
Domain-Independent Extraction
of Insights from User Comments

Dissertation with the aim of achieving a doctoral degree (Dr. rer. nat.)
at the Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics
Applied Software Technology

Universität Hamburg

submitted by

Marlo Atib Häring

from Hamburg

Hamburg, 2021

.

Day of the oral defense: July 07, 2021

Chair of the examination board: Prof. Dr. Ingrid Schirmer
Prof. Dr. Chris Biemann (deputy)

First reviewer: Prof. Dr. Walid Maalej
Second reviewer: Prof. Dr. Andreas Vogelsang
Third reviewer: Prof. Dr. Nicole Novielli

iii

To my family.

.

Acknowledgments

First and foremost, I would like to thank Walid Maalej, my doctoral super-
visor. I’m deeply thankful for your exceptional support and valuable advice
throughout my Ph.D. You continuously coached, encouraged, and challenged
me to improve myself, not only professionally but also in my personal life. You
always actively pushed my endeavors, such as my research stay in Australia,
with lifelong experiences and impressions. Thank you!

I am proudly one of the first members of our research team and very grateful
for the chance to meet and work with such great and supportive colleagues. I
enjoyed the lively discussions over coffee, the social events, and I learned a lot
from everyone. I would especially like to thank my good friend and office partner,
Christoph Stanik. I am thankful for our valuable discussions on our research,
and I had lots of fun sharing an office with you for many years. My research
has also benefited from the fruitful discussions with Tim Pietz. I enjoyed our
collaboration and our discussions about current tech trends.

I would also like to thank my close and long-term friend Phillipp Schmedt
particularly for his valuable feedback on my thesis. I always enjoy our lively
discussions on random topics.

Finally, I would like to thank my wife and my family, on whom I can always
and unconditionally rely. Your love and support, especially during my Ph.D.,
are invaluable, and I will never forget that.

vii

.

Abstract

Nowadays, user comments are an essential part of online platforms. Users sub-
mit their comments to express their opinions, provide feedback, or discuss the
online platform’s products. This thesis focuses on user comments in the two
domains, online journalism and app development. In online journalism, users
comment on diverse articles on news sites. In the app development domain, users
submit user comments as app reviews in app stores. Although user comments
are primarily associated with destructive contributions such as hate speech,
research showed that domain experts clearly understand the potential of con-
structive user comments to improve their product. However, domain experts
are often overwhelmed by the vast number and diverse comments, for which a
manual analysis is barely feasible.

In this thesis, we first identified the domain experts’ challenges with user
comments and identified requirements to provide tool-support for the comment
analysis. One particular feature that supports domain experts to extract insights
is the automatic detection of aspect addressings in user comments.

We designed a domain-independent machine learning pipeline, which com-
bines the domain expert’s knowledge with state-of-the-art text embeddings,
deep learning methods, and natural language processing techniques. We used
our pipeline in four different studies, two in the online journalism domain and
two in the app development domain, to validate its applicability. With these
studies, we contributed to the state-of-the-art in user comment mining and ex-
tracted insights for the respective domain experts.

Finally, we developed a domain-independent comment analysis prototype (DI-
CAP) based on our pipeline. DICAP provides machine learning support for
domain experts to identify addressings to custom aspects in user comments.
DICAP’s source code is published under the Apache License 2.0.

We evaluated DICAP’s classification performance in the online journalism
and app development domain. We achieved promising results in both domains
already after a few annotations (n ≥ 100) with a short training time (𝑡 = 0.1𝑠).
Our evaluation time measurements show that DICAP is also applicable at a

larger scale with millions of user comments. Our work enables the domain-
independent extraction of insights from user comments to support domain ex-
perts in improving their products.

Kurzfassung

Heutzutage sind Nutzerkommentare ein wichtiger Bestandteil von Online-Platt-
formen. Nutzer schreiben ihre Kommentare, um ihre Meinung zu äußern, Feed-
back zu geben oder über das Produkt der Online-Plattform zu diskutieren. Diese
Dissertation untersucht die Nutzerkommentare in der Online-Journalismus- und
der App-Entwicklungs-Domäne. Im Online-Journalismus kommentieren Nutzer
diverse Artikel auf Online-Nachrichtenseiten. In der App-Entwicklungs-Domäne
schreiben Nutzer Kommentare in Form von App-Rezensionen in App-Stores.
Obwohl Nutzerkommentare in erster Linie mit destruktiven Beiträgen wie Has-
sreden in Verbindung gebracht werden, haben Studien gezeigt, dass Domänen-
experten das Potenzial konstruktiver Nutzerkommentare nutzen können um ihre
Produkte zu verbessern. Allerdings sind Domänenexperten oft wegen der großen
Anzahl und Vielfalt an Kommentaren überfordert und eine manuelle Analyse
wird oft als nicht rentabel angesehen.

In dieser Dissertation haben wir zunächst die Herausforderungen der Domänen-
experten im Umgang mit Nutzerkommentaren identifiziert und Anforderungen
an eine Software-Plattform für die Kommentaranalyse ermittelt. Ein besonderes
Feature, das Domänenexperten bei der Gewinnung von Erkenntnissen unter-
stützt, ist die automatische Erkennung von Aspektadressierungen in Nutzerkom-
mentaren.

Wir haben eine domänenunabhängige Machine-Learning-Pipeline entworfen,
die das Wissen der Domänenexperten mit modernsten Texteinbettungen, Deep-
Learning-Methoden und Techniken zur Verarbeitung natürlicher Sprache kom-
biniert. Wir haben unsere Pipeline in vier verschiedenen Studien eingesetzt, zwei
in der Domäne Online-Journalismus und zwei in der Domäne App-Entwicklung,
um die Anwendbarkeit zu validieren. Innerhalb dieser Studien leisteten wir
einen Beitrag zum Stand der Technik in der Kommentaranalyse und extrahierten
Erkenntnisse für die Experten in der jeweiligen Domäne.

Schließlich entwickelten wir, basierend auf unserer Pipeline, einen domäne-
nunabhängigen Prototyp zur Kommentaranalyse (DICAP). DICAP unterstützt
Domänenexperten mit maschinellem Lernen bei der Erkennung von benutzer-
definierten Aspektadressierungen in Nutzerkommentaren. Den Quellcode von
DICAP haben wir unter der Apache License 2.0 veröffentlicht.

