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Abstract

The possibility to enhance desirable functional properties of correlated materials through opti-

cal excitation with intense mid-infrared pulses motivated a series of studies of their nonlinear

terahertz physics. These mid-infrared light pulses are used to resonantly excite infrared-active

vibrations, so that the energy of the light pulses is directly transferred into the lattice vibration.

This allows for the accurate tracing of the energy flow to other nonlinearly coupled excitations of

correlated materials and ultimately better understanding of their competing ground states. The

balance among different low energy states, with different macroscopic properties, can be tipped

by minute changes of the electron-electron interactions which in turn are sensitive to changes of

the atomic arrangement. This was demonstrated in a set of experiments where the strong-field

resonant excitation of the crystal lattice was observed to entail the emergence of hidden states

of matter. These states are inaccessible under equilibrium conditions and show fascinating phe-

nomena such as light-induced superconductivity and ferroelectricity, insulator-metal transitions

and melting of electronic and magnetic order. To reveal these hidden states new nonlinear

optical tools are required. The aim of this work is therefore to extend the well-established equi-

librium technique of second harmonic generation (SHG), which is sensitive to dynamics invisible

to a linear optical probing, to ultra-fast pump-probe experiment. This technique will be used to

investigate how nonlinear lattice dynamics can couple to macroscopic material properties and

how this can be used to manipulate them.

In many correlated materials their macroscopic properties are determined by frozen in lattice

distortions. The direct control of the crystal lattice therefore would allow for the ultra-fast

manipulation of these properties. First experiments achieved this type of control through non-

linear coupling between a resonantly driven infrared active mode and the lattice distortion that

is responsible for the macroscopic material properties. We used this pathway to transiently re-

verse the polarization state of the ferroelectric LiNbO3 and studied the ensuing dynamics with

SHG, which solely is sensitive to the microscopic polarization state. The amplitude and phase

sensitive detection of the lattice dynamics revealed a transient reversal of the polarization state

and allowed us to reconstruct the lattice potential energy.

In high-Tc cuprates, the large amplitude excitation of the apical oxygen lattice vibration has

been shown to induce transient features in the reflectivity suggestive of non-equilibrium su-

III



perconductivity. Yet, notwithstanding intense research efforts a microscopic mechanism for

these observations is still lacking. To address this problem, we measured time- and scattering-

angle-dependent second-harmonic generation in YBa2Cu3O6+δ after exciting the apical oxygen

vibration that transiently induces a superconductor-like terahertz reflectivity. Made possible by

the tr-SHG technique, we observed a four-order-of-magnitude amplification of a 2.5-THz elec-

tronic mode, which displays a unique symmetry, momentum, and temperature dependence. We

developed a theory involving parametric three-wave amplification of Josephson plasmons, which

explains all these observations and provides a mechanism for non-equilibrium superconductivity.
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Zusammenfassung

Die Möglichkeit, durch optische Anregung mit intensiven Laserpulsen im mittleren Infrarot

die funktionellen Eigenschaften korrelierter Materialien zu manipulieren, motivierte die Unter-

suchung ihrer nichtlinearen Terahertz-Physik. In jenen Studien wurde - unter Umgehung elek-

tronischer Anregungen - direkt Energie durch resonante Anregung infrarot-aktiver Schwingun-

gen auf die Gitterschwingungen übertragen. So kann der Energiefluss in andere, nichtlinear

gekoppelte fundamentale Anregungen der korrelierten Materialien genauestens verfolgt werden

um damit letztlich ein tieferes Verständnis der konkurrierenden Grundzustände dieser Materi-

alklasse zu gewinnen. Schon kleinste Änderungen der Elektron-Elektron-Wechselwirkung, die

sehr empfindlich von der Konfiguration des Kristallgitters abhängen, rufen übergänge zwis-

chen den verschiedenen niederenergetischen Zuständen hervor und erzwingen makroskopische

Phasenübergänge. Dies konnte in einer Reihe von Experimenten demonstriert werden, bei de-

nen die direkte, resonante Anregung des Kristallgitters das Material in einen verborgenen Zus-

tand beförderte, der im Gleichgewicht nicht erreichbar ist. Diese verborgenen Zustände zeigen

faszinierende Eigenschaften, wie lichtinduzierte Supraleitung und Ferroelektrizität, Isolator-

Metall-Übergänge und das Schmelzen elektronischer und magnetischer Ordnung. Da viele dieser

verborgenen Zustände jedoch auch konventionellen linearen optischen Sonden unzugänglich sind,

sind neue nichtlineare optische Werkzeuge erforderlich, um sie sichtbar zu machen. Daher ist es

Ziel dieser Arbeit, die bereits etablierte Gleichgewichtstechnik der Generation der zweiten Har-

monischen (SHG) eines Laserpulses auf ultraschnelle Anrege-Abfrage-Experimente zu erweitern.

Mit dieser Technik soll untersucht werden, wie nichtlineare Gitterdynamik an makroskopische

Materialeigenschaften koppelt und wie diese dadurch modifiziert werden können.

Die makroskopischen Eigenschaften vieler korrelierter Materialien sind durch eingefrorene Git-

terverzerrungen bestimmt und die direkte Kontrolle des Kristallgitters erlaubt damit die ultra-

schnelle Manipulation der mit dieser Gitterverzerrung verbundenen Eigenschaften. Frühere Ex-

perimente konnten die Kontrolle des Kristallgitters durch nichtlineare Kopplung bereits demon-

strieren und zeigten, dass Kopplung zwischen der resonant angetriebenen infrarotaktiven Mode

und der Gitterverzerrung, die für die makroskopischen Materialeigenschaften verantwortlich ist,

die kohärente Kontrolle dieser erlaubt. Dies nutzten wir, um den Polarisationszustand des

Ferroelektrikums LiNbO3 transient umzukehren, und untersuchten die sich daraus ergebende
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Dynamik mit SHG, die alleinig empfindlich auf den mikroskopischen Polarisationszustand ist.

Die amplituden- und phasenempfindliche Detektion der Gitterdynamik zeigte eine transiente

Umkehrung des Polarisationszustandes und erlaubte, die potentielle Energie des Gitters zu

rekonstruieren.

Vergleichbare Experimente in Hochtemperatur-Kuprat-Supraleitern wie YBa2Cu3O6+δ zeigten,

dass die Anregung der apikalen Sauerstoffgitterschwingung transiente Merkmale in der Reflek-

tivität bewirken, die auf induzierte Nicht-Gleichgewichts-Supraleitung hindeuten. Trotz inten-

siver Forschungsbemühungen fehlt jedoch bisher ein mikroskopischer Mechanismus, der diese

Beobachtungen erklärt. Wir nutzten dieselbe Anregung, die transient eine supraleiterähnliche

Terahertz-Reflektivität induziert, und messen die zeit- und streuwinkelabhängige Generation der

zweiten Harmonischen in YBa2Cu3O6+δ. Ermöglicht durch die tr-SHG-Methode, beobachten wir

eine Verstärkung einer elektronischen 2.5-THz-Mode, die eine einzigartige Symmetrie-, Impuls-

und Temperaturabhängigkeit aufweist, um vier Größenordnungen. Diese Beobachtungen mo-

tivierten eine Theorie der parametrischen Drei-Wellen-Verstärkung von Josephson-Plasmonen,

die eine Erklärung für die Nicht-Gleichgewichts-Supraleitung liefert.
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Introduction

Strongly Correlated Materials and Hidden Order

The electrical properties of semiconductors and metals, routinely used in technological devices

of our daily lives, are well understood within classical band theory, neglecting the ubiquitous

Coulomb repulsion between electrons [1]. This behavior arises from the fact that the electrons

are delocalized and their kinetic energy is far larger than the electron-electron interaction.

However, in the recent decades a new class of solid state systems dubbed strongly correlated

materials has gained a lot of attention, potentially paving the way for future electric devices.

Fascinating phenomena found in these materials are insulator-metal transitions [2, 3], colossal

magnetoresistance [4, 5] and high temperature superconductivity [6, 7]. Here, the electronic and

magnetic properties are derived from the strong repulsive interaction among electrons which

competes with their kinetic energy, magnetic degrees of freedom and constraints by the lat-

tice structure [8, 9]. These interactions differ from uncorrelated materials in that they exhibit

comparable energy scales and therefore give rise to competing low energy states. The energy

differences between these states are often vanishingly small so that local quantum degrees of

freedom associated with individual lattice site and even large scale fluctuations become relevant

[1, 8, 9]. As a result, these materials react strongly to changes of external parameters which tip

the fine energy balance of the competing states in favor of one competitor. In most cases, these

transitions are accompanied by a breaking of local symmetries and the ordering of quantum

degrees of freedom, which is essential for the emergence of macroscopic functional properties.

Commonly used control knobs are chemical doping, pressure, temperature, magnetic fields or

electrostatic gating in a field-effect geometry, for example turning an insulator into a metal

[1–3, 10]. These types of material control were successfully employed to study the properties

of different classes of strongly correlated materials and address the microscopic physics that

determine their macroscopic properties [11, 12].
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Introduction

Transition metal oxides are a prominent example of strongly correlated materials. In these

systems, oxygen ligands ionize the transition metal atoms, resulting in partially filled d-orbitals

in the outermost shell. Their occupation and overlap with adjacent oxygen p-orbitals determine

the electronic and magnetic properties of the material. For example, the competition between

electron delocalization, determined by the orbital overlap, and the onsite Coulomb repulsion,

cast within the Pauli principle for the orbital occupation, sets the electronic transport and the

magnetic properties [13, 14].

The development of sources of ultrashort laser pulses, with typical pulse durations on the fem-

tosecond scale [15, 16] made it possible to control the functional properties of strongly correlated

materials on extremely short timescales. Time-resolved experiments revealed insulator-to-metal

[8, 17], superconductor-to-normal state [18, 19], non-thermal melting [20–22] as well as magnetic

transitions [23–25]. Importantly, these ultrafast phase transitions are different from any adia-

batic counterpart and explore regions of the potential energy surface hidden to any equilibrium

experiment [23, 26, 27].

These seminal experiments relied on femtosecond light pulses in the visible (∼ eV photon energy),

which excite the electronic system and do not directly couple to the characteristic low-energy

excitations (∼ 100 meV), the fundamental modes of the relevant structural (phonon), electronic

(plasmon) and magnetic (magnon) degrees of freedom. The high-energy optical excitation,

however, inadvertently heats up the electronic system, melting any preexisting broken symmetry

and drives a transitions into a disordered state. Therefore, this type of excitation is inadequate

to induce transitions between two low-energy broken-symmetry states and it remained an open

question which type of excitation allows for the stabilization of a new long-range order without

quenching the pre-existing one, i.e., the possibility to break symmetries by light.

The recent availability of ultra-short laser pulses in the relevant mid-infrared and THz region

(1 meV to 100 meV) [29] allowed researchers to overcome this limitation through direct excita-

tion of the characteristic low-energy degrees of freedom of strongly correlated materials. For

example, resonant excitation of lattice vibrations was used to transiently manipulate the ma-

terials properties, exploiting the strong correlation between the electronic properties and the

lattice structure. In contrast to optical excitation in the visible, the energy of the optical drive

is directly transferred into a collective structural motion. This direct energy pathway, reducing

dissipation through the electronic system, allows for the emergence of new low-energy collec-

2



Quantum Materials and Hidden Order

(b)(a)

(c)

(d)

Figure 1: SH topography of hidden order. (a) Energy sensitive second harmonic
topography can reveal hidden, coexisting electric and magnetic domains in materials like
YMnO3. Dark and bright areas correspond to opposite ferroelectric domains P and −P . (b)
SH light with an energy sensitive to the magneto-electric ordering shows bright and dark
regions which have an opposite sign of the product M × P . (c) Interference of these two
second harmonic contributions from P and M × P unveils the antiferromagnetic domains.
(d) All this together prints a map of the topology of the ferroelectric (red) and AFM (green)
domain walls, which would remain hidden with linear optical topography. Figure taken from
Ref. [28]

tive properties. This approach proved to be successful, showing light-induced superconductivity

[30–32], insulator-metal transitions [33, 34], melting of magnetic order [35, 36] and para-to-

ferroelectric transitions [37, 38]. These experiments hold the promise of a deeper understanding

of the microscopic mechanism relevant in strongly correlated system, by establishing a causal

bridge between the direct resonant excitation of low energy collective modes and the emergence

of unconventional material properties.

Most of these experiments relied on probing a linear optical response and have only just recently

been augmented into the nonlinear regime, by not only ever stronger excitation pulses but also

increasingly powerful and diverse optical probe pulses. These nonlinear optical probing schemes
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reveal complementary information to their linear counterpart and have already been successfully

established for the characterization of equilibrium states of matter [39–41]. Especially, optically

silent collective excitations, such as pair-density waves and Higgs modes [41–44], remain hidden

in linear spectroscopy but become optically active at higher probe-field strength. The generation

of higher harmonics of the fundamental laser field can reveal the fundamental symmetry of an

ordered phase as well as discern different types of broken symmetry. An impressive demonstra-

tion of the capabilities of nonlinear spectroscopy is the phase-sensitive topographic imaging of

ferroic domains [28, 39, 45]. These areas of distinct values of the order parameter would be

indiscernible in linear optical topography (see Fig. 1).

The aim of this thesis is to apply nonlinear optical probes in the time domain, extending the

capabilities of the established linear time-resolved optical spectroscopy. Second harmonic gen-

eration of near-infrared femtosecond pulses in the probed materials was used to combine the

exceptional time resolution of optical pump-probe experiments with the capability of measuring

the dynamics of odd- and silent modes.

Two key experiments were conceived. The first experiment on the prototypical ferroelectric ma-

terial LiNbO3 attempted to reverse the ferroelectric polarization by resonant optical excitation

of crystal lattice vibrations. Here, the ensuing lattice and polarization dynamics were traced by

measuring the generated second harmonic intensity as a function of time after the excitation.

The second experiment revisited earlier experiments on the high-temperature superconductor

YBa2Cu3O6+δ, where to date light-induced superconductivity was probed by time-resolved lin-

ear THz spectroscopy. Here, time-resolved second harmonic generation was used to measure the

coherent dynamics following the same excitation that was observed to induce transient super-

conductivity.

Reversal of the ferroelectric polarization

Their robust polarization states qualified ferroelectrics as promising materials for data storage

applications in the form of FeRAM [46]. However, the switching speed between the two digital

states ’0‘ and ’1‘, which are the two oppositely poled states, are limited by the nucleation

and growth of ferroelectric domains as sketched in Figure 2 (a) [47, 48], posing a fundamental

limitation to the development of future non-volatile storage devices and novel hetero-materials.

4



Reversal of the ferroelectric polarization
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Figure 2: Switching of ferroelectric domains. (a) Ferroelectric switching typically
involves the application of a voltage V between to electrons. Depending on the polarity,
ferroelectric domains of the opposite polarization (blue arrowes) will start growing from one
of the electrodes towards the other. (b) The switching time between two fully polarized
states (red and blue) depends on the magnitude and rise time of the electric fields. The data
shown was taken from Ref. [48]. (c) However, even in the limit of a vanishing rise time of the
voltage pulse the switching time remains finite (τi). This fundamental limit is dependent on
the geometry and size of the ferroelectric domain, as evidence for two different device sizes.
The data shown was taken from Ref. [48].

One potential approach to overcome this fundamental limit is the direct excitation of the lattice

modes responsible for the ferroelectric distortion. This would allow switching speeds, which are

limited only by the intrinsic microscopic time scales of the crystalline lattice, typically in the

picosecond range. Attempts to directly couple to ferroelectric distortion with picosecond THz

pulses, however, were not successful [49–51].

An alternative route to ultrafast lattice control was demonstrated recently and involves the

nonlinear coupling of individual phonon modes [52–54]. These nonlinear phononics were induced

by the resonant excitation of an infrared active lattice mode through intense laser pulses in the

mid-infrared. Theorized more than 40 years ago [55–57] as ionic Raman scattering, this type of

control not only allows one to induce coherent oscillations, but also a directional displacement

of the atoms along the coupled phonon modes. Thus, these nonlinear phononics rectify the

oscillatory atomic motions of the driven mode and transiently change the crystal structure on

average. Recent ultrafast x-ray diffraction experiments [54, 58] measured this rectification of

the atomic motion directly in the time domain.
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This powerful new toolset allows for the fs-control of the lattice structure and was just recently

complemented with tools for their theoretical understanding (nonequilibrium Dynamical Mean

Field Theory, time-dependent Density Matrix Renormalization Group or quantum Boltzmann

equations) [59–61]. Ab-initio calculations of this type predicted that this nonlinear coupling

allows for the control of the polarization state in ferroelectric materials and thus the ultra-fast

reversal of the polarization [62, 63]. Here, a high frequency vibration is coupled to the ferroelec-

tric distortion and exerts a unidirectional force towards the oppositely poled state, potentially

leading to the ultrafast reversal of the ferroelectric polarization. This motivated the first ex-

periment presented in this thesis, in which the atomic motions induced by strong (30 MV/cm)

mid-infrared pulses in LiNbO3 were measured with fs-time resolution second harmonic gener-

ation [64, 65]. In this experiment, we observed the strongly anharmonic motion of the driven

mode itself and the cohering ultra-fast reversal of the ferroelectric polarization.

Light-induced superconductivity

Since their discovery in 1911, superconducting materials [66] have sparked significant research

efforts towards a room-temperature lossless conductor. The discovery of high-temperature su-

perconductivity in strongly correlated CuO2-materials [6, 7] represented a big leap forward.

Yet, unlike superconductors which can be described with the BCS theory [67], a microscopic

understanding of these materials still eludes us and they remain puzzling not only in their super-

conducting state but also in their normal state. Especially, the understanding of the so-called

pseudogap phase, which directly transforms into the superconducting phase at the critical tem-

perature Tc, remains a challenge. This phase was suggested to arise from competing orders in

the form of pair density waves, but could also be precursor state of superconductivity, where

the CuO2-planes are hypothesized to host preformed pairs above the critical temperature Tc

[68–72].

In recent years, time-resolved optical experiments seeked to control superconductivity on ul-

trafast timescales [30–32, 41, 73–75]. An intriguing approach to achieve this type of control is

the resonant optical excitation of vibrations of the apical oxygen ions, which revealed transient

behavior in compounds like YBa2Cu3O6+δ [30, 32] and La1.8−xEu0.2SrxCuO4 [31] compatible

with that of a superconductor above the equilibrium Tc.
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Figure 3: Light-induced superconductivity. (a) Equilibrium Josephson plasma edge in
the THz-reflectivity R of the high-Tc superconductor YBa2Cu3O6.5 below the critical tem-
perature. (b) Light-induced plasma edge of the same compound after excitation of the apical
oxygen vibration above the critical temperature. The plot shows the normalized reflectiv-
ity ∆R/R. (c) Phase-diagram of the YBa2Cu3O6+δ compounds displaying the equilibrium
phases; antiferromagnetic Insulator (AFI, gree), charge-density wave (CDW, blue), super-
conductor (grey) and the pseudogap transition temperature T∗. The red symbols denote the
maximum temperature up to which the light induced superconductivity could be observed.
The data was taken from Ref. [32] and panel (c) is adapted from Ref. [76].

In equilibrium, cuprate superconductors like YBa2Cu3O6+δ, superconductivity manifests as

characteristic reflectivity edges as shown exemplary in Fig. 3 (a) for the case of YBa2Cu3O6.5.

These edges disappear above the critical temperature Tc. In the aforementioned experiments,

optical driving of the apical oxygen vibration induced reappearance of this characteristic edge

far above Tc (see Fig. 3 (b)). This light-induced superconductivity survived up to the tran-

sition temperature T∗ of the enigmatic pseudogap-phase as is shown in the phase diagram of

YBa2Cu3O6+δ in Fig. 3 (c).

The experimental observation of light induced coherence in underdoped YBa2Cu3O6+δ com-

pounds above the transition temperature Tc suggests that a redistribution of interlayer Joseph-

son coupling [30] may be the origin of the superconductor-like optical features in the transient

THz reflectivity. In contrast, the single layer Cuprate La1.8−xEu0.2SrxCuO4, experiences a more

direct competition between the superconducting phase and a stripe ordered phase that sup-

presses equilibrium superconductivity. It has been suggested that the direct lattice excitation

melts and removes the striped order restoring the superconducting state [31]. More recently

these experiments have been corroborated by strong-field THz third harmonic generation, which

7
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enabled the detection of optically silent pair density waves, Higgs oscillations and a precursor

superconducting state in YBa2Cu3O6+δ[32, 41, 42].

In this thesis work, the above experiments on underdoped YBa2Cu3O6+δ were revisited by time-

resolved second harmonic generation experiments, with the goal of a deeper understanding of

the origin of this light induced coherence. In this experiment we observed a 2.5-THz electronic

mode, which exhibits a unique symmetry, momentum, and temperature dependence.

Thesis Structure

This thesis is structured as follows. An introduction to linear and nonlinear optics and their

application to time-resolved optical experiments is presented in Chapter 1. The experiments on

LiNbO3, in which the ultra-fast reversal of the ferroelectric polarization and the reconstruction

of the interatomic potential lattice response are demonstrated, are covered in Chapter 2. Chap-

ter 3 introduces the physics of high temperature superconductors of the cuprate family. The

measurements of the nonlinear phonon-Josephson-plasmon coupling are covered in Chapter 4,

followed by a conclusion of this thesis.
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Chapter 1

Linear and Nonlinear Optical Properties of Solids

The propagation of electromagnetic waves in a medium is described by the inhomogeneous wave

equation, (
c2∇2 − ∂2

∂t2

)
E = 1

ε0

∂2P
∂t2

. (1.1)

Here, c is the vacuum speed of light, ε0 the permittivity of vacuum and E is the electric field

component of the electromagnetic wave [77]. As opposed to propagation in vacuum, the interac-

tion of the electric field E with the medium creates a polarization P which is due to the presence

of the electric field E itself along with the polar excitations Qi of the material. The motion of

these polar excitations creates a dipole which can conversely directly couple to the electric field

of light and influence its propagation. Therefore, the total polarization inside the material can

be expanded in powers of these fields

P (t) = ε0

[
χ(1)E + Z∗QIR + χ(2)E2 + ∂χ(1)

∂QR
QRE + χ(3)E3 + ∂χ(2)

∂QIR
QIRE2 + . . .

]
(1.2)

The susceptibilities χ(i) are generally due to the electronic system under the assumption that

the light frequency is significantly below the electronic transitions. These terms are responsible

for the nonlinear optical effects [78]. The additional terms describe the interaction of the light

field with the polar excitations of the solid [79–82]. Z∗ is the effective charge of the polar vibra-

tion QIR, ∂χ(1)/∂QR is the change of the first order susceptibility induces by vibrations of Qj,

responsible for Raman scattering and ∂χ(2)/∂QIR is the modulation of the hyper-polarizability

χ(2) by an infrared-active vibration. The following paragraphs will discuss the analytical so-

lutions of the linear and nonlinear optical response of a solid. This lays the foundation for
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implementing an ultra-fast nonlinear probe to reveal coherent dynamics of polar excitations,

such as infrared-active phonons and plasmons. The discussion will focus on the topic of second

harmonic generation and presents the equations which are necessary for analyzing time-resolved

optical experiments.

1.1 Linear Optical Properties

1.1.1 Dielectric Function

The first order optical response of a solid concerns terms in the polarization P which are linear

with the electric field. In the following text, the basics of a linear light-matter interaction will

be summarized for the case of one spatial dimension.

The linear propagation of light at frequencies below the electronic transitions but still above

those of the low energy polar excitations is determined by the linear susceptibility χ(1) = 1+ε∞

[77, 78, 83]. Here ε∞ is the material-specific dielectric response of the high-energy electronic

transitions and 1 is the dielectric response of the vacuum. When the frequency of the light

approaches the energy of the polar excitations QIR, additional features appear in the reflectivity

spectrum. Under this resonant condition, the electric field E directly couples to the dipole

moment of the excitation and its dynamic response is described by a driven damped harmonic

oscillator,

Q̈IR + 2γIRQ̇IR + ω2
IRQIR = Z∗IR

µ
E (1.3)

Here Z∗IR is the effective charge and µ the effective mass of the atoms involved in the polar

vibration [78, 83]. The term γIR accounts for dissipative energy flow into other degrees of

freedom. This results from anharmonic coupling between individual elementary excitations, as

discussed in Chapter 2. ωIR = 2πνIR is the angular frequency of the excitation, the energy

of which is given EIR = hνIR, where h is Planck's constant. Usually, for excitation such as

lattice vibrations and plasmons, EIR is on the order of 1 meV to 100 meV which corresponds to

the mid-infrared spectral region [9, 84]. Mid-infrared wavelengths are four orders of magnitude

larger than the lattice constant a0, and the corresponding wave vectors given by |k| = 2π/λ are

thus negligible compared to the wave vectors of lattice vibrations (0 ≤ |k| ≤ π/a0). As a result,

momentum conservation allows only polar optical modes at |k| ≈ 0 to be directly excited by

10



Linear Optical Properties

light.

The solution of the equation of motion (eq. 1.3), when subject to a monochromatic drive field

E(t) = E0e
iωt, reveals the frequency dependent optical response. As an Ansatz, the solution

takes the form QIR(t) = QIR,0e
iωt [77, 78] and when substituted into eq. 1.3 it yields the

steady-state amplitude of the polar vibration as a function of excitation frequency ω,

QIR (ω) = Z∗IR/µ

ω2
IR − ω2 − iγIRω

E0. (1.4)

The polar vibrations driven by the electric field E then creates a polarization P = NZ∗QIR,

where N is the number of oscillators per unit volume. Inserting eq. 1.4 into this expression

yields the frequency dependent complex polarization of the material:

PIR (ω) = NZ∗IRQIR = NZ∗2IR
µ

1
ω2
IR − ω2 − iγIRω

E, (1.5)

which can be incorporated into the wave equation eq. 1.1. Here, NZ∗2IR/µ is commonly referred

to as the oscillator strength. The resonant denominator in the expression for PIR (ω) indicates

that when the oscillator is driven at ΩTO, the so-called transverse optical frequency, it will reach

the highest amplitude for a given electric field strength E. The auxiliary electric displacement

field D = ε0E + P is given by,

D = ε0E + P = ε0εr(ω)E (1.6)

where εr is the frequency-dependent relative permittivity. At frequencies near ωIR the complex

refractive index

ñ (ω) =
√
εr(ω) = n (ω) + iκ (ω) . (1.7)

disperses significantly (see Fig. 1.1). The real part of the refractive index determines the phase

velocity vph (ω) = c/n(ω) of a propagating light field, where c is the speed of light in vacuum,

while the imaginary part determines the attenuation of the light field inside the material. These

resulting optical features can be understood by considering the frequency dependence of the

reflectivity (see Fig. 1.1 (c)), which is given by

R =
∣∣∣∣1− ñ (ω)
1 + ñ (ω)

∣∣∣∣2 . (1.8)
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Figure 1.1: Optical properties of a charged oscillator. (a) Dielectric function of a
charged oscillator. At the transverse optical frequency ΩTO the real (blue) and imaginary
(red) part of the dielectric function of a charged oscillator strongly disperse and peak, respec-
tively. The real part crosses zero at the longitudinal frequency ΩLO. (b) Refractive index of
a charged oscillator. The real (blue) an imaginary (red) part of the refractive index strongly
disperse close to ΩTO. Above ΩTO and below ΩLO the real part of the refractive index is
almost zero, whereas the imaginary part takes a large positive value, signifying strong attenu-
ation. (c) Reflectivity profile of a charged oscillator. The reflectivity profile (black) of a single
charged oscillator shows a region of almost perfect reflectivity (R ≈ 1), the Reststrahlenband
[85], between ΩTO and ΩLO.
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Above the resonance frequency ΩTO the real part of the complex permittivity εr(ω) becomes

negative (see Fig. 1.1 (b)), which leads to a π phase shift between the driving field E and the

polarization induced by the oscillator. The resulting destructive interference screens the electric

field and prevents further propagation inside the solid. This manifests itself in the reflectivity

spectrum as a band of high reflectance (see Fig. 1.1 (c)) together with an almost vanishing real

part of the refractive index. The real part of εr(ω) crosses zero at the so called longitudinal

frequency εr (ΩLO) = 0, above which light can again propagate in the solid, corresponding to

a reduction in the reflectivity. The precise point of the zero crossing is determined by the

oscillator strength Ω2
LO − Ω2

TO = NZ∗2IR/µ. Additionally, the wavelength of light inside the

medium diverges at ΩLO

λmedium = λvac/n(ω). (1.9)

This results in a spatial profile of the excitation which corresponds to a longitudinal wave at

zero momentum (see Fig. 1.2), hence longitudinal frequency.

The imaginary part of the permittivity is associated with the attenuation of the propagating

light field. If ε2 = Im (εr) is non-zero, the light field will transfer energy into the solid by

exciting persistent oscillations of the polar-mode. In the absence of damping, the excitation will

continue to oscillate even after the electric field is gone. If ε2 (ω) = 0, the light will displace the

polar oscillation only as long as the electric field is present and no energy loss takes place. The

imaginary part ε2 (ω) takes the shape of a Lorentzian with peak frequency of ΩTO and a width

determined by the phenomenological damping constant γIR from eq. 1.3 (see Fig. 1.1 (a)).

Reflectivity spectra, such as the one shown in Fig. 1.1 (c), are usually measured with a broad-

band light source in combination with a Fourier-transfrom infrared spectrometer (FT-IR)[86].

The resulting curve can be fit using the model presented above, and quantitative information

such as the complex frequency-dependent refractive index ñ (ω) =
√
εr(ω) can be extracted.

The following paragraphs give an introductory description of two prominent infrared-active ex-

citations in solids will be introduced, namely, oscillations of the crystal lattice, which are know

as phonons, and oscillations of the of the free electron density, known as plasmons.
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Figure 1.2: Charged transverse and longitudinal oscillations. (a) Schematic of a
transverse optical vibration. An optical phonon is the relative motion of two charged atoms
(blue and red). When this vibration carries an electric dipole moment P (black arrow) it is
know to be ’infrared-active‘. For infrared active phonons, the wavelength λ is given by the
wavelength of the light pulse which excites the oscillation. (b) Schematic of a longitudinal
optical vibration. A longitudinal oscillation is characterized by a propagation direction par-
allel to the polarization vector P . The motion can be understood as the relative motion of
charged plates like a capacitor.

1.1.2 Phonons

Vibrations of the crystal lattice result in low energy excitations that can have energies up to 240

meV (60 THz) [9, 84]. The elementary quanta of these excitations are called phonons, and the

classical normal modes of the lattice vibrations are often also called by the same name. Optically

active phonons involve out-of-phase motion of the ions of the crystal. This is depicted in Fig.

1.2 for the relative motion of positively and negatively charged ions. If this vibration carries an

electric dipole it can directly couple to the electric field of light, as expressed in eq. 1.3. Hence,

these infrared-active lattice vibrations are visible in linear optical infrared spectroscopy, like

FT-IR spectroscopy. Each ion carries a certain mass and charge, which determine the resonance

frequency ΩTO and the effective charge Z∗ associated with the vibration. If the atomic vibration

does not carry a dipole moment it is considered to be Raman active [79]. These modes do not

directly couple to light and are only visible through nonlinear light scattering (see below).

The lattice vibrations of a solid can be divided into a set of eigenmodes which are precisely

determined by the point group symmetry of the crystal. Each eigenmode can be categorized as

one of the following irreducible representations [86–88],

A,B: 1D representation, symmetric and anti-symmetric under rotation, respectively
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E: 2D representation

T: 3D representation

These irreducible representations can each be divided into sub-groups using a set of indices, of

which the following are the most important

1 and 2: symmetric or anti-symmetric to mirroring along the principle axis of the pointgroup

g and u: symmetric or anti-symmetric to inversion

In a centrosymmetric point group, the distinction between g (gerade, even) and u (ungerade,

odd) modes, under the operation of inversion, generally distinguishes between infrared active

(ungerade) and Raman active (gerade) modes. A total list of the symmetry operations of each

irreducible representation can be found in the character tables of the corresponding point group

[89].

1.1.3 Plasmons

The collective excitation of the free electrons in a solid by an electric field results in plasma oscil-

lations, which are modulations of the free electron density [90]. In contrast to lattice vibrations,

plasma oscillations are longitudinal waves, i.e., their propagation direction is parallel to the po-

larization (see Fig. 1.2 (b)) and they resonate at the plasma frequency Ωp. The corresponding

quantum is called a plasmon. Similar to lattice vibrations, the dynamics of the plasma can be

described by eq.1.3 by neglecting the term ω2
IRQIR due to the lack of a restoring force for the

free electrons.

Q̈p + 2γpQ̇p = e

me
E (1.10)

Consequently, the amplitude response as a function of excitation frequency becomes

Qp (ω) = −e/me

ω2 + iγIRω
E0 (1.11)

resulting in the same optical properties as discussed above, but with ΩTO = 0 and ΩLO = Ωp.

The oscillatory motion of the plasma does not directly become apparent from eq.1.10, but it can

be rewritten to

Q̈p + 2γpQ̇p + ω2
pQp = 0, (1.12)
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by considering Fig. 1.2 (b) and the relation between the electric field and the accumulated

charges E = −eρ/ε0Qp and ω2
p = e2ρ/meε0. Here,ρ is the electron density. Therefore, an

electric field induces a self-sustained longitudinal plasma oscillation with resonance frequency

Ωp. At frequencies away from the plasma resonance at Ωp, the plasma oscillations will mostly

have transverse character because the electrons will follow the electric field of the light, as

explained in the following paragraph.

1.1.4 Polaritons

The interaction of the polar excitations, described in the preceding paragraphs, with light gives

rise to hybrid states called polaritons. A descriptive way of thinking about this hybridization

is to imagine a propagating electric field in a medium. At every point during its propagation

this field will couple to the polar resonance and excite oscillations. In turn, this polar oscillation

will re-emit light, which also propagates into the material, re-exciting polar oscillations. Such

strong coupling appears when the dispersion relations of the light and the excitation intersect,

i.e., their energies and momenta match (see Fig. 1.3, dashed lines). The corresponding polariton

dispersion can then be inferred from the dispersion of light

ω2 = c2k2/εr(ω) (1.13)

together with the dielectric function εr (ω) derived above [91, 92]. For a simple harmonic oscil-

lator model discussed above, it becomes

ω2 (k) = Ω2
TOε0 + c2k

2

2ε∞
± 1
ε∞

√√√√(Ω2
TOε0 + c2k2

2

)2

− c2k2Ω2
TOε∞, (1.14)

with ε0 = ε∞ + NZ∗2TO/ε0µΩ2
TO, the low frequency (ω → 0) limit of the dielectric function.

The real part of this expression is shown in Figure 1.3 (solid line). Below the TO frequency,

the polariton propagates with a velocity defined by the slope of the dispersion curve ∂ω/∂k,

but it becomes a stationary solution with a flat dispersion close to ΩTO. At the longitudinal

frequency ΩLO, the momentum of the polariton wave is zero and the wave resembles a longi-

tudinal excitation. No solution exists in the Reststrahlenband between ΩTO and ΩLO. Above

the LO frequency the polariton dispersion rapidly approaches the dispersion of light given by

ω = ck/
√
ε∞. Here, the solutions are again ‘photon-like’ and purely transverse.
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Figure 1.3: Dispersion of a phonon-polariton. The interaction of light with a charged
oscillator in a material gives rise to hybrid states, so-called polaritons. The dispersion is a
result of an avoided crossing between the phonon (dashed grey line) and light (dashed blue
and red lines) dispersion. Below ΩTO the polariton is mostly photon-like and the dispersion
is equal to that of light (dashed red line). Close to ΩTO the polariton becomes phonon-like
and the dispersion asymptotically approaches ΩTO, leading to a vanishing group velocity
and a stationary lattice vibration. At ΩLO the phonon polariton has zero momentum and
therefore infinite wavelength giving rise to a longitudinal lattice vibration. Above ΩLO the
dispersion again approaches the dispersion of light (dashed blue line) and the polariton is
again photon-like.

This discussion can be extended to plasmons by considering the case discussed above the the

limit of ΩTO → 0 and ΩLO = Ωp. Away from the plasma-resonance plasmon-polaritons rapidely

become ‘photon-like’ and the plasmon losses its longitudinal character.
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1.2 Nonlinear Optics

The linear interaction of light with matter as summarized in the preceding paragraphs is only

one part of the optical toolbox. Higher order terms of the nonlinear polarization in eq. 1.2,

which include the product of two or more electric fields, can reveal fundamental excitations and

dynamics in solids invisible to linear optics. The most relevant nonlinear interactions for the

scope of this thesis will be defined in the following paragraphs.

1.2.1 Raman-Scattering

The first non-linear term involving more than one field in the polarization P is the modulation

of the χ(1) by Raman active excitations QR. As noted, these modes do not carry an electric

dipole and thus cannot couple to light directly, making them they are invisible to linear infrared

spectroscopy [79]. However, the motion of these Raman modes modulates the electronic polar-

izability α of the material and therefore the electronic susceptibility (χ(1)
e = ε∞ − 1). To first

order the change of the electronic susceptibility can be approximated as

χ(1)
e (t) = χ

(1)
e,0 +

(
∂χ

(1)
e

∂QR

)
QR (t) + . . . . (1.15)

which yields the contribution

PR (t) =
(
∂χ

(1)
e

∂QR

)
QR (t)E(t) (1.16)

to the polarization inside the material [79, 93]. If the motion of the Raman mode QR (t) is

considered to be harmonic with frequency ΩR (see eq. 1.3), then the term PR (t) acts as a source

of radiation at frequencies νin ± ΩR,

QR (t)E(t) ∝ sin(2πΩRt) sin(2πνint) = 1
2(cos(2π(ΩR − νin)t)− cos(2π(ΩR + νin)t)) (1.17)

Hence, a Raman mode leads to an inelastic frequency shift of the incoming light field. These

processes are sketched in Fig. 1.4 (a) in an energy diagram as Stokes-scattering (νin − ΩR)

and Anti-Stokes scattering (νin + ΩR). In continuous-wave Raman-scattering experiments, a

monochromatic laser is used to obtain a spectrum sketched in Fig. 1.4 (b), which identifies
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Figure 1.4: Raman scattering. (a) An incident light field of frequency νin (light red)
excites the system from the ground state into a virtual electronic state. Upon relaxation, the
system emits a photon at frequency νin−Ω (dark red) and remains in a vibrationally excited
state. This scattering process is called Stokes-Raman scattering. The inverse-process in
which an incident photon absorbs a phonon and the system emits a photon at νin +Ω (green)
is called Anti-Stokes-Raman scattering. Additionally, the incident light will also cause an
elastic scattering process, which does not involve scattering from vibrational modes. This is
know as Rayleigh scattering. (b) An example of a light scattering spectrum resulting from
Stokes, Anti-Stokes and Rayleigh scattering.

Raman active modes as frequency shifted peaks. The polarization dependent detection of the

inelastically scattered light allows one to assign each Raman mode to a certain symmetry deter-

mined by the point group of the crystal [94].

