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Abstract

In this thesis we describe recent results obtained in the area of integrable field theories. In
particular, we present the construction of two new broad classes of integrable sigma models
in the framework of a�ne Gaudin models. Firstly, we focus on integrable deformations of a
class of theories defined on the direct product of N copies of a Lie group. More precisely,
for N = 1 the corresponding models coincide with the Yang-Baxter or �-deformations of the
principal chiral model, while for general N they consist of arbitrary combinations of these
deformed models. We describe both the Hamiltonian and Lagrangian formulation of models
with general N and give explicit expressions of their action and Lax connection. The second
class of theories is defined on a coset of the direct product of N copies of a Lie group over some
diagonal subgroup, generalising the well-known symmetric space sigma model corresponding to
N = 1. Specifying the construction to the case of two copies of the group SU(2), we obtain
a new three-parametric integrable sigma model on the manifold T 1,1. We comment on the
connection of our results with the ones existing in the literature.
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Zusammenfassung

In dieser Arbeit beschreiben wir aktuelle Ergebnisse im Bereich integrierbarer Feldtheorien.
Insbesondere präsentieren wir die Konstruktion von zwei neuen, breiten Klassen integrierbarer
Sigma-Modelle im Rahmen a�ner Gaudin-Modelle. Erstens konzentrieren wir uns auf inte-
grierbare Deformationen einer Klasse von Theorien, die für das direkte Produkt von N Kopien
einer Lie-Gruppe definiert sind. Genauer gesagt, für N = 1 stimmen die entsprechenden Mod-
elle mit den Yang-Baxter- oder �-Deformationen des chiralen Hauptmodells überein, während
sie für allgemein N aus beliebigen Kombinationen dieser deformierten Modelle bestehen. Wir
beschreiben sowohl die Hamilton- als auch die Lagrange-Formulierung von Modellen mit all-
gemeinem N und geben explizite Ausdrücke ihrer Wirkung und ihrer Lax-Verbindung. Die
zweite Klasse von Theorien wird auf einer Nebenmenge des direkten Produkts von N Kopien
einer Lie-Gruppe über eine diagonale Untergruppe definiert, wobei das bekannte, symmetrische
Raum-Sigma-Modell verallgemeinert wird, welches N = 1 entspricht. Wenn wir die Konstruk-
tion für zwei Kopien der Gruppe SU(2) spezifizieren, erhalten wir ein neues, integrierbares
Sigma-Modell mit drei Parametern auf der Mannigfaltigkeit T 1,1. Wir kommentieren den
Zusammenhang unserer Ergebnisse mit den in der Literatur vorhandenen.
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Chapter 1

Introduction

The description of a great number of physical phenomena is formalised in the language of
field theories. Notable examples of this fact include the Standard Model of particle physics,
which describes the fundamental constituents of matter and their interactions, general relativity
and also systems relevant to condensed matter and fluid theory. One of the main objectives
of such description is to determine how the system under consideration evolves in time. In
mathematical terms, this comes to the problem of solving certain partial di↵erential equations
for the fields which describe the system. In particular, most of the methods that we employ for
the solution of this problem are based on perturbative expansions in the parameter controlling
the interactions of the fields. However, despite the success of these methods in many contexts,
numerous examples of field theories cannot be studied in this way. It occurs nonetheless that
for some systems it is possible to go beyond the perturbative expansion and obtain an exact
solution of the equations describing their evolution. In particular, it is the case that for some
models the amount of symmetries they possess is su�cient to exactly solve their motion. We
speak in this case of integrable systems. The systematic study of these systems has given rise
to a great number of exact techniques which are vastly applied currently in theoretical physics.
These techniques are known collectively under as theory of integrability.

The formalisation of this theory started early on with the systematic characterisation of
integrable models in Hamiltonian mechanics by the theorem of Liouville [1] and its global
extension by Arnol’d [2]. According to this theorem, if a system with 2n Hamiltonian degrees
of freedom possesses n independent conserved quantities in involution, i.e. Poisson commuting
one with another, then it can be solved (integrated) exactly by quadratures. The study of such
integrable systems has been further advanced by the introduction of the notion of Lax pairs.
In particular, the integrability of a mechanical system can be inferred from the existence of two
matrices L and M , the Lax pair, which are functions of the phase space coordinates, such that
the equations of motion of the model can be rewritten in the form of the so-called Lax equation
and the components of the matrix L satisfy specific Poisson bracket relations which ensure the
existence of conserved charges in involution.

A similar concept of Lax pair can be used to define integrability for classical two-dimensional
field theories. In this context, we require that the equations of motion can be recast in the form
of a zero curvature equation for a two-dimensional connection [3], called the Lax connection,
whose spatial and temporal components are matrices depending on fields of the model and on
an auxiliary complex parameter known as the spectral parameter. Given such a formulation,
there is a canonical procedure to construct an infinite number of conserved charges from the
spatial part of the connection, called the Lax matrix. Furthermore, integrability follows from
the fact that the components of this Lax matrix satisfy certain Poisson bracket relations of the
Sklyanin [4] or Maillet [5, 6] type, which imply that the conserved charges we construct are in
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CHAPTER 1. INTRODUCTION 7

involution. This Lax formulation of integrable field theories stands at the basis of the so-called
inverse scattering method [7,8], which brought to many developments in the theory of solitons,
for example for the Korteweg-de Vries [9], non-linear Schrödinger [10] and Sine-Gordon [11]
equations.

In this thesis we focus on a particular kind of classical integrable field theories known
as integrable (non-linear) sigma models, which have shown important applications to various
fields of theoretical physics. Prototypical examples of these models include the principal chiral
model on a Lie group and the coset sigma model on a symmetric space. For example, an
instance of the coset model, the so-called non-linear O(3) model, is known in condensed matter
theory as the continuum limit of certain spin systems which are useful for the description
of the magnetic properties of some materials [12]. Integrable sigma models have also been
found to have important applications relevant to high-energy physics and string theory and in
particular in the domain of the AdS/CFT correspondence [13–15]. In this context, a crucial
result was the discovery in [16] of the classical integrability of the Green-Schwarz superstring
sigma model on the AdS5 ⇥ S5 background [17] (see also the review [18]). Following this
result, integrability techniques have been applied fruitfully to both the string model and its
dual N = 4 supersymmetric Yang-Mills theory (see the review [19]), allowing in particular the
exact computation of certain physical observables of this 4d gauge theory.

Even more recently, integrable sigma models have attracted interest following the discovery
of their integrable deformations. The latter deform the initial theories while preserving inte-
grability and introducing a set of continuous parameters, hence providing whole new classes of
integrable models. Main examples are given by the Yang-Baxter and the �-deformation of the
principal chiral model, which have been obtained in [20, 21] and [22] for the case of a generic
Lie group, generalising the results found in [23] and [24] for the low-dimensional target space
SU(2). These deformations have then been extended in [25,26] and [27] to the AdS5⇥S5 super-
string, where they allow to lift partially or completely its supersymmetries and where they have
attracted recently a lot of attention concerning the nature of the corresponding supergravity
backgrounds [28–41] (see the recent review [42] for a complete list of references).

These new developments stimulated further explorations into the general properties of in-
tegrable sigma models. Firstly, studying these theories in the Hamiltonian formulation, it was
shown that the classical integrability structure of a very broad class of these models is controlled
by a rational function of the spectral parameter known as the twist function, which characterises
the Poisson bracket of the Lax matrix [43–46]. This class of theories was remarkably proven to
include integrable models such as the principal chiral model [43], its deformations [47–51] and
models relevant to the AdS/CFT correspondence [27,46,52,53]. More recently, integrable field
theories with a twist function have been shown to be particular realisations of classical Gaudin
models associated with a�ne Kac-Moody algebras.

Gaudin models are integrable systems associated with Lie algebras. Historically, they were
introduced for finite dimensional Lie algebras, in which case they describe classes of integrable
spin systems [54, 55]. They were later generalised to the infinite dimensional setting of a�ne
Kac-Moody algebras in [56,57], where it was shown that they describe integrable field theories.
In particular, the way classical fields are recovered in this context is by realising the underlying
a�ne Kac-Moody algebra as a centrally extended current algebra on the circle. Moreover, as
shown in [56, 57] a�ne Gaudin models provide a procedure to define integrable field theories
in a systematic way. In particular, it was shown in [57] that this procedure allows to recover
many known examples of integrable sigma models, including the principal chiral model and its
deformations.

The consideration of more general examples of a�ne Gaudin models o↵ers an unprecedented
possibility to construct and study a new large panorama of integrable field theories. For in-
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stance, the scope of this panorama of models has been substantially widened by the methods
developed recently in [58,59], where a procedure has been outlined to obtain more general a�ne
Gaudin models by coupling together non-trivially basic instances of them. This procedure was
applied in the same references to construct a theory coupling together an arbitrary number of
principal chiral models on the same Lie group. Many possibilities o↵ered by this method for
the exploration of the panorama of integrable sigma models still remain to be studied. The
present thesis intends to contribute precisely to this exploration.

Firstly, we deal with Yang-Baxter and �-deformations of the coupled principal chiral models
introduced in [58,59]. More precisely, after recalling briefly the main results about a�ne Gaudin
models in chapter 2, we apply these methods to the construction of a class of models coupling
together an arbitrary number N of Yang-Baxter and �-deformations of the principal chiral
model. In particular, we define these models in the Hamiltonian formulation, finding explicit
expressions for their Hamiltonian and Lax connection. We perform subsequently the inverse
Legendre transform and construct the Lagrangian formulation, obtaining the action of the
models in terms of a certain number of free parameters. Furthermore, we show that taking
particular limits in these parameters we recover the coupled models obtained recently in [60–63],
which can thus be seen as particular instances of the theories constructed here. As another
result, we describe the relation of the models constructed here with the 4d semi-holomorphic
Chern-Simons theory introduced in [64] (see also [65–69]). It was shown in [70] that this 4d
Chern-Simons theory can be used to generate broad classes of integrable two-dimensional field
theories. Moreover, it was discussed in [71] that it is deeply related with the framework of
a�ne Gaudin models. It is natural to search for a construction of the deformed coupled sigma
models considered here from the 4d semi-holomorphic Chern-Simons theory. We present this
construction explicitly and relate it to the a�ne Gaudin model approach. This result and the
ones mentioned above are the subject of chapter 3 of the thesis.

Furthermore, by considering the general framework of dihedral a�ne Gaudin models pre-
sented in [57], we construct a new class of integrable sigma models on coset target spaces.
These models are defined on the coset GN/H given by the product of an arbitrary number N
of copies of a Lie group G modulo the action of a diagonal gauge subgroup H. For N = 1 they
coincide with the well-known symmetric space sigma model. We describe in detail how the
gauge symmetry associated to H is implemented at the Hamiltonian level by imposing a first-
class constraint on the phase space of the corresponding a�ne Gaudin models. By performing
the inverse Legendre transform explicitly in the case of models with two copies, we obtain the
action of these theories. We show that this action admits a recasting in terms of the so-called
R-matrix of the models, which allows us to find a generalisation to the case of an arbitrary
number of copies depending on 3N � 2 free parameters. As a concrete application of the model
with two copies, we specify our construction to the SU(2) case and find a new integrable sigma
model on the space T 1,1 = SU(2) ⇥ SU(2)/U(1). In this context, we note that the presence
of the B-field found from the a�ne Gaudin models construction is crucial for the integrability
of the model, arguing moreover that any other choice of B-field would exhibit a non-integrable
behaviour. These results are contained in chapter 4.

We end the thesis with some concluding remarks about general perspectives of the work
presented in it.



Chapter 2

A�ne Gaudin models

In this chapter we introduce the formalism of a�ne Gaudin models as a framework to construct
very broad classes of classical integrable field theories with twist function. This formalism will
be then applied in the rest of the thesis to construct integrable sigma models on product and
coset manifolds built from a generic Lie group G. In order to fix notations, let us start by
recalling some general notions about classical integrable field theories.

2.1 Classical integrable field theories

In this section we describe the notion of Lax formulation for field theories. We explain how this
formulation allows one to find an infinite set of conserved charges from the so-called monodromy
matrix. Subsequently, we introduce two other central notions in the study of the integrable
models described in this thesis, namely the Maillet bracket and the R-matrix, which emerge
from the Hamiltonian analysis of integrable field theories.

2.1.1 Lax formalism

Let us consider a field theory described in terms of dynamical fields �i depending on the
coordinates (x, t) of a two-dimensional Minkowski space-time D ⇥ R, where we take either
D = R or D = S1. The time evolution of these fields is dictated by their equations of motion,
namely a set of partial di↵erential equations with properly chosen boundary conditions. We
will show now that a Lax reformulation of these equations allows one to find an infinite set of
conserved charges for the field theory.

Lax connection. Let us consider a one-form L1(z) = M(z, x, t)dt+L(z, x, t)dx on the two-
dimensional Minkowksi space-time D⇥R, where z is an auxiliary complex parameter called the
spectral parameter and M(z, x, t) and L(z, x, t) are valued in a complex Lie algebra gC with
Lie bracket [·, ·]. The field theory under consideration is said to admit a Lax reformulation if
the equations of motion for the fields �i can be rewritten in the form of the Lax equation [3]:

@tL(z, x, t)� @xM(z, x, t) + [M(z, x, t),L(z, x, t)] = 0, (2.1.1)

for all z 2 C. We will often refer to (2.1.1) as the zero curvature equation since it can be
rewritten in terms of L1 as dL1+L1^L1 = 0, which is the requirement that the curvature of the
two-dimensional connectionr = d+L1 vanishes. For this reason the pair (M(z, x, t),L(z, x, t))
is often referred to as the Lax connection of the theory.

9
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Monodromy matrix and integrability. Let us show how the Lax equation (2.1.1) implies
the existence of an infinite set of conserved charges under the time evolution of the theory.
Let GC be a connected Lie group with Lie algebra gC. We define the transfer matrix of the
connection r between two points a and b as the following GC-valued path-ordered exponential:

T (z, a, b, t) = P �exp
✓
�
Z b

a

dx L(z, x, t)
◆
. (2.1.2)

As a consequence of the Lax equation (3.3.1), the transfer matrix satisfies the following impor-
tant property (see for example [72]):

@tT (z, a, b, t) = T (z, a, b, t)M(z, b, t)�M(z, a, t)T (z, a, b, t), (2.1.3)

for all z 2 C.
Let us distinguish the two cases D = R and D = S1. In the first one, we define the

monodromy matrix as the following path-ordered exponential:

T (z, t) = T (z,�1,+1, t). (2.1.4)

If we suppose that the field M(z, x, t) goes to zero su�ciently fast at x = ±1, equation (2.1.3)
becomes:

@tT (z, t) = 0, 8z 2 C. (2.1.5)

The Lax equation (2.1.1) thus implies that the whole monodromy matrix T (z, t) is conserved
for every value of the spectral parameter z. Thanks to this arbitrariness, one gets in general an
infinite number of conserved charges from T (z, t) by varying z or by expanding in power series.

Let us consider the second possibility D = S1 ' [0, 2⇡]. In this case, we define the mon-
odromy matrix as:

T (z, t) = T (z, 0, 2⇡, t). (2.1.6)

Demanding periodic boundary conditions M(z, 0, t) = M(z, 2⇡, t) the expression in the right
hand side of (2.1.3) becomes a commutator. It follows that not the whole monodromy matrix
is conserved this time. However, the images under conjugacy invariant functions � : GC ! R
of this matrix remain conserved. Such functions can be constructed as traces of powers of the
given group element. For example, in the case of a semi-simple Lie algebra gC it is known that
such choice of functions generates all conjugacy invariant functions on GC. In particular, it
holds that (in a chosen representation):

@t tr (T (z, t)
n) = 0, 8n 2 Z+, 8z 2 C. (2.1.7)

The dependence on the spectral parameter then implies again the existence of an infinite set
of conserved charges.

Since (2.1.7) holds also for D = R, we can summarise the concepts discussed so far by
stating that the Lax equation (2.1.1) implies the conservation of the following set of charges:

Qn(z) = tr (T (z, t)n) . (2.1.8)

Finally, we note that the charges extracted from the monodromy matrix are in general
non-local. However, a specific property of integrable models with twist function, which we
will define later in this section, is that they possess an infinite set of local conserved charges
independent from the ones extracted from the monodromy matrix. We shall see in the main
text how these charges are constructed in the specific models described in later chapters.
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2.1.2 Hamiltonian formulation and Maillet Poisson brackets

In this section, we define the concept of integrability for a field theory by requiring that it
possesses an infinite set of conserved charges in involution in the Hamiltonian formulation.
This will bring us to the important notion of the Maillet bracket for the spatial part of the Lax
connection. Let us first briefly recall the Hamiltonian formulation of classical field theories.

Hamiltonian field theory. Let us consider the phase space of the theory as the Poisson
manifold M which describes the field configurations of the fundamental dynamical fields of the
model �i. Hence, the space of functionals F(M) over M is equipped with a Poisson bracket:

{·, ·} : F(M)⇥ F(M) �! F(M)
(f, g) 7! {f, g}, (2.1.9)

which is bilinear and skew-symmetric in its arguments. This bracket satisfies the following
properties:

{f1, f2f3} = {f1, f2}f3 + f2{f1, f3}, (2.1.10)

{f1, {f2, f3}}+ {f3, {f1, f2}}+ {f2, {f3, f1}} = 0, (2.1.11)

8f1, f2, f3 2 F(M), known as the Leibniz rule and the Jacobi identity, respectively.
In the Hamiltonian formulation, the time evolution of the field theory is generated by a func-

tional H 2 F(M) called the Hamiltonian. More precisely, for any functional f 2 F(M) which
does not depend explicitly on time, its time evolution is given by the following Hamiltonian
flow:

@tf = {H, f}. (2.1.12)

In particular, if f and H are in involution, i.e. {H, f} = 0, f is conserved in time.

Lax matrix and involution of the charges. Working in the Hamiltonian formulation
we consider now fields defined on an equal time slice. We will hence drop the t-dependence
from their expressions. Supposing that the Lax connection (M(z, x),L(z, x)) depends on time
only through the fields �i, the zero curvature equation (2.1.1) takes the following form in the
Hamiltonian formalism:

{H,L(z, x)}� @xM(z, x) + [M(z, x),L(z, x)] = 0. (2.1.13)

As a consequence, one can extract an infinite set of charges from the monodromy matrix T (z)
which are conserved under time evolution. The field theory is said to be integrable if these
charges are in involution. Since they are constructed from the spatial part L(z, x) of the Lax
connection, we will now describe two Poisson bracket relations for L(z, x) that ensure this
property.

In order to do this in a compact way, let us first introduce some notation. For any gC-valued
functional X, i.e. X 2 gC ⌦ F(M), we define

X1 = X ⌦ Id and X2 = Id⌦X, (2.1.14)

belonging to U(gC) ⌦ U(gC) ⌦ F(M), where U(gC) is the universal enveloping algebra of gC.
Let us consider a basis {Ia}, a = 1, . . . , dimgC of the Lie algebra gC and decompose any two
gC-valued functionals X and Y as X = XaIa and Y = YbIb. We can then write compactly their
Poisson bracket as

{X1, Y2} = {Xa, Yb} Ia ⌦ Ib, (2.1.15)
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where the Poisson bracket on the right hand side is the one described at the beginning of this
section.

It was found by Sklyanin in [4] (see also [73]) that a su�cient condition for the conserved
charges constructed from the monodromy matrix to be in involution is that L(z, x) has a Poisson
bracket of the form

{L1(z, x),L2(w, y)} = [R12(z, w),L1(z, x) + L2(w, x)]�xy, (2.1.16)

where we denoted the Dirac distribution �(x � y) by �xy and R12 is a gC ⌦ gC -valued matrix
depending on the spectral parameters z and w. This matrix is known as the R-matrix of
the theory. In order for (2.1.16) to satisfy the properties of Poisson brackets, this matrix has
to satisfy two constraints. Firstly, the antisymmetry of the Poisson bracket requires it to be
antisymmetric:

R12(z, w) = �R21(w, z). (2.1.17)

Let us now consider the classical Yang-Baxter equation (CYBE),

[R12(z1, z2),R13(z1, z3)] + [R12(z1, z2),R23(z3, z3)] + [R32(z3, z2),R13(z1, z3)] = 0, (2.1.18)

which is an identity in gC⌦gC⌦gC. This equation provides a su�cient condition for the bracket
(2.1.16) to satisfy the Jacobi identity. In the following, we will restrict to the case in which
R12 is a solution of the CYBE. The reason for this is that equation (2.1.18) is algebraic and
non-dynamical, and thus its solutions can be constructed following general schemes, as we shall
explain in the next section.

The bracket (2.1.16) is said to be ultralocal since it only contains terms which are of order
zero in the derivatives of the �-distribution. However, the models we will consider in this thesis
are characterised by the presence of higher order terms in these derivatives in the Poisson bracket
of L(z, x). Such a non-ultralocal generalisation is obtained for the case of non-skew-symmetric
R-matrix and it takes the name of Maillet bracket [5, 6]. It reads:

{L1(z, x),L2(w, y)} = [R12(z, w),L1(z, x)]�xy � [R21(w, z),L2(w, x)]�xy
� (R12(z, w) +R21(w, z))�

0
xy, (2.1.19)

where we denoted �0xy = @x�(x � y). As stated for the Sklyanin bracket, in the following R12

will be taken to be a solution of the CYBE (2.1.18).

2.1.3 R-matrices and twist function

In this section, we briefly discuss the standard R-matrix solutions to the CYBE, which will be
crucial to the description of the integrability of the models contained in the next chapters.

Split quadratic Casimir. Let us suppose that gC is a Lie algebra with a non-degenerate
invariant bilinear form . Let us introduce the split quadratic Casimir of gC as the following
symmetric combination of the elements of the basis {Ia} of gC:

C12 = ab I
a ⌦ Ib, (2.1.20)

For any X 2 gC, one can check that it satisfies

2(C12, X2) = X. (2.1.21)

Moreover, from the ad-invariance of the bilinear form , it follows that

[C12, X1 +X2] = 0, (2.1.22)

8X 2 gC.
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Standard untwisted R-matrix and twist function. From (2.1.22), the split quadratic
Casimir satisfies the following identity on gC ⌦ gC ⌦ gC:

[C12, C23] = [C32, C13] = �[C12, C13]. (2.1.23)

Together with the circle lemma,

1

z2 � z1

1

z3 � z1
� 1

z2 � z1

1

z3 � z2
� 1

z2 � z3

1

z3 � z1
= 0, (2.1.24)

identity (2.1.23) implies that a particular solution of the CYBE is given by

R0
12(z, w) =

C12

w � z
, (2.1.25)

which is known as standard untwistedR-matrix. We note that since the split quadratic Casimir
C12 is symmetric R12 is skew-symmetric.

The standard untwisted R-matrix (2.1.25) is part of an infinite family of solutions of the
CYBE which is obtained by dividing this solution by an arbitrary complex function '(w) of the
spectral parameter w. This complex function, known as the twist function of the theory [46]
(see also [43, 45]), will be a crucial element in the rest of the thesis. Explicitly, the family of
solution is given by

R12(z, w) = R0
12(z, w)'(w)

�1. (2.1.26)

We note that this solution is in general non-skew-symmetric.

Standard twisted R-matrix and twist function. Let us suppose that gC is semi-simple.
Let us also suppose that on the Lie algebra gC acts an automorphism � of order T 2 Z�1. It is
a standard result that this automorphism preserves the bilinear form . This fact is equivalent
to the following identity for the split quadratic Casimir:

�1�2C12 = C12. (2.1.27)

Let us take ! a T -th rooth of unity:

! = exp

✓
2⇡i

T

◆
. (2.1.28)

Using the identity (2.1.27) and the fact that � is an automorphism of gC, one can construct
another solution of the CYBE as

R0
12(z, w) =

1

T

T�1X

k=0

�k
1C12

w � !�kz
. (2.1.29)

This solution is known as the standard twistedR-matrix. Again, by dividing by a twist function
one finds an infinite family of solutions as in (2.1.26). Note that the twist function has nothing
to do with the R-matrix (2.1.29) being called twisted, although both involve the word twist.

2.2 AGMs as integrable field theories with twist function

In this section we review the construction of a�ne Gaudin models. These models were intro-
duced by Feigin and Frenkel in [56], where they were obtained from a�ne Kac-Moody algebras.
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They were further developed by Vicedo in [57]. We review here the main results of the construc-
tion contained in these references, following the conventions and notations of [59]. Starting with
a brief motivation of the definition of a�ne Gaudin models (AGMs), we describe the Hamil-
tonian formulation of the models and discuss their space-time symmetries and integrability.
We conclude this section by providing basic examples of this construction, showing how the
formalism of AGMs can be used to recover known integrable field theories such as the principal
chiral model and its coupled version recently introduced in [58,59].

The models discussed in this section are the simplest examples of AGMs. More general
models built on a Lie algebra gC admitting a finite order automorphism, also known as dihedral
AGMs, will be discussed in section 4.2.1.

2.2.1 Motivation

Let us start by considering an integrable field theory with Lax matrix L(z, x) and twist function
'(z), as described in the previous section. Let us assume that it satisfies the Maillet bracket
(2.1.19) with R-matrix given by the standard untwisted R-matrix (2.1.26). To better under-
stand the structure of this theory, let us define the following gC-valued field from L(z, x) and
'(z):

�(z, x) = '(z)L(z, x). (2.2.1)

This new field is known as the Gaudin Lax matrix of the theory. Let us now suppose that
both �(z, x) and '(z) depend rationally on z and that they have only simple poles at N 2 Z+

positions zr, r = 1, . . . , N in the complex plane, so that they can be generically written as1

'(z) =
NX

r=1

`r
z � zr

� `1 and �(z, x) =
NX

r=1

Jr(x)

z � zr
, (2.2.2)

where the `r and `1 are complex numbers and the Jr(x) are gC-valued fields. From this
assumption, one finds that the Maillet bracket for the Lax matrix L(z, x) can be resolved in
terms of the fields Jr(x) provided they satisfy the following Poisson brackets:

{Jr1(x),Js2(y)} = �rs
�
[C12,Jr1(x)]�xy � `rC12�

0
xy

�
. (2.2.3)

Hence, the Maillet bracket is inherited in this case from the fields Jr(x) being commuting
Kac-Moody currents with levels `r.

As we shall explain now, in the framework of AGMs one applies the logic described above
in reverse to construct integrable field theories from a similar set of currents.

2.2.2 Realisations of a�ne Gaudin models

In this section we define AGMs in the Hamiltonian formulation. We start by introducing Taki↵
currents Jr,[p] generalising the fields Jr seen in the previous section to treat the case of higher
order poles at the positions zr. We will see in the examples section below that this generalisation
is necessary if one wants to recover from this construction basic instances of integrable field
theories such as the principal chiral model on a Lie group.

1In principle, one could also add a constant term in the spectral parameter z to the Gaudin Lax matrix
�(z, x). However, one can see that in order to satisfy the Maillet bracket (2.1.19) this term would need to be
non-dynamical, i.e. its Poisson bracket with any other observable should vanish. For this reason and since this
term will not play a role in the rest, we will omit it from the discussion.
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Taki↵ currents. Let us consider a set of N positions zr 2 C in the complex plane and a set of
N integer numbers mr 2 Z�1, which we respectively refer to as the sites and multiplicities (by
a slight abuse of notation). To every site we associate mr complex numbers `r,p, p = 1, . . . ,mr,
which we call the levels and mr gC-valued currents Jr,[p](x), called the Taki↵ currents. We
suppose that these currents satisfy the following Poisson bracket relations:

{Jr,[p]1(x),Js,[q]2(y)} = �rs

(
[C12,Jr,[p+q]1(x)]�xy � `r,p+qC12�0xy if p+ q < mr

0 if p+ q � mr

. (2.2.4)

These relations generalise to the case mr > 1 the Poisson algebra (2.2.3) of Kac-Moody currents
(mr = 1). Together, the sites, the levels and the Taki↵ currents specify the defining data of an
AGM.

Abstractly, we can consider the phase space of the AGM as given by the configurations of
the Taki↵ currents Jr,[p](x). In the rest of the thesis we will be interested in di↵erent phase
spaces. Having a phase space M , we thus suppose that we can form combinations of the fields
belonging to M that realise the Taki↵ algebra (2.2.4). We speak in this case of the Taki↵
realisation in M . In the following we will assume that the currents Jr,[p](x) are realised in this
way. This will allow us to apply directly the formalism developed here to chapters 3 and 4.

Gaudin Lax matrix and twist function. As anticipated in the previous section, two main
quantities appearing in the study of AGMs are the Gaudin Lax matrix and the twist function.
In the case of higher multiplicities mr > 1, they are defined as the generalisation to higher order
poles of the expressions (2.2.2) found in the previous section. In particular, the Gaudin Lax
matrix for a realisation of an AGM is defined as the following gC-valued observable depending
on the spectral parameter z:

�(z, x) =
NX

r=1

mr�1X

p=0

Jr,[p](x)

(z � zr)p+1
, (2.2.5)

Similarly, the twist function is defined as follows:

'(z) =
NX

r=1

mr�1X

p=0

`r,p
(z � zr)p+1

� `1. (2.2.6)

Let us make a brief remark. The parameter `1 could be seen as the level of a site with position
1 and multiplicity 2. As explained in [57], this site at infinity is treated slightly di↵erently
from the others. In this thesis, it will not be necessary to give further details on this, instead we
can treat `1 more simply as an additional parameter without associating it to a site. Moreover,
we assume in this chapter that it is non-zero.

From the Poisson brackets (2.2.4) for the currents Jr,[p], one finds that the Gaudin Lax
matrix satisfies the following bracket controlled by the twist function:

{�1(z, x),�2(w, y)} = [R0
12(z, w),�1(z, x)]�xy � [R0

21(w, z),�2(w, x)]�xy

�
�
R0

12(z, w)'(z) +R0
21(w, z)'(w)

�
�0xy, (2.2.7)

with R0
12 given by the standard untwisted R-matrix (2.1.25).
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Reality conditions. Since we want the models that we will construct from AGMs to be real,
we need to impose some reality conditions on the currents Jr,[p] and the levels `r. There are
two types of reality conditions, depending on the site zr being real or complex. Let ⌧ be an
antilinear involutive automorphism of the Lie algebra gC and let g be the real form of gC with
respect to ⌧ . In other words, g is the subalgebra of fixed points under ⌧ of gC. We describe
the two types of reality conditions by means of this automorphism ⌧ . In the case of a real site
zr, we suppose that the currents Jr,[p] are invariant under this automorphism (i.e. they are
g-valued) and the corresponding levels are real:

⌧(Jr,[p]) = Jr,[p] and `r = `r. (2.2.8)

In the case of complex zr instead, we make the assumption that we have a site also at the
complex conjugate position zr. Moreover, we suppose that the currents at the two conjugate
sites are related by the automorphism ⌧ and that the levels are related by complex conjugation:

⌧(Jr,[p]) = Jr̄,[p] and `r = `r̄, (2.2.9)

where we used the notation r̄ to indicate quantities associated to the conjugate site zr.
As a consequence of the conditions above, one checks that the Gaudin Lax matrix and the

twist function of the models satisfy the following equivariance properties with respect to the
action of ⌧ and the complex conjugation z ! z̄:

⌧(�(z, x)) = �(z̄, x) and '(z) = '(z̄). (2.2.10)

2.2.3 Hamiltonian and momentum

Zeroes of the twist function. In this section we will construct the Hamiltonian for real-
isations of AGMs. In order to describe its form, it will be useful to start by rewriting the
twist function '(z) in terms of its zeroes. From (2.2.6) '(z) can be rewritten as the quotient
of two polynomials of degree M =

PN
r=1 mr. Hence, it will have M complex zeroes ⇣i, with

i = 1, . . . ,M :

'(z) = �`1
QM

i=1(z � ⇣i)QN
r=1(z � zr)mr

. (2.2.11)

In the following, we will assume that these zeroes are real and simple.

Hamiltonian. Let us consider the following quantity:

Q(z) = � 1

2'(z)

Z

D
dx (�(z, x),�(z, x)), (2.2.12)

where the integration region D was defined in section 2.1 to be either R or S1. We use Q(z) to
extract local charges quadratic in the currents Jr,[p]

2

Qi = res
z=⇣i

Q(z)dz, (2.2.13)

or, more explicitly,

Qi = �
1

2'0(⇣i)

Z

D
dx (�(⇣i, x),�(⇣i, x)), (2.2.14)

2We consider here the one-form Q(z)dz rather than the function Q(z) since we will be interested here and in
the following chapters in computing residues of this quantity at infinity, which are then more naturally defined
for one-forms.
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for i = 1, . . . ,M . As shown in [59], one can check that they Poisson commute with each other,
i.e. {Qi,Qj} = 0, for all i and j. The Hamiltonian of realisations of AGMs is defined from
these charges as their linear combination:

H =
MX

i=1

✏iQi, (2.2.15)

for some real numbers ✏i. The Hamiltonian H generates the time evolution of the models in
the sense that

@tf = {H, f}, (2.2.16)

for any f 2 F(M). Under this time evolution, the charges Qi are conserved by construction.
Moreover, as a consequence of the equivariance properties (2.2.10), H is real.

Momentum. Let us consider the momentum of the models P . It is defined as the generator
of spatial translations:

@x�(x) = {P ,�(x)}, (2.2.17)

for any field �(x) in M . In the following, we will make the assumption that it is given by the
following expression:

P = �
NX

r=1

✓
res
z=zr

Q(z)dz

◆
. (2.2.18)

To justify this assumption we first observe that for any of the Jr,[p]

⇢
� res

z=zs
Q(z)dz,Jr,[p](x)

�
= �rs @xJr,[p](x), (2.2.19)

as one can check from (2.2.12) and (2.2.4). Thus, the right hand side of (2.2.18) generates the
spatial derivative on the currents Jr,[p]. Then the assumption (2.2.18) is equivalent to supposing
that the Hamiltonian flow of (2.2.18) generates the spatial derivative on all fields in M . Note
that this may not be the case if M contains fields that do not appear in the definitions of the
currents Jr,[p]. We will see that this assumption is explicitly verified for the models described
in the next chapters.

From (2.2.12), Q(z)dz has residues at the positions zr and ⇣i only. Since the sum of the
residues of Q(z)dz on the Riemann sphere vanishes, the assumption (2.2.18) then implies that

P =
MX

i=1

Qi. (2.2.20)

We note from equation (2.2.15) that the the Hamiltonian and the momentum of the theories
thus di↵er only by a choice of the coe�cients ✏i. This fact allows a particularly simple treatment
of the symmetries associated to space and time translations of the models, as we shall now show.

2.2.4 Space-time symmetries

Energy-momentum tensor. In order to discuss further the space-time symmetries of the
realisations of AGMs, let us describe their energy-momentum tensor. We will indicate the
components of this tensor by T µ

µ⌫ , where both indices can be equal either to 0 or 1, for time
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and space components, respectively. The components T 0
00 and T 0

01 correspond to the densities
of the Hamiltonian and momentum of the models:

H =

Z

D
dx T 0

00(x) and P =

Z

D
dx T 0

01(x). (2.2.21)

Let us consider the densities of the charges Qi, which we will denote by qi(x):

qi(x) = �
1

2'0(⇣i)
(�(⇣i, x),�(⇣i, x)). (2.2.22)

From the expression (2.2.15) and (2.2.20) of the Hamiltonian and momentum, we can rewrite
the components T 0

00 and T 0
01 in terms of the fields qi as

T 0
00 =

MX

i=1

✏i qi and T 0
01 =

MX

i=1

qi. (2.2.23)

As H and P are conserved under time evolution, their densities should satisfy the following
local conservation equations:

@tT
0
0µ + @xT

1
1µ = 0, for µ = 0, 1, (2.2.24)

which allow us to define the other two components of the energy-momentum tensor T 1
1⌫ . In

order to compute these quantities, we need to calculate the time evolution of the expressions
(2.2.23). A direct computation from the Poisson bracket (2.2.7) of the Gaudin Lax matrix
�(z, x) shows that �

qi(x), qj(y)
 
= ��ij

�
@xqi(x)�xy + 2qi(x)�

0
xy

�
. (2.2.25)

From the equation above, one obtains the evolution of the densities qi(x) under the Hamiltonian
flow of the charges Qj, i.e. {Qj, qi(x)} = �ij@xqi(x). Hence, the time evolution of the qi(x)
reads:

@tqi = ✏i @xqi. (2.2.26)

By reinserting in the expressions (2.2.23) for the components T 0
00 and T 0

01, we arrive at:

@tT
0
00 =

MX

i=1

✏2i @xqi and @tT
0
01 =

MX

i=1

✏i @xqi. (2.2.27)

Then, comparing with the conservation equation (2.2.24), we read the expressions for the other
two components of the energy-momentum tensor:

T 1
10 = �

MX

i=1

✏2i qi and T 1
11 = �

MX

i=1

✏i qi. (2.2.28)

Classical scale invariance. We note from (2.2.23) and (2.2.28) that T µ
µµ = 0, i.e. the

energy-stress tensor is traceless and the models then classically scale invariant. In general, this
property is broken at the quantum level.
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Relativistic invariance. Let us consider the two-dimensional Minkowski metric ⌘µ⌫ , with
⌘00 = �⌘11 = 1 and ⌘01 = ⌘10 = 0. It is a standard result in field theory that a model is
invariant under Lorentz transformations if the tensor Tµ⌫ = ⌘µ⇢T ⇢

⇢⌫ obtained by lowering one of
the indices of the energy-momentum tensor is symmetric. Let us then consider its components
T01 and T10. From equations (2.2.23) and (2.2.28), one can check that

T01 =
MX

i=1

qi and T10 =
MX

i=1

✏2i qi. (2.2.29)

Hence, we find the following simple condition for the relativistic invariance of the models3:

✏i = ±1, 8 i 2 {1, . . . ,M}. (2.2.30)

Finally, since in this case the stress tensor is both traceless and symmetric, the models are also
conformal invariant.

2.2.5 Integrability

In this section, we introduce the Lax formulation of the models. We then proceed to show that
the Lax matrix has a Poisson bracket of the form of Maillet, hence proving that the models are
integrable field theories with twist function as expected.

