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Abstract

A site-selective extension of the dynamical mean-�eld approach is proposed and implemented.
The implementation supposes remaining single impurity problems to be solved numerically ex-
act bymeans of a continuous-time quantumMonte Carlo (CT-QMC) solverwhich is based on the
hybridization expansion. It is then successfully used to study site dependent magnetic phenom-
ena in the periodic Andersonmodel (PAM) on two very di�erent lattice geometries. In a �rst sce-
nario, the PAM is considered on the triangular lattice. To study the competition between Kondo
screening and indirect magnetic exchange, this geometrically frustrated model is systematically
scanned from theweak- to the strong-coupling regime for awide range of �llings n. Themagnetic
phase diagram is derived in terms of the site-selective dynamical mean-�eld approach by self-
consistent mapping onto three independent single-impurity models corresponding to the three
correlated f orbitals in the unit cell. At half-�lling, the system turns out to be a non-magnetic
Kondo insulator for all considered interaction strengthsU > 0which immediately develops into
a non-magnetic metallic Kondo-singlet phase for �llings slightly below half-�lling. On the other
hand, indirect magnetic exchange between the f moments results in antiferromagnetic order
at lower �llings. The antiferromagnetic and the Kondo-singlet phases are separated in the U-n
phase diagram by an extended region of partial Kondo screening, i.e., a phase where the mag-
netic moment at one site in the unit cell is Kondo screened while the remaining two are coupled
antiferromagnetically. At even lower �llings the system crosses over from a local-moment to a
mixed-valence regime where the minimization of the kinetic energy in a strongly correlated sys-
tem gives rise to a metallic and partially polarized ferromagnetic state. In a second scenario, the
�nite-temperature properties of an Anderson lattice with regularly depleted impurities are inves-
tigated. The physics of thismodel is ruled by two di�erentmagnetic exchangemechanisms: Con-
ventional Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction at weak hybridization strengthV
and a novel inverse indirectmagnetic exchange (IIME) at strongV, both favoring a ferromagnetic
ground state. The stability of ferromagnetic order against thermal �uctuations is systematically
studied by static mean-�eld theory for an e�ective low-energy spin-only model emerging pertur-
batively in the strong-coupling limit as well as by dynamical mean-�eld theory (DMFT) for the
full model. The Curie temperature is found at a maximum for a half-�lled conduction band and
at intermediate hybridization strengths in the crossover regime between RKKY and IIME.
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Zusammenfassung

Eine Gitterplatz-selektive Erweiterung der dynamischen Molekularfeldtheorie (englisch: dyna-
mical mean-�eld theory, DMFT) wird vorgeschlagen. Entsprechende Implementierung sieht ei-
ne numerisch exakte Lösung resultierender Einzelstörstellenprobleme durch einen in kontinu-
ierlicher Zeit operierenden Quanten-Monte-Carlo-Algorithmus vor. Dieser basiert auf der stö-
rungstheoretischen Reihenentwicklung der Hybridisierung. Das geschilderte methodische Kon-
strukt wird erfolgreich zur Untersuchung von Gitterplatz-abhängigen magnetischen Phänome-
nen im periodischen Anderson-Modell auf zwei unterschiedlichen Gittergeometrien herange-
zogen. In einem ersten Szenario wird eine dreieckige Gitterstruktur betrachtet. Um den Kon-
kurrenzkampf zwischen Kondo-Abschirmung und indirektem magnetischen Austausch zu un-
tersuchen, wird das geometrischer Frustration ausgesetzte Modell systematisch innerhalb ei-
ner großen Bandbreite verschiedener Füllungen n vom Bereich der schwachen bis hin zur star-
ken magnetischen Kopplung untersucht. Das zugehörige magnetische Phasendiagramm wird,
im Sinne der Gitterplatz-selektiven DMFT, durch eine selbstkonsistente Abbildung der drei in
der Einheitszelle enthaltenen korrelierten f-Orbitale auf drei voneinander unabhängige Ein-
zelstörstellenmodelle ermittelt. Bei Halbfüllung entpuppt sich das System für alle betrachteten
WechselwirkungenU > 0 als amagnetischer Kondo-Isolator, welcher für Füllungen leicht unter-
halb der Halbfüllung sofort in eine Phase amagnetischer Kondo-Singuletts übergeht. Dementge-
gen resultiert für kleinere Füllungen ein indirekter magnetischer Austausch antiferromagne-
tischer Ordnung zwischen den magnetischen f-Momenten. Die Phasen antiferromagnetischer
Ordnung und der Kondo-Singuletts werden im U-n Phasendiagramm durch einen ausgedehn-
ten Bereich partieller Kondo-Abschirmung separiert. Letztere bezeichnet eine Phase, in welcher
pro Einheitszelle das magnetische Moment eines Gitterplatzes durch den Kondo-E�ekt abge-
schirmt wird, während die verbleibenden beiden magnetischen Momente antiferromagnetisch
miteinander koppeln. Bei noch niedrigeren Füllungen geht das System von einem Regime der
lokalen magnetischen Momente in ein Regime gemischter Valenzen über. Hier führt die Mi-
nimierung der kinetischen Energie innerhalb eines stark korrelierten Systems zu einem par-
tiell polarisierten ferromagnetischen Zustand. In einem zweiten Szenario werden die Eigen-
schaften des hinsichtlich der Störstellen homogen ausgedünnten Anderson Gitters bei endlicher
Temperatur untersucht. Die Physik dieses Modells wird durch zwei verschiedene magnetische
Austausch-Mechanismen geprägt: Die konventionelle Ruderman-Kittel-Kasuya-Yosida (RKKY)
Wechselwirkung bei schwacher und einen neuartigen inversen indirekten magnetischen Aus-
tausch bei starker Hybridisierung V. Beide Austausch-Mechanismen favorisieren einen ferro-
magnetischen Grundzustand. Die Stabilität der ferromagnetischen Ordnung wird hinsichtlich
thermischer Fluktuationen untersucht: Im Rahmen der statischen Molekularfeldtheorie in Be-
zug auf ein störungstheoretisch im Limes starker magnetischer Kopplung auftretendes, e�ekti-
ves niederenergetisches Spin-Modell, mittels DMFT für das voll umfängliche Modell. Die ma-
ximale Curie Temperatur stellt sich bei halb gefülltem Leitungsband und bei mittlerer Hybridi-
sierungsstärke innerhalb des Übergangs zwischen RKKY und inverser indirekter magnetischer
Austausch-Wechselwirkung ein.
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1. Introduction &motivation

The phenomenon of magnetism attracts human interest since ancient times. The �rst in west-
ern civilization who is known to analytically wonder about magnetism was Thales of Miletus.
The famous philosopher, mathematician and astronomer of the ancient Greece believed that
lodestone, a naturally magnetized piece of the mineral magnetite, attracts iron because it has a
soul [Ari10].

Nowadays, the understanding—and with it the more or less abstract models—to theoretically
describe magnetic phenomena, of course have drastically changed: Most technical applications
mainly concentrate on and successfully deal with electromagnetism [Ida15] entirely described in
terms of classical magnetostatics and electrodynamics [Jac98]. These classical �eld theories that
are completely tailored around Maxwell’s equations forbid the existence of magnetic monopoles
but instead reduce the origin of magnetism to the necessary existence of a magnetic moment
which in turn is induced by an electrical ring current—that is by the motion of electrical charge
on a closed loop trajectory. A phenomenological fact which is also valid vice versa and that be-
longs to the conceptual basement of electrical engineering [KMR13]. In order to really under-
stand the macroscopic magnetic behavior of materials like lodestone however, one has to prop-
erly investigate right those events that take place on the microscopic level of such structures.
In this scenery, energy typically scales in magnitudes of Planck’s constant wherefore classical
approaches to some decisive extend fail and thus have to give way to corrections in terms of
quantum [Sak94; Bel06] or even quantum �eld theories [FW03; AS10; BF04]. The origin of mag-
netism, namely the necessary existence of an electrical ring current here to some extend still
holds. The most elementary magnetic moment might considered to be induced by the electronic
spin, a purely quantum theoretical self-rotation associated to a quantized angular momentum
of the single electron, hence its elementary portion of charge. Thereby, the quantization of this
spin-angular-momentum occurs in magnitudes of the Bohr magneton.

By applying this to atoms, molecules or solids, one has to be aware of the following: While prin-
cipally every spinning electron induces a magnetic moment, two moments induced by two elec-
trons that only di�er in the spin quantum number screen each other and thus vanish for the
outside world of the hosting electronic orbital. Consequently, an elementary magnetic moment
can be “felt” as such by its surroundings in the outer world, e.g. in a solid, only if the associated
electron has no counterpart with equal quantum numbers apart from the spin quantum number.
In accordance with Hund’s rules (see e.g. [BJ03]) this always holds in the case of odd-�lled elec-
tronic orbitals. The �lling of electronic orbitals depends on energetic aspects which are usually
de�ned by constellations of parameters of the system under investigation.

Now, proposed that the given energetic circumstances initiate the system to inhibit local mag-
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1. Introduction &motivation

netic moments on the microscopic level, those still have to arrange some principal order among
each other to let the system show up as amagnet bymeans of appropriate detectors in themacro-
cosm. In that sense a macroscopic magnetic permanence may be explained as a consequence of
a microscopic collective phenomena—hence may be categorized as a collective magnetism.

This statement however, raises signi�cant questions: Firstly, for what reasons at all do local mag-
netic moments principally happen to form out? Secondly, why and how should those order? A
model which originally was designed to fundamentally provide a theoretical base to study and
�nally get answers to both questions, but meanwhile has turned out to be amulti-purpose model
in regard to the investigation, simulation and explanation of versatile physical phenomena is the
periodic Anderson model [TSU97].

In momentum space, the periodic Andersonmodel (PAM) generally describes a band of conduc-
tion electrons, often also just denoted as sea or bath of electrons, hybridizing with a narrow band
of correlated electrons. This very special constellation of highly localized and in this speci�c case
thus correlated electrons on the one hand, hybridizingwith free electrons on the other hand bares
physics beyond that of local magnetic moments of high interest. By means of Fermi liquid the-
ory [PN66] the correlated electrons theoretically can be represented by quasi-particles of masses
up to a thousand times heavier than the known electron mass wherefore those electrons may be
categorized as heavy electrons. Correspondingly, the conduction electrons are considered to be
light electrons in this terminology. In that sense, the PAM also served as the model of choice
to describe heavy-fermion materials realized in crystals [Fis+86; TSU97] or in quantum simu-
lations [Neu+07; WA14b]. Furthermore, the charge �uctuations on the correlated orbitals of
the PAM in conjunction with strong spin-orbit coupling naturally leads to the concept of a topo-
logical Kondo insulator [Dze+10; WA14a] which has argued to be realized in SmB6 [Wol+13;
Min+14].

In a corresponding real-space representation, aforementioned bands of the PAM transform into
a lattice of concrete sites that each host a correlated and an uncorrelated electronic orbital. Here,
electrons are allowed to freely move through the lattice because of an installed simple hopping
between the uncorrelated orbitals of the concrete sites. Furthermore, there is a hybridization
in this representation, too, which allows for an electron-exchange between the di�erent orbital
types. As electrons are not allowed to directly hop between di�erent correlated orbitals, in that
sense, electrons in the correlated orbitals are in fact localized, while electrons in the uncorrelated
orbitals are not.

By analogy to the band-characteristics inmomentumspace representation, the correlated orbitals
are generally considered to be narrower in space as the uncorrelated ones. Therefore local corre-
lation e�ectively occurs in the case of electronic double-occupancy of a concrete correlated orbital
due to a non-negligible local Coulomb repulsion that costs the system an additional amount of
energy. By that, for a given well-de�ned Anderson model in equilibrium with a �nite hybridiza-
tion, it is the strength of the Coulomb repulsion that primarily regulates whether an electronic
double-occupancy of local correlated orbitals is energetically favorable for the system or not. A
fact that drastically a�ects the formation of magnetic moments in the correlated orbitals for al-
ready stressed out reasons: If a narrow orbital is doubly occupied by electrons, the associated
spin-induced magnetic moments form a singlet state, hence screen each other and no result-

2



ing magnetic moment is felt by the world around. Apart from that, if the Coulomb repulsion is
chosen strong enough to deny electronic double-occupancy of correlated orbitals, these remain
singly occupied equipping the system with non-screened local magnetic moments. In the end,
the formation of local magnetic moments surely does not only depend on the Coulomb repul-
sion but more on the whole set of already mentioned model parameters as the hybridization, the
orbital energies and last but not least the temperature.

The necessary conditions in which a local moment formation takes place in particular have been
studied in terms of the Anderson impurity model (AIM) in [And61]. In contrast to the PAM,
the AIM only considers one single correlated orbital that hybridizes with a sea of free electrons.
Initially it was proposed by nobel laureate Phil W. Anderson in order to be able to theoretically
describe the relevant physics of an probably magnetic impurity ion like Ce which is nested inside
a homogeneous metallic host material like Fe. Therefore, Anderson models are categorized as
impurity models.

Thorough examinations of impurity models exposed to di�erent sets of parameters allowed for
the discovery and classi�cation of several energetic regimes associated with typical characteris-
tics. Of special interest here, is the so-called local moment regime. In this special regime every
correlated orbital hosts one single electron with its unscreened magnetic moment. It sets the
stage for the occurrence of an itinerant magnetic exchange mechanism in terms of Ruderman-
Kittel-Kasuya-Yosida interaction [RK54; Kas56; Yos57]—an interaction between local magnetic
moments of di�erent sites which evolves indirectly via the host material and typically leads to an
alternating arrangement of next-neighboring local magnetic moments in opposite directions. By
that, a theoretically explainable antiferromagnetic order is established by means of an indirect
non-local exchange mechanism. A common and essential question to be posed now is, how sta-
ble this order may be against competing phenomena. A purely local e�ect that in itself is already
observable in the AIM but in terms of the PAM works against magnetic order is known as the
Kondo e�ect [Kon64]. Proposed the temperature of the system is decreased under a speci�c crit-
ical temperature, the electronic spin that induces a local magnetic moment enters a singlet state
with one or more spins of the host material, the Kondo singlet state. As a drastic consequence
the local magnetic moment is screened by a tight so-called Kondo cloud of conduction electrons
and thus is excluded from taking part in a magnetic long range order.

As RKKY exchange and the Kondo e�ect are ruled by respectively di�erent energy scales the
PAM is confronted with an energetic rival between both phenomena. A rival that inescapably
manifests a parameter-driven quantum phase transition whose corresponding phase diagram is
known as the famous phase diagram of Doniach [Don77; Löh+07]. It shows a phase of antifer-
romagnetic order due to the itinerant exchange and separated from that a paramagnetic phase of
Kondo singlets—in terms of Fermi liquid theory an unordered heavy-fermion phase—in which
local magnetic moments still exist but are screened bymeans of the Kondo e�ect. As already em-
phasized, the physics behind theDoniach phase diagram entirely takes place in the localmoment
regime of the Anderson lattice, thus usually at strong Coulomb repulsion. In this case Ander-
son models may be approximated by more simpler Kondo impurity models. Those are e�ective
low-energy models of the Anderson-type impurity models in terms of a canonical transforma-
tion [SW66]. By that, the crucial formal di�erence between Anderson and Kondo models lies in
the interpretation of the formed local magnetic moments: Here, the Kondomodels come around

3



1. Introduction &motivation

as spin-type models and charge �uctuations between the correlated and uncorrelated orbitals
are suppressed. Therefore, the Anderson lattice has richer physics than the Kondo-lattice model
because it still allows for real charge �uctuations between un- and correlated impurity orbitals.

Besides the already mentioned bare parameters like the Coulomb repulsion or the hybridization
strength, the physics of local magnetic moments in terms of the Anderson lattice drastically de-
pends on the choice of the geometry of this lattice. A triangular Anderson lattice tuned into its
local-moment regime may act as a model of a geometrically frustrated magnet. While frustrated
magnets are subjects of contemporary research per se [Bal10], also some heavy-fermion materi-
als, such as CePdAl, are synthesized on frustrated geometries [Oya+08]. By confronting the PAM
to geometrical frustration, even in energetic regimes where the absence of a Kondo e�ect is en-
sured, the then unscreened local magnetic moments may not establish a total antiferromagnetic
order typically favored bymeans of the RKKY interaction anymore. Ideally the internal structure
of the PAM principally grants for a way out of this unfavorable situation: A site-selective Kondo
e�ect that alleviates the frustration thus allowing the remnant spins to order magnetically via
the RKKY interaction. Thereby geometric frustration extends the energetic rival between Kondo
e�ect and RKKY interaction by another energy scale in the problem associated with the release
of frustration via the just mentionedmechanism known as partial Kondo screening [Mot+10]. A
site-dependent screening like this can occur spontaneously or can re�ect chemically di�erent en-
vironments in compounds with large unit cells. The mechanism of partial Kondo screening has
attracted considerable attention in the past: Back in 1991 Ballou, Lacroix, and Nunez Regueiro
published results of their investigations of frustration-induced vanishing of magnetic moments
in RMn2 systems by means of a model they derived from the Hubbard Hamiltonian [BLN91].
Then, Benlagra, Fritz, and Vojta reported in 2011 on their studies on competitive versus cooper-
ative Kondo screening in Kondo lattices with nonequivalent local moments [BFV11]. Of special
interest in the context of magnetic phases in the geometrically frustrated PAM were two publi-
cations of Hayami, Udagawa, and Motome [HUM11; HUM12] out of the years 2011 and 2012:
Both provide magnetic phase diagrams of the ground-state model at zero temperature, numer-
ically calculated by means of static mean-�eld approaches. This naturally poses the question,
whether it is principally possible to �nd and stabilize phases of PKS also beyond a static mean-
�eld approximation in terms of a dynamical mean-�eld approach, hence by means of dynamical
mean-�eld theory (DMFT).

Even the simplest most commonmodels of quantummany-particle systems represent full quan-
tummany-body problems, which implies one is blamed to work inside a describing Hilbert space
of exponentially growing dimension with respect to a linearly increasing number of lattice sites.
Consequently analytical solutions become rare and can principally only be obtained for very
small systems or in terms of special limits of underlying parameter regimes that often do not
contain, show or feedback the physics of interest such as phase transitions. In order to treat the
full model within time-scales signi�cantly shorter than the average human lifetime one there-
fore depends on strong numerical aid in form of powerful approximation schemes. In the case
of strongly correlated models one additionally has to handle the di�culty of choosing approxi-
mations in a way that the physical impact induced by the electron-electron interaction remain
conserved. While static mean-�eld theory evidently fails in regard to this requirement a dynam-
ical mean-�eld approximation—as per construction—serves well on this demand.
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Generally, the DMFT [MV89; Geo+96] is a comprehensive non-perturbative and thermodynam-
ically consistent numerical method that was especially developed to provide an approximate
treatment of correlated electronic lattice models such as the PAM of preferably high dimension.
Thereby the originalmodel conceptually is self-consistentlymapped on, thus reduced to an e�ec-
tive single impurity model which is then left to be solved by an appropriate impurity solver. Like
its static counterpart, the DMFT becomes exact in the limit of in�nite dimension D → ∞ and is
methodically based on the locality of the systems self-energy in that limit (c.f. section 4.2).

The dynamical mean-�eld approach has successfully been applied to calculations of the PAM:
The �rst notable publication in that spirit was the examination of the symmetric PAM in in�-
nite dimensions with an essentially exact quantum Monte Carlo (QMC) method [Jar95]. Fur-
thermore, the paramagnetic ground state of the PAM was studied by DMFT and the usage of a
numerical renormalization group (NRG) solver [PBJ00].

DMFT neglects the feedback of non-local, e.g. magnetic correlations, on the local self-energy
and the local one-particle Green’s function but correctly accounts for all local correlations. This
represents a decisive step beyond the static mean-�eld approach. In order to hunt for the PKS
phase in the triangular Anderson lattice, a variant of the DMFT has to be applied, which treats
the di�erent correlated orbitals in the suitably chosen unit cell independently, similar to a real-
space DMFT approach [PN97]. We will show that the competition between RKKY coupling and
Kondo screening, supplemented by lattice frustration leads to a remarkably rich phase diagram
including a PKS phase emerging in the local-moment regime at the border between paramagnetic
heavy-fermion and magnetically ordered phases.

As already mentioned above, by means of DMFT, this technically is only possible by the usage
of a stable and well-suited impurity solver. On demand of this, we choose a segment variant of
the continuous-time hybridization expansion (CT-HYB) [Wer+06; WM06] algorithm out of the
family of continuous-time quantum Monte Carlo impurity solvers [Gul+11]. Methodically, this
algorithm provides Monte Carlo (MC) estimators of physical observables by means of the sam-
pling of the grand canonical partition function of the given impurity model, here the PAM. In
particular, the sampling is based on a diagrammatic expansion of stochastically controlled order
applied to the hybridization part of the PAM. Per construction this method works numerically
exact and o�ers the technically advantageous opportunity to solve single-impurity problems di-
rectly in terms of Matsubara frequencies instead of imaginary times. It is predestined as the im-
purity solver of choice to solve complex impurity problems at strong coupling and with the full
Coulomb repulsion [Ass14], especially in the framework of DMFT [WM07; Wer+08; Par+13;
WA13; WA14a].

The described numerical apparatus of DMFT combined with the CT-HYB segment code turns
out to be very �exible in regard to the used lattice geometry. This invites for the examination
of another Anderson lattice besides the triangular one. Of special interest here, is the depleted
PAM. To be more speci�c, a periodic Anderson lattice thinned out in a regular manner with
regard to the correlated impurity orbitals. The depleted Anderson lattice model has been con-
sidered beforehand to describe arti�cial Kondo systems realized as ultracold atoms trapped in
optical lattices [SHP14]. It is related to two-dimensional superlattices consisting of periodic ar-
rangements of correlated-electron- and non-interacting layers [PTK13]—thus may be used to

5



1. Introduction &motivation

describe systems of magnetic atoms on non-magnetic metallic surfaces where a manipulation
of the adatom geometry and a precise mapping of magnetic couplings is accessible to scanning-
tunneling techniques on an atomic scale [ES90; HLH06; Wie09; Kha+11; Kha+12].

From a general point of view, the depleted PAM may o�er a deeper insight into the physics of
magnetic order of correlated orbitals coupled indirectly by conduction electrons. Ground-state
calculations of the depletedKondo latticemodel (KLM) and the PAM in the local-moment regime
at Zero temperature by means of variational matrix product states (VMPS) and DMFT have coin-
cidentally shown surprising results [SGP12]. Themagneticmoments of the remaining correlated
impurity orbitals in terms of RKKY couple ferromagnetically for rather weak magnetic coupling
between those and the corresponding magnetic moments of the surrounding electron due to
the RKKY interaction. This however drastically changes towards strong couplings, where the
Coulomb repulsion and the local hybridization strength getting much stronger than the nearest-
neighbor conducting-electron hopping. Here, on every site that still hosts a correlated impu-
rity orbital a Kondo singlet forms out. As a direct consequence, the mentioned ferromagnetic
coupling between magnetic moments on the remaining correlated orbitals globally vanishes.
Instead, the magnetic moments of the free bath orbitals hosted on sites that only consist out
of one uncorrelated orbital each, show a ferromagnetic coupling. A coupling that turned out
to be mediated via the Kondo singlets and thus was named as an inverse indirect magnetic ex-
change (IIME) [STP13]. By means of perturbation theory in regard to an e�ective Hamiltonian
in the strong-coupling limit, the IIME could be identi�ed as a perturbative e�ect of fourth or-
der [TSP14].

In further studies, the e�ective Hamiltonian has been successfully used for temperature-depen-
dent static mean-�eld calculations of the depleted PAM in one up to three dimensions, showing
qualitatively satisfying the crossover from conventional RKKY to the novel IIME and amongst
further results identifying a �at band at the Fermi energy of the system [TSP15]. For one reason,
those studies promised a rather stable thermodynamic behavior of the ferromagnetic coupling
due to RKKY as well as IIME. For another reason, the existence of a �at band due to Stoner’s cri-
terion, suppose the depleted Anderson lattice to behave extremely susceptible to ferromagnetic
order. Therefore, a high critical temperature of the model system is expected. A fact, that possi-
bly bares the chance to be able to experimentally verify the IIME by means of already mentioned
ultracold atoms which are trapped in optical lattices [LSA12].

However, like in our topic before, both predictions of the e�ective mean-�eld approach need to
be veri�ed beyond this approximation with respect to accuracy. In regard to thermodynamical
stability of the ferromagnetic coupling this ideally should be done for a three dimensional model
in order to overcome the theorem of Mermin and Wagner [MW66]. Thus, a possible veri�cation
of the mean-�eld results at �nite temperature and in dimensions higher than two, conceptu-
ally depends on a method that is suited for a thermodynamical application towards the strong
coupling limit in several dimensions while being less approximative than the e�ective mean-
�eld approach. Methodologically non-trivial requirements, that principally could and can not
be ful�lled by the VMPS approach. The VMPS [Sch11], a sophisticated technical realization of
the density matrix renormalization group (DMRG) [Sch05; PE] out from the ranks of tensor net-
works [Orú14] indeed is applicable for calculations at �nite temperature but for technical reasons
is restricted to one dimensional problems [Sch13].
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1.1. Outline of the thesis

Amethod that does ful�ll the above mentioned requirements however is a DMFT approach that
distinguishes between di�erent lattice sites to match the lattice dilution. This comes full circle
with a repetitive demand for our previously explained setup of site-dependent dynamical mean-
�eld theory (sdDMFT) implying a CT-HYB segment code impurity solver adapted to the con-
cerns of the diluted Anderson lattice. In that spirit, we will calculate several transitions from
ferromagnetic to paramagnetic phases in order to get the corresponding critical temperatures for
di�erent hybridization strengths. For calculations in three dimensions in expecting a “RKKY-
to-IIME crossover” these temperatures then should follow the rivaling energy scales of RKKY
for weak and of IIME towards strong hybridizations. Consequently, a maximum of the critical
temperature is expected at intermediate hybridization strength in the crossover regime between
RKKY interaction and IIME. Apart from that, respective DMFT results can be compared to those
available by means of the e�ective mean-�eld approach.

1.1. Outline of the thesis

The topics of this thesis as motivated above are thematically organized into concrete chapters.

In that sense chapters 2 and 3 provide the foundation of theoretical background information
and knowledge that is required in and often will be referenced to by the subsequent chapters.
In chapter 2 we give a compact presentation of those models of many-body systems commonly
used and treatedwithin theoreticalmany-particle physics but additionally conceptionally located
around the PAM. Here, our focus particularly lies on the construction and discussion of repre-
sentingHamilton operators, hencemore on the technical formulation ofmodels as on the implied
physics. Nevertheless we present some physical insights of interest for the subsequent chapters
of the thesis. With the PAM and relative impurity models at hand, we are able to focus on the
physics of local magnetic moments in chapter 3 including a discussion from the formation up to
the Doniach phase diagram and an outlook on further in�uences that disturb magnetic order.

Chapters 4 and 5 entirely report on the methods and the numerical setup which was used to pro-
duce the physical results and insights presented in the subsequent chapters 6 and 7. In particular,
chapter 4 is onmean-�eld theory in general, on DMFT in special and on sdDMFT in very special.
The following chapter 5 gives a very detailed kind of review of the general Markov chain Monte
Carlo (MCMC) methods as used in statistical physics and the very special segment variant of the
CT-HYB approach as a member of the family of CT-QMC impurity solvers.

Chapters 6 and 7 contain the actual physical results we want to communicate by means of this
thesis. In chapter 6 we present our sdDMFT-studies on the D = 2 -dimensional PAM on the
triangular lattice in regard to emerging magnetic phases, mainly that of a PKS. This chapter
also contains a detailed methodical preparation by means of the site-selective approach. This is
followed by chapter 7 which implies the investigations of a minimally periodically diluted PAM
on aD = 1, squareD = 2 and a cubicD = 3-dimensional lattice structure. All of them are treated
by means of a mean-�eld approach on an perturbatively derived e�ective Hamiltonian as well as
in the framework of sdDMFT in regard to the full original Hamiltonian.
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1. Introduction &motivation

Finally in chapter 8 we provide conclusions and an outlook. Those traditionally and e�ectively
contain a summary of the preceding parts of the thesis thereby focussing on the physical as well
as technical conclusions. Furthermore we give some outlook on emergent questions and provide
proposals for further steps of research in the context of the studies presented within chapters 6
and 7.

This thesis also bares an appendix which directly follows chapter 8. It contains remarks onmath-
ematical notation, the Matsubara formalism and di�erent representations of the partition func-
tion.

1.2. Units

For convenience and to �t to common conventions (see e.g. [EK16]) throughout this work units
are chosen such that

ℏ = kB = 1 , (1.1)

where ℏ is the Planck constant in its reduced variant and kB is the Boltzmann constant. By that the
very often used parameter � = 1∕kBT, originally known from the formulation of the Boltzmann
distribution (see e.g. [BB09]), simply reduces to the inverse temperature 1∕T.
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2. Model Hamiltonians and physical insights

Like for all quantum systems, the �rst step in order to be able to theoretically treat quantum
many-body systems in a qualitative as well as quantitative way is to map such systems—or at
least the features of current interest—on a suitable model. In terms of a formal quantum theo-
retical and in the endmathematical treatment this is synonymous to the formulation of a suitable,
hence applicable Hamilton operator that corresponds to the initial model and also includes its
actual features. In that spirit, the present chapter sketches the formulation, manipulation or just
extraction of Hamiltonians that cover the formal description of all many-body models which in
some sense will show up as useful or even essential for the understanding of the upcoming chap-
ters. Additionally, some remarks on physical insights that result out of the structure of the full
Hamiltonians or alternatively in regard to some special parameter-limits will be given. As such,
depending on the reader’s familiarity with theoretical many-body physics, this chapter was care-
fully designed to serve as a reviewing refresher as well as a compact introduction on the subject.
In the general context of this thesis, as already stressed out in the introduction on page 1 and
the following, clearly the most important model to be treated is the periodic Anderson model
(PAM). We will do so in section 2.3. Nevertheless, to be able to argue in a wider context, it
seemed reasonable to additionally introduce relative models. Listed in a loose order, those are
theKondo impuritymodels in section 2.4 aswell as theHubbardmodel in section 2.2 and actually
the Heisenbergmodel in section 2.5, even though the latter one will be presented in a rather poor
fashion due to its minor importance for the core topics of this thesis. As a clean starting point for
a formally reasonable development of the corresponding model Hamiltonians, the formulation
of a generalmany-bodyHamiltonianwas chosen and presented in section 2.1. Like it has become
usual in many-body theory, the formal language of choice will be the second quantization like it
is for example introduced or reviewed in a very pedagogical sense in [NO98; BF04; AS10]. This
however, besides only a few exceptions, will be applied even beyond this chapter for the rest of
the thesis. As it reports on physical phenomena of purely electronic systems, one should recall
that as a direct consequence, it will be constantly su�cient to restrict formalism to its fermionic
�avor.

2.1. General formulation of many-body systems

As just mentioned above, in common quantum theory the physics of a quantum system is de-
scribed by a so-called Hamilton operator. In a very general sense, such a Hamiltonian at �rst
sight arises as the sum of two parts: One part which represents the total kinetic energy Ttot and
a second part that stands for the total potential energy Vtot. This fact also holds for many-body
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2. Model Hamiltonians and physical insights

Hamiltonians. Traditionally, for models like those of interest here, Ttot is identi�ed as an one-
particle operatorwhileVtot is assumed to be of a two-particle nature. In second quantization, both
operators may comfortably be formulated using typical creation and annihilation operators.

In that sense, let a� be an arbitrary fermionic single-particle annihilation operator that annihi-
lates a particle in the state indexed by �. Its hermitian adjoint1 a†� is called the corresponding
fermionic single-particle creation operator that creates a particle in the state indexed by �, re-
spectively. Typically, as elaborately shown in [NO98], those operators ful�ll the following anti-
commutation relations:

[a†�, a
†
�]+

= [a�, a�]+ = 0 , (2.1)

[a�, a
†
�]+

= ��� . (2.2)

where the common notation of anti-commutators as de�ned by eq. (A.6) and the Kronecker’s
delta ��� de�ned within eq. (A.1) were used. From that, one directly derives

(a�)
2 = (a†�)

2
= 0 , (2.3)

what re�ects the Pauli exclusion principle2 within the formalism of second quantization. With
these operators at hand, �nally a general Hamiltonian in second quantizationmay be formulated
like

H =
∑

��
T��a

†
�a�

⏟⎴⎴⏟⎴⎴⏟
Ttot

+ 1
2
∑

��
�
V��
�a

†
�a

†
�a
a�

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
Vtot

, (2.4)

where the indices �, �, 
, � and � represent multi-indices that may collect severe quantum num-
bers like spin-projection and orbital as well as site indices. In addition T�� marks the elements
of a general hopping matrix whose entries feedback the kinetic energy gained by the system as
a result of the linked electronic motion i.e. hopping. V��
� represents the strength of pairwise
interactions of electrons that were in the electronic states |
⟩ and |�⟩ before and in |�⟩ and |�⟩
after the interaction taking place. In this context, one rather speaks of the kinetic term as of the
hopping term and of the potential term as of the interaction term.

By the usage of multi-indices the Hamiltonian written in eq. (2.4) may be used to describe mod-
els of practically arbitrary complexity. Yet, for the purposes this thesis wants to communicate, in
addition to the already indicated restriction to fermionic formalism, it will be su�cient to exclu-
sively focus on electronic single-band models whose corresponding Hamiltonians are diagonal
in regard to the projections of electronic spins.

1As might be for example looked up in [Bel06], generally, the operator a is hermitian if for its hermitian adjoint a†

the equation a†
!
= a−1 holds, where per de�nition a† is identi�ed as the complex conjugated transposed of a, hence

a† ≔ (a∗)T.
2One should �nd information on the famous Pauli exclusion principle in any serious textbook on quantummechan-
ics. We tend to refer to [Sak94] as our textbooks of choice.
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2.2. The Hubbard Model

Furthermore, note that while so far the symbol V was used to mark a potential to be conform to
the traditional notation of classical and quantum �eld theory,3 in the following potentials will be
marked by U what �ts to the common notation in many-body physics.4

2.2. The Hubbard Model

The structure of the general many-body Hamilton operator shown in eq. (2.4) directly expresses
the fact that the behavior of interacting electrons in correlated systems is ruled by the competition
between kinetic and impulsive potential energy. The easiest lattice model that is able to properly
describe this competition is the single-band Hubbard model [Hub63]. Its model Hamiltonian in
real-space representation may be formally derived from eq. (2.4) by applying the following three
steps:

1. Each multi-index is reduced to a combination of site indices i, j that are short notation for
corresponding real-space vectors ri, rj which mark the locations of discrete lattice sites in
real-space and an additional spin-projection index � =↑, ↓. In particular:

� = � → i, � , � = 
 → i, −� and � → j, � .

2. According to that, in order to stick with the usual notation, the electronic operators are
renamed from a to c and the general hopping matrix T��, now Tij, is changed to tij which
regarding its entries is de�ned as

tij =
⎧

⎨
⎩

−t ∀i, j ∶ |ri − rj| = a with lattice constant a ,
"0 ∀i, j ∶ i = j ,
0 else .

(2.5)

3. In a last step the complicated interaction V��
� is replaced by a constant, hence index-
independent U, the so-called Hubbard U.