Wir haben DICAP’s automatische Klassifizierungen im Online-Journalismus
und der App-Entwicklung evaluiert. In beiden Domänen erreichten wir bere-
its mit wenigen Annotationen (n ≥ 100) vielversprechende Ergebnisse mit einer
kurzen Trainingszeit (𝑡 = 0.1𝑠). Unsere Zeitmessungen der Evaluation zeigen,
dass DICAP auch für eine Anwendung in größerem Maßstab mit Millionen
von Nutzerkommentaren einsetzbar ist. Unsere Arbeit ermöglicht die domä-
nenunabhängige Extraktion von Erkenntnissen aus Benutzerkommentaren, um
Domänenexperten bei der Verbesserung ihrer Produkte zu unterstützen.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Objectives & Contribution . 3
1.3 Scope . 6
1.4 Thesis Structure . 7

I Problem 9

2 Foundation 11
2.1 User Comments on Online Platforms 11

2.1.1 Product . 11
2.1.2 User Comments . 13
2.1.3 User Comment Sections 14
2.1.4 Domain Experts . 15
2.1.5 Users . 16
2.1.6 Aspect Addressing in User Comments 16

2.2 Insights from User Comments . 18
2.2.1 Insights in Literature . 18
2.2.2 Descriptive Insights . 19
2.2.3 Corrective Insights . 20
2.2.4 Perfective Insights . 21

2.3 Summary . 22

3 User Comment Analysis 23
3.1 User Comment Analysis in App Development 23

3.1.1 User Feedback Analytics 24
3.1.2 Combining User Feedback and Bug Reports 24
3.1.3 Automatic App Review Classification 25

3.2 User Comment Analysis in Online Journalism 25
3.2.1 Motivation . 26
3.2.2 Research Design . 27
3.2.3 Results . 30

xiii

Contents

3.2.4 Threads to Validity . 36
3.3 Conclusion . 36

4 Requirements for a User Comment Analysis Tool 39
4.1 Motivation . 39
4.2 Research Design . 41
4.3 Results . 44
4.4 Discussion . 53

4.4.1 Feasibility Analysis . 54
4.4.2 Transfer to App Development 55

4.5 Threats to Validity . 56
4.6 Conclusion . 57

II Solution 59

5 Domain-Independent Machine Learning Pipeline 61
5.1 User Comment Collection . 61
5.2 Comment Classification for Domain-specific Aspects 64

5.2.1 Traditional Machine Learning Approach 64
5.2.2 End-to-end Machine Learning Approach 68

5.3 Matching Comments to Product-specific Aspects 69
5.3.1 Transfer Learning Approach 70
5.3.2 Text Embedding Similarity Approach 70

5.4 Evaluation of the Machine Learning Approach 72
5.4.1 Quantitative Assessment 72
5.4.2 Qualitative Assessment 74

5.5 Discussion . 74
5.6 Conclusion . 75

6 Classifying Journalistic Aspects in User Comments 77
6.1 Motivation . 77
6.2 Research Design . 78

6.2.1 Research Questions . 78
6.2.2 Research Method . 79
6.2.3 Research Data . 80

6.3 Results . 81
6.3.1 Data Analysis . 81
6.3.2 Classifier Experimentation Results 83
6.3.3 Hyperparameter Optimization 89

xiv

Contents

6.3.4 User Comment Classification 90
6.3.5 Meta-Comment Classification 91
6.3.6 Feature Significance . 92

6.4 Insights extracted from Classified Meta-Comments 94
6.4.1 Comments Addressing the Media 94
6.4.2 Comments Addressing the Journalist 94
6.4.3 Comments Addressing the Moderator 95

6.5 Threats to Validity . 95
6.6 Discussion . 96
6.7 Conclusion . 99

7 Matching User Comments to Article Aspects 101

7.1 Motivation . 101
7.2 Methodology . 103

7.2.1 Study Data . 103
7.2.2 CoLiBERT . 104
7.2.3 Research Question . 106
7.2.4 Study Design . 106

7.3 CoLiBERT Evaluation . 107
7.3.1 Quantitative Results . 108
7.3.2 Comment-Reply Classification. 108
7.3.3 Comment-Paragraph Association. 109
7.3.4 Qualitative Results . 110

7.4 Facilitated Workshops . 111
7.4.1 Workshop Design and Implementation 111
7.4.2 Results . 112

7.5 Discussion . 114
7.5.1 Implications of the Results 115
7.5.2 Field of Application . 115

7.6 Threats to Validity . 116
7.7 Conclusion . 117

8 Classifying App Development Aspects in User Comments 119

8.1 Motivation . 119
8.2 Methodology . 121

8.2.1 Research Question . 121
8.2.2 Research Design . 121
8.2.3 Research Data . 122

xv

Contents

8.3 Machine Learning Pipelines . 123
8.3.1 Traditional Machine Learning 123
8.3.2 Deep Learning . 126

8.4 Results . 129
8.5 Discussion . 130

8.5.1 Implications of the Results 130
8.5.2 Field of Application . 131
8.5.3 Threats to Validity . 132

8.6 Conclusion . 132

9 Matching User Comments to App Aspects 135
9.1 Motivation . 135
9.2 Approach . 137

9.2.1 Automatic Problem Reports Classification 137
9.2.2 Text Representation with Word Embeddings 138
9.2.3 Identifying relevant Bug Reports for a Problem Report . . 140

9.3 Empirical Evaluation . 141
9.3.1 Research Questions . 141
9.3.2 Evaluation Data . 142
9.3.3 Evaluation Method . 143

9.4 Evaluation Results . 145
9.5 Discussion . 150
9.6 Threats to Validity . 153
9.7 Conclusion . 154

III Synopsis 157

10 DICAP — Domain-Independent Comment Analysis Prototype 159
10.1 Motivation . 159
10.2 Usage of DICAP . 160

10.2.1 Online Journalism . 160
10.2.2 App Development . 161

10.3 Requirements . 162
10.3.1 Functional Requirements 162
10.3.2 Quality Requirements . 163

10.4 Architecture . 164
10.4.1 Container-based Architecture 164
10.4.2 Machine Learning Pipelines 165
10.4.3 Data Model . 167

xvi

Contents

10.4.4 Dynamic View . 169
10.5 User Interface . 174
10.6 Machine Learning Experiments 176
10.7 Experiments Results . 177
10.8 Discussion . 178
10.9 Conclusion . 179

11 Conclusion 181
11.1 Summary of the Contributions 181
11.2 Threats to Validity . 185
11.3 Discussion . 187

IV Appendencies 191

A Mock-Up Design 193

B List of Figures 197

C List of Tables 201

D List of Own Publications 203

E Bibliography 205

xvii

Chapter 1

Introduction

This chapter describes the problem statement motivating this thesis, summa-
rizes the objectives & contributions, and defines the scope. It concludes with
the overall structure of this thesis.

1.1 Problem Statement

Users can not only consume static content but also generate content and con-
tribute to the online platform. User comments are a textual form of user-
generated content [182, p. 8], consisting of unstructured data written in natu-
ral language. Users post their comments on products and services in different
domains for different purposes, such as sharing their opinions or providing feed-
back. In the following, we introduce user comments in the online journalism
and the app development domain.

User comments in online journalism
In online journalism, media houses consider comment sections and other partic-
ipation features mandatory on news sites for readers to share and discuss their
opinions [245]. Thereby, popular news sites such as “The New York Times” re-
ceive ten-thousands of user comments daily [184]. Although these contributions
are often associated with destructive comments and hate speech [105], journal-
ists have a clear understanding of what they deem useful contributions. Useful
comments add to the debate, point out errors, contribute with personal sto-
ries, or provide additional information or perspectives towards a specific topic.
Identifying these comments in the mass is challenging [25, p.387][197, 214] and
journalists seek tool-support to assist structuring and navigating through the
comment mass [197].