Lax formulation. In agreement with the considerations in section 2.2.1, we define the Lax
matrix of the models as the following gC-valued field:

L(z, x) = �(z, x)

'(z)
. (2.2.31)

Since it will be useful later, let us briefly discuss its pole structure in z. Since �(z) and '(z)
have poles of the same order mr at the same positions zr, L(z) has only poles at the zeroes ⇣i
of the twist function. Since we assumed that these zeroes are simple, the Lax matrix can then
be rewritten as:

L(z, x) =
MX

i=1

1

'0(⇣i)

�(⇣i, x)

z � ⇣i
. (2.2.32)

Let us study the dynamics of this field starting from its definition (2.2.31). From the Poisson
bracket (2.2.7) of the Gaudin Lax matrix, a brief computation gives the following bracket of
Q(z) with L(z, x):

�
Q(w),L(z, x)

 
=
⇥
L(z, x),M(w ; z, x)

⇤
+@xM(w ; z, x)�@x

✓
1

'(z)
2
⇣
R0

21(w, z),�2(w, x)
⌘◆

,

(2.2.33)
where we defined the field

M(w ; z, x) = � 1

'(w)
2
⇣
R0

12(z, w),�2(w, x)
⌘

(2.2.34)

and R0 is the untwisted standard R-matrix (2.1.25). We take now the residue of (2.2.33) at
w = ⇣i, so that we find back from Q(z) the charges Qi from which the Hamiltonian is defined.

3We expect this condition to be also necessary for relativistic invariance since there is in general no other
apparent way to bring the di↵erence T01 � T10 in the form of a total derivative.



CHAPTER 2. AFFINE GAUDIN MODELS 20

Moreover, when taking this residue, the last piece on the right hand side of (2.2.33) vanishes
since both R0

21(w, z) and �(w, x) are regular at w = ⇣i. Hence, we arrive at the following
Poisson bracket:

{Qi,L(z, x)}� @xMi(z, x) +
⇥
Mi(z, x),L(z, x)

⇤
= 0, (2.2.35)

where Mi(z, x) is the residue of M(w; z, x) at w = ⇣i:

Mi(z, x) = res
w=⇣i

M(w; z, x)dw =
1

'0(⇣i)

�(⇣i, x)

z � ⇣i
, (2.2.36)

where the second equality is obtained by direct computation. As expected, equation (2.2.35)
is in the form of the zero curvature equation discussed in section 2.1. Multiplying by ✏i and
summing over the index i we obtain the Lax equation:

{H,L(z, x)}� @xM(z, x) + [M(z, x),L(z, x)] = 0, (2.2.37)

where the temporal part of the Lax connection is defined as

M(z, x) =
MX

i=1

✏i
'0(⇣i)

�(⇣i, x)

z � ⇣i
. (2.2.38)

We note that as for H and P the definitions of L(z, x) and M(z, x) di↵er only by the choice of
the parameters ✏i.

Maillet bracket. From the Poisson bracket (2.2.7) of the Gaudin Lax matrix and the form
(2.2.32) of the Lax matrix, it is simple to prove that the Poisson bracket of L(z, x) is given by
the Maillet bracket [5, 6]:

{L1(z, x),L2(w, y)} = [R12(z, w),L1(z, x)]�xy � [R21(w, z),L2(w, x)]�xy
� (R12(z, w) +R21(w, z))�

0
xy, (2.2.39)

where R12(z, w) = R0
12(z, w)'(w)

�1 is the standard R-matrix (2.1.25) twisted by the twist
function. As a consequence of the Maillet bracket (2.2.39), one can show that the infinite set
of conserved charges extracted from the monodromy matrix of the models is in involution and
hence that realisations of AGMs are integrable.

Integrable local hierarchies. Note that the conserved charges extracted from the mon-
odromy matrix of the models are in general non-local. It was shown in [74] (see also [75, 76])
that models with twist function possess infinite integrable hierarchies of local conserved func-
tions associated with the zeroes of the twist function. We already noted in section 2.2.3 that
realisations of AGMs possess a set of local conserved quadratic charges Qi which was given in
(2.2.14). Similarly, one can associate to these zeroes the following higher degree local conserved
charges:

Qd
i = �

1

(d+ 1)'0(⇣i)

Z

D
dx �d(�(⇣i, x)), (2.2.40)

where we denoted by �d well-chosen invariant polynomials on gC of degree d + 1. The index
d is restricted to take specific values which depend on the underlying Lie algebra gC and the
zero under consideration. We refer to [74] for more details about the construction of these
hierarchies. We note that for the case d = 1 the corresponding quadratic polynomial is given
by the bilinear form  as shown in the expression (2.2.14) of the Qi.
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2.2.6 Examples

We end this section by providing two illustrative examples of the framework outlined in the
previous sections. In particular, we will first describe how to obtain from AGMs the prototypical
example of an integrable field theory defined on a semi-simple real Lie group G, namely the
principal chiral model (PCM). Our aim will be to show how the Hamiltonian of this model is
recovered, which then allows to obtain the well-known PCM action. Later, we show how to
construct a theory coupling together an arbitrary number of PCMs on the same Lie group.
This example serves to show the power of AGMs and provides an intermediate logical step
towards the models presented in the next chapters. We follow the construction described in
the previous sections, starting by describing the Taki↵ realisation of a single PCM.

Canonical fields on T ⇤G. Let us consider canonical fields taking values in the cotangent
bundle T ⇤G of the Lie group G. We note that the cotangent space T ⇤

pG at a point p 2 G
can always be sent to the cotangent space T ⇤

IdG = g⇤ (the dual of the Lie algebra g of G)
at the identity by translating through multiplication by p�1. As we supposed g to be semi-
simple, we have a canonical isomorphism between g⇤ and g through the bilinear form  and thus
T ⇤G ' G⇥g. Hence, the canonical fields can be described by a pair of fields (g,X) : D! G⇥g
which encode the coordinate and momentum fields, respectively.

The cotangent bundle T ⇤G is a symplectic manifold. In terms of the fields g and X, the
corresponding Poisson bracket for canonical fields with values in this symplectic manifold is
given by:

{g1(x), g2(y)} = 0, (2.2.41a)

{X1(x), g2(y)} = g2(x)C12�xy, (2.2.41b)

{X1(x), X2(y)} = [C12, X1(x)]�xy. (2.2.41c)

Taki↵ realisation of the PCM. We will use now the fields g and X to construct the Taki↵
realisation of the PCM. Let us consider the following g-valued current:

j(x) = g�1(x)@xg(x). (2.2.42)

Together with the field X, we use it to construct a pair of g-valued currents:

J[0](x) = X(x) (2.2.43a)

J[1](x) = ` j(x). (2.2.43b)

As one can check from the brackets (2.2.41), these currents satisfy the following Poisson brack-
ets:

{J[0]1(x),J[0]2(y)} = [C12,J[0]1(x)]�xy (2.2.44a)

{J[0]1(x),J[1]2(y)} = [C12,J[1]1(x)]�xy � `C12�
0
xy, (2.2.44b)

{J[1]1(x),J[1]2(y)} = 0. (2.2.44c)

In the terminology of section 2.2.2, J[0] and J[1] are hence Taki↵ currents of multiplicity m = 2
with levels `0 = 0 and `1 = `. This realisation is usually referred to as the PCM realisation
since it gives rise to the PCM model, as we shall now show.
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PCM Gaudin Lax matrix and twist function. Let us use the Taki↵ currents (2.2.43) to
build the PCM as an AGM. For that, we need to consider the Gaudin Lax matrix and the twist
function of the model. Let us fix a real site z1 in the complex plane. Then, the Gaudin Lax
matrix is built by combining the Taki↵ currents as in (2.2.5). By using the currents (2.2.43) of
the realisation, we get for this case the following explicit form:

�(z, x) =
` j(x)

(z � z1)2
+

X(x)

z � z1
. (2.2.45)

Similarly, from (2.2.6) we read the twist function of the model:

'(z) =
`

(z � z1)2
� `1. (2.2.46)

The zeroes of this function are thus:

⇣1,2 = z1 ±
`

K
with K =

p
``1, (2.2.47)

where we introduced the reparametrisation of `1 in terms of K for future convenience.

Hamiltonian and action of the PCM. In order to compute the Hamiltonian of the model,
we need to calculate the residues of the charge Q(z) introduced in (2.2.12) at ⇣1,2. A brief
calculation shows that they are given by

Q1,2 = res
z=⇣1,2

Q(z)dz = ±K

4

Z

D
dx 

✓
X(x)

K
± j(x),

X(x)

K
± j(x)

◆
. (2.2.48)

The Hamiltonian is defined as the following linear combination of the charges above:

H = ✏1Q1 + ✏2Q2, (2.2.49)

where ✏i 2 {+1,�1} to have relativistic invariance, as seen in the general AGMs construction.
In order to find the standard action of the PCM when passing from the Hamiltonian to the
Lagrangian formulation, one takes the choice [57, 59] ✏1 = +1, ✏2 = �14. With this choice, we
find the following expression for the Hamiltonian of the model:

H =
1

2

Z

D
dx

1

K
 (X(x), X(x)) +K  (j(x), j(x)) . (2.2.50)

Passing from the Hamiltonian to the Lagrangian formulation of the model, we find the standard
action of the PCM. In terms of the field g(x, t) (in the Lagrangian formulation this field depends
explicitly on time), this action is given by

S[g] =
K

2

ZZ

D⇥R
dx dt (g�1@+g, g

�1@�g), (2.2.51)

where we introduced the light-cone coordinates x± = (t±x)/2 and the corresponding derivatives
@± = @t±@x. Since the computation of this action by inverse Legendre transform is of a technical
nature we will leave it for the next chapters, where it will be discussed in detail for more general
models.

4In order not to have trivial dynamics, one cannot take ✏1 and ✏2 to be of the same sign, which would give an
Hamiltonian either equal to the momentum or its opposite. The choice between ✏1 = +1, ✏2 = �1 and ✏1 = �1,
✏2 = +1 is then taken to make the Hamiltonian positive, as described in [57,59].
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Coupled principal chiral models. Let us end this section by a discussion of how AGMs
allow one to construct a theory coupling together an arbitrary number of the PCMs (2.2.51) on
the same Lie group, as first described in [58]. Following the terminology of this section, let us
start by considering an AGM with N 2 Z�1 real sites zr, r 2 {1, . . . , N}, of multiplicity two.
Each site is associated with two constant numbers `r,0 2 R and `r,1 2 R⇤. For simplicity, we
fix here `r,0 = 0 and rewrite `r,1 = `r5. To each site are also attached two Taki↵ currents Jr,[0]

and Jr,[1]. We consider then the realisation of these Taki↵ currents in the phase space given by
canonical fields on the cotangent bundle T ⇤GN . This choice corresponds for the case N = 1
to the phase space of the PCM which we discussed earlier in this section. For general N , it is
then described by N G-valued fields g1(x), · · · , gN(x) and N g-valued fields X1(x), · · · , XN(x),
which are the equivalents of the fields g(x) and X(x) introduced for the PCM. Similarly to that
case, we realise the currents Jr,[0] and Jr,[1] at each site zr as in equation (2.2.43), with j(x)
and X(x) replaced by jr(x) and Xr(x), respectively.

We conclude the construction by defining the Hamiltonian of the model as outlined in the
section 2.2.3. By passing to the Lagrangian formulation and computing the inverse Legendre
transform, we arrive at the following form of the action of the model (here also we do not detail
the computations as for the PCM):

S[g1, . . . , gr] =

ZZ

D⇥R
dx dt

NX

r,s=1

⇢rs (g
�1
r @+gr, g

�1
s @�gs), (2.2.52)

where the ⇢rs are scalar coe�cients defined in terms of the twist function of the model coupling
together the fields at di↵erent sites. In particular, as one can show, the action above depends
on a total of 2N�1 free parameters. Moreover, one can see that by taking for example the N -th
site zN to infinity in (2.2.52), one recovers the sum of an action S[g1, . . . , gN�1] of the same
form and a PCM action S[gN ] for the the field gN , uncoupled to the fields at other sites. The
action (2.2.52) hence describes a model coupling non-trivially together an arbitrary number of
PCMs in a way that preserves integrability, as it was anticipated.

5Leaving `r,0 unfixed would result in the introduction of Wess-Zumino terms in the action of the model.
Historically, this was the case in which these models were originally described in [58]. For simplicity we will
leave the discussion of this case for the next chapters, where we will present the construction in details.



Chapter 3

Integrable deformations of coupled

sigma models

3.1 Introduction

In section 2.2.6 of the previous chapter we have shown how the framework of AGMs provides a
powerful way to construct basic instances of integrable field theories, such as the PCM and its
more general coupled version. In this chapter we start exploring how the framework of AGMs
can be used to construct more general integrable field theories. More precisely, we describe
the construction of integrable deformations of the coupled PCMs. The work presented here is
based on the article [77], which I wrote during my PhD in collaboration with S. Lacroix.

In order to introduce the concept of integrable deformations, let us start by considering
the so-called Yang-Baxter model [20,21]. It was shown by Klimč́ık in these references that the
PCM (without Wess-Zumino term) admits a continuous integrable deformation, which is known
as the Yang-Baxter model. This model depends on the choice of a skew-symmetric R-matrix
on g, i.e. a linear operator R : g ! g satisfying the modified classical Yang-Baxter equation
[RX,RY ]�R[RX, Y ]�R[X,RY ] = �c2[X, Y ] for every X, Y 2 g, with c equal to 1 or i. The
action of this theory is given by

SYB[g] = ⇢

ZZ
dt dx 

✓
g�1@+g,

1

1� ⌘Rg
g�1@�g

◆
,

where ⌘ is the deformation parameter and Rg = Ad�1
g �R � Adg. Note that in the limit where

⌘ goes to zero one recovers the action (2.2.51) of the PCM. Hence, the Yang-Baxter model
constitutes a continuous deformation of the latter. Furthermore, it was shown this model
possesses a Lax connection [21] satisfying a Maillet bracket with twist function [47].

Other examples of such deformed integrable sigma models are known. For instance, in [22]1

Sfetsos constructed a model which corresponds to a deformation of the so-called non-abelian
T-dual of the PCM (without Wess-Zumino term), called the �-model. The action of this theory
is defined as

S�[g] = SWZW,k[g] + k
ZZ

dt dx 

 
@+gg

�1,
1

��1 � Ad�1
g

g�1@�g

!
,

where k and � are constant parameters and SWZW,k[g] is the action of the conformal Wess-
Zumino-Witten model at level k. The Lax connection of this model was shown to satisfy the
Maillet bracket in [51] (see also [80] for first results).

1The reformulation of this model as a theory on G⇥G⇥G is a special case of one that was originally considered
in [78] and whose classical integrability was first proven in [79].

24
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Following the formulation of these models as integrable field theories with twist function,
both the Yang-Baxter and the �-model were reinterpreted as realisations of a�ne Gaudin
models in [57]. In particular, in the language of chapter 2, both models possess a twist function
with two simple poles, which correspond to two sites of multiplicity one for the corresponding
AGM. Recall from section 2.2.6 that the twist function of the PCM has a single pole with
multiplicity two. This is also the case for the non-abelian T-dual of the PCM. From the point
of view of the undeformed model the deformation corresponds then to splitting the double pole
into a pair of simple ones. The distance between the simple poles will constitute the deformation
parameter of the models. Moreover, following the formalism of chapter 2, the deformed models
are described by two commuting Kac-Moody currents in T ⇤G rather than Taki↵ currents of
multiplicity two in the same phase space as for the undeformed models.

A natural direction of exploration is thus to construct integrable deformations of the kind
discussed above for the integrable coupled PCMs discussed in chapter 2. For instance, we can
apply a Yang-Baxter deformation to any of the N copies of the model. Similarly, one could also
consider a �-deformation, which would be a deformation of the model where the corresponding
copy of the PCM is replaced by its non-abelian T-dual. In this chapter, we will describe the
explicit construction of the class of models coupling together an arbitrary number of these
deformations.

Before discussing this construction in detail, let us summarise briefly its main results. Let
us first consider the model with N copies of the principal chiral model with Wess-Zumino term,
each subject to a Yang-Baxter deformation. It is defined by 4N � 1 parameters, which can be
thought of as the 3N � 1 parameters of the undeformed model2 together with N deformation
parameters, and by the choice of N R-matrices Rr on g3. We find the action of this model to
be

S[g1, . . . , gN ] =
1

2

ZZ
dt dx

NX

r,s=1


⇣
g�1
r @+gr, Ors(Rl) g

�1
s @�gs

⌘
+

NX

r=1

kr IWZ

⇥
gr
⇤
. (3.1.1)

In this expression, O is an operator on gN whose entries Ors depend on the R-matrices Rr and
the defining parameters of the model. Moreover, IWZ

⇥
gr
⇤
is the Wess-Zumino term for the field

gr. We prove that in the limit where the N deformation parameters are taken to 0 the entries
Ors of the operator O tend to ⇢rsId, where the coe�cients ⇢rs were introduced in the expression
(2.2.52) for the action of the coupled PCMs. Hence, in the undeformed limit we find back the
action (2.2.52) (given for the case kr = 0) as expected.

Let us now consider the model coupling together N copies of the �-model. This model
possesses 3N�1 defining parameters of which N can be thought of as deformation parameters.
Its action takes the form:

S[g1, . . . , gN ] =
NX

r=1

SWZW,kr

⇥
gr
⇤
+

ZZ
dt dx

NX

r,s=1

kr 

✓
@+grg

�1
r ,

✓
1

M�D�1

◆

rs

g�1
s @�gs

◆
,

(3.1.2)
where M and D are operators on gN with entries Mrs = µrs Id and Drs = Adgr �rs expressed in
terms of the defining parameters of the models. We note that actions of this form were already
considered in the articles [60–63]. We will show that these models can be obtained as particular
limits of (3.1.2) where only 2N � 2 entries of M stay non-zero.

2We refer here to the model constructed in [58], which can be obtained by a similar construction to the
one presented in section 2.2.6 where the parameters `r,0 are not fixed to be zero. As anticipated before, this
corresponds to the introduction of Wess-Zumino terms in the action of the model.

3The R-matrix Rr is assumed to satisfy the additional property R3
r = c2rRr, except if the r-th copy does not

possess a Wess-Zumino term, i.e. if kr = 0.
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The plan of the chapter is as follows. In Section 3.2, we explain the construction of the
coupled deformed models in the Hamiltonian framework. More precisely, after recalling some
definitions and notations in section 3.2.1, we describe in details in section 3.2.2 the Kac-Moody
realisations in T ⇤G that serve as building blocks of the models. We then proceed to construct
these models as realisations of a�ne Gaudin models in section 3.2.4. We go on to perform
the inverse Legendre transform of these models in section 3.3, constructing in particular their
action and their Lagrangian Lax connection. Subsequently, we study the models obtained
from arbitrary combinations of Yang-Baxter realisations and �-realisations in section 3.4: in
particular, we find a form of the action of these field theories which mixes the expressions
(3.1.1) and (3.1.2) above. Finally, in section 3.5, we explain the relation of this work with the
approach of [70] based on 4d semi-holomorphic Chern-Simons theory. Some technical results
are gathered in Appendices 3.A and 3.B.

3.2 Hamiltonian formulation

In this section, we apply the construction of a�ne Gaudin models (AGMs) to define the class of
integrable field theories anticipated in the previous section. In particular, we will be interested in
the class of realisations given by a pair of Kac-Moody currents in the phase space of canonical
fields in T ⇤G introduced in section 2.2.6 of the previous chapter. We start this section by
recalling the definition of this phase space. In sections 3.2.2 and 3.2.3, we proceed to describe
in detail the particular Kac-Moody realisations that are the basic building blocks of the models
we want to construct. We conclude by describing the construction of the models themselves in
section 3.2.4.

3.2.1 Phase space of canonical fields in T ⇤G

All the Kac-Moody realisations that we shall consider in this section are constructed from the
phase space of canonical fields in T ⇤G, which was described in section 2.2.6. Let us start by
recalling a few background definitions.

Canonical fields on T ⇤G and the momentum. As we explained in section 2.2.6, canonical
fields in T ⇤G can be described by a pair of fields (g,X) : D! G⇥g which encode the coordinate
and momentum fields, respectively. Since T ⇤G is a cotangent bundle, the phase space of these
fields is naturally equipped with the Poisson bracket (2.2.41).

As in section 2.2.6, one proceeds to define the following g-valued current:

j(x) = g�1(x)@xg(x), (3.2.1)

which, from (2.2.41), satisfies the Poisson brackets

{g1(x), j2(y)} = 0, (3.2.2a)

{j1(x), j2(y)} = 0, (3.2.2b)

{X1(x), j2(y)} = [C12, j1(x)]�xy � C12�
0
xy. (3.2.2c)

Let us now consider the following quantity:

PG =

Z

D
dx (j(x), X(x)). (3.2.3)
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From (2.2.41) and (3.2.2), one can check that its Hamiltonian flow generates the spatial deriva-
tives on both g(x) and X(x):

{PG, g(x)} = @xg(x) and {PG, X(x)} = @xX(x).

Hence, PG is the momentum of the phase space of canonical fields in T ⇤G.

Wess-Zumino term and current W (x). For this paragraph, let us consider the field g
as depending explicitly also on a time coordinate t 2 R (in the Hamiltonian formulation, this
time dependence is implicitly defined by the choice of a Hamiltonian). Let us further extend
the space-time D ⇥ R (with coordinates (x, t)) to a 3-dimensional manifold B with boundary
@B = D⇥R (parametrised by coordinates (x, t, ⇠)) and let us consider an extension of the field
g to B (which restricts to the initial field g on @B). The Wess-Zumino term of g is then defined
as [81–83]

IWZ[g] =

ZZZ

B
dx dt d⇠ 

⇣⇥
g�1@xg, g

�1@tg
⇤
, g�1@⇠g

⌘
.

Up to the addition of a constant term, it does not depend on the choice of extension of g from

D ⇥ R to B. It is a standard result that the 3-form 
⇣⇥

g�1@xg, g�1@tg
⇤
, g�1@⇠g

⌘
dx ^ dt ^ d⇠

is closed and thus locally exact. Therefore, the Wess-Zumino term can be rewritten, at least
locally, as a 2-dimensional integral on @B = D⇥ R, which takes the form

IWZ[g] =

ZZ

D⇥R
dx dt (W, g�1@tg), (3.2.4)

where W is a g-valued current depending on the coordinate fields in g and their spatial deriva-
tives. We will not need here the precise definition of W and refer for instance to [59] for more
details.

In the Hamiltonian formalism, this current can be seen as a g-valued local observable W (x)
on the phase space of canonical fields on T ⇤G. One can then show that it satisfies the following
Poisson bracket with the fields g, X and j introduced above:

{g1(x),W2(y)} = 0, {j1(x),W2(y)} = 0 (3.2.5a)

and
{X1(x),W2(y)}+ {W1(x), X2(y)} = [C12,W1(x)� j1(x)]�xy. (3.2.5b)

Moreover, let us note that it satisfies the following orthogonality property:


�
j(x),W (x)

�
= 0. (3.2.6)

3.2.2 Kac-Moody realisations in T ⇤G

Commuting Kac-Moody currents. We introduce now the Kac-Moody realisations which
will be the basic building blocks for the construction of the integrable models in section 3.2.4.
These realisations are characterised by two commuting Kac-Moody currents in the phase space
of fields in T ⇤G, i.e. two gC-valued fields J±(x) satisfying the Poisson brackets

{J±1(x),J±2(y)} = [C12,J±1(x)]�xy � `±C12�
0
xy, (3.2.7a)

{J±1(x),J⌥2(y)} = 0, (3.2.7b)
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where `± are constant numbers. Such currents have appeared in the study of integrable defor-
mations of sigma models [47–49,80] leading to examples of Kac-Moody realisations such as the
Yang-Baxter realisation (with or without Wess-Zumino term) and the �-realisation [59]. We
will describe these examples more in detail in section 3.2.3. In order to keep the treatment as
general and uniform as possible, we focus for the moment on aspects which are common to all
the realisations we shall describe.

In all the examples we shall consider, the Kac-Moody currents J±(x) are expressed as
linear combinations of the g-valued currents X(x), j(x) and W (x) introduced in section 3.2.1.
Moreover, the currents X(x) and W (x) always appear through the unique combination

Y (x) = X(x)� kW (x),

for some real constant k which depends on the choice of a particular realisation. As one can
see from (3.2.4), the current W is related to the Wess-Zumino term of the corresponding field
g. Because of this relation, and as we will see more precisely in section 3.3.2, the presence of
the current W in the realisation, i.e. the non-vanishing of k, will lead to the presence of a
corresponding Wess-Zumino term in the action of the model.

From now on, we will suppose that the Kac-Moody currents J±(x) take the form

J±(x) = B±Y (x) + C±j(x), (3.2.8)

where B±, C± : gC ! gC are linear operators on the Lie algebra gC. We will allow these operators
to be dynamical (and thus have non-trivial Poisson brackets with other quantities in the phase
space), but will suppose them to depend only on the field g (that is, not on X or derivatives of
g). As we shall see in section 3.2.3, both the Yang-Baxter realisation and the �-realisation can
be recovered in this formalism by making some specific choices for the operators B± and C±.

Let us note that, in general, these operators cannot be arbitrary. Indeed, they should be
chosen such that the currents (3.2.8) satisfy the brackets (3.2.7). We will not try to write here
the most general conditions on B± and C± for these brackets to hold. However, as explained
in details in appendix 3.A, one can already obtain some useful constraints on these operators
by focusing on the non-ultralocal terms in the brackets (3.2.7), i.e. terms proportional to the
derivative of the Dirac distribution. More precisely, one finds that B± and C± should satisfy
the following identities:

B±
tC± + C±tB± = `±Id, (3.2.9a)

B±
tC⌥ + C±tB⌥ = 0, (3.2.9b)

where we have introduced the transpose tO with respect to the form  for an operator O on
the Lie algebra gC.

Reality conditions. As explained in section 2.2.2 of the previous chapter, in order for the
models that we will construct to be real one has to impose some reality conditions on both
the currents J± and the levels `± that define the realisations. There are two possible types of
conditions that we shall consider. In the first case, we suppose that the currents are invariant
under the antilinear involutive automorphism ⌧ considered in 2.2.2 (i.e. we assume that they
are g-valued) and the corresponding levels are real:

⌧(J±(x)) = J±(x) and `± = `±. (3.2.10)

In the second case, one requires the currents to be conjugate with respect to ⌧ and the levels
to be complex conjugate to each other:

⌧(J±(x)) = J⌥(x) and `± = `⌥. (3.2.11)
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Momentum. Let us end this section by proving an identity about the momentum (3.2.3)
that will become useful later. To start with, it is simple to check that from the relations (3.2.9)
obeyed by the operators B± and C±, one can derive the following additional identities:

tB+B+/`+ + tB�B�/`� = 0, (3.2.12a)
tC+C+/`+ + tC�C�/`� = 0, (3.2.12b)
tB+C+/`+ + tB�C�/`� = Id. (3.2.12c)

Together with the definition of the currents (3.2.8) above and equation (3.2.6), these identities
allow one to prove that the momentum (3.2.3) can be re-expressed as

PG =
1

2`+

Z

D
dx (J+(x),J+(x)) +

1

2`�

Z

D
dx (J�(x),J�(x)). (3.2.13)

3.2.3 Examples of realisations

We will now review some relevant examples of Kac-Moody realisations.

Inhomogeneous Yang-Baxter realisation without Wess-Zumino term. Let us start
by considering a solution R : g! g of the modified classical Yang-Baxter equation (mCYBE):

[RX,RY ]�R([RX, Y ] + [X,RY ]) = �c2[X, Y ], 8X, Y 2 g, (3.2.14)

with c = 1 (so-called split case) or c = i (non-split case), which we suppose to be skew-symmetric
with respect to the non-degenerate form :

(RX, Y ) = �(X,RY ), 8X, Y 2 g.

R can be used to construct a Kac-Moody realisation which takes the name of inhomogeneous
Yang-Baxter realisation without Wess-Zumino term. The adjective inhomogeneous refers to
the fact that R is a solution of the mCYBE rather than the CYBE, corresponding to the case
c = 0 (we will comment later on this homogeneous case). The Kac-Moody currents for this
realisation read [47, 49,59]:

J± =

✓
1

2
Id⌥ 1

2c
Rg

◆
X ± 1

2c�
j, (3.2.15)

where � is a real constant and
Rg = Ad�1

g �R � Adg.

The proof that these are Kac-Moody currents can be found in [47], where the levels are shown
to be

`± = ± 1

2c�
. (3.2.16)

Note in particular that the levels `± are opposite to one another.
The reality conditions discussed in section 3.2.2 are simple to verify. In particular, in the

split case (c = 1) the currents J± are g-valued and the levels `± are real, hence (3.2.10) is
satisfied. In the non-split case (c = i), it is a simple check that the currents and the levels
satisfy (3.2.11).

In the general language of section 3.2.2, we see that the current W does not appear in the
expression (3.2.15), which means that for this realisation we take the coe�cient k in (3.2.8) to
be zero. According to what has been discussed in the previous section, this justifies the fact
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that the models constructed from this realisation will not contain the Wess-Zumino term of g.
Finally, by comparing with (3.2.8) we read for the operators B± and C±:

B± =
1

2
Id⌥ 1

2c
Rg and C± = `±Id. (3.2.17)

One easily checks that these operators satisfy the identities (3.2.9) as expected.

Inhomogeneous Yang-Baxter realisation with Wess-Zumino term. The inhomoge-
neous Yang-Baxter realisation defined in the previous paragraph has no Wess-Zumino term,
i.e. does not contain the current W (x) (or equivalently has k = 0). Following [48], one can
generalise this construction to include the current W (x) and thus a non-zero coe�cient k, at
least when the R-matrix underlying the realisation satisfies the additional condition R3 = c2R,
with c as in the right-hand side of the mCYBE (3.2.14) (note in particular that the standard
Drinfeld-Jimbo R-matrix satisfies this condition). The levels of this generalised realisation are
given by

`± = ± 1

2c�
� k,

with � a real constant. Comparing to the levels (3.2.16) of the realisation without Wess-Zumino
term, one sees that turning on the coe�cient k corresponds to relaxing the fact that the levels
`± are opposite one to another.

The Kac-Moody currents of the inhomogeneous Yang-Baxter realisation with Wess-Zumino
term can be computed from the results of [48, section 3], up to a few di↵erences in the conven-
tions4. In the present notations, they read as follows:

J± =

✓
1

2
Id⌥ 1

2c
Rg ⌥

�

2
⇧g

◆
Y +

✓✓
± 1

2c�
� k

2

◆
Id⌥ k

2c
Rg ⌥

k�
2
⇧g

◆
j,

where we recall that Y = X � kW and where we have defined the quantities

⇧g = 1�
R2

g

c2
and � =

1�
p

1� 4c2k2�2

2ck�
.

Note that � ! 0 as k! 0 so that the currents J± above tend to (3.2.15) in the limit.
It is simple to check that the reality conditions are satisfied for both the choices c = 1 and

c = i, similarly to the case without Wess-Zumino term. From the form of the currents, one can
make the following identifications comparing to equation (3.2.8):

B± =
1

2
Id⌥ 1

2c
Rg ⌥

�

2
⇧g and C± =

✓
`± +

k
2

◆
Id⌥ k

2c
Rg ⌥

k�
2
⇧g. (3.2.18)

Let us note that, as expected, the identities (3.2.9) are again satisfied by these operators B±
and C± (using the fact that we restrict here to R-matrices satisfying R3 = c2R).

�-realisation. For the �-realisation, the Kac-Moody currents are given by [49,59,80]:

J+ = X � kW � kj = Y � kj,
J� = �Adg(X � kW + kj) = �Adg(Y + kj).

4For completeness, note that this reference only treats the non-split case c = i. The results generalise
straightforwardly to the split case c = 1.
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The levels are given by:
`± = ⌥2k.

Note that, similarly to the inhomogeneous Yang-Baxter realisation without Wess-Zumino term,
these levels `± are opposite one to another. In this case, the reality condition (3.2.10) is satisfied,
since the currents J± are g-valued and the levels `± are real.

Comparing to equation (3.2.8), one sees that for the �-realisation the operators B± and C±
have the following form:

B+ = Id, B� = �Adg, C+ = �k Id, C� = �kAdg, (3.2.19)

and again one can check that the identities (3.2.9) are satisfied.

3.2.4 A�ne Gaudin models construction

In this section, we proceed to construct the integrable field theories that we will consider in the
rest of this chapter as realisations of AGM. We follow the procedure described in chapter 2 for
general AGMs.

Sites, levels and twist function. Let us consider an AGM with 2N sites of multiplicity one,
which for the purpose of this chapter we gather in pairs (r,+) and (r,�) with r 2 {1, · · · , N}5.
The position of the site (r,±) in the complex plane C will be denoted by z±r . Since each site
(r,±) is of multiplicity one, it is associated with one level, which is a non-zero constant number
and which we will denote by `r,±. Let us also fix a non-zero real number `1. Altogether, this
data specifies the twist function of the AGM. From (2.2.6), this is given by:

'(z) =
NX

r=1

✓
`r,+

z � z+r
+

`r,�
z � z�r

◆
� `1. (3.2.20)

Kac-Moody currents and phase space. Following the discussion of chapter 2, with the
sites fixed as above, the phase space of the model is characterised by N independent pairs of
commuting Kac-Moody currents (Jr,+,Jr,�), r 2 {1, · · · , N}. The Poisson brackets of these
fields are specified by the choice of levels `r,±. More precisely, we have the following:

�
Jr,±1(x),Js,±2(y)

 
= �rs

�
[C12,Jr,±1(x)]�xy � `r,±C12�

0
xy

�
, (3.2.21a)

�
Jr,±1(x),Js,⌥2(y)

 
= 0. (3.2.21b)

We have described in detail in section 3.2.2 how such a pair can be realised in the phase space
of canonical fields on T ⇤G. A natural way to realise the 2N currents Jr,± is then to consider
N independent realisations in T ⇤G of the type described in section 3.2.2. This means that we
choose the phase space of the model to be the space of fields on the product T ⇤GN , with the
currents Jr,± belonging to the rth-factor in T ⇤GN .

This rth- factor is described by a pair of canonical fields gr(x) and Xr(x), valued respectively
in the group G and the Lie algebra g, which are the equivalent of the fields g(x) and X(x)
discussed in section 3.2.1 to describe one copy of T ⇤G. Similarly, one can define from these
canonical fields the equivalent of the currents j(x) andW (x), which we shall denote by jr(x) and
Wr(x). Following the discussion above, we then also define the currents Jr,± as the analogues

5We note that due to this gathering of indices the notations of this chapter will di↵er slightly from the ones
of the previous one.
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in the rth-factor of the Kac-Moody currents J± described in section 3.2.2. Therefore, they take
the form

Jr,±(x) = B±
r Yr(x) + C±

r jr(x), (3.2.22)

where
Yr(x) = Xr(x)� krWr(x) (3.2.23)

and kr is a real constant number depending on the choice of realisation in the rth-copy. The
B±
r ’s and C±

r ’s are linear operators on the Lie algebra gC, which are the equivalent of the
operators B± and C± introduced in section 3.2.2. In particular, they depend only on gr and
satisfy analogous identities to the ones of equation (3.2.9).

Gaudin Lax matrix. Let us consider the Gaudin Lax matrix of the model. From equation
(2.2.5) of the previous chapter, it is defined from the currents (3.2.22) as the following gC-valued
field:

�(z, x) =
NX

r=1

✓
Jr,+(x)

z � z+r
+

Jr,�(x)

z � z�r

◆
. (3.2.24)

Reality conditions. As we discussed in section 3.2.2, in order for the models which we
construct in this chapter to be real, we have to impose some reality conditions. For each pair
of sites (r,±), there are two cases. In the first one, we suppose the positions of the two sites
z±r to be real and that the condition (3.2.10) on the currents Jr,± and the levels `r,± holds. In
the second case, we assume instead that the the positions of the sites are complex conjugate to
each other and that the currents and levels satisfy the condition (3.2.11).

One can check that these conditions imply the equivariance relations for the twist function
and the Gaudin Lax matrix of the models that were discussed in section 2.2.2:

⌧(�(z, x)) = �(z̄, x) and '(z) = '(z̄).

3.2.5 Hamiltonian and momentum

Hamiltonian. Following chapter 2, we start by rewriting the twist function in terms of its
zeroes ⇣i (i 2 {1, · · · , 2N}), which are supposed to be real and distinct:

'(z) = �`1
Q2N

i=1 (z � ⇣i)QN
r=1 (z � z+r )(z � z�r )

. (3.2.25)

As discussed in section 2.2.3, the Hamiltonian for realisations of AGMs is built from the fol-
lowing quadratic charges:

Qi = �
1

2'0(⇣i)

Z

D
dx (�(⇣i, x),�(⇣i, x)), (3.2.26)

i = 1, . . . , 2N . More precisely, we define the Hamiltonian of the model as the linear combination

H =
2NX

i=1

✏iQi, (3.2.27)

for some real numbers ✏i.
As explained in section 2.2.3, as a consequence of the reality conditions we introduced, H

is real.
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Momentum and relativistic invariance. Let us consider the momentum of the theory.
Since the phase space is described by canonical fields on T ⇤GN , this momentum is given by a
sum over the copies r = 1, . . . , N of the expression (3.2.3) for the corresponding copy. Denoting
the momentum of the rth-copy by Pr and re-expressing it through the identity in (3.2.13), one
finds:

P =
NX

r=1

Pr =
1

2`r,+

Z

D
dx (Jr,+(x),Jr,+(x)) +

1

2`r,�

Z

D
dx (Jr,�(x),Jr,�(x)). (3.2.28)

It is simple to check that it can be rewritten as:

P = �
NX

r=1

✓
res
z=z+r

Q(z)dz + res
z=z�r

Q(z)dz

◆
, (3.2.29)

where Q(z) was defined in (2.2.12). This shows explicitly that the assumption (2.2.18) made
in section 2.2.3 for general realisations of AGMs is verified in this particular model. From the
discussion in section 2.2.3, we then have:

P =
2NX

i=1

Qi. (3.2.30)

As we explained in section 2.2.4 for general realisations of AGMs, this fact then allows us to
find a simple condition for the relativistic invariance of the model. More precisely, requiring
this invariance restricts the choice of the coe�cients ✏i in the definition of H to

✏i = +1 or ✏i = �1,

for every i 2 {1, · · · , 2N}. We then see that the indices i 2 {1, · · · , 2N} labelling the zeroes ⇣i
divide naturally into the sets I± = {i | ✏i = ±1}. In the rest of this chapter, we will suppose
that there are as many ✏i’s equal to +1 as ✏i’s equal to �1 (i.e. that the sets I± are both of
size |I+| = |I�| = N)6.

3.2.6 Integrability

Lax connection and integrability. We proved in chapter 2 that realisations of AGMs admit
a reformulation of the equations of motion in terms of the zero curvature equation for a Lax
connection (L,M). From equations (2.2.32) and (2.2.38), the Lax connection for the models
considered in this chapter is given by:

L(z, x) =
2NX

i=1

1

'0(⇣i)

�(⇣i, x)

z � ⇣i
and M(z, x) =

2NX

i=1

✏i
'0(⇣i)

�(⇣i, x)

z � ⇣i
. (3.2.31)

As discussed in section 2.2.5, the integrability of the model then follows from the fact that
the Lax matrix satisfies the Maillet non-ultralocal bracket (2.1.19). Moreover, the R-matrix
appearing in this bracket is given by the standard untwisted R-matrix multiplied by the inverse
of the twist function '(w):

R12(z, w) =
C12

w � z
'(w)�1.