1.2.2 Second Order Optical Susceptibility

The second expansion term of the electronic susceptibility, χ(2), involves the interaction of

two electric fields Eω1 and Eω2 . This type of nonlinear interaction (and any other quadratic

expansion term) is only allowed in materials which have broken inversion symmetry [78]. This

becomes obvious when considering the potential energy of the electrons in the solid. If a material
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possesses inversion symmetry the motion of the electrons for positive and negative deflection x

must be symmetric U (x) = U(−x). This excludes odd order terms from the potential energy

surface and consequently leads to only odd harmonics in the spectrum of the motion (see chapter

2 for more details). If two light fields Eω1 and Eω2 interact in a solid material which exhibits a

second order nonlinearity χ(2) they will generate a light field Eω3 at a third, different, frequency

ω3. For two monochromatic plane waves

Eωi (x, t) = Eωi,0 e
i(kix−ωit) + c.c. (1.18)

and if dissipation can be neglected, the second order polarization P (2) becomes

P (2)
ω3 (x, t) = χ(2)(ω3, ω1, ω2)Eω1(x, t)Eω2(x, t). (1.19)

which represents a source for radiation at frequencies ω3 = ω1±ω2 (see Fig. 1.5). This becomes

apparent from inserting the expression for the fields Eωi into P (2)

P (2)
ω3 (x, t) = χ(2)(ω3, ω1, ω2)

(
Eω1,0e

i(k1x−ω1t) + c.c.
) (
Eω2,0e

i(k2x−ω2t) + c.c.
)

(1.20)

P (2)
ω3 (x, t) = χ(2)(ω3, ω1, ω2)

(
Eω1,0Eω2,0e

i((k1+k2)x−(ω1+ω2)t) + c.c.
)

+
(
Eω1,0E

∗
ω2,0e

i((k1−k2)x−(ω1−ω2)t) + c.c.
) (1.21)

P (2)
ω3 (x, t) = P

(2)
ω1+ω2 (x, t) + P

(2)
ω1−ω2 (x, t) (1.22)

This nonlinear polarization leads to the emission of an electric field of the form,

Eω3 (x, t) = Eω3,0 e
i(k3x−ω3t) + c.c.. (1.23)

Also, the momentum ki of each wave in the solid is determined by the corresponding refractive

index n (ωi),

ki = n (ωi)ωi
c

(1.24)

and thus, generally different for each light field. If eq.1.23 and the sum frequency component
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Figure 1.5: Second order nonlinear processes. (a) Two laser fields of frequency ν1 and
ν2 (orange and red) interact in a material with a non-zero second order optical susceptibility
χ(2) and generate a new light field at frequency ν3 = ν1 + ν2 (blue). (b) Schematic spectrum
of light produced by a second order non-linearity. The interaction leads to the processes of
difference (grey peak) and sum (blue peak) frequency generation. When the two fields are
degenerate, second harmonic generation (violet and green peaks) is produced.

of eq.1.22 are now inserted into the wave equation eq.1.1, they describe the spatial evolution of

the field Eω3 (x, t). After some simplification [78] the spatial evolution of Eω3 is described by,

(
d2Eω3

dx2 + 2ik3
dEω3

dx

)
= χ(2)ω3

2

c2 Eω1Eω2e
i(k1+k2−k3)x. (1.25)

Here, the first term on the left-hand side (d2Eω3/dx
2) is significantly smaller than the second (∼

dEω3/dx) and can be neglected, which is known as the slowly varying amplitude approximation

[78]. The spatial evolution is then finally given by,

dEω3

dx
= i

χ(2)ω3
2

2c2k3
Eω1Eω2e

i∆kx. (1.26)

Here ∆kk1 + k2 − k3 is often referred to as momentum mismatch [78, 95] between the two

source fields Eω1 and Eω2 and the nonlinearly generated field Eω3 . It relates the phase of

the nonlinear polarization and the generated field Eω3 and within the distance lcoh = 1/∆k

the radiation emitted by the nonlinear dipoles add up constructively in the forward direction.

The conversion efficiency will drastically decrease for propagation distances z > lcoh, due to

destructive interference of the nonlinear dipoles (see Fig. 1.6) [78, 95].

In the case of phase matching, ∆k = 0, the coherence lengths becomes infinite and maximum

conversion efficiency is obtained. This is routinely possible in birefringent crystals where the

21



Chapter 1 - Linear and Nonlinear Optical Properties of Solids

refractive index depends on the polarization of the incident light field (see Fig. 1.6 (d)). Careful

adjustment of the crystal angles and light polarization can allow for ∆k = 0 (see Appendix

A.6). Phase matching is of high importance for efficient light conversion in processes such as

optical parametric amplification, difference frequency generation (see Appendix A.3) and second

harmonic generation, which will be discussed next.

1.2.3 Second Harmonic Generation

Second harmonic generation is a special case of the nonlinear interaction of two fields discussed

above. Here, a single light field Eω1 interacts with itself, which creates a nonlinear polarization

P
(2)
2ω1 (t) = χ(2) (2ω1, ω1, ω1)E2

1 (ω1) (1.27)

at twice the frequency of the incident field. This interaction is equivalently explained by eq.1.26

but instead of three fields, the derivation is limited to only two fields Eω and E2ω. The spatial

evolution of the fundamental and second harmonic field amplitudes is then described by:

dEω
dx

= i
χ(2)ω2

2c2kω
E2ωE

∗
ωe
−i∆kx (1.28)

dE2ω
dx

= i
χ(2)2ω2

2c2k2ω
E2
ωe

i∆kx. (1.29)

where ∆k = 2kω − k2ω. Neglecting depletion of the pump field Eω and dissipation, the solution

of E2ω is given by the integral of eq. 1.29 from 0 to depth L,

E2ω = iχ(2)(2ω)2/(2c2k2ω)E2
ω

∫ L

0
ei∆kxdx. (1.30)

The intensity of the second harmonic field at the end of the nonlinear crystal is then given by

the time-averaged Poynting vector I = 2nε0c |Eω|2 [77],

I2ω = χ(2)2 (2ω)2

n2
ωn2ωc2 L2I2

ω sinc2(∆kL/2), (1.31)

which is an oscillatory function with period 1/∆k = lcoh = λω/(2(n2ω−nω)). This is again due

to the phase mismatch of the waves at ω and 2ω. Importantly, at each point L in the crystal two
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Figure 1.6: Second harmonic generation and phase-matching. (a) Sketch of the
second harmonic generation process. A field at frequency ω (red) generates a polarization at
2ω (black). The phase of this polarization propagates at the phase velocity of the fundamental
field, v(ω) = c/nω. The polarization radiates and generates a field at the second harmonic
frequency (blue ), which propagates with its own phase velocity, v(2ω) = c/n2ω. After one
coherence length lcoh = λω/2(n2ω−nω), the second harmonic polarization and the generated
SH field are exactly π out-of-phase and interfere destructively. (b) Visualization of the
concept explained in (a) using data measured in Ref. [96]. The propagation distance inside
the crystal was controlled by rotating the crystal, which leads to an oscillating SH intensity.
(c) Sketch of angle-phasematching in a uniaxial birefringent crystal. Phase-matching between
the second order polarization and the SH field can be achieved by using a birefringent crystal.
The second harmonic field is polarized along the plane containing the optic axis. Phase-
matching can be achieved by angle tuning the relative orientation of E2ω to the optic axis.
(d) Typical ordinary no and extraordinary ne refractive indices for a birefringent material.
Usually, the refractive index of the fundamental beam no,ω can be matched to the angle
dependent extraordinary refractive index of the second harmonic light no,ω(θ) (effect of angle
tuning depicted in shaded blue) (see Appendix A.6).
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second harmonic waves exist: One that is generated by the fundamental wave at this position

and will travel with speed c/nω, and one that is the superposition of SH fields generated at

positions x < L traveling with speed c/n2ω. These two waves are called the inhomogeneous

and homogenous solutions, respectively [39, 97–101]. After one coherence length of propagation,

these two waves are 180° out of phase leading to destructive interference and conversion of E(2ω)

back to E(ω). This results in the oscillatory behavior of I2ω(z) sketched in Fig. 1.6 (a) and (b).

In reflection geometry, when the generated SH field is propagating backwards, the SH field

primarily originates from a thin layer within a coherence length behind the sample surface. This

coherence length is significantly shorter compared to transmission geometry due to the backward

momentum transfer ∆k = 2kω + k2ω. This makes reflection-geometry SHG sensitive to the first

few hundred nanometers behind the surface [39, 102–104].

1.2.4 Symmetry of Second Harmonic Generation

So far, the second order nonlinearity χ(2) was assumed to be scalar, but in reality it is a third-

rank tensor χ(2)
ijk , which links all components of the 3-dimensional field vectors.

Pi,ω3 = 2ε0
∑
jk

χ
(2)
ijk(ω3, ω1, ω2)Ej,ω1Ek,ω2 (1.32)

Hence, the nonlinear response of a material depends on the polarization of the interacting

light fields with respect to the crystal axis. The structure of the tensor χ(2)
ijk is determined by

the point group of the crystal and would allow 324 independent constants. However, symmetry

considerations, such as reality and permutation symmetry of the fields [105, 106] and specifically

the Kleinmann symmetry consideration [107], reduce the number of independent coefficients to

18. These independent coefficients are the entries of a 3×6 matrix where permutation symmetry

simplifies the notation to

P =


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

E, (1.33)

where the coefficient di,j = 1/2 χ
(2)
ij is used as an abbreviation. The tensor E contains the
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relevant permutations of the three electric field components Ei and takes the form

E =



E2
1

E2
2

E2
3

2E2E3

2E1E3

2E1E2


. (1.34)

The number of these coefficients can be further reduced by considering the point group symmetry

of the given material. Neumann's principle dictates that the tensors which describe macroscopic

properties must have a symmetry that is identical to that of the point group of the material

[107]. Thus, any such tensor must be left invariant under the symmetry operations of the

material's point group. Conversely, this implies that one can determine the point group of an

unknown material from the knowledge of the tensor's symmetry. The tensor elements in eq.1.33

are experimentally accessible by SHG polarimetry measurements. Here, the polarization of the

incident light field is rotated with respect to the crystal axis (see Fig. 1.7) while an analyzer in

front of the detector ensures detection of the individual SH field components Ei,2ω. By choosing

appropriate parameters for the incident polarization, analyzer, and sample orientation, one can

selectively probe the different elements of the nonlinear susceptibility tensor χ(2)
ijk . Two typical

polarimetry measurements, in which the polarization angle of the incident light is varied between

0 and 360°, is shown in Fig. 1.7.

In the past decades second harmonic generation has become a powerful tool to reveal hidden

features in complex materials that are invisible to linear optical techniques. Examples include

ferroelectric [39], magnetic [108–110], and multiferroic [28, 45, 111, 112] ordering in certain

quantum materials. In these experiments, the SHG process reflects microscopic properties of

the material on the unit cell length scale, and then χ(2)
ijk is proportional to the respective order

parameter, like the static polarization in a ferroelectric [39, 113]. In addition, macroscopic

electrical currents break inversion symmetry and act as a source for SHG [114].
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Figure 1.7: Second harmonic polarimetry. (a) In a SH polarimetry measurement the
polarization angle φ of the fundamental field Eω is controlled by a waveplate before it interacts
with the sample. The generated SH light is then analyzed and divided into the two orthogonal
polarization directions (S and P) before being detected. (a) This allows for the detection
two orthogonal components of the second order nonlinear polarization, Pz and Px,y for the
geometry in panel (a). The SH intensity can then be plotted against the polarization angle
and fitted by eq. 1.31. Typically, these plots use polar coordinates and show between 2 and
8 lobes depending on the point-group symmetry of the nonlinear crystal. The polar graphs
show simulations of a SH polarimetry signal for a Pmm2 pointgroup.

1.2.5 Hyper-Raman Scattering

Vibrations of the crystal lattice can modulate the second order nonlinear tensor χ(2)
ijk leading to a

process called Hyper-Raman scattering [115]. In this case, the symmetry selection rules are com-

plementary to those of conventional Raman scattering and rather comparable to those of infrared

spectroscopy. Generally, all infrared-active (odd) modes of a solid are Hyper-Raman-active and

in extension also optically silent modes, which are neither observable in Raman-scattering or

infrared spectroscopy, become Hyper-Raman-active [116–119]. Modes with amplitude QIR (t)

modulate χ(2)
ijk according to,

χ
(2)
ijk (t) = χ

(2)
ijk,0 +

∂χ(2)
ijk

∂QIR

QIR (t) + . . . . (1.35)
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Figure 1.8: Hyper-Raman scattering. (a) Energy diagram of Stokes-Hyper-Raman
scattering. An incoming light-field with frequency νin (red) promotes the system from the
ground state into a virtual electronic excited state. Contrary to Raman scattering, Hyper-
Raman scattering involves the absorption of two photons (two vertical red arrows). Upon
relaxation to a vibrationally excited state, the system emits a photon with frequency 2νin−Ω
(vertical blue arrow). The inverse process of transferring energy from an existing phonon to
the light field involves the emission of a photon with frequency 2νin + Ω. (b) The respective
processes in (a) lead to the characteristic Hyper-Stokes and Hyper-Anti-Stokes peaks in the
spectral region near the second harmonic frequency 2νin (blue peaks). If the material does
not have a static second order nonlinearity χ(2), one does not observe emission at 2νin.

Crucially, even in centrosymmetric materials with χ(2)
ijk = 0, the Hyper-Raman tensor elements

∂χ
(2)
ijk

∂QIR
do not necessarily vanish, because the odd parity of χ(2)

ijk is compensated for by the odd

parity of QIR [116]. In other words, even when dipole SHG is not allowed by the symmetry of

the crystal, Hyper-Raman scattering is still possible. In a centrosymmetric material the second

order nonlinear polarization is therefore,

PHR (t) =

∂χ(2)
ijk

∂QIR

QIR (t)E2(t) (1.36)

and, following the arguments presented above, a source of radiation at frequencies 2ν ± Ω,

close to the second harmonic frequency. Fig. 1.8 shows a schematic HRS spectrum, where the

sidebands due to the light-lattice interaction appear close to the second harmonic frequency

2ν [116, 120]. Different polarization directions of incident and detected light are individually
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sensitive to phonon modes of different symmetries and dipole orientations. Thus, the polarization

sensitive detection of the light generated by a hyper Raman process reveals information about

the point group symmetry of a certain dipolar vibration.

1.2.6 Third Order Optical Susceptibility

If the amplitude E of the electric fields involved in the interaction are large enough, nonlinear

processes due to the third-order nonlinear susceptibility χ
(3)
ijkl also become important. In this

case, three electric fields Eωi create a polarization,

P
(3)
i,ω4 = ε0/4

∑
jkl
χ

(3)
ijkl(ω4, ω1, ω2, ω3)Ej,ω1Ek,ω2El,ω3 . (1.37)

Similar to second harmonic generation caused by χ(2), the third-order nonlinear susceptibility

χ(3) can lead to third harmonic generation. The corresponding nonlinear polarization is given

by,

P
(3)
i,3ω = ε0χ

(3)
ijkl(3ω, ω, ω, ω)Ej,ωEk,ωEl,ω. (1.38)

The equations describing this process are obtained in a manner similar to those derived for SHG

in section 1.2.3.

Most importantly, the third order nonlinearity can lead to a process called electric-field induced

second harmonic generation. In this case two light fields at frequency Ω and ω interact and

generate a polarization close to the second harmonic frequency 2ω,

P
(3)
i,2ω+Ω = ε0χ

(3)
ijkl(2ω + Ω, ω, ω,Ω)Ej,ωEk,ωEl,Ω. (1.39)

Like Hyper-Raman scattering this leads to two peaks in the optical spectrum at 2ω ± Ω, and

only for a static electric field, Ω = 0, true second harmonic light at frequency 2ω is emitted from

the sample.

Further, in contrast to eq. 1.22 the third-order polarization P (3) also allows components at

the initial frequencies of the incident fields. For example, in the case of the incident field with

frequency ω3:

P
(3)
i,ω3 = ε0χ

(3)
ijkl(ω3, ω1, ω1, ω3)E∗j,ω1Ek,ω1El,ω3 . (1.40)

Together with the linear polarization χ(1)
ij Ej,ω3 , the total polarization Pi,ω3 at frequency ω3 can
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be written as,

Pi,ω3 = χ
(1)
ij Ej,ω3 + χ

(3)
ijkl(ω3, ω1, ω1, ω3)Ej,ω1

∗Ek,ω1El,ω3 , (1.41)

and therefore, the refractive index of the field Ej,ω3(t) changes as a function of the intensity

I = |E (t)|2,

n (E (t)) = n0,ω3 + δn |E (t)|2 (1.42)

This nonlinear process is called cross-phase modulation or Kerr effect [78, 121]. Consequently,

this time varying refractive index n (E (t)) introduces a time varying spectral phase and with it

a time dependent instantaneous frequency

ω (t) = dϕ

dt
= 2π z/λ0

dn

dt
(1.43)

which leads to a significant change of the frequency content of the light field E (t). If the three

fields of eq. 1.40 are degenerate this process is called self-phase modulation and it becomes

significant for strong electric fields compressed to short pulses.

1.3 Nonlinear Optics using Femtosecond Pulses

The second harmonic generation described in the previous paragraphs was originally discovered

in 1961 [122] with the development of the first optical laser just a year before. Nonlinear optical

techniques became increasingly popular with the advent of pulsed lasers, which output electric

fields which are temporally confined to pulses of picosecond (ps) to femtoseconds (fs) duration.

This can lead to extremely high peak electric fields on the order of ∼ 100 MV/cm [ref23inchap0],

which are comparable to the intrinsic interatomic fields Eat = e
4πε0a2

0
∼ GV/cm, resulting in large

nonlinear optical effects. Femtosecond light pulses were first achieved bymode-locking techniques

in laser oscillators. This was followed by the development of Chirped Pulse Amplification, by

Gerard Albert Mourou, Donna Strickland and Arthur Ashkin, in which the laser pulses supplied

by the oscillators are amplified to peak powers on the order of petawatts [16]. The pioneers of

this technique were later awarded the 2018 Nobel prize in physics. The time-resolved optical

experiments presented in this thesis employ femtosecond laser pulses. Therefore, the following

paragraphs will explain some fundamentals of ultra-short laser pulse propagation and how the

resulting nonlinear optical processes introduced above can be used to unravel the dynamics of

electronic and lattice excitations on their intrinsic time scales.
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1.3.1 Basic Concepts of Short Laser Pulses

Due to the uncertainty principle for frequency and time, optical fields of a few ps to fs dura-

tions require certain energy bandwidth of the optical spectrum, different to the monochromatic

continuous wave fields discussed in the previous paragraphs. For a transform-limited pulse of

Gaussian shape, the FWHM-pulse duration ∆t is related to the inverse of the spectral width

∆ν through the relation [123]:

∆t∆ν = 0.44. (1.44)

This is only valid if the spectral phase is constant throughout the whole spectrum. However,

if the pulse experiences a frequency dependent phase ∆ϕ(ν), it will be stretched in time to a

duration longer than the one predicted by eq.1.44. This effect is called chirp, and it is usually

accounted for by adding a quadratic temporal phase to the frequency of a laser field with envelope

E0(t) = E0e
(−t24ln(2)/∆t2),

E (t) = E0(t) sin(2πνt+ ∆ϕt2), (1.45)

which is equivalent to introducing a frequency of the electric field that changes linearly with

time. This chirp can be positive (dν/dt > 0) or negative (dν/dt < 0) and is acquired when a

pulse propagates through a dispersive medium with frequency dependent refractive index n(ν).

This acquired chirp can be reduced by using an oppositely chirped medium or a compressor

built from prisms or gratings [16, 124].

The temporal profile E0(t) and phase ϕ(t) of a laser pulse can be accurately measured by

different techniques. Two of the most commonly-used techniques in the near-infrared and visible

wavelength range are frequency resolved auto- and cross-correlations, where the pulse is sampled

with itself or a gate pulse [125–127]. These techniques involves overlapping the two pulses inside

a nonlinear crystal. If both fields are also temporally overlapped, the two electric fields interact

through the non-zero second order nonlinearity χ(2) of the crystal. Information concerning the

spectral content of the pulses is contained in the resulting nonlinear emission of light. Examples

of auto-correlation [126] and cross-correlation [127] are sketched in Fig. 1.9 (b) and a description

of these processes is detailed in Appendix A.5.

The short duration of fs-laser pulses has very important implications for nonlinear optical pro-

cesses [128]. For example, the frequency dependent refractive index n(ω) of the material leads

temporal walk-off of two nonlinearly interacting laser pulses [123]. In second harmonic genera-
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tion, walk-off happens when the second harmonic emission and the incident laser pulse spatially

separate due the difference in their group velocities. This drastically limits the interaction length

and the phase matching bandwidth of the nonlinear process [129]. The group velocity vg, given

by

vg(ω0) =
(
∂ω

∂k

)
ω0

(1.46)

defines the speed of a pulse with center frequency ω0 inside a medium and is thus crucial in

describing propagation of short pulses.

1.3.2 Homogeneous and Inhomogeneous solution in Second Harmonic Generation

In the case of second harmonic generation using femtosecond light pulses, the light conver-

sion efficiency in phase-matched conditions is drastically reduced when the homogeneous and

inhomogeneous solutions of the wave equation are both considered. This results from the dif-

ferent propagation velocities of the two SH fields, which leads to their temporal separation.

The homogenous solution of the SH field is generated in the first coherence length lcoh below

the crystal surface and will propagate at the group velocity of the SH frequency, vg (2ω). The

inhomogeneous solution of the SH field, however, is constantly generated and reabsorbed by the

propagating fundamental light pulse and thus propagates at the group velocity vg (ω) [97, 101].

Hence, the two SH pulses will separate while propagating through the crystal. As a result, the

two pulses that leave a crystal of length L will be separated by the difference of the two group

velocities ∆t = ∆vg/L [100, 101]. If the walk-off distance lwo = vg∆t is large compared to the

crystal size L, an oscillatory behavior of the output intensity, as seen for monochromatic light,

is observed (see Fig. 1.9 (b) and Fig. 1.6 (b)) [97, 101].

If the two SH pulses can be measured separately one obtains spatial information of the nonlinear

coefficient in the material. The homogeneous solution is sensitive to the magnitude of χ(2)

within one coherence length below the surface, whereas the inhomogeneous solution is constantly

generated in the bulk [64, 97, 101]. Therefore, if χ(2) is zero in the first coherence length behind

the surface and non-zero in the bulk, then only one pulse (the inhomogeneous solution) will exit

the sample [64, 101] (see Appendix B.6).

31



Chapter 1 - Linear and Nonlinear Optical Properties of Solids

0

S
H

 in
te

n
si

ty

0

Propagation distance

1

lcoh
v tg·

t Dvg·Dt

vg·Dt

12840

Cross-correlation delay (ps)

Dt

(2)c(2)c

vg·Dt

Dt

(b)

(a) (c)

(e)

(d)

Figure 1.9: Homogenous and inhomogeneous solutions of SH generation. (a)
Sketch of the walk-off of homogeneous and inhomogeneous solution of SHG. At the surface of
the crystal, the homogeneous solution (blue) and the inhomogeneous (dashed blue) solution
of the nonlinear wave equation temporally overlap, which leads to oscillatory behavior of the
total SH intensity shown in panel (b). (b) Oscillatory behavior of the SH intensity that exits
the crystal. Due to the difference in group velocity between the inhomogeneous solution,
which is phase locked to the fundamental pulse (red), and the homogeneous solution, they
separate after ∆t = ∆vg/L, and the output SH becomes constant. (c) and (d) Ultra-short
laser pulses can be characterized by frequency resolved optical gating (FROG) (c) and electro-
optic sampling (EOS) (d). Both techniques rely on nonlinear mixing in a χ(2)-medium. In a
FROG measurement one pulse is split into two pulses of equal intensity which are then non-
collinearly overlapped in nonlinear crystal. In EOS a low frequency (MIR or THz, yellow)
pulse is collinearly overlapped with a NIR gate pulse in a χ(2)-medium. (e) Homogeneous
and inhomogeneous solution of SHG from LiNbO3 The homogeneous and inhomogeneous
solution of SHG can be detected by the scheme in (c). The intensity cross-correlation of an
800-nm wavelength pulse with the SH light generated by a similar 800 nm pulse in LiNbO3,
shows the temporally separated inhomogeneous (∆t = 0 ps) and homogeneous (∆t = 10.5 ps)
solution (Data taken from [64]). This measurement agrees well with a simulation (black line)
done with software package SNLO [130]. Part of the figure are adapted from Ref. [64].
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1.4 Time-resolved Optical Experiments

Femtosecond laser pulses allow for the exploration of the the optical properties of solids with a

time resolution determined by the pulse duration. Hence, it is possible to follow non-equilibrium

evolutions of correlated materials on the relevant timescales of charge carrier and crystal lattice

dynamics. In a pump-probe experiment, a laser pulse, called the pump, creates and excited state

in the material, and a second, time-delayed laser pulse, called the probe, samples the induced

changes of the optical properties (see Fig. 1.10) [131]. By varying the relative arrival time ∆t

between the pump and probe pulses, it is possible to obtain information of the optical properties

of the material at times before, after and throughout the course of the excitation.

The wavelengths of the pump and probe pulses can range from the THz and mid-infrared [64, 65],

to excite and probe low energy excitations, up to x-rays, to sample the structural properties

[54, 58]. The pump-pulses lead to coherent collective modulations of the material properties

which appear as coherent oscillations of the optical properties. In the experiments presented

in this thesis mid-infrared pulses, generated by difference frequency generation from the output

of two optical parametric amplifiers, are used to resonantly drive infrared active excitations in

complex materials. The resulting time-dependent modulation of the optical properties are then

mapped using probe pulses with a carrier wavelength of 800 nm.

1.4.1 Time-resolved Raman and Hyper-Raman scattering

The time-resolved detection of Raman and Hyper-Raman modes in solids, either structural or

electronic in origin, relies on the nonlinear light conversion presented in the preceding para-

graphs. In general, the interaction of the probe light field Eprobe with the solid is described by

the wave-equation,

(
∂2

∂z2 −
n2

c2
∂2

∂t2

)
E = 1

c2
∂2P (Eprobe, Q1, Q2, . . .)

∂t2
(1.47)

where Qi denotes any excitation of the sample. Here, it will be assumed that the incident probe

electric field Eprobe remains undepleted throughout the interaction, and the spectral changes to

the field E resulting from the nonlinear interaction are small perturbations [93, 116, 132]. Under

this approximation, the following nonlinear polarization can be written as:
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800 nm, 1 kHz
30 fs, 2 mJ
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~1.35 µm

OPA 1

~1.25 µm

GaSe

Dt

(a) (b)

Figure 1.10: Schematic of a typical MIR-pump NIR-probe setup. (a) Femtosecond
laser pulses from a Ti:sapphire amplifier pump two optical parametric amplifiers (OPA),
which are seeded by the same white light continuum (WLC) . These OPAs output two signal
beams usually output at 1.235 µm and 1.335 µm which are overlapped in a 330 µm thick GaSe
crystal to produce MIR radiation through difference frequency generation. This results in
carrier envelope phase-stable pulses with energies of 3 µJ, durations of 150 fs, and carrier
wavelengths of 17-µm (see Appendix A.4). These mid-infrared pulses (yellow) are focused to
a spot size of approximately 65 µm onto the sample by using a telescope composed of two
off-axis parabolic mirrors. The NIR probe pulses are derived from the same amplifier system
and are spatially overlapped with the MIR light on the sample (80 nJ energy, 35 µm spotsize).
(b) To ensure the detection from a homogeneously excited volume, the probe pulses (red)
are focused to a significantly smaller size compared to the pump pulses (yellow).

Raman Scattering: PR (t) =
(
∂χ

(1)
e

∂QR

)
QR (t)Eprobe(t)

Hyper Raman Scattering: PHR (t) =
(
∂χ(2)

∂QIR

)
QIR (t)E2

probe(t)

Electro Optic Effect: PEO (t) = χ(2)ETHz(t)Eprobe(t)

Electric Field Induced SHG: PEFISH (t) = χ(3)ETHZ(t)E2
probe(t)

In the following, the spectral changes to the probe field will be derived for the simplest case of

Raman scattering, the other cases can be inferred from that result [120, 133]. The wave-equation

for the case of Raman scattering becomes:
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(
∂2

∂z2 −
n2

c2
∂2

∂t2

)
E = ρ

c2

(
∂χ

(1)
e

∂QR

)
QR (t)Eprobe(t). (1.48)

The general solution obeying the relevant boundary condition (E (z = 0) = Eprobe(z = 0)) is

[132]:

E (z, t) = Eprobe (z, t)− 1
cn

∂χ
(1)
e

∂QR
z
∂

∂t
QR (z, t+ ∆t)Eprobe(z, t) (1.49)

Here, ∆t denotes the time delay between pump and probe pulse and

QR (z, t+ ∆t) = QR (z) sin(2πΩR (t+ ∆t)) (1.50)

is the amplitude of a coherent Raman-active vibration with frequency ΩR. In the following

QR (z, t+ ∆t) is assumed to be stationary, i.e., QR (z) = QR,0. The Fourier transform of E (z, t)

yields the time-delay dependent spectral content of the emerging probe pulse

E (ω, τ) e−inωz/c = Eprobe (ω) + βω
[
Eprobe (ω + Ω) eiΩ∆t − Eprobe (ω − Ω) e−iΩ∆t

]
(1.51)

where β = l/cn∂χ
(1)
e /∂QR, with l being the interaction length of the excitation and probe

pulses [132]. After the interaction, the probe pulse spectrum consist of three distinct spectral

components: The unperturbed probe spectrum Eprobe (ω) and two frequency shifted sidebands at

ω ±ΩR with time-delay dependent spectral phases ±ΩR∆t (see Fig. 1.11). The phase sensitive

detection of these sidebands ∆E(ω,∆t) = βωEprobe (ω ± Ω) ei±Ω∆t, for example achieved by

spectral interference with the local oscillator Eprobe (ω) on the detector, carries information

about the phase and amplitude of the excitation QR. Consider now the spectrum of the intensity:

I (ω,∆t) =
∣∣∣E2

probe(ω) + 2∆E(ω,∆t)Eprobe(ω) + ∆E2(ω,∆t)
∣∣∣ (1.52)

Here, the second term, ∼ ∆E(ω,∆t)E2
probe(ω), denotes interference of the sidebands with the

unperturbed probe spectrum (see Fig. 1.11 (b)). This heterodyned component of the intensity, is

linearly proportional to the amplitude of the excitation field QR. The third term ∼ ∆E2(ω,∆t)

is called the homodyned component. It is proportional toQ2
R and oscillates at twice the frequency

of the excitation QR (2ΩR). Generally, the heterodyned component is significantly larger than

the homodyned and the latter can be neglected. A spectrally integrating photo detector, like a
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photodiode, yields the total intensity change

I (∆t) =
∫
I (ω,∆t) dω (1.53)

= Iprobe + αΩR cos(2πΩR∆t) + γΩ2
R cos(2π(2ΩR)∆t) (1.54)

of the probe pulse that can be measured in a pump-probe experiment [93, 132, 134]. Crucially,

this time-delay dependent signal has a π/2 phase shift relative to the launched coherent vibra-

tion QR and an amplitude that is proportional to the vibrational frequency Ω. Hence, it is

proportional to the velocity Q̇R(∆t) of the coherent vibration. Fig. 1.11 (c) shows a sketch of a

typical time-resolved signal, in which the heterodyned sidebands appear as coherent oscillations

of frequency ΩR on top of a slowly varying background, which results from incoherent dynam-

ics. The Fourier-transform of this signal, shown in Fig. 1.11 (d), reveals these oscillations as a

Lorentzian peak centered at frequency ΩR.

To obtain the spectral changes for the cases of Hyper-Raman scattering, electro-optic sampling

and field-induced second harmonic generation (eq. 1.4.1-1.4.1) one needs to replace ∂χ(1)
e /∂QR

by
(
∂χ

(2)
ijk /∂QIR

)
QIR (t)Eprobe(t), χ(2)ETHz(t) and χ(3)ETHzEprobe(t), respectively. The result-

ing spectral changes of the four different cases are sketched in Fig. 1.11 (a).

Contrary to Raman scattering and the electro-optic effect, hyper-Raman scattering and EFISH

generate sidebands close to the second harmonic frequency of the probe electric field. Usually,

Eprobe(t) does not contain any spectral component at second harmonic frequencies and thus ef-

fectively reduces the detection to the homodyned part. In order to still obtain the heterodyned

component a local oscillator at these second harmonic frequencies has to be spatially and tem-

porally overlapped with the probe pulse on the detector [64]. This either happens naturally due

to a non-zero χ(2) in the sample material or by a second reference beam generated in a second

non-linear crystal.

The temporal resolution for this type of detection scheme crucially depends on the spectral

width of the probe pulse. A rough estimate of the time resolution is given by the Nyquist

theorem [135], which states that a pulse of bandwidth ∆ν can sample a signal up to ∆ν/2

without distortions. This arises from the necessity of spectral overlap between sidebands and

probe spectrum to allow interference. This is more qualitatively captured by considering the

sampling efficiency S(Ω) which is given by [136],

S (Ω) =
∫ ∞

Ω
dωR(ω) |E(ω)| |E(ω − Ω)| ei[φ(ω)−φ(ω−Ω)]. (1.55)
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Figure 1.11: Spectral changes in time-resolved optical experiments. (a) Sketch
of the spectral changes due to ultra-fast nonlinear light scattering. Generally, nonlinear
optical interaction with coherent dynamics in solids lead to side bands imparted onto to the
fundamental νin (unfilled red peak) or second harmonic 2νin (dashed blue peak) frequency.
The direct interaction of the MIR/THz pump field with the optical probe pulse through the
electro-optic effect or electric field-induced SHG leads to sidebands of ΩMIR imparted onto
the frequencies νin and 2νin (yellow shaded peaks). Raman- and Hyper-Raman scattering also
lead to sidebands offset by ΩRaman and ΩHyper (red and blue shaded peaks). (b) Sketch of the
interference between sidebands and unaltered probespectrum. The sidebands have a time-
delay ∆t phase and interfere with the unperturbed probe spectrum (unfilled red and dashed
blue peak) which leads to periodic modulation of probe intensity on the detector as shown
in panel (c). (c) Simulation of a typical pump-probe time trace. When the pump and probe
pulses overlap at time delay ∆t = 0, the Kerr effect leads to a slowly varying background
which follows the intensity envelope of the pump-pulse. This excitation is usually followed
by coherent oscillations on top of a slowly varying background. (d) Fourier transform of
the signal in panel (c), revealing the amplitude and frequency of the oscillations. The slowly
varying background in the time-resolved signal leads to background in the FFT (dashed line).
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Here, R(ω) is the frequency response of the detection system, |E(ω)| eiφ(ω) the complex amplitude

of the sampling pulse on the detector. In short, the sampling efficiency is given by the convolution

of the probe spectrum with the local oscillator. If there is not sufficient bandwidth in E(ω),

then the sampling efficiency is poor. Further discussion of time resolution is done in Chapter 2.

1.4.2 Measuring Polaritons with Short Laser Pulses

In the special case where the material is transparent for the probe pulse the assumption of a

stationary excitation (z, t) = Q (t) is not valid anymore. This is due to both, the propagation of

the probe pulse itself and of the polaritons generated by the mid-infrared pump. Similar to the

nonlinear mixing of two electric fields, phase-matching becomes important when considering the

propagation of polaritons [92, 137]. This makes it necessary to also consider the conservation

of the total momentum of all involved waves in the scattering process explained above. The

momentum of the excitation q has to be equal to the difference of the momentum of probe field

ki and the scattered probe field ks,

q = niki − nsks (1.56)

which can be approximated with [92, 137],

Ω (q) = vgq. (1.57)

This relation implies that a pulse with group velocity vg phase-matches to a polariton of fre-

quency Ω (q) when the two dispersion relations intersect, as shown in Fig. 1.12 (a). Accord-

ingly, the frequency Ω at which the time delay dependent signal oscillates, depends on the

group velocity and consequently on the center wavelength of the probe pulse [65, 92, 137, 138]

[65, 92, 137, 138]. This is illustrated in a depth vs. time map of a phonon polariton simulation

shown in Fig. 1.12 (b). Here, for every point in time a full 1D cut along the crystal length

is plotted and the phonon-polariton amplitude is shaded in red (positive) and blue (negative).

The dashed red line indicates the propagation of a probe pulse with a group velocity that is

almost perfectly phase-matched to a phonon-polariton that propagates deep inside the material.

The result is a long interaction length and therefore the selective detection of this particular

phonon-polariton frequency.
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Figure 1.12: Phase-matching of phonon-polaritons. (a) Phonon-polariton dispersion
of two phonons and phase-matching of optical probe pules. Phase-matching takes place
between a polariton and an optical when Ω(q) = vgq is fulfilled. For the case when polariton
and probe pulse propagate collinear, phase-matching takes place when the dispersion of the
optical pulse vgq (red and blue lines) intersects the phonon-polariton dispersion (red and blue
dots). When the probe pulse and the polariton do not propagate collinearly phase-matching
is described by the dashed lines. (b) This phase-matching can be understood as a matching
of the velocity of the laser pulse with the phase velocity of the phonon-polariton. The laser
pulse will always interact with the same part of the phonon-polariton wave as can be seen by
the simulations in panel (b). The depth vs. time plot shows the phonon-polariton amplitude
shaded in blue (negative) and red (positive). The propagating probe pulse (dashed red line)
is phase-matched to a phonon-polariton that propagates deep inside the bulk and is always
overlapped with the same oscillation cycle (blue).
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Chapter 2

Nonlinear Phononics in LiNbO3

2.1 Introduction

The nonlinearities of the crystal lattice become apparent at temperatures close to the Debye

temperature, when the amplitude of the atomic thermal vibrations becomes significant (> 1%)

compared to the lattice spacing. These large amplitude stochastic vibrations lead to non-linear

phonon-phonon scattering (Umklapp scattering) and manifest as thermal expansion and a finite

thermal conductance [139–141]. A sufficiently small light field interacting with a polar vibration

of the lattice adds a small coherent component on the stochastic thermal vibration, which makes

the harmonic approximation appropriate to describe the linear light-lattice interaction and hence

justifies the model of a driven harmonic oscillator for crystal lattice vibrations, discussed in

Chapter 1. However, at larger driving fields the harmonic approximation breaks down for

these coherent vibrations. For an adequate description of the resulting atomic trajectories the

knowledge of the full lattice potential, including anharmonicity, is required.

This chapter will focus on the description of coherent nonlinear lattice vibrations and the non-

linear coupling between the individual eigenmodes of the crystal. First, the theoretical basis of

this so called nonlinear phononics will be introduced. Subsequently, these ideas will be demon-

strated by a set of experiments involving time-resolved second harmonic generation to measure

the real-time dynamics of infrared active lattice vibrations. Parts of this chapter are taken from

Ref. [64, 65].
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2.2 Theory of Nonlinear Phononics

The polarization induced in a solid by light can be expanded in powers of the incident electric

field E and leads to the nonlinear optical phenomena described in Chapter 1. In a similar way,

the potential energy of the crystal lattice can be expanded in powers of the individual eigenmodes

with amplitudes Qi and additional coupling terms allow energy transfer between two or more

modes,

Vlattice(Q1, Q2..., E) =
∑
i

Ω2
iQ

2
i +

∑
i,n
ai,nQ

n
i +

∑
i,j,k,l

gijkQiQjQk + hijklQiQjQkQl + ... (2.1)

These nonlinear expansion terms become accessible at large atomic displacements far away from

the equilibrium positions, for example achieved by strong external driving with a laser pulse

[52]. In eq. 2.1, the first two terms describes the harmonic potential energy and higher order

expansions of each individual lattice mode Qi with harmonic eigenfrequency Ωi, as a polynomial

expansion with coefficients ai,n (see Fig. 2.1). The third sum contains the coupling of different

lattice modes written up to the quartic order.

The existence of certain combinations gIRjkQIRQjQk or hIRjklQIRQjQkQl is strictly tied to the

symmetries of the crystal and the eigenmodes involved in the nonlinear interaction. In a cen-

trosymmetric crystal a coupling constant is nonzero, if the tensor product of the involved modes

is part of the Ag totally symmetric irreducible representation. In the special case of one (opti-

cally) driven infrared mode QIR the only symmetry allowed cubic term is ∆V = gQ2
IRQR, where

QR denotes the amplitude of a Raman active vibration. The irreducible representation of the

Raman mode QR has to be contained in the irreducible representation of the product group of

the infrared mode QIR with itself, I (QR) = I (QIR)× I (QIR) [52, 58, 62].

This complex notion can be broken down to a simple rule: a coupling term is allowed when the

product of all the involved phononic fields is even. For example, with Q2
IR ≡ even and QR ≡

even, their product is even, too. Generally, infrared-active modes are odd (break inversion

symmetry) and Raman modes are even (conserve inversion symmetry). The direct products

between irreducible representations can be found in the product table of the point group for a

given crystal structure [142]. Generally, if the excited infrared mode is of Au or Bu symmetry,

the cubic coupling terms in eq. 2.1 are only allowed when the coupled (Raman) modes are of Ag

symmetry. The same symmetry considerations are also true for the quartic terms hijkl , however
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Figure 2.1: Anharmonic lattice potential. Anharmonic and harmonic lattice potential
energy as a function of the phonon Amplitude QIR. The harmonic approximation (dashed
grey line) of the lattice potential energy is only valid for small displacements from the equilib-
rium position QIR = 0. At large vibrational amplitudes the full lattice potential energy (red
line) strongly deviates from the harmonic approximation and has to be taken into account
to properly describe the lattice dynamics.

here coupling between different infrared active modes is possible because the product group

I (QIR,1) × I (QIR,2) × I (QIR,3) × I (QIR,4) can contain the totally symmetric Ag-symmetry.

Similar to optical fourth order processes (Hyper-Raman scattering and Third-Harmonic genera-

tion), this type of coupling allows the interaction between polar infrared vibrations and optically

silent modes.

