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An dieser Stelle möchte ich weiterhin Sylvie Rœlly nennen, die mich während meines Studiums an
der Universität Potsdam, insbesondere im Rahmen meiner Masterarbeit, betreute. Dadurch habe ich
viele Dinge gelernt, die mir bei der Arbeit an dieser Dissertation auf mehreren Ebenen sehr hilfreich
waren. Dafür, sowie den Zuspruch, eine Doktorarbeit in Angriff zu nehmen, bedanke ich mich herzlich.

Meinen Mitdoktoranden erster Stunde, insbesondere Daniel Ebel, Nick Kloodt, Miran Knežević und
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Introduction

Stochastic partial differential equations (SPDEs) combine the ability of deterministic PDE models
to describe complex mechanisms with the key feature of diffusion models, namely a stochastic signal
which evolves within the system. While SPDEs have been intensively studied in stochastic analysis,
their statistical theory is only at its beginnings. The prototype example for the class of parabolic
SPDEs is given by the stochastic heat equation on an interval, namely

dXt(x) = ϑ2
∂2

∂x2
Xt(x) dt+ σ dWt(x), (t, x) ∈ R+ × [0, 1], (1)

with Dirichlet boundary conditions and driven by a white noise dW in space and time. The natural as-
sociated statistical problem is how to infer on the model parameters σ2 > 0 and ϑ2 > 0 based on some
kind of observation derived from a realization of X. Inspired by the various applications of stochastic
processes in the natural sciences as well as mathematical finance, enormous efforts have been spent
on the development of statistical methodology for finite dimensional processes like diffusions or semi-
martingales during the last decades. We refer to the textbooks Jacod and Protter [45] and Liptser and
Shiryaev [52] for an extensive treatment of the topic from different perspectives. Due to fundamental
structural differences, the existing theory for finite dimensional processes is not directly applicable to
the infinite dimensional framework of SPDEs. Let us mention two exemplary differences: Firstly, for
X defined via (1), the marginal process t 7→ Xt(x0) at a fixed spatial location x0 ∈ (0, 1) has a finite
quartic variation (cf. Swanson [73]) and, hence, it shows a much rougher behavior in time than finite
dimensional diffusion processes. Secondly, directly related to the above mentioned statistical problem,
it has been shown for multiple types of observation schemes (see below) that the parameter ϑ2 can
be estimated consistently on a finite time interval, despite its resemblance in the underlying equation
of a drift parameter in a finite dimensional SDE. As a consequence, it is necessary to develop new
statistical tools, paying attention to the infinite dimensional nature of SPDE models. Considering
multiple types of observation schemes and employing various different mathematical techniques for
their analysis, this topic has become increasingly popular in the statistics literature during the last
few years.

Despite the structural differences, previous works have shown that methods from the high-frequency
literature on semimartingales, e.g., power variations, can be fruitfully adapted for solving statistical
problems associated with SPDEs, see, e.g., [9, 15, 19]. Moving forward in this direction, in this the-
sis we consider the practically most relevant situation where the solution X of (a generalization of)
equation (1) is observed at a discrete grid

(ti, yk)i=0,...,N,k=0,...,M ⊂ [0, T ]× [0, 1]

in time and space with T > 0 either fixed or T →∞. Our focus lies on the scenario of high frequency
observations in time and space such that, in particular, both the number M of spatial observations
and the number N of temporal observations tend to infinity.

Since we first need to have a thorough statistical understanding for basic SPDEs before more
complex models can be studied, a large part of this thesis is concerned with the analysis of the
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estimation problem for the diffusivity parameter ϑ2 and the volatility parameter σ2 in the stochastic

heat equation (1). In fact, somewhat more general than ϑ2
∂2

∂x2 , we will consider the linear second
order differential operator

Aϑ := ϑ2
∂2

∂x2
+ ϑ1

∂

∂x
+ ϑ0 id (2)

with additional parameters ϑ1, ϑ0 ∈ R. Despite its relative simplicity, developing statistical method-
ology for this model is not only interesting from a mathematical point of view. Apart from the
stochastic heat equation, our theory covers models, e.g., from neurobiology [76] or for the description
of interest rates [24]. Besides the statistical theory, this thesis also discusses the problem how discrete
samples of the linear SPDE model with differential operator Aϑ can be generated efficiently for the
purpose of simulations.

Once we have achieved a good understanding for the estimation problem for the linear SPDE
model, we expand the realm of our theory to the semilinear framework of reaction-diffusion systems,
namely

dXt(x) =
(
ϑ2

∂2

∂x2
Xt(x) + f(Xt(x))

)
dt+ σ dWt(x), (t, x) ∈ R+ × [0, 1], (3)

where f : R → R is a possibly nonlinear function on which we impose no parametric assumptions.
Here, our aim is to infer on the parameters ϑ2 and σ2 as well as on the function f . Reaction-diffusion
equations describe a scenario where local production of some quantity X with the nonlinear rate func-
tion f competes with a linear diffusion effect while undergoing internal fluctuations, see [57] as well
as, e.g., [35] for the physical background. Of particular interest is the case where f is a polynomial of
odd degree with a negative leading coefficient. Of course, setting f ≡ 0, this model includes the linear
stochastic heat equation (1) and, more generally, with f(x) := ϑ0x we arrive at the linear SPDE model
with differential operator Aϑ and ϑ = (ϑ2, 0, ϑ0). The case ϑ1 6= 0 could be incorporated into the
model by adding a first order derivative ϑ1

∂
∂xXt(x) dt on the right hand side of (3) which is excluded

from our analysis for the sake of simplicity.

In order to set the scene, we will first review several approaches from the literature on statistics for
SPDEs before exhibiting the contributions of this thesis. The structure of the thesis will be described
at the end of this introduction.

State of the art in statistics for SPDEs

As already indicated, there still is a lot of groundwork to be done in statistics for SPDEs, even for
simple linear equations. Just like the models (1) and (3), most systems treated in the literature fall
into the category

dXt =
(
ϑ2AXt + F (Xt)

)
dt+ σB dWt

where the solution (Xt)t≥0 is a process taking values in some separable Hilbert space H, e.g., H =
L2(O) for some open bounded set O ⊂ Rd. The coefficients A and B are linear operators and (Wt)t≥0

is a cylindrical Brownian motion on H. Mostly, the case where F is another linear operator, or even
F ≡ 0, is considered in the literature. A setting where F can be a nonlinear operator acting on some
subset of H has only been addressed during the last few years, for further details see also the section
about estimation in a semilinear framework of this introduction.

The larger part of the existing literature on statistics for SPDEs deals with estimation of the
diffusivity parameter ϑ2 when the operator A admits a complete orthonormal system of eigenfunctions
(ek)k≥1. In the so called spectral approach, it is assumed that observations of the first n Fourier modes
〈Xt, ek〉H , t ∈ [0, T ], k ≤ n, are available and the asymptotic properties of estimators are studied when
n→∞. In particular, if F ≡ 0 and B can be diagonalized with respect to the same basis as A, these
Fourier modes are one-dimensional independent Ornstein-Uhlenbeck processes. Thus, it is possible to
build statistical procedures based on the existing methodology for finite dimensional SDEs. Starting
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with the seminal papers Huebner et al. [40] and Huebner and Rozovskii [41], the spectral approach
has been applied to various linear models. We refer to the review papers [53] and [17] for further
references, an extension to a semilinear framework is treated in [18, 68].

Instead of using the eigenfunctions of A as test functions, Altmeyer and Reiß [3] considered ob-
servations 〈Xt,Kh〉, t ≤ T, where Kh is a kernel function localizing in space as h→ 0. With A being
a second order differential operator and F ≡ 0, the authors derive nonparametric estimators for a
spatially varying diffusivity parameter ϑ2 = ϑ2(y) based on a likelihood approach. The parametric
problem for constant diffusivity has also been treated in a semilinear framework, see [2].

Starting with Koski and Loges [50], multiple authors have also considered estimation problems for
observations of the full trajectory (Xt)t≤T or a functional thereof when T →∞, see, e.g., [46, 51, 60].

All the approaches mentioned so far have the major disadvantage that they essentially rely on a full
spatial resolution which is an unrealistic scenario in practice. The spectral approach has the further
disadvantage that it requires the eigenfunctions of the operator to be known. This assumption is
already violated if we consider the operator (2) with unknown ϑ1 ∈ R. Inspired by the practically most
realistic scenario, the canonical problem of parameter estimation based on fully discrete observations
of the solution field of the SPDE recently attracted an increased research activity. In order to facilitate
the analysis of discrete observations in a conceptual L2-setup, authors have considered very concrete
and, usually, one-dimensional systems where rather explicit representations of the solution process are
available. A first step in that direction was made by Markussen [59] who considered an approximate
maximum likelihood estimator when the process is observed at finitely many spatial locations at a
fixed temporal frequency with T →∞. Since then, central limit theorems for method of moment type
estimators based on realized variations in space or time have been studied for various linear SPDEs
by, e.g., Torres et al. [74], Cialenco and Huang [19], Bibinger and Trabs [8, 9], Shevchenko et al.
[71], Mahdi Khalil and Tudor [56] as well as Kaino and Uchida [48, 49]. Working in a more general
framework, Chong [14, 15] studied temporal variations at finitely many spatial locations for the linear
stochastic heat equation on Rd when the volatility σ is a random field of time and space or a function
of the solution process (multiplicative noise), respectively. Estimating the integrated volatility process
over time at finitely many space points, these works fall into the realm of semiparametric statistics,
see also [9] for the case of a deterministic time dependent volatility σ = σ(t). Note that for discrete
observations to be well defined, it is necessary that the solution process admits continuous trajectories.
For the stochastic heat equation driven by space-time white noise this is only the case in spatial
dimension one. In the multi-dimensional case one could consider noise processes which are more
regular in space, as studied by Chong [15].

Own contributions and related literature

In the following, we describe the main contributions of this thesis in the context of the existing
literature on the topic. The exposition is divided into three sections, each representing one of the
main chapters of this thesis.

Parametric estimation for the linear equation

For the stochastic heat equation (1), method of moment type estimators based on realized variations
have been studied by [9, 15, 19, 49]. However, all these works only give partial answers to the
estimation problem: even for this basic model there is neither a sharp analysis for joint estimation of
ϑ2 and σ2 nor the case where the number of spatial observations M dominates the number of temporal
observations N has been explored in general.

We provide a complete statistical analysis of parametric estimation for linear parabolic SPDEs
in dimension one based on discrete observations. Assuming, first, a fixed time horizon, our main
contribution on the estimation problem for the parameters (σ2, ϑ2) in equation (1) reveal that:

(i) ϑ2 and σ2 cannot be jointly estimated if N or M is fixed.
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(ii) The optimal convergence rate for estimating (ϑ2, σ
2) is 1/

√
M3 ∧N3/2 which is generally slower

than the parametric rate 1/
√
MN .

(iii) Realized space-time quadratic variations can be used to construct estimators which are robust
with respect to the sampling frequencies N and M in time and space, respectively.

In view of (i), we consider the double asymptotic regime M,N → ∞ in our analysis which results
in infill asymptotics in time and space. Since the vector of observations (Xti(yk))i=0,...,N,k=0,...,M is
normally distributed with only two unknown parameters, it might surprise that there is no estimator
with parametric rate for (ϑ2, σ

2). The lower bound which verifies this statement is at the heart of
our analysis. It shows that the parametric rate can only be achieved if N and M2 are of the same
order of magnitude. In view of the scaling invariance of the stochastic heat equation, the particular
asymptotic regime δ h

√
∆ with δ := yk+1 − yk h 1/M and ∆ := ti+1 − ti h T/N implies that

we add the same amount of information in time and space as N and M increase. In this sense, we
have a balanced design. An unbalanced regime ∆ = o(δ2) or δ = o(

√
∆) causes a deterioration of the

convergence rate.
More generally, our findings apply to the situation where the Laplacian is replaced by the second

order differential operator Aϑ from (2) and, possibly, to a growing time horizon T → ∞. While the
parameter ϑ1 can be estimated jointly with (σ2, ϑ2) and without affecting the rate of convergence,
ϑ0 cannot be identified in finite time and, thus, behaves like a classical drift parameter. Also on a
growing time horizon T →∞, the parameters (σ2, ϑ2, ϑ1) can only be estimated with parametric rate
of convergence in the balanced sampling design δ h

√
∆. In general,( T

δ3 ∨∆3/2

)−1/2

takes the role of the optimal rate of convergence for (σ2, ϑ2, ϑ1). The parameter ϑ0 can be estimated
with the slower but optimal rate 1/

√
T . Our main lower and upper bounds for fixed T or T →∞ are

formulated in Theorems 2.1.2 and 2.1.7 as well as Corollaries 2.2.14 and 2.2.19, respectively
Our statistical analysis also gives insights into the relation between the spectral and the discrete

observation scheme. While both are heuristically comparable in view of the discrete Fourier transform,
it turns out that there are important differences. In particular, the fully discrete observation scheme
is not statistically equivalent (in the sense of Le Cam) to time-discrete observations of the first M
Fourier modes in general.

Our estimators rely on realized quadratic variations, taking into account time and space increments,

(∆N
i X)(yk) := Xti+1(yk)−Xti(yk), (δMk X)(ti) := Xti(yk+1)−Xti(yk), (4)

respectively, as well as space-time increments or double increments,

Dik := (δMk ◦∆N
i )X = (∆N

i ◦ δMk )X = Xti+1(yk+1)−Xti+1(yk)−Xti(yk+1) +Xti(yk). (5)

In contrast to the maximum likelihood approach which requires inversion of the large MN ×MN
covariance matrix, method of moments type estimators based on (4) and (5) are easy to implement.
For one-parameter processes, power variations are a standard tool in the statistical literature, see,
e.g., Barndorff-Nielsen et al. [6] or the previously mentioned textbook [45]. Also, from a probabilistic
point on view, there is a certain amount of literature devoted to variations based on double increments
for some random field models, see, e.g., [66, 69].

For the stochastic heat equation on a finite time interval, it is observed in Bibinger and Trabs
[9] that a central limit theorem for realized temporal quadratic variations requires that the observa-
tion frequency in time dominates the observation frequency in space, more precisely, M = o(

√
N) is

necessary. Complementarily, we show in Theorem 2.2.3 that the realized spatial quadratic variation
satisfies a central limit theorem if N = o(M). The remaining gap can be filled by double increments
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and the corresponding realized space-time quadratic variation turns out to be robust with respect
to the sampling frequencies M and N , see Theorem 2.2.7. Based on these statistics, we construct
method of moments estimators for σ2, ϑ2 and ϑ1. Our rate optimal method for joint estimation of
(σ2, ϑ2, ϑ1) is an M-estimator relying on double increments. Additionally, if T → ∞, the parameter
ϑ0 can be estimated employing a method of moments approach based on the sum of squares of the
discrete observations. Concerning the rate of convergence, our estimator for the parameter vector
(σ2, ϑ2, ϑ1, ϑ0) is a considerable improvement compared to Kaino and Uchida [49] who considered
method of moment estimators from [9] together with a likelihood approach for an approximation of
the first Fourier mode. Our proofs rely directly on the Gaussian distribution of X which allows for
an explicit covariance condition for asymptotic normality of quadratic forms of Gaussian triangular
schemes, see Proposition 2.2.1. Also, our estimators could be directly generalized to a nonparametric
model with time dependent coefficients, as indicated in [9, 15].

Generating fully discrete samples for the linear equation

As usual, we investigate the finite sample performance of our estimators using simulations. For our
SPDE model, computing realized variations from simulated data turns out to be a delicate task,
even for the linear equation (1). In the previous works [9, 19, 48, 49] on discrete observations of the
stochastic heat equation the primary foundation for the statistical theory and its simulation was the
fact that the solution process admits a representation Xt(y) =

∑
`≥1 u`(t)e`(y) where (u`)`≥1 are

independent one-dimensional Ornstein-Uhlenbeck processes and (e`)`≥1 are the eigenfunctions of the
differential operator in the underlying equation. In particular, in order to simulate X on a space-time
grid, the approximation Xtrunc

ti (yk) :=
∑K
`=1 u`(ti)e`(yk) for some large integer K appears natural in

view of the increasing drift towards 0 of the processes u` for ` → ∞. The individual processes u`
can be simulated exactly based on their AR(1)-structure. As empirically observed, e.g., by Kaino and
Uchida [49], the value of K has to be chosen carefully depending on the numbers of temporal and
spatial observations N and M . In fact, even for moderate sample sizes, large values of K turn out
to be crucial in order to prevent a severe bias in the simulated data. This makes simulations very costly.

Again, we work with our linear SPDE model where the associated differential operator is given
by (2). Generalizing an idea stated in Davie and Gaines [29], we analyze an alternative approach,
leading to almost exact (in distribution) discrete samples of X at a considerably lower computational
cost. The two key observations leading to the method are: Firstly, the first M eigenfunctions e` are
orthorgonal with respect to the empirical inner product, which yields a representation of the spatially
discrete data in terms of a finite number of eigenfunctions. Secondly, for large values of ` the process
(u`(ti), 0 ≤ i ≤ N) can be approximated well by a set of independent random variables. Here, the
coefficient processes corresponding to high Fourier modes are replaced by a set of independent random
variables rather than truncated, hence, we shall call this approach the replacement method, as opposed
to the truncation method. In order to provide a theoretical justification for the replacement method,
we measure the quality of the approximation in terms of the total variation distance of the random
vector (Xti(yk))i=0,...,N,k=0,...,M from its approximation. By exploiting the Gaussian property of the
involved processes, we derive an explicit bound on the corresponding approximation error. Again
denoting ∆ = ti+1 − ti, our precise analysis reveals that it is sufficient to generate discrete samples
of J ≥ M Ornstein-Uhlenbeck processes accompanied by a sample of the same size of independent
normal random variables, as long as (roughly) J

√
∆→∞, see Theorem 3.1.3.

The literature on approximation of SPDEs usually focuses on controlling errors of the type
E(‖X(T )−Xa(T )‖L2) (strong sense) or |E(φ(X(T )))−E(φ(Xa(T ))| (weak sense) for an approxima-
tion Xa of X, a fixed time instance T and a continuous functional φ, see e.g. [47]. Our primary goal,
on the other hand, is to mimic the distribution of the discrete observations (Xti(yk))i=0,...,N,k=0,...,M

as well as possible, particularly when at least one of the numbers M and N tends to infinity, as is
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the case when computing realized power variations. The corresponding functionals, mapping sample
paths to the asymptotic value of their power variations, are not continuous: a function close to zero
can have arbitrarily rough paths. Hence, the known bounds on the strong or weak approximation
error do not provide conditions under which the approximate power variation is close to the true
one, in general. Here, controlling the total variation distance between the discrete sample and its
approximation is an appropriate tool. Given that the total variation distance becomes negligible,
functionals computed from the approximation converge to the correct weak limit (if existent), see also
the discussion following Theorem 3.1.3. We remark that Chong and Walsh [16] examined the related
question how finite difference approximations affect the asymptotic value of power variations of the
stochastic heat equation.

Estimation in a semilinear framework

By estimating the parameters (σ2, ϑ2, f) of the system (3), we advance the theory on statistical estima-
tion for SPDEs based on fully discrete observations into two new directions: First of all, by considering
reaction-diffusion equations, we work in a nonlinear SPDE framework. Secondly, by estimating the
function f on a whole continuum, we treat a fully nonparametric problem. Furthermore, regardless
of the observation scheme, our estimator for f is the first nonparametric estimator of the nonlinearity
in SPDEs.

The literature on statistics for semilinear SPDEs is limited and most works have only appeared
within the last two years. Within the spectral approach, Cialenco and Glatt-Holtz [18] considered
drift parameter estimation for the stochastic two-dimensional Navier-Stokes equation. Their findings
were later generalized for more general equations, see [67, 68]. Also, the local measurements approach
was generalized to the semilinear framework, see [1, 2]. For both observation schemes the solution
of the semilinear equation is regarded as a perturbation of the linear case so that the corresponding
estimation methods retain their validity under certain assumptions on the nonlinearity F . More
precisely, the argument is that, within the decomposition Xt = X0

t +Nt with X0
t being the solution to

the corresponding linear system, the regularity of the nonlinear component Nt exceeds the regularity
of X0

t in the Sobolev spaces D((−A)γ), γ > 0.
Statistics for semilinear SPDEs based on discrete observations is a completely new field and has

not yet been addressed in the literature.1 Assuming f ∈ C1(R) in the model (3), we show that
the asymptotic properties of our parametric estimators for (σ2, ϑ2) based on space, time and double
increments largely remain valid in the semilinear framework, see Theorems 4.3.1 – 4.3.3. As for the
other observation schemes, our findings rely on the higher order regularity of the nonlinear component
of the solution process. Note that, being based on power variations, our estimators exploit the exact
roughness of the sample paths of X. Thus, we rely on the regularity properties of X and its nonlinear
component in the spaces of Hölder continuous functions instead of the Sobolev spaces. Besides the
concrete application in statistics, our detailed account of the Hölder regularity in time and space also
provides structural insights from a theoretical probabilistic point of view, see Propositions 4.2.1 and
4.2.3.

The theory covered in [2, 68] also applies to more general nonlinearities, e.g., Burgers’ equation
with F (u) = −u ∂

∂xu, which is possible by considering a regularizing diffusion coefficient B. In fact, in
order to obtain the higher order regularity of the nonlinear component, it is necessary for the solution
process to take values in the domain of the nonlinearity F . This is not the case for Burgers’ equation
with the diffusion coefficient B = I and we restrict our analysis to nonlinearities of Nemytskii-type
where F (u) = f ◦ u.

To the author’s knowledge, the only work on estimation of the nonlinearity F in semilinear SPDEs
was conducted by Goldys and Maslowski [33]. In this article, consistency of the maximum likelihood

1Prior to the final publication of this thesis, the independent study Cialenco et al. [20] on volatility or diffusivity
estimation for semilinear SPDEs based on spatial variations at a single time instance was published as a preprint.
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estimator based on a full observation (Xt)t≤T , T → ∞, of a controlled SPDE is proved, assuming
that the nonlinearity involves a finite dimensional unknown parameter. Somewhat related, Pasemann
et al. [67] studied estimation of the diffusivity parameter when the nonlinearity is only known up to
a finite dimensional nuisance parameter by using a joint maximum likelihood approach within the
spectral framework.

In this thesis, we consider nonparametric estimation of the function f from the reaction-diffusion
equation (3) based on fully discrete observations. In contrast to estimation of the diffusivity ϑ2,
our results turn out to be comparable to drift estimation for finite dimensional SDEs. We adapt
an approach by Comte et al. [21] who derived a simple least squares estimator for high frequency
observations of ergodic one-dimensional diffusion processes. Their results are a generalization of
earlier works on regression models, see [22, 23]. For more involved nonparametric drift estimation
methods for high frequency observations of diffusion processes see also [32, 39]. Due to the properties
of the linear equation, it is clear that even the simple linear function f(x) = ϑ0x cannot be identified
in finite time and, in order to obtain general results, we work in the regime T →∞. Our key insight
is that there is a regression type decomposition

Xt+∆ − S(∆)Xt

∆
= f(Xt) + “stochastic noise term” + “negligible remainder terms”

where (S(t))t≥0 is the strongly continuous semigroup on L2((0, 1)) generated by the operator ϑ2
∂2

∂x2 .
Clearly, computing S(∆)Xt is not feasible in the discrete observation scheme, as it depends on the
whole process Xt(x), x ∈ (0, 1), and we replace it by an empirical counterpart S∆

t := Ŝ(∆)Xt.
Additionally, the semigroup depends on the possibly unknown parameter ϑ2 which we address by
employing a plug-in approach with the help of an appropriate estimator. A nonparametric estimator
f̂ is then defined as the minimizer of

γN,M (g) :=
1

MN

N−1∑
i=0

M−1∑
k=0

(
g(Xti(yk))− Xti+1

(yk)− S∆
ti (yk)

∆

)2

over the functions g from a suitable finite dimensional approximation space. Working in an ergodic
regime for the process (Xt)t≥0, we derive oracle inequalities for the risk of the estimator when the risk
is either the empirical 2-norm with evaluations at the data points or the usual L2-norm on a compact
set. Our main oracle inequalities are formulated in Theorem 4.4.9 and Corollary 4.4.11, the case of
an unknown diffusivity parameter is treated in Theorem 4.4.12. If one chooses the dimension of the
approximation space owing to the usual variance-bias trade-off, we provide conditions under which
the estimator achieves the usual nonparametric rate T−α/(2α+1) where α is some regularity parameter
associated with f . In that sense, the result from [21] for finite dimensional systems carries over, though
we need to require some stricter assumption in order for remainder terms to be negligible. Recall that
our parametric estimators for (σ2, ϑ2) are constructed as method of moments estimators directly
based on the covariance structure of the discrete observations. On the other hand, our nonparametric
estimator for f is based on an approximation of the spatially continuous model. As a consequence, our
estimation method requires a large amount of spatial observations, namely M∆2 → ∞ is necessary.
For a discussion on the problem of estimating f directly based on the discrete model we refer to the
end of Section 4.4.

Structure of the thesis

This thesis consists of the three main Chapters 2–4, accompanied by an introduction of the statistical
model (Chapter 1) as well as a conclusion and outlook (Chapter 5). The main chapters are divided
into sections containing our main results and their discussion and a section in which we collect proofs
and auxiliary results.

In Chapter 1 we provide a short introduction to the abstract framework for infinite dimensional
stochastic equations and recall fundamental existence and uniqueness results for a class of SPDEs.
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Afterwards, we introduce the models (1) and (3) thoroughly by embedding it into the abstract frame-
work. For the linear system we discuss important properties of the law and the sample paths of the
solution process. The fully discrete observation scheme considered throughout this thesis is introduced
at the end of the chapter.

Chapter 2 is devoted to the problem of estimating the parameters (σ2, ϑ2, ϑ1, ϑ0) of the linear
system. In the first part of the chapter we discuss identifiability of the parameters and derive lower
bounds on the rate of convergence of estimators. The second part focuses on the construction of
estimators. To that aim, we prove central limit theorems for the realized quadratic variation based on
both space and double increments. These results are used to construct asymptotically normal method
of moments estimators for the parameters. In particular, the rate of convergence of our estimator
based on double increments matches the lower bound derived in the first part of the chapter. Finally,
we hint at the possibility of constructing approximate confidence sets by exploiting the asymptotic
normality of the estimators. The results of this chapter referring to a fixed finite time horizon can be
found in Hildebrandt and Trabs [38].

With the primary goal of illustrating our results on the estimators from Chapter 2, in Chapter 3
we introduce the replacement method for generating fully discrete samples of the linear system. We
measure the accuracy of the method by bounding the total variation distance between simulated and
actual discrete observations. In a numerical example we compare the replacement method with naive
truncation in Fourier space. Owing to its original purpose, the chapter is concluded with a simulation
study on the estimators from Chapter 2. The introduction and analysis of the replacement method
can be found in Hildebrandt [36], parts of the simulation study for the estimators are taken from
Hildebrandt and Trabs [38].

Chapter 4 is devoted to estimating the parameters (σ2, ϑ2, f) of the reaction-diffusion equation
(3). First, we discuss further regularity assumptions on the solution process, i.e., on f , required for
our further analysis. Next, we derive precise results on the Hölder regularity in time and space of the
solution process and show the higher order regularity of its nonlinear component. As a consequence,
we are able to conclude that the asymptotic properties of our estimators for (σ2, ϑ2) mainly carry
over from the linear setting. Then, we turn to nonparametric estimation of f . As a first step, we
introduce the approximation spaces which serve as the candidate functions for estimating f . Then,
assuming that the diffusivity is known, we define our estimator and derive a corresponding oracle
inequality. This is done, first, based on spatially continuous observations of the solution process and,
then, based on fully discrete observations via approximation arguments. If the regularity of f is known,
the oracle inequalities can be used to determine an optimal dimension for the approximation space
and a corresponding rate of convergence. The chapter is concluded by showing that our estimation
procedure for f can be carried out without prior knowledge on the parameters (σ2, ϑ2) by using a
plug-in approach. The results of this chapter are part of the preprint Hildebrandt and Trabs [37].
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Notations

As usual, real numbers and integers are denoted by R and Z, respectively, and we use the nota-
tion R+ := [0,∞). We follow the convention that the natural numbers do not include 0 and write
N := {1, 2, . . .} as well as N0 := N ∪ {0}.

For a, b ∈ R we use the shorthand a ∧ b := min(a, b) and a ∨ b := max(a, b). For two sequences
(an), (bn), we write an . bn to indicate that there exists some c > 0 such that |an| ≤ c · |bn| for all
n ∈ N and we write an h bn if an . bn . an. Throughout an, bn → ∞ is meant in the sense of
an ∧ bn →∞ for n→∞. If an = a for some a ∈ R and all n ∈ N, we write (an) ≡ a. When we write
statements like M,N → ∞, we implicitly assume that M and N depend on a common index n ∈ N
such that Nn,Mn →∞ for n→∞.

When there are no ambiguities, the norm on a normed space X is referred to as ‖ · ‖X . The
Euclidian norm on Rd is denoted by ‖ · ‖. ∂S is the boundary of a set S ⊂ Rd with respect to ‖ · ‖ and
we write S̄ = S ∪ ∂S for its completion. For a matrix A = (aij) ∈ Rn×n, ‖A‖2 denotes its spectral
norm and ‖A‖F denotes its Frobenius norm, i.e.,

‖A‖2 := sup
x∈Rn\{0}

‖Ax‖
‖x‖ , ‖A‖2F :=

n∑
i,j=1

a2
ij . (6)

For sets B ⊂ C, 1B : C → {0, 1} denotes the indicator function of B, i.e., 1B(x) = 1 for x ∈ B
and 1B(x) = 0 for x ∈ Bc := C \B. Further, sgn : R→ {−1, 1} is defined via sgn := 1[0,∞)−1(−∞,0).

For Banach spaces E and F , L(E,F ) is the set of continuous linear mappings E → F and, as usual,
we write L(E) := L(E,E). Further, C(E,F ) is the set of all continuous mappings E → F and we
denote ‖f‖∞ := supx∈E ‖f(x)‖F for f ∈ C(E,F ). We follow the convention C(E) := C(E,R). For
I ⊂ R and α > 0, Cα(I, F ) is the set of Hölder continuous functions I → F of order α. In particular,
for α ∈ N ∪ {∞}, Cα(I, F ) is the set of α-times continuously differentiable functions I → F .

For probability measures P and Q on a common measure space (Ω,F), TV(P,Q) and H(P,Q)
denote total variation distance and Hellinger distance, respectively, i.e.,

TV(P,Q) := sup
A∈F
|P (A)−Q(A)| = 1

2

∫
Ω

∣∣∣dP
dµ
− dQ

dµ

∣∣∣ dµ, (7)

H2(P,Q) :=

∫
Ω

∣∣∣∣∣
√
dP

dµ
−
√
dQ

dµ

∣∣∣∣∣
2

dµ, (8)

where µ is any dominating measure for P and Q. When X and Y are random variables taking values in
a common measure space we also write TV(X,Y ) and H(X,Y ) for the distances of their distributions.
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Convergence in probability and convergence in distribution are denoted by
P−→ and

D−→, respec-
tively. For a sequence (Xn) of real random variables on a probability space (Ω,F ,P) we use the
usual stochastic Landau symbols: for a sequence (an) in (0,∞) we write Xn = op(an) to indicate that
Xn/an → 0 holds in probability and Xn = Op(an) means that for any ε > 0 there exists C > 0 such
that P(|Xn/an| ≥ C) ≤ ε for all sufficiently large n ∈ N.
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Chapter 1

Essentials

The aim of this chapter is to introduce the statistical model considered throughout this thesis. As a
first step, in Section 1.1 we recall general concepts from the theory of stochastic equations in infinite
dimensions. Then, as an application of the abstract framework in a concrete situation, we define our
SPDE model and discuss important probabilistic properties of the solution process in Section 1.2.
In the same section, the introduction of the statistical model is completed by specifying the discrete
observation scheme considered in this thesis.

1.1 Prerequisites on SPDEs

The following section contains a short recap on existence and uniqueness results for (semi)linear
stochastic differential equations with additive noise and locally Lipschitz continuous nonlinearity. In
doing so, the concept of stochastic integration in Hilbert spaces is taken for granted, the corresponding
theory can be found, e.g., in Chapter 4 of Da Prato and Zabczyk [26]. The results presented here are
taken from Chapters 5 and 7 of the same book.

Let (Ω,F ,P) be a probability space equipped with a filtration (Ft)t≥0 satisfying the usual con-
ditions. Further, let H be a separable Hilbert space with inner product 〈·, ·〉 and let (el)l∈N be a
corresponding complete orthonormal system. We assume that the probability space carries a cylin-
drical Brownian motion W = (Wt)t≥0 in H, i.e., the processes (βl)l∈N defined by

βl(t) := 〈Wt, el〉, t ≥ 0, l ∈ N,

constitute a sequence of independent one-dimensional standard Brownian motions with respect to
(Ft)t≥0. Clearly, the series

∑
l≥1 βl(t)el is not convergent and, hence, Wt does not take values in H.

Nevertheless, it can be regarded as a process with values in a larger Hilbert space H̃ ⊃ H and, in
particular, it is possible to define a stochastic integral with respect to W . The relevant setting for
this thesis is the case where H = L2(O) for some open bounded set O ⊂ Rd, in which W can be
understood as the anti-derivative in time of space-time white noise.

The larger part of this thesis is concerned with linear stochastic partial differential equations with
additive noise, i.e.,

dXt = AXt dt+BdWt, X0 = ξ. (1.1)

The initial value ξ is a F0-measurable H-valued random variable and the fundamental assumptions
on the coefficients are the following:

(L1) A : D(A) → H is a linear operator with domain D(A) ⊂ H generating a C0-semigroup S =
(S(t))t≥0 on H.
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(L2) B : H → H is a bounded linear operator such that
∫ t

0
‖S(r)B‖2HS dr <∞, t ≥ 0.

Assumption (L1) means that S is a semigroup of bounded linear operators on H, satisfying S(t)x→ x

for all x ∈ H and S(t)x−x
t → Ax for any x ∈ D(A) and t→ 0. Further, ‖R‖2HS =

∑
l≥1 ‖Rel‖2H denotes

the Hilbert-Schmidt norm for a bounded linear operator R. The mild solution (Xt)t≥0 of equation
(1.1) is defined as the H-valued process

Xt = S(t)ξ +

∫ t

0

S(t− s)B dWs, t ≥ 0, (1.2)

where the integral is a stochastic integral in the Hilbert space H, which is well-defined thanks to
Assumption (L2). A priori, X is an H-valued process, though there are relevant situations in which,
using the explicit representation (1.2), it can be shown that X ∈ C(R+, E) holds almost surely for a
smaller Banach space E ⊂ H with norm ‖ · ‖E , as long as ξ ∈ E. In our specific model, this will be
the case with

H = L2(O), E = C0(Ō) := {u ∈ C(Ō) : u(x) = 0 for x ∈ ∂O},

such that point evaluation Xt(x) are well defined for t ≥ 0, x ∈ O. As usual, the space C0(Ō) is
equipped with the norm ‖ · ‖∞.

Later on, we will generalize our setting and consider semilinear stochastic differential equations
with additive noise, i.e.,

dXt =
(
AXt + F (Xt)

)
dt+BdWt, X0 = ξ, (1.3)

where F is some, possibly, nonlinear mapping. Assuming, that the solution to the corresponding
linear equation (1.1) takes values in a smaller Banach space E ⊂ H, it is desirable to have the same
property for the nonlinear equation. Thus, we assume that F maps E into E and consider the part
of A in E, namely

AEx := Ax for x ∈ D(AE) = {x ∈ D(A) ∩ E : Ax ∈ E}. (1.4)

Additionaly to (L1)-(L2), we assume the following:

(N1) The process t 7→WA(t) :=
∫ t

0
S(t− s)B dWs satisfies WA ∈ C(R+, E) almost surely.

(N2) AE generates a C0-semigroup (SE(t))t≥0 on E.

(N3) F : E → E is locally Lipschitz continuous and bounded on bounded subsets of E.

An adapted process (Xt)t≥0 in C(R+, E) is said to be a mild solution of equation (1.3) in E if it
satisfies the variation of constants formula

Xt = S(t)ξ +

∫ t

0

S(t− s)F (Xs) ds+

∫ t

0

S(t− s)B dWs, t ≥ 0, (1.5)

almost surely, where the first integral is a Bochner integral in the Banach space E. The above
assumptions are sufficient to prove the existence of an E-valued solution locally in time. To show
global existence, the concept of a subdifferential of the norm ‖ · ‖E at a point x ∈ E, denoted by
∂‖x‖E , is useful: define

∂‖x‖E = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖E , ‖x∗‖E∗ = 1}, (1.6)

where E∗ is the topological dual space of E and 〈x, x∗〉 denotes the value of x∗ ∈ E∗ applied to x ∈ E.
Consider a function u : R → E, which is differentiable in t0 ∈ R. Then, it can be shown that the
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function γ : R→ R, γ(t) := ‖u(t)‖E , is differentiable from the left and from the right in t0. Denoting

the corresponding one-sided derivatives by d−γ
dt (t0) and d+γ

dt (t0), respectively, we have

d+γ

dt
(t0) = max{〈u′(t0), x∗〉 : x∗ ∈ ∂‖u(t0)‖E},

d−γ

dt
(t0) = min{〈u′(t0), x∗〉 : x∗ ∈ ∂‖u(t0)‖E}

and, in particular,
d−γ

dt
(t0) ≤ 〈u′(t0), x∗〉 for any x∗ ∈ ∂‖u(t0)‖E . (1.7)

Now, global existence of a solution can be deduced from the following assumptions:

(N4) ‖SE(t)‖L(E) ≤ 1 for all t ≥ 0.

(N5) There is an increasing function a : R+ → R+ such that for each x ∈ E there exists x∗ ∈ ∂‖x‖E
with 〈F (x+ y), x∗〉 ≤ a(‖y‖E)

(
1 + ‖x‖E

)
for all y ∈ E.

Theorem 1.1.1 (cf. [26, Theorem 7.7]). Under Assumptions (L1)-(L2) and (N1)-(N5) equation (1.3)
has a unique mild solution X in C(R+, E) for each ξ ∈ E. Furthermore, X is an E-valued Markov
process.

Sketch of proof. For details, see Theorem 7.7 and Example 7.8 in [26]. Local existence of a solution
follows from (N1)-(N3) and Banach’s fixed point theorem. Next, split the solution process into its
linear and its nonlinear component,

Xt = S(t)ξ +WA(t) +Nt, with Nt =

∫ t

0

S(t− s)F (Xs) ds,

such that a global solution can be achieved by bounding ‖Nt‖E . The process (Nt)t≥0 solves the

integral equation Nt =
∫ t

0
S(t − s)F

(
S(s)ξ + WA(s) + Ns

)
ds, N0 = 0, and, using (N4) − (N5) in

connection with (1.7), it is possible to obtain a bound on d−

dt ‖Nt‖E . Then, by applying Gronwall’s
inequality, a bound for ‖Nt‖E follows.

Let us discuss Assumption (N5) in the context of H = L2(O) and E = C0(Ō) for an open bounded
set O ⊂ Rd with smooth boundary and a Nemytskii-type nonlinearity, i.e., F (u) = f ◦u for a function
f ∈ C1(R). In this situation, (N5) is satisfied if

f(λ+ η)sgn(λ) ≤ a(|η|)(1 + |λ|), λ, η ∈ R, (1.8)

cf. [26, Example 7.8]: In fact, it follows from the definition (1.6) of the subdifferential of the norm
that if ‖u‖E = σuu(zu) with σu = sgn(u(zu)) for some zu ∈ O and u ∈ E, then the functional

hu : E 3 v 7→ σuv(zu) (1.9)

is an element of ∂‖u‖E . Thus,

〈f ◦ (u+ v), hu〉 = sgn(u(zu))f(u(zu) + v(zu)) ≤ a(|v(zu)|)(1 + ‖u‖E) ≤ a(‖v‖E)(1 + ‖u‖E)

and, hence, (N5) holds. We remark that, formally, Theorem 1.1.1 is only applicable if f(0) = 0, due
to the requirement that F maps E into E. This issue can be circumvented by replacing WA(t) by

WA(t) + f(0)
∫ t

0
S(t− s)1O ds and f by f0 := f − f(0).

It is shown in [26] that condition (1.8) is satisfied in the important example where f is a polynomial
of odd degree with a negative leading coefficient. In fact, using the same argument, we can conclude
that it is sufficient that f ∈ C1(R) is such that

sup
x≥0

f(x) < +∞ and inf
x≤0

f(x) > −∞ : (1.10)
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For λ ≥ 0 we have f(λ + η) ≤ suph≥−|η| f(h) and for λ < 0 we have −f(λ + η) ≤ − infh≤|η| f(h).

Thus, we can choose a(x) := max
(

suph≥−x f(h), − infh≤x f(h), 0
)
, x ≥ 0.

We close this section by remarking that, under the conditions of Theorem 1.1.1, the mild solution
X is also a weak solution in the sense that

〈Xt, z〉 = 〈ξ, z〉+

∫ t

0

(
〈Xs, A

∗z〉+ 〈F (Xs), z〉
)
ds+ 〈BW (t), z〉, t ≥ 0,

holds almost surely for any z ∈ D(A∗), where A∗ denotes the adjoint operator of A, cf. [26, Theorem
5.4].

1.2 Introduction of the model and basic properties

We introduce the statistical model considered throughout this thesis. The definition of our SPDE
model is divided into the linear case, Section 1.2.1, and the semilinear case, Section 1.2.2. For the
linear equation, we discuss important probabilistic properties of the solution process, including an Itô
decomposition for the spatial process. The discrete observation scheme investigated in this thesis is
introduced in Section 1.2.3. Finally, the Itô decomposition for the spatial process is proved in Section
1.2.4.

1.2.1 The linear equation

In Chapters 2 and 3 of this thesis we will study parameter estimation and simulation for the model
defined by the following linear parabolic SPDE: for parameters σ > 0 and ϑ = (ϑ2, ϑ1, ϑ0) ∈ R+×R2,
we consider

dXt(x) =
(
ϑ2

∂2

∂x2Xt(x) + ϑ1
∂
∂xXt(x) + ϑ0Xt(x)

)
dt+ σ dWt(x), x ∈ [0, 1], t ≥ 0,

Xt(0) = Xt(1) = 0,

X0 = ξ,

(1.11)

driven by a cylindrical Brownian motion W and with some independent initial condition ξ : [0, 1]→ R.

To embed this SPDE into the theory presented in the previous section, we let H = L2((0, 1)) and,
for reasons to become clear shortly, we replace the usual inner product on L2((0, 1)) by the weighted
version

〈u, v〉 := 〈u, v〉ϑ :=

∫ 1

0

u(x)v(x)eϑ1x/ϑ2 dx, u, v ∈ L2((0, 1)).

We consider the mild solution of equation (1.1) with the differential operator Aϑ = ϑ2
∂2

∂x2 +ϑ1
∂
∂x +ϑ0,

the diffusion operator Bx = σx, x ∈ H, and a cylindrical Brownian motion W in H. As usual, the
Dirichlet boundary conditions in (1.11) are implemented by taking D(Aϑ) = H2((0, 1)) ∩H1

0 ((0, 1)),
where Hk((0, 1)) denotes the L2-Sobolev spaces of order k ∈ N and with H1

0 ((0, 1)) being the closure
of {u ∈ C∞((0, 1)) : u has compact support in (0, 1)} in the space H1((0, 1)).

The reason for considering the weighted version of the inner product on L2((0, 1)) is that the differ-
ential operator Aϑ now has a complete orthonormal system of eigenvectors: indeed, the corresponding
eigenpairs (−λ`, e`)`≥1 are given by

e`(y) =
√

2 sin(π`y)e−κy/2, λ` = ϑ2(π2`2 + Γ), y ∈ [0, 1], ` ∈ N,

with κ :=
ϑ1

ϑ2
and Γ :=

ϑ2
1

4ϑ2
2

− ϑ0

ϑ2
.
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Note that in absence of the first derivative in Aϑ, i.e ϑ1 = 0, the system (e`)`≥1 reduces to the usual
sine-base and 〈·, ·〉 to the standard inner product on L2((0, 1)). In general, both the eigenpairs and
the inner product depend on the model parameters. Hence, they are not accessible from a statistical
point of view. Note also that W is a cylindrical Brownian motion with respect to 〈·, ·〉ϑ and, hence,
its distribution implicitly hinges on ϑ, unless ϑ1 = 0.

Throughout, we restrict the parameter space to

Θ =
{

(σ2, ϑ2, ϑ1, ϑ0) ∈ R4 : σ2, ϑ2,
ϑ2

1

4ϑ2
2

− ϑ0

ϑ2
+ π2 > 0

}
,

such that all the eigenvalues −λ` are negative and Aϑ is a negative self-adjoint operator. In particular,
Aϑ generates a C0-semigroup, which is explicitly given by

S(t)x =
∑
`≥1

e−λ`t〈x, e`〉e`, x ∈ L2((0, 1)), t ≥ 0.

Furthermore, we have ‖S(r)B‖2HS = σ2
∑
`≥1 e−2λ`r and∫ t

0

‖S(r)B‖2HS dr = σ2
∑
`≥1

1− e−2λ`t

2λ`
<∞.

Consequently, (L1) and (L2) are satisfied and for ξ ∈ L2((0, 1)), Xt = S(t)ξ+σ
∫ t

0
S(t−s) dWs, t ≥ 0,

defines the mild solution to the SPDE (1.11). Note that, in general, the Dirichlet eigenvalues of the
Laplacian on a bounded domain O ⊂ Rd have growth λ` h `2/d, so that a function valued solution of
the stochastic heat equation driven by a cylindrical Brownian motion only exists in dimension d = 1.
Further, using the sequence of independent standard Brownian motions (β`)`≥1 with β`(t) = 〈Wt, e`〉,
the cylindrical Brownian motion W can be realized via Wt =

∑
`≥1 β`(t)e` in the sense that 〈Wt, ·〉 =∑

`≥1 β`(t)〈·, ek〉. Thus, in terms of the projections, or Fourier modes, u`(t) := 〈Xt, e`〉, t ≥ 0, ` ∈ N,
we obtain the representation

Xt(x)=
∑
`≥1

u`(t)e`(x), t ≥ 0, x ∈ [0, 1], (1.12)

where (u`)`≥1 are one-dimensional processes satisfying the Ornstein-Uhlenbeck dynamics du`(t) =
−λ`u`(t) dt+ σ dβ`(t) or, equivalently,

u`(t) = u`(0)e−λ`t + σ

∫ t

0

e−λ`(t−s) dβ`(s), u`(0) = 〈ξ, e`〉

in the sense of the usual finite-dimensional stochastic integral.
Using independence of the Brownian motions driving the coefficient processes, one can explicitly

compute the space-time covariance structure of X, namely

Cov(Xs(x), Xt(y)) = Cov(ξs(x), ξt(y)) + σ2
∑
`≥1

e−λ`|t−s| − e−λ`(t+s)

2λ`
e`(x)e`(y),

for s, t ≥ 0, x, y ∈ [0, 1] with ξt := S(t)ξ. Throughout and without further notice, we work under the
standing assumption that either X0 = ξ = 0, or that X is started in equilibrium. It would be possible
to extend our results to more general initial conditions as long as they are sufficiently regular, as it
is done, e.g., in Bibinger and Trabs [9]. This is omitted for the sake of simplicity. In order to mark
results which are proved exclusively for the stationary case, we use the abbreviation (ST), i.e., we
introduce the assumption
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(ST) X0 follows the stationary distribution.

Assumption (ST) can be realized by letting (u`(0))`≥1 be independent with u`(0) ∼ N (0, σ2/(2λ`)),
which corresponds to starting each of the coefficient processes in equilibrium. In this case, (Xt)t≥0 is
a strictly stationary process and the space-time covariance structure simplifies to

Cov (Xs(x), Xt(y)) = σ2
∑
`≥1

e−λ`|t−s|

2λ`
e`(x)e`(y), s, t ≥ 0, x, y ∈ [0, 1]. (1.13)

For both initial conditions, the coefficient processes (u`)`≥1 are independent. Further, it is evident
from representation (1.12) that X is a two-parameter centered Gaussian field. Therefore, the model is
completely specified by its covariance structure. While σ2 is only a multiplicative factor, the covariance
structure depends on ϑ through λ` and e`.

Thanks to the explicit covariance structure, one can use Kolmogorov’s criterion for random fields
to show that there is a continuous version of the process (Xt(x), t ≥ 0, x ∈ [0, 1]), see [26, Chapter
5.5]. In particular, point evaluations Xt(x) for fixed values of t and x are well defined and we have
X ∈ C(R+, E) almost surely with E = C0([0, 1]). Additionally, it can be inferred from Kolmogorov’s
criterion that the process t 7→ Xt(x) is locally α-Hölder continuous of any order α < 1/4 and x 7→ Xt(x)
is α-Hölder continuous of any order α < 1/2, see also Section 4.2 of this thesis.

For a fixed spatial location x, the process t 7→ Xt(x) is not a semimartingale: since t 7→ Xt(x) is
only Hölder continuous of order almost 1/4, it has infinite quadratic variation over any time interval.
On the other hand, regarding X as a function of space at a fixed point in time substantially simplifies
the probabilistic structure of the process:

Proposition 1.2.1. Assume (ST) and define Γ0 :=
√
|Γ|.

(i) For x ≤ y, we have

Cov (Xt(x), Xt(y)) =
σ2

2ϑ2
e−

κ
2 (x+y) ·


sin(Γ0(1−y)) sin(Γ0x)

Γ0 sin(Γ0) , Γ < 0,

x(1− y), Γ = 0,
sinh(Γ0(1−y)) sinh(Γ0x)

Γ0 sinh(Γ0) , Γ > 0.

(ii) The process [0, 1] 3 x 7→ Z(x) := Xt(x) is an Itô diffusion. In particular,

dZ(x) =

√
σ2

2ϑ2
e−

κ
2 x dB(x)−


(

Γ0 cos(Γ0(1−x))
sin(Γ0(1−x)) + κ

2

)
Z(x) dx, Γ < 0,(

1
1−x + κ

2

)
Z(x) dx, Γ = 0,(

Γ0 cosh(Γ0(1−x))
sinh(Γ0(1−x)) + κ

2

)
Z(x) dx, Γ > 0,

where B(·) = Bt(·) is a standard Brownian motion.

The above proposition is proved in Section 1.2.4. Note the similarity between the covariance
structures of Xt(·) and the Brownian bridge, especially in the case Γ = 0. This resemblance is in line
with the Dirichlet boundary conditions Xt(0) = Xt(1) = 0 in our model.

Remark 1.2.2. For N ≥ 2 and fixed 0 ≤ t1 < t2 < . . . < tN the multi-dimensional process x 7→
(Xt1(x), . . . , XtN (x)) is not an Itô diffusion under (ST). Indeed, it is not even a Markov process: take
N = 2 and let s < t. It is a well known fact that for Markov processes past and future are independent,
given the present state. For x < y < z, on the other hand, using the Gaussian property of X, the
(Gaussian) conditional distribution of (Xs(x), Xt(z)) given (Xs(y), Xt(y)) can be computed explicitly.
From here, independence is easily disproved by checking the non-diagonal entries of the conditional
covariance matrix.
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We finish this section by describing the influence of the parameters (σ2, ϑ2, ϑ1, ϑ0) on the sample
paths heuristically. Figure 1.1 shows exemplary realizations of temporal and spatial processes under
(ST) for different parameter values. By construction, the spatial process is pinned in 0 at the spatial
positions y ∈ {0, 1}. Furthermore, the simulations confirm that the temporal process is much rougher
than the spatial process. The influence of ϑ0 on the visual properties of the sample paths is small
and, qualitatively, −ϑ0 has a comparable effect to ϑ2. Thus, we only exhibit the case ϑ0 = 0. First,
let us discuss the situation where also ϑ1 = 0. It is evident from the covariance structure (1.13) that
σ2 describes the overall noise level of the process. Furthermore, increasing ϑ2 reduces the noise level
of the solution process and, additionally, the temporal process speeds up. The first of these impacts
of ϑ2 is clearly noticeable when comparing the first two rows of plots in Figure 1.1. The second one
is hard to capture visually due to the roughness of the processes. When ϑ1 6= 0, the solution process

Xt(y) approximately looks like e−κy/2X̃t(y) where X̃ solves dX̃t = ϑ2
∂2

∂x2 X̃t dt + σdWt. Indeed, the
covariance structure (1.13) reveals that the distributions of the two processes agree when setting
ϑ0 = ϑ2

1/(4ϑ2). As already mentioned, the latter has no strong visual effect. Thus, a parameter
ϑ1 6= 0 affects the noise level of the temporal process and produces spatial processes with different
amounts of fluctuation in the two halves of the space domain [0, 1]. This effect is illustrated by the
last two rows of plots in Figure 1.1.

1.2.2 The semilinear equation

In Chapter 4 we will complement our setting by considering the semilinear SPDE
dXt(x) =

(
ϑ2

∂2

∂x2Xt(x) + F (Xt)
)
dt+ σ dWt(x), x ∈ [0, 1], t ≥ 0,

Xt(0) = Xt(1) = 0,

X0 = ξ

(1.14)

in the Hilbert space H = L2((0, 1)) equipped with its standard inner product. We will assume that
the nonlinearity F is of Nemytskii-type, i.e., we have F (u) = f ◦u for some function f : R→ R. Since
we are working with point evaluations Xt(x), it will always be assumed that X ∈ C(R+, E) with
E = C0([0, 1]) holds almost surely. Sufficient conditions for the latter are provided by Theorem 1.1.1.
Indeed, by setting ϑ1 = ϑ0 = 0, all properties of the linear component of the solution presented in the
previous section remain valid. In particular, hypotheses (L1)-(L2) and (N1) are fulfilled. Also, (N2)
is satisfied (see, e.g., [55]) and, as pointed out in [26, Remark A.29], (N4) holds due to the maximum
principle for parabolic equations. Thus, the almost sure continuity in time and space of the solution
process can be achieved by requiring that f ∈ C1(R) satisfies condition (1.10) or, more generally,
condition (1.8). For the sake of coherence, the discussion of more specific regularity assumptions
required for our analysis is postponed to the beginning of Chapter 4.

