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Abstract iii

Abstract

It is the purpose of this work to study the interplay of interaction and confinement
in nanostructures using two examples.

In part I, we investigate the effects of spin-orbit interaction in parabolically
confined ballistic quantum wires and few-electron quantum dots. In general, spin-
orbit interaction couples the spin of a particle to its orbital motion. In nanostruc-
tures, the latter can easily be manipulated by means of confining potentials. In
the first part for this work, we answer the question how the spatial confinement
influences spectral and spin properties of electrons in nanostructures with sub-
stantial spin-orbit coupling. The latter is assumed to originate from the structure
inversion asymmetry at an interface. Thus, the spin-orbit interaction is given by
the Rashba model.

For a quantum wire, we show that one-electron spectral and spin properties
are governed by a combined spin orbital-parity symmetry of wire. The breaking
of this spin parity by a perpendicular magnetic field leads to the emergence of a
significant energy splitting at k = 0 and hybridisation effects in the spin density.
Both effects are expected to be experimentally accessible by means of optical
or transport measurements. In general, the spin-orbit induced modifications of the
subband structure are very sensitive to weak magnetic fields. Because of magnetic
stray fields, this implies several consequences for future spintronic devices, which
depend on ferromagnetic leads.

For the spin-orbit interaction in a quantum dot, we derive a model, inspired by
an analogy with quantum optics. This model illuminates most clearly the domi-
nant features of spin-orbit coupling in quantum dots. The model is used to discuss
an experiment for observing coherent oscillations in a single quantum dot with
the oscillations driven by spin-orbit coupling. The oscillating degree of freedom
represents a novel, composite spin-angular momentum qubit.

In part II, the interplay of mechanical confinement and electron-phonon inter-
action is investigated in the transport through two coupled quantum dots. Phonons
are quantised modes of lattice vibration. Geometrical confinement in nanome-
chanical resonators strongly alters the properties of the phonon system. We study
a free-standing quantum well as a model for a nano-size planar phonon cavity. We
show that coupled quantum dots are a promising tool to detect phonon quantum
size effects in the electron transport. For particular values of the dot level splitting
∆, piezo-electric or deformation potential scattering is either drastically reduced
as compared to the bulk case, or strongly enhanced due to van–Hove singularities
in the phonon density of states. By tuning ∆ via gate voltages, one can either con-
trol dephasing in double quantum dot qubit systems, or strongly increase emission
of phonon modes with characteristic angular distributions.
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Zusammenfassung
In dieser Arbeit betrachten wir das Zusammenspiel von Wechselwirkung und
räumlicher Beschränkung anhand von zwei Beispielen.

In Teil I untersuchen wir Effekte der Spin-Bahn-Wechselwirkung in ballisti-
schen Quantendrähten und Quantenpunkten. Die Spin-Bahn-Wechselwirkung kop-
pelt den Spinfreiheitgrad eines Teilchens an seine orbitale Bewegung, die sich in
Nanostrukturen leicht durch beschränkende Potentiale beeinflussen lässt. Im er-
sten Teil dieser Arbeit betrachten wir, wie die spektralen und Spineigenschaften
in Systemen mit substantieller Spin-Bahn-Wechselwirkung von der räumlichen
Beschränkung beeinflusst werden. Wir nehmen an, dass die Spin-Bahn-Wechsel-
wirkung durch die Raumspiegelungsasymmetrie in einer Inversionsschicht be-
stimmt wird und beschreiben sie daher durch das Rashba Modell.

Wir zeigen, dass in einem Quantendraht die spektralen und Spineigenschaften
eines Elektrons durch eine kombinierte Spin-Raumparitätssymmetrie bestimmt
werden. Das Aufheben dieser Symmetrie durch ein senkrechtes Magnetfeld führt
zu einer ausgeprägten Energieaufspaltung bei k =0 und Hybridisierungseffekten
in der Spindichte. Es ist zu erwarten, dass beide Effekte für optische oder Trans-
portexperimente zugänglich sind. Die von der Spin-Bahn-Wechselwirkung stam-
menden Modifikationen der Subbandstruktur sind sehr empfindlich gegenüber
schwachen Magnetfeldern. Dies hat Konsequenzen für zukünftigen Spintronik-
bauteile, die von ferromagnetischen Zuleitungen abhängen (Streufelder).

Inspiriert von einer Analogie zur Quantenoptik, leiten wir am Beipiel des
Quantenpunkts ein effektives Modell her, das die Hauptmerkmale der Spin-Bahn-
Wechselwirkung in Quantenpunkten verdeutlicht. In diesem Modell diskutieren
wir ein Experiment zur Beobachtung von spinbahngetriebenen kohärenten Oszil-
lationen in einem einzelnen Quantenpunkt. Der oszillierende Freiheitsgrad stellt
ein neues Qubit dar, das sich aus Spin und Drehimpuls zusammensetzt.

In Teil II untersuchen wir das Zusammenspiel von mechanischer Beschränkung
und Elektron-Phonon-Wechselwirkung im Transport durch zwei gekoppelte Quan-
tenpunkte. Phononen sind quantisierte Gitterschwingungen deren Eigenschaften
stark von der Beschränkung in nanomechanischen Resonatoren beeinflusst wer-
den. Am Beispiel einer ebenen Phononenkavität zeigen wir, dass gekoppelte
Quantenpunkte einen vielversprechenden Detektor zum Nachweis von Phonon-

”quantum-size“-Effekten im elektronischen Transport darstellen. Für gewisse Wer-
te des Energieabstands ∆ der Quantenpunkte wird die Streuung durch das piezo-
elektrische oder Deformationspotential entweder drastisch unterdrückt oder durch
van–Hove Singularitäten in der Zustandsdichte der Phononen enorm verstärkt.
Die Änderung von ∆ ermöglicht es daher, Kontrolle über die Dephasierung in
Doppelquantenpunkt-basierten Qubit-Systemen zu erlangen, oder die Emission
in Phononmoden mit charakteristischer Winkelverteilung zu verstärken.
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Introduction

With the immense technological progress in the field of nanoprocessing in the last
two decades, it is feasible to fabricate high-precision nanostructured electronic
devices in semiconductors. In such artificial structures, the length scales of the
system may become comparable or even smaller than the dephasing distance. The
latter is the average length an electron can propagate before its quantum mechan-
ical phase becomes destroyed by some process. Therefore, the quantum mechan-
ical behaviour of the electrons manifests itself in striking quantum interference
phenomena in the properties of the nanostructures. Examples are the weak lo-
calisation quantum corrections to the conductance of disordered films [1] and the
Aharonov–Bohm oscillations in the magneto-transport of tiny ring structures [2].

In addition, in clean samples electrons can propagate large distances without
being scattered at imperfections. In GaAs/GaAlAs semiconductor heterostruc-
tures, a mean free path (average distance between successive scattering events) of
several µm can be reached at low temperatures [3]. Thus, in such nanostructures,
electron propagation is often well described in a ballistic picture. A prominent ex-
ample for ballistic transport in nanostructures is the quantisation of conductance
through small constrictions (quantum point contacts) [4, 5].

Recently, the observation of coherent oscillations in the time evolution of a
quantum state in a Josephson junction [6] or coupled semiconductor quantum
dots [7] has been achieved. These oscillations – the back and forth flopping be-
tween two states in a quantum mechanical superposition – directly show quantum
mechanics at work. The observation of coherent oscillations in solid-state systems
represents the frontier in our ability to control nature at a microscopic level. This
effort goes hand-in-hand with the search for workable quantum bits (qubits) and
dream of quantum computation.

The above examples are well described in an effective single-particle model
which treats the electrons (or Cooper pairs as in case of the Josephson junction)
as non-interacting particles. However, this picture has some limitations. For in-
stance, the coherent oscillations can only be traced for times smaller than the
dephasing time. In general, the quantum phase of an electron will be randomised
by inelastic scattering events with e.g. other electrons or with lattice vibrations
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(phonons). Therefore, the electron-electron (e-e) and electron-phonon (e-p) inter-
actions set the limit for the observation of coherent phenomena in nanostructures
at low temperatures. On the other hand, the e-e interaction itself causes profound
effects like collective excitations of electrons, which in the parlance of many body
physics are called plasmons. The importance of e-e interaction is determined by
the electron density. In nanostructures the latter can be tuned by means of gates
voltages which may draw electrons from or to the system. With increasing elec-
tron concentration the average kinetic energy is expected to become larger than
the average interaction energy. In this regime, many body effects can be neglected
and the electron is approximately a freely moving particle in an averaged back-
ground potential caused by the other electrons. It is this approximation that we
shall apply throughout this work.

Similar to the phase information of a particle, the nature of its spin degree of
freedom is purely quantum mechanical. The fundamental issue of the influence
of the spin in electron transport has been a driving force in the field of magneto-
electronics in the last decades [8]. The quantum nature of spin makes it inacces-
sible to many of the dominating forces in a solid. Recently, this non-volatility
of spin has considerably sparked interest in the emerging field of spintronics [9],
which is an amalgamation of different areas in physics (electronics, photonics,
and magnetics). Being motivated by fundamental and applicational interests, the
paradigm of spintronics is either to add the spin degree of freedom to conventional
charge-based electronic devices, or to use the spin alone, aiming at the advantages
of its non-volatility. Such devices are expected to have an increased data process-
ing speed and integration density, and a decreased power consumption compared
to conventional semiconductor devices. From a very basic point of view, ma-
nipulating the spin requires it to be distinguishable. This implies that the spin
degeneracy has to be lifted. Simple reasoning shows that single-particle states
of electrons in a solid are two-fold spin degenerate if time-reversal and space-
inversion symmetry are simultaneously present. Thus, there are two generic ways
to address the spin: (i) Lift spin degeneracy by breaking time-reversal symme-
try by e.g. magnetic fields (external or internal as in the case of ferromagnets).
This corresponds to the magneto-electronic aspect of spintronics which has led to
e.g. the discovery of the giant magnetoresistance (GMR) effect in 1988 [10] that
is already employed in present-day hard disk drives. (ii) Lift spin degeneracy by
breaking space-inversion symmetry. In semiconductor nanostructures this leads
to the issue of spin-orbit coupling.

The relativistic coupling of spin and orbital motion is well known from atomic
physics in the context of fine-structure corrections to the spectrum of the hydrogen
atom. There, the effect of spin-orbit coupling can be estimated by the Sommer-
feld fine-structure constant αFS ≈ 1/137 as HSO/H0 ≈ α2

FS, being clearly a small
perturbation. On the contrary, in semiconductor nanostructures, the strength of
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spin-orbit coupling depends on the strong electric field which confines the motion
of electrons to a plane. This is known as the Rashba effect [11, 12]. The appli-
cation of additional external electric fields enables one to modify the strength of
spin-orbit coupling, thus providing a “control knob” with which the Rashba effect
can be tuned continuously from being almost zero to a regime where HSO/H0∼1.
In contrast to e-e and e-p interactions, which couple two distinct (quasi-)particles,
the spin-orbit coupling is an effective interaction which couples two degrees of
freedom (spin and orbits) of the same particle.

Both spin-orbit coupling, and e-e interaction, serve as examples to demon-
strate that interactions can be tuned in nanostructures. Moreover, the geometric
definition of the device (surfaces, contacts, barriers, interfaces), which we sum-
marise with the notion confinement in the following, can also be influenced by
means of external gate voltages and the associated repulsive or attractive elec-
trostatic potentials. For instance, gate voltages were used to set the width of the
constriction of the quantum point contact or the diameter of the coupled quan-
tum dots in the abovementioned experiments. Confinement has a major impact
on wavefunctions and energies. It is the possibility to modify the strengths of
interactions and confinement which makes the nanostructure an excellent tool to
investigate effects which arise from their interplay.

In this work we study effects of interaction and confinement in two examples.
In part I, we discuss the interplay of Rashba spin-orbit coupling in ballistic low-
dimensional electron systems. In general, spin-orbit interaction connects the spin
degree of freedom with the orbital motion of the electron. Since the latter is very
sensitive to confinement, the questions arises how the interplay of spin-orbit cou-
pling and confinement modifies the spectral and spin properties of electrons in the
nanostructure. Following common experimental setups, we also include a mag-
netic field as a further physical quantity which separately influences the orbital
motion (cyclotron orbits) and the spin (Zeeman effect). In chapter 1, we give an
introduction to the Rashba effect as the dominant source of spin-orbit coupling
in a certain class of semiconductor nanostructures. In chapter 2, we discuss the
interplay of spin-orbit coupling, geometrical confinement, and magnetic field in
quasi-one-dimensional quantum wires. In such systems, the electron is confined in
two spatial directions and can only propagate freely in one direction. We show that
spectral and spin properties carry signatures of spin-orbit coupling which should
be experimentally accessible by means of optical or transport measurements. In
chapter 3, we further reduce the dimension of the electron system by addressing
the effects of spin-orbit coupling in quasi-zero-dimensional quantum dots. We
derive an effective analytical model which describes the dominant influence of
spin-orbit coupling on the one-electron spectral and spin properties. In addition,
we propose an experiment for the observation of spin-orbit driven coherent os-
cillations in a single few-electron quantum dot. Here, the oscillating degree of
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Figure 1: Scanning electron micrographs of nanoelectromechanical systems.
Left: a suspended quantum dot cavity and Hall-bar formed in a 130 nm thin
GaAs/GaAlAs membrane. Right: a 4 µm long, 130 nm thick free-standing beam
that contains a fully tuneable low-dimensional electron system. Five equally sus-
pended Au electrodes can be used to operate the device as two-dimensional elec-
tron gas, quantum point contact, single or double dot. Taken from [15] by kind
permission of E. Weig.

freedom can be understood as a novel compound spin angular-momentum qubit.
In part II, we consider a further qubit candidate, the two-level system which is

built by two coupled quantum dots. In such a device, even at zero temperatures,
the dephasing time is limited by the e-p interaction via coupling to low-energy
phonons as bosonic excitations of the environment. In chapter 5, we give an in-
troduction to e-p interaction. Since phonons are quantised lattice vibrations, the
acousto-mechanical properties of the nanostructure are expected to influence the
e-p interaction. Recently, the fabrication of nanomechanical semiconductor res-
onators (tiny, freely suspended membranes, bars and strings) which contain a layer
of conducting electrons was achieved [13] (see also Fig. 1). The vibrational prop-
erties of these nanostructures differ drastically from bulk material. For instance,
the phonon spectrum is split into several subbands, leading to quantisation effects
of e.g. the thermal conductance [14]. In chapter 6, we study the effects of phonon
confinement on the electron transport through two coupled quantum dots. We
show that typical peculiarities of confined phonon systems, like van–Hove sin-
gularities in the phonon density of states, manifest themselves in the non-linear
electron transport, acting as clear fingerprints of phonon confinement. In addi-
tion, the confinement is shown to be an excellent tool to control phonon induced
decoherence in double quantum dots. We demonstrate that the use of “phonon
cavities” enables one to either strongly suppress or drastically enhance phonon
induced dissipation in such systems.
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Spin-orbit coupling in
nanostructures
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Chapter 1

The Rashba effect

Effects of spin-orbit (SO) interaction are well-known from atomic physics. The
relativistic nature of this coupling can be understood by a low-velocity approxima-
tion to the Dirac equation [16]. This approach yields, among other fine-structure
corrections to the non-relativistic Schrödinger equation, the Pauli SO term

HSO = − ~

4m2
0c2

σσσ ·
(
p×∇∇∇V (r)

)
, (1.1)

where ~ is Planck’s constant, m0 the bare mass of the electron, c the velocity of
light, and σσσ the vector of Pauli matrices. V (r) is the electrostatic potential in
which the electron propagates with momentum p. In atomic physics V (r) is the
Coulomb potential of the atomic core.

In semiconductor physics, the spectral properties of electrons which move in
a periodic crystal are characterised by energy bands En(k). Here also, effects
of SO coupling emerge in the band structure. A prominent example is the energy
splitting of the topmost valence band in GaAs. This splitting can be determined up
to high precision in band structure calculations [17, 18]. The microscopic origin
of the energy splitting in such calculations is again given by Eq. (1.1).

In the following, we consider the effects of SO coupling in two-dimensional
(2D) electron systems such as quantum wells (QWs) which can be tailored experi-
mentally e.g. in semiconductor heterostructures [3]. Strong confining potentials at
the interface of the heterostructure result in quantised energy levels of the electron
for one spatial direction whereas it is free to move in the other two spatial direc-
tions [19]. Here, we focus on the introduction of the Rashba effect [11, 12] as a
model for the dominating SO coupling in a certain class of 2D systems. We will
need this model in the subsequent chapters to understand SO effects in electron
systems with further reduced dimension (quasi-one-dimensional ‘quantum wires’
in chapter 1 and quasi-zero-dimensional ‘quantum dots’ in chapter 2).

9



10 The Rashba effect

An extensive and detailed analysis of SO coupling effects in 2D electron and
hole systems can be found in the monograph by Winkler [18].

1.1 Spin-orbit coupling in two-dimensional electron
systems

The spin degeneracy of electron states in a solid stems from the simultaneous
effect of time-reversal and space-inversion symmetry [20]. The latter requires
E+(k) = E+(−k) while the first symmetry operation inverts both propagation di-
rection and spin, leading to Kramer’s degeneracy E+(k) = E−(−k). Here, the
index ± denotes the spin state for a given quantisation axis. The combined ef-
fect of both symmetries yields the spin degeneracy of single-particle energies,
E+(k) = E−(k). Thus, a magnetic field which removes time-reversal symmetry,
or any potential that breaks space-inversion symmetry may lift spin degeneracy.

In semiconductors with zinc blende crystal structure (e.g. GaAs, InAs) which
lacks a centre of space inversion, the corresponding crystal field leads to a bulk
inversion asymmetry (BIA). Furthermore, in 2D QWs and heterostructures, the
potential which confines the electron in one spatial direction may lead to a struc-
ture inversion asymmetry (SIA). The effect of such asymmetric potentials on the
electron spin is again given by the Pauli term (1.1) and was calculated in two
classic papers by Dresselhaus [21] (BIA) and Bychkov & Rashba [11, 12] (SIA).
The relative importance of BIA and SIA in a system varies depending on the band
structure of the material, the electron density, and the actual geometry of the sam-
ple under investigation [18]. The conceptual difference between the two terms is
that the BIA is essentially fixed for a given sample while the SIA term does de-
pend on macroscopic voltages and hence can be changed for instance by external
gates (see next section).

A quantitative comparison of the SO effects induced by the two sources of
inversion asymmetry shows that BIA usually dominates in GaAs while in InAs
SIA typically prevails [18]. In the following, we restrict ourselves to InAs based
2D systems which justifies the neglect of BIA contributions to the SO coupling.
As a model for the SO coupling in such systems we introduce the Rashba model
in the subsequent section.

1.2 The model
The Pauli term (1.1) connects spin and orbital motion depending on the electric
field that acts on the electron. In a quantum well this field may contain contribu-
tions from built-in or external potentials, as well as the effective potential from
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the position-dependent band edges of the heterostructure. We assume that the
confinement potential which defines the 2D electron system shall vary in the z-
direction only, V (r) ≈V0 + eEzz. The SO coupling that arises from SIA then can
be written in lowest order in momentum and electric field Ez as [11, 12]

HSO = −α
~

(p×σσσ)z , (1.2)

with the parameter α being proportional to Ez. This term is often referred to as
the Rashba effect, although the actual effect of Eq. (1.2) is the lifting of the spin
degeneracy as we shall see in Sec. 1.3.

In the following two chapters of this thesis, we describe ballistic SO-interacting
nanostructures in the effective mass approximation [22]. We assume that such
electron systems are defined in the lowest 2D subband by means of further con-
fining potentials Vc,

H =
1

2m

(
p2

x + p2
y
)
+Vc(x,y)−

α
~

(pxσy − pyσx) . (1.3)

An introduction to the calculation of the effective mass m and the strength of the
Rashba SO coupling α from the band structure can be found in Ref. [18]. Here,
we understand Eq. (1.3) as an effective model with phenomenological constants m
and α that are to be determined by experiment. The effective mass approximation
is well established for a single band description of clean 2D systems [3]. Chen and
Raikh [23] showed that exchange-correlation effects may lead to an enhancement
of the Rashba SO coupling. However, for typical electron densities in InAs 2D
systems such many body corrections are negligible [18].

Since α depends on the electric field which confines the electron in 2D, it is
possible to modify the strength of the Rashba effect by applying external gate
voltages. This was first demonstrated experimentally by Nitta et al. [24] who
placed a gate on top of an In0.53Ga0.47As sample and tuned continuously the α
parameter by a factor of 2. In a more recent work Koga et al. even altered α up
to a factor of 5 in one sample [25]. Papadakis et al. [26] and Grundler [27] have
shown that by putting a front and a back gate on the sample, the Rashba effect can
be changed continuously while keeping the electron density and thus a residual
BIA contribution to the SO coupling constant.

By setting Vc ≡ 0 in Eq. (1.3), the main effect of the Rashba model in 2D can
be seen from the eigenenergies and eigenstates [12, 18],

E±(k) =
~

2

2m
k2 ±αk, (1.4)

|ψ±〉 = eik·r
(

1
∓ieiϕ

)
, (1.5)
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Figure 1.1: Effect of Rashba spin-orbit coupling on dispersion (a) and spin (b).

where k = k(cosϕ,sinϕ,0). The dispersion (1.4) consists of two branches which
are non-degenerate for k > 0, see Fig. 1.1a. The spin state of the electron which
follows from Eq. (1.5) is given by 〈σσσ〉 = ±(sinϕ,−cosϕ,0) and is shown in
Fig. 1.1b. These profound effects of Rashba SO coupling can be understood by
rewriting Eq. (1.2) as the Zeeman effect of a momentum dependent effective mag-
netic field BSO(p) ·σσσ. The amplitude of BSO is proportional to the momentum
while its orientation in the 2D plane is orthogonal to the direction of propagation.
Thus, for fixed propagation direction, the spin is quantised perpendicular to p, see
Fig. 1.1b. This shows that there is no common axis of spin quantisation in 2D
with Rashba SO coupling. Thus, the subscript ± only corresponds to a spin frame
which is local in k space.

In experiment, the coupling parameter α is commonly determined by Shubni-
kov–de Haas (SdH) measurements [28] or weak antilocalisation analysis [1, 29]
in weak magnetic fields. In 2D, the frequency of SdH oscillations in the magneto-
transport is proportional to the electron density in the system [3]. If the spin
degeneracy is broken by Rashba SO coupling the two branches of the dispersion
(1.4) have different wave vectors at a given Fermi energy

EF =
~

2

2m
k2

F±±αkF±. (1.6)

As a consequence, the difference in Fermi wave vector is proportional to the
strength of SO coupling, ∆k = |kF+ − kF−| = 2mα/~

2. The electron density de-
pends parabolically on the Fermi wave vector in 2D. Thus, SO coupling leads to
different electron populations N± ∝ k2

F± of the two branches E±(k). In the con-
text of SdH measurements, this leads to two different frequencies which result in
a beating pattern in the SdH oscillations, see e.g. [30]. From the analysis of the
beating frequency, the strength of SO coupling α can be determined [18]. We re-
mark that beating patterns in magneto-oscillations are not restricted to the Rashba
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effect. Any effect which leads to a B = 0 spin splitting (like BIA) may also result
in a beating pattern.

1.3 Rashba effect in a perpendicular magnetic field
In the following, we present the effect of an additional perpendicular magnetic
field which is a common tool to introduce a tuneable energy scale, i.e. the cy-
clotron energy ~ωc = ~eB/mc. In addition to this energy scale, which finally
leads to the quantisation of the system into Landau levels, the Zeeman effect is
also expected to alter the spin state of the electrons.

This system serves as an example for the interplay of the Rashba effect with
a further energy scale. Furthermore, it shows an illustrative analogy to a quantum
optical model which will be useful in the following chapters of the thesis when
dealing with non-integrable models.

We extend the Hamiltonian (1.3) of the previous section by including a per-
pendicular magnetic field (B = B êz),

H = H0 +HSO, (1.7)

H0 =
1

2m

(
p+

e
c

A
)2

+
1
2

gµBBσz, (1.8)

HSO = −α
~

[(
p+

e
c

A
)
×σσσ
]

z
, p = (px, py). (1.9)

We follow the standard derivation of quantised Landau levels in symmetric gauge
A = (−y,x)B/2, by defining

x± =
1√
2
(y± ix) , p± =

1√
2
(py ∓ ipx) , (1.10)

and creation and annihilation operators

a =
1√

~mωc

(
p−− i

2
mωcx+

)
, a† =

1√
~mωc

(
p+ +

i
2

mωcx−

)
, (1.11)

leading to the representation in terms of Landau levels,

H0

~ωc
=

(
a†a+

1
2

)
+

1
2

δσz, (1.12)

with the dimensionless Zeeman splitting δ = mg/2m0, (m0: bare mass of electron).
Expressing the SO coupling in the same representation gives

HSO

~ωc
=

1√
2

lB
lSO

(
aσ+ +a†σ−

)
, σ± =

1
2
(σx ± iσy) , (1.13)
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with the magnetic length lB = (~/mωc)
1/2 and the length scale of SO coupling

lSO = ~
2/2mα. Equation (1.13) shows that the Rashba SO interaction leads to a

coupling of adjacent Landau levels with opposite spin. For strong magnetic field,
this effect becomes negligible, as seen from the ratio lB/lSO. For typical InAs
parameters, we find lSO∼100nm. Thus, we may expect a significant effect of SO
coupling for B ≤ 0.1T, as the prefactor in Eq. (1.13) becomes of order unity.

The diagonalisation of the Hamiltonian H = H0 +HSO is straightforward. The
eigenenergies have been given by Bychkov & Rashba [12]. Here, we follow a
different approach by noticing [31] that the Hamiltonian is formally identical to
the integrable Jaynes–Cummings model (JCM) [32] of quantum optics. There,
the JCM is used in the context of atom-light interaction where two atomic levels
are described by a pseudo-spin. Transitions between the levels are induced by
the electric dipole coupling to a quantised monochromatic radiation field which
is modelled by a harmonic oscillator. In this language, HSO describes transitions
(σ±) between the two atomic levels under absorption/emission of a photon of
the radiation field (a, a†). Conversely, in the SO-interacting system, the roles of
atomic pseudo-spin and light field are played by the real spin and the Landau level
of the same electron. The properties of the JCM are discussed in appendix A.

The above analogy to a quantum optical model will be helpful in elucidating
the effect of SO coupling in the following two chapters of the thesis when the
models become non-integrable. In section 2.2, the JCM will reappear as a limit
for quantum wires with Rashba SO coupling. In chapter 3, the notion of counter-
rotating coupling terms (see section 2.2.4), which is closely related to definition
of the JCM in quantum optics [33], leads us to the derivation of an integrable
effective model for SO-interacting quantum dots.



Chapter 2

Rashba spin-orbit coupling in
quantum wires

In the previous chapter, we have introduced the Rashba effect as a consequence of
spin-orbit (SO) interaction in two-dimensional (2D) electron systems with domi-
nating structure-inversion asymmetry.

In general, SO interaction couples the spin of a particle to its orbital motion.
In mesoscopic systems, the latter can easily be modified by means of geometrical
confinement, e. g. due to external gate voltages.

In the following, we want to illustrate how effects of SO coupling are modified
by further constraining the motion of the electron in a single spatial direction
by considering a quasi-one-dimensional system which is defined in the 2DEG.
Similar to the Rashba effect, every electric field – and thus also the confining
fields – may lead to a coupling between spin and momentum, see Eq. (1.1). These
additional contributions to the SO coupling might become important when the
lateral confinement is comparable to the vertical constraint that defines the 2DEG.
This is the case in wires made by the cleaved-edge overgrowth technique [34]
where both lateral and vertical confinement are typically of the order of ∼10nm.
A further example where a full three-dimensional description of the SO coupling
might be necessary are molecular systems like carbon nanotubes [35, 36].

Throughout this chapter, we restrict ourselves to ballistic quasi-one-dimension-
al electron systems whose lateral confinement is assumed to be much weaker than
the vertical constraint of the 2DEG. This condition is usually fulfilled in quantum
wires defined by external gates and etching, leading to a lateral width ≥100nm.
We describe such a quantum wire by including a parabolic confining potential
Vc ∝ x2 into the model for the 2D system [Eq. (1.3)].

