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A B S T R A C T

In condensed matter physics, material science and quantum chemistry, recent experi-
mental progress has laid the foundation to control and alter the properties of matter
at will by coupling strongly to individual photons or even just the vacuum fluctua-
tions of the electromagnetic field. This is usually realized by changing the photonic
environment and with this the photon field, e.g., by using high-Q optical cavities
or plasmonic nanostructures to which the matter system is then strongly coupled to.
The ensuing strong coupling brings about novel states of matter with hybrid light-
matter character known as polaritons. These hybridized systems allow to control
material properties and chemistry in an unprecedented way such as altering chemi-
cal reactions, room-temperature polariton lasing, enhance charge and energy transfer,
to name but a few. To better understand these intriguing effects, numerous theoret-
ical studies have been performed, most of which are based on simple approximate
models. These simplified models capture correctly the main features of the emerg-
ing novel physics but overlook important details pertaining to the coupled system.
To overcome these restrictions, ab-initio methods such as quantum electrodynamical
density-functional theory (QEDFT) that treat matter and photons on the same quan-
tized footing have recently been developed. This method allow an in-depth modeling
of the light-matter system from first principles. However, the application of these
theoretical methods is so far still limited. This is, on the one hand, due to missing
efficient numerical schemes to solve the resulting equations. On the other hand, it re-
mains unclear in which cases a full ab-initio simulation would provide novel insights
and uncovers new effects.

This work presents a first-principles linear-response formulation of QEDFT that cap-
tures the hallmark of strong light-matter coupling (Rabi splitting between polaritons)
usually identified in linear spectroscopy. Crucial in the linear-response formulation
is the stability of matter. While in the usual models this issue is irrelevant, we show
how answering this question can shed light on the long-lasting debate about the ex-
istence of a Dicke superradiant phase. We extend three linear-response methods for
matter-only systems to the linear-response framework of QEDFT that makes the prob-
lem computationally feasible. These methods are shown to be numerically equiva-
lent and capture excited-states properties of strongly coupled light-matter systems
which is identified by the emergence of polaritonic peaks not only in the matter
spectrum but also the photonic spectrum. These strong coupling features are not cap-
tured by standard many-body methods that discard the photon degrees of freedom.
This opens new possibilities to investigate different situations with complex systems
coupled to many photon modes such as non-perturbative first-principles calculation
of lifetimes of excited-states, beyond the single molecule limit and dissipation, and
Lorentz to Fano transition of lineshapes in strong coupling. Making QEDFT practical
now provides a route to analyze and propose experiments at the interface between
quantum chemistry, nanoplasmonics and quantum optics and present novel observ-
ables that describes the strong coupling between light and matter. Beyond the linear
response, this work also highlights new avenues of the down-conversion process that
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become available in ab-initio simulations of coupled light-matter systems. By chang-
ing the photonic environment in an experimentally feasible way, we can engineer
hybrid light-matter states that enhance at the same time the efficiency of the down-
conversion process and the non-classicality of the generated photons. In addition, we
show that this also causes the down-conversion to occur at earlier times with po-
tential to overcome detrimental decoherence effects. By coupling the signal modes
to virtual and polaritonic states we propose an inverse (high-) harmonic generation
that acts as an N-photon gun (source). Such a cavity-controlled down-conversion pro-
cess will not be captured using standard non-linear optics approach since the field is
treated classically and only as an external perturbation and with a quantum optics
approach, it becomes less accurate due to the simplification of the matter subsystem
to a few "relevant" energy levels.
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Z U S A M M E N FA S S U N G

Jüngste experimentelle Fortschritte in der Physik der kondensierten Materie, den Ma-
terialwissenschaften und der Quantenchemie haben den Grundstein gelegt, die Ei-
genschaften der Materie nach Belieben mittels starker Kopplung an einzelne (sogar
oftmals nur virtuelle) Photonen zu steuern und zu verändern. Dies wird durch eine
Änderung des photonischen Vakuums realisiert, z.B. durch Verwendung von opti-
schen Hohlräumen oder plasmonischen Nanostrukturen. Die daraus resultierende
starke Kopplung erzeugt neuartige Materienzustände mit hybridem Licht-Materie-
Charakter. Die zugehörigen Quasiteilchen werden Polaritonen genannt. Diese hy-
bridisierten Systeme ermöglichen die Steuerung von Material- und chemischen Ei-
genschaften. So können chemische Reaktionen verändert, Polaritonenlaser bei Raum-
temperatur erzeugt, und eine Verbesserung der Ladungs- und Energie-Übertragung
erreicht werden, um nur einige wenige Beispiele zu nennen. Um diese faszinieren-
den Effekte besser zu verstehen, wurden zahlreiche theoretische Studien durchge-
führt, von denen die meisten auf einfachen Näherungsmodellen basieren. Diese ver-
einfachten Modelle beschreiben die Hauptmerkmale der neuartigen Effekte korrekt,
übersehen jedoch wichtige Details. Um diese Einschränkungen zu überwinden, wur-
den kürzlich Ab-Initio-Methoden wie die quanten-elektrodynamische Dichtefunktio-
naltheorie (QEDFT) entwickelt, die Materie und Photonen auf gleicher Weise quan-
tenmechanisch behandeln. Diese Methoden ermöglichen eine grundlegende Model-
lierung des gekoppelten Licht-Materie-Systems. Die Anwendbarkeit dieser theore-
tischen Methode ist jedoch bislang noch begrenzt. Dies ist einerseits auf fehlende
effiziente numerische Lösungsmethoden zurückzuführen. Andererseits bleibt unklar,
in welchen Fällen eine vollständige Ab-Initio-Simulation neue Erkenntnisse liefern
und neue Effekte aufdecken würde.

In dieser Arbeit wird eine effiziente Lineare-Antwort-Formulierung der QEDFT ein-
geführt, die lineare spektroskopische Observablen der starken Licht-Materie-Kopplung
exakt beschreiben kann. Entscheidend für diese Formulierung ist die Stabilität der
Materie. Während dieses Problem in den üblichen Modellen irrelevant ist, zeigen
wir, wie die Beantwortung dieser Frage neue Einsichten zur langanhaltenden Debat-
te über die Existenz einer Dicke-Superradianten-Phase bringt. Wir erweiterten drei
Lineare-Antwort-Methoden der Quantenmechanik in das quantenelektrodynamische
Setting, welche stark gekoppelte Licht-Materie-Systeme numerisch lösbar machen. Es
wird gezeigt, dass diese Methoden numerisch äquivalent sind, und die Eigenschaften
angeregter Zustände stark gekoppelter Licht-Materie-Systeme erfassen. Solche Situa-
tionen zeichnen sich durch das Auftreten eines Rabi-Splittings nicht nur im Mate-
riespektrum, sondern auch im photonischen Spektrum aus. Diese Merkmale werden
nicht durch Standard-Vielteilchenmethoden erfasst, bei denen die Photonenfreiheits-
grade nicht behandelt werden. Dies eröffnet neue Möglichkeiten zur Untersuchung
komplexer Systeme, die an viele Photonenmoden gekoppelt sind. Zum Beispiel er-
hält man direkt Zugang zur Lebensdauer angeregter Zustände jenseits der Einzelmo-
lekülgrenze, sowie die direkte Beschreibung von Dissipation und der Veränderung
der Linienform bei starker Kopplung. Die praktische Umsetzung von QEDFT bietet
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nun die Möglichkeit, Experimente an der Schnittstelle zwischen Quantenchemie, Na-
noplasmonik und Quantenoptik zu analysieren und vorzuschlagen. Außerdem kön-
nen neuartige Observablen, welche die Kopplung zwischen Licht und Materie be-
schreiben, berechnet werden. Über die Lineare-Antwort-Theorie hinaus werden in
dieser Arbeit auch neue Wege zur Erzeugung parametrischer Fluoreszenz aufgezeigt,
die in Ab-Initio-Simulationen nun zugänglich sind. Indem wir das elektromagneti-
sche Vakuum auf experimentell realisierbare Weise verändern, können wir hybride
Licht-Materie-Zustände erzeugen, die gleichzeitig die Effizienz des Prozesses und die
Nichtklassizität der erzeugten Photonen erhöhen. Darüber hinaus zeigen wir, dass
der Fluoreszenzprozess zu einem früheren Zeitpunkt erfolgt. Dies macht es möglich
durch starke Kopplung gleichzeitig unerwünschte Dekohärenzprozesse zu unterbin-
den. Durch Kopplung der Signalmoden zu virtuellen und polaritonischen Zuständen
schlagen wir eine inverse (hoch-)harmonische Erzeugung von Photonen vor. Dieser
Prozess kann als N-Photonen Quelle fungieren. Solche hohlraumgesteuerten, parame-
trischen Flureszenzprozesse scheinen eine Ab-Initio-Behandlung zu benötigen, denn
Standard-Ansätze aus der Nicht-Linearen-Optik sowie der Quantenoptik führen zu
ungenauen oder falschen Vorhersagen, wenn man sie mit den Ab-Initio-Rechnungen
vergleicht.
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I N T R O D U C T I O N





1
I N T R O D U C T I O N

In recent years, tremendous experimental advances have made it possible to study
light-matter interactions in the strong and ultra-strong coupling regime. In such ex-
periments, changing the photonic environment, e.g., by using a high-Q optical cavity
or plasmonic device changes the photon field which leads to modification of matter
properties as new hybrid light-matter states (polaritons) emerge. In such situations
of strong light-matter interactions, novel physical effects can be observed such as
modification of chemical landscapes [1], enhanced charge and energy transfer [2, 3],
strong enhancement in the charge-carrier mobility for organic semiconductors [4],
among others. These experimental observations highlight that discarding the photon
degrees when studying chemical and physical properties of many-body systems is
not always allowed and might miss important effects. Interestingly enough, the in-
terplay between the basic constituents of matter (electrons and effective nuclei) can
be accessible at room temperature and under ambient conditions. This makes strong
light-matter interactions an interesting avenue for applications in quantum technolo-
gies.

So far, theoretical methods to account and predict these experimental observations
were dominated by purpose-built phenomenological models (that often consider just
a few energy levels of the matter subsystem). Although these simplified models usu-
ally applied to the study of strong coupling of atoms or molecules capture most of
the relevant physical processes [5], there are still strong discrepancies when com-
pared to experiments [6]. In such situations, a more general description that treats
light and matter interaction on an equal footing from first-principles becomes prefer-
able since it provides a detailed understanding of effects in the strong and ultra-
strong coupling regime. Such first-principle descriptions can be based on the basic
Hamiltonian of non-relativistic QED, i.e., the Pauli-Fierz Hamiltonian [7, 8]. In this
setting, a solution of the Schrödinger equation becomes impossible to obtain due
to in principle infinite (mode) degrees of freedom of the coupled light-matter sys-
tem. A similar problem is already encountered in matter-only quantum mechanics,
where the number of degrees of freedom can also become very large. The reason
for this difficulty in obtaining a solution is best described by the exponential wall of
many-body problems [9]. Many-body problem as used here refers to the problem of
predicting the properties of a system of many quantum particles (such as electrons
and nuclei) from first-principles. As an exact solution of the Schrödinger equation
for large systems has proven almost impossible to obtain, physicists, chemists and
other scientists in several disciplines have resorted to methods that circumvent the
quest for an exact solution and redefine the problem in several different ways. One
thing the approaches have in common is that they are often solved in an approxi-
mate way. A few prominent methods usually employed in the study of many-body
problems are Hartree-Fock theory [10], configuration-interaction theory [10], coupled
cluster [11] and density-functional theory (DFT) [9]. These methods however are not
applicable to the problem of strong light-matter coupled systems. Therefore, they
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4 introduction

need to be extended to include the photon degrees. Two possible ab-initio methods
for describing strong light-matter interaction are quantum electrodynamical density-
functional theory (QEDFT) [12–14] and quantum electrodynamics coupled cluster the-
ory (QED-CC) [15, 16]. These recently introduced methods have both been applied
to study ground-state and excited-state properties of strongly coupled light-matter
systems, for example, in Refs. [17–20] for QEDFT and Refs. [15, 16, 21] for QED-CC.
QED-CC is limited to small systems and only a few photon modes. QEDFT on the
other hand, can in principle treat large complex matter systems coupled to arbitrarily
many but finite number of modes and this general framework include in a partic-
ular case, features of QED-CC. So far, QEDFT misses efficient numerical approaches
that make it easily applicable. For the functional development of quantum electro-
dynamical density-functional theory (QEDFT) that approximates the electron-photon
correlations, only one functional has been proposed so far in Refs. [17, 22], which
is a generalization of the optimized effective potential (OEP) approach to standard
DFT. This functional needs further development since it does not perform well in the
ultra-strong coupling regime. As with regard to the phenomenological models, it re-
mains unclear where it becomes necessary to employ ab-initio methods and which
new possibilities arise.

The goal of this thesis is to present a practical first-principle description and im-
plementation of coupled light-matter systems that highlights the importance of a
quantized treatment of both light and matter. Due to this level of theory, we high-
light new possibilities that become accessible in strong light-matter coupling. First,
we consider the linear-response since via linear spectroscopy the hallmark of strong
coupling (Rabi splitting between polaritonic states) becomes accessible. We formu-
late a linear-response theory in non-relativistic QED and show new responses and
response functions that arise in this setting. We make QEDFT practical by reformulat-
ing the linear-response theory of non-relativistic QED within the framework of QEDFT.
We extend three linear-response methods of time-dependent density-functional the-
ory (TDDFT) within the framework of QEDFT that allows for practical calculations of
the responses and response functions. These methods are shown to be equivalent and
capture changes in the excited-states properties of strongly coupled light-matter sys-
tems and also compute novel observables that become accessible at this level of theory.
These strong coupling features are not captured by standard many-body methods
that discard the photon degrees of freedom. Using the linear-response formulation
of QEDFT, we highlight changes in the quantum Maxwell’s equation due to the self-
consistent interaction between light and matter. This opens new possibilities to inves-
tigate different situations with complex systems coupled to many photon modes such
as first-principles computation of lifetimes of electronic and polaritonic states non-
perturbatively, beyond single-molecule coupling and dissipation and transition from
Lorentzian to Fano lineshapes. The methods developed here can solve many com-
plex molecular systems coupled to photons [23]. Also, we consider beyond first-order
(non-linear) processes of light-matter interactions. We also highlight new possibilities
in non-linear processes that become accessible from an ab-initio perspective when
light and matter are treated on an equal level of theory. This is done by considering
the photon down-conversion process which is particularly of importance due to the
ever growing range of applications, e.g., in quantum-information processing and sci-
ence. We highlight how strong light-matter coupling allows to define novel polariton-
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mediated photon sources. In this case, we propose how to achieve an N-photon gun
(source) by coupling the signal modes to virtual (and polariton) states that serve as
new down-conversion pathways. The efficiency of the N-photon down-conversions
can be controlled by changing the photonic environment in an experimentally real-
izable way. For example, increasing the coupling strength increases the yield of the
down-conversion process. We also show that by increasing the coupling strength the
down-conversion can be pushed to occur at earlier times potentially overcoming de-
coherence effects due to the environment. Such a cavity-controlled down-conversion
process will not be captured using standard non-linear optics approach since the
field is treated only as an external perturbation and with a quantum optics approach,
it becomes less accurate due to the simplification of the matter subsystem to a few
"relevant" energy levels.

This thesis is divided into five chapters. In Chapter 2, we present the general the-
oretical frameworks applied in this thesis. It begins by discussing non-relativistic
QED as defined by the minimal-coupling Pauli-Fierz Hamiltonian. Approximations to
the Pauli-Fierz Hamiltonian that lead to the long-wavelength approximation and to
the Maxwell-Schrödinger approximation and eventually the many-body problem of
matter-only systems are presented. We also discuss the general framework of linear-
response theory and present DFT, TDDFT, ground-state QEDFT and the time-dependent
setting of QEDFT. The next chapters are the main results of the thesis. In chapter 3,
the focus is on the general framework of linear response in non-relativistic QED. To
set the stage, we first show that the dipole self-energy term, which is consistently
disregarded in phenomenological models, is necessary for having a well defined
(variationally accessible) ground-state. The stability of matter can shed light on the
existence of the elusive superradiant phase transition of light-matter systems. The
chapter proceeds to outline novel response functions in this setting and the changes in
Maxwell’s equations made evident by the framework of QEDFT. We then present three
linear response methods formulated within QEDFT that allow for practical calculation
of excited-states properties of strongly coupled light-matter systems. We then show
what this framework now allows beyond what is possible with standard many-body
methods or standard light-matter models. As examples, we show first-principles non-
perturbative computation of lifetimes of electronic and polaritonic states, beyond the
single molecule limit and dissipation and how to achieve a transition from Lorentzian
to Fano lineshapes by strongly coupling to the continuum. In chapter 4, we present
new possibilities in non-linear processes that become accessible from an ab-initio
perspective when light and matter are treated on an equal level of theory. This is
shown for a paradigmatic case of non-linear optics and quantum optics for photon
down-conversion processes. We first present the non-degenerate parametric down-
conversion and consider different possible ways of pumping the system and compare
common approaches to study the down-conversion process. Next, we present the de-
generate parametric down-conversion where we discuss various optimizations of the
setup to boost the efficiency of the down-conversion as well as the non-classical prop-
erties. We later present a novel polariton-mediated down-conversion for realizing an
N-photon gun (source). The summary of all findings of this thesis, a conclusion, and
an outlook of future work are given in chapter 5.
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2
M AT T E R - P H O T O N C O U P L I N G I N N O N - R E L AT I V I S T I C
Q U A N T U M E L E C T R O D Y N A M I C S

The complete account of how matter and light interacts is governed by QED. This
theory describes in great detail all phenomena involving how electrically charged
particles (such as electrons and positrons) interact via the exchange of photons [24].
In this description of the interaction, all the constituents of matter (e.g. electrons) and
the electromagnetic field (photons) behave quantum mechanically. Therefore, QED

provides a general framework that treats matter and electromagnetic degrees of free-
dom on an equal quantized footing. The success of QED lies in its extremely accurate
predictions of observable quantities like the anomalous magnetic moment of the elec-
tron and the Lamb shift of the energy levels of hydrogen [25]. As this thesis mainly
investigates changes in the optical and electronic properties of electron-photon cou-
pled systems, the focus is on the low-energy regime of QED. Specifically, the focus is
on non-relativistic QED which is applicable within the typical energy and time scales
of atomic, molecular and solid-state systems [8]. This description does not take into
account the quantum features of the nuclei, but rather treats them within the Born-
Oppenheimer approximation [26]. Note that the quantum nature of the nuclei can
also be treated in non-relativistic QED [27]. In this chapter we briefly recapitulate
the basics of this general setting and discuss all the necessary results that become
important in the later chapters of the thesis.

In the low-energy regime, the full QED Hamiltonian can be simplified to the Pauli
Hamiltonian describing the evolution of charged particles in spinor representation,
which are coupled via the total charge-current operator to the quantized photon
field [8, 28, 29]. For a system (atom, molecule or solid) of Ne electrons with clamped
nuclei, the Pauli-Fierz Hamiltonian [7] is

ĤPF(t) =
Ne

∑
i=1

1
2m

[
σ̂i ·

(
p̂i − eÂtot(ri, t)

)]2
+ Ŵee + V̂eN + Ĥpt , (1)

where the dependence of the Pauli-Fierz Hamiltonian on t indicates a possible explicit
time dependence. Here, σ̂i is a vector of the usual Pauli matrices, reflecting the spin
one-half character of the electrons. The positive parameter m is the bare mass and e
is the charge of the electron. The kinetic energy, Coulomb potential and the external
potential from the nuclei are respectively given as follows 1

T̂e =
Ne

∑
i=1

1
2m

p̂2
i , (2)

Ŵee =
1

4πε0

Ne

∑
i=1

Ne

∑
j>i

e2

|ri − rj|
, (3)

V̂eN = − 1
4πε0

Ne

∑
i=1

Nn

∑
j=1

Zje2

|ri − Rj|
. (4)

1 Throughout this thesis, the SI units are used, unless stated otherwise.

9
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Here, Zj is the atomic number of the Nn nuclei which carry a positive charge of (Zje)
and ε0 is the permittivity of free space. The electrons are described by the electronic
coordinates, rj, the nuclei by the coordinates, Rj, and the momentum operator of the
electrons is p̂i = −ih̄∇i with ∇ and h̄ being the gradient operator and the reduced
Planck constant, respectively. Together with the electronic coordinates, the momen-
tum operator satisfies the commutation relations given as

[
r̂i, p̂j

]
= ih̄δij,

[
r̂i, r̂j

]
=[

p̂i, p̂j

]
= 0. The Hamiltonian for the electromagnetic field is the integral of the en-

ergy density over a volume given by

Ĥpt =
ε0

2

∫
d3r

[
Ê2
⊥(r) + c2B̂2(r)

]
, (5)

where Ê⊥(r) represents the quantized transverse electric field and B̂(r) is the mag-
netic field. The quantized electromagnetic field can alternatively be described by
individual quantum harmonic oscillators for each allowed mode and polarization.
This form of representation of the quantized electromagnetic field will be derived
below. The total transversal vector potential is the sum of the following two terms
Âtot(r, t) = Â(r) + Âext(r, t) which are the quantized internal transversal photon de-
grees Â(r) as well as the possibility for a external vector potential Âext(r, t). The
minimal-coupling of Eq. (1) of the Pauli-Fierz Hamiltonian is given in Coulomb
gauge, i.e., ∇ · Âtot(r, t) = 0 where the vector potential is purely transverse. The
form of the electric field, magnetic field and vector potential is presented in Sec. 2.1.

To describe the dynamics of electrons coupled to photons in the non-relativistic
limit of QED described by Eq. (1), one has to solve the time-dependent Schrödinger
equation [30] which is an evolution equation of the form

ih̄
∂

∂t
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 , (6)

for a given initial state |Ψ(t = 0)〉. The time-dependent (normalized) wavefunction
|Ψ(t)〉 contains all information about the properties of the system. Solving Eq. (6)
gives explicitly access to the wavefunction from which all physical observables of
the coupled system can be computed through the expectation value of an operator
representing the desired observable. Unfortunately, solving the Schrödinger equation
for realistic many-body systems exactly is very hard to accomplish.

Also, for static or equilibrium situations where the Hamiltonian is time-independent,
i.e. Ĥ(t) = Ĥ, to obtain the ground-state and all excited states that corresponds to
this static Hamiltonian, equation (6) can be cast into an eigenvalue problem. The
resulting equation known as the time-independent Schrödinger equation is of the
following form

Ĥ|Ψn〉 = En|Ψn〉 . (7)

Here, En are the eigenvalues and |Ψn〉 the eigenstates of the finite system coupled to
the photon field. It is of particular importance that the time-independent Hamiltonian
is bounded from below because this is needed to allow for the existence of a ground-
state of the coupled system. Hamiltonians that are bounded from below satisfy a
variational principle. The Rayleigh-Ritz minimal principle dictates that 〈Ψ|Ĥ|Ψ〉 ≥
〈Ψ0|Ĥ|Ψ0〉 = E0 where E0 is the ground-state energy and |Ψ0〉 is the ground-state
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wavefunction. Yet again, solving Eq. (7) is not realizable except for small systems. It
should be noted that already solving Eq. (7) for an electron-only Hamiltonian beyond
simple models has proven difficult. Therefore, the addition of the electromagnetic
field as a dynamical part of the coupled electron-photon system makes the problem
even more difficult. This led to the development of many different methods that
circumvent solving the Schrödinger equation by employing different reformulations
of the original Schrödinger problem [10]. Besides density-functional methods, which
we will discuss in Sec. 2.5 in more detail, there are also Green’s function [31] and
reduced density-matrix reformulations [32] available.

Since the quantized electromagnetic field is treated in this thesis as a dynamical
part of the coupled system that modifies its properties, it is relevant to outline the
quantization procedure of the field and how it couples to the matter subsystem.

2.1 the microscopic field equations

In classical physics the microscopic Maxwell equations for the electromagnetic fields
in a medium are expressed in differential form as

∇ · E(r, t) =
1
ε0

ρ(r, t) , (8)

∇ · B(r, t) = 0 , (9)

∇× E(r, t) = − ∂

∂t
B(r, t) , (10)

∇× B(r, t) = µ0J(r, t) + ε0µ0
∂

∂t
E(r, t) , (11)

where the sources are the electric charge density ρ(r, t) and the electric current density
J(r, t). The classical electric field E(r, t) and magnetic field B(r, t) including the source
terms are functions of position r and time t. The vacuum permittivity ε0 and magnetic
permeability µ0 are related to the speed of light c in vacuum by c2 = 1/ε0µ0. For the
quantization procedure of the classical electromagnetic fields, it is convenient to cast
the Maxwell equations in terms of a scalar potential U(r, t) and a vector potential
A(r, t). By using Eqs. (9) and (10), the electric and magnetic fields are expressed in
terms of the scalar and vector potential as

E(r, t) = −∇U(r, t)− ∂

∂t
A(r, t) , (12)

B(r, t) = ∇×A(r, t) . (13)

The E(r, t) and B(r, t) fields together with Eq. (8) and (11) lead to the following
equations of motion for relating the potentials and sources

−∇2U(r, t)−∇ ·
(

∂

∂t
A(r, t)

)
=

1
ε0

ρ(r, t) , (14)

∇ (∇ ·A(r, t))−∇2A(r, t) +
1
c2

∂

∂t
∇U(r, t) +

1
c2

∂2

∂t2 A(r, t) = µ0J(r, t) . (15)
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2.1.1 gauge freedom and the coulomb gauge

The magnetic and the electric fields are invariant under the following gauge transfor-
mation on the vector and the scalar potentials

A(r, t)→ A′(r, t) = A(r, t) +∇F(r, t) , (16)

U(r, t)→ U′(r, t) = U(r, t)− ∂

∂t
F(r, t) , (17)

where F(r, t) is an arbitrary gauge function that should be at least twice differentiable.
In addition to the electric and magnetic fields, the Maxwell’s equations are equally
invariant under the gauge transformations of Eqs. (16) and (17). There is a redun-
dancy in the vector and the scalar potentials, since the same physical fields E(r, t)
and B(r, t) can be written with many different pairs of potentials A(r, t) and U(r, t).
This redundancy can be reduced by the choice of the gauge condition. In particular,
in the Coulomb gauge [29, 33], the vector potential is chosen to be a transverse vector
field

∇ ·A(r, t) = 0 . (18)

The Helmholtz decomposition of a vector field allows to identify the transverse and
longitudinal parts of a field. That is, any vector field V(r, t) can be decomposed into
a "perpendicular" or transverse part V⊥(r, t) and a "parallel" or longitudinal part
V‖(r, t) according to [29]

V(r, t) = V⊥(r, t) + V‖(r, t) , (19)

which can be defined using the transverse/longitudinal delta-functions V⊥/‖(r, t) =∫
d3r′ V(r, t)δ⊥/‖(r − r′). The longitudinal tensor-valued delta-function is δ‖(r) =

−∇⊗∇(4π|r|)−1 and the transverse part is δ⊥(r) = δ(r)− δ‖(r). Applying the vector
decomposition to Eqs. (14) and (15) leads to the following simplifications:

∇2U(r, t) = − 1
ε0

ρ(r, t) , (20)(
∇2 − 1

c2
∂2

∂t2

)
A(r, t) = −µ0J⊥(r, t) . (21)

Due to the vector decomposition into a transverse and longitudinal part, in the
Coulomb gauge the second term in Eq. (12) is the transverse part of the electric field
and the first term the longitudinal part as follows

E⊥(r, t) = − ∂

∂t
A(r, t) , (22)

E‖(r, t) = −∇U(r, t) . (23)

The magnetic field is entirely transverse B(r, t) = B⊥(r, t) according to the Maxwell
Eq. (9). The advantage of the Coulomb gauge for the electromagnetic field and its
interaction with charges and currents lies in the separations of the field and Maxwell
equations into longitudinal and transverse components.
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2.1.2 electromagnetic field in free space

If there are no sources of radiation, i.e. no currents J⊥(r, t) and charges ρ(r, t), the
equation of motion for the vector and scalar potentials of Eqs. (20) and (21) reduce to

U(r, t) = 0 , (24)(
∇2 − 1

c2
∂2

∂t2

)
A(r, t) = 0 . (25)

Both source free equations (24) and (25) are the starting point for the quantization
procedure of the electromagnetic field. The solution of the free-space fields can be
obtained by solving Eq. (25) for the Coulomb-gauge vector potential subject to appro-
priate boundary conditions. Through a separation of variables approach the vector
potential can be expanded as a product of a spatial and a temporal part as follows

A(r, t) = ∑
k

∑
s=1,2

(Aks(t)uks(r) + A∗ks(t)u
∗
ks(r)) . (26)

The function uks(r) is the mode function which contains all the spatial dependence
of the field and s represents the two transversal polarization directions that are per-
pendicular to the direction of propagation k. The mode function uks(r) and temporal
function Aks(t) satisfy the following differential equations respectively(

∇2 +
ω2

k
c2

)
uks(r) = 0 , (27)(

∂2

∂t2 + ω2
k

)
Aks(t) = 0 , (28)

and the latter have the solution Aks(t) = Akse−iωkt. The frequency ωk and the wavevec-
tor k are related through the dispersion relation ωk = c|k|. The mode functions are
also required to satisfy the transversality condition and form a complete orthonormal
set respectively as

∇ · uks(r) = 0,
∫

V
d3r u∗ks(r) · uk′s′(r) = δkk′δss′ , (29)

where V is the quantization volume. Using Eqs. (13) and (22), the electric and mag-
netic fields are expressed as

E⊥(r, t) = ∑
k

∑
s=1,2

iωk

(
Akse−iωktuks(r)− A∗kse

iωktu∗ks(r)
)

, (30)

B(r, t) = ∑
k

∑
s=1,2

(
Akse−iωkt∇× uks(r) + A∗kse

iωkt∇× u∗ks(r)
)

. (31)

The mode functions depend on the boundary conditions of the physical volume un-
der consideration, for example, periodic boundary conditions corresponding to trav-
eling wave modes or conditions appropriate for a perfectly conducting rectangular
box which leads to standing waves.
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For the transition to the quantum theory of electromagnetic fields, the Schrödinger
picture in which the operators become time-independent is employed. The electro-
magnetic field can be quantized by associating a quantum mechanical harmonic os-
cillator with each mode ks of the radiation field [34]. This proceeds by promoting the
field variable amplitude to a quantum operator:

Aks →

√
h̄

2ε0ωk
âks , and A∗ks →

√
h̄

2ε0ωk
â†

ks .

Two cases are considered here for the quantization of the electromagnetic fields, the
periodic and zero boundary conditions.

2.1.3 periodic boundary condition

The plane wave mode functions appropriate to a cubical volume of side L can be
written as [35–37]

uks(r) =
1√
V

e−ik·reks , (32)

where eks is the unit polarization vector and the mode function of Eq. (32) satisfies
the transversality and orthonormality conditions of Eq. (29). The three components
of the propagation vector k each takes the values

kx =
2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
, nx, ny, nz = 0,±1,±2,±3, ... . (33)

With the mode function for periodic boundary condition the quantized vector poten-
tial, electric, and magnetic fields are expressed as

Â(r) = ∑
k

∑
s=1,2

(
h̄

2ε0ωkV

)1/2

eks

[
âkseik·r + â†

kse
−ik·r

]
, (34)

Ê⊥(r) = ∑
k

∑
s=1,2

i
(

h̄ωk

2ε0V

)1/2

eks

[
âkseik·r − â†

kse
−ik·r

]
, (35)

B̂(r) = ∑
k

∑
s=1,2

i
c

(
h̄ωk

2ε0V

)1/2

(k× eks)
[

âkseik·r − â†
kse
−ik·r

]
, (36)

where the volume is V = L3 and the photon annihilation and creation operators are
defined in terms of canonical photon coordinate and momentum as

âks =
1√

2h̄ωk
(ωk q̂ks + i p̂ks) , â†

ks =
1√

2h̄ωk
(ωk q̂ks − i p̂ks) , (37)

with the photon creation and annihilation operators satisfying the commutation re-
lations:

[
âks, â†

k′s′

]
= δkk’δss′ , [âks, âk′s′ ] =

[
â†

ks, â†
k′s′

]
= 0. The field Hamiltonian of

Eq. (5) can also be rewritten in terms of the photon creation and annihilation opera-
tors [33]

Ĥpt = ∑
k

∑
s=1,2

h̄ωk

(
â†

ks âks +
1
2

)
=

1
2 ∑

k
∑

s=1,2

(
p̂2

ks + ω2
k q̂2

ks
)

. (38)
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The quantized electromagnetic field is described by individual quantum harmonic
oscillators for each allowed mode and polarization. The canonical photon coordinate
and momentum can also be defined in terms of the creation and annihilation opera-
tors as follows

q̂ks =

√
h̄

2ωk

(
âks + â†

ks

)
, (39)

p̂ks = −i

√
h̄ωk

2

(
âks − â†

ks

)
. (40)

From the commutation relations of the photon creation and annihilation operators it
follows that the q̂ks and p̂ks satisfy the commutation relations [q̂ks, p̂k′s′ ] = ih̄δks,k′s′ ,
[q̂ks, q̂k′s′ ] = 0 = [ p̂ks, p̂k′s′ ].

2.1.4 zero boundary condition

Next, consider a perfectly conducting rectangular metallic cavity of lengths Lx, Ly, Lz

with one corner at the origin [34, 38–40]. The transverse components of the electric
field must vanish at the boundaries, therefore, the mode functions that satisfies the
boundary condition is

uks(r) =

√
8
V
[
ex (eks · ex) cos(kxx) sin(kyy) sin(kzz)

+ey
(
eks · ey

)
sin(kxx) cos(kyy) sin(kzz)

+ez (eks · ez) sin(kxx) sin(kyy) cos(kzz)
]

, (41)

where the volume of the rectangular cavity is V = LxLyLz and x, y, z are the co-
ordinates of the position variable r with corresponding unit vectors ex, ey, ez. The
components of the wavevector k are

kx =
πnx

Lx
, ky =

πny

Ly
, kz =

πnz

Lz
, nx, ny, nz = 0, 1, 2, 3, ... . (42)

For the zero boundary condition, the vector potential, electric and magnetic fields
confined in a perfectly conducting cavity are given by

Â(r) = ∑
k

∑
s=1,2

(
h̄

2ε0ωk

)1/2 [
âksuks(r) + â†

ksu
∗
ks(r)

]
, (43)

Ê⊥(r) = ∑
k

∑
s=1,2

i
(

h̄ωk

2ε0

)1/2 [
âksuks(r)− â†

ksu
∗
ks(r)

]
, (44)

B̂(r) = ∑
k

∑
s=1,2

(
h̄

2ε0ωk

)1/2 [
âks∇× uks + â†

ks∇× u∗ks

]
, (45)

where the mode function is given as in Eq. (41). In order to satisfy the transversality
condition of Eq. (29) and thus the Coulomb gauge condition∇ · Â(r) = 0, the vector
potential is required to satisfy

kx Âx + ky Ây + kz Âz =
πnx

Lx
Âx +

πny

Ly
Ây +

πnz

Lz
Âz = 0 . (46)
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Here, Âx, Ây, and Âz are the Cartesian components of the vector potential Â(r) =

Âx(r)ex + Ây(r)ey + Âz(r)ez. Equation (46) enforces that the number of independent
polarizations of (nx, ny, nz) is at most 2 and the allowed frequencies of Eq. (42) is
defined as

ωnx ,ny,nz = c knx ,ny,nz = πc

√
n2

x
L2

x
+

n2
y

L2
y
+

n2
z

L2
z

. (47)

The boundary condition (zero or periodic) of the electromagnetic field is usually
physically motivated by the situation under investigation. If the quantized field is
coupled to the electrons usually it is only possible to use the periodic boundary
conditions (since they need to agree with the ones of the electrons), and only in the
dipole approximation can one switch to other boundary conditions such as the zero
boundary conditions discussed in this section.

2.2 minimal-coupling , velocity and the length gauge hamiltonians

In this section, the external part of the total vector potential in Eq. (1) is ignored and
the minimal-coupling Hamiltonian in its time-independent form can be written in
the following form

ĤPF =
Ne

∑
i=1

1
2m

[
p̂2

i − 2eÂ(ri) · p̂i + e2Â2
(ri)− eh̄σ̂i · B̂(ri)

]
+ Ŵee + V̂eN + Ĥpt .

(48)

The magnetic field that couples to the Pauli matrices was introduced in Eq. (48) using
the Pauli vector identity: (σ · a) (σ · b) = a ·b+ iσ · (a× b) and p̂ · Â(r) was replaced
by Â(r) · p̂ when simplifying the minimal-coupling term due to the Coulomb gauge
condition of Eq. (18). Throughout this thesis, the contribution of the interaction of
the spin with the magnetic field (Stern-Gerlach term) is dropped which leads to the
spinless Pauli-Fierz Hamiltonian [41]. The Stern-Gerlach term is disregarded since
the interest is mainly in bound systems where also the dipole approximation (as dis-
cussed afterwards) is applicable. Note that if one assumes a form factor for the elec-
tromagnetic fields of Eq. (48), i.e., a square integrable mask function that suppresses
infinitely high photon energies, and allowing external fields of Kato type the Pauli-
Fierz Hamiltonian is bounded from below and thus obeys a variational principle for
ground-states [41].

2.2.1 the velocity gauge hamiltonian and fields

The spinless Pauli-Fierz Hamiltonian can be simplified further by assuming that the
spatial variation of the electromagnetic field can be neglected on the atomic or molec-
ular length scale. This approximation replaces the vector potential Â(r) at the posi-
tions of the electrons by its value at the position r0 of the center of charge of the nu-
clei. This approximation is the so-called long-wavelength approximation [42]. Then the
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minimal-coupling Hamiltonian reduces to the velocity gauge (or momentum gauge)
Hamiltonian [28, 36, 42]:

ĤV =
Ne

∑
i=1

1
2m

[
p̂2

i − 2eÂ(r0) · p̂i + e2Â2
(r0)

]
+ Ŵee + V̂eN + Ĥpt . (49)

In Eq. (49), the diamagentic Â2
(r0) term can in this setting be absorbed through a

Bogoliubov transformation that introduces a diamagnetic shift [43]. Such a transfor-
mation has several advantages [43]. However, here this term is kept explicitly for
completeness. In the dipole approximation, the vector potential and the electric field
in either periodic or zero boundary conditions reduce to

Â = ∑
k

∑
s=1,2

1√
ε0

uksq̂ks , (50)

Ê⊥ = −∑
k

∑
s=1,2

1√
ε0

uks p̂ks , (51)

where the center of charge is assumed to be at r0 = 0 and the canonical photon
coordinate and momentum are given respectively in Eqs. (39) and (40).

The velocity gauge Hamiltonian of Eq. (49) contains explicitly the gauge-dependent
vector potential Â. However, it is convenient to work with gauge-independent trans-
verse electromagnetic fields such as the electric field Ê. Therefore, in the next section a
transformation from the velocity gauge Hamiltonian to the length gauge Hamiltonian
is performed to work with gauge-independent fields.

2.2.2 the length gauge hamiltonian and fields

Due to the gauge-dependent field (vector potential) of the velocity gauge Hamiltonian
of Eq. (49), it is worthwhile working in the length gauge which considers only gauge-
independent fields. This is accomplished by performing a unitary transformation
called the length-gauge transformation [28, 41, 42] defined as Ĥ′L = Û†ĤVÛ where
the unitary operator is given by

Û = exp
{
− i

h̄
Â · R̂

}
, (52)

with the electronic dipole operator R̂ = ∑Ne
i=1 ri and the vector potential Â is given

as in Eq. (50). Under the unitary transformation, the velocity gauge Hamiltonian
transforms to

Ĥ′L = T̂e + Ŵee + V̂eN +
1
2 ∑

k
∑

s=1,2

[
p̂2

ks + ω2
k q̂2

ks +
2√
ε0

p̂ks
(
uks · R̂

)
+

(
1√
ε0

uks · R̂
)2
]

.

(53)

Furthermore, a variable transformation can be performed that effectively swaps be-
tween conjugate momentum and photon coordinate as

p̂ks −→ −ωkq̂ks , and q̂ks −→
1

ωk
p̂ks . (54)
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The transformation above is merely a Fourier transformation of the mode (ks) of the
full wavefunction

Ψ′(..., pks, ...) −→ Ψ(..., qks, ...) =
1√
2π

∫ ∞

−∞
e−iqks pks Ψ′(..., pks, ...)dpks .

This variable transformation above leaves the commutation relations between the
photon displacement coordinate and conjugate momentum unchanged and thus, the
Hamiltonian in the length gauge becomes [13, 44]

ĤL = T̂e + Ŵee + V̂eN +
1
2 ∑

k
∑

s=1,2

[
p̂2

ks + ω2
k

(
q̂ks −

1
ωk
√

ε0
uks · R̂

)2
]

. (55)

The individual terms that emerge from the last term of the Eq. (55) will be discussed
in detail in Sec. 3.1 of Chap. 3. In the length gauge and after swapping the canonical
photon coordinate and momentum using Eq. (54), the vector potential and the electric
field are expressed as [44]:

Â = ∑
k

∑
s=1,2

1
ωk
√

ε0
uks p̂ks , (56)

Ê⊥ = ∑
k

∑
s=1,2

1√
ε0

uks ωk

(
q̂ks −

1
ωk
√

ε0
uks · R̂

)
. (57)

The electric field in Eq. (57) was obtained in the Schrödinger picture using Eq. (22)
and the Heisenberg equation of motion Eq. (68). An advantage of the length gauge
is that light and matter get mixed which implies one does not work with the Ê⊥
field but rather with the displacement field D̂⊥. Making a comparison of the electric
field Ê⊥ and the transverse electric displacement field given by D̂ = ε0Ê + P̂, the
expression for the displacement field and polarization are given respectively by

D̂ = ∑
k

∑
s=1,2

√
ε0 uks ωk q̂ks , (58)

P̂ = ∑
k

∑
s=1,2

√
ε0 uks

(
uks · R̂

)
. (59)

From here on, for arbitrarily many but a finite number M of photon modes, the
collective index α ≡ (ks) is used to denote both the propagation vector k and the
two transversal polarization directions s = 1, 2. Taking into account this notation, the
coupling term is defined as

λα =
1√
ε0

uα . (60)

Here, the mode function uks(r0) can take expressions such as that for periodic and
zero boundary conditions discussed respectively in Secs. 2.1.3 and 2.1.4 or that of half
space or of a spherical cavity [38] amongst others.

It is important to note that both the velocity and length gauge Hamiltonians are
physically equivalent. For a comprehensive comparison of these gauges, see Ref. [45]
and references therein. Furthermore, it was demonstrated in [45] that both gauge
choices have better convergence properties towards the exact solution for different
observables.
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2.3 approximations common to non-relativistic qed

Usually, approximations are introduced to treat the interacting subsystems of the
coupled matter-photon system as well as to model and interpret experimental results.
The approximations that are usually considered strongly depend on the character
of the matter-photon system that is being studied. The corresponding approximate
equations might differ and provide access to different processes and interactions.

Consider for example one is interested in the solution of either Eq. (6) or (7) in
which the Hamiltonian is the length or velocity gauge Hamiltonians of Eqs. (49) and
(55), respectively or even the minimal coupling Hamiltonian of Eq. (48). The wave-
function which contains all information about the system in this case is labeled by
the coordinates of Ne electrons with spin and M photon modes as

|Ψ〉 = Ψ(r1σ1, r2σ2, ..., rNe σNe ; q1, q2, ..., qM) . (61)

Due to the large degrees of freedom, it becomes increasingly difficult to solve the time-
dependent and the static Schrödinger equations. The difficulty even increases beyond
the dipole approximation also with the possibility of including a continuum of modes.
For this reason, one resorts to approximations that reduces the complexity of the
system. In the following, further different levels of approximations to the coupled
matter-photon system in the dipole approximation that are considered in this thesis
are discussed. From here on, the spin degrees of freedom of the wavefunction of
Eq. (61) are not indicated for notational simplicity and without loss of generality.

2.3.1 the maxwell-schrödinger semi approximation

For light-matter descriptions in which the electromagnetic field has a large num-
ber of photons, the quantum nature of light becomes less important and in this
case a classical treatment of the electromagnetic field of the combined light-matter
system becomes sufficient. Therefore, the non-relativistic QED description is approx-
imated by including the coupling to a classical Maxwell field instead of the quan-
tized photon field. By making a mean-field ansatz for the matter-photon coupling
in non-relativistic QED, the correlated matter-photon wavefunction Ψ in Eq. (61) can
be approximated as a factorizable product of the matter wavefunction ψ and photon
wavefunction φ as

Ψ(r1, r2, ..., rNe ; q1, q2, ..., qM) ' ψ(r1, r2, ..., rN)⊗ φ(q1, q2, ..., qM) .

Applying the Maxwell-Schrödinger approximation to the velocity gauge Hamiltonian
of Eq. (49), the non-relativistic QED description in this gauge simplifies to the follow-
ing two coupled equations [8]:

ih̄
∂

∂t
|ψ(t)〉 = Ĥ(MS)

V (t)|ψ(t)〉 , (62)(
∂2

∂t2 + ω2
α

)
Aα(t) =

e
m

λα

M

∑
α=1

λα ·
(

Ne

∑
i=1

pi(t)− eNeAα(t)

)
, (63)
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where the approximated velocity gauge Hamiltonian Ĥ(MS)
V (t) with a coupling to a

classical field is given by

Ĥ(MS)
V (t) = T̂e + Ŵee + V̂eN −

e
m

Ne

∑
i=1

M

∑
α=1

Aα(t) · p̂i , (64)

and the time-dependent vector potential is Aα(t) = λαqα(t) with the photon coordi-
nate being qα(t) = 〈φ(t)|q̂α|φ(t)〉. Note that Eq. (63) is the mode-resolved Maxwell’s
equation in dipole approximation of Eq. (21). Comparing terms of these two equa-
tions one finds that the right-hand side of Eq. (63) is the full transverse current in
dipole approximation. It is relevant to note that in a similar way to Eqs. (62) and
(64), one can obtain this form of equations for the photon part as in Ref. [13], i.e. an
evolution equation of |φ(t)〉. Since only the expectation value of the field is needed
and not the wavefunction, the Maxwell’s equation for Aα(t) is rather considered here.
Both formalisms are equivalent as will be discussed in Sec. 2.3.1.1. The same applies
to the length gauge discussed below. The classical photon coordinate and electronic
momentum account for the self-consistent back-reaction between both subsystems.
However, in this approximation the back-reaction is between the matter subsystem
treated quantum mechanically and the photonic subsystem treated classically. Also,
the Maxwell-Schrödinger approximation can be applied in the length gauge. For the
length gauge Hamiltonian of Eq. (55), the Maxwell-Schrödinger approximation re-
sults to the coupled equations

ih̄
∂

∂t
|ψ(t)〉 = Ĥ(MS)

L (t)|ψ(t)〉 , (65)(
∂2

∂t2 + ω2
α

)
qα(t) = ωα λα ·R(t) , (66)

where the approximated length gauge Hamiltonian Ĥ(MS)
L (t) with classical field cou-

pling is given explicitly as

Ĥ(MS)
L (t) = T̂e + Ŵee + V̂eN −

M

∑
α=1

ωαqα(t) λα ·R +
1
2

M

∑
α=1

(λα ·R)2 . (67)

Equally in this gauge, the Maxwell-Schrödinger approximation takes into account the
back-reaction between both subsystems. Analogous to Eq. (21), the right-hand side
of the mode-resolved Maxwell equations of Eqs. (63) and (66) represent the current
that couples self-consistently to the respective Hamiltonians. It is important to note
that the Maxwell-Schrödinger equations for the length and velocity gauge will lead to
different results since the unitary equivalence has been broken due to the mean-field
ansatz.

To obtain the mode resolved equation of motion (EOM) for the photonic coor-
dinate in Eqs. (63) and (66), the Heisenberg EOM was employed. The Heisenberg
EOM provides a connection between the time derivative of an expectation value
O(t) = 〈Ψ(t)|Ô(t)|Ψ(t)〉 to the commutator of the corresponding operator Ô(t) with
the Hamiltonian Ĥ(t) which is expressed in the Schrödinger picture as

d
dt

O(t) = − i
h̄
〈Ψ(t)|

[
Ô(t), Ĥ(t)

]
|Ψ(t)〉+ 〈Ψ(t)| ∂

∂t
Ô(t)|Ψ(t)〉. (68)
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For a time-independent operator, i.e. Ô(t) = Ô, which is usually the case in the
Schrödinger picture as the wavefunctions carry the time-dependence, the k-th deriva-
tive of Ô is written as

dk

dkt
O(t) =

(
− i

h̄

)k

〈Ψ(t)|
[[[[[

Ô, Ĥ(t)
]

, Ĥ(t)
]

, Ĥ(t)
]

...
]

, Ĥ(t)
]
|Ψ(t)〉, (69)

where the minimum value of k = 1. An example application of the above formula
is given in Eqs. (63) and (66) where the Heisenberg EOM was applied twice (i.e. for
k = 2). These equations will be later used in this thesis.

2.3.1.1 Photonic subspace: Driven quantum harmonic oscillator

As discussed in the previous section, invoking the mean-field ansatz simplifies the
problem to a matter-only description that couples self-consistently to a classical mode-
resolved Maxwell equation. The analytic solution to the mode-resolved representa-
tion of the Maxwell equation is known [46]. The analytic solution becomes desirable
for such coupled systems since it reduces the numerical complexity [47]. In order to
present the analytic solution of the mode-resolved Maxwell equation, for example of
Eq. (63), rather consider the situation of a driven quantum harmonic oscillator given
by the Hamiltonian:

Ĥpt(t) =
M

∑
α=1

1
2
(

p̂2
α + ω2

αq̂2
α

)
+

M

∑
α=1

Âα · jα(t) . (70)

Here, the harmonic oscillators describing M individual photon modes are driven by
an external charge current jα(t) that couples via the vector potential Âα. To obtain the
mode-resolved Maxwell equation, one applies the Heisenberg EOM of Eq. (68) to the
photon coordinate and momentum that yields the Ehrenfest theorem

∂

∂t
qα(t) = pα(t), and

∂

∂t
pα(t) = −ω2

αqα(t)− λα · jα(t).