User comments in app development
In the app development domain, apps can be found, purchased, downloaded,
and installed from application distribution platforms called app stores. App

1

Chapter 1 Introduction

users express their feedback, opinion, and suggestions directly in the app stores
or via social media. The app developers of popular software houses receive an
increasing number of user comments over the past years [194]. App developers
constantly try to improve their mobile apps regarding their users’ experience.
Research showed that user feedback contains valuable information for app devel-
opers, including problem reports or feature requests [160, 240]. Addressing this
feedback to improve software products and user satisfaction [195] is essential to
sustain the competitive app market.

The following problems arise:

Amount and diversity of user comments
The number of user comments on the web has steadily increased over the past
years in different domains [184, 194]. This applies to both domains, online jour-
nalism and app development. Furthermore, user comments consist of unstruc-
tured textual data. Consequently, users have the freedom to address diverse
aspects in their own words in different languages, which impedes the analysis.
User comments reach the service provider not only via the comment section on
the news sites or app stores but also via various social media sites, including
Twitter [170] and Facebook [5]. The settings and filtering options for processing
user comments differ on each of these channels, impeding comment aggregation
[261]. Additionally, the anatomy and features of comment sections differ across
news sites, app stores, and social media platforms. Whereas news sites usually
provide a thread structure for users to discuss specific topics, the comment sec-
tion of app stores is usually restricted to a certain length and allows only app
developers to reply.

Missing tool-support to utilize user comments
Finding useful user contributions within the plethora of user comments is gen-
erally challenging for domain experts across different domains as users submit
their comments in comment sections linked to different products including, on-
line articles, mobile apps, or other goods or services [153]. Often service or site
administrators monitor user comments and remove destructive, offensive, spam,
or misplaced content. In contrast to that, finding useful contributions from
the constant flow of comments resembles “finding the needle in a haystack” [25,
89]. The main challenge is processing and synthesizing these contributions into
useful insights. Since the number of user comments scales up with the number
of users, a manual analysis is laborious, time-consuming, and mostly not fea-
sible. Therefore, domain experts seek tool-support to assist the extraction of
constructive user comments to utilize the comments’ potential [153, 160]. Alas,
the development of tools support for the analysis, filtering, and summary of user

2

1.2 Objectives & Contribution

comments has been identified as the main challenge for journalists [60] and app
developers [160]. Domain experts are in a dilemma as they are aware of the
hidden insights in the flood of comments, but they lack the tools to extract and
utilize them.

1.2 Objectives & Contribution

This thesis aims to automatically analyze user comments and extract insights
for domain experts. We focus on the online journalism and the app development
domain. We structure our contributions into three parts.

First, we analyzed the challenges of domain experts when dealing with user
comments and identified concrete requirements and mock-ups for a user com-
ment analysis tool to utilize comments. Second, we focused on automatically de-
tecting aspect addressings in user comments and develop a domain-independent
machine learning pipeline for that task. We utilized our pipeline in four dif-
ferent studies and extract insights for experts in the online journalism and app
development domain. Third, we developed DICAP, a functional prototype,
which leverages machine learning approaches to support domain experts with
the analysis of user comments regarding custom domain aspects.

Identification of requirements for tool-support with user comments.
In the first part of this thesis, we studied the anatomy of user comments in two
different domains, identified their similarities, and designed a generic domain-
independent analysis model. Subsequently, we studied the literature in Chapter
3. We conducted an exploratory study in Chapter 4 to identify the requirements
for tool-support for domain experts to utilize user comments.

In the literature, we found a general lack of tool-support, focusing on identify-
ing constructive user comments. This applies particularly to studies in computer
science and research involving automated analysis. More prevalent is research
about filtering destructive user comments, for example, hate speech and of-
fensive comments. We further found that most automatic comment analysis
approaches focused on user comments in the English language as the natural
language processing techniques are most advanced in English.

In our exploratory study (Chapter 4), we systematically identified concrete
requirements and developed mock-ups for a user comment analysis tool, which
could support domain experts to extract insights from user comments. One
particular requirement, which domain experts considered helpful, is identify-
ing addressings in user comments towards certain domain-specific aspects (e.g.,
quality of reporting) or product-specific aspects (e.g., news article topics or app

3

Chapter 1 Introduction

features). In parallel, we also found within our literature study (Chapter 3
that the identification of addressings is under-researched and requires further
research.

Domain-independent machine learning pipeline for identifying as-
pect addressings in user comments. In Chapter 5, we developed a domain-
independent machine learning pipeline consisting of automatic approaches to
identify aspect addressings in user comments. Our pipeline distinguishes be-
tween the addressings of two different aspect types, which we introduce in
Chapter 2: (1) domain-specific aspects such as journalistic or app development
aspects and (2) the product-specific aspects such as news article-specific or app-
specific aspects. Our pipeline incorporates cross-domain knowledge based on
our exploratory study findings, including technical knowledge and the experts’
knowledge of the problem domain.

We applied our pipeline in four different studies in the online journalism and
the app development domain for both addressing types to evaluate its prac-
ticability. In the following, we describe how we applied our machine learning
pipeline to concrete problems and how domain experts can use the results.

• Journalism: Classifying user comments addressing journalistic
aspects. In Chapter 6, we automatically identified addressings regard-
ing journalistic aspects: the media company, journalist, and community-
moderator. Journalists benefit from these comments as it enables them
to direct comments to the newsroom or to single journalists that may call
for reactions. We found that journalists can extract valuable insights from
these comments as they, for instance, report errors in articles, include ad-
ditional information on a topic, or contain criticism regarding the article’s
quality. We also discussed how domain experts could apply automatic
identification in their journalistic workflow. For example, media houses
could improve their topic coverage, journalists could correct errors in their
articles and improve their journalistic work, and community-moderators
learn feature ideas for their user comment section.

• Journalism: Identifying user comments addressing article as-
pects. In Chapter 7, we applied the machine learning pipeline to iden-
tify user comment addressings to article-specific aspects, which are arti-
cle paragraphs in this context. We developed and evaluated CoLiBERT,
which learned a general concept of how users reply to each other. We
utilized this learned concept to identify addressings of user comments to-
wards article paragraphs. CoLiBERT can identify article-specific aspect

4

1.2 Objectives & Contribution

addressings in German and English user comments. We further conducted
a facilitated workshop with journalists and community-moderators. We
found that the aggregation based on article paragraphs is a useful feature
for journalists to identify, for example, top-addressed article paragraphs.
We further provide an outlook into how we can use CoLiBERT to redesign
comment sections and place comments closer to their addressing article.

• App development: Classifying user comments addressing app
development aspects. In Chapter 8, we conducted machine learning
experiments using traditional and end-to-end deep learning approaches to
automatically identify users’ problem reports, inquiries, or irrelevant com-
ments. App developers use these app-specific aspects and extract insights
from them to fix bugs, collect inspirations for additional future ideas, or
filter noise. We achieved promising results with a supervised machine
learning approach based on our machine learning pipeline to identify app
development aspects in app reviews on the Google Play store and tweets
on support accounts in English and Italian. We highlight how app devel-
opers can utilize these classifications and extract different insights based
on our approach. For example, app developers can use problem reports
to collect additional information for already reported bugs in their app
or reveal unnoticed bugs. Inquiries can inspire app developers for future
feature ideas or support them to prioritize the development for their next
version.

