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Chapter 1

Introduction

1.1 A networks perspective of the brain
One of the currently most exciting scientific challenges is to understand how

the brain works. The consequences of cracking that problem are simply count-
less, ranging from explaining fundamental aspects of human existence, such as
consciousnes, all the way through a myriad of other applications, such as human-
machine interface for prosthetics and developing the next generation of artificial
intelligence (Marcus 2020).
Needless to say, understanding the brain is an intrinsically difficult problem. The
brain has many different layers of complexity and, as a consequence, the study
of its structure and function can be approached from many different perspectives,
both in experimental and theoretical terms (Kandel et al. 2000).
The work presented in this thesis looks at the brain through the lens of networks.
That means, it lays within the interdisciplinary field of network neuroscience, a
mixture between the more general fields network science and neuroscience (Bassett
& Sporns 2017). This approach entails the important commitment to the notion
that abstracting away some details of the system and representing the brain as a
network of interacting elements provides us with a useful description that serves as
an underlying explanation to observed phenomena at higher scales. For example,
better understanding of the connectivity patterns between different brain regions
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Introduction Why networks?

could help explaining the consequences of specific brain lesions (Bassett et al. 2018;
Heuvel & Sporns 2019).

Figure 1.1: The brain as a network. Example of brain network extraction for human
brains. By means of modern experimental techniques, such as diffusion tensor MRI, the
connectivity between different brain areas can be inferred (Middle). Such connectivity
information is then used to derive a network representation of the brain (Right), where
each brain area (derived from a parcelation) is a node, and the axonal tracts between
them the edges of the network. Adapted from (Hagmann et al. 2008).

So the core idea behind this network approach in neuroscience is to generate
an abstract model representation of the brain (or parts of it) as a set of elements
(nodes) connected to each other via links (edges) constituting a network.1 This
network is then the object of study that provides with the possibility of addressing
questions about brain organization and functional mechanisms, both experimen-
tally and theoretically.

1.2 Why networks?
The pervasiveness of networked systems in nature and the remarkable use-

fulness of networks for modeling complex systems, have led to the blooming of the
network science field in the last ~25 years, although the initial applications of graph
theory are certainly older. Since networks have a special focus on the interactions
between elements of a system, they constitute a natural representation of many

1In this context, an equivalent term to refer to a network is a graph. Those two terms are
interchangeably used in this thesis and they refer to the same object: a set of links connecting
nodes.
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complex systems, such as the brain, capturing crucial relationships between their
components. Network science is a highly interdisciplinary mixture of researchers,
using and developing tools to analyze a huge variety of systems, at first sight not
necessarily related, but whose abstraction as networks helps deriving more general
principles (Newman 2006).
Networks are especially useful models of the brain for a number of reasons. At
an abstract level of complex systems in general, two principal characteristics en-
abling complex emergent behaviour are the presence of numerous elements and the
non-linear nature of the interactions between them (Chialvo 2010). In the brain,
millions of neurons “talk to each other” through non-linear mechanisms (e.g., spikes
and action potentials) via billions of synapses (Roth & Dicke 2005). Those facts
make the brain the complex biological network par excellence. In contrast to other
complex biological systems that also can be represented as networks, such as gene
interactions networks, we can make an even stronger claim about the brain: The
brain is literally a network.2

Thus, network approaches have recently become central in neuroscience, offering a
novel description level and a set of tools to approach old and new open questions in
the field. But networks can represent very different things, even within the neuro-
science context. For the sake of clarity, and unless otherwise explicitly stated: all
the brain networks I will refer to represent physical connections between neural el-
ements. Thus, these are called structural brain networks (in contrast to functional
networks). For example, the network nodes might be meant to model individual
neurons or brain regions, while the links (edges) could represent individual axons
or bundles of them, respectively. In other words, they can refer to different spatial
scales. I will generically refer to them as brain networks.

2A fact which, by the way, settled one of the hottest scientific debates in the history of
neuroscience between Ramón y Cajal and Golgi (De Carlos & Borrell 2007).
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Introduction Studying brain networks with graph theory

1.3 Studying brain networks with graph theory

1.3.1 Basic concepts

Even thought representing the brain as a network already implies some sim-
plifications, the complexity of that network representation still implies that even
simple questions can become challenging. For example, given an individual brain
(or its network representation), we could ask ourselves: How centralized is the or-
ganization of that network? That is a fundamentally qualitative question, but, in
order to test it with statistical validity, we need to translate that qualitative notion
into a quantitative one. A set of mathematical concepts coming from graph theory
allows us to do exactly that by providing us with precise metrics that function as a
language to state those qualitative questions in more mathematical terms (Sporns
et al. 2004).
Graph theoretical metrics are typically estimated by means of computational meth-
ods and they provide us with concrete quantities that give us a handle on different
qualitative properties of the network.

Figure 1.2: The brain as a network. Schematic representation of a brain represented as
a graph, pointing to the most fundamental components of the network: nodes and edges
as well as a basic metric - the node degree. Reproduced from (Sporns & Betzel 2016).

A network is composed of nodes and edges (or links). Thus its minimal
description is the set of its links, represented as pairs (𝑖, 𝑗), indicating a connection
from node 𝑖 to node 𝑗. The most basic properties of a network are therefore the
number of nodes, 𝑁 , and the total number of links, 𝐿. The number of links of a
single node 𝑖 is called the node degree and denoted as 𝑘𝑖.

4
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Unweighted networks (also referred as binary networks) have links that can only
either exists or not. In contrast to that, the links of a network can have a weight,
so defining a weighted network, where each link has a particular strength. If the
links are allowed to have a directionality, the network is said to be directed. In
such case, the pairs (𝑖, 𝑗), (𝑗, 𝑖) refer to different links, one going from i to j and
another from j to i. The opposite case is with undirected networks, where the pairs
(𝑖, 𝑗), (𝑗, 𝑖) actually refer to the same one link, which has no directionality.
It is important to notice that this connectivity information only specifies the wiring
diagram (“who is connected to whom”). This is known as the topology and does
not give any information about the actual, geometrical embedding of the network
(known as topography). Thus, the topological properties of a network refer to the
characteristics of the wiring diagram, independently of how those nodes and links
could be embedded in the physical space.

Figure 1.3: Topology vs. Topography. Left: A network with purely topological infor-
mation. This two-dimensional layout of the network was generated by grouping nodes
in the plane according to their connections, regardless of the physical distance between
them. Right: The same network as in the left side of the figure, but spatially embed-
ded according to the real physical positions of the nodes in the brain. Adapted from
(Bullmore & Bassett 2011).

Going back to the hypothetical question about how centralized a brain
network might be, by means of graph theoretical tools, we could compute a specific
metric called betweenness centrality for each brain region, and then study the
distribution of values across all the nodes. A highly skewed distribution would
speak for a network with a centralized organization. In that way, the network
approach allows us to translate a qualitative question (“how centralized is the
organization of a given brain?”) into a quantitative one (“which function describes
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the distribution of centrality values?”) that gives us precision and the potential
advantage of leveraging statistical tools to test our hypothesis.
In sum, graph theory provides us with a tool that allows us to state qualitative
questions about brain organization as quantitative ones in terms of topological
metrics which can be addressed more precisely.

1.3.2 Scales of network analysis

As mentioned above, in order to quantitatively describe a network, differ-
ent topological properties can be defined and computed. These are called network
metrics and the recent rapid development of network science in general, and net-
work neuroscience in particular, has led to the development of a large number
of them to describe the connectivity patterns of complex brain networks. Before
defining specific metrics and details about their relevance, it should be mentioned
that each network metric can capture connectivity properties at a different scale,
ranging from global to local, i.e. whole network to individual nodes perspective,
respectively.

Figure 1.4: Scales of network analysis. Analysis of brain networks can be carried out
at the local and global scales, which focus on properties of individual network elements
(nodes and edges) or the network as a whole, respectively. Situated between these
extremes is a meso-scale that focuses on sub-networks, for example, clusters of nodes.
Adapted from (R. F. Betzel 2020).

Global metrics describe general organization patterns of the network that
determine emergent macro-properties, for example, how efficiently information can
spread across the network. On the other side of the spectrum, local metrics describe
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individual nodes, thus useful when comparing the role of different elements of the
network with each other, such as the importance of brain regions in terms of number
of connections. Those are the two extremes of the spectrum, but at a meso-scale
between them there are other properties, such as the presence of modules, that
provide relevant information as well. These scales are not always really mutually
exclusive and there can be overlapping of scales and granularity which contributes
to the complexity of the network organization (R. Betzel 2020).
Now we can revise the specifics of topological properties of brain networks, focusing
on the intuition behind the most important ones, which will pave the way to
understand the conceptual core of this thesis.

1.4 Features of brain networks
First of all, why is the topology of brain networks important in the first

place? A short high level answer is that topological features of complex networks
have a direct impact on the dynamical processes that take place on the network.
Dynamical properties at all scales, such as network resilience and self-sustained
activity patterns, are highly dependent on the underlying topological features of
the network (Albert et al. 2000; Kaiser & Hilgetag 2010). The reason being that
the topology of a network is the substrate upon which the dynamical processes
unfold and thus constrains and, to some extent, determines brain function (Arenas
et al. 2006; Zhou et al. 2006; Müller-Linow et al. 2008; Mišić & Sporns 2016;
Messé et al. 2018).
Thus, understanding the topological organization of brain networks becomes a
fundamental perspective to understanding brain function, both in healthy and
pathological conditions (Bassett & Sporns 2017; Heuvel & Sporns 2019).
Brain networks exhibit a number of typical connectivity patterns. Those connectiv-
ity patterns are ubiquitously found across species and they can often be captured
by network metrics (Sporns et al. 2004).
Generally speaking, the most prominent feature of brain networks is the non-
random organization of their connectivity, a fact that is observable at different
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spatial scales (Sporns 2011). That means, random graphs3, with nodes connecting
to each other with an independent uniform probability, are an inappropriate de-
scription of the topology of brain networks. At the same time, brain connectivity is
far from being a regular network, where each node is connected to a characteristic
number of other nodes around it. Brain networks sit somewhere in between these
two extremes, a fact that is also important in terms of the wiring economy of brain
connectivity, as explained in Fig. 1.5.

Figure 1.5: Non-random organization of brain networks. (Left) Regular connectivity
pattern with minimal wiring cost. This topology has poor global integration of infor-
mation. Such integrative processing would be maximized by a random topology (Right).
However, random topology comes at a high wiring cost due to long-distance connections.
Brain networks sit between these two extreme cases with clusters of connections between
spatially neighbouring nodes which tend to minimize wiring cost. But brain networks
also include high-cost components, such as long-distance connector hubs in different
modules and different anatomical regions. Adapted from (Bullmore & Sporns 2012).

This “regular-random”-axis of connectivity organization is only one of the
many possibilities to take into account. Revising in detail all the reported topolog-
ical features of brain networks is beyond the scope of this introduction. Instead,
I will focus here on what are believed to be the most fundamental aspects of the
topological organization of brain networks, which are also the most pertinent ones
in the context of the work carried out in this thesis.

1.4.1 Brain networks are modular

A modular organization refers to the existence of groups of nodes that are
more interconnected between them than with other nodes of the network. These

3Also known as Erdős–Rényi (ER) graph after the authors first characterizing this random
graph generative model (Erdős & Rényi 1959).
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groups are known as communities or modules. Such segregation of the connectivity
is a fundamental organizational principle found in real brain networks and it indeed
implies a number of interesting functional properties as well (Sporns & Betzel
2016).

Figure 1.6: Modular organization of brain networks. Left: Schematic representation of
the modular organization of brain networks. Modules consisting of brain regions with
many connections between them and sparser connectivity to the rest of the network.
Adapted from (Sporns & Betzel 2016). Right: Mouse connectivity matrix derived from
tract-tracing experiments. The connectivity matrix was reordered in order to facilitate
the visualization of modules. The blocks along the main diagonal show the modular
structure of this brain network. Adapted from (Bassett & Bullmore 2017).

Modularity was among the first topological features of complex networks to
be associated with a systematic impact on dynamical network processes. Random
walks are trapped in modules (Rosvall & Bergstrom 2008), the synchronization of
coupled oscillators over time maps out the modular organization of a graph (Are-
nas et al. 2006) and co-activation patterns of excitable dynamics tend to reflect
the graph’s modular organization (Zhou et al. 2006; Müller-Linow et al. 2008;
Messé et al. 2018).
Modularity in the brain is thought to be important for information processing, the
balance between segregation and integration as well as system evolvability in the
long temporal scale (Sporns & Betzel 2016). More concretely, the modular orga-
nization of brain networks forms the substrate of functional specialization, e.g.,
sensory systems (Hilgetag et al. 2000), contributes to the generation and main-
tenance of dynamical regimes, e.g. criticality (Wang & Zhou 2012), and supports
the development of executive functions (Baum et al. 2017). Moreover, it has been
demonstrated that modularity contributes to a number of other relevant network
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features, such as buffering effects of random fluctuations (Sporns & Betzel 2016)
and promoting metastability (Wildie & Shanahan 2012). In sum, modularity is
a key component of structural brain networks with important functional conse-
quences.

1.4.2 Brain networks have heterogeneous degree distribu-
tions

The degree distribution reflects how links are distributed amongst the nodes
of the network. In its simplest definition, the degree distribution is the count of
occurrences of each node degree 𝑘, typically aggregated into a histogram or a prob-
ability distribution 𝑃(𝑘). The global shape of this distribution allows us to infer
properties of the network.
Brain networks usually have heterogeneous degree distributions. Colloquially, this
implies that some few nodes in the network accumulate many links, while a vast
majority of nodes have fewer connections. Those highly connected nodes are of-
ten referred to as hubs4, which are a fundamental feature of brain networks, as
explained in more detail in the following section.

The relevance of heterogeneous degree distributions in brain networks com-
prises multiple aspects, as it constrains the dynamical processes that take place
on the network. More specifically, the ability of different nodes to receive and
send information in the network is intimately related to their importance in terms
of number of connections, thus, in turn affecting communication processes in the
brain (Avena-Koenigsberger et al. 2018). Also, some of these hubs in the brain,
together with the presence of modules, shape brain networks into a “small-world”
network organization. Concretely, hubs act as a counterpart to modules, integrat-
ing information across different systems (modules), thus aiding the multisensory
processing and integration across the network (Zamora-López et al. 2009). More-
over, the consequences of network perturbations depend heavily on the underlying

4This definition of a hub purely based on its degree is at the core of a metric called degree
centrality, which is a normalized form. Other definitions of “hubness” exist in the literature, but
here I will stick to the degree-based notion of hub.

10
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Figure 1.7: Typical heterogeneous degree distributions of brain networks. Left: Mouse
connectome’s degree distribution (blue) compared to standard graph generative models.
Adapted from (Oh et al. 2014). Right: Example of structural hubs of the adult human
brain. The bar chart shows the degree for each node (area). Nodes with degree one
standard deviation above the mean are identified as “hubs” (red). Adapted from (Oldham
& Fornito 2019).
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connectivity patterns (Albert et al. 2000). In consequence, having a heterogeneous
degree distribution determines a very different susceptibility and resilience of the
nodes of the network (and the network in general). For example, a brain lesion on
a more central node could affect the function of the network much more drastically
than a lesion on a less central region.

1.4.3 Modules and hubs: Primitives of brain connectivity

We have so far looked at only a few dimensions along which we can place
brain networks according to their topology, namely the random/regular, non-
modular/modular, homogeneous/heterogeneous degree distribution. But there are
other potential axes to be considered and we can rather think about network
properties as a multi-dimensional space of features, also known as topological mor-
phospace (Avena-Koenigsberger et al. 2015), where brain networks can be embed-
ded and be compared simultaneously with regard to several topological properties.
When we look at brain networks from this multi-dimensional perspective, we are
faced with another problem, with practical and theoretical implications: Network
metrics can often be “entangled.” That is, network metrics are often correlated or
show complex interdependencies, in some cases, even theoretically impossible to
tear apart (Bounova & Weck 2012).
In consequence, the contribution of a particular network property to an observed
effect can be really misleading, since the metric could simply be a confound fac-
tor, a trivial consequence of other metrics co-varying with it. For example, a
network that has modular structure will typically also show a high clustering level
(i.e. “cliquishness” of local neighborhoods), but the opposite is not necessarily true,
and highly clustered networks can have low modularity (Meunier et al. 2010). This
is also important from a conceptual standpoint, for the conclusions to be drawn
about the properties and processes of formation of brain networks can be sub-
stantially different if those network metrics interdependencies are (not) taken into
account. In more abstract terms, the problem is to tear apart essential or prim-
itive topological properties from the epiphenomenal ones. These byproducts are
also known as spandrels in evolutionary biology (Gould et al. 1979).

12
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This raises strong concerns about common approaches in network neuroscience,
where often several network metrics are simultaneously reported (e.g., comparing
experimental conditions) without taking into account circularities resulting from
how the metrics are related (Rubinov 2016). Therefore, the core question is: What
are the basic topological building blocks of brain networks? This is so far a rather
under-explored aspect in the literature, but there is evidence pointing to modules
and hubs as basic hallmarks of brain connectivity. That is, it is hypothesized that
networks having simultaneously modules and hubs as structural constraints would
be bound to induce other structural byproducts (Rubinov 2016). In simpler words,
complex topological features, such as rich club organization5, can be byproducts
(“spandrels”) of modules and hubs. From a functional point of view, this hypothe-
sis is also related to the fact that modules and hubs represent the canonical forms
of segregation and integration of information, respectively. That is, modules tend
to represent systems (e.g., sensory), while hubs are association areas integrating
systems (Sporns 2013).

Figure 1.8: Modules and hubs, segregation and integration. (a) Schematic diagram
showing a set of nodes and edges arranged into a network comprised four network com-
munities (orange) interconnected by highly connected and highly central network hubs
(blue). Since these hubs are at the same time very interconnected between themselves,
they are said to form a “rich club.” (b) Functional segregation indicated by strong
functional coupling within communities (red) with little or no functional coupling across
communities. (c) Functional integration indicated by globally strong functional coupling,
including strong information flow across network hubs. Adapted from (Sporns 2013).

