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Abstract

We introduce the notion of γ-symmetrized cointegrals for a finite-dimensional
pivotal quasi-Hopf algebra H over a field k, where γ is the modulus of H. In
case H is unimodular and k is algebraically closed, we give explicit bijections
relating them to non-degenerate left and right modified traces on the tensor ideal
of projective H-modules in the (finite tensor) category of finite-dimensional left
H-modules, generalizing previous Hopf-algebraic results from [BBGa].
Then we introduce monadic cointegrals in (pivotal) finite tensor categories. For
a pivotal finite tensor category C, four versions A1, ..., A4 of the so-called central
Hopf monad exist. A monadic cointegral for Ai is a morphism of Ai-modules
1 → Ai (D), where D is the distinguished invertible object of C; we relate them
to Shimizu’s categorical cointegral [Sh4], and in the braided case to the integral of
Lyubashenko’s Hopf algebra

∫X∈C X∨ ⊗X [Ly1]. If C is the category of modules
over a pivotal Hopf algebra H, then one easily sees that the four monadic coin-
tegrals are given by four notions of cointegrals for H, including γ-symmetrized
cointegrals. We show that this relation, up to non-trivial isomorphisms, remains
true if H is a quasi-Hopf algebra, i.e. we relate the cointegrals of Hausser and
Nill [HN2] and the γ-symmetrized cointegrals above to monadic cointegrals for
the category of H-modules.
Finally, for a modular tensor category C, we concern ourselves with the projective
SL(2,Z)-actions (on certain Hom-spaces in C) constructed by Lyubashenko [Ly2].
In the case that C is the category of modules over a factorizable ribbon quasi-Hopf
algebra H, we derive a simple expression for the action of the S and T -generators
on the center of H using the monadic cointegral. Let now H be the quasi-
Hopf algebra modification of the restricted quantum group of sl2 at a primitive
2pth root of unity as defined in [CGR], for an integer p ≥ 2. We show that
Lyubashenko’s action on the center of H agrees projectively with the SL(2,Z)-
action on the center of the (original) restricted quantum group, as constructed
in [FGST1].
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Introduction

“Spinning, twisting, circling on.”
— Spiral Architect

Fix an algebraically closed field k; all linear structures are over it.
In this thesis we will first describe modified traces for quasi-Hopf algebras explicitly, and
then define, for general (pivotal) finite tensor categories, the notion of monadic cointegrals,
which we also specialize to quasi-Hopf algebras. These words will be explained in due
course within this introduction. One major motivation for carrying out this research is
the application to non-semisimple (generalizations of) topological field theories (TFTs).
While TFTs themselves do not appear much in this thesis, let us nonetheless recall some
of their basic aspects, and explain where our main objects of interest appear.
A 3-dimensional topological field theory, or 3d TFT for short, is a symmetric monoidal
functor from a category of 3-dimensional cobordisms to the category of vector spaces. Let
us explain what this means. By a category of 3d cobordisms we mean a category Cob
whose objects are closed oriented surfaces, possibly with extra structure, and a morphism
between such surfaces is a cobordism between them, possibly equipped with extra structure
in a suitable sense. The operation of disjoint union is easily seen to equip Cob with the
structure of a symmetric monoidal category. Thus a 3d TFT sends surfaces to vector
spaces, and cobordisms to linear maps between the respective vector spaces; lastly, the
words ‘symmetric monoidal’ mean that this assignment is compatible with the symmetric
monoidal structures on both sides.

In [RT], Reshetikhin and Turaev first constructed a 3d TFT from the input datum
of a certain (non-semisimple) Hopf algebra satisfying some conditions. The construction
involves passing to a certain semisimple quotient of the category of representations of the
input Hopf algebra. This quotient category has the structure of what is now called a mod-
ular fusion category—a notion we will presently explain—and Turaev [Tu] subsequently
gave a construction of a 3d TFT, taking as input any modular fusion category C. This
construction is commonly referred to as the RT-construction. Here, the extra structure
on Cob is given by certain (possibly empty) decorations of manifolds with objects and
morphisms from C. The rough idea is to represent 3-manifolds as framed links via the
famous Lickorish-Wallace theorem, evaluate the links via certain canonical data of the
category C, and show that this can be extended to a TFT. The evaluation procedure uses
the so-called Kirby color to decorate components of the surgery link, only to then apply
the categorical trace to evaluate the closed string diagram as a number.

vii



viii Introduction

Let us now briefly explain what a modular fusion category is, starting more generally
with the notion of a modular tensor category (for more details see Chapter 1). This is, first
of all, a finite tensor category, i.e. a linear abelian category C which is equivalent to the
category of finite-dimensional modules over a finite-dimensional algebra, and which is fur-
ther equipped with a monoidal structure compatible with the linear structure. Moreover,
it has a braiding and a ribbon twist. Finally, the braiding has to satisfy a certain non-
degeneracy condition called factorizability, see e.g. [Sh3]. If C is in addition semisimple,
then it is called a modular fusion category.

Naturally, one would like to generalize the RT-construction to any (not necessarily
semisimple) modular tensor category. At first, Hennings [He] managed to construct in-
variants of 3-manifolds from certain non-semisimple Hopf algebras without using some
semisimplification procedure. Lyubashenko generalized Hennings approach to modular
tensor categories, using the coend L =

∫X∈C X∨ ⊗ X, and realizing that its integral
Λ : 1 → L serves as a non-semisimple generalization of the Kirby color in the definition
of non-semisimple invariants of 3-manifolds [Ly2].

However, it was not possible to directly use this to define 3d TFTs. The main reason,
as we recall in Proposition 1.2.2, is that for non-semisimple categories the categorical
trace vanishes on the class of projective objects. As a consequence, a 3d TFT directly
extending Lyubashenko’s manifold invariant would assign the 0-dimensional vector space
to the 2-sphere, whence the TFT would be trivial [Ke].

To overcome this, the notion of modified trace was introduced in [GPV, GKP1]. It
provides a generalization of the categorical trace, now only defined on (endomorphisms
of) projective objects, and often having very nice non-degeneracy conditions [GKP3, GR3].
More details follow below, but let us mention here that

• the modified trace, and

• the integral of L

play an indispensable role in the construction of a generalization of the RT-construction,
taking as input any modular tensor category. The construction was pioneered for Hopf
algebras in [DGP], and formulated for general modular tensor categories in [DGGPR]. The
cobordism category here does not allow for arbitrary undecorated 3-manifolds, unlike the
category used in the RT-construction. Instead, members of a certain subset of cobordisms
(including all closed ones) have to be equipped with a ribbon graph with at least one edge
colored by a projective object in C, so that one can use the modified trace in the evaluation
of the resulting graph. We refer to [DGGPR] for details.

In this thesis, we will investigate modified traces for quasi-Hopf algebras, and define
and study the notion of monadic cointegrals for finite tensor categories, again specializing
to quasi-Hopf algebras. This is interesting for the following reasons. We will see that
monadic cointegrals, in the case of pivotal (quasi-)Hopf algebras, provide a uniform setting
for both the integral of L and the modified trace—the two main ingredients in the non-
semisimple generalization of the RT-construction in [DGGPR]. Thus one could hope that
there is some interesting intrinsic relation between Lyubashenko’s integral and the modified
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trace, which are both known to exist in a modular tensor category. Furthermore, this is
potentially interesting from the viewpoint of quasi-Hopf algebras, because the new notion
of cointegrals, coming from monadic cointegrals, may be easier to use than the conventional
one of [HN2, BC1, BC2]. Finally, several important examples of modular tensor categories
arise from factorizable ribbon quasi-Hopf algebras that are (conjecturally) related to some
fundamental examples of logarithmic conformal field theories, see [GR1, FGR2, CGR,
GLO, Ne].

We will now explain the setting and the results of the thesis at hand in more detail.

Modified traces for quasi-Hopf algebras
Let us first describe modified traces and our results more explicitly. Here we will only talk
about right modified traces. An analogous statement for the left version is given in the
main text.

Let C be a pivotal finite tensor category, i.e. a finite tensor category together with a
fixed monoidal natural isomorphism between left and right duals. Denote by Proj(C) the
full subcategory of C consisting of projective objects. In the present context, by a modified
trace (on Proj(C)), we mean a family of linear maps

{tP : EndC(P )→ k}P∈Proj(C) ,

satisfying certain natural conditions, namely cyclicity and compatibility with the cate-
gorical trace, see Section 1.2.2. The latter compatibility conditions ensures that certain
invariants of framed links defined using the modified trace are well-defined. By [BBGa,
Lem. 3.2], the family t• is completely and uniquely determined by its value on a projec-
tive generator G of C. We therefore say that a linear map t : EndC(G) → k extends to a
modified trace if there is a modified trace t• such that t = tG. Given a modified trace, one
immediately gets pairings of Hom-spaces C(M,P )× C(P,M)→ k, (g, f) 7→ tP (gf) for all
projective objects P and all objects M ∈ C. The modified trace t• is called non-degenerate
iff all of these pairings are non-degenerate, and it is known that a non-degenerate modified
trace exists if C is unimodular [GKP3]. Note that these non-degenerate pairings are in gen-
eral quite different from those induced by the categorical trace: the latter are identically
zero whenever one of the objects involved is projective, unless the category is semisimple;
we recall this fact in Proposition 1.2.2.

Let now H be a finite-dimensional quasi-Hopf algebra. Thus, H is an algebra equipped
with a counit ε and a comultiplication ∆ that is coassociative up to conjugation with an
invertible element Φ ∈ H⊗3. Moreover, it admits an antipode S, and evaluation and
coevaluation elements α,β ∈ H. These data have to satisfy some axioms, for which we
refer to Chapter 2. It is well-known that H admits left and right (co)integrals [HN2]. A
right cointegral is an element λ ∈ H∗, which is, up to scalar, uniquely determined by a
certain linear equation (we will soon discuss this in a bit more detail for Hopf algebras
in the context of monadic cointegrals). A left integral is an element Λl ∈ H such that
hΛl = ε(h)Λl, for all h ∈ H, and right integrals are defined similarly. Moreover, there is
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an algebra map γ ∈ H∗, called the modulus of H, which encodes the difference between
left and right integrals.

Suppose now that (H, g) is a unimodular pivotal quasi-Hopf algebra. Unimodularity
means that γ = ε, while pivotality means that g ∈ H satisfies some axioms which can
be found in Section 2.2.1. We denote by HM the category of finite-dimensional left H-
modules—this is a pivotal finite tensor category, and the pivotal structure is governed by
g. For a linear form λ ∈ H∗, define λ̂ ∈ H∗ by λ̂(h) = λ(gh) for h ∈ H. In Corollary 3.1.5,
we show that λ is a right cointegral if and only if

(λ̂⊗ g)
(
qR∆(h)pR

)
= λ̂(h)1 (1)

holds, for all h ∈ H. Here, 1 ∈ H is the unit of H, and qR, pR ∈ H ⊗ H are elements
that are ubiquitous when dealing with quasi-Hopf algebras, see Section 2.1.6 for their
definitions. We remark that, in fact, we prove a stronger version, Lemma 3.1.1, of this
statement in the non-unimodular case, and the above is then simply the specialization to
the unimodular case. A solution λ̂ to (1) automatically induces a symmetric bilinear form
on H. We therefore call λ̂ a right symmetrized cointegral.

The aim now is to relate this to modified traces. The canonical choice of projective
generator for HM is the regular module H, and thus a modified trace is completely
determined by an element of H∗ ∼= (EndH(H))∗, subject to some conditions. Our first
main result, Theorem 3.2.5 (1), says that we do not lose generality by requiring H to be
unimodular:

Theorem 1. Let H be a finite-dimensional pivotal quasi-Hopf algebra over k. Then a
non-degenerate right modified trace on Proj(HM) exists iff H is unimodular.

In Theorem 3.2.5 (2) and (3), we then obtain

Theorem 2. Let H be as in Theorem 1 and unimodular. Then λ ∈ H∗ is a right cointegral
if, and only if, the linear map

EndH(H)→ k, f 7→ λ̂
(
f(1)

)
extends to a right modified trace on Proj(HM).

This in particular states that, in the unimodular case, such modified traces exist
and are unique (up to scalar). Moreover, since a non-zero right cointegral provides a
non-degenerate form on H, it immediately gives that non-zero right modified traces on
Proj(HM) are non-degenerate.

Theorem 2 generalizes results on modified traces for Hopf algebras from [BBGa],
and the proofs are essentially step-by-step generalizations of the corresponding proofs
in [BBGa], although markedly more delicate because of the quasi-Hopf data involved. As
mentioned before, the linear form λ̂ from Theorem 2 is symmetric. Therefore the main
point in the proof will be to show that the partial trace condition (i.e. the sensible compat-
ibility condition between modified trace and categorical trace) boils down and is equivalent
to (1), the equation defining the symmetrized right cointegral up to scalar.
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We remark that the notion of a modified trace, and also the theorems above, do not
require k to be algebraically closed; however, because it fits in better with our conventions
for finite tensor categories, we prefer to keep k algebraically closed throughout.

Finally, we compute the modified trace in an example. In [FGR2], the family Q(N, β)
of symplectic fermion quasi-Hopf algebras was introduced, where N ∈ N>0 and β ∈ C
satisfy β4 = (−1)N . These are all non-semisimple factorizable ribbon quasi-Hopf algebras
over C, and in particular C = Q(N,β)M is an example of a non-semisimple modular tensor
category. In Section 3.3, we explicitly compute the left and right cointegral of Q(N, β), as
well as the corresponding left and right modified trace on projective modules. Note that
our result agrees with the computation of the modified trace in [GR3, Sec. 9], which was
carried out using a different method. We remark that the method investigated in this part
of this thesis seems to lend itself more readily to computations.

Monadic cointegrals (for quasi-Hopf algebras)
We now go more in depth on our definition of and results on monadic cointegrals, adhering
mostly to the general outline of Chapter 4.

Monadic cointegrals. Let us begin by considering something easier than a quasi-Hopf
algebra, namely a (finite-dimensional) Hopf algebra—i.e. a quasi-Hopf algebra H with
Φ = 1⊗3 and α = 1 = β. As mentioned above, H possesses left and right cointegrals.
These are elements λ ∈ H∗ which satisfy, for all h ∈ H,

2) (λ⊗ id) ◦∆(h) = λ(h)1 (right cointegral) ,
3) (id⊗λ) ◦∆(h) = λ(h)1 (left cointegral) .

The unusual numbering will be explained below.
In the coassociative case, a pivot (as mentioned above) for H is simply a grouplike

element g satisfying S2(h) = ghg−1 for all h ∈ H. Recall that γ ∈ H∗, the modulus,
was a certain algebra morphism encoding the difference between left and right integrals.
Given now a pivotal Hopf algebra H with pivot g, one can introduce two more notions of
cointegrals, so-called left and right γ-symmetrized cointegrals [BBGa, FOG]. The defining
equation for λ ∈ H∗ to be a left/right γ-symmetrized cointegral is

1) (λ⊗ id) ◦∆(h) = λ(h)g−1 (right γ-symmetrized cointegral) ,
4) (id⊗λ) ◦∆(h) = λ(h)g (left γ-symmetrized cointegral) .

The first of these equations is the specialization of the right symmetrized cointegral equa-
tion (1) to a Hopf algebra. Note that for Hopf algebras, the equation defining e.g. a right
γ-symmetrized integral is in fact the same in the unimodular and the non-unimodular
case—this is not true for quasi-Hopf algebras. We will see in Proposition 3.1.3 that a
right γ-symmetrized cointegral λ satisfies λ(ab) = γ(b(1))λ(b(2)a), for all a, b ∈ H. Here
we used sumless Sweedler notation to express ∆(b) = b(1) ⊗ b(2), see Notation 2.1.1. Thus
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λ is symmetric up to something involving γ, explaining the name. We remark that γ-
symmetrized cointegrals are an example of g-cointegrals for a group-like g as introduced
in [Ra1].

As above, HM is a finite tensor category in the sense of [EGNO]. It is even pivotal
iff H is pivotal, see also [AAGTV]. A natural question is now: Can we describe the
two (or four in the pivotal case) notions of cointegrals from above only in terms of the
representation category HM, and can we do it in such a way that it readily generalizes to
arbitrary (pivotal) finite tensor categories C? The answer to this is ‘yes’, and it has been
done for left cointegrals in [Sh4], using the language of Hopf comonads in C. The main
results of the second part of this thesis will concern the other (three) notions of cointegrals
in the more general setting of (pivotal) quasi-Hopf algebras. Instead of working with Hopf
comonads like [Sh4], we will use the dual notion of Hopf monads.

Hopf monads on a rigid monoidal category C were introduced in [BV1]. Recall first
that a monad M on C is a monoid in the category of endofunctors of C, which is monoidal
under composition. A Hopf monad is a monad M on C, together with the following extra
data: firstly, the functor M is lax comonoidal, i.e. there are morphisms

(comultiplication) M(X ⊗ Y )→M(X)⊗M(Y ) , natural in X, Y ,

(counit) M(1)→ 1 ,

satisfying certain natural conditions; moreover, the multiplication and the unit of the
monad M are required to be comonoidal as well. Finally, M has (unique) left and right
antipodes, again given by certain natural transformations, see Section 1.2.4 for details.
A module over a monad M is an object V ∈ C together with an action M(V ) → V of
the monad. For a Hopf monad, the category CM of M -modules is again a rigid monoidal
category [BV1], hence the name. A simple example of a Hopf monad on Vect is given by
tensoring with a (finite-dimensional) Hopf algebra.

Let now C be a finite tensor category. The four monads we are interested in are all
given in terms of coends:

A1 (V ) =
∫ X∈C

∨X ⊗ (V ⊗X) , A2 (V ) =
∫ X∈C

X∨ ⊗ (V ⊗X) ,

A3 (V ) =
∫ X∈C

(X ⊗ V )⊗ ∨X , A4 (V ) =
∫ X∈C

(X ⊗ V )⊗X∨ .

Here ∨X denotes the right dual and X∨ the left dual of an object X ∈ C (see Chapter 1
below for our conventions on rigid categories). Since C is finite, these coends exist, see e.g.
Proposition 1.2.6. Note that the index i on Ai is meant to suggest the “position” of the
duality symbol ∨.

The above coends extend to endofunctors on C, and it turns out that A2 and A3 are
Hopf monads [BV2, Sec. 5.4], called central monads. These are isomorphic as Hopf monads.
In Proposition 4.1.2, we prove that, for C pivotal, the functors A1 and A4 are Hopf monads
as well, and moreover that all Ai are canonically isomorphic as Hopf monads. From now
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on it should be understood that, whenever we speak about A1 and A4, we assume that C
is pivotal.

Now we come to the main definition of the second part of this thesis, namely the four
types of monadic cointegrals. The monoidal unit 1 ∈ C carries a natural Ai-action via the
counit of the Hopf monad; this is the trivial module. Moreover, for any object V ∈ C, the
object Ai (V ) is canonically equipped with the free Ai-module structure induced by the
multiplication of Ai. Let D be the distinguished invertible object of C, see Section 1.1.3.
Then a monadic cointegral for Ai is a morphism λi : 1 → Ai (D) of Ai-modules from the
trivial module to the free module on D. Thus λi is a morphism in C such that

Ai (1) A2
i (D)

1 Ai (D)

Ai(λi)

εi µi(D)

λi

(2)

commutes, where εi and µi denote the counit and multiplication of Ai, respectively.
We remark that if C is unimodular (i.e. if D ∼= 1), then this definition of a cointegral

for a Hopf monad actually first appeared in [BV1, Sec. 6.3].
In Corollary 4.1.11 we show that a monadic cointegral for A2 is related to the “cat-

egorical cointegral” of [Sh4] via an isomorphism. This in fact is a piece of the proof of
our first major result of this part, concerning existence and uniqueness of all four types of
monadic cointegrals (see Proposition 4.1.8).

Theorem 3. For a finite tensor category C, non-zero monadic cointegrals for A2, A3 (and
for A1, A4 if C is pivotal) exist and are unique up to scalar multiples.

To prove this, we exploit the fact that the central Hopf monad A2 is left adjoint
to the central Hopf comonad Z4 used in [Sh4], which induces an isomorphism between
the rigid categories of A2-modules and Z4-comodules; this implies the isomorphism in
Corollary 4.1.11. The claim then follows from the existence and uniqueness statement
in [Sh4], and the fact that all four Hopf monads are isomorphic as Hopf monads.

One might now object that it is not useful to keep all four versions of the central Hopf
monads and all four versions of the respective cointegrals—we have, after all, just proved
that they are all equivalent. However, there is the following good reason for doing so.
Let H be a finite-dimensional Hopf algebra, and C = HM. The distinguished invertible
object D in HM is the one-dimensional module with action given by the algebra morphism
γ−1 = γ ◦ S ∈ H∗, where γ is the modulus of H. Each Hopf monad Ai has a particularly
natural realization in C, see Example 4.1.4 (again, whenever i = 1, 4, we require H be
in addition pivotal). It turns out that Ai (D) = H∗ as a vector space, and a monadic
cointegral for Ai may therefore be thought of as an element of H∗, intertwining certain
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H-actions and making the diagram in (2) commute. One finds that

λ is a mon. coint. for


A1

A2

A3

A4

⇔ λ is a


right γ-sym.
right
left
left γ-sym.

coint. for H , (3)

explaining the numbering at the beginning of this section. This is more explicitly studied
in Example 4.1.7.

Thus, keeping all four variants of Ai explicitly showcases a unified treatment of the
four notions of cointegrals for Hopf algebras, while from the isomorphism between the dif-
ferent Hopf monads we get an isomorphism between the corresponding spaces of monadic
cointegrals, and hence between the spaces of cointegrals.

The quasi-coassociative case. Let now H be a finite-dimensional quasi-Hopf alge-
bra. As in the coassociative case, Ai (D) = H∗ as vector spaces, see Appendix A for a
proof. More generally, our realizations of Ai (V ) for any H-module V can be found in
Section 4.2.1. From this, one can describe the different monadic cointegrals for H via
equations involving the quasi-Hopf data: one equation from the intertwining condition,
and one equation from (2). We remark that for Hopf algebras, the latter implies the
former, while the analogous statement for quasi-Hopf algebras remains to be shown.

The main result of this part of the thesis is the generalization of the relations in (3)
to quasi-Hopf algebras, i.e. the precise relation between the four kinds of monadic cointe-
grals and the four types of cointegrals for quasi-Hopf algebras – left and right cointegrals
from [HN2], and the γ-symmetrized versions introduced in Chapter 3, see also [SS].

Theorem 4. We have the bijections from the various types of cointegrals λ ∈ H∗ for the
finite-dimensional quasi-Hopf algebra H to the corresponding types of monadic cointegrals
in HM as shown in Table 1.

This is the content of Theorems 4.3.1 and 4.3.3. We prove the relation for right
cointegrals explicitly, a major step will be relating a comonad on the category of H⊗Hop-
modules—which is used in the definition of cointegrals from [HN2]—to the central Hopf
comonad Z4 in a specific way. The details are beyond the scope of this introduction, so
we refer to Section 4.3 and Appendix B.2 for more on the strategy, and the proof itself.
The proofs for the other three versions are not explicit, but instead rely on the following
strategy, which we roughly sketch for left cointegrals. Consider the diagram:

{right cointegrals} {monadic cointegrals for A2}

{left cointegrals} HM
(
1, A3 (D)

)
⊃{monadic cointegrals for A3}

(i)

(a) (b)

(ii)
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If the quasi-Hopf then the element of is a monadic
cointegral λ is . . . H∗ given by . . . cointegral for . . .

right γ-sym. λ
(
S(β) ?S−1(ϑ)

)
A1

right λ
(
S(β) ?S−1(ξ)

)
A2

left λ
(
S−2(β) ?S(ξ̂)

)
A3

left γ-sym. λ
(
β ?S(ϑ̂)

)
A4

Table 1: The relations between the different notions of cointegrals. Here, “ ? ” is
a placeholder, and ϑ, ξ, ξ̂, ϑ̂ are certain elements of H defined in Section 4.3.
For cases 1 and 4, H is of course required to be pivotal. If H is a Hopf algebra,
then β = ϑ = ξ = ξ̂ = ϑ̂ = 1 and one recovers the simple relation in (3).

Here, (i) and (ii) are the maps from Table 1. For the bottom row we also use that (ii)
indeed maps a left cointegral to the indicated Hom-space, as shall be proved later. The
map (a) is an isomorphism between the spaces of left and right cointegrals from [BC2],
while the map (b) is induced by the monad isomorphism A2 ∼= A3. Since every space
except for the Hom-space is known to be one-dimensional, we can conclude that (ii) maps
left cointegrals to monadic cointegrals for A3 once we have shown that the two paths in
the diagram act identically on a right cointegral. This is a calculation, and the statements
for the monadic cointegrals for A1 and A4 are shown similarly.

Monadic cointegrals for braided finite tensor categories. Let C be a braided finite
tensor category. The coend L =

∫X∈C X∨ ⊗X is a Hopf algebra in C, cf. [LM, Ly1] and
also [FGR1]. One may now use the braiding of C and the universal property of coends to
construct isomorphisms

ξV : A2(V )→ L⊗ V

natural in V , and it can further be shown that they provide an isomorphism of Hopf
monads A2 ∼= L⊗?.

A notion of (co)integrals for Hopf algebras H in braided categories exists: integrals
are certain morphisms from the object of integrals IntH ∈ C to H, while cointegrals go
in the other direction, see [KL, Ch. 4]. We recall this in more detail in Section 4.5. In
essence, an integral of H is a morphism of H-modules from the H-module IntH (on which,
up to unitors, H acts by the counit) to the ‘regular’ H-module H (where the action is
multiplication). However, here one needs to make the distinction between left or right
H-modules, resulting in the definition of left or right integrals of H.
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We show that the object of integrals of L is dual to the distinguished invertible object,
i.e. IntL ∼= D∨ ∼= ∨D, and moreover relate monadic cointegrals for A2 to both left and
right integrals of L in Proposition 4.5.1. More precisely, we show for example

Theorem 5. Let C be a braided finite tensor category. Then Λ: ∨D → L is a left integral
for L if and only if

λ =
[
1 c̃oevD−−−→ ∨D ⊗D Λ⊗id−−−→ L⊗D

ξ−1
D−−→ A2 (D)

]
is a monadic cointegral for A2.

A corresponding formula exists for right integrals. The proof is chiefly a computation
using the Hopf monad isomorphism ξ from above, and as a result we get a new proof of
the fact that left and right integrals for L agree if C is unimodular, see Remark 4.5.2.

In Section 4.5.3, these results are specialized to the case C = HM for H a finite-
dimensional quasi-triangular quasi-Hopf algebra, yielding explicit formulas. In particular,
in the unimodular case the monadic cointegral for A2 and the left (or right) integral for L
are given by the same linear form on H.

Comparing SL(2,Z)-actions
In the third part we concern ourselves with projective SL(2,Z)-actions.

Review and simplification. A (not necessarily semisimple) ribbon tensor category
is called modular if its braiding satisfies a certain non-degeneracy condition called fac-
torizability, see Section 1.1.10. Given a modular tensor category C, Lyubashenko [Ly2]
constructed projective representations of the mapping class group of a genus g surface on
the Hom-space C(1,L⊗g). The integral of L (a modular tensor category is automatically
unimodular, so the integral is both left and right) is an essential ingredient in the con-
struction. Of particular interest to us is the action of SL(2,Z), the mapping class group
of the torus, on C(1,L); this space can be shown to be isomorphic to the endomorphisms
of the identity functor idC of C. We recall the definition of the projective SL(2,Z)-action
on C(1,L), C(L,1), and End(idC) in Section 5.1.

Specializing to C = HM for H a finite-dimensional factorizable ribbon quasi-Hopf
algebra, in [FGR1] explicit expressions were derived for the SL(2,Z)-action on Z(H) ∼=
End(idC), the center of H. We simplify these expressions, and rewrite them in terms of
monadic cointegrals for HM. For example, let S and T be the generators of SL(2,Z), and
set αZ = {αz | z ∈ Z(H)}, where α was the evaluation element of H. One may show
that αZ ∼= HM(L,1). We then find in Proposition 5.2.1 that the action on αZ is given
by the simple formulas

S.(αz) = λ
(
ω̂1z

)
ω̂2 and T.(αz) = v−1αz . (4)

Here, λ is a monadic cointegral for A2, ω̂1,2 are the components of a canonical Hopf-pairing
ω : L ⊗ L → 1, and v is the ribbon element of H.
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Comparing two actions. Let p ≥ 2 be an integer. It is well-known, see [CGR] and
references therein, that U q(sl2), the restricted quantum group of sl2 at q a primitive
2pth root of unity, is not factorizable—in fact, it was shown in [KS, GR1] that it does
not admit a quasi-triangular structure. Therefore, Lyubashenko’s construction of the
projective SL(2,Z)-action does not apply. Nevertheless, in [FGST1] an action on the
center of U q(sl2) was constructed, using a trick: it was observed that U q(sl2) can be realized
as a subalgebra of a quasi-triangular ribbon Hopf algebra, whose ribbon element actually
lives in U q(sl2). Moreover, the larger Hopf algebra is not factorizable: its monodromy
element is in U q(sl2)⊗U q(sl2), and in fact provides a non-degenerate copairing for U q(sl2).
Thus, though not formally correct, one could think of U q(sl2) as factorizable and ribbon.
Using these data, an SL(2,Z)-action on Z(U q(sl2)) was constructed in [FGST1, Thm. 5.2].

The motivation for the construction in [FGST1] comes from mathematical physics,
more precisely from the theory of vertex operator algebras (VOAs). A VOA is an algebraic
gadget, which may informally be described as an infinite-dimensional Z-graded vector
space with a family of multiplications parameterized by z ∈ C, plus some axioms. It admits
a sensible notion of module, and if it moreover satisfies some finiteness conditions (see e.g.
[GR2, Sec. 5]), then its modules are conjectured to form a modular tensor category RepV .
In fact, if V is a so-called rational VOA (and satisfies the above finiteness conditions),
then it is known that RepV is a modular fusion category [Hu]. If V is a logarithmic VOA
(+ finiteness conditions), then it is only known that RepV is finite abelian with a braided
monoidal structure and simple tensor unit, see e.g. [GR2, Thm. 5.1] for a concise statement
collecting multiple references.

In [Zh], Zhu introduced the space of so-called torus 1-point functions C1(V) and showed
that it comes with a natural SL(2,Z)-action, see also [GR2, Sec. 4]. In the rational case
above, the VOA-characters of simple V-modules form a basis of C1(V), and Zhu’s action
agrees with the one obtained from the RT-construction for RepV [Hu]. This is no longer
true for logarithmic VOAs. However, in this case a subspace of C1(V) was shown to be
spanned by pseudo-trace functions [AN], and it is conjectured that C1(V) is isomorphic to
the center of EndV(G) ∼= RepV(L,1), where G is a projective generator of RepV [GR2,
Conj. 5.8]. In light of these conjectures, it makes sense to ask if the SL(2,Z)-action on the
VOA side agrees with the one coming from Lyubashenko’s construction for the modular
tensor category RepV .

The logarithmic VOA considered in [FGST1], called the triplet W -algebra W(p), has
been studied extensively, see [CGR] and references therein. In [FGST1, Thm. 5.2] it is
shown that the SL(2,Z)-action on the center of U q(sl2) constructed in the same paper is
equivalent to the one on W(p)-characters mentioned above. It is known that RepW(p) is
equivalent to U q(sl2)-mod as an abelian category. However, in light of the fact that U q(sl2)
does not admit a quasi-triangular structure, there can be no such equivalence of modular
tensor categories. In [CGR], a quasi-Hopf modification UΦ

q (sl2) of U q(sl2) is introduced. It
has same algebra structure as U q(sl2) but a modified coproduct. Thus its representation
category agrees with that of U q(sl2) as a linear category, but not as a monoidal one.
It was shown that UΦ

q (sl2) is factorizable and ribbon, and we may thus use it as input
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to Lyubashenko’s construction described earlier. Since in U q(sl2) the evaluation element
satisfies α = 1, Lyubashenko’s action on the center is given by (4).

It is further conjectured in [CGR, Conj. 1.2] that the above categories agree as ribbon
categories. Theorem 5.3.5, the main result of this part, then, relates these two (projective)
actions: the one coming from the modular transformation properties of VOA-characters,
and the one coming from the (conjecturally) corresponding modular tensor category.

Theorem 6. Denote by ZFGST the SL(2,Z)-representation on the center of the algebra
U q(sl2) constructed in [FGST1], and by ZL the projective representation on the same space
coming from Lyubashenko’s construction applied to UΦ

q (sl2). Let SZ be the endomorphism
by which the generator S acts on ZL. Then

SZ : ZL → ZFGST (5)

is an isomorphism of projective SL(2,Z)-representation.

To prove this, we have to do some tedious calculations in U
Φ
q (sl2). Among other

things, we compute the Drinfeld element u of UΦ
q (sl2), and a canonical spanning set of the

center. This spanning set consists of some elements for which general closed expressions
were derived in [FGR1] and simplified in the first sections of this part. These elements
are shown to coincide with corresponding ones from [FGST1]. From this we will infer
Theorem 6.

Thus, assuming [CGR, Conj. 1.2], we have shown that the SL(2,Z)-actions on the
categorical side agrees with the one on the VOA side.

Structure of the thesis
The top-level structure of the thesis is as follows. In Chapter 1, we will review some
categorical notions as needed, largely following [EGNO]. This includes our conventions
for finite tensor categories, along with conventions for additional structure (e.g. pivotal
or ribbon) imposed on them. Some generalities on modified traces are stated, and after
talking briefly about the notion of a (co)end, we finish by properly recalling the definition
of a Hopf monad.

After that, in Chapter 2, we give a brief overview of quasi-Hopf algebras, following the
content of e.g. [BCPO] and the conventions of [BGR1, BGR2, FGR1, FGR2]. We discuss
cointegrals (in the sense of [HN2]) in some detail, and at the end give three examples of
quasi-Hopf algebras.

From Chapter 3 onward, original results are presented. We start with the results on
modified traces for (finite-dimensional pivotal unimodular) quasi-Hopf algebras as dis-
cussed above.

In Chapter 4, we recall the central Hopf monad, and use it to define monadic cointegrals
for any (pivotal) finite-tensor categories. We specialize to the case of the category being
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representations of a finite-dimensional (pivotal) quasi-Hopf algebra, and give the main
result of this part as stated above.

Then, in Chapter 5 we first review a (projective) SL(2,Z)-action defined by [Ly2] for
any modular tensor category. We specialize this to the representation category of the
quasi-Hopf algebra UΦ

q (sl2) and compare it to the action obtained in [FGST1] as outlined
above.

The first appendix, Appendix A, contains the proof that our realization of the central
Hopf monad for quasi-Hopf algebras indeed satisfies the required universal property.

Appendix B contains various proofs of statements in Chapter 4, which were deemed
too long or technical to include in the main texts. This comprises the finer details of the
proof of Theorem 4.

Finally, in Appendix C, we provide the somewhat tedious proofs to multiple statements
made in Chapter 5.





Chapter 1

Category theoretic preliminaries

In this chapter we review the necessary basics of finite tensor categories. Basic knowledge
of abelian and monoidal categories is assumed. No original results are presented, and most
of the contents can be found in the canonical reference [EGNO].

The first section contains a brief review of our conventions for finite tensor categories
and their possible additional structures/properties (up to and including factorizability),
as well as their graphical calculus. In the second section, we go on to discuss the notions
of tensor ideals, modified traces, coends, and (Hopf) monads, as we will need them later
on.

Throughout this thesis we fix k, an algebraically closed field. All linear structures
will be considered over k, and, unless otherwise stated, all vector spaces will be finite-
dimensional. By a module over an algebra we always mean a left module unless otherwise
stated.

1.1 Conventions for finite tensor categories
We will first state the definition of a finite tensor category, then explain the meaning
and our conventions for some words appearing in it, and then briefly discuss finite tensor
categories with more structure (e.g. pivotal, ribbon).

1.1.1 The definition of a finite tensor category
Following [EGNO], by a finite tensor category we mean a linear abelian category that

• has finite-dimensional Hom-spaces, and every object is of finite length,

• possesses a finite set of isomorphism classes of simple objects,

• is rigid monoidal, such that the tensor product functor ⊗ is bilinear and the monoidal
unit 1 is simple,

• has enough projectives.

1
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Note that, because k is algebraically closed, the endomorphisms of a simple object auto-
matically are one-dimensional.

We shall now unravel parts of this definition. Let C be a finite tensor category, and
fix a set Irr C of representatives of isomorphism classes of simple objects; we agree that
1 ∈ Irr C.

1.1.2 Rigid structure
We denote the left and the right dual of an object X by X∨ and ∨X, respectively. In
particular, we fix (contravariant) duality endofunctors ∨?, ?∨ of C. The corresponding
evaluations and coevaluations are

evX : X∨ ⊗X → 1 , coevX : 1→ X ⊗X∨ ,
ẽvX : X ⊗ ∨X → 1 , c̃oevX : 1→ ∨X ⊗X , (1.1.1)

satisfying the familiar zig-zag equations. In view of our applications, we do not assume
that C is strict monoidal, and (compositions of) coherence isomorphisms will therefore be
indicated.

An object in C is invertible if its evaluations and coevaluations are isomorphisms.
Intuitively, this means its left (and also its right) dual can be seen as inverses with respect
to taking tensor product. It is easy to see that the left dual of an invertible object X is
isomorphic to the right dual of X.

Note that by rigidity, X∨⊗? a X⊗? a ∨X⊗? for any fixed X ∈ C. It follows that ⊗ is
exact in each argument [EGNO, Prop. 4.2.1]; for simplicity we say that ⊗ is exact.

1.1.3 Projective objects and the distinguished invertible object
Recall that P ∈ C is projective iff the Hom-functor C(P,−) is exact; equivalently, ev-
ery morphism out of P factors through every epimorphism. Exactness of ⊗ implies
that duals of projective objects are projective, and hence projective and injective objects
agree [EGNO, Prop. 6.1.3].