With that, the Hamiltonian of the single-band Hubbard model in second quantization �nally
reads

HHub =
∑

ij�
tijc

†
i�cj� +

U
2
∑

i�
c†i�ci�c

†
i−�ci−� , (2.6)

where the formally favored normal order1 [NO98] of creation and annihilation operators inside
the interaction term has been broken up2 in support of the introduction of particle number oper-
ators that, back in general notation, are de�ned as:

n(a)� = a†�a� . (2.7)
3For demonstration, you may want to compare notation with that used in [Sch12] and [Mag04].
4At this place, themain concern of doing so is to prevent a confusionwith the hybridizationV that will be introduced
later within this chapter.
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2. Model Hamiltonians and physical insights

In this spirit the Hamiltonian (2.6) can alternatively be written as

HHub = −t
∑

⟨i,j⟩

∑

�
c†i�cj� + "0

∑

i�
n(c)i� + U

2
∑

i�
n(c)i� n

(c)
i−� , (2.8)

where
∑

⟨i,j⟩ represents the sum over all next-neighboring sites marked by the indices i and j. As
it poses no formal problem, in the following usually "0 = 0 will be set for convenience.

Starting from its atomic limit at t = 0, the single-band Hubbard model may be seen as a model
lattice of hydrogen atoms or, to be more precise, of single spin-degenerateWannier orbitals per
identical hydrogen atom i.e. discrete lattice site. With increasing t > 0 those orbitals progres-
sively overlap. This bares a tight-binding character of the model which was already taken into
account formally by the next-neighbor inter-site hopping of electrons in the de�nition of tij (2.5)
inside the Hamilton (2.6) and equivalently by the sum

∑
⟨i,j⟩ in the alternative formulation of

HHub in terms of eq. (2.8). Through electron-hopping between next-neighboring sites that is
conformal to Pauli’s exclusion principle (c.f. the footnote on page 10), the system can reduce its
kinetic energy by −t per hop. In contradiction to this, the system gains an energy U per doubly
occupied Wannier orbital, i.e. site, as the result of an electron-electron Coulomb repulsion that
is assumed to be very local due to the narrow nature of the Wannier orbital and the screening by
surrounding interfering electrons. This is explained in a more detailed and especially visualized
fashion in �g. 2.1.

In this context the above mentioned model-internal competition between kinetic and impulsive
potential energy may be reformulated as competition between itinerancy and localization. It is
re�ected by the value of U∕t or—for a very precisely formulated model in terms of its lattice
geometry—of U∕W, whereW ∝ t is the width of the single band. As discussed in [Lec11] with
an increasing value ofU∕t the single-bandHubbardmodel passes through ametal-insulator tran-
sition which is indicated by a splitting of the local spectral function into a lower and upper Hub-
bard band. In the case of the half-�lled lattice, this transition atU ≫ t results in a so-calledMott
insulator [Mot68]. For energetic reasons this insulator is characterized by an electronic single-
occupancy of all lattice sites whereas the separated electronic spins located on next-neighboring
sites show an anti-parallel orientation. This observation indicates the Mott insulator as an an-
tiferromagnetic insulator [Geb97; BB06]. In this special constellation of parameters, the single-
band Hubbard model may be correctly described by a Heisenberg Hamiltonian (c.f. section 2.5
on page page 20 �.) with antiferromagnetic coupling constant J = 4t2∕U > 0 [Faz99].

In regard to magnetic phenomena the single-band Hubbard model generally is predestined to
study e�ects concerning band magnetism [NR09] but is structurally not suited to describe the
physics of local magnetic moments. This motivates the introduction of so-called magnetic im-
purity models like Anderson as well as Kondo models in the following sections. For more infor-
mation on the Hubbard model beyond the scope of facts presented so far the interested reader
is referred to the monographs [Ess+05] and [Geb97] as well as the excellent and already cited
review by Lechermann [Lec11] and additional references on the topic therein.
1That is in a sequence of operators all creation operators are positioned to the left of all annihilation operators.
2This was done using the anticommutation relations given by eqs. (2.1) and (2.2) thereby leading to a total sign
(−1) ⋅ (−1) = +1.
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Figure 2.1.:Visualization of the D = 2-dimensional single-band Hubbard model. Electrons
with spin projections ↑, ↓ (blue arrowed dots) may hop (green arrows) between discrete sites
that host one spin-degenerate electronic orbital (black circles) each and form a square lattice.
Here, black lines mark the shortest distance between next-neighbouring sites which is equal
to the lattice constant a. Each regular hop (1) reduces the energy of the system per −t while
some hops are forbidden (red crosses) due to Pauli’s exclusion principle (3) or due to the
model restriction to next-neighbour hops (4). If a site becomes doubly occupied the system
has to pay the energy U of an emerging local repulsion (2).

2.3. Andersonmodels

In the zoo of many-particle models, theAndersonmodels belong to the category of impurity mod-
els. Those are primarily constructed to study the physical behavior of local magnetic moments
whereupon the Anderson models are even suitable to study the formation of those. In more
detail, Anderson models describe the prominent problematic scenario of electronic systems of
discrete, possibly magnetic impurity atoms that are nested inside a metallic host material. Pri-
marily, as will be discussed in more depth below, the s- and p-orbitals of the host as well as
impurity ions melt together to a “broad” conduction band often also called bath of electrons. On
top, every impurity ion provides an active “narrow” shell to the system that may exchange elec-
trons with the existing conduction band due to hybridization between energetically degenerate
orbitals. As a formal consequence, corresponding Anderson-type Hamiltonians arise as the sum
of three parts

HAnd = Hband +Himp +Hhyb , (2.9)

where Hband describes the single conduction band, Himp the physics of the active additional im-
purity orbitals and Hhyb represents the hybridization part of HAnd. The simplest versions of all
three parts will be presented and explained based on the example of the PAM in more detail in
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the following.

As already mentioned, the single conduction band is formed by smeared out atomic s- or p-
orbitals. Those orbitals are extended in space in such a way that Coulomb-type interactions
between conduction electrons may be neglected. Formally this is su�ciently described by an
e�ective non-interactive model Hamiltonian that may be derived from the single-band Hubbard
model as introduced in the previous section 2.2 on page 11 and the following: In the so-called
Fermi gas limit U → 0 the interaction term of HHub (2.8) vanishes andHband forms as

lim
U→0

HHub
||||"0=0= Hband = −t

∑

⟨i,j⟩

∑

�
c†i�cj� =

∑

k�
"kc

†
k�ck� . (2.10)

Here, the right side of the last equation representsHband in momentum space, where c†k� creates
and ck� annihilates an electron with momentum k and spin projection � =↑, ↓. Those annihi-
lation and creation operators directly follow from appropriate Fourier, hence unitary5 transfor-
mations of the corresponding real-space operators c†i� and cj�. By respecting the condition that
electronic hopping is only allowed between next-neighboring sites on the real-space lattice, for a
hyper-cubic D-dimensional model "k is identi�ed as

"k = −2t
D∑

i
cos kia , (2.11)

with the lattice constant a and ki marking the i-th component of aD-dimensional wave vector k.
The electronic eigenstates of this model are identi�ed as Bloch states. In that sense,Hband indeed
represents a single cosine-like band—so far declared in a more sloppy fashion just as conduction
band—of Bloch electronswhose energy eigenvalues are given by an electronic dispersion relation
"k . Note here that in literature the bandof uncorrelated conduction electrons often is also referred
to as bath of electrons and in analogy the associated atoms as bath sites.

In a next step in order to derive the full PAM [TSU97], every bath site is extended with an ad-
ditional single spin-degenerate orbital of an electronic energy level "f. In real materials those
orbitals equal active d- or f-levels that are narrow in a spacial context. Therefore, emerging
Coulomb repulsions between two possibly occupying electrons become important and may not
be neglected anymore. Instead, Coulomb correlations are taken into account by an on-orbital—
in a somehow imprecise formulation called on-site—Hubbard interaction U. In the following,
electrons that occupy correlated impurity orbitals are conventionally indicated as f-electrons.

In regard to the derivation of the full model Hamiltonian the formal treatment of locally cor-
related impurity orbitals consequently manifests into an additional sum of two operator parts:
One partHf that describes the total on-site energy of the f-electrons, and a second partHint that
marks the local electronic interaction of the f-electrons in cases where the correlated impurity

5Assuming U to be the linear transformation operator and U† the linear operator of the corresponding back-
transformation then the transformation is said to be unitary if U is an unitary operator, hence if U† = U−1

(c.f. [Bel06]).
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2.3. Anderson models

orbitals are doubly occupied. Thus, the local Hamiltonian reads:

Himp = "f
∑

i�
f†i�fi�

⏟⎴⎴⏟⎴⎴⏟
Hf

+ U
2
∑

i�
n(f)i� n

(f)
i−�

⏟⎴⎴⎴⏟⎴⎴⎴⏟
Hint

. (2.12)

Here, by analogy to the conduction electrons in eq. (2.10), f†� creates and f� annihilates an elec-
tron with spin projection � =↑, ↓ inside the correlated impurity orbital that belongs to the con-
crete lattice site positioned at ri. Obviously, the notation of Hint makes usage of the particle
number operators for f-electrons whose general structure was de�ned by eq. (2.7). Those give
back the number of electrons with spin projection � that occupy the appropriate impurity state.
Thereby, n(f)� clearly can return only one of its two eigenvalues—namely 0 and 1—depending on
which of the states represented by eq. (3.1) it operates on. In this context, each particle number
operator inside Hint as described by means of eq. (2.12) feeds back the existence or the absence
of a local spin-resolved charge density inside the indicated narrow f-orbital. For that reason one
often constitutes interactions described by products of the reduced form

n(f)� ⋅ n(f)−� (2.13)

as of density-density type.

A so far still missing interplay between f and c electrons is now installed in terms of a hybridiza-
tion termHhyb that allows for a hopping of electrons between f- and c-levels and vice versa. This
term may be formulated like

Hhyb =
∑

ij�

(
Vijc

†
i�fj� + V∗

jif
†
j�ci�

)
, (2.14)

where Vij marks the hybridization strength. Physically a hybridization of f-states is expected
as a consequence of spatial overlaps between f- and c-orbitals in association with an energetic
degeneration of f- and c-states. In that sense, Vij is a measure for the just mentioned spatial
orbital-overlaps. Mathematically however, Vij marks the o�-diagonal element of a hybridiza-
tion matrix V that—like the electronic two-body interaction in eq. (2.4)—could be of almost ar-
bitrary complexity, e.g. also �-dependent or of complex nature or both. Again, just like setting
the interaction to U, it is su�cient here to stick with a constant V for convenience.

In summary, a complete Hamiltonian of the simplest version of the PAM is given by

HPAM =

Hband (2.10)⏞⎴⎴⎴⏞⎴⎴⎴⏞
−t

∑

⟨i,j⟩

∑

�
c†i�cj� +

Himp (2.12)
⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞

"f
∑

i�
f†i�fi� +

U
2
∑

i�
n(f)i� n

(f)
i−� +

+
∑

ij�

(
Vijc

†
i�fj� + V∗

jif
†
j�ci�

)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
Hhyb (2.14)

. (2.15)
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2. Model Hamiltonians and physical insights

A graphical visualization of the corresponding model in the case of a diagonal V with elements
Vij = �ijV in D = 1-dimension regarding electronic inter-orbital hops and exchanges is shown
in �g. 2.2.

V

U

t
23 U

V5 53

Figure 2.2.:Visualization of theD = 1-dimensional periodic Andersonmodelwith diagonal hy-
bridization by means of �g. 2.1 on page 13: Spin-degenerate uncorrelated electronic orbitals
(black dots) hybridize with corresponding correlated orbitals (black circles) due to a diagonal
hybridization (magenta lines). Depending on the �lling, electrons with spin projections ↑, ↓
(blue arrowed dots) may hop freely (green arrows) along the shortest distance between dis-
crete uncorrelated electronic orbitals (black lines). Alternatively there may occur electronic
exchanges between corresponding correlated and uncorrelated orbitals bymeans of the diag-
onal hybridization of strength Vij = �ijV (magenta arrows). Typical possible moves in that
sense are (2) and (5), while movements (3) violate Pauli’s exclusion principle. Electronic
double occupancy of correlated orbitals (5) costs the system an energy U (5), while remains
for free in the case of uncorrelated orbitals (2).

For reasons of argumentation it is often fruitful to treat the PAM in a mixed representation,
where the bath parts are presented in momentum i.e. reciprocal space while the impurity parts
ofHPAM are written in real-space representation like in eq. (2.16). By remembering the right side
of eq. (2.10) on page 14, consequently this reads

HPAM =

Hband (2.9)⏞⎴⎴⏞⎴⎴⏞
∑

k�
"kc

†
k�ck� +

Himp
⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞

"f
∑

i�
f†i�fi� +

U
2
∑

i�
n(f)i� n

(f)
i−� +

+
∑

ik�

(
Vike−ikric

†
k�fi� + V∗

ike
ikrif†i�ck�

)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
Hhyb

, (2.16)

where, when starting form a Hhyb in momentum space, the exponential functions and the sum
over index i arise from the Fourier transformation of the f-electron operators from k-space into
real-space.

While a very diluted model may be seen as a cluster of single-impurity models, in a very dense
array of impurities also the orbitals of the impurity sites show up as a �at and—for already men-
tioned reasons—narrow band of correlated f-electrons at energy "f. In the presence of a V ≠ 0
the c- and f-band hybridize, thereby forming two bands that are separated by a band gap. In
terms of Fermi liquid theory [PN66] those hybridization bands host quasi-particles that obey ef-
fective masses much larger than the usual electron mass and therefore are identi�ed as so-called
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2.3. Anderson models

heavy bands [AI10; Amu+15; Col02]. Particularly for the free case, where U = 0, this may be
shown at little expense. Here, the PAM as described byHPAM (2.15) reduces to a simple two-band
tight-bindingmodel with hybridization as the corresponding free Hamiltonmay be diagonalized
by introducing appropriate hybridized quasi-particle operators. This in turn soon leads to a quasi-
particle spectrum of two bands

Ek± =
1
2["k + "f ±

√(
"k − "f

)2
+ 4V2] , (2.17)

the lower and upper hybridization bands [TSU97]. A calculated example in one dimension is
shown in �g. 2.3. As a result, the dense PAM has been successfully used as model of choice for
studying heavy fermions [Fis+86; Neu+07; WA14b].
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Figure 2.3.: Lower andupper hybridized bandsEkx− andEkx+ (red lines) in the free periodicAn-
dersonmodel resulting from a one-dimensional consideration of the quasi-particle spectrum
given by eq. (2.17). For the calculation the x-component "kx of the cosine-like dispersion "k
of eq. (2.11) with a hopping t = 1 was assumed for L = 500 bath sites at "f = V = 1.

Conceptually as well as historically the PAM follows as the “natural extension” [Hew93] of the
Anderson impuritymodel (AIM), also knownas single-impurityAndersonmodel (SIAM) [And61].
Like its name propagates, this model is nothing else than a PAM with only one single impurity
site. Thus, with the knowledge of eq. (2.16) the full Hamiltonian of the AIM inmomentum space
is just given by:

HAIM =
∑

k�
"kc

†
k�ck�

⏟⎴⎴⏟⎴⎴⏟
Hband (2.10)

+ "f
∑

�
f†�f� +

U
2 n

(f)
� n(f)−�

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
Himp

+
∑

k�

(
Vkc

†
k�f� + V∗

kf
†
�ck�

)

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
Hhyb

. (2.18)

Typically the AIM was and is used to study the formation of a local magnetic moment inside the
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2. Model Hamiltonians and physical insights

correlated orbital of the impurity site (c.f. section 3.1, page 24 �.) and thus in a general context
opens the gate to enter a deeper understanding of the physics of local magnetic moments.

As Anderson models include itinerant c-electrons as well as strictly localized f-electrons, in lit-
erature these models are also categorized as hybrid models, see e.g. [AI10].

2.4. Kondo impurity models

Similar to the single-band Hubbard model that may be replaced by the Heisenberg model in the
limit U → ∞ also the AIM may be partially replaced by a spin-type model in the limit

U → ∞, V = const. (2.19)

that constitutes a low-energy limit of the AIM. Because of the in�nitely large Coulomb repulsion
within this limit the impurity site characteristically is singly occupied, hence it is

n(f) =
∑

�
n(f)� = n(f)↑ + n(f)↓ = 1 , (2.20)

whereat charge �uctuations between the conduction band and the impurity site are suppressed
or at least become of purely virtual nature. What then remains is a single spin on the impurity
site that magnetically couples to the spins of the host material. This allows for the construction
of an e�ective low-energymodel of the AIMwhich is known as the Kondo impuritymodel (KIM)
with its corresponding Hamiltonian HKIM [Kon64]. Here, in comparison to the Hamiltonian of
the AIM written out as HAIM (2.18) on page 17, the band part Hband is left untouched whereas
Himp andHhyb are replaced by an e�ectiveHeisenbergHamiltonianHHB that only covers the spin-
spin interaction between locally correlated impurity and conduction band spins. Altogether this
leads to the famous Kondo Hamiltonian which is formulated as

HKIM =
∑

k�
"kc

†
k�ck�

⏟⎴⎴⏟⎴⎴⏟
Hband

+JK shost ⋅ Sf
⏟⎴⎴⏟⎴⎴⏟

HHB

, (2.21)

where for now shost denotes the spin density formed by the conduction electrons at the impurity
site [Lec11] and Sf is the localized quantum mechanical spin of magnitude S = 1∕2 on the
correlated orbital of the impurity site [SN02]. Amore precise de�nition of the spin operators will
be given below. Conceptually, the KIM is the model of choice to study for the so-called Kondo
e�ect as will be discussed in section 3.2 on page 27 and the following.

An existent mathematical derivation of the AIM to the KIM implies a canonical transformation
of HAIM (2.18) proposed by Schrie�er and Wol� [SW66] where the extraction of the low-energy
(n(f) = 1)-subspace leads to HKIM (2.21). As a main result of this transformation the coupling is
determined as

JK = 2V2 U
"f("f +U)

= 2V2 ( 1
"f +U + 1

−"f
) > 0 . (2.22)
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2.4. Kondo impurity models

Similar to the hybridization strengthV, also the coupling J can be principallyk-dependent. With-
out risking a formal mistake this will be neglected for simpli�cation. In accordance to common
conventions we will de�ne a magnetic coupling as ferromagnetic if the associated coupling con-
stant J < 0 and consequently as antiferromagnetic if J > 0. Thus, as JK > 0, the spin-spin cou-
pling inside the KIM is identi�ed as antiferromagnetic. In direct relation to that, the spin-spin
coupling just presented in eq. (2.22) is identi�ed as an antiferromagnetic coupling in consistence
with the literature like e.g. [Faz99]. Further notable in this context is the so-called symmetric
AIM that is realized for

"f = −U2 . (2.23)

For this case the mathematical structure of the coupling simpli�es to

JK =
8V2

U , (2.24)

what implies JK → 0 in the limit (2.19). Generally, the set of those constellations of model-
parameters that allow for a Schrie�er-Wol� transformation of the AIM towards the KIM de�ne
the so-called Kondo regime of the former one.

The aforementioned argumentation for a single-impurity model also holds for a lattice of corre-
lated impurities, i.e. the PAM as presented in section 2.3 on page 13 �. and for low energies in fact
results in the Kondo lattice model (KLM). The corresponding Hamilton operator of this model
then reads

HKLM =
∑

k�
c†k�ck� + JK

∑

kk′i
e−i(k′−k)Ri Si ⋅ sk′k . (2.25)

In this version again, as in the case of the Hhyb as part of HPAM (2.16), the Heisenberg term is
given inmixed representation. In particular, the spin operators contained in theHeisenberg term
read

sk′k =
1
2
∑

�′�
c†k′�′��′�ck� , (2.26)

Si =
1
2
∑

�′�
f†i�′��′�fi� . (2.27)

While eq. (2.26) describes the structure of spin-density operators of the conduction band, eq. (2.27)
de�nes the spin operators of the localized spins of magnitude S = 1∕2. In both equations
� = (�x, �y, �z)

T marks the vector of Pauli matrices.6

In the sense of the Schrie�er-Wol� transformation that maps the AIM onto the KIM it was ex-
plicitly shown by Sinjukow and Nolting inside [SN02] that HKLM (2.25) can be obtained out of
HPAM (2.16) for any �nite JK > 0 in an appropriate limit

"f = −U2 and U ,→ ∞ , V ,→ ∞ with V2

U ,→ const. , (2.28)

which is referred to as extended Kondo limit and �rstly was de�ned in [MO95]. As the compar-
ison between the �rst equality inside the limit (2.28) and eq. (2.23) shows, the extended Kondo
6For the explicit de�nitions of the Pauli matrices, again see e.g. [Sak94].
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2. Model Hamiltonians and physical insights

limit already implies the condition for symmetric Andersonmodels. In accordance to the results
of an existing Schrie�er-Wol� transformation between the symmetric AIM and KIM as shown
above, the mapping between the PAM and the KLM as derived within [SN02], if existing in the
limit (2.28), also yields a coupling constant JK like that given by eq. (2.24).

Like for the PAM crucial physical properties of the KLM depend on the density of the impurity
lattice [Col15a; Col02; Hew93]. In that sense, the electronic density of states (DOS) of a KLM
with a dense lattice of impurity sites shows a gap inside the Kondo resonance that in turn leads
to a macroscopically detectable insulating state. This quali�es the KLM to serve as a model for
studying the physics of so-called Kondo insulators [Wer15].

2.5. The Heisenberg model

Like the Kondo impurity models presented in section 2.4 on page 18 �. are the e�ective low-
energy models of the Anderson impurity models introduced in section 2.3 on page 18 and the
following, the Heisenberg model is the e�ective low-energy model of the Hubbard model that
was presented in section 2.2 starting on page 11. For the reasons already explained there in
short, in the limit U → ∞, where at low energies only spin excitations take place, the half-
�lled single-band Hubbard model described byHHub eq. (2.6) on page 11 may be replaced by the
antiferromagnetic Heisenberg model. The corresponding model Hamiltonian, which is a pure
SU(2) spin-rotation symmetric spin-type Hamiltonian, is generally formulated as

HHB = −
∑

ij
Jij Si ⋅ Sj . (2.29)

It describes local spins on discrete sites at positions like ri and rj, represented by spin-operators
Si and Sj that are coupled among each other with strength Jij. According to eq. (2.27) on page 19
concerning the KLM, the spin operators are de�ned as

Si =
1
2
∑

��′
c†i����′ci�′ . (2.30)

Consistently � = (�x, �y, �z)
T marks a vector of Pauli matrices. For a more detailed discussion of

the structural as well as algebraic characteristics of the spin operators and in particularly of the
anticommutation relations of their components among each other see the appropriate chapter
of [NR09]. We want to conclude this section with the remark that the reduction of the full spin
operators in eq. (2.29) to corresponding z-components in the fashion of

Si → Szi = ±1 (2.31)

leads to the relative butmuch simplermodel category of the Isingmodels [NR09] not to be further
discussed in this context.
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2.6. Summary & outlook

After a short recapitulation of their general formulation, in this chapter a selection of common
models of many-body systems that are in some sense needed for the further conceptual develop-
ment of this thesis was presented. Thereby themain focus was laid on the development of associ-
ated Hamilton operators. In that sense, besides the—for our further concerns most necessary—
presentation of the Anderson impurity models, namely the PAM and its little brother, the AIM,
their corresponding e�ective low-energy models, the Kondo impurity models inclusively their
Hamiltonians were discussed in a short and compact manner. The same applies for the single-
band Hubbard model and its e�ective low-energy model, the Heisenberg model. By that, the
conceptual foundation stone was laid to study the physics of local magnetic moments and mag-
netic order. Studies of that kind by means of the single impurity as well as the lattice Anderson
and Kondo models will be the main content of the following chapter.
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3. Local magnetic moments andmagnetic order

On top of the background information on lattice and especially lattice impuritymodels presented
in chapter 2 on page 9 �. this chapter concentrates on the physics and order of local magnetic
moments as well as on its formal description.

• The existence or the formation of local magnetic moments,

• a coupling mechanism favoring a certain alignment of the moments, e.g. ferro- or antifer-
romagnetically, and

• the stability of long-range magnetic order against di�erent types of thermal or quantum
�uctuations and against competing ordering phenomena.

This poses themotivation for the outline of this chapter that implies themore detailed discussion
of all three aspects mentioned above in terms of exemplary phenomena.

We begin with the formation of local magnetic moments in section 3.1. Thereby, basically the
simplest model, thus the model of choice, that allows for the study of the entire physics of the
forming of and interaction among localmagneticmoments is the periodicAndersonmodel (PAM)
as it was introduced in section 2.3 on page page 13 and the following. In all present cases within
this thesis, a local magnetic moment is assumed as the result of precession of an unscreened sin-
gle spin inside an odd �lled active and per de�nition correlated orbital of a localized impurity
atom.

However, the exclusive study of the formation of such a localmagneticmoment in ametallic host
traditionally is left to be demonstrated on the corresponding single impurity model, the Ander-
son impurity model (AIM) which was also presented in section 2.3. If there exist local magnetic
moments on all present impurity sites of anAnderson impuritymodel it is, for reasons of a clearer
demonstration, appropriate to switch to the Kondo models we already know from section 2.4 on
page 18 and the following. While the Kondo latticemodel (KLM) ismost adequate for the discus-
sion of coupling mechanisms between local magnetic moments like the itinerant exchange that
lead to magnetic order, the Kondo e�ect which is a purely local e�ect that negatively a�ects the
stability of magnetic order is best studied on the stage of the Kondo impurity model (KIM). A re-
sulting rival between both phenomena manifests in the famous Doniach phase diagram [Don77]
of the KLM that gives an overview in which energy scales which phenomena is dominating. This
is the scope of section 3.2.

Finally in section 3.3, it will be explained how the ability of a system to evolve magnetic order
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3. Local magnetic moments andmagnetic order

is in�uenced by the mixture of temperature and model dimension on the one hand and by the
lattice geometry on the other hand. While the former exactly is managed by highlighting the
statements of the Mermin-Wagner theorem [MW66], the latter is impressively discussed in the
context of geometrical frustration.

3.1. The formation of local magnetic moments

As already mentioned, the formation of local magnetic moments was �rst studied by means of
the AIM in [And61]. The corresponding model Hamiltonian HAIM was already introduced by
eq. (2.18) in section 2.3 as HAIM. As it was explained there, the AIM describes a single impurity
atom that is nested inside a sea of Bloch electrons whose states form a single conduction band.
In particular, the impurity atom is described by a single spin-degenerate electronic level with
energy "f that bares a local Coulomb repulsion U if it is occupied by two electrons of opposite
spin-projection �. By that, each f-level provides four electronic states

|0⟩, | ↑⟩, | ↓⟩, | ↑↓⟩, (3.1)

namely one unoccupied or empty state, two degenerate singly occupied states and a doubly oc-
cupied one. Conduction band and impurity level may exchange electrons due to a hybridization
of strength V.

For the discussion of the formation of local magnetic moments we �rst concentrate on the impu-
rity site. In the occupation number representation the states presented in (3.1) form a complete
orthonormal base that easily diagonalizes the impurity part Himp of HAIM (2.18). According to
these states this o�ers the four energy eigenvalues

E0 = 0, E↑ = E↓ = E1 = "f, E↑↓ = E2 = 2"f +U . (3.2)

The thereby arising doubly degenerate energy-levels E↑ and E↓ are a Kramers doublet as a direct
result of Kramers theorem,1 sometimes also called Kramers degeneracy due to the time-reversal
invariance2 ofHAIM (2.18) [Yos96].

As already stated in the entry of this chapter, in the context of this work and the primary under-
lying impurity models, local magnetic moments are just assumed as the unscreened precession
of single spins with spin projection � inside odd �lled active orbitals of the localized impurity
atoms. By that out of the four electronic states provided by the impurity orbital (3.1) clearly | ↑⟩
and | ↓⟩ are identi�ed as magnetic while |0⟩ and | ↑↓⟩ are non-magnetic. Recalling the corre-
sponding energies (3.2) one easily may verify that the impurity atom has an electronic excitation
spectrum of two sharp energy values, namely "f if the impurity orbital is empty and "f + U if
a second electron of suitable spin-projection is added to an already singly-occupied, hence half-
�lled impurity orbital. Therefore, one expects the impurity atom in a magnetic state | ↑⟩ or | ↓⟩
1Kramers theorem states that in a system containing an odd number of electrons at least two-fold degeneracy must
remain in the absence of a magnetic �eld [Blu01]. For a proof see [Sch08].

2For time reversal invariance and especially Kramers degeneracy, see also [Sak94].
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3.1. The formation of local magnetic moments

if the energetic condition
"f < "F < "f +U (3.3)

where "F marks the Fermi level1 that divides occupied states with energies smaller than "F from
unoccupied states whose energies lie above "F, is ful�lled, as the unoccupied state |0⟩ as well as
the doubly occupied state | ↑↓⟩ become energetically unfavorable within this scenario.

So far, our considerations only covered the atomic limit of HAIM (2.18) that is realized for V = 0
as in this caseHhyb vanishes and the local impurity is decoupled from the host material. Leaving
this limit by driving V to a �nite value, the above mentioned hybridization of the f-states takes
place and the former sharp excitation levels of the impurity ion at "f and "f + U broaden to
resonances whose widths Γ("f) and Γ("f +U) depend on the hybridization strength and the free
density of states (DOS) of the conduction band electrons

�(") =
∑

k
� (" − "k) (3.4)

at the energy of the excitation level. In general, one �nds

Γ(") = �V2�(") . (3.5)

In the thermodynamic limit, the "k become continuous [GM12], hence for a large host lattice at
least very dense which is why the transition of an electron from the f-orbital into the conduction
band may approximately be seen as a transition rate from a bounded state into a continuum.
Therefore, by considering the hybridization strength V as perturbation parameter, eq. (3.5) may
be derived using Fermi’s golden rule, hence by means of time-dependent perturbation theory in
�rst order (compare to [Sak94]). This resonance-broadening however leads to the problem that
if U is too small or more precisely

U < 1
2
[
Γ("f) + Γ("f +U)

]
, (3.6)

the two resonancesmerge and any prediction on the formation ofmagneticmoments fail. There-
fore in the full AIM,U needs to be just large enough to still keep the two resonances distinguish-
able. To face this additional requirement, the conditions concerning the atomic limit given by
eq. (3.3) have to be extended in order to favor the formation of local moments. This is done in
the following way:

"f +
Γ("f)
2 < "F < "f +U −

Γ("f +U)
2 . (3.7)

If these inequalities are ful�lled, the impurity for energetic reasons should be favorably in one of
its two singly-occupied magnetic states. Hence, the AIM is in its so-called local moment regime.
The conditions (3.7) are also known as the Kondo limit of the AIM in which it may be safely
replaced by the KIM as already known from section 2.4.

By further changes of the parameter values and a subsequent rearrangement of inequalities to
meet the prevailing energetic situations, one may scan through even more parameter regimes
1We for now use intentionally the somehow vague expression “Fermi level” instead of “Fermi energy” as we want
our discussions to hold even in the case of �nite temperatures T. The “Fermi energy”, however, strictly is only
de�ned for T = 0.
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of the AIM. While the condition (3.7) implies that the Fermi level "F does not lie within any of
the two resonances there exist possible cases for which this is true. Given such cases, the system
is in its mixed-valence or alternatively intermediate-valence regime that is characterized through
strong charge �uctuations between impurity and conduction band orbitals. In addition to that,
there remain two more regimes, both of them non-magnetic: The �rst one is realized if

"f −
Γ("f)
2 > "F . (3.8)

Then the impurity is expected to be in the non-occupied state what is sometimes called the empty
orbital regime. The second one emerges if the condition

"f +U +
Γ("f +U)

2 < "F (3.9)

holds. In this scenario, the f-orbital should be doubly-occupied. A graphical interpretation of
the most important facts discussed so far on this score is shown in �g. 3.1.
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"f + U

Kondo limit Mixed valence

"k "k "k

"F "F
"F
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Figure 3.1.: Energy level scheme of a localized orbital with resonances at "f and "f + U and a
conduction band with energies "k like described by the AIM. The local excitation levels are
broadened due to a hybridization if there exists a level of the same energy in the conduc-
tion band. All levels with energies above the Fermi-level "F are occupied (continuous and
local broadened occupied levels are �lled light gray). Clearly the constellations (a) and (b)
result inmagnetic states, whereas (c) is non-magnetic since the local orbital becomes doubly-
occupied. Furthermore (a) shows the Kondo-limit, whereas (c) shows a total mixed-valence
constellation as both local orbital resonances overlap with the Fermi-level at "F. In (c) also
both energy levels of the local orbital overlap due to a smallU by means of eq. (3.6). Inspired
by [TSU97].

What remains at this place is amore precise de�nition of the Fermi level "F in regard to themodel
Hamiltonians that were discussed so far and those that will be in the following. A proper de�ni-
tion of "F relies on the chosen statistical ensemble one wishes to consider the underlying models
in. Usually one is concerned to investigate many-particle systems under varying energies but
with a �xed average number of particles. Thus, the statistical ensemble of choice is the grand
canonical ensemble where the average particle number is �xed by an introduced chemical poten-
tial � which then automatically plays the role of the Fermi level, hence "F ∼ �. Already de�ned
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Hamilton operatorsHmay easily be transferred to the grand canonical ensemble by applying the
substitution

H → ℋ = H − �N , (3.10)

whereℋmarks theHamilton operator in the grand canonical ensemble andN is the total particle
number operator of the corresponding system.2 For the case ofHAIM (2.18) it is

Naim =
∑

k�
n(c)k� +

∑

�
n(f)� =

∑

k�
c†k�ck� +

∑

�
f†�f� ,

where particle number operators in the sense of eq. (2.7) were used. Consequently, for the An-
derson impurity models de�ned byHPAM (2.16) andHAIM (2.18) this implies:

"k → ("k − �) , "f → ("f − �) .

By that, for assumed small excitation energies, "k varies around �whereas ("k−�) varies around
0 [BF04]. So, in this assumption the Kondo limit (3.7) may be formulated in an alternative, more
comfortable way as

"f ≪ "k ≪ "f +U , |"f − "k|, |"f +U − "k| ≫ Γef f , "k ≈ � , (3.11)

where Γef f simply is assumed as the level broadening (3.4) at the Fermi level [TSU97], hence

Γef f = Γ(�) .

3.2. Kondo effect, itinerant exchange and the Doniach phase diagram

Having provided appropriate models to do so, �nally it is time to have a closer look on the Kondo
e�ect [Kon64] and the itinerant exchange that is usually known as the Ruderman-Kittel-Kasuya-
Yosida (RKKY) [RK54; Kas56; Yos57] interaction—whereas to stay correct one has to mention
that the itinerant exchange arises as the result of theRKKY interaction. The competition between
the Kondo e�ect and the RKKY interaction then is re�ected within the famous Doniach phase
diagram [Don77].

Even though the physics of theKondo e�ect are included in both, theAIMand the PAMpresented
in section 2.3, while the order of magnetic moments through the RKKY interaction clearly only
is included in the latter one as technically at least two magnetic moments at di�erent sites are
used to be able to explain an order between local magnetic moments, it is easier to study those
phenomena as well as their competition within the simpler Kondo impurity models introduced
in section 2.4.