• App development: Identifying user comments addressing bug
reports. In Chapter 7, we developed DeepMatcher, a fully automated
approach to find problem reports in app reviews and subsequently match
them to bug reports in issue tracker systems using. DeepMatcher is based
on our machine learning pipeline and uses an approach, which ranks user
comments regarding their app-specific aspect addressings. DeepMatcher
enables the domain experts in the app store domain to aggregate user
comments in app stores and group them regarding their addressing to-
wards bug reports in the issue tracker. We describe three use cases for
app developers, which help them to extract insights from user comments.
First, DeepMatcher can help to detect bugs earlier by identifying prob-
lem reports, which app developers did not report in the issue tracker yet.
Second, DeepMatcher can augment existing bug reports with additional
information from user comments. Third, developers can use DeepMatcher
to identify bug duplicates, recurring bugs, or similar bugs.

5

Chapter 1 Introduction

DICAP- A domain-independent comment analysis prototype. In
Chapter 10, we designed and developed DICAP, a domain-independent comment
analysis prototype, which enables experts from different domains to analyze user
comments with machine learning support. DICAP allows the domain expert to
define a domain aspect and semi-automatically classify whether user comments
address the defined aspects. Our prototype requires the domain expert to anno-
tate a few samples to train a machine learning model, which improves with an
increasing number of training samples. DICAP’s architecture leverages state-
of-the-art semantic text embeddings with a lightweight logistic regression model
to address scalability requirements for an application to millions of user com-
ments.

1.3 Scope

We define the scope of this thesis regarding the following topics.

Domain selection
In this thesis, we focus on the two domains, online journalism and app devel-
opment. We chose the online journalism domain as this domain covers a wide
breadth of topics, and they are often dependent on specific events and, there-
fore, very volatile and frequently changing. These factors impede the analysis
of user comments and set challenging requirements to an automatic approach,
including topic independence, quick adaption, and the necessity to generalize.
Journalistic content is also vigorously spread and discussed on various social
media websites, with diverse user comment sections and comment metadata.
Besides English comments, we also considered user comments in German and
Italian representing non-English languages. This required us to consider lan-
guage independence when developing analysis techniques, which is particularly
challenging as natural language processing techniques are most advanced for
English. As a second domain, we considered the app development domain to
support the generalizability of user comments across different domains. Addi-
tionally, app users write comments to rate and assess an app with a star rating,
which differs from the comment intention on news sites. We also chose the tech-
nical app development domain to build upon our previous research. We did not
consider user comments in other domains such as e-commerce, online learning
platforms, online encyclopedia, or personal blogs. However, we discuss how we
can transfer our contributions to other domains.

6

1.4 Thesis Structure

Utilization of insights
Domain experts analyze user comments to extract insights from the numerous
user comments. We developed automatic approaches to facilitate the extrac-
tion of insights from user comments for specific problems in different domains.
However, the domain experts have to analyze the results and explore how these
insights can be integrated into their workflow. The utilization of the insights
and the integration of our findings into the respective domain experts’ work is
not part of this thesis.

Text-based user user-generated content
User-generated content can consist of different content types, including text,
images, audio, and video. This thesis focuses on textual user comments as it
is the most prevalent form of user-generated content on online platforms. We
excluded the other content types for this thesis.

1.4 Thesis Structure

We structure the remainder of this thesis into the following three parts.

Part I Problem. In this first part, we analyze the challenges with user com-
ments in the online journalism and app development domain. In Chapter
2, we first analyze the occurrences of user comments in both domains and
derive a general domain-independent analysis model of users’ comment-
ing products, whereby they address different aspects. In Chapter 3, we
conducted a literature study to understand how previous research utilized
user comments regarding which analysis dimensions. In Chapter 4, we
conducted an exploratory study with experts from the online journalism
domain. We identified concrete requirements for a comment analysis tool,
which domain experts consider useful features, and discuss how we can
transfer these findings to user comments in the app development domain.

Part II Solution. In the second part of the thesis, we focus on identifying ad-
dressings in user comments regarding domain-specific aspects and product-
specific aspects. For this purpose, we developed a machine learning pipeline
in Chapter 5, using state-of-the-art machine learning and natural language
processing approaches to automate the addressing identification. In the
following four chapters, we developed automatic approaches based on our
pipeline to identify both aspect addressings in the online journalism and
app development domain. We discuss how domain experts can use our
approach to extract insights. In Chapter 6, we developed an automatic

7

Chapter 1 Introduction

approach to classify user comments regarding journalism-specific aspect
addressings for journalists to find insightful comments. In Chapter 7, we
developed an approach to detect which specific news article paragraphs
user comments address to improve the discussion structure. In Chapter 8,
we developed an automatic approach to classify user comments regarding
app development aspects for developers to identify problems or inquiries.
In Chapter 9, we developed DeepMatcher, an approach that identifies app-
specific aspects for developers to learn more about existing bugs or find
new bugs from user comments.

Part III Synopsis. In Chapter 10, we specified the requirements for DICAP,
a domain-independent comment analysis prototype. This functional pro-
totype supports domain experts to automatically identify addressings in
user comments regarding domain-specific aspects and product-specific as-
pects. In Chapter 11, we summarize the contributions, describe threats
to validity, and discuss the thesis with suggestions for future research.

8

Part I

Problem

9

Chapter 2

Foundation

In this chapter, we defined and summarized the essential concepts of this thesis.
We first introduce a conceptual domain model in Section 2.1, which defines the
relations between users, their comments, and the commented content in the
respective domain. In Section 2.2, we further introduce the term “insight” based
on related work and subsequently define our insight categories for this thesis.
Finally, we conclude this chapter with a summary in Section 2.3.

2.1 User Comments on Online Platforms

In this section, we introduce the relevant terms and their relations for this thesis.
Figure 2.1 shows a domain-independent analysis model, which we describe in
the following.

2.1.1 Product

The domain experts create the products in their respective domains, which
users comment on and discuss in the attached comment sections. Depending

Online Journalism
Aspect

App Development
Aspect

extracts

Insight

Descriptive
Insight

Corrective
Insight

Perfective
InsightUser Reactions

Username

Rating

replies
0

1..n

Product

Domain Expert

creates

User

User Comment
Section

1 0..n

provides

moderates

News Article

App Store
Review SectionMobile App

Social Media

Timestamp

Structured Data Unstructured Data

User Comment

reads submits

1 0..n

lists

1
1..n

1
1..n

Title

Body

News Site
Comment Section

addresses1 0..n
Aspect

defines

Product-specific
Aspect

Domain-specific
Aspect

Article-specific
Aspect

App-specific
Aspect

.....

Figure 2.1: Domain-independent analysis model for user comments on online
platforms.

11

Chapter 2 Foundation

on the domain, the product can be either textual or visual online content (e.g.,
online articles), software (e.g., mobile apps), services (e.g., insurance), or general
goods (e.g., products in online shops). This thesis focuses on the two concrete
products: news articles in the online journalism domain and mobile apps in the
app development domain, shown in Figure 2.2.

