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Chapter 1

General Introduction

1.1 Background and Intuition

One of the most significant developments to have occured in recent years has been the increasingly impor-

tant role of data in the private and public sector: Leading high-tech companies base their business models

on the collection and exploitation of big data sets. Furthermore, public organization and governments

use empirical studies and methods to evaluate and optimize policy measures. In recent years, consid-

erable progress has been made in terms of software and hardware that enable analysts and researchers

to use data sets of an unprecedented volume, quality and structure. For example, the machine learning

literature has developed methods to effectively process unstructured data like text or image data that

can now be employed in statistical modeling.

Major advances in the machine learning literature have mainly been made in terms of prediction problems.

For instance, the lasso estimator introduced by Tibshirani (1996) is a popular choice in high-dimensional

linear models with excellent performance guarantees (Bickel et al., 2009, Bühlmann and van De Geer,

2011). In nonlinear models, regression trees and random forests are frequently used methods (Breiman,

2001). However, many important problems in social sciences and business are causal in nature: Policy

programs, such as active labor market policies, should be cost-effective and efficient; managers in private

companies have a great interest in finding optimal pricing or marketing strategies to maximize revenue

and profits. In order to derive such an optimal policy rule, valid estimation of causal quantities is

essential. For example, optimal pricing strategies require exact estimation of price elasticities. Thus,

causal inference that exploits the powerful performance of state-of-the-art machine learning methods is

greatly important. However, these modern estimation techniques cannot directly be used to estimate

causal effects and, if they are not employed in a valid inference framework, may lead to substantially

flawed conclusions and decisions.

In the past years, the statistical literature has resulted in several approaches for valid inference based on

machine learning methods, for instance the double machine learning approach introduced in Belloni et al.

(2014c) and Chernozhukov et al. (2018a) and the debiasing approach in Zhang and Zhang (2014) and

van de Geer et al. (2014). Both approaches provide a framework to construct valid confidence intervals

or test statistics based on machine learning methods. Moroever, recent work by Belloni et al. (2014a)

and Belloni et al. (2018) that build on accompanying results and methods developed in Chernozhukov

et al. (2013a) and Chernozhukov et al. (2014) make it possible to perform inference on high-dimensional

vectors of unknown causal parameters. These results are highly useful, for example to perform inference

on functionals or a possibly large number of causal effects as in the analysis of heterogeneous treatment

effects.

In the following, a short example is introduced to shed light on the building blocks for valid inference

1
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Figure 1.1: Naive variable selection based on t-statistics and ordinary least squares, simulation
example.

The histograms illustrate the empirical distribution of studentized naive estimators that are based on ordinary
least squares regression obtained in R = 2000 simulation replications. Left panel: Ordinary least squares
regression after model selection based on t-statistics. Variables are excluded from the model if the null hypothesis
H0 : βj = 0, with j = 1, . . . , p, cannot be rejected at the 5% significance level. Right panel: Ordinary least
squares regression after model selection based on t-statistics. Variables are excluded from the model if the null
hypothesis H0 : βj = 0, with j = 1, . . . , p, cannot be rejected at the 5% significance level with p-values being
corrected according to the Bonferroni correction for multiple testing. In R = 2000 simulation repetitions, naively
constructed confidence intervals for the estimators achieve an empirical coverage of 75% (left panel) and 30%
(right panel).

using machine learning techniques. Suppose a researcher has access to a large number of covariates and

is interested in estimation of the causal effect θ0 in a partially linear regression model

Y = θ0D + g0(X) + ε, (1.1)

with D being the treatment variable of interest and g0 being an unknown function. In this model θ0

measures the causal effect of the treatment variable D on the outcome Y , once it is controlled for the

covariates X. We illustrate this regression example in a simulation with results shown in Figures 1.1 to

1.3. In the simulated example, there are p = 120 regressors X and the model is estimated on a sample

with n = 200 observations.

In the following, we will shortly illustrate the invalidity of two different naive approaches. In the first naive

procedure, a researcher performs an initial variable screening step that is based on t-tests as obtained from

an ordinary least squares regression. Employing a linear specification, i.e., g0(X) = X ′β, all variables for

which the null hypothesis H0 : βj = 0, with j = 1, . . . , p, cannot be rejected at the 5% significance level

are discarded from the model. After this selection step, an ordinary least squares regression is estimated

and confidence intervals are constructed as if no variable selection was performed. Figure 1.1 illustrates

that the corresponding estimator may not be asymptotically normally distributed and that the actually

achieved empirical coverage of the confidence interval may substantially differ from the nominal coverage.

The bias of the estimator is more pronounced with a stricter selection criterion being imposed in the first

step, as for example by a Bonferroni correction (right panel of Figure 1.2).

A second naive procedure may involve the use of machine learning methods such as the lasso or random

2
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Figure 1.2: Naive inference based on the lasso and random forests, simulation example.

The histograms illustrate the empirical distribution of studentized naive estimators that are based on machine
learning methods obtained in R = 2000 simulation replications. Left panel: A naive estimator that is based on
a single selection step by lasso with cross-validated choice of the penalty. The variables that have been selected in
this step are used in a linear regression model. Right panel: A naive estimator that is obtained if the unknown
function g0(X) is estimated with a random forest learner. The empirical distribution is heavily biased and cannot
be well-approximated by a normal distribution. In R = 2000 simulation repetitions, naively constructed confidence
intervals for the estimators achieve an empirical coverage of 19% (left panel) and 0% (right panel).

forests. For example, the lasso is known to lead to sparse solutions and, hence, is attractive to perform

variable selection. To perform inference, it may appear tempting to simply estimate ordinary least squares

after the lasso selection to obtain confidence intervals and test statistics. The empirical distribution of

such a naive estimator as obtained in the simulation example is illustrated in the left panel of Figure

1.2. The histogram shows that the estimator is severely biased implying that the empirical coverage is

substantially lower than the nominal level.

Alternatively, a researcher may employ nonlinear machine learning methods such as random forests, for

instance, if g0(X) is suspected to be nonlinear. Hence, the predictions from a random forest learner

might simply be plugged in for g0(X). As can be observed in the right panel of Figure 1.2, the resulting

estimator for θ0 is heavily biased and any inferential statements that may be based on such an approach

are likely to be invalid.

Contrarily to the previously presented approaches, estimation in the double machine learning framework,

which is the basis for this dissertation, results in an asymptotically normally distributed estimator and,

hence, makes it possible to construct valid confidence intervals and test statistics. Figure 1.3 illustrates

the empirical distribution of double machine learning estimators as obtained for a lasso (left panel) and

a random forest learner (right panel). In the following, we will review the key components of the double

machine learning framework.

1.2 Conceptual Framework

In this section, the key components of the double machine learning framework are briefly presented. For

the sake of brevity, we consider estimation of a scalar parameter θ0 in the partially linear regression model

in Equation (1.1) and will assume that technical assumptions, e.g., related to measurability, are satisfied.

3
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A key component of the double machine learning framework is a score function

E[ψ(W ; θ0, η0)] = 0,

with i.i.d. data W = (Y,D,X), target parameter θ0 and a nuisance term η0. The double machine learning

estimator is the solution to the empirical analog of the moment condition above. An essential property

of the score is so-called Neyman orthogonality

∂η E[ψ(W ; θ0, η)]|η=η0
= 0.

A Neyman-orthogonal score function allows the estimator being robust against biases in the estimation

of η0, which may be introduced by variable selection or machine learning methods. By violating the

orthogonality property, this bias effectively translates into the behavior of the naive estimator for the

causal parameter and eventually leads to a biased and non-normal distribution of this estimator as

illustrated in Figures 1.1 and 1.2.

For instance, the naive model selection approaches create an omitted variable bias: Whereas these proce-

dures are able to identify important predictors for the dependent variable Y , they may involve selection

mistakes in terms of so-called confounding variables. These are variables that are correlated with Y and

the treatment variable D. In the examples that are based on a naive use of machine learning techniques,

these estimation methods effectively introduce regularization to the regression problems, for example by

the l1-norm in the case of lasso. Whereas regularization allows the estimators to effectively achieve a

preferable predictive performance in high-dimensional or highly-complex settings, it may simultaneously

introduce a substantial bias that, finally, invalidates the naive inference approach.

Being based on a Neyman-orthogonal score, the double machine learning estimator makes it possible to

overcome the shortcomings of the naive procedures. Although the estimators presented in Figure 1.3 are

based on exactly the same machine learning methods as those in Figure 1.2, Neyman-orthogonality leads

to robustness against the generated regularization bias. In the partially linear regression example, it can

be shown that orthogonality of the score can be achieved by including a second nuisance component in

η. In other words, orthogonality can be obtained with the nuisance term being η = (g,m) leading to the

Neyman-orthogonal score

ψ(W ; θ0, η0) := (Y − g(X)− θ(D −m(X)))(D −m(X)),

with g and m being functions that satisfy some regularity assumptions (Chernozhukov et al., 2018a).

By only estimating the component g(X) in Equation (1.1), the naive approaches only consider g as

the nuisance part which violates the orthogonality property. In contrast, the double machine learning

estimator includes estimation of a second nuisance component m0(X)

D = m0(X) + ν.

Intuitively, m0(X) captures the relationship between the treatment variable D and the controls X. For

example, in a setting with a binary treatment, m0(X) corresponds to the propensity score, which finally

leads to the property of double robustness that is well-known in the treatment effect literature.

The double machine learning framework, which has been developed in a sequence of studies and recently

generalized in Chernozhukov et al. (2018a), leads to an asymptotically normally distributed estimator

if an orthogonal score function is used. Moreover, several additional conditions have to hold. Most

importantly, the nuisance components have to be estimated consistently and the employed estimation

methods need to exhibit good predictive performance in terms of the rate of convergence. Accordingly,
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Figure 1.3: Double machine learning with lasso and random forests, simulation example.

The histograms illustrate the empirical distribution of a studentized double machine learning estimator
that is based on an orthogonal moment condition and sample splitting obtained in R = 2000 simulation
replications. Left panel: Double machine learning estimator based on the lasso with cross-validated
choice of the penalty parameter. Right panel: Double machine learning estimator based on a random
forest learner. Both estimators are asymptotically normally distributed and centered around the true
value of the parameter θ0. In R = 2000 simulation repetitions, constructing confidence intervals according
to the double machine learning approach results in an empirical coverage of 94% (left panel) and 93%
(right panel). In all simulation examples, the same data sets and specifications of the learners are used.
A nominal coverage level of 95% is chosen for the confidence intervals in all cases.

the nuisance part η0 needs to be estimated at a rate that is at least slightly faster than n−1/4. Moreover,

additional structural assumptions have to be satisfied. As an example, the lasso estimator can be used

under the assumption that only a small set of the explanatory variables X have a non-zero influence on

the outcome variable Y and the treatment variable D. This assumption is also called sparsity. Early

work on valid inference using machine learning estimators has been based on the lasso as it allows for

clarification of the corresponding technical requirements. In Chernozhukov et al. (2018a), a sample-

splitting procedure is introduced that makes it possible to relax the involved structural assumptions and

to use generic machine learning methods.

1.3 Outline

This doctoral thesis consists of a collection of research papers in the context of the double machine learning

framework. Most of the papers provide empirical applications and implementations of the double machine

learning framework. The first chapter provides a short summary and review of the double machine

learning framework in Chernozhukov et al. (2018a). The overview is intended to provide guidance for

users of the R and python packages DoubleML that have been developed as part of this doctoral thesis.

The study presented in Chapter 3 provides a survey of methods for valid simultaneous inference in

high-dimensional settings with a focus on the implementation in R. In settings where researchers or

practitioners have to test a large number of components, it becomes greatly important to adjust the

inferential procedure for multiple testing. Both of the first two papers present simulation examples to

illustrate the use and validity of double machine learning in finite-sample settings. Chapter 4 provides
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an inferential procedure on a functional f1(x1) in a high-dimensional additive model

Y = f1(X1) + . . .+ fp(Xp) + ε,

with the number of components, p, possibly exceeding the number of observations in the data, n. The

theoretical results that are based on the work in Belloni et al. (2018) are complemented by a simulation

study and an illustration in an empirical application.

Chapter 5 provides an application of modern methods for valid simultaneous inference in an empirical

application. The paper is concerned with a quantification of heterogeneity in the U.S. gender wage

gap. The heterogeneity analysis is based on an interacted wage regression and multiple coefficients being

tested simultaneously. The estimation framework is based on the double selection approach of Belloni

et al. (2014a). This approach can be considered as a variant of the double machine learning framework

developed for variable selection procedures such as the lasso estimator.

Finally, Chapter 6 is a study outside the double machine learning approach. In some sense, it can be

considered as the other side of the same medal: Inferential procedures for causal inference result in

estimation of causal parameters that are, in turn, highly important to design effective and efficient policy

measures. Once these causal parameters are estimated, policy makers base their optimal policy decisions

on an economic or structural framework. The COVID-19 pandemic creates a new challenge to policy

makers who have to make difficult decisions facing the trade-off between protection of public health and

mitigation of economic damage. Whereas some policy measures are highly effective in reducing the spread

of the virus, these measures might be associated with severe economic consequences and vice versa. The

study in Chapter 6 attempts to assess a variety of policy measures in the current pandemic. Finally, the

conclusion presented in Chapter 7 presents potential extensions in future research.

6



Chapter 2

DoubleML - An Object-Oriented

Implementation of Double Machine

Learning in R

2.1 Introduction

Structural equation models provide a quintessential framework for conducting causal inference in statis-

tics, econometrics, machine learning (ML), and other data sciences. The package DoubleML for R (R Core

Team, 2020) implements partially linear and interactive structural equation and treatment effect models

with high-dimensional confounding variables as considered in Chernozhukov et al. (2018a). Estimation

and tuning of the machine learning models is based on the powerful functionalities provided by the mlr3

package and the mlr3 ecosystem (Lang et al., 2019). A key element of double machine learning (DML)

models are score functions identifying the estimates for the target parameter. These functions play an

essential role for valid inference with machine learning methods because they have to satisfy a property

called Neyman orthogonality. With the score functions as key elements, DoubleML implements double

machine learning in a very general way using object orientation based on the R6 package (Chang, 2020).

Currently, DoubleML implements the double / debiased machine learning framework as established in

Chernozhukov et al. (2018a) for

� partially linear regression models (PLR),

� partially linear instrumental variable regression models (PLIV),

� interactive regression models (IRM), and

� interactive instrumental variable regression models (IIVM).

The object-oriented implementation of DoubleML is very flexible. The model classes DoubleMLPLR,

DoubleMLPLIV, DoubleMLIRM and DoubleIIVM implement the estimation of the nuisance functions via

machine learning methods and the computation of the Neyman-orthogonal score function. All other

functionalities are implemented in the abstract base class DoubleML, including estimation of causal pa-

rameters, standard errors, t-tests, confidence intervals, as well as valid simultaneous inference through

adjustments of p-values and estimation of joint confidence regions based on a multiplier bootstrap pro-

cedure. In combination with the estimation and tuning functionalities of mlr3 and its ecosystem, this

object-oriented implementation enables a high flexibility for the model specification in terms of

� the machine learning methods for estimation of the nuisance functions,

7
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� the resampling schemes,

� the double machine learning algorithm, and

� the Neyman-orthogonal score functions.

It further can be readily extended regarding

� new model classes that come with Neyman-orthogonal score functions being linear in the target

parameter,

� alternative score functions via callables, and

� customized resampling schemes.

Several other packages for estimation of causal effects based on machine learning methods exist for

R. Probably the most popular packages are the grf package (Tibshirani et al., 2020), which implements

generalized random forests (Athey et al., 2019), the package hdm (Chernozhukov et al., 2016a) for inference

based on the lasso estimator and the hdi package (Dezeure et al., 2015) for inference in high-dimensional

models. Previous implementations of the double machine learning (DML) framework of Chernozhukov

et al. (2018a) have been provided by postDoubleR package (Szitas, 2019), the package dmlmt (Knaus,

2018) with a focus on lasso estimation, and causalDML (Knaus, 2020) for estimation of treatment effects

under unconfoundedness. In python, EconML (Microsoft Research, 2019) offers an implementation of

the double machine learning framework for heterogeneous effects. We would like to mention that the

R package DoubleML was developed together with a Python twin (Bach et al., 2021) that is based on

scikit-learn (Pedregosa et al., 2011). The python package is also available via GitHub, the Python

Package Index (PyPI), and conda-forge.1 Moreover, Kurz (2021) provides a serverless implementation of

the python module DoubleML.

The rest of the paper is structured as follows: In Section 2.2, we briefly demonstrate how to install

the DoubleML package and give a short motivating example to illustrate the major idea behind the

double machine learning approach. Section 2.3 introduces the main causal model classes implemented in

DoubleML. Section 2.4 shortly summarizes the main ideas behind the double machine learning approach

and reviews the key ingredients required for valid inference based on machine learning methods. Section

2.5 presents the main steps and algorithms of the double machine learning procedure for inference on one

or multiple target parameters. Section 2.6 provides more detailed insights on the implemented classes and

methods of DoubleML. Section 2.7 contains real-data and simulation examples for estimation of causal

parameters using the DoubleML package. Additionally, this section provides a brief simulation study

that illustrates the validity of the implemented methods in finite samples. Section 5.6 concludes the

paper. The code output that has been suppressed in the main text and further information regarding

the simulations are presented in the Appendix. To make the code examples fully reproducible, the entire

code is available online.

2.2 Getting started

2.2.1 Installation

The latest CRAN release of DoubleML can be installed using the command

install.packages("DoubleML")

1Resources for Python package: GitHub https://github.com/DoubleML/doubleml-for-py, PyPI: https://pypi.org/

project/DoubleML/, conda-forge: https://anaconda.org/conda-forge/doubleml.
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Alternatively, the development version can be downloaded and installed from the GitHub2 repository

using the command (previous installation of the remotes package is required)

remotes::install github("DoubleML/doubleml-for-r")

Among others, DoubleML depends on the R package R6 for object oriented implementation, data.table

(Dowle and Srinivasan, 2020) for the underlying data structure, as well as the packages mlr3 (Lang

et al., 2019), mlr3learners (Lang et al., 2020a) and mlr3tuning (Becker et al., 2020) for estimation of

machine learning methods, model tuning and parameter handling. Moreover, the underlying packages of

the machine learning methods that are called in mlr3 or mlr3learners must be installed, for example

the packages glmnet for lasso estimation (glmnet) or ranger (Wright and Ziegler, 2017) for random

forests.

Load the package after completed installation.

library(DoubleML)

2.2.2 A Motivating Example: Basics of Double Machine Learning

In the following, we provide a brief summary of and motivation to double machine learning methods

and show how the corresponding methods provided by the DoubleML package can be applied. The

data generating process (DGP) is based on the introductory example in Chernozhukov et al. (2018a).

We consider a partially linear model: Our major interest is to estimate the causal parameter θ in the

following regression equation

yi = θdi + g0(xi) + ζi, ζi ∼ N (0, 1),

with covariates xi ∼ N (0,Σ), where Σ is a matrix with entries Σkj = 0.7|j−k|. In the following, the

regression relationship between the treatment variable di and the covariates xi will play an important

role

di = m0(xi) + vi, vi ∼ N (0, 1).

The nuisance functions m0 and g0 are given by

m0(xi) = xi,1 +
1

4

exp(xi,3)

1 + exp(xi,3)
,

g0(xi) =
exp(xi,1)

1 + exp(xi,1)
+

1

4
xi,3.

We construct a setting with n = 500 observations and p = 20 explanatory variables to demonstrate the

use of the estimators provided in DoubleML. Moreover, we set the true value of the parameter θ to θ = 0.5.

The corresponding data generating process is implemented in the function make plr CCDHNR2018(). We

start by generating a realization of a data set as a data.table object, which is subsequently used to

create an instance of the data-backend of class DoubleMLData.

library(DoubleML)

alpha = 0.5

n obs = 500

n vars = 20

2GitHub repository for R package: https://github.com/DoubleML/doubleml-for-r.
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set.seed(1234)

data plr = make plr CCDDHNR2018(alpha = alpha, n obs = n obs, dim x = n vars,

return type = "data.table")

The data-backend implements the causal model: We specify that we perform inference on the effect of

the treatment variable di on the dependent variable yi.

obj dml data = DoubleMLData$new(data plr, y col = "y", d cols = "d")

In the next step, we choose the machine learning method as an object of class Learner from mlr3,

mlr3learners (Lang et al., 2020a) or mlr3extralearners (Sonabend and Schratz, 2020). As we will

point out later, we have to estimate two nuisance parts in order to perform valid inference in the partially

linear regression model. Hence, we have to specify two learners. Moreover, we split the sample into two

folds used for cross-fitting.

# Load mlr3 and mlr3learners package and suppress output during estimation

library(mlr3)

library(mlr3learners)

lgr::get logger("mlr3")$set threshold("warn")

# Initialize a random forests learner with specified parameters

ml g = lrn("regr.ranger", num.trees = 100, mtry = n vars, min.node.size = 2,

max.depth = 5)

ml m = lrn("regr.ranger", num.trees = 100, mtry = n vars, min.node.size = 2,

max.depth = 5)

doubleml plr = DoubleMLPLR$new(obj dml data,

ml g, ml m,

n folds = 2,

score = "IV-type")

To estimate the causal effect of variable di on yi, we call the fit() method.

doubleml plr$fit()

doubleml plr$summary()

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## d 0.49398 0.04852 10.18 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The output shows that the estimated coefficient is close to the true parameter θ = 0.5. Moreover, we are

able to reject the null hypotheses H0 : θ = 0 at all common significance levels.

2.3 Key Causal Models

DoubleML provides estimation of causal effects in four different models: Partially linear regression models

(PLR), partially linear instrumental variable regression models (PLIV), interactive regression models

(IRM) and interactive instrumental variable regression models (IIVM). We will shortly introduce these

models.

10
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Figure 2.1: Causal diagram for PLR and IRM.

A causal diagram underlying Equation (2.1)-(2.2) and (2.5)-(2.6) under conditional exogeneity. Note that the causal link
between D and Y is one-directional. Identification of the causal effect is confounded by X, and identification is achieved
via V , which captures variation in D that is independent of X. Methods to estimate the causal effect of D must therefore
approximately remove the effect of high-dimensional X on Y and D.

2.3.1 Partially Linear Regression Model (PLR)

Partially linear regression models (PLR), which encompass the standard linear regression model, play an

important role in data analysis (Robinson, 1988). Partially linear regression models take the form

Y = Dθ0 + g0(X) + ζ, E(ζ|D,X) = 0, (2.1)

D = m0(X) + V, E(V |X) = 0, (2.2)

where Y is the outcome variable and D is the policy variable of interest. The high-dimensional vector

X = (X1, . . . , Xp) consists of other confounding covariates, and ζ and V are stochastic errors. Equation

(2.1) is the equation of interest, and θ0 is the main regression coefficient that we would like to infer. If D

is conditionally exogenous (randomly assigned conditional on X), θ0 has the interpretation of a structural

or causal parameter. The causal diagram supporting such interpretation is shown in Figure 2.1. The

second equation keeps track of confounding, namely the dependence of D on covariates/controls. The

characteristics X affect the policy variable D via the function m0(X) and the outcome variable via the

function g0(X). The partially linear model generalizes both linear regression models, where functions g0

and m0 are linear with respect to a dictionary of basis functions with respect to X, and approximately

linear models.

2.3.2 Partially Linear Instrumental Variable Regression Model (PLIV)

We next consider the partially linear instrumental variable regression model:

Y −Dθ0 = g0(X) + ζ, E(ζ|Z,X) = 0, (2.3)

Z = m0(X) + V, E(V |X) = 0. (2.4)

Note that this model is not a regression model unless Z = D. Model (2.3)-(2.4) is a canonical model

in causal inference, going back to Wright (1928), with the modern difference being that g0 and m0 are

nonlinear, potentially complicated functions of high-dimensional X. The idea of this model is that there

is a structural or causal relation between Y and D, captured by θ0, and g0(X) + ζ is the stochastic error,

partly explained by covariates X. V and ζ are stochastic errors that are not explained by X. Since Y

and D are jointly determined, we need an external factor, commonly referred to as an instrument, Z, to

create exogenous variation in D. Note that Z should affect D. The X here serve again as confounding

factors, so we can think of variation in Z as being exogenous only conditional on X.

A simple contextual example is from biostatistics (Permutt and Hebel, 1989), where Y is a health outcome

and D is an indicator of smoking. Thus, θ0 captures the effect of smoking on health. Health outcome Y

11
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Figure 2.2: Causal diagram for PLIV and IIVM.

A causal diagram underlying Equation (2.3)-(2.4) and (2.7)-(2.8) under conditional exogeneity of Z. Note that the causal
link between D and Y is bi-directional, so an instrument Z is needed for identification. Identification is achieved via V that
captures variation in Z that is independent of X. Equations (2.3) and (2.4) do not model the dependence between D and
X and Z, though a necessary condition for identification is that Z and D are related after conditioning on X. Methods to
estimate the causal effect of D must approximately remove the effect of high-dimensional X on Y , D, and Z. Removing
the confounding effect of X is done implicitly by the proposed procedure.

and smoking behavior D are treated as being jointly determined. X represents patient characteristics,

and Z could be a doctor’s advice not to smoke (or another behavioral treatment) that may affect the

outcome Y only through shifting the behavior D, conditional on characteristics X.

2.3.3 Interactive Regression Model (IRM)

We consider estimation of average treatment effects when treatment effects are fully heterogeneous and

the treatment variable is binary, D ∈ {0, 1}. We consider vectors (Y,D,X) such that

Y = g0(D,X) + U, E(U |X,D) = 0, (2.5)

D = m0(X) + V, E(V |X) = 0. (2.6)

Since D is not additively separable, this model is more general than the partially linear model for the

case of binary D. A common target parameter of interest in this model is the average treatment effect

(ATE),3

θ0 = E[g0(1, X)− g0(0, X)].

Another common target parameter is the average treatment effect for the treated (ATTE),

θ0 = E[g0(1, X)− g0(0, X)|D = 1].

In business applications, the ATTE is often the main interest, as it captures the treatment effect for those

who have been affected by the treatment. A difference of the ATTE from the ATE might arise if the

characteristics of the treated individuals differ from those of the general population.

The confounding factors X affect the policy variable via the propensity score m0(X) and the outcome

variable via the function g0(X). Both of these functions are unknown and potentially complex, and we

can employ ML methods to learn them.

3Without unconfoundedness/conditional exogeneity, these quantities measure association, and could be referred to as
average predictive effects (APE) and average predictive effect for the exposed (APEX). Inferential results for these objects
would follow immediately from Theorem 1.

12
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Figure 2.3: Performance of non-orthogonal and orthogonal estimators in simulated data ex-
ample.

Left panel: Histogram of the studentized naive estimator θ̂naive
0 . θ̂naive

0 is based on estimation of g0 and m0 with random
forests and a non-orthogonal score function. Data sets are simulated according to the data generating process in Section
2.2.2. Data generation and estimation are repeated 1000 times. Right panel: Histogram of the studentized DML estimator
θ̃0. θ̃0 is based on estimation of g0 and m0 with random forests and an orthogonal score function provided in Equation
(2.17). Note that the simulated data sets and parameters of the random forest learners are identical to those underlying
the left panel.

2.3.4 Interactive Instrumental Variable Model (IIVM)

We consider estimation of local average treatment effects (LATE) with a binary treatment variable

D ∈ {0, 1}, and a binary instrument, Z ∈ {0, 1}. As before, Y denotes the outcome variable, and X is

the vector of covariates. Here the structural equation model is:

Y = `0(D,X) + ζ, E(ζ|Z,X) = 0, (2.7)

Z = m0(X) + V, E(V |X) = 0. (2.8)

Consider the functions g0, r0, and m0, where g0 maps the support of (Z,X) to R and r0 and m0 map

the support of (Z,X) and X to (ε, 1− ε) for some ε ∈ (0, 1/2), such that

Y = g0(Z,X) + ν, E(ν|Z,X) = 0, (2.9)

D = r0(Z,X) + U, E(U |Z,X) = 0, (2.10)

Z = m0(X) + V, E(V |X) = 0. (2.11)

We are interested in estimating

θ0 =
E[g0(1, X)]− E[g0(0, X)]

E[r0(1, X)]− E[r0(0, X)]
.

Under the well-known assumptions of Imbens and Angrist (1994), θ0 is the LATE – the average treatment

effect for compliers, in other words, those observations that would have D = 1 if Z were 1 and would

have D = 0 if Z were 0.

13
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2.4 Basic Idea and Key Ingredients of Double Machine Learning

2.4.1 Basic Idea behind Double Machine Learning for the PLR Model

Here we provide an intuitive discussion of how double machine learning works in the first model, the

partially linear regression model. Naive application of machine learning methods directly to equations

(2.1)-(2.2) may have a very high bias. Indeed, it can be shown that small biases in estimation of g0, which

are unavoidable in high-dimensional estimation, create a bias in the naive estimate of the main effect,

θ̂0
naive, which is sufficiently large to cause failure of conventional inference. The left panel in Figure

2.3 illustrates this phenomenon. The histogram presents the empirical distribution of the studentized

estimator, θ̂naive0 , as obtained in 1000 independent repetitions of the data generating process presented in

Section 2.2.2. The functions g0 and m0 in the PLR model are estimated with random forest learners and

corresponding predictions are then plugged into a non-orthogonal score function. The regularization per-

formed by the random forest learner leads to a bias in estimation of g0 and m0. Due to non-orthogonality

of the score, this translates into a considerable bias of the main estimator θ̂0
naive: The distribution of

the studentized estimator θ̂naive0 is shifted to the left of the origin and differs substantially from a normal

distribution that would be obtained if the regularization bias was negligible as shown by the red curve.

The PLR model above can be rewritten in the following residualized form:

W = V θ0 + ζ, E(ζ|D,X) = 0, (2.12)

W = (Y − `0(X)), `0(X) = E[Y |X], (2.13)

V = (D −m0(X)), m0(X) = E[D|X]. (2.14)

The variables W and V represent original variables after taking out or partialling out the effect of X.

Note that θ0 is identified from this equation if V has a non-zero variance.

Given identification, double machine learning for a PLR proceeds as follows

(1) Estimate `0 and m0 by ˆ̀
0 and m̂0, which amounts to solving the two problems of predicting Y

and D using X, using any generic ML method, giving us estimated residuals

Ŵ = Y − ˆ̀
0(X),

and

V̂ = D − m̂0(X).

The residuals should be of a cross-validated form, as explained below in Algorithm 1 or 2, to

avoid biases from overfitting.

(2) Estimate θ0 by regressing the residual Ŵ on V̂ . Use the conventional inference for this regression

estimator, ignoring the estimation error in the residuals.

The reason we work with this residualized form is that it eliminates the bias arising from solving

the prediction problems in stage (1). The estimates ˆ̀
0 and m̂0 carry a regularization bias due to

having to solve prediction problems well in high-dimensions. However, the nature of the estimating

equation for θ0 are such that these biases are eliminated to the first order, as explained below. This

results in a high-quality low-bias estimator θ̃0 of θ0, as illustrated in the right panel of Figure 2.3.
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The estimator is adaptive in the sense that the first stage estimation errors do not affect the second

stage errors.

2.4.2 Key Ingredients of the Double Machine Learning Inference Approach

Our goal is to construct high-quality point and interval estimators for θ0 when X is high-dimensional and

we employ machine learning methods to estimate the nuisance functions such as g0 and m0. Example ML

methods include lasso, random forests, boosted trees, deep neural networks, and ensembles or aggregated

versions of these methods.

We shall use a method-of-moments estimator for θ0 based upon the empirical analog of the moment

condition

E[ψ(W ; θ0, η0)] = 0, (2.15)

where we call ψ the score function, W = (Y,D,X,Z), θ0 is the parameter of interest, and η denotes

nuisance functions with population value η0.

The first key input of the inference procedure is using a score function ψ(W ; θ; η) that satisfies (2.15),

with θ0 being the unique solution, and that obeys the Neyman orthogonality condition

∂ηE[ψ(W ; θ0, η)|η=η0 = 0. (2.16)

Neyman orthogonality (2.16) ensures that the moment condition (2.15) used to identify and estimate θ0

is insensitive to small pertubations of the nuisance function η around η0. The derivative ∂η denotes the

pathwise (Gateaux) derivative operator.

Using a Neyman-orthogonal score eliminates the first order biases arising from the replacement of η0 with

a ML estimator η̂0. Eliminating this bias is important because estimators η̂0 must be heavily regularized

in high dimensional settings to be good estimators of η0, and so these estimators will be biased in general.

The Neyman orthogonality property is responsible for the adaptivity of these estimators – namely, their

approximate distribution will not depend on the fact that the estimate η̂0 contains error, if the latter is

mild.

The right panel of Figure 2.3 presents the empirical distribution of the studentized DML estimator θ̃0

that is based on an orthogonal score. Note that estimation is performed on the identical simulated data

sets and with the same machine learning method as for the naive learner, which is displayed in the left

panel. The histogram of the studentized estimator θ̃0 illustrates the favorable performance of the double

machine learning estimator, which is based on an orthogonal score: The DML estimator is robust to

the bias that is generated by regularization. The estimator is approximately unbiased, is concentrated

around 0 and the distribution is well-approximated by the normal distribution.

� PLR score: In the PLR model, we can employ two alternative score functions. We will shortly

indicate the option for initialization of a model object in DoubleML to clarify how each score can

be implemented. Using the option score = ’partialling out’ leads to estimation of the score

function

ψ(W ; θ, η) := (Y − `(X)− θ(D −m(X))) (D −m(X)) ,

η = (`,m), η0 = (`0,m0),
(2.17)
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where W = (Y,D,X) and ` and m are P -square-integrable functions mapping the support of X to

R, whose true values are given by

`0(X) = E[Y |X], m0(X) = E[D|X].

Alternatively, it is possible to use the following score function for the PLR via the option score =

’IV-type’

ψ(W ; θ, η) := (Y −Dθ − g(X)) (D −m(X)) , η = (g,m), η0 = (g0,m0), (2.18)

with g and m being P -square-integrable functions mapping the support of X to R with values given

by

g0 = E[Y |X], m0(X) = E[D|X].

The scores above are Neyman-orthogonal by elementary calculations. Now, it is possible to see the

connections to the residualized system of equations presented in Section 2.4.1.

� PLIV score: In the PLIV model, we employ the score function (score = ’partialling out’)

ψ(W ; θ, η) := (Y − `(x)− θ(D − r(X))) (Z −m(X)) ,

η = (`,m, r), η0 = (`0,m0, r0),
(2.19)

where W = (Y,D,X,Z) and `, m, and r are P -square integrable functions mapping the support of

X to R, whose true values are given by

`0(X) = E[Y |X], r0(X) = E[D|X], m0(X) = E[Z|X].

� IRM score: For estimation of the ATE parameter of the IRM model, we employ the score (score

= ’ATE’)

ψ(W ; θ, η) := (g(1, X)− g(0, X)) +
D(Y − g(1, X))

m(X)
− (1−D)(Y − g(0, X))

1−m(X)
− θ,

η = (g,m), η0 = (g0,m0),

(2.20)

where W = (Y,D,X) and g and m map the support of (D,X) to R and the support of X to

(ε, 1− ε), respectively, for some ε ∈ (0, 1/2), whose true values are given by

g0(D,X) = E[Y |D,X], m0(x) = P[D = 1|X].

This orthogonal score is based on the influence function for the mean for missing data from Robins

and Rotnitzky (1995). For estimation of the ATTE parameter in the IRM, we use the score (score

= ’ATTE’)

ψ(W ; θ, η) :=
D(Y − g(0, X))

p
− m(X)(1−D)(Y − g(0, X))

p(1−m(x))
− D

p
θ,

η = (g,m, p), η0 = (g0,m0, p0),

(2.21)

where p0 = P(D = 1). Note that this score does not require estimating g0(1, X).
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� IIVM score: To estimate the LATE paramter in the IIVM, we will use the score (score = ’LATE’)

ψ :=g(1, X)− g(0, X) +
Z(Y − g(1, X))

m(X)
− (1− Z)(Y − g(0, X))

1−m(X)

−
(
r(1, x)− r(0, X) +

Z(D − r(1, x)

m(X)
− (1− Z)(D − r(0, X)

1−m(X)

)
× θ,

η = (g,m, r), η0 = (g0,m0, r0),

(2.22)

where W = (Y,D,X,Z) and the nuisance parameter η = (g,m, r) consists of P -square integrable

functions g, m, and r, with g mapping the support of (Z,X) to R and m and r, respectively,

mapping the support of (Z,X) and X to (ε, 1− ε) for some ε ∈ (0, 1/2).

The second key input is the use of high-quality machine learning estimators for the nuisance param-

eters.

For instance, in the PLR model, we need to have access to consistent estimators of g0 and m0 with respect

to the L2(P ) norm ‖·‖P,2, such that

‖m̂0 −m0‖P,2+‖ˆ̀0 − `0‖P,2≤ o(N−1/4). (2.23)

In the PLIV model, the sufficient condition is

‖r̂0 − r0‖P,2+‖m̂0 −m0‖P,2+‖ˆ̀0 − `0‖P,2≤ o(N−1/4). (2.24)

These conditions are plausible for many ML methods. Different structured assumptions on η0 lead to

the use of different machine-learning tools for estimating η0 as listed in Chernozhukov et al. (2018a,

pp. 22-23):

1. The assumption of approximate or exact sparsity for η0 with respect to some dictionary calls for

the use of sparsity-based machine learning methods, for example the lasso estimator, post-lasso,

l2-boosting, or forward selection, among others.

2. The assumption of density of η0 with respect to some dictionary calls for density-based estimators

such as the ridge. Mixed structures based on sparsity and density suggest the use of elastic net or

lava.

3. If η0 can be well approximated by tree-based methods, regression trees and random forests are

suitable.

4. If η0 can be well approximated by sparse, shallow or deep neural networks, l1-penalized neural

networks, shallow neural networks or deep neural networks are attractive.

For most of these ML methods, performance guarantees are available that make it possible to satisfy the

theoretical requirements. Moreover, if η0 can be well approximated by at least one model mentioned in

the list above, ensemble or aggregated methods can be used. Ensemble and aggregation methods ensure

that the performance guarantee is approximately no worse than the performance of the best method.

The third key input is to use a form of sample splitting at the stage of producing the estimator of

the main parameter θ0, which allows us to avoid biases arising from overfitting.

Biases arising from overfitting could result from using highly complex fitting methods such as boosting,

random forests, ensemble, and hybrid machine learning methods. We specifically use cross-fitted forms of
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Figure 2.4: Performance of orthogonal estimators based on full sample and sample splitting
in simulated data example.

Left panel: Histogram of the studentized estimator θ̂nosplit
0 . θ̂nosplit

0 is based on estimation of g0 and m0 with random
forests and a procedure without sample-splitting: The entire data set is used for learning the nuisance terms and estimation
of the orthogonal score. Data sets are simulated according to the data generating process in Section 2.2.2. Data generation
and estimation are repeated 1000 times. Right panel: Histogram of the studentized DML estimator θ̃0. θ̃0 is based on
estimation of g0 and m0 with random forests and the cross-fitting described in Algorithm 2. Note that the simulated data
sets and parameters of the random forest learners are identical to those underlying the left panel.

the empirical moments, as detailed below in Algorithms 1 and 2, in estimation of θ0. If we do not perform

sample splitting and the ML estimates overfit, we may end up with very large biases. This is illustrated

in Figure 2.4. The left panel shows the histogram of a studentized estimator θ̂nosplit0 with θ̂nosplit0 being

obtained from solving the orthogonal score of Equation (2.17) without sample splitting. All observations

are used to learn functions g0 and m0 in the PLR model and to solve the score 1
N

∑N
i ψ(Wi; θ̂

nosplit
0 , η̂0).

Consequently, this overfitting bias leads to a considerable shift of the empirical distribution to the left.

The double machine learning estimator underlying the histogram in the right panel is obtained with

cross-fitting according to Algorithm 2. The sample-splitting procedure makes it possible to completely

eliminate the bias induced by overfitting.

2.5 The Double Machine Learning Inference Method

2.5.1 Double Machine Learning for Estimation of a Causal Parameter

We assume that we have a sample (Wi)
N
i1

, modeled as i.i.d. copies of W = (Y,D,Z,X), whose law is

determined by the probability measure P . We assume that N is divisible by K in order to simplify the

notation. Let EN denote the empirical expectation

EN [g(W )] :=
1

N

N∑
i=1

g(Wi).

Algorithm 1: DML1. (Generic double machine learning with cross-fitting)

(1) Inputs: Choose a model (PLR, PLIV, IRM, IIVM), provide data (Wi)
N
i=1, a Neyman-

orthogonal score function ψ(W ; θ, η), which depends on the model being estimated, and specify

machine learning methods for η.

(2) Train ML predictors on folds: Take a K-fold random partition (Ik)Kk=1 of observation
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indices [N ] = {1, . . . , N} such that the size of each fold Ik is n = N/K. For each k ∈ [K] =

{1, . . . ,K}, construct a high-quality machine learning estimator

η̂0,k = η̂0,k

(
(Wi)i 6∈Ik

)
of η0, where x 7→ η̂0,k(x) depends only on the subset of data (Wi)i 6∈Ik .

(3) For each k ∈ [K], construct the estimator θ̌0,k as the solution to the equation

1

n

∑
i∈Ik

ψ(Wi; θ̌0,k, η̂0,k) = 0. (2.25)

The estimate of the causal parameter is obtained via aggregation

θ̃0 =
1

K

K∑
k=1

θ̌0,k.

(4) Output: The estimate of the causal parameter θ̃0 as well as the values of the evaluated score

function are returned.

Algorithm 2: DML2. (Generic double machine learning with cross-fitting)

(1) Inputs: Choose a model (PLR, PLIV, IRM, IIVM), provide data (Wi)
N
i=1, a Neyman-

orthogonal score function ψ(W ; θ, η), which depends on the model being estimated, and specify

machine learning methods for η.

(2) Train ML predictors on folds: Take a K-fold random partition (Ik)Kk=1 of observation

indices [N ] = {1, . . . , N} such that the size of each fold Ik is n = N/K. For each k ∈ [K] =

{1, . . . ,K}, construct a high-quality machine learning estimator

η̂0,k = η̂0,k

(
(Wi)i 6∈Ik

)
of η0, where x 7→ η̂0,k(x) depends only on the subset of data (Wi)i 6∈Ik .

(3) Construct the estimator for the causal parameter θ̃0 as the solution to the equation

1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ̃0, η̂0,k) = 0. (2.26)

(4) Output: The estimate of the causal parameter θ̃0 as well as the values of the evaluated score

function are returned.

Remark 1 (Linear scores) The score for the models PLR, PLIV, IRM and IIVM are linear

in θ, having the form

ψ(W ; θ, η) = ψa(W ; η)θ + ψb(W ; η),
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hence the estimator θ̃0,k for DML2 (θ̌0,k for DML1) takes the form

θ̃0 = − (EN [ψa(W ; η)])
−1 EN [ψb(W ; η)]. (2.27)

The linear score function representations of the PLR, PLIV, IRM and IIVM are

� PLR with score = ’partialling out’

ψa(W ; η) = −(D −m(X))(D −m(X)),

ψb(W ; η) = (Y − `(X))(D −m(X)).
(2.28)

PLR with score = ’IV-type’

ψa(W ; η) = −D(D −m(X)),

ψb(W ; η) = (Y − g(X))(D −m(X)).
(2.29)

� PLIV with score = ’partialling out’

ψa(W ; η) = −(D − r(X))(Z −m(X)),

ψb(W ; η) = (Y − `(X))(Z −m(X)).
(2.30)

� IRM with score = ’ATE’

ψa(W ; η) = −1,

ψb(W ; η) = g(1, X)− g(0, X) +
D(Y − g(1, X))

m(X)
− (1−D)(Y − g(0, X))

1−m(x)
.

(2.31)

IRM with score = ’ATTE’

ψa(W ; θ, η) = −D
p

ψb(W ; θ, η) =
D(Y − g(0, X))

p
− m(X)(1−D)(Y − g(0, X))

p(1−m(x))

(2.32)

� IIVM with score = ’LATE’

ψa(W ; η) = −
(
r(1, X)− r(0, X) +

Z(D − r(1, X))

m(X)
− (1− Z)(D − r(0, X))

1−m(x)

)
,

ψb(W ; η) = g(1, X)− g(0, X) +
Z(Y − g(1, X))

m(X)
− (1− Z)(Y − g(0, X))

1−m(x)
.

(2.33)

Remark 2 (Sample Splitting) In Step (2) of the Algorithm DML1 and DML2, the estimator

η̂0,k can generally be an ensemble or aggregation of several estimators as long as we only use

the data (Wi)i 6∈Ik outside the k-th fold to construct the estimators.

Remark 3 (Recommendation) We have found that K = 4 or K = 5 to work better than

K = 2 in a variety of empirical examples and in simulations. The default for the option

n folds that implements the value of K is n folds=5. Moreover, we generally recommend to

repeat the estimation procedure mutliple times and use the estimates and standard errors as

aggregated over multiple repetitions as described in Chernozhukov et al. (2018a, pp. 30-31).

This aggregation will be automatically executed if the number of repetitions n rep is set to a

value larger than 1.
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The properties of the estimator are as follows.

Theorem 1. There exist regularity conditions, such that the estimator θ̃0 concentrates in a 1/
√
N -

neighborhood of θ0 and the sampling error
√
N(θ̃0 − θ0) is approximately normal

√
N(θ̃0 − θ0) N(0, σ2),

with mean zero and variance given by

σ2 = J−2
0 E(ψ2(W ; θ0, η0)),

J0 = E(ψa(W ; η0)).

Algorithm 3: Variance Estimation and Confidence Intervals.

(1) Inputs: Use the inputs and outputs from Algorithm 1 (DML1) or Algorithm 2 (DML2).

(2) Variance and confidence intervals: Estimate the asymptotic variance of θ̃0 by

σ̂2 = Ĵ−2
0

1

N

K∑
k=1

∑
i∈Ik

[
ψ(Wi; θ̃0, η̂0,k)

]2
,

Ĵ0 =
1

N

K∑
k=1

∑
i∈Ik

ψa(Wi; η̂0,k)

and form an approximate (1− α) confidence interval as

[θ̃0 ± Φ−1(1− α/2)σ̂/
√
N ].

(3) Output: Output variance estimator and the confidence interval.

Theorem 2. Under the same regularity condition, this interval contains θ0 for approximately (1−α)×100

percent of data realizations

P
(
θ0 ∈

[
θ̃0 ± Φ−1(1− α/2)σ̂/

√
N
])
→ (1− α).

Remark 4 (Brief literature overview on double machine learning) The presented double

machine learning method was developed in Chernozhukov et al. (2018a). The idea of us-

ing property (16) to construct estimators and inference procedures that are robust to small

mistakes in nuisance parameters can be traced back to Neyman (1959) and has been used

explicitly or implicitly in the literature on debiased sparsity-based inference (Belloni et al.,

2011; Belloni et al., 2014b; Javanmard and Montanari, 2014; van de Geer et al., 2014; Zhang

and Zhang, 2014; Chernozhukov et al., 2015b) as well as (implicitly) in the classical semi-

parametric learning theory with low-dimensional X (Bickel et al., 1993; Newey, 1994; Van

der Vaart, 2000; Van der Laan and Rose, 2011). These references also explain that if we

use scores ψ that are not Neyman-orthogonal in high dimensional settings, then the resulting

estimators of θ0 are not 1/
√
N consistent and are generally heavily biased.

Remark 5 (Literature on sample splitting). Sample splitting has been used in the traditional

semiparametric estimation literature to establish good properties of semiparametric estimators

under weak conditions (Schick, 1986; Van der Vaart, 2000). In sparse learning problems with
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high-dimensional X, sample splitting was employed in Belloni et al. (2012). There and here,

the use of sample splitting results in weak conditions on the estimators of nuisance parameters,

translating into weak assumptions on sparsity in the case of sparsity-based learning.

Remark 6 (Debiased machine learning). The presented approach builds upon and generalizes

the approach of Belloni et al. (2011), Zhang and Zhang (2014), Javanmard and Montanari

(2014), Javanmard and Montanari (2014), Javanmard and Montanari (2018), Belloni et al.

(2014c), Belloni et al. (2014a), Bühlmann and van de Geer (2015), which considered estimation

of the special case (2.1)-(2.2) using lasso without cross-fitting. This generalization, by relying

upon cross-fitting, opens up the use of a much broader collection of machine learning methods

and, in the case the lasso is used to estimate the nuisance functions, allows relaxation of

sparsity conditions. All of these approaches can be seen as “debiasing” the estimation of the

main parameter by constructing, implicitly or explicitly, score functions that satisfy the exact

or approximate Neyman orthogonality.

2.5.2 Methods for Simultaneous Inference

In addition to estimation of target causal parameters, standard errors, and confidence intervals, the pack-

age DoubleML provides methods to perform valid simultaneous inference based on a multiplier bootstrap

procedure introduced in Chernozhukov et al. (2013a) and Chernozhukov et al. (2014) and suggested in

high-dimensional linear regression models in Belloni et al. (2014a). Accordingly, it is possible to (i) con-

struct simultaneous confidence bands for a potentially large number of causal parameters and (ii) adjust

p-values in a test of multiple hypotheses based on the inferential procedure introduced above.

We consider a causal PLR with p1 causal parameters of interest θ0,1, . . . , θ0,p1
associated with the treat-

ment variables D1, . . . , Dp1
. The parameter of interest θ0,j with j = 1, . . . , p1 solves a corresponding

moment condition

E [ψj(W ; θ0,j , η0,j)] = 0, (2.34)

as for example considered in zestim. To perform inference in a setting with multiple target coefficients

θ0,j , the double machine learning procedure implemented in DoubleML iterates over the target variables

of interest. During estimation of the coefficient θ0,j , i.e., estimating the effect of treatment Dj on Y , the

remaining treatment variables enter the nuisance terms by default.

Algorithm 4: Multiplier bootstrap.

(1) Inputs: Use the inputs and outputs from Algorithm 1 (DML1) or Algorithm 2 (DML2) and

Algorithm 3 (Variance estimation) resulting in estimates θ̃0,1, . . . , θ̃0,p1
, and standard errors

σ̂1, . . . σ̂p1
.

(2) Multiplier bootstrap: Generate random weights ξbi for each bootstrap repetition b = 1, . . . , B

according to a normal (Gaussian) bootstrap, wild bootstrap or exponential bootstrap. Based on

the estimated standard errors given by σ̂j and Ĵ0,j = EN (ψa,j(W ; η0,j)), we obtain bootstrapped

versions of the coefficients θ̃∗,bj and bootstrapped t-statistics t∗,bj for j = 1, . . . , p1

θ∗,bj =
1√
NĴ0,j

K∑
k=1

∑
i∈Ik

ξbi · ψj(Wi; θ̃0,j , η̂0,j;k),

t∗,bj =
1√

NĴ0,j σ̂j

K∑
k=1

∑
i∈Ik

ξbi · ψj(Wi; θ̃0,j , η̂0,j;k).
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(3) Output: Output bootstrapped coefficients and test statistics.

Remark 7 (Computational efficiency) The multiplier bootstrap procedure of Chernozhukov

et al. (2013a) and Chernozhukov et al. (2014) is computatioanally efficient because it does

not require resampling and reestimation of the causal parameters. Instead, it is sufficient to

introduce a random pertubation of the score ψ and solve for θ0, accordingly.

To construct simultaneous (1 − α)-confidence bands, the multiplier bootstrap presented in Algorithm 4

can be used to obtain a constant c1−α that will guarantee asymptotic (1− α) coverage[
θ̃0,j ± c1−α · σ̂j/

√
N
]
. (2.35)

The constant c1−α is obtained in two steps.

1. Calculate the maximum of the absolute values of the bootstrapped t-statistics, t∗,bj in every repeti-

tion b with b = 1, . . . , B.

2. Use the (1−α)-quantile of the B maxima statistics from Step 1 as c1−α and construct simultaneous

confidence bands according to Equation (2.35).

Moreover, it is possible to derive an adjustment method for p-values obtained from a test of multiple

hypotheses, including classical adjustments such as the Bonferroni correction as well as the Romano-Wolf

stepdown procedure (Romano and Wolf, 2005a; Romano and Wolf, 2005b). The latter is implemented

according to the algorithm for adjustment of p-values as provided in Romano and Wolf (2016) and adapted

to high-dimensional linear regression based on the lasso in Bach et al. (2018b).

2.6 Implementation Details

In this section, we briefly provide information on the implementation details such as the class struc-

ture, the data-backend and the use of machine learning methods. Section 2.7 provides a demonstration

of DoubleML in real-data and simulation examples. More information on the implementation can be

found in the DoubleML User Guide, that is available online4. All class methods are documented in the

documentation of the corresponding class, which can be browsed online5 or, for example, by using the

commands help(DoubleML), help(DoubleMLPLR), or help(DoubleMLData) in R.

2.6.1 Class Structure

The implementation of DoubleML for R is based on object orientation as enabled by the the R6 package

(Chang, 2020). For an introduction to object orientation in R and the R6 package, we refer to the vignettes

of the R6 package that are available online6, Chapter 2.1 of Becker et al. (2021), and the chapters on

object orientation in Wickham (2019). The structure of the classes are presented in Figure 2.5. The

abstract class DoubleML provides all methods for estimation and inference, for example the methods

fit(), bootstrap(), confint(). All key components associated with estimation and inference are

implemented in DoubleML, for example the sample splitting, the implementation of Algorithm 1 (DML1)

and Algorithm 2 (DML2), the estimation of the causal parameters, and the computation of the scores

ψ(W ; θ, η). Only the model-specific properties and methods are allocated at the classes DoubleMLPLR

4https://docs.doubleml.org/stable/index.html
5https://docs.doubleml.org/r/stable/
6https://r6.r-lib.org/articles/
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Figure 2.5: Class structure of the DoubleML package for R.

(implementing the PLR), DoubleMLPLIV (PLIV), DoubleMLIRM (IRM), and DoubleMLIIVM (IIVM). For

example, each of the models has one or several Neyman-orthogonal score functions that are implemented

for the specific child classes.

2.6.2 Data-Backend and Causal Model

The DoubleMLData class serves as the data-backend and implements the causal model of interest. The

user is required to specify the roles of the variables in a data set at hand. Depending on the causal model

considered, it is necessary to declare the dependent variable, the treatment variable(s), confounding

variables(s), and, in the case of instrumental variable regression, one or multiple instruments. The data-

backend can be initialized from a data.table (Dowle and Srinivasan, 2020). DoubleML provides wrappers

to initialize from data.frame and matrix objects, as well.

2.6.3 Learners, Parameters and Tuning

Generally, all learners provided by the packages mlr3, mlr3learners and mlr3extralearners can be

used for estimation of the nuisance functions of the structural models presented above. An interactive

list of supported learners is available at the mlr3extralearners website.7 The mlr3extralearners

package makes it possible to add new learners, as well. The performance of the double machine learning

estimator θ̃0 will depend on the predictive quality of the used estimation method. Machine learning

7https://mlr3extralearners.mlr-org.com/articles/learners/list_learners.html.
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methods usually have several (hyper-)parameter that need to be adapted to a specific application. Tuning

of model parameters can be either performed externally or internally. The latter is implemented in the

method tune() and is further illustrated in an example in Section 2.7.6.2. Both cases build on the

functionalities provided by the package mlr3tuning.

2.6.4 Modifications and Extensions

The flexible architecture of the DoubleML package allows users to modify the estimation procedure in

many regards. Among others, users can provide customized sample splitting rules after initialization of

the causal model via the method set sample splitting(). An example and the detailed requirements

are provided in Section 2.7.7.1. Moreover, it is possible to adjust the Neyman-orthogonal score function

by externally providing a customized function via the score option during initialization of the causal

model object. A short example is presented in Section 2.7.7.2.