So let’s start with having a closer look on the itinerant exchange, hence the RKKY interaction
by means of the KLM. In theory there exist several di�erent magnetic exchange mechanisms
2The other way round one may argue that previously de�ned Hamiltonians were just considered at � = "F = 0.
For the argumentation of the generalized Schrie�er-Wol� transformation in [SN02], cited and summarized in
section 2.4 this actually was true.
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3. Local magnetic moments andmagnetic order

(see e.g. [Koc12; NR09; Blu01; Yos96]). The �rst one might think of, is a direct exchange which
is based on a spatial overlap integral between the wave functions of two magnetic states. This
clearly is impossible within our model since the PAM and consequently also the KLM lack of
any direct coupling between f-electronic states of di�erent impurity sites. In contrast, what is
conceivable is an indirect coupling between the magnetic moments of di�erent impurity sites
that is mediated by the conduction electrons inside the host material resulting in an indirect ex-
change to which category of exchange mechanisms also the itinerant exchange is assigned to. In
the special case of the itinerant exchange a localized magnetic impurity ion spin-polarizes the
conduction electrons. This polarization then couples to the magnetic moment of a neighboring
impurity site. Or to be more precise in terms of the KLM being de�ned by HKLM (2.25) the local
spin on an arbitrary impurity site, let’s say on the site at ri, Si, typically couples antiferromagnet-
ically to the spin density of the conduction electrons that are localized near to the impurity site.
This induces so-called Friedel oscillations in the density of the conduction electron spins. Now,
the local spin Sj on a second impurity site at rj may couple to this oscillations what results in
an e�ective magnetic exchange interaction between the two local magnetic moments. Formally
this is described by the RKKY interaction which itself is the result of a perturbation calculation.
One thereby considers the coupling between the local spin Si and the conduction electrons that
equates to the Heisenberg partHHB of eq. (2.25) as perturbation of the unpolarized ground state
of the conduction electrons. The full calculation up to second order which can be entirely found
in [NR09] then leads to an e�ective Hamiltonian HRKKY that is also of a Heisenberg nature but
represents a coupling between the local spins Si and Sj:

HRKKY =
∑

ij
JRKKY,ij Si ⋅ Sj . (3.12)

While this Hamiltonian is of very simple structure, the coupling constant JRKKY is not, as

JRKKY,ij ∼ J2K
(n(c))

2

"F
F
(
2kFrij

)
, (3.13)

where n(c) is the conduction-electron density, kF marks the absolute of the Fermi wavevector and
rij = |ri−rj| stands for the distance between the two local spins at ri and rj. Due to the function

F(x) = sin(x) − x cos(x)
x4

, (3.14)

the coupling constant JRKKY gets the behavior of a damped oscillationwhose wavelength is of the
magnitude of �∕kF and that originates from the Friedel oscillations already mentioned above.

By that, as a result of the eqs. (3.13) and (3.14), the coupling induced by the RKKY interaction
can either be of ferro- or antiferromagnetic nature depending on the distance rij and thus the
underlying model lattice which in the end maps the microscopic setup of the corresponding real
material. A schematic visualization of all that is provided by �g. 3.2. It remains to note here that
on the one hand, for large distances rij the RKKY interaction behaves like

JRKKY,ij ∼
1
r3ij

, (3.15)
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3.2. Kondo effect, itinerant exchange and the Doniach phase diagram

JK > 0

F (x)

r0 rt1 rt2

JRKKY,0t1 < 0
JRKKY,0t2 > 0

|r |

Figure 3.2.: Schematic visualization of the RKKY interaction by means of the D = 1-
dimensional two impurity Kondo lattice model. A local spin (dark green arrow) at discrete
site (black dot) r0 couples antiferromagnetically with JK > 0 to the spins of the nearest Bloch
electrons of the host material (red box) what induces a spin-polarization (red arrows) whose
damped oscillatory dispersion is mediated by F(x) given by eq. (3.14) (blue line). Depending
on its position i.e. the distance |r| to the initial spin at r0 a local spin on a second discrete
test site (light green arrow on black dot) may couple anti- at rt2 or ferromagnetically at rt1
respectively with e�ective indirect couplings JRKKY,0t1 < 0 and JRKKY,0t2 > 0.

while on the other hand, the fact that it is

JRKKY,ij ∼ J2K (3.16)

re�ects that theRKKY interaction is a second-order e�ect. A di�erent indirectmagnetic coupling
mechanism, the so-called inverse indirect magnetic exchange (IIME) will be the main topic of
chapter chapter 7 on page 95 and the following. The understanding of the IIME however, apart
from the knowledge on the RKKY, also presumes some at least basic knowledge on the Kondo
e�ect.

Depending on the energetic situation, instead ofmediating an interaction between di�erent local
spins, the conduction electrons near the local spins may also just screen the magnetic moments.
This is respectively realized by the formation of a spin singlet out of a local spin and, depending
on the coupling strength JK, one or more spins of the conduction electrons near to the impurity
site. This is indicated as the Kondo e�ect [Kon64] and is shown in �g. 3.3. Theoretically, in a
perfect strong-coupling limit the Kondo-singlet is formed out of one impurity spin and exactly
one spin of a conduction electron. With decreasing coupling JK, the impurity spin is screened
by more and more conduction electrons which form the so-called Kondo cloud [A�09]. This all
happens below a material-speci�c Kondo temperature

TK ∼ exp− 1
JK�("F)

(3.17)

which therefore sets the energy scale of the Kondo e�ect. In appropriate real materials this ef-
fect is responsible for a temperature-dependent minima of the resistivity. As the Kondo-clouds
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3. Local magnetic moments andmagnetic order

act as scattering centers inside the conduction band the mobility of the free electrons around is
disturbed. Macroscopically this manifests in a rather untypical increasing resistivity of the host
material when the decreasing temperature sinks below TK. Local magnetic moments that are
screened in terms of the Kondo e�ect are invisible for and thus may not take part in the RKKY
interaction. Hence the Kondo e�ect constrains or even totally destroys the magnetic long-range
order tendencies resulting out of itinerant exchange.

JK > 0 S = 0

Figure 3.3.: Schematic visualization of the Kondo e�ect by means of the D = 1-dimensional
Kondo impuritymodel. A local spin (dark green arrow) at a discrete site (black dot) and some
of the spins of near Bloch electrons (red arrows) of a host material (red box) form a (green)
Kondo cloud with total spin S = 0. Hence, the local spin is screened for the remaining host
electrons that do not participate in the Kondo cloud.

As the RKKY interaction follows a di�erent energy scale, both phenomena rival each other de-
pending on the energy of the system. A theoretical study of this rival was the main content of
the famous work of Doniach [Don77]. He expected the physics within the KLM to be dominated
by two energy scales, namely that of the Kondo e�ect, and that of the RKKY interaction. While
the scale of the former is given by the binding energy of a local Kondo-singlet that equals TK, the
latter is given by the binding energy of a spin-singlet which is formed by two di�erent antiferro-
magnetically coupled local spins. This leads to

TRKKY ∼ J2K�("F) . (3.18)

In that sense, depending on the value of JK�("F), the formation of local Kondo-singlets (TK >
TRKKY) or antiferromagnetic coupling (TRKKY > TK) is favored. Graphically this results in the
famous T[JK�("F)] Doniach phase diagram which is shown in �g. 3.4. Here, at weak JK�("F),
where TRKKY > TK, an antiferromagnetic (AFM) phase occurs as an antiferromagnetic coupling
between local impurity spins is dominating due to the RKKY interaction. The AFMphase breaks
down at a critical value of JK�("F) resulting out of the crossing energy scales TRKKY and TK. For
stronger JK�("F), the regime TRKKY < TK is characterized by a heavy Fermi liquid phase due
to the formation of local Kondo singlets (KS). This phenomena in turn destroys the magnetic
order due to the RKKYmechanism which has become energetically unfavorable in regard to the
current parameter regime.
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T

TK < TRKKY TK > TRKKY

JK �("F)

TRKKY ∼ J 2K �("F)

TK ∼ e−1∕JK �("F)

AFM

KS

Figure 3.4.: Sketch of the T[JK�("F)] Doniach phase diagram for the Kondo lattice model for
an antiferromagnetic JRKKY > 0 as a result of the energetic rival between the Kondo e�ect
that energetically scales with TK (green) and the RKKY interaction represented by TRKKY
(red) [Don77]. For further discussion, see section 3.2. Inspired by [Col02; Löh+07; Col15a].

3.3. Further influences

Magnetic long-range order strongly depends on the characteristics of the underlying latticemodel
as well as on the temperature T. For example, there exists a very important theorem that makes a
strong statement on the arising of magnetic order in magnetically isotropic models at �nite tem-
peratures in regard to the model dimensionality. It is known as the Mermin-Wagner theorem.
Another interesting phenomena in this context is the failure of magnetic order due to geometri-
cally frustration that, like its name indicates, goes back on the lattice geometry. As both aspects
will play important roles within our studies in chapters 6 and 7, they will be presented in more
detail in the following.

3.3.1. The Mermin-Wagner theorem

Originally, the Mermin-Wagner theorem [MW66] is an exact result for the Heisenberg model
presented in section 2.5. It states that the spontaneousmagnetizationms(T) of theD dimensional
Heisenberg model at temperature T due to the presence of an external homogeneous magnetic
�eld B = Bez ≠ 0 vanishes in the limit B → 0 for �nite T and D < 3. Mathematically speaking
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3. Local magnetic moments andmagnetic order

it is:
(∀ T ≠ 0) (∀ D < 3) ∶ ms(T) = lim

B→0
m(T, B) = 0 . (3.19)

In short one may formulate this just as:

In one and two dimensions, the isotropic Heisenberg model does not show any sponta-
neous magnetization at �nite temperature.

This theorem is best proven by setting up an appropriate Bogoliubov inequality in terms of the
Heisenberg Hamiltonian HHB given by (2.29) and the spin operators it contains. In a �rst step
a tedious calculation implies the evaluation of this inequality by parts. In a subsequent step the
spontaneous magnetizationm at T > 0 is estimated in dependence of D for the isotropic model,
i.e. the model in the absence of any external magnetic �eld, hence B = 0 . This �nally yields
eq. (3.19) [NR09].

Alternatively, the physical statements of the Mermin-Wagner theorem may be derived via the
theory of magnons, i.e. bosonic quasi-particles that describe states of collective excitations in
magnetic systems. Here, m → 0 holds for the same parameter constellations regarding T and
D like those written above as the number of excited spin-waves i.e. magnons diverges for these
cases [Blu01].

Aside from the Heisenberg model the Mermin-Wagner theorem is also valid for a huge class of
other magnetically isotropic models like explicitly the PAM (c.f. section 2.3) and its e�ective low-
energy model the KLM (c.f. section 2.4) [GN01].

In a more general sense the statement of the Mermin-Wagner theorem may be reformulated in
the context of magnetic phase transitions [Zin07]. Those are based on critical phenomena and
therefore are driven by a spontaneous temperature-dependent breaking of the symmetry of the
underlying model Hamiltonian. In preparation for our studies of the depleted Anderson lattice
in chapter 7 on page 95 �. we want to take the chance here to shortly and qualitatively discuss
the transition from a ferromagnetic (FM) to a paramagnetic (PM) phase for an example [Coe10].
As illustrated in �g. 3.5 starting from high temperatures there exists a phase microscopically
characterized by the existence of disordered magnetic moments. Macroscopically this phase is
therefore classi�ed as paramagnetic phase.

With decreasing temperature T the system will reach its critical temperature, the Curie temper-
ature [GRH91], at TC where suddenly a ferromagnetic order of the magnetic moments sets in.
This is characterized by a spontaneous magnetizationm of �nite magnitude towards T = 0 (see
labeled green line in �g. 3.5) which in a general sense plays the role of the order parameter or gen-
erator of the phase transition. It typically is Zero in the disordered but symmetric and non-Zero
in the ordered but symmetry-broken phase. Just as a marginal note and also in preparation for
chapter 7 remember the following: Apart from the temperature-development of the magnetiza-
tionm, the critical temperatureTC is also �xed through the zero point of the inverse susceptibility
�−1 that only occurs in the disordered paramagnetic phase (see labeled blue line in �g. 3.5) ac-
cording to the Curie-Weiss law [Kit05].
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Figure 3.5.: Schematic visualization of a transition from a ferromagnetic to a paramagnetic
phase at the critical temperature TC (red cross) indicated by a magnetizationm (green line).
Additionally the temperature-development of themagnetic susceptibility�−1 is shown (blue
line). See section 3.3.1 for further explanation and discussion.

After this example, we �nally give the general statement of the Mermin-Wagner theorem:

At dimensions D = 1, 2 and �nite temperatures T > 0 the existence of a long-range
order that goes ahead with the spontaneous breaking of a continuous symmetry is not
possible.

Back to our example this would forbid the formation of ferromagnetic order for systems of di-
mensions D < 3.

3.3.2. Geometrical frustration

In frustrated magnetic systems the localized magnetic moments, or spins, interact through com-
peting exchange interactions that cannot be simultaneously satis�ed [Bal10]. For an example,
consider a pure spin-type model like the Heisenberg model as described in section 2.5 on page 20
and the following in D = 2 dimensions. Consider further the existence of spin-to-spin exchange
interactions that favor an antiferromagnetic coupling between spins on next-neighboring con-
crete lattice sites. In the case of installing this model on a simple square lattice, there is no con-
fusion on how the spins should arrange an antiferromagnetic coupling among each other (see
the left side of �g. 3.6). A circumstance that is ensured by the bipartite structure of the square
lattice.

Generally, we de�ne a lattice as of bipartite structure if it could be divided into two sub-
lattices A and B in such a way that each next-neighboring site of A belongs to B and vice

33
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versa.

As it is further graphically illustrated on the left side of �g. 3.6, in the scenario of considering the
above introduced toy-model on a square lattice, exactly this original lattice can be divided into
two equivalent sublattices: One that consists out of those sites that host spins of spin-projection
↑, let’s call it A, and a second sublattice whose sites will be labeled with B while only hosting
spins with spin-projection ↓. This bipartite structure ensures the mutual compensation of spins
of di�erent spin-projection, i.e. orientation.

?B A

A B A B

C

Figure 3.6.:Graphical demonstration of geometrical frustration by a simple spin type model.
Local spins (green arrows) at discrete sites (black dots with sublattice labels) are supposed to
couple antiferromagnetically. Left: on a square lattice. On this bipartite lattice out of A- and
B-sublattices, spins of next-neighboring sites compensate in terms of the antiferromagnetic
coupling. Right: same scenario on a triangular lattice. The spin on the “C”-site can not �t
into the coupling scheme—it remains geometrically frustrated. See section 3.3.2 for further
discussion.

However, this harmonic constellation drastically changes when the model is considered on a
triangular lattice geometry. Here, one would divide the original lattice into three equivalent sub-
lattices A, B, C thereby leaving the bipartite lattice structure. Consequently, if the spins of the A
and B sites are oriented as before, hence couple antiferromagnetically, the spins residing on the
remaining C sites are unable �t into the coupling scheme. The considered exchange interactions
just cannot be saturated completely on C sites, i.e. neither a spin-projection ↑ nor ↓. Generally,
the phenomenon of geometrical frustration occurs in frustrated latticemodels of uncompensated
spins. Physically, this typically leads to competing groundstates where either a speci�c magnetic
order or a spin liquid phase can emerge [ZW15; SB17; HE88].

While we used spins and a spin-type model for reasons of simpli�cation above facts also hold
for well-formed local magnetic moments in regard to Anderson models. This is an important
conclusion concerning the oncoming chapter 6 (page 75 �.) on our studies of the PAM on the
triangular lattice.
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3.4. Summary & outlook

In this chapter some background information on the physics of local magnetic moments was
given. The formation andnecessary conditions for it to happenwere discussed in regard to the pa-
rameter regime considered models were tuned into. Particularly, we focused on suitable models
already known from the the preceding chapter 2 on page 9 and the following. Having understood
how to drive thosemodels into their localmoment regimes, the impacts of the resultingmagnetic
moments on a non-magnetic environment were examined. These appeared as the Kondo e�ect
and an indirect exchangemechanism known as the Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction, both obeying di�erent energy scales. From a resulting energetic rival between those
phenomena followed the Doniach phase diagram whereby two main phases were identi�ed: An
antiferromagnetic phase as the direct consequence of dominating indirect exchange on the one
hand and a heavy Fermi liquid phase of suppressed magnetic order induced by the screening of
local magnetic moments in terms of the Kondo e�ect on the other hand. The last section of the
chapter provided a short presentation of two further circumstances that heavily in�uence the
occurrence of magnetic order: Firstly the Mermin-Wagner theorem which denies magnetic long
range order at all for systems of lower dimension than D = 3 at �nite temperature. Secondly the
phenomena of geometrical frustration where due to problematic geometrical constellations the
aspired scheme ofmagnetic order cannot be ful�lled for allmagneticmoments simultaneously.

By that, the conceptual foundations should be laid out for entering the chapters 4 and 5 on the
numerical setup and implied methods that were used for gaining the physical results presented
later on in chapters 6 and 7.

35





4. Site-dependent dynamical mean-field theory

This chapter deals with the numerical framework of our studies whose results will be presented
in chapter 6, page 75 �. and chapter 7, page 95 and the following. As one already knows from the
introduction on page 1 �. this framework is formed by a site-dependent dynamical mean-�eld
approach that internally necessarily endeavors an impurity solver based on the continuous-time
hybridization expansion method. This solver will be explicitly presented and discussed in very
detail in chapter 5 on page 49 and the following. As already pointed out in the introduction as
well, the bigmethodical challenge to overcomewhen theoretically and qualitatively dealing with
systems of correlated electrons like those introduced and shortly revised in the former chapters 2
and 3 is the handling of correlations mimicked through interaction terms inside this models. As
the determination of analytically as well as numerically exact solutions of the full, especially the
correlated lattice models in speech is impossible or at least very di�cult mostly due to the in-
teraction terms, one has to develop more or less sophisticated approximations for those model
parts in order to get some theoretical insights. A very well established and powerful approxi-
mation scheme thereby is provided by mean-�eld theories, where in regard to applications to
many-body problems it has become usual to di�er between a standard or static and a somehow
dynamical variant of the underlying approximation. Both variants are non-perturbative, hence
perturbatively controllable as well as thermodynamically consistent theories that, for very dif-
ferent methodical reasons, determine exact or at least very reliable results for systems of very
high dimension in a self-consistent manner but, as will be explained below, extremely di�er in
their technical scopes of application and their capabilities in regard to the strength of the present
correlations.

In section 4.1 we start with a short review of the general mean-�eld idea. Then we will focus on
its dynamical variant, originally speci�cally tailored to calculate strongly correlated electronic
systems in section 4.2. Typically the dynamical mean-�eld theory (DMFT) can treat correlated
models of a single-site homogeneity. In order to examine models merged of sublattices hence of
a unit cell homogeneity, whereas the sites inside each unit cell show di�erent physics one has to
adapt, hence extend the resolution of the standard dynamicalmean-�eld approach appropriately.
Accordingly, in section 4.3, we propose a suitable site-selective extension of the standard DMFT
as it is necessarily required for our purposes in chapters 6 and 7, starting on page 75.

The site-selectivemean field approach as described in Section 4.3, especially the self-consistency
equations therein were implemented in Fortran 90 from scratch in preparation for this thesis and
our corresponding publications [AAP15; ATP15].
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4.1. The general mean-field idea and static mean-field theory

In very general, a typicalmany-particle system consists of a large number of particles that interact
among each other leading to a complex correlated motion. The mean-�eld idea is to consider
each single particle to interact with an e�ective external �eld that is an averaged replacement of
the interactions with as well as among the remaining particles. Like it is schematically visualized
in �g. 4.1, a complex many-body problem is approximately reduced or better say mapped onto
an e�ective one-body problem. The latter then usually is left to be solved self-consistently what
turns out to be equivalent to the determination of a solution characterized by a minimal free
energy1 of the system [BF04]. Mathematically this is known as Bogoliubov variation [Kuz15],
a special variational principle that provides a systematic way of deriving the mean-�eld theory
(MFT) for a given microscopic HamiltonianH and thus represents the formal basis for standard
MFT [Yeo92]. It develops around a Bogoliubov inequality2 which states that

ℱ ≤ Φ = ℱ0 + ⟨H − H0⟩0 , (4.1)

where, besides the true free energy of the systemℱ,H0 marks a trial Hamiltonian depending on
a parameter ℎ0 with corresponding free energy ℱ0, and ⟨∙⟩0 denotes a thermal average taken in
the ensemble de�ned by H0. Resulting from that, the mean-�eld free energy ℱMF is de�ned by
minimizing Φ with respect to the variational parameter ℎ0

ℱMF = min
ℎ0

{Φ} . (4.2)

For a given choice ofH0, which for technical reasons usually tends to a non-interacting Hamilto-
nian, this procedure provides the best possible approximation to ℱ as Ineq. (4.1) insists that the
mean-�eld free energy ℱMF never falls below the true free energy.3

To get back to the initial problem of approximating interactions in a �rst step one claims the
interaction part of an underlying Hamiltonian as

Hint = AB , (4.3)

hence a product of two operators A and B. In static MFT those original and true operators are
then replaced by their average, again noted by ⟨∙⟩, plus the di�erence between their real value
and their average. We therefore write

A = ⟨A⟩ + (A − ⟨A⟩) (4.4)

and analogously for B and put it into eq. (4.3). After some algebra this leads to

Hint = A⟨B⟩ + ⟨A⟩B − ⟨A⟩⟨B⟩ + (A − ⟨A⟩) (B − ⟨B⟩) . (4.5)

1The free energy is a thermodynamical potential which describes the energy of a system in thermal equilibriumwith
its environment at a given temperature T. For further details have a look at e.g. [Fer56].

2For the interested reader, a formal proof of Ineq. (4.1) may be found in [Cal85].
3This is analogous to the variational principle in quantum mechanics. Again, see e.g. [Sak94].
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Figure 4.1.: Schematic visualization of the mean-�eld idea. The full many-particle problem
(left) is replaced by an e�ective one-particle problem (right): a reference particle interacts
with a surrounding mean-�eld that approximates all remaining particles and spatial interac-
tions. Inspired by [BF04].

The actual mean-�eld approximation then is to treat the di�erence between an operator and its
average, hence its �uctuation about its average what in a static theory is a spatial �uctuation, as
a very small correction. As to eq. (4.4) this means

A − ⟨A⟩ ≈ 0 , (4.6)

what physically becomes true for very dense systems, i.e. systems with high coordination num-
bers and therefore usually of high dimension D, as in an in�nitely high compact system there
is just no space left for spatial �uctuations. Thus, the static mean-�eld approximation (4.6) be-
comes exact in the limitD → ∞while being sensitive for spatial �uctuations [Vol11]. By applying
eq. (4.6) and its analog for B the last term in eq. (4.5) becomes negligible in terms of static MFT
what results in a mean-�eld expression of the original interaction part of the Hamilton (4.3) that
we write as

HMF
int = A⟨B⟩ + ⟨A⟩B − ⟨A⟩⟨B⟩ . (4.7)

At this stage onemay notice what was already statedmore generally above: WithinMFT the orig-
inal two-body problemABmainly was broken down to a sum of one-body terms that in each case
consist out of one operator multiplied by the mean-�eld, i.e. the thermal average, of the remain-
ing operator of di�erent kind. The general impact of the static mean-�eld approximation be-
comes clear by comparing the thermal averages of the initial operatorHint (4.3) andHMF

int (4.7):

⟨Hint⟩ = ⟨AB⟩ ←→ ⟨HMF
int ⟩ = ⟨A⟩⟨B⟩ . (4.8)

Thus, within static MFT the average of the originally occurring interaction is just factorized.
From a mathematical point of view this only holds in cases where A and B are uncorrelated.
Hence static MFT becomes a very brave approximation for systems whose physical properties
are ruled by stronger correlations and thus may totally fail in providing reliable physical insights
of such systems or, to bemore concrete, in describing physical phenomena that arise due to strong
electronic correlations. This can be traced back to the static character of the theory wherefore it
behaves totally insensitive for dynamical correlations.
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To sum up, one may note that the static MFT should provide reliable approximations of high
dimensional, rather weakly correlated many-body systems, whereas it may fail for strongly cor-
related systems and/or systems of low dimension.

4.2. The dynamical mean-field approach and its approximations

The key for a better approximation of even strong electronic correlations beyond a static mean-
�eld approach is to fully take into account dynamical instead of spatial quantum�uctuations. For
the special case of correlated many-particle lattice models this, while in return totally neglecting
spatial correlations, is realized by the comprehensive approximation scheme of dynamicalmean-
�eld theory (DMFT) [MV89; Geo+96]. Here, instead of trying to solve the given correlated lattice
model in terms of its full dynamics as a whole, what usually is impossible, in imitation of its static
counterpart just presented in section 4.1, the basic idea of the dynamical mean-�eld approach is
to pick out one e�ective single site or unit cell of a correlated lattice model and to dynamically
solve its local correlations embedded in a �ctitious tight-binding model that e�ectively replaces
the remnant interacting lattice [And12].

Formally, this is usually treated within the formalism of many-body Green’s functions, where
electronic correlations are encoded into electronic self-energies that re�ect the in�uence of elec-
tronic correlations on the propagators, hence the Green’s functions. While there also exists a
dynamical mean-�eld approach for approximating the dynamics of correlated lattice systems in
thermal non-equilibrium [SM02; Aok+14], for studies in thermal equilibrium at �nite tempera-
tures T > 0, as it was the case in the projects presented in chapter 6 and chapter 7, quantum
dynamics are respected in terms of the Matsubara formalism that, as well as the corresponding
Green’s functions, was described and referred to in appendix A.2 on page 122 and the follow-
ing. Within this formalism, the idea of DMFT manifests as follows: The local dynamics of the
e�ective lattice site chosen inside the DMFT are formally described by the k-averaged and conse-
quently k-independent lattice Green’s function Glat,k(i!n), referred to as the local Green’s func-
tion Gloc(i!n). Within DMFT however this function is expressed by the local Green’s function of
an appropriate single-impurity problem Gimp(i!n). To sum up, for a lattice of L lattice sites, that
is

1
L
∑

k
Glat,k(i!n) = Gloc(i!n) ≡ Gimp(i!n) , (4.9)

where for now indices like spin-projection or further quantum numbers were suppressed for
simpli�cation. As we are not expecting any kind of translational or spin symmetry-breaking this
will not lead to any implications in regard to the following discussion.

AsGimp(i!n) usually does not initially �t to the lattice problem to be solved it needs to be adapted
self-consistently to the given Gloc(i!n) by iterations. In this context as visualized in �g. 4.2 the
DMFT may also be described as self-consistent mapping of the full lattice problem on a suitable
single impurity model.4 What again conceptually seems to be a familiar receipt in regard to the
4From this point of view on the DMFT a possibility of deriving this mapping is provided by the so-called cavity
method which is shown in [Geo+96; VBK12] and especially [Li08].
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Figure 4.2.: Schematic visualization of the dynamical mean-�eld approach. The dynamics of a
full correlated latticemodel is self-consistentlymapped onto a suitable single-impuritymodel
whose dynamics are e�ectively described by a hybridization function ∆(!)which acts as the
dynamical mean-�eld. Inspired by [Geo14].

static MFT crucially di�ers from that in the nature of the approximation of electronic interac-
tions: While these in the static mean-�eld approach directly fall victim to the approximation as a
consequence of factorization, within the DMFT the already mentioned reduction of a correlated
lattice onto a still correlated single-impurity model, that even though solvable, still remains a full
many-body problem, conserves a full, yet untouched electronic interaction which possibly bares
the physics of strong electronic correlations. Characteristically for the DMFT in this context is
the fact that the remaining single-impurity problem necessarily has to be solved by an appropri-
ate impurity solver5 like the CT-HYB that will be presented inmore detail in chapter 5 on page 49
and the following. Therefore the DMFT is often categorized asmethodical framework.

In order to appropriately realize the necessary self-consistency equation according to Eq. (4.9) the
main approximation of DMFT has to be applied. This is to neglect themomentum dependence of
the electronic self-energy of the lattice problem and to additionally approximate it by the single-
particle impurity self-energy, hence

Σlat,k(i!n) = Σlat(i!n) ≈ Σimp(i!n) . (4.10)

Equivalently, in real space representation one states

Σij(i!n) ≈ Σimp(i!n) �ij , (4.11)

hence considers the lattice self-energy as purely local i.e. diagonal, where the remaining diagonal
elements are simply replaced by the electronic self-energy of the single impurity problem.

These assumptions do not appear out of nothing but have a real physical background as they,
and consequently the whole dynamical mean-�eld approach as such, become true in the limit of
5For an overview on common impurity solvers usedwithin the framework ofDMFT, also see [VBK12] and references
therein.
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4. Site-dependent dynamical mean-field theory

in�nite lattice dimension D. Originally this was proven by Metzner and Vollhardt in [MV89] for
the Hubbard model [Hub63] as introduced in its single-band version in section 2.2 on page 11
and the following. The limit D → ∞ however is not trivial for this model as the hopping t inside
the HamiltonianHHub (2.8) has to be scaled properly in the fashion

t = t̃
√
2D

, t̃ = const. , (4.12)

in order to prevent the density of states (DOS) to become arbitrarily broad and featureless—from
a di�erent point of view, to ensure a correct conservation of all terms of theHubbardHamiltonian
HHub (2.8) whenD is increased [MV89; Vol10]. In contrast to that, the trivial limit would lead to a
vanishing of the interaction term contained inHHub (2.8) and consequently to a vanishing of the
competition between kinetic and potential energy, hence itinerancy and locality of the electrons
that should be properly described by theHubbardmodel (again see section 2.2, page 11�.). As the
study of this competition however is the main target of the DMFT, the scaling (4.12) is not only
unpreventable for physical reasons but turns out to be the key for all approximative assumptions
of the dynamical mean-�eld approach.

As exposed in [VBK12] and further references therein, the scaling (4.12) of the hopping t in
the limit D → ∞ tremendously simpli�es in the investigation of Hubbard-type lattice models
and is equivalently derivable in momentum as well as in real space representations. Particularly
in the latter, it evolves to a scaling of the dynamic free single-particle Green’s function of the
Hubbard model, hence the bare propagator, regardless of its representation in imaginary times
or Matsubara frequencies, like

G0
ij ∼ O(D− ‖ri−rj‖

2 ) , (4.13)

where ‖ri − rj‖ is the Manhattan distance between two discrete sites of a possibly hyper-cubic
lattice at real-space positions marked by ri and rj. In a perturbation expansion of the Hubbard
model in in�nite dimension in terms ofU, hence aweak coupling expansion, this property (4.13)
implies the collapse of all connected, irreducible Feynmandiagrams in the position space. Conse-
quently, the full irreducible self-energy becomes a purely local [MV89] but still dynamic [Mül89a]
quantity. Furthermore, the remaining, non-collapsed perturbation theory diagrams in the per-
turbation expansion of the full irreducible self-energy by comparison turns out to be the identical
with that of the single-impurity Anderson model (SIAM) [Pru08]. Thus, both assumptions con-
tained in eq. (4.11) are provable to be correct in the limit D → ∞. In this context we additionally
refer to [Kol11].

Now, everything is ready to formulate suitable self-consistency equations in the spirit of DMFT.
For demonstration purposes we will stay with the single-band Hubbard model. Here, by using
the model’s equation of motion one may derive the free lattice Green’s function as

G0,k(i!n) =
1

i!n − "k + � . (4.14)

In combination with the lattice Dyson equation

Σlat,k(i!n) = G0,k(i!n)−1 − Glat,k(i!n)−1 (4.15)
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4.2. The dynamical mean-field approach and its approximations

that de�nes the lattice self-energy Σlat,k , the dynamical interacting lattice Green’s function is ob-
tained as

Glat,k(i!n) =
1

i!n − "k + � − Σlat,k(i!n)
. (4.16)

Within the DMFT self-consistency cycle the single-band Hubbard model is reduced to the An-
derson impurity model (AIM) as it was introduced in section 2.3 on page 13 and the following,
whereas its electronic dynamics are fully described by the corresponding local impurity Green’s
function that in turn may be derived as

Gimp(i!n) =
1

i!n − "f + � − Σimp(i!n) − ∆(i!n)
. (4.17)

Similar to the steps above for the single-bandHubbardmodel, this equation algebraically directly
results out of the impurity Dyson equation given by

Σimp(i!n) = G0(i!n)
−1 − Gimp(i!n)

−1 (4.18)

that de�nes the self-energy of the impurity problem Σimp out of Gimp(i!n) and the free impurity
Green’s function

G0(i!n) =
1

i!n − "f + � − ∆(i!n)
(4.19)

which in the context of DMFT plays the role of the e�ective bare propagator.

Both functions, Gimp(i!n) (4.17) as well as G0(i!n) (4.19), depend on the hybridization function
∆(i!n) that e�ectively describes the dynamics of the electronic bath including its electronic ex-
change with the impurity site. In terms of the Hamilton HAIM (2.18) as de�ned on page 17 this
special and physically important function is identi�ed as

∆(i!n) =
∑

k

V2

i!n − "k + � = ∫ d"
−Im∆(")∕�
i!n − " . (4.20)

As in particular
− Im [∆(")] = �V2

∑

k
� (" − "k) = Γ(") , (4.21)

the hybridization function is directly related to the hybridization-induced broadening of the im-
purity excitation levels Γ(") given by eqs. (3.4) and (3.5) as already discussed in the context of the
formation of local magnetic moments in section 3.1, page 24 �., by means of the AIM.

Finally we are prepared to formulate a self-consistency equation in regard to the dynamic local
Green’s function of the single impurity problem Gimp(i!n) Eq. (4.9) [Geo14]: In a �rst step we
write out eq. (4.9) in terms of eq. (4.16) and apply the DMFT approximation (4.10). We get

Gimp(i!n) = Gloc(i!n) =
1
L
∑

k
Glat,k(i!n) ≈

∑

k

1
i!n − "k + � − Σimp(i!n)

. (4.22)

The additional extraction ofΣimp(i!n) in terms of the impurityDyson equation (4.18) and eq. (4.19)
�nally yields:

Gimp(i!n) =
1
L
∑

k

1
Gimp(i!n)

−1 + ∆(i!n) − "k − "f
. (4.23)
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Due to the impact of eq. (4.19) this equation also is remarkably strongly dominated by the hy-
bridization function ∆(i!n)which for physical reasons has to be, since in the end it is ∆(i!n) and
not Gimp(i!n) that plays the important role of the dynamical mean-�eld as a central magnitude
of the dynamical mean-�eld approach. Therefore, especially if one uses quantum Monte Carlo
(QMC) algorithms inside the framework of DMFT (c.f. chapter 5 page 49 �.), in order to solve
the remaining single impurity problem it is more convenient to directly formulate a system of
self-consistency equations by solving eq. (4.23) for the hybridization function, resulting in

∆(i!n) = i!n − "f + � − Σimp(i!n) −
1

Gloc(i!n)
, (4.24)

where Gloc(i!n) follows the approximation in eq. (4.22). By that, principally a full algorithmic
self-consistency cycle may be realized. To do so, one would start with an initial guess of Σimp in
order to calculate Gloc(i!n) (4.22) and with it ∆(i!n) according to eq. (4.24). Now the job of an
appropriate single impurity solver would be to extract a new Σimp out of the given single impurity
model ∆(i!n). A job which �nalizes the �rst iteration step. Further steps have to follow unless a
comparison of the “old” and “new” self-energies turns out positive.

What still needs to be mentioned are the not entirely positive consequences as immediate results
out of the strictly local character of the DMFT. While due to its theoretical base, the dynami-
cal mean-�eld approach treats local e�ects like the Kondo e�ect as described in section 3.2 ex-
actly, one has to tolerate an approximate treatment of the non-local e�ects e.g. like those of the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. This is due to the fact that within DMFT
the previously criticized factorization of electronic correlations in terms of static MFT, c.f. sec-
tion 4.1 on page 38 �., emerges comparably but is shifted up to two-particle andhigher correlation
functions [And12]. In this context, one particularly has to expect problems in regard to the cor-
rect representation of phenomena based on a long-range order like c.f. long-wavelengthmagnetic
excitations, known as magnons or, more generally, of non-local two-particle correlations. From
a perturbative point of view, those higher correlations do not contribute, thus simply do not feed-
back to the expansion of the local single-particle self-energy mentioned above and therefore are
not recognized by means of DMFT.