In the online journalism domain, news sites like The New York Times or
Spiegel Online publish news articles online. The product in the online journal-
ism domain is the news article. The online platforms provide comment sections
for the products in which users submit their comments. Figure 2.2a shows an
example of a news article of The New York Times. This article consists of a
headline, a summary below the headline, an image with a caption, the author’s
name, timestamp, links for sharing on social media, a link to the comment sec-
tion, and the body of the article structured into paragraphs. Users read the
content and discuss it in its user comment section.

(a) Online journalism: Head of the
news article including the arti-
cle’s title, the summary, an im-
age, and metadata.

(b) App development: Head of the
app page including the app’s
title, metadata, screenshots,
and the description.

Figure 2.2: Products from two different domains.

In the app development domain, the products are mobile apps developed by
app developers. App developers can describe, present, and publish their apps
in app stores like Google Play Store or Apple App Store. Users can browse
through the app stores and decide which app they want to install. Figure

12

2.1 User Comments on Online Platforms

2.2b shows exemplarily the app page of “WhatsApp Messenger”. The app page
summarizes all relevant information about the app, including the app icon,
the title, a description, relevant metadata, and screenshots of the user interface.
After using the app, users can provide feedback to the app developers for further
improvements. The users send their feedback as app reviews in the app review
section on the app page, which we consider as user comments in the context of
this thesis.

2.1.2 User Comments

User comments are a textual form of user-generated content [182, p. 8]. They
comprise structured data and unstructured textual data. The structured data
contains information, including the author’s name, the timestamp, potential
reactions (e.g., number of likes on Facebook), or a star rating in app store
reviews. The title and the body of the user comments are textual and compose
the unstructured part of the user comment. In this thesis, we focus on user
comments within the domains of online journalism and app development.

Figure 2.3 shows user comments in two different domains. The left part
shows an example of an online news article on Spiegel Online with two user
comments. On Spiegel Online, each user comment shows the author’s user-
name, a timestamp, the position within the comment list, a title, and a text.
The right part shows the app page of Dropbox in the Google Play store. It also
shows a summary of the user rating as well as four app reviews. We consider
app reviews, which users submit in app stores as user comments, and use the
terms “user comment” and “app review” in the app development domain inter-
changeably. Each app review shows the author’s username with an avatar, the
comment text, and a star rating.

Users submit user comments via various user comment sections. For exam-
ple, media houses provide user comment sections on their news site below the
articles. Additionally, media houses publish their articles’ headlines and links
on popular social media sites, including Twitter, Facebook, or YouTube, each
providing their own user comment sections for users.

The user comments’ content can be either constructive or destructive. Con-
structive user comments provide additional information and are useful for do-
main experts to improve their product [153, 160]. Destructive comments are
undesirable comments including hate speech [221], spam [128], off-topic [153],
irrelevant comments [240], or troll comments [67]. Domain experts often filter
out these comments as they only impede the utilization of user comments [160,
197].

13

Chapter 2 Foundation

Figure 2.3: User comments on a Spiegel Online news article (left) and app
reviews on the Google Play store (right).

2.1.3 User Comment Sections

Websites structure their comments mostly in user comment sections, each struc-
turing user comments differently. In its simplest form, websites list user com-
ments in a single list. Various websites provide user comment sections with
different features. We list and describe popular features in comment sections:

• Post comment. To post a comment in a comment section, users first
compose their comment and submit it afterward. Some forums allow post-
ing user comments anonymously; others require the user to create an ac-
count first.

• Like. Facebook launched the like button in 2009 [63], which other com-
ment sections quickly adopted. Thereby, users can express their reaction
towards others’ user comments by liking the user comment. Since then,
comment sections have added more reaction types in different domains. In
online shops, user can mark a user comment as “Helpful”, whereas in social
media provides “Love”, “Haha”, “Wow”, “Sad”, or “Angry” as additional re-
action types. The comment section displays the comment with a summary
of the reactions which other users expressed towards that comment.

• Sort. Sorting user comments is a basic feature that most comment sec-
tions provide. Popular sorting criteria are “time”, “relevance”, likes‘, and
“most discussed”.

14

2.1 User Comments on Online Platforms

• Flag. The moderation of user comments is time-consuming, which is why
comment sections enable all commenters to flag user comments of other
users. As the moderation of crowd-based moderation tools for flagging
user comments [57]. This form of crowdsourcing lowers the effort of the
community-moderators. Popular flagging categories are “inappropriate”,
“hate speech”, or “spam”. The comment moderators can then focus on the
flagged user comments.

• Reply. The reply function allows users to refer to previous user com-
ments. The user comment is then displayed directly under the original
user comment in a nested structure commonly called a “comment thread”.
This supports users to have a discussion. Various websites allow a different
depth of threads. A depth of one would allow a reply to a user comment.
With each additional level of depth, users can reply to replies. Twitter
is an example of an infinite thread structure as users can reply to every
Tweet.

User comment sections frequently define terms to comply with when con-
tributing to the discussion (e.g., netiquette) [192, 252] to regulate the discussion
culture. Standard rules include (1) a fair and factual tone prevails in argumen-
tation, even if differences of opinion arise in the matter, (2) a reference to the
respective discussion topic, (3) reading the other user comments to minimize
similar arguments and contributions, (4) compliance to legal regulations, (5)
not revealing other users’ identity, (6) no commercially driven contributions,
especially no advertising for products or services.

2.1.4 Domain Experts

Domain experts are knowledgeable about their domain and read user comments
in their domain within their workflow. They have experience with different
comment types, characteristics and can assess the quality and usefulness of the
user comments in their domain. We describe the role of domain experts in the
online journalism and app development domain.

In the online journalism domain, journalists, editors, and community-moder-
ators are typical domain experts. Journalists and editors investigate, write, and
publish articles via news media sites or blogs. Community-moderators read user
comments daily to moderate the user comment section. Their responsibility is
to filter out inappropriate user comments, which violate the netiquette. In this
thesis, we will refer to the domain experts in the online journalism domain as
journalists.

15

Chapter 2 Foundation

In the app development domain, app developers, product managers, and cus-
tomer support are typical domain experts. App developers write the app’s
source code, product manager plan the business strategy, and customer support
replies to the users’ problems. In this thesis, we will refer to the domain experts
in the app development domain as app developers.

2.1.5 Users

Users write and submit user comments in a specific domain. They either write
new user comments or reply to previous user comments to discuss with other
users. In the online journalism domain, the users are readers who discuss the
content of the news articles. Readers submit user comments for different pur-
poses, which include: “express an emotion or opinion,” “add information,” “cor-
rect inaccuracies or misinformation,” or “share an experience” [246]. In the app
development domain, the users are app users, which install and use an app.
They submit app reviews to provide feedback to the app developers and other
users. Their reviews include criticism, problem reports, feature requests, or
questions [194].

2.1.6 Aspect Addressing in User Comments

In natural language processing, aspects are commonly used to group specific
metrics such as the sentiment or opinions of the users. For example, the com-
ment “I dislike the user interface of the app, but the features work very well”
addresses two different aspects with an opposed sentiment. In related research,
aspect-based sentiment analysis [205] aims at aggregating the users’ sentiment
separately towards different aspects [121, 247]. Aspects are often prescribed as
short phrases consisting of entities and attributes, e.g., “image quality,” “app
interface,” “corona measures,” “us presidential election.”