In sum, modules and hubs are in a way essential building blocks, primitive
5A network is said to have a rich club organization if the most influencial nodes are also

more densely connected amongst them than expected by chance, thus forming a “rich club.” See
Methods for details.
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components of brain connectivity.

1.4.4 Brain networks are plastic

A distinctive property of brain networks is their dynamical nature: Links of
the network can change in time, where new connections may appear and initially
established ones may be removed, so modifying network connectivity (Abbott &
Nelson 2000). In other words, brain networks are plastic, which adds a whole new
layer of complexity to the system.
In particular, the two most prominent factors contributing to such dynamical na-
ture are ontogeny and neuronal plasticity. These factors also interact with each
other in complex ways and it is often difficult to determine their individual contri-
butions to the global connectivity pattern.
Nevertheless, ontogeny and plasticity can sometimes act at rather different spatio-
temporal scales. For example, activity-dependant synaptic plasticity might play
an important role in fine tuning the connectivity within brain regions, but less
so in determining if a given brain area connects to its contra-lateral counterpart,
which is more likely determined by developmental processes.
As mentioned before, the topology of a network shapes the dynamical processes un-
folding on that network, i.e. the neural dynamics. If we now also consider that such
activity patterns may at the same time cause topological changes, e.g., through
Hebbian plasticity, a loop of interactions emerges, in which we have intertwined
dynamics on networks and dynamics of networks.

This interplay between plasticity mechanisms and topological evolution is
one of the fundamental aspects of the work presented in this thesis. In particular,
the first part of it, dedicated to understand the emergence of brain connectivity
patterns.

1.5 Emergence of brain connectivity patterns
The first core question addressed in this thesis is: How do brain connec-

tivity patterns emerge? This is challenging because of the diversity of factors and
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Figure 1.9: Dynamics on networks and dynamics of networks. Network dynamics and
topological evolution are tightly related. This schematic diagram illustrates the interplay
between neural dynamics and the temporal evolution of the connection topology. More
generally, this constitutes an example of an adaptive co-evolutionary network. Figure
from (Sporns 2010).

mechanisms that play a role in shaping brain networks.
To begin with, developmental processes are important determinants of the global
architecture of brain networks. Complex patterns of cell division, migration and dif-
ferentiation, constrained by the spatial embedding of the brain, result in a global
organization of brain networks that is more or less typical for a given species
(Goulas et al. 2019). So which general principles govern those developmental pat-
terns?
Early ideas about brain wiring economy have been traditionally very influential
(Cajal & others 1995; Bullmore & Sporns 2012; Rubinov et al. 2015). The core
rationale behind them boils down to the fact that the interplay between spatial
embedding and metabolic cost of generating and maintaining connections in the
brain define a notion of wiring cost. The theoretical argument is that brain con-
nectivity patterns that are more optimal in term of such cost would represent an
evolutionary advantage.
But there are two crucial points to be explicitly pointed out: First, wiring economy
principles and developmental processes only partially explain the connectivity ex-
perimental data observed in adult brains. Early analyses of connectivity datasets
have proven the insufficiency of wiring cost to explain connectivity data (Kaiser
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& Hilgetag 2006) and evidence from more recent work with state of the art, high
resolution data also supports those ideas (Rubinov 2016). So this means that there
is a need for considering other contributing factors beyond wiring cost that shape
the topology of brain networks. Following that, recent studies have also included
network topology descriptors (e.g., homophily6) in these statistical models of brain
connectivity (Betzel et al. 2016). Although that is a step forward in summarizing
brain connectivity patterns, there is still one aspect missing, which brings us to
the second point: Wiring cost and homophily ideas are not mechanistic explana-
tions but statistical descriptions of the observed data (Betzel et al. 2016). That is,
they do not state biologically plausible causal events that guide the formation of
the observed connectivity patterns in a given individual brain. Thus, mechanistic
models of brain connectivity formation are also a fundamental missing piece of the
puzzle explaining the emergence of brain networks.
Beyond the above mentioned statistical descriptions of brain connectivity, com-
putational modeling studies of the developing brain have shown that a few as-
sumptions about the spatio-temporal unfolding of developmental processes (e.g.,
cell migration waves) can promote the emergence of some topological properties of
brain networks (Kaiser & Hilgetag 2007; Bauer & Kaiser 2017; Goulas et al. 2019).
Although these modeling studies do not completely explain the experimental data,
they are important in showing how some scaffold properties, a skeleton of network
features arise, which could later be amplified or refined by activity-dependant plas-
ticity.
Beyond developmental processes, another natural way for brain networks to change
their connectivity pattern is neuronal plasticity, which indeed takes place across
the whole lifetime of an individuum, supporting basic functions such as learning
and memory. For example, neuronal plasticity enables the formation of engrams,
that is, ensembles of neurons that constitute the cellular basis of and support the
formation and consolidation of memories in the brain (Semon 1921). In general, a
robust corpus of evidence situates these plastic changes at the core of current the-

6Homophily principle: Experimental observation that two brain regions with similar connec-
tivity profiles, i.e. they strongly connect to many common other brain regions, are likely to be
themselves strongly connected.
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ories of learning and memory in general (Abbott & Nelson 2000). Given the well
accepted role of synaptic plasticity in brain development and activity-dependent
adaptation, some modeling studies have focused on changes driven by local plas-
ticity mechanisms. A considerable proportion of this work aims at explaining
empirically observed distributions of physiological parameters at the cellular scale,
such as synaptic weights (Effenberger et al. 2015), and only a few studies have
paid attention to topological aspects, such as the proportion of local motifs (Stone
& Tesche 2013). Some other modeling studies showed emergence of modular net-
work structure and attempted to provide an underlying mechanism based on the
reinforcement of paths between highly correlated nodes (Jarman et al. 2017). Yet,
the problem of a topological gradient, along which network changes should occur
during the rewiring process in order to promote the emergence of network proper-
ties, was not explicitly investigated. I will return to this point in more detail in
the following chapters as I explain our studies in depth.
In sum, current explanations of the formation of brain connectivity patterns still
lack mechanistic models, in particular for connectivity properties determined by
processes other than embryological development. Neuronal plasticity plays a cru-
cial role supporting brain function and from a networks perspective, we can expect
these plastic changes to have multiple effects on the topology of brain networks,
such as generating new topological features, refining or amplifying pre-existent
ones, which is tightly related to our research goals of the studies presented here.

1.6 Brain network topology and computation
I have so far emphasized how several real brain topological properties have

dynamical consequences, sometimes with potential advantages at the functional
level, e.g., supporting segregation and integration of information (Hilgetag et al.
2000; Sporns et al. 2000). Nevertheless, it is worth noticing the fact that some
topological properties are beneficial in abstract theoretical terms, but it is not very
informative about how networks with those properties would perform on solving
concrete tasks. That is, the relationship between computation ability on concrete
tasks and the connectivity patterns of brain is largely unknown and that is a cru-

17



Introduction Brain network topology and computation

cial point, as brains are supposed to solve tasks in the real world.
This is also relevant for Artificial Neural Networks (ANNs), since many recent im-
provements of ANNs rely on novel network architectures, which play a fundamental
role in task performance. In other words, such connectivity patterns encode useful
structure about the outer world (i.e. the data) and/or they let the networks learn
better (i.e. find patterns in the data). Nevertheless, ANNs exhibit architectures
that are not grounded on empirical insights from real brains network topology. For
example, ANNs do not follow ubiquitous organization principles of BNNs, such
as their modular structure, and BNNs are also much sparser than ANNs (Sporns
2011; Hassabis et al. 2017).
Given that Biological Neural Networks (BNNs) present complex, non-random con-
nectivity patterns, it is hypothesized that this “built-in” structure could be one key
factor supporting their computation capabilities. In consequence, a focus on BNNs’
topology has started to gain traction in recent ANNs research. For instance, build-
ing feedforward networks based on graph generative models, e.g., Watts-Strogatz
and Barabási–Albert models, showing competitive performances compared to op-
timized state-of-the-art architectures (Xie et al. 2019). In a complementary vein,
feedforward networks may spontaneously form non-random topologies during train-
ing (Filan et al. 2020).
In sum, current evidence supports the notion that non-random topologies can lead
to desired performance of ANNs. However, studies thus far have only focused on
network topology models that have almost no similarities (or only abstract ones)
to BNNs unravelled by experimental connectomics.
Hence, it is to date unknown if and to what extent the actual, empirically dis-
cerned topology of BNNs can lead to beneficial properties of ANNs, such as better
performance or shorter training, which leads to the second core question addressed
in this thesis: Does real brain connectivity have an effect on the performance of
brain networks on concrete tasks?
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1.7 Research goals
In the first part of this thesis, I will present a series of studies addressing the

general question: How do topological properties of brain networks emerge? More
precisely: Which plasticity mechanisms could contribute to the emer-
gence of characteristic topological features of brain connectivity?
As already explained in this introduction, modules and heterogeneous degree
distributions are believed to be the most fundamental hallmark topological prop-
erties of brain networks. Thus, our work focused on trying to explain the emergence
of those two specific topological properties.
The second part of the work here presented is devoted to the question:
Which effect does the connectivity of brain networks have on their per-
formance on concrete tasks? We addressed that by means of a hybrid approach
that combined Biological Neural Networks (BNNs) and Artificial Neural Networks
(ANNs), where we tested the performance of ANNs built from connectomes of hu-
man and non-human primate species, in an effort to bridge the gap between BNNs
and ANNs.
Having a general overview about the background and goals, I will address on each
chapter the specifics and the most relevant details of our studies and related pre-
vious work.
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Chapter 2

Methods

2.1 Networks and Metrics
Networks were represented by its adjacency matrix 𝐴, where the element

𝑎𝑖𝑗 = 1 if there is a link between node 𝑖 and 𝑗, otherwise 𝑎𝑖𝑗 = 0. In the case of
a weighted network, we represented the connectivity with a matrix 𝑊 , where 𝑤𝑖𝑗
is a continuous value representing the strength (weight) of the connection between
node 𝑖 and 𝑗.
The most basic properties of a network are the number of nodes 𝑁 , and the total
number of links 𝐿.
The number of links of a single node 𝑖 is called the node degree and denoted as 𝑘𝑖.
The mean degree 𝜆 of a network is the average value of 𝑘 across all nodes:

𝜆 = 1
𝑁

𝑁
∑
𝑖=1

𝑘𝑖

The density 𝑑 of a network is the fraction of links present out of all the potentially
existent, thus varies from 0 to 1, or 0% to 100%, if expressed as a percentage.
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2.1.1 Degree distribution

The degree distribution 𝑃(𝑘) is defined as:

𝑃(𝑘) = 𝑁𝑘
𝑁

where 𝑁𝑘 is the number of nodes having degree 𝑘 and 𝑁 is the network size as
above defined. That is the normalized count of occurrences of each degree 𝑘 and
it reflects how links are distributed amongst nodes in the network. This count is
typically aggregated as a histogram or as the probability function that describe the
occurrences of all the present node degrees in the network in given bins/intervals.

2.1.2 Modularity

The intuition of a modular organization is the idea that certain groups of
nodes (called modules) have more links to the nodes within the group than to the
rest of the network.1 To quantify this property, we will consider the so called 𝑄
value (Newman 2006). If we divide a network into disjoint groups of nodes, the 𝑄
value quantifies “how good” that partition is. The higher the 𝑄 value of a partition,
the better segregated from each other are the modules.
More formally, the 𝑄 value is defined as a value in the range [−1/2, 1] that measures
the density of links inside communities compared to links between communities.
Modularity is defined as:

𝑄 = 1
2𝑚 ∑

𝑖𝑗
[𝐴𝑖𝑗 − 𝑘𝑖𝑘𝑗

2𝑚 ]𝛿(𝑐𝑖, 𝑐𝑗)

where:
- 𝐴𝑖𝑗 represents the edge weight between nodes 𝑖 and 𝑗; - 𝑘𝑖 and 𝑘𝑗 are the sum of
the weights of the edges attached to nodes 𝑖 and 𝑗, respectively; - 𝑚 is the sum of
all of the edge weights in the graph; - 𝑐𝑖 and 𝑐𝑗 are the communities of the nodes;
and - 𝛿 is the Kronecker delta function: 𝛿(𝑥, 𝑦) = 1 if 𝑥 = 𝑦, 0 otherwise.

1To be more precise, this is the assortative definition of modularity, which is not the only one,
but certainly the one used in this thesis.
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2.1.3 Module detection

Algorithm that results in the assignment of nodes to mutually exclusive
groups, i.e., modules. The outcome may be deterministic or stochastic, depending
on the specific algorithm. We used the Louvain method to extract communities
(Blondel et al. 2008), an efficient algorithm based on the modularity optimization.
Once each node is assigned to a module, we call that the module partition, which
can be represented by an affiliation vector, where the entry value at the position 𝑖
represents the label of the community assignment of the node 𝑖.

2.1.4 Homophily

Homophily refers here to the experimental observation that the more similar
the connectivity profiles of two neurons/areas, the stronger the connection between
them (on average) (Goulas et al. 2015).

2.1.5 Average path length

It is a measure of how well connected is the network, on average. The
shortest path length between two nodes 𝑖 and 𝑗 is the minimum number of hops
that are necessary to get from 𝑖 to 𝑗 traversing the links of the network. Averaging
that value for all pairs of nodes renders the average path length. Formally:
Consider an unweighted directed graph 𝐺 with the set of vertices 𝑉 . Let 𝑑(𝑣1, 𝑣2),
where 𝑣1, 𝑣2 ∈ 𝑉 denote the shortest distance between 𝑣1 and 𝑣2. Assume that
𝑑(𝑣1, 𝑣2) = 0 if 𝑣2 cannot be reached from 𝑣1. Then, the average path length 𝑙𝐺
is:

𝑙𝐺 = 1
𝑁 ⋅ (𝑁 − 1) ⋅ ∑

𝑖≠𝑗
𝑑(𝑣𝑖, 𝑣𝑗)

where 𝑁 is the number of vertices in 𝐺.
Low values of the average path length speak for a network whose connectivity is
such that nodes are, on average, easy to reach (i.e., few hops are necessary to
travel between two arbitrary nodes). Brain networks tend to have significantly low
average path lengths (compared to null models) and that is believed to be crutial
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since this implies the possibility that the information flows very efficiently across
the brain.

2.1.6 Clustering

For a given node 𝑖, the clustering coefficient is the proportion of neighbors
of 𝑖 that are also connected to each other. By averaging the clustering coefficient
across all nodes we obtain the mean clustering coefficient, which in reflects the
general tendency to form local clusters in the network.
Clustering expresses the “cliquishness” of local neighborhoods, or the extent to
which connected nodes share common neighbors. In simple words, it responds to
the question “how many of my friends are also themselves friends?” The average
clustering coefficient across all nodes reflects the general tendency to form local
clusters in the network. Brain networks typically exhibit high clustering, partly as
a consequence of the spatial embedding (neurons/areas closer to each other tend
to be more strongly connected) and, more generally, related to a property known
as homophily.

2.1.7 Small-world index

The small world property describes a combination of average path length
and clustering, such that a high small-world index (greater than 1) indicates that
the network is simultaneously highly clustered and has a low average path length
(compared to a regular graph of same number of nodes and links).
In its classical formulation, the small-worldness of a network can quantified by a
small-world index 𝑆, calculated by comparing clustering and path length of a given
network to an equivalent random network with same degree on average (Humphries
2008):

𝑆 = 𝐶/𝐶𝑟
𝐿/𝐿𝑟

if 𝑆 > 1 (𝐶 ≫ 𝐶𝑟 and 𝐿 ≈ 𝐿𝑟), the network is considered small-world.
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2.1.8 Rich club organization

This property describes the tendency of some high degree nodes to be (sta-
tistically speaking) prefferentially connected to also high degree nodes (Shi Zhou
& Mondragon 2004). Thus those rich nodes with many links form a tight sub-
network (club) that can be highly influential and have more direct access to each
other. For example, there is evidence pointing to the existence of such rich club
organization in the mammalian brain. It is hypothetized that this rich club areas
have an integrative function across brain systems.

2.1.9 Topological Overlap (TO)

TO represents the neighborhoods’ similarity of a pair of nodes by count-
ing their number of common neighbors (Ravasz et al. 2002). Considering the
connectivity represented as the adjacency matrix 𝐴:

𝑡𝑜𝑖𝑗 = ∑𝑘 𝑎𝑖𝑘𝑎𝑘𝑗 + 𝑎𝑖𝑗
min(∑𝑘 𝑎𝑖𝑘, ∑𝑘 𝑎𝑘𝑗) + 1 − 𝑎𝑖𝑗

The origin of the TO concept stems from applications of set theory to network
analysis, which became established as a relevant approach for quantifying the simi-
larity of nodes in terms of their common network neighborhoods (Bass et al. 2013).
TO is closely related to the matching index an adaptation of the Jaccard index to
neighborhoods of nodes in a graph (Hilgetag 1999; Hilgetag et al. 2000; Hilgetag
et al. 2002; Sporns 2003). Higher-order variants of this quantity have also been
discussed in the literature (Li & Horvath 2006).

2.1.10 Network analysis tools

Synthetic graph realizations, basic graph properties (clustering, path length,
small-world), community detection, matrix reordering and graph layouts were
performed using the Python packages: Brain Connectivity Toolbox (Rubinov &
Sporns 2010) (Python version 0.5.0; github.com/aestrivex/bctpy), NetworkX
(Hagberg et al. 2008), igraph (Csardi et al. 2006) and Netwulf (Aslak & Maier
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2019).

2.2 Excitable SER model
The SER model is a three-state cellular automaton model of excitable dy-

namics, where nodes can be in one of three possible states: Susceptible, Excited
or Refractory, thus SER. In spite of its simplicity, the model has proven to be
useful for understanding basic mechanisms of activity propagation as well as the
influence of network topology on functional correlations.
The SER model operates in discrete time and employs the following synchronous
update rules, a node in the state:

• S → E, if at least one neighbour is excited; or with probability 𝑓 (spontaneous
activation);

• E → R;
• R → S, with probability 𝑝 (recovery).