2.7 Estimation of Causal Parameters with DoubleML: Real-Data

and Simulated Examples.

In this section, we will first demonstrate the use of DoubleML in a real-data example, which is based on

data from the Pennsylvania Reemployment Bonus experiment (Bilias, 2000). This empirical example has

been used in Chernozhukov et al. (2018a), as well. The goal in the empirical example is to estimate the

causal parameter in a partially linear and an interactive regression model. We further provide a short

example is given on how to perform simultaneous inference with DoubleML. Finally, we present results

from a short simulation study as a brief assessment of the finite-sample performance of the implemented

estimators.

2.7.1 Initialization of the Data-Backend

We begin our real-data example by downloading Pennsylvania Reemployment Bonus data set. To do so,

we use the call (a connection to the internet is required).

library(DoubleML)

# Load data as data.table

dt bonus = fetch bonus(return type = "data.table")

# Output suppressed for the sake of brevity

dt bonus

The data-backend DoubleMLData can be initialized from a data.table object by specifying the dependent

variable Y via a character in y col, the treatment variable(s) D in d cols, and the confounders X via

x cols. Moreover, in IV models, an instrument can be specified via z cols. In the next step, we assign

the roles to the variables in the data set: y col = 'inuidur1' serves as outcome variable Y , the column

d cols = 'tg' serves as treatment variable D and the columns x cols specify the confounders.

obj dml data bonus = DoubleMLData$new(dt bonus,

y col = "inuidur1",

d cols = "tg",

x cols = c("female", "black", "othrace", "dep1", "dep2",

"q2", "q3", "q4", "q5", "q6", "agelt35", "agegt54",

"durable", "lusd", "husd"))
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# Print data backend: Lists main attributes and methods of a DoubleMLData object

obj dml data bonus

## <DoubleMLData>

## Public:

## all_variables: inuidur1 female black othrace dep1 dep2 q2 q3 q4 q5 q6 a ...

## clone: function (deep = FALSE)

## d_cols: tg

## data: data.table, data.frame

## data_model: data.table, data.frame

## initialize: function (data = NULL, x_cols = NULL, y_col = NULL, d_cols = NULL,

## n_instr: 0

## n_obs: 5099

## n_treat: 1

## other_treat_cols: NULL

## set_data_model: function (treatment_var)

## treat_col: tg

## use_other_treat_as_covariate: TRUE

## x_cols: female black othrace dep1 dep2 q2 q3 q4 q5 q6 agelt35 ag ...

## y_col: inuidur1

## z_cols: NULL

# Print data set (output suppressed)

obj dml data bonus$data

Remark 8 (Interface for data.frame and matrix ) To initialize an instance of the class

DoubleMLData from a data.frame or a collection of matrix objects, DoubleML provides the

convenient wrappers double ml data from data frame() and double ml data from matrix().

Examples can be found in the user guide and in the corresponding documentation.

2.7.2 Initialization of the Causal Model

To initialize a PLR model, we have to provide a learner for each nuisance part in the model in Equation

(2.1)-(2.2). In R, this is done by providing learners to the arguments ml m for nuisance part m and ml g

for nuisance part g. We can pass a learner as instantiated in mlr3 and mlr3learners, for example a

random forest as provided by the R package ranger (Wright and Ziegler, 2017). Previous installation of

ranger is required. Moreover, we can specify the score (allowed choices for PLR are ’partialling out’

or ’IV-type’) and the algorithm via the option dml procedure (allowed choices ’dml1’ and ’dml2’) .

Optionally, it is possible to change the number of folds used for sample splitting through n folds and

the number of repetitions via n rep, if the sample splitting and estimation procedure should be repeated.

set.seed(31415) # Required for reproducability of sample split

learner g = lrn("regr.ranger", num.trees = 500, min.node.size = 2, max.depth = 5)

learner m = lrn("regr.ranger", num.trees = 500, min.node.size = 2, max.depth = 5)

doubleml bonus = DoubleMLPLR$new(obj dml data bonus,

ml m = learner m,

ml g = learner g,

score = "partialling out",

dml procedure = "dml1",

n folds = 5,
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n rep = 1)

doubleml bonus

## ================= DoubleMLPLR Object ==================

##

##

## ------------------ Data summary ------------------

## Outcome variable: inuidur1

## Treatment variable(s): tg

## Covariates: female, black, othrace, dep1, dep2, q2, q3, q4, q5, q6, agelt35, agegt54, durable, lusd, husd

## Instrument(s):

## No. Observations: 5099

##

## ------------------ Score & algorithm ------------------

## Score function: partialling out

## DML algorithm: dml1

##

## ------------------ Machine learner ------------------

## ml_g: regr.ranger

## ml_m: regr.ranger

##

## ------------------ Resampling ------------------

## No. folds: 5

## No. repeated sample splits: 1

## Apply cross-fitting: TRUE

##

## ------------------ Fit summary ------------------

##

## fit() not yet called.

2.7.3 Estimation of the Causal Parameter in a PLR Model

To perform estimation, call the fit() method. The output can be summarized using the method

summary().

doubleml bonus$fit()

doubleml bonus$summary()

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## tg -0.07438 0.03543 -2.099 0.0358 *

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Hence, we can reject the null hypothesis that θ0,tg = 0 at the 5% significance level. The estimated coeffi-

cient and standard errors can be accessed via the public fields coef and se of the object doubleml bonus.

doubleml bonus$coef

## tg

## -0.07438411
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doubleml bonus$se

## tg

## 0.03543316

After completed estimation, we can access the resulting score ψ(Wi; θ̃0, η̂0) or the components ψa(Wi; η̂0)

and ψb(Wi; η̂0). The estimated score for the first 5 observations can be obtained via.

# Array with dim = c(n obs, n rep, n treat)

# n obs: Number of observations in the data

# n rep: Number of repetitions (sample splitting)

# n treat: Number of treatment variables

doubleml bonus$psi[1:5, 1, 1]

## [1] -0.2739454 0.7444154 -0.4509358 0.1813111 -0.3699474

Similarly, the components of the score ψa(Wi; η̂0) and ψb(Wi; η̂0) are available as public fields.

doubleml bonus$psi a[1:5, 1, 1]

## [1] -0.0981220 -0.1353987 -0.1276526 -0.4272341 -0.1126174

doubleml bonus$psi b[1:5, 1, 1]

## [1] -0.2812441 0.7343439 -0.4604311 0.1495317 -0.3783243

To construct a (1− α) confidence interval, we use the confint() method.

doubleml bonus$confint(level = 0.95)

## 2.5 % 97.5 %

## tg -0.1438318 -0.004936395

2.7.4 Estimation of the Causal Parameter in an IRM Model

The treatment variable D in the Pennsylvania Reemployment Bonus example is binary. Accordingly, it is

possible to estimate an IRM model. Since the IRM requires estimation of the propensity score P(D|X),

we have to specify a classifier for the nuisance part m0.

# Classifier for propensity score

learner classif m = lrn("classif.ranger", num.trees = 500, min.node.size = 2, max.depth = 5)

doubleml irm bonus = DoubleMLIRM$new(obj dml data bonus,

ml m = learner classif m,

ml g = learner g,

score = "ATE",

dml procedure = "dml1",

n folds = 5,

n rep = 1)

# Output suppressed

doubleml irm bonus

## fit() not yet called.
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To perform estimation, call the fit() method. The output can be summarized using the method

summary().

doubleml irm bonus$fit()

doubleml irm bonus$summary()

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## tg -0.07193 0.03554 -2.024 0.043 *

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The estimated coefficient is very similar to the estimate of the PLR model and our conclusions remain

unchanged.

2.7.5 Simultaneous Inference in a Simulated Data Example

We consider a simulated example of a PLR model to illustrate the use of methods for simultaneous

inference. First, we will generate a sparse linear model with only three variables having a non-zero effect

on the dependent variable.

set.seed(3141)

n obs = 500

n vars = 100

theta = rep(3, 3)

# Generate matrix-like objects and use the corresponding wrapper

X = matrix(stats::rnorm(n obs * n vars), nrow = n obs, ncol = n vars)

y = X[, 1:3, drop = FALSE] %*% theta + stats::rnorm(n obs)

df = data.frame(y, X)

We use the wrapper double ml data from data frame() to specify a data-backend that assigns the first

10 columns of X as treatment variables and declares the remaining columns as confounders.

doubleml data = double ml data from data frame(df, y col = "y",

d cols = c("X1", "X2", "X3",

"X4", "X5", "X6",

"X7", "X8", "X9",

"X10"))

## Set treatment variable d to X1.

# Output suppressed

doubleml data

A sparse setting suggests the use of the lasso learner. Here, we use the lasso estimator with cross-validated

choice of the penalty parameter λ as provided in the glmnet package for R (glmnet).

# Output messages during fitting are suppressed

ml g = lrn("regr.cv glmnet", s = "lambda.min")

ml m = lrn("regr.cv glmnet", s = "lambda.min")

doubleml plr = DoubleMLPLR$new(doubleml data, ml g, ml m)
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doubleml plr$fit()

doubleml plr$summary()

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## X1 3.017802 0.046180 65.348 <2e-16 ***

## X2 3.025812 0.042683 70.891 <2e-16 ***

## X3 3.000914 0.045849 65.452 <2e-16 ***

## X4 -0.034815 0.040955 -0.850 0.3953

## X5 0.035118 0.048132 0.730 0.4656

## X6 0.002171 0.044622 0.049 0.9612

## X7 -0.036129 0.046798 -0.772 0.4401

## X8 0.020361 0.044048 0.462 0.6439

## X9 -0.019439 0.043180 -0.450 0.6526

## X10 0.076180 0.043682 1.744 0.0812 .

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The multiplier bootstrap procedure can be executed using the bootstrap() method where the option

method specifies the choice of the random pertubations and n rep boot the number of bootstrap repeti-

tions.

doubleml plr$bootstrap(method = "normal", n rep boot = 1000)

The resulting bootstrapped coefficients and t-statistics are available via the public fields boot coef and

boot t stat. To construct a simultaneous confidence interval, we set the option joint = TRUE when

calling the confint() method.

doubleml plr$confint(joint = TRUE)

## 2.5 % 97.5 %

## X1 2.88766757 3.14793595

## X2 2.90553386 3.14609021

## X3 2.87171334 3.13011430

## X4 -0.15022399 0.08059423

## X5 -0.10051468 0.17075155

## X6 -0.12357302 0.12791441

## X7 -0.16800517 0.09574654

## X8 -0.10376590 0.14448792

## X9 -0.14111984 0.10224143

## X10 -0.04691574 0.19927524

The correction of the p-values of a joint hypotheses test on the considered causal parameters is imple-

mented in the method p adjust(). By default, the adjustment procedure specified in the option method

is the Romano-Wolf stepdown procedure.

doubleml plr$p adjust(method = "romano-wolf")

## Estimate. pval

## X1 3.017801759 0.000

## X2 3.025812035 0.000
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## X3 3.000913821 0.000

## X4 -0.034814877 0.942

## X5 0.035118435 0.942

## X6 0.002170694 0.961

## X7 -0.036129317 0.942

## X8 0.020361010 0.951

## X9 -0.019439209 0.951

## X10 0.076179750 0.451

Alternatively, the correction methods provided in the stats function p.adjust can be applied, for ex-

ample the Bonferroni, Bonferroni-Holm, or Benjamini-Hochberg correction. For example a Bonferroni

correction could be performed by specifying method = ’bonferroni’.

doubleml plr$p adjust(method = "bonferroni")

## Estimate. pval

## X1 3.017801759 0.0000000

## X2 3.025812035 0.0000000

## X3 3.000913821 0.0000000

## X4 -0.034814877 1.0000000

## X5 0.035118435 1.0000000

## X6 0.002170694 1.0000000

## X7 -0.036129317 1.0000000

## X8 0.020361010 1.0000000

## X9 -0.019439209 1.0000000

## X10 0.076179750 0.8116808

2.7.6 Learners, Parameters and Tuning

The performance of the final double machine learning estimator depends on the predictive performance

of the underlying ML method. First, we briefly show how externally tuned parameters can be passed to

the learners in DoubleML. Second, it is demonstrated how the parameter tuning can be done internally

by DoubleML.

2.7.6.1 External Tuning and Parameter Passing

Section 3 of the mlr3book (Becker et al., 2021) provides a step-by-step introduction to the powerful

tuning functionalities of the mlr3tuning package. Accordingly, it is possible to manually reconstruct the

mlr3 regression and classification problems, which are internally handled in DoubleML, and to perform

parameter tuning accordingly. One advantage of this procedure is that it allows users to fully exploit the

powerful benchmarking and tuning tools of mlr3 and mlr3tuning.

Consider the sparse regression example from above. We will briefly consider a setting where we explicitly

set the parameter λ for a glmnet estimator rather than using the interal cross-validated choice with

cv glmnet.

Suppose for simplicity, some external tuning procedure resulted in an optimal value of λ = 0.1 for nuisance

part m and λ = 0.09 for nuisance part g for the first treatment variable and λ = 0.095 and λ = 0.085

for the second variable, respectively. After initialization of the model object, we can set the parameter

values using the method set ml nuisance params().
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# Output messages during fitting are suppressed

ml g = lrn("regr.glmnet")

ml m = lrn("regr.glmnet")

doubleml plr = DoubleMLPLR$new(doubleml data, ml g, ml m)

To set the values, we have to specify the treatment variable and the nuisance part. If no values are set,

the default values are used.

# Note that variable names are overwritten by wrapper for matrix interface

doubleml plr$set ml nuisance params("ml m", "X1", param = list("lambda" = 0.1))

doubleml plr$set ml nuisance params("ml g", "X1", param = list("lambda" = 0.09))

doubleml plr$set ml nuisance params("ml m", "X2", param = list("lambda" = 0.095))

doubleml plr$set ml nuisance params("ml g", "X2", param = list("lambda" = 0.085))

All externally specified parameters are available at the public field params.

# Output omitted for the sake of brevity

str(doubleml plr$params)

doubleml plr$fit()

doubleml plr$summary()

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## X1 3.041094 0.060030 50.660 <2e-16 ***

## X2 2.993916 0.054590 54.844 <2e-16 ***

## X3 2.993419 0.055144 54.283 <2e-16 ***

## X4 -0.035201 0.040637 -0.866 0.386

## X5 0.021541 0.047569 0.453 0.651

## X6 -0.006652 0.044715 -0.149 0.882

## X7 -0.039650 0.046823 -0.847 0.397

## X8 0.011146 0.044037 0.253 0.800

## X9 -0.021342 0.043237 -0.494 0.622

## X10 0.084426 0.043641 1.935 0.053 .

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

2.7.6.2 Internal Tuning and Parameter Passing

An alternative to external tuning and parameter provisioning is to perform the tuning internally. The

advantage of this approach is that users do not have to specify the underlying prediction problems

manually. Instead, DoubleML uses the underlying data-backend to ensure that the machine learning

methods are tuned for the specific model under consideration and, hence, to possibly avoid mistakes. We

initialize our structural model object with the learner. At this stage, we do not specify any parameters.

# Load required packages for tuning

library(paradox)

library(mlr3tuning)

# Set logger to omit messages during tuning and fitting

lgr::get logger("mlr3")$set threshold("warn")

lgr::get logger("bbotk")$set threshold("warn")
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set.seed(1234)

ml g = lrn("regr.glmnet")

ml m = lrn("regr.glmnet")

doubleml plr = DoubleMLPLR$new(doubleml data, ml g, ml m)

To perform parameter tuning, we provide a grid of values used for evaluation for each of the nuisance

parts. To set up a grid of values, we specify a named list with names corresponding to the learner names

of the nuisance part (see method learner names()). The elements in the list are objects of the class

ParamSet of the paradox package (Lang et al., 2020b).

par grids = list("ml g" = ParamSet$new(list(

ParamDbl$new("lambda", lower = 0.05, upper = 0.1))),

"ml m" = ParamSet$new(list(

ParamDbl$new("lambda", lower = 0.05, upper = 0.1))))

The hyperparameter tuning is performed according to options passed through a named list

tune settings. The entries in the list specify options during parameter tuning with mlr3tuning:

� terminator is a bbotk::Terminator object passed to mlr3tuning that manages the budget to

solve the tuning problem.

� algorithm is an object of class mlr3tuning::Tuner and specifies the tuning algorithm. Alterna-

tively, algorithm can be a character() that is used as an argument in the wrapper mlr3tuning call

tnr(algorithm). The Tuner class in mlr3tuning supports grid search, random search, generalized

simulated annealing and non-linear optimization.

� rsmp tune is an object of class resampling object that specifies the resampling method for evalu-

ation, for example rsmp(’cv’, folds = 5) implements 5-fold cross-validation. rsmp(’holdout’,

ratio = 0.8) implements an evaluation based on a hold-out sample that contains 20 percent of

the observations. By default, 5-fold cross-validation is performed.

� measure is a named list containing the measures used for tuning of the nuisance components. The

names of the entries must match the learner names (see method learner names()). The entries in

the list must either be objects of class Measure or keys passed to msr(). If measure is not provided

by the user, the mean squared error is used for regression models and the classification error for

binary outcomes, by default.

In the next code chunk, the value of the parameter λ is tuned via grid search in the range 0.05 to 0.1 at

a resolution of 11.8 To evaluate the predictive performance in both nuisance parts, the cross-validated

mean squared error is used.

# Provide tune settings

tune settings = list(terminator = trm("evals", n evals = 100),

algorithm = tnr("grid search", resolution = 11),

rsmp tune = rsmp("cv", folds = 5),

measure = list("ml g" = msr("regr.mse"),

"ml m" = msr("regr.mse")))

With these parameters we can run the tuning by calling the tune method for DoubleML objects.

8The resulting grid has 11 equally spaced values ranging from a minimum value of 0.05 to a maximum value of 0.1. Type
generate design grid(par grids$ml g, resolution = 11) to access the grid for nuisance part ml g.
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# Execution might take around 50 seconds

# Tune

doubleml plr$tune(param set = par grids, tune settings = tune settings)

# Output omitted for the sake of brevity, available in the Appendix

# Acces tuning results for target variable "X1"

doubleml plr$tuning res$X1

# Tuned parameters

str(doubleml plr$params)

# Estimate model and summary

doubleml plr$fit()

doubleml plr$summary()

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## X1 3.028980 0.059701 50.736 <2e-16 ***

## X2 3.008650 0.054301 55.407 <2e-16 ***

## X3 2.960571 0.053082 55.773 <2e-16 ***

## X4 -0.037859 0.040976 -0.924 0.3555

## X5 0.030018 0.047880 0.627 0.5307

## X6 0.003451 0.044419 0.078 0.9381

## X7 -0.025875 0.046936 -0.551 0.5814

## X8 0.022008 0.044172 0.498 0.6183

## X9 -0.014251 0.043765 -0.326 0.7447

## X10 0.088653 0.043691 2.029 0.0424 *

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

By default, the parameter tuning is performed on the whole sample, for example in the case of Ktune-

fold cross-validation, the entire sample is split into Ktune folds for evaluation of the cross-validated

error. Alternatively, each of the K folds used in the cross-fitting procedure could be split up into Ktune

subfolds that are then used for evaluation of the candidate models. As a result, the choice of the tuned

parameters will be fold-specific. To perform fold-specific tuning, users can set the option tune on folds

= TRUE when calling the method tune().

2.7.7 Specifications and Modifications of Double Machine Learning

The flexible architecture of the DoubleML package allows users to modify the estimation procedure in

many regards. We will shortly present two examples on how users can adjust the double machine learning

framework to their needs in terms of the sample splitting procedure and the score function.

2.7.7.1 Sample Splitting

By default, DoubleML performs cross-fitting as presented in Algorithms 1 and 2. Alternatively, all im-

plemented models allow a partition to be provided externally via the method set sample splitting().

Note that by setting draw sample splitting = FALSE one can prevent that a partition is drawn dur-

ing initialization of the model object. The following calls are equivalent. In the first sample code, we
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use the standard interface and draw the sample-splitting with K = 4 folds during initialization of the

DoubleMLPLR object.

# First generate some data, ml learners and a data-backend

learner = lrn("regr.ranger", num.trees = 100, mtry = 20, min.node.size = 2, max.depth = 5)

ml g = learner

ml m = learner

data = make plr CCDDHNR2018(alpha = 0.5, n obs = 100, return type = "data.table")

doubleml data = DoubleMLData$new(data,

y col = "y",

d cols = "d")

set.seed(314)

doubleml plr internal = DoubleMLPLR$new(doubleml data, ml g, ml m, n folds = 4)

doubleml plr internal$fit()

doubleml plr internal$summary()

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## d 0.4892 0.1024 4.776 1.79e-06 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In the second sample code, we manually specify a sampling scheme using the mlr3::Resampling class.

Alternatively, users can provide a nested list that has the following structure:

� The length of the outer list must match with the desired number of repetitions of the sample-

splitting, i.e., n rep.

� The inner list is a named list of length 2 specifying the test ids and train ids. The named entries

test ids and train ids are lists of the same length.

– train ids is a list of length n folds that specifies the indices of the observations used for

model fitting in each fold.

– test ids is a list of length n folds that specifies the indices of the observations used for

calculation of the score in each fold.

doubleml plr external = DoubleMLPLR$new(doubleml data, ml g, ml m,

draw sample splitting = FALSE)

set.seed(314)

# Set up a task and cross-validation resampling scheme in mlr3

my task = Task$new("help task", "regr", data)

my sampling = rsmp("cv", folds = 4)$instantiate(my task)

train ids = lapply(1:4, function(x) my sampling$train set(x))

test ids = lapply(1:4, function(x) my sampling$test set(x))

smpls = list(list(train ids = train ids, test ids = test ids))

# Structure of the specified sampling scheme

str(smpls)
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## List of 1

## $ :List of 2

## ..$ train_ids:List of 4

## .. ..$ : int [1:75] 1 7 11 18 19 20 21 31 32 37 ...

## .. ..$ : int [1:75] 10 15 16 22 26 35 38 40 41 46 ...

## .. ..$ : int [1:75] 10 15 16 22 26 35 38 40 41 46 ...

## .. ..$ : int [1:75] 10 15 16 22 26 35 38 40 41 46 ...

## ..$ test_ids :List of 4

## .. ..$ : int [1:25] 10 15 16 22 26 35 38 40 41 46 ...

## .. ..$ : int [1:25] 1 7 11 18 19 20 21 31 32 37 ...

## .. ..$ : int [1:25] 3 5 6 8 17 24 25 28 29 34 ...

## .. ..$ : int [1:25] 2 4 9 12 13 14 23 27 30 33 ...

# Fit model

doubleml plr external$set sample splitting(smpls)

doubleml plr external$fit()

doubleml plr external$summary()

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## d 0.4892 0.1024 4.776 1.79e-06 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Setting the option apply cross fitting = FALSE at the instantiation of the causal model allows double

machine learning being performed without cross-fitting. It results in randomly splitting the sample into

two parts. The first half of the data is used for the estimation of the nuisance models with the machine

learning methods and the second half for estimating the causal parameter, i.e., solution of the score. Note

that cross-fitting performs well empirically and is recommended to remove bias induced by overfitting.

Moreover, cross-fitting allows to exploit full efficiency: Every fold is used once for training the ML

methods and once for estimation of the score (Chernozhukov et al., 2018a, pp. 6). A short example on

the efficiency gains associated with cross-fitting is provided in Section 2.7.8.1.

2.7.7.2 Score Function

Users may want to adjust the score function ψ(W ; θ0, η0), for example, to adjust the DML estimators in

terms of a re-weighting. An alternative to the choices provided in DoubleML is to pass a function via the

argument score during initialization of the model object. The following examples are equivalent. In the

first example, we use the score option ’partialling out’ for the PLR model whereas in the second case,

we explicitly provide a function that implements the same score. The arguments used in the function

refer to the internal objects that implement the theoretical quantities in Equation (2.17).

# Use score "partialling out"

set.seed(314)

doubleml plr partout = DoubleMLPLR$new(doubleml data, ml g, ml m, score = "partialling out")

doubleml plr partout$fit()

doubleml plr partout$summary()

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## d 0.5108 0.0959 5.326 1e-07 ***
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## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We define the function that implements the same score and specify the argument score accordingly. The

function must return a named list with entries psi a and psi b to pass values for computation of the

score.

# Here:

# y: Dependent variable

# d: Treatment variable

# g hat: Predicted values from regression of Y on X's

# m hat: Predicted values from regression of D on X's

# smpls: Sample split under consideration, can be ignored in this example

score manual = function(y, d, g hat, m hat, smpls) {
resid y = y - g hat

resid d = d - m hat

psi a = -1 * resid d * resid d

psi b = resid d * resid y

psis = list(psi a = psi a, psi b = psi b)

return(psis)

}

set.seed(314)

doubleml plr manual = DoubleMLPLR$new(doubleml data, ml g, ml m, score = score manual)

doubleml plr manual$fit()

doubleml plr manual$summary()

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## d 0.5108 0.0959 5.326 1e-07 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

2.7.8 A Short Simulation Study

To illustrate the validity of the implemented double machine learning estimators, we perform a brief

simulation study.

2.7.8.1 The Role of Cross-Fitting

As mentioned in Section 2.7.7.1 the use of the cross-fitting Algorithms 1 (DML1) and 2 (DML2) makes

it possible to use sample splitting and exploit full efficiency at the same time. To illustrate the superior

performance due to cross-fitting, we compare the double machine learning estimator with and without

a cross-fitting procedure in the simulation setting that was presented in 2.4.1. Figure 2.6 illustrates

that efficiency gains can be achieved if the role of the random partitions is swapped in the estimation

procedure. Using cross-fitting makes it possible to obtain smaller standard errors for the DML estimator:

The empirical distribution of the double machine learning estimator that is based on the cross-fitting

Algorithm 2 (DML2) exhibits a more pronounced concentration around zero.
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Figure 2.6: Illustration of efficiency gains due to the use of cross-fitting.

Left panel: Histogram of the centered dml estimator without cross-fitting, θ̃nocf
0 −θ0. θ̂nocf

0 is the double machine learning
estimator obtained from a sample split into two folds. One fold is used for estimation of the nuisance parameters and the
second fold is used for evaluation of the score function and estimation. The empirical distribution can be well-approximated
by a normal distribution as indicated by the red curve. Right panel: Histogram of the centered dml estimator with
cross-fitting, θ̃0− θ0. The estimator is obtained from a split into two folds and application of Algorithm 2 (DML2). In both
cases, the estimators are based on estimation of g0 and m0 with random forests and an orthogonal score function provided
in Equation (2.17). Moreover, exactly the same data sets and exactly the same partitions are used for sample splitting.
The empirical distribution of the estimator that is based on cross-fitting exhibits a more pronounced concentration around
zero, which reflects the smaller standard errors.

2.7.8.2 Inference on a Structural Parameter in Key Causal Models

We provide simulation results for double machine learning estimators in the presented key causal models

in Figure 2.7. In a replication of the simulation example in Section 2.4.1, we show that the confidence

intervals for the DML estimator in the partially linear regression model achieves an empirical coverage

close to the specified level of 1 − α = 0.95. The estimator is, again, based on a random forest learner.

The corresponding results are presented in the top-left panel of Figure 2.7.

In a simulated example of a PLIV model, the DML confidence interval that is based on a lasso learner

(regr.cv glmnet of mlr3) achieves a coverage of 94.4%. The underlying data generating process is

based on a setting considered in Chernozhukov et al. (2015a) with one instrumental variable. Moreover

for simulations of the IRM model, we make use of a DGP of Belloni et al. (2017). The DGP for the IIVM is

inspired by a simulation run in Farbmacher et al. (2020). We present the formal DGPs in the Appendix.

To perform estimation of the nuisance parts in the interactive models, we employ the regression and

classification predictors regr.cv glmnet and classif.cv glmnet as provided by the mlr3 package. In

all cases, we employ the cross-validated lambda.min choice of the penalty parameter with five folds, in

other words, that λ value that minimizes the cross-validated mean squared error. Figure 2.7 shows that

the empirical distribution of the centered estimators as obtained in finite sample settings is relatively

well-approximated by a normal distribution. In all models the empirical coverage that is achieved by the

constructed confidence bands is close to the nominal level.

2.7.8.3 Simultaneous Inference

To verify the finite-sample performance of the implemented methods for simultaneous inference, we

perform a small simulation study in a regression setup which is similar as the one used in Bach et al.

(2018b). We would like to perform valid simultaneous inference on the coefficients θ in the regression
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Figure 2.7: Histogram of double machine learning estimators in key causal models.

The figure shows the histograms of the realizations of the DML estimators in the PLR (top left), PLIV (top right), IRM
(bottom left), and IIVM (bottom right) as obtained in R = 500 independent repetitions. Additional information on the
data generating processes and implemented estimators are presented in the main text and the Appendix.

model

yi = β0 + d′iθ + εi, i = 1, . . . , n, (2.36)

with n = 1000 and p1 = 42 regressors. The errors εi are normally distributed with εi ∼ N(0, σ2) and

variance σ2 = 3. The regressors di are generated by a joint normal distribution di ∼ N(µ,Σ) with µ = 0

and Σj,k = 0.5|j−k|. The model is sparse in that only the first s = 12 regressors have a non-zero effect

on outcome yi. The p1 coefficients θ1, . . . , θp1
are generated as

θj = min

{
θmax

ja
, θmin

}
,

for j = 1, . . . , s with θmax = 9, θmin = 0.75, and a = 0.99. All other coefficients have values exactly

equal to 0. Estimation of the nuisance components has been performed by using the lasso as provided

by regr.cv glmnet in mlr3.

We report the empirical coverage as achieved by a joint (1 − α)-confidence interval for all p1 = 42

coefficients and the realized family-wise error rate of the implemented p-value adjustments in R = 500

repetitions in Table 2.1. The finite sample performance of the Romano-Wolf stepdown procedure that is
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CI RW Bonf Holm

FWER 0.09 0.11 0.09 0.10
Cor. Rejections 12.00 12.00 12.00 12.00

Table 2.1: Family-wise error rate and average number of correct rejections in a simulation
example.

based on the multiplier bootstrap as well as the classical Bonferroni and Bonferroni-Holm correction are

evaluated. Table 2.1 shows that all methods achieve an empirical FWER close to the specified level of

α = 0.1. In all cases, the double machine learning estimators reject all 12 false null hypotheses in every

repetition.

2.8 Conclusion

In this paper, we provide an overview on the key ingredients and the major structure of the dou-

ble/debiased machine learning framework as established in Chernozhukov et al. (2018a) together with

an overview on a collection of structural models. Moreover, we introduce the R package DoubleML that

serves as an implementation of the double machine learning approach. A brief simulation study provides

insights on the finite sample performance of the double machine learning estimator in the key causal

models.

The structure of DoubleML is intended to be flexible with regard to the implemented structural models,

the resampling scheme, the machine learning methods and the underlying algorithm, as well as the

Neyman-orthogonal scores considered. By providing the R package DoubleML together with its Python

twin (Bach et al., 2021), we hope to make double machine learning more accessible to users in practice.

Finally, we would like to encourage users to add new structural models, scores and functionalities to the

package.
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2.9 Appendix

2.9.1 Computation and Infrastructure

The simulation study has been run on a x86 64-w64-mingw32/x64 (64-bit) (Windows 10 x64 (build

19041)) system using R version 3.6.3 (2020-02-29). The following packages have been used for estimation:

� DoubleML, version 0.1.2,

� data.table, version 1.13.2,

� mlr3, version 0.8.0,

� mlr3tuning, version 0.6.0,

� mlr3learners, version 0.4.2,

� glmnet, version 3.0.2,

� ranger, version 0.12.1,

� paradox, version 0.7.0

� foreach, version 1.5.1.

2.9.2 Suppressed Code Output

Pennsylvania Reemployment Data, Section 2.7

library(DoubleML)

# Load data as data.table

dt bonus = fetch bonus(return type = "data.table")

dt bonus

## inuidur1 female black othrace dep1 dep2 q2 q3 q4 q5 q6 agelt35 agegt54

## 1: 2.890372 0 0 0 0 1 0 0 0 1 0 0 0

## 2: 0.000000 0 0 0 0 0 0 0 0 1 0 0 0

## 3: 3.295837 0 0 0 0 0 0 0 1 0 0 0 0

## 4: 2.197225 0 0 0 0 0 0 1 0 0 0 1 0

## 5: 3.295837 0 0 0 1 0 0 0 0 1 0 0 1

## ---

## 5095: 2.302585 0 0 0 0 0 0 1 0 0 0 1 0

## 5096: 1.386294 0 0 0 0 1 1 0 0 0 0 0 0

## 5097: 2.197225 0 0 0 0 1 1 0 0 0 0 1 0

## 5098: 1.386294 0 0 0 0 0 0 0 0 1 0 0 1

## 5099: 3.295837 0 0 0 0 0 0 0 1 0 0 0 1

## durable lusd husd tg

## 1: 0 0 1 0

## 2: 0 1 0 0

## 3: 0 1 0 0

## 4: 0 0 0 1

## 5: 1 1 0 0

## ---

## 5095: 0 0 0 1

## 5096: 0 0 0 1

## 5097: 0 1 0 0

## 5098: 0 0 0 1

## 5099: 1 1 0 0
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obj dml data bonus = DoubleMLData$new(dt bonus,

y col = "inuidur1",

d cols = "tg",

x cols = c("female", "black", "othrace", "dep1", "dep2",

"q2", "q3", "q4", "q5", "q6", "agelt35", "agegt54",

"durable", "lusd", "husd"))

# Print data backend: Lists main attributes and methods of a DoubleMLData object

obj dml data bonus

# Print data set (output suppressed)

obj dml data bonus$data

## inuidur1 female black othrace dep1 dep2 q2 q3 q4 q5 q6 agelt35 agegt54

## 1: 2.890372 0 0 0 0 1 0 0 0 1 0 0 0

## 2: 0.000000 0 0 0 0 0 0 0 0 1 0 0 0

## 3: 3.295837 0 0 0 0 0 0 0 1 0 0 0 0

## 4: 2.197225 0 0 0 0 0 0 1 0 0 0 1 0

## 5: 3.295837 0 0 0 1 0 0 0 0 1 0 0 1

## ---

## 5095: 2.302585 0 0 0 0 0 0 1 0 0 0 1 0

## 5096: 1.386294 0 0 0 0 1 1 0 0 0 0 0 0

## 5097: 2.197225 0 0 0 0 1 1 0 0 0 0 1 0

## 5098: 1.386294 0 0 0 0 0 0 0 0 1 0 0 1

## 5099: 3.295837 0 0 0 0 0 0 0 1 0 0 0 1

## durable lusd husd tg

## 1: 0 0 1 0

## 2: 0 1 0 0

## 3: 0 1 0 0

## 4: 0 0 0 1

## 5: 1 1 0 0

## ---

## 5095: 0 0 0 1

## 5096: 0 0 0 1

## 5097: 0 1 0 0

## 5098: 0 0 0 1

## 5099: 1 1 0 0

learner classif m = lrn("classif.ranger", num.trees = 500, min.node.size = 2, max.depth = 5)

doubleml irm bonus = DoubleMLIRM$new(obj dml data bonus,

ml m = learner classif m,

ml g = learner g,

score = "ATE",

dml procedure = "dml1",

n folds = 5,

n rep = 1)

# Output suppressed

doubleml irm bonus

## ================= DoubleMLIRM Object ==================
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##

##

## ------------------ Data summary ------------------

## Outcome variable: inuidur1

## Treatment variable(s): tg

## Covariates: female, black, othrace, dep1, dep2, q2, q3, q4, q5, q6, agelt35, agegt54, durable, lusd, husd

## Instrument(s):

## No. Observations: 5099

##

## ------------------ Score & algorithm ------------------

## Score function: ATE

## DML algorithm: dml1

##

## ------------------ Machine learner ------------------

## ml_g: regr.ranger

## ml_m: classif.ranger

##

## ------------------ Resampling ------------------

## No. folds: 5

## No. repeated sample splits: 1

## Apply cross-fitting: TRUE

##

## ------------------ Fit summary ------------------

##

## fit() not yet called.

Data-backend with multiple treatment variables, Section 2.7.5

doubleml data = double ml data from data frame(df, y col = "y",

d cols = c("X1", "X2", "X3",

"X4", "X5", "X6",

"X7", "X8", "X9", "X10"))

## Set treatment variable d to X1.

# Output suppressed

doubleml data

## <DoubleMLData>

## Public:

## all_variables: X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 ...

## clone: function (deep = FALSE)

## d_cols: X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

## data: data.table, data.frame

## data_model: data.table, data.frame

## initialize: function (data = NULL, x_cols = NULL, y_col = NULL, d_cols = NULL,

## n_instr: 0

## n_obs: 500

## n_treat: 10

## other_treat_cols: X2 X3 X4 X5 X6 X7 X8 X9 X10

## set_data_model: function (treatment_var)
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## treat_col: X1

## use_other_treat_as_covariate: TRUE

## x_cols: X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 ...

## y_col: y

## z_cols: NULL

List of externally provided parameters, Section 2.7.6.1

# Output: Parameters after external tuning

# Tuned parameters

str(doubleml plr$params)

## List of 2

## $ ml_g:List of 10

## ..$ X1 :List of 1

## .. ..$ lambda: num 0.09

## ..$ X2 :List of 1

## .. ..$ lambda: num 0.085

## ..$ X3 : NULL

## ..$ X4 : NULL

## ..$ X5 : NULL

## ..$ X6 : NULL

## ..$ X7 : NULL

## ..$ X8 : NULL

## ..$ X9 : NULL

## ..$ X10: NULL

## $ ml_m:List of 10

## ..$ X1 :List of 1

## .. ..$ lambda: num 0.1

## ..$ X2 :List of 1

## .. ..$ lambda: num 0.095

## ..$ X3 : NULL

## ..$ X4 : NULL

## ..$ X5 : NULL

## ..$ X6 : NULL

## ..$ X7 : NULL

## ..$ X8 : NULL

## ..$ X9 : NULL

## ..$ X10: NULL

List of internally tuned parameters, Section 2.7.6.2

# Output: parameters after internal tuning

# Access tuning results for target variable "X1"

doubleml plr$tuning res$X1

## $ml_g

## $ml_g[[1]]

## $ml_g[[1]]$tuning_result

## $ml_g[[1]]$tuning_result[[1]]
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## $ml_g[[1]]$tuning_result[[1]]$tuning_result

## lambda learner_param_vals x_domain regr.mse

## 1: 0.1 <list[2]> <list[1]> 10.53451

##

## $ml_g[[1]]$tuning_result[[1]]$tuning_archive

## lambda regr.mse uhash x_domain

## 1: 0.100 10.53451 8c505081-e55c-41e8-88cd-75775716f9e8 <list[1]>

## 2: 0.095 10.60720 a0e8fb73-f402-4161-a620-ec59a40ac211 <list[1]>

## 3: 0.085 10.76577 9c32228b-eb8f-4363-aa21-bd8d1bae3531 <list[1]>

## 4: 0.055 11.32053 c7232bf6-0da0-426e-a208-815158954990 <list[1]>

## 5: 0.060 11.21736 103214b9-5fff-4649-b8b6-b05e22d13e40 <list[1]>

## 6: 0.050 11.42918 4925423b-a0f5-4641-bba8-7e4907039aff <list[1]>

## 7: 0.075 10.93077 6e0509a3-0701-44ed-9470-c2c8ff422fd1 <list[1]>

## 8: 0.065 11.11709 1b5c8d81-3045-4a65-908e-c422ff5c62d3 <list[1]>

## 9: 0.080 10.84518 53cc2cc5-9c74-4d9e-a2e5-27d0a2857cc5 <list[1]>

## 10: 0.070 11.02168 122e1304-9b36-4bee-ac09-d91aeb2d6f0b <list[1]>

## 11: 0.090 10.68576 525aafa7-44b9-49a6-a489-3e8a879c831d <list[1]>

## timestamp batch_nr

## 1: 2021-04-14 15:08:24 1

## 2: 2021-04-14 15:08:24 2

## 3: 2021-04-14 15:08:24 3

## 4: 2021-04-14 15:08:25 4

## 5: 2021-04-14 15:08:25 5

## 6: 2021-04-14 15:08:25 6

## 7: 2021-04-14 15:08:25 7

## 8: 2021-04-14 15:08:25 8

## 9: 2021-04-14 15:08:26 9

## 10: 2021-04-14 15:08:26 10

## 11: 2021-04-14 15:08:26 11

##

## $ml_g[[1]]$tuning_result[[1]]$params

## NULL

##

##

##

## $ml_g[[1]]$params

## $ml_g[[1]]$params[[1]]

## $ml_g[[1]]$params[[1]]$family

## [1] "gaussian"

##

## $ml_g[[1]]$params[[1]]$lambda

## [1] 0.1

##

##

##

##

## $ml_g$params

## $ml_g$params[[1]]

## $ml_g$params[[1]]$family

## [1] "gaussian"

##
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## $ml_g$params[[1]]$lambda

## [1] 0.1

##

##

##

##

## $ml_m

## $ml_m[[1]]

## $ml_m[[1]]$tuning_result

## $ml_m[[1]]$tuning_result[[1]]

## $ml_m[[1]]$tuning_result[[1]]$tuning_result

## lambda learner_param_vals x_domain regr.mse

## 1: 0.1 <list[2]> <list[1]> 0.9794034

##

## $ml_m[[1]]$tuning_result[[1]]$tuning_archive

## lambda regr.mse uhash x_domain

## 1: 0.090 0.9798230 11cb948a-0c49-4b6c-84dc-c319efb68de1 <list[1]>

## 2: 0.055 0.9971462 e9670de1-9d03-466b-86a9-dadbc1c072f9 <list[1]>

## 3: 0.075 0.9830963 2bd3b01e-dbd2-4784-9e0d-1ff673db1082 <list[1]>

## 4: 0.050 1.0045139 354a789a-bbe2-4186-b37c-54601f123e72 <list[1]>

## 5: 0.100 0.9794034 0d7f7c18-2d79-4c9a-8e62-4b3cebfd7387 <list[1]>

## 6: 0.060 0.9907519 2b710f09-82bf-4313-be56-abcef4fe3e8a <list[1]>

## 7: 0.065 0.9869171 89f7957b-4b73-4c82-a096-3d8939ac2dc3 <list[1]>

## 8: 0.095 0.9797396 456b1032-3c6a-4335-ab03-7872cb422455 <list[1]>

## 9: 0.085 0.9804282 1d496c32-cadf-4ea6-8866-c054b8af0aa5 <list[1]>

## 10: 0.070 0.9848766 a9b64f70-60d7-4c15-90f0-596bed74249b <list[1]>

## 11: 0.080 0.9813190 d7c2064c-dde6-4c95-8f9f-431945db2b0c <list[1]>

## timestamp batch_nr

## 1: 2021-04-14 15:08:26 1

## 2: 2021-04-14 15:08:27 2

## 3: 2021-04-14 15:08:27 3

## 4: 2021-04-14 15:08:27 4

## 5: 2021-04-14 15:08:27 5

## 6: 2021-04-14 15:08:27 6

## 7: 2021-04-14 15:08:28 7

## 8: 2021-04-14 15:08:28 8

## 9: 2021-04-14 15:08:28 9

## 10: 2021-04-14 15:08:28 10

## 11: 2021-04-14 15:08:29 11

##

## $ml_m[[1]]$tuning_result[[1]]$params

## NULL

##

##

##

## $ml_m[[1]]$params

## $ml_m[[1]]$params[[1]]

## $ml_m[[1]]$params[[1]]$family

## [1] "gaussian"

##

## $ml_m[[1]]$params[[1]]$lambda
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## [1] 0.1

##

##

##

##

## $ml_m$params

## $ml_m$params[[1]]

## $ml_m$params[[1]]$family

## [1] "gaussian"

##

## $ml_m$params[[1]]$lambda

## [1] 0.1

# Tuned parameters

str(doubleml plr$params)

## List of 2

## $ ml_g:List of 10

## ..$ X1 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.1

## ..$ X2 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.1

## ..$ X3 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.1

## ..$ X4 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.09

## ..$ X5 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.07

## ..$ X6 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.085

## ..$ X7 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.085

## ..$ X8 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.08

## ..$ X9 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.09

## ..$ X10:List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.075

## $ ml_m:List of 10

## ..$ X1 :List of 2

## .. ..$ family: chr "gaussian"
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## .. ..$ lambda: num 0.1

## ..$ X2 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.095

## ..$ X3 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.095

## ..$ X4 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.095

## ..$ X5 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.1

## ..$ X6 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.1

## ..$ X7 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.1

## ..$ X8 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.1

## ..$ X9 :List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.1

## ..$ X10:List of 2

## .. ..$ family: chr "gaussian"

## .. ..$ lambda: num 0.1
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2.9.3 Additional Data Generating Processes, Simulation Study

Data generating process for PLIV simulation

The DGP is based on Chernozhukov et al. (2015a) and defined as

zi = Πxi + ζi,

di = x′iγ + z′iδ + ui,

yi = αdi + x′iβ + εi,

(2.37)

with 
εi

ui

ζi

xi

 ∼ N
0,


1 0.6 0 0

0.6 1 0 0

0 0 0.25Ipzn 0

0 0 0 Σ




where Σ is a pxn × pxn matrix with entries Σkj = 0.5|k−j| and Ipzn is an identity matrix with dimension

pzn×pzn. β = γ is a pxn-vector with entries β = 1
j2 and Π = (Ipzn , 0pzn×(pxn−pzn)). In the simulation example,

we have one instrument, i.e., pzn = 1 and pxn = 20 regressors xi. In the simulation study, data sets with

n = 500 observations are generated in R = 500 independent repetitions.

Data generating process for IRM simulation

The DGP is based on a simulation study in Belloni et al. (2017) and defined as

di = 1

{
exp(cdx

′
iβ)

1 + exp(cdx′iβ)
> vi

}
, vi ∼ U(0, 1),

yi = θdi + cyx
′
iβdi + ζi, ζi ∼ N (0, 1),

(2.38)

with covariates xi ∼ N (0,Σ) where Σ is a matrix with entries Σkj = 0.5|k−j|. β is a px-dimensional

vector with entries βj = 1
j2 and the constants cy and cd are determined as

cy =

√
R2
y

(1−R2
y)β′Σβ

, cd =

√
(π2/3)R2

d

(1−R2
d)β
′Σβ

.

We set the values of Ry = 0.5 and Rd = 0.5 and consider a setting with n = 1000 and p = 20. Data

generation and estimation have been performed in R = 500 independent replications.

Data generating process for IIVM simulation

The DGP is defined as

di = 1 {αxZ + vi > 0} ,

yi = θdi + x′iβ + ui,
(2.39)

with Z ∼ Bernoulli(0.5) and (
ui

vi

)
∼ N

(
0,

(
1 0.3

0.3 1

))
.

The covariates are drawn from a multivariate normal distribution with xi ∼ N (0,Σ) with entries of the

matrix Σ being Σkj = 0.5|j−k| and β being a px-dimensional vector with βj = 1
β2 . The data generating

process is inspired by a process used in a simulation in Farbmacher et al. (2020). In the simulation
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study, data sets with n = 1000 observations and px = 20 confounding variables xi have been generated

in R = 500 independent repetitions.
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Chapter 3

Valid Simultaneous Inference in

High-Dimensional Settings with the

hdm Package for R

3.1 Introduction

One of the most significant developments to have occurred during the course of digitalization has been

the increased availability of individual information. Data sets have become richer in that more explana-

tory variables have become available to predict outcomes of interest. If researchers want to assess the

significance of the relationship between a large number of regressors and the dependent variable, it is

essential to correct for testing multiple hypotheses at the same time. Otherwise, the probability of incor-

rectly rejecting a true null hypothesis is likely to exceed the specified significance level α. Whereas valid

inference for one or a small number of regression coefficients in cases with many explanatory variables

(i.e., high-dimensional settings) has been an active research area in the past decade, and many of the

developed methods have been incorporated into applied academic research, most empirical studies do

not account for the risk associated with multiple testing. Suppose, for instance, a researcher wants to

estimate a large number of regression coefficients and to assess which of these coefficients are significantly

different from zero at a significance level α. It is well known that in such a situation an approach that

simply ignores the fact that many hypotheses are tested at the same time will generally lead to flawed

conclusions due to a large number of mistakenly rejected hypotheses.

The statistical literature has proposed various approaches to mitigate the consequences of testing multi-

ple hypotheses at the same time. These methods can be grouped into two approaches according to the

underlying criterion. The first approach, initiated by the famous Bonferroni correction, seeks to control

the probability of at least one false rejection, which is called the family-wise error rate (FWER). Since the

definition of the FWER refers to the probability of making at least one type I error, the FWER-criterion

is appealing from an intuitive point of view. However, FWER control is often criticized to be conservative

and, instead, the false discovery rate (FDR) control is frequently used as a criterion leading to the second

major class of multiple testing correction methods, e.g., Benjamini and Hochberg (1995). The FDR refers

to the expected share of falsely rejected null hypotheses and, hence, results from FDR-procedures differ

from classical tests results in terms of interpretation.

Various approaches aim to maintain control of the FWER while reducing conservativeness at the same

time by incorporating a stepwise procedure, for instance, the stepdown method of Holm (1979). More-

over, taking the dependence structure of test statistics into consideration allows for a reduction in the
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conservativeness of FWER-procedures, as in the stepdown procedure of Romano and Wolf (2005a) and

Romano and Wolf (2005b) that is based on resampling methods.

In the following, we review methods to perform valid simultaneous inference in a high-dimensional re-

gression setting, i.e., if the number of covariates exceeds the number of observations, and give examples

how the presented approaches can be applied with the statistical software R. The literature review is not

intended to provide a complete summary of the literature on multiple testing adjustment. Rather we

hope to address the major risk associated with multiple testing and to outline the reasoning of potential

solutions to the applied researcher in high-dimensional settings. Moreover, we emphasize methodological

problems arising for classical linear regression in high-dimensional settings and illustrate how these can be

handled using regularization methods. We also provide a simulation study in different high-dimensional

settings to compare the methods and give some guidance.

It is well-known that classical regression methods, such as ordinary least squares, break down in high-

dimensional settings. Instead, regularization methods, for example the lasso, can be used for estimation.

However, post-selection inference is non-trivial and requires modification of the estimators. We provide a

short overview on two major approaches to perform simultaneous inference using regularization methods,

i.e., the double selection approach, which has been developed in Belloni et al. (2014c), and the knockoff

framework of Barber and Candès (2015) and compare their performance in a simulation study. Moreover,

the paper illustrates how valid simultaneous inference based on the double selection approach can be

performed in a real-data example using the package hdm (Chernozhukov et al., 2016a) for R (R Core

Team, 2020). hdm provides powerful tests for a large number of hypotheses that can be combined with

various methods to adjust for multiple testing as well as the functionality to construct valid simultaneous

confidence intervals that is based on a multiplier bootstrap procedure.

The remainder of the paper is organized as follows. First, the general setting is introduced and an

overview on valid post-selection inference in high dimensions is provided. Second, a short and selective

review on traditional and recent methods to adjust for multiple testing is presented. Third, we com-

pare the performance of the previously presented methods in a simulation study. Fourth, the use of

the functionalities provided by the R package hdm are illustrated in a replicable real-data example on

heterogeneity in the gender wage gap. A conclusion is provided in the last section.

3.2 Setting

We are interested in testing a set of K hypotheses H1, . . . ,HK in a high-dimensional regression model,

i.e., a regression where the number of covariates p is large, potentially much larger than the number of

observations n, i.e., we have p� n. The ultimate objective in this setting is to perform inference on a set

of regression coefficients, i.e., a vector of so-called target coefficients θk with k = 1, . . . ,K and possibly

with K > n. For example, such a setting has been considered in Belloni et al. (2014c) and Belloni et al.

(2018).

yi = β0 + d′iθ + x′iβ + εi, i = 1, . . . , n, (3.1)

where β0 is an intercept and β denote the regression coefficients of the control variables xi. Moreover, it

is assumed that En[εixi] = 0, where En denotes the empirical expectation, En(x) = 1
n

∑n
i=1 xi. In this

setting, K hypotheses are tested for the coefficients that correspond to the effect of the “target” variables

di on the outcome yi

H0,k : θk = 0, k = 1, . . . ,K. (3.2)
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For instance, such a high-dimensional regression setting arises in causal program evaluation studies, where

a large number of regressors is included to approximate a potentially complicated, nonlinear population

regression function using transformations with dictionaries, for example splines or polynomials. Alterna-

tively, an analysis of heterogeneous treatment effects across possibly many subgroups as in the example

in Section 3.6.2 might require a large number of interactions of the regressors.

Suppose, there is a test procedure for each of the hypotheses leading to test statistics t1, . . . , tK and

unadjusted p-values p1, . . . , pK . In the context of multiple testing, it is often helpful to sort the p-values

in an increasing order (in other words, the “most significant” test result as the first in the row) and

the hypotheses likewise, i.e., p(1), . . . , p(K) and H(1), . . . ,H(K) with p(1) ≤ p(2) ≤ . . . ≤ p(K). Also the

test statistics are ordered by the same logic |t(1)| ≥ |t(2)| ≥ . . . ≥ |t(K)|. A researcher decides whether

to accept or to reject a null hypothesis if the corresponding p-value pk is above or below a prespecified

significance level α. Generally, the significance level corresponds to the probability of erroneously rejecting

a true null hypothesis. However, if the conclusions are based on a comparison of unadjusted p-values and

the significance level, the probability of incorrectly rejecting at least one of the hypotheses will generally

exceed the claimed level α. Hence, adjustment for multiple testing becomes necessary to draw appropriate

inferential conclusions.

3.3 Simultaneous Post-Selection Inference in High Dimensions

3.3.1 Simultaneous Inference based on Double Selection

In high-dimensional settings, traditional regression methods such as ordinary least squares break down

and testing the K hypotheses will severely suffer from the shortcomings of the underlying estimation

method. Penalization methods, for instance the lasso or other machine learning techniques, provide

an opportunity to overcome the failure of traditional least squares estimation as they regularize the

regression problem in Equation (5.3) by introducing a penalization term. In the example of lasso, the

ordinary least squares minimization problem is extended by a penalization of the regression coefficients

using the l1-norm. The lasso estimator is the solution to the maximization problem(
θ̂′, β̂′

)′
= arg min

θ,β
En
[
(yi − β0 − d′iθ − x′iβ)

2
]

+
λ

n

∥∥∥ψ̂ (θ′, β′)
′
∥∥∥

1
, (3.3)

with ‖ • ‖1 being the l1-norm, λ is a penalization parameter and ψ̂ denotes a diagonal matrix of penalty

loadings. More details on the choice of λ and ψ̂ as implemented in the hdm package can be found in

the package vignette available at CRAN (Chernozhukov et al., 2016a). As a consequence of the l1-

penalization, some of the coefficients are shrunk towards zero and some of them are set exactly equal to

zero. In general, inference after such a selection step is only valid if model selection by lasso is perfect -

in other words, the lasso does only set those coefficients to zero that truly have no effect on yi (Leeb and

Pötscher, 2008). However, perfect model selection and the underlying assumptions are often considered

unrealistic in real-world applications leading to a breakdown of the naive inferential framework and, thus,

flawed inferential conclusions. Stated more explicitly, the regularization introduced by lasso penalization

leads to imperfect model selection with regard to so-called confounders. These variables are correlated

with the target variable of interest, di, and the dependent variable, yi. Consequently, imperfect model

selection might cause an omitted variable bias that leads to a bias of the final estimator θ.