Since C has enough projectives, every object has a projective cover. The projective cover
of U ∈ Irr C is denoted (PU , pU : PU → U), where U is the unique maximal semi-simple
quotient of PU . Projective covers of simple objects are the projective indecomposable
objects in the category, so by the above remark, the unique maximal semi-simple subobject
soc(PU) ⊂ PU , the socle of PU , is simple for all U .

One can show that the socle D of P1 is in fact invertible [EGNO, Sec. 6.4], and we call
it the distinguished invertible object of C.1 Equivalently, one may define D as the simple
object determined by

P∨1
∼= PD∨ . (1.1.2)

We call C unimodular if D ∼= 1. This terminology will be explained later in Remark 2.3.9.
1This means that our D is in fact dual to the distinguished invertible object of [EGNO, Sec. 6.4].

However, our definition agrees with the one given in [ENO, Sec. 6].
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Finally, a projective generator of C is a projective object G such that every object is a
quotient of G⊕n for some n ∈ N. Thus projective covers of irreducibles have to occur at
least once each as summands in G.

Remark 1.1.1. By the above, a good choice for a projective generator would be given
by the minimal one, i.e. the one which is just the direct sum of the projective covers of
simple objects.

In this thesis, however, we deal mostly with categories of modules over an algebra. In
that case, the easiest choice for a projective generator would be the algebra itself, i.e. the
direct sum of projective covers of simples, each with multiplicity the k-dimension of the
corresponding simple. O

1.1.4 Graphical calculus
Our string diagrams are read from bottom to top, and coherence isomorphisms will usually
not be drawn. Morphisms are as usual depicted as coupons, and for the identity morphism
on an object we do not draw a coupon. A horizontal line with no label and multiple
incoming and one single out-going line represents the identity morphism of the respective
objects, i.e. we change from viewing them as separate entities to viewing them as one
object. Similarly for multiple out-going and one incoming line.

The left and right coevaluation and evaluation morphisms for the object X ∈ C are
drawn as

X X∨

,

∨X X

,
X∨ X

,
∨XX

, (1.1.3)

respectively, so that in our conventions for duals and string diagrams, arrows on the duality
maps for left (right) duals point to the left (right).

1.1.5 (Co)monoidal functors
A lax comonoidal functor is a tuple (F, F0, F2), where F : C → D is a functor between
monoidal categories together with a natural transformation F2 and a morphism F0,2

F2(X, Y ) : F (X ⊗ Y )→ FX ⊗ FY, F0 : F1→ 1, (1.1.4)

satisfying certain coherence conditions which in particular imply that coalgebras in C are
sent to coalgebras in D, see e.g. [EGNO, Sec. 2.4]. For that reason we will sometimes refer
to F2 and F0 as the comultiplication and the counit of the lax comonoidal functor F . If F2
and F0 are isomorphisms (identities) then F is called a strong (strict) comonoidal functor.
We abbreviate a (lax) comonoidal functor (F, F0, F2) by just the symbol F .

2Here and below we abbreviate F (X) by FX when applying functors to objects, and similarly for
functors on morphisms.
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Similarly, a functor F : C → D between monoidal categories is lax/strong monoidal
if F op : Cop → Dop is lax/strong comonoidal. Here Cop is the category with the same
objects of C but the arrows are reversed. Thus, it maps algebras in C to algebras in D
and the corresponding natural transformation F2 and the morphism F0 are called the
multiplication and the unit, respectively.

A natural transformation ϕ : F ⇒ G between two comonoidal functors is called como-
noidal if it commutes with the comonoidal structures. That is, if

G2(X, Y ) ◦ ϕX⊗Y = (ϕX ⊗ ϕY ) ◦ F2(X, Y ) and F0 = G0 ◦ ϕ1 (1.1.5)

holds for all objects X, Y .
Monoidal natural transformations between monoidal functors are defined similarly.

1.1.6 Pivotal structure
In any rigid monoidal category one can define the isomorphism

γV,W : V ∨ ⊗W∨ → (W ⊗ V )∨, γV,W =

V ∨W∨

(W ⊗ V )∨

, (1.1.6)

natural in V and W (recall that the horizontal line is our graphical representation of
idV⊗W ). Then the canonical monoidal structure of the double dual functor is given by

(?)∨∨2(V,W ) =
[
V ∨∨ ⊗W∨∨ γV ∨,W∨−−−−→ (W∨ ⊗ V ∨)∨

(γ−1
W,V )∨
−−−−−→ (V ⊗W )∨∨

]
. (1.1.7)

Pictorially, this means

(?)∨∨2(V,W ) =

V ∨∨ W∨∨

(V ⊗W )∨∨

. (1.1.8)

A rigid category C is called pivotal if there is a monoidal natural isomorphism δ : idC ⇒
(?)∨∨, that is, from the identity functor on C to the double dual functor. Here we regard
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the identity functor as monoidal with trivial monoidal structure. The requirement that δ
be monoidal is precisely the commutativity of the diagram

VW V ∨∨ ⊗W∨∨

(VW )∨∨

δV ⊗δW

δVW
(?)∨∨2(V,W ) (1.1.9)

Here we omitted the tensor product symbol to shorten expressions. We will continue
doing that from now on whenever possible, although sometimes, a tensor symbol has to
be inserted to make an expression unambiguous.

Note that the existence of the pivotal structure δ is equivalent to requiring that the
left and the right dual functor be isomorphic as monoidal functors. Indeed, given δ we
can form the isomorphism

∨X

δX

X∨

, (1.1.10)

and one checks from the axioms above that this is indeed monoidal. Conversely, given a
natural monoidal isomorphism ∨X ∼= X∨, we have

X∨∨ ∼= (∨X)∨ ∼= X (1.1.11)

where the second isomorphism is

ωX =
[
(∨X)∨ ∼−→ (∨X)∨ ⊗ 1 id⊗ c̃oevX−−−−−−→ (∨X)∨ ⊗ (∨XX) ∼−→ ((∨X)∨ ⊗ ∨X)X

ev∨X ⊗ id
−−−−−→ 1X ∼−→ X

]
. (1.1.12)

As a string diagram (1.1.12) simply reads

ωX =

(∨X)∨

X

. (1.1.13)

We stress that we do not assume pivotal structures to be strict. Furthermore, while
it is customary to assume that in a pivotal category the left and the right dual have the
same underlying object, we do not do this, unless explicitly stated (e.g. in Chapter 3).
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1.1.7 Braiding
Let C be a finite tensor category. A braiding is a family of isomorphisms

cV,W : V ⊗W → W ⊗ V, (1.1.14)

natural in V,W , depicted as

cV,W =

V W

W V

(1.1.15)

satisfying the left hexagon axiom

U V W

W U V

=

U V W

W U V

, (1.1.16)

and an analogous right hexagon axiom. The inverse of the braiding is drawn as the other
crossing. If C admits a braiding we call it braidable, and C together with a choice of
braiding is then a braided finite tensor category.

It follows from the hexagon axioms that

c1,V = [1V ∼−→ V
∼−→ V 1] ,

i.e. braiding with the tensor unit is expressed in terms of unitors. This implies c−1
1,V = cV,1

for all V ∈ C. In particular, the tensor unit is a transparent object: an object V in a
braided monoidal category is transparent iff cW,V ◦ cV,W = idVW for any W ∈ C

There also exists the notion of a braided monoidal functor between braided finite tensor
categories. This is, of course, simply a monoidal functor commuting with the braidings
involved.

An easy example of a braided finite tensor category is Vect, the category of finite-
dimensional vector spaces. The braiding is given by the flip map τ , which, for all vector
spaces V,W , simply acts as τ(v ⊗ w) = w ⊗ v, for all v ∈ V , w ∈ W .

In any braided finite tensor category, one can define the natural isomorphism

uV =

V

V ∨∨

, V ∈ C (1.1.17)
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called the Drinfeld morphism u : idC ∼=⇒ ?∨∨. In general, however, it will not be monoidal.
Lastly, to any braided finite tensor category we can associate another such category,

sometimes denoted C or Crev, which agrees with C as finite abelian category, but has
opposite tensor product and inverse braiding, i.e. X⊗̄Y = Y ⊗X and c = c−1.

1.1.8 The Drinfeld center

A finite tensor category does not have to be braided, just as a monoid does not have to be
commutative. However, for a monoid we have the notion of a center. In this subsection,
we recall the definition of the Drinfeld center Z(C) of a finite tensor category C.

Its objects are pairs (V, σ : V⊗? ∼=⇒? ⊗ V ), where V ∈ C, and σ is a so-called half-
braiding, meaning that it satisfies

V X Y

σX⊗Y

X Y V

=

V X Y

σX

σY

X Y V

(1.1.18)

Note that this condition is reminiscent of the (right) hexagon above.
A morphism f : (V, σ) → (W, ρ) in Z(C) is a morphism f ∈ C(V,W ) that commutes

with the half-braidings, i.e.

id⊗f ◦ σX = ρX ◦ f ⊗ id ∀X ∈ C .

It is well-known that Z(C) is a braided finite tensor category [EGNO, 7.13.8]. If C is
braided with braiding c, then we have two canonical braided functors

C → Z(C) C → Z(C)
V 7→ (V, cV,?) V 7→ (V, c−1

?,V ) (1.1.19)

which are both exact. Thus they give rise to one single functor

C � C → Z(C), V �W 7→ (V ⊗W,σ) (1.1.20)

out of the enveloping category3 of C into its Drinfeld center, where σ is the half-braiding
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given by

σX =

V W X

X V W

. (1.1.21)

1.1.9 Ribbon
The last structural addition we will recall is that of a ribbon structure. Intuitively, this
lets us think about strings in string diagrams as though they were elongated rectangles,
and as such we should be able to twist them.

A braided finite tensor category C is ribbon if it is equipped with a natural isomorphism
ϑ : idC ⇒ idC of the identity functor, satisfying the two axioms

ϑV⊗W = cW,V ◦ cV,W ◦ ϑV ⊗ ϑW and (ϑV )∨ = ϑV ∨ . (1.1.22)

This isomorphism is called the ribbon twist, depicted as

ϑV =

V

V

. (1.1.23)

Note that the cups and caps in this picture are not a priori evaluations and coevaluations.
A ribbon category is automatically pivotal. Indeed, recall the Drinfeld morphism u

from (1.1.17). Then a pivotal structure is given by δ := uϑ, cf. [FGR2, Rem. 3.5] or
[BK, Sec. 2.2] (this also justifies the pictorial representation of the twist above). For the
converse, note that a braided pivotal finite tensor category will in general only be balanced
(i.e. the twist one tries to define will only satisfy the first identity in (1.1.22)), and not
necessarily ribbon.

1.1.10 Factorizable and modular finite tensor categories
We finish this section by recalling the definitions (and some equivalent characterizations)
of two particularly nice classes of finite tensor categories: factorizable FTCs and modular
FTCs.

3Here, A�B is the Deligne product of the finite tensor categories A and B, see e.g. [EGNO, Sec. 1.11].
It is again a finite tensor category. Moreover, to specify uniquely a linear right exact functor out of it, it
is enough to specify a bilinear in both variables right exact bifunctor out of A× B, as we did above.
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Let C be a braided finite tensor category. Factorizability is a certain non-degeneracy
condition on the braiding, namely, that the embedding (1.1.20) from C�C into Z(C) be a
(braided monoidal) equivalence. Recently, Shimizu proved [Sh3] the following remarkable
theorem, which we first state and then explain a bit; see also [FGR1] and [GR3, Sec. 2]
for reviews.

Theorem 1.1.2 ([Sh3, Thm. 1.1]). The following are equivalent.

1. C is factorizable.

2. Every transparent object is isomorphic to 1⊕n for some n ∈ N.

3. The canonical Hopf pairing of the Hopf algebra L ∈ C is non-degenerate.

4. The Hopf pairing from the previous point gives rise to an isomorphism of Hom-spaces
C(1,L) and C(L,1).

For the second point, recall from Section 1.1.7 the notion of transparent object. The
third item is more easily understood after reading Example 1.2.7 (and maybe Section 5.1),
where the Hopf algebra L is given, and its Hopf pairing is defined via the double braiding
of C. The fourth point is a certain variant of the third, the direction from (3) to (4) being
trivial.
Finally, by a modular tensor category we mean a factorizable finite tensor category which
is ribbon. The qualifier modular is due to the fact that such categories give rise to a
certain projective action of the modular group SL(2,Z); see Section 5.1 for a brief review,
or [FGR1, Sec. 5] for a full review, of this action.

1.2 Traces, coends, monads
Now that we know what we mean by a finite tensor category (with or without some extra
structure/properties), we will define some additional categorical notions needed later. We
begin by reviewing traces; followed by the basis aspects of the theory of modified traces of
[GPV, GPT, GKP1, GKP2, GKP3]; then give the definition of and an existence statement
about coends; and finally, we introduce Hopf monads, following [BV1].
We remark that we do not necessarily present these things as general as possible, but
rather in way that fits our categorical needs.
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1.2.1 The categorical trace
Let C be a pivotal finite tensor category. To any endomorphism f ∈ EndC(V ) of any
object V ∈ C we can associate a number called the right trace of f , defined by

trC,rV (f) =
f

δV
∈ EndC(1) ∼= k . (1.2.1)

Analogously one defines a left trace. Left and right traces do not agree in general, but if
they do, C is called spherical—the intuition being that by pulling the right hand vertical
strand of the right trace past a point at infinity one obtains the left trace. In that case
we simply write trCV (f).

The trace is linear and has some nice properties, most importantly cyclicity

trC,rV (V f−→ W
g−→ V ) = trC,rW (W g−→ V

f−→ W ) (1.2.2)

and multiplicativity

trC,rV⊗W (f ⊗ g) = trC,rV (f) · trC,rW (g) . (1.2.3)

The name trace is justified by the fact that for C = Vect, trCV (f) is indeed simply the trace
of the linear map f : V → V .

Remark 1.2.1. 1. In a braided finite tensor category one could try defining a ‘trace’
using the Drinfeld morphism (1.1.17) to replace the pivotal structure. But unless the
braiding is symmetric, the resulting trace-candidate is in general not multiplicative.

2. It is well-known that any ribbon category is spherical, see [Ka, Sec. XIV.4].
O

Given a morphism f ∈ C(V X,WX), we can form a new morphism ptrC,rX (f) ∈ C(V,W ),
called its right partial trace over X, by

ptrC,rX (f) =

V

f

δX

W

. (1.2.4)
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Similarly, one may define left partial traces of morphisms in C(XV,XW ). The existence
of partial traces may be interpreted as a weaker version of multiplicativity.

We finish our discussion of the trace by recalling one of its more degenerate features
in the following well-known proposition, see e.g. [GR3, Rem. 4.6].

Proposition 1.2.2. Let C be a pivotal finite tensor category. If C is not semisimple, then

trC,rP (f) = 0 = trC,lP (f)

for all projective P and all f ∈ EndC(P ).

Proof. We show the contrapositive, so without less of generality assume trC,rP (f) = 1. Then
P ⊗ P∨ ∼= 1 ⊕ X for some X ∈ C. But then 1 is projective, and so C is semisimple by
exactness of ⊗.

1.2.2 Modified traces on tensor ideals
Let C be a monoidal category. Following [GPT, GKP1, GKP2] a right tensor ideal I of C
is a full subcategory of C satisfying

(Closure under tensor products)
If X ∈ I, and V ∈ C, then X ⊗ V ∈ I.

(Closure under retracts)
If X ∈ I, V ∈ C, and there exist morphisms f, g such that

idV = V
f−→ X

g−→ V,

then V ∈ I.
Similarly one defines left and two-sided ideals. The latter will simply be called ideals.

If I is an ideal, we write I ≤ C.
The axioms imply that an ideal is a replete subcategory, i.e. X ∈ I and f : X ∼−→ Y in

C imply that both f and Y are in I.

Remark 1.2.3. In practice, we look at abelian categories. Closure under retracts then
means that direct summands of objects in the ideal are again in the ideal. O

Example 1.2.4. 1. The easiest non-trivial example is given by I = C. This is a two-
sided ideal.

2. Let C be a finite tensor category. The example we will be most interested in is
given by the projective ideal Proj(C) of C, which is the (full) subcategory of projec-
tive objects in C.4 Closure under tensor products follows from exactness of ⊗—in

4This is in fact the smallest non-trivial ideal in C. Indeed, any non-trivial ideal I contains Proj(C):
X ∈ I implies Y = (X∨ ⊗X)⊗ P ∈ I for any projective P . But P is a quotient of Y (since ⊗ is exact)
and projective, thus P ∈ I.
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particular, Proj(C) is two-sided. Closure under retracts is the familiar statement
that direct summands of projectives are projective. Note that Proj(C) = C iff C is
semisimple.

4

Let now C be a pivotal linear category, and I be a right tensor ideal of C. A right
modified trace on I is a family t• of linear functions

{tX : EndC(X)→ k}X∈I (1.2.5)

satisfying two conditions, cyclicity and right partial trace property, given as follows.

(Cyclicity)
If X,X ′ ∈ I, then for all f : X → X ′, g : X ′ → X

tX(g ◦ f) = tX′(f ◦ g) . (1.2.6)

(Right Partial Trace Property)
If X ∈ I and V ∈ C, then for all f ∈ EndC(X ⊗ V )

tX⊗V (f) = tX
(
ptrC,rV (f)

)
. (1.2.7)

Similarly one defines left modified traces on left ideals. A family of such functions which
is both a left and a right modified trace on a two-sided ideal is simply called a modified
trace.

A right (resp. left) modified trace t• is non-degenerate if the canonical pairings

C(M,X)× C(X,M)→ k, (f, g) 7→ tX(f ◦ g) , (1.2.8)

are non-degenerate for all M ∈ C, X ∈ I.

Example 1.2.5. 1. Consider again I = C. Then the usual categorical trace is a mod-
ified trace—but for C not semisimple certainly not non-degenerate, see Proposi-
tion 1.2.2.

2. If C is a factorizable finite tensor category over an algebraically closed field of char-
acteristic 0, then it contains a simple projective object, which can be used to define
a non-degenerate modified trace on Proj(C), see [GR3].

3. More generally, if k is algebraically closed and C is unimodular (cf. Section 1.1.3),
then a corollary to [GKP3, Sec. 5.3] is that a non-degenerate modified trace on
Proj(C) exists and is unique up to scalars. This significantly generalizes earlier
existence and uniqueness results, see e.g. [GKP2, GR3].

4



Chapter 1. Category theoretic preliminaries 13

From now on, we will only focus on modified traces on the ideal of projective objects. We
will for simplicity just call them ‘modified traces’, dropping the qualifier ‘on Proj(C)’.

In Chapter 3 we will assume C = H-mod, the category of finite-dimensional modules
over a pivotal unimodular quasi-Hopf algebra; see Chapter 2 for the definitions of these
words. We will then obtain an explicit construction of a unique non-degenerate modi-
fied trace (without necessarily requiring k to be algebraically closed) in Theorem 3.2.5,
extending the main result of [BBGa].

1.2.3 Ends and coends
We recall the notion of a (co)end, which is a certain type of (co)limit, following [Mac, KL],
see also [FS, Sec. 4.2].

Let C, D be categories, and let F : Cop × C → D be a functor. As the name suggests,
an end is a coend in the opposite category, and we shall only explain what a coend of F
in D is.

Briefly, a coend of F is an object A ∈ D together with a universal dinatural transfor-
mation j : F ..−→ A. That means j is a family of morphisms

jX : F (X,X)→ A

indexed by objects in C and satisfying

jX ◦ F (f, idX) = jY ◦ F (idY , f) for f ∈ C(X, Y ) , (1.2.9)

which is universal with respect to this property, i.e. if k : F ..−→ W is a dinatural transfor-
mation as above, then there exists a unique morphism m : A→ W such that kX = m◦ jX ,
for all X ∈ C. Thus, if the outer square in

F (Y,X) F (X,X)

F (Y, Y ) A

W

F (f,id)

F (id,f) jX
kXjY

kY

∃!m

(1.2.10)

commutes for all X, Y ∈ C and all f : X → Y , then there is a unique (dashed) arrow
making the entire diagram commute. It follows that a coend is unique up to unique
isomorphism. Denoting by Dinat(F,W ) the set of dinatural transformations from F to
W ∈ D, the universal property can be written suggestively as

Dinat(F,W ) ∼= D(A,W ) . (1.2.11)

In other words, we can uniquely specify morphisms out of a coend by simply giving a dinat-
ural transformation from the functor to the desired target. This will be used extensively
later in Chapter 4 when we discuss the central Hopf (co)monads.
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It is customary to denote the coend of F as either∫ X∈C
F (X,X) or simply

∫ X

F . (1.2.12)

Dually, an end is denoted with the “integration variable” on the bottom.
As for other colimits, there are conditions which guarantee the existence of coends of

certain functors. For later use we state an immediate corollary to [KL, Cor. 5.1.8].

Proposition 1.2.6 ([KL, Cor. 5.1.8]). Let C, D be finite tensor categories. If F : Cop×C →
D is bilinear, and exact in both variables, then

∫X F exists.

Example 1.2.7. Let C be a finite tensor category, and consider the functor

Cop × C → C, (X, Y ) 7→ X∨ ⊗ Y . (1.2.13)

This functor satisfies the assumptions of Proposition 1.2.6, thus its coend exists. It is a
rather famous coend [LM, Ma, Ly1, Ly2], and we denote it by

L =
∫ X∈C

X∨ ⊗X . (1.2.14)

Lyubashenko used it in his definition of a certain modular functor and a projective action
of mapping class groups of surfaces on certain Hom-spaces [Ly2], which we review briefly
in Chapter 5.

Under some additional conditions on C, one can in fact show—see [FGR1, Sec. 3.3]
for a review—that L carries naturally the structure of a Hopf algebra, and that there is a
Hopf pairing ω : L ⊗ L → 1 defined in terms of the double braiding of C. We describe it
more explicitly in Section 5.1. The (left or right) dual of L can be described as a certain
end which also carries a canonical Hopf algebra structure. Factorizability (as introduced
in Section 1.1.10), then, is the requirement that the canonical morphism of Hopf algebras
L → L∨ induced by the Hopf pairing be an isomorphism.5 4

Remark 1.2.8. We note that coend in Example 1.2.7 will in a way serve as a basis for
the definition of the central Hopf monad, meaning that in the braided case, the central
Hopf monad is given by tensoring with L. O

1.2.4 Hopf monads
We first recall some basic notions from the theory of Hopf monads on rigid categories.
As an initial motivation, a monad is an endofunctor M which admits a sensible notion
of ‘category of modules over M ’. The broad idea of a Hopf monad on a rigid category is
then that this category of modules is rigid in a nice way. Throughout, our conventions
will closely follow [BV1].

5Here, for a second, we assume left and right duals to coincide via the pivotal structure.
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Monads

Recall [Mac, Sec. VI] that a monad M on a category C is an algebra in End(C), the
category of endofunctors of C, which is a monoidal category under composition. Thus M
is equipped with two natural transformations

µ : M2 ⇒M, η : idC ⇒M, (1.2.15)

the multiplication and unit of M , respectively, satisfying associativity and unitality,

µ ◦Mµ = µ ◦ µM and µ ◦ ηM = M = µ ◦Mη . (1.2.16)

This simply means that the diagrams

M3V M2V

M2V MV

MµV

µMV µV

µV

and
M2V MV M2V

MV

ηMV

µV

MηV

µV
, (1.2.17)

commute for each V ∈ C.
A comonad on C is a monad on Cop, or, alternatively, a coalgebra in End(C).

Example 1.2.9. 1. If C is monoidal, and A ∈ C is an algebra, then A⊗? is a monad.

2. Let L : C → D be a functor with right adjoint R. Then RL is a monad. Its unit is
the unit of the adjunction, and its multiplication is RεL : RLRL⇒ RL, where ε is
the counit of the adjunction. Similarly LR becomes a comonad.

4

A module6 over a monad M is a tuple (V, ρ), consisting of an object V ∈ C together
with a morphism ρ : MV → V , called the action, such that

M2V MV

MV V

Mρ

µV ρ

ρ

and
V MV

V

ηV

ρ (1.2.18)

commute. A morphism f : (V, ρ)→ (W,σ) of M -modules is a morphism of the underlying
objects in C which commutes with the action, i.e.

σ ◦Mf = f ◦ ρ. (1.2.19)

The category of M -modules is denoted by CM . The forgetful functor from CM to C has a
left adjoint which sends an object V ∈ C to the free M -module (MV, µV ). Indeed, if (B, ν)

6Sometimes such modules are called ‘M -algebras’, but we prefer the following point of view: An object
V ∈ C is the same as a constant endofunctor V̂ . Then, V is a module over the monad M if and only if V̂
is a (left) module over the algebra M in End C.
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is an M -module and A any object in C, then we easily see that the Hom-set adjunction
CM
(
(MA,µA), (B, ν)

) ∼= C(A,B) is given by sending an M -module morphism f to f ◦ ηA,
and conversely, a morphism g : A→ B is sent to ν ◦Mg.

A morphism of monads is a morphism φ : M ⇒M ′ of algebras in End(C). It therefore
induces a functor φ∗ : CM ′ → CM via pullback, cf. [BV1, Lem. 1.6].

The following proposition is well-known.

Proposition 1.2.10. Let L, R ∈ End(C), and suppose that L is left adjoint to R. The
set of monad (comonad) structures on R is in bijection with the set of comonad (monad)
structures on L.

Proof. The category End(C) is monoidal, thus it makes sense to speak about dual objects.
An adjunction L a R is nothing more but the statement that L is a left dual object of
R. The unit idC ⇒ RL and counit LR⇒ idC of the adjunction serve as coevaluation and
evaluation for the dual pair. It is well-known that the left (right) dual of an object is a
coalgebra iff the object itself is an algebra. The proposition follows.

Bimonads

If C is a monoidal category, then a bimonad on C is a monad M such that the func-
tor M is lax comonoidal and the multiplication and unit of M are comonoidal natural
transformations, see Section 1.1.5. A bicomonad on C is a bimonad on Cop.

Example 1.2.11. If C is braided monoidal, and B ∈ C is a bialgebra, then B⊗? is a
bimonad. 4

The name “bimonad” is in analogy to algebras and bialgebras: The category of modules
over a bimonad (M,M0,M2) is monoidal, and a lax comonoidal structure on M is the same
as a monoidal structure on CM such that the forgetful functor to C is strong monoidal, cf.
[Moe, Thm. 7.1]. Given two M -modules (V, ρ), (W,σ), their tensor product is defined by

(V, ρ)⊗ (W,σ) = (V ⊗W, (ρ⊗ σ) ◦M2(V,W )), (1.2.20)

and the monoidal unit of CM is the M -module (1,M0), which we will also denote by 1.
A morphism of bimonads is a comonoidal natural transformation which is a morphism

of the underlying monads.
We will later need the following lemma.

Lemma 1.2.12 ([BV1, Lem. 2.7]). Let M,M ′ be bimonads on C. Then there is a one-
to-one correspondence between morphisms f : M ⇒ M ′ of bimonads and strict monoidal
functors F : CM ′ → CM which are lifts of the identity functor on C.

Here by a lift of F : C → C we mean a functor F̃ : CM ′ → CM such that UM F̃ = FUM ′ ,
where UM , UM ′ are the respective forgetful functors to C.
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Remark 1.2.13. For later use, let us quickly give a rough sketch of the proof. Given
a bimonad morphism f , the corresponding functor determined via Lemma 1.2.12 is just
the pullback of the M ′-module structure along f , i.e. F = f ∗. Conversely, the monad
morphism f : M ⇒ M ′ corresponding to the functor F : CM ′ → CM is given as follows.
Let (M ′V, Fµ′V ) ∈ CM be the image of the free M ′-module on V under F . Then fV =
Fµ′V ◦Mη′V . In particular, f ∗ = F . O

The following proposition is folklore.

Proposition 1.2.14. Let L, R ∈ End(C), and suppose that L is left adjoint to R. Then
R is a bimonad (bicomonad) iff L is a bicomonad (bimonad).

Proof. Assume L is a bimonad, i.e. a comonoidal monad, and denote by η̃ the unit and by
ε̃ the counit of the adjunction. The other case is similar. By Proposition 1.2.10 we know
that R is a comonad. Then R becomes monoidal with multiplication

R2(V,W ) ≡
[
RV ⊗RW η̃RV⊗RW−−−−−→ RL(RV ⊗RW )

RL2(RV,RW )−−−−−−−−→ R(LRV ⊗ LRW ) R(ε̃V ⊗ε̃W )−−−−−−→ R(V ⊗W )
]

= R(ε̃V ⊗ ε̃W ) ◦RL2(RV,RW ) ◦ η̃RV⊗RW (1.2.21)

and unit

R0 ≡
[
1 η̃1−→ RL1 RL0−−→ R1

]
= RL0 ◦ η̃1 (1.2.22)

Since it is not hard—albeit rather tedious—to verify with a direct equational proof the
monoidality of this structure, we will leave it to the reader. We also remark that a very
nice and much simpler proof of this proposition can be given using the diagrammatic
language of monoidal functors and monoidal natural transformations, see e.g. [Wi].

Hopf monads

A bimonad M on a rigid category C is called a Hopf monad if CM is rigid, following
again the familiar nomenclature of algebras, bialgebras, and Hopf algebras. For a Hopf
algebra, the rigid structure of its category of modules is encoded in the antipode. For Hopf
monads, the corresponding concept is as follows, cf. [BV1]. A natural transformation Sl

with components

SlV : M
(
(MV )∨

)
→ V ∨ (1.2.23)



18 1.2. Traces, coends, monads

is called a left antipode for M if it satisfies

M((MV )∨ ⊗ V ) M(MV )∨ ⊗MV M(M2V )∨ ⊗MV

(MV )∨ ⊗MV

M(V ∨ ⊗ V ) M1 1

M2

M(η∨V ⊗id)

Mµ∨V ⊗id

SlMV ⊗id

evMV

M evV M0

(1.2.24)

and

M1 1 V ⊗ V ∨

M(MV ⊗ (MV )∨) M2V ⊗M(MV )∨ MV ⊗ V ∨

M0

M(coevMV )

coevV

ηV ⊗id

M2 µV ⊗SlV

. (1.2.25)

Given an M -module (V, ρ), the antipode allows us to define a morphism

ρ̃ =
[
M(V ∨) M(ρ∨)−−−−→M

(
(MV )∨

) SlV−→ V ∨
]
, (1.2.26)

which turns (V ∨, ρ̃) into an M -module [BV1, Thm. 3.8]. The evaluation and coevaluation
are those in C,

ev(V,ρ) = evV , coev(V,ρ) = coevV , (1.2.27)

and that they are indeed M -module intertwiners is guaranteed by the two commuting
diagrams (1.2.24) and (1.2.25). Right duals via the right antipode are defined similarly.
It was also shown in [BV1, Thm. 3.8] that CM is rigid if and only if the left and right
antipodes exist, and that the antipodes are unique.

A morphism of Hopf monads is a morphism of the underlying bimonads. It automati-
cally commutes with the antipodes, [BV1, Lem. 3.13].

A Hopf comonad on C is a Hopf monad on Cop.

Example 1.2.15. If C is braided rigid monoidal, and H ∈ C is a Hopf algebra with
invertible antipode, then H⊗? is a Hopf monad, see [BV1, Ex. 3.10]. This example will
be important in Section 4.5. 4



Chapter 2

Preliminaries on quasi-Hopf algebras

The ubiquity of Hopf algebras is ever-increasing. This also brings with it, as so often in
mathematics, several natural generalizations, such as Hopf monads, weak Hopf algebras,
Hopf group coalgebras, see e.g. [BV1, EGNO, Vi]. In this chapter, we will review another
generalization, that of a quasi-Hopf algebra introduced by Drinfeld in [Dr].

Whereas Hopf algebras are equipped with a coassociative coalgebra structure, quasi-
Hopf algebras lose, or rather loosen, the coassociativity—at the expense of some technical
complications. From a categorical point of view, quasi-Hopf algebras are in some sense
more natural than Hopf algebras: a Hopf algebra corresponds to a finite tensor category
together with a strong monoidal functor to Vect, while a quasi-Hopf algebra corresponds
only to such a category together with a multiplicative functor to Vect (i.e. the functor com-
mutes with the respective tensor products without satisfying any coherence conditions),
see [EGNO, Ch. 5].

In the first section, we will review the fundamental definitions and properties of quasi-
Hopf algebras, along with glimpses of categorical interpretations. The second section will
briefly survey some additional structures and properties one might want a quasi-Hopf
algebra to have. Afterwards, we recall the theory of cointegrals from [HN2, BC1, BC2],
and in the last section give some examples.

Much of the material presented in this chapter can be found in the (recent) mono-
graph [BCPO], which is the first book entirely devoted to quasi-Hopf algebras.

2.1 The fundamentals
In this section we give our conventions for quasi-Hopf algebras, and state some important
results. We follow the conventions in [BGR1, BGR2, FGR1, FGR2], which in some sense
are opposite to those in [HN2, BC1, BC2, BCT], so a bit of care when comparing equations
over different sources has to be imposed.

Recall that we agreed that all linear structures are over an algebraically closed field k,
and finite (in the appropriate sense), unless otherwise stated. Note that mostly, in this
and the next chapter, algebraic closedness is not actually needed; we keep it, however, to

19
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stay in line with our conventions for finite tensor categories.

2.1.1 The definition of a quasi-Hopf algebra
A quasi-Hopf algebra is a tuple H = (H,µ, η,∆, ε, S,α,β,Φ) together with some axioms
which we will now explain in detail.

(H,µ, η) is an associative algebra H with multiplication µ and unit η, and we set
1 = η(1) ∈ H. Multiplication will as usual be written as juxtaposition, i.e. for a, b ∈ H,
ab = µ(a⊗ b).

The three linear maps

S : H → H, ∆: H → H ⊗H and ε : H → k , (2.1.1)

are called the antipode, the coproduct, and the counit, respectively. The antipode is re-
quired to be an anti-algebra morphism, while the two other maps are algebra morphisms.

Lastly, the elements α, β ∈ H are called the evaluation and coevaluation element, and
Φ ∈ H⊗3 is the coassociator, which is invertible. We write Ψ = Φ−1.

The coassociator makes the coproduct quasi-coassociative7, i.e.

(id⊗∆)(∆(h)) = Ψ · (∆⊗ id)(∆(h)) · Φ , (2.1.2)

for all h ∈ H. Thus, the Φ in [HN2, BC2] is our Ψ. It is also counital and satisfies a
3-cocycle condition, that is

(id⊗ε⊗ id)(Φ) = 1⊗ 1 (2.1.3)

and

(∆⊗ id⊗ id)(Φ)·(id⊗ id⊗∆)(Φ)
= (Φ⊗ 1) · (id⊗∆⊗ id)(Φ) · (1⊗ Φ) . (2.1.4)

Before listing the rest of the defining axioms, we introduce some notation.

Notation 2.1.1. Two variants of the sumless Sweedler notation will be used. For an
element u ∈ H⊗n we write u = u1 ⊗ · · · ⊗ un. Note that this is just a notation useful for
suppressing unwieldy sums—it does not imply that u is a simple tensor. The correct way
to parse an expression like u1u2 for u ∈ H ⊗H is thus to read it as µ(u). We also write
u21 = τ(u) = u2 ⊗ u1, where τ is the flip map in Vect, and this notation is extended to
higher tensor powers in the obvious way, e.g. for u ∈ H ⊗H, we also define the notation
u13, u31 ∈ H⊗3 etc, to mean u13 = u1 ⊗ 1⊗ u2 and u31 = u2 ⊗ 1⊗ u1.

7For simplicity, this axiom will later also be referred to as the coassociativity of the quasi-Hopf alge-
bra H.
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Because often expressions will involve multiple copies of the coassociator or its inverse,
we will distinguish them by writing the first copy as

Φ = X1 ⊗X2 ⊗X3 and Ψ = x1 ⊗ x2 ⊗ x3 , (2.1.5)

and using letters like Y, y and Z, z for further copies. That is, the coassociator is expressed
using capital Latin letters, while its inverse uses lowercase Latin letters.

The second Sweedler notation is for the coproduct and the iterated coproduct. We
write

∆(h) = h(1) ⊗ h(2) and e.g. (id⊗∆)(∆(h)) = h(1) ⊗ h(2,1) ⊗ h(2,2) , (2.1.6)

for h ∈ H. ♦

With this notation established, we can write the coassociativity (2.1.2) of H in its
probably most convenient form as

X1h(1) ⊗X2h(2,1) ⊗X3h(2,2) = h(1,1)X1 ⊗ h(1,2)X2 ⊗ h(2)X3 . (2.1.7)

We are ready to state the antipode axioms. Any h ∈ H satisfies

S(h(1))αh(2) = ε(h)α and h(2)βS(h(2)) = ε(h)β , (2.1.8)

and the coassociator satisfies either8 of

S(X1)αX2βS(X3) = 1 and x3βS(x2)αx1 = 1 . (2.1.9)

The latter pair of equations is referred to as the zig-zag axioms, and we will understand
the reason for this after talking about the category of representation of H. Note that the
zig-zag axioms imply that ε(α) and ε(β) are non-zero. Thus without loss of generality we
may (and will) always assume ε(α) = 1 = ε(β).

A linear map f : A → B between quasi-Hopf algebras is a morphism of quasi-Hopf
algebras if it is an algebra map that commutes with the coaction, the counit, and the
antipode, and which sends the (co)evaluation elements and the coassociator of A to those
of B.