Consequently, a well-known artifact of the dynamical mean-�eld approach arises in form of its
insensitiveness towards the statements of theMermin-Wagner theorem that alreadywas the topic
of section 3.3.1. This fact plays an enormous role concerning the performed DMFT-studies of
magnetic phase transitions which are the main content of chapter 6 on page 75 �. and chapter 7
on page 95 and the following.

4.3. Site-dependent extension of the dynamical mean-field approach

In the preceding section 4.2 weworked out the DMFT self-consistency equations with the single-
band Hubbard model (c.f. section 2.2, page 11 �.) in mind, hence a model that is homogeneous
in regard to its throughout correlated sites. Consequently, until now, we have been focussing on
the so-called single-site dynamical mean-�eld theory.
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Generally this standard variant of the dynamical mean-�eld approach treats every impurity site
of the model to be equally solved, hence is only reasonably applicable for systems or many-body
problems that are considered as homogeneous in terms of the physics of every single site. For our
purposes however, as alreadymotivated in the Introduction, page 1 �., in chapters 6 and 7wewill
be confronted with periodic Andersonmodels in which the physics of interest occurs among sin-
gle member sites of pragmatically clever chosen, i.e. de�ned unit cells. Therefore we need an ex-
tended dynamical mean-�eld approach that principally shifts the methodical treatment of single
sites towards unit cells while additionally site-selectively respecting the unit-cell-internal sites in
the necessary self-consistent mapping. Thus this required site-dependent dynamical mean-�eld
theory (sdDMFT) methodically should be categorized somewhere in between the single-site and
the real-space DMFT [PN97].

Before becoming more speci�c in this attempt, we �rst leave behind the single-band Hubbard
model in favor of the PAM as the model of our interest. In order to �t our just mentioned re-
quirements, we write out the real-space Hamiltonian in an extended fashion compared to that
given by eq. (2.15) on page 15. Formally this is achieved by appropriately extending the set of
used indices yielding:

H =
∑

rr′

∑

��′

∑

�
c†r��t��′(r − r′)cr′�′�

+ V
∑

r��

(
c†r��fr�� + f†r��cr��

)

+ "f
∑

r��
f†r��fr��

+ U
2
∑

r��
f†r��fr��f

†
r�−�fr�−� . (4.25)

Here, r runs over the position vectors to the di�erent unit cells, � concretely refers to the sites
within a unit cell, and � is the spin projection as usual. c†r�� (f

†
r��) creates an electron in the c (f)

orbital with quantum numbers r, �, �. Again, conduction electrons are assumed to hop between
nearest-neighboring sites, i.e., the hopping amplitude t��′(r − r′) = t ≠ 0 if r, � and r′, �′ are
nearest neighbors. Furthermore, also as usual, V is the local hybridization strength, andU is the
strength of the Hubbard-type local interaction on the f orbitals. The one-particle energy of the
f orbitals is "f and for the c orbitals "c ≡ t��(0).

Based on this notation let’s focus on the self-energy once more: As reported in the previous sec-
tion 4.2 on page 40 and the following, DMFT assumes the self-energy on the f orbitals to be local,
hence

Σr��,r′�′�′(i!n) = �r,r′���′Σ��′(i!n) ,

andmaps the lattice problemonto an e�ective single-impurity Andersonmodelwith one-particle
parameters or, equivalently, with a hybridization function ∆��′(i!n) that is determined from the
local element of the lattice Green’s function Gloc,��′(i!n) via the DMFT self-consistency condi-
tion. This implicitly assumes that the dynamical mean-�eld ∆��′(i!n) is homogeneous. Conse-
quently, only homogeneous phases of the DMFT equations can be found in this way.

In contrast to that, in the real-spaceDMFTapproach the self-energy is still assumed as completely
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4. Site-dependent dynamical mean-field theory

local but inhomogeneous solutions of arbitrary complexity are allowed by keeping the full spatial
dependence of the local self-energy:

Σr��,r′�′�′(i!n) = �r,r′���′Σr�;��′(i!n) .

In this context, a sdDMFT may be constructed by assuming that the local self-energy has pos-
sibly di�erent elements on the di�erent sites in a unit cell that is larger than a primitive cell.
Otherwise, the self-energy is taken as homogeneous:

Σr��,r′�′�′(i!n) = �r,r′���′���′Σ��(i!n) . (4.26)

It is important to generally state here, that throughout our studies, we will restrict ourselves to
collinear magnetic phases for simplicity. Therefore we consider a possibly spin-dependent but
spin-diagonal self-energy.

Obviously the site-dependent extension has to a�ect the DMFT self-consistency equations previ-
ously de�ned by means of eqs. (4.22) and (4.24). The exploitation of the remaining translational
symmetry tightly followed by the Fourier transformation of the one-particle term of the Hamilto-
nian (4.25), especially including the hopping parameters t yields a k-dependent hopping matrix
"k of the dimension dim = n × n, where wave vectors k are considered in the reduced Brillouin
zone and where n is the number of orbitals per chosen unit cell.

µ

U

εf

ε (k)

Σimp (iω)

∆(iω)

∆(τ)CT-HYB

G lat (iω)

FT

Σ initimp (iω)
L

self-consistency
circle

Figure 4.3.: Schematic visualization of the DMFT-self-consistency cycle (closed loop of red
arrows) by means of our sdDMFT ansatz, implying the usage of the CT-HYB algo-
rithm as single-impurity solver. Static system parameters (purple symbols) are repeatedly
used for the cyclic self-consistent re-calculations of the dynamical functions and by the
CT-HYB—compare to chapter 5—(black symbols). The green arrow re�ects the Fourier
transform from ∆(i!) to ∆(�) as expected from the CT-HYB. For further explanation and
discussion see text in section 4.3.
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4.3. Site-dependent extension

As visualized in �g. 4.3 by that, and with a guess for the local but now site-dependent f self-
energy Σ��(i!n) the DMFT self-consistency cycle can be started by calculating the elements of
the local but in contrast to eq. (4.22) site-selectively extended lattice Green’s function via

Gloc,
�,�(i!n) =
1
L

∑

k∈BZ
[ 1
i!n + � − "k − ��(i!n)

]

�

, (4.27)

where 
, � run over the n orbitals in the unit cell and where the n × n-matrix ��(i!n) is diagonal
and non-zero on the f orbitals only. � still marks the chemical potential that is used to �x the
total particle density, while from the extended point of view L runs over the model’s unit cells
instead of its lattice sites. Methodically equal to the descriptions in section 4.2, the local Green’s
function is then used to determine the hybridization functions of the single-impurity Anderson
models (�) as

∆��(i!n) = i!n − "f + � − ���(i!n) −
1

Gloc,��,�(i!n)
. (4.28)

Having de�ned the impurity models this way one principally proceeds further according to sec-
tion 4.2: The self-consistency cycle is closed by calculating the self-energy Σ��(i!n) for each im-
purity model independently by means of an appropriate impurity solver. As already stated re-
peatedly, in our case this is the CT-HYB impurity solver based on the segment code algorithm.
This continuous-time quantumMonte Carlo (CT-QMC) approach will be the topic of the follow-
ing chapter 5. As we will see there, besides the static system parameters "f, � and the impurity
onsite correlation U, the CT-HYB approach generally expects the input of a time-dependent hy-
bridization function ∆��(�). The site-dependent dynamical-mean �eld approach as discussed
here, however per se provides a hybridization function in terms of eq. (4.28), hence in the space
of Matsubara frequencies i!n. For technical reasons this is only possible for a �nite number of
frequencies

n = 0, 1, … , n! ≪∞.

Nevertheless, one in the end has to carry out a Fourier transform in the spirit of that given by
eq. (A.17) for imaginary-time Matsubara Green’s functions

∆��(�) =
∞∑

n=−∞
e−i!n�∆��(i!n) . (4.29)

In the knowledge of the high frequency behavior of the hybridization function as of orderO(1∕i!n),
we can expand ∆(i!n) ∼ �∕(i!n) in this limit. Proposed, this behavior is already reached by
means of the calculated hybridization function at !n! , the expansion coe�cient � can be derived
numerically as � = limn=0→n! i!n∆(i!n). Then, in particular by gaining from the relationship
between the indices of fermionic Matsubara frequencies illustrated in eq. (A.19), one can state

∆(�) = 2
�
Re [

n!∑

n=0
e−i!n� (∆(i!n) −

�
i!n

)]

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
calculated

+ 1
�

∞∑

n=−∞
e−i!n�

�
i!n

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
analytical

, (4.30)

where we have dropped indices for convenience. Here, the determination of ∆(�) is split into a
calculated and an analytical part. While the prior can be determined directly out of the numerical
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4. Site-dependent dynamical mean-field theory

data provided by the numerical setup, the latter one can be identi�ed as −�∕2 [Com07] in terms
of an evaluation of fermionic Matsubara sums [BF04; AS10; Mah00]. In the context of eq. (4.30),
the analytical part is categorized as the analytical tail of the calculated part.

This practice is of course not restricted to ∆(�) but instead is generically applicable for functions
that show the same high frequency behavior, e.g. the �-dependent correspondent elements of the
site-selectively extended lattice Green’s function Gloc,
�,�(i!n) (4.27), to stay with the above men-
tioned Fourier transform eq. (A.17). By that, in combination with a generalized relation (A.13),
it is furthermore possible to derive single occupation numbers of the orbitals in consideration.

4.4. Summary

From a general point of view, this chapter provided the fundamentals of di�erent mean-�eld
theories—namely the general and the dynamical plus its site-dependent extension—used in equi-
librium many-body physics. As the main bene�t we want to point out the derivation of a site-
selectively extended self-consistency circle bymeans of a sdDMFT in section 4.3, especially �g. 4.3
and eqs. (4.22) and (4.24). By that, we have constructed and presented the framework of our nu-
merical setup that will soon be put into action in chapters 6 and 7. There, we will also concretize
the practical derivation of the hopping matrix "k by means of speci�c models build on concrete
lattice geometries. But before doing so we will have to care about the theory and methodology
of the used and already repeatedly announced (see the purple parameters in �g. 4.3) impurity
solver, hence the CT-HYB algorithm in its segment-picture variant. This will be done properly
in the following chapter 5.
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algorithm

In the previous chapter 4 mean-�eld theories up to the site-dependent dynamical mean-�eld
theory approach were discussed. It was emphasized there, that dynamical mean-�eld theory
(DMFT) in general breaks down a correlated many-body to a single-impurity problem which
is then left to be solved by an appropriate impurity solver. So far, we repeatedly mentioned
the continuous-time hybridization expansion (CT-HYB) continuous-time quantumMonte Carlo
(CT-QMC) method as our method of choice to act as impurity solver inside our sdDMFT imple-
mentation but factually, it was only regarded as a working “black box” so far. This chapter �lls
this content-related gap by giving a detailed report on the technical inside and the methodical as
well as formal background of this black box: a segment variant of the CT-HYB algorithm.

In preparation of this thesis we implemented a working CT-HYB code in the segment variant in
Fortran 90 from scratch, using both, Intel and GNU Fortran compilers. The code was parallelized
by means of the Message Parsing Interface (MPI). This was done for two reasons:

1. To be able to design the numerical setup in very detail and

2. simply in order to understand the underlying algorithm in depth.

Besides for simulations presented in chapters 6 and 7 the resulting codewas also used by Peschke
to produce physical results for his master thesis [Pes14]. The whole implementation process re-
quired half of the time needed for getting the scientific results reported on within this thesis and
thus our CT-HYB code itself represents one of the main results of this thesis. These facts are re-
flected by the rather wider scope of this chapter.

We open the chapter with a short review of the Monte Carlo (MC) method in solid state physics
in section 5.1.1, thereby also caring about the fermionic sign problem (see section 5.1.2) before
moving on to the CT-QMC approach in section 5.1.3.

We then carry out the CT-HYB typical expansion of the hybridization function of the impurity
model to be solved in section 5.2. This expansion is essential for the derivation of the stochastic
process of the CT-HYB. Before this is discussed for the segment variant in section 5.4 a discus-
sion of the general Markov chain Monte Carlo (MCMC) sampling by means of the well-known
Metropolis algorithm is provided by section 5.3. We close the chapter with an explanation and
overview of the measurements of observables that are performed within our CT-HYB approach
in section 5.5—especially that of the impurity self-energy as needed to close the dynamicalmean-
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�eld self-consistency circle as described in section 4.3 on page 47 and the following.

5.1. Introduction and general aspects

The CT-HYB [Wer+06; WM06] algorithm, besides the continuous-time interaction expansion
(CT-INT) [RSL05] and the continuous-time auxiliary �eld (CT-AUX) [RHJ99; RHJ98; Gul+08]
approaches, belongs to the prominent family of thermodynamic, numerically exact impurity
solvers that methodically rely on the so-called CT-QMC method [Gul+11]. In essence, those
algorithms are methodically based on a MCMC integration [GRS96; MNR12] which generally
is a numerical approach to stochastically evaluate preferably multidimensional integrals under
heavy usage of pseudo random numbers.

5.1.1. The Monte Carlo method in solid state physics

Similar to the typical and general area of application in statistical physics [BH10; LB14; Kra06],
in particular regard to quantum Monte Carlo (QMC) simulations of solids, MCMC approaches
are used to stochastically provide an estimation inclusive a corresponding more or less reliable
error of expectation values in respect to high-dimensional con�guration spaces [Fou+01].

More formal, in denoting a particular con�guration space of all con�gurations c byΩ, the expec-
tation value of an observable A, usually marked by ⟨A⟩, is given by the average of A in con�gu-
ration c, that is A(c), over all con�gurations c ∈ Ω with respect to their statistical weight p(c).
Hence,

⟨A⟩p =
1
Z
∑

c∈Ω
A(c)p(c) , Z =

∑

c∈Ω
p(c) , (5.1)

with the crucial quantityZ, known as one of the centralmagnitudes of statistical physics, the par-
tition function. Thereby, to match the common de�nitions of probability theory (e.g. see [GS97;
Kle08]), the implied normed distribution

p(c)
Z ≕ P(c) (5.2)

clearly has to ful�ll the two conditions
∑

c∈Ω
P(c) = 1 , (5.3)

∀ c ∈ Ω ∶ P(c) ≥ 0 . (5.4)

In practice however, the problem in determining ⟨A⟩p in terms of eq. (5.1) lies in the fact that
the sums in eq. (5.1)—and consequently also the normed distribution given by (5.2)—as such
are usually not executable in total. On the contrary, one at least is able to calculate A(ci) for
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discrete con�gurations {ci} while additionally the corresponding weights {p(ci)} may be deter-
mined. Resulting from these facts given, the primary ansatz of the MC method manifests in the
approximation of the exact average by a representative sample mean in the fashion of

⟨A⟩p ≈ ⟨A⟩MC,p =
1
M

M∑

i=1
A(ci) , (5.5)

where the con�gurations {ci ∶ i = 1,… ,M} are sampled according to P(c), hence arise as a
sequence of the possible outcomes of random variables {Ci(Ω, P)} de�ned on Ω and P(c). Inter-
estingly, the convergence of ⟨A⟩MC,p to ⟨A⟩p in the limitM →∞ is stochastically ensured by the
empirical law of large numbers [Fou+01] which may be looked up in [Gro13] or [RF94]. More-
over, in this context, the {A(Ci)} as functions of {Ci} are also identi�ed as random variables and
thus the central limit theorem [Cah13] predicts the distribution of ⟨A⟩MC,p to converge in proba-
bility [Fel68] to a normal distribution with mean ⟨A⟩p and variance

�2⟨A⟩ =
�2A
M , (5.6)

provided that the {A(ci)} are statistically independent, that is uncorrelated. Typically the variance
�2A of the {A(ci)} is unknown and therefore has to be appropriately estimated itself. Since the
basic sample is the sample over con�gurations {ci ∶ i = 1,… ,N} and not over functions {A(ci)}
the naive usage of the corresponding sample variance as it is usually taught by basic data analy-
sis [Bra14; Bon13] leads to a biased, hence wrong imagination of the error of the simulation for
the general but common case of A(c) representing a non-linear function of c. Thus, to avoid the
performance of standard error propagation [Tay97] and the numerically cumbersome evaluation
of associated partial derivatives, one has to use advanced re-sampling methods like the bootstrap
method or a special case of it known as the jackknife analysis [Efr82; Bon13], which will be our
choice here.

This special re-sampling scheme is based on forming jackknife blocks of data out of the sampled
dataset at hand and the subsequent utilization of the corresponding averages of those blocks as
input of the error analysis. Thereby each jackknife block results out of the original data set by
removing or leaving out one con�guration respectively. By that, the average of the ith jackknife
block reads

AJ,i ≡
1

M − 1
⎡
⎢
⎣

M∑

j=1
A(cj) − A(ci)

⎤
⎥
⎦

2

, (5.7)

implying that the total value of the average of all jackknife blocks is equal to that of the standard
Monte Carlo estimate de�ned by eq. (5.5). Correspondingly, as it is explicitly shown in [You12],
the corrected, unbiased jackknife variance of the {Ai} that estimates �2A of eq. (5.6) best, manifests
as1

�2J,A = (M − 1)
M∑

n=1

⎡
⎢
⎣
AJ,n −

1
M

N∑

n=1
AJ,n

⎤
⎥
⎦

2

≈ �2A . (5.8)

1Note here that, apart from the referenced literature above, this estimate is written down in eq. (5.8) with already
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The typical error-scaling ofMCprocesses certainlymay already have been revealed from eq. (5.6):
The error in terms of the number of sampled con�gurationsM scales as �⟨A⟩ ∝ 1∕

√
M and thus

remarkably stays independent of the dimensionD of the con�guration space a Monte Carlo sim-
ulation runs through or equivalently, from a more general point of view, of a likewise simulated
integral.

It is due to this fact that the MC integration is the method of choice for evaluating integrals of
high or even in�nite dimensionD, as errors originating from standard numerical integration ap-
proaches like e.g. Newton-Cotes formulae [DR84; Pre+07] in terms of the number of evaluation
points show a convergence behavior that drastically slows down with increasing dimension and
hence often simply become inapplicable to solve multidimensional problems2 [Wei00; Kat09].
Against this very basic methodical background, when discussing quantumMonte Carlo simula-
tions of fermionic systems, it is unavoidable to address the more special so-called negative sign
problem. This will be done in the following.

5.1.2. Dealing with the negative sign problem

In performing QMC simulations of fermionic impurity models onemight be confronted with the
negative sign problem. That is theQMCprocess internallymay encounter con�gurations c that ex-
hibit statistical weights p(c) < 0 of negative sign what in turn goes back to the anticommutation
relations between fermionic operators like those shown in eq. (2.1). Generally the existence of a
solution is highly questionable as in terms of computational complexity [Hig15; GBL08; Ner16;
Cor+09] those problems were categorized as NP hard, hence as non-deterministic hard, thereby
implying that a generic solution of the negative sign problem remains non-existent until the set
P of problems which are solvable in polynomial computational time was proven to be equal to
the set of NP problems that only can be veri�ed in polynomial time, hence NP ≡ P [TW05]. It is
therefore recommended to switch to a samplingwith respect to |p(c)|, hence the absolute value of
p(c), instead of p(c) itself and to additionally reweigh the observable averages i.e. measurements
⟨A⟩p and ⟨A⟩MC,p originally given by eqs. (5.1) and (5.5) in terms of

⟨A⟩|p| =

∑
c A(c)

p(c)
|p(c)|

|p(c)|
∑

c
p(c)
|p(c)|

|p(c)|
=
∑

c A(c)s(c)|p(c)|∑
c s(c)|p(c)|

≈ ⟨A⟩MC,|p| =
∑M

i=1 s(ci)A(ci)
∑M

i=1 s(ci)
, (5.9)

corrected pre-factors. In detail, for each analysis method ♠ one would initially consider the de�ned standard
variance

s2♠,A =
1
N

N∑

n=1
[A♠,n −

N∑

n=1
A♠,n]

2

and subsequently multiply a correction C to the pre-factors leading to the corrected estimate of the respective
variance

�̃2♠,g = Cs2♠,g .
See e.g. [LP16] for details.

2To be fair in this context, one has to mention that traditional methods serve highly trustful deterministic errors,
whereas by using MC integration approaches one has to pay the price of receiving errors of solely probabilistic
nature.
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where generally s(x) = p(x)∕|p(x)| = sgn[p(c)] is identi�ed as the sign function and therefore
re�ects the sign ofp(x). Although this enables forQMC simulations of sign-problematic systems,
one has to pay the price of a weakened statistics as can be directly seen from the r.h.s. of eq. (5.9).
As a direct consequence of the scaling of the MC error as manifested by eq. (5.6), this may lead
to a catastrophic performance of the underlying MC process in regard to the computational time
that is required to provide measurements of a desired �xed accuracy. With that in mind, we
�nally will turn our attention to the continuous-time quantumMonte Carlo.

5.1.3. The Continuous-time quantumMonte Carlo approach

Focusing on the continuous-time variant, the generalities on QMC approaches presented so far
become special inasmuch as CT-QMC simulation relies on an expansion of the partition function
Z into a series of diagrams and the stochastic sampling of precisely these diagrams. Therefore,
the CT-QMC also is classi�ed as a diagrammatic MC method. As for a given expansion order
the stochastic sampling principally cares of all emerging diagrams additionally the CT-QMC ap-
proach is considered as numerically exact.

While formerly conventional auxiliary-�eld QMC methods like the Blankenbecler-Scalapino-
Sugar (BSS) [BSS81] or the Hirsch-Fye [HF86; Blü11] algorithm are based on a time-discrete
sampling that methodically implies aHubbard-Stratonovich transformation in a technically nec-
essary combination with a Trotter decomposition that in turn results in a systematic time dis-
cretization error [Ass02; AE08], the great bene�t of the invention of CT-QMC was to be able to
sample in the limit of a vanishing time-discretization, hence in a continuous-time fashion. In
other words this might be described as a stochastically controlled perturbation expansion of the
partition function that actually serves the average perturbation order as an important MC mea-
surement. According to their nomenclature established within [Gul+11] the CT-INT algorithm
and the CT-AUX approach, at what the latter may be factually seen as a continuous-time, hence
optimal implementation of the famous time-discrete auxiliary-�eld Hirsch-Fye algorithm, are
based on expansions of Z in powers of the interaction U, whereas consequentially the CT-HYB
solver relies on an expansion of Z in powers of the impurity-bath hybridization V.

However, with the experience of a mapping between both approaches, the CT-AUX was found
to be a special variant of the more general CT-INT method [MMJ09]. While in this context the
CT-HYBmethod remains unique, there exist two versions of this algorithm that signi�cantly dif-
fer in regard to the categories of solvable models, the sampling procedure and the scaling: A gen-
eral version, also called matrix code that is able to solve impurity models implying general-type
interactions and a more special segment code that on the one hand only may deal with impurity
models whose interaction is of density-density character, but on the other hand relies on a more
e�cient sampling scheme andmaymeasure, hence serve the single-particle impurity self-energy
highly e�ciently in terms of Matsubara frequencies in a direct, solver-internal way, what will be
explained in more detail in section 5.5 on page 71.

This lastmentioned quality is an unbeatable advantage of the segment code in regard to the usage
as impurity solver inside a DMFT cycle, where one usually operates in the space of Matsubara
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frequencies. Another reason why in practice one should always prefer the usage of the segment
variant to that of the matrix code lies in the scaling concerning the given system sizeN: Regard-
less of a possible negative sign problem, the complexity of the segment code shows a polynomial
scaling, whereas the matrix code scales exponentially in this scope.

To stay with the scaling, but in a more general context again, one has to mention that the simula-
tion in continuous timeunfortunately also has its drawback: The computational time ofCT-QMC
algorithms scales like O(N3

imp�
3) in regard of the inverse temperature � and the number of im-

puritiesNimp contained in the impurity problem to be solved. From this viewpoint, discrete-time
auxiliary-�eld QMCmethods [AE08] win the game as they may show a scaling ofO(N3

imp�) that
is at least linear in � [Ass14; IT15]. Therefore, the usage of CT-QMCmethods is quite suboptimal
for solving impurity lattice models. This fact clearly resolves the question, why those approaches
are usually used as single-impurity solvers within the framework of DMFT and not solely as
cluster solvers.

In the role of a single-impurity solver however, the already mentioned fact that the CT-HYB
solver is based on an expansion of the partition function Z in powers of the impurity-bath hy-
bridization V gives this approach an essential character of a sheer insensitivity to high magni-
tudes of the on-site interaction U. Therefore the CT-HYB algorithm is very well suited to simu-
late and solve impurity models inside the local-moment regime that usually is reached for rather
high interactions (c.f. section 3.1, page 24 �.). As our studies which are presented in chapters 6
and 7 purely concentrate on models that strictly imply only interactions of density-density char-
acter it was no question to choose the CT-HYB segment code variant as impurity solver inside
our framework of sdDMFT for our concerns. In the following section we will concentrate on
the mentioned hybridization expansion that forms the methodical base of the continuous-time
hybridization expansion approach.

5.2. The hybridization expansion

As repeatedly stated, the fundamental basement of the CT-HYB approach is a clever expansion
of the partition function of the impurity model to be solved. For the purpose of deriving this
expansion in more detail, it is best to represent the partition function as a fermionic functional
integral. In this context, a formal refresher on this topic is provided in appendix A.3 on page 124
and the following.

By choosing this formal way, generally the full derivation of the CT-HYB-typical hybridization
expansion would begin with the full grand canonical partition function ZAIM of the Anderson
impurity model (AIM) (c.f. section 2.3, page 13 �.) in terms of eq. (A.21). Thereby, inside the cor-
responding action as generally de�ned by eq. (A.24), of course one would use the imaginary-time
dependent version of the Hamiltonian HAIM (2.18) that additionally was quantum-statistically
shifted into the grand canonical ensemble by applying the substitution (3.10).

However, by using the CT-HYB approach as impurity solver in terms of the framework of DMFT,
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5.2. The hybridization expansion

we will take a context-compatible shortcut. From the DMFT—per construction—one is con-
fronted with an e�ective impurity model to solve, whose action reads

S = −∫
�

0
d� ∫

�

0
d�′

∑

�
f̄�(�) G−10 (� − �′) f�(�′)

+ U
2 ∫

�

0
d�

∑

�
f̄�(�)f�(�)f̄−�(�)f−�(�) , (5.10)

with the non-interacting imaginary-time dependent f-electron Green’s function [Ass14]

G−10� (� − �′) = −�(� − �′) [ ))� + "f] + ∆�(� − �′) (5.11)

which in the context of the dynamical mean-�eld approach is the Fourier transform of the e�ec-
tive bare propagator G0�(i!n) (4.19) and therefore consequently ∆�(� − �′) is the imaginary-time
dependent Fourier transform of the Matsubara hybridization function ∆�(i!n) (4.20) of the �cti-
tious electronic bath (c.f. section 4.2 on page 40 �.). In this representation of S all bath degrees
of freedom that initially were contained in the mixed hybridization part have been already inte-
grated out by means ofGrassmann Gaussian integration yielding a separate part Zhost of the total
partition function ZAIM which is of no further interest in regard to our concerns. Consequently,
the action S (5.10) does not contain c-�elds anymore but is left with the �-dependent conjugated
Grassmann numbers f̄�(�) and f�(�) that eventually represent the impurity electrons.

From here, an appropriate reformulation of S (A.24) in the knowledge of eq. (5.11) leads to

S = ∫
�

0
d� ∫

�

0
d�′

∑

�
f̄�(�) �(� − �′) [ ))� + "f] f�(�′)

+ U
2 ∫

�

0
d�

∑

�
f̄�(�)f�(�)f̄−�(�)f−�(�)

+ ∫
�

0
d� ∫

�

0
d�′

∑

�
f̄�(�) ∆�(� − �′) f�(�′)

= Simp + ∫
�

0
d� ∫

�

0
d�′

∑

�
f̄�(�) ∆�(� − �′) f�(�′)

= Simp + Shyb .

We use this to appropriately write out the partition function:

ZAIM = Zhost ⋅ ∫ D[f̄(�), f(�′)] e−Simp−Shyb

= Zhost ⋅ ∫ D[f̄(�), f(�′)] e−Simp[f̄(�),f(�′)] ⋅ e−Shyb . (5.12)

Now, factually the actual hybridization expansion happens in terms of a Taylor expansion of
e−Shyb . Particularly for actions whose hybridization parts are diagonal in regard to the spin �avor
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�, like it is the case here, one may not only perform one Taylor expansion of the whole construct
but is allowed to carry out one expansion per spin channel as follows:3

e−Shyb = exp [−
∑

�
∫

�

0
d� ∫

�

0
d�′ f̄�(�)∆�(�, �′)f�(�′)]

=
∏

�
exp [− ∫

�

0
d� d�′ f̄�(�)∆�(�, �′)f�(�′)]

=
∏

�

∞∑

k�=0

(−1)k�

k�!
[∫

�

0
d� ∫

�

0
d�′ f̄�(�)∆�(�, �′)f�(�′)]

k�

=
∏

�

∞∑

k�=0

(−1)k�

k�!
∫

�

0
d�1� ⋯d�k� ∫

�

0
d�′1� ⋯d�′k� f̄�(�1�)f�(�

′
1�
)⋯

⋯f̄�(�k�)f�(�
′
k�
) ∆�(�1� , �

′
1�
)⋯∆�(�k� , �

′
k�
) .

Here, one may want to exploit the fact that the conjugated Grassmann variables f̄� and f� of the
same spin index � behave like anti-commuting numbers [Cah13] and thus

f̄�(�)f�(�′)∆�(� − �′) = −f�(�′)f̄�(�)∆�(� − �′)

holds. Therefore, for every expansion order per spin channel k�, commuting all k� pairs of con-
jugated Grassmann variables that belong together yields a sign for the case of odd k� and thus
kills the alternating global sign of the Taylor expansion, resulting in

e−Shyb =
∏

�

∞∑

k�=0

1
k�!

∫
�

0
d�1� ⋯d�k� ∫

�

0
d�′1� ⋯d�′k� f�(�

′
1�
)f̄�(�1�)⋯

⋯f�(�′k�)f̄�(�k�) ∆�(�1� , �
′
1�
)⋯∆�(�k� , �

′
k�
) .

The big trick in the further proceeding which prevents a possible sign problem in the later MC
sampling of ZAIM lies in the collection of all possible ∆�(�, �′) into a determinant per spin chan-
nel. This was the main statement and progress of Werner et al. in [Wer+06]. This may appro-
priately be achieved by the insertion of a factor k�!∕k�! = 1 and the subsequent interpretation
of the nominator as k�! di�erent possible permutations P out of the group of permutations of
k� elements Sk� in regard to imaginary times �

′ as arguments of the Grassmann numbers f�.
Thus

e−Shyb =
∏

�

∞∑

k�=0

1
k�!

k�!
k�!

∫
�

0
d�1� ⋯d�k� ∫

�

0
d�′1� ⋯d�′k� f�(�

′
1�
)f̄�(�1�)⋯

⋯f�(�′k�)f̄�(�k�) ∆�(�1� , �
′
1�
)⋯∆�(�k� , �

′
k�
)

=
∏

�

∞∑

k�=0

1
k�!

1
k�!

∑

P∈Sk�

(−1)P ∫
�

0
d�1� ⋯d�k� ∫

�

0
d�′1� ⋯d�′k� f�(�

′
P(1�)

)f̄�(�1�)⋯

⋯f�(�′P(k�))f̄�(�k�) ∆�(�1� , �
′
1�
)⋯∆�(�k� , �

′
k�
) ,

3For a general derivation that includes the non-spin-diagonal case, have a look at [Ass14].

56



5.2. The hybridization expansion

where additionally a factor (−1)Pwas spent in order to correctly pay respect to the anti-commuting
property of the Grassmann algebra. To formally get back the original order of those {�P(i) ∶ i =
1�, … , k�} one simply renames the relevant indices in such a way that one returns to the initial
indication. This in turn a�ects the indices of the integration measures and the hybridization
functions. Consequently, one obtains

e−Shyb =
∏

�

∞∑

k�=0

1
k�!

1
k�!

∑

P∈Sk�

(−1)P ∫
�

0
d�1� ⋯d�k� ∫

�

0
d�′P(1�) ⋯d�′P(k�) f�(�

′
1�
)f̄�(�1�)⋯

⋯f�(�′k�)f̄�(�k�) ∆�(�1� , �
′
P(1�)

)⋯∆�(�k� , �
′
P(k�)

) .

As the integration variables are allowed to be reordered againwithout consequences, the permutation-
induced sign only concerns the �′-arguments of the hybridization functions and thus may be
shu�ed into the integral what yields

e−Shyb =
∏

�

∞∑

k�=0

1
k�!

1
k�!

∫
�

0
d�1� ⋯d�k� ∫

�

0
d�′1� ⋯d�′k� f�(�

′
1�
)f̄�(�1�)⋯

⋯f�(�′k�)f̄�(�k�)
∑

P∈Sk�

(−1)P∆�(�1� , �
′
P(1�)

)⋯∆�(�k� , �
′
P(k�)

) .

According to the explicit representation of determinants, which in literature is also known as the
Leibniz formula 4, one is allowed to further write

∑

P∈Sk�

(−1)P∆�(�1� , �
′
P(1�)

)⋯∆�(�k� , �
′
P(k�)

) = det

|||||||||||||

∆��1� �′1� … ∆��1� �′k�
⋮ ⋱ ⋮

∆��k� �′1� … ∆��k� �′k�

|||||||||||||

≕ det�� . (5.13)

Thus, after the performed expansion, the initial partition function by means of eq. (5.12) now
reads:

ZAIM = Zhost ⋅ ∫ D[f̄(�), f(�′)] e−Shyb
∏

�

∞∑

k�=0

1
k�!

1
k�!

∫
�

0
d�1� ⋯d�k�

× ∫
�

0
d�′1� ⋯d�′k� f�(�

′
1�
)f̄�(�1�)⋯f�(�′k�)f̄�(�k�) det �� . (5.14)

While in principle one is done with the tricky hybridization expansion of ZAIM by means of
eq. (5.14) at this point, for further application it is necessary to escape from the pure abstract
Grassmann representation into the numerically reasonably treatable notation in terms of mod-
i�ed Heisenberg operators (c.f. appendix A.2, page 122 �. and appendix A.3, page 124 �.). An
attempt elegantly attainable by identifying a thermal impurity average in the style of eq. (A.25)
written on page 125 collecting all Grassmann numbers f̄, f still contained in ZAIM (5.14). Prac-

4For a complete derivation see e.g. [Jän08] or [LM15].
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tically doing so e�ectively yields

ZAIM
Zimp

= Zhost ⋅
∏

�

∞∑

k�=0

1
k�!

1
k�!

∫
�

0
d�1� ⋯d�k�

× ∫
�

0
d�′1� ⋯d�′k�

⟨
f�(�′1�)f̄�(�1�)⋯f�(�′k�)f̄�(�k�)

⟩
imp

det �� . (5.15)

Due to relation (A.27) the just introduced impurity average over Grassmann numbers f, f̄ in the
fashion of eq. (A.26) may be replaced by an equivalent formulation in terms of a time-ordered
trace over corresponding fermionic Heisenberg operators f, f†. By doing so, eq. (5.15) simply
mutates to

ZAIM
Zimp

= Zhost ⋅
∏

�

∞∑

k�=0
∫

�

0
d�1� ⋯∫

�k�−1

0
d�k� ∫

�

0
d�′1� ⋯∫

�′k�−1

0
d�′k�

×
⟨
f�(�′1�)f

†
�(�1�)⋯f�(�′k�)f

†
�(�k�)

⟩
imp

det �� , (5.16)

where, as a matter of taste, the factors 1∕(k�!) ⋅ 1∕(k�!)were absorbed into an explicit time order-
ing of corresponding annihilation and creation operators per spin-channel � by manipulation of
the integration limits of the associated imaginary times in an appropriate manner [BF04].