In contrast to the naive procedure, the so-called double selection approach of Belloni et al. (2014a)

tolerates imperfect model selection such that asymptotically valid confidence intervals and test procedures

can be based on the lasso. The double selection method is based on orthogonal moment equations: The

double selection estimator is insensitive to the bias that arises due to moderate selection mistakes by the
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lasso. To achieve orthogonality, an auxiliary (lasso) regression step is introduced for each of the target

coefficients. Estimation of the double selection estimator proceeds as follows

(1) For each of the target variables in dj,i, j = 1, . . . ,K, a lasso regression is estimated to identify the

most important predictors among the covariates xi and the remaining target variables d−j,i.

(2) A lasso regression of the outcome variable yi on all explanatory variables, except for dj,i, is estimated

to identify predictors of yi. This step is executed for each of the target variables dj,i with j =

1, . . . ,K.

(3) Each of the target coefficients, θj , is estimated from a linear regression of the outcome on all target

variables as well as all covariates that have been selected in either one of the corresponding lasso

regressions in step (1) or (2).

As a consequence of the double selection procedure, the risk of an omitted variable bias that might

arise due to imperfect variable selection is reduced. It can be shown that the double selection estimator

θ̂DSk is asymptotically normally distributed under a set of regularity assumptions. Probably, the most

important of these assumptions is (approximate) sparsity. This assumption states that only a subset of

the regressors suffice to describe the relationship of the outcome variable and the explanatory variables,

and that all other regressors have no or only a negligible effect on the outcome. In general, valid post-

selection inference is compatible with other tools from the machine learning literature, for instance elastic

nets or tree-based methods such as boosting or random forests, as long as these methods satisfy some

regularity conditions (Belloni et al., 2014a; Belloni et al., 2014c) or if they are used in combination with

sample splitting (Chernozhukov et al., 2018a).

As the double selection approach provides an asymptotically normally distributed test statistic and p-value

for each of the tested hypotheses, H0,k, k = 1, . . . ,K, it is possible to adjust for multiple testing using

correction methods that operate on the test statistics or on p-values. For example, Chernozhukov et al.

(2013a) and Belloni et al. (2014a) show that a multiplier bootstrap version of the Romano-Wolf method

can be used to construct a joint significance test in a high-dimensional setting such that asymptotic

control of the FWER is obtained. In the original work by Belloni et al. (2014a), it is shown that a

valid (1 − α) confidence interval can be constructed by using the multiplier bootstrap as established in

Chernozhukov et al. (2013a) and Chernozhukov et al. (2014).

3.3.2 Simultaneous Inference based on Knockoffs

A second approach to perform simultaneous inference, the knockoff framework, has been suggested by

Barber and Candès (2015). The knockoff framework has been designed as a variable selection procedure

that guarantees control of the FDR in linear models. The idea of this framework is to generate vari-

ables artificially, so-called “knockoff variables”, that have the same correlation structure as the original

covariates. By the definition of their construction, it is known that the artificial variables do not have

explanatory power for the dependent variable. The knowledge that the knockoff variables might be se-

lected as false positives allows the procedure to base model selection on the FDR criterion. When model

selection is performed by the lasso or some alternative variable selection procedure, the original and the

knockoff variables are considered as candidate variables. The idea is to exploit the known distinction

between the constructed knockoffs and original regressors. Intuitively, if a regressor has some explana-

tory power for the outcome variable, the lasso will likely select the original variable instead of its copy.

However, if an explanatory variable has only a small or no effect on the dependent variable, the selection

procedure has some difficulty to distinguish the original variable from the corresponding knockoff.

For lasso estimation, the order of entry of variables for decreasing penalty parameter λ is considered.

Intuitively, large values of λ lead to a very sparse variable selection. By gradually lowering the value of
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λ, more and more variables enter the model. Relevant variables should enter clearly before their knockoff

counterpart and the corresponding λ value at entry should be large. For noise variables, i.e., variables

with no effect on the outcome variable, the order might be reversed. Based on this observation, Barber

and Candès (2015) derive test-statistics to control the false discovery rates at a certain level.

Framed in the model presented in Equation (5.3), we define the lasso estimators
(
θ̂′, β̂′

)′
for a given

penalty level λ as1

(
θ̂′, β̂′

)′
(λ) = arg min

(θ,β)

{
1

2
En
[
(yi − β0 − d′iθ − x′iβ)

2
]

+ λ
∥∥∥(θ′, β′)

′
∥∥∥

1

}
.

A variable enters the model for the first time at a value of λ given by

Zj = supλ :
(
θ̂′, β̂′

)′
j

(λ) 6= 0.

Basically, for those variables that have strong explanatory power for the outcome, the value of Zj is

expected to be large, whereas it is expected to be small for the noise variables. If both the original

variables and their knockoffs are considered as candidates in the lasso selection procedure, the statistics

of the original variables Zj and those of the corresponding knockoffs, Z̃j , can be compared. Intuitively,

one would expect that the difference between Zj and Z̃j is largest for powerful predictors of the dependent

variable, whereas a small difference is expected for the noise variables. Accordingly, the statistic Wj is

based on the first entrance into the model

Wj = Zj ∨ Z̃j ·

{
+1 , Zj > Z̃j

−1 , Zj < Z̃j
.

Given a target FDR of q, a data-dependent threshold T is defined

T = min

{
t ∈ W :

#{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ q
}
,

with W = {|Wj | : j = 1, . . . , p} \ {0}. Selecting a model Ŝ = {j : Wj ≥ T}, Barber and Candès (2015)

show that for any q, the knockoff method fulfills

E

[
#{j : (θ′, β′)

′
j = 0 and j ∈ Ŝ}

#{j : j ∈ Ŝ}q−1

]
≤ q.

For further results and a more in-depth discussion we refer to the original paper by Barber and Candès

(2015).

Originally, knockoffs were designed as a model selection procedure that guarantees control of the FDR

in linear models under homoskedasticity, fixed design X (hence, also denoted as “fixed knockoffs”) and

low-dimensional settings, i.e., n ≥ p (Barber and Candès, 2015). The approach has been extended to

high-dimensional settings in Barber and Candès (2019) by introducing an initial screening procedure

that imposes a dimension reduction on the model. Candès et al. (2018) introduce Model-X knockoffs,

probabilistically constructed variables, allowing the dependent variable to be drawn from an arbitrary

distribution. Moreover, the number of variables is possibly unrestricted and the considered model may

be nonlinear. An extension of knockoffs to control k-FWER has been developed in Janson and Su (2016).

1Note that from a methodological point of view the double selection framework distinguishes target variables of interest,
here di, from covariates, xi. Inference is performed only for the target variable di. For example, in a causal model the
confounders xi must be included to achieve unconfoundedness or exogeneity conditional on xi. This distinction is not made
in the knockoff framework, and, thus, we reformulate the knockoff procedure according to Model (5.3) where all covariates,
i.e., di and xi, are subject to variable selection.
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3.3.3 Summary: Simultaneous Post-Selection Inference

A methodological difference of the knockoff approach and double selection is that the knockoff framework

incorporates the FDR-criterion as a guidance during the variable selection procedure and provides a set

of selected variables that guarantees control of the FDR. In contrast, double selection first modifies the

selection procedure by introducing a second lasso selection step, to obtain validity of the test statistics

that are obtained for the target coefficients θ. Hence, it is possible to correct for multiple testing in

an additional step after estimation has been performed by employing a variety of methods that operate

either directly on the test statistics or the p-values.

3.4 Methods for Simultaneously Testing Multiple Hypotheses

In this section, we review classical and recently developed methods to adjust for simultaneously testing

multiple hypotheses. The considered methods operate on p-values or test statistics and presume the exact

or asymptotic validity of the corresponding inferential procedure. Hence, in a high-dimensional setting,

we consider cases where double selection has been performed in a first step to obtain valid coefficient

estimates, test statistics and p-values as summarized in Section 3.3.1. The following section is organized

as follows: First, correction methods that control the FWER and FDR are presented in Sections 3.4.1 and

3.4.2, respectively. Section 3.4.3 presents a global test available for lasso regressions in high dimensions

that is comparable to a F -test in a classical linear regression model.

3.4.1 Multiple Hypotheses Testing with Control of the Familywise Error

Rate

The FWER is defined as the probability of falsely rejecting at least one hypothesis. The goal is to control

the FWER and to secure that it does not exceed a prespecified level α. We assume that for the individual

tests the significance level is set uniformly to α.

3.4.1.1 Bonferroni Correction

According to the Bonferroni correction the cutoff of the p-values is set to α∗ = α/K and all hypotheses

with p-values below the adjusted level α∗ are rejected. Boole’s inequality then gives directly that the

FWER is smaller or equal to α. Instead of adjusting the level of α to α∗, it is possible to adjust the

p-values so that we reject a hypothesis Hk if p∗k = min{1,K · pk} < α. A drawback of the procedure

is that it is quite conservative, meaning that in many applications, in particular in high-dimensional

settings when many hypotheses are tested simultaneously, often no or very few hypotheses are rejected,

increasing the risk of accepting false null hypotheses (i.e., of a type II error).

3.4.1.2 Bonferroni-Holm Correction

We again assume that the p-values are ordered (from lowest to highest) p(1) ≤ . . . ≤ p(K) with corre-

sponding hypotheses H(1), . . . ,H(K). Stepdown methods proceed in several rounds. In each round a

decision is taken on the set of hypotheses being rejected. The algorithm continues until no further hy-

potheses are rejected. To illustrate the stepwise proceeding of the Bonferroni-Holm method, suppose that

the Bonferroni correction as described in the previous section has been performed and it was possible to

reject the first null hypotheses H(1). Then the Bonferroni correction could be applied a second time with

respect to all hypotheses except for H(1), i.e., the significance level to test H(2) is adjusted to α∗(2) = α
K−1 .

The Bonferroni-Holm correction proceeds in this sequential manner until no hypotheses can be rejected
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anymore. Formally, let k be the smallest index such that the corresponding p-value exceeds the adjusted

cutoff α∗.

k = min
j
{p(j) >

α

K − j + 1︸ ︷︷ ︸
α∗

},

The hypotheses H(1), . . . ,H(k−1) are then rejected and we accept H(k), . . . ,H(K). The Bonferroni-Holm

procedure is considered as a general improvement over the Bonferroni correction that maintains control

of the FWER and reduces the risk of a type II error at the same time. The adjusted p-value according to

the Bonferroni-Holm correction are computed as p∗(j) = maxl≤j min{(K − j + 1)p(j), 1} with l = 1, . . . , j.

3.4.1.3 Joint Confidence Region based on the Multiplier Bootstrap

Belloni et al. (2014a) derive valid (1−α) confidence regions for the vector of target coefficients, θ, in the

high-dimensional regression setting in Equation (5.3) estimated with lasso. The confidence regions which

are constructed with the multiplier bootstrap can be used equivalently to a joint significance test of the

K hypotheses. Accordingly, the null hypotheses H0,k : θk = 0, k = 1, . . . ,K, would be rejected at the

level α if the simultaneous (1− α) confidence region does not cover zero in dimension k.

The multiplier bootstrap procedure is based on random pertubations of the orthogonal score function.

As mentioned above, the double selection estimator can be considered as the solution to the empirical

analog of an orthogonal score function. The multiplier bootstrap procedure estimates bootstrapped

coefficients θ̂∗,bj and test-statistics t∗,bj , b = 1, . . . , B, in B repetitions and for each of the coefficients of

interest. The bootstrapped quantities are obtained from solving a pertubated version of the orthogonal

score function, i.e., the score function being multiplied with independent random variables, for example

independent draws from a standard normal distribution (Chernozhukov et al., 2013a). Relying on random

pertubations, it is possible to avoid resampling and re-estimation of the double selection estimator, which

might be computationally costly in high-dimensional settings.

3.4.1.4 Romano-Wolf Stepdown Procedure

The stepdown method of Romano and Wolf (2005a) and Romano and Wolf (2005b) is based on resampling

methods. Thus, it is able to account for the dependence structure underlying the test statistics and

to give less conservative results as compared to methods such as the Bonferroni and Holm correction.

The idea of the Romano-Wolf procedure is to construct rectangular simultaneous confidence intervals in

subsequent steps whereas in each step, the coverage probability is kept above a level of (1 − α). If in

step j, the confidence set does not contain zero in dimension k, the corresponding Hk is rejected. In step

j + 1, the algorithm proceeds analogously by constructing a rectangular joint confidence region for those

coefficients for which the null hypotheses has not been rejected in step j or before. The algorithm stops if

no hypothesis is rejected anymore. To take the dependence structure of the test hypotheses into account,

the classical Romano-Wolf stepdown procedure uses resampling to compute the constant c(1−α) that is

needed to construct a rectangular confidence interval. This constant is estimated by the (1−α) quantile

of the maxima of the bootstrapped test statistics in each step to guarantee the coverage probability of

(1 − α). The computational burden of the Romano-Wolf stepdown procedure can be reduced by using

the multiplier bootstrap because it is only based on random permutations of the score function and does

not require re-estimation of the double selection estimator based on bootstrap samples. We present a

recent version of the Romano-Wolf method from Chernozhukov et al. (2013a) and Belloni et al. (2014a)

who prove the validity of the procedure in combination with the multiplier bootstrap.
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Algorithm 1: Romano-Wolf stepdown correction of p-values

1) Sort the test statistics in a decreasing order (in terms of their absolute values):

|t(1)| ≥ |t(2)| ≥ . . . ≥ |t(K)|.

2) Draw B multiplier bootstrap versions for each of the test statistics t∗,b(k), b = 1, . . . , B, and

k = 1, . . . ,K,

3) For each b and k determine the maximum of the bootstrapped test statistics m(t∗,b(k)) =

max
{
|t∗,b(k)|, |t

∗,b
(k+1)|, . . . , |t

∗,b
(K)|

}
.

4) Compute initial p-values, for k = 1, . . . ,K

pinit(k) :=

∑B
b=1 I{m(t∗,b(k)) ≥ |t(k)|}

B
,

with I{·} being an indicator that is equal to 1, if the statement in curly brackets {·} is true.

5) Compute adjusted p-values by ensuring monotonicity

a) if k = 1

p∗(1) := pinit(1) .

b) if k = 2, . . . ,K

p∗(k) := max{pinit(k) , p
∗
(k−1)}.

The p-value adjustment algorithm parallels that in Romano and Wolf (2016) with the only difference that

the bootstrap test statistics are computed efficiently with the multiplier bootstrap procedure instead of

the classical bootstrap and that the test statistics are based on post-selection inference with the lasso.

In Romano and Wolf (2005a) and Romano and Wolf (2016), a high number of bootstrap repetitions

B ≥ 1000 is recommended.

If the data stem from a randomized experiment, the method introduced in List et al. (2019) can be

used. It is a variant of the Romano-Wolf procedure under unconfoundedness - an assumption that can

be justified in an experimental setting if a treatment is assigned randomly conditional on observational

characteristics. Moreover, it allows researchers to compare the effect of different treatments and several

outcome variables simultaneously.

3.4.2 Multiple Hypotheses Testing with Control of the False Discovery Rate

The FWER is frequently considered a strict criterion, which often leads to very conservative conclusions.

This means that in settings when thousands or hundred thousands of hypotheses are tested simultane-

ously, the FWER does often not detect useful signals. Hence, in large-scale settings frequently a less

strict criterion, the so-called false discovery rate (FDR) is employed. The false discovery proportion

(FDP) is defined as the ratio of the number of hypotheses, which are wrongly classified as significant

(false positives) and the total number of positives. If the latter is zero, it is defined as zero. The FDR
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is defined as the expected value of the FDP : FDR = E(FDP ). The FDR concept reflects the trade-off

between false discoveries and true discoveries.

3.4.2.1 Benjamini-Hochberg Procedure

To control the FDR, the Benjamini-Hochberg (BH) procedure ranks the hypotheses according to the

corresponding p-values and then chooses a cutoff along the ranking to control the FDR at a prespecified

level of γ ∈ (0, 1). The BH procedure first uses a stepup comparison to find a cutoff p-value:

k = max
j
{p(j) ≤ j

γ

K
},

and then rejects all hypotheses H(j), j = 1, . . . , k. In most applications, γ = 0.1 is chosen.

3.4.3 A Global Test for Joint Significance with Lasso Regression

A basic question frequently arising in empirical work is whether the lasso regression has explanatory

power, comparable to a F-test for the classical linear regression model. The construction of a joint

significance test follows Chernozhukov et al. (2013a, Appendix M) and has been presented earlier in

Chernozhukov et al. (2016b). Based on the model yi = β0 + d′iθ + x′iβ + εi with intercept β0, the null

hypothesis of joint statistical non-significance is H0 : (θ′, β′)′ = 0. The null hypothesis implies that

E [(yi − β0)xi] = 0,

and the restriction can be tested using the sup-score statistic:

S = ‖
√
nEn

[
(yi − β̂0)xi

]
‖∞,

where β̂0 = En[yi]. The critical value for this statistic can be approximated by the multiplier bootstrap

procedure, which simulates the statistic:

S∗ = ‖
√
nEn

[
(yi − β̂0)xigi

]
‖∞,

where gi’s are i.i.d. N(0, 1), conditional on the data. The (1 − α) quantile of S∗ serves as the critical

value, c(1−α). We reject the null if S > c(1−α) in favor of statistical significance, and we keep the null of

non-significance otherwise.

3.5 Simulation Study

The simulation study provides a finite-sample comparison of different multiple testing corrections in

a high-dimensional setting, i.e., the Bonferroni method, the Bonferroni-Holm procedure, Benjamini-

Hochberg adjustment and the Romano-Wolf stepdown method, as well as three different knockoff variants.

In addition, the study illustrates the failure of an approach that ignores the problem of simultaneous

hypotheses testing, i.e., without any correction of the significance level or p-values.

3.5.1 Simulation Setting

We consider a regression of a continuous outcome variable yi on a set of regressors, di, in settings with

K ∈ {60, 180, 200, 400}. To maintain comparability of the double selection and knockoff framework, we
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Figure 3.1: Regression coefficients, simulation setting with K = 60.

test the coefficients of all regressors, i.e., we specify p = K throughout the simulation study.

yi = β0 + d′iθ + εi, i = 1, . . . , n, (3.4)

with a homoskedastic and normally distributed error εi ∼ N(0, σ2) with variance σ2 = 3. In our

setting, the realizations of di are generated by a joint normal distribution di ∼ N(µ,Σ) with µ = 0

and Σj,k = ρ|j−k| with ρ = 0.8. We consider the case of an i.i.d. sample with n = 200 and n = 500

observations. The setting is sparse in that only s = 12 regressors are truly non-zero: The first s = 12

coefficients θ are generated according to the sparse model with decay

θj = min

{
θmax

ja
, θmin

}
,

for j = 1, . . . , s with θmax = 9, θmin = 0.75, and a = 0.99. All other coefficients have values exactly equal

to 0. Figure 3.1 presents the regression coefficients in the simulation study.

In the case of double selection, the regression in Equation (3.4) is estimated with post-lasso.2 The K

hypotheses are tested simultaneously

H0,k : θk = 0, k = 1, . . . ,K.

We implement three different specifications of the knockoff framework, i.e., (i) fixed-model knockoffs

(“Fix-KO”) (ii) second-order Gaussian model-X knockoffs (“Model-X”), (iii) Gaussian model-X knockoffs

(“Model-X (Or.)”). In (ii) we specify that the joint distribution of the covariates is Gaussian with

mean and covariance matrix being unknown, whereas in (iii) the oracle quantities µ and Σ are used to

construct Gaussian knockoffs. It is worth to note that the assumptions required for fixed knockoffs are not

satisfied in the high-dimensional simulation settings. Consequently, we expect an inferior performance or

a breakdown of the method when K > n.

3.5.2 Results

The simulation results are summarized in Table 3.1. The reported results refer to averages from R = 1000

repetitions in terms of correct and incorrect rejections of null hypotheses at a specified level of α = 0.1

for the FWER and γ = 0.1 for the FDR as well as the empirical FWER and FDR.

The results show that multiple testing adjustment is of great importance: Inferential statements without

any multiple testing adjustment are likely invalid if the number of tested hypotheses is relatively large.

2More details on implementation of the simulation study are provided in the Appendix and the supplemental material
available at https://www.bwl.uni-hamburg.de/en/statistik/forschung/software-und-daten.html.
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The results in the column “None” correspond to such an approach. If each of the hypotheses is tested at

a significance level of α = 0.1 and no adjustment of the p-values is performed, the probability of at least

one incorrect rejection is close or exactly equal to 1 in all settings considered.

Whereas a correction according to the Benjamini-Hochberg procedure (column “BH”) already reduces the

number of incorrect rejections: More than one hypothesis is rejected incorrectly in all settings considered,

on average. At the same time, however, the empirical FDR is always close to the specified level of

γ = 0.1 for the Benjamini-Hochberg adjustment whereas the performance benefits from larger sample

size. Methods with asymptotic control of the FWER are much less likely to erroneously reject true null

hypotheses. In most settings, the empirical FWER approaches the nominal level with the only exception

being the high-dimensional setting with twice as many parameters as observations (n = 200, p = 400).

The results improve in settings with larger n. Of these methods, the Bonferroni correction is the most

conservative. Slight improvements in terms of power are achieved by the Holm procedure. The Romano-

Wolf stepdown correction benefits from taking the dependence structure of the covariates into account

and, thus, allows to reject slightly more correct hypotheses than the Holm method. However, this increase

in power arises in parallel to an increased number of incorrect rejections.

In general, the FWER methods are more conservative than the FDR controlling approaches, in particular

if the ratio n/p is small. However, in the settings with sample size n = 500 the FWER methods are able

to reject almost all false null hypotheses while still controlling the number of incorrect rejections at a

considerably lower level.

An interesting comparison is that of the double selection method with Benjamini-Hochberg correction

with Model-X knockoffs as both approaches guarantee control of the FDR. In the simulation study, we

made the observation that the performance of the knockoff algorithm depends on the method of knockoff

generation. This instability of knockoffs in settings with a small number of non-zero coefficients has

already been documented in a recent study by Gimenez and Zou (2019). Hence, we display the results

for knockoffs in two ways. The results displayed in parentheses in Table 3.1 refer to all 1000 repetitions.

The remaining results refer to only those simulation repetitions with a non-zero model selection, i.e., we

excluded repetitions where no variables have been selected (corresponding to a threshold T =∞). Table

3.3 in the Appendix presents the frequency of cases where the knockoff algorithm selected an empty set

of variables. The degree of instability depends on the choice of the knockoff construction method and the

relation of n and p. For example, the fixed knockoffs perform relatively well in the settings with n = 500

and p = 60. However, in the setting with n = 200 and p = 180 the procedure fails to deliver a reasonable

model selection in almost every repetition.

Contrarily to the poor performance of the fixed knockoffs, Model-X knockoffs exhibit excellent perfor-

mance and a high degree of stability in the high-dimensional setting with n = 200 and p = 400. However,

the performance deteriorates when n < p. According to the documentation of the R package knockoff

(Patterson and Sesia, 2018), regularization is performed during estimation of the covariance matrix in

high-dimensional settings, which might explain the increased stability of Model-X in the setting with

n = 200 and p = 400 (Candès et al., 2018).
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n K None BH Bonf. Holm RW Fix-KO Model-X Model-X (Or.)

Correct Rejections

200 60 11.73 11.25 10.02 10.11 10.19 11.26 11.43 11.82
(7.38 ) (6.71 ) (5.74 )

200 180 11.76 10.76 9.51 9.53 9.62 8.00 10.88 11.80
(0.05 ) (0.09 ) (5.76 )

200 400 11.73 10.33 9.03 9.04 9.14 . 11.92 11.80
(0.00 ) (11.92 ) (5.77 )

500 60 12.00 11.98 11.87 11.88 11.90 11.81 11.96 11.99
(10.23 ) (9.75 ) (6.03 )

500 200 11.99 11.95 11.75 11.75 11.77 11.24 11.66 11.99
(7.97 ) (6.81 ) (6.04 )

Incorrect Rejections

200 60 5.13 1.29 0.13 0.16 0.18 0.86 0.70 0.87
(0.56 ) (0.41 ) (0.42 )

200 180 18.17 1.69 0.19 0.20 0.21 2.83 0.50 0.94
(0.02 ) (0.00 ) (0.46 )

200 400 41.73 1.88 0.22 0.22 0.26 . 1.06 1.04
(0.00 ) (1.06 ) (0.51 )

500 60 4.85 1.27 0.10 0.13 0.14 1.11 0.91 0.93
(0.96 ) (0.74 ) (0.47 )

500 200 19.12 1.49 0.12 0.12 0.14 1.06 0.73 0.88
(0.75 ) (0.42 ) (0.44 )

Family-Wise Error Rate

200 60 1.00 0.67 0.12 0.14 0.15 0.43 0.39 0.46
(0.28 ) (0.23 ) (0.22 )

200 180 1.00 0.74 0.16 0.17 0.18 1.00 0.25 0.45
(0.01 ) (0.00 ) (0.22 )

200 400 1.00 0.78 0.20 0.20 0.23 . 0.53 0.50
(0.00 ) (0.53 ) (0.24 )

500 60 0.98 0.65 0.09 0.11 0.12 0.51 0.47 0.50
(0.44 ) (0.38 ) (0.25 )

500 200 1.00 0.73 0.10 0.11 0.12 0.45 0.41 0.49
(0.32 ) (0.24 ) (0.25 )

False Discovery Rate

200 60 0.29 0.09 0.01 0.01 0.02 0.06 0.05 0.06
(0.04 ) (0.03 ) (0.03 )

200 180 0.60 0.12 0.02 0.02 0.02 0.26 0.04 0.06
(0.00 ) (0.00 ) (0.03 )

200 400 0.78 0.14 0.02 0.02 0.03 . 0.07 0.07
(0.00 ) (0.07 ) (0.03 )

500 60 0.27 0.09 0.01 0.01 0.01 0.07 0.06 0.06
(0.06 ) (0.05 ) (0.03 )

500 200 0.61 0.10 0.01 0.01 0.01 0.07 0.05 0.06
(0.05 ) (0.03 ) (0.03 )

Table 3.1: Simulation results, R = 1000 repetitions.

A dot indicates that the procedure has resulted in zero-selection in all repetitions. Results in parentheses refer to
all repetitions of the knockoff procedures, i.e., including those with zero variable selection.
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Using the oracle quantities µ and Σ makes the performance of the knockoff procedure less dependent on

the ratio of n and p. However, the procedure results in zero-selections in approximately every second

repetition.

In terms of FWER control, the knockoff procedures never exceed the specified level of γ = 0.1.3 Once

we select only those repetitions with a positive number of selected variables, the knockoffs are able to

exhibit excellent performance in most settings. Accordingly, the number of correct rejections exceeds

considerably those of the Benjamini-Hochberg procedure in many cases. At the same time, the number

of incorrect rejections is lower than for the FWER-controlling procedure based on double selection.

The results suggest that, once an appropriate choice of the knockoff procedure is made, the method can

be a powerful tool for simultaneous inference in high-dimensional settings. Accordingly, the choice which

version of knockoffs are used in an empirical application is likely to depend on the setting at hand. The

performance of the double selection approach of Belloni et al. (2014a) is comparably more stable and

allows to employ different criteria and methods for multiple testing adjustments.

3.6 Simultaneous Inference in a Real-Data Example with R

3.6.1 Implementation in the R Package hdm

Estimation of the high-dimensional regression model in Equation (5.3) and simultaneous inference on the

target coefficients based on the double selection approach is implemented in the R package hdm available at

CRAN (Chernozhukov et al., 2016a). hdm provides an implementation of the double selection approach of

Belloni et al. (2014a) using the lasso as the variable selection device. The function rlassoEffects() does

valid inference on a specified set of target parameters and returns an object of S3 class rlassoEffects.

Correction for testing multiple hypotheses simultaneously is then performed on this output object as

described in the following. More details on the hdm package and introductory examples are provided in

the hdm vignette available at CRAN. The package hdm offers three ways to perform valid simultaneous

inference in high-dimensional settings:

1. Overall significance test

hdm provides a global significance test that is comparable to a F-test known from classical ordinary

least squares regression. Based on Chernozhukov et al. (2013a, Appendix M) and Chernozhukov

et al. (2016b), the null hypothesis that no covariate has explanatory power for the outcome yi is

tested, i.e.,

H0 : (θ′, β′)′ = 0.

The test is performed automatically if summary() is called for an object of the S3 class rlasso. This

object corresponds to the output of the function rlasso() which implements the lasso estimator

using a theory-based rule for determining the penalization parameter.

2. Joint confidence interval

Based on an object of the S3 class rlassoEffects, a valid joint confidence interval with coverage

probability (1 − α) can be constructed for the specified target coefficients using the command

confint() with the option joint = TRUE.

3. Multiple testing adjustment of p-values

Starting with Version 0.3.0, the hdm package offers the S3 method p adjust() for objects inheriting

3The only case where the FDR is above γ is for the fixed knockoffs with n = 200 and p = 180. However, these results
have to be interpreted with caution because of very many repetitions with a zero-selection.
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from classes rlassoEffects and lm. By default, p adjust() implements the Romano-Wolf step-

down procedure using the computationally efficient multiplier bootstrap procedure (option method

= ’RW’). Hence, hdm offers an implementation of the p-value adjustment that corresponds to a joint

test in the sense of Romano-Wolf for post-selection inference that is based on double selection with

the lasso as well as for ordinary least squares regression. Moreover, the p adjust() call offers clas-

sical adjustment methods in a user-friendly way, i.e., the function can be executed directly on the

output object returned from an estimation with rlassoEffects() or lm(). The hosted correction

methods are the methods provided in the p.adjust() command of the basic stats package, i.e.,

Bonferroni, Bonferroni-Holm, and Benjamini-Hochberg among others. If an object of class lm is

used, the user can provide an index of the coefficients to be tested simultaneously. By default, all

coefficients are tested.

The hdm package can be installed from CRAN by the following command

# To install the hdm from CRAN call

install.packages("hdm")

Once the package has been installed, it can be loaded via

# Load the hdm package

library(hdm)

3.6.2 A Real-Data Example for Simultaneous Inference in High Dimensions

- The Gender Wage Gap Analysis

The following section demonstrates the methods for valid simultaneous inference implemented in the

package hdm and provides a comparison of the classical correction methods in a replicable real-data

example. A simplistic although frequently encountered approach to assess wage gap heterogeneity is

to compare the relative wage gap across female and male employees in subgroups defined in terms of

a particular variable, for example by industry. It is obvious that this approach neglects the role of

other variables relevant for the wage income, for example educational background, experience etc. As an

exemplary illustration, the gender gap in average (mean) earnings in 12 industrial categories is presented in

Figure 3.2, suggesting that the wage gap differs greatly across these subgroups. The category “Wholesale”

is set as the baseline class as indicated by the gray box in Figure 3.1. If one would simply compare the

wage gaps across categories in an approach such as this, one would conclude that there are several

categories with higher and lower gender gaps, for example, in industry “Transportation”, “Agriculture”

with the largest gap observed in “Finance, Insurance and Real Estate”.

In contrast to this simplistic approach, an extended wage equation including interaction terms of the

gender indicator with observable characteristics is able to take the role of other labor market character-

istics into account. Thus, this approach makes it possible to give insights on the potential drivers of the

gender wage gap. The coefficients on the gender interactions can then be interpreted as changes of the

wage gap as compared to the baseline category. As the regression approach leads to a large number of

coefficients that are tested simultaneously, an appropriate multiple testing adjustment is required. The

presented example is an illustration of the more extensive analysis of a heterogeneous gender wage gap

in Bach et al. (2018a).
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Figure 3.2: Average wage gap in industries, ACS 2016.

3.6.2.1 Data Preparation

The exemplary data is a subsample of the 2016 American Community Survey and can be replicated with

the documentation “Appendix: Replicable Data Example” that is available online.4

The data provide information on civilian full-time working (35+ hours a week, 50+ weeks a year) White,

non-Hispanic employees aged older than 25 and younger than 40 with earnings exceeding a the federal

minimum level of earnings ($12,687.5 of yearly wage income). After preprocessing, the data set can be

loaded.

# load the ACS data (after preprocessing)

load("ACS2016_gender.rda")

3.6.2.2 Valid Simultaneous Inference on a Heterogeneous Gender Wage Gap

We would like to provide a valid answer to the question whether the gender wage gap differs according to

the observable characteristics of female employees and whether this variation is significant. To do so, it is

necessary to account for regressors that affect women’s job market environment. In the example, variables

on marriage, the presence of own children, geographic variation, job characteristics (industry, occupation,

hours worked), human capital variables (years of education, experience (squared)), and college major are

considered. A wage regression is set up that includes all two-way interactions of the female dummy with

the additional characteristics in addition to the baseline regressors, xi.

lnwi = β0 +

K∑
k=1

θk (femalei × xk,i) + x′iβ + εi, i = 1, . . . , n, (3.5)

The analysis begins with the construction of model matrix that implements the regression relationship

of interest.

4https://www.bwl.uni-hamburg.de/en/statistik/forschung/software-und-daten.html
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# Weekly log wages as outcome variable

y = data$lwwage

# Model Matrix containing 2-way interaction of female

# with relevant regressors + covariates (not interacted)

X = model.matrix( ~ 1 + fem + fem:(ind + occ + hw + deg + yos + exp + exp2 +

married + chld19 + region + msa ) +

married + chld19 + region + msa + ind + occ + hw + deg +

yos + exp + exp2,

data = data)

# Exclude the constant variables

X = X[, which(apply(X, 2, var)!=0)]

dim(X)

## [1] 70473 123

# Replace column names for female indicator with shorter names

colnames(X) = gsub("femTRUE", "fem", colnames(X))

Accordingly, the regression model considered has p = 123 regressors in total and is estimated on the basis

of n = 70, 473 observations. The wage Equation (3.5)is estimated with the lasso with the theory-based

choice of the penalty term as implemented in the function rlasso. To answer the question whether

the included regressors have any explanatory power for the outcome variable, the global test of overall

significance is run by calling summary() on the output object of the rlasso() function.

# run rlasso

lasso1 = rlasso(X,y)

# run global test

summary(lasso1, all = FALSE)

# Complete output provided in the Appendix

##

## Call:

## rlasso.default(x = X, y = y)

##

## Post-Lasso Estimation: TRUE

##

## Total number of variables: 123

## Number of selected variables: 58

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.509477 -0.274888 -0.007866 0.255786 2.667454

##

## Estimate

## (Intercept) 4.696

## fem 0.008

## married 0.116

## chld19 0.088
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## regionMiddle Atlantic Division 0.075

## regionEast North Central Div. -0.037

##

## [...]

##

## fem:married -0.048

## fem:chld19 -0.041

## fem:regionMountain Division -0.007

##

## Residual standard error: 0.4633

## Multiple R-squared: 0.3906

## Adjusted R-squared: 0.3901

## Joint significance test:

## the sup score statistic for joint significance test is 279.6 with a p-value of 0

The hypothesis that all coefficients in the model are zero can be rejected at all common significance levels.

The main objective of the analysis is to estimate the effects associated with the gender interactions and to

assess whether these effects are jointly significantly different from zero. The so-called “target” variables,

in total 62 regressors, are specified in the index option of the rlassoEffects() function. Hence, it is

necessary to indicate the columns of the model matrix that correspond to interactions with the female

indicator.

# Construct index for gender variable and interactions (target parameters)

index.female = grep("fem", colnames(X))

K = length(index.female)

# Perform inference on target coefficients

# estimation might take some time (10 minutes)

effects = rlassoEffects(x = X, y = y, index = index.female, method = "double selection")

# here only present first rows of output; full output provided in the Appendix

summary(effects)

## Estimate. Std. Error t value Pr(>|t|)

## fem -0.0460 0.0660 -0.6976 0.4854

## fem:indAGRI -0.1124 0.0542 -2.0752 0.0380

## fem:indCONSTR -0.0525 0.0361 -1.4520 0.1465

## fem:indMANUF -0.0110 0.0265 -0.4152 0.6780

## fem:indTRANS -0.0418 0.0294 -1.4230 0.1547

## fem:indRETAIL 0.0284 0.0274 1.0353 0.3005

## fem:indFINANCE -0.1349 0.0264 -5.1126 0.0000

The output presented in the Appendix shows the 123 estimated coefficients together with t-statistics and

p-values that are not yet corrected for multiple testing. The next step is to adjust the p-values for multiple

testing. Starting with Version 0.3.0, the hdm offers the S3 method p adjust() for objects inheriting

from classes rlassoEffects and lm. It hosts the correction methods from the function p.adjust()

of the stats package, for example the Bonferroni, Bonferroni-Holm, Benjamini-Hochberg as well as no

correction at all. First, the naive approach without any correction is presented. Table 3.2 shows the

number of rejections at significance levels α ∈ {0.01, 0.05, 0.1}.
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Method Significance Level
0.01 0.05 0.10

None 14 24 25
Benjamini-Hochberg 10 14 21
Bonferroni 9 10 10
Holm 9 10 10
Joint Confidence Interval 9 10 10
Romano-Wolf 9 10 10

Table 3.2: Number of rejected hypotheses, gender wage gap example.

# Extract (unadjusted) p-values

pvals.unadj = p_adjust(effects, method = "none")

# Coefficients and p-values; show first rows of output only

head(pvals.unadj)

# Rejections at 1%, 5%, and 10% significance levels

#levels = list(0.01, 0.05, 0.1)

#lapply(levels, function(x) sum(pvals.unadj[,"pval"]< x))

## Estimate. pval

## fem -0.0460 0.4854

## fem:indAGRI -0.1124 0.0380

## fem:indCONSTR -0.0525 0.1465

## fem:indMANUF -0.0110 0.6780

## fem:indTRANS -0.0418 0.1547

## fem:indRETAIL 0.0284 0.3005

## fem:indFINANCE -0.1349 0.0000

Thus, without correction for multiple testing, 14, 24, and 25 hypotheses could be rejected given the

significance levels of 1%, 5% and 10%, respectively. If one returns to the initial example on variation by

industry, one would find significant variation of the wage gap by industry (as compared to the baseline

category “Wholesale” in 3 categories, namely “Agriculture”, “Finance, Insurance, and Real Estate” and

“Professional and Related Services” at a significance level of 0.1.

Second, classical correction methods like the Bonferroni, Bonferroni-Holm, and the Benjamini-Hochberg

adjustments are used to account for testing the 62 hypotheses at the same time.

# Bonferroni

pvals.bonf = p_adjust(effects, method = "bonferroni")

# Holm

pvals.holm = p_adjust(effects, method = "holm")

head(pvals.bonf)

## Estimate. pval

## fem -0.0460 1

## fem:indAGRI -0.1124 1

## fem:indCONSTR -0.0525 1
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## fem:indMANUF -0.0110 1

## fem:indTRANS -0.0418 1

## fem:indRETAIL 0.0284 1

## fem:indFINANCE -0.1349 0

head(pvals.holm)

## Estimate. pval

## fem -0.0460 1

## fem:indAGRI -0.1124 1

## fem:indCONSTR -0.0525 1

## fem:indMANUF -0.0110 1

## fem:indTRANS -0.0418 1

## fem:indRETAIL 0.0284 1

## fem:indFINANCE -0.1349 0

As a general improvement, the Holm-corrected p-values are smaller or equal to those obtained from a

Bonferroni adjustment. At significance levels 1%, 5% and 10%, it is possible to reject fewer hypotheses

if p-values are corrected for multiple testing. As displayed in Table 3.2, nine hypotheses can be rejected

according to the Bonferroni and the Holm procedure at a significance level of 1%. If the significance level

of 5% and 10% are considered, 10 hypotheses can be rejected.

According to the Benjamini-Hochberg (BH) correction of p-values that achieves control of the FDR, it is

possible to reject 10, 14 and 21 null hypotheses at specified values of the FDR, γ, at 0.01, 0.05 and 0.1.

pvals.BH = p_adjust(effects, method = "BH")

head(pvals.BH)

## Estimate. pval

## fem -0.0460 0.6404

## fem:indAGRI -0.1124 0.1024

## fem:indCONSTR -0.0525 0.2930

## fem:indMANUF -0.0110 0.8084

## fem:indTRANS -0.0418 0.2998

## fem:indRETAIL 0.0284 0.4903

## fem:indFINANCE -0.1349 0.0000

Regarding variation by industry, the Bonferroni and Holm procedure find a significantly different wage

gap (at the 10% significance level) only for industry “Finance, Insurance, and Real Estate”, whereas the

Benjamini-Hochberg correction with γ = 0.1 finds a second significant effect for the industry “Professional

and Related Services”.

The p-values can be adjusted according to the Romano-Wolf-stepdown algorithm by setting the option

method = ‘RW’ (default) of the p adjust() call. The number of repetitions can be varied by specifying

the option B, B = 1000 by default. Although the Romano-Wolf stepdown procedure leads to smaller

p-values as compared to the Bonferroni and Holm correction, it is not possible to reject more hypotheses

in the example considered.

set.seed(123)

pvals.RW = p_adjust(effects, method = "RW", B = 1000)

head(pvals.RW)
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## Estimate. pval

## fem -0.0460 1.000

## fem:indAGRI -0.1124 0.689

## fem:indCONSTR -0.0525 0.980

## fem:indMANUF -0.0110 1.000

## fem:indTRANS -0.0418 0.980

## fem:indRETAIL 0.0284 1.000

## fem:indFINANCE -0.1349 0.000

Finally, we can construct a simultaneous (1−α) confidence interval using the confint() command with

specified option joint = TRUE. This is equivalent to performing a joint significance test at level α.

alpha = 0.1

set.seed(123)

CI = confint(effects, level = 1-alpha, joint = TRUE, B = 1000)

head(CI)

In line with the previous results, setting α = 0.1 leads to 9 rejected hypotheses with a joint 0.9 confidence

interval.

3.7 Conclusion

The previous sections provide a short overview on important methods for multiple testing adjustment in a

high-dimensional regression setting. Throughout the paper, our intention was to present the concepts and

the necessity of a multiple adjustment in a comprehensive way. Similarly, the tools for valid simultaneous

inference in high-dimensional settings that are available in the R package hdm are intended to be easy to

use in empirical applications. The demonstration of the methods in the real-data example are intended

to motivate applied statisticians to (i) use modern statistical methods for high-dimensional regression,

i.e., the lasso, and (ii) to appropriately adjust if multiple hypotheses are tested simultaneously. Since

the hdm provides user-friendly adjustment methods for objects of the S3 class lm, we hope that applied

researchers and data scientists will use the correction methods more frequently, even in classical least

squares regression.
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3.8 Appendix

3.8.1 Computation and Infrastructure

The simulation study has been run on a x86 64redhatlinux-gnu (64-bit) (CentOS Linux 7 (Core)) cluster

using R version 3.5.3 (2019-03-11). All lasso estimations are performed using the R package hdm, version

0.3.1 (Chernozhukov, Hansen, and Spindler 2016a) which can be downloaded from CRAN. For the

knockoff procedure, the R package knockoff (Patterson and Sesia, 2018) has been used. The package is

available from CRAN.

3.8.2 Additional Results, Simulation Study

n K Fix-KO Model-X Model-X (Or.)

200 60 345 413 514
200 180 994 992 512
200 400 1000 0 511
500 60 134 185 497
500 200 291 416 496

Table 3.3: Number of repetitions with selection of zero variables, Knockoffs.
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3.8.3 Additional Results, Real-Data Example

The complete summary outputs of the global significance test and the joint significance test for the

target coefficients with lasso and double selection are omitted in the main text for the sake of brevity.

For completeness, the output is presented in the following.

# run rlasso

lasso1 = rlasso(X,y)

# run global test

summary(lasso1, all = FALSE)

##

## Call:

## rlasso.default(x = X, y = y)

##

## Post-Lasso Estimation: TRUE

##

## Total number of variables: 123

## Number of selected variables: 58

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.509477 -0.274888 -0.007866 0.255786 2.667454

##

## Estimate

## (Intercept) 4.696

## fem 0.008

## married 0.116

## chld19 0.088

## regionMiddle Atlantic Division 0.075

## regionEast North Central Div. -0.037

## regionWest North Central Div. -0.073

## regionEast South Central Div. -0.120

## regionMountain Division -0.059

## regionPacific Division 0.132

## msa 0.185

## indAGRI -0.217

## indMANUF 0.076

## indTRANS 0.092

## indRETAIL -0.136

## indFINANCE 0.180

## indBUISREPSERV 0.119

## indENTER -0.083

## indPROFE -0.057

## indADMIN -0.046

## occBus Operat Spec -0.043

## occComput/Math 0.016

## occLife/Physical/Soc Sci. -0.184

## occComm/Soc Serv -0.341

## occLegal 0.109

## occEduc/Training/Libr -0.350
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## occArts/Design/Entert/Sports/Media -0.168

## occHealthc Pract/Technic 0.105

## occProtect Serv -0.071

## occOffice/Administr Supp -0.317

## occProd -0.324

## hw50to59 0.215

## hw60to69 0.284

## hw70plus 0.252

## degComp/Inform Sci 0.160

## degEngin 0.207

## degEnglish/Lit/Compos -0.061

## degLib Arts/Hum -0.060

## degBio/Life Sci 0.040

## degMath/Stats 0.156

## degPhys Fit/Parks/Recr/Leis -0.077

## degPsych -0.041

## degCrim Just/Fire Prot -0.041

## degPubl Aff/Policy/Soc Wo -0.045

## degSoc Sci 0.081

## degFine Arts -0.081

## degBus 0.080

## degHist -0.063

## yos 0.111

## exp 0.033

## fem:indAGRI -0.073

## fem:indFINANCE -0.126

## fem:occArchit/Engin 0.034

## fem:occOffice/Administr Supp -0.023

## fem:degPubl Aff/Policy/Soc Wo -0.007

## fem:exp2 -0.017

## fem:married -0.048

## fem:chld19 -0.041

## fem:regionMountain Division -0.007

##

## Residual standard error: 0.4633

## Multiple R-squared: 0.3906

## Adjusted R-squared: 0.3901

## Joint significance test:

## the sup score statistic for joint significance test is 279.6 with a p-value of 0

# Summary of significance test (no correction of p-values)

summary(effects)

## Estimate. Std. Error t value Pr(>|t|)

## fem -0.0460 0.0660 -0.6976 0.4854

## fem:indAGRI -0.1124 0.0542 -2.0752 0.0380

## fem:indCONSTR -0.0525 0.0361 -1.4520 0.1465

## fem:indMANUF -0.0110 0.0265 -0.4152 0.6780

## fem:indTRANS -0.0418 0.0294 -1.4230 0.1547

## fem:indRETAIL 0.0284 0.0274 1.0353 0.3005

## fem:indFINANCE -0.1349 0.0264 -5.1126 0.0000
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## fem:indBUISREPSERV -0.0356 0.0273 -1.3046 0.1920

## fem:indPERSON -0.0517 0.0420 -1.2305 0.2185

## fem:indENTER -0.0476 0.0458 -1.0394 0.2986

## fem:indPROFE -0.0548 0.0254 -2.1591 0.0308

## fem:indADMIN -0.0227 0.0277 -0.8185 0.4131

## fem:occBus Operat Spec 0.0266 0.0162 1.6430 0.1004

## fem:occFinanc Spec -0.0506 0.0176 -2.8688 0.0041

## fem:occComput/Math -0.0030 0.0176 -0.1737 0.8621

## fem:occArchit/Engin 0.0552 0.0220 2.5030 0.0123

## fem:occLife/Physical/Soc Sci. 0.0532 0.0230 2.3100 0.0209

## fem:occComm/Soc Serv 0.1567 0.0194 8.0759 0.0000

## fem:occLegal 0.0071 0.0256 0.2759 0.7827

## fem:occEduc/Training/Libr 0.1123 0.0142 7.9243 0.0000

## fem:occArts/Design/Entert/Sports/Media 0.0432 0.0203 2.1277 0.0334

## fem:occHealthc Pract/Technic 0.0018 0.0212 0.0859 0.9315

## fem:occProtect Serv 0.0210 0.0327 0.6417 0.5211

## fem:occSales -0.0169 0.0176 -0.9624 0.3358

## fem:occOffice/Administr Supp -0.0094 0.0157 -0.5995 0.5488

## fem:occProd 0.0135 0.0399 0.3376 0.7357

## fem:hw40to49 -0.0548 0.0188 -2.9159 0.0035

## fem:hw50to59 -0.0711 0.0204 -3.4914 0.0005

## fem:hw60to69 -0.1290 0.0261 -4.9439 0.0000

## fem:hw70plus -0.2015 0.0414 -4.8652 0.0000

## fem:degAgri 0.0137 0.0375 0.3668 0.7138

## fem:degComm 0.0414 0.0199 2.0759 0.0379

## fem:degComp/Inform Sci -0.0650 0.0300 -2.1641 0.0305

## fem:degEngin -0.0019 0.0249 -0.0765 0.9390

## fem:degEnglish/Lit/Compos 0.0308 0.0238 1.2972 0.1946

## fem:degLib Arts/Hum 0.0602 0.0371 1.6241 0.1044

## fem:degBio/Life Sci -0.0330 0.0223 -1.4752 0.1402

## fem:degMath/Stats -0.0547 0.0341 -1.6036 0.1088

## fem:degPhys Fit/Parks/Recr/Leis -0.0084 0.0273 -0.3080 0.7581

## fem:degPhys Sci -0.0591 0.0271 -2.1844 0.0289

## fem:degPsych -0.0114 0.0222 -0.5126 0.6082

## fem:degCrim Just/Fire Prot -0.0745 0.0267 -2.7869 0.0053

## fem:degPubl Aff/Policy/Soc Wo -0.0340 0.0440 -0.7717 0.4403

## fem:degSoc Sci -0.0515 0.0189 -2.7231 0.0065

## fem:degFine Arts -0.0194 0.0211 -0.9172 0.3590

## fem:degMed/Hlth Sci Serv -0.0301 0.0249 -1.2102 0.2262

## fem:degBus -0.0152 0.0164 -0.9259 0.3545

## fem:degHist -0.0613 0.0259 -2.3688 0.0178

## fem:yos 0.0069 0.0034 2.0285 0.0425

## fem:exp -0.0019 0.0037 -0.5138 0.6074

## fem:exp2 -0.0078 0.0093 -0.8425 0.3995

## fem:married -0.0542 0.0089 -6.0739 0.0000

## fem:chld19 -0.0507 0.0094 -5.4045 0.0000

## fem:regionMiddle Atlantic Division -0.0239 0.0155 -1.5445 0.1225

## fem:regionEast North Central Div. -0.0116 0.0148 -0.7837 0.4332

## fem:regionWest North Central Div. -0.0146 0.0176 -0.8282 0.4076

## fem:regionSouth Atlantic Division -0.0022 0.0149 -0.1478 0.8825

## fem:regionEast South Central Div. 0.0049 0.0197 0.2475 0.8045
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## fem:regionWest South Central Div. -0.0741 0.0174 -4.2652 0.0000

## fem:regionMountain Division -0.0321 0.0180 -1.7827 0.0746

## fem:regionPacific Division -0.0611 0.0161 -3.8013 0.0001

## fem:msa 0.0029 0.0134 0.2185 0.8270
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Chapter 4

Uniform Inference in

High-Dimensional Additive Models

4.1 Introduction

Nonparametric regression allows for estimation of the relationship f between a target variable Y and

input variables X = (X1, . . . , Xp)
T without imposing restrictive functional assumptions

Y = f(X1, . . . , Xp) + ε,

where ε denotes the random error term satisfying E[ε|X] = 0. However, in settings with a large num-

ber of regressors p, possibly with p exceeding the number of observations n, the well-known curse of

dimensionality makes it practically impossible to estimate the regression function f(X1, . . . , Xp). A very

popular approach in statistics and econometrics to overcome this limitation of nonparametric estimation

in practice is to impose an additive structure of the regression function leading to additive models

Y = α+ f1(X1) + . . .+ fp(Xp) + ε, (4.1)

where α is a constant and fj(·), j = 1, . . . , p, are smooth univariate functions. The idea of additive

models can be traced back to Friedman and Stuetzle (1981), Stone (1985) and Hastie and Tibshirani

(1990). Estimation and inference in the low-dimensional setting with fixed p has been analyzed widely

in the literature. For an introduction to additive models, we refer to the textbook treatments in Hastie

and Tibshirani (1990) and Wood (2017). In recent years, considerable progress has been made in

understanding and analyzing additive models in high-dimensional settings that allow the number of

components to grow with the sample size. For example, the theoretical literature has provided results

on the estimation rate in high-dimensional additive models, as in the work by Sardy and Tseng (2004),

Lin and Zhang (2006) and many others (Ravikumar et al., 2009; Meier et al., 2009; Huang et al., 2010;

Koltchinskii and Yuan, 2010; Kato, 2012; Petersen et al., 2016; Lou et al., 2016). The derived theoretical

guarantees in the high-dimensional setting rely on a sparsity assumption that requires that only a small

number s of the components are non-zero. From an intuitive point of view, this assumption allows

the model being endowed with additional structure if the number of covariates are allowed to grow

with sample size. Despite the considerable efforts that have been made to gain theoretical insights in

high-dimensional additive models, only few studies have been concerned with valid inference in this class

of models, for example regarding the construction of valid hypothesis tests or confidence regions. Härdle

(1989), Sun and Loader (1994), Fan and Zhang (2000), Claeskens and Keilegom (2003) and Zhang and
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Peng (2010) provide approaches to construct confidence bands in the widely studied setting with fixed

dimensions. Only recently new results on valid inference in additive models in a high-dimensional setting

have been derived. We review these results in the following and highlight our contribution to the existing

literature.

Our work contributes to the expanding literature on high-dimensional inference, especially to the

debiased/double machine learning literature. The double machine learning approach (Belloni et al.,

2014c) offers a general framework for uniformly valid inference in high-dimensional settings. Alternative

approaches for valid confidence intervals for low-dimensional parameters in high-dimensional linear

models were also derived in van de Geer et al. (2014) and Zhang and Zhang (2014). These studies are

based on the so-called debiasing approach that provides an alternative framework for valid inference. The

framework involves a one-step correction of the lasso estimator and, thus, gives rise to an asymptotically

normally distributed estimator. For a survey on post-selection inference in high-dimensional settings

and generalizations, we refer to Chernozhukov et al. (2015b).

In a recent contribution, which is related to our work, Kozbur (2015) proposes a so-called post-

nonparametric double selection approach for a scalar functional of one component.We consider the same

setting as Kozbur (2015), i.e., a more general additively separable model

Y = f1(X1) + f−1(X2, . . . , Xp) + ε,

that includes the additive model

Y = α+ f1(X1) + . . .+ fp(Xp) + ε.

The focus in Kozbur (2015) is on inference on functionals of the form θ = a(f1) leading to results on

pointwise confidence intervals that are based on a penalized series estimator. Our framework allows

to extend these results and to clarify the underlying assumptions. First, building on recent results on

inference on high-dimensional target parameters by Belloni et al. (2018) and Belloni et al. (2014a), we

are able to establish uniformly valid confidence bands for the whole function f1. Second, Kozbur (2015)

relies on two high level assumptions on lasso estimation and variable selection (see Assumptions 9 and

10 in Kozbur (2015)) that might be difficult to verify. Hence, we clarify the technical requirements and

provide results on uniform lasso estimation that are necessary to establish valid inference.