In the deterministic SER scenario, 𝑓 = 0 and 𝑝 = 1.
In the stochastic SER scenario, 𝑓 > 0 and/or 𝑝 < 1.
The details about the initialization and time windows of the activity will be
specified for each specific case.

2.2.1 Co-activations functional connectivity (FC)

To analyse the pattern of excitations in the SER model, we computed the
number of joint excitations for all possible pairs of nodes during activity time
window. The outcome matrix is the so-called co-activation matrix, a representation
of the functional connectivity FC of the nodes:

𝑐𝑖𝑗 = ∑
𝑡

𝟙𝐸(𝑥𝑡
𝑖)𝟙𝐸(𝑥𝑡

𝑗),

where 𝑥𝑡
𝑖 ∈ {𝑆, 𝐸, 𝑅} is the state of node 𝑖 at time 𝑡, and 𝟙𝐸 the indicator function
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of state E.
FC was then normalized to scale values between 0 and 1:

𝑓𝑐𝑖𝑗 = 𝑐𝑖𝑗
min(𝑐𝑖𝑖, 𝑐𝑗𝑗)

2.2.2 Sequential activation

We also define for the SER model the sequential activation matrix S. That
means, each entry 𝑠𝑖𝑗 represents the count of number of times that the activation
of node 𝑖 preceded the activation of the node 𝑗 during an activity time window. So
we can think of it as a delayed co-activation as defined above; formally:

𝑠𝑖𝑗 = ∑
𝑡

𝟙𝐸(𝑥𝑡
𝑖)𝟙𝐸(𝑥𝑡+1

𝑗 ),

where 𝑥𝑡
𝑖 ∈ {𝑆, 𝐸, 𝑅} is the state of node 𝑖 at time 𝑡, and 𝟙𝐸 the indicator function

of state E.

2.3 Minimal plasticity model with deterministic
excitable dynamics

2.3.1 Networks

Simulations were performed using synthetic directed random graphs with
100 nodes and a density varying between 20% and 60%, and scale-free and modular
graphs of ~20% density.

2.3.2 Network activity

We used the SER excitable model to model dynamics on the network (see
Methods). For each network type (random, modular or scale-free), we simulated
15 runs of 12500 time steps, comprising 500 rewiring steps (see below). For each
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run, at the very beginning of the simulation (before the first rewiring step), the
initial conditions were generated with 1% of randomly chosen active nodes and
the remaining nodes assigned either to refractory (R) or susceptible (S) state with
equal probability.

2.3.3 Plasticity rule

The plasticity rule is Hebbian in the sense that is based on activity cor-
relations (more strictly, co-activations) of the nodes, which in turn influence the
probability of maintaining connections between nodes connected.
The network was allowed to evolve throughout the simulation by applying after
every 25 time steps the following rewiring rule:

1. Functional Connectivity (FC) matrix was computed (as explaind in Methods
section);

2. FC was transformed to a retention probability (𝑃 ) by the following rule:

𝑝𝑖𝑗 = 𝑃𝑚𝑖𝑛 + 𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛
𝐹𝐶𝑚𝑎𝑥 − 𝐹𝐶𝑚𝑖𝑛

× (𝑓𝑐𝑖𝑗 − 𝐹𝐶𝑚𝑖𝑛)

where 𝑃𝑚𝑖𝑛 = 0.8 and 𝑃𝑚𝑎𝑥 = 1 in all cases, unless differently stated;

3. Links were maintained (or not) according to this retention probability;
4. The same number of pruned links was reintroduced into the network without

delay in a randomly uniform fashion, conserving the original density.

Step (2) assigns high retention probability to pairs of nodes with high co-
activation values. Thus, the rule generally promotes the pruning of links between
nodes with weaker co-activation values, although the random reinsertion of pruned
links (step 4) may reintroduce some links just pruned, whose nodes have low co-
activation values. In this way, the plasticity rule aims to capture the possible
binary modification (pruning) of weaker synapses as a result of neuronal plasticity,
beyond the potential strength modulation of synaptic weights, in order to study
how such local topological changes may affect the global network organisation.
For each run, a new graph was instantiated and new initial conditions were set, the
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plasticity rule was applied in total 500 times (rewiring steps), every 25 time steps of
dynamic simulation, resulting in total to simulations lasting 12500 (25x500) time
steps. Statistical assessment was performed by exploring averages across 15 runs.

2.3.4 Statistical assessments

To investigate the effect of the plasticity rule on network topology, modu-
larity and degree distribution of the networks were computed.
The relationship between network structure and activity was explored by the
marginal (Pearson) correlation coefficient between the structural connectivity ma-
trix (SC) and the co-activation matrix (or functional connectivity; FC). These
measures were computed after each rewiring step of the network simulation (see
below).
Additionally, the consecutive similarity of the structural connectivity of networks
along the rewiring process was investigated. The coefficient of correlation was
used to quantify the overall similarity of connectivity, and mutual information to
quantify the similarity between the modular partitions of SC matrices.

2.4 Topological Reinforcement plasticity model

2.4.1 Networks

We considered synthetic undirected networks without self-connections of
size 𝑁 = 100 nodes and average connectivity 𝜆 = 10 (equivalently, a density of
0.1). Initial networks were generated according to the classical Erdős-Rényi model
(Erdős & Rényi 1959). We explored the robustness of the plasticity rule across
various network realizations and multiple runs (using the same initial network).
We generated 100 synthetic random initial graphs and performed 500 runs for
each of them. In order to study the scaling properties of our model, we also
evaluated graphs with different densities (𝜆, average number of links per node,
ranging between 6 and 20 by step of 2) and size (𝑁 , varying between 60 and 500
by step of 40).
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2.4.2 Topological reinforcement

Topological reinforcement was based on the topological overlap measure
(see Methods). TO represents the neighborhoods’ similarity of a pair of nodes by
counting their number of common neighbors (Ravasz et al. 2002).
At each rewiring step, the rule connects a randomly selected node that is neither
disconnected nor fully connected with a non-neighbor with the highest TO, while
pruning another link with uniform probability, hence preserving graph density. For
computational efficiency, the rewiring was applied by inserting simultaneously one
link on 𝑁

2 random different nodes at each step, and pruning the same number of
links at random, so that 2𝑁

2 = 𝑁 links were reallocated at each rewiring step, with
statistically equivalent results as when only two links (one insertion, one pruning)
per step were modified. In order to compare the results across different graph
sizes and densities, we computed the length of each run, 𝑟, by fixing the average
number of rewiring per link, 𝐾, so that 𝑟 = 𝜆𝑁𝐾

2𝑁/2 = 𝜆𝐾. For all the presented
results 𝐾 = 3, which ensures that the networks remain connected (see Fig. 7.3 for
details).

2.4.3 Network activity

We used a three-state cellular automaton model of excitable dynamics, the
SER model (see Methods).
In the deterministic SER scenario, for each network and initial condition setting,
the activity time windows consisted of 5000 runs of 30 time steps each and FC was
averaged over runs. The initial conditions were randomly generated, covering the
full space of possible proportions of states. In the stochastic SER scenario, for each
parameter setting (𝑓, 𝑝), the activity time window consisted of one run of 50000
time steps. The initial conditions were randomly generated with a proportion of
0.1 nodes excited, while the remaining nodes were equipartitioned into susceptible
and refractory states. To analyse the pattern of excitations in the SER model
the Functional Connectivity (FC) matrix as computed as explained above in the
Methods section.
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2.4.4 Implementation with Hebbian plasticity rule

When transposing the topological reinforcement into a biological context,
using a plausible model of brain dynamics, it turns out that the rule corresponds
to the well known Hebbian rule, where we substituted FC for TO. In other words,
the rewiring events occurred with the exact same algorithm, but based on the FC
derived from the activity during the given time window. So we used the SER
model for activity simulation during a time window after which FC was derived
and the rewiring was applied: a random node was selected and connected to a non-
neighbor node with maximum FC, while a link was selected randomly with uniform
probability and pruned. Once rewired, we iterated through the same steps until the
end of the simulation. As for the topological reinforcement and for computational
efficiency, the rewiring was applied simultaneously on 𝑁

2 different nodes at each
step. In order to keep the final networks comparable, the total number of rewiring
steps was the same for both plasticity modalities, as defined above. According to
the SER scenario, stochastic or deterministic, we evaluated the model for different
parameter constellations or initial conditions, respectively. For one initial graph,
we studied each possible combination of parameter constellation/initial condition
by performing 150 simulation runs and the final graph measures were averaged
across runs.

2.4.5 Module agreement and “proto-modules”

From a given initial network, multiple simulation runs (500) were performed
and the community detection algorithm was applied on each final graph to find
a partition of the nodes into communities. Then, an agreement matrix 𝑃 was
computed across all final partitions, where 𝑝𝑖𝑗 quantifies the frequency with which
nodes 𝑖 and 𝑗 belonged to the same community across partitions. Finally, the
community detection algorithm was applied 100 times on 𝑃 , yielding a representa-
tive set of final partitions of the nodes into non-overlapping communities given an
initial graph (Fig. 3.9). In order to probe the structure of each initial graph and
find potential ‘proto-modules,’ we applied the community detection on the initial
graph. Due to the weak signal of random graphs, the stochasticity and associated
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degeneracy of classical community detection algorithms, a consensus clustering
was employed to generate stable solutions. For each random initial graph, the
community detection algorithm was applied 500 times, then a agreement matrix
was computed, named 𝑃𝑖𝑛𝑖𝑡, and finally the community detection algorithm was
applied 100 times on this agreement matrix yielding a representative set of (stable)
partitions of the initial graph (Fig. 3.9).
Similarity between networks and agreements was assessed by means of the Pear-
son correlation between their connectivity matrices. Overlap between partitions
was probed based on the normalized mutual information between the communities
(Meilă 2007).

2.4.6 Statistical assessments

In order to assess the significance of the results, null network models were
generated. When comparing networks in terms of similarity (by Pearson correla-
tion), a null model was generated by randomly rewiring a given graph (once per
link), while preserving the degree distribution (Maslov & Sneppen 2002). Two
null models where used when comparing networks in terms of partition overlap.
For comparison of individual runs (initial vs. final structures or initial vs. final
agreements), we simply used a rewired initial graph as explained above instead of
the actual one that was used as initial condition for the run. As null model for
the comparison of agreement matrices, a null agreement 𝑃𝑛𝑢𝑙𝑙 was constructed by
first shuffling the individual partitions (i.e., conserving the number of modules and
their sizes, but randomly altering the nodes affiliation) and then computing the
agreement across them. Thus, such a null model generates the expected distribu-
tion of agreement values that would occur purely by chance for a given number of
nodes and modules of given sizes.
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2.5 Sequential Reinforcement plasticity model

2.5.1 Networks

We considered synthetic undirected networks without self-connections of
size 𝑁 = 1000 nodes and average connectivity 𝜆 = 10. Initial networks were
generated according to the classical Erdős-Rényi model (Erdős & Rényi 1959).
We explored the robustness of the plasticity rule across various network realizations
and multiple runs (using the same initial network).

2.5.2 Network activity

We used a three-state cellular automaton model of excitable dynamics, the
SER model in its stochastic formulation, with parameters 𝑓 = 0.005, 𝑝 = 0.3 (see
Methods). The activity time window consisted of one run of 5000 time steps. The
initial conditions were randomly generated with a proportion of 0.1 nodes excited,
while the remaining nodes were equipartitioned into susceptible and refractory
states.

2.5.3 Sequential Reinforcement

The Sequential Reinforcement rule was based on the sequential activation
of nodes as defined for the SER model (see Methods). At each rewiring step,
first the SER model activity was simulated during a time window after which the
sequential activation was computed and normalized to the range [.1, 1]. Then the
rewiring was applied: a random node (not yet fully connected) was selected and
connected to a non-neighbor node with maximum sequential activation, while a
link was selected randomly with uniform probability and pruned, hence preserving
graph density. For computational efficiency, the rewiring was applied by inserting
simultaneously one link on 𝑁

10 random different nodes at each step, and pruning
the same number of links at random, so that 𝑁

10 links were reallocated at each
rewiring step, with statistically equivalent results as when only one link per step
was modified.
Each simulation run consisted of 500 rewiring steps.
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For visualization purposes, the results presented in the main text correspond to
sub-sampled simulation runs, where every fifth step is displayed (although the
rewiring occurred at every step as explained above).

2.5.4 Statistical assessments

The skewness of the degree distribution was evaluated with the Fisher-
Pearson coefficient. For normally distributed data, the skewness is about zero.
The rank correlation between the sequential activation and the degree of the non-
neighbors of a node was evaluated with the Spearman’s correlation coefficient.
The similarity between degree distributions was computed by means of the Pear-
son’s correlation coefficient

2.6 Bio Echo State Networks

2.6.1 Echo State Networks (ESN)

Echo State Networks (ESNs) are one kind of recurrent neural networks
(RNNs) belonging to the broader family of reservoir computing models, typically
used to process temporal data (Lukoševičius & Jaeger 2009). The ESN model
consists of an input, a reservoir and an output layer. The input layer feeds the
input(s) signal(s) into a recurrent neural network with fixed weights, i.e., the reser-
voir. The function of the reservoir is to non-linearly map the input signal onto
a higher dimensional space by means of the internal states of the reservoir. For-
mally, the input vector x(𝑡) ∈ ℝ𝑁𝑥 is fed into the reservoir through an input
matrix 𝑊𝑖𝑛 ∈ ℝ𝑁𝑟×𝑁𝑥 , where 𝑁𝑟 and 𝑁𝑥 indicate the number of reservoir and
input neurons, respectively. Optionally, the input can be scaled by a factor 𝜖 ∈ ℝ
(input scaling) before been fed into the network. The discrete dynamics of the
leaky neurons in the reservoir are represented by the state vector r(𝑡) ∈ ℝ𝑁𝑟 and
governed by the following equations:

r′(𝑡) = 𝑓(𝑊𝑖𝑛x(𝑡) + 𝑊r(𝑡 − 1) + b)
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r(𝑡) = 𝛼r′(𝑡) + (1 − 𝛼)𝑊r(𝑡 − 1)

Where 𝑊 ∈ ℝ𝑁𝑟×𝑁𝑟 is the connectivity matrix between reservoir neurons, b ∈ ℝ𝑁𝑟

is the bias vector, 𝑓 the nonlinear activation function.
For all the presented results 𝑓 = 𝑡𝑎𝑛ℎ, the hyperbolic tangent function which
bounds the values of r to the interval [−1, 1]. With 𝛼 = 1, there is no leakage,
which we found to perform better so we fixed them for all presented results. Thus,
the equation can be re-written as follows:

r(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑛x(𝑡)𝜖 + 𝑊r(𝑡 − 1) + b)

The output readout vector y(𝑡) ∈ ℝ𝑁𝑦 is obtained as follows:

y(𝑡) = 𝑔(𝑊𝑜𝑢𝑡[x(𝑡); r(𝑡)])

Where 𝑔 is the output activation function and [.;.] indicates the vertical vector
concatenation and 𝑊𝑜𝑢𝑡 ∈ ℝ𝑁𝑦×(𝑁𝑥+𝑁𝑟) is the readout weights matrix. For all
results presented 𝑔 was either rectified linear unit (𝑅𝑒𝐿𝑈) or the identity function.
Training the model means finding the weights of 𝑊𝑜𝑢𝑡. Linear regression was used
to solve 𝑊𝑜𝑢𝑡 = 𝑍+𝑌 , where 𝑍+ is the pseudoinverse of 𝑍 = [x(𝑡); r(𝑡)], i.e., the
vertically concatenated inputs and reservoir states for all time steps.
We initialized the incoming weights in 𝑊𝑖𝑛 with random uniformly distributed
values between [−1, 1]. Further considerations about weights initialization as well
as sparsity of the reservoir are detailed in the section . The activity of the reservoir
neurons is initialized with r(𝑡) = 0. That produces an initial transient of spurious
activity which has nothing to do with the inputs and is therefore useless for learning
the relationship to the outputs. We discard that initial transient of 100 time steps
in all cases, both for training and for testing.
All presented results with ESNs training where obtained using the Python package
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echoes, publicly available (Damicelli 2019).