As explained in section 2.2.5, this bracket then implies that the infinite set of charges that can
be extracted from the monodromy matrix of the model is in involution.

6As first observed in [59], the models obtained when choosing I+ and I� of di↵erent sizes would not posses
otherwise a well-defined inverse Legendre transform.
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Lax connection in light-cone coordinates. As we will need this in section 3.3, let us
briefly discuss the reparametrisation of the Lax connection in light-cone components. Let us
firstly consider the light-cone coordinates x± = (t ± x)/2 and the corresponding derivatives
@± = @t ± @x. The zero curvature equation can then be rewritten as

@+L�(z, x)� @�L+(z, x) + [L+(z, x),L�(z, x)] = 0,

where we have introduced the light-cone Lax connection

L±(z, x) = M(z, x)± L(z, x). (3.2.32)

Finally, from the expressions (3.2.31), one finds the following one for L±(z, x):

L±(z, x) = ±2
X

i2I±

1

'0(⇣i)

�(⇣i, x)

z � ⇣i
, (3.2.33)

where we note the appearance of the two sets I± introduced in section 3.2.5.

3.2.7 Exploring the “space of models”

Gaudin parameters. Let us describe the “space of models” that we are considering in this
chapter by summarising what are the defining parameters of the integrable field theories that
we have constructed so far. As a�ne Gaudin models, these theories are characterised by the
following quantities, that we shall refer to as Gaudin parameters:

• the positions z±r ;

• the levels `r,± ;

• the constant term `1 in the twist function ;

• the Kac-Moody realisations with levels `r,± attached to each pair of sites (r,±).

As explained in [59, section 1.4.2], there exists a redundancy between the Gaudin parameters
of the model, corresponding to the freedom of translating and dilating the spectral parameter.
Indeed, the model with parameters z±r , `r,± and `1 is invariant under the transformation

z±r 7�! az±r + b and `1 7�! a�1`1, (3.2.34)

where a and b are real numbers with a 6= 0 and where we keep the levels `r,± and the Kac-
Moody realisations fixed. Note that one can fix the dilation redundancy (corresponding to the
parameter a in the transformation above) by setting the constant term `1 to a specific value.
Similarly, one can fix the translation redundancy (corresponding to the parameter b) by setting
one of the positions z±r to a specific point.

We note that the Gaudin parameters introduced above are in general not all real but should
satisfy the reality conditions described in sections 3.2.2 and 3.2.4. Let us then discuss what are
the real parameters of the models. Note first that the constant term `1 is always assumed to be
real. Moreover, recall that for each pair of sites (r,±), there are two possible reality conditions:
either the positions z±r and the levels `r,± are real or they form pairs of complex conjugate
numbers. We will encode the choice of reality condition for the sites (r,±) by introducing a
number cr, which is defined to be 1 in the first case and i in the second one. In particular, z±r
and `r,± can then be written using the following parametrisation:

z±r = zr ± cr⌘r and `r,± =
`0,r
2

± `1,r
2cr⌘r

, (3.2.35)
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where the parameters zr, ⌘r, `0,r and `1,r are real. As we shall see, this particular choice of
parametrisation will also be convenient for the interpretation of the models as deformations in
the next section. Note that it is equivalent to defining

zr =
z+r + z�r

2
, ⌘r =

z+r � z�r
2cr

, `0,r = `r,+ + `r,� and `1,r =
z+r � z�r

2
(`r,+ � `r,�).

(3.2.36)

Choice of realisations. As explained in section 3.2.4, the choice of the Kac-Moody reali-
sation attached to the sites (r,±) corresponds to specifying the explicit form of the operators
B±
r and C±

r and the value of the coe�cient kr appearing in equations (3.2.22) and (3.2.23). In
particular, one can choose this realisation among the examples described in section 3.2.3.

For instance, if one takes the inhomogeneous Yang-Baxter realisation (with Wess-Zumino
term), kr is set to �(`r,++`r,�)/2 = �`0,r/2 and the operators B±

r and C±
r are given by equation

(3.2.18) (replacing g by gr and c by the number cr 2 {1, i} defined in the previous paragraph,
which encodes the choice of reality conditions for the sites (r,±)).

Similarly, if one chooses the �-realisation, the operators B±
r and C±

r are given by equation
(3.2.19) (with g replaced by gr), while kr is given by �`r,+/2. Note however that one can choose
the �-realisation only if the levels `r,± are real (i.e. cr = 1 in the notations of the previous
paragraph) and are such that

`0,r = `r,+ + `r,� = 0. (3.2.37)

This is in contrast with the case of the inhomogeneous Yang-Baxter realisation with Wess-
Zumino term considered above, where the levels `r,± are not subject to any constraints (other
than the reality conditions).

Note that the choice of a Yang-Baxter realisation at the sites (r,±) comes with the additional
freedom of choosing a skew-symmetric R-matrix Rr, solution of the mCYBE (3.2.14). As
explained in section 3.2.3, this operator should in general satisfy the additional property R3

r =
c2rRr. However, if the levels `r,± satisfy the constraint (3.2.37), i.e. if one considers a Yang-
Baxter realisation without Wess-Zumino term, one does not need to require this additional
condition on Rr.

The space of models. The discussion above concerns the choice of realisation for one pair
of sites (r,±). One can then construct di↵erent models by considering di↵erent combinations
of realisations for the N pairs (1,±), · · · , (N,±) describing the models. In particular, one
can consider a model with N1 copies of the Yang-Baxter realisation and N2 copies of the �-
realisation, where N1+N2 = N . Let us discuss what are the free parameters of this theory. As
explained in the previous paragraphs, the model is described by the 4N +1 Gaudin parameters
z±r , `r,± and `1, or equivalently by the 4N + 1 real parameters zr, ⌘r, `0,r, `1,r and `1. Taking
into account the translation and dilation redundancy (3.2.34) and the fact that the levels
corresponding to the �-realisations should satisfy the constraints (3.2.37), we arrive at the
conclusion that this model is described by 3N +N1� 1 free parameters. Note that in addition
to these parameters, which specify its structure as an AGM, the model is also determined by the
choice of N1 R-matrices for the Yang-Baxter realisations (which do not need to be identical).

As was explained in [57], see also [59], the models with only one realisation, i.e. with N = 1,
correspond to well-known integrable sigma models, which served as basis for defining the Yang-
Baxter and �-realisations. Indeed, the inhomogeneous Yang-Baxter realisation (without or with
Wess-Zumino term) is defined in such a way that the AGM with one copy of this realisation,
corresponding in the above paragraph to N1 = 1 and N2 = 0, coincides with the so-called
Yang-Baxter sigma model, without [20, 21] or with [48] Wess-Zumino term. Similarly, the
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AGM with one copy of the �-realisation, i.e. with N1 = 0 and N2 = 1, yields the so-called �-
model [22]. The model defined above with arbitrary numbers N1 and N2 is thus a generalisation
of these models. According to the general coupling procedure described in [59, section 2.3.3],
it corresponds to coupling together N1 copies of the Yang-Baxter model and N2 copies of the
�-model in a non-trivial way which however ensures the integrability of this interacting model
(as, by construction, it is a realisation of AGM).

Zeroes versus levels. Let us end this section with some remarks about a possible more
convenient reparametrisation of the models that we are considering. Recall from sections 3.2.5
and 3.2.6 that in order to define the Hamiltonian and express the Lax connection of the models,
one uses the zeroes ⇣i, i 2 {1, · · · , 2N}, of the twist function. These zeroes are related implicitly
to the Gaudin parameters z±r , `r,± and `1 through the equation '(⇣i) = 0, with the twist
function '(z) defined in terms of the Gaudin parameters as in (3.2.20). This equation is
equivalent to a polynomial equation of degree 2N in ⇣i. Thus, it is in general impossible to give
an explicit expression of the zeroes ⇣i in terms of the Gaudin parameters.

One way of bypassing this di�culty is to consider as defining parameters of the models the
positions z±r , the zeroes ⇣i and the constant term `1. One then defines the twist function of the
model by equation (3.2.25) instead of equation (3.2.20) and the levels `r,± as the corresponding
residues:

`r,± = res
z=z±r

'(z) dz = ⌥ `1

z+r � z�r

Q2N
i=1(z

±
r � ⇣i)QN

s=1,s 6=r(z
±
r � z±s )(z

±
r � z⌥s )

.

The main advantage of this re-parametrisation is that all the relevant quantities that are used
to describe the models, in particular the levels `r,± and the Hamiltonian H, can be written as
rational expressions of the parameters z±r , ⇣i and `

1. Note however that this parametrisation
has a disadvantage when one wants to consider �-realisations and/or Yang-Baxter realisations
without Wess-Zumino terms. Indeed, for these realisations, the levels should satisfy the addi-
tional constraint (3.2.37), which translates in a rather complicated algebraic condition on the
parameters z±r and ⇣i, using the above expressions for the levels. Finally, let us note that the
translation and dilation redundancy (3.2.34) among the Gaudin parameters can be re-expressed
in terms of this new parametrisation as the invariance of the model under the transformation

z±r 7�! az±r + b, ⇣i 7�! a⇣i + b and `1 7�! a�1`1.

3.2.8 Recovering undeformed models

In this section, following the results of [59], we discuss how the model defined above by taking
N1 Yang-Baxter realisations and N2 �-realisations can be interpreted as a deformation of a
simpler model. This result generalises the well known facts that the Yang-Baxter model (with
or without Wess-Zumino term) is a deformation of the principal chiral model (PCM, with or
without Wess-Zumino term) and the �-model is a deformation of the non-abelian T-dual of the
PCM. In the present language, these correspond respectively to the cases (N1 = 1, N2 = 0) and
(N1 = 0, N2 = 1). The undeformed limit of the model with arbitrary N1 and N2 corresponds
to a theory coupling together N1 copies of the PCM (with Wess-Zumino terms) and N2 copies
of its non-abelian T-dual. In particular, the model with only copies of the PCM without
Wess-Zumino terms corresponds to the one introduced in the examples section of chapter 2.

This undeformed model is also defined as a realisation of AGM but possesses a slightly
di↵erent sites structure. Indeed, in the language of chapter 2, instead of the 2N sites (r,±) of
multiplicity one, it possesses N sites (r) of multiplicity two. These sites correspond to double
poles in the twist function and the Gaudin Lax matrix of the model and are associated with
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Taki↵ realisations of multiplicity two. As we shall now explain, the site (r) of multiplicity two
is obtained from the pair of sites (r,±) in the deformed model by making their positions z+r
and z�r collide, while controlling the behaviour of the corresponding levels `r,±.

Colliding two simple poles into a double pole. Let us focus here on one pair of sites
(r,±). In order to isolate the parts of the twist function and the Gaudin Lax matrix of the
model corresponding to this pair, let us rewrite them as

'(z) =
`r,+

z � z+r
+

`r,�
z � z�r

+ e'(z),

�(z) =
Jr,+

z � z+r
+

Jr,�

z � z�r
+ e�(z),

where e' and e� contain all the information related to the other sites. Using the parameters cr,
zr, ⌘r, `0,r and `1,r introduced in the previous section (see equation (3.2.36)), one can rewrite
the twist function as

'(z) =
`1,r

(z � zr)2 � c2r⌘
2
r

+
`0,r(z � zr)

(z � zr)2 � c2r⌘
2
r

+ e'(z). (3.2.38)

As mentioned above, the undeformed limit corresponds to making the two positions z+r and
z�r collide at the point zr and thus to taking ⌘r ! 0. In particular, this leads us to interpret ⌘r
as a deformation parameter. We aim here to recover, in the limit ⌘r ! 0, a model with a site
of multiplicity two, i.e. with a double pole in its twist function. It is then clear from equation
(3.2.38) that this is the case if one supposes that the quantities `0,r and `1,r stay finite when
⌘r goes to 0. From now on, we will thus define the undeformed limit as taking ⌘r ! 0 while
keeping `0,r and `1,r finite (let us note that the levels `r,± of the sites (r,±) then diverge, as one
can see from equation (3.2.35)). In this limit, the twist function becomes

'(z)
⌘r!0���! `1,r

(z � zr)2
+

`0,r
z � zr

+ e'(z).

Following the terminology of chapter 2, this corresponds to the twist function of an AGM with
a site (r) of multiplicity two, with position zr and levels `0,r and `1,r (and with the other sites,
contained in e'(z), as in the deformed model).

A similar argument applies to the Gaudin Lax matrix of the model. Let us suppose that
the Kac-Moody currents Jr,± are such that the limits

Jr,[0] = lim
⌘r!0

(Jr,+ + Jr,�) and Jr,[1] = lim
⌘r!0

cr⌘r (Jr,+ � Jr,�) (3.2.39)

are finite. Then the Gaudin Lax matrix becomes in the undeformed limit:

�(z)
⌘r!0���!

Jr,[1]

(z � zr)2
+

Jr,[0]

z � zr
+ e�(z).

Thus, Jr,[0] and Jr,[1] are the Taki↵ currents attached to the site (r) of the undeformed model7.
Let us now discuss this undeformed limit for the Yang-Baxter realisation and the �-realisation.

7Starting from the Kac-Moody Poisson brackets (3.2.21) of the currents Jr,±, one can indeed show that in
the undeformed limit, the currents Jr,[0] and Jr,[1] satisfy the brackets of Taki↵ currents with levels `0,r and
`1,r.
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From the Yang-Baxter to the PCM realisation. Let us suppose that the sites (r,±) are
associated with a Yang-Baxter realisation with Wess-Zumino term, as described in section 3.2.3.
Let us first note that for this realisation, the Wess-Zumino coe�cient is given by kr = �`0,r/2.
In particular, the undeformed limit defined in the previous paragraph can then be seen as
taking ⌘r to 0 while keeping kr and `1,r finite. Let us denote by Rr the R-matrix associated
with this Yang-Baxter limit and introduce R(r) = Ad�1

gr � Rr � Adgr and ⇧(r) = Id � R(r) 2/c2r.
The Kac-Moody currents of the realisation are then given by

Jr,± =
1

2

✓
Id⌥ R(r)

cr
⌥ �r⇧(r)

◆
Yr +

✓✓
± `1,r
2cr⌘r

� kr

2

◆
Id± kr

2cr
R(r) ± kr�r

2
⇧(r)

◆
jr, (3.2.40)

with

Yr = Xr � kr Wr and �r = `1,r
1�

q
1� (2cr⌘rkr/`1,r)

2

2cr⌘rkr
. (3.2.41)

Let us now consider the undeformed limit, i.e. taking ⌘r to 0 while keeping kr and `1,r finite.
One first observes that in this limit, the coe�cient �r tends to 0. Using this, one finds that the
limits Jr,[0] and Jr,[1] defined in equation (3.2.39) are indeed finite and simply read

Jr,[0] = Xr � kr Wr � kr jr and Jr,[1] = `1,rjr. (3.2.42)

Thus, the undeformed limit described in the previous paragraph is well defined. Moreover, one
recognises in the above equation the Taki↵ currents of the PCM+WZ realisation (with levels
`0,r = �2kr and `1,r), as defined in [59, section 3.1.3]. For kr = 0 (3.2.42) coincides with the
Taki↵ realisation considered in the examples section of chapter 2 to describe the PCM without
Wess-Zumino term and its coupled version.

From the �-realisation to the non-abelian T-dual realisation. A similar mechanism
to the one described above for the Yang-Baxter realisation provides the undeformed limit of
the �-realisation, yielding the so-called non-abelian T-dual realisation, as defined in [59, section
4.3.1]. This limit requires however a more subtle treatment. Indeed, if one were to consider
the currents Jr,± of the �-realisation in terms of the fields gr and Xr and take the limits
(3.2.39) “naively”, one would encounter divergent expressions, making the undeformed limit
procedure ill-defined. In order to obtain a well defined limit, one has to consider the fields gr
andXr as depending on the deformation parameter ⌘r and suppose that they obey a well-chosen
asymptotic expansion when ⌘r goes to 0. In particular, one of the consequences of this more
subtle limit is that it changes the phase space of the realisation: from the space of canonical
fields on T ⇤G (generated by gr and Xr), one goes in the limit to the space of canonical fields
on T ⇤g, which is the phase space of the non-abelian T-dual realisation. For brevity, we will not
re-explain this procedure in this thesis and refer to [59, section 4.4.3] for details.

Undeformed limits of the coupled models. Let us consider the model defined in the
previous section by coupling together N1 copies of the Yang-Baxter model and N2 copies of the
�-model. For each pair of sites (r,±), one can consider the corresponding undeformed limit
⌘r ! 0. One would then obtain a model where the r-th copy reduces to either an undeformed
PCM with Wess-Zumino term or a non-abelian T-dual of the PCM (depending on whether we
started with a Yang-Baxter realisation or a �-realisation at the sites (r,±)), still interacting
non-trivially with the other N�1 copies. One can then consider di↵erent combinations of these
undeformed limits on any number of copies, yielding various limits of the model. All these limits
can be seen as deformations of a completely undeformed model, obtained by taking the limit



CHAPTER 3. INTEGRABLE DEFORMATIONS OF COUPLED SIGMA MODELS 39

where all the deformation parameters ⌘1, · · · , ⌘N are sent to 0. This undeformed model is the
coupling of N1 copies of the PCM with Wess-Zumino terms and N2 copies of the non-abelian
T-dual of the PCM. In particular, if one considers N2 = 0, one obtains the model coupling
together N copies of the PCM with Wess-Zumino term: this is the integrable coupled sigma
model first introduced in [58] and whose detailed construction was presented in [59, section 3.3].
As discussed above, in the case without Wess-Zumino term one recovers the model described
in section 2.2.6 of chapter 2.

Although it is defined in a di↵erent way, let us note also that the undeformed model with
N2 6= 0 copies of the non-abelian T-dual of the PCM is in fact canonically equivalent to the
model with N = N1 +N2 copies of the PCM, where N2 of these copies have no Wess-Zumino
term. This is because the non-abelian T-dual realisation is related to the PCM realisation
without Wess-Zumino term by a canonical transformation [84]. Thus, the general model with
N1 Yang-Baxter realisations and N2 �-realisations can be seen as a deformation of the model
coupling N1 PCM with Wess-Zumino term and N2 PCM without Wess-Zumino term (which is
a particular case of the model introduced in [58]) after having first T-dualised the N2 copies
without Wess-Zumino term.

Homogeneous Yang-Baxter limit. For completeness, let us end this section by mentioning
briefly another possible limit of the models considered here, which corresponds to going from
an inhomogeneous Yang-Baxter realisation to a homogeneous Yang-Baxter realisation8. Let us
consider an inhomogeneous Yang-Baxter realisation without Wess-Zumino term and with R-
matrix R, which satisfies the mCYBE (3.2.14). So far, we considered the coe�cient c appearing
in the mCYBE as being either 1 or i, depending on the type of reality conditions imposed on the
realisation. However, one easily checks that the construction of the Yang-Baxter realisation as
recalled in section 3.2.3 holds without changes for any c 6= 0 (the realisation is then equivalent
to the one with c = 1 or c = i by rescaling the matrix R). The homogeneous limit consists in
taking the limit c ! 0 of this realisation while also making the corresponding simple poles in
the twist function collide (see for example [85]). Similarly to what happens for the undeformed
limit described in this section, this yields a model with a site of multiplicity two, to which is
attached the so-called homogeneous Yang-Baxter realisation, as defined in [59, section 4.1.1].
This realisation corresponds to a deformation of the PCM realisation without Wess-Zumino
term by a homogeneous R-matrix, i.e. a solution of the (non-modified) CYBE:

[RX,RY ]�R([RX, Y ] + [X,RY ]) = 0, 8X, Y 2 g,

which corresponds to the limit c! 0 of the mCYBE.

Summary. Although introduced as limits, the PCM, non-abelian T-dual and homogeneous
Yang-Baxter realisations can be constructed independently, as was done for example in [59]
(see also section 2.2.6). One can then consider AGM containing these realisations. In general,
one can construct a model coupling together any combination of PCMs, non-abelian T-dual
models, homogeneous and inhomogeneous Yang-Baxter models and �-models. Up to taking
appropriate limits, the present chapter then covers all these possibilities. In particular, one can
obtain a model with N � 1 copies of the PCM and one homogeneous Yang-Baxter realisation:
one then recovers the model studied in [59, appendix D] as the simplest illustration of the
various possible integrable deformations of coupled integrable sigma models.

8This idea was first applied in the article [86] in the context of the deformed superstring on AdS5 ⇥ S5.
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3.3 Lagrangian formulation

In this section, our aim will be to describe the models introduced in section 2.2 in the Lagrangian
formulation. Recall that in the Hamiltonian formulation, the degrees of freedom of these models
are the fields gr(x) and Xr(x), describing canonical fields valued in N independent copies of
the cotangent bundle T ⇤G. The fields gr(x) are the “coordinate fields” valued in the space
G. The momentum fields conjugate to these coordinates are then encoded in the fields Xr(x)
(see for instance [59, section 3.1.1] for details). In order to pass to the Lagrangian formulation,
one has to consider the coordinate fields gr(x, t) as depending explicitly on the time variable
t 2 R, defined by the Hamiltonian of the model, and express the momentum fields of the theory,
encoded in Xr, in terms of these Lagrangian fields gr(x, t) and their derivatives @tgr(x, t) and
@xgr(x, t). Finally, one obtains the action of the model as a functional of gr(x, t) by performing
an inverse Legendre transform on their Hamiltonian.

In the present case, we will obtain the Lagrangian expression of the fields Xr in a rather
indirect way. Indeed, as we shall see, these fields can be expressed naturally in terms of the
Lax connection of the model. For this reason, we will start by determining the Lagrangian
expression of the latter.

3.3.1 Lax connection in the Lagrangian formulation

Maurer-Cartan currents in terms of the Lax connection. Let us begin by considering
the time evolution of the fields gr. In the Hamiltonian formulation, this is given by their Poisson
bracket with the Hamiltonian. More explicitly, recalling the definition (3.2.27) of the latter,
one expresses the temporal Maurer-Cartan current jt,r = gr(x)�1@tgr(x) as

jt,r(x) = gr(x)
�1{H, gr(x)} =

2NX

i=1

✏i gr(x)
�1{Qi, gr(x)}.

From the expression (3.2.26) of the charges Qi, we then have

jt,r(x) =
2NX

i=1

✏i
'0(⇣i)

Z

D
dy 2

�
gr,1(x)

�1{gr,1(x),�2(⇣i, y)},�2(⇣i, y)
�
.

The Poisson bracket in the integrand is calculated by inserting the definition (3.2.24) of �(z, x),
yielding:

{gr,1(x),�2(⇣i, y)} =
1

⇣i � z+r
{gr,1(x),Jr,+2(y)}+

1

⇣i � z�r
{gr,1(x),Jr,�2(y)},

where we have also used the fact that Js,± is in the sth-factor in T ⇤GN and thus Poisson
commutes with gr if r 6= s. In order to calculate the Poisson brackets on the right hand side
we then use the definition (3.2.22) of the currents Jr,± in terms of Yr and jr. Note that, firstly,
the Poisson brackets of gr with jr vanish. Moreover, the brackets of gr with the operators B±

r

and C±
r also give no contribution as we assumed that these operators depend only on gr. Thus,

we have to take into account only the terms coming from the Poisson bracket of gr with Yr, so
that

gr,1(x)
�1{gr,1(x),Jr,±2(y)} = �B±

r2C12�xy = �tB±
r1C12�xy,

where we have used the fact that for any operator O on gC, one has O2C12 = tO1C12. Putting
everything together, we conclude that

jt,r(x) =
2NX

i=1

✏i
'0(⇣i)

✓
tB+

r

z+r � ⇣i
+

tB�
r

z�r � ⇣i

◆
�(⇣i, x).
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Using the expression of the temporal component of the Lax connection (3.2.31), this can be
re-expressed in the following way:

jt,r =
tB+

r M(z+r ) +
tB�

r M(z�r ).

Moreover, by repeating this argument replacing the Hamiltonian by the momentum P , ex-
pressed in terms of the charges Qi as in (3.2.30), and using the expression (3.2.31) for the
spatial component of the Lax connection, one finds a similar relation for the currents jr:

jr =
tB+

r L(z+r ) + tB�
r L(z�r ).

Therefore, using light-cone coordinates, we find that the Maurer-Cartan currents

j±,r = g�1
r @±gr

take the following rather simple form in terms of the Lax connection:

j±,r =
tB+

r L±(z
+
r ) +

tB�
r L±(z

�
r ). (3.3.1)

Lagrangian Lax connection from interpolation. Our goal in this section is to find a
Lagrangian expression of the Lax connection, i.e. an expression of L±(z) in terms of the Maurer-
Cartan currents j±,r. We note that equation (3.3.1) relates these currents to the evaluations
L±(z+r ) and L±(z�r ) of the Lax connection at the positions z+r and z�r . As we shall now explain,
this relation is enough to reconstruct the expression of L±(z) in terms of j±,r for all values of
the spectral parameter z. Let us define

j±,r = L±(z
±
r ), (3.3.2)

for r = 1, · · · , N . From equation (3.2.33), one sees that L±(z) is a rational function of z with
N simple poles, situated at the zeroes of the twist function ⇣i, for i 2 I± (recall that we have
supposed that the subsets I± are both of size N). It is a standard result that such a function is
completely determined by its evaluation at N pairwise distinct points. In particular, L±(z) can
be expressed in terms of its evaluations at the positions z±r , i.e. the currents j±,r introduced
above. More precisely, one has the following interpolation formula (see also Lemma B.2 of [59])

L±(z) =
NX

r=1

'±,r(z±r )

'±,r(z)
j±,r, (3.3.3)

where

'±,r(z) =

Q
i2I± (z � ⇣i)

QN
s=1
s 6=r

(z � z±s )
. (3.3.4)

We are now in a position to rewrite the Lax connection in terms of the currents j±,r. Indeed,
the above equation (3.3.1) can now be rewritten as a system of linear equations between the
currents j±,r and j±,r, which (at least formally) can be inverted. More precisely, reinserting
(3.3.3) in (3.3.1), we have that

j±,r =
NX

s=1

U±
rsJ±,s, (3.3.5)

where we have defined

U±
rs = �rs

tB±
r +

'±,s(z±s )

'±,s(z⌥r )
tB⌥

r . (3.3.6)
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In the following, we will see the operators U±
rs as the entries of some matrix operators U±, so

that U±
rs = (U±)rs. Note that U± are then N ⇥ N matrices with non-commutative entries. To

conclude, we rewrite the currents j±,r in terms of the j±,r’s by means of the inversion

j±,r =
NX

s=1

(U�1
± )rsJ±,s, (3.3.7)

where (U�1
± )rs denote the entries of the inverse of the matrix operators U±. Reinserting now

(3.3.7) in (3.3.3) then gives an expression of L±(z) in terms of the currents j±,r:

L±(z) =
NX

s=1

 
NX

r=1

'±,r(z±r )

'±,r(z)
(U�1

± )rs

!
j±,s. (3.3.8)

Note that this is a formal relation, as it involves the inverse of the matrix operators U±. Perform-
ing explicitly this inversion is in general not straightforward because of the non-commutativity
of the entries of U± (for example, one cannot use the general expression for the inverse of a
matrix in terms of its comatrix). We will explain in section 3.3.2 how this is done explicitly in
the case of two copies.

Di↵erent interpolations and factorisations of the twist function. We conclude this
section by making an important remark about equations (3.3.2) and (3.3.3). In these equations,
we decided to express the component L+(z), resp. L�(z), of the Lax connection in terms of its
evaluations at the positions z+r , resp. z

�
r . Let us stress here that this choice is arbitrary, as one

could have chosen for example to interpolate L+(z) and L�(z) through their evaluations at the
positions z�r and z+r , respectively

9. More generally, one could have considered the evaluations10

eJ±,r = L±(z
±�r
r ),

where the �r’s take values in the set {+1,�1} for every r. The interpolation equation (3.3.3)
would then become

L±(z) =
NX

r=1

e'±,r(z±�rr )

e'±,r(z)
eJ±,r, where now e'±,r(z) =

Q
i2I± (z � ⇣i)

QN
s=1
s 6=r

(z � z±�ss )
. (3.3.9)

Following the method developed in the previous paragraph, one would then express the cur-
rents eJ±,r in terms of the Maurer-Cartan currents j±,r by a relation similar to equation (3.3.7),

with the operators U± replaced by some di↵erent operators eU±. Re-inserting this expression
in equation (3.3.9) would then give L±(z) in terms of j±,r, similarly to equation (3.3.8). This
expression can be shown to coincide with equation (3.3.8) as one should expect, considering
that they correspond to two ways of expressing the same object L±(z). Similarly, all the
methods and computations developed in the rest of this section can be applied starting from
an arbitrary choice of interpolation, i.e. from an arbitrary choice of �r’s: the end results (in
particular the expression of the action of the model in terms of the Maurer-Cartan currents
that will be obtained in the next section) can then be shown to be independent of this choice.
For this reason, and to avoid unnecessary cumbersome notations, we will use in the rest of this
chapter a particular choice of �r’s, namely �r = +1 for every r, corresponding to the choice

9Note in particular that the indices ± of L±(z) are conceptually totally unrelated to the labels ± of the
positions z±r . Indeed, the former are space-time indices corresponding to the light-cone directions in R⇥D while
the latter are abstract labels distinguishing the two sites (r,+) and (r,�).

10Note that here the superscripts are abstract indices as before and not exponents.
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made originally in the previous paragraph.

To conclude this paragraph, let us discuss a reinterpretation of the functions e'±,r(z) ap-
pearing in the interpolation formula (3.3.9) and of the freedom encoded in the choice of �r’s
in terms of the twist function (3.2.25) of the model. Let us rewrite the latter in the following
factorised form:

'(z) = �`1 e'+(z)e'�(z), where e'±(z) =

Q
i2I± (z � ⇣i)

QN
s=1 (z � z±�ss )

. (3.3.10)

The functions e'±,r(z) can then be re-expressed as e'±,r(z) = (z � z±�rr )e'±(z). Moreover, we
observe that the freedom in the choice of the �r’s gets now reinterpreted as the existence
of di↵erent ways of factorising the twist function. Indeed, redistributing the pairs of factors
(z � z+r ) and (z � z�r ) associated to the paired sites (r,±) into the definition (3.3.10) of e'±(z)
amounts to changing the values of the �r’s11. In the rest of this chapter and in agreement
with the notations of the previous paragraph, we will denote by '±(z) the functions e'±(z)
corresponding to the choice �r = +1 for every r 2 {1, · · · , N}.

3.3.2 Inverse Legendre transform and action of the models

Lagrangian expression of the momentum. We are now in a position to perform the first
step towards writing down the inverse Legendre transform of the model, i.e. re-expressing the
fields Xr, which encode the momentum fields of the theory, in terms of Lagrangian fields. Let us
first note from equation (3.2.23) that the fields Yr and Xr are related through the current Wr.
As explained in section 3.2.1, this current Wr is expressed in terms of the field gr and its spatial
derivative (and not the momentum fields) and has thus a direct Lagrangian expression. Thus,
finding the Lagrangian expression of Xr is equivalent to finding the Lagrangian expression of
Yr. As we shall now see, the latter is easier to find, using the Lagrangian expression of the Lax
connection obtained in the previous paragraph. From the definition (2.2.31) of the Lax matrix
L(z), one can prove that (see also [59, equation (2.22)])

L(z±r ) =
Jr,±

`r,±
=

B±
r

`r,±
Yr +

C±
r

`r,±
jr,

where to obtain the second equality we have used the definition (3.2.22) of the currents Jr,±.
Then, using the identities (3.2.12) satisfied by the operators B±

r and C±
r , we find the following

expression for Yr:
Yr =

tC+
r L(z+r ) + tC�

r L(z�r ). (3.3.11)

Using the light-cone components of the Lax connection, this can be rewritten as

Yr =
tC+

r L+(z+r ) +
tC�

r L+(z�r )

2
�

tC+
r L�(z+r ) +

tC�
r L�(z�r )

2
.

From the Lagrangian expression (3.3.3) of L±(z), one then finds that

Yr =
NX

s=1

⇥
V+
rsJ+,s + V�

rsJ�,s

⇤
, (3.3.12)

11Note that contrarily to the poles z±r , the zeroes ⇣i of the twist function cannot be redistributed di↵erently
between the functions e'+(z) and e'�(z), as they are naturally associated with one or the other depending on
whether the index i belongs to the set I+ or I�.
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where we have defined

V±
rs = ±1

2

✓
�rs

tC±
r +

'±,s(z±s )

'±,s(z⌥r )
tC⌥

r

◆
. (3.3.13)

Similarly to the operators U±
rs in the previous section, we will see the operators V±

rs as the entries
of some N ⇥N matrix of operators V±, so that V±

rs = (V±)rs.

Action in terms of j±,r’s and j±,r’s. The action of the models is obtained as the following
inverse Legendre transform of the Hamiltonian (see for instance [59]):

S[g1, · · · , gN ] =
NX

r=1

ZZ
dt dx  (Xr, jt,r)�

Z
dt H,

where both Xr and H should be replaced by their expressions in terms of Lagrangian fields.
Recalling the definitions (3.2.23) and (3.2.4), one can rewrite the action in terms of the fields
Yr making the Wess-Zumino terms of gr appear:

S[g1, · · · , gN ] =
NX

r=1

ZZ
dt dx  (Yr, jt,r)�

Z
dt H +

NX

r=1

kr IWZ

⇥
gr
⇤
.

From here, reinserting the expression (3.3.12) of Yr in terms of the currents j±,r, we find:

S[g1, · · · , gN ] =
1

2

NX

r,s

ZZ
dt dx

⇥

�
V+
srJ+,r, J�,s

�
+ 

�
J+,r,V�

rsJ�,s

�⇤
�
Z

dtH+
NX

r=1

kr IWZ

⇥
gr
⇤

+
1

2

NX

r,s

ZZ
dt dx

⇥

�
V+
srJ+,r, J+,s

�
+ 

�
J�,r,V�

rsJ�,s

�⇤
. (3.3.14)

We note that the terms in the second line are not Lorentz invariant. However, one shows that
these are cancelled by the term containing the Hamiltonian (for brevity, we give the proof of
this result in appendix 3.B), so that we eventually get

S[g1, · · · , gN ] =
1

2

NX

r,s

ZZ
dt dx

⇥

�
V+
srJ+,r, J�,s

�
+ 

�
J+,r,V�

rsJ�,s

�⇤
+

NX

r=1

kr IWZ

⇥
gr
⇤
.

(3.3.15)

Action in terms of Maurer-Cartan currents. To conclude this section, we proceed to
compute the expression of the action in terms of the j±,r’s only. This is done through the formal
inversion relation (3.3.7). As a final result we obtain

S[g1, · · · , gN ] =
ZZ

dt dx
NX

r,s=1

 (J+,r,OrsJ�,s) +
NX

r=1

kr IWZ

⇥
gr
⇤
, (3.3.16)

where we have defined Ors as the entries of the following matrix operator:

O =
1

2

�
tU�1

+
tV+ + V�U�1

�
�
. (3.3.17)

Finally, using the identities (3.2.9), one proves that the second term in this definition is equal
to the first one, so that we get:

O = tU�1
+

tV+ = V�U�1
� . (3.3.18)
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Model with two copies. In this paragraph, we give an explicit expression for the inversion
of the operator matrices U± and consequently for the coupling operator O in the case of a model
with two copies only, i.e. with N = 2. In order to do so, one has to make a further assumption
about the operators B±

r appearing in the ansatz (3.2.22) made for the Kac-Moody currents
Jr,±. More precisely, we will suppose that they satisfy the following commutation relation

⇥
B+
r ,B�

r

⇤
= 0, 8 r 2 {1, 2}. (3.3.19)

Let us note that, crucially, this additional condition is satisfied by the Yang-Baxter realisation
(with or without Wess-Zumino term) and the �-realisation, as can be checked easily from
equations (3.2.17), (3.2.18) and (3.2.19)12.

As we have noted in section 3.3.1, the fact that it is not straightforward to invert the
operator matrices U± is due to the non-commutativity of their entries. However, using the
additional assumption (3.3.19) made on the operators B±

r , one shows that:
⇥
U±
rs,U±

rt

⇤
= 0, 8 r, s, t 2 {1, 2}. (3.3.20)

Thus, even if the entries of U± are not all commutative, this shows that the ones on a same line
commute with one another. This fact will allow us to find an explicit expression of the inverse
of U±.

Let us introduce the operators

�±
1 = (U±

11 U±
22 � U±

12 U±
21)

�1 and �±
2 = (U±

22 U±
11 � U±

21 U±
12)

�1. (3.3.21)

If the entries U±
rs of U± were commutative, the objects �±

1 and �±
2 would be equal and would

correspond to the inverse of the determinant of the 2⇥ 2 matrix U±. In the present case, these
operators �±

r are the inverse of non-commutative versions of the determinant. In terms of
these, the inverse of the operator U± is then given by

U�1
± =

 
U±
22 �

±
1 �U±

12 �
±
2

�U±
21 �

±
1 U±

11 �
±
2

!
. (3.3.22)

Indeed, one checks explicitly that
 
U±
11 U±

12

U±
21 U±

22

! 
U±
22 �

±
1 �U±

12 �
±
2

�U±
21 �

±
1 U±

11 �
±
2

!
=

 
(U±

11 U±
22 � U±

12 U±
21)�

±
1 (U±

12 U±
11 � U±

11 U±
12)�

±
2

(U±
21 U±

22 � U±
22 U±

21)�
±
1 (U±

22 U±
11 � U±

21 U±
12)�

±
2

!
.

The property (3.3.20) then ensures that the o↵-diagonal terms vanish, while the definition
(3.3.21) of the operators �±

r is such that the diagonal terms are the identity operator, thus
proving that the matrix (3.3.22) is the inverse of U±

13. The expression (3.3.22) is a non-
commutative generalisation of the standard comatrix formula for the inverse of a 2⇥ 2 matrix,
where in particular one takes into account the non-commutativity of the entries by considering
di↵erent “inverse determinants” �±

r in the di↵erent columns.
To give a more compact expression of the entries of U�1

± , let us introduce the notation r̄,
defined for every r 2 {1, 2} by r̄ 2 {1, 2} \ r (i.e. 1̄ = 2 and 2̄ = 1). Then, one has

(U�1
± )rs = (�1)r+s U±

s̄r̄ �
±
s .