Following e.g. [HN2], we use the hook notation

(h ⇀ f)(a) = f(ah), f ⇀ h = h(1)f(h(2)) ,
(f ↼ h)(a) = f(ha), h ↼ f = f(h(1))h(2) , (2.1.10)

for h, a ∈ H, f ∈ H∗. Note that the left column defines an action of H on H∗.
8Indeed, one of the two equations implies the other, [Dr, Prop. 1.3] or [BCPO, Prop. 3.2.2]. However,

both are displayed for later use.
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Example 2.1.2. Let H be a quasi-Hopf algebra. We get three additional quasi-Hopf
algebras for free by considering the opposite multiplication µop = µ◦τ and comultiplication
∆cop = τ ◦∆. Namely, the opposite

Hop = (H,µop, η,∆, ε, S−1, S−1(β), S−1(α),Ψ) ,

the coopposite

Hcop = (H,µ, η,∆cop, ε, S−1, S−1(α), S−1(β),Ψ321) ,

and the op-coopposite

Hop,cop = (H,µop, η,∆cop, ε, S,β,α,Φ321)

Furthermore, the tensor product of two quasi-Hopf algebras is naturally a quasi-Hopf
algebra. 4

For actual examples we refer to Section 2.4, the last section of this chapter.

Remark 2.1.3. 1. The antipode of a finite-dimensional quasi-Hopf algebra is auto-
matically bijective [BC1, Thm. 2.2].

2. Any Hopf algebra is a quasi-Hopf algebra with α = β = 1 and Φ = 1⊗3.

3. It is easy to see that counitality and the cocycle condition also imply

ε(X1)X2 ⊗X3 = 1⊗ 1 = ε(X3)X1 ⊗X2 . (2.1.11)

Similar equations also hold for the inverse coassociator.
O

Remark 2.1.4. 1. A (quasi-)bialgebra is defined like a (quasi)-Hopf algebra without an
antipode and (co)evaluation elements. It is easy to see that for a bialgebra, there is
at most one antipode, so that being a Hopf algebra is a property of a bialgebra. In the
strictly non-coassociative case this is no longer true. Instead, if the triple (S,α,β)
turns a quasi-bialgebra into a quasi-Hopf algebra, then so does (Su, uα,βu−1) for
any invertible element u ∈ H. Here Su is the map Su(h) = uS(h)u−1. In fact, any
two quasi-Hopf structures on a quasi-bialgebra are related in this way, via a unique
u, cf. [Dr, Prop. 1.1]. This is more easily understood after Section 2.1.3: it comes
from the fact that a rigid structure, if it exists, is unique up to unique isomorphism
(in the appropriate sense), see e.g. [Sch1, Cor. 1.2.10].

2. Let A,H be quasi-Hopf algebras. As a consequence of the first point, a morphism
f : A → H of quasi-bialgebras—i.e. a linear map preserving (co)multiplication,
(co)unit, and coassociator—is not necessarily a morphism of quasi-Hopf algebras.
This is in contrast to when A and H are strictly coassociative: a morphism of the
underlying bialgebras automatically commutes with the antipodes.
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3. The reader knowledgeable in Hopf algebras will also have notice that we required
the antipode S to be an anti-algebra morphism. If H is a Hopf algebra, then this
requirement is superfluous, see e.g. [Ka, Thm. III.3.4]. The argument uses two
facts. Firstly, linear maps H ⊗H → H form an associative unital algebra under the
convolution product

H ⊗H id⊗τ⊗id ◦∆⊗∆−−−−−−−−−→ H⊗4 µ⊗µ−−→ H ⊗H µ−→ H . (2.1.12)

Secondly, the maps µop ◦ (S ⊗ S) and S ◦ µ are a left and right inverse of µ in
the convolution algebra. Hence they necessarily agree. One can show (for a Hopf
algebra) that S is an anti-coalgebra map in a very similar way.
For a quasi-Hopf algebra, the space of linear maps as above does, in general, not form
an associative algebra, so the above approach fails right away; hence the requirement.
As for S being an anti-coalgebra map, this is not even true anymore, as we will review
in Section 2.1.2.

O

2.1.2 Twist equivalence
Following e.g. [Dr, Ka, HN2], we recall that a twist is an invertible element F ∈ H ⊗ H
which is normalized, i.e. satisfies

(ε⊗ id)(F ) = 1 = (id⊗ε)(F ) . (2.1.13)

A twist induces a twist transformation. This means that by setting

∆F (h) = F∆(h)F−1

ΦF = (F ⊗ 1) · (∆⊗ id)(F ) · Φ · (id⊗∆)(F−1) · (1⊗ F−1)
αF = S(F−1

1 )αF−1
2 , βF = F1βS(F2) (2.1.14)

we obtain a new quasi-Hopf algebra HF = (H,µ, η,∆F , ε, S,αF ,βF ,ΦF ). It is clear that
if F ′ is a twist on HF , then F ′F is a twist on H, and (HF )F ′ = HF ′F . Consequently
(HF )F−1 = H1 = H. Furthermore, it is clear that this also works on the level of quasi-
bialgebras, disregarding (co)evaluation elements and the antipode.

This yields a notion of equivalence slightly weaker and more flexible than isomorphism.
Namely, two quasi-bialgebras (resp. quasi-Hopf algebras) H and H ′ are said to be twist
equivalent (resp. strongly twist equivalent) if there is an isomorphism f : H ′ → HF of
quasi-bialgebras (resp. quasi-Hopf algebras) for a twist F on H. In that case the first
equation of (2.1.14) becomes

F∆(f(h′))F−1 = (f ⊗ f)(∆′(h′)) (2.1.15)

for h′ ∈ H ′ and where ∆, ∆′ are the coproducts of H, H ′, respectively. One checks that
this indeed defines an equivalence relation on the set of quasi-bialgebras (resp. quasi-Hopf
algebras).
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Remark 2.1.5. Note that if f : H ′ → HF exhibits a strong twist equivalence, then f also
exhibits a twist equivalence of the underlying quasi-bialgebras; the converse need not hold.
If H,H ′ are quasi-Hopf algebras, then we can transport the quasi-Hopf structure on H ′

along an isomorphism f : H ′ → HF of quasi-bialgebras. The two quasi-Hopf structures on
HF are related via a unique invertible element as in Remark 2.1.4. O

In Section 2.1.5 we will see that twist equivalent quasi-bialgebras have the same rep-
resentation theory.9

The most famous example of a strong twist equivalence is perhaps given by the Drinfeld
twist, introduced by Drinfeld in [Dr]. To motivate it, recall from Remark 2.1.4 that for
ordinary Hopf algebras the antipode is an anti-coalgebra morphism, and thus induces
a Hopf algebra isomorphism H ∼= Hop,cop. In the quasi-setting, this is no longer true.
However, the antipode is a quasi-Hopf algebra isomorphism between Hf and Hop,cop, for
a certain twist f on H called the Drinfeld twist. In particular, it satisfies

f∆(S(h))f−1 = (S ⊗ S)(∆cop(h)) . (2.1.16)

In Section 2.1.6, after we have started thinking about quasi-Hopf algebras in a cate-
gorical way, we will be able to easily give a closed form for f . We also postpone until then
the specialization of (2.1.14) to F = f .

2.1.3 Modules over quasi-Hopf algebras
In this thesis module will mean left module, unless otherwise stated. Recall also crucially
that all vector spaces are finite-dimensional.

A module over a quasi-Hopf algebra H is a module over the algebra underlying H. We
therefore get a finite abelian category of H-modules, which we denote by HM or H-mod.
The additional and fairly complicated-looking axioms of a quasi-Hopf algebra equip HM
with a much richer structure, namely that of a non-strict finite tensor category.10,11

We will presently explain the structure of this category. To this end let us agree that we
denote the action of h ∈ H on v ∈ V by h.v, for V ∈ HM.

The tensor product of two H-modules V,W ∈ HM is given by the tensor product
V ⊗k W equipped with the diagonal action, that is

h.(v ⊗ w) = h(1).v ⊗ h(2).w (2.1.17)

for h ∈ H, v ∈ V , w ∈ W .
9More concretely, we will see that twist-equivalence produces a monoidal isomorphism between the

respective categories of representations. Requiring strong twist equivalence puts extra (unnecessary)
constraints on this isomorphism, which is why we want to make the distinction.

10In our convention, HM has a non-trivial associator, but strict unitors, cf. Remark 2.1.9 later.
11More precisely, a quasi-Hopf algebra is an algebra with additional structure and property such that its

category of modules is finite tensor, and such that the forgetful functor to vector spaces is multiplicative
(i.e. it preserves tensor products but does not necessarily do so coherently).
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As mentioned above the tensor product is not strict. The associator is given by acting
with the coassociator of H,

αU,V,W : U ⊗ (V ⊗W )→ (U ⊗ V )⊗W
u⊗ v ⊗ w 7→ Φ · (u⊗ v ⊗ w) = X1.u⊗X2.v ⊗X3.w . (2.1.18)

This linear map intertwines the H-action thanks to coassociativity (2.1.7), and the pen-
tagon axiom follows immediately from the cocycle condition (2.1.4). The tensor unit 1 is
given by the ground field k equipped with the action by ε.

The regular module H plays a special role later, and we introduce some extra notation
for the left regular action. For h ∈ H we denote it by lh, so that for all a ∈ H

lh(a) = ha . (2.1.19)

Similarly, the right regular action by h is denoted rh.
We denote the canonical pairing between a vector space V and its dual V ∗ by angled

brackets, i.e.

V ∗ × V → k, (f, v) 7→ 〈f | v〉 := f(v) . (2.1.20)

An H-module V has both a left and a right dual. They are given by the dual vector
space V ∗, and h ∈ H acts on the

left dual V ∨ right dual ∨V

by, for v ∈ V , f ∈ V ∗,

(h.f)(v) = 〈f | S(h).v〉 (h.f)(v) = 〈f | S−1(h).v〉 . (2.1.21)

The corresponding evaluation is given by

evV (f ⊗ v) = 〈f | α.v〉 ẽvV (v ⊗ f) = 〈f | S−1(α).v〉 , (2.1.22)

and the coevaluation by

coevV (1) =
dimV∑
i=1

β.vi ⊗ vi c̃oevV (1) =
dimV∑
i=1

vi ⊗ S−1(β).vi , (2.1.23)

for a basis {vi} of V with corresponding dual basis {vi}. By (2.1.8), these four maps are
intertwiners, and the zig-zag axioms for HM follow from the zig-zag axioms (2.1.9) for H.

For later use we extend the hook notation from (2.1.10) to dual vector spaces, so that
for example the action on the left dual of the H-module V could then be written as
f ↼ S(h), since

〈h.f | v〉 = 〈f | S(h)v〉 = 〈f ↼ S(h) | v〉 (2.1.24)

for all h ∈ H, v ∈ V , f ∈ V ∗.
Note also that the canonical isomorphism (1.1.12) V ∼= (∨V )∨ is the same linear map

as in Vect: this follows from the zig-zag axioms (2.1.9).
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Remark 2.1.6. We will later (in Section 2.2) define additional structure on H turning
HM into a pivotal category. As mentioned in Chapter 1, one then gets another candidate
for right duals from left duals using the pivotal structure. Whenever ‘right dual’ is men-
tioned, however, one should always think of the canonical right dual as described above,
unless we explicitly state otherwise. O

Remark 2.1.7. Let H be a quasi-bialgebra. Note that then, similarly, HM is a monoidal
category. If HM admits a rigid structure compatible with taking duals in vector spaces,
then H admits an antipode triple (S,α,β), compare with Remark 2.1.4. A choice of
antipode triple is then a choice of rigid structure, see [BCPO, Sec. 3.5]. O

2.1.4 Structural morphisms and actions in pictures
We will later often draw the structural morphisms of a quasi-Hopf algebra H in a certain
way, i.e. not with coupons labeled by, for example, ∆. We follow e.g. [BBGa, FSS, FGR1].
The multiplication, unit, comultiplication, and counit are

µ = , η = , ∆ = , ε = (2.1.25)

respectively, while for the antipode and its inverse we use

S = , S−1 = . (2.1.26)

Note that these are, in general, only string diagrams in Vect.
For V ∈ HM, we denote the action of H by

Action of H on V =

H V

V

, (2.1.27)

and note that, when regarding V in the source as a vector space with trivial H-action,
this is a morphism in HM.

As an example putting all of this together, the action on the right dual ∨H of the
regular module can be represented as

H ∨H

∨H

=

H H∗

H∗

. (2.1.28)

We stress again that these pictures (and in particular the rigid structure in the last picture)
are in Vect.
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2.1.5 The categorical meaning of twist equivalence
(Strong) twist equivalence as discussed in Section 2.1.2 has the following very nice well-
known categorical interpretation, which we now recall from e.g. [BCPO, Dr, Ka]. We refer
to [Ka, Sec. XV.3] for full proofs.

At first, let us just consider one quasi-Hopf algebra H and a twist F on H. By
construction of HF , the identity functor on HM regarded as a functor id : HM → HF

M
is a (strong monoidal) isomorphism of finite tensor categories. Its unit is trivial, and the
multiplication is the linear map

id2(V,W ) : V ⊗W → V ⊗W, v ⊗ w 7→ F−1.(v ⊗ w) . (2.1.29)

That this is an intertwiner and monoidal is precisely the content of the defining data
(2.1.14) of HF (as a quasi-bialgebra).12

More generally, consider now two quasi-Hopf algebras A and H. Denote the quasi-Hopf
structures of A and H by the standard symbols with superscripts A and H, respectively.
Let f : A → H be an isomorphism of the underlying algebras. The isomorphism im-
mediately induces a (linear) pullback functor f ∗ : HM → AM, i.e. we precompose the
H-action with f to obtain an A-action. The pullback is an equivalence (of finite linear
abelian categories); more precisely, it is even an isomorphism.

Now, on the one hand, suppose that A and H are twist-equivalent. Then there exists
a twist F on H and a quasi-bialgebra isomorphism f : A → HF , which equip f ∗ with a
strict monoidal structure. Precomposing with the equivalence from above, we obtain the
strong monoidal functor f ∗ : HM→ AM with strict unit and multiplication given by

f ∗2 (V,W ) : f ∗(V )⊗ f ∗(W )→ f ∗(V ⊗W ), v ⊗ w 7→ F−1.(v ⊗ w) . (2.1.30)

for all V,W ∈ HM. Indeed, f ∗2 being an intertwinter amounts to

F−1 · (f ⊗ f)(∆A(a)) = ∆H(f(a)) · F−1 , (2.1.31)

and after rearranging, the associativity coherence condition of the functor f ∗ is

f⊗3(ΦA) = (F ⊗ 1) · (∆H ⊗ id)(F ) · ΦH · (id⊗∆H)(F−1) · (1⊗ F−1) . (2.1.32)

Comparing with the definition (2.1.14) of the quasi-Hopf data on HF , we see that this
equation is equivalent to the true statement f⊗3(ΦA) = ΦHF . Thus HM ∼= AM as finite
tensor categories.

One the other hand, suppose G : HM→ AM is a strong monoidal equivalence whose
unit is trivial, and which commutes with the canonical forgetful functors to Vect. Then
it is given by the pullback along a unique algebra isomorphism f : A → H, cf. [BV1,
Lem. 1.6], so we can without loss assume G = f ∗. Set F−1 = f ∗2 (H,H)(1⊗ 1) ∈ H ⊗H.

12‘Monoidal’ means that it satisfies some coherence conditions which we did not give explicitly earlier
in Section 1.1.5. The important condition in question here can be formulated as an obvious diagram
involving the multiplication and the associativity isomorphisms of both categories.
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Then f ∗2 is completely determined by F−1. Indeed, to see this, note first that for any
v ∈ V ∈ HM we get an H-intertwiner

ρv : H → V, h 7→ h.v

from the regular module to V ; moreover, the pullback doesn’t do anything on morphisms.
Together with naturality this implies the linear equation

f ∗2 (V,W )(v ⊗ w) = (ρv ⊗ ρw)
(
f ∗2 (H,H)(1⊗ 1)

)
= F−1

1 .v ⊗ F−1
2 .w .

Clearly f ∗0 being strict is equivalent to F being a twist. The equations that f ∗2 satisfies—i.e.
(2.1.31) and (2.1.32)—now show that f : A→ HF is an isomorphism of quasi-bialgebras,
so that A and H are twist-equivalent.

Remark 2.1.8. Strong twist equivalence puts a further condition on the equivalence
HM ∼= AM. Namely, if f : A → HF is a strong twist equivalence, then f ∗ commutes
with the rigid structure on the nose. But this is unnecessary, since the rigid structure of a
monoidal category is unique (up to unique isomorphism) if is exists [Sch1, Cor. 1.2.10]. O

Remark 2.1.9. One could have included in the definition of a quasi-Hopf algebra two
additional elements l, r ∈ H, implementing left and right unitors of HM. However, this
may be disregarded, since every quasi-Hopf algebra in that sense is twist-equivalent to a
quasi-Hopf algebra as defined earlier (without unitors), see [BCPO, Cor. 3.11]. O

2.1.6 Special elements and their relations
When working with quasi-Hopf algebras it is convenient to introduce some special elements
in tensor powers of H and their relations. Introducing them is what this section is about.
We closely follow [BC2], but note again that our conventions are slightly different, i.e. our
Φ is their Φ−1.

We first introduce the four elements qR, pR, qL, pL in H ⊗H, given by

qR = x1 ⊗ S−1(αx3)x2 , pR = X1 ⊗X2βS(X3) ,
qL = S(X1)αX2 ⊗X3 , pL = x2S

−1(x1β)⊗ x3 . (2.1.33)

These satisfy the identities

∆(qR1 )pR[1⊗ S(qR2 )] = 1⊗ 1 , [1⊗ S−1(pR2 )]qR∆(pR1 ) = 1⊗ 1 ,

∆(qL2 )pL[S−1(qL1 )⊗ 1] = 1⊗ 1 , [S(pL1 )⊗ 1]qL∆(pL2 ) = 1⊗ 1 , (2.1.34)

and, for all a ∈ H,

[1⊗ S−1(a(2))]qR∆(a(1)) = [a⊗ 1]qR ,
[S(a(1))⊗ 1]qL∆(a(2)) = [1⊗ a]qL ,
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Φ

Ψ

β

α
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H H

H
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pR

qR
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H H

H

= idH⊗H

Figure 2.1: The equalities in (2.1.34) follow from the zig-zag identities for
duals in H-mod, where both sides are tensored with the identity. We show
this above for first equality in (2.1.34), where we have written out idH times
the zig-zag identity for H in H-mod as a string diagram in Vect.

∆(a(1))pR[1⊗ S(a(2))] = pR[a⊗ 1] ,
∆(a(2))pL[S−1(a(1))⊗ 1] = pL[1⊗ a] . (2.1.35)

These elements and relations are well-known in the representation theory of quasi-Hopf
algebras. They, in fact, have nice interpretations in H-mod, see Figure 2.1 for an example.
More about this may be found in e.g. [HN1, Sec. 2].

We will now describe the Drinfeld twist already mentioned in Section 2.1.2 explicitly,
and use insights from Sections 2.1.3 and 2.1.5 to help understand some of its properties.
Recall the natural isomorphism γV,W : V ∨⊗W∨ → (WV )∨ from (1.1.6). There is a unique
invertible element f ∈ H ⊗H, called the Drinfeld twist, such that

γV,W (f ⊗ g)(w ⊗ v) = g(f 1w)f(f 2v) (2.1.36)

for all f ∈ V ∗, v ∈ V , g ∈ W ∗, w ∈ W , see [Dr] and e.g. [FGR1, Lem. 6.7]. The statement
that γV,W be an intertwiner translates to the equation

f ·∆(S(a)) · f−1 = (S ⊗ S) (∆cop(a)) . (2.1.37)

We also find

(ε⊗ id)(f) = 1 = (id⊗ε)(f) , (2.1.38)

so that f indeed is a twist as defined in Section 2.1.2. We may therefore define the
quasi-Hopf algebra Hf and ask if, in light of (2.1.37), the antipode is an isomorphism of
quasi-Hopf algebras S : Hop,cop → Hf . The answer is yes, and a first proof can be found
in [Dr, Sec. 1], a more detailed newer proof in [BCPO, Prop. 3.23].
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Let us now state some technical properties of the Drinfeld twist which we will need
later on; this is not even close to an exhaustive list, but it includes exactly those we need,
for more see [BC2, Sec.2]. The Drinfeld twist satisfies the identity

(1⊗ f) · (id⊗∆)(f) ·Ψ = (S ⊗ S ⊗ S)(Ψ321) · (f ⊗ 1) · (∆⊗ id)(f) , (2.1.39)

or, written in Sweedler-notation,

f 1x1 ⊗ f̃ 1f 2(1)x2 ⊗ f̃ 2f 2(2)x3

= S(x3)f̃ 1f 1(1) ⊗ S(x2)f̃ 2f 1(2) ⊗ S(x1)f 2 , (2.1.40)

where we use the symbol f̃ to denote another copy of the Drinfeld twist. This looks
rather complicated, but note that this is just the specialization of (2.1.32) to the quasi-
Hopf algebra isomorphism S : Hop,cop → Hf .

The Drinfeld twist further satisfies

f 1βS(f 2) = S(α) , S(βf 1)f 2 = α , (2.1.41)

which can be seen by either a direct computation, or simply an appeal to Sections 2.1.2
and 2.1.5.

Now we shall write out the closed form of the Drinfeld twist and its inverse, which may
readily be read off from (2.1.36) and (1.1.6). To this end, we also define ε, δ ∈ H ⊗H by

ε = S(x2)qL1 x3(1) ⊗ S(x1)αqL2 x3(2) = S(qR2 X1(2))X2 ⊗ S(qR1 X1(1))αX3 (2.1.42)

and

δ = x1(1)p
R
1 βS(x3)⊗ x1(2)p

R
2 S(x2) = X1βS(X3(2)p

L
2 )⊗X2S(X3(1)p

L
1 ) . (2.1.43)

These come from the canonical morphisms

(W∨ ⊗ V ∨)⊗ (V ⊗W )→ 1 and 1→ (V ⊗W )⊗ (W∨ ⊗ V ∨)

for all V,W ∈ HM, respectively, and the two different expressions for ε and δ on each
line indeed agree by coherence. From this point of view, we easily see that they satisfy

∆(α) = f−1ε and ∆(β) = δf . (2.1.44)

The Drinfeld twist is now given explicitly by

f = (S ⊗ S)(∆cop(pR1 ))ε∆(pR2 ) (2.1.45)

and its inverse is

f−1 = ∆(qL1 )δ(S ⊗ S)(∆cop(qL2 )) , (2.1.46)

see also [FGR1, Lem. 6.7].
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We finish this section by mentioning the following variant of the Drinfeld twist. The
natural isomorphism γrV,W : ∨V ⊗ ∨W → ∨(WV ), obtained by mirroring the diagram in
(1.1.6) at the vertical axis, can be expressed by using what we call the Drinfeld twist for
right duals f r:

γrV,W (f ⊗ g)(w ⊗ v) = g(f r1w)f(f r2v) (2.1.47)

for all f ∈ V ∗, v ∈ V , g ∈ W ∗, w ∈ W . The explicit form of the Drinfeld twist for right
duals can similarly be given as

f r = (S−1 ⊗ S−1)(ε21∆cop(pL1 ))∆(pL2 ) ,
(f r)−1 = ∆(qR2 )(S−1 ⊗ S−1)

(
∆cop(qR1 )δ21

)
. (2.1.48)

2.2 Additional structures and properties
We have seen that modules over the quasi-Hopf algebra H form a finite tensor category.
We also saw in Chapter 1 that finite tensor categories can have some desirable additional
structures (or properties). In this section we briefly address the natural question: How is
additional structure on the category expressed as additional structure on H?

2.2.1 Pivotal structure
The following is well-known, see e.g. [BCT, Prop. 3.2]. Note, however, that we again do
not get exactly the formulas there, but rather their ‘inverses’ due to our conventions.

Proposition 2.2.1. There is a bijective correspondence between

(a) pivotal structures on HM

(b) invertible elements g ∈ H satisfying

S2(h) = ghg−1 and ∆(g) = f−1 · (S ⊗ S)(f 21) · (g ⊗ g) . (2.2.1)

An element g ∈ H satisfying (2.2.1) is called a pivot, and it induces the pivotal structure

δV : V → V ∨∨, v 7→ δVect
V (g.v) (2.2.2)

for all V ∈ HM. Here δVect is the canonical pivotal structure of Vect. The first equa-
tion in (2.2.1) then corresponds to δV being an intertwiner, while the second implements
monoidality.

Remark 2.2.2. If g1 and g2 are two pivots of H, then g2 = zg1 for a unique invertible
central element z satisfying ∆(z) = z ⊗ z. The element z corresponds to the monoidal
automorphism δ−1

1 ◦ δ2 of the identity functor of HM, where δi is the pivotal structure
implemented by gi as in (2.2.2). We will indicate our choice of pivot by saying that (H, g)
is a pivotal quasi-Hopf algebra. O
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A pivot satisfies [BT2, Prop. 3.12]

ε(g) = 1 and S(g) = g−1 . (2.2.3)

The first equality follows directly from the second equation in (2.2.1), while the second
property stems from the more general fact that in every pivotal category we have the
identity δ−1

V ∨ = (δV )∨, see e.g. [Sch3, Prop. A.1].
Remark 2.2.3. If (H, g) is pivotal then so is (Hcop, gcop) with gcop = g−1. O

Lastly, recall from (1.1.10) the natural monoidal isomorphism V ∨ ∼= ∨V induced by
the pivotal structure. In the setting of quasi-Hopf algebras, it is very easy to describe.
Indeed, it is simply given by the bijective linear map

V ∗ → V ∗, f 7→ (f ↼ g) , (2.2.4)

where we used the hook notation from (2.1.10). This follows from the zig-zag axioms
(2.1.9).

2.2.2 Quasi-triangular structure
Recall Notation 2.1.1. An R-matrix for a quasi-Hopf algebra H is an invertible element
R ∈ H ⊗H, with inverse denoted by R, satisfying the hexagon axioms

(∆⊗ id)(R) = Ψ231R13Φ132R23Ψ, (id⊗∆)(R) = Φ312R13Ψ213R12Φ , (2.2.5)

and relating the coproduct and the coopposite coproduct as

R∆(h)R = ∆cop(h) (2.2.6)

for all h ∈ H.
A quasi-triangular quasi-Hopf algebra is then a quasi-Hopf algebra together with an

R-matrix. Given R, we can define linear maps

cV,W : V ⊗W ∼−→ W ⊗ V, v ⊗ w 7→ R2.w ⊗R1.v , (2.2.7)

and the conditions above ensure not only that these maps are morphisms in HM, but also
that they satisfy the hexagon axioms of a braided finite tensor category, cf. Section 1.1.7.
Conversely, if HM is braided with braiding c, then one sets R21 = cH,H(1⊗ 1).
Proposition 2.2.4 ([BCPO, Prop. 10.1]). A quasi-Hopf algebra admits an R-matrix if
and only if HM is braidable. The correspondence between these structures is as described
above.

For the finite tensor categories we are interested in, the double braiding plays an
important role, see Chapter 1. In the realm of (quasi-)Hopf algebras, this is implemented
by (multiplication with) the monodromy element or monodromy matrix

M = R21R (2.2.8)

in H ⊗H. For more details in the same notation as used here see e.g. [FGR1, Sec. 6].
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2.2.3 Ribbon structure

Let H be a quasi-triangular quasi-Hopf algebra. Following [So], a ribbon element is a
non-zero central element v ∈ H such that

∆(v) = M−1 · v ⊗ v and S(v) = v . (2.2.9)

It satisfies ε(v) = 1, and is invertible [So, Sec. 2.3].
These equations correspond precisely to (1.1.22), the ones imposed on a ribbon twist

in a braided finite tensor category. Indeed, define for each H-module X a map ϑX as the
action with v−1, i.e.

ϑX(x) = v−1.x (2.2.10)

for all x ∈ X. Then ϑ is natural in X since v is central. Moreover, it satisfies the first
(second) equation of (1.1.22) iff v satisfies the first (second) equation of (2.2.9).

Remark 2.2.5. With applications in mind, we are interested in ribbon quasi-Hopf al-
gebras only. If one now wants to compute the modified trace, then a pivot is needed,
see Theorem 2. There is a canonical one, coming from the fact that ribbon categories are
pivotal, see Section 1.1.9. From the description there we see that the canonical pivot of a
ribbon quasi-Hopf algebra is

g = uv−1 . (2.2.11)

Here, u ∈ H is the invertible element corresponding to the Drinfeld morphism (1.1.17)—
its closed form can easily be deduced, but we will not need it; see e.g. [FGR1, Sec. 6.3]
or [BN] for an expression of u in terms of the defining data of a quasi-triangular quasi-Hopf
algebra, along with additional properties. O

2.2.4 Factorizable quasi-Hopf algebras

By [BT1], a quasi-triangular quasi-Hopf algebra H is factorizable if and only if the linear
map

M : H∗ → H, f 7→ (f ⊗ id)
(
qL1 x1M1p

R
1 ⊗ qL2 (1)x2M2p

R
2 S(qL2 (2)x3)

)
(2.2.12)

is bijective, where M is the monodromy matrix of H from (2.2.8). In [FGR1, Sec. 7.3] it
was shown that this is equivalent to HM being factorizable: the map M is precisely the
Hopf algebra map L → L∨ mentioned in Example 1.2.7.
In particular, HM is a modular tensor category for H factorizable and ribbon.
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2.3 Integrals and cointegrals
For finite-dimensional Hopf algebras, the definition of integrals and cointegrals is fairly
straightforward, and very symmetric—cointegrals are not more difficult than integrals,
see also Remark 4.1.12. For quasi-Hopf algebras, this story is much more involved. In this
section we review without much detail the construction and definition of (co)integrals for
quasi-Hopf algebras, as well as their properties, from [HN2].

Quasi-Hopf bimodules
The main idea behind the construction of [HN2] is to generalize the fundamental theorem
of Hopf modules, see e.g. [Mon, Thm. 1.9.4], to the quasi-coassociative setting. To do this,
one approach could be to find a category in which H is a coalgebra; it turns out that this
works, as we will explain now.

Let He = H ⊗ Hop be the enveloping algebra of H. It is naturally a quasi-Hopf
algebra, and its category of modules He-mod is, as a finite abelian category, equivalent
to the category HMH of H-bimodules. Using the equivalence, we turn HMH into a rigid
monoidal category—in particular, the tensor product is ⊗k and not ⊗H .

In HMH , the regular bimodule H is a coalgebra. Indeed, the category is not strict, so
that an object C in HMH is a coalgebra with coproduct ∆C only if

C C ⊗ (C ⊗ C)

(C ⊗ C)⊗ C

(id⊗∆C)◦∆C

(∆C⊗id)◦∆C
Φ·?·Ψ (2.3.1)

commutes. This is satisfied by the regular bimodule because of quasi-coassociativity
(2.1.2).13 Counitality is clear, and we can thus consider the comonad

Yr : B 7→ B ⊗H (2.3.2)

on HMH , cf. Section 1.2.4 for a brief review of comonads. We denote its category of
comodules by

HMH
H := (HMH)Yr (2.3.3)

and call it the category of right quasi-Hopf bimodules. Note also that, by construction,
HMH

H is the category of right comodules over the coalgebra H internal to HMH .
Similarly, one defines left quasi-Hopf bimodules H

HMH as the comodules over the
comonad Y l : B → H ⊗B on HMH .14

13Note that by the same arguments, H will not be an algebra in HMH , and thus this in particular
does not exhibit H as a Hopf algebra internal to a category in the quasi-triangular case. But, by basic
abstract nonsense, both the left and the right dual of H now carry naturally an algebra structure.

14 Note that these are right quasi-Hopf bimodules over Hcop. Indeed, if B is a right quasi-Hopf bimodule
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The fundamental theorem of quasi-Hopf bimodules
Consider the functor

?ε : HM→ HMH , V 7→ Vε (2.3.4)

sending a left H-module to the H-bimodule with trivial right action. By tensoring the
result with H on the right, and imposing on the result the coaction coming from the
coproduct, we obtain a canonical functor from left modules to right quasi-Hopf bimodules.

On the other hand, there is the functor of right coinvariants

?coH : HMH
H → HM, B 7→ BcoH , (2.3.5)

where BcoH is a linear subspace of B, constructed as the image of a certain linear map,
and equipped with a certain left H-action. We do not need to characterize it any more at
this point.

The fundamental theorem of right quasi-Hopf bimodules now states:

HM ⊥ HMH
H

?ε⊗H

?coH

(2.3.6)

is an adjoint equivalence. This is shown in detail in [HN2, Sec. 3]. Note that it is in fact a
monoidal equivalence, but we did not specify the monoidal structure on HMH

H , as we will
not need it.

A similar statement about left quasi-Hopf bimodules can be made, see e.g. [SS, Sec. 4];
in this case, the adjoint equivalence is

HM ⊥ H
HMH

H⊗?ε

coH?

(2.3.7)

where coH?, the functor of left coinvariants, is defined similarly to ?coH above.

Cointegrals and their properties
The right dual ∨H of the regular bimodule is in a very natural way a Yr-comodule, i.e. an
object in HMH

H . It is trivial to check (using string diagrams in HMH) that

ρr : ∨H → Yr(∨H),

over Hcop with coaction ρ : B → B⊗H, then one can check that with the coaction ρ21 = τ ◦ρ : B → H⊗B,
B becomes a left quasi-Hopf bimodule over H. Here τ again denotes the tensor flip in vector spaces. Thus
statements about left quasi-Hopf bimodules over H can be obtained by ‘copping’ statements about right
quasi-Hopf bimodules over Hcop, and then flipping tensor factors.

See also e.g. [BCPO, Prop. 8.10] for the relation between Hcop-modules and H-modules.
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ρr =
[
∨H

∼−→ 1∨H c̃oevH ⊗ id−−−−−−→ (∨HH)∨H (id⊗∆)⊗id−−−−−−→ (∨H(HH))∨H ∼−→

∼−→ (∨HH)(H ∨H) id⊗ evH−−−−→ (∨HH)1 ∼−→ ∨HH = Yr(∨H)
]

(2.3.8)

turns ∨H into a right H-comodule. Similarly, the left dual H∨ carries a natural left H-
comodule structure, i.e. it is a comodule of the comonad Y l : B 7→ H ⊗B; we shall denote
the corresponding coaction by ρl.

Definition 2.3.1. A left cointegral is an element of
∫ l
H = (∨H)coH. A right cointegral is

an element of
∫ r
H = coH(H∨).

Remark 2.3.2. By footnote 14, right cointegrals for H are left cointegrals for Hcop. Note
also that, somewhat confusingly, right cointegrals are defined via Y l, while the definition
of left cointegrals uses Yr. O

Having defined left and right cointegrals, we want to now present some of their proper-
ties. By the explicit construction in [HN2, Sec. 3], the fundamental theorem of quasi-Hopf
bimodules supplies us with an isomorphism

(
∫ l
H)ε ⊗H

∼−→ ∨H , λ⊗ h 7→ λ(?S(h)) (2.3.9)

of Yr-comodules, cf. [HN2, Thm. 4.3]. From dimensional considerations alone it is clear
that

∫ l
H is one-dimensional. Thus, if λl ∈

∫ l
H is non-zero, the associative pairingH×H → k,

(a, h) 7→ λl(ah) is non-degenerate, and hence equips H with the structure of a Frobenius
algebra.15 Moreover, there exists an algebra morphism γ : H → k such that the H-action
on

∫ l
H is h.λ = γ(h)λ, for λ ∈

∫ l
H . We call γ the modulus of H.

Similarly,
∫ r
H is one-dimensional, and its H-module structure is again given by γ [SS,

Lem. 4.5].
For later reference we collect parts of the preceding discussion (and more) in the fol-

lowing proposition.

Proposition 2.3.3. Let γ be the modulus of H.

1. Left (resp. right) cointegrals exist and are unique up to scalar.

2. Non-zero left (resp. right) cointegrals are non-degenerate forms on H. Thus H is a
Frobenius algebra.

3. Let λl be a non-zero left cointegral. The Nakayama automorphism of (H,λl) is given
by θλl(a) = S(S(a) ↼ γ), for a ∈ H. In particular for all a, b ∈ H

λl(S−1(a)b) = λl(bS(a ↼ γ)) . (2.3.10)
15 Recall from e.g. [HN2] that a Frobenius algebra is a pair (A,ω) consisting of an algebra A and a non-

degenerate linear map ω : A→ k. A Frobenius algebra (A,ω) admits a unique (up to inner automorphism)
algebra automorphism θω satisfying ω(ab) = ω(bθω(a)) for all a, b ∈ A. We refer to θω as the Nakayama
automorphism of (A,ω).
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4. Let λr be a non-zero right cointegral. The Nakayama automorphism of (H,λr) is
given by θλl(a) = S−1(γ ⇀ S−1(a)), for a ∈ H. In particular for all a, b ∈ H

λr(S(a)b) = λr
(
bS−1(γ ⇀ a)

)
. (2.3.11)

5. Set

u = (γ ⊗ S2)(V) and ucop = (γ ⊗ S−2)(Vcop) , (2.3.12)

and let λl and λr be a left and a right cointegral, respectively. Then u and ucop are
invertible, and

(λr ↼ u) ◦ S ∈
∫ l
H and (λl ↼ ucop) ◦ S−1 ∈

∫ r
H . (2.3.13)

Proof. Points 1. and 2. were discussed above, and their proofs can be found in, or along
the lines of, [HN2, Sec. 4]. Point 3. is part of [HN2, Prop. 5.1], and 4. then follows from
3. for Hcop. The last point is [BC2, Prop. 4.3] for H and Hcop.