By that, the expanded representation of the partition function given by eq. (5.16) �nally poses
the base of the CT-HYB sampling that will be discussed in the following section and especially
in section 5.4, page 65 �. with regard to the segment picture.

5.3. General sampling procedure

In section 5.1.1 it was already mentioned that CT-QMC solvers and therefore also the CT-HYB
algorithm internally rely on a sampling of the expanded partition function which technically is
realized in terms of Markov chain Monte Carlo (MCMC). The pure functioning and especially
the e�ciency of such a stochastic approach is heavily associatedwith its special internal sampling
procedure. Before diving into the sampling procedure that was tailored for the segment variant
of the CT-HYB approach we will give some general remarks onMCMC sampling and the correct
error analysis of correlated data.

5.3.1. Markov chain Monte Carlo

In general, like all Monte Carlo sampling methods, also the more special Markov chain Monte
Carlo approach is for samplingM con�gurations {ci} according to a given P(c)with the objective
of e�ciently providing MC estimates. For simplicity regardless of any negative sign problems,
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by recapitulating eq. (5.5) on page 51, we remember those estimates as

⟨A⟩p ≈ ⟨A⟩MC,p =
1
M

M∑

i=1
A(ci) .

The underlying sampling according to P(c) usually is technically realized by a sampling tech-
nique called importance sampling that relies on a�nite discrete-timeMarkov chain [KS83; Häg02],
hence on a special Markov process without memory that, again for simplicity, lives in a �nite
con�guration space and evolves discretely in the internal process time tMC. Generally, a Markov
chain creates a sequence of random variables C(Ω, PtMC) whose outcomes are in�uenced by a
time-dependent weight function PtMC(c). Therefore, in order to realize a qualitatively good sam-
ple it is crucial to manage that for large times tMC →∞ the time-dependent weight converges to
the given one, hence

lim
tMC→∞

PtMC(c) = P(c) . (5.17)

Then, in this limit one expects the Markov chain to produce a sequence of con�gurations {ci ∶
i = 1,… ,M}, in the terminology of Markov processes also called states of a state space Ω, that
arise with a frequency according to P(c). Thus, starting at an arbitrary state ctMC=0 at time tMC =
0, characteristically the Markov chain evolves stepwise in terms of updates without memory,
wherefore the conditional probability of arriving at state cm+1 at time tMC = m+1 given the state
cm at time tMC = m arises as

P(cm+1|cm) = Tcm+1,cm . (5.18)

Here, Tcm+1,cm is the element of a transition matrix T that generally contains all transition prob-
abilities from one state of the Markov chain to another. This matrix rules the time evolution of
PtMC(c) in the following way:

Pt = TPt−1 , (5.19)

wherePt is a probability vector formed out of all probabilities {Pt(ci)} of all discrete con�gurations
{ci ∈ Ω} at process time tMC = t. According to [TO15], within this notation, the limit (5.17)
reads

lim
tMC→∞

PtMC = P , (5.20)

where P has to be the stationary solution that obeys the equation

TP = P . (5.21)

It is known from the theory of Markov chains, as e.g. discussed in [Nor98; Häg02; GS97; Mey01],
that, independently of the initial con�guration, a corresponding process converges exponentially
fast to aunique stationary solution in terms of the process time if the transitionmatrixT is stochas-
tic, that is

∀i, j ∈ Ω ∶ Tij ≥ 0 , ∀j ∈ Ω ∶
∑

i
Tij = 1 , (5.22)

and regular, hence
∃l ∀i, j ∈ Ω ∶ [Tl]ij > 0 . (5.23)

This follows as a direct result of the then estimable sets of eigenvectors and -values of T which
mathematically is ensured by the statements of the Perron-Frobenius theorem [Geo11; Gan99;
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Mey01] on matrices that ful�ll the characteristics required above by eq. (5.22) and eq. (5.23).
Furthermore a stationary solution P as in the limit (5.20) su�ciently exists in terms of an asymp-
totic average over time of state probabilities as

P = lim
M→∞

1
M

M∑

n=1
Tn , (5.24)

if the condition of regularity (5.23) is weakened to the demand of an ergodic transition matrix T
which in concrete terms means

∀i, j ∈ Ω∃l ∶ [Tl]ij > 0 . (5.25)

It is fruitful to note here that the stationarity condition (5.21) in regard of two arbitrary states
i, j ∈ Ωmay be written component-by-component as

∑

i
TjiP(ci) = P(cj) . (5.26)

This condition is always ful�lled in the case of detailed balance also known as reversibility. Here,
it is

Tji P(ci) = Tij P(cj) ⇐⇒ Tji
p(ci)
Z = Tij

p(cj)
Z , (5.27)

whereby eq. (5.26) directly is obtained by summing both sides of the left-hand side of eq. (5.27)
over i in compliance with the statements made inside eq. (5.22). Spectacularly eq. (5.27) also
holds for probabilities p(ci), p(cj) that are not normed explicitly, as Z may be dropped out of the
right equation.

5.3.2. Metropolis sampling and algorithm

In directly reconnecting to the preceding section it still is up to the MC process to simulate a
Markov chain whose stationary solution, hence distribution e�ectively coincides with that of the
target distribution in eq. (5.1) by an appropriate construction of the process-underlying transition
matrix T. This construction is the real art when applying MCMC approaches. Principally, there
are many ways to do so, a generic functional derivation of the problem is worked out in [Ass14].
We will follow a well-known way by implementing the so-calledMetropolis sampling.

Here, the transition matrix is de�ned by

Tij = {
qijaij, if i ≠ j ,
1 −

∑
k≠j qkjakj, if i = j ,

(5.28)

where qmarks a proposal probability anda stands for an acceptance probability of amove, i.e. up-
date in theMarkov chain [RK07]. While a transitionmatrixT resulting out of eq. (5.28) obviously
is stochastic according to eq. (5.22), its ergodic character depends on suitable update schemes and
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5.3. General sampling procedure

resultant proposal probabilities. To additionally guarantee stationarity one adapts the detailed
balance condition (5.27) according to eq. (5.28) what in focussing on the case i ≠ j yields5

qji aji P(ci) = qij aij P(cj) ⇐⇒ qji aji
p(ci)
Z = qij aij

p(cj)
Z . (5.29)

By that, one of many possibilities in order to construct a suitable transition matrix is to achieve
the acceptance probabilities via

aji = min [1,
qijP(cj)
qjiP(ci)

] , i ≠ j . (5.30)

This choice then �nally leads to the famous Metropolis Hastings algorithm [Met+53; Has70] as
visualized by means of �g. 5.1 and to be explained in the following:

A random number r out of the interval [0, 1] is compared to the acceptance probability of a
Markov step aji (5.30).

ForperformingourCT-HYBsimulations,weusedFortran implementationsof twodifferentpseudo
random number generators: The one published by Marsaglia and Zaman in [MZ91] and that pro-
posed by Matsumoto and Nishimura in [MN98] also known as theMersenne Twister.

If r < aji the corresponding transition from con�guration ctMC=n = ci to ctMC=n+1 = cj is accepted
and the Markov chain moves on to the proposed, i.e. new con�guration. Else the transition is
rejected and the new con�guration in regard to the MC time tMC is identical to the former one,
namely ctMC=n = ctMC=n+1 = ci. Once processes of this algorithm have converged to the given
distribution ofP(c) of c after a so-called thermalization time period, an ongoing generation of valid
and correctly distributed con�gurations c ∈ Ω with progressing process time tMC is established.
In this context, in regard to common implementation schemes, itmakes sense to note thatMCMC
approaches excellently allow for parallel computing.

In our codes, weusedan open source variant of thewell-knownMessagePassing Interface (MPI) for
that purpose. Further information may be found in e.g. [GLS14; Gro+14; Ben+15] and references
therein.

Here, instead of simulating one long Markov chain, one runs more shorter MCMC processes. Of
course, the parallel Markov chains may not become shorter than the above mentioned thermal-
ization period of the process in order to get converged, reliable MC estimates. In such a parallel
implementation, the otherwise independently processed single MCMC runs only meet for col-
lecting, averaging over and equally re-distributing the respectively sampled measurements (see
section 5.5 on page 71 below) by an algorithmically predetermined master process. In this sce-
nario it is important to initialize the several parallel MCMC simulations with advantageously
chosen seeds i.e. natural numbers that indicate the starting points or vectors of the used random

5For simplicity we only consider cases where the old con�guration di�ers from the proposed one as later, in the
CT-HYB algorithm only this case will be sampled anyway.
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Start MC run

Read number of MC steps M

Draw Initial Configuration cinit

Set cinit ≕ cold

Propose Update: cold → cnew

Get acceptance probability: a(cold → cnew)

Draw random number r ∈ [0, 1]

Proof
[

r < a(cold → cnew)
]

shutdown process

Set cold ≔ cnew

true→ accept updatefalse→ reject update

End of MC run

a�er M MC steps

Figure 5.1.: Flowchart of a simple Markov chain Monte Carlo process which is based on the
Metropolis-Hastings algorithm as explained in section 5.3.2.
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number generator. Parallelization empowers MCMC implementations to run on supercomput-
ers and drastically reduces the risk of getting the Markov chain trapped in one of many local
maxima of P(c). Disregard of the latter aspect bares the possibility of problematic systematical
errors in regard to the production of reliable MC estimates.

5.3.3. Advanced error analysis of correlated data

In section 5.1, page 51 �., the variance of a MC simulation could be derived by the central limit
theorem, thus implicitly stating an in�nite number of statistically independent, i.e. uncorrelated
sampled con�gurations. However, one practically neverwill be able to sample an in�nite amount
of con�gurations, but instead onemay gain acceptable results by just sampling a su�ciently large
number of con�gurations M (see below). Furthermore, especially when applying the MCMC
method as described in the preceding section, the con�gurations that are sequentially sampled
in form of a Markov chain de�nitively show a strong pairwise correlation just because the prob-
ability of drawing con�guration cn+1 at time tMC = n + 1 per de�nition of the Markovian pro-
cess arises as the conditional probability of having sampled con�guration cn at time tMC = n
(c.f. eq. (5.18) on page 59). This might lead to an understatement of the error, hence the derived
error appears smaller than the “real” one what lets the MCMC estimate occur as of higher accu-
rateness as it is. This in turn is a dangerous trap and not reconcilable with correct and careful
scienti�c work. Therefore, in addition to the cherry-pick of the right estimate of the sample-
variance in terms of the Jackknife analysis as described in section 5.1, one has to apply further
methodical steps to get the entire estimated error reliable again.

Actually the degree of correlation between two con�gurations out of the sample is indicated
through the so-called autocorrelation, yet in terms of the process time through the corresponding
autocorrelation time tAC . Indeed there exist formulas to derive the autocorrelation [Jan02; Ass14]
but doing this constantly during a MCMC run is practically neither comfortable nor bene�cial
in regard to the performance of the running process.

An easily implementable scheme in order to weaken correlation e�ects among con�gurations
is to average not over every individually sampled con�guration but only over each sweep, that
is every q-th [Bac11]. This however neither shows whether the step width of measurements q
still meets the autocorrelation time tAC , nor whether enough data has been sampled or not in
order to be able to perform a reliable error analysis. A much better approach, even combinable
to the one just mentioned, constitutes the so-called rebinning analysis. Here, to follow up the text
passage on average and corresponding variance estimation on page 51 of section 5.1, even before
performing the jackknife analysis on the given but this time considered as correlated dataset
{A(ci) ∶ i ∈ 1, … ,M} of M elements is rearranged into continuous, non-overlapping blocks of
data, also called bins, each of them containing k elements, where clearly k ∈ {1, … ,M}. Therefore
it isM = kMB, while k is referred to as bin size. By that, one is able to take theMB blocks as initial
position for a jackknife analysis as described in 5.1.1 on page 50 �. [Jan02; You12].

Hence, the formula for a reliable estimate of the MC error up to now given by eq. (5.8) under
this circumstances transforms to a somehow �nal version that is—again already equipped with
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corrected pre-factors—given by

�⟨A⟩ =
�A√
M

≈
�JB,A
√
MB

=

√
√√√√√MB − 1

MB

MB∑

n=1

⎛
⎜
⎝
AJB,n −

MB∑

n=1

1
MB

AJB,n
⎞
⎟
⎠

2

, (5.31)

with the n-th jackknife block average

AJB,n =
∑M

i Ai − kAB,n

M − k , n ∈ {1, … ,MB} , (5.32)

that now implies bin block averages in the fashion of the average of the n-th bin block given by

AB,n ≡
1
k

k∑

i=1
A(n−1)k+i , n ∈ {1, … ,MB} . (5.33)

Throughout eqs. (5.31) to (5.33)wehaveused oncemore abbreviations in general terms ofA(cX) =
AX .
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Figure 5.2.: Typical result of an error analysis by rebinning (c.f. �gure 6 of [Jan02]). For too
small block lengths i.e. bin sizes k the error �̃ misleadingly is estimated too small. As the
block length k is increased �̃ converges to its true and con�dential value. If no convergence
could be reached, the underlying sample i.e. data set does not contain enough data [Jan02].

The essence of performing a rebinning analysis now lies in the variation of the bin size k. By
continuously scanning through increasing values k one may plot the error estimate �⟨A⟩ in de-
pendence of k. Now, as it is shown in �g. 5.2, if the number of sampled con�gurationsM taken
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into account was large enough, the error should converge to its true value. Otherwise, for given
data sets of poor usable content, the error estimate would show a divergent trend. Assuming
enough useable data, once having found aMB with corresponding k for which the error is con-
verged one is left with an uncorrelated data set ofMB bin averages {AB,n ∶ n = 1,… ,MB} in terms
of eq. (5.33).

One should note here that none of the advanced error estimation and analysis schemes change
the value of the total average. This means: Independently of averaging over jackknife or binning
blocks or a combination of both of a given data set {An}, it is obvious that the resulting total aver-
age is of the identical value as the standard average given by eq. (5.5) on page 51. Furthermore,
one should be aware that for generality as well as simplicity the negative sign problem and its im-
pact on the formulation of MC estimates, hence averages were ignored here but of course have
to be taken into account in a real implementation of a MC simulation of fermionic systems.

All MC estimates presented within this thesis were sensitively encountered in regard to possibly
arising sign problems, while additionally all resulting errors were carefully determined in terms of
eq. (5.31) and the underlying procedures of error analysis.

By that we close this section, thus the general part of this chapter to get into the CT-HYB sam-
pling.

5.4. Sampling in segments—the segment picture

Having reviewed more general aspects of the Markov chain Monte Carlo sampling procedure in
section 5.3 and the necessary advanced error estimation related thereto in section 5.3.3, we now
will—in a manner which is tight to [Gul08; Wer11]—refocus on the CT-HYB. Concretely, this is
on the very special internal sampling methodology of its segment approach which is applicable
for solving single-impurity problems with local on-site correlations of density-density charac-
ter. To be able to do so, we �rst need to remember the already expanded partition function that
concluded section 5.2 on page 58 in form of eq. (5.16). This implies to stay further with the single-
impurity single spin-degenerate orbital Anderson model for simpli�ed but of course absolutely
adequate demonstration purposes. In that sense, we write out the just mentioned expanded par-
tition function in a slightly adapted notation: With regard to the products over all spin-channels
� and the impurity average written out as trace in the fashion of eq. (A.26) it reads:

ZAIM
Zimp

= Zhost ⋅
∞∑

k�=0
∫

�

0

∏

�
d�1� ⋯∫

�k�−1

0

∏

�
d�k� ∫

�

0

∏

�
d�′1� ⋯∫

�′k�−1

0

∏

�
d�′k�

× Tr [e−�ℋimp ⋅ T�
∏

�
f�(�′1�)f

†
�(�1�)⋯f�(�′k�)f

†
�(�k�)]

∏

�
det �� . (5.34)

Now, our goal is to sample this partition function by means of MCMC. Therefore, it is necessary
to de�ne an appropriate con�guration space to be able to rewrite ZAIM as sum over implied con-
�gurations c according to their statistical weight p(c), hence ZAIM =

∑
k�
p(ck�), in accordance
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5. The continuous-time hybridization expansion algorithm

to the right side of eq. (5.1) that was given on page 50. By that, the con�gurations may be vis-
ited according to their contribution to ZAIM by means of Metropolis sampling (c.f. section 5.3.2,
page 60 �.), provided that there exists a clear de�nition of both, the con�gurations c and their
corresponding statistical weights p(c). We will care about both in the following.

5.4.1. Configuration space and statistical weights

In the context above, it is the fact that the models we want to study only imply density-density
interactionswhich gives birth to the segment picture: As thosemodels particularlywith the evolu-
tion of time do notmix spin-channels inside the hybridization part, it is possible to construct con-
�gurations c as alternating sequences of time-ordered creator-annihilator-pairs called segments
and time-ordered annihilator-creator-pairs called antisegments of the same spin-index �. While
the prior describe occupied, the latter represent unoccupied intervals of the time line between
zero and � of the respectively observed identical spin-channel of the impurity orbital. Hence, a
suitable corresponding con�guration space in regard to an arbitrary but concrete spin-�avor � is
de�ned by

C� ∶ {{empty�}, {full�}, {(�1� , �
′
1�
)}, {(�1� , �

′
1�
), (�2� , �

′
2�
)}, …} , (5.35)

where every continuous variable out of the interval [0, �), namely {�i} ({�′i }) with i ∈ {1�, … , k�},
is associated with a creator f†� (an annihilator f�) of an electron with spin-index � inside the
impurity orbital. Additionally—without any loss of generality—we want to assume the imagi-
nary times enclosed by curly brackets to be time-ordered among each other. Therefore, arising
�-�′-pairs explicitly mark segments whereas antisegments are implied implicitly except for the
case of the fully occupied impurity orbital. Together with the con�guration of the totally empty,
i.e. unoccupied impurity orbital, this special con�guration represents the unperturbed “ground
state” at perturbation order zero. The full con�guration space in terms of the segment picture,
however, builds up from eq. (5.35) as the union over all spin-�avors the underlying model pro-
vides. By that, together with eq. (5.34) we may determine the statistical weight of a concrete
con�guration c as

p(c) = Zhost ⋅ Tr [e−�ℋimp ⋅ T�
∏

�
f�(�′1�)f

†
�(�1�)⋯f�(�′k�)f

†
�(�k�)]

∏

�
det ��(d� )

2k� . (5.36)

Here, it is principally the trace over a time-ordered product of creation and annihilation opera-
tors of f-electrons, the mathematical formulation of an impurity averageWimp(c), that poses a
numerical challenge. In the case of the matrix code, e.g. see [Hau07], one tries to overcome this
by exploiting symmetries contained in the resulting matrix to be traced or even by shooting at
the problem by means of a Krylov approach [LW09]. On the contrary, in terms of the segment
picture—and this poses one of its advantages in usability as well as performance—this part of
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the statistical weight (5.36) in the case of our model of choice simply reduces to

Wimp(c) = Tr
⎡
⎢
⎣
e−�ℋimp ⋅ T�

∏

�=↑,↓
f�(�′1�)f

†
�(�1�)⋯f�(�′k�)f

†
�(�k�)

⎤
⎥
⎦

= se−("f−�)(L↑+L↓)−(2"f+U)O↑↓ , (5.37)

where L� represents the total length of occupied times in the two spin-channels � =↑, ↓, O↑↓
marks overlapping densities, each correctly weighted by means of the eigenvalue of the asso-
ciated state in accordance to eqs. (3.1) and (3.2) on page 24. The prefactor s is a permutation
sign. Practically it explicitly �xes upcoming signs due to so-called possibly sampled “wrapping”
or “winding” segments that pass the transition from � back to 0 as concretely is the case for the
segment marked by (�7, �2) in �g. 5.3 on page 67. A segment which is ill-de�ned with regard to
time order as the annihilator time happens earlier than the creator time but is de�ned as correct
segment in terms of the segment code. The necessary �x then simply lies in the controlled ab-
sorbing of the defected time-order due to this known artifact by spending the sign s to the a�ected
con�guration.

For illustration, an exemplary calculation of the impurity average for the con�guration visualized

β 0

−σ =↓

σ =↑

τ1τ2τ3τ4τ5τ6τ7τ8

ε↑ε↓

ε↑ + ε↓ +U

ε↑

ε0

ε↓

ε↑ + ε↓ +U

ε↑

Figure 5.3.:Concrete example of a physically realistic con�guration, which could have been
generated by our implemented segment-CT-HYB code for the case of a spin-degenerate cor-
related single impurity orbital. Pairs of fermionic creators (blue bullets) and annihilators (red
bullets) form so-called segments of occupied time-slices (fat black lines) between zero and
�, never mixing time lines of di�erent spin channels, here: � =↑ and −� =↓. Overlapping
occupied time-slices between the two spin-channels are marked by light-red areas. For every
time segment the occupation-dependent energy levels "0, "↑, "↓ or "↑ + "↓ + U are denoted
below. The segment marked by �7 and �2 is identi�ed as winding or wrapping segment. For
further and an entire discussion, see text of section 5.3.
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by �g. 5.3 according to eq. (5.37) is carried out as follows:

||||Wimp(c)
|||| = e−"↑(�1−0) ⋅ e−("↑+"↓+U)(�2−�1) ⋅ e−"↓(�3−�2) ⋅ e−("↑+"↓+U)(�4−�3) ⋅ e−"↑(�5−�4)

× e−"0(�6−�5) ⋅ e−"↓(�7−�6) ⋅ e−("↑+"↓+U)(�8−�7) ⋅ e−"↑(�−�8)

= e−"0(�6−�5) ⋅ e−"↑(�−�8+�8−�7+�5−�4+�4−�3+�2−�1+�1−0)

× e−"↓(�8−�7+�7−�6+�4−�3+�3−�2+�2−�1) ⋅ e−U(�8−�7+�4−�3+�2−�1)

= e−"↑(�−�7+�5−�3+�2−0) ⋅ e−"↓(�8−�6+�4−�1) ⋅ e−U(�8−�7+�4−�3+�2−�1)

= e−("↑⋅L↑+"↓L↓+U⋅O↑↓) ,

where for our chosen model
"↑ = "↓ = "f − �

respectively. Because of the included wrapping segment, in a running process, one would drop
the absolute value | … | by setting s = −1 according to eq. (5.37). Besides the local average of
a con�guration also the determinant of hybridization functions may be visualized. This occurs
in terms of hybridization diagrams that show all possible hybridization lines between the start
and the end times of segments of a given con�guration. A possible example for the perturbation
order k = 3 is shown in �g. 5.4. With that in mind one is �nally able to de�ne sampling updates
to visit con�gurations according to their importance.

0�

�

�

�

�

�

0

0

0

0

0

Figure 5.4.:Visualization ofhybridizationdiagrams associated to a concrete con�guration out of
the CT-HYB-sampling for a given spin �avor. Hybridization lines (purple arrows) result from
pairwise connecting of creator-annihilator-pairs (red and blue dots) that in a time-ordered se-
quence de�ne the segments of a concrete con�guration within the CT-HYB segment picture.
At the given perturbation order k = 3 there exist k! = 6 di�erent hybridization diagrams
shown besides corresponding signs respectively. By means of the CT-HYB sampling, these
signs per construction are absorbed within the determinant of all hybridization functions.
Adopted from [HPW12].

5.4.2. Updates

Basically, a working and therefore necessarily ergodic segment variant of the CT-HYB algorithm
internally has to imply the following four basic update types:
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• The adding of a segment,

• the removing of a segment,

• the adding of an antisegment and

• the removing of an antisegment.

This is especially required to be able to sample from con�guration “empty” to “full” (compare
to eq. (5.35)) and vice versa. By suppressing the symmetric but always necessary dicing of the
spin-�avor in terms of 1∕� the updates manifest as follows: In the case of adding a segment
(antisegment), �rst of all, we dice an imaginary time � ∈ (0, �) of the proposed creator (an-
nihilator). If � lies on a segment (antisegment) created in previous update steps, the update is
rejected immediately. If the new segment (antisegment) is possible to create, we have to dice a
second imaginary time for the annihilator (creator) out of the interval (0, lmax), where lmax is the
time distance between the �rst diced time and the beginning time of the next already present
segment (antisegment). As for removing a segment (antisegment), we simply have to choose
one segment (antisegment) out of the number of present segments (antisegments), this results
in the following for- and backward proposals in the style of eqs. (5.29) and (5.30):

qck�→ck�+1 =
d�
�

⋅ d�
lmax

, qck�+1→ck� =
1

k� + 1 . (5.38)

From that, we instantly derive the proposals for the case of removing a segment (antisegment)
as

qck�→ck�−1 =
1
k�

, qck�−1→ck� =
d�
�
⋅ d�
lmax

. (5.39)

These proposal probabilities together with the statistical weight of a con�guration as given by
eq. (5.36) are then used to prepare ratios in the way as the following, which speci�cally results
from eq. (5.38), hence when proposing to add a segment or antisegment:

1
k� + 1 ⋅

� ⋅ lmax
(d�)2

⋅
p(ck�+1)
p(ck�)

⋅

= 1
k� + 1 ⋅

� ⋅ lmax
(d� )2

⋅ e−("f−�)lnew−Uonew ⋅
�(k�+1)�

�(k�)�

. (5.40)

Here, the lnew denotes the length of the new segmentwhile onew is the possible overlap of the new
segment with densities on the alternate spin-channel. For removing a segment or antisegment
the ratio is constructed in an analogous manner. The ratios in the fashion of eq. (5.40) are then
passed to eq. (5.30) as an argument in order to determine the respectively associated acceptance
probabilities which in turn pass the stochastic decision of the process in terms of Metropolis
sampling (c.f. section 5.3.2, page 61 �.).
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5.4.3. Smart det-ratios and fast matrix updates

As was seen in section 5.3, within the CT-HYB sampling procedure it is necessary to calculate
statistical weights of drawn con�gurations which split up into a local average and a determinant
of amatrix that implies the hybridization functions of all possible constellations of accompanying
creation and annihilation times. It was also seen, the calculation of the local average, especially
in terms of the segment code, is straight forward. The numerical calculation of the determinant,
however may principally be done in two ways [Pre+07]:

1. In using standard techniques, usually based on LU-decomposition and therefore show a
scaling of O(n3) in complexity regarding the dimension n of the quadratic matrix.

2. In using smartdet-ratios—as primarily only ratios of determinants are needed for the stochas-
tic process in terms of eq. (5.40)—together with so-called fast matrix updates that only have
to be performed if the corresponding proposed new con�guration is accepted in terms of
the Metropolis Hastings algorithm as shown in �g. 5.1 on page 62. As will be clari�ed
below, in the worst case, this is performed in a time O(n2) and therefore outperforms the
previous method.

As one surely may expect perturbation orders of much higher values than k = 3 one clearly
will implement approach number 2. In particular, this is based on storing and manipulating the
inverse of (∆)ij = � that will be denoted by�−1 ≕ M in terms of the so-calledmatrix determinant
lemma [Pre+07] and the Sherman-Morrison formula [Mey01]. In the end, by assumingM as an
(n−1)×(n−1)matrix, in accordance to the appendix of [Hau07] onemay �nd an e�cient update
formula in order to add a new n-th row and column each to obtain an updated n×nmatrixMnew
as the result of a twofold application of the Sherman-Morrison formula that reads

Mnew =
⎛
⎜
⎜
⎝

0
M 0

⋮
0 0 ⋯ 0

⎞
⎟
⎟
⎠

+ p
⎛
⎜
⎜
⎝

L1n
L2n
⋮
−1

⎞
⎟
⎟
⎠

⊗
(
Rn1, Rn2, ⋯ −1

)
, (5.41)

where “⊗” marks an outer product and

Lij =
∑

l<n
Mil∆lj , Rij =

∑

l<n
∆ilMlj .

Additionally p is given by

1
p = ∆nn −

∑

l<n
∆nlLln = ∆nn −

∑

ll′<n
∆nlMll′∆l′n .

In staying with this terminology the matrix determinant lemma provides the ratio of determi-
nants for adding a row and a column as:

detM
detMnew

= 1
p = ∆nn −

∑

ll′<n
∆nlMll′∆l′n , (5.42)
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where one already has used the fact that det � = 1∕ det �−1 ≕ 1∕M.

Similarly, by again starting with a n × n matrixM, in order to remove a row and a column, let’s
say the k-th one each, one �nds the elements of the updated, reduced MatrixM = (M)ij as

Mnew
ij = Mij −

MikMkj

Mkk
(5.43)

where in particular i and j do not need to run over index k. Consequently, the ratio of determi-
nants for removing a row and a column just arises as:

detM
detMnew

= Mkk (5.44)

and thus is a O(1) operation as it only implies the reading of one single matrix elementMkk.

5.5. Measurements

As already reported in section 5.1, in the case of MC methods measurements are sequences of
sampled or so-calledmeasured values, yielding MC estimates of thermal averages of physical ob-
servables in the fashion of eq. (5.5) on page 51. This is the same for the CT-HYB algorithm. Some
basic observables may directly be estimated out of the stochastic process. From the structure of
the statistical weights of a sampled con�guration as given by eq. (5.37) on page 67 follows forM
total measurement steps:

• The average perturbation order per spin-channel k� as the MC average of the number of
segments inside the �-associated spin-channel:

⟨k�⟩ =
1
M

M∑

i=1
k� . (5.45)

This obviously induces the estimate of the total perturbation order as

⟨k⟩ = 1
M

M∑

i=1

∑

�
k� . (5.46)

• Besides, the estimate over the single-occupation

⟨n�⟩ =
1
M�

M∑

i=1
L� , (5.47)

hence the MC average over all individually measured total segment lengths L� per spin
channel �.
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5. The continuous-time hybridization expansion algorithm

• Finally, similar to the preceding point, the estimator of the double occupation

⟨n�n−�⟩ =
1
M�

M∑

i=1
O↑↓ . (5.48)

That is theMCaverage of the total length of doubly occupied time-slices (compare to �g. 5.3
on page 67).

However, eventually, we need the CT-HYB to solve a proposed single impurity problem. In the
spirit of our numerical framework as reported on in section 4.3 on page 44 and the following,
hence in the context of DMFT this is achieved by calculating the self-energy of the impurity
problem Σimp�—for the rest of this section just denoted by Σ�.

For our throughout assumed AIM with non-mixing spin channels and an impurity onsite inter-
action of density-density character this is comfortably achieved by means of so-called improved
estimators initially proposed, described and fully derived in very detail by Hafermann, Patton,
and Werner in [HPW12].

Here, the estimation of Σimp� relies on an alternative impurity Dyson equation to that given by
eq. (4.18) on page 43 originally proposed by Bulla, Hewson, and Pruschke in the context of nu-
merical renormalization group (NRG) [BCP08; Bul12] calculations on the AIM [BHP98]:

Σ�(i!n) = U
F�(i!n)
G�(i!n)

, (5.49)

where F(i!n) is a higher correlation function that di�ers from G� only by a density of the alter-
native spin �avor n−� = f†−�(�)f−�(�) according to eq. (2.7). So in addition to

G��(� − �′) ≡ −
⟨
T�f�(�)f

†
�(�′)

⟩
(5.50)

out of eq. (A.11), we de�ne

F��(� − �′) ≡ −
⟨
T�f�(�)f

†
−�(�)f−�(�)f

†
�(�′)

⟩
. (5.51)

Now for convenience, the measurement of Σ� occurs via a general measurement of

(GΣ)�(�) = UF�(�) (5.52)

and the division of G�(�) afterwards. The estimator of G�(�) was already proposed as

G�(�) = −⟨ 1
�

k�∑

i,j=1
�−(�, �i − �′j)Mji⟩MC (5.53)

in [Wer+06], con�rmed in [Gul+11] and is pedagogically motivated and derived excellently
in [Wer11]. Consequently, from eq. (5.50) and eq. (5.51) follows

F�(�) = −⟨ 1
�

k�∑

i,j=1
�−(�, �i − �′j)Mjin−�(�′j)⟩MC . (5.54)
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Figure 5.5.: Impressive example of the improved estimator of the impurity self-energy by com-
paring the imaginary parts of two di�erently calculated impurity self-energy estimates Σ(i!)
in dependence of the Matsubara frequencies !. The one stemming from a simulation using
improved estimators (blue line) clearly occurs smoother as that resulting one out of a calcula-
tion via standard Dyson equation (green line) for higher Matsubara frequencies. Of course,
both simulations counted the same number of measurement and were based on identical
initial seeds of random numbers, hence MC steps in regard to an equal sequence of sampled
con�gurations.

Here, MC averages in terms of eq. (5.5), sampled according to eq. (5.34), were assumed, while
Mji are relevant elements of the matrix of inverse hybridization functions as introduced in sec-
tion 5.4.3 on page 70 and the following. This stems from eq. (5.44), as the G-measurement (5.53)
is based on the idea of measuring values of G�(�) for every pair of (�, �′) given by the current
con�guration of order k� by respectively cutting o� hybridization lines as those shown in �g. 5.4.
This turns out to be equivalent to the removing of recently one (�, �′)-corresponding row and line
of thematrixM for what comfortably eq. (5.44) has to be applied. The necessary usage of a clever
“binning function”

�−(�, �′) ≔ sgn(�′)�(� − �′ − Θ(−�′)�) , (5.55)

where the sign function (A.4) was used, ensures that the continuous time values (�i − �′j) of the
con�guration at hand may be binned into a preset discrete time-mesh of measured G or F values
in �.

As in terms of the “improved estimators” the impurity Dyson equation is solved and by that the
impurity self-energy is directly produced inside the impurity solver, performed measurements
may be directly Fourier transformed in one go at run time of the binning process.
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Due to the fact that the measuring concept described here and used later on is based on the
ratio (5.49), while standard impurity Dyson equation occurs as the di�erence of two measured
quantities, one expects amore advantageous error propagation. For a concrete sampling example
this is impressively demonstrated by means of �g. 5.5.

Generally, the usage of this measurement scheme however is not recommended for models be-
yond a Hubbard-type density-density interaction as is the case, here. More complicated inter-
actions soon lead to unpleasant additional terms in above measurement formulas making them
formally as well as computationally unattractive.

5.6. Summary & outlook

This chapter provided a mainly technical review of the common MCMC method as used in sta-
tistical as well as solid state physics in general and a very special extension of those, the CT-QMC
approaches. After some general background information on this family of impurity solvers, we
particularly went into detail with the so-called segment variant of the CT-HYB algorithm which
already was repeatedly mentioned as our impurity solver of choice inside our numerical setup
based on a sdDMFT framework in the previous chapter 4 on page 37 and the following. By that,
we hope this chapter not only closed the thematic holes that were left from previous chapters
but also—besides the cited standard references on the topic—may serve as fruitful literature or
even an implementation guide for those who may be concerned with the usage or even the pro-
gramming of such an algorithm. With the conclusion of this chapter we are now ready to focus
on physical applications of our numerical apparatus in the following chapters 6 and 7.
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6. Magnetic phases in the triangular Anderson
lattice

Major parts of this chapter were already published as

M. W. Aulbach, F. F. Assaad, and M. Potthoff. “Dynamical mean-field study of partial
Kondo screening in the periodic Anderson model on the triangular lattice”. In: Phys.
Rev. B 92 (23 Dec. 2015), p. 235131. Copyright (2015) by the American Physical Society.
Reproduced with permission.