Combining the above equation yields the mode-resolved classical EOM of the photon
coordinate q̂α given in the following form(

∂2

∂t2 + ω2
α

)
qα(t) = −λα · jα(t) . (71)

The analytic solution can be obtained through the method of Laplace transforms.
First, equation (71) can be expressed in the following form using the relation for
Laplace transforms of second-order derivatives [48]

s2g(s)− s qα(t0)− q̇α(t0) + ω2
αg(s) = h(s) ,

where the Laplace transforms are g(s) = L {qα(t)} and h(s) = L {F(t)} with F(t) =
−λα · jα(t). Here the Laplace transform, for example, of qα(t) is defined by g(s) =∫ ∞

0 qα(t)e−stdt where s is assumed here to be real but in general is complex. From the
above equation, one obtains g(s) to be

g(s) =
s qα(t0) + q̇α(t0) + h(s)

s2 + ω2
α

.
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Taking the inverse Laplace transform [48] of the above equation defined by qα(t) =

L −1{g(s)} and F(t) = L −1{h(s)} results to

qα(t) = L −1
{

s qα(t0)

s2 + ω2
α

}
+L −1

{
q̇α(t0)

s2 + ω2
α

}
+L −1

{
h(s)

s2 + ω2
α

}
= qα(t0) cos(ωαt) +

q̇α(t0)

ωα
sin(ωαt) +L −1

{
h(s)

s2 + ω2
α

}
,

where cos(ωαt) = L −1 {s/(s2 + ω2
α)
}

and sin(ωαt) = L −1 {ωα/(s2 + ω2
α)
}

. Apply-
ing the convolution property of the Laplace transform [48] to the last term of the
above equation yields the analytic solution of the mode-resolved Maxwell equation
given by

qα(t) = qα(t0) cos(ωαt) +
q̇α(t0)

ωα
sin(ωαt)− 1

ωα

∫ t

0
dt′ sin

(
ωα(t− t′)

)
λα · jα(t

′),

(72)

where qα(t0) = 〈φ(t0)|q̂α|φ(t0)〉 and q̇α(t0) = 〈φ(t0)| p̂α|φ(t0)〉 are obtained from the
choice of the initial state of the photon subsystem. From Eq. (72), the choice of the
external charge current and initial state of the photon field determines the photon
coordinate qα(t) and thus the vector potential Aα(t) = λαqα(t). By analogously com-
paring Eqs. (63) and (66) to Eq. (71) yields the solutions of these equations of the form
of Eq. (72).

2.3.2 the semi-classical approximation

A further simplification can be performed to the Maxwell-Schrödinger approximation
in the velocity gauge described by Eqs. (63) and (64) and the length gauge described
by Eqs. (66) and (67). This simplification known as the semi-classical limit or semi-
classical approximation [36] does not account for the back-reaction of the photons on
the matter subsystem but rather treats the photon field as an external perturbation
that is not a part of the dynamical system. In this case, the velocity gauge prescription
of the semi-classical limit is achieved by discarding the photon Hamiltonian in Eq. (55)
and the quantized vector potential Âα will be in this case an external time-dependent
field Aα(t). Usually, the term A2

α(t) can be neglected since it is just a time-dependent
constant and thus will not change any observables [49]. In this case the Hamiltonian
for the semi-classical limit is solely described by Eq. (64) where Aα(t) is merely an
external perturbing field.

The semi-classical limit in the length gauge can have two forms depending on
when the approximation is made: (i.) from the original velocity gauge Hamiltonian
Eq. (49) or (ii.) after the length-gauge transformations leading to the Hamiltonian
of Eq. (55). The former which is the standard semi-classical limit treats the vector
potential in Eq. (49) as an external field that interacts with the electronic system (i.e.
semi-classical limit in velocity gauge). Note that a static spatially independent vector
potential has no physical effect (just adds a phase to the wavefunction) and hence
A(t) is usually non-constant in time. Performing the length-gauge transformation
Eq.(52), where a time-dependent classical vector potential is now used, eliminates
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the A2 and A · p̂ terms as in the quantum case. However, the interaction term arising
between classical field and matter now emerges with ΨL(t) = Û†(t)ΨV(t) due to

ih̄
∂

∂t
ΨL(t) = −eE(t) · R̂ ΨL(t) + ih̄Û†(t)

∂

∂t
ΨV(t),

not due to the transformation of the photon coordinates. The expression of the time-
dependent Û†(t) is obtained by replacing the quantized vector potential in Eq. (52)
by a classical dipole field A(t). From the above equation, the standard semi-classical
length-gauge Hamiltonian reads [49]:

Ĥ(Sc)
L (t) = T̂e + Ŵee + V̂eN − eR̂ · E(t). (73)

Next, when the semi-classical limit is performed after the length-gauge transforma-
tion, i.e., starting from the Hamiltonian Eq. (55) and proceed to the coupled Maxwell-
Schrödinger approximation with Hamiltonian Eq. (67), the semi-classical limit now
has the form [44]:

Ĥ(aSc)
L (t) = T̂e + Ŵee + V̂eN −

1
ε0

D(t) · R̂ +
1
2 ∑

α

(
λα · R̂

)2 , (74)

where the displacement field is D(t) = ε0 ∑α λαωαqα(t) and the photon coordinate
qα(t) can be a solution of the homogeneous part of a mode-resolved Maxwell equa-
tion (66).

An advantage the semi-classical limit of Eq. (74) has over that of Eq. (73) is that for
static fields, Eq. (74) has eigenstates (see Chap. 3.1 for the boundedness from below
of the length gauge Hamiltonian) due to the presence of the dipole self-energy term
(last term) in contrast to the standard semi-classical limit [44]. Therefore, it allows to
treat equilibrium effects such as the Stark effect non-perturbatively and can as well
be applied to non-equilibrium situations, such as the ac-Stark shift.

2.4 general linear response in non-relativistic qed

Most often, instead of solving the full time-dependent Schrödinger equation of Eq. (6),
it is convenient to evaluate specific linear and non-linear responses of the coupled
system using perturbation theory. The linear response is usually simpler to determine
than the full dynamics of a system and hence is a good first step to investigate the
properties of matter such as the absorption or emission spectrum. The linear-response
discussion presented here becomes important in Chap. 3.2 where one considers from
first-principles the change in the properties of the system due to strongly coupling
light and matter.

In the following, a general linear response framework is presented. The deriva-
tion below follows that of Refs. [50] and [51]. Consider an external classical time-
dependent probe characterized by the Hamiltonian Ĥext(t) that is turned on at a
time t0. The perturbation Ĥext(t) is assumed weak. The Hamiltonian describing the
dynamics of the perturbed light-matter system becomes

Ĥ(t) = Ĥ0 + Ĥext(t). (75)
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Here, the time-independent Hamiltonian Ĥ0 can be characterized by either of the
Hamiltonians of Eqs. (48), (49), or (55). Now, by introducing the interaction picture2,
the wavefunction in the Schrödinger picture of the system is related to the wavefunc-
tion in the interaction picture as

|ΨI(t)〉 = Û†
0 (t)|Ψ(t)〉 = eiĤ0t/h̄|Ψ(t)〉,

where |Ψ(t)〉 is the wavefunction in the Schrödinger picture. Accordingly, an arbitrary
operator Ô(r) not necessarily dependent on the position r, can be transformed from
the Schrödinger to the interaction picture by

ÔI(r, t) = Û†
0 (t)Ô(r)Û0(t). (76)

In the interaction picture, the evolution of the interacting coupled system from an
initial state |Ψ0〉 is described by the following time-dependent Schrödinger equation

ih̄
∂

∂t
|ΨI(t)〉 = Ĥext,I(t)|ΨI(t)〉. (77)

Through an integration, Eq. (77) can be formally solved to obtain the expression

|ΨI(t)〉 = |Ψ0〉 −
i
h̄

∫ t

t0

dt′Ĥext,I(t′)|ΨI(t′)〉. (78)

Where |Ψ0〉 can be either the Schrödinger or interaction representation, since at t = t0,
the two are equivalent. Keeping only up to the first order, the closed solution in the
Schrödinger picture reduces to

|Ψ(t)〉 ' Û0(t)|Ψ0〉 −
i
h̄

Û0(t)
∫ t

t0

dt′Ĥext,I(t′)Û†
0 (t
′)|Ψ0〉. (79)

The time evolution of the wavefunction is not of interest here, but rather the response
of an observable Ô(r) to small external perturbations. The change in the expectation
value of an arbitrary observable Ô(r) due to the external perturbation Ĥext(t) is given
by

δ〈Ô(r, t)〉 = 〈Ψ(t)|Ô(r)|Ψ(t)〉 − 〈Ψ0|Ô(r)|Ψ0〉. (80)

In linear response theory, it is assumed that the external perturbation in Eq. (75) is
sufficiently small such that Eq. (79) is a good approximation to Eq. (77) and that |Ψ0〉
equals the ground-state of Ĥ0. Thus, by making a substitution of Eq. (79) in Eq. (80)
yields the response equation

δ〈Ô(r, t)〉 = − i
h̄

∫ t

t0

dt′〈Ψ0|
[
ÔI(r, t), Ĥext,I(t′)

]
|Ψ0〉 . (81)

As a side remark, beyond linear response solutions can be obtained by including
higher-order terms of Eq. (78). As external perturbation, consider the perturbation

2 The subscript "I" attached to the wavefunction, observable or external perturbation indicates that these
quantities are given in the interaction picture.
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Hamiltonian given as Ĥext,I(t) =
∫

d3r D̂I(r, t)v(r, t) where v(r, t) is the external per-
turbing term that couple to some operator D̂I(r, t) given in the interaction picture.
The response of the observable Ô(r) at time t becomes

δ〈Ô(r, t)〉 =
∫ t

t0

dt′
∫

d3r′ χO
D(r, t; r′, t′)δv(r′, t′) , (82)

where the retarded response function in the above linear response equation is defined
to be

χO
D(r, t; r′, t′) = − i

h̄
Θ(t− t′) 〈Ψ0|

[
ÔI(r, t), D̂I(r′, t′)

]
|Ψ0〉. (83)

Here, the use of the word "retarded" designates that the response at time t is as a
result of a perturbation at an earlier time t′ ≤ t and the Heaviside function Θ(t− t′)
guarantees the correct time ordering, that is, causality. The response function of
Eq. (83) is an intrinsic property of the coupled system and it is independent of exter-
nal influences. Assuming that the system is invariant under time translations, i.e., H0

is time-independent, the response function becomes

χO
D(r, t; r′, t′) = χO

D(r, r′; t− t′). (84)

An alternate derivation of the response and response function of Eqs. (82) and (83)
can be obtained using the functional dependence of the observables on the external
perturbation δv(r, t). Firstly, the wavefunction of the coupled system has a functional
dependence |Ψ([v]; t)〉 via the Hamiltonian Eq. (75), i.e., Ĥ(t) = Ĥ([v]; t) where v(r, t)
is the perturbation that couples to D̂I(r, t). Therefore, through the expectation value
as in Eq. (80), the observable has a functional dependence on the external perturba-
tion O([v]; r, t). Performing a functional Taylor expansion of O(r, t) around the static
perturbation v0(r) to first-order yields

O([v]; r, t) = O([v0]; r) +
∫∫

d3r′dt′
δO([v0]; r, t)

δv(r′, t′)
δv(r′, t′) . (85)

To obtain the response δO(r, t) from Eq. (85), one applies the Gateaux derivative
which is a generalization of the directional derivative [52]. Applying the Gateaux
derivative [52], the response δO(r, t) is defined as

δO(r, t) = lim
ε→0

O([v0 + ε δv]; r, t)−O([v0]; r, t)
ε

(86)

=
∫ t

t0

dt′
∫

d3r′ − i
h̄

Θ(t− t′) 〈Ψ0|
[
ÔI(r, t), D̂I(r′, t′)

]
|Ψ0〉︸ ︷︷ ︸

χO
D(r,t;r′,t′)

δv(r′, t′) ,

which can be expressed as [52]:

O([v0 + ε δv]; r, t) = O([v0]; r, t) +
∫∫

d3r′dt′
δO([v0]; r, t)

δv(r′, t′)
δv(r′, t′) , (87)

where the quantity ε is an infinitesimal number. Using the definition of the linear-
response in Eqs. (86) and (87), one deduces from Eq. (85) the response δO(r, t) given
by

δO(r, t) =
∫∫

d3r′dt′χO
D(r, t; r′, t′)δv(r′, t′) . (88)
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Here, the response function in Eq. (88) has the form

χO
D(r, t; r′, t′) =

δO([v]; r, t)
δv(r′, t′)

∣∣∣∣
v0(r)

. (89)

The response functions defined in Eqs. (83) and (89) are formally equivalent. This
becomes evident by comparing Eq. (86) and Eq. (88). In linear response theory, it is
more convenient to deal with the Fourier transform of the response equation (82)
given by [53]:

δ〈Ô(r, ω)〉 =
∫

d3r′ χO
D(r, r′; ω)δv(r, ω), (90)

where δv(r, ω) is the Fourier transform of the potential and χO
D(r, r′; ω) is the Fourier

transform of the time-dependent response function given by

χO
D(r, r′; ω) =

∫ ∞

−∞
dτ χO

D(r, r′; τ)e−iωτ, (91)

where τ = t − t′ represents the time difference. An important expression of the
frequency-dependent response function χO

D(r, r′; ω) is the Lehmann representation.
The Lehmann representation [54] is a powerful tool that expresses the response func-
tion in terms of the system’s energy eigenstates and allows for the interpretation of
the response function in terms of excitation energies and corresponding transition
amplitudes. A derivation of the Lehmann representation of the response function of
Eq. (91) is detailed as follows. For a complete set of eigenstates {Ψ0, Ψ1, ..., Ψn, ...} of
the time-independent Hamiltonian Ĥ0, where Ψ0 is the correlated ground-state, with
corresponding energy E0; Ψ1 is the first excited state, with energy E1; and so on. The
nth excitation energy of the coupled system is defined as Ωn = (En − E0)/h̄. Making
use of the completeness relation 1̂ = ∑∞

n=0 |Ψn〉〈Ψn| in Eq. (91) results to

χO
D(r, r′; ω) = − i

h̄

∞

∑
n=0

∫ ∞

−∞
dτΘ(τ)e−iωτ

{
〈Ψ0|Ô(r)|Ψn〉〈Ψn|D̂(r′)|Ψ0〉e−iΩnτ

(92)

−〈Ψ0|D̂(r′)|Ψn〉〈Ψn|Ô(r)|Ψ0〉eiΩnτ
}

.

Next, making a substitution of the integral form of the Heaviside step function given
as

Θ(τ) = lim
η→0+

i
2π

∫ ∞

−∞
dτ

e−iωτ

ω + iη
, (93)

into Eq. (92) further simplifies the frequency-dependent response function to the form

χO
D(r, r′; ω) =

1
h̄

lim
η→0+

∞

∑
n=0

[
〈Ψ0|Ô(r)|Ψn〉〈Ψn|D̂(r′)|Ψ0〉

ω−Ωn + iη

−〈Ψ0|D̂(r′)|Ψn〉〈Ψn|Ô(r)|Ψ0〉
ω + Ωn + iη

]
. (94)

Equation (94) is the Lehmann representation of the frequency-dependent response
function. The term 〈Ψ0|Ô(r)|Ψn〉〈Ψn|D̂(r′)|Ψ0〉 is the transition matrix elements and
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describes the strength of the excitation peaks while the term Ωn = (En− E0)/h̄ of the
finite interacting system are the poles of the response functions of the unperturbed
system.

Solving for the response function χO
D(r, r′; ω) is a challenging task since access to

the eigenstates {Ψ0, Ψ1, ..., Ψn, ...} and light-matter energies {E0, E1, ..., En, ...} are com-
putationally costly. However, there are many-body methods that solve this equation
in an approximate way using different approaches as discussed in the next section.

2.5 density-functional theories

The previous sections so far presented the problem of the light-matter interaction
in terms of wavefunctions. The wavefunctions resulting from such systems provide a
natural path to obtain observables in and out of equilibrium by taking the expectation
values of hermitian operators. In practice, solving for the wavefunction is often not
feasible due to the large parameter space necessary to describe the wavefunction
(see Eq. (61)). For an illustrative example, a system comprising of Ne electrons, the
wavefunction depends on the spatial coordinates of each electron which gives 3Ne

independent coordinates. These coordinates result to a total parameter space of 103Ne ,
given that each coordinate is just sampled on 10 points. If one now includes 10 photon
Fock states for each photon mode, the parameter space now becomes 103Ne × 10M.
For larger systems with Ne > 10 coupled to more than one photon mode, even if the
wavefunction was obtained, it would be impossible to store the total wavefunction
on an ordinary hard disk. In the literature, this exponential scaling is often referred
to as the exponential wall of quantum many-body problems [9]. Even though the
wavefunction contains all information of the physical system in question, in most
practical applications, the focus is not on the wavefunction, but instead on physical
observables of such many-body systems.

Nevertheless, it is possible to approximate the many-body matter-photon prob-
lem in a different way. Instead of solving for the wavefunction, one can reformulate
the full problem in terms of reduced quantities that avoid explicit calculations of
the wavefunction. In light of this, one can follow well-known strategies routinely
employed in quantum chemistry, in which the ground-state and time-dependent
many-body Schrödinger problem is reformulated in terms of density-functional the-
ory (DFT) [55] to make this problem affordable for numerical computations. In the
literature, there exist several different flavors of density-functional theories. All the
existing flavors of DFT are similar in that they are based on a specific one-to-one
correspondence between conjugated variables. This thesis focuses only on those DFT

formulations that are relevant to the work carried out in Chap. 3. However, to ease
reading for people not familiar with density-functional methods in the context of ab-
initio light-matter interactions, these formulations will be introduced in a two-step
process. First, Sec. 2.5.1 introduces the basic idea of DFT [9] in the standard setting of
electron-only quantum mechanics and then Sec. 2.5.2 presents its electron-only exten-
sion to time-dependent DFT [56]. Next, the introduced concepts of ground-state DFT

and TDDFT are employed to discuss ground-state quantum electrodynamical density-
functional theory (QEDFT) [14] in Sec. 2.5.4 and the time-dependent version of QEDFT

in Sec. 2.5.5. In this way the main differences between QEDFT [12] and DFT methods
will be highlighted.
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2.5.1 ground-state density-functional theory

Let us start with the most common form of density-functional methods, which is
ground-state DFT. This section is clearly not exhaustive on the topic as massive liter-
ature exists on the subject [9, 55, 57–59]. However, DFT as presented here serves as
a basis for the later formulation of the Pauli-Fierz problem in dipole approximation
as a density-functional theory. Accordingly, important concepts are introduced here
that are later expanded upon in ground-state QEDFT. Since the focus here is solely on
the electron-only systems, the Hamiltonian of the system is given by

Ĥel = T̂e + Ŵee + V̂eN . (95)

Note that the photon field is taken into account only by the renormalized "physical
mass" me (bare plus electromagnetic [41]) in T̂e = ∑Ne

i=1
1

2me
p̂2

i and the (longitudinal)
Coulomb interaction among the charged particles, as well as possible QED corrections.
Usually, one would solve the equation Ĥel |ψn〉 = En|ψn〉 for the eigenstates |ψn〉 from
which a particular observable of interest, say the ground-state electron density is
computed

n(r) = Ne

∫
d3r2

∫
d3r3 ...

∫
d3rNe |ψ0(r, r2, r3, ..., rNe)|2. (96)

Also, provided the ground-state wavefunction |ψ0〉 is available, the ground-state den-
sity can alternatively be computed using the electron density operator as

n(r) = 〈ψ0|n̂(r)|ψ0〉 where n̂(r) =
Ne

∑
i=1

δ(r− ri), (97)

and the sum is over all electrons at positions ri. Of course, computing the ground-
state wavefunction for large systems is practically infeasible.

In ground-state DFT, the fundamental basic quantity is the ground-state electron-
density n(r). The question of whether the infeasible computation of the wavefunc-
tion can be circumvented was answered by Hohenberg and Kohn [60]. They proved
a one-to-one correspondence between the ground-state density n(r) and an exter-
nal potential v(r), thus implying that the external potential uniquely determines the
ground-state density and vice versa. The external potential here is written as a sum
of single-particle potentials V̂eN = V̂ = ∑Ne

i=1 v(ri). The Hohenberg and Kohn theorem
and its proof is outlined below.

The Hohenberg-Kohn (HK) theorem for systems with non-degenerate ground-states
reads as follows: For a finite, interacting many-electron system there exists a one-to-one cor-
respondence between the external potential v(r) and the ground-state density n(r) [60]. That
is, the external potential is a unique functional of the ground-state density, v([n], r),
up to a trivial additive constant. The theorem can be proven in two steps: the first
being that two different potentials V and V ′ that differ by more than a constant
lead to different ground-state wavefunctions |ψ0〉 and |ψ′0〉. The time-independent
Schrödinger equation for both potentials are:

Ĥel |ψ0〉 =
[
T̂e + Ŵee + V̂

]
|ψ0〉 = E0|ψ0〉, (98)

Ĥ′el |ψ′0〉 =
[
T̂e + Ŵee + V̂ ′

]
|ψ′0〉 = E′0|ψ′0〉, (99)
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where E0 and E′0 are the respective ground-state energies for the two systems with
potentials V and V ′. Next, by assuming that |ψ0〉 = |ψ′0〉 and subtracting Eqs. (98)
and (99) leads to

(
V̂ − V̂ ′

)
|ψ0〉 = (E0 − E′0)|ψ0〉 and simplifies to yield

V̂ − V̂ ′ = (E0 − E′0). (100)

Since (E0 − E′0) is a constant, Eq. (100) contradicts the initial assumption that the po-
tentials V and V ′ must differ by more than a constant, therefore, showing that for
every ground-state wavefunction |ψ0〉 the corresponds a unique potential V̂ [60]. The
proof is completed by showing that there exists only one n(r) for each V̂. This can be
shown by assuming the contrary, that is, both |ψ0〉 and |ψ′0〉 produce the same den-
sity n(r). For the external potential V̂ ′, the ground-state energy is E′0 = 〈ψ′0|Ĥ′el |ψ′0〉.
Employing the Rayleigh-Ritz variational principle and that two wavefunctions |ψ0〉
and |ψ′0〉 are different yields

E′0 = 〈ψ0|Ĥ′el |ψ0〉 = 〈ψ0|
(

Ĥel + V̂ ′ − V̂
)
|ψ0〉 < E0 +

∫
d3r
[
v′(r)− v(r)

]
n(r).

(101)

Next, by interchanging the primed and unprimed quantities, one deduces that

E0 = 〈ψ′0|Ĥel |ψ′0〉 = 〈ψ0|
(

Ĥ′el + V̂ − V̂ ′
)
|ψ0〉 < E′0 +

∫
d3r
[
v(r)− v′(r)

]
n(r).

(102)

Adding both inequalities of Eqs (101) and (102) leads to the contradiction

E0 + E′0 < E0 + E′0 . (103)

This concludes the second part of the proof that assuming non-degeneracy, to every
density there is one and only one ground-state wavefunction [60]. A generalization
of this theorem to systems with degenerate ground-states has been demonstrated by
Lieb [61]. An implication of the HK theorem is that the non-degenerate ground-state
wavefunction is a unique functional of the ground-state density: |ψ0〉 = |ψ0[n]〉 and
as a consequence, the ground-state expectation value of any observable Ô(r) becomes
a functional of the density n(r) as

O([n], r) = 〈ψ0[n]|Ô(r)|ψ0[n]〉. (104)

The HK theorem only guarantees that the mapping of the electron density n(r) to
the local external potential v(r) is unique, but not that it exists. The question as to
whether a given density n(r), which can be constructed as in Eq. (96), is a ground-
state density n(r) of the external potential v(r), is the v-representability problem [58,
62]. Although there are some examples for non-v-representable densities [63], there
exist proofs for ensemble v-representability on lattice systems [58, 62]. As shown in
Eq. (104), the HK theorem allows one to express every observable in terms of the
ground-state density and hence define a universal HK functional

F[n] = 〈ψ0[n]|
(
T̂e + Ŵee

)
|ψ0[n]〉. (105)

The functional F[n] is known as the universal HK functional because it has no explicit
dependence on the external potential v(r). The term "universal" refers here to the fact
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that for problems considered in electron-only DFT only the external potential changes
while the kinetic and interaction energy is always the same. A consequence of this is
that one can find for a given external potential v(r) the exact density as the minimizer
of the energy functional

E[v] = min
n

{
F[n] +

∫
d3r v(r)n(r)

}
. (106)

The minimum can equivalently be found by functional variation with respect to the
density as

δF[n]
δn(r)

+ v(r) = µ , (107)

where µ is a Lagrange multiplier. The following section presents how one can make
practical use of ground-state DFT.

2.5.1.1 Kohn-Sham Density Functional Theory

In 1965, Walter Kohn and Lu Sham, published a fundamental paper [64], where they
presented a method that became the most practical implementation of ground-state
DFT. The basic idea was to apply the HK theorem to a fictitious (auxiliary) system
of non-interacting electrons exhibiting the same density as the fully interacting elec-
tronic system [64]. In other words, one can have an energy functional of the auxiliary
non-interacting system as

Es[vs] = min
n

{
T[n] +

∫
d3r vs(r)n(r)

}
, (108)

where vs(r) is a single particle potential of the auxiliary non-interacting system3 and
T[n] is the universal functional of the non-interacting system. The main difference is
that instead of general many-electron states |ψn〉, the Kohn-Sham (KS) wavefunction
consist of a single slater determinant

Φ(r1, r2, ..., rNe) =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ2(r1) . . . ϕNe(r1)

ϕ1(r2) ϕ2(r2) . . . ϕNe(r2)
...

...
. . .

...

ϕ1(rNe) ϕ2(rNe) . . . ϕNe(rNe)

∣∣∣∣∣∣∣∣∣∣∣
, (109)

and the many-electron problem decouples into single-particle problems. Similarly,
from the potential of the auxiliary system vs(r), one can obtain a given ground-state
density via the derivative

δT[n]
δn(r)

+ vs([n]; r) = µ′. (110)

The Hartree exchange-correlation (Hxc) energy is defined to be the difference between
the universal functional of the interacting and that of the non-interacting system
given by

EHxc[n] := F[n]− T[n] . (111)

3 The subscript s is usually not explained in the density-functional literature but one can assume that it
refers to ’single particle’ as the potential often appears in effective single-particle equations [65].
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With this definition, Eq. (106) can be written in the following equivalent form

E[v] = min
n

{
T[n] + EHxc[n] +

∫
d3r v(r)n(r)

}
. (112)

To obtain the ground-state density of the interacting system due to v(r) from the
auxiliary non-interacting system, one solves the following equation

δT[n]
δn(r)

+ v(r) +
δ

δn(r)
[F[n]− T[n]]︸ ︷︷ ︸

vs([n];r)−v([n];r)

= µ , (113)

where the Hartree exchange-correlation (xc) potential is defined as

vHxc([n]; r) :=
δ

δn(r)

EHxc[n]︷ ︸︸ ︷
(F[n]− T[n])

:= vs([n]; r)− v([n]; r) .

(114)

In order to obtain the density of the interacting system from the non-interacting
auxiliary system, requires that the following KS equations are solved self-consistently p̂2

2me
+ v(r) + vH([n]; r) + vxc([n]; r)︸ ︷︷ ︸

vKS([v,n];r)

 ϕi(r) = εi ϕi(r), (115)

where εi are the KS eigenvalues. The Hartree potential deduced from the explicit
expression of the Hartree energy are given respectively as

vH([n]; r) =
e2

4πε0

∫
d3r′

n(r′)
|r− r′| , and EH =

e2

8πε0

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′| ,

(116)

and the xc potential and energy are given respectively by

vxc([n]; r) =
δExc[n]
δn(r)

, and Exc = F[n]− T[n]− EH [n]. (117)

The density to be obtained from the KS system is constructed from the single-particle
orbitals of Eq. (109) and given explicitly as

n(r) =
Ne

∑
i=1
|ϕi(r)|2. (118)

The total electronic many-body ground-state energy is defined as

Ev[n] = T[n] + EH [n] + Exc[n] +
∫

d3r v(r)n(r). (119)
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2.5.1.2 The local-density approximation (LDA)

In practice, DFT calculations rely on approximations to the xc functional in Eq. (117),
the quality of which determines the accuracy of the DFT results. Approximations to
the functional can be found by a range of different strategies such as empirical fitting,
mixing of exact and approximate exchange, and local scaling among others. For more
on existing and commonly used approximate functionals, see Ref. [66] and references
therein for an overview.

One of such approximations is the local-density approximation (LDA) [64]. The LDA

is the most prominent approximation, which is widely used for different applications,
ranging from solids, molecular clusters, atoms and molecules. As other approximate
functionals, LDA seeks to provide an approximation to the xc functional. The xc energy
functional of Eq. (119) can equally be expressed as follows

Exc[n] =
∫

d3r εxc([n]; r)n(r), (120)

where the xc energy density is εxc([n]; r). The idea behind the local-density approxi-
mation is to replace the functional of the density εxc([n0]; r) by the xc energy density
of the homogeneous electron gas (HEG). Therefore, in the LDA, the xc energy is given
by

ELDA
xc [n] =

∫
d3r εHEG

xc ((n); r)n(r). (121)

Since the effective potential that enters in the self-consistent KS equations (i.e., the
eigenvalue equation (115)) requires the knowledge of the xc potential, not of the xc

energy, the functional derivative of Eq. (120) produces the xc potential of the form

vxc([n]; r) = εxc([n]; r) + n(r)
δεxc([n]; r)

δn(r)

∣∣∣∣
n0(r)

,

vLDA
xc ([n]; r) = εHEG

xc ((n); r) + n(r)
∂εHEG

xc ((n); r)
∂n(r)

.

(122)

For the HEG, the exchange contribution εx([n]; r) can be determined analytically, while
the correlation contribution εc([n]; r) can be obtained by Monte-Carlo methods [67].

Other functionals have been proposed to overcome some shortcomings of the LDA.
Among them, are the generalized-gradient approximations (GGA) [68–70], the opti-
mized effective potential (OEP) [71] which can include the exact-exchange [72] or the
hybrid functionals [73].

2.5.2 time-dependent density-functional theory

The previous section considered the ground-state properties of electronic systems us-
ing DFT. However, for the description of dynamical properties of electronic systems
an extension of the ground-state formalism of DFT is required. The framework of time-
dependent density-functional theory (TDDFT) put forward by Erich Runge and Eber-
hard K.U. Gross [74], adds to the static external potential of DFT, a time-dependent
potential. Some comprehensive review on the subject of TDDFT can be found in these
Refs. [53, 56, 75, 76].
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The dynamics of such time-dependent electronic systems is subject to the time-
dependent Hamiltonian of Eq. (73) rewritten as Ĥel(t) = T̂e + Ŵee + V̂(t). The exter-
nal potential V̂(t) can also be written explicitly as a sum of time-dependent single-
particle potentials V̂(t) = ∑Ne

i=1 v(ri, t) in which for an electronic system of Nn nuclei
the potential is given as

v(r, t) = − 1
4πε0

Nn

∑
j=1

Zje2

|r− Rj|
+ vext(r, t). (123)

The potentials are assumed to be Taylor expandable around the initial time t0. The
external time-dependent potential of Eq. (123) which drives the system out of its
initial state often takes the form vext(r, t) = r · E(t) where E(t) is a time-dependent
electric field in dipole approximation. The time-dependent Schrödinger equation of
Eq. (6) of the many-electron system with Hamiltonian Ĥel(t) can be used to describe
the evolution of the system.

For a fixed initial state |ψ0〉 and external potential v(r, t), one wants to solve Eq. (6)
with the Hamiltonian Ĥel(t). The resulting wavefunction depends on the initial state
and the external potential given as |ψ([ψ0, v]; t)〉. Since the wavefunction has func-
tional dependencies on the fixed initial state and external potential, the expectation
value for an arbitrary operator Ô become a functional of |ψ0〉 and v(r, t):

O([ψ0, v]; t) = 〈ψ([ψ0, v]; t)|Ô|ψ([ψ0, v]; t)〉.

For TDDFT to be a complete and exact theory, one needs to identify a fundamental
variable which allows the labeling of the physical wavefunctions and their respective
observables. For a functional-variable change starting from a fixed initial state, there
is a need to have a one-to-one correspondence between the external variable v(r, t)
and a chosen internal variable. In TDDFT, the conjugate variable to the external poten-
tial is the electron density n(r, t). Since every observable is labeled by |ψ0〉 and v(r, t),
the electron density is equally labeled by these variables as

n([ψ0, v]; r, t) = 〈ψ([ψ0, v]; t)|n̂(r)|Ψ([Ψ0, v]; t)〉 . (124)

Every density-functional theory is based on the uniqueness and existence of a map-
ping between a set of basic internal variables (here the electron density) and exter-
nal variables (here the external potential). If this mapping is proven to exists and
is unique, the functional dependence on the external variables in Eq. (124) can be
replaced by a functional dependence on the basic internal variables. Therefore, to
complete the theory of TDDFT, a proof of the one-to-one mapping for a fixed initial
state |ψ0〉 , that is:

v(r, t) 1:1←→
ψ0

n(r, t), (125)

has to be established. This is achieved by formulating the time-dependent Schrödinger
equation for the Hamiltonian Ĥel(t) equivalently by a non-linear fluid equation for
the electron density [77, 78]. Therefore, the EOM for the electronic density is required
and derived below.
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From the evolved electronic wavefunction, one can compute the expectation value
of the electron density as in Eq. (124). Using the Heisenberg EOM of Eq. 68 for the
electron density, leads to the continuity equation

∂

∂t
n(r, t) = −∇ · j(r, t), (126)

where j(r, t) is the paramagnetic current density and is given in operator form as

ĵ(r) =
h̄

2ime

Ne

∑
l=1

[
δ(r− rl)

−→∇ l −
←−∇ lδ(r− rl)

]
. (127)

The first time-derivative of Eq. (127) employing Eq. (68) yields the EOM for the current
density

∂

∂t
j(r, t) = −Fstr(r, t) +

1
me

n(r, t)∇v(r, t), (128)

where Fstr(r, t) is the electronic stress force [53] resulting from the expectation value of
the commutator Fstr(r, t) = 〈ψ(t)|

[
ĵ(r), T̂e + Ŵee

]
|ψ(t)〉. To obtain a relation between

the external potential and electron density, one computes the second time-derivative
of the density using Eq. (69) for k = 2 which results to

∂2

∂t2 n(r, t) = −∇ · Fstr(r, t) +
1

me
∇ · [n(r, t)∇v(r, t)] . (129)

Equation (129) can also be obtained through the relation of the second time-derivative
of the density and the paramagnetic current ∂2

∂t2 n(r, t) = −∇ · ∂
∂t j(r, t).

2.5.2.1 Runge-Gross Theorem

The basic idea of TDDFT is to describe the time evolution of a many-electron quantum
system solely in terms of the time-dependent particle density n(r, t). In 1984, Erich
Runge and Eberhard K.U. Gross proved [74] that for a given initial state ψ(t0), there
exists a one-to-one mapping between the time-dependent density n(r, t) and the time-
dependent external potential v(r, t). A summary of the Runge-Gross (RG) theorem is
briefly sketched in the following.

Runge and Gross proved that, two solutions ψ(t) and ψ′(t) of the time-dependent
Schrödinger equation for Hamiltonians Ĥel(t) and Ĥ′el(t) which evolve from a fixed
common initial state ψ(t0) under the influence of the respective potentials v(r, t) and
v′(r, t), always lead to different electron densities n(r, t) and n′(r, t). This holds true
provided the two potentials differ by more than a time-dependent constant function,
v(r, t) 6= v′(r, t) + c(t). Assuming that the potentials are analytic in time, the external
potentials can be expanded in a Taylor series as

v(r, t) =
∞

∑
k=0

1
k!

∂kvk(r, t)
∂tk

∣∣∣∣
t0

(t− t0)
k, and v′(r, t) =

∞

∑
k=0

1
k!

∂kv′k(r, t)
∂tk

∣∣∣∣∣
t0

(t− t0)
k.

(130)
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The condition that the two potentials differ by more than a constant function, c(t),
assures that there exists an integer k ≥ 0, such that the Taylor coefficients of Eq. (130)
differ by more than a constant as follows

∂kvk(r, t)
∂tk

∣∣∣∣
t0

−
∂kv′k(r, t)

∂tk

∣∣∣∣∣
t0

6= const . (131)

The proof of the RG theorem employs the continuity equation (126) and the equation
of motion for the paramagnetic current density, Eq. (128). The first step of the proof
establishes the uniqueness of the current densities. For two wavefunctions ψ(t) and
ψ′(t) that evolve from the same initial state ψ(t0), the difference in current densities
is

∂

∂t
[
j(r, t)− j′(r, t)

]∣∣
t0
= − 1

me
n(r, t0)∇(v(r, t0)− v′(r, t0)). (132)

Here the electronic stress forces in Eq. (128) for the unprimed and primed systems
are identical at t0 and cancel out since both systems start from the same initial state.
From Eq. (132), it is evident that the current densities j(r, t) and j′(r, t) will differ
infinitesimally later than t0 if the two potentials v(r, t0) and v′(r, t0) are different [74].
Therefore, if the condition given in Eq. (131) is satisfied for k = 0, this implies the
right-hand side of Eq. (132) is different from zero and the two current densities j(r, t)
and j′(r, t) eventually become different infinitesimally later than t0.

If the smallest integer k for which Eq. (131) is satisfied is greater than zero, the
potentials are equal up to a constant at the initial time t0 but differ at a later time
t > t0. Applying the Heisenberg EOM k−times by using Eq. (69), results to

∂k+1

∂tk+1

[
j(r, t)− j′(r, t)

]∣∣
t0
= − 1

me
n(r, t0)∇(vk(r, t0)− v′k(r, t0)), (133)

where the potentials are assumed to be the same up to the k−th derivative. The right-
hand side of Eq. (133) differs from zero in accordance to Eq. (132) for the smallest
integer k, which then implies that j(r, t) 6= j′(r, t) for t > t0. Secondly, the next step
demonstrates that

∂k+2

∂tk+2

[
n(r, t)− n′(r, t)

]∣∣
t0
= −∇ · ∂k+1

∂tk+1

[
j(r, t)− j′(r, t)

]∣∣
t0

= −∇ ·
(

1
me

n(r, t0)∇(vk(r, t0)− v′k(r, t0))

)
. (134)

Assuming that the quantity n(r, t)|∇v2(r, t)| decays faster than 1/r2 for large r for
both the primed and unprimed system it can be shown that the right hand side of
Eq. (134) cannot vanish identically [74]. As a consequence, the densities n(r, t) and
n′(r, t) become different infinitesimally later than t0. Therefore, the electronic den-
sity n(r, t) uniquely determines the time-dependent potential v(r, t) up to a purely
time-dependent function c(t). A consequence of TDDFT is that all physical observ-
ables become functionals of the electron density and the initial state O([n, ψ0]; t) =

〈ψ([n, ψ0]; t)|Ô(t)|ψ([n, ψ0]; t)〉.
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2.5.2.2 Kohn-Sham system of time-dependent density-functional theory

As in the case of ground-state DFT introduced in Sec. 2.5.1, the central idea of Kohn-
Sham DFT is to associate with an interacting system an effective non-interacting KS

system, which has the same time-dependent electronic density as the interacting sys-
tem. Since the KS system is a non-interacting system it is much easier to treat in
numerical applications than the fully interacting system.

The time-dependent KS equations for single-particle wavefunctions ϕi(r, t) are given
by the following set of equations

ih̄
∂

∂t
ϕi(r, t) =

 p̂2

2me
+ v(r, t) + vH([n]; r, t) + vxc([n, ψ0, ϕ0]; r, t)︸ ︷︷ ︸

vKS([v,n,ψ0,ϕ0];r,t)

 ϕi(r, t), (135)

where |ψ0〉 is the many-body electronic initial state, ϕ0(r, t0) is the initial state of
the non-interacting KS system and the KS potential vKS([v, n, ψ0, ϕ0]; r, t) is given in
Eq. (135). The initial-state dependence of the KS potential vKS([v, n, ψ0, ϕ0]; r, t) can
be avoided if one assumes that the ground-state is the starting point for the time-
propagation [65, 79] of the system. The electronic density of the interacting system
can be obtained from the time-dependent KS orbitals

n(r, t) =
Ne

∑
i=1
|ϕi(r, t)|2. (136)

The time-dependent Hxc potential of the non-interacting KS system of Eq. (135) can
be expressed as

vHxc([n, ψ0, ϕ0]; r, t) = vH([n]; r, t) + vxc([n, ψ0, ϕ0]; r, t)

= vs([n, ϕ0]; r, t)− v([n, ψ0]; r, t), (137)

where vs(r, t) is the single-particle potential of the non-interacting system, the time-
dependent Hartree potential vH([n]; r, t) that accounts for the classical electrostatic
interaction between the electrons is given by

vH([n]; r, t) =
e2

4πε0

∫
d3r′

n(r′, t)
|r− r′| . (138)

The xc potential vxc([n, ψ0, ϕ0]; r, t) comprises of all the non-trivial many-body effects.

2.5.2.3 Adiabatic approximation

The price to pay for the simplification to a KS system is that the one-body KS potential
is in general an unknown functional of the density. Despite this difficulty it turned
out that practically useful approximations for this potential can be devised. The sim-
plest and most widely used approximation to describe time-dependent systems is the
adiabatic approximation.

In the adiabatic approximation, the density at time t is plugged into a ground-state
functional of the xc potential as

vadiabatic
xc ([n, ψ0, ϕ0]; r, t) = vxc([n]; r)|n(r)→n(r,t) . (139)
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In Eq. (139), the same functional form is used but evaluated at each time with the
density n(r, t). The adiabatic approximation is justified for systems in which the time-
dependent electron density does not change rapidly. Making a substitution of the
LDA functional in Eq. (139) yields the so-called adiabatic local-density approximation
(ALDA):

vALDA
xc ([n, ψ0, ϕ0]; r, t) = vHEG

xc ((n); r)
∣∣∣
n(r)→n(r,t)

. (140)

The ALDA assumes that the xc potential at the position r and time t is equal to the xc

potential of a static homogeneous-electron gas of density n(r, t).

2.5.3 linear response of tddft

Despite the local nature of the effective single-particle KS potential, the full solution of
the time-dependent KS equations can be quite demanding for large systems. However,
the calculation of physical observables like excitation energies or polarizabilities of
atomic and molecular systems requires only the knowledge of the linear density re-
sponse of the system 4. This is also true for coupled matter-photon systems. Therefore,
a much simpler perturbative solution of the time-dependent KS equations is sufficient.
In this case the linear-response theory become applicable. This section presents the ba-
sics of linear-response theory for matter-only system within the semi-classical limit
and formulated within TDDFT. This will later highlight the main differences when
compared to the linear-response theory in non-relativistic QED and its equivalent for-
mulation within the framework of QEDFT that we derive in Chap. 3.2.

To begin a linear-response treatment in TDDFT, let us first describe the linear re-
sponse in the semi-classical limit in which the Hamiltonian is given by Eq. (74) where
the time-dependent potential is given explicitly by Eq. (123). In the linear-response
regime, the time-dependent potential can now be written as v(r, t) = v0(r) + δv(r, t).
Here, v0(r) describes the attractive part of the external potential due to the nuclei
and δv(r, t) can have the form δv(r, t) = r · δE(t) where δE(t) is a weak classical ex-
ternal transversal probe field in dipole approximation that couples to the electronic
subsystem. Formulated within linear response, the density response to an external
perturbation (as presented in Sec. 2.4) using Eq. (83) is given as

δn(r, t) =
∫ t

t0

dt′
∫

d3r′χn
n(r, t; r′, t′)δv(r′, t′). (141)

Here, the density-density response function, χn
n(r, t; r′, t′), of the interacting many-

body electronic system is given in commutator and differential from as (see Sec. 2.4):

χn
n(r, t; r′, t′) = − i

h̄
Θ(t− t′)〈ψ0|

[
n̂I(r, t), n̂I(r′, t′)

]
|ψ0〉

=
δn([v]; r, t)

δv(r′, t′)

∣∣∣∣
v0(r)

, (142)

where the expectation value of the commutator of the electronic densities is with re-
spect to the correlated electronic ground-state |ψ0〉. The response function of Eq. (142)

4 In other cases the second, third and higher order responses and response functions can be computed
depending on the spectroscopic observable one is interested in.
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can be expressed in frequency space by using the Lehmann representation given in
Eq. (94) which in this case is

χn
n(r, r′; ω) =

1
h̄

lim
η→0+

∞

∑
n=0

[
〈ψ0|n̂(r)|ψn〉〈ψn|n̂(r′)|ψ0〉

ω−Ωn + iη
− 〈ψ0|n̂(r′)|ψn〉〈ψn|n̂(r)|ψ0〉

ω + Ωn + iη

]
,

(143)

where ψn are the eigenstates of the matter-only problem and Ωn are the correspond-
ing excitation frequencies. Practical calculations for the response of a many-electron
system is a considerable challenge due to the large degrees of freedom. In practice,
TDDFT is one of the most frequently applied theories to approach this problem. For-
mulated within TDDFT linear response, the density-density response function of the
interacting system can be expressed in terms of the non-interacting density-density
response function and a Hxc kernel that has a form of a Dyson-type equation [80]:

χn
n(r, t; r′, t′) = χn

n,s(r, t; r′, t′) +
∫∫

d3x dτ χn
n,s(r, t; x, τ)

×
∫∫

d3y dτ′ fHxc(x, τ; y, τ′)χn
n(y, τ′; r′, t′) . (144)

The non-interacting density-density response function of the auxiliary KS system in
the above equation can be expressed in the form of Eq. (83) and (89) given by

χn
n,s(r, t; r′, t′) = 〈ϕ0|

[
n̂I(r, t), n̂I(r′, t′)

]
|ϕ0〉

=
δn([vs]; r, t)

δvs(r′, t′)

∣∣∣∣
vs([n];r)

. (145)

The so-called Hxc kernel in Eq. (144) can be obtained from Eq. (137) through a func-
tional derivative with the density that yields

fHxc([n]; r, t; r′, t′) =
δvs([n]; r, t)

δn(r′, t′)
− δv([n]; r, t)

δn(r′, t′)

=
[
χn

n,s(r, t; r′, t′)
]−1 −

[
χn

n(r, t; r′, t′)
]−1 . (146)

The Dyson-type equation (144) is the central result of the TDDFT linear-response for-
malism which relates the interacting and the non-interacting response functions. Sub-
stituting the density-density response function Eq. (144) into (142) leads to the time-
dependent KS equation for the linear density response

δn(r, t) =
∫ t

t0

dt′
∫

d3r′χn
n,s(r, t; r′, t′)δvKS(r′, t′), (147)

where the KS potential comprises of the external perturbation, the Hartree- and xc

contributions as follows

δvKS(r, t) = δv(r, t) +
∫

d3r′
∫

dt′
[

fH(r, t; r′, t′) + fxc(r, t; r′, t′)
]

δn(r′, t′). (148)

The Hartree- and xc kernels in Eq. (148) are respectively

fH(r, t; r′, t′) =
e2

4πε0

δ(t− t′)
|r− r′| , and fxc([n]; r, t; r′, t′) =

δvxc([n]; r, t)
δn(r′, t′)

. (149)
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When dealing with excitation energies and polarizabilities, it is useful to consider
the KS equation (147) in frequency space. Inserting Eq. (148) into Eq. (147) and fur-
ther performing a Fourier transform as in Eq. (91) due to the invariance under time
translations, leads to the frequency-dependent linear density response of the electron
density

δn(r, ω) =
∫

d3r′χn
n,s(r, r′; ω)δvKS(r′, ω), (150)

where χn
n,s(r, r′; ω) is the non-interacting response function in frequency space and

vKS(r′, ω) is the KS potential given explicitly as

δvKS(r′, ω) = δv(r′, ω) +
∫

d3x fHxc(r′, x, ω)δn(x, ω) . (151)

The non-interacting KS response function of Eq. (150) is given in terms of the KS

orbitals from Eq. (115) in the frequency space by [80]:

χn
n,s(r, r′, ω) =

1
h̄ ∑

j,k
( fk − f j)

ϕj(r)ϕk(r′)ϕ∗k (r)ϕ∗j (r
′)

ω− (εl − εk) + iη
, (152)

where fk, f j are the Fermi-occupation factors that refers to the configuration of the KS

ground-state (1 for occupied and 0 for unoccupied KS orbitals).

2.5.3.1 The exchange-correlation kernel

The linear response formulation of TDDFT introduces the quantity called the xc kernel
fxc. The fxc is a very complex quantity that accounts for all non-trivial many-body
effects. The simplest treatment of the xc kernel is the random-phase approximation
(RPA) which sets the kernel to zero, i.e. f RPA

xc = 0. This treatment of the kernel ignores
all correlations in the linear response setting. On the other hand, many approximate
xc kernels have been proposed and the most commonly used approximations for the
fxc include the ALDA and the so-called PGG (Petersilka, Gossmann, Gross) [80] kernel.
The simplest is the ALDA kernel which is based on the functional form of the static
LDA and given by

f ALDA
xc ([n]; r, r′) = δ(r− r′)

d2

dn2 εHEG
xc ((n); r) . (153)

The ALDA kernel is not only frequency-independent, it is also local in space. A conse-
quence of a frequency-independent kernel is that it does not generate new poles and
fails to describe the doubly excited states of the system [81].

2.5.3.2 Computational Methods for Calculating linear response within TDDFT

This section briefly outlines three different but equivalent methods to numerically
solve linear responses within the framework of TDDFT. These methods will be re-
formulated within QEDFT in Chap. 3.5 which in the zero-coupling limit reduces
back to the methods already established in TDDFT. The three standard methods in
TDDFT linear response for calculating the density response of Eq. (147) are: time-
propagation [82], frequency-dependent Sternheimer equations [83] and the Casida
equation [84].
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The time-propagation method propagates the time-dependent KS equations (135)
from which the electron density of Eq. (136) can be obtained as well as the time-
dependent dipole moments [82]. The Casida method rather obtains the excitation fre-
quencies and oscillator strengths of the density-density response function of Eq. (143).
This is done through an exact diagonalization of a pseudo-eigenvalue equation given
in particle-hole basis [84] that employs the sum-over-states representation of Eq. (152).
The frequency-dependent Sternheimer method solves for a specific order of the den-
sity response in terms of the first and higher order changes of the wavefunctions.