2.6.2 ESN hyperparameters tuning

The typically most influential hyperparameters in ESNs are reservoir size
𝑁𝑟, spectral radius of the reservoir 𝜌, input scaling factor 𝜖 and the leakage
rate 𝛼 (Lukoševičius 2012). In our scheme, the reservoir connectivity 𝑊 is de-
termined by the real connectome, thus determining a fixed 𝑁𝑟. So the hyper-
parameters explored where: spectral radius of the reservoir connectivity matrix
𝜌 = {0.91, 0.93, ..., 0.99}, input scaling 𝜖 = {10−9, 10−8, ..., 100}, leakage rate
𝛼 = {0.6, 0.8, 1} and bias 𝑏 = {0, 1}. A train/validation/test split of the data
was performed. For each hyperparameters constellation, the model was trained on
the train set and based on the validation score we chose and for the sake of compar-
ison between different conditions, we fixed a common, not necessarily optimal but
generally well-performing, set of hyper-parameters: spectral radius 𝜌 = 0.99, input
scaling 𝜖 = 10−5, leakage rate 𝛼 = 1, bias 𝑏 = 1. Since the output values Memory
Sequence Task are bounded to be greater than 0, we used ReLU as activation out
function. Given that such boundary does not exist for the outputs of the Memory
Capacity Task, we simply used the Identity as activation out function.
The data for train/validation was split as follows:
Sequence Recall Task: 800 trials for training and 200 for test for each hyperparam-
eters/task difficulty/reservoir generation constellation.
Memory Capacity Task: 4000 time steps for training and 1000 for test for each
hyperparameters/task difficulty/reservoir generation constellation (see Supporting
Information). For each constellation, we tested 10 independent runs with newly
instantiated networks.
After fixing the best hyperparameters, newly instantiated networks were generated
and evaluated on the test set not yet seen by any model. The presented results in
the main text are the test performances.
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2.6.3 Mapping and upscaling connectomes with bio2art
We refer to a connectome as the map of all the connections obtained from a

single brain (Sporns et al. 2005). We used the following publicly available datasets:
Macaque monkey (Markov et al. 2012), Marmoset monkey (Majka et al. 2016)
and Human (Betzel & Bassett 2018).
For the sake of clarity, let us disect the connectivity into two components: topol-
ogy and weights. The topology refers to the wiring diagram (i.e., who connects
to whom), regardless of the strength of the connection (assuming non-binary con-
nectivity). So if we think of the connectivity in terms of its representations as
a connectivity matrix, the topology refers here to the binary mask that indicates
which positions of the matrix have values different from zero. The weights describe
the precise strength of those connections between neurons. This differentiation
is not necessarily completely consistent with common uses in the literature, but
serves the purpose of explaining the work presented here. As our goal is to evalu-
ate the role of the topology of real brains, i.e., the mentioned wiring diagram. We
propose a scheme to map real connectomes onto reservoirs of ESNs, with topol-
ogy corresponding to real brains, but weights drawn from a uniform distribution
of values between [-1, 1], as in classical ESN approaches (Lukoševičius & Jaeger
2009). Classical ESNs reservoir have weights randomly from a symmetric probabil-
ity distribution, typically Uniform or Gaussian, and place them at random between
neurons, thus generating random graph from the perspective of the topology as
well. Another common practice is to use a relatively sparse network, e.g., common
choices are pairwise probability of connection 𝑝 < 0.1 or a low fixed mean degree,
e.g., 𝑘 = 10). So for the sake of comparison and testing the effect of topology
in the performance of ESNs, we the following surrogate connectivity variations as
null models (see Fig. 3.20 for a visual comparison):

• Bio (rank): Preserves the empirical topology, i.e., wiring diagram or ”who
connects to whom”. Weights are placed such that the rank order of them is
the same as the empirical, i.e., strong weights in the empirical connectome
will correspong to higher positive weights in the Bio (rank) condition, and
viceversa.
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• Bio (no-rank): Preserves the empirical topology, i.e., wiring diagram or
”who connects to whom”. Weights are placed randomly, so no rank order is
preserved.

• Random (density): Wiring diagram is completely random, but allowing
only as many connections as to match the density of connections of the empir-
ical connectome. The density is defined as the fraction of present connections
out of all the possible ones. Weights are placed randomly.

• Random (k): Wiring diagram is completely random, but allowing only a
fixed number of connections per neuron, i.e., a mean degree 𝑘 = 10. Weights
are placed randomly.

• Random (full): Wiring diagram is completely random and all neurons
connect to all other neurons, i.e., the density of connections is 1. Weights
are placed randomly.

The bio2art functionality builds artifical recurrent neural networks by using
the topology dictated by empirical neural networks and by extrapolating from the
empirical data to scale up the artifical neural networks.
We explored here a range of network size scaling factors between 1 and 30x by step
of 1.
bio2art offers the possibility to control the within and between area connectivity
as well.
There are currently no empirical comprehensive data for neuron-to-neuron con-
nectivity within each brain region. However, existing empirical data suggest that
within-region connectivity strength constitutes approximately 80% of the extrinsic
between-region connectivity strength (Markov et al. 2012). Therefore, the intrin-
sic, within-region connectivity in our work followed this rule. It should be noted
that the number of connections that a neuron can form within neurons of the same
region is controlled by a parameter dictating the percentage of connections that a
neuron will form, out of the total number of connections that can be formed. Here
we set this parameter to 1, that is, all connections between neurons within a region
are formed.
The exact details of the implementation can be found here http://www.github.c
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om/AlGoulas/bio2art, together with a freely available Python toolbox to apply
the tools used here.

2.6.4 Tasks

Memory Capacity (MC) Task. In this memory paradigm, a random
input sequence of numbers 𝑋(𝑡) is presented to the network through an input
neuron. The network is supposed to independently learn delayed versions of the
input, thus there are several outputs (Jaeger 2001). Each output 𝑌𝜏 predicts a
delayed version of the input 𝑋(𝑡) by 𝜏 time steps, i.e., 𝑌𝜏(𝑡) = 𝑋(𝑡 − 𝜏). The
values of the input signal X were randomly drawn from a uniform distribution,
i.e., 𝑋(𝑡) ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5, 0.5). The networks were trained with 4000 time steps
and tested on the subsequent 1000. Each output is trained independently and the
performance, the so called Memory Capacity (MC), is calculated as the cumulative
score (squared Pearson correlation coefficient 𝜌) across all outputs (i.e., all time
lags) as follows:

𝑀𝐶 = ∑
𝜏

𝜌2(𝑦𝜏 , ̂𝑦𝜏)

Sequence Recall Task. In this task the network is presented with two
inputs, 𝑋1(𝑡), 𝑋2(𝑡), a sequence of random numbers to memorize and a cue input,
respectively. The cue input signals whether to fixate (output equal to zero) or
recall. After the recall signal, the network is supposed to output the memorized
sequence in the 𝐿 steps previous to recall signal, where the pattern length 𝐿 is
a parameter regulating the task difficulty (see Fig. 2.1). One trial of the task
consists of one fixation period and the subsequent recall period. The values of
the input signal 𝑋1(𝑡) were randomly drawn from a uniform distribution, i.e.,
𝑋1(𝑡) ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1). The performance was evaluated with the 𝑅2 score only
during the recall steps because the fixation phase was much easier for the model
to get right and would have inflated the performance. Each BioESN was trained
with 800 trials and tested on 200 trials. For each pattern length L in {5, 6, 7, ...,
25}, 100 different networks with newly instantiated weights were tested.
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Figure 2.1: Cognitive tasks Schematic representation of the tasks and the input/output
data structure for each of the cognitive tasks used to evaluate the performance of the
BioESNs. Left: Memory capacity (MC) task, where the network receives a stream of
random values as single input 𝑋 and has several independent outputs 𝑌 (for simplicity,
the example shows only two. Each output is memorized by an independent output neuron
of the network and is supposed to recall the input at a specific time lag 𝜏 . The BioESNs
were trained with 4000 time steps and tested on the subsequent 1000. Right: One trial
of the sequence recall task. The network receives inputs 𝑋1, 𝑋2 coming from a random
sequence and a recall signal channel, respectively. There is only one output neuron,
which after the recall signal channel indicates it (i.e., 𝑋2 = 1) is supposed to reproduce
the input received in the previous 𝐿 steps, i.e., the pattern length parameter determining
the difficulty of the task (for simplicity, in the scheme 𝐿 = 2). The BioESNs were trained
with 800 trials and tested on 200 trials. The score was computed considering only the
recall phase in order to avoid inflation of the metric, given that the fixation periods were
much easier to get right.
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Chapter 3

Results

3.1 Modules from plasticity model with deter-
ministic dynamics

3.1.1 Brief background and specific goal

In spite of many new insights on brain connectivity in recent years, the ori-
gin of such characteristic structural organization remains unclear. Previous work
has shown that some of these connectivity patterns may emerge spontaneously,
as indicated by studies of functional connectivity in vitro (i.e., cultured tissues)
(Schroeter et al. 2015; Bettencourt et al. 2007), and may be associated with long-
term memory consolidation (Wheeler et al. 2013). Beyond these descriptive ob-
servations, however, a mechanistic understanding of the self-organized emergence
and maintenance of brain networks remains elusive.
Typical modelling work on Hebbian plasticity is based on the modification of con-
nection strengths between neural units as a result of network activity (Markram et
al. 2012). This is in line with classical experiments of inducing Long Term Poten-
tiation (LTP) or Long Term Depression (LTD) of neuronal connections (Bi & Poo
1998). However, recent empirical work that showed evidence supporting a causal re-
lationship between LTD induction and the probability of removal or maintenance
of individual dendritic spines, resulting in higher removal of depressed synapses
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(Wiegert & Oertner 2013). This finding indicates that plasticity may act on net-
work connectivity in a binary fashion, in addition to changes of synaptic strength,
directly affecting neural network topology. Inspired by those experimental results,
in the study presented in this chapter, we formulated a minimalistic plasticity
model. The plasticity rule is Hebbian in the sense that is based on activity cor-
relations (more strictly, co-activations) of the nodes, which in turn influence the
probability of maintaining connections between nodes connected.
The goal of this study was to explore the effects of a local Hebbian plasticity rule
on the global network topology using a minimalistic network model with excitable
nodes and discrete deterministic dynamics. In spite of its simplicity, the model has
proven to be useful for understanding basic mechanisms of activity propagation as
well as the influence of network topology on functional correlations (Garcia et al.
2012; Messé et al. 2015). For more details on the SER model and the plasticity
rule, see Methods section.

This section has been published in (Damicelli et al. 2017).

3.1.2 Emergence of modular network topology

Despite the relative simplicity of the dynamical model and the plasticity
rule, random networks evolved in a systematic way into a modular structure (see
Fig. 3.1). The modularity (Q) increased quasi linearly until it reached a plateau
after few steps around which small fluctuations occurred. The resulting modular
structure is shown in Fig. 3.1 a. where three distinct modules emerged. Inter-
estingly, this reorganization produced by the plasticity rule did not influence the
degree distribution of the network, that is, the final network had the same out/in
degree distributions as the initial random structure (Fig. 3.1 c.). The correlation
between structural and functional connectivity (SC-FC) followed a similar trend
as Q, showing that the structural reorganization also had functional consequences
(Fig. 3.1 d.).
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Figure 3.1: Emergence of modular structure. (a) Example of an initial random structural
connectivity network with a density of 20% (before rewiring, left), and the structural
connectivity network resulting from the plasticity rule (right). Networks were reordered
to highlight the modular structure. (b) Modularity (Q value) as a function of the number
of rewiring steps. Coloured line and grey area represent the mean and standard deviation
across 15 simulations, respectively. (c) Illustration of the evolution of the total degree
(sum of in- and out- degrees) distribution as a function of the number of rewiring steps in
one run. Frequency of occurrence is colour-coded. (d) Relationship between structural
and functional connectivity (linear correlation) as a function of the number of rewiring
steps, with mean and standard deviation across runs.
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3.1.3 SC turnover and modular composition

Next we assessed the pace at which the structural connectivity pattern was
modified by the plasticity rule along the simulation. A gradual and continuous
reorganization took place along the whole simulation, even after a modular struc-
ture was present. The correlation between successive SC matrices in time decayed
fast, and after approximately 50 rewiring events it approximated zero (Fig. 3.2 a.).
This held true for every segment of the simulation, even after the modular struc-
ture was already present. Regarding the modular structure, the modular pattern
appeared to be the same independently of the specific segment of the simulation
considered. The modular partitions also differentiated relatively fast, showing a
dynamic equilibrium in the structural organization, conserving the modular or-
ganization in general, but varying the composition of the modules (Fig. 3.2 b.).
This finding indicates a dynamic equilibrium in the structural organization with a
permanent turnover, where the network after a relative small number of rewiring
events is completely different (with the precise number of events depending on the
retention probability parameters). Despite of preserving the modular structure,
the composition of the modules varied in time.

3.1.4 Robustness of findings to density variations

Given the predominant effect of density on the topological characteristics of
networks, the robustness of the rewiring rule was explored over a range of densities.
As is apparent in Fig. 3.3 a., for all densities studied, modularity was induced by the
plasticity rule and the network was reorganized showing three modules. Modularity
and SC-FC correlation measures also showed the same pattern as for the sparser
network (Fig. 3.3 (b, c)).

3.1.5 Dependence of findings on parameter variations

We evaluated the dependence of the findings on the plasticity rule parame-
ters, that is, the link retaining probabilities (𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥). The range of evaluated
values for the retaining probability was chosen following the experimental results
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Figure 3.2: Fluctuations of network composition in time. (a) Decay of network similarity.
Linear correlations were computed between each adjacency matrix and all adjacency
matrices at all subsequent time points until the end of the simulation. The plot shows
the Pearson linear correlation coefficient as a function of the separation in time (number
of rewiring events in-between) between all considered matrices. (b) Decay of partition
pattern. To evaluate how long a given partition was maintained in time, the partition
distance was computed between each adjacency matrix and all adjacency matrices at all
subsequent time points until the end of the simulation. The plot shows the partition
distance measures as a function of the separation in time (number of rewiring events in-
between) between the considered matrices. The first 100 rewiring events were excluded,
in order to begin the comparison when the modular structure was already present. The
decay curves did not change after 100 rewiring steps in-between, therefore that is the
maximum distance plotted.
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Figure 3.3: Effect of graph density. (a) Structural connectivity network resulting from
the plasticity rule for different network densities. Matrices were reordered to highlight
modular structure. (b, c) Emergence of modularity and SC-FC correlation was also
observed for higher densities.
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in (Wiegert & Oertner 2013), where only 30% of the depressed dendritic spines
persisted in the long term (i.e., one week after LTD), while the remainder was
pruned. The emergence of modularity and SC-FC correlation can be appreciated
in Fig. 3.4, which shows the mean of final values across simulations. This could
be observed for a large subset of parameter values, especially when the retaining
probability was close to one for the highest co-activation, and when the difference
between the maximum and the minimum retaining probability was large. The
coincidence between modularity and SC-FC emergence can also be appreciated.

Figure 3.4: Dependence of modularity and SC-FC correlation on the plasticity rule pa-
rameters. Lower and upper bound ranges (for 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 , respectively) correspond
to the retaining probability values used to rewire the adjacency matrix according to the
co-activation matrix. Left: Modularity at the end of the simulation as a function of the
bound parameters. Right: SC-FC correlation. For each parameters constellation the
average across 15 simulations is shown.

3.1.6 Simulations starting from structured networks

A valid question at this point is whether the plasticity rule might somehow
amplify a pre-existent modular structure (e.g., small cores of densely connected
nodes embedded in the random network that work as seeds from which the large
modules are built) or if it can be accounted for by other factors (such as syn-
chronization properties of the dynamic model). In order to address this question,
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we carried out simulations starting from two prototypical structured networks, in-
stead of randomly connected ones, namely a flat random modular graph and a
Barabási-Albert graph (N=100, m=12, density=0.21) (Barabási & Albert 1999)
(Fig. 3.5). Interestingly, the plasticity rule was able to disassemble this initial
structure in both cases, and a new modular network was generated where the typ-
ical three modules emerged. The degree distribution also converged in both cases
to a Gaussian distribution. At this point it is worth noting that the final structure
of the network did not correspond to the initial co-activation map either (data not
shown), although the model dynamics appeared to be sufficient for the plasticity
to generate the modules.

In sum, the explored plasticity rule generated a global reorganization of
the network into a modular structure, which also led to an increase in correlation
between structural and functional connectivity. The dynamics of the deterministic
SER model seemed to dominate the outcome of the model (i.e., final network
connectivity), independently of the initial network connectivity and to generating
a fixed number of final modules, which then turns out to be a limitation trying to
understand the relation between structure and function on the network.

This section has been published in (Damicelli et al. 2017).
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Figure 3.5: Plastic reorganization of structured network. (a) An initially multi-modular
network (left) was used as initial graph. The simulation ran applying the plasticity
rule, and at the end of the simulation (right) the matrix was reordered to highlight
the modular structure. The results show that the plasticity rule destroyed the initial
connectivity pattern and promoted the reorganization of the network into three modules.
The heat map in the middle row shows the total degree distribution in time. Lower
plots show Modularity and SC-FC as a function of time. (b) The same for a Barabási-
Albert network (left) as initial graph. The transition from a long- tailed distribution to
a Gaussian distribution can be observed. After 200 rewiring steps no qualitative changes
were observed, thus only the evolution until 200 rewiring steps is plotted, so that the
transition between the initial and the final degree distribution is observable.
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3.2 Modules emergence through Topological Re-
inforcement

3.2.1 Brief background and specific goal

The general principles leading to the emergence of brain modules remain
elusive, both in terms of the necessary topological changes for generating them, as
well as with respect to a plausible biological realization of such changes.
In this chapter, I present a model that constitutes a plausible underlying mecha-
nism leading to the formation of modules. The model bridges the gap between pure
generative models1 (e.g., “homophily-driven models”) and activity-based models
(e.g., Hebbian-like plasticity models), whose binding element lays at the topologi-
cal level.
Concretely, we present the topological reinforcement (TR) rule, a rewiring mecha-
nism based on the topological overlap (TO) (Ravasz et al. 2002). For each pair of
nodes, the TO metric quatifies the number of direct common neighbors between
them. The higher similarity, the higher value of TO (for more details on TO and
the precise definition, see the Methods section).
Prompted by the exploration of network motifs (that is, few-node sub-graphs which
are often statistically enriched in real networks, see (Milo et al. 2002; Milo et al.
2004)) the interplay of different topological scales in a graph has become an object
of intense research. In particular, several studies have shown that global network
properties, such as hierarchical organization (Vazquez et al. 2004) or modularity
(Fretter et al. 2012), can systematically affect the composition of networks in terms
of local topology or network motifs, see also (Reichardt et al. 2011). Intriguingly,
that line of research inspires the complementary possibility: a systematic iterative
selection on local network structures may conversely install, or at least enhance,
certain global network properties. This is the conceptual approach we set out to
explore here, where our topological reinforcement rule iteratively enhances the lo-

1In this context, “generative model” refers to a statistical model that is able to create data
by assuming underlying probability distributions of the independent variables and then fitting
the parameters of such distributions based on the observed dependent variable. See (Betzel &
Bassett 2017) for a more extensive discussion.
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cal topological overlap.
As a further step, we explore a plausible dynamical implementation of the topolog-
ical reinforcement. We used an excitable network model, the SER model, in which
the discrete activity of network nodes is described by susceptible, excited and re-
fractory states, representing a stylized neuron or neural population (see Methods
for details). In this case, the plasticity acts in a Hebbian-like fashion based on the
functional connectivity (FC) derived from co-activation patterns of network nodes.
In short, starting from initial random configurations, we evolved networks accord-
ing to the topological reinforcement rule. Topological reinforcement was based on
the TO between nodes of a network. At each rewiring step, a randomly selected
node was connected to a non-neighbor with the highest TO, while pruning another
link with random uniform probability, in order to preserve network density.

This section has been published in (Damicelli et al. 2019).