In the following section, we present the scientific publication which comprises
our main results for the interplay of SO coupling and lateral confinement in quan-

15
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tum wires in perpendicular magnetic fields. In section 2.2, we provide more back-
ground information and various analytical limits for the numerical results. There,
the Jaynes–Cummings model of quantum optics will reappear as the high mag-
netic field limit in the context of the rotating-wave approximation. In section 2.3,
we give a brief introduction to ballistic transport in quasi-1D systems and demon-
strate the importance of evanescent modes in the context of mode matching analy-
sis. We give an example for this analysis in SO-interacting systems by considering
the transmission properties of a strict-1D wire with a magnetic modulation. We
find a commensurability effect in the spin-dependent transmission when the pe-
riod of modulation becomes comparable to the SO-induced spin precession.

2.1 Rashba effect and magnetic field in semi-
conductor quantum wires∗

Abstract: We investigate the influence of a perpendicular magnetic field on the
spectral and spin properties of a ballistic quasi-one-dimensional electron system
with Rashba effect. The magnetic field strongly alters the spin-orbit induced mod-
ification to the subband structure when the magnetic length becomes comparable
to the lateral confinement. A subband-dependent energy splitting at k = 0 is found
which can be much larger than the Zeeman splitting. This is due to the breaking
of a combined spin orbital-parity symmetry.

2.1.1 Introduction

The quest for a better understanding of the influence of the electron spin on the
charge transport in non-magnetic semiconductor nanostructures has considerably
attracted interest during recent years [37]. Spin-orbit interaction (SOI) is con-
sidered as a possibility to control and manipulate electron states via gate volt-
ages [38, 39]. This has generated considerable research activity, both in theory
and experiment, motivated by fundamental physics as well as applicational as-
pects. Especially, SOI induced by the Rashba effect [11,40] in semiconductor het-
erostructures as a consequence of the lack of structure inversion symmetry [18] is
important. In these two-dimensional (2D) systems the Rashba effect leads to spin
precession of the propagating electrons. The possibility to manipulate the strength
of the Rashba effect by an external gate voltage has been demonstrated experimen-
tally [24, 25, 27, 41]. This is the basis of the spin dependent field-effect-transistor

∗This section has been accepted for publication in Physical Review B 71 (2005). E-print:
S. Debald, B. Kramer, cond-mat/0411444 at www.arxiv.org.
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(spinFET) earlier discussed theoretically by Datta and Das [42]. Numerous the-
oretical spintronic devices have been proposed using interference [43–47], res-
onant tunnelling [25, 48–50], ferromagnet-semiconductor hybrid structures [51–
55], multi-terminal geometries [56–61], and adiabatic pumping [62]. Magnetic
field effects on the transport properties in 2D systems with SOI have been investi-
gated theoretically [63–65] as well as experimentally [24, 25, 27, 30, 41, 66].

In order to improve the efficiency of the spinFET the angular distribution of
spin precessing electrons has to be restricted [42]. Thus, the interplay of SOI
and quantum confinement in quasi-1D systems [67–70] and quantum Hall edge
channels [71] has been studied. First experimental results on SOI in quantum
wires have been obtained [72]. The presence of a perpendicular magnetic field
has been suggested to relax the conditions for the external confining potential for
quantum point contacts. In these systems a Zeeman-like spin splitting at k=0 has
been predicted from the results of numerical calculations when simultaneously
SOI and a magnetic field are present [73]. The effect of an in-plane magnetic field
on the electron transport in quasi-1D systems has also been calculated [74–76].

In this work, we investigate the effect of a perpendicular magnetic field on the
spectral and spin properties of a ballistic quantum wire with Rashba spin-orbit
interaction. The results are twofold. First, we show that transforming the one-
electron model to a bosonic representation yields a systematic insight into the
effect of the SOI in quantum wires, by using similarities to atom-light interaction
in quantum optics for high magnetic fields. Second, we demonstrate that spectral
and spin properties can be systematically understood from the symmetry proper-
ties. Without magnetic field the system has a characteristic symmetry property —
the invariance against a combined spin orbital-parity transformation — which is
related to the presence of the SOI. This leads to the well-known degeneracy of
energies at k = 0. The eigenvalue of this symmetry transformation replaces the
spin quantum number. A non-zero magnetic field breaks this symmetry and lifts
the degeneracy. This magnetic field-induced energy splitting at k=0 can become
much larger than the Zeeman splitting. In addition, we show that modifications
of the one-electron spectrum due to the presence of the SOI are very sensitive to
weak magnetic fields. Furthermore, we find characteristic hybridisation effects
in the spin density. Both results are completely general as they are related to the
breaking of the combined spin-parity symmetry.

This general argument explains the Zeeman-like splitting observed in recent
numerical results [73].

2.1.2 The model
We study a ballistic quasi-1D quantum wire with SOI in a perpendicular magnetic
field. The system is assumed to be generated in a 2D electron gas (2DEG) by
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Figure 2.1: Model of the quantum wire.

means of a gate-voltage induced parabolic lateral confining potential. We assume
that the SOI is dominated by structural inversion asymmetry. This is a reasonable
approximation for InAs based 2DEGs [25]. Therefore, the SOI is modelled by the
Rashba effect [11, 40], leading to the Hamiltonian

H =
(p+ e

cA)2

2m
+V (x)+

1
2

gµBBσz −
α
~

[
(p+

e
c

A)×σσσ
]

z, (2.1)

where m and g are the effective mass and Landé factor of the electron, and σσσ is
the vector of the Pauli matrices. The magnetic field is parallel to the z-direction
(Fig. 2.1), and the vector potential A is in the Landau gauge. Three length scales
characterise the relative strengths in the interplay of confinement, magnetic field
B, and SOI,

l0 =

√
~

mω0
, lB =

√
~

mωc
, lSO =

~
2

2mα
. (2.2)

The length scale l0 corresponds to the confinement potential V (x) = (m/2)ω2
0x2,

lB is the magnetic length with ωc = eB/mc the cyclotron frequency and lSO is the
length scale associated with the SOI. In a 2DEG the latter is connected to a spin
precession phase ∆θ = L/lSO if the electron propagates a distance L.

Because of the translational invariance in the y-direction the eigenfunctions
can be decomposed into a plane wave in the longitudinal direction and a spinor
which depends only on the transversal coordinate x,

ΨΨΨk(x,y) = eiky

(
φ↑k(x)
φ↓k(x)

)
=: eikyφφφk(x). (2.3)

With this and by defining creation and annihilation operators of a shifted harmonic
oscillator, a†

k and ak, which describe the quasi-1D subbands in the case without
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SOI, the transversal wavefunction component satisfies

H(k)φφφk(x) = Ek φφφk(x), (2.4)

for k fixed with the Hamiltonian

H(k)
~ω0

=Ω
(

a†
kak +

1
2

)
+

1
2

(kl0)2

Ω2

+
1
2




ξ1kl0 +ξ2(ak +a†
k)

ξ3(ak −a†
k)

δ


 ·σσσ, (2.5)

the abbreviations

Ω =

√
ω2

0 +ω2
c

ω0
=

√

1+

(
l0
lB

)4

, (2.6)

ξ1 =
l0

lSO

1
Ω

, (2.7)

ξ2 =
1√
2

l0
lSO

(
l0
lB

)2 1√
Ω

, (2.8)

ξ3 =
i√
2

l0
lSO

√
Ω, (2.9)

and the dimensionless Zeeman splitting

δ =
1
2

(
l0
lB

)2 m
m0

g, (2.10)

(m0 is the bare mass of the electron).
This representation of the Hamiltonian corresponds to expressing the trans-

verse wavefunction in terms of oscillator eigenstates such that a†
kak gives the sub-

band index of the electron which propagate with longitudinal momentum ~k. The
magnetic field leads to the lateral shift of the wavefunction and the renormalisa-
tion of the oscillator frequency Ω. Moreover, the effective mass in the kinetic
energy of the longitudinal propagation is changed. The last term in Eq. (2.5) de-
scribes how the SOI couples the electron’s orbital degree of freedom to its spin.
Due to the operators a†

k and ak the subbands corresponding to one spin branch
are coupled to the same and nearest neighbouring subbands of opposite spin, see
Fig. 2.2a.
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Formally, for k fixed Eq. (2.5) can be regarded as a simple spin-boson system
where the spin of the electron is coupled to a mono-energetic boson field which
represents the transverse orbital subbands. This interpretation leads to an analogy
to the atom-light interaction in quantum optics. There, the quantised bosonic
radiation field is coupled to a pseudo-spin that approximates the two atomic levels
between which electric dipole transitions occur. In our model, the roles of atomic
pseudo-spin and light field are played by the spin and the orbital transverse modes
of the electron, respectively.

Indeed, in the limit of a strong magnetic field, lB � l0, and kl0 �1 Eq. (2.5)
converges against the exactly integrable Jaynes-Cummings model (JCM) [32],

HJC

~ωc
= a†a+

1
2

+
1
4

m
m0

gσz +
1√
2

lB
lSO

(aσ+ +a†σ−) . (2.11)

This system is well known in quantum optics. It is one of the most simple models
to couple a boson mode and a two-level system [33]. In the case of the quantum
wire with SOI one can show that in the strong magnetic field limit the rotating-
wave approximation [33], which leads to the JCM, becomes exact. This is because
for lB � l0 and kl0 � 1 the electrons are strongly localised near the centre of the
quantum wire and thus insensitive to the confining potential. In this limit, there
is a crossover to the 2D electron system with SOI in perpendicular magnetic field
for which the formal identity to the JCM has been asserted previously [31].

In this context, it is important to note that the JCM is known to exhibit Rabi
oscillations in optical systems with atomic pseudo-spin and light field periodically
exchanging excitations. Recently, an experimentally feasible scheme for the pro-
duction of coherent oscillations in a single few-electron quantum dot with SOI
has been proposed [77] with the electron’s spin and orbital angular momentum
exchanging excitation energy. This highlights the general usefulness of mapping
parabolically confined systems with SOI onto a bosonic representation as shown
in Eq. (2.5). Related results have been found in a 3D model in nuclear physics
where the SOI leads to a spin-orbit pendulum effect [78, 79].

2.1.3 Symmetry properties

Without magnetic field it has been pointed out previously that one effect of SOI in
2D is that no common axis of spin quantisation can be found, see e.g. Ref. [69,70].
Since the SOI is proportional to the momentum it lifts spin degeneracy only for
k 6= 0. From the degeneracy at k = 0 a binary quantum number can be expected
at B = 0. It can easily be shown that for any symmetric confinement potential
V (x) = V (−x) in Eq. (2.1) — which includes the 2D case for V ≡ 0 or symmetric
multi-terminal junctions [56–59] — the Hamiltonian is invariant under the unitary
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transformation
Ux = ei2πP̂xŜx/~ = iP̂xσx, (2.12)

where P̂x is the inversion operator for the x-component, P̂x f (x,y) = f (−x,y).
Thus, the observables H, py and P̂xσx commute pairwise. Without SOI, P̂x and
σx are conserved separately. With SOI, both operators are combined to form the
new constant of motion P̂xσx which is called spin parity. When introducing a
magnetic field with a non-zero perpendicular component the spin parity symme-
try is broken and we expect the degeneracy at k = 0 to be lifted. As a side remark,
by using oscillator eigenstates and the representation of eigenstates of σz for the
spinor, the Hamiltonian H(k) in Eq. (2.5) becomes real and symmetric. We point
out that in this choice of basis the transformation Uy = iP̂yσy is a representation
of the time-reversal operation which for B = 0 also commutes with H. However,
it does not commute with py and no further quantum number can be derived from
Uy [80]. The effect of the symmetry P̂xσx on the transmission through symmetric
four [56] and three-terminal [57, 58] devices has been studied previously.

We recall that the orbital effect of the magnetic field leads to a twofold sym-
metry breaking: the breaking of the spin parity P̂xσx lifts the k = 0 degeneracy
(even without the Zeeman effect) and the breaking of time-reversal symmetry lifts
the Kramers degeneracy. For B = 0 we can attribute the quantum numbers (k,n,s)
to an eigenstate where n is the subband index corresponding to the quantisation
of motion in x-direction and s = ±1 is the quantum number of spin parity. For
B 6= 0, due to the breaking of spin parity, n and s merge into a new quantum num-
ber leading to the non-constant energy splitting at k = 0 which will be addressed
in the next Section when treating the spectral properties.

For weak SOI (lSO � l0) one finds in second order that the spin splitting at
k = 0 for the nth subband is

∆n

~ω0
= δ+

1
2

(
l0

lSO

)2 (Ω−δ)χ2
1−(Ω+δ)χ2

2
Ω2 −δ2

(
n+

1
2

)
, (2.13)

where χ1,2 = 2−1/2[(l0/lB)2Ω−1/2 ∓ Ω1/2]. The first term is the bare Zeeman
splitting and the SOI-induced second contribution has the peculiar property of
being proportional to the subband index. In addition, for weak magnetic field
(l0 � lB) the splitting is proportional B,

∆n

~ω0
≈ δ−

(
l0

lSO

)2( l0
lB

)2(
1+

1
4

m
m0

g
)(

n+
1
2

)
. (2.14)

This is expected because by breaking the spin parity symmetry at non-zero B
the formerly degenerate levels can be regarded as a coupled two-level system for
which it is known that the splitting into hybridised energies is proportional to the
coupling, i.e. the magnetic field B.
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Figure 2.2: (a) Spin-orbit induced coupling of subbands with opposite spins in a
quantum wire. (b)-(d) Spectra of a quantum wire with SOI for different strengths
of perpendicular magnetic field for lSO = l0 and typical InAs parameters: α = 1.0 ·
10−11 eVm, g = −8, m = 0.04m0. For strong magnetic field (d) the convergence
towards the Jaynes-Cummings model (JCM) can be seen (dashed: eigenenergies
of JCM).

2.1.4 Spectral properties

Due to the complexity of the coupling between spin and subbands in Eq. (2.5),
apart from some trivial limits, no analytic solution of the Schrödinger equation can
be expected. We find the eigenfunctions and energies of the Hamiltonian by exact
numerical diagonalisation. Figures 2.2b–d show the spectra for different strengths
of magnetic field and parameters typical for InAs: α = 1.0 ·10−11 eVm, g = −8,
m = 0.04m0. We set lSO = l0 which corresponds to a wire width l0 ≈ 100nm.

For the case without magnetic field it has been asserted previously that the
interplay of SOI and confinement leads to strong spectral changes like non-para-
bolicities and anticrossings when lSO becomes comparable to l0 [67, 69, 70]. In
Fig. 2.2b we find similar results in the limit of a weak magnetic field. However,
as an effect of non-vanishing magnetic field we observe a splitting of the formerly
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spin degenerate energies at k = 0. For the Zeeman effect it is expected that the
corresponding spin splitting is constant. In contrast, in Fig. 2.2b–d the splitting
at k =0 depends on the subband. This additional splitting has been predicted in
Sec. 2.1.3 in terms of a symmetry breaking effect when SOI and perpendicular
magnetic field are simultaneously present.

Figure 2.3a shows the eigenenergies En(k = 0) for lSO = l0 as a function
of magnetic field in units of hybridised energies, (ω2

0 + ω2
c)

1/2. Three different
regimes can be distinguished. (i) For small magnetic field (l0/lB � 1) the en-
ergy splitting evolves from the spin degenerate case (triangles) due to the break-
ing of spin parity. Although the perturbative results Eq. (2.13) cannot be ap-
plied to the case lSO = l0 in Fig. 2.3a, the energy splitting at small magnetic
field and the overall increasing separation for higher subbands are reminiscent
of the linear dependences on n and B found in Eqs. (2.13) and (2.14). (ii) For
l0/lB≈1, the energy splitting is comparable to the subband separation which indi-
cates the merging of the quantum numbers of the subband and the spin parity into
a new major quantum number. For higher subbands, the SOI-induced splitting
even leads to anticrossings with neighbouring subbands. (iii) Finally, the conver-
gence to the JCM implies that the splittings should saturate for large B (Fig. 2.2d).
The dashed lines in Fig. 2.3a show the energies of the spin-split Landau levels,
En/~ω0 = (l0/lB)2(n + 1/2)± δ/2 for l0 = 4lB, indicating that the SOI-induced
energy splitting is always larger than the bulk Zeeman splitting. At l0 ≈ lB the
SOI-induced splitting exceeds the Zeeman effect by a factor 5. This is remarkable
because of the large value of the g-factor in InAs.

For our wire parameters the sweep in Fig. 2.3a corresponds to a magnetic field
B ≈ 0− 1T. Considering the significant spectral changes due to breaking of spin
parity at lB ≈ l0 (B ≈ 70mT) we conclude that the SOI-induced modifications in
the wire subband structure are very sensitive to weak magnetic fields (Fig. 2.2b,
c). This may have consequences for spinFET designs that rely on spin polarised
injection from ferromagnetic leads because stray fields can be expected to alter
the transmission probabilities of the interface region.

The SOI-induced enhancement of the spin splitting should be accessible via
optical resonance or ballistic transport experiments. The magnitude of the split-
ting suggests that this effect is robust against possible experimental imperfections
like a small residual disorder. In a quasi-1D constriction the conductance is quan-
tised in units of ne2/h where n is the number of transmitting channels [81]. In the
following, we neglect the influence of the geometrical shape of the constriction
and that for small magnetic fields (l0/lB < 0.5) the minima of the lowest subbands
are not located at k = 0 (Fig. 2.2b). In this simplified model we expect the con-
ductance G to jump up one conductance quantum every time the Fermi energy
passes through the minimum of a subband. Thus, in the case of spin degenerate
subbands, G increases in steps with heights 2e2/h (triangles in Fig. 2.3b).
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sketch of the ballistic conductance as a function of Fermi energy for (l0/lB)2 =
0 (triangles), (l0/lB)2 = 2 (crosses), and Zeeman-split Landau levels (circles).
(Curves vertically shifted for clarity).

In principle, by sweeping the magnetic field the different regimes discussed
in Fig. 2.3a can be distinguished in the ballistic conductance. For high magnetic
field, the spin degeneracy is broken due to the Zeeman effect. This leads to a
sequence of large steps (Landau level separation) interrupted by small steps (spin
splitting) (circles in Fig. 2.3b). As a signature of the SOI we expect increasing spin
splitting for higher Landau levels due to converging towards the JCM (Fig. 2.2d).
Decreasing the magnetic field enhances the effects of SOI until at lB ≈ l0 subband
and spin splitting are comparable whereas the Zeeman effect becomes negligible
(crosses in Fig. 2.3b).

2.1.5 Spin properties

Not only the energy spectra of the quantum wire are strongly affected by the break-
ing the spin parity P̂xσx. The latter symmetry has also profound consequences for
the spin density,

Sn,k(x) := ψ†
n,k σσσψn,k. (2.15)

To elucidate this in some detail we start with considering the case B = 0.
Without magnetic field, the spin parity is a constant of motion. The corre-

sponding symmetry operation Eq. (2.12) leads to the symmetry property for the
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wavefunction,
ψ↑

n,k,s(x) = sψ↓
n,k,s(−x), s = ±1, (2.16)

where s denotes the quantum number of the spin parity. This symmetry re-
quires the spin density components perpendicular to the confinement to be anti-
symmetric, Sy,z

n,k,s(x) = −Sy,z
n,k,s(−x), leading to vanishing spin expectation values,

〈σy,z〉n,k,s =
R

dxSy,z
n,k,s(x) = 0. We note that using the σz-representation for spinors

even leads to zero longitudinal spin density Sy
n,k,s(x) ≡ 0 because the real and

symmetric Hamiltonian H(k) implies real transverse wavefunctions independent
of the spin parity. Therefore, it is sufficient to consider the x- and z-components
of the spin, only.

For zero magnetic field, it has been pointed out that for large k the spin is
approximately quantised in the confinement direction [69, 70]. This is due to
the so-called longitudinal-SOI approximation [68] which becomes valid when the
term linear in k in the SOI [Eq. (2.5)] exceeds the coupling to the neighbouring
subbands.

The perpendicular magnetic field breaks spin parity and thereby leads to a
hybridisation of formerly degenerate states for small k. In addition, the breaking
of the symmetry of the wavefunction Eq. (2.16) leads to modifications of the spin
density.

In Fig. 2.4 the expectation value of spin is shown as a function of the longitudi-
nal momentum for the two lowest subbands. For weak magnetic field (Fig. 2.4a)
results similar to the zero magnetic field case [69, 70] are found. For large k
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the spinor is effectively described by eigenstates of σx which concurs with the
longitudinal-SOI approximation. However, for k ≈ 0 the hybridisation of the
wavefunction leads to a finite value of 〈σz〉. This corresponds to the emergence of
the energy splitting at k = 0 in Fig. 2.2b which can be regarded as an additional
effective Zeeman splitting that tilts the spin into the σz-direction — even with-
out a real Zeeman effect. This effect becomes even more pronounced for large
magnetic field (Fig. 2.4b). Here, for small k, the spin of the lowest subband is
approximately quantised in σz direction. The spin expectation values in Fig. 2.4
depend only marginally on the strength of the Zeeman effect. No qualitative dif-
ference is found for g = 0.

2.1.6 Conclusion

In summary, the effect of a perpendicular magnetic field on a ballistic quasi-1D
electron system with Rashba effect is investigated. It is shown that the spectral
and spin features of the system for small k are governed by a compound spin
orbital-parity symmetry of the wire. Without magnetic field this spin parity is
a characteristic property of symmetrically confined systems with Rashba effect
and leads to a binary quantum number which replaces the quantum number of
spin. This symmetry is also responsible for the well-known degeneracy for k = 0
in systems with Rashba effect. A non-zero magnetic field breaks the spin-parity
symmetry and lifts the corresponding degeneracy, thus leading to a magnetic field
induced energy splitting at k = 0 which can become much larger than the Zeeman
splitting. Moreover, we find that the breaking of the symmetry leads to hybridisa-
tion effects in the spin density.

The one-electron spectrum is shown to be very sensitive to weak magnetic
fields. Spin-orbit interaction induced modifications of the subband structure are
strongly changed when the magnetic length becomes comparable to the lateral
confinement of the wire. This might lead to consequences for spinFET designs
which depend on spin injection from ferromagnetic leads because of magnetic
stray fields.

For the example of a quantum wire, we demonstrate that in the case of a
parabolical confinement it is useful to map the underlying one-electron model
onto a bosonic representation which shows for large magnetic field many similar-
ities to the atom-light interaction in quantum optics. In Ref. [77] this mapping is
utilised to predict spin-orbit driven coherent oscillations in single quantum dots.

This work was supported by the EU via TMR and RTN projects FMRX-CT98-
0180 and HPRN-CT2000-0144, and DFG projects Kr 627/9-1, Br 1528/4-1. We
are grateful to T. Brandes, T. Matsuyama and T. Ohtsuki for useful discussions.
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2.2 Spectral properties, various limits

Geometrical confinement leads to quantisation of the orbital motion. Therefore,
the natural language to describe the wavefunction in a quasi-1D electron system is
in terms of confined transverse subbands. In Sec. 2.1.2, the effective mass Hamil-
tonian of the spin-orbit (SO) interacting quantum wire (QWR) [Eq. (2.1) on page
18] is rewritten in the basis of transverse subbands corresponding to parabolic
confinement. Formally, this leads to a bosonic representation [Eq. (2.5) on page
19] in which the SO interaction leads to a coupling between nearest-neighbouring
subbands of opposite spin, see Fig. 2.2a. In Eq. (2.5) the operators a†

k and ak

act on the transverse eigenstates such that a†
kak gives the subband number of the

electron that propagates with longitudinal momentum ~k. Clearly, electrons are
fermions. We use the notion “bosonic” because the oscillator operators have a
commutator [ak,a

†
k ] = 1. Here, a†

k and ak describe transitions between transverse
subbands – not particle creation and annihilation. In this form, the Hamilto-
nian resembles models of matter-light interaction of quantum optics like the Rabi
Hamiltonian [82], where, in the simplest case, two atomic levels – representing a
pseudo-spin – are coupled to a monochromatic radiation mode, see Fig. 2.5. In
quantum optics such pseudo-spin boson models consist of distinct physical sub-
systems (atom and light) whereas in the case of QWR two degrees of freedom of
the same particle are coupled.

Due to the complexity of the coupling between spin and orbitals in Eq. (2.5),
in general, no analytical solution of the Hamiltonian is feasible. We apply an exact
numerical diagonalisation to find the spectral properties of the wire. Figure 2.6
shows the low-energy spectra of the QWR for various strengths of confinement,
SO coupling and perpendicular magnetic field. For a better physical understand-
ing we summarise analytical limits and approximations in the following.

2.2.1 Zero magnetic field

For B = 0 the Hamiltonian (2.5) reduces to

H(k)
~ω0

= a†
kak +

1
2

+
1
2
(kl0)

2 +
1
2

l0
lSO

(
kl0σx +

i√
2

(
ak −a†

k

)
σy

)
, (2.17)

=: H0 +Hmix, (2.18)

with Hmix = 2−3/2i(l0/lSO)(ak − a†
k)σy. This limit was studied in detail by

Moroz & Barnes [67], and Governale & Zülicke [69,70]. H0 represents the maxi-
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mally commuting subsystem with energies of shifted parabolic subbands [69],

E±
0,n

~ω0
= n+

1
2

+
1
2

(
kl0 ±

1
2

l0
lSO

)2

− 1
8

(
l0

lSO

)2

, (2.19)

where ± denotes eigenstates with spin (anti)parallel to σx. The shift of the disper-
sion depends on the spin and the strength of the SO coupling kSO = ±1/2lSO.

Hmix symmetrically couples adjacent subbands of H0. In the limit of |kl0| �
1 and l0/lSO � 1 (corresponding to weak SO coupling) the Hmix term can be
neglected, leading to the so-called longitudinal-SO approximation [68]. Within
this approximation, spinors are given by eigenstates of σx, where the spin is fixed
by the propagation direction of the electron due to k-linear prefactor of σx in H0.
Thus, for large momenta, right(left)-moving electrons have approximately spin-
down(up) polarisation with respect to σx. The shifted parabolic subbands of the
longitudinal-SO approximation are also seen in the result for weak magnetic field,
Fig. 2.6 (left panel in upper row).

The transversal part of the SO coupling Hmix becomes important in the regime
where neighbouring subbands of H0 become degenerate, leading to anticrossings
as seen in Fig. 2.6 (central panel in upper row). In general, no common spin
quantisation axis can be found. This can also be seen in the spin properties for
weak magnetic field, Fig. 2.4a. The zero-B result is given by the envelope of the
hysteresis-like solid curves. For finite momenta, the tilt of the spin does depend
on k. Only for large momenta, l0k � 1, the spin is approximately quantised in σx
direction.
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Figure 2.6: Low-energy spectra of an SO-interacting quantum wire found by nu-
merical diagonalisation. Various regimes in the interplay of SO coupling and
perpendicular magnetic field are shown. For strong magnetic field (lower row) the
spectrum of the Jaynes–Cummings model are shown (dashed lines).

2.2.2 Two-band model
In the low-energy limit with a strong lateral confinement and a low electron den-
sity, Fermi points exist for the lowest subbands, only. Governale and Zülicke in-
troduced a two-band model by truncating the Hilbert space to the two lowest spin-
split subbands [69]. The corresponding matrix representation of dimension 4×4
is simple enough to be solved analytically but it goes beyond the longitudinal-
SO approximation by showing an anticrossing. This model has been applied to
calculate the transmission through an SO-interacting wire of finite length which
was attached to perfect leads [69]. If the Fermi energy is placed between the
two subband – making the lowest one a transmitting channel whereas the upper
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band is evanescent – the scattering to the evanescent modes is shown to lead to
spin-accumulation at the interface region with the leads.

However, since the Hilbert space is drastically truncated in this model, only
the lowest subband resembles the exact solution whereas evanescent modes show
deviations due to the missing coupling to higher bands. In Sec. 2.3, we briefly
outline the importance of evanescent modes in quasi-1D transport.

2.2.3 Non-zero magnetic field
Perpendicular magnetic fields affect both, the electron’s orbitals (via introduc-
tion of cyclotron energy, lateral shift of wavefunction, renormalisation of effec-
tive mass) and the spin degree of freedom (via Zeeman effect). In addition, the
Hamiltonian (2.5) shows that the SO coupling is also affected by a magnetic field.