An extension of these methods within the framework of QEDFT and practical com-
putations are presented in Chap. 3. A prerequisite to linear-response within QEDFT is
to find the ground-state. Therefore, ground-state QEDFT and the time-dependent case
are presented successively in the following two sections.

2.5.4 ground-state quantum-electrodynamical density-functional it

theory

Sections 2.5.1 and 2.5.2 respectively focused on ground-state DFT and TDDFT which
reformulated the matter-only problem in terms of reduced quantities that avoid un-
affordable explicit calculations of the wavefunction. In the case of many-body matter-
photon systems, similar approaches can be applied. To treat ground-state proper-
ties of coupled matter-photon systems, the ground-state quantum electrodynamical
density-functional theory (QEDFT) was developed [14] which is a generalization of the
HK theorem to matter-photon systems. Such a first-principles formulation is necessary
for the same reason as ground-state DFT, i.e., explicit calculation of the wavefunction
is impossible and even more difficult when the photons are included. The ground-
state QEDFT presented here follows closely that of Ref. [14]. The proof for the full min-
imal coupling case is also given in Ref. [14]. The setting is the non-relativistic limit
of QED in the length form for describing light-matter systems discussed in Sec. 2.2.2.
The length gauge Hamiltonian introduced in Eq. (55) now includes a coupling to the
external charge current given as

ĤL = T̂e + Ŵee +
1
2

M

∑
α=1

[
p̂2

α + ω2
α

(
q̂α −

λα

ωα
· R̂
)2
]

︸ ︷︷ ︸
ĤL,0

+
∫

d3r n̂(r)v(r) +
M

∑
α=1

jα
ωα

q̂α .

(154)

Here, the static external charge current jα merely polarizes the vacuum of the photon
field and generates static electric fields and ĤL,0 is the internal Hamiltonian.

As in the case of ground-state DFT (see Sec. 2.5.1), a density-functional reformu-
lation of the above ground-state problem seeks to avoid an explicit reference to the
correlated hybrid electron-photon ground-state Ψ0. This implies that, instead of ex-
pressing every observable in terms of the wavefunction one then expresses them via
some reduced quantities. How to identify the pair of conjugate variables is discussed
in Ref. [14], which are the internal pair (n(r), qα) and external external pair (v(r), jα) 5.
Here, the HK proof is used to show that for every such external pair (v(r), jα) there is

5 The photon coordinates qα and static currents jα refers to the sets {q1, q2, ..., qM} and {j1, j2, ..., jM},
respectively.
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a unique ground-state and that these external variables have a one-to-one mapping
with the internal pair (n(r), qα), where n(r) is the electron density expectation value
and qα is the expectation value of the photon displacement coordinates. The first step
(as in Sec. 2.5.1) is to show that there is one and only one ground-state for a given ex-
ternal pair. To prove this, the opposite is assumed, i.e., that Ψ0 = Ψ′0 for different set
of external pairs (v(r), jα) and (v′(r), j′α) leads to a contradiction. Following similar
steps as in Eqs. (98) and (99) using Eq. (154) leads to[

(v(r)− v′(r)) +
M

∑
α=1

1
ωα

(jα − j′α)q̂α

]
Ψ0 = (E0 − E′0)Ψ0 . (155)

If jα = j′α , Eq. (155) readily simplifies to the usual HK case of Eq. (100). For the
case jα 6= j′α, Eq. (155) results to an eigenvalue equation which only allows the triv-
ial solution [14]. Both cases lead to the condition that v(r) − v′(r) = c, which is a
contradiction to the original assumption. The proof is completed by showing that
two different ground-state wavefunctions produce different internal pair (n(r), qα).
To prove this, one assumes the contrary, i.e., both Ψ0 and Ψ′0 produce the same inter-
nal pair (n(r), qα). Again following similar steps as in Eqs. (101) and (102), the primed
and unprimed inequalities are

E′0 = 〈Ψ0|Ĥ′L,0|Ψ0〉 < E0 +
∫

d3r
[
v′(r)− v(r)

]
n(r) +

M

∑
α=1

1
ωα

(j′α − jα)qα . (156)

E0 = 〈Ψ′0|ĤL,0|Ψ′0〉 < E′0 +
∫

d3r
[
v(r)− v′(r)

]
n(r) +

M

∑
α=1

1
ωα

(jα − j′α)qα . (157)

Adding both inequalities of Eqs (156) and (157) leads to the contradiction E0 + E′0 <

E0 + E′0. This establishes the one-to-one mapping (v(r), jα)
1:1←→
Ψ0

(n(r), qα) and there-

fore, all ground-state wavefunctions can be uniquely labeled by their respective in-
ternal pair Ψ0[n, qα]. As a consequence, the ground-state expectation value of any
observable Ô(r) becomes a functional of the density n(r) and photon displacement
coordinates as

O([n, qα], r) = 〈ψ0[n, qα]|Ô(r)|ψ0[n, qα]〉. (158)

Since the ground-state wavefunction is labeled by Ψ0[n, qα], one can define a universal
functional in this setting to be

F[n, qα] := 〈Ψ[n, qα]|ĤL,0|Ψ[n, qα]〉 . (159)

The universal functional of Eq. (159) clearly differs from that of Eq. (106) as can be
seen for the additional functional dependence on qα. The ground-state energy of the
coupled light-matter system can be found by a variational principle

E[v, jα] = min
(n,qα)

{
F[n, qα] +

∫
d3r v(r)n(r) +

M

∑
α=1

jα
ωα

qα

}
. (160)

The minimum can equivalently be found by functional variation with respect to the
density and photon coordinates as

δF[n, qα]

δn(r)
+ v(r) = µ and

δF[n, qα]

δqα
+

jα
ωα

= µ′ , (161)



42 matter-photon coupling in non-relativistic quantum electrodynamics

where µ and µ′ are Lagrange multipliers. The following section presents how one can
make practical use of ground-state QEDFT.

2.5.4.1 Maxwell-Kohn-Sham Ground-state QEDFT

To make ground-state QEDFT practical, one defines a numerically tractable auxiliary
non-interacting system. All the above proofs work in the same manner when applied
to the non-interacting system describe by the Hamiltonian

Ĥ(s)
L = T̂e +

1
2

M

∑
α=1

(
p̂2

α + ω2
αq̂2

α

)
︸ ︷︷ ︸

Ĥ(s)
L,0

+
∫

d3r n̂(r)vs(r) +
M

∑
α=1

jα,s

ωα
q̂α , (162)

where jα,s is the current of the non-interacting system. The mean-field exchange-
correlation (Mxc) energy functional can be defined as the difference between the uni-
versal functional of the interacting and that of the non-interacting auxiliary systems

EMxc[n, qα] := F[n, qα]− Fs[n, qα] . (163)

Here the universal functional of the non-interacting system has the explicit form
Fs[n, qα] := 〈Ψs[n, qα]|Ĥ(s)

L,0|Ψs[n, qα]〉 where |Ψs[n, qα]〉 = |ψ[n]〉 ⊗ |φ[qα]〉 is here a
factorizable product state between the electronic and photonic subsystems. Using
Eq. (163) the minimization of Eq. (160) can be rewritten as

E[v, jα] = min
(n,qα)

{
Fs[n, qα] + EMxc[n, qα] +

∫
d3r v(r)n(r) +

M

∑
α=1

jα
ωα

qα

}
. (164)

Next, to find the internal pair (n(r), qα) of the interacting system due to the external
pair (v(r), jα) from the auxiliary non-interacting system, one solves the following
equation

δFs[n, qα]

δn(r)
+

δ

δn(r)
(F[n, qα]− Fs[n, qα])︸ ︷︷ ︸

vs([n];r)−v([n,qα];r)

+v(r) = µ ,

δFs[n, qα]

δqα
+

δ

δqα
(F[n, qα]− Fs[n, qα])︸ ︷︷ ︸
jα,s([qα])−jα([n,qα])

+
jα

ωα
= µ′ .

(165)

Here the Mxc potential and current from the above equation are defined to be

vMxc([n, qα]; r) =
δEMxc[n, qα]

δn(r)
, and jα,Mxc([n, qα]) =

δEMxc[n, qα]

δqα
. (166)

With these definitions, the KS equations to be solved are the following coupled equa-
tions [14]:

ĥ ([v, n, qα]) ϕk(r) =

 p̂2

2m
+ v(r) + vMxc ([n, qα] ; r)︸ ︷︷ ︸

vKS([v,n,qα];r)

 ϕk(r) = εk ϕk(r) , (167)

ω2
αqα = − 1

ωα
jα,KS ([jα, n, qα]) . (168)
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The above equations reproduces the ground-state electron density n(r) = ∑k |ϕk(r)|2
and the photon coordinates obtained from Eq. (168). Here, the KS current has the form
jα,KS ([jα, n, qα]) = jα + jα,Mxc ([n, qα]). Considering the mean-field contributions of the
explicit electron-photon interaction term of Eq. (154) given as ∑M

α ωαqαλα ·R, one can
deduce from the EOM for qα(t) (see Eq. (178)) that the Mxc current components are
jα,Mxc = jα,M = −ω2

α

∫
d3r λα · r n(r) are given in terms of mean-field expressions.

The Mxc potential of Eq. (166) can be divided into the usual Hxc potential that is
known from electronic DFT and an additional term called photon-exchange-correlation
potential (Pxc) [18] as

vMxc([n, qα]; r) = vHxc([n]; r) + vPxc([n, qα]; r). (169)

Clearly, the term vPxc will vanish if the coupling |λα| goes to zero and recover the
purely electronic ground-state DFT. The LDA discussed in Sec. 2.5.1.2 can be applied
to the xc part of vHxc and provided reasonable approximations for xc part of vPxc

exist, the self-consistent solution of the coupled non-linear KS equations provides a
numerically feasible way to determine the ground-state properties of an interacting
multi-particle system coupled to photons.

2.5.5 quantum-electrodynamical density-functional theory

The previous section focused on the reformulation of the equilibrium matter-photon
problem in terms of the electronic density and displacement coordinates of the pho-
ton modes. For dynamical properties of matter-photon systems, QEDFT was developed
as in Refs. [12, 46, 85]. Ref. [12] formulates QEDFT on various level of approximations
starting from the relativistic Dirac equation to non-relativistic QED all the way down
to the dipole approximation of non-relativistic limit as in Ref. [46] while Ref. [85]
starts from the Pauli-Fierz field theory down to the dipole limit. Earlier work on this
topic have been carried out in Refs. [86, 87].

QEDFT outlined here is formulated in the non-relativistic limit and in the length
gauge as described in Ref. [12]. The time-independent length gauge Hamiltonian was
already introduced in Eq. (154). Now, the time-dependent Hamiltonian in the length
gauge with time-dependent external perturbations coming either from an external
potential or current is given by

ĤL(t) = T̂e + Ŵee + V̂(t) +
1
2

M

∑
α=1

[
p̂2

α + ω2
α

(
q̂α −

λα

ωα
· R̂
)2
]
+

M

∑
α=1

jα(t)
ωα

q̂α .

(170)

Here, V̂(t) = ∑Ne
i=1 v(ri, t) is the time-dependent potential where v(r, t) is given in

Eq. (123). The external current jα(t) acts directly on the mode α of the photon subsys-
tem by coupling to the photon coordinates.

As QEDFT is an extension of TDDFT, concepts already discussed in Sec. 2.5.2 can be
applied here directly. Thus, for a fixed initial state Ψ0 and external pair (v(r, t), jα(t)) 6,
one desires to solve Eq. (6) with the Hamiltonian given by Eq. (170). The resulting

6 As in the ground-state case, the time-dependent photon coordinates qα(t) and currents jα(t) refers to
the sets {q1(t), q2(t), ..., qM(t)} and {j1(t), j2(t), ..., jM(t)}, respectively.
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wavefunction depends on the initial state and the external pair as |Ψ([Ψ0, v, jα]; t)〉.
Since the wavefunction have functional dependencies on the fixed initial state and
external pair, the expectation value, for example, of the electron density and photon
coordinates also become a functional of Ψ0 and (v(r, t), jα(t)) as

n([Ψ0, v, jα]; r, t) = 〈Ψ([Ψ0, v, jα]; t)|n̂(r)|Ψ([Ψ0, v, jα]; t)〉,
qα([Ψ0, v, jα]; t) = 〈Ψ([Ψ0, v, jα]; t)|q̂α|Ψ([Ψ0, v, jα]; t)〉.

The formulation of QEDFT is complete when a one-to-one correspondence (bijective
mapping) between the set of external pair (v(r, t), jα(t)) and a chosen internal pair is
established. Here, the choice of internal pair of conjugate variables is the electron den-
sity n(r, t) and photon coordinates qα(t) as in ground-state QEDFT (see Sec. 2.5.4). In
the spirit of TDDFT, a closed set of equations relating (n(r, t), qα(t)) and (v(r, t), jα(t))
is required and can be obtained via their respective equations of motion. Before de-
riving the proof, one starts by computing the EOM for the photon coordinates using
Eq. (68) which yields the first and second derivatives

∂

∂t
qα(t) = pα(t), (171)

∂2

∂t2 qα(t) = −ω2
αqα(t) + ωαλα ·R(t)− jα(t)

ωα
. (172)

Equation (172) is the mode-resolved Maxwell’s equation given in Eq. (66) but here
with the possibility of driving the α mode with an external current. Equally, using
Eq. (68) in conjunction with Eq. (170) yields the continuity equation (126) and the
second derivative of the electron density

∂2

∂t2 n(r, t) =−∇ · Fstr(r, t) +
1
m
∇ · [n(r, t)∇v(r, t)]

+
1
m ∑

α

∇ · λα〈Ψ(t)|n̂(r)
(
λα · R̂−ωαq̂α

)
|Ψ(t)〉︸ ︷︷ ︸

Fα(r,t)

. (173)

As compared to the EOM of Eq. (129) for TDDFT, here the EOM of the density in Eq. (173)
has an extra term Fα(r, t) that accounts for the coupling of the transversal part of the
photon field to the mode-resolved Maxwell’s equation of Eq. (172). The term Fα(r, t)
is the internal force densities of the matter-photon system due to the explicit electron-
photon interaction and transversal dipole-dipole interaction effects. It is important
to note that the stress force term in Eq. (173) differs from that of Eq. (129) since
the expectation value is evaluated with the correlated electron-photon wavefunction
Fstr(r, t) = 〈Ψ(t)|

[
ĵ(r), T̂e + Ŵee

]
|Ψ(t)〉.

The next step is to demonstrate that starting from a fixed initial state Ψ0, there is a
one-to-one correspondence between the internal pair (n(r, t), qα(t)) and the external
pair (v(r, t), jα(t)) given by the mapping

(v(r, t), jα(t))
1:1←→
Ψ0

(n(r, t), qα(t)). (174)

To prove the one-to-one correspondence between the sets of conjugated variables as
formulated in Eq. (174), the original Runge-Gross proof in Sec. 2.5.2.1 can be ap-
plied here. In this case it is required that two different sets of external potentials and
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currents (v(r, t), jα(t)) and (v′(r, t), j′α(t)) always lead to two different sets of inter-
nal variables (n(r, t), qα(t)) and (n′(r, t), q′α(t)) under the condition that the system
evolves from a common initial state Ψ0. From Eq. (172), a direct connection between
the external current jα(t) and the set of internal variables (n(r, t), qα(t)) is given by

jα(t) =
(

∂2

∂t2 + ω2
α

)
ωαqα(t)−ω2

α

∫
d3r λα · r n(r, t) . (175)

Thus, if the internal pair (n(r, t), qα(t)) are given, the current jα(t) can be constructed
using Eq. (175) and is unique. Therefore, all that is left to prove is whether Eq. (173)
uniquely determines v(r, t). This is done by assuming the conditions on the potential
as in Eqs. (130) and (131). The next step establishes the uniqueness of the densities.
That is, for two wavefunctions Ψ(t) and Ψ′(t) that evolve from the same initial state
Ψ0, the difference in the electron densities is

∂2

∂t2

[
n(r, t)− n′(r, t)

]∣∣
t0
= − 1

m
∇ ·

(
n(r, t0)∇(v(r, t0)− v′(r, t0))

)
. (176)

As in Eq. (128) the electronic stress forces in Eq. (173) for the unprimed and primed
systems are identical at t0 and cancel out since both systems start from the same
initial state. The same is true for the force Fα(r, t). Therefore, the arguments that
follow after Eq. (128) holds here, that is, the densities n(r, t) and n′(r, t) will differ in-
finitesimally later than t0 if the two potentials v(r, t0) and v′(r, t0) are different. Then,
assuming that up to k they are the same, one finds exactly the same Eqs. (131) - (134).
This leads to the conclusion that the time-dependent density n(r, t) uniquely deter-
mines the time-dependent potential v(r, t) up to a purely time-dependent function
c(t) [12]. This concludes the proof that the mapping given in Eq. (174) is bijective.
Therefore, solving the non-linear coupled equations (172) and (173) for a given initial
state and external pair (v(r, t), jα(t)) determines the density n(r, t) and photon coor-
dinates qα(t) of the coupled matter-photon system from which all observables could
be computed.

2.5.5.1 Maxwell-Kohn-Sham Quantum-Electrodynamical Density-Functional Theory

The formulation of QEDFT as outlined above allows one to solve instead of the time-
dependent Schrödinger equation equivalently a non-linear fluid equation for the
electron density n(r, t) coupled non-linearly to the mode-resolved inhomogeneous
Maxwell’s equation [12, 14, 46, 88] given by equations (172) and (173). While these
equations are in principle easy to handle numerically, the forms of all the different
terms explicitly in terms of the basic variables of QEDFT, i.e. (n(r, t), qα(t)) are not
known. To find accurate approximations one then employs the KS scheme, where the
unknown terms are modeled by a numerically easier to handle auxiliary system in
terms of wavefunctions.

The approach is to use non-interacting subsystems of fermions and bosons which
lead to a similar set of equations, which are however uncoupled. Enforcing that both
give the same density and displacement field dynamics (see Sec. 2.2.2 on how qα(t)
corresponds to the displacement field) gives rise to mean-field exchange-correlation
(Mxc) potentials and currents [13, 18, 65]. In this way, one can recast the coupled



46 matter-photon coupling in non-relativistic quantum electrodynamics

 

 

 

 

 

 

 

 

 

  

 

 

 

 

TDDFT Kohn-Sham: no feedback loop QEDFT Maxwell-Kohn-Sham feedback loop 

(
𝜕2

𝜕𝑡2
+ 𝜔𝛼

2)𝐄𝛼(𝑡) = −
𝜕2

𝜕𝑡2
𝝀𝜶 ∙ 𝐑(𝒕) (

𝜕2

𝜕𝑡2
+ 𝜔𝛼

2) 𝑞
𝛼
(𝑡)

⏞          
=
𝒋
𝜶
(𝒕)

𝜔𝛼
+ 𝜔𝛼𝝀𝜶 ∙ 𝐑(𝒕) 

𝑖ℏ
𝜕

𝜕𝑡
𝜑𝑖(𝒓, 𝑡) = [−

ℏ2

2𝑚
�⃗⃗� 2 + 𝑣(𝒓, 𝑡) + 𝑣Mxc([𝒏, 𝒒𝜶]; 𝒓, 𝑡)]] 𝜑𝑖(𝒓, 𝑡) 

 

𝑖ℏ
𝜕

𝜕𝑡
𝜑𝑖(𝒓, 𝑡) = [−

ℏ2

2𝑚
�⃗⃗� 2 + 𝑣(𝒓, 𝑡) + 𝑣Hxc([𝒏]; 𝒓, 𝑡)]] 𝜑𝑖(𝒓, 𝑡) 

𝐄⊥
𝐞𝐱𝐭(𝒓, 𝑡) ≈ 𝐄⊥

𝐞𝐱𝐭(𝑡) 𝐄⊥
𝐞𝐱𝐭(𝒓, 𝑡) ≈ 𝐄⊥

𝐞𝐱𝐭(𝑡) 

Figure 1: Schematics showing the Maxwell-KS approach contrasted with the usual semi-
classical KS theory. While in the semi-classical approach the KS orbitals are used as
fixed input into the mode-resolved inhomogeneous Maxwell’s equation in vacuum
through the total dipole R(t) =

∫
d3r r ∑i |ϕi(r, t)|2 , in the Maxwell-KS framework

the induced field acts back on the orbitals, which leads to an extra self-consistency
cycle.

Maxwell-quantum-fluid equations in terms of coupled non-linear Maxwell-KS equa-
tions for auxiliary electronic orbitals, which sum to the total density ∑i |ϕi(r, t)|2 =

n(r, t), and the displacement fields qα(t) given by

ih̄
∂

∂t
ϕi(r, t) =

 p̂2

2m
+ v(r, t) + vMxc([n, qα]; r, t)︸ ︷︷ ︸

vKS([v,n,qα];r,t)

 ϕi(r, t), (177)

(
∂2

∂t2 + ω2
α

)
qα(t) = −

jα(t)
ωα

+ ωαλα ·R(t). (178)

Here, the so-called initial-state dependence has been ignored because one assumes
(for notational simplicity and without loss of generality) in the following that the
ground state is the starting point for the time-propagation [65, 79] of the matter-
photon coupled system. The mode-resolved equation of motion for the photon coor-
dinates of Eq. (178) can be solved analytically in the same way as in Sec. 2.3.1.1 and
leads to the following expression

qα(t) = qα(t0) cos(ωαt) +
q̇α(t0)

ωα
sin(ωαt)− 1

ω2
α

∫ t

t0

dt′ sin(ωα(t− t′))jα,KS(t′) .

(179)

Here, qα(t0) = qα(0) and q̇α(t0) = pα(0) are the photon coordinates and its first-order
derivative at time t = 0, respectively. The photon coordinates qα(t0) corresponds to
the static case of ground-state QEDFT in Sec. 2.5.4. The KS current in Eq. (179) deduced
from Eq. (178) can be written explicitly as

jα,KS(t) = jα(t)−ω2
α

∫
d3r λα · r n(r, t)︸ ︷︷ ︸
jα,M([n];t)

. (180)

As discussed in Sec. 2.5.4, the last term of Eq. (180) has only a mean-field contribution
and no xc contribution. This is inferred by defining the mean-field contribution of the
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explicit electron-photon interaction term of Eq. (170). As mentioned above, assuming
that the ground-state (see Sec. 2.5.4) is the starting point for the time-propagation, the
Mxc potential and current defined equivalently in Eqs. (165) and (166) now evolve in
time as in Eqs. (177) and (179). Thus, these time-dependent Mxc potential and current
are defined as

vMxc([n, qα]; r, t) = vs([n]; r, t)− v([n, qα]; r, t) , (181)

jα,Mxc([n, qα]; t) = jα,s([qα], t)− jα([n, qα], t) . (182)

As in ground-state QEDFT, the Mxc current jα,Mxc(t) has only a mean-field contribution,
i.e., jα,Mxc(t) = jα,M(t). The Mxc potential can be divided into the usual Hartree xc

potential that is known from electronic TDDFT and an additional photon-exchange-
correlation potential [18] as

vMxc([n, qα]; r, t) = vHxc([n]; r, t) + vPxc([n, qα]; r, t) . (183)

Clearly, the term vPxc will vanish if the coupling |λα| goes to zero and recover the
purely electronic case of TDDFT. The explicit form of the mean-field contribution of
the potential of Eq. (183) is given by

vM([n, qα]; r, t) = vH([n]; r, t) + vP([n, qα]; r, t) , (184)

vH([n]; r, t) =
e2

4πε0

∫
d3r′

n(r′, t)
|r− r′| ,

vP([n, qα]; r, t) =
M

∑
α=1

(∫
d3r′λα · r′n(r′, t)−ωαqα(t)

)
λα · r .

The ground-state QEDFT and in particular the time-dependent formulation will be em-
ployed in Chap. 3 for practical calculations of atomic and molecular systems coupled
to photons.

2.6 summary

This chapter discussed the state-of-the-art theoretical description of light-matter inter-
action and presented different methods of solving the problem in an efficient and less
computationally costly way, for example ground-state QEDFT and the time dependent
case. We will expand upon this in the next chapter by formulating non-relativistic QED

linear-response theory within the framework of QEDFT and deriving ab-initio meth-
ods that can compute excited-state properties of coupled light-matter systems. We
will show novel perspectives that can be realized using our ab-initio linear-response
theory within the framework of QEDFT. In Chap. 4 we go beyond the linear-response
theory and investigate from an ab-initio perspective down-conversion processes and
how strong light-matter coupling opens new possibilities.
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3
L I N E A R R E S P O N S E I N N O N - R E L AT I V I S T I C Q U A N T U M
E L E C T R O D Y N A M I C S

Nowadays, the influence of strong light-matter coupling allows for the emergence of
interesting physical and chemical effects [1, 89, 90] that will not be captured if light
is treated only as an external perturbing field. Ab-initio methods such as QEDFT has
been developed to provide detailed understanding of strong light-matter interactions
as well as predict new effects that can be observed in such coupled systems. So far,
the application of QEDFT was mainly restricted to static situations [17] or very sim-
ple time-dependent problems [12, 13, 22, 91] because the time-dependent problem
is much more complicated. To make QEDFT workable also for large time-dependent
systems, in this chapter we therefore develop a linear-response formulation which is
sufficient for many interesting observables such as the linear polarizability, absorp-
tion and emission spectrum, among others. The linear-response setting is adequate
to describe such matter-photon coupled systems since strong light-matter coupling is
usually identified by linear spectroscopy. That is, it captures the hallmark of strong
coupling which is the Rabi splitting usually observed in, for example, an absorp-
tion measurement [90]. This formulation allows to make this ab-initio method for
strongly-coupled matter-photon systems practical.

First, we will address strong coupling between light and matter from first-principles
within the linear-response regime of non-relativistic QED. In light of this, we show
novel responses and response functions that arise in the linear response setting of
non-relativistic QED. We then reformulate these response equations within the frame-
work of QEDFT and show how the self-consistent feedback between light and matter
changes the quantum Maxwell’s equation in matter. Next, we will show different
ways of implementing the corresponding response equations of QEDFT and highlight
that these different implementations provide the same results. Since the implementa-
tions are non-trivial, the comparison of the different methods is an important check
of validity. With these new ab-initio methods, we then show physical effects that be-
comes accessible when light and matter strongly couple and new avenues that can be
investigated using our ab-initio theory. For example, non-perturbative first-principles
calculation of electronic and polaritonic lifetimes by sampling the photon bath, transi-
tion from Lorentz to Fano lineshapes in strong coupling. In addition, we show novel
observables that can be computed in this setting. For example, we show the spec-
trum of the response of the photon displacement field due to an external potential
as well as an external current. These results highlight that the limiting case of non-
relativistic QED, i.e., the semi-classical approximation (see Chap. 2.5.3) miss out a lot on
new interesting physics.

Before we start the derivation of the linear-response formulation of non-relativistic
QED and then subsequently QEDFT, we first have to guarantee the existence of a
ground-state to start from. This question, which in the usual model approaches to
strong light-matter coupling do not appear, is of fundamental importance for any
ab-initio framework. This question is not as trivial as it sounds, since the question

51
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under which conditions a Hamiltonian has a ground-state is still lacking a general
answer even in quantum mechanics [61]. Only for the special yet important case of
Coulombic potentials could the stability of matter be shown [92]. For the Pauli-Fierz
Hamiltonian a similar result exists [41]. However, in the long-wavelength limit vari-
ous approximate forms of the Pauli-Fierz Hamiltonian are in use. Most importantly,
in many situations the dipole self-energy term is discarded [93]. It remains, how-
ever, unclear whether the length-gauge Pauli-Fierz Hamiltonian without the dipole
self-energy is a viable alternative. In principle, we could also use this adapted Hamil-
tonian for our investigations. But in the following we will show that this approach is
fundamentally flawed and that the full Pauli-Fierz Hamiltonian including the dipole
self-energy is needed for the stability of matter 1.

3.1 no ground-state without the dipole self-energy

Since the entirety of this chapter is focused on the description of matter-photon cou-
pling within the length gauge, we show the relevance of the dipole-self energy term
that is often ignored in the length gauge Hamiltonian. Before proceeding to the im-
portance of the dipole self-energy term, we first present the individual terms of the
length gauge Hamiltonian discussed in Chap. 2.2.2 and here written as

ĤL = T̂e + Ŵee + V̂eN + Ĥpt + Ĥint + Ĥdip . (185)

In equation (185), the terms T̂e, Ŵee, V̂eN , Ĥpt are given respectively in Eqs. (2), (3), (4),
(38) and the explicit electron-photon interaction term Ĥint is given by

Ĥint = −
M

∑
α=1

ωαq̂αλα ·R = −
M

∑
α=1

ωαq̂α

∫
d3r λα · r n̂(r). (186)

In this bilinear coupling term, the interaction of the photon field with the matter sub-
system is via the electronic dipole operator. The last term of Eq. (185) is the electronic
dipole self-energy interaction given as

Ĥdip =
1
2

M

∑
α=1

(λα ·R)2 =
1
2

M

∑
α=1

Ne

∑
i,j=1

(λα · ri)
(
λα · rj

)
. (187)

This quadratic term describes electron-electron interaction via the transversal photon
field.

Now, we are interested in the question of whether the velocity and length gauge
Hamiltonians can support a ground-state. The existence of a ground-state is pertinent
provided we want to have a variational principle [94] and employ ground-state QEDFT

(see Chap. 2.5.4 or [14]) within the dipole approximation in non-relativistic QED. A
ground-state as used here implies that there exist no other state that has less energy,
i.e., for all |Ψ〉 in the self-adjoint domain of the Hamiltonian it holds that 〈Ψ|Ĥ|Ψ〉 ≥
E0, where E0 is the ground-state energy. Remarkably, for a broad class of potentials
such as v(r) ∈ L2(R3) + L∞(R3) [41, 95–97], it holds that both Hamiltonians are
bounded from below by a minimum energy E0. Although, for such a broad class of
potentials, a ground-state does not necessarily exist, e.g., for v(r) = 0 there are only

1 Some of the results presented in this Chapter have been published in these articles [18, 44].
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scattering states with a lower bound energy which is zero. Therefore, one needs to
vary over all possible wavefunctions in the domains of the respective Hamiltonians
and show that they are bounded from below. In the dipole approximation, the velocity
gauge Hamiltonian of Eq. (49) is bounded from below which is a basic requirement
for a ground-state. Since the length gauge Hamiltonian of Eq. (185) results from a
unitary transform, then the Hamiltonian ĤL is bounded from below as well.

Quite often, the dipole self-energy term Ĥdip in the length gauge Hamiltonian is
ignored. One of the reasons is that Ĥdip depends on the normalization volume of the
field and for interactions of photons with an individual electron, atom or molecule,
taking the limit V → ∞ seems to imply that Ĥdip → 0 [42]. This simple argument has
two severe flaws. Firstly, irrespective how small the prefactor of an unbounded op-
erator becomes, there are wavefunctions for which it becomes arbitrarily strong and
hence there is no well-defined limiting procedure as erroneously indicated above. Sec-
ondly, while it makes some sense to discard for certain states the influence of just one
arbitrarily weak mode, in the case of V → ∞ there are infinitely many modes that con-
tribute within an arbitrarily small energy window and hence countering this simpli-
fied picture even for individual wavefunctions. A further reason why the dipole self-
energy is often ignored is due to simplified models of matter-photon systems such
as the Rabi model [98, 99], Jaynes-Cummings model [36, 100] and Dicke model [101]
presented in Sec. 3.6.1.1. In these models, the simplified dipole self-energy term in
the two-dimensional electronic subspace is just the identity operator which gives a
constant energy offset [44].

In order to investigate how the dipole self-energy term impacts the spectral prop-
erties of the length gauge Hamiltonian, we rather consider what happens when the
dipole self-energy is ignored. The general case of the proof is discussed in Ref. [44]
but here for simplicity we restrict the length gauge Hamiltonian to the case of one
electron coupled to a single photon mode, i.e., Ne = M = 1. This restriction simplifies
Eq. (185) to

ĤL,1 = T̂e,1 + Ŵee,1 + V̂eN,1 +
1
2

[
p̂2 + ω2

(
q̂− λ

ω
· R̂
)2
]

= T̂e,1 + Ŵee,1 + V̂eN,1 + Ĥpt,1 + Ĥint,1 + Ĥdip,1 . (188)

We make an assumption that the single electron confined within a cavity has the
possibility of escaping the cavity through the mirrors. Note that we could also use
boundary conditions for the mirrors which will not change the outcome. This is
evident since the mode is polarized perpendicular to the mirrors and the direction
to which the electron will escape is also perpendicular to the mirrors. Therefore, we
consider the full space R3 in accordance to the minimal-coupling and the uncoupled
problem (i.e. without coupling to photons). The length gauge Hamiltonian without
the dipole self-energy is given by

Ĥ′L,1 = T̂e,1 + V̂eN,1 + Ĥpt,1 + Ĥint,1. (189)

The question now arises, is the Hamiltonian Ĥ′L,1 bounded from below, which is a
necessary prerequisite for a ground-state to exist? In order to answer this question,
we consider a trial wavefunction and calculate the energy of Ĥ′L,1 with respect to
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the trial wavefunction. The photonic part of the trial wavefunction is given by the
function

Φ(q) =
1√
2
[φ1(q) + φ2(q)] , (190)

where the functions φ1(q) and φ2(q) are the normalized ground and first excited
states of the quantized harmonic oscillator [97]. We treat the electronic part of the
trial wavefunction by considering the function

Fa(r) =


N exp[− 1

1−|r−a|2 ], if |r− a| < 1

0, if |r− a| ≥ 1

where a = aκ, a ∈ R

, (191)

where κ is an arbitrary vector, a an arbitrary parameter and N is the normalization
constant of the function. The function Fa(r) is a mollifier which has properties of
being infinitely many times differentiable, is non-zero only within the unit ball |r−
a| < 1 where the vector a is the center of the unit ball. Physically, the mollifier
corresponds to a single component of a Slater determinant [44]. The complete trial
wavefunction is a factorizable tensor product of the form

|Ψ〉 = Fa(r)⊗Φ(q). (192)

The wavefunction |Ψ〉 belongs to the domain of ĤL,1 since 〈Ψ|ĤL,1|Ψ〉 < ∞ and also
of Ĥ′L,1. The energy of Ĥ′L,1 with respect to |Ψ〉 has the following terms

〈Ψ|Ĥ′L,1|Ψ〉 = 〈Ψ|T̂e,1|Ψ〉+ 〈Ψ|V̂eN,1|Ψ〉+ 〈Ψ|Ĥpt,1|Ψ〉+ 〈Ψ|Ĥint,1|Ψ〉. (193)

The expectation value of the kinetic energy of the electron is given explicitly by

〈Ψ|T̂e,1|Ψ〉 = −
h̄2

2m
〈Fa(r)|∇2|Fa(r)〉

= −|N |2 h̄2

2m

∫
|r−a|<1

d3r e
− 1

1−|r−a|2∇2
(

e
− 1

1−|r−a|2

)
. (194)

Since the kinetic energy operator is translationally invariant, we perform the transfor-
mation r → r + a which does not change the value. Applying this transformation to
Eq. (194) results to

〈Ψ|T̂e,1|Ψ〉 = −
h̄2

2m
〈F0(r)|∇2|F0(r)〉

= −|N |2 h̄2

2m

∫
|r|<1

d3r e
− 1

1−|r|2∇2
(

e
− 1

1−|r|2

)
= t < ∞ . (195)

The expectation value of the second term gives the potential energy of the electron.
The external potential is chosen with respect to atomic and molecular systems such



3.1 no ground-state without the dipole self-energy 55

that it is an attractive potential. Thus, the expectation value of the binding potential
is

〈Ψ|V̂eN,1|Ψ〉 = 〈Fa(r)|V̂eN,1|Fa(r)〉 = −va , where va ≥ 0 . (196)

The third term on the right hand side of Eq. (193) yields the photon energy given by

〈Ψ|Ĥpt,1|Ψ〉 =
1
2
(E1 + E2), where En = h̄ω

(
n +

1
2

)
, (197)

with n being the photon occupation and n ∈ N. The last term of Eq. (193) is the
energy from the bilinear electron-photon coupling term that simplifies to

〈Ψ|Ĥint,1|Ψ〉 = −ω〈Φ|q̂|Φ〉〈Fa(r)|λ · r|Fa(r)〉

= −
√

h̄ω

2
λ · 〈Fa(r)|r|Fa(r)〉

= −
√

h̄ω

2
|N |2

∫
|r−a|<1

d3r λ · r e
− 2

1−|r−a|2 . (198)

Now, performing the translation r→ r + a in Eq. (198) results to

〈Ψ|Ĥint,1|Ψ〉 = −
√

h̄ω

2

|N |2 ∫
|r|<1

d3r λ · r e
− 2

1−|r|2 − λ · a〈F0(r)|F0(r)〉


= −

√
h̄ω

2
λ · a = −a , (199)

where the integral of the first term of Eq. (199) is zero and the energy of the bilin-
ear term is proportional to −a with κ chosen to be κ = (h̄ω/2)−1/2λ/|λ|2. Now,
summing all the terms that contributes to the total energy of Ĥ′L,1 yields

〈Ψ|Ĥ′L,1|Ψ〉 = t− va +
1
2
(E1 + E2)− a

≤ t +
1
2
(E1 + E2)− a ∼ −a . (200)

From the total energy expression it becomes clear that the Hamiltonian is unbounded
from below, since the parameter a can be chosen arbitrarily. Formulated differently, Fa

can be moved further and further away from the origin thereby lowering the energy
of Ĥ′L,1 as much as we want. Therefore, we conclude that there exists no ground-
state without the dipole self-energy term in the length gauge. A further point to
note is that Ĥ′L,1 will in general not have any eigenstates but rather have a purely
continuous spectrum with only scattering states. Thus, Ĥ′L,1 makes physical sense
only in a time-dependent setting. The general case of the proof for arbitrary many
electrons and photon modes can be treated in a similar approach as presented above
and is outlined in Ref. [44]. Furthermore, a consequence of ignoring this term leads
to a violation of Maxwell equations in matter as demonstrated in Ref. [44].

Numerical investigations that question omitting the dipole self-energy term has
been studied in Ref. [102]. Using a real-space model system coupled to a photon
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mode, it was shown that omitting this term of the length gauge Hamiltonian leads to
the breaking of gauge invariance, emergence of a dependence on the coordinate sys-
tem (or basis set), radiating ground states, unphysical dependence on the total dipole
moment, and in the limit of finite basis set leads to disintegration of the complete sys-
tem as discussed above. Due to the unphysical results that arise when the dipole-self
energy term is ignored [44, 102], it becomes necessary to always include this term in
order to obtain the correct spectral features of the length gauge Hamiltonian.

The result of this discussion is that if we want to define equilibrium properties and
a ground state, from which we perturb our system to investigate its response, we
need to include the dipole self-energy. This is what we will do in the following.

3.2 linear response in the length gauge

The previous section showed the necessity of the dipole-self energy term of the
length gauge Hamiltonian. This is important to make sure that the Hamiltonian is
bounded from below (stable) such that we can employ ground-state QEDFT and its ex-
tension to the time-dependent case. We now present the linear response formulation
for electron-photon coupled systems in the dipole approximation of non-relativistic
QED. This first-principles formulation is important to capture and compliment recent
experimental observations in the strong-coupling regime where hybrid light-matter
particles (polaritons) emerge that are capable of modifying the properties of the cou-
pled system significantly [2, 3] when compared to the separate subsystems. Thus,
the linear response formulation here obtains modified response functions as well
as introduces novel response functions that can describe and predict features of the
strong-coupling regime as well as propose novel spectroscopic observables.

The setting for such a description of light and matter is that of the length gauge
Hamiltonian. With the Hamiltonian of Eq. (170) we can then in principle solve the cor-
responding time-dependent Schrödinger equation (6) for a given initial state |Ψ0〉 of
the coupled matter-photon system. Here, we do not solve for the full time-dependent
many-body wavefunction. We restrict ourselves to weak perturbations from the exter-
nal potential δv(r, t) and current δjα(t) and assume that our system is in the ground
state of the coupled matter-photon system at time t = 0. This new perturbation
δjα(t) is not accessible in the linear-response setting of the semi-classical limit dis-
cussed in Chap. 2.5.3. As can be expected, this new way of perturbing the coupled
system highlights new possibilities that become available as will be shown below. In
this case, first-order time-dependent perturbation theory can be used (see Chap. 2.4
for details) to approximate the dynamics of the coupled matter-photon system. This
framework gives access to linear spectroscopy, e.g., the absorption spectrum of an
atom or molecule.

The formulation of the linear response can be done in two different ways which are
formally equivalent. One formalism defines the response function as an expectation
value of the commutator of an observable of interest at different times with respect to
the ground-state wavefuction while the other formalism defines the response function
as a functional derivative of an observable with respect to the external perturbation.
The latter is beneficial for deriving the basic equations of linear-response QEDFT in
various forms as will be discussed in Sec. 3.3. In the following, we present the two
formalisms as applied in the length gauge description of the matter-photon system.
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3.2.1 linear response : a wavefunction based formalism

In this subsection, we present the wavefunction based formalism of the linear re-
sponse. Basically, this formalism defines the response function to be a ground-state
expectation value of the commutator of an observable (or different observables) of
interest at different times. Following the linear-response derivation in Chap. 2.4, we
define the external perturbation in the length gauge to be

Ĥext(t) =
Ne

∑
i=1

v(ri, t) +
M

∑
α=1

jα(t)
ωα

q̂α. (201)

The term Ĥext(t) is included in the length gauge Hamiltonian of Eq. (170). Here, we
are interested in the dipole response as well as the response of the photon field due
to an external perturbation Ĥext(t). To investigate these responses we consider the
electron density (which is related to R =

∫
d3r r n̂(r)) and photon coordinate as in

Chap. 2.5.5. The linear response of the electron density is obtained by substituting
n̂(r) for Ô(r) in Eq. (81) together with the external perturbation of Eq. (201) which
results to

δn(r, t) =
∫

dt′
∫

d3r′χn
n(r, t; r′, t′)δv(r′, t′) +

M

∑
α=1

∫
dt′χn

qα
(r, t; t′)δjα(t′). (202)

Here the response function χn
n(r, t; r′, t′) corresponds to the density-density response

function for a coupled light-matter system and χn
qα
(r, t; t′) corresponds to the density

response induced by exciting the photon field. The response functions of Eq. (202)
are given by

χn
n(r, t; r′, t′) = − i

h̄
Θ(t− t′)〈Ψ0|

[
n̂I(r, t), n̂I(r′, t′)

]
|Ψ0〉, (203)

χn
qα
(r, t; t′) = − i

h̄
Θ(t− t′)

1
ωα
〈Ψ0|

[
n̂I(r, t), q̂α,I(t′)

]
|Ψ0〉. (204)

It is important to note that the density-density response function of Eq. (203) is com-
puted with respect to the coupled light-matter ground state |Ψ0〉 which differs from
Eq. (142) which is computed with respect to the electron-only ground state |ψ0〉. Also,
the Hamiltonian in the interaction picture of Eq. (203) is the length gauge Hamilto-
nian of Eq. (154) while that of Eq. (142) is the Hamiltonian of Eq. (95). Therefore, the
density-density response function of Eq. (203) includes contributions of the photon
field as opposed to the semi-classical counterpart.

In the standard (i.e. semi-classical limit) linear response formulation, since the pho-
ton field is not included as a dynamical part of the system, changes in the transversal
photon field would not induce any changes in the electronic subsystem. However,
our treatment of the full matter-photon system in the length gauge allows for a cross-
talk between light and matter which accordingly leads to a linear response of the
quantized light field

δqα(t) =
∫

dt′
∫

d3r′χqα
n (t; r′, t′)δv(r′, t′) +

M

∑
α′=1

∫
dt′χqα

q′α
(t, t′)δjα′(t′), (205)
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where χ
qα
n (t; r′, t′) is the full response function of the photons due to perturbing the

electronic degrees, and χ
qα

q′α
(t, t′) is the response function of the photons by perturb-

ing the photonic degrees. Equation (205) corresponds to the linear response of the
displacement field δDα(t) = ε0ωαλα δqα(t) (see Chap. 2.2.2). The response function
χ

qα
n (t; r′, t′) is in general not trivially connected to χn

qα
(r, t; t′), due to the different

time-ordering of t and t′. The response functions of Eq. (205) are defined as

χ
qα
n (t; r′, t′) = − i

h̄
Θ(t− t′)〈Ψ0|

[
q̂α,I(t), n̂I(r′, t′)

]
|Ψ0〉, (206)

χ
qα
qα′
(t, t′) = − i

h̄
Θ(t− t′)

1
ωα′
〈Ψ0|

[
q̂α,I(t), q̂α′,I(t′)

]
|Ψ0〉. (207)

The response function χ
qα
qα′
(t, t′) is particularly interesting since it describes photon-

photon interaction mediated by the matter subsystem as can be observed by the ex-
pectation value with the correlated matter-photon ground-state and the length gauge
Hamiltonian in the interaction picture.

3.2.2 linear response : a functional based formalism

Alternatively, the response and response functions of the electron density and pho-
ton coordinate of Eqs. (202)-(207) can be obtained using the functional dependence
of the observables on the external pair (v(r, t), jα(t)) as discussed in Chap. 2.4. For
the setting considered here, the wavefunction of the coupled matter-photon sys-
tem has a functional dependence |Ψ([v, jα]; t)〉 via the Hamiltonian Eq. (170), i.e.,
ĤL(t) = ĤL([v, jα]; t). Therefore, through the expectation value of electron density
and photon displacement coordinate, both have a functional dependence on the exter-
nal pair as n([v, jα]; r, t) and qα([v, jα]; t), respectively. We can perform a functional Tay-
lor expansion of the density n(r, t) and photon coordinate qα(t) to first-order around
the static external potential and current (v0(r), jα,0) that yields

n([v, jα]; r, t) = n([v0, jα,0]; r) +
∫∫

d3r′dt′
δn([v0, jα,0]; r, t)

δv(r′, t′)
δv(r′, t′)

+ ∑
α

∫
dt′

δn([v0, jα,0]; r, t)
δjα(t′)

δjα(t′),

qα([v, jα]; t) = qα([v0, jα,0]) +
∫∫

d3r′dt′
δqα([v0, jα,0]; t)

δv(r′, t′)
δv(r′, t′)

+ ∑
α′

∫
dt′

δqα([v0, jα,0]; t)
δjα′(t′)

δjα′(t′).

This reduces to the response of the electron density and photon coordinate given as

δn([v, jα]; r, t) =
∫∫

d3r′dt′χn
v(r, t; r′, t′)δv(r′, t′) + ∑

α

∫
dt′χn

jα(r, t; t′)δjα(t′), (208)

δqα([v, jα]; t) =
∫∫

d3r′dt′χqα
v (t; r′, t′)δv(r′, t′) + ∑

α′

∫
dt′χqα

jα′
(t, t′)δjα′(t′), (209)
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where we define the response functions of the above relation as

χn
v(r, t; r′, t′) =

δn([v, jα]; r, t)
δv(r′, t′)

∣∣∣∣
v0(r),jα,0

, (210)

χn
jα(r, t; t′) =

δn([v, jα]; r, t)
δjα(t′)

∣∣∣∣
v0(r),jα,0

, (211)

χ
qα
v (t; r′, t′) =

δqα([v, jα]; t)
δv(r′, t′)

∣∣∣∣
v0(r),jα,0

, (212)

χ
qα

jα′
(t, t′) =

δqα([v, jα]; t)
δjα′(t′)

∣∣∣∣
v0(r),jα,0

. (213)

Here, the density-density response function written in the notation χn
v(r, t; r′, t′) sig-

nifies the functional variation of the time-dependent density n(r, t) with respect to a
time-dependent potential v(r, t). The notation for the other response functions follow
a similar reasoning. The response functions defined in Eqs. (210)-(213) and Eqs. (203)-
(207) are formally equivalent. This can be inferred from Eqs. (210)-(213) as they can
be expressed as the response equations in (202) and (205) (see Chap. 2.4 for details).
Both formalisms will be employed later in the thesis to derive the response equations
and response functions within the framework of QEDFT.

These novel response functions that include the photon field together with χn
n

highlight the following possibilities already for the usual weak-coupling situation
in which the semi-classical theory is commonly applied:

• the finite radiative lifetimes of excited states which is inferred from the de-
excitations of the photon field can be obtained naturally since the photon bath
is included.

• the excited-state properties can be viewed as arising from quantum modifica-
tions of the Maxwell’s equations in matter due to the self-consistent feedback
loop.

• the emerging resonances for a real system are mainly photonic in nature, as
they describe either the emission or absorption of photons.

• the onset of Rabi splitting which indicates the hybridization of the light-matter
system and emergence of new states (polaritonic states).

All these features and more will be discussed below.

3.2.3 the coupled linear response equations

The linear response equations (202) and (205) in non-relativistic QED for the electron
density and photon coordinate can be grouped in a matrix form which shows how the
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individual photon modes couple to the matter subsystem and how different modes
interact with each other given as

δn

δq1

δq2
...

δqM


=



χn
n χn

q1
χn

q2
. . . χn

qM

χ
q1
n χ

q1
q1 χ

q1
q2 . . . χ

q1
qM

χ
q2
n χ

q2
q1 χ

q2
q2 . . . χ

q2
qM

...
...

...
. . .

...

χ
qM
n χ

qM
q1 χ

qM
q2 . . . χ

qM
qM





δv

δj1
δj2
...

δjM


, (214)

where integration over time and space is implied as defined in Eqs. (202) and (205).
In this form we observe that the electron density response of the coupled electron-
photon system depends on whether we use a classical field from the potential δv(r, t)
or classical external charge current δjα(t), or combinations thereof for the pertur-
bation. Furthermore, we can also decide to not consider the response of the cou-
pled matter-photon system due to δn(r, t), but rather directly monitor the quantized
modes of the photon field δqα(t). This response yet again depends on whether we
choose to use a classical field δv(r, t) that induces photons in mode α or whether we
directly generate those photons by an external current δjα(t). In addition, we also see
that the different modes are coupled, i.e., that photons interact. Similarly as charged
particles interact via coupling to photons, also photons interact via coupling to the
charged particles. Keeping the coupling to the photon field explicitly, on the one hand,
changes the standard spectroscopic observables, and on the other hand also allows
for many more spectroscopic observables than in the standard matter-only theory.