2.2.1 Nonlinearities of a Strongly Driven Lattice Vibration

The following paragraph deals with the direct excitation of polar lattice vibrations by resonantly

tuned laser pulses. In the harmonic approximation, the potential energy is given by

Vlattice(Q1, Q2..., E) =
∑
i

Ω2
iQ

2
i +

∑
i
ZiQiE (2.2)

The last term describes the coupling of infrared active modes with effective charge Zi to an

external electric field E [62, 83, 143]. When only one lattice mode Qi = QIR with resonance

frequency ΩIR is driven by a weak external electric field E0 ∼ 0.1 MV/cm, the equation of motion
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reduces to that of a single harmonic oscillator,

Q̈IR + 2γIRQ̇IR + Ω2
IRQIR = Z∗IRE. (2.3)

As discussed in Chapter 1, this equation of motion has steady state solutions of the formQIR(t) =

QIR,0sin(2πΩIRt + ϕ). Figure 2.2 (a) shows a solution of eq. 2.3 for a driving field E(t) which

is in resonance with the infrared mode and of finite temporal width T ,

E(t) = E0sin(2πΩIRt)e−t
24ln(2)/T 2

. (2.4)

For this low excitation field strength E0 the vibration exhibits only a single harmonic frequency

component and oscillations around the equilibrium position QIR = 0, as revealed by the Fourier

transform of the simulated time trace in Fig. 2.2 (b). The amplitude of the oscillations decreases

exponentially due to a finite damping coefficient γIR.

At larger electric field strength, neglecting nonlinear coupling to other modes, the immediate

nonlinear response of the system is due to the self-anharmonicity ∆V (QIR) = aIR,nQ
n
IR where

n = 1, 2, ..., of the individual mode QIR (see Fig. 2.2) [65]. The magnitude of the coefficients

aIR,n are determined by the symmetry of the ionic environment and, like in second harmonic

generation, all even coefficients (n = 2, 4, ...) vanish if the crystal shows inversion symmetry. The

∆V (QIR) term immediately contributes to the equation of motion of the driven mode through

the force acting on the eigenmode F = −∇QIR∆V (QIR),

Q̈IR + 2γIRQ̇IR +∇QIR∆V (QIR) = Z∗IRE (2.5)

⇒ Q̈IR + 2γIRQ̇IR + Ω2
IRQIR + aIR,2Q

2
IR + aIR,3Q

3
IR + aIR,4Q

4
IR + . . . = Z∗IRE(t). (2.6)

Substituting the steady state solution of the harmonic oscillator into this equation the higher

order terms QnIR, will oscillate at multiples of the fundamental frequency nΩIR, giving rise to

higher harmonics of ΩIR in the spectrum of the motion. Figure 2.2 (b) shows a solution of eq.

2.6 for a driving field strength of E0 ∼ 10 MV/cm. The coefficients aIR,n for this simulation have

been determined by first-principles density functional theory (DFT) methods for the ferroelec-

tric material LiNbO3 [65] (see Appendix B.10). At this stronger driving field, corresponding to
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Figure 2.2: Simulations of harmonic and anharmonic lattice dynamics. (a) Sim-
ulated phonon amplitude QIR for a low field resonant excitation. At low driving fields
(E = 0.1 MV/cm) the lattice performs harmonic oscillations around the equilibrium posi-
tion QIR = 0. (b) The corresponding FFT of the time-trace shows a single Lorentzian peak
at the resonance frequency ΩIR. (c) Simulated phonon amplitude QIR for a strong field
(E = 10 MV/cm). The high field oscillation involve motions at higher harmonics of ΩIR and
a rectified component (solid black line in panel (c)). (d) The corresponding FFT of the strong
field response shows multiple peaks at high harmonics. The Lorentzian shape observed in
the low field response in panel (b) becomes slightly distorted due to a renormalization of the
resonance frequency at large amplitudes of QIR (see Appendix B.4).

an excitation at E0 ∼ 10 MV/cm peakfield, the oscillations are rectified to negative amplitudes,

indicated by the black line in Fig 2.2 (c), and show the predicted additional spectral compo-

nents at higher harmonics of the fundamental frequency ΩIR (see Fig. 2.2 (d)). The nonlinear

response is reminiscent of the high harmonic generation in nonlinear optics and indeed also con-

tributes to the effective nonlinear coefficients χ(n), though significantly less than its electronic

counterpart [144]. Additionally, the instantaneous oscillation frequency ΩIR(QIR(t)) depends on

the amplitude of the lattice vibration. This becomes obvious when rewriting the equation of

motion,

Q̈IR + 2γQ̇IR + (ω2
IR + a3QIR+a4Q

2
IR + . . .)QIR = Z∗E(t), (2.7)
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Figure 2.3: Simulated response characteristic of lattice vibrations at strong driv-
ing. (a) Simulated excitation field dependence of the first three harmonic components of the
vibrational phonon amplitude. The higher harmonics (see Fig. 2.2 (d)) increase as a func-
tion of electric field and each harmonics follows a polynomial law (grey lines). The points
were extracted by integrating over the individual harmonic peaks shown in Fig. 2.2 and for
the second and third harmonic amplitudes are multiplied by four for clarity. (b) Simulated
excitation frequency dependence of the vibrational phonon amplitude. For a fixed driving
field strength (E = 4 MV/cm from panel (a)), the amplitude of the vibration QIR (red dots)
peaks when the electric field frequency is in resonance with ΩIR. The shape of the amplitude
response follows the imaginary part of the dielectric function (grey). (c) Simulated electric
field dependence of the frequency re-normalization of the phonon vibration. The resonance
frequency renormalizes ΩIR and becomes electric field dependent. The grey line is a fit of the
form ΩIR(E) = ΩIR,0 − aE2 (see Appendix B.4).

yielding the instantaneous frequency of the oscillator:

ω (QIR) =
√
ω2
IR + a3QIR+a4Q2

IR + . . .. (2.8)

This leads to a temporal chirp of the oscillatory motion due to the exponential decay of the

vibrational amplitude and an on average frequency re-normalization as is further discussed in

Appendix B.4. This time-averaged frequency re-normalization results in a shift of the higher
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harmonics away from integer multiples of ΩIR. This is shown in Fig. 2.3 (c). The red points

are determined by a fit to the peak of the fundamental oscillation (see Fig. 2.2 (b) and (d)).

The dependence of the different harmonic orders on the incident electric field can be determined

by perturbation theory [78]. In this approach, the electric field is considered to be a small

perturbation δ E = λE to the equation of motion eq. 2.6. Also the total displacement QIR(t)

is expanded into orders of λn : QIR = λ Q1 + λ2Q2 + .... Then, in order to obtain a solution

for an arbitrary value of λ every term proportional to λ, λ2 etc. must satisfy the equation

individually. This procedure yields

λ :⇒ Q̈1 + 2γIRQ̇1 + ω2
IRQ1 = Z∗IRE (2.9)

λ2 :⇒ Q̈2 + 2γIRQ̇2 + ω2
IRQ2 + aIR,2Q

2
1 = 0 (2.10)

The lowest order equation is simply the harmonic equation of motion, for which the steady state

amplitude QIR,0 is given by

QIR,0 (ω) = Q1 (ω) = Z∗IR/µ

ω2
IR − ω2 − iγIRω

E0 = Z∗IR/µ

D(ω) E0. (2.11)

and therefore, the amplitude Q1 grows linearly with the strength of the external electric field.

Substitution of this expression into the second equation for Q2, eliminates Q1 and allows one to

determine the field dependence of Q2. As the term Q1 enters quadratically into this equation the

corresponding solution Q2 will oscillate at twice the frequency as well as being rectified (Ω = 0).

Repeating the procedure from section 1.1.1 yields

Q2 (2ω) = −aIR,2Z
∗
IR

2/µ2

D (2ω)D(ω) E2
0 , (2.12)

and shows that the second harmonic of the lattice vibration will grow as the square of the

driving field strength. The scaling of the even higher harmonics can be predicted in an equal

manner and yields that the amplitude of every harmonic scales with the driving electric field like

a polynomial of the respective order i.e. QIR (nω) = En0 , as is shown in Figure 2.3 (a). The field

dependence of the individual harmonics is determined by integrating over the individual peaks

in Fig. 2.2 (d). However, at sufficiently strong driving fields the change of the instantaneous

frequency due to renormalization becomes so dramatic, that the excitation can not be considered
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as resonant anymore and the maximum amplitude saturates. This behavior is similar to that of

the Duffing oscillator model [145, 146]. However, at moderately low fields (E0 ∼ 4 MV/cm) the

amplitude of QIR peaks when driven at ΩIR, and the amplitude response follows the imaginary

part of eq. 2.11, as shown in Fig. 2.3 (b). Here, the red dots are determined by integrating over

the harmonic peaks in Fig. 2.2.

2.2.2 Nonlinear Coupling of a Strongly Driven Lattice Vibration

If the driven mode is excited to amplitudes, at which the nonlinear effects discussed above

become significant, it can also couple nonlinearly to other vibrational modes of the solid. This

nonlinear coupling between two and up to four lattice modes is described by terms signified in

eq. 2.1,

Vlattice(QIR, Q2..., E) =
∑

IR,j,k,l
gIRjkQIRQjQk + hIRijklQIRQjQkQl + ... (2.13)

according to the symmetry restrictions discussed above. It is these coupling terms, that are

responsible for the macroscopic thermal conductance and thermal expansion [141, 147]. Their

coherent control through ultra-short laser pulses allows for the manipulation of the crystal struc-

ture on fs-timescales [52, 58, 62]. These nonlinear phononics were first observed experimentally

in 2011, in which coherent oscillations of a Raman mode coordinate were induced by resonant

excitation of an infrared-active phonon [52, 53]. Since then other aspects of this nonlinear

phonon-phonon interaction were demonstrated, involving ultra-fast x-ray diffraction techniques

for the detection of the ensuing lattice dynamics [54, 58]. The next paragraphs will focus on a

theoretical description of nonlinear phononic coupling in centrosymmetric materials.

2.2.3 Cubic Coupling Q2
iQj

The lowest order cubic term that involves coupling between two lattice modes was first consid-

ered theoretically already in the 1970s as Ionic Raman scattering [55–57]. These early works

predicted that the excitation of an infrared-active lattice vibration replaces the intermediate

electronic state in conventional Raman scattering. Hence, this process solely relies on the lat-

tice anharmonicities, instead of electron-phonon scattering. In conventional Raman scattering,

where the driving force acting onto the Raman mode is proportional to the square of the elec-

tric field E2 and therefore is a unidirectional force within the duration of the excitation pulses
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[93, 132]. Similarly, ionic Raman scattering exerts a unidirectional force onto a coupled Raman

mode QR and rectifies the Raman mode coordinate as long as the optically excited phonon

QIR has a finite amplitude. This becomes clear when substituting the term gQ2
IRQR into the

equation of motion of the two lattice modes,

Q̈IR + 2γIRQ̇IR + (ω2
IR + gQR)QIR +∇QIR∆V (QIR) = Z∗IRE(t) (2.14)

Q̈R + 2γRQ̇R + ω2
RQR + gQ2

IR = 0. (2.15)

The driven mode QIR exerts a force proportional to Q2
IR onto the mode QR which is, ∼

sin2(ωIRt) ∼ 1− cos(2ωIRt), and therefore follows the envelope of the vibrational motion of QIR.

This rectified component leads to a time averaged displacement and a quasi-static change of the

crystal structure along the QR coordinates. Further, if the driving pulse E(t) is short compared

to the Raman oscillatory period 1/ΩR, then QR is impulsively excited to an oscillatory motion

around the transiently displaced coordinate QR,disp (see Fig. 2.4 (c) and (d)). Conversely, the

displaced Raman mode acts back onto the driven mode and linearly renormalizes its frequency

as ω2
IR(QR) = ω2

IR,0 + gQR (see Fig. 2.4 (b) and (f) and Appendix B.3). Figure 2.4 shows the

solutions of the equations of motion of QR and QIR for a driving pulse tuned into resonance

with the infrared-active mode (see eq. 2.4) and effective peak field strengthE0 ∼ 10 MV/cm.

The steep rise of the envelope of QIR leads to coherent oscillations and quasi-static displacement

of QR. The latter can be understood as a displacement of the potential energy of the coupled

mode to a new ‘equilibrium’ position as displayed in Fig. 2.4 (d). Finally, this nonlinear coupling

must conserve the total momentum and since the infrared mode is driven at k = 0, only Raman

modes at wave vector q = 2k = 0 can be excited.

2.2.4 Quartic Coupling Q2
iQ

2
j and Q3

iQj

Higher order nonlinear phononics involving the interaction of three or more modes as predicted

by eq. 2.1 has eluded experimental verification until recently [65, 148]. This type of coupling not

only allows for the interaction of infrared and Raman modes through Q2
IRQ

2
R but also coupling of

odd (infrared) modes. However, for Raman-modes the nonlinear coupling effects are dominated

by cubic coupling and eq. 2.15. For infrared-active modes in an inversion-symmetric material,

these cubic terms are forbidden by symmetry and the lowest-order nonlinear-phononic coupling

49



Chapter 2 - Nonlinear Phononics in LiNbO3

A
m

p
lit

u
d

e
 Q

IR

-1

0

1

0

-0.4

-0.2

0.0

10

Time (ps)

0

0

0

0 QR,disp.

A
m

p
lit

u
d

e
 Q

R

P
o

te
n

tia
l e

n
e

rg
y

P
o

te
n

tia
l 
e

n
e

rg
y

w0

w -gQ0 R

2

2

Amplitude

10

WIR

0

F
re

q
u

e
n

cy

10

Time (ps)

0.5

0.0

A
m

p
lit

u
d

e
 Q

R

1050

Electric Field (MV/cm)

2
Q  ~ ER

QR,disp.

(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Simulations of Q2
i Qj phonon coupling. (a) Simulated phonon amplitude

QIR for strong resonant excitation. The strongly driven infrared mode QIR can couple to a
Raman mode QR which leads to its quasi-static displacement (dashed line in panel (c)). (b)
Changes of the potential energy of the driven mode due to the back-action of the Raman
mode. The coupling renormalizes the frequency ω2

IR(QR) = ω2
IR,0 + gQR (see panel (f)),

which is visualized as a periodic modulation of the potential energy of the driven mode. (c)
Simulated phonon amplitude QR of a coupled mode for the strong resonant excitation of
panel (a). A short excitation pulse (∆t < 1/ΩR) impulsively excites the Raman mode to
oscillations at its eigenfrequency ΩR, around the displaced equilibrium position. (d) Changes
of the potential energy of the coupled mode. The quasi-static displacement can be understood
as a shift of the potential energy, which results in a unidirectional force F = gQ2

IR acting
on QR so long as QIR 6= 0. (e) Simulated excitation field dependence of the coupled mode
amplitude QR. The displacement and the amplitude of the coherent oscillations of QR scale
with the square of the excitation field E. (f) Simulated temporal modulation of the infrared
mode frequency ΩIR(t) extracted by a windowed FFT. The displacement and oscillatory
motion of QR (dashed line) change the instantaneous frequency of QIR (shaded red).
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term is hijklQiQjQkQl. Again, for the coupling coefficient hijkl to be non-zero the product of the

irreducible representation I (QIR,1)× I (QIR,2)× I (QIR,3)× I (QIR,4) has to contain the totally

symmetric Ag-symmetry. A combination of infrared modes that always fulfill these symmetry

restrictions is

∆V (QIR, QP) = hQ2
IRQ

2
P (2.16)

because the totally symmetric irreducible representation Ag is part of the product of any ir-

reducible representation with itself, Ag ⊂ I (QIR) × I (QIR). Importantly, coupling of this

type (distinct from cubic coupling) can lead to the creation of pairs of phonons with opposite

wavevectors q1 = −q2, even when the excited phonon is at zero momentum qIR = 0. A conse-

quence of the bi-quadratic coupling of the type Q2
iQ

2
j is a mutual modulation of the frequencies

of both vibrations,

Q̈IR + 2γIRQ̇IR + (ω2
IR + hQ2

P)QIR +∇QIR∆V (QIR) = Z∗IRE(t) (2.17)

Q̈P + 2γPQ̇P + (ω2
P + hQ2

IR)QP = 0. (2.18)

As a result, the force acting on QP,

F (QP ) = hQ2
IRQP, (2.19)

remains zero if its initial amplitude before excitation QP(t < 0), is equal to zero. Consequently,

even though the resonance frequency ΩP and the potential energy ofQP are modulated, the mode

remains motionless (see Fig. 2.5 (a) and(b)). However, if QP(t < 0) 6= 0, QP will experience

exponential gain (and Appendix B.5) as long as QIR is oscillating (see Fig. 2.5 (c), (d), (e)).

This behavior is a parametric amplification and is reminiscent to the optical light conversion

in second-order nonlinear optical (χ(2)) media discussed in Chapter 1 and Appendix A.2. Key

characteristics of parametric amplification is always the time dependence of the oscillator's

parameters, i.e., its frequency ΩP(t) in the case of bi-quadratic coupling (see Fig. 2.5 (f))[146].

Even though the bi-quadratic term Q2
IRQ

2
P can lead to parametric amplification the cubic-linear

coupling Q3
IRQP typically dominates the quartic order nonlinear response among infrared active

modes at early times. However, due its cubic-linear form the symmetry selections rules for

Q3
IRQP significantly restricts this process, because not every product group of coupled modes

51



Chapter 2 - Nonlinear Phononics in LiNbO3

1 2 3

0

A
m

p
lit

u
d

e
 Q

P

-1

0

1 1 2 3

P
o

te
n

tia
l e

n
e

rg
y

0

A
m

p
lit

u
d

e
 Q

P

-1

0

1 

1 2 31 2 3

P
o

te
n

tia
l e

n
e

rg
y

10
-6

 
10

-4

 
10

-2

 
10

0

A
m

p
lit

u
d

e
 Q

P

2 4 6 8

1
2 4 6 8

10
2

Amplitude QIR

WP

F
re

q
u

e
n

cy
 

0

Time (ps)

Q (t<0) = 0P

Q (t<0) = 0P

(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Simulations of Q2
i Q2

j phonon coupling. (a) Simulated phonon amplitude
QP for a strong field resonant excitation as in Fig. 2.2. If the amplitude of the coupled mode
QP is zero for times before the excitation pulse drives the infrared mode QIR (QP(t < 0) = 0)
then the force acting on QP due to the quartic coupling term Q2

IRQ
2
P is zero and QP remains

motionless. (b) This situation is captured by considering the potential energy of the coupled
mode which is periodically modulated by Q2

IR only at QP 6= 0. (c) If QP(t < 0) 6= 0, QP
is excited to finite amplitude and will experience exponential gain as long as QIR is excited
(see panel (e)). (d) Potential energy of QP when QP(t < 0) 6= 0. A small, but finite initial
potential/kinetic energy of QP is amplified to a large excursion. (e) Simulated excitation
strength dependence of the coupled mode amplitude QP as function of the driven mode
amplitude QIR. The cumulative energy gain (depicted in (d)) leads to an exponential increase
(dashed line) of the vibrational amplitude of QP. (f) Simulated softening of the coupled mode
mode frequency ΩP(t). For large enough driving amplitude QIR the instantaneous frequency
ΩP(QIR) (shaded blue) almost reaches zero and relaxes back to the equilibrium frequency as
Q2

IR. At longer times, the energy transfer from QIR to QP stops and QP performs oscillations
at its equilibrium resonance frequency ΩP.
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Figure 2.6: Simulations of Q3
i Qj phonon coupling. (a) Simulated phonon amplitudeQP

for a strong field resonant excitation as in Fig. 2.2. A long driving pulse (1/∆t < ΩIR−ΩP),
excites QP to oscillations at ΩIR and 3ΩIR but not at its eigenfrequency ΩP (grey peaks in
panel (b)). (b) Simulated FFT Amplitude spectra for three different excitation durations
of the coupled mode similar to panel (a). If the pulse duration of the excitation pulse and
consequently the rise time of QIR becomes shorter than ∆t < 1/(ΩIR − ΩP), QP starts
oscillating at its resonance frequency ΩP (sharp peak). (c) The imbalance of the oscillations
of QIR on the rising flank lead to an impulsive force onto QP (red curve) and as a result to
sustained oscillations at ΩP. (d) Sketch of the evolution of the potential energy of the coupled
mode during the optical excitation. Sketch of the potential energy of QP at two times. The
short impulse shifts the potential energy of QP to the lower right/left (solid blue line) and
instantaneously increases the potential energy of the motion (blue dot). The sudden gain of
potential energy is partially converted into kinetic energy (blurred dots) while the potential
energy is shifted back to its equilibrium position (solid blue line).
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contains the totally symmetric representation. In practice, the term leads to a force proportional

to Q3
IR which acts onto the coupled mode,

Q̈IR + 2γIRQ̇IR + ω2
IRQIR + 3hQ2

IRQP +∇QIR∆V (QIR) = Z∗IRE(t) (2.20)

Q̈P + 2γPQ̇P + ω2
PQP + hQ3

IR = 0. (2.21)

Figure 2.6 shows solutions of the equation of motion for the coupled phonon amplitude QP.

For a comparably long excitation pulse (T > 1/ΩP), QP oscillates at ΩIR and 3ΩIR but not at

its own resonance frequency ΩP (see Fig. 2.6 (a) and (b)). This is a result of the odd force

term which, different to the quadratic force term Q2
IR for cubic coupling, on average does not

lead to a net energy transfer between QIR and QP. However, for short excitation pulses E(t)

the imbalance of the oscillations of QIR on the rising edge leads to an impulsive force onto QP.

This short impuls is drawn as a red line in Fig. 2.6 (c) and excites sustained oscillations at the

resonance frequency ΩP shown by the blue curve in Fig. 2.6 (c) and by the amplitude FFT

spectrum in panel Fig. 2.6 (b) (sharp peak).

This becomes more apparent when considering the frequency domain. The impulsive force

force exhibits a broad spectrum, which covers the resonance frequency of the coupled mode,

i.e.,1/T < ΩP−ΩIR. This can be seen in Fig. 2.6 (b), which shows the FFTs of three simulated

time traces for different excitation pulse duration. Only when the width of the excitation pulse

spectrum (shaded Lorentzian), centered around ΩIR, covers ΩP a net energy transfer from the

driven mode to the coupled mode is possible and QP performs sustained oscillations at its

resonance frequency (sharp peak in Fig. 2.6 (b)). For increasingly shorter excitation pulses

durations T the amplitude of these sustained oscillations increases as shows for three different

values of T in Fig. 2.6 (b). These impulsively excited oscillations are then further amplified by

the bi-quadratic term Q2
IRQ

2
P.

All these considerations can equally be applied to materials with broken inversion symmetry.

However, the distinction between even and odd modes (Ag vs Au etc.) breaks down (see Chapter

1) and (almost) every product of two irreducible representations includes the totally symmetric

group A. This implies that in materials with broken inversion symmetry coupling of the type

gijkQiQjQk is also possible between infrared active modes. This becomes important in materials

where the macroscopic material properties are entangled with the displacement of an infrared

active mode QP, such as ferroelectrics.
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2.3 Nonlinear Phononics in LiNbO3: Experimental demonstration

These theoretical predictions of nonlinear phononic effects have already been demonstrated

in several experiments. An infrared active lattice mode, resonantly excited by a strong field

mid-infrared pulse, was shown to excite oscillations of Raman active modes probed by Raman

scattering of near-infrared pulses in bulk crystals of La0.7Sr0.3MnO4 [52] and YBa2Cu3O6.5 [53].

These experiments were corroborated by ultra-fast x-ray diffraction experiments that revealed

the transient deformation of the crystal lattice along the coupled Raman mode coordinates

through cubic coupling gQ2
IRQR [58]. A set of experiments on SiC involving both excitation and

detection resonant with an infrared-active mode revealed nonlinearties in the excitation process

itself and of the driven phonons, in the time-domain [149]. However, these experiments were

missing an amplitude and phase sensitive probe of infrared active lattice vibrations to reveal

coherent oscillations of the driven mode infrared active mode. The following paragraphs will

present work done in the scope of the thesis project and introduce ultra-fast second harmonic

generation as a quantitative tool to measure the amplitude and phase of polar lattice dynamics

directly in the time domain. At the same time new insights into ultra-fast materials control and

the measurement of interatomic forces will be presented.

2.3.1 Reconstruction fo the Interatomic Potential of LiNbO3

2.3.1.1 Properties of insulating ferroelectric LiNbO3

The experiments presented in the next paragraphs were conducted on LiNbO3, which crystallizes

in a non-centrosymmetric trigonal unit cell with 3m symmetry (see Fig. 2.7 (a)). Below Tc =

1200 °C [113], the Li and Nb sublattices are displaced against the oxygen octahedra. Hence, the

material develops a static ferroelectric polarization Ps along the rhombohedral (111) direction

that corresponds to the hexagonal z-axis. The existence of a static polarization implies a broken

symmetry concomitant with a finite second order nonlinearity χ(2). The corresponding χ(2)-

tensor of the 3m pointgroup is given by

χ(2) =


0 0 0

−d22 d22 0

d31 d31 d33

0 d15 −d22

d15 0 0

0 0 0

 (2.22)
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Figure 2.7: Structure of ferroelectric LiNbO3. (a) LiNbO3 crystallizes into a non-
centrosymmetric trigonal unit cell with 3m point group symmetry. Below Tc ≈ 1200 °C, the
Li and Nb sublattices are displaced against the oxygen octahedra and the material develops
a static ferroelectric polarization Ps along the hexagonal z-axis. (b) SH-polarimetry mea-
surements on LiNbO3. The analyzer was oriented along the z-axis (P analyzer) and xy-axis
(S analyzer).

which results in a static SH-polarimetric response as shown in Figure 2.7 (b). Here, P and

S denote the analyzer orientation along the crystal c-axis and a-b-axis, respectively. The SH

light polarized along the c-axis is significantly more intense than the in-plane component. The

values of the tensor elements χ(2)
ij are linearly proportional to Ps, making the SH intensity a

good measure of the static polarization [113, 150].

The low-frequency optical properties for light polarized along the LiNbO3 c-axis are dominated

by two optical phonon modes at 7.8 and 18.9 THz. It also includes a weak mode at 8.2 THz and

a feature at 21 THz, which has been attributed to two-phonon absorption [151]. All these modes

appear as peaks in the imaginary part of the dielectric function shown in Fig. 2.8 (a). The mode

that was excited in the experiment is denoted with ΩTO = 18.9 THz and the respective longi-

tudinal optical frequency is at ΩLO = 26 THz. Figure 2.8 shows the THz reflectivity spectrum

of the investigated sample (grey line), measured via Fourier transform infrared spectroscopy

(FT-IR), together with fits of the four (dashed line) Lorentzian oscillators.
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Figure 2.8: Optical properties of ferroelectric LiNbO3. (a) Dielectric function of
LiNbO3 along the c-axis. The real part is drawn in red and the imaginary component of the
dielectric functions is drawn in blue. The low-frequency linear optical properties in LiNbO3
are dominated by two optical phonon modes at 7.9 and 18.9 THz together with weaker modes
at 8.2 THz and a feature at 21 THz. (b) Reflectivity spectrum of LiNbO3 along the c-axis.
The driven oxygen vibration has a resonance frequency of ΩTO = 18.9 THz and corresponding
longitudinal frequency of ΩLO = 26 THz.
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Figure 2.9: Schematic of the time-resolved second harmonic and polarization
rotation detection setup. 30-fs, 800-nm pulses with 70 nJ pulse energy are used for second
harmonic generation in single domain LiNbO3 crystals. The polarization of these probe-pulses
are controlled by a λ/2 waveplate. After interaction with the sample the SH beam is separated
from the fundamental 800-nm light by a dichroic mirror. Polarization sensitive detection is
achieved by using a prism polarizer in the SH beam before detection with a photomultiplier
tube (PMT). The polarization of the 800-nm light is analyzed by balancing the intensity
on two photodiodes by a λ/2 waveplate and a Wollaston prism. The pump-pulses for the
experiment are generated by difference frequency generation in GaSe (see Appendix A.3).
CEP stable mid-infrared pump pulses of 2 nJ to 3 nJ pulse energy and frequencies tunable
from 15 THz to 30 THz are focused by a telescope to a spotsize of 60 µm to achieve peak-field
strength of up to 30 MV/cm [29].

2.3.1.2 Time-Resolved Second Harmonic Detection Setup

Figure 2.9 depicts a schematic of the optical setup developed to simultaneously measure the

time-resolved SH intensity emitted from the sample and the linear polarization rotation of the

800-nm probe ligh (both in transmission). For the pump-probe experiment, a telescope delivers

CEP stable mid-infrared pump pulses (2 µJ to 3 µJ pulse energy) to the sample and focuses

the beam to a lateral spot size of 60 µm [29]. The center frequency and temporal profile of

these pulses were determined by electro-optic sampling (see Appendix A.5). Figure 2.10 shows

the real-space motions of the highest frequency infrared-active vibration of LiNbO3, which was

excited by mid-infrared pulses tuned to a center frequency νMIR = 17.5 THz, slightly red-shifted
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compared to the TO phonon frequency (ΩTO = 18.9 THz) [151, 152] (see Fig. 2.10 (c)). The

spectrum of this pulses (shaded yellow in Fig. 2.10 (b)) still covered the phonon frequency,

plotted as a red peak in Fig. 2.10 (c), within its bandwidth (∆ν ≈ 6 THz). The corresponding

electric field transient is shown in the inset of Fig. 2.10 (b).

The resultant dynamics were measured by 30 fs, 800 nm pulses with 70 nJ pulse energy which

impinge the sample at a 1 kHz repetition rate. These pulses pass through a λ/2-waveplate,

to control their linear polarization, and a lens to focus the beam to a 25 µm spot size on the

sample. After passing through the sample the SH beam is separated from the fundamental

800-nm light by a dichroic mirror. An analyzer (prism polarizer) in the SH beam selects a

specific polarization of the SH light which is detected with a highly sensitive photomultiplier

tube (PMT). The polarization of the 800-nm light is analyzed by balancing the intensity on two

photodiodes by a λ/2-waveplate and a Wollaston prism.

The time-resolved dynamics are measured by changing the relative time of arrival of pump and

probe-pulses on the sample. This is done by using a translation stage in the beam path of the

800 nm probe-pulses. The time-delay ∆t is controlled by moving the stage incremental from

time delays ∆t < 0 (probe arrives before pump) to time delays ∆t > 0 (pump arrives before

probe). The changes of the SH intensity and the 800-nm polarization rotation (PR) induced by

optical pumping with respect to pump-probe time delay are electronically read-out by lock-in

amplifiers which lock into the rotation frequency of a mechanical chopper that modulates the

mid-infrared pump beam at half the laser repetition rate.

2.3.1.3 High-Order Nonlinear Phononics: Experimental Results

In the linear response regime, the real space distortions of the excited TO-phonon mode involve

rotations of the oxygen octahedra around the c-axis, accompanied by c-axis motions against the

Nb and Li sublattices (see Fig. 2.10 (a)). Due to the broken inversion symmetry of the crystal,

the A1 mode is both Raman and infrared active with an electric dipole moment along the c axis.

Crucially, a stable absolute carrier-envelope-phase of the MIR pump field made it possible to

directly follow the atomic trajectories in both amplitude and phase. An electro optic sampling

measurement of the electric field transient is shown in the inset of Fig. 2.10 (b). Without

the CEP stability the phase-linked atomic motions would average to zero due to the inherent

multi-shot nature of these pump-probe experiments. Spectral interferometry between the PR
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Figure 2.10: Resonantly driven A1 lattice vibration in LiNbO3. (a) Real space
motions of the highest frequency A1 mode of LiNbO3. These involve rotations of the oxygen
octahedra, accompanied by c-axis motions against the Nb and Li sublattices. (b) Spectrum
and electric field transient (inset) of the generated MIR pulses, measured by EOS. In the
experiment the A1 mode was excited with mid-infrared femtosecond pulses, tuned to νMIR =
17.5 THz, slightly red-shifted compared to the TO phonon frequency (ΩTO = 18.9 THz).
The center frequency and temporal profile of these pulses was determined by electro-optic
sampling (see Appendix A.5). (c) Imaginary part of the dielectric function of LiNbO3 and
the spectral width of the MIR pulses used (shaded in yellow) to excite the highest frequency
mode (red).

and SH signal and a local oscillator derived from the same probe pulse yielded both phase and

amplitude of the phonon dynamics [132, 134, 136]. The time resolution of these experiments

was dictated by the bandwidths of the local oscillators on the detector, plotted in Fig. 2.11,

and calculated using eq. 1.55 (see Chapter 1) to be 16 and 12 fs for the SH and PR, respectively

[136, 153]. Hence, these measurements are able to resolve coherent oscillations up to 60 and

80 THz in SH and PR, respectively, and are thus sensitive to the phase of oscillations up to the

fifth overtone of the excited TO phonon mode.

For small amplitude excitation (0.1 MV/cm peak electric field), both PR and SH measure-

ments yielded harmonic oscillations (see Fig. 2.12 (a) and (c) dashed lines), which were readily

attributed to a combination of harmonic oscillations of a 15-THz phonon-polariton and the 19-
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Figure 2.11: Sampling efficiency of the time-resolved SH experiment. (a) Spectrum
of the 800-nm probe pulse before (red) and after (grey) propagation through the unpumped
LiNbO3 crystal in units of THz. (b) The sampling efficiency of the 800-nm light was calculated
with the spectrum shown in panel (a). (c) The spectrum of the generated SH light (blue
curve) is a factor of

√
2 broader than the incident spectrum of the 800-nm probe and is

plotted together with the normalized transmission of the bandpass filter placed in front of
the photo-multiplier tube (dashed curve). (d) The sampling efficiency of the SH light with
the spectrum shown in panel (c) is almost constant in the 15 THz to 45 THz region. The
figure and caption are adapted from [65].

THz TO phonon of the A1 mode [154]. The pump-probe spectrum of this small-field response is

well understood by considering the phase-matching between the probe pulses and the phonon-

polariton propagating inside the crystal [92, 155] as explained in Chapter 1 and Appendix B.2.

At high a pump field (20 MV/cm electric field), a strongly anharmonic response was observed

in both PR and SH signals, shown as solid lines in Fig. 2.12 (a) and (c). Figure 2.12 (b)

and (d) display the corresponding amplitude spectra. In addition to the fundamental frequency

components of the harmonic oscillator, a number of high harmonics appeared. The most pro-

nounced peaks were found at multiples of the 15-THz phonon-polariton mode, visible up to

n = 5 (75 THz). The amplitudes of the first three harmonics, obtained by integrating over the

respective peaks at ν = 15, 30 and 45 THz in Fig. 2.12 (c), display a linear, quadratic and cubic

dependence respectively on the excitation field as predicted by eq. 2.4 and 2.12 and shown in

Figure 2.13(a). The PR spectrum also exhibits peaks at the sum and difference frequencies of
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Figure 2.12: Time-resolved SH intensity and polarization rotation signals. (a)
The time-resolved polarization rotation of the 800-nm probe for a low excitation field (E =
0.1 MV/cm, dashed light red) showed harmonic oscillations with a single frequency component
(dashed peak in panel (b)). At a higher excitation field (E = 20 MV/cm, full red curve) the
oscillations become highly anharmonic and asymmetric. The corresponding FFT in panel (b)
shows peaks at higher harmonic of the phonon-polariton frequency Ωp and sum- and difference
frequencies with ΩTO. (c) The time-resolved SHG measurements also showed harmonic
oscillations (dashed light blue) with a single frequency component (dashed peak in panel (d))
for the low excitation field (E = 0.1 MV/cm). At the higher excitation field (E = 20 MV/cm,
full red blue) the oscillations become highly anharmonic and the corresponding FFT in panel
(d) shows peaks at higher harmonic of the phonon-polariton frequency Ωp. No peaks at sum
and difference frequencies appeared in the SH measurements.

these harmonics. Of note, the harmonics appear slightly red-shifted with respect to the integer

multiples, as expected from a nonlinearly driven lattice vibration. This red-shift was predicted

by eq. 2.8 and is due to the frequency renormalization at large vibrational amplitudes (see Ap-

pendix B.4). A pump frequency dependence of the amplitude response at νp is shown in Figure

2.13 (b). The red data points were determined by integrating over the peak centered around νp
for an excitation field of 5 MV/cm. To obtain comparable results for the different excitations

fields the responses were normalized by the penetrations depth (grey line) which changes from

400 nm close to ΩTO to about 3 µm below ΩTO and above ΩLO. As predicted by eq. 2.11 the
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Figure 2.13: Experimental response characteristic of lattice vibrations at strong
driving. (a) Experimental excitation field dependence of the first three harmonic com-
ponents of the time-resolved SH-signal. The higher harmonics (see Fig. 2.12) increase as
a function of electric field and each harmonics follows a polynomial law (grey lines). The
fundamental oscillation amplitude at Ωp scales linear with the excitation field, the second
harmonics at 2Ωp quadratically and the third harmonic at 3Ωp cubically. (b) Experimental
excitation frequency dependence of the vibration amplitude of the time-resolved SH-signal.
For a given driving field strength, the amplitude of the coherent oscillations peak when the
driving field frequency is in resonance with ΩTO. The shape of the amplitude response follows
the imaginary part of the dielectric function (grey) as predicted by Fig. 2.3. (c) Frequency-
dependent penetration depth of LiNbO3. To obtain comparable results for the different
excitations fields the responses were normalized by the penetrations depth (grey line) which
changes from 400 nm close to ΩTO to about 3 µm below ΩTO and above ΩLO. The red points
denote the center frequencies of the MIR pulses.

total amplitude response peaks in resonance with the TO phonon frequency and follows the

imaginary part of the dielectric function Im(ε), which is associated with the energy transfer

from the light field to the solid. From the presented data alone, the amplitudes of the atomic

velocities can only be quantified up to a constant B as the absolute values of the second order

nonlinearity ∂χ(2)
ijk /∂QIR are not unknown. Still, the nonlinear theory discussed in the previous

paragraph adequately explains these observations.
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2.3.1.4 FDTD-Simulations of Anharmonic Phonon-Polariton Propagation

An even more comprehensive description of our experimental observations can be obtained

by considering the propagation of the excited phonon-polaritons. To this end finite difference

time-domain simulation combining Maxwell's equations with the nonlinear lattice eq. 2.1, were

carried out. Figure 2.14 (a) displays the amplitude of the propagating total electric field as a

function of sample depth d and time t. Both the phonon-polaritons and the broadband radiation

emitted from the anharmonic motions propagate from the surface into the bulk, following the

dispersion imposed by the material. By integrating the simulated total electric field along the

800-nm light line d800 = vgt for each pump-probe time delay ∆t, exemplarily sketched by the

red line for a delay of 0.3 ps in Fig. 2.14 (a), we can calculate the response measured in the

time-resolved PR experiments. Figure 2.14 (c) shows the simulated time trace which yields

qualitative agreement with the polarization-rotation measurement that are shown in Fig. 2.12.

Figure 2.14 (e) displays the corresponding amplitude spectrum, which comprises peaks at all

sum and difference frequencies of the polariton and the TO mode, also in agreement with the

experiment (see Fig. 2.12 (b)).

As introduced in Chapter 1, a coherent vibration at frequency Ω generates radiation frequency-

shifted from the second harmonic field ESH due to hyper-Raman scattering. This implies that the

detected spectral interferometry signal from the second harmonic intensity ISH is proportional

to the velocity of the lattice oscillation ISH(∆t) = BQ̇IR(∆t). Therefore, we can compare the

simulations of Fig. 2.14 with experiments of Figs. 2.12 (b) and (d) by spatially integrating the

time derivative of the simulated lattice coordinate Q(t, z) along the 400-nm light line, shown as a

dashed blue line in Fig. 2.14 (b). This integral was taken over the first 2 µm beneath the surface,

where the SH light is generated in the experiment [64]. The simulated signal ISH(∆t) is plotted

in Fig. 2.14 (d) and contains frequency components at multiples of 16 and 19 THz, evidenced

in the corresponding Fourier transform in Fig. 2.14 (f), in agreement with the measured data

of Figs 2.12 (d).