All presented numerical results were simulated by means of our numerical setup as described
in chapters 4 and 5, especially section 4.3 on page 37 and the following. Necessary calculations
were entirely performed on clusters of the PHYSnet Rechenzentrum of the University of Hamburg
and theSuperMUC super computer cluster of the Leibniz RechenzentrumMunich.Support of these
studies by the Deutsche Forschungsgemeinschaft within the Forschergruppe FOR 1346 (projects
P1 and P8) and within the Sonderforschungsbereich SFB 668 (project A14) is gratefully acknowl-
edged.

In this chapterwe report on our studies of the periodicAndersonmodel (c.f. section 2.3, page 13�.)
on the triangular and thus geometrically frustrated lattice. In accordance to the topics of the
chapters 2 and 3 we focus our research on the competition between Kondo screening and indi-
rect magnetic exchange . Principally, as already mentioned in the introduction on page 1 and
the following, our main concern and motivator is the quest for a favorably stable partial Kondo
screening (PKS) phase, substantiated in the following section 6.1, by means of dynamical mean-
�eld theory. This is a �rst opportunity to apply our numerical setup as described in chapters 4
and 5 especially in section 4.3 on page 44 �. in order to practically achieve the necessary self-
consistent mapping onto three independent single-impurity models corresponding to the three
correlated orbitals in the appropriately chosen unit cell. By that, with a model-adapted version
as described in section 6.2, we systematically scan the geometrically frustrated Anderson lattice
from the weak- to the strong-coupling regime for a wide range of �llings n. Relevant results are
presented in section 6.3.1, discussed and concluded in section 6.4.

6.1. Introduction

In chapter 2 on page 9 �. some essential lattice models and their corresponding Hamiltonians
were reviewed. There, it was already emphasized that besides the bare parameters it is the lattice
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6. Magnetic phases in the triangular Anderson lattice

geometry encoded into the hopping t that rules the physical behavior of a lattice model. Thus,
in comparison to those on a let’s say a square lattice, models on a triangular lattice structure
show drastic di�erences. As a very prominent and likewise unpleasant example, the density of
states (DOS) loses its comfortable symmetry (see �g. 6.5 on page 84) and resulting from that also
very helpful predictions in regard to the preparation of half-�lling as pointed out in eq. (2.23)
on page 19 are not valid anymore. Furthermore and in terms of magnetic order of local mag-
netic moments, a triangular lattice geometry poses the problem of geometric frustration. This
was already emphasized in section 3.3.2 on page 33 �. by means of a simple antiferromagnetic
spin-type model in D = 2 dimensions. There, against the background of the terminology of a
bipartite lattice, a partitioning of sites into two equivalent sublattices A and B as per orientation
of the corresponding spins succeeded for the case of the square lattice. For the case of the trian-
gular lattice this however failed as to correctly describe the full lattice one needed to introduce a
further, third equivalent sublattice C of sites whose spins remain unable to �t to the expected an-
tiferromagnetic order already dictated by the A and B spins. Principally and correspondingly to
the literature, it was concluded that the geometrical frustration arise as a phenomenon in lattice
models of uncompensated spins.

This general model category, however, also implies impurity lattice models like the Kondo lattice
model (KLM) (c.f. section 2.4, page 18 �.) and the PAM (c.f. section 2.3, page 13 �.), where for the
latter one the term “spin” literally as well as conceptually has to be replaced by “local magnetic
moment” as induced by the spin angular moment.

In section 3.2 on page 27 �. we referred on the Doniach phase diagram as the result of a rival
between the energy scales of the Kondo e�ect and the Ruderman-Kittel-Kasuya-Yosida (RKKY)
exchange mechanism that occurs in the PAM and the KLM. A confrontation of these models to
geometric frustration introduces another energy scale in the problem associated with the release
of frustration via a mechanism of so-called partial Kondo screening [Mot+10]. Thus, under the
right energetic circumstances a special magnetic state of the system can be reachedwhich simply
avoids the frustration. This is due to the fact that the sites of Anderson as well as Kondo lattices
host two electronic orbitals each, what allows for a partial but periodic, hence a site-selective
Kondo screening of local magnetic moments leaving the remnant magnetic moments for taking
part in a magnetic order scheme without frustration. To be more concrete, let’s assume the local
magnetic moments on all C-sites to be screened by corresponding onsite bath electrons. As a
result only the localmagneticmoments formed up onA andB sites are still available formagnetic
interactions in a RKKY-like manner. In regard to the lattice structure however, the A and B sites
in an imagined absence of the C sites de�ne a honeycomb lattice which clearly is a bipartide
lattice. Consequently an antiferromagnetic coupling between local magnetic moments of next-
neighboring A and B sites principally may occur without frustration. Away from the global view
on the geometrically frustrated lattice in terms of the three sublattices, the principal physics of
the PKS is compressed into a non-primitive unit cell which contains one concrete site of all three
sublattices each. By that, the lattice physically becomes homogeneous in terms of those unit cells
and therefore generally treatable by means of a site-selective dynamical mean-�eld approach as
presented in section 4.3 on page 44 and the following. Therefore, we expect it to be feasible to
study the PKS beyond the static mean-�eld approximation—an e�ort already practiced in the
past [HUM11; HUM12].
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To the end, we will not only manage to stabilize a PKS phase by means of DMFT. Moreover,
we will show that our, for this purpose conveniently adapted numerical setup, as generally de-
scribed further in section 4.3 on page 44 �., could be used for the entire study of the competition
between RKKY coupling and Kondo screening in the triangular Anderson lattice: We will draw
a remarkably rich phase diagram including a PKS phase emerging in the local-moment regime
at the border between paramagnetic heavy-fermion and magnetically ordered phases. This will
be reported in detail in section 6.3 on page 79 and the following. In order to never get lost in
the di�erent phases, a graphical overview of all relevant emerging phases by means of the cor-
responding constellations of the orientation of magnetic moments per unit cell is provided by
�g. 6.2 on page 81.

6.2. Model andmethodical adaptations

The choice of themodel principally should be already clear bymeans of section 4.3: AnAnderson
model (c.f. section 2.3, page 13 �.) in real-space standard notation that besides the spin-channel
� o�ers opportunities, i.e. indices to concretely tune-in position r and internal site � of a unit
cell as given by eq. (4.25) on page 45 and entirely described there. For a comfortable overview,
we shall rewrite it at this place:

H =
∑

rr′

∑

��′

∑

�
c†r��t��′(r − r′)cr′�′�

+ V
∑

r��

(
c†r��fr�� + f†r��cr��

)

+ "f
∑

r��
f†r��fr��

+ U
2
∑

r��
f†r��fr��f

†
r�−�fr�−� .

We concretize ourmodel to be studied here, conforming to that focused on in [HUM11; HUM12],
hence focus on the D = 2-dimensional triangular lattice. Thereby, we consider a partitioning of
the lattice into non-primitive unit cells containing three sites each, as principally shown in �g. 6.1
and already mentioned in the preceding section. As also emphasized repeatedly throughout this
thesis, we restrict ourselves to non-mixing spin-channels of possible spin-projections � =↑, ↓.

To be able to simulate a PKS state at all, the internal sites of the priorly de�ned unit cells, have
to be treated nonequivalent by means of our site-selective dynamical mean-�eld approach as
derived in section 4.3 on page 44. The corresponding self-consistency cyclewas constructed there
by an appropriate arrangement of the eqs. (4.27) and (4.28).

The ansatz (4.26) back on page 46 for the self-energy Σr��,r′�′�′(i!n) in this case means that the
periodic Anderson model is self-consistently mapped onto three independent impurity models
with possibly spin-dependent but spin-diagonal one-particle parameters. The impurity models
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6. Magnetic phases in the triangular Anderson lattice

can be solved independently but are coupled indirectly via the DMFT self-consistency equation.
In particular, we do not impose any further condition on the spatial or spin dependence ofΣ��(!).
Thereby, we can account for di�erent phases, in particular for collinear magnetic phases,charac-
terized by inhomogeneous order parameters within a unit cell.

In regard for the practical application of DMFTwe need to determine the hopping matrix "(k) in
consideration of the lattice geometry. According to the scheme sketched in section 4.3 on page 44
and the following, we get a 6 × 6 hopping matrix

"(k) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

"f 0 0 V 0 0
0 "f 0 0 V 0
0 0 "f 0 0 V
V∗ 0 0 "c "AB(k) "AC(k)
0 V∗ 0 "∗AB(k) "c "BC(k)
0 0 V∗ "∗AC(k) "∗BC(k) "c

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(6.1)

for each wave vector k in the reduced Brillouin zone. We have

"AB(k) = t [1 + 2 cos
(
ky∕2

)
e−i

√
3
2
kx] ,

"AC(k) = t [1 + e−i
√
3
2
kx e−i

1
2
ky + e−iky] ,

"BC(k) = t [1 + e−iky + ei
√
3
2
kx e−i

1
2
ky] , (6.2)

where the triangular lattice geometry evidently is entirely encoded in the pre-factors of the wave
vector components kx and ky. These originally stem from the chosen set of translational vectors
in real-space that translation-symmetrically point from one chosen reference unit cell (compare
to �g. 6.1) to the next-neighboring unit cells around respectively.

With the hopping matrix "(k) (6.1), and with a guess for the local but site-dependent f self-
energy Σ��(!) (for � ∈ {A, B, C}) we can start the DMFT self-consistency cycle by calculating the
elements of the local lattice Green’s function via eq. (4.27) on page 47. We repeat it for or a quick
lookup:

Gloc,
�,�(i!n) =
1
L

∑

k∈BZ
[ 1
i!n + � − "k − ��(i!n)

]

�

.

In this case, 
, � run over the 6 orbitals in the unit cell. The 6 × 6-matrix ��(!) is diagonal and
non-zero on the f orbitals only. The local Green’s function is used to determine the hybridiza-
tion functions ∆�� of the three single-impurity Anderson modelsingle-impurity Anderson mod-
els (SIAMs) (� ∈ {A, B, C}) by means of eq. (4.28), we remember as

∆��(!) = ! + � − "f − Σ��(!) −
1

Gloc,��,�(!)
.

The resulting formal expressions of three independent impurity models ∆A�, ∆B�, ∆C�, are used
to initialize and run three independent instances of our segment code implementation of the con-
tinuous-time hybridization expansion (CT-HYB) algorithm (c.f. sections 5.4 and 5.5, page 65 �.)

78



6.3. Results

U

U

U

t

ttV V

V

60◦
BA

C

a⃗1
a⃗2

x

y

Figure 6.1.: Periodic Anderson model on the triangular lattice. Right: Primitive unit cell (light
gray, dashed lines) and unit cell (gray, solid lines), spanned by the vectors a1 and a2, con-
sidered here. The latter contains three sites (A, B, C) treated independently within site-
dependent dynamical mean-�eld theory. Left: For each site, a correlated (f) orbital with
local interaction U couples to an uncorrelated conduction-electron (c) orbital via the hy-
bridization of strength V. The nearest-neighbor hopping t = 1 between conduction-electron
orbitals sets the energy scale. Figure as published in [AAP15]. Copyright (2015) by the Amer-
ican Physical Society. Reproduced with permission.

at �nite but low temperaturesT in order to obtain the self-energy Σ��(!) for each impuritymodel
independently.

As the interaction term of our model is entirely of the type density-density Hubbard-type inter-
action (c.f. eq. (2.13), page 15 �.), we are save to sample the impurity self-energies by means of
the improved estimators we reviewed in section 5.5 on page 71 and the following. As already
pointed out there, this enables us to elegantly close the DMFT self-consistency cycle by extract-
ing the required impurity self-energies Σ��(i!n) directly on the fermionicMatsubara frequencies
i!n.

6.3. Results

By means of the suitably prepared methodical base focussed on in the preceding section 6.2,
DMFT calculations have been performed for themodel eq. (4.25) on page 45with di�erent chem-
ical potentials � to scan the interesting regime at and o� half-�lling n = 1 where n is explicitly
given by

n = 1
6

∑

�=A,B,C

∑

�=↑,↓

(
n(f)�� + n(c)��

)
(6.3)

with n(f)�� = ⟨f†r��fr��⟩ and n
(c)
�� = ⟨c†r��cr��⟩, which can be determined out of the diagonal

elements of Gloc (4.27), via relation (A.13) combined with a sum over Matsubara frequencies in
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the style of eq. (4.30). The Hubbard interaction is scanned in the weak- to intermediate-coupling
range 0 ≤ U ≤ 4where the energy scale is �xed throughout this chapter by the nearest-neighbor
hopping t = 1. It is worth it to note that choosing t > 0 is convenient as this implies that the
center of gravity of the total DOS as shown in �g. 6.5 on page 84 is located close to the lower
band edge. Symmetry-broken magnetic phases are therefore expected to occur for �llings below
half-�lling. We furthermore �x the hybridization strength at V = 1 and choose "f = −U∕2 for
the on-site energy of the f orbitals. For strongU, this ensures that the occupancy of the f orbital
at any site � in the unit cell is close to unity, i.e.,

n(f)� ≡ ⟨n(f)�↑ ⟩ + ⟨n(f)�↓ ⟩ ≈ 1 .

The on-site energy of conduction-electron orbitals �xes the energy zero: "c = 0.

Our main result is shown in �g. 6.3 on page 82: It is the phase diagram for the PAM on the tri-
angular lattice as obtained by site-dependent dynamical mean-�eld theory (sdDMFT). To cover
the relevant parameter region, we have performed ∼ 500 independent DMFT calculations for
di�erentU and � in several massively parallel runs (see our comment on that in section 5.3.2 on
page 60�.)with step sizes∆U = 0.5 and∆� = 0.05. Wehave considered themodel, eq. (4.25), for-
mally written out on page 45, on a lattice with 25×25 unit cells and periodic boundary conditions
to perform the k-sum in eq. (4.27) explicitly. This is su�cient to ensure that the results do not
depend signi�cantly on the system size as has been checked carefully. The gained self-consistent
results are indicated as dots and symbols in �g. 6.3 in the U-n plane. About 200 iterations of the
DMFT self-consistency cycle usually turned out to be su�cient for convergence. To allow for
spontaneous breaking of the SU(2) spin-rotation symmetry, we explicitly treat the � =↑ and the
� =↓ channels as independent of each other within the impurity solver—a segment variant of
the CT-HYB algorithm presented in sections 5.4 and 5.5 on sections 5.4 and 5.5 and the follow-
ing. Furthermore, the DMFT cycle is started with a spin-asymmetric Hartree-Fock-type initial
self-energy. It turns out that magnetic phases, if present, are easily found and stabilized in this
way. Within the present study we focus on magnetic phases with collinear moments for sim-
plicity even though non-collinear magnetic phases may be expected in the case of the triangular
lattice due to geometrical frustration. In fact, previous Hartree-Fock calculations at and o� half-
�lling [HUM11; HUM12] suggest that a “classical” non-collinear 120◦ (c.f. �g. 6.2 on page 81)
antiferromagnetic phase is realized in a certain range of the phase diagram. We expect that, by
enforcing collinearity, the 120◦ phase is replaced by a collinear “↑, ↑, ↓” antiferromagnetic phase
which has also been found within HF theory [HUM11; HUM12].

6.3.1. Phase diagram

Our determined phase diagram �g. 6.3 shows the occurrence of �ve di�erent phases. The cor-
responding constellations of magnetic moments on the di�erent orbitals of the chosen unit cell
are shown in �g. 6.2 on page 81. Staring at �g. 6.3, at half-�lling, the system is a non-magnetic
Kondo insulator (KI) in the entire U range considered here. For �llings sightly o� half-�lling,
the system stays non-magnetic but immediately becomes metallic. Above half-�lling, this non-
magnetic “Kondo singlet” phase is the only phase that has been found, at least up to n = 1.1−1.2.
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Figure 6.2.:Overview of the constellation and orientation of local magnetic moments inside a
triangular unit cell in regard to di�erent magnetic phases. Unit cell and site labels are shown
in accordance to �g. 6.1 on page 79. For further discussion, see chapter 6, page 75 �..

Below half-�lling and for a su�ciently strong interaction U > Uc ≈ 2, there are two di�erent
magnetic phases, an antiferromagnetic (AFM) and a phase with partial Kondo screening (PKS).
The AFM phase is a collinear “↑, ↑, ↓” phase where the magnetic moments at two sites (say, A
and B) in the unit cell are ferromagnetically aligned and of equal magnitude while the third mo-
ment is antiferromagnetically oriented to the former two with a magnitude such that the total
magnetic moment in the unit cell is zero:

m(f)
A +m(c)

A = m(f)
B +m(c)

B ≡ m0 > 0 and m(f)
C +m(c)

C = −2m0 < 0 .

Here,
m(f)
� ≡ n(f)�↑ − n(f)�↓ and m(c)

� ≡ n(c)�↑ − n(c)�↓ .

The PKS phase is characterized by one site (say A) with vanishing ordered magnetic moment, or
almost vanishing moment (see discussion below), while the moment on the two remaining sites
are of equal magnitude but antiferromagnetically aligned:

m(f)
B +m(c)

B ≡ m0 = −(m(f)
C +m(c)

C ) > 0 .

The total moment in a unit cell is again zero. The AFM and the PKS phases appear in a certain
�lling range nc1(U) < nc2(U) which increases in width with increasing U and which is roughly
centered around n ≈ 0.9. The PKS phase appears at weaker U as compared to the AFM phase
and separates the latter from the non-magnetic KS phase for n → nc1(U). At much lower �ll-
ings, there is also a ferromagnetic (FM) with a non-zero total magnetic moment per unit cell.
This requires a signi�cantly weaker critical interaction Uc ≈ 1.25 as compared to AFM and PKS
magnetic phases. The FM phase is realized in a rather narrow �lling range, roughly centered
around n ≈ 0.75 for weak U and n ≈ 0.67 for U = 4.

We expect that the phase diagram obtained for inverse temperature � = 100 and shown in �g. 6.3
on page 82 is close to the zero-temperature phase diagram. To estimate the remaining e�ects that
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Figure 6.3.:U-vs.-n phase diagram of the Anderson model on the triangular lattice as obtained
by site-dependent dynamical mean-�eld theory. Each point corresponds to a converged
DMFT calculation using CT-QMC (CT-HYB, segment code) as a solver at � = 100. At half-
�lling n = 1 (solid line) the system is a Kondo insulator (KI) for all U ≥ 0. O� half-�lling,
we �nd a metallic Kondo singlet state (KS, dots) as well as three di�erent collinear mag-
netic phases: a partial Kondo-singlet phase (PKS, circles), an antiferromagnetic phase (AFM,
squares) as well as a ferromagnetic phase (FM, triangles). Figure as published in [AAP15].
Copyright (205) by the American Physical Society. Reproduced with permission.

are due to a �nite �, we have studied the parameter region close to the PKS phase for a somewhat
higher temperature (� = 70). The results are shown in �g. 6.4 on page 83.

Comparing the phase diagrams for the di�erent temperatures, there are no qualitative di�er-
ences. Merely the extension of the AFM and the PKS phases in the U-n plane is somewhat re-
duced for � = 70, and the critical interaction increases a bit from Uc ≈ 2 (� = 100) to Uc ≈ 2.5
(� = 70).

6.3.2. Kondo insulator at half-filling

We start the discussion with the KI phase at half-�lling. The insulating nature of this phase is
easily veri�ed by means of the charge susceptibility � = )n∕)� which is found to vanish at half-
�lling for any U ≥ 0. For U = 0 and half-�lling the system is actually a simple band insulator:
The chemical potential is located in the hybridization band gap which opens for any V > 0, see
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as printed within [AAP15]. Copyright (2015) by the American Physical Society. Reproduced
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�g. 6.5 on page 84.

For the correlated system at U = 2.5, the charge gap ∆c at half-�lling can be read o� from the �
range in which the charge susceptibility � vanishes; see lower panel of �g. 6.6 on page 85 where
� is plotted as a function of the n.

The gap persists for all U > 0 and decreases with increasing U as is obvious when comparing
with the charge gap for U = 3.5, for example, which can be read o� from the lower panel in
�g. 6.7 (note the di�erent scales for � in the two �gures).

It is tempting to relate this decrease of the energy scale with increasing U to the decrease of the
coupling constant J = 8V2∕U in the e�ective low-energy Kondo lattice that is formally obtained
by the Schrie�er-Wolf transformation [SW66] in the local-moment regime of the Anderson lat-
tice model. Local magnetic moments, required for magnetic long-range order, are formed on
the f orbitals due to a strongly repulsive Hubbard-U. One must be aware, however, that even for
U = 4 there are still substantial charge �uctuations on the f orbitals. This is indicated, for exam-
ple, by a ∼ 5% deviation of the average f occupancy from unity at half-�lling (see upper panels
of �gs. 6.6 and 6.7). Hence, the system is not fully in the local-moment limit. Nevertheless, we
�nd an antiferromagnetic linear response of the conduction-electron magnetic moments when
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applying a homogeneous static magnetic �eld to the f electron spins. This indicates an antifer-
romagnetic (J > 0) coupling between the local f and c spins consistent with the local-moment
picture provided by an e�ective Kondo lattice.

Deep in the local-moment regime (see section 3.1, page 24 �.) forU → ∞ at �xed V, the physics
would be governed by a small energy scale, set by J, or even byTK ∝ e−W∕J , whichmakes calcula-
tions at strongerU extremely di�cult: In fact, we have not been able to stabilize a self-consistent
solution of the DMFT equations at interaction strengths substantially stronger than U = 4.

Interestingly, there is no magnetic phase found at half-�lling n = 1. This is opposed to static
mean-�eld (HF) theory for the same model [HUM11] which generates a rather complex phase
diagram which comprises di�erent magnetic as well as insulating and metallic phases at half-
�lling. As theDMFT correctly accounts for local �uctuations beyond the staticmean-�eld theory,
we conclude that those local �uctuations are su�cient to destroy any magnetic order at n = 1
(and in the U range considered here).
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6.3.3. Metallic Kondo singlet phase

For �llings slightly o� half-�lling, the system becomes immediately metallic and has a �nite
charge compressibility � > 0 (see lower panels of �gs. 6.6 and 6.7). Actually � turns out as non-
zero for any �lling. Opposed to previous HF calculations [HUM12], this implies that there is no
instability towards phase separation.

The local correlations between f and c spins are strongly antiferromagnetic as indicated by a
corresponding antiferromagnetic linear response. Still, there is no magnetic order for �llings
n ≲ 1. We refer to this paramagnetic metallic state with local antiferromagnetic correlations as
a heavy-fermion or Kondo singlet state even if the local spin on the f orbitals,

S(f)� = 1
2
∑

��′
f†�����′f��′ ,

cannot be seen as a rigid spin-S = 1∕2 since the local f moment (S(f)� )
2
somewhat deviates from

S(S + 1) = 3∕4.

The respective top panels of �gs. 6.8 and 6.9 show the f orbital double occupancy relative to its
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non-interacting value, i.e.,

D� ≡ ⟨f†�↑f�↑f
†
�↓f�↓⟩∕(n

(f)
�↑ n

(f)
�↓ ) .

While the double occupancy is suppressed considerably for �llings close to half-�lling, it is still
far from zero even atU = 3.5 (c.f. �g. 6.9), for example, whereD� ≈ 0.45. AtU = 2.5 (c.f. �g. 6.8)
we �nd D� at a minimum for n ≈ 0.65.

6.3.4. Antiferromagnetism

Magnetic phases �rst appear at �llings centered around n ≈ 0.92 for U = 2.5 and for U =
3.5 (c.f. �gs. 6.8 and 6.9). This is the �lling range where the f occupancy is at or very close
to unity and where, despite substantial charge �uctuations, the local-moment picture is most
adequate. The magnetic coupling between the local moments must be provided by the a priori
uncorrelated c orbitals, similar to the standard RKKY mechanism [RK54; Kas56; Yos57] that
can be derived perturbatively in the Kondo lattice model (KLM) (see section 2.4, page 18 �.and
section 3.2, page 27 �.).

On the triangular lattice, however, magnetic order induced by indirect antiferromagnetic ex-
change is frustrated. Except for a non-magnetic state, there are two obvious possible compro-
mises to form a state with vanishing total magnetic moment in the unit cell, namely a state with
120◦ orientations between pairs of magnetic moments as well as a collinear ↑, ↑, ↓ phase. Apart
from the PKS phase to be discussed below, the latter is the only plausible antiferromagnetic state
if collinearity between the moments is enforced as is done here.

For U = 3.5 and with decreasing �lling n the system undergoes a phase transition to the AFM
phase at n ≈ 0.97. Figure 6.9 demonstrates that this phase transition is continuous with the
staggered magnetizationm0 (see de�nition above) as an order parameter that evolves fromm0 =
0 and increases with decreasing n in a continuous way. The magnetism is predominantly carried
by the f moments with a maximum of |m(f)

B | ≈ 0.6 while the c orbitals are by about one order
of magnitude less polarized (note the di�erent scales in �g. 6.9). Note that the site-dependent
moments are oriented antiparallel to the respective f moments.

Across the transition to the AFM phase there is hardly any change of the double occupancy
⟨f†�↑f�↑f

†
�↓f�↓⟩, i.e., the increase of D� seen in �g. 6.9 (top panel) is mainly due to the polar-

ization of the f orbital only. For the “↓” site in the ↑, ↑, ↓ state this e�ect is a bit stronger as its
magnetic moment has the higher absolute value. The fact that the double occupancy and thus
the size of the local f moment is basically una�ected, favors a picture of magnetic ordering of
preformed local moments and is consistent with an RKKY-like indirect exchange mechanism in
the local-moment regime of the Anderson lattice.
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6.3.5. Partial Kondo screening

With further decreasing n at U = 3.5 there is another second-order phase transition from the
AFM state to a phase with partial Kondo screening (PKS) (see �g. 6.9). For U = 2.5 the PKS
phase directly evolves from the KS through a second-order transition (see �g. 6.8). In both cases,
a Kondo singlet formed at one site in the unit cell, say A, coexists with a non-local pair of antifer-
romagnetically coupled moments at the B and C sites. The total ordered moment in a unit cell
is zero. Eventually, for �llings n < nc1 ≈ 0.88 at U = 2.5 and for n < nc1 ≈ 0.82 at U = 3.5, the
system returns to a paramagnetic KS state in another continuous phase transition.

As compared to the AFM and also, at even lower �llings, to the FM phase, the numerical stabi-
lization of a self-consistent PKS solution is most di�cult, i.e., a large number of iterations (up
to 200) is required. This also re�ects itself in the remaining (nonphysical) noise on the PKS data
seen in �gs. 6.8 and 6.9. As a technical remark, let us mention that each DMFT run is completely
independent from the preceding one and starts from the same initial guess for the self-energy
which is taken as frequency independent and homogeneously spin-polarized. Due to this in-
dependency, the self-consistent values for the magnetic moments typically do not always form
continuous functions of �, because arbitrary permutations of the A, B, C sites in a unit cell and
also a global sign change � → −� yield physically equivalent solutions of the DMFT equations.
We have employed those symmetry operations a posteriori in scans with extremely small steps in
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6. Magnetic phases in the triangular Anderson lattice

the chemical potential (∆� = 0.007) to generate functions as continuous as possible by means of
least-square �ts minimizing the parametric distance between pairs of consecutive self-consistent
solutions.

The Kondo e�ect requires a locally antiferromagnetic e�ective coupling between the local f and
c spins (c.f. section 2.4, page 18 �.). This is clearly present: As mentioned above, the linear
response of the c moments to a static magnetic �eld applied to the f electron spins is found as
antiferromagnetic in paramagnetic phase close to the AFM and PKS phase. Furthermore, within
the symmetry-broken PKS phase, the ordered momentsm(f)

� andm(c)
� are antiferromagnetically

aligned on theB andC sites. On the other hand, the robustness of the PKSphase, i.e., its extension
in the U − n plane, and also the presence of strong charge �uctuations, see the sizable double
occupancy in �gs. 6.8 and 6.9, suggest that the physics is non-universal and by no means ruled
by a single Kondo scale TK.

It is interesting to note that our data unambiguously show that there is no “perfect” partial Kondo
screening. Namely, a slight polarization m(f)

A < 0 and m(c)
A > 0 of the local f and c spins on the

A, i.e., on the Kondo site is clearly visible in �gs. 6.8 and 6.9. The proximity to the pair of RKKY-
like antiferromagnetically coupled moments, which explicitly breaks time-reversal symmetry,
implies that there are admixtures of states with non-zero spin quantum number to the Kondo
singlet. Assuming this admixture to be given by a single spin-triplet state for simplicity, the anti-
ferromagnetic environment explains a coupling to theM = 0 component of the triplet. A �nite
polarization of theKondo singlet, however, rather requires a coupling to theM = ±1 components
and thus implies the additional breaking of the Z2 symmetry of the antiferromagnetic state. This
spontaneous symmetry breaking in the PKS phase is also visible in the magnitudes of the B- and
C-site moments, namely |m(f)

C | > |m(f)
B |, and is present in the “↑, ↑, ↓” AFM state anyway.

Accompanying the ordering of the spin degrees of freedom, there is a also a (weak) charge or-
dering in the AFM and the PKS phase (see upper panels of �gs. 6.6 and 6.7). There are two
interesting observations: First, the deviation of the charge density from the average density is
much stronger on the c orbitals as must be expected in the local-moment regime where charge
�uctuations on the correlated f orbitals are very e�ectively suppressed. This e�ect is stronger for
U = 3.5 and compared toU = 2.5. Second, within the PKS phase, there is a charge transfer from
the “Kondo site” (A) to the “magnetic sites” (B, C): n(c)A < n(c)B,C and n

(f)
A < n(f)B,C. Due the Kondo

e�ect, the local conduction-electron density of states at the A site will develop a dip, and spectral
weight must be shifted above or below the Fermi energy. In the absence of particle-hole symme-
try, this shift is asymmetric and changes the occupancy. The sign and the size of the resulting
charge transfer, however, depend on the details of the band structure. Charge disproportiona-
tion was also found within the PKS (partial disorder) state that is obtained by means of the HF
approach [HUM11; HUM12]. Opposed to our DMFT results, the charge transfer seen in the HF
studies is much larger for the f as compared to the c orbitals. This must be seen as an artifact of
the static mean-�eld approach which cannot account for local-moment formation.

As a function ofU, the PKS phase is located between the KS and the AFM phase in the phase di-
agram. This can be understood by referring to the famous Doniach diagram [Don77] as reviewed
in section 3.2 on page 27. In the KS phase at weaker U (stronger J) the Kondo e�ect dominates
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while for strong U (weak J) the RKKY interaction is dominant and results in magnetic order.
The PKS state can be seen as a possible way to avoid geometrical frustration in the antiferromag-
netically ordered state which is preferred if the formation of a Kondo singlet is less expensive
than breaking up two frustrated magnetic bonds and forming a non-frustrated third one. As a
compromise between indirect exchange, frustration and the Kondo e�ect, it appears between the
KS and the AFM phase.

6.3.6. Ferromagnetism

At lower �llings around n = 0.7, depending slightly on U, the system develops homogeneous
ferromagnetic (FM) order (see �g. 6.3). As can bee seen from �g. 6.8 for U = 2.5, the transition
to this state is continuous at the lower as well as at the upper critical density. The ferromagnetic
state ismetallic with a �nite compressibility (see �g. 6.6) and partially polarizedwith amaximum
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6. Magnetic phases in the triangular Anderson lattice

ordered f moment ofm(f) ≈ 0.52 at n ≈ 0.71. The moment on the conduction-electron orbitals
(m(c) ≈ 0.02) is more than an order of magnitude smaller and ferromagnetically aligned to the
moment on the f orbitals.

Generally, there are severalmechanisms thatmay causemetallic ferromagnetism [Mor85; Cap87;
BDN01]: The main idea of the RKKY concept (c.f. section 3.2, page 27 �.) consists in a magnetic
coupling of well-formed local fmoments in an e�ective KLM (see section 2.4, page 18 �.) which
is mediated by the conduction electrons and features ferromagnetic order if the e�ective RKKY
coupling

JRKKY(q) = −J2�s(q, ! = 0) ,

where �s is the conduction-electron spin susceptibility, is peaked at wave vector q = 0. While
the RKKY theory is a perturbative approach (J → 0), the double-exchange mechanism [Zen51;
Gen60; Koc12] applies to the strong-J regime of a Kondo lattice and predicts that a ferromagnetic
ordering of the f moments minimizes the kinetic energy of the conduction electrons.

It is questionable, however, if those concepts apply here as there are strong charge �uctuations
preventing the formation of well-de�ned fmoments in our case. This is obvious from the sizable
deviation of the f occupancy from unity (see �g. 6.6, n(f) ≈ 0.8 in the relevant �lling range).
Another clear indication that the system is no longer in a local-moment regime is the ferro- rather
than antiferromagnetic coupling betweenf and cmoments (seemiddle and lower panel of �g. 6.8
around n = 0.7). This is incompatible with an e�ective low-energy Kondo model.

It is interesting to note that this implies a �lling-dependent crossover from the local-moment
regime with a locally antiferromagnetic coupling between f and c moments (see m(f)

� and m(c)
�

in �g. 6.8 in the PKS and AFM phases) to amixed-valence regime. This can also be veri�ed easily
by studying the linear response in the paramagnetic phase separating the FM and the PKS phase
in �g. 6.3: By applying a weak magnetic �eld to the fmoments, one �nds that the local coupling
between f and c moments changes from antiferro- to ferromagnetic with decreasing �lling.

At U = 0 the static o�-diagonal f-c magnetic spin susceptibility can be computed easily in the
entire �lling range. Except for low �llings around and below n ≈ 0.25, corresponding to the
van Hove singularity of the density of states close to the lower band edge (see �g. 6.5), the local
response is found as antiferromagnetic for n < 1. Above half-�lling, the response turns to ferro-
magnetic and is at a maximum for n ≈ 1.2 corresponding to the van Hove singularity at ! ≈ 0.4
(see �g. 6.5). We conclude that the FM phase cannot be understood as an instability of the Fermi
sea in the weak-U regime. Just the opposite, the paramagnetic state from which the ferromag-
netic phase evolves should be considered as strongly correlated. Already forU = 2.5, the double
occupancy is strongly suppressed and D� is in fact at a minimum for n ≈ 0.65 (see �g. 6.8).

The importance of a strong asymmetry of the density of states for metallic ferromagnetism at
strong and intermediate interaction strengths has been emphasized by DMFT studies of the
single-band Hubbard model [Ulm98; Pot+98; Vol+99; PP09]. The key idea is that in a situa-
tion where double occupancies are e�ectively suppressed, the system does not gain much inter-
action energy from ferromagnetic ordering. Therefore, the appearance of ferromagnetism must
be understood by referring to the (complicated) kinetic energy of the correlated paramagnetic
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state from which it derives. Within DMFT this suggests that the shape of the non-interacting
density of states becomes important. In fact, studying the impact of a shape-controlling parame-
ter [Wah+98], ferromagnetismwas demonstrated to be favored in cases with a highly asymmetric
density of states, in a parameter range where the density of states is high, and at strong to inter-
mediate interaction strengths.

We propose that a similar line of reasoning applies to the PAM in the considered parameter
region: Even at U = 2.5 and all the more for stronger U, double occupancies are strongly
suppressed, and the gain in kinetic energy obtained by ferromagnetic ordering is dictated by a
strongly asymmetric partial f density of states. The �lling range where ferromagnetism is likely
to occur, is then indicated by a corresponding high density of states. Note that n = 0.7 corre-
sponds to a non-interacting chemical potential of � ≈ −0.62 which is already close to the van
Hove singularity (at ! = −0.18). Substantially higher �llings would be even more favorable for
ferromagnetism, but here the crossover to the local-moment regime and the developing antifer-
romagnetic correlations overwrite the ferromagnetic tendencies.