To obtain the responses in Eq. (214), we can simultaneously perturb the coupled
system with both the external potential δv(r, t) and current δjα(t). However, in this
thesis we consider only the situation in which we perturb the couple system with
either the external potential or the current but not both at the same time. Considering
an external perturbation of the coupled system with the external potential δv(r, t)
(while δjα(t) = 0) reduces Eq. (214) to the coupled set of responsesδnv(r, t) =

∫∫
dt′d3r′χn

n(r, t; r′, t′)δv(r′, t′),

δqα,v(t) =
∫∫

dt′d3r′χqα
n (t; r′, t′)δv(r′, t′).

(215)

Here, the cross-correlation response function χ
qα
n (t; r′, t′) accounts for the action of the

matter subsystem on the photon field which gives rise to a response of the photon
field as a result of perturbing the matter subsystem. In the semi-classical approach
on which TDDFT is based on, the cross-correlation response function does not show
up and thus the cross-talk between light and matter is not included. Similarly, a
perturbation of the coupled system with the external charge current δjα(t) (while
δv(r, t) = 0) reduces Eq. (214) to the coupled equationsδnv(r, t) = ∑M

α=1
∫

dt′χn
qα
(r, t; t′)δjα(t′),

δqα,j(t) = ∑M
α′=1

∫
dt′χqα

qα′
(t, t′)δjα′(t′).

(216)

The cross-correlation response function χn
qα
(r, t; t′) accounts for the action of the pho-

ton field on the matter thus specifying the response of the density by perturbing the
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photon field and χ
qα
qα′
(t, t′) describes how photons interact via matter thus specifying

changes in response of the photon field. In Eqs. (215) and (216) the subscript v (j) on
δnv(r, t) (δnj(r, t)) represents the electron density response due to an external poten-
tial δv(r, t) (current δjα(t)). Similarly, the subscript v (j) on δqα,v(t) (δqα,j(t)) represents
the response of the photon coordinate due to an external potential δv(r, t) (current
δjα(t)).

We note that when we take the decoupling limit between light and matter in our
description, i.e. setting |λα| = 0, the response functions χ

qα
n and χn

qα
become zero as

there is no cross-talk between the subsystems. The response function χ
qα
qα′

reduces to
the solution of Eq. (72) while the density-density response function χn

n is now given
by Eq. (142). Since the semi-classical limit (see Chap. 2.5.3) is the limiting case of our
electron-photon linear-response formulation, this highlights that the semi-classical
limit misses important effects that are captured in our light-matter setting and new
physical possibilities that become accessible as shown later.

The response functions for the electron density and photon coordinate of Eqs. (203)
and (204) and Eqs. (206) and (207) can be expressed in the frequency space following
the Lehmann representation of Chap. 2.4 given as

χn
n(r, r′, ω) =

1
h̄

lim
η→0+

∞

∑
k=0

[
fk(r) f ∗k (r

′)

ω−Ωk + iη
−

fk(r′) f ∗k (r)
ω + Ωk + iη

]
, (217)

χn
qα
(r, ω) =

1
h̄

lim
η→0+

∞

∑
k=0

[
fk(r)g∗α,k

ω−Ωk + iη
− gα,k fk(r)

ω + Ωk + iη

]
, (218)

χ
qα
n (r′, ω) =

1
h̄

lim
η→0+

∞

∑
k=0

[
ωαgα,k f ∗k (r

′)

ω−Ωk + iη
−

ωα fk(r′)g∗α,k

ω + Ωk + iη

]
, (219)

χ
qα
qα′
(ω) =

1
h̄

lim
η→0+

∞

∑
k=0

[
ωαgα,kg∗α′,k

ω−Ωk + iη
−

ωαgα′,kg∗α,k

ω + Ωk + iη

]
, (220)

where fk(r) = 〈Ψ0|n̂(r)|Ψk〉 and gα,k = 〈Ψ0|q̂α|Ψk〉/ωα are the transition matrix el-
ements between the ground-state and all excited states and |Ψ0〉 is the correlated
electron-photon ground-state wavefunction. The excitation energies Ωk = (Ek−E0)/h̄
of the interacting system are the poles of the response functions of the unperturbed
system.

3.3 linear response formulation of qedft

As previously discussed in the case of a matter-only system, it is computationally
costly to compute the density-density response function which led to the formulation
of linear response within the TDDFT framework. Therefore, for a matter-photon sys-
tem the computational cost increases with respect to the matter-only problem due to
the added dimensionality of M-photon modes. In order to compute the responses or
response functions of matter-photon systems, we employ the Maxwell-KS scheme of
QEDFT presented in Chap. 2.5.5. This approach utilizes the bijective mapping between
the interacting and non-interacting system that yields the exact electron density and
displacement field of the interacting system given by

(v(r, t), jα(t))
1:1←→
Ψ0

(n(r, t), qα(t))
1:1←→
Φ0

(vs(r, t), jα,s(t)), (221)
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which implies (vs([v, jα]; r, t), jα,s([v, jα]; t)). This allows to recover the exact linear re-
sponse of the interacting coupled system.

The linear response formulation for a coupled matter-photon system within the
framework of QEDFT expresses the interacting response functions in terms of non-
interacting response functions of the decoupled subsystems while employing Mxc

kernels. To show this, we now derive expressions of the response functions within
the QEDFT framework. Making use of the functional chain rule, the interacting density-
density response function χn

n(r, t; r′, t′) can also be written as

χn
n(r, t; r′, t′) =

∫∫
d3xdτ

δn ([vs]; r, t)
δvs(x, τ)︸ ︷︷ ︸
χn

n,s(r;t;x,τ)

δvs ([v, jα]; x, τ)

δv(r′, t′)
, (222)

where the non-interacting response function χn
n,s(r, t; x, τ′) is defined in Eq. (145).

From Eq. (221), we have vs ([n]; r, t) which allows Eq. (222) to be expressed as

χn
n(r, t; r′, t′) =

∫∫
d3xdτχn

n,s(r, t; x, τ)
∫∫

d3ydτ′
δvs ([n]; x, τ)

δn(y′, τ′)

δn ([v, jα]; y, τ′)

δv(r′, t′)
.

At this point we introduce the definitions of the Mxc kernels that account for the
electron-electron and electron-photon interactions within the framework of QEDFT.
The Mxc kernels are defined as

f n
Mxc([n, qα]; r, t; r′, t′) =

δvs([n]; r, t)
δn(r′, t′)

− δv([n, qα]; r, t)
δn(r′, t′)

, (223)

f qα

Mxc([n, qα]; r, t; t′) = −δv([n, qα]; r, t)
δqα(t′)

, (224)

gn
Mxc([n, qα]; t; r′, t′) = −δjα([n, qα]; t)

δn(r′, t′)
, (225)

gqα′
Mxc([n, qα]; t, t′) =

δjα,s([qα]; t)
δqα′(t′)

− δjα([n, qα]; t)
δqα′(t′)

, (226)

where δvs([n];r,t)
δqα(t′)

= 0 = δjα,s([qα];t)
δn(r′,t′) and the above kernels are obtained from Eq. (181)

and Eq. (182) via a functional derivative with respect to the electron density and pho-
ton coordinate. These Mxc kernels are inverses of the interacting and non-interacting
response functions. The physical interpretation of the above Mxc kernels will be ex-
plained below. For the density-density response function given above, the Mxc kernels
are introduced in the expression by writing the response function as

χn
n(r, t; r′, t′) =

∫∫
d3xdτχn

n,s(r, t; x, τ)
∫∫

d3ydτ′ f n
Mxc(x, τ; y, τ′)

δn ([v, jα]; y, τ′)

δv(r′, t′)

+
∫∫

d3xdτχn
n,s(r, t; x, τ)

∫∫
d3ydτ′

δv([n, qα]; x, τ)

δn(y, τ′)

δn ([v, jα]; y, τ′)

δv(r′, t′)
.

Making a substitution of the following expression in the above equation∫∫
d3ydτ′

δv([n, qα]; x, τ)

δn(y, τ′)

δn ([v, jα]; y, τ′)

δv(r′, t′)

= δ(x− r′)δ(τ − t′)−∑
α

∫
dτ′

δvMxc ([n, qα]; x, τ)

δqα(τ′)

δqα ([v, jα]; τ′)

δv(r′, t′)

= δ(x− r′)δ(τ − t′) + ∑
α

∫
dτ′ f qα

Mxc(x, τ; τ′)
δqα ([v, jα]; τ′)

δv(r′, t′)
,
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where δv([n, qα]; x, τ)/δv(r′, t′) = δ(x− r′)δ(τ − t′) we arrive at the expression of the
density-density response function in terms of non-interacting response functions and
Mxc kernels

χn
n(r, t; r′, t′) = χn

n,s(r, t; r′, t′)

+
∫∫

d3xdτχn
n,s(r, t; x, τ)

∫∫
d3ydτ′ f n

Mxc
(
x, τ; y, τ′

)
χn

n(y, τ′; r′, t′)

+
∫∫

d3xdτχn
n,s(r, t; x, τ)

∫
dτ′∑

α

f qα

Mxc

(
x, τ; y, τ′

)
χ

qα
n (y, τ′; r′, t′) .

(227)

Following the same approach as above, the response function χn
qα
(r, t; t′) can be ex-

pressed as

χn
qα
(r, t; t′) =

∫∫
d3xdτ

δn ([vs]; r, t)
δvs(x, τ)︸ ︷︷ ︸
χn

n,s(r,t;x,τ)

∫∫
d3ydτ′

δvs ([n]; x, τ)

δn(y, τ′)

δn ([v, jα]; y, τ′)

δjα(t′)
.

(228)

Introducing the Mxc kernels into the above response equation results to

χn
qα
(r, t; t′) =

∫∫
dτdxχn

n,s(r, t; x, τ)
∫∫

dτ′dy f n
Mxc(x, τ; y, τ′)

δn([v, jα]; y, τ′)

δjα(t′)

+
∫∫

dτdxχn
n,s(r, t; x, τ)

∫∫
dτ′dy

δv([n, qα]; x, τ)

δn(y, τ′)

δn([v, jα]; y, τ′)

δjα(t′)
.

In the next step, using the expression given below obtained from the functional
derivative of δv([n, qα]; x, τ)/δjα(t′) given by∫∫

dydτ′
δv([n, qα]; x, τ)

δn(y, τ′)

δn([v, jα]; y, τ′)

δjα(t′)
= −∑

α′

∫
dτ′

δv([n, qα]; x, τ)

δqα′(τ′)

δqα′([v, jα]; τ′)

δjα(t′)

= ∑
α′

∫
dτ′ f qα′

Mxc([n, qα]; x, τ; τ′)χ
qα′
qα
(τ′, t′)

into Eq. (228), we arrive at the expression of χn
qα
(r, t; t′) in linear response QEDFT

χn
qα
(r, t; t′) =

∫∫
d3xdτχn

n,s(r, t; x, τ)
∫∫

d3ydτ′ f n
Mxc

(
x, τ; y, τ′

)
χn

qα
(y, τ′; r′, t′)

+
∫∫

d3xdτχn
n,s(r, t; x, τ)

∫
dτ′∑

α′
f qα′
Mxc

(
x, τ; y, τ′

)
χ

qα′
qα
(y, τ′; r′, t′) .

(229)

Equally, the response functions of Eqs. (206) and (207) can be expressed in a similar
form as above. First, the response function χ

qα
qα′
(t, t′) can be expressed as

χ
qα
qα′
(t, t′) =

∫
dτ ∑

β

δqα ([jα,s]; t)
δjβ,s(τ)︸ ︷︷ ︸
χ

qα
qβ,s (t,τ)

δjβ,s([v, jα]τ)
δjα′(t′)

, (230)
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where χ
qα
qβ,s(t, τ) is the non-interacting response function of the photonic subsystem

given in the expectation value notation as

χ
qα
qβ,s(t, τ) = − i

h̄
Θ(t− τ)〈φ0|

[
qα,I(t), qβ,I(τ)

]
|φ0〉 . (231)

From Eq. (182), we have that jα,s([qα]τ). Using this in the above interacting photon-
photon response function we obtain

χ
qα
qα′
(t, t′) =

∫
dτ ∑

β

χ
qα
qβ,s(t, τ)

∫
dτ′∑

β′

δjβ,s([qα]τ)

δqβ′(τ′)

δqβ′([v, jα]τ′)
δjα′(t′)

.

Introducing the Mxc kernels in the above equation we obtain

χ
qα
qα′
(t, t′) = ∑

β

∫
dτχ

qα
qβ,s(t, τ)∑

β′

∫
dτ′g

qβ′

Mxc(τ, τ′)χ
qβ′
qα′
(τ′, t′)

+ ∑
β

∫
dτχ

qα
qβ,s(t, τ)∑

β′

∫
dτ′

δjβ([n, qα]; τ)

δqβ′(τ′)

δqβ′([n, qα]; τ′)

δjα′(t′)
.

Making a substitution of the following expression in the above equation (where
jβ([n, qα]; τ)/jα′(t′) = δ(τ − t′)δβ,α′)

∑
β′

∫
dτ′

δjβ([n, qα]; τ)

δqβ′(τ′)

δqβ′([v, jα]; τ′)

δjα′(t′)

= δ(τ − t′)δβ,α′ −
∫∫

dτ′dx
δjβ([n, qα]; τ)

δn(x, τ′)

δn([v, jα]; x, τ′)

δjα′(t′)

= δ(τ − t′)δβ,α′ +
∫∫

dτ′dxg
nβ

Mxc(τ; x, τ′)χn
qα′
(x, τ′; t′) ,

we obtain the expression of the photon-photon response function within the frame-
work of QEDFT given by

χ
qα
qα′
(t, t′) = χ

qα
qα,s(t, t′) +

∫∫
dτdτ′∑

β
∑
β′

χ
qα
qβ,s(t, τ)g

qβ′

Mxc(τ, τ′)χ
qβ′
qα
(τ′, t′)

+
∫∫∫

dτdτ′d3x ∑
β

χ
qα
qβ,s(t, τ)g

nβ

Mxc(τ; x, τ′)χn
qα′
(x, τ′, t′). (232)

Finally, the response function χ
qα
n (t; r, t′) can be expressed in the following form

χ
qα
n (t; r′, t′) =

∫
dτ ∑

β

δqα ([jα,s]; t)
δjβ,s(τ)︸ ︷︷ ︸
χ

qα
qβ,s (t,τ)

∫
dτ′∑

β′

δjβ,s([qα]τ)

δqβ′(τ′)

δqβ′([v, jα]τ)
δv(r′, t′)

. (233)

In a similar way, introducing the Mxc kernels in the above equation results to

χ
qα
n (t; r′, t′) = ∑

β

∫
dτχ

qα
qβ,s(t, τ)∑

β′

∫
dτ′g

qβ′

Mxc(τ, τ′)χ
qβ′
n (τ′; r′, t′)

+ ∑
β

∫
dτχ

qα
qβ,s(t, τ)∑

β′

∫
dτ′

δjβ([n, qα]; τ)

δqβ′(τ′)

δqβ′([v, jα]; τ′)

δv(r′, t′)
.
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Next, substituting the expression below obtained from δjβ([n, qα]; τ)/δv(r′, t′)

∑
β′

∫
dτ′

δjβ([n, qα]; τ)

δqβ′(τ′)

δqβ′([v, jα]; τ′)

δv(r′, t′)
= −

∫∫
dτ′dy

δjβ([n, qα]; τ)

δn(y, τ′)

δn([v, jα]; y, τ′)

δv(r′, t′)

=
∫∫

dτ′dyg
nβ

Mxc(τ; y, τ′)χn
n(y, τ′; r′, t′)

into Eq. (233) leads to the following form of the response function

χ
qα
n (t; r′, t′) =

∫∫
dτdτ′∑

β
∑
β′

χ
qα
qβ,s(t, τ)g

qβ′

Mxc

(
τ, τ′

)
χ

qβ′
n (τ′; r′, t′)

+
∫∫∫

dτdτ′d3x ∑
β

χ
qα
qβ,s(t, τ)g

nβ

Mxc(τ; xτ′)χn
n(x, τ′; r′, t′). (234)

In equations (232) and (234), we note that the Mxc kernel g
qβ′

Mxc of the photons is
zero. This becomes apparent when we consider the expression of the Mxc current
jα,Mxc(t) = jα,M(t) = −ω2

α

∫
d3r λα · r n(r, t) which has only a mean-field contribution

(see Chap. 2.5.5). Through a functional derivative with respect to qα, we find that
gqα′

Mxc = δjα,Mxc/δqα′ = 0. The equations (227), (229), (232) and (234) are the formu-
lation of the interacting response functions of the matter-photon system within the
framework of QEDFT. We note that substituting the expressions for the Mxc kernels in
Eqs. (223)-(226) into the expressions of the response functions (227), (229), (232) and
(234) gives back the response functions of the interacting system (see App. A.1 for
details).

The linear responses of Eqs. (215) and (216) can now be expressed within the QEDFT

framework as a variation of the KS potentials and currents:

vKS([v, n, qα]; r, t) = v(r, t) + vs([n]; r, t)− v([n, qα]; r, t)︸ ︷︷ ︸
vMxc([n,qα];r,t)

,

jα,KS([jα, n, qα]; t) = jα(t) + jα,s([qα]; t)− jα([n, qα]; t)︸ ︷︷ ︸
jα,Mxc([n,qα];t)

.

This is accomplished by substituting Eqs. (227), (229), (232) and (234) into the respec-
tive responses of Eqs. (215) and (216) that leads to

δnv(r, t) =
∫∫

d3 r′dt′χn
n,s(r, t; r′, t′)δvKS,v(r′, t′), (235)

δnj(r, t) =
∫∫

d3r′ dt′χn
n,s(r, t; r′, t′)δvKS,j(r′, t′), (236)

δqα,v(t) =
∫

dt′χqα
qα,s(t, t′)δjα,KS,v(t′), (237)

δqα,j(t) =
∫

dt′χqα
qα,s(t, t′)δjα,KS,j(t′). (238)

Here, we emphasize again that the subscripts v and j on the electron density response
and photon coordinate response represent the responses due to an external potential
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δv(r, t) and current δjα(t). Equally, the notation applies to the KS potentials and cur-
rents of Eqs. (235)-(238) which are given explicitly as

δvKS,v(r′, t′) = δv(r′, t′) +
∫∫

d3y dτ′ f n
Mxc(r

′, t′; y, τ′)δn(y, τ′) (239)

+ ∑
α

∫
dτ′ f qα

Mxc(r
′, t′; τ′)δqα(τ

′),

δvKS,j(r′, t′) =
∫∫

d3y dτ′ f n
Mxc(r

′, t′; y, τ′)δn(y, τ′) (240)

+ ∑
α

∫
dτ′ f qα

Mxc(r
′, t′; τ′)δqα(τ

′),

δjα,KS,v(t′) =
∫∫

d3y dτ′gnα
M (t′, yτ′)δn(y, τ′), (241)

δjα,KS,j(t′) = δjα(t′) +
∫∫

d3x dτ′gnα
M (t′; x, τ′)δn(x, τ′). (242)

We now comment further on the Mxc kernels in Eqs. (223)-(226). Since g
qβ′

Mxc = 0, we
focus on the other Mxc kernels which can be expressed in the equivalent form

f n
Mxc(r, t; r′, t′) = f n

Hxc(r, t; r′, t′) + f n
Pxc(r, t; r′, t′),

f qα

Mxc(r, t; t′) = f qα

Pxc(r, t; t′),

gn
Mxc(t; r′, t′) = gn

M(t; r′, t′).

(243)

Since the Mxc current given above has only a mean-field contribution, so too is the
kernel gn

Mxc = gn
M which is given in Eq. (244). Our linear-response formulation within

QEDFT in addition to the f n
Hxc, introduces the following three new Mxc kernels: f n

Pxc,
f qα

Mxc, gn
Mxc that accounts for the self-consistent interaction (cross-talk) between the

light-matter coupled system. These kernels basically represent the interaction terms
of Eqs. (186) and (187) of the length gauge Hamiltonian. The kernel f n

Hxc is known
in TDDFT which accounts for the longitudinal electron-electron interactions, f n

Pxc ac-
counts for electron-electron interaction via the transverse field (dipole self-energy
term) while f qα

Pxc and gn
M represent the contributions from the electron-photon cou-

pling (i.e. the bilinear interaction term). In principle these Mxc kernels can be con-
structed as inverses of their respective interacting and non-interacting response func-
tions (see Eqs. (223)-(226)) but in practice they need to be approximated. The ap-
proximations applied to the kernels of Eq. (243) as used in this thesis are described
as follows. The interaction of the photon field with the matter subsystem is treated
on a mean-field level by not including their xc kernels while the electron-electron
interaction is treated with ALDA (see Chap. 2.5.3.1 for details):

f n
Hxc(r, t; r′, t′) = f n

H(r, t; r′, t′) + f n
xc(r, t; r′, t′)

' e2

4πε0

δ(t− t′)
|r− r′| + f n

xc,ALDA(r, t; r′, t′) ,

f n
Pxc(r, t; r′, t′) ≈ f n

P (r, t; t′) = δ(t− t′)e2 ∑
α

(λα · r) λα · r′ ,

f qα

Pxc(r, t; t′) ≈ f qα

P (r, t; t′) = −δ(t− t′)ωα λα · er ,

gn
M(t; r′, t′) = −δ(t− t′)ω2

α λα · er′ .

(244)

We note that in the decoupling limit of light and matter, i.e. |λα| = 0, the three new
kernels in Eq. (243 ) are zero and our linear-response QEDFT framework reduces to
that of TDDFT presented in Chap. 2.5.3.
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Self-consistent dipole in linear-response QEDFT is 
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In the dipole approximation 

Figure 2: Schematics contrasting the standard Maxwell’s equation (left) with the fully self-
consistent Maxwell’s equation (right). Top: The induced transverse electric field E⊥
due to the induced polarization P⊥, which in an equivalent way can be expressed
in terms of the auxiliary displacement field D⊥. Left: mode-resolved Maxwell’s
equation without self-consistent back-reaction. The external charge current jα can
be used to induce the external electric field in Etot

α = Eα + Eext
α which acts as an

external perturbation via the dipole. The induced field does not couple back to the
Maxwell field since the constituents of χ̃n

n expressed in TDDFT are purely electronic.
Right: a self-consistent Maxwell’s equation where jα induces the internal field qα(t)
via the electronic dipole which has an explicit dependence on qα as seen in the
QEDFT form of χn

qα
. The self-consistency of the induced field via the dipole response

introduces nonlinearities in the coupled system and thus, changes the Maxwell field
at the level of linear response.

In the last two sections, we presented the linear-response of non-relativistic QED

and its formulation within the framework of QEDFT and showed that our results are
a generalization to the linear-response in the semi-classical limit and its formulation
within TDDFT presented in Chap. 2.5.3. This highlights that including the quantized
field as a dynamical part of the system changes not only the matter subsystem but
also the photon field as well. In this section we employ the above results to show
the modifications of the Maxwell’s equations due to a self-consistent treatment of
the matter-photon system. This will highlight the limitations of the semi-classical de-
scription of light-matter interaction as it treats the transverse field only as an external
perturbation, thereby, ignoring the feedback loop between light and matter that leads
to changes in the Maxwell’s equation.

In order to make these changes apparent in the Maxwell’s equation, we start from
the classical description and focus on the induced fields due to an external perturba-
tion. When the fields and sources are purely classical there is no difference whether
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we perturb by an external transversal field a⊥ or an external classical current j⊥
2 due

to the inhomogeneous Maxwell’s equation in vacuum(
1
c2

∂2

∂t2 −∇
2
)

a⊥(r, t) = µ0j⊥(r, t). (245)

Provided we have some theory to relate this external perturbation to the induced
current J⊥[a⊥], then the induced field reads(

1
c2

∂2

∂t2 −∇
2
)

A⊥(r, t) = µ0J⊥([a⊥], r, t), (246)

from which induced physical fields can be calculated, for example, the transversal
electric field in Coulomb gauge can be obtained from Eq. (22). Furthermore, these
two results can be combined to obtain the total field Atot

⊥ = A⊥ + a⊥, which obeys(
1
c2

∂2

∂t2 −∇
2
)

Atot
⊥ (r, t) = µ0 (j⊥(r, t) + J⊥([j⊥], r, t)) . (247)

Making use of the Maxwell relations once again, we can equivalently find for example
the induced electric field from the equation(

1
c2

∂2

∂t2 −∇
2
)

E⊥(r, t) = −µ0
∂

∂t
J⊥([a⊥], r, t). (248)

Now, a connection to the Maxwell’s equation in matter can be established, where the
j⊥ is called the free current and J⊥ the bound current. Assuming that the transversal
induced current can be expressed locally around the center of charge as J⊥(r, t) ≈
∂
∂t P⊥(r, t), where the polarization is given by

P⊥(r, t) = ε0e
M

∑
α=1

λα(r)
∫

d3r′ λα(r′) · r′n([a⊥]; r′, t),

the electric field can be expanded in the modes λα(r) as

E⊥(r, t) =
M

∑
α=1

λα(r)Eα(t). (249)

The above equation can be expressed at the center of charge, i.e., λα(r)→ λα, as(
∂2

∂t2 + ω2
α

)
Eα(t) = −

∂2

∂t2 λα ·R([a⊥], t). (250)

Using the approach illustrated above, we can connect the density response δn(r, t) to
the induced electric field δE⊥(r, t), where a spatially homogeneous vector potential
a⊥(t) is employed that gives rise to the external electric field Eext

⊥ (t) = − ∂
∂t a⊥(t).

In a final step, to avoid solving the above mode-resolved Maxwell’s equations, one
often ignores the spatial dependence of the induced field and merely uses Eα(t) =

−λα ·R([a⊥], t).

2 Here, the lowercase notation of the vector potential and current represents external fields that are not
dynamical variables of the system.
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In a next step, computing the linear response R([a⊥], t) we immediately see that
when χn

n(r, t; r′, t′) is changed due to the light-matter coupling the induced field also
changes. In addition, the reformulation of the linear response kernel in Eq. (227)
shows that a feedback loop is present from the induced photon field onto the matter.
However, the reformulation of the same linear response kernel in the semi-classical
limit given in Eq. (144) does not account for the feedback loop, thus neglecting im-
portant features of the light-matter system (see Fig. (2)). For example, the intrinsic
back-reaction (screening) effects are very important for large systems such as those
in solid-state physics, where it is well known that the bare (vacuum) electric field as
obtained from Eq. (250) does not agree with the measured spectrum. Thus the self-
consistent polarization of the system that counter-acts the external perturbing field
has to be included to obtain the correct spectrum. This can be achieved in an approx-
imate way in the linear response regime by self-consistently solving the Maxwell’s
equation with the matter response as input [103–106]. Classical electrodynamics ap-
proaches the problem by using the Maxwell’s equations in matter. To connect to the
length gauge which mixes the matter and photon degrees (see Chap. 2.2.2), this im-
plies that we use displacement field D⊥ = ε0E⊥+P⊥ where the polarization term P⊥
encodes all the information about how the system reacts to an external perturbation.
The Maxwell’s equation in terms of the displacement field is(

1
c2

∂2

∂t2 −∇
2
)

D⊥(r, t) = −∇2P⊥([a⊥]; r, t). (251)

To obtain the displacement field in a mode-resolved form and in the long wavelength
limit, we expand D⊥(r, t) = ε0 ∑α ωαλα(r)qα(t) and then invoking the dipole approx-
imation results to(

∂2

∂t2 + ω2
α

)
qα(t) = ωαλα ·R([a⊥], t), (252)

which is the classical analogue of Eq. (178) for jα(t) = 0. In the semi-classical de-
scription that does not include the self-consistency, the quantity R([a⊥], t) is sim-
ply determined from the electric permittivity and the feedback that describes how
the matter system affects (screens) the field is ignored. The self-consistency can be
found in an approximate way if the induced field E⊥ is taken into account to screen
the perturbing field Eext

⊥ . However, we will go beyond this simple approximate self-
consistency which breaks down when the coupling between light and matter is strong.
Note that the electric field in the macroscopic Maxwell’s equation now becomes
Eα(t) = ωαqα(t) − λα · R([a⊥], t), and ignoring the spatial dependence when deter-
mining E⊥ results to the assumption that D⊥ = E⊥.

In our description of light-matter systems, the photon field is accounted for as a
dynamical variable of the system such that the Maxwell field couples to the elec-
tronic subsystem, which leads to a fully self-consistent description of the light-matter
response. Similar to the changes in χn

n(r, t; r′, t′), which upon substituting as an input
into Eqs. (248) or (252), accounts for the self-consistent response of the light-matter
system, we also have direct access to the induced electric field by considering the
response of the displacement field due to χn

qα
(r, t; t′). The physical implication of this

highlights that the excited states of the coupled light-matter system can be viewed
as changes in the quantized Maxwell field in accordance to the usual experimental
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situation as will be shown below. On the other hand, we have the possibility of in-
vestigating what the quantum description of the coupled light-matter system does to
the Maxwell’s equations.

In order to highlight these changes, consider the case where the current δjα(t) is
non-zero while the external classical field is zero, i.e., δv(r, t) = 0. In this case, we
find the variation of the electron density to the external current in Eq. (178) to be(

∂2

∂t2 + ω2
α

)
δqα(t) = −

δjα(t)
ωα

+ ωαλα ·
∫∫

dt′d3r r
δn(r, t)
δjα(t′)

δjα(t′)

= −δjα(t)
ωα

+ ωαλα ·
∫∫

dt′d3r r χn
qα
(r, t; t′)δjα(t′). (253)

Substituting Eq. (229) into Eq. (253) we obtain the following equation(
∂2

∂t2 + ω2
α

)
δqα(t) =−

δjα(t)
ωα

+ ωαλα ·
∫

er χn
n,s f n

Mxcχn
qα

δjα

+ ωαλα ·∑
∫

er χn
n,s f qα′

Mxcδqα′ . (254)

When we contrast the above equation to the classical Maxwell’s equation in matter(
∂2

∂t2 + ω2
α

)
δqα(t) = −

δjα(t)
ωα

+ ωαλα · δR([j⊥], t), (255)

where the dipole R([j⊥], t) can be obtained from the response of the matter system
due to the corresponding external field a⊥, we observe that in addition to the self-
consistent response of the matter system (second term on the right hand side), there
is also a genuine new (matter-mediated) photon-photon interaction term (third term
on the right hand side) that appears. Making the mean-field explicit by employing
Eq. (244) leads to(

∂2

∂t2 + ω2
α

)
δqα(t) =−

δjα(t)
ωα

−ωαλα ·∑
∫

er χn
n,s
(
ωα′λα′ · er′

)
δqα′

+ ωαλα ·
∫

er χn
n,s

[
e2

4πε0|r′ − r′′|

+∑
α′

e2 (λα′ · r′′
)

λα′ · r′
]

χn
qα

δjα

+ ωαλα ·
∫

er χn
n,s f n

xcχn
qα

δjα + ωαλα ·∑
∫

er χn
n,s f qα′

xc δqα′ .

Ignoring the xc contributions to the photon-photon and matter-photon response re-
sults to the pRPA of the Maxwell’s equation in matter. In the above pRPA form of the
Maxwell equation, we clearly see how the equation becomes non-linear because of
the feedback between light and matter (see Fig. (2)). This kind of non-linearities of
the Maxwell’s equations are investigated in great detail in high-energy physics in the
context of strong-field QED [107] in which the strong fields lead to particle creation
and thus a matter-mediated photon-photon interaction. However, in our setting such
high energies are not needed because we consider the photon-photon interaction due
to condensed matter in the form of atoms, molecules or solids and use, e.g., a cav-
ity or plasmonic nanostructures to enhance the coupling. We note that the changes
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in the Maxwell’s equations presented here are not purely theoretical concepts but
lead to observable effects that can be seen in many physical situations. The example
mentioned about the polarization effects in solid-state systems [106] is the most well-
known effect, but more strikingly are effects due to the quantum-matter-mediated
photon-photon interactions, see e.g. Ref. [108]. In this context, the presented linear-
response method allows to theoretically investigate the photon-photon interactions
and possibly predict systems with very strong photon-photon correlations. We there-
fore highlight that the quantized Maxwell’s equation in matter, if we allow for both,
an external current and an external field, can indeed discriminate between these
two sorts of perturbations. In a purely classical theory such as the Maxwell equa-
tion of Eq. (245), there can be no difference. Our linear-response formulation in non-
relativistic QED and formulated within QEDFT provides an interesting playground to
investigate the difference between classical and quantum physics.

3.5 linear response methods within the framework of qedft

So far, we have presented the linear response equations in non-relativistic QED and
showed within the QEDFT framework the changes in Maxwell’s equation due to the
self-consistent coupling between light and matter. To investigate the changes that
arise in the coupled matter-photon system, the response equations or response func-
tions of Eqs. (215) and (216) have to be computed. However, obtaining these responses
for large systems is not computational feasible, therefore, we resort to the KS setting
of QEDFT of the response equations given by Eqs. (235)-(238). In this setting, practical
calculations are feasible when we apply approximations to the Mxc kernels. This sec-
tion presents linear-response methods derived within the framework of QEDFT that
compute either the responses or response functions of Eqs. (215) and (216). The meth-
ods derived in this section were already briefly introduced in Chap. 2.5.3.2 within
the context of linear response of TDDFT. In the following, we present extensions
of these methods for obtaining the response properties of matter-photon systems.
The response methods that are presented here are the Casida equations, frequency-
dependent Sternheimer equations and the time-propagation scheme. In these meth-
ods, we focus on singlet excitations in closed-shell systems, therefore, restricting our-
selves to the spin-independent formalism. However, we note that generalizations to
spin-dependent formulations are straightforward.

3.5.1 the casida method of qedft

In matter-only formulation of TDDFT, the Casida [84] approach has become almost
the standard method for computing the linear response of a system. The method is
built on expanding the many-electron excitations in a particle-hole basis. The prob-
lem is then cast into to a pseudo-eigenvalue equation in which excitation energies
and oscillator strengths are obtained from the eigenvalues and eigenvectors of a re-
sponse matrix. In this section, we present a matrix formulation of non-relativistic
QEDFT response equations which in the no-coupling limit (i.e. switching off the cou-
pling of the electrons to the photons) reduces to the well-known electron-only Casida
equation. As mentioned in Chap. 2.5.3.2, this method does not directly determine
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the electron density response but rather the density-density response function. Simi-
larly, this method as derived within the framework of QEDFT computes the response
functions of Eqs. (217) - (220) in the frequency space.

We now derive the Casida pseudo-eigenvalue equation for coupled electron-photon
systems within the framework of QEDFT [18]. The time-dependent responses given in
Eqs. (235)-(238) can be expressed in frequency space as

δnv(r, ω) =
∫

d3r′χn
n,s(r, r′, ω)δvKS,v(r′, ω), (256)

δnj(r, ω) =
∫

d3r′χn
n,s(r, r′, ω)δvKS,j(r′, ω), (257)

δqα,v(ω) = χ
qα
qα,s(ω)δjα,KS,v(ω), (258)

δqα,j(ω) = χ
qα
qα,s(ω)δjα,KS,j(ω), (259)

where the KS potentials and currents in the above equation are Fourier transforms of
Eqs. (256)-(238) given by

δvKS,v(r′, ω) = δv(r′, ω) +
∫

d3x f n
Mxc(r

′, x, ω)δnv(x, ω) + ∑
α

f qα

Mxc(r
′, ω)δqα,v(ω),

(260)

δvKS,j(r′, ω) =
∫

d3x f n
Mxc(r

′, x, ω)δnj(x, ω) + ∑
α

f qα

Mxc(r
′, ω)δqα,j(ω), (261)

δjα,KS,v(ω) =
∫

d3x gnα
M (x)δnv(x, ω), (262)

δjα,KS,j(ω) = δjα(ω) +
∫

d3x gnα
M (x)δnj(x, ω). (263)

The non-interacting response function of the electronic subsystem in frequency space
in Eqs. (256) and (257) is given in Eq. (152). An equivalent form of this non-interacting
response function as used in this section is given explicitly as

χn
n,s(r, r′, ω) =

1
h̄

Ne

∑
k=1

∞

∑
l=1

[
ϕl(r)ϕk(r′)ϕ∗k (r)ϕ∗l (r

′)

ω− (εl − εk) + iη
−

ϕk(r)ϕl(r′)ϕ∗l (r)ϕ∗k (r
′)

ω + (εl − εk) + iη

]
(264)

=
1
h̄

Ne

∑
i=1

∞

∑
a=Ne+1

[
ϕa(r)ϕi(r′)ϕ∗i (r)ϕ∗a(r′)

ω− (εa − εi) + iη
−

ϕi(r)ϕa(r′)ϕ∗a(r)ϕ∗i (r
′)

ω + (εa − εi) + iη

]
.

(265)

Also, the non-interacting response function of the photonic subsystem in frequency
space in Eqs. (258) and (259) is given explicitly as

χ
qα
qα,s(ω) =

1
h̄

1
ωα

(
〈0α|q̂α|1α〉〈1α|q̂α|0α〉

ω−ωα + iη′
− 〈0α|q̂α|1α〉〈1α|q̂α|0α〉

ω + ωα + iη′

)
=

1
2ω2

α

(
1

ω−ωα + iη′
− 1

ω + ωα + iη′

)
. (266)

Here, the Fock number nα = 1α is valid for the linear response regime while noting
that the transition elements from the vacuum state with higher Fock number states
have zero contribution. It is important to note that the η and η′ parameters that shifts
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the poles of Eqs. (265) and (266) to the lower half of the complex plane need not be
equal in both uncoupled systems. In the following we set η, η′ → 0 and h̄ = 1 for
notational simplicity.

In a next step, we combined Eqs. (256)-(259) according to their external perturba-
tions as in Eqs. (215) and (216) to arrive at the equations

δnv(r, ω) = ∑
i,a

[
ϕa(r)ϕ∗i (r)P

(+)
ai,v (ω) + ϕi(r)ϕ∗a(r)P

(−)
ia,v (ω)

]
, (267)

δqα,v(ω) = L(+)
α,v (ω) + L(−)

α,v,+(ω), (268)

and

δnj(r, ω) = ∑
i,a

[
ϕa(r)ϕ∗i (r)P

(+)
ai,j (ω) + ϕi(r)ϕ∗a(r)P

(−)
ia,j (ω)

]
, (269)

δqα,j(ω) = L(+)
α,j (ω) + L(−)

α,j (ω). (270)

The first-order responses P(+)
ai,v (ω), P(−)

ia,v (ω), L(+)
α,v (ω) and L(−)

α,v (ω) are given by

[ω−ωai]P(+)
ai,v (ω) =

∫
d3r ϕi(r)ϕ∗a(r)δvKS,v(r, ω), (271)

[ω + ωai]P(−)
ia,v (ω) = −

∫
d3r ϕa(r)ϕ∗i (r)δvKS,v(r, ω), (272)

[ω−ωα]L(+)
α,v (ω) =

1
2ω2

α

δjα,KS,v(ω), (273)

[ω + ωα]L(−)
α,v (ω) = − 1

2ω2
α

δjα,KS,v(ω), (274)

and responses P(+)
ai,j (ω), P(−)

ia,j (ω), L(+)
α,v (ω) and L(−)

α,j (ω) are given by

[ω−ωai]P(+)
ai,j (ω) =

∫
d3r ϕi(r)ϕ∗a(r)δvKS,j(r, ω), (275)

[ω + ωai]P(−)
ia,j (ω) = −

∫
d3r ϕa(r)ϕ∗i (r)δvKS,j(r, ω), (276)

[ω−ωα]L(+)
α,j (ω) =

1
2ω2

α

δjα,KS,j(ω), (277)

[ω + ωα]L(−)
α,j (ω) = − 1

2ω2
α

δjα,KS,j(ω), (278)
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where the transition frequencies are ωai = (εa− εi). Making a substitution of Eqs. (260)
and (262) into Eqs. (271)-(274) and after some simplifications, we arrive at

∑
j,b

[
δabδij (ωai −ω) + Kai,jb(ω)

]
P(+)

bj,v (ω) + Kai,bj(ω)P(−)
jb,v (ω)

+ ∑
α

δabδij Mα,bj(ω)
(

L(+)
α,v (ω) + L(−)

α,v (ω)
)
= −vai(ω), (279)

∑
j,b

[
δabδij (ωai + ω) + Kia,bj(ω)

]
P(−)

jb,v (ω) + Kia,jb(ω)P(+)
bj,v (ω)

+ ∑
α

δabδij Mα,jb(ω)
(

L(+)
α,v (ω) + L(−)

α,v (ω)
)
= −via(ω), (280)

[ωα −ω]L(+)
α,v (ω) + ∑

jb

[
Nα,jbP(+)

bj,v (ω) + Nα,bjP
(−)
jb,v (ω)

]
= 0, (281)

[ωα + ω]L(−)
α,v (ω) + ∑

jb

[
Nα,jbP(+)

bj,v (ω) + Nα,bjP
(−)
jb,v (ω)

]
= 0. (282)

Also, substituting Eqs. (261) and (263) into Eqs. (275)-(278) and after some algebra,
we obtain

∑
j,b

δabδij

[(
(ωai −ω) + Kai,jb(ω)

)
P(+)

bj,j (ω) + Kai,bj(ω)P(−)
jb,j (ω)

+∑
α

Mα,bj(ω)
[
L(+)

α,j (ω) + L(−)
α,j (ω)

]]
= 0, (283)

∑
j,b

δabδij

[
((ωai + ω) + Kia,bj(ω))P(1)

jb,j(ω) + Kia,jb(ω)P(1)
bj,j(ω)

+∑
α

Mα,jb(ω)
[
L(1)

α,j,−(ω) + L(1)
α,j,+(ω)

]]
= 0, (284)

[ωα −ω]L(+)
α,j (ω) + ∑

jb

[
Nα,jbP(+)

bj,j (ω) + Nα,bjP
(−)
jb,j (ω)

]
= − 1

2ω2
α

δjα(ω), (285)

[ω + ωα]L(+)
α,j (ω) + ∑

jb

[
Nα,jbP(+)

bj,j (ω) + Nα,bjP
(−)
jb,j (ω)

]
= − 1

2ω2
α

δjα(ω). (286)

The coupling matrices and external potential introduced in Eqs. (279)-(286) are de-
fined explicitly to be

Kai,jb(ω) =
∫∫

d3r d3y ϕi(r)ϕ∗a(r) f n
Mxc(r, y, ω)ϕb(y)ϕ∗j (y), (287)

Mα,ai(ω) =
∫

d3r ϕi(r)ϕ∗a(r) f qα

Mxc(r, ω), (288)

Nα,ia =
1

2ω2
α

∫
d3r ϕ∗i (r)ϕa(r)gnα

M (r), (289)

via(ω) =
∫

d3r ϕ∗i (r)δv(r, ω)ϕa(r). (290)
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The coupling matrix Nα,ia has no frequency dependence since it stems from the mean-
field kernel of the photon modes. We now introduce the following notations

L(ω) = δijδabωai + Kia,jb(ω),

K(ω) = Kia,jb(ω),

M(ω) = Mα,bj(ω),

N = 1
2ω2

α
Nα,bj,



Xv(ω) = P(+)
bj,v (ω),

Yv(ω) = P(−)
jb,v (ω),

Xj(ω) = P(+)
bj,j (ω),

Yj(ω) = P(−)
jb,j (ω),



Av(ω) = L(+)
α,v (ω),

Bv(ω) = L(−)
α,v (ω),

Aj(ω) = L(+)
α,j (ω),

Bj(ω) = L(−)
α,j (ω),

and the potential and currents have the notations V(ω) = −vai(ω) and J(ω) =

− δjα(ω)
2ωα

. Using these notations, we cast Eqs. (279)-(282) and Eqs. (283)-(286) into two
matrix equations given by


L(ω) K(ω) M(ω) M(ω)

K∗(ω) L(ω) M∗(ω) M∗(ω)

N N∗ ωα 0

N N∗ 0 ωα

+ω


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1





Xv(ω)

Yv(ω)

Av(ω)

Bv(ω)

=


V(ω)

V∗(ω)

0

0

 ,

(291)




L(ω) K(ω) M(ω) M(ω)

K∗(ω) L(ω) M∗(ω) M∗(ω)

N N∗ ωα 0

N N∗ 0 ωα

+ω


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1





Xj(ω)

Yj(ω)

Aj(ω)

Bj(ω)

=


0

0

J(ω)

J(ω)

 .

(292)

Next, the right hand side of the above matrices remains finite as the frequency ω

approaches the exact excitation frequencies ω → Ωq of the interacting system while
the density and displacement field responses on the left hand side has poles at the
true excitation frequencies Ωq. This allows us to cast Eq. (291) and Eq. (292) into an
eigenvalue problem

L(Ωq) K(Ωq) M(Ωq) M(Ωq)

K∗(Ωq) L(Ωq) M∗(Ωq) M∗(Ωq)

N N∗ ωα 0

N N∗ 0 ωα




Xv(Ωq)

Yv(Ωq)

Av(Ωq)

Bv(Ωq)

=Ωq


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1




Xv(Ωq)

Yv(Ωq)

Av(Ωq)

Bv(Ωq)

 ,

(293)


(Ωq) K(Ωq) M(Ωq) M(Ωq)

K∗(Ωq) L(Ωq) M∗(Ωq) M∗(Ωq)

N N∗ ωα 0

N N∗ 0 ωα




Xj(Ωq)

Yj(Ωq)

Aj(Ωq)

Bj(Ωq)

=Ωq


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1




Xj(Ωq)

Yj(Ωq)

Aj(Ωq)

Bj(Ωq)

 .

(294)
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It is convenient to cast Eqs. (293) and (294) into a Hermitian eigenvalue problem
which is given by(

U V

V† ω2
α

)(
Ev

Pv

)
= Ω2

q

(
Ev

Pv

)
, (295)(

U V

V† ω2
α

)(
Ej

Pj

)
= Ω2

q

(
Ej

Pj

)
, (296)

where we assumed without loss of generality real-valued orbitals, i.e., K = K∗, M =

M∗ and N = N∗, and the matrices are U = (L− K)1/2(L + K)(L− K)1/2, V = 2(L−
K)1/2M1/2N1/2ω1/2

α , V† = 2ω1/2
α N1/2M1/2(L− K)1/2, and the eigenvectors are Ev =

N1/2(L− K)−1/2(Xv + Yv) and Pv = M1/2ω−1/2
α (Av + Bv). A similar definition holds

for Pj and Ej.
From the eigenvectors, Pv and Ev due to δv(r, ω) and Pj and Ej due to δjα(ω), we

can assign to each of the absorption peaks of the coupled response functions, the
amount of photonic and electronic contribution of the excitation by using

σel =
Npairs

∑
i=1

E(i)
v,j and σpt =

M

∑
α=1

P(α)
v,j , (297)

where Npairs corresponds to the number of occupied-unoccupied pairs of KS orbitals.
The sum of the vectors σel and σpt is normalized to one as, σel + σpt = 1 . From this
equation we can determine the photonic contribution as σpt = 1− σel and vice versa.

The generalized pseudo-eigenvalue problem of Eqs. (295) and (296) is the final form
of QEDFT matrix equation for obtaining exact excitation frequencies and oscillator
strengths. The derivation of the oscillator strengths resulting from the eigenvectors
of the pseudo-eigenvalue problem of Eqs. (295) and (296) is presented in App. A.3.
Since the Casida equations are formulated in the frequency domain, we present the
approximations to the kernels of the electron-photon coupled system of Eq. (244) in
the frequency space as

f n
Hxc(r, r′, ω) = f n

H(r, r′) + f n
xc(r, r′, ω)

' e2

4πε0

1
|r− r′| + f n

xc,ALDA(r; r′) ,

f n
Pxc(r, r′, ω) ≈ f n

P (r) = e2 ∑
α

(λα · r) λα · r′ ,

f qα

Pxc(r, ω) ≈ f qα

P (r) = −ωα λα · er ,

gn
M(r) = −ω2

α λα · er .

(298)

In the limit of no coupling to photons (i.e. |λα| = 0), the pseudo-eigenvalue problem
of Eq. (295) simplifies to the Casida equation known in TDDFT [53, 84] given by

U Ev = Ω2
q Ev , (299)

where the explicit form of the matrix elements in the above equation is given as

Uqq′ = δqq′ω
2
q + 2

√
ωqωq′Kqq′(Ωq),

Kai,jb(Ωq) =
∫∫

d3r d3r′ϕi(r)ϕ∗a(r) fHxc(r, r′, Ωq)ϕb(r′)ϕ∗j (r
′).
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Here, the matrix Kai,jb(Ωq) is shown to depend only on the electronic Hxc kernel fHxc.
Also, in this limit Eq. (296) reduces to a solution of the vacuum Maxwell equation
given by Eq. (72) is Chap. 2.3.1.1 as the electronic subsystem does not couple.

3.5.2 the frequency-dependent sternheimer method of qedft

The Sternheimer method [109, 110] is a perturbative approach in the KS orbitals that
solves for a specific order of the response and relies only on occupied orbitals. This
approach has been used for a long time for static DFT in the context of density func-
tional perturbation theory for calculating phonon spectra [111] and in many other
electronic structure methods such as calculation of screening functions, many-body
self-energies, among others. Recently, the Sternheimer method has been used to com-
pute the frequency-dependent electronic response of electron-only systems [112–114].
In the framework of TDDFT so far, there have been only a few applications of the
Sternheimer approach for calculating dynamic responses of atoms and molecules [83,
115–117]. In Refs. [83, 117], the Sternheimer equation was derived starting from the
TDDFT Kohn-Sham equation (i.e. Eq. (135)), however, here we present a derivation
solely in the frequency space as in Ref. [53].

While the Casida method computes the response functions by finding the poles
and residues (i.e. transitions and oscillator strengths), the Sternheimer method rather
computes the first-order response of the density and in the case of the electron-photon
coupled system, the photon coordinate. We want to solve for the coupled responses
due to a perturbation from the external potential δv(r, ω) and from the external cur-
rent δjα(ω).