2.3.1.5 Reconstruction of the Interatomic Potential

Ultimately, the knowledge of Q̇IR(∆t), enables the reconstruction of the microscopic lattice

potential U(Q) explored during each oscillation cycle. This can be done by considering the

coherent vibration of the lattice mode at times after the pump pulse, that is when no external
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Figure 2.14: FDTD phonon-polariton propagation simulations. (a) The FDTD-
simulations allow us to plot the electric field as a function of depth d and time t inside LiNbO3
after mid-infrared excitation. The red solid line shows the propagation of the 800-nm probe
pulse for one pump-probe time delay ∆t, following the relation d800 = vg,800t with vg,800
the group velocity at 800-nm wavelneght. (c) The time trace derived by integrating along
the dashed red line in panel (a) for all pump-probe delays and the corresponding amplitude
spectrum shows a similar qualitative response as the experimental PR time-trace. (e) The
spectrum shows harmonics of Ωp and ΩTO as well as mixed frequencies. (b) The results of the
FDTD-simulations of the vibrational amplitude QIR after the same mid-infrared excitation
as in panel (a) allow for the comparison with the SH experiment. The partly dashed blue
line shows the propagation of the SH light at 400 nm, also for a single time delay ∆t. (d)
Through spatially integrating the time derivative of QIR along the dashed blue line within
the first 2 µm for all pump probe delays one obtains a response like the experimental SH time
trace. (f) The FFT Amplitude spectrum of panel (e) shows broad peaks at the harmonics of
Ωp like in the experiment. Part of the figure and caption are adapted from Ref. [65].
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Figure 2.15: Reconstructed A1 mode potential energy. (a) Reconstructed potential
energy of the driven lattice mode. The potential energy of the A1 mode (dark grey line)
could be reconstructed from different cycles (red colored circles) of the time-resolved SH
measurement shown in panel (b). The grey solid line is the mode potential obtained by
DFT calculations and the grey shaded area is an estimate of its systematic uncertainties.
The experimental potential is scaled to the calculated potential using a single scaling factor
(see Appendix B.1). From this comparison, one can estimate a maximum mode excursion
of 1.4 Å

√
amu, corresponding to ∼ 14 pm displacements of the oxygen atoms from their

equilibrium positions. The dashed curve is the potential in the harmonic approximation.
Part of the figure and caption are adapted from Ref. [65]

force is being applied. For weak phonon damping (γ � Ω) the total energy ε of the free

oscillations can be approximated as being constant over each cycle V (∆t) + Ekin(∆t) = ε. Then,

the instantaneous potential energy V (τ) = ε−Ekin(∆t) can be retrieved from the knowledge of

the kinetic energy, which is in turn proportional to the square of the measured second harmonic

signal Ekin(τ) = 1/2Q̇(∆t)2 = 1/2ISH(∆t)2/B2. The instantaneous potential energy V (∆t),

which is now known bar the proportionality term 1/B2, can then be converted into V (Q) by

integrating the second harmonic signal ISH(∆t) = BQ̇(∆t) over time, which yielded Q(∆t).

Hence, this procedure allowed us to extract the shape of the lattice potential with only a single

proportionality constant remaining unknown. To obtain an estimate for the proportionality

constant B and compare the validity of the reconstruction, Figure 2.15 compares the potential

energy of the A1-mode calculated from DFT (grey line) to the reconstructed potential (filled

circles). The two curves were matched by adjusting the single free parameter B by a fit (see

Appendix B.1). Within the systematic uncertainties of the DFT calculations illustrated by the
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grey shaded area, both curves agree up to the highest amplitudes reached experimentally. The

comparison allows for an estimate of the maximum amplitude of the total displacement of the

oxygen atoms to be 14 pm, which is about 7% of the next nearest neighbor distance!

2.3.2 Nonlinear Phonon Coupling: Experimental Results

At these extreme atomic displacements, close to the Lindemann criterion for the melting of a

crystal lattice [156], the coupling to other lattice modes was predicted to be significant. Density

functional theory calculations predicted that this coupling is dominated by the interaction of

high-frequency infrared modes and the infrared mode which is responsible for the ferroelectric

polarization QP, mediated cubic order coupling Q2
IRQP [63]. In ferroelectric materials, this type

of coupling between two infrared active modes is allowed due to the less strict symmetry selection

rules of the broken inversion symmetry pointgroup. The essential physics of the theoretical model

presented Ref. [63] can be demonstrated on a minimum model, which is illustrated in Fig. 2.16.

The potential energy of the ferroelectric mode QP is modeled as a double well potential, as

shown in Figure 2.16 (a),

V (QP) = −1
4Ω2

PQ
2
P + 1

4cPQ
4
P (2.23)

where potential minima correspond to the two oppositely poled states of the ferroelectric. ΩP is

the resonance frequency of ferroelectric mode for a certain temperature below the Curie temper-

ature [64]. The dominant coupling between the driven infrared mode QIR and the ferroelectric

mode QP was predicted to be of the type gQ2
IRQP [63] and the two resulting equations of motion

for the driven and coupled mode are,

Q̈IR + 2γIRQ̇IR + (ω2
IR + gQP)QIR +∇QIR∆V (QIR) = Z∗IRE(t) (2.24)

Q̈P + 2γPQ̇P −
1
2ω

2
PQP + cPQ

3
P + gQ2

IR = 0. (2.25)

Upon driving the high frequency mode, the double well potential deforms, and raises and lowers

the occupied und unoccupied potential minimum, respectively. This is shown in Fig. 2.16 (a)

in a frozen phonon picture for three amplitudes QIR. For a small driven phonon amplitude QIR,

the occupied minimum remains a stable local minimum protected by energy barrier and the

ferroelectric mode QP will adiabatically follow the dynamic potential minimum. This is shown

Fig. 2.16 (b) (light blue curve) by solving the equations of motion eq. 2.24 and eq. 2.25 below
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Figure 2.16: Minimal Model of nonlinear phononic ferroelectric switching. (a)
Lattice potential energy of the ferroelectric mode as a function of the amplitude QP. The
lattice potential energy in equilibrium (black line) exhibits to minima at QP± 1 which corre-
spond to the two oppositely poled states of the ferroelectric. In a frozen phonon picture, for
finite amplitudes of the driven mode QIR the potential will be distorted (light and dark blue
lines) and QP will be displaced along the red arrows. (b) Simulated phonon amplitude QP
for a two excitation strength. For an excitation strength below the switching threshold (light
blue) the solutions of the equations of motion predict a small displacement of QP away from
is equillibirum position QP = 1. Above the switching threshold (dark blue) QP rapidly dis-
places and moves into the oppositely poled state. Part of the figure and caption are adapted
from Ref. [64]

the switching threshold. After excitation, QP is displaced from its equilibrium position (dashed

line, QP = 1) but quickly relaxes back to its initial state. For a larger driven amplitude QIR, the

occupied potential minimum is destabilized, and the system is forced into the oppositely poled

state (blue curve in Fig. 2.16 (a)).

The solution for this above threshold excitation is shown in Fig. 2.16 (b) (dark blue curve).

After excitation, QP is rapidly displaced into the oppositely poled state (QP = −1) and per-

forms highly damped oscillations around its new equilibrium position. This model is highly

simplified but captures the key predictions of the theory published in Ref. [63]. These are the

excitation threshold, a resonant effect at the ΩIR and polarization reversal independent of the

initial state, i.e., polarization reversal should always be observed starting from both equilibrium

states without changing the pump pulse characteristics [64].

This type of nonlinear phonon coupling lead to the idea of ultra-fast reversal of the ferroelectric

polarization Ps by light. As mentioned in the introductory paragraph to LiNbO3, the static

values of the tensor elements χ(2) are linearly proportional to Ps. The changes of the second
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Figure 2.17: Spatial-filtering of different nonlinear processes in time-resolved
SHG. (a) Schematic of a non-collinear SH pump-probe geometry. Conservation of mo-
mentum leads to a deflection of the SH when higher order χ(3) or χ(4) processes involve
interaction with more than two fields. The deflection angle is given by the angle between
pump and probe α and the amplitude of the wavevector of the fields involved in the scatter-
ing (kΩ, k800, k400). The SH light generated by the second order process χ(2) does not get
deflected and spatial filtering allows for its selective detection. (b) Schematic of the conser-
vation of momentum in the non-linear scattering process. The arrows denote the wavevector
of the 800 nm (red), 400 nm (blue) and the MIR light (yellow). (c) Measured time-resolved
χ(2)-component of the SH-light. The time-resolved second harmonic intensity is normalized
to its value before excitation. After resonant excitation of the highest A1 in LiNbO3, the SH
intensity decreases (grey curves). This drop increases with pump fluence. For fluences above
the threshold value, 60 mJ/cm2, the second harmonic signal vanishes completely, followed
by a transient recovery before relaxing back to its equilibrium value. Part of the figure and
caption are adapted from Ref. [64].

order nonlinearity due to an infrared active phonon mode ∂χ(2)/∂QIR discussed so far act as a

modulation around this static value of χ(2) ∝ Ps. Therefore, the measurement of only the χ(2)

of the second harmonic intensity generated by the 800-nm wavelength pulses would allow one

to follow the time-dependent dynamics of Ps.

To isolate the χ(2) response, higher order contributions near the second-harmonic frequency

2νProbe, most notably those descending from cubic χ(3) nonlinearities at frequencies 2νProbe ±

νMIR, were filtered spatially by making use of the momentum transfer in the nonlinear scattering

process. By choosing an oblique incidence with angle α between pump and probe, as can be seen

in Figure 2.17 (a), the SH light descending from higher orders (χ(3), χ(4), . . .) will deflected from

χ(2)-component due to conservation of momentum. This is exemplary depicted in Fig. 2.17
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for the nonlinear mixing between pump and probe due to the χ(3)-nonlinearity (electric field

induced second harmonic generation). The resulting wavevector of the 400 nm light k400 is the

sum of the wavevectors of the MIR light kΩ and two times the wavevector of the 800 nm light kΩ,

either in forward scattering (right) or backward scattering (left). The deflection angle can be

determined from the angle α and the wavelength of the MIR light inside the material. Therefore,

the signal contribution descending from χ(2) can be isolated by filtering out the deflected beams

using a pinhole.

Figure 2.17 (b) displays the isolated χ(2) response measured for three excitation fluences. For

the lowest fluence fluence (10 mJ/cm2, grey curve), the SH intensity reduces by 20% from its

equilibrium value, which was normalized to 1. This depletion of the χ(2)-component increases

when increasing the fluence to 25 mJ/cm2 (light blue curve). At the maximum fluence possible

in our setup (95 mJ/cm2), the second-harmonic intensity was observed to completely disappear,

recover to a finite value, and then go to zero again, before relaxing back to the equilibrium

intensity. To confirm that this behavior at the highest fluence is related to an overshoot of the

ferroelectric distortion into the oppositely poled state, i.e., a transient reversal of the polarization,

it is necessary to determine the absolute sign of χ(2). This is because, in the case which of a

transient reversal the sign of χ(2) would change. However, from the measurement of the SH

intensity ISH ∝
∣∣∣χ(2)

∣∣∣2 alone it is impossible to determine this sign of χ(2).

To derive whether the ferroelectric polarization was indeed reversed during these dynamics, the

time-dependent phase of the SH electric field was measured by interfering it with a reference

SH field, generated in a second LiNbO3 crystal that was not excited by a mid-infrared pulse,

as sketched in Fig. 2.18 (a). The resulting pattern, which consisted of pronounced fringes on

top of a Gaussian background (see Appendix B.9), was detected with a charge coupled device

(CCD) camera,

Itotal,SH(ϕ(∆t)) =
∣∣∣∣∣∣ESH(∆t)

∣∣∣ eiϕ(∆t,x) + |ESH,ref| eiϕref
∣∣∣2 (2.26)

= |ESH(∆t)|2 + |ESH,ref|2 + 2 |ESH,ref| |ESH(∆t)| cos(ϕ(∆t) (2.27)

Changes in the phase of the second-harmonic signal generated in the driven LiNbO3 crystal ap-

peared as changes in the spatial position of these fringes on the camera. Figure 2.18 (b) displays

the time dependent interference signal after subtracting the Gaussian background, for the max-

imum pump fluence of 95 mJ/cm2. Constructive and destructive interference between the SH
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Figure 2.18: Phase sensitive detection of the second harmonic light. (a) Schematic
of the SH-interferometrie setup. To determine the phase of the second harmonic light from
the excited sample it is interfered with a reference second harmonic field from an unexcited
sample on the sensor of a CCD camera. The interference pattern shows fringes on top of
a Gaussian background, which encode the relative phase of the SH light from the sample
with the reference beam. (b) Time-dependent interference fringes on the CCD. A time-delay
scan (between pump and probe) revealed the phase of the emitted SH light from the sample
through the time delay dependent position of the interference fringes, shaded in blue and red.
For better statistics the interference pattern was integrated along the y-axis of the camera and
normalized. (c) Normalized interference fringes at −200 fs and in the reversed polarization
state at 80 fs. (d) SH-polarimetry measurements at four time-delays. The arrows indicate
the time dependent amplitude and sign of the ferroelectric polarization for each time delay,
determined from panel (b). The solid lines are fits to the data using the χ(2) tensor of LiNbO3.
Part of the figure and caption are adapted from Ref. [64].
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light from the sample and the reference beam are shaded in red and blue, respectively. Before,

the excitation the both beams have constant phase and the interference pattern is unchanging.

After excitation, the SH intensity first reduced with a constant phase. As the intensity reached

zero at 0 fs time delay (compare to Fig. 2.17 (b)), the phase of the second-harmonic field flipped

by 180°, revealed by a sudden sign change of the interference fringes (red to blue and vice versa).

This sign change is clearly visible in Fig. 2.18 (c), in which the interference fringes are shown

for a negative delay at −200 fs and in the reversed state at 80 fs. The phase then remained

constant until the SH intensity vanished again at 200 fs time delay (compare to Fig. 2.17 (b)),

when the phase switched back to the initial value. Thus, for time delays between 0 and 200 fs,

the polarization was transiently reversed.

Time-resolved SH polarimetry measurements allowed us to monitor the point group symmetry

of the transient reversal. For these measurements, the analyzer was set to transmit SH light

polarized parallel to the crystals c-axis (P polarization) and the incoming polarization of the

probe pulses was rotated at various constant time delays. As shown in Figure 2.18 (d), for four

time delays, the polarization dependence of the second harmonic retained the same symmetry

and shape of that observed at equilibrium for all time delays (also compare to Fig. 2.7 (b)).

Hence, the dynamical reversal occurs only along the hexagonal c-axis with no rotations in the

plane, which would appear as a rotation of the major lobes of the polarimetry signal by 180°.

This transient reversal of the ferroelectric polarization was only possible for a pump-pulse fre-

quencies tuned close to the phonon resonance ΩTO = 18.9 THz. Figure 2.19 (a) shows the

excitation fluence dependence of the peak polarization change at three different pump frequen-

cies. Accordingly, the plotted peak change of Ps scales as the square of the excitation field E2.

Also, the comprehensive pump frequency dependence (see Fig. 2.19 (b)) closely follows a similar

dependence as observed for the driven lattice vibration in Figure 2.13. The individual data

points were determined by fitting the slope of the fluence dependence in panel (a) of Fig. 2.19

and normalizing by the penetration depth. Correspondingly, due to the resonant excitation of

QIR, the largest displacement of the ferroelectric mode QP (QP ∝ Ps) can be concluded to scale

as the square of the driven mode QIR, as predicted by eq. 2.25 and Fig. 2.4 (e) for coupling of

the type gQ2
IRQP.

The last important prediction of the underlying nonlinear phononics theory, published in of

Ref. [63], is the bi-directionality of the reversal process, foretelling that the sign of the force
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Figure 2.19: Experimental response characteristic of the transient polarization re-
versal. (a) The normalized polarization at the peak of the time dependent signal Ps(∆t)/Ps,0
scales linearly with the pump fluence. The three curves correspond to excitation with pulses
at different frequencies. The polarization only reverses for excitation above 60 mJ/cm2 with
19-THz pulses. (b) Experimental excitation frequency dependence normalized polarization
change. The full frequency dependence (blue dots) reveals a resonant response at the mode
transverse optical frequency ΩTO. The individual points are determined from the slope of
linear fits to the fluence dependence in panel (a). The solid grey line shows the imaginary
part of the dielectric function of LiNbO3 for comparison. (c) Phase of the SH-field for two
oppositely poled initial conditions. The polarization reversal could be achieved starting from
both initial polarization states (blue and red circles). In both cases, the phase of the SH light
shows a jump of ±π at the peak of the signal before relaxing back to the initial phase. Part
of the figure are adapted from Ref. [64].

acting on QP depends on the initial equilibrium polarization state. Polarization reversal should

therefore be possible starting from both equilibrium states without changing the pump pulse

characteristics. This is reported in Fig. 2.19 (c), where the phase of the SH-light is plotted as

a function of time delay ∆t, starting from an oppositely poled equilibrium polarization states,

obtained by simply rotating the single domain crystal by 180°. In Fig. 2.19 (c), the two

oppositely poled states of the crystal are denoted with the phase emitted SH light of either 0

or π. The blue circles were obtained after repeating the experiment on the rotated sample. In
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both configurations, the characteristic sudden change of the phase by 180° can be observed.

Hence, the reversal without rotation, the bidirectional nature of the effect and the resonance

with the frequency of the infrared mode, all indicate that the essence of this phenomenon is

well understood in terms of anharmonic phonon coupling of the type gQ2
IRQP and a directional

displacement of the ferroelectric mode [63].

2.4 Summary

The theory of high-order nonlinear phononics was experimentally demonstrated by exciting the

highest frequency A1 mode in the model system LiNbO3. After strong-field mid-infrared excita-

tion, time-resolved second harmonic generation revealed harmonics of the driven mode up to the

fifth order. Phase and amplitude sensitive detection of these large amplitude atomic vibrations

allowed for the reconstruction of the mode lattice potential up to displacements which corre-

spond to 7% of the interatomic distances. Furthermore, nonlinear phononic coupling of these

large amplitude vibrations, resolved by frequency filtered SH detection, revealed the transient

short-lived reversal of the ferroelectric polarization at the peak of the excitation. This effect

was theoretically predicted by an earlier published set of DFT calculations, was driven through

the nonlinear coupling of the type gQ2
IRQP. The phononic nature of these effects was confirmed

by changing the frequency of the excitation pulse, which revealed a peaked response when the

excitation pulse was tuned into resonance with the highest frequency A1 mode. This nonlinear

control of the crystal lattice is of interest for functional heterostructure design, its control, and

might find immediate use to employ complex functionalities in materials that exhibit more than

ferroic order. Ultimately, these experiments demonstrate the capabilities of femtosecond time-

resolved SH detection as a quantitative tool to measure ultra-fast symmetry breaking dynamics

in solids in the time-domain. Importantly, the phase, amplitude, and polarization sensitive

detection of the second harmonic light revealed dynamics and symmetries invisible to a linear

probe. This technique can naturally be extended to other materials, especially to those that

exhibit equilibrium centrosymmetry without a static χ(2) nonlinearity.
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Chapter 3

Theory of Cuprate Superconductors and Josephson

Physics

3.1 Introduction

Depending on how well a material conducts an electrical current it is categorized as either

a metal, semiconductor, insulator, or superconductor. The control of the current flow through

these types of materials, by external parameters, allowed the implementation of micro fabricated

devices, such as transistors [157], that strongly influence our daily life. In the past decades

the ultra-fast control of the electronic properties through light became increasingly popular

with the prospect of femtosecond electronic switches [158]. These devices rely on the collective

oscillatory excitation of the free electron density, i.e., plasmons [159, 160]. Plasmons are a direct

manifestation of light-electron interaction and they can be used to shape [161] and amplify light

[162, 163]. A particular example of these electronic excitations is the Josephson plasmon in

high-Tc cuprate superconductors, which is formed by the tunneling of Cooper Pairs between

adjacent CuO2-layers in the superconducting state below the critical temperature Tc [164, 165].

The frequency ωp of the plasma modes is related to the superfluid density ρs as ω2
p ∝ ρs, typically

in the THz frequency range.

The study of Josephson plasmons with resonant THz radiation allows for the exploration of

the microscopic coherent dynamics of the superconducting charge carriers and their interaction

with other degrees of freedom. The following chapter will first introduce the fundamentals of

the superconducting state and then focus on the mathematical description of Josephson plasma

modes, by introducing the Josephson relations that describe the interaction of the supercon-
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ducting phase with electromagnetic fields. In this context, earlier experiments which observed

precursor states of superconductivity above Tc will be revisited. They serve as a motivation

for time-resolved optical second harmonic generation experiments carried out in underdoped

cuprates YBa2Cu3O6+δ within this thesis. The results of these experiments allowed us to de-

velop a microscopic theory, which explains a series of earlier time-resolved THz spectroscopy

studies on non-equilibrium superconductivity induced by optical excitation. Parts of this chap-

ter are taken from [166].

3.2 Superconductivity

Superconductivity is a unique material property, where a solid loses its electrical resistivity below

a critical temperature Tc. This phenomenon was first discovered in 1911 by Heike Kamerlingh

Onnes, when cryogenically cooling mercury to liquid helium temperatures (see Fig. 3.1 (a))

[66]]. At these low temperatures the electrons close to the Fermi energy, responsible for the

electrical transport, form into pairs. Pairing of these otherwise repelling charged particles is

mediated by an arbitrarily small [67, 167] attractive force which creates a bound state of two

electrons with opposite spin and momentum to lower their energy to below the Fermi energy

and therefore (see Fig. 3.1 (b) and (c)). In contrast to the individual fermionic free electrons

these pairs of electrons act similar to Bosons and, accordingly, can condense into a single, zero-

momentum ground state with macroscopic occupation (∼ 1020). Similarly to a Bose-Einstein

condensate of Bosons, this ground state can be expressed as one coherent state of electron pairs

with undetermined particle number N but fixed phase θ. This macroscopic coherent ground

state is protected by an energy gap ∆ around the Fermi energy (see Fig. 3.1 (b)) separating it

from the Fermionic single electron states. This energy gap corresponds to the energy necessary

to break the pairing of two electrons and it closes at Tc (see Fig. 3.1 (e)). To describe the

electron pair ground state one can thus define a macroscopic wave function [168]

ψ (r) = 〈ψ| α̂ |ψ 〉 =
√
ρs(r, t)eiθ(r,t) (3.1)

Here
√
ρs(r, t) =

√
n̂(r, t) is given by the density of pairs and θ(r, t) is the phase of the super-

conducting condensate [168, 170, 171]. Bardeen, Cooper and Schriefer demonstrated in their

seminal work that indeed a many-particle two- electron pair state can be described as a co-
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Figure 3.1: Zero resistance and the macroscopic wavefunction. (a) Electrical resis-
tance of mercury at low temperature. At 4.2 K the metal shows a transition into a state with
zero resistance (data taken from Ref. [66]). (b) Energy level diagram close to the Fermi en-
ergy. Electron pairs with opposite spin and momentum (blue dots and arrows) are condensed
into a single ground state (Epair) which is protected by an energy gap ∆E from the single
electron states. (c) Scattering cross section for two momenta K of the electron pairs. The
pairs are bound by exchange bosons with momentum q (green arrows). The conservation
of momentum dictates that the total momentum K of the electron pair must be conserved
in the interaction. For K 6= 0 this is only possible for the red shaded phase-space volume
when considering a small momentum interval ∆k around the Fermi energy. This phase-space
volume becomes largest when K = 0, i.e., the pairing electrons have opposite momentum.
(d) Phase space volume for low and high particle number. If the particle number is large
(macroscopic) the average number of particle as well as the particle number fluctuation inside
a given volume (dashed box) will be large. The particle number is fluctuating but the fluc-
tuations around the average are relatively small. (e) Energy gap of superconducting ground
state as a function of temperature (data taken from Ref. [169] for Sn).
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herent state [67]. For conventional superconductors, like mercury, they proposes, the electron

pairing to be due to an attractive interaction mediated by the crystal lattice. A passing electron

locally distorts the lattice to create a concentration of positive charge, which relaxes back on

the time scale τlattice of a lattice vibration, much slower than the electrons speed (vF). Thus, a

second electron can feel the attractive Coulomb force, which lowers its energy below the Fermi

energy and conversely creates a bound state. The timescale of the attractive interaction τlattice
determines the effective size of such a Cooper pair,

ξ = vFτlattice. (3.2)

Each pair thus stretches over ξ = 10 nm to 1000 nm and consequently, a large number of pairs

occupy the same space, momentum and energy state leading to the macroscopic occupation

of the ground state (see Fig. 3.1 (c)) [168, 170–173]. This BCS-theory of superconductivity

first allowed for the justification of the phenomenological theories by Fritz and Heinz London

(London equations) as well as the Ginzburg-Landau theory and gave the microscopic explanation

outlined above. Conventional superconductors are typically elemental metals (Hg Tc = 4 K [66],

Pb Tc = 7.2 K [174]) with large Fermi surfaces.

3.3 Dynamics of a Superconductor: London Equations

The dynamics of the condensate are determined by the Schrödinger equation. For a charged

particle with charge qs and mass m and the cinematic momentum mv = ~/i∇− qsA reads,

1
2m

(~
i
∇− qsA

)2
ψ + [qφ+ µ]ψ = i~

∂ψ

∂t
. (3.3)

Here φ is the electrostatic, µ the chemical and vector potential A. As know from quantum

mechanics [173], the Schrödinger equation is equivalent to continuity equation of the condensate

density ∂ρ0 (r)∂t+∇Jp = 0, where Jp is the probability-current density,

Jp = i~
m

(ψ∇ψ∗ − ψ∗∇ψ)− qs
m
ψψ∗A. (3.4)

Combining this with the expression for macroscopic wave function in eq. 3.1 yields the current
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Figure 3.2: Scattering of paired electrons and London equations. (a) Displaced
Fermi surface in momentum space and schematic scattering processes. Individual scattering
processes (black arrows) bring electrons (blue dot) from the front of the Fermi sphere to the
back and reduce the shift δk of the Fermi sphere and thus the current. In a superconduc-
tor with paired electrons, the same scattering processes (arrows) involves two electrons and
therefore maintains the shift δk of the Fermi sphere. (b) Schematic of the Meissner effect.
The Meissner effect leads to the full expulsion of a magnetic field (red arrows) from a su-
perconducting material below the transition temperature Tc (shaded beige). (c) Schematic
of a magnetic field penetrating into a superconductor. The external magnetic field leads
to persistent loop-currents in the material which results in its exponential screening on the
length scale λL.

density carried by the paired electrons,

Jp = qsρs(r, t)
( ~
m
∇θ(r, t)− q

m
A
)

= qsρs(r, t)vs, (3.5)

which is determined by the phase gradient ∇θ(r, t). This important relation connects the

quantum phase θ(r, t) of the macroscopic state to the velocity vs, a classical concept [172, 175].

The energy-phase relation can be obtained by substituting eq. 3.1 into the Schrödinger equation

~
∂

∂t
θ (r, t) = 1

2ρs
ΛJp

2 + qsφ+ µ (3.6)

where the first term on the right-hand side is the kinetic energy (Λ = m/ρsq
2
s ). Importantly,
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the super current density in eq. 3.5, which is a measurable observable, only depends on the

phase gradient ∇θ and the vector potential A, which both are no physical observables. This

requires making the expression for Jp gauge invariant, which can be done by introducing the

gauge-invariant phase gradient [168, 173]

γ = ∇θ(r, t)− qs
~

A. (3.7)

Together, these equations describe the two principal properties of a superconductor, that is

zero resistance and perfect diamagnetism (Meißner effect) that are cast in form of the London

equations [176]. Similar to Ohm's law in a metal, they relate the current to the electromagnetic

fields in a superconductor.

1. London-equation: ∂tj = 1
ΛE

2. London-equation: ∇× j = − 1
ΛB

The first London equation states that the electric field is zero for a stationary current j. In turn,

this means that a current can persistently flow through a superconductor without an applied

electric field, i.e., the electric resistance is zero. According to the second London equation, a

magnetic field induces persistent loop currents that in turn expel this magnetic field, explaining

the Meißner effect. This is sketched in Figure 3.2 (c). The magnetic field lines are depicted as

red arrows, which above Tc penetrate the material but are fully expelled below Tc. However the

extrusion is not complete as can be seen rewriting the second London equation using Maxwells

equations

∇2B− 1
λ2
L

B = 0, (3.8)

where λ2
L = cΛ/4π is the London penetration depth of the magnetic field [173]. This equation

shows that magnetic fields indeed penetrate a superconductor up to London penetration depth.

This is depicted in Figure 3.2 (d) which shows a sketch of the spatial profile of a magnetic field

penetrating a superconductor. The magnetic field decays exponentially towards the interior of

the superconductor. Microscopically, the perfect conductance can be explained by considering

possible scattering events for the electrons. Figure 3.2 (a) shows how in momentum space a

current flow equals a rigid shift of the Fermi sphere by 〈δk〉 = m/ρq~〈j〉. In a metal, current

flow is limited by the scattering of electrons from the front of the Fermi sphere to the back, and
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consequently a momentum loss of 2kF. This can happen in one or multiple scattering events

as sketched as black arrows in Figure 3.2 (a). In a superconductor, the same scattering process

has to involve the second electron of the pair, which is necessarily scattered to the front of the

Fermi sphere to preserve the pairing. This situation is depicted in Figure 3.2 (b), the scattering

of the individual electrons is again shown as black arrows, which point towards the opposite

direction. As a result, no momentum is lost and the displacement of the Fermi sphere does not

change, i.e., the current flows without resistance (see Fig. 3.2 (b)). Of course, this assumes that

the energy scale of the scattering process is below the superconducting energy gap and thus too

low to break the pairing [173].

3.4 Josephson Effect

The Josephson effect is an immediate consequence of the long-range quantum coherence of su-

perconductors. It describes the quantum-mechanical coherent tunneling of Cooper pairs between

two superconductors separated by a non-superconducting barrier as sketched in Fig. 3.3 (a).

This structure is called a Josephson junction. Each of the superconductors hosts a density of

Cooper pairs which can both be described with a macroscopic wave function

ψi = √ρs,ieiθi (3.9)

In 1962, Brian Josephson analyzed the tunneling process of the Cooper pairs across the junction

and predicted that, unexpectedly, a zero-voltage current will flow, according to

I = Icsin(θ1 − θ2). (3.10)

Thus the current is only determined by the phase difference ϕ = θ1 − θ2 of the two condensates

on either side of the junction [164, 177, 178]. Here, Ic = 2K√ρ1ρ2/~ is the critical current

which the Josephson junction can support without losing its superconducting properties. For

I ≤ Ic, the current is dissipationless, i.e., it is a supercurrent. For I ≥ Ic, a finite voltage V will

develop across the junction and the two condensate wave functions will become time-dependent

according to
∂ϕ

∂t
= 2π

Φ0
V, (3.11)
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Figure 3.3: Josephson junction. (a) Schematic of a Josephson junction, which is a
superconductor (Si)-insulator-superconductor junction. The two superconductors each host
a condensate, which can be described by a macroscopic wavefunction ψi, with density ρi
and phase θi. The wavefunction of the superconductors (dashed lines) extend into the thin
insulating layer and further into the respective other superconductor. (b) Superfluid density
and phase gradient across the Josephson junction. The superfluid density (dashed red line)
inside the insulating layer is diminished but finite and a strong phase gradient (dashed grey
line) inside the insulator develops. (c) I-V characteristic of a Josephson junction. Currents
through junction smaller than the critical current Ic flow dissipation less and no voltage
drop occurs across the junction. For currents larger than Ic, a finite voltage drop develops
across the junction which leads to an alternating current with amplitude Ic (dashed red line).
When the voltage drop is equal to the twice the gap size 2∆, the pairs are broken up and the
junction I-V-characteristic follows Ohm's law U = RnI.

with Φ0 = h/2e the magnetic flux quantum. This results in an alternating current with ampli-

tude Ic and frequency ν = 2eV/h, the so called a.c. Josephson effect,

I (t) = Icsin(ϕ+ 2eV/ht) (3.12)

and the special I-V characteristic of a Josephson junction shown in Fig. 3.3 (b). The two

equations eq. 3.10 and 3.11 are known as the first and second Josephson equations. Their

experimental confirmation in 1963 confirmed the existence of a macroscopic quantum coherent

state below Tc [179].

In analogy to the temporal oscillations of the Josephson current caused by a voltage drop across

the junction, a magnetic field leads to spatial oscillations of the supercurrent. If a magnetic

field is aligned along the junction the phase-difference ϕ between the Josephson coupled super-
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conductors will change along the x-direction (perpendicular to B) (see Fig. 3.4 (b)). This is

due to the gauge invariance of the phase-gradient ∇θ of the individual superconductors and the

gauge invariance of the phase-difference ϕ across the junction. It is found that the gradient of

phase-difference is proportional to the normalized magnetic flux through the junction [173],

∇ϕ = 2π
Φ0

2λL [B× z] . (3.13)

where λL is the London penetration depth and z the direction normal to the junction. This

leads to a periodic modulation of the current across the junction (see Fig. 3.4 (b)) according to

I (x) = Icsin(ϕ+ 2π
Φ0

2λLByx). (3.14)

In total eq. 3.10, 3.11 and 3.13 describe the interaction of Josephson junctions with electromag-

netic waves.

3.4.1 Equivalent Circuit of Josephson Junctions

Josephson's equations succeed to accurately describe the situation in the zero-voltage limit.

However, they fail to model dissipation effects of quasiparticles which become important in the

finite voltage regime (I > Ic). One approach to combine the Josephson physics with quasiparticle

dissipation is the Resistively and Capacitively Shunted Junction (RCSJ) model [180, 181]. In

the RCSJ-model the Josephson junction is described as an inductance shunted in parallel by a

voltage independent resistance R and a capacitance C (see Fig. 3.4). Here, the capacitance and

resistor account for charging and dissipation effects and the Josephson junction is modelled as

an inductance.

The analogy of the Josephson junction to an inductance becomes obvious from the transient

change of the current through the junction

∂I

∂t
= ∂I

∂(ϕ)
∂(ϕ)
∂t

. (3.15)

This relation is similar to the voltage-current relation across a conventional non-superconcuting

inductance
∂I

∂t
= ∂I

∂(ϕ)
2π
Φ0
V. (3.16)
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Figure 3.4: Equivalent circuit of a Josephson junction. (a) Equivalent circuit of a
Josephson junction. A Josephson junction can be modeled by an equivalent circuit of an
inductor L in parallel with a capacitor C and resistor R. (b) Solutions of the differential
equation of the circuit for low (dashed) and high (solid) current. The solutions yield a constant
current flow for I < Ic and an oscillating current flow with frequency Ω = 2eV/h for I > Ic.
The frequency increases for a higher voltage drop across the junction (red and dashed red
line in panel (d)). (c) Spatial modulation of the Josephson current due to a perpendicular
magnetic field. A constant magnetic field B perpendicular to the junction leads to a spatial
modulation of the Josephson current across the junction (red arrows). The oscillation period
is given by the magnetic flux through the junction, λx ≈ Φ0/Bd. In the situation shown the
flux through the junction Φ is equal to the magnetic flux quantum Φ0. (d) Solutions of the
differential equation of the circuit for low (dashed) and high (solid) voltage.

Therefore, a Josephson junction can be thought of as an ideal inductance,

LJ = Φ0
2πIc

cos(ϕ), (3.17)

without resistance. Together with the dissipative and capacitive currents, the total current

through the Josephson junctions is equal to the sum of the contributions from each parallel

element (see Fig. 3.4). Therefore, the corresponding differential equation which describes the

equivalent circuit is
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Icsin(ϕ) + V

R
+ C

∂V

∂t
= Iext, (3.18)

with Iext the external current bias. The Josephson relations help two rewrite eq. 3.18 to the

equation of motion of the phase difference ϕ,

∂2ϕ

∂t2
+ 1
RC

∂ϕ

∂t
+ ω2

Jsin(ϕ) = Iext, (3.19)

where ωJ =
√

2eIc/~C = 1/
√
L0C is the characteristic frequency of the Josephson junction.

As addressed in Chapter 1, in the limit of small amplitudes, when sin(ϕ) ≈ ϕ, eq. 3.19

corresponds to the equation of motion of a damped, driven harmonic oscillator. Again, 1/γ = RC

determines the damping due to dissipative quasiparticles tunneling across the junction (I > Ic).

The solution to this equation are plasma oscillations of the superconducting charge carriers as

plotted exemplary in Fig. 3.4 (c) and (d) for below threshold (I < Ic) and above threshold

(I > Ic) excitation. They lead to an electric current and field normal to the insulating barrier

and correspond to longitudinal excitations of the Cooper pair density (see Chapter 1). These

are the fundamental low-energy excitations of high-temperature cuprate superconductors and

are called Josephson-plasma resonances (see Chapter 3.5).

3.4.2 Stack of Josephson Junctions

A stack of Josephson junctions is formed by connecting a number of laterally extended weak links

(of dimension larger than the Josephson penetration depth λJ) in series (see Fig. 3.5 (a)). In

such a system the strong coupling between adjacent junctions has to be considered to accurately

describe their collective response to electromagnetic radiation. If all junctions are equivalent,

as in Figure 3.5 (a), the electric and magnetic field in each junction are related through the

Maxwell equation and the 1st Josephson equation. Figure 3.5 (b) summarizes the relevant fields

and currents in a sketch of a stack of Josephson junctions with number l. For the case of an

electric field polarized along the z-axis and the magnetic field polarized along the y-axis, the

combination of the two sets of equations yields,

∂H l

∂x
= 4π

c

[
Icsin

(
ϕl
)

+ σ El
z

]
+ ε

c

∂El
z

∂t
(3.20)

where ε is the dielectric constant of the insulating layer [182]. The phase difference between
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Figure 3.5: Stack of Josephson junctions. (a) Schematic of a stack of equivalent Joseph-
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equivalent Josephson junction and the corresponding equivalent circuit. A stack of equivalent
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adjacent layers evolves according to

∇xyϕ
l =

8π2λ2
xy

cΦ0d

(
Ilxy − Il+1

xy

)
+ 2πd

Φ0

[
Bl × z

]
, (3.21)

where Ilxy is the in-plane supercurrent in the l-th superconducting layer and the Nabla operator

∇xy = (∂x, ∂y) only acts on the in-plane direction [183, 184]. Additionally, the total current in

each layer must be conserved thus the continuity equation,

∇xy
(
Ilxy
)

= −1
d

(
I l+1
z − I lz

)
− 1
d

(
εz
4π

∂

∂t
+ σz

)
(El+1

z − El
z). (3.22)

This equation states that an in-plane gradient must be compensated by an out-off-plane current

to prevent accumulation of charges. Here, the first term of the right hand side accounts for the

Josephson supercurrent between adjacent layers, whereas the second term accounts for dissipa-

tive charge transport in the insulating layer with dielectric constant εz and conductivity σxy [184].

This continuity equation can be substituted into eq. 3.21 and the difference ∇xy
(
Ilxy − Il−1

xy

)
is

commonly written using the discrete differential operator ∆lI lz = I l+1
z +I l−1

z −2I lz [184]. Together
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with eq. 3.20 and the first and second Josephson equation this yields

∇2
xyϕ

l = 1
λ2
J

(
1−

λ2
xy
d2 ∆l

)(
sin
(
ϕl
)

+ 4πσzλ2
J

c2
∂ϕl

∂t
+ εzλ

2
J

c2
∂2ϕl

∂t2

)
, (3.23)

the so-called discrete sine-Gordon equation, where λ2
J = cΦ0

8π2Icd
is the Josephson penetration

depth [182]. The Josephson penetration depth corresponds to the London penetration depth of

the weak coupling region with reduced super fluid density (λ2
J ∝ 1/ρ∗s ) [182, 185]. Typical values

are λJ ∼ 10 µm to 100 µm � λL [185].

In the limit of small amplitudes (sin
(
ϕl
)
≈ ϕl), like the RCSJ-model, the system shows col-

lective oscillations of the Cooper pairs across the junctions. These oscillations resonate with

the Josephson plasma frequency Ω2
J = c2

εzλ2
J
and the electric field is orientated along the z-

direction. Depending on the propagation direction, the sine-Gordon equation gives rise to

transverse (in-plane propagation, see Fig. 3.6 (a)) and longitudinal (out-off-plane propaga-

tion, see Fig. 3.6 (b)) plasma oscillations. For small amplitudes the solutions take the form of

plane waves ϕ (r, t) = ϕ0 (r, t) ei(qr−iωt) and the dispersion along the in-plane direction qx,y is

given by [182],

Ω2(qx,y) = Ω2
J + c/

√
εzq

2
x,y. (3.24)

Therefore the Josephson plasma oscillations in-plane show an equally rapid dispersion as elec-

tromagnetic waves (see Fig. 3.6 (a)). For propagation along the z-direction, the dispersion of

the longitudinal plasma waves can be determined by incorporating charging effects of the su-

perconducting electrodes as is carried out in Ref. [183]. With the Debye length µ, defining the

distance over which mobile charge carriers can screen an electric field, the longitudinal plasma

dispersion

Ω2(qz) = Ω2
J + c2µ2q2

z/λ
2
z (3.25)

is substantially weaker (see Fig. 3.6 (b)). For small charging effects µ→ 0, the dispersion reduces

to Ω(qz) = ΩJ [183]. The sine-Gordon equation (eq. 3.23) can be brought into an easier form by

introducing the dimensionless variables x → x/λz, y → y/λz and t → ωJt. Furthermore, the

discrete differential operator ∆l transforms into the continuum operator ∂2/∂z2 if the wavelength

of the electromagnetic radiation is much larger than the layer spacing d [182],

∇2
xyϕ =

(
1− ∂2

∂z2

)(
sin (ϕ) + γ

∂ϕ

∂t
+ ∂2ϕ

∂t2

)
. (3.26)
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Figure 3.6: Transverse and longitudinal Josephson plasma modes and their dis-
persion relation of the Josephson plasma mode. (a) Schematic of transverse and
longitudinal Josephson plasma modes. The electrodynamics of such a stack gives rise to
Josephson plasma modes, which can either propagate perpendicular to the stacking direction
and form transverse modes (shown in panel (b)) or along the stacking direction to form a
longitudinal excitation of the Josephson plasma. In both cases the tunneling currents (red
arrows) are parallel to the stacking direction. c Dispersion relation of a transverse Josephson
plasma mode. The dispersion of a transverse mode (dashed line), which propagates along the
junctions, shows a parabolic dispersion close to qPlas. = 0, which approaches the linear disper-
sion of light ν = k/

√
ε∞ already at a fraction of 10−4 of the Brillouin zone. The transverse

Josephson plasma mode resembles the dispersion of a longitudinal phonon (see Chapter 1).
(d) Dispersion relation of a longitudinal Josephson plasma mode. The longitudinal plasma
mode only shows a weak dispersion up to the Brillouin zone boundary.
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As outlined in the next section, this long-wavelength limit becomes important for the special

case of cuprate superconductors which represent stacks of intrinsic Josephson junctions [186].