3.2.2 Random networks evolve towards modular, small-
world organization

The topological reinforcement rule reliably evolved synthetic random net-
works toward high modularity (Fig. 3.6). Moreover, due to increased clustering,
the final networks had a small-world organization (Fig. 3.7). The results were ro-
bust across multiple runs and multiple initial network realizations (Supp. Fig. 7.1).
We also explored the effect of network size and density on the TR rule (Fig. 3.6).
The results were consistent, showing similar scaling curves across conditions, which
speaks for the robustness of TR in generating modular networks.

The scaling pattern of final number of modules could be roughly approxi-
mated based on the average network degree. The rationale is that the number of
modules is intuitively proportional to the number of nodes while inversely propor-
tional to the average size of neighborhoods containing nearest and next to nearest
neighbors. As we do not have an analytical expression for the sizes of such neigh-
borhoods, we assume that it is proportional to 𝜆1+𝑎, where 𝑎 is some exponent
with 𝑎 < 1. The exponent one accounts for nearest neighbors and 𝑎 for the double
counting of nodes when going to next-to-nearest neighbors. We observe a good
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Figure 3.6: Emergence of modular network organization from topological reinforcement.
(Top) Example of network evolution resulting from topological reinforcement, starting
from a random network. Layouts are generated according to the Fruchterman-Reingold
force-directed algorithm. Nodes are consistently coloured according to the final modular
structure. At each rewiring step (𝑡), a total of 𝑁

2 nodes were affected, reallocating a
total of 𝑁 links (two per node). (Middle) Evolution of the modularity (Q) and number
of modules as a function of the number of rewiring steps (mean and standard deviation
across 500 simulation runs). (Bottom) Final modularity (left) and number of modules
detected (right) for different network sizes (𝑁) and densities (𝜆, average number of links
per node) (mean and standard deviation across 50 independent graph realizations).
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Figure 3.7: Evolution of the mean clustering coefficient, characteristic path length and
small-world index (S). Results are expressed as mean and standard deviation across 500
simulation runs as a function of the number of rewiring steps.

(though not perfect) agreement with the numerical results for 𝑎 ≈ 1
4 (see Fig. 3.8).

3.2.3 Final network organization reflects initial network
structure

The topological reinforcement rule appeared to amplify weak ‘proto-
modules’ already present in the initial random graph. The similarities between
the initial and final network structures were investigated in terms of Pearson
correlation and partitions overlap between networks; see Methods section and
Fig. 3.9 for details.

Statistical analysis across multiple runs showed a significant similarity and
partition overlap between the final graphs and the initial one (Fig. 3.10 A). More-
over, the results also showed a consistent pattern of final modular organization
(Fig. 3.10 B). The module agreement of final networks across multiple runs (𝑃 )
displayed pairs of nodes with high probability (beyond chance) to end up in the
same module. Fig. 3.10 B shows the mean intra-module density of the initial ran-
dom graph according to different partitions. The distribution of the mean intra-
module density according to the modules detected in the agreement 𝑃 coincides
fairly well with the mean intra-module density of the partitions detected on the
graph itself. In contrast, intra-module density from partitions coming from a null
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Figure 3.8: Prediction of final number of modules. The scatter plots show the average
number of observed modules across simulations versus its predicted values, estimated
based on the average degree. Each panel represents an average network degree (6 to 20
by step of 2), and for each panel, each blue point corresponds to a network size (60 to
500 by step of 40). The orange dashed line shows the identity.

model is centered around 0.1, that is, the graph density (i.e., probing density of
randomly chosen groups of nodes). In the random graphs used as initial condition,
no variations in link density are expected (since, by definition, connection proba-
bility is uniform for all pairs of nodes). Importantly, that is the case on average
across graph realizations, but, due to stochastic variations and finite-size effect, in-
dividual graphs might contain groups of nodes with slightly higher density of edges
than expected. We refer to these groups as ‘proto-modules.’ In order to highlight
these modules, a module detection algorithm was applied multiple times on the ini-
tial graph and a module agreement matrix was built (𝑃𝑖𝑛𝑖𝑡). The correspondence
between the initial and final network structures is also evident comparing the final
agreement 𝑃 with its analogous on the initial graph 𝑃𝑖𝑛𝑖𝑡 (Fig. 3.10 C). The simi-
larity (as measured by correlation) between both agreements is high. Additionally,
we generated a set of partitions from 𝑃 and another set of partitions from 𝑃𝑖𝑛𝑖𝑡,
and quantified the overlap between all possible pairs of partitions 𝑃𝑖𝑛𝑖𝑡-𝑃 . We
observed a significant overlap between the partitions from 𝑃𝑖𝑛𝑖𝑡 and those from 𝑃 .
Furthermore, the results were robust across multiple initial network realizations
(Supp. Fig. 7.1).

53



Results Modules emergence through Topological Reinforcement

Figure 3.9: Modules agreement and ‘proto-modules.’ Schematic example for a graph
with 𝑁 = 8 nodes and 30 rewiring steps of the procedure for probing the existence of
‘proto-modules’ in the initial graph and the relationship between initial and final network
structure. Each simulation run starting from the same initial graph is represented by
a grey color. A schematic representation of the affiliation vectors can be viewed under
module partitions. Each element of the vector represents a node and its color indicates
the module that it was assigned to. The probability that two nodes end up in the
same module across partitions is represented by the agreement matrix, in other words,
a consensus across module partitions. The agreement matrices where compared both in
terms of their values (Pearson’s correlation) and their modular composition (partition
overlap). See Methods for details.
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Figure 3.10: Relationship between initial and final network structures. (A) Initial ad-
jacency matrix (left) reordered according to the modular partition of the agreement 𝑃 .
Similarity (middle) and partition overlap (right) between all pairs of initial and final
networks, and the corresponding null distributions. (B) Agreement matrix across mul-
tiple runs (𝑃 , left) reordered according to its modular partition. Histogram of the 𝑃
values and of the corresponding null model (middle). Distributions of the intra-modular
density of the initial network (right). Average intra-module density of the initial network
according to different types of module partitions. The procedure was repeated 500 times
for each type of partition. As a reference, the mean intra-module density of the final
network modules are also plotted (average and standard deviation). (C) Initial agree-
ment matrix (𝑃𝑖𝑛𝑖𝑡, left) reordered according to the modular partition of 𝑃 . Similarity
(middle) and partition overlap (right) between 𝑃𝑖𝑛𝑖𝑡 and 𝑃 and the corresponding null
distribution.

55



Results Modules emergence through Topological Reinforcement

3.2.4 Implementation of topological reinforcement with
Hebbian plasticity rule

In the brain, the topological reinforcement may be implemented through
various plausible activity-based models. We explored one such model, in which the
activity of network nodes was described by discrete susceptible, excited and refrac-
tory states, the SER model, representing a stylized neuron or neural population.
TR when transposed into biological context simply corresponds to the so-called
Hebbian rule, where we substituted FC for TO, see Methods section for details. In
order to explore the FC-based rule and its relation to TR, we exploited an interest-
ing feature of the SER model: for a given graph topology, the relationship between
TO and FC varies according to the parameters of the model. More specifically,
the SER model allows both deterministic and stochastic formulations, depending
on the definition of the state transition probabilities. In the deterministic case,
only initial the proportions (𝑒, 𝑠, 𝑟) of nodes in each state may vary, since the
transition probabilities are fixed (𝑓 = 0 and 𝑝 = 1). While in the stochastic case,
different parameter constellations may me achieved by varying such state transition
probabilities (for more details, refer to Methods and (Messé et al. 2018)).

Figure 3.11: Rewiring rules comparison. We applied two different model scenarios. The
first one, based solely on the topology, and we applied the topological reinforcement
(TR) rule, which is based on the Topological Overlap (TO). While the second considered
activity on the nodes (SER model), and the rewiring occurred in a Hebbian fashion,
i.e., based on functional connectivity (FC) between nodes and reinforcing connections
between highly correlated nodes. The following schemes show the core loops of both
schemes for comparison. Each iteration of a loop is equivalently denoted as a rewiring
step. See Methods for more details. (A) Topological reinforcement. (B) Biological
implementation - Hebbian rule.
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After exhaustive evaluation of the possible constellations for each case, we
found: first, that the FC-based rule was also able to generate a modular network
structure. Importantly, a sufficiently high similarity (as measured by correlation)
between TO and FC within the initial configuration was a necessary condition
for modularity emergence, as illustrated by the sharp transition from the non-
modular to the modular regime (Fig. 3.12); second, the results produced by the
FC-based plasticity were consistent with the ones from TR, both in terms of final
network configurations and their module partitions (Fig. 3.13). Fundamentally,
this indicates that, provided the correlation between TO and FC is high enough,
the Hebbian rule acts indirectly as topological reinforcement.
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Figure 3.12: Biological implementation of the topological reinforcement. Parameter
space exploration of the stochastic (top) and deterministic (bottom) SER model. Sim-
ilarity (measured by correlation) between TO and FC in the initial graph (left), final
modularity (middle) expressed as the difference between the mean final modularity value
and the modularity of the initial random graph (across multiple (500) community detec-
tion). (Right) Scatter plot of the relationship between both quantities. Note logarithmic
scale for the stochastic case.
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Figure 3.13: Correspondence between the topological reinforcement and the Hebbian
rule. Similarity between 𝑃 from the topological reinforcement and from the Hebbian rule
using the stochastic (top) and deterministic (bottom) SER models. Pearson’s correlation
coefficient was computed to summarize the similarity between both rules across the
parameter spaces. Scatter plots represent the relationship for a selected setting (white
dots in the heat-maps).
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The results confirm a correspondence between the two plasticity modalities,
which speaks in favour of the dynamical implementation representing a biologically
plausible mechanism through which topological reinforcement may take place in
real systems, thus supporting its role as a contributor to the emergence of modular
brain networks.
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3.3 Heterogeneous degree distribution through
Sequential Reinforcement

3.3.1 Brief background and specific goal

As exposed in the Introduction, heterogeneous degree distributions with
their characteristic hubs are a fundamental property of brain networks. Thus, ex-
plaining the emergence of such property is key to understand the formation of
connectivity patterns in the brain. That was the focus of the work presented in
this section.
Previous literature on modeling the emergence of heterogeneous degree distribu-
tions is largely dominated by a particularly family of generative models, namely
the so-called “preferential attachment” and different variations of it (Barabási &
Albert 1999; Golosovsky 2018). In spite of some interesting properties of this type
of model, such as its analytical tractability, it is often difficult to map it onto
biological systems, such as brain networks. For example, most formulations of the
preferential attachment model imply growth of a network (addition of nodes and
links) and do not take into account the potentially changing connectivity, such as
in brain networks affected by neuronal plasticity.
Regarding brain connectivity in particular, a few modeling studies have paid at-
tention to topological changes resulting from plasticity rules. Those studies are
mainly aimed at describing network properties at the micro-level though, such as
the distributions of sub-network motifs and weights (Stone & Tesche 2013; Effen-
berger et al. 2015). Thus it remains unknown if global properties, such as the
degree distribution, could be shaped by more simple principles, such as spatio-
temporal constraints of brain development (Goulas et al. 2019) and/or plasticity
mechanisms.
We approached the problem from the perspective of plasticity mechanisms and
formulated if a simple model, based on the sequential activations of neural units.
We also used the previously presented minimalistic SER model (see Methods) to
represent the activity of neurons and implement a rule-based rewiring framework
to study how a network evolved in time. The model encouraged the formation
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of connections between nodes whose activity was such that the activations of a
node was correlated with the future activations of a second other node. Part of
the inspiration to formulate the model came from previous work studying patterns
of spreading activity on excitable networks with different underlying topologies
(Müller-Linow et al. 2008). In particular, hubs functioned as activity propagators
generating radial excitation waves starting from them. More recent work along
those lines has shown self-organized patterns of activity, where hubs shaped the
directionality of activity waves in non-trivial ways (Moretti & Hütt 2020). In a
complementary vein, our model explored the consequences of a plasticity rule that
promoted links that would reinforce that pattern of activity propagation away
from higher degree nodes. The model was somehow also loosely related to the
biological principle of Spiking Time Dependant Synaptic Plasticity (STDP) in the
general notion that it promoted creation of links when the activations of a node
were predictive of activations of another node (Caporale & Dan 2008).

3.3.2 Emergence of heterogeneous degree distributions

The Sequential Reinforcement model entails a plasticity rule based on the
dynamics of the nodes. After an epoch of network activity, the rule connects a
node 𝑖 to a non-neighbor node 𝑗 for which the activations of 𝑖 were most predictive
of the activations of 𝑗. In other words, the node 𝑖 was connected to a non-neighbor
that maximized the sequential activation of 𝑖 → 𝑗, thus Sequential Reinforcement
(see Methods for details).
We found that the Sequential Reinforcement led to the remodeling of an initially
random network (with a binomial degree distribution) into a network with a long-
tailed degree distribution. This finding was consistent across independent runs
(Fig. 3.14).
A potential explanation for this finding could be the fact that the sequential acti-
vation of a node 𝑖 to its non neighbors is to some extent correlated with the degree
of those non-neighbors, thus turning the sequential activation metric into a proxy
variable (Fig. 3.15).
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Figure 3.14: Sequential Reinforcement leads to heterogeneous degree distribution. (A)
Schematic representation of the Sequential Reinforcement plasticity rule. Each iteration
of a loop is equivalently denoted as a rewiring step (see Methods for more details). (B)
Initial and final degree distribution of the network nodes resulting from the plasticity
model, represented as the probability densities (PDF). The initial degree distribution
(grey) is also plotted for comparison. The plot shows results of 100 independent simu-
lations starting with the same initial graph. Each trace corresponds to one simulation.
Data are shown in a linear-linear scale. (C) The same data as in (B) but represented
as the complementary cumulative density function (CCDF) and in a log-log scale. (D)
Adjacency matrix of the final network, node presence represented by white points. Nodes
were sorted by degree in decreasing order (as indicated by the arrows). (E) Final network
layout, with node sizes proportional to node degree.
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Figure 3.15: Non-neighbors sequential activation vs. degree. Left: Normalized sequential
activation of a node 𝑖 to its non-neighbors. At rewiring step, a node 𝑖 is connected to the
non-neighbor with maximum sequential activation. Thus each non-neighbor constitutes
a “candidate” to gain a link to node 𝑖. The plot shows the relationship between the
degree of those candidates and the sequential activation. The plot shows aggregated
results from 10 independent simulation runs. Sequential activation is normalized as for
the rewiring rule (see Methods). Right: Summary of the relationship depicted in the
diagrams on the left but for the whole simulation run. The plot shows results of 10
independent simulations starting with the same initial graph. Each trace corresponds
to one simulation. The plots show a sub-sampled version of the simulations (every fifth
step is shown).

3.3.3 Stability of the final degree distribution

Interestingly, the model showed a stable asymptotic behaviour. After an
initial period of strong remodeling, the degree distribution stabilized with a het-
erogeneous degree distribution (Fig. 3.16). In spite of the ongoing rewiring and
the stochastic events playing a role in the time evolution of the network, the net-
works evolving under Sequential Reinforcement rule showed a convergence to a
self-regulated state, in which the larger hubs reached a ceiling in the number of
connections. This upper bound in the maximum size of the hubs as well as the
unfolding of the degree distribution remodeling was also consistent across indepen-
dent simulation runs.

3.3.4 Predictability of the final degree distribution

As a follow-up question we investigated the predictability of the final degree
distribution. That is, to which extent the initial node degrees could determine the
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Figure 3.16: Evolution of the degree distribution along the simulation. Left: The evolu-
tion of the degree sequence along one complete simulation is shown, with rewiring steps
color coded (colorbar). The plot shows results from 100 runs. Each trace corresponds to
the degree distribution of a run at a given time step. Right: Evolution of the skewness
along the simulation. The plot shows results from 100 runs. Each trace corresponds to a
run. The thick line depicts the mean across runs. The plots show a sub-sampled version
of the simulations (every fifth step is shown).

final outcome. To answer that, we tracked the evolution of the degree distribution
in time, comparing it to the initial degree distribution. We found a mild correlation
between the initial and the final degree distribution. In Fig. 3.17 (A) it is possible to
visualize the trace of the high-degree nodes back in time along the simulation. For
a more quantitative demonstration of that, in Fig. 3.17 (B, C) we observe the decay
in the correlation of the degree distribution to the initial step is slow enough that
right after the period of initial strong remodeling (~200 rewiring steps) the degree
distribution still had a moderate correlation to the initial one. The consistency
across independent simulation runs was also evident in this analysis.