We now extend the longitudinal-SO approximation to include the effect of a
weak magnetic field.† In analogy with Sec. 2.2.1, we decompose the Hamiltonian
(2.5) into H(k)/~ω0 = H0 +Hmix where

H0 = Ω
(

a†
kak +

1
2

)
+

1
2

(kl0)2

Ω2 +
1
2

(
ξ1kl0 +ξ2(ak +a†

k)
)

σx, (2.20)

Hmix =
1
2

[
ξ3

(
ak −a†

k

)
σy +δσz

]
, (2.21)

where we use the same abbreviations as in Sec. 2.1.2. Choosing eigenstates of σx,
denoted by |↑↓〉, H0 becomes diagonal in spin,

H↑↓
0 = Ω

(
a†

kak +
1
2

)
+

1
2

(
kl0
Ω

± 1
2

l0
lSO

)2

− 1
8

(
l0

lSO

)2

± 1
2

ξ2

(
a†

k +ak

)
. (2.22)

A comparison with the zero-magnetic field solution Eq. (2.19) shows that, apart
from a trivial energy renormalisation, the effect of the magnetic field solely enters
through the rightmost term in Eq. (2.22). This term can be interpreted as being
caused by a spin-dependent effective electric field pointing in x-direction, Eσ =
±E êx. Having this analogy in mind, it is straightforward to diagonalise Eq. (2.22)
by defining displaced boson operators [83],

A↑↓ = ak ±
1
2

ξ2

Ω
, A†

↑↓ = a†
k ±

1
2

ξ2

Ω
, (2.23)

leading to

H↑↓
0 = Ω

(
A†
↑↓A↑↓ +

1
2

)
+

1
2

(
kl0
Ω

± 1
2

l0
lSO

)2

− 1
8

(
l0

lSO

)2

− 1
4

ξ2
2

Ω
, (2.24)

†Strong magnetic fields lead to a significant Zeeman splitting and a pronounced asymmetry in
the coupling between adjacent subbands (see next section).



2.2 Spectral properties, various limits 31

with eigenstates

|n,↑↓〉 = |n〉↑↓ |↑↓〉, |n〉↑↓ =
1√
n!

(
A†
↑↓

)n
|0〉↑↓. (2.25)

Thus, at the level of this extended longitudinal-SO approximation, the simultane-
ous effect of weak SO coupling and magnetic field leads to a spin-dependent shift
of the wavefunction. In comparison with the zero-B result Eq. (2.19), however, the
spectral properties are only affected by a constant shift of the ground state energy
by −ξ2

2/4Ω, as one might have expected from the analogy with the electric field.

Remark: Equation (2.25) gives good insight into the approximate properties of
eigenfunctions and energies in the low-coupling limit. However, in the context of
a numerical diagonalisation of the full Hamiltonian H0 +Hmix, the basis {|n,↑↓〉}
is of little practical use. This is because the orbital wavefunctions |n〉↑↓ corre-
spond to differently displaced oscillators for opposite spin, hence not fulfilling
orthogonality, ↑↓〈n|m〉↓↑ 6= δnm.

2.2.4 High-field limit
For the zero magnetic field case, the coupling of adjacent subbands is symmetric,
see Eq. (2.17). With increasing field this coupling becomes more and more asym-
metric due to ξ2 and ξ3 in Eqs. (2.20) and (2.21). This amounts to the convergence
of the Hamiltonian against the Jaynes–Cummings model (see appendix A) in the
high field limit: By introducing σ± = (σx ± iσy)/2, the Hamiltonian (2.5) can be
rewritten as

H(k)
~ω0

= Ω
(

a†
kak +

1
2

)
+

δ
2

σz +
1
2

ξ1kl0σx +
1
2
(kl0)

2

Ω2

+
1
2

l0
lSO

[
γr

(
akσ+ +a†

kσ−
)

+ γc

(
akσ− +a†

kσ+

)]
,

(2.26)

where (l0/lSO)γr,c = ξ2 ∓ iξ3. In quantum optics, terms preceded by γr(c) are
called (counter)-rotating. This distinction becomes apparent when transforming
into the interaction picture and comparing the time evolution of these terms. The
first two terms on the right hand side of Eq. (2.26), H0 := Ω(a†

kak +1/2)+δσz/2,
correspond to the free evolution of the boson field of subbands and the spin. Thus,
in the interaction picture with respect to H0, boson and spin operators evolve as

â = ae−iΩτ, â† = a† eiΩτ, σ̂± = σ± e±iδτ, τ := ω0t. (2.27)

Close to resonance Ω ≈ δ in Eq. (2.26), counter-rotating terms are rapidly oscil-
lating in time as exp(2iΩτ) whereas rotating terms become almost stationary. In
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quantum optics, the neglect of the counter-rotating contributions with respect to
the near-resonant ones is known as the rotating-wave approximation (RWA).

In our system, with increasing magnetic field, the relative weight of these
terms becomes

γc

γr
=

(
l0
lB

)2
−Ω

(
l0
lB

)2
+Ω

−→ 0, for
l0
lB

� 1, by Eq. (2.6). (2.28)

Thus, in the high magnetic field limit the RWA of quantum optics becomes ex-
act. For Ω � 1, the system then converges against the Jaynes–Cummings model
(JCM) (see also appendix A)

HJC

~ωc
= a†a+

1
2

+
1
4

m
m0

gσz +
1√
2

lB
lSO

(aσ+ +a†σ−) . (2.29)

In high magnetic fields, the semiclassical trajectory of electrons is confined to
cyclotron orbits. Thus, in the limit of lB � l0, the external parabolic confinement
of the wire becomes negligible, leading to a crossover to a 2D SO-interacting
system in perpendicular magnetic field for which the formal identity to the JCM
was noted in Sec. 1.3.

In the high magnetic field regime of Fig. 2.6 (lower row) the solution of the
JCM (see App. A) is shown in comparison with the exact solution of the full
Hamiltonian, showing perfect agreement for kl0 � Ω.

2.2.5 Energy splitting at kkk === 000

In the last sections, we have introduced analytical limits for several regimes in
the interplay of confinement, magnetic field, and SO coupling in QWRs. For
weak SO coupling and magnetic field the extended longitudinal-SO approxima-
tion Eq. (2.22) gives good estimates for eigenstates and energies. Beyond this
approximation, the two-band model is shown to demonstrate the appearance of
anticrossings for stronger SO coupling. In addition, for high magnetic fields the
Jaynes–Cummings model shows excellent agreement with the numerical data.

Due to the dominance of the cyclotron energy, an increasing magnetic field
tends to suppress the SO-induced modifications on the spectra like anticrossings
and non-parabolicities. Without magnetic field, these become important when the
SO coupling is stronger than the confinement.

One further effect of the magnetic field becomes evident from the spectra in
Fig. 2.6. Fir B 6= 0, the degeneracy at k = 0 is broken. In Sec. 2.1.3, this is ex-
plained in terms of the breaking of a combined spin orbital-parity symmetry when
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SO coupling and perpendicular magnetic field act simultaneously. This energy
splitting at k = 0 can also be calculated perturbatively.

We start from the unperturbed spectrum at k = 0 of the Hamiltonian (2.26),
which is equivalent to Eq. (2.5), E (0)

n,↑↓ = Ω(n + 1/2)± δ/2. The perturbation is
given by

H1 =
1
2

l0
lSO

[(
γra+ γca†

)
σ+ +

(
γca+ γra†

)
σ−
]
. (2.30)

Since H1 is non-diagonal in spin, first order corrections vanish. Second order non-
degenerate perturbation theory straightforwardly gives for the limit |Ω± δ| > 1
(far from resonance)

E(2)
n,↑ =

1
4

(
l0

lSO

)2( γ2
c n

Ω+δ
− γ2

r (n+1)

Ω−δ

)
, (2.31)

E(2)
n,↓ =

1
4

(
l0

lSO

)2( γ2
r n

Ω−δ
− γ2

c(n+1)

Ω+δ

)
. (2.32)

This leads to the k = 0 energy splitting ∆n := En,↑ −En,↓ given by Eq. (2.13)
which is discussed on page 21.

2.3 Electron transport in one-dimensional systems
with Rashba effect

In low-dimensional systems which arise from quantum confinement, the theoret-
ical treatment of transport depends on how it is driven through a system. When
describing transport parallel to the barriers of the nanostructure (e.g. along the
axis of a quantum wire), in many cases, kinetic Boltzmann equation formalisms
can be used, thus, ignoring the phase information of the particles [3]. Effects
of quantum mechanics solely enter through the appropriate quantum states in the
presence of confinement and by transitions between them induced by scattering
potentials. On the contrary, if transport is driven through barriers, quantum inter-
ference can be expected to become important when the particle traverses regions
in which the medium changes on a length scale comparable to the phase coherence
length of the particle. This condition is typically fulfilled in mesoscopic systems.

In the following, we are interested in transport through open ballistic sys-
tems where particles are injected from leads and where the transport properties
of the system are determined by the transmission and reflection amplitudes. The
quantum mechanical derivation of the transport properties of such systems gener-
ally involves the solution of the Schrödinger equation. Numerical approaches for
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one-dimensional systems often employ discretised lattice models. In such single-
particle tight-binding formulations, numerical techniques like the transfer-matrix
or the recursive Green’s function method are used to calculate the exact quantum
coherent solution of the system for a given energy. Then, for instance, the conduc-
tance can be calculated after coherently connecting the system to leads [3]. These
methods have extensively been applied to study localisation problems in disor-
dered systems [84]. Recently, with increasing interest in spin-dependent transport,
various spintronic devices have been addressed with tight-binding approaches.
For instance, Bulgakov et al. [56] studied the spin-dependent transmission prop-
erties of a ballistic cross-junction structure. They found a SO-induced Hall-like
effect when driving a spin polarised current through a four-terminal device (with-
out magnetic field). Kiselev & Kim [57, 58] investigated ballistic T-shaped struc-
tures with SO interacting intersection region. They found that the device may
redirect electrons with opposite spins from an unpolarised current, thus acting as
a spin filter. Such behaviour is similar to the Stern-Gerlach experiment where
the motion of paramagnetic atoms in a inhomogeneous magnetic field is altered
depending on the spin.

In addition to such atomistic lattice calculations, continuum formulations of
the transfer-matrix method (mode matching analysis) have also been applied to
study e.g. the influence of scattering at impurities [85] and conductance fluctua-
tions [86] in quasi-1D systems. The generalisation of this approach to include the
effect of spin-orbit (SO) coupling, whilst straightforward in principle, is techni-
cally rather difficult because of the imperative determination of evanescent modes.

In the following we briefly formulate the necessity to treat evanescent modes
in quasi-1D transport and the associated technical complications caused by SO
coupling. As an example of the mode matching analysis, in Sec. 2.3.2, we discuss
the interplay of SO coupling and an external magnetic modulation in the integrable
strict-1D limit of a quantum wire. We find a commensurability effect in the spin-
dependent transport characteristics when the modulation period is comparable to
the SO-induced spin precession length.

2.3.1 Transmission in quasi-1D systems
When applying numerical tight-binding models to the problem of transmission
through quasi-1D systems (e.g. in quantum waveguide structures as shown in
Fig. 2.7) the discretisation of the lattice sets the dimension of the Hilbert space.
Within this space the numerical solution of the Schrödiger equation is exact.

On the contrary, when utilising a continuum formulation of the transfer-matrix
method, the mode matching analysis [3] may be used to derive the solution. The
basic idea is to split a given geometry into sections and to calculate the solution of
the Schrödinger equation by connecting the solutions of the individual sections.
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Figure 2.7: Sketch of interface between two quasi-1D wires with different widths
(centre) and their dispersion relations (left and right). At the Fermi energy
(dashed) only the lowest two subbands are propagating.

This is done by “matching” the transverse modes (and their probability flux‡) at
the boundaries between the sections. We illustrate this with the basic example of
a discontinuity of a quantum waveguide which is shown in Fig. 2.7. In contrast to
Sec. 2.1 and 2.2, in the following, we change the geometry such that the quasi-1D
system is parallel to the x-axis. We are looking for the stationary-state solution for
the energy EF. Expansion into transverse modes yields

ψI(x,y) =
∞

∑
n=0

(
An eikI

nx +Bn e−ikI
nx
)

φI
n(y), (2.33)

[1ex]ψII(x,y) =
∞

∑
n=0

(
Cn eikII

n x +Dn e−ikII
n x
)

φII
n (y), (2.34)

with modes {φI(I)
n } of region I(I), resp. The wave vectors follow from the energy

dispersions, E I
n(k

I
n) = EII

n (kII
n ) = EF. Depending on EF, modes are either propa-

gating if min(En) < EF with real kn, or evanescent if min(En) > EF, leading to
imaginary kn and thus to exponentially decaying (or growing) wavefunctions. At
the interface (x=0) the usual boundary conditions have to be satisfied for all y,

ψI(x = 0,y) = ψII(x = 0,y), (2.35)

v̂x ψI(x,y)
∣∣
x=0 = v̂x ψII(x,y)

∣∣
x=0, (2.36)

requiring a continuous wavefunction and the continuity equation for the probabil-
ity density, ∂tρ=−∂xJx, to be fulfilled. The probability current is given by

Jx =
1
2
[
ψ∗v̂xψ+ψ(v̂xψ)∗

]
, (2.37)

‡Note that for SO-interacting systems the continuity condition at the interface affects the prob-
ability flux; only without SO coupling this reduces to the continuity of the derivative of the wave-
function.
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with the velocity operator v̂x = ∂H/∂px which becomes non-diagonal in systems
with SO coupling [87].

In a quasi-1D system the continuity conditions (2.35) and (2.36) – which fi-
nally give the solution of the Schrödinger equation of the whole system – cannot
be fulfilled for all y when the set of transverse modes is restricted to propagating
ones only (clearly seen for the two modes sketched in Fig. 2.7). Evanescent modes
(EM) have to be included to obtain a sufficiently complete set of transverse wave
functions.§

Once the solution is found, meaning {An,Bn,Cn,Dn} in Eq. (2.33) and (2.34)
are known, the transmission properties of the system can be derived from the
transfer-matrix T̂ , which relates amplitudes on the left to those on right,

(
A
B

)
= T̂

(
C
D

)
, or equivalently

(
B
C

)
= Ŝ

(
A
D

)
, (2.38)

defining the scattering or Ŝ–matrix which connects incoming and outgoing fluxes.
When addressing the effect of SO coupling on the transmission properties of

quasi-1D systems, like the parabolically confined quantum wire in the previous
sections, the ansatz for the wavefunctions in (2.33) has to be generalised (i) to
include the spin, and (ii) to allow for the peculiarities due the SO coupling like
transverse modes depending explicitely on the longitudinal momentum ~k, mak-
ing φk,n(y) 6= φ−k,n(y), and the multitude of possible wave vectors for a given en-
ergy due to non-parabolicities of the dispersion (Fig. 2.6). The real inconvenience,
however, is the determination of EM. The parabolic QWR with SO coupling in
the previous sections exemplifies the general non-integrability of the transverse
Schrödinger equation, H(k)φk = Ek φk, see Eq. (2.5). Therefore, the determina-
tion of propagating modes for energy EF corresponds to numerically finding those
real kn such that EF is contained in the spectrum of H(kn). On the contrary, EM
have in general complex wave vectors, thus drastically complicating the numeri-
cal evaluation of the spectrum of H(k). Although challenging, but technically still
feasible, in the context of spintronics to our knowledge no exact investigation of
the properties of EM has been performed within the above scheme yet.

Evanescent modes are localised close to the interface between adjacent sec-
tions of the quasi-1D system due to their exponential character. Therefore they
do not extend over the whole system, leading one to naively believe they have no
influence on the transmission characteristics. However, in confined systems the
boundary conditions couple propagating and EM which aquire a non-zero ampli-
tude in the superposition (2.33) at the expense of the propagating ones; thus they
do affect the transmission properties indirectly.

§We remark that the diagonalisation of a tight-binding model is exact within the dimension of
the lattice, the solution naturally includes evanescent modes.
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This influence of EM has been highlighted in quasi-1D systems without SO
coupling by e.g. showing that the localisation of EM around defects may lead
to perfect transparency or opaqueness as a function of Fermi energy [85]. Since
EM are a basic wave phenomenon, their influence also appears in other fields of
physics like microwave waveguides and near-field optics [88, 89].

Because of the complications in finding EM in SO-coupled systems, nor-
mally approximations are being applied to make the Hamiltonian integrable. In
Sec. 2.2.1 the longitudinal-SO approximation and the two-band model are pre-
sented as examples. Within the latter approximation, Governale & Zülicke [69]
showed that in a quasi-1D hybrid system of waveguides with different strengths
of SO coupling, scattering to EM leads to spin accumulation close to the interface,
thus highlighting the general importance of EM.

The results which are derived by the mode matching analysis so far depend
very much on the applied approximation. For instance, Wang et al. studied pe-
riodically stubbed waveguides as an extension of the Datta & Das [42] spin-FET
design. They applied the longitudinal-SO approximation for single [44] and multi-
subband [90] transmission, and found a tuneable spin current modulation similar
to the original spin-FET. Later, Wang & Vasilopoulos [45] extended the calcu-
lation by applying the two-band model and found that the previously neglected
subband mixing leads to drastic changes of the transmission properties.

2.3.2 Strict-1D limit of a quantum wire
In this section, we treat the strict-1D limit of a ballistic QWR (1D-QWR) by trun-
cating the Hilbert space to its lowest transverse subband. This is a reasonable
approximation for the case of strong lateral confinement where the subband sepa-
ration is the dominating energy scale and the SO coupling is weak.

In this limit, the Hamiltonian of a 1D-QWR is given by

H1D −E0 =




1
2m p2

x + 1
2gµBB i

~
αpx

− i
~

αpx
1

2m p2
x − 1

2gµBB


 , (2.39)

where the effect of a constant electrostatic background potential is absorbed into
the energy offset E0.

In the following, we will demonstrate for the basic example of the 1D-QWR
how the electronic transport is influenced when magnetic field and SO coupling
act simultaneously in the wire. In this strict-1D limit there is no problem asso-
ciated with the finding of EM. For the case of a periodic magnetic modulation,
we show that a commensurability effect appears in the spin-dependent conduc-
tance when the modulation period becomes comparable with the SO-induced spin
precession length.
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Figure 2.8: Dispersion relation for the spin-orbit interacting Zeeman-split strict-
1D quantum wire. Dashed curves correspond to the zero magnetic field case.

Constant magnetic field

For further simplification, we start with the eigenfunctions when all parameters
(magnetic field B, SO coupling α, and electrostatic potential E0) are constant,

ψks(x) = Nks eikx
(

ξks
1

)
, s = ±1, (2.40)

with normalisation constant Nks and

ξks =
i
k

(
κ+ s

√
k2 +κ2

)
, κ :=

gµBB
2α

. (2.41)

The corresponding eigenenergies are

Eks −E0 =
~

2

2m

(
k2 +4skSO

√
k2 +κ2

)
, kSO :=

mα
2~2 . (2.42)

In Fig. 2.8 the dispersion (2.42) is shown. The wavenumber of an electron with
Fermi energy EF in branch s is given by

ks = ±
√

2

√
k2

F +4k2
SO −2skSO

√
2k2

F +4k2
SO +κ2, (2.43)

where k2
F := (EF−E0)m/~

2. Depending on the Fermi energy, electrons are either
propagating (ks real) or evanescent (ks imaginary).
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Figure 2.9: Stepwise constant external fields which change at a single interface.

We mention that neither the eigenenergy nor the wavenumber depend on the
sign of the magnetic field. Solely the representation of the spinor in the basis of σz
changes. For a sign change of the magnetic field (κ →−κ), from (2.41) follows

ξk,+(−κ) = −ξk,−(κ) = ξ∗k,−(κ), (2.44)

ξk,−(−κ) = −ξk,+(κ) = ξ∗k,+(κ). (2.45)

Transport in the presence of a magnetic modulation

We now address the question how the transport properties of the 1D-QWR is af-
fected by a modulation of the external parameters (B, α, E0). Experimentally
this could be done by e.g. magnetic superlattices [91,92] which modulate periodi-
cally the strength of the magnetic field. We will concentrate on system parameters
corresponding to such an experimental situation with weak magnetic modulation
and SO coupling compared to Fermi energy. Generalisation to other parameter
regimes is straightforward. Although results will be presented only for magnetic
modulation, the formulation of the transmission problem will be outlined for arbi-
trary changes of external parameters. In a ballistic 1D system which is connected
to leads the conductance is related to the transmission properties of the system via
the Landauer formular [93, 94].

G = G0 ∑
nn′,σσ′

∣∣tnσ→n′σ′
∣∣2, G0 =

e2

h
, (2.46)

where tnσ→n′σ′ is the probability amplitude for transmission from state (nσ) in
the source lead to state (n′σ′) in the drain lead. In the following, we will restrict
ourselves to calculating these transmission amplitudes.

We start with considering the transport through a single interface (located at
x = a) between regions with different parameters kSO, κ, E0, see Fig. 2.9. The
transmission properties of the interface can be calculated analogously to textbook
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quantum mechanics. Nevertheless, here, we go through the basic calculation to
illustrate peculiarities arising from the SO coupling.

The solution of the Schrödinger equation can be obtained by using the ansatz

I: ψI(x) =A+ψk+(x)+A−ψk−(x)

+B+ψ−k+(x)+B−ψ−k−(x), (2.47)

II: ψII(x) =C+ψk′+(x)+C−ψk′−(x)

+D+ψ−k′+(x)+D−ψ−k′−(x), (2.48)

with the wave vectors of the left and right region, k± = k±(κ,kSO,E0) and k′± =
k±(κ′,k′SO,E ′

0), respectively. At the interface the conditions (2.35) and (2.36) have
to be satisfied which for a strict-1D system reduce to

ψI(x = a) = ψII(x = a), (2.49)

v̂x ψI(x)
∣∣
a = v̂x ψII(x)

∣∣
a, (2.50)

with the non-diagonal velocity operator

v̂x =
∂H
∂px

=
1
m

(
px 2i~kSO

−2i~kSO px

)
. (2.51)

In transport calculations it is customary to normalise the wavefunctions with re-
spect to the probability current. Therefore, we require

∣∣〈ψks|v̂x|ψks〉
∣∣= 1, (2.52)

leading to the normalisation constant

Nks =
1√
L

√
m|k|/2~(

k2 +κ2 +2kSOκ+ s(κ+2kSO)
√

k2 +κ2
) , (2.53)

where the length of the wire is denoted by L. Equations (2.49) and (2.50) lead to
the transfer matrix M(a) through the magnetic step,

N




A+

A−
B+

B−


= Ψ(−a) m̂−1m̂′Ψ′(a)︸ ︷︷ ︸

=:M(a)

N ′




C+

C−
D+

D−


 , (2.54)
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Figure 2.10: System of stepwise constant external fields with multiple interfaces.

with the normalisation matrix

N =




Nk+ 0 0 0
0 Nk− 0 0
0 0 Nk+ 0
0 0 0 Nk−


 , (2.55)

and the matrix of phase coefficients

Ψκ(a) =




eik+a 0 0 0
0 eik−a 0 0
0 0 e−ik+a 0
0 0 0 e−ik−a


 , (2.56)

m̂ =




ξk+ ξk− −ξk+ −ξk−
1 1 1 1

φk+ φk− φk+ φk−
θk+ θk− −θk+ −θk−


 , (2.57)

where φks = k ξks +2ikSO and θks = k−2ikSO ξks.
In the case of multiple interfaces between regions of stepwise constant param-

eters (see Fig. 2.10), one obtains the transfer matrix T̂ of the entire system by
connecting the transfer matrices Mi(xi) of the separate interfaces,

N




A+

A−
B+

B−


= M1(a)M2(b) . . .Mn(z)︸ ︷︷ ︸

=:T̂

Nn




X+

X−
Y+

Y−


 . (2.58)

From this matrix the transmission coefficients for the different spin polarisations
are derived easily. We now restrict ourselves to the assumption that all incom-
ing electrons are right-moving in state ψk+ (i.e. A− = Y+ = Y− = 0). Because
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of our condition of normalisation (2.52), the transmission and reflection coeffi-
cients, T := |Jtrans/Jinc| and R := |Jrefl/Jinc|, directly follow from the expansion
coefficients in Eq. (2.47) and (2.48). For instance, the probability for an incoming
electron in state ψk+ to pass the interfaces of the modulated region without chang-
ing its spin state is given by T++ = |t++|2, where the transmission amplitude is
given by

t++ =
X+

A+
=

Nk+

Nk′+

T22

T11T22 −T12T21
, . (2.59)

Analogously follows for the probability amplitude to flip the incoming spin while
passing the modulation region

t+− =
X−
A+

= −Nk+

Nk′−

T21

T11T22 −T12T21
, (2.60)

the reflection without spin flip

r++ =
B+

A+
=

T31T22 −T32T21

T11T22 −T12T21
, (2.61)

and the reflection with spin flip

r+− =
B−
A+

=
Nk+

Nk−

T41T22 −T42T21

T11T22 −T12T21
. (2.62)

For incoming electrons which are “−”-polarised follows

t−+ =
X+

A−
= −Nk−

Nk′+

T12

T11T22 −T12T21
, (2.63)

t−− =
X−
A−

=
Nk−

Nk′−

T11

T11T22 −T12T21
, (2.64)

r−+ =
B+

A−
=

Nk−

Nk+

T32T11 −T31T12

T11T22 −T12T21
, (2.65)

r−− =
B−
A−

=
T42T11 −T41T12

T11T22 −T12T21
. (2.66)

Numerical results

In principle, the transmission properties of a 1D-QWR with arbitrarily changing
external parameters (B, α, E0) can be calculated by discretisation and the applica-
tion of Eq. (2.58).
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Figure 2.11: Models of magnetic barriers: rectangular (a) and sinusoidal (b).

In the following, we show results for the transport through magnetic barriers
with rectangular and sinusoidal modulation. Both cases show a commensurability
effect when the modulation period becomes comparable to the SO-induced spin
precession length. Here, we restrict ourselves to Fermi energies much higher than
the gap in the dispersion in Fig. 2.8. Following the experimental motivation of
magnetic superlattices, we assume weak magnetic modulation (∼25mT).

First, we consider a simple rectangular barrier (Fig. 2.11a) of width a where

B =

{
+B0 êz for |x| > a/2,

−B0 êz for |x| < a/2.
(2.67)

(The SO coupling strength and electrostatic potential is assumed to be constant.)
Although the flip of the magnetic field direction in the barrier does not change

eigenenergies and wave vectors, it does change the eigenstates, see Eq. (2.44).
Therefore, when injecting right-moving electrons with spin σ, in perfect analogy
to the standard spinFET [42], the probability to find the same spin directly behind
the barrier is a periodic function of the barrier width, corresponding to spin pre-
cession with period a0 = 2π/|k+−k−|, by Eq. (2.47) and (2.48). If the parameters
κ and kSO are small at the scale of Fermi energy this period becomes a0 ≈ π/2kSO.

In Fig. 2.12 the numerically calculated coefficients for spin-dependent trans-
mission are shown for a single barrier and a modulation with 10 rectangular peri-
ods in series. For the used parameters with weak SO coupling the spin precession
period corresponds to a0 ≈ 0.33µm, being within range of state-of-the-art exper-
imental technique. For the case a of single barrier (panel a+b) the effect of spin
precession is seen as a reduction of the spin conserving transmission Tσσ when
the barrier width becomes commensurate with half of the spin precession length.

This commensurability effect is most clearly seen in the narrow dip in the
spin-conserving transmission. At a barrier width such that akSO/π = 1/4 injected
electrons with polarisation “±” are rotated to “∓” while propagating through the
barrier and thus not matching the wavefunction of the region behind the barrier.
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Figure 2.12: Transmission coefficients for a rectangular magnetic barrier [(a)+(b)]
and 10 barriers in series [(c)+(d)] for weak spin-orbit coupling as a function of
the barrier width a. System parameters: EF = 48meV, B0 = 25 mT, α = 1.6×
10−11 eVm, g = −15, m = 0.042m0.