In these materials the typical frequencies ωJ of the Josephson junctions are on the order of THz

with wavelength of ∼ 300 µm. Every Josephson junction in these materials has microscopic

dimensions on the order of the crystal unit cell (few Å) (see Fig. 3.7 a), which are therefore

much smaller than the relevant THz-wavelength.

3.5 Cuprates

Cuprate superconductors attracted great attention since their discovery by Bednorz and Müller

in 1986 [6, 7], with critical temperatures Tc that exceed the boiling temperature of liquid nitrogen

(see Fig. 3.7 (a)) [187]. The high critical temperatures of cuprates significantly exceed the

putative limit of Tc = 30 K derived from Fermi-liquid-like metals described by the BCS theory

[188] and hold broader potential for applications.

The cuprate superconductors are generally considered to be quasi two-dimensional systems in

which mobile charge carriers primarily reside within weakly coupled copper oxygen (CuO2)

planes as sketched in Fig. 3.7 (b) and (c). The superconducting layers are separated by neigh-

bouring dielectric planes giving rise to a layered crystal structure. Furthermore, the dielectric

layers function as charge reservoir layers that control the carrier concentration in the CuO2

plane(s) [189, 190]. In the special case of Y-Ba-Cu-O based superconductors the doping is con-

trolled through the amount of oxygen inside the reservoir layers YBa2Cu3O6+δ. More generally,

doping can be controlled by elemental substitution of the parent compound (La2−xBaxCuO4).

All cuprate compounds have in common that superconductivity emerges from an antiferromag-

netic Mott insulating phase of the parent compounds, shaded green in Figure 3.7 (c) [165, 192].

This is because the CuO2-planes define the electric and magnetic properties of the cuprate ma-

terials. Due to their orbtial order (see Fig. 4.7 (b)), super exchange interaction between the

Cu2+ and O2− ions within the layers leads to an antiferromagnetic ordering of the spins. This

spin ordering results is the reason why the undoped parent compounds are anti-ferromagnetic

insulators (AFI). At higher doping, the critical temperature Tc of the superconducting state

follows a dome-like shape as a function of doping, with a maximum Tc around 16% doped holes

per CuO2 unit (optimally doped). A similar phase diagram is seen when electrons are doped
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Figure 3.7: Cuprate superconductors. (a) Maximum Tc of cuprate and BCS supercon-
ductors. The discovery of cuprate superconductors (red dots) in 1961 increased the maximum
critical temperature significantly above the boiling temperature of liquid nitrogen (dashed
line) and the Tc of conventional BCS-type (grey dots) superconductors. (b) Schematic struc-
ture of a cuprate superconductor. All cuprate materials exhibit a layered structure, where
CuO2 planes are separated by insulating layers. (c) Generic phase diagram of the cuprates.
Orbital ordering of the order of CuO2 layers, with Cu2+ (blue) and O2− (red) ions, leads to
superexchange interaction of these localized charges and to an antiferromagnetic ordering of
the spins. The undoped parent compound of the cuprat materials are antiferromagnetic insu-
lators (AFI) at low doping plotted in green. At finite doping level, a superconducting dome
emerges (red) around optimal doping popt.. Between the AFI and superconducting phase, an
exotic normal state exists which is called pseudogap phase (shaded in grey). (d) Upper criti-
cal field as a function of temperature. The pair-breaking field Bc,2 along the planes (red dots)
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anomalous low charge carrier density of cuprates further leads to significantly higher critical
fields compared to conventional superconductors (grey dots). Part of this figure are adapted
from Ref. [191]
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into the parent compound, however with a more robust antiferromagnetic phase and a lower

Tc [193]. Above Tc, the materials transition into an exotic ’normal‘ state phase which is called

the pseudogap phase, which will be further discussed below. Below Tc, due to their layered

structure, 3D superconducting transport is mediated by tunneling of paired electrons between

adjacent CuO2-planes [194]. However, the origin of the pairing is still subject to controversial

debate [194, 195].

The c-axis electrodynamics of cuprates are governed by the physics described by the sine-Gordon

equation (eq. 3.23). This leads to a strong anisotropy of the superconducting properties most

notably the Ginzburg-Landau coherence ξ length and the London penetration depth λL [185].

The weak coupling between superconducting layers leads to a significantly higher effective mass

of the charge carriers along the c-axis (mc � mab) and therefore ξc � ξab (ξ ∝ 1/m)

and λL,c � λL,ab. The significantly longer London penetration λL depth for B ‖ c becomes

immediately apparent from the small supercurrent along the c-axis associated with the Josephson

tunneling. The anisotropy of the Ginzburg-Landau coherence length ξ on the other hand leads

to a strong anisotropy of the upper critical fields Bc,2, above which Cooper pairs are broken

(Bc,2 ∝ 1/ξ2). Due to ξcuprates � ξBCS, cuprates show much higher critical fields compared

to conventional superconductors (see Fig. 3.7 (c)) [185]. The latter is a consequence of the

anomalous low charge carrier density and thus low Fermi velocity in cuprates [192, 196]. Typical

values of ξcuprates and λL,cuprates are ∼ 1 nm and 100 nm to 1000 nm respectively.

3.5.1 Optical Properties of Cuprates

In typical cuprate materials the Josephson frequency ΩJ =
√
c2/εzλ

2
J in the sine-Gordon equation

takes a value on the order of ∼ THz. This results in characteristic features in the infrared optical

properties of these materials. As discussed in Chapter 1 a Josephson plasma wave (JPW), like

any other (normal) plasma wave, screens electromagnetic radiation below the plasma frequency.

In the case of a JPW this plasma frequency corresponds to the Josephson frequency ωJ at

which the real part of the dielectric function ε1 crosses zero. Above ωJ transverse solutions

of the sine-Gordon equation exist in the form of Josephson-plasma-polaritons and thus, light

can propagate into the material (see Fig. 3.8 (a)) [197, 198]. The plasma frequency is directly

related to the superfluid density inside the superconductor ΩJ ∝
√
ρs. The dielectric response
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can be determined from the dispersion relation eq. 3.24 and can be written as [198],

εn (ω) = ε∞

(
1−

ω2
J,n
ω2

)
+ iε∞ω

2
J,nδ(ω) + 4π i/ωσn,R. (3.27)

Here the finite conductivity σn,R is due to quasiparticle scattering and corresponds to the shunted

resistor in the RCSJ-model. Different to a dissipative plasmon, the imaginary part of the dielec-

tric function ε2 is a delta peak at zero frequency and the real part ε1 diverges as 1/ω2 plotted

in Figure 3.8 (b). The delta peak is responsible for the zero dc-resistance of the superconduc-

tor. This becomes obvious when considering the case of a Lorentz oscillator at zero resonance

frequency in the limit of zero damping (γ → 0) (see Chapter 1). The Josephson plasmons, and

longitudinal modes in general, are identified by a peak in the loss function (Im(−1/ε)), which

is centered around the plasma frequency ΩJ drawn in Figure 3.8 (c). This simple oscillator

model succeeds (for small ϕ) to describe the infrared optical properties of so-called single layer

cuprates, like La2−xBaxCuO4, by fitting eq. 3.27 to a measured dielectric function [6, 199].

However, other cuprates (especially those with a Tc higher than TN2,liq. = 77 K) are composed

of a stack of two ((Y-Ba-Cu-O compounds) [187] or more (Bi-Sr-Ca-Cu-O compounds) [200])

inequivalent Josephson junctions as sketched in Figure 3.9. This has important consequences for

the optical properties and the dynamics of the Josephson plasma-polaritons. Like the description

within the RCSJ-model these stacks can be considered as multiple inequivalent circuits in series

like shown in Figure 3.9 (b) [198]. Thus, the optical conductivity (σ (ω) = −iωε(ω)/4π) of

such a stack is equal to the series conductivity of the individual junction σn (ω) weighted by a

geometric factor sn = dn/D,

σ (ω) =
(∑

n

sn
σn (ω)

)−1

→ ε (ω) =
(∑

n

sn
εn (ω)

)−1

. (3.28)

Here, εn (ω) is the dielectric response of an individual junction as in eq. 3.27. For the case of a

bilayer cuprate (two CuO2 layers per unit cell) the total dielectric function is

ε (ω)
ε∞

=
(ω2 − ω2

J,1)(ω2 − ω2
J,2)

ω2(ω2 − ω2
T) , (3.29)

where Ω2
T = (s1Ω2

J,2 +s2Ω2
J,1)/(s1 +s2) is the so-called transverse Josephson plasmons frequency.

Interestingly, there are two plasma edges, corresponding to two longitudinal plasmons and a
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Figure 3.8: Optical properties of a single layer Cuprate. (a) Simulated THz-
reflectivity of a Josephson plasma resonance. A Josephson plasma resonance appears as
a sharp reflectivity edge at the Josephson plasma frequency ΩJ (black line). A normal elec-
tron plasma oscillation with the same plasma frequency produces a smooth reflectivity profile
(dashed line). (b) Simulated dielectric function of a Josephson plasma resonance. The dielec-
tric function of the Josephson plasma resonance is a delta peak at zero frequency (imaginary
part , red) and a 1/ω divergence of the real part (blue). The normal plasmon shows a
Lorentzian centered around ω = 0 due to the finite damping coefficient γ of dissipative trans-
port (dashed red). Instead of an 1/ω divergence, the real part of the dielectric functions
saturates to a finite value (dashed blue). (c) Simulated loss function of a Josephson plasma
resonance. Both, Josephson and normal plasmon, exhibit a characteristic peak in the loss
function (−Im(1/ε)).

93



Chapter 3 - Theory of Cuprate Superconductors and Josephson Physics

pole in the real part of the dielectric function at ωT which corresponds to a transverse optical

plasma oscillation, with oscillator-strength AT = ε∞(1 − Ω2
J,1/Ω2

T) (1 − Ω2
J,2/Ω2

T) (see Fig.

3.9 (c)). The resulting frequency dependent reflectance is similar to two transverse excitations

with ΩTO,1 = 0 and ΩT=,2 = ΩT separated by a Reststrahlenband from their corresponding

longitudinal frequencies at ΩLO,1 = ΩJ,1 and ΩLO,2 = ΩJ,2 (see Fig. 3.9 (a) and Chapter 1).

The transverse mode appears because the different junctions are connected in series, and the

response functions is given by the sum of the individual impedances (see Fig. 3.5) instead of

conductances (see Chapter 1). The two Josephson plasma modes represent the in-phase (ΩJ,1)

and out-off phase (ΩJ,2) solutions of the differential equations, i.e., the lower frequency plasmon

corresponds to in-phase tunneling currents across both junctions, whereas the higher frequency

plasmon are out-off-phase currents in the two junctions [197, 201]. The current density of

the higher frequency mode, due to their stronger coupling (∝ 1/d), is mostly concentrated in

between the more closely spaced layers [202]. That is why this plasmon is commonly referred to

as intra-bilayer and the low frequency plasmon as inter-bilayer mode. Their real space current

patterns are sketched in Figure 3.9 (d) and (f). The two longitudinal modes are identified by

peaks in the energy-loss function Im(−1/ε), whereas the transverse mode creates a peak in the

imaginary part of ε which is shown in Fig. 3.9 (c).

Figure 3.10 compares this model to the prototypical bilayer cuprate YBa2Cu3O6.5 (Data taken

from [30, 203, 204]). The two Josephson plasma resonances of the inter-bilayer junction at

ΩJ,1 = 29 cm−1 and the bilayer junction at ΩJ,2 = 475 cm−1 have clear signatures in the loss

function and the reflectivity. The transverse mode at ΩT = 410 cm−1 is visible as a peak in the

imaginary part of the dielectric function. These optical features of the superconducting state are

well reproduced by the model above and are superimposed on top of a background of infrared

active lattice vibrations. An extension of this model to finite momentum, like presented for a

single junction, involving the Josephson equations is presented in Ref. [205] and [202]. The

main result are the dispersion relations for the two Josephson plasma modes,

ω2
i (qx,y) =

Ω2
J,1 + Ω2

J,2 + c2q2
x,y/ε∞

2 ±

√√√√(Ω2
J,1 + Ω2

J,2 + c2q2
x,y/ε∞

2

)2

− Ω2
J,1Ω2

J,2 − c2q2
x,y/ε∞,

(3.30)

in the transverse configuration. Similar, to Fig. 3.6 and the relation for a single junction

the dispersion of the transverse modes scales as q2
x,y, for small qx,y. However, when ΩJ,1 (qx,y)
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Figure 3.9: Optical properties of a bilayer cuprate. (a) Simulated reflectivity of a stack
of in-equivalent Josephson junctions. A stack of in-equivalent Josephson junctions (depicted
in panel (b)) creates multiple reflectivity edges at the Josephson plasma frequencies ΩJ,i
(black curve). In between the two plasma edges a transverse resonance ΩT appears, which
is separated by a Reststrahlenband from ΩJ,2. The grey line is a simulation result for low
dissipation (grey line). (b) Schematic geometry of two in-equivalent intrinsic Josephson
junctions and the corresponding equivalent circuit. (c) Simulated dielectric function of a
stack of in-equivalent Josephson junctions. The dielectric function shows a 1/ω divergence
of the real part (blue) at low frequencies in addition to a dispersive feature at ΩJ,2, and the
imaginary part is a delta peak at zero frequency and a Lorentzian of finite width at ΩT.
The light red and blue lines are simulations for low dissipation. (e) Simulated loss function
of a stack of inequivalent Josephson junctions. The two Josephson plasma modes become
visible as peaks in the loss function and their current pattern mainly involves current in the
inter-bilayer (shown in panel (d)) and intra-bilayer (shown in panel (f)) region.
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Figure 3.10: Optical properties of a bilayer YBa2Cu3O6.5. (a) The optical properties
of the bilayer Cuprate YBa2Cu3O6.5 (grey) below the transition temperature Tc = 52 K can
accurately be described with the optical properties shown in Fig. 3.9 (red curves). It captures
the two plasma edges at ΩJ,1 = 29 cm−1 and ΩJ,2 = 475 cm−1, as well as the transverse
plasma resonance at ΩT = 410 cm−1 (see panel (b)) and the peaks in the loss function at
ΩJ,1 = 29 cm−1 and ΩJ,2 = 475 cm−1 (see panel (c)). The remaining features in the optical
properties are due to infrared active lattice vibrations.
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Figure 3.11: Dispersion relation of the Josephson plasma mode in a bilayer sys-
tem. (a) Dispersion relation of the transverse Josephson plasma modes in a bilayer system.
The dispersion of Josephson plasma modes in bilayer system shows two branches (black
dashed lines), one for the inter-bilayer and one for the intra-bilayer mode. The dispersion
of the transverse modes which propagates along the CuO2 planes show a parabolic disper-
sion close to qPlas = 0, which approach the linear dispersion of light ν = k/

√
ε∞. The high

frequency plasmon at ΩJ,2 monotonously disperses upwards, whereas the lower frequency
plasmon at ΩJ,1 shows an avoided crossing behavior when ΩJ,1(qx,y) approaches ΩJ,2(0) and
ΩJ,1 (qx,y) → ΩJ, for qx,y → ∞. This behavior is reminiscent of a phonon-polariton disper-
sion (see Chapter 1). (b) Dispersion relation of the longitudinal Josephson plasma modes
in a bilayer system. The longitudinal plasma modes only show a weak dispersion up to the
Brillouin zone boundary.

approaches ΩJ,2(0), the dispersions exhibits an avoided crossing behavior and ΩJ,1 (qx,y) asymp-

totically approaches ΩT as can be seen in Figure 3.11 (a). The high frequency plasmon ΩJ,2 (qx,y)

monotonously disperses upwards. The coupling between the two junctions in this configuration

is dominated by an capacitive response leading to the strong (light like) dispersion of the trans-

verse Josephson plasmons [202].

In the longitudinal configuration the phase-differences vary along the z-axis and the coupling

is purely inductive [202][146]. As a result, the dispersion along the z-axis is very weak and

featureless (see Fig. 3.11 (b)), but also shows two Josephson plasmon branches.

These optical fingerprints of the superconducting condensate in bi-layer cuprates are strongly

temperature dependent as can be seen in Figure 3.12. The simple addition of εJPR (ω) to

εPhonon (ω) to model the total infrared optical dielectric response however fails to explain this

temperature dependence. As shown in Figure 3.12 (a), the emergence of the transverse mode

is accompanied by a phonon reshaping in the spectral range of 200 cm−1 to 700 cm−1 , which

is strongest for the Cu-O bending mode at 320 cm−1 [204]. The transverse Josephson plasma
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mode gains spectral weight from this phonon. To explain this, Munzar et al. extended the

original model by including local fields for the inter- and intra-bilayer region, which act on the

ions of the infrared-active phonon modes [206, 207]. The phonon anomalies can be explained by

changes in these local electric fields due to the transition in the superconducting state. To fit the

temperature dependence it was only necessary to adjust the damping rate γ of the transverse

plasma mode as shown in Figure 3.12 (b). Interestingly, the phonon reshaping due to the

intra-bilayer plasmon persists up to 150 K, far above the transition temperature of Tc ≈ 59 K

and it has been proposed that this is a signature of a precursor state of superconductivity

[208]. This precursor state is believed to involve pre-formed Cooper pairs in the CuO2 planes

far above Tc and Josephson coupling within the strongly coupled bilayers. While this process

sets in above the transition temperature, large phase fluctuations prevent coherent tunneling

between the superconducting condensates across the inter-bilayer junction [68, 192]. In fact,

the low frequency Josephson plasma mode in YBa2Cu3O6.5 shows the expected behavior with

increasing temperature. Fig. 3.12 (c) shows the temperature dependence of the low frequency

loss function peak of YBa2Cu3O6.5. The spectral weight of the peak (∼ Ω2
J,1) as well as its

position decrease with increasing temperature and vanish at Tc. Further, this mode usually lies

below the energy range of the infrared active lattice vibration which allows the simple description

of its dielectric response by ε1 (ω) = ε∞
(
1− ω2

J,1/ω
2
)
, without any reshaping of the optical

lattice vibrations. Indeed, the total phonon spectral weight in YBa2Cu3O6.5 remains constant

up to high temperatures and only shows a smooth transition at Tc as plotted in Fig. 3.12 (d)

[206, 207, 212].
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Figure 3.12: Temperature dependence of the optical properties of YBa2Cu3O6.5.
(a) Optical conductivity of YBa2Cu3O6.5 for different temperatures. The optical conductivity
of YBa2Cu3O6.5 shows a spectral weight transfer from the ΩIR = 320 cm−1 phonon mode
to the transverse plasma mode at ΩT = 410 cm−1 that sets in at 150 K. (b) Simulated
optical conductivity of YBa2Cu3O6.5 for different damping parameters of the intra-bilayer
plasmon. The simulation involves introducing local fields in between the inter and intra-
bilayer region according to the work of Munzar et al. [206, 207]. Only the damping rate γ
of the transverse plasma mode is varied to reproduce the experimentally observed behavior
accurately. (c) Temperature dependence of the spectral weight of the inter-bilayer Josepshon
plasmon. The low-frequency Josephson plasma edge of the inter-bilayer junction disappears
at Tc. (d) Temperature dependence of the phonon oscillator strength. The spectral weight of
the infrared phonons only shows a small anomaly at Tc and then stays constant up to room
temperature. Part of the figure, caption and data are adapted from Ref. [209–212].
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Chapter 4

Parametrically Amplified Phase-Incoherent

Superconductivity in YBa2Cu3O6+δ

4.1 Introduction

Recent optical experiments using intense THz frequency excitations pulses demonstrated a

plethora of nonlinear phenomena of the Josephson physics in cuprates, like the nonlinear prop-

agation of Josephson plasmons in the form of solitons [74], as well as parametric amplification

[75] and third harmonic generation [41] from a Josephson plasma resonance. Beyond, resonant

large amplitude lattice excitation in the mid-infrared range revealed signatures of Josephson cou-

pling of the stacked CuO2 plane above the equilibrium transition [30–32]. These experiments

showed that optical excitation can tip the competition between electronic/magnetic orders and

superconductivity in favor of the latter and suggest that preformed, phase-incoherent, Cooper

pairs exist throughout the pseudogap phase and which are being synchronized by the optical

driving. These signs of a precursor state of superconductivity were also predicted by several

other measurements of the equilibrium superconducting properties [208, 213–217].

Two of the out-of-equilibrium experiments on the THz- Josephson plasmon dynamics motivated

the work presented in the following paragraphs. The first involves the resonant optical exci-

tation of the apical oxygen vibrations in the underdoped bilayer cuprate YBa2Cu3O6.5 [32].

Above the critical temperature, this vibrational excitation entails the appearance of a short-

lived characteristic peak in the THz loss-function reminiscent of a transiently formed Josephson

plasmon shown in Fig. 4.1 (a) as red symbols at a pump-probe time-delay of 0.8 ps. The grey

curve (also in panel (b)) shows the equilibrium loss which is featureless. This finding was later
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Figure 4.1: Light-induced superconductivity and competing orders. (a) Light in-
duced loss function peak in YBa2Cu3O6.5. After resonant lattice excitation of the apical
oxygen vibration in YBa2Cu3O6.5, above the equilibrium Tc, a peak in the loss function
appears at 1.9 THz, which was attributed to the inter-bilayer plasma resonance. (b) Light
induced red-shift of the loss function of the intra-bilayer Josephson plasmon in YBa2Cu3O6.5.
Together with the reappearance of the low frequency loss function peak, the loss function
peak of the intra-bilayer junction shifts to lower frequencies (shaded in red). (c) The volume
fraction of the transformed volume, which shows these optical fingerprints of a supercon-
ductors, vanishes only above 350 K. Part of the figure and caption are adapted from Ref.
[30, 32].

corroborated by another time-resolved reflectivity measurement carried out in the mid-infrared

spectral range [30], which allowed for the measurement of the intra-bilayer Josephson plasmon

at Ωintra = 14.2 THz. It was found that in the transient state, drawn as a red line in Fig.

4.1 (b), the inter-bilayer (low frequency) Josephson plasmon acquires spectral weight at the

expense of the intra-bilayer plasma mode, while the total spectral weight remained conserved.

This can be seen in Fig. 4.1 (b) as a red-shift of the high-frequency intra-bilayer plasmon from

its equilibrium position drawn in grey and the independent measurement at the low THz fre-

quencies (shown in Fig. 4.1 (a)) [30]. The spectral weight of both plasmons is determined by

the superfluid density and consequently their plasma frequencies ω2
p ∝ ρs. Thus, this type of

excitation increases inter-bilayer coupling at the expense of the intra-bilayer coupling, which

strengthens the superconducting state. Above Tc, the same behavior was observed up to the

pseudogap temperature T∗ = 350 K, creating a short-lived state with all THz-optical signatures

of the superconducting state. The second set of experiments used strong-field THz nonlinear

spectroscopy to reveal hidden states, which are invisible to linear spectroscopy. The responsible
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Figure 4.2: Third-harmonic generation in a cuprate superconductor (a) THz-
reflectivity of La1.885Ba0.115CuO4 for small and high THz-fields. The THz reflectivity of
a single Josephson junction (grey) strongly reshapes and shows a third harmonic response
(red and shaded red) when driven by strong THz light pulses. (b) The third harmonic re-
sponse was taken as a hallmark of superconducting tunneling and could be observed up to
the characteristic charge ordering temperature TCO, far above Tc, in the single layer cuprate
La1.885Ba0.115CuO4. Part of the figure and caption are adapted from Ref. [41].

nonlinear four-wave mixing allowed to detect the optical third harmonic of a single-cycle THz-

pulse generated from La1.885Ba0.115CuO4 as a measure of the third-order optical nonlinearity

χ(3) induced by the superconducting state [41, 75]. Figure 4.2 (a) shows the THz reflectivity of

La1.885Ba0.115CuO4 for low fields (grey) and high fields (red). The low field response shows a

reflectivity edge at the plasma frequency as predicted by the linear sine-Gordon equation. At

larger electric field, this edge distorts due to parametric amplification, and a third harmonic

peak appears at three times the center frequency of the THz light. This nonlinearity originates

from the Josephson tunneling described by the sine-Gordon equation and expanding sin(ϕ) up

to the second term

∇2
xyϕ =

(
1− ∂2

∂z2

)(
ϕ− 1

6ϕ
3 + γ

∂ϕ

∂t
+ ∂2ϕ

∂t2

)
(4.1)

Most importantly, the third harmonic could be detected even above the equilibrium transition

temperature Tc, and up to a temperature TCO as plotted in Fig. 4.2 (b). The red data points

are the integrated spectral weight of the optical third-harmonic (shaded red in Fig. 4.1 (d)).

Below TCO the material develops a charge-ordered phase. This supports the presence of a pair

density wave condensate, proposed earlier [43, 44, 71, 218, 219], in which nonlinear mixing of
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optically silent tunneling modes drives large dipole-carrying supercurrents [41]. This type of

optical nonlinearity has some analogy to the hyper-polarizability in hyper-Raman scattering.

Both types of nonlinear interaction are sensitive to optically silent modes, which do not appear

in the linear optical properties, measured by infrared or Raman spectroscopy.

The following paragraphs will show how ultra-fast second harmonic generation can be used to

measure the coherent dynamics of Josephson plasma modes in YBa2Cu3O6+δ, impossible with

conventional time-resolved THz-spectroscopy. They appear as coherent oscillations in the time-

resolved second harmonic intensity after optical excitation. Similar to [41, 75] and the previous

experiments on YBa2Cu3O6+δ [30, 32], these results suggest residual pairing fluctuations above

the equilibrium transition temperature. Beyond that, momentum-resolved measurements of the

SH-intensity allow to identify the coherent oscillations as finite-momentum Josephson plasma

modes. These results and the earlier ones involving THz time-domain spectroscopy [30, 32] can

be explained by a new microscopical model, also outlined below. Parts of this chapter are taken

from Ref. [166, 220].

4.2 Properties of YBa2Cu3O6+δ

The experiments presented in the next paragraphs were conducted on underdoped YBa2Cu3O6+δ

single crystals. The samples were grown by the top-seeded solution (flux) method in Y-stabilized

zirconium crucibles [221, 222]. The compound YBa2Cu3O6.5 crystallizes in a centrosymmetric

orthorhombic unit cell with Pmmm space group symmetry and comprises bilayers of buckled

CuO2 planes as depicted in Figure 4.3 (a) [223]. The two intrinsic Josephson junctions are

sketched in Figure 4.3 (b) shaded in grey and beige. The more closely spaced intra-bilayer

junction (ΩP,2 = 14.2 THz) is separated by an insulating layer of Yttrium atoms, whereas the

weakly-coupled inter-bilayer junction (ΩP,2 = 0.9 THz) contains Cu-O chains along the b-axis

that serve as charge reservoir and control the hole doping of the CuO2 planes. With increas-

ing oxygen content, the electrons in the CuO2-planes are progressively transferred to the Cu-O

chains and the compound becomes hole-doped. Technically, this doping p is controlled through

annealing in flowing O2-atmosphere and subsequent rapid quenching [224, 225]. YBa2Cu3O6.5

contains both filled and empty chains in equal numbers and exhibits short-range Ortho-II order-

ing of the vacancies, in which adjacent chains are alternately filled or empty as shown in Figure
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Figure 4.3: Structure and optical properties of YBa2Cu3O6.5. (a) Crystal structure
of YBa2Cu3O6.5. YBa2Cu3O6.5 crystallizes in a centrosymmetric orthorhombic unit cell with
Pmmm space group symmetry. The CuO2 layer are separated by insulating layers containing
Yttrium (intra-bilayer) and charge reservoir layers containing Barium atoms (inter-bilayer).
The apical oxygen atoms in the inter-bilayer region are shaded in yellow. The doping of the
Y-Ba-Cu-O compounds is controlled by the oxygen concentration of the inter-bilayer region
in the so-called chains.(b) Schematic of the inter- and intra-bilayer junction. (c) The energy
loss function and real part of the optical conductivity σ1 (ω) along the c-axis of YBa2Cu3O6.5
for temperatures of 10 K (red lines) and 295 K (grey lines) identifies the Josephson plasma
modes as red and magenta shaded peaks. The remaining resonances can be ascribed to
infrared-active lattice vibrations. The apical oxygen vibrations at Ωap,YBCO7 = 17.2 THz and
Ωap,YBCO6 = 20.5 THz, were excited by optical pump-pulses tuned to ΩMIR = 18 THz center
frequency (spectrum shaded in orange).

4.3 (a) [223].

The oxygen atom connecting the chain-copper atoms and the plane-copper atoms, highlighted

yellow in Fig. 4.3 (a), the apical oxygen, deserves special attention. This oxygen atom was found

to be intimately related to the superconducting state as its distance from the CuO2 changes

with doping and is correlated with Tc [226–228]. The highest frequency lattice vibration in

YBa2Cu3O6+δ corresponds to a polar oscillation of this apical oxygen ion which splits into two

inequivalent modes, due to the different chemical environment of the filled and empty chains

[204]. The oscillations of the apical oxygen on a filled chain and empty chain site resonant at
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ΩYBCO7 = 17.2 THz and ΩYBCO6 = 20.5 THz, respectively. They appear as dispersive peaks in

the real part of the optical conductivity plotted in Fig. 4.3 (d), denoted with Ωap. Continuous

filling of the chains, starting from the parent compound YBa2Cu3O6 to near-optimally doped

YBa2Cu3O7, leads to a continuous shift of the spectral weight from the high frequency to the

low-frequency mode [204].

4.2.1 Phase diagram of YBa2Cu3O6+δ and Precursor Superconductivity

The phase diagram of YBa2Cu3O6+δ is shown in Figure 4.4 and follows the generic cuprate

phase-diagram which is sketched in 3.7 (c) [192]. The electronic properties of the YBa2Cu3O6+δ

compounds are dominated by the CuO2 and the orbital order between the Cu2+ and O2− ions.

Fig. 4.4 (b) shows an on-top view of the orbital orientation of the CuO2-planes The pσ(x, y)

orbitals (two lobes) of the oxygen ions hybridize with the d(x2 − y2) orbitals (four lobes) of

the copper ions. Super exchange interaction between the Cu2+ and O2− ions within the layers

leads to an antiferromagnetic ordering of the spins. As a result, the undoped parent compound

YBa2Cu3O6 is an antiferromagnetic insulator (AFI), shaded in green in Figure 4.4 (a), which

only extends up to a moderate doping of p = 0.02. Increasing doping empties the pσ-band

closest to the Fermi energy which arises from the planar d(x2 − y2) states of the Cu2+ and

pσ(x, y) states of O2− [191, 229, 230] and superconducting dome (shaded in red) emerges which

generally peaks at a doping level p = 0.2, corresponding to YBa2Cu3O6.92. Weaker doping

levels are generally referred to as underdoped and stronger doping as overdoped. A sketch of the

Fermi surface along the in-plane momenta kx and ky is shown in Fig. 4.4 (c). Two regions of

the Fermi surface are of special interest: the antinode at the Brillouin zone boundary and the

nodal region which lies on a diagonal cut through the Brillouin zone. Since the superconducting

condensate arises from the charge carriers closest to EF also the superconducting gap will exhibit

this d(x2 − y2) symmetry which was confirmed by angle resolved photoemission measurements.

These measurements reveal a gap of ∼ 30 meV at optimal doping in the nodal region of the

Fermi surface [69, 191, 231]. The gap size was observed to increase with decreasing hole doping

levels [232].

In the underdoped region the superfluid density and with-it Tc increases linearly with progressive

doping [234]. This linear correlation is not expected from the BCS theory and is a unique feature

of the cuprate superconductors which relates the transition temperature to the phase stiffness,
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Figure 4.4: Temperature-doping phase diagram of YBa2Cu3O6+δ. (a) The phase di-
agram of the bilayer cuprate YBa2Cu3O6+δ shows a antiferromagnetic insulator (AFI, green)
near zero doping which extends up to high temperatures. With increasing doping of the par-
ent compounds the AF-order is suppressed and at low temperatures a superconducting dome
appears (shaded red), which peaks at a doping of 0.2 electrons per planar Cu (δ = 0.92).
Around a doping of 0.12 the superconducting dome is slightly suppressed by the emergence of
a charge density wave (CDW, blue squares). At higher temperatures up to T ∗, the material
is in the so-called pseudogap phase, where the material breaks a number of symmetries as
witnessed by different techniques (grey symbols). (b) Orbital arrangement of the plane Cu2+

and O2− ions. The p-orbitals (two lobes) of the oxygen are aligned with the d(x2−y2) orbital
of the cooper (four lobes). (c) Schematic of the Fermi surface of the cuprates. In the Fermi
surface (grey lines), the superconducting gap opens in the nodal-region (red dot), whereas a
gap in the anti-nodal region already opens at T ∗. Part of the figure and caption are adapted
from Ref. [69, 233].

defined by ρs/m∗ [196, 235]. Usually ρs/m∗ identifies a temperature Tθ below which a phase

coherent condensate can form. In conventional superconductors Tθ � Tc; hence once Cooper

pairs form at Tc they immediately condense. However in the cuprates, due to their anomalously

small superfluid density [192, 196], Tθ and Tc are of the same order and the thermal fluctuations

of the phase suppress the superconducting ground state [68].

The discrepancy between Tθ and Tc lead to the general debate whether Cooper pairs already
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form at the so-called pseudogap temperature T∗, which is shown as a dashed line in Fig 4.4 (a).

These pre-formed pairs then, at the far lower temperature Tc, phase lock to form the long-range

ordered superconducting state. Some evidence of such a precursor state of superconductivity and

pre-formed Cooper pairs was found in infrared spectroscopy [208], angle-resolved photoemission

spectroscopy (ARPES) [213] and other techniques [44, 214–217].

The interpretation of the pseudogap region as precursor state of superconductivity exist between

other exotic phases, which allow to explain the strange properties of the pseudogap region. These

phases include a variety of orders which compete with superconductivity and involve ordering of

the electrons into stripes as well as a possible spatially modulated superconducting state (pair

density wave in Bi2Sr2CaCu2O8+x or La1.885Ba0.115CuO4) [43, 44, 71, 218, 219]. In the single

layer cuprate La2−xBaxCuO4, competition with a charge ordered phase fully suppresses super-

conductivity at 1/8th doping [236]. Such a charge ordered phase also exists in YBa2Cu3O6+δ

in the underdoped regime around 1/8th doping shown as blue dots in Fig. 4.4 (a) [237–239].

Here, however the superconducting state is only slightly suppressed due to the more robust

superconducting condensate in YBa2Cu3O6+δ compared to La2−xBaxCuO4 [240].

One of the physical characteristics that distinguish the pseudogap region from the other non-

superconducting phases of the cuprates is the partial opening of an electronic gap in the anti-

nodal direction of the Brillouin zone (see Fig. 4.4 (c)). This gap was initially seen in c-axis

polarized infrared conductivity measurements and is associated with an upturn in the c-axis

resistivity [241]. Most strikingly, it was then also observed in angle-resolved photoemission spec-

troscopy in the antinodal direction of the Brillouin zone [242, 243] where it smoothly evolved into

the d-wave superconducting gap below Tc, hinting at precursor pairing. Further measurement

with other techniques revealed, that the opening of the gap is accompanied by a breaking of

time-reversal [70, 244], rotational [215] and mirror [245] symmetries.

More recently, static SH-polarimetry revealed the point-group symmetry of YBa2Cu3O6+δ com-

pounds and found broken inversion symmetry as well as broken two-fold rotational symmetry be-

low T∗ [233]. Hence, the space-group symmetry of YBa2Cu3O6+δ is not the inversion-symmetric

Pmmm, as one would expect from the crystal structure, but rather P2′/m or Pm1′. These

findings suggest the existence of an odd-parity order that does not arise from competing Fermi

surface instabilities, such as superconductivity and charge-order, and exhibits a quantum phase

transition inside the superconducting dome [246]. So far, no consensus about the true nature of
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the pseudogap phase could be achieved, but it is generally accepted to be a true phase transition

[70].

4.3 Coherent Josephson Plasmon Dynamics in YBa2Cu3O6+δ

4.3.1 Time-Resolved Second Harmonic Detection Setup

The pump probe experiments presented in the following on YBa2Cu3O6+δ combined the excita-

tion of the apical oxygen vibrations at frequencies ΩYBCO7 = 17.2 THz and ΩYBCO6 = 20.5 THz

with time resolved polarization-rotation and SH intensity measurements (see Fig. 4.5 (a)). The

setup used in this experiment is similar to the one sketched in Figure 2.9. It was modified to

collect both the SH light emitted from the sample and the linear polarization rotation of the

800-nm probe light, in reflection geometry. CEP stable mid-infrared pump 18-THz pulses (2 µJ

to 3 µJ pulse energy), focused down to a 60 µm spot size, were used to excite the sample. They

were 150 fs in duration and polarized along the c-axis. The pump spectrum is shown in Fig.

4.3 (d), shaded in yellow, clearly covering the frequencies of the two apical oxygen vibrations.

The probe pulses were 30 fs in duration, centered at 800 nm wavelength and had an energy of

70 nJ focused to a spot size of 25 µm on the sample. A λ/2-waveplate was used to rotate their

linear polarization. The emitted second-harmonic beam and the reflected fundamental 800-nm

beams are separated at a dichroic mirror. A Wollaston prism in the SH beam selects a specific

polarization of the SH light to be detected at the highly sensitive photomultiplier tube (PMT).

The polarization rotation of the reflected 800-nm light is analyzed by balancing the intensity of

two cross-polarized components on two photodiodes, achieved by using a λ/2-waveplate and a

Wollaston prism. The time delay ∆t dependent changes of the SH intensity and of the 800-nm

polarization rotation after optical excitation are read-out by two independent lock-in amplifiers

locked into the modulation frequency of a mechanical chopper that blocks the mid-infrared pump

pulses at half the laser repetition rate of 1 kHz.

4.3.2 Time-Resolved Second Harmonic Measurements

First, the incoming probe pulses were polarized along the YBa2Cu3O6+δ c-axis direction as

depicted in Fig. 4.5 (a). The 30-fs duration of the optical probe allowed to resolve dynamics

up to 30 THz in frequency and therefore covers all the low energy excitations of YBa2Cu3O6+δ
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Figure 4.5: Schematic of the pump-probe experiment on YBa2Cu3O6+δ. (a)
Schematic of the pump-probe geometry. In the experiment a CEP stable MIR pulse tuned to
17.5 THz resonantly excites vibrations of the apical oxygen (shaded in yellow). The dynamics
are sampled by a time delayed NIR probe-pulse. Both light pulses are polarized along the
crystals c-axis. The time-delay dependent measurement of the linear polarization rotation
∆R(t) of the NIR probe (grey) and the second harmonic intensity ISH(t) (red) revealed all
symmetry even and symmetry odd dynamics in the material, respectively. (b) The time-
resolved polarization rotation signal showed coherent oscillations on top of a slowly changing
background. (c) The time-dependent second harmonic intensity showed a sharp response
around time delay ∆t = 0, followed by coherent oscillations on a smooth background. The
experiment was carried out at a sample temperature of T = 5 K.

110



Coherent Josephson Plasmon Dynamics in YBa2Cu3O6+δ

shown in Fig. 4.3 (c) and (d). Figures 4.5 (b) and (c) show the time-resolved SH intensity and

polarization rotation (PR) signals for a mind-infrared excitation peak field strength of 7 MV/cm

and a sample temperature of 5 K. The modulation in PR and in the SH intensity, in Figure 4.5

(b) and (c), are both characterized by a prompt change as pump and probe pulses overlapped

in time and show coherent oscillations on top of a slowly varying background at later delays.

Because of the centrosymmetric point group of YBa2Cu3O6+δ compounds the two probes are

either sensitive to symmetry-even (PR) or symmetry-odd modes (SH) [79, 116, 120]. The probe

penetrated into the material up to a depth of 200 nm, much shorter than the extinction depth of

the MIR pump pulses [247, 248]. This relation ensured a homogeneous excitation of the probed

volume.