Our definition of cointegrals, Definition 2.3.1, is quite sophisticated, and we now want
to recall a more explicit (and computationally more useful) characterization from e.g. [BC2,
Sec. 3]. We start by writing the coactions ρr and ρl as linear maps. To abbreviate the
resulting expressions, we set

U = f−1(S ⊗ S)(qR21), and V = (S−1 ⊗ S−1)
(
f 21p

R
21

)
, (2.3.14)

following [HN2, BC2]. Explicitly, then, ρr sends f ∈ H∗ to

ρr(f) =
∑
i

f
(
V2(ei)(2)U2

)
· ei ⊗ V1(ei)(1)U1 , (2.3.15)

where we sum over a basis, see [BC2, Prop. 3.2] for a proof. To write out the linear map
ρl, we again invoke footnote 14. To do so, we first remark that

(qR)cop = qL21, (pR)cop = pL21, (qL)cop = qR21, and (pL)cop = pR21 . (2.3.16)

Likewise one finds f cop = (S−1 ⊗ S−1)(f), cf. [BC2, Sec. 3], and therefore

Ucop = (S−1 ⊗ S−1)(qLf−1) , and Vcop = (S ⊗ S)
(
pL
)
f 21 . (2.3.17)

By footnote 14, ρl = (ρr)cop
21 ; this may also be verified using direct calculation. In partic-

ular,

ρl(f) =
∑
i

f
(
Vcop

2 (ei)(1)Ucop
2

)
· Vcop

1 (ei)(2)Ucop
1 ⊗ ei ∈ H ⊗H∗ (2.3.18)

for f ∈ H∗.
Then, as can be shown using definition 3.5 and corollary 3.9 in [HN2] (see also [BC1,

Prop. 3.4] for this statement), the above definition of cointegrals is equivalent to
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Definition 2.3.4. A left cointegral for H is an element λl ∈ H∗ satisfying

(id⊗λl) (V∆(h)U) = γ(X1)λl(hS(X2))X3 (2.3.19)

for all h ∈ H, and a right cointegral for H is a left cointegral for Hcop. More explicitly,
this means it is an element λr ∈ H∗ satisfying

(id⊗λr)
(
Vcop∆cop(h)Ucop

)
= γ(x3)λr(hS−1(x2))x1. (2.3.20)

Remark 2.3.5. We derive another characterization of cointegrals for pivotal quasi-Hopf
algebras in Lemma 3.1.1, within the theory of γ-symmetrized cointegrals, which we develop
in Chapter 3. O

Finally, we want to slightly rewrite the equations in Definition 2.3.4 to bring them into
a form which will be much more useful later on. Namely, with the coaction ρr given in
(2.3.15), we can rewrite (2.3.19) as

ρr(λl) = γ(X1)λl.X2 ⊗X3 , (2.3.21)

where by the dot we mean the right H-action on the right dual ∨H, i.e. (f.a)(h) = f(hS(a))
for f ∈ ∨H, a ∈ H. Similarly we obtain that λr ∈ H∗ is a right cointegral if and only if

ρl(λr) = γ(x3)x1 ⊗ λr.x2 , (2.3.22)

and the dot here denotes the action on the left dual of the regular bimodule.

Integrals and their properties
Let Alg(H, k) be the set of algebra morphisms from H to k.

Proposition 2.3.6. With multiplication (ν · φ)(h) = ν(h(1))φ(h(2)) and unit ε, Alg(H, k)
becomes a group. The inverse of ν ∈ Alg(H, k) is ν−1 = ν ◦ S = ν ◦ S−1.

The proof is elementary. For the expression for the inverse of an element note that e.g.
ν(α) 6= 0 for any ν ∈ Alg(H, k).

Definition 2.3.7. For ν ∈ Alg(H, k) define the sets of left and right ν-integrals as

Lν = {l ∈ H | hl = ν(h)l} and Rν = {r ∈ H | rh = ν(h)r} . (2.3.23)

A left (resp. right) integral16 in H is a left (resp. right) ε-integral.

There are some nice immediate and well-known properties, see e.g. [HN2, Sec. 4, 5].
16In [BBGa] this is called a left cointegral, and what we call cointegral here is called integral there (all

in the case of Hopf algebras). We follow the naming conventions in e.g. [HN2, BC1, BC2].
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Proposition 2.3.8. 1. Let ν ∈ H∗ be any algebra morphism. Then Lν is one-dimen-
sional, and S(Lν) = Rν−1.

2. Let ν ∈ H∗ be as above, and let λ ∈ H∗ be a left or right cointegral which is non-zero.
Then

Lν = Rν ◦ θ−1
λ
, (2.3.24)

where θλ is the Nakayama automorphism of the Frobenius algebra (H,λ), cf. foot-
note 15.

3. Let ν, λ ∈ H∗ be as above, and recall the modulus γ of H. Then ε ◦ θ−1
λ = γ. In

particular, if cl ∈ H is a left integral, then

clh = γ(h)cl (2.3.25)

for all h ∈ H.

Proofs of these properties can be found scattered about in [HN2, Sec. 4, 5]. We include
them for completeness.

Proof. 1. By Proposition 2.3.3, (H,λ) is a Frobenius algebra, for λ ∈ H∗ a non-zero
(left or right) cointegral. Then the map

Lν → kν, l 7→ λ(?l) = λ(l) · ν (2.3.26)

is, by non-degeneracy of λ, an isomorphism. For l ∈ Lν , note that S(l)h =
ν(S−1(h))S(l) for all h ∈ H.

2. This follows immediately from λ(lh) = λ(θ−1
λ (h)l), for l ∈ Lν , h ∈ H.

3. This is proved in [HN2, Prop. 5.1].

Because of Proposition 2.3.8.3 we may think of the modulus γ of H as capturing the
difference between left and right integrals.

Remark 2.3.9. By [EGNO, Prop. 6.5.5], the distinguished invertible object D of HM is
the one-dimensional module with action given by γ−1 = γ ◦ S, and we have γ−1 = γ∨ as
H-modules.

We call H unimodular if γ = ε, or equivalently, if every left integral is also right. Note
that H is unimodular if and only if HM is unimodular, see Section 1.1.3. O

2.4 Examples
We now turn to some examples of quasi-Hopf algebras, and expand a bit on some of their
structures and properties. These will be used throughout the rest of the thesis.
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2.4.1 An 8-dimensional example
This is taken from examples 2.2 and 3.4 in [BC2]. Consider the unital C-algebra generated
by g and x, obeying relations g2 = 1, x4 = 0 and gxg−1 = −x. Define two orthogonal
idempotents p± = 1

2(1± g). The comultiplication and counit are given on generators by

∆(g) = g ⊗ g, ε(g) = 1
∆(x) = x⊗ (p+ ± ip−) + 1⊗ p+x+ g ⊗ p−x, ε(x) = 0 (2.4.1)

and with Φ = Ψ = 1⊗1⊗1−2p−⊗p−⊗p− we obtain two 8-dimensional quasi-bialgebras,
denoted H±(8), both of which admit an antipode S(g) = g, S(x) = −x(p+ ± ip−), and
with evaluation and coevaluation element α = g and β = 1, respectively.

A right integral is given by cr = x3p+, while cl = p+x
3 = x3p− is a left integral. One

computes that the modulus of H±(8) is γ(x) = 0, γ(g) = −1. Thus, the quasi-Hopf
algebra in this example is not unimodular. Note also that γ = γ−1.

We postpone giving the cointegrals to Example 4.4.1, where we also give the monadic
cointegrals that will be introduced and studied in Chapter 4.

2.4.2 Symplectic fermions
The next example is given by the so-called symplectic fermion quasi-Hopf algebras defined
in [FGR2]. One reason that these quasi-Hopf algebras are of interest is their relation to a
fundamental example of logarithmic two-dimensional conformal field theories, namely the
symplectic fermion conformal field theory; see [FGR2] for more details and references.

The family of symplectic fermion ribbon quasi-Hopf algebras Q = Q(N, β), where N is
a non-zero natural number and β ∈ C satisfies β4 = (−1)N , is defined as follows [FGR2,
Sec. 3]. As a C-algebra, Q is a unital associative algebra generated by

{K, fεi | 1 ≤ i ≤ N, ε = ±} . (2.4.2)

With the elements

e0 = 1
2(1 + K2) , e1 = 1

2(1− K2) (2.4.3)

we can write the defining relations for Q as

{f±i ,K} = 0 , {f+
i , f−j } = δi,je1 , {f±i , f±j } = 0 , K4 = 1 , (2.4.4)

where {−,−} is the anticommutator. Then e0, e1 are central orthogonal idempotents with
e0 + e1 = 1. The dimension of Q is 22N+2.

It is enough to specify the quasi-Hopf algebra structure on generators. The coproduct
is

∆(K) = K⊗ K− (1 + (−1)N) e1K⊗ e1K ,
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∆(f±i ) = f±i ⊗ 1 + ω± ⊗ f±i , (2.4.5)

where ω± = (e0 ± ie1)K. The counit is

ε(K) = 1 , ε(f±i ) = 0 . (2.4.6)

We introduce

β± = e0 + β2(±iK)Ne1 (2.4.7)

to define the coassociator and its inverse as

Φ±1 = 1⊗ 1⊗ 1 + e1 ⊗ e1 ⊗
{
e0(KN − 1) + e1(β± − 1)

}
. (2.4.8)

Finally, the antipode S and the evaluation and coevaluation elements α and β are given
by

S(K) = K(−1)N = (e0 + (−1)Ne1)K , α = 1 ,

S(f±i ) = f±i (e0 ± (−1)N ie1)K , β = β+ . (2.4.9)

For convenience we also state the inverse antipode on generators:

S−1(K) = K(−1)N , S−1(f±i ) = ω±f±i . (2.4.10)

Note that S(β±) = S−1(β±) = β∓, and β+β− = 1.
From [FGR2, Eq. (3.35)] we know that the Drinfeld twist and its inverse are given by

f±1 = e0 ⊗ 1 + e1 ⊗ e0KN + e1β∓ ⊗ e1 . (2.4.11)

A pivot of Q is17

g = (e0 + (−i)N+1e1KN)K . (2.4.12)

One furthermore computes

qR = 1⊗ 1 + e1 ⊗
(
e1(β − 1)

)
,

pR = 1⊗ 1 + e0 ⊗
(
e1(β − 1)

)
,

qL = 1⊗ 1 + e1 ⊗
{
e0(KN − 1) + e1(β − 1)

}
,

pL = β− ⊗ 1 + e1β− ⊗
{
e0(KN − 1) + e1(β− − 1)

}
. (2.4.13)

17The symbol g has a slightly different meaning in [FGR2], and so the expression for g stated there
differs from the one given here.
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For later use, we fix a basis of Q. The basis elements are

B~a,~b,i :=
 |~a|∏
j=1

f+
aj

 |~b|∏
k=1

f−bk

Ki , (2.4.14)

where i ∈ Z4, and ~a,~b are strictly ordered multi-indices of lengths 0 ≤ |~a|, |~b| ≤ N . By
“strictly ordered” we mean that for ~a = (a1, a2, . . . , a|~a|) we have 1 ≤ a1 < . . . < a|~a| ≤ N ,
and similarly for ~b. For the (non-commutative) product we use the convention

n∏
i=1

ai = a1 ·
n∏
i=2

ai . (2.4.15)

The element corresponding to B~a,~b,i in the dual basis is denoted by(
B~a,~b,i

)∗
. (2.4.16)

We will use the shorthand

~N = (1, 2, . . . , N) . (2.4.17)

Using this notation we can state that

Λ =
3∑
j=0

B ~N, ~N,j (2.4.18)

is both a left and a right integral in Q [FGR2, Sec. 3.5]. In particular, Q is unimodular.
The quasi-Hopf algebra Q can be equipped with an R-matrix and a ribbon element,

turning it into a ribbon quasi-Hopf algebra. In [FGR2, Prop. 3.2] it was shown that it is
in fact a factorizable ribbon quasi-Hopf algebra. Factorisability implies unimodularity18,
giving another argument showing that Q is unimodular. A ribbon category is in particular
pivotal. The pivot in (2.4.12) was obtained as g = v−1u, where v is the ribbon element
and u is the Drinfeld element, cf. Remark 2.2.5.

Cointegrals for these quasi-Hopf algebras will be given in Section 3.3, after we have
derived another (simpler) way of characterizing them in Lemma 3.1.1.

2.4.3 Restricted quantum group at 2pth roots of unity

Lastly we consider the quasi-Hopf algebra modification U (Φ)
q sl(2) of the restricted quantum

group U qsl(2) of sl(2) at roots of unity of even order, as introduced in [CGR]. This quasi-
Hopf algebra is interesting since it turns out to be factorizable (by construction, in fact),

18See [BT1, Sec. 6] for the quasi-Hopf algebra case, or note that ‘factorizability’ there is equivalent to
factorizability of the finite tensor category by [FGR1, Sec. 7.4], so that the statement follows from the
more general [KL, Lem. 5.2.8].
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while it is well-known that U qsl(2) is not even braidable [KS]. Moreover, it is conjectured
to be related to a certain vertex operator algebra, as remarked in the Introduction and
also Chapter 5.

Fix an odd integer t, let p ≥ 2 be an integer, and set q = eiπ/p. We use the notation

{n} = qn − q−n, [n] = {n}
{1} , [n]! =

n∏
i=1

[i] (2.4.19)

for q-numbers and q-factorials, where n ∈ N.
Define U (Φ)

q sl(2) to be the algebra over C generated by elements E,F,K±1, subject to
the relations

KEK−1 = q2E, KFK−1 = q−2F, [E,F ] = K −K−1

q − q−1 , (2.4.20)

and

Ep = 0 = F p, K2p = 1. (2.4.21)

A standard PBW-type basis is given by

{EiF jKk | 0 ≤ i, j ≤ p− 1, 0 ≤ k ≤ 2p− 1}, (2.4.22)

and so we see dimU
(Φ)
q sl(2) = 2p3.

With the two canonical orthogonal central idempotents

e0 = 1
2(1 +Kp), e1 = 1

2(1−Kp) , (2.4.23)

we define a coproduct and a counit by

∆t(E) = E ⊗K + (e0 + qte1)1⊗ E, ε(E) = 0,
∆t(F ) = F ⊗ 1 + (e0 + q−te1)K−1 ⊗ F, ε(F ) = 0,
∆t(K) = K ⊗K, ε(K) = 1. (2.4.24)

This coproduct is quasi-coassociative with coassociator

Φ±1
t = 1⊗ 1⊗ 1 + e1 ⊗ e1 ⊗ (K∓t − 1) , (2.4.25)

and an antipode is given by

St(E) = −EK−1(e0 + qte1),
St(F ) = −KF (e0 + q−te1),
St(K) = K−1, (2.4.26)

with evaluation and coevaluation elements

α = 1, βt = e0 +K−te1 (2.4.27)
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respectively. By [CGR, Thm. 4.1], this data leads to a quasi-Hopf algebra, for each value
of t.19 In fact, the theorem loc. cit. also proves that, with

Rt = 1
4p

p−1∑
n=0

2p−1∑
s,r=0

{1}n
[n]! q

1
2n(n−1)−2sr

(
1 + qtr + q−t(n+s) + qt(

1
2 t+r−n−s)

)
×KsEn ⊗KrF n (2.4.28)

and

v = 1− i
2√p

p−1∑
n=0

2p−1∑
j=0

{1}n
[n]! q

n(j−1
2 )+ 1

2 (j+p+1)2
F nEnKj , (2.4.29)

U
(Φ)
q sl(2) is a factorizable ribbon quasi-Hopf algebra. Thus it is unimodular.

In order to describe the pivotal structure of this quasi-Hopf algebra, we first compute
its Drinfeld element.

Lemma 2.4.1. The Drinfeld element ut of U (Φ)
q sl(2) is given by

ut = 1− i
2√p

p−1∑
n,r=0

{−1}n
[n]! (1+(−1)n−rip)qn(r−3

2 )+ 1
2 r

2

×
(
e0 + qt(

1
2 t−r−n)e1

)
F nEnKr (2.4.30)

Proposition 2.4.2. The element

gt = (e0 − e1K
t)K . (2.4.31)

is a pivot for U
(Φ)
q sl(2). Moreover, it is the canonical pivot compatible with the ribbon

structure of U (Φ)
q sl(2), meaning that it satisfies gt = utv

−1.

The proofs of these statements are not very illuminating and therefore given in Ap-
pendices C.2 and C.3, respectively.

As already mentioned in the introduction, in Section 5.3 we will use techniques devel-
oped in this thesis to show that two specific actions of SL(2,Z) on the center of U (Φ)

q sl(2)
agree. One of them is Lyubashenko’s action defined for any modular tensor category.

Finally, we note that for p = 2 and t = 1, the Hopf algebra UΦ
q (sl2) is isomorphic to

Q(N = 1, β = i) via

E 7→ f−1 K, F 7→ if+
1 , K 7→ K , (2.4.32)

see [CGR, Rem. 4.3].
19Recall the notion of twist-equivalence from Section 2.1.2. Different values of t lead to twist-equivalent

quasi-bialgebras, cf. [CGR, Thm. 4.1]. Explicitly, with J(t′, t) = e0 ⊗ 1 + e1 ⊗K(t′−t)/2 we get J(t′, t) ·
∆t(h) · J(t′, t)−1 = ∆t′(h) for all h ∈ U

(Φ)
q sl(2). It is easy to see that J(t′, t) is normalized, so it is

indeed a twist. The quasi-Hopf structure described here can then be obtained from the twisted one via
Remark 2.1.4, with u = e0 + e1K

(t′−t)/2.



Chapter 3

Modified traces for quasi-Hopf
algebras

In this chapter, we extend the results of [BBGa] on modified traces for Hopf algebras to
the realm of quasi-Hopf algebras.

Throughout this chapter, whenever (H, g) is a pivotal quasi-Hopf algebra (see Sec-
tion 2.2.1), we will—in contrast to the standard way explained in Section 2.1.3—assume
that right duals are given via the pivotal structure. That is, we write both the left and
the right dual of an object V ∈ HM as V ∨, so that the evaluations and coevaluations

evV : V ∨ ⊗ V → 1 , coevV : 1→ V ⊗ V ∨

ẽvV : V ⊗ V ∨ → 1 , c̃oevV : 1→ V ∨ ⊗ V , (3.0.1)

are related by

ẽvV = evV ∨ ◦ (δV ⊗ idV ∨) , c̃oevV =
(
idV ∨ ⊗δ−1

V

)
◦ coevV ∨ . (3.0.2)

Explicitly, for example,

ẽvV (v ⊗ f) =
〈
gv , f ↼ S(α)

〉
=
〈
S(α)gv , f

〉
=
〈
gS−1(α)v , f

〉
, (3.0.3)

where in the last step we used S(h)g = gS−1(h) for h ∈ H.
In the first section, we introduce a new version of cointegrals for pivotal quasi-Hopf

algebras, called γ-symmetrized cointegrals. Specializing to the unimodular case, i.e. γ = ε,
we obtain the natural quasi-Hopf generalization of the symmetrized cointegrals of [BBGa].

In the second section, we generalize some necessary results from [BBGa], which then
enables us to prove the first main theorems, Theorems 1 and 2 from the introduction,
relating the modified trace on the projective ideal to the symmetrized cointegrals. Note
that in this chapter the projective ideal may be denoted by Proj(HM) or H-pmod.

Finally, we give an example in the third section. We compute the modified trace for
the symplectic fermion quasi-Hopf algebras, which we reviewed in Section 2.4.2.

45
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3.1 γ-symmetrized cointegrals
We now introduce γ-symmetrized cointegrals. But first, we give the following equivalent
characterization of cointegrals, using Proposition 2.3.3.20

Lemma 3.1.1. Suppose that (H, g) is pivotal, Let λ ∈ H∗ and set

λ̂
l = λ↼ ucopg−1 and λ̂

r = λ↼ ug . (3.1.1)

Then
1. λ is a left cointegral if and only if

(id⊗λ̂l)
(
qL∆(h)pL

)
= γ(x3)λ̂l(x2h) · gS−1(x1) (3.1.2)

2. λ is a right cointegral if and only if

(λ̂r ⊗ id)
(
qR∆(h)pR

)
= γ(X1)λ̂r(X2h) · g−1S(X3) (3.1.3)

Proof. We will prove the second part, the first statement is completely analogous. Let
λr ∈ H∗ be a right cointegral. By Proposition 2.3.3 (5), we have

λ̂
r = λr ↼ ug = (λl ◦ S−1) ↼ g = (g−1 ⇀ λl) ◦ S−1. (3.1.4)

for a left cointegral λl. Using this equality and evaluating the left cointegral equation
(2.3.19) on S−1(h)g−1 for h ∈ H gives

(id⊗λl)(V∆(S−1(h)g−1)U) = γ(X1)λ̂r(X2h)X3. (3.1.5)

We have

∆(g−1)U = (g−1 ⊗ g−1)(S ⊗ S)(qR21f
−1
21 )

= (S−1 ⊗ S−1)(qR21f
−1
21 )(g−1 ⊗ g−1). (3.1.6)

Using V = (S−1 ⊗ S−1)(f 21p
R
21) and

∆(S−1(h)) = (S−1 ⊗ S−1)(f 21∆cop(h)f−1
21 ) (3.1.7)

we immediately simplify (3.1.5) to

γ(X1)λ̂r(X2h)X3 = (id⊗λl)
[
(S−1 ⊗ S−1)

(
qR21∆cop(h)pR21

)
· (g−1 ⊗ g−1)

]
= ((rg−1 ◦ S−1)⊗ λ̂r)

(
qR21∆cop(h)pR21

)
= ((S−1 ◦ lg−1)⊗ λ̂r)

(
qR21∆cop(h)pR21

)
(3.1.8)

Then, applying S on both sides and multiplying with g−1 on the left gives

(λ̂r ⊗ id)
(
qR∆(h)pR

)
= γ(X1)λ̂r(X2h) · g−1S(X3), (3.1.9)

as desired.
20The shifted left cointegral λ̂

l
also appears in [SS, Sec. 6.4] in relation to γ-twisted module traces.
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We give these ‘shifted cointegrals’ a special name.

Definition 3.1.2. Let (H, g) be a finite-dimensional pivotal quasi-Hopf algebra. A linear
form λ̂

l ∈ H∗ is a left γ-symmetrized cointegral if, and only if,

(id⊗λ̂l)(qL∆(h)pL) = γ(x3)λ̂l(x2h) · gS−1(x1) (3.1.10)

for all h ∈ H.
A linear form λ̂

r ∈ H∗ is a right γ-symmetrized cointegral if, and only if,

(λ̂r ⊗ id)(qR∆(h)pR) = γ(X1)λ̂r(X2h) · g−1S(X3) (3.1.11)

for all h ∈ H.
We denote the spaces of left and right γ-symmetrized cointegrals by∫ r,γ

H and
∫ l,γ
H . (3.1.12)

The adjective ‘γ-symmetrized’ is justified by the following proposition.

Proposition 3.1.3. Let λ̂l, λ̂r ∈ H∗ be a left and a right γ-symmetrized cointegral.

1. λ̂l and λ̂r are unique up to scalar. That is,
∫ l,γ
H and

∫ r,γ
H are one-dimensional.

Furthermore, non-zero γ-symmetrized cointegrals are non-degenerate.

2. λ̂l and λ̂r are ‘symmetric up to γ’ in the sense that

λ̂
l(ab) = λ̂

l((γ ⇀ b)a) and λ̂
r(ab) = λ̂

r((b ↼ γ)a) (3.1.13)

for all a, b ∈ H.

Proof. For 1. observe e.g. that by Lemma 3.1.1 we have an isomorphism between left
cointegrals and left γ-symmetrized cointegrals.

To see the first identity of point 2., use Lemma 3.1.1 and Proposition 2.3.3 (5) to
obtain a right cointegral λr such that λ̂l = (λr ◦ S) ↼ g−1. Then, with Proposition 2.3.3
(4), we have

λ̂
l(ab) = λr(S(ab)g) = λr(S(a)gS−1(γ ⇀ b))

= λr(S(a)S(γ ⇀ b)g) = λ̂
l((γ ⇀ b)a). (3.1.14)

The second identity can be seen using points (3) and (5) of Proposition 2.3.3.

Remark 3.1.4. Let (H, g) be a pivotal quasi-Hopf algebra, and let λ̂l be a left γ-
symmetrized cointegral. This linear form has the following interpretation. The category
B = HMH of H-bimodules from Section 2.3 is pivotal. In particular, then, the left and the
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right dual of the regular bimodule are isomorphic, and one easily sees that the isomorphism
is given by

∨H
∼−→ H∨, f 7→ g−1 ⇀ f ↼ g−1 , (3.1.15)

see (1.1.10). As reviewed in Section 2.3, H ∈ B is a coalgebra, and we can thus consider
its category of left comodules HB in B. By a fundamental theorem of [HN2], there is an
equivalence

HB ∼= HM , (3.1.16)

sending M ∈ HB to its coinvariants coHM . By Definition 2.3.1, a right cointegral is
precisely an element of coH(H∨), where H∨ carries the canonical left H-comodule structure,
see e.g. [BC2, Prop. 3.1]. Furthermore, ∨H becomes a left H-comodule via the isomorphism
(3.1.15), we denote this comodule by ∨H. By (3.1.16) we get

coH(∨H) ∼= coH(H∨) . (3.1.17)

Using the explicit form of the isomorphism (3.1.15), (3.1.17) is equivalent to

coH(∨H) 3 ϕ ⇐⇒ (g−1 ⇀ ϕ ↼ g−1) is a right cointegral. (3.1.18)

Inserting the element on the right hand side into the right cointegral equation (2.3.20), and
using the isomorphism (2.3.13) between left and right cointegrals, one arrives precisely at
the statement that λ̂l satisfies equation (3.1.2) from Lemma 3.1.1. A similar interpretation
exists for λ̂r. O

Symmetrized cointegrals
For the rest of this section we assume:

(H, g) is pivotal and unimodular .

Note that in this case the elements u and ucop from Proposition 2.3.3 are both equal
to 1. The following immediate corollary to Lemma 3.1.1 will be useful when comparing
to modified traces.

Corollary 3.1.5. Let λ ∈ H∗. Then

1. λ is a left cointegral if and only if

λ̂
l(h) 1 =

(
g−1 ⊗ λ̂l

)
(qL∆(h)pL) (3.1.19)

for all h ∈ H.
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2. λ is a right cointegral if and only if

λ̂
r(h) 1 =

(
λ̂
r ⊗ g

)
(qR∆(h)pR) (3.1.20)

for all h ∈ H.

Following [BBGa, Sec. 4], we call λ̂l and λ̂r the symmetrized left and right cointegral,
respectively. The adjective “symmetrized” is justified by the following corollary, which
follows from Proposition 2.3.3 (2), equation (3.1.13), and the fact that here we assume H
to be unimodular.

Corollary 3.1.6 ([BBGa, Prop. 4.4]). The non-zero symmetrized left (resp. right) cointe-
grals are non-degenerate symmetric linear forms on H.

Remark 3.1.7. Let H be a finite-dimensional Hopf algebra. Following [Ra1], for any
grouplike element g ∈ H, one can define the left ideal Lg ⊆ H∗ of left g-cointegrals (called
left g-integrals in [Ra1]) as

Lg = {ϕ ∈ H∗ | (id⊗ϕ)(∆(h)) = ϕ(h)g ∀h ∈ H} . (3.1.21)

These ideals are all one-dimensional [Ra1, Prop. 3]. Indeed, note that L1 is the space of
left cointegrals. Then the linear isomorphism

Lg 3 ϕ 7→ (ϕ ↼ h) ∈ Lh−1g for all grouplike g, h, (3.1.22)

shows Lg ∼= L1. Similarly one may define the space Rg of right g-cointegrals. Thus, if
(H, g) is a pivotal Hopf algebra, Lemma 3.1.1 reduces to the statement

(λl ↼ g−1) ∈ Lg and (λr ↼ g) ∈ Rg−1 . (3.1.23)

For unimodular H, a symmetrized left cointegral is therefore a left g-cointegral, and a
symmetrized right cointegral is a right g−1-cointegral. O

3.2 Modified traces for quasi-Hopf algebras
Throughout this section H will be a finite-dimensional quasi-Hopf algebra over k.

Tensoring with the regular representation
Let V ∈ H-mod. We denote by εV the vector space V with trivial H-module structure,
i.e. hv = ε(h)v for h ∈ H, v ∈ V . Recall the definition of the elements pR, etc., from
(2.1.33). We need the following generalization of [BBGa, Thm. 5.1] to quasi-Hopf algebras
(see also [Sch2, Sec. 2.3] for this statement).
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Proposition 3.2.1.

1. The map

φr : H ⊗ εV → H ⊗ V,
h⊗ v 7→

(
∆(h)pR

)
· (1⊗ v) = h(1)p

R
1 ⊗ h(2)p

R
2 v

is an isomorphism of H-modules, with inverse

ψr : H ⊗ V → H ⊗ εV,

h⊗ v 7→
[
(id⊗S)(qR∆(h))

]
· (1⊗ v) .

2. The map

φl : εV ⊗H → V ⊗H, v ⊗ h 7→
(
∆(h)pL

)
· (v ⊗ 1)

is an isomorphism of H-modules, with inverse

ψl : V ⊗H → εV ⊗H,
v ⊗ h 7→

[
(S−1 ⊗ id)(qL∆(h))

]
· (v ⊗ 1) .

Proof. We only prove the first part, the second part is completely analogous. It is obvious
that φr is an intertwiner, so we only need to show that ψr is a two-sided inverse.

Recall the second identity in (2.1.35), which can be graphically represented as

pR
=

pR

. (3.2.1)

Using pictures we compute the composition φr ◦ ψr:

ψr

φr

=

qR

pR
=

qR

pR

(3.2.1)
=

qR

pR

(2.1.34)
= (3.2.2)

Similarly one shows ψr ◦ φr = id. Since φr is an intertwiner and bijective, ψr necessarily
is an intertwiner as well and we are done.
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As a consequence of the previous considerations we have the following lemma.
Lemma 3.2.2. Let W be an H-module. The map

Ξ : Hop ⊗k Endk(W )→ EndH(H ⊗W ) ,
a⊗m 7→ φr ◦ (ra ⊗m) ◦ ψr (3.2.3)

is an algebra isomorphism.
Proof. Since for any algebra A we have the algebra isomorphism

Aop ∼= EndA(A), a 7→ ra , (3.2.4)
together with the isomorphism property from Proposition 3.2.1 we see that the prescription
Ξ : (a⊗m) 7→ φr ◦ (ra ⊗m) ◦ ψr is bijective, and thus the isomorphism is established. It
remains to be shown that the isomorphism is one of algebras. The multiplication for the
endomorphism algebras is just composition, and for Hop ⊗k Endk(W ) we simply take the
one induced by the tensor product of k-algebras. Then the calculation

Ξ(a⊗m) ◦ Ξ(b⊗ n) = φr ◦ (ra ⊗m) ◦ ψr ◦ φr(rb ⊗ n) ◦ ψr

= φr ◦ ((ra ◦ rb)⊗ (m ◦ n)) ◦ ψr

= Ξ((a⊗m) · (b⊗ n)) (3.2.5)
shows that Ξ indeed preserves the algebra structure.

A similar result holds for EndH(W ⊗H).

The main theorem
We will need the following extension result for symmetric linear forms: Let A be a finite-
dimensional unital k-algebra. By a family of trace maps21 {tP : EndA(P ) → k}P∈A-pmod
we mean a family as in (1.2.5) which, however, only satisfies cyclicity and no partial trace
property — they do not make sense in A-mod. We have ([BBGa, Prop. 2.4], see also [GR3,
Prop. 5.8]):
Proposition 3.2.3. Let A be a finite-dimensional unital k-algebra. Then a symmetric
linear form t on A extends uniquely to a family of trace maps {tP : EndA(P )→ k}P∈A-pmod.
Moreover, we have

tP (f) =
n∑
i=1

t((bi ◦ f ◦ ai)(1)), f ∈ EndA(P ), (3.2.6)

where n depends on P , and ai : A→ P , bi : P → A satisfy

idP =
n∑
i=1

ai ◦ bi . (3.2.7)

In particular

tA(rx) = t(x), x ∈ A . (3.2.8)
21as opposed to left/right modified traces
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The next lemma is an instance of the Reduction Lemma [BBGa, Lem. 3.2] when one
takes C = H-mod and H as projective generator.

Lemma 3.2.4. Let H be pivotal with pivot g. A symmetric linear function t on H extends
to a right modified trace on H-pmod if and only if

tH⊗H(f) = tH
(
trH-mod,r
H (f)

)
(3.2.9)

holds for all f ∈ EndH(H ⊗H), where tP is as in Proposition 3.2.3, for P ∈ H-pmod.
Similarly, t extends to a left modified trace on Proj(HM) if and only if

tH⊗H(f) = tH
(
trH-mod,l
H (f)

)
(3.2.10)

holds for all f ∈ EndH(H ⊗H).

We denote the subspace of symmetric forms t ∈ H∗ which extend to a right/left
modified trace on H-pmod by

Symr/l
tr . (3.2.11)

Given t ∈ Symr/l
tr , the corresponding modified trace t• takes the value

EndH(H)→ k , f 7→ tH(f) = t(f(1)) (3.2.12)

on the left regular module H.
We can now state the main theorem of this chapter. Parts 2 and 3 generalize [BBGa,

Thm. 1] to the setting of quasi-Hopf algebras. A stronger version of Part 1 was shown for
Hopf algebras in [FOG, Cor. 6.1].

Theorem 3.2.5. Let (H, g) be a finite-dimensional pivotal quasi-Hopf algebra over k. We
have:

1. A non-degenerate left (right) modified trace on H-pmod exists if and only if H is
unimodular.

Suppose now that H is in addition unimodular. Then:

2. Symr/l
tr is equal to the space of symmetrized right/left cointegrals. In particular,

dim(Symr/l
tr ) = 1.

3. A non-zero element of Symr/l
tr extends to a non-degenerate right/left modified trace

on H-pmod.

Proof. (1) If t• is a non-degenerate left or right modified trace, then H 3 h 7→ tH(rh) ∈
k is a non-degenerate symmetric linear form on H. Unimodularity follows from [HN2,
Prop. 5.6]. The converse direction amounts to parts 2 and 3.
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t

g

fqR

pR

=

t

g

qR φr

a
m

ψr

pR

=

t

g

qR

a

m

pR

Figure 3.1: Calculating the left hand side of (3.2.15). The string diagrams
are all in Vect. To arrive at the initial string diagram, recall the expression
(3.0.3) for the right evaluation map. The first step is just substitution of f
from (3.2.13). In the second step, we use that ψr(pR1 ⊗ pR2 w) = 1⊗w for all
w ∈ W (which in turn is immediate from ψr ◦ φr = id) and substitute the
definition of φr.

(2) Suppose now that H is unimodular, and let t• be a family of trace maps on H-pmod
(not necessarily left/right modified traces). Let t ∈ H∗ be the symmetric form on H
which corresponds to t• via Proposition 3.2.3. We will now compute both sides of (3.2.9)
in Lemma 3.2.4 separately and then use that lemma to prove the statement. To this end,
let W ∈ H-mod and f ∈ EndH(H ⊗W ).
tH⊗W (f): By Lemma 3.2.2, every f ∈ EndH(H ⊗W ) is of the form

f =
∑

(a,m)
φr ◦ (ra ⊗m) ◦ ψr , (3.2.13)

where a ⊗ m is a simple tensor in Hop ⊗ Endk(W ). For simplicity and without loss of
generality we will assume that f actually corresponds to the simple tensor a ⊗ m. By
cyclicity of t• we get

tH⊗W (f) = tH⊗W (φr ◦ (ra ⊗m) ◦ ψr)
= tH⊗εW (ra ⊗m)
= trk(m) t(a) , (3.2.14)

where trk(m) is the trace of the linear operator m. This can be seen by choosing any basis
of W and considering a decomposition of H ⊗ εW into (dimW ) copies of H.
tH (trrW (f)): Here we use that tH (trrW (f)) = t (trrW (f)(1)) and then rewrite the resulting
expression as in Figure 3.1. Altogether, this gives

tH (trrW (f)) = t(qR1 a(1)p
R
1 )trk

(
ρ(gqR2 a(2)p

R
2 ⊗−) ◦m

)
, (3.2.15)
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where ρ : H ⊗k W → W is the action of H on W .
Since (3.2.14) and (3.2.15) hold in particular for W = H, the left regular module, and

for all a, m, we can rephrase condition (3.2.9) in Lemma 3.2.4 as follows: the symmetric
linear form t on H extends to a right modified trace on H-pmod if and only if

t(a)1 = (t⊗ g)
(
qR∆(a)pR

)
. (3.2.16)

But this is just the defining equation (3.1.20) for a symmetrized right cointegral.

The left version of the proof is completely analogous and uses (3.1.19).
(3) By Corollary 3.1.6 the symmetrized right/left cointegrals are non-degenerate. It is
shown in [BBGa, Thm. 2.6] that this implies that the corresponding right/left modified
traces are non-degenerate in the sense of Section 1.2.2.

3.3 Example: symplectic fermion quasi-Hopf algebra
In this section we will use Theorem 3.2.5 to compute the modified trace for the symplectic
fermion quasi-Hopf algebras Q = Q(N, β), which we reviewed in Section 2.4.2.

We will see that the spaces of left and right modified traces coincide for Q. To compute
the modified trace explicitly, we first find the (also coinciding) left and right symmetrized
cointegrals via Corollary 3.1.5. Then we employ Theorem 3.2.5 and the relation (3.2.12)
to obtain the value of the modified trace on the projective generator Q, and the indecom-
posable projectives.

Proposition 3.3.1. The linear form

λ̂
r = (β2 + i) ·

(
B ~N, ~N,1

)∗
+ (β2 − i) ·

(
B ~N, ~N,3

)∗
(3.3.1)

is simultaneously a left and a right symmetrized cointegral for Q.