Thus, the spin-conserved transmission channel Tσσ is reduced. In the original
spinFET design with ferromagnetic leads [42], only majority spin carriers are
injected to and absorbed from the SO interacting region, leading to a strong mod-
ulation of the current as a function of the SO coupling. In our model of a 1D-
QWR with a periodic magnetic modulation, this selection of carriers is relaxed.
Since the amplitude of modulation is chosen to be small (B = 25mT), the re-
duction of spin-conserving transmission through a single barrier is also small.
However, successive transmission through multiple periods enhances the signal.
Figure 2.12c+d show the spin-dependent transmission coefficients for 10 periods
of rectangular modulation, clearly showing a commensurability effect of ∼ 2%.
By using magnetic superlattices the number of periods can easily exceed a few
hundreds, leading to the expectation of a significant reduction of transmission at
commensurability akSO/π = 1/4.
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For weak SO coupling the dominating Fourier component of the transmission
coefficients can be approximated in lowest order by

T++ ≈ T−− ≈ 1− κ̄2 [1− cosa(k−− k+)] , (2.68)

T+− ≈ T−+ ≈ κ̄2 [1− cosa(k−− k+)] , (2.69)

where κ̄ := κ/kF. The oscillations in the reflection probabilities Rσσ′ (not shown
here) are orders of magnitude smaller and carry also higher Fourier components
(e.g. periods π/kσ) as a signal of standard Fabry–Perot like interference of the
orbital wavefunction. In the chosen regime with weak SO coupling and magnetic
field, apart from the small deviations due to reflection, the barrier is almost per-
fectly conducting since T+++T+−=T−−+T−+≈1 by Eq. (2.68) and (2.69). The
oscillating features in the spin-resolved transmission in Fig. 2.12a+b clearly orig-
inate from the interference of the spinors which is driven by the spin precession.

We remark that in order to actually resolve the commensurability effect in the
transmission a spin-dependent measurement is needed. Without being sensitive to
the spin, the total transmission T := ∑σσ′ Tσσ′ shows only standard Fabry–Perot
like interference on the scale of the Fermi wavelength, 1/kF�a0.

We point out that due symmetry properties of the scattering matrix of the sys-
tem no polarisation effect in the transmitted electron flux can be expected. For a
detailed symmetry analysis see Ref. [58].

In the context of magnetic superlattices, a sinusoidal modulation matches
more realistically the experimental situation. Figure 2.13a+b shows the spin-
dependent transmission coefficients for a cosine-shaped magnetic barrier (see
Fig. 2.11b) of width a where the magnetic field is

B =





+B0 êz for |x| > a/2,

−B0 êz cos2π
x
a

for |x| < a/2.
(2.70)

In contrast to the result for a rectangular barrier, the reduction of the spin-conserv-
ing transmission is not a periodic feature with increasing barrier width due to the
non-constant modulation. In panel c+d the results for transmission through 10
sinusoidal periods are shown. Again, the reduction of Tσσ is strongly enhanced by
cumulating a small effect when successively passing consecutive barriers.

2.4 Summary
In this chapter, the interplay of spin-orbit (SO) coupling and geometrical confine-
ment in quasi-one-dimensional quantum wires (QWRs) in perpendicular magnetic
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Figure 2.13: Transmission coefficients for a sinusoidal magnetic barrier [(a)+(b)]
and 10 barriers in series [(c)+(d)] for weak spin-orbit coupling as a function of
the barrier width a. System parameters: EF = 48meV, B0 = 25 mT, α = 1.6×
10−11 eVm, g = −15, m = 0.042m0.

field has been investigated. In general, SO interaction couples the spin of an elec-
tron to its orbital motion. Thus, confinement induced quantisation of motion is
expected to influence the spin properties. A magnetic field which is perpendicular
to the plane of motion is a further quantity, affecting both orbitals and spin.

In Sec. 2.1 and 2.2, we have presented a detailed analysis of the one-electron
spectral and spin properties of the QWR for various regimes in the interplay of
confinement, SO coupling and magnetic field. Spectra and spin densities show
features which are governed by a compound spin orbital-parity symmetry of the
QWR. Without magnetic field, this spin parity – which is a characteristic property
of any symmetrically confined quasi-1D system with Rashba effect – is shown to
replace the quantum number of spin. It is also responsible for the well-known
degeneracy at k = 0 in symmetrically confined systems with Rashba effect. A
non-vanishing magnetic field breaks the spin-parity symmetry, thus lifting the cor-
responding degeneracy at k = 0. We show that this magnetic field induced energy
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splitting can become much larger than the Zeeman splitting and should be acces-
sible experimentally by means of optical or transport measurements. In addition,
hybridisation effects of the spin density go along with the symmetry breaking.

The one-electron spectrum is shown to be very sensitive to weak magnetic
fields. SO-induced modifications of the subband structure of the QWR are strongly
altered when the magnetic length becomes comparable to the confinement. This
might imply consequences for spin transistor designs which depend on spin injec-
tion from ferromagnetic contacts because of magnetic stray fields.

In Sec. 2.3 we have outlined the method of mode matching analysis for the
evaluation of transport properties in quasi-1D system with SO coupling. In this
context we have shown that the inclusion of evanescent modes is crucial to end
up with reliable results. In SO-interacting quasi-1D systems, the determination
of evanescent modes is complicated due to the structure of Hamiltonian. To our
knowledge, a detailed treatment of this problem is still lacking despite its impor-
tance for assessing the approximations which are usually employed.

In Sec. 2.3.2 we analysed the spin-dependent transmission properties of a
strict-1D QWR with a single transverse subband in the interplay of SO coupling
and external magnetic modulation. A commensurability effect is found when the
period of modulation is comparable to the SO-induced spin precession.

For the example of the QWR we have demonstrated that in the case of parabolic
confinement it is useful to map the underlying one-electron model onto a bosonic
representation, which highlights the effects of SO coupling in confined systems.
For large magnetic fields this representation shows many similarities to matter-
light interaction in quantum optics. In the next chapter of this thesis a similar
mapping will be applied to the model of a parabolically confined quantum dot.



48 Rashba spin-orbit coupling in quantum wires



Chapter 3

Rashba spin-orbit coupling in
quantum dots

In the previous chapter we have derived an analogy between parabolically con-
fined spin-orbit (SO) interacting quantum wires and quantum optics. This anal-
ogy amounts to the exact correspondence between the two-dimensional (2D) SO-
coupled system and the Jaynes-Cummings model (JCM) that was introduced in
Sec. 1.3. Apart from being integrable, this model is known to exhibit a number
of striking quantum optical phenomena like Rabi oscillations and the collapse and
revival of wavefunctions [33]. The origin of these effects is the periodic flux of
excitation energy between atom and light field.

With this analogy in mind, one could ask whether it is possible to observe sim-
ilar phenomena in a SO-coupled system? Clearly, it is not feasible to coherently
manipulate the vast number of electrons in a 2D system to exhibit synchronous
Rabi oscillations. This is in contrast to quantum optics where stimulated emission
in active media can lead to collective effects by coupling to the same light field
(laser). In the solid-state counterpart, the electrons do not share a common boson
field. Therefore, the number of carriers has to be reduced drastically, e.g. by using
quantum dots. In these quasi-zero-dimensional systems the number of electrons
can be reduced to the single particle limit – making it the optimal object to study
SO-induced effects on the single-electron spectra and dynamics.

It is the purpose of this chapter to elucidate the effects of SO coupling on few-
electron quantum dots. Motivated by the quest for SO-driven Rabi oscillations we
show that for weak SO coupling the dot can effectively be described by the JCM
with the roles of atomic pseudo-spin and light field played by the spin and or-
bital angular momentum of the electron, respectively. This effective model leads
to characteristic anticrossings in the single-particle spectra, any of which can be
interpreted as a two-level system (TLS) which describes the periodic exchange of
energy between spin and orbital degree of freedom, thus forming a novel compos-

49
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ite spin-angular momentum qubit. The experimental observation of anticrossings
would be a verification of the JCM and would allow the determination of the
strength of the SO coupling in quantum dots. In addition, we propose an experi-
mentally feasible scheme to observe genuine Rabi oscillations in any of the TLS
by simply measuring the electronic transport through the dot.

This chapter is organised as follows: In the next section the scientific publi-
cation which comprises the main results of our studies of the SO driven coherent
oscillations is presented. In Sec. 3.2 we provide more background information by
giving an introduction to few-electron quantum dots and reviewing the effects of
SO coupling therein in Sec. 3.2.1 and 3.2.2, presenting the rigorous derivations
of the published results, and discussing the effects of relaxation on the coherent
evolution of the dot in Sec. 3.3.

3.1 Spin-orbit driven coherent oscillations in a few-
electron quantum dot∗

Abstract: We propose an experiment to observe coherent oscillations in a sin-
gle quantum dot with the oscillations driven by spin-orbit interaction. This is
achieved without spin-polarised leads, and relies on changing the strength of the
spin-orbit coupling via an applied gate pulse. We derive an effective model of this
system which is formally equivalent to the Jaynes–Cummings model of quantum
optics. For parameters relevant to a InGaAs dot, we calculate a Rabi frequency
of 2GHz.

Motivated by the desire for a closer understanding of quantum coherence and
by the drive to develop novel quantum computing architecture, a number of break-
through solid-state experiments have focused on coherent oscillations — the back
and forth flopping of that most fundamental of quantum objects, the two-level sys-
tem [6,7,95,96]. The pioneering work of Nakamura et al. with the coherent super-
position of charge states of a Cooper-pair box [6] first demonstrated the possibility
of observing such oscillations in a wholly solid-state device; thus sparking the re-
markable progress in qubit development in super-conducting systems [95, 96].

The important double quantum dot experiment of Hayashi and co-workers [7]
showed that coherent oscillations could also be observed in normal semiconductor
systems. It is the purpose of this paper to propose an experiment in which coherent
oscillations are observed in a single quantum dot (QD), with these oscillations
being driven by the spin-orbit (SO) interaction.

∗This section has been submitted to publication. E-print: S. Debald and C. Emary, cond-
mat/0410714 at www.arxiv.org.
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The SO interaction in semiconductor heterostructures has its origin in the
breaking of inversion symmetry, and is increasingly coming to be seen as a tool
with which to manipulate electronic states, see e.g. [38, 39]. The grandfather of
these ideas is the spin-transistor of Datta and Das [42], in which the SO inter-
action causes electron spins to precess as they move through a two-dimensional
electron gas (2DEG). In materials where the structural inversion asymmetry dom-
inates, e.g. InGaAs, the SO interaction can be described by the Rashba Hamilto-
nian [11, 12]

HSO = −α
~

[
(p+

e
c

A)×σσσ
]

z
. (3.1)

In this letter we consider the effects of HSO on electrons in a small, few-
electron lateral quantum dot. Although such dots are yet to be realised in ma-
terials with strong SO coupling, there is currently a considerable effort to develop
nanostructures in such materials [37]. Our interest here is not in open or chaotic
QDs [97–100], but rather in small dots in the Coulomb blockade regime.

Such dots have been studied by a number of authors [101–107], but our anal-
ysis differs in a crucial respect: by making an analogy with quantum optics,
we are able to derive an approximate Hamiltonian that captures the essential
physics of the dot. This model is formally identical to the Jaynes–Cummings
(JC) model [32], first derived in the context of the atom-light interaction. Here,
the roles of the atomic pseudo-spin and light field are played by the spin and or-
bital angular momentum of the electron respectively. The system then naturally
decomposes into a set of two-level systems (TLS), any of which may be consid-
ered as the qubit degree of freedom within which coherent oscillations can occur.
These oscillations are genuine Rabi oscillations [33], with orbital and spin de-
grees of freedom exchanging excitation. This “spin-orbit pendulum” behaviour
has been noted in three-dimensional models in nuclear physics [78, 79].

Having elucidated the origin and properties of the TLS, we then describe an
experimental scheme through which the coherent oscillations can be investigated.
The key problem here is that of injecting into, and reading out from, states which
are not eigenstates of the SO coupled system. In the Hayashi experiment [7], this
was achieved through the spatial separation of the two dots, which makes the leads
couple to the localised left and right states, rather than to the bonding and anti-
bonding eigenstates. In our single dot system, the direct analogy of this would
be the injection of spin-polarised electrons. Given the difficulty of interfacing
ferromagnetic leads with semiconductors [37], we avoid their use by exploiting
the fact that the strength of the SO interaction can be controlled by external gates
[24, 25, 27].

Our starting point is the Fock-Darwin theory of a single electron in a 2DEG
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with parabolic confinement of energy ~ω0 [108],

H0 =
(p+ e

cA)2

2m
+

m
2

ω2
0(x

2 + y2), (3.2)

where m is the effective mass of the electron. Applying a perpendicular magnetic
field in the symmetric gauge, in second quantised notation we have

H0 = ~ω̃(a†
xax +a†

yay +1)+
~ωc

2i
(aya†

x −axa†
y), (3.3)

with ωc ≡ eB/mc and ω̃2 ≡ ω2
0 + ω2

c/4. Introduction of a± = 2−1/2(ax ∓ iay)
decouples the system into eigenmodes of frequency ω± = ω̃±ωc/2.

We now include the Rashba interaction of Eq. (3.1), for which the coupling
strength α is related to the spin precession length lSO ≡ ~

2/2mα. With magnetic
length lB ≡

√
~/mωc, we have

HSO =
α
l̃

[
γ+(a+σ+ +a†

+σ−)− γ−(a−σ− +a†
−σ+)

]
, (3.4)

with coefficients γ± ≡ 1± 1
2

(
l̃/lB

)2 and l̃ ≡
√

~/mω̃.
Adding the Zeeman term, in which we take g to be negative as in InGaAs,

performing a unitary rotation of the spin such that σz →−σz and σ± →−σ∓, and
rescaling energies by ~ω0 we arrive at the Hamiltonian

H = ω+a†
+a++ω−a†

−a− +
1
2

Ezσz

+
l2
0

2l̃ lSO

[
γ−(a−σ+ +a†

−σ−)− γ+(a+σ− +a†
+σ+)

]
, (3.5)

where l0=
√

~/mω0 is the confinement length of the dot and Ez=|g|m/2me(lB/l0)2

is the Zeeman energy with me the bare mass of the electron.
This single-particle picture is motivated by the good agreement between Fock-

Darwin theory and experiment in the non-SO case [108], and by studies which
have shown that many-body effects in QDs play only a small role at the magnetic
fields we consider here [101, 102, 109].

We now derive an approximate form of this Hamiltonian by borrowing the
observation from quantum optics that the terms preceded by γ+ in Eq. (3.5) are
counter-rotating, and thus negligible under the rotating-wave approximation [33]
when the SO coupling is small compared to the confinement. This decouples the
ω+ mode from the rest of the system, giving H = ω+n+ +HJC where

HJC(α) = ω−a†
−a− +

1
2

Ezσz +λ(a−σ+ +a†
−σ−), (3.6)
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Figure 3.1: Spectral features of Rashba–coupled quantum dot as function of mag-
netic field. The parameters used are typical of InGaAs: g = −4, m/me = 0.05
with dot size l0 = 150nm. Resonance occurs at B0 = 90mT. (a) Low-lying
excitation spectrum for spin-orbit coupling α = 0.8 × 10−12 eVm. (b) Lowest
lying anticrossing. Thick line is JC model showing anticrossing width ∆0 at
δ = 0, and thin line is exact numerical result. (c) Plot of width ∆n against cen-
tral energy of anticrossing with the dot on resonance for different α in the range
0.3−2.0×10−12 eVm. The exact numerical results (circles) show excellent agree-
ment with the square-root behaviour predicted by the JC model in this α range.

with λ = l2
0γ−/2l̃ lSO. This is the well-known Jaynes-Cummings model (JCM) of

quantum optics. It is completely integrable, and has ground state |0,↓〉 with energy
EG = −Ez/2 independent of coupling. The rest of the JCM Hilbert space decom-
poses into two-dimensional subspaces {|n,↑〉, |n+1,↓〉; n = 0,1, . . .}. Diago-
nalisation in each subspace gives the energies E (n,±)

α = (n+1/2)ω−±∆n/2 with
detuning δ ≡ ω−−Ez and ∆n ≡

√
δ2 +4λ2(n+1). The eigenstates are

|ψ(n,±)
α 〉 = cosθ(n,±)

α |n,↑〉+ sinθ(n,±)
α |n+1,↓〉, (3.7)

with tanθ(n,±)
α = (δ±∆n)/2λ(n+1)1/2.

Figure 3.1a shows a portion of the excitation spectrum obtained by exact nu-
merical diagonalisation for a typical dot in InGaAs. The approximate HJC de-
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scribes the energy levels of the system to within 10% of the typical anticrossing
width and 1% of ω0. This small discrepancy is visible in Fig. 3.1b. In the fol-
lowing, we are only concerned with the lowest-lying energy states in the dots.
Without SO interaction, these states are described by n+ = 0 – indicating that the
states converge to the lowest Landau level in the high-field limit, and by n− cor-
responding to the quantum number of angular momentum. The SO interaction
thus couples two states of adjacent angular momentum and opposite spin. The
detuning δ uniquely identifies ωc for fixed material parameters and dot size.

Under the assumptions of the constant interaction model [108], the most im-
portant prediction of this model for linear transport is that, with the dot on res-
onance, the addition-energy spectrum for the first few electrons (up to 18 here)
is described by a sequence of well-separated anticrossings, the width of which
increases as α

√
n+1. This behaviour is shown in Fig. 3.1c, and its observation

would be confirmation of our JC model, and would permit a determination of α in
quantum dots.

We now describe the procedure for observing spin-orbit driven Rabi oscilla-
tions. Our proposal is somewhat similar to that of Nakamura [6] with a voltage
pulse driving the system, but with the crucial difference that the oscillations here
are induced, not by a change in the detuning, but by a change in the SO cou-
pling strength. We operate in the non-linear transport regime and address a single
two-level system by being near resonance and by tuning the chemical potentials
of the leads close to the n-th anticrossing. The SO coupling is set to α1 and the
states taking part in the oscillation are eigenstates of HJC(α1), namely ψ±

α1
, which

are situated symmetrically around the chemical potential of the right lead µR, see
Fig. 3.2a. The temperature is taken smaller than the detuning kBT � δ to avoid
the effects of thermal broadening. Assuming Coulomb blockade and considering
first-order sequential tunnelling only, electrons can either tunnel from the left lead
into the dot via state ψ+

α1
and subsequently leave to the right or, alternatively, tun-

nel to state ψ−
α1

blockading the dot, see Fig. 3.2b. Assuming tunnelling through
the left/right barrier at a constant rate ΓL/R, we set ΓL > ΓR to assure that the dot is
preferentially filled from the left; thus maximising the current. On average then,
the dot will be initialised in state ψ−

α1
for times ti > Γ−1

R .
Having trapped an electron in this state, we apply a voltage pulse to the gate.

This has two effects. Firstly, this change in voltage alters the SO coupling to a new
value α2. Since this change is performed non-adiabatically, the electron remains
in the initial eigenstate ψ−

α1
until Rabi oscillations begin between this state and

ψ+
α1

under the influence of the new Hamiltonian HJC(α2). Secondly, the TLS is
drawn below both chemical potentials, assuring that oscillations can occur without
tunnelling out of the dot, see Fig. 3.2c.

After a time tp, the gate voltage is returned to its initial value, and the TLS
resumes both to its original position and coupling α1, as in Fig. 3.2d. Tunnelling
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Figure 3.2: Configuration of the dot in the various stages of the cycle. (a) The
positions of the dot levels ψ±

α1
, chemical potentials µL,R, and the tunnelling rates

ΓL > ΓR. (b) The coupling is initially α1. On average, for times ti > Γ−1
R the

dot will be initialised in state ψ−
α1

. (c) The applied voltage pulse lowers the dot
levels and non-adiabatically changes the coupling to α2 6= α1, thus inducing Rabi
oscillations. (d) Pulse is switched off after time tp and the levels return to their
initial places. Tunnelling to right occurs when the electron has oscillated into
upper state. Relaxation rates Γ1,2 are also shown.

out of the dot can now occur, provided that the electron is found in the upper state,
which happens with a probability given by the overlap of the oscillating wave
function at time tp with the upper level,

P(tp) = |〈ψ+
α1
|Ψ(tp)〉|2 = |〈ψ+

α1
|e−iH(α2)tp |ψ−

α1
〉|2. (3.8)

This process is operated as a cycle and the current is measured. From proba-
bility arguments we see that I ≈ eΓRP(tp), where we have used the simplification
that Γ−1

R > tp,Γ−1
L . Thus, by sweeping tp we are able to image the time evolution

of Rabi oscillations, just as in the previous experiments of Nakamura and Hayashi.
The singular case of a non-adiabatic change in α from zero to a finite value

produces oscillations with the maximum possible amplitude, Pmax = 1. However,
in realistic systems only changes between finite values of α are feasible. This
leads to a reduction in the amplitude, and achieving a significant oscillation signal
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requires a suitably large change in α. In experiments with 2DEGs, changes in α
of a factor of 2 are reported, and in a recent Letter by Koga et al., α was shown
to vary in the range ≈ (0.3− 1.5)× 10−12 eVm (a factor of 5) in one InGaAs
sample [25]. Grundler [27] has shown that the large back-gate voltages usually
used to change α can be drastically reduced by placing the gates closer to the
2DEG. Thus, it is conceivable that changes in α of a factor between 2 and 5 could
be produced with voltages small enough to be pulsed with rise times substantially
shorter than a typical coherent oscillation period.

In Fig. 3.3a we plot time-traces of the transition probability P(tp) calculated
for the first anticrossing as a function of magnetic field. We have used the values
α1 = 1.5×10−12 and α2 = 0.3×10−12 eVm from the Koga experiment [25]. The
amplitude of the oscillations Pmax for different ratios of α2/α1 is presented in
Fig. 3.3b, which shows a node at B = B0 (δ = 0). This is because, for δ = 0, the
eigenstates of JCM are 2−1/2(|n,↑〉± |n + 1,↓〉) for all α 6= 0. Therefore, a finite
detuning is required to obtain the maximum amplitude, which concurs with δ >
kBT,ΓR to overcome broadening effects. Both the amplitude Pmax and frequency
Ω show non-trivial dependencies on α1 and α2 as well as on the magnetic field.
This latter behaviour stems from the parametric dependence on B of all three
parameters in HJC.

For our model parameters with α2/α1 = 1/5 and with the detuning set such
that the amplitude is maximised, we have Pmax ≈ 0.45 with a Rabi frequency of
Ω = 2GHz, which corresponds to a period of about 3 ns. This is within accessi-
ble range of state-of-the-art experimental technique. Note that the period can be
extended by using weaker confinement and SO coupling.

For both the observation of coherent oscillations, and the operation as a qubit,
it is essential that the lifetime of state ψ+

α is long. This is the case for a pure
electronic spin in a QD [37, 110], and we now show that the hybridisation of
the spin with the orbitals, and the ensuing interaction phonons, does not affect
this. We assume a piezo-electric coupling to acoustic phonons via the potential
Vep = λqeiq·r(bq + b†

−q), with phonon operators bq and |λq|2 = ~P/2ρcqV , with
coupling P, mass density ρ, speed of sound c, and volume V [111]. For n = 0, a
Golden Rule calculation yields the rate

Γep/ω0 =
mP

8π(~ωs)2ρl0

√
2l0
l̃

sin2 θ+ sin2 θ− ξ5I(ξ), (3.9)

with ωs = c/l0, ξ = 2−1/2(l̃/l0)(∆/~ωs), and I(ξ) ≤ 8/15. Close to B0, ξ � 1,
and thus the rate is extremely small Γep ≈ 104 s−1 (Fig. 3.3c). Therefore, the
robustness of spin qubits is not significantly weakened by the SO hybridisation.

In general, residual relaxation affects our measurement scheme in two ways.
During the oscillation (Fig. 3.2c), the system may relax to the eigenstate ψ−

α2
. This
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Figure 3.3: Characteristics of the Rabi oscillation. (a) Probability P(tp) of
finding electron in upper level after time tp following the non-adiabatic change
α1 = 1.5 → α2 = 0.3× 10−12 eVm as function of magnetic field. (b) Amplitude
of oscillation as function of B/B0 for changing from α1 = 1.5, 0.8, 0.6 to α2 =
0.3× 10−12 eVm (top to bottom). (c) Phonon-induced relaxation rate for InAs
parameters α = 1.5× 10−12 eVm, P = 3.0× 10−21 J2/m2, ρ = 5.7× 103 Kg/m3,
c = 3.8×103 m/s. Close to B0 the rate is suppressed to Γep < 10−7ω0.

damps the oscillation by a factor exp(−Γ1tp) to the constant value I = eΓRPmax/2.
Relaxation during the read-out phase (Fig. 3.2d) simply reduces the overall ampli-
tude of the signal by a factor exp(−Γ2/ΓR). Clearly then, to observe oscillations,
we require Γ1 < Ω and Γ2 < ΓR.

In summary, we have outlined a proposal for the observation of spin-orbit
driven coherent oscillations in a single quantum dot. We have derived an approx-
imate model, inspired by quantum optics, that shows the oscillating degree of
freedom to represent a novel, composite spin-angular momentum qubit.

This work was supported by the EU via TMR/RTN projects, and the German
and Dutch Science Foundations DFG, NWO/FOM. We are grateful to T. Brandes,
C.W.J. Beenakker and D. Grundler for discussions, and to B. Kramer for guidance
and hospitality in Hamburg.
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3.2 Introduction to quantum dots and various
derivations

3.2.1 Introduction to few-electron quantum dots

Quantum dots (QDs) are small structures in a solid typically with sizes ranging
from nanometres to a few microns. The enormous progress in the field of nano-
technology has facilitated to precisely control the shape and size of such structures
and thus to manipulate the number of electrons in the dot to range typically be-
tween zero and several thousands.† Technologically most interesting are QDs that
are lithographically built in semiconductor heterostructures where it is possible
to define QDs by means of lateral voltage gates and etching [3]. Such QDs show
similar electronic properties to atoms, e.g. the confinement in all spatial directions
leads to a discrete spectrum which even can show shell structures and the effect
of Hund’s rule in highly symmetric QDs [108]. Therefore, QDs are regarded as
artificial atoms.‡

In addition to the similarities to atomic physics, QDs offer the fascinating
possibility to investigate fundamental effects by contacting the dot with external
leads and measuring transport through the system. Since it is possible in principle
not only to change the confinement of the dot, but also the coupling parameters
within the dot, and between the dot and the environment, a wide range of funda-
mental effects can be identified in the transport. By transport spectroscopy, the
effect of e.g. exchange-interaction on the shell filling of QDs (Hund’s rule in ar-
tificial 2D atoms) [114], and many body effects like the spin-singlet spin-triplet
transition have been measured [115, 116]. Due to the coupling to leads, the QD
acts as an open dissipative quantum system exhibiting e.g. the Kondo effect in
the strong coupling limit [117–120]. In particular, magnetic field effects can be
investigated in regimes which are inaccessible for real atoms. For example, to
confine a single magnetic flux quantum in atomic size volume, magnetic fields
of ∼106 T are required – closer to the fields of neutron stars than to those in lab
conditions. Moreover, QDs are proposed as possible qubit realisations in future
quantum computing architectures, either utilising the charge [121] or spin [122]
degree of freedom.

In the following, we describe the spectral and transport properties of few-
electron QDs by pursuing the presentation of Ref. [108]. First, we introduce the
single-particle spectrum in a magnetic field in the framework of Fock–Darwin

†Of course this number denotes the freely moving conduction electrons only. The number of
electrons tightly bound to the nuclei of the atoms which the solid is made of is many orders of
magnitude larger.

‡Introductory reviews on quantum dots are given in Ref. [112, 113].



3.2 Introduction to quantum dots and various derivations 59

theory. Then, we treat the charging properties by extending the theory to the
few-electron case using the constant interaction model. This simple but powerful
model provides a basic understanding of a few-electron dot and enables one to
comprehend the effects of SO interaction which are reviewed later in this chapter.