12It is not obvious whether this condition is an accidental property of these particular realisations or if it can
be derived more generally as a consequence of the fact that Jr,± are Kac-moody currents, as was for example
the case for the identities (3.2.9) (see appendix 3.A).

13More precisely, this proves that it is the right inverse of U±. However, recalling that the entries of U± are
operators on gC, one can see U± as a 2 dim g⇥ 2 dim g matrix, for which the left and right inverses coincide.



CHAPTER 3. INTEGRABLE DEFORMATIONS OF COUPLED SIGMA MODELS 46

Reinserting the above results into the expression (3.3.18) of the operatorO, one can compute
its entries Ors, which appear in the action (3.3.16) of the model, yielding

Ors =
t�+

r

�
tU+

r̄r̄
tV+

sr � tU+
r̄r

tV+
sr̄

�
=
�
V�
rs U�

s̄s̄ � V�
rs̄ U�

s̄s

�
��

s . (3.3.23)

3.3.3 Parameters of the models

In section 3.2.7, we have discussed what are the defining parameters of the models, from
their construction as realisations of a�ne Gaudin models. Let us briefly give some additional
comments on the subject in the light of the Lagrangian formulation of the models.

Functions '±(z). Recall the functions '±(z) and '±,r(z) = (z � z±r )'±(z) introduced in
section 3.3.1. It is clear from the results of this section that these functions play an important
role in describing the Lagrangian formulation of the models. For example, they are used to
obtain the Lagrangian expression (3.3.3) of the Lax connection. Similarly, they enter the
definitions (3.3.6) and (3.3.13) of the operators U± and V±, which are then used to express
the operator O appearing in the action (3.3.16) of the model. Note that the definition of the
operators U± and V± also involves the operators B±

r and C±
r , which characterise the choice of

Kac-Moody realisations of the model. In particular, these realisations depend on the levels `r,±.
For completeness, let us thus note that the latter can also be expressed quite easily using the
functions '±(z) and '±,r(z):

`r,± = �`1'±,r(z
±
r )'⌥(z

±
r ) = ⌥

`1

z+r � z�r
'+,r(z

±
r )'�,r(z

±
r ). (3.3.24)

Finally, let us note that these levels also determine the coe�cients kr of the Wess-Zumino
terms in the action (3.3.16) of the model. Thus, the datum of the functions '±(z) is enough
to describe completely the model in its Lagrangian formulation.

Parameters (z±
r ,⌫±

r , `1). Recall that in section 3.2.7, we discussed two possible sets of pa-
rameters for the model: the “Gaudin parameters” (z±r , `r,±, `

1) and the parameters (z±r , ⇣i, `
1),

where the datum of the levels `r,± has been replaced by the datum of the zeroes ⇣i of the twist
function. In particular, recall that the second parametrisation is in general more convenient
as the zeroes play an important role in the description of the model and as they cannot be
expressed explicitly in terms of the levels, whereas the levels can be expressed rationally in
terms of the zeroes. Recall also that choosing the parametrisation using the zeroes is however
less convenient to describe models with �-realisations and/or Yang-Baxter realisations without
Wess-Zumino term. Indeed, these realisations require that the levels `r,± satisfy the additional
constraint (3.2.37), which translates into a complicated algebraic condition on the parameters
(z±r , ⇣i).

These observations motivate the introduction of a third possible set of parameters (z±r , ⌫
±
r , `

1),
which is in some sense intermediate between the two sets described above and which circum-
vents the various issues related to solving algebraic equations. In this parametrisation, the
datum of the levels `r,± or of the zeroes ⇣i is replaced by the datum of the coe�cients

⌫±r = '±,r(z
±
r ).

Note that these coe�cients characterise the partial fraction decomposition of the functions
'±(z):

'±(z) = 1 +
NX

r=1

⌫±r
z � z±r

.
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In particular, the levels `r,± can then be expressed in terms of these parameters as

`r,± = �`1⌫±r

 
1 +

NX

s=1

⌫⌥s
z±r � z⌥s

!
.

Thus, the condition (3.2.37), which the levels `r,± should satisfy in order to attach a �-realisation
or a Yang-Baxter realisation without Wess-Zumino term to the sites (r,±), becomes

⌫+r

 
1 +

NX

s=1

⌫�s
z+r � z�s

!
+ ⌫�r

 
1 +

NX

s=1

⌫+s
z�r � z+s

!
= 0. (3.3.25)

If one considers a model with N2 �-realisations, one has to impose N2 relations as the one
above, which form a linear system on the corresponding set of coe�cients ⌫+r (or equivalently
on the corresponding ⌫�r ). This is the advantage of this parametrisation, as one then has to
solve linear constraints on the parameters instead of algebraic ones when using the zeroes.
In particular, the solutions of these constraints are rational expressions of the remaining free
parameters (however potentially quite complicated). This will be useful later in section 3.4.3
when we will study the model with N coupled �-models.

Coe�cients ⇢±
rs. Let us end this section by introducing some coe�cients which will be useful

to study the undeformed limit of the models in section 3.3.4 and specific examples of models
in section 3.4. We define

⇢±rr = ⌥
`1

2
'±,r(z

±
r )
'⌥,r(z⌥r )� '⌥,r(z±r )

z⌥r � z±r
, (3.3.26a)

⇢±rs = ⌥
`1

2

'⌥,r(z⌥r )'±,s(z±s )

z⌥r � z±s
, for r 6= s. (3.3.26b)

Using the expression (3.3.24) of the levels `r,±, one shows that these coe�cients can be rewritten
as

⇢±rs = ±1

2

✓
`r,± �rs + `r,⌥

'±,s(z±s )

'±,s(z⌥r )

◆
. (3.3.27)

Using this expression, the operators U±
rs and V±

rs introduced in (3.3.6) and (3.3.13) can be
re-expressed as

U±
rs =

✓
tB±

r �
`r,±
`r,⌥

tB⌥
r

◆
�rs ±

2⇢±rs
`r,⌥

tB⌥
r , V±

rs = ±1

2

✓
tC±

r �
`r,±
`r,⌥

tC⌥
r

◆
�rs +

⇢±rs
`r,⌥

tC⌥
r .

(3.3.28)

3.3.4 Undeformed limit

As explained in section 3.2.8, one can see the model constructed from N1 inhomogeneous Yang-
Baxter realisations and N2 �-realisations as a deformation of a simpler model, coupling together
N1 copies of the PCM with Wess-Zumino term and N2 copies of the non-abelian T-dual of the
PCM. This was understood by means of the so-called undeformed limit, in which the positions
z+r and z�r collide for every pair of sites (r,±), or equivalently by letting the parameters ⌘r go to
0, while keeping `0,r and `1,r finite (see section 3.2.8 for details). The goal of this section will be
to complete this discussion by studying this limit in the Lagrangian formulation of the model,
focusing mostly on Yang-Baxter realisations (as explained in section 3.2.8, the undeformed limit
of �-realisations requires a more subtle treatment which we will not detail here for conciseness).
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This will allow us to compare the methods and results presented in the previous sections for
deformed models to the ones presented in section 2.2.6 and the articles [58,59] for undeformed
ones. In particular, we will see how the action (2.2.52) discussed in section 2.2.6 is recovered
in this case.

Interpolation formula. Let us focus for the moment on a pair of sites (r,±), which we
suppose to be associated with a Yang-Baxter realisation with Wess-Zumino term. The corre-
sponding operators B±

r are then given by

B±
r =

1

2

✓
Id⌥ 1

cr
R(r) ⌥ �r⇧(r)

◆
,

where �r is defined in equation (3.2.41), R(r) = Ad�1
gr �Rr �Adgr and ⇧(r) = Id�R(r) 2/c2r. Recall

that in section 3.3.1, we found the Lagrangian expression of the Lax connection by interpolation
methods, using the fact that one can express the Maurer-Cartan currents j±,r in terms of the
evaluation of the Lax connection at the positions z±r by equation (3.3.1). In the present case,
this equation can be rewritten as

j±,r =
L±(z+r ) + L±(z�r )

2
+
�
R(r) � cr�r⇧

(r)
� L±(z+r )� L±(z�r )

2cr
. (3.3.29)

As recalled above, the undeformed limit corresponds to making the positions z±r collide to the
same point zr. It is then clear that in the undeformed limit, the above formula simply becomes

j±,r = L±(zr). (3.3.30)

This is precisely the interpolation formula obtained in [59, equation (3.33)] for the model
coupling N PCM with Wess-Zumino terms. In this reference, this formula plays a key role
in obtaining the Lagrangian expression of the Lax connection of this model. The method
developed in section 3.3.1 of this chapter is thus a generalisation of the one of [59] to include
deformed realisations.

Recall from equation (3.3.2) that in the deformed model, the currents j±,r are defined as
the evaluations L±(z±r ). It is then clear from the above equation that in the undeformed limit,
these currents j±,r coincide with the Maurer-Cartan currents j±,r. The expression (3.3.3) of
the Lax connection is thus a natural deformation of the one (3.34) of [59] for the undeformed
model. Moreover, this implies that the operator U±, which relates the currents j±,r and j±,r (see
equation (3.3.5)), becomes the identity in the undeformed limit, or equivalently, in components:

U±
rs

⌘1,··· ,⌘N!0�������! �rsId. (3.3.31)

For completeness, let us comment briefly on the homogeneous Yang-Baxter limit considered
at the end of section 3.2.8 (note that we considered the homogeneous limit only for realisations
without Wess-Zumino term, in which case kr = �r = 0). Recall that this limit corresponds to
taking the coe�cient cr to 0. Recall also that the positions z±r are given by zr ± cr⌘r. Thus, in
the limit cr ! 0, the equation (3.3.29) becomes

j±,r = L±(zr) + ⌘rR
(r)L0

±(zr), (3.3.32)

where L0
±(z) denotes the derivative of L±(z) with respect to the spectral parameter z. This is

the equivalent of the equation (D.7) of [59], which was obtained when studying a model with
N � 1 PCM realisations and one homogeneous Yang-Baxter realisation. It is interesting to
compare the equations (3.3.29), (3.3.30) and (3.3.32): the undeformed interpolation formula
(3.3.30) is corrected by a derivative term L0

±(zr) for an homogeneous Yang-Baxter deformation
and by a finite di↵erence term

�
L±(zr + cr⌘r) � L±(zr � cr⌘r)

�
/2cr for an inhomogeneous

Yang-Baxter realisation.
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Lagrangian expression of Yr. Recall from section 3.3.2 that after the derivation of the
Lagrangian expression of the Lax connection, the next step for performing the inverse Legendre
transform of the model is to find the Lagrangian expression of the field Yr, which encodes the
momentum fields of the model. This was done using equation (3.3.11), which expresses Yr in
terms of the Lax connection, through the operators C±

r . For a Yang-Baxter realisation, it can
be re-written, after a few manipulations, as

Yr =
�
`1,rId� ⌘rkrR

(r) + cr⌘rkr�r⇧
(r)
� L(z+r )� L(z�r )

2cr⌘r
� kr

L(z+r ) + L(z�r )
2

.

The undeformed limit corresponds to taking ⌘r to 0 while keeping `1,r and kr = �`0,r/2 finite.
Recalling that z±r = zr ± cr⌘r, the above equation then becomes in this limit

Yr = `1,rL0(zr)� krL(zr).

This then coincides with the equation (3.36) of [59].

Recall from section 3.3.2 that equation (3.3.11) allows us to rewrite Yr in terms of the
currents j±,r and the operators V±

rs, in equation (3.3.12). In the undeformed limit, the currents
j±,r are identified with the Maurer-Cartan currents j±,r. Moreover, one can study the behaviour
of the undeformed limit of the operators V±

rs using their expression (3.3.28). In particular, the
coe�cients ⇢±rs in this expression, defined by equation (3.3.26), can be shown to converge in the
undeformed limit to:

⇢+rs
⌘1,··· ,⌘N!0�������! ⇢sr �

kr

2
�rs and ⇢�rs

⌘1,··· ,⌘N!0�������! ⇢rs +
kr

2
�rs, (3.3.33)

with the coe�cients ⇢rs as defined in [59, equation (3.40)]. Note that in this limit, the expression
of the coe�cient kr also coincides with its expression in [59, equation (3.38)]. Using the above
limit of the coe�cients ⇢±rs, as well as the expression (3.2.35) of the levels `r,± in terms of the
coe�cients `0,r = �2kr and `1,r which stay finite in the undeformed limit, one can compute
the limit of the operators V±

rs starting from their expression (3.3.28):

V+
rs

⌘1,··· ,⌘N!0�������! ⇢sr Id and V�
rs

⌘1,··· ,⌘N!0�������! ⇢rs Id. (3.3.34)

In particular, equation (3.3.12) agrees with [59, equation (3.39)] in the undeformed limit:

Yr
⌘1,··· ,⌘N!0�������!

NX

s=1

(⇢srJ+,s + ⇢rsJ�,s) .

Action. Finally, we are now in a position to calculate the undeformed limit of the action of
the model with N copies of the Yang-Baxter realisation. By reinserting the limits (3.3.31) and
(3.3.34) in the expression (3.3.17) for the operator O, we find:

Ors
⌘1,··· ,⌘N!0�������! ⇢rs Id.

Comparing to equation (3.49) of [59], one sees that the action (3.3.16) then reduces to the one
of N coupled copies of the PCM with Wess-Zumino term:

S
⇥
g1, · · · , gN

⇤
=

ZZ
dt dx

NX

r,s=1

⇢rs  (J+,r, J�,s) +
NX

r=1

krIWZ

⇥
gr
⇤
. (3.3.35)

We recognise in the equation above the action (2.2.52) discussed in section 2.2.6 for the case
kr = 0.
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Undeformed and q-deformed symmetries. The undeformed model (3.3.35) possesses N
global symmetries acting by left translation on the fields gr:

g1(t, x) 7�! h1g1(t, x), · · · , gN(t, x) 7�! hNgN(t, x), (3.3.36)

where h1, · · · , hN are constant elements of G. Indeed, these transformations leave the Maurer-
Cartan currents j±,r = g�1

r @±gr and the Wess-Zumino terms IWZ

⇥
gr
⇤
invariant.

These global symmetries are broken by the introduction of deformations. Indeed, let us
consider the model with N copies of the Yang-Baxter model studied in this section. The entries
of the operators U± and V± are expressed in terms of the operators R(r) = Ad�1

gr � Rr � Adgr

and ⇧(r) = Ad�1
gr � ⇧r � Adgr . Because of their dependence on the fields gr, these operators

are not invariant under the left translations (3.3.36), making the operator O appearing in the
deformed action (3.3.16) not invariant. Thus, the transformations (3.3.36) are not symmetries
of the action (3.3.16).

It is a well-known result [47] (see also [87–89]) that in the Yang-Baxter model (with one
copy and without Wess-Zumino term) the global symmetry of the undeformed model is in fact
replaced by a q-deformed Poisson-Lie symmetry. The latter is a symmetry with respect to a
Lie group which is equipped with a Poisson structure in such a way that the multiplication
map in this group is a Poisson mapping. In this setting, the moment map that generates the
symmetry in the canonical case is replaced by a so-called non-abelian moment map. The fact
that the Yang-Baxter model has this symmetry descends from this non-abelian moment map
commuting with the Hamiltonian of the model. Moreover, this symmetry is q-deformed in the
sense that the Poisson brackets satisfied by the conserved charges contained in this non-abelian
moment map are deformed to the ones of a Poisson-Hopf algebra Uq(g) [88, 90], where q is a
function of the deformation parameter. This algebra can be seen as a semi-classical limit of the
quantum group Uq̂(g) with q̂ = q~. Based on this result, it was explained in [59] that this is in
general the case for every a�ne Gaudin model with a Yang-Baxter realisation (without Wess-
Zumino term). In particular, the model coupling N copies of the Yang-Baxter models without
Wess-Zumino term then possesses N q-deformed symmetries, which replace the translation
symmetries (3.3.36). Their action on the fields of the model can be computed using the results
of [91]: in particular, let us note that this action is non-local.

As the bilinear form  is invariant under conjugacy, the undeformed model also possesses a
global symmetry acting by simultaneous right translation on all the fields gr:

g1(t, x) 7�! g1(t, x)h, · · · , g1(t, x) 7�! gN(t, x)h, (3.3.37)

with h a constant element of G. As explained in [59], it corresponds to the diagonal symmetry
of the underlying a�ne Gaudin model. As such, it is not broken by applying Yang-Baxter
deformations to the various copies of the model. Indeed, one checks that under the trans-
formation (3.3.37), the operators Ors entering the action of the model with N Yang-Baxter
realisations become Ad�1

h �Ors �Adh. Since the Maurer-Cartan currents j±,r become Ad�1
h j±,r

and the Wess-Zumino terms IWZ

⇥
gr
⇤
are invariant under this transformation, it is thus a sym-

metry of the deformed action (3.3.16). Note that a similar result holds for models involving
�-realisations: in this case, the corresponding fields gr should not transform by right multiplica-
tion but by conjugacy gr 7! h�1grh, while the fields corresponding to Yang-Baxter realisations
still transform by right multiplication by h.

3.4 Yang-Baxter and �-deformed coupled models

The action (3.3.16) presented in the previous section was obtained using the general ansatz
introduced in section 3.2.2 for the form of the Kac-Moody realisations defining the model. In
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this section, we specialise these results to the model constructed from N1 copies of the Yang-
Baxter realisation and N2 copies of the �-realisation. As we shall see, the particular form
of these realisations will allow us to rewrite the action of this model in a simpler form. In
particular, we will show that the integrable sigma model introduced in [63] corresponds to a
particular limit of the model constructed from N copies of the �-realisation. We will then
focus on models with two copies and will rewrite their action in a more explicit form, using the
expressions (3.3.22) and (3.3.23) of the inverse of U± and of the operators Ors obtained in this
case.

3.4.1 Deformed model with N1 Yang-Baxter realisations and N2 �-
realisations

Let us consider a model made up of N1 copies of the Yang-Baxter realisation with Wess-Zumino
term and N2 copies of the �-realisation. Let us now associate the former to the first N1 pairs of
sites (r,±) and the latter to the last N2 pairs. Then, from (3.2.18) and (3.2.19), one obtains,
for the operators B±

r and C±
r , the following expression

B±
r =

1

2
Id⌥ 1

2cr
R(r) ⌥ �r

2
⇧(r), C±

r =

✓
`r,± +

kr

2

◆
Id⌥ kr

2cr
R(r) ⌥ kr�r

2
⇧(r), 1  r  N1,

B+
r = Id, B�

r = �Adgr , C+
r = �kr Id, C�

r = �kr Adgr , N1 < r  N2,

where R(r) = Ad�1
gr � Rr � Adgr and ⇧(r) = Ad�1

gr � ⇧r � Adgr . We observe that the relations
C±
r = `r,± + krB±

r and C±
r = ⌥krB±

r respectively hold in the first and in the second case.
Thus, from (3.3.6) and (3.3.13) and after a few manipulations, we obtain for the entries of the
operator V±:

V±
rs = ⇢±rsId± kr

2
U±
rs, 1  r  N1, (3.4.1a)

V±
rs = �kr�rs

tB±
r +

kr

2
U±
rs, N1 < r  N2. (3.4.1b)

where the coe�cients ⇢±rs have been defined in (3.3.26).
From the expressions (3.3.17) and (3.3.18) of the operator O found in the previous section,

we are now in a position to write the action of the model. We choose to express the entries
Ors of this operator as in (3.3.17) for 1  r  N1 and as in the second equality in (3.3.18) for
N1 < r  N2

14. Reinserting (3.4.1) in the form of the action (3.3.16), we obtain

S
⇥
g1, · · · , gN

⇤
=

1

2

ZZ
dt dx

N1X

r=1

NX

s,t=1


�
J+,r,

�
↵+
st

t(U�1
+ )tr + ↵�

rt (U�1
� )ts

�
J�,s

�
+

N1X

r=1

kr IWZ

⇥
gr
⇤

+

ZZ
dt dx

NX

r=N1+1

NX

s=1

kr 
�
AdgrJ+,r, (U�1

� )rsJ�,s

�
+

NX

r=N1+1

SWZW,kr [gr],

(3.4.2)

with

↵±
rs = ⇢±rs, 1  r  N1,

↵+
rs = �kr�rs, N1 < r  N

14This choice makes the discussion of the cases (N1 = N,N2 = 0) and (N1 = 0, N2 = N) in the next sections
simpler. However, we note that due to the relation (3.3.18), di↵erent choices are possible in general (see for
example section 3.4.4).
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and where SWZW,kr [gr] denotes the Wess-Zumino-Witten action of gr with level kr:

SWZW,kr [gr] =
kr

2

ZZ
dt dx 

�
j+,r, j�,r

�
+ kr IWZ

⇥
gr
⇤
.

3.4.2 Model with N Yang-Baxter realisations

Let us now briefly discuss the model with copies of the Yang-Baxter realisation only. In this
case, the action (3.4.2) gets simplified to

S
⇥�

gr
 ⇤

=
1

2

ZZ
dt dx

NX

r,s=1


⇣
g�1
r @+gr,

�
tU�1

+
t%+ + %� U�1

�
�
rs

g�1
s @�gs

⌘
+

NX

r=1

kr IWZ

⇥
gr
⇤
,

(3.4.3)
where %± are operators on gN which can be seen as N⇥N matrices with entries (%±)rs = ⇢±rs Id.

Let us describe more explicitly the operators U± appearing in the action (3.4.3). From the
expressions of the operators B±

r and C±
r for a Yang-Baxter realisation, one finds that

U± = Id± eR±#±, (3.4.4)

where we defined
eR±
rs =

�
R(r) ⌥ crId� cr�r⇧

(r)
�
�rs,

with R(r) = Ad�1
gr �Rr � Adgr and ⇧(r) = Id�R(r) 2/c2r, and

#±
rs = ✓±rs Id, ✓±rs =

⌥⇢±rs � kr�rs
cr`r,⌥

. (3.4.5)

Let us end this section by presenting an alternative form of the action of the model. Let us
introduce the operator c, with entries crs = cr�rs Id. Then, one can further rewrite the operator
U± as

U± =
�
Id± eR e#±��Id� c#±�,

where
eRrs =

�
R(r) � cr�r⇧

(r)
�
�rs and e#± =

#±

Id� c#± .

Finally, introducing e%± = %±(Id� c#±)�1, one can rewrite the action of the model in the form

S[{gr}] =
1

2

ZZ
dt dx

NX

r,s=1



✓
g�1
r @+gr,

✓
1

Id + te#+ t eR
te%+ + e%�

1

Id� eR e#�

◆

rs

g�1
s @�gs

◆

+
NX

r=1

kr IWZ

⇥
gr
⇤
.

This way of writing the action of the model is quite similar to the way the action of the Yang-
Baxter model with one copy is expressed and thus seems rather natural. Let us note however
that it has some downsides compared to the expression (3.4.3). Indeed, the entries e⇢±

rs and
e✓±
rs of the operators e%± and e#± appearing in the expression above are not straightforwardly
expressed in terms of the parameters of the models (contrarily to the coe�cients ⇢±rs and ✓±rs
which were used in the previous formulation) as their definition involves the inversion of the
operator Id� c#±.

From the expression of the action above, one can simply check that its undeformed limit
yields the action of N coupled PCMs with Wess-Zumino terms presented in [59] (see also section
2.2.6). Indeed, in this limit, the parameters ✓±rs and thus also the operators e✓±, go to zero. In
particular, the coe�cients e⇢±

rs and ⇢±rs have the same limit. From equation (3.3.33), we then
see that in this limit, e⇢+

sr + e⇢�
rs ! 2 ⇢rs, with ⇢rs as defined in [59].
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3.4.3 Model with N �-realisations

Action. Let us now discuss the case where we take �-realisations only. For this model, the
action reads

S[{gr}] =
NX

r=1

SWZW,kr

⇥
gr
⇤
+

ZZ
dt dx

NX

r,s=1

kr 
�
@+grg

�1
r ,
�
U�1
�
�
rs

g�1
s @�gs

�
. (3.4.6)

From the expression of the operators B±
r of the �-realisation, one can rewrite the operator U�

as
U� = M�D�1, with Mrs = µrs Id and Drs = Adgr�rs, (3.4.7)

where the coe�cients µrs are defined as

µrs =
'�,s(z�s )

'�,s(z+r )
. (3.4.8)

The action of the model then takes the simple form

S[{gr}] =
NX

r=1

SWZW,kr

⇥
gr
⇤
+

ZZ
dt dx

NX

r,s=1

kr 

✓
@+grg

�1
r ,

✓
1

M�D�1

◆

rs

g�1
s @�gs

◆
. (3.4.9)

Parameters. Let us discuss what are the defining parameters of the model. We will use the
parameterisation (z±r , ⌫

±
r , `

1) introduced in section 3.3.3. As explained in this section, these
parameters are convenient to take into account the fact that the levels `r,± of the models should
satisfy the constraints `r,++ `r,� = 0, that one has to impose to consider �-realisations. Indeed,
these constraints translate into the conditions (3.3.25) on the parameters z±r and ⌫±r . One can
solve this condition by expressing the parameters ⌫+r in terms of z±r and ⌫�r :

⌫+r =
NX

s=1

(��1)rs⌫
�
s , where � =

  
1 +

NX

t=1

⌫�t
z+r � z�t

!
�rs +

⌫�r
z�r � z+s

!

r,s=1,··· ,n

.

(3.4.10)
The remaining 3N + 1 parameters (z±r , ⌫

�
r , `

1) are unconstrained: taking into account the
translation and dilation redundancy among these parameters (see section 3.2.7), the model
is thus defined by 3N � 1 free parameters (for concreteness, one can for example fix this
redundancy by fixing the values of `1 and of one of the positions z±r ). The coe�cients µrs

defined in equation (3.4.8) can be expressed in terms of this parametrisation as

µrs =
⌫�s

z+r � z�s

 
1 +

NX

t=1

⌫�t
z+r � z�t

!�1

. (3.4.11)

Similarly, the coe�cient kr appearing in the action (3.4.9) is given by

kr =
1

2
`1⌫+r

 
1 +

NX

s=1

⌫�s
z+r � z�s

!
,

where ⌫+r is replaced by its expression (3.4.10).
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Comparison with [63]. Actions of the form (3.4.9) have been considered in [63] (and in [60–
62] for the case N = 2, see section 3.4.4). More precisely, the action (3.4.9) is identical to the
action (2.13) of [63], with the matrix ��1 in this reference identified in the present language
with the matrix whose components are ��1

rs =
p
kr/ks µrs.

It was shown in [63] that the model defined by taking all entries of ��1 to be zero except
for ��1

11 , · · · ,��1
(N�1)1 and ��1

N2, · · · ,��1
NN is integrable. Let us now explain how this model can

be obtained as a limit of the one constructed above by coupling together N �-realisations. We
introduce the following reparametrisation of the positions z±r of the model:

z+r = yr for r 2 {1, · · · , N�1}, z+N =
1

�
, z�1 = 0, z�r = byr+

1

�
for r 2 {2, · · · , N},

(3.4.12)
in terms of new parameters y1, · · · , yN�1, by2, · · · , byN and �. We used here the translation
redundancy on the parameters z±r to fix the value of z�1 to 0. Recall that one can also use the
dilation redundancy to fix the value of `1: for future convenience, we choose here to fix it to

`1 = 2

 
1 +

NX

r=1

⌫�r
z+N � z�r

!�1

=
2

'�
�
z+N
� .

Using this parametrisation, the model is then described by the 3N�1 free parameters y1, · · · , yN�1,
by2, · · · , byN , ⌫�1 , · · · , ⌫�N and �. The limit we shall consider in this paragraph is � ! 0, while
keeping the remaining parameters fixed.

Using the expression (3.4.11) of the coe�cients µrs, one checks that in the limit � ! 0,
these coe�cients all vanish except µ11, · · · , µ(N�1)1 and µN2, · · · , µNN . The matrix ��1, which

has components ��1
rs =

p
kr/ks µrs, then takes the same form as in the integrable truncation

considered in [63]. As one considered the limit � ! 0, the model is now described by the 3N�2
parameters y1, · · · , yN�1, by2, · · · , byN and ⌫�1 , · · · , ⌫�N . This coincides with the number of free
parameters considered for the integrable model of [63]. More precisely, the parameters used
in this reference are the Wess-Zumino levels k1, · · · ,kN and the coe�cients µ11, · · · , µ(N�1)1

and µN2, · · · , µNN (or equivalently the corresponding coe�cients ��1
rs ). Using the expressions

of these coe�cients obtained in the previous paragraph and considering the limit � ! 0, one
can relate explicitly the parametrisation used here with the parametrisation used in [63]. More
precisely, one finds after several computational steps:

yr =

✓
1

µr1
� 1

◆
k1 � a

b
, bys =

ks

µNs
�kN , ⌫�1 =

k1 � a

b
and ⌫�s =

ks � kNµNs

b
,

for r 2 {1, · · · , N � 1} and s 2 {2, · · · , N}, where we define a =
PN�1

r=1 krµr1 and b =PN
s=2 µNs � 1.

Let us comment on the limit � ! 0 considered above. This limit consists in singling out two
sets of positions Z1 = {z�1 , z+1 , · · · , z+N�1} and Z2 = {z�2 , · · · , z�N , z+N} and sending the distance
between these two sets to infinity. It is thus quite similar to the decoupling procedure considered
in [59, section 2.3.3]15. According to this procedure, the sites (1,�), (1,+), · · · , (N � 1,+)

15The main di↵erence with this procedure comes from the realisations attached to the sites. Indeed, in [59],
the two sets Z1 and Z2 are associated with independent realisations, in the sense that the phase space of the
model takes the form P1 ⇥ P2 and the positions in Z1 are associated with Kac-Moody (or Taki↵) currents in
the first factor P1 and the positions in Z2 are associated with currents in P2. In the decoupling limit, where the
sites Z1 cease to interact with the sites Z2, one then obtains two independent models on P1 and P2, respectively.
In the present case, the currents associated with the sets Z1 and Z2 do not belong to independent parts of the
phase space.
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corresponding to the positions Z1 thus cease to interact with the sites (2,�), · · · , (N,�), (N,+)
corresponding to the positions Z2 in the limit � ! 0. This explains the structure of the model
considered in [63], where the fields g(2), · · · , g(N�1) have no interactions one with another. The
theory before taking the limit � ! 0 then defines a non-trivial integrable generalisation of
this model: indeed, although it corresponds to adding only one parameter, this introduces
non-trivial interactions between all the di↵erent fields gr, as the coe�cients µrs then become
generically all non-zero.

Following the decoupling procedure of [59], one describes the integrability of the model in
the limit � ! 0 using two independent Lax connections, which are obtained as two di↵erent
limits of the initial Lax connection L±(z). More precisely, let us consider:

L(1)
± (z) = lim

�!0
L±(z) and L(2)

± (z) = lim
�!0

L±

✓
z +

1

�

◆
. (3.4.13)

It is clear that, before taking the limit � ! 0, both L±(z) and L±(z + ��1) satisfy a zero cur-
vature equation (as L±(z) does) and thus still do after taking the limit. The reason behind the
necessity of considering these two Lax connections is that, loosely speaking, the Lax connection
L±(z) loses the information about the positions Z2 in the limit � ! 0: the Lax connection

L(1)
± (z) then only “corresponds to” the positions Z1 (see [59] for a more precise treatment).

Considering the shift of the spectral parameter by ��1, as done in the definition of L(2)
± (z), ex-

changes the roles of the sets Z1 and Z2, so that the second Lax connection L(2)
± (z) contains the

information about the positions Z2. This is coherent with [63], where the integrable truncation
was described using two Lax connections.

The Hamiltonian analysis of the corresponding Lax matrices was performed recently in [92],
where it was shown that their Poisson brackets are described by twist functions. In the language
of a�ne Gaudin models used above, these twist functions are obtained from the twist function
'(z) of the original model by a limit similar to the one of equation (3.4.13) (see [59]):

'(1)(z) = lim
�!0

'(z) and '(2)(z) = lim
�!0

'

✓
z +

1

�

◆
.

One then finds that the twist function '(1) has poles at the points {y1, · · · , yN�1, 0} while the
twist function '(2)(z) has poles at the points {0, by2, · · · , byN}. Up to dilation and translation,
these poles coincide with the ones obtained in [92].

3.4.4 Deformed models with two copies

Recall from section 3.3.2 that in the case of a model with two copies, one can rewrite the
operators U�1

± and Ors more explicitly as in equations (3.3.22) and (3.3.23). Using these results,
we study in this section the models with two Yang-Baxter realisations and two �-realisations.

Model with two Yang-Baxter realisations. Let us consider first the model with two
Yang-Baxter realisations. In this case, we will use the first expression of the operators Ors in
equation (3.3.23). The entries of the operator U+ can be read from (3.4.4) while the entries
of V+ are related to the ones of U+ by equation (3.4.1a). Using the notation r̄ introduced in
section 3.3.2, one then obtains the following expression for the operators Ors:

Ors =
1

1 + ✓+rr bR(r) + ✓+r̄r̄ bR(r̄) + det(✓+) bR(r̄) bR(r)

⇣
⇢+sr +

�
⇢+sr✓

+
r̄r̄ � ⇢+sr̄✓+r̄r

� bR(r̄)
⌘
+ �rs

kr

2
,

where bR(r) = crId+R(r)+cr�r⇧(r), det(✓+) = ✓+11✓
+
22�✓+12✓+21 and ✓+rs is given by equation (3.4.5).
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Model with two �-realisations. Let us now consider the model with two �-realisations.
Its action is given by equation (3.4.6) with N = 2. Reinserting the explicit form (3.4.7) of the
operator U� and calculating its inverse through (3.3.22), we find that in this case the operator
U�1
� appearing in the action is explicitly given by

(U�1
� )rs = (�1)r+s

�
µs̄r̄ � �rsAd�1

gs̄

� 1

det(µ)� µs̄s̄Ad
�1
gs � µssAd

�1
gs̄ +Ad�1

gs Ad
�1
gs̄

,

with det(µ) = µ11µ22 � µ12µ21 and µrs given by equation (3.4.8).

Let us end this section by comparing this result with the ones of [60–62]. Indeed, the
integrable sigma models introduced in these references can be obtained from the model above
by taking limits similar to the one considered in section 3.4.3 (which allowed us to compare the
model with N copies of the �-realisation with the integrable model of [63]).

Let us first consider the following reparametrisation of the positions z±r : z
+
1 = y, z+2 = ��1,

z�1 = by + ��1 and z�2 = 0, similar to the parametrisation (3.4.12) used in the model with N
copies. We then take the limit � ! 0. One checks that in this limit, µ11 = µ22 = 0. The model
is then identical to the model (2.12) of [61] (see also [60] for the case with equal Wess-Zumino
levels k1 = k2), where the remaining coe�cients µ12 and µ21 are identified with µ12 = ��1

0 ��1
2

and µ21 = �0�
�1
1 , in terms of the parameters �i of [61].

Let us now consider another reparametrisation z+1 = 0, z+2 = y2, z
�
1 = y1 and z�2 = ��1

and then take the limit � ! 0. In this case, µ12 and µ22 vanish. The model is then identical
to the model (3.1) of [62], where the remaining coe�cients µ11 and µ21 are identified with
µ11 = ��1

0 ��1
4 and µ21 = �0�

�1
1 , in terms of the parameters �i of [62].

3.5 Relation with 4d semi-holomorphic Chern-Simons

theory

In this section, we explain how the models considered in this chapter can be obtained using the
approach proposed recently by Costello and Yamazaki to generate integrable 2d field theories
from 4d semi-holomorphic Chern-Simons theory [70] (see [64–69,71,93] for additional references
on this variant of Chern-Simons theory and its relation to integrable systems). Note that, in
the terminology of [70], we restrict our attention here to 4d Chern-Simons theory with disorder
defects. It was shown in [70] that the PCM with Wess-Zumino term and the integrable sigma
model coupling N of its copies can be obtained from this approach. It was subsequently shown
in [71] that the integrable 2d field theories obtained from 4d Chern-Simons theory with disorder
defects are realisations of AGM. Moreover, it was explained in [93] how the Yang-Baxter model
and the �-model can also be derived following this approach. It is thus natural to search for
a generalisation of these results for the AGM coupling together N1 copies of the Yang-Baxter
model and N2 copies of the �-model, which is the integrable field theory constructed in the
present chapter.

3.5.1 4d semi-holomorphic Chern-Simons theory and integrable field

theories

In this section, we will briefly sketch the method developed in [70] to generate integrable 2d
field theories from 4d semi-holomorphic Chern-Simons theory. We will not explain this method
in details here and mainly focus on the aspects that will be concretely relevant for the purpose
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of this chapter (we then refer to [70,93] for details). We will follow here the conventions of [93],
which are in agreement with the ones used in the rest of this chapter.

4d Chern-Simons theory. The semi-holomorphic Chern-Simons theory is defined on the
4d manifold R ⇥ D ⇥ P1: the R ⇥ D part of this manifold corresponds to the 2d space-time
with coordinates (t, x) of the resulting integrable field theory (here the spatial manifold D can
be either the real line R or the circle S1, as in the rest of this chapter), while the Riemann
sphere P1 gives rise to the spectral parameter z of this integrable model. The 4d Chern-Simons
theory is partly characterised by the choice of a meromorphic 1-form ! = '(z)dz on P1: as
shown in [71], the corresponding rational function '(z) is the twist function of the resulting
integrable model. The dynamical fields of the four-dimensional theory are the components A+,
A� and Az̄ of a gC-valued gauge field A along the light-cone directions x± of R ⇥ D and the
anti-holomorphic direction z̄ of P1 (note that the component of A in the z-direction decouples
from the theory and is not a physical degree of freedom). In addition to the choice of ! made
above, the theory is then fully determined by specifying appropriate boundary conditions on
the field A at the poles Z ⇢ P1 of !, i.e. at the poles of the twist function (see [70,93] and the
next section for details). The action of the semi-holomorphic Chern-Simons theory is defined
as [64]

SCS[A] =
i

4⇡

Z

R⇥D⇥P1

! ^ CS(A), (3.5.1)

where CS(A) is the standard Chern-Simons 3-form of A.

Parametrisation of the gauge field. In order to relate the 4d Chern-Simons theory to an
integrable 2d model, one parametrises the gauge field components in the following form

Az̄ = bg @z̄bg �1, A± = bg @±bg �1 + bgL± bg �1, (3.5.2)

where bg and L± are fields respectively valued in the group GC and the Lie algebra gC. The
equation of motion obtained by varying the action (3.5.1) with respect to Az̄ then ensures that
the fields L± depend meromorphicaly on z. Moreover, the equations of motion obtained by
varying A± show that they also satisfy a zero curvature equation @+L��@�L++

⇥
L+,L�

⇤
= 0

on R⇥D. These two properties make the field L± a good candidate for being the Lax connection
of a 2d integrable model on R⇥ D.