1.2.3 Observation scheme

If not stated otherwise, all statistical considerations in this thesis will be based on the following set of
space-time-discrete observations derived from a single sample path of the process X, which is either
given by the SPDE (1.11) or (1.14): we suppose to have (M + 1)(N + 1) time- and space-discrete
observations

{Xti(yk), i = 0, . . . , N, k = 0, . . . ,M}
on a regular grid {(ti, yk)}i,k ⊂ [0, T ] × [0, 1] with a time horizon T > 0 and M,N ∈ N0. More
precisely, we assume that

yk = b+ kδ and ti = i∆ where δ =
1− 2b

M
, ∆ =

T

N

for some fixed b ∈ [0, 1/2). Concerning the time horizon, it will always be assumed that either T > 0
is fixed or that T →∞.
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Figure 1.1: Exemplary sample paths of spatial (left) and temporal (right) processes for different
parameter values. The blue points indicate the Dirichlet boundary conditions. The observation time
for the spatial processes is t = 0, which is arbitrary, due to stationarity. The temporal processes are
recorded at the spatial position y = 0.4. The sample paths are simulated on the space-time grid points
(i/500, k/500) with i, k ∈ {0, . . . , 500} using the replacement method to be introduced in Chapter 3.
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Due to the bounded space domain, we have high frequency observations in space wheneverM →∞.
In order to obtain high frequency observations in time, we will usually require that T/N → 0. This is
trivially satisfied if T is fixed and N →∞.

Note that the spatial locations yk are equidistant inside a (possibly proper) sub-interval [b, 1−b] ⊂
[0, 1]. For certain statistical procedures, we will exclude observations close to the boundary by requiring
b > 0. This is done to prevent undesired boundary effects, which lead to biased estimates.

1.2.4 Proof of the Itô decomposition for the spatial process

Proof of Proposition 1.2.1. Due to (1.13) and the trigonometric identity

sin(α) sin(β) =
1

2
(cos(α− β)− cos(α+ β)) , (1.15)

we have

Cov(Xt(x), Xt(y)) = σ2e−
κ
2 (x+y)

∑
`≥1

1

2λ`
(cos(π`(y − x))− cos(π`(x+ y)))

=
σ2

2π2ϑ2
e−

κ
2 (x+y)

∑
`≥1

1

`2 + Γ/π2
(cos(π`(y − x))− cos(π`(x+ y))).

The claimed formulas now follow by inserting the closed expressions

∑
`≥1

1

`2 + β
cos(π`x) =


−π cos(π

√
|β|(x−1))

2
√
|β| sin(π

√
|β|)

+ 1
2|β| , −1 < β < 0

π2(x−1)2

4 − π2

12 , β = 0
π cosh(π

√
β(x−1))

2
√
β sinh(π

√
β)
− 1

2β , β > 0

(1.16)

for x ∈ [0, 1] and again applying (1.15) as well as

sinh(α) sinh(β) =
1

2
(cosh(α+ β)− cosh(α− β)),

respectively. To prove the second statement, we use the ansatz Z(x) = u(x)B(v(x)), u, v positive and
v non-decreasing, which is the general form of a Gaussian Markov process, cf. Neveu [64]. Comparison
of covariance functions easily yields

Z(x)
D
=

√
σ2

2ϑ2
e−κx/2 ·


√

1
Γ0 sin Γ0

sin (Γ0(1− x))B
( sin(Γ0x)

sin(Γ0(1−x))

)
, Γ < 0,

(1− x)B
(

x
(1−x)

)
, Γ = 0,√

1
Γ0 sinh Γ0

sinh (Γ0(1− x))B
( sinh(Γ0x)

sinh(Γ0(1−x))

)
, Γ > 0.

A direct calculation shows v′ > 0, so that v is indeed non-decreasing. Further, since v(0) = 0, we have

B(v(x))
D
=
∫ x

0

√
v′(z) dB(z) and, therefore, one passes to

Z(x)
D
=

√
σ2

2ϑ2
e−κx/2 ·


sin (Γ0(1− x))

∫ x
0

dB(z)
sin(Γ0(1−z)) , Γ < 0,

(1− x)
∫ x

0
dB(z)
1−z , Γ = 0,

sinh (Γ0(1− x))
∫ x

0
dB(z)

sinh(Γ0(1−z)) , Γ > 0.

The claimed representation now follows by applying the product rule for Itô processes.
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Chapter 2

Parametric estimation for the linear
equation

This chapter discusses estimation of the parameters (σ2, ϑ2, ϑ1, ϑ0) of the linear SPDE model (1.11)
based on the fully discrete observation scheme defined in Section 1.2.3. The results concerning a finite
time horizon are part of Hildebrandt and Trabs [38].

Before deriving concrete parameter estimators, in Section 2.1 we answer the structural question if
and how fast the parameters can be (jointly) estimated depending on both the sampling frequencies in
time and space and on the time horizon T . In Section 2.2 we prove central limit theorems for realized
quadratic variations based on the space and double increments from (4) and (5), respectively. These
results are then used to construct method of moments estimators for the parameters. In particular,
the convergence rate of our double increments based estimator for all identifiable parameters (almost)
matches the lower bound derived in Section 2.1. Finally, Section 2.3 briefly discusses the possibility of
constructing confidence sets for the parameters based on the asymptotic normality of the estimators.
All proofs are collected in Section 2.4.

Throughout, X = (Xt(x), t ∈ R+, x ∈ [0, 1]) denotes the solution field given by (1.12). For
the results in the lower bounds section, we assume that X0 follows the stationary distribution, the
remaining results also allow for the case X0 = 0.

2.1 Identifiability of parameters and lower bounds

Before discussing lower bounds on the rate of convergence of estimators for the model parameters,
we derive a qualitative result concerning their identifiability on a finite time horizon. Here, we call a
parameter identifiable if it can be estimated consistently from the data. Whether or not a parameter
is identifiable can be assessed by studying absolute continuity properties of the solution process for
different values of the parameters: let G be some parameter space and consider the situation where
a sequence of statistical experiments (Pnγ )γ∈G is induced by a sequence of random variables Tn on a
probability space (Ω,F , (Pγ)γ∈G), i.e., Pnγ = Pγ ◦ T−1

n . Then, if Pγ1
is absolutely continuous with

respect to Pγ2
for two different values γ1, γ2 ∈ G, the parameter γ is not identifiable. Indeed, if there

was an estimator γ̂n such that γ̂n → γ2 holds in Pγ2-probability, then we have γ̂nk → γ2 Pγ2 -almost
surely along a subsequence (nk). Due to the absolute continuity property, this implies γ̂nk → γ2

Pγ1
-almost surely, which contradicts the assumption that γ̂n is a consistent estimator.

In order to study absolute continuity properties of the process X for different parameter values
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(σ2, ϑ), we introduce the notations

(Xt(·), t ∈ [0, T ]) ∼ P(σ2,ϑ) on C([0, T ], L2((0, 1))),

(Xt0(x), x ∈ [0, 1]) ∼ P (t0,·)
(σ2,ϑ) on L2((0, 1)),

(Xt(x0), t ∈ [0, T ]) ∼ P (·,x0)
(σ2,ϑ) on L2([0, T ])

for fixed values t0 ≥ 0, x0 ∈ (0, 1) and a finite time horizon T > 0. Further, for probability measures
Q and P we write Q ∼ P if they are equivalent, i.e., mutually absolutely continuous.

Proposition 2.1.1. Assume (ST) and consider a finite time horizon T > 0. Further, let t0 ≥ 0,
x0 ∈ (0, 1) be fixed. For any two sets of parameters (σ2, ϑ), (σ̃2, ϑ̃) ∈ Θ we have

(i) P(σ2,ϑ) ∼ P(σ̃2,ϑ̃) if and only if (σ2, ϑ2, ϑ1) = (σ̃2, ϑ̃2, ϑ̃1),

(ii) P
(t0,·)
(σ2,ϑ) ∼ P

(t0,·)
(σ̃2,ϑ̃)

if and only if

(
σ2

ϑ2
, κ

)
=

(
σ̃2

ϑ̃2

, κ̃

)
,

(iii) P
(·,x0)
(σ2,ϑ) ∼ P

(·,x0)

(σ̃2,ϑ̃)
if and only if

σ2

√
ϑ2

e−κx0 =
σ̃2√
ϑ̃2

e−κ̃x0 ,

where κ = ϑ1/ϑ2, κ̃ = ϑ̃1/ϑ̃2.

Assuming that none of the four parameters is known, the implications of Proposition 2.1.1 for
discrete or even continuous observations are the following: (i) shows that it is impossible to estimate
ϑ0 consistently on a finite time horizon. (ii) shows that, based on a single temporal observation,
it is impossible to estimate other parameters than

(
σ2/ϑ2, κ

)
. (iii) reveals that, based on a single

spatial observation on a finite time horizon, it is impossible to estimate any other parameter than
σ2
√
ϑ2

e−κx0 . In fact, these restrictions on the identifiability are sharp: σ2
√
ϑ2

e−κx0 can be estimated using

squared time increments of the process [0, T ] 3 t 7→ Xt(x0), as in Bibinger and Trabs [9, Theorem
4.2].

(
σ2/ϑ2, κ

)
can be estimated by computing the quadratic variation of the Itô process Z = Xt0(·)

from Proposition 1.2.1 on two different sub-intervals of [0, 1]. By combining the two methods, all three
parameters (σ2, ϑ2, ϑ1) can be obtained based on (Xt(x), x ∈ [0, 1], t ∈ [0, T ]).

2.1.1 Lower bound for the case of a fixed time horizon

Without loss of generality, we consider the finite time horizon T = 1. Due to Proposition 2.1.1, it
is impossible to estimate ϑ0 consistently on a finite time horizon and, consequently, deriving a lower
bound for the whole parameter vector (σ2, ϑ) is a trivial task. In the following, we are going to
derive a lower bound for the remaining three parameters. For this purpose, it suffices to consider the
sub-problem where ϑ1 = ϑ0 = 0 and only (σ2, ϑ2) has to be estimated.

Theorem 2.1.2. Let ϑ1 = ϑ0 = 0 and assume (ST). Further, consider the observation scheme defined
in Section 1.2.3 with T = 1 and b ∈ [0, 1/2) ∩Q. Then:

(i) If min(M,N) remains finite, then there is no consistent estimator for (σ2, ϑ2).

(ii) For any open set H ⊂ (0,∞)2 there is a constant c > 0, such that

lim inf
M,N→∞

inf
T

sup
(σ2,ϑ2)∈H

P(σ2,ϑ2)

(∥∥∥T − (σ2

ϑ2

)∥∥∥ > c
√
rM,N

)
> 0,

where rM,N :=


N3/2,

M√
N

& 1,

M3 log
N

M2
,

M√
N
→ 0
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and infT is taken over all estimators T of (σ2, ϑ2) based on the observations {Xti+1(yk) −
Xti(yk), i < N, k ≤M}.

Remark 2.1.3. Assertion (i) and the lower bound for the case M/
√
N & 1 are also valid for estimators

based on {Xti(yj), i ≤ N, k ≤M} instead of the increments. We conjecture that this is also true for

the case M/
√
N → 0, see also the discussion following Proposition 2.1.6. Furthermore, we believe

that the logarithmic factor appearing in the lower bound results from technical issues in our proves
and could, possibly, be removed by a tighter analysis.

The above theorem shows that, in general, (σ2, ϑ2) cannot be estimated with the parametric rate
1/
√
MN , in contrast to a conjecture in Cialenco and Huang [19]. Instead, we observe a phase tran-

sition with respect to the rate, depending on the sampling frequencies. The parametric rate can
only be attained when N h M2. In fact, when dealing with a large time horizon, it will be clear
that this condition is more generally specified in terms of the observation intervals ∆ and δ, namely
δ h

√
∆. In this regime, our estimators will show that it is indeed possible to identify (σ2, ϑ2)

at the parametric rate. In that sense, when δ h
√

∆, both spatial and temporal observations con-
tain the optimal amount of information on the parameters and we call it the balanced sampling design.

In order to prove the lower bounds in Theorem 2.1.2, we proceed in the following way: For each
sampling regime we choose a reparametrization (γ1, γ2) of (σ2, ϑ2) in such a way that γ1 can be
estimated with parametric rate, even without knowledge of γ2. We then derive a lower bound for the
simpler problem of estimating the one dimensional parameter γ2, allowing that γ1 is known. Clearly,
the resulting lower bound for γ2 carries over to (γ1, γ2) and consequently to (σ2, ϑ2).

The lower bound for γ2, in turn, is obtained by the standard technique, see e.g. Tsybakov [75].
Indeed, denoting the law of the discrete observations by PN,M

γ2
, it follows from Theorem 2.2 in the

same reference that if γ2 ∈ H2 for some open set H2, then

inf
γ̂2

sup
γ2∈H2

Pγ2

(
|γ̂2 − γ2| ≥ s

)
≥

1−H(PN,M
γ′2

,PN,M
γ′′2

)

2
(2.1)

holds for all γ′2, γ
′′
2 ∈ H2 with |γ′2 − γ′′2 | ≥ 2s and where H(·, ·) is the Hellinger distance, as defined

in (8). Further, using an inequality by Ibragimov and Has’minskii [43, Theorem I.7.6], the Hellinger
distance can be bounded in terms of the corresponding Fisher information J(γ2): Let p(·, γ2) be the
Lebesgue density of PN,M

γ2
and g =

√
p. Then, Jensen’s inequality yields

H2(PN,M
γ′2

,PN,M
γ′′2

) =

∫
(g(x, γ′2)− g(x, γ′′2 ))2 dx ≤ (γ′2 − γ′′2 )2

∫ ∫ 1

0

( ∂g
∂γ2

(x, γ̄2(s)
)2

ds dx

=
(γ′2 − γ′′2 )2

4

∫ 1

0

∫ ( ∂

∂γ2
log p(x, γ̄2(s))

)2

Pγ̄2(s)(dx) ds

=
(γ′2 − γ′′2 )2

4

∫ 1

0

J(γ̄2(s)) ds

with γ̄2(s) = γ′2+s(γ′′2−γ′2). In combination with (2.1) it follows that, in order to prove Theorem 2.1.2,
it suffices to show J(γ2) . rN,M locally uniformly. The main effort, noting that the observations are
significantly correlated, is now to derive sharp upper bounds for the Fisher information in the different
sampling regimes.

In the case M/
√
N & 1, we apply the following bound on the Fisher information for discrete

observations of the first M coefficient processes. Thanks to the Markov property, the probability den-
sity function for discrete observations of an Ornstein-Uhlenbeck process is provided by the transition
density and allows for explicit computations.
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Proposition 2.1.4. Let ϑ1 = ϑ0 = 0 and consider a sample (u`(i/N), ` ≤M, i ≤ N), where (u`)`∈N
are independent Ornstein-Uhlenbeck processes given by

du`(t) = −λ`u`(t) dt+ σ dβ`(t), u`(0) ∼ N
(

0,
σ2

2λ`

)
.

Consider the reparametrization (σ2, ρ2) where ρ2 = σ2/ϑ2 and the corresponding Fisher information
JN,M ∈ R2×2. For max(M,N)→∞, the diagonal entries of JN,M satisfy

JN,M (σ2) = O(N3/2 ∧ (MN)) and JN,M (ρ2) = O(M3 ∧ (MN)). (2.2)

In particular, min
(
JN,M (σ2), JN,M (ρ2)

)
. N3/2 ∧M3 for max(N,M)→∞.

Remark 2.1.5.

1. If M .
√
N and σ2 is known, Proposition 2.1.4 suggests a lower bound of M−3/2 for estimation

of ϑ2 in the spectral approach. Indeed, this rate is achieved by the maximum likelihood estimator
for time-continuous observations of the coefficient processes, cf. Lototsky [53].

2. The reparametrization was chosen since σ2 can be computed from the quadratic variation of any
coefficient process u` when N → ∞, while ρ2 can be computed from the empirical variance of
(
√

2π`)u`(ti), ` ≤M, for a fixed ti as M →∞, even without knowledge of the other parameter,
respectively.

Letting M →∞, Proposition 2.1.4 suggests that, based on observations of the coefficient processes,
it is not possible to estimate σ2 (and in particular (σ2, ϑ2)) at a rate faster than N−3/4. Further,
assuming ϑ1 = 0, the eigenfunctions e`(·) do not depend on unknown parameters and hence, the
space-time-discrete observations of the SPDE may be reconstructed from {u`(ti), i ≤ N, ` ∈ N}.
Consequently, the lower bound N−3/4 carries over to discrete observations of the SPDE.

Although the lower bounds resulting from Proposition 2.1.4 and Theorem 2.1.2 are almost the
same, their proofs require a very different reasoning if M/

√
N → 0: in this case, if σ2 is known, it

follows from the results in Bibinger and Trabs [9] that ϑ2 can be estimated with parametric rate of
convergence based on discrete observations of the SPDE, see also Proposition 2.2.11 in this thesis.
On the other hand, Proposition 2.1.4 suggests that ϑ2 = σ2/ρ2 cannot be estimated at a faster
rate than M−3/2 based on the coefficient processes. In particular, both observation schemes are not
asymptotically equivalent in the sense of Le Cam.

To derive the lower bound in the case M/
√
N → 0, we consider the situation where observations

are recorded at rational positions yk = k
M , k = 1, . . . ,M − 1, where we work with M − 1 instead of M

spatial observations to ease the notation. Thus, we potentially add spatial observations on the margin
[0, b)∪ (1− b, 1], which can only increase the amount of information contained in the data. With this
type of observation scheme, a fact that will prove to be useful in several places of this thesis is that
there is also a discrete version of the orthogonality property for the eigenfunctions: it follows from
basic trigonometric identities that

〈eη, eν〉M = δην , 1 ≤ η, ν ≤M − 1,

with

〈u, v〉M :=
1

M

M−1∑
k=1

u
( k
M

)
v
( k
M

)
eκ

k
M ,

see, e.g., the proof of Theorem 2.1 in Rohde [70]. By periodicity of the sine function, we further have
ēM = 0, ēη+2`M = ēη and ē2M−η+2`M = −ēη for η, ν ≤M − 1 and ē` := (e`(

1
M ), . . . , e`(

M−1
M )). Thus,

for any η, ν ∈ N we have

〈eη, eν〉M =


1, if η, ν ∈ I+

k or η, ν ∈ I−k for some k ≤M − 1,

−1, if η ∈ I+
k , ν ∈ I−k or η ∈ I−k , ν ∈ I+

k for some k ≤M − 1,

0, otherwise

(2.3)

23



with
I+
k := {k + 2`M, ` ∈ N0}, I−k := {2M − k + 2`M, ` ∈ N0}, k ≤M − 1.

In particular, it follows that observing {Xti(yk), i ≤ N, k ≤M − 1} is equivalent to observing

{Uk(ti), k ≤M − 1, i ≤ N}, Uk(t) := 〈Xt(·), ek〉M =
∑
`∈I+

k

u`(t)−
∑
`∈I−k

u`(t). (2.4)

Since the sets Ik := I+
k ∪ I−k are disjoint for different values of k, the processes {U1, . . . , UM−1} are

independent which simplifies the calculation of the Fisher information considerably. Based on their
spectral densities and Whittle’s formula (2.25) for the asymptotic Fisher information of a stationary
Gaussian time series, we obtain the following result for the increment processes Ūk, k ≤M−1, defined
by

Ūk(j) := Uk(tj+1)− Uk(tj), j = 0, . . . , N − 1. (2.5)

Proposition 2.1.6. Let ϑ1 = ϑ0 = 0 and assume (ST). Consider the parametrization (σ2
0 , ϑ2) where

σ2
0 := σ2/

√
ϑ2. If M/

√
N → 0, the Fisher information JM,N with respect to ϑ2 of a sample {Ūk(j), j ≤

N − 1, k ≤M − 1} satisfies

JM,N (ϑ2) = O
(
M3 log

N

M2

)
.

The parametrization was chosen as it allows for estimation of σ2
0 = σ2/

√
ϑ2 with parameteric rate

based on time increments in the regime M/
√
N → 0, even when ϑ2 is unknown. Again, we refer to

[9] or Proposition 2.2.11 of this thesis. We have considered Ūk instead of Uk due to the technical
reason that the N -th order Fourier approximation of the spectral density of the increment process
is positive and, hence, a spectral density as well. We conjecture that the same bound holds for the
Fisher information of Uk.

2.1.2 Lower bound for the case T →∞
Assuming T → ∞, the derivation of a lower bound for estimating (σ2, ϑ2) in the relevant situation
ϑ1 = ϑ0 = 0 can be done in exactly the same way as for a fixed time horizon. Here, one obtains the

lower bound r
−1/2
δ,∆,T with

rδ,∆,T :=


T

∆3/2
,

√
∆

δ
& 1,

T

δ3
· log

δ2

√
∆
,

√
∆

δ
→ 0.

(2.6)

In the case T ≡ 1, we have δ h 1
M and ∆ h 1

N and, thus, we recover the lower bound from Theorem

2.1.2. Further, in case of a balanced sampling design
√

∆/δ h 1, we have rδ,∆,T = N√
∆

h N
δ h NM ,

whereas for an unbalanced sampling design no parametric rate of convergence can be reached by any
estimator. These findings are in line with the results for a fixed time horizon.

When considering the problem of estimating the whole parameter vector (σ2, ϑ), this lower bound
is no longer tight. In fact, even for the sub-problem of estimating ϑ0 when the other parameters are

known, we can deduce the lower bound T−1/2, which is certainly larger than r
−1/2
δ,∆,T . Similarly to

Proposition 2.1.4, this can be shown by bounding the Fisher information for ϑ0 of a sample of the
coefficient processes (u`(ti), i ≤ N, ` ≤ L) uniformly in L ∈ N. The following theorem summarizes
our findings.

Theorem 2.1.7. Assume (ST) and consider the observation scheme defined in Section 1.2.3 with
b ∈ [0, 1/2) ∩Q and T →∞.
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(i) Let ϑ1 = ϑ0 = 0. For any open set H ⊂ (0,∞)2 there is a constant c > 0, such that

lim inf
M,N,T→∞

inf
T

sup
(σ2,ϑ2)∈H

P(σ2,ϑ2)

(∥∥∥T − (σ2

ϑ2

)∥∥∥ > c
√
rδ,∆,T

)
> 0,

with rδ,∆,T defined in (2.6) and where infT is taken over all estimators T of (σ2, ϑ2) based on
the observations {Xti+1

(yk)−Xti(yk), i < N, k ≤M}.

(ii) For any open set H ⊂ R there is a constant c > 0, such that

lim inf
M,N,T→∞

inf
T

sup
ϑ0∈H

Pϑ0

(∣∣T − ϑ0

∣∣ > c√
T

)
> 0,

where infT is taken over all estimators of ϑ0.

2.2 Method of moments estimators for the parameters

In this section we construct method of moments estimators for the parameters and prove corresponding
central limit theorems. To that aim, we first study central limit theorems for realized quadratic
variations based on the space and double increments from (4) and (5), respectively.

2.2.1 Central limit theorems for realized quadratic variations

The realized quadratic variations of X can be regarded as sums of squares of certain Gaussian random
vectors. Hence, our central limit theorems embed into the literature on quadratic forms in random
variables and their asymptotic properties, see e.g. [62]. Our key tool for proving asymptotic normality
is the following proposition which is tailor made for the situation present in this thesis and which
gives an explicit covariance condition that ensures convergence to the normal distribution. Recall the
matrix norms from (6).

Proposition 2.2.1. Let (Zi,n, 1 ≤ i ≤ dn, n ∈ N) be a triangular array such that (Z1,n . . . , Zdn,n) ∼
N (0,Σn) for a covariance matrix Σn ∈ Rdn×dn , n ∈ N, and let (αi,n, 1 ≤ i ≤ dn, n ∈ N) be a

deterministic triangular array with values in {−1, 1}. Define Sn :=
∑dn
i=1 αi,nZ

2
i,n for n ≥ 1. If

‖Σn‖22/Var(Sn)→ 0 as n→∞, then we have

Sn −E(Sn)√
VarSn

D−→ N (0, 1) for n→∞.

The proof relies on the fact that Sn can be represented as a linear combination of independent
χ2(1)-distributed random variables. ‖Σn‖22/Var(Sn) → 0 then implies that the corresponding Lya-
punov condition is fulfilled. In this section we only require αi,n = 1 for all i and n, i.e., Sn = ‖Z•,n‖22.
The general case will be necessary to verify asymptotic normality of the M-estimators in Section 2.2.2.
It is worth noting that Proposition 2.2.1 reveals a quite elementary proof strategy to verify several
central limit theorems in [9, 19, 71, 74] instead of advanced techniques from Malliavin calculus or
mixing theory.

Remark 2.2.2.

1. As an application of Isserlis’ theorem [44], for a 2-dimensional centered Gaussian vector (Y1, Y2),
one obtains the formula

Cov(Y 2
1 , Y

2
2 ) = 2 Cov(Y1, Y2)2. (2.7)
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If (αi,n) ≡ 1, it follows that Var(Sn) = 2‖Σn‖2F and, hence, the condition for asymptotic
normality may be written as ‖Σn‖2/‖Σn‖F → 0. This condition is essentially optimal: in case
of independent observations it is, in fact, equivalent to asymptotic negligibility of the individual
normalized and centered summands and, hence, equivalent to Lindeberg’s condition.

2. The spectral norm is bounded by the maximum absolute row sum. Writing Σn =
(
σ

(n)
ij

)
i,j

,

asymptotic normality, thus, holds under the sufficient condition(
maxi≤dn

∑dn
j=1

∣∣∣σ(n)
ij

∣∣∣)2

VarSn
−→ 0, n→∞. (2.8)

So far, the double asymptotic regime M,N → ∞ has only been studied for time increments
(∆N

i X)(yk) = Xti+1
(yk) − Xti(yk): if b > 0, T is fixed and if there exists ρ ∈ (0, 1/2) such that

M = O(∆−ρ), then the rescaled realized temporal quadratic variation

Vt :=
1

MN
√

∆

N−1∑
i=0

M−1∑
k=0

eκyk(∆N
i X)2(yk) (2.9)

satisfies √
MN

(
Vt −

σ2

√
πϑ2

)
D−→ N

(
0,
Bσ4

πϑ2

)
, N,M →∞, (2.10)

where

B = 2 +

∞∑
J=1

(
2
√
J −
√
J + 1−

√
J − 1

)2

, (2.11)

cf. Bibinger and Trabs [9, Theorem. 3.4]. The central limit theorem (2.10) was later shown to remain
valid in case of a growing time horizon, T → ∞, provided that T∆ → 0, see Kaino and Uchida
[49, Theorem 3]. Note that the central limit theorem is only valid under the condition (roughly)
M = o(∆−1/2), i.e., if the observation frequency in time is much higher than in space. This constraint
is due to a non-negligible correlation of realized temporal quadratic variations at two neighboring
points in space if the distance δ of these points is small compared to ∆. For fixed T , the condition
translates to the requirement that there may only be few spatial compared to temporal observations.

In the situation where the spatial observation frequency dominates the temporal observations
frequency the above result is not applicable. In this case, spatial increments (δMk X)(ti) = Xti(yk+1)−
Xti(yk) and the corresponding rescaled realized spatial quadratic variations

Vsp(ti) :=
1

Mδ

M−1∑
k=0

eκyk(δMk X)2(ti)

at time ti turn out to be useful. In contrast to squared time increments, which have to be renormalized
by
√

∆ due to the roughness of t 7→ Xt(y), squared space increments have to be renormalized by δ,
which is an obvious consequence of the fact that the process y 7→ Xt(y) is a semimartingale under
(ST), cf. Proposition 1.2.1.

In the extreme case where observations are only available at one point t > 0 in time (and assuming
ϑ1 = ϑ0 = 0 as well as X0 = 0) Cialenco and Huang [19] showed that Vsp(t) is asymptotically normal

with 1/
√
M -rate of convergence. An analogous result has been proved by Shevchenko et al. [71] for

the wave equation. If X0 follows the stationary distribution, Proposition 1.2.1 reveals that Vsp(t) is
in fact a rescaled realized quadratic variation of the Itô diffusion y 7→ Xt(y). Hence,

√
M

(
Vsp(t)− σ2

2ϑ2

)
D−→ N

(
0,

σ4

2ϑ2
2

)
, M →∞,
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follows from standard theory on quadratic variation for semimartingales, see, e.g., [6, 45]. In order to
generalize this central limit theorem to the double asymptotic regime M,N →∞, we define the time
average of the rescaled realized spatial quadratic variations:

Vsp :=
1

N

N−1∑
i=0

Vsp(ti) =
1

NMδ

N−1∑
i=0

M−1∑
k=0

eκyk(δMk X)2(ti). (2.12)

In fact, in the case X0 = 0, we have Vsp(t0) = 0 and, thus, we redefine Vsp by summing over
i ∈ {1, . . . , N} instead of i ∈ {0, . . . , N − 1}.
Theorem 2.2.3. Let b ∈ [0, 1/2). If N/M → 0, then

√
MN

(
Vsp −

σ2

2ϑ2

)
D−→ N

(
0,

σ4

2ϑ2
2

)
, M,N →∞.

Remark 2.2.4. The condition N/M → 0 is necessary in order to neglect the bias: the proof of the

theorem reveals that δ−1E
(
e−κyk(δMk X)2(ti)

)
− σ2

2ϑ2
h δ and, consequently, the overall bias is of the

order

E

(√
MN

(
Vsp −

σ2

2ϑ2

))
h
√
MN · δ h

√
N

M
.

For fixed T , we conclude that the central limit theorem for realized temporal quadratic variations
Vt holds when (roughly) M = o(

√
N), whereas the central limit theorem for realized spatial quadratic

variations Vsp is fulfilled if N = o(M). To close the remaining gap, we finally study the space-time
increments Dik from (5). The corresponding rescaled realized quadratic variations are robust with
respect to the sampling regime, as indicated by the representation

Dik =
∑
`≥1

(
u`(ti+1)− u`(ti)

)(
e`(yk+1)− e`(yk)

)
in terms of the series expansion (1.12).

In contrast to the case of space increments (and in line with the result for time increments), we
impose b > 0 for the remainder of this section. Inspection of the proofs suggests that this condition
may be relaxed to b → 0 as long as the decay is sufficiently slow. As a first step, we calculate the
asymptotic expectation of the double increments. In doing so, we restrict ourselves to the stationary
case, the case X0 = 0 will later be dealt with by means of an approximation argument.

Proposition 2.2.5. Assume (ST) and let b ∈ (0, 1/2). Then:

(i) It holds uniformly in 0 ≤ k ≤M − 1 and 1 ≤ i ≤ N − 1 that

E
(
D2
ik

)
= σ2e−κyk Φϑ(δ,∆) +O

(
δ
√

∆
(
δ ∧
√

∆
))

, max(δ,∆)→ 0,

where

Φϑ(δ,∆) := Fϑ2
(0,∆)

(
1 + e−κδ

)
− 2Fϑ2

(δ,∆)e−κδ/2

and

Fϑ2(δ,∆) :=
∑
`≥1

1− e−π
2ϑ2`

2∆

π2ϑ2`2
cos(π`δ).

(ii) Assuming that r = lim δ/
√

∆ ∈ [0,∞] exists, Φϑ admits three different asymptotic regimes:

Φϑ(δ,∆) =


1
ϑ2
· δ + o (δ) , r = 0,

ψϑ2(r) ·
√

∆ + o(
√

∆), r ∈ (0,∞),
2√
ϑ2π
·
√

∆ + o(
√

∆), r =∞,
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where

ψϑ2
(r) :=

2√
πϑ2

(
1− e−

r2

4ϑ2 +
r√
ϑ2

∫ ∞
r

2
√
ϑ2

e−z
2

dz
)
. (2.13)

If, moreover, δ/
√

∆ ≡ r ∈ (0,∞), we have

Φϑ(δ,∆) = e−κδ/2ψϑ2
(r) ·
√

∆ +O(∆3/2). (2.14)

Remark 2.2.6. The first order constants appearing in the asymptotic expressions in (ii) stem from a
first derivative of Fϑ2

(·,∆) in 0 in case r = 0 and a Riemann sum approximation of Fϑ2
(δ,∆) in case

r 6= 0, respectively. For simplicity, assuming that κ = 0, the proof of Proposition 2.2.5 shows a more
precise expression for the remainder terms in case r ∈ {0,∞}:

E
(
D2
ik

)
=

{
1
ϑ2
· δ +O(δ2/

√
∆), r = 0,

2√
πϑ2
·
√

∆ +O(∆3/2/δ2), r =∞.

Thus, if our analysis of the remainder terms is sharp (which we believe is the case), the first order
approximations have a poor quality if δ/

√
∆ converges slowly.

Proposition 2.2.5 suggests to renormalize double increments with δ if δ/
√

∆ → 0 and with
√

∆
otherwise, which is in line with the renormalizations of Vsp and Vt, respectively. However, this approach
might not be feasible: Firstly, it requires the knowledge which asymptotic regime is present, i.e.,
whether or not δ/

√
∆ → 0. Especially for one given set of observations this information may be

inaccessible. In this case renormalizing with Φϑ(δ,∆) automatically captures the correct asymptotic
regime. Secondly, if r ∈ {0,∞}, the previous remark shows that the asymptotic expressions for
Φϑ(δ,∆) may lead to an undesirably large bias. In fact, in order to obtain a central limit theorem
with 1/

√
MN -rate of convergence, e.g., for the case T ≡ 1, we would have to impose the assumptions

N2/M → 0 and M5/N → 0, respectively. These constraints are even more restrictive than the ones
required for time or space increments.

Therefore, we renormalize with Φϑ(δ,∆) and introduce the rescaled realized quadratic space-time
variation

V :=
1

MNΦϑ(δ,∆)

M−1∑
k=0

N−1∑
i=0

eκykD2
ik.

As for Vsp, we redefine V by summing over i ∈ {1, . . . , N} instead of i ∈ {0, . . . , N − 1} in the case
X0 = 0.

Theorem 2.2.7. Let b > 0 and assume ∆ → 0 as well as T = o(M). If either δ/
√

∆ → r ∈ {0,∞}
or δ/

√
∆ ≡ r ∈ (0,∞), then

√
MN(V− σ2)

D−→ N
(
0, C

(
r/
√
ϑ2

)
σ4
)
, N,M →∞,

where C(·) is a bounded continuous function on [0,∞], given by (2.34), satisfying

C(0) = 3 and C(∞) = 3 +
3

2

∞∑
J=1

(√
J − 1−

√
J + 1− 2

√
J
)2

.

Remark 2.2.8. The redefinition of V for the case X0 = 0 is necessary for the conclusion of the
above theorem: E.g., if κ = 0, repeating the calculations from the proof of Proposition 2.2.5 with
X0 = 0 yields that E(D2

0k) ≈ 1
2Φϑ(δ, 2∆) instead of E(D2

0k) ≈ Φϑ(δ,∆). Thus, summing over
i ∈ {0, . . . , N − 1} in the definition of V introduces a bias of the order E(V− σ2) h 1

N , which is not
negligible for the central limit theorem, unless M = o(N).
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Figure 2.1: Plot of the function C(·) from Theorem 2.2.7.

Note that the central limit theorem for V holds with (almost) no assumptions on the relation of
the temporal and spatial sampling frequencies. In particular, assuming a fixed time horizon, we can
close the gap

√
N . M . N , where the central limit theorems hold neither for space nor for time

increments. Also, the condition δ/
√

∆ ≡ r ∈ (0,∞) could be relaxed to δ/
√

∆ → r ∈ (0,∞) as long
as the convergence is sufficiently fast, which we omit for the sake of simplicity.

Figure 2.1 shows a plot of the function C appearing in the asymptotic variance in Theorem 2.2.7.
Evidently, the asymptotic variance is minimal for r = 0, where it takes the value 3σ4, and maximal
for r ≈ 2

√
ϑ2, where it is given by roughly 3.83σ4. For larger values of r, the asymptotic variance

approaches the value C(∞)σ4 ≈ 3.54σ4.

In the balanced sampling design δ/
√

∆ ≡ r ∈ (0,∞), (2.14) shows that Φϑ(δ,∆) and its first order
approximation are sufficiently close to be exchanged in the previous theorem. Thus, we can use a
simpler renormalization which particularly does not depend on the model parameters. Noting that
the condition T = o(M) can be rewritten as N∆3/2 → 0 if δ/

√
∆ ≡ r ∈ (0,∞), we conclude the

following central limit theorem for

Vr :=
1

MN
√

∆

M−1∑
k=0

N−1∑
i=0

e
κ
2 (yk+yk+1)D2

ik (2.15)

and its obvious modification for the case X0 = 0.

Corollary 2.2.9. Let b > 0 and assume δ/
√

∆ ≡ r ∈ (0,∞) as well as N∆3/2 → 0. Then, we have

√
MN

(
Vr − ψϑ2

(r)σ2
)
D−→ N

(
0, C

(
r/
√
ϑ2

)
ψ2
ϑ2

(r)σ4
)
, N,M →∞,

with ψϑ2
(r) from (2.13) and C(·) from (2.34).

To end this section, we compare the realized quadratic variations Vt, Vsp and V and their asymptotic
variances. For this purpose, we scale the statistics in such a way that they are asymptotically centered
around the same mean, say σ2:

V ′t =
√
πϑ2Vt, V ′sp = 2ϑ2Vsp, V ′ = V. (2.16)

For simplicity, let κ = 0. Plugging in the asymptotic expressions for Φϑ(δ,∆) from Proposition 2.2.5
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shows that

V ′ ≈ 1

2

M−1∑
k=0

N−1∑
i=0

D2
ik ·


2ϑ2

NMδ
, δ/

√
∆→ 0,

√
ϑ2π

NM
√

∆
, δ/

√
∆→∞.

Therefore, V ′ approximately coincides with V ′sp and V ′t for r ∈ {0,∞}, respectively, except for the
factor 1/2 and using double increments instead of time or space increments, respectively.

Further, denoting the asymptotic variances of V ′t , V
′
sp and V ′ by St, Ssp and S(r), respectively,

we observe the relations

S(∞) =
3

2
St and S(0) =

3

2
Ssp.

The presence of the factor 3/2 may be explained as follows, e.g., for space increments: Since each
double increment consists of two space increments and neighboring (in time) double increments have
one space increment in common, the covariances that contribute to the asymptotic variance are given
by

Var(D2
ik) = 2Var(Dik)2 ≈ 2

(
2Var((δMk X)(ti))

)2
= 4Var((δMk X)2(ti)),

Cov(D2
ik, D

2
i(k+1)) = 2Cov(Dik, Di(k+1))

2 ≈ 2(Var((δMk X)(ti)))
2 = Var((δMk X)2(ti)),

Cov(D2
ik, D

2
i(k−1)) ≈ Var((δMk X)2(ti)),

where we have used (2.7). Hence, we get a factor of 6/4 = 3/2 in the asymptotic variance of V ′.

2.2.2 Construction of estimators

We exploit the central limit theorems for realized quadratic variations for the construction of estima-
tors. First, we discuss estimation of σ2 or ϑ2, given that the other parameter is known, respectively.
Naturally, the estimation problem becomes much harder when none of the parameters is known.
Nevertheless, using double increments, we can estimate (σ2, ϑ2, ϑ1) in an (almost) rate optimal way.
Assuming T → ∞, the same holds for (σ2, ϑ2, ϑ1, ϑ0) with the additional help of the sum of squares
statistic S from (2.20) below.

Estimation of σ2 or ϑ2

It is straightforward to use the results from the previous section to construct method of moments
estimators for the volatility parameter σ2 or the diffusivity parameter ϑ2, provided that the other two
parameters in the parametrization (σ2, ϑ2, κ) are known, respectively. Doing so, we generalize the
spatial increments based estimator from Cialenco and Huang [19] to the double asymptotic regime
and we complement the time increments based methods in Bibinger and Trabs [9] and Chong [15].
Note that assuming (ϑ2, κ) to be known is the same as assuming (ϑ2, ϑ1) to be known. Further, κ is
particularly known (κ = 0) in the relevant sub-model where ϑ1 = 0. Our estimators do not hinge on
ϑ0 such that the knowledge of its true value is not required.

Assuming, firstly, that ϑ2 and κ are known, we obtain the following volatility estimators:

σ̂2
sp := V ′sp, σ̂2

t := V ′t and σ̂2 := V

where V ′sp and V ′t have been introduced in (2.16). In view of the central limit theorems from the
previous section, the delta method reveals their asymptotic distributions:

Proposition 2.2.10.

(i) If N = o(M), then we have

√
MN

(
σ̂2

sp − σ2
) D−→ N (0, 2σ4), N,M →∞.
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(ii) If M = o(∆−ρ) for some ρ ∈ (0, 1/2) and T∆→ 0, then we have with B defined in (2.11):

√
MN

(
σ̂2

t − σ2
) D−→ N (0, Bσ4), N,M →∞.

(iii) If either δ/
√

∆ → r ∈ {0,∞} or δ/
√

∆ ≡ r ∈ (0,∞) and T = o(M), then we have with C(·)
from (2.34): √

MN(σ̂2 − σ2)
D−→ N (0, C(r/

√
ϑ2)σ4), N,M →∞.

As discussed at the end of Section 2.2.1, the double increments estimator has a larger variance
than the single increments estimators. Hence, if one of the regimes N = o(M) or M = o(∆−1/2)
certainly applies, the single increments estimators are preferable. If none of the regimes is present or
the situation is unclear, one can profit from the robustness of the double increments estimator with
respect to the sampling regime.

If N = o(M), the situation is close to that of N independent semimartingales (cf. Proposition
1.2.1) and the asymptotic variance 2σ4 of the spatial increments estimator equals the Cramér-Rao
lower bound for estimating σ2, as can be seen by a simple calculation. Consequently, σ̂2

sp is an asymp-
totically efficient estimator. The efficiency loss of the other estimators is due to the fact that for
increasingly more temporal observations the infinite dimensional nature of the process X becomes
apparent, leading to non-negligible covariances between increments.

If σ2 and κ are known, the diffusivity ϑ2 can be estimated by

ϑ̂2,sp :=
σ2

2Vsp
and ϑ̂2,t :=

σ4

πV 2
t

,

using Vsp and Vt from (2.12) and (2.9), respectively. Due to the non-trivial dependence of the renor-
malization Φϑ(δ,∆) on ϑ, it is not apparent how to construct a method of moments estimator for
ϑ2 based on Theorem 2.2.7, in general. However, in the balanced design δ/

√
∆ ≡ r > 0, the renor-

malization can be decoupled from the unknown parameter, as exploited in Corollary 2.2.9. Since the
function ϑ2 7→ ψϑ2

(r) has range (0,∞) and is monotonic, there is an inverse Hr(·) and we can define
the method of moments estimator

ϑ̂2,r = Hr(Vr/σ2)

with Vr from (2.15). As a direct consequence of the delta method and the relation

H ′r(ψϑ2
(r)) =

( ∂

∂ϑ2
ψϑ2

(r)
)−1

= −ϑ3/2
2

√
π
(

1− e−
r2

4ϑ2 +
2r√
ϑ2

∫
r

2
√
ϑ2

e−z
2

dz
)−1

,

we obtain the following proposition.

Proposition 2.2.11.

(i) If N = o(M), then we have

√
MN

(
ϑ̂2,sp − ϑ2

)
D−→ N

(
0, 2ϑ2

2

)
, N,M →∞.

(ii) If M = o(∆−ρ) for some ρ ∈ (0, 1/2) and T∆→ 0, then we have with B from (2.11):

√
MN

(
ϑ̂2,t − ϑ2

)
D−→ N (0, 4ϑ2

2B), N,M →∞.

(iii) If δ/
√

∆ ≡ r > 0 and T
√

∆→ 0, then we have with C(·) from (2.34):

√
MN(ϑ̂2,r − ϑ2)

D−→ N
(

0, C(r/
√
ϑ2)
(
ψϑ2(r)

/ ∂

∂ϑ2
ψϑ2(r)

)2
)
, N,M →∞.
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Estimation of (σ2, ϑ2, ϑ1) on a fixed time horizon

We now consider the estimation problem on a bounded time horizon when all the parameters in (σ2, ϑ)
are unknown. A first result in that direction was obtained by Bibinger and Trabs [9], who considered

a least squares estimator for the parameters (σ2
0 , κ) := ( σ2

√
ϑ2
, ϑ1

ϑ2
) based on time increments, namely

(σ̂2
0 , κ̂) = arg min

(σ̃2
0 ,κ̃)

1

M

M−1∑
k=0

( 1

N
√

∆

N−1∑
i=0

(∆N
i X)2(yk)− σ̃2

0√
π

e−κ̃yk
)2

. (2.17)

Using their central limit theorem (2.10) and classical M -estimation theory, the estimator is shown to
be aymptotically normal with 1/

√
MN rate of convergence in the regime M = o(∆−1/2). Note that

(2.17) is an M -estimator exploiting the probabilistic structure of the processes [0, T ] 3 t 7→ Xt(yk).
Indeed, our Proposition 2.1.1 (iii) reveals that the parameters σ2

0 and κ are exactly the ones one
can expect to identify with such an estimator. Building on (2.17), Kaino and Uchida [49] derived an
estimators for (σ2, ϑ2, ϑ1) (as well as for (σ2, ϑ2, ϑ1, ϑ0) in case T →∞) but their thinning approach
results in a convergence rate which is no faster than 1/

√
N , see also the discussion at the end of

the current section. Analogously to (2.17), it is possible to estimate the parameters appearing in
Proposition 2.1.1 (ii), i.e. (ρ2, κ) with ρ2 = σ2/ϑ2, using spatial increments and Theorem 2.2.3:
provided that N = o(M),

(ρ̂2, κ̂) := arg min
(ρ̃2,κ̃)

1

M

M−1∑
k=0

(
2

Nδ

N−1∑
i=0

(δMk X)2(ti)− ρ̃2e−κ̃yk

)2

satisfies a central limit theorem with rate 1/
√
MN . We omit a detailed analysis of this estimator.

Recall from Proposition 2.1.1 and the subsequent discussion that ϑ0 cannot be estimated consis-
tently on a finite time horizon. Also, in order to estimate more than two parameters, we cannot rely
on only the temporal or only the spatial probabilistic structure of X. To estimate all three identifiable
parameters

η := (σ2, ϑ2, ϑ1),

we employ a least squares approach based on double increments. Due to the highly nontrivial de-
pendence of the normalization Φϑ(δ,∆) on ϑ, a direct application of Theorem 2.2.7 is impossible.
Assuming, however, a balanced design δ/

√
∆ ≡ r ∈ (0,∞), we can use Corollary 2.2.9 where the

normalization is decoupled from the unknown parameter ϑ:
Let δ/

√
∆ ≡ r ∈ (0,∞) and define D̄ik := Dik + D(i+1)k as well as zk = (yk + yk+1)/2. Corol-

lary 2.2.9 suggests that for the stationary solution we have

1

N
√

∆

N−1∑
i=0

D2
ik ≈ e−κzkσ2ψϑ2

(r) and
1

N
√

2∆

N−2∑
i=0

D̄2
ik ≈ e−κzkσ2ψϑ2

(r/
√

2).

Now, as suggested by Figure 2.2, the function r 7→ ψϑ2
(r) is strictly increasing. In fact, by considering

the two different sampling frequency ratios r and r/
√

2, it will be shown that we can distinguish σ2

and ϑ2 instead of recovering only the product σ2ψϑ2
(r). To estimate η, we introduce the contrast

process

KM,N (η̃) := K1
M,N (η̃) +K2

M,N (η̃),

where

K1
M,N (η̃) :=

1

M

M−1∑
k=0

( 1

N
√

∆

N−1∑
i=0

D2
ik − f1

η̃ (zk)
)2

,
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Figure 2.2: Plot of the function r 7→ ψϑ2
(r) for different values of ϑ2.

K2
M,N (η̃) :=

1

M

M−1∑
k=0

( 1

N
√

2∆

N−2∑
i=0

D̄2
ik − f2

η̃ (zk)
)2

and fνη (z) := σ2e−κzψϑ2(r/
√
ν), ν = 1, 2. As before, we sum over i ∈ {1, . . . , N} instead of i ∈

{0, . . . , N − 1} in the case X0 = 0. The corresponding M-estimator is given by

η̂ := arg min
η̃∈H

KM,N (η̃), (2.18)

where H is some subset of (0,∞)2 ×R. Again, this estimator does not require any prior knowledge
on the parameters, as it does not depend on ϑ0.

Theorem 2.2.12. Assume that T > 0 is fixed, b > 0 and that δ/
√

∆ ≡ r > 0. If H ⊂ (0,∞)2 ×R is
a compact set and η = (σ2, ϑ2, ϑ1) lies in its interior, then the least squares estimator η̂ from (2.18)
satisfies √

MN(η̂ − η)
D−→ N (0,Ωrη), M,N →∞,

where Ωrη ∈ R3×3 is a strictly positive definite covariance matrix, explicitly given by (2.38).

Remark 2.2.13. If ϑ1 is known and the sample size is sufficiently large, the estimator for (σ2, ϑ2) can
be computed without solving a minimization problem: For simplicity, assume ϑ1 = 0 and let

V 1 :=
1

MN
√

∆

M−1∑
k=0

N−1∑
i=0

D2
ik, V 2 :=

1

MN
√

2∆

M−1∑
k=0

N−1∑
i=0

D̄2
ik.

Further, denote by Gr the inverse function of ϑ2 7→ ψϑ2(r)/ψϑ2(r/
√

2), whose existence is part of the
proof of the above theorem. Then, we have

ϑ̂2 = Gr(V
1/V 2), σ̂2 = V 1/ψϑ̂2

(r),

provided that V1/V2 lies in the range of ϑ2 7→ ψϑ2(r)/ψϑ2(r/
√

2). Due to consistency of (V 1, V 2), the
latter is true with probability tending to one.

Even when δ/
√

∆ ≡ r > 0 does not hold, there are always subsets of the data having the balanced
sampling design. Hence, the estimation procedure treated in Theorem 2.2.12 can be generalized to
an arbitrary set {Xti(yk), i ≤ N, k ≤M} of discrete observations by considering an averaged version
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Figure 2.3: Determining the sample size of subsets admitting a balanced sampling design.

of the above contrast process. To that aim, choose v, w ∈ N such that v h max(1, δ2/∆) and
w h max(1,

√
∆/δ). Then, ∆̃ := v∆ and δ̃ := wδ satisfy

r := δ̃/
√

∆̃ h 1.

Using double increments on the coarser grid, namely

Dv,w(i, k) := Xti+v (yk+w)−Xti(yk+w)−Xti+v (yk) +Xti(yk),

we set

KνN,M (η̃) :=
1

M − w + 1

M−w∑
k=0

(
1

(N − νv + 1)
√
νv∆

N−νv∑
i=0

D2
νv,w(i, k)− fνη̃

(yk + yk+w

2

))2

,

with fνη (z) = 2σ2ψϑ2
(r/
√
ν)e−κz and ν = 1, 2. In the case X0 = 0, we employ the obvious redefinition

of KνN,M . The final estimator for η is then defined as

η̂v,w := arg min
η̃∈H

(
K1
N,M (η̃) +K2

N,M (η̃)
)
. (2.19)

The rate of convergence of this estimation procedure is inherited from the observations on the
coarser grids {(ti+jv, yk+lw) : 0 ≤ j ≤ N/v − 1, 0 ≤ l ≤ M/w − 1}, i = 0, . . . , v − 1, k = 0, . . . , w − 1,
on which we calculate the double increments. It follows from ∆ h N−1 and δ hM−1 that each such
subset consists of

M

w
· N
v

h (M ∧
√
N)(N ∧M2) = M3 ∧N3/2

observations and has a balanced design by construction. Figure 2.3 illustrates how the sample size of
the subsets admitting a balanced design results from the total sample size: if N is much larger than
M2, then the sub-sample size is M2 ·M = M3 and if M is much larger than

√
N , then the sub-sample

size is N ·
√
N = N3/2. Therefore, Theorem 2.2.12 implies the convergence rate

(
M3 ∧N3/2

)−1/2
.

Corollary 2.2.14. Assume that T > 0 is fixed, b > 0, and that H ⊂ (0,∞)2 × R is a compact
set such that η = (σ2, ϑ2, ϑ1) lies in its interior. If there exist values v h max(1, δ2/∆) ∈ N and
w h max(1,

√
∆/δ) ∈ N such that wδ/

√
v∆ is constant, then the estimator η̂v,w given by (2.19)

satisfies

‖η̂v,w − η‖ = Op
( 1√

M3 ∧N3/2

)
, M,N →∞.

Remark 2.2.15.
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1. The rate of convergence of the estimator η̂v,w matches the lower bound provided by Theorem
2.1.2 up to a logarithmic factor. Hence, our estimator is essentially rate optimal and, in par-
ticular, (M3 ∧ N3/2)−1/2 is the optimal rate of convergence for estimators of (σ2, ϑ2, ϑ1) on a
bounded time horizon.

2. The same rate of convergence is achieved if, instead of averaging, one computes the contrast
process from only one balanced sub-sample and discards the remaining data. Thus, if M2/N →
{0,∞}, the optimal rate of convergence can be reached by using only a small portion of the
available data. On the other hand, our simulation study in Section 3.3 suggests that using the
whole data set is beneficial for the asymptotic variance of the estimator.

3. Integer values v and w such that wδ/
√
v∆ is constant exist, for instance, if the observations are

recorded on a dyadic grid, namely when M = 2m and N = 4n with m,n→∞.