3.3.5 Stability of the node degree ranking structure

Besides the global shape of the final degree distribution being stable as a
whole and to some extent related to the initial state, a more detailed question
is how the complete ranking of degrees evolves in time. In other words, after
ordering the nodes into groups according to their degrees, we asked how stable
the composition of such ranking groups in time was. For illustration purposes,
let us think of the following example: Assume that nodes 𝑖 and 𝑗 have degrees
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Figure 3.17: Predictability of the final degree distribution. (A) Two dimensional repre-
sentation of the degree distribution along a simulation run. In order to visually trace
back the origin of the hubs, the nodes where sorted from left to right in decreasing order
according to their degree at the end of the simulation, (B) Similarity of the initial degree
distribution. At each rewiring step 𝑇 , the correlation between the degree sequence at
time 𝑡 = 0 and the degree sequence at time 𝑡 = 𝑇 was compared by means of the Pear-
son’s correlation coefficient. Each trace corresponds to one simulation run (100 in total).
The plot shows a sub-sampled version of the simulations (every fifth step is shown). (C)
More detailed visualization of the relation summarized in (B) for specific time points
(1, 10, 50, 99). Each subplot aggregates results of the 100 independent simulation runs
starting with the same initial graph.
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𝑘𝑖 = 10 and 𝑘𝑗 = 20 at time step 𝑡. If the plasticity rule acted in such a way that
those degrees perfectly swapped to 𝑘𝑖 = 20 and 𝑘𝑗 = 10 at time 𝑡 + 1, then the
global degree distribution would remain unchanged, but the ranking composition
would change. To tackle that situation, we studied the temporal unfolding of this
hierarchy of nodes degrees by quantifying the overlap in the composition of degree
ranking in successive time points. For example, considering the hundred nodes with
highest degree at time 𝑡, we counted how many of those nodes were still in the
first hundred positions of the ranking at time 𝑡+1 and denoted that as the “nodes
overlap.” The same analysis was repeated for the following degree ranking groups,
i.e., in the second, third, etc. hundred highest positions. We found a clear pattern
that was fairly stable in time: The highest and the lowest degree ranking groups
were the most stable in time (group 1 and 10, respectively), while the intermediate
ranking positions were more unstable. This can be observed in Fig. 3.18, where the
above explained overlap of nodes in time of each degree ranking group is plotted
along the simulation run. Interestingly, the highest degree nodes were the most
stable across the whole simulation run. We show this quantitatively in Fig. 3.18 B,
where the variance across simulation runs is shown for each group along the run
and the group 1 shows the lowest variance.
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Figure 3.18: Stability of the degree distribution along the simulation. (A) At a time
step 𝑡, the nodes were ranked by their degree and such ranking was split into ten groups,
i.e., given a network with 1000 nodes, the ranking groups were 1-100, 101-200, etc. The
same was repeated for time step 𝑡 + 1 and, for each ranking group, the number of nodes
belonging to the same group in consecutive time steps was counted, denoted as nodes
overlap (𝑡, 𝑡 + 1). The same was repeated for 100 simulation runs. The plot shows the
mean and standard deviation across runs. (B) For each degree ranking group, the across-
runs variance along the whole run is shown. Each point corresponds to the variance across
simulation runs for a given time step. The plots correspond to a sub-sampled version of
the simulations (every fifth step is shown).
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3.4 Bio Echo State Networks

3.4.1 Brief background and specific goals

Computational implications of brain connectivity have so far mainly been
probed for general functional properties, e. g. ability to sustain activity, but has
not yet been tested on concrete tasks. Certain connectivity properties of brain
networks imply dynamical consequences that can be theoretically beneficial for
information processing in the brain. Nevertheless, it is highly non-trivial to relate
such theoretical, somehow abstract results to the performance of brain networks
solving concrete tasks. In other words, it is unknown if and to what extent the
actual, empirically discerned brain connectivity can lead to beneficial properties,
such as faster learning, better performance or greater robustness.
We explicitly addressed that gap here by building recurrent Echo State Networks
(ESN) that are bio-instantiated, thus BioESNs. We ask if and to what extent the
topology of BioESNs affects its performance on concrete memory tasks. This is a
necessary step exploring the possible links between biological and artificial neural
systems, not by means of abstract network models but exploiting the wealth of
empirical data being generated.
Concretely, in order to test the potential effect of the topology of real connectomes
on the computation capacities of recurrent networks, we devised a hybrid Echo
State Network (ESN) integrating real brain connectivity, thus BioESN. Classical
ESNs have an internal reservoir of neurons sparsely connected at random between
them. The reservoir works as an internal non-linear projection of the input(s),
generating a rich variety features, such that the readout layer can linearly separate
the patterns more easily. Thus, the performance of an ESN is related to the
richness of the representation generated by the reservoir neurons, in turn related
to the connectivity pattern between the reservoir neurons.
We investigate here if the non-random topology of biological neural networks could
affect the performance of ESN by integrating real connectomes as reservoir and
letting the BioESN solve concrete cognitive tasks (see Fig. 3.19). Importantly,
we constructed the BioESN reservoirs based on the wiring diagrams (i.e., who
connects to whom) of connectomes, but using the weights initialization typically
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used in classical ESNs (see Fig. 3.20) and Methods for details).
We tested connectomes of three different primate species (Human, Macaque and
Marmoset) in two different memory tasks.

Figure 3.19: General approach scheme. For each of the three species we generated a Bio-
Echo State Network (BioESN) by integrating the real connectivity pattern as reservoir
of an Echo State Network (ESN). Thus, in contrast to the classical ESN with randomly
connected reservoir, BioESNs have connectomes based on connectivity coming from the
empirical connectomes. We also propose a framework for mapping biological to artificial
networks, bio2art, which allows to optionally scale up the empirical connectomes to
augment the model capacity. The resulting BioESNs are then tested on cognitive tasks
(Methods for details on the tasks).

Since we aimed at testing if the connectivity pattern of empirical connec-
tomes could have an effect on the performance of BioESNs, we generated several
variations of the connectivity as surrogate network for contrast, where each surro-
gate preserves (or not) specific connectivity properties, as summarized in Fig. 3.20).
The conditions Bio (rank) and Bio (no-rank) preserved the empirical binary topol-
ogy mask (i.e., who connects to whom) and thus constitute the conditions that
we mainly aimed at testing. The difference between both conditions is that Bio
(rank) preserved the ranking of the weights. That means, in spite of the weights
coming from a random distribution, the links in the network where allocated such
that links with high strength in the empirical connectome also corresponded to
stronger weights in the BioESN. In contrast to that, such rearrangement of links
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was not performed for the Bio (no-rank) condition, thus only keeping the binary
mask of empirical connectivity but respecting no ranking order of links. The rest
of the surrogate conditions (Random (density), Random (k), Random (full)) have
totally random wiring diagram and their density of connections is the only factor
varying across conditions. For the condition Random (density), the density of con-
nections is the same as the empirical connectome. For the condition Random (k),
the network forming the reservoir has a fixed number of links per node 𝑘 = 10,
as in classical ESNs approaches (Lukoševičius 2012). For the condition Random
(full), there are no restrictions in terms of links, thus generating a fully connected
network, i.e., density equal to 1 (Fig. 3.20) or a summary on all the tested con-
ditions). Larger reservoirs are per se expected to have better performance than
otherwise equivalent networks. Thus, given that the different sizes of the empirical
connectomes, the results are not comparable across connectomes, but only across
connectivity conditions for one connectome.

Figure 3.20: bio2art, scaling up connectivity and surrogates. The connectivity of the
networks derived from the empirical connectivity and used as reservoirs in the BioESNs
can be represented as an adjacency matrix. This figure shows examples of adjacency
matrices representing a scaled up version (4x) of the Macaque monkey empirical brain
connectivity then integrated into the BioESN as reservoir. We also build surrogate
connectivities for comparison with the empirical case that preserves real connectivity
patterns. Each surrogate network controls for different aspects of the connectivity, as
shown in the summary table in the figure. The figure depicts an example of the empirical
(Macaque) connectivity and the different derived connectivities tested. Notice the nodes
indices, explicitly showing the upscaling of the connectivity. This was repeated for all the
other connectomes tested. See for more details on connectivity generation and surrogates.
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3.4.2 Memory Capacity Task

In this classical paradigm, the network is presented with a random sequence
of numbers through a unique input neuron. Each output neuron is trained inde-
pendently to learn a lagged version of the input, thus there are as many output
neurons as lags to be tested (Jaeger 2001). The performance, the so called Memory
Capacity (MC), is calculated as the cumulative score across all outputs (i.e., all
time lags, see Methods for details).
Our results show a comparable performance across all reservoir types except for
the Bio (rank) condition (Fig. 3.21). Networks from all the tested conditions were
able to learn the task, at least for the lowest difficulty (time lag 𝜏 = 5), but the
Bio (rank) condition showed significantly worse memory capacity. This pattern
was consistent for all the empirical connectomes tested (Macaque, Marmoset and
Human). On the other hand, we did not find differences in the performance for all
the rest of tested conditions. This indicates that a certain level of randomization
is actually necessary to reach a better performance and that biological wiring dia-
grams can achieve the same performance as the purely random networks, provided
an adequate level of randomness is allowed, as in the Bio (no-rank) condition.

3.4.3 Sequence Memory Task

In this task, the network is presented with two inputs, a sequence of random
numbers to memorize and a cue input, thus having two input neurons. The cue
input indicates whether to fixate (output equal to zero) or to recall the presented
pattern. When the recall cue is presented, the network is supposed to output
the memorized sequence in the previous 𝐿 steps, where 𝐿 is the pattern length, a
parameter regulating the task difficulty (see Methods for details). One trial of the
task consists of a fixation period followed by a recall period. In order to avoid
inflation of the score, the performance was evaluated exclusively during the recall
steps, which are more difficult to get right than the fixation phase.

In agreement with the results for the Memory Capacity task, we found that
all tested ESNs were able to learn the task, at least in its easier variations (pattern
length 𝐿 = 5). Along the same lines, the Bio (rank) condition was the only one
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Figure 3.21: Memory Capacity Task. (A) (Upper) Schematic representation of the task.
An input signal (𝑋) is feed as a time series into the network through an input neuron.
Each output neuron independently learns a lagged version of the input (𝑌𝜏) (Lower)
Alternative representation of the task in terms of the input/output structure of the
data. (B) Examples of network evaluation on the task. A forgetting curve (grey line) is
shown for each tested species (columns) and connectivity 𝑊 condition (color coded). For
each time lag (𝜏) the score is plotted (squared Pearson correlation coefficient, 𝜌2). The
memory capacity (MC, see legends) is defined as the sum of performances over all values
of 𝜏 and represents the shaded areas in the plotted examples. (C) Performance of the
bio-instantiated echo state networks (BioESNs) for the three different species tested. For
each pattern length, 100 different networks with newly instantiated weights were trained
(4000 time steps) and tested (1000 time steps). The test performance of each networks
is represented by a point in the plots.
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Figure 3.22: Sequence Memory Task. (A) (Upper) Schematic representation of one trial
of the task. The input signal (𝑋1) and the recall signal (𝑋2) are feed as a time series
into the network through two input neurons. When the recall signal comes (𝑋2 = 1), the
output neuron is supposed to output the memorized input of the last 𝐿 steps. (Lower)
Alternative representation of the task in terms of the input/output structure of the data.
(B) Examples of actual and predicted times series for 5 trials at three different difficulty
levels (pattern length, from top to bottom: 𝐿 = 10/14/18). The scatter plots on the
right show the predicted vs. the true output (as explained in main text). The BioESN
in the example was built from human connectome with the Bio (no-rank) variation. (C)
Performance of the bio-instantiated echo state networks (BioESNs) for different task
difficulties (pattern length) for the three different species. The bio-instantiated reservoirs,
Bio (rank/no-rank), are compared to surrogates with random connectivity patterns. For
each pattern length, 100 different networks with newly instantiated weights were trained
(800 trials) and tested (200 trials). The curves depict the mean test performance and
standard deviation across networks.
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with a significantly different performance, showing worse performance than the
rest of the conditions. The Bio (rank) networks had a different performance decay
profile, only being able to memorize shorter sequences than the rest of the network
types (Fig. 3.22). These findings were again consistent across all the different
connetomes tested.

3.4.4 bio2art: Mapping and up-scaling connectomes

The performance of an echo state network is intimately related to the reser-
voir size, as a larger network can potentially generate a richer repertoire of features
and has more trainable parameters. Our next goal was to investigate the scaling
behaviour of our model, i.e., how the performance changes as the reservoir size is in-
creased. For that, we applied our bio2art approach (Goulas 2020), which allows us
to map the connectivity of real connectomes onto artificial recurrent networks and
scale up the number of neurons by an arbitrary scaling factor while preserving the
wiring diagram of the original connectome (see Methods for details). Although not
totally conclusive because of the different experimental methodologies, that brings
us closer to a comparison across species connectomes (see Discussion). At the
same time, this allows us to explore the extent to which the pattern observed for
the different weights mappings (Bio (rank), Bio (no-rank), etc.) holds for larger
networks and how it plays out with the model capacity driven by reservoir size.

When upscaling the connectomes with bio2art, one important parameter
is whether to have homogeneous or heterogeneous distribution of weights between
scaled-up areas, as shown in Fig. 3.23 A. With the homogeneous variation all con-
nections between two upscaled areas have exactly the same weight. In other words,
after scaling up the number of neurons per area, the total original weight between
every two areas is equally partitioned amongst all the area-to-area connections. In
contrast to that, the heterogeneous variation allows the area-to-area connections
between scaled up regions to be different. More specifically, the total original
weight between every two upscaled areas is partitioned and distributed at random
amongst the area-to-area connections.
We evaluated a wide range of scaling factors (i.e., neurons per area) for the BioESNs
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Figure 3.23: Scaling of performance with reservoir size. (A) Scaling up empirical connec-
tome with bio2art. Scaling allows to specify a number of neurons per area (brain region
as defined in the connectome). The interareal weights might be mapped either homo-
geneously or heterogeneously. Homogeneous mapping partitions total weights in equal
parts amongst interareal connections. Heterogeneous mapping partitions total weights
at random amongst interareal connections. (B) Relationship between the neurons per
area and the total reservoir size for all the studied scaling factors. (C) Performance of
BioESNs with scaled up connectomes on the memory capacity task, for heterogeneous
and homogeneous interareal connectivity patterns (upper and lower row, respectively).
For each single condition (size, interareal connectivity), 100 different networks with newly
instantiated weights were trained (4000 time steps) and tested (1000 time steps). The
curves depict the test performance mean and standard deviation across runs.
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generation with bio2art, considering both homogeneous and heterogeneous inter-
areal connectivity pattern as explained above. We found a clear pattern of raising
performance, reaching an asympthotic value roughly comparable across all connec-
tomes when looking at reservoirs of same size. Interestingly, the otherwise consis-
tently lower performance of the Bio (rank) condition could be reverted with large
enough reservoirs. Importantly, this was only the case for scaled up connectomes
with heterogeneous interareal connectivity pattern but not with homogeneous (see
Fig. 3.23). This indicates that the randomness and diversity of connections in in-
terareal connectivity plays a crucial role determining the memory capacity of the
network. For this series of experiments we also found the pattern to be consistent
across all studied connectomes.
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Chapter 4

Discussion

In this chapter, I will first briefly discuss a few general aspects relevant to
all the presented studies and our approach in general. After that, I will discuss our
specific findings in more detail, their implications and important aspects to take
into account in their interpretation.

4.1 Our modeling approach
The first general point to be made is about our modeling approach. The

kinds of models that we adopted for the presented work, especially for the modeling
of emergence of topological features, is definitely a minimalistic take on modeling
with rule-based models. The importance of minimal models to understand biologi-
cal, social and economic phenomena has been summarized in (Sneppen 2014). We
recognized that this approach is opinionated and assumes things, but at the same
time understand that modeling is “horses for courses”. That means, as long as
they capture essential aspects of the phenomena to be modelled, this class of mod-
els can be informative insofar they allow to test ideas that are less dependant on
the specific parameter constellations as for more detailed models. If nothing else,
the outcomes of simple models like these can serve as a baseline to be then com-
pared to the outcome of more complicated models, should that be the appropriate
way to go. Which is the ultimate potential application of these minimalistic kind
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of models has inspired lifetime research programs (Wolfram & Gad-el-Hak 2003),
but that is beyond the scope of this discussion. Here, I will rather focus on the
concrete advantages and disadvantages of the very models that we implemented in
the context of modeling brain networks. One important aspect of our perspective
with focus on the topological structure of brain networks is that it does not take
into account the spatial embedding of the networks, which is known to play a role
in constraining the architecture of brain networks (Stiso & Bassett 2018). This
choice affects all the models that I presented here and responds to the attempt
to isolate the topological effects from other potential factors that could then over-
ride the effects of the pure topological changes. Thus, there is potential for future
work on models that incorporate the interplay between geometrical constraints and
topological remodeling.

4.2 Representing neural activity
Regarding the modeling of neural activity for plasticity models, previous

studies have used a large variety of neural activity models ranging from abstract
representations, such as chaotic maps (Berg & Leeuwen 2004) and phase oscillators
(Gleiser & Zanette 2006), to more physiologically realistic models, such as neural
masses (Stam et al. 2010) and spiking neuron (Kwok et al. 2006) models. We opted
for the classical SER model, which is a cellular automaton model with discrete
time and space evolution (Greenberg & Hastings 1978). In spite of its simplicity,
this minimalistic excitable network model has a rich history across disciplines and
in particular in neuroscience (Bak et al. 1990; Anderson & May 1992; Drossel
& Schwabl 1992; Kinouchi & Copelli 2006; Furtado & Copelli 2006), where it
can capture non-trivial statistical features of brain activity patterns (Haimovici
et al. 2013; Messé et al. 2015). This model has also been used to study the
impact of network topology, such as modules, hubs and cycles, on network activity
patterns (Müller-Linow et al. 2008; Garcia et al. 2014; Messé et al. 2015). A
relative-threshold variant (requiring a certain percentage of a node’s neighbors to
be active, in order to activate the node) was explored in (Hütt et al. 2012) and
(Fretter et al. 2017). The deterministic limit of the model (𝑝 → 1, 𝑓 → 0) has been
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analysed in (Garcia et al. 2012) and in much detail in (Messé et al. 2018). The
SER model, offers the advantage of capturing essential characteristics of stylized
neuronal activity while being more tractable than detailed typical models.