In a recent study, which is based on the debiasing approach by Zhang and Zhang (2014) mentioned ear-

lier, Gregory et al. (2016) propose an estimator for the first component f1 in a high-dimensional additive

model where the number of additive components p may increase with the sample size. The estimator

is constructed in two steps. In the first step, an undersmoothed estimator based on near-orthogonal

projections with a group lasso bias correction is constructed. A debiased version of the first step es-

timator is used to generate pseudo responses Ŷ . These pseudo responses are then used in the second

step that involves a smoothing method being applied to a nonparametric regression problem with Ŷ and

covariates X1. Under sparsity assumptions on the number of nonzero additive components, the so-called

oracle property is shown. Accordingly, the proposed estimator in Gregory et al. (2016) is asymptotically

equivalent to the oracle estimator that is based on the true functions f2, . . . , fp. The asymptotics of

the oracle estimator are well understood and carry over to the proposed debiasing estimate including

methodology to construct uniformly valid confidence intervals for f1. Nevertheless, Gregory et al. (2016)

do not explicitly focus on inference. In their analysis, much stronger assumptions are required to obtain

the oracle property. For example, normally distributed errors that are independent to X are assumed as

well as a bounded support of X. Similarly to our framework, a large set of basis functions is chosen, for

example polynomials or splines, to approximate the components f1 and f−1. A feature that distinguishes
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our work from the work in Gregory et al. (2016) is that we allow the degree of approximating functions

to grow to infinity with increasing sample size.

A procedure that explicitely addresses the construction of uniformly valid confidence bands for the compo-

nents in high-dimensional additive models has been developed in Lu et al. (2020). The authors emphasize

that unformly valid inference in these models is a challenging problem, as a direct generalization of the

ideas for the fixed dimensional case is difficult. Whereas confidence bands are mostly built upon kernel

methods in the low-dimensional case, the estimators for high-dimensional sparse additive models are

typically sieve estimators based on dictionaries. To derive their results, Lu et al. (2020) combine both

kernel and sieve methods to utilize the advantages of each method resulting in a kernel-sieves hybrid

estimator. This leads to a two-step estimator with many tuning parameters, for example the bandwidth

and penalization levels that need to be chosen by cross-validation. Due to the local structure of the

hybrid estimator, the framework of Lu et al. (2020) differs from ours in that they consider an additive

local approximation model with sparsity (ATLAS), in which they only need to impose a local sparsity

structure.

The advantage of the estimator, which we propose in the following, is that we do not have to leave the

sieves framework and are nevertheless able to establish the uniform validity of the resulting confidence

bands. This is possible as we consider the problem as a high-dimensional Z-estimation problem utilizing

recent results from Belloni et al. (2018). We also provide a theory driven choice of the penalization level

involved in the lasso estimation steps that makes computationally intense cross-validation procedures

obsolete. Similarly to Gregory et al. (2016), Lu et al. (2020) assume normally distributed errors that are

independent to X. Our model framework allows us to refrain from the normality assumption and only

requires sub-exponential tails of the distribution of the error term. Moreover, the main results are also

compatible with a heteroskedastic error. Finally, we can overcome the requirement in Lu et al. (2020)

that the number of non-zero components s = O(1) is bounded. Instead, s may grow to infinity with

increasing sample size.

The finite sample properties of our estimator are evaluated in a simulation study that is based on the

data generating processes in Gregory et al. (2016). The results show that the suggested method is able

to perform valid simultaneous inference even in small samples and high-dimensional settings. Finally, we

include an empirical application to the Boston housing data and provide evidence on nonlinear effects of

socio-economic factors on house prices.

4.1.1 Organization of the Paper

The paper is organized as follows. Section 4.2 introduces and motivates the main regression problem in

a high-dimensional additive model. Section 4.3 provides an introduction to the estimation method. In

Section 4.4, the main result is provided. A simulation study, highlighting the small sample properties

and implementation of our proposed method, is presented in Section 4.5. Section 4.6 illustrates the use

of the method in an empirical application to the Boston housing data. The proof of the main theorem is

provided in Section 4.7. The Appendix includes additional technical material. In Appendix 4.8, a general

result for uniform inference on a high-dimensional linear functional is presented. Appendix 4.9 provides

results regarding uniform lasso estimation rates in high dimensions. Finally, computational details are

presented in Appendix 4.10.

4.1.2 Notation

Throughout the paper, we consider a random element W from some common probability space (Ω,A, P ).

We denote by P ∈ Pn a probability measure out of a large class of probability measures, which may vary

with the sample size (since the model is allowed to change with n) and by Pn the empirical probability

78



CHAPTER 4 4.2. SETTING

measure. Additionally, let E respectively En be the expectation with respect to P , respectively Pn, and

Gn(·) denotes the empirical process

Gn(f) :=
√
n

(
1

n

n∑
i=1

f(Wi)− E[f(Wi)]

)

for a class of suitably measurable functions F :W → R. ‖·‖P,q denotes the Lq(P )-norm. In the following,

we write ‖ · ‖Ψρ for the Orlicz-norm that is defined as

‖W‖Ψρ := inf {C > 0 : E [exp((|W |/C)ρ)− 1] ≤ 1}

for ρ > 1. Furthermore, ‖v‖1 =
∑p
l=1 |vl| denotes the `1-norm, ‖v‖2 =

√
vT v the `2-norm and ‖v‖0 equals

the number of non-zero components of a vector v ∈ Rp. We define v−l := (v1, . . . , vl−1, vl+1 . . . , vp)
T ∈

Rp−1 for any 1 ≤ l ≤ p. ‖v‖∞ = supl=1,...,p |vl| denotes the sup-norm. Let c and C denote positive

constants independent of n with values that may change at each appearance. The notation an . bn

means an ≤ Cbn for all n and some C. Furthermore, an = o(1) denotes that there exists a sequence

(bn)≥1 of positive numbers such that |an| ≤ bn for all n, where bn is independent of P ∈ Pn for all n,

and bn converges to zero. Finally, an = OP (bn) means that for any ε > 0 there exists a C such that

P (an > Cbn) ≤ ε for all n.

4.2 Setting

4.2.1 Motivation and Illustration

Before we introduce the formal setting in Section 4.2.2, we would like to motivate the basic ideas in a

simplified example. We consider an additive model with two components

f(x) = f1(x1) + f2(x2) + ε. (4.2)

Our goal is to perform valid inference on the object of interest f1, in other words we would like to

provide a uniform confidence band for f1 as illustrated in an example in Figure 4.1. Hence, we consider

f2 in Equation (4.2) as a nuisance function. Next, we assume that it is possible to represent the two

components by an approximately linear representation. For the first component, the representation is

given by

f1(X1) = θT0 g(X1) + b1(X1).

Here, g(X1) is a basis (e.g., a spline basis, sieve terms or a polynomial series) consisting of d1 terms, θ0

is the corresponding coefficient vector and b1(X1) is an approximation error. The existence of such a

sparse linear approximation is a common assumption in high-dimensional statistics that states that only

a subset of the coefficients in θ0 have a coefficient that is different from zero. For the second component,

we assume an analogous representation

f2(X2) = βT0 h(X2) + b2(X2), (4.3)

where the basis h(X2) consists of d2 terms. We allow the dimensions d1 and d2 to grow with the sample

size in order to establish the asymptotic results in high-dimensional settings. Accordingly, the number

of components p can grow with the sample size, as well.1 To derive a uniformly valid confidence band,

1However, for the ease of notation we will later subsume them in the component f−1(X2, . . . , Xp).
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estimation and inference of

f1(·) ≈ θT0 g(·) =

d1∑
l=1

θ0,lgl(·) (4.4)

is required. In a naive approach to estimate the first component θ0,1 of the vector θ0, one could use

lasso or other machine learning methods to select the relevant basis expansion terms in θ0 and β0 in the

regression model (4.2). A possible second step would be to estimate a regression of the dependent variable

on all components that have been selected in the lasso estimation step. The final estimator for the first

component θ0,1 might be obtained from this regression, and the procedure could be repeated iteratively

for all other components in f1(x1). However, this approach is problematic because it fails to deliver valid

results. In other words, the use of the lasso estimator makes it necessary to take the variable selection

into account and, hence to deal with the non-standard problem of post-selection inference. Intuitively, the

naive procedure that is based on only one lasso estimation step might involve selection mistakes that will

invalidate the resulting confidence bands for θ0,1. The critical selection mistakes will not arise with regard

to variables that have high predictive power for the dependent variable Y , but rather refer to variables

that are potentially highly correlated with the basis expansion term g1(). As a result, an omitted variable

bias might arise that prevents the estimator from asymptotically converging to a normal distribution. To

overcome this limitation of post-selection inference, the statistical literature has developed the Double

Machine Learning and the Debiasing approach that we mentioned in the introduction.

To address the potential bias introduced by the lasso estimation, Belloni et al. (2014c) propose to include

an auxiliary regression for the corresponding covariate of the target parameter. Here, we consider

g1(X1) = γT0 Z−1 + ν (4.5)

where ν is an error term and Z−1 is defined as

Z−1 = (g2(X1), . . . , gd1(X1), h1(X−1), . . . , hd2(X−1))T .

Later, we will also allow for an approximation error in this equation. Belloni et al. (2014c) propose to

include in the final regression not only the covariates selected in the first step of the naive approach

but to augment this set of variables with Lasso-selected regressors from the auxiliary regression. This

procedure is equivalent to constructing a so-called Neyman-orthogonal moment function with respect to

the nuisance part. This is key for valid post-selection inference for the first component of the vector θ0.

In Section 4.2.2, we will provide more details about this property. Heuristically, the additional regression

step in Equation (4.5) will lead to robustness against moderate selection mistakes. It can be shown, that

this procedure implements an orthogonal moment equation

E [ψ1(W, θ0,1, η0,1)] = 0,

where the first component of θ0 is our target parameter and all other involved parameters are considered

as nuisance parameters. Belloni et al. (2014c) established an approach for valid inference for one

parameter. In high-dimensional additive models, the major technical challenge is that we have to

conduct inference for the potentially high-dimensional vector θ0, in other words the number of elements

in θ0 for which we would like to construct a valid confidence region is allowed to grow with the sample

size. Each component of θ0, θ0,l with l = 1, . . . , d1, is determined by an orthogonal moment condition

and we will show how uniformly valid confidence bands can be constructed by embedding the problem as

a high-dimensional Z-estimation problem. Finally, we show how the estimation of θ0 can be translated
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Figure 4.1: Illustration of the estimator and confidence bands, simulation example.

Predicted component f1(x1) with 95%-confidence bands (gray shaded area) obtained by our proposed estimator
for a component f1(x1) with f1(x1) = − sin(2 · x). The green curve corresponds to the true function f1(x1).
The predicted component f̂1(x1), which is obtained from our proposed estimator, is illustrated by the blue curve.
The underlying data are generated according to the DGP in the simulation study in Section 4.5 with n = 1000
observations and p = 50 regressors. For more information on the DGP, we refer to the description of the DGP in
Section 4.5.

to uniformly valid confidence intervals for the target function f1 using a multiplier bootstrap procedure.

Let us now illustrate our estimation procedure in the motivating example in Equation (4.2) with

two additive components f1 and f2 in a step-by-step explanation.

1. Perform valid inference on the lth component θ0,l of θ0 in Equation (4.4), where index l with l =

1, . . . , d1 indicates the target parameter under consideration. To obtain valid coefficient estimates

and estimates of the variance covariance matrix, we

1a. Estimate the potentially high-dimensional nuisance parameters by lasso regression. The nui-

sance terms include

� The coefficient vector β0 in the representation of f2 in Equation (4.3),

� All remaining components θk in θ0 with k 6= l for the representation of f1 in Equation

(4.4), and

� The coefficient vector γ0 in the auxiliary regression in Equation (4.5).

1b. Plug in these estimates into the moment conditions E [ψl(W, θ0,l, η0,l)] = 0 and solve these for

the target parameter θ0,l.

2. This estimation method results in a de-biased estimator θ̂0 of the target parameter that leads to

the following estimator of the target component f1:

f̂1(·) ≈ θ̂T0 g(·).

3. Using an appropriate multiplier bootstrap procedure allows us to construct uniformly valid confi-

dence bands for f1(x) based on this estimator.

Figure 4.1 illustrates the use of our estimation by providing a preview of our simulation studies in

Section 4.5. Our estimation methods provides an unbiased estimate for the target component f1 with
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corresponding (1−α) confidence interval that is valid over a compact interval ofX1. In the next section, we

consider a more general additively separable model and introduce a general formulation of the underlying

problem.

4.2.2 Formal Setting

Consider the following nonparametric additively separable model

Y = f(X) + ε = f1(X1) + f−1(X−1) + ε

with E[ε|X] = 0 and Var(ε|X) ≥ c. Let the scalar response Y and features X = (X1, . . . , Xp) take values

in Y, respectively in X = X1× · · · ×Xp. We assume to observe n i.i.d. copies (W (i))ni=1 = (Y (i), X(i))ni=1

of W = (Y,X), where the number of covariates p is allowed to grow with the sample size n. For

identifiability, we assume E[f−1(X−1)] = 0. We aim to construct uniformly valid confidence regions for

the first nonparametric component of the regression function, namely we want to find functions l̂(x) and

û(x) converging to f1(x) with

P
(
l̂(x) ≤ f1(x) ≤ û(x),∀x ∈ I

)
→ 1− α.

Here, I ⊆ X1 is a bounded interval of interest where we want to conduct inference. We approximate

f1 and f−1 by a linear combination of approximating functions g1, . . . , gd1
and h1, . . . , hd2

, respectively.

Define

g(x1) := (g1(x1), . . . , gd1
(x1))T

for x1 ∈ R and

h(x−1) := (h1(x−1), . . . , hd2
(x−1))T

for x−1 ∈ Rp−1. It is important to note that we allow the number of approximating functions d1 and d2

to increase with sample size. Assume that the approximations are given by

f1(X1) = θT0 g(X1) + b1(X1), (4.6)

where θ0,l ∈ Θl and analogously

f−1(X−1) := βT0 h(X−1) + b2(X−1), (4.7)

where b1 and b2 denote the error terms. Additionally, it is convenient to define the combination

z(x) := (g1(x1), . . . , gd1(x1), h1(x−1), . . . , hd2(x−1))T

for x ∈ Rp, where we abbreviate

Z := z(X) = (g1(X1), . . . , gd1
(X1), h1(X−1), . . . , hd2

(X−1))T .

For each element gl of g, we consider

gl(X1) = (γ
(l)
0 )TZ−l + b

(l)
3 (Z−l) + ν(l) (4.8)

with E[ν(l)|Z−l] = 0 and Var(ν(l)|Z−l) ≥ c. This corresponds to

E[gl(X1)|Z−l] = (γ
(l)
0 )TZ−l + b

(l)
3 (Z−l),
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with approximation error b
(l)
3 (Z−l). The second stage equation (4.8) is used to construct an orthogonal

score function for valid inference in a high-dimensional setting as described in Section 4.2.1. Estimating

f1(·) ≈ θT0 g(·)

can be recast into a general Z-estimation problem of the form

E [ψl(W, θ0,l, η0,l)] = 0, l ∈ 1, . . . , d1

with target parameter θ0 where the score functions are defined by

ψl(W, θ, η) =
(
Y − θgl(X1)− (η(1))TZ−l − η(3)(X)

)
·
(
gl(X1)− (η(2))TZ−l − η(4)(Z−l)

)
.

Here,

η = (η(1), η(2), η(3), η(4))T

with η(1) ∈ Rd1+d2−1, η(2) ∈ Rd1+d2−1, η(3) ∈ `∞(Rp) and η(4) ∈ `∞(Rd1+d2−1) are nuisance functions.

The true nuisance parameter η0,l is given by

η
(1)
0,l := β

(l)
0

η
(2)
0,l := γ

(l)
0

η
(3)
0,l (X) := b1(X1) + b2(X−1)

η
(4)
0,l (Z−l) := b

(l)
3 (Z−l),

where β
(l)
0 is defined as

β
(l)
0 := (θ0,1, . . . , θ0,l−1, θ0,l+1, . . . θ0,d1

, β0,1, . . . , β0,d2
)T .

Essentially, the index l determines which coefficient is not contained in β
(l)
0 . The third part of the

nuisance functions captures the error made by the approximation of f1 and f−1, which is independent

from l. Therefore, we sometimes omit l.

Comment 4.2.1. The score ψ is linear in θ, meaning

ψl(W, θ, η) = ψal (X, η(2), η(4))θ + ψbl (X, η)

with

ψal (X, η(2), η(4)) = −gl(X1)(gl(X1)− (η(2))TZ−l − η(4)(Z−l))

and

ψbl (X, η) = (Y − (η(1))TZ−l − η(3)(X))(gl(X1)− (η(2))TZ−l − η(4)(Z−l))

for all l = 1, . . . , d1.

Comment 4.2.2. The score function ψ satisfies the moment condition, namely

E [ψl(W, θ0,l, η0,l)] = 0

for all l = 1, . . . , d1, and, given further conditions mentioned in Section 4.4, the near Neyman orthogo-
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nality condition

Dl,0[η, η0,l] := ∂t
{
E[ψl(W, θ0,l, η0,l + t(η − η0,l))]

}∣∣
t=0
. δnn

−1/2,

where ∂t denotes the derivative with respect to t and (δn)n≥1 a sequence of positive constants converging

to zero.

4.3 Estimation

In this section, we describe our estimation method and how the uniform valid confidence bands are

constructed. The nuisance functions are estimated by lasso regressions. Finally, they are plugged into

the moment conditions and solved for the target parameters, which yield an estimate f̂1 for the first

component in the additive regression model. The lower and upper curve of the confidence bands are

finally based on the estimated covariance matrix and a critical value which is determined by a multiplier

bootstrap procedure. The technical details for the estimation are given in this section.

Let

g(x) = (g1(x), . . . , gd1(x))
T ∈ Rd1×1,

and

ψ(W, θ, η) = (ψ1(W, θ1, η1), . . . , ψd1
(W, θd1

, ηd1
))
T ∈ Rd1×1

for some vector

θ = (θ1, . . . , θd1)T

and

η = (η1, . . . , ηd1
)T .

For each l = 1, . . . , d1, let η̂l =
(
η̂

(1)
l , η̂

(2)
l , η̂

(3)
l , η̂

(4)
l

)
be an estimator of the nuisance function. The

estimator θ̂0 of the target parameter

θ0 = (θ0,1, . . . , θ0,d1
)T

is defined as the solution of

sup
l=1,...,d1

{∣∣∣En[ψl(W, θ̂l, η̂l)]∣∣∣− inf
θ∈Θl

∣∣∣En[ψl(W, θ, η̂l)]∣∣∣} ≤ εn, (4.9)

where εn = o
(
δnn
−1/2

)
is the numerical tolerance. Finally, the target function f1(·) can be estimated by

f̂1(·) := θ̂T0 g(·). (4.10)

Define the Jacobian matrix

J0 :=
∂

∂θ
E[ψ(W, θ, η0)]

∣∣∣∣
θ=θ0

= diag (J0,1, . . . , J0,d1
) ∈ Rd1×d1

with

J0,l = E[ψal (W, η
(2)
0,l , η

(4)
0,l )]
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= −E[((γ
(l)
0 )TZ−l + b

(l)
3 (Z−l) + ν(l))ν(l)]

= −E
[(

(γ
(l)
0 )TZ−l + b

(l)
3 (Z−l)

)
E[ν(l)|Z−l]︸ ︷︷ ︸

=0

]
− E[(ν(l))2]

= −E[(ν(l))2]

for all l = 1, . . . , d1. Observe that

E
[
ψ(W, θ0, η0)ψ(W, θ0, η0)T

]
=: Σεν

is the covariance matrix of εν := (εν(1), . . . , εν(d1)). Define the approximate covariance matrix

Σn : = J−1
0 E

[
ψ(W, θ0, η0)ψ(W, θ0, η0)T

]
(J−1

0 )T

= J−1
0 Σεν(J−1

0 )T ∈ Rd1×d1

with

Σn : =



E[(εν(1))2]
E[(ν(1))2]2

E
[
εν(1)εν(2)

]
E[(ν(1))2]E[(ν(2))2]

. . .
E
[
εν(1)εν(d1)

]
E[(ν(1))2]E[(ν(d1))2]

E
[
εν(2)εν(1)

]
E[(ν(2))2]E[(ν(1))2]

E[(εν(2))2]
E[(ν(2))2]2

. . .
E
[
εν(2)εν(d1)

]
E[(ν(2))2]E[(ν(d1))2]

...
...

. . .
...

E
[
εν(d1)εν(1)

]
E[(ν(d1))2]E[(ν(1))2]

E
[
εν(d1)εν(2)

]
E[(ν(d1))2]E[(ν(1))2]

. . . E[(εν(d1))2]

E[(ν(d1))2]2


.

The approximate covariance matrix can be estimated by replacing every expectation by the empirical

analog and plugging in the estimated parameters

Σ̂n : = Ĵ−1En
[
ψ(W, θ̂, η̂)ψ(W, θ̂, η̂)T

]
(Ĵ−1)T

= Ĵ−1Σ̂εν(Ĵ−1)T

=



En[(ε̂ν̂(1))2]
En[(ν̂(1))2]2

En
[
ε̂ν̂(1)ε̂ν̂(2)

]
En[(ν̂(1))2]En[(ν̂(2))2]

. . .
En
[
ε̂ν̂(1)ε̂ν̂(d1)

]
En[(ν̂(1))2]En[(ν̂(d1))2]

En
[
ε̂ν̂(2)ε̂ν̂(1)

]
En[(ν̂(2))2]En[(ν̂(1))2]

En[(ε̂ν̂(2))2]
En[(ν̂(2))2]2

. . .
En
[
ε̂ν̂(2)ε̂ν̂(d1)

]
En[(ν̂(2))2]En[(ν̂(d1))2]

...
...

. . .
...

En
[
ε̂ν̂(d1)ε̂ν̂(1)

]
En[(ν̂(d1))2]En[(ν̂(1))2]

En
[
ε̂ν̂(d1)ε̂ν̂(2)

]
En[(ν̂(d1))2]En[(ν̂(1))2]

. . . En[(ε̂ν̂(d1))2]

En[(ν̂(d1))2]2


.

This estimated covariance matrix can be used to construct the confidence bands

û(x) := f̂1(x) +
(g(x)T Σ̂ng(x))1/2cα√

n

l̂(x) := f̂1(x)− (g(x)T Σ̂ng(x))1/2cα√
n

,

where cα is a critical value determined by the following standard multiplier bootstrap method introduced

in Chernozhukov et al. (2013a). Define

ψ̂x(·) := (g(x)T Σ̂ng(x))−1/2g(x)T Ĵ−1ψ(·, θ̂0, η̂0)
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and let

Ĝ =
(
Ĝx
)
x∈I

=

(
1√
n

n∑
i=1

ξ(i)ψ̂x

(
W (i)

))
x∈I

,

where (ξ(i))ni=1 are independent standard normal random variables (especially independent from the data

(W (i))ni=1). The multiplier bootstrap critical value cα is given by the (1− α)-quantile of the conditional

distribution of supx∈I |Ĝx| given (W (i))ni=1. This estimation procedure can be summarized in the following

algorithm:

Algorithm 1 HDAM

Input: n training examples of the form W (i) = (Y (i), X
(i)
1 , X

(i)
−1), where Y (i) is the response, X

(i)
1 the

covariate of interest and X
(i)
−1 are additional covariates. Dictionaries of the approximating functions

g1, . . . , gd1
for f1 and h1, . . . , hd2

for f−1, a significance level α, an interval I for inference and a number

of bootstrap repetitions B.

1: Use the dictionary to construct the matrix Z := (g1(X1), . . . , gd1
(X1), h1(X−1), . . . , hd2

(X−1)).

2: Fit a Lasso/post-Lasso/sqrt-Lasso regression of the vector Y onto Z and save the estimated

coefficients (θ̃1, . . . , θ̃d1
, β̂1, . . . , β̂d2

) and the corresponding residuals ε̂.

3: for l = 1, . . . , d1 do

4: Fit a Lasso/post-Lasso/sqrt-Lasso regression of the vector gl(X1) onto Z−l and save the estimated

coefficients (γ̂
(l)
1 , . . . γ̂

(l)
d1+d2−1) and the corresponding residuals ν̂(l).

5: Plug in the estimated coefficients as nuisance parameters into the score function ψl(W, ·, η̂l)) to

solve (4.9). Save the resulting estimate θ̂l and scores ψl(W, θ̂l, η̂l) into the corresponding vector

θ̂0 and matrix ψ(W, θ̂0, η̂0), respectively.
6: end for

7: Use the estimated residuals ε̂ and ν̂ to construct the estimates Σ̂n and Ĵ .

8: for x ∈ I do

9: Calculate the vector ψ̂x(W ) := (g(x)T Σ̂ng(x))−1/2g(x)T Ĵ−1ψ(W, θ̂0, η̂0)

10: for b = 1, . . . , B do

11: Draw (ξ
(b)
i )ni=1 independent standard normal random variables.

12: Calculate Ĝ(b)
x = 1√

n

∑n
i=1 ξ

(b)
i ψ̂x(W (i)).

13: end for

14: end for

15: Calculate the critical value cα := (1− α)-quantile of supx∈I |Ĝ
(b)
x | with respect to the bootstrap

repetitions.

16: for x ∈ I do

17: Construct the confidence band as θ̂T0 g(x)± (g(x)T Σ̂ng(x))1/2cα√
n

18: end for

4.4 Main Results

Now, we specify the conditions that are required to provide uniformly valid confidence bands by

Algorithm 1. Since we would like to represent f1 and f−1 by their approximations in (4.6) and (4.7), we

need to choose an appropriate set of approximating functions g = (g1, . . . , gd1
) and h = (h1, . . . , hd2

),

respectively. In this context, let d̄n := max(d1, d2, n, e) and C be a strictly positive constant independent

of n and l, where e in d̄n denotes the Euler’s number. (An)n≥1 denotes a sequence of positive constants,
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possibly going to infinity with An ≥ n for all n. For details, we refer to Appendix 4.8. The number

of non-zero coefficients in Equation (4.6) and (4.8), respectively, is given by the sparsity index s.

Additionally, we set t1 := supx∈I ‖g(x)‖0 ≤ d1. The definition of t1 is helpful if the functions gl,

l = 1, . . . , d1, are local in the sense that for any point x in I there are at most t1 << d1 non-zero

functions. Further, g(I) denotes the image of the approximation functions with respect to the interval

of interest I.

The following assumptions hold uniformly in n ≥ n0 and P ∈ Pn:

Assumption A. 1.

(i) It holds

inf
x∈I
‖g(x)‖22 ≥ c > 0, sup

x∈I
sup

l=1,...,d1

|gl(x)| ≤ C <∞

and for all ε > 0

logN(ε, g(I), ‖ · ‖2) ≤ Ct1 log

(
An
ε

)
.

(ii) There exists 1 ≤ ρ ≤ 2 such that

max
l=1,...,d1

‖b(l)3 (Z−l)‖Ψρ ≤ C, ‖b1(X1) + b2(X−1)‖Ψρ ≤ C.

Additionally, the approximation errors obey

E
[(
b1(X1) + b2(X−1)

)2] ≤ Cs log(d̄n)/n,

max
l=1,...,d1

E
[(
b
(l)
3 (Z−l)

)2] ≤ Cs log(d̄n)/n

and

En
[(
b1(X1) + b2(X−1)

)2]− E
[(
b1(X1) + b2(X−1)

)2] ≤ Cs log(d̄n)/n,

max
l=1,...,d1

(
En
[(
b
(l)
3 (Z−l)

)2]− E
[(
b
(l)
3 (Z−l)

)2]) ≤ Cs log(d̄n)/n

with probability 1− o(1).

(iii) We have

sup
‖ξ‖2=1

E
[
(ξTZ)2

(
b1(X1) + b2(X−1)

)2] ≤ CE [(b1(X1) + b2(X−1)
)2]

and

sup
‖ξ‖2=1

E
[
(ξTZ)2

(
b
(l)
3 (Z−l)

)2] ≤ CE [(b(l)3 (Z−l)
)2]

for l = 1, . . . , d1.

(iv) It holds

E
[
ν(l)
(
b1(X1) + b2(X−1)

)]
≤ Cδnn−1/2

with δn = o
(
t
− 3

2
1 log−

1
2 (An)

)
.

Assumption A.1(i) contains regularity conditions on g. We assume that the infimum of the `2-norm of

g(x) is bounded away from zero, but the supremum is allowed to increase with sample size (affecting the
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growth conditions in A.2(v)). The lower bound on the infimum is not necessary and can be replaced

by a decaying sequence at the cost of stricter growth rates. The Assumptions A.1(ii) and (iii) are

tail and moment conditions on the approximation error. These assumptions are mild since the number

of approximating functions may increase with sample size. Finally, Assumption A.1(iv) ensures that

the violation of the exact Neyman Orthogonality due to the approximation errors is negligible. It is

worth to notice that if b1(X1) and b2(X−1) are measurable with respect to Z−l (for example in the linear

approximate sparse setting for the conditional expectation) the exact Neyman Orthogonality holds. Now,

we go more into detail regarding the condition on the covering number of the image of g. Especially if

t1 < d1, the complexity of the approximating functions is reduced significantly. One obtains

g(I) ⊆
(d1
t1

)⋃
j=1

g(j)(I),

where each g(j)(I) is only dependent on t1 nonzero components. It is straightforward to see that for each

g(j)(I) the covering numbers satisfy

N(ε, g(j)(I), ‖ · ‖2) ≤
(

6 supx∈I ‖g(x)‖2
ε

)t1
(cf. Van der Vaart and Wellner (1996)), implying

logN(ε, g(I), ‖ · ‖2) ≤ log

(d1
t1

)∑
j=1

N(ε, g(j)(I), ‖ · ‖2)


≤ log

((
e · d1

t1

)t1 (6 supx∈I ‖g(x)‖2
ε

)t1)

≤ t1 log

((
6ed1 supx∈I ‖g(x)‖2

t1

)
1

ε

)
≤ Ct1 log

(
d1

ε

)
.

For specific classes of approximating functions the complexity can be further reduced.

Assumption A. 2.

(i) For all l = 1, . . . , d1, Θl contains a ball of radius

log(log(n))n−1/2 log1/2(d1 ∨ e) log(n)

centered at θ0,l with

sup
l=1,...,d1

sup
θl∈Θl

|θl| ≤ C.

(ii) It holds

‖β(l)
0 ‖0 ≤ s, ‖β(l)

0 ‖2 ≤ C

for all l = 1, . . . , d1 and

max
l=1,...,d1

‖γ(l)
0 ‖0 ≤ s, max

l=1,...,d1

‖γ(l)
0 ‖2 ≤ C.
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(iii) There exists 1 ≤ ρ ≤ 2 such that

max
j=1,...,d1+d2

‖Zj‖Ψρ ≤ C, ‖ε‖Ψρ ≤ C.

(iv) It holds

inf
‖ξ‖2=1

E[(ξTZ)2] ≥ c and sup
‖ξ‖2=1

E[(ξTZ)4] ≤ C,

and the eigenvalues of the covariance matrix Σεν are bounded from above and away from zero.

(v) There exists a fixed q̄ ≥ 4 such that

(a) n
1
q̄
s2t31 log

2+ 4
ρ (d̄n) log(An)
n = o(1),

(b) n
1
q̄

supx∈I ‖g(x)‖62st
4
1 log(d̄n) log2(An)

n

(
log

2
ρ (d1) ∨ s

√
s log(d̄n)

n

)
= o(1),

(c) n
1
q̄
t13
1 log

6
ρ (d1) log7(An)

n = o(1).

Assumptions A.2(i) and (ii) are regularity and sparsity conditions, where the number of nonzero

regression coefficients s = sn is allowed to grow to infinity with increasing sample size. A detailed

comment on the sparsity condition is given in Comment 4.4.2. Assumption A.2(iii) contains tail

conditions on the approximating functions (and therefore on the original variables) as well as for the

error term. Assumption A.2(iv) is a standard eigenvalue condition, which restricts the correlation

between the basis elements (and therefore between the original variables). For example, if the conditional

variance of ν(l) is uniformly bounded away from zero, the second inequality of A.2(iv) holds. Finally,

Assumption A.2(v) provides the growth conditions. These are given in general terms and depend on the

choice of the approximation functions. Choosing B-Splines simplifies the growth conditions significantly

as we will discuss in Comment 4.4.1.

Theorem 3. Under the Assumptions A.1 and A.2, it holds that

P
(
l̂(x) ≤ f1(x) ≤ û(x),∀x ∈ I

)
→ 1− α

uniformly over P ∈ Pn where cα is a critical value determined by the multiplier bootstrap method.

Comment 4.4.1. [B-Splines] An appropriate and common choice in series estimation are B-Splines.

B-Splines are positive and local in the sense that g(x) ≥ 0 and supx∈I ‖g(x)‖0 ≤ t1 for every x, where t1

is the degree of the spline. The l1-norm of B-Splines is equal to 1, meaning

‖g(x)‖1 =

d1∑
j=1

gj(x) = 1

for every x (partition of unity). Hence, Assumption A.1(i) is met with

1√
t1
≤ inf
x∈I
‖g(x)‖22 ≤ sup

x∈I
‖g(x)‖22 ≤ 1 and sup

x∈I
sup

l=1,...,d1

|gl(x)| ≤ 1.

The covering numbers of g(I) is given by

logN(ε, g(I), ‖ · ‖2) ≤ log

 d1∑
j=1

N(ε, g(j)(I), ‖ · ‖2)


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≤ t1 log

6d
1
t1
1 supx∈I ‖g(x)‖2

ε


≤ C log

(
d1

ε

)
.

Choosing the degree of the B-Splines of order t1 = log(n), the growth rates in Assumption A.2(v) simplify

to

n
1
q̄
s2 log2+ 4

ρ (d̄n) log(d1)

n
= o(1) and n

1
q̄

log7+ 6
ρ (d1)

n
= o(1).

It is worth to notice that in the first growth condition

n
1
q̄
s2 log2+ 4

ρ (d̄n) log(d1)

n
= o(1)

both the total number of approximating functions d1 and d2, and the number of relevant functions s may

grow with the sample size in a balanced way. If s is bounded, the number of approximating functions can

grow at an exponential rate with the sample size. This means that the set of approximating functions can

be much larger than the sample size, only the number of relevant function s has to be smaller than the

sample size. This situation is common for lasso based estimators. Our growth condition is in line with

other results in the literature, e.g., Belloni et al. (2018), Belloni et al. (2014a) and many others. The

second growth condition ensures that

n
1
q̄

log7+ 6
ρ (d1)

n
= o(1)

and is in line with Chernozhukov et al. (2013a). It guarantees the validity of multiplier bootstrap in our

setting and allows us to construct uniformly valid confidence regions.

Comment 4.4.2. The sparsity condition in A.2(ii) restricts the number of nonzero regression coefficients

s = sn in the Equations (4.6), (4.7) and (4.8). Through this, we especially assume that the regression

function f can be approximated sufficiently well by only s relevant basis functions. Note that we do not

directly control the number of relevant covariables, but the number of approximating functions in total.

This sparsity condition is different from the one used in Gregory et al. (2016) and Lu et al. (2020) who

restrict the number of relevant additive components in the model (4.1). Our model also includes the

approximate sparse setting due to the error terms b1 and b2 in (4.6) and (4.7). This is more flexible and

more realistic for many applications.

Furthermore, we do not define θT0 g(X1) as the best projection of f1(X1) in (4.6) (and βT0 h(X−1) for

f−1(X−1) in (4.7)) as it is done in Gregory et al. (2016). We only assume a sparse projection that is

closeto the best projection where the distance is measured in terms of ‖ · ‖P,2 as described in Assumption

A.1(ii).

4.5 Simulation Results

To verify the theoretical guarantees of our estimator in practice, we perform a simulation study, which

is based on the settings in Gregory et al. (2016) and Meier et al. (2009). We consider the finite sample

performance of our estimator in a high-dimensional additive model of the form

yi =

p∑
j=1

fj(xi,j) + εi,j ,
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Component Function

1 f1(x1) = − sin(2 · x)
2 f2(x2) = x2 − 25

12

3 f3(x3) = x
4 f4(x4) = exp(−x)− 2

5
· sinh( 5

2
)

5, . . . , p fj(xj) = 0.

Table 4.1: Definitions of the data generating processes, simulation study.

Definitions of functions in data generating processes. Data generating processes are based on settings in Gregory
et al. (2016) and Meier et al. (2009).

with i = 1, . . . , n and j = 1, . . . , p. The definitions of the functions fj(xj), j = 1, . . . , j, are presented

in Table 4.1. We extend the initial setting in Gregory et al. (2016) to allow for heteroskedasticity by

specifying an error term εj ∼ N (0, σj(xj)) with σj(xj) = σ · (1 + |xj |) and σ =
√

12
67 . This value of σ

ensures a signal-to-noise ratio that is comparable to the settings in Gregory et al. (2016). Data sets

are generated for scenarios with dimensions n ∈ {100, 1000} and p ∈ {50, 150}. In all cases, sparsity

is imposed by only allowing the first four components, f1, ..., f4, to be non-zero. The regressors X

are marginally uniformly distributed on an interval, I = [−2.5, 2.5] with correlation matrix Σ with

Σk,l = 0.5|k−l|, 1 ≤ k, l ≤ p, which corresponds to the setting in Gregory et al. (2016) with the strongest

correlation structure among the covariates.

In the simulation, we use the estimator and the multiplier bootstrap procedure we proposed in Section 4.3

to generate predictions f̂j(xj) for the function fj(xj) and construct simultaneous confidence bands that

are defined in terms of l̂j(xj) and ûj(xj). The functions fj(xj) in the additive model are approximated

using cubic B-splines. Variable selection is performed using post-lasso with a theory-based choice of the

penalty level as implemented in the R package hdm (Chernozhukov et al., 2016a). Further details related

to the implementation and parametrization in the simulation study can be found in Appendix 4.10.

Table 4.2 presents the empirical coverage achieved by the estimated simultaneous 95%-confidence bands

in R = 2000 repetitions which are constructed over the interval of values of xj , I = [−2, 2]. A confidence

band is considered to cover the function fj(xj) if it entirely contains the true function, or, stated more

formally, if for all values of xj ∈ I it holds that l̂j(xj) ≤ fj(xj) ≤ ûj(xj).
The results confirm the validity of our inference method in high-dimensional additive models. In all

cases, the empirical coverage approaches 95% or is above the nominal level. This can be observed even

in settings with more regressors than observations, i.e., with n = 100 and p = 150. For example, in this

setting the overall dimensionality amounts to d1 + d2 = 1500 if the degrees of freedom of the B-splines

are set to k = 10.

n p f1 f2 f3 f4

100 50 0.956 0.985 0.950 0.979
100 150 0.957 0.976 0.967 0.957
1000 50 0.985 0.987 0.952 0.987
1000 150 0.989 0.975 0.982 0.986

Table 4.2: Empirical coverage, simulation study.

Coverage achieved by simultaneous 0.95%-confidence bands in R = 2000 repetitions as generated over a range of
values of xj , I = [−2, 2].

The presented results refer to one particular choice of the parameter k that specifies the degrees of freedom
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Figure 4.2: Average confidence bands, f1(x1), simulation study.

Gray shaded areas illustrate averaged 95%-confidence bands obtained in R = 2000 repetitions for function f1(x1).
Blue curves correspond to the estimated functions f̂j(xj) and green curves to the true functions fj(xj).

of the cubic B-splines as implemented in the R package splines. A table with the exact choice of k in

all settings is presented in Appendix 4.10. In addition to the presented results, we experimented with the

values of k and we conclude that the nominal coverage has been maintained in various parametrizations of

the underlying spline components. The robustness with regard to the choice of the smoothing parameters

provides additional support of the finite-sample validity of the proposed inferential procedure.

Figures 4.2 to 4.5 present the estimated confidence bands averaged over all R = 2000 repetitions. They

illustrate that the estimation accuracy benefits from increasing sample size; the width of the confidence

regions becomes smaller and the approximation of the true function improves in terms of accuracy. In

several settings, we observe a slight bias emerging for values of xj close to the boundary. Nonetheless,

given the maintained coverage in all settings, the amount of this bias is tolerated by the estimator and

the accompanying confidence bands.
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Figure 4.3: Average confidence bands, f2(x2), simulation study.

Gray shaded areas illustrate averaged 95%-confidence bands obtained in R = 2000 repetitions for function f2(x2).
Blue curves correspond to the estimated functions f̂j(xj) and green curves to the true functions fj(xj).
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Figure 4.4: Average confidence bands, f3(x3), simulation study.

Gray shaded areas illustrate averaged 95%-confidence bands obtained in R = 2000 repetitions for function f3(x3).
Blue curves correspond to the estimated functions f̂j(xj) and green curves to the true functions fj(xj).
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Figure 4.5: Average confidence bands, f4(x4), simulation study.

Gray shaded areas illustrate averaged 95%-confidence bands obtained in R = 2000 repetitions for function f4(x4).
Blue curves correspond to the estimated functions f̂j(xj) and green curves to the true functions fj(xj).
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Variable Description

MEDV Median value of owner-occupied homes in USD 1000’s
LSTAT Percentage of lower status people of the population
CRIM Per capita crime rate by town
NOX Nitric oxides
TAX Full-value property-tax rate per USD 10,000
AGE Proportion of owner-occupied units built prior to 1940
DIST Weighted distances to five Boston employment centres
RM Average number of rooms per dwelling
INDUS Proportion of non-retail business acres per town
ZN Proportion of residential land zoned for lots over 25,000 sq.ft
BLACK 1000(B − 0.63)2 where B is the proportion of blacks by town
PTRATIO Pupil-teacher ratio by town
CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

Table 4.3: List of variables, Boston housing data example.

4.6 Illustration in a Real-Data Example

As a real-data example, we apply our estimator to the Boston housing data that has been first used in

Harrison Jr and Rubinfeld (1978) and later been reassessed in several studies, e.g., Kong and Xia (2012)

and Doksum and Samarov (1995). The data set is available via the R package mlbench (Leisch and

Dimitriadou, 2010; Newman et al., 1998). The data contain information on housing prices for n = 506

census tracts in Boston based on the 1970 census. We perform inference on the effect of 11 continuous

variables on the dependent variable MEDV which measures the median value of owner-occupied homes

(in USD 1000’s). A list of the explanatory variables is provided in Table 4.3.

The implemented model is given by

MEDVi =f1(LSTATi) + f2(CRIMi) + f3(NOXi) + f4(TAXi)+

f5(AGEi) + f6(DISTi) + f7(RMi) + f8(INDUSi)+

f9(ZNi) + f10(BLACKi) + f11(PTRATIOi) + γ · CHAS + εi.

Analogously to the simulation study, the functions fj(xj) are approximated with cubic B-splines and vari-

able selection is performed using post-lasso with theory-based choice of the penalty term. The smoothing

parameters k = {kj , k−j} have been determined according to a heuristic cross-validation rule that is

outlined in Appendix 4.10. The results illustrated in Figure 4.6 suggest nonlinear and significant effects

for the variables LSTAT and RM that are generally in line with economic intuition and the findings in

Kong and Xia (2012) and Doksum and Samarov (1995). The variable LSTAT, the percentage of lower

status people of the population, has a negative effect on the median home value. Whereas for small values

of LSTAT, the estimated effect f̂1(LSTAT) is sizable and positive, the effect decreases and eventually

becomes negative for higher levels of the variable. The nonlinearities found for variable RM suggest

that the average number of rooms per dwelling impacts housing prices strongly positively if the average

number of rooms exceeds a value of 6.5. The results for the remaining regressors, which are presented in

Appendix 4.10 also point at nonlinear effects that are not significant in most cases.
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Figure 4.6: Effects and confidence bands, Boston housing data example.

Plots of f̂1(LSTAT) and f̂7(RM) with simultaneous 95%-confidence bands in the Boston housing data application.
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4.7 Proofs

Proof of Theorem 3.

We will prove that the Assumptions A.1 and A.2 imply the Assumptions B.1-B.5 stated in Appendix 4.8

and then the claim follows by applying Theorem 4. Without loss of generality, we assume min(d1, n) ≥ e
to simplify notation.

Assumption B.1

Both conditions (i) and (ii) are directly assumed in A.1(i). Due to A.1(ii) and A.2(iv) it holds

E
[
(ν(l)))2

]
= E

[(
gl(X1)− (γ

(l)
0 )TZ−l − b(l)3 (Z−l)

)2]
≤ C

(
sup
‖ξ‖2=1

E[(ξTZ)2] + E
[(
b
(l)
3 (Z−l)

)2])
. C

where we used that ‖γ(l)
0 ‖2 ≤ C. It holds

E
[
(ν(l)))2

]
≥ Var(ν(l)|Z−l) ≥ c.

Since the eigenvalues of Σεν are bounded from above and away from zero,

Σn = J−1
0 Σεν(J−1

0 )T ∈ Rd1×d1

directly implies B.1(iii).
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Assumption B.2

For each l = 1, . . . , d1, the moment condition holds

E [ψl(W, θ0,l, η0,l)] = E
[(
Y − f(X)

)(
gl(X1)− (γ

(l)
0 )TZ−l − b(l)3 (Z−l)

)]
= E

[
εν(l)

]
= E

[
ν(l) E [ε|X]︸ ︷︷ ︸

=0

]
= 0.

For all l = 1, . . . , d1, define the convex set

Tl :=
{
η = (η(1), η(2), η(3), η(4))T :η(1), η(2) ∈ Rd1+d2−1,

η(3) ∈ `∞(Rp), η(4) ∈ `∞(Rd1+d2−1)
}

and endow l with the norm

‖η‖e := max
{
‖η(1)‖2, ‖η(2)‖2, ‖η(3)(X)‖P,2, ‖η(4)(Z−l)‖P,2

}
.

Further, let τn :=

√
s log(d̄n)

n and define the corresponding nuisance realization set

Tl :=

{
η ∈ Tl :η(3) ≡ 0, η(4) ≡ 0, ‖η(1)‖0 ∨ ‖η(2)‖0 ≤ Cs,

‖η(1) − β(l)
0 ‖2 ∨ ‖η(2) − γ(l)

0 ‖2 ≤ Cτn,

‖η(1) − β(l)
0 ‖1 ∨ ‖η(2) − γ(l)

0 ‖1 ≤ C
√
sτn

}
∪ {η0,l}

for a sufficiently large constant C. For arbitrary random variables X and Y , it holds

‖E[X|Y ]‖Ψρ : = inf{C > 0 : E[Ψρ(|E[X|Y ]|/C)] ≤ 1}

≤ inf{C > 0 : E[E[Ψρ(|X|/C)|Y ]] ≤ 1}

= ‖X‖Ψρ .

Due to Assumption A.2(iii), this implies

max
l=1,...,d1

‖ν(l)‖Ψρ = max
l=1,...,d1

‖gl(X1)− E[gl(X1)|Z−l]‖Ψρ

≤ max
l=1,...,d1

‖gl(X1)‖Ψρ + max
l=1,...,d1

‖E[gl(X1)|Z−l]‖Ψρ

. C.

Therefore, we are able to bound the q-th moments of the maxima by

E
[

max
l=1,...,d1

|ν(l)|q
] 1
q

= ‖ max
l=1,...,d1

|ν(l)|‖P,q

≤ q!‖ max
l=1,...,d1

|ν(l)|‖Ψ1

≤ q! log
1
ρ−1(2)‖ max

l=1,...,d1

|ν(l)|‖Ψ1

≤ Cq! log
1
ρ−1(2) log

1
ρ (1 + d1) max

l=1,...,d1

‖ν(l)|‖Ψp
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≤ C log
1
ρ (d1),

where C does depend on q and ρ but not on n. For F := {εν(l) : l = 1, . . . , d1}, it holds

Sn : = E

[
sup

l=1,...,d1

∣∣√nEn [ψl(W, θ0,l, η0,l)]
∣∣]

= E

[
sup
f∈F

Gn(f)

]

and the envelope supf∈F |f | satisfies

‖ max
l=1,...,d1

εν(l)‖P,q ≤ ‖ε‖P,2q‖ max
l=1,...,d1

ν(l)‖P,2q

≤ C log
1
ρ (d1).

We can apply Lemma P.2 from Belloni et al. (2018) with |F| = d1 to obtain

Sn ≤ C log
1
2 (d1) + C log

1
2 (d1)

(
n

2
q

log
2
ρ+1(d1)

n

)1/2

. log
1
2 (d1),

due to A.2(v)(a). Finally, Assumption A.2(i) implies B.2(i). Assumption B.2(ii) holds since for all

l = 1, . . . , d1, the map (θl, ηl) 7→ ψl(X, θl, ηl) is twice continuously Gateaux-differentiable on Θl × Tl,
which directly implies the differentiability of the map (θl, ηl) 7→ E[ψl(X, θl, ηl)]. Additionally, for every

η ∈ Tl \ {η0,l}, we have

Dl,0[η, η0,l] := ∂t
{
E[ψl(W, θ0,l, η0,l + t(η − η0,l))]

}∣∣
t=0

= E
[
∂t
{
ψl(W, θ0,l, η0,l + t(η − η0,l))

}]∣∣
t=0

= E
[
∂t

{(
Y − θ0,lgl(X1)−

(
η

(1)
0,l + t(η(1) − η(1)

0,l )
)T
Z−l

−
(
η

(3)
0,l (X) + t(η(3)(X)− η(3)

0,l (X))
))

(
gl(X1)−

(
η

(2)
0,l + t(η(2) − η(2)

0,l )
)T
Z−l

−
(
η

(4)
0,l (Z−l) + t(η(4)(Z−l)− η(4)

0,l (Z−l))
))}]∣∣∣∣

t=0

= E
[
ε(η

(2)
0,l − η

(2))TZ−l

]
+ E

[
ν(l)(η

(1)
0,l − η

(1))TZ−l

]
+ E

[
ε
(
η

(4)
0,l (Z−l)− η

(4)(Z−l)
)]

+ E
[
ν(l)

(
η

(3)
0,l (X)− η(3)(X)

)]
with

E
[
ε(η

(2)
0,l − η

(2))TZ−l

]
= E

[
((η

(2)
0,l − η

(2))TZ−lE[ε|X]
]

= 0,

E
[
ν(l)(η

(1)
0,l − η

(1))TZ−l

]
= E

[
(η

(1)
0,l − η

(1))TZ−lE[ν(l)|Z−l]
]

= 0,

E
[
ε
(
η

(4)
0,l (Z−l)− η

(4)(Z−l)
)]

= E
[(
η

(4)
0,l (Z−l)− η

(4)(Z−l)
)
E[ε|X]

]
= 0
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and

E
[
ν(l)

(
η

(3)
0,l (X)− η(3)(X)

)]
= E

[
ν(l)
(
b1(X1) + b2(X−1)

)]
≤ Cδnn−1/2

due to Assumption A.1 with δn = o
(
t
− 3

2
1 log−

1
2 (An)

)
. Due to the linearity of the score and the moment

condition, it holds

E[ψl(W, θl, η0,l)] = J0,l(θl − θ0,l)

and due to

|J0,l| = E
[
(ν(l))2

]
Assumption B.2(iv) is satisfied.

For all t ∈ [0, 1), l = 1, . . . , d1, θl ∈ Θl and ηl ∈ Tl \ {η0,l}, we have

E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, η0,l))

2
]

= E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, ηl) + ψl(W, θ0,l, ηl)− ψl(W, θ0,l, η0,l))

2
]

≤ C

(
E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, ηl))

2
]

∨ E
[
(ψl(W, θ0,l, ηl)− ψl(W, θ0,l, η0,l))

2
])

with

E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, ηl))

2
]

= |θl − θ0,l|2E
[(
gl(X1)(gl(X1)− (η

(2)
l )TZ−l)− η(4)

l (Z−l)
)2
]

≤ C|θl − θ0,l|2
(
E
[
gl(X1)4

]
E
[(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
)4
]) 1

2

≤ C|θl − θ0,l|2

due to Assumption A.2(ii), (iv) and the definition of Tl. With similar arguments, we obtain

E
[
(ψl(W, θ0,l, ηl)− ψl(W, θ0,l, η0,l))

2
]

= E

[((
Y − θ0,lgl(X1)− (η

(1)
l )TZ−l − η(3)

l (X)
)(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
)

−
(
Y − θ0,lgl(X1)− (η

(1)
0,l )

TZ−l − η(3)
0,l (X)

)(
gl(X1)− (η

(2)
0,l )

TZ−l − η(4)
0,l (Z−l)

))2
]

= E

[((
Y − θ0,lgl(X1)− (η

(1)
l )TZ−l − η(3)

l (X)
)

·
(

(η
(2)
0,l − η

(2)
l )TZ−l + η

(4)
0,l (Z−l)− η

(4)
l (Z−l)

)
+
(
gl(X1)− (η

(2)
0,l )

TZ−l − η(4)
0,l (Z−l)

)
·
(

(η
(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)− η(3)

l (X)
))2

]

≤ C

(
‖η(2)

0,l − η
(2)
l ‖2 ∨ ‖η

(1)
0,l − η

(1)
l ‖2 ∨ ‖η

(3)
0,l (X)‖P,2 ∨ ‖η(4)

0,l (Z−l)‖P,2
)2
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= C‖η0,l − ηl‖2e,

where we used the definition of Tl, A.1(iii) and

sup
‖ξ‖2=1

E[(ξTZ)4] ≤ C.

Therefore, Assumption B.2(v)(a) holds with ω = 2 since it is straightforward to show Assumption B.2(v)

for ηl = η0,l. It holds ∣∣∣∣∂tE[ψl(W, θl, η0,l + t(ηl − η0,l))
]∣∣∣∣

=

∣∣∣∣E[∂t{(Y − θ0,lgl(X1)−
(
η

(1)
0,l + t(η

(1)
l − η

(1)
0,l )
)T
Z−l

−
(
η

(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X))
))

·
(
gl(X1)−

(
η

(2)
0,l + t(η

(2)
l − η

(2)
0,l )
)T
Z−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))}]∣∣∣∣

=

∣∣∣∣E[(Y − θ0,lgl(X1)− (η
(1)
0,l + t(η

(1)
l − η

(1)
0,l ))

TZ−l

− (η
(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X)))
)

·
(

(η
(2)
0,l − η

(2)
l ))TZ−l + η

(4)
0,l (Z−l)− η

(4)
l (Z−l)

)
+
(
gl(X1)− (η

(2)
0,l + t(η

(2)
l − η

(2)
0,l ))

TZ−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))

·
(

(η
(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)− η(3)

l (X)
)]∣∣∣∣

= |I1,1 + I1,2 + I1,3 + I1,4|

with

I1,1 = E
[(
Y − θ0,lgl(X1)− (η

(1)
0,l + t(η

(1)
l − η

(1)
0,l ))

TZ−l

− (η
(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X)))
)(

(η
(2)
0,l − η

(2)
l ))TZ−l

)]
≤ C‖η(2)

0,l − η
(2)
l ‖2,

I1,2 = E
[(
Y − θ0,lgl(X1)− (η

(1)
0,l + t(η

(1)
l − η

(1)
0,l ))

TZ−l

− (η
(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X)))
)(
η

(4)
0,l (Z−l)

)]
≤ C‖η(4)

0,l (X)‖P,2,

I1,3 = E
[(
gl(X1)− (η

(2)
0,l + t(η

(2)
l − η

(2)
0,l ))

TZ−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))(

(η
(1)
0,l − η

(1)
l )TZ−l

)]
≤ C‖η(1)

0,l − η
(1)
l ‖2,
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I1,4 = E
[(
gl(X1)− (η

(2)
0,l + t(η

(2)
l − η

(2)
0,l ))

TZ−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))(

η
(3)
0,l (X)

)]
≤ C‖η(3)

0,l (X)‖P,2.