The coherent oscillations in the time-resolved PR signal in Fig. 4.5 (b) will be shown to descend

from third-order nonlinear phononics in a later paragraph. The following discussion will focus

on the time-resolved second harmonic intensity measurements.

The time-dependent second harmonic intensity ∆ISH(t), plotted in Fig. 4.5 (c) exemplary for an

experiment on YBa2Cu3O6.48, detects all the coherently excited infrared-active and silent exci-

tations. Those are symmetry-odd and hence modulate the second-order susceptibility ∆χ(2)(t)

in time through a Hyper-Raman process (see Chapter 1). Fig. 4.6 (a), (c) and (e), report the

coherent oscillations of the second harmonic signal after subtracting the slowly varying non-

oscillatory contributions to the signal for three different excitation field strength, 300 kV/cm,

500 kV/cm and 7 MV/cm at a sample temperature of 5 K, well below the corresponding critical

temperature Tc, 6.48 = 48 K. The background can be attributed to nonlinear optical mixing of

pump and probe pulses and therefore electric-field-induced second harmonic generation (EFISH)

(see Chapter 1).

The data shown in Fig. 4.6 (a), for the lowest excitation strength 300 kV/cm, and the cor-

responding Fourier transform in Fig. 4.6 (b)(dashed black line) , are representative of linear

excitation of two modes at 17 and 20 THz, which were simultaneously driven by the broad

spectrum of the ultrashort pump pulse. ∆ISH(t) oscillated at the eigen-frequencies of these two

modes and decayed within a few hundred femtoseconds after the excitation. The dashed line

in panel (a) is a fit to the data (for details of the signal dissection see Appendix C.1) and the

colored peaks in panel (b) are Fourier transforms of the individual oscillatory components of

this fit. The real space motion of both modes is sketched in Fig. 4.8 (c).
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Figure 4.6: Coherent oscillations in the time-resolved second harmonic intensity.
(a) and (b), Coherent oscillations of the SH signal at the lowest excitation field (E =
0.3 MV/cm) and the corresponding Fourier amplitude spectrum (dashed line) at T = 5 K,
well below the critical temperature Tc = 48 K. The high frequency oscillations at 17 and
19.5 THz (yellow peaks) are coherent symmetry breaking apical oxygen vibrations, resonantly
driven by the excitation pulse. (c) and (d), Coherent SH response at higher excitations fields
(E = 0.5 MV/cm) at the same temperature. The peaks at ν1 = 2.5 THz and ν2 = 14 THz
(red and magenta) are ascribed to coherent oscillations of Josephson plasma modes. (e) and
(f), The coherent SH response at significantly stronger excitations (E = 7 MV/cm) show the
same coherences of panel (c) and (d), with additional modes drawn as grey peaks. These
additional peaks are dominated by those at 8.6 and 10.5 THz and label additional phonons
nonlinearly coupled to the resonantly driven lattice modes.

The higher field data reported in Fig. 4.6 (c), (d) (500 kV/cm) and (e), (f) (7 MV/cm) reflect

a nonlinear response regime, where other nonlinearly coupled modes respond to the resonant

excitation of the directly driven vibrations. One specific mode, shaded in red in panel (c), stands

out already at the low fields of 500 kV/cm, oscillating at 2.5 THz frequency, for which no c-axis

symmetry-odd vibration is expected as can be seen from the equilibrium optical properties

of YBa2Cu3O6.5 in Fig. 4.3 and Ref. [203, 204, 212] as well as DFT (see Appendix C.6).

However, the THz-reflectometry measurements [30, 32] reported the emergence of a Josephson

plasmon resonance close to these frequencies in similarly doped compounds. Therefore, we assign
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these low-frequency coherent oscillations to coherent oscillations of the Josephson plasmon, an

assignment that will be justified below. The real space current distributions of the equilibrium,

zero momentum, Josephson plasma modes are sketched in Fig. 4.8 (a) and labelled with their

respective eigenfrequencies. The amplitude of this mode increased nearly 100-fold as the pump

field was increased from 500 kV/cm to 7 MV/cm (Fig. 4.6 (e), (f)), evidencing a regime of

amplification that will be analyzed in the remainder of this chapter.

Other modes of the solid were also observed at the highest excitation fields including four phonon

modes at 4, 6, 8.6 and 10.5 THz [203, 204] which are plotted as grey peaks in Fig. 4.6 (f) and

their real space motion is shown in Fig. 4.8 (b). These correspond to well known infrared-active

phonons at or near zero momentum [203, 204, 212], which are excited by a higher order, phononic

four-wave mixing process. This will be discussed at the end of this chapter. Further, a broad

feature centered around 14 THz, reminiscent of an intra-bilayer Josephson plasma mode, which

appears as a peak in the equilibrium loss function around 14 THz to 15 THz (see Fig. 3.10 and

4.3 (c) and (d)) [206, 208].

The sum of all these coherent motions could be fitted with a set of oscillators whose frequencies

were constrained to the phonon frequencies observed in equilibrium infrared spectroscopy, plus

two oscillators for the low- and high-frequency Josephson plasma modes (see Appendix C.1).

The Fourier transforms of the resulting coherent signals are shown as shaded peaks in Fig. 4.6

(b),(d) and (f). The total sum of all these oscillators is exemplary shown in Fig. 4.6 (a), (c) and

(e) as dashed lines and shows perfect agreement with the experimental data.

4.3.3 Doping-dependence

We augmented these experiment on YBa2Cu3O6.48 with measurements on two more dopings

YBa2Cu3O6.65 and YBa2Cu3O6.92. A comparison of the coherent oscillations of the SHG signal

for the three compounds is shown in Fig. 4.7. Here, the panels (a), (c) and (e) show the coherent

component of the time-domain SH signal for YBa2Cu3O6.48, YBa2Cu3O6.65 and YBa2Cu3O6.92,

respectively. The corresponding Fourier transform amplitude spectra are shown in panels (b), (d)

and (f). The temperature of 5 K, at which the data were taken, was well in the low temperature

superconducting state (Tc, 6.48 = 48 K, Tc, 6.65 = 67 K, Tc, 6.92 = 92 K).

The coherent oscillations for the two lower dopings YBa2Cu3O6.48 and YBa2Cu3O6.65 show a

dominant response at 2.5 THz and 2.8 THz, respectively (see Fig. 4.7 (b) and (d)). A simi-
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Figure 4.7: Doping dependence of the coherent oscillations of the time-resolved
second harmonic intensity. (a),(c),(e) Coherent SH oscillations for three dopings. The
time-resolved SH signal showed coherent oscillations for all three dopings YBa2Cu3O6.48
(a), YBa2Cu3O6.65 (c) and YBa2Cu3O6.92 (e), at 5 K. The coherent oscillations of the
YBa2Cu3O6.48 and YBa2Cu3O6.65 samples measured at 5 K show a dominant response at
2.5 THz and 2.8 THz, for YBa2Cu3O6.48 ((b), red peak) and YBa2Cu3O6.65 ((d), red peak),
respectively. These oscillations are absent in YBa2Cu3O6.92 (f). In addition to the low fre-
quency oscillations a number of additional peaks (shaded in grey in panels (b),(d),(f)) appear
at 4, 6, 8 and 10 THz, which correspond to known infrared-active phonons. The driven apical
oxygen vibrations are shown as yellow peaks in the FFTs of the coherent signals. The dashed
curves in panels (a),(c),(e) were obtained by a time-domain fit of the coherent signals. The
individual oscilators contributing to this fit are shown as colored peaks in the FFTs in panels
(b),(d),(f).
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Figure 4.8: Real space currents and atomic vibrations of the coherent odd-
symmetry modes. (a) Real-space current pattern of the Josephson plasma modes in
YBa2Cu3O6.5. The equilibrium real-space current pattern of the low frequency Josephson
plasmon is located in the inter-bilayer region (red arrows) with a small in-phase current in
the intra-bilayer region. The plasmons resonates at 0.9 and 1.9 THz in YBa2Cu3O6.48 and
YBa2Cu3O6.65, respectively. The equilibrium current pattern of the high frequency Joseph-
son plasmon on the other hand involves strong currents between the bilayers (violet) which
are out-of-phase with a small inter-bilayer current (red). These currents resonate at 14.2 and
15.4 THz in YBa2Cu3O6.48 and YBa2Cu3O6.65, respectively. (b) Real-space motions of the
amplified phonons. The amplified phonons at 8.6 and 10.5 THz resonance frequency mainly
involve motions of the oxygen atom in the CuO2 layers (shaded red). (c) Real-space motions
of the optically driven phonons. The two apical oxygen vibrations oscillate at 17 and 20 THz
and involve motions of the apical oxygen along the c-axis on the filled and unfilled chain site,
respectively.
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lar response is absent in the YBa2Cu3O6.92 sample. All three dopings show the same set of

nonlinearly coupled phonon modes, which are again plotted as grey peaks, which unlike the

putative Josephson plasma mode show only minor shifts and appear at frequencies of known

infrared-active lattice modes [203, 204]. Also, the amplitudes of the apical oxygen vibrations

follow the expected doping dependence, where spectral weight is shifted from the high frequency

(ΩYBCO6 = 20.5 THz) to low frequency mode (ΩYBCO7 = 17.2 THz) with progressive doping

[203, 204].

4.3.4 Time-resolved SH-polarimetry

The point group symmetry of the observed polar excitations was assessed by SH polarimetry

measurements in YBa2Cu3O6.48. To this end, the polarization angle ϕ of the incoming 800 nm

pulses was controlled with a λ/2-waveplate and the polarization of the emitted 400-nm SH light

was selected with a prism analyzer in front of the PMT, choosing either E400 ‖ c or E400 ‖ a, b

(see Fig. 4.9 (a)). For each angle ϕ the time-resolved SH intensity changes were recorded and

dissected as detailed in Appendix C.1. This procedure enables us to determine amplitude and

phase for all the coherently oscillating signal components for each 800-nm polarization angle ϕ

and therefore to assess the point group of their underlying excitation. The results for vertical

polarization of the emitted SH light (E400 ‖ c) are shown in Fig. 4.9, Appendix C.3 presents data

for the orthogonal direction (E400 ‖ a, b). The polarimetry signals of the driven and amplified

phonons, that are oscillations at 17 and 20 THz and 4, 6, 8 and 10 THz frequencies, at a time-

delay ∆t = 150 fs are shown in Figures 4.9 (b) and (d). Both excitations show a similar shape

of the polarimetry signal that exhibits two main lobes, when the probe polarization is aligned

along the crystal c-axis, and two significantly smaller lobes when the polarization is aligned

with the CuO2 layers. To support the assignment of the infrared-active phonons (at 4, 6, 8,

10, 17 and 20 THz) we consider the point group symmetry which results from a B1u symmetry

operation on the equilibrium Pmmm space-group of YBa2Cu3O6+δ. The eigenvectors of the

polar lattice distortions can be determined from ab-initio calculations [143] and therefore their

symmetry-breaking is known. The displacement of the crystal ions along the coordinates of the

infrared-active B1u modes, which breaks the mirror-symmetry normal to the c-axis, lowers the

symmetry of the unit cell to Pmm2. The SHG tensor of the corresponding mm2 point group is
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Figure 4.9: Time-resolved SH polarimetry. (a) Schematic of the SH polarimetry geom-
etry. The polarization angle ϕ of 800-nm NIR probe pulses (grey) is controlled by rotating a
λ/2-waveplate. The reflected second harmonic light (red arrow) passes through an analyzer
to measure the different polarization components individually. (b) The amplitude of the co-
herent oscillations of the driven apical modes as function polarization angle ϕ, rotated from
the b-axis (0°, 180°, 360°) towards the c-axis (90°, 270°), shows two lobes in a polar plot,
which are aligned along the c-axis (yellow). The amplitude is plotted on a logarithmic scale.
The dashed line is a fit with a point-group symmetry of mm2. (c) The time-resolved po-
larimetry measurement reveals amplitude and phase of the coherent oscillations for all angles
ϕ. (d) The amplitude of the amplified phonons (grey) shows the same polarimetry signal
of mm2 symmetry as the driven phonons. (e) For the amplified phonons, the amplitude
and phase resolved measurement reveals the same phase of the oscillations for all angles ϕ.
(f) The polarimetry measurement of the coherent Josephson plasmon oscillations shows a
more complex pattern compared to the phonons. Instead of two lobes, it shows a total of
8 lobes. The color-coding indicates the phase of the oscillation amplitude (red: 0, blue: π)
for a certain polarization angle ϕ, extracted from time-resolved polarimetry measurement in
panel (g).
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∆χ(2) =


0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0

 (4.2)

and has five non-zero elements. A fit to the polarimetry data, using this tensor, shows excellent

agreement as evidenced by the dashed lines in Fig. 4.9 (b) and (d). Together with the frequency

of these oscillations, these excitations can unambiguously be assigned to the c-axis polarized

infrared-active phonons modes of YBa2Cu3O6.48. The same analysis was repeated for all time

delays between - 0.3 and + 0.7 ps, the resulting 2-D maps are shown in Fig. 4.9 (c) and (e)

and report the time evolution of the polarimetry signal. It is noteworthy, that the coherent

oscillations of the driven and amplified phonons have the same phase for every polarization

angle ϕ.

The polarimetry signal of the putative Josephson plasma oscillations at 2.5 THz, shown in Fig.

4.9 (f) again for only one time-delay of ∆t = 150 fs, suggests a fundamentally different symmetry.

It differs in shape, which shows additional lobes at multiples of 45°, but also the phase of the

oscillations changes as function of the probe polarization angle (see Fig. 4.9 (f)). This leads to

a complex temporal evolution of the polarimetry signal as shown in Fig. 4.9 (g) and sets the

polarimetry signal of the Josephson plasmon apart from the phonons'. The color-coding in Fig.

4.9 (f), represents the phase of the coherent oscillation at a specific polarization angle ϕ, with

red a phase of 0 and blue a phase of π.

Figure 4.8 (a) displays the current pattern of the zone center Josephson plasma modes, which

will be evaluated here as a possible explanation of the symmetry pattern of the 2.5 THz excita-

tion. The currents along the c-axis between the planes break both time-reversal and inversion

symmetry, however their combined action, time-reversal and inversion, remains a symmetry op-

eration. In total, the point group reduces to mmm′ due to the remaining mirror symmetries on

the a-c and b-c planes. The symmetry operation that connects the two point-groups mmm and

mmm′ is part of the irreducible representation B1u′ [142]. Accordingly, the symmetry of the

Josephson oscillation at the zone center is part of the same irreducible representation B1u′ and

the resulting polarimetry signal should be identical with that of the phonons. This, however, is

not observed in the experiment!

Hence, the effective χ(2) tensor needs to have a symmetry lower than Pmm2 or Pmmm′. This
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Figure 4.10: Symmetry-considerations of Josephson current patterns. (a) Mir-
ror and time-reversal symmetry of a zero momentum Josephson mode. A zero-momentum
Josephson current pattern (red arrows) along the c-axis will preserve the mirror with a/b-
c mirror planes (m) but will break the mirror symmetry combined with a time-reversal
(m'). (b) Mirror and time-reversal symmetry of in-plane supercurrents. An in-plane cur-
rent (grey arrows) breaks the a/b-c mirror symmetry but preserves a/b-c mirror symmetry
combined with a time-reversal (m'). (c) Mirror and time-reversal symmetry of combined
finite-momentum Josephson currents and in-plane supercurrents. A combination of the two
current patterns leads to finite momentum Josephson currents. The resulting currents break
mirror and time-reversal symmetry and consequently lower the point group of YBa2Cu3O6+δ
from Pmmm to Pm or even lower. (d),(e),(f) Similar consideration can be made for the a-b
mirror plane. However, here the combined current pattern preserves the a-b mirror symmetry
combined with a time-reversal.
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requires additional symmetry breaking along the in-plane direction, i.e, along the a-b crystallo-

graphic axes, which is only possible when additional currents are also flowing along the CuO2

planes in the a-b-plane. This implies a finite phase gradient (I ∝ ∇θ) inside the CuO2 lay-

ers because the super-current flow is proportional to the phase gradient ∇θ (see Chapter 3.3).

Therefore, two inequivalent or even antiparallel currents on adjacent CuO2 would result in a

spatially modulated phase difference ∆θ across the inter-bilayer junction,

∇x,y∆θ(y) = ∇x,yθ1 −∇x,yθ2. (4.3)

Consequently, this leads to a spatial modulation of the c-axis tunnelling current, I ∝ sin(∆θ),

which is equivalent to propagating Josephson plasma modes. The in-plane supercurrent to-

gether with the out-of-plane Josephson currents break time-reversal and mirror symmetry of

the a-c and b-c plane and therefore lower the point group to Pm′. The symmetry operations

are summarized in Figure 4.10. These considerations are supported by recent equilibrium SH

polarimetry measurement, which reported similar point groups (2′/m and m1′) in the supercon-

ducting and pseudogap phase of YBCO [233]. The SHG tensor of the m′ point group has ten

non-zero elements

∆χ(2) =


d11 d12 d13 0 d15 0

0 0 0 d24 0 d26

d31 d32 d33 0 d35 0

 (4.4)

and allows us to describe the polarimetry signal of the Josephson plasma oscillation. This is

shown by the dashed line in Fig. 4.9 (f), which is a fit to the data taking into account these

tensor elements. This result further implies that the low frequency coherent oscillations are

excitations of the Josephson plasma at finite momentum qx,y, propagating along the in-plane

direction.

4.3.5 Momentum-resolved SH measurement

The momentum of these excitations is analyzed in the following. To this end, the geometry

of the experiment was changed, aligning the pump and probe beams collinear and detecting

the spatial profile of the emitted SH light. This geometry is sketched in Fig. 4.11 (a). The
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spatial filtering is achieved by moving a 200 µm slit perpendicularly across the reflected beam

in a distance 10 cm away from the sample. A finite deflection δ of the SH light away from the

specular reflection at δ = 0 would then reveal an in-plane momentum transfer in the scattering

process as was already discussed in Chapter 2.3.2. The resulting spatial profile of the SH light

needs to be deconvolved from the divergence of the probe beam in order to obtain the intrinsic

momentum transfer of the Josephson plasmon (see Appendix C.2). The deflection angle can be

directly converted to the absolute momentum transfer, by

q = √ε∞tan(δ)k400, (4.5)

where k400 is the wavenumber of the SH light. The result of this experiment is shown in Fig.

4.11 (b) and shows two distinct peaks at qy = ±190 cm−1, which is in perfect agreement with the

dispersion relation of the inter-bilayer Josephson plasmon in YBa2Cu3O6.48 (see Fig. 3.11 (a)).

The dispersion-relation of YBa2Cu3O6.48, which was calculated using eq. 3.30 and predicts an

eigenfrequency of the Josephson plasma of 2.5 THz for an in-plane momentum of ∼ 200 cm−1.

The shaded grey areas denote the maximum accessible momentum of the experiment, which is

limited by the spot size of the probe beam on the sample (d = 25 µm).

The excitation strength dependence of the low 2.5-THz oscillations can be evaluated by con-

trolling the peak electric field of the mid-infrared pulses using a pair of wire grid polarizers and

determining their amplitude. The dissection of the oscillatory signal (discussed above and in

Appendix C.1), yields this amplitude JJP as well as those of the other oscillatory contributions

as a function of the amplitude of the apical oxygen vibrations Qdrive from a single time trace.

As shown in Fig. 4.11 (c), JP scales exponentially with Qdrive reminiscent of parametric am-

plification. This dependence can be fitted with an exponential function with a finite excitation

threshold b, drawn as a dashed line.

4.4 Coherent Phonon Dynamics in YBa2Cu3O6+δ

To further underline the uniqueness of the 2.5-THz Josephson plasma mode we also analyzed the

response of the directly driven Qdrive and the nonlinearly coupled, QR and Qamplified, phonons.

This is possible, because the infrared active modes (Qdrive and Qamplified), appear in the same

time-resolved SH traces as the Josephson plasma mode. The simultaneous detection of the linear
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Figure 4.11: Momentum resolved measurement of the Josephson plasmon ampli-
tude and excitation strength dependence. (a) Schematic of the SH collinear pump-
probe geometry. To measure the spatial dependence of the emitted SH light and with it the
transferred in-plane momentum, pump and probe must hit the sample in a collinear geometry.
The interaction with finite-momentum excitations inside the material will lead to deflection δ
of the SH light (red) away from the specular NIR-reflection (grey). (b) Experimental momen-
tum dependence of the coherent Josephson plasma amplitude. The momentum distribution of
the coherent Josephson plasmon oscillations shows two peaks at qy = ±190 cm−1. The max-
imum experimental momentum resolution is denoted as grey shaded area. (c) Experimental
excitation field dependence of the coherent Josephson plasmon amplitude. The amplitude
of the Josephson plasma oscillation JP shows exponential scaling with the amplitude of the
apical oxygen vibration QIR (yellow). This excitation strength dependence can be described
with an exponential function with an excitation threshold b (dash line).

polarization rotation of the 800-nm beam further allowed to detect the even-order Raman modes

QR.

4.4.1 Characteristics of the Resonantly Driven Phonons

The momentum and excitation field dependence were also analyzed for the directly driven

phonon modes at 17 and 20 THz and the results are shown in Figure 4.12. They are supposed

to take their momentum from the mid-infrared electric field, hence their in-plane components

are determined by the divergence of the focused excitation beam. The measured momentum

distribution, shown in Fig. 4.12 (b), is centered around zero with a FWHM of 300 cm−1, con-
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Figure 4.12: Momentum resolved measurement of the driven phonon amplitude
and excitation strength dependence. (a) Schematic of the SH collinear pump-probe
geometry. (b) Experimental momentum dependence of the optically driven phonon am-
plitude. The resulting momentum distribution of the driven phonons shows a distribution
around qy = 0. The maximum experimental momentum resolution is denoted as grey shaded
area. (c) Experimental excitation field dependence of the optically driven phonon mode.
The amplitude of the amplified phonons initially shows linear scaling with the amplitude of
the electric field up to E = 4 MV/cm (yellow). Above E = 5 MV/cm the driven phonon
amplitude saturates. This excitation strength dependence can be described with a linear
function with Qdrive=aE (dashed line). The data points were obtained through a numerical
fit as explained in Appendix C.1

sistent with the value estimated from the divergence of the MIR beam, 280 cm−1 (θ = 14°).

Importantly, this momentum distribution of the driven apical phonon mode is fundamentally

different to one of the Josephson plasma modes (see Fig. 4.11).

Fig. 4.12 (c) shows the amplitude of the driven apical oxygen modes, extracted from amplitude

spectra similar to Fig. 4.6, to increase linearly at small electric-field strength (E < 4 MV/cm),

confirmed by the dashed line which is a linear fit. At larger electric field strengths the amplitude

Qdrive saturates. Here, the self-anharmonicities (further discussed in Chapter 2.2) of the driven-

mode weaken energy transfer from the pump-pulses into the vibrational mode and coupling to

the Josephson plasmon and other lattice modes (see next paragraph) draw energy from the

apical vibrations.
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4.4.2 Cubic-order Phonon Coupling

A second type of three-wave mixing like the phonon-Josephson-plasmon coupling discussed above

is phonon coupling of the type QRQ
2
drive, between the driven mode and fully symmetric Ag

Raman mode. These modes are detected in the linear reflection of polarization rotation of the

NIR-probe. Fig. 4.13 (a) and (c), report the coherent oscillations, extracted from the time-

dependent PR signal by subtraction of the slowly varying background, for three doping levels

of YBa2Cu3O6.48, YBa2Cu3O6.65 and YBa2Cu3O6.92. Again, all data were taken at 5 K. The

corresponding Fourier transforms plotted in Fig. 4.13 (b), (d) and (f) show peaks at frequencies

which can be associated with zone-center totally symmetric modes of Ag symmetry [53, 249].

The dominant response appears at 3.7 and 5 THz. Ab-initio theoretical methods reveal the real-

space motions of these modes, which are depicted in Fig 4.14 (a). They involve mostly non-polar

oscillations of the Cu atoms residing in the CuO2 planes. The amplitudes of these oscillations

QR as a function of the amplitude of the driven apical oxygen vibration Qdrive is shown in Fig.

4.14 (b) and scales quadratically with Qdrive. The data points were extracted by a time domain

fit to the coherent oscillations which is drawn as dashed lines in Fig 4.13(a), (c) and (e).

These Raman modes were already observed in a previous experiment published in Ref. [53].

They are coherently driven by nonlinear phononic coupling of the type gQ2
riveQR. This is sup-

ported by the parabolic dependence of QR on Qdrive of the excitation strength dependence in

Fig. 4.14 (b).

4.4.3 Quartic-order Phonon Coupling

The excitation of the lower-energy infrared-active lattice vibrations can be explained by a quartic

coupling to the directly driven apical oxygen phonons, also leading to parametric amplification.

In centrosymmetric materials, like YBa2Cu3O6.48, coupling between infrared-active modes is

only possible through these quartic nonlinearities. The two dominant amplified phonons oscillate

at frequencies of 8.6 and 10.5 THz (see Fig. 4.7 (b), (d) and (e)) and involve polar vibrations of

the oxygen atoms in the CuO2 layers (see Fig. 4.8 (b)). To understand this dominant response

at approximately half the frequency of the driven apical oxygen vibration (ΩYBCO7 = 17.2 THz

and ΩYBCO = 20.5 THz), one has to consider the fourth order coupling terms in the potential

energy,

∆V (Qdrive, QP) = hQ2
driveQ

2
P + kQ3

driveQP + lQdriveQ
3
P. (4.6)
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Figure 4.13: Coherent oscillations of the time-resolved polarization rotation.
(a),(c),(e) The time-resolved polarization rotation signal showed coherent oscillations of
Raman modes for all three dopings YBa2Cu3O6.48 (a), YBa2Cu3O6.65 (b) and YBa2Cu3O6.92
(c), at 5 K. (b),(d),(f) FFT-amplitude spectra (dashed line) of the time-resolved polarization
rotation signal show peaks at 3.7 and 4.6 THz which descend from Ionic-Raman scattering of
the excited apical oxygen vibrations.

As discussed in Chapter 2, these terms lead to an impulsive force, through cubic-linear cou-

pling (kQ3
driveQP), and subsequent parametric amplification, through bi-quadratic coupling

(hQ2
driveQ

2
P), acting onto QP. This is described by the equations of motion,

Q̈drive + 2γdriveQ̇drive + (Ω2
drive + hQ2

P + 3kQ2
driveQP)Qdrive = Z∗driveE(t) (4.7)

Q̈P + 2γPQ̇P +
(
ω2
P + hQ2

drive

)
QP + hQ3

drive = 0. (4.8)

Solutions to the equations are shown in Fig. 4.15, for the driven apical oxygen modes in panels
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Figure 4.14: Real-space motions of the coherent Raman modes and excitation
strength dependence. (a) The real-space motions of the coherent Raman modes observed
with time-resolved polarization rotation (see Fig. 4.5), mostly involve oscillations of the
plane Cu ions, which lead to a breathing (3.7 THz) and buckling (5 THz) of the CuO2 planes
along the crystals c-axis. (b) Excitation strength dependence of the coherent Raman modes.
The amplitude QR of the coherent oscillations scales with the square of the amplitude of
the driven apical oxygen vibration (Qdrive, yellow) as predicted by the theory of nonlinear
phononics (see Chapter 2) and confirmed by a least squares fit (dashed line).

(a) and (b) and the amplified c-axis polar modes in panels (c) and (d). These simulations

included the coupling between all 24 (13 B1u and 11 Ag) relevant modes for probe and pump

fields polarized along the crystals c-axis, and the coupling coefficients were determined by ab-

initio methods described in Ref. [143] and Appendix C.6. These results were convolved with the

experimental time resolution of 30 fs to allow close comparison to the experiment. The resulting

time traces and amplitude spectra shown in Fig. 4.15 show qualitatively good agreement with

the SH spectra shown in Fig. 4.7 and the dissected signal in Appendix C.1 and confirm excitation

of the phonons predominantly around 8.6 and 10.5 THz.

Importantly, the bi-quadratic term responsible for the parametric amplification exhibits a res-

onant enhancement when Ωdrive = 2ΩP, i.e., a parametric resonance [146, 250]. This is the

case for the 8.6 and 10.5 THz phonons in YBa2Cu3O6+δ and leads to an exponential increase

of the amplitude QP with respect to Qdrive [146, 250]. The measured amplification is shown

Fig. 4.17 (c), where the data points were obtained by integrating the spectral weight around of
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Figure 4.15: Theoretical model of fourth-order phonon-phonon coupling. (a)
Simulated polarization of the optically driven phonon modes. Resonant driving of the apical
oxygen vibrations Qdrive leads coherent oscillations of two modes which creates a beating-
pattern (yellow). (b) The corresponding FFT spectrum shows two peaks at 17 and 20 THz
(dashed line). The individual phonon responses are shown as yellow peaks. (c) Simulated
polarization time-trace of the nonlinear coupling between the driven phonons and lower fre-
quency phonons at 4, 6, 8 and 10 THz QIR (grey). (d) The FFT amplitude spectrum (dashed
black) can be dissected into the response of the individual modes (grey peaks).

the amplitude spectra in the region 7 THz to 11 THz for every excitation strength and plotting

against the driven phonon amplitude Qdrive. The resulting dependence can be fitted with an

exponential function with a finite excitation threshold b, drawn as a dashed line. This exponen-

tial scaling of the experimental pump strength dependence (dots in Fig. 4.17 (c)) is confirmed

by a similar exponential scaling of the simulated 8.6 and 10.5 THz phonons shown in Fig. 4.16

(c) as a dashed line, together with the experimental scaling (shaded dots). The parametric

amplification leads to the creation of pairs of phonons with opposite wavevectors q1 = − q2 and

therefore we expect a broad featureless momentum distribution. To confirm this, the momen-

tum distribution of the phonons was measured in a collinear pump-probe geometry (see Fig.

4.17 (a)) and indeed shows a broad momentum distribution up to the highest momenta which

can be resolved in the experiment (shaded in grey in Fig. 4.17 (b)). In the simulations, the

momentum dependence was determined by choosing the resonance frequencies Ωi(qy) and the

coupling coefficients h(qy) = const., k(qy) = δ(qy) to be momentum dependent. The response is
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Figure 4.16: Theoretical model of fourth-order phonon-phonon coupling. (a)
Dispersion of the infrared optical phonon along qy. The in-plane momentum distribution of
the driven modes (yellow) are centred around qy = 0. The width is given by the divergence
of the focused MIR-pump field (shaded yellow). The fourth-order nonlinear phonon coupling
creates pairs of phonons at opposite momentum and therefore leads to broad momentum
distribution around qy = 0 (shaded in grey). (b) The frequency integrated response of panel
(a) shows a broad peak around qy = 0. (c) Simulated excitation strength dependence of the
amplified phonon amplitude. The simulations reveal exponential scaling amplitude of the
amplified phonon amplitude as a function of the driven phonon amplitude Qdrive (yellow).
Here, the simulation results (dashed line) are overlaid with the experimental amplitude scaling
(dots) from Fig. 4.17.

also convolved with the momentum resolution of the experiment and yields a broad momentum

distribution of the amplified phonons similar to the experiment (see Fig. 4.16 (a) and (b)).

4.5 Temperature Dependence of Josephson Plasmons and Phonons

The equilibrium low frequency Josephson Plasma mode, which participates in the three-wave

mixing process, disappears at Tc in the linear optical spectra of Figure 3.12 and 4.5. This could

lead to the conclusion that the oscillations in second harmonic should disappear at the same

temperature. However, when raising the temperature above Tc the coherent Josephson plasma

oscillations show a smooth continuous transition and vanish only above T = 400 K. Fig. 4.18

(a) reports the full temperature dependence of the low frequency coherent Josephson plasma
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Figure 4.17: Momentum resolved measurement of the amplified phonon ampli-
tude and excitation strength dependence. (a) Schematic of the SH collinear pump-
probe geometry. (b) Experimental momentum dependence of the coherent amplified phonon
amplitude. The resulting momentum distribution of the coherent amplified phonon amplitude
shows a broad distribution around qy = 0. The maximum experimental momentum resolution
is denoted as grey shaded area. (c) Experimental excitation field dependence of the amplified
phonon mode. The amplitude of the amplified phonons shows exponential scaling with the
amplitude of the apical oxygen vibration (yellow). This excitation strength dependence can
be described with an exponential function with excitation threshold β (dashed line).

mode amplitude in the range between 5 K and 475 K for YBa2Cu3O6.48 and YBa2Cu3O6.65.

The amplitude of the coherent Josephson plasma oscillation smoothly decreases and vanishes at

T ′ = 280 KK and T ′ = 390 K for YBa2Cu3O6.65 and YBa2Cu3O6.48, respectively. Importantly,

these temperatures coincide with the transition temperature of the pseudogap phase T ∗ in these

two compounds, which is drawn as a dashed line in Fig. 4.18 (c) together with experimentally

determined transition temperatures as red dots [215, 233, 245, 251, 252].

The amplified infrared phonons show a different temperature dependence, which exhibits only

a small anomaly at Tc and a temperature independent amplitude in the normal state (see Fig.

4.18 (b)). This is similar to the equilibrium temperature dependence of the phonon's spectral

weight (see Fig. 3.12). The anomalous temperature dependence of the coherent Josephson

plasma modes was similarly observed in the transient THz reflectivity measurements. There

the transformed volume fraction scaled in a similar way and vanished at T ∗ (see Fig. 4.1
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Figure 4.18: Temperature dependence of the coherent Josephson plasmon os-
cillations. (a) The temperature dependence of the Josephson plasma amplitudes of
YBa2Cu3O6.48 (red circles) and YBa2Cu3O6.65 (dark red circles) smoothly decrease from low
to high temperatures. The lines are fits to the data with a mean-field approach ∝

√
1− T/T ′,

yielding T ′ = 380 K for YBa2Cu3O6.48 and T ′ = 280 K for YBa2Cu3O6.65. (b) Temperature
dependence of the amplified phonon amplitude. The amplitude of the amplified phonons
remains almost constant up to the highest temperatures and only shows a minor anomaly
at Tc. (c) The phase-diagram of YBa2Cu3O6+δ shows the regions of equilibrium supercon-
ductivity (red) and the pseudogap (grey). The temperatures T ′, above which the coherent
Josephson plasmon oscillations are shown as red circles. They agree well with the pseudogap
temperature T ∗ extrapolated from Nernst effect measurements [215] (grey line).

(b)) [30]. The next section will present a theory that links both observations, the coherent

Josephson plasma oscillations in the SH intensity and the Josephson plasma edge in transient

THz reflectivity, to the same microscopic mechanism.

130



Theoretical Model of Phonon-Josephson Plasmon Coupling

4.6 Theoretical Model of Phonon-Josephson Plasmon Coupling

The experimental findings presented above enabled us to develop a microscopic theory which

not only explains the experimental evidence above but also the previous THz-reflectometry

experiments [30, 32]. In this model, the excitation of the apical oxygen vibration is described

as a spatially homogenous excitation at the center of the Brillouin zone (qx = 0, qy = 0).

The phonon coordinate Qdrive(t) follows the equation of motion of a linear damped harmonic

oscillator driven by the laser field:

Q̈drive + 2γdriveQ̇drive + Ω2
driveQdrive = Z∗E (t) . (4.9)

To derive the equations of motion for the Josephson plasma modes when these are coupled to

the driven lattice vibrations, one has to consider the kinetic energies of the in-plane superflow,

EJplane = 1
2ρs

Jp
2 = 1

2ρs
(
∇θn (x, y, t)− 2e

c
A

)2
. (4.10)

Here, θn(x, y, t) is the order parameter within each layer n, ρs denotes the local superfluid density

and A is the vector potential. This equation can be derived from the expression for the current

density eq. 3.5. The apical oxygen lattice vibration excited by the pump are infrared-active

and hence symmetry odd, and modify the local superfluid densities in a bilayer structure in a

way that is antisymmetric with respect to the two layers, δρs1,2 ∝ ± Qdrive. This modulation

of the superfluid density on the adjacent layers is sketched in Figure 4.19 (a) as a red shade on

top of the CuO2 layers. This modulation of the superfluid density is an exclusive feature to the

apical oxygen vibrations [220, 227]. The effect of these vibrations on the in-plane superflow is to

increase and decrease the kinetic energy EJplane in neighbouring planes in an oscillatory fashion,

and can be written as (see Appendix C.5):

δEJplane = δρs1v
2
s1 + δρs2v

2
s2 ∝ Qdrive (t) (vs1 − vs2)(vs1 + vs2) ∝ QdriveJ1J2. (4.11)

Importantly, the modulation of the in-plane kinetic energy leads to an in-plane current which

propagates along the x-y direction and in opposite direction on two adjacent layers sketched

as grey arrows in Fig. 4.19 (a). The resulting phase gradients on the CuO2 layers effectively

drives the Josephson tunneling currents because the gradient leads to spatial modulation of the
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c-axis tunnelling (I ∝ sin(∆θ)). Therefore two types of finite-momentum tunnelling modes are

excited with J1 ∼ vs1 − vs2 (inter-bilayer) and J2 ∼ vs1 + vs2 (intra-bilayer) (see Appendix C.5

for more details). The equations of motion for the plasmons are then

J̈1 + 2γJ1 J̇1 + Ω2
J1 (qx1, qy1) J1 = −aq2Qdrive(t)J2 (4.12)

J̈2 + 2γJ2 J̇2 + Ω2
J2 (qx2, qy2) J2 = −aq2Qdrive(t)J1 (4.13)

where ΩJi (qxi, qyi) describe the in-plane equilibrium dispersion of the Josephson plasma modes.

These equations predict three-wave mixing between the apical oxygen phonons and the upper

and lower Josephson plasmons, leading to the excitation of damped harmonic oscillations for J1

and J2 at finite momenta along the dispersion. The driving term depends on the momentum

of the Josephson plasma mode as q2, and it is zero for long wavelengths (q = 0) but naturally

couples to supercurrents at finite in-plane wavevectors. The two equations of motion predict that

the phonon excites pairs of Josephson plasma polaritons with frequencies that satisfy Ω1(q) +

Ω2(−q) = Ωdrive driven at opposite in-plane momenta (qx1 = −qx2 or qy1 = −qy2).

A numerical solution of these equations of motion is shown in Figure 4.19 (b) as color-coded

dispersion. There, the three-wave mixing process is shown to couple preferentially the driven

phonon to plasma modes at in plane momenta qy ∼ 200 cm−1 (λ ∼ 50 µm) where momenta

and energies match. This scattering process is depicted by the two red (blue) arrows in Figure

4.19 (b). This results in the excitation of pairs of high (intra-bilayer) and low (inter-bilayer)

frequency Josephson plasma modes, which propagate along the optical surface J1(Ω1,+qy) and

J2(Ω2,−qy), or J1(Ω1, −qy) and J2(Ω2, +qy). Because the pump optical field is screened in the

propagation direction (perpendicular to the optical surface) over a skin depth of ∼ 1.5 µm, phase

matching is inefficient along the x-direction. Cuts along the y-direction through the dispersion

and simulations results are shown in Fig. 4.20 (c). Here, the zero-momentum phonon excitation

is shaded in yellow and the amplification process is again depicted by red and blue arrows.

Fig. 4.20 (d) displays the frequency integrated response and predicts two broad peaks centered

around ± ∼ 200 cm−1, consistent with our experimental findings shown in Fig. 4.11 (b).