This picture also explains why the FM phase shifts to lower �llings with increasing U in �g. 6.3:
Stronger interactions favor ferromagnetism and extend the FM phase to a larger �lling range as
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6. Magnetic phases in the triangular Anderson lattice

is again well known from the single-band case [Wah+98]. This explains the decrease of the lower
critical �lling for the FM phase with increasing U. At the same time, however, an increasing U
favors local-moment formation, and therefore the KS phase with antiferromagnetic correlations
extends at the cost of the mixed-valence regime. This explains the decrease of the upper critical
�lling with increasing U.

Previous work [YS93; MW93; TJF97; DS98; MN00; BBG02] on ferromagnetism in the PAM has
been done using di�erent theoretical approaches and in largely di�erent parameter regimes.
Nevertheless, ferromagnetic order away from half-�lling appears as a robust result. As basically
all studies have exclusively been performed for bipartite lattices, a direct comparison with our
results is not possible. There are, however, close similarities with the results of a DMFT study
by Meyer and Nolting [MN00] which, for a Bethe lattice with in�nite connectivity, demonstrates
that ferromagnetism appears in the mixed-valence regime for a �nite �lling range. This study
also points out a crossover from antiferro- to ferromagnetic coupling between f and c magnetic
moments with decreasing �lling, consistent with our �ndings, and suggests a mechanism based
on an e�ective single-band model with strongly correlated and itinerant electrons—an idea that
was formalized later on by Batista, Bonca, and Gubernatis [BBG02].

6.4. Conclusions

Our sdDMFT study of the magnetic phase diagram of the PAM on the triangular lattice has un-
covered a surprisingly complex phenomenology which could be traced back to a competition
between several physical mechanisms at work. In particular, the phase diagram is governed
by:

• The formation of local magnetic moments on the f orbitals. Due to the non-bipartite struc-
ture of the triangular lattice, half-�lling of the f orbitals is found for total �llings below
half-�lling, around n ≈ 0.9, weakly depending on U. Here, the low-energy physics is well
captured by an e�ective Kondo lattice although there are sizable f charge �uctuations for
the weak- to intermediate-coupling regime considered here (U ≤ 4). At somewhat lower
�llings, there are still well-developed localfmoments, but the charge �uctuations increase
since the f electrons become itinerant.

• Mixed-valence physicswith strong charge �uctuations on the f orbitals, even at strongerU,
replaces the local-moment regime for lower �llings (roughly below n ≈ 0.75, depending on
U). The �lling-dependent crossover from the local-moment to the mixed-valence regime
is accompanied by a reversal of the e�ective local exchange between the local f and c spins
from antiferromagnetic to ferromagnetic.

• An RKKY-like indirect magnetic exchange between the f magnetic moments induces an-
tiferromagnetic order for su�ciently strong U within the local-moment regime. As we
have enforced spin structures to be collinear, this results in an “↑, ↑, ↓” AFM phase on the
triangular lattice which possibly mimics “classical” 120◦ AFM order.
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• TheKondo e�ect competes with the indirect exchange in the spirit of the Doniach phase di-
agram as presented by means of �g. 3.4 on page 31. At low temperatures, besides magnetic
ordering, the large entropy carried by the local-moment system can be removed by screen-
ing thefmoment in aKondo singlet with the conduction-electron spin degrees of freedom.
With decreasing U, and prior to charge �uctuations becoming dominant, this Kondo sin-
glet (KS) phase replaces the antiferromagnetic order. Kondo physics is also dominating for
lower �llings around n ≈ 0.8, depending slightly on U, as well as for �llings very close
to and at half-�lling. The hybridization band gap in the non-interacting density of states
results in a band insulator at half-�lling for U = 0 and develops into a correlated Kondo
insulator with increasing U.

• Geometrical frustration a�ects the competition between Kondo screening and RKKY cou-
pling. At the border between the AFM and KS phase, it becomes favorable to avoid frustra-
tion by partial Kondo screening of onefmoment per unit cell. This allows the remnantmo-
ments to form an nonfrustrated RKKY-coupled collinear antiferromagnet. The PKS phase
is metallic, and it supports a (weak) charge-density-wave ordering in addition, mainly on
the c orbitals. Although it results from a compromise between Kondo screening, RKKY
coupling and frustration, the PKS state has turned out to be surprisingly robust. It appears
in an extended parameter range and does not need any anisotropic terms in the Hamilto-
nian [Mot+10]. Due to proximity to the time-reversal-symmetry-breaking RKKY-coupled
remnant moments, the partial Kondo screening is imperfect resulting in a tiny magnetic
moment on the f and, antiferromagnetically aligned, on the c orbital at the “Kondo site”.

• Strong correlations among itinerant electrons give rise to a metallic and partially polarized
ferromagnetic phase in the mixed-valence regime. In this case, the non-bipartite lattice
structure favors magnetic order as it produces a highly asymmetric non-interacting density
of states which is known to crucially a�ect the kinetic-energy balance favoring ferromag-
netism in a range of �llings with high density of states at the Fermi level and where anti-
ferromagnetic correlations are subdominant. As a non-perturbative e�ect, this itinerant-
electron ferromagnetism lacks a clear (simple) mechanism—even in a single-band Hub-
bard model.

By that we close the chapter on our studies of the triangular PAM thereby referencing to chap-
ter 8 on page 117 �. for some concluding remarks. In the next chapter, we will change the model
geometry form triangular to depleted for DMFT calculations in regard to the crossover from con-
ventional to inverse indirect magnetic exchange (IIME).
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7. Magnetic order and exchange in the depleted
periodic Andersonmodel

In the preceding chapter 6wepresented our site-dependent dynamicalmean-�eld theory (sdDMFT)
studies of the geometrical frustrated Anderson lattice by means of a triangular lattice structure.
In this chapter we leave the triangular geometry for Anderson lattices with regularly depleted im-
purities of di�erent dimension—cubic, square and one dimensional. Again, like in chapter 6, we
are principally interested in the �nite-temperature properties of such structures but for di�erent
reasons.

Major parts of this chapter were already published as

M. W. Aulbach, I. Titvinidze, and M. Potthoff. “Crossover from conventional to inverse
indirect magnetic exchange in the depleted Anderson lattice”. In: Phys. Rev. B 91 (17
May 2015), p. 174420. Copyright (2015) by the American Physical Society. Reproduced
with permission.

All presented numerical results were simulated by means of our numerical setup as described in
chapters 4 and 5, especially section 4.3 on page 37 and the following. Necessary calculationswere
entirely performed on clusters of the PHYSnet Rechenzentrum of the University of Hamburg and
the SuperMUC super computer cluster of the Leibniz RechenzentrumMunichPresented results de-
rived im terms of static mean-field theory (MFT) were kindly provided by our former colleague
Irakli Titvenidze, while density matrix renormalization group (DMRG)/variational matrix product
states (VMPS) data was made available by Andrej Schwabe. We gratefully thank both of them for
this kind of assist. Support of our studies by theDeutsche Forschungsgemeinschaftwithin the SFB
668 (project A14), by the excellence cluster “TheHamburg Centre for Ultrafast Imaging – Structure,
Dynamics and Control of Matter at the Atomic Scale” and by the SFB 925 (project B5) is gratefully
acknowledged.

Like the partial Kondo screening (PKS) phase initially was the motivator for our studies of the
triangular lattice, in regard to the depleted ones, we aim at experiencing the crossover from con-
ventional to inverse indirectmagnetic exchange (IIME) bymeans of our numerical setup—a site-
selective dynamical mean-�eld approach as described in section 4.3, page 44 �., combined with
the continuous-time hybridization expansion (CT-HYB) segment code as reviewed in sections 5.4
and 5.5 on page 65 and the following. Thus, we try to stabilize this crossover between Ruderman-
Kittel-Kasuya-Yosida (RKKY) (see section 3.2, page 27 �.) interaction and IIME in terms of the
dynamical mean-�eld approach by scanning from weak towards strong hybridization strengths
V. We extend our studies to di�erentmodel dimensionsD = 1,D = 2 andD = 3, whereas for the
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7. Magnetic order and exchange in the depleted periodic Anderson model

latter case we produce DMFT-results that are reliable in the spirit of the Mermin-Wagner theo-
rem (c.f. section 3.3.1, page 31 �.). Generated results are comparedwith those provided by a static
mean-�eld approximation for an e�ective low-energy spin-only model emerging perturbatively
in the strong-coupling limit. Independently, we will prove the theoretical prediction of the Curie
temperature to be located at a maximum for a half-�lled conduction band and at intermediate
hybridization strengths in the crossover regime between RKKY and IIME.

All this is organized as follows: After a motivation (see section 7.1) we will directly proceed with
the mean-�eld studies by means of the mentioned e�ective model in section 7.2. This sets the
basement for a comparison with DMFT results emerging from the application of our numerical
setup as described by section 4.3, page 44 and the following. Appropriate explanations and results
are presented in section 7.3. The chapter is closed by a global summary in section 7.4.

7.1. Introduction

It was pointed out by Nozières some decades ago that the presence of a correlated impurity
in an a priori uncorrelated metal introduces e�ective interactions among the conduction elec-
trons [Noz74; NOZ76; NB80]. The range of these interactions decisively depends on the strength
of the impurity-host coupling. Consider the case of an Anderson impurity model (AIM) that
could alternatively to eq. (2.18) on page 17 be described by

H = −t
∑

⟨i,j⟩

∑

�=↑,↓
c†i�cj� + V

∑

�=↑,↓

(
c†i0�f� + h.c.

)

+ U(f†↑f↑ − 1∕2)(f†↓f↓ − 1∕2) , (7.1)

with annihilators ci�, f� referring to local conduction-electron and impurity orbitals, respec-
tively. For the case of a Hubbard interaction U and a local hybridization V much stronger than
the nearest-neighbor conduction-electron hopping t, an e�ective Hamiltonian with an almost
local interaction characterizing the low-energy physics of the conduction-electron system can be
derived explicitly [TSP15]. This is achieved by means of degenerate fourth-order perturbation
theory in the hopping terms which connect the neighboring conduction-electron sites to the site
i0 where the impurity is coupled to. To leading order, the e�ective model is given by

Hef f = −t
i,j≠i0∑

⟨i,j⟩

∑

�=↑,↓
c†i�cj� −

z2�
3 S2bond , (7.2)

where z is the coordination number of the lattice, where

� = t4U
3 + 48UV2

24V6 (7.3)

is the e�ective interaction strength, and where Sbond is the spin-operator referring to the “bond-
ing” symmetric linear superposition of the z orbitals neighboring i0 (see [TSP15] for details).

There are three di�erent energy scales to be considered:
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7.1. Introduction

• Local singlet formation at i0 takes place on the high-energy scale∼ U,V. While this singlet
may be called a local Kondo singlet, its binding energy scales linearly with V for strong V.
This is opposed to the weak-coupling limit V → 0 (with U ≫ t �xed) where it is exponen-
tially small and where the low-energy physics is dictated by a single Kondo scale [Wil75;
Hew93].

• On an energy scale∼ t, conduction electrons scatter at the local Kondo singlet. This scatter-
ing e�ect is already included at zeroth order in the perturbative expansion and is formally
described by excluding the site i0 from the summation in the �rst term of the e�ective
Hamiltonian in eq. (7.2).

• The �rst non-trivial e�ect takes place at fourth order. An e�ective interaction among the
conduction electrons in the immediate vicinity of the impurity emerges which is mediated
by virtual excitations of the local Kondo singlet. This happens on the lowest energy scale
given by the e�ective coupling constant � in the second term of eq. (7.2).

A fundamentally interesting question is whether the emergent e�ective interaction among the
a priori uncorrelated conduction electrons can give rise to collective phenomena. This may be
expected for a lattice variant of the model, i.e., for a system with a thermodynamically relevant
concentration of impurities. The extreme case is a periodic Anderson model with a depleted sys-
tem of “impurities” placed at every second site, i.e., on the B sites of a bipartite lattice consisting
of sublattices A and B. Figure 7.1 displays an example for the D = 3 dimensional simple-cubic
lattice. We consider amodel with L sites (L → ∞ in the thermodynamical limit) and R = L∕2 im-
purities. The total number of electronsN satis�es 2R ≤ N ≤ 4R such that there are well-formed
local Kondo singlets in the low-energy sector.

At fourth order, perturbation theory is essentially unchanged as compared to the impurity model
eq. (7.1), since any local Kondo singlet, consisting of the correlated impurity coupled to an B-
sublattice site, is surrounded by uncorrelated A-sublattice sites, and thus the same virtual pro-
cesses lead to the same e�ective interaction. Therefore, the resulting e�ective Hamiltonian only
involves A-sublattice sites and excess conduction electrons that are not absorbed in a local Kondo
singlet. The hopping termbecomes ine�ective since the excess conduction electrons are con�ned
between the local Kondo singlets surrounding each A site. Hence, we are left with a latticemodel
of A sites, made up by non-local spins Si,bond referring to the bonding orbital around eachB site:

Hef f = −z
2�
3

∑

i∈B
S2i,bond , (7.4)

with

Si,bond = (1∕2)
∑

��′
b†i����′bi�′ ,

where � is the vector of Pauli matrices and where the creation operator of the bonding orbital
around i ∈ B is given by b†i� =

∑n.n.(i)
j∈A c†j�∕

√
z, i.e., the bonding one-particle orbital is the sym-
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7. Magnetic order and exchange in the depleted periodic Anderson model

metric superposition of neighboring A-sublattice orbitals:

|bond i, �⟩ =
n.n.(i)∑

j∈A
|j, �⟩∕

√
z (i ∈ B) . (7.5)

The e�ective spin-onlymodel, given by eq. (7.4), is non-trivial as di�erent non-local spins refer to
overlapping orbitals and therefore do not commute. There is not much known about this model:

V

x

y
z

~a1
~a3

~a2

t

t

t

d0

U
A

B
C

Figure 7.1.:Depleted periodic Anderson model with R = L∕2 impurities on a D = 3-
dimensional simple-cubic lattice with L sites (L → ∞). Correlated impurities (C sites, red)
with on-site Hubbard interaction U are coupled via a hybridization of strength V to the B
sites (blue) of the bipartite lattice. For strong U,V ≫ t, local Kondo singlets are formed on
the half-�lled “dimers” consisting of impurity and B sites (if the total electron number N
satis�es 2R ≤ N ≤ 4R) and strongly con�ne the motion of the excess conduction electrons
on the A-sublattice sites (green). Virtual excitations of the local Kondo singlets induce an
e�ective interaction of the conduction electrons on A sites. The nearest-neighbor hopping
t between A and B sites �xes the energy scale: t = 1. Periodic boundary conditions are as-
sumed. Figure as printed within [ATP15]. Copyright (2015) by the American Physical Society.
Reproduced with permission.

At half-�lling, N = L + R = 3R, one can rigorously show that a ferromagnetic state with fully
polarized magnetic moments of the conduction electrons on the A sites is among the ground
states [TSP15]. Exact diagonalization of small systems suggests [TSP15] that the model has a fer-
romagnetically ordered ground state in the �lling range 2R < N < 4R (for lower or higher �llings,
local Kondo singlets are broken up). An inverse indirect magnetic exchange (IIME) where the
magnetic moments of A-site electrons are coupled ferromagnetically via virtual excitations of the
local Kondo singlets has been identi�ed as the main physical mechanism [STP13; TSP14]. For
a one-dimensional depleted Anderson lattice, DMRG calculations have shown [STP13] that the
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7.2. Static mean-field theory

IIMEmechanismgradually crosses over to a conventional (RKKY, see section 3.2, page page 27�.)
indirect magnetic exchange, also favoring ferromagnetism, when varying V from strong to weak
hybridization at �xedU ≫ t. This crossover and the mutual interplay between RKKY and IIME
mechanisms for the magnetic ground-state properties has recently been discussed in [SHP14] in
the context of SU(N)models of ultracold Fermi atoms trapped in optical lattices.

The purpose of our studies as presented in the following is to study the �nite-temperature proper-
ties of the depleted Anderson lattice, particularly the stability of the ferromagnetic order against
thermal �uctuations. From the RKKY theory, one can expect TC ∝ J2 ∝ V4 for the Curie tem-
perature at weak V and in a parameter regime where the Schrie�er-Wolf transformation [SW66;
SN02] (see also eqs. (2.22) and (2.28) in section 2.4, page 18 �.) applies such that J = 8V2∕U (c.f.
eq. (2.24) on page 19). On the other hand, for strong V, the e�ective model (7.4) suggests that
TC ∝ � ∝ V−4. We therefore expect a pronouncedmaximumofTC at an intermediateV. This op-
timal V but also the absolute value of TC are interesting from a fundamental theoretical perspec-
tive. Not only the strong V dependencies but also the fact that the non-interacting (U = 0) de-
pleted Anderson lattice exhibits a �at band at the Fermi energy [TSP14] promise a comparatively
high value for the critical temperature. Furthermore, the �nite-temperature properties are im-
portant for the question whether magnetic correlations and magnetic long-range order induced
by the IIME can be veri�ed experimentally. Candidate systems are magnetic nanostructures on
non-magnetic surfaces as their geometrical andmagnetic properties can bemeasured, controlled
and manipulated to a high degree on a atomic scale [ES90; HLH06; Wie09; Kha+11; Kha+12].
Likewise, ultracold-atom systems come into question, due to the rapidly improving experimental
techniques in this �eld and particularly due to the recent advances to employ fermionic alkaline-
earth atoms to e�ciently simulate systems with spin and orbital degrees of freedom [Kro+10;
Sim+11; PHC13; Str+13; Hil+14; Sca+14; Cap+14].

In the scope of this chapter our study is based on two di�erent types of mean-�eld methods: To
address the strong-V limit, we apply static mean-�eld theory to the e�ective spin model eq. (7.4).
Since Si,bond is not a rigid spin with S = 1∕2, a fermion mean-�eld approach must be employed.
Using this approximation, a rough estimate of the dependence of the Curie temperature on lat-
tice dimension or coordination number and electron density is obtained. Secondly, we apply
our site-dependent dynamical mean-�eld theory (sdDMFT) ansatz as presented in section 4.3 on
page page 44 �. to the depleted Anderson lattice. For a model with a depleted system of corre-
lated sites, the DMFT can expected to yield reliable results since the electron self-energy is much
more local as compared to the dense model. This has been checked for the D = 1 dimensional
modelwhere essentially exact results are available via theDMRG technique [STP13]. For ground-
state properties of local observables as obtained by DMFT even quantitative agreement has been
found.

7.2. Static mean-field theory

In the following we will present the mean-�eld part of this chapter, including the theoretical
background, results and according discussion. The data and results presented in this section was
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7. Magnetic order and exchange in the depleted periodic Anderson model

kindly provided by Irakli Titvenidze.

7.2.1. Depleted Anderson lattice revisited

Based on the Hamiltonian of the PAM (2.15) on page page 15 �., the Hamiltonian of the depleted
Anderson lattice is given by

ℋ = −t
∑

⟨i,j⟩,�
c†i�cj� + V

∑

i∈B,�

(
c†i�fi� + h.c.

)

+ U
∑

i∈B
n(f)i↑ n

(f)
i↓ − �

∑

i,�
n(c)i� + (" − �)

∑

i∈B,�
n(f)i� . (7.6)

It describes a system of electrons hopping over the sites of a bipartite D-dimensional lattice con-
sisting of L sites with periodic boundary conditions. The two sublattices are denoted by A and
B. We consider a D = 3 simple-cubic lattice (see �g. 7.1) but also the corresponding one- and
two-dimensional cases (�gs. 7.2 and 7.3). As usually, c†i� creates a conduction electron in a one-
particle orbital with spin projection � =↑, ↓ at the site i = 1, … , L. The nearest-neighbor hopping
t = 1 sets the energy scale.

A B

Figure 7.2.:Geometry of the one-dimensional diluted Anderson lattice. Red: “Impurities” with
�niteHubbard interaction. Green and blue: sites of theA and of the B sublattice, respectively.
Figure as printed within [ATP15]. Copyright (2015) by the American Physical Society. Repro-
duced with permission.

One-particle orbitals at the B sites of the lattice hybridize with orbitals at R = L∕2 additional
“impurity” sites (called C sites) with hybridization strength V. Additionally, f†i� creates an elec-
tron at the impurity site attached to site i ∈ B of the sublattice B. Furthermore, in the spirit of
eq. (2.7) on page 11,

n(c)i� = c†i�ci� and n(f)i� = f†i�fi�
denote the occupation-number operators for A, B and for C sites, respectively. The f orbitals
should be considered as magnetic orbitals: There is a �nite repulsive Hubbard interactionU and
the one-particle energy is set to " = −U∕2 such that, for strongU, the formation of localmagnetic
moments at the impurity sites is favored (compare to section 3.1, page 24 �.).

The Hamiltonian (7.6) contains an overall chemical potential �, i.e., according to our comments
around eq. (3.10) on page 27, we work with the grand canonical ensemble where � is used to
�x the average number of particles ⟨N⟩. We will consider the range 2R ≤ ⟨N⟩ ≤ 4R for our
calculations.

100



7.2. Static mean-field theory

BA

Figure 7.3.: The same as in �gs. 7.1 and 7.2 for the two-dimensional case. Figure as printed
within [ATP15]. Copyright (2015) by the American Physical Society. Reproduced with permis-
sion.

Switching o� the hopping, i.e. t = 0, de�nes an atomic limit of the model (7.6). The ground state
in the atomic limit is highly degenerate. For the considered range of the total electron number,
each ground state is characterized by completely local Kondo singlets formed on the B and the
attached C sites binding two electrons per singlet. The ground state degeneracy is due to the
various con�gurations of remaining electrons on the A sites. Their density

nA =
∑

i∈A,�
⟨ni�⟩∕LA ,

where LA = L∕2 is the number of A sites, can vary within the range 0 ≤ nA ≤ 2.

The depleted Anderson lattice (7.6) exhibits the conventional U(1) and SU(2) symmetries corre-
sponding to conservation of the total particle number and the total spin. For � = 0 the system is
half �lled, i.e., ⟨N⟩ = 3R or nA = 1, and there is an additional SU(2) isospin symmetry [TSU97].
Due to particle-hole symmetry, we can restrict our considerations to the range at and below half-
�lling.

7.2.2. Strong-coupling limit

For strong V ≫ t, an e�ective Hamiltonianℋef f can be derived by means of fourth-order per-
turbation theory in t around the degenerate atomic limit [TSP15]. In this limit the ground state
is characterized by local Kondo singlets at the B sites and a residual low-energy dynamics of the
A-site electrons which is mediated by virtual high-energy excitations of the local Kondo singlets.
Hence,ℋef f contains A-site degrees of freedom only. There is a very compact and highly sym-
metric representation ofℋef f given by eq. (7.4) with the coupling constant� speci�ed by eq. (7.3).
Details of the perturbation theory can be found in [TSP15].

Here, we rewrite the e�ective Hamiltonian such that a static mean-�eld decoupling, a common
application of the mean-�eld idea as explained in section 4.1 on page 38 �., can be applied in a
straightforwardway. To this end, we use the de�nitions given below (7.4) to express the non-local
spin operators in terms of creators and annihilators for electrons on A sites. Furthermore, we
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switch to a representation in reciprocal space by means of Fourier transformation in the form

ci� =
1

√
LA

∑

k∈BZA
eikRick� (i ∈ A) (7.7)

where LA = L∕2 and where k is a wave vector in the Brillouin zone BZA of the reciprocal A
sublattice. Note that the A sublattice is a square lattice for D = 2 but a b.c.c. lattice for the D = 3
case with a unit cell spanned by the basis vectors a1, a2, a3 displayed in �g. 7.1. With this we
get:

ℋef f =
∑

k
(E(k) − �)c†k�ck�

+ 1
LA

∑

p,q,k
Upqkc

†
p↑cp−k↑c

†
q↓cq+k↓ . (7.8)

The e�ective one-particle dispersion is given by:

E(k) = −D�2 
2(k) (7.9)

where "0(k) = −
(k)t is the tight-binding dispersion of the D-dimensional lattice. This also
determines the k dependence of the interaction parameters of the e�ective Hamiltonian via:

Up,q,k =
�
2 
(p)
(q)
(p − k)
(k + q) . (7.10)

Apparently, the e�ective Hamiltonian describes itinerant electrons on the A sublattice with an
interaction, the k dependence of which corresponds to the non-locality of the quartic parts of the
Hamiltonian in real-space representation (7.4).

7.2.3. Mean-field approximation

Note that in the strong-coupling limit both, the one-particle part as well as the interaction, scale
with �. Therefore, the standard mean-�eld decoupling of the interaction term,

c†p↑cp−k↑c
†
q↓ck+q↓ → ⟨c†p↑cp−k↑⟩c

†
q↓ck+q↓

+ c†p↑cp−k↑⟨c
†
q↓ck+q↓⟩

− ⟨c†p↑cp−k↑⟩⟨c
†
q↓ck+q↓⟩ , (7.11)

cannot be controlled by a small parameter but must rather be seen as a Hartree-Fock approach
neglecting correlation e�ects in the low-energy sector and assuming a collinear and homoge-
neous structure of the magnetic moments. The formal advantage is that one obtains a mean-
�eld Hamiltonian which allows for a straightforward study of the temperature dependence of
the A-site magnetic moment and therewith gives access to the critical (Curie) temperature TC.
However, typical mean-�eld artifacts must be expected and tolerated.
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Using the decoupling (7.11) in eq. (7.8), we obtain a mean-�eld Hamiltonian

ℋef f =
∑

k,�
(��(k) − �)c†k�ck� − �

LA
2 Q↑Q↓ (7.12)

which is bilinear in c†, c. The mean-�eld dispersion

��(k) = −�2 (D − Q−�) 
2(k) (7.13)

as well as the constant in eq. (7.12) depend on the possibly spin-dependent mean �eld Q� which
must be determined self-consistently from the following mean-�eld equation:

Q� =
1
LA

∑

k

2(k) 1

e�(��(k)−�) + 1
. (7.14)

Here, according to our unit-conventions (1.1) on page 8, � = 1∕T and kB = 1. The spin-
dependent average A-site occupation number, nA� =

∑
i∈A⟨ni�⟩∕LA is obtained as

nA� =
1
LA

∑

k

1
e�(��(k)−�) + 1

. (7.15)

With this, the order parameter, i.e., the A-sublattice magnetization, is given by

mA = nA↑ − nA↓ .

Numerical calculations are performed by starting with a guess for the chemical potential and
solving the coupled system of eqs. (7.13) and (7.14) self-consistently for each spin projection.
From the self-consistent mean �eld Q�, we obtain nA� via eq. (7.15). In an outer self-consistency
loop we then adjust the chemical potential until the total �lling nA↑+nA↓ equals the given �lling
nA. In the case of half-�lling nA = 1, calculations are facilitated by particle-hole symmetry which
�xes the chemical potential to � = 0.

7.2.4. Results of themean-field approach

Calculations have been performed for lattices with di�erent dimensions D = 1, 2, 3 (see �gs. 7.1
to 7.3, respectively) as well as for di�erent �llings nA at and below half-�lling. �g. 7.4 shows the
resulting self-consistent mean �eldsQ� as functions of the temperature. For anyD and nA, there
is a non-zero critical temperature TC below which we �nd a spontaneous spin-splitting of the
mean �eld. This supports the above-mentioned exact-diagonalization results of [TSP15] where a
fully polarized magnetic ground state has been found for small one-dimensional systems in the
�lling range considered.

As can be seen in �g. 7.4 there is only a weak dependence of the mean �eld on the dimension
D—after rescaling Q� with D or with the coordination number z. For T = 0, we have Q↓ = 0
and thus the � =↑mean-�eld dispersion simpli�es to �↑ = −�D
2(k)∕2 resulting in Q↑ = max.
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Figure 7.4.: Spin-dependent mean �eld (see eq. (7.14)) as a function of the reduced temperature
T∕TC for di�erent dimensions D (top, middle and bottom panel) and di�erent �llings nA as
indicated (see top panel) at and below half-�lling (nA = 1). Solid lines: � =↑. Dashed lines:
� =↓. Figure as printed within [ATP15]. Copyright (2015) by the American Physical Society.
Reproduced with permission.

and, at half-�lling, Q↑ = z since particle-hole symmetry enforces Q↑−D = D−Q↓. For T higher
than the Curie temperature TC, we have Q↑ = Q↓. The spin-independent mean-�eld is slightly
decreasing with increasing T, except for half-�lling where Q↑ = Q↓ = z∕2 = const. above TC.

The appearance of a symmetry-broken ferromagnetic state at �nite temperatures for D = 1 and
D = 2 is a typical mean-�eld artifact which is at variance with the Mermin-Wagner theorem.
This is due to the missing feedback of long-range spin-wave excitations on the local observables
within the mean-�eld approach (c.f. section 3.3.1, page 31 �.). One therefore has to interpret
the �nite Curie temperature carefully as the temperature below which there is a formation of
ferromagnetic correlations on a short length scale which corresponds to a thermodynamically
stable ferromagnet only if the SU(2) symmetry is broken explicitly, e.g., due to the presence of
additional anisotropic terms in the Hamiltonian.
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Figure 7.5.:Order parametermA = nA↑−nA↓ (see eq. (7.15)) as a function of T∕TC for di�erent
dimensions D and �llings nA. Figure as printed within [ATP15]. Copyright (2015) by the
American Physical Society. Reproduced with permission.

Figure 7.5 shows the temperature-dependent magnetization for the di�erent �llings and dimen-
sions. At zero temperature, the system is always fully polarized, i.e., nA↓ = 0 and nA↑ = nA.
Similar to the discussion of the mean �elds, after rescaling the temperature with the respective
Curie temperature TC, there is a weak dependence of mA on the dimension D at �nite T. The
phase transition from the ferro- to the paramagnetic state at TC is of second order for any nA.
Close to the Curie point, we �nd a critical behavior ofmA characterized by the (mean-�eld) crit-
ical exponent for the magnetization � = 0.5, as expected.

The only unexpected result consists in the unconventional T-dependence of mA at half-�lling.
While at low temperatures the missing feedback of long-wavelength spin excitations explains
the absence of a power-law T dependence, one would expect, as a typical mean-�eld behavior,
an exponential convergence ofmA(T) for T → 0with a negative curvature and a vanishing slope
limT→0 dmA∕d[ T] = 0. However, for nA = 1, �g. 7.5 shows an in�ection point of mA(T) at
a �nite temperature, which is increasing with increasing D, and an unusual upturn of mA for
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T → 0. Closer inspection of the data shows that the slope is diverging:

dmA
d[ T]

∼ − 1
√
�DT

→ −∞ (D = 1,D = 3) (7.16)

and
dmA
d[ T]

∼
ln(T∕�)
√
�DT

→ −∞ (D = 2) . (7.17)

The reason of this behavior is a van Hove singularity of the spin-dependent mean-�eld local
density of states (DOS) at the Fermi edge and is not further discussed, here, but in the Appendix
of [ATP15]. From the temperature-dependence of the order parameter we can read o� the Curie
temperature. This is plotted in �g. 7.6 for di�erentD as functions of the �llingnA. SinceTC(nA) =
TC(2 − nA) due to particle-hole symmetry, we restrict ourselves to the range nA ≤ 1. Clearly, the
Curie temperature must be proportional to the coupling constant � as there is a single energy
scale in the e�ective Hamiltonian eq. (7.4).

Its geometry dependence is more interesting: Namely, TC is by no means proportional to the
coordination number as it typical for many mean-�eld approaches but is much more rapidly
increasing with increasing z (note that the numerical results are scaled by a factor D3 in �g. 7.6).
This �nding is not related to singularities in the DOS as it holds for any �lling. We attribute
the unconventionally high TC to the non-locality of the interaction in the e�ective Hamiltonian
and to the resulting k-dependent contribution of the mean �eld to the mean-�eld dispersion in
eq. (7.13).
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Figure 7.6.: Filling dependence of the Curie temperature for lattices with di�erent dimensions
as obtained from the static mean-�eld theory. Note that TC is rescaled by D3 and given in
units of the coupling constant �. Figure as printed within [ATP15]. Copyright (2015) by the
American Physical Society. Reproduced with permission.
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7.3. Dynamical mean-field theory

Hereafter we technically will follow up our DMFT calculations of the triangular Anderson lattice
as presented in chapter 6 on page 75 �. by means of an examination of the regularly depleted
PAM (7.6). By that, we will partially revisit, hence extend the theoretical background of DMFT
in addition to that provided by sections 4.2 and 4.3 on page 40 and the following.

7.3.1. General theory revisited

As was argued in the introduction and additionally in section 4.2 on page 40 �., DMFT [MV89;
Geo+96] neglects the feedback of non-local, e.g. magnetic correlations, on the local self-energy
and the local one-particle Green’s function but correctly accounts for all local correlations. Par-
ticularly, the DMFT is able to describe the formation of local magnetic moments already in the
paramagnetic phase of a lattice model of itinerant electrons, such that the phase transition be-
tween the paramagnetic and the ferromagnetic phase at TC can be understood as a transition be-
tween well-formed but disordered moments and long-range order. This is opposed to the static
theory where the local moments essentially vanish above the Curie point.

It is important to note that the feedback of non-local correlations neglected within single-site
DMFT ismuchweaker for the depleted Anderson lattice considered here as compared to a lattice
fermion model with a dense system of correlated sites. This can be understood in the following
way: Formally, the only approximation to be tolerated within DMFT is the locality of the self-
energy. For a dense lattice model, such as the Hubbard model, for example, the DMFT becomes
exact in the limit of in�nite spatial dimensions D → ∞ since the nearest-neighbor elements of
the self-energy scale as 1∕D3∕2 as can be inferred from its diagram expansion [Mül89b]. This
is related to the scaling 1∕D‖i−j‖∕2 of the bare propagator, where d ≡ ‖i − j‖ is the Manhattan
distance between the orbitals at sites i and j of a hyper-cubic lattice of dimension D (compare
to eq. (4.13) on page 42). For a depleted Anderson lattice on a high-dimensional bipartite lattice
with a Manhattan distance d between the correlated sites, this also implies that the non-local
elements of the self-energy exponentially diminish with increasing d. A completely local self-
energy is realized in the single-impurity limit d → ∞. For the Hubbard model (d = 1) and the
PAM (d = 3) and for low dimensions, quantitative studies have been performed within second-
order perturbation theory [SC90; SC91; PN97]. The case studied here corresponds to d = 4 but
there are two, possibly largely di�erent hopping parameters, t and V. For the ground state of the
depleted Anderson lattice (with d = 4) in D = 1 dimension, a direct comparison between DMFT
and essentially exact results obtained by the DMRG method has been performed in [STP13],
and excellent agreement has been found for static local observables in the entire V∕t regime.
Comparing with DMRG, a quantitative discussion of the artifacts of the DMFT has been given
in [Tit+12] for a D = 1 tight-binding model with two Anderson impurities. Concluding, we
therefore expect that the DMFT yields reliable results.