In the context of this thesis, we use the aspects in accordance with the field of
natural language processing. We distinguish aspects in our domain-independent
analysis model in Figure 2.1 between two different aspect types: domain-
specific aspects and product-specific aspects. Users comment on diverse
aspects, addressing either domain-specific aspects or product-specific aspects.
Domain-specific aspects are independent of a specific product but generally ad-
dress aspects of the domain. On the other hand, product-specific aspects are
prescribed and dependent on a specific product within the domain. Domain
experts define and specify relevant aspects, which they can use to classify user
comments. They further analyze the classified comments to extract insights
from them. We describe examples for both domains.

16

2.1 User Comments on Online Platforms

Online journalism

In online journalism, Neuberger [189] introduced addressing definitions in user
comments and defined “object-level” and “meta-level” addressings. This distinc-
tion aligns with our aspect types. The object-level contains aspects on what
is covered in the news article, which are article-specific aspects. The meta-
level contains aspects on how the journalist covers a specific topic, which are
journalistic aspects. Journalistic aspects include user comments addressing the
writing performance or giving general feedback to the article’s author [102].
Examples for comments addressing journalistic aspects are comments, which
ask for additional information, relate to the media company, a journalist, or a
community-moderator. As an example, the following comment from The New
York Times on an article about the coronavirus spread addresses the journal-
ist and requests additional and relevant data: “Rather than absolute case figures
which aren’t comparable directly to prior tops due to changes in testing numbers,
provide data on hospitalizations and capacity as that would be more relevant.”

On the other hand, examples of article-specific aspects are prescribed through
the topic of the respective news article, for instance, events, politicians, compa-
nies, or celebrities. Other examples of article-specific aspects could be structural
elements of the article, for example, title, paragraphs, or pictures. User com-
ments address article-specific aspects when they directly address these parts.
For example, the following comment addresses the title picture of a The New
York Times article: “The picture of this article is totally exaggerated. I highly
doubt that this is a real shot [...]”.

App development

In the app development domain, user comments also address both aspect types.
According to Pagano and Maalej [194], app reviews address various topics, in-
cluding user experience, bug reports, and feature requests. As an example, we
consider the two domain aspects: “user interface” and “bug report”, which the
following user comment addresses both: “All you had to do was give us an option
to move all interfaces from the top to the bottom. Instead, you made it a hor-
rific mess. Give me one-tap bookmarks. [...] And I liked the suggested articles.
Where did that go? Edit: Every time I try to scroll while reading a page, instead
of scrolling it pulls up the search bar. Infuriating!!” Examples for app-specific
aspects are about an app’s specific feature, bug, or user interface element. An
example of a user comment addressing an app-specific aspect could be a problem
report submitted to the “Signal Private Messenger” app about its notification
feature: “Not getting notifications in real-time unless I open the app”.

17

Chapter 2 Foundation

Domain experts defining aspects
According to our domain-independent analysis model, domain experts create the
products, moderate user comment sections, and read the user comments. They
play a crucial role when handling user comments. They know the characteristics
of constructive user comments as they interact with them daily. Therefore, we
study the aspects, which domain experts consider useful to extract insights from
user comments.

The automatic identification of aspect addressings in comments requires strong
collaboration with domain experts such as qualitative cross-domain research
[153, 213]. The computer science domain has to collaborate with the particular
user comment domain to develop automatic approaches for the identification of
useful aspect addressings in user comments. The most appropriate interview
partners are domain experts, which interact with user comments daily. In the
online journalism domain, this would be journalists, editors, and community-
moderators. In the app development domain, developers would be relevant
interview partners.

In Chapter 4, we conducted qualitative research (interviews and group dis-
cussions) with journalists and community-moderators and studied related work
in the app development (Chapter 3) domain to learn about useful aspects in
both domains.

Exploratory questions, which reveal information about how domain experts
handle user comments, include “How many user comments do you receive via
which sources?”, “How do you process user comments?”, “Who reads the user
comments?”, “Are the user comments moderated?”, “Are there different types
of user comments, which you consider useful?”. With these qualitative ques-
tions, we acquire knowledge of the interaction between domain experts and user
comments in practice and identify useful aspect definitions.

2.2 Insights from User Comments

We touch upon previous studies, which formalized and described characteristics
of insights. Based on these findings, we define and categorize insights for domain
experts in the context of this thesis.

2.2.1 Insights in Literature

Yi et al. describe and characterize insights gained from information visual-
izations [272]. They found that insights often arise from the interpretation of
visualized data analysis results. In this case, defining insights is challenging,

18

2.2 Insights from User Comments

and different definitions exist. North [191] identified five main characteristics of
insights: Insights are strongly intertwined with domain knowledge, and it is re-
quired to interpret data analysis results. Further, they are complex and require
analysis results of large datasets. Insights develop over time. They often lead
to subsequent questions, which can lead to further insights. Insights are not
precise and cannot be unified or measured. Insights often reveal unforeseeable
and unexpected connections.

For this thesis, we define insights from user comments for domain experts as
follows: Insights from user comments are information, which domain experts
can utilize to learn about their users, create new products, or improve their
products. In this thesis, we distinguish between descriptive insights, corrective
insights, and perfective insights.

2.2.2 Descriptive Insights

Descriptive insights arise from data aggregation of a user comment sample,
which we summarize and quantify using statistical values, for example, maxima
values, different mean values, or distributions over relevant metrics. We can
summarize the comments’ data either based on their structural data or classified
labels, e.g., positive or negative sentiments or certain aspect addressings.

In the context of online journalism, journalists aggregate descriptive statistics
over the user comments per article, using comments as a feedback mechanism
to assess which news stories resonate with their readers [212]. These could be
statistics, which describe, for example, the average length of a user comment or
the distributions of user comments over different sources. In a further step, we
can visualize this data with appropriate diagrams on the user comment datasets
to derive descriptive insights. As an example of a user comment aggregation,
journalists could learn about the distribution of user comments via different
channels. These insights help journalists monitor their audience to further im-
prove the dialogue with the community [212].

Figure 2.4 shows an aggregation of the users’ stances towards the discussion
questions about inflation risk. With an aggregation of article-specific aspects,
we can see the distribution of pro and contra stances, possibly also over time.

In the app development domain, developers could aggregate the star rating
to quantify the distribution and identify trends with version updates. Alter-
natively, they could analyze the sentiment towards each addressed app-specific
aspect to identify the app features with the highest satisfaction or complaints
[72]. Figure 2.5 shows a bar chart, summarizing the users’ sentiment towards
Dropbox-specific aspects. These summaries support the developers to quan-

19

Chapter 2 Foundation

Figure 2.4: Aggregation of user comments regarding an article-specific aspect.