The one-electron spectra of a QD are well described by means of the Fock–
Darwin theory. This exactly solvable model assumes a parabolically confined QD
in two dimensions with perpendicular magnetic field (B = Bêz),

H0 =

(
p+ e

cA
)2

2m
+

m
2

ω2
0
(
x2 + y2) , p = (px, py,0). (3.10)

To understand the effect of SO coupling which we shall present in Sec. 3.2.3, we
derive the spectrum of Hamiltonian (3.10) in some detail. By choosing symmetric
gauge for the vector potential, A = (−y,x,0)B/2, we can rewrite Eq. (3.10) as

H0 =
p2

x + p2
y

2m
+

m
2

ω̃2(x2 + y2)+ ωc

2
(xpy − ypx), (3.11)

with ωc = eB/mc and ω̃2 = ω2
0 +ω2

c/4. We now define oscillator operators,

ax =
1√
2

(
x
l̃
+ i

l̃
~

px

)
, a†

x =
1√
2

(
x
l̃
− i

l̃
~

px

)
, [ai,a

†
j ] = δi j, (3.12)

where l̃ = (~/mω̃)1/2 (y-component is analogously defined). This leads to

H0 = ~ω̃
(

a†
xax +a†

yay +1
)

+
~ωc

2i

(
aya†

x −axa†
y

)
. (3.13)

The introduction of

a± = 2−
1
2 (ax ∓ iay) (3.14)

decouples x and y oscillators into eigenmodes of frequency ω± = ω̃±ωc/2,

H0 = ~ω+

(
n+ +

1
2

)
+~ω−

(
n− +

1
2

)
, n± = a†

±a±. (3.15)

Although this representation of the Hamiltonian is convenient to discuss the effect
of SO coupling in the next section, it is customary to rewrite the decoupled modes
in terms of radial and angular momentum quantum numbers,

n := min(n+,n−), l := n−−n+, (3.16)

leading to a spectrum known as the Fock–Darwin states [123, 124],

Enl = (2n+ |l|+1)~ω̃− 1
2

l ~ωc. (3.17)
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Figure 3.4: Magnetic field evolution of the low-lying Fock–Darwin spectrum (for
clarity only modes n± ≤ 4 are shown). The different parametrisation in quantum
numbers (n+,n−) and [n, l] are marked for the 10 lowest modes. Curves which
converge towards to same Landau level in the high field limit share a common
style of line.

Figure 3.4 shows the low-lying spectrum of Hamiltonian (3.10) as a function
of the magnetic field which is expressed as a dimensionless ratio of the confine-
ment length l0 = (~/mω0)

1/2 and magnetic length lB = (~/mωc)
1/2. For clarity,

only the lowest modes for n± ≤ 4 are shown together with their parametrisation
in radial and angular momentum quantum numbers. For B = 0 (lB → ∞) the sys-
tem is a simple two-dimensional harmonic oscillator with two degenerate modes
ω± = ω0. For high magnetic field, corresponding to the limit ω0 → 0, the eigenen-
ergies degenerate into two-dimensional Landau levels, ω+ → ωc, ω− → 0. Thus,
n+ describes the Landau level index for large B. Modes which converge into the
same Landau level share a common style of lines in Fig. 3.4.

This model with parabolic confinement is an appropriate estimate for con-
ventional quantum dots which are defined by metal gates on top of the quan-
tum well [108]. In the following, we consider basic transport properties of QDs.
Therefore, we have to extend the model to a QD with many electrons.

Insight into the spectral properties of QDs can be gained by attaching metallic
leads to it and performing transport spectroscopy by simply measuring the current
through the dot [125]. Here, we restrict ourselves to the case of weak coupling
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to the leads where the number of electrons in the dot is a well defined integer
and the discrete nature of charge determines the single electron transport through
the system in a mostly classical way. A current through the QD is given by a
sequence of tunnelling events of single electrons. The Coulomb repulsion between
electrons leads to a considerable energy cost when adding an extra electron charge
to the QD. Current can only flow if this energy is supplied by external voltages – a
phenomenon known as Coulomb blockade [126]. The energy threshold which is to
be overcome when adding an electron to a QD that already contains N electrons is
the addition energy Eadd := µ(N +1)−µ(N) where µ(N) is the chemical potential
of the QD with N electrons. Exact calculation of Eadd is a formidable task, since
it requires the solution of the full many body problem of a few dozen electrons.

An estimate for the addition energy is given by the constant interaction (CI)
model [125, 126] which assumes that the Coulomb interaction between the elec-
trons in the dot is independent of N. Thus, the addition energy is approximated by
Eadd = e2/C +∆E, where ∆E is the energy difference between subsequent single-
electron states (calculated e.g. in the Fock–Darwin framework) and the Coulomb
interactions are represented as a single capacitance C, which leads to the classical
charging energy Ec = e2/C for a charge e. This approximation for Eadd requires
that the Coulomb interaction does not mix up the single electron wavefunctions. A
condition which is generally fulfilled in vertical GaAs dots where the confinement
induced single electron energy scale is comparable or larger than the interaction
energies, ∆E ≥ Ec [108].

Despite its simplicity, the CI model is remarkably successful in providing a
basic understanding of experiments on few-electron QDs [108]. The implication
that when adding electrons to a QD they will successively occupy consecutive
single-particle levels – while the energy cost of Ec has to be paid for each electron
– is sufficient to explain the shell structure which is found in the addition energy
spectra [125]. For zero magnetic field the two-dimensional oscillator states at
E = (M + 1)~ω0 with M = 2n + |l| are (M + 1)-fold degenerate, see Fig. 3.4.
Therefore, in the CI model, each single-particle level can take up to 2(M + 1)
electrons due to spin degeneracy. This leads to the magic numbers 2,6,12, . . . in
the shell structure. Many magnetic field effects in QD spectra can be explained
by the crossover from degenerate two-dimensional harmonic oscillator states for
B = 0 to the lowest Landau level in the high field limit. The CI model can be
extended to include effects of exchange interaction such as Hund’s rule, which
obliges the dot shells to be filled with electrons of parallel spin first [108].

Not included in the CI model are effects which violate the assumption of con-
stant interaction. In the presence of a magnetic field the characteristic length l̃
decreases for larger B, indicating that the confinement becomes stronger. Thus,
two electrons which occupy the same state will be pushed closer together, signif-
icantly increasing the Coulomb interaction. Therefore, at some magnetic fields it
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might become favourable that one electron undergoes a transition to a state with
higher angular momentum, and thus reducing the overlap of wavefunctions. Such
a crossover leads to the singlet-triplet transition for N = 2 [116]. This indicates
that the CI model fails at large B. Moreover, when adding a large number of
electrons to the dot the extension of the electron density increases and alters the
shape of the dot, thus making it impossible to describe the dot with a constant
capacitor C.

In spite of these limitations, the CI model provides an excellent description for
few-electron QDs in weak magnetic field (typically B ≤ 1T in GaAs) when the
number of electrons is only slightly varied.

In Sec. 3.2.4 we apply the CI model to describe coherent oscillations in a single
spin-orbit interacting QD made in InGaAs. The number of electrons in the dot
changes only by one and typical magnetic fields are ∼0.1T, perfectly within the
applicability of the CI model. Effects of exchange can also be neglected because
spin degeneracy is lifted by the strong Zeeman effect in InGaAs.

3.2.2 Spin-orbit effects in quantum dots

In the previous treatment, the spin of the electron simply led to a twofold degen-
eracy of quantum dot levels at B = 0. In general, this degeneracy is expected to
be affected by the presence of spin-orbit (SO) coupling. In the following, we will
introduce the impact of SO coupling on the electron spectrum of Coulomb block-
aded QDs. As in the previous chapter, we restrict ourselves to the case of Rashba
SO coupling by assuming QDs made in a InAs heterostructure.

The effects of SO coupling on QDs have been investigated by a number of au-
thors, treating both non-interacting and interacting few-electron dots [102–107].
In particular, Governale [105] showed by using spin-density functional theory
that the SO coupling in the QD may lead to an appearance of spin textures and a
suppression of Hund’s rule due to a competition of Rashba effect and exchange
interaction. Chakraborty & Pietiläinen [102] showed by using exact numerical di-
agonalisation that the singlet-triplet transition, as a prominent feature of Coulomb
interaction in a two-electron dot, is shifted towards lower magnetic fields due
SO coupling. Recently, the same authors showed that SO coupling leads to new
modes in the optical absorption spectrum of QDs with up to four electrons [127].

Our analysis differs in a crucial respect: motivated by the analogy between
parabolically confined SO systems and quantum optics that we found in the pre-
vious chapter, we derive an effective model for the SO-interacting QD in the next
section. This model is formally identical to the Jaynes-Cummings model of quan-
tum optics and provides systematic insight into the effects of SO coupling in QDs.
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3.2.3 Derivation of the effective model
We start from the Fock–Darwin description that was introduced in the Sec. 3.2.1.
In contrast to GaAs, where the Zeeman effect is normally negligible, it has a
significant influence in InAs. The change in orbital energy due to a magnetic
field is roughly ~ωc = ~eB/mc which is as much as 1.76 meV T−1 in GaAs due
to small effective mass mGaAs = 0.06m0 [108]. On the other hand, the effect on
the Zeeman spin splitting gµBB is only ∼ 0.025meV T−1 in GaAs. This is due
to the small effective g factor, gGaAs = −0.44. Thus in GaAs, a magnetic field
is about 70 times more effective in changing the orbital energy than the Zeeman
spin splitting. In contrast, in InAs the effective mass is comparable to that in
GaAs (mInAs = 0.05m0) but the g-factor can vary from −4 in InGaAs to about −9
in InAs [128] (bulk value −15), making the Zeeman effect up to 30 times larger
than in GaAs. Therefore, we extend the Fock–Darwin Hamiltonian (3.15) to take
the Zeeman effect into account,

H0 = ~ω+

(
n+ +

1
2

)
+~ω−

(
n− +

1
2

)
+

1
2

gµBBσz. (3.18)

Following the line of calculation of Sec. 3.2.1, we can rewrite the Rashba Hamil-
tonian

HSO = −α
~

[(
p+

e
c

A
)
×σσσ
]

z
, (3.19)

by introducing oscillator operators Eq. (3.14) as

HSO =
α√
2l̃

[{
1
2

(
l̃
lB

)2(
ax +a†

x

)
− i
(

ay −a†
y

)}
σx

+

{
1
2

(
l̃
lB

)2(
ay +a†

y

)
+ i
(

ax −a†
x

)}
σy

]
. (3.20)

Transforming into ω± modes, this reduces to

HSO =
α
l̃

[
γ+

(
a+σ+ +a†

+σ−
)
− γ−

(
a−σ− +a†

−σ+

)]
, (3.21)

where

γ± = 1± 1
2

(
l̃
lB

)2

, σ± =
1
2
(σx ± iσy). (3.22)

Taking account of the negative sign of the g-factor in InAs we perform a unitary
rotation of the spin such that σz →−σz and σ± →−σ∓ to return to the customary
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Figure 3.5: Resonance condition for Zeeman split ω− modes at B = B0 (n+ fixed).

spin sequence of the Zeeman effect where electrons with spin up have a larger
energy than those with spin down. Doing this we arrive at the Hamiltonian

H =~ω+

(
n+ +

1
2

)
+~ω−

(
n− +

1
2

)
+

1
2
|g|µBBσz

+
α
l̃

[
γ−
(

a−σ+ +a†
−σ−

)
− γ+

(
a+σ− +a†

+σ+

)]
. (3.23)

In analogy to quantum optics we can understand the above Hamiltonian in
terms of a spin which is coupled to two boson modes with energies ω±. Here,
the coupling is mediated by the SO interaction. The spectral properties of the two
boson modes alone has been discussed in Sec. 3.2.1, leading to the Fock–Darwin
states (Fig. 3.4). In Eq. (3.23) the presence of the spin leads to two effects. (i)
Every state becomes spin split due to the Zeeman effect and (ii) the additional
coupling between boson modes and spin leads to anticrossings in the spectrum. In
the representation in terms of ω± modes we see that the SO interaction leads to a
coupling between adjacent ω± modes with opposite spin due to the operators a±
and a†

± in the last term of the Hamiltonian. There are no direct transitions between
ω+ and ω− modes.

From the last term in Eq. (3.23) we see that the SO coupling has only non-zero
matrix elements for

〈n+ +1,n−,↓|HSO|n+,n−,↑〉, 〈n+ +1,n−,↑|HSO|n+,n−,↓〉, (3.24)

〈n+,n− +1,↓|HSO|n+,n−,↑〉, 〈n+,n− +1,↑|HSO|n+,n−,↓〉. (3.25)

Therefore, from a perturbative point of view, the SO coupling becomes most
import when adjacent ω± modes with opposite spin are almost degenerate. The
strategy to reach such a resonance is different for ω+ and ω− modes. As a func-
tion of magnetic field, resonances of neighbouring ω− modes can easily occur
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due to the Zeeman effect, since for fixed n+ these modes converge into the same
Landau level at large B (Fig. 3.4 and 3.5). Adjacent ω+ modes, however, con-
verge towards different Landau levels, and the Zeeman spin splitting is generally
not large enough to match this energy separation. Thus, to reach coincidence of
spin split ω+ modes an additional in-plane magnetic field may be applied, en-
abling the independent manipulation of Landau level separation (determined by
the perpendicular field) and Zeeman splitting (given by total field). Such coin-
cidence technique is utilised experimentally in SO-interacting 2D systems, see
e.g. Ref. [129].

In the following, we concentrate on the low-lying part of the dot spectrum
which is most important for the transport properties in the few-electron regime.
In Fig. 3.1a on page 53, the numerical result of a part of the excitation spectrum
of Hamiltonian (3.23) is shown for typical InGaAs parameters. The energy is
measured is units of ~ω0 and the zero-point energy is omitted. Also not shown is
the energy of the ground state |n+ =0,n−=0,↓〉. In contrast to the spin degener-
ate Fock–Darwin spectrum in GaAs, shown in Fig. 3.4, the spectrum for InGaAs
shows the Zeeman spin splitting and anticrossings as a consequence of SO cou-
pling when adjacent ω− modes become degenerate. This situation is sketched
schematically in Fig. 3.5. Close to B = B0, the SO interaction leads to hybridisa-
tion of |n− +1,↓〉 and |n−,↑〉 which results in the anticrossing shown in Fig. 3.1.

The effect of SO coupling on the spectrum is most strikingly seen in this an-
ticrossing. This marks the different physical relevance of the terms in Eq. (3.24)
and (3.25). The terms on the left correspond to SO-induced transitions where an
up spin is flipped downwards and the index of ω± modes is excited by one ad-
ditional quantum, corresponding to a change of the orbital state in the language
of the quantum dot. Close to resonance B = B0 these transitions are energy con-
serving; the energy which is gained from the spin flip is transferred into a orbital
excitation. On the contrary, the terms on the right of Eqs. (3.24) and (3.25) cor-
respond to transitions where the spin and orbital degree of freedom are excited
simultaneously, thus being “energy non-conserving” with respect to the total ex-
citation operator N̂ = n̂−+ n̂+ +Jz which counts to the number of boson and spin
excitations in the system.

A similar situation appeared in Sec. 2.2.4 in the high magnetic field limit of
a SO-interacting quantum wire. There, in the context of Eq. (2.26), the notion
of rotating and counter-rotating terms was introduced. Following the same line
of reasoning, we can identify terms in HSO which lead to the left hand side of
Eqs. (3.24) and (3.25) as rotating, whereas terms on the right are counter-rotating.
From quantum optics we know that the rotating-wave approximation (RWA), and
thus the neglect of counter-rotating terms, is well justified if the coupling strength
is weak. Transferring this idea to the SO-coupled QD, we can neglect terms pre-
ceeded by γ+ in Eq. (3.23) when the SO coupling is small compared to the con-
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finement. This decouples the ω+ modes from the rest of the system, giving

H = ω+n+ +HJC, (3.26)

with energies rescaled by ~ω0 and the Jaynes–Cummings model (JCM) HJC given
by Eq. (3.6),

HJC = ω−a†
−a− +

1
2

Ezσz +λ
(

a−σ+ +a†
−σ−

)
, (3.27)

with λ = l2
0γ−/2l̃ lSO. This model is completely integrable (see appendix. A) has

ground state |0,↓〉 with energy EG = −Ez/2 and excited energies

E(n,±)
α =

(
n+

1
2

)
ω−± ∆n

2
, (3.28)

with detuning δ ≡ ω− − Ez and ∆n ≡
√

δ2 +4λ2(n+1), corresponding to the
eigenstates

|ψ(n,±)
α 〉 = cosθ(n,±)

α |n,↑〉+ sinθ(n,±)
α |n+1,↓〉, (3.29)

with tanθ(n,±)
α = (δ±∆n)/2λ

√
n+1. For our parameters, this model describes the

energy levels of the SO-interacting QD to within 10% of the typical anticrossing
width (given by ∆n in the JCM) and 1% of ω0. This small discrepancy is shown
in Fig. 3.1b. As a characteristic measure of the quality of the RWA we can use
the prediction of the JCM that the anticrossing width increases with α

√
n+1.

In Fig. 3.1c this width ∆ is plotted against its central energy. The JCM (solid
line) is compared with the exact numerical result (circles). For a QD of size
l0 = 150nm, almost perfect coincidence is found for α between (0.3 . . .1.5)×
10−12 eVm, corresponding to experimentally found values in InGaAs [25]. For
larger values the anticrossing width is underestimated in the JCM, as indicated
in uppermost curve in Fig. 3.1c for the value α = 2.0× 10−12 eVm. Therefore,
we can conclude that the JCM is a reasonable approximation for SO-interacting
QDs where the confinement is stronger than the SO coupling. In this regime the
integrability of the JCM provides us with the analytical eigenstates and energies
which we use in the following to discuss coherent oscillations in a QD.

3.2.4 Coherent oscillations
In this section we investigate coherent oscillations (CO) in a SO-coupled QD sys-
tem. This illustrates the fruitfulness of the analogy with quantum optics. Although
the origin of coherent oscillations is simply the fact that the time evolution of a
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quantum system is generally non-stationary when the system is initialised in a
non-eigenstate, the experimental observation of such oscillations highlights our
ability to manipulate nature on a microscopic level.

Whenever we instantaneously change the parameters δ, λ, ω of the system we
may expect CO because, after the change, the system is generally not in a station-
ary state. In the following, we omit the ‘−’ index for the frequency in Eqs. (3.27)
and (3.28) and include the explicit

√
n+1 dependence by setting λ̃ := λ

√
n+1.

To prepare the system in a non-eigenstate we propose a non-adiabatic change of
λ, simply by altering the strength of the SO coupling by means of an additional
gate voltage pulse. In terms of the JCM such a pulse leads to oscillations in the
{|n,↑〉, |n + 1,↓〉} subspace of the Hilbert space for fixed ω. In contrast, every
change in ω would destroy the strict decomposition of the Hilbert space, leading
to a mixing of different ω− modes. A change of magnetic field would lead to a
simultaneous modification of all parameters ω, δ, λ.

This relation between the parameters due to an external magnetic field is a
significant difference to the JCM in quantum optics where all parameters can be
tuned individually.

In the following, we solve the time-dependent Schrödinger equation for the
experimental scheme which has been proposed in chapter 3.1. To prepare a non-
stationary state we perform the following: (i) Assume the system is in the eigen-
state of HJC(α1), |ψ−

α1
〉, for times t < 0. (ii) At t = 0 we instantaneously switch

from α1 → α2 while keeping all other parameters fixed. Thus, in the basis of
eigenstates of HJC(α2) we have

|ψ−
α1
〉 = cosθ−α1

|n,↑〉+ sinθ−α1
|n+1,↓〉 = c+|ψ+

α2
〉+ c−|ψ−

α2
〉 (3.30)

where

c± = 〈ψ±
α2
|ψ−

α1
〉 = cos

(
θ±α2

−θ−α1

)
=: cos∆θ±. (3.31)

The probability to find the system in state |ψ+
α1
〉 after pulse time tp > 0 is

P(tp) = |〈ψ+
α1
|Ψ(tp)〉|2 = |〈ψ+

α1
|e−iH(α2)tp/~|ψ−

α1
〉|2 (3.32)

= 1−|cos2 ∆θ+e−2iΩtp + cos2 ∆θ−|2, (3.33)

where Ω := (E+
α2
−E−

α2
)/2 is the frequency of CO (in units of ~ω0).

From Eq. (3.28) follows

Ω =
1
2

λ̃2

√(
δ
λ̃2

)
+4 . (3.34)
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For zero detuning we find Ω = Ω0 := λ̃2. In quantum optics Ω0 is called Rabi
frequency. It describes the periodic energy exchange between an atomic pseudo-
spin and the resonant radiation field. In our model we will call the frequency of
CO Rabi frequency – even for finite detuning.

From Eq. (3.34) we see that the frequency of oscillation is only determined
by the coupling strength which is present during the coherent evolution (λ̃2). The
amplitude of oscillation, however, depends on the ratio λ̃1/λ̃2 and the detuning δ.
In Eq. (3.33) completeness yields

c2
+ + c2

− = cos2 ∆θ+ + cos2 ∆θ− = 1. (3.35)

The maximum amplitude in P(tp) is found for tp such that exp(−2iΩtp) = −1,
leading to

Pmax = 1−|cos2 ∆θ+− cos2 ∆θ−|2. (3.36)

If cos2 ∆θ± ≈ 1/2 we expect probability oscillations of order 100%. To translate
this into a condition for δ, λ̃1 and λ̃2 we express

tanθ±α1,α2
=: χ±

1,2, (3.37)

leading to

∆θ± = arctanχ±
2 − arctanχ−

1 (3.38)

= arctan
χ±

2 −χ−
1

1+χ±
2 χ−

1
=: arctanγ±, (3.39)

by using Eq. (4.4.34) in Ref. [130]. To find probability oscillation of ≈ 100% we
need

c2
± ≈ 1

2
⇒ ∆θ ≈±

{
1
4

π,
5
4

π
}

⇒ γ ≈±1. (3.40)

Trivially, we have γ ≈±1 in the limit

λ̃1 � δ � λ̃2 ⇒ P(tp) ≈ cos2 Ωtp, (3.41)

corresponding to CO in the resonant JCM limit in quantum optics. However,
for the QD condition (3.41) corresponds to the limit of non-adiabatic switching
between almost zero and strong SO coupling. Unfortunately, in real physical sys-
tems this limit is unlikely to be fulfilled. Thus, in contrast to optical systems,
only probability oscillations with amplitudes less than 100% are feasible in SO-
interacting QDs.
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Figure 3.6: (a) Optimal detuning δmax/λ̃2 to find maximum in amplitude of prob-
ability oscillations as a function of λ̃2/λ̃1. (b) Maximal amplitude of oscillation
Pmax as a function of λ̃2/λ̃1. For a change in λ by a factor 5 the maximal amplitude
of oscillation is ∼45%.

From Eq. (3.36) and (3.39) we see that the amplitude of oscillation does not
depend on the sequence, i.e. whether we change from α1 → α2 or vice versa.
However, the sequence is important for the frequency, see Eq. (3.34). In addi-
tion, the detuning plays an important role concerning the amplitude and frequency
of oscillations. For δ = 0 (resonant JCM) eigenfunctions are independent of α
[Eq. (3.29)],

|ψ±〉 =
1√
2
(|n,↑〉± |n+1,↓〉) . (3.42)

Thus, for δ = 0, a non-adiabatic change of α does not lead to any oscillations
because the system stays in a stationary state. Conversely, for δ � ω, λ̃1, λ̃2 the
amplitude is also strongly suppressed because

δ � ω, λ̃1, λ̃2 ⇒ γ+ → δ, γ− → 1
δ

(3.43)

⇒ ∆θ+ → π
2
, ∆θ− → 0 (3.44)

⇒ Pmax = 0 by Eq. (3.36). (3.45)

Thus, for a given sequence α1 → α2 the maximum amplitude of probability os-
cillations can be found at a non-zero detuning δmax. The evolution of δmax/λ̃2 as
function of λ̃2/λ̃1 is shown in Fig. 3.6a.

The maximal amplitude of probability oscillation at δ = δmax as a function of
λ̃2/λ̃1 is shown in Fig. 3.6b. Since the amplitude does not depend on the sequence
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α1 ↔α2, all possible ratios are shown in the figure. For the ratios of λ̃2/λ̃1 = 2 and
5, as in chapter 3.1, we find amplitudes of the order of 12% and 45%, respectively.

In a possible experimental setup, the magnetic field is used to change the de-
tuning δ. Unlike the JCM in quantum optics, the parameters δ, ω and λ̃ are con-
nected via the magnetic field. Thus, changing B effectively alters the coupling
between the pseudo-spin states in the JCM. The non-linear dependence of δ/λ as
function of B leads to non-trivial features in the oscillation pattern.

In the following, we calculate how the characteristics of the oscillation depend
on B. Whenever material parameters are needed we use InGaAs values [25], |g|=
4, m/m0 = 0.05, α1,2 = (0.3 . . .1.5)× 10−12 eVm. The confinement length is
set to l0 = 150nm, corresponding to an energy scale ~ω0 ≈ 0.1meV. With these
numbers we have lSO,2,1 = (500 . . .2500)nm. Compared to bulk InAs the InGaAs
parameter for the strength of the SO coupling is rather small. This is to make
sure that the period of Rabi oscillations is in a technologically accessible range of
> 100ps. Although, a large ratio of λ̃2/λ̃1 is needed to get a significant oscillation
amplitude – a small value for λ̃2 is needed to have a low Rabi frequency.

We now evaluate the oscillation in P(tp) as a function of magnetic field. The
frequency of coherent oscillations Eq. (3.34) depends non-trivially on B. Rewrit-
ing the frequency in units of the resonance Rabi frequency yields

Ω(B)

Ω0
=

1
2

λ̃2(B)

λ̃2(B0)

√[ δ
λ̃2

(B)
]2

+4, Ω0 = Ω(B0). (3.46)

This non-linear function leads to the result that away from resonance (B 6= B0),
an increase of λ2 by a factor 5 does not translate into a 5 times larger frequency.
Only at resonance a linear λ2-dependence is recovered.

In Fig. 3.3a the probability of finding an electron in the upper state after a
pulse time tp as a function of the detuning is shown. The asymmetric course of the
oscillation amplitude (Fig. 3.3b) is a consequence of the parametric dependence
on the magnetic field.

3.2.5 The current

We now establish a relation between oscillations in the occupation probability and
the transport properties via sequential tunnelling by rate equation arguments. The
time scales in the different steps of the operation scheme (as shown in Fig. 3.2 on
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page 55) fulfil the conditions

1. initialisation time (panel Fig. 3.2b) ti ∼ Γ−1
R > Γ−1

L ,

2. pulse time (panel Fig. 3.2c) tp < Ω−1,

3. read-out time (panel Fig. 3.2d) to ∼ Γ−1
R .

The time to initialise the dot in state Ψ− is limited by the time it takes to get rid
of an electron which by chance occupies the state Ψ+. Requiring ΓL > ΓR leads to
a preferential filling of the dot from the left lead. In addition, the pulse time needs
to be smaller than the inverse Rabi frequency to observe oscillation behaviour. The
read-out time is given by Γ−1

R . Thus, the period for one cycle is Tcycle = 2Γ−1
R + tp

and the transferred charge is 2eP(tp). The factor 2e corresponds to the fact that if
P(tp) = 1 then two electrons are transferred per cycle on average; every electron
which undergoes the oscillation is accompanied by an additional electron simply
tunnelling through the dot via state Ψ+. Thus, the current can be estimated as

I(tp) =
2eP(tp)

2Γ−1
R + tp

≈ eΓR P(tp), for ΓR � Ω. (3.47)

By measuring the current as a function of the pulse length tp one can map the
oscillation in the occupation probability onto a transport quantity.

3.3 Effects of relaxation
Phase coherence is essential for the observation of probability oscillations which
is outlined above. However, in every real physical system decoherence is always
present due to coupling to the environment. Even if the system is prepared in the
ground state the phase will be randomised after times longer than the dephasing
time. Our scheme for the observation of coherent oscillations requires the systems
to remain in an excited state for a rather long time. Thus, any relaxation from the
excited state to the ground state will lead to dephasing and destroy the CO signal.