This implies Assumption B.2(v)(b) with B1n = C. Finally, to obtain Assumption B.2(v)(c) with B2n = C,

we note that

∂2
t E [ψl(W, θ0,l + t(θl − θ0,l), η0,l + t(ηl − η0,l))]

= ∂tE
[(
Y −

(
θ0,l + t(θl − θ0,l)

)
gl(X1)−

(
η

(1)
0,l + t(η

(1)
l − η

(1)
0,l )
)T
Z−l

−
(
η

(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X))
))

·
(

(η
(2)
0,l − η

(2)
l ))TZ−l + η

(4)
0,l (Z−l)

)
+
(
gl(X1)−

(
η

(2)
0,l + t(η

(2)
l − η

(2)
0,l )
)T
Z−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))

·
(

(θ0,l − θl))gl(X1) + (η
(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)

)]
= 2E

[(
(θ0,l − θl)gl(X1) + (η

(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)

)
·
(

(η
(2)
0,l − η

(2)
l ))TZ−l + η

(4)
0,l (Z−l)

)]
≤C

(
|θ0,l − θl|2 ∨ ‖η0,l − ηl‖2e

)
using the same arguments as above.

Assumption B.3

Note that the Assumptions B.3(ii) and (iii) both hold by the construction of Tl and the Assumptions

A.1(ii) and A.2(ii). The main part to verify Assumption B.3 is to show that the estimates of the

nuisance function are contained in the nuisance realization set with high probability. We will rely on

uniform lasso estimation results stated in Appendix 4.9. Therefore, we have to check the Assumptions

C.1(i) to (v). Due to Assumption A.2(iii), it holds

max
j=1,...,d1+d2

‖Zj‖Ψρ ≤ C and max
l=1,...,d1

‖ν(l)‖Ψρ ≤ C,

which are the tail conditions in Assumption C.1(i) for the auxiliary regressions. Assumption C.1(ii) is

directly implied by Assumption A.2(iv) and

min
l=1,...,d1

min
j 6=l

E
[
(ν(l))2Z2

−l,j
]

= min
l=1,...,d1

min
j 6=l

E
[
Z2
−l,j E[(ν(l))2|Z−l]︸ ︷︷ ︸

=Var(ν(l)|Z−l)≥c

]
≥ c.

Additionally, the uniform sparsity condition in Assumption C.1(iii) holds by Assumption A.2(ii) and

the growth condition in Assumption C.1(iv) by Assumption A.2(v)(a). Finally, the condition on the

approximation error in Assumption C.1(v) holds due to A.1(ii). Therefore,

η̂
(2)
l ∈ Tl for all l = 1, . . . , d1
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with probability 1 − o(1). To estimate η
(1)
0,l , we run a lasso regression of Y on Z. With analogous

arguments, it holds

‖β(l)
0 − β̂(l)‖0 ≤ ‖θ̂‖0 + ‖β̂‖0 ≤ Cs,

‖β(l)
0 − β̂(l)‖2 ≤

√
‖θ − θ̂‖22 + ‖β0 − β̂‖22 ≤ C

√
s log(d̄n)

n
,

‖β(l)
0 − β̂(l)‖1 ≤ ‖θ − θ̂‖1 + ‖β0 − β̂‖1 ≤ C

√
s2 log(d̄n)

n

with probability 1− o(1) using Assumptions A.1(ii), A.2(ii)-(v) and

min
l=1,...,d1+d2

E
[
ε2Z2

l

]
= min
l=1,...,d1+d2

E
[
Z2
l E[ε2|X]︸ ︷︷ ︸

=Var(ε|X)≥c

]
≥ c.

This directly implies that with probability 1 − o(1) the nuisance realization set Tl contains η̂
(1)
l for all

l = 1, . . . , d1.

Combining the results above with η̂(3) ≡ 0 and η̂(4) ≡ 0, we obtain Assumption B.3(i). Define

F1 :=
{
ψl(·, θl, ηl) : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl

}
.

To bound the complexity of F1, we exclude the true nuisance function (the true nuisance function is the

only element of Tl with a nonzero approximation error):

F1,1 :=
{
ψl(·, θl, ηl) : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl \ {η(l)

0 }
}
⊆ F (1)

1,1F
(2)
1,1

with

F (1)
1,1 :=

{
W 7→ Y − θlgl(X1)− (η

(1)
l )TZ−l : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl \ {η(l)

0 }
}

F (2)
1,1 :=

{
W 7→ gl(X1)− (η

(2)
l )TZ−l : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl \ {η(l)

0 }
}
.

Note that the envelope F
(1)
1,1 of F (1)

1,1 satisfies

‖F (1)
1,1 ‖P,2q ≤

∥∥∥∥ sup
l=1,...,d1

sup
θl∈Θl,‖η(1)

0,l−η
(l)
l ‖1≤C

√
sτn

(
|ε|+ |η(3)

0 (X)|

+ |(θ0,l − θl)gl(X1)|+ |(η(1)
0,l − η

(1)
l )TZ−l|

)∥∥∥∥
P,2q

. ‖ε‖P,2q + ‖η(3)
0 (X)‖P,2q + ‖ sup

l=1,...,d1

gl(X1)‖P,2q

+
√
sτn‖ sup

j=1,...,d1+d2

Zj‖P,2q

. C + log
1
ρ (d1) +

√
sτn log

1
ρ (d1 + d2)

. log
1
ρ (d1)

due to A.1(ii), A.2(v) and analogously

‖F (2)
1,1 ‖P,2q . log

1
ρ (d1),

where we assumed d1 ≥ 2 without loss of generality. Next, note that due to Lemma 2.6.15 from Van der
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Vaart and Wellner (1996) the set

G1,1 :=
{
Z 7→ ξTZ : ξ ∈ Rd1+d2+1, ‖ξ‖0 ≤ Cs, ‖ξ‖2 ≤ C

}
is a union over

(
d1+d2+1

Cs

)
VC-subgraph classes G1,1,k with VC indices less or equal to Cs+ 2. Therefore,

F (1)
1,1 and F (2)

1,1 are unions over
(
d1+d2+1

Cs

)
respectively

(
d1+d2

Cs

)
VC-subgraph classes, which combined with

Theorem 2.6.7 from Van der Vaart and Wellner (1996) implies

sup
Q

logN(ε‖F (1)
1,1 ‖Q,2,F

(1)
1,1 , ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
and

sup
Q

logN(ε‖F (2)
1,1 ‖Q,2,F

(2)
1,1 , ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
.

Using basic calculations, we obtain

sup
Q

logN(ε‖F (1)
1,1F

(2)
1,1 |Q,2,F1,1, ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
,

where F1,1 := F
(1)
1,1F

(2)
1,1 is an envelope for F1,1 with

‖F1,1‖P,q ≤ ‖F (1)
1,1 ‖P,2q‖F

(2)
1,1 ‖P,2q . log

2
ρ (d1).

Define

F1,2 :=
{
ψl(·, θl, η0,l) : l = 1, . . . , d1, θl ∈ Θl

}
and, with an analogous argument, we obtain

sup
Q

logN(ε‖F1,2‖Q,2,F1,2, ‖ · ‖Q,2) . log

(
d1

ε

)
,

where the envelope F1,2 of F1,2 obeys

‖F1,2‖P,q . log
2
ρ (d1).

Combining the results above, we obtain

sup
Q

logN(ε‖F1‖Q,2,F1, ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
,

where the envelope F1 := F
(1)
1,1F

(2)
1,1 ∨ F1,2 of F1 satisfies

‖F1‖P,q . log
2
ρ (d1).

Therefore, Assumption B.3(iv) holds with υn . s, an = d1 ∨ d2 and Kn . log
2
ρ (d1). For all f ∈ F1, we

have

E[f2]
1
2 . sup

‖ξ‖2=1

E[(ξTZ)4]
1
2 . C
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and for each l = 1, . . . , d1

E
[
ψl(W, θl, ηl)

2
] 1

2

= E
[(
Y − θlgl(X1)− (η(1))TZ−l − η(3)(X)

)2(
gl(X1)− (η(2))TZ−l − η(4)(Z−l)

)2] 1
2

= E
[(
gl(X1)− (η(2))TZ−l − η(4)(Z−l)

)2
· E
[(
Y − θlgl(X1)− (η(1))TZ−l − η(3)(X)

)2|X]︸ ︷︷ ︸
≥V ar(ε|X)≥c

] 1
2

≥ c

due to Assumption A.2(iv). This implies Assumption B.3(v). Assumption B.3(vi)(a) holds by the

definition of τn and υn . s. To verify the next growth condition, we note

(B1nτn + Sn log(n)/
√
n)ω/2(υn log(an))1/2 + n−1/2+1/qυnKn log(an)

. (τn + log
1
2 (d1) log(n)/

√
n)(s log(an))1/2 + n−1/2+1/qs log

2
ρ (d1) log(an)

.

(
n

2
q
s2 log2+ 4

ρ (d̄n)

n

) 1
2

. δn

with δn = o
(
t
− 3

2
1 log−

1
2 (An)

)
due to Assumption A.2(v)(a) and analogously

n1/2B2
1nB

2
2nτ

2
n . n

1/2τ2
n =

√
s2 log2(d̄n)

n
. δn,

since q can be chosen arbitrarily large.

Assumption B.4(i)− (ii)

Define

F0 := {ψx(·) : x ∈ I},

where ψx(·) := (g(x)TΣng(x))−1/2g(x)TJ−1
0 ψ(·, θ0, η0). We note that for any q > 0 the envelope F0 of

F0 satisfies

‖F0‖P,q = E
[
sup
x∈I

∣∣∣(g(x)TΣng(x))−1/2g(x)TJ−1
0 ψ(W, θ0, η0)

∣∣∣q] 1
q

. E
[
sup
x∈I

∣∣g(x)TJ−1
0 ψ(W, θ0, η0)

∣∣q] 1
q

= E

[
sup
x∈I

∣∣∣∣∣
d1∑
l=1

gl(x)J−1
0,l ψl(W, θ0,l, η0,l)

∣∣∣∣∣
q] 1

q

. E

[
sup
x∈I

∣∣∣∣∣
d1∑
l=1

gl(x)εν(l)

∣∣∣∣∣
q] 1

q

. t1E

[
sup

l=1,...,d1

∣∣∣εν(l)
∣∣∣q] 1

q
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. t1 log
1
ρ (d1).

By using the same argument as above, we directly obtain B.4(ii) with

Ln . t
3
1 log

3
ρ (d1).

Therefore, we can find a larger envelope F̃0 with

‖F̃0‖P,q . t31 log
3
ρ (d1).

To bound the entropy of F0, we note that

∥∥ψx(W )− ψx̃(W )
∥∥
P,2

=
∥∥∥(g(x)TΣng(x))−1/2

d1∑
l=1

gl(x)E[(ν(l))2]−1ψl(W, θ0,l, η0,l)

− (g(x̃)TΣng(x̃))−1/2
d1∑
l=1

gl(x̃)E[(ν(l))2]−1ψl(W, θ0,l, η0,l)
∥∥∥
P,2

≤ |(g(x)TΣng(x))−1/2 − (g(x̃)TΣng(x̃))−1/2|

·
∥∥∥ d1∑
l=1

gl(x)E[(ν(l))2]−1ψl(W, θ0,l, η0,l)
∥∥∥
P,2

+ (g(x̃)TΣng(x̃))−1/2
∥∥∥ d1∑
l=1

(
gl(x)− gl(x̃)

)
E[(ν(l))2]−1ψl(W, θ0,l, η0,l)

∥∥∥
P,2

= |(g(x)TΣng(x))−1/2 − (g(x̃)TΣng(x̃))−1/2|
∥∥∥g(x)TJ−1

0 ψ(W, θ0,l, η0,l)
∥∥∥
P,2

+ (g(x̃)TΣng(x̃))−1/2
∥∥∥(g(x)− g(x̃)

)T
J−1

0 ψ(W, θ0,l, η0,l)
∥∥∥
P,2

. |(g(x)TΣng(x))−1/2 − (g(x̃)TΣng(x̃))−1/2| sup
x∈I
‖g(x)‖2

+ ‖g(x)− g(x̃)‖2

due to the sub-multiplicativity of the spectral norm and the bounded eigenvalues.

Additionally, it holds

|(g(x)TΣng(x))−1/2 − (g(x̃)TΣng(x̃))−1/2|

.

∣∣∣∣∣
(
g(x̃)TΣng(x̃)

g(x)TΣng(x)

)1/2

− 1

∣∣∣∣∣
. |g(x̃)TΣng(x̃)− g(x)TΣng(x)|

= |(g(x)− g(x̃))TΣn(g(x) + g(x̃))|

≤ |〈Σn(g(x)− g(x̃)), (g(x) + g(x̃))〉|

. ‖g(x)− g(x̃)‖2 sup
x
‖g(x)‖2

which implies

∥∥ψx(W )− ψx̃(W )
∥∥
P,2
. ‖g(x)− g(x̃)‖2 sup

x
‖g(x)‖22.
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Using the same argument as in Theorem 2.7.11 from Van der Vaart and Wellner (1996), we obtain

sup
Q

logN(ε‖F̃0‖Q,2,F0, ‖ · ‖Q,2)

. sup
Q

logN

((
εt31 log

3
ρ (d1)

supx ‖g(x)‖22

)
sup
x
‖g(x)‖22,F0, ‖ · ‖Q,2

)

≤ logN

((
εt31 log

3
ρ (d1)

supx ‖g(x)‖22

)
, g(I), ‖ · ‖2

)

. t1 log

(
An
ε

)
.

Therefore, Assumption B.4(i) is satisfied with %n = t1.

Assumption B.5

Next, we want to prove that with probability 1− o(1) it holds

sup
l=1,...,d1

|Ĵl − J0,l| = o(1),

where Ĵl = En[−gl(X1)(gl(X1)− (η̂
(2)
l )TZ−l)]. It holds

|Ĵl − J0,l| ≤ |Ĵl − E[−gl(X1)(gl(X1)− (η̂
(2)
l )TZ−l)]|

+ |E[−gl(X1)(gl(X1)− (η̂
(2)
l )TZ−l)] + J0,l|

with

|E[−gl(X1)(gl(X1)− (η̂
(2)
l )TZ−l)] + J0,l|

≤|E[gl(X1)(η̂
(2)
l − η

(2)
0,l )

TZ−l)]|+ |E[gl(X1)η
(4)
0,l (Z−l)]|

. τn.

Let

G̃1 :=

{
X 7→ −gl(X1)(gl(X1)− (η

(2)
l )TZ−l) : l = 1, . . . , d1, ‖η(2)

l ‖0 ≤ Cs,

‖η(2)
l − η

(2)
0,l ‖2 ≤ Cτn, ‖η

(2) − η(2)
0,l ‖1 ≤ C

√
sτn

}
.

The envelope G̃1 of G̃1 satisfies

E[G̃q1]
1
q ≤ E

 sup
l=1,...,d1

sup
η(2):‖η(2)

l −η
(2)
0,l ‖2≤C

√
sτn

|gl(X1)|q|(gl(X1)− (η
(2)
l )TZ−l)|q

 1
q

≤ ‖ sup
l=1,...,d1

gl(X1)‖P,2q

· E

 sup
l=1,...,d1

sup
η(2):‖η(2)

l −η
(2)
0,l ‖2≤C

√
sτn

|(gl(X1)− (η
(2)
l )TZ−l)|2q

 1
2q

. log
1
ρ (d1)

(
‖ sup
l=1,...,d1

ν(l)‖P,2q ∨ ‖ sup
l=1,...,d1

b
(l)
3 (Z−l)‖P,2q
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∨ E
[

sup
l=1,...,d1

sup
η(2):‖η(2)

l −η
(2)
0,l ‖2≤C

√
sτn

(η
(2)
0,l − η

(2)
l )TZ−l)

2q

] 1
2q
)

. log
1
ρ (d1)

(
log

1
ρ (d1) ∨

√
sτn log

1
ρ (d1 + d2)

)
. log

2
ρ (d1)

and, with the same arguments as above, we obtain

sup
Q

logN(ε‖G̃1‖Q,2, G̃1, ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
.

Therefore, by using Lemma P.2 from Belloni et al. (2018), it holds

sup
l=1,...,d1

|Ĵl − J0,l| . sup
f∈G̃1

|En[f(X)]− E[f(X)]|+ τn

. K

(√
s log(d̄n)

n
+ n

1
q
s log

2
ρ (d1) log(d̄n)

n

)
+ τn

with probability 1−o(1). Next, we want to bound the restricted eigenvalues of Σ̂εν with high probability

by showing

sup
‖v‖2=1,‖v‖0≤t1

|vT
(
Σ̂εν − Σεν

)
v| . un (4.11)

with

un . t1
(
n

1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

) 1
2

for a suitable q̃ > q̄. Define ξi := εiνi, ξ̂i := ε̂iν̂i and observe that

Σ̂εν − Σεν

=
1

n

n∑
i=1

ξ̂iξ̂
T
i − E[ξiξ

T
i ]

=
1

n

n∑
i=1

ξiξ
T
i − E[ξiξ

T
i ]

+
1

n

n∑
i=1

ξi
(
ξ̂i − ξi

)T
+

1

n

n∑
i=1

(
ξ̂i − ξi

)
ξTi +

1

n

n∑
i=1

(
ξ̂i − ξi

)(
ξ̂i − ξi

)T
.

Using the Lemma Q.1 from Belloni et al. (2018), we can bound the first part.

Due to the tail conditions on ε and ν, we obtain(
E
[

max
1≤i≤n

‖εiνi‖2∞
])1/2

≤
(
E
[

max
1≤i≤n

‖εi‖4
]
E
[

max
1≤i≤n

‖νi‖4∞
])1/4

. n
2
q log

1
ρ (d1)

for an arbitrary but fixed q ≥ 4. Then, Lemma Q.1 implies

E

[
sup

‖v‖2=1,‖v‖0≤t1

∣∣∣vT( 1

n

n∑
i=1

ξiξ
T
i − E[ξiξ

T
i ]
)
v
∣∣∣]
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= E

[
sup

‖v‖2=1,‖v‖0≤t1

∣∣∣En[(vT ξi)2 − E
[(
vT ξi

)2]]∣∣∣]
. δ̃2

n + δ̃n

with

δ̃n .
(
n

4
q log

2
ρ (d1)t1 log2(t1) log(d1) log(n)n−1

) 1
2

.

(
n

5
q
t1 log1+ 2

ρ (d1)

n

) 1
2

and

δ̃2
n

u2
n

.
(
n

1
q̃−

5
q t1s

)−1

= o(1)

for q > 5q̃. Using Markov’s inequality, we directly obtain

sup
‖v‖2=1,‖v‖0≤t1

∣∣∣vT( 1

n

n∑
i=1

ξiξ
T
i − E[ξiξ

T
i ]
)
v
∣∣∣ . un

with probability 1 − o(1). Note that by applying the results on covariance estimation from Chen et al.

(2012) instead would lead to comparable growth rates.

With probability 1− o(1), it holds

sup
l=1,...,d1

|θ̂l − θ0,l| . τn

due to Appendix A from Belloni et al. (2018). Define

G̃2
2 :=

{
(ψl(·, θl, ηl)− ψl(·, θ0,l, η0,l))

2 :l = 1, . . . , d1, |θl − θ0,l| ≤ Cτn
ηl ∈ Tl \ {η0,l}

}
,

with

sup
Q

logN(ε‖G̃2
2‖Q,2, G̃2

2 , ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
.

Here, G̃2
2 is a measurable envelope of G̃2

2 with

G̃2
2 = sup

l=1,...,d1

sup
θl:|θl−θ0,l|≤Cτn,ηl∈Tl

(
ψl(W, θl, ηl)− ψl(W, θ0,l, η0,l)

)2
and

‖G̃2
2‖P,q

.
∥∥∥ sup
l,θl,η

(2)
l ,η

(4)
l

(
(θ0,l − θl)gl(X1)

(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
))2∥∥∥

P,q

+
∥∥∥ sup
l,ηl

((
Y − θ0,lgl(X1)− (η

(1)
l )TZ−l − η(3)

l (X)
)

(
(η

(2)
0,l − η

(2)
l )TZ−l + η

(4)
0,l (Z−l)− η

(4)
l (Z−l)

))2∥∥∥
P,q
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+
∥∥∥ sup
l,η

(1)
l ,η

(3)
l

((
gl(X1)− (η

(2)
0,l )

TZ−l − η(4)
0,l (Z−l)

)
(
(η

(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)− η(3)

l (X)
))2∥∥∥

P,q

=: T1 + T2 + T3.

It holds

T1 . τ
2
n

∥∥∥ sup
l,η

(2)
l ,η

(4)
l

(
gl(X1)

(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
))2∥∥∥

P,q

≤ τ2
n‖ sup

l
(gl(X1))2‖P,2q

∥∥∥ sup
l,η

(2)
l ,η

(4)
l

(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
)2∥∥∥

P,2q

. τ2
n log

4
ρ (d1),

T2 ≤
∥∥∥ sup
l,η

(1)
l ,η

(3)
l

(
Y − θ0,lgl(X1)− (η

(1)
l )TZ−l − η(3)

l (X)
)2∥∥∥

P,2q∥∥∥ sup
l,η

(2)
l ,η

(4)
l

(
(η

(2)
0,l − η

(2)
l )TZ−l + η

(4)
0,l (Z−l)− η

(4)
l (Z−l)

)2∥∥∥
P,2q

. sτ2
n

∥∥∥ sup
l
‖Z−l‖2∞

∥∥∥
P,2q

+ log
2
ρ (d1)

. sτ2
n log

2
ρ (d1 + d2) + log

2
ρ (d1)

and

T3 ≤ ‖ sup
l

(ν(l))2‖P,2q
∥∥∥ sup
l,η

(1)
l ,η

(3)
l

(
η

(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)− η(3)

l (X)
)2∥∥∥

P,2q

. log
2
ρ (d1)

(
sτ2
n

∥∥∥ sup
l
‖Z−l‖2∞

∥∥∥
P,2q

+ 1
)

. log
2
ρ (d1)

(
sτ2
n log

2
ρ (d1 + d2) + 1

)
.

By using an analogous argument as above, we obtain

σ̃ : = sup
f∈G̃2

2

E
[
f(X)2

] 1
2

= sup
l=1,...,d1

sup
θl:|θl−θ0,l|≤Cτn,ηl∈Tl

E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, η0,l))

4
] 1

2

.
s2 log(d1 ∨ d2)

n
.

Again, we can apply Lemma P.2 from Belloni et al. (2018) to obtain

sup
f∈G̃2

2

|En[f(X)]− E[f(X)]| ≤ K
(
σ̃

√
s log(d̄n)

n
+ n

1
q ‖G̃2

2‖P,q
s log(d̄n)

n

)
. sτ3

n ∨ n
1
q log

2
ρ (d1)τ2

n

with probability 1− o(1). Note that we have already shown Assumption B.2(v)(a) which implies

sup
f∈G̃2

2

E[f(X)] ≤ C
(
|θl − θ0,l|2 ∨ ‖η0,l − ηl‖2e

)
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. τ2
n.

Combined, this implies

sup
l=1,...,d1

En
[(
ε̂iν̂

(l)
i − εiν

(l)
i

)2
]
≤ sup
f∈G̃2

2

En[f(X)] . n
1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

and, with an analogous argument, we obtain

sup
l=1,...,d1

En
[(
εiν

(l)
i

)2
]
. 1.

Therefore, it holds

sup
‖v‖2=1,‖v‖0≤t1

|vT 1

n

n∑
i=1

ξi
(
ξ̂i − ξi

)T
v|

= sup
‖v‖2=1,‖v‖0≤t1

|En
[
vT ξi

(
ξ̂i − ξi

)T
v
]
|

≤ sup
‖v‖2=1,‖v‖0≤t1

∣∣∣∣∣
(
En
[(
vT ξi

)2]En [(vT (ξ̂i − ξi))2
]) 1

2

∣∣∣∣∣
. sup
‖v‖2=1,‖v‖0≤t1

∣∣∣∣∣
(
En
[(
vT
(
ξ̂i − ξi

))2
]) 1

2

∣∣∣∣∣
= sup
‖v‖2=1,‖v‖0≤t1

(
d1∑
k=1

d1∑
l=1

vkvlEn
[
(ε̂iν̂

(k)
i − εiν(k)

i )(ε̂iν̂
(l)
i − εiν

(l)
i )
]) 1

2

. t1 sup
l=1,...,d1

En
[
(ε̂iν̂

(l)
i − εiν

(l)
i )2

] 1
2

. t1

(
n

1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

) 1
2

and

sup
‖v‖2=1,‖v‖0≤t1

|vT 1

n

n∑
i=1

(
ξ̂i − ξi

)(
ξ̂i − ξi

)T
v| . t21

(
n

1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

)
with probability 1 − o(1). Combining the steps above, implies (4.11) if un = o(1) which is ensured by

the growth conditions. Next, note that for every sparse vector w ∈ Rd1 (‖w‖0 ≤ t1) there exists a

corresponding matrix Mw

Mw ∈ Rd1×d1 : (Mw)k,l =

1 if wk 6= 0 ∧ wl 6= 0

0 else,

such that

wT (Σ̂εν − Σεν)w = wT
(
Mw � (Σn − Σ̂n)

)
w.

Due to (4.11), it holds

sup
‖w‖0≤t1

sup
‖v‖2=1

∣∣∣vT (Mw � (Σ̂εν − Σεν)
)
v
∣∣∣ ≤ sup

‖v‖2=1,‖v‖0≤t1

∣∣∣vT (Σ̂εν − Σεν)v
∣∣∣ . un,
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which implies

sup
‖w‖0≤t1

‖Mw � (Σ̂εν − Σεν)‖2 . un

and

sup
‖w‖0≤t1

‖Mw � Σ̂εν‖2 . 1

due to Assumption A.2(iv). This can be used to show for v ∈ Rd1

sup
‖v‖2=1,‖v‖0≤t1

|vT
(
Σ̂n − Σn

)
v| . un (4.12)

with probability 1−o(1) which can be interpreted as an upper bound for the sparse eigenvalues of Σ̂n−Σn.

It holds

Σ̂n − Σn = Ĵ−1Σ̂εν(Ĵ−1)T − J−1
0 Σεν(J−1

0 )T

= Ĵ−1Σ̂εν
(
Ĵ−1 − J−1

0 )T +
(
Ĵ−1 − J−1

0

)
Σ̂εν(J−1

0 )T

+ J−1
0

(
Σ̂εν − Σεν

)(
J−1

0 )T .

Note that

sup
‖v‖2=1,‖v‖0≤t1

|vT Ĵ−1Σ̂εν
(
Ĵ−1 − J−1

0 )T v|

= sup
‖v‖2=1,‖v‖0≤t1

|vT Ĵ−1
(
Mv � Σ̂εν

) (
Ĵ−1 − J−1

0 )T v|

≤
∥∥∥Ĵ−1

∥∥∥
2

sup
‖w‖0≤t1

∥∥∥(Mw � Σ̂εν

)∥∥∥
2

∥∥∥(Ĵ−1 − J−1
0 )T

∥∥∥
2

. n
1
q
s log

2
ρ (d1) log(d̄n)

n
+ τn

due to the sub-multiplicative spectral norm and an analogous argument holds for the second term. The

third term can be bounded by

sup
‖v‖2=1,‖v‖0≤t1

|vTJ−1
0

(
Σ̂εν − Σεν

)(
J−1

0 )T v| . un.

This implies (4.12). We finally obtain

sup
x∈I

∣∣∣∣∣ (g(x)T Σ̂ng(x))1/2

(g(x)TΣng(x))1/2
− 1

∣∣∣∣∣ . sup
x∈I

∣∣∣g(x)T
(
Σ̂n − Σn

)
g(x)

∣∣∣
≤ sup

x∈I
‖g(x)‖22 sup

‖v‖2=1,‖v‖0≤t1
|vT
(
Σ̂n − Σn

)
v|

. sup
x∈I
‖g(x)‖22un

with probability 1− o(1) and εn . supx∈I ‖g(x)‖22un which is the first part of Assumption B.5.

Assumption B.4(iii)− (iv)
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Define

σx : = (g(x)TΣng(x))1/2,

σ̂x : = (g(x)T Σ̂ng(x))1/2

and

F̂0 := {ψx(·)− ψ̂x(·) : x ∈ I}

with ψ̂x(·) := σ̂−1
x g(x)T Ĵ−1

0 ψ(·, θ̂, η̂). For every x and x̃, it holds

‖ψx(W )− ψ̂x(W )− (ψx̃(W )− ψ̂x̃(W ))‖Pn,2

=
∥∥∥σ−1

x g(x)TJ−1
0 ψ(W, θ0, η0)− σ−1

x̃ g(x̃)TJ−1
0 ψ(W, θ0, η0)

−
(
σ̂−1
x g(x)T Ĵ−1ψ(W, θ̂, η̂)− σ̂−1

x̃ g(x̃)T Ĵ−1ψ(W, θ̂, η̂)
)∥∥∥

Pn,2

=
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))J−1
0,l ψl(W, θ0,l, η0,l)

−
d1∑
l=1

(σ̂−1
x gl(x)− σ̂−1

x̃ gl(x̃))Ĵ−1
l ψl(W, θ̂l, η̂l)

∥∥∥
Pn,2

≤
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))
(
J−1

0,l − Ĵ
−1
l

)
ψl(W, θ0,l, η0,l)

∥∥∥
Pn,2

+
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))Ĵ−1
l

(
ψl(W, θ0,l, η0,l)− ψl(W, θ̂l, η̂l)

)∥∥∥
Pn,2

+
∥∥∥ d1∑
l=1

(
(σ−1
x gl(x)− σ−1

x̃ gl(x̃))− (σ̂−1
x gl(x)− σ̂−1

x̃ gl(x̃))
)
Ĵ−1
l ψl(W, θ̂l, η̂l)

∥∥∥
Pn,2

=:I4,1 + I4,2 + I4,3.

We obtain

I4,1 =
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))
(
J−1

0,l − Ĵ
−1
l

)
ψl(W, θ0,l, η0,l)

∥∥∥
Pn,2

≤ σ−1
x

∥∥∥(g(x)− g(x̃))T
(
J−1

0 − Ĵ−1
)
ψ(W, θ0, η0)

∥∥∥
Pn,2

+ |σ−1
x − σ−1

x̃ |
∥∥∥g(x̃)T

(
J−1

0 − Ĵ−1
)
ψ(W, θ0, η0)

∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2 sup
‖v‖2=1,‖v‖0≤2t1

∥∥∥vT(J−1
0 − Ĵ−1

)
ψ(W, θ0, η0)

∥∥∥
Pn,2

+ ‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22 sup

‖v‖2=1,‖v‖0≤t1

∥∥∥vT(J−1
0 − Ĵ−1

)
ψ(W, θ0, η0)

∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22un,

where we used that

sup
‖v‖2=1,‖v‖0≤t1

∥∥∥vT(J−1
0 − Ĵ−1

)
ψ(W, θ0, η0)

∥∥∥2

Pn,2

= sup
‖v‖2=1,‖v‖0≤t1

∣∣∣vT(J−1
0 − Ĵ−1

) 1

n

n∑
i=1

ξiξ
T
i

(
J−1

0 − Ĵ−1
)T
v
∣∣∣
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≤
∥∥∥J−1

0 − Ĵ−1
∥∥∥2

2
sup
‖v‖0≤t1

∥∥∥Mv �

(
1

n

n∑
i=1

ξiξ
T
i

)∥∥∥2

2

. u2
n.

Analogously, we obtain

I4,2 =
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))Ĵ−1
l

(
ψl(W, θ0,l, η0,l)− ψl(W, θ̂l, η̂l)

)∥∥∥
Pn,2

≤ σ−1
x

∥∥∥(g(x)− g(x̃))T Ĵ−1
(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

+ |σ−1
x − σ−1

x̃ |
∥∥∥g(x̃)T Ĵ−1

(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2 sup
‖v‖2=1,‖v‖0≤2t1

∥∥∥vT Ĵ−1
(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

+ ‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22 sup

‖v‖2=1,‖v‖0≤t1

∥∥∥vT Ĵ−1
(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22un.

It holds

I4,3 =
∥∥∥ d1∑
l=1

(
(σ−1
x gl(x)− σ−1

x̃ gl(x̃))− (σ̂−1
x gl(x)− σ̂−1

x̃ gl(x̃))
)
Ĵ−1
l ψl(W, θ̂l, η̂l)

∥∥∥
Pn,2

≤
∣∣σ−1
x − σ̂−1

x

∣∣∥∥∥(g(x)− g(x̃))T Ĵ−1ψ(W, θ̂, η̂)
∥∥∥
Pn,2

+
∣∣(σ−1

x − σ̂−1
x )− (σ−1

x̃ − σ̂
−1
x̃ )
∣∣∥∥∥g(x̃)T Ĵ−1ψ(W, θ̂, η̂)

∥∥∥
Pn,2

.

Note that

∣∣(σ−1
x − σ̂−1

x )− (σ−1
x̃ − σ̂

−1
x̃ )
∣∣

=
∣∣∣ 1

σxσx̃
(σx̃ − σx)− 1

σ̂xσ̂x̃
(σ̂x̃ − σ̂x)

∣∣∣
=

1

σ̂xσ̂x̃

∣∣∣ σ̂xσ̂x̃
σxσx̃

(σx̃ − σx)− (σ̂x̃ − σ̂x)
∣∣∣

.
∣∣(σx̃ − σx)− (σ̂x̃ − σ̂x)

∣∣+
∣∣∣ σ̂xσ̂x̃
σxσx̃

− 1
∣∣∣∣∣σx̃ − σx∣∣

with ∣∣∣ σ̂xσ̂x̃
σxσx̃

− 1
∣∣∣∣∣σx̃ − σx∣∣ ≤ (∣∣∣ σ̂x

σx
− 1
∣∣∣ σ̂x̃
σx̃

+
∣∣∣ σ̂x̃
σx̃
− 1
∣∣∣)∣∣σx̃ − σx∣∣

. εn
1

σx

∣∣σ2
x̃ − σ2

x

∣∣
. εn‖g(x)− g(x̃)‖2 sup

x
‖g(x)‖2

uniformly over x ∈ I with probability 1− o(1) and

∣∣(σx̃ − σx)− (σ̂x̃ − σ̂x)
∣∣

≤ 1

(σ̂x̃ + σ̂x)

∣∣(σ2
x̃ − σ2

x)− (σ̂2
x̃ − σ̂2

x)
∣∣+
∣∣∣( 1

(σx̃ + σx)
− 1

(σ̂x̃ + σ̂x)

)
(σ2
x̃ − σ2

x)
∣∣∣

.
∣∣(σ2

x̃ − σ2
x)− (σ̂2

x̃ − σ̂2
x)
∣∣+
∣∣∣ (σ̂x̃ + σ̂x)

(σx̃ + σx)
− 1
∣∣∣∣∣σ2

x̃ − σ2
x

∣∣.
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Using an analogous argument as in the verification of Assumption B.5, we obtain

|(σ2
x − σ̂2

x)− (σ2
x̃ − σ̂2

x̃)| = |(g(x)− g(x̃))T (Σn − Σ̂n)(g(x) + g(x̃))|

≤ ‖(Σn − Σ̂n)(g(x)− g(x̃))‖2 sup
x∈I
‖g(x)‖2

. ‖g(x)− g(x̃)‖2un sup
x∈I
‖g(x)‖2

with probability 1− o(1) where the last inequality holds due the order of the sparse eigenvalues in (4.12).

Additionally, ∣∣∣ (σ̂x̃ + σ̂x)

(σx̃ + σx)
− 1
∣∣∣∣∣σ2

x̃ − σ2
x

∣∣ ≤ sup
x∈I

∣∣∣ σ̂x
σx
− 1
∣∣∣∣∣σ2

x̃ − σ2
x

∣∣
. εn‖g(x)− g(x̃)‖2 sup

x∈I
‖g(x)‖2

with probability 1− o(1). Therefore, we obtain

I4,3 . εn‖g(x)− g(x̃)‖2 sup
‖v‖2=1,‖v‖0≤2t1

∥∥∥vT Ĵ−1ψ(W, θ̂, η̂)
∥∥∥
Pn,2

+ (εn ∨ un)‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22 sup

‖v‖2=1,‖v‖0≤t1

∥∥∥vT Ĵ−1ψ(W, θ̂, η̂)
∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2εn sup
x∈I
‖g(x)‖22.

Combining the steps above, we obtain

‖ψx(W )− ψ̂x(W )− (ψx̃(W )− ψ̂x̃(W ))‖Pn,2 ≤ ‖g(x)− g(x̃)‖2‖F̂0‖Pn,2

with

‖F̂0‖Pn,2 . εn sup
x∈I
‖g(x)‖22 = o(1)

due to the growth condition in Assumption A.2(v)(b) as shown below. Using the same argument as

Theorem 2.7.11 from Van der Vaart and Wellner (1996), we obtain with probability 1− o(1)

logN(ε, F̂0, ‖ · ‖Pn,2) ≤ logN(ε‖F̂0‖Pn,2, F̂0, ‖ · ‖Pn,2)

≤ logN(ε, g(I), ‖ · ‖2)

≤ %̄n log

(
Ān
ε

)
with %̄n = t1 and Ān . An. Additionally, it holds

‖ψx(W )− ψ̂x(W )‖Pn,2

=
∥∥∥σ−1

x g(x)TJ−1
0 ψ(W, θ0, η0)− σ̂−1

x g(x)T Ĵ−1ψ(W, θ̂, η̂)
∥∥∥
Pn,2

≤ σ−1
x

∥∥∥g(x)T
(
J−1

0 − Ĵ−1
)
ψ(W, θ0, η0)

∥∥∥
Pn,2

+ σ−1
x

∥∥∥g(x)T Ĵ−1
(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

+ |σ−1
x − σ̂−1

x |
∥∥∥g(x)T Ĵ−1ψ(W, θ̂, η̂)

∥∥∥
Pn,2

. sup
x∈I
‖g(x)‖2(un ∨ εn)
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. sup
x∈I
‖g(x)‖2εn

with an analogous argument as above. Therefore, B.4(iii) holds with

δ̄n . sup
x∈I
‖g(x)‖2εn.

To complete the proof, we verify all growth conditions from Assumptions B.4 and B.5. As shown in the

verification of B.3(vi), it holds

t21δ
2
n%n log(An) = δ2

nt
3
1 log(An) = o(1).

Additionally,

n−
1
7L

2
7
n%n log(An) =

t
13
7

1 log
6
7ρ (d1) log(An)

n
1
7

= o(1)

and

n
2
3q−

1
3L

2
3
n%n log(An) = n

2
3q
t31 log

2
ρ (d1) log(An)

n
1
3

= o(1)

for q large enough due to growth condition in Assumption A.2(v)(c). Note that

εn%n log(An) = εnt1 log(An) . δ̄nt1 log(An).

Hence, we need to show that

δ̄2
n%̄n%n log(Ān) log(An) = δ̄2

nt
2
1 log2(An) = o(1).

It holds

δ̄2
nt

2
1 log2(An) . u2

n sup
x∈I
‖g(x)‖62t21 log2(An)

.
(
n

1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

)
sup
x∈I
‖g(x)‖62t41 log2(An)

= o(1)

due to Assumption A.2(v)(b).

4.8 Uniformly valid confidence bands

As in Belloni et al. (2018), we consider the problem of estimating the set of parameters θ0,l for l = 1, . . . , d1

in the moment condition model,

E[ψl(W, θ0,l, η0,l)] = 0, l = 1, . . . , d1, (4.13)

where W is a random variable, ψl a known score function, θ0,l ∈ Θl a scalar of interest, and η0,l ∈ Tl a

high-dimensional nuisance parameter where Tl is a convex set in a normed space equipped with a norm

‖ · ‖e. Let Tl be some subset of Tl, which contains the nuisance estimate η̂l with high probability. Belloni

et al. (2018) provide an appropriate estimator θ̂l and are able to construct simultaneous confidence bands
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for (θ0,l)l=1,...,d1
where d1 may increase with sample size n. In this section, we are particularly interested

in the linear functional

G(x) =

d1∑
l=1

θ0,lgl(x),

where (gl)l=1,...,d1 is a given set of functions with

gl : I ⊆ R→ R, l = 1, . . . , d1.

We assume that the score functions ψl are constructed to satisfy the near-orthogonality condition, namely

Dl,0[η, η0,l] := ∂t
{
E[ψl(W, θ0,l, η0,l + t(η − η0,l))]

}∣∣
t=0
. δnn

−1/2, (4.14)

where ∂t denotes the derivative with respect to t and (δn)n≥1 a sequence of positive constants converging

to zero. We aim to construct uniform valid confidence bands for the target function G(x), namely

P (l̂(x) ≤ G(x) ≤ û(x),∀x ∈ I)→ 1− α.

Let η̂l =
(
η̂

(1)
l , η̂

(2)
l

)
be an estimator of the nuisance function. The estimator θ̂0 of the target parameter

θ0 = (θ0,1, . . . , θ0,d1
)T

is defined as the solution of

sup
l=1,...,d1

{∣∣∣En[ψl(W, θ̂l, η̂l)]∣∣∣− inf
θ∈Θl

∣∣∣En[ψl(W, θ, η̂l)]∣∣∣} ≤ εn, (4.15)

where εn = o
(
δnn
−1/2

)
is the numerical tolerance and (δn)n≥1 a sequence of positive constants converging

to zero. Let

g(x) = (g1(x), . . . , gd1
(x))

T ∈ Rd1×1

and

ψ(W, θ, η) = (ψ1(W, θ, η), . . . , ψd1(W, θ, η))
T ∈ Rd1×1.

Define the Jacobian matrix

J0 :=
∂

∂θ
E[ψ(W, θ, η0)]

∣∣∣∣
θ=θ0

= diag (J0,1, . . . , J0,d1
) ∈ Rd1×d1

and the approximate covariance matrix

Σn : = J−1
0 E

[
ψ(W, θ0, η0)ψ(W, θ0, η0)T

]
(J−1

0 )T ∈ Rd1×d1 .

Additionally, define

Sn := E

[
sup

l=1,...,d1

∣∣√nEn [ψl(W, θ0,l, η0,l)]
∣∣]
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and

t1 := sup
x∈I
‖g(x)‖0.

The definition of t1 is helpful if the functions gl, l = 1, . . . , d1 are local in the sense that for any point

x in I there are at most t1 � d1 non-zero functions. We state the conditions needed for the uniformly

valid confidence bands.

Assumption B. 1. It holds

(i) inf
x∈I
‖g(x)‖22 ≥ c > 0

(ii) sup
x∈I

sup
l=1,...,d1

|gl(x)| ≤ C <∞

(iii) The eigenvalues from Σn are uniformly bounded from above and away from zero.

Since the proof of our main result in this section relies on the techniques in Belloni et al. (2018), we try

formulate the following conditions as similar as possible to make the use of their methodology transparent.

Assumption B. 2. For all n ≥ n0, P ∈ Pn and l ∈ {1, . . . , d1}, the following conditions hold:

(i) The true parameter value θ0,l obeys (4.13), and Θl contains a ball of radius C0n
−1/2Sn log(n)

centered at θ0,l.

(ii) The map (θl, ηl) 7→ E[ψl(W, θl, ηl)] is twice continuously Gateaux-differentiable on Θl × Tl.

(iii) The score function ψl obeys the near orthogonality condition (4.14) for the set Tl ⊂ Tl.

(iv) For all θl ∈ Θl, |E[ψl(W, θl, η0,l)]| ≥ 2−1|J0,l(θl − θ0,l)| ∧ c0, where J0,l satisfies c0 ≤ |J0,l| ≤ C0.

(v) For all r ∈ [0, 1), θl ∈ Θl and ηl ∈ Tl

(a) E[(ψl(W, θl, ηl)− ψl(W, θ0,l, η0,l))
2] ≤ C0(|θl − θ0,l| ∨ ‖ηl − η0,l‖e)ω

(b) |∂rE[ψl(W, θl, η0,l + r(ηl − η0,l))]| ≤ B1n‖ηl − η0,l‖e

(c) |∂2
rE[ψl(W, θ0,l + r(θl − θ0,l), η0,l + r(ηl − η0,l))]| ≤ B2n(|θl − θ0,l|2 ∨ ‖ηl − η0,l‖2e).

Note that the notation E abbreviates EP . For a detailed discussion about the ideas and intuitions of

these and the following assumptions, see Belloni et al. (2018).

Let (∆n)n≥1 and (τn)n≥1 be some sequences of positive constants converging to zero. Also, let (an)n≥1,

(υn)n≥1, and (Kn)n≥1 be some sequences of positive constants, possibly growing to infinity where an ≥
n ∨Kn and υ ≥ 1 for all n ≥ 1. Finally, let q ≥ 2 be some constant.

Assumption B. 3. For all n ≥ n0 and P ∈ Pn, the following conditions hold:

(i) With probability at least 1−∆n, we have η̂l ∈ Tl for all l = 1, . . . , d1.

(ii) For all l = 1, . . . , d1 and ηl ∈ Tl, it holds ‖ηl − η0,l‖e ≤ τn.

(iii) For all l = 1, . . . , d1, we have η0,l ∈ Tl.

(iv) The function class F1 = {ψl(·, θl, ηl) : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl} is suitably measurable and its

uniform entropy numbers obey

sup
Q

logN(ε‖F1‖Q,2,F1, ‖ · ‖Q,2) ≤ υn log(an/ε), for all 0 < ε ≤ 1,

where F1 is a measurable envelope for F1 that satisfies ‖F1‖P,q ≤ Kn.
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(v) For all f ∈ F1, we have c0 ≤ ‖f‖P,2 ≤ C0.

(vi) The complexity characteristics an and υn satisfy

(a) (υn log(an)/n)1/2 ≤ C0τn,

(b) (B1nτn + Sn log(n)/
√
n)ω/2(υn log(an))1/2 + n−1/2+1/qυnKn log(an) ≤ C0δn,

(c) n1/2B2
1nB

2
2nτ

2
n ≤ C0δn.

Whereas the Assumptions B.2 and B.3 are identical to the Assumptions 2.1 and 2.2 from Belloni et al.

(2018), the analogs to their Assumptions 2.3 and 2.4 need modifications to fit our setting constructing a

uniformly valid confidence band for the linear functional G(x). In this context, define

ψx(·) := (g(x)TΣng(x))−1/2g(x)TJ−1
0 ψ(·, θ0, η0)

and the corresponding plug-in estimator

ψ̂x(·) := (g(x)T Σ̂ng(x))−1/2g(x)T Ĵ−1
0 ψ(·, θ̂0, η̂0).

Let (δ̄n)n≥1 be a sequence of positive constants converging to zero. Also, let (%n)n≥1, (%̄n)n≥1, (An)n≥1,

(Ān)n≥1, and (Ln)n≥1 be some sequences of positive constants, possibly growing to infinity where % ≥ 1,

An ≥ n, and Ān ≥ n for all n ≥ 1. In addition, assume that q > 4.

Assumption B. 4. For all n ≥ n0 and P ∈ Pn, the following conditions hold:

(i) The function class F0 = {ψx(·) : x ∈ I} is suitably measurable and its uniform entropy numbers

obey

sup
Q

logN(ε‖F0‖Q,2,F0, ‖ · ‖Q,2) ≤ %n log(An/ε), for all 0 < ε ≤ 1,

where F0 is a measurable envelope for F0 that satisfies ‖F0‖P,q ≤ Ln.

(ii) For all f ∈ F0 and k = 3, 4, we have E[|f(W )|k] ≤ C0L
k−2
n .

(iii) The function class F̂0 = {ψx(·)− ψ̂x(·) : x ∈ I} satisfies with probability 1−∆n:

logN(ε, F̂0, ‖ · ‖Pn,2) ≤ %̄n log(Ān/ε), for all 0 < ε ≤ 1,

and ‖f‖Pn,2 ≤ δ̄n for all f ∈ F̂0.

(iv) t21δ
2
n%n log(An) = o(1), L

2/7
n %n log(An) = o(n1/7) and L

2/3
n %n log(An) = o(n1/3−2/(3q)).

Additionally, we need to be able to estimate the variance of the linear functional sufficiently well. Let

Σ̂n be an estimator of Σn.

Assumption B. 5. For all n ≥ n0 and P ∈ Pn, it holds

P

(
sup
x∈I

∣∣∣∣∣ (g(x)T Σ̂ng(x))1/2

(g(x)TΣng(x))1/2
− 1

∣∣∣∣∣ > εn

)
≤ ∆n,

where εn%n log(An) = o(1) and δ̄2
n%̄n%n log(Ān) log(An) = o(1).
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As in Chernozhukov et al. (2013a), we employ the Gaussian multiplier bootstrap method to estimate the

relevant quantiles. Let

Ĝ =
(
Ĝx
)
x∈I

=

(
1√
n

n∑
i=1

ξiψ̂x(Wi)

)
x∈I

,

where (ξi)
n
i=1 are independent standard normal random variables (especially independent from (Wi)

n
i=1).

Define the multiplier bootstrap critical value cα as the (1− α) quantile of the conditional distribution of

supx∈I |Ĝx| given (Wi)
n
i=1.

Theorem 4. Define

û(x) := Ĝ(x) +
(g(x)′Σ̂ng(x))1/2cα√

n

l̂(x) := Ĝ(x)− (g(x)′Σ̂ng(x))1/2cα√
n

with Ĝ(x) = g(x)T θ̂0. Under the Assumptions B.1 - B.5, it holds

P
(
l̂(x) ≤ G(x) ≤ û(x),∀x ∈ I

)
→ 1− α

uniformly over P ∈ Pn.

Proof. Since Theorem 2.1 in Belloni et al. (2018) is not directly applicable to our problem, we have to

modify the proof to obtain a uniform Bahadur representation. We want to prove that

sup
x∈I

∣∣∣√n(g(x)TΣng(x))−1/2g(x)T
(
θ̂ − θ0

)∣∣∣ = sup
x∈I

∣∣∣Gn(ψx)
∣∣∣+OP (t1δn). (4.16)

Assumptions B.2 and B.3 contain Assumptions 2.1 and 2.2 from Belloni et al. (2018) which enables us

to use parts of their results. Therefore, it holds

sup
l=1,...,d1

∣∣∣J−1
0,l

√
nEn [ψl(W, θ0,l, η0,l)] +

√
n
(
θ̂l − θ0,l

)∣∣∣ = OP (δn).

Using Assumption B.1, this implies

sup
x∈I

∣∣∣√nEn [g(x)TJ−1
0 ψ(W, θ0, η0)

]
+
√
ng(x)T

(
θ̂ − θ0

)∣∣∣
= sup

x∈I

∣∣∣∣∣∣
d1∑
j=1

gl(x)
(
J−1

0,l

√
nEn [ψl(W, θ0,l, η0,l)] +

√
n(θ̂l − θ0,l)

)∣∣∣∣∣∣
≤ t1 sup

x∈I
sup

l=1,...,d1

|gl(x)|︸ ︷︷ ︸
≤C

sup
l=1,...,d1

∣∣∣J−1
0,l

√
nEn [ψl(W, θ0,l, η0,l)] +

√
n
(
θ̂l − θ0,l

)∣∣∣
= Op(t1δn).

Since the minimal eigenvalue of Σn is uniformly bounded away from zero, it follows that g(x)TΣng(x)

is uniformly bounded away from zero as long as ‖g(x)‖22 is uniformly bounded away from zero due to

Assumption B.1. This implies (4.16).
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Due to Assumption B.5, it holds

P

(
sup
x∈I

∣∣∣∣∣ (g(x)T Σ̂ng(x))1/2

(g(x)TΣng(x))1/2
− 1

∣∣∣∣∣ > εn

)
≤ ∆n,

with ∆n = o(1), which is an analogous version of the Assumption 2.4 from Belloni et al. (2018). Therefore,

given the Assumptions B.2 - B.5, the proofs of Corollary 2.1 and 2.2 from Belloni et al. (2018) can be

applied implying the stated theorem.

4.9 Uniform nuisance function estimation

To establish uniform estimation properties of the nuisance function, we rely on uniform estimation results

from Klaassen et al. (2018). Consider the following linear regression model

Yr =

p∑
j=1

βr,jXr,j + ar(Xr) + εr = βrXr + ar(Xr) + εr

with centered regressors and ar(Xr) accounts for an approximation error. The errors εr are assumed to

satisfy E[εr|Xr] = 0 for each r = 1, . . . , d.

The true parameter obeys

βr ∈ arg min
β

E[(Yr − βXr − ar(Xr))
2].

We show that the lasso and post-lasso lasso estimators have sufficiently fast uniform estimation rates if the

vector βr is sparse for all r = 1, . . . , d. Due to the approximation error ar(Xr), the sparsity assumption

is quite mild and contains an approximate sparse setting. In this setting, d = dn is explicitly allowed to

grow with n. In the following analysis, the regressors and errors need to have at least subexponential

tails. In this context, we define the Orlicz norm ‖X‖Ψρ as

‖X‖Ψρ = inf{C > 0 : E[Ψρ(|X|/C)] ≤ 1}

with Ψρ(x) = exp(xρ)− 1.

4.9.1 Uniform lasso estimation

Define the weighted lasso estimator

β̂r ∈ arg min
β

(
1

2
En
[
(Yr − βXr)

2
]

+
λ

n
‖Ψ̂r,mβ‖1

)
with the penalty level

λ = cλ
√
nΦ−1

(
1− γ

2pd

)
for a suitable cλ > 1, γ ∈ [1/n, 1/ log(n)] and a fix m ≥ 0. Define the post-regularized weighted least

squares estimator as

β̃r ∈ arg min
β

(
1

2
En
[
(Yr − βXr)

2
])

: supp(β) ⊆ supp(β̂r).
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The penalty loadings Ψ̂r,m = diag({l̂r,j,m, j = 1, . . . , p}) are defined by

l̂r,j,0 = max
1≤i≤n

||X(i)
r ||∞

for m = 0 and for all m ≥ 1 by the following algorithm:

Algorithm 2 Penalty loadings

1. Set m̄ = 0. Compute β̂r based on Ψ̂r,m̄.

2. Set l̂r,j,m̄+1 = En
[((

Yr − β̂rXr

)
Xr,j

)2
]1/2

.

3. If m̄ = m stop and report the current value of Ψ̂r,m, otherwise set m̄ = m̄+ 1.

Let an := max(p, n, d, e). In order to establish uniform convergence rates, the following assumptions are

required to hold uniformly in n ≥ n0 and P ∈ Pn:

Assumption C. 1.

(i) There exists 1 ≤ ρ ≤ 2 such that

max
r=1,...,d

max
j=1,...,p

‖Xr,j‖Ψρ ≤ C and max
r=1,...,d

‖εr‖Ψρ ≤ C.

(ii) For all r = 1, . . . , dn, it holds

inf
‖ξ‖2=1

E
[
(ξXr)

2
]
≥ c, sup

‖ξ‖2=1

E
[
(ξXr)

2
]
≤ C

and

min
j=1,...,p

E[ε2rX
2
r,j ] ≥ c > 0.

(iii) The coefficients obey

max
r=1,...,d

‖βr‖0 ≤ s.

(iv) There exists a positive number q̃ > 0 such that the following growth condition is fulfilled:

n
1
q̃
s log1+ 4

ρ (an)

n
= o(1).

(v) The approximation error obeys

max
r=1,...,d

‖ar(Xr)‖P,2 ≤ C
√
s log(an)

n

and

max
r=1,...,d

(En[(ar(Xr))
2]− E[(ar(Xr))

2]) ≤ C s log(an)

n

with probability 1− o(1).

Theorem 5. Under the Assumption C.1, the lasso estimator β̂r obeys uniformly over all P ∈ Pn with

123



CHAPTER 4 4.9. UNIFORM NUISANCE FUNCTION ESTIMATION

probability 1− o(1)

max
r=1,...,d

‖β̂r − βr‖2 ≤ C
√
s log(an)

n
, (4.17)

max
r=1,...,d

‖β̂r − βr‖1 ≤ C
√
s2 log(an)

n
(4.18)

and

max
r=1,...,d

‖β̂r‖0 ≤ Cs. (4.19)

Additionally, the post-lasso estimator β̃r obeys uniformly over all P ∈ Pn with probability 1− o(1)

max
r=1,...,d

‖β̃r − βr‖2 ≤ C
√
s log(an)

n
, (4.20)

max
r=1,...,d

‖β̃r − βr‖1 ≤ C
√
s2 log(an)

n
. (4.21)

Proof of Theorem 5.