Estimation of (σ2, ϑ2, ϑ1, ϑ0) in the case T →∞
Next, we consider the regime T → ∞, where all four parameters (σ2, ϑ2, ϑ1, ϑ0) can be estimated
consistently. Again, let us first consider the situation of a balanced sampling design δ/

√
∆ ≡ r > 0.

In fact, the central limit theorem for double increments from Corollary 2.2.9 is not limited to a bounded
time horizon but only requires T

√
∆ → 0. Hence, under the latter assumption, we can use (2.18) in

order to estimate η = (σ2, ϑ2, ϑ1) and, in particular, Theorem 2.2.12 carries over to an unbounded
time horizon. To obtain an estimator for the remaining parameter ϑ0, we will now define a method of
moments estimator for ϑ0 and replace the unknown parameters (σ2, ϑ2, ϑ1) appearing in its definition
by the corresponding estimates from η̂. Since the parameter ϑ0 appears in the spatial covariance
function of the stationary solution, it is natural to consider the statistic

S :=
1

MN

N−1∑
i=0

M−1∑
k=0

X2
ti(yk)eκyk (2.20)

in order to derive a method of moments estimator. Based on the space-time covariance function of
the process (t, y) 7→ Xt(y)eκy/2 under (ST), i.e.,

ρxy(t) := Cov(X0(x)eκx/2, Xt(y)eκy/2) = Cov(Xt(x)eκx/2, X0(y)eκy/2)

= σ2
∑
`≥1

e−λ`t

λ`
sin(π`x) sin(π`y),

the mean of S can be expressed via

E(S) =
1

M

M−1∑
k=0

ρykyk(0) =
σ2

M

M−1∑
k=0

∑
`≥1

sin2(π`yk)

λ`
.

Note that there is also a closed form expression for ρyy(0), see Proposition 1.2.1. In the case X0 = 0,
we redefine S by summing over i ∈ {1, . . . , N} instead of i ∈ {0, . . . , N − 1}.

Proposition 2.2.16. If M,N, T →∞ and ∆→ 0, then

√
T
(
S − 1

M

M−1∑
k=0

ρykyk(0)
)
D−→ N

(
0, 2D2

)
,

where

D2 :=
1

(1− 2b)2

∫ ∞
−∞

∫ 1−b

b

∫ 1−b

b

ρ2
xy(t) dx dy dt (2.21)
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and ρxy(t) := ρxy(−t) for t < 0. If, additionally,
√
T/M → 0, then

√
T
(
S − 1

1− 2b

∫ 1−b

b

ρyy(0) dy
)
D−→ N

(
0, 2D2

)
.

Remark 2.2.17. A balanced sampling design is not assumed in Proposition 2.2.16. On the other hand,
if a balanced sampling design is present, then

√
T/M → 0 is implied by the condition T

√
∆→ 0 from

Corollary 2.2.9.

In order to indicate the dependence of S on the unknown parameter κ, we will write S(κ) in the
sequel. It follows from Proposition 2.2.16 that

S(κ)
P−→ σ2

ϑ2
Ib(Γ)

where Ib(Γ) := 1
1−2b

∫ 1−b
b

∑
`≥1

sin2(π`y)
π2`2+Γ and, as before, Γ =

ϑ2
1

4ϑ2
2
− ϑ0

ϑ2
. Clearly, the function Ib is

decreasing and, hence, injective. By inverting for ϑ0 and plugging in the estimators (2.18) for η, we
obtain

ϑ̂0 := ϑ̂2

(
κ̂2

4
− I−1

b

( ϑ̂2

σ̂2
S(κ̂)

))
with κ̂ := ϑ̂1/ϑ̂2 (2.22)

as an estimator for ϑ0. Based on Theorem 2.2.12 and Proposition 2.2.16, we obtain the following
central limit theorem for the estimator (η̂, ϑ̂0) in case of a balanced sampling design.

Theorem 2.2.18. Assume δ/
√

∆ ≡ r ∈ (0,∞) and T
√

∆ → 0. Further, let H be a compact subset
of (0,∞)2 ×R such that η lies in its interior. Then, for T,N,M →∞ and ∆→ 0, we have(√

MN(η̂ − η)√
T (ϑ̂0 − ϑ0)

)
D−→ N

(
0,

(
Ωrη 0
0 α2

σ2,ϑ

))
,

where Ωrη ∈ R3×3 is the strictly positive definite covariance matrix from Theorem 2.2.12 and

α2
σ2,ϑ =

2ϑ4
2D

2

σ4I ′b(Γ)2
.

As in the case of a bounded time horizon, this estimation procedure can be adapted for an unbal-
anced sampling design. Again, we can estimate η using η̂v,w from (2.19) with v h max(1, δ2/∆) and

w h max(1,
√

∆, δ). ϑ0 can then be estimated via the plug in approach (2.22) where η̂ is replaced by

η̂v,w. We refer to this estimator by ϑ̂vw0 .
Recall that the rate of convergence of η̂v,w is determined by the sample size of the subsets admitting

a balanced sampling design. In the case of a growing time horizon, this sample size depends on T and
is given by

M

w
· N
v

h (δ−1 ∧∆−1/2)(N ∧ Tδ−2) h (δ−1 ∧∆−1/2)3 T =
T

max(∆3/2, δ3)
.

Corollary 2.2.19. Assume T max(
√

∆, δ) → 0 and let H be a compact subset of (0,∞)2 ×R such
that η lies in its interior. If there exist values v h max(1, δ2/∆) and w h max(1,

√
∆/δ) such that

wδ/
√
v∆ is constant, then we have

‖η̂v,w − η‖ = Op
(√

max(δ3,∆3/2)

T

)
, |ϑ̂vw0 − ϑ0| = Op

(
1√
T

)

for T,N,M →∞ and ∆→ 0. In particular,
√
T (ϑ̂vw0 − ϑ0)

D−→ N (0, α2
σ2,ϑ).
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Remark 2.2.20.

1. Comparison with Theorem 2.1.7 reveals that our estimator identifies both (σ2, ϑ2, ϑ1) and ϑ0 at
(almost) their optimal rates of convergence, respectively.

2. The assumption T max(δ,
√

∆) → 0 is the growth condition on T from Theorem 2.2.7, relative
to the coarser grid on which the double increments are calculated.

Let us compare our estimator for (σ2, ϑ) with the thinning approach considered by Kaino and
Uchida [49]. The authors work with the same observation scheme as we do, but they strictly require
that the spatial margin b of the observation window is zero, i.e., their observations are (Xti(yk))i,k
with ti = i∆, 0 ≤ i ≤ N, and yk = k

M , 1 ≤ k ≤ M − 1. Now, by using only a subset of m ≤ M

spatial observations with m ≤ ∆−ρ for some ρ < 1/2, they estimate (σ2/
√
ϑ2, ϑ1/ϑ2) using (σ̂2

0 , κ̂)
from (2.17) due to Bibinger and Trabs [9]. Then, exploiting the estimator κ̂, they approximate the
first Fourier mode u1 from (1.12), using the empirical inner product, which is facilitated by assuming
b = 0. Considering this approximation at n ≤ N equidistant time points, they estimate σ2 in
terms of the corresponding quadratic variation on a finite time horizon or (σ2, λ1) based on a pseudo
maximum likelihood estimator when T →∞. In combination with (σ̂2

0 , κ̂), they obtain asymptotically
normal estimators for η and, if T → ∞, for (η, ϑ0). Since the resulting estimator only relies on the
approximation of one Fourier mode at n time points, the rate of convergence cannot be faster than
1/
√
n. Indeed, on a finite time horizon this rate is achieved under the assumptions

n3/2

M1−ρ1
→ 0,

n3/2

Nm
→ 0

for some ρ1 ∈ (0, 1), which are necessary to control the errors induced by the different estimation and

approximation steps. As a result, 1/
√
N ∧M2/3 is a lower bound for their rate of convergence, which

is certainly larger than our rate 1/
√
N3/2 ∧M3. On a large time horizon, the rates of convergence of

the estimators for η and ϑ0 are given by 1/
√
n and 1/

√
T , respectively. Here, the assumptions are

T∆→ 0,
n5/2

T 3/2Nm
→ 0,

n3

T 2M1−ρ1
→ 0

for some ρ1 ∈ (0, 1). Since m . ∆−1/2 and, thus, T 3/2Nm . TN3/2 = T 5/2/∆3/2, the expression

1/
√

(T 2/3/δ1/3) ∧ (T/∆3/5) is a lower bound for their rate of convergence for estimating η. Again,

this is certainly larger than our rate 1/
√

(T/δ3) ∧ (T/∆3/2). The rates of convergence for estimating
ϑ0 agree in both approaches. Only requiring T∆ → 0, the result from [49] has more flexibility with
respect to the length of the observation time compared to the conclusion of Corollary 2.2.19, which
requires T max(

√
∆, δ)→ 0.

2.3 Confidence sets

All estimators considered in the previous section are consistent and the asymptotic variances (covari-
ance matrices) in the central limit theorems are strictly positive (positive definite) as well as continuous
in the parameters. Hence, it is possible to construct asymptotic confidence sets for the parameters by
employing the standard procedure based on Slutsky’s Lemma: Let γ ∈ Rd be any parameter consid-
ered in the previous section, i.e. γ ∈ {σ2, ϑ2} with d = 1, γ = η with d = 3, or γ = (σ2, ϑ) with d = 4.

In the cases d ∈ {1, 3}, we have considered estimators γ̂ such that
√
MN

(
γ̂ − γ

) D−→ N (0,Σ(γ)) for
a strictly positive definite covariance matrix Σ(γ) which is continuous in γ. Thus, Slutsky’s Lemma

implies
√
MNΣ(γ̂)−1/2

(
γ̂ − γ

) D−→ N (0, I) with the identity matrix I ∈ Rd×d. Now, if zd(1− α) is
the (1− α)-quantile of the χ2(d)-distribution, then{

γ̃ ∈ Rd : ‖Σ(γ̂)−1/2
(
γ̂ − γ̃

)
‖2 ≤ zd(1− α)

MN

}
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is an approximate (1−α)-confidence ellipsoid for γ. In particular, if d = 1, we obtain the approximate
confidence interval [

γ̂ −
√

Σ(γ̂)z1(1− α)

MN
, γ̂ +

√
Σ(γ̂)z1(1− α)

MN

]
.

Analogously, in the case γ = (σ2, ϑ) = (η, ϑ0) ∈ R4, we obtain in the situation of Theorem 2.2.18 that{
(η̃, ϑ̃0) ∈ Θ : MN‖((Ω̂r)−1/2

(
η̂ − η̃

)
‖2 + T

(ϑ̂0 − ϑ̃0)2

α̂2
≤ z4(1− α)

}

with Ω̂r = Ωrη̂ and α̂2 = α2
η̂,ϑ̂0

is an approximate (1− α)-confidence set.

2.4 Proofs

The following Sections 2.4.1 - 2.4.3 contain the main proofs of the results from Sections 2.1 and 2.2.1-
2.2.2, respectively. Auxiliary results and technical Lemmas are deferred to Section 2.4.4.

2.4.1 Proofs for the lower bounds

First, we proof our result on the absolute continuity properties of the solution process for different
parameter values.

Proof of Proposition 2.1.1. The necessity of the conditions on the parameters follows from the dis-
cussion subsequent to Proposition 2.1.1: the parameter σ2/

√
ϑ2e−κx0 can be estimated consistently

based on a single spatial observation on a bounded time interval and the parameters (σ
2

ϑ2
, κ) can be

estimated consistently based on a single temporal observation. It remains to prove sufficiency of the
conditions on the parameters:

Assertion (i) is a simple consequence of Koski and Loges [50, Proposition 1]: Set λ` = ϑ2(π2`2 +Γ)

and λ̃` = ϑ2(π2`2 + Γ̃) where Γ =
ϑ2

1

4ϑ2
2
− ϑ0

ϑ2
and Γ̃ =

ϑ2
1

4ϑ2
2
− ϑ̃0

ϑ2
. Then, absolute continuity follows from

∑
`≥1

(λ` − λ̃`)2

λ`
<∞.

We remark that in the reference [50] the authors work with an H-valued Wiener process as opposed to
a cylindrical Brownian motion. Nevertheless, inspection of their proof shows that the result remains
valid as long as the condition (L2) from Section 1.1 is fulfilled. Thanks to (i), we may assume
ϑ0 = ϑ2

1/(4ϑ2) and, hence, Γ = Γ̃ = 0 for the remainder of the proof.

Statement (ii) follows from the fact that Cov(Xt0(x), Xt0(y)) only depends on
(
σ2

ϑ2
, κ
)

in view of

the Gaussianity of X.
For (iii), note that t 7→ Xt(x0) is a stationary Gaussian process with covariance function

ρ(t) := σ2
∑
k≥1

e−λkt

2λk
e2
k(x0).

Let

f(σ2,ϑ2)(u) :=
1

2π

∫
e−iutρ(|t|) dt =

1

π

∫ ∞
0

cos(ut)ρ(t) dt =
σ2

2π

∑
`≥1

e2
`(x0)

λ2
` + u2

be the spectral density of t 7→ Xt(x0). By Theorem 17 and its preceding discussion in Ibragimov and
Rozanov [42, Chapter III], it suffices to show

∃r > 1 : lim
u→∞

urf(σ2,ϑ2)(u) ∈ (0,∞) (2.23)
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and
f(σ2,ϑ2) − f(σ̃2,ϑ̃2)

f(σ2,ϑ2)
∈ L2(R). (2.24)

To prove these statements, we may assume κ = 0 without loss of generality. Set

h(σ2,ϑ2)(z) :=
σ2

π(π4ϑ2
2z

4 + 1)
, z ∈ R.

By Lemma 2.4.10 (ii), we have

f(σ2,ϑ2)(u) =
1

u2

∑
`≥1

h(σ2,ϑ2)

(
`√
u

)
sin2(π`x0)

=
1

u2

(√
u

2

∫ ∞
0

h(σ2,ϑ2)(z) dz +O
(

1√
u

))
, u→∞,

which proves (2.23). Now, if σ2/
√
ϑ2 = σ̃2/

√
ϑ̃2, a substitution shows that∫ ∞

0

h(σ2,ϑ2)(z) dz =

∫ ∞
0

h(σ̃2,ϑ̃2)(z) dz.

Therefore, we obtain
f(σ2,ϑ2)(u)− f(σ̃2,ϑ̃2)(u)

f(σ2,ϑ2)(u)
= O

(
1

u

)
, u→∞,

which implies (2.24).

Before we prove our theorems on lower bounds (Theorems 2.1.2 and 2.1.7), we verify their in-
gredients, Proposition 2.1.4 and Proposition 2.1.6. Further auxiliary results can be found in Section
2.4.4.

Proof of Proposition 2.1.4. By setting a = k2, µ = π2ϑ2 and ν2 = σ2

π2ϑ2
in Lemma 2.4.2 and using

independence of (u`, ` ∈ N), we obtain the Fisher information matrix I for the parameters (µ, ν2),
namely

I11 = N

M∑
`=1

`4∆2(e−4µ`2∆ + e−2µ`2∆)

(1− e−2µ`2∆)2
= N

M∑
`=1

g11(`
√

∆), g11(x) :=
x4(e−4µx2

+ e−2µx2

)

(1− e−2µx2)2
,

I12 = N

M∑
`=1

`2∆e−2µ`2∆

ν2(1− e−2µ`2∆)
= N

M∑
`=1

g12(`
√

∆), g12(x) :=
x2e−2µx2

ν2(1− e−2µx2)
,

I22 =
(N + 1)M

2ν4
.

The Fisher information matrix J = JM,N for the parameters (σ2, ρ2) can be computed via the change
of variables formula J = A>IA where

A =

(
π2/ρ2 −π2σ2/ρ4

0 1/π2

)
is the Jacobian of the function transforming (σ2, ρ2) to (µ, ν2). Hence, the diagonal entries of J are
given by

J11 =
π4

ρ4
I11, J22 =

π4σ4

ρ8
I11 −

2σ2

ρ4
I12 +

1

π4
I22.
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If M
√

∆ is bounded away from 0, then I11 can be interpreted as a Riemann sum. We obtain

J11 h I11 h N3/2

∫ M
√

∆

0

g11(x) dx h N3/2.

On the other hand, if M
√

∆ → 0, it follows from Lemma 2.4.11 and g11(0) = 1
2µ2 = ρ4

2π4σ4 , g12(0) =
1

2µν2 = 1
2σ2 as well as g′11(0) = g′12(0) = 0 that

I11 = N3/2(M
√

∆g11(0) +
M2∆

2
g′11(0) +O(M3∆3/2)) =

ρ4

2π4σ4
NM +O(M3),

I12 = N3/2(M
√

∆g12(0) +
M2∆

2
g′12(0) +O(M3∆3/2)) =

NM

2σ2
+O(M3),

I22 =
π4

2ρ4
MN +O(M).

Therefore, the leading terms in J22 cancel and, consequently, J22 = O(M3).

Proof of Proposition 2.1.6. For a discrete time, centered, stationary Gaussian process (Zj)j∈Z whose
covariance function depends on an unknown parameter θ ∈ R, we denote the Fisher information of a
sample (Z0, . . . , Zn−1) with respect to θ by In(Z). A particularly useful result to calculate In(Z) for
the above class of Gaussian processes is given by Whittle [78]:

lim
n→∞

1

n
In(Z) =

1

4π

∫ π

−π

(
∂
∂θφθ(ω)

φθ(ω)

)2

dω, n→∞, (2.25)

where
φ(ω) =

∑
j∈Z

E[Z0Zj ]e
−ijω, ω ∈ [−π, π],

is the spectral density of Z.
Setting θ = π2ϑ2, (2.25) cannot be directly applied to the process Z = Ūk, for 1 ≤ k ≤ M − 1:

Ūk arises from high-frequency increments of the continuous time process Uk and, thus, cannot be
regarded as time series. Indeed, the spectral density Φ∆

k of Ūk hinges on ∆ = 1/N and, therefore,
even for large N , IN (Ūk)/N is not necessarily close to the asymptotic Fisher information defined in
(2.25).

To circumvent this difficulty, consider the N -th order Fourier approximation to Φ∆
k :

ΦN,∆k (ω) =

N−1∑
j=1−N

E[Ūk(0)Ūk(j)]e−ijω ≥ 0, ω ∈ [−π, π]. (2.26)

Lemma 2.4.4(i) verifies that ΦN,∆k is positive. Therefore, there exists a stationary Gaussian process

Yk = (Yk(j))j∈Z with spectral density ΦN,∆k , see, e.g., [12]. Clearly,

(Yk(j), . . . , Yk(j +N − 1)))
D
=
(
Ūk(0), . . . , Ūk(N − 1)

)
, j ∈ N0,

and (Yk(j), . . . , Yk(j +N − 1))) is independent of (Yk(h), . . . , Yk(h+N − 1))) whenever |j − h| >
2N . Consequently, it is possible to extract L independent copies of

(
Ūk(0), . . . , Ūk(N − 1)

)
from a

sample (Yk(0), . . . , Yk(2NL− 1)) for any L ∈ N. Now, using the fact that a statistic never has larger
information than the data from which it is constructed (cf. [43, Theorem I.7.2]) yields

L · IN (Ūk) ≤ I2NL(Yk). (2.27)
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For fixed ∆ = 1/N , we can now apply Whittle’s formula (2.25) for L → ∞: For each ε > 0 we can
choose L ∈ N such that

I2NL(Yk) ≤ 2NL(1 + ε)Ik, (2.28)

where

I N,∆
k :=

1

4π

∫ π

−π
S2(ω) dω, S :=

∂

∂ϑ2
log ΦN,∆k .

By combining (2.27) and (2.28), we get IN (Ūk) ≤ 2NIk. Proving below that

I N,∆
k .M2∆ log

1

M2∆
(2.29)

holds uniformly in k = 0, . . . ,M − 1, we obtain IN (Ūk) . M2 log 1
M2∆ and the results follows by

independence of the processes Ū1, . . . , ŪM−1.
In order to verify (2.29), we only have to consider the integral over [0, π], by symmetry. From

Lemma 2.4.4, we can deduce for ω ≥ k2∆ that

S(ω) .

{
M
√

∆√
ω
, ω ≥M2∆,

1, ω ∈ [k2∆,M2∆]

and, hence, ∫ π

k2∆

S2(ω) dω .M2∆ log
1

M2∆
.

For ω ≤ k2∆, Lemma 2.4.4 gives

S(ω) .
ω2

k4∆2 + k2e−θk
2

ω2

k4∆2 + e−θk2
.

Since ∫ 1

0

dω

(ω2 + e−θk2)2
≤
∫ e−θk

2/2

0

1

e−2θk2 dω +

∫ 1

e−θk2/2

1

ω4
dω . exp

(
3

2
θk2

)
,

a substitution yields∫ k2∆

0

S2(ω) dω . k2∆

∫ 1

0

(
ω2 + k2e−θk

2

ω2 + e−θk2

)2

dω

.M2∆

(
1 + k4e−2θk2

∫ 1

0

dω

(ω2 + e−θk2)2

)
.M2∆

and the proof is finished.

We can now conclude the main lower bounds.

Proof of Theorem 2.1.2. As follows from the discussion subsequent to Theorem 2.1.2, it suffices to
show that for each sampling regime there is a reparametrization (γ1, γ2) of (σ2, ϑ2) such that the
corresponding Fisher information satisfies JM,N (γ2) . rM,N locally uniformly. Inspection of the
proofs of Propositions 2.1.4 and 2.1.6 shows that the bounds on the Fisher information are indeed
locally uniform.

(ii) Case M/
√
N & 1. For L ∈ N define the process XL via XL

t (y) =
∑L
`=1 u`(t)e`(y), t ≥

0, y ∈ [0, 1], and let XLN,M = {XL
ti(yk), i = 0, . . . , N − 1, k = 0, . . . ,M} as well as XN,M = X∞N,M .

Denoting the corresponding covariance matrices by ΣLN,M and ΣN,M and using the bound on the
total variation distance of Gaussian distributions due to Devroye et al. [30] (see also (3.4)), we obtain

TV(N (0,ΣN,M ),N (0,ΣLN,M )) ≤ 3
2‖Σ

−1/2
N,M (ΣLN,M − ΣN,M )Σ

−1/2
N,M ‖F ≤ 3

2‖Σ
−1/2
N,M ‖2F ‖ΣLN,M − ΣN,M‖F .
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Consequently, we can pick a sequence LN,M → ∞ such that XLN,MN,M and XN,M are statistically

equivalent in the sense of Le Cam and it is sufficient to derive a lower bound for XLN,MN,M , or even
{u`(ti), i ≤ N, ` ≤ LN,M}. Assuming LN,M ≥ M without loss of generality, for this observation
scheme Proposition 2.1.4 yields under the parametrization (σ2/ϑ2, σ

2) that

JM,N (σ2) . N3/2 ∧ L3
N,M = N3/2 = rN,M .

Case M/
√
N → 0. For b ∈ Q ∩ (0, 1/2), write b = p/q where p ∈ Z and q ∈ N such that yk =

pM+k(q−2p)
qM , k ≤ M, and, consequently, {yk, k = 0, . . . ,M} is a subset of {zk, k = 1, . . . , qM − 1}

where zk = k
qM . Now, qM

√
∆ → 0 and since q3M3 log

(
1

q2M2∆

)
. M3 log

(
1

M2∆

)
Proposition 2.1.6

implies under the parametrization (σ2/
√
ϑ2, ϑ2) that

JM,N (ϑ2) .M3 log(
1

M2∆
) = rN,M .

(i) If min(M,N) remains finite and M/
√
N & 1, then N necessarily remains finite and the result

follows from (ii). On the other hand, if M/
√
N → 0, then M must remain finite. Like in the proof

of (ii), extend the set of spatial locations to {zk, k < qM} and consider the corresponding processes
Uk, k = 1, . . . , qM −1 from (2.4). A similar calculation as in the proof of Proposition 2.1.1 shows that
for any k < qM , the laws of the independent continuous processes {Uk(t), t ≤ 1} are absolutely con-

tinuous for different parameter values (σ2, ϑ2) and (σ̃2, ϑ̃2) as long as σ2/
√
ϑ2 = σ̃2/

√
ϑ̃2 and, hence,

consistent estimation of (σ2, ϑ2) based on continuous or discrete observations is impossible: Note that

the spectral density of the time-continuous process Uk is fk(u) = 1
2u2

∑
`∈Ik h(σ2,ϑ2)

(
`√
|u|

)
, u ∈ R,

where h(σ2,ϑ2) is defined in the proof of Proposition 2.1.1. Now, a Riemann sum midpoint approxi-
mation, see Lemma 2.4.10, shows that

f+
k (u) :=

1

2u2

∑
`≥0

h(σ2,ϑ2)

(
k + 2M`√

u

)
=

1

2u2

(√
u

2M

∫ ∞
(k−M)/

√
u

h(σ2,ϑ2)(z) dz +O
(

1√
u

))
,

f−k (u) :=
1

2u2

∑
`≥0

h(σ2,ϑ2)

(
2M − k + 2M`√

u

)
=

1

2u2

(√
u

2M

∫ ∞
(M−k)/

√
u

h(σ2,ϑ2)(z) dz +O
(

1√
u

))
,

as u→∞. Since h(σ2,ϑ2) is symmetric around 0 we obtain

fk(u) = f+
k (u) + f−k (u) =

1

u2

(√
u

2M

∫ ∞
0

h(σ2,ϑ2)(z) dz +O
(

1√
u

))
,

from which equivalence follows as in Proposition 2.1.1.

Proof of Theorem 2.1.7. The proof of (i) can be done in exactly the same way as for a finite time
horizon. To prove (ii), set a = 1, σ2 = ν2µ and µ = λ` = π2ϑ2`

2 + ϑ2
1/(4ϑ2) − ϑ0 in Lemma 2.4.2.

Applying the transformation rule for the Fisher information like in the proof of Proposition 2.1.4,
yields that the Fisher information for ϑ0 of the sample (u`(ti), i ≤ N, ` ≤ L) is given by

JN,∆,L(ϑ0) = T

L∑
`=1

1

λ`
g(λ`∆) +

L∑
`=1

1

2λ2
`

with

g(x) :=
2x2(e−4x + e−2x)− 4x(e−2x − e−4x) + (1− e2x)2

2x(1− e−2x)2
, x > 0.

Insertion of the Taylor approximation of second order for the exponential function shows that g is
bounded on R+ and, hence, JN,∆,L(ϑ0) . T holds uniformly in L ∈ N. From here, the result follows
as in the proof of Theorem 2.1.2.
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2.4.2 Proofs for the central limit theorems for realized quadratic variations

We first prove the generic central limit result in Proposition 2.2.1. Afterwards, we can verify the
central limit theorems for realized quadratic variations based on spatial increments (Theorem 2.2.3)
and double increments (Theorem 2.2.7).

Proof of Proposition 2.2.1. Since Σn = Q>nΛnQn for an orthogonal matrix Qn ∈ Rdn×dn and a
diagonal matrix Λn, the vector Z•,n has the same distribution as BnX

n for Bn := QTnΛ1/2 and
Xn := (X1, . . . , Xdn) with independent standard normal random variables (Xk)k∈N. Denoting An =

diag(α1,n, . . . , αdn,n), we obtain Sn = Z>•,nAnZ•,n
D
= Xn>B>n AnBnX

n. Furthermore, B>n AnBn is

symmetric such that B>n AnBn = P>n ΓnPn where Pn is an orthogonal matrix and Γn is a diagonal
matrix. Since PnX

n ∼ N (0, Edn), we conclude as in Mathai and Provost [62, p. 36] that

Sn
D
= Xn>B>n AnBnX

n = (PnX
n)TΓ(PnX

n)
D
= Xn>ΓnX

n =

dn∑
i=1

γi,nX
2
i

where γi,n, i ≤ dn are the eigenvalues of B>n AnBn. The statement now follows by Lyapunov’s condi-
tion and ‖Bn‖22 = ‖Σn‖2:∑dn

i=1 γ
4
i,nE

((
X2
k −EX2

k

)4)
(VarSn)

2 h
∑dn
i=1 γ

4
i,n(∑dn

i=1 γ
2
i,n

)2 .
maxi≤dn γ

2
i,n∑dn

i=1 γ
2
i,n

=
‖BTnAnBn‖22

VarSn

≤ (‖Bn‖22‖An‖2)2

VarSn
=
‖Σ‖22
VarSn

.

Throughout, we use the notation

Dδf(x) := f(x+ δ)− f(x),

D2
δf(x) := f(x+ 2δ)− 2f(x+ δ) + f(x)

for a function f : R→ R. We now prove the central limit theorem for space increments.

Proof of Theorem 2.2.3. In Steps 1-3 of this proof we show the central limit theorem under the as-
sumption that X0 follows the stationary distribution. The case X0 = 0 is treated in Step 4. We
abbreviate the (rescaled) space increments by

Sik := (δMk X)(ti) and S̃ik := eκyk/2(δMk X)(ti).

Step 1. We calculate the asymptotic mean of Vsp: Application of the trigonometric identity 1.15
yields

eκx/2(e`(x+ δ)− e`(x))eκy/2(e`(y + δ)− e`(y))

= 2
(
e−

κ
2 δ sin(π`(x+ δ))− sin(π`x)

) (
e−

κ
2 δ sin(π`(y + δ))− sin(π`y)

)
= g(δ) (2 cos(π`(y − x))− cos(π`(y − x− δ))− cos(π`(y − x+ δ)))

+ (g(2δ) + g(0)− 2g(δ))(cos(π`(y − x)))

+ 2g(δ) cos(π`(y + x+ δ))− g(0) cos(π`(y + x))− g(2δ) cos(π`(x+ y + 2δ))

(2.30)

where g(x) = exp(−κx/2). Plugging in x = y gives

eκy(e`(y + δ)− e`(y))2

= 2g(δ)(1− cos(π`δ)) + (g(2δ) + g(0)− 2g(δ))

+ 2g(δ) cos(π`(2y + δ))− g(0) cos(2π`y)− g(2δ) cos(2π`(y + δ))

= 2(1− cos(π`δ)) + 2(1− g(δ))(cos(π`δ)− 1) + (g(2δ) + g(0)− 2g(δ))

+ 2g(δ) cos(π`(2y + δ))− g(2δ) cos(2π`(y + δ))− g(0) cos(2π`y).

(2.31)
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Writing

f(y) :=
∑
`≥1

1

2λ`
cos(π`y),

we, thus, have

E
(

eκy (Xt(y + δ)−Xt(y))
2
)

= σ2
∑
`≥0

1

2λ`
eκy (e`(y + δ)− e`(y))

2

= σ2
(
−2Dδf(0)− 2Dδg(0)Dδf(0) + f(0)D2

δg(0)−D2
δ(g(·)f(2y + ·))(0)

)
.

Owing to its closed form expression in (1.16), we see that f ∈ C∞b ([0, 2]) and f ′(0) = − 1
4ϑ2

. Hence,

E
(
eκy(Xt(y + δ)−Xt(y))2

)
= −2σ2f ′(0) · δ +O(δ2) =

σ2

2ϑ2
· δ +O(δ2).

For y = yk we obtain the asymptotic mean

E(Vsp) =
σ2

2ϑ2
+O(δ)

and, in particular, under the condition N/M → 0,

√
MN

(
Vsp −

σ2

2ϑ2

)
=
√
MN(Vsp −E(Vsp)) + o(1).

Step 2. We calculate the asymptotic variance: Recall the relation

Cov((S̃ik)2, (S̃jl)
2) = 2 Cov(S̃ik, S̃jl)

2

from (2.7). Together with the symmetry Cov(S̃ik, S̃jl) = Cov(S̃jk, S̃il), this implies

Var(Vsp) =
2

N2M2δ2
(v1 + v2 + v3 + v4)

where

v1 :=

N−1∑
i=0

M−1∑
k=0

Var(S̃ik)2, v2 := 2

N−2∑
i=0

N−1∑
j=i+1

M−1∑
k=0

Cov(S̃ik, S̃jk)2

v3 := 2

N−1∑
i=0

M−2∑
k=0

M−1∑
l=k+1

Cov(S̃ik, S̃il)
2, v4 := 4

N−2∑
i=0

N−1∑
j=i+1

M−2∑
k=0

M−1∑
l=k+1

Cov(S̃ik, S̃jl)
2.

We have already shown that Var(S̃ik) = E((S̃ik)2) = σ2

2ϑ2
· δ +O(δ2). Therefore,

v1 = NMδ2 · σ
4

4ϑ2
2

+O
(
N

M2

)
= NMδ2 · σ

4

4ϑ2
2

+ o

(
N

M

)
.

In the sequel, we show that the remaining covariances do not contribute to the asymptotic variance.
For v2, we define ω := ϑ2(π2∧(π2+Γ)) > 0 such that λ` ≥ ω`2 for all ` ∈ N. Since (e`(yk+1)− e`(yk))

2

. `2δ2, we get for J := |i− j| ≥ 1 that

Cov(S̃ik, S̃jk) = σ2
∑
`≥1

e−λ`J∆

2λ`
eκyk (e`(yk+1)− e`(yk))

2 .
∑
`≥1

e−λ`J∆

2λ`
`2δ2

. δ2
∑
`≥1

e−ω`
2J∆ .

δ2

√
J∆
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where the last step follows by Riemann summation with mesh size
√
J∆. Since logN

M2∆ ≤ N
M2∆ =

N2

M2
1
T → 0,

v2 .
Mδ4

∆

N−1∑
i=0

N∑
j=i+1

1

(j − i) ≤
NMδ4

∆

N∑
i=1

1

i
= O

(
N logN

M3∆

)
= o

(
N

M

)
.

To bound v3, we follow the same strategy as for the mean: since (2.30) consists exclusively of second
order differences we have Cov(S̃ik, S̃il) = O(δ2) for k 6= l. Therefore, v3 = O(NM2δ4) = o(N/M).
To estimate v4, we deduce from (2.30) for k < l and J = |i− j| ≥ 1 that

Cov(S̃ik, S̃jl) =− g(δ)D2
δfJ∆ (yl − yk+1)

+ fJ∆ (yl − yk)D2
δg(0)−D2

δ (g(·)fJ∆ (yl + yk + ·)) (0)

where

ft(y) := σ2
∑
`≥1

e−λ`t

2λ`
cos(π`y).

By Riemann summation we have f ′′t (y) .
∑
`≥1 e−λ`t . 1√

t
. On the other hand, by Lemma 2.4.8,

f ′′t (y) .
1

y ∧ (2− y)
sup
k

∣∣∣∣ k2

λk
e−λkt

∣∣∣∣ . 1

y ∧ (2− y)
.

Therefore,

f ′′t (y) . B(t, y) :=
1

y ∧ (2− y)
∧ 1√

t
.

Similarly, ft(y), f ′t(y) . B(t, y) can be shown. We conclude

v4 . NM

N−1∑
i=0

2M−2∑
k=0

δ4B

(
i∆,

k

M

)2

.
N

M3

N∑
i=1

M∑
k=0

M2

k2
∧ 1

i∆

=
N

M3

N∑
i=1

 ∑
k<M

√
i∆

1

i∆
+

∑
M≥k≥M

√
i∆

M2

k2

 .
N

M3

N∑
i=1

M√
i∆

.
N3/2

M2
√

∆
= o

(
N

M

)

where the last step follows from
√
N

M
√

∆
= N

M
1√
T
→ 0. Summing up, we have proved that

Var(Vsp) =
σ4

2ϑ2
2

· 1

MN
+ o

(
1

NM

)
.

Step 3. To prove asymptotic normality, we interpret the number of temporal and spatial ob-
servations as sequences M = Mn, N = Nn indexed by n ∈ N and consider the triangular array
(Znik, k < Mn, i < Nn, n ∈ N) where Znik := S̃ik/

√
NMδ. Since Var(

∑
i,k(Znik)2) h (MN)−1, Propo-

sition 2.2.1 applies if
1

MNδ2

(∑
i,k

|Cov(S̃ik, S̃jl)|
)2

→ 0

holds uniformly in j < N, l < M , in view of criterion (2.8). The covariance bounds in Step 2 yield
uniformly in j < N, k < M that∑

k<M

|Cov(S̃jk, S̃jl)| = O(δ),∑
i<N

|Cov(S̃il, S̃jl)| = O(δ2
√
N/
√

∆),
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( ∑
i 6=j,k 6=l

|Cov(S̃ik, S̃jl)|
)2

.MN
∑

i6=j,k 6=l

|Cov(S̃ik, S̃jl)|2 = o(N/M)

where we have used the Cauchy-Schwarz inequality to obtain the last bound. It remains to note
N/M → 0 and N∆ & 1.

Step 4. To show that the central limit theorem also holds for the vanishing initial condition, let
X0
t be the process (1.12) with ξ = 0 and ξt := S(t)ξ, where ξ follows the stationary initial condition

and is independent of X0. For these two processes, denote the rescaled space increments by

S̃0
ik := eκyk/2(δMk X

0)(ti), Ĩik := eκyk/2(ξti(yk+1)− ξti(yk)).

We show that 1
NMδ

∑N−1
i=1

∑M−1
k=0

(
(S̃0
ik)2− S̃2

ik

)
= op(1/

√
MN), then the result for zero initial condi-

tion follows from the result for stationary initial condition in view of Slutsky’s lemma. To that aim,
we expand

1

NMδ

N−1∑
i=1

M−1∑
k=0

(
(S̃0
ik)2 − S̃2

ik

)
=

1

NMδ

N−1∑
i=1

M−1∑
k=0

Ĩ2
ik −

2

NMδ

N−1∑
i=1

M−1∑
k=0

S̃0
ik Ĩik =: A1 +A2

and show that E(|A1|) = o(1/
√
MN) and E(A2

2) = o(1/(MN)). First of all, using the mean value
theorem and the Riemann sum argument,

E(Ĩ2
ik) =

∑
`≥1

σ2

2λ`
e−2λ`ti(e`(yk+1)− e`(yk))2eκyk . δ2

∑
`≥1

e−2λ`ti .
δ2

√
ti

for i ≥ 1. Hence, under the condition N/M → 0,

E(|A1|) .
1

MN
√

∆

N−1∑
i=1

1√
i
.

1

M
√
T

.
1

M
= o
( 1√

MN

)
.

Next, we treat

E
(
A2

2

)
=

4

(NMδ)2

N−1∑
i,j=0

M−1∑
k,l=0

E(S̃0
ikS̃

0
jl)E(Ĩik Ĩjl).

Comparison of terms yields that

1

(NMδ)2

∑
i 6=j

∑
k 6=l

E(S̃0
ikS̃

0
jl)E(Ĩik Ĩjl) = o

( 1

MN

)
can be shown in exactly the same way as 1

(NMδ)2

∑
i 6=j
∑
k 6=l E(S̃ikS̃jl)

2 = o
(

1
MN

)
from Step 2 of

this proof. For the other terms, it follows from

E(Ĩik Ĩjl) .
δ2

√
ti + tj

for ti + tj > 0, E(S̃0
ikS̃

0
jl) . δ2,

that

1

(NMδ)2

N−1∑
i=1

M−1∑
k,l=0

E(S̃0
ikS̃

0
il)E(Ĩik Ĩil) .

1

(NMδ)2

N−1∑
i=1

δ2

√
i∆

.
1

M2N
√
T

= o
( 1

MN

)
,

1

(NMδ)2

N−1∑
i,j=1

M−1∑
k=0

E(S̃0
ikS̃

0
jk)E(Ĩik Ĩjk) .

1

(NMδ)2

N−1∑
i,j=1

δ3√
(i+ j)∆

=
1

M3
√
T

= o
( 1

MN

)
for N/M → 0.
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The proof of the central limit theorem for double increments (Theorem 2.2.7) is similar to the
previous one, but the more complex covariance structure of the double increments has to be taken
into account carefully, see Section 2.4.4. The (asymptotic) mean of the rescaled space-time increments,
as stated in Proposition 2.2.5, is the first step of our proof. In the following, we write

D̃ik := eκyk/2Dik. (2.32)

Proof of Proposition 2.2.5. Step 1. We show asymptotic independence of Γ, i.e.,

E
(
D2
ik

)
= σ2

∑
`≥1

1− e−π
2ϑ2`

2∆

π2ϑ2`2
(e`(yk+1)− e`(yk))2 +O

(
δ
√

∆
(
δ ∧
√

∆
))

:

Define f(x) := 1−e−x

x . A first order Taylor approximation of f yields

E
(
D2
ik

)
= σ2∆

∑
`≥1

f
(
π2ϑ2`

2∆
)

(e`(yk+1)− e`(yk))2 +R

where
R . ∆2

∑
`≥1

f ′(ϑ2(π2`2 + ξ`)∆)(e`(x+ δ)− e`(x))2

for some |ξ`| ≤ |Γ|. Since

(e`(y + δ)− e`(y))2 .
(

e−κδ/2(sin(π`(y + δ))− sin(π`y)) + sin(π`y)(e−κδ/2 − 1)
)2

. 1 ∧ (`δ)
2

and noting that f ′(x2) and x2f ′(x2) are integrable, we deduce

R . ∆2
∑
`≥1

(1 ∧ (`δ)2)f ′(ϑ2(π2`2 + ξ`)∆) = O
(
∆3/2 ∧ (δ2

√
∆)
)

= O
(
(δ∆) ∧ (δ2

√
∆)
)
.

Step 2. We verify (i): Thanks to Step 1, we may assume λ` = π2ϑ2`
2. It follows from (2.31) that

E(D̃2
ik) =σ2e−κy

(
Fϑ2(0,∆)

(
1 + e−κδ

)
− 2Fϑ2(δ,∆)e−κδ/2

)
− σ2e−κyD2

δ

(
g(·)Fϑ2(2yk + · ,∆)

)
(0).

Consequently, it remains to show

D2
δ

(
g(·)Fϑ2

(2y + · ,∆)
)

(0) = O
(
δ
√

∆
(
δ ∧
√

∆
))

uniformly in y ∈ [b, 1− b]. As before this is done by showing

Fϑ2
(x,∆),

∂Fϑ2
(x,∆)

∂x
. ∆ and

∂2Fϑ2
(x,∆)

∂x2
.
√

∆

uniformly in x ∈ [2b, 2(1− b)]. By Lemma 2.4.9, we have

Fϑ2
(x,∆) = ∆

∑
`≥1

f(λ`∆) cos(π`x) = O(∆).

In order to access the first two derivatives of Fϑ2(·,∆), we split it into two summands, namely

Fϑ2
(x,∆) = ∆

∑
`≥1

1

1 + λ`∆
cos(π`x)︸ ︷︷ ︸

=:H∆(x)

+ ∆
∑
`≥1

(
1− e−λ`∆

λ`∆
− 1

1 + λ`∆

)
cos(π`x)︸ ︷︷ ︸

=:G∆(x)

.
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Using the cosine series formula (1.16), we can compute

H∆(x) =
1

ϑ2π2

∑
`≥1

1

`2 + 1
π2ϑ2∆

cos(π`x) =

√
∆

2
√
ϑ2

cosh
(

1√
ϑ2∆

(x− 1)
)

sinh
(

1√
ϑ2∆

) − ∆

2
.

The corresponding derivatives are bounded by

H ′∆(x) h
sinh

(
π√
ϑ2∆

(x− 1)
)

sinh
(

π√
ϑ2∆

) .
exp

(
π√
ϑ2∆
|x− 1|

)
exp

(
π√
ϑ2∆

)
. exp

(
− π√

ϑ2∆
(x ∧ (2− x))

)
. ∆,

H ′′∆(x) h
cosh

(
π√
ϑ2∆

(x− 1)
)

√
∆ sinh

(
π√
ϑ2∆

) .
exp

(
− π√

ϑ2∆
(x ∧ (2− x))

)
√

∆
.
√

∆.

The derivatives of

G∆(x) = ∆
∑
`≥1

h(`
√

∆) cos(π`x) with h(z) :=
1− e−z(1 + z)

z(1 + z)

can be computed summand-wisely:

G′∆(x) h
√

∆
∑
`≥1

(`
√

∆)h(`
√

∆) sin(π`x) . ∆,

G′′∆(x) h
∑
`≥1

(`2∆)h(`
√

∆) cos(π`x) .
√

∆

where the bounds follow from the Riemann sum approximations in Lemma 2.4.9, owing to xh(x)|x=0 =
x2h(x)|x=0 = 0.

Step 3. We show the asymptotic expressions from (ii): Due to a Riemann sum argument, we
have ‖Fϑ2

(·,∆)‖∞ .
√

∆ and, consequently,

Φϑ(δ,∆) = 2 (Fϑ2(0,∆)− Fϑ2(δ,∆)) + Fϑ2(0,∆)
[
1 + e−κδ − 2e−κδ/2

]
− 2 (Fϑ2(δ,∆)− Fϑ2(0,∆))

(
e−κδ/2 − 1

)
= 2 (Fϑ2

(0,∆)− Fϑ2
(δ,∆)) +O(δ

√
∆).

In the case δ/
√

∆→ 0, Taylor’s formula yields

Fϑ2
(0,∆)− Fϑ2

(δ,∆) = −δ ∂Fϑ2(0,∆)

∂x
− δ2

2

∂2Fϑ2(η,∆)

∂x2

for some η ∈ [0, δ]. We now employ the representation Fϑ2
(·,∆) = H∆ + G∆ from Step 2. Since

sin(0) = 0, we have
∂Fϑ2

(0,∆)

∂x = H ′∆(0) = − 1
2ϑ2

. The Riemann sum argument yields

∂2Fϑ2
(η,∆)

∂x2
.

1√
∆

cosh
(
(η − 1)/

√
ϑ2∆

)
sinh

(
1/
√
ϑ2∆

) +
∑
`≥1

(`2∆)h(`
√

∆) cos(π`η)

.
1√
∆

exp
(
−η/

√
ϑ2∆

)
+
∑
`≥1

(`2∆)h(`
√

∆) .
1√
∆
.
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Therefore,

Fϑ2(0,∆)− Fϑ2(δ,∆) =
1

2ϑ2
· δ +O

(
δ2

√
∆

)
.

If δ/
√

∆→∞, Lemma 2.4.9 implies

Fϑ2
(δ,∆) = −∆

2
+O

(
∆3/2

δ2

)
and Lemma 2.4.10 yields

Fϑ2
(0,∆) =

√
∆

∫ ∞
0

1− e−π
2ϑ2z

2

π2ϑ2z2
dz − ∆

2
+O(∆3/2). (2.33)

Since ∫ ∞
0

1− e−π
2ϑ2z

2

π2ϑ2z2
dz =

1√
ϑ2π

,

we obtain

Fϑ2(0,∆)− Fϑ2(δ,∆) =

√
∆√
ϑ2π

+O
(

∆3/2

δ2

)
.

Finally, we derive the asymptotic expression for the case δ/
√

∆ ≡ r, the case δ/
√

∆ → r can be
handled similarly. We have

Φϑ(δ,∆) = 2(Fϑ2
(0,∆)− Fϑ2

(δ,∆))e−κδ/2 + Fϑ2
(0,∆)(1 + e−κδ − 2e−κδ/2)

= 2(Fϑ2(0,∆)− Fϑ2(δ,∆))e−κδ/2 +O(∆3/2)

and, since 1− cos(0) = 0, Lemma 2.4.10 yields

Fϑ2(0,∆)− Fϑ2(r
√

∆,∆) =
∑
`≥1

1− e−π
2ϑ2`

2∆

π2ϑ2`2

(
1− cos

(
π`r
√

∆
))

=
√

∆

∫ ∞
0

1− e−π
2ϑ2z

2

π2ϑ2z2
(1− cos (πrz)) dz +O(∆3/2).

It remains to compute the integral. By substituting r̃ = r/
√
ϑ2, we can pass to∫ ∞

0

1− e−π
2ϑ2z

2

π2ϑ2z2
(1− cos (πrz)) dz =

1

π
√
ϑ2

(
h1(r̃)− h2(r̃)

)
where

h1(r̃) :=

∫ ∞
0

1− cos(r̃z)

z2
dz, h2(r̃) :=

∫ ∞
0

e−z
2 1− cos(r̃z)

z2
dz.

To compute h1, note that S(z) + cos(z)−1
z is an antiderivative of 1−cos(z)

z where S(z) :=
∫ z

0
sin(h)
h dh is

the sine integral. Consequently, a substitution and limz→∞ S(z) = π/2 yields

h1(r̃) = r̃

∫ ∞
0

1− cos(z)

z2
dz =

πr̃

2
.

To treat h2, note that h2(0) = h′2(0) = 0 and, hence, h2(r̃) =
∫ r̃

0

∫ s
0
h′′2(u) du ds. Now, plugging in

h′′2(r̃) =

∫ ∞
0

e−z
2

cos(r̃z) dz =

√
π

2
e−r̃

2/4

49



and integrating by parts yields

h2(r̃) =

√
π

2

∫ r̃

0

∫ s

0

e−u
2/4 du =

√
πr̃

∫ r̃/2

0

e−u
2

du+
√
π
(

e−r̃
2/4 − 1

)
.

Thus, the claim follows from

h1(r̃)− h2(r̃) =
πr̃

2

(
1− 2√

π

∫ r̃/2

0

e−u
2

du

)
+
√
π
(

1− e−r̃
2/4
)

= r̃
√
π

∫ ∞
r̃/2

e−u
2

du+
√
π
(

1− e−r̃
2/4
)
.

We now conclude the central limit theorem for the realized rescaled space-time variation.

Proof of Theorem 2.2.7. Step 1. We prove the central limit theorem for the case of a stationary initial
condition: Asymptotic normality follows just like in the proof of Theorem 2.2.3 and it remains to
calculate the asymptotic variance. Using the notation from the proof of the latter theorem (with
space increments replaced by double increments), we have

Var(V) =
2

M2N2Φ2
ϑ(δ,∆)

(v1 + v2 + v3 + v4).

To determine the asymptotic variances, we have to distinguish the three different sampling regimes.
Case δ/

√
∆→ 0: By Lemmas 2.4.5 and 2.4.6, we have

Var(D̃ki)
2 =

σ4

ϑ2
2

e−κδ · δ2 + o(δ2),

Cov(D̃ki, D̃k(i+1))
2 =

σ4

4ϑ2
2

e−κδ · δ2 + o(δ2)

as well as

Cov(D̃ki, D̃kj)
2 = o

(
δ2

|i− j|5
)
, |i− j| ≥ 2,

Cov(D̃ki, D̃lj)
2 = O

(
δ4

(|i− j|+ 1)4

(
M2

(k − l)2
∧ 1

∆

))
, k 6= l.

The latter covariances are negligible for the asymptotic variance since∑
k≤M

(
M2

k2
∧ 1

∆

)
.

M√
∆
,

cf. the proof of Theorem 2.2.3. Inserting Φ2
ϑ(δ,∆) = e−κδ

ϑ2
2
δ2 + o(δ2) from Proposition 2.2.5 yields the

claim.
Case δ/

√
∆→∞: By Lemmas 2.4.5 and 2.4.7, we have

Var(D̃ki)
2 =

4σ4

πϑ2
e−κδ ·∆ + o(∆),

Cov(D̃ki, D̃(k+1)i)
2 =

σ4

πϑ2
e−κδ ·∆ + o(∆).

From
√
J − 1 +

√
J + 1− 2

√
J = O(J−3/2) and

√
∆/δ → 0, it follows for J := |i− j| ≥ 1 that

Cov(D̃ki, D̃kj)
2 =

σ4

πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)2

e−κδ ·∆ + o

(
∆

J3/2

)
+O(∆3),
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Cov(D̃ki, D̃(k+1)j)
2 =

σ4

4πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)2

e−κδ ·∆ + o

(
∆

J3/2

)
+O(∆3).

Note that the O(∆3)-term is negligible for the asymptotic variance since

N2M∆3 = MN∆ ·N∆2 = MN∆ · T
M
·M
√

∆ ·
√

∆ = o(NM∆).

The remaining covariances do not contribute to the asymptotic variance since for |k − l| ≥ 2, we have

Cov(D̃ki, D̃lj)
2 = O

(
∆δ4

(J + 1)3

)
+O

(
∆2

(J + 1)2

M2

(k − l)2

)
.

The claim is now proved by inserting Φ2
ϑ(δ,∆) = 4

πϑ2
e−κδ∆ + o(∆) and noting that for the function

g(j) = (
√
j − 1 +

√
j + 1− 2

√
j)2, we obtain

1

N

N−1∑
i,j=0

i6=j

g(|i− j|) =
2

N

N−1∑
i=1

i∑
j=1

g(j)→ 2
∑
j≥1

g(j), N →∞,

as the Cesàro limit.
Case δ/

√
∆ ≡ r ∈ (0,∞): For f : R2 → R, we define

D2
xf(x, y) := f(x+ 2, y) + f(x, y)− 2f(x+ 1, y),

D2
yf(x, y) := f(x, y + 2) + f(x, y)− 2f(x, y + 1).