The relevant mechanisms for relaxation and dephasing of spin states in QDs
are still being investigated [37]. A lower bound for the relaxation time of 50µs
has been measured at 20mK in a one-electron GaAs dot with an in-plane field of
7.5T [131]. This time is orders of magnitude larger than in a 2D system. Notably,
the measurement was limited by the signal-to-noise ratio and thus, the real value
of the relaxation time may even be larger, substantiating the proposal to consider
the spin state of quantum dots as a possible physical realisation of a quantum
computing architecture [122].

The theoretical understanding of spin-flip transitions in QDs is important in
order that one can estimate spin coherence times which need to be sufficiently long
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for quantum computation. In contrast to the situation in a 2D electron gas, and
although electron-electron (e-e) interaction may become important for the spectral
properties of a QD, the localised electrons in the dot do not experience substantial
e-e scattering [110, 132]. Thus, the dominant source of dissipation in dots is the
interaction with phonons whose effect on spin relaxation has been calculated for
QDs [110, 133, 134]. In these references, the spin-orbit coupling due to the lack
of inversion symmetry is treated perturbatively as one mechanism leading to spin
admixture and thus allowing transitions between states of (previously) opposite
spin. The dissipation to phonons is needed to comply with energy conservation.
This spin-flip mechanism is believed to dominate the relaxation between spin-split
Zeeman sublevels in GaAs QDs for large magnetic fields, whereas at smaller fields
(typically < 0.5T in GaAs) the hyperfine coupling to nuclear spins prevails [135–
137]. In InAs, which also yields a non-zero nuclear field, the situation is expected
to be similar. Secondary processes are direct spin-phonon interactions like the
spin-orbit coupling of the electron spectrum due to the strain field produced by
acoustic phonons employed by Frenkel [138], and the dependence of the effective
g-factor on lattice deformations.

In contrast to the situation in GaAs QDs mentioned above where a pure spin
state is considered as a possible quantum bit, in our treatment of SO-interacting
InGaAs QDs, the qubit degree of freedom is spanned by the two states in a JCM
subspace. Since the SO coupling is included in our calculation of the quantised
dot states, it is incorporated into the coherence of the system. Therefore, one
might naively assume that this may suppress the SO-induced relaxation channel.
However, the hybridisation within every JCM subspace couples the spin to the or-
bitals which are sensitive to electron-phonon scattering. Thus, the question arises
as to whether this hybridisation might nullify the robustness of the qubit. In the
next section, the general effect of relaxation on the current signal of the coher-
ent oscillations is treated by phenomenologically introducing relaxation rates at
the most sensitive states of the operating cycle. In Sec. 3.3.2 we microscopically
calculate the phonon-induced relaxation rate for a given JCM two-level system,
showing that the hybridisation with the orbital degree of freedom indeed opens a
new relaxation channel. However, the calculated relaxation rates are small enough
not to prevent our proposed measurement scheme from operating.

3.3.1 Effects of relaxation on coherent oscillations
In this section we phenomenologically introduce the effect of relaxation at those
steps of the cycle where the electron occupies an excited state for a long time,
i.e. the coherent evolution during the pulse time tp and the following read-out
phase, see Fig. 3.2 on page 55. The rates to relax to the ground state in these
phases are denoted by Γ1 and Γ2, respectively.
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The relaxation during read-out phase corresponds to the transition Ψ+
α1

→
Ψ−

α1
and this occurs with probability [1− exp(−Γ2to)]P(tp). Thus, the current

[Eq. (3.47)] is reduced to

I =eΓR

[
1−
(

1− e−
Γ2
ΓR

)]
P(tp) (3.48)

=eΓe−
Γ2
ΓR P(tp) ≈ eΓR

(
1− Γ2

ΓR

)
P(tp), for Γ2 � ΓR. (3.49)

This type of relaxation simply reduces the amplitude of oscillation. To obtain a
significant oscillation signal in the current we require Γ2 � ΓR.

The effect of the relaxation during the coherent evolution (Fig. 3.2c) has more
serious consequences because it leads to dephasing. Although the relaxed ground
state Ψ−

α2
is an eigenstate of HJC(α2), when flipping back to α1 after the pulse time

tp the system starts Rabi oscillations – this time during the read-out phase – and
thus effectively scrambling the signal. The probability to relax during the pulse is
[1− exp(−Γttp)]. When returning to the original coupling strength α2 → α1 the
relaxation induced coherent oscillations have the same amplitude as the wanted
ones but a different frequency Ω2 ≈ Ω1α1/α2 (for δ ≈ 0). During the long read-
out phase (to ∼Γ−1

R ) this oscillation cycles through many periods because ΓR �Ω.
Thus, the average probability to find the system in state Ψ+

α1
after relaxation (Γ1)

took place is Pmax/2, leading to the total probability

P = e−Γ1tp P(tp)︸ ︷︷ ︸
no relax.

+
(
1− e−Γ1tp

) Pmax

2︸ ︷︷ ︸
relax.

. (3.50)

Therefore, the dephasing during the rotation phase leads to an exponential damp-
ing of the oscillation features in the current towards the average value eΓR Pmax/2.
Since P(tp) is a periodic function of frequency Ω, oscillations should be observ-
able for Γ1 � Ω.

3.3.2 Phonon induced relaxation rates

Due to the hybridisation of spin and orbital wavefunction in the JCM, the question
arises whether dissipation to phonons which couple to the orbital wavefunction
might lead to relaxation from the excited state Ψ+ to the ground state Ψ−, and thus
cancelling the robustness of pure spin qubits. We now show that the hybridisation
indeed leads to an addition relaxation channel, but that the corresponding rate is
small enough that coherent oscillation still may be observed.
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The potential which is induced by a bulk acoustic phonon with (three-dimen-
sional) wave vector q is given by [139]

Vep(q) = λq eiq·r
(

bq +b†
−q

)
, (3.51)

with the phonon operators bq and b†
q, and the coupling parameter λq depending

on the mechanism of electron-phonon interaction, e.g. deformation potential or
piezo-electric coupling.§

In the following, we are interested in phonon-induced transitions from the
upper to the lower eigenstate within a JCM subspace, representing excited and
ground state of the qubit under consideration, Ψ+ → Ψ−, with Ψ± given by
Eq. (3.29). Since the electron-phonon interaction does not depend on the spin,
only transition matrix elements which are diagonal in spin space contribute,

〈Ψ+|Vep(q)|Ψ−〉 =cosθ+ cosθ− 〈n+,n−,↑ |Vep(q)|n+,n−,↑〉
+ sinθ+ sinθ− 〈n+,n− +1,↓ |Vep(q)|n+,n− +1,↓〉. (3.52)

In appendix B, matrix elements of the electron-phonon interaction are calculated
in the Fock–Darwin basis {|n+,n−,σ〉}, leading to

〈Ψ+|Vep(q)|Ψ−〉 = λq Ln+

(
|α+

q |2
)

e−
1
2(|α+

q |2+|α−
q |2)

×
[

cosθ+ cosθ−Ln−
(
|α−

q |2
)
+ sinθ+ sinθ−Ln−+1

(
|α−

q |2
)]

, (3.53)

with the Laguerre polynomials Ln and complex phonon wave vectors
α±

q := ±l̃(qy ± iqx)/2. For the ease of computation we concentrate on the low-
est qubit, n+ = n− = 0. Generalisation to higher qubits is straightforward. With
L0(x) = 1 and L1(x) = 1− x we have

〈Ψ+
0 |Vep(q)|Ψ−

0 〉 = λq e−
1
2(|α+

q |2+|α−
q |2)
[

cosθ+ cosθ− + sinθ+ sinθ−

−|α−
q |2 sinθ+ sinθ−

]
. (3.54)

The q-independent summand on the right vanishes because of the orthogonality
of Ψ±

0 ,

cosθ+ cosθ− + sinθ+ sinθ− = 〈Ψ+
0 |Ψ−

0 〉 = 0, (3.55)

leading to

〈Ψ+
0 |Vep(q)|Ψ−

0 〉 = −λq sinθ+ sinθ−
(l̃q‖)2

4
e−

1
4(l̃q‖)

2

, (3.56)

§An introduction to electron-phonon interaction is given in chapter 5.
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with q‖ = (q2
x + q2

y)
1/2. The phonon-induced transition rate can be calculated in

first order by Fermi’s golden rule,

Γep =
2π
~

∑
q

∣∣〈Ψ+
0 |Vep(q)|Ψ−

0 〉
∣∣2 δ(E+−E−−~ωq) (3.57)

=
V

(2π)2~

Z

d3q
∣∣〈Ψ+

0 |Vep(q)|Ψ−
0 〉
∣∣2 δ(∆−~ωq), (3.58)

with ∆ = E+−E−, the volume of the system V , and the phonon frequency ωq.
For low temperatures the electron-phonon interaction is dominated by the

piezo-electric coupling to long-wavelength bulk (3D) acoustic phonons, see chap-
ter 5. We follow Ref. [111, 140] and apply an angular average of the anisotropic
piezo-electric modulus for zinc blende crystal structures, leading to the coupling
parameter [141]

|λq|2 =
1
V

λ2
ph

cq
, λ2

ph =
~P

2ρM
, (3.59)

where c is the longitudinal velocity of sound, ωq = cq = c(q2
‖ + q2

z )
1/2 is the

phonon dispersion, ρM the mass density of the semiconductor, and P the aver-
aged piezo-electric coupling [140]

P =(eh14)
2
(

12
35

+
1
x

16
35

)
, (3.60)

with the piezo-electric constant eh14 and the sound velocity ratio x = ctrans/clong.
With this model of the electron-phonon interaction, the phonon-induced relax-

ation rate Eq. (3.58) can be written as (see appendix C)

Γep

ω0
=

mP
8π(~ωs)2l0ρM

√
2l0
l̃

sin2 θ+ sin2 θ− ξ5 I(ξ), (3.61)

with the characteristic acoustic frequency ωs = c/l0 and the ratio
ξ = 2−1/2(l̃/l0)(∆/~ωs). The function I(ξ) =

R 1
0 dt exp[−(ξ t)2] t5/(1− t2)1/2 is

evaluated in appendix C and can be estimated by I(ξ) ≤ 8/15 for ξ < 1.
The rotating-wave approximation (RWA) which is applied to derive the effec-

tive model in Sec. 3.2.3 requires the SO coupling to be small compared to the
confinement. In addition, to observe coherent oscillations the system needs to
be driven close to resonance (see Sec. 3.2.4). In this regime, the energy ratio is
∆/~ωs � 1, leading to ξ � 1, and thus suppressing the phonon-induced relax-
ation due to Γep ∝ ξ5, see Eq. (3.61). On the contrary, for ξ � 1 (corresponding
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Figure 3.7: Phonon-induced relaxation rate for InAs quantum dot. Close to B = B0
the rate is strongly suppressed to Γep < 10−7ω0 ≈ 104 s−1.

to a strongly detuned system) the exponential decay of I(ξ) also suppresses the
rate (see appendix C).

The suppression of the relaxation rate close to the resonance can be traced back
to the factor ξ5 in Eq. (3.61) which in turn originates from the q-dependence of
the matrix element (3.56). In a physical sense, this matrix element is a measure
for how the coupling to phonons modifies the overlap of previously orthogonal
states. Equations (B.4) and (B.5) in App. B show that the interaction with phonons
leads to a displacement of the Fock–Darwin states in the QD. The effectiveness
of this displacement on the orbital overlap manifests itself in the aforementioned
q-dependence of Eq. (3.56), showing the overlap to be maximal at l̃q‖ ≈ 1. Thus,
phonons couple most strongly to electrons if their wavelength is comparable to the
size of the QD, or in terms of energy, if the typical phonon energy is of order ~ωs.

Close to resonance, however, the splitting of eigenstates ∆ is given by the weak
SO coupling, leading to ∆� ~ωs. In this regime phonons couple very inefficiently
to the electrons of the QD – thus causing the relaxation rate to be suppressed.

The factor sinθ+ sinθ− in Eq. (3.56) corresponds to the misalignment of spin.
Since the electron-phonon interaction (3.51) does not lead to direct spin flips,
transitions between ψ± are only possible due to the spin admixture of the JCM
eigenstates. This admixture is maximal at resonance with sin2 θ± = 1/2. Far from
resonance ψ+(−) are approximately spin-up(down) like, suppressing the transition
rate by the factor sin2 θ+ sin2 θ−.

For a quantitative analysis we introduce acousto-mechanical parameters of
bulk InAs [142], ρM = 5.7 ·103 Kg/m3, clong = 3.8 ·103 m/s, ctrans = 2.6 ·103 m/s,
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eh14 = 3.5 ·106 eV/cm, leading to a piezo-electric coupling P = 3.0 ·10−21 J2/m2

by Eq. (3.60).¶ For our QD size of l0 = 150nm (corresponding to ω0 = 1011 Hz)
the characteristic acoustic frequency is ωs = c/l0 = 2.5 ·1010 Hz. The dimension-
less prefactor in Eq. (3.61) can be evaluated to mP/8π(~ωs)

2l0ρM ≈ 10−3.
The magnetic field dependence of the phonon-induced relaxation rate is shown

in Fig. 3.7 (see Fig. 3.3c for log-scale plot) for a SO coupling strength α =
1.5× 10−12 eVm. Close to the resonance the rate is strongly suppressed, Γep <
10−7ω0 ≈ 104 s−1. Comparison with the Rabi frequency of 2 GHz (see Sec. 3.2.4)
shows that the robustness of pure spin qubits is not significantly weakened by the
SO-induced hybridisation to the orbital degree of freedom.

There are, of course, further sources of decoherence in any experimental reali-
sation. For example, background charge fluctuations and noise in the gate voltages
of the device affect the electrostatic definition of the quantum dot and hence the
detuning δ. In addition, higher order (co-tunnelling) processes may scatter the
states during the coherent evolution period.

These additional mechanisms were also present in the experiment of Hayashi
et al. [7], which demonstrated the general feasibility of observing coherent oscilla-
tions in quantum dots on a nanosecond time scale. The feasibility of our proposal
is enhanced over and above this by the following considerations. Firstly, we work
with a perpendicular magnetic field, and thus the confinement of the electron is
not wholly electrostatic and thus more robust against charge/voltage fluctuations.
Also, in the Hayashi experiment, a rather strong coupling to the leads is applied.
Since we use weak coupling, the effects of co-tunnelling are further reduced.

Finally, we point out that the counter-rotating terms which are neglected in
the rotating-wave approximation in section 3.2.3, do not induce additional first
order relaxation transitions. This is because counter-rotating terms couple to states
which are beyond the two levels in a JCM-subspace.

¶For comparison, the value for bulk GaAs is PGaAs = 5.4 ·10−20 J2/m2.
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Chapter 4

Conclusion

In this part of the thesis we have investigated the effect of Rashba spin-orbit cou-
pling on parabolically confined nanostructures for the example of quantum wires
and few-electron quantum dots. In these systems the orbital motion is strongly
restricted due to the confinement which leads to characteristic spectral properties.
Since the spin-orbit interaction couples spin and orbital degrees of freedom, the
question arises, how the confinement induced modification of the orbital motion
affects the spin state of electrons in the nanostructure. This is of special interest
in the context of spintronics, where the spin is envisioned as an extension of even
substitute of the electron charge in future electronic devices.

In chapter 2, we investigated the combined effect of geometric confinement,
spin-orbit coupling, and magnetic field in quantum wires. In this interplay, the cal-
culated one-electron spectral and spin properties show a rich variety of character-
istics. These properties are governed by a compound spin orbital-parity symmetry.
Without magnetic field this spin parity – which is a characteristic property of any
symmetrically confined quasi-1D system with Rashba effect – is shown to replace
the quantum number of spin. It is also responsible for the well-known degeneracy
at k = 0 in symmetrically confined systems with Rashba effect. A non-vanishing
magnetic field breaks the spin-parity symmetry, thus lifting the corresponding de-
generacy at k = 0. We show that this magnetic field induced energy splitting can
become much larger than the Zeeman splitting and should be experimentally ac-
cessible by means of optical or transport measurements. In addition, hybridisation
effects of the spin density go along with the symmetry breaking.

The one-electron spectrum is shown to be very sensitive to weak magnetic
fields. Spin-orbit induced modifications of the subband structure of the quan-
tum wire are strongly altered when the magnetic length becomes comparable to
the confinement. In the context of spintronics, this might imply consequences for
spin-field-effect-transistor designs which depend on spin injection from ferromag-
netic contacts because of magnetic stray fields.
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Instancing the quantum wire, we showed that for parabolically confined nanos-
tructures, it is helpful to map the underlying one-electron model onto a bosonic
representation, which highlights the effects of spin-orbit coupling in confined sys-
tems and shows many similarities to models of quantum optics. Following this
reasoning, in chapter 3, we discussed the effect of spin-orbit coupling in few-
electron quantum dots. Starting from standard Fock–Darwin theory for one-
electron dots and including the Rashba Hamiltonian, an approximate model is
derived by making an analogy with quantum optics. When the spin-orbit coupling
becomes weaker than the dot confinement, the effective model is shown to be
formally identical to the Jaynes–Cummings model (JCM) of atom-light interac-
tion, and its integrability provides valuable insight into the coupling between spin
and orbital degrees of freedom in the quantum dot. In comparison to the JCM of
quantum optics, here the roles of atomic pseudo-spin and quantised light field are
played by the spin and orbital angular momentum of the same electron.

The excitation spectrum of the dot exhibits anticrossings as a characteristic
signature of spin-orbit coupling, which goes along with a decomposition into two-
level systems, any of which can be considered as a novel compound spin-angular
momentum qubit degree of freedom. We predict that the width of the anticrossing
is proportional to α

√
n+1 with the strength of the spin-orbit coupling α and the

index of crossing n. The measurement of this relation would be verification of our
effective model and opens a unique way to determine the spin-orbit parameter in
quantum dots.

By applying the constant-interaction model we have translated results from the
single to the few-electron dot case. In addition, an experimentally feasible pro-
posal for the observation of coherent oscillations in the electron transport through
the quantum dot is outlined. The oscillations within the new qubit degree of free-
dom are spin-orbit driven by utilising that the strength of the spin-orbit coupling
can be changed non-adiabatically by applying a voltage pulse to the system. For
parameters corresponding to an InGaAs dot, a Rabi frequency of 2GHz and an
amplitude of current oscillations of up to 45% are calculated, both being within
accessible ranges of state-of-the-art experimental technique.

Due to the incorporation of the spin-orbit coupling into the dynamics of the
dot, the dominating spin relaxation mechanisms in quantum dots are suppressed.
In addition, it is shown that the hybridisation of spin and orbital wavefunction in
the eigenstates of the qubit does not increase the fragility of the system in the case
of dissipation to phonons. Due to the design of the qubit states, the coupling to
long wavelength acoustic phonons is shown to be strongly suppressed, leading to
a relaxation rate Γep ≤ 10−4ω0 with dot energy ~ω0. Thus, the residual relaxation
time is expected to be sufficiently long to observe the coherent evolution of the
qubit in the time domain.
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Tuneable quantum dots connected to leads are still to be realised in mate-
rial systems with substantial Rashba effect (e.g. InGaAs). However, the steady
progress in the field of nanotechnology suggests that this goal might be reached
in the near future. In such systems, the interwoven nature of eigenstates, being
hybrids of spin and orbital degree of freedom, will open an appealing perspective
on measuring how the transport and dephasing properties of quantum dots change
when the Hilbertspace cannot be separated into two subsystems.
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Part II

Phonon confinement in
nanostructures
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Chapter 5

Introduction to electron-phonon
interaction

In a solid, vibrational excitations of the crystal lattice are describes as the creation
of phonons. These quasi-particles have, like electrons, a definite energy dispersion
Es(q) = ~ωs(q), where q is the wave vector of the phonon, ω is its frequency, and
s denotes the different phonon branches (acoustic or optical), and polarisations
(longitudinal or transversal). Electron scattering by crystal lattice vibrations is
then described by emission and absorption of phonons.

In the following, we are interested in the low-energy and low-temperature
properties of electron-phonon scattering. Therefore, we restrict ourselves to single-
phonon scattering events with long wavelength acoustic phonons. Excitation ener-
gies of optical phonons are typically on a much higher energy scale, e.g. in GaAs
the lowest optical phonon excitation has an energy of more than 30meV [142].
In this introduction we follow the presentation of Ref. [139]. A discussion of the
scattering by optical phonons and the effect of multi-phonon processes, which we
omit in this context, can also be found there.

In general, any deformation of the crystal lattice may induce a perturbation
δV (r, t) of the potential in which the electron moves. Independent of the actual
microscopic mechanisms, this perturbation can be written in linear order in the
deformation as

δV (r, t) = ∑
a

Va(r) ·ua(t), (5.1)

where ua(t) is the displacement of the atom at lattice site a in the crystal. The
vector components V i

a(r) describe the change in lattice potential at site r for a
unit displacement of atom a along the i-direction. If we denote the eigenmodes of

85



86 Introduction to electron-phonon interaction

vibrations of atom a of the crystal with (ua)sq, we can write the displacement as

ua(t) = ∑
s,q

[
asq (ua)sq e−iωsqt + c.c.

]
. (5.2)

After quantisation of the acoustical problem which determines (ua)sq, the coef-
ficients in expansion (5.2) correspond to creation and annihilation operators, asq
and a†

sq, of a phonon in mode (sq). Combining Eqs. (5.2) and (5.1) yields

δV (r, t) = ∑
s,q

[
asq ∑

a
Va(r) · (ua)sq e−iωsqt +h.c.

]
(5.3)

=: ∑
s,q

[
Vsq(r)asq e−iωsqt +h.c.

]
. (5.4)

We can regard Vsq(r) as the perturbation which an electron experiences when a
phonon in mode (sq) is present. With this understanding, phonon induced tran-
sition probabilities between different electron states (lk) can be calculated by
Fermi’s golden rule

W±sq
lk→l′k′ =

2π
~

∣∣∣M±sq
lk→l′k′

∣∣∣
2
(

Nsq +
1
2
± 1

2

)
δ
(
εlk − εl′k′ ∓~ωsq

)
, (5.5)

with matrix elements

M−sq
lk→l′k′ =

Z

V
d3rψ∗

l′k′(r)Vsq(r)ψlk(r) =
(

M+sq
l′k′→lk

)∗
. (5.6)

The Bose factors Nsq = 1/[exp(~ωsq/KBT )− 1] mark the different probabilities
for phonon absorption (W−sq

lk→l′k′ ∝ Nsq) and emission (W +sq
lk→l′k′ ∝ Nsq +1) [induced

and spontaneous emission]. From Eq. (5.5) follows that spontaneous emission of
phonons leads to electron scattering even at T = 0, provided that the electrons are
not in equilibrium.

To evaluate Eqs. (5.5) and (5.6) we need to know the electron wavefunctions
ψlk(r) and the potential Vsq(r). The latter depends on the eigenmodes of vibra-
tion and their induced interaction potential, see Eqs. (5.3) and (5.4). So far we
explicitly paid attention to the lattice structure of the solid. When we average δV
over an area of the crystal which is larger than the lattice constant a0 but smaller
than the phonon wavelength λ∼1/q, we can decompose δV into

δV = δV̄ +δṼ . (5.7)

Here, δV̄ is the averaged potential and δṼ describes the fluctuations which average
to zero. The physical effect of both terms on the electron is different: δṼ is a
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microscopically fluctuating field which leads to a change in the band structure of
the electron, whereas the macroscopic δV̄ changes the energy on a larger length
scale [139]. In piezo-electric materials the macro-field δV̄ =: eϕ is determined by
the polarisation via Poission’s equation

∇∇∇2ϕ(r) = 4π∇∇∇ ·P(r). (5.8)

The polarisation P, on the other hand, is given in lowest order in the strain tensor
ui j by

Pν = βν,i j ui j, ui j =
1
2

(
∂ui

∂r j
+

∂u j

∂ri

)
, (5.9)

with the piezo-electric modulus β. Here, we have introduced the displacement
field u(r) as a substitute for ua in the limit of a homogenous solid. This limit is
certainly fulfilled when considering long wavelength phonons with λ�a0.

In addition to the piezo-electric potential ϕ which depends on the polarisation
as a macroscopic quantity, the effect of the microscopically fluctuating δṼ can be
parametrised by the deformation potential

Vdef(r) = ∑
i j

Ξi jui j(r), (5.10)

with the tensor of deformation potential constants Ξ. For cubic crystals, which we
consider for simplicity, this tensor becomes highly symmetric [139], Ξi j = δi jΞ,
leading to

Vdef(r) = Ξ∇∇∇ ·u(r). (5.11)

In the theory of elasticity [143], the divergence of the displacement field is shown
to be equivalent to the relative local change of the volume of the solid, ∆V /V =
∇∇∇ ·u(r). Thus, phonons which correspond to an equivoluminal deformation of the
solid do not interact with electrons via the deformation potential coupling.

The piezo-electric and deformation potential Eqs. (5.8) and (5.11) are the dom-
inating sources of electron-phonon scattering at low energies. Here, we treat β and
Ξ as phenomenological constants which are to be determined in experiment.

For calculating the interaction potentials (5.8) and (5.11) we need to know
the displacement fields u(r) for the eigenmodes of vibration. In the classical
theory of elasticity, for a homogenous medium these modes are determined by a
‘generalised wave equation’ [144]

∂2

∂t2 u(r, t) = c2
t ∇∇∇2u(r, t)+

(
c2

l − c2
t
)

∇∇∇(∇∇∇ ·u(r, t)) , (5.12)
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with the transversal and longitudinal velocities of sound ct and cl , respectively.
For bulk media follows that the eigenmodes are given by plane waves (sq),

u(r, t) = ∑
s,q

ûs(q)ei(q·r−ωsq t), (5.13)

where s = {l, t} denotes the different longitudinal and transversal polarisations,
and ûs(q) is the corresponding polarisation vector. With proper normalisation one
can show that the bulk matrix elements (5.6) for the absorption of a phonon (sq)
via deformation and piezo-electric potentials are given by [139]

Mdef
lk→l′k′ = δk′,k+q

1√
V

[
~

2ρMcs

] 1
2

iΞ
√

q, (5.14)

Mpz
lk→l′k′ = δk′,k+q

1√
V

[
~

2ρMcs

] 1
2 eβ√

q
. (5.15)

We mention two important points. (i) The phase difference of π/2 between the
matrix elements shows that the piezo-electric and deformation potentials are in-
deed independent scattering mechanisms, hence they do not interfere. (ii) Com-
parison of the amplitudes of the matrix elements yields,

|Mpz|2
|Mdef|2

=

(
eβ
Ξq

)2

. (5.16)

Thus, in piezo-electric bulk materials, the scattering of electrons by long wave-
length (q → 0) acoustic phonons is typically dominated by the piezo-electric cou-
pling potential.



Chapter 6

Coupled quantum dots in a phonon
cavity

Quantum coherence has become a major issue in the study of electronic transport
of low-dimensional artificial structures. It can be observed on length scales of
the order of or smaller than the dephasing distance. The latter is the mean dis-
tance an electron can propagate within the dephasing time which is determined by
scattering processes that destroy the quantum phase.

Generally, the dephasing time depends on temperature. For high temperatures,
phase breaking scatterings are so frequent that quantum signatures are completely
absent in the electron transport. Only at sufficiently low temperature, scattering
events become rare. Then, quantum coherence is maintained over long periods of
time such that interference effects can be observed in the current transport. An
important fundamental question is whether or not one can control the coupling
to phase breaking modes “coherently” such that interference effects due to the
coupling itself become experimentally accessible.

Recently, the coupling of semiconductor quantum dots [145–148] has turned
out to be a promising method for preparing and controlling superpositions of elec-
tronic states. If two dots are coupled to each other and to external leads, Coulomb
blockade guarantees that only one additional electron at a time can tunnel between
the dots and the leads. Dephasing at very low temperature then is energetically
possible only by bosonic low-energy excitations of the environment. It has turned
out that the coupling to low-energetic phonons governs the dynamics of double
quantum dots (DQDs) [147, 148] since they are essentially realisations of two-
level systems within a semiconductor host material [149].

Therefore, a logical step towards the control of dephasing in DQDs is the
control of the vibrational properties of such structures. Enormous progress has
been made in the fabrication of partly suspended or free-standing nanostructures
(“phonon cavities”) [150–153]. These considerably differ in their mechanical
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properties from bulk material [13]. For example, phonon modes split into sev-
eral subbands, and quantisation effects become important for the thermal conduc-
tivity [154–159]. The observation of coherent phonons in quantum dots [160] or
phonons in nanotubes [161] are other examples of low-dimensional systems where
phonons are no longer a mere source of dissipation but rather become controllable
and the subjects of research themselves.