Proof. We will verify that λ̂r satisfies both conditions in Corollary 3.1.5. To this end, we
first note that the coproduct takes the following form on elements of the basis chosen in
Section 2.4.2:

∆(B~l,~a,i) =
(
B~l,~a,i ⊗ Ki + ω

|~a|
+ ω

|~b|
− Ki ⊗B~l,~a,i + (lower terms)

)
×
(
e0 ⊗ e0 + e0 ⊗ e1 + e1 ⊗ e0 + (−1)(N+1)ie1 ⊗ e1

)
, (3.3.2)

where in each tensor factor in “(lower terms)” the number of f+’s is strictly less than
|~a|, or the number of f−’s is strictly less than |~b|, or both. Therefore, both sides of
the two conditions in Corollary 3.1.5 vanish identically unless one chooses h = B ~N, ~N,i,
i ∈ {0, 1, 2, 3}. In these four cases a straightforward computation shows that the conditions
in Corollary 3.1.5 hold.
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Note that because β4 = (−1)N , for odd N only one of the two summands in (3.3.1) is
present, the other coefficient is zero. For N even, both summands are present.

Since the symmetrized cointegral is two-sided, so is the corresponding modified trace.
By (3.2.12) the explicit value of the modified trace on f ∈ EndQ(Q) is

tQ(f) = λ̂(f(1)) , (3.3.3)

with λ̂ as in (3.3.1).
The modified trace has also been computed by a different method in [GR3, Sec. 9],

namely by using the existence of a simple projective object in Q-mod. There, the modified
trace is given on the four indecomposable projectives. To relate the two computations,
first note that the central idempotents of Q are

e0 , e±1 = 1
2e1(1± β−1v) = 1

2e1

(
1∓ iK

N∏
k=1

(1− 2f+
k f−k )

)
, (3.3.4)

see [FGR2, Sec. 3.6]. The decomposition of the right regular module Q is

Q = P0+ ⊕ P0− ⊕X⊕2N
1+ ⊕X⊕2N

1− , (3.3.5)

where P0± are the projective covers of the two one-dimensional simple modules of Q and
X1± are projective simple objects of dimension 2N [FGR2, Sec. 3.7]. The projections to
P0± are given by right-multiplication with the (non-central) idempotents e±0 = 1

2(1±K)e0.
The central idempotents e±1 project to the direct sums X⊕2N

1± . Set

x± =
 N∏
j=1

f+
j f−j

 e±0 , y± = e±1 . (3.3.6)

Note that x± and y± are central in Q [FGR2, Sec. 3.6]. It is straightforward to compute
the modified trace of rx± , ry± ∈ EndQ(Q):

tQ(rx±) = ±1
2(−1) 1

2N(N−1)β2 , tQ(ry±) = ±1
2(−1) 1

2N(N−1)(−2)N , (3.3.7)

where rh denotes the right multiplication with h ∈ Q, cf. (2.1.19). This agrees with [GR3,
Sec. 9] up to a normalization factor of 1

2(−1) 1
2N(N+1).

Since g is of order 2, the left and right cointegrals also agree. One can compute
the cointegral for Q by shifting the symmetrized cointegral from Proposition 3.3.1 by g.
Similar to the symmetrized cointegral, it is non-vanishing only on the top components,
and with

a± = β2 ± δN,even , b± = ±iδN,odd (3.3.8)

it can be expressed as

λ = a+
(
B ~N, ~N,0

)∗
+ b+

(
B ~N, ~N,1

)∗
+ a−

(
B ~N, ~N,2

)∗
+ b−

(
B ~N, ~N,3

)∗
. (3.3.9)





Chapter 4

Monadic cointegrals and applications
to quasi-Hopf algebras

In this chapter we introduce the new notion of monadic cointegral. These are two (or
four, in the pivotal case) generalizations of Hopf algebra cointegrals to any finite tensor
category.

In the first section, the central Hopf (co)monads are reviewed and the definitions of all
four versions of monadic cointegrals are given.

These definitions are specialized to quasi-Hopf algebras in the second section.
In the third section, our main theorem relating the quasi-Hopf cointegrals from Chap-

ter 2 to our monadic cointegrals is stated. The proof is given modulo technical details,
which have been moved to Appendix B.

Some explicit examples of the main theorem in action are in Section 4.4
We end this chapter with a final section discussing the relation between monadic cointe-

grals and Lyubashenko’s integral for the canonical coend L in case the category is braided,
also specializing to quasi-Hopf algebras again.

4.1 Monadic cointegrals
This section contains the main definition of this chapter, namely that of the two (or four
in the pivotal case) types of monadic cointegrals (Definition 4.1.5). To state the definition
we first review the two (or four) versions of the central Hopf monad. At the end, we also
realize monadic cointegrals via Hopf comonads, to establish existence and uniqueness via
results in [Sh4].

4.1.1 The central Hopf monad
Throughout the rest of this section C will denote a finite tensor category. Recall the notion
of a coend from Section 1.2.3. By the immediate corollary to [KL, Cor. 5.1.8] we gave in
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Proposition 1.2.6, the coends

A1 (V ) =
∫ X∈C

∨X (V X) , A2 (V ) =
∫ X∈C

X∨ (V X)

A3 (V ) =
∫ X∈C

(XV ) ∨X, A4 (V ) =
∫ X∈C

(XV )X∨ (4.1.1)

exist for all V ∈ C. A different and more detailed proof of existence is given in [Sh1,
Thm. 3.6]. Note that the subscript i indicates the ‘position’ of the dual symbol ∨. We
write ιi(V ) for the universal dinatural transformation of Ai (V ) so that for example

ι2(V )X : X∨ (V X)→ A2 (V ) . (4.1.2)

In particular, Ai : V 7→ Ai (V ) is an endofunctor, and the universal dinatural transfor-
mations ιi(V ) are natural in V ∈ C. In our graphical notation the dinatural transformation
ι2(V ) will be drawn as

A2 (V )
ι2(V )X

X∨ V X

(4.1.3)

for all V,X ∈ C.
Functors like Ai, and in particular the functor A2, were already studied in e.g. [BV2].

The latter is known as the central Hopf monad [Sh1], see also Remark 4.1.3.

We will now describe the monad structures in more detail, restricting our exposition
to the case i = 2. The monad structure is similar for all other cases.

Recall the natural isomorphism γX,Y : (X∨)(Y ∨) → (Y X)∨ from (1.1.6). The multi-
plication µ2 : (A2)2 ⇒ A2 with components µ2(V ) : A2A2(V ) → A2 (V ) is determined by
the universal property of coends via

A2 (V )

µ2(V )
ι2(A2V )Y

ι2(V )X

Y ∨ X∨ V X Y

=

A2 (V )
ι2(V )X⊗Y

γY,X

Y ∨ X∨ V X Y

. (4.1.4)

Here we used what is known as the ‘Fubini theorem’ for ends and coends, cf. [Mac,
Sec. IX.8], see also [Lo, Rem. 1.9], to express the dinatural transformation of the iter-
ated coend A2A2(V ) in terms of ι2(V ) and ι2(A2V ).



Chapter 4. Monadic cointegrals and applications to quasi-Hopf algebras 59

The unit of A2, i.e. the natural transformation η2 : idC ⇒ A2, is defined as

η2(V ) :=
[
V
∼−→ 1∨ (V 1) ι2(V )1−−−→ A2 (V )

]
. (4.1.5)

For i = 2, 3, Ai is always a Hopf monad [BV2, Sec. 5.4]. As an example illustrating
this fact, we again consider i = 2, the other case is similar. The lax comonoidal structure
is defined by22

A2 (U) A2 (V )

∆2(U, V )
ι2

X∨ U V X

=

A2 (U) A2 (V )

ι2 ι2

X∨ U V X

,

ε2

ι2

X∨ X

=

X∨ X

. (4.1.6)

These are the comultiplication and counit of A2. The left antipode of A2 is defined by

U∨

Sl2(U)

ι2

X∨ (A2U)∨X

=

U∨

ι2(U)∨X

∼

X∨ (A2U)∨ X

, (4.1.7)

following [BV2, Thm. 5.6]. Here, by ∼ we mean the canonical isomorphism X ∼= (∨X)∨,
defined similarly to ωX : ∨(X∨) → X from (1.1.12). The right antipode is obtained
analogously.

For i = 1, 4, the above definition of a bimonad structure on Ai does not work. If C is
pivotal, however, the natural monoidal isomorphism X∨ ∼= ∨X from (1.1.10) can be used
when the duals do not match up in the comultiplication and counit. For example, the
counit of A1 is given by

ε1

ι1

∨X X

=
(1.1.10)

∨X X

. (4.1.8)

22Here and in similar places below, we often omit spelling out all components and arguments of the
dinatural transformations, e.g. on the LHS we have ι2(U ⊗ V )X , etc.
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One checks that in this way one obtains a Hopf monad structure on A1 and A4.
We summarize the preceding discussion in the following proposition for later use.

Proposition 4.1.1. The functors A2 and A3 are Hopf monads. If C is pivotal, then A1
and A4 are also Hopf monads.

The following proposition will now show that the canonical natural isomorphisms κi,j :
Ai ⇒ Aj defined by

(κi,j)V ◦ ιi(V )X = ιj(V )X′ ◦ (isomorphism of components), (4.1.9)

are isomorphisms of Hopf monads.23 Here, X ′ stands for X, X∨ or ∨X as appropriate, and
the ‘isomorphisms of components’ consist of coherence isomorphisms and the isomorphisms
∨(X∨) ∼= X and, in the pivotal case, X∨ ∼= ∨X. For example,[

X∨ (V X) ι2(V )X−−−−→ A2 (V ) (κ2,3)V−−−−→ A3 (V )
]

=
[
X∨ (V X) ∼−→ (X∨ V )X

id⊗ω−1
X−−−−→ (X∨ V )(∨(X∨)) ι3(V )X∨−−−−−→ A3 (V )

]
. (4.1.10)

Proposition 4.1.2. The natural isomorphism κ2,3 is an isomorphism of Hopf monads. If
C is pivotal, then κi,j are isomorphisms of Hopf monads for all i, j.

Proof. We first claim that the pullback F = (κ2,3)∗ : CA3 → CA2 is a well-defined functor.
Namely, on an A3-module (V, ρ) the functor acts as F (V, ρ) = (V, Fρ), where we define
Fρ : A2V → V by

Fρ ◦ ι2(V )X =
[
X∨ (V X) ∼−→ (X∨ V )(∨(X∨)) ι3(V )X∨−−−−−→ A3 (V ) ρ−→ V

]
, (4.1.11)

so that indeed Fρ = ρ ◦ (κ2,3)V by (4.1.10). A quick calculation shows that Fρ is an
A2-action.

Next we check the conditions in Lemma 1.2.12. As F is given by pullback, the under-
lying functor is the identity on C. To verify strict monoidality, one checks that for (V, ρ),
(W,σ) ∈ CA3 one has

F (ρ⊗ σ ◦∆3(V,W )) =
(
Fρ⊗ Fσ

)
◦∆2(V,W ) (4.1.12)

and F (ε3) = ε2, which is easy to see.
Thus from Lemma 1.2.12 we obtain a morphism of bimonads (and hence of Hopf

monads) A2 ⇒ A3. Since F = (κ2,3)∗, by Remark 1.2.13 this morphism is given by κ2,3.
As κ2,3 is an isomorphism, we finally get A2 ∼= A3.

23Alternatively, one could have introduced the Hopf monad structure only on A2, and then used the
natural isomorphisms κ2,j to transport the structure to the other functors Aj . However, each Aj comes
with a canonical choice of Hopf monad structure defined using universal properties of coends, which is the
structure we want to use throughout the remainder of the text. Thus we prefer to present the canonical
structure in the four cases first and then establish the isomorphisms afterwards.
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If C is pivotal, then e.g. the equivalence G : CA2 → CA1 is given by G(V, ρ) = (V,Gρ)
with

Gρ ◦ ι1(V )X =
[
∨X(V X) ∼−→ X∨(V X) ι2(V )X−−−−→ A2 (V ) ρ−→ V

]
, (4.1.13)

where the first isomorphism is given by the inverse to the one in (1.1.10). It is straightfor-
ward to check that G is a well-defined functor satisfying G = (κ1,2)∗, and that it is strict
monoidal and the identity on objects from C. Hence also A2 ∼= A1 as Hopf monads.

Remark 4.1.3. Let us assume strictness for this remark. It is not hard to see that
CA2
∼= Z(C) ∼= CA3 as monoidal categories, where Z(C) is the Drinfeld center of C, cf.

Section 1.1.8 and [BV1, Sec. 9.3]. Indeed, if ρ : A2 (V ) → V is an A2-action, then one
quickly checks that the canonical natural transformation with components

V ⊗X coevX ⊗ id−−−−−−→ X ⊗X∨ ⊗ V ⊗X id⊗ι2(V )X−−−−−−→ X ⊗ A2 (V ) id⊗ρ−−−→ X ⊗ V (4.1.14)

for X ∈ C is a lax half-braiding for V , i.e. a ‘half-braiding’ which is a priori not invertible
but whose 1-component is the identity. However, lax half-braidings in rigid categories
are invertible, cf. [BLV, Sec. 5]. This equivalence and the resulting new description of
the center were the main reasons for introducing central monads, and also explains the
name. O

Example 4.1.4. Let C = HM be the category of finite-dimensional modules over a finite-
dimensional Hopf algebra H, and let i = 2, 3. As vector spaces, the Ai(V ) are isomorphic
to H∗⊗V , and we choose the module structures as follows. A proof that this data indeed
realizes the coend(s) is given more generally for quasi-Hopf algebras in Appendix A. With
h ∈ H, f ∈ H∗, and v ∈ V , the action iy of H on Ai(V ) is 24

h
2y (f ⊗ v) = 〈f | S(h(1))?h(3)〉 ⊗ h(2)v ,

h
3y (f ⊗ v) = 〈f | S−1(h(3))?h(1)〉 ⊗ h(2)v . (4.1.15)

Here we use the strictly coassociative version

h(1) ⊗ h(2) ⊗ h(3) := h(1,1) ⊗ h(1,2) ⊗ h(2) = h(1) ⊗ h(2,1) ⊗ h(2,2)

of the sumless Sweedler-notation for iterated coproducts, recall Notation 2.1.1.
Note that A2 (1) is the coadjoint representation of H, cf. [FGR1, Sec. 7]. The universal

dinatural transformations are defined as

ι2(V )X(f ⊗ v ⊗ x) =
∑
i

〈f | ei.x〉ei ⊗ v,

ι3(V )X(x⊗ v ⊗ f) =
∑
i

〈f | ei.x〉ei ⊗ v, (4.1.16)

24We use 〈? |?〉 : V ∗ ⊗ V → k to denote the canonical pairing in Vect.
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where f ∈ X∗, v ∈ V , x ∈ X, and {ei} is a basis of H with dual basis {ei}. In string
diagram notation, these can be depicted as

ι2(V )X =

H∗ V

X∨ V X

Vect

, ι3(V )X =

H∗ V

X V ∨X

Vect

, (4.1.17)

where the boxed Vect signifies that this is to be read in the category of vector spaces. The
actions in (4.1.15) are uniquely determined by requiring ι2 and ι3 to be morphisms in C.

The units are

η2(V ) = η3(V ) = ε⊗ idV , (4.1.18)

where ε is the counit of H, and with ∆ the comultiplication of H, the multiplications are
given by25

µ2(V ) = (∆op)∗ ⊗ idV , µ3(V ) = ∆∗ ⊗ idV . (4.1.19)

The comultiplication of Ai is given by linear maps

∆i(V,W ) : H∗ ⊗ V ⊗W → H∗ ⊗ V ⊗H∗ ⊗W (4.1.20)

for all V,W ∈ C explicitly as follows. We have

∆2(V,W )(f ⊗ v ⊗ w) =
∑
i,j

〈f | ei · ej〉 ei ⊗ v ⊗ ej ⊗ w (4.1.21)

and

∆3(V,W )(f ⊗ v ⊗ w) =
∑
i,j

〈f | ej · ei〉 ei ⊗ v ⊗ ej ⊗ w (4.1.22)

for f ∈ H∗. The counits, being morphisms Ai (1)→ 1, can be identified with elements in
H, and we find that they are given by the unit of H,

ε2 = ε3 = 1. (4.1.23)

The left antipode is given by linear maps

Sli(V ) : H∗ ⊗ (H∗ ⊗ V )∗ → V ∗, (4.1.24)
25The convention we use for the dual map ∆∗ on H∗ ⊗H∗ is as follows: for f, g ∈ H∗ and b ∈ H we

set (∆∗(f ⊗ g))(b) := (f ⊗ g)(∆(b)). Ditto for (∆op)∗.
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for V ∈ C, and, denoting by S̃li(V ) the corresponding canonical endomorphism of H ⊗ V ,
we have

S̃l2(V ) = S ⊗ idV and S̃l3(V ) = S−1 ⊗ idV . (4.1.25)

Assume now that H is a pivotal Hopf algebra, i.e. that it contains a grouplike element
g, called the pivot, satisfying S2(a) = gag−1 for all a ∈ H, cf. Section 2.2.1 or [AAGTV,
BBGa]. The two remaining actions on Ai(V ) for i = 1, 4 can be chosen as

h
1y (f ⊗ v) = 〈f | S−1(h(1))?h(3)〉 ⊗ h(2)v

h
4y (f ⊗ v) = 〈f | S(h(3))?h(1)〉 ⊗ h(2)v . (4.1.26)

With this definition, the corresponding universal dinatural transformations are the same
linear maps as before:

ι1(V )X = ι2(V )X and ι4(V )X = ι3(V )X . (4.1.27)

The counits are

ε1 = g−1 and ε4 = g. (4.1.28)

Rather than determining the Hopf monad structure on each Ai separately as stated
before Proposition 4.1.1, it may be easier to work out only one, say A2, and then to
transport the structure via the isomorphisms κij. By Proposition 4.1.2, this gives the
same result. The κij take a simple form in the Hopf case:

(κ12)V (f ⊗ v) = 〈f | g−1 ?〉 ⊗ v ,
(κ23)V (f ⊗ v) =

(
f ◦ S

)
⊗ v ,

(κ43)V (f ⊗ v) = 〈f | g ?〉 ⊗ v , (4.1.29)

for all f ∈ H∗, v ∈ V . Note that then e.g. ε1 = ε2 ◦ (κ12)1. 4

4.1.2 Monadic cointegrals for finite tensor categories
Recall the distinguished invertible object D from Section 1.1.3, and consider the free Ai-
module (Ai (D) , µi(D)).

Definition 4.1.5. For i = 2 (resp. i = 3), a morphism

λi : 1→ Ai (D) (4.1.30)

is called a right (resp. left) monadic cointegral of C if it intertwines the trivial Ai-action
on 1 and the free action on Ai (D). If C is pivotal, then for i = 1 (resp. i = 4) such a
morphism is called a right (resp. left) D-symmetrized monadic cointegral of C.
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We denote the subspace of monadic cointegrals in C(1, Ai (D)) by:

i = 1 :
∫ r,D−sym
C i = 2 :

∫ r,mon
C

i = 4 :
∫ l,D−sym
C i = 3 :

∫ l,mon
C

(4.1.31)

Remark 4.1.6. 1. The Ai-module intertwining condition from (4.1.30) for a morphism
λi : 1→ Ai (D) in C is equivalent to the commutativity of the diagram

Ai (1) A2
i (D)

1 Ai (D)

Ai(λi)

εi µi(D)

λi

, (4.1.32)

or as an equation

λi ◦ εi = µi(D) ◦ Ai(λi) . (4.1.33)

In [BV1, Eq. (45)], a cointegral of a bimonad T was defined as an intertwiner of
T -modules from (1, T0) to (T (1), µ1). Thus, if C is unimodular, a right (resp. left)
monadic cointegral of C is just a cointegral of the bimonad A2 (resp. A3).

2. It follows immediately from Proposition 4.1.2 that λi is a monadic cointegral for Ai
if and only if (κi,j)D ◦ λi is a monadic cointegral for Aj.

O

The names for the monadic cointegrals are chosen because of the relation to cointegrals
for Hopf algebras, as we will see in the following example.26

Example 4.1.7. Let C = HM be as in Example 4.1.4. By Remark 2.3.9, the distinguished
invertible object D is just the ground field k with action given by the algebra morphism
γ−1, where γ is the modulus of H. Thus, a morphism 1 → Ai (D) is the same as an
element in H∗ intertwining some specific H-actions.

Let us first look at the linear condition coming from diagram (4.1.32). Using the
Hopf monad structure as given in Example 4.1.4, we see that a right (resp. left) monadic
cointegral is, as a linear form, a solution to

(λ2 ⊗ id)(∆(h)) = λ2(h)1, resp. (id⊗λ3)(∆(h)) = λ3(h)1. (4.1.34)
26According to our convention of calling the invariants under the regular actions of a Hopf algebra

integrals, one could also call e.g. the right D-symmetrized monadic cointegral simply an integral for the
Hopf monad A1. This would follow more closely the nomenclature of [BV1] (who, however, call the
invariants under the regular actions of a Hopf algebra “cointegrals”, which is opposite to our convention).
It would also fit to Corollary 4.1.11, which roughly states that monadic cointegrals are dual to the
categorical cointegrals of [Sh4].

However, as we explain in Example 4.1.7 and Section 4.3, the reason for keeping these names is that
the four versions of monadic cointegrals automatically correspond to the four versions of cointegrals for
H if C = H-mod for a pivotal (quasi) Hopf algebra H.
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That is, it is a right (resp. left) cointegral for the Hopf algebra H in the usual sense, cf.
[Ra2, Def. 10.1.2]. Conversely, for example, a solution to the first equation in (4.1.34)
is a right monadic cointegral, provided it is in addition an intertwiner 1 → A2 (D) of
H-modules. However, by [Ra2, Thm. 10.5.4(e)] or simply (2.3.11), a right cointegral λ
satisfies λ(aS−1(b)) = γ−1(b(2))λ(S(b(1))a). With the H-action on A2 (V ) from (4.1.15),
we thus have

γ−1(h(2))λ(S(h(1))ah(3)) = λ(ah(2)S
−1(h(1))) = ε(h)λ(a) . (4.1.35)

But this is simply the required intertwining property, so a right cointegral is automatically
a right monadic cointegral.

If (H, g) is a pivotal Hopf algebra, then diagram (4.1.32) can, as a linear equation, be
evaluated for i = 1, 4, and it gives the equations

(λ1 ⊗ id)(∆(h)) = λ1(h)g−1, (id⊗λ4)(∆(h)) = λ4(h)g. (4.1.36)

According to [FOG, Sec. 4.4], solutions to these equations are precisely γ-symmetrized
cointegrals for H (where we regard H as a Hopf G-coalgebra for G the trivial group),
see also [BBGa] for the unimodular case. As above, in the converse direction, solutions
to e.g. the first equation in (4.1.36) are automatically intertwiners of H-modules from 1
to A1 (D).27 Let us also recall from Remark 3.1.7 that γ-symmetrized cointegrals are an
example of g-cointegrals for a group-like g as introduced in [Ra1].

Finally, let us stress a point already made in the introduction. As we just saw, via the
very natural realization of each monad Ai given in Example 4.1.4, the monadic cointegrals
for A1, . . . , A4 reduce directly to four known versions of cointegrals for finite dimensional
(pivotal) Hopf algebras. This is an important motivation for keeping all four of the Ai,
even though they are all isomorphic. Indeed, also in the Hopf case one can easily give
explicit isomorphisms between the four spaces of cointegrals, but in practice it is important
to have all four notions available, rather than singling one out arbitrarily. 4

The preceding example shows that for C = HM with H a finite-dimensional (pivotal)
Hopf algebra, left/right (D-symmetrized) monadic cointegrals exist and are unique up to
scalar. The next proposition states that this remains true for any (pivotal) finite tensor
category.
Proposition 4.1.8. Let C be a finite tensor category.

1. Non-zero left/right monadic cointegrals exist and are unique up to scalar multiples.

2. Suppose C is in addition pivotal. Then non-zero left/right D-symmetrized monadic
cointegrals exist and are unique up to scalar multiples.

The proof will follow from results in [Sh4], after we relate monadic cointegrals to the
categorical cointegral of [Sh4], and is given at the end of the next subsection.

27This follows from results in the appendix. More precisely, note that by [FOG, Prop. 4.18] the linear
form λ1 lies in the space X1 from (B.4.1). This space is isomorphic to C(1, A1 (D)), and the isomorphism
(B.4.2) is the identity in the Hopf case.
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4.1.3 Relation to the categorical cointegral
Define functors Zi via the ends

Z1 (V ) =
∫
X∈C

∨X (V X) , Z2 (V ) =
∫
X∈C

X∨ (V X)

Z3 (V ) =
∫
X∈C

(XV ) ∨X, Z4 (V ) =
∫
X∈C

(XV )X∨ (4.1.37)

with corresponding universal dinatural transformations πi(V ), so that for example

π4(V )X : Z4 (V )→ (XV )X∨ . (4.1.38)

Below we will give an adjunction between Z4 and A2. One can formulate such adjunctions
in the three other cases, too, but we will not need this and will only consider Z4 in the
following.

Similarly to how the Ai, i = 2, 3 became Hopf monads, Z4 becomes a Hopf comonad
and we denote the comultiplication, counit, multiplication, and unit by

∆4(V ) : Z4 (V )→ Z4Z4(V ), ε4(V ) : Z4 (V )→ V,

µ4(V,W ) : Z4 (V )⊗ Z4 (W )→ Z4 (V ⊗W ) , u4 : 1→ Z4 (1) , (4.1.39)

respectively. Z4 is precisely the central comonad of [Sh4], where also a detailed description
of the structure maps (4.1.39) can be found.

With this, we can now recall the definition of the categorical cointegral from [Sh4,
Def. 4.3]: It is a Z4-comodule morphism

λSh : (Z4 (D∨) ,∆4(D∨))→ 1 (4.1.40)

from the cofree comodule on D∨ to the tensor unit considered as the trivial comodule.28

‘Cofree comodule’ is simply a technical term meaning the image under the right adjoint
of the forgetful functor CZ4 → C.

To relate the two notions categorical cointegral and monadic cointegral, we observe
that there is an adjunction A2 a Z4, i.e. the central Hopf monad A2 is left adjoint to Z4.
Indeed, the following simple argument shows this:

C(A2 (V ) ,W ) ∼= Dinat(−∨ (V−) ,W )
∼= Dinat(V, (−W )−∨) ∼= C(V, Z4 (W )). (4.1.41)

We denote the counit and unit of this adjunction by

ε̃ : A2Z4 ⇒ idC, η̃ : idC ⇒ Z4A2 (4.1.42)

28Although Shimizu’s definition is not explicitly stated this way, it is easy to see that [Sh4, Def. 4.3]
and (4.1.40) are equivalent. This is also mentioned in the proof of [Sh4, Thm. 4.8].
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respectively. They can easily be deduced from (4.1.41); for example

V

ε̃V

ι2

X∨ Z4V X

=

V

π4

X∨ Z4V X

(4.1.43)

determines the counit. One can check that the bicomonad structure on Z4 as described
in [Sh4] is obtained from that of A2 via the adjunction, as explained in Proposition 1.2.14.

For a comonad M on C, the category of comodules will be denoted by CM .

Lemma 4.1.9. The functor F : CZ4 → CA2, given on objects and morphisms by

F (V, ρ) = (V, ε̃V ◦ A2 (ρ)), Ff = f, (4.1.44)

is an equivalence.

Proof. This statement follows immediately from the fact that A2 is left adjoint to Z4, since
a left adjoint is nothing but a left dual in End(C). The inverse equivalence G : CA2 → CZ4

is given on objects and morphisms by

G(V, ν) = (V, Z4 (ν) ◦ η̃V ), Gf = f, (4.1.45)

and a simple check using the adjunction triangles proves the claim.

We make the following observation.

Proposition 4.1.10. Let F be as in Lemma 4.1.9. There is an isomorphism

(A2 (V ) , µ2(V )) ∼=
(
F (Z4 (∨V ) ,∆4(∨V ))

)∨
(4.1.46)

of A2-modules, natural in V ∈ C.

Proof. Abbreviate

Ṽ = Z4 (∨V ) and ρ
Ṽ

= ∆4(∨V ) : Ṽ → Z4
(
Ṽ
)
. (4.1.47)

Under the equivalence from Lemma 4.1.9 we have

F (Ṽ , ρ
Ṽ

) = (Ṽ , σ
Ṽ

) (4.1.48)

where σ
Ṽ

= ε̃
Ṽ
◦A2(ρ

Ṽ
) : A2(Ṽ )→ Ṽ is the A2-action corresponding to the cofree coaction.
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Define the natural isomorphism EV : A2 (V )→ Ṽ ∨ by

EV ◦ ι2(X)V =

Ṽ ∨

ωX

π4(∨V )∨X

X∨ V X

(4.1.49)

for V ∈ C. Here ωX : (∨X)∨ → X denotes the natural isomorphism from (1.1.12).
We want to show that EV is an A2-module map, that is

EV ◦ µ2(V ) = Sl2(Ṽ ) ◦ A2
(
σ∨
Ṽ
◦ EV

)
, (4.1.50)

where we also used the action (1.2.26) on the dual A2-module. To check that this equality
holds we establish that both sides of (4.1.50) satisfy the same universal property for the
iterated coend A2A2. For the left hand side of (4.1.50) we get

EV ◦ µ2(V ) ◦ ι2(A2V )Y
◦
(

idY ∨ ⊗(ι2(V )X ⊗ idY )
)

=
.

Ṽ ∨

ωX

π4(∨V )∨(XY )
γ

Y ∨X∨ V X Y

(4.1.51)

The right hand side of (4.1.50) composed with the same dinatural transformation imme-
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diately yields

(Ṽ )∨

ι2

Sl2(Ṽ )

(σ
Ṽ

)∨ ◦ EV
ι2

Y ∨X∨ V X Y

=

Ṽ ∨

ωX

π4

σ
Ṽ

ι2

ω−1
Y

Y ∨X∨ V X Y

(4.1.52)

A simple calculation shows

π4(∨V )∨X ◦ σṼ ◦ ι2(Ṽ )∨Y = ,

∨X ∨V (∨X)∨

γ−1

π4

(∨Y )∨ Ṽ
∨Y

(4.1.53)

and we thus get

(4.1.52) = .

(Ṽ )∨

ω ω

γ−1

π4

Y ∨X∨ V X Y

(4.1.54)

Let γr be the analogue of γ (defined in (1.1.6)) for right duals. One quickly checks
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that the diagram

(∨X ⊗ ∨Y )∨ (∨Y )∨ ⊗ (∨X)∨

(∨(Y ⊗X))∨ Y ⊗X

γ−1
∨Y ,∨X

(
(γr)−1

Y,X

)∨
ωY ⊗ωX

ωY⊗X

(4.1.55)

commutes.
Dinaturality of π4 then implies

∨X ∨Y V (∨Y )∨(∨X)∨

ω ω

γ−1

π4

Z4 (V )

= .

∨X ∨Y V (∨Y )∨ (∨X)∨

(γr)−1
ω

π4

Z4 (V )

(4.1.56)

After plugging this into (4.1.54) and substituting the definitions of γr, γ, and ω, we see
that this agrees with (4.1.51).

Combining Lemma 4.1.9 and Proposition 4.1.10, and using ∨D ∼= D∨ (this holds for
all invertible objects), we get

Corollary 4.1.11. There is an isomorphism

CA2

(
1, (A2 (D) , µ2(D))

) ∼= CZ4
(
(Z4 (D∨) ,∆4(D∨)),1

)
. (4.1.57)

After these preparations, we can show the existence and uniqueness (up to scalar) of
monadic cointegrals.

Proof of Proposition 4.1.8. By the preceding corollary, the right monadic cointegral is
equivalent to the categorical cointegral (4.1.40) of [Sh4]. Existence and uniqueness of
categorical cointegrals were established in [Sh4, Thm. 4.8]. The claim then follows from
Remark 4.1.6 (2).

We now provide an interpretation of Corollary 4.1.11.

Remark 4.1.12. Recall that the definition of integrals and cointegrals in the Hopf case
is symmetric under duality. More precisely, if H is a finite-dimensional Hopf algebra,
then a left cointegral for H is the same as a morphism λl : H → 1 in the category of
left H-comodules, where we regard H as the coregular comodule. Equivalently, we can
consider the dual Hopf algebra H∗ (with the structure given by transposition of that of
H, cf. footnote 25). In this case, a left cointegral for H is a left integral for H∗, and thus



Chapter 4. Monadic cointegrals and applications to quasi-Hopf algebras 71

a morphism λl : 1 → H∗ in the category of left H∗-modules, where we regard H∗ as the
regular module.

Taking duals provides a (contravariant) equivalence,

H-comod ∼= H∗-mod (4.1.58)

and in particular we have an isomorphism

(H-comod)(H,1) ∼= (H∗-mod)(1, H∗) (4.1.59)

of vector spaces. We will need one more observation. Abbreviate C = H-mod and recall the
computation (4.1.35). This showed that there is an H-module structure on H∗ = A3 (D)
and similarly on H = Z4 (D∨) (which are not the (co)regular) such that:

(H-comod)(H,1) ∼= (H∗-mod)(1, H∗)
∩ ∩

C(Z4 (D∨) ,1) C(1, A3 (D))
(4.1.60)

For quasi-Hopf algebras H the corresponding line of reasoning to relate integrals and
cointegrals fails at the outset, as H∗ is not again a quasi-Hopf algebra. Instead, there is
the following categorical version of it. We have a (contravariant) equivalence given by the
composition of equivalences

CZ4
Lem. 4.1.9∼= CA2

dualizing∼= CA2

Prop. 4.1.2∼= CA3 . (4.1.61)

Corollary 4.1.11 then implies

CZ4
(

(Z4 (D∨) ,∆4(D∨)), 1
) ∼= CA3

(
1, (A3 (D) , µ3(D))

)
. (4.1.62)

To relate the right hand side of (4.1.62) in the Hopf case to that of (4.1.60), one uses
the explicit form of the monad multiplication in (4.1.19). For the left hand side, one
correspondingly uses the coproduct of Z4, we omit the details.

The categorical version (4.1.62) of the isomorphism (4.1.60) provides a more conceptual
reason for the relation between the left monadic cointegral and the categorical cointegral
of [Sh4]. O

4.1.4 Rewriting the monadic cointegral via Z4

In Corollary 4.1.11 we saw one way to rewrite the definition of monadic cointegrals in
terms of Hom-spaces in CZ4 . We will later need the more direct relation we present here.

Under the equivalence from Lemma 4.1.9, specifically (4.1.45), we can map the free
A2-module on any U ∈ C to its corresponding Z4-comodule

(A2(U), RU) with RU =
[
A2 (U)

η̃A2(U)−−−−→ Z4A
2
2(U) Z4(µ2(U))−−−−−−→ Z4A2 (U)

]
. (4.1.63)
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Note that this assignment is in fact natural in U , i.e. we have a natural transformation

R : A2 ⇒ Z4A2, (4.1.64)

which we call the categorical coaction.29 Since the equivalence (4.1.44) doesn’t do anything
on morphisms, we now see the equality

CA2

(
1, (A2 (D) , µ2(D)

)
= CZ4

(
1, (A2 (D) , RD)

)
(4.1.65)

of subspaces of C
(
1, A2 (D)

)
. An element in the subspace on the left hand side is by

definition a right monadic cointegral. Spelling out the condition to be in the subspace on
the right hand side proves the following useful lemma (recall from (4.1.39) the notation
u4 for the unit of Z4):

Lemma 4.1.13. A morphism λ : 1 → A2 (D) in C is a right monadic cointegral if and
only if

RD ◦ λ = Z4 (λ) ◦ u4 . (4.1.66)

4.2 Cointegrals for quasi-Hopf algebras
In this section we specialize monadic cointegrals to the category of modules over a quasi-
Hopf algebra. Then we briefly discuss an initial observation regarding the relation between
monadic cointegrals and cointegrals as defined in Section 2.3. This observation will turn
out to be very important in the proof of the main theorem(s) of this chapter.

Throughout this section H is a finite-dimensional quasi-Hopf algebra over k.

4.2.1 Monadic cointegrals for quasi-Hopf algebras
Recall from Section 2.3 that the modulus γ ∈ H∗ of H is an algebra morphism which
encodes the difference between left and right integrals, see e.g. Proposition 2.3.8. Recall
also that the distinguished invertible object D of HM is the one-dimensional module with
action given by γ−1 = γ ◦ S, and we have γ−1 = γ∨ as H-modules.

We now want to describe the monadic cointegrals for H. To this end, let us first
give our realizations of the central Hopf monads Ai on the category HM. Consider the
following four H-module structures on the vector space H∗ ⊗ V

h
1y (f ⊗ v) = 〈f | S−1(h(1))?h(2,2)〉 ⊗ h(2,1).v ,

h
2y (f ⊗ v) = 〈f | S(h(1))?h(2,2)〉 ⊗ h(2,1).v ,

h
3y (f ⊗ v) = 〈f | S−1(h(2))?h(1,1)〉 ⊗ h(1,2).v ,

29The categorical coaction turns A2 into a Z4-comodule in End(C).
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h
4y (f ⊗ v) = 〈f | S(h(2))?h(1,1)〉 ⊗ h(1,2).v . . (4.2.1)

Define also the linear maps

ι1(V )X = ι2(V )X : X∗ ⊗ V ⊗X → H∗ ⊗ V
f ⊗ v ⊗ x 7→ 〈f |?.x〉 ⊗ v,

ι3(V )X = ι4(V )X : X ⊗ V ⊗X∗ → H∗ ⊗ V
x⊗ v ⊗ f 7→ 〈f |?.x〉 ⊗ v . (4.2.2)

In Appendix A we prove the following proposition, namely that these data realize the
coend(s). In particular, the linear maps ιi are morphisms in HM.

Proposition 4.2.1. The H-module H∗ ⊗ V with action iy together with the dinatural
transformation ιi(V ) realizes the coend Ai (V ).

Let us also record here the Hopf monad isomorphisms from Proposition 4.1.2 for (piv-
otal) quasi-Hopf algebras, using our realizations of the monads. To this end, recall the
hook notation from (2.1.10).