In the following, we use C for a strictly positive constant, independent of n, which may have a

different value in each appearance. The notation an . bn stands for an ≤ Cbn for all n for some fixed

C. Additionally, an = o(1) stands for uniform convergence towards zero meaning that there exists a

sequence (bn)n≥1 with |an| ≤ bn, where bn is independent of P ∈ Pn for all n and bn → 0. Finally, the

notation an .P bn means that for any ε > 0, there exists C such that uniformly over all n we have

PP (an > Cbn) ≤ ε.

Due to Assumption C.1(i), we can bound the q-th moments of the maxima of the regressors uni-

formly by

E
[

max
r=1,...,d

‖Xr‖q∞
] 1
q

= ‖ max
r=1,...,d

max
j=1,...,p

|Xr,j |‖P,q

≤ q!‖ max
r=1,...,d

max
j=1,...,p

|Xr,j |‖ψ1

≤ q! log
1
ρ−1(2)‖ max

r=1,...,d
max

j=1,...,p
|Xr,j |‖ψρ

≤ q! log
1
ρ−1(2)K log

1
ρ (1 + dp) max

r=1,...,d
max

j=1,...,p
‖Xr,j‖ψρ

≤ C log
1
ρ (an),

where C does depend on q and ρ but not on n. For the norm inequalities, we refer to Van der Vaart and

Wellner (1996). Now, we essentially modify the proof from Theorem 4.2 from Belloni et al. (2018) to fit

our setting and keep the notation as similar as possible. Let U = {1, . . . , d} and

βr ∈ arg min
β∈Rp

E
[ 1

2
(Yr − βXr − ar(Xr))

2︸ ︷︷ ︸
:=Mr(Yr,Xr,β,ar)

]
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for all r = 1, . . . , d. The approximation error ar(Xr) is estimated with âr ≡ 0. Define

Mr(Yr, Xr, β) := Mr(Yr, Xr, β, âr) =
1

2
(Yr − βXr)

2
.

Then, we have

β̂r ∈ arg min
β∈Rp

(
En [Mr(Yr, Xr, β)] +

λ

n
‖Ψ̂rβ‖1

)
and

β̃r ∈ arg min
β∈Rp

(En [Mr(Yr, Xr, β)]) : supp(β) ⊆ supp(β̂r).

First, we verify the Condition WL from Belloni et al. (2018). Since Nn = d, we have N(ε,U , dU ) ≤ Nn

for all ε ∈ (0, 1) with

dU (i, j) =

0 for i = j

1 for i 6= j.

To prove WL(i), we note that

Sr = ∂βMr(Yr, Xr, β, ar)|β=β
(1)
r

= −εrXr.

Since Φ−1(1− t) .
√

log(1/t), uniformly over t ∈ (0, 1/2) , it holds

‖Sr,j‖P,3Φ−1(1− γ/2pd) = ‖εrXr,j‖P,3Φ−1(1− γ/2pd)

≤ (‖εr‖P,6‖Xr,j‖P,6)
1/2

Φ−1(1− γ/2pd)

≤ C log
1
2 (an) . ϕnn

1
6

with

ϕn = O

(
log

1
2 (an)

n
1
6

)
= o(1)

uniformly over all j = 1, . . . , p and r = 1, . . . , d by Assumption C.1(i) and C.1(iv). Further, it holds

E
[
S2
r,j

]
= E

[
ε2
rX

2
r,j

]
≤
(
E
[
ε4
r

]
E
[
X4
r,j

])1/2
≤ C

for all j = 1, . . . , p and r = 1, . . . , d by Assumption C.1(i) and

E
[
S2
r,j

]
= E

[
ε2
rX

2
r,j

]
≥ c

by Assumption C.1(ii), which implies Condition WL(ii). Note that Condition WL(iii) simplifies to

max
r=1,...,d

max
j=1,...,p

|(En − E)[S2
r,j ]| ≤ ϕn

with probability 1 −∆n. Now, we use the Maximal Inequality, see Lemma P.2 in Belloni et al. (2018).

Let W = (Y,X ) with Y = (Y1, . . . , Yd) ∈ Y and X = (X1, . . . , Xd) ∈ X . Define

F := {f2
r,j |r = 1, . . . , d, j = 1, . . . , p}
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with

fr,j :W = (Y,X )→ R

W = (Y,X) 7→ − (Yr − βrXr − ar(Xr))Xr,j = −εrXr,j = Sr,j .

Note that

‖ sup
f∈F
|f |‖P,q = ‖ max

r=1,...,d
max

j=1,...,p
|f2
r,j |‖P,q

= E
[

max
r=1,...,d

max
j=1,...,p

ε2q
r X

2q
r,j

]1/q

≤ E
[

max
r=1,...,d

ε2q
r max
r=1,...,d

max
j=1,...,p

X2q
r,j

]1/q

≤

(
E
[

max
r=1,...,d

ε4q
r

]1/4q

E
[

max
r=1,...,d

max
j=1,...,p

X4q
r,j

]1/4q
)2

≤ C log
4
ρ (an).

Since

sup
f∈F
‖f‖2P,2 = max

r=1,...,d
max

j=1,...,p
E
[
S4
r,j

]
≤ max
r=1,...,d

max
j=1,...,p

E
[
ε8
r

]1/2 E [X8
r,j

]1/2 ≤ C,
we can choose a constant with

sup
f∈F
‖f‖2P,2 ≤ C ≤ ‖ sup

f∈F
|f |‖2P,2.

Additionally, it holds |F| = dp which implies

log sup
Q
N(ε‖F‖Q,2,F , ‖ · ‖Q,2) ≤ log(dp) . log(an/ε), 0 < ε ≤ 1.

Using Lemma P.2 from Belloni et al. (2018), we obtain with probability not less than 1− o(1)

max
r=1,...,d

max
j=1,...,p

|(En − E)[S2
r,j ]| = n−1/2 sup

f∈F
|Gn(f)|

≤ n−1/2C
(√

log (an) + n−1/2+1/q log1+ 4
ρ (an)

)
= C

(√
log (an)

n
+

log1+ 4
ρ (an)

n1−1/q

)
≤ ϕn = o(1)

by the growth condition in Assumption C.1(iv). We proceed by verifying Assumption M.1 in Belloni

et al. (2018). The function β 7→ Mr (Yr, Xr, β) is convex, which is the first requirement of Assumption

M.1. We now proceed with a simplified version of proof of K.1 from Belloni et al. (2018). To show

Assumption M.1 (a), note that for all δ ∈ Rp∣∣∣En [∂βMr(Yr, Xr, βr)− ∂βMr(Yr, Xr, βr, ar)]
T
δ
∣∣∣

=
∣∣∣En [Xr(ar(Xr))]

T
δ
∣∣∣ ≤ ||ar(Xr)||Pn,2||XT

r δ||Pn,2

.P

√
s log(an)

n
||XT

r δ||Pn,2
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for all r = 1, . . . , d due to C.1(v). Further, we have

En
[

1

2

(
Yr − (βr + δT )Xr

)2]− En
[

1

2
(Yr − βrXr)

2

]
= −En

[
(Yr − βrXr) δ

TXr

]
+

1

2
En
[
(δTXr)

2
]
,

where

−En
[
(Yr − βrXr) δ

TXr

]
= En [∂βMr(Yr, Xr, βr)]

T
δ

and
1

2
En
[
(δTXr)

2
]

= ||
√
wrδ

TXr||2Pn,2

with
√
wr = 1/4. This gives us Assumption M.1 (c) with ∆n = 0 and q̄Ar =∞. Since Condition WL(ii)

and WL(iii) hold, we have with probability 1− o(1)

1 . lr,j =
(
En[S2

r,j ]
)1/2
. 1

uniformly over all r = 1, . . . , d and j = 1, . . . , p which directly implies

1 . ‖Ψ̂(0)
r ‖∞ := max

j=1,...,p
|lr,j | . 1

and additionally

1 . ‖(Ψ̂(0)
r )−1‖∞ := max

j=1,...,p
|l−1
r,j | . 1.

For now, we suppose that m = 0 in Algorithm 2. Uniformly over r = 1, . . . , d and j = 1, . . . , p, we have

l̂r,j,0 =

(
En[ max

1≤i≤n
‖X(i)

r ‖2∞]

)1/2

≥
(
En[‖Xr‖2∞]

)1/2
&P 1,

where the last inequality holds due to Assumption C.1(ii) and an application of the Maximal Inequality.

Also uniformly over r = 1, . . . , d, j = 1, . . . , p and for an arbitrary q > 0, it holds

l̂r,j,0 = max
1≤i≤n

‖X(i)
r ‖∞

≤ n1/q

(
1

n

n∑
i=1

‖X(i)
r ‖q∞

)1/q

= n1/q (En[‖Xr‖q∞])
1/q

with

E[‖Xr‖q∞]1/q . log
1
ρ (an).

By Maximal Inequality, we obtain with probability 1− o(1) for a sufficiently large q′ > 0

max
r
|En[‖Xr‖q∞]− E[‖Xr‖q∞]|

. C


√

log
2q
ρ +1(an)

n
+ n1/q′−1 log

q
ρ+1(an)


. log

q
ρ (an)
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since

E[max
r
‖Xr‖qq

′

∞ ]1/q
′
. log

q
ρ (an) and max

r
E[‖Xr‖q2∞]1/2 . log

q
ρ (an).

We conclude

l̂r,j,0 ≤ n1/q (En[‖Xr‖q∞])
1/q

≤ n1/q (|En[‖Xr‖q∞]− E[‖Xr‖q∞]|+ E[‖Xr‖q∞])
1/q

.P n
1/q log

1
ρ (an)

uniformly over r. Therefore, Assumption M.1(b) holds for some ∆n = o(1), L . n1/q log
1
ρ (an) and l & 1.

Hence, we can find a cl with l > 1/cl. Setting cλ > cl and γ = γn ∈ [1/n, 1/ log(n)] in the choice of λ, we

obtain

P

(
λ

n
≥ cl max

r=1,...,d
‖(Ψ̂(0)

r )−1En[Sr]‖∞
)
≥ 1− γ − o(γ)−∆n = 1− o(1)

due to Lemma M.4 in Belloni et al. (2018). Now, we uniformly bound the sparse eigenvalues. Set

ln = log
2
ρ (an)n2/q̄

for a q̄ > 5q̃ with q̃ in C.1(iv). We apply Lemma Q.1 in Belloni et al. (2018) with K . n1/q̄ log
1
ρ (an) and

δn . K
√
slnn

−1/2 log(sln) log
1
2 (an) log

1
2 (n)

.

√
n

4
q̄ log(n) log2(sln)

s log1+ 4
ρ (an)

n

.

√
n

5
q̄
s log1+ 4

ρ (an)

n

for n large enough. Hence, by the growth condition in Assumption C.1(iv), it holds

δn = o(1)

which implies

1 . min
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

≤ max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

. 1

with probability 1− o(1) uniformly over r = 1, . . . , d.

Define Tr := supp(β
(1)
r ) and

c̃ :=
Lcl + 1

lcl − 1
max

r=1,...,d
‖Ψ̂(0)

r ‖∞‖(Ψ̂(0)
r )−1‖∞ . L.

Let the restricted eigenvalues be defined as

κ̄2c̃ := min
r=1,...,d

inf
δ∈∆2c̃,r

‖δXr‖Pn,2
‖δTr‖2

,

where ∆2c̃,r := {δ : ‖δcTr‖1 ≤ 2c̃‖δTr‖1}. By the argument given in Bickel et al. (2009), it holds

κ̄2c̃ ≥

(
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‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2

− 2c̃

(
max
‖δ‖0≤lns
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‖δ‖22

)1/2(
s

sln

)1/2

128



CHAPTER 4 4.9. UNIFORM NUISANCE FUNCTION ESTIMATION

&

(
min

‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2

− 2n
1
q−

1
q̄

(
max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2

& 1

with probability 1− o(1) for a suitable choice of q with q > q̄. Since

λ

n
. n−1/2Φ−1 (1− γ/(2dp)) . n−1/2

√
log(2dp/γ) . n−1/2 log

1
2 (an)

and the uniformly bounded penalty loading from above and away from zero, we obtain

max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 .P L
√
s log(an)

n

by Lemma M.1 from Belloni et al. (2018). To show Assumption M.1(b) for m ≥ 1, we proceed by induc-

tion. Assume that the assumption holds for Ψ̂r,m−1 with some ∆n = o(1), l & 1 and L . n1/q log
1
ρ (an).

We have shown that the estimator based on Ψ̂r,m−1 obeys

max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 . L
√
s log(an)

n

with probability 1− o(1). This implies

|l̂r,j,m − lr,j | =

∣∣∣∣∣En
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)
Xr,j

)2
]1/2

− En
[
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2
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≤

∣∣∣∣∣En
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)
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)2
]1/2

∣∣∣∣∣
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1≤i≤n
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r=1,...,d
‖X(i)

r ‖∞

.P L

√
s log(an)

n
n1/q log

1
ρ (an)

.

√
n4/q

s log1+ 4
ρ (an)

n
= o(1)

uniformly over r = 1, . . . , d and j = 1, . . . , p. Therefore, Assumption M.1(b) holds for Ψ̂r,m for some

∆n = o(1), l & 1 and L . 1. Consequently, we obtain

max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 .
√
s log(an)

n
.

and

max
r=1,...,d

‖β̂r − βr‖1 .
√
s2 log(an)

n

with probability 1− o(1) due to Lemma M.1 in Belloni et al. (2018). Uniformly over all r = 1, . . . , d, it

holds ∣∣∣∣(En [∂βMr(Yr, Xr, β̂r)− ∂βMr(Yr, Xr, βr)
])T

δ

∣∣∣∣
=
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T
r
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δ

∣∣∣∣
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≤‖(β̂r − βr)Xr‖Pn,2‖δXr‖Pn,2 ≤ Ln‖δXr‖Pn,2

with probability 1− o(1) where Ln . (s log(an)/n)1/2. Since the maximal sparse eigenvalues

φmax(lns, r) := max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

are uniformly bounded from above, Lemma M.2 from Belloni et al. (2018) implies

max
r=1,...,d

‖β̂r‖0 . s

with probability 1− o(1). Combining this result with the uniform restrictions on the sparse eigenvalues

from above, we obtain

max
r=1,...,d

‖β̂r − βr‖2 . max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 .
√
s log(an)

n

with probability 1 − o(1). We now proceed by using Lemma M.3 in Belloni et al. (2018). We obtain

uniformly over all r = 1, . . . , d

En[Mr(Yr, Xr, β̃r)]− En[Mr(Yr, Xr, βr)] ≤
λL

n
‖β̂r − βr‖1 max

r=1,...,d
‖Ψ̂(0)
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.
λ
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‖β̂r − βr‖1

.
s log(an)

n

with probability 1− o(1), where we used L . 1 and max
r=1,...,d

‖Ψ̂(0)
r ‖∞ . 1. Since

max
r=1,...,d

‖En[Sr]‖∞ ≤ max
r=1,...,d
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(
Ψ̂(0)
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)−1En[Sr]‖∞ .
λ

n
. n−1/2 log

1
2 (an)

with probability 1− o(1), we obtain

max
r=1,...,d

‖(β̃r − βr)Xr‖Pn,2 .
√
s log(an)

n

with probability 1− o(1), where we used

max
r=1,...,d

‖β̂r‖0 . s, Cn . (s log(an)/n)1/2

and that the minimum sparse eigenvalues are uniformly bounded away from zero. With the same argu-

ment as above, we obtain

max
r=1,...,d

‖β̃r − βr‖2 . max
r=1,...,d

‖(β̃r − βr)Xr‖Pn,2 .
√
s log(an)

n
.

This completes the proof.
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4.10 Computational Details

4.10.1 Computation and Infrastructure

The simulation study has been run on a x86 64 redhat linux-gnu (64-bit) (CentOS Linux 7 (Core))

cluster using R version 3.6.1 (2019-07-05). All lasso estimations are performed using the R package

hdm, version 0.3.1 by Chernozhukov et al. (2016a) which can be downloaded from CRAN. Construction

of B-splines is based on the R package splines. R code is available upon request.

4.10.2 Simulation Study: Smoothing Parameters in B-splines

Table 4.4 presents the corresponding smoothing parameters k = {kj , k−j} of the cubic B-splines that

are used in the simulation study. kj denotes the degrees of freedom chosen to approximate the function

fj(xj) and k−j is chosen for all other functions. In our revised simulation, we consider settings with

kj = k−j .

n p f1 f2 f3 f4

100 50 10 7 8 7
100 150 9 7 7 7
1000 50 11 8 10 7
1000 150 9 8 9 7

Table 4.4: Smoothing parameters, simulation study.

Smoothing parameters k = {kj , k−j} corresponding to simulation results in Table 4.2.

4.10.3 Empirical Application: Cross-Validation Procedure for Choice of

Smoothing Parameter

The choice of the degrees of freedom parameter k for construction of B-splines in the empirical application

is based on a heuristic cross-validation which exploits the additive structure of the model. Let k =

{kj , k−j} be the degrees of freedom with kj specifying the smoothing parameters for fj(xj) and k−j

denoting the parameter for all other functions f−j(x−j). To explicitly address the dependence of the

fitted function on the chosen degrees of freedom parameter, we use a notation f̂j(xj , kj) which leads to

the model

yi = fj(xi,j , kj) + f−j(xi,−j , k−j) + εi,

Then, the heuristic rule for choosing k proceeds as

� For j = 1, ..., p,

1. Set up a grid of values for k−j ,

2. Perform a 5-fold cross-validated search for an optimal kj over a grid of values kj , ..., kj , i.e.,

fit the regression

yi = fj(xi,j , kj) + f−j(xi,−j , k−j) + εi

and compute MSECV (kj , k−j), where MSECV (kj , k−j) is the cross-validated mean squared

error in prediction provided values kj and k0,−j .

3. Find the optimal value of k∗j which minimizes MSECV over all values of k−j .
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We experimented with different settings and repeated the procedure multiple times. The resulting pa-

rameters are listed in Table 4.5.

Variable k

NOX 11
CRIM 6
ZN 3
INDUS 6
RM 6
AGE 5
DIST 9
TAX 5
PTRATIO 11
BLACK 5
LSTAT 7

Table 4.5: Smoothing parameters, Boston housing example.
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4.10.4 Empirical Application: Additional Plots for Explanatory Variables
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Figure 4.7: Additional results, Boston housing example.

Additional plots of the effect of the explanatory variables on the dependent variable MEDV with simultaneous
95%-confidence bands in the Boston housing data application.
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Chapter 5

Heterogeneity in the U.S. Gender

Wage Gap

5.1 Introduction

Empirical studies on the gender wage gap have come to play an important role in the public and academic

debate. Most studies that have attempted to quantify gender inequality in earnings to date employ

decomposition methods (Oaxaca, 1973; Blinder, 1973) and, as a key result, report an unadjusted and an

adjusted estimate of the gender wage gap. Using recent data from the 2016 American Community Survey

(ACS), the unadjusted gender wage gap amounts to around 24% for full-time, year-round employed women

with a high school degree or lower level of education. For employees with higher educational attainment,

the unadjusted gap is approximately 33%. This unconditional measure of gender based inequality in

earnings is often used in political discussion but does not account for differences in observational variables

between men and women. For example, men often choose industries and college majors that lead to higher

wages on average. Hence, controlling for variables is key and adjusting for differences in observable

characteristics changes the pay gap to approximately 17% (for women with high school degree or lower)

and 14% (for women with at least a college degree) A classical Oaxaca-Blinder decomposition focuses on

average differences in wages and observable characteristics. The goal of this paper, however, is to analyze

heterogeneity in the gender wage gap and to contribute to a more comprehensive understanding of gender

inequality in income. This is particularly important to design efficient policies to establish equal pay for

discriminated groups.

The extent to which the gender wage gap differs across women has attracted public attention and the

interest of policy makers. While numerous policy reports and media articles have attempted to quantify

heterogeneity in the wage gap, they have generally taken a simplistic approach based on comparing

descriptive statistics across subgroups of people. In these studies, the subgroups are usually defined in

terms of one characteristic only, such as region, age, race, ethnicity, or occupation (Baxter, 2015; Overberg

and Adamy, 2016; The American Association of University Women, 2018; Vasel, 2017; U.S. Bureau of

Labor Statistics, 2017; Nelson, 2016). Approaches such as this are likely to lead to flawed conclusions,

however, because they neglect heterogeneity due to other observable variables.

We would like to shed light on potential drivers of the gender wage gap. Therefore, we suggest a model

that allows for estimation of ceteris paribus changes of the gender wage gap according to observable

characteristics - in other words, to estimate marginal effects keeping all other variables at fixed levels.

In a first step of our analysis, we estimate heterogeneity in the coefficient of the gender dummy variable

in a Mincer Equation like wage regression. In a simple Mincerian wage equation, the gender coefficient
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(β) usually measures the average difference in wage between men and women holding all other covariates

constant (ceteris paribus). We allow the coefficient to vary with socio-economic variables, x, giving rise

to a regressor-dependent coefficient β(x); in other words, the gender coefficient in the wage equation

is determined for different subgroups. With the set of potential covariates being relatively large, we

use recent machine learning methods, namely double lasso, for estimation of the effects and inference.

In a second step, we illustrate the heterogeneity in the coefficients β(x) in quantile plots and provide

simultaneous confidence bands. The analysis reveals interesting patterns and shows that the gender wage

gap is quite heterogeneous across different groups.

Our study contributes to the literature as it allows to estimate and quantify heterogeneity in the U.S.

gender wage gap. Using data from the 2016 ACS, it provides an empirical assessment of a rich set of

potential determinants of the gender pay gap apart from classical Oaxaca-Blinder decompositions. We

aim to provide a more accurate picture of the gender wage gap than previous studies by allowing the gap

to vary with a large number of individual characteristics. In doing so, we consider family and household

related demographic variables (i.e., marital status or having biological, adopted or stepchildren at home),

race, ethnicity (i.e., Hispanic origin), English language ability, geographic information (i.e., U.S., census

region and metropolitan statistical area), veteran status, labor market characteristics (i.e., industry,

occupations and hours worked), and the classic human capital variables (i.e., labor market experience

and years of education). For people with a bachelor’s degree, we also include information on their college

major. Considering a large number of explanatory variables creates a challenge in terms of statistical

inference. To address this challenge, we employ up-to-date statistical methods that even allow for the

number of variables to exceed the number of observations in the data set. In our analysis, statistical

inference is performed using the lasso estimator in the double selection approach by Belloni et al. (2014c).

In the following, we will refer to this estimator as “double lasso”. Furthermore, we contribute to the

literature on gender inequality in earnings by estimating the gender wage gap for each woman in the data

set and illustrating the resulting distribution of wage gaps for full-time employed women in the United

States. We find that, in 2016, the U.S. gender wage gap was highly heterogeneous and, thus, differed

considerably from woman to woman depending on individual socio-economic characteristics. Whereas

a substantial share of full-time employed women experienced a gap that exceeded the usually reported

estimates, the estimated gender wage gap was non-significant for a considerable fraction of female full-time

employees.

The paper is structured as follows. In Section 5.2.1, we give a short review on empirical methods in

the context on the gender wage gap and recent developments in the literature. Section 5.3 presents the

heterogeneous wage gap model together with the inferential framework. Section 5.4 introduces the data

used in the empirical analysis, i.e., the American Community Survey (ACS) from 2016. In Section 6.4,

we present results on heterogeneity of the U.S. gender wage gap. In Section 5.6, we conclude and present

an outlook for future research of the gender wage gap. Additional descriptive statics and results are

provided in the Appendix.

5.2 Literature and Evidence on the Gender Wage Gap

5.2.1 Empirical Methods in the Context of the Gender Wage Gap

Traditionally, decomposition methods as initially introduced in Oaxaca (1973) and Blinder (1973) are

used in empirical studies that assess the gender wage gap. A detailed and comprehensive overview on

decomposition methods and recent extensions thereof is provided in Fortin et al. (2011). The objective

of the Oaxaca-Blinder decomposition is to distinguish whether the overall wage difference between men

and women arises due to gender differences in observable characteristics or due to a different valuation
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of these characteristics in the labor market, sometimes referred to as a “wage structure effect” (Fortin

et al., 2011). An example for the first effect is a situation with higher labor market experience, on

average, for men than for women. Hence, if returns to labor market experience are positive, average

earnings are higher for male employees than for female employees. The second effect emerges from the

difference of the regression coefficients from two wage regressions that are separately estimated for male

and female observations in the data. An example for the structural effect is a situation with higher

returns to labor market experience for men than for women. In such a situation, women who have the

same level of labor market experience earn on average less than men, provided larger returns to experience

for men than for women. Such a gender difference in valuations of labor market characteristics is often

considered as an indicator of discrimination, although it might also reflect non-discriminatory effects, for

instance unobserved productivity effects (Blau and Kahn, 2017). Recently, the econometric literature

has developed innovative methodological extensions of the basic Oaxaca-Blinder decomposition that base

upon quantile regression, for instance Chernozhukov et al. (2013b). These methods are able to detect

heterogeneous patterns of the gender gap at different points of the income distribution. For instance,

the gender wage gap was found to be more pronounced at the top of the income distribution than in the

middle or at the bottom Blau and Kahn (2017).

Goldin (2014) provides a recent study of the gender wage gap that can be related to our approach. In

the empirical analysis of Goldin (2014) that is based on ACS data, an ordinary least squares regression

of an extended wage equation is estimated that included interactions of gender with a large number (i.e.,

469) of occupation dummies. Being based on a theoretical argument, the gender wage gap is allowed to

vary across occupational categories, and, hence, the focus of the heterogeneity analysis is on variation by

occupation. The results of Goldin (2014) illustrate the variation of the gender wage gap in an appealing

way. Unfortunately, the significance of the effects is not reported. Under statistical considerations,

however, the question of joint significance of heterogeneous effects is of great importance: If the number

of tested hypotheses is large, adjustments for simultaneously testing multiple hypotheses are necessary

in order to draw valid conclusions.

An approach that is related to our econometric framework has been recently developed by Chernozhukov

et al. (2018b). Similar to the quantile plots, which we present in Section 6.4, the so-called sorted effects

methods provides estimates and confidence bands for an ordered sequence of partial effects that quantify

heterogeneity in terms of observational characteristics. Indeed, the quantile plots in Section 6.4 coincide

with the sorted effects if ordinary least squares regression is employed and an appropriate structural

regression model is chosen in both approaches. Whereas the interpretation of our quantile plots and the

sorted effects is similar, the approach to analyze heterogeneity as a variation of the partial effects in terms

of observed variables in Chernozhukov et al. (2018b) differs from our analysis. The so-called classification

analysis in Chernozhukov et al. (2018b) provides an inferential framework for testing differences in ob-

servational characteristics of individuals in the most and least affected subgroup. In contrast, the focus

in our study is on the variation of the gender wage gap estimate according to observational characteris-

tics, in other words variation of β(x) according to differences in x. Moreover, we base estimation of the

regression equation on the lasso estimator and the double selection framework of Belloni et al. (2014c).

5.2.2 Literature Review: The Gender Wage Gap and Recent Developments

A great number of empirical studies have focused on the gender wage gap, its determinants and its

development over time and the life cycle. Due to the richness of the gender gap literature, we restrict

attention to the literature on the gender gap in earnings and its determinants. Blau and Kahn (2017)

provide an extensive and detailed review of various explanations of the gender wage gap together with

an empirical reassessment of many theories.
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The second half of the 20th century was characterized by a substantial convergence of the gender wage

gap paralleled by a considerable convergence of men and women in terms of education, labor market

experience and participation, and occupational choices, among others (Goldin, 2014; Blau and Kahn,

2017). A large part of the reduction of the gender wage gap that began in the 1980s and still continues

until today, although in a less steady and slower manner, is attributed to the convergence in traditional

human capital factors. Today, women achieve higher levels of education than men and almost the same

levels of actual experience, on average. In a recent analysis, Blau and Kahn (2017) provide evidence that

gender differences in observable characteristics such as experience, occupation and industry variables,

explained two thirds of the total gender gap in 2010. As gender differences in terms of traditional human

capital characteristics have diminished over time, these factors have become less important in explaining

the gender wage gap. For instance, in the decomposition of Blau and Kahn, 2017, Table 4, differences in

human capital characteristics could only explain 13% of the total gender wage gap in 2010 compared to

25% in 1980.

Consequently, alternative explanations have been developed in the labor economics literature. A recently

proposed reasoning by Goldin (2014) focuses on the structure of jobs. Temporal flexibility, referring to

factors like the total number of hours worked and the time when they are provided, translates into a

convex relationship of working hours and the salary. Since women typically value flexibility more than

men because of a greater involvement in child rearing, gender inequality in earnings is expected to be

more pronounced in inflexible occupations. Goldin (2014) presents evidence that the wage gap was larger

and increased over the life cycle in inflexible occupations, for example in the area of business or law,

compared to more flexible occupations like pharmacy, science or technology. Moreover, in less flexible

occupations, the gender wage gap was found to increase with the number of hours worked due to a more

convex hours-earnings relationship. The explanatory power of occupations for the gender gap, together

with industries, was also empirically confirmed in the analysis of Blau and Kahn (2017).

The argumentation of Goldin (2014) and other studies is related to the fact that women are more likely to

interrupt their work life because of having children and a greater responsibility in child rearing. Using data

on actual labor market experience, Blau and Kahn (2017) emphasize the role of work life interruptions

for the wage gap. In general, the effect of interruptions is relatively difficult to assess in empirical studies

due to limited availability of actual labor market experience in many data sets. Moreover, explanations

in favor of a “family” or “motherhood penalty” (Waldfogel, 1998; Sigle-Rushton and Waldfogel, 2007)

have been proposed and confirmed empirically implying that mothers tend to experience larger wage gaps

than women without children. Recent studies, which mainly use administrative data from Scandinavian

countries, assess the dynamics of the motherhood penalty over women’s working history (Kleven et al.,

2019; Angelov et al., 2016; Albrecht et al., 2018). A recently published study by Bütikofer et al. (2018)

focuses on the motherhood penalty in high-paying jobs in Norway and assesses differences across four

occupational categories. The analysis is based on the flexibility argumentation of Goldin (2014) and finds

an association of greater motherhood penalties and occupations with lower flexibility.

Furthermore, behavioral explanations suggest that psychological attributes and norms, for example weak

preferences for competition and negotiations, cause gender differences in wages (Mueller and Plug, 2006;

Manning and Swaffield, 2008). However, Blau and Kahn (2017) conclude that these explanations cannot

explain a large fraction of the gender wage gap and that further empirical non-laboratory evidence with

stronger external validity is required to assess the importance of these theories.

Finally, taste-based or statistical discrimination is a potential source of the gender wage gap. The

adjusted gender wage gap from an Oaxaca-Blinder decomposition is frequently taken as a measure of

discrimination. However, the unexplained gap might as well be the result of unobserved factors related

to productivity. Hence, there is no unambiguous empirical evidence of discrimination that is based on

observational data. Real-world experiments point at a discrimination against women and mothers, for
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example Neumark et al. (1996) and Correll et al. (2007). Blau and Kahn (2017) conclude that a part

of the convergence of the wage gap in the 20th century might be explained by reduced discrimination

against women in the labor market.

5.3 An Econometric Model of a Heterogeneous Gender Wage

Gap

To motivate our approach, we start with a basic log wage regression where the coefficient β measures the

relative difference in pay that arises between men and women if one controls for the effects of observable

characteristics. In the following, we use a gender variable that is 1 if a person is female and 0 if male.

lnwi = α+ β · genderi + x′iγ + εi, (5.1)

By construction of the wage equation, estimation of β in Equation (5.1) results in an average gender

wage gap that is of the same magnitude for all women - even if they differ in terms of their observable

characteristics. Hence, the resulting estimator will not be helpful in determining the driving forces of

the wage gap nor to reveal heterogeneity in the wage gap. In order to model heterogeneity, we extend

the basic wage equation in (5.1) and let the gender coefficient β = β(xi) be a function of individual

characteristics.

lnwi = α+ β(xi) · genderi + z′iδ + εi. (5.2)

The β(xi) coefficient can be a linear or a more complicated function of the p1 observable characteristics

xi, for example using transformations with splines or polynomials of higher order to approximate complex

relationships of gender and the other explanatory variables. The covariates zi in wage Equation (5.2)

are natural or constructed regressors, for instance it is possible to apply a so-called dictionary p(xi) to

the initial regressors, xi, to approximate the relationship of lnwi and the observable characteristics. In

our empirical application, we approximate β(xi) with a linear function of the regressors, i.e. β(xi) =∑p1

j=1 βj ·xi,j and the variables in zi comprise all two-way interactions of the initial covariates xi, including

a constant. With this specification, the model corresponded to

lnwi = α+

p1∑
j=1

(βj · xi,j) · genderi + z′iδ + εi. (5.3)

We consider p1 initial characteristics xi with corresponding coefficients βj , j = 1, . . . , p1, that enter β(xi).

Together with the dimension p2 of zi and the corresponding vector of coefficients δ, the overall dimension

of the model is p = p1 + p2 + 1. A negative βj , βj < 0, is interpreted as an increase of the absolute value

of the wage gap. Hence, by default and in line with the presented empirical evidence in the literature, the

“gender wage gap” is interpreted as lower earnings for women, although the opposite might be observed

in the data. More information on the interpretation is provided in Section 5.7.2 of the Appendix together

with a short note on the relation to the Oaxaca-Blinder decomposition.

5.3.1 Valid Post-Selection Inference in High Dimensions

Studying the heterogeneity of the gender wage gap in the presented model requires a rich set of observable

characteristics and, hence, modern statistical methods to deal with high-dimensional data. We estimate

the wage Equation (5.2) with the lasso and base inference on the double selection approach of Belloni et al.

(2014c) that, in combination with the work by Belloni et al. (2014a), provides a uniformly valid inference
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framework for a vector of “target” coefficients after model selection. In our example, the interactions

with gender correspond to the target variables. Hence, under a set of assumptions including sparsity,

it is possible to perform valid post-selection inference even in cases where the number of regressors (p)

exceeds the number of observations (n). In the context of the heterogeneous wage gap regression, basic

lasso estimators (α̂, β̂(xi), δ̂) are defined as the solutions to(
α̂, β̂(xi), δ̂

)
∈ (5.4)

arg min
α,β(xi),δ

{
1

n

n∑
i=1

(lnwi − (α+ β(xi) · genderi + z′iδ))
2

+
λ

n
‖ Ψ (β(xi), δ

′)
′ ‖1

}
,

with Ψ being a diagonal matrix with data-dependent weights and β(xi) being specified as β(xi) =∑p1

j=1 βj ·xi,j in our empirical application. The lasso as initially developed in Tibshirani (1996) introduces

a penalization by the l1-norm of the coefficients to the least squares problem. This penalization results

in a shrinkage being applied to the regression coefficients towards zero. Finally, some of the coefficients

are shrunk to a value exactly equal to zero such that the lasso provides a selection device for the set

of regressors. Under the assumptions that sparsity holds in the underlying data generating process,

solutions obtained with the lasso are sparse, in other words only relatively few, say s, of the p candidate

regressors have explanatory power for the outcome variable. Sparsity avoids overfitting that is likely to

arise in ordinary least squares regression with many regressors. Estimation of (5.4) requires a choice of the

penalty λ. Frequently, λ is set by (k-fold) cross-validation. However, since cross-validation is not backed

by theoretical arguments in a high-dimensional setting and computationally expensive, we determined λ

by the theory-based rule of Belloni et al. (2012) which is also applicable to the case of heteroskedasticity.

An intuitive introduction to the lasso and the reasoning of the penalty choice can be found in Belloni and

Chernozhukov (2011). To be more exact, we estimated a post-selection version of the lasso, the so-called

post-lasso (Belloni and Chernozhukov, 2013): The variables that have been selected by the lasso are used

to set up a re-estimation step that is estimated by ordinary least squares regression, which produces the

final coefficient estimates. The shrinkage performed the lasso causes a bias of the coefficient estimates,

which can be alleviated, in part, by using post-lasso.

Post-selection inference, in other words inference on coefficients after a model selection stage, has been an

active research area in the statistics literature in the last years. In general, simply conducting ordinary

least squares inference after estimation of Equation (5.4) with the lasso as if there was no variable

selection does not result in valid inference unless perfect model selection is achieved. However, the latter

is only guaranteed under perfect model selection. However this property is achieved only under relatively

restrictive assumptions, for example a so-called beta-min assumption that requires that the non-zero

coefficients of the true model are well-distinguishable from zero.

The challenge for valid inference after a model selection step with the lasso or other machine learning

methods is to avoid selection mistakes for variables that are both correlated with the outcome and the

target variables of interest, in other words incorrectly excluding confounders from the model. The failure

of inference validity due to that omitted variable bias is illustrated in an intuitive example in Belloni et al.

(2014c). However, the double selection approach of Belloni et al. (2014c), and more generally, estimation

based on orthogonalized moment conditions as in Belloni et al. (2014a), offer an opportunity to overcome

the problems of inference after a model selection stage. The idea of the method is to introduce an auxiliary

lasso regression for every target coefficient to ensure that only moderate selection mistakes might occur.

Double-selection proceeds as follows:

1. For each of the p1 target variables, estimate a lasso regression of the dependent variable in Equation

(5.2), lnwi, on regressors zi and the remaining targets. The target variables correspond to the

139



CHAPTER 5 5.4. HETEROGENEITY IN THE U.S. GENDER WAGE GAP

interactions with gender in Equation (5.2).

2. Estimate an auxiliary lasso regression of each of the p1 target variables on all remaining independent

variables as regressors, i.e., the regressors zi as well as the remaining targets.

3. Equation (5.2) is re-estimated with ordinary least squares regression with all variables being included

that have been selected in either the first or the auxiliary regression steps.

For more details on the double selection approach, we refer to Belloni et al. (2014c). Following Belloni

et al. (2014c), Belloni et al. (2014a) and Chernozhukov et al. (2018+) and from asymptotic normality

of the double selection estimators, it is possible to show that under sparsity, β̂(xi) as estimated by the

double selection approach asymptotically follows a normal distribution

√
n
(
β̂(xi)− β0(xi)

)
 d N (0, x′iΩxi) , (5.5)

with variance-covariance matrix Ω of the β̂j , j = 1, . . . , p1, in β̂(xi), which can be estimated according to

Belloni et al. (2014c).

As the number of target parameter in the heterogeneous gender wage model is large, it is necessary to

adjust for multiple testing. We implement the multiplier bootstrap procedure developed in Chernozhukov

et al. (2013a) and Chernozhukov et al. (2014) to construct uniformly valid confidence intervals for β(xi)

and perform a valid joint test for the marginal effect targets βj , j = 1, ..., p1, as suggested in Belloni et al.

(2014a). Moreover, to adjust p-values in the joint hypothesis test, we apply the stepdown procedure

of Romano and Wolf (2005a), Romano and Wolf (2005b), and Romano and Wolf (2016), as recently

established in Chernozhukov et al. (2013a) and Belloni et al. (2014a). For a more detailed presentation

of the Romano-Wolf stepdown procedure and the underlying algorithm to construct p-values, we refer

to Bach et al. (2018b). More technical details on the inferential framework for the regressor-dependent

coefficient β(x) is provided in the forthcoming work by Chernozhukov et al. (2018+).

5.4 Heterogeneity in the U.S. Gender Wage Gap

5.4.1 Overview of the 2016 ACS data

In the empirical study, we use data from the 2016 American Community Survey (ACS) as provided by

Ruggles et al. (2020) and extracted from the IPUMS-USA website1. The ACS provides a representative

1%-sample of the U.S. population. Participation in the survey is mandatory. A large number of socio-

economic characteristics at the individual and household level are available, for example referring to

education, industry, and occupation. We restrict attention to employed individuals working full time

(35+ hours) and year-round, i.e., at least 50 weeks a year, to compare men and women with a similarly

strong attachment to the labor force. Weekly earnings are computed as annual earnings divided by 52

(weeks). We focus on individuals aged 25 to 65 and discard persons with income below the mandated

federal minimum level of wages corresponding to an hourly wage of $7.25 or - in terms of annual wage

income - to $12, 687.50 according to our sample composition. As the federal minimum level has not been

adjusted since 2009, we consider our exclusion rule as not restrictive. However, the rule is sufficient

to exclude unrealistic weekly wages, for instance wages corresponding to less than $1 per hour. The

final data set comprises 642, 229 individual observations and is stratified into two subgroups according

to individuals’ highest educational degree. The “bachelor’s degree data” comprises 288, 095 individuals

with at least a bachelor’s degree and the “high school degree data” consists of 354, 134 observations with

at most graduation from high school, GED or equivalent.

1https://usa.ipums.org/usa/

140

https://usa.ipums.org/usa/


CHAPTER 5 5.4. HETEROGENEITY IN THE U.S. GENDER WAGE GAP

5.4.2 Descriptive Statistics

Table 5.1 provides summary statistics for a selection of variables available in the 2016 ACS data. The

descriptive statistics illustrate that wages are substantially higher for college graduates on average. As

expected, the individuals holding at least a bachelor degree are in education for a longer time and have

less labor market experience, on average. The shares of Hispanics and Blacks are lower in the bachelor’s

degree subgroup, whereas the share of Chinese is higher. College graduates tend to live in metropolitan

statistical areas more frequently and to work longer hours, on average. Also the shares of persons who

live with their biological, adopted or stepchildren aged 18 or younger are higher in the bachelor’s degree

data. Similarly, the share of persons who reside with their biological, adopted or stepchildren aged four or

younger is higher in the sample of college graduates. The patterns in terms of marital status differ across

the educational attainment subgroups. The share of married (with spouse present) persons is higher in

the bachlor’s degree data.

In both samples, average earnings of men exceed those of women by far, both in terms of the mean

(around 32% for the high school and 49% for the bachelor’s degree sample) and the median weekly wage

(33% and 42%). An interesting descriptive finding can be observed with regard to the human capital

characteristics years of education and experience. The summary statistics for the high school degree

data reflect the frequently mentioned reversal of the gender gap in terms of labor market characteristics

(Blau and Kahn, 2017). However, we cannot confirm this observation for the sample of college graduates,

probably due to selection into full-time employment. The gender gap in terms of years of education is

virtually zero. Moreover, we observe that the gender gap in terms of hours worked is still considerable

with men working for about 2.4 (bachelor’s degree) and 3 (high school) hours each week longer than their

female counterparts, on average. Figure 5.1 illustrates the fact that the share of men in the group of

employees who regularly work overtime is disproportionately large. Figures 5.4 to 5.9 in the Appendix

provide further insights on the distribution of the observable characteristics given gender and educational

attainment.
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Variable High school degree data Bachelor’s degree data

Men Women Men Women

Weekly wage (mean) 1,098.95 833.83 2,244.29 1,508.86
(863.34) (618.87) (1,996.49) (1,240.98)

Weekly wage (median) 923.08 692.31 1692.31 1192.31

Single/never married 0.21 0.19 0.19 0.24
(0.16) (0.16) (0.15) (0.18)

Married, spouse present 0.63 0.54 0.72 0.60
(0.23) (0.25) (0.20) (0.24)

Child age ≤ 4 0.12 0.08 0.16 0.13
(0.11) (0.07) (0.14) (0.11)

Child age ≤ 18 0.37 0.33 0.44 0.38
(0.23) (0.22) (0.25) (0.24)

White 0.86 0.81 0.84 0.81
(0.12) (0.16) (0.14) (0.16)

Black 0.10 0.15 0.05 0.09
(0.09) (0.12) (0.05) (0.08)

Chinese 0.01 0.01 0.03 0.03
(0.01) (0.01) (0.03) (0.03)

Hispanic 0.14 0.12 0.06 0.06
(0.12) (0.11) (0.05) (0.06)

Experience (years) 27.03 28.48 21.61 20.38
(11.23) (11.08) (10.99) (11.19)

Years of education 12.43 12.66 16.95 16.97
(1.17) (1.06) (1.28) (1.23)

Hours worked (mean) 44.93 41.90 46.20 43.79
(8.56) (6.34) (8.65) (7.34)

Hours worked (median) 40 40 43 40

Veteran status 0.11 0.01 0.07 0.02
(0.31) (0.12) (0.25) (0.12)

MSA 0.85 0.86 0.94 0.93
(0.36) (0.35) (0.23) (0.26)

No. of observations 207,549 146,585 154,833 133,262
(%) 58.61 41.39 53.74 46.26

Table 5.1: Summary statistics.

Mean and median values for selected observable characteristics. Standard deviation in parantheses. Data: Sub-
sample of the American Community Survey 2016 according to sample composition explained in the text.
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Figure 5.1: Usual hours worked per week by gender.

The bar plot in Figure 5.1 illustrates the distribution of male (black bars) and female (gray bars) employees across
categories of usual hours worked each week, separately for the two educational attainment subgroups.

The above mentioned decrease of the gender wage gap in terms of human capital characteristics in the

high school degree subgroup are in concordance with the estimated female-to-male wage ratios shown

in Figure 5.2. We base the log wage ratio analysis on that in Blau and Kahn, 2017, Chapter 2.1.

Accordingly, the female-to-male wage ratio is slightly smaller if we conditioned on human capital factors.

The resulting wage ratios are 77% if we control for human capital characteristics and 78% if we consider

the unconditional gap. If we condition on additional individual characteristics including occupation,

industry and hours worked, among others, average wages of female employees are around 17% lower

than wages of the male employees.2 The patterns observed for the sample of academics reveal that

conditioning on human capital factors lifts the female-to-male wage ratio from a level of 72% to 76%.

Including additional individual characteristics lead to an estimated wage ratio of 87% corresponding to

a residual wage gap of approximately 14%.

In the empirical analysis, we use a set of 16 initial regressors to model heterogeneity in the gender

wage gap. The variables are listed in Table 5.2 together with information on the baseline categories.

The dependent variable in the wage regression is log weekly wage implying that wage gap estimates are

reported in log scale throughout the paper. We model parenthood by including two binary variables. The

first of these variables indicates that a person resides with one or more biological, adopted or stepchildren

of age 18 or younger. The second variable takes on value one if a person lives in the same household with

a biological, adopted or stepchild aged 4 or younger. We include both variables to analyze heterogeneity

in the motherhood penalty in terms of the age of the child. We use the 14 major groups of the 1990

Census Bureau industry classification scheme available in the ACS (3-digit). Similarly, the Census Bureau

provides a 2010 ACS classification of occupations (4-digit) that are clustered into 26 major categories in

the ACS. The variable on hours worked is a categorical variable indicating the number of hours usually

worked each week in the last 12 months. For the bachelor’s degree subgroup, we additionally include

the variable college major to account for individuals’ educational background in more detail. The exact

coding of the categories and definition of the variables can be found on the corresponding documentation

website of IPUMs.

To model heterogeneity in the wage gap, we construct all two-way interactions of the initial regressors

2The 17% wage loss corresponds to the “average female residual from the male wage equation” in Blau and Kahn (2017,
p. 800).
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Figure 5.2: Unconditional and conditional female-to-male mean (log) wage ratios.

The bar plots indicate the female-to-male log wage ratios, i.e. the quotient exp(Xfγf )/ exp(Xfγm), with regres-
sion coefficients γf and γm from a regression separately performed for the female and male observations. The
unadjusted wage ratio corresponds to exp(log(wf ))/ exp(log(wm)). The human capital specification includes the
regressors years of education, experience and experience squared. In the full regression specification, variables on
industry, occupation, the number of hours worked each week and, for the bachelor’s degree data only, the field of
college major are included. In the regressions, we additionally control for English language ability; veteran status;
U.S. census region; race; Hispanic origin; binary variables indicating if a person lives in the same household with a
biological, adopted or stepchild children of age 4 or younger and, respectively, of age 18 or younger; metropolitan
statistical area; and marital status.

and end up with a high-dimensional setting with a value of p that corresponds in total 2,068 (high school

degree subgroup) and 4,382 (bachelor’s degree subgroup) regressors (categorical variables are transformed

to level-wise dummies and variables with zero-variation are dropped). Of these regressors, 71 (high school)

and 106 (bachelor) refer to the initial set of characteristics xi and dimensions p1. and 1,997 (high school)

and 4,276 (bachelor) to the interacted regressors zi and dimension p2 in regression Equation (5.2) in

Section 5.3.

In the following, we will selectively report the main findings. Table that provide the coefficient estimates

and p-values for all coefficients are presented in the Appendix together with an illustration of the joint

confidence bands.
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Variable Type Baseline Category

Dependent Variable

Log weekly wage continuous

Independent Variables

Female binary
Marital status 6 categories never married/single
Child age ≤ 4 binary
(One or more biological, adopted or
stepchildren at home aged 4 or younger)
Child age ≤ 18 binary
(One or more biological, adopted or
stepchildren at home aged 18 or younger)

Race 4 categories White
Hispanic binary

English language ability 5 categories speaks only English
Experience (years) continuous
Experience squared continuous
Years of education continuous
Veteran status binary
Industry 14 categories wholesale trade
Occupation 26 catergories management, business,

science, and arts
Hours worked each week 5 categories 35 to 40 hours
(usually worked in last 12 months)
College major 37 categories education administration
(Bachelor’s degree data only) and teaching

Region (U.S. census) 9 categories New England division
MSA binary
(metropolitan statistical area)

Table 5.2: List of variables.
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5.5 Results

5.5.1 Significant Variables for the U.S. Gender Wage Gap

In a first step, we focus on the most important drivers of the gap emerging between men’s and women’s

weekly wages. Tables 5.3 and 5.4 present selected βj-estimates from Equation 5.3 that are jointly sig-

nificant at the 5%-level. The p-values are obtained from a joint significance test using the multiplier

bootstrap procedure developed in Chernozhukov et al. (2013a) and Chernozhukov et al. (2014) and sug-

gested for valid simultaneous inference after model selection in Belloni et al. (2014a) in combination with

the stepdown procedure of Romano and Wolf (2005a) as recently established in Chernozhukov et al.

(2013a) and Belloni et al. (2014a). The estimated coefficients of discrete regressors indicate changes of

the gender wage gap as compared to the gap in the baseline group.3 For instance, the results obtained

for the high school degree subgroup show that married women (spouse present) experience a wage gap

that is ceteris paribus about 10 to 11 percentage points (pp) larger (in absolute terms) than that of never

married women, on average.

Overall, we find that the gender gap varied substantially with individual characteristics in both educa-

tional attainment subgroups. The gender wage gap is found to change heavily with family and household-

related characteristics (i.e., marriage and motherhood), race, and labor market conditions (i.e., industries

and occupations). Patterns with respect to the organization of the household and family as well as race

exhibit similarities in the two subsamples. The effects associated with job-related variables like indus-

try, occupation and hours worked, differ in sign and magnitude across the two educational attainment

subgroups.

Family and Household-Related Characteristics

We find that, in 2016, the gender wage gap of married women is ceteris paribus around nine to 11

percentage points larger than that of women who have never been married. The magnitude of the marriage

effect is relatively large compared to the motherhood penalty. According to the results, mothers, who are

defined as women living in the same household with at least one biological, adopted or stepchildren aged

18 or younger, have a gender gap that is approximately five to six percentage points larger than that of

women who do not reside with a child aged 18 or younger. In both samples, the wage gap for mothers of

young children - defined as women who live in the same household with at least one biological, adopted

or stepchild aged 4 or younger - is smaller than for those with older children. This effect is particularly

sizable in the bachelor’s degree subgroup.

These women experience an overall reduction of the wage gap by more than two percentage points as

compared to women who do not reside with a biological, adopted or stepchild (of age 18 or younger).

This result might serve as evidence of a time-persistent motherhood penalty, at least for mothers with a

strong labor force attachment and high levels of education, instead of an immediate wage reduction due

to child birth.

3The gender wage gap in the baseline group is indicated by the constant β0, i.e. the average gender gap experienced
by women with characteristics never married,White, wholesale trade industry, ... All baseline definitions are listed in Table
5.2.
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High school degree Bachelor’s degree
subgroup subgroup

Variable Estimate p-value Estimate p-value

Constant -0.0463 0.9070 0.0428 1.0000
Marital status

Married, spouse pres. -0.1096 0.0000 -0.0973 0.0000
Married, spouse abs. -0.0737 0.0010 -0.0535 0.2630
Separated -0.0575 0.0030 -0.1205 0.0000
Divorced -0.0571 0.0000 -0.0548 0.0000
Widowed -0.0536 0.0700 -0.1152 0.0110

Child
Age 18 or younger -0.0507 0.0000 -0.0531 0.0000
Age 4 or younger 0.0289 0.0180 0.0809 0.0000

Race
Black/African American 0.0789 0.0000 0.0679 0.0000
Chinese 0.0819 0.0100 0.0589 0.0020
Other Asian or Pacific Isl. 0.0716 0.0000 0.0437 0.0010

Veteran status
Veteran 0.0429 0.0140 0.0204 0.9930

Experience
Exp -0.0040 0.0000 -0.0024 0.2770

Industry
TRANS -0.0535 0.0030 0.0217 1.0000
RETAIL -0.0444 0.0150 -0.0216 1.0000
FINANCE -0.0493 0.0180 -0.0799 0.0000
BUISREPSERV -0.0433 0.0640 -0.0557 0.0450
PROFE -0.0742 0.0000 -0.0668 0.0000
ADMIN -0.0527 0.0140 -0.0091 1.0000

Usual hours worked
40 to 49 -0.0456 0.0000 -0.0104 1.0000
50 to 59 -0.0374 0.0150 -0.0048 1.0000
60 to 69 -0.0534 0.0150 -0.0207 0.9980
> 70 -0.1186 0.0000 -0.0623 0.2150

College major
Comp/Inform Sci . . -0.0666 0.0000
Engin . . -0.0545 0.0000
Bio/Life Sci . . -0.0496 0.0040
Math/Stats . . -0.0683 0.0110
Phys Sci . . -0.0570 0.0040
Psych . . -0.0705 0.0000
Crim Just/Fire Prot . . -0.0788 0.0000
Soc Sci . . -0.0613 0.0000
Bus . . -0.0621 0.0000
Hist . . -0.0561 0.0440

Table 5.3: Double lasso results.

Selected results from post-lasso estimation using double selection (double lasso). Coefficients printed in black are
significant at the 5% level. p-values are obtained from a joint test of all βj coefficients in β(xi) from Equation (5.2)
using the multiplier bootstrap procedure suggested in Belloni et al. (2014a) with 1000 repetitions in combination
with the stepdown procedure of Romano and Wolf (2005a). Results on occupation are presented in Table 5.4.
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Race and Ethnicity

The results suggest that there is substantial heterogeneity in the gender gap according to race. Women

in race categories other than White experience a significantly smaller gender wage gap. The race-based

gender gap differentials are more pronounced in the group with lower educational attainment where

the wage gap for non-Whites is seven to eight percentage points smaller than for Whites. Hence, the

frequently reported variation of the gender gap according to race is robust to controlling for a large

set of characteristics such as years of education, experience, occupation, industry, and level of English

language ability, even in the bachelor’s degree subgroup. Controlling for observable characteristics render

the gender gap differential non-significant only for individuals in the group of Hispanics.

Education and Experience

As we will point out in Section 5.5.2, the heterogeneity patterns of the gender gap for full-time and year-

round employed women vary substantially across the two subgroups. Within the two samples, however,

classic human capital variables such as years of education and labor market experience only have a

minor impact on the magnitude of the gender wage gap, if any. In the wage regression, we additionally

include the level of English language ability and do not find a significant effect on the magnitude of the

gender gap. The effect of labor market experience is small and only significant for the high school degree

subgroup, indicating that for this group the gender gap increases slightly over the employment history.