To achieve a non-zero amplitude response of J1 and J2 requires a finite amplitude before time

zero Ji(t < 0) 6= 0. To this end, the set of coupled equations for the Josephson plasmon

dynamics were solved by utilizing a stochastic approach, where Langevin noise on Josephson
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Figure 4.19: Theoretical model of nonlinear phonon-Josephson plasmon coupling.
(a) Schematic of the superfluid density modulations and in-plane currents driven by the
apical oxygen vibration. The superfluid density ρs,i on the two CuO2 is modulated with
opposite sign. This leads to counterpropagating in-plane currents (grey arrows), which in
turn drive out-of-plane tunneling currents. (b) Dispersion of the inter (J1) and intra-bilayer
(J2) Josephson plasma modes along the in-plane momenta qx and qy in YBa2Cu3O6.5. The red
lines are a cut through the qx = 0 plane. The apical oxygen phonon mode at 17 THz (yellow)
does not disperse along either direction. The three-wave scattering process is sketched as red
and blue arrows and results from a numerical simulation in response to the resonant drive
of the apical oxygen phonon at q = 0 are shaded in the same colors. The response vanishes
along qx, parallel to the light propagation direction. (c) The time-dependent momentum-
integrated response of panel (b) shows coherent oscillations of the Plasma modes. (d) The
corresponding Fourier amplitude spectrum shows peaks at ΩJ,1 = 2.3 THz (red) and ΩJ,2 =
14 THz (magenta), which are plotted together with the Fourier spectrum of the driven phonon
at 17 THz (yellow).
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Figure 4.20: Pump-pulse duration dependence, in-plane momentum distribution
and excitation strength dependence. (a) Experimental pump-duration dependence.
The pump-pulse duration, with pulse durations from 0.2 to 1.2 ps, reveals a delayed onset of
the Josephson plasma oscillations for longer excitation pulses. The envelope of the respective
mid-infrared pump pulses are shaded in grey. (b) Simulated pump-duration dependence. The
same delayed response is observed in time-domain simulations of the three-wave mixing model.
(c) Detailed insight into the simulation results along qy (for qx = 0). The driven phonon with
zero momentum excites a pair of Josephson plasmon polaritons, J1 and J2, with opposite
wavevectors qy and frequencies that add up to the phonon frequency. The two processes
for mirrored momentum transfer are shown as red and blue arrows, respectively.(d) The
frequency integrated response of panel (c) shows two response peaks at qy = ±200 cm−1. (e)
Simulated excitation-strength dependence of the coherent Josephson mode. The simulations
reveal exponential scaling amplitude of the Josephson plasma oscillation as a function of the
amplitude of the driven apical oxygen vibration Qdrive (yellow). Here, the simulation results
(dashed line) is overlaid with the experimental amplitude scaling (dots) from Fig. 4.11.
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plasma amplitude was used to create an incoherent initial state, otherwise the amplitude of J1

and J2 would remain zero for all times. The final trajectory shown in Fig. 4.19 (c) was then

computed by solving the equations of motion one million times with an algorithm based on

the Euler-Maruyama method and integrating over all momenta. Thus, this type of three-wave

mixing requires finite amplitude fluctuations which are amplified and synchronized by the optical

drive.

The corresponding responses in time and frequency (see Fig. 4.19 (c) and (d)) shows the

combined response of the three fields involved J1, J2 and Qdrive, which resonate at 2.5 THz

(red), 14.5 THz (magenta) and 17 THz (yellow). The simulated time-response in Fig. 4.19 (c),

further shows a delayed reaction of the Josephson plasmon to the optical drive; the plasma

oscillations start after the excitation pulse is gone. This also becomes obvious experimentally

when placing a transparent dispersive medium in the beam path to stretch the excitation pulse

in time while retaining the stable carrier envelope phase. Fig 4.20 (a) shows the time-resolved

SH intensity changes for pump-pulse durations from 0.2 ps (unstretched) to 1.2 ps (5 mm ZnSe).

The square of the respective pulse envelope is shown in grey. The increase of the excitation pulse

duration leads to a linear shift of the Josephson plasma oscillations in time. The same shift can

be reproduced mathematically by solving the equations of motion for the stretched excitation

pulse profile, which are plotted in Fig. 4.20 (b). Finally, Fig. 4.20 (e) compares the excitation

strength dependence of experiment (dots, also shown above in Fig. 4.11) and theory (dashed

line). Here, the amplitude of the simulated Josephson plasmon JJP is plotted as a function of

the simulated driven phonon amplitude Qdrive. For an excitation strength comparable to the

experiment we find a similar exponential scaling, which is characteristic of parametric three-wave

mixing.

Overall, the presented model agrees in its key aspects, the excitation of finite-momentum Joseph-

son plasmons (qy ∼ 200 cm−1), symmetry considerations (in-plane and out-of-plane currents)

and the excitation field dependence with the experiments. Beyond that, we confirmed that the

amplified Josephson plasmon amplitude scales with the resonant enhancement of the driven api-

cal oxygen phonon amplitude Qdrive when excited by MIR pulses tuned in resonance with Ωdrive

(see Appendix C.4). This excludes a scenario, where the incident light field couples directly

to the Josephson plasmon polariton and supports the proposed theoretical model. It further

predicts the appearance of a coherent signal from the high-frequency intra-bilayer plasmon as
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abroad peak at 14 THz. This is also confirmed by the experiment, where a broad feature ap-

pears between the low frequency (4, 6, 8 and 10 THz) and the high frequency (17 and 20 THz)

phonons (see Fig. 4.6). The absence of all these features in the optimally doped compound

YBa2Cu3O6.92 is because there the relation Ω1(qy) + Ω2(−qy) = ωdrive can not be fulfilled for

any pair of plasmons. This is due to the high frequency of both the inter-bilayer (7 THz) and

intra-bilayer (32 THz) plasmon in this compound [201].

Note that also other mechanisms can couple the driven phonon to Josephson plasma polaritons,

such as those that descend from the modification of the interlayer Josephson coupling strength,

e.g., by modifying the dielectric constant between the bilayers. However, symmetry requires that

this coupling scales with Q2
drive and is to be thought of as a four-wave mixing process between

two phonons and two Josephson plasma polaritons, which is weaker, not frequency resonant and

hence not taken into account. More details of this type of phonon-Josephson-plasmon coupling

can be found in Appendix C.5 and Ref. [220].

4.6.1 THz-optical Response of Parametrically Amplified Josephson Plasmons

Importantly, the coherent oscillations of the condensates order parameter also explain the ob-

servation of the light induced coherent transport above Tc in time-resolved THz reflectometry

measurements [30, 32, 143]. The full theoretical work in Ref. [220] of the model outlined above,

predicts that the nonlinearly excited finite momentum Josephson plasma oscillations lead to a

parametric instability at ΩJ and re-radiation of incident THz fields at q = 0 close to this fre-

quency. In this process, two counter propagating Josephson plasmons with opposite momentum

± qJP interfere and produce a standing wave pattern of the superconducting phase θ along the

crystals y direction,

θ (y, t) = θ0cos(qJPy)sin(ΩJPt). (4.14)

This is sketched in Figure 4.21 (a), where the two counter propagating plasmons are drawn as

blue and red sinusoidal waves. In turn, these dynamics modulate the superfluid density ρs (y, t)

at qy = 0 through [75]

ρs (y, t) = ρs,0cos(θ (y, t)). (4.15)

For small excursions of the condensate phase θ (y, t), this relation predicts a time-independent

spatial modulation of the superfluid density at 2qJP as well as a temporal modulation at qy = 0,
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Figure 4.21: Time-resolved THz response of amplified finit-momentum Joseph-
son plasma oscillations. (a) Two counterpropagating Josephson plasmons with opposite
momentum ±qJP (red and blue) interfere and form a standing wave pattern of the super-
conducting phase θ along the y direction. (b) Resulting spatial and temporal (shaded grey)
modulation of the superfluid density ρs(y, t) around its equilibrium value ρs,0. The zero-
momentum temporal modulation proceeds at twice the Josephson plasma frequency 2Ω(qJP)
(grey lines). (c) Frequency-momentum diagram of the parametric amplification that drives
the THz emission. The two counter-propagating plasmons (red and blue arrows) enter into
a virtual zero-momentum state, from which two THz photons are emitted. (d) and (e)
Calculated photo-induced (red) and equilibrium (grey) THz reflectivity below Tc and the
normalized reflectivity changes ∆R(ω, t)/R0, respectively. The finite-momentum Josephson
plasmon polariton induces a second plasma edge at a frequency close to 2Ω(qJP) and overall
enhancement of the reflectivity above the equilibrium plasma edge. (f) and (g) Calculated
photo-induced (red) and equilibrium (grey) THz reflectivity above Tc and the normalized re-
flectivity changes ∆R(ω, t)/R0, respectively. Excitation of the apical oxygen vibration leads
to the appearance of a plasma edge at a frequency close to 2Ω(qJP), which is clearly visible
in the normalized reflectivity changes ∆R(ω, t)/R0. (h),(i),(j) and (k), show the same fea-
tures, observed experimentally in time-resolved THz-reflectivity measurements after resonant
excitation of apical oxygen oscillations at the peak of the signal at ∆t = 0.8 ps. Experimental
data taken from Ref. [30, 32].
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ρs (y, t) ≈ ρs,0
[
1−

{
θ2

0 + θ2
0cos(2qJPy)− θ2

0cos(2ΩJPt)− θ4
0cos(2ΩJPt)cos(2qJPy)

}
/4
]
. (4.16)

This is drawn in Figure 4.21 (b) where the grey line denotes the superfluid density, which is

modulated around its equilibrium value ρs,0. The zero-momentum temporal modulation at twice

the plasmon frequency 2ΩJP(qJP) is drawn as shaded lines, which do not depend on the spatial

coordinate y. This zero-momentum, 2ΩJP(qJP) modulation of the superfluid density ρs leads to

parametric amplification of a zero-momentum plasma wave at ΩJP, which can be summarized

in an frequency-momentum diagram. The two Josephson plasmons with opposite momentum

± qJP (red and blue arrows) scatter into a virtual state at zero momentum and twice the plasmon

frequency, 2ωJP(qJP). This virtual state relaxes by emitting two photons at signal νs (grey arrow)

and idler νi (light red arrow) frequencies with zero in-plane momentum.

The simulated THz reflectivity below Tc, plotted in Fig. 4.21 (d), shows the appearance of a

light induced plasma edge at a frequency ΩJP ∼ 2 THz, well above the equilibrium Josephson

plasma edge at ∼ 1 THz (Fig. 4.21 d, grey line) [222]. The resulting normalized reflectivity

changes ∆R/R in Fig. 4.21 (e) show a strongly enhanced reflectivity between the equilibrium

plasma edge and the light induced edge.

Above Tc, the simulated equilibrium THz reflectivity is featureless, as evidence by the grey line in

Fig. 4.21 (f). Therefore, in the temperature range Tc < T , Josephson plasmons can be described

as overdamped modes which do not produce a plasma edge [220]. However, for strong driving

of the apical oxygen phonon, the plasma edge is seen to re-emerge at ΩJP0 ∼ 2 THz, again blue

shifted with respect to the below-Tc equilibrium resonance (red line in Fig. 4.21 (f)). At this

frequency parametric driving compensates dissipation most efficiently and revives the features

of the dissipation less state, i.e., the plasma edge at 2ΩJP(qJP). The edge feature becomes even

clearer in the normalized reflectivity changes ∆R/R in Fig. 4.21 (g). Figures 4.21 (h),(i),(j),(k)

compare these calculations to experimental data reported in Kaiser et al. for a YBa2Cu3O6.48

sample [32], and find qualitative agreement below and above Tc. This suggests that the finite

momentum coherent Josephson plasma oscillations reported above and the fingerprints of light-

induced coherent transport in transient THz-reflectivity originate from the same microscopic

mechanism.
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4.7 Discussion

The presented results provide useful perspective for the physics of high-Tc cuprates. The finite

momentum (qy = ±190 cm−1) interlayer coherent Josephson modes, unlike the zero momentum

excitation detected in linear equilibrium measurements, were not observed to disappear at Tc

(see Fig. 3.12) but extended smoothly into the pseudogap phase and above room temperature.

The fact that these fluctuations are connected smoothly across Tc points to a similarity be-

tween the superconducting mode below Tc and the charge oscillations above it. Furthermore,

the observation of normal state coherent interlayer tunneling is difficult to reconcile with the

incoherent charge dynamics characteristic of the pseudogap phase of cuprates [201, 253–255] and

experimentally demonstrated no other symmetry-odd mode (like phonons) could explain these

oscillations.

The results suggest that the coherent Josephson modes observed in the normal state are more

convincingly explained by hypothesizing the existence of high temperature superconducting fluc-

tuations at THz frequencies and correlation lengths of several microns [68], possibly connected

to condensation at finite momentum [41, 71, 256, 257]. These finite momentum pairing fluctu-

ations act as a seed to the three-wave mixing and are amplified and synchronized to coherent

tunneling currents. These are then detected as coherent oscillations in the SH intensity and

as a Josephson plasma edge in transient THz reflectivity. These putative fluctuations would

lie at frequencies and wavevectors inaccessible to established equilibrium THz reflectivity mea-

surements, and hence have remained undetected to date. On this note, the higher frequency

intra-bilayer fluctuations near 12 THz lie at the edge of the light cone, which may explain why

these are observed in linear optical spectroscopy at temperatures above Tc, while the lower

energy inter-bilayer modes are not (see Fig. 3.11) [203, 206, 207].

4.8 Summary

Nonlinear phonon-Josephson plasmon coupling could be experimentally demonstrated by excit-

ing the polar apical oxygen vibration in YBa2Cu3O6.48. After strong-field mid-infrared excita-

tion, time-resolved second harmonic generation revealed coherent oscillations at 2.5 THz which

do not coincide with any equilibrium lattice excitation of the material. SH polarimetry mea-

surements confirmed a different point group symmetry of this polar excitation from the driven
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phonons and identified the coherent 2.5 THz oscillations as Josephson plasma tunneling modes

which lower the point group symmetry of the crystal from mmm to m′. Spatially resolved

measurements of the emitted SH light by spatial filtering through a slit further confirmed this

symmetry assignment by revealing a finite in-plane momentum (qy = ±190 cm−1) of the co-

herent Josephson plasma mode. Finally, a pump intensity dependence reveals an exponential

amplification of this coherent Josephson mode with increasing amplitude of the driven apical

oxygen phonon.

These results enabled the development of a microscopic theory, that involves three-wave mixing

between the driven apical phonon and the inter and intra-bilayer Josephson plasma modes. This

type of coupling leads to the creation of two Josephson plasmons with opposite momentum and at

frequencies which obey the conservation of energy ΩJ,1 +ΩJ,2 = Ωdrive. For this type of coupling

to work, it requires a finite amplitude of the individual waves prior to the resonant phonon

excitation, i.e., it requires an (incoherent) seed. The increase of the excitation strength lead

to parametric amplification and exponential increase of the Josephson plasma mode amplitude,

consistent with the experimental finding. The theory further predicts that in-plane currents

drive the out-of-plane tunneling current consistent with the symmetry considerations of the SH

polarimetry measurements.

Ultimately, the experimental temperature dependence revealed a smooth connection of the co-

herent Josephson plasmon's amplitude across Tc and therefore points to a similarity between

the superconducting mode below Tc and the charged oscillations above it. These results suggest

that the coherent Josephson modes observed in the normal state could be explained by hypoth-

esizing the existence of high temperature superconducting fluctuations. Besides the observation

of coherent Josephson plasma modes, the SH experiments also revealed parametric amplifica-

tion of infrared active lattice vibrations through fourth-order phonon coupling. The excitation

of the 17 and 20 THz apical phonon vibrations lead to a parametric resonance at 8.5 and 10 THz

and a dominant vibrational response and exponential gain at these frequencies. Ultimately, the

presented experiments can open new perspectives of frequency resonant wave mixing as a new

means to study cooperative phenomena in quantum materials.
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Conclusion and Outlook

In the past decades, optical techniques have been extended to allow for the ultrafast control of

materials, revealing hidden states of matter inaccessible by other means. These non-equilibrium

states include insulator-metal transitions, melting of magnetic order and even transient super-

conducting behavior [30–38], which were seen to follow the resonant excitation of the crystal

lattice. The latter could be achieved through the recent development of intense sources at THz

frequencies. All these previous experiments relied on measuring the linear optical properties

and their corresponding response functions, thus limiting the understanding of the microscopic

mechanisms which drive these transitions.

The aim of this work was then to extend the well-established nonlinear optical techniques from

equilibrium to non-equilibrium measurements. This approach can reveal dynamics which are

inaccessible by linear optical probes due to symmetry constraints. To this end, we developed a

setup which detects the second harmonic (SH) light generated inside the investigated material by

ultra-short laser pulses of 800-nm wavelength through the second-order nonlinear susceptibility

χ(2). To access non-equilibrium states of matter, this nonlinear probe was combined with intense

MV/cm mid-infrared laser pulses which resonantly excite infrared active lattice vibrations.

The first set of experiments reported in this thesis (Chapter 2) involves the resonant excitation

of an infrared active lattice vibration to large amplitudes and the reconstruction of its energy

potential. As a model system we chose the ferroelectric material LiNbO3, which, due to its large

optical nonlinearities, proved to be an ideal candidate to assess the capabilities of probing second

harmonic light generation. In this experiment, we excited the highest frequency optical phonon

in LiNbO3 with strong mid-infrared fields at 17.5 THz. The measurement of the time-delay de-

pendent SH intensity revealed not only coherent oscillations of the driven lattice vibration at its

fundamental eigenfrequency but also several harmonics, signifying the anharmonic atomic mo-

tion. The time-resolved SHG experiment could be reproduced by finite-difference time-domain
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(FDTD) simulations taking into account the full anharmonic lattice potential determined by

DFT calculations. The key result of this experiment was the reconstruction of the shape of

the potential energy of the driven mode directly from the time-resolved signal. This not only

permitted the benchmarking of the first-principles calculations but also the direct measurement

of the lattice potential energy of the driven mode and the underlying interatomic forces. This

work established time-resolved SHG as a sensitive probe of out-of-equilibrium dynamics.

In a second time-resolved SHG experiment on LiNbO3, the nonlinear coupling between the

same driven high frequency lattice vibration and the ferroelectric distortion was investigated.

This coupling was predicted by DFT calculations and would allow the ultrafast reversal of the

ferroelectric polarization. Since this polarization cannot be probed by linear optical methods,

time-resolved second harmonic generation is again an ideal tool for this study. Beyond, the

phase-sensitive detection of this SH light revealed a transiently reversed polarization. This

could only be observed when the frequency of the excitation field was tuned in resonance with

the highest frequency lattice vibration and at field strengths exceeding 20 MV/cm. Overall, this

experiment has paved a way towards ultrafast ferroelectric switching, which is of technological

interest for ultrafast data storage.

The second set of experiments shifted the focus towards the study of non-equilibrium dynamics

in cuprate high-temperature superconductors. In the past, the resonant excitation of an apical

oxygen vibration in these compounds disclosed the appearance of optical features commonly

associated with non-equilibrium superconducting behavior even above the equilibrium transition

temperature. THz reflectivity and second harmonic generation share the same selection rules,

hence transient features in the THz reflectivity should also appear in time-resolved SHG. We

used the same resonant lattice excitation in YBa2Cu3O6+δ (YBCO), which was shown to create

a transient superconducting-like state and probed the ensuing dynamics with this nonlinear

technique.

We observed coherent oscillations at a frequency of 2.5 THz, close to that of the light-induced

Josephson plasmon reflectivity edge. These oscillations exhibit an exponential scaling with the

amplitude of the driven phonon mode, anomalous momentum distribution and distinct symmetry

in SH polarimetry, which identified them as finite-momentum Josephson plasma oscillations.

Strikingly, they were observed to have a finite amplitude above Tc and up to the pseudogap

temperature T∗.
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Summary

On the basis of these observations, a microscopic theory was developed which describes the

phonon-plasmon coupling in terms of a three-wave mixing process. This can be understood

as a coherent process driven by the apical phonon mode which amplifies a high-frequency and

a low-frequency Josephson plasmons under energy and momentum conservation. The theory

considers the existence of superconducting pairing fluctuations at THz frequencies and at finite

momentum above Tc [41, 71, 256, 257], which act as a seed in the three-wave mixing process and

are amplified and synchronized to form coherent Josephson currents between CuO2 layers. This

theory not only succeeds in capturing the most essential findings of the SHG measurements,

but also explains the appearance of the Josephson plasma edge in the transient THz reflectivity.

This work helped to render a refined picture of the nature of light induced superconductivity and

additionally shed light on the nature of the pseudogap phase and the microscopic mechanism of

high temperature superconductivity.

Besides the observation of coherent Josephson plasmon dynamics, the intense excitation of the

crystal lattice in YBa2Cu3O6+δ also involved nonlinear phononic coupling to amplify low energy

phonons. In contrast to phonon-plasmon coupling, this phonon-phonon coupling involves four

waves and displays a fundamentally different momentum distribution, temperature dependence

and symmetry. This type of phonon amplification in a centrosymmetric material was hypoth-

esized by DFT but had not been observed experimentally yet. It offers a novel approach to

transiently break symmetries in solids and thus engineer new material properties arising from

such a broken-symmetry state.

Another important result of the experiments presented here is the excellent agreement between

the ab-initio DFT calculations and the time-resolved measurements. The predictive power of

these computational methods was demonstrated by the perfect agreement between the experi-

mentally determined phonon mode potential and the one calculated by DFT. A combination of

these theoretical tools and the increasingly sensitive pump probe experiments will help boost our

understanding of the microscopic origins of the macroscopic properties of correlated materials.

In total, the work presented in this thesis establishes time-resolved SHG experiments as a pow-

erful tool to investigate lattice as well as electronic dynamics. This type of nonlinear probe

is complementary to time-resolved linear techniques and is capable of revealing microscopic

dynamics which remain hidden otherwise.

Naturally, this non-linear probe technique can be extended in many directions. The experiments
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on LiNbO3 pave the way towards ultrafast ferroelectric switching via direct lattice control. Lead-

ing on from this, one can envision the ultrafast functional control of thin film materials and su-

perlattices grown on top of ferroelectric substrate materials. Direct excitation of the substrate,

as previously demonstrated [258], could induce new functionalities in the film as well as couple

existing functionalities to the polarization state of the substrate, possibly creating multiferroic

order. This would represent a powerful tool set for the realization of functional meta-material

control for ultrafast applications. Besides these practical implications, the comprehensive mea-

surement of the lattice dynamics with ultrafast x-ray diffraction during the ultrafast reversal

of the ferroelectric polarization would deepen our understanding of these types of ferroic tran-

sitions. This research is urgently needed, because even today the nature of these transitions,

either displacive or order-disorder type, is still not fully understood. The prospect of measuring

the full lattice potential, made possible by the recent development of a novel tunable narrowband

THz light source [143], will help to resolve this dichotomy.

The time-domain SH experiments on YBa2Cu3O6+δ ultimately helped to establish a microscopic

theory which helps to explain the nature of light induced superconductivity in bilayer cuprates.

They open up new perspectives of frequency resonant wave mixing as a new tool to study

cooperative phenomena in quantum materials. The insights gathered from the experiments

described here can be further corroborated by more comprehensive methods such as resonant

inelastic x-ray scattering [72, 259] and high-resolution electron energy loss probes [260].

A next systematic step can be to extend this work to single-layer cuprates, which exhibit similar

signs of enhanced coherence above Tc [31]. These seemingly simpler compounds display a more

direct competition between superconductivity and other types of order, such as pair-density

waves, which are optically silent modulations of the Cooper pair density. These can be revealed

by SH Hyper-Raman scattering and would allow to gain more insight into the direct competition

of charge order and superconductivity in cuprates. The employed SH Hyper-Raman scattering

techniques are not limited to non-equilibrium pump-probe experiments but can also be used as

an equilibrium probe to reveal these optically silent states and help improve the understanding

of the electronic ground state of cuprate superconductors. To this end, short NIR-pulses can

be combined with scanning probe techniques to achieve the relevant fs-temporal and nm-spatial

resolution to optically reveal these short range fluctuating orders in cuprates [43, 44, 71, 261].
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Appendix A

Nonlinear Optics and Pump-Probe Experiments

A.1 Basics of Pump probe Experiments and Experimental Practice

Pump-probe spectroscopy measures the physical properties after the excitation of a materials

into a non-equillibrium excited state and the subsequent relaxation back to equilibrium. Typi-

cally, a laser pulse is split into a strong pump-pulse and a weak probe-pulse. The pump is used

to drive the sample into an excited state and the probe is used to monitor a certain property

of the sample, usually its reflectivity. The time evolution of this property is then be mapped

out by varying the relative arrival time between pump and probe at the sample position. (see

Fig. 1.1). Nonlinear light conversion, for example with an optical parametric amplifier (see

A.4), allows one to choose different wavelengths of both pump and probe pulses, which can span

several orders of magnitude from the far-infrared to excite and probe low energy excitations

of the material up to hard x-rays to probe its structural properties. Lab-based laser systems

usually operate either at MHz repetition rate (oscillator based systems) with low pulse ener-

gies or at kHz repetition rate (amplifier based systems), which provide laser pulses of higher

energy. The later was made possible by chirped pulse amplification, where the ultra-short seed

pulse from an oscillator is stretched prior to the amplification to impede damage to the laser

active medium, Ti:spahhire. In all experiments presented in this thesis, we used laser pulses to

resonantly excite infrared active lattice vibrations. Typical energies of these excitation are in

the range of 300 meVto350 meV. This made it necessary to down convert the 800-nm (1.5 eV)

wavelength photons of the Ti:sapphire amplifier, which still is a highly inefficient process (see

A.4). Therefore, we used a KMLabs DragonTM multipass amplifier, which provides high pulse
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Figure 1.1: Schematic of pump-probe geometry. (a) In a typical pump probe exper-
iment two pulses hit the sample, the prob pulse (grey) and the pump pulse (yellow). To
measure the time evolution of the optical properties of the sample material the time delay
∆t between pump and probe pulse is varied in steps. The reflected or transmitted (dashed
grey) probe pulse are then measured by an optical detector. (b) Shows an example curve of
a pump probe trace, where the optical reflectivity in the NIR spectra was measured.

energies of 2 mJ (35-fs duration, p-polarized), as basis to generate the pump pulses, limiting

the repetition rate of the experiments to 1 kHz. The pump pulses are usually chopped and the

intensity of the probe pulses are measured by photodiodes or a photomultiplier tube (depending

on the detected wavelength). In order to increase the limited signal to noise ratio due to the

low 1 kHz repetition rate, the electrical output of these optical sensors is then measured with

a lock-in amplifier, which locks into the modulation frequency of the mechanical chopper, sig-

nificantly increasing the signa-to-noise ratio. Typical integration times of the lock-in amplifiers

are 300 ms. The samples are usually kept at 1× 10−6 mbar pressure in an Oxford MicrostatHe-

RTM cryostat and the beams pass through a 300 µm thick diamond window, transparent for

all important wavelength. This allowed us to control the sample temperature in a range from

4 K to 500 K and protect it from degradation due to humidity. The Y-Ba-Cu-O samples used

in our experiments have been synthetized and characterized by Prof. B. Keimer and J. Porras

in the Max-Planck Institute for solid state research in Stuttgart (Germany). The samples are

single crystal of typical dimensions 1× 1× 0.5 mm characterized X-ray diffraction and SQUID
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magnetometry measurements. These samples are very susceptible to degradation due to de-

composition by H2O and were stored in an evacuated storage cabinet. The sample surface was

polished down to a grit size of 100 nm to optical grate, to obtain a single specular reflection.

The LiNbO3 samples are commercially available and were bought from the company SurfaceNet

in Rheine. They are x-cut mono-domain congruently grown LiNbO3 crystals of 5× 5× 5 mm

dimension. We validated this by SHG polarimetry.

A.2 Optical Parametric Amplification

Optical parametric amplification is used to down convert the frequency of a high intensity input

field, which normally is called pump Eωp . To achieve this the pump field is overlapped with

a significantly weaker signal field Eωs in a crystal which shows a second order nonlinearity

χ(2). The interaction of the two fields through the χ(2) nonlinearity, described by the equations

introduced in 1, transfers energy from the pump to the signal. Therefore, the frequency of the

signal field (seed) has to be chosen to coincide with the desired target frequency. Further to

conserve energy a third field Eωi is generated, commonly dubbed idler. The process can be

summarized as shown in Figure 1.2, a pump photon excites the system to a virtual state which

then emits two photons with energies ~ωs and ~ωi. Following the discussion above the rate

equations capturing this process are given by

dEωs

dz
= 2iχ

(2)ω2
s

c2kωs
EωpE

∗
ωie

i∆kx (A.1)

dEωi

dz
= 2iχ

(2)ω2
i

c2kωi
EωpE

∗
ωse

i∆kx (A.2)

considering an undepleted pump dEωs/dz = 0. In typical applications ?Deltak = 0 is achieved

by choosing an appropriate geometry (see below) of the interacting light fields. Differentiating

eq. A.1 and inserting eq. A.2 finally yields the spatial evolution of Eωs/i as

d2Eωs/i

dz2 = κ2
s/iEωs/i (A.3)
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Virtual states

Ground state
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Figure 1.2: Energy diagram of optical parametric amplification. An incident laser
field with frequency νp, called pump, promotes the system into a virtual electronic state.
When it relaxes back the system emits two electric fields with frequencies νs and νi, called
signal and idler, respectively. Due to conservation of energy νp = νs + νi.

where κs/i = 2iχ(2)ω2
s/i/c

2kωs/iEωp . This equation has a general solution when perfect phase

matching is assumed,

Eωs/i(z) = a sinh(κs/iz) + b cosh(κs/iz) (A.4)

The boundary conditions (Eωs(0) = 0, Eωs(0) = const. [78]) then yield,

Eωs(z) = Eωs(0) cosh(κsz) (A.5)

Eωi(z) = i
EωpE

∗
ωs(0)∣∣Eωp

∣∣
(
nωsωi
nωiωs

)1/2
sinh(κiz) (A.6)

which for κ z � 1 can be approximated as e(κ z). Thus, the two fields Eωi and Eωs will experience

exponential growth at the expense of Eωp , signifying parametric amplification. It is worth noting

that the signal field Eωs retains its initial phase given by the seed EωS(0) [78].

A.3 Difference Frequency Generation

Like optical parametric amplification, also difference frequency generation (DFG) involves the

interaction of three distinct light fields. However, different to OPA in applications two of these

light fields (pump and signal) are supplied in equal strength and similar frequency (ωp − ωs <
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Ti:sapphire, 
800 nm, 1 kHz
30 fs, 2 mJ

WLC
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GaSe
300 µm

~1.336 µm

~1.236 µm

mid-IR ~ 17 mm

sample
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Figure 1.3: Schematic representation of the experimental setup. 30-fs pulses from
a Ti:sapphire amplifier are used to pump two optical parametric amplifiers (OPA), which
are seeded by the same white light continuum (WLC) . Carrier envelope phase stable 3-µJ
150-fs pulses at 17 µm wavelength are obtained by difference frequency generation of the two
signal beams from the OPAs. The mid-infrared light (yellow) is focused to a spotsize of
approximately 65 µm using a telescope and overlapped with the 800-nm probe beam (red).

30 THz) to obtain an idler beam at mid-infrared frequencies. Their interaction is again given by

equations A.2, A.1 and their solution takes a similar form as eq. A.6. Importantly, the phase

of the idler beam can be precisely controlled by the difference of the phases of the input beams

[78]. Thus, by supplying two laser beams, pump and signal, with a constant phase offset allows

the generation of phase stable pulses in the MIR spectral region.

A.4 Generation of Broadband Mid-Infrared Radiation

The setup used to generate the mid-infrared pulses is shown in Figure A.1.3. The 800-nm wave-

length 35 fs laser pulses from the Ti:Sapphire amplifier is split to pump two optical parametric

amplifier (OPA). A small portion of the pump is used to generate a white light continuum

through self-phase modulation in a 500 µm thick sapphire plate. This white light continuum is

used as a seed in the two symmetrical arms of the OPAs. These consist of two stages: The first

stages use the white light as a seed to amplify a single frequency from the continuum, selected

by phase matching in a Beta Barium Borate (β-BBO) crystal. The second stage then amplifies

the output of the first stage.

The two OPAs are pumped with 35 fs pulses with 1.5 mJ at 1 kHz, which are split by a 50/50

beam splitter for the two paths. The pump pulses are s-polarized and the signal wavelengths of

1236 nm and 1336 nm nm are amplified from the continuum. The two first stages are pumped
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with 110 µJ pulses focused to peak intensities of 55 GW/cm2, which yields signals with energies

of around 8 µJ (1236 nm) and 11 µJ (1336 nm) respectively. These two beams are then amplified

by 630 µJ pump pulses (peak intensities of 55 GW/cm2) in the second stages to 140 µJ (1336 nm)

and 200 µJ at 1236 nm (see figure A.1.3). The two second stage outputs are loosely focused and

non-collinearly (0.5Â°) overlapped in a 330 µm thick GaSe crystal oriented for type-II difference

frequency generation of 17 µm radiation. The carrier envelope phase (CEP) of mid-infrared

pulses is passively stabilized since both OPAs are seed by the same white light continuum and

hence the same phase offset. The whole process yields 2 µJ to 3 µJ pulse energy at 17-µm

wavelength and 150-fs duration, an overall conversion efficiency of approximately 0.2% (see Fig.

1.3).

A.5 Time-Resolved Detection of Strong Mid-Infrared Fields

The spectral and temporal shape of the ultra-short mid-infrared pulses is determined by elec-

trooptic sampling (EOS). For an EOS, a mid-infrared beam is focused into a detection crystal,

typically GaSe, GaP or ZnTe. The focused beam is than overlapped with a so-called gate pulse,

which samples the beam by exploiting the Pockels effect. The pulse duration of this gate pulse

has to be shorter than a full period of the mid-infrared field. The mid-infrared and the short

gating pulse co-propagate in a nonlinear detection crystal with a variable delay. The detection

efficiency is optimized through phase-matching of the propagating gate and mid-infrared pulse.

The mid-infrared field (quasi-DC) induces a transient birefringence in the nonlinear detection

crystal that rotates the gating pulse polarization. The polarization rotation is directly pro-

portional to the instantaneous mid-infrared field. After passing through the detection crystal

this polarization rotation is measured by balanced detection setup (see Fig. 1.4). The gating

pulse is linearly polarized (either s- or p-) and after interacting with the mid-infrared field in

the detection crystal, the polarization remains linear but is rotated with respect to the incident

polarization. The two orthogonal polarization components are separated by a λ/2 waveplate

and a Wollaston prism. The two resulting beams are detected with two photodiodes which

measure their intensities I1 and I2. The instantaneous mid-infrared field can be extracted from

the intensity difference signal EMIR ∝ I1 − I2.
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Figure 1.4: Schematic representation of the EOS setup. (a) The mid-infrared light
yellows is focused into an electro optic medium (GaSe) and overlapped with a short gate
pulse (red). The gate pulse is then detected by balancing two photo diodes with a half-
waveplate and a Wallaston prism. (b) The difference signal of the two photo diodes is
directly proportional to the electric field of the mid-infrared pulse, which is shown in panel
(c). The envelope of the pulse is shown as a dashed line. (d) The mid-infrared pulses used
for the experiments in this thesis were typically tuned to center wavelength of 16 THz to
22 THz with nearly 25% bandwidth. The yellow peak is the FFT of the waveform in panel
(c).

A.6 Phase-Matching Type-I and Type-II

Phase-matching in a nonlinear medium is often difficult to achieve because usually the refractive

increases monotonically as a function of frequency. As a result, the condition for perfect phase

matching,
n (ω1)ω1

c
+ n (ω2)ω2

c
= n (ω3)ω3

c
, (A.7)

with ω3 = ω1 + ω2, cannot be achieved. However, phase matching can be achieved by making

use of the birefringence displayed by many nonlinear crystals. Birefringence is the dependence of

the refractive index on the direction of polarization of the optical radiation [2 chap1]. In order to

157



Chapter A - Nonlinear Optics and Pump-Probe Experiments

achieve phase matching by using the birefringence, the highest-frequency wave ω3 = ω1 + ω2is

polarized in the direction that gives it the lower of the two possible refractive indices. Here, the

refractive index along the optical axis is ne, for the extraordinary beam, and for light polarized

perpendicular to the optical axis it is no, the ordinary beam. Usually, ne is smaller than no so

the highest frequency light should be polarized along the optical axis. However, there are two

choices for the polarizations of the lower-frequency waves., which define the two most common

types of phase-matching:

Type I: The two lower-frequency waves have the same polarization.

Type II: The two lower-frequency waves have orthogonal polarization.

Usually, type-I phase matching is easier to achieve than type-II [78]. Careful control of crystalline

axis of the birefringent material is required to achieve the phase-matching condition (∆k = 0).

In a uniaxial crystal the phase matching for second harmonic generation condition becomes,

sin2(θ)
ne (2ω1)2 + cos2(θ)

no (2ω1)2 = 1
n (ω1)2 . (A.8)

In this equation θ denotes the angle between the propagation direction and the optical axis [78].
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Appendix B

Time-resolved SH experiments on LiNbO3

B.1 Scaling the Reconstructed Potential

This paragraph describes the steps how the experimentally determined lattice potential of Chap-

ter 2 was rescaled to absolute physical units following the description in the supplementary

information of Ref. [65]. The unknown proportionality factor B, which connects the measured

SH signal to the vibrational velocity via ISH (τ) = B

dotQ (τ), leaves a single scaling factor to the reconstruction. The kinetic energy becomes

Ekin (τ) = 1/2(ISH (τ))2/B2 and the vibrational amplitude Q (τ) =
∫
ISH (τ) /Bdτ . Hence,

the y-axis of the reconstruction will be scaled with B2 and the x-axis with B to the cor-

rect absolute values. This constant B can most effectively be derived by fitting the function

f(Q) = 1/B2U(BQ) to the experimental data, where U(Q) is the potential obtained by DFT.

Once B is retrieved, the experimental x and y axis can be rescaled to the absolute phonon

amplitude in terms of Å
√
amu and the potential energy in eV, respectively. The maximum

displacement of the oxygen atoms involved in the A1 vibrational mode was calculated with the

knowledge of the phonon eigenvectors, which we obtained from DFT calculations (see Appendix

B.10). We find a maximum displacement of the oxygen atoms of approximately 14 pm, which

amounts to 7% of the Nb-O and 5% of the O-O nearest neighbour distance at the corresponding

potential energy (0.7 eV), which agrees with the estimated energy deposited per unit cell (0.6 eV

at 3 µJ pulse energy).

159



Chapter B - Time-resolved SH experiments on LiNbO3

B.2 Phase-matching between the Probe Light and the

Phonon-Polariton

The amplitude spectra shown in 2.12 are well understood by considering the phase-matching

between the probe light and the phonon-polariton propagating into the crystal. The phonon-

polariton dispersion of LiNbO3 (black line) is plotted as νp = c0q
√
ε(ν), where c0 is the vacuum

speed of light and ε(ν) the dielectric function. The light lines ν = vgq of the 800 nm (red,

vg,800 = c0/2.3) and the 400 nm (vg,800 = c0/3.03) probe fields are also shown, where vg and

q denote the group velocity and wave number, respectively. Phase-matching occurs at those

frequencies for which the light lines intersect the phonon-polariton dispersion curve [92, 137],

i.e. at 14.6 THz (PR), 15.4 THz (SH) and 19 THz (both PR and SH) (see Fig. 2.1).

B.3 Effect of Inter-Phonon Coupling of the Type gjQ2
IRQj

This paragraph discusses the influence of non-linear mode coupling on the resonance frequency

of the driven mode in the LiNbO3 experiments of Chapter 2 following the description in the

supplementary information of Ref. [65].

Besides the nonlinearities of the driven lattice mode, the full lattice potential also comprises

coupling to other phonon modes of the formgj Q2
IRQj:

U (QIR, Qj) = 1
2ω

2
TOQ

2
IR + 1

3a3Q
3
IR + 1

4a4Q
4
IR + 1

5a5Q
5
IR +

∑
j

1
2ω

2
jQ

2
j +

∑
j

gjQ
2
IRQj. (B.1)

Here, the Qj denote the amplitude of coupled lattice modes and Ωj their resonance frequency

[58, 64]. For strongly driven QIR the nonlinear interaction leads to a directional force on the

coupled mode Qj, which can be used to control materials functionality [64]. In addition, the finite

amplitude Qj renormalizes the fundamental frequency of QIR, as can be seen in the equations

of motion

Q̈IR + 2γQ̇IR + (ω2
TO − 2gQjQIR = Z∗E(t) (B.2)

Q̈j + 2γjQ̇j + ω2
jQj = gj Q

2
IR (B.3)

This frequency renormalization ω′TO =
√(

ω2
TO − 2gQj

)
was observed in our experiment with a
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Figure 2.1: Phonon-polariton dispersion. The phonon-polariton dispersion of the two
dominant lattice modes in LiNbO3 (black curve) intersects the two light lines ν = vgq for
800 nm (red) and 400 nm (blue) wavelengths at 14.6 THz and 15.4 THz, respectively. The
dots mark the points of intersection with the dispersion relation, which correspond to the
observed fundamental frequencies of the driven mode (left and right panel).

maximum change of 3.5% at the highest driving field (see Fig 2.2).

B.4 Nonlinear Eigenfrequency Renormalization

At large amplitudes a nonlinear oscillator experiences a frequency renormalization due to its

anharmonic potential energy

U (QIR) = 1
2ω

2
TOQ

2
IR + 1

3a3Q
3
IR + 1

4a4Q
4
IR + 1

5a5Q
5
IR + . . . . (B.4)

This becomes obvious by rewriting the equation of motion of the oscillator which includes the

cubic order nonlinear term of the potential energy,

Q̈IR + 2γQ̇IR + (ω2
TO + a3QIR+a4 . . .)QIR = Z∗E(t) (B.5)

the instantaneous frequency is thus

ω (QIR) =
√
ω2
TO + a3QIR. (B.6)
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Figure 2.2: Frequency renormalization of the driven through nonlinear phonon
coupling. The normalized frequency of the driven mode in LiNbO3 increases quadratically
with the peak field of the pump pulse. The light blue points are directly extracted from the
FFT of the pump probe signal. Due to the limited frequency resolution the data points were
binned (dark blue). The dashed line is a fit of the type Ω (E) /Ω0 =

√
1 + aE2.