First, we consider the density response due to an external potential δv(r, ω) while
δjα(ω) = 0 which implies solving Eqs. (256) and (258) self-consistently. In order to
derive the frequency-dependent Sternheimer equation for electron-photon systems
within QEDFT, we follow the derivation of Ref. [53]. By substituting Eq. (264) into
Eq. (256), the density response δnv(r, ω) can be written as

δnv(r, ω) =
Ne

∑
k=1

[
ϕ∗k (r)ϕ

(+)
k,v (r, ω) + ϕk(r)

[
ϕ
(−)
k,v (r, ω)

]∗]
, (300)

where the first-order responses of the KS states in Eq. (300) are given explicitly by

ϕ
(+)
k,v (r, ω) =

∫
d3r′

∞

∑
l=1

ϕl(r)ϕ∗l (r
′)ϕk(r′)

ω− (εl − εk) + iη
δvKS,v(r′, ω) , (301)

ϕ
(−)
k,v (r, ω) = −

∫
d3r′

∞

∑
l=1

ϕl(r)ϕ∗l (r
′)ϕ∗k (r

′)

ω + (εl − εk) + iη
δvKS,v(r′, ω) . (302)

Obtaining the KS orbital responses ϕ
(±)
k,v (r, ω) becomes tedious since one needs to

first determine infinitely many KS orbitals and evaluate an infinite sum over all occu-
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pied and unoccupied KS orbitals. However, this can be circumvented by acting with(
ω− ĥ + εk + iη

)
and

(
ω + ĥ− εk + iη

)
on Eqs. (301) and (302), respectively

(
ω− ĥ + εk + iη

)
ϕ
(+)
k,v (r, ω) =

∫
d3r′

∞

∑
l=1

(
ω− ĥ + εk + iη

)
×

ϕl(r)ϕ∗l (r
′)ϕk(r′)

ω− (εl − εk) + iη
δvKS,v(r′, ω) ,(

ω + ĥ− εk + iη
)

ϕ
(−)
k,v (r, ω) = −

∫
d3r′

∞

∑
l=1

(
ω + ĥ− εk + iη

)
×

ϕl(r′)ϕ∗l (r)ϕ∗k (r
′)

ω + (εl − εk) + iη
δvKS,v(r′, ω) .

Here, we recall that ĥ = ĥ([v, n, qα]) is the ground-state QEDFT KS Hamiltonian and εk
are the KS eigenvalues resulting from solving the equilibrium electron-photon prob-
lem of Eq. (167). Using the static KS equation of Eq. (167) in the above two equations,
the right-hand sides now simplifies to the following forms(

ω− ĥ + εk + iη
)

ϕ
(+)
k,v (r, ω) =

∫
d3r′

∞

∑
l=1

ϕl(r)ϕ∗l (r
′)ϕk(r′)δvKS,v(r′, ω) , (303)

(
ω + ĥ− εk + iη

)
ϕ
(−)
k,v (r, ω) = −

∫
d3r′

∞

∑
l=1

ϕl(r′)ϕ∗l (r)ϕ∗k (r
′)δvKS,v(r′, ω) . (304)

Taking advantage of the completeness of the infinite set of ground-state KS states,
i.e., ∑∞

l=1 ϕl(r)ϕ∗l (r
′) = δ(r− r′) in Eqs. (303) and (304), we arrive and the frequency-

dependent Sternheimer equation given by(
ω− ĥ + εk + iη

)
ϕ
(+)
k,v (r, ω) = δvKS,v(r, ω)ϕk(r) , (305)(

ω + ĥ− εk + iη
)

ϕ
(−)
k,v (r, ω) = −δvKS,v(r, ω)ϕ∗k (r) , (306)

where the KS potential δvKS,v(r, ω) is given in Eq. (260). For the response of the photon
coordinate to the external potential δv(r, ω), by substituting Eq. (266) into Eq. (258)
we obtain

δqα,v(ω) = δq(+)
α,v (ω) + δq(−)α,v (ω) , (307)

where the first-order responses of δq(+)
α,v (ω) and δq(−)α,v (ω) are given by

δq(+)
α,v (ω) =

1
2ω2

α

(
1

ω−ωα + iη′

) ∫
d3r′gnα

M(r′)δnv(r′, ω) , (308)

δq(−)α,v (ω) = − 1
2ω2

α

(
1

ω + ωα + iη′

) ∫
d3r′gnα

M(r′)δnv(r′, ω) . (309)

Here, determining the photon coordinate δqα,v(ω) entails solving the analytic expres-
sions of δq(±)α,v (ω) given in Eqs. (308) and (309). Eqs. (305)-(306) together with Eq. (260)
and Eqs. (308)-(309) are the frequency-dependent Sternheimer equations for coupled
matter-photon systems that have to be solved self-consistently to obtain the responses
δnv(r, ω) and δqα,v(ω) of Eqs. (300) and (307). The Sternheimer equations (305)-(306)
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appear to be a system of linear equations but indeed are nonlinear since the right-
hand side depends on the solution through δvKS,v(r, ω) which depends on δnv(r, ω)

and δqα,v(ω) and eventually on the first-order perturbed orbitals ϕ
(±)
k,v (r, ω).

Next, we obtain the frequency-dependent Sternheimer equations that determine
the responses δnj(r, ω) and δqα,j(ω) of Eqs. (257) and (259), respectively. This cor-
responds to the case when the system is perturbed by an external charge current
δjα(ω) while δv(r, ω) = 0. Through similar steps as for δnv(r, ω), the density re-
sponse δnj(r, ω) can be written as

δnj(r, ω) =
Ne

∑
k=1

[
ϕ∗k (r)ϕ

(+)
k,j (r, ω) + ϕk(r)

[
ϕ
(−)
k,j (r, ω)

]∗]
, (310)

where the first-order responses of the KS states are given by

ϕ
(+)
k,j (r, ω) =

∫
d3r′

∞

∑
l=1

ϕl(r)ϕ∗l (r
′)ϕk(r′)

ω− (εl − εk) + iη
δvKS,j(r′, ω) ,

ϕ
(−)
k,j (r, ω) = −

∫
d3r′

∞

∑
l=1

ϕl(r)ϕ∗l (r
′)ϕ∗k (r

′)

ω + (εl − εk) + iη
δvKS,j(r′, ω) .

Following similar steps as for the case were the external perturbation comes from the
classical potential, the first-order KS orbital responses can be cast into a frequency-
dependent Sternheimer equation of the form(

ω− ĥ + εk + iη
)

ϕ
(+)
k,j (r, ω) = δvKS,j(r, ω)ϕk(r) , (311)(

ω + ĥ− εk + iη
)

ϕ
(−)
k,j (r, ω) = −δvKS,j(r, ω)ϕ∗k (r) . (312)

Here, the KS potential δvKS,j(r, ω) is given in Eq. (261). The response of the photon
coordinate to the external charge current δjα(ω) can be written in a similar form as
Eq. (307) by substituting Eq. (266) into Eq. (259) to obtain

δqα,j(ω) = δq(+)
α,j (ω) + δq(−)α,j (ω) , (313)

where the first-order response of δq(±)α,j (ω) is given explicitly by

δq(+)
α,j (ω) =

1
2ω2

α

(
1

ω−ωα + iη′

) [
δjα(ω) +

∫
d3r′gnα

M(r′)δnj(r′, ω)

]
, (314)

δq(−)α,j (ω) = − 1
2ω2

α

(
1

ω−ωα + iη′

) [
δjα(ω) +

∫
d3r′gnα

M(r′)δnj(r′, ω)

]
. (315)

In order to obtain the responses δnj(r, ω) and δqα,j(ω) of Eqs. (310) and (313), the
frequency-dependent Sternheimer equations of Eqs. (311) and (312) together with
Eq. (261) and Eqs. (313)-(315) have to be solved self-consistently. The first-order KS

orbitals in response to perturbations from either the external potential v(r, ω) or ex-
ternal current jα(ω) must satisfy the orthogonality condition with the ground-state
KS orbitals:∫

d3r ϕ∗k (r)ϕ
(±)
k,v (r, ω) = 0 ,

∫
d3r ϕ∗k (r)ϕ

(±)
k,j (r, ω) = 0 .
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A similar derivation of the frequency-dependent Sternheimer equation for coupled
electron-photon system that includes a projector to the subspace of the unoccupied
states manifold is given in App. A.2. The projector ensures that the components of
the perturbed KS orbitals ϕ

(±)
k,v (r, ω) are zero in the subspace of the occupied ground

state orbitals ϕk(r). In the linear response regime, these components have been shown
to not contribute to the first-order perturbed density, therefore, the projector can be
ignored [83].

In the decoupling limit of light and matter when |λα| = 0, the Sternheimer equa-
tions (305) and (306) obtained by perturbing the system with δv(r, ω) have the same
form, however, the potential δvKS,v(r′, ω) now has the form of Eq. (151), i.e. f qα

Mxc = 0.
Also, the potential vMxc in the KS Hamiltonian ĥ of Eq. (167) becomes vMxc → vHxc and
we recover the TDDFT electron-only frequency-dependent Sternheimer equations [83,
117]. Equally in this limiting case were the perturbation comes from an external cur-
rent δjα(ω), the Sternheimer equations (311) and (312) vanish since we have no access
to the unperturbed and perturbed KS orbitals. However, only the response of the pho-
ton coordinate of Eq. (313) can be computed which is a solution of the Maxwell
equation in vacuum (see Eq. (179) of Chap. 2.3.1.1) since gnα

M = 0 in the responses
δq(±)α,j (ω) of Eqs. (314) and (315).

3.5.3 the time-propagation method of qedft

The derivation of this method is the construction of the Maxwell-KS system of QEDFT

discussed in Chap. 2.5.5.1. Therefore, we no not derive it here again but rather explain
how this method can be used to solve the linear response equations. This method sim-
ply propagates a system under a given external perturbing field. In this approach, the
time-dependent nonlinear coupled Maxwell-KS equations of Eqs. (177) and (178) are
propagated in real-time. In the following, we present the case in which the exter-
nal current is switched off (i.e. δjα(t) = 0) and the external classical perturbation is
non-zero δv(r, t) 6= 0. The KS orbitals of Eqs. (177) are then propagated as [82, 118,
119]:

ϕi(r, t + ∆t) = exp
(
− i

h̄

∫ t+∆t

t
dτ

(
p̂2

2m
+ vKS([v, n, qα]; r, t)

))
ϕi(r, t),

along with analytic expression for the photon coordinate of Eq. (179) given here as

qα,v(t) = qα(t0) cos(ωαt) +
q̇α(t0)

ωα
sin(ωαt)− 1

ω2
α

∫ t

t0

dt′ sin(ωα(t− t′))jα,KS,v(t′) .

(316)

The KS current jα,KS,v(t) has a similar form to the linear response form of Eq. (241)
given by jα,KS,v(t) = −ω2

αλα ·
∫

d3r r n(r, t). From Eq. (316), the choice of the initial
conditions for qα(t0) and q̇α(t0) is determined from ground-state QEDFT presented
in Chap. 2.5.4. The analytic formula of Eq. (316) combined with numerical integra-
tion of the last term reduces the numerical cost at each time step as opposed to
solving Eq. (178) at every time step [47]. Since the time-propagation method is non-
perturbative, all orders of responses are present in the computation, therefore, specific
orders have to be numerically extracted. In order to propagate the coupled system
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in the linear response regime, we follow the scheme proposed in Refs. [82, 118, 119],
and excite all frequencies of the system by giving some small momentum k to the
electrons. This is achieved by transforming the ground-state orbitals according to:
ϕi(r, δt) = eikr ϕi(r, 0) and then propagating these KS orbitals for some (finite) time
from which desired observables (dipole and photon coordinate response) can be com-
puted.

With the three methods given above, we can now compute linear response prop-
erties of strongly coupled light-matter systems from first principles which allows us
to complement experimental observations as well as predict new physical effects. We
have implemented the above three linear response methods in the real-space code
OCTOPUS [83, 120, 121] (see App. D.2 for details).

3.5.4 comparison of the different linear response methods of qedft

Figure 3: Schematic of a single Benzene (C6H6) molecule confined in a high-Q optical cavity.
The polarization together with the coupling λα is along the x-direction. The photon
frequency is ωα and L represents the distance (length) between the cavity mirrors.

In the previous section, we extended three linear response methods of TDDFT to
the framework of QEDFT. These methods are capable of determining excited-state
properties of coupled matter-photon systems from first-principles. In this section, we
compare these numerical methods we implemented as a validation of our linear re-
sponse formulation of coupled electron-photon systems. Such a comparison is impor-
tant because it serves as a consistency check not only for our rather involved analytic
derivations but also for the non-trivial numerical implementations of the different
methods in the simulation software Octopus. If all the different methods with their
different derivations and implementations agree, we can rest be assured that we have
a working theory that is applicable to many new and interesting situations. We do
this comparison for the case of a single benzene ring described below.

For the molecular system, we are interested in situations in which a cavity or plas-
monic nanostructures can be used to enhance the coupling of a photon mode to
a single benzene (C6H6) ring as depicted in Fig. (3). The coupling λα can be in-
creased by reducing for example the cavity volume via the cavity length L. TDDFT

calculations in the linear-response regime have been very successful in studying the
absorption spectrum of the benzene molecule [82, 120]. Small organic molecules and
even large polycyclic aromatic hydrocarbons are rewarding systems to be studied
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Figure 4: Comparison of electron-photon linear-response methods of QEDFT. Panel (a.) shows
the free space case where the Π−Π∗ transition occurs around 7 eV. Panels (b.)-(d.)
shows the spectrum of the benzene molecule inside the cavity from the weak to
strong coupling regime when the cavity mode is resonant to the Π−Π∗ transition.
For increasing coupling strength, a Rabi splitting of the Π-Π∗ peak into two polari-
tonic branches is captured. All the three response methods are shown to agree for
increasing coupling strengths λα = 0.00, 0.01, 0.03, 0.05.

with TDDFT [122], since the adiabatic approximation in concert with the LDA [64, 67]
captures the occurring Π-Π∗ transition exceptionally well. This transition is a charac-
teristic of carbon conjugate compounds [120] which occurs around 7 eV in the case
of a benzene molecule.

To compare the above linear-response methods (Casida, Sternheimer and time-
propagation), we here compute the photo-absorption cross-section given by

σ̄(ω) =
4πω

c
Im ᾱ(ω) , where ᾱ(ω) =

1
3

Tr ᾱµµ(ω) . (317)

The photo-absorption cross-section is related to the dipole strength function S(ω) [118]
as

S(ω) =
mec

2π2e2h̄2 σ̄(ω). (318)

To obtain the photo-absorption cross-section of the benzene molecule, we first cal-
culate the electronic structure as described in App. B.1.1. Next, we include a single
cavity mode in resonance to the Π-Π∗ transition of the benzene molecule [82, 120],
i.e., h̄ωα = 6.88 eV. For the light-matter coupling strength λα = |λα|, we choose four
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different values, i.e. λα = (0, 0.01, 0.03, 0.05) that correspond to a transition from the
weak to the strong-coupling regime and the cavity mode is assumed to be polarized
along the x-direction. To employ linear response methods, we use the approxima-
tions in Eq. (244) for the Casida and Sternheimer methods and the approximations
in Eq. (184) for the time-propagation method. The results of Eq. (244) and (184) are
the same since Eq. (184) is the Fourier transform of Eq. (244). For the comparison of
the different methods, we use the same real-space basis set and identical calculation
parameters as discussed above and in App. B.1.1.

In Fig. (4), we show the photo-absorption cross-section for the four different values
of λα given above. The case λα = 0 corresponds to the absorption spectra in free
space. That is, the spectrum one will obtain in the TDDFT framework by solving, for
example, the electron-only Casida equation given in Eq. (299). Here, we capture the
Π-Π∗ peak at 6.88 eV with the ALDA [120]. Since the photon field is treated classi-
cally and only acts as an external perturbation, the excited state properties are not
modified. However, by including the photon field in our non-relativistic QED setting,
we now have the possibility to change the excited state properties by enhancing the
coupling of the molecule to the photon mode. Thus, by tuning the electron-photon
coupling strength λα as in Fig. (4.b,c,d.) we find for increasing coupling strength a
Rabi splitting of the Π-Π∗ peak into lower and upper polaritonic branches. The Rabi
splitting ΩR is the difference in energy between the lower and upper polariton peaks
and is used to quantify the strength of the electron photon coupling. Values of up to
ΩR/ωα ' 0.25 have been measured in molecular experiments [123, 124]. The lower
polaritonic branch in Fig. (4) has a higher intensity, compared to the upper polaritonic
peak. In Sec. 3.6.1, we will scrutinize the pRPA by comparing its results to different
approximations in a model system.

From the comparison of the methods, we observe that the three approaches are
numerically equivalent as one would expect. This shows that the electron-photon
Casida, frequency-dependent Sternheimer and time-propagation methods are valid
alternatives for studying excited state properties of matter-photon systems from the
weak- to the strong-coupling regime. Using either of these methods will be physi-
cally motivated and will also depend on the numerical complexity of the system to
be studied. Thus predictive theoretical first-principle calculations for excited states
properties of real systems (e.g. atoms, molecules) strongly coupled to the quantized
electromagnetic field are now available. This now sets the stage for unprecedented
insights into coupled light-matter systems, since we have access to many observables
that are not (or not well [27]) captured by quantum-optical models. It is important
to note here that the broadening of the peaks in Fig. (4) is only done artificially with
the parameter h̄η = 0.1 eV since the photon bath is not included in the calculation.
However, as we will show in Sec. 3.6.3 that sampling the photon bath, we obtain the
Lorentzian broadening and thus the finite lifetime in a direct manner. In the follow-
ing sections, we show what we can now obtain and what new possibilities become in
reach of ab-initio methods.

3.6 dressed linear spectroscopy in electron-photon systems

In the previous section, we presented practical calculations for a molecular system
strongly coupled to photons using three different linear-response methods of QEDFT
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that were shown numerically to obtain the same results. While validating the linear-
response methods, we showed the emergence of polaritonic peaks which are apparent
modifications of the absorption spectrum when a photon mode is strongly coupled to
the matter subsystem. In this section, we further explore strong light-matter coupling
and also show novel observables that are now accessible in ab-initio theory as well
as show new perspectives that can be accessed using our response formalism. First,
we will present a simple model system and show the new effects that arises and
novel observables that become accessible due to treating both light and matter on a
quantized footing. Next, we will show how to compute lifetimes non-perturbatively
by sampling the photon bath with thousands of photon modes. This method will
be further explored to show how one can determine not only lifetimes of electronic
excited states but also lifetimes of polaritonic states. We will further investigate sit-
uations where perturbative free-space methods become less accurate when we have
more than a single molecule and show how our ab-initio theory performs in these sit-
uations. Finally, we show how strong coupling of a continuum of modes can change
lineshapes.

3.6.1 an illustrative example with a model system

In this section, we will first verify that the pRPA can describe the couped system
accurately for different coupling regimes. To do this, we consider a simple and illus-
trative model system known as the extended Rabi model. We compute the absorption
spectra using the pRPA and compare to that of the rotating-wave approximation (RWA)
and the numerically exact case. Next, using this simple model we highlight new pos-
sibilities that can be investigated. We do this by defining novel linear spectroscopic
observables that are connected to the novel response functions χσx

q , χ
q
σx and χ

q
q and

give their physical interpretations. Before showing these results, we first present the
model system and approximations applied to the model.

3.6.1.1 The extended Rabi model

Figure 5: Two-level system coupled to one mode of the electromagnetic field. The electron
subsystem is driven by an external classical field v(t) and the field of the photon
mode is driven by an external classical current j(t).
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The Rabi model is the simplest model that describes the interaction between a two-
level atom and a single mode of a quantized electromagnetic field. It was introduced
over 80 years ago [98] and has applications in different fields ranging from quan-
tum optics [49] to cavity and circuit QED [101, 125] and even molecular physics [126].
The Rabi Hamiltonian and its simplifications (see below) have been applied for phe-
nomena such as Rabi oscillations, oscillation collapses and revivals, coherences, en-
tanglement, and the dynamics of dissipative systems [100]. The model features two
electronic energy levels of an atom (or molecule) coupled to a single quantized mode
of the electromagnetic field. The Hamiltonian for the extended Rabi model is given
by (atomic units are used for this model)

ĤR(t) =
ω0

2
σ̂z + ωc â† â + λσ̂x q̂︸ ︷︷ ︸

ĤR

+j(t)q̂ + v(t)σ̂x , (319)

where ω0 is the transition frequency between the ground state |g〉 and excited state
|e〉, σ̂x as well as σ̂z are the usual Pauli matrices and the frequency of the mode consid-
ered is ωc. The coupling between matter and light is described by a coupling strength
λ and the displacement coordinate q̂ = 1√

2ωc

(
â + â†). Finally, the matter subsystem

is coupled to a classical external perturbation v(t) and the photon system to a classi-
cal external current j(t). A pictorial representation of the coupled system is given in
Fig. (5). Equation (319) is called the extended Rabi model due to the additional time-
dependent classical potential and current that couples to the respective electronic and
photonic subsystems. Despite the simplicity of the model, an analytic solution for the
spectrum of the time-independent Rabi model Hamiltonian ĤR was not known until
derived in Ref. [99]. We note here for consistency with respect to other works [12, 22,
127] that employed the above Rabi model, a unitary transformation can be performed
Ĥ(site)

R (t) = Û†ĤR(t)Û that in principle swaps σ̂x ↔ σ̂z which yields the site basis rep-
resentation of the problem where the unitary operator has the form Û = 1√

2
(σ̂x + σ̂z).

A further point to note is that with respect to the full non-relativistic QED problem
in the long wavelength approximation of Eq. (170) the Rabi model does not include
the dipole self-energy term proportional to (λα · R)2. This is because the analogous
term in this model is just a constant energy shift, i.e., it is proportional to σ̂2

x = 1̂ [44].
Since the dipole-self energy term is ignored in this model, we note that the kernel
related to the dipole-self energy is f n

Pxc = 0, when we employ the linear-response
QEDFT framework.

By performing the RWA [36, 100], the electron-photon interaction term of the Rabi
Hamiltonian of Eq. (319) simplifies to σ̂x(â + â†) → σ̂+ â + σ̂− â†, where σ̂x = σ̂+ +

σ̂− and σ̂± = (σ̂x ± iσ̂y)/2. The resulting form is known as the Jaynes-Cummings
model [36, 100] and the Hamiltonian is given as

ĤJC(t) =
ω0

2
σ̂z + ωc â† â +

λ√
2ωc

(
σ̂+ â + σ̂− â†

)
︸ ︷︷ ︸

ĤJC

+j(t)q̂ + v(t)σ̂x . (320)

The ground-state of the system is a factorizable tensor product of the ground-state
of the two-level system and the vacuum state of the photon number state, i.e., |g〉|0〉.
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The spectrum of the time-independent Jaynes-Cummings Hamiltonian ĤJC is known
analytically and the energies are [128]

E±(n) =
1
2
(ωc + ω0 ±Ωn) , (321)

where Ωn =
√

δ2 + 4λ′2(n + 1) with δ = ω0−ωc being the detuning from resonance,
n is the number of photons in the mode and λ′ = λ√

2ωc
. The corresponding energy

eigenvectors also known as dressed states or polariton states are expressed analyti-
cally as

|−, n〉 = − sin θn|g〉|n + 1〉+ cos θn|e〉|n〉 ,

|+, n〉 = cos θn|g〉|n + 1〉+ sin θn|e〉|n〉 .
(322)

Here, sin θn and cos θn are the amplitudes [128].
Next, another simplification of the Rabi Hamiltonian (319) is the mean-field approx-

imation [12, 22] or photon random-phase approximation (pRPA) which approximate
the bilinear electron-photon term to σ̂x q̂ = 〈σ̂x〉q̂ + σ̂x〈q̂〉 − 〈σ̂x〉〈q̂〉. This approxima-
tion stems from the decoupling of the correlated electron-photon wavefunction into
a factorizable product between wavefunctions of the individual subsystems [8], i.e.
|Ψ〉 = |ψ〉 ⊗ |φ〉. Making a direct substitution of the approximation into Eq. (319)
results to the mean-field approximation of the Rabi model. An equivalent form is to
cast the resulting mean-field Hamiltonian into a form of two coupled equations (as
in Chap. 2.3.1) given by

i
∂

∂t
|ψ(t)〉 =

[ω0

2
σ̂z + (v(t) + λq(t)) σ̂x

]
|ψ(t)〉,(

∂2

∂t2 + ω2
c

)
q(t) = −j(t)− λσx(t),

(323)

where q(t) = 〈φ(t)|q̂|φ(t)〉 and σx(t) = 〈ψ(t)|σ̂x|ψ(t)〉 and the constant energy shift
resulting from the term 〈σ̂x〉〈q̂〉 was dropped. The mode-resolved inhomogeneous
Maxwell equation of Eq. (323) can be solved as in Chap. 2.3.1.1. The pRPA differs from
RWA in that it includes the fast frequency terms while the RWA excludes these terms.

In the following section, we will employ the pRPA to compute different spectra of
the Rabi model and see how it compares to that of the RWA and the exact results (i.e.
obtained by numerical diagonalization of ĤR). Within the framework of QEDFT for
the model system, the electron density is here the Pauli matrix σ̂x which represents
the dipole of the electronic subsystem and the photon coordinate remains the same.
Using the Casida equation (295) of QEDFT with the pRPA, the components of the matrix
equation simplify to K = f σx

Mxc = 0, M = f q
P = λ and N = 1

2ωc
gσx

M = λ
2ωc

. Consequently
we have U = ω2

0, V = W = 2λ
√

ω0/2, ω2
α = ω2

c . The resulting eigenvalue equation
yields the excitation frequencies

Ω2(±) = 1
2
(
ω2

0 + ω2
c
)
± 1

2

√(
ω2

0 −ω2
c
)2

+ 8λ2ω0 , (324)

and the corresponding normalized eigenvectors can be given in closed form as

Ev =

(
− sin θ

cos θ

)
, and Pv =

(
cos θ

sin θ

)
.
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To compare these two approximations (i.e. pRPA and RWA) to the exact case, we com-
pute the photo-absorption cross-section for the model system. Using Eq. (317), we
can determine the photo-absorption cross-section of the Rabi model

σ(ω) =
4πω

c
Im χσx

σx
(ω), with χσx

σx
(ω) = lim

η→0+
∑
k=0

[
|〈Ψ0|σ̂x|Ψk〉|2
ω−Ωk + iη

− |〈Ψ0|σ̂x|Ψk〉|2
ω + Ωk + iη

]
.

(325)

Here, α(ω) = χσx
σx(ω) and the mean of the polarizability was not considered since

the Rabi model is a one-dimensional system. The Lehmann representation of the
response χσx

σx(ω) in Eq. (325) was deduced from Eq. (217). Since we include the quan-
tized field in our light-matter description, we therefore have access to photonic ob-
servables. Analogous to the polarizability, we define a linear "field polarizability"
β(ω) due to polarizing the photon mode by an external current. This quantity is
given as

σ̃(ω) :=
4πω

c
Im χ

q
q(ω), with χ

q
q(ω) = lim

η→0+
∑
k=0

[
|〈Ψ0|q̂|Ψk〉|2
ω−Ωk + iη

− |〈Ψ0|q̂|Ψk〉|2
ω + Ωk + iη

]
,

(326)

where χ
q
q(ω) in Eq. (326) was deduced from Eq. (220). Finally, we consider mixed

spectroscopic observables where we perturb one subsystem and then consider the
response in the other. The versatility of our light-matter descriptions allows us to
determine "mixed polarizability" spectra. We define the mixed polarizability to be given
as

σ̃mix(ω) :=
4πω

c
Im χσx

q (ω), where χ
q
σx(ω) = χσx

q (ω) . (327)

The response functions in the above equation was deduced from Eqs. (218) and (219)
and are given explicitly by

χ
q
σx(ω) = χσx

q (ω) = lim
η→0+

∑
k=0

[
〈Ψ0|σ̂x|Ψk〉〈Ψk|q̂|Ψ0〉

ω−Ωk + iη
− 〈Ψ0|q̂|Ψk〉〈Ψk|σ̂x|Ψk〉

ω + Ωk + iη

]
.

We note that the equality of the response functions χ
q
σx(ω) = χσx

q (ω) is not necessarily
true in the general case given in Eqs. (218) and (219).

3.6.1.2 Modified and novel linear spectroscopy in a model system

We now make a comparison between the spectra given by Eqs. (325)-(327) of the
numerical exact Rabi model and the two approximations: pRPA and RWA discussed
in Sec. 3.6.1.1. Since the spectrum of the RWA is given analytically, we can compute
Eqs. (325)-(327) directly. In Fig. (6.a-c.), we show a comparison of the spectra resulting
from the pRPA (dashed-blue), the RWA (full-orange) and the numerical exact (dotted-
red) cases. In this figure the photon frequency resonantly couples to the two-level
system (i.e. δ = ω0 − ωc = 0, where ω0 = ωc = 1) and the spectrum changes for
an increasing electron-photon coupling strength λ. For the coupling λ = 0.07, the
splitting of the electronic excited state into an upper and lower polariton becomes
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Figure 6: Linear response spectra for the extended Rabi model (dotted-red) compared to the
pRPA (dashed-blue) and RWA (full-orange) approximations and for different coupling
strengths λ. (a.) Photo-absorption cross-section due to dipole-dipole response, (b.)
spectra due to photon-photon response, (c.) spectra due to dipole-photon or photon-
dipole response. (d.) The case for λ = 0.7 shows all excitations that arise in strong
coupling. (a.) through (d.) describes resonant coupling. In (e.) the field is half-way
detuned from atomic resonance, i.e., ω0 = 2 and ωc = 1 with strength and energies
shifted to frequencies favoring 2-photon processes. The insets in (d.) and (e.) zoom
into the frequency axis showing many-photon process.

apparent. We observe that up to λ = 0.1 the different spectra for the exact, the pRPA as
well as the RWA are in close agreement before they start to differ. This signifies that the
mean-field treatment is sufficient to capture the quantized electron-photon response
properties and thus, is a reasonable approximation for linear response spectra even
for relatively strong coupling situations. When the coupling strength is increased
further going into the ultra-strong coupling regime, the discrepancies becomes large.
We observe for ultra-strong coupling (i.e., for λ ≥ 0.3) the approximations do not
only disagree in transition frequencies (pole positions) but also the weights of the
transitions become increasingly different.

In addition, we investigate how the pRPA of our QEDFT linear response compare
to the RWA and the exact case for multi-photon processes. We show this specifically
for the photo-absorption spectrum of Eq. (325) in the ultra-strong coupling regime,
i.e., λ = 0.7. First, we show in Fig. (6.d.) still for the resonant coupling that three
new peaks arise for the exact case which accounts for high-lying excited states with
non-vanishing dipole moments in the ultra-strong coupling regime. These new ab-
sorption peaks (also shown in the inset) in the exact case are not captured with the
RWA and pRPA since processes beyond one-photon are involved. With these results
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Figure 7: Rabi spectrum as a function of the mode frequency ωc for four different coupling
strength λ. Panels (a.)-(d.) is from the perspective of the electronic subsystem from
weak to strong coupling as the electronic degrees hybridize with that of the pho-
ton to form lower and upper polariton branches resulting in Rabi splitting which
increases with increasing λ. Panels (e.)-(h.) is from the perspective of the photonic
subsystem from weak to strong coupling as the linear dispersing photon branch is
split into lower and upper polariton branches with similar features of increasing
splitting when the coupling λ is increased.

in mind, we now investigate multi-photon processes with the Rabi model. For such
a process, the field is half-detuned from the electronic resonance indicating a two-
photon process (i.e. ω0 = 2 and ωc = 1) via virtual states. In Fig. (6.e), as expected
the absorption peaks are shifted close to the bare frequencies of the respective subsys-
tems, but remain dressed by the photon field as new peaks arise in the ultra-strong
coupling regime. The pRPA and RWA are shown to capture the two peaks around the
bare frequencies of the individual subsystems but fail to capture higher lying non-
vanishing contributions to the spectra. These higher-lying peaks (shown in the inset
of Fig. (6.e)) correspond to multi-photon processes. If more accurate approximations
for the xc potential are used, the results in Fig. (6) will get closer to the exact case.

Next, we investigate the novel response functions χσx
q , χ

q
σx , χ

q
q and hence the novel

linear spectroscopic observables in Eqs. (326) and (327). The mixed spectroscopic ob-
servables of Eq. (327) describe a situation where we perturb one subsystem and then
consider the response in the other. These observables are shown in Fig. (6.c.) for
the numerically exact case and for the pRPA and the RWA. We find positive and neg-
ative peaks which highlights that excitations due to external perturbations can be
exchanged between subsystems, i.e., energy absorbed in the electronic subsystem
can excite the photonic subsystem and vice versa. In addition, we show in Fig. (6.b.)
the linear-response spectra of the displacement field (and with this also the electric
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field) obtained from Eq. (326) due to an external classical charge current. Clearly, if
λ = 0 we do not have access to these observables. This highlights that by including
the quantized photon field, new possibilities in linear spectroscopy arise when light
and matter strongly couple.

An alternative way to access features of strong light-matter couplings is by com-
puting the polariton dispersion spectrum. To visualize the polariton dispersion, the
linear response theory can be applied to compute the electron and photon compo-
nents given by Eqs. (325) and (326). We will show only the polariton dispersion for
the numerical exact case while noting that the approximations (pRPA and RWA) can
obtain similar results. Figure (7.a) shows the formation of the polaritonic branches for
different λ values and the dispersion was computed using Eq. (325). The formation
of the polaritons is accompanied by the characteristic appearance of avoided cross-
ing in the energy dispersion due to the hybridization between the linear dispersing
photon branch and the non-dispersive electron branch. For a given cavity frequency
(i.e. resonant coupling ωc = ω0 = 1) within the hybridization region, the lower and
upper branches emerge as a splitting of the electronic peak (or transitions) into two
separate peaks. Increasing the coupling λ as in Fig. (7.b-d), increases the avoided
crossing around ω0 = ωc = 1. We also see that higher photonic excitations start
to get populated for λ ≥ 0.04. Such a dispersion spectrum can be measured in an
experiment [90] for strong light-matter interactions. Using Eq. (326), we also show
that such a spectrum can be obtained for the response of the displacement field due
to an external classical charge current. This is shown in Fig. (7.e-h) where the linear
dispersing photon splits into upper and lower polariton branches and the avoided
crossing also increases with increasing λ. The main difference between Figs. (7.a-d)
and (7.e-h) is that the weights are more intense on the non-dispersive electron branch
for Fig. (7.a-d) and on the linear dispersing photon branch for Fig. (7.e-h).

3.6.2 photonic spectra of a molecular system

The previous section presented new possibilities that become accessible when we
treat light and matter on an equal quantized footing. Using the Rabi model, we inves-
tigated the photo-absorption spectra that get modified when light and matter strongly
interact. We also proposed novel photonic and mixed spectra that can be computed
for such strong light-matter coupling situations. In this section, we compute the mixed
spectra for a real molecular system.

The molecular system considered here is a naphthalene (C10H8) molecule which is
the simplest polycyclic aromatic hydrocarbon. The electronic structure of the naphtha-
lene molecule as used here is described in App. B.1.2. We are interested in situations
of strong light-matter interaction which can be achieved by confining the naphthalene
molecule in a photonic environment (such as an optical cavity) depicted in Fig. (8.a).
To show how the spectrum of the naphthalene molecule gets modified when the
system strongly couples to a photon mode, we first show in Fig. (8.b) a reference
computation of the photo-absorption cross-section of the naphthalene molecule in
free space using the linear-response time-propagation method of TDDFT which cap-
tures the Π → Π∗ transition occurring at around 5.66 eV [122, 129]. In the next step,
we couple the naphthalene molecule to a single photon mode and resonantly couple
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Figure 8: (a.) Schematic setup of a naphthalene molecule confined within an optical cavity.
The cavity field is polarized along the y-axis with a coupling strength λα and
the photon propagation vector is along the cavity length L. (b.) Reference photo-
absorption cross-section spectrum of a naphthalene molecule in free space com-
puted with TDDFT linear-response method [122, 129] showing the Π − Π∗ transi-
tion at roughly 5.66 eV. The absorption cross-sections in this figure is expressed in
megabarns (1Mb = 10−18cm2)

the cavity frequency to the Π−Π∗ transition, that is h̄ωα = 5.66 eV. While in the free
space case (see Fig. (8.b)) the mean polarizability ᾱ(ω) (see Eq. (317)) was computed,
here we compute just the y-component of the polarizability tensor, i.e., αyy(ω) since
the y-component of the dipole contributes strongly to the Π−Π∗ transition. Using
the linear-response time-propagation method of QEDFT (see Sec. 3.5.3 for details) we
obtain the spectrum in Fig. (9) for different values of λα. First for the free-space case
(when λα = 0) we obtain the Π−Π∗ transition at around 5.66 eV. When the coupling
of the molecule to the cavity mode is switched on and for a coupling strength of
λα = 0.01, we see the onset of features of electron-photon coupled systems which are
the lower and upper polariton branches as shown in Fig. (9.b.). Upon increasing the
coupling strength λα as in Fig. (9.c,d), the Rabi splitting between the lower and upper
polariton branches increase. This result in conjunction with the results in Sec. 3.5.4
highlights how the photo-absorption spectrum gets modified by strongly coupling
the matter subsystem to photons in an ab-initio description.

Now, we also show photonic observables that become accessible in our ab-initio
theory. The absorption spectrum presented above described the case in Sec. 3.5.4,
i.e., the response of the matter subsystem due to a perturbation from the external
potential δv(r, t) while δjα(t) = 0. Since the photon field is included in our theory as
a dynamical part of the coupled system, we have access to the displacement field of
Eq. (238). In the time-propagation method of QEDFT, we obtain the time-evolution of
the displacement field qα(t) from Eq. (316). In Fig. (10) we show the real-time photon
coordinate qα(t) and the imaginary part of its Fourier transform in frequency space
qα(ω) obtained from

qα(ω) =
1
k

∫ ∞

0
dt (qα(t)− qα(t0)) ei(ω+iη)t. (328)
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Figure 9: Photo-absorption cross-section of a naphthalene molecule confined in an optical
cavity. Panel (a.) shows the spectrum of the naphthalene molecule in free space (i.e.
λα = 0) with the Π −Π∗ transition at around 5.66 eV. Coupling the cavity mode
resonantly to this transition and increasing the coupling strength as in (b.), (c.) and
(d.) results to a splitting of the peak into lower and upper polariton branches with
a Rabi splitting that increases with increasing λα.

The form of this equation is analogous to the frequency-dependent polarizability
tensor [118, 130, 131]:

αµν(ω) =
e2

kν

∫ ∞

0
dt
(
rµ(t)− rµ(t0)

)
ei(ω+iη)t, (329)

used to obtain Fig. (9) where kν has to be small to ensure being in the linear response
regime [131]. In Fig. (10.a) we observe Rabi-like oscillations for the coupling strength
of λα = 0.01 as in Ref. [47] and increasing the coupling strength λα = 0.03, 0.05
(see Fig. (10.b,c)) the Rabi-like oscillatory pattern cannot be easily identified due to
strong light-matter coupling. In Fig. (10.d,e,f), we show the spectrum obtained using
Eq. (328) which is a Fourier transform of the corresponding Fig. (10.a,b,c). We observe
features of strong light-matter coupling as lower and upper polaritonic branches
emerge with increasing Rabi splitting as the coupling strength is increased. Similar to
the spectrum in Sec. 3.6.1.2, we have positive and negative peaks which in this case
indicate that perturbing the electronic subsystem with an external potential, induces
changes in the photonic spectra. This result also signifies the feedback between light
and matter as both become modified since they show features of strong light-matter
coupling. We once again mention that the above results can be computed with any of
the linear-response methods of QEDFT in Sec. 3.5. As a further example, in App. B.2
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Figure 10: Real-time photon coordinate qα(t) (left panels) and corresponding imaginary part
of qα(ω) (right panels) of a naphthalene molecule coupled to a single photon mode.
Increasing the coupling strength λ = 0.01, 0.03, 0.05 as in panels (a.)-(c.) changes
the Rabi-like oscillations as a result of traversing into the strong coupling regime.
Panels (d.)-(f.) show spectrum obtained by Fourier transform of qα(t) depicting
polaritonic features with increasing Rabi split with an increasing coupling strength.

we compute the photonic spectra of an azulene molecule coupled to photons using
the Sternheimer method.

3.6.3 lifetimes of excitations from first principles

The computation of linear response spectra in the previous sections employed an
artificial broadening of the absorption peaks to mimic the finite lifetimes of excited
states. Such artificial broadening of the transition peaks was done to overcome prob-
lems in the semi-classical limit that fails to account for the finite lifetimes of excited
states in a direct way since the electromagnetic field is treated classically and only
as an external perturbation. However, our ab-initio treatment of the quantized field
interacting with matter captures the finite lifetimes of the excited states in a direct
way without the need of any artificial broadening. In this section, we show how this
can be done non-perturbatively within the framework of linear-response QEDFT.

Before we show how to compute lifetimes of excitations from first principles, we
note that since our ab-initio QEDFT linear-response formalism is a reformulation of the
non-relativistic QED case which includes M-photon modes, the QEDFT linear-response
formulation also includes these M-photon modes. Therefore, we can sample the pho-
ton bath with thousands of photon modes. In the example below, we employ the
electron-photon Casida equation (295) while noting that the other methods can ob-
tain the same results as shown in Sec. 3.5.4. As matter system, we consider the ben-
zene molecule studied in Sec. 3.5.4 and explicitly couple it to 80, 000 photon modes.
The energies of the photon modes that are considered range from 0.19 meV, for the
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Figure 11: First principles lifetime calculation of the electronic excitation spectrum of the ben-
zene molecule in an quasi one-dimensional cavity: (a) Full spectrum of the benzene
molecule, (b) zoom to the Π−Π∗ transition, where the black arrow indicates the
full width at half maximum (FWHM) ∆E, (c) zoom to a peak contributing to the
σ− σ+ transition. The gray spectrum is obtained by Wigner-Weisskopf theory [132].
The dotted spectral data points correspond to many coupled electron-photon ex-
citation energies which together comprise the natural lineshape of the excitation.
Blue color refers to a more photonic nature of the excitations, vs. red color to a
more electronic nature.

smallest energy up to 30.51 eV for the largest one with a spacing of h̄∆ω = 0.38 meV
which indicates a dense sampling of the modes. In this example we do not sample
the full three-dimensional mode space together with the two polarization possibili-
ties per mode but rather consider a one-dimensional slice in mode space. Sampling
the one-dimensional mode frequencies will change the actual three-dimensional life-
times but for the purpose of demonstrating the possibilities of obtaining lifetimes
from first-principles this is sufficient3. We sample the photon modes to corresponds
to that of a quasi-one dimensional optical cavity, thus, we choose a cavity of length
Lx [91] in the x-direction with a finite width in the other two directions that are much
more confined. In this case, the frequencies are obtained from ωα = αcπ/Lx and
λα =

√
2

h̄ε0Lx Ly Lz
sin(ωα/c x0)ex, where x0 = Lx/2 is the position of the molecule in

the x-direction. While we have a sine mode function in the x-direction, we assume a
constant mode function in the other directions. For this example, we choose a cavity
of length Lx = 3250µm in the x-direction, Ly = 10.58 in the y-direction and Lz = 2.65
in the z-direction. In Sec. 3.6.5, we show how the spectrum changes by varying the
quantization volume of the photon field.

3 A detailed analysis of real lifetimes would include a three-dimensional sampling of the mode space and
also considerations with respect to the bare mass of the particles.
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In Fig. (11.a), we show the full spectrum of this calculation computed using Eq. (318).
Since we sampled the photon part densely with 80, 000 modes, the peaks do not need
to be artificially broaden anymore. Formulated differently, we can directly plot the
oscillator strength and the excitation energies of our resulting eigenvalue equation
(295) without the need to employ any Lorentzian broadening. In Fig. (11), from blue
(more photonic, i.e., σpt = 1− σel) to red (more electronic, i.e., σel = 1− σpt) for
the electron-photon absorption spectrum we plot the different contributions of each
pole in the response function. These results validates our intuition that resonances
are mainly photonic in nature (since excitations are dominantly blue) and that a
Maxwell’s perspective of excited states (see Sec. 3.4 for more details) is quite natural.
We zoom to the Π-Π∗ transition in Fig. (11.b) and find a broadening of the peak that
is larger than it is for the case of a three-dimensional cavity due to the sampling of
the electromagnetic vacuum using a quasi one-dimensional nature of the quantiza-
tion volume. This is analogous to changing the vacuum of the electromagnetic field
and in this way the lifetimes of the electronic states are shorter if the electromagnetic
field is confined to one dimension.

Before showing how to compute lifetimes, e.g., of the Π-Π∗ transition in Fig. (11.b),
we comment on perturbative methods that are commonly used. When the coupling
between light and matter is very weak such that neither subsystem gets apprecia-
bly modified due to the other, the radiative lifetimes of atoms and molecules can be
calculated using the perturbative Wigner-Weisskopf theory [132] in single excitation
approximation in concert with the Markov approximation. These approximations are
justified in the standard free-space case where the Wigner-Weisskopf results repro-
duce the prior results of Einstein based on the ad-hoc A and B coefficients. However,
it does not include the treatment of ensembles of molecules that effectively enhance
the matter-photon coupling strength as shown in the following section. The Wigner-
Weisskopf theory obtains the radiative decay rate given by

Γ3D =
ω3

0|d|2
3πε0h̄c3 . (330)

For a one-dimensional cavity in the x-direction the results simplify to [133]

Γ1D =
ω0|d|2

LyLzε0h̄c
. (331)

Comparing the result obtained with the Wigner-Weisskopf theory (using Eq. (331))
to our ab-initio non-perturbative results (sampling densely the photon bath), we find
for both peaks shown in Fig. (11.b) to be in good agreement (grey peak for Wigner-
Weisskopf). Thus, taking the continuum limit for the photon modes, we recover in
our framework the lifetimes predicted by Wigner-Weisskopf theory including the
diverging energy shifts [134], i.e. the Lamb shift. Due to the Lamb shift, our resulting
peaks are slightly shifted due to the divergences that arise which can be handled
by renormalization theory. We obtain the lifetimes in the following way: first, we
measure the full width at half maximum (FWHM), indicated by the black arrow
in Fig. (11.b). We find ∆EFWHM = 0.0204 eV and the corresponding lifetime τΠ−Π∗

follows by τΠ−Π∗ = h̄/∆EFWHM = 32.27 fs. Using the Wigner-Weisskopf result of
Eq. (331), and the dipole moments and energies from the LDA calculation without a
photon field, we find a lifetime of 32.21 fs. As a side remark, the same transition now
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using Eq. (330) has a free-space lifetime of 0.89 ns, roughly in the range of the 2p-
1s lifetime of the Hydrogen atom of 1.6 ns. In Fig. (11.c.), we also show the ab-initio
peak of the σ− σ+ transition where we find a narrow ab-initio peak that is not as well
sampled as the Π−Π∗. Here, it is important to note that we find an ionization energy
of 9.30 eV using ∆-SCF in the benzene molecule with the LDA exchange-correlation
functional. In our simulation, coupling to peaks higher than the ionization energy are
broadened by continuum (box) states.

3.6.4 spectral dependence on energy cutoff

Figure 12: Continuous slight shift in the peak position of the Π −Π∗ transition of benzene
by increasing the number of modes. The gray peak in (a.)-(f.) is the case of the
benzene molecule in free space. Increasing the number of photon modes in steps
of 25, 000 from (a.) to (f.) shifts the peak position close to the free space case. In
(g.), the peak position follows an exponential decay for increasing cut-off. In the
legend K= 1000.

The previous section introduced a non-perturbative first-principles approach to
obtaining lifetimes of excited states by sampling the photon bath. By so doing, we
observed shifts in peak positions that can be attributed to the Lamb shift. In this sec-
tion, we want to investigate this further by increasing the energy cutoff of the photon
bath which entails sampling more photon modes using the quasi one-dimensional
cavity. This will give us a feeling on how to treat these shifts either by renormaliza-
tion theory. Also, this will be beneficial to situations where one samples densely the
photon bath with a high energy cut-off because we will need to take into account the
"electromagnetic masses" [41] to obtain the correct results.

To investigate how these shifts in peak position arise, we include more photon
modes that couple weakly to the benzene molecule as in Sec. 3.6.3. For this we vary
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the number of photon modes as M = [25, 000, 150, 000] in steps of 25, 000. Using the
sine mode function described above, the energy cut-off for varying the photon modes
is given in Tab. (1). We note that the sampling of the minimum number of photon

Number of modes Cutoff Λ (eV) Π−Π∗ (eV)

25, 000 9.535 6.88476094

50, 000 19.070 6.88132799

75, 000 28.605 6.88056404

100, 000 38.140 6.88018232

125, 000 47.676 6.87980256

150, 000 57.211 6.87980069

Table 1: Shift of the Π −Π∗ transition of a benzene molecule for increasing photon modes
M and increasing energy cut-off Λ. The value of the Π − Π∗ without coupling to
photons in 6.87900000 eV.

modes considered (i.e. 25, 000) has an energy cut-off Λ = 9.535 eV well above the
Π−Π∗ excitation energy EΠ−Π∗ = 6.87900000 eV in free space, therefore, it is a good
starting point for mode sampling. It is known from QED, that when electrons are
coupled to the continuum of the electromagnetic field their bare masses needs to be
renormalized [135]. Since we sample thousands of modes densely with increasing en-
ergy cut-off, we expect to see effects that require a renormalization of the bare masses.
In Fig. (12), we show the Π → Π∗ absorption peak for the case of coupling to thou-
sands of photon modes and the free space situation. Fig. (12.a.) shows clearly the shift
in peak position when comparing the case of the molecule coupled to 25, 000 modes
and the free space case. Increasing the number of photon modes (and hence the cut-
off) as in Fig. (12.b-f), the case coupled to many modes is shown to shift slightly
towards the free space result. A clear depiction of the shift is shown in Fig. (12.g)
where the shifts in peak positions have an exponential decay pattern with increasing
energy cut-off (see Tab. (1) for detail values). The exponential decay fit in Fig. (12.g.)
is obtained using the function

EΠ−Π∗(Λ) ' 6.880 + (6.898− 6.880)e−αΛ eV ,

where α = 0.135 (1/eV) is the approximated shift of the Π→ Π∗ absorption peak. The
Lamb shift as observed for the case of the Hydrogen atom was due to the interaction
between the electromagnetic vacuum and the electron in the 2s and 2p orbitals [25].
Since we couple the benzene molecule to thousands of modes that sample the elec-
tromagnetic vacuum field, we can attribute the energy shifts to be the Lamb shift of
the Π → Π∗ transition. By so doing, results to the situation where both agree since
the Schrödinger Hamiltonian (see Sec. 2.5.1) accounts for the photons in its "physical
mass" me since it is the sum of bare mass and electromagnetic masses. We note from
QED that for increasing energy cut-off, we will need to renormalize the bare mass to
make the results of the case where the electron is coupled to a continuum of modes
match the free space case [135]. However, here we find that increasing the cut-off the
peak position approaches that of the free space case. There are several reasons that
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can be attributed to this behavior. First, since the Lamb shift is a quantum mechanical
effect, the pRPA which excludes the xc contributions of the electron-photon interac-
tions is not adequate to capture this effect correctly. If one would use an xc functional
beyond mean-field we expect to see deviations from the results in Fig. (12). Secondly,
while the effective field theory of non-relativistic QED (with three-dimensional fields)
shows a logarithmic divergence in the effective coupling [41, 43], this is however not
the case when we have a one-dimensional sampling of the modes. It can be shown
using the arguments in Ref. [43] that for a one-dimensional sampling of the modes,
the effective coupling is not divergent. Also, it could be that the ultraviolet cut-offs
are not large enough compared to a sensible energy cut-off, for example, an ultravi-
olet cutoff at the rest mass energy of the electrons. All these reasons call for further
investigations which we will explore in a different work.