4.3 Modules from plasticity model with deter-
ministic dynamics

4.3.1 Emergence of modular network topology

The importance of coherent neural activity and the consequences of such
firing patterns in the development of neural circuits are widely recognized (Feller
1999). In this study, we investigated the influence of a simple Hebbian plasticity
rule that embodies the principle of “what fires together, wires together.” Neu-
ronal activity was represented via a minimalistic model of excitable units and co-
activations between units determined the retention probability of each link. This
rule captures the essence of recent experimental findings, which support the notion
that activity-dependent cellular phenomena, such as Long Term Potentiation/De-
pression, influence the maintenance probability of individual synapses (Wiegert &
Oertner 2013). Moreover, the pruned links were reintroduced into the network in
a uniformly random fashion. Therefore, the model also loosely reflected the bio-
logical process of intrinsic fluctuations of dendritic spines that expand and retract
in a stochastic exploration of the surrounding space before establishing synaptic
contacts (Kasai et al. 2010). The mechanisms behind the emergence of modular-
ity across species and spatial scales remain poorly understood. Several potential
factors have been hypothesised to be involved including developmental pressure
(Gómez-Robles et al. 2014), the geometrical embedding of the brain in physical
space (Henderson & Robinson 2013), and plastic rules aiming at maximizing func-
tional repertoires (Ellefsen et al. 2015).
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4.3.2 Final modules composition

Our framework led in a systematic way to the emergence of a modular
structure both starting from random graphs and well-structured networks (i.e.,
multi-modular and scale- free graphs). By means of a relatively small but constant
proportion of connections changing over time, three modules were generated in all
the studied cases. Interestingly, when a non-random network was used as initial
condition, the original structure was disassembled in the first rewiring steps and
a new global structure emerged. Similar results were obtained by Rubinov et
al. (2009), where coupled chaotic maps on a lattice or a spatially constrained
network were used as initial condition and the final outcome of their plasticity
model held the same that for random initial graphs. Taking this finding into
account together with the fact that in all the studied cases we found three modules
as outcome, it leads us to think that in this stylized model of excitable dynamics
(and with this particular form of a local Hebbian plasticity rule), the emergent
network topology is predominantly governed by the dynamics, which is an effect
that has been observed in other related studies, where the number of modules
depended on properties of the dynamical model (Yuan & Zhou 2011). While this
is an extreme scenario, it emphasizes that the relative influences of the two main
factors – original network architecture and dynamical model – can vary widely,
according to the specific scenario at hand. However the precise mechanisms remain
elusive. Previous theoretical work by Ravid Tannenbaum & Burak (2016) showed
that the contribution of specific motifs induces correlations between nodes that, in
presence of a STDP rule, promote the formation of self-connected assemblies. The
particular motif in question (nodes co-activated by common input) is precisely
the one that is reinforced by our plasticity rule and therefore suggests that the
emergence of modules could be a generic property of networks evolving under
selection for co-activation. Due to its deterministic nature, one important property
of the simple dynamical model is that (without plasticity and for not too sparse
graphs) the dynamics rapidly settle into a stable period-three oscillation. The
initial conditions, together with the initial network architecture, thus partition the
nodes of the graph in three “cohorts”: those jointly active at time 𝑡, 𝑡+1 and 𝑡+2,
respectively. It seems intuitive that these cohorts can rather directly be associated
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with the emerging modules. However, in our investigation no simple relationship
between initial conditions and the modules could be found.

4.3.3 Nodes turnover in the modules and final degree dis-
tribution

Another interesting finding in our study was a kind of topological ‘dynamic
equilibrium.’ Namely, once established, the global modular organization of the
network persisted, but the specific composition of the modules varied in time,
such that after a number of rewiring steps, the module elements where completely
different. This finding is similar to the results in (Rubinov et al. 2009), where even
in the defined asymptotic phase structural fluctuations were present; and also in
(Stone & Tesche 2013), where a “dynamic local topology” was reported, as the
authors tracked the triads across the simulation in a network model with spike-
timing dependant plasticity (STDP), and found a constant number of triads but a
varying composition. However some relevant differences in the model set-up do not
allow further interpretation. The degree distribution in all the cases studied in the
present project converged to a Gaussian-like distribution, practically identical to
that of a random graph of the same density. Thus, this shaping of the distribution
appears to be an emergent property of the model. This finding is consistent with
(Rubinov et al. 2009) and (Gong & Leeuwen 2003), where such degree distribution
was found in spite of small-world properties of the network. In any case, this fact
should be carefully considered, since it has been reported that different degree
distributions may emerge as consequence of identical plasticity rules when much
larger networks were studied (600 and 100 nodes) (Berg & Leeuwen 2004).

4.3.4 Evolution of SC-FC correlation

An important emergent feature of our model was the increase in the cor-
relation between structural and functional connectivity (SC-FC). This result was
also reported in (Rubinov et al. 2009) and constitutes a relevant outcome since
the plasticity rule not only contributes to shaping the network organization, but
also to the coupling between structure and function of the network. This result
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is also in line with previous investigations (Garcia et al. 2012; Messé et al. 2015;
Hütt et al. 2014), where such correlations have been investigated across a broad
range of network topologies, and found that the emergence of modular structure
goes along with the emergence of high SC-FC correlations, suggesting modular
organization as one important topological ingredient underlying such correlations.
Modelling studies focused on the on-going topological changes of brain networks as
a result of biologically relevant plasticity rules are scarce. Our minimalistic model
was able to produce, based on a local plasticity rule and without external input, a
global reorganization of the structural and functional connectivity patterns of the
network. In particular, relevant patterns in the context of brain networks emerged
and they were robust to variations of the model parameters. In addition, differ-
ent from other studies, our model did not require complicated activity patterns
(e.g. chaotic dynamics in (Rubinov et al. 2009; Gong & Leeuwen 2003; Berg &
Leeuwen 2004)) for the global structured topology to emerge.

4.3.5 Limitations and future work

We see several opportunities for further investigations. Due to the simplic-
ity of the model, it should be possible to understand some aspects of the emergent
properties (modules, SC-FC correlations) also analytically and understand in more
detail, how initial conditions and the initial network architecture give rise to the
striking turnover in module compositions. Future work could also address limita-
tions of our assumptions and set-up; for instance, considering not only excitatory
but also inhibitory neurons, adding noise to the dynamical units, or considering
different ways of growing connections rather than in a uniformly random fashion.
Also, an important aspect (and topic of next study) is to develop a model where the
dynamics are not decoupled from the structure as we have shown for this simple
model.
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4.4 Topological Reinforcement model
The importance of segregation in the brain is supported by numerous studies

(Sporns & Betzel 2016; Wig 2017). However, there is a lack of general mechanisms
explaining the emergence of brain modularity. In the presented study, we proposed
an explicit mechanism of reshaping local neighbourhoods through Topological Re-
inforcement (TR) that might act as a fundamental principle contributing to the
emergence of modules in brain networks. The Topological Reinforcement model
is different from previous generative modeling work (Betzel et al. 2016) because
it can be instantiated in a biologically more realistic fashion, since those model
rather describe the end result of the network configuration and do not focus in the
actual mechanistic explanation.
Our Topological Reinforcement model focuses on the contributions of pure topolog-
ical changes, being more general than previous models with regard to the dynami-
cal regime representing neuronal activity. Given accumulated evidence that global
network properties can systematically affect the composition of local network struc-
ture such as motifs (Vazquez et al. 2004; Reichardt et al. 2011; Fretter et al. 2012),
we propose a complementary bottom-up approach that is acting locally in order
to shape global features. Our proposed mechanism is in line with empirical data
where “homophily” appears as an essential feature of brain connectivity. At the
micro scale, it has been shown that the probability to find a connection between a
pair of neurons is proportional to the number of their shared neighbours (Perin et
al. 2011); while, at the macro scale, the strength of connections between brain re-
gions tends to be the higher the more similar their connectivity profiles are (Goulas
et al. 2015).

4.4.1 Random networks evolve towards modular organiza-
tion

Our results showed that local reinforcement reliably and robustly produces
modular network architectures over time, accompanied by the small-world prop-
erty. Additionally, the final modular organization of the networks seemed to cor-
respond to groups of nodes in the initial networks that have higher than average
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connection density. As such, our rewiring mechanism acts as an amplification of
these “proto-modules,” similarly to a previously reported effect in weak modular
weighted networks evolving under a Hebbian rule based on chaotic maps synchro-
nization (Yuan & Zhou 2011). We extended the framework of topological rein-
forcement by introducing a plausible biological implementation. In the biological
implementation, the topological reinforcement rule was reformulated by using func-
tional connectivity (FC) as a surrogate of TO. These results were consistent with
TR, indicating that the biological implementation appears to act indirectly at the
topological level. In other words, the FC served as a proxy of TO, and therefore
Hebbian reinforcement led indirectly and ultimately to the topological reinforce-
ment of a modular network organization. The explanation for this finding is based
on the fact that, for suitable dynamical regimes and structural architectures, FC is
positively correlated with TO in excitable networks (Messé et al. 2018), which is
intuitive if one considers that common inputs may promote correlations. Thus, we
propose the topological reinforcement principle as an underlying common ground,
a gap bridging alternative between this activity-based Hebbian model and a pure
topological generative model. Our results are in line with recent theoretical work on
the contribution of specific network motifs to higher order network organization, in
which the reinforcement of connections between neurons receiving common inputs
led to the formation of self-connected assemblies (Ravid Tannenbaum & Burak
2016).

4.4.2 Correspondence between pure topological and
dynamics-based model

Our Hebbian plasticity scenario exploited the correspondence between TO
and FC as it could be observed with the exploration of different SER parameter
constellations. These parameters promoted different relations between TO and
FC, and we found that such a dependence systematically predicted the emergence
(or not) of modular networks.
Previous modeling studies with Hebbian reinforcement scenarios have also shown
that Hebbian reinforcement may lead to the formation of modular architectures,
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consistently with our results for the excitable model (Berg & Leeuwen 2004; Gleiser
& Zanette 2006; Rubinov et al. 2009; Yuan & Zhou 2011). Interestingly, as a prac-
tical biological example beyond the pure theoretical realm, this type of plasticity-
guided modular emergence has recently been studied also in real neural activity
in zebrafish larvae (Triplett et al. 2018), pointing to the relevance of the current
results. The open question for this type of models concerns the specific underlying
topological changes that they promote, since these studies focus on the implemen-
tation of the phenomenon (based on the activity) and not on the algorithmic level
(the topological dimension) and both levels interact in non-trivial ways. In other
words, they do not provide insights about a general mechanism specifying which
topological changes might be necessary for the emergence of modular structure.
Compared to this group of models, our Topological Reinforcement model is differ-
ent in that reinforcement principle is agnostic with respect to the specific dynamical
regime and it explicitly addresses the topological changes that take place in the
network.
Previous work on generative models of brain connectivity have provided with a
valuable basis for confirming the importance of TO as an essential feature and
reducing the dimensionality of brain connectivity by few model parameters (Bet-
zel & Bassett 2017), disentangling the mechanistic nature of the phenomena (e.g.,
modularity emergence) turns out to be non-trivial, since information about the
final state might be explicitly built-in in the generative model already. But even
more crucially, how the generative function is actually implemented in real systems
is out of the scope of this kind of modeling approach. As a complement to this
group of models, our contribution offers a concrete scenario where a generative
mechanism can actually be implemented in a biologically more realistic fashion.
In summary, as expected for any modeling approach, a trade-off exists between gen-
erative and activity-based models. Phenomenological descriptions and mechanistic
explanations complement each other and a gap remains for explaining on how they
link to each other. Our contribution represents an attempt to address this gap;
first, by providing an explicit topological mechanism of module formation (gener-
ative mechanism); second, by trying to reconcile such an abstract level of analysis
with the biological implementation, by means of an activity-based formulation of
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the model.

4.4.3 Limitations and future work

The presented results are subject to several methodological considerations.
For example, our study did not take into account a geometrical embedding and
rather focused on the pure topological contribution of the topological reinforce-
ment. Although we certainly recognize the brain as a spatially embedded system
and that physical constraints, such as wiring-cost, play a fundamental role shaping
brain connectivity (Henderson & Robinson 2013), previous studies have shown that,
in addition to them, topological aspects are essential to describe real connectomes
(Kaiser & Hilgetag 2006; Betzel et al. 2016). Thus, we aimed at isolating the pure
topological effect and avoiding the situation in which geometric constraints, such
as the distance-dependent probability of connection used in previous studies (Jar-
man et al. 2014), introduce already by themselves a clustered connectivity, thus
potentially overriding the changes based on the topology itself. Specifically for the
case of our model, an initial spatially constrained, distance-dependant connectivity
could also create ‘proto-modules’ upon which the connectivity would develop.
Due to their relative simplicity, the rules tended to disconnect the evolving net-
works. This consequence can also be found in previous studies with this type of
models, where other modeling choices were made, such as discarding runs with dis-
connections or explicitly using network size and density that avoid such scenario
(Berg & Leeuwen 2004; Rubinov et al. 2009). From a practical point of view, we
chose a number of rewiring steps that avoids such scenario. We recognize an inter-
esting line for future work taking into account possible counteracting mechanisms
that might balance out disconnections and add realism to the model.
Regarding the plausible biological implementation, we chose a simple abstract
model for computational tractability. It would be also interesting to compare our
framework with more biologically realistic dynamical models, such as networks of
spiking neurons.
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4.5 Sequential Reinforcement model
Heterogeneous degree distributions are ubiquitous in biological networks in

general and brain networks in particular (Newman 2006; Sporns 2011). There
are a number of open questions when it comes to the best way to mathematically
describe them (Stumpf & Porter 2012; Broido & Clauset 2019), but such a dis-
cussion is beyond the scope of this discussion and thus we adopted a relatively
flexible notion of heterogeneous degree distribution, namely a distribution that
extends well over the expectations for counterpart Erdos Renyi graphs, accurately
described by a binomial distribution. In this section I will present a study with
a minimalistic plasticity model, the Sequential Reinforcement, that promotes the
creation of links between from a node 𝑖 to a not yet connected node 𝑗 for which
the sequential activation 𝑖 → 𝑗 was the maximum, while preserving the network
density by removing a randomly picked link.

4.5.1 Emergence of heterogeneous degree distribution

We found that this simple mechanism is enough to remodel the degree dis-
tribution of an initially random graph into a heterogeneous degree distribution.
This results are in line with previous work with a similar plasticity rule, but where
the dynamics of the network was represented by a diffusion process, being the
diffusion rate a crucial parameter to be tuned (Jarman et al. 2017). Our model
is a simpler one, e.g., does not have such a global order parameter, but still has
some essential dynamical properties of neural systems, such as the non-linear ac-
tivations and a refractory period. Modeling work with more biologically detailed
models has also shown emergence of long tail distribution of link weights with an
STDP-like model (Effenberger et al. 2015). An important difference is though,
that their network activity is driven by a permanent input to the nodes, while our
model is only based on the ongoing self-sustained activity of the network under
the SER model, thus being a scenario with less assumptions. This is important, as
previous modeling work has also shown that the input itself can shape the network
structural connectivity of a network and promote by itself the emergence of certain
topological features (Hartley 2020).
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Another interesting finding from the Sequential Reinforcement model was the pres-
ence of a long-term stationary state of the degree distribution. After an initial
strong remodeling of the connectivity pattern, the skewness of the degree distribu-
tion stabilized at a consistently similar value for all the runs simulated. That is,
in spite of the ongoing application of the plasticity rule the system showed a form
of attractor state where a balance was achieved without any extra explicit control
mechanism imposed on top of the plasticity rule. This type of self-regulated inter-
play between topology and dynamics has been demonstrated to be important in
the emergence and maintainance of dynamical regimes thought to be important
for the dynamics of biological neural networks, such as self-organized criticality
(Landmann et al. 2020). The core idea behind the self-regulatory phenomenon is
that patterns of node activity could reflect underlying topological structural fea-
tures of the network, thus making activity-based plasticity to indirectly affect the
topology in specific ways that could promote the right balance. We observed in
our model a correlation between sequential activations and degrees of nodes, so
we can hypothesize that a similar interplay could have taken place and, at least
partially, contributed to the long-term stationary behavior that we reported.

4.5.2 Predictability of the final degree distribution

The next interesting finding from our experiments with the Sequential Re-
inforcement rule was that the final degree distribution was to some extent related
to the initial one. That is, even after all the rewiring events the final state of the
network still preserved information about the initial degree distribution. This is
interesting not only because it allows for certain predictability, but also because
it points to the importance of contingencies in the evolution of complex systems
such as brain networks. Previous modeling studies have shown that the initial
graph used as seed can lead to radically dissimilar outcomes in terms of the final
topology to which the network converges. For example, a model of preferential
attachment based on the activity of random walkers on the network had to be
necessarily initialized with a very special graph, i.e., a ring graph, in order to find
power-law degree distributions as typically expected from common preferential at-
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tachment, which constitutes a rather strong assumption (Herrera & Zufiria 2011).
We opted for a more conservative approach in our modeling and only started with
random graph our simulations, as an attempt to assume as little as possible about
the initial state. In the realm of models more closely related to brain networks,
previous work on neural networks and STDP-like plasticity has also demonstrate
that small asymmetries in the initial structure can be amplified by the synaptic
plasticity (Effenberger et al. 2015). This findings also align with our work pre-
sented in previous sections, where the Topological Reinforcement rule exploited
subtle initial asymmetries in random networks to carve a modular network struc-
ture by amplifying the asymmetries.
This sensitivity to initial conditions is a generally important fact for brain networks
if we take into account that initial structure in the connectivity can emerge from
developmental processes, thus providing with an initial state that could heavily
influence later shaping of the network topology. Recent modeling studies have
shown how simple developmental models of brain development informed by gen-
eral spatio-temporal developmental principles can account for the formation of a
scaffold of topological features that could later be refined by activity-dependant
mechanisms (Goulas et al. 2019). Our model results complement such studies, as
we showed that even just tonic activity of the network could lead to shaping its
degree distribution into a heterogeneous one.

4.5.3 Stability of the node degree ranking structure

In order to better understand the long-term behavior of the Sequential Re-
inforcement model, we analyzed the stability of the degree distribution along the
run. The goal was to gain a more detailed insight into the organization of such
distribution that goes beyond the mere global shape of the distribution and we
found that the overall degree ranking of nodes evolved into a relatively well orga-
nized and stable structure. The largest hubs established themselves as the group
with the largest overlap across time. Previous modeling work has denominated
this hubs dynamics as “frozen hubs” (Rosvall & Sneppen 2003). In our model we
do not have a complete extreme situation and there is a small turnover of hubs,
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most likely because of the randomizations that our model implies as part of the
rewiring rule. Importantly, the emergent hub group in our model also showed
the lowest variance along the simulation across runs. A similar feature has been
reported for other real world biological networks with clear hub structures (Jeong
et al. 2000), which is interesting if we think about these properties as signatures
of hub networks that the behavior of the model could reproduce.

