slot attention.
Advances in Neural Information Processing Systems, 2020c.

H.-M. Lu, Y. Fainman, and R. Hecht-Nielsen. Image manifolds. In Applications of
Artificial Neural Networks in Image Processing III, volume 3307, pages 52–63,
1998.

F. Luan, S. Paris, E. Shechtman, and K. Bala. Deep painterly harmonization.
Computer Graphics Forum, 37(4):95–106, 2018.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural
network acoustic models. In International Conference on Machine Learning,
volume 30, 2013.

P. S. Madhyastha, J. Wang, and L. Specia. Vifidel: Evaluating the visual fidelity
of image descriptions. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics, pages 6539–6550, 2019.

E. Mansimov, E. Parisotto, J. L. Ba, and R. Salakhutdinov. Generating images from
captions with attention. In International Conference on Learning Representations,
2016.

J. Mao, X. Zhang, Y. Li, W. T. Freeman, J. B. Tenenbaum, and J. Wu. Program-
guided image manipulators. In IEEE International Conference on Computer
Vision, pages 4030–4039, 2019a.

Q. Mao, H.-Y. Lee, H.-Y. Tseng, S. Ma, and M.-H. Yang. Mode seeking generative
adversarial networks for diverse image synthesis. In IEEE Computer Vision and
Pattern Recognition, pages 1429–1437, 2019b.

I. D. Mastan and S. Raman. Multi-level encoder-decoder architectures for im-
age restoration. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2019.

I. D. Mastan and S. Raman. Dcil: Deep contextual internal learning for im-
age restoration and image retargeting. In The IEEE Winter Conference on
Applications of Computer Vision, pages 2366–2375, 2020.

195



R. Mechrez, E. Shechtman, and L. Zelnik-Manor. Saliency driven image manipula-
tion. Machine Vision and Applications, 30(2):189–202, 2019.

L. Mescheder, A. Geiger, and S. Nowozin. Which training methods for gans do
actually converge? In International Conference on Machine Learning, pages
3481–3490, 2018.

L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial
networks. In International Conference on Learning Representations, 2017.

T. Michaeli and M. Irani. Blind deblurring using internal patch recurrence. In
European Conference on Computer Vision, pages 783–798. Springer, 2014.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In
European Conference on Computer Vision, 2020.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

G. Mittal, S. Agrawal, A. Agarwal, S. Mehta, and T. Marwah. Interactive im-
age generation using scene graphs. In International Conference on Learning
Representations Workshop, 2019.

T. Miyato and M. Koyama. cgans with projection discriminator. In International
Conference on Learning Representations, 2018.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning
Representations, 2018.

S. Mo, M. Cho, and J. Shin. Freeze discriminator: A simple baseline for fine-tuning
gans. arXiv preprint arXiv:2002.10964, 2020.

H. Mobahi, C. Liu, and W. T. Freeman. A compositional model for low-dimensional
image set representation. In IEEE Computer Vision and Pattern Recognition,
pages 1322–1329, 2014.

A. S. Morcos, D. G. Barrett, N. C. Rabinowitz, and M. Botvinick. On the importance
of single directions for generalization. In International Conference on Learning
Representations, 2018.

Y. Mroueh, T. Sercu, and V. Goel. Mcgan: Mean and covariance feature matching
gan. In International Conference on Machine Learning, pages 2527–2535, 2017.

196



S. Nam, Y. Kim, and S. J. Kim. Text-adaptive generative adversarial networks:
manipulating images with natural language. In Advances in Neural Information
Processing Systems, pages 42–51, 2018.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng. Reading digits
in natural images with unsupervised feature learning. In Advances in Neural
Information Processing Systems Workshop, 2011.

A. Nguyen, Y. Bengio, and A. Dosovitskiy. Plug & play generative networks:
Conditional iterative generation of images in latent space. In IEEE Computer
Vision and Pattern Recognition, pages 4467–4477, 2017.

T. Nguyen-Phuoc, C. Richardt, L. Mai, Y.-L. Yang, and N. Mitra. Blockgan:
Learning 3d object-aware scene representations from unlabelled images. Advances
in Neural Information Processing Systems, 2020.

M. Niemeyer and A. Geiger. Giraffe: Representing scenes as compositional genera-
tive neural feature fields. arXiv preprint arXiv:2011.12100, 2020.

A. Noguchi and T. Harada. Image generation from small datasets via batch
statistics adaptation. In IEEE International Conference on Computer Vision,
pages 2750–2758, 2019.

A. Odena. Semi-supervised learning with generative adversarial networks. arXiv
preprint arXiv:1606.01583, 2016.

A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary
classifier gans. In International Conference on Machine Learning, pages 2642–
2651, 2017.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

B. Paige, J.-W. van de Meent, A. Desmaison, N. Goodman, P. Kohli, F. Wood,
P. Torr, et al. Learning disentangled representations with semi-supervised deep
generative models. Advances in Neural Information Processing Systems, pages
5925–5935, 2017.

T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu. Semantic image synthesis with
spatially-adaptive normalization. In IEEE Computer Vision and Pattern Recog-
nition, pages 2337–2346, 2019.

T. Park, A. A. Efros, R. Zhang, and J.-Y. Zhu. Contrastive learning for unpaired
image-to-image translation. In European Conference on Computer Vision, 2020.

G. Perarnau, J. van de Weijer, B. Raducanu, and J. M. Álvarez. Invertible Condi-
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