3.6.5 beyond single molecule and lorentz to fano transition
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LyLz = 0.28Å2
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Figure 13: (a) Two molecules of benzene strongly coupled to 80, 000 cavity modes of an one-
dimensional cavity. The further apart the molecules are, the closer the peak gets
to the single molecule peak. Also we notice the doubled peak broadening (shorter
lifetime). The gray spectrum is obtained by Wigner-Weisskopf theory [132]. (b)
We show the Rabi splitting in a situation of a single strongly coupled mode with
80, 000 cavity modes (green), and three strongly coupled modes with 80, 000 cavity
modes (blue). The red lines correspond to the same setup as in (a). The dashed
lines refer to the frequency of the cavity modes. The peaks become broadened due
to the interaction with the continuum.

In the last two sections, we studied the case where we sampled thousands of pho-
ton modes that coupled weakly to the a single benzene molecule. We showed how
to determine the lifetimes non-perturbatively from the ab-initio theory and how this
compared to the Wigner-Weisskopf theory. While both were shown to be in good
agreement, in this section we consider a situation where the Wigner-Weisskopf theory
is less accurate compared to the ab-initio theory. We further show new perspectives
that can be addressed within the linear-response QEDFT framework.

We first consider the case where the perturbative Wigner-Weisskopf theory for
obtaining the lifetimes becomes less accurate. The usual perturbative theories are
known to perform well in free-space where weak coupling together with the as-
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sumption of a dilute gas of molecules are implied. However, in the case of single-
molecule strong coupling [136] or when nearby molecules or an ensemble of inter-
acting molecules modify the vacuum, the usual perturbative theories are expected to
break down. This is because changes in the electronic and the photonic subsystem
become self-consistent (see Sec. 3.6.2) and the usual distinction of light and matter
becomes less clear. In such situations, the linear response formulation within the
framework of QEDFT as well as the Maxwell’s perspective of excited-state properties
(see Sec. 3.4) becomes most powerful. To show this, consider for example two ben-
zene molecules weakly coupled to a one-dimensional continuum of photon modes
(80, 000). In Fig. (13.a) we show three different results of the Π−Π∗ absorption peak:
(i.) the case of a single benzene molecule (which is equivalent to assume a large dis-
tance with another molecule), (ii.) when the two molecules are 8Å apart and (iii.)
when the two molecules are 6Å apart. If the molecules are far apart (i.e. case (i.))
we just find the usual Wigner-Weisskopf result. However, if we bring the molecules
closer and closer, we observe that the combined resonance shifts and the combined
linewidth becomes broader, implying a shortened lifetime. The perturbative Wigner-
Weisskopf theory (free space grey) starts to deviate further. One will expect that if the
molecules are brought closer together the Wigner-Weisskopf theory becomes less ac-
curate since changes in the electronic and the photonic subsystem become fully self-
consistent and such perturbative approaches cannot capture such intricate details.
Such a feature were the Wigner-Weisskopf theory is less accurate when compared
to the ab-initio results has also been shown even for the case of a single molecule
coupled to photons [20]. These results shows one situation where non-self-consistent
approaches become less accurate when compared to the ab-initio theory.

Next, we consider new perspectives that can be determined in the linear-response
formulation of QEDFT. The first case is single-molecule strong coupling with contin-
uum of modes. Consider the case where a few out of the 80, 000 modes that couple
to a single benzene molecule have an enhanced coupling strength. In Fig. (13.b.), we
show the spectrum where the molecule is coupled to the continuum (red plot), the
same is shown in Fig. (11). We then introduce a single strongly coupled mode at the
Π−Π∗ transition peak and the resulting spectra is shown in green. The dashed lines
in the figure are the introduced cavity frequencies. The single mode introduces the ex-
pected Rabi splitting into the lower and upper polaritons and these polaritonic peaks
become broadened due to the interaction with the continuum. Interestingly, we find
a different broadening for the lower and the upper polaritonic peaks, since only the
sum of both has to be conserved. The smaller broadening for these two lower polari-
tonic states implies that the radiative lifetime of the lower and upper polaritonic state
is longer than the lifetime of the excitation in weakly-coupled free-space. In blue, we
show another spectra where we have now introduced three strongly coupled modes
in addition to the cavity 80, 000 modes of the continuum. The two additional cavity
modes are tuned in resonance to the lower and upper polariton peak of the green
plot. We find additional peak splitting, but also a shifting of peak positions at 7.8 eV.
These results show that we can compute the lifetimes of polaritonic peaks from first-
principles using the QEDFT framework since together with a few enhanced modes, we
can sample the photon bath. Perturbative approaches such as the Wigner-Weisskopf
theory will not be accurate in such situations since the self-consistent interaction be-



100 linear response in non-relativistic quantum electrodynamics

tween the electronic and the photonic subsystems are not accounted for properly
even for the weak coupling case above.

In this last example, we investigate the strong coupling to the continuum for the
case of a single benzene molecule. In this case we effectively enhance the light-matter
coupling strength by reducing the volume of the cavity along the y and z direction.
In Fig. (13.c), we show the absorption spectrum for 4 different volumes of the cavity.
For comparison, the first case (in red) is the spectrum that is also shown in Fig. (11),
where the excitations have Lorentzian lineshape consistent with Wigner-Weisskopf
theory as discussed in Sec. 3.6.3. By gradually reducing the dimensions along the y
and z direction and with this the volume of the cavity, we find drastic changes in
the lineshape of the excitations. These changes lead to the transition of the lineshape
from a Lorentzian to a Fano lineshape, as becomes clearly visible for LxLz = 0.28Å
(orange plot). Asymmetric Fano absorption line shapes are known to occur when
discrete excited states are coupled to a continuum of excitations [137]. A transition of
a Lorentzian to a Fano lineshape was observed after excitation of autoionizing states
in a Helium atom by attosecond extreme ultraviolet pulse [138]. However, here we
see that we can achieve such a transition not with intense fields but via strong light-
matter coupling to the continuum. The perturbative Weigner-Weisskopf theory will
not be accurate in this non-standard situation. This presents another perspective that
becomes accessible from the linear-response formulation of QEDFT.

The physical settings considered in this section need a self-consistent treatment of
matter and photons alike and cannot be captured by any available electronic-structure
or quantum-optical method. This puts the ab-initio linear-response of QEDFT at the
forefront for accurate description of light-matter interactions.

3.7 summary

In this chapter, we first discussed the fundamental contribution of the dipole self-
energy term of the length gauge Hamiltonian as it is a necessary part to have a Hamil-
tonian which is bounded from below. This was important since we want to employ
ground-state QEDFT to determine initial states for linear-response computations in the
QEDFT framework. Next, we introduced the linear-response of non-relativistic QED in
the length gauge where novel responses and response functions emerge. This linear-
response problem was then reformulated within the framework of QEDFT. Within this
framework, we extended three linear response methods of TDDFT to the framework of
QEDFT which presented a viable way of computing the novel responses and response
functions. Using these responses and response functions we showed changes in the
quantum Maxwell’s equation due to the self-consistent feedback between light and
matter. Applying these linear-response QEDFT methods, we showed how the response
spectra get modified due to strong coupling as well as introduced new linear spec-
troscopic observables that become accessible in our ab-initio theory. We presented
different new perspective that can be computed within our linear response QEDFT

framework such as first-principles computation of lifetimes of electronic and polari-
tonic states non-perturbatively, single-molecule strong coupling in the continuum, the
need for a mass-renormalization and transition from Lorentzian to Fano lineshapes.
In this chapter we investigated different interesting situations in the linear-response
regime. In the next chapter, we now go beyond the linear-response setting of non-
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relativistic QED. We turn our focus now to the photonic subsystem and for this case
we investigate the photon down-conversion process from an ab-initio perspective
and propose new avenues that become possible when we treat light and matter on
an equal quantized footing.
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In the previous chapter, we showed how treating light-matter interactions on an equal
quantized footing not only changes the usual linear spectroscopy but also introduces
novel spectroscopic observables and opens new possibilities to investigate other ef-
fects that arise in the strong coupling regime. These results were obtained in the
linear-response setting where strong light-matter coupling is usually identified by
linear spectroscopy. In this chapter, we consider beyond first-order (non-linear) pro-
cesses of light-matter interactions. We highlight new possibilities in non-linear pro-
cesses that become accessible from an ab-initio perspective when light and matter
are treated on an equal level of theory. This is shown for a paradigmatic case of
non-linear optics and quantum optics for photon down-conversion processes. Pho-
ton down-conversion is particularly of importance due to the ever growing range of
applications such as building quantum-information processing protocols [139, 140],
cryptography [141], or teleportation [142]. Such applications make it increasingly im-
portant to diversify the available quantum sources. We will highlight how strong
light-matter coupling allows to realize an N-photon gun which generates a bundle of
photons with non-classical properties. But first, we consider the usual spontaneous
parametric down-conversion or parametric down-conversion (PDC) and show new
possibilities that can be realized.

Photon down-conversion as described here is the coherent generation of photons
with lower frequency (signal photons) by injecting a higher-frequency photonic field
(pump photon) into a nonlinear medium [143]. One of such cases is PDC which is the
generation of two signal photons with lower frequency from a pump photon with
higher-frequency via a nonlinear medium. The necessity for on-demand determinis-
tic two-photon sources expanded PDC from using nonlinear crystals with picoseconds
pulsed lasers [144, 145] to photon-pair generation using the biexciton-exciton cascade
in quantum dots [146–149] and even the nascent fields of polaritonic chemistry [150]
and circuit quantum electrodynamics [151, 152]. As we showed in the linear-response
regime that treating light classically and only as an external perturbation does not
capture all changes in the matter system and even more so, properties of the field are
not accessible in a direct way (see Chap. 3.6). Yet, such a semi-classical treatment is
also considered beyond the linear regime as in the case of the down-conversion. So far,
in order to study down-conversion processes theoretically one usually assumes that
light and matter can be separated and treated differently. For example, the nonlinear
optics approach uses nonlinear response functions and susceptibilities of matter-only
quantum mechanics to characterize such a process and connects them with a classi-
cal description of the light field [144, 145, 153] (see Chap. 2.3.1). On the other hand,
the quantum-optics approach, treats the light field quantized and couples the pho-
tons to a simplified few-level description of the matter [154–156] (see Rabi model
in Chap. 3.6.1.1). The latter approach often gets rid of the matter part altogether by
defining effective photon-only Hamiltonians which model the photon-photon inter-
action due to the matter system [153, 157, 158]. In both approaches the efficiency and
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properties of the down-conversion process in question are usually determined by
dipole-transition elements which depends on the symmetry of the matter subsystem.
For example, since PDC is a three-wave mixing process, the second-order non-linear
susceptibility is the dominant contribution to this process. For systems that possess a
single symmetry (like the quantum ring (QR) considered in this chapter) this quantity
is negligible [159], thus resulting in an inefficient or even impossible PDC process. In
such situations, one would conventionally break the symmetry of the QR by some
external classical field to engineer appropriate dipole-allowed transitions [160, 161]
or use double-ring structures [162]. However, besides these conventional approaches,
we here highlight the possibilities that arise if one does not make the initial assump-
tion to treat light and matter separately similar to the linear-response setting (see
Chap. 3.6). We do not employ QEDFT here, but rather perform numerically exact simu-
lations of non-relativistic QED, where light and matter are treated on equal quantized
footing. Since numerically exact simulations are only possible for simple systems,
this part can be viewed as an exploratory investigation into possible applications of
time-dependent ab-initio light-matter simulations beyond linear-response.

Our first-principles non-perturbative real-time simulations of the down-conversion
employs as matter subsystem, a semiconductor GaAs QR (shown below) coupled to
photons and highlights that strong coupling leads to a faster down-conversion and
potentially avoiding detrimental decoherence effects. Also, we show how strong fields
and strong coupling leads to efficient photon generation with non-classical properties.
We further show how hybrid light-matter states (polaritons) (see Chap. 3.5.4) can act
as pathways for a photon down-conversion process and thus propose an inverse
harmonic generation scheme for generating N-photons. Due to the full quantized
treatment of the down-conversion process, we highlight new observables that become
accessible. In addition, we show cases where the standard approaches for describing
the down-conversion process (few-level and Maxwell-Schrödinger approximations)
do not recover all the necessary observables of the full ab-initio simulation.

The numerical results presented below were obtained with a purpose-built code
(see App. D.1 for details) which we developed to explore ab-initio light-matter inter-
actions for simple systems numerically exactly 1.

4.1 non-degenerate two-photon down-conversion

Our numerical investigation of the down-conversion process is rather general and
we only make the assumption that our bound matter system is small compared to
the wavelength of the relevant photon modes. This specific case of the Pauli-Fierz
Hamiltonian in dipole approximation is described by the velocity gauge Hamiltonian
of Eq. (49). The numerical approach that is employed in the following can solve
the general form of the Hamiltonian of Eq. (49), however, for our investigation of
the down-conversion process we make a specific choice for the matter system to
be a single 2D GaAs semiconductor QR described below. To better understand the
down-conversion process using the GaAs QR as medium and to also highlight the new
possibilities that become available when we treat light and matter on the same level

1 Some of the results presented in this Chapter have been published in this article [163].
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of theory, we describe some interesting features of the model system in the following
section.

4.1.1 the two-dimensional semiconductor quantum ring

Figure 14: (a.) Real-space 2D potential of the quantum ring with a Gaussian peak at the center.
The potential strength parameter V0 = 200 meV. (b.) Diagonal cut (x = y) of 2D
potential showing increasing Gaussian peak for increasing V0. (c.) Energy spectrum
of the 2D quantum ring showing the two lowest radial bands with degenerate and
non-degenerate excited states and a non-degenerate ground-state for V0 = 200 meV
against angular momentum l. (d.) Changes in the low-lying energies by varying
the potential strength parameter V0. The lowest energy line is for the ground-state
while the rest are for the degenerate excited states.

The 2D semiconductor QR of finite width features a single effective electron con-
fined in two-dimensions in real-space (r = xex + yey). The effective electron is con-
fined to move in a parabolic Mexican-hat like potential. The Hamiltonian describing
this model is given by

Ĥ2D = − h̄2

2m

(
∂2

∂x2 +
∂2

∂y2

)
+

1
2

mω2
0r2 + V0e−r2/d2︸ ︷︷ ︸

vext(r)

, (332)

where the potential vext(r) introduces a parabolic confinement and a Gaussian peak
located at the center as depicted in Fig. (14.a). In a semiconductor QR, the charge
carriers are confined in the radial direction and since the ring is circular, it has a
continuous rotational symmetry [161, 164]. The parameters of the binding potential
are chosen to reflect the energy and length scales used in experiments with semicon-
ductor GaAs QRs [165, 166] which are h̄ω0 = 10 meV, d = 10 nm, m = 0.067me, and
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Figure 15: The electron density of some selected relevant states of the GaAs QR (a.) ground-
state ψ0

1 , (b.) and (c.) degenerate first excited states ψ1,−1
2 , (d.) tenth excited state

ψ0
6 , (e.) and (f.) degenerate eleventh- and twelfth-excited states ψ1,−1

7 . Here the
potential strength parameter is V0 = 200 meV

V0 = 200 meV. The units of the semiconductor QR are defined using the dielectric con-
stant of GaAs ε = 12.7ε0 which scales the atomic units as in Ref. [160] to the following
effective atomic units Ha∗ = (m/ε2)Ha ≈ 11.30 meV, a∗B = (m/ε)a0 ≈ 10.03 nm, and
u∗t = h̄/Ha∗ ≈ 58.23 fs.

The spectrum of the QR can be changed depending on the chosen amplitude
(strength) of V0. For example, when V0 = 0 meV, Eq. (332) reduces to a 2D isotropic
harmonic oscillator with energies En = h̄ω0(2n + 1) where n = 0, 1, 2, 3, ... and the
degeneracy in energy is (n + 1). When V0 > 0 meV (and V0 = 200 meV is chosen
unless otherwise stated) the eigenstates ψl

j are labeled by the angular momentum
l = 0,±1,±2,±3, .... and the index j = |l|+ 1 enumerates over the energy levels as
shown in Fig. (14.c). The ground-state and excited state with l = 0 are singlets, while
the excited states with finite angular momentum differing from l = 0 are doubly
degenerate. Therefore, changing V0 changes the spectral properties of the semicon-
ductor QR. This feature of the QR is of particular interest here since increasing V0

increases the height of the Gaussian peak thereby making the electronic system more
anharmonic as shown in Fig. (14.b). Also, increasing V0 increases the transition dipole
moments between dipole-allowed transitions (see Tab. (2.b)). This is particularly of
interest in an electron-photon coupled system since the coupling parameter is pro-
portional to the transition dipoles as given in Eq. (384). Thus if the transition dipoles
are increased, this leads to an increase in the electron-photon coupling. Changing the
spectral features of the QR is possible to realize experimentally [161]. This is achieved
here by varying the potential parameter strength V0 which changes the geometric
properties by reducing the ring width which in turn increases the Gaussian peak at
the center (see Fig. (14.b)) thereby changing the electronic spectra as in Fig. (14.d).
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The selection rules of this model allow for dipole transitions only between states
with consecutive angular momenta, i.e., between states with angular momentum |l|
differing by one [13, 160]. For example, in the first radial band the allowed tran-
sitions are ψ0

1 ↔ ψ1,−1
2 ↔ ψ2,−2

3 ↔ ψ3,−3
4 ↔ ψ4,−4

5 and for the two lowest radial
bands, some of the allowed transitions are ψ0

1 ↔ ψ1,−1
2 ↔ ψ0

6 ↔ ψ1,−1
7 . For the down-

conversion considered in this chapter, the following electronic states |ψ0
1〉, |ψ

−1,1
2 〉,

|ψ0
6〉 and |ψ−1,1

7 〉 are coupled resonantly to selected cavity modes. For this reason, we
give as example the x-component of the transition dipole in effective atomic units for
the relevant transitions in Tab. (2.a). The bound electron in the 2D parabolic potential

Transitions Amplitudes

〈ψ0
1|x̂|ψ1

7〉 0.2077

〈ψ0
6|x̂|ψ1

7〉 1.2786

〈ψ1
2|x̂|ψ0

6〉 0.2685

〈ψ0
1|x̂|ψ1

2〉 1.0867

〈ψ0
1|x̂|ψ0

6〉 4.0090× 10−13

(a) Transition dipoles for V0 = 200
meV between different states.

V0 (meV) 〈ψ0
1|x̂|ψ1

2〉

0 0.53159199

50 0.84520553

100 0.97645376

150 1.04263107

200 1.08705932

250 1.11987106

300 1.14420501
(b) Transition dipoles for vary-

ing V0.

Table 2: (a.) The x-component of the transition dipole matrix elements for selected transitions
shown in Fig. (14.c) (dark-shaded). (b.) Increasing x−component of the dipole tran-
sition amplitudes between the ground-state and first degenerate excited states for
increasing potential strength parameter V0.

still retains some features of 3D atomic systems such as the s, p, d, f orbital structures.
This can be visualized by plotting the electron density n(x, y) of these selected states
|ψ0

1〉, |ψ
1,−1
2 〉, |ψ0

6〉, |ψ
1,−1
7 〉 as depicted in Fig. (15), respectively. First, Fig. (15.a and

d.) depicts the ground-state and tenth excited (lowest energy state of second radial
band) states densities with 1s- and 2s-type orbital symmetry, respectively. Secondly,
Fig. (15.b and c.) corresponds to the densities of the first degenerate excited states of
the first radial band showing 2px- and 2py-type orbital symmetry, respectively. Sim-
ilarly, Fig. (15.e and f) shows the densities of the eleventh- and twelfth- degenerate
excited states which are the first degenerate excited states of the second radial band
showing 3px- and 3py-type orbital symmetry, respectively. With the properties and
orbital structure of the 2D semiconductor QR discussed above, the QR can be thought
of as a variable atom-like system and extending to a three-dimensional atomic system
is expected to not change much of the properties of the down-conversion discussed
in this chapter.

4.1.2 setup of the photon down-conversion scheme
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Figure 16: (a.) Schematic setup for investigating down-conversion processes featuring a 2D
GaAs semiconductor QR at the center of a multi-mode photonic environment. The
fields are linearly polarized in the x, y-plane and the propagation vectors kα is
along the z-axis. (b.) Resonant coupling to specific energy-levels (dark-shaded) for
non-degenerate PDC.

One of the reasons for this choice of the 2D semiconductor QR as down-conversion
medium lies in the flexibility of changing the electronic spectrum by adopting the an-
harmonicity of the binding potential (see Sec. 4.1.1). A more realistic description that
includes many interacting electrons and possibly even phononic excitations would
be possible if we employ more efficient first-principle methods such as QEDFT (see
Chap. 2.5.5) or QED-CC [15, 21]. Notwithstanding, the current level of description con-
sidered here already suffices to demonstrate the many details that become accessible
with an ab-initio description of a down-conversion process. It is important to note
that due to the rotational symmetry of the QR [161, 164, 167], a simple matter-only
analysis would indicate that no standard down-conversion process takes place. This
can be verified by considering the rotational symmetry of the eigenstates as only
transitions that change the angular momentum by one (see Sec. 4.1.1) are dipole
allowed, thus, a process as indicated in Fig. (16.b) is not dipole allowed. This also
becomes evident in the second-order non-linear susceptibility, which is negligible in
this case [159]. However, since we do not decouple light and matter, we observe that
such a parametric process still takes place. The efficiency and the details of the ensu-
ing down-conversion process will then depend mainly on the details of the photonic
environment.

The photonic system is considered to be a multi-mode environment in which total
control of the polarization, the frequency and the coupling strength of some of its
modes can be attained. Specifically, we assume that we can manipulate three of these
cavity modes at will, while the rest of the continuum of modes remains largely un-
changed. These three relevant modes are associated with the vector potentials Â1, Â2

and Â3 which are given as in Eq. (50). We choose the field Â1 as the input (pump)
mode with frequency ω1, polarization direction e1 and coupling strength λ1, and
Â2 and Â3 as the vector potentials of the output (signal) modes with corresponding
frequencies, polarizations and coupling strengths. The setup of the coupled matter-
photon system is depicted in Fig. (16.a), such that only the x and y polarization direc-
tions are relevant and couple to the QR. Furthermore, the coordinate system is chosen
such that Â1 = Â1ex, Â2 = Â2(− sin θ2ex + cos θ2ey) and Â3 = Â3(sin θ3ex + cos θ3ey),
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where θ2 and θ3 are the angles the respective polarization vectors makes with the
coordinate system. Considering this possible setup, we can connect the change in
coupling strength of the coupled electron-photon system to a change in the length of
the cavity L and thus the mode volume, i.e., λ =

√
2/εL where the dielectric permit-

tivity of the GaAs semiconductor QR is ε = 12.7ε0 and for simplicity of the coupled
system, we assume that all three modes have the same coupling strength λ. While
in the linear-response calculations (see Chap. 3.6.3) we sampled thousands of photon
modes to compute the lifetimes and account for dissipation, here we treat the contin-
uum of modes differently. That is, the rest of the continuum of modes (i.e. excluding
the relevant modes) that account for dissipation and decoherence are subsumed, on
the one hand, in the effective mass of the QR particle while the modes that constitute
the linewidth of the enhanced modes are treated explicitly [18, 20]. The Hamiltonian
for such coupled system is given in the following form

Ĥ = ĤS + ĤB + ĤSB . (333)

Here, the internal system Hamiltonian describing the down-conversion process is

ĤS = Ĥ2D + Ĥ1 + Ĥ2 + Ĥ3 −
e
m

Â1 p̂x (334)

− e
m
[
Â2
(
− p̂x sin(θ2) + p̂y cos(θ2)

)
+ Â3

(
p̂x sin(θ3) + p̂y cos(θ3)

)]
+

e2

2m
[
Â2

1+Â2
2+Â2

3−2Â2Â1 sin(θ2)−2Â3Â1 sin(θ3)+2Â3Â2 cos(θ2 + θ3)
]

,

and the bath including system-bath coupling that constitute the rest of the (M− 3)
modes in Eq. (333) are

ĤB =
M

∑
α=4

h̄ωα

(
â†

α âα +
1
2

)
, ĤSB =

M

∑
α=4

[
− e

m
Âα ·p̂+

e2

2m

(
2Â1+2Â2+2Â3+

M

∑
β=4

Âβ

)
·Âα

]
,

where p̂ = p̂xex + p̂yey is the momentum operator of the 2D QR. The bare Hamil-
tonian Ĥ2D of the matter subsystem is given in Eq. (332) and Ĥα with α = 1, 2, 3
are the photonic Hamiltonians of the selected modes having the form of Eq. (38).
Here, the last two terms of Eq. (333) constitutes the active photonic bath of the sys-
tem and its coupling to the internal system. The photonic bath is sampled with
(M − 3) = M70 = 70 bath modes that are treated in photon Fock number states
together with the three relevant modes. The vector potential of the bath modes is

Âα = λ′αeα

√
h̄

2ωα

(
âα + â†

α

)
where λ′α is the coupling of the bath modes.

For the case of the non-degenerate two-photon down-conversion, we select the
frequency of mode 1 in resonance with the dipole-allowed transition between the
ground- and eleventh-excited state (|ϕ0

1〉 ↔ |ϕ1
7〉) of the QR, which has energy h̄ω1 =

24.65 meV, and choose the signal mode 2 with energy h̄ω2 = 1.36 meV to be resonant
with the tenth- and eleventh-excited states (|ϕ1

7〉 ↔ |ϕ0
6〉) and finally the signal mode

3 with energy h̄ω3 = 23.29 meV resonant with the ground- and tenth-excited state
(|ϕ0

6〉 ↔ |ϕ0
1〉). It is important to emphasize that the transition in resonance with mode

3 is not dipole allowed, since only states that differ by exactly one in their angular
quantum number have a non-zero dipole transition element (see Chap. 4.1.1 for de-
tails). However, as a result of treating light and matter fully coupled we will still find
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a down-conversion process in our ab-initio simulation. As a result the emission of a
photon into mode 2 through radiative decay will differ from that of mode 3 due to the
different dipole matrix elements involved (see Tab. (2)). This resonant coupling of the
three modes to the energy levels of the QR are depicted in Fig. (16.b), however, noting
here that the full spectrum of the QR is considered for a first-principles description of
the down-conversion process. In Sec. 4.1.7, we make a comparison with an a priori
restriction to only a few energy levels of the QR which shows how certain observables
are not well captured if the number of states is not sufficiently large.

Before performing the time-evolution of the coupled system described by Eq. (333)
and in majority of the simulations Eq. (334), we fix the polarization directions of the
input and output modes in order to maximize the photon-pair generation. We choose
the mixing angles θ2 = θ3 = 90◦ such that both fields of the signal modes are horizon-
tally polarized as Â2 = −Â2ex and Â3 = Â3ex. This choice results in maximization
of the cross-talk of the interference terms of Eq. (334) since the sines and cosine of the
mixing angles become one (see the detailed investigation in Sec. 4.2.1). Furthermore,
the down-conversion process obeys the energy and momentum conservation of the
photonic system h̄ω1 = h̄ω2 + h̄ω3 and h̄k1 = h̄k2 + h̄k3, respectively.

4.1.3 simulation and characterization of the down-conversion

With the setup of the down-conversion scheme as described in the previous sec-
tion, we now describe how we solve the problem and the observables considered to
characterize properties of the down-conversion process.

4.1.3.1 Time-evolution of the down-conversion process

We investigate the down-conversion process of the coupled matter-photon system
in detail by performing the time evolution of different initial states |Ψin(0)〉. This
is achieved by explicitly propagating the time-dependent Schrödinger equation of
Eq. (6) in one case with the Hamiltonian of Eq. (333) and in the other cases with
the Hamiltonian of Eq. (334). As initial states, we consider in the following a fac-
torizable product states of the form |Ψin(0)〉 = |ϕ0

1〉|φ1〉|02〉|03〉 . . . |0M〉, where |ϕ0
1〉

is the ground-state of the uncoupled QR and |0α〉 is the zero-photon state of mode
α. For the pump mode α = 1, we will consider two different initial states. The first
choice is the simplest and ideal case in which |φ1〉 = |11〉 is just a single-photon Fock
state. The choice of this initial state is motivated by the fact that we can interpret the
down-conversion process in the usual way as turning one photon into two with lower
frequencies. The second choice of the initial state that will be mostly used throughout
this chapter is a coherent state |φ1〉 = |ξ1〉 = e−|ξ1|2/2 ∑∞

n1=0
(
ξn1

1 /
√

n1!
)
|n1〉 where ξ1

is the amplitude and |n1〉 the Fock number states of mode 1. This implies that we have
on average |ξ1|2 photons at the beginning in the input mode. By increasing |ξ1|2 � 1
we approach a classical laser field with a large number of photons. Furthermore, we
consider this limit where the initially populated mode is replaced by an external clas-
sical laser field, in Sec. 4.1.6. It is important to note that changing the initial state to
the correlated ground-state of the coupled system and then using an external pump
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field to populate mode 1 leads to qualitatively similar results as will be shown in
Sec. 4.1.6.

The time-dependent Schrödinger equation of the coupled system for all the differ-
ent cases is solved with a Lanczos propagation scheme [168]. To represent the effective
electron on a two-dimensional uniform real-space grid, we choose Nx = Ny = 127
grid points (implying 1272 states are taken into account and treated explicitly) with
grid spacing ∆x = ∆y = 0.7052 nm while applying an eighth-order finite-difference
scheme for the gradient and Laplacian operators. In some cases, for comparison or
numerical efficiency we represent the matter subsystem by its truncated uncoupled
eigenstate basis instead of the real-space grid. This results to using only a few elec-
tronic states as the usual few-levels approximation (see Chap. C.1). We represent the
photon modes in basis of Fock number states for the different fields and descriptions.
We treat the photon subspace for the different cases as follows

• In Sec. 4.1.4.1, for each of the modes 1, 2, and 3 we include three photon Fock
states which are the zero-photon, one-photon and two-photon states. To treat
the photon bath consisting of M − 3 = M70 = 70 modes numerically exactly,
we truncate the Fock space and consider only the vacuum state, the M70 one-
photon states, and the (M2

70 + M70)/2 two-photon states as in Ref. [91]. In only
this simulation, do we consider for the matter subsystem the first 12 electronic
states in Fig. (16.a) up to the state with energy 58.54 meV.

• In Sec. 4.1.4.2, we sample 20 Fock states for each of the modes 1, 2, and 3.

• In Secs. 4.1.6, till the end, we sample 30 photon Fock states for the individual
modes 1, 2, and 3. The choice of 30 photon Fock states is to well represent the
coherent state.

For the coupled electron-photon space, we explicitly construct matrix representations
for all operators and the expectation value for observables of interest are computed
for a time step of ∆t = 0.029 fs of the time-evolved wavefunction.

4.1.3.2 Characterization of the down-conversion process

To characterize the down-conversion process in the time-evolution as described
above, we compute several photonic observables. The mean photon occupation n1 =

〈â†
1 â1〉 of the pump mode is computed to contrast the amount of photonic occupation

in the down-converted signal modes n2 = 〈â†
2 â2〉 and n3 = 〈â†

3 â3〉. Also we compute
the population of the photon Fock-states defined by Pnα = |〈n̂α|Ψ〉|2. The popula-
tion of the single-, two- and three-photon Fock states, i.e., | 〈1α|Ψ(t)〉 |2, | 〈2α|Ψ(t)〉 |2
and | 〈3α|Ψ(t)〉 |2 for α = 1, 2, 3 are computed in order to identify the standard PDC

process.
An important characteristic of the down-converted photon is the photon statistics

which can be determined by computing the Mandel Qα parameter [169] defined as

Qα =
〈â†

α â†
α âα âα〉 − 〈â†

α âα〉2
〈â†

α âα〉
, (335)

which measures the deviation of the photon statistics from a Poisson distribution and
thus is a measure for the quantum nature of the photonic subsystem. For a field with
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non-classical properties, the range of values lies between −1 ≤ Qα < 0 which is sub-
Poissonian statistics (antibunching behavior). Fields with super-Poissonian statistics
(bunching behavior) have Qα > 0 and for a coherent state with Poissonian statistics,
Qα = 0 [33].

Besides the statistical properties of the fields, we consider the cross-correlation
between the photon modes when they interact with a matter system. In accordance
to this, the second-order cross-correlation function (intensity correlations) of a multi-
mode field is defined by

g(2)αβ =
〈â†

α âα â†
β âβ〉

〈â†
α âα〉〈â†

β âβ〉
. (336)

The correlation function takes values greater than one for correlated modes. For un-
correlated modes, it is equal to one and it takes values smaller than one if the modes
are anti-correlated [33, 35, 170]. We compute this observable as a measure of correla-
tion between the relevant modes.

In addition, we compute the purity γα of the modes α = 1, 2, 3 given in Eq. (386). If
the purity is equal to one, the system can be expressed as a factorizable state of the
individual photonic subsystems and that of the QR. If the purity is smaller than one,
implies a non-factorizable state which indicates correlation (entanglement) between
subsystems.

We note that we included the pump mode α = 1 in the above observables. Proper-
ties of the pump mode are not usually accessible since it is treated only as a classical
external observable which is not a dynamical part of the coupled system [154, 155].
However, since we treat both the modes and the electronic system fully quantized,
these observables become accessible on this level of theory.

4.1.4 single input-photon down-conversion and temporal control

With the down-conversion scheme and time-evolution as discussed in the previous
section, we can now investigate the PDC process. In this section we consider the ideal
case were the input mode 1 is occupied by a single photon, the coupling between light
and matter is weak such that the usual non-linear optics considerations apply and
we have a strongly anharmonic QR such that a few-level approximation is reasonable.
The input state is |φ1〉 = |11〉 and we fix a small coupling strength of λ = 0.014
and use an anharmonicity of V0 = 200 meV (see Sec. 4.1.1 for details on the QR).
To account for dissipation and decoherence as described by Eq. (333), we include
M70 bath modes with polarizations equally aligned as the modes 1, 2, 3, otherwise,
these bath modes would just couple more weakly. The M70 sampled bath modes are
equally spaced and have energy ranges around the energies of h̄ω1, h̄ω2, h̄ω3. For the
resonant energy h̄ω2, 20 bath modes are sampled which have energies that ranges
from h̄ωB2 = [0.113, 4.521] meV and for h̄ω2 and h̄ω3 the combined energy range
is h̄ωB13 = [11.303, 27.128] meV for which 50 bath modes are sampled with equal
spacing h̄∆ω = 0.25 meV. The coupling strength of the bath modes is chosen to be
λ′ = 0.007. In the following, we present the time evolution for the combined system
and bath (i.e. Eq. (333)) and system only (i.e. Eq. (334)). For the simulation including
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the bath, we compute observables only for the relevant three modes while the bath
modes that contribute to the lineshape serve just as dissipation and decoherence
channels (similar to Chap. 3.6.5).

4.1.4.1 Dissipation and coherence time

Figure 17: Comparison of the down-conversion for coupling to a photon bath and without
photon bath. Panels (a.)-(c.) and (d.)-(e.) shows respectively the photon occupations
and Mandel Qα’s of the pump and signal modes for weak coupling λ = 0.014
and bath coupling λ′ = 0.007. The coherent simulation without the bath modes
(solid pink line) agrees qualitatively with the simulation including the bath modes
(dashed blue line) and only differs towards the end of the simulation, i.e., the end
of the chosen coherence time.

We now consider the influence of the sampled bath modes on the down-conversion
process. From the effective coupling gα = λ

√
h̄/2ωα, since ω1 > ω2, ω3 this implies

g1 < g2, g3. Therefore, for both cases the active electron in the excited state |ϕ1
7〉

preferably relaxes by cascaded emission into signal modes 2 and 3. This is evident
from Eq. (385) as the coupling strength is proportional to the square root of the
spontaneous decay rate. In this case we expect that the signal modes 2 and 3 will get
populated once the initial single-photon in the pump mode 1 interacts with the QR.
This shows that in an ab-initio description of the PDC process, the effective coupling
gα plays an important role and the bare electronic dipole-transition elements are no
longer the only major contribution to the process. This is evident since mode 3 is still
populated even though the dipole moment of the transition is effectively zero (see
Tab. (2.a) for value).

This becomes evident as shown in Fig. (17.a), where the mode occupations for
the input and two signal modes become populated for both situations. Qualitatively,
both simulations show a similar behavior with the main difference that the down-
conversion from the input pump mode 1 into the signal modes is less effective for the
simulation that includes the bath modes and the maximum of the down-converted
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number of photons (i.e. amplitude of n2(t) and n3(t)) occur slightly later. We note
that propagating for a longer time, the simulation with bath modes will differ more
strongly. Also, for a simulation time that is not too long to encounter the unphysical
revival time due to having only a finite number of modes [171], the photon occupa-
tions would eventually relax to the ones of the coupled matter-photon ground-state
(see Chap. 3.6.3). In the weak coupling case considered here, the occupations for the
signal modes are effectively zero and at this point the photons are considered emit-
ted. Our numerical setup does not simulate the full emission process, thus, to account
for the emitted photons we assume that the maximum amount of photon occupation
observed in the signal modes corresponds to what would be detected outside of the
system. We note that the simulation that includes the bath modes do not change the
maximum photon occupations strongly even for this weak coupling case where the
bath contributes considerably. This implies that the simulation without the bath is a
justified approximation provided we do not go beyond the coherence time of roughly
40 picoseconds (ps). Coherence time as utilized here means the time interval in which
the bath-free (fully coherent) simulation is a good approximation to the simulation
that includes the bath. It is important to note that increasing the coupling to the
bath modes (stronger dissipation) the coherence time would be shorter, however, cou-
pling stronger to the input and signal modes while keeping the bath modes fixed the
coherence times would be longer. This highlights how to potentially obtain longer co-
herence times. Simulating explicitly (70 + 3) modes coupled to the electronic system
is numerically very expensive and would not allow for all the different cases of the
down-conversion processes that we investigate in this chapter. To fairly compare all
the different cases that we will investigate below, we therefore consider all the simu-
lations without coupling to the bath modes and choose a coherence time of about 40
ps. We chose this number since QRs are known to have long coherence times on the
order of ps, after which other dissipation channels destroy the coherence [161]. This
analysis circumvents the use of (numerically expensive) non-unitary master-equation
approaches to approximately treat the effect of the photon bath modes on the internal
system [172] or to keep the bath explicitly as done above in our following considera-
tions 2.

Since an important feature of the down-conversion process is the character of the
generated photons, we consider the Mandel Qα parameter (see Eq. (335)) to deter-
mine the statistics of the down converted photons. In Fig. (17.b), we observe that
both simulations agree qualitatively and remain close for the simulated 40 ps. This
demonstrates that the bath-free simulations capture qualitatively more complex prop-
erties of the generated photons. Since we will consider strong coupling to the relevant
photon modes, the influence of the bath modes in these simulations will become less
important. This as well holds true when we consider many input photons and classi-
cal external pumping.

2 As a side remark, we could avoid solving here the explicit correlated wavefunction by employing QEDFT.
This can be achieved by sampling the photon bath with thousands of modes and employ the time-
propagation method of QEDFT (see Chap. 3.5.3 for details) which includes all orders of the response. We
will then only need to extract the desired order. However, since we have only the pRPA contribution of
the vPxc potential, some observables such as the Mandel Qα parameter will not be captured at this level
of approximation.
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4.1.4.2 Temporal control of down-converted photons

Figure 18: Real-time Fock state populations of the one-, two- and three-photon Fock states
of signal modes 2 and 3 from weak (pink solid line) to ultra-strong coupling (blue
line). In panels (a.)-(c.) and (d.)-(f.) of the respective modes 2 and 3, the one-photon
Fock state dominates for a single photon in the input mode therefore signifying
single-photon down-conversion in this modes.

In the previous section, we showed how the initially excited pump field with mode
occupation of 1 populates the signal fields as their mode occupations become non-
zero through out the 40 ps time evolution. However, this does not necessarily imply
that two photons with energies h̄ω2 and h̄ω3 have been down-converted from a sin-
gle photon of energy h̄ω1. In order to make such analysis we need to compute the
populations of the different Fock number states in each of the relevant modes. This
is necessary because it could be that also the 2 and 3 photon states are populated
in the down-conversion process. This then implies that higher-order processes play
a role that would not be easily identifiable as a PDC process. To identify the down-
conversion process we calculate the populations |〈n̂α|Ψ〉|2 where we consider the
populations of the one- up to the three-photon Fock states. In Fig. (18) we find that
the process is indeed a PDC process since only the one-photon states have significant
population throughout the simulation for the down-converted photons. Increasing
the coupling strength from the weak to the ultra-strong coupling regime does not
imply a priori that only the single-photon processes is still dominant and no higher-
order (multi-level/multi-photon) contributions become important. The coupling λ

is varied by changing the effective cavity length L (see also Fig. (16.a)) which also
leads to modified effective coupling strengths gα (see Tab. 3 for detail values), while
the bare dipole transition elements stay unchanged. In Fig. (19.c) we find that the
amount of photons in the signal modes can be increased considerably by increasing
the coupling strength. This highlights that the effective coupling strength plays an
important role for the efficiency of the PDC process in an ab-initio description. This
also illustrates how strongly light and matter mix and how the matter-only eigen-
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Figure 19: Photon occupations and Mandel Qα shown in real-time for the input mode n1(t)
initially in a single-photon Fock state from weak to ultra-strong coupling. (a.)
shows the loss of occupation in mode 1 as it is down-converted into signal photons
n2(t) and n3(t) in (b.) and (c.), respectively. The panels (d.) show the photon statis-
tics as mode 1 has sub-Poissonian photon statistics for the entire evolution, (e.)
strong anti-bunching as well as bunching features of signal mode 2 and (c.) mode
3 is close to a coherent state throughout the PDC process. In all cases the coupling
strength shifts the appearance of the different features to earlier times.

states hybridize with the photon states to create new pathways potentially beneficial
for the PDC process. This has been demonstrated in several works [13, 27] where
the vacuum field of the modes can break the rotational symmetry and therefore gα

can be increased by changing the photonic environment. We note that even though
the dipole moments are not the only quantity that describes how light and matter
interact in this coupling regime, they however provide an intuitive picture for the
PDC process. Also, the coupling gα can be increased irrespective of a weak dipole
moment (see Eq. (384)) by changing the photonic environment (decreasing length L)
and with this the photon-photon couplings g1 ∗ g2, g1 ∗ g3, g2 ∗ g3 between the modes
increases. These terms arise due to the induced diamagnetic currents and are an often
disregarded but yet are important contribution in many light-matter phenomena [43,
44, 102]. Also they are necessary for boundedness of the Pauli-Fierz Hamiltonian in
dipole approximation as discussed in Chap. 3.1.

We now highlight an important effect that arises by varying from weak to the
ultra-strong coupling regime. In Figs. (18) and (19), we consistently observe that for
stronger couplings, the down-conversion of photons occurs at earlier times. Taking
note of the coherence time of 40 ps, we can potentially overcome the undesired dis-
sipative processes by strong and ultra-strong coupling. Formulated differently, by
shifting the creation of the down-converted photons to earlier times by coupling
stronger, while the coupled system is still coherent gets rid off undesired dissipative
processes that is expected to show up after the coherence time. Interestingly this fea-
ture also shows up in other observables such as non-classicality and entanglement
of the photons. Take for example the non-classicality of the different photon modes
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Figure 20: The real-time cross-correlation between the pump and signal modes for the input
single-photon Fock state. The dashed line indicates when the modes are correlated
(above the dashed line) or anti-correlated (below the dashed line). Panels (a.) and
(b.) show that the pump and signal modes 2 and 3 are anti-correlated. (c.) The
down-converted photons of modes 2 and 3 are correlated for the whole evolution.
In panels (d.) to (f.), the single-photon Fock state of the input mode is shown to
have significant population when compared to the two- and three-photon Fock
states.

by considering the Mandel Qα parameter. In Fig. (19.b), we also find that the time
of appearance of non-classical features can be controlled by the coupling strength,
i.e., varying from the weak to ultra-strong coupling regime. This feature carries on
to the intensity cross-correlation functions (see Fig. (20.a-c)) as they show how the
photon in mode 1 is anti-correlated with respect to the signal modes, while the signal
modes are strongly correlated for the entire time-evolution. It is important to note
that the single-photon Fock state of the input mode is the dominant contribution in
the down-conversion as it is shown to have significant population when compared
to the two- and three-photon Fock states as in Fig. (20.d-f). This becomes evident by
contrasting Figs. (19.a-c) and (20.d-f), respectively. Even though the emission of the
down-converted photons from the photonic environment is not modeled here, we
expect that controlling the timing of the generation process of the down-converted
photons by varying the coupling strength will have a direct impact on the features
of the emitted photons. This is expected for a simple description of an instantaneous
emission where the features of the generated signal photons are carried over to the
emitted signal photons. It is still not certain whether these features are only there for
the ideal and in practice highly-demanding choice of a single photon in mode 1 and
whether also the temporal control of these features is lost with another initial state or
when the pump mode is replaced by a classical external pump field, i.e., a laser. In
the next section, this question is clarified by replacing the input mode initially in a
single-photon Fock state by a field in a coherent state.
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Coupling weak strong ultra-strong

L (µm) 100 50 30

λ 0.014 0.020 0.026

g1 0.00675 0.00954 0.01232

g2 0.02875 0.04065 0.05249

g3 0.00694 0.00981 0.01267

g1 ∗ g2 0.00019 0.00039 0.00065

g1 ∗ g3 0.00005 0.00009 0.00016

g2 ∗ g3 0.00020 0.00040 0.00067

Table 3: The electron-photon coupling strengths by varying the cavity length/mode volume.
The coupling strengths gα = λ

√
h̄/2ωα are different for coupling to different dif-

ferent modes of frequency ωα. Decreasing the cavity length L increases the coupling
strengths gα and their respective products. The coupling strengths are given in scaled
effective atomic units as presented in Chap. 4.1.1.

4.1.5 input mode in a coherent state

In the previous section, we investigated the PDC process using a single-photon Fock
state as input field (mode 1). In reality, generating a single photon in a specific mode
is highly challenging, and due to the usually low efficiency of the PDC process it is
also not easy to observe such a process. So in practice, the number of photons in the
pump field has to be increased to observe any down-converted photons. This implies
that more than one photon is in the pump mode 1 at the initial time, however, it is
not clear how this will change the main features observed for the single-photon input
mode case above. Thus, we now consider how a change in the initial state influences
the different observables.

Now, the pump mode is initially prepared in a coherent state |φ1〉 = |ξ1〉 and
thus, its vector potential has the strength 〈ξ1|Â1|ξ1〉 = λ

√
2h̄/ω1|ξ1| while that of the

signal modes are zero at the beginning. We choose the amplitude ξ1 = 2 such that the
mean photon number n1(0) = 〈â†

1 â1〉 = |ξ1|2 = 4 at the initial time. This choice just
slightly changes the occupation at the initial time and is already sufficient to no longer
identify in a simple manner the usual PDC as one photon being down-converted to
two photons, as we now have many photon states that mix. In Fig. (21), we find
that the two- and three-photon states are also relatively strongly occupied. This is
evident in Fig. (21.a & b) in which the second-Fock state populations are an order
of magnitude larger than the ones of the single-photon Fock states. The second-Fock
state of mode 3 in Fig. (21.e) is weakly populated due to coupling to a non-dipole
allowed transition. We find changes in the total mode occupations as can be seen in
Fig. (22.a-c). Comparing to the one-photon case in Fig. (19.a-c.), we observe that the
mode occupations qualitatively remain the same and also the feature of faster down-
conversion for stronger coupling is retained. We however observe changes in the
photon statistics especially for the input mode 1 when compared to the single-photon
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Figure 21: Real-time Fock state populations of the signal mode 2 and 3 from weak to ultra-
strong coupling for the input coherent state. For mode 2, the two-photon Fock state
in (b.) is mostly populated in comparison to the one- and three-photon Fock states
in (a.) and (c.), respectively. For mode 3, in panel (d.) the one-photon Fock-state is
mostly populated compared to the two- and three-photon Fock states in (e.) and
(f.), respectively.

case(see Fig. (19) and (22)). As shown in Fig. (22.d-f), the anti-bunching behavior of
mode 2 is increased and mode 3 becomes non-classical for a short time and later
shows classical features.

Furthermore in Fig. (23.a,b), we observe a switching between anti-correlation and
correlation in time. This change can be justified since we have now several photons in
the initial state and the simple picture of one photon annihilated in mode 1 and one
photon created in mode 2 and 3 respectively, is no longer straightforward. Simulta-
neously, the down-converted photons remain correlated throughout as in Fig. (23.c).
Conservation of energy and momentum in this cascaded process leads to correlations,
implying energy-time entanglement [173] which is important for on-demand gener-
ation of entangled photon pairs [148, 149]. This interpretation becomes more clear
when we consider the purity γα to account for the measure of entanglement in the
present case. We show in Fig. (23.d-f) the different modes start out uncorrelated (as
γα = 1) and become entangled over time since γα(t) < 1. The entanglement and its
time profile can equally be controlled by the coupling strength and pushed to earlier
times as well.