For this we can find an analytical solution which predicts an on-average lower resonance fre-

quency of the strongly driven oscillator

ω (QIR) = ωTO −
5
12

a2
3

ω3
TO

Q2
IR. (B.7)

Since the higher harmonics appear only appear at the highest amplitudes of the oscillatory

motion they will be strongly influenced by the renormalized frequency. As derived above, they

will experience an on average lower frequency compared to the fundamental oscillation and

are therefore shifted to lower frequencies compared to the integer multiples of the fundamental

frequency (see Fig. 2.3). The situation is slightly different when the potential energy only

contains even order terms. Then the lowest order of the anharmonic expansion is the quartic

term

U (QIR) = 1
2ω

2
TOQ

2
IR + 1

4a4Q
4
IR + . . . , (B.8)

which leads to an instantaneous frequency given by

ω (QIR) =
√
ω2
TO + a4Q2

IR. (B.9)

The additional term leads to a unidirectional increase or decrease of the frequency depending

on the sign of the coefficient a4 (see Fig. 2.3). Similar to the reasoning above, this change of
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Solution of Mathieu Equation and Exponential Scaling
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Figure 2.3: Frequency renormalization due to the self-anharmonicitiy. (a) For
a cubic lattice nonlinearity, the peaks of the second (highlighted in full color) and higher
harmonics (faded color). always shift to lower frequencies as a function of the excitation field
(increasing from grey to blue.) (b) The peak maximum position to lower frequencies and
can be fitted by eq. B.7 (dashed line). (c) For a quartic nonlinearity in the lattice potential
the shift of the higher harmonics can be either positive (blue peaks) or negative (red peaks),
depending on the sign of the coefficient. (d) For the same magnitude, a negative nonlinear
coefficient leads to a larger frequency shift for a given fluence (compare blue and red dots).
The dashed line is a fit with equation eq. B.10.

the instantaneous frequency at the highest amplitudes will shift the higher harmonics to lower

or higher frequencies depending on the sign of a4,

ω (QIR) = ωTO + 3
8
a4
ωTO

Q2
IR. (B.10)

B.5 Solution of Mathieu Equation and Exponential Scaling

An oscillator with time-dependent parameters, i.e., frequency and damping coefficient, is called

a parametric oscillator. In the special case, when the frequency of the oscillator is periodically

163



Chapter B - Time-resolved SH experiments on LiNbO3

modulated the equation of motion will be

Q̈+ ω2
0(1 + α sin(Ωt))Q = 0, (B.11)

and is commonly known as Mathieu equation [146]. With basic consideration of Floquet theory,

for example the periodicity of the solutions (Q(t) = Q(t+ 1/Ω)), one finds that Q(t) is periodic

within a constant scale factor eµ/Ω,

Q(t+ 1/Ω) = eµ/ΩQ(t). (B.12)

If now this is expressed with the periodic function P(t)= P(t+T) one can see

Q(t) = eµtP (t), (B.13)

Q(t+ 1/Ω) = eµ(t+1/Ω)P (t+ 1/Ω) = eµ/ΩeµtP (t) = eµ/ΩQ(t). (B.14)

Therefore, for a positive sign of µ one acquires an exponential increase of the vibrational ampli-

tude with time [146].

B.6 Interaction Length in LiNbO3 SH Experiments

Part of this paragraph are adapted from the supplementary information of Ref. [64]. The time-

resolved second harmonic signal in the LiNbO3 experiments is due to the homogenous solution to

the wave equation, which results from the discontinuity of the optical properties at the boundary

of the crystal [97, 98]. The generation occurs in a layer below the surface with thickness given by

the SH coherence length of lcoh = 1.27 µm. The coherence length determines over which depth

in the bulk material the dipole emission builds up constructively [99]:

lcoh = λ

4 |n2ω − 2nω|
. (B.15)

The homogeneous solution is thus sensitive to polarization and phonon dynamics in the pumped

volume and it propagates with a group velocity determined by the linear optical properties and
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Figure 2.4: Homogeneous and inhomogeneous solution of SHG in a pump probe
experiment. (a) In an unpumped LiNbO3 crystal, the homogeneous SH solution (blue) is
generated in the coherence length lc (dashed blue) behind the crystal surface by the 800-nm
wavelength probe pulses. After propagation in the crystal the homogeneous and inhomoge-
neous solution separate temporally and spatially. (b) If the MIR pump now depletes χ(2) up
to a depth larger than lc, no homogeneous solution will be generated. The inhomogeneous
solution on the other hand will be generated in the bulk behind the volume of depleted χ(2)

(blue). (c) A cross-correlation measurement of the SH light emitted from an unpumped (blue
line) and a pumped (red line) LiNbO3 crystal, show that indeed the homogeneous solution
vanishes when the crystal is pumped with mid-infrared light. The black line is a simulation
of the SH process with the software package SNLO [130]. Part of the figure and caption are
taken from Ref. [64].

dispersion of the crystal at 2ω. In addition to this predominantly surface sensitive SH signal, a

second pulse with wave vector 2kω is constantly generated by the fundamental beam (800 nm)

as it propagates through the crystal. This second pulse is inhomogeneous solution to the wave

equation, and it co-propagates both in time and space with the fundamental pulse. Thus, it

shows an apparent group velocity determined by the dispersion at ω. Therefore, the two second

harmonic pulses will separate, both spatially and temporally, when propagating through the

crystal [100]. Importantly, the intensity of the inhomogeneous solution is thus not affected by

changes in the excited volume close to the surface (see Fig. 2.4 (b)). The two pulses can be

detected by cross-correlating the total second harmonic radiation emitted from the 5 mm thick

LiNbO3 crystal, with a synchronized time delayed 800-nm pulse in a β-BBO crystal. Figure 2.4

(c) shows intensity of the sum frequency generation of this process together with a simulation
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using the SNLO software package (black curve) [130]. The two solutions are separated in time by

10.5 ps, in good agreement with the simulations. The difference intensities of the homogeneous

and inhomogeneous solutions are due to the slightly different propagation direction of the two

beams leading to a spatial separation on the detection crystal. The red curve in Figure 2.4 (c)

shows the cross correlation at the maximum of the SH intensity depletion of the experiments

presented in Chapter 2. While the inhomogeneous solution is unaffected by the MIR pump

pulses, due to the limited MIR penetration depth, the homogeneous solution vanishes due to a

complete suppression of the optical nonlinearity χ(2) in the excited volume close to the surface.

Hence, changes in the excited surface region can be followed by measuring the SH pulses of the

homogeneous solution in transmission through the bulk sample.

B.7 Finite-Differences Time Domain Simulations

The phonon-polariton propagation dynamics in LiNbO3 have been calculated by solving Maxwell's

equations in space and time. To this end we used finite-difference time domain (FDTD) in one

spatial dimension [262–264], cartella. FDTD simulations are commonly used to numerically solve

Maxwell’s equations in space and time. This method approximates the commonly appearing

space and time derivatives in Maxwells equations with finite differences as difference quotients,

df(x)
dx

∣∣∣∣
x=x0

≈
f
(
x0 + δ

2

)
− f

(
x0 − δ

2

)
δ

(B.16)

Here x is either a spatial or temporal variable and the difference quotient in eq. B.16 becomes

exact in the limit of δ → 0. The approximation becomes increasingly inaccurate for large δ.

Therefore, when dealing with electromagnetic waves, the discretization d has to be done in steps

which are small compared to the full temporal periods and wavelengths of the electromagnetic

field involved. Additionally, the time discretization has to obey the Courant-Friedrichs-Lewy

stability criterion [265] which states that the time steps ∆t have to be smaller than the time it

takes for a wave packet to propagate from one spatial point in the grid to the next ∆z:

∆t ≤ n∆zc. (B.17)

These conditions can very quickly lead to simulations which are computationally very expensive
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Figure 2.5: Simulated reflectivity. (a) The simulated reflectivity (red), where only the
two strongest c-axis optical phonons in LiNbO3 were considered, still describes the measured
c-axis reflectivity (grey) reasonably well. (b) To reduce the computational afford, the simu-
lation were reduced to a single dimension, by introducing perfectly magnetic layer boundary
conditions on the x-boundaries (red). The light field was launched via scattering boundary
condition on the inlet (left, blue) as a plane wave. A scattering boundary condition together
with a perfectly matched layer (PML) were used on the right boundary to impede back
reflection into the simulated volume.

and require large RAM when the dimensions of the simulated volume are significantly larger than

the wavelength of the electromagnetic wave. The equations calculated in the FDTD simulations

are discretized Maxwells equation. In a one dimensional space, with the electromagnetic waves

propagating along the x direction the fields are uniform along y and z, and therefore the partial

derivatives ∂/∂y and ∂/∂z in the curl operators vanish. This reduces Maxwell’s equations to

two independent set of equations describing propagating electric E and magnetic field H. This

one-dimensional simulation is equivalent to a light field which is incident onto a bulk material

and linearly polarized along a major axis the crystal. If the electric field is now considered to

be polarized along the z-direction Maxwell?s equations simplify to
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∂Ez
∂x

= µ
∂Hy
∂t

(B.18)

∂Hy
∂x

= ε
∂Ez
∂t

(B.19)

The partial derivatives of eq. B.18 and B.19 are replaced with finite differences as noted in

eq. B.16 above. These finite differences will be calculated for every finite grid point and if

the fields are known at all grid points at a certain time point, it is possible to use the above

equations to one step in the future. This is achieved with a self-consistent loop over the whole

grid which updates the fields. This procedure is repeated for every discrete point in time to

simulate the whole propagation. This is how the propagation of electromagnetic fields in a linear

dielectric medium without resonances on a discrete grid can be calculated. The full practical

implementation is very involved and discussed in detail in Ref. [264]. The FTDT simulations in

this thesis on the other side were computed using the commercially available software package

ComsolTM, which is optimized for large volume simulations.

B.8 Modelling Resonant Phonon Excitation

The above description of FDTD simulations only considers a linear, non-resonant material.

However, to model the resonant mid-infrared pump experiments the infrared active phonon

modes have to be added to simulation as well. As discussed in Chapter 1 this can be done by

considering the auxiliary dielectric displacement field D,

D = ε0E + P = ε0εr(ω)E (B.20)

where P denotes the polarization generated by the motion of the infrared active phonon,

P = ωTO
√
ε0 − ε∞

√
ε0nQIR (B.21)

with n the oscillator density, ε0 the vacuum permittivity, QIR the phonon amplitude and ε0

and ε∞ the low and high frequency limits of the dielectric function, respectively. The prefactor

in front of the phonon amplitude QIR is the effective charge density of the individual phonon

an is usually abbreviated with Z∗n. We modeled the linear response of the material using the
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Oscillator # Frequency (cm−1) Oscillator strength (cm−1) Damping (cm−1)
1 249.3 922.8 27.7
2 271.6 384.1 20
3 632 955.9 33.5
4 696.7 352.5 76.2
ε∞ 4.4054

Table B.1: Values obtained from a fit of four Lorentzian oscillators to the reflectivity spec-
trum of our LiNbO3 sample.

parameters of the two dominant optical phonons obtained from fitting the FT-IR measurement

(see Table B.1). For each mode, the equation of motion is given by

Q̈IR + 2γQ̇IR + ω2
IRQIR = Z∗IRE (B.22)

Here, γ is the damping constant, ωIR the phonon angular frequency and Z∗IR the mode effective

charge, which can be expressed as

ωIR
√
ε0 − ε∞

√
ε0
n
. (B.23)

The oscillator density n was approximated as one oscillator per unit cell. For each mode, ε0 and

ε∞ were derived from the generalized Lydanne-Sachs-Teller relation [266]. The above equation

was solved at every discrete point of the grid in space and time using the values of the electric

field calculated from Maxwell?s equation. Fig. 2.5 (a) shows that by only considering the

two strongest phonons the linear optical properties of LiNbO3 can be largely reproduced in the

spectral range interesting for the SHG experiment. Nonlinear phonon dynamics were introduced

by considering the anharmonic lattice potential of the driven A1 mode into the above equation

of motion:

Q̈IR + 2γQ̇IR + ω2
IRQIR + a3Q

2
IR + a4Q

3
IR + a5Q

4
IR = Z∗IRE (B.24)

The anharmonic coefficients a3, a4 and a5 are taken from ab-initio Density Functional Theory

calculations as described below (a3 = 1567.65 meV amu−3/2Å−3, a4 = 900.8 meV amu−2Å−4,

a5 = 7.1 meV amu−5/2Å−5). In the simulations the mid-infrared pump pulse was set to a peak

field strength of 30 MV/cm, carrier frequency 17.5 THz and 180 fs duration, comparable to the

experiment. We evaluated the equations in time steps of 0.5 fs and with a spatial grid of 0.5 µm.

Perfectly matched boundary conditions were implemented to impede back reflection. Fig. 2.5
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(b) shows the implementation in the software package ComsolTM, and the boundary conditions

used at the limits of the simulated volume.

B.9 Interference Signal LiNbO3

To determine the sign of the polarization, the phase of the emitted SH electric field from the

sample was interfered with the SH light generated in a second LiNbO3 crystal at all time delays.

A sketch of the experimental geometry is shown in Figure 2.17. The beams were overlapped

on the screen of a CCD-camera which visualized the interference pattern. The intensity of the

interference fringe at time delay ∆t between pump and probe pulses is given by

Itotal,SH(ϕ(∆t)) = |ESH(∆t)|2 + |ESH,ref|2 + 2 |ESH,ref| |ESH(∆t)| cos(ϕ(∆t)− ϕref), (B.25)

where ESH,ref denotes the amplitude of the SH electric field from the reference LiNbO3 crystal

and ESH(∆t)eiϕ(∆t) the time-delay dependent amplitude and phase of the SH field from the

sample. The interference pattern can be extracted by subtracting the contribution from the

terms |ESH(∆t)|2+|ESH,ref|2, which appear as a Gaussian background along the x and y direction

of the CCD. A sine-fit to the residual yields ϕ(t) as shown in Figure 2.6.

B.10 DFT Calculations LiNbO3

The DFT calculations used in this thesis are based on the approach presented in the supple-

mentary information of Ref. [65] and were carried out by Michael Fechner, one of the authors of

that study. The following summary of these calculations are adapted from the supplementary

information from Ref. [65]. The first-principle computations to determine the full anharmonic

lattice potential of LiNbO3 were carried out within the framework of density functional the-

ory (DFT). All our computations were carried out using DFT as implemented in the Quantum

Espresso code36. We used ultrasoft pseudopotentials, which contain as valence states the 2p 2s

for Lithium, 4s24p64d45s1 for Niobium and 2s22p4 for Oxygen. As numerical parameters, we

applied a cut-off energy for the plane wave expansion of 80 Rydberg and five times this value

for the charge density. For all computations, we sampled the Brillouin zone by a 17 x 17 x 17

k-point mesh generated with the Monkhorst and Pack scheme [267] and reiterated total energy
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Figure 2.6: SH interference pattern. (a) The interference of the SH beam from the
excited LiNbO3 with a reference beam on a CCD camera leads to interference fringes on top
of a gaussian background (dashed red line). (b) Subtraction of this background reveals the
interference pattern which can be fitted by sine-function convolved with an envelope (dashed
red line).

calculations until the total energy became less than 10-10 Rydberg. Before calculating phonon-

modes we fully structural relaxed the unit-cell regarding forces and pressure below the threshold

of 5 µRy/a0. We finally performed density functional perturbation theory [268] calculations

to obtain phonon modes eigenvectors and frequencies. Finally, the anharmonic phonon poten-

tial was computed by calculating the total energy for structures, which have been modulated

with the phonon eigenvector. Least mean square fits of this total energy landscape reveal the

anharmonic coefficients of Chapter 2 and the phonon mode eigenvector as shown in Figure 2.10.
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Appendix C

Time-resolved SH experiments on YBa2Cu3O6+δ

C.1 Signal Dissection of the Time-Resolved SH Signal from

YBa2Cu3O6+δ

The measured time-resolved second harmonic intensity ∆ISH(t) (see for example Fig. 4.5 of

the Chapter 4) was fitted by the product of (i) a Gaussian envelope to map the nonlinear

optical mixing of pump and probe electric fields at time delay zero (electric field induced

second harmonic generation, EFISH) and (ii) a step function of finite width, multiplied by

a decaying exponential, i.e. A (τ) = A(1 + erf((τ − τ0)/σ))exp(−γ(τ − τ0)), to describe the

exponentially decaying background signal. Subtraction of this slowly varying background re-

vealed the coherent oscillations shown in Figures 4.6 of the Chapter 4 for different excitation

strengths. The oscillatory signals can be divided into sets of three exponentially decaying os-

cillators: the driven polar phonons Qdrive, the amplified phonons Qamplified, and the nonlin-

early coupled Josephson Plasmon Polaritons J1 and J2 (see Fig. 3.1). These were fitted as

A (τ) = A(1+erf((τ−τ0)/σ))exp(−γ(τ−τ0))sin(2πΩτ+φ0). For the phonons, their frequencies

Ωphonon were constrained to values measured by linear infrared spectroscopy [204].

C.2 Momentum-Resolved Detection of the Josephson Plasmon

Polariton

In the SH measurement, the 400-nm wavelength light is generated in a thin layer l of about

100 nm below the sample surface. The finite in-plane momentum qy of the amplified Josephson
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Figure 3.1: Dissection of the coherent SH oscillations. (a) The dissection of the
coherent oscillations of the SH signal is done by a comprehensive time-domain fit, exemplary
on the data set from YBa2Cu3O6.48 for 7 MV/cm excitation at 5 K. The contributions from
know infrared vibrations were constrained by their equilibrium frequency. By doing so, the
contributions from the driven apical oxygen vibrations (yellow, in panel (a) and (b)), the
amplified phonons (grey, in panel (c) and (d)) could be separated from the coherent signal of
the Josephson plasma oscillations (red, in panel (e) and (f)).

Plasmon Polariton leads to a deflection of the second harmonic light with respect to the specular

reflection. The spatial distribution of the emitted radiation was determined by taking second

harmonic intensity measurements ∆ISH(t) at different positions of a 200-µm slit, which was

scanned across the re-collimated reflected beam. The amplitudes of the frequency-filtered 2.5-

THz JPP and the amplified phonon contributions are plotted as a function of the slit position

in Figure 3.2 (c), together with the EFISH amplitude at time zero shown in Figure 3.2 (a). The

momentum transfer was calculated from the deflection angle ∆θ by

qy = √ε∞tan(∆θ)k400, (C.1)
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Figure 3.2: Deconvolution of the spatial-resolved measurements. (a) In-plane mo-
mentum distribution of the EFISH-component, (b) amplitude of the amplified phonon os-
cillations and (c) coherent Josephson Plasmon Polariton oscillations, as measured in the
experiment sketched in Figure 4.11 (a) of the main text. Data points are shown as blue, grey
and red symbols. The Gaussian fit to the EFISH data, shown as a dashed grey line in a,
reveals the divergence of the second harmonic beam. In panel (c), the fit to the raw data
and of the Josephson Plasmon Polariton amplitude and its ωIR = ωJ1 (qplas) + ωJ2(−qplas)
deconvolution are plotted as dashed grey and red lines, respectively. Error bars represent
the standard deviation σ of the amplitudes extracted by numerical fits. Horizontal error bars
represent the standard deviation σ due to the finite width of the measurement slit.

where k400 is the vacuum wavenumber of the 400-nm light. While both the EFISH and amplified

phonon contributions are symmetric and peak at zero in-plane momentum transfer qy, the

plasmon response is asymmetric and peaks at a finite momentum qy = 190 cm−1.

The momentum distribution of the Josephson Plasmon Polariton, shown in Figure 4.11 (c) of

the main text, was then obtained by deconvolving the measured JPP profile (see Fig. 3.2 (c))

from the divergence of the probe beam. To this end, consistent with our theoretical model, two
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constrained Gaussian profiles, with equal but opposite abscissa offsets and same widths, were

fitted to the data. The best fit was deconvolved with the Gaussian profile of the undeflected

second harmonic beam, which is accessible from the momentum dependent EFISH signal due

to the collinearity between the incident mid-IR excitation and 800-nm probe beams in these

measurements. The error-bars of the deconvoluted data points are determined by the deviation

of the least squares fit to the data points. Note that while the deconvolution result is not unique,

the 190 cm−1 momentum shift is already clearly visible in the raw data (Figure S8c).

C.3 SH-Polarimetry Measurements for p-Analyzer

The results of the SH polarimetry measurements with the analyzer oriented along the YBa2Cu3O6.48

c axis (s-analyzer) are shown in Figure 4.9 of the main text. The measurements taken with the

analyzer oriented along the b axis (p-analyzer, see the optical setup in Figure S7a) are discussed

here. Figure 3.3 (b) shows the corresponding measurement as a function of incoming 800-nm

polarization angle ϕ and pump probe time delay. The frequency-filtered SH polarimetry signals

for one representative time delay (t = 500 fs) are shown in Figures 3.3 (c),(d),(e). Again, the

directly driven phonons (yellow) and the amplified phonons (grey) can be fitted by the χ2 tensor

of the mm2 point group (dashed lines), as expected for the B1u-symmetry lattice distortions.

Also, the sign of the phonon amplitudes at this delay, and hence their phases, are independent

of the polarization angle ϕ. In contrast, the ϕ angular dependence of the 2.5-THz Josephson

plasmon mode, shown in Figure 3.3 (e), requires a fit by the χ2 tensor of a lower-symmetry

point group (m or lower). In addition, the amplitude of this mode changes sign as a function of

incoming polarization angle ϕ. Both results agree with the symmetry analysis presented in the

main text for the s-analyzer configuration.

C.4 Excitation Frequency Dependence of the Josephson Plasmon

Amplification

Our theory predicts the amplification of the Josephson Plasmon Polariton by three-wave mixing

with the c-axis apical oxygen phonon mode. Hence, we expect the amplification to be enhanced

when the mid-infrared excitation pulses are frequency-tuned into resonance with this phonon,
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Figure 3.3: Time-resolved SH polarimetry for p-analyzer. (c), (d) and (e), Normal-
ized polarimetry signal of the driven phonons (yellow dots), amplified phonons (grey dots)
and amplified Josephson Plasmon Polariton (red and blue dots) for an analyzer oriented along
the crystal b-axis, at one time-delay t = 500 fs. The polarimetry signal of the two sets of
phonons can be reproduced by a fit to a mm2 point group symmetry (dashed line) and the
phase of the oscillations is polarization angle ϕ independent. The polarimetry signal of the
amplified Josephson plasmon agrees with a fit to point group m (dashed line). The phase of
the polarimetry signal is indicated by the red and blue color-coding.

where the latter is driven to largest amplitudes.

We tested this prediction by recording the amplitude of the 2.5 THz mode in YBa2Cu3O6.48 for

different center frequencies of the mid-infrared pulses, keeping the peak electric field constant

at ∼ 7 MV/cm. In Figure 3.4, we plot this dependence together with the real part of the
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Figure 3.4: Excitation frequency dependence of the Josephson plasma mode.
Amplitude and frequency of the low-frequency Josephson Plasmon Polariton in YBa2Cu3O6.48
at different mid-infrared frequencies, shown as red points, for a fixed peak electric field of
∼ 7 MV/cm. The amplitude increases towards the resonance of the apical oxygen infrared
vibration. The real part of the optical conductivity is drawn as solid black line, and as a
dashed line when convolved with the bandwidth of the excitation pulses. Error bars represent
the standard deviation σ of the JPP amplitudes extracted by numerical fits. Horizontal error
bars represent the standard deviation σ of the center wavelength determined by electro-optic
sampling.

optical conductivity. Clearly, the Josephson Plasmon Polariton amplitude increases when the

mid-infrared pulses are tuned into the phonon resonance, supporting the proposed three-wave

phonon-plasmon mixing.

Furthermore, Figure 3.4 shows that the frequency of the amplified Josephson Plasmon Polari-

ton does not change as function of the mid-infrared center frequency. Given the JPP dis-

persion, this implies that in the three-wave mixing process, with resonance condition ωIR =

ωJ1 (qplas) + ωJ2(−qplas), the frequency ωIR always takes the same value. Hence, this has to be

the eigenfrequency ωdrive of the phonon and not the tunable frequency of the excitation pulses.

Together, these two observations show that the amplified JPP amplitude scales with the resonant

enhancement of the driven apical oxygen phonon amplitude Qdrive and exclude a scenario, where

the incident light field couples directly to the Josephson Plasmon Polariton.
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C.5 Theoretical Analysis of the Josephson Plasmons and

Plasmon-Phonon coupling

C.5.1 Analysis of the Collective Modes

The plasmon dispersion in a layered superconductor can be obtained by combining linearized

dynamical equations for superflow currents and charges with Maxwell equations for electromag-

netic fields [198, 202, 269–272]. The fundamental degrees of freedom are density fluctuations

of the condensate δρλ,i(~x), the phase of the superconducting order parameter φλ,i(~x), and the

4-component vector potential ( Vλ,i(~x), Aλ,i,z(~x) ~Aλ,i,~x(~x)). Here i corresponds to the index of

the unit cell along the c-axis, λ = 1, 2 labels the number of the layer inside the unit cell, and ~x

is the in-plane coordinate, which we will omit in the equations below for brevity. While the in-

plane components of the vector potential ~Aλ,i,~x(~x) are defined within the corresponding layers,

Aλ,i,z(~x) is defined to be on the links between layers starting on layer λ, i as shown in Fig. 3.5.

In linearized hydrodynamics, superflow currents are given by

jλ,i,~x = Λs
(
∂~xφλ,i − e∗ Aλ,i,~x

)
, (C.2)

jλ,i,z = jcλ (∆zφλ,i − e∗ Aλ,i,z) . (C.3)

Here ~x denotes the in-plane x, y components and z denotes the c-axis coordinate of the crystal.

Coupling to the vector potential is given by the Cooper pair charge, e∗ = 2e, and we work in

units where ~ = 1 for the rest of this section. The in-plane components of the superfluid current

are defined within individual layers and have continuous gradients. The z component of the

current is defined as the Josephson current between adjacent layers and has a lattice gradient

which corresponds to the phase difference between adjacent layers,

∆zφλ,i =

 (φ2,i − φ1,i)/d1, for λ = 1,

(φ1,i+1 − φ2,i)/d2, for λ = 2
(C.4)

The coefficient Λs is related to the in-plane London penetration length as Λs = ε c2

λ2
L(e∗)2 , where

ε = εrε0. Physically, it corresponds to the intra-layer superfluid stiffness and is proportional to
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Figure 3.5: Schematic drawing of a bilayer superconductor. Variables δρi,λ, φi,λ,
ji,λ,~x, and Ai,λ,~x are defined within layer λ in unit cell i and describe condensate density
fluctuations, phase of the order parameter, parallel component of the superfluid current,
electrostatic potential, and in-plane vector potential respectively. Variables ji,λ,z, and Ai,λ,z
are defined between the layers and correspond to interlayer Josephson current and out of
plane component of the vector potential, respectively. Part of the figure and caption are
taken from [220].

the condensate density, Λsλ ∝ ρλ. In linear analysis of the collective modes we can set Λsλ to be

equal to their equilibrium values since they multiply superfluid velocities, ~vλ,i = ∂~xφλ,i−e∗Aλ,i,~x,

which are already first order in fluctuations. This is why we omitted the layer index for Λs in

equation (1). Coefficients jc,λ correspond to interlayer Josephson tunneling couplings and obey

jc,λ ∝
√
ρ1ρ2. In linearized hydrodynamics we take jc,λ to be equal to their equilibrium value

and neglect corrections due to δρλ. Both ρλ and jc,λ can be modified by exciting apical oxygen

phonons, which results in phonon-plasmon coupling that will be discussed below. We introduce

an effective Hamiltonian that describes plasmon degrees of freedom and show that its equations

of motion give the correct equations for light and matter fields.

H = Hpot. +Hkin. +HEM. (C.5)

The first term in eq. C.5 describes the finite compressibility of Cooper pairs and their coupling

to electrostatic potential

Hpot. =
∫
d2x

∑
i,λ

{
γ
2 δρ

2
λ,i + e∗δρλ,iVλ,i

}
. (C.6)

Compressibility γ can be related to the Thomas-Fermi length, λTF, as γ = λ2
TF(e∗)2

ε . The
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superflow kinetic energy is given by

Hkin. =
∫
d2x

∑
i,λ

{
1

2Λs
j2
λ,i,~x + 1

2jc,λ j
2
λ,i,z

}
.. (C.7)

For electromagnetic fields we adopt the Lorenz gauge condition

1
c2∂tVλ,i + ∂~xAλ,i,~x + ∆zAλ,i,z = 0 (C.8)

then the Hamiltonian for electromagnetic fields is given by

HEM =
∫
d2x

{∑
i,λ

c2

2εP
2
V,λ,i + ε

2

(
(∂~xVλ,i)2 + (∆zVλ,i)2

)
+ 1

2εP
2
A~x,λ,i

+ ε c2

2

((
∂~xAλ,i,~x

)2 +
(
∆zAλ,i,~x

)2)
+ 1

2εP
2
Az,λ,i + ε c2

2

(
(∂~xAλ,i,z)2 + (∆zAλ,i,z)2

)} (C.9)

Variables PV,λ,i, PA~x,λ,i, PAz,λ,i correspond to the conjugate momenta of the scalar and vector

potentials, and magnetic permeability µ = µrµ0 is included in the speed of light c2 = 1/µε. In

eq. C.9 gradients in the z direction are taken in the lattice form so, for example,

∆zAλ,i,z =


A1,i,z
d1
− A2,i−1,z

d2
, for λ = 1,

A2,i,z
d2
− A1,i,z

d1
, for λ = 2

(C.10)

We use Heisenberg equations of motion (EOM) for the operators, ∂tÔ = i[H, Ô], to study

dynamics of the fields. In deriving equations of motion we use canonical commutation relations

between ρ and φ, V and PV, ~A and P ~A , i.e. [ρi(~x), φj(~x′)] = iδ2(~x − ~x′)δi,j, etc. EOM for the

density and phase operators give the continuity equation and Josephson relation

∂tδρλ,i + ∂~xjλ,i,~x + ∆zjλ,i,z = 0 (C.11)

∂tφλ,i = −γδρλ,i − e∗ Vλ,i. (C.12)

By combining EOM for the electromagnetic fields φ, ~A and their conjugate momenta we obtain
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Maxwell’s equations: (
1
c2∂

2
t − ∂2

~x −∆2
z

)
Vλ,i = e∗

ε δρλ,i,(
1
c2∂

2
t − ∂2

~x −∆2
z

)
Aλ,i,~x = 1

c2
e∗

ε jλ,i,~x,(
1
c2∂

2
t − ∂2

~x −∆2
z

)
Aλ,i,z = 1

c2
e∗

ε jλ,i,z

(C.13)

To find collective modes we look for the solutions of equations C.11, C.12, C.13 in the form

of plane waves, δρλ,l(x, t) = δρλ(q~x, qz, ω)ei(qxx+qyy+qzDl−ωt), with similar expressions for other

variables. It is convenient not to combine EOM for electromagnetic fields and their conjugate

variables, so that we have first order linear differential equations of the form ∂t~v = M~v. Matrix

M contains gradient operators which leads to implicit dependence on momentum ~q. We define

the characteristic polynomial for M as χ (ω) = det |iω + M |. Due to the Lorenz gauge used in

our analysis the characteristic polynomial contains non-physical degrees of freedom. However,

gauge constraint C.8 guarantees that they do not couple to matter fields and the characteristic

polynomial factorizes into physical and non-physical contributions, χ (ω) = χphys (ω)χunphys(ω).

Collective modes of the system can be found by solving the secular equation χphys (ω) = 0. The

two lowest energy modes correspond to the Josephson plasmons and their dispersion is shown

in Fig 3.6. To express physical quantities in terms of the amplitudes of the plasmon modes we

can use eigenvectors vl1,2,q of the secular equation, where components l correspond to δρλ, φλ,

V , ~A, etc. Shown in a matrix form:



ρλ(q)
...

φλ(q)
...


=



vδρλ1,q . . . (vδρλ1,q )∗ . . .
...

...

vφλ1,q (vφλ1,q)∗
...

...


·



b1
...

b∗1
...


(C.14)

where b1 and b2 are amplitudes of the two plasmon modes oscillating at frequencies corresponding

to their dispersion relations. The eigenvectors, vl1,2,q, are defined through the EOM up to a

normalization constant. Normalization is fixed through the commutation relations of canonically

conjugate pairs, such as [ρλ(q), φλ′(q′)] = iδq,q′δλ,λ′ and commutation relations of the plasmon

fields, which should correspond to bosonic creation/annihilation operators
[
bi, b

†
]

= δi,j.
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Figure 3.6: Dispersion relation of the Josephson plasma modes. Dispersion relation
of the Josephson plasma modes two lowest energy modes of equations C.11-C.13 in the
{qx, qx}-plane. At qz = 0, the upper plasmon is strongly hybridized with the original photon
mode. This results in the energy of the mode increasing rapidly along the qx axis with the
slope approaching the speed of light. Away from qz = 0 strong mixing with the photon is
absent and the frequency of the mode decreases with increasing qx. Part of the figure and
caption are taken from Ref. [220].

C.5.2 Phonon-Plasmon Interaction

The apical oxygen phonon is expected to modify the in-plane superfluid stiffness either by

changing the in-plane density of carriers or by modifying their hopping. Symmetry of this

mode requires that these changes are antisymmetric with respect to the two layers inside one

unit cell, so that δΛphons,1,2 (t) = ±ξ QIR(t)Λs, where coefficient ξ characterizes the coupling

strength. Changes of the interlayer Josephson currents arise from changes in the superfluid

density δρphon1,2 = ±ξ̃QIR(t)ρ, which results in δ jc,λ(t) = −
(
ξ̃QIR

)2 jc,λ
2ρ . The last equation

shows that interlayer Josephson currents couple quadratically to the apical oxygen phonon and

lead to four-wave phonon/plasmon mixing. Resonant three wave mixing considered in the main

text comes from phonons modifying Λs,1,2 and coupling to the in-plane current. To derive plas-

mon dynamics in the presence of an excited phonon mode we need to modify equation C.7 to

include δΛphonsλ arising due to phonons. We find

δ Hkin. = −ξ∑i

∫
d2x

{
QIR(t)

2Λs (j2
1,i,~x − j2

2,i,~x)
}

(C.15)

The phonon mode causes a zero momentum three wave parametric process that excites pairs

of plasmons at opposite momenta. Resonant processes that satisfy energy matching condition

ωph = ω1 (q)+ω2(−q) lead to exponential instability discussed in the main text. After projecting
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the modified EOM to the two the lowest eigenmodes we find equations for parametrically coupled

oscillators

∂2
t J1(q) + 2γ1∂t J1(q) + ω2

1(~q)J1(q) = −q2
xf(~q)QIR(t)J2(q), (C.16)

∂2
t J2(q) + 2γ2∂t J2(q) + ω2

2(~q)J2(q) = −q2
xf(~q)QIR(t)J1(q) (C.17)

In writing equations C.16 and C.17 we added phenomenological damping constants γi to describe

dissipation due to quasiparticles. Factors of q2
x in equations C.16 and C.17 originate from the

fact that phonons couple to plasmons through the in-plane superflow kinetic energy. There

is also an implicit weaker q dependence in f(~q) arising from projecting the interaction to the

plasmon subspace, which can be derived using the vjλ,~x1,2,q components of the eigenvectors of the

secular equation. We also note that inversion symmetry forbids three-mode coupling between

the phonon and Josephson plasmons in the same band. The equation of motion for the polar

phonon reads

Q̈IR + 2γIRQ̇IR + ω2
IRQIR = Z∗ E (t)− q2

yJ1J2 , (C.18)

where Z∗ is the coupling to the optical drive field and γIR accounts for the finite lifetime of the

vibrational mode. We solved the set of coupled equations for the phonon and plasmon dynamics

by utilizing a stochastic approach, where we introduced Langevin noise on both, the Josephson

plasma and phonon coordinates, to create an incoherent initial state. The final trajectories

shown in the manuscript (see Figure 2e) were then computed by solving the equations of motion

one million times with an algorithm based on the Euler-Maruyama method. In addition to the

harmonic terms that describe the resonant driving of the polar phonon mode, we also considered

higher-order (quartic) phonon anharmonicities.

C.6 DFT Calculations YBa2Cu3O6.5

The DFT calculations used in this thesis are based on the approach presented in Ref. [143] and

were carried out by Michael Fechner, one of the authors of that study. The following summary

of these calculations are based on Ref. [143] and Ref. [166].

First-principles total energy calculations in the framework of the density functional theory (DFT)

were used to compute all harmonic and anharmonic terms included in the nonlinear equations
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element Wykoff position x z element Wykoff position X z
Y l 0.251 0.500 O1 e 0.000 0.000
Ba x 0.244 0.187 O2 w 0.250 0.378
Cu1 a 0.000 0.000 O3 r 0.000 0.378
Cu2 b 0.500 0.000 O4 t 0.500 0.378
Cu3 q 0.000 0.356 O5 q 0.000 0.161
Cu4 s 0.500 0.355 O6 s 0.500 0.153

Table C.1: DFT minimized structural configuration of the YBa2Cu3O6.5 ortho-II cell with
a = 7.55Å, b = 3.81Å, and c = 11.50Å. The data was taken from Ref. [143].

mentioned in Chapter 4. Specifically, we used the implantation of DFT, applying the linearized

augmented-plane wave method (LAPW) within the ELK-code [273] and the local density ap-

proximation to determine the exchange-correlation functional. All relevant numerical parame-

ters entering the computation underwent a careful test. A result was well-converged when the

truncation corresponded to lmax = 10 of the angular expansion of wave functions and potential

within the muffin-tin radii (2.6, 2.8, 1.85 and 1.4 a.u. for Y, Ba, Cu, and O, respectively). A

|G|max = 20 a.u.−1 limited the potential and density expansion within the interstitial region and

RMT × kmax = 8.0 for truncating the plane-wave wavefunction expansion. The computations

were carried out on a 11 × 19 × 5 k-point mesh. This configuration was already previously in

Ref. [274] and, within this setting, the forces (most relevant for phonons and anharmonic terms)

were made to converge by less than 0.1 meV/Å. Before computing the coefficients of the anhar-

monic potential, the unit cell of YBa2Cu3O6.5 was structurally relaxed, considering the ortho-II

structure, following previous studies and the experimental setting [58]. As lowest energy state,

we obtained the atomic configuration given in Table C.1. Finally, the phonon eigensystem was

computed by frozen-phonon calculation using symmetry-adapted distortions generated with the

Phonopy package [275]. All modes at the zone center are listed in Table C.2. To calculate

the anharmonic the third order constants the prescription in Ref. [276] was applied together

with the approach in Ref. [277] for the quartic order terms. The mode-effective charges were

calculated by using the nominal averaged ionic charges of each atom as Born charges. Explicitly,

we have for Yttrium 3+, Barium 2+, Copper 2+ and Oxygen 2−.
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Label f (THz) Label f (THz) Label f (THz) Label f (THz)
Ag 3.1 B1u 7.4 B2u 17.0 B3u 8.1
Ag 3.5 B1u 7.6 B2u 17.4 B3u 8.4
Ag 4.2 B1u 8.8 B2g 1.8 B3u 10.3
Ag 5.1 B1u 10.2 B2g 2.6 B3u 10.5
Ag 6.3 B1u 15.0 B2g 4.1 B3u 11.8
Ag 10.5 B1u 16.5 B2g 4.2 B3u 13.4
Ag 10.9 B1u 20.5 B2g 6.5 B3u 18.3
Ag 12.6 B1g 2.9 B2g 7.4 B3g 2.0
Ag 14.1 B1g 3.8 B2g 8.7 B3g 4.1
Ag 15.3 B1g 9.7 B2g 10.0 B3g 5.4
Ag 18.0 B2u 2.4 B2g 11.3 B3g 6.5
Au 2.8 B2u 3.6 B2g 11.4 B3g 10.3
Au 10.8 B2u 4.7 B2g 18.1 B3g 11.1
B1u 2.5 B2u 5.2 B3u 2.5 B3g 16.6
B1u 3.4 B2u 5.6 B3u 2.9 B3g 17.2
B1u 3.9 B2u 8.0 B3u 3.7
B1u 4.4 B2u 10.3 B3u 3.8
B1u 5.0 B2u 11.5 B3u 4.7
B1u 5.6 B2u 16.6 B3u 5.4

Table C.2: Computed DFT eigenfrequencies of the phonon modes at the center of the
Brillouin zone for the YBa2Cu3O6.5 ortho-II structure. The data was taken from Ref. [143].
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