However, the non-significant coefficient on experience squared points at a weak linear relationship of labor

market experience and the magnitude of the wage gap. Whereas the coefficient on years of education is

non-significant, the gender gap of individuals with post-secondary education is found to vary by several

college categories. We found that the gender gap is significantly larger than that in the baseline category

“Education Administration and Teaching” in 10 out of the 36 college majors, among others, in natural

science disciplines such as “Biology and Life Science”, “Physical Sciences”, as well as in the categories

“Social Sciences” and “Business”.

We find distinct patterns of job-related effects in both educational attainment subgroups. As pointed out

in Goldin (2014), the lack of temporal flexibility in a job might place women at a disadvantage in terms

of earnings as compared to men and, thus, lead to a larger wage gap. Our results on the number of hours

usually worked each week are in line with this argumentation as we find that longer working hours are

associated with a larger gender wage gap in the high school degree subgroup. The effects are relatively

sizable and tend to increase steeply with the number of hours worked. However, for the college graduates

the effects are smaller and non-significant.

Industries, Occupation, and Hours Worked

Previous studies provided evidence that the gender wage gap varied according to job-related character-

istics associated with specific industries and occupations (Goldin, 2014; Blau and Kahn, 2017).
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High school degree subgroup Bachelor’s degree subgroup

Variable Coefficient p-value Variable Coefficient p-value

Educ/Training/Libr -0.1836 0.0000 Healthc Supp -0.1022 0.3950
Extract -0.1448 0.9600 Milit Specific -0.0799 0.9930
Prod -0.0974 0.0000 Farm/Fish/Forestry -0.0498 1.0000
Arts/Design/Entert/ -0.0304 0.9200 Office/Administr Supp -0.0465 0.0000
Sports/Media Healthc Pract/Technic -0.0407 0.0260
Sales -0.0187 0.7210 Financ Spec -0.0348 0.0690
Financ Spec -0.0127 0.9760 Pers Care/Serv -0.0287 1.0000
Build/Grounds Clean/ -0.0108 0.9710 Build/Grounds Clean/ -0.0248 1.0000
Mainten Mainten
Transp -0.0085 0.9760 Sales -0.0162 0.9980

Food Prepar/Serving -0.0011 1.0000

Archit/Engin 0.0189 0.9760 Prod 0.0065 1.0000
Pers Care/Serv 0.0200 0.9200 Transp 0.0228 1.0000
Comput/Math 0.0246 0.7830 Comput/Math 0.0372 0.0020
Farm/Fish/Forestry 0.0286 0.9760 Bus Operat Spec 0.0377 0.0110
Food Prepar/Serving 0.0290 0.2360 Arts/Design/Entert/ 0.0469 0.0330
Milit Specific 0.0391 0.9760 Sports/Media
Technic 0.0419 0.9200 Legal 0.0495 0.0810
Protect Serv 0.0479 0.0510 Educ/Training/Libr 0.0606 0.0000
Healthc Supp 0.0530 0.0420 Archit/Engin 0.0620 0.0000
Bus Operat Spec 0.0571 0.0030 Protect Serv 0.0666 0.0110
Office/Administr Supp 0.0635 0.0000 Life/Physical/Soc Sci. 0.0719 0.0000
Life/Physical/Soc Sci. 0.0703 0.5360 Technic 0.1126 0.5270
Install/Mainten/Rep 0.0742 0.0070 Constr 0.1469 0.0810
Constr 0.0895 0.0150 Install/Mainten/Rep 0.1496 0.0020
Legal 0.1042 0.3400 Comm/Soc Serv 0.1702 0.0000
Healthc Pract/Technic 0.1075 0.0000
Comm/Soc Serv 0.1205 0.0000

Table 5.4: Occupational effects, high school degree and bachelor’s degree data, double lasso.

The table presents occupational effects for the high school degree subgroup (left) and the bachelor’s degree
subgroup (right) in increasing order to provide a comparison of the occupational patterns observed for both
subgroups. p-values are obtained from a joint test of all βj coefficients in β(xi) from Equation (5.2) using the
multiplier bootstrap procedure suggested in Belloni et al. (2014a) with 1000 repetitions in combination with the
stepdown procedure of Romano and Wolf (2005a). Significant (printed black) and non-significant (printed gray)
coefficients at a 5% significance level are presented.
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Variation by industry is found to be more pronounced for the high school degree subgroup. For this

subgroup the variation of the gap is significant in five industries as compared to only three significant co-

efficients observed for persons with a college degree. The patterns for the industries “Finance, Insurance,

and Real Estate” and “Professional and related Services” are similar in both subgroups corresponding to

a larger wage gap by five to eight percentage points than for the baseline industry. For people with at

most a high school degree, we observe larger wage gaps in the industries “Transportation, Communica-

tions, and other Public Utilities”, “Retail Trade”, and “Public Administration” compared to the baseline

category “Wholesale Trade”. Heterogeneity in the wage gap by occupation tends to be more pronounced

than heterogeneity by industry which is generally in line with the argumentation and results in Goldin

(2014). The magnitude of occupational effects is larger than that of industry effects and the patterns

tend to be different in the two educational attainment subgroups. Table 5.4 presents the estimates of

the occupational effects in an increasing order. Apparently, the difference in wages between male and

female employees are particularly small in occupations in the category “Community and Social Services”

(approximately 12pp smaller gender gap for the high school degree subgroup and 17pp for the bachelor’s

degree data), as well as in “Healthcare Practitioners and Technical”, “Construction” and “Installation,

Maintenance, and Repair” for persons with at most a high school degree. The patterns observed for

college graduates are different. Jobs in the category “Healthcare Practitioners and Technical” are asso-

ciated with a relatively large gender wage gap. Highly educated employees in “Education, Training, and

Library” occupations experience a small wage gap as compared to other occupations. In contrast, this

occupational category is associated with the largest occupational effect on the gender wage gap for the

high school degree subgroup. Moreover, the wage gap for employees with a bachelor’s degree working in

a scientific or technical occupation (e.g. “Architecture and Engineering” or “Life, Physical, and Social

Science”) experience a wage gap that is relatively small as compared to the baseline category.

In general, the different patterns of job-related effects in the two subsamples can be justified with an

extension of the flexibility-based argumentation of Goldin (2014). Basically, the effect of higher education

on flexibility can go either way: higher educational achievement might be associated either with an

increase or a decrease in job flexibility. On the one hand, higher education, in other words, the acquisition

of more abstract skills, might make it easier for women to work in a more flexible work environment

given an occupational category, for example in education or science. Whereas on the other hand, higher

education might allow to enter jobs, that are in general less flexible than jobs for less-educated in the

same occupational category. For example, compared to a nurse, a surgeon as a healthcare practitioner

might be less able to work fewer hours or decide when to provide these hours. Recognizing heterogeneity

in the gender wage gap is highly relevant for policy makers as it might help them to choose efficient

and effective policy measures. In order to contribute to a more comprehensive understanding of gender

inequality in earnings, we estimate the gender gap for every woman in the data set. The β(xi) coefficient

from Equation (5.2) summarizes all effects attributable to the observed characteristics, and hence, gives an

estimate on the gender wage gap of a woman with characteristics xi. Moreover, the inferential framework

presented in Section 5.3.1 allows us to construct confidence bands for β(xi). Thus, we are able to judge

whether a women’s wage gap is meaningful from a statistical point of view. We present quantile plots

of the individual gender gap estimates together with confidence bands as obtained for all women in the

two educational attainment subgroups in Figure 5.3. We additionally report the ordinary least squares

results to allow for comparison.

5.5.2 Heterogeneity in the Coefficient Function β(xi)

The quantile plot illustrates that the U.S. gender wage gap for full-time and year-round employed women

was highly heterogeneous in 2016. Rather than affecting all women to the same extent, gender inequality
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Panel A: Quantiles of effects with corresponding confidence bounds, double lasso.

−0.6

−0.4

−0.2

0.0

0.2

0.00 0.25 0.50 0.75 1.00
Quantile

G
en

de
r 

ga
p 

es
tim

at
es

 (
lo

g 
po

in
ts

)

Marginal effects of gender, highschool degree data (double lasso)

−0.6

−0.4

−0.2

0.0

0.2

0.00 0.25 0.50 0.75 1.00
Quantile

G
en

de
r 

ga
p 

es
tim

at
es

 (
lo

g 
po

in
ts

)

Marginal effects of gender, bachelor's degree data (double lasso)

Panel B: Quantiles of effects with corresponding confidence bounds, OLS.
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Figure 5.3: Quantiles of effects with simultaneous confidence bands.

The plots show the quantiles of the individual gender wage gap estimates as computed for all women in the
educational attainment subgroups of the ACS 2016 data together with simultaneous 0.95 confidence bands (gray
lines) obtained from the multiplier bootstrap procedure with 500 repetitions. Estimates in Panel (a) are obtained
from a high-dimensional wage regression using the double lasso estimator, with log weekly wages as the dependent
variable. Plots on the left refer to the high school degree subgroup and plots on the right to the bachelor’s degree
subgroup. In addition, ordinary least squares results are provided in Panel (b) for reasons of comparison.

in wages consists of a range of wage penalties that differ greatly from woman to woman. For most women,

the estimated gap deviates from the above mentioned estimates, derived from traditional analysis. In

Section 5.4.2 we reported an unadjusted gap of approximately 24% (high school degree subgroup) and

33% (bachelor’s degree subgroup) and adjusted wage gaps of 17% and 14%, respectively.

Patterns of heterogeneity varied substantially across the two samples, with gender wage inequality being

more prevalent and more severe among women with lower educational attainment. Whereas more than

90% of female employees with a high school degree or lower earn significantly less than their male coun-

terparts, only 40% of female employees who hold at least a bachelor’s degree experience a significant wage

penalty according to the double lasso results in Figure 5.3 Panel A. Moreover, at any given quantile, the

wage gap is larger for women who do not have a college degree. The median of the estimated wage gaps

is around 9% (non-significant) for women with post-secondary education. In contrast, half of the women

with at most a high school degree experience a wage gap of at least 29%. Interestingly, there is evidence
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of a reversal of the gender wage gap for a small share of women with a college degree, i.e., 4% of the

full-time and full-year employees with post-secondary education earn significantly more than comparable

men according to our double lasso results.

5.5.3 A Robustness Check

We performed a robustness check with regard to the degree of penalization in the lasso estimation steps.

The lasso estimator that is based on a theoretical choice of the penalty term λ involves a constant c. A

lower value of this parameter is associated with a less severe penalization. The corresponding quantile

plots and result tables are presented in the Appendix. The major conclusions drawn in the previous

section continue to hold in the setting with less severe penalization. Moreover, we compare the results

in Figure 5.3 Panel A to ordinary least squares estimation presented in Figure 5.3 Panel B. However,

we observed difficulties of the ordinary least squares estimator in estimation of the covariance matrix.

The covariance matrix is used in the multiplier bootstrap procedure used to construct the simultaneous

confidence bands. Hence, the corresponding results must be interpreted with caution.

5.6 Conclusion

We started with the objective to analyze heterogeneity in the gender wage gap. Our attempt to answer this

question provided detailed insights to the determinants of the gender wage gap and their consequences

in the aggregate. Thereby we considered characteristics related to the organization of the family and

household, race and ethnicity as well as job-related information.

In summary, our empirical analysis reveals that in 2016, most full-time employed women in the U.S.

experienced a substantial wage penalty compared to otherwise identical men. However, the extent to

which women were affected by gender inequality in earnings differed greatly according to individual

characteristics, including educational attainment, marital status, having children at home, race, and job-

related characteristics such as occupation and industry. The commonly used average estimates of the

gender wage gap can therefore be seen as a poor approximation of the wage penalty that is experienced

by most women. By illustrating and quantifying heterogeneity in the wage gap, we hope to contribute to

both the public and the academic discussion, and to provide information that policy makers can use to

design more effective policies.

Finally, we would like to point at potential directions for future research. First of all, we consider our

analysis as a first step to develop a more precise understanding of gender inequality in earnings. Future

work might reproduce and reassess the reported heterogeneity patterns in other data sets, for example

the Panel Study of Income Dynamics (PSID) or the Current Population Survey (CPS) and, of course,

in other countries. A point that we adopt from the recommendations of Blau and Kahn (2017) is that

improved data quality on actual labor market experience, family interrelationships and information at

the firm level would allow to get a better impression of the gender wage gap. Moreover, our study was

restricted to full-time and year-round working employees. Thus, the extent to which women in our data

set adjusted their labor market supply was restricted to the intensive margin, in other words how much

hours they work each week in a full-time position (at least 35 hours). Future studies might analyze

the gender gap heterogeneity in a yet broader sample including part-time working female workers, as

well. Second, we would like to encourage additional work on causal mechanisms that drive the gender

wage gap. Whereas our study is a first attempt describing heterogeneous patterns and, hence, reports

association of variables and variation in the wage gap, future work on the underlying causal channels is of

great relevance. Third, our methodology might be used in future to elaborate optimal equal pay policies.

For instance, one could generate hypothetical quantile plots of the gender wage gap for different policy
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measures targeted at different subgroups and choose the policy that is optimal given a certain objective

function and budget constraints.
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5.7 Appendix

5.7.1 Relation to Oaxaca-Blinder Decomposition

Comment 5.7.1. [Relation to the Oaxaca-Blinder Decomposition] In the case of a linear function

β(·) and the covariate vector zi comprising all two-way interactions of the initial covariates xi, the het-

erogeneous gender gap model can be related to the Oaxaca-Blinder decomposition. Suppose, one estimates

the wage regression

lnwi = α+ β(zi) · genderi + z′iδ + εi.

Then, the mean of β(zi) corresponds to the negative of the total unexplained gender gap (“the structural

effect”) from an Oaxaca-Blinder decomposition, in other words the part of the gender wage gap that

emerges due to different valuations of labor market characteristics for men and women

β(zi) =
1

nf

nf∑
i=1

β(zi) = −z′f (γm − γf ) ,

with (γm, γf ) being the coefficients with regard to zi that are obtained from the regressions being performed

separately for the subset of men (m) and women (f). nf =
∑n
i genderi is the number of female observa-

tions, and zf being the matrix collecting the mean values of the interacted initial observable characteristics

of women, xi.

5.7.2 Interpretation of β(xi)

The proposed model captures the heterogeneity of the gender gap in the function β(xi). We interpret

a negative β(xi) as the approximate gender wage gap experienced by a woman with characteristics xi

on average. Hence, a woman in the subgroup of individuals with characteristics xi earns approximately

β(xi) · 100% less than a male employee in the same subgroup, in other words a man with the same

educational attainment, working in the same industry and occupation, and so on.

We are not only interested in estimating the gender pay gap for every woman in the sample, but also in

assessing the determinants of the wage gap. In a linear specification including a constant, β(xi) = x′iβ,

the jth component of β, βj , indicates the marginal change of the wage gap for a woman differing only

with regard to this variable. In case a regressor is continuous, the gender gap change due to a marginal

change in variable xj is ceteris paribus

∂β(xi)

∂xj
= βj . (5.6)

5.7.3 Additional Descriptive Statistics

In the following, summary statistics are generated to illustrate

� the share of women within certain subgroups, e.g. within an occupational category or an industry,

� the share of women across certain subgroups in order to illustrate how women distribute in terms

of occupations, industries and so on,

� income distribution separately illustrated for male and female full-time employees in order to provide

a comparison to the simplistic approach which is mentioned in the introduction of the paper, i.e. a

comparison of wages or wage gaps that solely conditions on one characteristic.
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Figures are generated separateley for the high school degree subgroup (plots on the left) and the bachelor’s

degree subgroup (plots on the right).
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Panel A: Share of women within occupations.

Panel B: Share of women within industries.

Panel C: Share of women within fields of degree.

Figure 5.4: Share of women within occupational, industry and college major categories.

Plots on the left side refer to the high school degree subgroup, plots on the right side to the bachelor’s degree
subgroup.
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Panel A: Share of women across occupations.

Panel B: Share of women across industries.

Panel C: Share of women across fields of degree.

Figure 5.5: Distribution of women across occupational, industry and college major categories.

Plots on the left side refer to the high school degree subgroup, plots on the right side to the bachelor’s degree
subgroup.
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Panel A: Marital status

Panel B: Race

Panel C: Hispanic

Figure 5.6: Income according to marital status, race and ethnicity.

Plots on the left side refer to the high school degree subgroup, plots on the right side to the bachelor’s degree
subgroup. The lines in a plot indicate the 0.25-quantile, the median, the mean and the 0.75-quantile of the income
distribution in a category.
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Panel A: English language ability

Panel B: Veteran status

Panel C: Region

Figure 5.7: Income according to English language ability, veteran status and region.

Plots on the left side refer to the high school degree subgroup, plots on the right side to the bachelor’s degree
subgroup. The lines in a plot indicate the 0.25-quantile, the median, the mean and the 0.75-quantile of the income
distribution in a category.
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Panel A: Industry

Panel B: Occupation (1/2)

Panel C: Occupation (2/2)

Figure 5.8: Income according to industry and occupation.

Plots on the left side refer to the high school degree subgroup, plots on the right side to the bachelor’s degree
subgroup. The lines in a plot indicate the 0.25-quantile, the median, the mean and the 0.75-quantile of the income
distribution in a category.
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Panel A: College major (1/3)

Panel B: College major (2/3)

Panel C: College major (3/3)

Figure 5.9: Income according to college major.

Plots on the left side refer to the high school degree subgroup, plots on the right side to the bachelor’s degree
subgroup. The lines in a plot indicate the 0.25-quantile, the median, the mean and the 0.75-quantile of the income
distribution in a category.
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5.7.4 Additional Results

5.7.4.1 Simultaneous Confidence Bands for Partial Effects

Figures 5.10 and 5.11 present selected effects of socio-economic variables on the magnitude of the gender

wage gap with joint 0.95 confidence bands (black bounds) for the two subgroups. Effects indicate sig-

nificant changes in the wage gap compared to the baseline category indicated by the vertical gray line.

Baseline categories are: never married; no biological, adopted or stepchildren at home aged 4 or younger;

no biological, adopted or stepchildren at home aged 18 or younger; White; not a veteran; wholesale trade

(industry); management, business, science and arts (occupation); 35 to 40 hours work each week; and

education administration and teaching (college major, bachelor’s degree subgroup only).

Note that the results of the joint significance test do not necessarily match with those of the joint

confidence bands. As explained in the main text, the test results are obtained using the Romano-Wolf

stepdown procedure, which can lead to power improvements as compared to the simultaneous confidence

bands. The construction of the confidence bands does not involve a stepdown procedure.
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Figure 5.10: Selected results, high school degree subgroup. Marginal effects with joint 0.95-confidence bands.
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Figure 5.11: Selected results, bachelor’s degree subgroup. Marginal effects with joint 0.95-confidence bands.
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5.7.4.2 Full Result Tables

Table 5.5 to 5.10 present all estimates irrespective of their significance. p-values are obtained from a joint

significance tests of all βj with j = 1, . . . , p1, coefficients in β(xi) from Equation (5.2) using the multiplier

bootstrap procedure suggested in Belloni et al. (2014a) with 1000 repetitions.
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Variable Estimate p-value

constant -0.0463 0.9070

Marital status

Married, spouse present -0.1096 0.0000
Married, spouse absent -0.0737 0.0010
Separated -0.0575 0.0030
Divorced -0.0571 0.0000
Widowed -0.0536 0.0700

English language ability

Does not speak English 0.0550 0.1600
Yes, speaks very well 0.0111 0.9200
Yes, speaks well 0.0172 0.8850
Yes, but not well 0.0303 0.3400

Race, ethnicity

Black/African American/Negro 0.0789 0.0000
Chinese 0.0819 0.0100
Other Asian or Pacific Islander 0.0716 0.0000
Hispanic 0.0115 0.9200

Veteran status

Veteran 0.0429 0.0140

Industry

AGRI -0.0419 0.8540
MINING -0.0656 0.8540
CONSTR -0.0511 0.1330
MANUF -0.0283 0.4020
TRANS -0.0535 0.0030
RETAIL -0.0444 0.0150
FINANCE -0.0493 0.0180
BUISREPSERV -0.0433 0.0640
PERSON -0.0384 0.3860
ENTER -0.0281 0.9200
PROFE -0.0742 0.0000
ADMIN -0.0527 0.0140
MILIT 0.1145 0.2650

Table 5.5: Complete double lasso results (1/3), high school degree data.
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Variable Estimate p-value

Occupation

Bus Operat Spec 0.0571 0.0030
Financ Spec -0.0127 0.9760
Comput/Math 0.0246 0.7830
Archit/Engin 0.0189 0.9760
Technic 0.0419 0.9200
Life/Physical/Soc Sci. 0.0703 0.5360
Comm/Soc Serv 0.1205 0.0000
Legal 0.1042 0.3400
Educ/Training/Libr -0.1836 0.0000
Arts/Design/Entert/Sports/Media -0.0304 0.9200
Healthc Pract/Technic 0.1075 0.0000
Healthc Supp 0.0530 0.0420
Protect Serv 0.0479 0.0510
Food Prepar/Serving 0.0290 0.2360
Build/Grounds Clean/Mainten -0.0108 0.9710
Pers Care/Serv 0.0200 0.9200
Sales -0.0187 0.7210
Office/Administr Supp 0.0635 0.0000
Farm/Fish/Forestry 0.0286 0.9760
Constr 0.0895 0.0150
Extract -0.1448 0.9600
Install/Mainten/Rep 0.0742 0.0070
Prod -0.0974 0.0000
Transp -0.0085 0.9760
Milit Specific 0.0391 0.9760

U.S. Census region

Middle Atlantic Division -0.0110 0.9580
East North Central Div. -0.0086 0.9760
West North Central Div. -0.0065 0.9760
South Atlantic Division 0.0016 0.9820
East South Central Div. -0.0254 0.5560
West South Central Div. -0.0311 0.1070
Mountain Division -0.0010 0.9820
Pacific Division 0.0200 0.6990

Table 5.6: Complete double lasso results (2/3), high school degree data.
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Variable Estimate p-value

Metropolitan statistical area

msa 0.0139 0.4120

Child

Age 18 or younger -0.0507 0.0000
Age 4 or younger 0.0289 0.0180

Usual hours worked per week

40 to 49 -0.0456 0.0000
50 to 59 -0.0374 0.0150
60 to 69 -0.0534 0.0150
> 70 -0.1186 0.0000

Years of education

yos -0.0026 0.9200

Experience

exp -0.0040 0.0010
exp2 0.0000 0.3180

Table 5.7: Complete double lasso results (3/3), high school degree data.

Tables 5.5 to 5.14 present complete results from post-lasso estimation using double selection (double lasso) ob-
tained for the high school degree subsample. p-values are obtained from a joint test of all βj coefficients in
β(xi) from Equation (5.2) using the multiplier bootstrap procedure suggested in Belloni et al. (2014a) with 1000
repetitions in combination with the stepdown procedure of Romano and Wolf (2005a).
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Variable Estimate p-value

constant 0.0428 1.0000

Marital status

Married, spouse present -0.0973 0.0000
Married, spouse absent -0.0535 0.2630
Separated -0.1205 0.0000
Divorced -0.0548 0.0000
Widowed -0.1152 0.0110

English language ability

Does not speak English 0.0221 1.0000
Yes, speaks very well -0.0022 1.0000
Yes, speaks well 0.0392 0.3720
Yes, but not well 0.0030 1.0000

Race, ethnicity

Black/African American/Negro 0.0679 0.0000
Chinese 0.0589 0.0020
Other Asian or Pacific Islander 0.0437 0.0010
Hispanic 0.0070 1.0000

Veteran status

Veteran 0.0204 0.9930

Industry

AGRI -0.0655 0.8910
MINING -0.0672 0.9680
CONSTR -0.0310 0.9990
MANUF -0.0040 1.0000
TRANS 0.0217 1.0000
RETAIL -0.0216 1.0000
FINANCE -0.0799 0.0000
BUISREPSERV -0.0557 0.0450
PERSON -0.0564 0.7250
ENTER -0.0630 0.6300
PROFE -0.0668 0.0010
ADMIN -0.0091 1.0000
MILIT 0.1167 0.2040

Table 5.8: Complete double lasso results (1/4), bachelor’s degree data.
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Variable Estimate p-value

Occupation

Bus Operat Spec 0.0377 0.0110
Financ Spec -0.0348 0.0690
Comput/Math 0.0372 0.0020
Archit/Engin 0.0620 0.0000
Technic 0.1126 0.5270
Life/Physical/Soc Sci. 0.0719 0.0000
Comm/Soc Serv 0.1702 0.0000
Legal 0.0495 0.0810
Educ/Training/Libr 0.0606 0.0000
Arts/Design/Entert/Sports/Media 0.0469 0.0330
Healthc Pract/Technic -0.0407 0.0260
Healthc Supp -0.1022 0.3950
Protect Serv 0.0666 0.0110
Food Prepar/Serving -0.0011 1.0000
Build/Grounds Clean/Mainten -0.0248 1.0000
Pers Care/Serv -0.0287 1.0000
Sales -0.0162 0.9980
Office/Administr Supp -0.0465 0.0000
Farm/Fish/Forestry -0.0498 1.0000
Constr 0.1469 0.0810
Install/Mainten/Rep 0.1496 0.0020
Prod 0.0065 1.0000
Transp 0.0228 1.0000
Milit Specific -0.0799 0.9930

U.S. census region

Middle Atlantic Division -0.0140 0.9980
East North Central Div. -0.0108 1.0000
West North Central Div. -0.0240 0.8980
South Atlantic Division -0.0117 1.0000
East South Central Div. -0.0374 0.2120
West South Central Div. -0.0346 0.0810
Mountain Division -0.0078 1.0000
Pacific Division -0.0117 1.0000

Table 5.9: Complete double lasso results (2/4), bachelor’s degree data.
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Variable Estimate p-value

Metropolitan statistcal area

msa 0.0214 0.5010

Child

Age 18 or younger -0.0531 0.0000
Age 4 or younger 0.0809 0.0000

Usual hours worked per week

40 to 49 -0.0104 1.0000
50 to 59 -0.0048 1.0000
60 to 69 -0.0207 0.9980
> 70 -0.0623 0.2150

Years of education

yos 0.0056 0.1560

Experience

exp -0.0024 0.2770
exp2 -0.0000 0.9270

College major

Agri -0.0388 0.9640
Envir/Nat Res -0.0332 0.9980
Archit -0.0316 0.9990
Area/Ethnic/Civiliz Stud -0.0172 1.0000
Comm -0.0133 1.0000
Comm Tech -0.0173 1.0000
Comp/Inform Sci -0.0666 0.0000
Cosmet Serv/Culin Arts 0.1138 0.9790
Engin -0.0545 0.0010
Engin Techn 0.0357 1.0000
Ling/Foreign Lang -0.0267 1.0000
Fam/Consum Sci -0.0322 1.0000
Law -0.0953 0.9650
English/Lit/Compos -0.0140 1.0000
Lib Arts/Hum -0.0330 0.9930
Lib Sci -0.0594 1.0000

Table 5.10: Complete double lasso results (3/4), bachelor’s degree data.
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Variable Estimate p-value

College major (continued)

Bio/Life Sci -0.0496 0.0040
Math/Stats -0.0683 0.0110
Milit Techn -0.0554 1.0000
Inter-/Multi-Disc Stud (gen) -0.0851 0.1120
Phys Fit/Parks/Recr/Leis 0.0140 1.0000
Philos/Rel Stud 0.0054 1.0000
Theol/Rel Voc 0.0224 1.0000
Phys Sci -0.0570 0.0040
Nucl/Ind Rad/Bio Techn 0.0834 1.0000
Psych -0.0705 0.0000
Crim Just/Fire Prot -0.0788 0.0000
Publ Aff/Policy/Soc Wo -0.0720 0.0670
Soc Sci -0.0613 0.0000
Constr Serv -0.0982 0.9830
Electr/Mech Rep/Techn -0.1450 0.9930
Transp 0.1077 0.9510
Fine Arts -0.0378 0.2050
Med/Hlth Sci Serv -0.0149 1.0000
Bus -0.0621 0.0000
Hist -0.0561 0.0440

Table 5.11: Complete double lasso results (4/4), bachelor’s degree data.

Tables 5.8 to 5.11 present complete results from post-lasso estimation using double selection (double lasso) ob-
tained for the bachelor’s degree subsample. p-values are obtained from a joint test of all βj coefficients in β(xi)
from Equation (3) using the multiplier bootstrap procedure suggested in Belloni et al. (2014a) with 1000 repeti-
tions.
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5.7.4.3 Variation of the penalty λ

As a robustness check, we repeat our analysis with the constant c used in the determination of λ set to

level c = 0.5 implying a penalization that is less severe. Further details on the penalty choice and its

implementation can be found in Chernozhukov et al. (2016a).

Variable Estimate p-value

constant -0.0028 0.9980

Marital status

Married, spouse present -0.1065 0.0000
Married, spouse absent -0.0730 0.0000
Separated -0.0560 0.0010
Divorced -0.0482 0.0000
Widowed -0.0600 0.0150

English language ability

Does not speak English 0.0522 0.2120
Yes, speaks very well 0.0111 0.9620
Yes, speaks well 0.0181 0.8560
Yes, but not well 0.0219 0.7850

Race, ethnicity

Black/African American/Negro 0.0756 0.0000
Chinese 0.0837 0.0020
Other Asian or Pacific Islander 0.0645 0.0000
Hispanic 0.0154 0.6880

Veteran status

Veteran 0.0371 0.0230

Industry

AGRI -0.0479 0.7320
MINING -0.1101 0.1150
CONSTR -0.0551 0.0710
MANUF -0.0218 0.7620
TRANS -0.0460 0.0110
RETAIL -0.0362 0.0660
FINANCE -0.0500 0.0130
BUISREPSERV -0.0481 0.0150
PERSON -0.0356 0.5200
ENTER -0.0256 0.9620
PROFE -0.0652 0.0000
ADMIN -0.0583 0.0010
MILIT 0.0491 0.9670

Table 5.12: Complete double lasso results, lasso with c = 0.5 (1/3), high school degree data.
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Variable Estimate p-value

Occupation

Bus Operat Spec 0.0561 0.0010
Financ Spec -0.0095 0.9950
Comput/Math 0.0300 0.4600
Archit/Engin 0.0174 0.9920
Technic 0.0410 0.9520
Life/Physical/Soc Sci. 0.0711 0.5260
Comm/Soc Serv 0.1179 0.0000
Legal 0.1098 0.2020
Educ/Training/Libr -0.1813 0.0000
Arts/Design/Entert/Sports/Media -0.0206 0.9790
Healthc Pract/Technic 0.1019 0.0000
Healthc Supp 0.0535 0.0230
Protect Serv 0.0620 0.0010
Food Prepar/Serving 0.0151 0.9520
Build/Grounds Clean/Mainten -0.0140 0.9620
Pers Care/Serv 0.0236 0.8940
Sales -0.0320 0.0270
Office/Administr Supp 0.0622 0.0000
Farm/Fish/Forestry 0.0249 0.9920
Constr 0.0991 0.0010
Extract -0.0000 1.0000
Install/Mainten/Rep 0.0709 0.0020
Prod -0.0948 0.0000
Transp -0.0099 0.9790
Milit Specific 0.0708 0.9670

U.S. Census region

Middle Atlantic Division -0.0062 0.9920
East North Central Div. -0.0042 0.9950
West North Central Div. -0.0014 0.9980
South Atlantic Division 0.0082 0.9880
East South Central Div. -0.0210 0.7850
West South Central Div. -0.0236 0.4890
Mountain Division 0.0044 0.9950
Pacific Division 0.0203 0.6510

Table 5.13: Complete double lasso results, lasso with c = 0.5 (2/3), high school degree data.
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Variable Estimate p-value

Metropolitan statistical area

msa 0.0147 0.3090

Child

Age 18 or younger -0.0433 0.0000
Age 4 or younger 0.0226 0.1130

Usual hours worked per week

40 to 49 -0.0434 0.0000
50 to 59 -0.0331 0.0170
60 to 69 -0.0530 0.0070
> 70 -0.1232 0.0000

Years of education

yos -0.0045 0.4260

Experience

exp -0.0036 0.0020
exp2 0.0001 0.0070

Table 5.14: Complete double lasso results, lasso with c = 0.5 (3/3), high school degree data.

Tables 5.12 to 5.14 present complete results from post-lasso estimation using double selection (double lasso)
obtained for the high school degree subsample. p-values are obtained from a joint test of all βj coefficients in
β(xi) from Equation (5.2) using the multiplier bootstrap procedure suggested in Belloni et al. (2014a) with 1000
repetitions in combination with the stepdown procedure of Romano and Wolf (2005a).
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Variable Estimate p-value

constant 0.0507 1.0000

Marital status

Married, spouse present -0.1011 0.0000
Married, spouse absent -0.0590 0.1750
Separated -0.1208 0.0000
Divorced -0.0491 0.0000
Widowed -0.1273 0.0050

English language ability

Does not speak English 0.0336 1.0000
Yes, speaks very well -0.0054 1.0000
Yes, speaks well 0.0241 0.9940
Yes, but not well 0.0192 1.0000

Race, ethnicity

Black/African American/Negro 0.0546 0.0000
Chinese 0.0569 0.0040
Other Asian or Pacific Islander 0.0349 0.0310
Hispanic 0.0055 1.0000

Veteran status

Veteran 0.0191 1.0000

Industry

AGRI -0.1086 0.1130
MINING -0.0497 1.0000
CONSTR -0.0352 0.9980
MANUF 0.0009 1.0000
TRANS 0.0184 1.0000
RETAIL -0.0092 1.0000
FINANCE -0.0798 0.0000
BUISREPSERV -0.0464 0.2980
PERSON -0.0547 0.8200
ENTER -0.0742 0.3730
PROFE -0.0621 0.0050
ADMIN -0.0081 1.0000
MILIT 0.0629 0.9910

Table 5.15: Complete double lasso results, lasso with c = 0.5 (1/4), bachelor’s degree data.
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Variable Estimate p-value

Occupation

Bus Operat Spec 0.0287 0.2610
Financ Spec -0.0416 0.0070
Comput/Math 0.0260 0.2500
Archit/Engin 0.0347 0.2760
Technic 0.0798 0.9820
Life/Physical/Soc Sci. 0.0539 0.0040
Comm/Soc Serv 0.1505 0.0000
Legal 0.0214 1.0000
Educ/Training/Libr 0.0333 0.0050
Arts/Design/Entert/Sports/Media 0.0321 0.6490
Healthc Pract/Technic -0.0590 0.0000
Healthc Supp -0.1086 0.2780
Protect Serv 0.0636 0.0340
Food Prepar/Serving -0.0022 1.0000
Build/Grounds Clean/Mainten -0.0257 1.0000
Pers Care/Serv -0.0456 0.9910
Sales -0.0049 1.0000
Office/Administr Supp -0.0489 0.0000
Farm/Fish/Forestry -0.0395 1.0000
Constr 0.1254 0.3730
Install/Mainten/Rep 0.1320 0.0470
Prod 0.0055 1.0000
Transp 0.0230 1.0000
Milit Specific 0.0012 1.0000

U.S. census region

Middle Atlantic Division -0.0071 1.0000
East North Central Div. -0.0100 1.0000
West North Central Div. -0.0109 1.0000
South Atlantic Division -0.0050 1.0000
East South Central Div. -0.0343 0.4120
West South Central Div. -0.0294 0.3350
Mountain Division -0.0055 1.0000
Pacific Division -0.0049 1.0000

Table 5.16: Complete double lasso results, lasso with c = 0.5 (2/4), bachelor’s degree data.

177



CHAPTER 5 5.7. APPENDIX

Variable Estimate p-value

Metropolitan statistcal area

msa 0.0133 0.9960

Child

Age 18 or younger -0.0556 0.0000
Age 4 or younger 0.0834 0.0000

Usual hours worked per week

40 to 49 -0.0067 1.0000
50 to 59 -0.0011 1.0000
60 to 69 -0.0079 1.0000
> 70 -0.0511 0.6750

Years of education

yos 0.0020 1.0000

Experience

exp -0.0042 0.0000
exp2 0.0000 1.0000

College major

Agri -0.0468 0.8640
Envir/Nat Res -0.0117 1.0000
Archit -0.0254 1.0000
Area/Ethnic/Civiliz Stud -0.0208 1.0000
Comm -0.0028 1.0000
Comm Tech -0.0770 0.9900
Comp/Inform Sci -0.0608 0.0010
Cosmet Serv/Culin Arts 0.0228 1.0000
Engin -0.0555 0.0010
Engin Techn -0.0261 1.0000
Ling/Foreign Lang -0.0198 1.0000
Fam/Consum Sci -0.0217 1.0000
Law -0.1686 0.2140
English/Lit/Compos -0.0028 1.0000
Lib Arts/Hum -0.0289 1.0000
Lib Sci -0.1427 1.0000

Table 5.17: Complete double lasso results, lasso with c = 0.5 (3/4), bachelor’s degree data.
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Variable Estimate p-value

College major (continued)

Bio/Life Sci -0.0458 0.0240
Math/Stats -0.0588 0.1250
Milit Techn 0.1227 1.0000
Inter-/Multi-Disc Stud (gen) -0.0867 0.1300
Phys Fit/Parks/Recr/Leis 0.0084 1.0000
Philos/Rel Stud 0.0045 1.0000
Theol/Rel Voc 0.0216 1.0000
Phys Sci -0.0532 0.0230
Nucl/Ind Rad/Bio Techn 0.1160 1.0000
Psych -0.0550 0.0020
Crim Just/Fire Prot -0.0731 0.0020
Publ Aff/Policy/Soc Wo -0.0598 0.2810
Soc Sci -0.0565 0.0000
Constr Serv -0.1081 0.9730
Electr/Mech Rep/Techn -0.1754 1.0000
Transp 0.0512 1.0000
Fine Arts -0.0303 0.6810
Med/Hlth Sci Serv -0.0174 1.0000
Bus -0.0633 0.0000
Hist -0.0393 0.6520

Table 5.18: Complete double lasso results, lasso with c = 0.5 (4/4), bachelor’s degree data.

Tables 5.15 to 5.18 present complete results from post-lasso estimation using double selection (double lasso)
obtained for the bachelor’s degree subsample. p-values are obtained from a joint test of all βj coefficients in
β(xi) from Equation (3) using the multiplier bootstrap procedure suggested in Belloni et al. (2014a) with 1000
repetitions.
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Panel A: Quantiles of effects with corresponding confidence bounds, double lasso, c = 0.5.
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Panel B: Quantiles of effects with corresponding confidence bounds, OLS.
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Figure 5.12: Quantiles of effects with corresponding confidence bounds, c = 0.5.

As a robustness check, the quantile plots in Figure 5.12 of the main text were reproduced with a variation of the
penalty λ. The constant c that is used in the determination of λ was set to level c = 0.5 instead of c = 1.1 in the
main analysis. The choice of a smaller constant c corresponds to decreasing the penalty parameter λ. Confidence
bands are obtained from the multiplier bootstrap procedure with 500 repetitions.
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Chapter 6

Insights from Optimal Pandemic

Shielding in a Multi-Group SEIR

Framework

We will never get tired of saying that the best way out of this pandemic is to take a comprehensive

approach. [...] Not testing alone. Not physical distancing alone. Not contact tracing alone. Not masks

alone. Do it all.

Tedros Adhamom Ghebreyesus, WHO Director-General, July 1, 2020

6.1 Introduction

The COVID-19 pandemic constitutes one of the largest threats in recent decades to the health and

economic welfare of populations globally. A key challenge for policy makers everywhere is to prevent

SARS-CoV-2 infections while avoiding economic losses of a magnitude that would result, in the long

run, in an unacceptable level of negative effects on population health and well-being. Policy makers in

most countries have reacted to the pandemic by imposing strict lockdown policies. In some countries

and regions, strict lockdowns have remained in effect for many months or have been reimposed after

initially being relaxed. Although such policies have slowed the spread of the virus by reducing social

interactions, the more severe lockdowns have been accompanied by a large decline in economic activity.

While protecting health and saving lives must, of course, take the highest priority, an optimal policy

has to weigh both health and economic losses – that is, keeping mortality as low as possible, on the one

hand, and mitigating an economic downturn on the other. In doing so, the goal is to identify a so-called

efficient frontier – in other words, possible combinations of measures that that achieve a certain, ideally

very low level of population mortality with minimal economic loss or vice versa. Once an efficient frontier

for a set of different lockdown strategies has been constructed, a comparison of these strategies allows

policy makers to achieve efficiency gains. The point on the efficient frontier that is considered desirable

is a decision that must be made by policy makers and, ideally, society as a whole.

In a recent contribution, Acemoglu et al. (2020) extend the classical SIR model, which is well-known from

the epidemiological literature, by explicitly incorporating the trade-off that policy makers must consider

in times of the pandemic. The authors derive the efficient frontier for different policies and show that

efficiency gains can be achieved by targeting lockdown policies at different age groups, each of which is,
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in turn, characterized by different productivity and mortality risks.1 In a setting calibrated to the U.S.

population and economy, they show that protecting the most vulnerable group (i.e., those aged 65 and

older) with stricter shielding rules (i.e., targeted shielding) is associated with fewer losses than a blanket

shielding policy (also referred to as a uniform shielding, i.e., a policy that applies equally to all groups).

Acemoglu et al. (2020) briefly mention and discuss a potential extension of the multi-group SIR model

to the SEIR case. Here, we continue their analysis and analyze a variety of policy measures within the

SEIR model. We explicitly state the key equations of this model and calibrate it to social interaction

patterns as estimated in Klepac et al. (2020).

In this paper, we consider a model that is calibrated to Germany – that is, we adjust it to the country’s

demographic and economic characteristics, as well as its system of health care provision. Germany

and the U.S. differ in many regards, such as the demographic structure of the population, age-specific

employment and income patterns, and the capacities of the health system. We present the results of the

model and discuss various policy measures, such as group distancing, test strategies, contact tracing, and

combinations of these. We also discuss in detail how a targeted policy, protecting vulnerable groups like

old people, might be implemented in practice and discuss some policy examples.

Mortality from COVID-19 is particularly high among older people, Ferguson et al. (2020), whose produc-

tivity is relatively low. Hence, a targeted shielding policy that limits face-to-face contacts with persons

aged 65 or older might lead to lower mortality in this population group and less damage to the economy.

Additionally, a set of potentially voluntary policies that reduce transmission rates and social contacts

could, in principle, be considered as an alternative to age-targeted shielding. Indeed, in our analysis, we

find that testing, contact tracing, group distancing and improved conditions for working from home help

to reduce the economic costs of the pandemic and the intensity and duration of age-targeted shielding.

Moreover, if these measures are combined in a comprehensive approach as described in the initial quote

by Tedros Adhamom Ghebreyesus, population mortality and economic outcomes improve substantially.

Throughout our analysis, the efficiency gains associated with age-targeting remain relatively stable and

sizable, and we recommend exploiting these gains by improving conditions for individuals at high risk,

for example by providing services such as special shopping or consultation hours for older people, as

well as testing capacities for those who have contact with high-risk groups to decrease the probability of

infections.

The rest of this paper is structured as follows: In Section 6.2 we briefly introduce the multi-group SEIR

model. In Section 6.3 we describe our specification of the parameters for the SEIR model for Germany.

Section 6.4 presents the results and describes the optimal policies comprising measures such as group

distancing, testing, contact tracing and improved medical treatment. Finally, a conclusion summarizes

the results and makes a range of policy recommendations.

Because there is still so much that we do not know about SARS-CoV-2, including the transmission rate,

mortality rates and aspects related to immunity, all of the results reported throughout the paper must

be interpreted with caution. As in the study by Acemoglu et al. (2020), we do not focus on presenting

absolute quantitative results, such as GDP forecasts, but rather qualitative insights into potential policy

measures that are considered in variation-of-parameters analyses.

Literature review

The classical SIR and SEIR models are used widely in epidemiology and described in many standard

textbooks. Driven by the COVID-19 crisis, various extensions of the standard epidemiological models

have been developed and modified to consider economic factors. For example, Brotherhood et al. (2020)

1Acemoglu et al. (2020) employ the term “lockdown” to denote policies that limit social interactions, such as leisure
activities or face-to-face interactions at work. In the following, we will refer to these policies as “shielding” measures to
underscore the underlying concept of protecting people with higher mortality risks due to higher age or comorbidities.
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include individual choices about the amount of time spent on activities outside the house, such as work

or consumption, to the standard SIR epidemiological model. These activities are associated with exter-

nalities, i.e., higher risk of transmission to and from others. The model also incorporates heterogeneity

in terms of age and different policy measures, such as testing or quarantines. Berger et al. (2020) provide

an extended SEIR model focusing on testing and quarantine measures and thereby explicitly address

the imperfect information that arises due to the fact that cases can be symptomatic or asymptomatic.

A recent study by Grimm et al. (2020) extends a classical SEIR model by introducing a high and low

risk group that differ, for example, in hospitalization and mortality rates. Their study focuses on the

evolution of infected, recovered and deceased, i.e., the epidemiological aspects of the SEIR model in a

parametrization calibrated to Germany. While a blanket shielding policy (i.e., for the entire population)

is, of course, the optimal way to protect everyone from infection, the associated economic losses might

become substantial. The multi-group SEIR model incorporates economic costs that arise due to sick

leave, productivity losses when individuals work from home and discounted lifetime income losses from

deaths due to COVID-19. Moreover, important indirect health consequences are associated with strict

shielding measures, such as missed appointments for other conditions, less exercise, mental health issues,

increased alcohol consumption, social isolation and increased levels of domestic abuse. While these indi-

rect, non-pecuniary costs are not incorporated in our study, it might be useful to model them in future

work.

We build on the work of Acemoglu et al. (2020), who study targeted shielding policies in a multi-group

SIR model, and thereby address the trade-off between mortality and economic losses. They consider two

possible targeting strategies: finding separate, optimal shielding policies for the young, middle-aged and

senior groups (the so-called “fully targeted” policy) or imposing two separate shielding policies, one for

the senior group and the other for the young and the middle-aged (so-called “semi-targeted” shielding).

In their baseline results, semi-targeted policies are associated with substantial efficiency gains that cannot

be improved substantially by fully targeted policies.

While Acemoglu et al. (2020) analyze the optimal policy for the U.S., we extend their framework and

calibrate it to Germany. Our baseline model is a SEIR model that incorporates contact patterns as

estimated by Klepac et al. (2020), who evaluate data from the BBC pandemic project in 2017 and 2018.

Moreover, we consider a broader set of policy measures, such as testing and contact tracing, as well as

various forms of group distancing.

6.2 Multi-Group SEIR Model

In this section, we briefly describe a SEIR model based on Acemoglu et al. (2020), who focus in their

analysis on the SIR model and state that their conclusions also hold for the SEIR version. For an in-depth

discussion with additional information on the theoretical set up of the original SIR model, we refer to

Acemoglu et al. (2020). One of the major features of the framework is that it allows the population to be

partitioned into subgroups that are heterogeneous in terms of their productivity and mortality rates. In

particular, we consider the following three subgroups: young (20-49 years), middle-aged (50-64 years) and

senior citizens (65+ years). Accordingly, there are age-group specific compartments for susceptible (Sj),

infectious (Ij), recovered (Rj) and deceased (Dj) persons, with j = y,m, s referring to the young, middle-

aged and senior groups. The epidemiological SEIR model extends the SIR model by the compartment

of exposed individuals − that is, those who have been infected by the virus but whose infection is not

yet sufficiently severe that they have symptoms or are infectious. Hence, the model considered in the

following incorporates a compartment Ej for each age group in addition to compartments Sj , Ij , and Rj
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at each point in time t ∈ [0,∞).

Sj(t) + Ej(t) + Ij(t) +Rj(t) +Dj(t) = Nj .

Nj is the number of initial members in each group, j = y,m, s. The compartment structure of a two-

group SEIR model is illustrated in Figure 6.1 with the red arrows indicating the paths of transmissions

through contacts of infectious and susceptible.

D2

I2E2S2

R2

Non-ICU

ICU

D1

I1E1S1

R1

Non-ICU

ICU

Network Contacts

Figure 6.1: Compartments in a two-group SEIR model.

The red arrows illustrate the potential channels of infections through physical contacts.

Without any policy intervention that enforces shielding of the population or isolation of those who are

infected, the (gross) number of new infections in the segment of exposed (Ej) and infectious (Ij) is

governed by the following equations

New exposed in group j = Mj(S,E, I,R;α) · β · Sj ·
∑
k

ρjkIk (6.1)

New infected in group j = γIj · Ej , (6.2)

where {ρjk} are parameters for the contact rate between group j and k and Mj(·) refers to a matching

technology, with Mj(·) = 1 if α = 2 which is our baseline case. The parameter β denotes the transmission

rate from contacts between individuals in Ij and Sj and γEj is the exit rate from the latent state to the

infectious state.

6.2.1 Model Assumptions

In this section we describe and discuss the model assumptions.

Infection, ICU, Fatality and Recovery

In the SEIR model described above, a transmission of SARS-CoV-2 arises through contact of susceptible

individuals with infectious individuals. After an average latent period 1
γEj

, they become infectious them-

selves. Individuals in compartment Ij may require ICU care. We assume for simplicity that a need for

ICU is apparent immediately after entering state Ij . ICU patients either recover with Poisson rate δrj or
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die at Poisson rate δdj . Non-ICU patients will always recover at Poisson rate γIj . The death rate can vary

with total ICU needs relative to capacity. We assume that

γj = δdj (t) + δrj (t).

This means that the proportions of ICU and non-ICU patients among the infected do not change over

time in group j. Hj(t) denotes the number of individuals needing ICU care at time t in group j, so that

Hj(t) = ιjIj(t). H(t) =
∑
j Hj(t) is the total need for ICU. The probability of death is a non-decreasing

function of the number of patients, such that the probability of death will rise if the capacity is exceeded:

δdj (t) = ψj(H(t)),

for a given non-decreasing function ψj .

Testing, Contact Tracing and Isolation

Detection and isolation of infected individuals is not perfect. In the SIR model, Acemoglu et al. (2020)

denote the probability that an individual in compartment Ij is not detected and put in isolation by ηj .

In their analysis, comparative statics are performed to illustrate the consequences of variation of ηj , for

example due to intensified testing. Incorporating the group of exposed (Ej) in a SEIR model allows tests

to be performed for those who have had contact with an infected person. This setting could be considered

a simplified form of contact tracing, for instance enabled by a smartphone application that records

physical contacts. Hence, quarantining those who have been in contact with infected individuals might

enable policy makers to exclude these infected but not yet infectious individuals from social interactions.

Accordingly, we denote the probability that a person in compartment Ej or Ij is not detected and isolated

by ηEj and ηIj , respectively, and thereby avoid including additional state variables. In this manner, we

can model the fact that only those infected who have not been detected and isolated in stage Ej or Ij

contribute to the spread of the disease via their contacts.

Shielding and Physical Distancing

Shielding policies describe all measures that reduce the rate of transmission of infections in social and

business life and physical distancing. The productivity of members of j is wj without shielding and ξjwj

with shielding, with ξj ∈ [0, 1]. Lj(t) = 1 refers to a full shielding policy and Lj(t) = 0 to a situation

without any restrictions to social interactions. Lj(t) ∈ (0, 1) would be partial shielding, for example by

shielding a (potentially randomly and independently drawn) fraction of the population. It is assumed

that shielding cannot be perfectly enforced and that, with shielding, the effective reduction in social

interaction is only 1− θjLj(t) with θj < 1.

Contact Rates

We implement a version of the SEIR model that incorporates social interaction patterns to capture the

major findings in Klepac et al. (2020) – that is, high rates of interaction within and by the group of young

and decreasing intensity of interactions with age. The study evaluates large-scale data on the frequency

and intensity of social interactions that were collected in the BBC Pandemic project in the UK in 2017

and 2018 and make it possible to derive age-specific contact rates. To model the group interaction within
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and between groups, let denote ρ0
jk the elements of the contact matrix

ρ0 =

 1.0 0.5 0.4

0.5 0.6 0.4

0.4 0.4 0.5

 ,

with the first row and column referring to the young group, the middle row and column referring to the

middle-aged group and the third row and column referring to the senior citizen group.2 The contact

estimates of Klepac et al. (2020) refer to a pre-pandemic setting and, hence, constitute the benchmark

scenario for comparison to social distancing policies. To incorporate voluntary reductions of physical

contacts, we base our baseline results in Section 6.4 on a rescaled contact matrix that presumes a 25%

reduction in physical contacts.

ρ = 0.75 · ρ0 =

 0.750 0.375 0.300

0.375 0.450 0.300

0.300 0.300 0.375

 , (6.3)

Incorporating more realistic contact patterns in the SEIR model with multiple groups is important for

evaluating policy measures that are targeted at different age groups. For example, lower rates of con-

tact between the vulnerable group (i.e., senior citizens) and younger people might allow for less intense

shielding patterns.

Physical Distancing, Face Masks and Additional Hygiene Measures

Various mandatory or voluntary policies can be employed to reduce the transmission rate of SARS-CoV-

2. These measures range from a general reduction in face-to-face or physical contacts (for example, by

imposing strict physical distancing measures that apply equally to all age groups) or specific interventions

that aim to protect especially those who are most vulnerable. The latter include, for example, a reduction

in face-to-face contacts with senior citizens – for instance by placing restrictions on visits to nursing homes

or prescribing mandatory (reusable or disposable) face masks during for contacts with senior citizens. For

example, Chu et al. (2020) undertook a systematic review and meta-analysis of studies that examined the

effectiveness of face masks and physical distancing for COVID-19 and related diseases (e.g., MERS and

SARS). Accordingly lower transmission rates are associated with greater physical distance and the use

of N95 face masks and comparable respirators rather than disposable surgical masks. There are a huge

number of potential policy measures that aim to reduce the transmission of SARS-CoV-2, all of which can

be employed in combination. We list a few examples of such measures in Section 6.4.3. Something that all

of these measures have in common is that they effectively change or rescale the elements in the contact

matrix ρ. In our analysis, we focus mainly on two variants of group distancing, namely (i) so-called

uniform group distancing, which effectively reduces the contact rates in ρ for all groups (corresponding

to a multiplication of the matrix (corresponding to a multiplication of the matrix ρ with a scalar ν), and

(ii) group distancing policies with a focus on the vulnerable that refer only to interactions with the group

of seniors and the elements ρsj with j = y,m, s, and ρjs, respectively. Moreover, it is possible to simulate

settings in which the level of interactions within the senior group might be left unchanged, thus reducing

the impact on daily interactions with others at the same age.

2An example: The entry of a contact matrix ρ23 represents the contact rate that applies to interactions of members of
the middle-aged and the senior age group, i.e., ρms. Due to symmetry of the matrix, it holds that ρ23 = ρ32.
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Improved Conditions for Working from Home

Working from home can be an effective way to reduce the costs of the pandemic and of shielding policies.

To host a scenario with improved conditions for working from home, we (i) implement a parameter

constellation with respect to the contact rates within and between the young and middle-aged group and

between these groups and the senior group and (ii) decrease the productivity loss associated with working

from home, ξj .We believe that this captures some aspects of working from home in that those who are

most likely to be employed can reduce their social interactions with lower economic losses. Changes in

terms of (i) are imposed by scaling the entries of the contact matrix ρyy, ρmm, ρym by a factor 1−π1 and

a scaling the contact rates ρys and ρms by 1− π2 with π1 < π2.

Vaccine and Cure

Acemoglu et al. (2020) assume that a vaccine and an effective drug for all infected individuals becomes

available at some date T and that full immunity is achieved and maintained after an infection.3 In our

analysis, we will evaluate changes in T resulting from a faster development of a vaccine - for example

after one year or six months.