So far, we have highlighted new possibilities in the down-conversion process that
arise due to treating both the light and matter on an equal quantized footing. For
example, we showed how the down-conversion process can be influenced by ma-
nipulating the photonic environment (increasing coupling strength) to have faster
down-conversion that can overcome decoherence effects. Also, we showed new ob-
servables that become accessible due to this level of theory like the mode occupation
(e.g. Fig. (22.a)), photon statistics (e.g. Fig. (22.d)), purity measure (e.g. Fig. (23.d)) of
the pump mode as well as cross-correlation between the pump and signal modes (e.g.
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Figure 22: The real-time photon occupations and Mandel Qα of the input mode n1(t) initially
in a coherent state shown from weak to ultra-strong coupling. (a.) photons from
n1(t) are down-converted into signal photons n2(t) and n3(t) in (b.) and (c.), re-
spectively. The photon statistics of the down-conversion shows that mode 1 varies
from fields with Poissonian, super-Poissonian and sub-Poissonian statistics as in
(d.), strong anti-bunching feature for mode 2 as in (e.) and (c.) shows the emitted
photon in mode 3 is non-classical for a brief time interval with maximum non-
classicality of Q3 = −0.0025 at t = 4.93 (ultra-strong coupling) ps as shown in
the inset. In all cases the coupling strength shifts the appearance of the different
features to earlier times.

Fig. (23.a and b)). We observed that the main features of the down-converted photons
are qualitatively similar when the input mode is populated with a single-photon Fock
state or a coherent state with few photons. We now want to investigate whether these
features are affected when we drive the coupled system with an external classical
field or external current. This is important in this case since it will show that our
results are robust and do not depend on small details of the setup.

4.1.6 classical input fields

Now, to investigate the down-conversion process from the coupled system with
an external classical field, we have two possible choices from an ab-initio perspec-
tive. In one case the external field couples to the matter subsystem and its induced
currents generate photons in the respective signal modes and in the other case an
external current that couples directly to the input mode can be used to excite the
mode and the down-conversion occurs. These descriptions are similar to that of the
linear-response in Chap. 3.2.1 with the difference that these external perturbing fields
can be strong such that perturbation theory becomes insufficient. Physically these
alternatives should not be too different since they can be connected to each other
through Maxwell’s equation (see Chap. 3.4 for details). To investigate how these two
approaches affect the down-conversion, we in the following consider both cases.
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Figure 23: Real-time cross-correlation between the pump and signal modes and their indi-
vidual purity measures. The dashed line in (a.)-(c.) indicates when the modes are
correlated (above the dashed line) and anti-correlated (below the dashed line). In
panels (a.) and (b.) we have correlation and anti-correlation between the pump
and signal photons at different times. (c.) The generated photon pairs of modes 2
and 3 are time-entangled for the whole evolution. In (c.), we disregard the time
interval between t = 0 and t = 0.58 ps due to finite numerical precision. For the
three modes in panels (d.)-(f.), signal mode 2 is most entangled, signal mode 3 is
intermediate, and pump mode 1 is least entangled. In addition, by increasing the
coupling from weak to ultra-strong not only changes the entanglement profile but
also makes the modes more entangled.

We first start with the common approach which is choosing some external electro-
magnetic field that drives the matter subsystem. This approach is often considered
to avoid the need to have three explicit photon modes [155, 174, 175]. This is done in
practice by replacing the pump mode 1 by a classical external field and keep the rest
of the system’s Hamiltonian the same. This is achieved by considering the solution
of the mode-resolved Maxwell’s equation in Eq. (72) and the Hamiltonian becomes

Ĥ′S(t) = Ĥ2D + Ĥ2 + Ĥ3 +
e2

2m
[
Â2

2 + Â2
3 + 2Â3Â2 cos(θ2 + θ3)

]
− e

m
[
Â2
(
− p̂x sin θ2 + p̂y cos θ2

)
+ Â3

(
p̂x sin θ3 + p̂y cos θ3

)]
− e

m
A1(t) p̂x +

e2

2m
(

A2
1(t)− 2A1(t)Â2 sin θ2 − 2A1(t)Â3 cos θ3

)
. (337)

Here, A1(t) = λ1q1(t) is of the form of Eq. (72) and the external pulse employed here
corresponds to the classical field induced by the below defined external source term
for the photon field in the case that mode 1 would be uncoupled. For a simple com-
parison we therefore choose the weak coupling regime of Tab. (3) in the following,
otherwise, the form of the external pulse will have to be adapted to expect a reason-
able agreement. We note that as a result of treating mode 1 as an external classical
field the corresponding observables of this mode become inaccessible in a direct way.
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Figure 24: Comparison of the two different external drivings for weak electron-photon cou-
pling λ = 0.014. In red an external laser pulse is used, and in blue an external
current is used to pump mode 1 directly. The pump pulse and the pump current
are chosen to be connected via Maxwell’s equations such that for weak coupling
both lead to similar effects.

In the second approach the input mode 1 is directly excited by an external field, i.e.,
a source term for the photons (similar as in Chap. 3.2.1). This approach still allows
one to investigate properties of the input mode 1. The corresponding Hamiltonian
becomes

ĤS(t) = ĤS + Â1 · j1(t). (338)

The external current is an envelope Gaussian field of the following form j1(t) =

j1 exp
(
−(t− t0)2/τ2) sin(ω1t). We choose the parameters of the Gaussian pulse such

that at time t = 0.23 ps, the pump mode is driven to an excited state with on average
n1(0) = 4 photons. We observe that through Maxwell’s equation both approaches
can be connected to each other through the solution of Eq. (72) (see Chap. 2.3.1.1
for details). For both approaches, the initial state is chosen to be a non-factorizable
ground-state of the time-independent parts of the respective Hamiltonians.

In Fig. (24.a,b) we compare both approaches of external driving and find that they
both agree qualitatively for the mode occupations and for the Mandel Qα parameters.
However, we find that at later times for Q3 that they can differ strongly. Next, com-
paring the external current case to the case of no external driving (i.e. using input
mode in a coherent state) and having 4 photons in mode 1 at t = 0 instead (discussed
in Sec. 4.1.5), we find that the chosen external current qualitatively reproduces this
case for the photon occupations and Mandel Qα as shown in Fig. (25).

From these results, we can conclude that our down-conversion scheme is relatively
robust since it qualitatively reproduces the same results when we use as input field;
an external classical field or external current or when we use a coherent state.

4.1.7 comparison to standard approximations
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Figure 25: Comparison between an initial coherent state with on average of 4 photons (dis-
cussed in detail in Sec. 4.1.5) and an external current that simulates the creation
of these 4 photons for weak coupling λ = 0.014. In (a.) at t = 0.23 ps, 4 photons
are readily excited by the external current j1(t). The external current and initial
state are qualitatively the same for the entire profile of the mode occupations and
Mandel Qα for panels (a.)-(f.).

We have so far presented the down-conversion from an ab-initio description of
light-matter interaction from the weak to the ultra-strong coupling regime. However,
it is important to contrast this description (ab-initio theory of strong light-matter
interaction) to standard approaches employed to theoretically investigate the down-
conversion process. Such a comparison is expected to highlight shortcomings of
these approaches in some situations since the level of theory considered in these
approaches can be deduced from the non-relativistic QED description (see Chap. 2.2
for details). As most of the observables in the down-conversion as described above
stay relatively unchanged, the question arises is it possible to capture these effects
also with standard approaches? The different approaches are the above mentioned
quantum-optical method based on the few-level approximation and semi-classical
approaches which is employed in non-linear optics.

The few-level approximation considers only a few relevant matter states in contrast
to the large amount of states that are usually considered in ab-initio simulations [176].
In an ab-initio simulation, one considers as many states as possible until either the
observables of interest or even the full wavefunction does not change. Ignoring the
issue of the convergence of the basis-set, one can rather consider only a few ”relevant”
matter states, which can be determined from the Hamiltonian given in Chap. 4.1.7.
An application of the few-level approximation (i.e. the Rabi and Jaynes-Cummings
models) is discussed in the linear-response regime in Chap. 3.6.1.1. In this section,
the four highlighted energy levels shown in Fig. (16.b) are considered which by sim-
ple energy arguments are the most relevant states for the down-conversion process
considered here. Applying such a simplification to the electronic subsystem discards
the possibilities of the existence of other hybridized polariton and virtual states that
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Figure 26: Performance of few-level and Maxwell-Schrödinger approximation in comparison
to the numerically exact electron-photon case. In (a.) and (b.) the few-level ap-
proximation is relatively accurate while the Maxwell-Schrödinger approximation
is qualitatively correct only up to t = 5 ps. In (c.) both approximations are qual-
itatively off and do not capture the occupation of mode 3. While the few-level
approximation captures the Mandel Q1 in (d.) quite well, it is wrong initially for
Q2 in (e.) and wrong for Q3 in (f.). As expected, the Maxwell-Schrödinger approx-
imation does not capture the quantum features of the photon field in (d.)-(e.).

occur in an ab-initio treatment when the quantized field is coupled to the full matter
subsystem. The few-level approximation considered here differs from the usual few-
level approximations [156, 176] since we include the mode-mode interactions that
arise from the diamagnetic term. Ignoring these terms will lead to results that differ
since part of the full current in a matter-photon system is eliminated

For non-linear optics, the semi-classical approximation (see Chap. 2.3 for details)
is employed and the focus is on, for example, non-linear matter-only response func-
tions. However, for the two-photon down-conversion considered here with the QR as
medium the second-order non-linear susceptibility is zero [159] at the employed fre-
quencies and thus no further conclusions could be drawn. We therefore go beyond the
usual semi-classical approximation (see Chap. 2.3.1) and employ an adapted Maxwell-
Schrödinger approximation [85], which is an approximation commonly used in the
field of non-linear optics. This approximation replaces the quantized photon field by
its mean-field expression such that the problem reduces to solving self-consistently
the Maxwell’s equation coupled to a Schrödinger Hamiltonian (see Chap. 2.3.1 for
details). In the case of Eq. (334), this leads to a set of coupled non-linear equations

ih̄
∂

∂t
ϕ(r, t) = ĤMS([qα], t)ϕ(r, t) ,(

∂2

∂t2 + ω2
α

)
qα(t) = jα([p, qα], t) .

(339)
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Where ϕ(r, t) is the wavefunction of the matter subsystem and the Maxwell-Schrödinger
Hamiltonian is

ĤMS([qα]; t) = Ĥ2D −
eλ1

m
q1(t) p̂x −

e
m
[
λ2q2(t)

(
− p̂x sin θ2 + p̂y cos θ2

)
+λ3q3(t)

(
p̂x sin θ3 + p̂y cos θ3

)]
.

The current jα(t) that self-consistently couples the mode-resolved Maxwell fields to
the electronic subsystem are given explicitly as

j1([p, qα]) =
eλ1

m
px(t) +

e2

m
[
−λ2

1q1(t) + λ2λ1q2(t) sin θ2 + λ3λ1q3(t) sin θ3
]

,

j2([p, qα]) =
eλ2

m∗
(−px(t) sin θ2 + py(t) cos θ2)

+
e2

m
[
−λ2

2q2(t) + λ2λ1q1(t) sin θ2 − λ2λ3q3(t) cos(θ2 + θ3)
]

,

j3([p, qα]) =
eλ3

m
(px(t) sin θ3 + py(t) cos θ3)

+
e2

m
[
−λ2

3q3(t) + λ3λ1q1(t) sin θ2 − λ3λ2q2(t) cos(θ2 + θ3)
]

.

Here we have included in the Maxwell-Schrödinger approximation also the mean-
field mode-mode interactions (and with this the diamagnetic current). Ignoring these
terms, as usually done makes the Maxwell-Schrödinger approximation less accurate.
As a side remark, the Maxwell-Schrödinger approximation is similar to the pRPA

employed in Chap. 3.5.4 since the pRPA neglects all xc contributions of the explicit
matter-photon interaction terms. Therefore, the Maxwell-Schrödinger can be viewed
as the simplest approximation that can be used within QEDFT. If one was to employ
QEDFT, only the electron density and the expectation value of the displacement co-
ordinate are directly accessible and all other observables attain a non-trivial form in
terms of these quantities [12, 13, 22, 91].

Although the PDC is well described for the weak-coupling situation considered
here, in the strong-coupling case where hybrid light-matter states emerge, it is ex-
pected to be less reliable. An example of this is the case of the linear-response in the
ultra-strong coupling regime where the Rabi splitting becomes less reliable for the
pRPA (see Chap. 3.6.1.2 and Fig. (6) for details). In Fig. (26) we depict a comparison
of the down-conversion process in the strong coupling regime (i.e. λ = 0.017) of the
few-levels and Maxwell-Schrödinger approximation to the exact solution. In this few-
photon strong-coupling limit, the Maxwell-Schrödinger approximation fails for all
the observables shown. Since the quantum features of the electromagnetic field are
essential for describing the down-conversion process [153], the Maxwell-Schrödinger
theory (mean-field-type approach) is incapable of capturing these features. Never-
theless, if the number of photons are increased the Maxwell-Schrödinger theory be-
comes much more accurate such that in the limit of arbitrarily many photons the full
ab-initio theory becomes essentially equivalent to the Maxwell-Schrödinger theory.
Therefore, this level of theory can be used to assess how increasing the number of
input photons affects the down-conversion process (see Sec. 4.2.3).

Also, in Fig. (26.e,f) we observe that the usual few-level approximation is not com-
pletely reliable as well. The reason in this case is due to the non-dipole allowed
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transition in resonance with mode 3. And in this case many more levels that would
have had a contribution to the down-conversion into mode 3 have been eliminated.
This highlights that reducing the matter system to just a few electronic states leads
to less accurate results.

4.2 optimization of the down-conversion : the degenerate case

Figure 27: Example of the degenerate two-photon down-conversion process in the strong cou-
pling regime (λ = 0.017) and for a mixing angle of θ1 = 60◦. (a.) The 3-level ap-
proximation qualitatively captures the full dynamics of n1(t), while the Maxwell-
Schrödinger description deviates around t = 5 ps for the entire dynamics. (b.)
Associated n2(t) of down-converted photons where both approximations are off
from the ab-initio result. (c.) The 3-level approximation qualitatively captures the
full dynamics of Q1(t), while the mean-field is zero for the full simulation by con-
struction. (d.) The 3-levels and Maxwell-Schrödinger approximations are off for
the complete time evolution.

In the previous sections, we investigated the down-conversion process from an
ab-initio light-matter description and showed that for stronger coupling the down-
conversion of photons can be pushed to occur at earlier times which can potentially
help to overcome dissipation and decoherence. Also we showed that the features of
the down-converted photons are qualitatively similar irrespective of how we pump
the system, i.e., either with an external classical field or external current or initial
states (one-photon and coherent state). We now want to further explore the proposed
cavity down-conversion setup to find an optimal setting for generating, on one hand,
an efficient polariton-mediated down-conversion process, and on the other hand, non-
classical and controlled down-converted photons. Non-classical down-converted pho-
tons as used here is identified by the minimum negative value of the Mandel Qα pa-
rameter. Such a polariton mediated down-conversion will highlight new possibilities
of defining novel photon sources such as an N-photon gun.

For this investigation, we consider the degenerate down-conversion case, i.e., mode
2 and 3 have the same frequency. Due to the degeneracy in energy, we decouple signal
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mode 3 from Eq. (334) and the down-converted photons now populate only mode 2.
The polarization of signal mode 2 is set as Â2 = Â2ey by choosing θ2 = 0◦ and
changing the polarization of the pump field to Â1 = Â1(cos θ1ex + sin θ1ey) where θ1

is the mixing angle between the photonic and electronic subsystems. The Hamiltonian
of Eq. (334) now reduces to the two-mode electron-photon Hamiltonian

ĤD = Ĥ2D + Ĥ1 + Ĥ2 −
e
m

Â1
(

p̂x cos θ1 + p̂y sin θ1
)
− e

m
Â2 p̂y

+
e2

2m
[
Â2

1 + Â2
2 + 2Â1Â2 sin(θ1)

]
. (340)

Since we showed that increasing the coupling strength pushes the down-conversion
process to earlier times, here we consider its maximal efficiency and minimum Man-
del Qα parameter in mode 2. To find the optimal setup, we will vary the polarization
directions (see Sec. 4.2.1), the anharmonicity of the binding potential of the QR (see
Sec. 4.2.2), and the coupling strength as well as the number of input photons (see
Sec. 4.2.3). In order to judge the efficiency of the down-conversion we consider the
maximal amount of mode occupation n(max)

2 (except of in Sec. 4.2.3 where we take a
more general definition) over the range of the first 40 ps. For the non-classicality we
determine the smallest value of Q(min)

2 over the same time interval.
We simulate the time-evolution dynamics of the ab-initio system, the three-level

approximation and the self-consistent Maxwell-Schrödinger approximation in the
strong-coupling regime (λ = 0.017). The initial state is a factorizable product state
of the electron in its ground-state, mode 2 in its vacuum state and the pump mode
1 is a coherent state with n1(0) = 4 photons (i.e. amplitude ξ1 = 2). For degenerate
two-photon generation considered here, the pump field with energy h̄ω1 = 1.413 meV
drives resonantly the transition between the ground- and first-excited state |ϕ0

1〉 ↔
|ϕ1

2〉, which populates the state |ϕ1
2〉. The energy of the signal mode h̄ω2 = 0.706 meV

is half that of the transition |ϕ0
1〉 ↔ |ϕ1

2〉 which indicates a two-photon process. As
the coupling g1 = 0.0398 of the pump mode is less than the coupling g2 = 0.0563
of the signal mode, the electron in the first-excited state |ϕ1

2〉 preferably relaxes to
the ground-state through a two-photon emission channel via a virtual state. From
a standard perspective, this process should be very inefficient if one looks only at
the dipole moments that are involved. However, as we will show that tuning the
frequency of the signal mode in resonance to a virtual state leads to the creation
of hybrid light-matter states that can efficiently mediate the down-conversion of the
input photons.

In Fig. (27), we show the results for photon occupations and Mandel Qα param-
eters of the pump photon for a mode-mixing angle θ1 = 60◦ and the degenerate
down-converted photons in signal mode 2. Some details for the ab-initio results of
the profile n1(t) show that at t = 5.61 ps, 0.82 of a photon is annihilated by an ab-
sorption process to promote the electron to the state |ϕ1

2〉. At a later time t = 5.84 ps,
the electron subsequently relaxes to the ground-state via the virtual state by emitting
two photons with maximum mode occupation n2 = 0.041. This apparent weak pro-
file for n2(t) is due to emission via virtual states and can be increased by increasing
the effective coupling strength. For the photon statistics, the pump field starts out in
a coherent state and leads to a field with super-Poissonian statistics (see Fig. (27.c))
while that of the generated photon pair varies between a field with bunching and



130 photon down-conversion in non-relativistic qed

anti-bunching features at different times, with the minimal value of Q2 = −0.0199
at t = 4.94 ps (see Fig. (27.d)). Now comparing the few-levels approximation (in
this case we only take three states into account) to the ab-initio case, we find in
Fig. (27.a,b) that it is relatively accurate, while the Maxwell-Schrödinger performance
is qualitatively correct only up to t = 5 ps and by construction it remains a coher-
ent field for the entire evolution with constant Q1 = 0. Both approximations deviate
from the ab-initio result in Fig. (27.b,d). We observe that the three-level approxima-
tion consistently overestimates the down-conversion efficiency including the varying
statistics of the photons in mode 2 (due to reducing the matter to three-levels), the
Maxwell-Schrödinger approximation under-estimates these quantities. We note that
for the Mandel Qα parameter this is by design and for the down-conversion effi-
ciency the Maxwell-Schrödinger neglects all the correlation between light and matter
that becomes beneficial in the strong coupling regime.

This ab-initio down-conversion scheme is indeed an inverse second-harmonic gen-
eration by coupling the signal mode to a virtual state at half the energy of the first
degenerate excited state |ϕ1

2〉. This is, however, not the only case. We show the case
of the third-, fourth- up to eleventh-photon generation (see Sec. 4.3) thereby introduc-
ing the concept of inverse high harmonic generation for realizing an N−photon gun.
The system can be tuned in an experimentally realizable way such that this setup can
potentially be used as an N−photon source with highly non-classical properties. In
the following section, we discuss the optimization for the inverse second-harmonic
generation process.

4.2.1 optimization of field polarization

Figure 28: (a.) The influence of the interference term in photon-pair generation by varying the
mixing angle θ1. Increasing θ1 increases the photon occupation. The 3-levels and
Maxwell-Schrödinger approximations are off from the exact results. (b.) Increasing
the mixing angle θ1 results in increasing sub-Poissonian statistics (anti-bunching)
of the down-converted photons.
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θ1 (◦) Exact n(max)
2 Exact Q(min)

2

0 0.0130 0.0

30 0.0206 0.0

45 0.0301 −0.0123

60 0.0413 −0.0258

90 0.0527 −0.0387

Table 4: The numerically exact real-space values for maximum n(max)
2 and minimum Man-

del Q(min)
2 for different mixing angles. Increasing θ1 increases n(max)

2 and decreases

Q(min)
2 .

First, we consider which relative polarization is most efficient to obtain a large
n2 and simultaneously minimizes Q2 (most negative value for antibunching). In our
setup this implies that we consider the mixing angle θ1 and the contribution of the
interference term 2Â1Â2 sin(θ1). To investigate this we perform the time-propagation
for different mixing angles θ1 = 0◦, 30◦, 45◦, 60◦, 90◦ for the coupling (λ = 0.017)
and choose as the input mode 1 in a coherent state with ξ1 = 2 and set V0 = 200
meV. In Fig. (28.a) we observe that for θ1 = 0◦, where the polarization of pump and
signal modes are perpendicular, we obtain the smallest value of n2 = 0.013 when
compared to all the cases with different mixing angels. The mean photon occupation
of the signal mode n2(t) is shown to increase with increasing angles due to the fact
that 2Â1 Â2 sin(θ1) becomes larger. For θ1 = 90◦ we find the highest down-conversion
of photons as we obtain n(max)

2 = 0.0527 since sin(θ1) = 1 and the polarization of
both modes are parallel with momenta contribution only in the y-axis (i.e., p̂y 6=
0 while p̂x = 0). In Fig. (28.b), the Mandel Q2(t) for θ1 = 90◦ shows the highest
non-classical (anti-bunching) features of the down-converted photons as Q(min)

2 =

−0.0387. For the angles θ1 = 0◦, 30◦, 45◦, 60◦, 90◦, the values of n(max)
2 and Q(min)

2
are given in Tab. (4). In Fig. (28.a,b) both the three-levels and Maxwell-Schrödinger
approximations deviate from the ab-initio results, however provide upper and lower
bounds. Although the Maxwell-Schrödinger [85] accounts for the mixing angle, it fails
to capture the induced correlations between the pump and signal modes, highlighting
that an efficient down-conversion process is driven in this strong-coupling case by the
quantum correlations between the different modes and the matter system. The three-
level approximation, on the other hand, overestimate these quantum correlations.

4.2.2 optimization of the matter spectrum

Next, we investigate the influence of the anharmonicity (controlled by potential pa-
rameter V0) of the electronic subsystem on the down-conversion process. The pump
mode 1 is chosen to be in a coherent state with on average n1(0) = 4 photons, assume
strong coupling (λ = 0.017) and set the mixing angle θ1 = 60◦ such that both momen-
tum components of the electronic system are non-zero (i.e., p̂x 6= 0 and p̂y 6= 0). The
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V0 (meV) h̄ω1 (meV) h̄ω2 (meV) Exact n(max)
2 Exact Q(min)

2

0.0 10.00 5.00 0.0049 −0.0019

50.0 3.121 1.560 0.0105 −0.0103

100.0 1.924 0.962 0.0227 −0.0178

150.0 1.580 0.790 0.0334 −0.0229

200.0 1.413 0.706 0.0413 −0.0258

250.0 1.311 0.655 0.0475 −0.0303

300.0 1.239 0.619 0.0527 −0.0348

Table 5: The pump energies for resonant coupling of the electron ground-state and first ex-
cited state and corresponding down-converted energies of the signal field for differ-
ent values of V0. The numerically exact real-space values for maximum n(max)

2 and

minimum Q(min)
2 .

potential parameter is varied as V0 = 0, 50, 100, 150, 200, 250, 300 meV (see Fig. (14.b))
which changes the transition energies between states from harmonic (all have the
same transition energy) to anharmonic (different transitions have different energies).
In Tab. (5), the transition energies from the electronic ground-state to the first ex-
cited state that the pump energy is resonant to and its down-converted energies are
shown. Also, increasing V0 also increases the transition dipoles (see Tab. (2.b)) of the
electronic system which leads to a stronger coupling between light and matter as
the coupling parameter is proportional to the transition dipoles as given explicitly in
Eq. (385).

In Fig. (28.c,d), we find that with an increasing V0 the maximum photon occupation
n(max)

2 also increases. Simultaneously, the character of the generated photon pairs be-
come increasingly anti-bunched as Q(min)

2 is shown to become more negative. These
interesting features result from (i.) the increasing dipole moments due to reducing
the width of the QR for increasing V0 and (ii.) an increase in the effective coupling
strength due to the reduced scaling of the transition energies (see Tab. (5)) as the ef-
fective coupling is related to the frequency by gα = λ

√
h̄/2ωα. We find that the three-

level approximation for V0 = 0 meV fails, because more than just three energy levels
are important when all electronic transitions have the same energy and a few spe-
cific transitions cannot be separated. When the system becomes strongly anharmonic
and hence a separation between states is more reasonable, the three-level approxi-
mation strongly overestimates the results. We still find that the Maxwell-Schrödinger
approximation consistently under-estimates the results.

4.2.3 optimization of the coupling and the input field

Finally, we consider the influence of the coupling alongside the strength of the
pump field on the efficiency of the down-conversion process. When we increase the
number of photons in the input mode 1, this leads to the generation of more photons
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Figure 29: (a.) Comparison of the down-conversion efficiency for the 3-levels and mean-field
approximations of the real-space numerically exact coupled electron-photon sys-
tem for increasing input mode 1 amplitude ξ1. For the exact system, we vary
ξ1 = 1, 2, 3, 4 because of the large dimensionality. (b.) Increasing efficiency for in-
creasing λ for the 3-level and mean-field approximations of the real-space coupled
system.

in signal mode 2 (see Sec. 4.3). Therefore, there is the need of a way to judge the
efficiency of the down-conversion. To measure the efficiency, we choose the ratio of
the photon energy of down-converted photons to the photon energy of the pump
field, i.e., η

(H)
21 = max(H2(t)/H1(t0)). In this definition, simply increasing the input

field does not directly lead to a higher efficiency. To perform the different simulations,
we choose a mixing angle of θ1 = 60◦, a binding potential strength of V0 = 200 meV,
a coupling strength of λ = 0.017 and then different initial states for mode 1 by
scanning ξ1 = 1, 2, 3, ..., 10 such that the input field has n1(0) = 1, 4, 9, ..., 100 photons
at the initial time.

The results for this calculation is given in Fig. (29.a). We find that by increasing the
strength of the pump field via the amplitude ξ1 the efficiency of the down-conversion
decreases. The ab-initio simulation for such large number of photons becomes numer-
ically very expensive due to a large number of Fock states that has to be included to
correctly describe the different coherent states for larger amplitudes. Therefore, we
extrapolate by using the three-level and the Maxwell-Schrödinger approximations.
As is expected, for increasing amount of photons in the pump mode 1 the Maxwell-
Schrödinger theory becomes increasingly accurate and in the limit of very large pho-
ton numbers it should become exact (in the case of weak coupling). Since the GaAs

semiconductor QR can only convert a finite amount of photons in the considered 40
ps, in this limit η

(H)
21 goes to zero. On the contrary, by fixing the amplitude of the in-

put mode to ξ1 = 2 with n1(0) = 4 photons, but rather increase the coupling strength
λ = 0.014, 0.017, 0.019, 0.026, 0.044, we see that the efficiency increases as shown in
Fig. (29.b). However, both approximations are shown to overestimate the efficiency
for large λ. We note that for very large coupling strengths, the quantum correlations
no longer provide a higher down-conversion rate but rather the shear strength of the
coupling terms that dominates. Therefore, by controlling the photonic environment
to reach the ultra-strong coupling limit, the degenerate two-photon down-conversion
is strongly enhanced.

So far, we presented the possibilities that arise if we do not make the initial assump-
tion to treat light and matter separately. Our numerical simulations of non-relativistic
QED showed how novel hybrid light-matter states (polaritons) are created that can act
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as pathways in a photon down-conversion process. We studied the case of inverse
second-harmonic generation by coupling the signal mode to a virtual state half the
energy of a chosen excited state and optimized the down-conversion scheme to gain
an efficient down-conversion. In the following, we explore this polariton-mediated
down-conversion scheme to realize and N-photon source.

4.3 inverse harmonic generation : an N -photon source

In this section we further explore this polariton-mediated down-conversion scheme
to realize an N-photon source. This is motivated by the growing range of quantum ap-
plications which makes it increasingly important to diversify the available quantum
sources of photons. The quest for such photon sources has been achieved in a cavity
QED setting by employing a few-levels approximation [177]. Since in Sec. 4.2, the in-
verse second-harmonic generation involving virtual (and polariton) states was shown
to be efficient (even more so with stronger coupling), this makes it a viable scheme for
realizing an N-photon source. Since the few-level and Maxwell-Schrödinger approx-
imations were shown to not be absolutely reliable for down-conversions involving
virtual states (see Sec. 4.2), we will not consider these approximations here. We inves-
tigate such a down-conversion process with the same cavity setup as in Fig. (16.a).

The N-photon down-conversion presented here is the degenerate case (i.e. degen-
eracy in energy). Therefore, in a similar way to the degenerate two-photon down-
conversion in Sec. 4.2, all the signal modes for each of the respective Nth-photon
down-conversions (described by a Hamiltonian Eq. (49)) will populate just a single
signal mode (here denoted signal mode 2). This reduces the parameter space and in
this case the Hamiltonian simplifies to the two-mode electron-photon Hamiltonian of
Eq. (340). We consider the optimized setup deduced in Sec. 4.2, therefore, the poten-
tial strength parameter is V0 = 200 meV (suitable anharmonicity), θ1 = 90◦ (pump
and signal modes are parallel) and λ = 0.017. The Hamiltonian in this case further
simplifies to

ĤND = Ĥ2D + Ĥ1 + Ĥ2 −
e
m
[
Â1 + Â2

]
p̂y +

e2

2m
[
Â2

1 + Â2
2 + 2Â1Â2

]
. (341)

As in the previous sections, mode 1 is the input pump mode and the vector potential
has the explicit form Âα = λq̂α with α = 1, 2 where the coupling λ is assumed
to be equal for both modes. While in the previous sections we were interested in
the efficiency of the down-conversion process and the non-classical properties of the
generated photons. Here, the focus is mainly on how efficient is it to generate N-
photons via coupling the signal mode to virtual and potentially polaritonic states for
increasing N. In the following, we consider the consecutive N = 2-, 3-, 4-,...,11-photon
down-conversions.

The down-conversion scheme is as follows. The active electron initially in the
ground-state |ϕ0

1〉 is promoted to the excited state |ϕ1
7〉 of energy h̄ω1 = 24.65 meV

by the pump field. For the different degenerate down-conversions, the signal mode
is: one-half (2-photon down-conversion), one-third (3-photon down-conversion), one-
fourth (4-photon down-conversion) up to one-eleventh (11-photon down-conversion)
the energy of the excited state (|ϕ1

7〉 at energy h̄ω1 = 24.65 meV), respectively (see
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Figure 30: Illustration of an N-photon down-conversion scheme. The active electron in the
excited-states |ψ−1,1

7 〉 relaxes to the ground-state |ψ0
1〉 via virtual states (gray

dashed lines) to which the signal mode couples to. The energy of the signal
mode for the different down-conversions is chosen to be: one-half (2-photon
down-conversion blue), one-third (3-photon down-conversion green), one-fourth
(4-photon down-conversion red) up to one-eleventh (11-photon down-conversion
violet) the energy of the excited state.

Fig. (30) for down-conversion scheme). Such down-conversion scheme represents an
inverse (high-) harmonic generation via virtual and potentially polaritonic states and
the energies for all the down-converted photons are given in Tab. (6). For all these
cases, the effective coupling of the pump mode is g1 = 0.0095 while that for the differ-
ent down-conversions are determined from g2 = λ

√
h̄/2ω2 where ω2 = ω1/N with

N = 2, 3, 4, ..., 11. For N ≥ 2 the effective coupling g1 < g2, thus the electron in the
excited state |ϕ1

7〉 will relax to the ground-state via virtual states thereby generating
N-photon into the signal mode. The down-conversion scheme obeys the respective
energy and momentum conservations in the photonic subspace given by h̄ω1 = Nh̄ω2

and h̄k1 = Nh̄k2, where N = 2, 3, 4, ..., 11, ... .
To simulate such an N-photon down-conversion, we numerically solve the time-

dependent Schrödinger equation (6) with the Hamiltonian of Eq. (341). Since the
computed observables in the time-evolution were shown to be robust to whether the
system is driven by an external field or by a chosen initial state with same number of
photon (see Sec. 4.1.6 and Fig. (25)), we consider here a factorizable initial state of the
form |Ψin(0)〉 = |ϕ0

1〉|φ1〉|02〉, where the signal mode is the vacuum state |02〉 and the
pump mode is a coherent state |φ1〉 = |ξ1〉. At the initial time the input mode is a field
in a coherent state with amplitude ξ1 = 2 with on average n1(0) = 4 photons. The
expectation values of the photon number operator for the time-evolved wavefunction
is computed, i.e., nα = 〈â†

α âα〉. This quantity indicates how much photons have been
down-converted from the pump to the signal mode.
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Figure 31: (a.) Real-time photon occupation of the signal mode showing the profiles for two-
up to eleven-photon down-conversions for ξ1 = 2. The maximum amplitude of the
photon occupations n2(t) increase with increasing order N. (b.) A zoom-in view
of (a.) showing the profile of the two- to eighth-photon down-conversions with
the same increasing trend. Panel (c.) shows the maximum n(max)

2 for each of the
N-photon down-conversions for the evolved time in panel (a.). Panel (d.) shows
a zoom-in view of (c.) showing the n(max)

2 of the two- up to eighth-photon down-
conversions.

In Fig. (31.a) we show the real-time photon occupations of the signal modes for all
the N = 2, 3, 4, ..., 11-photon down-conversions for up to t = 20 ps. The amplitude
(amount of down-converted photons) of n2(t) is shown to increase for increasing
N. Fig. (31.b) is a zoom-in view for N = 2 up to N = 8 photon down-conversions
which show clearly the increasing trend for the amount of down-converted photons.
The N = 9, 10, 11 photon down-conversions are shown to have significant down-
converted photons when compared to the others. This can be attributed to the fact
that their energies (see Tab. (6)) are close enough to resonance to the dipole-allowed
transition |ϕ0

1〉 ↔ |ϕ
−1,1
2 〉 with energy h̄ω12 = 1.41 meV and potentially polaritonic

states (as discussed in Sec. 4.3.1). This increase in the occupation for these down-
conversions will not be captured if we employed the few-levels approximation that
considered just the two states to which the pump mode is resonant to (i.e. |ϕ0

1〉 ↔
|ϕ−1,1

7 〉). Also in Fig. (31.c) we plot the maximal amount of the mode occupation
n(max)

2 obtained for the 20 ps time-evolution for the different down-conversion cases.
The maximum mode occupation n(max)

2 is shown to increase for increasing order of
N. The zoom-in view of Fig. (31.d) shows an approximate quadratic increase for
N = 2 up to N = 8 of the different down-conversions. The mode occupation n1(t)
of the pump modes are all qualitatively the same for all the down-conversions (see
Fig. (32.a)) up to around 7 ps where they start to differ strongly for higher N. The
loss of photons from n1(t) after t = 7 ps is shown to be consistent with the increase
in n2(t) for the N = 9, 10, 11-photon down-conversions. The non-classical properties
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Figure 32: Real-time photon occupation of the pump mode for 2-,3-,4-,..., 11-photon down-
conversions. Panel (a.) shows the occupation when the amplitude of the coherent
state of the pump field is ξ1 = 2 with n1(0) = 4 photons. Panel (b.) shows the
occupation for the case ξ1 = 4 with n1(0) = 16 photons.

of the down-converted photons such as antibunching feature can be computed using
the generalized Mandel Q(N)

α parameter [169, 178] given by

Q(N)
α =

〈(∆nα)
N〉 − 〈n̂α〉
〈n̂α〉

. (342)

The interpretation of the photon statistics obtained from Eq. (342) is the same as that
of Eq. (335). That is, for all N ≥ 2, a field with non-classical properties, the range of
values lies between −1 ≤ Q(N)

α < 0 which is sub-Poissonian statistics (antibunching
behavior). Fields with super-Poissonian statistics (bunching behavior) have Q(N)

α > 0
and for a coherent state with Poissonian statistics, Q(N)

α = 0. In Sec. 4.3.1, we compute
the third-order Mandel Q(3)

α parameter for the three-photon down-conversion as an
example case to study the non-classicality of the down-converted photons.

From the results of Fig. (31), we can conclude that the down-conversion can be
tuned with the system parameters (e.g. frequency of signal mode 2) so that the down-
conversion scheme behaves as a laser or as an N-photon gun [177]. Interestingly, the
higher-order down-conversions are shown to be more efficient than the lower ones
which makes it a viable source for an N-photon gun. The increase of the efficiency is
due to two reasons (i.) near-resonance conditions to a dipole-allowed transition and
(ii.) for smaller frequencies the effective coupling g2 increases. Of course, one cannot
just increase the coupling arbitrary by reducing the frequency to zero because there
is a natural renormalization in the lower frequency, which appears as an intrinsic
frequency cutoff [41, 43]. A careful analysis shows that this intrinsic cutoff, which
depends on the number of particles, makes sure that no infrared divergence appears.
However, if this natural renormalization of the frequencies is not taken properly into
account, such an unphysical divergence appears.

Next, we investigate the influence of a stronger input field on the down-conversion
while the system parameters are kept the same. For this we follow closely the results
of Sec. 4.2.3 and choose an amplitude of the pump field to be ξ1 = 4 such that the
field has on average n1(0) = |ξ1|2 = 16 photons at the initial time. In Fig. (32.b),
we show the mode occupations of the pump mode for N = 2, 3, 4, ..., 11. Similar to
the case with ξ1 = 2, the occupations n1(t) are qualitatively the same up to around
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Figure 33: (a.) Real-time photon occupation of the signal mode showing the profiles for two-
to eleven-photon down-conversions for ξ1 = 4. The maximum amplitude of the
photon occupations n2(t) increase with increasing order N. (b.) A zoom-in view
of (a.) showing the profile of the two- to eighth-photon down-conversions with
the same increasing trend. Panel (c.) shows the maximum n(max)

2 for each of the
N-photon down-conversions for the evolved time in panel (a.). Panel (d.) shows
a zoom-in view of (c.) showing the n(max)

2 of the two- to eighth-photon down-
conversions. The N = 9-photon down-conversion is shown to increase significantly
compared to the case with ξ1 = 2.

t = 4 ps except for N = 6 and afterwards they start to differ for N ≥ 9. Also, we
plot the mode occupations n2(t) in Fig. (33). We observe that the amount of down-
converted photons in the signal modes have increased when compared to Fig. (31)
where ξ1 = 2 and also the trend of increasing n2(t) for increasing N still holds (see
Tab. (6)) except for N = 9. Such an increase in the occupation of the signal mode
is due to stronger pumping and this is in agreement with the case of three-photon
PDC using a flux-pumped superconducting parametric cavity where they observed
that increasing the strength of the pump field increases the brightness of the triplet
source [179]. Analogous to this observation, we see a similar increase in our case for
N = 3 and for higher N-photon down-conversions (see Tab. (6)). Therefore, our ab-
initio results serve as a generalization of this effect to higher-order down-conversions.
In addition, we observe by comparing Fig. (33.a) to (31.a) that the down-conversion
can be pushed to occur at earlier times similar to Sec. 4.1, however here for stronger
pumping. This implies a suitable choice of the strength of the input field and strong
coupling will potentially overcome detrimental decoherence effects.

The non-classical properties of the down-converted photons are usually of impor-
tance due to their applications in quantum-information processing [139, 140]. In
the following, we consider the N = 3 down-conversion and show that the down-
converted photons have strong non-classical properties.
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N− photon h̄ω2 (meV) n(max)
2 for ξ1 = 2 n(max)

2 for ξ1 = 4

2 12.32657 0.00027956 0.00032736

3 8.21771 0.00031508 0.00037502

4 6.16328 0.00048875 0.00064416

5 4.93063 0.00078086 0.00109885

6 4.10886 0.00114483 0.00255912

7 3.52188 0.00193335 0.00359964

8 3.08164 0.00318637 0.01215882

9 2.73924 0.01312342 0.24051696

10 2.46531 0.05239264 0.07836939

11 2.24119 0.06927053 0.20012262

Table 6: The energies of the down-converted photons for different inverse harmonic genera-
tions. Accompanying the energies are the maximum photon occupation of the signal
mode for a time-evolution of 20 ps for ξ1 = 2 and ξ1 = 4. The energy of the pump
mode is h̄ω1 = 24.65 meV.

4.3.1 three-photon down-conversion in strong coupling

In the previous section we demonstrated how to realize an N-photon source by cou-
pling the signal mode to virtual states and potentially polaritonic states. This novel
down-conversion scheme highlighted new possibilities that become available when
we treat light and matter on an equal quantized footing, as the strong coupling regime
presented the possibility of polariton-mediated N-photon down-conversion by cou-
pling to virtual states. These down-conversion pathways will not be available if one
considers just classical fields that couples to the matter subsystem as in a non-linear
optics approach. In this section, we want to investigate the non-classical properties
of the down-converted photons since they are of importance in a down-conversion
process. As an example, we study the case of three-photon down-conversion.

We consider the 3-photon down-conversion case in Sec. 4.3 but for non-degenerate
three-photon down-conversion via coupling to selected electronic states. We do this to
investigate how the efficiency of the down-conversion increases when dipole-allowed
transitions are involved. This will also validate our prediction in Sec. 4.3 where for
N = 9, 10, 11 the efficiency of the down-conversion increased considerably due to
near resonance condition with the dipole-allowed transition |ϕ0

1〉 ↔ |ϕ
−1,1
2 〉. We note

that the current study of three-photon down-conversion is also motivated by appli-
cations in which PDC leads to the creation of entangled photon triplets which serves
as a source for generating three-photon entangled states such as Greenberger-Horne-
Zeilinger states [180], as well as heralded entangled triplets [181]. A widespread and
common technique for realizing three-photon generation is by means of a cascaded
PDC. This is an approach in non-linear optics where one of the photons from a pri-
mary PDC process is used to pump a secondary down-conversion source leading
to the generation of polarization entangled photon triplets [180–183]. This approach
usually results in low conversion efficiency and scalability, which limits its applica-
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Figure 34: Resonant coupling to specific energy-levels (dark-shaded) for cascaded three-
photon down-conversion. The pump mode (light blue) drives resonantly the tran-
sition |ψ0

1〉 ↔ |ψ
−1,1
7 〉 while the signal modes couple resonantly |ψ0

6〉 ↔ |ψ
−1,1
7 〉

(red for mode 2), |ψ0
6〉 ↔ |ψ

−1,1
2 〉 (pink for mode 3) and |ψ0

1〉 ↔ |ψ
−1,1
2 〉 (orange for

mode 4).

tion [181]. We showed in Sec. 4.1.4.2 that by manipulating the photonic environment
we can control the down-conversion features such as efficiency, non-classicality and
earlier down-conversion times by stronger coupling. Therefore, our ab-initio simu-
lation of quantum light-matter interaction for a three-photon down-conversion will
present a way to overcome limitations in this process by changing the photonic en-
vironment. To investigate the three-photon down-conversion we employ the same
cavity setup as in Fig. (16.a). Since we want to investigate the efficiency of the down-
conversion due to resonant coupling to dipole-allowed transitions, we explicitly de-
scribe three signal modes together with the pump mode. The schematic for the res-
onant coupling of all four modes is shown in Fig. (34). Still working in the dipole
approximation, the Pauli-Fierz Hamiltonian for this setting is given by

Ĥ3D = Ĥ2D + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 −
e
m
[
Â1 + Â2 − Â3 + Â4

]
p̂y

+
e2

2m
[
Â2

1 + Â2
2 + Â2

3 + Â2
4 + 2Â1Â2 − 2Â1Â3 + 2Â1Â4

−2Â2Â3 − 2Â2Â4 − 2Â3Â4
]

. (343)

The above Hamiltonian is similar to Eq. (341) but here the three signal modes are
included explicitly, where Ĥ2D is the bare Hamiltonian of the matter subsystem given
in Eq. (332) and p̂y is the y-component of the momentum operator of the 2D QR. The
photonic Hamiltonians Ĥα of the selected modes have the form of Eq. (38) and the
vector potentials are Âα = λq̂α where α = 1, 2, 3, 4 and we assume equal coupling for
the all modes λα = λ.

We now outline the optimizations and specifics applied here based on the obser-
vations in Sec. 4.2. In analogy to the two-photon non-degenerate case (see Sec. 4.1),
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mode 1 is the pump mode while modes 2, 3, 4 are the signal modes. Based on the op-
timization of the field polarizations and matter subsystem (see Secs. 4.2.1 and 4.2.2),
we choose the polarization of the selected cavity modes to be Â1 = Â1ex, Â2 = Â2ex,
Â3 = −Â3ex and Â4 = Â4ex as they maximize the mode-mode interaction terms
due to the diamagnetic contribution and the potential strength parameter is V0 = 200
meV. Also, since increasing the coupling strength increases the efficiency of the down-
conversion and as well push the down-conversion events to earlier times with poten-
tial to overcome decoherence effects (see Secs. 4.2.3 and 4.1.4.2), we hereby choose
the strong coupling regime where λ = 0.017. Based on previous considerations were
the bath modes were shown to not affect strongly the down-conversion efficiency
(see Sec. 4.1.4.1 and Fig. (17)), we assume that the bath modes will not be important
here. Also, since we consider strong coupling we expect that the bath modes are less
important.

Figure 35: Real-time photon occupations and Mandel Q(3)
α parameters for three-photon down-

conversion. Panel (a.) shows how the occupation from the input field is down-
converted to the signal modes which have significant occupations in panels (b.)-
(d.). Panels (e.)-(h.) shows the photon statistics of the pump (mainly bunched) and
signal modes (mainly anti-bunched).

Contrary to the case of non-degenerate two-photon down-conversion discussed in
Sec. 4.1.5 where one of the signal modes was less efficient due to coupling resonantly
to a non-dipole allowed transition, we find here that we can couple all the signal
modes to dipole-allowed transitions. This is because between the ground-state |ψ0

1〉
and excited state |ψ1

7〉, we can find three electronic transitions (dipole-allowed) that
change their angular momentum |l| by a value of one (see Fig. (34)). Therefore, we
prepare pump mode 1 (input field) in a coherent state with amplitude ξ1 = 2 such
that there are n1 = 4 photons in the initial pulse while the signal modes are in the
vacuum state. The pump field drives resonantly the electronic transition |ϕ0

1〉 ↔ |ϕ1
7〉

of energy h̄ω1 = 24.65 meV. The signal modes are chosen such that mode 2 is resonant
with the transition |ϕ1

7〉 ↔ |ϕ0
6〉 of energy h̄ω2 = 1.36 meV, mode 3 is resonant with

the transition |ϕ0
6〉 ↔ |ϕ1

2〉 of energy h̄ω3 = 21.88 meV and mode 4 is resonant with



142 photon down-conversion in non-relativistic qed

Figure 36: One-, two-, and three-photon Fock state populations for pump and signal modes.
The two-photon Fock states of the signal modes is most populated when compared
to the one- and three-photon Fock states except for mode 3 for the time-evolution
shown.

the transition |ϕ1
2〉 ↔ |ϕ0

1〉 of energy h̄ω4 = 1.41 meV. Such a scheme hereby forms
an atomic cascade of the form |ϕ1

7〉 → |ϕ0
6〉 → |ϕ1

2〉 → |ϕ0
1〉 (see Fig. (34)). The

effective coupling gα = λ
√

h̄/2ωα for each of the modes are g1 = 0.0095, g2 = 0.0407,
g3 = 0.0101 and g4 = 0.0398. Since the coupling g1 of the pump mode is smaller
in comparison to that of the signal modes g2, g3, g4, the electron in the excited state
|ϕ1

7〉 preferably relaxes to the ground-state by cascaded emission of three photons
into signal modes 2, 3 and 4, respectively. The three-photon generation into signal
photons obeys the energy and momentum conservations in the photonic subspace
given by h̄ω1 = h̄ω2 + h̄ω3 + h̄ω4 and h̄k1 = h̄k2 + h̄k3 + h̄k4, respectively.

We simulate the time-evolution dynamics of the three-photon down-conversion by
explicitly propagating the time-dependent Schrödinger equation of Eq. (6) with the
Hamiltonian of Eq. (343). The initial state is a factorizable product state |Ψin(0)〉 =
|ϕ0

1〉|ξ1〉|02〉|03〉|04〉 where |ϕ0
1〉, |02〉, |03〉 and |04〉 are the ground-state and vacuum

states of the electronic and photonic subsystems, respectively, while the state |ξ1〉 of
the pump mode is a coherent state. We note that we could increase the amplitude ξ1

to obtain more photons in the signal mode as discussed in Sec. 4.3. However, since
we want to compare to the case in Sec. 4.3 how coupling resonantly to dipole-allowed
transitions influences the efficiency of the down-conversion, we choose the amplitude
ξ1 = 2. The expectation value of observables of interest for the time-propagation
are computed for each time step, ∆t = 0.029 fs, of the time-evolved wavefunction.
We consider the time-evolution up to 20 ps. This choice is based on arguments in
Sec. 4.1.4.1 where it is expected that the system stays coherent for up to 40 ps and by
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Figure 37: (a.) Purity of the pump and signal modes showing how each modes become entan-
gled after t > 0 in real-time. (b.) Shows the third-order cross-correlation between
the pump and signal modes. Gray dashed line indicates when the modes are cor-
related (Dαβγ > 0), anti-correlated (Dαβγ < 0) or uncorrelated (Dαβγ = 0).

increasing the coupling strength, one expects to have the maximum down-conversion
at an earlier time (see Fig. (19.b,c) for increasing λ).