Proposition 4.2.2. The canonical Hopf monad isomorphisms

A1 (V ) (κ1,2)V−−−−→ A2 (V ) (κ2,3)V−−−−→ A3 (V ) (κ3,4)V−−−−→ A4 (V ) (4.2.3)

from Proposition 4.1.2 (for the maps (κ1,2)V , (κ3,4)V , we require a pivot g) are given by
the linear maps

(κ1,2)V (f ⊗ v) = (f ↼ g−1)⊗ v ,
(κ2,3)V (f ⊗ v) = 〈f | S(?X1)X3〉 ⊗X2.v ,

(κ3,4)V (f ⊗ v) = (f ↼ g−1)⊗ v , (4.2.4)

for f ∈ H∗, v ∈ V .

Proof. The proof is a straightforward computation. For example, for κ2,3 one needs to
check the commutativity of

X∨ ⊗ (V ⊗X) (X∨ ⊗ V )⊗X (X∨ ⊗ V )⊗ ∨(X∨)

A2 (V ) A3 (V )

∼

ι2(V )X

∼

ι3(V )X∨
(κ2,3)V

. (4.2.5)

Note here that the isomorphism X ∼= ∨(X∨) is the same linear map as in Vect.

Remark 4.2.3. Recall from Proposition 2.3.3 that left and right cointegrals for quasi-Hopf
algebras can be related via a somewhat complicated element u. It is worth comparing the
definition of u to that of κ2,3 from Proposition 4.2.2, which only used a single coassociator.

O
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Define τ ∈ H⊗5 by
τ = X1 ⊗X2y1 ⊗ x1(X3(1)y2)(1) ⊗ x2(X3(1)y2)(2) ⊗ x3X3(2)y3 (4.2.6)

The multiplication of A2 can be computed explicitly from (4.1.4). For f, g ∈ H∗ and
v ∈ V , the image µ2(V )(f ⊗ g ⊗ v) ∈ H∗ ⊗ V under multiplication can be identified with
the linear map

H 3 h 7→ (g ⊗ f)
(
(S ⊗ S)(τ21)f∆(h)τ45

)
τ3.v ∈ V . (4.2.7)

The counit ε2 : A2 (1) → 1 is easily computed from (4.1.6), and we identify it with the
element ε2 = α ∈ H. Let us recall the right monadic cointegral equation from (4.1.33):

λ ◦ ε2 = µ2(D) ◦ A2 (λ) . (4.2.8)
This is an equality of (linear) endomorphisms of H∗, and evaluating it on f ∈ H∗, we
immediately get

f(α)λ = γ−1(τ3)(λ⊗ f)
(
(S ⊗ S)(τ21)f∆(ei)τ45

)
ei. (4.2.9)

This is clearly equivalent to
λ(h)α = γ−1(τ3)(λ⊗ id)

(
(S ⊗ S)(τ21)f∆(h)τ45

)
(4.2.10)

for all h ∈ H.
Altogether, an element λ ∈ H∗ is a right monadic cointegral if and only if it satisfies

(4.2.10) and is an H-module intertwiner 1→ A2 (γ−1).30

Similarly, with f r the Drinfeld twist for right duals and σ = (τ cop)54321 given explicitly
by

σ = x1(1,1)Y1X1 ⊗ x1(1,2)Y2X2(1) ⊗ x1(2)Y3X2(2) ⊗ x2X3 ⊗ x3 , (4.2.11)
one obtains necessary conditions for the three remaining types of monadic cointegrals.
Namely, if λ ∈ H∗ is a

1. right D-symmetrized monadic cointegral then it satisfies
λ(h)g−1α = γ−1(τ3)(λ⊗ id)

(
(S−1 ⊗ S−1)(τ21)f r∆(h)τ45

)
(4.2.12)

3. left monadic cointegral then it satisfies
λ(h)S−1(α) = γ−1(σ3)(id⊗λ)

(
(S−1 ⊗ S−1)(σ54)f r∆(h)σ12

)
(4.2.13)

4. left D-symmetrized monadic cointegral then it satisfies
λ(h)gS−1(α) = γ−1(σ3)(id⊗λ)

(
(S ⊗ S)(σ54)f∆(h)σ12

)
(4.2.14)

for all h ∈ H.
30The H-intertwiner condition, which is explicitly stated as a linear equation in (B.2.3), is automatic for

monadic cointegrals for Hopf algebras, and an analogous condition is automatic for cointegrals of quasi-
Hopf algebras as defined in Definition 2.3.4 below. The corresponding statement remains to be shown in
the monadic setting for quasi-Hopf algebras; in all of the examples we looked at, and which are discussed
in Section 4.4, the solution spaces to equation (4.2.10) turn out to be one-dimensional.
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4.2.2 Relation to cointegrals via coactions
We now show that the comonads Z4 on HM (c.f. Section 4.1.3) and Y l on HMH (which
we introduced in Section 2.3) are related as follows. Consider the functor

A : HMH → HM (4.2.15)

sending a bimodule B to the vector space B with H-action

h⊗ b 7→ h(1).b.S(h(2) ↼ γ−1) = γ−1(h(2,1))h(1).b.S(h(2,2)), (4.2.16)

for h ∈ H, b ∈ B. We claim that there is a natural isomorphism ϕ making the diagram

HMH HMH

HM HM

Yl

A Aϕ

Z4

(4.2.17)

commute.
Before proving this, let us specialize the comonad Z4 from [Sh4] to the case C = HM.

We choose the realization such that the objects Z4 (V ) are given by the underlying vector
space H ⊗ V with actions

h
4· (a⊗ v) = h(1,1)aS(h(2))⊗ h(1,2).v . (4.2.18)

Lastly, let us also record here that the unit of Z4 is given by the coevaluation element,

u4 = β . (4.2.19)

We get the following explicit form of ϕ.

Proposition 4.2.4. The family of maps

ϕB : AY l(B)→ Z4A(B),
h⊗ b 7→ γ−1(x3(1)X2(1)Y1) x1X1(1)hf

−1
1 S(X3Y3)

⊗ x2X1(2).b.f
−1
2 S(x3(2)X2(2)Y2), (4.2.20)

for B ∈ HMH defines a natural isomorphism as in (4.2.17).

Proof. That the above map is natural in B ∈ HMH is immediate, and proving that it
intertwines the corresponding H-actions is a straightforward calculation. For convenience
we state that the action on AY l(B) is

h⊗ (a⊗ b) 7→ h(1,1)aS(h(2) ↼ γ−1)(1) ⊗ h(1,2).b.S(h(2) ↼ γ−1)(2) (4.2.21)
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and the action on Z4A(B) is

h⊗ (a⊗ b) 7→ h(1,1)aS(h(2))⊗ h(1,2,1).b.S(h(1,2,2) ↼ γ−1) (4.2.22)

for a, h ∈ H, b ∈ B. Here the dot denotes the action on the bimodule B.
Finally, the inverse of ϕB can be read off directly from the explicit expression in (4.2.20).

We state it for convenience; it is given by

ϕ−1
B : Z4A(B),→ AY l(B)

h⊗ b 7→ γ−1(y1x2(1)X3(1))x1(1)X1hS(y3x3)f 1

⊗ x1(2)X2.b.S(y2x2(2)X3(2))f 2 . (4.2.23)

The verification that this is indeed a (two-sided) inverse of ϕ is left as an easy exercise.

4.3 Main Theorem
We are now ready to state our two main theorems of this chapter, which are Theorems 4.3.1
and 4.3.3 below.

4.3.1 Left and right monadic cointegrals
Theorem 4.3.1. Let H be a finite-dimensional quasi-Hopf algebra with modulus γ.

1. Define the linear map

(?)mon : H∗ → H∗, fmon = 〈f | S(β) ? S−1(ξ)〉 , (4.3.1)

where ξ = (id⊗γ)(f−1). Then λmon is a right monadic cointegral if and only if
λ ∈ H∗ is a right cointegral.

2. Define the linear map
mon(?) : H∗ → H∗, monf = 〈f | S−2(β) ? S(ξ̂)〉 , (4.3.2)

where ξ̂ = ξcop = (S−1 ⊗ γ−1)(f−1). Then monλ is a left monadic cointegral if and
only if λ ∈ H∗ is a left cointegral,

Let us explain the main ideas in the proof. First, we specialize the equivalent char-
acterization of (right) monadic cointegrals from Lemma 4.1.13 to the quasi-Hopf setting.
The resulting equation resembles the right cointegral equation (2.3.22) we encountered in
our discussion of quasi-Hopf algebras. Indeed, we find a nice relationship between the cat-
egorical coaction RD from (4.1.63) and the left coaction from [BC2], cf. Proposition 4.3.2
below.

Using the relation between these two coactions we then show that the map (4.3.1) sends
a right cointegral to a right monadic cointegral via a direct calculation. This establishes
Part 1. Part 2 will then be inferred from Part 1 using the isomorphism A2 ∼= A3.

The details follow below, with some technical steps deferred to Appendix B.2.
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Relation to quasi-Hopf cointegrals
Let C = HM and recall our realization of the Hopf comonad Z4 from (4.2.18) and (4.2.19).
In this setting, the distinguished invertible object of C is γ∨, and we can rewrite Equa-
tion (4.1.66) on right monadic cointegrals as the linear equation

Rγ∨ ◦ λ = β ⊗k λ , (4.3.3)

where we identified morphisms from 1 to H with elements in H. We will show that this
equation is equivalent to the right cointegral equation (2.3.22), which re recall here for
convenience,

ρl(λr) = γ(x3)x1 ⊗ λr.x2 , (4.3.4)

where λr ∈ H∗ satisfies λ = (λr)mon with (−)mon defined in (4.3.1).
We will first relate the categorical coaction Rγ∨ and the coaction ρl. To this end, recall

the functor A : HMH → HM from (4.2.15). One can check that in our realization of the
central Hopf monad we have the equality A(H∨) = A2(γ∨) of H-modules.
Proposition 4.3.2. With the natural isomorphism ϕ : AY l ⇒ Z4A from (4.2.17) and the
left H-coaction ρl : H∨ → Y l(H∨) from Section 2.3 we have that

Rγ∨ =
[
A(H∨) A(ρl)−−−→ AY l(H∨) ϕH∨−−→ Z4A(H∨)

]
. (4.3.5)

The proof of this proposition has been relegated to Appendix B.1.
Note that A does not do anything on morphisms; in particular, the linear maps A(ρl)

and ρl are identical. Then this proposition together with (4.3.3), says that λ is a right
monadic cointegral if and only if

(ϕH∨ ◦ ρl)(λ) = β ⊗k λ . (4.3.6)

In Appendix B.2 we show that this is equivalent to the right cointegral equation (4.3.4)
using the map (4.3.1). This finishes the proof of the first part of Theorem 4.3.1.

The second part is the same as the first part for Hcop, but we prefer not passing
to a different quasi-Hopf algebra. Instead, we follow a more direct approach using the
isomorphism A2 ∼= A3 from Proposition 4.1.2 and Proposition 4.2.2, see Appendix B.3.

Namely, in the appendix, we show that the diagram∫ r
H

∫ r,mon
C

∫ l
H

∫ l,mon
C

(4.3.1)

(∗) (κ2,3)D ◦ ?

(4.3.2)

(4.3.7)

commutes, where (∗) is, up to a non-zero factor, the isomorphism between left and right
cointegrals (cf. Proposition 2.3.3), and κ2,3 : A2 ⇒ A3 is the Hopf monad isomorphism
from (4.2.4).
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4.3.2 Left and right D-symmetrized monadic cointegrals
To prove an analogous result of Theorem 4.3.1 for D-symmetrized monadic cointegrals,
we recall our notion of γ-symmetrized cointegrals for H, cf. Section 3.1: a left (resp. right)
γ-symmetrized cointegral is a linear form λ̂

l (resp. λ̂r) on H such that

λ̂
l = λ↼ ucopg−1 resp. λ̂

r = λ↼ ug , (4.3.8)

where λ is a left (resp. right) cointegral of H, and u, ucop are defined in (2.3.12).
Now we can extend Theorem 4.3.1 to the pivotal case.

Theorem 4.3.3. Let (H, g) be a pivotal quasi-Hopf algebra.

• Consider the linear map

(?)γ-sym : H∗ → H∗, fγ-sym = 〈f | S(β) ? S−1(ϑ)〉 , (4.3.9)

where ϑ = (γ−1⊗ S−1)(pL). Then λγ-sym is a right D-symmetrized monadic cointe-
gral if and only if λ ∈ H∗ is a right γ-symmetrized cointegral.

• Consider the linear map
γ-sym(?) : H∗ → H∗, γ-symf = 〈f | β ? S(ϑ̂)〉 , (4.3.10)

where ϑ̂ = ϑcop = (S ⊗ γ−1)(pR). Then γ-symλ is a left D-symmetrized monadic
cointegral if and only if λ ∈ H∗ is a left γ-symmetrized cointegral.

The proof is via monad isomorphisms as in the second part of Theorem 4.3.1 and can
be found in Appendix B.4.

4.4 Examples of monadic cointegrals
Here we give examples of quasi-Hopf algebras and their cointegrals. Our examples are
mostly non-unimodular; some unimodular examples can be found e.g. in [BC2, Ex. 3.7] and
Sections 2.4 and 3.3. All vector spaces below are considered over the complex numbers C.

Example 4.4.1. Our first example is again given by the two 8-dimensional quasi-Hopf
algebras H±(8) from Section 2.4.1. We want to give their (monadic) cointegrals.

Basis elements of H±(8) are of the form Bm,n = gmxn, 0 ≤ m ≤ 1, 0 ≤ n ≤ 3, and we
denote the element dual to Bm,n by B∗m,n. The Drinfeld twist is given by

f±1 = 2p+ ⊗ p+ − g ⊗ g (4.4.1)

and so we obtain the right monadic cointegral

λr,mon = B∗0,3 ± iB∗1,3 . (4.4.2)
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Concretely, one solves (4.2.10) and finds that its solution space is one-dimensional, so its
elements automatically are morphisms in HM. With the Hopf monad isomorphism κ2,3
from Proposition 4.2.2 it is then easy to show that

λl,mon = B∗1,3 (4.4.3)

is a non-zero left monadic cointegral. Using the isomorphisms from Theorem 4.3.1, we
obtain the ‘classical’ right and left cointegrals,

λr = B∗0,3 ∓ iB∗1,3 and λl = B∗0,3 . (4.4.4)

The same expression for the left cointegral was also derived in [BC2, Ex. 3.9].
We remark that H±(8) is not pivotal. Indeed, one easily checks that already for the

generator x, S2(x)h = hx implies h = 0, so that S2 is not inner. 4

Example 4.4.2. Fix N ∈ N, β ∈ C satisfying β4 = (−1)N . This example is based on
the symplectic fermion ribbon quasi-Hopf algebra Q(N, β), which we already discussed
in Section 2.4.2. Q(N, β) is factorizable, so in particular unimodular, and its cointegrals
were already discussed in Section 3.3. We now restrict to the sub-quasi-Hopf algebra
H(N, β) ⊂ Q(N, β), which is defined as follows. As a unital C-algebra, it is generated by
K, fi, 1 ≤ i ≤ N , with defining relations

{fi,K} = 0 , {fi, fj} = 0 , K4 = 1 , (4.4.5)

where {a, b} = ab+ ba is the anticommutator.
Recall our convention (2.4.15) for the order in product notation. A PBW-type basis

of H(N, β) is {
B~j,l =

(
N∏
i=1

fjii
)

Kl

∣∣∣∣∣ ~j ∈ {0, 1}N , 0 ≤ l ≤ 3
}
. (4.4.6)

Elements in the corresponding dual basis are simply decorated with an asterisk.
Using the orthogonal central idempotents e0 = 1

2(1 + K2) and e1 = 1−e0, and setting
ω = (e0 + ie1)K, the comultiplication and the counit are

∆(K) = K⊗ K− (1 + (−1)N)e1K⊗ e1K , ε(K) = 1 ,
∆(fi) = fi ⊗ 1 + ω ⊗ fi , ε(fi) = 0 . (4.4.7)

The coassociator and its inverse are

Φ±1 = 1⊗ 1⊗ 1 + e1 ⊗ e1 ⊗ {e0(KN − 1) + e1(β± − 1)} , (4.4.8)

where β± = e0 + β2(±iK)Ne1. The evaluation and coevaluation elements are α = 1,
β = β+, and the antipode is

S(K) = K(−1)N , S(fi) = fi(e0 + (−1)N ie1)K . (4.4.9)
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Then, with X = 1 + K + K2 + K3, we see that

cl = X
N∏
i=1

fi, cr =
(
N∏
i=1

fi
)
X (4.4.10)

are a left and a right integral, respectively. From this, one easily computes that the
modulus is the algebra homomorphism given on generators by

γ(K) = (−1)N , γ(fi) = 0. (4.4.11)

In particular, H(N, β) is unimodular if and only if N is even. Note that just as in the
previous example γ = γ−1.

Now we describe the cointegrals of H(N, β). The Drinfeld twist and its inverse are
given by

f±1 = e0 ⊗ 1 + e1 ⊗ e0KN + e1β∓ ⊗ e1 , (4.4.12)

see also [FGR2, (3.35)]. We again find the right monadic cointegral via (4.2.10) and then
obtain the left monadic cointegral via the isomorphism of Hopf monads from Proposi-
tion 4.2.2:

λr,mon = B∗~N,0 and λl,mon = δN,evenB
∗
~N,0 + δN,odd(B∗~N,1 − iB

∗
~N,3) , (4.4.13)

where ~N is the multi-index consisting only of 1s. In particular, the left and the right
monadic cointegral do not agree unless N is even.

With our main theorem, we obtain the right and the left quasi-Hopf cointegral

λr = ar+B
∗
~N,0 + ar−B

∗
~N,2 − δN,odd(B

∗
~N,1 −B

∗
~N,3),

λl = al+B
∗
~N,0 + al−B

∗
~N,2 − δN,odd(B

∗
~N,1 +B∗~N,3), (4.4.14)

where the coefficients are

ar± = δN,even(1± β2) + δN,oddβ
2i and al± = δN,even ± β2 . (4.4.15)

4

Example 4.4.3. Fix an odd integer t, let p ≥ 2 be an integer, and set q = eiπ/p. We
again consider the quasi Hopf modification U

(Φ)
q sl(2) of the restricted quantum group

U qsl(2) reviewed in Section 2.4.3. This quasi-Hopf algebra is factorizable, and as in the
previous example we will consider a non-unimodular sub-quasi-Hopf algebra U−, namely
the subalgebra generated by F and K. The defining defining relations and the quasi-Hopf
structure are the same as for U (Φ)

q sl(2), but we restate them for convenience. We have

F p = 0, K2p = 1, and KFK−1 = q−2F,
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and a natural choice of basis of U− is therefore

{Bm,n = FmKn | 0 ≤ m ≤ p− 1, 0 ≤ n ≤ 2p− 1} .

Using the two central idempotents e0 = 1
2(1 + Kp) and e1 = 1 − e0, the quasi-Hopf

structure is again given by

∆t(F ) = F ⊗ 1 + (e0 + q−te1)K−1 ⊗ F, ε(F ) = 0,
∆t(K) = K ⊗K, ε(K) = 1

and

Φt = 1⊗ 1⊗ 1 + e1 ⊗ e1 ⊗ (K−t − 1)
St(F ) = −KF (e0 + q−te1),
St(K) = K−1,

α = 1,
βt = e0 +K−te1 .

From these data one computes via (2.1.45) that the Drinfeld twist and its inverse are

f±1 = e0 ⊗ 1 + e1 ⊗ e0K
∓t + e1K

±t ⊗ e1 (4.4.16)

This quasi-Hopf algebra is pivotal, and the pivot we choose is

gt = e0K − e1K
t+1 . (4.4.17)

Set X = ∑2p−1
i=0 Ki. Then one can see that cr = F p−1X and cl = XF p−1 are a right

and a left integral for U−, respectively. From

clF = 0 , clK = q−2cl ,

F cr = 0 , Kcr = q2cr (4.4.18)

we can see that U− is non-unimodular. The modulus is

γ(F ) = 0 , γ(K) = q−2 . (4.4.19)

The order of γ is p, and in particular γ 6= γ−1 if p > 2.
Using (4.2.10) one verifies that the space of right monadic cointegrals is∫ r,mon

C = CB∗p−1,0 . (4.4.20)

The left monadic cointegral can then be found via the isomorphism from Proposition 4.2.2.
Normalizing the result, we obtain

λl,mon = (1 + q−t(p−1))B∗p−1,p−1 + (1− q−t(p−1))B∗p−1,2p−1 . (4.4.21)
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Also from Proposition 4.2.2 we obtain the right D-symmetrized monadic cointegral

λr,D−sym = B∗p−1,p−1 +B∗p−1,2p−1 + q2t
(
B∗p−1,p−t−1 −B∗p−1,2p−t−1

)
(4.4.22)

and the left D-symmetrized monadic cointegral

λl,D−sym = B∗p−1,0 +B∗p−1,p + q−t(p+1)
(
B∗p−1,t −B∗p−1,p+t

)
. (4.4.23)

The ‘classical’ cointegrals (in the sense of [HN2]) of U− can now be obtained using
Theorem 4.3.1. The right and the left cointegral are found to be

λr = B∗p−1,0 +B∗p−1,p +B∗p−1,t −B∗p−1,p+t (4.4.24)

and

λl = B∗p−1,p−1 +B∗p−1,2p−1 + q−t(p−1)
(
B∗p−1,p−t−1 −B∗p−1,2p−t−1

)
, (4.4.25)

respectively. Finally, we give the γ-symmetrized cointegrals of U− using the characteriza-
tion (3.1.1). The right γ-symmetrized cointegral is given by

λ̂
r = B∗p−1,p−1 , (4.4.26)

and the left γ-symmetrized cointegral is

λ̂
l = (1 + q−t(p−1))B∗p−1,0 + (1− q−t(p−1))B∗p−1,p . (4.4.27)

For p = 2 and t = 1, U− is, as a quasi-Hopf algebra, isomorphic to

H(N = 1, β = exp(iπ4 )) (4.4.28)

from the previous example, by mapping generators according to

F 7→ if, K 7→ K, (4.4.29)

cf. [CGR, Rem. 4.3(2)]. Note that, under this isomorphism, the cointegrals of U− agree
with those of H(N = 1, β = exp(iπ4 )). 4

4.5 Cointegrals for the coend in the braided case
In a braided category C there exist notions of integrals and cointegrals for Hopf algebras
internal to C. If C is in addition finite tensor, then the coend L =

∫X∈C X∨ ⊗ X is an
example of such a Hopf algebra, recall Example 1.2.7, and see [LM, Ly1, FGR1]. In this
section we relate left and right integrals for L to right monadic cointegrals and consider
quasi-triangular quasi-Hopf algebras as an example.

Fix a braided finite tensor category C.
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4.5.1 Integrals and cointegrals for Hopf algebras in C
Let A be a Hopf algebra in C with invertible antipode, see e.g. [KL] or [FGR1, Sec. 2.2].
Then the notions of (left/right) integrals and (left/right) cointegrals are well-defined, see
[KL, Prop. 4.2.4]. We repeat the definition of a left integral for A. It consists of an
invertible object IntA, the object of integrals, and a morphism ΛA : IntA → A making
the diagram

A⊗ IntA A⊗ A

1⊗ IntA

IntA A

id⊗ΛA

ε⊗id

m

∼

ΛA

(4.5.1)

commute. Here, m and ε are multiplication and counit of the Hopf algebra A, respectively.
Right integrals are defined similarly (with the same object IntA). It is known that non-zero
(left/right) integrals ΛA exists and are uniquely determined up to scalar [KL, Prop. 4.2.4].
Note that the above diagram is just the statement that a left integral for A is a morphism
ΛA : IntA→ A of left A-modules, where the A-actions are given be the left and right side
of the diagram (4.5.1), respectively.

As remarked in [BV1, Ex. 3.10], tensoring with a Hopf algebra with invertible antipode
in a braided category yields a Hopf monad. The category of modules over the Hopf algebra
is then the same as the category of modules over the corresponding Hopf monad.

4.5.2 Central Hopf monad via the coend in the braided case
In the braided setting, the coend L =

∫X∈C X∨⊗X with universal dinatural transformation
j becomes a Hopf algebra [LM, Ly1], see also [FS, FGR1] for a review. It is easy to see
that A2 is in fact isomorphic to the Hopf monad obtained by tensoring with L. The
isomorphism ξV : A2(V )→ L⊗ V we choose is obtained via

ξV ◦ ι2(V )X =
[
X∨ (V X)

id⊗c−1
X,V−−−−−→ X∨ (XV ) ∼−→ (X∨X)V jX⊗id−−−→ LV

]
. (4.5.2)

The inverse of the braiding (as opposed to the braiding) appears to make ξ an isomorphism
of bimonads, with the bimonad structure on L⊗? inherited from the bialgebra structure
on L used in [FGR1, Sec. 3.3]. In the same way, ?⊗ L becomes a bimonad and we get a
bimonad isomorphism ζ : A2 ⇒ (?⊗ L) via

ζV ◦ ι2(V )X =
[
X∨ (V X) ∼−→ (X∨V )X

c−1
V,X∨⊗id
−−−−−→ (V X∨)X

∼−→ V (X∨X) id⊗jX−−−−→ V L
]
. (4.5.3)

Again the inverse braiding is required to make ζ a bimonad morphism.
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In a finite tensor category, an invertible object has isomorphic left and right duals, and
so in particular there is an up to scalars unique isomorphism D∨

∼−→ ∨D. This fact is used
in formulating the following proposition.

Proposition 4.5.1. Let C be a braided finite tensor category.

1. The distinguished invertible object is dual to the object of integrals for L,

D ∼= (IntL)∨. (4.5.4)

2. Let ΛL : ∨D → L be non-zero. Then

ΛL is a

left integral for L in the sense of (4.5.1), resp.
right integral for L

if and only if

λ :=


[
1 c̃oevD−−−→ ∨D ⊗D ΛL⊗id−−−→ L⊗D

ξ−1
D−−→ A2 (D)

]
, resp.[

1 coevD−−−→ D ⊗D∨ ∼−→ D ⊗ ∨D id⊗ΛL−−−−→ D ⊗ L
ζ−1
D−−→ A2 (D)

] (4.5.5)

is a non-zero right monadic cointegral of C.

The first statement was already observed in [Sh1, Thm. 6.8].

Proof. We will only treat the case of left integrals for L explicitly, the case of right integrals
can be shown analogously.

Since left integrals for L exist, there is an object IntL and a non-zero morphism
ΛL : X → L such that (4.5.1) is satisfied. Let us abbreviate X = IntL. We now define λ
as in part (2), but with X instead of ∨D:

λ :=
[
1 coevX−−−→ X ⊗X∨ ΛL⊗id−−−→ L⊗X∨

ξ−1
X∨−−→ A2 (X∨)

]
. (4.5.6)

Note that λ is non-zero, too.
The somewhat lengthy computation below will establish that λ from (4.5.6) is an A2-

intertwiner. By [Sh4, Lem. 4.1] and Corollary 4.1.11 the distinguished invertible object D
is the unique (up to isomorphism) invertible object such that the space of A2-intertwiners
from 1 to A2 (D) is non-zero. Thus we must have X∨ ∼= D, proving part (1). Together with
part (1), the fact that λ is an A2-intertwiner implies that it is a right monadic cointegral,
proving the direction ⇒ of part (2). The direction ⇐ of part (2) can be verified by an
analogous computation, where a right monadic cointegral λ gets mapped to a left integral
of L via

ΛL :=
[
∨D

∼−→ 1⊗ ∨D λ⊗id−−−→ A2 (D)⊗ ∨D ξD⊗id−−−→(LD)∨D ∼−→ L(D∨D)
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id⊗ ẽvD−−−−→ L⊗ 1 ∼−→ L
]
. (4.5.7)

Note that this assignment is indeed inverse to (4.5.5).
Let us now turn to the verification that λ in (4.5.6) is indeed an A2-intertwiner. Note

that since ξ is an isomorphism of bimonads, it satisfies
[
L(LV ) ∼−→ (LL)V m⊗idV−−−−→ LV

ξ−1
V−−→ A2 (V )

]
=
[
L(LV )

ξ−1
LV−−→ A2 (LV )

A2(ξ−1
V )

−−−−−→ (A2)2(V ) µ2(V )−−−→ A2 (V )
]
, (4.5.8)

and [
L1

ξ−1
1−−→ A2 (1) ε2−→ 1

]
=
[
L1 ε⊗id1−−−→ 11 ∼−→ 1

]
, (4.5.9)

where m and ε are the multiplication and the counit of L.
For the next calculation, let us explicitly denote components of the left unitor and the

associator by

lV : 1V → V and αU,V,W : U(VW )→ (UV )W, (4.5.10)

respectively, for U, V,W ∈ C. Then

µ2(X∨) ◦ A2 (λ)
(4.5.6)= µ2(X∨) ◦ A2

(
ξ−1
X∨ ◦ (ΛL ⊗ idX∨) ◦ coevX

)
(4.5.8)= ξ−1

X∨ ◦ (m⊗ idX∨) ◦ αL,L,X∨ ◦ ξL⊗X∨ ◦ A2
(
(ΛL ⊗ idX∨) ◦ coevX

)
ξ nat.= ξ−1

X∨ ◦ (m⊗ idX∨) ◦ αL,L,X∨ ◦ (idL⊗(ΛL ⊗ idX∨)) ◦ (idL⊗ coevX) ◦ ξ1
α nat.= ξ−1

X∨ ◦
(
(m ◦ (idL⊗ΛL))⊗ idX∨

)
◦ αL,X,X∨ ◦ (idL⊗ coevX) ◦ ξ1

(4.5.1)= ξ−1
X∨ ◦

(
(ΛL ◦ lX ◦ (ε⊗ idX))⊗ idX∨

)
◦ αL,X,X∨ ◦ (idL⊗ coevX) ◦ ξ1

α nat.= ξ−1
X∨ ◦

(
(ΛL ◦ lX)⊗ idX∨

)
◦ α1,X,X∨ ◦ (id1⊗ coevX) ◦ (ε⊗ id1) ◦ ξ1

coher.= ξ−1
X∨ ◦ (ΛL ⊗ idX∨) ◦ lXX∨ ◦ (id1⊗ coevX) ◦ (ε⊗ id1) ◦ ξ1

l nat.= ξ−1
X∨ ◦ (ΛL ⊗ idX∨) ◦ coevX ◦ l1 ◦ (ε⊗ id1) ◦ ξ1

(4.5.9)= ξ−1
X∨ ◦ (ΛL ⊗ idX∨) ◦ coevX ◦ε2

(4.5.6)= λ ◦ ε2, (4.5.11)

where “coher.” invokes the coherence theorems. Thus λ is an A2-intertwiner.

By composing with κ3,2 one obtains analogous statements to those in the above propo-
sition for left monadic cointegrals.
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Remark 4.5.2. Let C be a unimodular braided finite tensor category. Then D = 1, and
by Proposition 4.5.1, the object of integrals of L is the tensor unit. It follows from the
coherence of braided monoidal categories that

ξ1 =
[
A2 (1) ζ1−→ 1L ∼−→ L1

]
(4.5.12)

for the bimonad isomorphisms ξ and ζ from (4.5.2) and (4.5.3). Now one can show that
left and right integrals for L agree. Indeed, the composition

{right L-integrals} (4.5.5)−−−→ CA2(1, A2 (1)) (4.5.7)−−−→ {left L-integrals} (4.5.13)

of isomorphisms is (non-trivially) proportional to the identity on the one-dimensional
subspace of right L-integrals of C(1,L). Therefore, a right integral for L is also left and
vice versa. This result has also been shown by different means in [Sh1, Thm. 6.9]. O

Remark 4.5.3. By the first item in Proposition 4.5.1, the distinguished invertible object in
the prevailing convention of e.g. [EGNO] is precisely Lyubashenko’s object of integrals. O

4.5.3 Quasi-triangular quasi-Hopf algebras
Let H be a finite-dimensional quasi-triangular quasi-Hopf algebra with universal R-matrix
R; recall our brief discussion of what this means from Section 2.2.2. We again denote the
multiplicative inverse of the R-matrix by R. The category C = HM is a braided finite
tensor category.

The coend L can be realized by H∗ with the coadjoint action, see [FGR1, Sec. 7], and
with our realization of the Hopf monad A2 as in Section 4.2.1 we get the following formula
for the Hopf monad isomorphism A2 ∼= L⊗? from (4.5.2).

Lemma 4.5.4. The isomorphism ξV : A2 (V )→ L⊗ V from (4.5.2) is given by

ξV (f ⊗ v) = 〈f | S(X1)?X2R1〉 ⊗X3R2.v (4.5.14)

for V ∈ C, f ∈ H∗, v ∈ V .

The proof is a straightforward computation.
Next, we give the explicit formulas relating right monadic cointegrals and left integrals

for the coend. As usual, we identify linear maps k → V with elements in V .

Lemma 4.5.5. Let λ ∈ H∗ be a right monadic cointegral. Then

ΛL := γ−1(qR2 X3R2)〈λ | S(qR1 (1)X1)?qR1 (2)X2R1〉 (4.5.15)

is a left integral for the coend L.

The proof amounts to evaluating (4.5.7) in HM using Lemma 4.5.4. We arrive at the
following corollary.



Chapter 4. Monadic cointegrals and applications to quasi-Hopf algebras 87

Corollary 4.5.6. Let λr ∈ H∗ be a right cointegral for the quasi-Hopf algebra H. Then

ΛL := γ−1(qR2 X3R2S
−1(f−1

2 ))〈λr | S(qR1 (1)X1β)?qR1 (2)X2R1S
−1(f−1

1 )〉 (4.5.16)

is a left integral for the coend L.

Proof. Combining Theorem 4.3.1 with the previous lemma yields the formula.

Using Proposition 4.5.1 (2), one can also write formulas similar to (4.5.15) or (4.5.16) for
the relation between right integrals for L and right monadic cointegrals or right cointegrals
for H. We will skip the details.

Remark 4.5.7. Let H be unimodular. Observe that then D = 1 and A2 (1) = L as
H-modules (in our preferred realizations). The relationship (4.5.15) between integrals for
L and right monadic cointegrals is now particularly simple:

ΛL = λ . (4.5.17)

By Remark 4.5.2, left and right integrals for L coincide, and so (4.5.17) says that the right
monadic cointegral and the left/right integral for L are given by the same linear form on
H. The relation to the right cointegral λr of H also simplifies: ΛL = 〈λr | S(β)?〉. O





Chapter 5

SL(2,Z)-action for modular tensor
categories

In the first two sections of this chapter, we start by recalling the (projective) SL(2,Z)-
action(s) constructed by Lyubashenko for every modular tensor category. Then we apply
results from Chapter 4 to simplify some previous results from [FGR1] on these actions in
the case C = HM, for H a factorizable ribbon quasi-Hopf algebra. This is, for the most
part, taken almost verbatim from my paper [BGR2] with Gainutdinov and Runkel.

The last section contains unpublished work. On the one hand, the restricted quantum
group H = U q(sl2), where q is a primitive 2pth root of unity, is known to not admit
a braiding. In particular, HM is not a modular tensor category, and so Lyubashenko’s
construction of the (projective) SL(2,Z)-action from above does not formally apply. Nev-
ertheless, in [FGST1], an action on Z(H) was constructed, and it was shown there that this
action agrees with one coming from modular transformation properties of characters of the
triplet VOA W(p). On the other hand, a quasi-Hopf algebra modification HΦ = U

Φ
q (sl2)

of H was introduced in [CGR], and it turns out that HΦ is a factorizable ribbon quasi-
Hopf algebra. We show that Lyubashenko’s action for HΦM agrees projectively with that
from [FGST1].

5.1 SL(2,Z)-action for modular tensor categories
We briefly review Lyubashenko’s construction [Ly1]. For a more detailed review, we refer
the reader to [FGR1].

Recall from Example 1.2.7 that in a braided finite tensor category C, the Hopf algebra
L =

∫X X∨ ⊗X admits a Hopf pairing

ω : L ⊗ L → 1 , (5.1.1)

see [Ly1] or [FGR1, Sec. 3.3] for details. Recall from Section 1.1.10 the definitions of
factorizable and modular tensor categories, and let for the rest of this section C be a
modular tensor category with ribbon twist ϑ. Since C is factorizable it is in particular
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unimodular [KL, Lem. 5.2.8], and the Hopf algebra L has a two-sided integral ΛL : 1→ L
by Remark 4.5.2, see also [KL, Cor. 5.2.11].

Define the morphism Q : L ⊗ L → L⊗ L by

L L

Q

jX jY

X∨ X Y ∨ Y

=

L L
jX jY

X∨ X Y ∨ Y

. (5.1.2)

This is related to the Hopf pairing ω via ω = (ε⊗ ε) ◦ Q, denoting by ε the counit of L.
Next, define S,T ∈ EndC(L) by

S = (ε⊗ id) ◦ Q ◦ (id⊗ΛL) and T ◦ jX = jX ◦ (id⊗ϑX) . (5.1.3)

These endomorphisms satisfy

(ST)3 = λS2 = λS−1
L (5.1.4)

where λ is a non-zero constant and SL is the antipode of L [Ly1], see also [FGR1, Sec. 3.3]
for the Hopf algebra structure on L. Recall that the special linear group SL(2,Z) over
Z consists of (2 × 2)-matrices with unit determinant. It is generated by S = ( 0 −1

1 0 ) and
T = ( 1 1

0 1 ), which satisfy

(ST)3 = S2 and S4 = id . (5.1.5)

It was shown in [Ly1] that the k-vector space C(1,L) carries a projective SL(2,Z)-action
given by

S.f = S ◦ f and T.f = T ◦ f (5.1.6)

for f : 1→ L. Indeed, this follows easily from (5.1.4) and the fact that S2
L = ϑL, see [FGR1,

Sec. 5] for more details. Alternatively, there is also a projective action on C(L,1), given
by

S.f = f ◦ S and T.f = f ◦ T (5.1.7)

for f : L → 1. The formulas (5.1.7) are obtained by transporting the action on C(1,L)
along a certain isomorphism, which we will briefly touch on in the next paragraph.