We show that the asymptotic variance is given by C(r/
√
ϑ2)σ4 where

C(h) :=
2

Λ2
0,0(h)

∑
j,l∈Z

Λ2
j,l(h), Λj,l(h) :=

(
D2
xD

2
yGh

)
(|j| − 1, |l| − 1) (2.34)

and

Gh(j, l) :=
√
|j|H

(
h|l|√
|j|

)
1{j 6=0}, H(x) :=

1

2
√
π

(
exp

(
−x

2

4

)
− x

∫ ∞
x/2

e−z
2

dz

)
. (2.35)

With FJ,∆ from Lemma 2.4.5, define

ξ∆
i−j,k−l :=

{
2DδF|i−j|,∆(0), l = k,

D2
δF|i−j|,∆((|k − l| − 1)δ), l 6= k

with δ = r
√

∆. Then, Lemma 2.4.5 reads as

Cov(D̃ik, D̃ik) = −σ2e−κδ/2ξ∆
i−j,k−l +O

(
∆3/2

(J + 13/2)

)
. (2.36)

Since each term ξ∆
J,L is a Riemann sum multiplied by

√
∆, we have for J, L ≥ 0 that

lim
∆→0

∆−1/2ξ∆
J,L = −

{
2(Ψr(J, 1))−Ψr(J, 0)), L = 0,

Ψr(J, L− 1) + Ψr(J, L+ 1)− 2Ψr(J, L), L ≥ 1

where

Ψr(J, L) :=


∫ ∞

0

1− e−π
2ϑ2z

2

π2ϑ2z2
cos (πrLz) dz, J = 0,∫ ∞

0

2e−Jπ
2ϑ2z

2 − e−(J+1)π2ϑ2z
2 − e−(J−1)π2ϑ2z

2

2π2ϑ2z2
cos (πrLz) dz, J ≥ 1.
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By symmetry of the cosine function,

lim
M,N→∞

∆−1/2ξJ,L =−
(

Ψr(J, |L| − 1) + Ψr(J, |L|+ 1)− 2Ψr(J, |L|)
)

also holds for negative L. Hence, we can write for all L ∈ Z, J ≥ 0 and with Gh from (2.35):

Ψr(J, L) =

∫ ∞
0

2e−Jπ
2ϑ2z

2 − e−(J+1)π2ϑ2z
2 − e−|J−1|π2ϑ2z

2

2π2ϑ2z2
cos (πrLz) dz

=
(
Gr/
√
ϑ2

(J + 1, L) +Gr/
√
ϑ2

(J − 1, L)− 2Gr/
√
ϑ2

(J, L)
)
/
√
ϑ2

where the last equality follows from

Gr/
√
ϑ2

(j, l)
√
ϑ2

=

∫ ∞
0

1− e−|j|π
2ϑ2z

2

2π2ϑ2z2
cos (πrlz) dz, j, l ∈ Z,

which may be shown analogously to the calculation of ψϑ2
(r). Consequently, for all J ∈ {1−N, . . . , N−

1} and L ∈ {1−M, . . . ,M − 1}, we have

lim
M,N→∞

∆−1/2ξJ,L = −ΛJ,L(r/
√
ϑ2)/

√
ϑ2.

The usual Riemann sum argument shows FJ,∆(0) .
√

∆
(J+1)3/2 .

√
∆

(J+1) for J ≥ 0 and (2.59) from the

proof of Lemma 2.4.7 yields FJ,∆(Lδ) . ∆
(J+1)Lδ .

√
∆

(J+1)(L+1) for J ∈ N0 and L ≥ 1. We obtain

∆−1/2ξ∆
J,L = O

(
1

(|J |+ 1)(|L|+ 1)

)
, J, L ∈ Z. (2.37)

Therefore,

Var

(
1√

NM∆

N−1∑
i=0

M−1∑
k=0

D̃2
ik

)
=

2σ4

NM∆

N−1∑
i,j=0

M−1∑
k,l=0

Cov(D̃ik, D̃jl)
2

=
2σ4

NM∆

N−1∑
i,j=0

M−1∑
k,l=0

(ξ∆
i−j,k−l)

2 + o(1).

By dominated convergence and taking Cesàro limits twice, we conclude

lim
M,N→∞

Var

(
1√

NM∆

N−1∑
i=0

M−1∑
k=0

D̃2
ik

)
= lim
M,N→∞

2σ4

ϑ2NM

N−1∑
i,j=0

M−1∑
k,l=0

Λ2
i−j,k−l(r/

√
ϑ2)

=
2σ4

ϑ2

∑
i,k∈Z

Λ2
i,k(r/

√
ϑ2).

Since ψϑ2
(r) = −Λ0,0(r/

√
ϑ2)/
√
ϑ2, we have Φ2

ϑ(δ,∆) = e−κδΛ2
0,0(r/

√
ϑ2)/ϑ2 · ∆ + o(∆). Finally,

dividing by limM,N→∞∆−1Φ2
ϑ(δ,∆) = Λ2

0,0(r/
√
ϑ2)/ϑ2 yields the claimed asymptotic variance.

Step 2. To show that the central limit theorem also holds for the zero initial condition, we proceed
as in Step 4 of the proof of Theorem 2.2.3: Again, let X0

t be the process (1.12) with ξ = 0 and
ξt := S(t)ξ where ξ follows the stationary initial condition and is independent of X0. For these
two processes, denote the rescaled double increments by D̃0

ik and Ĩik, respectively. We show that

E(|A1|) = o(1/
√
MN) and E(A2

2) = o(1/(MN)) with

A1 :=
1

NMΦϑ(δ,∆)

N−1∑
i=1

M−1∑
k=0

Ĩ2
ik, A2 := − 2

NMΦϑ(δ,∆)

N−1∑
i=1

M−1∑
k=0

D̃0
ik Ĩik.
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First of all, using the Riemann sum argument,

E(Ĩ2
ik) =

∑
`≥1

σ2

2λ`
(1− e−λ`∆)2e−2λ`ti(e`(yk+1)− e`(yk))2

. ∆(δ2 ∧∆)
∑
`≥1

λ`e
−2λ`ti . ∆(δ2 ∧∆)t

−3/2
i =

δ2

√
∆i3/2

∧
√

∆

i3/2
.

In the regime M
√

∆ & 1, we have Φϑ(δ,∆) h δ and, thus,

E(|A1|) .
1

NM

N−1∑
i=1

M−1∑
k=0

δ√
∆i3/2

.
Mδ

MN
√

∆
.

1

M
√
N
√
T

= o
( 1√

MN

)
.

In the regime M
√

∆→ 0, we have Φϑ(δ,∆) h
√

∆ and, thus,

E(|A1|) .
1

NM

N−1∑
i=0

M−1∑
k=0

1

i3/2
.

1

N
=

1√
MN

(M
√

∆)1/2

(NT )1/4
= o
( 1√

MN

)
.

To treat E(A2
2), we use

E(Ĩik Ĩjl) =
∑
`≥1

σ2

2λ`
(1− e−λ`∆)2e−λ`(ti+tj)(e`(yk+1)− e`(yk))(e`(yl+1)− e`(yl))

. ∆2δ2
∑
`≥1

λ2
`e
−2λ`(ti+tj) . ∆2δ2(ti + tj)

−5/2 =
δ2

√
∆(i+ j)5/2

.

Due to
N−1∑
i,j=1

1

(i+ j)5/2
≤
N−1∑
i=1

∑
j≥i

1

j5/2
.
N−1∑
i=1

1

i3/2
≤
∞∑
i=1

1

i3/2
<∞

and E(D̃0
ikD̃

0
jl) h Φϑ(δ,∆), we obtain

E(A2
2) =

4

(MNΦϑ(δ,∆))2

N−1∑
i,j=1

M−1∑
k=0

E(Ĩik Ĩjl)E(D̃0
ikD̃

0
jl)

.
1

(MN(δ ∧
√

∆))2

M2δ2(δ ∧
√

∆)√
∆

.
1

(MN)2
√

∆(δ ∧
√

∆)
.

In the regime M
√

∆ & 1, the above term is of the order 1
MN3/2

√
T

= o( 1
MN ) and, for M

√
∆ → 0, it

is of the order 1
M2NT = o( 1

MN ). This finishes the proof.

2.4.3 Proofs for the estimators

Propositions 2.2.10 and 2.2.11 follow immediately from the central limit theorems for the realized
quadratic variations and the delta method.

Before proving Theorem 2.2.12, we introduce some notation that will be used throughout the proof
and we state the asymptotic covariance matrix explicitly. To simplify calculations, we will assume
that the target function KN,M is parameterized in terms of

η0 := (σ2, ϑ2, κ)
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such that minimizing KN,M with respect to η ∈ H is the same as minimizing with respect to η0 ∈ H0

and then multiplying the second and third coordinates of the minimizer to obtain the estimator
for ϑ1. The corresponding parameter space is given by the compact set H0 := {z ∈ R3 : z =
(σ2, ϑ2, ϑ1/ϑ2) for some (σ2, ϑ2, ϑ1) ∈ H}. Recall the definition of Λi,k(·) from (2.34) and for any
i, k ∈ Z let

Arik := −Λik(r/
√
ϑ2)/

√
ϑ2, Ar :=

∑
i,k∈Z

(Arik)2,

Brik := 2Arik +Ar(i−1)k +Ar(i+1)k, Br :=
∑
i,k∈Z

(Brik)2,

Crik := Arik +Ar(i−1)k, Cr :=
∑
i,k∈Z

(Crik)2.

In terms of

H(x) :=
4x√
π

(
1− e−x

2

+ 2x

∫ ∞
x

e−z
2

dz

)
, H ′(x) =

4√
π

(
1− e−x

2

+ 4x

∫ ∞
x

e−z
2

dz

)
,

x ≥ 0, we have ψϑ2(r) = 1
rH
(

r
2
√
ϑ2

)
and ∂

∂ϑ2
ψϑ2(r) = −H ′

(
r

2
√
ϑ2

)
1

4ϑ
3/2
2

. Denoting ri := r/
√
i, the

gradient of η0 7→ f iη0
(z) is, thus, given by

giη0
(z) := e−κz

(
1

ri
H
( ri

2
√
ϑ2

)
,− σ2

4ϑ
3/2
2

H ′
( ri

2
√
ϑ2

)
,−z σ

2

ri
H
( ri

2
√
ϑ2

))>
and we define

hiη0
(z) := e−κzgiη0

(z)

for i = 1, 2 and z ∈ [b, 1−b]. Moreover, we write 〈f, g〉b := 1
1−2b

∫ 1−b
b

f(x)g(x)dx for f, g ∈ L2([b, 1−b]).
We will prove that the asymptotic covariance matrix is given by

Ωrη = JV −1UV −1J> (2.38)

where U = U(η0), V = V (η0) and J = J(η0) are defined via

Uij := 4σ4
(

2Ar〈(h1
η0

)i, (h
1
η0

)j〉b +Br〈(h2
η0

)i, (h
2
η0

)j〉b +
√

2Cr
(
〈(h1

η0
)i, (h

2
η0

)j〉b + 〈(h2
η0

)i, (h
1
η0

)j〉b
))
,

Vij := 2
(
〈(g1

η0
)i, (g

1
η0

)j〉b + 〈(g2
η0

)i, (g
2
η0

)j〉b
)
, i, j ∈ {1, 2, 3},

and

J :=

1 0 0
0 1 0
0 κ ϑ2

 .

Proof of Theorem 2.2.12. The proof uses the classical theory on minimum contrast estimators, see,
e.g., [27]. In particular, the mean value theorem yields

−K̇N,M (η0) = K̇N,M (η̂0)− K̇N,M (η0) =

(∫ 1

0

K̈N,M (η0 + τ(η̂0 − η0)) dτ

)
(η̂0 − η0)

as soon as [η̂0, η0] ⊂ H0, where K̇N,M and K̈N,M denote gradient and Hessian with respect to η0,
respectively. In the sequel, we will verify that KN,M is associated with the contrast function

K(η0, η̃0) := K1(η0, η̃0) +K2(η0, η̃0) where Ki(η0, η̃0) :=
1

1− 2b

∫ 1−b

b

(f iη0
(z)− f iη̃0

(z))2 dz
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(Steps 1-2), show consistency of η̂0 (Step 3), prove asymptotic normality of K̇N,M (η0) with covariance

matrix U (Steps 4-7) and deduce stochastic convergence of
∫ 1

0
K̈N,M (η0+τ(η̂0−η0)) dτ to the invertable

matrix V (Steps 8-9). Then, Slutsky’s Lemma yields
√
MN(η̂0 − η0) = −

√
MNV (η0)−1K̇N,M (η0) +

op(1)
D−→ N (0, V −1UV −1). Finally, since J is the Jacobian matrix of the mapping η0 = (σ2, ϑ2, κ) 7→

(σ2, ϑ2, κϑ2) = η, the result follows from the delta method. Throughout, we work under Assumption
(ST). The case X0 = 0 can be treated by employing similar approximation arguments as in the proof
of Theorem 2.2.7 in Steps 2, 3, 7 and 8 of this proof.

Step 1. We show that K is a contrast function in the sense that, for each η0, the function
η̃0 7→ K(η0, η̃0) attains its unique minimum in η̃0 = η0. Since f iη0

(·) is continuous, it is sufficient to
show that (f1

η0
, f2
η0

) = (f1
η̃0
, f2
η̃0

) holds if and only if η0 = η̃0. Clearly, (f1
η0
, f2
η0

) = (f1
η̃0
, f2
η̃0

) holds if

and only if κ = κ̃ and σ2ψϑ2
(ri) = σ̃2ψϑ̃2

(ri) for i = 1, 2. Therefore, in order to prove identifiability,
it is sufficient to show that ϑ2 7→ ψϑ2

(r1)/ψϑ2
(r2) is injective, which, in turn, is implied by strict

monotonicity of H(r1z)/H(r2z) in z > 0. We show that the corresponding derivative or, equivalently,
the function z 7→ H ′(r1z)H(r2z)r1 − H ′(r2z)H(r1z)r2, is strictly negative for all z > 0: For x > 0,

define p(x) =
∫∞
x

e−z
2

dz and q(x) = 1− e−x
2

. A simple calculation shows that

H ′(r1z)H(r2z)r1 −H ′(r2z)H(r1z)r2 =
32

π
r1r2z

(
p(r1z)q(r2z)r1z − p(r2z)q(r1z)r2z

)
which is strictly negative if we can show that p(b)q(a)b − p(a)q(b)a < 0 for all 0 < a < b. Now, a

substitution yields p(x) = x
∫∞

1
e−x

2t2 dt and q(x) = 2x2
∫ 1

0
se−x

2s2 ds and, therefore,

p(b)q(a)b− p(a)q(b)a = 2a2b2
∫ 1

0

∫ ∞
1

s
(

e−b
2t2−a2s2 − e−a

2t2−b2s2
)
dt ds < 0

follows from negativity of the integrand.
In the sequel, we follow the series of arguments from Theorem 5.1 of Bibinger and Trabs [9].
Step 2. K is the contrast function associated with the process KN,M in the sense that KN,M (η̃0)

Pη0−→ K(η0, η̃0), N,M →∞, for all η̃0 ∈ H0: Recall from the proof of Theorem 2.2.7 that for i, j, k, l ∈
N0, we have

Cov(Dik, Djl) = σ2e−κ
zk+zl

2 ξ∆
i−j,k−l +O

(
∆3/2

(|i− j|+ 1)3/2

)
, (2.39)

ξ∆
i,k = O

( √
∆

(|i|+ 1)(|k|+ 1)

)
(2.40)

and limN,M→∞∆−1/2ξ∆
i−j,k−l = Arik = −Λik(r/

√
ϑ2)/
√
ϑ2. Now, in terms of

rik(η0) := D2
ik/
√

∆− f1
η0

(zk), Rk(η0) :=
1

N

N−1∑
i=0

rik(η0),

we can write

K1
N,M (η̃0) =

1

M

M−1∑
k=0

(
f1
η0

(zk)− f1
η̃0

(zk)
)2

+
2

M

M−1∑
k=0

Rk(η0)
(
f1
η0

(zk)− f1
η̃0

(zk)
)

+
1

M

M−1∑
k=0

R2
k(η0). (2.41)

Clearly, the first summand converges to K1(η0, η̃0). To prove that the other two summands are
negligible, note that

E(rikrjl) = E
(

(D2
ik/
√

∆−E(D2
ik/
√

∆) +O(∆))(D2
jl/
√

∆−E(D2
jl/
√

∆) +O(∆))
)
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=
1

∆
Cov(D2

ik, D
2
jl) +O(∆2)

=
2

∆
Cov(Dik, Djl)

2 +O(∆2) = O
(

1

(|i− j|+ 1)2(|k − l|+ 1)2

)
+O(∆2).

By Markov’s inequality and boundedness of φ(·) = f1
η0

(·)− f1
η̃0

(·), we have for any ε > 0 that

P

(∣∣∣∣∣ 1

M

M−1∑
k=0

Rkφ(zk)

∣∣∣∣∣ ≥ ε
)
≤ 1

ε2M2

M−1∑
k,l=0

|E (RkRl)φ(zk)φ(zl)| .
1

M2

M−1∑
k,l=0

|E (RkRl) |

≤ 1

M2N2

M−1∑
k,l=0

N−1∑
i,j=0

|E (rikrjl) | = o(1),

and, hence, the second summand in (2.41) converges to zero in probability. For the third summand,
the same conclusion holds since

E

(
1

M

M−1∑
k=0

R2
k

)
=

1

M

M−1∑
k=0

E
(
R2
k

)
=

1

MN2

M−1∑
k=0

N−1∑
i,j=0

E (rikrjk) = o(1)

and L1-convergence implies convergence in probability. K2
N,M can be handled similarly by considering

a decomposition into two sums of non-overlapping increments:

R̄k(η0) = 2

 1

2N

∑
i≤N−1
i is even

r̄ik(η0) +
1

2N

∑
i≤N−1
i is odd

r̄ik(η0)


where r̄ik = D̄2

ik/
√

2∆− f2
η0

(zk).
Step 3. Consistency of η̂0 follows from uniform convergence in probability of the contrast process.

Since KN,M and K are continuous, this, in turn, follows from

∀ε > 0 : lim
h→0

lim sup
M,N→∞

Pη0

(
sup

|η′0−η′′0 |<h
|KN,M (η′0)−KN,M (η′′0 )| ≥ ε

)
= 0 :

By compactness of the parameter space, for each a > 0 there exists h > 0 such that ‖f iη′0 −
f iη′′0
‖∞, ‖(f iη′0)2 − (f iη′′0

)2‖∞ ≤ a for all |η′0 − η′′0 | < h. Therefore,

|K1
N,M (η′0)−K1

N,M (η′′0 )|

≤ 2

M

M−1∑
k=0

(
1

N
√

∆

N−1∑
i=0

D2
ik

)
|f1
η′′0

(zk)− f1
η′0

(zk)|+ 1

M

M−1∑
k=0

|f1
η′0

(zk)2 − f1
η′′0

(zk)2|

≤ a
(

2

M

M−1∑
k=0

(
1

N
√

∆

N−1∑
i=0

D2
ik

)
+ 1

)

and, hence,

lim sup
M,N→∞

Pη0

(
sup

|η′0−η′′0 |<h
|K1

N,M (η′0)−K1
N,M (η′′0 )| ≥ ε

)

≤ lim sup
M,N→∞

1

ε
E

(
sup

|η′0−η′′0 |<h
|K1

N,M (η′0)−K1
N,M (η′′0 )|

)
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≤ lim sup
M,N→∞

a

ε
E

(
2

M

M−1∑
k=0

(
1

N
√

∆

N−1∑
i=0

D2
ik

)
+ 1

)
.
a

ε
.

The same argument applies to K2
N,M and the result follows.

Step 4. Let F1, F2 ∈ C1([0, 1]) and (ak)k∈Z be absolutely summable. Then, we can write

1

n

n−1∑
k,l=0

ak−lF1(zk)F2(zl) =
a0

n
(F1(z0)F2(z0) + · · ·+ F1(zn−1)F2(zn−1))

+
a1

n
(F1(z1)F2(z0) + · · ·+ F1(zn−1)F2(zn−2))

+
a−1

n
(F1(z0)F2(z1) + · · ·+ F1(zn−2)F2(zn−1)) + · · ·

and, consequently, we have 1
n

∑n−1
k,l=0 ak−lF1(zk)F2(zl) → 〈F1, F2〉b ·

∑
k∈Z ak, n →∞, by dominated

convergence.
Step 5. We show that the asymptotic covariance matrix of

√
NMK̇N,M (η0) is given by U : We

have K̇N,M (η0) = K̇1
N,M (η0) + K̇1

N,M (η0) as well as

K̇1
N,M (η0) = − 2

M

M−1∑
k=0

(
1

N
√

∆

N−1∑
i=0

D2
ik − f1

η0
(zk)

)
g1
η0

(zk)

and similarly for K̇2
N,M (η0). Using Isserlis’ covariance formula (2.7) in connection with (2.39) and

noting D̄ik = Dik +D(i+1)k, it follows that

Cov(D2
ik, D

2
jl) = 2

(
σ2e−

zk+zl
2 ξ∆

i−j,k−l +O
(

∆3/2

(|i− j|+ 1)3/2

))2

,

Cov(D̄2
ik, D̄

2
jl) = 2

(
σ2e−

zk+zl
2 (2ξ∆

i−j,k−l + ξ∆
i−j−1,k−l + ξ∆

i−j+1,k−l) +O
(

∆3/2

(|i− j|+ 1)3/2

))2

,

Cov(D2
ik, D̄

2
jl) = 2

(
σ2e−

zk+zl
2 (ξ∆

i−j,k−l + ξ∆
i−j−1,k−l) +O

(
∆3/2

(|i− j|+ 1)3/2

))2

.

Now, for any 1 ≤ e, f ≤ 3, the first summand in the expansion

Cov((K̇N,M )e, (K̇N,M )f ) =Cov((K̇1
N,M )e, (K̇

1
N,M )f ) + Cov((K̇2

N,M )e, (K̇
2
N,M )f )

+ Cov((K̇1
N,M )e, (K̇

2
N,M )f ) + Cov((K̇2

N,M )e, (K̇
1
N,M )f ) (2.42)

is given by

Cov((K̇1
N,M )e, (K̇

1
N,M )f ) =

4

M2N2∆

N−1∑
i,j=0

M−1∑
k,l=0

Cov(D2
ik, D

2
jl) (g1

η0
)e(zk) (g1

η0
)f (zl).

Like in the proof of Theorem 2.2.7, the covariances may be replaced by their asymptotic expressions,
due to dominated convergence. Further, using (hiη0

)e(z) = e−κz(giη0
)e(z) and Step 4, we have

MN · Cov((K̇1
N,M )e, (K̇

1
N,M )f )→ 8σ4

∑
i,k∈Z

(Ari,k)2 · 〈(h1
η0

)e, (h
1
η0

)f 〉b, M,N →∞.

Analogously,

MN · Cov((K̇2
N,M )e, (K̇

2
N,M )f )→ 4σ4

∑
i,k∈Z

(Bri,k)2 · 〈(h2
η0

)e, (h
2
η0

)f 〉b, M,N →∞,
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MN · Cov((K̇1
N,M )e, (K̇

2
N,M )f )→ 4

√
2σ4

∑
i,k∈Z

(Cri,k)2 · 〈(h1
η0

)e, (h
2
η0

)f 〉b, M,N →∞,

and insertion into (2.42) yields the claimed asymptotic covariance matrix.
Step 6. U is strictly positive definite: It is sufficient to show Cr <

√
ArBr, then it follows for any

α ∈ R3 \ {0} and Hi
α =

∑3
j=1 αj(h

i
η0

)j , i = 1, 2, that

α>Uα = 4σ4
(

2Ar‖H1
α‖2b +Br‖H2

α‖2b + 2
√

2Cr〈H1
α, H

2
α〉b
)

> 4σ4
(

2Ar‖H1
α‖2b +Br‖H2

α‖2b + 2
√

2ArBr〈H1
α, H

2
α〉b
)

= 8σ4
∥∥∥√2ArH

1
α +
√
BrH

2
α

∥∥∥2

b
≥ 0

where we may assume 〈H1
α, H

2
α〉b < 0 since, otherwise, α>Uα > 0 follows immediately from the first

equality. Now, consider (Ari,k) and (Bri,k) as elements in the Hilbert space `2 of square summable

sequences indexed by Z×Z. Clearly, Ar = ‖(Ari,k)‖2`2 , Br = ‖(Bri,k)‖2`2 and a direct calculation shows

that Cr = 〈(Ari,k), (Bri,k)〉`2 . Thus, by the Cauchy-Schwarz inequality, we have Cr ≤
√
ArBr and

equality is ruled out by the fact that (Ari,k) and (Bri,k) are not linearly dependent.

Step 7. We show
√
NMK̇1

N,M (η0)
D−→ N (0, U) under Pη0

: In view of the Cramér-Wold device,

we have to prove
√
NMα>K̇N,M

D−→ N (0, α>Uα) for any α ∈ R3. Let sik and Zik be given by the

relation sikZ
2
ik = − 2αT ḟ1

η0
(zk)

√
NM∆

D2
ik where sik ∈ {−1, 1} is deterministic. Analogously, define s̄ik and

Z̄2
i,k. Then, ZN,M = (Zik, Z̄j,l)i,j,k,l is a Gaussian vector and from Proposition 2.2.5, it follows that

√
NMα>K̇N,M (η0) = SN,M −E(SN,M ) + o(1)

where SN,M =
∑N−1
i=0

∑M−1
k=0 sikZ

2
ik +

∑N−1
i=0

∑M−2
k=0 s̄ikZ̄

2
ik. From Steps 5 and 6, we can deduce that

Var (SN,M ) → α>Uα > 0, N,M → ∞, and, thus, in view of criterion (2.8), asymptotic normality
follows if the absolute row sums of the covariance matrix of ZN,M vanish uniformly. This, in turn, is
a simple consequence of (2.39) and (2.40).

Step 8. In order to prove
∫ 1

0
K̈N,M (η0 + τ(η̂0 − η0)) dτ

Pη0−→ V (η0), we show K̈N,M (η̌0)
Pη0−→ V (η0)

for any consistent estimator η̌0 of η0: We have

K̈1
N,M (η0) =

2

M

M−1∑
k=0

g1
η0

(zk)g1
η0

(zk)> − 2

M

M−1∑
k=0

(
1

N
√

∆

N−1∑
i=0

D2
ik − f1

η0
(zk)

)
f̈1
η0

(zk)

and analogously for K̈2
N,M . By using Pη0

(η̌0 ∈ H0) → 1 and the uniform continuity of f iη0
(z) and

its derivatives in the parameter (z, η0) ∈ [0, 1] × H0, it is straightforward to show K̈N,M (η̌0) −
K̈N,M (η0)

Pη0−→ 0. Now, write V = 2(V 1 + V 2) where V i is the Gram matrix of the functions
{(giη0

)1, (giη0
)2, (giη0

)3} with respect to the inner product 〈·, ·〉b, i.e., V ief = 〈(giη0
)e, (g

i
η0

)f 〉b, 1 ≤ e, f ≤
3. Clearly, the first summand of K̈1

N,M (η0) converges to 2V 1 while the calculations of Step 2 show

that the second summand converges to 0 in probability. The same reasoning holds for K̈2
N,M (η0) and

the result follows.
Step 9. V is strictly positive definite: Being Gram matrices, V 1 and V 2 are positive semidefinite

and, consequently, the same holds for V . Clearly, the only way V can be singular is if there exists

α ∈ R3 such that 0 = α>V iα =
∥∥∑3

e=1 αe(g
i
η0

)e
∥∥2

b
holds for both i ∈ {1, 2}. From the particular form

of the functions (giη0
)e it is apparent that this would imply that α1ψϑ2

(ri) + α2σ
2 ∂ψϑ2

(ri)

∂ϑ2
= α3 = 0

for both i ∈ {1, 2}, which is impossible.

Corollary 2.2.14 is a direct consequence of the previous proof.
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Proof of Corollary 2.2.14. We have to prove

∀ε > 0 ∃C > 0 : lim sup
N,M→∞

Pη

(√
M3 ∧N3/2‖η̂v,w − η‖ ≥ C

)
≤ ε

or, equivalently,

∀ε > 0 ∃C > 0 : lim sup
N,M→∞

Pη0

(√
M3 ∧N3/2‖η̂v,w0 − η0‖ ≥ C

)
≤ ε

where η̂v,w0 is the minimizer of KN,M in terms of the parametrization η0 = (σ2, ϑ2, κ), as in the proof
of Theorem 2.2.12. In fact, similar calculations as in the latter proof show that its Steps 1-3 and
8-9 remain valid. Consequently, we have the representation −K̇N,M (η0) = VN,M (η̂v,w0 , η0)(η̂v,w0 − η0)

where VN,M (η̃0, η0) =
∫ 1

0
K̈N,M (η0 + τ(η̃0 − η0)) dτ as well as VN,M (η̂v,w0 , η0)

Pη0−→ V (η0), where V (η0)
is an invertible deterministic matrix. In particular, the set

AN,M :=
{
VN,M (η̂v,w0 , η0) is invertible with ‖VN,M (η̂v,w0 , η0)−1‖2 ≤ ‖V (η0)−1‖2 + 1

}
satisfies Pη0(AN,M )→ 1. Further, K̇N,M (η0) can be written as an average of expressions of the type

K̇N,M from Theorem 2.2.12 so that the calculations of Step 5 show together with the Cauchy-Schwarz

inequality that Eη0

(
‖K̇N,M (η0)‖2

)
= O((M3 ∧N3/2)−1). Now,

Pη0

(√
M3 ∧N3/2‖η̂v,w0 − η0‖ ≥ C

)
≤Pη0

({√
M3 ∧N3/2‖η̂v,w0 − η0‖ ≥ C

}
∩AN,M

)
+ Pη0(Ac

N,M ).

The second summand becomes arbitrarily small as M,N → ∞. For the first summand, let γ(η0) :=
‖V (η0)−1‖2 + 1, then it follows from Markov’s inequality that

Pη0

(
{
√
M3 ∧N3/2‖η̂v,w0 − η0‖ ≥ C} ∩AN,M

)
= Pη0

(
{
√
M3 ∧N3/2‖VN,M (η̂v,w0 , η0)−1K̇N,M (η0)‖ ≥ C} ∩AN,M

)
≤ Pη0

(
{
√
M3 ∧N3/2‖K̇N,M (η0)‖ ≥ C

γ(η0)
} ∩AN,M

)
≤ Pη0

(√
M3 ∧N3/2‖K̇N,M (η0)‖ ≥ C

γ(η0)

)
≤ (M3 ∧N3/2)Eη0

(‖K̇N,M (η0)‖2)
γ(η0)2

C2
.

1

C2
.

Before analyzing our estimator for the whole parameter vector (σ2, ϑ), we prove the central limit
theorem for the rescaled sum of squares corresponding to the discrete observations of X.

Proof of Proposition 2.2.16. First, let us consider the case of a stationary initial distribution: By
regarding the mean of S as a Riemann sum and noting that y 7→ ρyy(0) is continuously differentiable,
we get

E(S) =
1

1− 2b

∫ 1−b

b

ρyy(0) dy +O
( 1

M

)
.

Hence, the second statement is a direct consequence of the first. To compute the asymptotic variance,
define Sx := 1

N

∑N−1
i=0 X2

ti(x)eκx. We have

Var(S) =
1

M2

M−1∑
k,l=0

Cov(Syk , Syl)

=
1

M2

M−1∑
k,l=0

2

T

∫ ∞
−∞

ρ2
ykyl

(t) dt+
1

M2

M∑
k,l=0

Rykyl
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where it follows from Isserlis’ Covariance formula (2.7) that

Rxy =
2

N2

N−1∑
i,j=0

ρ2
xy(ti − tj)−

2

T

∫ ∞
−∞

ρ2
xy(t) dt

=
2

N2

N−1∑
j=0

j∑
i=−j

ρ2
xy(i∆)− 2

T

∫ ∞
−∞

ρ2
xy(t) dt.

For t > 0, we have |ρxy(t)| . e−λ1t
∑
`≥1

1
λ`

. e−π
2ϑ2t and, therefore,

∫∞
T
ρ2
xy(t) dt → 0 for T → ∞

uniformly in x, y ∈ [b, 1− b] . Consequently, by taking a Cesàro limit,

Rxy =
2

T

1

N

N−1∑
j=0

∆

j∑
i=−j

ρ2
xy(i∆)−

∫ ∞
−∞

ρ2
xy(t) dt


=

2

T

1

N

N−1∑
j=0

∆

j∑
i=−j

ρ2
xy(i∆)−

∫ (j+1/2)∆

−(j+1/2)∆

ρ2
xy(t) dt

+ o
( 1

T

)
.

Since ρxy(·) is bounded uniformly in x and y, we have | ddtρ2
xy(t)

∣∣ =
∣∣2ρxy(t) ddtρxy(t)

∣∣ . ∣∣ d
dtρxy(t)

∣∣.
Further, there exists C > 0 such that

∣∣ d
dt
ρxy(t)

∣∣ .∑
`≥1

e−C`
2|t| . e−C|t| +

∫ ∞
1

e−C|t|u
2

du .

{
|t|−1/2, |t| ≤ 1,

e−C|t|, |t| ≥ 1

and, hence, d
dtρ

2
xy(·) is integrable overR. Now, using some intermediate points ξi ∈ [(i− 1

2 )∆, (i+ 1
2 )∆],

we can deduce that∣∣∣∣∣∣∆
j∑

i=−j
ρ2
xy(i∆)−

∫ (j+1/2)∆

−(j+1/2)∆

ρ2
xy(t) dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
j∑

i=−j

∫ (i+1/2)∆

(i−1/2)∆

(
ρ2
xy(i∆)− ρ2

xy(t)
)
dt

∣∣∣∣∣∣
≤

∞∑
i=−∞

∫ (i+1/2)∆

(i−1/2)∆

∣∣ρ2
xy(i∆)− ρ2

xy(t)
∣∣ dt

≤∆2
∞∑

i=−∞

∣∣ d
dt
ρ2
xy(ξi)

∣∣ . ∆

uniformly in x, y and j. Therefore, Rxy = o(1/T ) holds uniformly in x and y and

Var(S) =
1

M2

M∑
k,l=0

2

T

∫ ∞
−∞

ρ2
ykyl

(t) dt+ o
( 1

T

)
=

2

T (1− 2b)2

∫ ∞
−∞

∫ 1−b

b

∫ 1−b

b

ρ2
xy(t) dx dy dt+ o

( 1

T

)
.

Finally, in order to prove asymptotic normality, we make use of Proposition 2.2.1, which states that
is sufficient to prove that the maximum absolute row sum of the covariance matrix of the random

vector ( T 1/4
√
MN

Xti(yk)eκyk/2)i,k vanishes asymptotically. Now, using |ρxy(t)| . e−λ1t, the absolute row

sum can be bounded by

sup
i,k

√
T

MN

N−1∑
j=0

M−1∑
l=0

|ρykyl(ti − tj)| ≤ sup
k

√
T

MN

M−1∑
l=0

∞∑
j=−∞

|ρykyl(tj)|
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≤
√
T

N

∞∑
j=−∞

e−λ1tj .
1√
T
→ 0

where the last bound follows by regarding the sum as a Riemann sum with lag ∆. Hence, asymptotic
normality follows, finishing the proof for the stationary case.

To show the statement for the case X0 = 0, we proceed as in Step 4 of the proof of Theorem
2.2.3. Again, let X0

t be the process (1.12) with ξ = 0 and ξt := S(t)ξ where ξ follows the stationary
distribution and is independent of X0. We have

E(ξti(yk)ξtj (yl)) =
∑
`≥1

σ2

2λ`
e−λ`(ti+tj)e`(yk)e`(yl) ≤ e−λ1(ti+tj)

∑
`≥1

σ2

2λ`
|e`(yk)e`(yl)| . e−λ1(ti+tj)

and, therefore, the Riemann sum argument yields

1

MN

N∑
i=1

M−1∑
k=0

E(ξ2
ti(yk)) .

1

N

N∑
i=1

e−2λ1ti =
∆

T

N∑
i=1

e−2λ1ti .
1

T
= o
( 1√

T

)
.

The cross terms are also negligible due to E
(
X0
ti(yk)X0

tj (yl)
)

= O(1) and

1

(MN)2

N1∑
i,j=1

M−1∑
k,l=0

E
(
ξti(yk)ξtj (yl)

)
E
(
X0
ti(yk)X0

tj (yl)
)
.

1

N2

N∑
i,j=1

e−λ1(ti+tj) .
1

T 2
= o
( 1

T

)
.

Thus, in view of Slutsky’s Lemma, the central limit theorem carries over from the stationary case.

Next, we will prove Theorem 2.2.18. Like in the proof of Theorem 2.2.12, we consider the estimator
η̂0, which is defined as the minimizer of KN,M in terms of η0 = (σ2, ϑ2, κ). Due to the delta method,
it is sufficient to prove (√

MN(η̂0 − η0)√
T (ϑ̂0 − ϑ0)

)
D−→ N

(
0,

(
Πr
η0

0
0 α2

σ2,ϑ

))
, (2.43)

with Πr
η0

:= V −1UV −1 and V and U from (2.38). Again, we assume that X0 follows the stationary
distribution and refer to the approximation steps from the proofs of Proposition 2.2.16 and Theorem
2.2.7 for the case X0 = 0. The first step of the proof is given by the following lemma.

Lemma 2.4.1. Consider the situation of Theorem 2.2.18 and assume (ST). For N,M, T → ∞, we
have ( √

MN(η̂0 − η0)√
T (S(κ)− σ2Ib(Γ)/ϑ2)

)
D−→ N

(
0,

(
Πr
η0

0
0 2D2

))
with D2 from (2.21).

Proof. The central limit theorem for η̂0 in the case T →∞ can be shown in exactly the same way as
for a bounded time horizon, noting that the underlying central limit theorem for double increments
(Theorem 2.2.7) is also valid in the regime T → ∞, as long as T

√
∆ → 0. In particular, like in the

proof of Theorem 2.2.12, we have the representation
√
MN(η̂0 − η0) = −

√
MNV (η0)−1K̇M,N (η0) + op(1)

where V (η0) ∈ R3×3 is a strictly positive definite matrix such that K̈M,N (η0)
P−→ V (η0). Hence,

it is sufficient to show the statement with
√
MN(η̂0 − η0) replaced by −

√
MNV (η0)−1K̇M,N (η0).

Furthermore, as discussed in Step 8 of the proof of Theorem 2.2.12, the bias of the latter expression
is negligible for the central limit theorem. The bias of S(κ) is negligible since

√
T/M h

√
T∆ → 0

holds under the condition T
√

∆→ 0.
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Step 1. We have

Cov(Dik, Xtj (yl)) = σ2
∑
`≥1

e−λ`|i−j+1|∆ − e−λ`|i−j|∆

2λ`

(
e`(yk+1)− e`(yk)

)
e`(yl)

.
∑
`≥1

e−λ`|i−j+1|∆ − e−λ`|i−j|∆

λ`
.

Thus, for |i − j| ≤ 1, the usual Riemann sum argument shows that Cov(Dik, Xtj (yl)) = O(
√

∆). In

case |i− j| > 1 the mean value theorem yields Cov(Dik, Xtj (yl)) . ∆
∑
`≥1 e−λ`|i−j|∆ = O

(√
∆
|i−j|

)
.

Consequently, we have for all i, j, k, l that

Cov(Dik, Xtj (yl)) . ∆
∑
`≥1

e−λ`|i−j|∆ = O
(√ ∆

|i− j|+ 1

)
. (2.44)

Step 2. We calculate the asymptotic (co)variance of the estimator: Since the individual asymptotic
(co)variances of η̂0 and S(κ) are already given by Theorem 2.2.12 and Proposition 2.2.16, respectively,
it remains to show

√
MNTCov((V (η0)−1K̇M,N (η0))i, S(κ)) → 0 for i ∈ {1, 2, 3}. Letting W :=

V −1(η0), we have

Cov((WK̇M,N (η0))i, S(κ)) =

3∑
j=1

WijCov(∂jK
1
M,N (η0), S(κ)) +

3∑
j=1

WijCov(∂jK
2
M,N (η0), S(κ))

as well as

Cov(∂jK
1
M,N (η0), S(κ)) =

2

MN
√

∆

N−1∑
i=0

M−1∑
k=0

Cov(D2
ik, S(κ)) ∂jf

1
η0

(zk)

=
2

M2N2
√

∆

N−1∑
i,j=0

M−1∑
k,l=0

Cov(D2
ik, X

2
tj (yl)) eκyl∂jf

1
η0

(zk)

.
1

M2N2
√

∆

N−1∑
i,j=0

M−1∑
k,l=0

Cov(Dik, Xtj (yl))
2

and similarly for K2
M,N . Using Step 1, we can bound

Cov(∂jKM,N (η0), S(κ)) .
1

M2N2
√

∆

N−1∑
i,j=0

M−1∑
k,l=0

∆

|i− j|+ 1

.
1

M2N2
√

∆
M2N log(N)∆ =

√
∆ logN

N
.

√
∆

N1−α

for any α > 0. Consequently, using M h ∆−1/2 and taking α = 1/4,

√
MNTCov((V (η0)−1K̇M,N (η0))i, S(κ)) .

√
MNT

√
∆

N1−α = Nα∆3/4 = (T∆)1/4∆1/4 → 0.

Step 3. To prove asymptotic normality, we employ Proposition 2.2.1. A similar reasoning as in
Step 7 of the proof of Theorem 2.2.12 shows that it is sufficient to prove that the maximal absolute
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row sum of the covariance matrix of the random vector( 1

(MN∆)1/4
Dik︸ ︷︷ ︸

=:Aik

,
1

(MN∆)1/4
D̄ik︸ ︷︷ ︸

=:Bik

,
T 1/4

√
MN

Xti(yk)︸ ︷︷ ︸
=:Cik

)
0≤i<N
0≤k<M

converges to zero. As in Step 2, it only remains to consider the covariances between the double
increments and the values of X. We show

sup
i,k

∑
j,l

(
|Cov(Cik, Ajl)|+ |Cov(Cik, Bjl)|+ |Cov(Aik, Cjl)|+ |Cov(Bik, Cjl)|

)
→ 0 :

We only consider the first term, the other three can be treated similarly. Following Step 1, we have

∑
j,l

|Cov(Cik, Ajl)| .
T 1/4

(MN)3/4∆1/4

N−1∑
i=0

M−1∑
k=0

√
∆

|i− j|+ 1
.

T 1/4

(MN)3/4∆1/4
M
√
N
√

∆

.M1/4
√

∆ h ∆3/8 → 0.

We conclude the central limit theorem for our estimator of the whole parameter vector:

Proof of Theorem 2.2.18. As already remarked, the claim follows if we show (2.43) under assumption
(ST).

Step 1.
√
T (η̂0 − η0)

P−→ 0: By Slustsky’s Lemma, we have

√
T (η̂0 − η0) =

√
T√
MN︸ ︷︷ ︸

=
√

∆/M→0

√
MN(η̂0 − η0)

D−→ 0.

The assertion follows since convergence in distribution to a constant implies convergence in probability.

Step 2.
√
T (S(κ̂) − S(κ))

P−→ 0. In particular, S(κ̂) is a consistent estimator for S∞ := σ2

ϑ2
Ib(Γ):

We have
√
T |S(κ)− S(κ̂)| = 1

MN

N−1∑
i=0

M−1∑
k=0

X2
ti(yk)eκ̄yk

√
T |κ̂− κ|

for some κ̄ between κ̂ and κ. The expression eκ̄yk is bounded due to the compactness assumption
on the parameter space and 1

MN

∑N−1
i=0

∑M−1
k=0 X2

ti(yk)eκyk converges in probability to S∞. Thus, the
claim follows from Step 1.

Step 3. Define H(η0, S) := ϑ2

(
κ2

4 − I−1
b (ϑ2

σ2S)
)

so that ϑ̂0 = H(η̂0, S(κ̂)). We show
√
T (ϑ̂0−ϑ0) =

√
T∂SH(η0, S∞)(S(κ)− S∞) + op(1) for some S̄ between S(κ̂) and S∞: By the mean value theorem,

there exist η̄0 between η̂0 and η0 and S̄ between S(κ̂) and S∞ such that

√
T (ϑ̂0 − ϑ0) =

√
T (H(η̂0, S(κ̂))−H(η0, S∞))

=
√
T (H(η̂0, S(κ̂))−H(η0, S(κ̂))) +

√
T (H(η0, S(κ̂))−H(η0, S∞))

=
√
T∇η0H(η̄0, S(κ̂))(η̂0 − η0) +

√
T∂SH(η0, S̄)(S(κ̂)− S(κ))

+
√
T
(
∂SH(η0, S̄)− ∂SH(η0, S∞)

)
(S(κ)− S∞)

+
√
T∂SH(η0, S∞)(S(κ)− S∞). (2.45)

Steps 1 and 2 as well as consistency show that the first three terms converge to 0 in probability, from
which the result follows.
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Step 4. Step 3 in combination with Slutsky’s Lemma shows that the limiting distributions of(√
MN(η̂0 − η0)√
T (ϑ̂0 − ϑ0)

)
and

( √
MN(η̂0 − η0)√

T
(
∂SH(η0, S∞)

)
(S(κ)− S∞)

)
agree and, following Lemma 2.4.1 and the delta method, it is given by

N
(

0,

(
Πr
η0

0

0 2D2
(
∂SH(η0, S∞)

)2)) .
The proof is now finalized by noting

∂SH(η0, S∞) = − ϑ2
2

σ2I ′b(Γ)
.

The rate of convergence in case of a general, not necessarily balanced, sampling design is a simple
consequence:

Proof of Corollary 2.2.19. The statement on η̂vw can be proved in the same way as for a bounded
time horizon. The validity of the central limit theorem for ϑ̂vw0 follows from the fact that the first
three terms in (2.45) also tend to zero in probability when η̂0 is replaced by η̂vw0 .

2.4.4 Auxiliary results

Auxiliary results for the lower bounds

For Proposition 2.1.4 and Theorem 2.1.7 (ii) we require the following auxiliary lemma.

Lemma 2.4.2. Consider a discrete sample (u(i∆), i = 0, . . . , N) with ∆ = 1/N of the Ornstein-
Uhlenbeck process given by

du(t) = −aµu(t) dt+ ν
√
µdBt, u(0) ∼ N

(
0,
ν2

2a

)
.

Then, the Fisher information matrix I for the parameter (µ, ν2) is given by

I11 =
a2∆(e−4µa∆ + e−2µa∆)

(1− e−2µa∆)2
, I12 =

ae−2µa∆

ν2(1− e−2µa∆)
, I22 =

N + 1

2ν4
.

Proof. Thanks to the Markov property of u, the log-likelihood function for (µ, ν2) is given by

`(µ, ν2) = log π0(u(0)) +

N−1∑
i=0

log p∆(u(i∆), u((i+ 1)∆))

where

pt(x, y) :=
1√

πν2(1− e−2µat)/a
exp

(
− (y − xe−µat)2

ν2(1− e−2µat)/a

)
is the transition density of u and π0 is the density of the initial distribution N

(
0, ν

2

2a

)
. For

log p∆(x, y) h −1

2
log ν2 − 1

2
log(1− e−2µa∆)− a(y − xe−µa∆)2

ν2(1− e−2µa∆)
,

the partial derivatives of first order are given by

∂µ [log p∆(x, y)] = − a∆e−2µa∆

1− e−2µa∆
− 2a2∆e−µa∆x(y − xe−µa∆)

ν2(1− e−2µa∆)
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+
2a2∆e−2µa∆(y − xe−µa∆)2

ν2(1− e−2µa∆)2
,

∂ν2 [log p∆(x, y)] = − 1

2ν2
+
a(y − xe−µa∆)2

ν4(1− e−2µa∆)
.

The second order derivatives are

∂2
µ [log p∆(x, y)] =

2a2∆2e−2µa∆

1− e−2µa∆
+

2a2∆2e−4µa∆

(1− e−2µa∆)2

− ∂µ
[

2a2∆e−µa∆

ν2(1− e−2µa∆)

]
x(y − xe−µa∆)− 2a3∆2e−2µa∆

ν2(1− e−2µa∆)
x2

−
(

4a3∆2e−2µa∆

ν2(1− e−2µa∆)2
+

8a3∆2e−4µa∆

ν2(1− e−2µa∆)3

)
(y − xe−µa∆)2

+
4a3∆2e−3µa∆

ν2(1− e−2µa∆)2
x(y − xe−µa∆),

∂2
ν2 [log p∆(x, y)] =

1

2ν4
− 2a(y − xe−µa∆)2

ν6(1− e−2µa∆)
,

∂ν2∂µ [log p∆(x, y)] =
2a2∆e−µa∆x(y − xe−µa∆)

ν4(1− e−2µa∆)
− 2a2∆e−2µa∆(y − xe−µa∆)2

ν4(1− e−2µa∆)2
.

Finally, for the initial distribution,

∂2
ν2 log π0(x) =

1

2ν4
− 2a

x2

ν6
.

By stationarity of u, the Fisher information simplifies to

I = −E
(
D2`(µ, ν2)

)
= −E

(
D2 log π0(u(0))

)
−NE

(
D2 log p∆(u(0), u(∆))

)
where we write D2g for the Hessian of a function g. Insertion of

E
(
u(0)2

)
=
ν2

2a
,

E
(
(u(∆)− u(0)e−µa∆)2

)
=
ν2

2a

(
1− e−2µa∆

)
,

E
(
u(0)(u(∆)− u(0)e−µa∆)

)
= 0

finishes the calculation.

To investigate the spectral density of the processes Ūk from (2.5), the following auxiliary lemma
is necessary.

Lemma 2.4.3. The function g : [0,∞)× [−π, π]→ R, defined by

g(x, ω) :=
2x2 − sinh(x2) cosh(x2) + cos(ω)(sinh(x2)− 2x2 cosh(x2))

x2(cosh(x2)− cos(ω))2
(1− cos(ω)),

satisfies

(i)
∫∞

0
g(x, ω) dx = 0, for all ω ∈ [−π, π],

(ii) sup|ω|≤π ‖ ∂∂xg(·, ω)‖L1 <∞.

(iii) |g(x, ω)| . 1+x2

x4 ω2 uniformly in ω ∈ [−π, π], x > 0.
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Proof. Assertion (i) follows from the fact that

G(x, ω) :=
sinh(x2)(1− cos(ω))

x(cosh(x2)− cos(ω))
, x > 0, ω ∈ [−π, π],

is a primitive of g in x and since limx→∞G(x, ω) = limx→0G(x, ω) = 0 for all ω ∈ [−π, π].

To show (ii), we decompose g =
∑5
i=1 gi where

g1(x, ω) :=
2

(cosh(x2)− cos(ω))2
(1− cos(ω))2,

g2(x, ω) := − sinh(x2)

x2(cosh(x2)− cos(ω))
(1− cos(ω))2,

g3(x, ω) := − sinh(x2) cos(ω)

x2(cosh(x2)− cos(ω))2
(1− cos(ω))2,

g4(x, ω) :=
2x2 + sinh(x2)

x2(cosh(x2)− cos(ω))2
(1− cos(ω))2 cos(ω),

g5(x, ω) := − 2x2 + sinh(x2)

x2(cosh(x2)− cos(ω))
(1− cos(ω)) cos(ω).

By taking derivatives, one can show that for any a ∈ [−1, 1], the function

z 7→ sinh(z)

z(cosh(z)− a)

is positive and decreasing in z > 0. From this observation it can be easily deduced that, for fixed ω,
the first derivatives of the functions gi with respect to x are either negative or positive on all of R+.
Consequently,∥∥∥∥ ∂∂xg(·, ω)

∥∥∥∥
L1

≤
5∑
i=1

∣∣∣∣∫ ∞
0

∂

∂x
gi(x, ω) dx

∣∣∣∣ =

5∑
i=1

| lim
x→∞

gi(x, ω)− lim
x→0

gi(x, ω)| ≤ 11.

For (iii), we use the decomposition

g(x, ω) =
1− cos(ω)

x2
(h1(x, ω) + h2(x, ω))

where

h1(x, ω) :=
(2x2 + sinh(x2))(1− cosh(x2))

(cosh(x2)− cos(ω))2
,

h2(x, ω) :=
(cos(ω)− 1)(sinh(x2)− 2x2 cosh(x2))

(cosh(x2)− cos(ω))2
.

Then, the result follows from

|h1(x, ω)| ≤ 2x2 + sinh(x2)

cosh(x2)− 1
.

1

x2
∨ 1

and

|h2(x, ω)| . 2x2 cosh(x2)− sinh(x2)

cosh(x2)− 1
∧ 2(2x2 cosh(x2)− sinh(x2))

(cosh(x2)− 1)2
.

1

x2
∨ 1.

The following lemma analyzes the N -th order Fourier approximation to the spectral density of the
processes {Ūk(j), j ∈ N0} for k = 1, . . . ,M − 1.
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Lemma 2.4.4. Consider the parametrization from Proposition 2.1.6 and the function ΦN,∆k from

(2.26). If M
√

∆→ 0, then

(i) ΦN,∆k (ω) > 0 for all ω ∈ [−π, π],

(ii)

ΦN,∆k (ω) &



√
∆

M

√
|ω|, |ω| ≥M2∆, (2.46a)

∆, k2∆ ≤ |ω| ≤M2∆, (2.46b)

ω2

k4∆
+ ∆e−ϑ2k

2

, |ω| ≤ k2∆, (2.46c)

(iii)

∂

∂ϑ2
ΦN,∆k (ω) .


∆, ω ∈ [−π, π], (2.47a)

ω2

k4∆
+ ∆k2e−ϑ2k

2

, |ω| ≤ k2∆. (2.47b)

Proof. Without loss of generality, we consider the parameters θ = π2ϑ2 and σ2
0 = π2. We denote

the covariance function of Ūk by ρk : Z → R and write ΦNk instead of ΦN,∆k , i.e. , ΦNk (ω) =∑N−1
j=1−N ρk(j)e−ijω, ω ∈ [−π, π].
(i) Let rk be the covariance function of the process (Uk(t0), Uk(t1), . . .), i.e.,

rk(j) =
∑
`∈Ik

e−θ`
2|j|∆

2
√
θ`2

, j ∈ Z,

where Ik = I+
k ∪ I−k . Note that rk and ρk are related by

ρk(j) = 2rk(j)− rk(j − 1)− rk(j + 1), j ∈ Z,

which is a second order difference if j 6= 0. Since x 7→ e−x has a positive second derivative, it follows
that ρk(j) < 0. On the other hand, for j = 0, we have ρk(0) = Var(Ūk(t0)) > 0 and, therefore,

ΦNk (ω) = ρk(0) + 2

N−1∑
j=1

ρk(j) cos(jω)

≥ ρk(0) + 2

N−1∑
j=1

ρk(j) = 2(rk(N − 1)− rk(N)) > 0.

To treat (ii) and (iii), we calculate

ΦNk (ω) =

N−1∑
j=1−N

ρk(j)e−ijω

= 2(1− cos(ω))

N−2∑
j=2−N

rk(j)e−ijω + 4rk(N − 1) cos((N − 1)ω)

− 2rk(N) cos((N − 1)ω)− 2rk(N − 1) cos((N − 2)ω).