To monitor the absorbed and emitted photons from the cascade, we compute the
real-time photon occupations of the pump n1 = 〈â†

1 â1〉 and down-converted signal
modes n2 = 〈â†

2 â2〉, n3 = 〈â†
3 â3〉 and n4 = 〈â†

4 â4〉. In Fig. (35.a-d) we show the mode
occupations of the pump and signal modes as photons are down-converted from the
pump mode to the signal modes. All signal modes are shown to have significant
photon occupations which can be attributed to the dipole-allowed transitions that
these modes are resonant with. This validates our prediction in Sec. 4.3 that for near
resonance (and in this case resonant) conditions with the dipole-allowed transitions
|ϕ0

1〉 ↔ |ϕ
−1,1
2 〉 the efficiency of the down-conversion for N = 9, 10, 11 increased con-

siderably. The efficient down-conversion is also accredited to the optimized setup
employed here that maximized the contributions coming from the mode-mode inter-
actions of the diamagnetic term. Put together, this ensures an efficient three-photon
generation in an ab-initio cavity controlled down-conversion setting. We note that
while the down-converted photons are split between three modes similar to Ref. [179],
these photons can be generated in a single mode (see Sec. 4.3 for N = 3 and Ref. [179]).
It is interesting to characterize the state of the generated photons. Since this is a third-
order process, we compute the third-order Mandel Q(3)

α parameter deduced from
Eq. (342) and given as

Q(3)
α =

(∆nα)
3 − 〈n̂α〉
〈n̂α〉

, (344)

where deviation of the third-moment from the mean is given explicitly as (∆nα)
3 −

〈n̂α〉 = 〈â†
α â†

α â†
α âα âα âα〉 − 3〈â†

α âα〉〈â†
α â†

α âα âα〉 + 3〈â†
α â†

α âα âα〉 − 3〈â†
α âα〉2 + 2〈â†

α âα〉3. In
Fig. (35.e-h) we show Q(3)

α (t) for all the modes. The photon statistics of the sig-
nal modes shows that the down-converted photons are non-classical (anti-bunched)
while the pump mode has a classical features (bunched) for most of the time-evolution
shown. From this result, we can predict that for higher-order down-conversions (as
considered in Sec. 4.3) the photon statistics of the down-converted photons (com-
puted using Eq. (342) for different N) will have stronger antibunching features when
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the signal modes are resonant to dipole-allowed transitions. The non-classical fea-
tures of the down-converted photons are particularly of interest since they are used
for quantum information processing [184]. We equally show the one-, two- and three-
photon Fock state populations of the pump and signal fields in Fig. (36). Here we
highlight for the case of the signal modes that the two-photon Fock states are most
populated when compared to the one- and three-photon Fock states except for mode
3. This observation is similar to the non-degenerate case in Fig. (21) where it becomes
difficult to identify in a simple manner the photon down-conversion process as a
single photon being down-converted to three photons since we have many photon
states that mix.

Finally, we investigate the entanglement and cross-correlation between the down-
converted signal modes and as well the pump mode. We characterize the individual
entanglement of the photonic subsystems by computing the purity γα where α =

1, 2, 3, 4 (see Eq. (386)). In Fig. (37.a), we show the purity results of the pump and
signal modes as they all start out uncorrelated (since γα = 1) and for the entire time-
evolution, in order of most entangled (minimum γα) are γ4 < γ2 < γ1 < γ2. Since
the purity γα < 1 for all modes, this implies that the initial uncorrelated state at
t = 0 becomes correlated at a later time as the wavefunction is non-separable thus
specifying entanglement in the system. Also, cross-correlations between the down-
converted photons is also a desired non-classical feature. To investigate for mode-
mode correlation between the pump and signal modes, we compute the third-order
cross-correlation function which we define as

g(3)αβγ =
〈â†

α âα â†
β âβ â†

γ âγ〉
〈â†

α âα〉〈â†
β âβ〉〈â†

γ âγ〉
. (345)

The above expression has the same interpretation as the second-order cross-correlation
function of Eq. (336). The correlation function D(3)

αβγ is related to the third-order cross-

correlation by D(3)
αβγ = 〈n̂α〉〈n̂β〉〈n̂γ〉

(
g(3)αβγ − 1

)
. The correlation function D(3)

αβγ takes
values greater than zero for correlated modes. For uncorrelated modes, it is equal to
zero and it takes values less than zero if the modes are anti-correlated. In Fig. (37.b),
we show that all the modes are uncorrelated up to t = 3.97 ps. From there on, the
photon modes show varying temporal correlation and anti-correlation. The modes
specified by the correlation function D(3)

134 vary between anti-correlated and corre-

lated while the correlation function D(3)
124 is anti-correlated for the remainder of the

simulation. Interestingly, the correlation function D(3)
234 for the down-converted sig-

nal photons is correlated for the remainder of the simulation, also with correlation
function D(3)

123. This is a desired feature usually observed for three-photon down-
conversion [180–182, 185, 186].

To conclude, we found that our cavity-controlled first-principles description of
the down-conversion process can be used to achieve an N-photon source via cou-
pling the signal mode to virtual and potentially polaritonic states. The efficiency can
be increased when the signal mode(s) is close to resonance with a dipole-allowed
transition or when it resonantly couples. To study the non-classical character of the
down-converted photons, we considered the case N = 3 and showed that the down-
converted photons have strong non-classical features of antibuching, cross-correlation
and entanglement. The cavity-controlled down-conversion scheme made accessible
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new observable quantities due to quantized light-matter interaction. We expect that
for higher-order down-conversions, the down-converted photons will have such non-
classical properties as well.

4.4 summary

In summary, we highlighted the details that become accessible and controllable for a
photon down-conversion process when light and matter are treated on an equal quan-
tized footing within an ab-initio light-matter simulation. We showed that by manip-
ulating the photonic environment to attain stronger coupling, the down-conversion
can be pushed to occur at earlier times potentially overcoming detrimental decoher-
ence effects. Also, we highlighted that the quantized light-matter description of the
down-conversion process makes accessible novel observables that are not usually
observed in the usual down-conversion, such as occupation, photon statistics and
entanglement of the pump mode as well as cross-correlation between the pump and
signal modes. In addition, we highlighted that by coupling the signal mode(s) to
virtual and polaritonic states, we can engineer new down-conversion pathways and
the efficiency of the process can be increased by increasing the coupling strength.
With this, we proposed a polariton-mediated down-conversion scheme to realize an
N-photon gun (source). Comparing to other approaches employed to investigate the
down-conversion process, we showed cases where the usual descriptions that utilizes
the few-level approximation (quantum optics approach) and Maxwell Schrödinger ap-
proximation (non-linear optics approach) become less accurate. This finding supports
the need for an ab-initio description of the down-conversion process.
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C O N C L U S I O N





5
S U M M A RY, C O N C L U S I O N A N D O U T L O O K

In the course of this thesis, we presented an ab-initio description of coupled light-
matter systems in the linear response regime and beyond the linear response regime.
These first-principles descriptions are capable of describing experimental observa-
tions that shows how properties of matter can be controlled and modified on the
nanoscale by coupling to photons in high-Q optical cavities or plasmonic devices.
For the case of the linear response regime, existing standard ab-initio methods that
do not include the photon field in their description are not capable of capturing fea-
tures of strong light-matter interaction. By introducing the linear-response regime of
coupled matter-photon systems where strong light-matter coupling is usually identi-
fied by linear spectroscopy, the methods developed in this thesis were shown to cap-
ture excited-states properties of strongly coupled light-matter systems as polaritonic
peaks emerge in the absorption spectra. Such modified spectra are usually observed
in experiments by coupling resonantly a photon mode to an electronic excitation [90].
In most of such strong coupling experiments, the focus is usually on how the photon
field changes the matter properties and less on the effects of how the matter sub-
system changes the photon field. Looking at the problem in this way misses out on
interesting effects that show up in the photonic subsystem especially since there is a
self-consistent interaction between both matter and photon in this coupling regime.
In light of this, we computed the spectrum of the displacement field and observed
features of strong coupling (polaritonic peaks) that indicate the cross-talk between
both subsystems. This highlights that novel linear spectroscopic observables can be
accessed that give a detail understanding of how light and matter interact and also
entails that the Maxwell’s equation in matter get modified due to this self-consistent
cross-talk. These results change the perspective of strong-light matter interaction as
well as open up new possibilities to be investigated. For example, we showed how to
compute the lifetimes from first-principles in a non-perturbative way of not only elec-
tronic excited-states but also that of polaritonic states by sampling the photon bath.
This is important because the lifetimes of these states are usually computed with per-
turbative Wigner-Weisskopf theory which is less accurate in some cases as we showed
in Chap. 3.6.5. As the ab-initio description allows to sample the photon bath densely
with thousands of photon modes, this allows us to investigate non-standard situa-
tions. For example, we showed how one can achieve a transition from Lorentzian to
Fano lineshapes by strongly coupling to the continuum. Standard matter-only meth-
ods such as those employed in electronic-structure or quantum chemistry cannot
capture this important feature. This example makes a good case as to why standard
matter-only methods need further development to include the contributions of the
photon field as in the case of QEDFT and QED-CC. Our ab-initio results are an impor-
tant first step for treating excited-states properties of coupled matter-photon systems.
At present, QEDFT which scales well with the coupled system size is still at its infancy
stage as it has been applied to static situations [17] or very simple time-dependent
problems [12, 13, 22, 91]. Since we have developed in this thesis a linear-response
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formulation and numerical methods within the framework of QEDFT which is suf-
ficient for many interesting observables that identify features of strong light-matter
coupling, this puts QEDFT at the spotlight for several different applications. The QEDFT

linear-response methods are gaining recognition as they have been applied to differ-
ent situations of strong-light matter coupling [19, 20, 23, 47] and have potential to
unravel new interesting chemical and physical effects.

As QEDFT is exact to all orders, some of the numerical methods (e.g. Sternheimer
method) developed in this thesis can be extended beyond the linear response regime.
Going beyond the linear-response regime of strong light-matter coupling using QEDFT

is a topic under consideration now since there is high potential for new findings. In
order for us to get a detailed understanding of non-linear processes in the strong light-
matter coupling regime, we considered the paradigmatic case of non-linear optics
and quantum optics for photon down-conversion process from an ab-initio perspec-
tive when light and matter are treated on an equal level of theory. This was motivated
by the growing range of quantum applications which makes it increasingly important
to diversify the available quantum sources of photons [177]. In this study we found
that coupling strongly to a photonic environment opens new possibilities that would
not be captured with the standard approaches. For example, we showed that cou-
pling the signal mode to virtual or non-dipole allowed states creates new pathways
for photon down-conversion and with this a novel source of photons (photon gun)
with non-classical properties. This highlights a new possibility of engineering photon
sources in non-linear processes using hybrid light-matter states (polaritons) in which
the efficiency of the down-conversion can be controlled in an experimentally realiz-
able way by varying the photonic environment. Such a down-conversion will not be
possible using a non-linear optics approach and with a quantum optics approach,
it becomes less accurate. Another new possibility is the potential to overcome the
undesired detrimental effects of decoherence by strong coupling, since it causes the
down-conversion of photons to occur at earlier times when the system is expected to
stay coherent. This ab-initio study of the down-conversion for strong light-matter in-
teraction also highlighted novel observables of the subsystem that become accessible
due to the quantized treatment of the coupled system. The standard approaches do
not capture this new possibilities because they treat light and matter differently. The
results of the down-conversion processes together with the linear-response studies
highlight how not only the matter properties get modified but also how the photon
field gets modified due to the self-consistent interaction between the coupled system
at this level of theory. This opens up new possibilities that can be investigated for
coupled light-matter systems.

Outlook. In Chap. 3.6.4 we showed the shift in peak position (Lamb shift) due to
coupling to a continuum of photon modes. Such a shift is usually dealt with by renor-
malizing the bare mass in non-relativistic QED. To get an in-depth understanding of
how this is done for bound systems, we will investigate such a renormalization pro-
cedure using a numerically exactly solvable system of a hydrogen atom coupled to a
continuum of photon modes. The focus will be on the ground-state properties since
the ground-state is in this case the only eigenstate of the coupled system while the
excited states of the matter subsystem turn into resonances. This investigation is ex-
pected to layout the foundation of ab-initio mass renormalization theory for bound
systems. Next, the linear-response framework of QEDFT has been shown in this thesis
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and in other works [18, 20, 23] to correctly capture modifications of excited-states
properties of correlated electron-photon systems. In the growing field of polaritonic
chemistry, vibrational effects have been shown to play a critical role in chemical reac-
tions. For instance, it has been demonstrated that a vibrational mode can be altered by
strong light-matter coupling which influences the reactions potentially allowing for
site-selective chemistry [187]. To capture such effects, QEDFT was recently extended to
include the nuclear dynamics [47]. Simulating the coupled problem is time consum-
ing due to the different time scales of the subsystems. Therefore, the electron-photon
linear-response methods introduced in this thesis that work in frequency space be-
come preferable for this study. We will extend these linear-response methods to treat
coupled electron-nuclear-photon problems. This will allow for efficient ab-initio stud-
ies of excited-states phenomena of strong vibrational coupled matter-photon systems.
For example, we can investigate in detail whether collective coupling implies local
modifications of chemical properties that scale with the ensemble size [23]. This al-
lows us to pose questions as to how does collective strong coupling in this setting
affect the potential energy surfaces and in what way will this modify chemical prop-
erties? This level of theory and computational scheme further opens new avenues in
first-principles studies such as determining lifetimes for the excited-states of molec-
ular systems since the nuclei are now included and plays an important role in the
relaxation process.

For the proposed ab-initio down-conversion scheme, we can explore going beyond
the restriction to a single active electron to include an ensemble of quantum rings or
a general many-electron system. In such a treatment, one will expect that the total
number of down-converted photons can be efficiently increased. Such setups can be
accessed with, for instance, using the time-propagation method of QEDFT and polari-
tonic coupled cluster [15]. Such investigation can provide not only qualitative results
but also a quantitative prediction how hybrid light-matter states can generate pho-
tons on demand. In certain cases, one can even include the nanophotonic structure
as part of the simulation and model the full emission process [85]. The results of
this thesis demonstrate that the design of efficient photon sources is a very interest-
ing working avenue for the emerging field of ab-initio light-matter interactions. We
envision that the methods presented in this thesis can be used to complement experi-
mental observations in polaritonic chemistry and material sciences and even propose
new avenues of research and observables to investigate.
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A
S U P P O RT I N G R E S U LT S O F T H E L I N E A R - R E S P O N S E I N
N O N - R E L AT I V I S T I C Q E D

In this appendix, we give supporting details to the results of Chap. 3. The results
presented here are: verification of the reformulation of the response functions of
non-relativistic QED to the framework of QEDFT, an alternative derivation of the
frequency-dependent Sternheimer equations for electron-photon coupled systems
and the derivation of oscillator strengths for the electron-photon Casida method.

a.1 verification of the response functions

In this section, we show how the Mxc kernels defined in Eqs. (223)-(226) reproduce the
response functions of the interacting system. We first express the response functions
of Eqs.(227), (229), (232) and (234) derived within the linear-response framework of
QEDFT in the following way

χn
n = χn

n,s+χn
n,s f n

Mxcχn
n + χn

n,s ∑
α

f qα

Mxcχ
qα
n , (346)

χn
qα
= χn

n,s ∑
α′

f qα′
Mxc χ

qα′
qα

+ χn
n,s f n

Mxc χn
qα

, (347)

χ
qα
qα′

= χ
qα
qα,s + ∑

β
∑
β′

χ
qα
qβ,s g

qβ′

Mxcχ
qβ′
qα

+ ∑
β

χ
qα
qβ,s g

nβ

Mxcχn
qα′

(348)

χ
qα
n = ∑

β
∑
β′

χ
qα
qβ,s g

qβ′

Mxcχ
qβ′
n + ∑

β

χ
qα
qβ,s g

nβ

Mxcχn
n , (349)

where integration over space and time is implied as in Eqs. (227), (229), (232) and
(234). Starting with χn

n, we substitute the expression of f n
Mxc and f qα

Mxc given in the
respective Eqs. (223) and (224) into Eq. (346) to obtain

χn
n =

δn[vs]

δvs
+

δn[vs]

δvs

(
δvs[n]

δn
− δv[n, qα]

δn

)
δn[v, jα]

δv

+
δn[vs]

δvs
∑
α

(
−δv[n, qα]

δqα

)
δqα[v, jα]

δv

=
δn[vs]

δvs
+

δn[vs]

δvs

δvs[n]
δn

δn[v, jα]
δv

− δn[vs]

δvs

(
δv[n, qα]

δn
δn[v, jα]

δv
+ ∑

α

δv[n, qα]

δqα

δqα[v, jα]
δv

)
︸ ︷︷ ︸

δv[n,qα]/δv=δ(x−r′)δ(τ−t′)

=
δn[vs]

δvs
+

δn[v, jα]
δv

− δn[vs]

δvs

=
δn[v, jα]

δv
. (350)

We see from Eq. (350) that we obtain the interacting density-density response func-
tion. Note that we used in Eq. (350) the functional derivative formalism discussed
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in Chap. 3.2.2. Next, we consider χn
qα

and substitute the expression of f n
Mxc and f qα

Mxc
given in the respective Eqs. (223) and (224) into Eq. (347) which yields

χn
qα
=

δn[vs]

δvs

(
δvs[n]

δn
− δv[n, qα]

δn

)
δn[v, jα]

δjα
+

δn[vs]

δvs
∑
α′

(
−δv[n, qα]

δqα′

)
δqα′ [v, jα]

δjα

=
δn[vs]

δvs

δvs[n]
δn

δn[v, jα]
δjα

− δn[vs]

δvs

(
δv[n, qα]

δn
δn[v, jα]

δjα
+ ∑

α′

δv[n, qα]

δqα′

δqα′ [v, jα]
δjα

)
︸ ︷︷ ︸

δv[n,qα]/δjα=0

=
δn[v, jα]

δjα
. (351)

We also see from Eq. (351) that we obtain the interacting density-photon response
function. Now we consider the photon-photon response function χ

qα
qα′

and substitute
the expression of g

nβ

Mxc and gqα

Mxc given in Eqs. (225) and (226) into Eq. (348) to obtain

χ
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qα′

=
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∑
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. (352)

From Eq. (352) we see that we obtain the interacting photon-photon response func-
tion. Finally, we consider the photon-density response function χ

qα
n and substitute the

expression of g
nβ

Mxc and gqα

Mxc given in Eqs. (225) and (226) into Eq. (349) to obtain

χ
qα
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∑
β′

δqα[jα,s]

δjβ,s

(
δjβ,s[qα]
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+ ∑
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δv
. (353)
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We also see from Eq. (353) that we obtain the interacting photon-density response
function. This validates our linear-response formulation of QEDFT which expresses the
interacting response function in terms of the non-interacting and interacting response
functions and Mxc kernels.

a.2 alternate derivation of the frequency-dependent sternheimer

equations

In this section, we present a derivation of the frequency-dependent Sternheimer
equation for electron-photon systems that includes the projector operator into the
subspace of ground-state KS orbitals as in the electron-only Sternheimer derivations
presented in Refs. [83, 117]. Our derivation is restricted to the frequency space as
in Chap. 3.5.2. In an alternate derivation of the frequency-dependent Sternheimer
equations, we could have instead of defining the orbitals ϕ

(±)
k,v (r, ω) in Eq. (300), de-

fined the orbitals ϕ̃
(±)
k,v (r, ω) [53]. By substituting Eq. (265) into Eq. (256), the density

response δnv(r, ω) can be expressed in terms of the orbitals ϕ̃
(±)
k,v (r, ω) as follows

δnv(r, ω) =
Ne

∑
k=1

[
ϕ∗k (r)ϕ̃

(+)
k,v (r, ω) + ϕk(r)

[
ϕ̃
(−)
k,v (r, ω)

]∗]
. (354)

The first-order responses of the perturbed KS orbitals ϕ̃
(±)
k,v (r, ω) are given by

ϕ̃
(+)
k,v (r, ω) =

∫
d3r′

∞

∑
l=Ne+1

ϕl(r)ϕ∗l (r
′)ϕk(r′)

ω− (εl − εk) + iη
δvKS,v(r′, ω), (355)

ϕ̃
(−)
k,v (r, ω) = −

∫
d3r′

∞

∑
l=Ne+1

ϕl(r)ϕ∗l (r
′)ϕ∗k (r

′)

ω + (εl − εk) + iη
δvKS,v(r′, ω). (356)

Following similar steps as in Chap. 3.5.2, Eqs. (355) and (356) can be multiplied
through with

(
ω− ĥ + εk + iη

)
and

(
ω + ĥ− εk + iη

)
, respectively resulting to(

ω− ĥ + εk + iη
)

ϕ̃
(+)
k,v (r, ω) =

∫
d3r′

∞

∑
l=Ne+1

(
ω− ĥ + εk + iη

)
×

ϕl(r)ϕ∗l (r
′)ϕk(r′)

ω− (εl − εk) + iη
δvKS,v(r′, ω),(

ω + ĥ− εk + iη
)

ϕ̃
(−)
k,v (r, ω) = −

∫
d3r′

∞

∑
l=Ne+1

(
ω + ĥ− εk + iη

)
×

ϕl(r′)ϕ∗l (r)ϕ∗k (r
′)

ω + (εl − εk) + iη
δvKS,v(r′, ω).

The above equations now simplify to have the following forms(
ω− ĥ + εk + iη

)
ϕ̃
(+)
k,v (r, ω) =

∫
d3r′

∞

∑
l=Ne+1

ϕl(r)ϕ∗l (r
′)ϕk(r′)δvKS,v(r′, ω),

(357)(
ω + ĥ− εk + iη

)
ϕ̃
(−)
k,v (r, ω) = −

∫
d3r′

∞

∑
l=Ne+1

ϕl(r′)ϕ∗l (r)ϕ∗k (r
′)δvKS,v(r′, ω).

(358)
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Equations (357) and (358) can be further transformed by using the resolution of the
identity for KS orbitals, i.e., ∑∞

l=1 ϕl(r)ϕ∗l (r
′) = δ(r − r′). With this expression, the

summation over unoccupied orbitals can be replaced by the closure relation

∞

∑
l=Ne+1

ϕl(r)ϕ∗l (r
′) = δ(r− r′)−

Ne

∑
k=1

ϕk(r)ϕ∗k (r
′),

which circumvents the infinite sum over ground-state KS orbitals to equations of the
form (

ω− ĥ + εk + iη
)

ϕ̃
(+)
k,v (r, ω) =

∫
d3r′

(
δ(r− r′)−

Ne

∑
k=1

ϕk(r)ϕ∗k (r
′)

)
× ϕk(r′)δvKS,v(r′, ω), (359)(

ω + ĥ− εk + iη
)

ϕ̃
(−)
k,v (r, ω) = −

∫
d3r′

(
δ(r− r′)−

Ne

∑
k=1

ϕk(r)ϕ∗k (r
′)

)
× ϕ∗k (r

′)δvKS,v(r′, ω). (360)

Simplifying the integral of Eqs. (359) and (360) leads to the frequency-dependent
Sternheimer equation of the form(

ω− ĥ + εk + iη
)

ϕ̃
(+)
k,v (r, ω) = P̂c ϕk(r)δvKS,v(r, ω), (361)(

ω + ĥ− εk + iη
)

ϕ̃
(−)
k,v (r, ω) = −P̂c ϕ∗k (r)δvKS,v(r, ω). (362)

where P̂c = 1̂−∑Ne
k=1 ϕk(r)ϕ∗k (r) is the projector operator to the unoccupied KS ground-

state. The photonic contribution to the Sternheimer equation have the same form as in
Eqs. (307)-(309). A similar derivation that yields Sterheimer equations with projector
operators as in Eqs. (361) and (362) can be derived for the density response δnj(r, ω)

to an external charge current δjα(ω).

a.3 oscillator strength for electron-photon casida method

In this section, we derive the expression for computing the oscillator strengths by
using the eigenvectors of the pseudo-eigenvalue problem of Eqs. (295) and (296). We
first focus on the linear density response due to a perturbation from an external
potential δv(r, ω). From Eq. (291), we multiply out the matrix to get the following
form

LXv + KYv + M(Av + Bv)−ωX1 = −v,

KXv + LYv + M(Av + Bv) + ωY1 = −v,

N(Xv + Yv) + ωαAv −ωAv = 0,

N(Xv + Yv) + ωαBv + ωBv = 0,

(363)

or equivalently

(L + K)(Xv + Yv) + 2M(Av + Bv)−ω(Xv − Yv) = −2v,

(L− K)(Xv − Yv)−ω(Xv + Yv) = 0,

2N(Xv + Yv) + ωα(Av + Bv)−ω(Av − Bv) = 0,

ωα(Av − Bv)−ω(Av + Bv) = 0.

(364)
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Here, the frequency-dependence of these matrices and potentials are dropped for
notational simplicity. From here on we set S = L − K, the above pair of equations
now becomes

S(L + K)Ev + 2SMPv −ω2Ev = −2Sv,

2ωαNEv + ω2
αPv −ω2Pv = 0,

where the new eigenvectors are Ev = Xv + Yv and Pv = Av + Bv. The above equation
can be written in matrix form as[(

S(L + K) 2SM

2ωαN ω2
α

)
−ω2

(
1 0

0 1

)](
Ev

Pv

)
= −

(
2Sv

0

)
. (365)

We make the nonlinear eigenvalue problem Hermitian and obtain

[
C−ω21

] ( N1/2S−1/2Ev

M1/2ω−1/2
α Pv

)
= −

(
2N1/2S1/2v

0

)
, (366)

where C =

(
U V

V† ω2
α

)
. We determine the eigenvectors given to be

Ev = −2S1/2 [C−ω21
]−1

S1/2v, (367)

Pv = −2ω1/2
α M−1/2 [C−ω21

]−1
N1/2S1/2v. (368)

When ZI is normalized, we can use the spectral expansion to get

[
C−ω21

]−1
= ∑

I

ZIZ†
I(

Ω2
I −ω2

) , where ZI =

(
EvI

PvI

)
. (369)

a.3.1 oscillator strength for the density-density response function

For determining the expression of the oscillator strength for the linear density-density
response function due to an external potential δv(r, ω), we make use of the formula
for the polarizability tensor. The dynamic polarizability tensor first given in Eq. (329)
can also be expresses as

αµν(ω) =
∫

d3r rµ
δn(r, ω)

δEν(ω)
, (370)

with µ, ν = (1, 2, 3) denoting all three spatial directions. By substituting Eq. (367) in
Eq. (267) and using the above Eq. (370) yields

αµν(ω) = ∑
I

2r†
µS1/2ZIZ†

I S1/2rν

Ω2
I −ω2

, (371)

where r†
µ =

∫
d3r rµ ∑i,a Φ∗ia(r) and the transition density is defined as Φia(r) =

ϕ∗i (r)ϕa(r) in terms of KS orbitals. It can be verified that r†
µS1/2ZI = ω1/2

I 〈Ψ0|rµ|ΨI〉
and the oscillator strength [53, 84] is given by

f I =
2
3

3

∑
µ=1

∣∣∣Z†
I S1/2rµ

∣∣∣2 =
2
3

ωI

3

∑
µ=1

∣∣〈Ψ0|erµ|ΨI〉
∣∣2 (372)
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Also, in the case of the Casida method within QEDFT the oscillator strength satisfy the
Thomas-Reiche-Kuhn sum rule (also known as f -sum rule), i.e. ∑I f I = Ne, where N
is the total number of electrons in the system. The oscillator strength can be linked
to the dipole strength function as given in Eq. (318) and integrates according to the
f -sum rule to the total number of electrons.

a.3.2 oscillator strength for the photon-matter response function

Next, we compute the oscillator strength for the photon-density response function of
the photon coordinate qα,v(ω) due to an external potential δv(r, ω). We substitute the
expression of the spectral expansion of Eq. (369) in Eq. (368) and by substituting Pv

in Eq. (266) yields

δqα,v(ω) = ∑
I

{
2ω1/2

α M−1/2ZIZ†
I N1/2S1/2(

ω2 −Ω2
I
) }

v(ω).

The oscillator strength for the response qα,v(ω) is given by the numerator of the above
equation

f I,α
qn = 2ω1/2

α M−1/2ZIZ†
I N1/2S1/2. (373)

Also, from Eq. (258) and using the Lehmann representation of the response function
χ

qα
n (r′, ω) of Eq. (219) the response δqα,v(ω) is given by

δqα,v(ω) =
∫

d3r′ ∑
k=0

[
2Ωk〈Ψ0|q̂α|Ψk〉〈Ψk|n̂(r′)|Ψ0〉

ω2 −Ω2
k

]
δv(r′, ω) .

The oscillator strength of Eq. (373) can be expressed as matrix elements of the internal
pair (n̂(r), q̂α) and is related to the oscillator strength of Eq. (373) as

fα,k(r′) = 2Ωk〈Ψ0|q̂α|Ψk〉〈Ψk|n̂(r′)|Ψ0〉 ≡ f I,α
qn . (374)

a.3.3 oscillator strength for the matter-photon response function

Following similar steps of Eqs. (363)-(368), we obtain the new eigenvectors

Ej = −2S1/2N−1/2 [C−ω21
]−1

M1/2ω1/2
α jα, (375)

Pj = −2ω1/2
α

[
C−ω21

]−1
ω1/2

α jα, (376)

where Ej = Xj + Yj and Pj = Aj + Bj and jα(ω) = 1
2ωα

jα(ω). Next, by substituting the
spectral expansion Eq. (369) in Eq. (375) and further substituting in Eq. (270) yields

δnj(r, ω) = 2 ∑
I

∑
ia

ΦiaS1/2N−1/2ZIZ†
I M1/2ω1/2

α Φai(
ω2 −Ω2

I
) jα(ω),

and the oscillator strength is given by

f I,α
nq = 2 ∑

ia
ΦiaS1/2N−1/2ZIZ†

I M1/2ω1/2
α Φia . (377)
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From Eq. (257) and using the Lehmann representation of the response function χn
qα
(r, ω)

of Eq. (218), the response δnj(r, ω) is given by

δnj(r, ω) = ∑
α

∑
k=0

[
2Ωk〈Ψ0|n̂(r)|Ψk〉〈Ψk|q̂α|Ψ0〉

ω2 −Ω2
k

]
δjα(ω)

ωα
.

Similarly, the oscillator strength of Eq. (377) can be related to oscillator strength in
terms of the matrix elements of the internal pair (n̂(r), q̂α) as

fk,α(r) = 2Ωk〈Ψ0|n̂(r)|Ψk〉〈Ψk|q̂α|Ψ0〉 ≡ f I,α
nq . (378)

a.3.4 oscillator strength for the photon-photon response function

Finally, we derive the oscillator strength for the photon-photon response function
of the photon coordinate qα,j(ω) due to an external charge current δjα(ω). First, we
define a collective photon coordinate for the α modes as Q = ∑α qα (in analogy with
R = ∑i eri). Assuming the collective photon coordinate Q is Taylor expandable, we
deduce to first-order the "displacement field polarizability" in frequency space as

βα(ω) = ∑
α′

1
ωα′

δqα(ω)

δjα′(ω)
. (379)

By substituting Eq. (376) in Eq. (270) and using the spectral expansion, we obtain

δqα,j(ω) = −∑
I

2ω1/2
α ZIZ†

I ω1/2
α(

Ω2
I −ω2

) jα.

From the above equation, we deduce that

βα(ω) = −∑
I

ω1/2
α ZIZ†

I ω1/2
α(

Ω2
I −ω2

) . (380)

Equation (380) is the displacement field polarizability analogous to the atomic polariz-
ability tensor of Eq. (371) and the oscillator strength is given by

f I,α = ω1/2
α ZIZ†

I ω1/2
α . (381)





B
D R E S S E D S P E C T R A A N D N U M E R I C A L D E TA I L S O F
C O M P U TAT I O N S

In this section, we present the dressed spectra obtained for a molecule coupled to a
photon mode using the frequency-dependent Sterneimer method for electron-photon
coupled systems and we also outline the numerical details employed in Chap. 3.

b.1 numerical details of computations

b.1.1 the benzene molecule

To calculate the electronic structure of the benzene (C6H6) molecule, we follow closely
the setup of Ref. [120]. Thus, we use a cylindric real space grid of 8 Å length with
the radius of 6 Å in the x-y plane, and a spacing of ∆x = ∆y = ∆z = 0.22 Å. For
the benzene nuclear structure, we use the CC bond length of 1.396 Å, and CH bond
length of 1.083 Å. We explicitly describe the 30 valence electrons in our calculations
that amounts to 15 doubly occupied Kohn-Sham orbitals, while the core atoms are
considered implicitly by LDA Troullier-Martins pseudopotentials [188]. The Casida
method requires unoccupied orbitals, thus in the excited state manifold, we include
500 unoccupied states in the pseudo-eigenvalue calculation. This number amounts to
30× 500 = 7500 pairs of occupied-unoccupied states. For the Sternheimer and time-
propagation methods, just the 15 doubly occupied orbitals are used in this method.
Furthermore, to describe the electron-electron and electron-photon interaction in the
response functions, we apply the approximations given in Eq. (298).

b.1.2 the naphthalene molecule

To numerical treat the naphthalene (C10H8) molecule, the electronic structure of the
naphthalene molecule is computed using a cylindrical real space grid of 8 Å length
with the radius of 6 Å in the x-y plane and a spacing ∆x = ∆y = ∆z = 0.22
Å. The core electrons of the carbon and hydrogen atoms are described using LDA

Troullier-Martins pseudopotentials [188] and the 48 valence electrons are explicitly
described in our calculations amounting to 24 doubly occupied KS orbitals. Since the
time-propagation method considers only occupied orbitals, in this case only the 24
doubly occupied orbitals are explicitly propagated as in Eq. (177).

b.2 dressed and novel photonic observable

We are interested in the excited-state properties of the azulene (C10H8) molecule con-
fined within a photonic environment. The observable of interest usually measured in
experiments is the photo-absorption cross-section given by the formula in Eq. (317).
Here we will show from our ab-initio theory that the spectrum gets modified when
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Figure 38: (a.) Schematic setup of an azulene molecule confined within an optical cavity. The
cavity field is polarized along the x−axis and the photon propagation vector is
along the cavity length L. (b.) Reference photo-absorption cross-section spectrum
of a neutral azulene molecule in free space computed with TDDFT [122] showing the
Π−Π∗ transition at roughly 4.825 eV. The units of the absorption cross-sections is
in megabarns (1Mb = 10−18cm2).

it strongly interacts with photons. In addition, we show a new observable that is
photonic in nature that becomes accessible when light and matter strongly couple.
We compute these spectra using the Sternheimer method formulated within linear-
response QEDFT discussed in Chap. 3.5.2.

We start by computing the electronic structure of the azulene (C10H8) molecule.
The azulene molecule is a bicyclic, nonbenzenoid aromatic hydrocarbon and is an
isomer of the naphthalene molecule [189] studied in Chap. 3.6.2. The electronic struc-
ture of the azulene molecule is computed using a cylindrical real space grid of 8 Å
length with the radius of 6 Å in the x-y plane and a spacings ∆x = ∆y = ∆z = 0.22
Å. The core electrons of the carbon and hydrogen atoms are described using LDA

Troullier-Martins pseudopotentials [188]. Therefore, the 48 valence electrons are ex-
plicitly described in our calculations amounting to 24 doubly occupied KS orbitals.
Since the Sternheimer method considers only occupied orbitals, therefore, only the
24 occupied orbitals are used in the computation with the Sternheimer method. The
molecule is then confined within an optical cavity of length L and the photon field is
polarized along the x-direction with a coupling strength λα as shown in Fig. (38.a).

Before showing the results, we first show a reference calculation of the photo-
absorption cross-section of the azulene molecule in free space (in the absence of the
cavity) using TDDFT [122, 190] as in Fig. (38.b). We find the Π→ Π∗ electronic transi-
tions in the ultraviolet region of the spectrum at around 4.825 eV. Next, for the situa-
tion were the azulene molecule is confined in the cavity, we tune the mode frequency
resonant to the peak arising due to the Π−Π∗ transition, that is, h̄ωα = 4.825 eV. We
now solve the coupled electron-photon Sternheimer equations (300) and (305)-(309)
and obtain the photo-absorption cross-section using Eq. (317) only for one component
of the polarizabilty tensor, that is, αxx(ω) as well as the photon coordinate.

In Fig. (38), we show the changes in the photo-absorption cross-section and the
imaginary part of the photon coordinate (displacement field) of the azulene molecule
coupled to a single photon mode in an optical cavity. First, the coupling strength is set
to zero (λα = 0) implying a free space situation as the Π−Π∗ transition occurring at
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Figure 39: Photo-absorption cross-section and imaginary part of photon coordinate of an azu-
lene molecule confined in an optical cavity. Panel (a.) shows the spectrum of the
azulene molecule in free space (i.e. λα = 0) with Π−Π∗ transition at around 4.8
eV. Increasing the coupling strength continuously as in (b.), (c.) and (d.) leads to a
splitting of the peak into lower and upper polariton branches that drift apart for in-
creasing λα. Panel (e.) has no response as the photons are decoupled. Coupling the
photons and increasing the coupling leads to lower and upper polaritonic peaks in
the photonic spectrum as in (f.), (g.), (h.).

4.825 eV is captured as depicted in Fig. (39.a). Next, switching on the coupling (λα =

0.01) of the molecule to the cavity mode results to a splitting of the Π−Π∗ transition
peak into lower and upper polariton branches as shown in Fig. (39.b). These new
peaks are a result of the hybridization of electronic and photonic degrees. Increasing
the coupling strength λα as in Fig. (39.c,d) further increases the Rabi splitting as
light and matter strongly couple. In our description of light-matter interaction, the
photon field is quantized and is a dynamical part of the coupled system. This means
we can also compute spectral properties of the photon field due to perturbing the
electronic system. If we do not couple to the photons (i.e. λα = 0), we obtain the
spectrum of Fig. (39.e) showing no response of the photonic subsystem. However,
coupling to the photons (i.e. λα > 0) shows novel spectra features that indicate cross-
talk between the coupled electronic and photonic subsystems as lower and upper
polaritonic peaks emerge as shown in Fig. (39.f,g,h). We observe negative and positive
peaks as discussed in Chap. 3.6.2.

In this example, we showed how the molecular subsystem changes due to hy-
bridization with the photon field and also a new observable that become accessible
in strong light-matter coupled systems. This open new avenues that can potentially
lead to novel linear spectroscopy.





C
E N E R G Y B A S I S A N D T H E D E N S I T Y M AT R I X

This appendix presents the energy basis description of coupled matter-photon sys-
tems and the one-body reduced density matrix for the matter-photon systems.

c.1 the energy basis description of coupled matter-photon systems

An exact solution of the coupled matter-photon problem even in the dipole approx-
imation described by either of the Hamiltonians of Eqs. (49) and (55) is not feasible
except for very small systems [23]. This calls for further approximations to signifi-
cantly scale-down the degrees of freedom of the coupled problem. A common way
to achieve this is to use instead of the full electronic space just a few number of
a-priori chosen "relevant states" that couple to the photons [100]. This is common
to the field of quantum optics were the electronic space is reduce to a single two-
level or collective two-levels [101, 191, 192]. In Chap. 3.6.1 such a two-level system
coupled to one photon mode is employed to highlight in a simple way how excited-
state properties of coupled electron-photon systems get modified. Also, more than
two electronic energy levels can be employed. To do this, one needs to first obtain
the electronic spectrum (eigenenergies and eigenstates) from an ab-initio electronic
structure method. In the next step, these quantities are used as input parameters in
the coupled matter-photon Hamiltonian. Such a procedure will be later applied in
Chap. 4.1.7, hence, this section presents how to set up the energy basis description of
coupled matter-photon systems.

This representation is derived by assuming that one has access to all electronic
eigenenergies Ei and eigenstates |ψi〉 of the matter system and using the completeness
relation ∑∞

i=1 |ψi〉〈ψi| = 1̂, the operators of the matter system can be expressed as [33]

Ĥel = ∑
i=1

h̄ωi|ψi〉〈ψi|, p̂ = ∑
i=1

∑
j=1
〈ψi|p̂|ψj〉|ψi〉〈ψj|, R̂ = ∑

i=1
∑
j=1
〈ψi|R̂|ψj〉|ψi〉〈ψj|,

where the indices i, j runs over the number of electronic states considered, p̂ = ∑Ne
l=1 p̂l

and the diagonal representation of Ĥel was obtained from Ĥel = T̂e + Ŵee + V̂eN .
Substituting the above expressions into Eqs. (49) and (55) gives the velocity and length
gauge Hamiltonians in energy basis

Ĥ(E)
V = ∑

i=1
h̄ωi|ψi〉〈ψi| −

e
m

Â ·∑
i=1

∑
j=1
〈ψi|p̂|ψj〉|ψi〉〈ψj|+

e2

2m
Â2

+ Ĥpt , (382)

Ĥ(E)
L = ∑

i=1
h̄ωi|ψi〉〈ψi|+

1
2

M

∑
α=1

 p̂2
α + ω2

α

(
q̂α −

λα

ωα
·

N

∑
i=1

∑
j=1
〈ψi|R̂|ψj〉|ψi〉〈ψj|

)2
 .

(383)
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From Eqs. (382) and (383), the expression of the electron-photon bilinear interaction
term is given explicitly as

Ĥ(int)
V = − e

m ∑
i=1

∑
j=1

M

∑
α=1

√
h̄

2ωα

(
âα + â†

α

)
λα · 〈ψi|p̂|ψj〉|ψi〉〈ψj| ,

Ĥ(int)
L = −∑

i=1
∑
j=1

M

∑
α=1

ωα

√
h̄

2ωα

(
âα + â†

α

)
λα · 〈ψi|R̂|ψj〉|ψi〉〈ψj| .

Using the above two equations, one defines the expression for the electron-photon
coupling of the velocity and length gauge Hamiltonians given by

g(ij)α,V =
e
m

√
h̄

ε0ωαV
〈ψi|eα · p̂|ψj〉 and g(ij)α,L =

√
h̄ωα

ε0V
〈ψi|eα · R̂|ψj〉 , (384)

where λα =
√

2/ε0Veα was used. From Eq. (384), the electron-photon couplings
can be increased by reducing the quantization volume V. Also, the coupling can be
increased in cases where the transition dipole (momentum) matrix elements can be
increased by varying the binding potential V̂eN (see example in Chap. 4.1.1).

For free space radiation of coupled electron-photon systems for a single particle,
the coupling term is related to the radiative decay rate γij between two states by [193]

g(ij)α,V =

(
3h̄2c3

ωαωijε0V
γij

)1/2

, (385)

where the relation between the radiative decay rate and the transition dipole ma-

trix elements γij =
ω3

ij|〈ψi |R̂|ψj〉|2

3πε0c3 was used in obtaining Eq. (385). Here, the coupling
strength is directly proportional to the square root of the radiative decay rate. From
the energy basis representation, simplified models that utilize just a few "relevant
states" (few-levels approximation) can be deduce. Although these simplified quan-
tum optical models are able to describe in some cases the emerging physical effects,
in other cases they are less accurate as discussed in Chap. 4.1.7.

c.2 the density matrix and purity

To quantify features of entanglement in the matter-photon coupled system, it is
appropriate to compute the purity. This can be done by defining appropriate one-
body reduced density matrices for the individual subsystems [194, 195]. For the case
of the matter-photon system, the one-body reduced density matrices of the entire
electronic and photonic subsystems are given respectively by

γel(r, r′) =
∫

dq Ψ(r, q)Ψ∗(r′, q) ,

γpt(q, q′) =
∫

d3r Ψ(r, q)Ψ∗(r, q′) ,

where the notation r = (r1, ..., rNe) and q = (q1, ..., qM). The normalization of these
reduced density matrices can be chosen to be equal to one, such that the following
holds

Tr(|Ψ〉〈Ψ∗|) = Tr(γel) = Tr(γpt) = 1 .
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From this normalization, the reduced density matrices can be used to compute the
purity of the subsystems by requiring

Tr
(
γ2

el
)
= Tr(γ2

pt) = 1 . (386)

The purity is obtained by tracing over the square of the one-body reduced density
matrix of the respective subsystems. If the purity is equal to one, the system can
be expressed as a factorizable state of the subsystems and the rest of the coupled
matter-photon system. If the purity is smaller than one, implies a non-factorizable
state, which indicates entanglement between the subsystems. It is also possible to
determine the purity of the constituents of individual subsystems. Consider the case
of computing the purity of each of the M photon modes. In this case, the one-body
reduced density matrices of these individual M modes are

γ1(q1, q′1) =
∫∫∫

d3r dq2 dq3 ...
∫

dqMΨ(r, q1, q2, q3, ..., qM)Ψ∗(r, q′1, q2, q3, ..., qM),

γ2(q2, q′2) =
∫∫∫

d3r dq1 dq3 ...
∫

dqMΨ(r, q1, q2, q3, ..., qM)Ψ∗(r, q1, q′2, q3, ..., qM),

γ3(q3, q′3) =
∫∫∫

d3r dq1 dq2 ...
∫

dqMΨ(r, q1, q2, q3, ..., qM)Ψ∗(r, q1, q2, q′3, ..., , qM),

...

γM(qM, q′M) =
∫∫∫

d3r dq1 dq2 ...
∫

dqM−1Ψ(r, q1, q2, q3, ..., qM)Ψ∗(r, q1, q2, q3, ..., , q′M).

Where γ1(q1, q′1), γ2(q2, q′2), γ3(q3, q′3), ..., γM(qM, q′M) are respectively the one-body
reduced density matrices of the photonic subsystems. From Eq. (386), the purity of
the photon modes can be determined.





D
N U M E R I C A L I M P L E M E N TAT I O N

In this section, we outline the numerical implementations used in this thesis and
also the code development that lead to the results presented in this work. The results
presented in this thesis are based on ab initio model and real systems calculations. The
model systems considered in this thesis were treated numerically with a Python code
of our group called LIBQED which Heiko Appel, Sebastian Ohlmann, Mary-Leena
Tchenkoue and for the most part myself built from scratch. The real systems were
treated by the real-space Octopus code (https://octopus-code.org/).

d.1 model systems with libqed

In order to treat numerically the model systems considered in this thesis, we devel-
oped the calculation modes listed below in LIBQED. LIBQED is an efficiently paral-
lelized Python code that treats numerically exactly matter-photon coupled systems
(or the decoupled subsystems) using a real-space basis set. It is well suited to treat
model systems in one- and two-dimension but it is not restricted only to model sys-
tems since the calculation modes 1 to 6 can be used to treat small three-dimensional
system, for example, the Helium atom.

1. Calculation Modes: td, tp : These run modes (td or tp) performs a time-propagation
of Eq. (6) for a given time-independent (or time-dependent) Hamiltonian for a
given initial state. As propagators, we’ve implemented the Lanczos propagator,
4th order Runge-Kutta, and the "enforced time-reversal symmetry" based on
the exponential midpoint rule.

2. Calculation Mode: gs : Here an imaginary time-propagation is performed that
determines the ground-state of an arbitrary system for a guess of the initial
state. The propagators mentioned above can be used.

3. Calculation Modes: ed, td_ed : The ed calculation mode diagonalizes the time-
independent Schrödinger equation (7) by calling Eigenvalue SoLvers for Petaflop-
Applications (ELPA) and outputs the full spectrum (eigenvalues and eigenvec-
tors). The Hamiltonian matrix is distributed in block-cyclic fashion for diago-
nalization. The td_ed mode first performs an exact diagonalization as the run
mode ed and then performs a time-propagation using the spectrum results.

4. CalculationMode: ms : performs a Maxwell-Schrödinger time-propagation of
the forms (velocity and length gauge) presented in Chap. 2.3.1. It uses the prop-
agators described above.

5. CalculationMode: dft : this performs a ground-state calculation for electron-
only one-dimensional systems discussed in Chap. 2.5.1.1.

6. CalculationMode: stern: when specified, it performs the Sternheimer calcula-
tion for the electron-only case or electron-photon Sternheimer for one-dimensional
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systems in Chap. 3.5.2 coupled to photons. We’ve implemented the biconjugate
gradient stabilized method to solve the Sternheimer equations.

d.2 real systems with octopus

The real system calculations presented in Chap. 3.6 were obtained using the real-
space OCTOPUS code [83, 120, 121]. The real-space OCTOPUS code already had
the implementation of the three linear-response methods (Casida, Sternheimer, time-
propagation) that treated only the interacting many-electron systems. The numerical
implementation of the extension of these linear response methods to treat matter-
photon coupled systems was carried out by Johannes Flick, Davis Welakuh, Sebastian
Olhmann and Heiko Appel. The Casida method was implemented by Johannes Flick
and massively parallelized by Sebastian Olhmann. The Sternheimer method was im-
plemented by Davis Welakuh and Heiko Appel oversaw this implementation. The
time-propagation method was independently implemented by Johannes Flick and
Davis Welakuh. In the following we mention a few useful details about this imple-
mentations, for example, to perform linear response calculations of matter-photon
coupled systems using this methods, the flag "EnablePhotons" should be set to "yes".

1. CalculationMode: casida : This calculation mode performs an exact diagonal-
ization of Eq. (295) and outputs the eigenvalues (transition energies), eigenvec-
tors (eigenstates) and the norm of these eigenstates. For larger matrices, the
diagonalization is done in parallel using ScaLAPACK or ELPA.

2. CalculationMode: em_resp : Here a self-consistency calculation of the Stern-
heimer equations of Eqs. (305)-(306) together with Eq. (260) and Eqs. (308)-(309)
is performed to obtain the frequency-dependent linear density response and
photon coordinate. Both parameters η and η′ are necessary to obtain the com-
plex density and photon coordinate and we suggest using η′ = 0.001 eV.

3. CalculationMode: td : Equally, a self-consistency calculation of the Maxwell-KS

system given by Eqs. (177) and (178) are evolved in time to obtain the time-
dependent density response (or dipole) and photon coordinate. In practice,
Eq. (178) is replaced by Eq. (179) for faster propagation.
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