In order to prepare for the main result of this chapter, we recall a third SL(2,Z)-action
associated to C. Since we assumed C to be modular, there are linear isomorphisms

End(idC) C(L,1) C(1,L)ψ

ρ

Ω

, (5.1.8)
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see [GR3, Sec. 2]. In fact, ψ and Ω are algebra isomorphisms, where the algebra structure
on the morphism spaces comes from the bialgebra structure on L. We will not need their
precise definitions. One can show

(ρ ◦ Ω)(f) = S ◦ f and (Ω ◦ ρ)(g) = g ◦ S (5.1.9)

for f : 1→ L and g : L → 1. Moreover, one can show that the action on C(L,1) described
above is obtained from the one on C(1,L) by transport via ρ. Similarly, we can pull back
the projective SL(2,Z)-action on C(L,1) to End(idC) along ψ. This action depends on the
choice of coend L and integral Λ only up to a choice of sign of Λ, cf. [FGR1, Prop. 5.3]. Let
us denote the linear endomorphisms of End(idC) implementing the action of the generators
by

SC(ν) = S.ν and TC(ν) = T.ν (5.1.10)

for a natural transformation ν.
Finally, we recall internal characters, see [FS, Sh2]. The internal character of an object

V ∈ C is the morphism

χV =
[
1 c̃oevV−−−→ ∨V ⊗ V ∼= V ∨ ⊗ V jV−→ L

]
, (5.1.11)

where we used the natural isomorphism ∨V ∼= V ∨ induced by the pivotal structure. Trans-
porting the internal character to End(idC), we set

φV = (ρ ◦ ψ)−1(χV ) . (5.1.12)

Later we will need the following properties of the φ’s, see [Sh2, FGR1, GR3] and references
therein.

Proposition 5.1.1. 1. The set {φU | U ∈ Irr C} is linearly independent.

2. Let V ∈ C. Then S2
C(φV ) = φV ∨.

3. The assignments V 7→ φV and V 7→ SC(φV ) for V ∈ C factor through the Grothen-
dieck ring Gr(C).31 The induced linear maps Grk(C) → End(idC), where Grk(C)
is the linearized Grothendieck ring, are injective. Moreover, for V 7→ SC(φV ), the
induced linear map is an algebra homomorphism, and if k is of characteristic zero,
the corresponding ring homomorphism Gr(C)→ End(idC) is injective.

31Recall from e.g. [EGNO, Ch. 1] that the Grothendieck ring Gr(C) of a finite tensor category C is the free
Z-module on the objects of C, modulo Y = X+Z if there is a short exact sequence 0→ X → Y → Z → 0
in C. Thus it is in fact generated by Irr C: every object X can be expressed as a weighted sum over
simples, the weight being the multiplicity of the corresponding simple in the composition series of X. The
multiplication is V ·W = V ⊗W . The linearized Grothendieck ring is Grk(C) = Gr(C)⊗Z k.
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5.2 The case of factorizable quasi-Hopf algebras
Let now H be a finite-dimensional factorizable ribbon quasi-Hopf algebra with ribbon
element v and R-matrix R. As mentioned before, H being factorizable implies that it
is unimodular. Thus, by Remark 4.5.7, the left integral for L and the right monadic
cointegral of HM are given by the same linear form on H.

The linear injection

αZ = {αz | z ∈ Z(H)} → C(L,1), αz 7→ δVect(αz) = 〈? | αz〉 , (5.2.1)

where δVect is the canonical pivotal structure of vector spaces, can be shown to be an
isomorphism.32 We get an action SαZ of the S-generator on αZ by setting

SαZ(h) := δ−1
Vect

(
S.δVect(h)

)
= δ−1

Vect(〈? | h〉 ◦ S), (5.2.2)

for h ∈ αZ. Since S ∈ EndC(L) and L ∼=k H
∗, we can define Ŝ ∈ Endk(H) via

〈f | Ŝ(h)〉 = 〈S(f) | h〉 (5.2.3)

for all h ∈ H, f ∈ H∗, and it is then immediate that

SαZ = Ŝ
∣∣∣
αZ
. (5.2.4)

Similar statements hold for T.
In the following proposition, we will express the Hopf pairing ω from (5.1.1) via an

element ω̂ ∈ H ⊗H such that

ω(f ⊗ g) = g(ω̂1)f(ω̂2) (5.2.5)

for all f, g ∈ H∗. Its explicit form is given in [FGR1, Thm. 7.3].

Proposition 5.2.1. Let λ ∈ H∗ be the right monadic cointegral for HM. The S- and
T-transformations on αZ are given by the linear maps

SαZ(αz) = 〈λ | ω̂1z〉 ω̂2

TαZ(αz) = v−1αz (5.2.6)

for z ∈ Z.

Proof. The action of T is immediate from [FGR1, Sec. 8]. For the action of S we use (5.2.4)
and compute

Ŝ(αz) (i)= 〈λ | S(X1)ω̂1X2S(X3(1)p
L
1 )αzX3(2)p

L
2 〉 ω̂2

32By general facts about modular categories (see e.g. [GR3, Sec. 2], as reviewed above), the center of
H is isomorphic to C(L,1). As observed in [FGR1, Sec. 8], the image of this isomorphism is precisely
δVect(αZ). Note also that C(1,L) ∼= βZ.
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(ii)= 〈λ | ω̂1S(pL1 )αpL2 z〉 ω̂2
(iii)= 〈λ | ω̂1z〉 ω̂2 , (5.2.7)

where in the first step (i) we used the form of Ŝ as given in [FGR1, (8.15)], (ii) uses (2.1.8)
for the underlined part and that Φ is normalized, and (iii) follows from the definition of
pL in (2.1.33) and the zig-zag axiom (2.1.9).

We can thus express the action of S on αZ using the right cointegral λr from (2.3.20)
and Theorem 4.3.1 as

SαZ(αz) = 〈λr | S(β)ω̂1z〉 ω̂2 . (5.2.8)

Remark 5.2.2. One can also show that

SαZ(αz) = ω̂1〈λ | ω̂2z〉 , (5.2.9)

where λ is the right monadic cointegral. To see this, one checks ω ◦ (ϑL ⊗ id) = ω ◦ c−1
L,L

using ϑL = (SL)2, see [KL, Lem. 5.2.4]. This then readily implies

ω ◦ (f ⊗ id) = ω ◦ (id⊗f) (5.2.10)

for any f ∈ C(1,L), since ϑ1 = 1. The claim follows because 〈λ |?z〉 ∈ C(1,L) for z
central. O

Finally, we specialize internal characters and the S-action on them to this setting,
following [FGR1, Sec. 7.6]. Note that

End(idC)→ Z(H), ν 7→ νH(1) and Z(H)→ End(idC), z 7→ z.? (5.2.11)

are mutually inverse algebra maps. Recall that End(idC) carries a projective SL(2,Z)-
action. We denote the induced action on Z(H) by SZ . Define the central elements

χV = SC(φV )H(1) and φV = (φV )H(1) . (5.2.12)

Then, specializing Proposition 5.1.1, we have

χV = SZ(φV ) and S2
Z(φV ) = φV ∨ , (5.2.13)

see [FGR1, Cor. 8.2].
Explicit expressions for these central elements were given in [FGR1, Sec. 7.6]. For later

use, we simplify them in the following proposition.
Proposition 5.2.3. Let V ∈ C, and let c be the two-sided (non-zero) integral of C imple-
menting the cointegral of L, as in [FGR1, Prop. 7.8]. Then

χV = (id⊗trV ◦ S)
(
qRMpR · (1⊗ uv−1)

)
(5.2.14)

and

φV = (id⊗trV ◦ S)
(
qR∆(c)pR · (1⊗ uv−1)

)
, (5.2.15)

where tr is the trace in the category of vector spaces.
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Proof. The proof is elementary, and we only present the first part. We compute

χV = x1M1X1 · trV
(
u−1vS(x2M2X2β)αx3X3

)
= qR1 M1X1 · trV

(
X3u

−1vS(qR2 M2X2β)
)

= qR1 M1p
R
1 · trV

(
u−1vS(qR2 M2p

R
2 )
)
. (5.2.16)

The first line uses [FGR1, (7.42)], for the second line note that the trace is cyclic and
recall the definition of qR from (2.1.33). In the last line we use that g = uv−1 is a pivot,
i.e. it satisfies hg−1 = g−1S2(h) for all h ∈ H, and the definition of pR from (2.1.33). The
claim now follows from S(g) = g−1.

The formula for φV is obtained analogously, using [FGR1, (7.44)].

5.3 Comparing two specific SL(2,Z)-actions

Let now C = HΦM, where HΦ = U
(Φ)
q sl(2) is the quasi-Hopf algebra from Section 2.4.3.

In [FGST1], an SL(2,Z)-action on the center of the restricted quantum group H = U qsl(2)
at q a primitive 2pth root of unity was constructed. We will show here that this action
agrees with Lyubashenko’s action on End(idC), which we reviewed previously in this chap-
ter.

Below we will make use of q-numbers as recalled in Section 2.4.3, as well as the q-
binomials [

n
k

]
=
0, if k < 0 or k > n

[n]!
[k]!·[n−k]! , else.

(5.3.1)

5.3.1 Simple modules
The underlying algebras of H and HΦ are the same, and so their categories of representa-
tions coincide as linear abelian categories. In particular, the simple and projectives objects
are the same. We now first recall the simple modules from [FGST1], and show that simple
HΦ-modules are self-dual.

Simple modules. We denote the irreducibles by Xα(s), where α ∈ {+,−} is a sign and
1 ≤ s ≤ p. The module Xα(s) is highest-weight, and we write basis elements as |s, n〉α,
where 0 ≤ n ≤ s− 1. Let us agree that |s, s〉α = 0 = |s,−1〉α. The HΦ-action on Xα(s) is

K|s, n〉α = αqs−1−2n|s, n〉α

E|s, n〉α = α[n][s− n]|s, n− 1〉α

F |s, n〉α = |s, n+ 1〉α . (5.3.2)

The highest weight vector is |s, 0〉α. By [FGST2, Thm. 1.7] this exhausts the simple
modules. Note also that X+(1) is the monoidal unit 1 in C, and that dimk X

α(s) = s.
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Self-duality of simple modules. Let us denote basis elements of the HΦ-module
Xα(s)⊗ Xα(s) by |s;n,m〉α, for 0 ≤ n,m ≤ s− 1.

Lemma 5.3.1. Let β ∈ {0, 1} such that α = (−1)β. The non-zero linear map

C→ Xα(s)⊗ Xα(s)

1 7→
s−1∑
i=0

(
δs+βp,odd + δs+βp,evenq

it
)

(−1)iαiqi(s−2−i)|s; i, s− 1− i〉α (5.3.3)

is an intertwiner of HΦ-modules.

The proof, which is a calculation, can be found in Appendix C.5. As a consequence,
we have

Corollary 5.3.2. Simple HΦ-modules are self-dual.

Proof. By Lemma 5.3.1, the space of intertwiners from (Xα(s))∨ to Xα(s) is non-zero. In
a finite tensor category, the dual of a simple object is simple: short exact sequences A ↪→
U � B are in one-to-one correspondence with short exact sequences B∨ ↪→ U∨ � A∨.
Hence the result follows from Schur’s lemma.

5.3.2 The central elements φV and χV
Recall now the elements χV and φV for V ∈ C from e.g. Proposition 5.2.3. The proofs of
the following two lemmata can be found in Appendix C.4.

Lemma 5.3.3. Let V = Xα(s). The central element φV ∈ Z(HΦ) agrees with the element
φ̂
α(s) from [FGST1, (4.19)].

Lemma 5.3.4. Let V = Xα(s). The central element χV ∈ Z(HΦ) agrees with the element
χ̂α(s) from [FGST1, (4.6)].

As a consequence, we get the main result of this chapter.

Theorem 5.3.5. The two (projective) SL(2,Z)-actions on Z(H)—i.e. the one coming
from Lyubashenko’s construction, and the one constructed in [FGST1]—are projectively
isomorphic.

Proof. Combining Lemmas 5.3.3 and 5.3.4 with [FGST1, Thm. 5.2], we see that the center
is spanned by {φV ,χV }V ∈Irr C. Note that φV ∨ = φV , since V ∼= V ∨ by Corollary 5.3.2, and
φV depends only on the class of V in the Grothendieck ring (Proposition 5.1.1). Then, by
(5.2.13), S acts on this spanning set via the endomorphism SZ as

SZ(φV ) = χV and SZ(χV ) = φV . (5.3.4)

In particular, S2
Z = idZ(H). Employing Lemmas 5.3.3 and 5.3.4, we see that in [FGST1,

Sec. 5], S acts the same way, hence the underlying linear maps agree. Now the claim follows
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from the fact that SZ intertwines the (projective) actions. Indeed, this is trivially true for
the S-generator. For the T-generator, let us denote the action constructed in [FGST1] and
Lyubashenko’s action by . and ·, respectively. By [FGST1, (5.1)] T. z = bS−1

Z (v−1SZ(z)),
where b is some non-zero constant. Since SZ has order two, we have

SZ(T · z) = SZ(v−1z) = 1
b
T . SZ(z) , (5.3.5)

finishing the proof.



Appendix A

Proof of Proposition 4.2.1

In the main text, we worked with a specific realization of the Hopf monads Ai on C = HM,
the category of modules over a fixed (pivotal) quasi-Hopf algebra H. We did not, however,
prove that this realization works.

In this short appendix, we give the proof for completeness, using a trick similar to that
in [FSS, App. A]. We also remark that the proof was known to us when we wrote the
paper [BGR2], where it was not included. We will here only treat the case of the central
Hopf monad A2, the other cases being completely similar.

Recall that in Chapter 4 we claimed that the vector space A2 (V ) := H∗ ⊗ V with
H-action33

h
2y (f ⊗ v) = 〈f | S(h(1))?h(2,2)〉 ⊗ h(2,1).v

together with the dinatural transformation

ι2(V )X(f ⊗ v ⊗ x) = 〈f |?.x〉 ⊗ v

is a coend for the functor

Cop × C → C, (X, Y ) 7→ X∨(V Y ) .

First of all, it is easy to see that 2y indeed defines an H-action, and that ι2 is an
intertwiner, and we leave it to the reader. Moreover,

ι2(V )X(f ⊗ v ⊗ φ(y)) = 〈f |?.φ(y)〉 ⊗ v
= 〈f | φ(?.y)〉 ⊗ v = ι2(V )Y (φ∨(f)⊗ v ⊗ y) (A.1)

for φ ∈ C(Y,X) shows that ι2 is dinatural.
We need to show that whenever there is an object Ã ∈ C and a family of morphisms

νX : X∨(V X)→ Ã dinatural in X, then there is a unique morphism ν̃ : A2 (V )→ Ã such
that νX = ν̃ ◦ ι2(V )X for all X ∈ C.

33Here, as in earlier incarnations of these equations, f ∈ X∗, v ∈ V , x ∈ X.
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A useful identity. Let for X ∈ C and x ∈ X the intertwiner ρx ∈ C(H,X) be given
by ρx(h) = h.x. In particular ρx(1) = x. We have

(ρ∨x ⊗ idV )(f ⊗ v) = 〈f |?.x〉 ⊗ v = ι2(V )X(f ⊗ v ⊗ x) , (A.2)

for all f ∈ H∗, v ∈ V , so that the linear maps ρ∨x ⊗ idV and ι2(V )X(?⊗ x) from X∗ ⊗ V
to H∗ ⊗ V agree. Thus we have

νX ◦ idX∨⊗V ⊗x = νX ◦ (idX∨⊗V ⊗ρx) ◦ (idX∨⊗V ⊗1)
= νH ◦ (ρ∨x ⊗ idV⊗H) ◦ (idX∨⊗V ⊗1)
= νH ◦ ι2(V )X ⊗ idH ◦(idX∨⊗V ⊗x⊗ 1) (A.3)

for all x ∈ X, whence the equality

νX = νH ◦ ι2(V )X ⊗ 1 (A.4)

of linear maps follows.

Defining ν̃. Now define the linear map

ν̃ = νH ◦ idH∗⊗V ⊗1 : H∗ ⊗ V → Ã . (A.5)

This is in fact in C(A2 (V ) , Ã), since

ν̃(h 2y (f ⊗ v)) = ν̃(〈f | S(h(1))?h(2,2)〉 ⊗ h(2,1).v)
= νH(〈f | S(h(1))?h(2,2)〉 ⊗ h(2,1).v ⊗ 1)
= νH(ρ∨h(2,2)

(〈f | S(h(1))?〉)⊗ h(2,1).v ⊗ 1)
(A.2)= (νH ◦ ι2(V )H)(〈f | S(h(1))?〉 ⊗ h(2,1).v ⊗ h(2,2).1)
= (νH ◦ ι2(V )H)(h.(f ⊗ v ⊗ 1))
= h.(νH ◦ ι2(V )H)(f ⊗ v ⊗ 1)
= h.ν̃(f ⊗ v) . (A.6)

Moreover, it satisfies the equality

ν̃ ◦ ι2(V )X = νH ◦ ι2(V )X ⊗ 1 (A.4)= νX (A.7)

of morphisms, as desired.

Uniqueness of ν̃. The only thing left to check is that ν̃ is unique. But this follows
easily from the fact that the linear map ι2(V )H has a right inverse, namely idH∨ ⊗ idV ⊗1.
Indeed,

ι2(V )H(idH∨ ⊗ idV ⊗1) : f ⊗ v 7→ 〈f |?.1〉 ⊗ v = f ⊗ v . (A.8)

Thus ν̃ is (uniquely) determined by

ν̃ = (ν̃ ◦ ι2(V )H)(idH∨ ⊗ idV ⊗1) = νH(idH∨ ⊗ idV ⊗1) . (A.9)

The proof is finished.



Appendix B

Proofs for Section 4.3

This appendix contains proofs of lemmata and technical steps used in the proof of the
main theorem relating cointegrals for quasi-Hopf algebras to monadic cointegrals.

B.1 Proof of Proposition 4.3.2

Before giving the proof we need to show some intermediate results.
Using the explicit form of the unit and the counit of the adjunction, we can give the

following simple characterization of the components of the categorical coaction R.

Lemma B.1.1. The coactions RU defined in (4.1.63) satisfy

Y A2U Y ∨

π4

RU

ι2

X∨ U X

=

Y A2U Y ∨

ι2

γY,X

X∨ U X

. (B.1.1)

Proof. By definition, we have the equality

(A2 (U) , RU) = (A2 (U) , Z4 (µ2(U)) ◦ η̃A2U) (B.1.2)
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of Z4-comodules. Then

Y A2U Y ∨

π4

Z4 (µ2(U))

η̃A2U

ι2

X∨ U X

=

Y A2U Y ∨

µ2(U)

π4

η̃A2U

ι2

X∨ U X

=

Y A2U Y ∨

µ2(U)

ι2

ι2

X∨ U X

(B.1.3)

together with the definition (4.1.4) of the multiplication of A2 proves the claim.

Lemma B.1.2. Let V ∈ HM, v ∈ V , h∗ ∈ H∗, and choose the realization of the cen-
tral Hopf monad A2 and the central Hopf comonad Z4 as given in (4.2.1) and (4.2.18),
respectively. Then

RV (h∗ ⊗ v) =〈h∗ | S(x2(2)p
L
2X1)f 1

[
eix3(2)X2(2)Y2

]
(1)
pR1 〉

× x1S(x2(1)p
L
1 )f 2

[
eix3(2)X2(2)Y2

]
(2)
pR2 S(X3Y3)

⊗ ei ⊗ x3(1)X2(1)Y1.v, (B.1.4)

where {ei} is a basis of H with corresponding dual basis {ei}, and summation over i is
implied.

Proof. To abbreviate things, we first set

Θ = (S ⊗ S)(pL21)f ,
Ξ = (id⊗ id⊗∆⊗ id)(Ψ⊗ 1) · (∆⊗∆⊗ id)(Φ) · (1⊗ 1⊗ Φ)

= x1X1(1) ⊗ x2X1(2) ⊗ x3(1)X2(1)Y1 ⊗ x3(2)X2(2)Y2 ⊗X3Y3,

Ω = Ξ1 ⊗ S(Ξ2)⊗ Ξ4 ⊗ S(Ξ5)⊗ Ξ3 (B.1.5)
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Then from Lemma B.1.1 one computes the categorical coaction R as

π4(A2U)Y ◦RU ◦ ι2(U)X =

Y A2U Y ∨

ι2

γY,XΞ

pL pR

X∨ U X

Vectk

=

Y H∗ U Y ∨

id
Θ

id

pR

Ω
X∨ U X

Vectk

. (B.1.6)

Recall that the box with Vectk means that these pictures are to be understood as linear
maps. Specializing X and Y to the regular left module H, we note that π4(V )H has a left
inverse

(H ⊗ V )⊗H∨ → H ⊗ V, h⊗ v ⊗ f 7→ f(1)h⊗ v , (B.1.7)

while ι4(V )H has a right inverse

H∗ ⊗ V → H∨ ⊗ (V ⊗H) f ⊗ v 7→ f ⊗ v ⊗ 1 . (B.1.8)
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Applying the inverses we obtain the explicit form of RU ,

H H∗ U

RU

H∗ U

=

H H∗ U

Θ pR

Ω
H∗ U

Vectk

(B.1.9)

From this we can read off that RU is the linear map given by (to better see where we apply
the changes from one line to the next we sometimes underline the relevant part)

RU(h∗ ⊗ u) = 〈h∗ ⊗ id | (1⊗ Ω1)Θ∆(Ω2eiΩ3)pR(1⊗ Ω4)〉 ⊗ ei ⊗ Ω5.v

= 〈h∗ ⊗ id | (1⊗ Ξ1)Θ∆(S(Ξ2)eiΞ4)pR(1⊗ S(Ξ5))〉 ⊗ ei ⊗ Ξ3.v

= 〈h∗ | S(pL2 )f 1 [S(Ξ2)eiΞ4](1) p
R
1 〉

× Ξ1S(pL1 )f 2 [S(Ξ2)eiΞ4](2) p
R
2 S(Ξ5)⊗ ei ⊗ Ξ3.v

(B.1.5)= 〈h∗ | S(pL2 )f 1

[
S(x2X1(2))eix3(2)X2(2)Y2

]
(1)
pR1 〉

× x1X1(1)S(pL1 )f 2

[
S(x2X1(2))eix3(2)X2(2)Y2

]
(2)
pR2 S(X3Y3)

⊗ ei ⊗ x3(1)X2(1)Y1.v

(2.1.37)= 〈h∗ | S(x2(2)X1(2,2)p
L
2 )f 1

[
eix3(2)X2(2)Y2

]
(1)
pR1 〉

× x1X1(1)S(x2(1)X1(2,1)p
L
1 )f 2

[
eix3(2)X2(2)Y2

]
(2)
pR2 S(X3Y3)

⊗ ei ⊗ x3(1)X2(1)Y1.v

(2.1.35)= 〈h∗ | S(x2(2)p
L
2X1)f 1

[
eix3(2)X2(2)Y2

]
(1)
pR1 〉

× x1S(x2(1)p
L
1 )f 2

[
eix3(2)X2(2)Y2

]
(2)
pR2 S(X3Y3)

⊗ ei ⊗ x3(1)X2(1)Y1.v (B.1.10)

for h∗ ∈ H∗, u ∈ U .

With this we can now begin with the proof of Proposition 4.3.2, which relates the
categorical coaction with a coaction in HMH .
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Proof of Proposition 4.3.2. We will need the identity

qL2 [f−1
2 ](2) ⊗ S(f−1

1 )qL1 [f−1
2 ](1) = (S ⊗ S)(pR)f 21 , (B.1.11)

which can be seen as follows:

qL2 [f−1
2 ](2) ⊗ S(f−1

1 )qL1 [f−1
2 ](1)

(2.1.33)= X3[f−1
2 ](2) ⊗ S(X1f

−1
1 )αX2[f−1

2 ](1)
(2.1.40)= f−1

2 S(X1)f 2 ⊗ S([f−1
1 ](1)f̃

−1
1 S(X3))α[f−1

1 ](2)f̃
−1
2 S(X2)f 1

(2.1.8)= ε(f−1
1 )f−1

2. . . . . . . . . . . .S(X1)f 2 ⊗ S(f̃−1
1 S(X3))αf̃−1

2 S(X2)f 1

(∗)= S(X1)f 2 ⊗ S2(X3)S(β)S(X2)f 1
(2.1.33)= (S ⊗ S)(pR) · f 21 . (B.1.12)

In the step labeled (∗) one uses (2.1.41) (dashed underline) and that the counit applied
to any leg of the inverse Drinfeld twist yields 1 (dotted underline). The identity (B.1.11)
immediately implies

pR = S−1(qL2 f−1
2 (2)f̃

−1
2 )⊗ S−1(qL1 f−1

2 (1)f̃
−1
1 )f−1

1 . (B.1.13)

For the proof of the proposition, let now h∗ ∈ H∗. Then(
ϕH∨◦A(ρ)

)
(h∗)

= γ−1(x3(1)X2(1)Y1)〈h∗ | S(pL2 )f 1 [ei](1) S
−1(qL2 f−1

2 )〉

× x1X1(1)S(pL1 )f 2 [ei](2) S
−1(qL1 f−1

1 )f̃−1
1 S(X3Y3)

⊗ x2X1(2).e
i.f̃
−1
2 S(x3(2)X2(2)Y2)

(2.1.10)= γ−1(x3(1)X2(1)Y1)〈h∗ | S(pL2 )f 1 [ei](1) S
−1(qL2 f−1

2 )〉

× x1X1(1)S(pL1 )f 2 [ei](2) S
−1(qL1 f−1

1 )f̃−1
1 S(X3Y3)

⊗ x3(2)X2(2)Y2S
−1(f̃−1

2 ) ⇀ ei ↼ S(x2X1(2))

(2.1.37)= γ−1(x3(1)X2(1)Y1)〈h∗ | S(pL2 )f 1

[
eix3(2)X2(2)Y2

]
(1)
S−1(qL2 f−1

2 (2)f̃
−1
2 )〉

× x1X1(1)S(pL1 )f 2

[
eix3(2)X2(2)Y2

]
(2)
S−1(qL1 f−1

2 (1)f̃
−1
1 )f̃−1

1 S(X3Y3)

⊗ ei ↼ S(x2X1(2))
(B.1.13)= γ−1(x3(1)X2(1)Y1)〈h∗ | S(pL2 )f 1

[
eix3(2)X2(2)Y2

]
(1)
pR1 〉
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× x1X1(1)S(pL1 )f 2

[
eix3(2)X2(2)Y2

]
(2)
pR2 S(X3Y3)

⊗ ei ↼ S(x2X1(2))

(2.1.37)= γ−1(x3(1)X2(1)Y1)〈h∗ | S(x2(2)X1(2,2)p
L
2 )f 1

[
eix3(2)X2(2)Y2

]
(1)
pR1 〉

× x1X1(1)S(x2(1)X1(2,1)p
L
1 )f 2

[
eix3(2)X2(2)Y2

]
(2)
pR2 S(X3Y3)⊗ ei

(2.1.35)= γ−1(x3(1)X2(1)Y1)〈h∗ | S(x2(2)p
L
2X1)f 1

[
eix3(2)X2(2)Y2

]
(1)
pR1 〉

× x1S(x2(1)p
L
1 )f 2

[
eix3(2)X2(2)Y2

]
(2)
pR2 S(X3Y3)⊗ ei. (B.1.14)

From Lemma B.1.2 we obtain

Rγ∨(h∗) = γ−1(x3(1)X2(1)Y1) 〈h∗ | S(x2(2)p
L
2X1)f 1

[
eix3(2)X2(2)Y2

]
(1)
pR1 〉

× x1S(x2(1)p
L
1 )f 2

[
eix3(2)X2(2)Y2

]
(2)
pR2 S(X3Y3)⊗ ei , (B.1.15)

so that

Rγ∨ = ϕH∨ ◦ A(ρ) (B.1.16)

indeed holds, finishing the proof.

B.2 Proof of Theorem 4.3.1 (1)
The first step in the proof of Theorem 4.3.1 is to map cointegrals to a Hom-space containing
monadic cointegrals. To do this, we define the space

X2 = {f ∈ H∗ | f ↼ S(a) = S−1(γ ⇀ a) ⇀ f ∀a ∈ H}
= {f ∈ H∨ ∈ HMH | a.f = f.(γ ⇀ a) ∀a ∈ H}, (B.2.1)

where the dot denotes the action on the left dual of the regular bimodule in HMH , the
category of H ⊗Hop-modules as introduced in Section 2.3.

Note that right cointegrals are automatically contained in X2 by (2.3.11):∫ r
H ⊂ X2 . (B.2.2)

By (4.2.1), we have

C(1, A2 (γ∨))
= {f ∈ H∗ | ε(h)f(a) = f(S(h(1))a(h(2) ↼ γ−1)) ∀h, a ∈ H}
= {f ∈ H∨ ∈ HMH | ε(h)f = h(1).f.S(h(2) ↼ γ−1) ∀h ∈ H}, (B.2.3)

where in the second line we again let the dot denote the action on the left dual of the
regular bimodule.

We then have the following proposition.
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Proposition B.2.1. Let ξ = (id⊗γ)(f−1). Then the map

A2 : X2 → C
(
1, A2(γ∨)

)
, f 7→ β.f.ξ, (B.2.4)

is a linear isomorphism.
Proof. Abbreviate C2 := C

(
1, A2(γ∨)

)
, and let us check that A2(X2) ⊂ C2. To this end,

observe that the defining equation for f ∈ H∗ to be in X2 may be rewritten as

S(a).f = f.ξS(a ↼ γ−1)ξ−1 (B.2.5)

by using the definition of the Drinfeld twist. Then we compute

h(1).A2(f).S(h(2) ↼ γ−1) = h(1)β.f.ξS(h(2) ↼ γ−1)
(B.2.5)= h(1)βS(h(2)).f.ξ
(2.1.8)= ε(h)β.f.ξ

= ε(h)A2(f). (B.2.6)

Next, we claim that the assignment

B2 : f 7→ qL1 .f.S(qL2 ↼ γ−1)ξ−1 (B.2.7)

is the two-sided inverse of A2. First of all, B2(C2) ⊂ X2. Indeed,

B2(f).ξS(a ↼ γ−1)ξ−1 = qL1 .f.S(qL2 ↼ γ−1)ξ−1ξS(a ↼ γ−1)ξ−1

= qL1 .f.S((aqL2 ) ↼ γ−1)ξ−1

(2.1.35)= S(a(1))qL1 a(2,1).f.S((qL2 a(2,2)) ↼ γ−1)ξ−1

(?)= S(a)qL1 .f.S((qL2 ) ↼ γ−1)ξ−1

= S(a).B2(f). (B.2.8)

Here (?) uses that f ∈ C2.
It is not hard to see that B2 is a left inverse of A2:

B2A2(f) = B2(β.f.ξ) = qL1 β.f.ξS(qL2 ↼ γ−1)ξ−1 = qL1 βS(qL2 ).f = f. (B.2.9)

To see that A2B2 = id we need the fact that β = (S ⊗ ε)(pL), and the pL, qL-relation in
(2.1.34). We compute

A2B2(f) = A2(qL1 .f.S(qL2 ↼ γ−1)ξ−1)
= βqL1 .f.S(qL2 ↼ γ−1)
= S(pL1 )qL1 .ε(pL2 )f.S(qL2 ↼ γ−1)
(?)= S(pL1 )qL1 pL2 (1).f.S((qL2 pL2 (2)) ↼ γ−1)

(2.1.34)= 1.f.S(1 ↼ γ−1)
= f , (B.2.10)

using that f ∈ C2 in (?).
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We will need the following technical lemma.

Lemma B.2.2. Let f ∈ X2. Then

γ(x3) ϕH∨
(
β(1)x1ξ(1) ⊗ β(2).f.x2ξ(2)

)
= β ⊗k β.f.ξ (B.2.11)

Proof.

γ(x3) ϕH∨
(
β(1)x1ξ(1) ⊗ β(2).f.x2ξ(2)

)
(2.1.44)= γ(x3) ϕH∨

(
δ1f 1x1ξ(1) ⊗ δ2f 2.f.x2ξ(2)

)
= γ−1(y3(1)X2(1)Y1)γ(x3) y1X1(1)δ1f 1x1ξ(1)f

−1
1 S(X3Y3)

⊗ y2X1(2)δ2f 2.f.x2ξ(2)f
−1
2 S(y3(2)X2(2)Y2)

= γ−1(y3(1)X2(1)Y1)γ(x3F
−1
2 ) y1X1(1)δ1f 1x1F

−1
1 (1)f

−1
1 S(X3Y3)

⊗ y2X1(2)δ2f 2.f.x2F
−1
1 (2)f

−1
2 S(y3(2)X2(2)Y2)

(?)= γ−1(y3(1)X2(1)Y1)γ(f 2(2)x3F
−1
2 ) y1X1(1)δ1f 1x1F

−1
1 (1)f

−1
1 S(X3Y3)

⊗ y2X1(2)δ2.f.f 2(1)x2F
−1
1 (2)f

−1
2 S(y3(2)X2(2)Y2)

(2.1.40)= γ−1(y3(1)X2(1)Y1. . )γ(f−1
2 S(x1). . . . . . ) y1X1(1)δ1S(x3). . . . . .S(X3Y3. . )

⊗ y2X1(2)δ2.f.f
−1
1 S(x2). . . . . .S(y3(2)X2(2)Y2. . )

= γ−1(y3(1)X2(1))y1X1(1)δ1S(X3)⊗ y2X1(2)δ2.f.ξS(y3(2)X2(2))

(2.1.43)= γ−1(y3(1)X2(1))y1X1(1)x1(1)Y1βS(x3)S(X3)
⊗ y2X1(2)x1(2)Y2βS(x2Y3).f. ξ S(y3(2)X2(2))

= γ−1(y3(1)X2(1)(x2Y3)(1))y1X1(1)x1(1)Y1βS(x3)S(X3)

⊗ y2X1(2)x1(2)Y2β.f.ξS((x2Y3)(2))S(y3(2)X2(2))

= β ⊗ β.f.ξ , (B.2.12)

where in (?) we used that f ∈ X2.

Now we have all the necessary ingredients and can prove our main theorem.
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Proof of Theorem 4.3.1 (1). By Proposition B.2.1, for any λC ∈ C(1, A2 (D)) there is a
unique λ ∈ X2 such that λC = A2(λ) = β.λ.ξ. Assume first that λ is a right cointegral.
Then

(ϕH∨ ◦ ρl)(λC)
(∗)= γ(x3)ϕH∨(∆(β).(x1 ⊗ λ.x2).∆(ξ)) (∗∗)= β ⊗ λC (B.2.13)

shows that λC is a right monadic cointegral, using the equivalent characterization (4.3.6).
Here (∗) uses that λ is a right cointegral, and (∗∗) uses Lemma B.2.2.

Conversely, assume that λC is a right monadic cointegral. Note that for any f ∈ X2
we have

f = qL1 βS(qL2 ).f = qL1 β.f.(γ ⇀ S(qL2 )), (B.2.14)

where the first step is the zig-zag axiom (2.1.9), and the second step uses that f ∈ X2.
Then

ρl(λ) (B.2.14)= ρl(qL1 β.λ.ξξ−1(γ ⇀ S(qL2 )))
(1)= ∆(qL1 )ρl(β.λ.ξ)∆(ξ−1(γ ⇀ S(qL2 ))))
(2)= ∆(qL1 )ϕ−1

H∨(β ⊗ β.λ.ξ)∆(ξ−1(γ ⇀ S(qL2 ))))
(3)= γ(x3) ∆(qL1 ).

(
β(1)x1ξ(1) ⊗ β(2).λ.x2ξ(2)

)
.∆(ξ−1(γ ⇀ S(qL2 )))

= γ(x3)
(
(qL1 β)(1)x1 ⊗ (qL1 β)(2).λ.x2

)
.∆(γ ⇀ S(qL2 ))

(4)= γ((qL1 β)(2,2)x3)
(
(qL1 β)(1)x1 ⊗ λ.(qL1 β)(2,1)x2

)
.∆(γ ⇀ S(qL2 ))

(5)= γ(x3)
(
x1 ⊗ λ.x2

)
.∆(γ ⇀ (qL1 β))∆(γ ⇀ S(qL2 ))

= γ(x3) x1 ⊗ λ.x2 (B.2.15)

shows that λ ∈ X2 is a right cointegral in the sense of [BC2, HN2]. The step labeled
(1) uses that ρl is a bimodule morphism, (2) is the fact that λC = β.λ.ξ is a monadic
cointegral, (3) follows from Lemma B.2.2, (4) uses that λ ∈ X2, and (5) is an application
of quasi-coassociativity.

B.3 Proof of Theorem 4.3.1 (2)
Similarly to right cointegrals, left cointegrals for H are automatically contained in the
space

X3 = {f ∈ H∗ | f ↼ S−1(a) = S(a ↼ γ) ⇀ f}
= {f ∈ ∨H ∈ HMH | a.f = f.(a ↼ γ)}, (B.3.1)

see (2.3.10), and analogously to Proposition B.2.1 one can show that

A3 = Acop
2 : X3 → C(1, A3 (γ∨)), A3(f) = S−1(β).f.ξ̂ (B.3.2)
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is an isomorphism. Note that here the dot denotes the action on the right dual of the
regular H ⊗ Hop-module. The Hopf monads A2 and A3 are canonically isomorphic via
κ2,3 : A2 ⇒ A3, see (4.1.11) and Proposition 4.2.2. This allows us to transport right
monadic cointegrals to left monadic cointegrals. Thus, upon showing that

∫ r
H X2 C(1, A2 (γ∨))

∫ r,mon
C

∫ l
H X3 C(1, A3 (γ∨))

∫ l,mon
C

(∗)

A2

(κ2,3)γ∨ ◦ ? (κ2,3)γ∨ ◦ ?