By using

J−1∑
j=1−J

e−θ`
2|j|∆e−ijω =

J−1∑
j=0

e−θ`
2j∆e−ijω +

J−1∑
j=0

e−θ`
2j∆eijω − 1
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=
1− e−J(θ`2∆−iω)

1− e−(θ`2∆−iω)
+

1− e−J(θ`2∆+iω)

1− e−(θ`2∆+iω)
− 1

=
1− e−2θ`2∆ + 2e−(J+1)θ`2∆ cos((J − 1)ω)− 2e−Jθ`

2∆ cos(Jω)

1 + e−2θ`2∆ − 2e−θ`2∆ cos(ω)

=
sinh(θ`2∆) + e−Jθ`

2∆ cos((J − 1)ω)− e−(J−1)θ`2∆ cos(Jω)

cosh(θ`2∆)− cos(ω)

for J ≥ 1 and elementary manipulations, we can pass to the representation

ΦNk = Φ +RN

where

Φ(ω) := (1− cos(ω))
∑
`∈Ik

1√
θ`2

sinh(θ`2∆)

cosh(θ`2∆)− cos(ω)

and

RN (ω) :=
∑
`∈Ik

(1− cosh(θ`2∆))
e−θ`

2(N−1)∆

√
θ`2

e−θ`
2∆ cos((N − 1)ω)− cos(Nω)

cosh(θ`2∆)− cos(ω)
.

Note that we have suppressed the dependence on k to ease the notation and that

Φ(ω) =
∑
j∈Z

ρk(j)e−ijω, ω ∈ [−π, π],

is the spectral density of the process (Ūk(j))j≥0.
(ii) To prove (2.46a), we note that for ω ≥M2∆ we have∣∣∣e−θ`2∆ cos((N − 1)ω)− cos(Nω)

∣∣∣
=
∣∣∣(e−θ`2∆ − 1) cos((N − 1)ω) + cos((N − 1)ω)− cos(Nω)

∣∣∣
. `2∆ + ω

. `2ω.

Consequently,

RN (ω) .
∑
`∈Ik

`2∆ sinh(θ`2∆)
e−θ`

2(N−1)∆

√
θ`2

`2ω

cosh(θ`2∆)− cos(ω)

.
∆

ω

∑
`∈Ik

sinh(θ`2∆)

`2(cosh(θ`2∆)− cos(ω))
(1− cos(ω))

.
1

M2
Φ(ω)

and, hence, RN is negligible compared to Φ. In order to compute an asymptotic expression for Φ, set

h(x, ω) :=
sinh(θx2)(1− cos(ω))

x2(cosh(θx2)− cos(ω))
, x > 0, ω ∈ [−π, π].

As already remarked in the proof of Lemma 2.4.3, we have ∂h
∂x ≤ 0 and, therefore,∥∥∥∥ ∂∂xh(·, ω)

∥∥∥∥
L1

= h(0, ω)− lim
x→∞

h(x, ω) = θ
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is uniformly bounded in ω. Thus, using the mean value theorem and a Riemann sum approximation
with mesh size M

√
∆ for ∂

∂xh(·, ω), we obtain

Φ(ω) h ∆
∑
`∈Ik

h(`
√

∆, ω) = ∆

∞∑
`=1

h(2`M
√

∆, ω) +O(∆).

Further, since ∣∣∣∣∣∣ε
∑
`≥1

f(`ε)−
∫ ∞

0

f(x) dx

∣∣∣∣∣∣ ≤ ε‖f ′‖L1 (2.48)

for any function f ∈ C1[0,∞), we get

Φ(ω) h
√

∆

M

∫ ∞
0

h(x, ω) dx+O(∆).

Finally, due to
a+ b h max(a, b), a, b > 0, (2.49)

we have
(cosh(θωx2)− cos(ω)) h max

(
cosh(θωx2)− 1, 1− cos(ω)

)
and, consequently, for x ≤ θ−1/2:

h(
√
ωx, ω) =

sinh(θωx2)(1− cos(ω))

ωx2(cosh(θωx2)− cos(ω))
&

sinh(θωx2)

ωx2
& 1.

Therefore, ∫ ∞
0

h(x, ω) dx =
√
ω

∫ ∞
0

h(
√
ωx, ω) dx &

√
ω,

finishing the proof of (2.46a).
To prove (2.46b) and (2.46c), let us write

Φ =
∑
`∈Ik

ϕ`, RN =
∑
`∈Ik

%N` .

Since the argument in the proof of (i) was on a summand-wise level, also each of the functions ϕ`+%N`
is positive, ` ∈ N. Therefore, we can bound ΦNk from below using the first summand, namely

ΦNk ≥ ϕk + %Nk = %Nk (0) + ϕk +
(
%Nk − %Nk (0)

)
.

We show that there exists an environment U around zero and some δ ∈ (0, 1) such that

|%Nk (ω)− %Nk (0)| ≤ (1− δ)ϕk(ω), ω ∈ U : (2.50)

A simple calculation yields

%Nk (ω)− %Nk (0) = e−(N−1)θk2∆ (cos((N − 1)ω))− cos(Nω))(1− cosh(θk2∆))√
θk2(cosh(θk2∆)− cos(ω))

+ e−(N−1)θk2∆ (1− e−θk
2∆)(1− cos((N − 1)ω)))(1− cosh(θk2∆))√

θk2(cosh(θk2∆)− cos(ω))

+ e−(N−1)θk2∆

(
e−θk

2∆ − 1
)

(1− cos(ω))
√
θk2(cosh(θk2∆)− cos(ω))

.
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Since cos(x)− cos(y) = −2 sin x+y
2 sin x−y

2 , x, y ∈ R, we have∣∣∣ cos((N − 1)ω)− cos(Nω)
∣∣∣ =

∣∣∣2 sin

(
(2N − 1)ω

2

)
sin
(ω

2

) ∣∣∣ ≤ Nω2. (2.51)

Therefore, for any α > 0 there exists an environment U of 0 such that

| cos((N − 1)ω)− cos(Nω)| ≤ Nω2 ≤ N(1− cos(ω))(2 + α),

1− cos((N − 1)ω) ≤ N2ω2

2
≤ N2

2
(1− cos(ω))(2 + α)

holds for all ω ∈ U . Further, for all x ≥ 0 we have

cosh(x)− 1 ≤ sinh(x)x

2
, 1− e−x ≤ sinh(x),

and, consequently,

|%Nk (ω)− %Nk (0)|
ϕk(ω)

≤ e−(N−1)θk2∆(1 +
2 + α

2
θk2 +

2 + α

4
θ2k4)

≤ 2 + α

2
e∆θk2

e−θk
2

(1 + θk2 +
θ2k4

2
)︸ ︷︷ ︸

<1

.

Clearly, for ∆ sufficiently small, one can choose α in such a way that this bound is strictly less than
1 for all k ≤ M − 1, yielding (2.50). Consequently, it is sufficient to prove (2.46b) and (2.46c) with
ΦNk replaced by ϕk + %Nk (0). Now,

ϕk(0) + %Nk (0) = %Nk (0) = e−θk
2(N−1)∆ 1− e−θk

2∆

k2
h ∆e−θk

2

and, again by using (2.49), we get

ϕk(ω) &
sinh(θk2∆)

k2
& ∆, ω ≥ k2∆,

and

ϕk(ω) & (1− cos(ω))
1√
θk2

sinh(θk2∆)

cosh(θk2∆)− 1
&

ω2

k4∆
, ω ≤ k2∆.

(iii) We show (2.47a): We have

∂

∂θ
Φ(ω) =

∆

2
√
θ

∑
`∈Ik

g(`
√
θ∆, ω)

with g defined in Lemma 2.4.3. Using the properties of g derived in Lemma 2.4.3 and the Riemann
sum approximation (2.48) with mesh size M

√
∆, we obtain

∂

∂θ
Φ(ω) h ∆

∑
`≥1

g(`M
√

∆, ω) +O(∆)

=

√
∆

M

∫ ∞
0

g(x, ω) dx+O(∆) = O(∆).
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To show that ∂
∂θRN is of the claimed order, we write

%N` = α`β` where α`(ω) :=
1− cosh(θ`2∆)√

θ`2 (cosh(θ`2∆)− cos(ω))
,

β`(ω) := e−θ`
2(N−1)∆

(
e−θ`

2∆ cos((N − 1)ω)− cos(Nω)
)
.

The corresponding derivatives are given by

∂

∂θ
α`(ω) =

cosh(θ`2∆)− 1

2θ3/2`2 (cosh(θ`2∆)− cos(ω))︸ ︷︷ ︸
=:a1

`(ω)

− ∆ sinh(θ`2∆) (1− cos(ω))√
θ (cosh(θ`2∆)− cos(ω))

2︸ ︷︷ ︸
=:a2

`(ω)

and

∂

∂θ
β`(ω) = e−θ`

2(N−1)∆
(
−`2N∆e−θ`

2∆ cos((N − 1)ω) + `2(N − 1)∆ cos(Nω)
)

=: b`(ω).

By the product rule, we have
∂

∂θ
RN =

∑
`∈Ik

a1
`β` + a2

`β` + α`b`. (2.52)

To bound each of the terms, we estimate

cosh(x)− 1

cosh(x)− cos(ω)
≤ 1, x > 0,

cosh(x)− 1

cosh(x)− cos(ω)
≤ cosh(x)− 1

1− cos(ω)
.
x2

ω2
, x ≤ |ω| ≤ π,

resulting in

cosh(x)− 1

cosh(x)− cos(ω)
.

x2

x2 ∨ ω2
(2.53)

and

x sinh(x)(1− cos(ω))

(cosh(x)− cos(ω))2
.

x sinh(x)

(cosh(x)− 1)2
∧ x sinh(x)

cosh(x)− 1
. 1, x > 0,

x sinh(x)(1− cos(ω))

(cosh(x)− cos(ω))2
.

x sinh(x)

1− cos(ω)
.
x2

ω2
, x ≤ |ω| ≤ π,

resulting in

x sinh(x)(1− cos(ω))

(cosh(x)− cos(ω))2
.

x2

x2 ∨ ω2
. (2.54)

In combination with

β`(ω) . e−θ`
2(N−1)∆

(
(`2∆) ∨ ω

)
,

b`(ω) . e−θ`
2(N−1)∆`2

(
(`2∆) ∨ ω

)
,

the bounds (2.53) and (2.54) show that any of the three products in (2.52) can be bounded by∑
`∈Ik

e−θ`
2(N−1)∆ `4∆2

(`4∆2) ∨ ω2

(
(`2∆) ∨ ω

)
≤ ∆

∑
`∈Ik

e−θ`
2(N−1)∆`2 . ∆.
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Consequently, we have ∂
∂θRN = O(∆) which finishes the proof of (2.47a).

To prove (2.47b), we use property (iii) of Lemma 2.4.3 to deduce

∂

∂θ
Φ(ω) . ω2∆

∑
`∈Ik

1 + θ`2∆

θ2`4∆2

.
ω2

∆

1 + θk2∆

θ2k4
+
∑
`≥1

1 + θ(2`M)2∆

θ2(2`M)4

 .
ω2

k4∆

where the last step follows from k2∆ ≤M2∆→ 0. Further, using decomposition (2.52),

∂

∂θ
(RN (ω)−RN (0)) =

∑
`∈Ik

a1
`(ω)(β`(ω)− β`(0)) +

∑
`∈Ik

(a1
`(ω)− a1

`(0))β`(0)

+
∑
`∈Ik

a2
`(ω)β`(ω)

+
∑
`∈Ik

α`(ω)(b`(ω)− b`(0)) +
∑
`∈Ik

(α`(ω)− α`(0))b`(0). (2.55)

Now, by (2.51), we obtain

β`(ω)− β`(0)

= e−θ`
2(N−1)∆

(
(e−θ`

2∆ − 1)(cos((N − 1)ω)− 1) + cos((N − 1)ω)− cos(Nω)
)

. e−θ`
2(N−1)∆`2Nω2.

In a similar way, we can bound

β`(0) . e−θ`
2(N−1)∆`2∆,

β`(ω) . e−θ`
2(N−1)∆

(
(`2∆) ∨ ω

)
. e−θ`

2(N−1)∆`2∆,

b`(ω)− b`(0) . e−θ`
2(N−1)∆`4Nω2,

b`(0) . e−θ`
2(N−1)∆`4∆

where the second inequality uses ω ≤ k2∆ ≤ `2∆ for ` ∈ Ik. Also,

a1
`(ω)− a1

`(0) .
1− cos(ω)

cosh(θ`2∆)− cos(ω)
.

1− cos(ω)

(cosh(θ`2∆)− 1)
.

ω2

k4∆2

and, similarly,

α`(ω)− α`(0) .
ω2

k4∆2
, a2

`(ω) .
ω2

k4∆2

as well as

a1
`(ω) . 1, α`(ω) . 1.

Using the bounds just developed in combination with e−θ`
2(N−1)∆ . 1

k4`m , m ∈ N, shows that any of

the five terms in (2.55) is of the order O( ω2

k4∆ ) and, hence,

∂

∂θ
(RN (ω)−RN (0)) .

ω2

k4∆
.
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Now, the proof of (2.47b) is finalized by

∂

∂θ
RN (0) =

∑
`∈Ik

e−θ`
2(N−1)∆ 2θ`2(N − 1)∆(e−θ`

2∆ − 1) + 2θ`2∆e−θ`
2∆ + e−θ`

2∆ − 1

2θ3/2`2

. ∆
∑
`∈Ik

e−θ`
2(N−1)∆`2 . ∆k2e−θk

2

.

Covariances of double increments

The following three lemmas are used to calculate the asymptotic variance of V. As can be seen from
the main proof of Theorem 2.2.7, it is sufficient to consider the case where X0 follows the stationary
distribution. The first lemma identifies the relevant terms in the covariance structure and shows
independence of Γ. Recall the definition of D̃ik from (2.32).

Lemma 2.4.5. Assume (ST) and let b ∈ (0, 1/2). For J ≥ 1 define

FJ,∆(z) :=
∑
`≥1

2e−π
2ϑ2J`

2∆ − e−π
2ϑ2(J+1)`2∆ − e−π

2ϑ2(J−1)`2∆

2π2ϑ2`2
cos(π`z)

and F0,∆ = Fϑ2(· ,∆). Then,

Cov(D̃ik, D̃jl) =− σ2e−κδ/2 ·
{

2DδFJ,∆(0), l = k,

D2
δFJ,∆(yl − yk+1), l > k

+O
( √

∆δ2

(J + 1)3/2

)

where J = |i− j|.
Proof. First of all, it immediately follows from the covariance structure of the coefficient processes,

Cov(u`(s), u`(t)) = σ2

2λ`
e−λ`|t−s|, s, t ≥ 0, that

Cov(Dik, Djl) = σ2
∑
`≥1

(e`(yk+1)− e`(yk))(e`(yl+1 + δ)− e`(yl))

·


1− e−λ`∆

λ`
, J = 0,

2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆

2λ`
, J ≥ 1.

Step 1. We show negligibilty of Γ: We already know from the first step of the proof of Proposition
2.2.5 that

Cov(Dik, Dil) = σ2
∑
`≥1

1− e−π
2ϑ2`

2∆

π2ϑ2`2
(e`(yk+1)− e`(yk))(e`(yl+1)− e`(yl)) +O

(√
∆δ2

)
.

For J ≥ 1, we will show now that

Cov(Dik, Djl) = σ2
∑
`≥1

2e−π
2ϑ2`

2J∆ − e−π
2ϑ2`

2(J+1)∆ − e−π
2ϑ2`

2(J−1)∆

2π2ϑ2`2

· (e`(yk+1)− e`(yk))(e`(yl+1)− e`(yl)) +O
( √

∆δ2

(J + 1)3/2

)
:
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If J = 1, this directly follows from the case J = 0 in view of

2e−λ`∆ − e−2λ`∆ − 1

2λ`
=

1− e−2λ`∆

2λ`
− 1− e−λ`∆

λ`
. (2.56)

For J ≥ 2, define

gJ(x) :=
2e−Jx − e−(J+1)x − e−(J−1)x

2x
.

A first order Taylor approximation of gJ gives

Cov(Dik, Djl) = ∆
∑
`≥1

gJ(λ`∆)(e`(yk+1)− e`(yk))(e`(yl+1)− e`(yl))

= ∆
∑
`≥1

gJ(π2ϑ2`
2∆)(e`(yk+1)− e`(yk))(e`(yl+1)− e`(yl)) +R

where
R . ∆2

∑
`≥1

g′J(ϑ2(π2`2 + ξ`)∆)`2δ2

for some |ξ`| ≤ |Γ|. Writing

gJ(x) = e−(J−1)xh(x), h(x) :=
2e−x − e−2x − 1

2x
,

and noting h(x) . x as well as h′(x) . 1 shows that

g′J(x) = −(J − 1)e−(J−1)xh(x) + e−(J−1)xh′(x) . e−(J−1)x/2.

Therefore, for some ω > 0 and by regarding R as a Riemann sum with lag
√

(J − 1)∆,

R .∆2
∑
`≥1

e−ω(J−1)`2∆`2δ2

=
∆2δ2

((J − 1)∆)3/2
·
√

(J − 1)∆
∑
`≥1

e−ω(J−1)`2∆(J − 1)`2∆

.

√
∆δ2

(J − 1)3/2
.

√
∆δ2

(J + 1)3/2
.

Step 2. By Step 1, we may assume λ` = π2ϑ2`
2. By (2.31), we have

Cov(D̃ik, D̃jk) =− 2σ2g(δ)DδFJ,∆(0) + σ2FJ,∆(0)D2
δg(0)

− σ2D2
δ (g(·)FJ,∆(2yk + ·)) (0)

and, by (2.30), for l > k ,

Cov(D̃ik, D̃jl) =− σ2g(δ)D2
δFJ,∆(yl − yk+1) + σ2FJ,∆(yl − yk)D2

δg(0)

− σ2D2
δ (g(·)FJ,∆(yl + yk + ·)) (0).

Hence, as in previous results, it is sufficient to establish

FJ,∆(0), FJ,∆(z), F ′J,∆(z)F ′′J,∆(z) .

√
∆

J3/2
, z ∈ [2b, 2(1− b)].

For J = 0, this was already proven in Proposition 2.2.5. The case J = 1 follows from the case J = 0
since (2.56) shows

F1,∆(z) =
1

2
F2∆(z)− F∆(z). (2.57)
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For J ≥ 2, we have

2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆ = e−λ`(J−1)∆(2e−λ`∆ − e−λ`2∆ − 1)

. e−λ`(J−1)∆(λ`∆)2, (2.58)

and, therefore,

FJ,∆(z) . FJ,∆(0) .
∑
`≥1

λ`∆
2e−λ`(J−1)∆

=

√
∆

(J − 1)3/2

√
(J − 1)∆

∑
`≥1

((J − 1)λ`∆)e−λ`(J−1)∆

= O
( √

∆

(J − 1)3/2

)
.

The bound on the first derivative is provided by Lemma 2.4.8, namely

F ′J,∆(z) .
∑
`≥1

2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆

2λ`
` sin(π`z)

. sup
`

∣∣∣∣2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆

2λ`
`

∣∣∣∣ 1

z ∧ (2− z)

. sup
`

∣∣λ`∆2e−λ`J∆`
∣∣ . √∆

J3/2
.

Finally, to bound F ′′J,∆, we define hJ(z) = 2e−Jz
2 − e−(J+1)z2 − e−(J−1)z2

. Clearly, hJ(0) = 0 and

d

dz
hJ(z) =

d

dz
e−(J−1)z2

(2e−z
2 − e−2z2 − 1)

= −2(J − 1)ze−(J−1)z2

(2e−z
2 − e−2z2 − 1)︸ ︷︷ ︸

.z4

+e−(J−1)z2

(−4ze−z
2

+ 4ze−2z2

)︸ ︷︷ ︸
.z3

. (J − 1)−3/2,

i.e., ‖h′J‖∞ . J−3/2. In view of Lemma 2.4.9, this shows

F ′′J,∆(z) .
∑
`≥1

2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆

2λ`
`2 cos(π`z)

.
∑
`≥1

hJ(
√
λ`∆) cos(π`z)

= O
(

1

(z ∧ (2− z))2

√
∆

J3/2

)
.

The following Lemma is useful for calculating the asymptotic variance in case δ/
√

∆→ 0.

Lemma 2.4.6. For J ∈ N0 and z ∈ (0,2), it holds that

(i) FJ,∆(0)− FJ,∆(δ) = δ 1
2ϑ2

1{J=0} − δ 1
4ϑ2

1{J=1} +O
(

δ2

(J+1)5/2
√

∆

)
,

(ii) 2FJ,∆(z)− FJ,∆(z + δ)− FJ,∆(z − δ) = O
(

δ2

(J+1)2

(
1√
∆
∧ 1
z∧(2−z)

))
.
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Proof. (i) The validity of the case J = 0 follows from the proof of Proposition 2.2.5 (ii), the case
J = 1 follows from (2.57). For J ≥ 2, we have

FJ,∆(0)− FJ,∆(δ) = −δF ′J,∆(0)− δ2

2
F ′′J,∆(ξ)

for some ξ ∈ [0, δ] by Taylor’s theorem. Now, the claim is proved by inserting F ′J,∆(0) = 0 and noting
that (2.58) implies ∥∥F ′′J,∆∥∥∞ .

∑
`≥1

(
2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆

)
.
∑
`≥1

λ2
`∆

2e−λ`(J−1)∆ .
1

J5/2
√

∆
.

(ii) As previously, it suffices to establish

F ′′J,∆(z) .
1

(J + 1)2

(
1√
∆
∧ 1

z ∧ (2− z)

)
.

For the case J = 0, we employ the representation F∆ = H∆ +G∆ from the proof of Proposition 2.2.5.
Then, the validity of the bound on H ′′∆ follows from

H ′′∆(z) .
exp

(
− π√

ϑ2∆
(y ∧ (2− y))

)
√

∆
.

1√
∆
∧ 1

y ∧ (2− y)
.

The bound on G′′∆(z) follow from ‖G′′∆‖∞ . 1/
√

∆ and

G′′∆(z) . sup
`

∣∣∣∣1− e−λ`∆(1 + λ`∆)

1 + λ`∆

∣∣∣∣ 1

z ∧ (2− z) .
1

z ∧ (2− z) ,

by Lemma 2.4.8. The case J = 1 follows from the case J = 0, see (2.57). For J ≥ 2, we proceed in
the same way: In the proof of (i) it was shown that

∥∥F ′′∆,J∥∥∞ . 1
J5/2

√
∆

. 1
J2
√

∆
. Finally, by Lemma

2.4.8,

F ′′J,∆(z) . sup
`

∣∣∣2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆
∣∣∣ 1

z ∧ (2− z)

. sup
`

∣∣∣(λ`∆)2e−λ`(J−1)∆
∣∣∣ 1

z ∧ (2− z)

.
1

(J + 1)2

1

z ∧ (2− z) .

The following Lemma is useful for calculating the asymptotic variance in case δ/
√

∆→∞.
Lemma 2.4.7. For J ∈ N0 and z ∈ (0, 2), we have

(i)

FJ,∆(0)− FJ,∆(δ) =


√

∆√
ϑ2π

+O
(

∆3/2

δ2

)
, J = 0,

√
∆

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)

+O
(

∆3/2 + ∆
(J+1)δ

)
, J ≥ 1,

(ii)

2FJ,∆(δ)− FJ,∆(0)− FJ,∆(2δ)

=

−
√

∆√
ϑ2π

+O
(

∆3/2

δ2

)
, J = 0,

−
√

∆
2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)

+O
(

∆3/2 + ∆
(J+1)δ

)
, J ≥ 1,
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(iii)

2FJ,∆(z)− FJ,∆(z − δ)− FJ,∆(z + δ) = O
(

∆

J + 1

1

z ∧ (2− z)

)
.

Proof. (iii) It is sufficient to show

FJ,∆(z) = O
(

∆

J + 1

1

z ∧ (2− z)

)
(2.59)

for J ∈ N0 and z ∈ (0, 2): If J = 0, Lemma 2.4.8 gives

F∆(z) =
∑
`≥1

1− e−λ`∆

λ`
cos(π`z)

. sup
`≥1

∣∣∣∣1− e−λ`∆

λ`

∣∣∣∣ 1

z ∧ (2− z) .
∆

z ∧ (2− z) .

By (2.57) this bound is also valid for F1,∆(z). For J ≥ 2, the same method gives

FJ,∆(z) =
∑
`≥1

2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆

2λ`
cos(π`z)

. sup
`≥1

∣∣∣∣2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆

λ`

∣∣∣∣ 1

z ∧ (2− z)

. sup
`≥1

∣∣λ`∆2e−λ`J∆
∣∣ 1

z ∧ (2− z)

.
∆

J

1

z ∧ (2− z)

where we have used (2.58).
(i) The case J = 0 was already shown in the proof of Proposition 2.2.5. For J ≥ 1, we prove

FJ,∆(0) =

√
∆

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)

+O(∆3/2),

then (ii) follows in view of (2.59): If J = 1, we use (2.33) to calculate

F1,∆(0) =
1

2
F2∆(0)− F∆(0)

=
1

2

( √
2∆√
πϑ2

−∆

)
−
( √

∆√
πϑ2

− ∆

2

)
+O

(
∆3/2

)
=

√
∆

2
√
πϑ2

(√
2− 2

)
+O

(
∆3/2

)
.

For J ≥ 2, define

gJ(z) :=
2e−Jπ

2ϑ2z
2 − e−(J+1)π2ϑ2z

2 − e−(J−1)π2ϑ2z
2

2π2ϑ2z2
.

Then, ∫ ∞
0

gJ(z) dz =
1

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)
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and, since gJ(0) = 0, we have by Lemma 2.4.10 that

FJ,∆(0)= ∆
∑
`≥1

gJ(`
√

∆) =
√

∆

∫ ∞
0

gJ(z) dz +O
(

∆3/2
)

=

√
∆

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)

+O(∆3/2).

Finally, (ii) is a direct consequence of (i).

Bounds on Fourier series and Riemann summation

The Lemmas in this section provide bounds for Fourier series and Taylor expansions for Riemann
sums. They are our basic tools for computing and bounding covariances. Similar results are stated
in Lemma 7.2 of Bibinger and Trabs [9]. Instead of the derivation in [9], which uses the decay of the
Fourier transforms of L1-functions, we show that these results also follow from the following simple
lemma.

Lemma 2.4.8. Let (an) be a real sequence and τ ∈ {sin, cos}. Then,∣∣∣∣∣
N∑
k=1

akτ(ky)

∣∣∣∣∣ ≤ 1 + 2KN

y ∧ (2π − y)
sup
n≤N
|an|

holds for any y ∈ (0, 2π) where KN is the number of monotone sections of (an)1≤n≤N .

Proof. By Lagrange’s trigonometric identities,

N∑
k=1

cos(ky) =
sin ((N + 1/2)y)− sin(y/2)

2 sin(y/2)
,

N∑
k=1

sin(ky) =
cos(y/2)− cos ((N + 1/2)y)

2 sin(y/2)
,

we have uniformly in M ≤ N that∣∣∣∣∣
N∑

k=M

τ(ky)

∣∣∣∣∣ ≤ 1

sin(y/2)
≤ 1

y ∧ (2π − y)
.

Therefore, ∣∣∣∣∣
N∑
k=1

akτ(ky)

∣∣∣∣∣ =

∣∣∣∣∣a1

N∑
k=1

τ(ky) + (a2 − a1)

N∑
k=2

τ(ky)

+(a3 − a2)

N∑
k=3

τ(ky) + · · ·+ (aN − aN−1)τ(Ny)

∣∣∣∣∣
≤ |a1|

∣∣∣∣∣
N∑
k=1

τ(ky)

∣∣∣∣∣+ |a2 − a1|
∣∣∣∣∣
N∑
k=2

τ(ky)

∣∣∣∣∣
+ |a3 − a2|

∣∣∣∣∣
N∑
k=3

τ(ky)

∣∣∣∣∣+ · · ·+ |aN − aN−1| |τ(Ny)|

≤ 1

y ∧ (2π − y)

(
|a1|+

N−1∑
k=1

|ak+1 − ak|
)
≤ 1 + 2KN

y ∧ (2π − y)
sup
n≤N
|an|
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where the last inequality follows from the fact that, if (ak)N0≤k≤N1 is monotone for some N0 ≤ N1 ≤
N , then,

N1−1∑
k=N0

|ak+1 − ak| = |aN1
− aN0

| ≤ 2 sup
n≤N
|an|.

Lemma 2.4.9. Let g ∈ C1 (R+) be such that g′ is bounded and has a finite number K of monotone
sections. Then, we have

∞∑
k=1

g(kε) cos(ky) = −g(0)

2
+O

(
ε ‖g′‖∞

(y ∧ (2π − y))
2

)
,

∞∑
k=1

g(kε) sin(ky) =
g(0)

2
cot
(y

2

)
+O

(
ε ‖g′‖∞

(y ∧ (2π − y))
2

)
,

as ε→ 0, for y ∈ (0, 2π).

Proof. We use the formula sin(α)− sin(β) = 2 cos α+β
2 sin α−β

2 , α, β ∈ R, to calculate

g(0)

2
+

∞∑
k=1

g(kε) cos(ky)

=
g(0)

2
+

1

2 sin y
2

∞∑
k=1

g(kε)
(

sin ((k + 1/2) y)− sin ((k − 1/2) y)
)

=
g(0)

2
− g(ε)

2
+

1

2 sin y
2

∞∑
k=1

sin ((k + 1/2) y)
(
g(kε)− g((k + 1)ε)

)
= −1

2

(
g′(ξε0) +

1

sin y
2

∞∑
k=1

sin ((k + 1/2) y) g′(ξεk)

)
ε

≤ 1 + 2K

(y ∧ (2π − y))
2 ‖g′‖∞ ε

where ξεk ∈ [kε, (k + 1)ε]. Here, the last step follows from

sin((k + 1/2)y) = sin(ky) cos(y/2) + cos(ky) sin(y/2)

and then applying Lemma 2.4.8. Similarly, the second statement follows from cos(α) − cos(β) =

−2 sin
(
α+β

2

)
sin
(
α−β

2

)
, α, β ∈ R, and

− g(0)

2
cot
(y

2

)
+

∞∑
k=1

g(kε) sin(ky)

= −g(0)

2
cot
(y

2

)
− 1

2 sin y
2

∞∑
k=1

g(kε)
(

cos ((k + 1/2) y)− cos ((k − 1/2) y)
)

= −g(0)

2
cot
(y

2

)
+
g(ε)

2
cot
(y

2

)
− 1

2 sin y
2

∞∑
k=1

cos ((k + 1/2) y)
(
g(kε)− g((k + 1)ε)

)
=

(
g′(ξε0)

2
cot
(y

2

)
+

1

2 sin y
2

∞∑
k=1

cos ((k + 1/2) y) g′(ξεk)

)
ε.

Lemma 2.4.10. Let g ∈ C2(R+) ∩ L1(R+) be such that g′ ∈ L∞(R+) and g′′ ∈ L1(R+). Then, as
ε→ 0,
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(i)

ε
∑
k≥1

g(kε) =

∫ ∞
0

g(z) dz − g(0)

2
ε+O(ε2 ‖g′′‖L1),

(ii)

ε
∑
k≥1

g(kε) sin2(ky) =
1

2

∫ ∞
0

g(z) dz +O
(
ε2

( ‖g′‖∞
(y ∧ (π − y))2

∧ ‖g′′‖L1

))
.

Proof. For a detailed proof of (i), we refer to [9, Lemma 7.2]. The main idea is to regard each
term εg(kε) as a midpoint integral approximation, see also the proof of the following emma. Since
sin2(y) = (1− cos(2y))/2, statement (ii) is a direct consequence of (i) and the previous lemma.

Lemma 2.4.11. Let g ∈ C2(R+). Then, as M →∞, Mε→ 0,

ε

M∑
k=1

g(kε) = Mεg(0) +
(M2 +M)ε2

2
g′(0) +O((Mε)3).

Proof. First of all, by the midpoint rule, there exist ηk ∈ [(k − 1/2)ε, (k + 1/2)ε] such that∣∣∣∣∣ε
M∑
k=1

g(kε)−
∫ (M+1/2)ε

ε/2

g(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
M∑
k=1

∫ (k+1/2)ε

(k−1/2)ε

(g(kε)− g(x)) dx

∣∣∣∣∣
≤ ε3

M∑
k=1

|g′′(ηk)| .Mε3 .M3ε3.

Secondly, a Taylor approximation shows that∫ (M+1/2)ε

ε/2

g(x) dx =

∫ (M+1/2)ε

0

g(x) dx−
∫ ε/2

0

g(x) dx

= (M + 1/2)εg(0) +
((M + 1/2)ε)2

2
g′(0) +O((Mε)3)

− εg(0)/2− 1

8
ε2g′(0) +O(ε3)

= Mεg(0) +
(M2 +M)ε2

2
g′(0) +O((Mε)3).
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Chapter 3

Generating fully discrete samples
for the linear equation

Inspired by the application of performing simulations on the estimators derived in Section 2.2, in this
chapter we develop and analyze a suitable method for generating fully discrete samples of the solution
to the linear SPDE (1.11). As already pointed out in the introduction, simulation methods in the
literature generally do not capture the exact Hölder regularity properties of the underlying model
and, hence, are not suited for computing power variations. Our simulation method, which we call the
replacement method, generalizes an idea stated in Davie and Gaines [29] without providing a theo-
retical justification. Using the Gaussian property of the true and the approximate model, we derive
conditions for the corresponding total variation distance to tend to zero as the number of observations
tends to infinity. In particular, this preserves the asymptotic properties of our estimators. Except for
the simulation study on the estimators, the results of this chapter can be found in Hildebrandt [36].
The simulations for the estimators on a fixed time horizon are taken from Hildebrandt and Trabs [38].

In Section 3.1 we introduce the replacement method and state our convergence result. Section 3.2
is devoted to a numerical example illustrating the accuracy of the replacement method. In particular,
it is compared to the truncation method, i.e., naive truncation in Fourier space. The results provided
by the replacement method turn out to be more accurate at a considerably lower computational cost.
Owing to our original purpose, Section 3.3 contains a simulation study for the estimators derived in
Section 2.2. Finally, the proofs are collected in Section 3.4.

Throughout, X = (Xt(x), t ∈ R+, x ∈ [0, 1]) denotes the solution field given by (1.12) with
stationary or zero initial condition.

3.1 Simulation method and convergence result

Our aim is to generate discrete samples (Xti(yk), i ≤ N, k ≤ M) where the points of observation
(ti, yk) are as defined in the observation scheme from Section 1.2.3 with b = 0, i.e.,

yk =
k

M
, k = 0, . . . ,M, ti =

iT

N
, i = 0, . . . N,

and all of the numbers N,M ∈ N0 and T > 0 are allowed to tend to infinity, in general. Assuming
b = 0 allows us to take advantage of the discrete version of the orthogonality property (2.3) of the

eigenfunctions e`. In fact, with Um defined in (2.4), we have Xti(yk) =
∑M−1
m=1 Um(ti)em(yk) for all

i ≤ N, k ≤ M and, thus, sampling from X at the grid points (ti, yk) is equivalent to sampling from
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the independent processes Um, m ≤ M − 1, at times t0, . . . , tN . Further, any coefficient process u`
may be simulated exactly using its AR(1)-structure, namely

u`(0) = 〈ξ, e`〉ϑ, u`(ti+1) = e−λ`∆u`(ti) + σ

√
1− e−2λ`∆

2λ`
N `
i , i ∈ N0, (3.1)

where (N `
i ) are independent standard normal random variables.

To derive the simulation method, let us first assume that X0 = 0. In this case, the coefficient
processes u` are centered Gaussian with covariance function

Cov(u`(ti), u`(tj)) =
σ2

2λ`
e−λ`|i−j|∆

(
1− e−2λ` min(i,j)∆

)
, 0 ≤ i, j ≤ N.

Thus, when λ` h `2 is large compared to 1/∆, the random variables (u`(ti), 1 ≤ i ≤ N) effectively
behave like iid Gaussian random variables with variance

Var(u`(ti)) ≈
σ2

2λ`
, 1 ≤ i ≤ N,

due to the exponential factor e−λ`|i−j|∆ in the covariance. Now, in order to define the approximation
of the processes Um, choose L = LM,N ∈ N and replace all coefficient processes (u`(ti), 1 ≤ i ≤ N)
with ` ≥ LM by a vector of independent normal random variables with variance σ2/(2λ`). Note that
counting in multiples of M is convenient due to the particular form of the index sets Im = I+

m ∪ I−m
from the definition of Um. Since the normal distribution is stable with respect to summation, for each
m < M it is sufficient to generate one set (RLm(i), 1 ≤ i ≤ N) of independent random variables with
RLm(i) ∼ N (0, s2

m) where

s2
m :=

∑
`∈Im, `≥LM

σ2

2λ`
. (3.2)

The resulting approximation is defined by

ULm(0) := 0, ULm(ti) :=
∑

`∈Im,`<LM

u`(ti) +RLm(i), 1 ≤ i ≤ N.

Similarly, if X is the stationary solution, the coefficient processes u` are centered Gaussian with
covariance function

Cov(u`(ti), u`(tj)) =
σ2

2λ`
e−λ`|i−j|∆, 0 ≤ i, j ≤ N.

Consequently, for iid random variables (RLm(i), 0 ≤ i ≤ N) with RLm(i) ∼ N (0, s2
m) we define the

approximation

ULm(ti) :=
∑

`∈Im,`<LM

u`(ti) +RLm(i), 0 ≤ i ≤ N.

In order to generate samples based on the replacement method, it is necessary to calculate the
variances s2

m. In fact, approximating the infinite series (3.2) can be avoided thanks to the closed form
expression provided by the following lemma. We use the notation ρ : [0, 1] → R for the covariance
function of the stationary initial condition with κ = 0, i.e., for the symmetric function given by

ρ(x, y) :=
σ2

2ϑ2
·


sin(Γ0(1−y)) sin(Γ0x)

Γ0 sin(Γ0) , Γ < 0,

x(1− y), Γ = 0,
sinh(Γ0(1−y)) sinh(Γ0x)

Γ0 sinh(Γ0) , Γ > 0,

for x ≤ y

with Γ =
ϑ2

1

4ϑ2
2
− ϑ0

ϑ2
and Γ0 =

√
|Γ|, cf. Proposition 1.2.1.
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Lemma 3.1.1. Define Σ ∈ R(M+1)×(M+1) via Σkl := ρ(yk, yl) for 0 ≤ k, l ≤ M and let bm :=√
2(sin(πmy0), . . . , sin(πmyM ))> ∈ RM+1. The variance s2

m defined by (3.2) satisfies

s2
m =

1

M2
b>mΣbm −

∑
`∈Im, `<LM

σ2

2λ`
. (3.3)

Our simulation method is summarized in the following algorithm:

Algorithm 3.1.2 (Replacement method). Choose L ∈ N.

For 1 ≤ m < M do the following:

(1) For ` ∈ Im ∩ (0, LM) simulate (u`(ti), 0 ≤ i ≤ N) according to (3.1).

(2) Compute s2
m according to (3.3) and generate RLm(0), . . . , RLm(N) ∼ N (0, s2

m) independently. For
the zero initial condition replace RLm(0) by 0.

(3) Compute

ULm(ti) =
∑

`∈Im,`<LM

u`(ti) +RLm(i), 0 ≤ i ≤ N.

Output: XL
ti(yk) =

∑M−1
m=1 U

L
m(ti)em(yk) for 0 ≤ k ≤M and 0 ≤ i ≤ N .

Assuming a finite set of observations, Davie and Gaines [29] proposed the replacement method
with L = 1, while omitting a theoretical analysis. Based on a bound on the total variation distance
of Gaussians by Devroye et al. [30], namely

TV
(
N (0, A),N (0, B)

)
≤ 3

2
‖A−1/2(B −A)A−1/2‖F (3.4)

for non-singular covariance matrices A and B, we are able to theoretically justify their approach. In
particular, allowing for M,N → ∞, the following theorem provides a condition on L for the validity
of the approximation in total variation distance.

Theorem 3.1.3. Let X be the vector of observations, i.e., X := (Xti(yk), i ≤ N, k ≤ M) either
with zero or with stationary initial condition and let XL be its approximation computed via Algorithm
3.1.2.

(i) There exist constants c, C > 0 only depending on the parameters (σ2, ϑ) such that

TV(X ,XL) ≤ C
√
MNe−cL

2M2∆.

(ii) Assume T∆q → 0 for some q > 0. If there exists α > 1/2 such that LM∆α → ∞, then
TV(X ,XL) → 0. In particular, if T = const. and M/Nα → ∞ for some α > 1/2, then
TV(X ,X 1)→ 0.

A negligible total variation distance is exactly what is required for statistical simulations since
functionals based on true and approximate data share the same limiting distribution: Let (Xn,k) and
(Yn,k) be triangular arrays of the same size and assume that φn(Xn,•) has a weak limit Z for some
sequence (φn) of functionals. Then, if TV(Xn,•, Yn,•) → 0, the sequence φn(Yn,•) also converges to
Z weakly. In fact, if µn is a dominating measure for the laws of Xn,• and Yn,• with corresponding
Radon-Nikodym derivatives fXn,• and fYn,• , then

∣∣E(eitφn(Xn,•))−E(eitφn(Yn,•))
∣∣ =

∣∣∣ ∫ eitφn(z)(fXn,•(z)− fYn,•(z))µ(dz)
∣∣∣

≤ ‖fXn,• − fYn,•‖L1(µ) = 2TV(Xn,•, Yn,•).
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(a) temporal quadratic variation for
N = 5, 000, M = 10

(b) spatial quadratic variation for
N = 100, M = 1, 000

Figure 3.1: Histograms based on 500 Monte Carlo iterations for normalized quadratic variations based
on the replacement (top) and truncation method (bottom). The solid line corresponds to the standard
normal density function.

Thus, the limiting characteristic functions coincide.
Another aspect worth noting is that there is no statistical test that can consistently distinguish

between two models whose total variation distance tends to zero. Indeed, in such a case, the maximum
of type one and type two error of any test for the true model is asymptotically bounded from below
by 1/2, see e.g. the proof of [75, Theorem 2.2].

3.2 Simulations on the accuracy of the replacement method

In order to test the performance of the replacement method and compare it to truncation of the Fourier
series, we compute rescaled realized temporal and spatial quadratic variations, namely Vt from (2.9)
and Vsp from (2.12), based on both methods on the finite time horizon T = 1. The outcomes are then
compared with the corresponding theoretical limiting distributions given by (2.10) and Theorem 2.2.3.
For the simulations we have set the parameters to the values σ2 = 0.1, ϑ2 = 0.5, ϑ1 = −0.4, ϑ0 = 0.3
and have considered the stationary initial condition. Each of the plots in Figures 3.1a and 3.1b shows a
histogram of the centered and normalized (with respect to theoretical asymptotic means and variances)
realized quadratic variations based on 500 Monte Carlo iterations. The solid line corresponds to the
standard normal density function.

For the temporal quadratic variation (Figure 3.1a) we have considered M = 10 spatial and N =
5, 000 temporal observations. As long as N →∞, the central limit theorem for time increments also
holds for finite M . Hence, one can expect that the asymptotic regime is reached with these values
for N and M . Indeed, Figure 3.1a shows that the values provided by the replacement method with
L = 10 (corresponding to LM = 100 simulated Ornstein-Uhlenbeck processes) are already in good
accordance with the theoretical limit. Note that LM

√
∆ ≈ 3.2 is far from infinity, so the method

works better than predicted by Theorem 3.1.3. The truncation method, on the other hand, requires
simulation of more than 6, 000 coefficient processes in order to produce accurate results and prevent
a severe bias in the simulated values.
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Examining the results for the spatial quadratic variation (Figure 3.1b), this effect becomes even
more apparent. Here, we considered M = 1, 000 spatial and N = 100 temporal observations. Conse-
quently, M

√
∆ = 100 and Theorem 3.1.3 suggests that L = 1 (i.e., LM = 1, 000 simulated coefficient

processes) is sufficient for the replacement method. Figure 3.1b confirms this prediction. On the
other hand, even with K = 70, 000 coefficient processes, the simulated values based on the truncation
method still suffer from a severe bias.

In fact, the bias in the central limit theorems introduced by truncation can be explained ana-
lytically: A simple calculation shows that for the normalized temporal quadratic variation, the bias

is of the order
√
MN 1√

∆

∑
`≥K

1
λ`

h
√
MN

K
√

∆
and in our simulation for the temporal quadratic varia-

tion we have
√
MN√
∆
≈ 16, 000. Similarly, the bias for the spatial quadratic variation is of the order

√
MN 1

δ

∑
`≥K

1
λ`

h
√
MN
Kδ , in our simulation we have

√
MN
δ ≈ 316, 000.

3.3 Simulation study for the estimators from Section 2.2

The following numerical examples illustrate the asymptotic results for the estimators derived in Section
2.2. In order to simulate X on a grid in time and space, we use the replacement method developed in
Section 3.1. The estimators applied to the simulated data then have the correct limiting distribution,
as follows from Theorem 3.1.3 and its subsequent discussion.

3.3.1 The case of a fixed time horizon

Letting T = 1, we have considered a fixed number N = 210 or N = 214 of temporal observations,
while M varies in the set {15, 29, 57, 113, 225, 449, 897, 1793, 3585, 7169}. The precise values for M
stem from the procedure of lying a dyadic grid on [0, 1] and then removing the points on the margin
[0, b)∪(b−1, 1] where b = 2−4. In fact, all observations are obtained as subsets of a simulation of X on
the full grid

(
(i/N̄ , k/M̄), i ≤ N̄ , k ≤ M̄

)
with M̄ = 213 and N̄ = 214. We have used the replacement

method with L = 1 which is justified by Theorem 3.1.3 in view of M̄2/N̄ = 212 � 1. The parameters
are chosen to be σ2 = 0.1, ϑ2 = 0.5, ϑ1 = −0.4 and ϑ0 = 0.3.

First, we consider the estimators for the volatility σ2 and the diffusivity ϑ2 which have been
analyzed in Propositions 2.2.10 and 2.2.11, respectively. Figure 3.2 shows the normalized (with respect
to 1/(MN) as well as the constants σ4 and ϑ2

2, respectively) mean squared errors based on 500
Monte Carlo iterations plotted against the logarithm of the sampling ratio

√
N/M . The simplified

double increments estimator ϑ̂2,r is computed with r = (1− 2b)
√
N
M . Using the same value for r, the

simplified double increments estimator for σ2 is computed by replacing the normalization Φϑ(δ,∆)
with e−κδ/2ψϑ2

(r)
√

∆.
As expected, the estimators based on temporal increments only achieve the parametric rate of

convergence as long as M is not too large, whereas estimators based on space increments only work
well when M is not too small. The estimators based on double increments perform very well through-
out any regime depicted in the plot. Even the simplified versions work surprisingly well, although
their applicability is only supported by our theory as long as M h

√
N . In particular, the double

increments estimator for σ2 can barely be distinguished from the simplified one. Furthermore, as
suggested by the theory, the simulations show that the estimators based on space increments or time
increments have a smaller mean squared error than the double increments estimators in the regimes√
N/M → 0 or

√
N/M →∞, respectively.

The above estimators require all but one of the parameters (σ2, ϑ2, κ) to be known. Within
the more difficult statistical problem where all parameters are unknown, η = (σ2, ϑ2, ϑ1) can be
estimated by η̂ from (2.18) and by η̂v,w from (2.19). Furthermore, we have implemented a data-
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Figure 3.2: Normalized mean squared errors of estimators for σ2 (left) and ϑ2 (right) with T = 1,
N = 210 and M ∈ [15, 7169].

thinning version of the estimator where the contrast process uses only one balanced sub-sample and
discards the remaining data instead of averaging. For the estimator η̂v,w and its thinning version, we

set v = [max(1, NM2 )] and w = [max(1,M/
√
N)] where [·] indicates rounding to the next integer. The

minimization problems were numerically solved using the nonlinear least squares function nls from
R. Figure 3.3 shows the logarithm of the mean squared errors plotted against the logarithm of the
sampling ratio

√
N/M , again based on 500 Monte Carlo iterations. Here, displaying the mean squared

errors on the logarithmic scale helps in distinguishing the different curves and provides a close-up view
at their behavior when they are very small.

For the fixed value N = 214, taking M = 113 results in a balanced regime and, in particular, we
have v = w = 1. Thus, the definitions of all estimators agree, leading to an intersection of the three
curves at log(

√
N/M) ≈ 0.12. In contrast to the double increments estimators for single parameters,

η̂ only produces good results as long as M h
√
N , which is covered by the theoretical foundation.

In fact, with the smallest number of spatial observations, M = 15, the optimization algorithm was
even unable to detect a minimum in almost 3/5 of the simulation runs and the mean squared error is
computed based on the remaining data. Unsurprisingly, the other two estimators have, overall, a much
better performance. On the contrary, when M = 57 (log(

√
N/M) ≈ −0.56) the estimator η̂ works

slightly better. This can be explained by the fact that, here, the choice of v and w is too conservative
in the sense that v ∨ w > 1 although the regime is still reasonably balanced. Furthermore, we see
that it is only possible to profit from an increasing number of spatial observations up to a certain
degree: For M ≤

√
N , the optimal rate is M−3/2 and the empirical mean squared error of η̂v,w as

well as its thinning version becomes increasingly smaller. For M ≥
√
N , the optimal rate is N−3/4

and, indeed, the empirical mean squared errors become stationary. Furthermore, while the latter two
estimators have a similar qualitative behavior, the mean squared error of η̂v,w is consistently smaller.
As announced in Remark 2.2.15, this indicates that using the whole data results in an improved
asymptotic variance.
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Figure 3.3: Logarithm of the mean squared errors of the least squares estimator η̂, its averaging version
η̂v,w and a thinning version exploiting only one balanced sub-sample. The time horizon is T = 1 and
the sample sizes are N = 214 and M ∈ [15, 7169].

3.3.2 The case T →∞
In order to illustrate the conclusion of Theorem 2.2.18 on the estimator (η̂, ϑ̂0) in case of a balanced
sampling design, we generated 2,500 samples of (Xti(ȳk))k,i where ȳk = k/M̄ , ti = i∆ with ∆ = 4/M̄2

and T ∈ {25, 50, 75, 100} as well as M̄ ∈ {75, 90, 100}. To that aim, we used the replacement method
with parameter L = 4. For computing the estimators, we only used the spatial observations satisfying
ȳk ∈ [b, 1− b] with b = 0.05. The parameter values are σ2 = 0.1, ϑ2 = 0.5, ϑ1 = −0.4 and ϑ0 = 4. For
smaller values of ϑ0, the estimation problem becomes increasingly harder. This is caused by the fact
that the function Ib : (−π2,∞) → R, whose inverse is used for the estimator (2.22) for ϑ0, is quite
flat around arguments not close to −π2. Thus, larger sample sizes would be required to illustrate the
precise features of the estimator.

The top row of Figure 3.4 shows the empirical mean squared errors of η̂ and ϑ̂0 as a function of
T , normalized with respect to their theoretical orders of magnitude, 1/(MN) and 1/T , respectively.
As a baseline, the plot for ϑ0 also shows the normalized mean squared errors when the estimators
for ϑ0 are computed using the actual values of η instead of their estimates (circular dots). Note
that for different values of M̄ , the mean squared errors are renormalized in a different way, namely,
we multiply by MN = TM/∆ h TM3/2, in view of the balanced sampling design. Furthermore,
the dotted lines in the plots represent the estimated mean squared errors plus/minus a Monte Carlo
estimate of their standard deviations. E.g., when Z1, . . . , Zn with n = 2, 500 are the Monte Carlo
realizations of ϑ̂0, define Yi := (Zi− ϑ0)2. An estimate for the mean squared error of ϑ̂0 is then given
by the empirical mean of Y1, . . . , Yn. The standard deviation of this empirical mean squared error, in
turn, can be estimated by the sample standard deviation of Y1, . . . , Yn divided by

√
n. Let us refer

to the regions between the dotted lines as confidence bands. The bottom row in Figure 3.4 shows the
decomposition of the mean squared error of η̂ into the empirical variance (i.e., the sum of the three
individual variances) and the squared empirical bias (i.e., the sum of squares of the three individual
biases).

The normalized mean squared errors of the estimators for ϑ0 seem to approach a finite value as
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T → ∞, which confirms the 1/
√
T -rate of convergence of ϑ̂0. In view of the confidence bands, the

slight deviation in the case M̄ = 90 does not contradict this general behavior. Furthermore, we see
that with M̄ = 100 spatial observations, our estimator for ϑ0 is already very close to the estimator
employing the true values of η, which shows that our plug-in approach with η̂ works very well.

The asymptotic properties of the estimator η̂ are largely confirmed by the simulation study as well,
though some precise features are obscured by the fluctuations in the renormalized system. Indeed, as
suggested by the displayed empirical mean squared errors of η̂, the asymptotic distribution of η̂ has
a fairly large variance, which seems acceptable in view of the fast rate of convergence. In particular,
the asymptotic mean squared error itself is hard to assess precisely, even based on 2,500 Monte Carlo
iterations. This is also reflected in the rather wide confidence bands. They indicate that based on a
second Monte Carlo simulation, the displayed curves might as well be in a different vertical ordering.
On the other hand, it seems plausible from the plot that for a fixed value of T , the mean squared
errors remain bounded as a function of M , which is in line with the parametric rate of convergence for
fixed T . For individual values of M , the mean squared errors show a linear growth in T . Inspection
of the decomposition into variance and bias in the bottom row of Figure 3.4, indicates that this is
purely due to a bias effect. This is covered by our theory: It is suggested by Proposition 2.2.5 that the
estimator η̂ has a bias of the order O(∆). Thus, when multiplying the squared bias by MN , we get
an overall error of the order O(MN∆2) = O(T/M) in the balanced design. For a fixed value of M ,
this exactly explains the linear growth observed for the squared bias. The bias is not present in our
central limit theorem for η̂ since it is proved under the condition that T/M h T

√
∆→ 0. Illustrating

the decay of the bias in M in simulations would require very large samples sizes with M � T , which
is beyond the scope of this simulation study.