Currently, there are various treatments for COVID-19 that have been approved or are being evaluated

in clinical trials. We assess the implications of a medical treatment with respect to the optimal shielding

policy. Put simply, a new treatment could have any of the following three effects: (i) reduce the length of

hospitalization, (ii) reduce the probability of dying from COVID-19, (iii) reduce the probability that an

infection with SARS-CoV-2 becomes severe. We will focus on the availability of a treatment that leads to

a reduction in mortality from COVID-19 for the group of senior citizens because most deaths and severe

cases have been observed in this age group (e.g., as reported for Germany in RKI (2020b)).

6.2.2 Dynamics in the MG-SEIR Model

If vaccine and cure are unavailable, the number of individuals in the exposed compartment for group j

evolves according to the differential equations for all t ∈ (0, T )

Ėj = Mj(S,E, I,R, L;α)β(1− θjLj)Sj
∑
k

ρjkη
E
k η

I
k(1− θkLk)Ik − γEj Ej ,

for nonnegative β and contact coefficients ρjk and where

Mj(S,E, I,R, L;α) ≡

(∑
k

ρjk
[
(Sk + ηEk Ek + ηEk η

I
kIk + (1− κk)Rk)(1− θjLk) + κkRk

])α−2

.

In the quadratic case Mj(S,E, I,R, L) = 1. The parameter κj refers to the share of recovered individuals

that can return to work and social life while being exempted from shielding policies due to immunity.4

Setting ηEj = 1 for all j refers to a setting where it is not possible to test and isolate exposed individuals.

However, a value ηEj < 1 means that the effective number of individuals who contribute to further spread

of the disease can be reduced by contact tracing and isolating those who have been exposed.

The rest of the laws of motion for t ∈ (0, T ) are

Ṡj = −Ėj − γEj Ej , (6.4)

3In line with Acemoglu et al. (2020) we focus on the case with deterministic arrival of a vaccine.
4We acknowledge that there is not yet a consensus on whether individuals become immune to SARS-CoV-2 after an

infection and whether such immunity, if achieved, is maintained for a substantial period. The empirical evidence on both
points is mixed. We follow the baseline setting in Acemoglu et al. (2020) with κj = 1 for all j and repeat the robustness
checks with setting κj = 0 for all j. The main conclusion remains valid and results are omitted for the sake of brevity.
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İj = γEj Ek − γIj Ij , (6.5)

Ḋj = δdjHj , (6.6)

Ṙj = δrjHj + γIj (Ij −Hj), (6.7)

where Hj = ιjIj denotes the number of ICU patients in group j. After discovery of a vaccine and cure

at T , every individual alive is in the recovered category.

6.2.3 Efficient Frontier

The government can control the degree of shielding Lj(t) for each group j at any point in time t ∈ [0, T ).

In particular we will compare uniform policies (i.e., blanket policies with Lj(t) = L(t)) and group-specific

(i.e., targeted) policies. The goal of the social planner is to minimize the overall costs of the pandemic,

which consist of two parts:

1. Lives Lost =
∑
j Dj(T ).

2. Economic Losses =
∫ T

0

∑
j Ψj(t)dt.

The economic losses for group j are given by

Ψj(t) = (1− ξj)wjSj(t)Lj(t) + (6.8)

+ (1− ξj)wjEj(t)(1− ηEk (1− Lj(t))) +

+ (1− ξj)wjIj(t)(1− ηEk ηIk(1− Lj(t))) +

+ (1− ξj)wj(1− κj)Rj(t)Lj(t) +

+ wj∆jιjδ
d
j (t)Ij(t),

where the second term refers to the income loss of exposed individuals under shielding. The third term in

the economic cost function is now adjusted to the case with the testing and isolation of exposed individuals,

as well. ∆j captures the present discounted value of a group j member’s remaining employment time

until retirement, which is lost due to death. The objective function is a weighted sum of both losses with

weight factor χ and the task is to choose a shielding policy which minimizes∫ T

0

∑
j

Ψj(t)dt+ χ
∑
j

Dj(T ).

Varying the values for χ makes it possible to identify the efficient frontier - in other words, to find the

policy that minimizes the objective function for a given χ. Hence, the policy recommendations that can

be obtained from an analysis of the efficient frontiers do not depend heavily on a specific choice of χ but

rather reflect the difficult trade-off that policy makers face in the pandemic (Acemoglu et al., 2020).

6.3 Specification and Calibration

Before we discuss optimal shielding policies in the multi-group SEIR model, we will first comment on

how we set and calibrated the parameters for Germany. We will present adaptations of country-specific

parameters that would also apply to a calibration of the initial multi-group SIR model in Acemoglu et al.

(2020). These parameters refer to demographic and economic conditions, as well as to characteristics of

health care provision in Germany. Second, we will discuss the adaptations of the SIR model parameters

to a SEIR version based on information from the Robert Koch Institute (RKI) as of July 2020. Finally,

we will comment on the calibration of the basic reproduction number R0.
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Parameter US GER
1. Socio-demographic and economic

Population shares {0.53, 0.26, 0.21} {0.46, 0.28, 0.26}
{Ny, Nm, No}
Per capita income {1.00, 1.00, 0.26} {1.00, 1.00, 0.085}
{ωy, ωm, ωo}
Remaining years in empl. {32.50, 10.00, 2.50} {32.43, 10.44, 2.50}
{∆y, ∆m, ∆o}

2. Health-care related

Mortality penalty 1.00 {0.20, 0.40, 0.60, 0.80}
λ
ICU constraint {0.016, 0.020} {0.020, 0.030, 0.040}
H̄(t)

Table 6.1: Parameters for the United States and Germany.

The underlined mortality parameter indicates the choice in the baseline setting. The remaining values for λ and
H̄(t) are used in robustness checks.

6.3.1 Country-Specific Parameters

Calibration of Socio-Demographic and Economic Parameters

Germany has a demographic com- position that is substantially different from that of the U.S. In par-

ticular, the share of the group aged 65 and older is larger and that of the young group is smaller than

in the U.S. For example, the median age in the U.S. is around 38 (United States Census Bureau, 2019)

years whereas it is around 45 years in Germany (Bundeszentrale für politische Bildung und Statistisches

Bundesamt, 2018). Using data from German micro census from 2018 as provided by the German Fed-

eral Statistical Office (Statistisches Bundesamt, 2019; Statistisches Bundesamt, 2020), we calculated the

remaining lifetime earnings as displayed in Table 6.1 assuming retirement at age 67.

An interesting difference that we observed in the comparison of Germany and the U.S. is the distinct

employment patterns in the group aged 65 and above. Whereas approximately 20% of individuals in this

group are still employed in the U.S., the corresponding share for Germany amounts only to around 7%,

leading to the re-weighted per-capita earnings in Table 6.1. In both countries, the median earnings are

relatively similar for those who are employed in the middle-aged group and the senior groups.

The demographic distribution of the population in Germany implies that the share of persons who have

a higher risk of dying from COVID-19 is relatively large. Thus, uniform shielding policies that aim

to keep mortality in the entire population at a low level are expected to be more costly in terms of

economic damage. At the same time, the group of senior citizens accounts for a relatively low share of

GDP, implying that targeted policies are more favorable. Shielding targeted only towards the elderly

therefore makes it possible to reduce overall mortality while allowing the younger and economically more

productive groups to continue working.

Calibration of Health and Medical Variables

Calibrating the model in terms of parameters that are related to health care provision is challenging - for

example due to limited comparability of hospital capacities and their dynamic expansion in reaction to

the pandemic (Organisation for Economic Cooperation and Development (OECD), 2020). We performed

various variations to parameters of the original SIR model of Acemoglu et al. (2020) and its SEIR version
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US GER

Acute Care beds/10,000 pop. 24.00 60.00
(OECD, 2020)
ICU beds/10,000 pop. 2.58 3.39
(OECD, 2020)
ICU beds/10,000 pop. 3.13 3.89
(AHA, 2020, DIVI, 2020)

Table 6.2: Hospital beds and ICU beds.

Source: OECD (2020), AHA (2020), DIVI (2020). AHA (2020) refers to adult ICU beds and population only.

which are provided, in part, in the Appendix and chose one of these parameter configurations as a baseline

setting in our analysis as described in the following.

Health care provision in Germany is considerably different from that in the U.S. In a recent report, the

Organisation for Economic Cooperation and Development (OECD, 2020) compares health care provision

across different countries. We list the numbers of hospital and ICU beds for the U.S. and Germany in

Table 6.2. Due to the dynamic expansion of hospital capacities during the COVID-19 pandemic in both

countries, we add more recent, constantly updated data from the American Hospital Association (AHA,

2020) and the German Interdisciplinary Association for Intensive and Emergency Medicine (DIVI, 2020).

Compared to the OECD data, the number of ICU beds reported by AHA and DIVI has increased by

around 21% in the U.S. and around 15% in Germany. The number of ICU beds is frequently reported

to be one of the crucial measures of whether countries are able to keep mortality from COVID-19 low.

According to the report by OECD (2020), Germany is the country with the highest ICU capacities among

all OECD members. Germany not only has more ICU beds per capita than the U.S.; other measures,

such as the number of hospital beds or coverage with public health insurance (OECD, 2020), suggest that

the health care system in Germany has comparably greater capacities (per capita) than that of the U.S.

To take account of these differences, we adjust the parameter λ, which enters the relationship of the daily

mortality rate, δdj , and hospital capacities at time t, H(t), to a default value λ = 0.6, which is smaller

than λ = 1 as chosen in the analysis of Acemoglu et al. (2020).

δdj = δdj · [1 + λ ·H(t)] , (6.9)

where δ̄dj is the baseline mortality rate for group j with δy = 0.001, δm = 0.01 and δs = 0.06.5 We refer

to Figure 6.18 in the Appendix for illustrations of the variation of health-provision-related parameters.

An alternative to specifying the parameter λ would be to impose a hard ICU constraint by enforcing

H(t) < H̄(t) as was done in the original study of Acemoglu et al. (2020). This would reflect more generous

capacities than in the U.S.

Allowing for a less sensitive relationship between mortality and ICU needs (i.e., lowering the value of λ

in (6.9)) reflects the policy maker being able to achieve lower mortality rates at a given (possibly high)

number of infections. Similarly, a higher bound on available ICU beds (i.e., increasing H̄(t)) implies

that the policy maker faces a trade-off between mortality and economic damage under relaxed capacity

constraints. We performed several variations with respect to the health-related parameters and refer to

some examples illustrated in Figure 6.18 in the Appendix. These changes can all be summarized generally

5These mortality rates are based on Ferguson et al. (2020). We repeat the robustness check performed in Acemoglu
et al. (2020) with δs = 0.12 and confirm that the main conclusions remain unchanged. We omit the resulting plot for the
sake of brevity because we provide two robustness checks with regard to a lower mortality rate in Section 6.4.2.
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as restrictions to the set of possible options that are available to policy makers in situations in which

infection rates are high.

6.3.2 Parameters for the SEIR Model

The multi-Group SEIR model is able to adapt to some characteristics specific to SARS-CoV-2. For

example, one characteristic of the virus is that infections are frequently caused by some exposure to

infectious persons through personal contact. To model the period spent in states E (i.e., carrying the virus

but not exhibiting symptoms and neither being infectious) and I (i.e., potentially exhibiting symptoms

and being infectious), we base the rates γEj and γIj on the conclusions of the Robert Koch Institute as

provided in the RKI COVID-19 report (RKI, 2020a). In our analysis, we assume that the latent period

is 6 days (γEj = 1
6 ) and the infectious period is 9 days (γIj = 1

9 ).

6.3.3 Calibrating R0

The parameter β has been calibrated to match a basic reproduction number R0 = 2.4 under the parameter

constellation as described above. Setting R0 = 2.4 corresponds to the lower bound on R0 as reported by

the RKI (2020a) as of July 2020. The calibration is performed in a setting without any policy intervention

based on the contact matrix ρ0, i.e., no shielding, i.e., Lj = 0, no testing and isolation, i.e., ηIj = 1, and

no contact tracing, i.e., ηEj = 1, is imposed for any j in an almost entirely susceptible population.

6.4 Results and Optimal Policies

In this section, we present our results and discuss the optimal policies that can be derived from our model.

We will first refer to the efficient frontier according to the German parametrization and then illustrate

the effectiveness of various policies. Lastly, we will comment on the implementation of these policies in

practice.

6.4.1 Efficient Frontier

Adapting the model to the socio-demographic, economic and health-care-related parameters for Germany

leads to the baseline policy frontier shown in Figure 6.2. In line with the results reported by Acemoglu

et al. (2020), the economic cost of shielding can be reduced substantially at a given mortality level by em-

ploying targeted shielding policies.6 Due to the non-uniform contact rates, fully targeted policies provide

improvements over semi-targeted policies, similar to the findings of Acemoglu et al. (2020). However, in

many cases, these improvements are moderate to small. Assuming that the costs of implementing fully

targeted policies are non-negligible and are likely to outweigh their gains, we will focus mostly on the

comparison of semi-targeted and uniform policies in the following.

6.4.2 Optimal Policy

In the following, we shed light on the effectiveness of targeting shielding towards different age groups and

the combination of this with additional measures, such as testing activities. Similar to Acemoglu et al.

(2020), we analyze the impact of various policy measures by varying parameters and making comparisons

to a baseline setting. In this benchmark, the parameters are chosen in line with the German socio-

demographic and economic calibration discussed in Section 6.3. When presenting the results, we will

6Analogously to Acemoglu et al. (2020), we will refer to all policies that involve a different degree of shielding Lj for at
least one group j generally as targeted policies. We follow the distinction of fully targeted policies with shielding intensities
Lj that are determined separately for all three groups and semi-targeted policies that distinguish only one level for the
senior group and one level that applies to the young and middle-aged group.
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Figure 6.2: Efficient frontier in SEIR model, baseline setting.

The baseline setting is based on the adjusted contact matrix ρ in Equation (6.3) and demographic and health
care parameters adjusted to Germany in Table 6.1.

frequently refer to a safety-focused scenario entailing policies that do not allow population mortality to

exceed 0.2%. In figures with policy frontiers, the results that correspond to this setting are indicated by

a dot on the respective policy frontier line.

The policy measures considered in the following refer to improving testing for those in compartment Ij

(referred to as testing) and those in compartment E (referred to as contact tracing), two variants of

group distancing, improved conditions for working from home, and a combination of these. In addition,

we analyze the implications of a medical treatment that makes it possible to lower the mortality rate for

those in ICU treatment, as well as of a vaccine arriving early. We list additional results and robustness

checks in the Appendix.

Figure 6.3 illustrates the optimal policy in the baseline setting with uniform and semi-targeted shielding.

The results with regard to the economic loss at the fixed mortality level of 0.2% illustrate the gains that

can be achieved by targeted shielding. In the baseline case with semi-targeted policies, a high shielding

intensity is imposed on the elderly until a vaccine arrives, whereas the intensity for the other groups is

lowered gradually after an initial peak. Figure 6.4 illustrates the evolution of the share of uninfected in

each age group and the reproduction rate over time. Semi-targeted shielding policies as illustrated in

Panel (ii) are associated with different infection rates across the age groups. Hence, the share of infected

in the vulnerable group is relatively low whereas infections are more prevalent in the group of young.

However, if uniform policies are considered (Panel (ii)) the variation in the share of uninfected across the

age groups is much smaller.

The Effect of Physical Distancing, Face Masks and Additional Hygiene Measures

In general, the policy maker could reduce the intensity and duration of the shielding policy if the trans-

mission rates in personal contacts could be decreased, for example by a voluntary limitation of contacts

or reducing the transmission probability by wearing face masks, as described for instance in Chu et al.

(2020). Among other recommendations, we provide a list of possible mandatory or voluntary group

distancing measures in Section 6.4.3.

We consider two variants of group distancing by manipulating the entries of the contact matrix ρ. The
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Figure 6.3: Optimal uniform shielding policy, baseline setting.

Panel (i): Optimal uniform shielding policy with safety focus, baseline setting. Panel (ii): Optimal semi-targeted
shielding policy with safety focus, baseline setting.
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Figure 6.4: Share of uninfected and reproduction rate, baseline setting.

Share of uninfected (left) and reproduction rate R(t) (right) in the baseline setting with safety focus. Panel (i):
Optimal uniform shielding policy. Panel (ii): Optimal semi-targeted shielding policy.
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Figure 6.5: Policy frontiers with group distancing or reduced transmission rates.

Policy frontiers with group distancing or reduced transmission rates between and by age groups. Panel (i):
Uniform reduction in all contact rates in the contact matrix ρ of 10% (left), 30% (center) and 40% (right). Panel
(ii): Group distancing focusing on the most vulnerable group (i.e., the group of those aged 65+) with a reduction
in the between-group contact rates ρys, ρms of 10% (left), 30% (center) and 50% (right).
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Figure 6.6: Optimal policy with safety focus and group distancing, uniform shielding.

Panel (i): Uniform group distancing with 20% reduction in social interactions between and by all groups. Panel
(ii): Group distancing with focus on interactions with vulnerable groups and reduction in contact rates ρys, ρms

by 50%.
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Figure 6.7: Share of uninfected and reproduction rate with group distancing, uniform shield-
ing.

Share of uninfected (left) and reproduction rate R(t) (right) in the setting with safety focus and group distancing.
Uniform shielding policies. Panel (i): Uniform group distancing with 20% reduction in social interactions between
and by all groups. Panel (ii): Group distancing with focus on interactions with vulnerable groups and reduction
in contact rates ρys, ρms by 50%.
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Figure 6.8: Optimal policy with safety focus and group distancing, semi-targeted shielding.

Panel (i): Uniform group distancing with 20% reduction in social interactions between and by all groups. Panel
(ii): Group distancing with focus on interactions with vulnerable groups and reduction in contact rates ρys, ρms

by 50%.
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Figure 6.9: Share of uninfected and reproduction rate group distancing, semi-targeted shield-
ing.

Share of uninfected (left) and reproduction rate R(t) (right) in the setting with safety focus and group distancing.
Semi-targeted shielding policies. Panel (i): Uniform group distancing with 20% reduction in social interactions
between and within all groups. Panel (ii): Group distancing with focus on interactions with vulnerable groups
and reduction in contact rates ρys, ρms by 50%.
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Figure 6.10: Policy frontiers with alternative contact rate adjustment.

Reduction of contact rates in ρ0 by 10% (left), i.e., ρ = 0.9 · ρ0, and without any reduction of contact rates in ρ0,
i.e., ρ = ρ0 (right). Solid lines refer to baseline scenario with ρ = 0.75 · ρ0.

first scenario of mandatory or voluntary group distancing we consider refers to a uniform reduction

in contact rates in ρ. This setting could be considered similar to a general call to the population to

reduce all personal interactions, irrespective of the age or vulnerability of the persons considered. The

second scenario we consider refers to a change in the contact rates with respect to the senior group –

in other words ρys and ρms and leaving all other entries in ρ unchanged. This scenario corresponds to

“breaking the infection chain” with regard to the vulnerable group. In this scenario, the within-group and

between-group contacts for the young and middle-age groups are left unchanged. Moreover, in the setting

considered, we also leave the contacts within the group of senior citizens unchanged and thus attempt to

model a scenario with an impact on the daily contacts of the elderly that is as low as possible. Figure 6.5

illustrates the policy frontier corresponding to changes in the contact matrix ρ according to uniform group

distancing policy (panel (i)) and group distancing focusing on the vulnerable (panel (ii)). As expected,

scaling all entries in ρ simultaneously is substantially more effective in reducing transmissions than is

targeted group distancing. However, the social and psychological costs of a uniform group distancing

policy are probably high and panel (ii) in Figure 6.5 shows that a reduced, but targeted approach might

also help mitigate the health and economic costs of the pandemic.

The results in Figures 6.6 and 6.8 illustrate that group distancing can reduce the intensity and duration

of uniform shielding policies while mitigating the economic damage. Substantial efficiency gains can be

achieved by targeting shielding towards the separate groups. Comparing (i) a uniform physical group

distancing policy (corresponding to a 20% reduction in contact rates across all groups, shown at the top

of Figures 6.6 and 6.8) and (ii) targeted group distancing towards the vulnerable (corresponding to a

50% reduction in contact rates between young and middle group and the senior citizens, shown at the

bottom of Figures 6.6 and 6.8) illustrates that an intense reduction in contacts and/or transmission rates

between the vulnerable group and the other age groups can be an effective tool for mitigating the health

and economic consequences of the COVID-19 pandemic if combined with targeted shielding. Figures 6.7

and 6.9 present the evolution of the share of susceptibles and the reproduction rate over time and shed

light on the epidemiological consequences of uniform group distancing (Panel (i) in Figure 6.7 and Figure

6.9) and a group distancing policy with a focus on the vulnerable (Panel (ii) in Figure 6.7 and Figure
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6.9). Hence, a more targeted form of group distancing is associated with a greater difference in terms of

age-group specific infection rates. Similar to the baseline scenario, the variation in terms of age-specific

infection rates is higher if semi-targeted policies are considered.

As a robustness check, we employ two settings with reduced physical distancing and illustrate the cor-

responding frontiers in Figure 6.10. Doing so, we intend to illustrate the consequences if individuals

are less compliant to physical distancing guidelines, for example, because they underestimate the risk of

transmissions.

The Effect of Testing and Contact Tracing

Improved testing and isolation with respect to infectious individuals refers to a reduction in the probability

ηIj from the baseline value of ηIj = 0.9− that is, the probability that an infectious individual is not detected

and isolated to avoid subsequent infections.7 A second testing strategy could refer to those who have

had contact with the infectious individuals − that is, decreasing the probability that someone who was

exposed to an infectious person is not detected and isolated, ηE , with default value ηEj = 1.

Figure 6.11 illustrates the beneficial implications of improved testing with regard to persons in state

Ij (panel (i)), improved testing and tracing for persons in Ej (panel (ii)) and a combination of these

measures (panel (iii)). A reduction of ηI allows the policy frontier to be shifted closer to the origin,

and therefore for efficiency gains to be realized compared to the baseline setting with ηIj = 0.9. The

corresponding frontier is shown in the first plot (on the left) of panel (i). Similar conclusions can be

drawn for the contact tracing policy as illustrated in panel (ii) of Figure 6.11. However, simultaneously

improving tests both for the infectious and tests for the exposed leads to a substantial improvement in

the menu of potential alternatives for policy makers. For example, the safety-focused scenario indicated

by the dot on the frontiers involves substantially lower economic costs if the probabilities for undetected

infections are reduced to ηIj = ηEj = 0.8.

The Effect of Improved Conditions for Working From Home

In addition to voluntary or mandatory group distancing and test and trace policies, governments could

provide incentives to promote working from home. To implement improved working from home conditions,

we consider a setting with fewer physical interactions and increased productivity at home. Figure 6.12

illustrates two scenarios with (i) π1 = 20% and π2 = 5% and (ii) π1 = 30% and π2 = 10%. In both

settings, the efficiency loss is reduced by 10 percentage points − that is, in the baseline setting, the

productivity loss under shielding was set to 70% and is now changed to 60%. Panel (i) of Figure 6.12

shows the policy frontiers that correspond to setting (i) (left) and setting (ii) (right). Panel (ii) illustrates

the optimal semi-targeted shielding policy with a safety focus. We can see that improved conditions for

working from home make it possible to reduce substantially the economic costs associated with the

pandemic and with shielding. Moreover, better conditions for working from home make it possible to

reduce the duration and intensity of shielding measures as compared to the baseline setting.

A Comprehensive Approach

The positive effect of improved testing and group distancing can be amplified if these measures are

combined with other measures to form a comprehensive approach. As illustrated in panel (i) of Figure

6.13, combining improved testing and contact tracing with group distancing focusing on interactions of

the other groups with the group of senior citizens allows the policy frontier to be shifted closer to the

origin. According to the efficient frontiers in Figure 6.13 (panel(i)) and the optimal policies in panel (ii),

7In our analysis, we will only focus on changes in ηIj and ηEj that apply equally to all groups, e.g., consider cases with

ηIy = ηIm = ηIs = 0.9.
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Figure 6.11: Policy frontiers with improved testing and isolation.

Panel (i): Tests for infectious persons, parameters in order from left to right (ηIj , η
E
j ) =

(0.9, 1), (0.8, 1), (0.7, 1). Panel (ii): Improved test and trace policy for exposed individuals, parameters (ηIj , η
E
j ) =

(0.9, 0.9), (0.9, 0.8), (0.9, 0.7). Panel (iii): Combination of testing infectious and test and trace policy with param-
eters (ηIj , η

E
j ) = (0.8, 0.8), (0.7, 0.8), (0.7, 0.7).
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Figure 6.12: Policy frontiers with improved conditions for working from home.

Panel (i): Frontiers with two variants of improved conditions for working from home, with π1 = 20%, π2 = 5%, ξ =
0.4 (left) and π1 = 30%, π2 = 10%, ξ = 0.4 (right). Panel (ii): Optimal semi-targeted policy with safety focus
with scaling π1 = 20%, π2 = 5%, ξ = 0.4.
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Figure 6.13: Policy frontiers and optimal policy with combination of policy measures.

Efficient frontier and optimal semi-targeted shielding policy with safety focus with two variants of the comprehen-
sive approach. Panel (i) and (ii): Improved testing and isolation for infected (ηI = 0.7) and exposed (ηE = 0.8),
reduced contact rates for interactions with the senior group (ρys = ρms = 0.2). Panel (iii): Improved testing and
isolation for infected (ηI = 0.7) and exposed (ηE = 0.8), reduced contact rates for interactions with the senior
group (ρys = ρms = 0.2), and improved conditions for working from home (π1 = 20%, π2 = 5%, ξ = 0.4.)
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Figure 6.14: Share of uninfected and reproduction rate with combination of policy measures

Share of uninfected (left) and reproduction rate R(t) (right) in the setting with comprehensive approach and
semi-targeted shielding policies. Panel (i): Improved testing and isolation for infected (ηI = 0.7) and exposed
(ηE = 0.8), reduced contact rates for interactions with the senior group (ρys = ρms = 0.2). Panel (ii): Improved
testing and isolation for infected (ηI = 0.7) and exposed (ηE = 0.8), reduced contact rates for interactions with the
senior group (ρys = ρms = 0.2), and improved conditions for working from home (π1 = 20%, π2 = 5%, ξ = 0.4).
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policy makers can almost refrain entirely from imposing shielding rules. Optimally, only a short shielding

is imposed on the senior group at the early stage of the pandemic. The optimal policies associated with

uniform shielding as presented in the Appendix, Figure 6.19 do not involve any shielding at comparable

economic damage and a slightly higher mortality in the population.

Panel (ii) of Figure 6.13 illustrates that a comprehensive approach that also includes improved conditions

for working from home, with π1 = 20% and π2 = 5%, allows for even lower economic damages at a very

short shielding phase. Moreover, the result on the infection rates and the reproduction rate in panel (ii)

of Figure 6.14 show that the combined approach with improved conditions for working from home help

to reduce the share of infected in all age groups. Furthermore, it can be observed that the comprehensive

approach allows the reproduction rate being kept below the critical threshold of 1.

The Effect of Improved Medication and Treatment

Finally, we assess the effect associated with an improved treatment for COVID-19, which corresponds

with a 30% and 50% lower baseline mortality rate for the group of senior citizens, δds . For example, a

recent study by Horby and Landray (2020) shows that treatment with dexamethasone can reduce the

mortality of severe hospitalized cases by up to one third. We acknowledge that the different effects of

an approved drug for treating COVID-19 patients, as described in (i) to (iii) in Section 6.2.1 (Vaccine

and Cure), might lead to different results in terms of optimal policies. Acemoglu et al. (2020) provide

robustness checks by increasing the mortality rate for the senior group and also varying this group’s

per-capita income. By doing so, they conclude that the efficiency gains of targeted policies arise due to

the high vulnerability rather than the low productivity of that group. Hence, effective medical treatments

might soften the distinction between the vulnerable group and the groups with lower mortality risk.
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Figure 6.15: Policy frontier with improved medical treatment.

Efficient frontier in SEIR model with improved medical treatment corresponding to 30% (left) and 50% (right)
lower mortality for the senior group.

Comparing the efficient frontier with improved treatment in Figure 6.15 with that in the baseline setting

in Figure 6.2 illustrates that the economic costs at a given mortality level can be reduced substantially.

At the same time, the distance between the frontiers of targeted and uniform shielding policies becomes

smaller, which is in line with the observation in Acemoglu et al. (2020) that the efficiency gains of tar-

geting accrue due to high vulnerability.8 However, even with a substantially improved medical treatment

that leads to a 50% lower mortality among the senior group, targeted shielding is still associated with

considerable efficiency gains compared to uniform approaches.

8We perform various robustness checks (results omitted) with respect to the income parameters ωj and mortality rates

δds and confirm the conclusions in Acemoglu et al. (2020).
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The Effect of a Vaccine Arriving Early

Since the early phase of the pandemic, governments around the world have encouraged research activities

to develop a vaccine for SARS-CoV-2. In the initial study by Acemoglu et al. (2020) and the settings

considered so far, we make a deterministic assumption that a vaccine arrives in 1.5 years. Figures 6.16 and

6.17 illustrate the optimal uniform and semi-targeted shielding policies if an effective vaccine is available

after one year and after six months, respectively. The results highlight the economic importance of an

effective vaccine being available early because this would substantially reduce the loss in GDP, which in

the baseline scenario decreases by approximately 26% under uniform shielding policies and 13% under

semi-targeted policies if a vaccine becomes available after 1.5 years. If, in contrast, a vaccine becomes

available in one year, the loss under uniform shielding reduces to 18% and 9% under semi-targeted

policies. In the scenario that a vaccine becomes available after six months, these numbers are 8% and

5%, respectively. As a consequence of a shorter period T , the shielding policies are maintained over a

shorter time span, wherease their intensity does not change substantially.
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Figure 6.16: Optimal shielding policy with a vaccine arrival after one year.

Panel (i): Optimal uniform policy. Panel (ii): Optimal semi-targeted policy.

207



CHAPTER 6 6.4. RESULTS AND OPTIMAL POLICIES

(i)

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0
Shielding Policy

y
m
s

Outcomes

Economic Loss  0.1004

Adt. Pop. Fatalities 0.002

Y Fatality Rate 0.0002

M Fatality Rate 0.0012

S Fatality Rate 0.0061

0 50 100 150
0.000

0.025

0.050

0.075

0.100

0.125

0.150
Infection Rates

y
m
s

Vaccine in .5 yr: SF Uniform Policy for  = 0.75 = 2.0 = .9 = 0.375

(ii)

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0
Shielding Policy

y
m
s

Outcomes

Economic Loss  0.0659

Adt. Pop. Fatalities 0.002

Y Fatality Rate 0.0004

M Fatality Rate 0.0025

S Fatality Rate 0.0044

0 50 100 150
0.000

0.025

0.050

0.075

0.100

0.125

0.150
Infection Rates

y
m
s

Vaccine in .5 yr: SF SemiTargeted Policy for  = 0.75 = 2.0 = .9 = 0.375

Figure 6.17: Optimal shielding policy with a vaccine arriving after six months.

Panel (i): Optimal uniform policy. Panel (ii): Optimal semi-targeted policy.
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6.4.3 Implementation of Optimal Policies

The results of the model indicate that it is favorable to protect vulnerable groups, in particular persons

at higher ages, while relieving other groups of the shielding measures. Of course such a policy must

be implemented with a sense of proportion and be supported by accompanying measures to reduce the

burden as much as possible. We propose that implementing such a policy should take into account the

following measures and points:

1. Prioritize the use of masks (N-95/FFP2; surgical masks) and personal protection equipment among

seniors and other individuals with comorbidities. These groups and contact persons (like nurses)

should be equipped with masks that are of high quality.

2. Limit and reduce potential transmissions by decreasing the number of contacts with persons who are

at higher risk, in particular with those who are likely to be exposed to other infectious individuals.

The risk of transmission could be reduced by generally requiring people to cover their nose and

mouth with simple disposable or reusable face masks when interacting with the elderly or other

vulnerable groups, or by reducing the risk of individuals being infectious at the time of the contact,

for example through intensive testing and requiring quarantine or reduced contacts during a defined

period before visits to nursing homes.

3. Set up special shopping and medical consultation hours for the elderly and vulnerable to allow

them to do shopping for daily essentials and attend important medical appointments. This has

been practiced in the U.S., UK and other countries. Also encouraging the use and potentially the

expansion of various home-delivery services could be valuable in this regard.

4. Ensure older people who are still participating in the labor market and other high-risk individuals

are able to work from home easily, for example by providing them with the appropriate equipment,

infrastructure and training.

5. Provide additional benefits and compensation, such as job guarantees and prioritized paid leave,

for employees who behave in a socially responsible way, caring for the elderly or other vulnerable

individuals. For example, health insurers could offer monetary benefits to individuals who commit

themselves to reducing social interactions with others in order to care for individuals at high risk

6. Provide mental health and social support via teleconferencing and other safe means of interac-

tion, particular through online consultation hours and tele-medicine, as well as video-conferencing

systems in nursing homes so that residents can stay in contact with their families.

7. Implement a stay-at-home policy for older people on a voluntary basis. High compliance with this

policy might be achieved through an incentive scheme. Given the right incentives a senior citizen

should follow a stay-at-home policy in his or her own interest.

8. Provide frequent, easy-to-understand and non-contradictory information and communication and

assistance to members of vulnerable groups who live in their own home; also, create incentives for

members of the young and middle age groups to protect the vulnerable members of society.

9. Frequently update shielding policies according to new scientific evidence on the transmission of

SARS-CoV-2 in order to increase the efficiency of such measures, reduce economic costs and achieve

higher compliance with group distancing recommendations.
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6.5 Conclusion

In this paper, we adopt the extended SIR model of Acemoglu et al. (2020) to Germany. Germany differs

from the U.S. both in its socio-demographics and its system of health care coverage and provision. The

model allows for a comparison of the impact of different policies both on survival rates and economic losses,

thus providing policy makers with information to derive optimal policies. We evaluate several scenarios

in a quantitative manner and find that semi-targeted shielding makes it possible to achieve efficiency

gains, which might be used to fund measures that improve the conditions of vulnerable groups, such as

senior citizens and people with comorbidities. Most importantly, we find that the intensity and duration

of shielding policies can be reduced by employing additional measures, such as group distancing, testing

and contact tracing. Indeed, a comprehensive approach that combines these measures and implements

them simultaneously can keep both economic losses and population mortality at a low level − even with

uniform shielding measures. Lastly, we highlight the importance of finding effective medical treatments

and of timely vaccine development.

There are several extensions of our analysis that could be considered in future research. First, the

estimates on contact rates that are used in the baseline setting are based on a study from the UK

and might be re-adjusted to country-specific contact patterns. Additional work could be performed to

provide comparable data for other countries, including Germany and the U.S. Second, the SEIR model

incorporates contact tracing by including a parameter on the probability that a person who was exposed

to an infectious individual is tested and isolated. This approach allowed us to maintain a relatively

concise model structure. A more complex structure might involve separate compartments for exposed and

infectious individuals who are either in quarantine or not in quarantine, allowing the social interactions

between these two groups to be modeled. The model in Grimm et al. (2020) is an example of such

an evolved compartment structure. Moreover, the infectiousness of individuals could be modeled in a

more granular way. Several studies, such as Grimm et al. (2020), distinguish between symptomatic,

asymptomatic and severe cases and allow for transmissions of SARS-CoV-2 by asymptomatic cases.

Alternatively, the SEIR model in Berger et al. (2020) allows for infectiousness of the exposed individuals.

Lastly, as soon as more information is available on whether people develop long-term immunity to SARS-

CoV-2 after infection, this might be used to adapt the SEIR model to a SEIRS structure.
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6.6 Appendix

Additional Results

Reducing the parameter λ rotates the policy frontier to the left, bringing the menu of policy choices

involving high mortality rates closer to the bliss point as illustrated in Figure 6.18, panel (i). Because

targeted policies can reduce the mortality in the adult population effectively, reducing λ has an effect in

particular on the choice of uniform policies.

Relaxing the hard ICU constraint allows lower mortality rates to be achieved at a given level of economic

damage as can be concluded from Figure 6.18, panel (ii). Increasing the bound in the capacity constraint

from H̄(t) = 0.02 to H̄(t) = 0.04 brings the policy frontier closer to the case without binding ICU

constraints. This change can be observed for uniform shielding policies, whereas the impact on targeted

policies is smaller and only observable for the case with a relatively tight constraint H̄(t) = 0.02.

211



CHAPTER 6 6.6. APPENDIX

(i)

0.00 0.01 0.02
Fatalities as Fraction of Adt. Population

0.0

0.1

0.2

0.3

0.4

0.5

P
D

V
 o

f E
co

no
m

ic
 L

os
s 

in
 F

ra
ct

io
ns

 o
f G

D
P

PDV of Economic Loss vs  Fatalities 

Uniform Policy lambda=1
Semi­Targeted Policy lambda=1
Uniform Policy lambda=0.6
Semi­Targeted Policy lambda=0.6

RC lambda: Model Params: = 0.75, = 2, = 1, = 0.8, T = 546

0.00 0.01 0.02
Fatalities as Fraction of Adt. Population

0.0

0.1

0.2

0.3

0.4

0.5

P
D

V
 o

f E
co

no
m

ic
 L

os
s 

in
 F

ra
ct

io
ns

 o
f G

D
P

PDV of Economic Loss vs  Fatalities 

Uniform Policy lambda=1
Semi­Targeted Policy lambda=1
Uniform Policy lambda=0.2
Semi­Targeted Policy lambda=0.2

RC lambda: Model Params: = 0.75, = 2, = 1, = 0.8, T = 546

(ii)

0.00 0.01 0.02
Fatalities as Fraction of Adt. Population

0.0

0.1

0.2

0.3

0.4

0.5

P
D

V
 o

f E
co

no
m

ic
 L

os
s 

in
 F

ra
ct

io
ns

 o
f G

D
P

PDV of Economic Loss vs  Fatalities 

Uniform Policy no ICU
Semi­Targeted Policy no ICU
Uniform Policy ICUx1
Semi­Targeted Policy ICUx1

RC ICU: Model Params: = 0.75, = 2, = 1, = 0.8, T = 546

0.00 0.01 0.02
Fatalities as Fraction of Adt. Population

0.0

0.1

0.2

0.3

0.4

0.5

P
D

V
 o

f E
co

no
m

ic
 L

os
s 

in
 F

ra
ct

io
ns

 o
f G

D
P

PDV of Economic Loss vs  Fatalities 

Uniform Policy no ICU
Semi­Targeted Policy no ICU
Uniform Policy ICUx1.5
Semi­Targeted Policy ICUx1.5

RC ICU: Model Params: = 0.75, = 2, = 1, = 0.8, T = 546

0.00 0.01 0.02
Fatalities as Fraction of Adt. Population

0.0

0.1

0.2

0.3

0.4

0.5

P
D

V
 o

f E
co

no
m

ic
 L

os
s 

in
 F

ra
ct

io
ns

 o
f G

D
P

PDV of Economic Loss vs  Fatalities 

Uniform Policy no ICU
Semi­Targeted Policy no ICU
Uniform Policy ICUx2
Semi­Targeted Policy ICUx2

RC ICU: Model Params: = 0.75, = 2, = 1, = 0.8, T = 546

Figure 6.18: Policy frontiers, variation of the parameter λ and the ICU capacity constraint.

Panel (i): Variation in λ = λ′ in Equation (6.9), with λ′ = 0.6 (left), λ′ = 0.2 (right). The solid line refers to the
case with λ = 1. The dashed lines refer to the policy frontier with the λ = λ′. Panel (ii): Variation of the ICU
constraint. The solid line indicates the optimal policy frontier without a binding ICU constraint. Dashed lines
refer to binding ICU constraints with H̄(t) = 0.02 (left), H̄(t) = 0.03 (center), and H̄(t) = 0.04 (right).
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Figure 6.19: Optimal policy with combination of policy measures, uniform shielding.

Optimal uniform policy with safety focus and comprehensive approach. Panel (i): Improved testing and isolation
for infected (ηI = 0.7) and exposed (ηE = 0.8), reduced contact rates for interactions with the senior group
(ρys = ρms = 0.2). Panel (ii): Improved testing and isolation for infected (ηI = 0.7) and exposed (ηE = 0.8),
reduced contact rates for interactions with the senior group (ρys = ρms = 0.2), and improved conditions for
working from home (π1 = 20%, π2 = 5%, ξ = 0.4.)
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Figure 6.20: Share of uninfected and reproduction rate with combination of policy measures,
uniform shielding.

Share of uninfected (left) and reproduction rate R(t) (right) in the setting with combination of policy measures
(comprehensive approach). Uniform shielding policies. Panel (i): Improved testing and isolation for infected
(ηI = 0.7) and exposed (ηE = 0.8), reduced contact rates for interactions with the senior group (ρys = ρms = 0.2).
Panel (ii): Improved testing and isolation for infected (ηI = 0.7) and exposed (ηE = 0.8), reduced contact rates
for interactions with the senior group (ρys = ρms = 0.2), and improved conditions for working from home
(π1 = 20%, π2 = 5%, ξ = 0.4).
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Figure 6.21: Policy frontiers, combination of improved medical treatment and group distanc-
ing.

Combination of group distancing and decreasd mortality of the elderly by 50% due to improved medical treatment.
Efficient frontier with uniform distancing policy (left) and distancing targeted towards the vulnerable (right).
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Figure 6.22: Optimal policy, combination of improved medical treamtent and uniform group
distancing policy.

Combination of a uniform group distancing policy (reduction of all elements in ρ by 40%) and improved medical
treamtent (50% lower mortality rate for the senior group). Panel (i): Optimal semi-targeted shielding policy.
Panel (ii): Optimal semi-targeted shielding policy.
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Figure 6.23: Optimal policy, combination of improved medical treamtent and group distancing
towards the vulnerable.

Combination of group distancing towards the vulnerable (reduction of contact rates ρys, ρms by 50%) and improved
medical treatment (50% lower mortality rate for the senior group). Panel (i): Optimal uniform policy. Panel (ii):
Optimal semi-targeted policy
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Chapter 7

Conclusive Summary

The first four papers presented in this doctoral thesis provide implementations and empirical applications

of the double machine learning framework. Chapter 2 provides an introduction to double machine learning

as implemented in the R package and its python twin. The survey and the examples provided in Chapter

3 illustrate how valid simultaneous inference can be performed in high-dimensional settings. The study

presented in Chapter 4 provides an estimation framework for valid inference in high-dimensional additive

models. An analysis of a heterogeneous gender wage gap for full-time and year-round employees in

the U.S. is presented in Chapter 5. Chapter 6 presents a framework for optimal shielding policies in a

pandemic.

Each of the presented studies can be extended in future work. For example, by providing a flexible and

easily extendable implementation of the double machine learning framework in Chapter 2, we hope to

encourage empirical researchers and practitioners to use machine learning based methods for estimation

of causal effects. Whereas the theoretical framework has been established in a sequence of papers, for

example Belloni et al. (2014c) and Chernozhukov et al. (2018a), many practical questions still remain

unanswered. Future studies might assess the role of important ingredients of the double machine learning

estimators in empirical applications such as the sample splitting schedules, possible reweighting and

refinement of the estimators and optimal tuning rules for the machine learning methods. Moreover, the

set of causal models being implemented can be extended in the future. Regarding the inference procedure

considered in Chapter 4, the considered class of models my be further generalized, for example, by relaxing

the assumption of additivity. The gender wage gap analysis in Chapter 5 may be extended in various

regards. For example, it may be interesting to consider a broader sample definition, covering the group

of part-time employees, which plays an important role in gender inequality in earnings. Furthermore, the

heterogeneity analysis might be translated to other important topics in economics such as labor market

participation or returns to schooling. Finally, the framework considered in Chapter 6 may be extended in

terms of the crucial model ingredients. For example, the contact patterns may be endogenized and, hence,

made dependent on the current and past numbers of infections. Similarly, the detection technologies may

depend on the number of infections. A more general extension would be to use the modeling approach

that balances economic and public health costs to the optimal distribution of a vaccine.
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A.2 Short Summary of Papers Pursuant to §6(6) PromO

Short summary in English language

DoubleML - An Object-Oriented Implementation of Double Machine Learning in R (Chap-

ter 2)

The R package DoubleML implements the double/debiased machine learning framework of Chernozhukov

et al. (2018). It provides functionalities to estimate parameters in causal models based on machine

learning methods. The double machine learning framework consist of three key ingredients: Neyman

orthogonality, high-quality machine learning estimation and sample splitting. Estimation of nuisance

components can be performed by various state-of-the-art machine learning methods that are available

in the mlr3 ecosystem. DoubleML makes it possible to perform inference in a variety of causal models,

including partially linear and interactive regression models and their extensions to instrumental variable

estimation. The object-oriented implementation of DoubleML enables a high flexibility for the model

specification and makes it easily extendable. This paper serves as an introduction to the double machine

learning framework and the R package DoubleML. In reproducible code examples with simulated and real

data sets, we demonstrate how DoubleML users can perform valid inference based on machine learning

methods.

Valid Simultaneous Inference in High-Dimensional Settings with the hdm Package for R

(Chapter 3)

Due to the increasing availability of high-dimensional empirical applications, researchers and practic-

tioners across all disciplines frequently encounter situations where they have to test many hypotheses at

the same time. Addressing multiple testing issues and methodological shortcomings of classical linear

regression becomes essential to obtain reliable results. This paper provides a selective review of methods

to perform simultaneous inference in high-dimensional settings. It does so by summarizing inferential

approaches based on regularized estimation in combination with classical methods to correct for multiple

testing. Moreover, we conduct a simulation study to compare the methods in a high-dimensional setting.

Finally, we illustrate how the R package hdm can be used to perform valid simultaneous inference in a

replicable real-data example in the context of the gender wage gap.

Uniform Inference in High-Dimensional Additive Models (Chapter 4)

We develop a method for uniformly valid confidence bands of a nonparametric component f1 in the

additive model Y = f1(X1) + . . .+ fp(Xp) + ε in a high-dimensional setting. We employ sieve estimation

and embed it in a high-dimensional Z-estimation framework that allows us to construct uniformly valid

confidence bands for the first component f1. Our study extends the existing results for inference in high-

dimensional additive models and clarifies the required assumptions. In a setting where the number of

regressors p may increase with the sample size, a sparsity assumption is critical for our analysis. Moreover,

we run simulation studies that show that our proposed method delivers reliable results concerning the

estimation and coverage properties even in small samples. Finally, we illustrate our procedure in an

empirical application demonstrating the implementation and the use of the proposed method in practice.

Heterogeneity in the U.S. Gender Wage Gap (Chapter 5)

As a measure of gender inequality, the gender wage gap has come to play an important role both in

academic research and the public debate. In 2016, the majority of full-time employed women in the

U.S. earned significantly less than comparable men. The extent to which women were affected by gender
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inequality in earnings, however, depended greatly on socio-economic characteristics, such as marital status

or educational attainment. In this paper, we analyze data from the 2016 American Community Survey

using a high-dimensional wage regression and applying double lasso to quantify heterogeneity in the

gender wage gap. We find that the wage gap varied substantially across women and that the magnitude

of the gap varied primarily by marital status, having children at home, race, occupation, industry, and

educational attainment. We recommend that policy makers use these insights to design policies that will

reduce discrimination and unequal pay more effectively.

Insights from Optimal Pandemic Shielding in a Multi-Group SEIR Framework (Chapter 6)

The COVID-19 pandemic constitutes one of the largest threats in recent decades to the health and

economic welfare of populations globally. In this paper, we analyze different types of policy measures

designed to fight the spread of the virus and minimize economic losses. Our analysis builds on a multi-

group SEIR model, which extends the multi-group SIR model introduced by Acemoglu et al. (2020).

We adjust the underlying social interaction patterns and consider an extended set of policy measures.

The model is calibrated for Germany. Despite the trade-off between COVID-19 prevention and economic

activity that is inherent to shielding policies, our results show that efficiency gains can be achieved by

targeting such policies towards different age groups. Alternative policies such as physical distancing

can be employed to reduce the degree of targeting and the intensity and duration of shielding. Our

results show that a comprehensive approach that combines multiple policy measures simultaneously can

effectively mitigate population mortality and economic harm.
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Kurzzusammenfassung in deutscher Sprache

DoubleML - Eine objekt-orientierte Implementierung des Double Machine Learning

Ansatzes in R (Kapitel 2)

Das R-Paket DoubleML ist eine Implementierung des Double/Debiased Machine Learning Ansatzes von

Chernozhukov et al. (2018). Es bietet Funktionalitäten zur Schätzung struktureller Parameter in kausalen

Modellen basierend auf Methoden des maschinellen Lernens. Das Double Machine Learning Frame-

work besitzt drei wesentliche Bestandteile: Neyman-Orthogonalität, hochqualitative Schätzung mittels

Maschinellen Lernens und Sample Splitting. Die Schätzung der Nuisance-Komponenten kann mit zahlre-

ichen state-of-the-art Methoden des Maschinellen Lernens durchgeführt werden, die im mlr3 Ökosys-

tem verfügbar sind. DoubleML ermöglicht die Durchführung von Inferenz in einer Vielzahl kausaler

Modelle, einschließlich des partiell-linearen und des interaktiven Regressionsmodells, sowie deren Er-

weiterungen zur Schätzung mit Instrumentenvariablen. Die objekt-orientierte Implementierung von

DoubleML ermöglicht eine hohe Flexibilität hinsichtlich der Modellspezifikation und erleichtert zusätzliche

Erweiterungen. Diese Studie bietet eine Einführung in das Double Machine Learning Framework und das

R Paket DoubleML. In reproduzierbaren Code-Beispielen mit realen und simulierten Daten wird veran-

schaulicht, wie Benutzer von DoubleML valide Inferenz auf Basis von Methoden des Maschinellen Lernens

durchführen können.

Valide simultane Inferenz in hochdimensionalen Modellen mit dem R-Paket hdm (Kapitel

3)

Aufgrund der zunehmenden Verfügbarkeit hochdimensionaler empirischer Anwendungen, sehen sich

Forscher und Anwender sämtlicher Disziplinen immer häufiger mit Situationen konfrontiert, in denen

gleichzeitig eine Vielzahl an Hypothesen getestet werden muss. Die Berücksichtigung simultaner

Inferenz, sowie Grenzen klassischer linearer Regressionsverfahren gewinnt zunehmend an Bedeutung,

um belastbare Ergebnisse zu erhalten. Die vorliegende Studie bietet eine selektive Literaturübersicht zu

Methoden simultaner Inferenz in hochdimensionalen Modellen. Dabei werden Inferenzansätze, welche auf

Regularisierungsmethoden basieren, sowie klassische Korrekturverfahren für mutliples Testen vorgestellt.

Darüber hinaus wird im Rahmen einer Simulationsstudie die Performanz der vorgestellten Methoden

miteinander verglichen. Abschließend wird in der Arbeit vorgestellt, inwiefern das R-Paket hdm dazu

verwendet werden kann, um Methoden für valide simultane Inferenz zu verwenden. Die Verwendung

dieser Methoden wird in einem realen Datenbeispiel veranschaulicht.

Gleichmäßige Inferenz in hochdimensionalen additiven Modellen (Kapitel 4)

Wir entwickeln eine Methode für gleichmäßig valide Konfidenzbänder für eine nichtparametrische Kom-

ponente f1 in einem hochdimensionalen additiven Modell der Form Y = f1(X1) + . . . + fp(Xp) + ε.

Dafür verwenden wir Sieve-Schätzung und binden diese in eine hochdimensionale Z-Schätungsumgebung

ein, um gleichmäßig valide Konfidenzbänder für die Komponente f1 zu konstruieren. Unsere Studie er-

weitert bestehende Ergebnisse für Inferenz in hochdimensionalen additiven Modellen und erläutert die

zugrundeliegenden Annahmen. In einer Situation, in der die Anzahl an Regressoren p mit dem Stich-

probenumfang steigen kann, kommt einer Sparsity-Annahme eine zentrale Bedeutung zu. In einer Sim-

ulationsstudie wird gezeigt, dass das vorgeschlagene Schätzverfahren belastbare Ergebnisse in endlichen,

sowie in kleinen Stichproben liefert. Abschließend veranschaulichen wir unser Verfahren anhand einer

empirischen Anwendung, die die Implementierung und Anwendung der vorgeschlagenen Methode in der

Praxis demonstriert.
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Heterogenität im Gender Pay Gap in den USA (Kapitel 5)

Als ein Maß für geschlechtsspezifische Ungleichheit spielt der Gender Pay Gap eine wichtige Rolle - sowohl

in der akademischen Forschung als auch in der öffentlichen Debatte. Im Jahr 2016 verdiente die Mehrheit

der vollzeitbeschäftigten Frauen in den USA signifikant weniger als vergleichbare Männer. Das Ausmaß, in

dem Frauen von geschlechtsspezifischen Lohnungleichheit betroffen sind, hängt dabei zu einem großen Teil

von sozioökonomischen Charakteristika ab, zum Beispiel von Familienstand oder Bildungshintergrund.

In dieser Studie analysieren wir Daten des 2016 American Community Survey, um Heterogentität im

Gender Pay Gap zu quantifizieren. Dazu wird eine hochdimensionale Lohnregression mithilfe des Double-

Lasso-Schätzers geschätzt. Unsere Ergebnisse deuten darauf hin, dass der Gender Pay Gap deutlich von

Frau zu Frau variiert und vor allem davon bestimmt wird, in welchen Familienstand eine Frau lebt, ob sie

gemeinsam mit Kindern im Haushalt wohnt, welcher Ethnie sie angehört, in welchem Beruf oder in welcher

Industrie sie arbeitet, sowie von ihrem Bildungshintergrund. We empfehlen Entscheidungsträgern in der

Politik, diese Erkenntnisse zu berücksichtigen, um Politikmaßnahmen abzuleiten, die Diskriminierung

und Lohnungleichheit effektiv reduzieren.

Erkenntnisse aus optimalen Shielding-Maßnahmen während einer Pandemie in einem Multi-

Gruppen SEIR Modell (Kapitel 6)

Die COVID-19 Pandemie stellt eine der größten Herausforderungen für die Gesundheit und den Wohlstand

der weltweiten Bevölkerung in den vergangenen Jahren dar. In dieser Studie analysieren wir verschiedene

Politikmaßnahmen, die die Verbreitung des Virus eindämmen und die ökonomischen Folgeschäden min-

imieren. Unsere Analyse basiert auf einem Multi-Gruppen SEIR Modell, welches eine Erweiterung zu

einem kürzlich entwickelten SIR-Modell in Acemoglu et al. (2020) darstellt. Wir nehmen Anpassun-

gen hinsichtlich der zugrundeliegenden sozialen Interaktionsmuster vor und betrachten eine erweiterte

Auswahl an betrachteten Politikmaßnahmen. Die Kalibrierung des Modells bezieht sich auf Deutschland.

Trotz des Zielkonflikts, der Shielding-Maßnanhmen zu eigen ist und welcher zwischen der Prävention neuer

COVID-19 Fälle und gleichzeitig entstehender ökonomischer Schäden besteht, können Effiziengewinne

erreicht werden. Diese sind möglich, wenn sich Shielding-Maßnahmen differenziert an unterschiedliche

Altersgruppen richten. Alternative Politikmaßnahmen wie zum Beispiel Physical Distancing können dazu

beitragen, dass das Ausmaß der Unterscheidung nach Altersgruppen reduziert wird. Unsere Ergebnisse

zeigen zudem, dass ein kombinierter Ansatz, der verschiedene Maßnahmen miteinander verbindet, dazu

beitragen kann, die Mortalität in der Gesamtbevölkerung bei gleichzeitig niedrigeren ökonomischen Ein-

bußen zu begrenzen.
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