A3

(B.3.3)

commutes, we know that A3 maps left cointegrals to left monadic cointegrals. Here (∗)
maps the right cointegral λr to34

λl = γ(αS(β))−1 · (λr ◦ S ↼ (ucop)−1). (B.3.4)

By [BC2, Prop. 4.3] this is a left cointegral, recall Proposition 2.3.3.
The right hand square in (B.3.3) commutes by construction. Using the explicit formula

(4.2.4) for κ2,3, one finds that the upper path of the left hand square is

λr 7→ γ−1(X2)〈λr | S(β)S(?X1)X3S
−1(ξ)〉

= γ−1(X2)〈λr ◦ S | S−2(ξ)S−1(X3)?X1β〉
= γ(αS(β))γ−1(X2)〈λl | ucopS−2(ξ)S−1(X3)?X1β〉
(1)= γ(αS(β))γ−1(X2p

L
1 )〈λl | S−1(X3p

L
2 )?X1β〉

(2)= γ(αS(β))γ−1(X2p
L
1 )γ((X3p

L
2 )(1))〈λl |?X1βS((X3p

L
2 )(2))〉, (B.3.5)

the step marked (1) follows directly from the definition of u and ξ, see (2.3.12) resp.
Theorem 4.3.1, and step (2) uses λl ∈ X3.

The lower path of the left square of (B.3.3) evaluates to

λr 7→ 〈λl | S−2(β)?S(ξ̂)〉
(2.3.10)= 〈λl |?S((S−1(β) ↼ γ)ξ̂)〉

(∗)= γ−1(β(2)f
−1
2 )〈λl |?β(1)f

−1
1 〉

(2.1.44)= γ−1(X2)γ((X3)(1)p
L
1 )〈λl |?X1βS((X3)(2)p

L
2 )〉 , (B.3.6)

where (∗) uses the definition of ξ̂ as in Theorem 4.3.1.
We have

γ
(
αS(β)S(pL1 )pL2 (1)

)
pL2 (2)

(2.1.33)= γ
(
αS(β)x1βS(x2)x3(1)

)
x3(2)

34The zig-zag axiom (2.1.9) implies that both γ(α) and γ(β) are invertible in k. Therefore, the prefactor
in (B.3.4) is well-defined.
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(2.1.4),(∗)= γ
(
αS(β)x1βS(y1x2)y2x3

)
y3

(2.1.9)= γ
(
S(y1β)y2

)
y3

(∗∗)= γ(pL1 )pL2 (B.3.7)

where (∗) uses (γ ⊗ γ−1) ◦∆ = ε, and (∗∗) uses γ ◦ S = γ ◦ S−1 and (2.1.33). Therefore
the two expressions (B.3.5) and (B.3.6) are equal.

B.4 Proof of the pivotal case
The proof of Theorem 4.3.3 is similar to the proof of the second part above.

First, define the spaces

X1 = {f ∈ H∗ | f(ab) = f((b ↼ γ)a)} ,
X4 = {f ∈ H∗ | f(ab) = f((γ ⇀ b)a)} . (B.4.1)

By (3.1.13) we have right (left) γ-symmetrized cointegrals are automatically in X1 (X4),
and similarly to Proposition B.2.1 one may show that

A1 : X1 → C(1, A1 (γ∨)) , f 7→ 〈f | S−1(β)?S(ϑ)〉 ,
A4 : X4 → C(1, A4 (γ∨)) , f 7→ 〈f | β?S−1(ϑ̂)〉 , (B.4.2)

with ϑ = (γ−1 ⊗ S−1)(pL) and ϑ̂ = ϑcop, are linear isomorphisms.
Recall that we denote the one-dimensional spaces of right and left γ-symmetrized

cointegral by ∫ r,γ
H and

∫ l,γ
H . (B.4.3)

A simple computation shows that the diagram

∫ r
H X2 C(1, A2 (γ∨))

∫ r,mon
C

∫ r,γ
H X1 C(1, A1 (γ∨))

∫ r,D−sym
C

(∗)

A2

∼ ∼

A1

(B.4.4)

commutes, with (∗) sending a right cointegral λr to the right symmetrized cointegral
λr ↼ ug, and ∼ is induced by the isomorphism of Hopf monads from Proposition 4.1.2.

Indeed, a right cointegral λr gets mapped to the right D-symmetrized monadic coin-
tegral

λr,D−sym = 〈λr | S(β)g?S−1(ξ)〉 (B.4.5)
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by the upper path, and to

(λr,D−sym)′ = 〈λr | ugS−1(β)?S(ϑ)〉 (B.4.6)

by the lower path.
The upper path, evaluated on S−1(h), h ∈ H, yields

λr,D−sym(S−1(h)) = 〈λr | S(β)gS−1(ξh)〉
= 〈λr | S(ξhβ)g〉

(2.3.13)= 〈λl | ucopg−1ξhβ〉 . (B.4.7)

Evaluating the lower path on S−1(h), h ∈ H, we get

(λr,D−sym)′(S−1(h)) = 〈λr | ugS−1(hβ)S(ϑ)〉
(2.3.13)= 〈λl ◦ S−1 | S(hβ)gS(ϑ)〉

= 〈λl | ϑg−1hβ〉 . (B.4.8)

The claim then follows from

ucopg−1ξg
(2.3.12)= γ(Vcop

1 f−1
2 )S−2(Vcop

2 )g−1f−1
1 g

= γ(Vcop
1 f−1

2 )g−1Vcop
2 f−1

1 g

(2.3.14)= γ
(
S(pL1 )f̃ 2f

−1
2

)
g−1S(pL2 )f̃ 1f

−1
1 g

= γ−1(pL1 )S−1(pL2 )
= ϑ (B.4.9)

A similar diagram involving left cointegrals and their symmetrized version then finishes
the proof of the theorem.



Appendix C

Proofs for Chapter 5

Here we will give the proofs promised in Chapter 5.

C.1 Some preliminaries
From the formulas given in Section 2.1.6, one computes

qRt = e0 ⊗ 1 + e1 ⊗ e0 + e1 ⊗ e1K
−t

pRt = e0 ⊗ β + e1 ⊗ 1
qLt = e0 ⊗ 1 + e1 ⊗K−t

pLt = e0 ⊗ 1 + e1K
t ⊗Kt , (C.1.1)

and

f±1
t = e0 ⊗ 1 + e1 ⊗ e0K

∓t + e1K
±t ⊗ e1 (C.1.2)

Before continuing, let us agree on the following, to avoid too cluttered a notation.

Convention: We agree that we are allowed to drop subscript t’s, e.g.
we may write f instead of f t in longer formulas.

This does not cause confusion, as t was fixed at the beginning, and we do not wish to
switch between HΦ at different values of t.
We also note the following general formula for the coproduct of an element in the PBW-
basis.

Lemma C.1.1. Let 0 ≤ n,m ≤ p− 1 and 0 ≤ l ≤ 2p− 1. Then

∆(EnFmK l) =
n∑
r=0

m∑
s=0

[
m
s

] [
n
r

]
qr(n−r)+s(m−s)−2(n−r)(m−s)

×
(
e0 + qt(r−(m−s))e1

)
En−rF sK l−(m−s) ⊗ ErFm−sKn−r+l . (C.1.3)

111



112 C.2. The Drinfeld element

Proof. The coproduct is multiplicative, and so it suffices to compute ∆(E)n and ∆(F )m
for n,m ≥ 0. To do this, we note that by [Ka, IV.(1.9)] we have the q-binomial theorem

(x+ y)n =
n∑
k=0

[
n
k

]
qk(n−k)xkyn−k (C.1.4)

whenever yx = q2xy. Set

a = e0 + qte1 and b = e0 + q−te1 , (C.1.5)

so that

∆(E) = E ⊗K + a⊗ E and ∆(F ) = F ⊗ 1 + bK−1 ⊗ F . (C.1.6)

Since (E ⊗K) · (1⊗ E) = q2(1⊗ E) · (E ⊗K), we can use (C.1.4) to obtain

∆(E)n =
n∑
r=0

[
n
r

]
qr(n−r)arEn−r ⊗ ErKn−r . (C.1.7)

Similarly, one uses (K−1 ⊗ F ) · (F ⊗ 1) = q2(F ⊗ 1) · (K−1 ⊗ F ) to get

∆(F )m =
m∑
s=0

[
m
s

]
qs(m−s)bm−sF sK−(m−s) ⊗ Fm−s . (C.1.8)

The desired formula now follows from the multiplicativity of ∆.

C.2 The Drinfeld element
Before we prove our explicit formula for the Drinfeld element, i.e. Lemma 2.4.1, we have
the following lemma.

Lemma C.2.1. Let l ∈ Z. Then

Sp(l) :=
2p−1∑
s=0

q−2s(s+l) = (1− i) · √p · (1 + (−1)lip) · ql2/2 . (C.2.1)

Proof. Let a, b, c be integers, with c non-zero. The (generalized) Gauss sum is

G(a, b, c) =
|c|−1∑
n=0

exp
(
πi · an

2 + bn

c

)
. (C.2.2)

Thus we have

Sp(l) =
p−1∑
s=0

(
q−2s2−2sl) + q−2(s+p)2−2(s+p)l

)
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= 2
p−1∑
s=0

q−2s2−2sl

= 2G(−2,−2l, p) . (C.2.3)

The Gauss sums G(a, b, c) satisfy the following well-known (see e.g. [BEW, Thm. 1.2.2])
reciprocity relation. Namely, if ac 6= 0 and ac+ b is even, then

G(a, b, c) =
√∣∣∣∣ ca

∣∣∣∣ · exp
πi · sgn(ac)− b2

ac

4

 ·G(−c,−b, a) , (C.2.4)

where sgn(x) = x
|x| for x 6= 0.

Certainly, −2p 6= 0 and −2p− 2l is even, so we get

Sp(l) = 2
√∣∣∣∣ p−2

∣∣∣∣ · exp
πi · sgn(−2p)− (−2l)2

−2p

4

 ·G(−p, 2l,−2)

=
√

2p · exp
πi · 2l2

p
− 1
4

 ·G(−p, 2l,−2)

=
√

2p · q
l2

2
1− i√

2
·G(−p, 2l,−2) . (C.2.5)

Now

G(−p, 2l,−2) =
1∑

n=0
exp

(
πi
−pn2 + 2ln
−2

)
= 1 + exp

(
πi
2 (p− 2l)

)
(C.2.6)

and so the claim follows.

Now we prove the formula for the Drinfeld element.

Proof of Lemma 2.4.1. By [FGR1, (6.38)], the Drinfeld element is given by

u = S(R2p
R
2 )αR1p

R
1 = S(R2)R1 , (C.2.7)

where the second equality follows from (C.1.1) and α = 1 in HΦ. Thus, the explicit
expression of the R-matrix from (2.4.28) gives

u = 1
4p

p−1∑
n=0

2p−1∑
s,r=0

{1}n
[n]! q

1
2n(n−1)−2srWn,s,r × S(KrF n)KsEn . (C.2.8)

where we have abbreviated

Wn,s,r = 1 + qtr + q−t(n+s) + qt(
1
2 t+r−n−s) (C.2.9)
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We have S(F n) = (−1)nq−n(n+1)F nKn(e0 + q−tne1), so that

u = 1
4p

p−1∑
n=0

2p−1∑
s,r=0

{1}n
[n]! q

1
2n(n−1)−2srWn,s,r(−1)nq−n(n+1)(e0 + q−tne1)F nKn+s−rEn

= 1
4p

p−1∑
n=0

2p−1∑
s,r=0

{−1}n
[n]! q−

1
2n(n+3)−2srWn,s,r(e0 + q−tne1)F nKn+s−rEn

= 1
4p

p−1∑
n=0

2p−1∑
s,r=0

{−1}n
[n]! q−

1
2n(n+3)+2rnW̃n,s,r(e0 + q−tne1)F nEnKr , (C.2.10)

where we substituted r → n+ s− r in the last step, and set

W̃n,s,r = q−2s(n+s−r)Wn,s,n+s−r

= q−2s(n+s−r)
(

1 + qt(n+s−r) + q−t(n+s) + qt(
1
2 t−r)

)
(C.2.11)

Since HΦ = e0H
Φ ⊕ e1H

Φ, where eiHΦ has a basis {eiFmEnKk | 0 ≤ m,n, k ≤ p − 1},
we can write

ei

2p−1∑
l=0

alF
mEnK l =

p−1∑
l=0

(al + (−1)ial+p)eiFmEnK l (C.2.12)

in the corresponding basis. Since t is odd, we have

W̃n,s,r + (−1)iW̃n,s,r+p = 2q−2s(n+s−r) ·

1 + q−t(n+s) i = 0
qt(n+s−r) + qt(

1
2 t−r) i = 1

. (C.2.13)

Therefore, the Drinfeld element is given on the 0 sector by

e0u = 1
2p

p−1∑
n,r=0

{−1}n
[n]! q−

1
2n(n+3)+2rn

2p−1∑
s=0

q−2s(n+s−r)(1 + q−t(n+s))
 e0F

nEnKr

= 1
2p

p−1∑
n,r=0

{−1}n
[n]! q−

1
2n(n+3)+2rn

2p−1∑
s=0

q−2s(s+n−r)

 e0F
nEnKr

= 1− i
2√p

p−1∑
n,r=0

{−1}n
[n]! qn(r−3

2 )+ 1
2 r

2(1 + (−1)n−rip)e0F
nEnKr . (C.2.14)

The last line follows from Lemma C.2.1 and a simple algebraic manipulation, while for
the first equality we use

2p−1∑
s=0

qs(2s+x) =
p−1∑
s=0

qs(2s+x) + (−1)x
p−1∑
s=0

qs(2s+x) , (C.2.15)

with x = t in our case.
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On the other hand, on the 1 sector, we compute

e1u = 1
2p

p−1∑
n,r=0

{−1}n
[n]! q−

1
2n(n+3)+2rn−tne1F

nEnKr

×
2p−1∑
s=0

q−2s(s+n−r)(qt(n+s−r) + qt(
1
2 t−r)) . (C.2.16)

By the argument from above, only the second term in the brackets in the sum over s
contributes, and we can use Lemma C.2.1 and a simple algebraic manipulation to obtain

e1u = 1− i
2√p

p−1∑
n,r=0

{−1}n
[n]! qn(r−3

2 )+ 1
2 r

2+t( 1
2 t−r−n)e1F

nEnKr

× (1 + (−1)n−rip) . (C.2.17)

Putting everything together we obtain

u = 1− i
2√p

p−1∑
n,r=0

{−1}n
[n]! (1+(−1)n−rip)qn(r−3

2 )+ 1
2 r

2

×
(
e0 + qt(

1
2 t−r−n)e1

)
F nEnKr , (C.2.18)

which is what we claimed.

C.3 The pivot
We now prove Proposition 2.4.2, which was the statement that the element gt = e0K −
e1K

t+1 is a pivot compatible with the ribbon structure on HΦ.

Proof of Proposition 2.4.2. The first part, i.e. gt being a pivot, follows automatically from
gt = utv

−1, which we now show. We again do so on the 0 and 1 sector separately.
To this end, recall first that the ribbon element v was given in (2.4.29). Then we have

e0gv = 1− i
2√p

p−1∑
n=0

2p−1∑
j=0

{1}n
[n]! q

n(j−1
2 )+ 1

2 (j+p+1)2
e0F

nEnKj+1

= 1− i
2√p

p−1∑
n=0

2p−1∑
j=0

{1}n
[n]! q

n(j−3
2 )+ 1

2 (j+p)2
e0F

nEnKj

= 1− i
2√p

p−1∑
n,j=0

{1}n
[n]!

(
qn(j−3

2 )+ 1
2 (j+p)2 + qn(j+p−3

2 )+ 1
2 j

2)
e0F

nEnKj

= 1− i
2√p

p−1∑
n,j=0

{1}n
[n]!

(
(−1)jip + (−1)n

)
qn(j−3

2 )+ 1
2 j

2
e0F

nEnKj
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= 1− i
2√p

p−1∑
n,j=0

{−1}n
[n]!

(
(−1)j+nip + 1

)
qn(j−3

2 )+ 1
2 j

2
e0F

nEnKj

= e0u (C.3.1)

and

e1gv = −1− i
2√p

p−1∑
n=0

2p−1∑
j=0

{1}n
[n]! q

n(j−1
2 )+ 1

2 (j+p+1)2
e1F

nEnKj+t+1

= −1− i
2√p

p−1∑
n=0

2p−1∑
j=0

{1}n
[n]! q

n(j−t−3
2 )+ 1

2 (j−t+p)2
e1F

nEnKj

= −1− i
2√p

p−1∑
n,j=0

{1}n
[n]!

(
qn(j−t−3

2 )+ 1
2 (j−t+p)2

− qn(j+p−t−3
2 )+ 1

2 (j−t)2)
e1F

nEnKj

= −1− i
2√p

p−1∑
n,j=0

{1}n
[n]!

(
(−1)j+tip − (−1)n

)
qn(j−t−3

2 )+ 1
2 (j−t)2

e1F
nEnKj

= 1− i
2√p

p−1∑
n,j=0

{−1}n
[n]!

(
(−1)n+jip + 1

)
qn(j−3

2 )+ 1
2 j

2+t( 1
2 t−n−j)e1F

nEnKj

= e1u . (C.3.2)

Thus gtv = ut, which is what we wanted to show.

C.4 The central elements χV and φV
Before proving the statements regarding the χ’s and φ’s, we will prove two lemmata.

Lemma C.4.1. Let a, b ∈ H such that [b,K] = 0. The pivot gt satisfies

qRt · (a⊗ b) · pRt · (1⊗ gt) = a⊗ bKp+1 , (C.4.1)

Proof. From the explicit formulas in (C.1.1), one easily computes that the LHS of the
equation in the statement of this lemma equals

e0a⊗ bKp+1 + e1a⊗ e0bK
p+1 + e1a⊗ e1K

−tbKt+p+1 , (C.4.2)

and so the claim follows.

Note in particular that we can apply this lemma whenever b is of the form EiF iKj.

Lemma C.4.2. Let

c = ζEp−1F p−1 ∑
j∈Z2p

Kj (C.4.3)
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be the integral of HΦ, where ζ ∈ C is some non-zero normalization coefficient. Let V =
Xα(s), and suppose f : H → H is generated by the linear maps S, ‘multiplication with K’,
and their inverses.

Then

c(1) · trV
(
f(c(2))

)
= ζ

∑
j∈Z2p

p−1∑
r=0

Ep−1−rF p−1−rKj · trV
(
f(F rErKp+j−1)

)
. (C.4.4)

Proof. Firstly, note that by Lemma C.1.1,

∆(EmFm) =
m∑
r=0

m∑
s=0

[
m
s

] [
m
r

]
qr(m−r)+s(m−s)−2(m−r)(m−s)

×
(
e0 + qt(r−(m−s))e1

)
Em−rF sK l−(m−s) ⊗ ErFm−sKm−r+l

≈
m∑
s=0

[
m
s

]2

EsF sK l−(m−s) ⊗ Em−sFm−sKs+l . (C.4.5)

where by ≈ we mean that only terms with E and F equipotent in the second tensor factor
contribute, since we already know that we will be tracing it out. This knowledge gives a

δr,m−s, and using
[
m
s

]
=
[

m
m− s

]
we get (C.4.5).

Thus we obtain

∆(c) = ζ
∑
j∈Z2p

∆(Ep−1F p−1Kj)

≈ ζ
∑
j∈Z2p

p−1∑
s=0

[
p− 1
s

]2

EsF sK l−(p−1−s) ⊗ Ep−1−sF p−1−sKs+l

= ζ
∑
j∈Z2p

p−1∑
s=0

[
p− 1

p− 1− s

]2

Ep−1−sF p−1−sK l−s ⊗ EsF sKp−1−s+l

= ζ
∑
j∈Z2p

p−1∑
s=0

Ep−1−sF p−1−sK l ⊗ EsF sKp−1+l , (C.4.6)

where we substituted s→ p− 1− s, l→ l − s, and used[
p− 1

p− 1− s

]
= [p− 1] · . . . · [p− s]

[s]! = 1 , (C.4.7)

since [p− k] = [k] in general. The claim follows.

Recall now the Cartan automorphism w of the algebra H, given on generators by

w(E) = F, w(F ) = E, w(K) = K−1 , (C.4.8)

see e.g. [Ka, Lem. VI.1.2]. An indispensable observation in what follows is the next
proposition.
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Proposition C.4.3. The Cartan automorphism defined in (C.4.8) restricts to the identity
on the center Z(H).

Proof. This follows from [FGST1, App. D.1]. More precisely, somewhat explicit formulas
for a canonical basis of the center are given there; one checks that they are invariant under
the Cartan automorphism.

Now we are ready to prove our main results in this section.

Proof of Lemma 5.3.3. By Proposition 5.2.3, the central elements φV are given by

φV = qR1 c(1)p
R
1 · trV

(
u−1
t vS(qR2 c(2)p

R
2 )
)
. (C.4.9)

From gt = utv
−1, Lemma C.4.1, and Lemma C.4.2, we obtain

= ζ
p−1∑
k=0

∑
l∈Z2p

Ep−1−kF p−1−kK l · trV
(
S(EkF kK l)

)
. (C.4.10)

Next we use S(EkF k) = F kEk, cyclicity of the trace, and the explicit expression for
trXα(s)(FmEmKa) from [FGST1, (4.10)], which altogether yields

= ζ
p−1∑
k=0

∑
l∈Z2p

s−1∑
n=0

αk−l([k]!)2q−l(s−1−2n)
[
s− n+ k − 1

s

] [
n
k

]
Ep−1−kF p−1−kK l · . (C.4.11)

After rearranging and noting that
[
n
k

]
= 0 for k > n, we get

φV = ζ
s−1∑
n=0

n∑
i=0

∑
j∈Z2p

αi+j([i]!)2q−j(s−1−2n)
[
s− n+ i− 1

i

] [
n
i

]

× Ep−1−iF p−1−iKj . (C.4.12)

Applying the Cartan automorphism to this expressions yields, after change of summa-
tion variable −j → j,

w(φV ) = ζ
s−1∑
n=0

s∑
i=0

∑
j∈Z2p

αi+j([i]!)2qj(s−1−2n)
[
s− n+ i− 1

s

] [
n
i

]

× F p−1−iEp−1−iKj· , (C.4.13)

which is exactly φ̂α(s) as given in [FGST1, (4.19)]. The claim thus follows from Proposi-
tion C.4.3.

Now we prove the corresponding statement for χV .
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Proof of Lemma 5.3.4. By Proposition 5.2.3, the central elements χV are given by

χV = qR1 M1p
R
1 · trV

(
u−1
t vS(qR2 M2p

R
2 )
)
, (C.4.14)

where M is the monodromy of H. From gt = utv
−1 and Lemma C.4.1 we immediately

get

= M1 · trV
(
S(M2K

p+1)
)

(C.4.15)

Now the explicit formula for the monodromy stated in [CGR, (4.13)] gives

= 1
2p

p−1∑
m,n=0

2p−1∑
i,j=0

{1}m+n

[m]![n]!q
1
2m(m−1)+ 1

2n(n−1)−m2+m(j−i)−ij

× (δi+m,even + δi+m,oddq
t(m−n))KjFmEn · trV

(
S(KiEmF nKp+1)

)
. (C.4.16)

All terms with m 6= n are zero, and using again S(ErF r) = F rEr and cyclicity, we get

= 1
2p

p−1∑
n=0

2p−1∑
i,j=0

{1}2n

([n]!)2 q
n(j−i−1)−ijKjF nEn · trV

(
F nEnKp−i−1

)
. (C.4.17)

Next, we make the substitution i→ p− i− 1

= 1
2p

p−1∑
n=0

2p−1∑
i,j=0

{1}2n

([n]!)2 q
n(j+i+p)+(i+1+p)jKjF nEn · trV

(
F nEnKi

)

= 1
2p

p−1∑
n=0

2p−1∑
i,j=0

(−1)n+j {1}2n

([n]!)2 q
n(j+i)+(i+1)jKjF nEn · trV

(
F nEnKi

)
, (C.4.18)

and with the explicit formula [FGST1, (4.10)] for the trace we get

= 1
2p

p−1∑
n=0

2p−1∑
i,j=0

s−1∑
m=0

(−1)n+jαn+i{1}2nqn(j+i)+(i+1)j+i(s−1−2m)

×
[
s−m+ n− 1

n

] [
m
n

]
KjF nEn (C.4.19)

= 1
2p

s−1∑
m=0

m∑
n=0

2p−1∑
j=0

(−1)n+jαn{1}2nq(n+1)j

2p−1∑
i=0

αiqi(s−1−2m+n+j)


×
[
s−m+ n− 1

n

] [
m
n

]
KjF nEn . (C.4.20)
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The binomial
[
m
n

]
restricts the sum over n. Let β ∈ {0, 1} such that α = (−1)β. Then in

particular α = qpβ, and we can explicitly calculate the sum over i. Namely, we have
2p−1∑
i=0

αiqi(s−1−2m+n+j) =
2p−1∑
i=0

qi(j+s−1−2m+n+βp)

= 2p · δ(j ≡ βp+ 2m+ 1− n− s mod 2p) (C.4.21)

. Thus (recall that α = (−1)β),

χV =
s−1∑
m=0

m∑
n=0

(−1)n+βp+2m+1−n−sαn{1}2nq(n+1)(βp+2m+1−n−s)

×
[
s−m+ n− 1

n

] [
m
n

]
Kβp+2m+1−n−sF nEn (C.4.22)

=(−1)s+1
s−1∑
m=0

m∑
n=0

(−1)β(n+p)+β(n+1){1}2nq(n+1)(2m+1−n−s)

×
[
s−m+ n− 1

n

] [
m
n

]
Kβp+2m+1−n−sF nEn (C.4.23)

=(−1)s+1αp+1
s−1∑
m=0

m∑
n=0
{1}2nq(n+1)(2m+1−n−s)

×
[
s−m+ n− 1

n

] [
m
n

]
Kβp+2m+1−n−sF nEn (C.4.24)

=αp+1(−1)s+1
s−1∑
n=0

n∑
m=0
{1}2mq−(m+1)(m+s−1−2n)

×
[
s− n+m− 1

m

] [
n
m

]
FmEmK−s+1+βp+2n−m . (C.4.25)

The reason for the last rewrite is that one can now easily see that w(χ) yields the expression
for χ̂α(s) from [FGST1, Prop. 4.3.1]. By Proposition C.4.3, χXα(s) = χ̂α(s), and the proof
is finished.

C.5 A certain intertwiner
Recall that we denoted the basis of Xα(s)⊗Xα(s) by |s;n,m〉α, for 0 ≤ n,m ≤ s− 1. On
this basis, HΦ acts as

K|s;n,m〉α = q2(s−1−(n+m))|s;n,m〉α (C.5.1)

E|s;n,m〉α = [n][s− n]qs−1−2m|s;n− 1,m〉α
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+
(
δs+βp,odd + δs+βp,evenq

t
)
α[m][s−m]|s;n,m− 1〉α (C.5.2)

and

F |s;n,m〉α = |s;n+ 1,m〉α

+
(
δs+βp,odd + δs+βp,evenq

−t
)
αq−(s−1−2n)|s;n,m+ 1〉α , (C.5.3)

where β ∈ {0, 1} is so that α = (−1)β.

Proof of Lemma 5.3.1. We want to show that

f : C→ Xα(s)⊗ Xα(s)

1 7→
s−1∑
i=0

(
δs+βp,odd + δs+βp,evenq

it
)

(−1)iαiqi(s−2−i)|s; i, s− 1− i〉α (C.5.4)

is an intertwiner.
One easily sees K · f(1) = f(K · 1). For the action of E, we compute

E · f(1) =
s−1∑
i=0

(
δs+βp,odd + δs+βp,evenq

it
)

(−1)iαiqi(s−2−i)E|s; i, s− 1− i〉α

=
s−1∑
i=1

(
δs+βp,odd + δs+βp,evenq

it
)

(−1)iαiqi(s−2−i)−s+1+2i

× [i][s− i]|s; i− 1, s− 1− i〉α

+
s−2∑
i=0

(
δs+βp,odd + δs+βp,evenq

(i+1)t
)

(−1)iαi+1qi(s−2−i)

× [s− 1− i][1 + i]|s; i, s− 2− i〉α

=
s−1∑
i=1

(
δs+βp,odd + δs+βp,evenq

it
)

(−1)iαiqi(s−2−i)−s+1+2i

× [i][s− i]|s; i− 1, s− 1− i〉α

−
s−1∑
i=1

(
δs+βp,odd + δs+βp,evenq

it
)

(−1)iαiq(i−1)(s−1−i)

× [s− i][i]|s; i− 1, s− 1− i〉α

= 0 , (C.5.5)

where we used that [0] = 0 and (i − 1)(s − 1 − i) = i(s − 2 − i) − (s − 1 − 2i), so f
intertwines the action by E. For F , we compute

F · f(1) =
s−1∑
i=0

(
δs+βp,odd + δs+βp,evenq

it
)

(−1)iαiqi(s−2−i)F |s; i, s− 1− i〉α

=
s−2∑
i=0

(
δs+βp,odd + δs+βp,evenq

it
)

(−1)iαiqi(s−2−i)|s; i+ 1, s− 1− i〉α
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+
s−1∑
i=1

(
δs+βp,odd + δs+βp,evenq

(i−1)t
)

(−1)iαi+1qi(s−2−i)−(s−1−2i)

× |s; i, s− i〉α

= −
s−1∑
i=1

(
δs+βp,odd + δs+βp,evenq

(i−1)t
)

(−1)iαi−1q(i−1)(s−1−i)|s; i, s− i〉α

+
s−1∑
i=1

(
δs+βp,odd + δs+βp,evenq

(i−1)t
)

(−1)iαi+1qi(s−2−i)−(s−1−2i)

× |s; i, s− i〉α

= 0 , (C.5.6)

which shows that f intertwines the action by F as well. Thus, f is a morphism in C.
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Summary
In the first part of this thesis, we showed how to obtain the unique non-degenerate right
modified trace of the (finite tensor) category of finite-dimensional representations of a
pivotal unimodular quasi-Hopf algebra H with dimH < ∞. More concretely, we showed
explicitly how to relate it to the so-called right symmetrized cointegral, which itself is
derived from the right cointegral of H—an element in the dual space important in the
general theory of quasi-Hopf algebras. Analogous statements hold when ‘right’ is replaced
with ‘left’. This generalizes the results from [BBGa] to the quasi-coassociative setting.

The second part was focused generally on what we dubbed monadic cointegrals for
finite tensor categories, and particularly on their realizations in representation categories
of (pivotal) quasi-Hopf algebras. Monadic cointegrals serve, on the nose, as a direct
categorical formulation of four different types of cointegrals for Hopf algebras. The main
contribution here is then that we explicitly related the monadic cointegrals associated to
the representation category of a quasi-Hopf algebra H to the four types of cointegrals
of H, given them a novel categorical interpretation. An open question at this point, as
mentioned in Section 4.2.1, is whether equation (4.2.10) is enough to uniquely characterize
right monadic cointegrals.

We specialized to the braided case, and found that monadic cointegrals are basically
the same as Lyubashenko’s integral. Assume now the category is given by modules over
a quasi-Hopf algebra with appropriate adjectives. In particular we can now see that,
fundamentally, both Lyubashenko’s integral and the modified trace are related to the
integral of the underlying quasi-Hopf algebra. One hope therefore is that this is true in
the general case, i.e. that for an arbitrary but, say, factorizable finite tensor category,
the modified trace can be expressed in terms of Lyubashenko’s integral (or simply in
terms of the monadic cointegral), providing a unifying framework. This is an interesting
take, since both Lyubashenko’s integral and the modified trace are the main ingredients
in the non-semisimple generalization of the RT-TFT proposed in [DGGPR]. Aside from
this conjecture, the results themselves are already interesting, since recently numerous
examples of factorizable quasi-Hopf algebras conjecturally related to logarithmic VOAs
have appeared [CGR, GR1, FGR2].

Lastly, in a brief third part, we compared two (projective) SL(2,Z)-actions: one arising
as the modular invariance properties of VOA-characters of the triplet VOA W(p) studied
in e.g. [FGST1]; the other one arising from Lyubashenko’s construction applied to a certain
quasi-Hopf modification of the restricted quantum group of sl2 at a 2pth root of unity, as
introduced in [CGR]. We found that these actions indeed agree.
Outlook. In addition to tackling the open questions posed above, I am computing some
explicit examples of the renormalized 3-manifold invariants of [DGGPR], using as input
data certain (quasi-)Hopf algebras. Both the modified trace and Lyubashenko’s integral
(which is easily computed from the monadic cointegral) enter here. I hope to see to what
extent the invariants distinguish for example the lens spaces L(n, 1), or if and how they
can be connected to the semisimple invariants coming from the RT-construction.



Zusammenfassung
Im ersten Teil meiner Arbeit haben wir eine konkrete Konstruktion der eindeutigen nicht-
entarteten rechten modifizierten Spur der (endlichen Tensor-)Kategorie endlich-dimensi-
onaler Moduln einer pivotalen und unimodularen quasi-Hopfalgebra H mit dimH < ∞
gegeben und bewiesen. Genauer haben wir explizit gezeigt, wie die modifizierte Spur
durch das sogenannte rechte symmetrisierte Kointegral bestimmt wird. Dieses wiederum
ist abgeleitet vom rechten Kointegral von H—einem Element des Dualraums, welches in
der allgemeinen Theorie der quasi-Hopfalgebren wohlbekannt ist. Analoge Aussagen gelten
auch, wenn ‘rechts’ durch ‘links’ ersetzt wird. Damit wurden Ergebnisse aus [BBGa] in
den lediglich quasi-koassoziativen Rahmen verallgemeinert.

Der zweite Teil hatte einen allgemeinen Fokus auf die von uns monadische Kointe-
grale genannten Entitäten, welche sich für jede endliche Tensorkategorie definieren lassen,
und einen speziellen Fokus auf deren Realisierung für quasi-Hopfalgebren. Im Falle von
Hopf-Algebren sieht man leicht, dass monadische Kointegrale eine direkte kategorielle
Formulierung der vier verschiedenen Kointegrale liefern. Der Hauptbeitrag dieses Teils
ist nun der Beweis der exakten Beziehung zwischen den vier Kointegralen einer quasi-
Hopfalgebra H und den monadischen Kointegralen in der Kategorie der H-Moduln. Ins-
besondere bekommen dadurch quasi-Hopf-Kointegrale eine neuartige kategorielle Interpre-
tation. Zum jetzigen Zeitpunkt ist offen, ob—wie bereits in Abschnitt 4.2.1 erwähnt—die
Gleichung (4.2.10) rechte monadische Kointegral bereits eindeutig charakterisiert.

Dann haben wir den verzopften Fall betrachtet, und herausgefunden, dass monadische
Kointegrale letztendlich das gleiche sind wie Lyubashenkos Integral. Betrachten wir nun
die Darstellungskategorie einer quasi-Hopfalgebra mit allen nötigen Adjektiven. Wir sehen
dann insbesondere, dass Lyubashenkos Integral und die modifizierte Spur einen gemein-
samen Nenner haben, nämlich das Kointegral der quasi-Hopfalgebra. Daher hoffen wir
unter anderem, dass sich dies auch im allgemeinen Fall bewahrheitet, dass also die mod-
ifizierte Spur für eine beliebige aber z.B. faktorisierbare endliche Tensorkategorie über
das Lyubashenko-Integral ausgedrückt werden kann (bzw. direkt über ein monadisches
Kointegral). Dies ist eine interessante Vermutung, denn Lyubashenkos Integral und die
modifizierte Spur sind die Hauptzutaten der nicht-halbeinfachen Verallgemeinerung der
RT-TFT aus [DGGPR]. Von dieser Vermutung abgesehen sind die Resultate selbst in-
teressant, u.A. da in jüngerer Zeit mehrere Beispiele faktorisierbarer quasi-Hopfalgebren
aufgetaucht sind, welche (mutmaßlich) eine Rolle in der Beschreibung einiger logarithmis-
cher konformer Feldtheorien spielen [CGR, GR1, FGR2].

In einem dritten Teil, haben wir zwei (projektive) SL(2,Z)-Wirkungen verglichen: die
erste fällt aus dem Verhalten der VOA-Charactere der ‘triplet VOA’ W(p) unter modu-
laren Transformationen heraus; die andere kommt aus Lyubashenkos Konstruktion, ange-
wandt auf die (faktorisierbare) Darstellungskategorie der in [CGR] eingeführten quasi-
Hopf-Modifikation der beschränkten Quantengruppe von sl2 bei einer primitiven 2pten
Einheitswurzel. Wir sahen, dass beide Wirkungen (projektiv) übereinstimmen.
Ausblick. Zum einen plane ich, die oben genannten offenen Fragen zu beantworten. Zum
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anderen berechne ich explizite Beispiele der renormierten 3-Mannigfaltigskeits-Invarianten
von [DGGPR], ausgehend von verschiedenen (quasi-)Hopf-Algebren. Die Ergebnisse dieser
Arbeit kommen dabei durch die Verwendung der modifizierten Spur und Lyubashenkos
Integral (welches wir hier über das monadische Kointegral berechnen) ins Spiel. Ich möchte
sehen, bis zu welchem Grad die resultierenden Invarianten z.B. die Linsenräume L(n, 1)
unterscheiden können, und ob bzw. wie wir sie mit den halbeinfachen Invarianten aus der
RT-Konstruktion in Verbindung setzen können.
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