The fields of the 2d theory. Let us now explain how this integrable 2d field theory is
constructed. For z in the Riemann sphere P1 and a field � on R ⇥ D ⇥ P1, we will denote by
�|z the field on R ⇥ D obtained by evaluating � at the point z on the Riemann sphere. It is
explained in [70, 93] that for a point z 2 P1 \ Z which is not a pole of !, the 2d field bg|z can
be set to a constant field equal to the identity of G by an appropriate gauge transformation
on the gauge field A. The fact that we restrict here to points z which are not poles of ! is
due to the fact that this gauge transformation on A should preserve the boundary conditions
imposed on A at these poles and mentioned above (see [70,93] for details). Thus, the 2d fields
bg|z, z 2 P1\Z, are not physical degrees of freedom of the model. The dynamical fields of the 2d
model we aim to construct are then defined to be the remaining degrees of freedom contained
in bg, i.e. its evaluations {bg|z0}z02Z at the poles of !. Let us mention that in general, one should
also consider the fields @pz bg|z0 obtained by evaluating derivatives of bg at the points z0 2 Z:
however, as explained in [70,93], for the boundary conditions considered in these references and
that we shall consider in this chapter, these degrees of freedom can also be eliminated by gauge
transformations.
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So far, we have considered only the degrees of freedom contained in the field bg, which, as we
see from equation (3.5.2), encodes the component Az̄ of the gauge field. Let us now consider
the component A± and thus the field L±. As explained above, the equation of motion of Az̄

ensures that L± is meromorphic in z. In fact, it also implies that L± can have poles in P1

only at the zeroes of !. This constrains quite strongly the dependence of L± in terms of the
variable z 2 P1. Let us be more precise. As ! will ultimately be given by the twist function
of the resulting 2d theory, let us denote its zeroes {⇣i}i2{1,··· ,M}, in agreement with what was
done in the rest of this chapter. These zeroes can be separated into two sets {⇣i}i2I± , labelled
by subsets I+ and I� of {1, · · · ,M}, depending on which of the component L+ or L� has a
pole at ⇣i (see [93] for details). This fixes the z-dependence of the fields L±: more precisely,
they are of the form

L±(z) =
X

i2I±

Ui

z � ⇣i
+ U1

± , (3.5.3)

for some 2d gC-valued fields Ui, U1
+ and U1

� on R⇥ D. In this equation, we have written the
Lax connection as L±(z) to stress its dependence on the spectral parameter z: note however
that it also depends on the coordinates (t, x) 2 R⇥ D, through the 2d fields Ui and U1

± .
Recall that the gauge field A obeys some specific boundary conditions at the poles z0 2 Z of

!, which translate into conditions on the evaluations {L±|z0}z02Z and {bg|z0}z02Z . As observed
in [70, 93] and as we shall see in this chapter, these boundary conditions, combined with the
z-dependence (3.5.3) of L±, specify completely L± in terms of the 2d fields {bg|z0}z02Z . The
field L± then does not contain any additional degrees of freedom and is interpreted as the Lax
connection of the resulting 2d field theory on {bg|z0}z02Z (indeed, recall also from the previous
paragraph that, on-shell, it satisfies a zero curvature equation on R⇥ D).

Let us end this paragraph by the following remark. As argued above, the fields {bg|z0}z02Z
describe all the degrees of freedom of the resulting 2d model. However, in general, these degrees
of freedom are not all physical: there are some residual gauge symmetries acting on these fields,
which depend on the type of boundary conditions considered. Moreover, there always exists an
additional redundancy on these fields which consists on multiplying all of them on the right by
an arbitrary GC-valued field h on R⇥D (see [70,93]). This redundancy can be used to fix one
of the fields {bg|z0}z02Z to the identity.

The e↵ective 2d action. To complete the description of the 2d field theory obtained through
this method, one has to describe its action. This is done by performing the integration over P1

in the 4d action (3.5.1), resulting on an e↵ective 2d action on R⇥D depending on the 2d fields
{bg|z0}z02Z . However, we will not need the details of this procedure in the following and thus
refer to [70, 93] for details. In particular, it was shown in [93] that, for the type of boundary
conditions that we shall consider in this chapter, this 2d action simply reads:

S
⇥
{bg|z0}z02Z

⇤
=

1

4

X

z02Z

ZZ

R⇥D
dt dx

✓

⇣
res
z=z0

'(z)L+(z)dz, j
{z0}
�

⌘
� 
⇣
j{z0}+ , res

z=z0
'(z)L�(z)dz

⌘◆

�1

2

X

z02Z

✓
res
z=z0

'(z)dz

◆
IWZ

⇥
bg|z0
⇤
, (3.5.4)

where IWZ

⇥
bg|z0
⇤
is the Wess-Zumino term of bg|z0 and j{z0}± is defined as the Maurer-Cartan

current
j{z0}± = bg|�1

z0 @±bg|z0 .
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3.5.2 The models

Our aim in this section is to show explicitly that a certain class of 2d integrable field theories
obtained using the Chern-Simons approach described in the previous section can be identified
with the a�ne Gaudin models coupling together an arbitrary number of copies of inhomoge-
neous Yang-Baxter realisations and �-realisations, as considered in the rest of this chapter. Let
us then start by defining the particular class of 4d Chern-Simons theories that we shall consider
here.

As explained in [70,93] and recalled in the previous section, the 4d semi-holomorphic Chern-
Simons theory is characterised by the choice of the meromorphic 1-form ! and of the boundary
conditions on A at the poles Z of !. Let us then define the 1-form and boundary conditions
that we shall consider here.

3.5.3 1-form !

Following [71] (see also the summary in the previous section), the meromorphic 1-form !
characterising the models obtained from the 4d Chern-Simons approach should coincide with
'(z)dz, where '(z) is the twist function of these models when seen as realisations of AGM. As
we aim to recover the models constructed in this chapter, we will then choose ! to be given by
the twist function (3.2.25) considered in the previous sections, i.e.

! = �`1
Q2N

i=1 (z � ⇣i)QN
s=1 (z � z+r )(z � z�r )

dz. (3.5.5)

This 1-form has 2N simple poles at the points z±r and a double pole at 1. In the language
of the previous section, one then has Z = {z+1 , z�1 , · · · , z+N , z�N ,1}. Following the notations of
this chapter, let us define `r,± as the residues of ! at the poles z±r , which coincide with the
levels of the model when seen as a realisation of AGM.

3.5.4 Boundary conditions

Boundary condition at the double pole at infinity. Let us consider the double pole at
infinity of !. Following [70] (see also [93]), we will impose at this pole the following simple
boundary condition on the Chern-Simons gauge field A:

A±|1 = 0. (3.5.6)

Boundary conditions at the simple poles z±
r . Let us now consider a pair of simple poles

z±r and the corresponding evaluations A±|z+r and A±|z�r of the gauge field at these points. A
systematic study of the consistent boundary conditions that can be imposed on these evaluations
has been presented in [93] (see also [67, 70]). We will consider here two of them.

Yang-Baxter boundary condition. The first one, that we shall call Yang-Baxter bound-
ary condition, is characterised by the choice of a skew-symmetric R-matrix Rr satisfying the
mCYBE (3.2.14), with cr = 1 if the poles z±r are real and cr = i if they are complex conjugate,
and satisfying R3

r = c2rRr. Consider the residues `r,± of ! at z±r , as defined above. Let us define
from them the following parameters:

kr = �
`r,+ + `r,�

2
, �r =

1

cr(`r,+ � `r,�)
and �r =

1�
p

1� 4c2rk2
r�

2
r

2crkr�r
.
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These coincide with the coe�cients kr, �r and �r considered in the rest of this chapter for an
inhomogeneous Yang-Baxter realisation with Wess-Zumino term (see section 3.2.3). Let us note
that the coe�cient �r satisfy (�r + 1)2`r,+ + (�r � 1)2`r,� = 0 so that �cr�r coincides with the
parameter ✓ considered in [93, section 5.6]. The Yang-Baxter boundary condition corresponds
to requiring that the evaluations A±|z+r and A±|z�r satisfy (see [93]):

(Rr � cr�r⇧r + cr)A±|z+r = (Rr � cr�r⇧r � cr)A±|z�r , (3.5.7)

with ⇧r = Id�R2
r/c

2
r as in section 3.2.3.

�-boundary condition. Let us describe the second type of boundary condition at the pair
of simple poles z±r that we shall consider, which we call the �-boundary condition. It can be
imposed only if the poles z±r and the residues `r,± are real and satisfy the additional condition
`r,+ + `r,� = 0 (note that this is identical to the condition (3.2.37) that one should impose to
consider a �-realisation in an a�ne Gaudin model). The �-boundary condition is then simply
given by

A±|z+r = A±|z�r . (3.5.8)

For a �-boundary condition, we define the parameter kr = `r,�/2 = �`r,+/2, which is equal to
the Wess-Zumino coe�cent kr defined for a �-realisation (see section 3.2.3).

3.5.5 Fields of the model

Let us consider a 4d Chern-Simons theory with ! as in equation (3.5.5) and with N1 Yang-
Baxter boundary conditions and N2 �-boundary conditions. Let us describe what are the
dynamical fields of this model. As recalled in the previous section, these fields are given by the
evaluations bg|z0 of the field bg at the poles z0 2 Z of ! and thus by the 2N + 1 fields bg|1, bg|z+r
and bg|z�r .

However, as mentionned in the previous section and explained in [70, 93], we can eliminate
some of these degrees of freedom. In particular, recall from the previous section that we can
fix one of the fields bg|z0 to the identity: here, we will choose to fix the field at infinity bg|1.
Moreover, as explained in [93], if one considers a Yang-Baxter boundary condition or a �-
boundary condition at the pair of poles z±r , there exists a residual gauge symmetry on the
fields bg|z+r and bg|z�r . In the case of a Yang-Baxter boundary condition, this gauge symmetry
can be fixed by imposing bg|z+r = bg|z�r : we then define gr as their common value. For the �-
boundary condition, it can be fixed instead by imposing bg|z�r = Id: we then define gr = bg|z+r .
To summarise, the fields of the model are the N group-valued fields g1, · · · , gN and we have

bg|1 = Id, YB-BC: bg|z+r = bg|z�r = gr, �-BC: bg|z+r = gr, bg|z�r = Id.

3.5.6 Identification of the two approaches

Let us consider the 2d integrable field theory defined in the previous section with N1 Yang-
Baxter boundary conditions and N2 �-boundary conditions. We will prove in this section that
it can be identified with the AGM with N1 Yang-Baxter realisations and N2 �-realisations
studied in the previous sections. In order to do so, we shall show that the two approaches lead
to the same Lax connection as well as the same action.
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3.5.7 Identification of the Lax connections

Let us consider the Lax connection of the model coming from 4d Chern-Simons theory as given
by equation (3.5.3). Let us now express it in terms of the fields gr of the model, using the
boundary conditions that are imposed on the gauge field A at the poles z0 2 Z of !.

Pole at infinity. Let us start with the pole at z0 = 1, for which the boundary condition
is simply defined by equation (3.5.6). From the fact that bg|1 = Id (see section 3.5.5) and the
expression (3.5.3) of the Lax connection L±(z), it is clear that the evaluation of the gauge field
(3.5.2) at z =1 gives

A±|1 = L±(1) = U1
± .

Combining this with the boundary condition (3.5.6), we then get that U1
± = 0.

Pair of poles with Yang-Baxter boundary condition. Let us know consider a pair of
simple poles z±r and let us suppose that we imposed on this pair a Yang-Baxter boundary
condition (3.5.7). As explained in section 3.5.5, in this case, we have bg|z+r = bg|z�r = gr. Thus,
the evaluation of the gauge field (3.5.2) at z"r , for " 2 {+1,�1}, is given by

A±|z"r = gr@±g
�1
r + grL±(z

"
r)g

�1
r = Adgr

⇣
L±(z

"
r)� j±,r

⌘
,

where j±,r = g�1
r @±gr are the Maurer-Cartan currents of the field gr. After a few manipulations,

the Yang-Baxter boundary condition (3.5.7) then becomes

j±,r =
1

2
Ad�1

gr

✓
Id +

Rr

cr
� �r⇧r

◆
Adgr L±(z

+
r ) +

1

2
Ad�1

gr

✓
Id� Rr

cr
+ �r⇧r

◆
Adgr L±(z

�
r ).

Noting that Rr is skew-symmetric and ⇧r is symmetric, this can be rewritten as

j±,r =
tB+

r L±(z
+
r ) +

tB�
r L±(z

�
r ), with B±

r =
1

2

✓
Id⌥ R(r)

cr
⌥ �r⇧(r)

◆
,

where R(r) = Ad�1
gr � Rr � Adgr and ⇧(r) = Ad�1

gr � ⇧r � Adgr . The operators B±
r found here

coincide exactly with the operators, denoted in the same way in the rest of this chapter, coming
from a Yang-Baxter realisation (see section 3.2.3). The above equation is then equivalent to
the equation (3.3.1) obtained in the context of a�ne Gaudin models.

Pair of poles with �-boundary condition. Let us now consider a pair of simple poles
z±r with the �-boundary condition (3.5.8). In this case, we have bg|z+r = gr and bg|z�r = Id (see
section 3.5.5). Thus, the evaluations of the gauge field (3.5.2) at z+r and z�r read

A±|z+r = Adgr

⇣
L±(z

+
r )� j±,r

⌘
and A±|z�r = L±(z

�
r ).

Similarly to what was done in the previous paragraph for the Yang-Baxter boundary condition,
the �-boundary condition (3.5.8) can then be rewritten

j±,r =
tB+

r L±(z
+
r ) +

tB�
r L±(z

�
r ), with B+

r = Id and B�
r = Adgr .

The operators B±
r coincide with the ones introduced in the previous sections for a �-realisation

(see section 3.2.3). As for the Yang-Baxter boundary condition, we then recover the equation
(3.3.1) obtained through the a�ne Gaudin model approach.
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Summary. Let us summarise the results of this section. We have proved from the boundary
condition at z = 1 that the fields U1

± vanish. The component L±(z) of the Lax connection
(3.5.3) has then no constant term and has simple poles at the zeroes {⇣i}i2I± . Thus, it has
the same meromorphic z-dependence as the Lax connection (3.2.33) of the corresponding a�ne
Gaudin model. Moreover, we showed that the boundary conditions imposed at the pairs of sim-
ple poles z±r in the Chern-Simons approach coincide exactly with the equation (3.3.1) obtained
in the a�ne Gaudin model approach. Recall from section 3.3.1 that this equation, combined
with the meromorphic z-dependence mentioned above, allowed us to express the Lax connec-
tion L±(z) in terms of the Maurer-Cartan currents j±,r by means of interpolation techniques.
This ensures that the Lax connections obtained from the two approaches can be identified.

3.5.8 Identification of the actions

Let us end this section by showing that the action obtained by the Chern-Simons approach
for the model with N1 Yang-Baxter and N2 �-boundary conditions coincides with the one of
the AGM with N1 Yang-Baxter and N2 �-realisations, computed in section 3.3. As recalled in
section 3.5.1, the former is given by equation (3.5.4). Since we proved in the previous section
that the Lax connection L±(z) of the two models coincide, one can then re-insert in this equation
the expression (3.3.3) of L±(z) obtained in the AGM approach using interpolation techniques.
As the twist function has simple poles at z±r with residues `r,±, we then get

res
z=z±r

'(z)L±(z) dz = `r,±j±,r and res
z=z⌥r

'(z)L±(z) dz = `r,⌥

NX

s=1

'±,s(z±s )

'±,s(z⌥r )
j±,s.

Moreover, recall that the field bg|1 has been set to the identity. The action (3.5.4) then becomes

S =
NX

r=1

ZZ
dt dx ⌥r �

NX

r=1

✓
`r,+
2

IWZ

⇥
bg|z+r

⇤
+
`r,�
2

IWZ

⇥
bg|z�r

⇤◆
, (3.5.9)

where

⌥r =
`r,+
4

�
j+,r, j

{z+r }
�

�
� `r,�

4

�
j{z

�
r }

+ , j�,r

�

+
NX

s=1

✓
`r,�
4

'+,s(z+s )

'+,s(z�r )

�
j+,s, j

{z�r }
�

�
� `r,+

4

'�,s(z�s )

'�,s(z+r )

�
j{z

+
r }

+ , j�,s

�◆
.

Recall from section 3.5.5 that the fields bg|z±r are related to the fundamental fields gr of the
model, in a way which depends on the type of boundary conditions considered at the poles z±r .
Equation (3.5.9) then expresses the action of the model in terms of the Maurer-Cartan currents
j±,r, the currents j±,r and the Wess-Zumino terms of the fields gr. In the AGM approach, we
obtained a similar expression for the action in equation (3.3.15). In the rest of this section, we
shall show that these two expressions coincide, thus proving that the models obtained from the
4d Chern-Simons and the AGM approaches are identical. For that, we will prove that for every
r 2 {1, · · · , N}, we have

`r,+
2

IWZ

⇥
bg|z+r

⇤
+
`r,�
2

IWZ

⇥
bg|z�r

⇤
= �krIWZ

⇥
gr
⇤

(3.5.10)

and

⌥r =
1

2

NX

s=1

�

�
V+
rsJ+,s, J�,r

�
+ 

�
J+,r,V�

rsJ�,s

��
. (3.5.11)
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In order to show these identities, one needs to distinguish the cases where the pair of poles z±r
is associated with a Yang-Baxter boundary condition or a �-boundary condition in the Chern-
Simons approach and, correspondingly, with a Yang-Baxter realisation or a �-realisation in the
AGM approach.

Yang-Baxter boundary condition. Let us start with the Yang-Baxter boundary condition.
In this case, recall that bg|z+r = bg|z�r = gr and that we defined the Wess-Zumino coe�cient
to be kr = �(`r,+ + `r,�)/2. The Wess-Zumino terms in equation (3.5.9) corresponding to
these poles thus satisfy equation (3.5.10). Let us now focus on the term ⌥r. Note first that

j{z
+
r }

± = j{z
�
r }

± = j±,r. One can then rewrite ⌥r as

⌥r =
1

2

NX

s=1

�
⇢+rs  (J+,s, J�,r) + ⇢�rs  (J+,r, J�,s)

�
,

with ⇢±rs given by equation (3.3.27). For a Yang-Baxter realisation, the operators B±
r and C±

r

are related by C±
r = `r,± Id + B±

r . This implies that the operators U±
rs and V±

rs defined in
equations (3.3.6) and (3.3.13) satisfy

V±
rs = ⇢±rs Id± kr

2
U±
rs.

Using the expression (3.3.7) of j±,r, we then get

NX

s=1

⇢±rsJ±,s =
NX

s=1

V±
rsJ±,s ⌥

kr

2

NX

s=1

U±
rsj±,s =

NX

s=1

V±
rsJ±,s ⌥

kr

2
j±,r.

Re-inserting this identity in the above expression for ⌥r then shows that it satisfies equation
(3.5.11), as required.

�-boundary condition. Let us consider now a pair of poles z±r associated with a �-boundary
condition. One then has bg|z+r = gr and bg|z�r = Id (see section 3.5.5). Recall moreover from
section 3.5.4 that the Wess-Zumino coe�cient is defined for �-boundary conditions as kr =
�`r,+/2. Thus, the Wess-Zumino terms corresponding to the poles z±r in the action (3.5.9)
are given by equation (3.5.10). Let us now compute ⌥r. For a �-boundary condition, one has

j{z
+
r }

± = j±,r and j{z
�
r }

± = 0. Thus, ⌥r is given by:

⌥r = �
kr

2

�
j+,r, J�,r

�
+

kr

2

NX

s=1

'�,s(z�s )

'�,s(z+r )

�
J+,r, j�,s

�
. (3.5.12)

Let us note that for a �-realisation, one has C+
r = �krB+

r and C�
r = krB�

r (see section 3.2.3).
In terms of the operators U+

rs and V+
rs defined in equations (3.3.6) and (3.3.13), this implies

V+
rs =

kr

2
U+
rs � kr�rsId.

Using the expression (3.3.7) of the currents j±,s, we then obtain

� krj+,r =
NX

s=1

V+
rsj+,s �

kr

2

NX

s=1

U+
rsj+,s =

NX

s=1

V+
rsj+,s �

kr

2
j+,r. (3.5.13)
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Moreover, using C�
r = krB�

r , B+
r = Id and C+

r = �krId (cf. section 3.2.3), one gets

kr

NX

s=1

'�,s(z�s )

'�,s(z+r )
J�,s =

NX

s=1

V�
rsJ�,s +

kr

2

NX

s=1

U�
rsJ�,s =

NX

s=1

V�
rsJ�,s +

kr

2
J�,r. (3.5.14)

Reinserting equations (3.5.13) and (3.5.14) in the expression (3.5.12) of ⌥r, one sees that ⌥r

satisfies equation (3.5.11), as required.

3.6 Conclusions

Let us conclude by discussing some perspectives of the work presented in this chapter. As ex-
plained in section 3.3.4, the models we constructed involving a Yang-Baxter realisation without
Wess-Zumino term possess a q-deformed Poisson-Lie symmetry, which replaces the left trans-
lation symmetry of the undeformed model. It is well known that the Yang-Baxter model (with
one copy and without Wess-Zumino term) in fact possesses a larger (infinite) symmetry algebra,
satisfying the relations of an a�ne q-deformed Poisson algebra [94] (see also [88,89,95]), which
replaces the Yangian symmetry of the undeformed Principal Chiral Model [96]. It would be
interesting to understand whether such infinite extensions of the q-deformed symmetries also
exist for the deformed coupled models and what would be their underlying algebraic structure.

The integrable deformed models constructed in this chapter still possess an undeformed sym-
metry, corresponding to the diagonal symmetry of the underlying a�ne Gaudin model, which
acts on the fields g(r) by right multiplication (g(r) 7! g(r)h) or conjugacy (g(r) 7! h�1g(r)h), de-
pending on whether the realisations at sites (r,±) are Yang-Baxter realisations or �-realisations.
It was explained in [85] that for a general realisation of a�ne Gaudin model of the type consid-
ered in [59], one can construct an integrable Yang-Baxter deformation which breaks its diagonal
symmetry. Thus, one could introduce a further integrable deformation of the deformed coupled
sigma models constructed in this chapter. As explained in [85], this deformation procedure
involves gauging the model and thus requires treating Hamiltonian first-class constraints. For
brevity, we chose not to treat these deformations here: however, we expect that they can be
studied using similar methods to the ones developed in the present chapter and further in chap-
ter 4. For the case with one copy only, it was conjectured in [85] that these further deformed
theories coincide with already known models, namely the bi-Yang-Baxter model (see [21,50,97]
for the case without Wess-Zumino term and [98] for the case with Wess-Zumino term) and the
generalised �-model [99].

It is known that the Yang-Baxter and �-models are Poisson-Lie T-dual [100–102] to one
another [49, 99, 103, 104], while the Yang-Baxter model with Wess-Zumino term is Poisson-Lie
T-dual to itself with di↵erent parameters [105]. It would be interesting to investigate the various
possible dualities between the coupled models constructed in this article and how they would
manifest themselves in the underlying geometry of their target space GN .

The results of section 3.5 illustrate once again the deep relation existing between the ap-
proaches to two-dimensional integrable field theories from a�ne Gaudin models [57] and from
four-dimensional semi-holomorphic Chern-Simons theory [70], first established in [71] and fur-
ther supported in [93]. In particular, the analysis conducted in this section strengthens the
apparent correspondence between the choice of realisations in the first approach and the choice
of boundary conditions in the second one. It would be interesting to understand in more details
this correspondence.

A natural question is to explore the quantum properties of these classically integrable de-
formed sigma models. The one-loop renormalisability of the class of models constructed here
was recently proved in [106]. It would be interesting to study these renormalisation properties
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further. For example, one could look into the existence of conformal fixed points in the space
of models. The results obtained in [61–63] about the renormalisation of the coupled �-models
introduced in these same references (which are limits of the models considered here) already
show the existence of non-trivial fixed points. A further possible direction would be to investi-
gate the higher-loops renormalisability of these models. In [106], it was shown that they are not
renormalisable at 2-loop without quantum corrections of their underlying geometry. It would
be interesting to find the explicit form of the quantum corrections that would ensure their
higher-loop renormalisability, as it was recently studied in [107–109] for non-coupled models.

3.A Proof of the identities for the operators B± and C±
In this appendix we will present the calculation of the non-ultralocal terms (i.e. terms con-
taining derivatives of the delta distribution) in the bracket (3.2.7), using the ansatz (3.2.8) for
the currents J± in terms of the operators B± and C±. In particular, we will show that this
computation implies that these operators satisfy the identities (3.2.9). Let us start by noting
that in order to perform this computation, we need the Poisson brackets between the following
objects: B±, Y , C± and j. However, let us recall that we have assumed the operators B± and C±
to depend only on the field g (and not on its derivative @xg). Thus, the non-ultralocal terms in
the brackets of J± can only come from the brackets between the fields Y and j. More precisely,
for ✏, � 2 {±}, we have

{J✏1(x),J�2(y)} = {B✏Y1(x), C�j2(y)}+ {C✏j1(x),B�Y2(y)}+ [ultralocal terms]

= B✏1(x)C�2(y){Y1(x), j2(y)}+ C✏1(x)B�2(y){j1(x), Y2(y)}+ [u.l.].

From here, using the form of the Poisson bracket between Y and j, which can be simply found
from (3.2.2) and (3.2.5), we find that

{J✏1(x),J�2(y)} = �B✏1(x)C�2(y)C12�
0
xy � C✏1(x)B�2(y)C12�

0
xy + [u.l.]

= �(B✏1(x)C�2(x) + C✏1(x)B�2(x))C12�
0
xy + [u.l.],

where we have used the fact that for any function f , f(y)�0xy = f(x)�0xy + f 0(x)�xy = f(x)�0xy +
[u.l.]. Finally, using the fact that for an operator O on the Lie algebra g, O1C12 = tO2C12, we
get

{J✏1(x),J�2(y)} = �(B✏tC� + C✏tB�)1(x)C12�
0
xy + [u.l.]. (3.A.1)

As we want J± to be Poisson commuting Kac-Moody currents of levels `±, one should have

{J±1(x),J±2(y)} = �`±C12�
0
xy + [u.l.],

{J±1(x),J⌥2(y)} = 0.

Comparing with equation (3.A.1), we then see that the operators B± and C± should satisfy the
identities (3.2.9).

3.B Simplification of the action of the model with N
copies

In this appendix, we show that the non-Lorentz invariant terms appearing in the second line of
the action (3.3.14) cancel with the term in the first line containing the Hamiltonian. For that,
let us start by computing the expression of the Hamiltonian in terms of Lagrangian fields.
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Hamiltonian in terms of Lagrangian fields. We will proceed here in a similar fashion to
what has been done in [59]. Let us start by noting that, combining the equations (3.2.26) and
(4.2.16), the Hamiltonian can be rewritten as

H =

Z

D
dx

0

@
X

i2I�

1

2'0(⇣i)
(�(⇣i),�(⇣i))�

X

i2I+

1

2'0(⇣i)
(�(⇣i),�(⇣i))

1

A , (3.B.1)

where we have used the fact that ✏i = ±1 for i 2 I±. We then need to look for the La-
grangian expression of the quantities �(⇣i). This is done by relating them to residues of the
Lax connection. More precisely, let us fix i 2 I±: from (3.2.33), we have

�(⇣i) = ±1

2
'0(⇣i) res

z=⇣i
L±(z).

Using the Lagrangian expression (3.3.3) of L±(z) and the fact that '0(⇣i) = '0
±(⇣i)'⌥(⇣i), we

then get

�(⇣i) = ±`
1

2

NX

r=1

'±,r(z±r )'⌥(⇣i)

z±r � ⇣i
j±,r.

Substituting back into equation (3.B.1), we arrive at the following expression for H:

H =

Z

D
dx

 
NX

r,s=1

c+rs 
�
J+,r, J+,s

�
+

NX

r,s=1

c�rs 
�
J�,r, J�,s

�
!
, (3.B.2)

with

c±rs = ±`
1

8
'±,r(z

±
r )'±,s(z

±
s )
X

i2I±

1

z±r � ⇣i
1

z±s � ⇣i
'⌥(⇣i)

'0
±(⇣i)

.

Before proceeding, we note that one can prove the above coe�cients to be equal to

c±rs = ±�rs
`r,±
8

± 1

2

NX

k=1

`⌥k
'±,r(z±r )

'±,r(z
⌥
k )

'±,s(z±s )

'±,s(z
⌥
k )

. (3.B.3)

Simplification of non Lorentz invariant terms in the action. Let us consider the terms
in the second line of (3.3.14). Using the expression (3.3.5) of j±,r, they can be rewritten in the
following way:

1

2

NX

r,s

ZZ
dt dx

⇥

�
V+
rsJ+,s, J+,r

�
+ 

�
V�
rsJ�,s, J�,r

�⇤

=
1

2

NX

r,s,t

ZZ
dt dx

h

⇣
J+,s,

tV+
rs U+

rtJ
(t)
+

⌘
+ 

⇣
J�,s,

tV�
rs U�

rtJ
(t)
�

⌘i

=
1

4

NX

r,s,t

ZZ
dt dx

h

⇣
J+,s,

�
tV+

rs U+
rt +

tU+
rs V+

rt

�
J (t)
+

⌘
+ 

⇣
J�,s,

�
tV�

rs U�
rt +

tU�
rs V�

rt

�
J (t)
�

⌘i

We want to prove that these terms are cancelled by the term in (3.3.14) containing the Hamil-
tonian. From the expression (3.B.2) of the Hamiltonian, one sees that this is the case upon
using the following identity:

1

4

NX

r=1

�
tV±

rs U±
rt +

tU±
rs V±

rt

�
= c±st Id,

which can be proved using the identities (3.2.9) and the form (3.B.3) of the coe�cients c±st.



Chapter 4

Integrable multi-parametric coset

sigma models

4.1 Introduction

Let G be a connected semi-simple real Lie group, � an involutive automorphism of G and G(0)

the subgroup of fixed-points of �. Another prototypical example of two-dimensional integrable
field theories is the standard sigma model on the symmetric space G/G(0). For our purposes, the
most adapted (Lagrangian) formulation of this model is given by a unique G-valued field g(x, t),
together with a gauge symmetry with respect to the transformation g(x, t) 7! g(x, t)h(x, t) for
h(x, t) 2 G(0). Since G possesses an involutive automorphism, its Lie algebra g admits a Z2-
grading, i.e. g = g(0) � g(1), where g(0) and g(1) are the eigenspaces of eigenvalues 1 and �1
of the automorphism induced by � on g. In terms of the grading (1) part of the currents
j± = g�1@±g, the action of the symmetric space sigma model reads:

S[g] =
K

2

ZZ

D⇥R
dx dt 

�
j(1)+ , j(1)�

�
.

One easily checks that this action is invariant under the gauge transformation g(x, t) 7!
g(x, t)h(x, t). Hence, the physical degrees of freedom of this model are fields in the quotient
G/G(0) as anticipated. In the Hamiltonian formulation, this is obtained by imposing a first-class
constraint on the phase space of fields of the model.

Our aim in this chapter is to make a further step towards the exploration of the panorama
of integrable coset sigma models. Namely, we will explain how to construct integrable sigma
models on a coset of the direct product of N copies of G over the diagonal subgroup G(0),
generalising the standard symmetric space construction corresponding to the N = 1 case. The
existence of these models was conjectured in references [58,59]. Their construction was carried
out in the article [110], which I completed during my PhD in collaboration with G. Arutyunov
and S. Lacroix and on which this chapter is based.

The formalism that we will use to construct these integrable field theories is the one of
dihedral a�ne Gaudin models, introduced in [57], which is naturally defined in the Hamiltonian
formulation of classical field theories. We will not review here the complete construction of these
models. This is similar to the one described in chapter 2, generalising the latter to the case
in which the Lie algebra g admits a ZT -grading (T 2 Z�1). Instead, we will focus in this
chapter on the main definitions that will allow us to construct the models we are interested in,
restricting in particular to the case T = 2. In this context, we will explain how the phase space
of the models is constructed as the phase space of canonical fields on the cotangent bundle
T ⇤GN , together with a first-class constraint encoding the G(0)

diag gauge symmetry.

67
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Let us sketch briefly the results of the construction in this introduction. Let us start by
considering the model with two copies, i.e. defined on the homogeneous space G ⇥ G/G(0)

diag.
Its action is described in terms of two G-valued fields g1 and g2. In terms of the currents
j±,r = g�1

r @±gr, r = 1, 2, we computed this action to be:

S[g1, g2] =
2X

r,s=1

ZZ
dx dt

⇣
⇢(0)rs 

⇣
j(0)+,r, j

(0)
�,s

⌘
+ ⇢(1)rs 

⇣
j(1)+,r, j

(1)
�,s

⌘⌘
+ k IWZ

⇥
g1
⇤
� k IWZ

⇥
g2
⇤
,

(4.1.1)
where the superscripts of the currents j±,r indicates their grading components as explained

above and the ⇢(k)rs and k are scalar coe�cients depending on a total of 4 free parameters. One
can check that the model is invariant under the gauge transformation gr(x, t) 7! gr(x, t)h(x, t)
for h(x, t) 2 G(0), acting simultaneously on all the fields gr.

The action (4.1.1) admits a remarkably simple reformulation in terms of the Z2-graded
R-matrix of the theory which underlies the integrable structure of the corresponding dihedral
a�ne Gaudin model [57]. This form allows to conjecture the action for models with arbitrary
N , as well as arbitrary order T of the grading of g, namely g =

LT�1
k=0 g

(k). The expression of
this action depends on 3N � 2 free parameters and possesses the following expression:

S =
NX

r=1

SWZW,kr [gr]�
KT 3

2

ZZ
dx dt

NX

r,s=1

res
w=zs

res
z=zr

12
⇣
R0

12(w, z)'+(z)'�(w), j+,r1 j�,s2

⌘
,

where kr are scalar coe�cients, '+ and '� are complex functions depending on the free pa-
rameters of the models. Moreover, R0 denotes the ZT -graded R-matrix, which was given in
(2.1.29).

Having obtained these general results, it is interesting to consider some limits and to focus
on some particular models. First, in the N = 2 case we define a scaling limit in which one of
the four parameters decouples leaving behind a three-parameter (�,�1,�2) family of integrable
models. We then observe that at the particular point �1 = �2 = � the corresponding action
coincides with the one of the Guadagnini-Martellini-Mintchev model [111] on the homogeneous

space G⇥G/G(0)
diag, which is an example of a two-dimensional conformal field theory.

Finally, specifying G = SU(2) and G(0) = U(1) in the above N = 2 three-parameter model
we obtain a gauged sigma model on the coset SU(2)⇥SU(2)/U(1). Fixing the gauge by putting
one of the Euler angles to zero, we obtain the gauge-fixed action in terms of the five remaining
angles (✓1, ✓2,�1,�2, ) from which we read o↵ the sigma-model metric and the B-field. The
metric turns out to coincide with the three-parameter family of metrics on T 1,1 manifolds:

ds2 = �21(d✓
2
1 + sin2 ✓1 d�

2
1) + �22(d✓

2
2 + sin2 ✓2 d�

2
2) + �2(d + cos ✓1 d�1 + cos ✓2 d�2)

2 .

What follows from our consideration is that the sigma model on a generic three-parameter T 1,1

is integrable if the following B-field

B = �2(cos ✓1 d�1 + d ) ^ (cos ✓2 d�2 + d ) .

is present. In particular, changing the overall coe�cient �2 to any other value destroys inte-
grability. To support this claim, we consider an isometry-preserving setting where the B-field
is allowed with an arbitrary coe�cient. In order to probe (non-)integrable properties of this
generalised model, we reduce the sigma-model equations to a mechanical system by plugging in
them the so-called spinning string ansatz, in the spirit of [112–116] where spinning (or wrapped)
strings on T 1,1 were studied. At the end we obtain a coupled system of di↵erential equations
for the two angle coordinates ✓1 and ✓2. We then observe that only when the coe�cient of
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the B-field is �2, the equations for ✓1 and ✓2 decouple (separate) and can be integrated by
quadrature. In any other case there is no decoupling and hence we argue that the correspond-
ing dynamical system exhibits a chaotic behaviour, which is in agreement with what has been
found in [114–116] and which has been the subject of later study in [117].

The chapter is organised as follows. In the next section we construct the coset models in
the Hamiltonian formulation. In section 4.2 we derive the action of the coset sigma model
for N = 2, rewrite this action in the form involving the classical R-matrix and discuss its
generalisation for arbitrary N . We also consider the limiting case where one of the parameters
is scaled away and at a special point in the parameter space we recover the conformal model
of Guadagnini, Martellini and Mintchev. Section 4.3 is devoted to integrable sigma models on
T 1,1 manifolds. We relegate some technical details to three appendices.

4.2 Construction of the models in the Hamiltonian for-

mulation

In this section, we apply the formalism of dihedral a�ne Gaudin models introduced in [57]

to construct integrable sigma models on coset spaces GN/G(0)
diag, as discussed in the previous

section. We will start by defining the structure of the models as dihedral a�ne Gaudin models
in section 4.2.1. In section 4.2.2, we will define the Hamiltonian of these field theories as
well as the constraint corresponding to their G(0)

diag gauge symmetry. Section 4.2.3 will concern
space-time symmetries of the models and in particular the determination of a simple condition
ensuring their relativistic invariance. In section 4.2.4 we will prove that these models are
integrable. Finally, in section 4.2.5 we describe the panorama of models obtained through this
construction and in particular discuss their defining parameters.

4.2.1 Definition of the models as realisations of a�ne Gaudin models

In this section, we define the models that we will consider in this chapter as realisations of
dihedral a�ne Gaudin models (AGM), following [57]. The adjective dihedral refers to certain
equivariance properties under an action of the dihedral group D2T which are satisfied by the
twist function and the Gaudin Lax matrix of the models. These properties have to do with
the reality conditions described in section 2.2.2 (see equation (2.2.10)) and with the choice of
a ZT -grading of the Lie algebra g. For the models that we are considering in this chapter, we
fix T = 2. The corresponding choice of Z2-grading g(0) � g(1) of g is then given by the choice
of an involutive automorphism �, as we shall recall now in more detail. We will come back to
the equivariance properties encoding the dihedrality at the end of this section.

Conventions and notation. As in the previous section let � be an involutive automorphism
of G. It induces an involutive automorphism of the Lie algebra g of G, which we also call � by
a slight abuse of notation. As � is of order two, it has eigenvalues +1 and �1. We define the
corresponding eigenspaces

g(0) = {x 2 g : �(x) = x}, and g(1) = {x 2 g : �(x) = �x}.