As bosonic excitations, phonons are also candidates for the realisation of me-
chanical counterparts of quantum optical phenomena [162], for instance the gener-
ation of non-classical squeezed states [163–166] by time-dependent or non-linear
interactions with electrons.

Double quantum dots have been found to spontaneously emit phonons that can
be traced by non-linear electron transport measurements [147, 148]. They have
also been suggested as detectors for high-frequency noise [167]. Furthermore, the
successful fabrication of double dots in partly free-standing material was achieved
[168], and Coulomb blockade measurements in single quantum dots embedded in
a free-standing membrane were reported [169, 170].

In the present part of this thesis, we investigate the effect of phonon confine-
ment on the electron transport properties of DQDs. It turns out that DQDs in
phonon cavities can act as very sensitive detectors of the vibrations in the cavity.
In particular, we identify typical features of the mechanical confinement such as
subband quantisation and van–Hove singularities in the phonon density of states
in the inelastic electron current. Therefore, standard transport experiments can
be used for phonon spectroscopy. As an instructive example, we calculate quan-
titatively the current through a DQD which is coupled to the vibrational modes
of a homogeneous plate of finite thickness that serves as a model for a nano-size
planar phonon cavity. In the following section we present the publication which
comprises our main results. In Sec. 6.2 we provide more background information
by delineating the models for the double dot and the phonon cavity. Chapter 7
gives the conclusion of the this part of the thesis.

6.1 Control of dephasing and phonon emission in
coupled quantum dots∗

Abstract: We predict that phonon subband quantisation can be detected in the
non-linear electron current through double quantum dot qubits embedded into

∗This section has been published as a Rapid Communication in Physical Review B 66,
041301(R) (2002). E-print: S. Debald, T. Brandes, and B. Kramer, cond-mat/0204444 at
www.arxiv.org. This publication has been selected for the 15th July 2002 issue of the Virtual
Journal of Nanoscale Science & Technology.
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nano-size semiconductor slabs, acting as phonon cavities. For particular values
of the dot level splitting ∆, piezo-electric or deformation potential scattering is
either drastically reduced as compared to the bulk case, or strongly enhanced
due to phonon van Hove singularities. By tuning ∆ via gate voltages, one can
either control dephasing, or strongly increase emission into phonon modes with
characteristic angular distributions.

Coupled semiconductor quantum dots are candidates for controlling quantum
superposition and entanglement of electron states. The feasibility of such ‘qubits’
depends on the control of dephasing due to the coupling to low-energy bosonic ex-
citations of the environment. For example, the electronic transport through double
quantum dots is determined by the spontaneous emission of phonons even at very
low temperatures [147, 148]. If two dots are coupled to each other and to ex-
ternal leads, Coulomb blockade guarantees that only one electron at a time can
tunnel between the dots and the leads. Dephasing in such a ‘pseudo spin’-boson
system [149, 171] is dominated by the properties of the phonon environment.

As a logical step towards the control of dephasing, the control of vibrational
properties of quantum dot qubits has been suggested [147, 148]. Recently, con-
siderable progress has been made in the fabrication of nano-structures that are
only partly suspended or even free-standing [152, 153]. They considerably differ
in their mechanical properties from bulk material. For example, phonon modes
are split into subbands, and quantisation effects become important for the ther-
mal conductivity [154–156]. The observation of coherent phonons in dots [160]
in nanotubes [161] are other examples of low dimensional mesoscopic systems
where phonons become experimentally controllable and are the objects of interest
themselves.

Double quantum dots are not only tunable phonon emitters [147, 148] but
also sensitive high-frequency noise detectors [167]. Together with their success-
ful fabrication within partly free-standing nanostructures [168], this suggests that
they can be used to control both electrons and phonons on a microscopic scale.
This opens a path for realising mechanical counterparts of several quantum opti-
cal phenomena, as for instance the generation of non-classical squeezed phonon
states [164] by time-dependent or non-linear interactions with the electrons.

In this paper, we demonstrate that phonon confinement can be used to gain
control of dissipation in double quantum dots, leading to a considerable reduction
of phonon-induced decoherence. More precisely, we show that inelastic scattering
and the inelastic current channel for electron transport in the Coulomb blockade
regime can be drastically reduced as compared to a bulk environment when double
dots are hosted by a semiconductor slab that acts as a phonon cavity. This sup-
pression occurs at specific phonon energies ~ω0 when the level splitting is tuned to
∆ = ~ω0. Furthermore, for larger energy differences ε between the two dot ground
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Figure 6.1: Scheme for lateral (L) and vertical (V) configurations of a double
quantum dot in a phonon nano-cavity.

states, typical properties [144, 172] of a nano-size slab such as phonon-subband
quantisation can be detected in the staircase-like electronic current I(ε) though the
dots. In addition, and very strikingly, for certain wave vectors we find negative
phonon group velocities and phonon van Hove singularities close to which one
can strongly excite characteristic phonon modes with specific emission patterns.

The controlled enhancement or reduction of spontaneous light emission from
atoms is well-known in cavity QED [173]. Here a single, confined photon mode
can be tuned on or off resonance with an atomic transition frequency. In contrast
to cavity QED, the vanishing of spontaneous emission in phonon cavities is due
to real zeros in the phonon deformation potential or polarisation fields rather than
gaps in the density of states. This is a peculiar consequence of the boundary con-
ditions for vibration modes which lead to complicated nonlinear dispersions even
for homogeneous slabs. As a result, phonon cavities confined in only one spa-
tial direction support a continuous spectrum, and yet suppression of spontaneous
emission is possible.

As a model, we consider two tunnel-coupled quantum dots embedded in an
infinite semiconductor slab of thickness 2b in a vertical or a lateral configuration,
Fig. 6.1. The dots are weakly coupled to external leads, and we assume that
both the energy difference ε and the coupling strength Tc between the dots can be
externally tuned by gate voltages. In the Coulomb blockade regime, we adopt the
usual description in terms of three many body ground states [149, 174] |0〉, |L〉,
and |R〉 that have no or one additional electron in either of the dots, respectively.
The coupling to the phonon environment of the slab is described by an effective
spin-boson Hamiltonian

H =
ε
2

σz +Tcσx +∑
q

~ωqa†
qaq

+ ∑
q

(αqnL +βqnR)
(

aq +a†
−q

)
, (6.1)
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Figure 6.2: Deformation potential induced by dilatational (left) and flexural modes
(centre) at q‖b = π/2 (n = 2 subbands). Right: displacement field u(x,z) of n = 0
dilatational mode at ∆ = ~ω0. Greyscale: moduli of deformation potentials (left)
and displacement fields (right) (arb. units).

with σz = |L〉〈L|−|R〉〈R|, σx = |L〉〈R|+ |R〉〈L|, ni = |i〉〈i| and αq(βq) the coupling
matrix element between electrons in dot L(R) and phonons with dispersion ωq.

The stationary current can be calculated by using a master equation [149] and
considering Tc as a perturbation. We consider weak electron-phonon coupling and
calculate the inelastic scattering rate

γ(ω) = 2π∑
q

T 2
c
|αq −βq|2

~2ω2 δ(ω−ωq). (6.2)

For ~ω = (ε2 +4T 2
c )1/2 this is the rate for spontaneous emission at zero tempera-

ture due to electron transitions from the upper to the lower hybridised dot level.
On the other hand, in lowest order in Tc, the total current I(ε) can be de-

composed into an elastic Breit-Wigner type resonance and an inelastic component
Iin(ε) ≈ −eγ(ε), where −e is the electron charge. The double dot, supporting an
inelastic current Iin(ε), therefore can be regarded as an analyser of the phonon
system [147, 148]. One can also consider the double dot as an emitter of phonons
of energy ~ω at a tunable rate γ(ω). We show below how the phonon confinement
within the slab leads to steps in Iin(ε) and tunable strong enhancement or nearly
complete suppression of the electron-phonon coupling.

We describe phonons by a displacement field u(r) which is determined by
the vibrational modes of the slab [143]. For the following, it is sufficient to con-
sider dilatational and flexural modes (Lamb waves). The symmetries of their dis-
placement fields differ with respect to the slab’s mid-plane. They either yield a
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symmetric elongation and compression (dilatational mode, Fig. 2 left) or a peri-
odic bending associated with an antisymmetric field (flexural mode, Fig. 2 centre).
The confinement leads to phonon quantisation into subbands. For each in-plane
component q‖ of the wave vector there are infinitely many subbands, denoted by
n, related to a discrete set of transversal wave vectors in the direction of the con-
finement. Since there are two velocities of sound in the elastic medium associated
with longitudinal and transversal wave propagation, cl and ct , there are also two
transversal wave vectors ql and qt . This is in contrast to the isotropic bulk where
one can separate the polarisations. For a slab, the boundary conditions at the sur-
face lead to coupling between longitudinal and transversal propagation [144,172].

We have numerically determined the solutions ql,n(q‖) and qt,n(q‖) of the
Rayleigh-Lamb equations that describe the dynamics of the confined phonons,

tanqt,nb
tanql,nb

= −
[

4q2
‖ql,nqt,n

(q2
‖−q2

t,n)
2

]±1

ω2
n,q‖ = c2

l (q
2
‖ +q2

l,n) = c2
t (q

2
‖ +q2

t,n), (6.3)

together with the dispersion relations ωn,q‖ and the displacement field [175, 176]
associated with a confined phonon in mode (n,q‖). The exponents ±1 correspond
to dilatational and flexural modes, respectively.

The contribution γn of subband n to the rate (6.2) is

γn(ω) = ∑
q‖

|λ±
dp/pz(q‖,n)|2

~2ω2

∣∣∣α± eiq‖·d
∣∣∣
2
δ(ω−ωn,q‖) (6.4)

where the vector d connects the dots and λ is the coupling strength of the electron-
phonon interaction. We assume that the electron density is sharply peaked near
the dot centres and that the dots are located symmetrically within the slab. We
consider both the deformation potential (DP), α = −1 in (6.4), and piezo-electric
(PZ) interaction, α = +1. The coupling strength for DP is

λ±
dp(q‖,n) = Bdp

n (q‖)(q
2
t,n −q2

‖)(q
2
l,n +q2

‖) tscqt,nb , (6.5)

where Bdp
n = Fn(~Ξ2/2ρωn,q‖A)1/2, tscx = sinx or cosx for dilatational and flex-

ural modes, respectively, Ξ is the DP constant, ρ the mass density, A the area of
the slab, and Fn normalises the nth eigenmode.

First, we discuss the deformation potential interaction in the vertical config-
uration (Fig. 6.1), q‖·d = 0, where only flexural modes couple to the electrons,
whereas dilatational modes lead to a symmetrical deformation field (Fig. 6.2 left)
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and yield the same energy shift in both of the dots which does not affect the elec-
tron tunnelling.

Figure 6.3 (top) shows γdp(ω) in units of the nominal scattering rate γ0 ≡
T 2

c Ξ2/~ρc4
l b for b = 5d. The phonon subband quantisation appears as a staircase

in γdp(ω), with the steps corresponding to the onsets of new phonon subbands.
Most strikingly, a van Hove singularity (arrow) occurs due to zero phonon group
velocity at that frequency. This corresponds to a minimum in the dispersion re-
lation ωn,q‖ for finite q‖ with preceding negative phonon group velocity due to
the complicated non-linear structure of the Rayleigh-Lamb equations for the pla-
nar cavity. Additional van Hove singularities occur at higher frequencies (not
shown here) as an irregular sequence that can be considered as ‘fingerprints’ of
the phonon-confinement in a mechanical nanostructure.

In the lateral configuration (Fig. 6.1), DP couples only to dilatational modes,
in contrast to the vertical case. This is a trivial consequence of the symmetry of the
DP of flexural modes (Fig. 6.2 centre) and the fact that in the lateral configuration
the dots are aligned mid-plane. The inelastic rate including the lowest 4 modes is
shown in Fig. 6.3 (bottom) in comparison to the bulk rate. The phonon-subband
quantisation appears as cusps in γdp(ω) for ω & 2ωb. Again, we observe van Hove
singularities as fingerprints of the phonon confinement.

Most strikingly, we find a suppression of the inelastic rate at small energies
~ω, and even its complete vanishing at the energy ~ω0 ≈ 1.3~ωb for the lateral
configuration. As can be seen from (6.4) and (6.5), the rate γ0 vanishes for the fre-
quency ω0 defined by the condition qt = q‖. This is due to a vanishing divergence
of the displacement field u (Fig. 6.2 right) that implies vanishing of DP ∝ ∇ ·u.
Near ω0, the remaining contribution of the n = 0-subband mode is drastically
suppressed compared with 3d phonons (Fig. 6.3 bottom, inset).

We checked that this decoupling of electrons and phonons is a generic feature
due to the slab geometry, as are the steps and van Hove singularities in γ. For
the piezo-electric interaction, our results also reveal a complete vanishing of the
inelastic rate γpz from dilatational phonons at the energy ~ω′

0 ≈ 0.7~ωb where the
induced polarisation field is zero [177]. Due to the symmetry of the latter, in the
vertical and lateral configurations only dilatational and flexural phonons, respec-
tively, couple to the electrons via PZ interaction. Thus, the angular dependence is
reversed as compared to the DP case.

An important consequence of these results is that one can ‘switch off’ either
PZ scattering in the vertical configuration, or DP scattering in the lateral config-
uration at a certain energy. Then, the only remaining electron-phonon scattering
is mediated by the other interaction mechanism that couples the electrons to the
flexural modes. For other frequencies ω, the ratio γpz/γdp ∝ b2 can be varied by
changing the slab width. Thus, for very small b the DP interaction dominates
and the proper choice to ‘switch off’ the scattering would be the lateral config-
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Figure 6.3: Inelastic phonon emission rate γdp(ω) of vertical (V) and lateral (L)
double dots in a phonon cavity of width 2b due to deformation potential. Phonon-
subband quantisation effects appear on an energy scale ~ωb = ~cl/b with the lon-
gitudinal speed of sound cl; γ0 nominal scattering rate (see text). Coupling to
flexural (top) and dilatational modes (bottom, dashed: bulk rate). Inset: Suppres-
sion of γdp(ω) from slab phonons at ω = ω0 (arrow).

uration, with a small contribution remaining if the material is piezo-electric, and
vice versa. For a GaAs slab of width 2b = 1µm and a tunnel coupling Tc = 10µeV
in the lateral configuration tuned to ~ω ≈ 0.7~ωb (no PZ coupling), we obtain a
residual scattering rate of γdp = 8×104 s−1 from DP-coupling to flexural modes.

The characteristic energy scale for phonon quantum size effects is ~ωb ≡
~cl/b. Using the same parameters as above, we have ~ωb = 7.5µeV in GaAs
which is within the limit of energy resolution of recent transport experiments in
double dots [147, 148]. A finite slab of lateral dimension L will lead to a broad-
ening of the structures predicted above since the phonons will aquire a life time
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∝ L/cl,t which leads to a smearing of fine structures in γ(ω) on an energy scale
~cl,t/L ∼ 1µeV for L = 10b. Finite temperatures yield a similar broadening on a
scale kBT . Therefore, low temperatures (20 mK ≈ 2µeV) are required to resolve
the step-like features and the van Hove singularities in the inelastic current Iin.
We mention that vertically polarised shear waves (which are also eigenmodes of
the slab) do not couple to electrons via the DP because the induced local change
in volume (∝ ∇ ·u) is zero. Fortunately, shear waves also do not change the low
frequency decoupling discussed above because the only mode that is accessible at
low enough energies is the massless mode (linear dispersion) that does not lead
to any piezo-electric polarisation field. However, at higher frequencies shear sub-
bands can contribute to the electron scattering.

The existence of an energy ~ω0 where the electron-phonon interaction van-
ishes could be used to suppress decoherence in double dot qubit systems with
the energy difference ∆ =

√
ε2 +4T 2

c tuned to ∆ = ~ω0. For example, using
gate voltages to tune Tc(t) = ∆/2sin(Ωt), ε(t) = ∆cos(Ωt) as a function of time
defines a one-qubit rotation (‘electron from left to right’) free of phonon inter-
action ∝ γ(∆) = 0. The condition ∆ = ~ω0 therefore defines a one dimensional
‘dissipation-free manifold’ (curve) in the Tc–ε parameter space. In particular, a
suppression of decoherence could then be exploited in adiabatic electron trans-
fers [178] or adiabatic swapping operations [179] in coupled quantum dots.

We recall, however, that corrections to γ of 4th and higher order in the coupling
constant (virtual processes) can lead to a small but final phonon-induced dephas-
ing rate even at ∆ = ~ω0. Moreover, the dephasing due to spontaneous emission
of photons, although negligible with respect to the phonon contribution in second
order [147,148], is not altered unless the whole system is embedded into a photon
cavity. Similarly, plasmons and electron-hole pair excitations in the leads can lead
to dephasing. We suppose that the latter can affect the inter-dot dynamics of the
coupled dots only indirectly via coupling to the leads and only weakly contribute
to dephasing, as is the case for interactions between dot and lead electrons beyond
the Coulomb blockade charging effect.

Alternatively to suppressing dissipation from phonons at certain energies, the
van Hove singularities of the same system could be used to enormously enhance
the spontaneous emission rate of phonons. The electron current Iin ≈ −eγ(ε) at

those energies is due to strong inelastic transitions. The term
∣∣∣α± eiq‖·d

∣∣∣
2

in (6.4)
determines the angular phonon emission characteristic of the double dot. There-
fore, as a function of energy and orientation, the double dot can be used as an
energy selective phonon emitter with well defined emission characteristics.

In conclusion, we have found that phonon confinement is a promising tool
for gaining control of dephasing in double quantum dots via phonons. Once this
was achieved, it would be possible to study systematically dephasing due to other
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mechanisms such as coupling to electronic excitations in the leads. In contrast to
cavity QED, where a single, confined photon mode can be tuned on or off reso-
nance with an atomic transition frequency, the vanishing of spontaneous emission
in phonon cavities is due to zeros in the phonon deformation potential or polar-
isation fields rather than gaps in the density of states. In addition, we found that
phonon emission into characteristic modes can be enormously enhanced due to
van Hove singularities that could act as strong fingerprints of the phonon confine-
ment if experimentally detected.

This work was supported by the EU via TMR and RTN projects FMRX-
CT98-0180 and HPRN-CT2000-0144, DFG projects Kr 627/9-1, Br 1528/4-1,
and project EPSRC R44690/01. Discussions with R. H. Blick, T. Fujisawa, W. G.
van der Wiel, and L. P. Kouwenhoven are acknowledged.

6.2 Details∗

6.2.1 Model
In this section, we derive the low-temperature current-voltage characteristic of a
double quantum dot (DQD) which interacts with a bath of confined phonons in
the non-linear transport regime.

We assume that the DQD is weakly coupled to leads. The parameters are
chosen such that the transport is dominated by Coulomb blockade. Following
Ref. [149], we describe the DQD as a two-level system consisting of one addi-
tional electron in either the left, |L〉= |N +1,M〉, or the right dot, |R〉= |N,M+1〉,
associated with the energies EL and ER. The state |0〉= |N,M〉 denotes the N +M
electrons many body ground state of the double dot. Using this basis set for the
electron states and defining the operators

nL = |L〉〈L|, nR = |R〉〈R|, p = |L〉〈R|, (6.6)

sL = |0〉〈L|, sR = |0〉〈R|, (6.7)

the Hamiltonian is
H = H0 +HT +Hld +Hep, (6.8)

∗Parts of the following results have been published in:
S. Debald, T. Vorrath, T. Brandes, and B. Kramer, Phonons and Phonon Confinement in Transport
through Double Quantum Dots, Proc. 25th Int. Conf. Semicond., Osaka (2000);
T. Vorrath, S. Debald, B. Kramer, and T. Brandes, Phonon Cavity Models for Quantum Dot Based
Qubits, Proc. 26th Int. Conf. Semicond., Edinburgh (2002);
S. Debald, T. Brandes, and B. Kramer, Nonlinear Electron Transport through Double Quantum
Dots Coupled to Confined Phonons, Int. Journal of Modern Physics B 17, 5471 (2003).



6.2 Details 99

with the Hamiltonian of the decoupled components

H0 = ELnL +ERnR +Hp +Hleads, (6.9)

the tunnelling Hamiltonian between the dots

HT = Tc(p+ p†), (6.10)

the phonon system
Hp = ∑

q
~ωqa†

qaq, (6.11)

the Hamiltonian of the leads

Hleads = ∑
k

(εL
kc†

kck + εR
kd†

kdk), (6.12)

the electron-phonon coupling

Hep = ∑
q

(αqnL +βqnR)(aq +a†
−q), (6.13)

and the coupling between the leads and the dots

Hld = ∑
k

(Vkc†
ksL +Wkd†

ksR +h.c.). (6.14)

The coupling between the two dots is parametrised with the tunnel matrix element
Tc. The electronic reservoirs of the leads (Hleads) and the phonon environment
(Hp) are assumed to be in thermal equilibrium. Hep describes the interaction† of
the electrons in the dots with acoustic phonons, αq and βq are the matrix elements
of the interaction potential in the representation of |L〉 and |R〉 (see appendix D).
Introduction of pseudo-spin operators σx and σz leads to the effective spin-boson
Hamiltonian (6.1) with ε = EL −ER.

Applying a dc bias between source and drain, the current through the DQD
is determined by the expectation value of the current operator Î = ieTc(p− p†).
The current as a function of the energy difference of the dot levels consists of
two parts [147, 148], I = Iel + Iinel. The elastic contribution Iel which arises from
resonant tunnelling [181] is dominating the transport around ε = 0. For ε > 0, the
current is determined by inelastic contributions due to spontaneous emission of
acoustic phonons [147, 148].

†The influence of the non-diagonal part of the electron-phonon interaction has been shown to
be negligible [149, 180].



100 Coupled quantum dots in a phonon cavity

Following Ref. [149], for T = 0 the stationary inelastic current in lowest order
in Tc is given by the frequency-depending inelastic scattering rate, Iinel ≈ −eγ,
with

γ(ω) ≈ 2πT 2
c ρeff(ω), (6.15)

ρeff(ω) = ∑
q

|αq −βq|2
~2ω2 δ(ω−ωq), (6.16)

where ρeff is an effective density of states (DOS) of the phonon environment. Ev-
ery state is weighted by the electron-phonon interaction through the interference
term |αq − βq|2/~

2ω2. Brandes & Kramer [149] utilised the interference in the
coupling of the individual dots in Eq. (6.15) to explain the oscillatory behaviour
of the inelastic current which was found in Ref. [147].

Equation (6.15) shows the direct relation between inelastic current and DOS
of the phonon environment. Therefore, a DQD is an ideal tool to investigate pe-
culiar phonon systems like e.g. nanomechanical resonators by means of electron
transport. In this section we investigate the influence of a mechanical confinement
of the elastic medium on the transport characteristics of an embedded DQD.

Scattering rates for electron-phonon interaction in phonon cavities have been
investigated by Stroscio et al. [175, 176, 182]. One of the systems they consid-
ered was a free-standing quantum well (FSQW) in a slab geometry (see Fig. 6.4)
which is confined in the z-direction and widely extended in x- and y-directions. In
the following, we use a FSQW with area A �b2 as a model for a phonon cavity.
We describe vibrations by a displacement field u(r, t). Assuming a homogenous,
isotropic and linear medium of the FSQW, the general solution for the displace-
ment field u(r, t) is determined by four families of modes – two families of shear
waves (vertically and longitudinally polarised), and two families of Lamb waves‡

(dilatational and flexural waves). Stroscio et al. showed that electron scattering by
shear waves can be neglected since these modes do not interact with electrons via
the deformation potential interaction which is the dominant coupling mechanism
in small FSQW [176]. Therefore, in the following, we restrict ourselves to the
coupling to dilatational and flexural modes.

A further effect of the phonon confinement is the spectral quantisation in sub-
bands familiar from other confined systems. For each fixed in-plane wave vector
q‖ there are infinitely many modes related to a discrete set of transversal wave
vectors pointing in the direction of the confinement. Since there are two veloci-
ties of sound in the elastic medium, related to longitudinal and transversal wave
propagation, cl and ct , there are also two transversal wave vectors which we will
denote as ql and qt . This is in contrast to the unconfined bulk case where one can

‡See Ref. [176] and references therein.
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Figure 6.4: Free-standing quantum well (FSQW) as a model for a phonon cavity.
The slab is confined in z-direction and widely extended in x- and y-direction.

separate both polarisations. In the confined geometry of the FSQW, the boundary
conditions at the surface of the slab lead to a coupling between longitudinal and
transversal propagation [172].

The relation between the in-plane wave vector component q‖ and the transver-
sal components ql and qt for Lamb waves is determined by the so-called Rayleigh–
Lamb equations,

tanqt,nb
tanql,nb

= −
[

4q2
‖ql,nqt,n

(q2
‖−q2

t,n)
2

]α

, (6.17)

[ωn(q‖)]
2 = c2

l (q
2
‖ +q2

l,n) = c2
t (q

2
‖ +q2

t,n), (6.18)

where α = +1 for dilatational modes and α =−1 for flexural modes. The integer
n = 0,1,2, . . . denotes the phonon subband index. The second Rayleigh–Lamb
equation is the dispersion relation of confined phonons. An analytical solution of
the Eqs. (6.17) and (6.18) is in general not feasible, thus a numerical approach
has to be applied [172, 175, 182, 183]. Once the solutions ql,n(q‖) and qt,n(q‖)
are known, one can calculate the displacement field associated with a confined
phonon in a Lamb mode (n,q‖) that propagates in the x-direction [176],

un(q‖,z) = (un,x,0,un,z), (6.19)
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Figure 6.5: Numerical solution of the Rayleigh–Lamb equations for the 16 lowest
dilatational modes. Solutions above the abscissae are real, below imaginary.

where

un,x = iq‖
[
(q2

‖−q2
t.n) tscqt,nb tcsql,nz +2ql,nqt,n tscql,nb tcsqt,nz

]
, (6.20)

un,z = (−α)
[
(q2

‖−q2
t,n) tscqt,nb tscql,nz −2q2

‖ tscql,nb tscqt,nz
]
, (6.21)

with tsca =sina for dilatational modes and tsca =cosa for flexural modes, tcsa
is defined by exchanging sin and cos.

6.2.2 Results
The solutions of the Rayleigh–Lamb Eqs. (6.17) and (6.18) determine the physical
properties of Lamb modes which we address in the following.

Assuming that the elastic medium of the cavity is loss free, the solutions
ql,n(q‖) and qt,n(q‖) are either real or imaginary as shown in Fig. 6.5. The nu-
merical solutions for flexural modes look similar, see e.g. Ref. [175, 183].

From these solutions and the second Rayleigh–Lamb equation the dispersion
relations of confined phonons follow directly,

ωn(q‖) = ωb

√
(q‖b)2 +(ql,nb)2, ωb = cl/b, (6.22)

where ωb gives the typical energy scale for phonon quantum size effects. The
dispersion relations of Lamb modes are shown in Fig. 6.6. It has been shown [172]
that the non-linearity (anticrossings) of the dispersion is caused by the coupling of
longitudinal and transversal propagation through the boundary conditions at the
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surface. For large q‖ the dispersion approaches a linear slope as the Lamb modes
converge against vertically polarised shear waves.§

From the dispersions we obtain the thermodynamical DOS

ν(ω) = ∑
n

νn(ω) = ∑
n

∑
q‖

δ
(
ω−ωn(q‖)

)
, (6.23)

which is shown in Fig. 6.7 for flexural and dilatational modes. The subband quan-
tisation manifests itself in the staircase like increase of the curve. Each step cor-
responds to the onset of a new subband which starts to contribute to the DOS. At
the onset of some of the subbands (marked with arrows in Fig. 6.7) van–Hove sin-
gularities occur, which arise from a vanishing phonon group velocity at finite q‖ –
clearly visible as the minima of the dispersions in Fig. 6.6. Since the dispersions
of the individual subbands asymptotically approach a linear slope, the total DOS
increases super-linearly, converging against the parabolic energy dependence of
bulk phonons in the limit of weak confinement.