Figure 3.5 shows standard normal QQ-plots for the estimators where, as usual, the sample quantiles
are plottet against the theoretical quantiles of the standard normal distribution, accompanied by a
solid line through the first and third quartiles. Due to the scaling invariance of the normal distribution,
QQ-plots following a straight line indicate that the empirical distribution is approximately normal.
QQ-plots for the estimators of the four parameters with M̄ = 90 and T = 25 as well as T = 100 are
displayed.

Our theory predicts that the estimators for η = (σ2, ϑ2, ϑ1) should be asymptotically normal as
soon as M is sufficiently large, no matter the value of T . This prediction is reflected well in the QQ-
plots. Asymptotic normality of ϑ̂0, on the other hand, can only be expected when T is large. Indeed,
at time T = 25, the QQ-plot shows a clear deviation from a straight line. At time T = 100, the
empirical distribution already seems much closer to the normal distribution, although some deviation
remains. This can be explained by the fact that T = 100 is still not very large, in particular, when
comparing to the number MN h TM̄3 ≈ 7.3 · 107 governing the asymptotics for η̂.
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Figure 3.4: Normalized (with respect to the theoretical rates of convergence) mean squared errors of ϑ̂0

and η̂ (top) as well as normalized empirical variance and squared bias for η̂ (bottom) in the balanced
sampling design ∆ = 4/M̄2. Circular dots correspond to the estimators for ϑ0 when using the actual
values of η instead of η̂. Dotted lines represent the estimated mean squared errors plus/minus their
empirical (with respect to the Monte Carlo simulation) standard deviations.
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Figure 3.5: Normal QQ-plots for the centered (around the true values) and normalized (with respect
to the theoretical rates of convergence) estimators from Theorem 2.2.18 with M̄ = 90, ∆ = 4/M̄2 ≈
4.9 · 10−4 and T = 25 (left) as well as T = 100 (right).
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3.4 Proofs

First, we prove the closed form expression for the variance term s2
m:

Proof of Lemma 3.1.1. It follows from Proposition 1.2.1 that Σ is the covariance matrix of the vector
Z := (eκy1/2X0(y0), . . . , eκyM/2X0(yM ))> when X0 follows the stationary distribution. Therefore, the
claimed formula follows from∑

`∈Im

σ2

2λ`
= Var (〈X0(·), em〉M ) =

1

M2
Var

(
b>mZ

)
=

1

M2
b>mΣbm

where the exponential factors cancel in the second step.

In the following, we prove our convergence result for the replacement method:

Proof of Theorem 3.1.3. First, we treat the case of a stationary initial condition. It follows directly
from the definition of the total variation distance that TV(f(X), f(Y )) ≤ TV(X,Y ) holds for any
random vectors X and Y and any measurable function f . Thus, the problem can be reduced to
bounding the total variation distance of (Um(ti), i ≤ N,m ≤ M − 1) from its approximation. Fur-
thermore, since both Um and ULm are made up of independent summands, it is sufficient to consider
the parts of the sums in which the two differ. To that aim, define RL := (RLm(i), i ≤ N,m ≤M − 1)
and VL := (V Lm(ti), i ≤ N,m ≤ M − 1) where V Lm(t) :=

∑
`∈Im, `≥LM u`(t). Let Ξm be the co-

variance matrix of (V Lm(ti), i ≤ N) and Ξ⊥⊥m be the covariance matrix of (RLm(ti), i ≤ N) as well
as Ξ := diag(Ξ1, . . . ,ΞM−1), Ξ⊥⊥ := diag(Ξ⊥⊥1 , . . . ,Ξ

⊥⊥
M−1). Since VL and RL are centered Gaussian

random vectors with covariance matrices Ξ and Ξ⊥⊥, respectively, we can use (3.4) together with the
block structure of the matrices to bound

TV(VL,RL)2 ≤ 9

4
‖(Ξ⊥⊥)−

1
2 (Ξ− Ξ⊥⊥)(Ξ⊥⊥)−

1
2 ‖2F =

9

4

M−1∑
m=1

‖(Ξ⊥⊥m)−
1
2 (Ξm − Ξ⊥⊥m)(Ξ⊥⊥m)−

1
2 ‖2F . (3.5)

We now treat each term in the sum separately. Note that Ξ⊥⊥m is a diagonal matrix with the same
diagonal elements as Ξm, namely s2

m. Therefore, by the monotonicity of the exponential function,

‖(Ξ⊥⊥m)−
1
2 (Ξm − Ξ⊥⊥m)(Ξ⊥⊥m)−

1
2 ‖2F =

1

s4
m

∑
i 6=j

σ2
∑

`∈Im, `≥LM

e−λ`|i−j|∆

2λ`

2

≤ 1

s4
m

∑
i 6=j

 ∑
`∈Im, `≥LM

σ2

2λ`

2

e−2λLM |i−j|∆

=
∑
i 6=j

e−2λLM |i−j|∆.

Using
∑∞
i=1 q

i = q
1−q for |q| < 1, we can proceed to

∑
i6=j

e−2λLM |i−j|∆ ≤ 2N

∞∑
i=1

e−2λLM i∆ = 2N
e−2λLM∆

1− e−2λLM∆
. Ne−2λLM∆

where the last step follows from the fact that L2M2∆ ≥ (LM∆α)2 →∞. Now, letting c > 0 be such
that c`2 ≤ λ` for all ` ∈ N, we get the overall bound on the total variation distance claimed in (i),
namely

TV(X ,XL)2 ≤ TV(VL,RL)2 .MNe−2λLM∆ ≤MNe−2cL2M2∆.
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To prove (ii), choose r > 0 such that r+q+1
2r−1 ≤ α. Then, using (i) and exp(−x) . x−r, x > 0, for any

r > 0, we find

TV(X ,XL)2 .MNe−2cL2M2∆ .
MT

(LM)2r∆r+1
=
T∆q

L

(
1

LM∆
r+q+1
2r−1

)2r−1

→ 0,

finishing the proof for the stationary case.

Also for the case X0 = 0, let Ξm be the covariance matrix of (V Lm(ti), i ≤ N,m ≤ M − 1) and
Ξ⊥⊥m be the covariance matrix of (RLm(i), i ≤ N,m ≤M − 1) (without the initial deterministic value).
Clearly, bound (3.5) remains valid and

‖(Ξ⊥⊥m)−
1
2 (Ξm − Ξ⊥⊥m)(Ξ⊥⊥m)−

1
2 ‖2F =

1

s4
m

N∑
i,j=1

σ2
∑

`∈Im, `≥LM

e−λ`|i−j|∆

2λ`

(
1− δij − e−2λ`(i∧j)∆

)2

=
1

s4
m

∑
i 6=j

σ2
∑

`∈Im, `≥LM

e−λ`|i−j|∆

2λ`

(
1− e−2λ`(i∧j)∆

)2

+
1

s4
m

N∑
i=1

σ2
∑

`∈Im, `≥LM

1

2λ`
e−2λ`i∆

2

≤ 1

s4
m

∑
i 6=j

σ2
∑

`∈Im, `≥LM

e−λ`|i−j|∆

2λ`

2

+
1

s4
m

N∑
i=1

σ2
∑

`∈Im, `≥LM

1

2λ`
e−2λ`i∆

2

≤ 2

s4
m

∑
i 6=j

σ2
∑

`∈Im, `≥LM

e−λ`|i−j|∆

2λ`

2

,

from which the result follows as in the stationary case.
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Chapter 4

Estimation in a semilinear
framework

In this chapter we advance the theory on statistical estimation for SPDEs based on fully discrete
observations to the semilinear framework of reaction-diffusion systems. Our aim is to estimate the
diffusivity and volatility coefficients as well as the nonlinearity in the underlying equation. The latter
is done in a fully nonparametric way. The results of this chapter are part of the preprint Hildebrandt
and Trabs [37].

In Section 4.1 we state the different regularity assumptions on the solution process, required for the
different problems treated in this section. These include a boundedness assumption (B), needed when-
ever working with large time asymptotics and a mixing assumption (M) needed for the nonparametric
estimation of the nonlinearity. For the latter problem, we will also require an assumption (E) on the
existence of densities for the random variables Xt(y). Using analytic tools from semigroup theory, in
Section 4.2 we discuss the Hölder regularity in time and space of the solution process and show higher
order regularity of its nonlinear component. In Section 4.3 we revisit the parametric estimators for
(σ2, ϑ2) from Chapter 2 in the semilinear framework. Based on the higher order Hölder regularity
of the nonlinear component of the solution, we show that their asymptotic properties largely persist.
Section 4.4 discusses nonparametric estimation of the nonlinearity in the underlying reaction-diffusion
equation. We treat the estimation problem by adapting an approach used by Comte et al. [21] in the
context of one-dimensional diffusion processes to our infinite dimensional framework. To that aim, we
proceed in two steps: First, we consider observations that are discrete in time but continuous in space.
By implementing an approximation step, the method is then adapted to fully discrete observations.
We derive oracle inequalities for the expected risk when the risk is either the empirical 2-norm with
evaluations at the data points or the usual L2-norm on a compact set. All proofs are collected in
Section 4.5. For most results the position of their proofs in the latter section is evident, otherwise it
is indicated in the text.

As announced in Section 1.2.2, we consider a reaction-diffusion system on [0, 1], namely the mild
solution X to the equation

dXt = (ϑ2
∂2

∂x2
Xt + F (Xt)) dt+ σdWt, X0 = ξ, (4.1)

with Dirichlet boundary conditions and where the nonlinearity F is given by

F (u) = f ◦ u
for a function f ∈ C1(R). For simplicity, we will also refer to the functional by f , i.e., we write
f(u) = f ◦ u for functions u : [0, 1]→ R.
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4.1 Further assumptions

Without further notice, in the sequel we will work under the standing assumption that there is a
unique mild solution

Xt = S(t)ξ + σ

∫ t

0

S(t− s) dWs +

∫ t

0

S(t− s)f(Xs) ds, t ≥ 0, (4.2)

such that X is a Markov process with state space E = C0([0, 1]) and X ∈ C(R+, E) holds almost
surely for ξ ∈ E. Specifically, we will always assume that either ξ = 0 or that ξ follows the stationary
distribution on E associated with the Markov process X, provided that it exists. Note that, in case
of existence, the stationary distribution for the nonlinear equation is different from the stationary
distribution for the linear equation considered in the previous chapters. We will denote the linear and
nonlinear component of X by

X0
t := σ

∫ t

0

S(t− s) dWs, Nt :=

∫ t

0

S(t− s)f(Xs) ds, t ≥ 0.

Furthermore, it will be assumed throughout that f and its derivative are at most of polynomial growth,
i.e., there exist constants c > 0 and d ∈ N such that

|f(x)|, |f ′(x)| ≤ c(1 + |x|d), x ∈ R. (4.3)

The set of basic assumptions just introduced is sufficient for generalizing the estimation methods from
Section 2.2.2 to the semilinear framework as long as the time horizon T remains bounded. When
dealing with the case T → ∞, on the other hand, we need to impose a stricter assumption, that
ensures that the error induced by the nonlinearity remains negligible uniformly in time, namely:

(B) The process X from (4.2) with zero or, in case of existence, stationary initial condition satisfies
supt≥0 E(‖Xt‖p∞) <∞ for any p ≥ 1.

When dealing with nonparametric estimation of the nonlinearity f , our analysis will, in particular,
rely on a concentration inequality derived via the mixing property of a stationary process. Hence, we
will later assume:

(M) For the SPDE (4.1) there exists a stationary distribution π on E and the mild solution X from
(4.2) with ξ ∼ π satisfies E(‖Xt‖p∞) = E(‖X0‖p∞) < ∞ for any p ≥ 1. Furthermore, X is
exponentially β-mixing, i.e., there exist constants L, γ > 0 such that

βX(t) :=

∫
E

‖Pt(u, ·)− π(·)‖TV π(du) ≤ Le−γt (4.4)

where (Pt)t≥0 is the transition semigroup on E associated with the Markov process X.

Sufficient conditions for Assumptions (B) and (M) to be satisfied are given in the following Proposition
which is strongly based upon results derived in Goldys and Maslowski [34].

Proposition 4.1.1. If there are constants a, b, c, β ≥ 0 such that

sgn(x)f(x+ y) ≤ −a|x|+ b|y|β + c (4.5)

holds for all x, y ∈ R, then Assumptions (B) and (M) are satisfied.

A proof for the above proposition is given in Section 4.5.4. Condition (4.5) requires that −f
has at least linear growth at infinity and is, not surprisingly, stronger than the condition (1.8) from
the general existence result. Still, it covers a large class of systems, including the case where f is a
polynomial of odd degree with a negative leading coefficient.

Finally, for the nonparametric estimation of f on a compact set A ⊂ R, we will need that the
L2(A)-norm is comparable to the empirical norm induced by the process X. This can be achieved by
requiring the following equivalence condition.

94



(E) For the SPDE (4.1) there exists a stationary distribution π on E and, if ξ ∼ π, the random
variables ξ(x) admit a Lebesgue density µx for each x ∈ (0, 1). Further, for any compact set
A ⊂ R there are constants c0, c1 > 0 and b ∈ (0, 1

2 ) such that

µx(z) ≤ c1 for all z ∈ A, x ∈ (0, 1),

µx(z) ≥ c0 for all z ∈ A, x ∈ (b, 1− b).

The presence of the constant b in the lower bound is required due to the degeneracy induced by the
Dirichlet boundary conditions. Assumption (E) will be necessary in order to conclude the existence
of constants c, C > 0 such that

c‖t‖2L2(A) ≤ E
(∫ 1

0

t2(X0(y)) dy
)
≤ C‖t‖2L2(A),

c‖t‖2L2(A) ≤ E
( 1

M

M−1∑
k=1

t2(X0(yk))
)
≤ C‖t‖2L2(A)

holds for all functions t ∈ L2(R) with support in the compact set A. Assumption (E) is clearly satisfied
in the case where f is a linear function, f(x) = ϑ0x for some ϑ0 < 0, see Section 1.2.1. Concerning
a more general framework, there is a large amount of literature concerned with the existence and
regularity of Lebesgue densities corresponding to the marginal distributions associated with various
SPDE models, see, e.g., [4, 58, 63, 65]. However, to the author’s best knowledge, there are so far
no estimates on the densities of the random variables Xt(x) that hold uniformly in x ∈ X for some
infinite set X ⊂ (0, 1). Deriving a sufficient condition on f to ensure (E) goes beyond the scope of
this thesis and is postponed to further research.

4.2 Hölder regularity of the solution process

In this section, we discuss the Hölder regularity of the process (Xt(y), t ≥ 0, y ∈ [0, 1]) in time and
space and, in particular, we show the higher order regularity of its nonlinear component (Nt(y), t ≥
0, y ∈ [0, 1]). For α > 0, we consider the Hölder spaces Cα := Cα([0, 1]) consisting of all u ∈ C [α] such
that

‖u‖Cα :=

[α]∑
k=0

‖u(k)‖∞ + sup
x,y∈[0,1]

|u(x)− u(y)|
|x− y|α−[α]

is finite where [α] := max{k ∈ N0 : k ≤ α}. Further, the Hölder continuous functions with Dirichlet
boundary conditions are denoted by

Cα0 := {u ∈ Cα, u(0) = u(1) = 0}.

Recall that the linear component (X0
t (x), x ∈ [0, 1], t ≥ 0) of X is a Gaussian process and

E((X0
t (ξ)−X0

t (η))2) =
∑
`≥1

σ2

2λ`
(1− e−2λ`t)(e`(ξ)− e`(η))2

≤
∑
`≥1

σ2

2λ`
(e`(ξ)− e`(η))2 h |ξ − η|, (4.6)

E((X0
t (x)−X0

s (x))2) =
∑
`≥1

σ2

λ`
(1− e−λ`|t−s|)

(
1− 1− e−λ`|t−s|

2
e−2λ`s

)
e2
`(x)

≤
∑
`≥1

σ2

λ`
(1− e−λ`|t−s|) h

√
|t− s|. (4.7)
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From this observation it follows that, almost surely, X0
t ∈ E for any t ≥ 0, x 7→ X0

t (x) is 2γ-Hölder
continuous and t 7→ X0

t (x) is locally γ-Hölder continuous for any γ < 1/4. The following proposition
generalizes this fact to the semilinear setting and shows that, under Assumption (B), the corresponding
Hölder norms are Lp(P)-bounded as functions of time.

Proposition 4.2.1. For any p ∈ [1,∞) the following hold.

(i) For any γ < 1/2, we have X ∈ C(R+, C
γ
0 ) a.s. and, if Assumption (B) is satisfied, then

supt≥0 E(‖Xt‖pCγ0 ) <∞.

(ii) For any γ < 1/4 and T > 0, we have (Xt)0≤t≤T ∈ Cγ([0, T ], E) a.s. and, if Assumption (B)
is satisfied, then there exists a constant C > 0 such that E(‖Xt − Xs‖p∞) ≤ C|t − s|γp for all
s, t ≥ 0.

Furthermore, the same results hold for X replaced by f0(X) where f0(x) := f(x)− f(0).

We remark that a norm bound as in (i) with p = 1 is also derived in Cerrai [13, Proposition 4.2].
To prove the above proposition, we analyze the linear and the nonlinear component of X separately.
The regularity of (X0

t ) can be assessed using properties (4.6) and (4.7) together with techniques from
Da Prato and Zabczyk [26] for the study of continuity properties for linear equations, see Lemma
4.5.1. The regularity of (Nt) is a consequence of the regularizing property of the semigroup (S(t))t≥0

in view of the fact that, due to our basic assumptions, the process f(X) is continuous as a function of
time and space. To deal with the situation where f(0) 6= 0 and, hence, f(Xt) /∈ E, we need to consider
the semigroup on the space Ẽ = C([0, 1]). Note that the semigroup S is not strongly continuous on
Ẽ. Indeed, we have limt→0 S(t)x = x in Ẽ if and only if x ∈ E. Nevertheless, (S(t))t≥0 defines

a so called analytic semigroup on Ẽ which retains many properties of C0-semigroups. For a precise
definition of analytic semigroups we refer to, e.g., [55]. The following inequalities, which are particular
cases of results derived in Sinestrari [72], are our main tool to study the regularity of (Nt). Recall the

definition Aϑ = ϑ2
∂2

∂x2 .

Lemma 4.2.2. We fix an element λ0 ∈ (0, λ1). For any α, β,∈ (0, 2) \ {1} and n ∈ N0 there exists a
constant C > 0 such that

(i) ‖AnϑS(t)x‖∞ ≤ Ce−λ0tt−n‖x‖∞ for all x ∈ Ẽ,

(ii) ‖S(t)x‖Cα0 ≤ Ce−λ0tt−α/2‖x‖∞ for all x ∈ Ẽ,

(iii) ‖AϑS(t)x‖∞ ≤ Ct−(1−α/2)‖x‖Cα0 for all x ∈ Cα0 ,

(iv) ‖AnϑS(t)x‖Cβ0 ≤ Ce−λ0tt−(n+ β−α
2 )‖x‖Cα0 for all x ∈ Cα0 where it is required that either n ≥ 1 or

α ≤ β.

For a proof of (i), (ii) and (iv) we refer to [55, Proposition 2.3.1], (iii) follows from [72, Proposition
1.11]. Further, in order to transfer the spatial to the temporal regularity, of particular importance for
our study are the so called intermediate spaces, defined by

DAϑ(α,∞) :=

{
x ∈ Ẽ, ‖x‖DAϑ (α,∞) := ‖x‖Ẽ + sup

t>0

‖S(t)x− x‖Ẽ
tα

<∞
}
, α ∈ (0, 1),

which are Banach spaces with the norm ‖ · ‖DAϑ (α,∞). These spaces can be defined for arbitrary

analytic semigroups on a Banach space, see, e.g. [72]. For our concrete choice of Aϑ and Ẽ, they are
given by the Dirichlet-Hölder spaces

DAϑ(α,∞) = C2α
0 ([0, 1]), α 6= 1

2
,
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where the norms are equivalent, see Lunardi [54].
Having derived the Hölder regularity of the process X and, in particular, of f0(X), we can use

Lemma 4.2.2 once more to show that the regularity of (Nt) exceeds the regularity of X. A related
strategy has been pursued by Pasemann and Stannat [68] who studied the higher order regularity
of the nonlinear component of X in the spaces D((−Aϑ)ε), ε > 0. For our purpose, we can proceed
similarly to Sinestrari [72] who studied the Hölder regularity of mild solutions to deterministic systems.
We use the decomposition Nt = N0

t +Mt where

N0
t :=

∫ t

0

S(t− s)f0(Xs) ds, Mt :=

∫ t

0

S(r)mdr (4.8)

for m ≡ f(0) and f0(x) = f(x) − f(0). Note that f0 maps E and, in particular, DAϑ(α,∞) = C2α
0

into itself.

Proposition 4.2.3. For any T > 0, p ≥ 1 and γ < 1/4 the following hold.

(i) For any t ≥ 0, we have N0
t ∈ C2+2γ

0 and supt≤T ‖AϑN0
t ‖C2γ

0
< ∞ almost surely. In particular,

if Assumption (B) is satisfied, then supt≥0 E(‖AϑN0
t ‖pC2γ

0

) <∞.

(ii) We have (N0
t )t≤T ∈ C1+γ([0, T ], E) and d

dtN
0
t = f0(Xt) + AϑN

0
t in E almost surely. In par-

ticular, under Assumption (B), there exists C > 0 such that E(‖ ddt (N0
t −N0

s )‖p∞) ≤ C(t− s)γp
holds for all s, t ≥ 0.

Furthermore, the same results hold for (Nt) and f instead of (N0
t ) and f0, provided that we replace E

by C([b, 1− b]) and C2γ
0 by C2γ([b, 1− b]) for some b ∈ (0, 1

2 ).

4.3 Diffusivity and volatility estimation

Using the results of the previous section, we are now able to carry the central limit theorems for space
and double increments from Section 2.2.1 as well as the result (2.10) for time increments, derived in
Bibinger and Trabs [9], over to the semilinear framework. As a consequence, the estimators considered
in Section 2.2.2 for the volatility σ2 and the diffusivity ϑ2 can be used in the semilinear framework
and, under quite general assumptions, their asymptotic properties remain unchanged. As before, X
denotes the mild solution of equation (4.1) and we consider the observation scheme defined in Sec-
tion 1.2.3. The constant b defining the minimal distance of spatial observations to the boundary of
[0, 1] is assumed to be strictly positive so that Proposition 4.2.3 provides the regularity of the process
(Nt(x), x ∈ [b, 1− b], t ≥ 0) in space and time.

First, let us consider the realized quadratic variation based on time increments, i.e.,

V̄t :=
1

MN
√

∆

N−1∑
i=0

M−1∑
k=0

(Xti+1(yk)−Xti(yk))2.

Recall that in the case f ≡ 0, V̄t = Vt satisfies the central limit theorem (2.10) under the assumptions

M = o(∆−ρ) for some ρ <
1

2
and T∆→ 0. (4.9)

Theorem 4.3.1. Grant assumption (4.9).

(i) If T is fixed and finite, the central limit theorem (2.10) remains valid for V̄t. If T → ∞, it
remains valid if Assumption (B) is satisfied and there exists ρ < 1/2 such that TM = o(∆−ρ).

(ii) Under the same assumptions as in (i), the central limit theorems for the time increments-based
estimators for σ2 or ϑ2 from Section 2.2.2 remain valid.
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While the result for a fixed time horizon carries over from the linear setting without any extra
assumptions on the interplay between M,N and T , the additional assumption for the case T →∞ is
much stricter. In the proof of the above theorem we show that Rt := V̄t − Vt = op(1/

√
MN), which

proves the result in view of Slutsky’s Lemma. In fact, it follows from the temporal regularity properties
of the processes (X0

t ) and (Nt), that Rt is of the order Op(∆α) for any α < 3/4. Hence, the reason for

the additional assumption in the case T →∞ is that
√
MN∆α =

√
MT∆2α−1 is required to tend to 0.

Next, we consider the realized quadratic variation based on space increments, i.e.,

V̄sp :=
1

MNδ

N−1∑
i=0

M−1∑
k=0

(Xti(yk+1)−Xti(yk))2.

Like in the linear setting, we sum over i ∈ {1, . . . , N} instead of {0, . . . , N − 1} if X0 = 0. The central
limit theorem for Vsp in the case f ≡ 0, Theorem 2.2.3, holds under the condition

N = o(M). (4.10)

Theorem 4.3.2. Grant assumption (4.10).

(i) If T is fixed and finite, the conclusion of Theorem 2.2.3 remains valid for V̄sp. If T → ∞, it
remains valid under Assumption (B).

(ii) Under the same assumptions as in (i), the central limit theorems for the space increments-based
estimators for σ2 or ϑ2 from Section 2.2.2 remain valid.

Although our proof strategy for the above theorem is the same as for time increments, here, the
result carries over from the linear setting with no extra conditions on M,N and T , at all. Indeed, by
using a summation by parts formula to rewrite Rsp := V̄sp − Vsp, we can profit from the fact that the
second order spatial increments of (Nt), namely Nti(yk+1) − 2Nti(yk) + Nti(yk−1), are of the order
Op(δ2), thanks to the spatial regularity of the process (Nt).

Finally, we consider the realized quadratic variation based on double increments, i.e.,

V̄ :=
1

MNΦϑ(δ,∆)

N−1∑
i=0

M−1∑
k=0

D̄2
ik

with D̄ik := Xti+1
(yk+1)−Xti(yk+1)−Xti+1

(yk)+Xti(yk). As in the linear case, if a balanced sampling

design is present, i.e. δ/
√

∆ ≡ r for some r > 0, we can also consider

V̄r :=
1

MN
√

∆

N−1∑
i=0

M−1∑
k=0

D̄2
ik.

In the case X0 = 0, V̄ and V̄r are redefined in the obvious way. If f ≡ 0, the conditions for the central
limit theorem for V̄ = V, Theorem 2.2.7, are

δ/
√

∆→ r ∈ {0,∞} or δ/
√

∆ ≡ r > 0 (4.11)

as well as

∆→ 0 and T = o(M). (4.12)

Theorem 4.3.3. Grant assumptions (4.11) and (4.12).

(i) If T is fixed and finite, the conclusions of Theorem 2.2.7 and Corollary 2.2.9 remain valid for
V̄ and V̄r, respectively. If T → ∞, they remain valid if Assumption (B) is satisfied and there
exists a ∈ (0, 1) such that T = o(Ma).
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(ii) Under the same assumptions as in (i), the central limit theorems for the double increments-based
estimators for σ2, ϑ2 or (σ2, ϑ2) from Section 2.2.2 remain valid.

Remark 4.3.4. In particular, in view of Remark 2.2.13, the conclusions of Corollaries 2.2.14 and 2.2.19
remain valid. Hence, the estimator (2.19) for (σ2, ϑ2) defines a rate optimal estimator in our semilinear
framework.

As for space increments, there are essentially no additional assumptions compared to the linear
setting. The influence induced by the nonlinearity is negligible, in particular, since the double incre-
ments computed from the process (Nt) decay in both ∆ and δ at the same time, as opposed to the
double increments computed from (X0

t ) which are roughly of the order (δ ∧
√

∆)1/2, see also Lemma
4.5.2.

4.4 Nonparametric estimation of the nonlinearity

The following section discusses nonparametric estimation of f . We adapt an estimation procedure
considered by Comte et al. [21] in the context of one-dimensional diffusions to our SPDE setting. First,
we treat observations that are discrete in time but continuous in space and, then, by implementing an
approximation step, an estimation procedure for fully discrete observations will be introduced. Note
that the parameters (σ2, ϑ2) can be estimated well using the methods analyzed in the previous section.
Thus, in a first step, we will assume that these parameters (in fact, only ϑ2 is necessary) are known.
Later, a plug-in approach will be considered.

In contrast to the previous section, we will strictly require that the mild solution X from (4.2)
admits a stationary distribution, denoted by π, and, moreover, that the mixing assumption (M) is
satisfied. Furthermore, it will be essential for the derivation of our oracle inequalities that we have
T →∞. From now on, let A ⊂ R be a fixed compact set on which we want to estimate f .

Before treating the actual estimation problem, we introduce the approximation spaces serving as
candidate functions for the estimation of f in the following section.

4.4.1 Spaces of approximation

In order to estimate f on the set A, we consider a sequence (Sm)m∈N of finite dimensional sub-spaces
of L2(A) such that Dm := dim(Sm)→∞ for m→∞. The intuition is that we choose m depending on
the sample size and, if accessible, depending on the regularity of f and then estimate f by taking the
function f̂m ∈ Sm that matches the data in the best possible way with respect to a suitable criterion
to be defined later. Like in [21], our key assumption on the approximation spaces Sm is the following.

(N) There is a constant C > 0 such that for each m ∈ N there is an orthonormal basis (ϕλ)λ∈Λm of
Sm, |Λm| = Dm, with ∥∥∥ ∑

λ∈Λm

ϕ2
λ

∥∥∥
∞
≤ CDm.

It is shown in Birgé and Massart [10] that Assumption (N) is equivalent to requiring ‖t‖2∞ ≤
CDm‖t‖2L2(A) for all t ∈ Sm and m ∈ N.

Let us briefly recall some examples of approximation spaces with property (N) that are considered
in [21]. We assume that A is a closed interval and take A = [−a, a] for some a > 0 without loss of
generality.

Example 4.4.1.
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[T] The trigonometric spaces

Sm = span
({ 1√

2a
,

1√
a

sin
(kπ
a
·
)
,

1√
a

cos
(kπ
a
·
)
, 1 ≤ k ≤ m

})
have dimension Dm = 2m+1 and property (N) follows directly from the fact that trigonometric
base functions are uniformly bounded.

[P] Piecewise polynomials on a dyadic grid: Most conveniently, these spaces are parameterized in
terms of a pair m = (p, r) with p ∈ N, r ∈ {0, . . . , rmax} and rmax ∈ N0 being some fixed
value. Let (pl)l∈N0

be the complete orthonormal system in L2([0, 1]) such that pl is the rescaled
Legendre polynomial of degree l for l ∈ N0. Further, for p ∈ N and j ∈ {−2p, . . . , 2p − 1} let
Ipj := [ja2−p, (j + 1)a2−p). Then, for m = (p, r), we define

S(p,r) := span
(
{ϕpj,l, l ≤ r,−2p ≤ j ≤ 2p − 1}

)
with

ϕpj,l(x) :=

√
2p

a
pl

(2px

a
− j
)
1Ipj (x), x ∈ A.

Clearly, dim(Sp,r) = (r + 1)2p+1 ≤ (rmax + 1)2p+1 and property (N) holds with a constant C
depending on rmax.

[W] The dyadic wavelet generated spaces: For arbitrary r ∈ N, there are a scaling and a wavelet
function φ, ψ ∈ Cα(R), respectively, for some α > 0 with support in [0, 1] such that ψ has r
vanishing moments and{ 1√

a
φ
( ·
a

)
,

1√
a
φ
( ·
a

+ 1
)
,

√
2p

a
ψ
(2p·
a
− j
)
, −2p ≤ j < 2p, p ∈ N

}
is a complete orthonormal system in L2(A), see [28]. Then, the subspace

Sm = span
({ 1√

a
φ
( ·
a

)
,

1√
a
φ
( ·
a

+ 1
)
,

√
2p

a
ψ
(2p·
a
− j
)
, −2p ≤ j < 2p, p ≤ m

})
satisfies dim(Sm) = 2m+2 and property (N) is fulfilled.

The following definition due to Baraud et al. [5] proves to be useful in analyzing our nonparametric
estimator. We fix an orthonormal basis (ϕλ, λ ∈ Λm) of Sm according to Assumption (N) and define
the matrices V m, Bm ∈ RΛm×Λm by

V mλ,λ′ := ‖ϕλϕλ′‖L2(A), Bmλ,λ′ := ‖ϕλϕλ′‖∞.

These expressions are convenient in order to express certain estimates, e.g., |ϕλ(Z)ϕλ′(Z)| ≤ Bmλ,λ′

and E(|ϕλ(Z)ϕλ′(Z)|2) . (V mλ,λ′)
2 when Z is an A-valued random variable with a bounded Lebesgue

density. Further, let

Lm := max(ρ2(V m), ρ(Bm)), ρ(H) := sup
a∈RΛm ,

∑
λ a

2
λ≤1

∑
λ,λ′

|aλaλ′Hλ,λ′ |, H ∈ {V m, Bm}. (4.13)

For our main oracle inequalities, we will have to require that Lm is asymptotically negligible with
respect to the time horizon T . For the previous examples of approximation spaces, the quantity Lm
can be linked directly to the dimension Dm. In fact, it is shown in [5] that Lm . D2

m for [T] and
Lm . Dm for [P] and [W].
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4.4.2 Estimation based on space-continuous observations

In this section, we consider observations that are discrete in time and continuous in space, i.e., the
data is given by

{Xti(x), x ∈ [0, 1], i = 0, . . . , N}.
From (4.2) it is evident that we can decompose

Xt+∆ = S(∆)Xt + σ

∫ t+∆

t

S(t+ ∆− s) dWs +

∫ t+∆

t

S(t+ ∆− s)f(Xs) ds.

By rearranging, we can pass to

Xt+∆ − S(∆)Xt

∆
= f(Xt) +

σ

∆

∫ t+∆

t

S(t+ ∆− s) dWs

+
1

∆

∫ t+∆

t

(
S(t+ ∆− s)f(Xs)− f(Xt)

)
ds,

yielding the regression model

Yi = f(Xti) +Ri + εi, 0 ≤ i ≤ N − 1,

with

Yi :=
Xti+1 − S(∆)Xti

∆
,

εi :=
σ

∆

∫ ti+1

ti

S(ti+1 − s) dWs,

Ri :=
1

∆

∫ ti+1

ti

(
S(ti+1 − s)f(Xs)− f(Xti)

)
ds.

The main term in the regression model is given by f(Xti), εi is the stochastic noise term and Ri is a
negligible bias. Note that the stochastic noise term is stochastically independent of the covariate Xti .
The corresponding least squares estimator is defined by

f̂m := arg min
g∈Sm

γN (g), γN (g) :=
1

N

N−1∑
i=0

‖Yi − g(Xti)‖2L2

with L2 := L2((0, 1)). Note that this estimator hinges on the parameter ϑ2 through the semigroup
S(·) appearing in the response variables Yi and, for now, we assume that it is known. The natural
empirical norm associated with the observations scheme is given by

‖g‖2N :=
1

N

N−1∑
i=0

‖g(Xti)‖2L2

and, in the sequel, we derive a bound on E(‖f̂m − fA‖2N ) with fA := f1A. As before, π denotes the
stationary distribution for X and, for nonrandom g ∈ L2(A), let

‖g‖2π := E(‖g‖2N ) = E(‖g(X0)‖2L2).

Recall that, under Assumption (E), there are constants c, C > 0 such that

c‖g‖2L2(A) ≤ ‖g‖2π ≤ C‖g‖2L2(A) (4.14)

holds for all g ∈ L2(A). The oracle choice for an estimator of fA from the space Sm is given by

fm := arg min
g∈Sm

‖f − g‖2L2(A).

Our main result for space-continuous observations is the following.
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Theorem 4.4.2. Grant Assumptions (M), (E) and (N). Further assume that N∆
log2 N

→∞ as well as

Lm = o( N∆
log2 N

) and Dm ≤ N . Then, for any γ < 1/2,

E
(
‖f̂m − fA‖2N

)
. ‖f − fm‖2L2(A) +

Dm

T
+ ∆γ .

Remark 4.4.3. In contrast to the term ∆γ , γ < 1/2, on the right hand side of the above inequality,
Comte et al. [21] obtain the smaller bound ∆ in their corresponding result in the context of SODEs.
In fact, this error term arises from bounding the bias terms Ri in the underlying regression model.
The difference in the order of magnitude is due to the fact that for the SPDE model there only is
temporal Hölder regularity up to exponent 1/4, as opposed to exponent 1/2 in the finite dimensional
setting.

We encounter the usual variance-bias trade-off in nonparametric estimation: When we choose m
too small the estimator is not sufficiently versatile, leading to a large bias term ‖fA − fm‖2L2(A). On
the other hand, when choosing m too large, the estimated function will closely follow the concrete
realization of the data, leading to a large variance Dm/T . Now, assuming that ‖fm−fA‖L2(A) h D−αm ,

balancing the bias and the variance term shows that it is optimal to choose Dm h T
1

1+2α . Under the
additional assumption that T∆γ → 0 holds for some γ < 1/2, the term ∆γ appearing on the right
hand side of the oracle inequality can be regarded as a negligible remainder and we obtain the usual
(squared) nonparametric rate

E
(
‖f̂m − fA‖2N

)
. T−

2α
2α+1 .

In fact, there might be additional conditions due to the assumption Lm = o
(

T
log2 N

)
in the theorem.

For instance, for the trigonometric spaces [T], we have Lm h D2
m and, thus, it is only possible to

take Dm h T
1

1+2α , provided that α > 1
2 , as already pointed out in [21]. For instance, when using

[T ], the k-th Fourier coefficients of a function f ∈ C1 are generally of the order 1/k. A faster decay
is only expectable in the exceptional case where the function f is periodic on A. Thus, we have

‖fm − fA‖L2(A) h D−αm with α = 1
2 and it is possible to achieve a convergence rate of T−

α̃
2α̃+1 for any

α̃ < α. We remark that, in general, the true value of the regularity parameter α is unknown, as it is
a property of the unknown function fA. Building upon the results presented in this thesis, this issue
is addressed in Hildebrandt and Trabs [37] where adaptivity of the estimator on the regularity of f is
achieved via model selection. See also the outlook in Chapter 5 of this thesis.

In order to prove Theorem 4.4.2, we adapt the proof strategy from [21] to our infinite dimensional
setting. The main steps of the proof are explained in the following.

For an arbitrary function g, we can write

γN (g)− γN (f) = ‖g − f‖2N +
2

N

N−1∑
i=0

〈Yi − f(Xti), f(Xti)− g(Xti))〉L2

= ‖g − f‖2N +
2

N

N−1∑
i=0

〈εi +Ri, f(Xti)− g(Xti))〉L2 .

By definition of f̂m, we have γN (f̂m) − γN (f) ≤ γN (fm) − γN (f) and using the above expansion on
both sides of this inequality yields

‖f̂m − f‖2N ≤ ‖fm − f‖2N +
2

N

N−1∑
i=0

〈εi +Ri, f̂m(Xti)− fm(Xti))〉L2 .

Since both f̂m and fm are A-supported, if we insert f = f1A + f1Ac in the above equation, then the
terms ‖f1Ac‖2N on both sides of the inequality cancel. We arrive at the fundamental oracle inequality

‖f̂m − fA‖2N ≤ ‖fm − fA‖2N+
2

N

N−1∑
i=0

〈εi, f̂m(Xti)− fm(Xti))〉L2
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+
2

N

N−1∑
i=0

〈Ri, f̂m(Xti)− fm(Xti))〉L2 . (4.15)

By treating each of the three terms appearing on the right hand side above individually, we can derive
the following proposition.

Proposition 4.4.4. Grant Assumptions (M) and (N) and for c > 0 let

ΩN,m := ΩN,m,c :=
{
‖t‖2N ≥ c‖t‖2L2(A) for all t ∈ Sm

}
.

Then, for any γ < 1/2, we have

E
(
‖f̂m − fA‖2N1ΩN,m

)
. ‖fA − fm‖2π +

Dm

T
+ ∆γ .

The event ΩN,m has been introduced since the proof requires bounding the stochastic noise term
1
N

∑N−1
i=0 〈εi, t(Xti)〉L2 uniformly over all ‖ · ‖N -normalized t ∈ Sm. The latter is difficult since both

the object to be bounded and the norm are random objects. On the event ΩN,m, it is sufficient to
bound it uniformly over all ‖ · ‖L2(A)-normalized t ∈ Sm which is possible thanks to Assumption (N).

Under Assumption (E), we can further bound ‖fA − fm‖2π . ‖fA − fm‖2L2(A), hence, Proposition
4.4.4 already provides the relevant terms appearing in the oracle inequality from Theorem 4.4.2. The
second main step of the proof of the theorem is to verify that the event ΩcN,m has negligible probability.
To that aim, let us consider

ΞN,m :=

{∣∣∣‖t‖2N‖t‖2π − 1
∣∣∣ ≤ 1

2
∀t ∈ Sm

}
which satisfies ΞN,m ⊂ ΩN,m, 12 . Since E(‖t‖2N ) = ‖t‖2π and∣∣∣‖t‖2N‖t‖2π − 1

∣∣∣ h ∣∣∣‖t‖2N − ‖t‖2π‖t‖2L2(A)

∣∣∣
under Assumption (E), bounding the probability of ΞcN,m is equivalent to deriving a concentration

inequality for ‖t‖2N uniformly over all L2(A)-normalized t ∈ Sm. This can be done using the standard
techniques for β-mixing sequences, see, e.g., [31]: by means of the mixing assumption (4.4) in (M),
we approximate (Xt0 , . . . , XtN ) by a process with independent blocks and, then, apply a variant of
Bernstein’s inequality. We obtain the following bound for P(ΞcN,m).

Lemma 4.4.5. Grant Assumptions (M), (E) and (N). Then, there are constants K,K ′ > 0 such that

P(ΞcN,m) ≤ K
(
NβX(qN∆) +D2

m exp
(
−K ′ pN

Lm

))
holds for any pN , qN ∈ N with N = 2pNqN . In particular, with the constants γ and L from the
β-mixing condition (4.4) as well as K̃ := K max(L, 1), we have

P(ΞcN,m) ≤ K̃
(
N exp

(
− γqN∆

)
+D2

m exp
(
−K ′ pN

Lm

))
.

The conclusion of the main theorem is a straightforward consequence of Proposition 4.4.4 and
Lemma 4.4.5, we refer to Section 4.5.3 for further details on the proof.

Next, we assess the quality of our estimator in terms of the more intuitive distance measure
‖f̂m − f‖L2(A), rather then ‖f̂m − fA‖N . Using the triangle inequality as well as the equivalence of
the empirical and the L2(A)-norm on ΞN,m, we can bound

‖f̂m − f‖2L2(A) ≤ 2‖f̂m − fm‖2L2(A) + 2‖fm − f‖2L2(A)
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= 2‖f̂m − fm‖2L2(A)1ΞN,m + 2‖f̂m − fm‖2L2(A)1ΞcN,m
+ 2‖fm − f‖2L2(A)

h 2‖f̂m − fm‖2N1ΞN,m + 2‖f̂m − fm‖2L2(A)1ΞcN,m
+ 2‖fm − f‖2L2(A).

Then, thanks to Proposition 4.4.4 and Lemma 4.4.5, it is straightforward, to derive an upper bound
in probability. Bounding E(‖f̂m− f‖2L2(A)), on the other hand, is more challenging since the behavior

of ‖f̂m − f‖2L2(A) on the set ΞcN,m is a priori unclear. This issue can be circumvented by considering
the truncated version

f̂KNm := (−KN ) ∨ (f̂m ∧KN )

where (KN ) is a sequence of positive numbers with KN →∞ such that KNP(ΞcN,m)→ 0 sufficiently
fast.

Corollary 4.4.6. Grant Assumptions (M), (E) and (N). Further assume that N∆
log2 N

→∞ as well as

Lm = o( N∆
log2 N

) and Dm ≤ N . Then, for any γ < 1/2,

‖f̂m − f‖2L2(A) = Op
(
‖f − fm‖2L2(A) +

Dm

T
+ ∆γ

)
.

Furthermore, for a sequence (KN ) with KN →∞ and KN/N
β → 0 for some β > 0, we have

E(‖f̂KNm − f‖2L2(A)) . ‖f − fm‖2L2(A) +
Dm

T
+ ∆γ .

4.4.3 Estimation based on fully discrete observations

We return to our fully discrete observation scheme described in Section 1.2.3. In order to derive a
discretized version of the estimator discussed in the previous section, we assume that the temporal
and spatial observations are recorded at the locations

ti = i∆ and yk =
k

M

for 0 ≤ i ≤ N and 0 ≤ k ≤ M , i.e., the parameter b specifying the margin of the spatial observation
window is set to b = 0. With observations distributed throughout the whole space domain (0, 1),
we have the possibility to approximate the coefficient processes xk(t) := 〈Xt, ek〉 by their empirical

counterpart 〈Xt, ek〉M := 1
M

∑M−1
l=1 Xt(yl)ek(yl). Recall from (2.4) that for k ≤ M − 1 we have the

relation
〈Xt, ek〉M =

∑
`∈I+

k

x`(t)−
∑
`∈I−k

x`(t)

where I+
k = k+2M ·N0 and I−k = 2M−k+2M ·N0. In order to approximate the expression S(∆)Xti

appearing in the estimator based on space-continuous observations, we define Ŝ(∆) := ŜM (∆) by

Ŝ(∆)Xt =

M−1∑
`=1

e−λ`∆〈Xt, e`〉Me`

which only hinges on Xt through the discrete data (Xt(yk), k = 1, . . . ,M − 1). Now, from the
space-continuous regression model

Xti+1 − S(∆)Xti

∆
= f(Xti) +Ri + εi

we pass to
Ŝ(0)Xti+1

− Ŝ(∆)Xti

∆
= Ŝ(0)f(Xti) + R̃i + εi (4.16)
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with

R̃i :=f(Xti)− Ŝ(0)f(Xti) +
S(∆)Xti − Ŝ(∆)Xti

∆
+
Ŝ(0)Xti+1

−Xti+1

∆

+
1

∆

∫ ti+1

ti

(
S(ti+1 − s)f(Xs)− f(Xti)

)
ds,

εi =
σ

∆

∫ ti+1

ti

S(ti+1 − s) dWs.

We consider the corresponding least squares estimator

f̂m := arg min
g∈Sm

1

N

N−1∑
i=0

∥∥∥ Ŝ(0)Xti+1
− Ŝ(∆)Xti

∆
− Ŝ(0)g(Xti)

∥∥∥2

L2

= arg min
g∈Sm

1

N

N−1∑
i=0

M−1∑
k=1

( 〈Xti+1
, ek〉M − e−λk∆〈Xti , ek〉M

∆
− 〈g(Xti), ek〉M

)2

which is purely based on the space-time-discrete observations.

In the following, we will require a minimal continuity property for the approximation spaces Sm
and impose the following assumption.

(H) For any g ∈ ⋃m∈N Sm, let ḡ : R → R be the extension of g by zero on the set Ac. Then, the
function ḡ is piecewise Hölder continuous, i.e., there are constants α > 0 and −∞ = a0 < a1 <
. . . < aL =∞, L ∈ N, such that ḡ|(al,al+1) ∈ Cα((al, al+1)) for any 1 ≤ l ≤ L− 1.

Note that all approximation spaces from Example 4.4.1 also meet the additional requirement (H).
Under Assumption (H), it is possible to derive a convenient and intuitive representation for our

estimator f̂m based on the following lemma.

Lemma 4.4.7. Let H : [0, 1] → R be Hölder continuous in an environment of yk for each 1 ≤ k ≤
M − 1 and set hk := 〈H, ek〉L2 . Then, the series Hk :=

∑
l∈I+

k
hl −

∑
l∈I−k

hl converges and we have

〈H, ek〉M = Hk as well as

1

M

M−1∑
k=1

H2(yk) = ‖HM‖2L2 =

M−1∑
l=1

H2
l

with HM := Ŝ(0)H =
∑M−1
l=1 Hlel.

Remark 4.4.8. The Hölder condition in the above lemma can be relaxed to requiring convergence of
the Fourier series of H at yk to H(yk) for each 1 ≤ k ≤M − 1.

Under Assumptions (H) and (E), the random variables Xti(yk) hit a discontinuity of the extension
ḡ of some g ∈ ⋃m∈N Sm with probability zero and, hence, the above lemma is applicable with

H :=
Xti+1

−Ŝ(∆)Xti
∆ − g(Xti). In particular, the estimator f̂m can, almost surely, be expressed via

f̂m = arg min
g∈Sm

γN,M (g), γN,M (g) :=
1

NM

N−1∑
i=0

M−1∑
k=1

(Xti+1
(yk)− S∆

ti (yk)

∆
− g(Xti(yk))

)2

(4.17)

where S∆
ti := Ŝ(∆)Xti .

As in the space-continuous case, our main effort is to bound f̂m − fA in terms of the empirical
norm which is now given by

‖g‖2N,M :=
1

NM

N−1∑
i=0

M−1∑
k=1

g2(Xti(yk)).
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Using analogous steps as in the space-continuous case, we can conclude the following theorem.

Theorem 4.4.9. Grant Assumptions (M), (E), (N) and (H). Further assume that N∆
log2 N

→ ∞ as

well as Lm = o( N∆
log2 N

) and Dm ≤ N . Then, for any γ < 1/2 and ρ < 1/4, we have

E
(
‖f̂m − fA‖2N,M

)
. ‖f − fm‖2L2(A) +

Dm

T
+ ∆γ +

1

M∆2
+

1

Mρ
.

Remark 4.4.10. The conclusion of the theorem is only useful when M∆2 →∞. In the latter regime,
the O(M−ρ)-term is negligible with respect to the O(∆γ)-term. Note, furthermore, that the condition
M∆2 →∞ rules out a balanced sampling design.

The additional terms (compared to the space-continuous case) on the right hand side of the above
inequality arise from bounding the additional parts in the bias terms R̃i of the underlying regression
model: In the proof we show that for h ≥ 0 we have E(‖S(h)Xt − Ŝ(h)Xt‖2L2) = O(1/M) and the
approximation error gets amplified by dividing by the squared renormalization ∆2. Furthermore, the
process f(Xt) has the same regularity properties as X0

t but we cannot profit from independence of the
coefficient processes. This results in the additional error term E(‖f(Xt)− Ŝ(0)f(Xt)‖2L2) = O(1/Mρ)
for ρ < 1/4.

As in the discussion following Theorem 4.4.2, it can be concluded from the above theorem that if

‖fm − f‖2L2(A) h D−2α
m , the estimator f̂m with Dm h T

1
1+2α admits the usual nonparametric rate of

convergence T−
α

2α+1 under the conditions Lm = o( T
log2 N

) and

T
(

∆γ +
1

M∆2
+

1

Mρ

)
→ 0

for some γ < 1/2 and ρ < 1/4.

Figure 4.1 shows four exemplary realizations of the estimator f̂m with the trigonometric basis [T]
when f is a linear function such that discrete observations of the solution process can be generated
by means of the replacement method from Chapter 3. The compact set on which f is estimated is
A = [−1, 1]. One can see that the general shape of the function f is captured accurately inside some
interval containing the origin, roughly [−0.6, 0.6]. It is evident from the histograms that areas further
away from the origin do not contain as many data points which, naturally, affects the quality of the
estimator there. Also, there is a boundary effect caused by the fact that the functions in Sm are
necessarily periodic over [−1, 1].

With the same reasoning as in the space-continuous case, setting f̂KNm := (−KN )∨ (f̂m ∧KN ), we
get the following bound on the L2(A)-risk.

Corollary 4.4.11. Grant Assumptions (M), (E), (N) and (H). Further assume that N∆
log2 N

→ ∞ as

well as Lm = o( N∆
log2 N

) and Dm ≤ N . Then, for any γ < 1/2 and ρ < 1/4, we have

‖f̂m − f‖2L2(A) = Op
(
‖f − fm‖2L2(A) +

Dm

T
+ ∆γ +

1

M∆2
+

1

Mρ

)
.

Furthermore, for a sequence (KN ) with KN →∞ and KN/N
β → 0 for some β > 0, we have

E(‖f̂KNm − f‖2L2(A)) . ‖f − fm‖2L2(A) +
Dm

T
+ ∆γ +

1

M∆2
+

1

Mρ
.

Estimation of f with unknown diffusivity and volatility

In practice, the diffusivity parameter ϑ2 appearing in our nonparametric estimator for f will generally
be unknown and has to be replaced by an estimator. To that aim, we make use of the double increments
based estimator ϑ̂2 := ϑ̂vw2 as defined in (2.19) with ϑ1 = 0, while omitting the spatial observations
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Figure 4.1: Four realizations of the estimator f̂m from (4.17) with the trigonometric basis [T] on
A = [−1, 1] (blue) along with the true underlying function f(x) = −0.3 · x (gray). The barplot
below each realization shows a histogram of the corresponding discrete observations (Xti(yk))i,k. The
sample sizes are given via M = 500, T = 200, ∆ = 0.05. The dimension of the approximation space
was chosen to be Dm = 2m + 1 = 29, which corresponds to Dm h

√
T . The discrete observations

of X are obtained by means of the replacement method with parameter L = 1, see Chapter 3. The
remaining parameter values are σ2 = ϑ2 = 0.05.
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yk /∈ [b, 1 − b] for an arbitrary but fixed b > 0. Recall that the computation of ϑ̂2 does not require
prior knowledge of the volatility parameter σ2 and Corollary 2.2.19 together with Section 4.3 reveal
the (squared) convergence rate (ϑ2 − ϑ̂2)2 = Op(max(∆3/2, δ3)/T ). Since the conclusion of Theorem

4.4.9 is only useful as long as M∆2 → ∞, we work in the regime M
√

∆ → ∞ where the (squared)

convergence rate is given by (ϑ2− ϑ̂2)2 = Op(∆3/2/T ). Now, based on the estimator ϑ̂2, we can define

an approximation Š(∆) of the discretized semigroup Ŝ(∆), namely

Š(∆)u :=

M−1∑
`=1

e−λ̂`∆〈u, e`〉Me` with λ̂` := π2ϑ̂2`
2

for continuous functions u : [0, 1] → R. The corresponding nonparametric estimator for f is then
given by

f̌m := arg min
g∈Sm

1

NM

N−1∑
i=0

M−1∑
k=1

(Xti+1
(yk)− Š∆

ti (yk)

∆
− g(Xti(yk))

)2

where Š∆
ti := Š(∆)Xti . In order to analyze the convergence rate of f̌m, we incorporate the approxi-

mation of the semigroup into the regression model. Due to Ŝ(0) = Š(0), it is now given by

Ŝ(0)Xti+1 − Š(∆)Xti

∆
= Ŝ(0)f(Xti) +R′i + εi

with

R′i := R̃i +
Ŝ(∆)Xti − Š(∆)Xti

∆
.