Negative sentiment

Positive sentiment

update time

want upload

move file

take photo

delete photo

pdf view

view file

file name

open file

upload photo

D
ro

pb
ox

-s
pe

ci
fic

 a
sp

ec
ts

Frequency of aspect addressings
in app reviews

0 50 100 150

-3.8

-1.0

-3.2

-2.9

-3.3

+2.1

+3.2

+1.4

+3.6

+4.8

Figure 2.5: Users’ aggregated sentiment regarding Dropbox-specific app aspects
[91].

tify the users’ opinions about app-specific aspects. Developers can use these
descriptive insights to, e.g., identify new requirements, improve their product
more precisely, or plan future releases [91].

2.2.3 Corrective Insights

Corrective insights identify flaws or bugs in the product, which the domain
expert might have missed. We inspired this insight type from the field of software
maintenance [115]. Corrective software maintenance covers software changes
that fix bugs, flaws, or defects in the software [30]. These changes are crucial
for maintaining the stability of the product.

In online journalism, user comments which point out a typo, a factual error, or
a wrongly cited source are examples from which journalists can extract corrective
insights [102]. The following user comment example points out a factual error,
which the journalist can investigate further and possibly correct the article: “[...]
The author of this short note (either APA or Standard) has obviously very poor

20

2.2 Insights from User Comments

geography skills: the Traunstein is a very distinctive mountain in Austria [...]”.

In app stores, the developers extract insights from user comments as a feed-
back mechanism to improve the app. User comments contain relevant informa-
tion for app developers such as bug reports [194], feature requests [27, 194], or
summaries of the user experience with certain features [91]. The bug reports
are especially useful when users provide context information about their system
version [170]. An example of a bug report for the WhatsApp app is: “I noticed a
few problems on my new phone. I am currently using OnePlus 7t pro McLaren
edition T-Mobile. 1- I charged my phone to a 100% at night and in the morning
it was at 50-60% what’s app drained the battery. 2- I noticed that it almost
filled my 256gb storage on my phone. Both of my problems were solved by rein-
stalling the app.”. The user describes a bug with unexpected battery drainage
and also provides a solution. Developers can check whether the bug is known or
unknown. In case the bug is unknown, they can add a new bug report in their
bug tracker. In case the bug is already known, they could augment the existing
bug with additional context information from this comment.

2.2.4 Perfective Insights

Perfective insights support domain experts to obtain a broader perspective on
their existing product. We inspired this insight type by perfective maintenance
from the field of software engineering [30]. Perfective maintenance involves the
development of software enhancements with new or changed user requirements.
Developers modify the software product after delivering it to the users to im-
prove, for example, functionality, performance, or maintainability.

For journalists, perfective insights arise from user comments, which contribute
with new arguments to the debate, add expertise, add additional sources on a
particular topic, or contain personal experiences [153]. For example, a personal
user story could lead to a follow-up interview or another news story. Addition-
ally, journalists can identify open questions, other relevant news topics, or other
sources [212] from user comments such as: “The question this article does not
answer is where Trump got the money to pay any of these loans back. [...]”.
Journalists can extract perfective insights from these user comments to find fu-
ture topics worthwhile investigating. Other comments contain feedback about
the comment moderation or request new features for the comment section [102].
This user comment example contains a feature request for the comment sec-
tion: “It would be beneficial, if you could receive brief feedback on the censored
contributions, why the censorship occurred [...]”.

In the app development domain, users might describe an unusual user sce-

21

Chapter 2 Foundation

nario that the app developers did not consider before [160]. Users might also
contribute or request additional app features for the app developer, for example:
“Please add a privacy setting for incoming calls(voice and video) and chat, I am
very disappointed because there is no such type of features in your app to block
unknown people’s. [...]”. The user asks for an additional privacy feature to block
voice and video calls from unknown contacts. Such user comments are relevant
for app developers as they can integrate this feedback into their development
lifecycle to improve their product according to the users’ needs [169].

Although domain experts extract perfective insights mostly from single user
comments, they can extract these insights from descriptive insights. For ex-
ample, developers might optimize their product and add, remove, or improve a
specific feature based on the sentiment towards an app feature.

Previous research also extracted perfective insights from the users’ rationale
expressed in user comments to learn about their decisions [141]. These ratio-
nales are also insightful for app developers [143, 144]. Users reason about their
decision on why they, e.g., install, upgrade, or switch to an alternative app.
Developers consider this information in the prioritization process for further
development [54, 138].

2.3 Summary

In this chapter, we introduced and explained a domain-independent analysis
model for user comments. We focused on the online journalism and the app
development domain.

Users address two different aspect types in their comments: (1) domain-
specific aspects, which refer to addressings concerning the domain in general,
and (2) product-specific aspects, which are prescribed and aligned to the product
of the respective domain. Domain experts can extract descriptive, corrective,
and perspective insights from user comments, which address relevant aspects.
Based on descriptive insights, domain experts can, for example, answer ques-
tions such as “Which is the most wanted improvement for our product?”. From
corrective insights, domain experts can reveal flaws with the product, for exam-
ple, bugs in apps or factual errors in news articles. Based on perfective insights,
domain experts can correct, improve, or extend their product.

22

Chapter 3

User Comment Analysis

This chapter summarizes previous research on comment analysis in the app
development and online journalism domain.

3.1 User Comment Analysis in App Development

In this domain, previous studies systematically analyzed the utilization of app
reviews [103, 169, 238] for domain experts [160]. In the following, we summarize
relevant topics in previous research on the analysis of app reviews in the app
development domain.

App stores evolved in 2008. Since then, they are the leading source for users to
install apps on their phones. Over the past years, researchers and practitioners
found that user comments in app stores are a valuable source of feedback for
both the reputation of their app and for developers as a source of technical
information about bugs or feature ideas [160]. Additionally, previous research
identified the potential for developers to use app reviews as a source to identify
the users’ complaints, praises, error reports, or ideas for new features [194].
In most app stores, an app review contains a description, a star rating, and a
timestamp. Depending on the app store, the app review may contain additional
meta information, such as a helpful score. In the context of this work, we
consider an app review a user comment (Chapter 2).

User comments in app stores have been studied for different purposes and uses.
Most of the studies focused on user comments in the Google Play Store and the
Apple App Store as they are the two prevalent app stores on the market [21].
However, other app stores such as the Windows Store, the Amazon Appstore,
or alternative app stores also provide similar functionality. These studies cover
different aspects of user comments in app stores. Whereas some studies focus
on the automatic classification of user comments into meaningful and useful
categories, others manually analyze the content to discover different content
types.

23

Chapter 3 User Comment Analysis

3.1.1 User Feedback Analytics

Feedback-driven requirements engineering is an increasingly popular topic in
research often focusing on app reviews [91, 103, 160], tweets [89, 269], product
reviews such as Amazon reviews [143, 144], or a combination of reviews and
product descriptions [122]. User feedback and involvement are essential to soft-
ware engineers and requirements managers, as they often contain insights such
as bugs and feature requests [162, 240, 260]. The classification of user feed-
back [160] was a first step towards understanding user needs. Further, studies
[143, 144] looked at the classified feedback more closely and analyzed the users’
reasoning and justification of their decisions, opinions, and beliefs. Once an
app developer decides to integrate, for example, a new feature request into the
software product, they use it for the release planning [187, 188].