Like it was done before in regard to the triangular lattice in section 6.2 according to the general
recipe described in section 4.3, DMFT is easily adapted to the depleted model eq. (7.6) by means
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of our site-selective extension: For any dimension D, there are three sites in a primitive unit cell
of the lattice (see �gs. 7.1 to 7.3). Hence, the single-particle Green’s function Gk(!) is a 3 × 3-
matrix for anywave vectork in the �rst Brillouin zone of the A sublattice and for any one-particle
excitation energy !. Summation over k provides us with the local Green’s function with, say, the
(3,3) element referring to the impurity Green’s function ⟨⟨fi�; f

†
i�⟩⟩!. Using Dyson’s equation,

this can be obtained from the local self-energy Σ(!) in the fashion of eq. (4.27) on page 47 as

G(��)
loc (!) = 2

L
∑

k∈BZA
[ 1
! + � − "(k) − �(!)

]
��

. (7.18)

Here, particularly �, � = 1, 2, 3 label the di�erent sites in the unit cell to be chosen. Furthermore,
for the depletedmodel �(!) is a 3×3 diagonal matrix with Σ33(!) = Σ(!) and Σ11(!) = Σ22(!) =
0, and

"(k) =
⎛
⎜
⎝

0 "0(k) 0
"0(k) 0 V
0 V "

⎞
⎟
⎠

(7.19)

is the lattice Fourier transform of the hopping parameters with "0(k) = −
(k)t.

TheDMFT self-energyΣ(!) is then again obtained as the impurity self-energy of an e�ectiveAIM
speci�ed by the Hubbard-U and a hybridization function in the fashion of eq. (4.28) on page 47
that is �xed by the self-consistency equation of DMFT. Concretely it reads

∆(!) = ! + � − " − Σ(!) − 1
G(33)
loc (!)

. (7.20)

Here, the impurity one-particle energy is given by ", andΣ(!)must be determined self-consistently
with eq. (7.18).

According to our calculations in chapter 6, we employ our CT-HYB segment code (see chapter 5,
page 49 �.) to compute the self-energy of the e�ective impurity problem at �nite temperature
T.

7.3.2. Results of the dynamical mean-field approach

From the results of static mean-�eld theory for the e�ective low-energy model eq. (7.4) in the
strong V limit (see �g. 7.6) we infer that the Curie temperature is at a maximum for half-�lling.
More generally, we expect that at half-�lling the stability of a ferromagnetically ordered state
against thermal �uctuations is the highest not only for strong V but also for weak V, where
the period of the RKKY interaction is commensurate with the positions of the correlated sites
on the lattice. Furthermore, at half-�ling and for the considered lattice geometries, the RKKY
interaction is ferromagnetic. We will therefore restrict ourselves to the particle-hole symmetric
case with the chemical potential �xed at � = 0 and with the one-particle energy of the impurities
set to " = −U∕2 (see eq. (7.6)). We also �x the Hubbard interaction at an intermediate value
U = 8 for the rest of the chapter. To discuss the crossover from the RKKY limit to the regime
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Figure 7.7.:Ordered magnetic moments mA, mB, mimp (circles) on the A sites, the B sites and
the impurity sites, respectively, and the inverse homogeneous static impurity magnetic sus-
ceptibility�−1 (diamonds) as functions of temperatureT as obtained byDMFT for theD = 3-
dimensional depleted Anderson lattice (see �g. 7.1). Hubbard interaction: U = 8, hybridiza-
tion strength: V = 2. The line indicates a linear �t to the trend of �−1(T). The temperature
and energy scales are �xed by the nearest-neighbor hopping t = 1 (see eq. (7.6)). Figure as
printed within [ATP15]. Copyright (2015) by the American Physical Society. Reproduced with
permission.

of the inverse indirect magnetic exchange, we consider di�erent hybridization strengths V. Due
to relation (A.13) on page 123, by carrying out a sum over Matsubara frequencies in the style
of eq. (4.30) that was given on eq. (4.30), one may easily compute the average spin-dependent
occupation numbers on the A and B site,

nA� = ⟨c†A�cA�⟩ and nB� = ⟨c†B�cB�⟩ ,

from the local Green’s function eq. (7.18), once self-consistency has been achieved. The average
occupation numbers of the impurity site,

nimp,� = ⟨f†�f�⟩ ,

are obtained in the same way, although could be measured equivalently within the CT-HYB ap-
proach directly bymeans of eq. (5.47) on page 71. We explicitly allow for symmetry-broken states
with �nite ordered magnetic momentsmA,mB andmimp, where we have de�ned

mA = nA↑ − nA↓ ,

andmB,mimp analogously. It is found that magnetic solutions of the DMFT equations are easily
stabilized in the entire range of hybridization strengths V considered (but for su�ciently low
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Figure 7.8.: The same as in �g. 7.7 but for V = 3. Figure as printed within [ATP15]. Copyright
(2015) by the American Physical Society. Reproduced with permission.

temperatures) by starting the self-consistency cycle with a slightly spin-asymmetric initial self-
energy. In addition, we also compute the homogeneous static impurity spin susceptibility of the
paramagnetic state

� = )mimp∕)B|B=0 .

Here, B is the strength of a homogeneousmagnetic �eld coupling to the z-component of the total
impurity spin as

H ↦→ H − B
∑

i∈B
(f†i↑fi↑ − f†i↓fi↓)

whereH is given by eq. (7.6).

Figure 7.7 shows the results of a DMFT calculation at V = 2 for the D = 3-dimensional lattice
with L = 523 sites, with additional R = L∕2 impurities and periodic boundary conditions (see
�g. 7.1). This is fully su�cient to ensure that the results do not signi�cantly depend on L. Statis-
tical errors of the quantities shown in this and in the following �gures are smaller than the size of
the symbols. A typical Monte Carlo (MC) run consists of more than 107 sweeps, and each sweep
ofmore than kMC steps with k being the average expansion order. Less than 50 DMFT iterations
are su�cient for convergence of the results within the statistical error. For high temperatures
the system is in a paramagnetic state. The inverse susceptibility �−1 shows a linear Curie-Weiss
trend from which one can safely estimate the value for the Curie temperature TC ≈ 0.064. � is
calculated from the magnetic moments induced by an explicitly applied homogeneous �eld for
su�ciently weak �eld strengths in the linear-response regime (typically B < 0.01).

The transition to the ferromagnetic state at low temperatures appears to be of second order, and
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Figure 7.9.:mA, mB, mimp (circles) and �−1 (diamonds) as functions of T, as in �g. 7.7 but for
the D = 1-dimensional depleted Anderson lattice (see �g. 7.2). Hubbard interaction: U = 8,
hybridization strength: V = 2. DMRG data for T = 0 (squares) from Ref. [STP13] are in-
cluded for comparison. Figure as printed within [ATP15]. Copyright (2015) by the American
Physical Society. Reproduced with permission.

the data for the ordered magnetic moments are consistent with a linear temperature trend ofm2

close to TC, i.e.m2 ∝ (TC−T). This implies a critical exponent � = 0.5 as it must be expected for
a DMFT calculation. Note, however, that due to critical slowing down, it becomes progressively
more di�cult to stabilize symmetry-broken DMFT solutions for temperatures close to TC. The
double occupancy at the impurity site dimp = ⟨nimp,↑nimp,↓⟩, and thus the local magnetic moment
S2imp = 3(1 − 2dimp)∕4 turns out to be almost constant in the entire temperature range consid-
ered: dimp ≈ 0.077. In particular, the moment does not change signi�cantly across the phase
transition.

The low-temperature state of the systemactually displays ferri-magnetic order since themagnetic
moment at the B sites is antiferromagnetically aligned (mB < 0) to themoments at the impurities
and the A sites (mimp, mA > 0). This alignment is reminiscent of the antiferromagnetic coupling
in the Kondo limit of the model, i.e. for V → 0, where an antiferromagnetic e�ective exchange
interaction (Kondo coupling) of strength J = 8V2∕U emerges between B sites and impurities in
the low-energy sector [SW66; SN02]. In theweak-coupling limitV → 0, one furthermore expects
that well-formed local magnetic moments appear at the impurity sites since charge �uctuations
are strongly suppressed. Ferromagnetic coupling of these moments via the RKKY exchange then
implies |mimp| → 1, while mA, mB → 0. For V = 2, we are still in the RKKY regime since the
A-site moment is clearly smaller than the moment on an impurity site.

As �g. 7.8 demonstrates, however, this changeswith increasingV. ForV = 3, we �ndmA > mimp
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Figure 7.10.: The same as in �g. 7.9 but for V = 3. Figure as printed within [ATP15]. Copyright
(2015) by the American Physical Society. Reproduced with permission.

at low temperatures indicating the crossover from the RKKY regime to the strong-V limit. In the
strong-coupling limit V ≫ t, almost localized “Anderson singlets” are formed by the magnetic
moments at B and impurity sites, and thusmB, mimp → 0. The presence of local singlets at the B
sites implies that electrons on the remaining A sites are very e�ciently localized such that well-
formed local moments emerge. Those moments couple ferromagnetically via the IIME [STP13;
TSP14; TSP15], i.e. by virtual excitations of the Anderson singlets, and thusmA → 1. This picture
well explains thatmA > mimp in �g. 7.8.

It is instructive to compare the results for the D = 3 lattice with those obtained for D = 1 (see
�g. 7.2). Figures 7.9 and 7.10 show results for the ordered magnetic moments and the impurity
magnetic susceptibility for a chain geometrywithL = 50 siteswith periodic boundary conditions.
The overall trends seen in the �gures are similar to those found for D = 3 but the crossover from
the RKKY to the IIME regime appears at lower hybridization strength V as can be inferred from
the fact thatmA is considerably higher thanmimp already for V = 3.

Furthermore, theCurie temperature is seen to decreasewith increasingV in this regime; TC drops
by about a factor two when increasing the hybridization strength from V = 2 to V = 3. This can
consistently be explained by referring to the strong-V limit where the e�ective model eq. (7.4)
applies and where the only energy scale is given by the coupling � (see eq. (7.3)) which decreases
with increasing V.

This also means that the crossover regime shifts to stronger hybridization strengths with increas-
ing lattice dimension or coordination number. This must be kept in mind when comparing TC
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Figure 7.11.:mA, mB, mimp (circles) and �−1 (diamonds) as functions of T for the D = 2-
dimensional depleted Anderson lattice. U = 8, V = 2.

obtained for di�erent dimensions D at constant V. At V = 2, the Curie temperature does not
depend very much on D: We �nd TC = 0.040 for D = 1, TC = 0.059 for D = 2 (see �g. 7.11)
and TC = 0.064 for D = 3. This is easily explained as a balance between two counteracting ef-
fects, namely an increase of TC with increasing D characteristic for a mean-�eld theory on the
one hand and the mentioned shift of the crossover regime resulting in a lower TC on the other
hand.

Obviously, the D = 1 and D = 2 results are not consistent with the Mermin-Wagner theorem
which, as compared to section 3.3.1 on page page 31 and the following, excludes spontaneous
breaking of the SU(2) spin rotation symmetry for D ≤ 2 at �nite temperatures. As a matter of
course, it cannot be satis�ed within a static or within dynamical mean-�eld theory since long
wave-length magnetic excitations do not feed back to the single-particle self-energy. We never-
theless expect that the �nite TC predicted by DMFT is physically signi�cant even for D = 1 (and
D = 2) and indicates the onset of ferromagnetic ordering of the magnetic moments on interme-
diate length scales [Ved+11].

For D = 1 and in the low-temperature limit the DMFT agrees well with essentially exact data
obtained bymeans of the density-matrix renormalization group (DMRG)method [STP13] at zero
temperature. The extrapolation of theDMFT results for the orderedmagneticmomentsmimp and
mB to T = 0 perfectly matches with the DMRG data, see black squares in �gs. 7.9 and 7.10. As
concerns themagneticmoment on theA sites, we expect the sameunconventionalT-dependence
that has been discussed in the context of static mean-�eld theory in section 7.2.4, i.e. an upturn
of mA for T → 0, consistent with the T = 0 DMRG data, which is induced by the van Hove
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singularity of the spin-dependent local density of states at the Fermi edge.

For the D = 3 lattice, we have systematically computed TC as a function of V at �xed U =
8. Results as obtained from by linear �ts to the temperature trend of the �−1(T) are shown in
�g. 7.12.

In the weak-coupling limit V → 0, the Curie temperature is expected to be solely determined by
the strength of the RKKY interaction and thus to scale as TC ∝ JRKKY ∝ J2 ∝ V4 with V. For the
strong-coupling or IIME limit, the only energy scale of the e�ective low-energy theory is given
by � and thus TC ∝ � (see solid lines in �g. 7.12). ForU = 8, a good approximation is TC ∝ V−4,
see eq. (7.3) and the dashed line in �g. 7.12.
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Figure 7.12.:Curie temperature TC for the D = 3-dimensional depleted Anderson lattice at
U = 8 and half-�lling as a function of the hybridization strength V. Points are obtained
via �−1(TC) = 0 by extrapolating the linear temperature trend of the inverse susceptibility
�−1(T). Solid lines: a dependence of TC(V) ∝ V4 is expected for V → 0. For strong V,
the data are consistent with TC(V) ∝ �(V). Dashed line: TC(V) ∝ V−4 represents a good
approximation to �(V) at U = 8. Figure as printed within [ATP15]. Copyright (2015) by the
American Physical Society. Reproduced with permission.

The Curie temperature is at its maximum TC,opt ≈ 0.07 for a hybridization strength of about
Vopt ≈ 2.5. TC,opt is almost an order of magnitude smaller than the maximum Néel temperature
of the D = 3 Hubbard model at half-�lling [Ken+05] and also an order magnitude smaller than
typical Curie temperatures of the Hubbard model with asymmetric free density of states, as ob-
tained for lower �llings by DMFT [Ulm98]. The same holds if compared with DMFT estimates
for the Curie temperature of the standard periodic Anderson model [MN00].
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7.4. Summary

Our study presented within this chapter has demonstrated that the Anderson-lattice model with
a regularly depleted system of localized orbitals at every second site supports ferromagnetic long-
range order which exhibits, depending on the hybridization strength V, a high stability against
thermal �uctuations. The temperature-dependent magnetism has been investigated systemati-
cally for di�erent coupling strengths and electron densities.

We have taken into account two di�erent types of mean-�eld approaches:

1. static mean-�eld theory of the e�ective low-energymodel that emerges at strong couplings
V within fourth-order perturbation theory, and

2. site-dependent dynamicalmean-�eld theory (sdDMFT) of the fullmodel using theCT-HYB
segment variant as impurity solver, we have employed in terms of our numerical apparatus
as described in section 4.3.

The Curie temperature is obtained by computing the temperature dependence of the magnetic
moments as well as by the divergence of the homogeneous static magnetic susceptibility. The
maximal TC is found at half-�lling and for intermediate hybridization strengths:

For weak V, magnetic order is induced by the standard e�ective RKKY interaction between the
local magnetic moments formed at the correlated impurity sites. For the geometry considered
and at half-�lling, the RKKY interaction is ferromagnetic. The Curie temperature scales with
V4 in this limit. For strong V, on the other hand, the recently proposed IIME also leads to fer-
romagnetic order. In this limit the impurity magnetic moments are Kondo screened and form
almost local Kondo singlets on a high-energy scale V which localize the fraction of conduction
electrons not taking part in the screening. Those conduction electrons develop local magnetic
moments which are ferromagnetically coupled by virtual excitations of the local Kondo singlets
on an energy scale � (see eq. (7.3)). Therefore, TC scales with � ∼ V−4 for �xedU in this limit.

While the numerical data obtained for di�erent V appear to be consistent with the expected
trends, it turned out to be very di�cult to reach the extreme limits V → 0 and V → ∞ with
pure RKKY or IIME coupling, respectively, as the energy scale given by TC becomes too small.
On the other hand, the maximum TC,opt ≈ 0.07 found for intermediate V is well accessible and
surprisingly high, in view of the fact that themagnetic coupling ismediated indirectly only. Com-
pared to DMFT estimates [Ken+05; Ulm98; MN00] of critical (Néel or Curie) temperatures in the
Hubbard or periodic Anderson model with a dense system of correlated impurities, it is about
an order of magnitude lower. The optimal intermediate hybridization strength where TC is at its
maximum is given by Vopt ≈ 2.5, i.e., clearly stronger than the nearest-neighbor hopping t = 1.
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In this thesis we have documented and discussed our successfully performed simulations ofmag-
netic phase transitions in the periodicAndersonmodel (PAM) on twodi�erent lattice geometries:
TheD = 2-dimensional triangular lattice on the one hand and a diluted lattice scheme at dimen-
sions D = 1, 2, 3 on the other hand.

We close this thesis by summarizing themain contents and results. Furthermore, wewant to pro-
vide some outlook where experienced as necessary throughout our argumentation. We started
with the basics, the general construction ofmodel Hamiltonians ofmany-particle systems. Based
on that we explicitly derived the construction of themodel Hamiltonian of the—for our concerns
most important—Anderson lattice in chapter 2 from the Hubbard Hamiltonian in its role of the
basic model of correlated many-particles on a lattice. The Anderson impurity model (AIM) was
modeled as the little brother of the PAM. In addition, we introduced the Kondo lattice models as
e�ective low-energy models of the Anderson impurity models.

By that we were able to focus on the formation of local magnetic moments as the initial require-
ment for the emerging of phase transitions in regard to itinerant magnetism in chapter 3. Here,
we followed tradition and primarily used the AIM before extending the theories towards the An-
derson lattice. The lattice o�ered the possibility to direct the discussion towards order among the
local magnetic moments in terms of Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. In ad-
dition we introduced the Kondo e�ect as purely local e�ect that operates against the establishing
of magnetic order. As both phenomena take place in the local-moment regime of the PAM, we
reviewed them on the Kondo lattice for reasons of simpler demonstration. Besides having a look,
each on its own, on the purely local Kondo e�ect and the long-ranging itinerant exchange, we
merged both together to a rival which manifests in the Doniach phase diagram. The physics be-
hind this famous phase diagram was emphasized as the basic theoretical environment for our
concrete studies in chapters 6 and 7 to come. Chapter 3 was closed by an outlook on speci�c
context-relevant phenomena that may negatively in�uence order between local magnetic mo-
ments: The Mermin-Wagner theorem that prohibits the existence of magnetic long-range order
in systems of dimensionD < 3 at �nite temperature and the phenomena of geometric frustration
that takes place on triangular lattices. The review of the prior one was additionally used to re-
capitulate the basic theory behind a magnetic phase transition, in concrete terms of a transition
from a ferro- towards a paramagnetic phase at a critical temperature TC.

Chapter 4 led us to the framework of our numerical apparatus intended to be used to simulate
quantum magnetic phase transitions on the Anderson lattice in chapters 6 and 7. In essence,
this was a site-dependent dynamical mean-�eld approach. Before the concrete presentation of
the site-selective extension, we �rst recapitulated the practical as well as formal basics of stan-
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dard mean-�eld theory (MFT) and afterwards the dynamical mean-�eld theory (DMFT). We
concluded chapter 4 by means of �g. 4.3 with a sketch of the full self-consistency circle in regard
to our actually used implementation of the corresponding numerics. Thiswas implemented from
scratch as part of the research activities that were reported on in this thesis.

In chapter 5 we proceeded with the description of the numerical background of this thesis: We
went on with the review and discussion of the segment variant of the continuous-time hybridiza-
tion expansion (CT-HYB) algorithms as a special representative of the continuous-time quantum
Monte Carlo (CT-QMC) impurity solvers. As already emphasized there, this solver was also im-
plemented in addition to the site-dependent dynamical mean-�eld theory (sdDMFT) implemen-
tation from scratch in terms of the research work presented by this thesis. In similarity to the
outline of chapter 4 we reported on the quantum Monte Carlo (QMC) and CT-QMC method in
general before we went into detail with the CT-HYB method. Thereby, we reviewed a general
sampling procedure and included important topics like a correct advanced error estimation and
the fermionic sign problem. In regard to the CT-HYB algorithm we fully derived the underlying
hybridization expansion and extended the sampling procedure towards that of a segment picture.
Accordingly, the sophisticated measurement scheme in terms of “improved estimators” was mo-
tivated and explained. Content main results out of literature could be veri�ed by results of our
own calculations and were especially presented in �gs. 5.2 and 5.5. By that, we entirely recapit-
ulated and understood the CT-HYB approach at a level that enables for a full implementation by
oneself.

With the full numerical setup at hand, we �nally were able to perform simulations of magnetic
order and magnetic phase transitions of the triangular (see chapter 6) and the regularly depleted
(compare to chapter 7) Anderson lattice. Asmotivated in the introduction, page 1 �., both lattices
posed di�erent main attempts on our investigations by means of our sdDMFT. To the end this
approach turned out to be very suitable for our concerns. It was easily adaptable to the given
models and we could achieve our aims:

Within the framework of DMFT in regard to the triangular Anderson lattice, we could adapt the
sdDMFT easily to the given model geometry and managed to stabilize a frustration alleviating
partial Kondo screening (PKS) phase, embedded into a surprisingly feature-rich U-n phase di-
agram, impressively shown in �g. 6.3 and extensively discussed in sections 6.3 and 6.4. Here,
the PKS phase arises in the local-moment regime for �llings slightly o� half-�lling in terms of
the transition from a competing RKKY induced “collinear” (“↑, ↑, ↓”) antiferromagnetic (AFM)
phase towards a metallic heavy-fermion Kondo singlet (KS) state. At half-�lling n = 1, the hy-
bridization band gap in the non-interacting density of states results in a band insulator forU = 0,
while with increasing U this develops into a correlated Kondo insulator (KI). At low �llings, we
additionally observed a metallic ferromagnetic (FM) phase in the mixed-valence regime where
the f local moments are no longer well de�ned.

Two main results of our study might be relevant for the understanding of PKS in real materials,
such as CePdAl [Oya+08], UNi4B [Men+94] or even arti�cial geometries of magnetic atoms on
metallic surfaces, [Wie09; Kha+12] and for corresponding electronic-structure models:

1. The PKS state appears at non-integer �llings and thus spin-only models may be question-
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able, and

2. the PKS state exclusively shows up at the border between the paramagnetic heavy-fermion
and the magnetically ordered phase.

This could be tested experimentally by steering the system through this border, either by con-
trolling the temperature or by means of chemical substitution [Fri+14]. There are several lines
along which our study could be continued in the future: First, non-collinear, i.e. “120◦” phases
are in principle accessible by an SU(2)-symmetric formulation of the sdDMFT. This may lead
to a certain re�nement of the magnetic phase diagram, with non-collinear (or even incommen-
surate) AFM phases partially replacing the “↑, ↑, ↓” phase but we do not expect a further qual-
itative change as the relevant energy scale is still set by the e�ective RKKY-exchange coupling
constant. Second, it would be interesting to make contact with the corresponding phase dia-
gram of the Kondomodel on the triangular lattice, either by applying DMFT to the Kondomodel
directly [OKK09] or by using a solver which allows to resolve the Kondo scale, such as the nu-
merical renormalization group [BCP08].

Finally, one may address the e�ect of non-local correlations beyond the single-site DMFT. The
Kondo e�ect results from correlations between a single correlated f orbital and the conduction-
band system and is, therefore, captured correctly by a dynamical mean-�eld theory which treats
those correlations exactly. DMFT also provides an accurate description of the non-local indi-
rect exchange but the feedback of non-local magnetic correlations on the self-energy is missing.
Those missing �uctuations must result in mean-�eld artifacts. Typically, the (site-dependent)
DMFT approach is therefore, to some extent, biased towards the formation of magnetic order
and tends to favor a symmetry-broken state | ↑⟩| ↓⟩ at the expense of a non-local singlet (| ↑
⟩| ↓⟩ − | ↓⟩| ↑⟩)∕

√
2 [Tit+12; ATP15]. One might speculate that, compared to the PKS state, the

AFM phase is overestimated and that both, the PKS and the AFM phases are overestimated as
compared to the KS state.

As recent follow-ups of our studies two references should be mentioned: Firstly the attempt
of Peschke, Rausch, and Pottho� in [PRP17] to simulate a D = 2-dimensional triangular Kondo
lattice by visiting aD = 1-dimensional zigzag Kondomodel in terms of the density matrix renor-
malization group (DMRG). Here, the search for a PKS phase factually was not successful. In-
stead, alleviation of the installed frustration could be achieved by a mechanism of dimerization.
Secondly there was a publication of Sato, Assaad, and Grover [SAG18] that reports on the ap-
plication of a sign-free auxiliary-�eld QMC approach on a hybrid model that couples spins to
fermions on the frustrated Honeycomb lattice. In addition to the conventional Kondo insulator
and anti-ferromagnetically ordered phases, relevant investigations actually yield a partial Kondo
screened state where spins are selectively screened so as to alleviate frustration, and the lattice
rotation symmetry is broken nematically. In comparison to our numerical setup, this ansatz has
the sheer unbeatable charme that it operates exactly and thus even leaves behind possible arti-
facts due to approximations as e.g. tolerated by means of DMFT per de�nition.

For the case of the regularly depleted Anderson lattice, our sdDMFT implementation succeeded
in verifying the general support for ferromagnetic long-range order of high stability against ther-
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mal �uctuations, in dependence on the hybridization strength V. Thus we could verify the
V-dependence of the critical temperature to be consistent with the predicted rivaling energy
scales of RKKY at weak and of inverse indirectmagnetic exchange (IIME) at strong hybridization
strength (see �g. 7.12). ThemaximalTC is found at half-�lling and for intermediate hybridization
strengths. This was presented and discussed in detail in sections 7.3.2 and 7.4.

Concluding in this matter, one should note that DMFT applied to the depleted Anderson lattice
can be expected to be much more reliable than for the dense case. In fact, perfect agreement
with numerically exact DMRG data is observed in the low-temperature limit. We are therefore
convinced that our study of the depleted Anderson lattice provides quantitative insight into the
physics and contributes to the fundamental understanding of magnetic order of correlated or-
bitals coupled indirectly by conduction electrons.
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A. Remarks

A.1. Mathematical notation and definitions

In regard to the mathematical notation this thesis tries to be conform with common standard
notation used and introduced in textbooks like e.g.[GBL08; Hig15; LS90]. In that spirit it was
tried to note vectors and matrices as bold symbols like v and M, whereas the capital letters
may not necessarily be used to distinguish between vectors and matrices. In contrast to that,
operatorswill not be marked in special and so it depends on the context whether one deals with
an operator or alreadywith its eigen-value. However, there should not be any danger of confusion
for the intent reader.

Numbers will be categorized within the common sets:

• The set of natural numbers ℕ,

• the set of integers ℤ,

• the set of real numbers ℝ,

• and the set of complex numbers ℤ.

Inside formulas one often meets the followingmathematical constants and constant expres-
sions:

• If not de�ned otherwise, � marks the mathematical constant that is equal to a circle’s cir-
cumference divided by its diameter.

• The base of the natural logarithm ln, also called Euler’s number is marked by e, like in
ex.

• In order to deal with complex numbers like z = x + iy, we use the imaginary unit i.

Concerning the last point, let again z = x+iy be a complex number, then its complex conjugate
is given by z∗ = x − iy .

Shorthand notation of mathematical statements implies the two logical quanti�ers:
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• The universal quanti�er ∀, read “for all”,

• and the existential quanti�er ∃, read “there exists”.

In conformity to [BF04], the following de�nitions are adopted:

• Kronecker’s delta for discrete variables i and j as

�ij = {
0, if i ≠ j ,
1, if i = j ;

(A.1)

• Dirac’s delta distribution for a continuous variable x as

� (x) = 0 ∀ x ≠ 0 , while ∫ dx � (x) = 1 ; (A.2)

• TheHeaviside step function is meant to be

�(x) = {
1, if x ≥ 0 ,
0, if x < 0 ;

(A.3)

• The sign function

sgn(x) = {
1, if x ≥ 0 ,
−1, if x < 0 .

(A.4)

Quantum theory generally lives on (anti-)commutator relations. In that sense the commutator
between two arbitrary operators A and B is de�ned as

[A, B]− = AB − BA , (A.5)

whereas the anti-commutator of the same operators in analogy is given by

[A, B]+ = AB + BA . (A.6)

Any further general mathematical expressions are explained where introduced or needed.

A.2. Perturbation theory (at finite temperature)

In quantum theory, perturbation theories belong to the approximative methods. The basic idea is
to write a HamiltonianH as

H = H0 +H1 , (A.7)
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where H0 is the unperturbed part of H for which all energy eigenvalues and eigenstates are
known exactly and H1 contains the hopefully small perturbation. The latter is then approxi-
mated by an expansion. Clearly, for small perturbations this has only to be performed up to low
perturbation orders in order to get a recently good approximation.

In quantum many-body theory, as one might look up in very detail in standard textbooks on
the topic like [NO98; Mah00; FW03; AGD65; BF04] to only mention a few, perturbation the-
ory of many-particle systems at �nite temperatures T > 0 are formally handled within the so-
calledMatsubara formalism [Mat55]. Following this formalism, all arising times t are considered
as purely imaginary owning the dimension of an inverse energy. Mathematically the prior is put
into practice by a Wick rotation of t into the complex plane, hence

t ∈ ℝ → t = −i� . (A.8)

This substitution in addition to the identi�cation of the inverse temperature � as an inverse en-
ergy like � allows for a very elegant uni�cation of the thermal averages and the time-evolution,
hence dynamics of a given system with a general but time-independent Hamiltonian H. That is
just because for � = � the already structurally similar time-evolution operator U(t) = e−itH and
the density operator � = e−�H of the system become the same and by that may be perturbatively
treated, i.e. expanded in one go.

As a consequence, the dynamics of all imaginary-time dependent operators are described within
amodi�ed Heisenberg picture. Concretely for fermionic single-particle creation and annihilation
operators a†� and a� as introduced in 2.1, regardless of any indices, this means1

a†(�) = e�H a† e−�H , (A.9)
a(�) = e�H a e−�H . (A.10)

The application of this representation then formally evolves further on to the construction of
electronic Green’s functions, generally de�ned as time-ordered correlation functions, hence ex-
pectation values of two electronic operators, in imaginary time. In this context, a fermionic single-
particle imaginary time Green’s functionmay be written as

G��(�, �′) ≡ −
⟨
T�
[
a�(�)a

†
�(�

′)
]⟩
. (A.11)

Thereby, necessarily an appropriate imaginary time-order operator T� is usually de�ned as

T�
[
a(�)a†(�′)

]
= �(� − �′) a(�) a†(�′) − �(�′ − �) a†(�′) a(�) (A.12)

what implies aHeaviside step function � as de�ned by eq. (A.3) on page 122. Here, by considering
operators of the same spin �avor �, hence � = � ≡ � at zero times, one may derive

G��(0, 0+) = −
⟨
T�
[
a�(0)a

†
�(0+)

]⟩

=
⟨
a†�(0+)a�(0)

⟩
= n(a)� (0) , (A.13)

1Here, admittedly a consistent notation concerning physical aspects is preferred in contrast to a correct mathemat-
ical one as modi�ed Heisenberg operators like those given by eqs. (A.9) and (A.10) are de�nitely not hermitian
conjugate. Therefore, the “†” in eq. (A.9) physically marks the corresponding operator as creator, but is mathe-
matically incorrect. For a quick reminder on the mathematical de�nition of hermitian conjugates, return to the
footnote on page 10.
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where in the last step the de�nition of the particle number operator according to eq. (2.7) on
page 11 was used.2 Thus, in this case the single-particle imaginary time Green’s function could
be identi�ed as the average single occupation number. It is crucial to note that imaginary-time
Green’s functions like G��(�, �′) (A.11) generally do not depend on the times � and �′ explicitly
but rather on the time di�erence.3 Hence, it is

G��(�, �′) = G��(� − �′) , (� − �′) ∈ [−�, �] . (A.14)

Furthermore imaginary-time Green’s functions like G��(�, �′) (A.11) characteristically behave
2�-periodic and particularly in the fermionic case �-antiperiodic. From the latter follows the
property

G��(�) = −G��(� + �) , −� < � < 0 . (A.15)

Naturally this indicated periodicity allows for a Fourier expansion of the imaginary-time on
to the Matsubara Green’s functions which leads to the following corresponding Fourier trans-
forms [Col15b]:

G��(i!n) = ∫
�

0
d� ei!n�G��(�) , (A.16)

G��(�) =
∞∑

n=−∞
e−i!n�G��(i!n) . (A.17)

The !n arising thereby are calledMatsubara frequencies that in the fermionic case are de�ned as
odd multiples of �∕� in the fashion of

!n =
(2n + 1) �

�
, n ∈ ℤ . (A.18)

From that, one may derive the relation

!−m−1 = −!m . (A.19)

A.3. Representations of the grand canonical partition function

Given a model in the grand canonical ensemble, its corresponding grand canonical partition
function Z may be formally constructed in two di�erent ways [AS10; NO98; Mah00; Wip13;
FW03; BF04]:

2The in�nitely small time shift 0+ was necessary in order to formally get the imaginary times into the right order
when applied to T�.

3This directly contrasts with Green’s functions in Keldysh’s real-time formalism to describe dynamics of quantum
systems in non-equilibrium. There, the de�ned Keldysh Green’s functions explicitly depend on two real time
arguments. See e.g. [Wag91; Ram07] for details.
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1. Within the context of statistical quantumphysics in a purely imaginary formulation as time
ordered trace over time-integrated Boltzmann-like weights:

Z = Tr [T�e−∫
�
0 d�ℋ

{
a†(�),a(�)

}
] . (A.20)

Here,ℋ is the given model Hamiltonian in the grand canonical ensemble. It depends on
adequate fermionic creation a†(�) and annihilation operators a(�) in the modi�ed Heisen-
berg representation as de�ned by eqs. (A.9) and (A.10) on page 123. Those are ordered
with increasing times from right to left positions by means of the time-order operator for
fermionic single-particle creation and annihilation operators T� as given by eq. (A.12) on
page 123.

2. Within the context of condensedmatter �eld theory as a functional integral over conjugated
fermionic Grassmann �elds  ̄(�) and  (�) that are in direct correspondence to the creation
and annihilation operators a†(�) and a(�) of the �rst notation

Z = ∫ D[ ̄ (�) ,  (�)]e−S
[
 ̄(�), (�)

]
, (A.21)

where particularly the abstract measure

D[ ̄ (�) ,  (�)] = lim
M→∞

M∏

m=1
d[ ̄m(�),  m(�)] (A.22)

and the generally anti-commuting �elds satisfy the anti-periodic boundary condition

 ̄ (0) = − ̄ (�) ,  (0) = − (�) , (A.23)

hence allow for the de�nition of an appropriate Fourier transform into the space of Mat-
subara frequencies already introduced by means of eq. (A.18). Here,ℋ enters Z implicitly
by means of the action S that in more detail reads:

S
[
 ̄ (�) ,  (�)

]
= ∫

�

0
d�

{
 ̄ (�) )� (�) +ℋ

[
 ̄ (�) ,  (�)

]}
, (A.24)

where typically the Grassmann �elds arise in direct correspondence to the imaginary-time
dependent creation and annihilation operators insideℋ(�) in operator notation. Formally,
this Lagrangian approach is a direct result of the theory of fermionic coherent states [NO98;
Zin04; AS10].

Both representations allow for the de�nition of respective thermal averages ⟨…⟩. From eq. (A.21)
follows

⟨∙⟩ ≔ 1
Z ⋅ ∫ D[ ̄ (�) ,  (�)] e−S

[
 ̄(�), (�)

]
∙ , (A.25)

whereas eq. (A.21) invites for

⟨∙̂⟩ ≔ 1
ZTr

[
e−�ℋ{a†(�),a(�)} ⋅ T� ∙̂

]
. (A.26)
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Here, ∙̂ represents an observable in “operator”, ∙marks the same observable but in corresponding
“Grassmann” notation, i.e. representation. Then, it is an important matter of fact, that it is

⟨∙̂⟩ = ⟨∙⟩ , (A.27)

hence, both averages are equal in value.
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