These eigenspaces form a Z2-gradation of g (Z2 = Z/2Z is the cyclic group of order two):
g = g(0) � g(1), with

[g(0), g(0)] ⇢ g(0), [g(0), g(1)] ⇢ g(1) and [g(1), g(1)] ⇢ g(0).
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The opposite is also true, i.e. given a Z2-gradation of g, there is a unique automorphism �
which leaves g(0) invariant and acts on g(1) as multiplication by �1. In particular, g(0) is a
subalgebra of g, which is the Lie subalgebra corresponding to the subgroup G(0) in G.

In the following we will use the notation X(i) to indicate the component of an element
X 2 g in g(i), i 2 {0, 1}. More precisely, if we call ⇡(0) = (Id + �)/2 and ⇡(1) = (Id � �)/2
the projectors on g(0) and g(1) respectively, we then have X(i) = ⇡(i)X, for X = X(0) +X(1) a
generic element of g.

As in previous chapters, we denote by  the opposite of the Killing form of g. It is a
standard result that the automorphism � preserves the bilinear form . Hence, g(0) and g(1)

are orthogonal with respect to the bilinear form , or, in other words, 
�
g(0), g(1)

�
= 0.

Let us recall the definition (2.1.20) of the split quadratic Casimir of g. For i 2 {0, 1}, we
define its projections C(ii)

12 = ⇡(i)
1 ⇡

(i)
2 C12 on g(i)⌦ g(i). Let us note that the orthogonality of g(0)

and g(1) implies that ⇡(i)
1 ⇡

(j)
2 C12 = �ijC

(ii)
12 , for i, j 2 {0, 1}. Moreover, we have

2
�
C(ii)

12 , X2

�
= X(i), 8X 2 g. (4.2.1)

Sites, levels and twist function. Following [57], let us consider a dihedral AGM with
N 2 Z�1 real sites of multiplicity two, whose positions will be denoted by zr with r 2 {1, . . . , N}
and will be supposed to be non zero (zr 2 R⇤). Since each site zr is of multiplicity two, it is
associated with two constant numbers `r,0 2 R and `r,1 2 R⇤, called the levels. Altogether this
data specifies the twist function '(z) of the model, which takes the following form [57]:

'(z) =
1

2

NX

r=1

1X

p=0

1X

k=0

(�1)k`r,p
((�1)kz � zr)p+1

. (4.2.2)

This is the generalisation for the case of multiplicity two of the twist function (2.2.6) seen in
the non-dihedral case. The main di↵erence with that expression is the presence of the sum over
k 2 {0, 1} and of the factors (�1)k which encode the T = 2 dihedrality of the model1.

In the rest of this chapter, we will suppose that the levels `r,0 satisfy the following additional
hypothesis, which for reasons to be explained later we call the first-class condition:

NX

r=1

`r,0 = 0. (4.2.3)

As we shall see in section 4.2.2, this condition will be necessary to ensure that the models that
we construct possess a gauge symmetry.

Taki↵ currents and phase space. As in the non-dihedral case discussed in chapter 2, to
each site zr of the model are attached two g-valued Taki↵ currents Jr,[0](x) and Jr,[1](x). They
satisfy the following Poisson bracket determined by the choice of levels `r,p:

{Jr,[0]1(x),Js,[0]2(y)} = �rs
�
[C12,Jr,[0]1(x)]�xy � `r,0C12�

0
xy

�
, (4.2.4a)

{Jr,[0]1(x),Js,[1]2(y)} = �rs
�
[C12,Jr,[1]1(x)]�xy � `r,1C12�

0
xy

�
, (4.2.4b)

{Jr,[1]1(x),Js,[1]2(y)} = 0. (4.2.4c)

The phase space of the AGM underlying the present construction consists then of configurations
of the Taki↵ currents Jr,[p](x) (r 2 {1, · · · , N} and p 2 {0, 1}), equipped with the Poisson

1Note that in the dihedral case one also sets `1 to zero. This allows to obtain a model with gauge symmetry,
as it will become clear later.
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bracket (4.2.4). In the present case, we consider the particular realisation of this AGM in the
phase space of canonical fields on the cotangent bundle T ⇤GN . We described this phase space
in section 2.2.6. In particular, canonical fields on T ⇤GN can be encoded into N G-valued fields
g1(x), · · · , gN(x) and N g-valued fields X1(x), · · · , XN(x). They are the equivalents of the fields
g(x) and X(x) introduced in section 2.2.6 for one copy of T ⇤G and satisfy then N independent
copies of the Poisson bracket (2.2.41):

{gr1(x), gs2(y)} = 0, (4.2.5a)

{Xr1(x), gs2(y)} = �rs gr2(x)C12�xy, (4.2.5b)

{Xr1(x), Xs2(y)} = �rs [C12, Xr1(x)]�xy. (4.2.5c)

Similarly to the construction of the models of chapter 3, we also introduce currents jr(x) =
gr(x)�1@xgr(x) and Wr(x) related to the Wess-Zumino term of gr, which are the equivalents of
the currents j(x) and W (x) discussed for one copy of T ⇤G in section 3.2.1. Let us then define

Jr,[0](x) = Xr(x) +
`r,0
2
jr(x) +

`r,0
2
Wr(x), (4.2.6a)

Jr,[1](x) = `r,1 jr(x). (4.2.6b)

From the Poisson brackets (2.2.41), (3.2.2) and (3.2.5), one can check that the currents above
satisfy the Taki↵ brackets (4.2.4).

Gaudin Lax matrix. Let gC denote the complexification of g. As in the non-dihedral case,
the other basic building block for the construction of the model is the Gaudin Lax matrix. In
this context, it is defined as the following gC-valued field [57]:

�(z, x) =
1

2

NX

r=1

1X

p=0

1X

k=0

(�1)k�kJr,[p](x)

((�1)kz � zr)p+1
. (4.2.7)

In comparison to equation (2.2.5) of chapter 2, the T = 2 dihedrality of the model is now taken
into account by the sum over k 2 {0, 1} and by the presence of the involutive automorphism
�. This is how the choice of � and thus the choice of the subgroup G(0) enters the definition of
the model as an AGM.

From (4.2.4), one can show that the Gaudin Lax matrix satisfies a Poisson bracket of the
same form (2.2.7) as the AGMs discussed in chapter 2, namely:

{�1(z, x),�2(w, y)} = [R0
12(z, w),�1(z, x)]�xy � [R0

21(w, z),�2(w, x)]�xy

�
�
R0

12(z, w)'(z) +R0
21(w, z)'(w)

�
�0xy. (4.2.8)

For the case of a dihedral AGM, theR-matrix appearing in this bracket is given by the standard
R-matrix twisted by the automorphism �:

R0
12(z, w) =

1

2

1X

k=0

�k
1C12

w � (�1)kz . (4.2.9)

Dihedrality. As mentioned at the beginning of this section, the AGM that we are considering
in this chapter possesses certain equivariance properties under the dihedral group D4. Let us
now discuss these properties.

The general dihedral group D2T contains the cyclic group ZT as a subgroup. Recall that
for the models considered in this chapter, we have T = 2: the corresponding cyclic group Z2
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acts on the complex plane by multiplication by �1 and on the Lie algebra g by the involutive
automorphism �, which we extend to the complexification gC by C-linearity. One checks from
their expressions (4.2.2) and (4.2.7) that the twist function and the Gaudin Lax matrix are
equivariant 1-forms with respect to these actions, i.e. that

�(�(z, x)) = ��(�z, x) and '(z) = �'(�z). (4.2.10)

Let us note that the sums over k 2 {0, 1} and the presence of the factors (�1)k and �k in
equations (4.2.2) and (4.2.7) are crucial for the above conditions to hold.

In addition to the cyclic group ZT , the dihedral group D2T contains an order two cyclic
group Z2 (which is not to be confused with the Z2 group discussed above, which arises since we
have T = 2 in the case considered in this chapter). The equivariance properties corresponding
to this Z2 subgroup encode the reality conditions of the model. It acts on the complex plane
by conjugation z 7! z̄ and on the complexified Lie algebra gC by the antilinear involutive
automorphism ⌧ , defined such that the real form g is the subalgebra of fixed points of ⌧ . One
checks that the automorphisms � and ⌧ of gC satisfy the dihedrality condition � � ⌧ = ⌧ � �:
the group generated by � and ⌧ is thus isomorphic to the direct product Z2 ⇥ Z2, which is the
dihedral group2 D4. Using this dihedrality condition and the facts that the Taki↵ currents Jr,[p]

are valued in the real form g and the positions zr and levels `r,p are real numbers, one checks
that the twist function (4.2.2) and the Gaudin Lax matrix (4.2.7) satisfy the reality conditions

⌧(�(z, x)) = �(z̄, x) and '(z) = '(z̄),

which are the same as the equivariance conditions that were found in section 2.2.2 of chapter 2.
Combining these with the conditions (4.2.10), we then get that �(z, x) and '(z) are equivariant
under the action of the full dihedral group D4, as expected from the general construction of
dihedral AGM in [57].

4.2.2 Hamiltonian, constraint and gauge symmetry

Zeroes of the twist function. Let us begin by studying the zeroes of the twist function
(4.2.2). Firstly, we note that z = 0 is always a zero of '(z). We will suppose that this zero
is simple, i.e. that '0(0) 6= 0. Moreover, the behaviour of '(z) at z = 1 is described by the
following asymptotic expansion:

'

✓
1

u

◆
= 2Ku3 +O(u5), where K =

1

2

NX

r=1

zr (zr `r,0 + 2 `r,1) . (4.2.11)

Let us make a few comments on this expansion. From the equivariance property (4.2.10) of
'(z), it is clear that only odd powers of u can appear in the expansion of '(u�1) around u = 0.
Moreover, in general, the function '(z) as defined in equation (4.2.2) also possesses a term
of order O(u) in its expansion at infinity, which is proportional to the sum

PN
r=1 `r,0: as we

supposed that this sum vanishes (see the first-class condition (4.2.3)), the first term in the
expansion is then of order u3. Let us now consider the 1-form '(z)dz. To study its behaviour
at infinity, let us consider the change of coordinate z = u�1. We then have

'(z)dz = �(u)du, with �(u) = � 1

u2
'

✓
1

u

◆
. (4.2.12)

2For a general T (i.e. when we have � of order T ), the dihedrality condition reads � � ⌧ = ⌧ � ��1 and the
dihedral group D2T has the structure of a semi-direct product ZT o Z2 instead of a direct product. For T = 2,
we have ��1 = �, so that the dihedrality condition becomes the commutation of � and ⌧ .
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According to the asymptotic expansion (4.2.11), the 1-form '(z)dz thus has a zero at infinity.
Moreover, the derivative of this 1-form at z = 1 is given by �0(0) = �2K. We will suppose
that this zero at infinity is simple, i.e. that K 6= 0.

As '(z)dz possesses 4N poles (counted with multiplicities), it possesses 4N � 2 zeroes in
the Riemann sphere: in addition to the one at the origin z = 0 and the one at infinity z =1,
it thus possesses 4(N � 1) zeroes in C \ {0}. From the equivariance property (4.2.10), one sees
that these zeroes come as pairs ⇣i and ⇣�i = �⇣i, with i 2 {1, · · · , 2N � 2}. We will suppose
that the ⇣i’s are pair-wise distinct and are thus simple zeroes of '(z), hence '0(⇣i) 6= 0. In
terms of the zr’s and the ⇣i’s, the twist function can then be rewritten as

'(z) = 2K
z
Q2N�2

i=1 (z2 � ⇣2i )QN
r=1(z

2 � z2r )
2
. (4.2.13)

Hamiltonian. Let us recall the definition of the charge Q(z) given in (2.2.12):

Q(z) = � 1

2'(z)

Z

D
dx (�(z, x),�(z, x)). (4.2.14)

As in section 2.2.3, the quantities

Q±i = res
z=±⇣i

Q(z)dz, i = 1, . . . , 2N � 2, (4.2.15a)

Q0 = res
z=0

Q(z)dz and Q1 = res
z=1

Q(z)dz. (4.2.15b)

are local quadratic charges in the currents Jr,[p]. It is straightforward to show that Qi = Q�i,
from the equivariance property (4.2.10) of the Gaudin Lax matrix and twist function. From
the Poisson bracket (4.2.8) of the Gaudin Lax matrix, they are also in involution i.e. they
mutually Poisson commute. Given a collection of real numbers {✏0, ✏i, ✏1}, i = 1, . . . , 2N � 2,
we define the naive Hamiltonian of the model (the term naive will be explained later in this
section) as the following sum over the charges introduced above:

H = ✏0Q0 + 2
2N�2X

i=1

✏iQi + ✏1Q1, (4.2.16)

where we introduced a factor of 2 for future convenience. Due to the reality conditions intro-
duced in the previous section, H can be shown to be real [59].

Constraint. In this paragraph, we introduce a constraint on the phase space of canonical
fields on T ⇤GN and show its consistency with the choice of Hamiltonian made in the previous
paragraph. We will use Dirac’s theory of constraints in Hamiltonian systems: we refer to [118,
119] for reviews of this formalism. Following the general construction of [57], we define the
constraint as

C(x) = � res
z=1

�(z, x)dz = lim
u!0

1

u
�

✓
1

u
, x

◆
. (4.2.17)

Using the expression (4.2.7) of the Gaudin Lax matrix �(z, x) and the fact that 1
2(Id + �) is

the projector on the grading g(0) of g, one checks that the constraint explicitly reads

C(x) =
NX

r=1

J (0)
r,[0](x). (4.2.18)
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In particular, it is a g(0)-valued field. The models we are interested in are then defined on a
reduced phase space, obtained from canonical fields on T ⇤GN by imposing

C(x) ⇡ 0.

In this equation, and in the rest of this chapter, we use the notation ⇡ to denote weak equalities,
i.e. equalities that are true when the constraint is imposed. The standard equality sign = will
then indicate strong equalities, which are true even without imposing the constraint.

Poisson bracket of the constraint with the naive Hamiltonian. From the Poisson
bracket (4.2.8) of the Gaudin Lax matrix with itself, one checks that the local charge Q(z),
defined as in equation (4.2.14), satisfies the following Poisson bracket with the constraint:

{Q(z), C(x)} = �@x�(z, x)(0).

In particular, as �(z, x) is regular at z = 0 and z = ⇣i for i = 1, · · · , 2N � 2, one has

{Qi, C(x)} = 0, 8 i 2 {0, · · · , 2N � 2}, (4.2.19)

for the charges Qi introduced in equation (4.2.15). Moreover, the residue of �(z, x)(0)dz at
z =1 is equal to �C(x). Thus we also have

{Q1, C(x)} = @xC(x). (4.2.20)

Recall that the naive Hamiltonian of the model H is defined in terms of the charges Qi,
i 2 {0, · · · , 2N � 2,1}, by equation (4.2.16). Thus, we get

{H, C(x)} = ✏1@xC(x).

In particular, we see that the naive Hamiltonian weakly Poisson commutes with C(x):

{H, C(x)} ⇡ 0. (4.2.21)

This ensures that the Hamiltonian flow of H preserves the constraint C(x) ⇡ 0.

First-class property. The Poisson bracket of the constraint with itself can be obtained from
its definition (4.2.17) and the Poisson bracket (4.2.8) of the Gaudin Lax matrix (or equivalently
from its expression (4.2.18) and the Poisson bracket (4.2.4) of the currents Jr,[0]). It reads

�
C1(x), C2(y)

 
=
⇥
C(00)

12 , C1(x)
⇤
�xy, (4.2.22)

where C(00)
12 2 g(0)⌦g(0) is the split Casimir of g(0). In fact, this bracket also contains in general

a non-ultralocal term �
⇣PN

r=1 `r,0
⌘
C(00)

12 �0xy: as we supposed in equation (4.2.3) that the levels

`r,0 sum to zero, this term vanishes. In particular, this shows that the Poisson bracket of the
constraint with itself weakly vanishes:

�
C1(x), C2(y)

 
⇡ 0. (4.2.23)

Thus, the constraint C(x) ⇡ 0 is first-class (see for instance [118,119]). This justifies a posteriori
the name of first-class condition for the assumption (4.2.3) that we made: indeed, without this
assumption, the bracket of the constraint would contain a non-ultralocal term which would not
vanish weakly and the constraint would then not be first-class.



CHAPTER 4. INTEGRABLE MULTI-PARAMETRIC COSET SIGMA MODELS 75

Total Hamiltonian and Lagrange multiplier. At the beginning of this section, we defined
the naive Hamiltonian H through equation (4.2.16). As we are considering models subject to
the constraint C(x) ⇡ 0, we have to define the total Hamiltonian of the system as the sum of
the naive Hamiltonian and a generic term proportional to the constraint, so that it coincides
weakly with the naive Hamiltonian. It thus takes the form

HT = H +

Z

D
dx 

�
µ(x), C(x)

�
, (4.2.24)

where µ is a g(0)-valued field, called the Lagrange multiplier. It is a new dynamical field, inde-
pendent of the canonical fields on T ⇤GN . As we shall see in the next paragraph, the existence
of this Lagrange multiplier reflects the presence of a gauge symmetry in the model.

The dynamic of the model is defined by the Hamiltonian flow of HT , i.e. the time evolution
of any observable O is given by

@tO ⇡ {HT ,O} ⇡ {H,O}+
Z

D
dx 

�
µ(x), {C(x),O}

�
. (4.2.25)

The facts that the naive Hamiltonian Poisson commutes with the constraint (see equation
(4.2.21)) and that the constraint is first-class (see equation (4.2.23)) ensure that the constraint
C(x) ⇡ 0 is conserved under time evolution:

@tC(x) ⇡ 0. (4.2.26)

Gauge symmetry. It is a standard result that the presence of first-class constraints in Hamil-
tonian systems implies the existence of gauge (local) symmetries (see for instance [118, 119]).
The infinitesimal action of this gauge symmetry on the observables of the model is given by
the Hamiltonian flow generated by the constraint. In the case at hand, the constraint satisfies
the bracket (4.2.22), which is a copy of the Kirillov-Kostant bracket of the Lie algebra g(0) for
every point x 2 D. Thus, the gauge symmetry takes the form of a local action of the group
G(0). The corresponding infinitesimal transformation of an observable O, with gauge parameter
✏(x, t) 2 g(0), is given by

�1✏ O ⇡
⇢Z

D
dx 

�
✏(x, t), C(x)

�
,O
�
⇡
Z

D
dx 

�
✏(x, t), {C(x),O}

�
. (4.2.27)

One can then observe that the terms involving the Lagrange multiplier µ in the total Hamilto-
nian (4.2.24) and the dynamic (4.2.25) of the model correspond to a gauge transformation and
thus account for the freedom of performing such a transformation in the time evolution of the
system.

Let us study in more details the action of the gauge symmetry on the canonical fields on
T ⇤GN . For that, recall the expression (4.2.18) of the constraint C(x) in terms of the Kac-
Moody current Jr,[0]. It is clear from the definition (4.2.6a) of the latter and the Poisson
brackets (2.2.41), (3.2.2) and (3.2.5) that

�
C1(x), gr2(y)

 
= gr2(x)C

(00)
12 �xy. (4.2.28)

Thus, using equation (4.2.27), one finds that the infinitesimal gauge transformation of the field
gr(x) is given by:

�✏gr(x) = gr(x)✏(x, t). (4.2.29)
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Similarly, one can determine the gauge transformation of the fields Xr. It is in fact more
convenient to consider the gauge transformation of the field Yr = Xr + `r,0Wr/2, which reads

�✏Yr(x) = [Yr(x), ✏(x, t)] +
`r,0
2
@x✏(x, t). (4.2.30)

The transformations (4.2.29) and (4.2.30) are infinitesimal actions with local parameter ✏(x, t)
valued in g(0). They can be lifted to an action of the group G(0), depending on a local parameter
h(x, t) in G(0), which takes the form:

gr 7�! grh and Yr 7�! h�1Yrh+
`r,0
2

h�1@xh. (4.2.31)

In particular, we see that the gauge symmetry acts on the set of fields (g1, · · · , gN) 2 GN by
right translation of the diagonal subgroup

G(0)
diag =

�
(h, · · · , h), h 2 G(0)

 
.

Let us summarise what are the physical degrees of freedom of the model. By construction,
we start from the phase space of canonical fields on T ⇤GN . One then needs to restrict to the
field configurations such that the constraint C(x) ⇡ 0 is satisfied. Furthermore, one needs to
quotient out by the action of the gauge symmetry (4.2.31) (the fact that this gauge symmetry
preserves the constraint C(x) ⇡ 0 is a direct consequence of the first-class property (4.2.23) of
C(x)). As explained above, this gauge symmetry acts on the coordinate fields (g1, · · · , gN) 2 GN

by right translation of the subgroup G(0)
diag: one can then see the “physical” coordinate fields

of the model as fields on the quotient GN/G(0)
diag, by gauging away the coordinate fields in

G(0)
diag. The constraint C(x) ⇡ 0 can then be seen as eliminating the corresponding superfluous

conjugate momentum fields. The physical phase space of the model can thus be identified with
canonical fields on T ⇤(GN/G(0)

diag): in particular, the Lagrangian formulation of the model will

then describe a field theory on GN/G(0)
diag. In this chapter, we will however keep working with

the unreduced phase space T ⇤GN , together with the constraint and the gauge symmetry, to
avoid having to consider the quotient.

Gauge transformation of the Gaudin Lax matrix. From the expression (4.2.18) of the
constraint and the Poisson bracket (4.2.4) of the Taki↵ currents Jr,[p](x), one checks that the
gauge transformation of the latter is given by

�1✏ Jr,[p](x) = [Jr,[p](x), ✏(x, t)] + `r,p @x✏(x, t). (4.2.32)

The corresponding lifted action of the group G(0), with local parameter h(x, t) 2 G(0), reads

Jr,[p] 7�! h�1Jr,[p]h+ `r,p h
�1@xh. (4.2.33)

Recall that � is an automorphism of g whose fixed-points form the subalgebra g(0). Thus, its
lift to G leaves the elements of the subgroup G(0) invariant. As h 2 G(0) and h�1@xh 2 g(0), the
gauge transformation of �

�
Jr,[p]

�
is given by

�
�
Jr,[p]

�
7�! h�1�

�
Jr,[p]

�
h+ `r,p h

�1@xh.

From equations (4.2.2) and (4.2.7), we then see that the gauge symmetry acts on the Gaudin
Lax matrix �(z) as

�(z) 7�! h�1�(z)h+ '(z) h�1@xh. (4.2.34)
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Gauge transformation of the Lagrange multiplier. It is a standard result that the
equations of motion of the model are invariant under gauge symmetries, as one should expect,
if one also transforms the Lagrange multiplier appropriately [118,119]. In the present case, the
transformation rule of the Lagrange multiplier is

�✏µ(x) =
⇥
µ(x), ✏(x, t)

⇤
+ @t✏(x, t)� ✏1@x✏(x, t). (4.2.35)

This infinitesimal transformation can be lifted to the following action of the gauge group G(0),
with local parameter h(x, t) 2 G(0):

µ 7�! h�1µh+ h�1@th� ✏1 h�1@xh. (4.2.36)

4.2.3 Space-time symmetries

In this section, we discuss the space-time symmetries of the models constructed in this chapter.
In particular, we find a simple condition for their relativistic invariance similar to the one
discussed in section 2.2.4 for realisations of non-dihedral AGM.

Momentum. Recall that the momentum of the phase space consisting of canonical fields on
T ⇤G is given by equation (3.2.3). The model constructed in the previous sections is defined on
N copies of this phase space and thus has the following momentum:

P =
NX

r=1

Pr =
NX

r=1

Z
dx 

�
Xr(x), jr(x)

�
. (4.2.37)

Using the facts that

�(z) =
`r,1jr

(z � zr)2
+

Xr + `r,0Wr/2 + `r,0jr/2

z � zr
+O

�
(z � zr)

0
�

(4.2.38)

and
1

'(z)
= (z � zr)

2

✓
1

`r,1
� `r,0
`2r,1

(z � zr) +O
�
(z � zr)

2
�◆

, (4.2.39)

together with the definition (4.2.14) of Q(z) and the orthogonality relation (3.2.6), one checks
that

Pr = � res
z=zr

Q(z)dz, (4.2.40)

so that P = �
PN

r=1 res z=zr Q(z)dz. Thus, we see explicitly that the assumption made in
section 2.2.3 is verified. From the results in that section and from the fact that the residues of
Q(z)dz at ⇣i and �⇣i are equal for i 2 {1, · · · , 2N � 2}, we then have that

P = Q0 + 2
2N�2X

i=1

Qi +Q1. (4.2.41)

Let us note as in section 2.2.3 the similarity of this expression with the one (4.2.16) of the naive
Hamiltonian H: one sees that the momentum would correspond to the choice of all coe�cients
✏i equal to 1 in equation (4.2.16). This then allows a similar treatment to section 2.2.4 of the
energy-momentum tensor of the theory, which can be written in terms of the densities q0(x),
qi(x) and q1(x) of the charges Q0, Qi and Q1 defined as in (2.2.22), as we shall now briefly
describe.
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Energy-momentum tensor. Following the discussion in section 2.2.4, the components T 0
00

and T 0
01 of the energy-momentum tensor are given by:

T 0
00 = ✏0 q0 + 2

2N�2X

i=1

✏i qi + ✏1 q1 and T 0
01 = q0 + 2

2N�2X

i=1

qi + q1. (4.2.42)

The other two components T 1
10 and T 1

11 of the energy-momentum tensor are defined through
the local conservation law @µT µ

µ⌫ = 0 by computing the time evolution of the densities qi(x), as
discussed in section 2.2.4. This time evolution is the same as in equation (2.2.26). However,
its computation is slightly di↵erent than in section 2.2.4, as we now explain. Let us consider
the Poisson bracket {qi(x), qj(y)}. A direct computation from the bracket (4.2.8) shows that
the densities qi satisfy

�
qi(x), qj(y)

 
⇡ ��ij�i

�
@xqi(x)�xy +2qi(x)�

0
xy

�
, where �i =

⇢
1 if i = 0,1,
1/2 if i = 1, · · · , 2N � 2.

From this equation, one easily deduces the evolution of qi(x) under the Hamiltonian flow of
Qj, namely {Qj, qi(x)} ⇡ �ij�i @xqi(x). To obtain the time evolution of qi(x), one needs to
take into account the Lagrange multiplier term in the dynamics (4.2.25). One shows that this
term in fact does not contribute, as the densities qi(x) are first-class and more precisely satisfy
{C(y), qi(x)} = �i1C(x)�0xy ⇡ 0. Thus, the time evolution of qi(x) is given by (2.2.26) (note
that the factor 2 in front of the charges Qi in the Hamiltonian for i 2 {1, · · · , 2N � 2} cancels
with the factor �i).

Using the expressions (4.2.42) of T 0
00 and T 0

01, we find

@tT
0
00 = ✏20 @xq0 + 2

2N�2X

i=1

✏2i @xqi + ✏21 @xq1

@tT
0
01 = ✏0 @xq0 + 2

2N�2X

i=1

✏i @xqi + ✏1 @xq1.

Finally, from the conservation equation @µT µ
µ⌫ = 0 we get the following components T 1

10 and T 1
11

of the energy momentum tensor:

T 1
10 = �✏20 q0 � 2

2N�2X

i=1

✏2i qi � ✏21 q1 and T 1
11 = �✏0 q0 � 2

2N�2X

i=1

✏i qi � ✏1q1. (4.2.43)

Classical scale invariance. From equations (4.2.42) and (4.2.43), we note that T µ
µµ = T 0

00+
T 1
11 = 0. This implies the classical scale invariance of the model. We shall see in section 4.3.4

that some particular limit of the model that we are constructing will also maintain this scale
invariance at the quantum level and define a conformal field theory.

Relativistic invariance. Let us consider the energy-momentum tensor with both indices
down obtained from equations (4.2.42) and (4.2.43) as in section 2.2.4. One then arrives at the
following simple condition for the relativistic invariance of the model:

✏i = ±1, 8 i 2 {0, · · · , 2N � 2,1}, (4.2.44)

which is the same condition found in (2.2.30) for the non-dihedral model.
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4.2.4 Integrability

Lax matrix. The Lax matrix for a dihedral a�ne Gaudin model is defined as in equation
(2.2.31) of chapter 2, i.e. as the ratio of �(z) by '(z) [57]. To give an explicit description of
this Lax matrix, let us determine its partial fraction decomposition. As �(z) and '(z) have
the same poles (at the points zi and �zi), of the same order, L(z) has poles at the zeroes of
the twist function '(z), i.e. at z = 0, z = ±⇣i for i 2 {1, · · · , 2N � 1} and z = 1. One
easily checks that the residues of L(z) at z = 0 and ⇣i are respectively equal to �(0)/'0(0) and
�(⇣i)/'0(⇣i). Moreover, using the equivariance properties (4.2.10), one finds that the residue of
L(z) at z = �⇣i is equal to �(�⇣i)/'0(�⇣i) = ��

�
�(⇣i)

�
/'0(⇣i). This fixes the non-polynomial

part of the partial fraction decomposition of L(z). To determine the polynomial part, let us
study the behaviour of L(z) around z = 1. The asymptotic expansion of the Gaudin Lax
matrix �(z, x) around infinity reads

�

✓
1

u
, x

◆
= u C(x)� u2B(x)� u3B1(x) +O(u4) ⇡ �u2B(x)� u3B1(x) +O(u4), (4.2.45)

where B(x) and B1(x) are the following g-valued currents:

B(x) = �
NX

r=1

⇣
zrJ (1)

r,[0] + J (1)
r,[1]

⌘
, (4.2.46a)

B1(x) = �
NX

r=1

zr
⇣
zrJ (0)

r,[0] + 2J (0)
r,[1]

⌘
. (4.2.46b)

Moreover, using the expression (4.2.13) of the twist function, we get

1

'(1/u)
=

1

u3

✓
1

2K
+O(u2)

◆
. (4.2.47)

Using the asymptotic expansions (4.2.45) and (4.2.47), one can then express the O(u�1) and
O(u0)-terms in the expansion of L(1/u) around u = 0, which correspond to the linear and
constant terms in the polynomial part of the partial fraction decomposition of L(z). In the
end, we then get

L(z, x) ⇡ 1

'0(0)

�(0, x)

z
+

2N�2X

i=1

1X

k=0

1

'0(⇣i)

(�1)k�k
�
�(⇣i, x)

�

z � (�1)k⇣i
� B1(x)

2K
� B(x)

2K
z. (4.2.48)

Lax connection and integrability. Together with a gC-valued field M(z, x), L(z, x) forms
the Lax connection of the model which satisfies the zero curvature equation (2.1.1). This was
proven for general dihedral a�ne Gaudin models in [57]. Let us find the expression of M(z, x)
by computing the dynamics of L(z, x), i.e. its bracket with the Hamiltonian (4.2.24). In order
to do this, one has to calculate the Poisson bracket of L(z, x) with the charges Qi and with
the Lagrange multiplier. The first part of this computation is performed as in section 2.2.5. In
particular, let us consider the Poisson bracket of Q(w) and L(z, x). Taking residues at w = ⇣i,
i 2 {0, . . . , 2N � 2,1} gives equation (2.2.35), which we recall here for convenience:

{Qi,L(z, x)}� @xMi(z, x) +
⇥
Mi(z, x),L(z, x)

⇤
= 0. (4.2.49)

For i 2 {0, · · · , 2N � 2}, the fields Mi(z, x) are given by the following expression:

Mi(z, x) =
1

2'0(⇣i)

1X

k=0

(�1)k�k
�
�(⇣i, x)

�

z � (�1)k⇣i
,



CHAPTER 4. INTEGRABLE MULTI-PARAMETRIC COSET SIGMA MODELS 80

where in comparison to expression (2.2.5) of section 2.2.5 the T = 2 dihedrality of the model
is now taken into account by the sum over k 2 {0, 1} and by the presence of the involutive au-
tomorphism �. From the equivariance property (4.2.10), one finds that �

�
�(0, x)

�
= ��(0, x).

Thus, we get in particular that M0(z, x) = �(0)/z'0(0). To compute M1(z, x), we use the
asymptotic expansions (4.2.45) and (4.2.47), as well as

R0
12

✓
z,

1

u

◆
= uC(00)

12 + u2z C(11)
12 +O(u3). (4.2.50)

After a short computation, we get:

M1(z, x) ⇡ �B1(x) + z B(x)
2K

. (4.2.51)

To complete the derivation of the temporal part M(z, x) of the Lax connection, we finally need
to compute the contribution of the Lagrange multiplier µ to the dynamics of L(z, x). From the
Poisson bracket (2.2.7), the definition (4.2.17) of the constraint and the expansion (4.2.50) we
get �

C2(y),L1(z, x)
 
= �

⇥
C(00)

12 ,L1(z, x)
⇤
�xy + C(00)

12 �0xy. (4.2.52)

Thus, Z

D
dy 2

�
µ2(y), {C2(y),L1(z, x)}

�
= �

⇥
µ(x),L(z, x)

⇤
+ @xµ(x).

Combining all the results above, we find the following expression for M(z, x):

M(z, x) ⇡ ✏0
'0(0)

�(0, x)

z
+

2N�2X

i=1

1X

k=0

✏i
'0(⇣i)

(�1)k�k
�
�(⇣i, x)

�

z � (�1)k⇣i
� ✏1

B1(x)

2K
� ✏1

B(x)
2K

z + µ(x).

(4.2.53)
Finally, one shows from (4.2.8) that the Lax matrix L(z, x) satisfies the Maillet bracket,

hence establishing the integrability of the models. The R-matrix appearing in this bracket is
given by the standard twisted R-matrix (4.2.9) multiplied by the inverse of the twist function
'(w).

Integrable local hierarchies. Let us consider the chargesQi, i 2 {0, · · · , 2N�2,1} defined
in equation (4.2.15). For i 6=1, we have:

Qi = �
1

2'0(⇣i)

Z

D
dx 

�
�(⇣i, x),�(⇣i, x)

�
. (4.2.54)

Similarly, one shows that the charge Q1 admits the following weak expression:

Q1 ⇡ �
1

2�0(0)

Z

D
dx 

�
B(x),B(x)

�
. (4.2.55)

The function �(u) was introduced in equation (4.2.12) to describe the 1-form '(z)dz around
infinity, while the field B(x) can be seen as the evaluation of the 1-form �(z, x)dz at z = 1.
The above expression is then a natural generalisation for i =1 of equation (4.2.54).

As for the a�ne Gaudin models described in chapter 2, the models that we are describing
admit integrable hierarchies of local conserved charges generalising the construction of the
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quadratic charges Qi. They consist of charges of increasing degrees whose densities are well-
chosen invariant polynomials3 of �(⇣i, x) for i 6=1 and of B(x) for i =1 (only weakly in this
case). We refer to [74] for details on the construction of these charges (for completeness, let
us note that these local charges were first constructed in [120] for the symmetric coset sigma
model, which corresponds to the model considered here for N = 1).

Lax connection in light-cone coordinates. In the following we will often refer to the
Lax connection written in light-cone components L±(z, x) = M(z, x)± L(z, x). Let us briefly
comment on the pole structure of these two quantities. From the expressions (4.2.48) and
(4.2.53) of L(z) and M(z) respectively, we observe that they contain the same terms. For the
case of M(z), these terms are multiplied by one of the coe�cients ✏i, i 2 {0, · · · , 2N � 2,1},
which we recall can be either +1 or �1 to ensure the relativistic invariance of the model. Hence,
depending on the values of these numbers, these terms will be present only in one of the two
light-cone components of the Lax connection. More precisely, they will appear in the expression
of L+(z) if the corresponding ✏i is equal to +1 and in the expression of L�(z) if ✏i is equal to
�1.

Gauge symmetry and integrable structure. Let us now discuss how the integrable struc-
ture of the model behaves under the G(0)

diag gauge symmetry introduced in section 4.2.2 and in
particular determine how the Lax connection transforms under this symmetry. From its defini-
tion (2.2.31) and the transformation (4.2.34) of the Gaudin Lax matrix, one simply finds that
L(z) transforms as

L(z) 7�! h�1L(z)h+ h�1@xh. (4.2.56)

Let us now focus on M(z). From (4.2.34), we obtain that the evaluations of the Gaudin
Lax matrix at finite zeros of the twist function vary covariantly as �(0) 7! h�1�(0)h and
�(⇣i) 7! h�1�(⇣i)h. Moreover, inserting the asymptotic expansions (4.2.45) and (4.2.11) in
equation (4.2.34), we get

B 7�! h�1Bh and B1 7�! h�1B1h� 2K h�1@xh.

Combining the above results with the transformation (4.2.36) of the Lagrange multiplier µ and
the expression (4.2.53) of M(z), one then finds that M(z) transforms as

M(z) 7�! h�1M(z)h+ h�1@th. (4.2.57)

Re-expressing the equations (4.2.56) and (4.2.57) in light-cone components, we finally arrive at

L±(z) 7�! h�1L±(z)h+ h�1@±h. (4.2.58)

Let us make a few comments. Firstly, we note that the transformation (4.2.58) takes the
form of a formal gauge transformation L±(z) 7! Lh

±(z) of the Lax connection. Such formal
gauge transformations are a general feature of integrable field theories, regardless of whether
they possess a gauge symmetry or not. They can be performed for any h = h(z, x, t) in the group
G and leave the zero curvature equation invariant: they therefore encode the non-uniqueness of
the Lax connection in the integrable field theory under consideration. In the present case, this

3The degrees of these polynomials follow a specific pattern which depends on the underlying Lie algebra g and
the zero which is considered. For zeroes ⇣i, i 2 {1, · · · , 2N�2}, which are not fixed under the Z2-transformation
z 7! �z, these degrees are given by one plus the exponents of the untwisted a�ne algebra of g. For the zeroes
0 and 1, which are fixed under z 7! �z, only a subset of the exponents appears, which depends on the choice
of automorphism � (see [74] for more details).
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field theory also possesses a G(0)
diag gauge symmetry, which encodes the presence of unphysical

degrees of freedom in the model. The above computation thus shows that the action of this
gauge symmetry, with local parameter h(x, t) 2 G(0), on the Lax connection coincides with
a formal gauge transformation with parameter h. Since such a transformation preserves the
zero curvature equation, which is a reformulation of the equations of motion of the model, this
provides an alternative check of the invariance of these equations of motion under the G(0)

diag

gauge symmetry.
Moreover, it is a standard result that the conserved charges extracted from the monodromy

of the Lax matrix are invariant under formal gauge transformations. As a consequence, the
above results show that these charges are also invariant with respect to the G(0)

diag gauge sym-
metry of the model.

Recall that in addition to these charges extracted from the monodromy matrix, the model
also admits an infinite number of local conserved charges in involution (see above). The latter
are also gauge invariant, as was proven in general in [74]. This fact can also be checked directly
using the results derived above. Indeed, we have shown that the currents �(0, x), �(⇣i, x)
and B(x) are covariant under gauge transformations. As mentioned earlier in this section, the
densities of the local conserved charges are obtained by taking conjugacy invariant polynomials
of these currents, which are then gauge invariant.