Based on this representation, we are now going to show that the approximation of the discretized
semigroup does not affect the convergence rate of the nonparametric estimator. In fact, since our
error bound for ϑ̂2 from Corollary 2.2.19 is a priori only valid in probability sense, the same holds for
f̌m.

Theorem 4.4.12. Grant Assumptions (M), (E), (N) and (H). Further assume that M
√

∆ → ∞,
T
√

∆ → 0 and N∆
log2 N

→ ∞ as well as Lm = o( N∆
log2 N

) and Dm ≤ N . Then, for any γ < 1/2 and

ρ < 1/4, we have

‖f̌m − fA‖2N,M = Op
(
‖f − fm‖2L2(A) +

Dm

T
+ ∆γ +

1

M∆2
+

1

Mρ

)
.

Furthermore, the same bound holds for ‖f̌m − f‖2L2(A).

Remark 4.4.13. The proof does not make use of any properties of ϑ̂2 apart from its convergence rate.
In general, if ϑ̃2 is any estimator for ϑ2 with |ϑ̃2 − ϑ2| = Op(aM,N,T ) for some rate of convergence

aM,N,T , we get the additional term
a2
N,M,T

∆3/2 in the above upper bound. For ϑ̂2, this additional term
does not appear in the theorem, as it is dominated by Dm/T .

Circumventing spectral approximations?

A drawback of our nonparametric estimation method based on fully discrete observations is that its
validity is only supported by the theory when the observation frequency in space is much larger than
in time. Indeed, Theorem 4.4.9 only serves as consistency result as long as M∆2 → ∞. This issue
results from the bias introduced by approximating the coefficient processes of X by their empirical
counterparts, in order to get an approximation of the semigroup. Due to the roughness of the paths
x 7→ Xt(x), the corresponding approximation quality is rather poor and the error gets amplified by the
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renormalization. A similar effect can be observed in Kaino and Uchida [49] where a spectral approxi-
mation is used for parametric estimation for the linear equation, see also the end of Section 2.2. Thus,
it could be beneficial to set up an estimation method that does not require the spectral approximation
step. Also, this would enable considering observations that are not distributed throughout the whole
space domain [0, 1] which corresponds to allowing b > 0 in our observation scheme from Section 1.2.3.
In the following, we describe an approach which we have pursued unsuccessfully. Nevertheless, it
would be interesting to consider for other models, in particular, when there is more regularity in the
driving noise.

For simplicity, set X0 = 0 and recall that the nonlinear component (Nt) of the solution process
satisfies the equation dNt = AϑNt+f(Xt). Thus, treating the terms involving X0

t as stochastic noise,
we have the expansion

Xt+∆(x)−Xt(x)

∆
=
Nt+∆(x)−Nt(x)

∆
+ ε∆

t (x)

= AϑNt(x) + f(Xt(x)) +R∆
t (x) + ε∆

t (x)

with

ε∆
t (x) :=

X0
t+∆(x)−X0

t (x)

∆
, R∆

t (x) :=
Nt+∆(x)−Nt(x)

∆
− d

dt
Nt(x).

On the other hand, for sufficiently smooth functions, the second order differential operator Aϑ can be
approximated by means of second order differences. Thus, we consider the expansion

ϑ2
Xt(x+ δ)− 2Xt(x) +Xt(x− δ)

δ2
= ϑ2

Nt(x+ δ)− 2Nt(x) +Nt(x− δ)
δ2

+ ε̃δt (x)

= AϑNt(x) + R̃δt (x) + ε̃δt (x)

with

ε̃δt (x) := ϑ2
X0
t (x+ δ)− 2X0

t (x) +X0
t (x− δ)

δ2
,

R̃δt (x) := ϑ2
Nt(x+ δ)− 2Nt(x) +Nt(x− δ)

δ2
−AϑNt(x).

Setting Xik := Xti(yk) and

Yik :=
Xti+1(yk)−Xti(yk)

∆
− ϑ2

Xti(xk+1)− 2Xti(yk) +Xti(xk−1)

δ2
,

we obtain the regression model
Yik = f(Xik) +Rik + εik

with the bias and stochastic noise terms

Rik := R∆
ti (yk)− R̃δti(yk), εik := ε∆

ti (yk)− ε̃δti(yk).

The corresponding least squares estimator is then given by

f̄m = arg min
g∈Sm

1

MN

M−1∑
k=0

N−1∑
i=0

(Yik − g(Xik))2.

The bias terms Rik can be controlled thanks to the following lemma:
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Lemma 4.4.14. Grant Assumption (B). For any p ≥ 1 and γ < 1/2 there exists C > 0 such that

E
(∣∣∣∆−1

(
N0
t+∆(x)−N0

t (x)
)
− ∂tN0

t (x)
∣∣∣p) ≤ C∆p γ2 , (4.18)

E

(∣∣∣ϑ2

δ2

(
N0
t (x+ δ)− 2N0

t (x) +N0
t (x− δ)

)
−AϑN0

t (x)
∣∣∣p) ≤ Cδpγ . (4.19)

for any (t, x) ∈ R+ × (0, 1).

A proof of this lemma is given in Section 4.5.1. The remainder terms Rik are well-behaved but we
run into problems with the stochastic noise terms. In fact, these are correlated to the covariates and
do not meet the fundamental requirement of a regression model that E(εik|Xik) = 0. Indeed, since
e`(yk+1)− 2e`(yk) + e`(yk−1) = −4 sin2(π`δ/2)e`(yk), we have

εik =
X0
ti+1

(yk)−X0
ti(yk)

∆
− ϑ2

X0
ti(yk+1)− 2X0

t (yk) +X0
t (yk−1)

δ2

=
∑
`≥1

(u`(ti+1)− u`(ti)
∆

+
4ϑ2 sin2(π`δ/2)u`(ti)

δ2

)
e`(yk)

and there is no reason why this expression should be independent of Xti(yk). In fact, assuming a
balanced sampling design ∆ = δ2, we can further decompose

εik =
∑
`≥1

u`(ti+1)− e−λ`∆u`(ti)

∆
e`(yk) +

∑
`≥1

(
4ϑ2 sin2(π`

√
∆/2)− 1 + e−λ`∆

)
u`(ti)

∆
e`(yk)

such that the first term is independent of Fti due to the AR(1)-structure of the Ornstein-Uhlenbeck
processes u`. Still, the second term is not negligible, as its variance is of the order

∑
`≥1

(4ϑ2 sin2(π`
√

∆/2)− 1 + e−λ`∆)2

λ`∆
h

1√
∆

due to the usual Riemann sum argument.

As already mentioned, the estimation procedure might be fruitful, on the other hand, if one
considers a noise process with more regularity than a cylindrical Brownian motion. Indeed, if the
denominator in the above sum grew faster than λk, one could profit from the fact that

4ϑ2 sin2(
x

2
)− 1 + e−ϑ2x

2

h x4 for x→ 0.

Of course, a more regular noise process also results in an improved regularity of the solution process
X. This, in turn, also facilitates spectral approximations so that further comparisons of the two
approaches will be interesting.

4.5 Proofs

We start by proving the results on the Hölder regularity of the linear and nonlinear component of
X. The two subsequent sections contain the proofs of our main results, namely on diffusivity and
volatility estimation, Section 4.5.2, and on nonparametric estimation of the nonlinearity f , Section
4.5.3. Further proofs and auxiliary results are deferred to Section 4.5.4.
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4.5.1 Proofs for the Hölder regularity of X

We verify the results on the Hölder regularity of the processes X and (Nt) claimed in Propositions 4.2.1
and 4.2.3 of Section 4.2, respectively. To that aim, recall that for s ≥ 0 and p ≥ 1 the Sobolev spaces
W s,p := W s,p((0, 1)) are defined as the set of all [s]-times weakly differentiable functions u : (0, 1)→ R
such that

‖u‖W s,p :=

[s]∑
k=0

‖u(k)‖Lp +

(∫ 1

0

∫ 1

0

|u([s])(ξ)− u([s])(η)|p
|ξ − η|1+(s−[s])p

dξ dη

)1/p

<∞.

Further, the Sobolev embedding theorem states that for any s ≥ 0, p ≥ 1 and α > 0, we have

s− 1

p
> α ⇒ W s,p ⊂ Cα (4.20)

and the embedding is continuous. Our first step is an analysis of the Hölder regularity of the linear
component X0. We remark that the norm bounds in statements (i) and (ii) of the following lemma
are also stated in Cerrai [13] as well as Da Prato and Zabczyk [26].

Lemma 4.5.1. For any p ∈ [1,∞), the following hold.

(i) supt≥0 E(‖X0
t ‖p∞) <∞.

(ii) For any γ < 1
2 , we have X0 ∈ C(R+, C

γ
0 ) a.s. and supt≥0 E(‖X0

t ‖pCγ0 ) <∞.

(iii) For any γ < 1
4 and T > 0, we have (X0

t )0≤t≤T ∈ Cγ([0, T ], E) a.s. and there exists a constant
C > 0 such that E(‖X0

t −X0
s‖p∞) ≤ C|t− s|γp for all s, t ≥ 0.

Proof. (iii) The property (X0
t )0≤t≤T ∈ Cγ([0, T ], E) is a consequence of Kolmogorov’s criterion and

E(‖X0
t − X0

s‖p∞) ≤ C|t − s|γp. To verify the latter statement, we proceed similarly as in the proof
of Kolmogorov’s test from [26, Theorem 3.5], see also [26, Remark 11.35]. Without loss of generality,
assume s, t ∈ (a, a + 1) for some a ≥ 0 and define U := (a, a + 1) × (0, 1). Using (4.6) and (4.7), we
see that

E(|X0
t (x)−X0

s (y)|2) .
√
|t− s|+ |x− y| ≤

√
|t− s|+

√
|x− y|

. ((t− s)2 + (x− y)2)1/4

holds uniformly in x, y ∈ (0, 1) and s, t ≥ 0. The last step follows from the equivalence of norms
on R2. Now, since (t, x) 7→ X0

t (x) is a continuous function, we can use the following bound on its
increments from Da Prato and Zabczyk [25, Theorem B.1.5]: for any α > 0, β > 4, there exists a
constant c > 0 (independent of a) such that

|X0
s (x)−X0

t (y)| ≤ c((x− y)2 + (t− s)2)
β−4
2α

(∫
U×U

|X0
u(ξ)−X0

v (η)|α
(|ξ − η|2 + |u− v|2)β/2

dξ dη du dv

) 1
α

(4.21)

for all (x, s), (y, t) ∈ U . Note that for x = y, the right hand side of the above inequality is independent
of x. Now, choose α = 2m for some m ∈ N in such a way that α = 2m > p. Then, by applying
Jensen’s inequality to the concave function R+ 3 h 7→ hp/α, we obtain

E(sup
x
|X0

s (x)−X0
t (x)|p) ≤ cp(t− s) β−4

α p

(∫
U×U

E(|X0
u(ξ)−X0

v (η)|2m)

(|ξ − η|2 + |u− v|2)β/2
dξ dη du dv

) p
α

≤ cp(t− s) β−4
α p

(∫
U×U

(|ξ − η|2 + |u− v|2)m/4

(|ξ − η|2 + |u− v|2)β/2
dξ dη du dv

) p
α

.
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The above integral is finite as long as β− m
2 < 2. Now, the result follows since for any given γ < 1/4,

we can pick m ∈ N and β < 2 + m
2 such that β−4

2m ≤ γ.
Assertion (i) can be proved similarly by taking s = t and y = 1 in (4.21) to obtain a bound for

supx |X0
t (x)| = supx |X0

t (x)−X0
s (y)|. Note that in order to be able to chose y = 1, we have to modify

the set U by taking, e.g., U = (a, a + 1) × (−ε, 1 + ε) for some ε > 0, and extend X0 by defining
Xt(z) := 0 for z /∈ [0, 1] such that X0 is a continuous function on U .

(ii) Clearly, Aϑ is a second order differential operator whose eigenvalues satisfy the condition∑
`≥1 λ

−ρ
` for any ρ > 1/2. Thus, by [26, Theorem 5.25], X0 ∈ C(R+,W

2α,p) holds for any α > 0
and p > 1 such that 1/p + α < 1/4. Now, by choosing α close to 1/4 and p sufficiently large,
X0 ∈ C(R+, C

γ
0 ) follows from the Sobolev embedding theorem (4.20). In order to bound the norm

we use the following argument taken from [13]: with the bound (4.6) for the Gaussian process X0, we
get for any h ∈ (0, 1) that

E(‖X0
t ‖qWh,q ) . E(‖X0

t ‖q∞) +

∫ 1

0

∫ 1

0

E(|X0
t (ξ)−X0

t (η)|q)
|ξ − η|1+hq

dξ dη

≤ E(‖X0
t ‖q∞) +

∫ 1

0

∫ 1

0

|ξ − η|q/2
|ξ − η|1+hq

dξ dη.

In view of (i), this shows that supt≥0 E(‖X0
t ‖qWh,q ) < +∞ as long as h < 1/2. Further, by the

Sobolev embedding theorem, we have ‖X0
t ‖Cγ0 . ‖X0

t ‖Wh,q , provided that h− 1
q > γ. Thus, choosing

h ∈ (γ, 1/2) and q > max((h− γ)−1, p), we get

E(‖X0
t ‖pCγ0 ) . E(‖X0

t ‖
q pq
Wh,q ) ≤ E(‖X0

t ‖qWh,q )
p
q

by Jensen’s inequality. The claim now follows by taking the supremum over t ≥ 0 in the above
inequality.

Before proving Proposition 4.2.1, we recall some facts from semigroup theory. For details, in
particular, on semigroups generated by differential operators we refer to, e.g., [55]. For Ẽ = C([0, 1]),
consider the part AẼ of Aϑ = ϑ2∆ in Ẽ, as defined in (1.4). As already mentioned, AẼ generates

an analytic semigroup SẼ on Ẽ which is not strongly continuous at 0. Indeed, this follows from

D(AẼ)
Ẽ

= E and the semigroup SẼ satisfies limt→0 SẼ(t)x = x if and only if x ∈ E. Nevertheless,

for any x ∈ Ẽ it holds that
∫ t

0
SẼ(r)x dr ∈ D(AẼ) and we have the representation

SẼ(t)x− x = AẼ

∫ t

0

SẼ(r)x dr. (4.22)

Hence, if r 7→ ‖AẼSẼ(r)x‖Ẽ is integrable over [0, t], then SẼ(t)x − x =
∫ t

0
AẼSẼ(r)x dr. Since the

definitions of the semigroups S, SE and SẼ and their generators agree on the intersection of their
domains, respectively, we will refer to all three by S and A from now on.

Proof of Proposition 4.2.1. Due to Lemma 4.5.1, in order to prove the statements for X, they have
to be proved for (Nt) and, if ξ follows the stationary distribution, for (ξt)t≥0 with ξt := S(t)ξ.

(i) Step 1. We show ‖Nt‖Cγ0 <∞ a.s. for all t ≥ 0 and, under Assumption (B), supt≥0 E(‖Nt‖pCγ0 ) <

∞: From Lemma 4.2.2 (ii) we have that

‖Nt‖Cγ0 ≤
∫ t

0

‖S(t− s)f(Xs)‖Cγ0 ds .
∫ t

0

e−λ0(t−s)(t− s)− γ2 ‖f(Xs)‖∞ ds

and, consequently,

‖Nt‖Cγ0 . sup
s≤t
‖f(Xs)‖∞

∫ t

0

e−λ0rr−
γ
2 dr
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is finite almost surely by our basic assumptions. Also, using Jensen’s inequality and the fact that
r 7→ a(r) := e−λ0rr−

γ
2 is integrable over R+, we get

‖Nt‖pCγ0 ≤
∫ t

0

a(t− s)‖f(Xs)‖p∞ ds ·
(∫ t

0

a(r) dr

)p−1

.
∫ t

0

a(t− s)‖f(Xs)‖p∞ ds.

Thus, Fubini’s theorem and the polynomial growth condition on f from (4.3) yield

sup
t≥0

E(‖Nt‖pCγ0 ) . sup
s≥0

E(‖f(Xs)‖p∞) . 1 + sup
s≥0

E(‖Xs‖dp∞)

which is finite under Assumption (B).
Step 2: We show (Nt) ∈ C(R+, C

γ
0 ): In order to verify ‖Nt+h −Nt‖Cγ0 → 0 for h→ 0 a.s., we use

the decomposition

Nt+h −Nt = (S(h)− I)Nt +

∫ t+h

t

S(t+ h− r)f(Xr) dr.

To treat the first term, choose α ∈ (γ, 1/2). Then, using (4.22) and property (iv) of Lemma 4.2.2, we
can bound

‖(S(h)− I)Nt‖Cγ0 .
∫ h

0

‖AϑS(r)Nt‖Cγ0 dr ≤ ‖Nt‖Cα0
∫ h

0

e−λ0rr−(1+ γ−α
2 ) dr

which tends to 0 for h→ 0. For the second term, it follows from bound (ii) in Lemma 4.2.2 that∥∥∥∫ t+h

t

S(t+ h− r)f(Xr) dr
∥∥∥
Cγ0

. sup
r≤T
‖f(Xr)‖∞

∫ t+h

t

e−λ0rr−
γ
2 dr

which also tends to 0 a.s. for h→ 0.
Step 3 : Steps 1 and 2 verify claim (i) in the case ξ = 0. To treat the case where ξ follows the

stationary distribution, we use the fact that X has the same distribution as X̃ = (X1+t)t≥0. Again,
we have the decomposition

X̃t = S(1 + t)ξ +X0
1+t +N1+t

and (i) has already been proved for the second and third term. For the first term, the result follows
from ‖S(1 + t)ξ‖Cγ0 . ‖ξ‖∞ = ‖X0‖∞ by inequality (ii) in Lemma 4.2.2.

Step 4. We transfer the result (i) from X to f0(X): First of all, f0(X) ∈ C(R+, C
γ
0 ) a.s. holds

due to the result for X and the assumption f0 ∈ C1(R). Further, we have

‖f0(Xt)‖Cγ0 = ‖f0(Xt)‖∞ + sup
ξ 6=η

|f(Xt(ξ))− f(Xt(η))|
|ξ − η|γ ≤ ‖f0(Xt)‖∞ + ‖f ′(Xt)‖∞ ‖Xt‖Cγ0

and, under Assumption (B),

E(‖f0(Xt)‖pCγ0 ) . E(‖f0(Xt)‖p∞) + E(‖f ′(Xt)‖2p∞) + E(‖Xt‖2pCγ0 )

. 1 + E(‖Xt‖2dp∞ ) + E(‖Xt‖2pCγ0 ) <∞

uniformly in t ≥ 0.

(ii) Step 1: We show the claim for (Nt): Using the same decomposition for the increments of N
as in the proof of (i), we get

‖Nt −Ns‖∞ ≤ ‖(S(t− s)− I)Ns‖∞ +

∫ t

s

‖S(t− r)f(Xr)‖∞ dr
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for s < t. For the first term, by definition of the intermediate spaces, it holds that

‖(S(t− s)− I)Ns‖∞ . ‖Ns‖DAϑ (γ,∞) (t− s)γ . ‖Ns‖C2γ
0

(t− s)γ . (4.23)

By Lemma 4.2.2 (i) and Hölder’s inequality, we have∥∥∥ ∫ t

s

S(t− r)f(Xr) dr
∥∥∥p
∞
≤
(∫ t

s

‖S(t− r)f(Xr)‖∞ dr

)p
.

(∫ t

s

e−λ0(t−r)‖f(Xr)‖∞ dr

)p
≤ (t− s)p−1

∫ t

s

e−pλ0(t−r)‖f(Xr)‖p∞ dr. (4.24)

By combining (4.23) and (4.24), we obtain (Nt)0≤t≤T ∈ Cγ([0, T ], E) a.s. and, under Assumption (B),

E (‖Nt −Ns‖p∞) . (t− s)γpE(‖Ns‖pC2γ
0

) + (t− s)p(1 + sup
h≥0

E(‖Xh‖pd∞),

from which the result for (Nt) follows due to (i).
Step 2. The case where ξ follows the stationary distribution can be treated as in (i) since

‖S(1 + t)ξ − S(1 + s)ξ‖∞ . (t− s)γ‖S(1)ξ‖C2γ
0

. (t− s)γ‖X0‖∞.

Step 3. We transfer the result (ii) from X to f0(X): First of all, the pathwise property is again
a consequence of the assumption f0 ∈ C1(R). Next, without loss of generality, assume that d from

(4.3) is given by d = 2m for some m ∈ N. Then, using the formula an − bn = (a− b)∑n−1
k=0 a

kbn−1−k

for a, b ∈ R and n ∈ N, yields

|f(Xt(x))− f(Xs(x))| ≤
∫ Xt(x)

Xs(x)

|f ′(h)| dh .
∫ Xt(x)

Xs(x)

(1 + h2m) dh

= |Xt(x)−Xs(x)|+ 1

2m+ 1
|Xt(x)2m+1 −Xs(x)2m+1|

. |Xt(x)−Xs(x)|
(

1 +

2m∑
k=0

|Xt(x)kXs(x)2m−k|
)

︸ ︷︷ ︸
=:Zs,t

where we have assumed Xt(x) ≥ Xs(x) without loss of generality. Consequently, since (s, t) 7→ ‖Zs,t‖∞
is bounded in Lp(P) for any p ≥ 1 under Assumption (B), we obtain

E(‖f(Xt)− f(Xs))‖p∞) . E(‖Xt −Xs‖2p∞)1/2E(‖Zs,t‖2p∞)1/2 . (t− s)γp.

We turn to the excess Hölder regularity of the nonlinear component (Nt) of X. Since (Nt) is the
pathwise solution of the equation dNt = AϑNt+f(S(t)ξ+X0

t +Nt), N0 = 0, the almost sure properties
are a consequence of the results of Sinestrari [72] on the regularity of solutions to deterministic systems.
In the following, we give a direct proof for them, both for the sake of completeness and since we require
its steps in order to bound the respective norms in Lp(P).

Proof of Proposition 4.2.3. (i) Due to Proposition 4.2.1, we have f0(Xt) ∈ DAϑ(γ,∞) = C2γ
0 for any

γ < 1/4. Further, for any γ̃ ∈ (γ, 1
4 ), Lemma 4.2.2 (iv) yields that

‖AϑN0
t ‖C2γ

0
.
∫ t

0

‖AϑS(t− s)f0(Xs)‖C2γ
0
ds ≤

∫ t

0

h(t− s)‖f0(Xs)‖C2γ̃
0
ds
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with h(r) := e−λ0rr−1+γ̃−γ . Since h is integrable over R+, the pathwise properties immediately follow

from f0(X) ∈ C(R+, C
2γ̃
0 ), cf. Proposition 4.2.1. Further, Jensen’s inequality gives

‖AϑN0
t ‖pC2γ

0

.
∫ t

0

h(t− s)‖f0(Xs)‖pC2γ̃
0

ds

(∫ t

0

h(r) dr

)p−1

.

Consequently, under Assumption (B), supt≥0 E(‖AϑN0
t ‖pC2γ

0

) . supt≥0 E(‖f0(Xt)‖pC2γ̃
0

) is finite by

Proposition 4.2.1.

(ii) In order to prove d
dtNt = AϑN

0
t + f0(Xt) in E, note that the usual decomposition for the

increments of (N0
t ) and formula (4.22) yield the representation

∆−1(N0
t+∆ −N0

t )−AϑN0
t − f0(Xt) =

1

∆

∫ ∆

0

(S(r)− I)AϑN
0
t dr

+
1

∆

∫ t+∆

t

(
S(t+ ∆− r)f0(Xr)− f0(Xt)

)
dr.

We have ‖(S(r)− I)AϑN
0
t ‖∞ ≤ rγ‖AϑN0

t ‖C2γ
0

and

‖S(h)f0(Xr)− f0(Xt)‖∞ ≤‖S(h)(f0(Xr)− f0(Xt))‖∞ + ‖(S(h)− I)f0(Xt)‖∞
.‖f0(Xr)− f0(Xt)‖∞ + hγ‖f0(Xt)‖C2γ

0
.

Thus, (i) and Proposition 4.2.1 yield ‖∆−1(N0
t+∆−N0

t )−AϑN0
t − f0(Xt)‖∞ . ∆γ → 0 uniformly on

bounded time intervals, almost surely.
The properties claimed for d

dtN
0
t now follow from the properties of f0(Xt) provided by Proposition

4.2.1 and

‖AϑN0
t+∆ −AϑN0

t ‖∞ ≤ ‖(S(∆)− I)AϑN
0
t ‖∞ +

∫ t+∆

t

‖AϑS(t+ ∆− r)f0(Xr)‖∞ dr

. ∆γ‖AϑN0
t ‖C2γ

0
+

∫ t+∆

t

(t+ ∆− r)−1+γ‖f0(Xr)‖C2γ
0
dr

where the bound on the integrand is taken from result (iii) in Lemma 4.2.2.
It remains to analyze the regularity of the process M . First of all, by (4.22), we have AϑMt =

S(t)m − m and m ∈ C2γ([b, 1 − b]) is trivially fulfilled. Further, setting mt := S(t)m, we have

mt(x) = 2
√

2
π

∑
`≥0

e−λ2`+1t

2`+1 e2`+1(x). The mean value theorem yields

mt(x)−mt(y) = (x− y)8
∑
`≥0

e−λ2`+1t cos(π(2`+ 1)ξ)

for some ξ between x and y. Thanks to Lemma 2.4.8, the sum
∑
`≥0 e−λ2`+1t cos(π(2` + 1)ξ) is

uniformly bounded in t > 0 and ξ ∈ [b, 1 − b] and we can conclude supt≥0 ‖AϑMt‖C2γ([b,1−b]) < ∞.
The same argument shows that

‖S(t+ ∆)m− S(t)m‖C([b,1−b]) . sup
`≥0

1− e−λ2`+1∆

2`+ 1
.
√

∆.

Hence,

‖∆−1(Mt+∆ −Mt)− S(t)m‖C([b,1−b]) ≤
1

∆

∫ t+∆

t

‖(S(r)m− S(t)m)‖C([b,1−b]) dr .
√

∆

and, in particular, d
dtMt = S(t)m in C([b, 1−b]) as well as ‖ ddt (Mt+∆−Mt)‖C([b,1−b]) .

√
∆ . ∆γ .
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We conclude this section by analyzing the approximation quality of the difference quotients for the
derivatives of (Nt).

Proof of Lemma 4.4.14. For the first statement, note that by Jensen’s inequality applied to the
Lebesgue integral, we have

E(|∆−1(N0
t+∆(x)−N0

t (x))− ∂tN0
t (x)|p) = E

(∣∣∣ 1

∆

∫ t+∆

t

∂t(N
0
s (x)−N0

t (x)) ds
∣∣∣p)

≤ 1

∆

∫ t+∆

t

E
(∣∣∣∂t(N0

s (x)−N0
t (x))

∣∣∣p) ds.
Further, |∂t(N0

s (x)−N0
t (x)|p . |f0(Xs(x))− f0(Xt(x))|p + |Aϑ(N0

s (x)−N0
t (x))|p. From Proposition

4.2.1 we get for s ∈ [t, t+ ∆] that

E(|f0(Xs(x))− f0(Xt(x))|p) . ∆p γ2 .

To estimate the second term, we use the usual decomposition N0
s −N0

t = (S(s− t)− I)N0
t +

∫ s
t
S(s−

r)f0(Xr) dr and

‖Aϑ(S(s− t)− I)N0
t ‖∞ ≤ ∆γ/2‖AϑN0

t ‖DAϑ (γ/2,∞) . ∆γ/2‖AϑN0
t ‖Cγ0

as well as ∥∥∥Aϑ ∫ s

t

S(s− r)f0(Xr) dr
∥∥∥
∞

.
∫ s

t

(s− r)−(1−γ/2)‖f0(Xr)‖Cγ0 dr,

see Lemma 4.2.2 (iii). Thus, we have by Hölder’s inequality that

E(|Aϑ(N0
s (x)−N0

t (x))|p) . ∆p γ2 E(‖AϑN0
t ‖pCγ ) + (s− t)p γ2−1

∫ s

t

E(‖f0(Xr)‖pCγ ) dr

which, in view of Propositions 4.2.1 and 4.2.3, finishes the proof of (4.18). For the proof of (4.19),

recall that by Taylor’s formula, we have the expansion h(x+δ) = h(x)+δh′(x)+
∫ x+δ

x
(x+δ−z)h′′(z) dz

for any h ∈ C2(R). Hence, we can write

δ−2(h(x+ δ)− 2h(x) + h(x− δ)) =

∫
Kδ(z − x)h′′(z) dz (4.25)

with Kδ(z) := δ−1K(δ−1z) and the triangular kernel K(z) := (1−|z|)1{−1≤z≤1}. Since Kδ integrates
to 1, it follows that

ϑ2

δ2
(N0

t (x+ δ)− 2N0
t (x) +N0

t (x− δ))−AϑN0
t (x) =

∫ x+δ

x−δ
Kδ(z − x)(AϑN

0
t (z)−AϑN0

t (x)) dz

≤ (2δ)γ‖AϑN0
t ‖Cγ0 ,

from where the result follows due to Proposition 4.2.3.

4.5.2 Proofs for the estimators of σ2 and ϑ2

In the following, we prove the central limit theorems for the realized quadratic variations in the semi-
linear framework, as claimed in Theorems 4.3.1,4.3.2 and 4.3.3 of Section 4.3. The corresponding
results for the estimators then follow directly in view of the delta method. This also applies to the
joint estimator of (σ2, ϑ2), as we assume ϑ0 = 0 and, hence, (σ̂2, ϑ̂2) can be directly calculated from
two realized quadratic variations based on double increments when the sample size is sufficiently large,
see Remark 2.2.13.

We start with the result for time increments.
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Proof of Theorem 4.3.1. It is sufficient to consider the process X0
t+t0 + Nt+t0 instead of Xt: if ξ

follows the stationary distribution, then X has the same distribution as X̃ with X̃t := Xt0+t =
S(t)S(t0)ξ + X0

t+t0 + Nt+t0 for any t0 > 0 and (S(t)S(t0)ξ)t≥0 can be chosen arbitrarily regular by
choosing t0 sufficiently large. In fact, since the properties of (Nt) used in the sequel, are the same
under each of the initial conditions, we can assume ξ = 0 for simplicity. Then, we have

V̄t =
1

MN
√

∆

N−1∑
i=0

M−1∑
k=0

(X0
ti+1

(yk)−X0
ti(yk))2 +

1

MN
√

∆

N−1∑
i=0

M−1∑
k=0

(Nti+1(yk)−Nti(yk))2

+
2

MN
√

∆

N−1∑
i=0

M−1∑
k=0

(X0
ti+1

(yk)−X0
ti(yk))(Nti+1

(yk)−Nti(yk))

=: Vt +R1 +R2.

Since Vt satisfies the claimed central limit theorem (2.10), due to Slutsky’s lemma, it suffices to prove
that R1 and R2 are of the order op(1/

√
MN).

If T is finite, it follows from Lemma 4.5.1 and Proposition 4.2.3 that for all γ < 1/4 and P-almost
all realizations ω ∈ Ω, there exists a constant C = C(ω, T ) such that |X0

ti+1
(yk) − X0

ti(yk)| ≤ C∆γ

and |Nti+1
(yk)−Nti(yk)| ≤ C∆ for all i ≤ N , k ≤ M and N,M ∈ N. Consequently, R1 and R2 are

of the order op(∆
1
2 +γ) and the statement follows due to the condition M = o(∆−ρ) for some ρ < 1/2.

If T →∞ and Assumption (B) is satisfied, Lemma 4.5.1 and Proposition 4.2.3 yield E(|R1|) . ∆3/2

and, by applying the Cauchy-Schwarz inequality to the cross terms, we get E(|R2|) . ∆
1
2 +γ for any

γ < 1/4. The claim follows since
√
MN∆

1
2 +γ =

√
TM∆2γ converges to 0 for any γ ∈ (ρ/2, 1/4) and

the fact that convergence in L1(P) implies convergence in probability.

Next, we prove the result for space increments.

Proof of Theorem 4.3.2. We only consider the case of a finite time horizon, the case T → ∞ can be
treated similarly by taking expectations. Further, it suffices to consider the case ξ = 0, see also the
proof of Theorem 4.3.1. We have

V̄sp =
1

MNδ

N∑
i=1

M−1∑
k=0

(X0
ti(yk+1)−X0

ti(yk))2 +
1

MNδ

N∑
i=1

M−1∑
k=0

(Nti(yk+1)−Nti(yk))2

+
2

MNδ

N∑
i=1

M−1∑
k=0

(X0
ti(yk+1)−X0

ti(yk))(Nti(yk+1)−Nti(yk))

=: Vsp +R1 +R2

and the claim follows if R1 and R2 are of the order op(1/
√
MN).

To bound the term R2, we use the formula

M−1∑
k=0

ak(bk+1 − bk) = −
M−2∑
k=0

(ak+1 − ak)bk+1 + aM−1bM − a0b0. (4.26)

Setting ak := Nti(yk+1)−Nti(yk) and bk := X0
ti(yk), we get

R2 =
2

MNδ

N∑
i=1

M−2∑
k=0

X0
ti(yk+1)(Nti(yk+2)− 2Nti(yk+1) +Nti(yk))

+
1

MNδ

N∑
i=1

(
(Nti(yN )−Nti(yN−1))X0

ti(yN ) + (Nti(y1)−Nti(y0))X0
ti(y0)

)
.
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By Lemma 4.5.1 and Proposition 4.2.3, we have X0 ∈ C(R+, C([b, 1−b])) and supt≤T ‖AϑNt‖C([b,1−b])
<∞ a.s. Thus, there exists a random variable C = C(ω, T ) with |Nti(yk+2)−2Nti(yk+1)−Nti(yk)| ≤
Cδ2, |Nti(yk+1)−Nti(yk)| ≤ Cδ and |X0

ti | . C for all i ≤ N, k ≤M − 1 and M,N ∈ N a.s. It follows
that |R1| ≤ C2δ and |R2| . C2δ hold a.s. and, therefore, the claim follows from the fact that√
MNδ h

√
N/M tends to 0, by assumption.

Finally, we prove the result for double increments. To that aim, let Nik denote the double incre-
ments computed from the process (Nt), i.e., Nik := Nti+1(yk+1) − Nti+1(yk) − Nti(yk+1) + Nti(yk).
The first step of the proof of Theorem 4.3.3 is given by the following lemma.

Lemma 4.5.2. Assume that the constant b defined in Section 1.2.3 is strictly positive and let p ≥ 1.

(i) Let α ∈ (0, 1) and β ∈ (0, 1] be such that α+ β < 3/2. If T is finite, then there exists a random
variable C = C(ω, T ) > 0 such that

|Nik| ≤ Cδα∆
1+β

2

holds for all i ≤ N, k ≤ M and N,M ∈ N a.s. If Assumption (B) is satisfied, then there exists
a constant C > 0 such that

E(|Nik|p) ≤ C
(
δα∆

1+β
2

)p
holds for all i ≤ N, k ≤M , N,M ∈ N uniformly in T > 0.

(ii) Let γ < 2 and ε < 1
4 . If T is finite, then there exists a random variable C = C(ω, T ) > 0 such

that

|Ni(k+1) −Nik| ≤ Cδγ∆ε

holds for all i ≤ N, k ≤ M and N,M ∈ N a.s. If Assumption (B) is satisfied, then there exists
a constant C > 0 such that

E(|Ni(k+1) −Nik|p) ≤ C
(
δγ∆ε

)p
holds for all i ≤ N, k ≤M , N,M ∈ N uniformly in T > 0.

Proof. We write Nik = N0
ik +Mik, where N0

ik and Mik are the double increments computed from the
processes (N0

t ) and (Mt) defined by (4.8), respectively. In the following, these double increments are
estimated separately.

(i) For α ∈ (0, 1), we have

|N0
ik| ≤ δα‖N0

ti+1
−N0

ti‖Cα0

≤ δα
(
‖S(∆)− I)N0

ti‖Cα0 +
∥∥∥∫ ti+1

ti

S(ti+1 − s)f0(Xs) ds
∥∥∥
Cα0

)
.

Further, using formula (4.22) and Lemma 4.2.2 (iv) in combination with α+ β − 1 ≤ α yields

‖S(∆)− I)N0
ti‖Cα0 =

∥∥∥ ∫ ∆

0

AϑS(r)N0
ti dr

∥∥∥
Cα0

≤
∫ ∆

0

‖S(r)‖L(Cα+β−1
0 ,Cα0 )‖AϑN0

ti‖Cα+β−1
0

dr

.
∫ ∆

0

r−
1−β

2 ‖AϑN0
ti‖Cα+β−1

0
dr . ∆

1+β
2 ‖AϑN0

t ‖Cα+β−1
0

.
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Similarly, by Lemma 4.2.2 (iii) and Hölder’s inequality,∥∥∥∫ ti+1

ti

S(ti+1 − s)f0(Xs) ds
∥∥∥
Cα0

.
∫ ti+1

ti

(ti+1 − s)−
1−β

2 ‖f0(Xs)‖Cα+β−1
0

ds

.

(∫ ti+1

ti

‖f0(Xs)‖p
Cα+β−1

0

ds

) 1
p

∆1− 1
p−

1−β
2 .

Thus, noting α+ β− 1 < 1/2, Propositions 4.2.1 and 4.2.3 yield the claim for the case of a finite time
horizon and, under Assumption (B),

E(|N0
ik|p) . δpα

(
∆p 1+β

2 E(‖AϑN0
t ‖pCα+β−1

0

) + ∆p−1−p 1−β
2

∫ ti+1

ti

E(‖f0(Xs)‖p
Cα+β−1

0

) ds

)
. δpα∆p 1+β

2 .

To verify that Mik is of the claimed order, recall that in the proof of Proposition 4.2.3 it is shown
that d

dtMt = S(t)m =: mt and that |mt(x) −mt(y)| . |x − y| holds uniformly in t > 0 and x, y ∈
[b, 1−b]. Thus, we haveMik =

∫ ti+1

ti
(ms(yk+1)−ms(yk)) ds and, consequently, |Mik| . ∆δ . δα∆

1+β
2 .

(ii) For γ ∈ (1, 2), we have

|N0
i(k+1) −N0

ik| ≤ δγ‖N0
ti+1
−N0

ti‖Cγ0 .
Using the decomposition

N0
ti+1
−N0

ti =

∫ ti

0

S(ti − s)(f0(Xs+∆)− f0(Xs)) ds+

∫ ∆

0

S(ti+1 − s)f0(Xs) ds,

we get from Lemma 4.2.2 (i) that∥∥∥∫ ti

0

S(ti − s)(f0(Xs+∆)− f0(Xs)) ds
∥∥∥
Cγ0

=
∥∥∥∫ ti

0

S(r)(f0(Xti+1−r)− f0(Xti−r)) dr
∥∥∥
Cγ0

.
∫ ti

0

e−λ0rr−
γ
2 ‖f0(Xti+1−r)− f0(Xti−r)‖∞ dr.

Further, for h < 1
2 , Lemma 4.2.2 (iii) gives∥∥∥∫ ∆

0

S(ti+1 − s)f0(Xs) ds
∥∥∥
Cγ0

.
∫ ∆

0

(ti+1 − r)−
γ−h

2 ‖f0(Xr)‖Ch0 dr.

Now, the result in case of a fixed T follows from the path regularity of f0(X). Further, under
Assumption (B), we can use Jensen’s and Hölder’s inequality to estimate

E(|N0
i(k+1) −N0

ik|p) . δγ sup
t≥0

E(‖f0(Xt+∆)− f0(Xt)‖p∞) + δγ∆p−1− γ−h2 p

∫ ∆

0

E(‖f0(Xti+1−r)‖pCh0 ) dr

. δγ∆pε + δγ∆p(1− γ−h2 ).

The result follows, since one can pick h ∈ (0, 1
2 ) such that 1− γ−h

2 ≥ ε.
To estimate |Mik|, recall that in the proof of Proposition 4.2.3 it is shown that ∂2

∂x2Mt = 1
ϑ2
AϑMt =

1
ϑ2

(S(t) − I)m and that ‖ ∂2

∂x2Mt − ∂2

∂x2Ms‖C([b,1−b]) = 1
ϑ2
‖S(t)m − S(s)m‖C([b,1−b]) .

√
|t− s|. Ap-

plication of (4.25) to the double increments yields

Mi(k+1) −Mik = δ2

∫ x+δ

x−δ
Kδ(z − x)

∂2

∂z2
(Mti+1(z)−Mti(z)) dz

and, consequently, |Mi(k+1) −Mik| . δ2
√

∆ . ∆γ∆ε.
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The above lemma is the main ingredient for the following proof of the central limit theorem for
double increments.

Proof of Theorem 4.3.3. As for time and space increments, we can assume ξ = 0 and the claim follows
if we verify |Ri| = op(1/

√
MN), i ∈ {1, 2}, with

R1 :=
1

MNΦϑ(δ,∆)

N∑
i=1

M−1∑
k=0

N2
ik, R2 :=

1

MNΦϑ(δ,∆)

N∑
i=1

M−1∑
k=0

NikDik

and where Dik are the double increments computed from X0. In the following, we verify the claim
under Assumption (B). The result for the case of a fixed T can be shown analogously by using the
pathwise properties of (Nt) derived in Lemma 4.5.2. We treat the cases M

√
∆ = O(1) and M

√
∆→∞

separately.
Case M

√
∆ = O(1): Using Lemma 4.5.2 with α = 0 and β = 1 yields E(N2

ik) . ∆2 and, hence,

√
MNE(|R1|) .

√
MN

MN
√

∆

∑
i,k

E(N2
ik) .

√
MN∆3/2 =

√
T

M
·M
√

∆ ·
√

∆→ 0

since each of the three factors tends to zero. For the cross terms, we take β = 1 and α = a
2 < 1

2 in
Lemma 4.5.2 to bound

E(|DikNik|) ≤ E(D2
ik)1/2E(N2

ik)1/2 . ∆1/4∆δa/2.

Consequently,
√
MNE(|R1|) .

√
MN

∆5/4δa/2√
∆

h
√

T

Ma
·
√
M∆1/4 → 0.

Case M
√

∆ → ∞: With β = 1
2 and α = a+3

4 < 1 in Lemma 4.5.2, we get E(N2
ik) . ∆3/2δ2α

and, hence,

√
MNE(|R1|) .

√
MN

∆3/2δ2α

δ
h
√

T

Ma
·∆→ 0.

To treat the cross terms, we use formula (4.26) with ak := Nik and bk := Hik := X0
ti+1

(yk)−X0
ti(yk)

to deduce

N∑
i=1

M−1∑
k=0

DikNik =−
N∑
i=1

M−2∑
k=0

(Ni(k+1) −Nik)Hi(k+1)

+

N∑
i=1

Ni(M−1)HiM −
N∑
i=1

Ni0Hi0. (4.27)

Since E(H2
ik) .

√
∆, Lemma 4.5.2 gives for any γ < 2 and ε < 1

4 that

E

(∣∣∣ 1

MNδ

N∑
i=1

M−2∑
k=0

(Ni(k+1) −Nik)Hi(k+1)

∣∣∣)

≤ 1

MNδ

N∑
i=1

M−2∑
k=0

E((Ni(k+1) −Nik)2)1/2E(H2
i(k+1))

1/2

.
δγ∆ε

√
∆

δ
= δγ−1∆ε+1/4.
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Further, by picking ε and γ in such a way that 2γ − 4 + 4ε > a, we get

√
MNδγ−1∆ε+1/4 =

√
T

M2γ−4+4ε
· 1

(M
√

∆)1/2−2ε
→ 0.

For the remaining two terms in (4.27), take α = a+1
2 < 1 and β = 1

2 in Lemma 4.5.2. Then,

E

(∣∣∣ 1

MNδ

N∑
i=1

Ni(M−1)HiM

∣∣∣) .
∆1/4δα∆3/4

Mδ
h ∆δγ

and, finally,
√
MN∆δα =

√
T

Ma
·
√

∆→ 0.

Summarizing, we have shown that
√
MNE(|R2|)→ 0, which finishes the proof.

4.5.3 Proofs for the nonparametric estimator of f

Space-continuous observations

We prove our results for the space-continuous observation scheme. To that aim, we follow the main
proof strategy from Comte et al. [21, Proposition 1]. First, we verify our estimate for ‖f̂m − fA‖2N on
the event ΩN,m.

Proof of Proposition 4.4.4. By applying the Cauchy-Schwarz inequality and Young’s inequality to
(4.15), we can bound

‖f̂m − fA‖2N ≤‖fm − fA‖2N +
2

N

N−1∑
i=0

∥∥f̂m(Xti)− fm(Xti)
∥∥
L2

∥∥Ri∥∥L2

+ ‖f̂m − fm‖N sup
t∈Sm, ‖t‖N=1

2

N

N−1∑
i=0

〈
t(Xti), εi

〉
L2

≤‖fm − fA‖2N +
1

η
‖f̂m − fm‖2N +

η

N

N−1∑
i=0

∥∥Ri∥∥2

L2

+
1

η
‖f̂m − fm‖2N + η

(
sup

t∈Sm, ‖t‖N=1

1

N

N−1∑
i=0

〈
t(Xti), εi

〉
L2

)2

≤
(

1 +
4

η

)
‖fm − fA‖2N +

4

η
‖f̂m − fA‖2N +

η

N

N−1∑
i=0

∥∥Ri∥∥2

L2

+ η

(
sup

t∈Sm, ‖t‖N=1

1

N

N−1∑
i=0

〈
t(Xti), εi

〉
L2

)2

for any η > 0. Taking η = 8 and rearranging gives

‖f̂m − fA‖2N ≤3‖fm − fA‖2N +
16

N

N−1∑
i=0

∥∥Ri∥∥2

L2 + 16

(
sup

t∈Sm, ‖t‖N=1

1

N

N−1∑
i=0

〈
t(Xti), εi

〉
L2

)2

. (4.28)

The claim of the proposition follows by bounding the expectation on ΩN,m of the three terms on the
right hand side of the above inequality. For the first term, we have

E(‖fm − fA‖2N1ΩN,m) ≤ E(‖fm − fA‖2N ) = ‖fm − fA‖2π.
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For the second term, note that with f0 := f − f(0) and 1 := 1[0,1], we have∥∥∥S(h)f(Xs)− f(Xt)
∥∥∥2

L2
.
∥∥∥S(h)f0(Xs)− f0(Xs)

∥∥∥2

∞
+ f(0)2

∥∥∥S(h)1− 1
∥∥∥2

L2

+
∥∥∥f(Xs)− f(Xt)

∥∥∥2

∞

.hγ‖f0(Xs)‖2DA(γ/2,∞) + f(0)2
∑
`≥1

(1− e−λ`∆)2〈1, e`〉2

+
∥∥∥f(Xs)− f(Xt)

∥∥∥2

∞
.

Using Jensen’s inequality, DA(γ/2,∞) = Cγ0 and 〈1, e`〉2 . `−2, we get for any γ < 1/2

E
(∥∥Ri∥∥2

L2

)
≤ 1

∆
E

(∫ ti+1

ti

∥∥∥S(ti+1 − s)f(Xs)− f(Xti)
∥∥∥2

L2
ds

)
.

1

∆

∫ ti+1

ti

∆γE

(∥∥∥f0(Xs)
∥∥∥2

Cγ0

)
ds+ f(0)2

√
∆

+
1

∆

∫ ti+1

ti

E

(∥∥∥f(Xs)− f(Xti)
∥∥∥2

∞

)
ds

.∆γ (4.29)

in view of Proposition 4.2.1. To treat the third term on the right hand side of (4.28), consider an
orthonormal system {ϕλ, λ ∈ Λm} of Sm with the property ‖∑λ∈Λm

ϕ2
λ‖∞ ≤ CDm which exists due

to Assumption (N). Since on ΩN,m, ‖t‖N = 1 implies ‖t‖2L2(A) ≤ 1/c, we obtain

sup
t∈Sm, ‖t‖N=1

(
1

N

N−1∑
i=0

〈
t(Xti), εi

〉
L2

)2

1ΩN,m ≤
1

c
sup

t∈Sm, ‖t‖L2≤1

(
1

N

N−1∑
i=0

〈
t(Xti), εi

〉
L2

)2

=
1

c
sup

α∈RΛm , ‖α‖≤1

( ∑
λ∈Λm

αλ
1

N

N−1∑
i=0

〈
ϕλ(Xti), εi

〉
L2

)2

.
∑
λ∈Λm

(
1

N

N−1∑
i=0

〈
ϕλ(Xti), εi

〉
L2

)2

.

To handle the expectation of the above bound, note that εi = σ
∆

∫ ti+1

ti
S(ti+1 − s) dWs is independent

of Fti , implying

E
(〈
ϕλ(Xti), εi

〉
L2 |Fti

)
=

∫ 1

0

E
(
ϕλ(Xti(x))εi(x)|Fti

)
dx =

∫ 1

0

ϕλ(Xti(x))E (εi(x)|Fti) dx

=

∫ 1

0

ϕλ(Xti(x))E (εi(x)) dx = 0.

Hence, for j < i, we have

E
(〈
ϕλ(Xti), εi

〉
L2

〈
ϕλ(Xtj ), εj

〉
L2

)
= E

(
E
(〈
ϕλ(Xti), εi

〉
L2

∣∣∣Fti)〈ϕλ(Xtj ), εj

〉
L2

)
= 0

and, consequently,

E

 sup
t∈Sm, ‖t‖N=1

(
1

N

N−1∑
i=0

〈
t(Xti), εi

〉
L2

)2

1ΩN,m

 ≤ ∑
λ∈Λm

1

N2

N−1∑
i=0

E
(〈
ϕλ(Xti), εi

〉2
L2

)
.
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Further, Parseval’s relation yields

E
(〈
ϕλ(Xti), εi

〉2
L2

)
= E

((∑
k≥1

〈
ϕλ(Xti), ek

〉
L2

〈
εi, ek

〉
L2

)2
)

=
σ2

∆2
E

((∑
k≥1

〈ϕλ(Xti), ek〉L2

∫ ti+1

ti

e−λk(ti+1−s) dβk(s)
)2
)

=
σ2

∆2

∑
k≥1

E(〈ϕλ(Xti), ek〉2L2)E

((∫ ti+1

ti

e−λk(ti+1−s) dβk(s)
)2
)

=
σ2

∆2

∑
k≥1

1− e−2λk∆

2λk
E(〈ϕλ(Xti), ek〉2L2)

≤ σ2

∆
E
(
‖ϕλ(Xti)‖2L2

)
.

Above, we have used independence of the (one-dimensional) stochastic integrals from Fti and pairwise
independence of {βk, k ≥ 1} in the third step. In view of Assumption (N), we have shown

E

 sup
t∈Sm, ‖t‖N=1

(
1

N

N−1∑
i=0

〈
t(Xti), εi

〉
L2

)2

1ΩN,m

 .
∑
λ∈Λm

1

N∆
E(‖ϕλ(X0)‖2L2)

=
1

T
E

(∫ 1

0

∑
λ∈Λm

ϕ2
λ(X0(x)) dx

)
.
Dm

T
,

which finishes the proof.

The following proof verifies our bound on the probability of the event ΞN,m.

Proof of Lemma 4.4.5. We follow the steps of the proof of Lemma 1 in [21] which employs the stan-
dard technique for deriving concentration inequalities for β-mixing sequences, see, e.g., Theorem 4 in
Doukhan [31, Section 1.4.2]. In contrast to the result derived in [31], a different version of Bernstein’s
inequality is used which is convenient to work with in our situation: it directly follows from Massart
[61, Proposition 2.9] that for independent real-valued random variables Z1, . . . , Zn with |Zi| ≤ B and
E(Z2

i ) ≤ ν2 for some constants B, ν > 0, we have

P
(
|Sn −E(Sn)| ≥ ν

√
2x+Bx

)
≤ 2e−nx where Sn :=

1

n

n∑
i=1

Zi (4.30)

for any x > 0. In order to be able to make use of (4.30) in our context, we need to approximate
the observations Xt0 , . . . , XtN by independent blocks. In fact, using Berbee’s coupling Lemma [7],
it can be shown (see, e.g., the discussion following Lemma 5.1 in [77]) that there exists a process
(X∗i∆, 0 ≤ i ≤ N − 1) with the following properties. For every j = 0, . . . , pN − 1, we have

Uj,1 := (X[2jqN+1]∆, . . . , X[(2j+1)qN ]∆)
D
= (X∗[2jqN+1]∆, . . . , X

∗
[(2j+1)qN ]∆) =: U∗j,1,

Uj,2 := (X[(2j+1)qN ]∆, . . . , X[2(j+1)qN ]∆)
D
= (X∗[(2j+1)qN ]∆, . . . , X

∗
[2(j+1)qN ]∆) =: U∗j,2

and for each a ∈ {1, 2}, U∗0,a, . . . , U∗pN−1,a are independent and P(Uj,a 6= U∗j,a) ≤ βX(qN∆). Here,
βX is the β-mixing coefficient of X which is in our case given by (4.4). Set Ω∗ := {Xi∆ = X∗i∆, i =
0, . . . , N − 1} and P∗ := P(· ∩ Ω∗). Clearly,

P(ΞcN,m) ≤ P(Ω∗ ∩ ΞcN,m) + P((Ω∗)c)
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and using the union bound, we get

P((Ω∗)c) ≤ 2pNβX(qN∆) ≤ NβX(qN∆).