In the following, we assume that the DQD it is symmetrically placed with
respect to the mid-plane of the FSQW (see Fig. 6.1). The interference term
|αn(q‖)−βn(q‖)|2/~

2ω2 in the effective DOS (6.16) is calculated in appendix D

§Vertically polarised means that all displacements are transversal.
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for electron-confined phonon interaction via deformation potential (DP) and piezo-
electric (PZ) coupling. The interference is influenced by the orientation of the
DQD in the phonon cavity. From Eqs. (D.6) and (D.11) follows the orientation
dependence for coupling to Lamb modes

|αn(q‖)−βn(q‖)|2 ∝





∣∣∣ tcs
(1

2ql,n d sinΘ
) (

1∓ eiq‖·d
)∣∣∣

2
for DP,

∣∣∣ tsc
(1

2ql/t,n d sinΘ
) (

1± eiq‖·d
)∣∣∣

2
for PZ,

(6.24)

where the upper (lower) sign, and tcsx = cosx (or sinx), holds for dilatational
(flexural) modes; tscx follows by exchanging sinx and cosx. The vector d con-
nects both dots (see Fig. 6.8), Θ gives the orientation of the dots in the cavity with
Θ = 0,(π/2) corresponding to the lateral (vertical) configurations in Fig. 6.1. The
different symmetries of the DP and PZ potentials with respect to the mid-plane
of the cavity (appendix D) manifest themselves in the tcsx and tscx terms in
Eq. (6.24). For instance, dilatational modes lead to a symmetric DP potential
(shown in Fig. 6.2) while inducing an antisymmetric PZ potential.
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In bulk GaAs systems without phonon confinement, PZ interaction normally
dominates the coupling to long wavelength acoustic phonons because typical ma-
trix elements relate to the DP coupling as |Vpz/Vdp|2 ∝ (eβ/Ξ)2q−2, with the DP
constant Ξ and the PZ modulus β, see chapter 5. Thus, for long wavelength
phonons (q → 0) the PZ coupling prevails. In a phonon cavity, however, one
can argue that the confinement-induced quantisation of the transverse wave vector
gives a lower bound for the wavelength qmin ∝ 1/b. Therefore, for small FSQWs
the DP coupling dominates.

We now turn to the discussion of the orientation dependence of the DP induced
inelastic current for the examples of lateral and vertical configurations. We start
with the vertical configuration (Θ = π/2) in which the dot vector is orthogonal
to the propagation of the phonons, q‖ ·d = 0. Thus, from Eq. (6.24) follows that
only flexural modes contribute to the inelastic current through the DQD via DP
scattering. This can be understood by a simple symmetry consideration. Dilata-
tional modes induce a symmetrical DP interaction potential (see Fig. 6.2) which
affects both dots equally, hence not changing the electron transport. On the other
hand, the antisymmetric potential induced by the flexural modes strongly alters
the dot levels. A numerical evaluation of Eq. (6.15) leads to the inelastic scatter-
ing rate which is shown in Fig. 6.3 (top). In spite of the modifications due to the
electron-phonon interaction, the main features of phonon confinement, subband
quantisation and van-Hove singularities, clearly remain visible.

On the contrary, for the lateral configuration (Θ = 0), Eq. (6.24) predicts that
the effective DOS (6.16) vanishes for flexural modes. Thus, all phonons which are
spontaneously emitted from the DQD correspond to dilatational modes. Flexural
modes induce an antisymmetric interaction potential (Fig. 6.2) which vanishes
at the location of the dots in the mid-plane of the FSQW (z = 0). On the other
hand, dilatational modes strongly couple to the DQD since they induce a non-zero
potential and lead to a phase shift in the renormalisation of the dot levels due to the
finite time a phonon needs to propagate from one dot to the next. The calculated
inelastic scattering rate for the lateral configuration is shown in Fig. 6.3 (bottom).
As for the lateral case, the van-Hove singularities remain visible in the transport.

When comparing the inelastic rates with the thermodynamic DOS, the most
obvious difference between the two configurations is seen in the behaviour at the
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onset of higher subbands. In the vertical configuration the jumps of the DOS also
appear in the inelastic rate whereas for the lateral orientation continuous cusps
are seen only. Although the microscopic coupling between electrons and confined
phonons is the same in both configurations, the effect on the DQD depends on
the orientation. Apart from the modes that lead to van–Hove singularities, the
subband minimum is at q‖ = 0. These modes correspond to non-propagating ex-
citations of the elastic medium which nevertheless lead to displacement patterns
with a non-vanishing local change in volume, and thus induce a DP potential. In
contrast to the vertical configuration, the lateral setup with both dots in the middle
of the cavity (Θ = 0) is not sensitive to non-propagating excitations because the
displacement for such modes is constant at the locations of the dots; only propa-
gating modes lead to a finite phase shift in the interaction potentials between the
dots and thus affect the transport.

Although being of minor relevance in small FSQWs, the PZ coupling also
contributes to the inelastic scattering rate. The orientation dependence and the
corresponding decoupling of individual Lamb modes is reversed as compared to
the DP case, see Eq. (6.24).

6.2.3 Discussion
From the inelastic rates, which are shown in Fig. 6.3, for the example of DP
electron-confined phonon interaction, we can see that in addition to the generic
subband quantisation also the van–Hove singularities of the phonon DOS show
up in the current through the DQD, acting as clear fingerprints of phonon confine-
ment. Close to the singularity, the application of the perturbative derivation which
led to the inelastic rate for weak electron-phonon coupling, Eqs. (6.15) and (6.16),
is questionable. However, led by the numerical results for the phonon DOS, we
can investigate the influence of the van–Hove singularity in a non-perturbative
way by decomposing the phonon spectral density (6.16) to find an approximate
analytical model

ρeff(ω) = ρOhm +ρ0 δ(ω−ωv), (6.25)

consisting of a van–Hove singularity at ~ωv and a background of lower order
subbands which are assumed to form an ohmic bath. Following Ref. [149], the
inelastic current at zero temperature can be written as

Iinel ≈ 2πT 2
c ∑

n
wn δ(ω−nωv). (6.26)

Thus, in addition to the main peak a ~ωv, the van–Hove singularity leads to
non-perturbative satellite peaks at harmonics of the frequency ωv with oscillator
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strength wn – similar to DQD systems under monochromatic microwave irradia-
tion [174]. The influence of the ohmic bath background amounts to a power law
divergence [149] instead of the former delta-like singularities at energies n~ωv.

Furthermore, by utilising the orientation dependence which was discussed in
the previous section, the DQD can be used as a tuneable energy-selective phonon
emitter [147, 148] with well defined emission characteristics because transport is
mediated by spontaneous emission. This is particularly interesting in the low en-
ergy regime where only the lowest phonon subband contributes to the inelastic
scattering rate. For instance, when tuning the energy difference of the DQD levels
to ∆ = (ε2 +4T 2

c )1/2 < 1.4~ωb in the lateral configuration only the lowest dilata-
tional mode is accessible via the dominating DP coupling, see Fig. 6.3. Thus,
when driving a current through the DQD only phonons belonging to this single
mode are emitted from the DQD with energy ~ω = ∆.

As a peculiarity of the planar cavity, for certain energies ~ω0 the dilatational
phonons evolve a displacement field u(r) that does not induce any interaction
potential (DP or PZ) acting on the electrons. In the single phonon subband regime
this corresponds to a complete decoupling of dot electrons and cavity phonons,
leading to the possibility to suppress phonon induced dephasing in DQD qubit
systems. This decoupling manifests in a vanishing inelastic rate which is shown
in the inset of Fig. 6.3 for ω0 ≈ 1.3ωb. At this energy the displacement field
is free of divergence and therefore it does not lead to any deformation potential.
(Similarly, at ω0 ≈ 0.7ωb the displacement field induces no PZ polarisation.)

To estimate a possible experimental realisation we consider a DQD fabricated
in a GaAs/GaAlAs heterostructure as in [146]. The cavity has a width 2b = 1µm.
The characteristic energy scale for phonon quantum size effects in such a FSQW
is ~ωb = 7.5µeV. This is within the limits of energy resolution of recent elec-
tron transport measurements [147, 148], and could even be increased by further
reducing the width of the cavity.

The dominant cutoff energy for the contribution of a single phonon subband
to the total inelastic scattering rate is connected to the fact that for large wave vec-
tors q‖ the phonon induced displacement field in the cavity becomes similar to the
field of vertically polarised shear waves, which are equivoluminal excitations of
the FSQW and induce no DP interaction potential. This convergence leads to an
intrinsic exponential cutoff exp(−ω/ωco) in the contribution of individual phonon
subbands to the total inelastic rate [183]. In addition, the finite extension of the
electron densities in the dots leads to a reduction of the coupling to short wave-
length phonons. This can be easily seen in the form factor (D.7) in appendix D.
A Gaussian envelope of the electron density would lead to an exponential cutoff
with exponent ωe ≈ cl/l0 where l0 is the width of the density profile. For our
configuration we may estimate ωe ≈ 10ωco which means that the intrinsic cutoff
ωco is the relevant one.
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The energy that limits the current spectrum is given by the source-drain voltage
VSD since ε = EL−ER ≤ eVSD. For VSD = 140µV as in [146], 16 phonon subbands
contribute to the current.

Since every real experimental system is finite, we expect structures in the cur-
rent which were derived for an infinitely extended system to be broadened due the
finite area of the cavity A. This broadening should be on an energy scale ~cl/L,
where A = L2. Thus, for a setup with cl/L ≈ 0.1ωb ≈ 1µeV (L ≈ 10b) the broad-
ening is negligible. Finite temperatures yield a similar effect. Since Eq. (6.16) is
strictly valid only at T = 0, structures in the I–V characteristic should be broad-
ened on a scale of ~ω ≈ kBT ≈ 2µeV (at 20 mK). In addition, phonon absorption
may become relevant at higher temperatures.

Besides the transport that is mediated by the DP, there is also an influence
of the PZ electron-phonon coupling. In a phonon cavity, the PZ effect couples
all mode families, shear and Lamb waves, to the dot electrons. Moreover, the
anisotropy of the piezo-electric tensor leads to a highly non-trivial q‖ dependence
of the matrix elements [176], and thus to anisotropic transport properties. How-
ever, this anisotropy is expected to be a minor correction since the PZ coupling
yields only a small contribution to the inelastic scattering rate in small FSQWs.
From the above arguments we conclude that there is no fundamental obstacle to
measure the predicted features of phonon confinement in electron transport.

Recently, the electron transport through a Coulomb blockaded quantum dot
in a free-standing 130nm thick GaAs/AlGaAs membrane was measured [170].
At zero bias, a complete suppression of single-electron tunnelling was found.
The authors attributed the associated energy gap in the transport spectrum to
the excitation of a localised cavity phonon. The observed energy gap of ε0 ≈
100µeV matches reasonably well with the lowest dilatational (73µeV) or flexural
(145µeV) van–Hove singularity in the DOS of a 130nm thick planar cavity. Al-
though, a detailed microscopic explanation of the experimental findings is to our
knowledge still missing, this experiment clearly highlights the feasibility to built
artificial structures with well controlled electro-mechanical properties.



Chapter 7

Conclusion

In this part we have investigated the non-linear electron transport through a dou-
ble quantum dot which is placed in a phonon cavity. A free-standing quantum
well is used as a model for a nano-size planar phonon cavity. Phonons are quan-
tised lattice vibrations. Therefore, their properties are determined by the acousto-
mechanical characteristics of the elastic medium. Mechanical confinement is
known to strongly affect the vibrational properties of the system. For instance,
confinement leads to a splitting of the phonon spectrum in several subbands, and
non-linearities in the dispersion may lead to van–Hove singularities in the phonon
density of states by modes with zero phonon group velocity at a finite wavelength.

We show that in the Coulomb–blockade regime, such features of mechanically
confined phonons produce clear signatures in the I–V characteristics of the double
quantum dot. Therefore, it is a useful tool to detect phonon quantum size effects
in the electron-phonon interaction via electron transport measurements.

We find that the coupling to the different phonon mode families of a free-
standing quantum well (two families of shear and Lamb waves each) depends
on the orientation of the dots with respect to the cavity. This is due to differ-
ent symmetries of the phonon induced interaction potential and holds for both
piezo-electric and deformation potential electron-phonon coupling. For certain
orientations, the double dot decouples from all phonon mode families except one.
Thus, one can tune the coupling between double dot and phonons by changing
the orientation of the dots in the cavity. Since, at low temperatures, the inelastic
transport is mediated by spontaneous emission of phonons, double quantum dots
can be used as an energy-selective phonon emitter which orientation dependent
emission characteristic.

At low energies, which are determined by small splittings of the double quan-
tum dot levels ∆, only the lowest phonon subbands contribute to inelastic scat-
tering and hence to transport through the double dot. For particular values of
∆, deformation potential or piezo-electric scattering is either drastically enhanced
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due to phonon van–Hove singularities, or completely suppressed by decoupling
the double dot from the phonon environment. The latter decoupling is caused by
zeros in the electron-phonon interaction potentials for certain energies rather than
gaps in the phonon density of states.

Thus, by tuning the level splitting ∆ via gate voltages, one can either control
electron dephasing in double dot qubit systems, or strongly increase emission into
phonon modes with characteristic angular distribution. Both cases are desirable in
a possible future quantum computation setup, where the strong phonon dissipation
would allow an accelerated relaxation of the qubit during initialisation. On the
other hand, the suppressed coupling to phonons could provide a reasonably long
phase coherence time for subsequent quantum gate operations.
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Appendix A

Jaynes–Cummings model

The Jaynes–Cummings model (JCM) is defined as [32]

HJC = ω
(

a†a+
1
2

)
+

1
2

εσz +λ
(

aσ+ +a†σ−
)

, σ± =
1
2
(σx ± iσy) , (A.1)

consisting of a pseudo-spin with energy splitting ε which is coupled to a harmonic
oscillator with characteristic energy ω. The ground state |ψ0〉= |0〉|↓〉 with energy
−ε/2 is the only state which is independent on the coupling strength λ. Here, we
use the basis of eigenstates of harmonic oscillator {|n〉} and σz {|↑〉, |↓〉}. Due
to the type of coupling, the system decomposes into a set of subspaces formed by
two-level systems which suggests the following ansatz for the excited eigenstates

|ψn〉 = γ↑n |n,↑〉+ γ↓n |n+1,↓〉, n ≥ 0. (A.2)

Simple calculation yields

γ↓n

γ↑n
=

1
2λ

√
n+1

(
δ±
√

δ2 −4λ2(n+1)

)
, (A.3)

with the detuning of pseudo-spin and oscillator mode δ = ω− ε. This leads to the
eigenstates and eigenenergies

|ψ±
n 〉 = cosθ±n |n,↑〉+ sinθ±n |n+1,↓〉, (A.4)

E±
n =

(
n+

1
2

)
ω± ∆n

2
, (A.5)

with ∆n = [δ2 +4λ2(n+1)]1/2 and tanθ±n = (δ±∆n)/2λ(n+1)1/2.
If the oscillator mode is strongly detuned from the pseudo-spin splitting, the

coupling is only a small perturbation to the eigenstate of the uncoupled system
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(see Fig. A.1). For the resonant JCM (δ=0) eigenstates are given by the symmet-
ric and (anti-)symmetric superposition

|ψ±
n 〉δ=0 =

1√
2

(
|n,↑〉± |n+1,↓〉

)
. (A.6)



Appendix B

Fock–Darwin representation of
electron-phonon interaction

For representing the electron-phonon interaction Eq. (3.51),

Vep(q) = λq eiq·r
(

bq +b†
−q

)
,

in the Fock–Darwin basis of the quantum dot, we rewrite the coordinate operators
in terms of creation and annihilation operators of the ω± fields [see Eq. (3.14)],

x =
l̃
2

(
a− +a†

− +a+ +a†
+

)
, y =

l̃
2i

(
a−−a†

−−a+ +a†
+

)
. (B.1)

It is convenient to introduce complex phonon wave vectors

α+
q =

l̃
2
(qy + iqx) , α−

q = − l̃
2
(qy − iqx) , (B.2)

and define displacement operators

D±(α) = eαa†
±−α∗a±, (B.3)

leading to

Vep(q) = λq eiqzz D+(α+
q )D−(α−

q )
(

bq +b†
−q

)
. (B.4)

Thus, the matrix elements for spontaneous emission of a phonon in the Fock–
Darwin basis {|n+,n−,σ〉} factorise to

〈n′+,n′−,σ′|Vep(q)|n+,n−,σ〉 = δσσ′λq〈n′+|D+(α+
q )|n+〉〈n′−|D−(α−

q )|n−〉. (B.5)
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Here, we have omitted the effect of the operator exp(iqzz) because it solely leads
to a form factor (basically the Fourier transform of the z-component of the wave-
function). For 2D systems with strong confinement in the growth direction this
factor is of order unity.

The matrix elements of the displacement operator with number states of a
harmonic oscillator have been derived (see e.g. Eq. (32) in Ref. [184]),

〈n′|D(α)|n〉 =

√
n!
n′!

αn′−n Ln′−n
n
(
|α|2

)
, n′ > n, (B.6)

with the generalised Laguerre polynomial Lm
n . This leads to the matrix elements

of the electron-phonon interaction in the Fock–Darwin basis,

〈n′+,n′−,σ′|Vep(q)|n+,n−,σ〉 = δσσ′λq

√
n+!n−!
n′+!n′−!

(
α+

q
)n′+−n+

(
α−

q
)n′−−n−

× e−
1
2(|α+

q |2+|α−
q |2) Ln′+−n+

n+

(
|α+

q |2
)

Ln′−−n−
n−

(
|α−

q |2
)
. (B.7)

The introduction of displacement operators in Eq. (B.4) provides an illustra-
tive sight on the effect of electron-phonon interaction in the quantum dot. In
the Fock–Darwin basis, the scattering with phonons leads to a displacement of
the electron wavefunction. The extend of this displacement is determined by the
phonon wavelength.



Appendix C

Evaluation of the phonon-induced
relaxation rate

In Sec. 3.3.2 the transition rate from the upper to the lower eigenstate of the lowest
JCM-subspace was introduced using Fermi’s golden rule Eq. (3.58),

Γep =
V

(2π)2~

Z

d3q
∣∣〈Ψ+

0 |Vep(q)|Ψ−
0 〉
∣∣2 δ(∆−~ωq), (C.1)

leading [by Eq. (3.56) and (3.59)] to

Γep =
l̃4λ2

ph

16(2π)2~c
sin2 θ+ sin2 θ−

Z

d3q
q4
‖

q
e−

1
2 (l̃q‖)2

δ(∆−~cq) , (C.2)

= F
Z ∞

0
dq‖

Z ∞

0
dqz

q5
‖√

q2
‖ +q2

z

e−
1
2 (l̃q‖)2

δ
(

∆−~c
√

q2
‖ +q2

z

)
, (C.3)

=
F
~c

Z ∆/~c

0
dq‖

q5
‖√( ∆

~c

)2 −q2
‖

e−
1
2 (l̃q‖)2

, (C.4)

with F = sin2 θ+ sin2 θ− l̃4λ2
ph/16π~c. Finally, this can be rewritten as

Γep =
F
~c

(
∆
~c

)5 Z 1

0
dt

t5
√

1− t2
e−(ξ t)2

, (C.5)

with the ratio ξ = 2−1/2∆l̃/~c = 2−1/2(l̃/l0)(∆/~ωs), and the time a phonon needs
to propagate through the quantum dot ω−1

s = l0/c. Applying Eq. (3.59) we reach
the final result for the phonon induced relaxation rate,

Γep

ω0
=

mP
8π(~ωs)2l0ρM

√
2l0
l̃

sin2 θ+ sin2 θ− ξ5 I(ξ), (C.6)
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with the characteristic frequency ω0 = ~/ml2
0 and the integral

I(ξ) =
Z 1

0
dt

t5
√

1− t2
e−(ξ t)2

. (C.7)

For the numerical evaluation of the integral (C.7) a quickly converging series ex-
pression is derived. The integral can be rewritten as

I(ξ) =
1
ξ4

∂2

∂ε2

Z 1

0
dt

t√
1− t2

e−ε(ξ t)2
∣∣∣∣
ε→1

, (C.8)

=
1
ξ4

∂2

∂ε2

[
1−2εξ2

Z 1

0
dt t
√

1− t2e−ε(ξ t)2
]

ε→1
, (C.9)

by partial integration. Successive N-fold partial integration leads to

I(ξ) =
1
ξ4

∂2

∂ε2

[
N

∑
n=0

(
−2εξ2)n

(2n+1)!!
+

(
−2εξ2)N+1

(2N +1)!!

Z 1

0
dt t(1− t2)N+ 1

2 e−ε(ξ t)2

]

ε→1

(C.10)

with the double factorial (2n+1)!! = 1 ·3 ·5 · . . . · (2n−1) · (2n+1). In the limit
N → ∞ the last summand in Eq. (C.10) vanishes, leading to

I(ξ) =
1
ξ4

∞

∑
n=2

n(n−1)

(2n+1)!!
(
−2ξ2)n

, (C.11)

=

√
π

2ξ4

∞

∑
n=2

(−1)n n(n−1)

Γ
(
n+ 3

2

) ξ2n, (C.12)

with the Gamma function Γ. This, for reasonably small ξ, quickly converging
result for I(ξ) is shown in Fig. C.1.



Appendix D

Matrix elements of dot
electron-confined phonon
interaction

Deformation potential coupling
The dominating electron-phonon scattering mechanism in a small free-standing
quantum well (FSQW) is the deformation potential (DP) interaction [176] which
is proportional to the relative change in volume induced by a deformation of the
medium, see Eq. (5.11),

Vdef(r) = Ξ∇ ·u(r), (D.1)

where Ξ is the DP constant. Shear waves do not change the volume of the cavity.
Therefore, they do not couple to electrons via DP interaction. Stroscio et al. [176]
derived the deformation potential for a confined phonon in Lamb mode (n,q‖),

Vdef = λ±
dp(q‖)eiq‖·r‖ tcsql,nz

[
an(q‖)+a†

n(−q‖)
]
, (D.2)

where

λ±
dp(q‖) = Bdp

n (q‖)
(

q2
t,n −q2

‖

)(
q2

l,n +q2
‖

)
tscqt,nb , (D.3)

with Bdp
n (q‖) = Fn[~Ξ2/2ρMωn(q‖)A]1/2, giving the coupling strength of the DP

interaction. The sign ±, and tscx = sinx or cosx, correspond to dilatational and
flexural Lamb modes, respectively. The density of the elastic medium is given
by ρM. The FSQW covers an area A which is assumed to be much larger than
b2. Eigenmodes of the displacement field Eq. (6.19) are normalised, leading to
the normalisation constants Fn. From Eq. (D.2) the different symmetries of the
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induced potential with respect to the confinement direction can be understood as
standing waves in the DP interaction potential.

The matrix elements of the interaction with the localised dot states |L〉 and |R〉
can be written as

αn(q‖) = λ±
dp(q‖)

Z

d3rρL(r) tcs(ql,nz) eiq‖·r‖ . (D.4)

The matrix element βn(q‖) follows from replacing ρL with ρR which are the local
electron densities in the left and right dot, respectively

ρi(r) = 〈i|Ψ†(r)Ψ(r)|i〉. (D.5)

Making the assumption that these densities are smooth functions ρe centred around
the middle of the dots, ρi(r) ≈ ρe(r− ri), we can calculate the interference term

|αn(q‖)−βn(q‖)|2 = |Pe(q‖,ql,n)|2
∣∣∣λ±

dp(q‖) tcs
(

1
2

ql,nd sinΘ
)(

−1± eiq‖·d
)∣∣∣

2
.(D.6)

The vector d and the angle Θ are related to the dot orientation in the FSQW (see
Fig. 6.8 on page 105), and Pe(q‖,ql,n) is a form factor of the electron density,

Pe(q) =
Z

d3rρe(r)eiq·r, (D.7)

which can be approximated by unity for sharply localised wavefunctions.

Piezo-electric coupling

The microscopic calculation of the piezo-electric (PZ) potential caused by a con-
fined phonon is more complicated than the previous derivation for the DP case.
As seen in chapter 5, the potential Vpz is related to the polarisation P, which is
induced by the PZ effect, via Poisson’s equation ∇∇∇2Vpz = 4πe∇∇∇ ·P, see Eq. (5.8).

In general, all four modes families of confined phonons couple to electrons
via PZ interaction. A further complication is the anisotropy of the PZ modulus.
Stroscio et al. [176] calculated the interaction potential for Lamb modes [n,q‖ =
(qx,qy)] by using an averaged expression for the PZ modulus, leading to

Vpz(r) = ±qxqyql
(
λ±

l (q‖) tscqlz +λ±
t (q‖) tscqtz

)
eiq‖·r‖

[
an(q‖)+a†

n(q‖)
]
(D.8)
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with

λ±
l (q‖) = FnBpz

n (q‖)
3(q2

‖−q2
t )

q2
‖ +q2

l
tscqtb , (D.9)

λ±
t (q‖) = −FnBpz

n (q‖)
2(q2

‖−2q2
t )

q2
‖ +q2

t
tscqlb , (D.10)

and Bpz
n (q‖) = (8πeβ/ε)[~/2AρMωn(q‖)]1/2. Here ε is the low frequency permit-

tivity constant. The sign ± and tscx correspond to dilatational and flexural modes
as in the previous section.

When comparing Eqs. (D.8) and (D.2) the different symmetries of the DP and
PZ potentials become apparent. The DP potential for dilatational and flexural
modes is shown in Fig. 6.2. By extending the calculation of the matrix elements
from the previous section to the anisotropic case we find for the interference term

∣∣αn(q‖)−βn(q‖)
∣∣2 = q2

xq2
y |ql|2

∣∣∣
(
1± eiq‖·d)

∣∣∣
2

×
∣∣∣∣
[

λ±
l (q‖) tsc

(
1
2

qld sinΘ
)

+λ±
t (q‖) tsc

(
1
2

qtd sinΘ
) ]∣∣∣∣

2

. (D.11)
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[15] E. M. Höhberger, T. Krämer, W. Wegscheider, and R. H. Blick,
Appl. Phys. Lett. 82, 4160 (2003).

[16] L. D. Landau and E. M. Lifshitz, Relativistic quantum theory, Vol. 4 of
Course of theoretical physics (Pergamon Press, Oxford, 1971).

[17] J. C. Phillips, Bonds and bands in semiconductors, Materials science and
technology (Academic Press, New York, 1973).

[18] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and
Hole Systems, Vol. 191 of Springer Tracts in Modern Physics (Springer,
Berlin, 2003).

[19] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

[20] C. Kittel, Quantum theory of solids (Wiley, New York, 1963).

[21] G. Dresselhaus, Phys. Rev. 100, 580 (1955).

[22] W. Kohn, Phys. Rev. 105, 509 (1957).

[23] G. H. Chen and M. E. Raikh, Phys. Rev. B 60, 4826 (1999).

[24] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335
(1997).

[25] T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, Phys. Rev. Lett. 89,
046801 (2002).

[26] S. J. Papadakis, E. P. D. Poortere, H. C. Manoharan, M. Shayegan, and R.
Winkler, Science 283, 20556 (1999).

[27] D. Grundler, Phys. Rev. Lett. 84, 6074 (2000).

[28] W. Shubnikov and W. J. de Haas, Proc. Netherlands Roy. Acad. Sci. 33,
130 (1930).

[29] S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707
(1980).

[30] B. Das, D. C. Miller, S. Datta, R. Reifenberger, W. P. Hong, P. K. Bhat-
tacharya, J. Singh, and M. Jaffe, Phys. Rev. B 39, 1411(R) (1989).



Bibliography 125

[31] M. Pletyukhov and O. Zaitsev, J. Phys. A: Math. Gen. 36, 5181 (2003).

[32] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

[33] L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (Wiley,
New York, 1975).

[34] A. Yacoby, H. L. Stormer, N. S. Wingreen, L. N. Pfeiffer, K. W. Baldwin,
and K. W. West, Phys. Rev. Lett. 77, 4612 (1996).

[35] S. Iijima, Nature 354, 56 (1991).

[36] C. T. White and T. N. Todorov, Nature 393, 240 (1998).
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