4.2.5 The panorama of the models

Let us end this section by briefly discussing the panorama of integrable models constructed
above. A model in this class first depends on the number of sites N of the underlying AGM,
which fixes its target space GN/G(0)

diag. Moreover, following the di↵erent steps of the construction
of the model, one sees that it is characterised by the following parameters:

• the positions z1, · · · , zN of the sites ;

• the levels `1,0, · · · , `N,0 and `1,1, · · · , `N,1 ;

• the coe�cients ✏0, · · · , ✏2N�2, ✏1 entering the definition of the Hamiltonian (4.2.16).

In particular, the parameters in the first two bullets are encoded in the twist function (4.2.2).
As explained in section 4.2.3, the coe�cients ✏i cannot take arbitrary values as they are re-
quired to be either +1 or �1 to ensure the relativistic invariance of the model. Recall also
that the levels `r,0 are subject to the first-class condition (4.2.3), which imposes one relation
between them. Moreover, one shows that the model obtained by considering a dilation of the
spectral parameter z 7! az is equivalent to the inital model: this induces a redundancy among
the parameters of the model, which can be fixed for instance by setting one of the position zr
to a fixed value, say z1 = 1. Thus, the model depends in the end on 3N � 2 continuous free
parameters.

Recall from section 4.2.2 that the definition of the Hamiltonian of the model involves the
zeroes {0,1, ⇣1, · · · , ⇣2N�2} of the twist function. In general, expressing these zeroes in terms
of the positions zr and the levels `r,p is a complicated, if not impossible, task, as it requires
solving a polynomial equation of degree 2N � 2. To circumvent this di�culty, one can choose
another set of parameters of the model, given by:

• the positions z2, · · · , zN of the sites (fixing z1 = 1) ;

• the constant term K in the twist function (4.2.13) ;
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• the zeroes ⇣1, · · · , ⇣2N�2 of the twist function and the corresponding coe�cients ✏i 2
{+1,�1} ;

• the coe�cients ✏0 and ✏1 in {+1,�1}.

This set of parameters is encoded in the choice of the twist function in its factorised form
(4.2.13) (except for the discrete parameters ✏i = ±1). In particular, if these are chosen as the
defining parameters of the model, the levels `r,p are defined in terms of this expression of the
twist function as the residues

`r,0 = 2 res
z=zr

'(z)dz and `r,1 = 2 res
z=zr

(z � zr)'(z)dz.

Note that in this parametrisation, the first-class condition (4.2.3) is automatically satisfied, as
the factorised form (4.2.13) of the twist function ensures that '(z)dz is regular at z =1. The
3N � 2 continuous parameters listed above are thus unconstrained.

Let us end this section by discussing briefly the simplest example in this panorama of
models, the model with one site, i.e. N = 1. This model was first considered in [57], where it
was shown that it coincides with the standard sigma model on the symmetric space G/G(0). In
the parametrisation discussed above, this model possesses one site with fixed position z1 = 1
and no zeroes ⇣i (0 and 1 are the only zeroes of the twist function). The only continuous free
parameter of the model is then the constant term K. The twist function simply reads

'(z) =
2Kz

(z2 � 1)2
. (4.2.59)

We fix the coe�cients ✏i to4 ✏1 = +1 and ✏0 = �1. The phase space of the model consists of
canonical fields on a single copy of T ⇤G, described by the two fields g(x) and X(x) (as N = 1,
we drop the indices r). A direct computation shows that the naive Hamiltonian of the model
(4.2.16) is given in this case by

HN=1 =
1

2

Z

D
dx

✓
1

K

�
X(1), X(1)

�
+K

�
j(1), j(1)

�
+ 2

�
X(0), j(0)

�◆
, (4.2.60)

where j = g�1@xg as above. As expected, this coincides with the Hamiltonian of the symmetric
space sigma model on G/G(0), formulated as a model on G with a G(0) gauge symmetry. In the
present case, the constraint associated with this gauge symmetry simply reads X(0) ⇡ 0.

4.3 Lagrangian formulation of the models with two copies

The Lagrangian formulation of the models we are concerned with in this chapter consists of
field theories with fundamental fields gr(x, t), r 2 {1, · · · , N}, taking values in G. We will
obtain these Lagrangian theories by performing an inverse Legendre transform of the models
constructed in section 4.2 in the Hamiltonian formulation. In order to make the computation
of the inverse Legendre transform more explicit, we will restrict to the case of two copies, i.e.
we will fix N = 2.

4The choice ✏1 = �1 and ✏0 = +1 would simply lead to the opposite Hamiltonian, while the choices
✏1 = ✏0 = ±1 would lead to the Hamiltonian coinciding with (plus or minus) the momentum of the theory, as
one can see from equation (4.2.41).
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Before that, let us briefly describe, as a simple illustration, the model with only one copy.
The model is described in its Lagrangian formulation by a unique G-valued field g(x, t). Per-
forming the inverse Legendre transform of the Hamiltonian (4.2.60), one finds that its action
takes the form:

SN=1[g] =
K

2

ZZ

D⇥R
dx dt 

�
j(1)+ , j(1)�

�
,

where j± = g�1@±g. As expected, this is the action of the standard symmetric space sigma
model on G/G(0) in its gauged formulation. One easily checks that this action is invariant
under the gauge transformation g(x, t) 7! g(x, t)h(x, t) for h(x, t) 2 G(0).

Let us return to the models with N = 2. Before proceeding to the computation of the inverse
Legendre transform, let us describe the parameters of these models. From the discussion in
section 4.2.5, they depend on four continuous parameters: the position z2 of the second site
(having fixed the position of the first site to z1 = 1), the global factor in the twist function K,
and the zeroes ⇣1 and ⇣2. In the following we will rename z2 = x to avoid unnecessary indices,
although we will sometimes use the notation z1 and z2 so that some formulae assume a more
compact form. In addition to these continuous parameters, the models are characterised by the
choice of four discrete coe�cients (✏0, ✏1, ✏2, ✏1) in {�1,+1}. We will fix these coe�cients to
the values5 ✏0 = �1, ✏1 = �1, ✏2 = +1 and ✏1 = +1. Motivated by this choice and for future
convenience, we will rename ⇣1 as ⇣� and ⇣2 as ⇣+.

4.3.1 Lagrangian expression of the momentum fields

In order to perform the inverse Legendre transform of the models, we first need to express their
momentum fields, encoded in the fields Xr introduced in the previous section, in terms of the
time derivatives of the coordinate fields gr, encoded in the temporal Maurer-Cartan current
jt,r = g�1

r @tgr.
For that, let us calculate the dynamics of the fields gr, given by the Poisson bracket of gr

with the total Hamiltonian introduced in section 4.2.2. We start by seeking a more explicit
expression of the naive Hamiltonian (4.2.16) in terms of the fields jr and

Yr = Xr +
`r,0
2
Wr,

which we introduce for future convenience. After a few manipulations, one rewrites it in the
form

H =
2X

r,s=1

1X

k=0

a(k)rs

Z

D
dx 

�
j(k)r , j(k)s

�
+b(k)rs

Z

D
dx 

�
Y (k)
r , j(k)s

�
+c(k)rs

Z

D
dx 

�
Y (k)
r , Y (k)

s

�
, (4.3.1)

where the coe�cients a(k)rs , b
(k)
rs have slightly long expressions and are hence written in appendix

4.A, while the coe�cients c(k)rs are given by:

c(0)rs =
⇣2�
2K

z2r̄z
2
s̄/⇣

2
� � z2r̄ � z2s̄ + ⇣2�
⇣2� � ⇣2+

and c(1)rs =
zrzs
2K

z2r̄z
2
s̄/⇣

2
+ � z2r̄ � z2s̄ + ⇣2�
⇣2� � ⇣2+

, (4.3.2)

where we introduced the notation r̄ = 3� r, r = 1, 2.

5Other choices would give either equivalent models, up to a redefinition of the parameters, or models for
which the inverse Legendre transform is singular and thus which do not possess a Lagrangian formulation.
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The form (4.3.1) of the Hamiltonian allows us to calculate easily what jt,r reads in terms of
the Hamiltonian fields jr and Yr. From the Poisson brackets (4.2.5), (3.2.2) and (3.2.5), as well
as the identity (4.2.1), one shows that

g�1
r {H, gr} =

2X

s=1

1X

k=0

b(k)rs j
(k)
s + 2c(k)rs Y

(k)
s .

Hence, taking into account the form (4.2.24) of the total Hamiltonian and the Poisson bracket
(4.2.28), we have:

jt,r ⇡ g�1
r {HT , gr} ⇡

2X

s=1

1X

k=0

b(k)rs j
(k)
s + 2c(k)rs Y

(k)
s + µ. (4.3.3)

The above equation is a linear system that can be projected into the gradings and solved
to express the fields Y (k)

r in terms of the currents jt,r. However, we take a di↵erent path to
eliminate the Lagrange multiplier µ. For the grading zero, subtracting the equations for r = 1
and r = 2, we arrive at:

2
2X

s=1

⇣
c(0)1s � c(0)2s

⌘
Y (0)
s ⇡ j(0)t,1 � j(0)t,2 �

2X

s=1

⇣
b(0)1s � b(0)2s

⌘
j(0)s .

In order to obtain a second equation independent of the Lagrange multiplier µ, we make use of
the constraint (4.2.18), rewritten in the form:

Y (0)
1 + Y (0)

2 ⇡ �`1,0
2

j(0)1 �
`2,0
2

j(0)2 .

Altogether, the solution for the grading zero is given by:

Y (0)
r ⇡ 1

2
P2

s=1

⇣
c(0)ss � c(0)ss̄

⌘
 
j(0)t,r � j(0)t,r̄ �

2X

s=1

⇣
b(0)rs � b(0)r̄s � `s,0

⇣
c(0)rr̄ � c(0)r̄r̄

⌘⌘
j(0)s

!
. (4.3.4)

For the grading one, one has the following equations:

j(1)t,r ⇡
2X

s=1

b(1)rs j
(1)
s + 2c(1)rs Y

(1)
s .

If we rename the components of the inverse matrix of (c(1))rs = c(1)rs as c̄(1)rs = (c(1))�1
rs , the

solution then reads:

Y (1)
r ⇡ 1

2

2X

s=1

c̄(1)rs

 
j(1)t,s �

2X

t=1

b(1)st j
(1)
t

!
. (4.3.5)

4.3.2 Action of the model

Inverse Legendre transform. Using the definition of Xr in terms of the canonical fields
(see for instance [59] for more details), the action of the model is given by the following inverse
Legendre transform6:

S[g1, g2] =
2X

r=1

ZZ
dx dt  (Xr, jt,r)�

Z
dt H.

6As we are now working in the Lagrangian formulation, in which the constraint always holds, we drop the
distinction between weak and strong equalities. In particular, one can use the naive Hamiltonian (and not the
total one) to compute the inverse Legendre transform.
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In terms of the fields Yr introduced in the previous section, we can rewrite the above equation
as

S[g1, g2] =
2X

r=1

ZZ
dx dt  (Yr, jt,r)�

Z
dt H�

2X

r=1

`r,0
2

IWZ

⇥
gr
⇤
,

where the Wess-Zumino terms of gr have now appeared, using the definition (3.2.4). To obtain
the explicit expression of the action, we now have to replace the Hamiltonian fields Yr by their
Lagrangian expression, given by equations (4.3.4) and (4.3.5), including in the Hamiltonian H,
using its expression (4.3.1). Let us introduce the light-cone components of the Maurer-Cartan
currents j±,r = g�1

r @±gr = jt,r ± jr. After some manipulations, one finds

S[g1, g2] =
2X

r,s=1

ZZ
dx dt

⇣
⇢(0)rs 

⇣
j(0)+,r, j

(0)
�,s

⌘
+ ⇢(1)rs 

⇣
j(1)+,r, j

(1)
�,s

⌘⌘
+ k IWZ

⇥
g1
⇤
� k IWZ

⇥
g2
⇤
.

(4.3.6)
In terms of the defining parameters of the model K, x, ⇣+ and ⇣�, the coe�cients corresponding
to the grading zero in this action are given by

⇢(0)11 = ⇢(0)22 =
K

2

⇣2� � ⇣2+
(1� x2)2

, ⇢(0)12 = K

�
1� ⇣2+

� �
x2 � ⇣2�

�

(1� x2)3
, ⇢(0)21 = �K

�
1� ⇣2�

� �
x2 � ⇣2+

�

(1� x2)3
,

(4.3.7a)
while the ones corresponding to the grading one are

⇢(1)11 =
K

2

�
1� 2⇣2+ + ⇣2�⇣

2
+

�

(1� x2)2
, ⇢(1)12 = K

x
�
1� ⇣2+

� �
x2 � ⇣2�

�

(1� x2)3
,

⇢(1)21 = �K
�
1� ⇣2�

� �
x2 � ⇣2+

�

x (1� x2)3
, ⇢(1)22 =

K

2

�
x4 � 2⇣2+x

2 + ⇣2�⇣
2
+

�

x2 (1� x2)2
. (4.3.7b)

Finally, the Wess-Zumino coe�cient k is defined as k = �`1,0/2 = `2,0/2 and explicitly reads

k = K
2x2 + 2⇣2�⇣

2
+ � (1 + x2)(⇣2� + ⇣2+)

(1� x2)3
. (4.3.7c)

Gauge symmetry. Let us check explicitly that the action (4.3.6) is invariant under the gauge
transformation gr(x, t) 7! gr(x, t)h(x, t) with h(x, t) 2 G(0), as expected from the Hamiltonian
construction. Under this transformation, the Wess-Zumino terms change according to the
Polyakov-Wiegmann formula [121]:

IWZ

⇥
grh
⇤
= IWZ

⇥
gr
⇤
+ IWZ

⇥
h
⇤
� 1

2

ZZ
dx dt

h

⇣
j(0)+,r, (@�h)h

�1
⌘
� 

⇣
j(0)�,r, (@+h)h

�1
⌘i

.

Moreover, the light-cone components of the Maurer-Cartan currents transform as:

j(0)±,r 7�! h�1
�
j(0)±,r + (@±h)h

�1
�
h and j(1)±,r 7�! h�1j(1)±,rh .

It is then clear that in an action of the form (4.3.6) with general coe�cients ⇢(k)rs the terms of
grading one are invariant under this gauge transformation. The variation of the action thus only
contains terms in the grading zero, coming from the variation of the factors 

�
j(0)+,r, j

(0)
�,s

�
and of

the Wess-Zumino terms. Computing explicitly this variation, one finds that gauge invariance
is verified if and only if the following conditions are satisfied:

⇢(0)11 + ⇢(0)12 �
k
2
= ⇢(0)12 + ⇢(0)22 �

k
2
= ⇢(0)21 + ⇢(0)22 +

k
2
= ⇢(0)11 + ⇢(0)21 +

k
2
= 0 . (4.3.8)
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The above relations are indeed all identically satisfied for the choice of coe�cients (4.3.7).
Note that one can also rewrite the action (4.3.6) in a manifestly gauge invariant way. Using

the Polyakov-Wiegmann identity [121] to make the Wess-Zumino term IWZ

⇥
g1g

�1
2

⇤
appear, as

well as the relations (4.3.8), one finds

S[g1, g2] = ⇢(0)11

ZZ
dx dt 

⇣
j(0)+,1 � j(0)+,2, j

(0)
�,1 � j(0)�,2

⌘
+ k IWZ

⇥
g1g

�1
2

⇤

+
2X

r,s=1

✓
⇢(1)rs �

k
2
✏rs

◆ZZ
dx dt

⇣
j(1)+,r, j

(1)
�,s

⌘
,

where ✏12 = �✏21 = 1 and ✏11 = ✏22 = 0. As announced, this form of the action is manifestly
invariant under a gauge transformation gr(x, t) 7! gr(x, t)h(x, t) with h(x, t) 2 G(0). Indeed,

the field g1g
�1
2 is itself invariant and the currents j(0)±,1 � j(0)±,2 and j(1)±,r are covariant, i.e. they

transform as

j(0)±,1 � j(0)±,2 7�! h�1
�
j(0)±,1 � j(0)±,2

�
h and j(1)±,r 7�! h�1j(1)±,rh .

Global symmetries. Let us briefly discuss the global symmetries of the model (4.3.6), which
are given by the left (G⇥G)-translations on g1 and g2:

(g1, g2) 7�! (f1g1, f2g2), (f1, f2) 2 G⇥G. (4.3.9)

Indeed, these translations leave the Maurer-Cartan currents j±,r = g�1
r @±gr invariant and also

preserve the Wess-Zumino terms IWZ

⇥
gr
⇤
. Thus, they define global symmetries of the action

(4.3.6). Making use of equation (4.3.8), the conserved Noether currents associated to these
symmetries read

K+,r =
2X

s=1

gr
⇣
⇢(0)sr

�
1� �sr

�
j(0)+,s +

�
⇢(1)sr � ⇢(0)sr �sr

�
j(1)+,s

⌘
g�1
r ,

K�,r =
2X

s=1

gr
⇣
⇢(0)rs

�
1� �rs

�
j(0)�,s +

�
⇢(1)rs � ⇢(0)rs �rs

�
j(1)�,s

⌘
g�1
r .

These currents satisfy the conservation equation @+K�,r + @�K+,r = 0. Let us also note that

they are gauge-invariant under the G(0)
diag gauge symmetry gr(x, t) 7! gr(x, t)h(x, t) of the model.

Reformulation of the action. As detailed in appendix 4.B, the coe�cients ⇢(k)rs and kr

defined in equation (4.3.7) can be re-expressed as residues of well-chosen functions (for the
non-dihedral sigma models on GN defined in [58, 59], a similar result was pointed out in [85]).
This allows us to reformulate the action (4.3.6) in the following remarkably simple way:

S =
2X

r=1

SWZW,kr [gr]� 4K

ZZ
dx dt

2X

r,s=1

res
w=zs

res
z=zr

12
⇣
R0

12(w, z)'+(z)'�(w), j+,r1 j�,s2

⌘
,

(4.3.11)
where R0

12 is the R-matrix (4.2.9) underlying the integrable structure of the model, SWZW,k[g]
is the Wess-Zumino-Witten action

SWZW,k[g] =
k
2

ZZ
dx dt 

�
g�1@+g, g

�1@�g
�
+ k IWZ

⇥
g
⇤

(4.3.12)
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and '±(z) are functions defined as

'+(z) =
z2 � ⇣2+

(z2 � z21)(z
2 � z22)

and '�(z) =
z(z2 � ⇣2�)

(z2 � z21)(z
2 � z22)

. (4.3.13)

In particular, note that the reformulation (4.3.11) of the action does not involve an explicit
sum over the grading index k = 0, 1 as in the original expression (4.3.6). As explained in the
appendix 4.B, this graded structure, and thus the choice of automorphism �, is accounted for
in the R-matrix R0

12.

Conjectured generalisations. Having derived equation (4.3.11), it is natural to formulate
conjectures about generalisations of the models considered here. For instance, we expect a
similar expression to hold for the models on GN/G(0)

diag with arbitrary N constructed in the
Hamiltonian formalism in section 4.2. More generally, we conjecture that it also holds for models
on GN/G(0)

diag with arbitrary N and where the subalgebra g(0) is the grading zero subspace of a
ZT -gradation with arbitrary T , generalising the case T = 2 considered here.

Let us be more precise about this conjecture. For N = 1, the model on the ZT -coset G/G(0)

for arbitrary T was constructed in [122] and was identified with a realisation of D2T -dihedral
a�ne Gaudin model in [57], based on the Hamiltonian analysis carried out in [123]. Although

the generalisations of this sigma model on cosets GN/G(0)
diag with arbitrary N have not been

considered before in the literature, we expect the procedure of section 4.2 to readily generalise
to the construction of such models, using a D2T -dihedral a�ne Gaudin model [57] instead of a
D4-dihedral model. In this case, the twist function of the model would read7

'(z) = KT
zT�1

Q2N�2
i=1 (zT � ⇣Ti )QN

r=1(z
T � zTr )

2
, (4.3.14)

in terms of its zeroes ⇣1, · · · , ⇣2N�2 and poles z1, · · · , zN . One can then factorise this twist
function8 as '(z) = TK'+(z)'�(z), similarly to equation (4.B.1) for T = 2, with

'+(z) =

Q2N�2
i=N

�
zT � ⇣Ti

�
QN

r=1 (z
T � zTr )

and '�(z) =
zT�1

QN�1
i=1

�
zT � ⇣Ti

�
QN

r=1 (z
T � zTr )

.

We then conjecture that the action of the model is given by

S =
NX

r=1

SWZW,kr [gr]�
KT 3

2

ZZ
dx dt

NX

r,s=1

res
w=zs

res
z=zr

12
⇣
R0

12(w, z)'+(z)'�(w), j+,r1 j�,s2

⌘
,

(4.3.15)
where kr = �T

2 res z=zr '(z)dz and R0 now denotes the ZT -graded R-matrix which underlies
the integrable structure of D2T -dihedral a�ne Gaudin models [57], namely

R0
12(w, z) =

T�1X

k=0

wkzT�1�k

zT � wT
⇡(k)
1 C12,

with ⇡(k), k 2 {0, · · · , T � 1}, the projections along the grading g =
LT�1

k=0 g
(k).

7The equivariance condition (4.2.10) is then replaced by '(!z) = !�1'(z), where ! = exp(2i⇡/T ).
8As for the case T = 2 treated in section 4.2, we expect such a separation of the zeroes of '(z) in two sets

{0, ⇣1, · · · , ⇣N�1} and {⇣N , · · · , ⇣2N�2,1} to come naturally from the relativistic invariance of the model, which
requires the coe�cients ✏i, i 2 {0, 1, · · · , 2N � 2,1}, in the Hamiltonian of the model to be equal to either �1
or +1.
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As mentioned above, for N = 1 and arbitrary T , the corresponding integrable model on the
ZT -coset G/G(0) has been constructed in [122]: we have checked that the action of this model
can indeed be reformulated as in (4.3.15). Moreover, for the case of arbitrary N and T = 1,
the results of [85] show that the action of the model is also given by (4.3.15), with R0

12(z, w)
the standard non-twisted R-matrix C12/(w � z). Finally, we have checked this conjecture by
direct computation for all cases with N  3 and T  3.

4.3.3 Lax connection in the Lagrangian formulation

From the equations (4.2.48) and (4.2.53), the Lax connection can be written in terms of the
fields jr, Yr and µ. Moreover, from equation (4.3.3), we have:

µ ⇡ j(0)t,r �
2X

s=1

b(0)rs j
(0)
s + 2c(0)rs Y

(0)
s .

We can then express the Lax connection solely in terms of the fields jr and Yr. Inserting
equations (4.3.4) and (4.3.5), we finally get the Lagrangian expression of the Lax connection.
In terms of the light-cone currents j±,r, it reads:

L±(z) =
2X

r=1

1X

k=0

⌘(k)±,r(z)j
(k)
±,r, (4.3.16)

where

⌘(0)±,1(z) =
(z2 � x2)

�
1� ⇣2±

�

(z2 � ⇣2±) (1� x2)
, ⌘(1)±,1(z) = z±1 ⌘(0)±,1(z), (4.3.17)

⌘(0)±,2(z) =
(z2 � 1)

�
x2 � ⇣2±

�

(z2 � ⇣2±) (x2 � 1)
, ⌘(1)±,2(z) =

⇣z
x

⌘±1

⌘(0)±,2(z). (4.3.18)

In particular, we note as an observation that ⌘(k)±,s(zr) = �rs (where we recall that z1 = 1 and
z2 = x) and therefore

L±(zr) = j±,r. (4.3.19)

4.3.4 A limit of the model

Definition of the limit. Let us recall that the model with two copies introduced above
depends on the four continuous real parameters x, K, ⇣+ and ⇣�. In this section, we will describe
the simple form that this model assumes after taking a particular limit of these parameters.
In particular, this limit will be our starting point in section 4.4. We start by considering the
following reparametrisation of x, K, ⇣+ and ⇣� in terms of four new parameters ↵, �1, �2 and
�:

x =
1

↵
, K =

�22
↵2

, ⇣+ =
�1
�
, ⇣� =

�

�2↵
. (4.3.20)

We then define the limit we will be interested in by taking ↵ ! 0 while keeping the other
parameters �1, �2 and � fixed.
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Action. Let us look at how the action of the model simplifies in this limit. From their
expression (4.3.7), we obtain that the coe�cients ⇢(k)rs and k simply become:

⇢(0)11 = ⇢(0)22 =
�2

2
, ⇢(0)12 = ⇢(1)12 = ⇢(1)21 = 0, ⇢(0)21 = �k = ��2, ⇢(1)11 =

�21
2
, ⇢(1)22 =

�22
2
.

Writing the action explicitly, we thus have

S[g1, g2] =

ZZ
dx dt

2X

r=1

✓
�2

2

⇣
j(0)+,r, j

(0)
�,r

⌘
+
�2r
2

⇣
j(1)+,r, j

(1)
�,r

⌘◆
� �2 

⇣
j(0)+,2, j

(0)
�,1

⌘
(4.3.21)

+ �2 IWZ

⇥
g1
⇤
� �2 IWZ

⇥
g2
⇤
.

Lax connection. Let us now turn to the Lax connection. Taking the limit on the coe�cients
⌘±(z) defined in (4.3.17) and reinserting in the expression (4.3.16) of the Lax connection, we
get:

L+(z) =
1

�2z2 � �21

⇣�
�2 � �21

� ⇣
j(0)+,1 + z j(1)+,1

⌘
+ �2

�
z2 � 1

�
j(0)+,2

⌘
, L�(z) = j(0)�,1 +

j(1)�,1

z
.

(4.3.22)
One can check that the zero curvature equation for this Lax connection actually does not encode
all the equations of motion of the model. To circumvent this di�culty, let us also consider the
limit of L±(z/↵), which we will denote as eL±(z) (by construction, eL±(z) also satisfies a zero
curvature equation). A direct computation shows that

eL+(z) = j(0)+,2 + z j(1)+,2, eL�(z) =
1

z2�22 � �2
⇣
�2
�
z2 � 1

�
j(0)�,1 +

�
�22 � �2

� ⇣
z2j(0)�,2 + z j(1)�,2

⌘⌘
.

(4.3.23)
The combined zero curvature equations of L±(z) and eL±(z) are equivalent to all the equations
of motion of the model.

Additional symmetry. For this paragraph, we will suppose that the pair
�
G,G(0)

�
charac-

terising the model is such that G(0) possesses a center Z. There are many examples of such
pairs, which include for instance

�
SU(p+ q), S

�
U(p)⇥U(q)

��
,
�
SL(p+ q), S

�
GL(p)⇥GL(q)

��

and
�
SO(2n), U(N)

�
. As we will now show, in this case, the model (4.3.21) then possesses an

additional global Z-symmetry, which acts on the fields g1, g2 2 G as

(g1, g2) 7�! (g1k, g2), k 2 Z. (4.3.24)

Note that we could also have considered the action (g1, g2) 7! (g1, g2k), which is equivalent to

the one above via the G(0)
diag gauge symmetry. Under the action (4.3.24), the graded components

j(k)±,r of the Maurer-Cartan currents transform as

j(0)±,1 7�! j(0)±,1, j(1)±,1 7�! k�1j(1)±,1k, j(0)±,2 7�! j(0)±,2 and j(1)±,2 7�! j(1)±,2, (4.3.25)

where we have used the fact that k is central in G(0) and thus that k�1j(0)±,1k = j(0)±,1. Noting also
that the Wess-Zumino term of g1 is invariant under the transformation (4.3.24), i.e. IWZ

⇥
g1k
⇤
=

IWZ

⇥
g1
⇤
, it is direct to check that this transformation defines a symmetry of the action (4.3.21),

as claimed.
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Guadagnini-Martellini-Mintchev model. Let us now define U = g1 and V = g�1
2 . We

recall that the Wess-Zumino term satisfies the following relation:

IWZ

⇥
g�1
⇤
= �IWZ

⇥
g
⇤
.

Then, in the case in which �1 = �2 = �, the action (4.3.21) can be rewritten as

S[U, V ] = SWZW,�2 [U ] + SWZW,�2 [V ] + �2
ZZ

dx dt 
⇣�
@+V V �1

�(0)
,
�
U�1@�U

�(0)⌘
, (4.3.26)

where SWZW,k denotes the Wess-Zumino-Witten action with level k as defined in (4.3.12). The
action (4.3.26) coincides with the one of the Guadagnini-Martellini-Mintchev model introduced
in [111] as a theory on (G⇥G0)/H, when considered in the special case G0 = G and H = G(0).
This model was shown to preserve scale invariance at the quantum level at one loop in [111]
and at two loops in [124]. This thus shows that the integrable sigma model considered in
this section is a two-dimensional conformal field theory for the specific choice �1 = �2 = � of
its defining parameters. The Kac-Moody current algebras of this conformal model have been
studied in [125].

Let us finally note that in the case under consideration, the Lax connections L±(z) and
L̃±(z), given in (4.3.22) and (4.3.23) respectively, assume the following simple form:

L+(z) = j(0)+,2, L�(z) = j(0)�,1 +
j(1)�,1

z
,

L̃+(z) = j(0)+,2 + z j(1)+,2, L̃�(z) = j(0)�,1.

The existence of a Lax connection for this model is consistent with the results of [79], where
its integrability was first established.9

4.4 Integrable �-models on T 1,1
manifolds

4.4.1 The models

Action. Let us consider the model with two copies described in the previous section for the
choice G = SU(2), with Lie algebra g = su(2) generated by Ia = i�a/2, where �a is the a-th
Pauli matrix. We take � to be the Z2-automorphism of su(2) defined by the following action
on the generators: �(I1) = �I1, �(I2) = �I2 and �(I3) = I3, so that g(0) = u(1) = span{I3}
and correspondingly G(0) = U(1) = exp(RI3). Let us finally pick the following parametrisation
for the fields (g1, g2) 2 SU(2)⇥ SU(2) of the model:

g1 = exp (�1I3) exp (✓1I2) exp ( I3), (4.4.1a)

g2 = exp (��2I3) exp (�✓2I2) exp (� ̃I3). (4.4.1b)

Inserting this parametrisation in the action (4.3.21), one finds:

S =
1

4

ZZ
dx dt

⇣�
�2+�21+

�
�2��21

�
cos(2✓1)

�
@��1@+�1+2�21 @�✓1@+✓1+2�2 @� @+ +4�2 @��1@+ cos ✓1

+
�
�2+�22+

�
�2��22

�
cos(2✓2)

�
@��2@+�2+2�22 @�✓2@+✓2+2�2 @� ̃@+ ̃+4�2 @� ̃@+�2 cos ✓2

+4�2
�
cos ✓1 @��1+@� 

��
cos ✓2 @+�2+@+ ̃

�⌘
. (4.4.2)

9The integrability of a class of models that includes (4.3.26) was also studied in [60].
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Gauge fixing and background. Recall that the model we are considering is invariant under
the gauge transformation gr 7! grh, h 2 U(1). In the parametrisation (4.4.1) used above, this
gauge symmetry simply becomes the translation ( ,  ̃) 7! ( + ⌘,  ̃ � ⌘) with local parameter
⌘ 2 R. We now use this freedom to set  ̃ = 0. Having fixed the gauge, we can then rewrite
the action (4.4.2) as a sigma model on the coset SU(2) ⇥ SU(2)/U(1), with coordinate fields
y = (✓1, ✓2,�1,�2, ). This defines the background metric Gij and background B-field Bij, in
terms of which the action reads

S =
1

2

ZZ
dx dt

�
Gij +Bij

�
@�y

i@+y
j. (4.4.3)

Setting  ̃ = 0 in (4.4.2), we read for the metric:

ds2 = Gijdy
idyj = �21(d✓

2
1+sin2 ✓1 d�

2
1)+�

2
2(d✓

2
2+sin2 ✓2 d�

2
2)+�

2(d +cos ✓1 d�1+cos ✓2 d�2)
2,

(4.4.4)
while the B-field is given by

B =
1

2
Bij dy

i ^ dyj = �2(cos ✓1 d�1 + d ) ^ (cos ✓2 d�2 + d ). (4.4.5)

We recognise (4.4.4) as the metric of the so-called T 1,1 manifolds [126–128]. More precisely,
it defines a family of metrics, which depend on the three parameters �1, �2 and �. Let us
note that certain members of this family possess additional interesting geometrical properties.
For instance, the choice �21 = �22 = 3�2/2 yields an Einstein metric, which has well-known
applications in supergravity. As explained for a general group G in the paragraph 4.3.4, the
case �1 = �2 = � yields the conformal model of [111], which for the group SU(2) considered
here has been studied in [129], where it has been used to construct a pure NS-NS supergravity
solution10.

By construction, the model considered in this section is integrable for any metric in this
family, i.e. for all values of the parameters �1, �2 and �. However, let us stress that this
integrability also requires the presence of a B-field in the model, namely the B-field (4.4.5)
whose global prefactor �2 is then fixed by the choice of the metric (for other choices of this
prefactor, the model is non-integrable, see sections 4.4.2 and 4.4.3).

Lax connection. As proven in section 4.3.4, the model under consideration possesses two
independent Lax connections L± and eL±, which characterise its integrability. Let us discuss
their explicit expressions in terms of the coordinate fields (✓1, ✓2,�1,�2, ). As it turns out,
instead of L±(z), it will be simpler to describe its gauge transformation bL±(z) = h�1L±(z)h+
h�1@±h with h = exp(� I3). Let us then write these Lax connections in terms of their
components in the decompositions bL± = bLa

±Ia and eL± = eLa
±Ia along the basis Ia = i�a/2 of

su(2). From (4.3.22), using the parametrisation (4.4.1), we get for bL±:

bL1
+ =

�
�2 � �21

�
z

�2z2 � �21
sin ✓1 @+�1, bL2

+ =

�
�2 � �21

�
z

�2z2 � �21
@+✓1,

bL3
+ =

1

�2z2 � �21

��
�2 � �21

�
cos ✓1 @+�1 � �2(z2 � 1)(cos ✓2 @+�2 + @+ )

�
,

10A parafermionic integrable deformation of this conformal sigma model on T 1,1 has been considered in [107],
by specifying to SU(2) a class of models studied in [60]. It would be interesting to investigate whether this
model can be obtained from a construction similar to the one presented in this article.
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together with

bL1
� =

sin ✓1 @��1

z
, bL2

� =
@�✓1
z

, bL3
� = cos ✓1 @��1.

Similarly, for eL± we get from (4.3.23):

eL1
+ = z sin ✓2 @+�2, eL2

+ = �z @+✓2, eL3
+ = � cos ✓2 @+�2,

as well as

eL1
� = �

�
�2 � �22

�
z

�22z
2 � �2 sin ✓2 @��2, eL2

� =

�
�2 � �22

�
z

�22z
2 � �2 @�✓2,

eL3
� =

1

�22z
2 � �2

��
�2 � �22

�
z2 cos ✓2 @��2 + �2(z2 � 1)(cos ✓1 @��1 + @� )

�
.

4.4.2 Modification of the background, isometries and equations of

motion

Isometries-preserving modification of the model. Let us now consider a modification of
the model described in the previous section (this will allow us to pinpoint the requirements for
the integrability of the model and to make connections with other works in the next section).
More precisely, let us take again an action of the form (4.4.3), with y = (✓1, ✓2,�1,�2, ) and
metric given by (4.4.4), but with the following B-field (k 2 R):

B = k (cos ✓1 d�1 + d ) ^ (cos ✓2 d�2 + d ), (4.4.8)

obtained from (4.4.5) by substituting the overall multiplication parameter �2 with k. For
arbitrary values of k, this modification will break the integrability of the theory, while retaining
the same isometries as the original model. In particular, as one can see from equations (4.4.4),
(4.4.5) and (4.4.8), the coordinate fields �1, �2 and  do not appear in the metric and the B-
field of both the original and modified model and therefore the shifts �1 ! �1+✏1, �2 ! �2+✏2
and  !  + ✏ are isometries of both backgrounds.

For the original model, this is to be expected from the general results of section 4.3. Indeed,
as explained in section 4.3.2, the model is invariant under the left translations g1 7! f1g1 and
g2 7! f2g2, for f1, f2 2 SU(2). In the parametrisation (4.4.1), the corresponding actions of
the Cartan subgroup exp(RI3) of SU(2) simply become shifts of the coordinates �1 and �2.
Similarly, the shift of  corresponds to the symmetry discussed in section 4.3.4. Consistently,
�1, �2 and  appear in the action (4.4.2) only through their derivatives.

One can calculate the Noether currents associated with these isometries for both models
starting from the modified one. Following the conventions of appendix 4.C, we define the
components of these currents as

⇧µ
�1

=
@L

@(@µ�1)
, ⇧µ

�2
=

@L
@(@µ�2)

and ⇧µ
 =

@L
@(@µ )

, (4.4.9)

where µ are 2-dimensional space-time indices and L is the Lagrangian density of the action
(4.4.3). In light-cone indices, one finds, using (4.4.4) and (4.4.8):

2⇧±
�1

=
�
�21 � (�21 � �2) cos2 ✓1

�
@⌥�1 + (�2 ⌥ k) cos ✓1

�
cos ✓2 @⌥�2 + @⌥ 

�
, (4.4.10a)

2⇧±
�2

=
�
�22 � (�22 � �2) cos2 ✓2

�
@⌥�2 + (�2 ± k) cos ✓2

�
cos ✓1 @⌥�1 + @⌥ 

�
, (4.4.10b)

2⇧±
 = (�2 ± k) cos ✓1 @⌥�1 + (�2 ⌥ k) cos ✓2 @⌥�2 + �2@⌥ . (4.4.10c)

These Noether currents satisfy the conservation equations:

@µ⇧
µ
i = @+⇧

+
i + @�⇧

�
i = 0, for i = �1,�2, . (4.4.11)
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Equations of motion. Let us describe the equations of motion for the modified model. From
the action (4.4.3), one obtains the following standard form:

@�@+y
i + �̂i

jk @�y
j@+y

k = 0,

where �̂i
jk are the components of the Christo↵el symbol for the metric Gij modified by the

torsion Tijk of the B-field Bij, i.e.

�̂i
jk = �i

jk � T i
jk =

1

2
Gim

�
@jGmk + @kGjm � @mGjk

�
� 1

2
Gim

�
@jBmk + @kBjm + @mBkj

�
.