It remains to show P∗(ΞcN,m) . D2
m exp(−K ′ pNLm ). To that aim, set

vN (t) :=
1

N

N−1∑
i=0

(∫ 1

0

t(Xi∆(x)) dx−E(

∫ 1

0

t(Xi∆(x)) dx))
)

so that vN (t2) = ‖t‖2N − ‖t‖2π. Recall the constants 0 < c < C < ∞ from the implication (4.14) of
Assumption (E). We have

P∗
(
ΞcN,m

)
= P∗

(
sup

t∈Sm\{0}

∣∣∣‖t‖2N − ‖t‖2π‖t‖2π

∣∣∣ ≥ 1

2

)
≤ P∗

(
sup

t∈Sm\{0}

∣∣∣‖t‖2N − ‖t‖2π
c‖t‖2L2(A)

∣∣∣ ≥ 1

2

)

= P∗

(
sup

t∈Sm,‖t‖L2(A)=1

|vN (t2)| ≥ c

2

)
.

Now, each t ∈ Sm with ‖t‖L2(A) = 1 has a representation t =
∑
λ∈Λm

αλϕλ with
∑
λ∈Λm

α2
λ = 1 and

vN (t2) =
∑
λ,λ′

αλαλ′vN (ϕλϕλ′).

On the set {|vN (ϕλϕλ′)| ≤ 2V mλλ′(2Cx)1/2 + 2Bmλλ′x, ∀λ, λ′ ∈ Λm} with x := c2

64CLm
, we have

∑
λ,λ′

|αλαλ′ ||vN (ϕλϕλ′)| ≤ 2(2Cx)1/2ρ(V m) + 2xρ(Bm) ≤ c

2
√

2
+

c2

32C
≤ c

2

where the last bound is due to c ≤ C and, hence, supt∈Sm,‖t‖L2(A)=1 |vN (t2)| ≤ c
2 is fulfilled. Conse-

quently,

P∗
(
ΞcN,m

)
≤ P∗

(
∃λ, λ′ ∈ Λm : |vN (ϕλϕλ′)| ≥ 2V mλλ′(2Cx)1/2 + 2Bmλλ′x

)
≤

∑
λ,λ′∈Λm

P∗
(
|vN (ϕλϕλ′)| ≥ 2V mλλ′(2Cx)1/2 + 2Bmλλ′x

)
.

We decompose vN (ϕλϕλ′) = v1
N (ϕλϕλ′) + v2

N (ϕλϕλ′) where

vaN (t) :=
1

pN

pN−1∑
j=0

(
Zj,a(t)−E(Zj,a(t))

)
, Zj,a(t) :=

1

qN

qN∑
i=1

∫ 1

0

t(U ij,a(x)) dx

and U ij,a denotes the i-th entry of Uj,a. Under P∗, the family (Z0,a(t), . . . , ZpN−1,a(t)) is independent
for a ∈ {1, 2} by construction and satisfies

|Zj,a(ϕλϕλ′)| ≤ Bmλ,λ′

E
(
Z2
j,a(ϕλϕλ′)

)
≤ 1

qN

qN∑
i=1

E

((∫ 1

0

ϕλ(U ij,a(x))ϕλ′(U
i
j,a(x)) dx

)2
)

≤ E

(∫ 1

0

ϕ2
λ(X0(x))ϕ2

λ′(X0(x)) dx

)
= ‖ϕλϕλ′‖2π ≤ C‖ϕλϕλ′‖2L2(A) = C(V mλ,λ′)

2

124



where we have used Jensen’s inequality twice in the second line. Thus, by the Bernstein inequality
(4.30), we get

P∗
(
|vN (ϕλϕλ′)| ≥ 2V mλλ′(2Cx)1/2 +Bmλλ′x

)
≤

2∑
a=1

P∗
(
|vaN (ϕλϕλ′)| ≥ V mλλ′(2Cx)1/2 +Bmλλ′x

)
≤ 4e−pNx.

Summing up, we have shown

P∗
(
ΞcN,m

)
≤ 4D2

m exp

(
−pN

c2

64CLm

)
,

which finishes the proof.

Based on the previous results, we are now ready to verify the conclusion of our main theorem on
space-continuous observations.

Proof of Theorem 4.4.2. Consider ΩN,m = ΩN,m, c2 as defined in Proposition 4.4.4 with c > 0 from

the implication (4.14) of Assumption (E). Then, on ΞN,m, we have ‖t‖2N ≥ 1
2‖t‖2π ≥ c

2‖t‖2L2(A) for all
t ∈ Sm, implying ΞN,m ⊂ ΩN,m. Thus,

E
(
‖f̂m − fA‖2N

)
= E

(
‖f̂m − fA‖2N1ΩN,m

)
+ E

(
‖f̂m − fA‖2N1ΩcN,m

)
. ‖fA − fm‖2π +

Dm

T
+ ∆γ + E

(
‖f̂m − fA‖2N1ΩcN,m

)
. ‖fA − fm‖2L2(A) +

Dm

T
+ ∆γ + E

(
‖f̂m − fA‖2N1ΞcN,m

)
by Proposition 4.4.4 and Assumption (E). In the following, we conclude the theorem by showing that

E(‖f̂m − fA‖2N1ΞcN,m
) = o(∆γ).

We consider the Hilbert space HN := (L2(0, 1))N equipped with the inner product 〈u, v〉HN :=
1
N

∑N
i=1〈ui, vi〉L2 for u, v ∈ HN . Note that ‖t‖2N = ‖t̄‖2HN with t̄ := (t(X0), . . . , t(X(N−1)∆)).

Clearly, the vector ˆ̄fm := (f̂m(X0), . . . , f̂m(X(N−1)∆)) is the orthogonal projection in HN of Ȳ :=
(Y0, . . . , YN−1) onto the subspace {(t(X0), . . . , t(X(N−1)∆)), t ∈ Sm}. Denoting the corresponding
projection operator by Πm, we have

‖f̂m − fA‖2N ≤ ‖f̂m − f‖2N = ‖ΠmȲ − f̄‖2HN = ‖(I −Πm)f̄‖2HN + ‖Πm(Ȳ − f̄)‖2HN
≤ ‖f̄‖2HN + ‖Ȳ − f̄‖2HN

since the operator norm of the projections is given by one. Now,

E(‖f̄‖2HN1ΞcN,m
) =

1

N

N−1∑
i=0

E(‖f(Xi∆)‖2L21ΞcN,m
) ≤ E(‖f(X0)‖4∞)1/2P(ΞcN,m)1/2 . P(ΞcN,m)1/2

and

E(‖Ȳ − f̄‖2HN1ΞcN,m
) =

1

N

N−1∑
i=0

E(‖Ri + εi‖2L21ΞcN,m
) . (E(‖Ri‖4L2)

1/2
+ E(‖εi‖4L2)

1/2
)P(ΞcN,m)1/2.

It can be shown just like in (4.29) that for any γ < 1/2, we have

E(‖Ri‖4L2) . ∆2γ = O(1)
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and an explicit calculation yields

E(‖εi‖4L2) =
σ4

∆4
E

(∑
`≥1

(∫ ti+1

ti

e−λ`(ti+1−s) dβ`(s)
)2)2


=
σ4

∆4

∑
`,`′≥1

E

((∫ ti+1

ti

e−λ`(ti+1−s) dβ`(s)
)2(∫ ti+1

ti

e−λ`′ (ti+1−s) dβ`′(s)
)2
)

.
1

∆4

(∑
`≥1

1− e−2λ`∆

2λ`

)2

= O(∆−3).

Gathering bounds, we have shown

E
(
‖f̂m − fA‖2N1ΞcN,m

)
. ∆−3/2P(ΞcN,m)1/2.

Using Lemma 4.4.5 in view of Dm ≤ N , we get

P(ΞcN,m) . N exp(−γqN∆) +N2 exp
(
−K ′ N

2qNLm

)
.

Under the condition N∆
log2 N

→ ∞ it is possible to choose (qN ) such that qN/(
ν logN

∆ ) → 1 for some

fixed ν > 0. Then, we have

N exp(−γqN∆) ≤ N exp(−γν
2

log(N)) = N−( γν2 −1).

Further, since Lm = o( N∆
log2 N

), for any β > 0 we have Lm ≤ β N∆
log2 N

for N sufficiently large, implying

K ′
N

2qNLm
≥ K ′ N∆

4ν logNLm
≥ K ′

4νβ
log(N)

as well as

N2 exp
(
−K ′ N

2qNLm

)
≤ N2− K′

4νβ .

Hence, for arbitrary α > 0, we can choose ν sufficiently large and β sufficiently small such that
P(ΞcN,m) ≤ N−(2α+3) and, thus,

E
(
‖f̂m − fA‖2N1ΩcN,m

)
. ∆−3/2P(ΞcN,m)1/2 .

1

T 3/2Nα
.

1

Nα
=

∆α

Tα
= o(∆α).

From here, the claim follows by choosing α = γ.

We prove our final result for the space-continuous observation scheme, namely the bound on the
L2-risk.

Proof of Corollary 4.4.6. First, we prove the bound in probability: For any a > ‖f‖2L2(A), the triangle
inequality yields

P
(
‖f̂m − f‖2L2(A) ≥ 2a

)
≤ P

(
‖f̂m − fm‖2L2(A) ≥ a− ‖fm − f‖2L2(A)

)
≤ P

(
1ΞN,m‖f̂m − fm‖2L2(A) ≥ a− ‖fm − f‖2L2(A)

)
+ P

(
ΞcN,m

)
.

Now, as in the proof of Theorem 4.4.2, we have ‖t‖2N ≥ 1
2‖t‖2π ≥ c

2‖t‖2L2(A) on ΞN,m for all t ∈ Sm
where c > 0 is the constant from the equivalence condition (4.14). Thus, using f̂m − fm ∈ Sm as well
as Markov’s inequality and the triangle inequality,

P
(
1ΞN,m‖f̂m − fm‖2L2(A) ≥ a− ‖fm − f‖2L2(A)

)
≤ P

(
1ΞN,m‖f̂m − fm‖2N ≥

c

2
(a− ‖fm − f‖2L2(A))

)
126



≤ 2E
(
1ΞN,m‖f̂m − fm‖2N

)
c(a− ‖fm − f‖2L2(A))

≤ 4E
(
1ΞN,m‖f̂m − fA‖2N

)
+ 4‖fm − fA‖2π

c(a− ‖fm − f‖2L2(A))
.

Now, we set a := K
(
‖f − fm‖2L2(A) + Dm/T + ∆γ

)
for some K > 1. By Proposition 4.4.4 and

Assumption (E), the above bound can be estimated up to a constant by

‖fm − f‖2L2(A) +Dm/T + ∆γ

a− ‖fm − f‖2L2(A)

≤
‖fm − f‖2L2(A) +Dm/T + ∆γ

(K − 1)
(
‖f − fm‖2L2(A) +Dm/T + ∆γ

) =
1

K − 1
.

Using P(ΞcN,m) . N−α for any power α > 0 from the proof of Theorem 4.4.2, we can conclude that
for any ε > 0 there exists K > 0 such that

lim sup
N→∞

P
(
‖f̂m − f‖2L2(A) ≥ 2K

(
‖fA − fm‖2L2(A) +

Dm

T
+ ∆γ

))
≤ ε

which verifies the claimed bound in probability.
Next, we consider the truncated estimator f̂KNm : We have

‖f̂KNm − f‖2L2(A) ≤ ‖f̂KNm − f‖2L2(A)1ΞN,m + 2(‖f‖2L∞(A) +K2
N )1ΞcN,m

and, thus, as soon as KN ≥ ‖f‖L∞(A), we can further bound

‖f̂KNm − f‖2L2(A) ≤ ‖f̂m − f‖2L2(A)1ΞN,m + 4K2
N1ΞcN,m

.

For the expectation of the first term, we get like in the above derivation of the bound in probabil-
ity that E(‖f̂m − f‖2L2(A)1ΞN,m) . ‖fA − fm‖2L2(A) + Dm/T + ∆γ . The expectation of the second

term, 4K2
NP(ΞcN,m), decreases faster than any power of N , thanks to Lemma 4.4.5 and the growth

assumption on KN . Thus, 4K2
NP(ΞcN,m) . N−γ . ∆γ , which finishes the proof.

Fully discrete observations

In this section, we prove Theorems 4.4.9 and 4.4.12. The proof for Corollary 4.4.11 follows exactly
the same arguments as for the space-continuous case and is omitted. Further technical Lemmas and
a proof of Lemma 4.4.7 are postponed to Section 4.5.4.

Before proving the main theorem for fully discrete observations, we state and prove the discrete
analogons of Proposition 4.4.4 and Lemma 4.4.5. To that aim, we define

‖g‖2π,M :=
1

M

M−1∑
k=1

E
(
g2(X0(yk))

)
for nonrandom g ∈ L2(A). Again, we have

c‖g‖2L2(A) ≤ ‖g‖2π,M ≤ C‖g‖2L2(A)

for all g ∈ L2(A) and some constants c, C > 0 under Assumption (E).

Proposition 4.5.3. Grant Assumptions (M), (N) and (H). For c > 0, define

ΩN,M,m := ΩN,M,m,c :=
{
‖t‖2N,M ≥ c‖t‖2L2 for all t ∈ Sm

}
.

Then, for any γ < 1/2 and ρ < 1/4, we have

E
(
‖f̂m − fA‖2N,M1ΩN,M,m

)
. ‖fA − fm‖2π,M +

Dm

T
+ ∆γ +

1

M∆2
+

1

Mρ
.
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Proof. Recall the underlying regression model from (4.16). By Lemma 4.4.7, we have ‖g‖2N,M =
1
N

∑N−1
i=0 ‖Ŝ(0)g(Xti)‖2L2 for any g ∈ Sm and, thus, we can derive the basic inequality

‖f̂m − fA‖2N,M ≤ 3‖fm − fA‖2N,M +
16

N

N−1∑
i=0

‖R̃i‖2L2 + 16 sup
t∈Sm, ‖t‖N,M=1

( 1

N

N−1∑
i=0

〈
Ŝ(0)t(Xi), εi

〉
L2

)2

just as in the proof for the space-continuous case. Also the variance term can be handled analogously:
With an orthonormal basis (ϕλ, λ ∈ Λm) of Sm, the same line of arguments as in the proof Proposition
4.4.4 leads to

E
(

sup
t∈Sm, ‖t‖N,M=1

( 1

N

N−1∑
i=0

〈
Ŝ(0)t(Xi), εi

〉
L2

)2

1ΩN,M,m

)
.

1

N2∆

∑
λ∈Λm

N−1∑
i=0

E(‖Ŝ(0)ϕλ(Xti)‖2L2).

Further, since ‖Ŝ(0)ϕλ(Xti)‖2L2 = 1
M

∑M−1
k=1 ϕ2

λ(Xti(yk)), we get
∑
λ∈Λm

‖Ŝ(0)ϕλ(Xti)‖2L2 ≤ Dm by
Assumption (N). Consequently,

E
(

sup
t∈Sm, ‖t‖N,M=1

( 1

N

N−1∑
i=0

〈
Ŝ(0)t(Xi), εi

〉
L2

)2

1ΩN,M,m

)
.
Dm

T
.

We finish the proof by showing that

E(‖R̃i‖2L2) .
1

M∆2
+

1

Mρ
+ ∆γ (4.31)

holds for any ρ < 1/4 and γ < 1/2: First of all, by Lemma 4.5.7, we have

E(‖f(Xt)− Ŝ(0)f(Xt)‖2L2) . E(‖f(Xt)‖2C2α + ‖f(Xt)‖2∞ + ‖f(Xt)‖2Dα)δ
8α2

4α+1

with the space Dα defined in (4.34). The expectation on the right hand side is finite as long as
α < 1/4, due to Lemma 4.5.5 and Proposition 4.2.1. Thus, by picking α sufficiently close to 1/4, we
get

E(‖f(Xt)− Ŝ(0)f(Xt)‖2L2) . δρ = M−ρ.

To bound ∆−2E(‖S(h)Xt−Ŝ(h)Xt‖2L2) for h ∈ {0,∆}, we use the usual decomposition Xt = S(t)X0+
X0
t +Nt where we can fix a convenient value for t > 0, due to stationarity. Since the decomposition

is trivial for t = 0, we pick t := t1 = ∆. For S(t)X0, we have

‖S(h)S(t)X0 − Ŝ(h)S(t)X0‖2L2 =

M−1∑
k=1

e−2λkh
(
〈S(t)X0, ek〉L2 − 〈S(t)X0, ek〉M

)2

+
∑
k≥M

e−2λk(h+t)〈X0, ek〉2L2 .

For the first sum, the Cauchy-Schwarz inequality yields(
〈S(t)X0, ek〉L2 − 〈S(t)X0, ek〉M

)2

=
( ∑
l∈I+

k \{k}

e−λlt〈X0, el〉L2 −
∑
l∈I−k

e−λlt〈X0, el〉L2

)2

≤ ‖X0‖2L2

∑
l∈(I+

k ∪I
−
k )\{k}

e−2λlt

and, thus, with t = ∆,

M−1∑
k=1

e−2λkh
(
〈S(t1)X0, ek〉L2 − 〈S(t1)X0, ek〉M

)2

128



≤ ‖X0‖2L2

∑
l≥M

e−2λl∆ ≤ ‖X0‖2L2

1√
∆

∫ ∞
M
√

∆

e−2π2ϑx2

dx . ‖X0‖2L2

1

M2∆3/2
.

The same bound holds for the second sum since∑
k≥M

e−2λk(h+∆)〈X0, ek〉2L2 ≤ ‖X0‖2L2e−2λM∆ . ‖X0‖2L2

1

M2∆
. ‖X0‖2L2

1

M2∆3/2
.

Therefore, assuming M∆2 →∞, we get

∆−2E(‖S(h)S(t1)X0 − Ŝ(h)S(t1)X0‖2L2) . E(‖X0‖2L2)
1

M2∆7/2
= o
( 1

M∆2

)
.

The linear component X0
t can easily be treated due to independence:

E(‖S(h)X0
t − Ŝ(h)X0

t ‖2L2) = E
(M−1∑
k=1

e−2λkh
( ∑
`∈I+

k \{k}

u`(t)−
∑
`∈I−k

u`(t)
)2)

+ E
( ∑
`≥M

e−2λ`hu2
`(t)

)
≤ 2

∑
`≥M

E(u2
`(t)) .

1

M
.

For the nonlinear part, set Bk :=
∑
`∈I+

k \{k}
n`(t) −

∑
`∈I−k

n`(t) with n`(t) := 〈Nt, e`〉L2 . Then, by

the Cauchy-Schwarz inequality,

B2
k ≤

( ∑
`∈(I+

k ∪I
−
k )\{k}

λ2α
` n2

`

)( ∑
`∈(I+

k ∪I
−
k )\{k}

λ−2α
`

)
≤ ‖Nt‖2Dα

( ∑
`∈(I+

k ∪I
−
k )\{k}

λ−2α
`

)
.

Since, furthermore,
∑
`≥M n2

`(t) ≤ λ−2α
M ‖Nt‖2Dα , we have

E(‖S(h)Nt − Ŝ(h)Nt‖2L2) ≤ E
(M−1∑
k=1

B2
k

)
+ E

( ∑
`≥M

n2
`(t)

)
. E(‖Nt‖2Dα)

( ∑
k≥M

λ−2α
k + λ−2α

M

)
.

1

M4α−1
E(‖Nt‖2Dα).

Now, by Remark 4.5.6, we have E(‖Nt‖2Dα) <∞ for α = 1/2 and, thus, E(‖S(h)Nt−Ŝ(h)Nt‖2L2) . 1
M .

Finally, the bound (4.31) follows in view of

E

(∥∥∥ 1

∆

∫ ti+1

ti

(
S(ti+1 − s)f(Xs)− f(Xti)

)
ds
∥∥∥2

L2

)
. ∆γ

for any γ < 1/2, which is shown in the proof of Proposition 4.4.4.

The remaining steps of the proof closely follow the space-continuous case.

Lemma 4.5.4. Grant Assumptions (M), (E), (N) and (H) and and let

ΞN,M,m :=

{∣∣∣‖t‖2N,M‖t‖2π,M
− 1
∣∣∣ ≤ 1

2
∀t ∈ Sm

}
.

There are constants K,K ′ > 0 such that

P(ΞcN,M,m) ≤ K
(
NβX(qN∆) +D2

m exp
(
−K ′ pN

Lm

))
holds for any pN , qN ∈ N with N = 2pNqN . In particular, with the constants γ and L from the
β-mixing condition (4.4) as well as K̃ := K max(L, 1), we have

P(ΞcN,M,m) ≤ K̃
(
N exp

(
− γqN∆

)
+D2

m exp
(
−K ′ pN

Lm

))
.
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Proof. After replacing integrals by their empirical counterpart, the proof can be carried out in exactly
the same way as for space-continuous observations. In particular, vN (t) has to be replaced by

vN,M (t) :=
1

NM

N−1∑
i=0

M−1∑
k=1

(
t(Xi∆(yk))−E

(
t(Xi∆(yk))

))
and Zj,a(t) by

Z̃j,a(t) :=
1

qN

qN∑
i=1

1

M

M−1∑
k=1

t(U ij,a(yk)).

Now, we can finish the proof for the main theorem on fully discrete observations.

Proof of Theorem 4.4.9. As in the space-continuous case, we prove that

E(‖f̂m − fA‖2N,M1ΞcN,M,m
) . N−α

holds for any α > 0. Since f̂m = arg ming∈Sm
1
N

∑N−1
i=0 ‖Ỹi − Ŝ(0)g(Xti)‖2L2 with Ỹi :=

∆−1
(
Ŝ(0)Xti+1

− Ŝ(∆)Xti

)
, we have that (Ŝ(0)f̂m(Xt0), . . . , Ŝ(0)f̂m(XtN−1

)) is the orthogonal pro-

jection in HN =
(
L2(0, 1)

)N
of (Ỹ0, . . . , ỸN−1) onto the subspace {(Ŝ(0)t(Xt0), . . . , Ŝ(0)t(XtN )), t ∈

Sm}. Using the fact that projection operators have norm 1 and inserting Ỹi = Ŝ(0)f(Xti) + R̃i + εi,
we get

‖f̂m − fA‖2N,M ≤
1

N

N−1∑
i=0

‖Ŝ(0)f̂m(Xti)− Ŝ(0)f(Xti)‖2L2

≤ 1

N

N−1∑
i=0

‖Ŝ(0)f(Xti)‖2L2 +
1

N

N−1∑
i=0

‖R̃i + εi‖2L2

.
1

N

N−1∑
i=0

‖f(Xti)‖2∞ +
1

N

N−1∑
i=0

‖R̃i‖2L2 +
1

N

N−1∑
i=0

‖εi‖2L2 .

From here, the conclusion follows in exactly the same way as in the proof of Theorem 4.4.2.

The following proof verifies that the rate of convergence is not affected when the parameter ϑ2

appearing in the estimator for f is replaced by an appropriate estimator.

Proof of Theorem 4.4.12. We verify the bound for ‖f̌m−fA‖2N,M , the bound for ‖f̌m− fA‖2L2(A) then
follows as in the proof of Corollary 4.4.6. We define

Ψh
N,M :=

{
(ϑ̂2 − ϑ2)2 ≤ h∆3/2

T

}
.

Step 1: We show that

E(1ΨhN,M
∆−2‖Ŝ(∆)Xti − Š(∆)Xti‖2L2) .

h

T
:

For fixed ϑ2 ∈ (0, ϑ2), we have ϑ̂2 ≥ ϑ2 on the event Ψh
N,M as soon as T is sufficiently large. Thus,

we can estimate

‖Ŝ(∆)Xti − Š(∆)Xti‖2L2 =

M−1∑
k=1

(e−λk∆ − e−λ̂k∆)2〈Xti , ek〉2M
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. (ϑ2 − ϑ̂2)2∆2
M−1∑
k=1

λ2
ke−ϑ2π

2k2∆〈Xti , ek〉2M

≤ h∆7/2

T

M−1∑
k=1

λ2
ke−ϑ2π

2k2∆〈Xti , ek〉2M

on Ψh
N,M . Therefore,

E(1ΨhN,M
‖Ŝ(∆)Xti − Š(∆)Xti‖2L2) . h

∆7/2

T

M−1∑
k=1

λ2
ke−ϑ2π

2k2∆E(〈Xti , ek〉2M )

and the claim follows from the usual Riemann sum argument if we show that E(〈Xti , ek〉2M ) . λ−1
k .

To that aim, we apply the decomposition Xt = S(t)ξ + X0
t + Nt. As in previous results, S(t)ξ is

negligible since we can choose t arbitrarily large due to stationarity. For the linear part, we have

E(〈X0
ti , ek〉2M ) .

∑
`∈I+

k ∪I
−
k

1

λ`
.
∑
`≥0

1

(k + 2`M)2
≤ 1

k2

∑
`≥0

1

(1 + 2`)2
.

1

λk
.

Finally, for the nonlinear part, define n`(t) := 〈Nt, e`〉L2 . Then, using the Cauchy-Schwarz inequality
and the spaces Dα from (4.34), we have

〈Nt, ek〉2M ≤
( ∑
`∈(I+

k ∪I
−
k )

λ2α
` n2

`

)( ∑
`∈(I+

k ∪I
−
k )

λ−2α
`

)
≤ ‖Nt‖2Dα

( ∑
`∈(I+

k ∪I
−
k )

λ−2α
`

)
≤ 1

λk
‖Nt‖2Dα

(∑
`≥1

λ
−(2α−1)
`

)
.

1

λk
‖Nt‖2Dα ,

provided that α > 3/4. Now, by picking α ∈ ( 3
4 , 1), we get E(〈Nt, ek〉2M ) . λ−1

k in view of Remark
4.5.6.

Step 2 : By Markov’s inequality, we can estimate

P
(
‖f̌m − fA‖2N,M ≥ a

)
≤ P

(
{‖f̌m − fA‖2N,M ≥ a} ∩Ψh

N,M ∩ ΞN,M,m

)
+ P((Ψh

N,M )c) + P(ΞcN,M,m)

≤ a−1E
(
1ΨhN,M∩ΞN,M,m‖f̌m − fA‖2N,M

)
+ P((Ψh

N,M )c) + P(ΞcN,M,m)

for any a > 0. Now, using Step 1, we can show

E
(
1ΨhN,M∩ΞN,M,m‖f̌m − fA‖2N,M

)
. ‖f − fm‖2L2(A) +

Dm

T
+ ∆γ +

1

M∆2
+

1

Mρ
+
h

T

just like in the proof of Proposition 4.5.3. Further, P(ΞcN,M,m) converges to 0 under the assumptions of

this theorem and, thanks to Corollary 2.2.19, P((Ψh
N,M )c) can be made arbitrarily small by choosing

h sufficiently large. Since h/T . Dm/T holds for any fixed h, we have shown that for arbitrary ε > 0,
we can pick K > 0 such that

lim sup
M,N→∞

P
(
‖f̌m − fA‖2N,M ≥ K

(
‖f − fm‖2L2(A) +

Dm

T
+ ∆γ +

1

M∆2
+

1

Mρ

))
< ε.

4.5.4 Further proofs and auxiliary results

Before turning to the auxiliary results for nonparametric estimation of the nonlinearity f , we prove
that condition (4.5) implies Assumptions (B) and (M).
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Proof of Proposition 4.1.1. First, we sketch the existence proof and show that Assumption (B) is
satisfied for ξ = 0. To that aim, we follow the line of arguments from [26, Theorem 7.7], see also [34,
Propositon 6.1]. As before, write m ≡ f(0) as well as f0(x) = f(x)−m and decompose Xt = w(t)+v(t)

with w(t) := X0
t +

∫ t
0
S(r)mdr and v(t) := S(t)ξ +

∫ t
0
S(t− s)f0(Xs) dt. It follows from Lemma 4.5.1

and ‖S(r)m‖∞ . e−λ0r‖m‖∞ (cf. Lemma 4.2.2) that w ∈ C(R+, E) holds almost surely and

sup
t≥0

E(‖wt‖p∞) <∞. (4.32)

As in Theorem 1.1.1, it follows from the fact that F0(u) := f0 ◦ u is a locally Lipschitz continuous
function from E into itself, that there exists a solution to equation (4.1) up to a terminal time
tmax = tmax(ω) > 0. Thus, global existence follows from an a-priori estimate on ‖v(·)‖∞. We

consider the approximation vn := nR(n,Aϑ)S(t)ξ +
∫ t

0
nR(n,Aϑ)S(t − s)f0(v(s) + w(s)) ds where

R(n,Aϑ) := (nI−Aϑ)−1 is the resolvent operator of Aϑ. Then, vn is differentiable in time, even when
v is not. Now, for any x ∈ E and x∗ ∈ ∂‖x‖, it follows like in [26, Example 7.8] from the condition
(N4) in Section 1.1 that 〈Aϑx, x∗〉 ≤ 0 where ∂‖x‖ is the subdifferential of the norm defined in (1.6).
Thus, setting δn(t) := v′n(t)−Aϑvn−f(vn(t)+w(t)) and using the bound (1.7) with hvn(t) ∈ ∂‖vn(t)‖
from (1.9), we can estimate

d−

dt
‖vn(t)‖∞ ≤ 〈

d

dt
vn(t), hvn(t)〉 = 〈Aϑvn(t), hvn(t)〉+ 〈f(vn(t) + w(t)), hvn(t)〉+ 〈δn(t), hv(t)〉

≤ 〈f(vn(t) + w(t)), hvn(t)〉+ ‖δn(t)‖∞
≤ −a‖vn(t)‖∞ + b‖w(t)‖β∞ + c+ ‖δn(t)‖∞.

Using Gronwall’s inequality and the fact that vn(t)→ v(t) and δn(t)→ 0 uniformly on compact time
intervals yields

‖v(t)‖∞ ≤ e−at‖ξ‖∞ +

∫ t

0

e−a(t−s)(b‖w(s)‖β∞ + c) ds.

By Jensen’s inequality, we pass to

‖v(t)‖p∞ . e−apt‖ξ‖p∞ +

∫ t

0

e−a(t−s)(b‖w(t)‖β∞ + c)p ds ·
(∫ t

0

e−as ds

)p−1

and Fubini’s theorem as well as (4.32) show that there exists K > 0 such that for nonrandom initial
conditions ξ = x ∈ E, we have

E(‖Xt‖p∞) . e−apt‖x‖p∞ +K. (4.33)

In particular, Assumption (B) with ξ = 0 is satisfied.
Further, based on their derivation of lower bounds for the transition densities associated with the

Markov semigroup (Pt), Goldys and Maslowski [34, Theorem 6.3] show the existence of an invariant
measure π on E and of constants C, γ > 0 such that

‖P ∗t ν − π‖TV ≤ C
(∫

E

‖u‖∞ ν(du) + 1
)

e−γt with P ∗t ν :=

∫
E

Pt(u, ·) ν(du)

holds for all probability measures ν on E. Thus, we have ‖Pt(x, ·) − π‖TV ≤ C(‖x‖∞ + 1)e−γt and
Pt(x, ·) converges weakly to π(·) as t → ∞ for all x ∈ E. By Skorokhod’s representation theorem,
there exists a probability space on which there are E-valued random variables Z,Z1, Z2, . . . with
Zi ∼ Pi(x, ·), Z ∼ π and Zi → Z almost surely. Denoting the expectation on the second probability
space by Ẽ, Fatou’s Lemma yields∫

E

‖u‖p∞ π(du) = Ẽ(‖Z‖p∞) ≤ lim inf
i→∞

Ẽ(‖Zi‖p∞) = lim inf
i→∞

∫
E

‖u‖p∞ Pi(x, du) <∞
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by (4.33). Thus, if X0 = ξ ∼ π, then E(‖Xt‖p∞) = E(‖X0‖p∞) <∞ and∫
E

‖Pt(u, ·)− π‖TV π(du) ≤ C
(∫

E

‖u‖∞ π(du) + 1
)

e−γt . e−γt,

as required for (M) as well as (B) in case of a stationary initial condition.

Technical Lemmas for the nonparametric estimator of f

The following proof verifies the connection between the L2-norm on [0, 1] and its empirical counterpart.

Proof of Lemma 4.4.7. In view of Dini’s test, the Hölder condition implies convergence of the Fourier
series of H at the points yk, i.e., H̄n(yk) :=

∑n
l=1 hlel(yk)→ H(yk) as n→∞ for any 1 ≤ k ≤M −1.

Therefore, |〈H, ek〉M − 〈H̄n, ek〉M | ≤ 1
M

∑M−1
l=1 |H(yl)− H̄n(yl)||ek(yl)| tends to 0 as n→∞. Hence,

the sequence 〈H̄n, ek〉M =
∑
l∈I+

k ∩[1,n] hl −
∑
l∈I−k ∩[1,n] hl converges to the limit 〈H, ek〉M , proving

the first part of the lemma. In the same way, using el(yk) = ±ej(yk) for l ∈ I±j , one can show that

H(yk) =
∑M−1
l=1 Hlel(yk). Consequently,

1

M

M−1∑
k=1

H2(yk) =
1

M

M−1∑
k=1

(M−1∑
l=1

Hlel(yk)
)2

=

M−1∑
l,l′=1

HlHl′〈el, el′〉M =

M−1∑
l=1

H2
l = ‖HM‖2L2 .

The following lemma analyzes the regularity of Xt in the spaces

Dε := D((−Aϑ)ε) :=
{
u ∈ L2((0, 1)),

∑
k≥1

λ2ε
k 〈u, ek〉2 <∞

}
(4.34)

endowed with the norm ‖u‖Dε := ‖(−Aϑ)εu‖L2 . For ε < 1/4, these spaces can be identified with
L2-Sobolov spaces on (0, 1), namely Dε = W 2ε,2 and the norms are equivalent. For a proof of this
characterization, we refer to, e.g., [11].

Lemma 4.5.5. Under Assumption (M) we have E(‖Xt‖pDε) = E(‖X0‖pDε) <∞ and E(‖f(Xt)‖pDε) =
E(‖f(X0)‖pDε) <∞ for all ε < 1/4 and p ≥ 1.

Proof. We use the usual decomposition Xt = S(t)X0 +X0
t +Nt. By stationarity, we may choose t = 1.

As before, E(‖X0
1‖pDε) < ∞ can be shown by a direct calculation. Further, E(‖S(1)X0‖pDε) < ∞

follows from

‖S(1)X0‖2Dε =
∑
k≥1

e−2λkλ2ε
k 〈X0, ek〉2 ≤ ‖X0‖2L2

∑
k≥1

e−2λkλ2ε
k . ‖X0‖2∞.

To treat N1 =
∫ 1

0
S(1− s)f(Xs) ds, note that

‖(−Aϑ)
ε
S(h)u‖2L2 =

∑
k≥1

λ2ε
k e−2λkh〈u, ek〉2 ≤ sup

λ≥λ1

λ2εe−2λh‖u‖2L2 .

The function λ 7→ λ2εe−2λh attains its maximum overR+ in λ∗ := ε/h and is monotonically decreasing
on [λ∗,∞). Thus, we have supλ≥λ1

λ2εe−2λh ≤ g2(h) with g(h) := ( ε
eh )ε for h ≤ ε/λ1 and g(h) :=

λε1e−λ1h for h > ε/λ1. Since g ∈ L1(R+), we can use Jensen’s inequality to show

‖N1‖pDε ≤
(∫ 1

0

g(1− s)‖f(Xs)‖L2 ds
)p
≤
(∫ 1

0

g(s) ds
)p−1(∫ t

0

g(1− s)‖f(Xs)‖pL2 ds
)

.
∫ 1

0

g(1− s)‖f(Xs)‖pL2 ds.
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Therefore, E(‖N1‖pDε) . E(‖f(X0)‖pL2) . E(‖f(X0)‖p∞) < ∞ by Assumption (M) which shows the
claim for Xt. In order to transfer the result to f(Xt), we estimate

‖f(Xt)‖2Dε . ‖f(Xt)‖2W 2ε,2 = ‖f(Xt)‖2L2 +

∫ 1

0

∫ 1

0

(f(Xt(x))− f(Xt((y)))2

|x− y|1+4ε
dxdy

≤ ‖f(Xt)‖2L2 + ‖f ′(Xt)‖2∞‖Xt‖2Dε
. ‖f(Xt)‖2L2 + ‖f ′(Xt)‖4∞ + ‖Xt‖4Dε ,

from where the claim follows by Assumptions (M) and (4.3) in view of the first part of this proof.

Remark 4.5.6. The treatment of the nonlinear component in the above proof shows that E(‖Nt‖pDε) <
∞ holds for all ε < 1.

The following lemma is useful for bounding the expression ‖Ŝ(0)f(Xt) − f(Xt)‖2L2 appearing in

the remainder term R̃i from the regression model (4.16). Of particular interest to us is the situation

where α is close to 1/4 and, hence, the exponent 8α2

4α+1 can be chosen close to 1/4.

Lemma 4.5.7. Let H ∈ C2α([0, 1])∩Dα for some α ∈ (0, 1
2 ). Further, let HM :=

∑M−1
k=1 Hkek where

Hk := 〈H, ek〉M = 1
M

∑M−1
l=1 H(yl)ek(yl). Then, there exists a constant C > 0 such that

‖H −HM‖2L2 ≤ CK2δ
8α2

4α+1

where K := max(‖H‖∞, ‖H‖C2α , ‖H‖Dα).

Proof. First of all, by regarding Hk as a Riemann sum, we can bound

|Hk − hk| =
∣∣∣ 1

M

M∑
l=1

H(yl)ek(yl)−
∫ 1

0

H(y)ek(y) dy
∣∣∣ ≤ M∑

l=0

∫ yl+1

yl

|H(yl)ek(yl)−H(y)el(y)| dy

. (‖ek‖∞‖H‖C2α + ‖H‖∞‖ek‖C2α)δ2α . (‖H‖C2α + ‖H‖∞k2α)δ2α . Kλαk δ
2α. (4.35)

Similarly, since 1
M

∑M−1
k=1 H2(yk) = ‖HM‖2L2 =

∑M−1
k=1 H2

k holds by Lemma 4.4.7, we have

∣∣∣‖HM‖2L2 − ‖H‖2L2

∣∣∣ =
∣∣∣ 1

M

M−1∑
k=1

H2(yk)− ‖H‖2L2

∣∣∣ ≤ M−1∑
k=0

∫ yk+1

yk

|H2(yk)−H2(y)| dy

≤ ‖H2‖C2αδ2α ≤ 2‖H‖∞‖H‖C2αδ2α . K2δ2α. (4.36)

Also, note that for hk := 〈H, ek〉L2 and any R ∈ N, we have∑
l≥R

h2
l ≤ λ−2α

R

∑
l≥R

λ2α
l h2

l ≤ ‖H‖2Dαλ−2α
R . K2/R4α. (4.37)

The three inequalities just derived are now used to bound

‖H −HM‖2L2 = ‖HM‖2L2 − ‖H‖2L2 + 2〈H −HM , H〉L2

≤ |‖HM‖2L2 − ‖H‖2L2 |+ 2|〈H −HM , H〉L2 | :

Due to (4.36), the first term can be bounded by K2δ2α . K2δ
8α2

4α+1 up to a constant. For the second
term, using Parseval’s identity, we get

|〈H −HM , H〉L2 | =
∣∣∣M−1∑
l=1

(hl −Hl)hl +

∞∑
l=M

h2
l

∣∣∣ ≤ ∣∣∣M−1∑
l=1

(hl −Hl)hl

∣∣∣+

∞∑
l=M

h2
l =: T1 + T2.
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It follows directly from (4.37) that T2 . K2/M4 . K2δ
8α2

4α+1 . To estimate T1, we decompose

T1 ≤
∣∣∣M0−1∑
l=1

(hl −Hl)hl

∣∣∣+
∣∣∣ M−1∑
l=M0

(hl −Hl)hl

∣∣∣ =: T11 + T12

for some intermediate value M0 ∈ {1, . . .M − 1}. Now, using the Cauchy-Schwarz inequality and
(4.35), we get

T 2
11 ≤

(M0−1∑
l=1

λ−2α
l (hl −Hl)

2
)(M0−1∑

l=1

λ2α
l h2

l

)
. K2M0δ

4α‖H‖2Dα . K4M0δ
4α

and, by (4.37),

T 2
12 ≤

M−1∑
l=M0

(hl −Hl)
2
M−1∑
l=M0

h2
l . (‖H‖2L2 + ‖HM‖2L2)

∞∑
l=M0

h2
l . K4/M4α

0 .

Balancing the bounds for T11 and T12 shows that it is optimal to take M0 h δ−
4α

4α+1 and with this

choice we obtain the overall bound T1 . K2δ
8α2

4α+1 , which finishes the proof.

135



Chapter 5

Conclusion and outlook

This thesis provides genuinely new insights to the theory of parameter estimation for SPDEs based on
discrete observations in time and space. The heart of this thesis is given by the interplay of our results
on estimation of (σ2, ϑ2). By providing matching upper and lower bounds, we have, in a sense, com-
pletely solved the problem of simultaneous estimation of the diffusivity and the volatility coefficient
of the stochastic heat equation on an interval. The resulting optimal rate is remarkable since it differs
from the usual parametric rate of convergence, in general. Furthermore, we have complemented the
existing literature on statistics for SPDEs based on discrete observations by setting first steps into
two new directions: by considering reaction-diffusion equations, we are the first to treat estimation in
a semilinear framework and, by estimating the associated nonlinearity, we are the first to consider a
fully nonparametric estimation problem. In fact, the latter is also the first account of nonparametric
estimation of the nonlinearity in SPDEs, regardless of the observation scheme. In contrast to the pa-
rameter ϑ2, estimation of the nonlinearity f turns out to be comparable to drift estimation for finite
dimensional SDEs. The parametric and nonparametric estimators constructed in this thesis are either
directly given by a closed form expression or via a simple least squares criterion, which makes them
easy to implement and practically relevant. Apart from statistical contributions, this thesis introduces
the replacement method for generating fully discrete samples of the linear stochastic heat equation on
an interval. Based on this method, it is possible to generate almost exact (in distribution) samples at
a comparably low computational cost. Employing the replacement method, simulation studies on our
estimators confirm our theoretical results.

Based on our insights and developed techniques, it will be possible to extend the theory to more
general models and estimation problems. This is particularly important with respect to practical
applicability of the statistical methods. In the following, we state some further research directions
that we consider to be interesting. Of course, the list is not exhaustive and, in particular, it would be
possible to consider any combination of these extensions.

5.1 Adaptive nonparametric estimation of the nonlinearity

In Section 4.4 we have derived a nonparametric estimator for the nonlinearity f and, under certain
assumptions, the estimator achieves the usual nonparametric rate T−

α
2α+1 where α determines the

regularity of f . The estimator has the limitation that choosing the optimal value for the dimension
Dm of the approximation space requires knowledge of the regularity α of f . This problem can usually
be circumvented by considering an adaptive version of the estimator where the dimension of the
approximation space is chosen in a data driven way. As in Comte et al. [21] this should be possible in
our case by introducing a penalization pen(m) = penN,M (m) for too large dimensions Dm, leading to
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overfitting. The resulting estimator is then given by

f̂ := f̂m̂ with m̂ := arg min
m

(
min
g∈Sm

γN,M (g) + pen(m)
)

(5.1)

where m belongs to an appropriate subset of N and γN,M is the risk process from (4.17). In analogy
to [21], it can be expected that choosing a penalization pen(m) ≥ CDm

T for some constant C > 0 will
automatically realize the bias-variance compromise.1

5.2 Nonparametric estimation of the nonlinearity under low
spatial resolution

Our nonparametric estimator of the nonlinearity f from Section 4.4 relies on an approximation of the
heat semigroup by means of replacing the Fourier modes of the solution process by their empirical
counterparts. This approximation step is only possible for discrete observations distributed throughout
the whole spatial domain and with a much higher spatial than temporal resolution. Indeed, our oracle
inequalities only serve as a consistency result when M∆2 → ∞. Thus, in future research it should
be explored how nonparametric estimation of the nonlinearity can be accomplished while avoiding
spectral approximations. For equations driven by a more regular noise process than a cylindrical
Brownian motion, a possible approach could be to directly approximate the Laplacian rather than
the corresponding semigroup, as discussed at the end of Section 4.4. For reaction-diffusion equations
driven by space-time white noise, this remains a completely open problem.

5.3 Spatially varying diffusivity

Let us consider the stochastic heat equation with a spatially varying diffusivity parameter ϑ2 : (0, 1)→
R+, namely

dXt(x) = ϑ2(x)
∂2

∂x2
Xt(x) dt+ σ dWt(x), (t, x) ∈ R+ × (0, 1).

Without parametric assumptions on ϑ2, using the local measurements approach due to Altmeyer and
Reiß [3], it is possible to recover the value ϑ2(x0) based on the observation 〈Xt,Kh,x0

〉, t ∈ [0, T ], as
h→ 0, where the kernel Kh,x0

is supported in a radius h around x0 ∈ (0, 1). Thus, one can say that
the information on the value ϑ2(x0) is stored in the process locally around x0. It will be interesting
to explore how this property is reflected in space-time-discrete observations that are recorded locally
around a point x0 ∈ (0, 1). Indeed, this is not only interesting from the practical perspective of
deriving estimation methods for more general models but it will also clarify the structural connection
between the discrete and the functional observation scheme.

5.4 Multi-dimensional space domains

Central limit theorems for time increments at finitely many spatial locations in Rd have been studied
by Chong [15]. The situation where the number of spatial observations tends to infinity has not
yet been explored. Neither have other types of increments been studied in the literature in a multi-
dimensional setting, yet. Let us consider an open bounded space domain O ⊂ Rd for some d ≥ 1.
Since the stochastic heat equation driven by a cylindrical Brownian motion only has a function valued
solution in space dimension d = 1, we need to consider a noise process that is more regular in space.
This can be implemented by considering

dXt(x) = ϑ2∆Xt(x) dt+ σB dWt(x), (t, x) ∈ R+ ×O,
1This approach has indeed proved to be successful, see the preprint Hildebrandt and Trabs [37] which appeared prior

to the final publication of this thesis.
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where the diffusion coefficient B has a regularizing effect in the sense that the condition (L2) from
Section 1.1 is satisfied. E.g., by considering B = (−∆)−γ for an appropriate power γ > 0, we can
again obtain a diagonalizable equation where the coefficient processes are independent. Furthermore,
when considering a rectangular bounded space domain, e.g., O = (0, 1)d, there are explicit expressions
for the eigenfunctions of the Laplacian. In fact, they are given by products of the eigenfunctions in
the one-dimensional case. This enables explicit calculations on the covariance structure of discrete
observations but they will certainly be more tedious compared to dimension one.

While time increments are defined just like in the one-dimensional case, a generalization of the
other types of increments hinges on the geometry of the points of observation in the space domain. If
these form a rectangular grid, at least the generalization of double increments is straight forward. We
conjecture that it is possible to estimate (σ2, ϑ2) based on a generalization of double increments in a
rate optimal way. It will be interesting to see how this rate is affected by the dimension d as well as
the regularity parameter γ. Of course, with the introduction of the new parameter γ also arises the
question how it can be inferred from the data.

5.5 General nonlinearities

As for multi-dimensional space domains, a noise process that is more regular than a cylindrical Brow-
nian motion also allows for more flexibility with respect to the class of nonlinearities F in systems of
the type

dXt(x) =
(
ϑ2

∂2

∂x2
Xt(x) + F (Xt)(x)

)
dt+ σB dWt(x), (t, x) ∈ R+ × (0, 1).

So far, we have only considered nonlinearities of Nemytskii-type, i.e., F (u) = f ◦ u for some function
f : R → R, but there are also other important examples to consider, e.g., Burgers’ equation where
F (u) = −u ∂

∂xu. As in Pasemann and Stannat [68], by taking B = (−∆)−γ for some sufficiently
large γ > 0, it is possible to force the solution process to take values in the domain of the operator
F . Then, if the Hölder regularity of the solution process is preserved by F to a certain extent, one
can conclude that the nonlinear component exceeds the linear component of the solution process in
regularity. Thus, similar estimators for (σ2, ϑ2) as in Section 4.3 will keep their validity in the general
semilinear framework.
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Appendix

Abstract

Parameter estimation for parabolic stochastic partial differential equations in one space dimension
is studied, observing the solution field on a discrete grid in time and space. We focus on an infill
asymptotic regime in both the time and the space coordinate.

First of all, we consider the linear stochastic heat equation on an interval. While temporal power
variations have already been studied in the literature, we prove central limit theorems for realized
quadratic variations based on spatial increments as well as on double increments in time and space.
Resulting method of moments estimators for the diffusivity and the volatility parameter inherit the
asymptotic normality and can be constructed robustly with respect to the sampling frequencies in
time and space. Upper and lower bounds reveal that, in general, the optimal convergence rate for
joint estimation of the parameters is slower than the usual parametric rate.

Then, the semilinear framework of reaction-diffusion equations is considered, where the nonlinearity
is given by a smooth function f : R→ R. Noting that the solution process is exceeded by its nonlinear
component in Hölder regularity, we show that the asymptotic properties of our diffusivity and volatility
estimators largely carry over from the linear setup. Furthermore, we derive a nonparametric estimator
for the nonlinearity f of the underlying equation. The estimate is chosen from a finite dimensional
function space based on a simple least squares criterion. We derive oracle inequalities both with
respect to the empirical 2-norm with evaluations at the data points and with respect to the L2-
risk. Our results provide conditions for the estimator to achieve the usual nonparametric rate of
convergence.

Reverting to the linear setup, our theoretical results are illustrated in numerical examples. In order
to perform precise simulations, we develop the replacement method for generating fully discrete samples
of the solution to the stochastic heat equation on an interval. Our approach generalizes a method
proposed by Davie and Gaines (2001). In order to provide a theoretical justification of the method,
we derive a condition for the validity of the approximation which is particularly applicable when
the number of temporal and spatial observations tends to infinity. The quality of the approximation
is measured in total variation distance. Simulation results indicate that samples provided by the
replacement method are more accurate and considerably less computationally expensive than those
obtained by naive truncation in Fourier space.

Zusammenfassung

Wir behandeln Parameterschätzung für parabolische stochastische partielle Differentialgleichungen
in einer Raumdimension, wenn der Lösungsprozess an diskreten Gitterpunkten in Raum und Zeit
beobachtet wird. Der Fokus liegt dabei auf hochfrequenten Beobachtungen, sowohl in der Zeit- als
auch in der Raumkoordinate.

Zuerst betrachten wir die lineare stochastische Wärmeleitungsgleichung auf einem Intervall. Wäh-
rend zeitliche Variationsprozesse bereits in der Literatur untersucht wurden, beweisen wir zentrale
Grenzwertsätze für empirische quadratische Variationen basierend sowohl auf Orts- als auch auf
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Doppelinkrementen in Raum und Zeit. Die resultierenden Momentenschätzer für den Diffusivitäts-
und den Volatilitätsparameter erben die asymptotische Normalität und können robust bezüglich der
Beobachtungsfrequenz im Ort und in der Zeit konstruiert werden. Obere und untere Schranken zeigen,
dass die optimale Konvergenzrate für die gemeinsame Schätzung von Volatilität und Diffusivität im
Allgemeinen langsamer als die parametrische Konvergenzrate ist.

Anschließend betrachten wir ein semilineares Modell, und zwar Reaktions-Diffusions-Gleichungen,
deren Nichlinearität durch eine glatte Funktion f : R → R gegeben ist. Wir stellen fest, dass die
Hölder-Regularität der nichtlinearen Komponente der Lösung höher als die des gesamten Lösungs-
prozesses ist. So können wir zeigen, dass sich die asymptotischen Eigenschaften unserer Diffusivitäts-
und Volatilitätsschätzer größtenteils nicht vom linearen Fall unterscheiden. Desweiteren behandeln wir
nichtparametrische Schätzung der Nichtlinearität f der zugrundeliegenden Gleichung. Unser Schätzer
wird aus einem endlichdimensionalen Funktionenraum basierend auf einem leicht zu implementieren-
den kleinste-Quadrate-Kriterium gewählt. Wir leiten Orakel-Ungleichungen bezüglich der empirischen
2-Norm, die sich durch Auswertung einer Funktion an den Datenpunkten ergibt, und bezüglich des
L2-Risikos her. Dadurch erhalten wir Bedingungen, unter denen der Schätzer die übliche nicht-
parametrische Konvergenzrate erreicht.

Unsere theoretischen Resultate werden anhand der linearen Gleichung mit numerischen Beispielen
illustriert. Um präzise Simulationen durchführen zu können, entwickeln wir die Ersetzungsmethode
zur Erzeugung raum- und zeitdiskreter Beobachtungen für die stochastische Wärmeleitungsgleichung
auf einem Intervall. Unser Verfahren verallgemeinert eine Methode, die von Davie und Gaines (2001)
vorgeschlagen wurde. Zur theoretischen Rechtfertigung der Methode leiten wir eine Bedingung für die
Gültigkeit der Approximation her, die insbesondere anwendbar ist, wenn die Anzahl an zeitlichen und
örtlichen Beobachtungen gegen unendlich konvergiert. Dabei wird die Approximationsgüte bezüglich
des Totalvariationsabstandes gemessen. Simulationionsergebnisse legen nahe, dass anhand der Erset-
zungsmethode generierte Beobachtungen sowohl präziser als auch deutlich weniger rechenaufwändig
sind im Vergleich zum bloßen Abschneiden der Fourierreihe.

List of publications derived from the dissertation

The results of Chapter 2 referring to a fixed finite time horizon as well as the corresponding simulations
from Chapter 3 are taken from Hildebrandt and Trabs [38]. The remaining results of Chapter 3 can
be found in the publication Hildebrandt [36]. The results of Chapter 4 are part of the preprint
Hildebrandt and Trabs [37].
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