4.5.4 Limitations and future work

The presented results should be interpreted in the light of several limitations
of our approach. The simplicity of the Sequential Reinforcement model should be
also acknowledged, both in terms of the minimalistic nature of the model as one
with very few parameters and the limited extrapolation capacity to real-world
neuronal networks that comes with such a model formulation. As a consequence,
further refinement would be appropriate to render the model more comparable to
more sophisticated plasticity mechanisms, such as spike-timing dependent plastic-
ity.
Another fruitful future work direction would be to explore initial graphs other than
random ones. As previously mentioned, that was a modeling decision responding
to the necessity of making as few assumptions as possible. For example, when ex-
perimental techniques allow it, early brain anatomical data could be incorporated
in the model as a prior basis upon which the plasticity rule takes place. Lastly,
compared to the Topological Reinforcement model that led to the emergence of
modules, we unfortunately could not identify a clear topological gradient (such as
reinforcement of common neighborhoods) for the Sequential Reinforcement model.
Despite of a number of attempts to relate the topological changes promoted by the
activity-based plasticity rule to a mechanistic explanation at the pure topological
level, we could not come to a conclusive result along those lines. Some of the
fundamental problems found along that exploration were the following: A strong
tendency of pure topological rules to fall into “winner-takes-all” regimes, which led
to an artefactual dominance of one or two nodes connecting to almost all the rest of
the nodes; generation of unrealistic network properties, such as a large number of
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disconnections which then force additional modeling assumptions, such as explicit
reconnections events; difficult balance of the different sources of noise that affect
the information accesible for the nodes, for example, at the moment of forming
new connections, that can lead to the effects of the plasticity rule to be completely
overriden by the random reinsertion of links. Therefore, this also remains as an
interesting research direction that would allow to better understand the interplay
between topology and dynamics in shaping the connectivity of brain networks.

4.6 Bio Echo State Networks
We addressed two fundamental questions aiming at bridging the gap be-

tween artificial and biological neural networks: Can actual brain connectivity guide
the design of better ANNs architectures? Can we better understand what network
features support the performance of brains in specific tasks by experimenting with
ANNs? Concretely, we investigate the potential effect of connectivity built based
on real connectomes on the performance of artificial neural networks. To the best
of our knowledge, this is the first cross-species study of this kind, comparing results
from empirical connectomes of three primate species.
The gap that we aimed at emerges from two under-explored aspects in artificial
and biological neural networks. First, connectivity patterns (i.e., architectures) of
ANNs are very different from actual brain connectivity. For example, echo state
networks use a sparse, randomly connected reservoir, which is incongruent with
the highly non-random connectivity empirically found in the brain (Sporns et al.
2004; Sporns 2011). Thus it is not clear, how more realistic architectures would
impact the performance of such ANNs. Second, computational neuroscience stud-
ies have characterized the relation between structural and functional connectivity
patterns (Breakspear 2017; L. Suárez et al. 2020) and attempted to relate brain
connectivity to behavioural differences (Mišić & Sporns 2016; Seguin et al. 2020).
Nevertheless, it remains unclear how those patterns of neural activity translate
into brain computational capabilities, i.e., how they support performance of brain
networks on concrete tasks. We set out to evaluate real whole brain connectomes
on specific tasks, in order to identify a potential role of such wiring patterns, in a
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similar vein to previous studies on feedforward networks (Gaier & Ha 2019).

4.6.1 Bio ESNs match performance of classical ESNs

We found that constraining reservoir connectivity of ESNs with real connec-
tomes led to performances as good as for the random conditions, classically used
for ESNs, as long as a certain degree of randomness is allowed. In general, we
observed a degeneracy of structure and function, in which different topologies lead
to the same performance, so no unique connectivity pattern appears necessary to
support optimal performance in this modeling context.
Our results were similar across tasks. This is to a certain extent logical considering
that both tested tasks are memory tasks, but the consistency also speaks for the
robustness of the networks to different recall mechanisms.
Importantly, all our results were consistent across the three evaluated species. This
supports the generality of our findings, at least for the evaluated tasks. This ob-
servation is especially relevant considering that the connectomes were obtained
with very different experimental methodologies (Markov et al. 2012; Majka et al.
2016; Betzel & Bassett 2018). Moreover, our experiments with scaled up connec-
tomes showed similar performance scores across species when the reservoir size
was matched. Nevertheless, the different experimental methodologies to infer the
connectivity prevent us from drawing specific comparative conclusions across con-
nectomes, such as whether the wiring diagram of any of the tested connectomes is
intrinsically better suited for the task regardless of the size.

4.6.2 The importance heterogeneity of connections

Our surrogate networks also showed that, in general terms, the more het-
erogeneity and randomness allowed in the connectivity, the better performance the
BioESNs achieved. Interestingly, that effect was also observable by augmenting
the computational capacity of the models by means of larger reservoirs. Using the
bio2art framework, we scaled up connectomes with either homogeneous or hetero-
geneous interareal distributions of connectivity weights and found that only the
larger reservoirs with heterogeneous wiring could overcome the lower performance
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inherent to the underlying connectivity. This points out once again to the impor-
tance of random wiring diagrams for ESNs’ performance. This fact is as well in line
with a recent study using human connectivity as reservoir of ESNs, which showed
that random connectivity indeed achieved globally maximal performances across
almost all tested hyperparameters, provided the wiring cost is not considered (L.
E. Suárez et al. 2020). The functional importance of randomness is also consistent
with the fact that stochastic processes play a fundamental role in brain connectiv-
ity formation, both at a micro and meso/macro-scale, as supported by empirical
(Kasai et al. 2010), and computational modeling studies (Beul et al. 2018; Goulas
et al. 2019).

4.6.3 Generalizability of the framework

While here we tested the performance of the ANNs in two memory tasks,
our approach is versatile and extendable, since it allows an open ended examina-
tion of the consequences of network topology found in nature for artificial systems.
Specifically, the following contributions hold: First, we offer an approach for creat-
ing ANNs with network topology dictated directly from empirical observations in
BNNs. Second, creating and upscaling BioESNs from real connectomes is in itself
a highly non-trivial problem and here we offer, although not exhaustively, insights
into the consequences of each strategy. Third, our method allows building ANNs
with network topologies based on empirical data from diverse biological species
(mammalian brain networks).

4.6.4 Limitations and future work

We are aware of a number of limitations of our study as well as interesting
research avenues for future work.
We evaluated our BioESNs models on two different memory tasks framed as re-
gression problems; so future work could, for example, include classification tasks
as well as more ecologically realistic tasks.
Connections in the adult brain change constantly as a consequence of stochastic
fluctuations and activity-driven plasticity, e.g., learning and memory (Abbott &
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Nelson 2000). In our study, we assumed connectivity within the reservoir to be
constant during the tasks. Previous studies have shown some effects of plasticity
rules on ESNs (Barrios Morales 2019), so we foresee interesting future work along
those lines as well.
As we aimed at testing the potential impact of the global wiring diagram of con-
nectomes, we consider the entire connectomes as one unique network to create the
reservoirs. This is different from a previous study where the connectivity was di-
vided into subnetworks corresponding to brain systems that were separately trained
(L. E. Suárez et al. 2020). We decided to avoid here the strong assumptions that
such an approach implies, but we recognize a potential for future studies in the
direction, for example, exploring the division of networks as different input/output
subsystems.

4.7 Concluding remarks
I presented the results of a series of studies in which the topology of brain

networks was the common denominator, the underlying thread. In particular, our
studies aimed at two goals: First, understanding how certain characteristic topolog-
ical features of brain networks could emerge. Second, evaluating the performance
of networks which embodied real brain connectivity on concrete tasks.
We approached the first goal from a modeling perspective of rule-based plasticity
models. The focus of the approach was to explore simple rules that could lead to
the emergence of two fundamental properties of brain networks: modular organi-
zation and a heterogeneous degree distribution.
The models we explored were certainly minimal in several ways, but they never-
theless allowed us to gain instructive insight into how simple mechanisms lead to a
reorganization of a complex network such that characteristic topological features
of brain networks emerge.
In general, we found that simple rules, such as topological reinforcement and se-
quential reinforcement, can lead to network topology remodeling even in the ab-
sence of inputs and just driven by the tonic activity of the network. Interestingly,
some of the plasticity rules that we explored were able to amplify relatively sub-
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tle asymmetries of the initial random graphs that we started the simulations with,
which means that an initial connectivity scaffold resulting from developmental pro-
cesses could then further be refined by simple plasticity rules acting purely under
the sustained activity of the network. Despite of the simplicity of our framework,
we trust it to carry a conceptual value that contributes to understanding the fun-
damental principles of brain organization. Our second goal was to evaluate the
performance on concrete tasks of networks which embody real brain connectiv-
ity. This was a cross-species study with a hybrid approach integrating real brain
connectomes into Echo State Networks, which we used to solve concrete memory
tasks, allowing us to probe the potential computational implications of real brain
connectivity patterns on task solving. We found results consistent across species
and tasks, showing that biologically inspired networks can perform as well as clas-
sical echo state networks. An important prerequisite for that was a minimum level
of randomness and diversity of connections, which showed a crucial importance of
the diversity of interareal connectivity patterns, potentially stressing the relevance
of stochastic processes determining neural networks connectivity in general. Our
work represents a new interface between network neuroscience and artificial neu-
ral networks, precisely at the level of the network topology. We contributed an
original approach to blend real brain connectivity and artificial networks, paving
the way to future hybrid research, a promising exploration path leading to poten-
tial better performance and robustness of artificial networks and understanding of
brain computation.
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Summary

5.1 English Summary
The networks of connections between neurons and brain regions are the

physical substrate of brain function. The topology of these brain networks, i.e. the
wiring diagram, exhibits characteristic features across species and spatial scales.
We addressed two questions about brain networks topology. First: Which plas-
ticity mechanisms could lead to the emergence of the characteristic topological
features of brain networks? Second: Which effect does the connectivity of brain
networks have on their performance on concrete tasks?
Two topological features of brain networks are crucially important for information
processing: Modular organization and a heterogeneous distribution of links leading
to nodes with many connections, known as hubs. However, the mechanisms under-
lying the generation and maintenance of such characteristic topological features
of brain networks are still unclear. We carried out an exploration of plasticity
mechanisms that could lead to formation of modules and heterogeneous degree
distributions in brain networks.
We first formulated a network model with excitable nodes and discrete determin-
istic dynamics, where we studied the effects of a Hebbian plasticity rule on global
network topology. This simple rule reorganized the network topology into a mod-
ular structure and enhanced the correlation between structural and functional
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connectivity, regardless of the initial structure. Nevertheless, the final modules
were dominated by the deterministic formulation of the used dynamical model.
As a next step, we went beyond those limitations with another model – the Topo-
logical Reinforcement (TR). The TR model was derived from a purely topological
perspective, which even allowed for an implementation without neural activity.
The TR rule acted iteratively enhancing the topological overlap between nodes
and evolved initially random networks towards a modular architecture by ampli-
fying initial “proto-modules.” We also showed this topological selection principle
acting in a biologically more realistic fashion with an activity-based rule, obtaining
consistent results with the pure topological rule, suggesting the reinforcement of
topological overlap as a fundamental mechanism contributing to modularity emer-
gence.
Subsequently, we studied a model aiming at explaining the emergence of a hetero-
geneous degree distribution - the Sequential Reinforcement model. This activity-
based plasticity model promoted the creation of links between nodes with high
correlations delayed in time, which led to a remodelling of the degree distribution
into a heterogeneous degree distribution. The final degree distribution was related
to the initial one and reached a stable organization across time, showing that the
model could lead to a self-organized stable connectivity pattern.
Our last study dealt with the implications of real brain networks topologies on ma-
chine learning tasks. We carried out a cross-species study with a hybrid approach
integrating real brain connectomes and Echo State Networks (ESNs) that allowed
us to probe real brain connectivity on concrete tasks. We found that biologically
inspired networks performed as well as classical ESNs, provided a minimum level of
randomness and diversity of connections was present. Our results also highlighted
the relevance of the diversity of interareal connectivity patterns.
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5.2 Deutsche Zusammenfassung
Die Netzwerke von Verbindungen zwischen Neuronen und Gehirnarealen

sind die physikalische Grundlage von Hirnfunktionen. Die Topologie solcher
Hirnnetzwerke, d.h. der Schaltplan, zeigt charakteristische Eigenschaften, die
sowohl bei verschiedenen Tierarten als auch über verschiedene räumliche Skalen
hinweg zu finden sind. Wir sind zwei Fragen über Hirnnetzwerke nachgegangen.
Erstens: Welche Plastizitätsmechanismen könnten zur Entstehung der charakter-
istischen topologischen Eigenschaften führen? Zweitens: Welchen Effekt hat die
Topologie von Hirnnetzwerken auf die Performance dieser Netzwerke beim Lösen
von konkreten Aufgaben.
Zwei topologische Eigenschaften von Hirnnetzwerken sind besonders wichtig für
die Informationsverarbeitung: Modulare Organisation und heterogene Verteilung
von Verbindungen (Kanten), welche Knoten mit vielen Verbindungen impliziert -
so genannte Hubs. Trotzdem sind die Mechanismen, die zur Entstehung und Erhal-
tung von solch charakteristisch topologischen Eigenschaften von Hirnnetzwerken
führen, unbekannt. Wir haben eine Exploration von Plastizitätsmechanismen
durchgeführt, die zur Entstehung von Modulen und heterogener Verteilung von
Verbindungen führen könnten. Zuerst haben wir ein Modell von exzitablen
Knoten und diskreter Aktivität formuliert. Dabei haben wir die Effekte einer
Hebbian-Plastizitätsregel auf die globale Netzwerktopologie untersucht. Diese
einfache Regel rief eine Reorganisation der Netzwerktopologie mit modularer
Struktur hervor. Dieser Effekt trat unabhängig von den Ausgangsbedingungen der
Simulation auf und hat zu einer erhöhten Korrelation zwischen struktureller und
funktioneller Konnektivität geführt. Dennoch waren die entstandenen Module
durch das deterministische Aktivitätsmuster des Modells limitiert. Im nächsten
Schritt haben wir anhand eines neuen Modells - dem Topological Reinforcement
(TR) Modell - diese Limitationen überwunden. Das TR Modell wurde aus einer
rein topologischen Perspektive konzipiert, die sogar eine Implementierung ohne
jegliche neuronale Aktivität ermöglichte. Die TR-Regel hat iterativ für eine
stärkere topologische Überlappung zwischen den Knoten gesorgt, die wiederum
zu einer Umwandlung von Zufalls- auf Modularenetzwerken geführt hat, indem
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“Proto-Module” von der TR-Regel amplifiziert wurden. Wir waren außerdem
in der Lage eine biologisch realistischere, auf Aktivität basierende Variation des
TR-Modells zu formulieren, die nach dem gleichen Prinzip von topologischer
Selektion funktioniert. Die damit erhobenen Ergebnisse waren konsistent mit
denen der rein topologischen Regel, was für das Topological-Reinforcement-
Prinzip als fundamentalen Mechanismus spricht, der Entstehung von Modulen
in Hirnnetzwerken beiträgt. Des Weiteren untersuchten wir ein Modell, dessen
Ziel die Erklärung der Entstehung heterogener Knotengradsverteilung war -
das Sequential Reinforcement Modell. Diese aktivitätsbasierte Plastizitätsregel
begünstigte die Entstehung von Kanten zwischen Knoten mit zeitlich stark
versetzter Korrelation, was wiederum eine heterogene Knotengradsverteilung
verursachte. Die Knotengradsverteilung am Ende der Simulationen war denen
vom Simulationsanfang ähnlich und zeigte einen stabilen Zeitverlauf. Dies spricht
für ein selbstorganisiertes Konnektivitätsmuster.
Zuletzt untersuchten wir die Rolle der Topologie echter Hirnnetzwerke beim Lösen
von Machine-Learning-Aufgaben. Anhand einer hybriden Herangehensweise haben
wir echte Hirnnetzwerke von verschiedenen Spezies mit Echo State Networks
(ESNs) integriert, was die Testung dieser Hirnnetzwerke ermöglichte. Wir haben
gezeigt, dass die biologisch inspirierten ESNs eine so gute Leistung wie klassische
ESNs haben konnten, solange genügend zufällige und diverse Verbindungen
vorhanden waren. Unsere Ergebnisse betonen somit die Relevanz der Diversität
der interarealen Verbindungsmuster.
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Supplementary figures

graph instance

A

B

Figure 7.1: Robustness of results for different initial random graph instances, final net-
works characteristics. (A) The heat maps show a summary of the results for 100 different
initial random graph instances used as initial condition. For each one, 500 simulation
runs were performed. For each final graph, modularity (Q), characteristic path length,
mean clustering coefficient and and small-worldness coefficient (S) were computed. Each
column of the heat map represents the distribution of values obtained across 500 simu-
lations carried out with the same initial random graph instance. (B) Examples of final
adjacency matrices of individual runs with different network sizes (𝑁) and densities (𝜆).
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Supplementary figures

graph instance

A

B

C

D agreements similarity

Figure 7.2: Robustness of results for different initial random graph instances, correspon-
dence between initial and final networks. (A-C) The heat maps show a summary of the
results for 100 different initial random graph instances used as initial condition. Each
column of the heat maps represents the distribution of values obtained across 500 simu-
lations carried out with the same initial random graph instance. (A) Distribution of the
correlation values between all pairs of initial and final networks. (B) Partition overlap
between all pairs of initial and final networks (quantified as normalized mutual informa-
tion, NMI). (C) Partition distance between initial (𝑃𝑖𝑛𝑖𝑡) and final (𝑃 ) agreements. (D)
Similarity between 𝑃𝑖𝑛𝑖𝑡 and 𝑃 agreements, the scatter plot (left) shows the values over
100 different random graph instances used as initial condition, and the histogram (right)
represents the Pearson’s correlation coefficient between all pairs of 𝑃𝑖𝑛𝑖𝑡-𝑃 .
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Figure 7.3: Probability of network disconnection and steady state for long runs. (Left)
Probability of network disconnection as a function of the number of rewiring steps. (Mid-
dle) Module partition overlap and (Right) correlation between the network at the typical
final point (orange line) and at all other time points (shown as mean and standard devi-
ation). In all cases, the orange line shows the typical length of our simulations. Results
from 1000 runs (aggregated from 10 network instances, 100 runs each) of networks with
𝑁 = 100 nodes and average connectivity 𝜆 = 10 (i.e., 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 0.1).
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