From (4.4.4) and (4.4.8), we then find the following equations of motion for ✓1 and ✓2:

@�@+✓1
sin ✓1

= @��1

✓✓
1� �2

�21

◆
cos ✓1 @+�1 �

k + �2

2�21

�
cos ✓2 @+�2 + @+ 

�◆
� k � �2

2�21

�
cos ✓2 @��2 + @� 

�
@+�1,

(4.4.12a)

@�@+✓2
sin ✓2

= @��2

✓✓
1� �2

�22

◆
cos ✓2 @+�2 +

k � �2

2�22

�
cos ✓1 @+�1 + @+ 

�◆
+

k + �2

2�22

�
cos ✓1 @��1 + @� 

�
@+�2.

(4.4.12b)

For simplicity and as we will not need them, we have omitted the equations for the isometric
coordinates �1, �2 and  . However, one checks that they can be expressed as particular
combinations of the conservation equations (4.4.11) for the currents (4.4.10) and the above
equations of motion for ✓1 and ✓2.

4.4.3 Spinning string solutions

In this subsection, we describe a certain class of solutions of the equations of motion of the
model with modified B-field (4.4.8), obtained by a spinning string ansatz [130,131]. Note that
spinning strings in T 1,1 manifolds (or closely related wrapped strings) have already been studied
in [112–116] in specific cases. In particular, the non-integrability of these solutions have been
discussed in [114–116]: we will compare our results with the ones of [114–116] at the end of
this subsection.

Spinning string ansatz. We follow the procedure described in appendix 4.C, where we
discuss the spinning string ansatz for a general sigma model with B-field. Since the model we
are considering possesses three commuting isometries, in the coordinates �1, �2 and  , one can
then search for spinning string solutions of the form:

✓i = ✓i(x), �i = !it+ e�i(x),  =  (x), (4.4.13)

with i 2 {1, 2} and !1 and !2 constant parameters (more generally, one could also add a term
!t in the expression of  as it is also an isometric coordinate: for simplicity, we will not consider
this more general case here). The functions e�1(x) and e�2(x) and  (x) are the equivalent of the
functions �j(x) in appendix 4.C.2. As explained in this appendix, these functions are necessary
to ensure the consistency of the ansatz. As we shall now see, they (or more precisely their
derivatives) can be determined explicitly, which in the end will allow us to obtain ordinary
di↵erential equations governing the functions ✓1(x) and ✓2(x).
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Equations of motion for the isometric coordinates. As explained in appendix 4.C.2,
in the spinning string ansatz (4.4.13), the spatial and temporal components of the Noether
currents (4.4.10) do not depend on time, and therefore their conservation equations simply
become

@x⇧
x
�1 = @x⇧

x
�2 = @x⇧

x
 = 0,

where ⇧x
i = ⇧+

i � ⇧�
i . The above equations have solutions ⇧x

�1 = ⇧x
�2 = ⇧x

 = 0 if we choose
the integration constant to be zero for simplicity. Using this, the derivatives of the functions
e�1(x), e�2(x) and  (x), which we denote with a dot as in appendix 4.C, can be solved for in
terms of the functions ✓1(x) and ✓2(x). More precisely, applying the equation (4.C.7) in the
present case, we get

ė�1 = �
k

�21
!1 cot

2 ✓1, ė�2 = +
k

�22
!2 cot

2 ✓2, (4.4.14a)

 ̇ = +
k

�2
!1 cos ✓1

✓
1 +

�2

�21
cot2 ✓1

◆
� k

�2
!2 cos ✓2

✓
1 +

�2

�22
cot2 ✓2

◆
. (4.4.14b)

Equations of motion for the non-isometric coordinates and integrability. Inserting
the spinning string ansatz (4.4.13) and the expressions (4.4.14) in the equations of motion
(4.4.12a) and (4.4.12b) for the non-isometric coordinates, we get the following:

✓̈1 = !1 sin ✓1

✓
!1

✓✓
�2

�21
� 1

◆
+

k2

�2�21

✓✓
1� �2

�21

◆
+

�21
sin4 ✓1

◆◆
cos ✓1 � !2

k2 � �4
�2�21

cos ✓2

◆
,

(4.4.15a)

✓̈2 = !2 sin ✓2

✓
!2

✓✓
�2

�22
� 1

◆
+

k2

�2�22

✓✓
1� �2

�22

◆
+

�22
sin4 ✓2

◆◆
cos ✓2 � !1

k2 � �4
�2�22

cos ✓1

◆
.

(4.4.15b)

As justified for a general sigma model in appendix 4.C.2, these are ordinary di↵erential equations
which involve only the functions ✓1(x) and ✓2(x) corresponding to the non-isometric directions
of the background. For generic values of the parameters, these equations are coupled and we
expect them to be non-integrable. This is consistent with the analysis carried out in [114,115],
where the authors consider wrapped strings solutions in the case k = 0 (i.e. no B-field) and
rule out integrability by proving that their motion is chaotic [114] or by using the theory of non-
analytic integrability [115]11. Yet, the general results of appendix 4.C.3 show that starting from
an integrable sigma model, for which the equations of motion can be recast as a zero curvature
equation, and applying the spinning string ansatz to the latter, one will find (under certain
assumptions) a Lax equation for the mechanical system describing the dynamical variables of
the spinning string ansatz. In our case, we thus expect the equations (4.4.15) to be integrable
if the sigma model we start with is integrable. As explained in the previous subsections, this
requires the addition of a B-field with the right coe�cient, namely k = �2. This has the e↵ect
of cancelling the coupling terms in (4.4.15), hence leaving us with equations of motion of two
decoupled 1d systems, which are then trivially integrable.

11More precisely, the works [114,115] deal with a string model on T 1,1⇥AdS5, described by a Polyakov action.
In this case, the equations of motion of the fields are supplemented with the Virasoro constraints coming from the
worldsheet di↵eomorphism invariance. The wrapped strings solutions considered in [114,115] contain non-trivial
dynamical degrees of freedom only in the T 1,1 part of the target space and more precisely in the coordinates
✓1 and ✓2. The equations obeyed by these coordinates are then the same as the ones obtained here for the
sigma model on T 1,1 alone, i.e. equations (4.4.15) with k = 0. Similar spinning strings solutions have also been
studied in [112]. Moreover, the analysis of [114, 115] was extended in [116] to the more general class of La,b,c

manifolds, which includes T 1,1.
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4.5 Conclusions

Let us conclude this chapter by stating a number of interesting questions arising from the work
presented in this chapter which deserve further study. First of all, it would be desirable to prove
that the Lagrangian of models with generic N and T fits our conjectural form (4.3.15) given in
terms of the classicalR-matrix. We checked the validity of this conjecture up to (N = 3, T = 3),
and also for N = 1 and T arbitrary [122], but further evidence is welcome. Also, it would be
nice to find an independent field-theoretic derivation of (4.3.15) which bypasses performing the
Legendre transform.

In the recent work [132] it was proven that the integrable models with N = 2 are renormalis-
able at one-loop and that the one on T 1,1 is renormalisable also at 2-loop. In the same reference,
it was constructed an integrable sigma model on the space G ⇥ G/H with H an abelian sub-
group which can be embedded non diagonally in G⇥G. In particular, this theory possesses two
unequal levels k1 and k2 appearing in front of the Wess-Zumino terms in the action. Moreover,
when specified to the G = SU(2), H = U(1) case, one finds a class of integrable sigma models
on target spaces of the family T 1,q, with q related to the ratio of k1 and k2, generalising the
model on T 1,1 presented here. These models can be interpreted as integrable deformations of
the GMM model with unequal levels [111]. Since the latter admits a generalisation to the case
G1 ⇥ G2/H with G1 6= G2 and H not necessarily abelian, it is natural to ask wether there
exists an integrable deformation of this model. More generally, one could look for a class of
integrable sigma models defined on coset spaces of the form G1 ⇥ · · ·⇥GN/H with H a gauge
group admitting an embedding in each of the G1, . . . , GN (see [133] for conformal models on
these type of targets spaces). It would be interesting to construct these models from dihedral
a�ne Gaudin models, generalising the construction presented in this chapter.

Since our approach is applicable for both compact and non-compact groups, one can try to
construct in a similar fashion an integrable sigma model on Lorentzian spacesW4,2 = SL(2,R)⇥
SL(2,R)/U(1), that can be viewed as non-compact analogues of T 1,1. The combined sigma
model on the 10-d homogeneous space W4,2 ⇥ T 1,1 should then have a special conformal point
in the parameter space which would correspond to a critical NS-NS superstring background
[129]. Deviations from this point would be then regarded as integrable deformations of the
corresponding conformal field theory.

Finally, it would be very interesting to generalise the present approach to construct inte-
grable coset sigma models based on supergroups. For N = 2 one obvious candidate to take
for G is the supergroup PSU(1, 1|2), that has SL(2,R)⇥ SU(2) as its bosonic subgroup. One
might speculate that the corresponding integrable sigma model could have a special point in
the parameter space corresponding to a critical string background, this time with both NS-NS
and R-R fluxes.

4.A Coe�cients of the Hamiltonian

In this appendix, we give explicit expressions for the coe�cients a(k)rs and b(k)rs , where r, s = 1, 2
and k = 0, 1 appearing in equation (4.3.1). For the coe�cients b(k)rs , we have:

b(0)rs = c(0)r̄s̄

2K
�
2z4r̄ + ⇣2+ (z2r � 3z2r̄ ) + ⇣2�

�
2⇣2+ � z21 � z22

��

(z2s̄ � z2s)
3 ,

b(1)rs = c(1)rs̄

2K
�
z21z

2
2 (z

2
1 + z22)� ⇣2+ (z41 + z42) + ⇣2�

�
⇣2+ (z21 + z22)� 2z21z

2
2

��

z1z2 (z2s̄ � z2s)
3 ,
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where we introduced the notation r̄ = 3�r, r = 1, 2 and where the coe�cients c(k)rs with k = 0, 1
are defined in (4.3.2). For the coe�cients a(k)rs , we have:

a(0)rs = b(0)r̄s̄

K
�
2z4s + ⇣2+ (z2s̄ � 3z2s) + ⇣2�

�
2⇣2+ � z21 � z22

��

2 (z2r � z2r̄ )
3 ,

a(1)rs =
(�1)r+sc(1)r̄s̄

z21z
2
2 (z

2
1 � z22)

6K
2
�
z21z

2
2

�
2⇣2+ � z21 � z22

� �
2⇣2+

�
z41 � z22z

2
1 + z42

�
� z21z

2
2

�
z21 + z22

��

� ⇣2�
�
2⇣2+ � z21 � z22

� �
⇣2+
�
z21 + z22

� �
z41 + z42

�
� 4z41z

4
2

�
+ ⇣4�

�
⇣2+
�
z21 + z22

�
� 2z21z

2
2

�2�
.

4.B Reformulation of the action

In this appendix, we give an expression of the coe�cients ⇢(k)rs and kr defined in (4.3.7) in terms
of residues of well-chosen functions. This will allow us to reformulate the action (4.3.6) in a
compact way.

We start with the definition (4.3.13) of the functions '±(z), which we restate here for the
reader’s convenience:

'+(z) =
z2 � ⇣2+

(z2 � z21)(z
2 � z22)

and '�(z) =
z(z2 � ⇣2�)

(z2 � z21)(z
2 � z22)

.

We recall that in section 4.3, we have made the choice z1 = 1 and z2 = x for the parameters
z1 and z2. Note that in terms of the functions '±(z), the twist function (4.2.13) of the model
takes the factorised form

'(z) = 2K'+(z)'�(z). (4.B.1)

Let us also define the functions

↵0(z, w) =
z

z2 � w2
and ↵1(z, w) =

w

z2 � w2
.

Using the expression (4.3.17) of the coe�cients ⇢(k)rs and kr, one checks that they satisfy

⇢(k)rs �
�rs
2
kr = �4K res

w=zs
res
z=zr

↵k(z, w)'+(z)'�(w). (4.B.2)

Note that the order in which we take the residues in the above equation is important. Indeed,
for the opposite order, we have

⇢(k)rs +
�rs
2
kr = �4K res

z=zr
res
w=zs

↵k(z, w)'+(z)'�(w).

Let us relate these expressions to the R-matrix (4.2.9). The latter can be re-expressed in

terms of the projections C(kk)
12 of the Casimirs on the gradations g(k) (see paragraph 4.2.1) as

R0
12(z, w) =

1X

k=0

↵k(w, z)C
(kk)
12 .

This shows that for any elements X, Y in the Lie algebra g, we have

12
⇣
R0

12(w, z), X1Y2

⌘
=

1X

k=0

↵k(z, w)
�
X(k), Y (k)

�
.
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Using this result, and reinserting the equation (4.B.2) in the action (4.3.6), we can rewrite the
latter as

S =
2X

r=1

SWZW,kr [gr]� 4K

ZZ
dx dt

2X

r,s=1

res
z=zr

res
w=zs

12
⇣
R0

12(w, z)'+(z)'�(w), j+,r1 j�,s2

⌘
,

which is the equation (4.3.11) announced in the main text. Note also that, using the property
(4.3.19) of the Lax connection L±(z), this expression can be further rewritten as

S =
2X

r=1

SWZW,kr [gr]� 4K

ZZ
dx dt

2X

r,s=1

res
z=zr

res
w=zs

12
⇣
R0

12(w, z)'+(z)'�(w),L+(z)1 L�(w)2
⌘
.

4.C Spinning string ansatz for a sigma model with B-

field

4.C.1 Generalities

�-models with B-field. Let us consider a sigma model with coordinate fields y1(x, t), · · · , yN(x, t),
metric Gij = Gji and B-field Bij = �Bij, whose action is then

S[y1, · · · , yN ] = 1

2

ZZ
dx dt (Gij +Bij)@�y

i @+y
j. (4.C.1)

We denote by L = 1
2(Gij +Bij)@�yi @+y j the corresponding Lagrangian density. Let us define:

⇧µ
i =

@L
@(@µyi)

,

so that

⇧±
i =

1

2
(Gij ⌥ Bij)@⌥y

j.

In space-time coordinates (t, x), this becomes

⇧t
i = ⇧+

i + ⇧�
i = Gij @ty

j +Bij @xy
j, (4.C.2a)

⇧x
i = ⇧+

i � ⇧�
i = �Gij @xy

j � Bij @ty
j. (4.C.2b)

The Euler-Lagrange equations of the action (4.C.1) can then be written as

@µ⇧
µ
i =

@L
@yi

, (4.C.3)

for all i 2 {1, · · · , N}.

Isometries. Let us now suppose that the sigma model possesses an isometry along the co-
ordinate yi, i.e. that the metric Gij and B-field Bij do not depend explicitly on yi. In this
case, the derivative of L with respect to yi vanishes and the equation of motion (4.C.3) of yi

becomes the conservation equation

@µ⇧
µ
i = @t⇧

t
i + @x⇧

x
i = 0. (4.C.4)

In particular, the quantities ⇧t
i and ⇧x

i are identified as the components of the Noether current
associated with the global symmetry yi 7! yi + ✏ of the model and the Noether charge

Qi =

Z
dx ⇧t

i

is conserved under time evolution.
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4.C.2 Spinning string ansatz

The ansatz. Let us consider the above sigma model with coordinates y1, · · · , yN and M an
integer number smaller than N . We will suppose that the model possesses N �M commut-
ing isometries along its coordinates yM+1, · · · , yN . Our goal in this section will be to search
for particular classical solutions of the equations of motion (4.C.3) of this sigma model, by
introducing the following ansatz for the fields y1, · · · , yN :

yi = yi(x), for 1  i M,
yi = !i t+ �i(x), for M + 1  i  N

(4.C.5)

where !i, i 2 {M+1, · · · , N}, are constant numbers and y1(x), · · · , yM(x),�M+1(x), · · · ,�N(x)
are functions of the worldsheet space coordinate x only. As we shall see, the t-dependence of
this ansatz will completely drop out of the equations of motion, yielding a coherent set of
equations on the functions yi(x) and �i(x), in the coordinate x.

The usual spinning string ansatz, see e.g. [130, 131], corresponds to the case where the
functions �M+1(x), · · · ,�N(x) vanish. As we will see, because of the presence of the B-field
Bij, these functions will be necessary to obtain a coherent ansatz. Moreover, we will also
show that the equations of motion of these functions �i(x) can be explicitly solved in terms
of the remaining functions y1(x), · · · , yM(x), yielding in the end a coherent set of coupled
ordinary di↵erential equations on the latter (under a certain assumption on the metric). Such
a generalisation of the spinning string ansatz was considered in [134].

As a general remark, let us start by recalling that the equations of motion (4.C.3) are
expressed in terms of the quantities ⇧µ

i defined in the previous section. Inserting the ansatz
(4.C.5) in the expression (4.C.2) of ⇧t

i and ⇧x
i , we get

⇧t
i = +

MX

j=1

Bij ẏ
j(x) +

NX

j=M+1

�
Gij !j +Bij �̇

j(x)
�
, (4.C.6a)

⇧x
i = �

MX

j=1

Gij ẏ
j(x)�

NX

j=M+1

�
Bij !j +Gij �̇

j(x)
�
, (4.C.6b)

where the dot denotes the derivative with respect to x.
Let us recall that the only dependences of the spinning string ansatz (4.C.5) on the world-

sheet time coordinate t are in the coordinates yM+1, · · · , yN , corresponding to isometries of the
model. Because of these isometries, the metric Gij and B-field Bij do not depend explicitly on
the coordinates yM+1, · · · , yN , and thus on the time t under the ansatz (4.C.5). In particular,
this shows that the quantities ⇧t

i and ⇧x
i obtained in equation (4.C.6) do not depend on t.

Equations of motion for the isometric coordinates yM+1, · · ·, yN
. Let us first focus

on the coordinates yM+1, · · · , yN . Since they correspond to the isometries of the model, their
equations of motion take the form of conservation equations (see equation (4.C.4)) @t⇧t

i+@x⇧
x
i =

0, for all i 2 {M + 1, · · · , N}. Then, as ⇧t
i does not depend on t in the spinning string ansatz

(see previous paragraph), these conservation equations simply become @x⇧x
i = 0. These are

trivially solved by
⇧x

i = Ci, for all i 2 {M + 1, · · · , N},
where CM+1, · · · , · · · , CN are integration constants. From the expression (4.C.6b) of ⇧x

i , the
above equation can be rewritten as

NX

j=M+1

Gij �̇
j(x) = �

NX

j=M+1

Bij !j �
MX

j=1

Gij ẏ
j(x)� Ci,
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for all i 2 {M +1, · · · , N}. To be able to proceed further, and in the rest of this appendix, we
shall make the following assumption:

Assumption: We suppose that the (N �M)⇥ (N �M) matrix (Gij)M+1i,jN is invertible.

We will then denote by (H ij)M+1i,jN its inverse. Let us briefly comment on this. In other
words, this assumption means that we suppose the restriction of the metric to the isometric
directions to be invertible. Although the full metric (Gij)1i,jN is of course an invertible
matrix, it is possible for its submatrix (Gij)M+1i,jN to be non-invertible. However, in the
examples consider in this chapter, this assumption will be satisfied. Using the inverse matrix
H, we then solve the above equation for �̇i(x):

�̇i(x) = �
NX

j=M+1

H ij

 
NX

k=M+1

Bjk !k +
MX

k=1

Gjk ẏ
k(x) + Cj

!
, for all i 2 {M + 1, · · · , N}.

(4.C.7)
In particular, this gives the solution of the equations of motion of yM+1, · · · , yN in terms of
explicit integrals (indeed, the right hand-side of equation (4.C.7) and in particular the matrix
H ij do not depend on the �j(x)’s, as the corresponding coordinates y j are isometries of the
model).

Let us briefly comment on the relation of the present results with the standard spinning
string ansatz for a model without B-field. As explained in the previous paragraph, this standard
ansatz corresponds to taking �i(x) = 0 for i 2 {M + 1, · · · , N}. In this case, one has to make
another assumption on the metric for the ansatz to be consistent, which is to suppose that
its components Gij vanish for i 2 {M + 1, · · · , N} and j 2 {1, · · · ,M}, i.e. that there
are no metric terms mixing the isometric coordinates yM+1, · · · , yN with the non-isometric
coordinates y1, · · · , yM . Under this assumption and supposing that there is no B-field (or at
least no B-field mixing together the isometric coordinates yM+1, · · · , yN), the quantities ⇧x

i ,
for i 2 {M + 1, · · · , N}, vanish (see equation (4.C.6b)). The equations of motion @x⇧x

i = 0
are then trivially satisfied, ensuring the consistency of the standard spinning string ansatz.
It is clear that the presence of a B-field in the isometric directions yM+1, · · · , yN introduces
non-vanishing terms in the expression (4.C.6b) of ⇧x

i : in this case, consistency of the equations
of motion @x⇧x

i = 0 then requires choosing non-zero �j(x)’s, which is why we introduced these
functions in the more general ansatz (4.C.5).

Let us finally note that in the notation of this paragraph, the standard spinning ansatz
corresponds to taking the integration constants Ci to be zero, as it gives ⇧x

i = 0. Is is also
possible to choose these constants to be non-zero and thus introduce new parameters in the
final spinning string equations of motion. However, the consistency of the ansatz then requires
to also introduce non-zero functions �j(x), even in the absence of a B-field.

Equations of motion for the non-isometric coordinates y1, · · ·, yM
. Let us now study

the equations of motion of the coordinates y1, · · · , yM . For that, we will use the following
standard form of the field equations of a sigma model:

@�@+y
i + b�i

jk @�y
j @+y

k = 0, (4.C.8)

where b�i
jk are the Christo↵el symbols of the metric Gij modified by the torsion of the B-field

Bij:

b�i
jk = �i

jk � T i
jk =

1

2
Gim

⇣
@jGmk + @kGjm � @mGjk

⌘
� 1

2
Gim

⇣
@jBmk + @kBjm + @mBkj

⌘
.
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Considering i 2 {1, · · · ,M} and inserting the ansatz (4.C.5) in the equation of motion (4.C.8),
we get:

ÿ i(x) +
MX

j=1

MX

k=1

b�i
jk ẏ

j(x) ẏ k(x) +
NX

j=M+1

NX

k=M+1

b�i
jk (�̇

j(x)� !j) (�̇
k(x) + !k)

+
MX

j=1

NX

k=M+1

b�i
jk ẏ

j(x) (�̇ k(x) + !k) +
NX

j=M+1

MX

k=1

b�i
jk (�̇

j(x)� !j) ẏ
k(x) = 0. (4.C.9)

The quantities b�i
jk are defined in terms of the metric Gij and B-field Bij. As the latter do not

depend explicitly on the isometric coordinates yM+1, · · · , yN , so does b�i
jk. In particular, under

the ansatz (4.C.5), the quantities b�i
jk do not depend on the time coordinate t. The equation

(4.C.9) is thus a di↵erential equation only in the variable x. Moreover, let us note that the
functions �̇ j(x) appearing in this equation are expressed explicitly in terms of y1(x), · · · , yM(x)
and their derivatives through equation (4.C.7). Finally, reinserting this expression in the above
equation, one gets Ordinary Di↵erential Equations (ODEs) of the form:

ÿ i(x) + F i
�
y j(x), ẏ j(x)

�
= 0, 8 i 2 {1, · · · , N}, (4.C.10)

for some explicit functions F i
�
y j, ẏ j

�
. We thus get a coherent one-dimensional dynamical

system on y1(x), · · · , yM(x).
Let us make a brief comment on the method. We used equation (4.C.7) to eliminate the

functions �j(x) of the system. Equation (4.C.7) only allows to express �j(x) as integrals over x,
which are thus “non-local” quantities in terms of the functions y1(x), · · · , yM(x). However, it is
important to notice that in the above analysis, the functions �j(x) appeared in the system only
through their derivatives �̇j(x) (because yM+1, · · · , yN are isometric coordinates), which ensures
that this replacement does not introduce any non-local terms in y1(x), · · · , yM(x). Thus, in the
end, one really obtains an ODE of the form (4.C.10), and not a non-local integro-di↵erential
equation.

4.C.3 Integrability

If the sigma model we start from is integrable, a natural question is whether the induced 1d
dynamical system (4.C.10) obtained from the spinning string ansatz is itself integrable. We
investigate this question in this section. The integrability of the sigma model relies on the zero
curvature equation

@xM(z)� @tL(z) +
⇥
L(z),M(z)

⇤
= 0, (4.C.11)

of a Lax connection
�
M(z),L(z)

�
, depending on the spectral parameter z 2 C. In this section,

we will make the following assumption on the Lax connection:

Assumption: The Lax connection
�
M(z),L(z)

�
depends on the isometric coordi-

nates yM+1, · · · , yN only through their derivatives @k�@
l
+y

i (k + l > 0).

Let us comment briefly on this assumption. The zero curvature equation (4.C.11) on
�
M(z),L(z)

�

should be equivalent to the equations of motion of the sigma model (4.C.1). The coordinates
yM+1, · · · , yN only enter these equations of motion through their derivatives @�yi, @+yi and
@�@+yi, as they correspond to isometries of the model. Thus, the zero curvature equation
(4.C.11) involves only these derivatives. It is thus rather natural to expect that the Lax con-
nection

�
M(z),L(z)

�
itself also only depends on these derivatives. A subtlety in this rea-

soning is that the zero curvature equation (4.C.11) is invariant under gauge transformations
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M(z) 7! h(z)�1M(z)h(z) + h(z)�1@th(z) and L(z) 7! h(z)�1L(z)h(z) + h(z)�1@xh(z). In gen-
eral, it is thus natural to expect that the Lax connection depends solely on the derivatives @+yi,
@�yi and @+@�yi only up to gauge transformations. If this is the case, one would then have to
perform a gauge transformation to get to a Lax connection satisfying the above assumption.

We will now suppose that this assumption is verified and study the behaviour of the Lax
connection under the spinning string ansatz (4.C.5). For i 2 {M + 1, · · · , N}, the derivatives
@k�@

l
+y

i take the form

@k�@
l
+y

i = (�k0�l1 + �k1�l0)!i + (�1)k dk+l

dxk+l
�i(x).

In particular, they do not depend on the worldsheet time coordinate t. As the non-isometric
coordinates y1, · · · , yM do not depend on t in the ansatz (4.C.5), we thus conclude that the
Lax connection

�
M(z),L(z)

�
does not depend on t. In particular, the zero curvature equation

(4.C.11) then takes the form of the Lax equation of a mechanical system:

d

dx
M(z) =

⇥
M(z),L(z)

⇤
. (4.C.12)

This is not yet a Lax representation of the dynamical system (4.C.10). Indeed, the matrices
M(z) and L(z) still depend on the functions �i(x) and not only on the functions yi(x). However,
because of the main assumption made in this section, they depend on these functions �i(x)

only through their derivatives dk

dxk�i(x) (k > 0, see above). These derivatives can be expressed
in terms of the functions yi(x) through equation (4.C.7). In then end, we then obtain an
expression of the Lax connection (M(z),L(z)) in terms of the functions y1(x), · · · , yM(x) and
their derivatives.

This is a good indication of the integrability of the spinning string system. Let us note
however that in general, this does not ensure that the Lax representation (4.C.12) produces a
su�cient number of conserved quantities, nor that these conserved quantities are in involution
one with another (even if the field theory Lax connection one starts with satisfies a Maillet
bracket). It seems di�cult to address these questions in full generality. They would thus
require a case by case analysis.



Chapter 5

Concluding remarks

In this thesis we focused on the study of integrable sigma models with twist function. In
particular, we showed the power of a�ne Gaudin models for generating new examples of these
theories in a systematic way. Using this framework, we constructed in chapters 3 and 4 two
new classes of models pertaining to this panorama of theories. In chapter 3 we focused on
integrable deformations, constructing a theory coupling together an arbitrary number of Yang-
Baxter and �-deformations of the principal chiral model on the same Lie group. In chapter
4, we presented a new class of integrable coset sigma models defined on the direct product of
N copies of a Lie group modulo the action of a certain diagonal gauge subgroup. We then
specified the construction of chapter 4 to the case of two copies of the group SU(2), obtaining
a new integrable sigma model on the manifold T 1,1.

Numerous possible directions appear promising for future exploration of this panorama of
integrable sigma models. Firstly, the question that arises naturally from the work contained in
this thesis is if it is possible to combine the results of chapters 3 and 4 to construct integrable
deformations of the models introduced in chapter 4. From the general formalism of dihedral
a�ne Gaudin models we know that these theories should exist. One should then proceed to
compute the explicit form of the action obtained from this construction. For the case of T 1,1

models it would be interesting to compare this action with the models of [135–138], where
non-integrable deformations of sigma models on T 1,1 spaces were studied in the context of the
so-called gravity/CYBE correspondence.

Another direction would be to study further the connections of a�ne Gaudin models with
the four-dimensional semi-holomorphic Chern-Simons theory introduced in [64]. In this regard,
it would be interesting to show explicitly how the models constructed in chapter 4 can be
recovered from the framework of the 4d Chern-Simons theory, similarly to what we did for the
models presented in chapter 3. Furthermore, it was shown recently in [139] how the action of
very general realisations of a�ne Gaudin models can be obtained from the 4d Chern-Simons
theory, including ones with twist functions with higher order poles which were not studied in
this thesis. An interesting possibility would be to apply this construction to obtain explicit
examples of new integrable sigma models and explore the properties of these theories.

It would also be very interesting to generalise the approach presented in this thesis to
construct new integrable sigma models based on supergroups or cosets thereof. For that, one
would have to formulate a�ne Gaudin models associated with Lie superalgebras. Among the
theories resulting from this construction, it would be very interesting to identify integrable
superstring models. A first step in this direction would be to understand how to implement
di↵eomorphism invariance and possibly local forms of supersymmetry such as -symmetry in
the formalism of a�ne Gaudin models. As an exercise one could for instance reinterpret the
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Hamiltonian integrable structure of the AdS5⇥S5 superstring in terms of a�ne Gaudin models1,
starting from the known results about its Maillet bracket [141, 142] (see also previous results
in [143–148]). As the following step in the construction one would have to understand which
of the resulting new models correspond to critical string backgrounds.

The quantisation of integrable sigma models in the panorama described above is also an
appealing problem. For example, a natural question would be to determine the S-matrix and
spectrum of these theories. Another important direction for the exploration of the quantum
properties of these models is the study of their renormalisability. As mentioned respectively
in chapters 3 and 4, the one-loop renormalisability of the two classes of models introduced in
this thesis was proved in [106] and [132] (for the latter, in the case of models on G ⇥ G/H
only). These works opened interesting future perspectives. For instance, it was found in the
same references that both these classes of models are in general not stable under the 2-loop RG
flow as they stand, hence requiring quantum corrections to their geometry. It would thus be
interesting to determine the form of these corrections. Moreover, it was shown in [149] that for
the coupled principal chiral models, the RG flow admits a remarkably simple characterisation
at one-loop in terms of a renormalisation group equation for their twist function. This was also
shown to be the case for the models constructed in chapter 3 in the reference [106]. Since the
twist function packages all the continuous parameters of the underlying a�ne Gaudin model,
this leads to the expectation that a similar renormalisation group equation holds in general
for all integrable sigma models characterised by a twist function. In particular, it would be
interesting to check this for the models of chapter 4 and see how this result extends to higher
loops.

1Note that the AdS5 ⇥ S5 superstring was reinterpreted recently in the context of 4d Chern-Simons theory
in [140].
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[140] K. Costello and B. Stefański, Chern-Simons Origin of Superstring Integrability, Phys.
Rev. Lett. 125 (2020) 121602 [arXiv:2005.03064].

[141] M. Magro, The Classical Exchange Algebra of AdS5 ⇥ S5 JHEP 01 (2009) 021
[arXiv:0810.4136].

http://vmu.phys.msu.ru/en/abstract/1990/3/90-3-013/
http://vmu.phys.msu.ru/en/abstract/1990/3/90-3-013/
https://doi.org/10.1016/0550-3213(87)90195-7
https://doi.org/10.1016/0550-3213(87)90195-7
https://doi.org/10.1016/0370-2693(84)91275-9
https://doi.org/10.1016/0370-2693(85)90479-4
https://doi.org/10.1016/0370-2693(85)90479-4
https://doi.org/10.1016/0550-3213(90)90577-Z
https://doi.org/10.1016/0550-3213(90)90577-Z
https://iopscience.iop.org/article/10.1088/0264-9381/17/24/312
https://arxiv.org/abs/hep-th/0007086
https://doi.org/10.1088/1126-6708/2002/06/007
https://arxiv.org/abs/hep-th/0204226
https://doi.org/10.1016/j.nuclphysb.2003.08.036
https://arxiv.org/abs/hep-th/0307191
https://arxiv.org/abs/2103.10513
https://iopscience.iop.org/article/10.1088/1126-6708/2003/02/030
https://arxiv.org/abs/hep-th/0212119
https://doi.org/10.1103/PhysRevD.69.086009
https://arxiv.org/abs/hep-th/0311004
https://link.springer.com/article/10.1007/JHEP12(2014)085
https://arxiv.org/abs/1406.2249
https://iopscience.iop.org/article/10.1088/1742-6596/670/1/012019
https://iopscience.iop.org/article/10.1088/1742-6596/670/1/012019
https://arxiv.org/abs/1510.00835
https://doi.org/10.1016/j.nuclphysb.2017.06.017
https://arxiv.org/abs/1612.08615
https://link.springer.com/article/10.1007/JHEP02(2021)126
https://arxiv.org/abs/2010.14081
https://arxiv.org/abs/2011.13809
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.121602
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.121602
https://arxiv.org/abs/2005.03064
https://iopscience.iop.org/article/10.1088/1126-6708/2009/01/021
https://arxiv.org/abs/0810.4136


BIBLIOGRAPHY 114

[142] B. Vicedo, Hamiltonian dynamics and the hidden symmetries of the AdS5 ⇥ S5

superstring JHEP 01 (2010) 102 [arXiv:0910.0221].

[143] A. Mikhailov and S. Schafer-Nameki, Algebra of transfer-matrices and Yang-Baxter
equations on the string worldsheet in AdS(5) x S(5), Nucl. Phys. B 802 (2008) 1
[arXiv:0712.4278].

[144] A. K. Das, J. Maharana, A. Melikyan and M. Sato, The Algebra of transition matrices
for the AdS5 ⇥ S5 superstring, JHEP 12 (2004) 055 [arXiv:0411200].

[145] A. K. Das, A. Melikyan and M. Sato, The Algebra of flat currents for the string
onAdS5 ⇥ S5 in the light-cone gauge, JHEP 11 (2005) 015 [arXiv:0508183].

[146] A. Mikhailov, Bihamiltonian structure of the classical superstring in AdS5 ⇥ S5, Adv.
Theor. Math. Phys. 14 (2010) 1585 [arXiv:0609108].

[147] J. Kluson, Reduced Sigma-Model on O(N): Hamiltonian Analysis and Poisson Bracket
of Lax Connection, JHEP 09 (2007) 100 [arXiv:0707.3264].

[148] S. Aoyama, Classical exchange algebra of the superstring on S5 with AdS-time, J. Phys.
A 47 (2014) 075402 [arXiv:0709.3911].

[149] F. Delduc, S. Lacroix, K. Sfetsos and K. Siampos, RG flows of integrable �-models and
the twist function, JHEP 02 (2021) 065 [arXiv:2010.07879].

https://link.springer.com/article/10.1007/JHEP01(2010)102
https://arxiv.org/abs/0910.0221
https://doi.org/10.1016/j.nuclphysb.2008.04.029
https://arxiv.org/abs/0712.4278
https://iopscience.iop.org/article/10.1088/1126-6708/2004/12/055
https://arxiv.org/abs/hep-th/0411200
https://iopscience.iop.org/article/10.1088/1126-6708/2005/11/015
https://arxiv.org/abs/hep-th/0508183
https://www.intlpress.com/site/pub/pages/journals/items/atmp/content/vols/0014/0006/a001/
https://www.intlpress.com/site/pub/pages/journals/items/atmp/content/vols/0014/0006/a001/
https://arxiv.org/abs/hep-th/0609108
https://iopscience.iop.org/article/10.1088/1126-6708/2007/09/100
https://arxiv.org/abs/0707.3264
https://iopscience.iop.org/article/10.1088/1751-8113/47/7/075402
https://iopscience.iop.org/article/10.1088/1751-8113/47/7/075402
https://arxiv.org/abs/0709.3911
https://link.springer.com/article/10.1007/JHEP02(2021)065
https://arxiv.org/abs/2010.07879


BIBLIOGRAPHY 115

Eidesstattliche Versicherung / Declaration on oath

Hiermit versichere ich an Eides statt, die vorliegende Dissertationsschrift selbst verfasst und
keine anderen als die angegebenen Hilfsmittel und Quellen benutzt zu haben.

Hamburg, den 02 Mai 2021 Unterschrift


	Introduction
	Affine Gaudin models
	Classical integrable field theories
	Lax formalism
	Hamiltonian formulation and Maillet Poisson brackets
	R-matrices and twist function

	AGMs as integrable field theories with twist function
	Motivation
	Realisations of affine Gaudin models
	Hamiltonian and momentum
	Space-time symmetries
	Integrability
	Examples


	Integrable deformations of coupled sigma models
	Introduction
	Hamiltonian formulation
	Phase space of canonical fields in T*G
	Kac-Moody realisations in T*G
	Examples of realisations
	Affine Gaudin models construction
	Hamiltonian and momentum
	Integrability
	Exploring the ``space of models''
	Recovering undeformed models

	Lagrangian formulation
	Lax connection in the Lagrangian formulation
	Inverse Legendre transform and action of the models
	Parameters of the models
	Undeformed limit

	Yang-Baxter and -deformed coupled models
	Deformed model with N1 Yang-Baxter realisations and N2 -realisations
	Model with N Yang-Baxter realisations
	Model with N -realisations
	Deformed models with two copies

	Relation with 4d semi-holomorphic Chern-Simons theory
	4d semi-holomorphic Chern-Simons theory and integrable field theories
	The models
	1-form 
	Boundary conditions
	Fields of the model
	Identification of the two approaches
	Identification of the Lax connections
	Identification of the actions

	Conclusions
	Proof of the identities for the operators B and C
	Simplification of the action of the model with N copies

	Integrable multi-parametric coset sigma models
	Introduction
	Construction of the models in the Hamiltonian formulation
	Definition of the models as realisations of affine Gaudin models
	Hamiltonian, constraint and gauge symmetry
	Space-time symmetries
	Integrability
	The panorama of the models

	Lagrangian formulation of the models with two copies
	Lagrangian expression of the momentum fields
	Action of the model
	Lax connection in the Lagrangian formulation
	A limit of the model

	Integrable sigma models on T1,1 manifolds
	The models
	Modification of the background, isometries and equations of motion
	Spinning string solutions

	Conclusions
	Coefficients of the Hamiltonian
	Reformulation of the action
	Spinning string ansatz for a sigma model with B-field
	Generalities
	Spinning string ansatz
	Integrability


	Concluding remarks