3.1.2 Combining User Feedback and Bug Reports

El Mezouar et al. [62] presented a semi-automatic approach that matches tweets
with bug reports in issue tracking systems of the Firefox and Chrome browsers.
They applied natural language processing techniques to the text of both data
sources and used the Lucene search engine [8] to suggest matching bug reports.
Their approach crawls, preprocesses, filters, and normalizes tweets before they
match them with issues. The authors included tweets that either mention the
browser with the @ symbol, such as “@firefox.” Then, they removed misspellings,
abbreviations, and non-standard orthography. Afterward, the authors filtered
tweets with a list of bug-related keywords like lag and crash while also consider-
ing negated bug terms such as “no lag,” or “does not crash” with a part-of-speech
analysis. In a final step, they removed symbols, punctuation, non-English terms
and stemmed the words using the porter stemmer [206]. For matching tweets
with issues, the authors extracted keywords from the tweets and use them as a
search query in the Lucene search engine.

Tweets allow for lengthy conversations with stakeholders [90, 170] that may
lead to detailed information about, e.g., the users’ context like the app version
and steps to reproduce. In contrast to that, app stores enable developers to reply
to the app reviews, and users can update their review [104]. App reviews also
contain metadata like the hardware device and the installed app version (that
information is only available to the developers of the app). When analyzing
tweets and the software is available on multiple platforms like Windows, Mac,
iOS, and Android, it is often difficult to understand which platform the user
addressed without interacting with the user.

24

3.2 User Comment Analysis in Online Journalism

3.1.3 Automatic App Review Classification

In the following, we summarize different app review classification tasks for var-
ious purposes. One task is the automatic spam detection of user comments.
Chandy and Gu [29] collected more than six million user comments from the
Apple App Store and annotated a sample of them as “spam” or “not spam.” The
authors experimented with supervised decision trees and unsupervised machine
learning methods to classify user comments as spam. Another aspect of app
store comments is the automatic maturity assessment of apps. Chen et al. [32]
analyzed app description texts and app reviews regarding their applicability to
assess the app’s content. They also trained a classifier to automate the maturity
assessment process. In another study, Ha et al. [92] categorized and structured
the reviews’ content into topics and subtopics. They identified that most users
address the quality of the app rather than security or privacy. However, Cen
et al. [28] examined privacy and security in app reviews. They developed an
approach that utilizes app reviews to assess the security level based on the app
reviews and rank them accordingly. Guzman et al. [87] experimented with
various machine learning classifiers and classified app reviews. They evaluated
their classifiers on ∼2,000 manually labeled app reviews from seven apps from
the Google Play Store and Apple App Store and achieved a precision of 0.74
and a recall of 0.59. Gomez et al. [82] detected apps with bugs or errors using
an unsupervised machine learning approach. For this, they used ∼1.5 million
reviews from ∼45,000 apps. They developed a recommender system for app
store moderators, which yields an app ranking based on app permissions.

In summary, previous research applied machine learning approaches to clas-
sify app reviews concerning various categories for different purposes including,
maturity assessment, spam detection, risk evaluation, buggy app detection [172].

3.2 User Comment Analysis in Online Journalism

Publication. We base this section on our interdisciplinary systematic litera-
ture review with the title “Content analyses of user comments in journalism:
a systematic literature review spanning communication studies and computer
science” [213]. My contributions to this study were collecting, aggregating, and
analyzing the studies we included, particularly in the computer science domain.
I iteratively derived the analysis variables for the computer science domain,
which we added to the codebook for the qualitative study analysis. Further,
I assessed and aggregated studies, which used an automatic comment analysis
using machine learning techniques, and identified the research gaps in this field.

25

Chapter 3 User Comment Analysis

Contribution. In this systematic literature study, we highlighted previous
research, which contained a (1) content analysis of (2) user comments on (3)
news articles. We summarized previous research in this field to help develop
quantitative, potentially automatic methods to investigate particular aspects
of valuable user comments in online journalism. We identified the opportu-
nities and constraints of automation in user comment studies, including ma-
chine learning approaches. In total, we reviewed 203 studies, which conducted
qualitative, quantitative, and (semi-)automatic content analysis and identified
under-researched aspects, summarized our learning, and discuss how it can be
utilized for further studies by communication and computer science researchers.

We found that research predominantly focused on the comment sections of
Anglo-American newspapers and destructive aspects such as hate speech, gen-
eral incivility, or users’ opinions on specific issues. At the same time, previous
research neglected media from other parts of the world, comments in social
media, propaganda, and constructive user comments. We derived a research
agenda that also highlights potentials for automating the analysis and cooper-
ation across disciplines.

3.2.1 Motivation

It is challenging to acquire a comprehensive research overview of user comments
in online journalism due to the broad topical spectrum. Therefore, we considered
studies on user comments from the journalistic researchers’ and computer science
researchers’ perspectives. Overall the communication science research is focused
on how journalists perceive users and their comments [107, 151], how media
houses deal with discussions on their comment sections [280], how comments
influence users’ perception of a news article or a media brand [110, 140], or
what motivates users to express their opinion and participate in online news
discussions [107, 237].

Researchers also studied the comments’ content. One research area harness
user comments to measure the users’ opinion on diverse topics [226] from climate
change [135] and the financial crisis [14] to breastfeeding [85]. Another area
studied the composition of user comments for their own sake, including the
inherent architecture and deliberative potential [68, 217] or by focusing (in-
)civility in user comments [37].

Aim of the Study

This literature study highlights communication studies and computer science’s
research status regarding the content analysis of user comments in online jour-

26

3.2 User Comment Analysis in Online Journalism

nalism. Communication studies primarily focused on the content of user com-
ments, whereas computer science studies focused mainly on developing auto-
matic tools and approaches to analyze a large number of user comments. The
goal of this study is to:

• provide an overview of the comment analysis research in the online journal-
ism domain for the two disciplines, communication research and computer
science, regarding the different researched aspects examined.

• point out qualitative work that researchers can advance with automatic
methods to analyze particular aspects of user comments.

• identify the potential and limitations of automatic comment analysis ap-
proaches, particularly in communication studies, and highlight particu-
larly promising approaches involving machine learning.

• identify neglected and under-researched aspects of user comments.

Therefore, we conducted a systematic literature review, considering content
analysis, investigating user comments in online journalism. Within these stud-
ies, we identify which variables (e.g., opinions/sentiment, incivility, information
that comments add to the original article) the authors analyzed and how (qual-
itatively/quantitatively or manually/(semi-)automatically) and from which dis-
ciplinary perspective.

3.2.2 Research Design

We conducted a systematic literature review [86]. In our case, the unit of anal-
ysis is the research article [173]. This is a suitable approach for a wide range
of research in a particular field [203]. We chose this method as they summarize
the amount of previous research, the distribution of the methods used, and the
identified challenges [226], and discover research gaps [203].

Systematic literature reviews are a helpful entry point “before embarking on
any new piece of primary research” [203]. This is particularly important in the
user comment analysis, where it is difficult to obtain a comprehensive outline
of this research field.

Literature selection and sampling

We included studies into our sample, which comply with the following three
criteria: (1) the study is either based on a manual quantitative, qualitative, or
the (semi-)automatic analysis of the content of (2) user comments (3) which
refer to journalistic stories.

27

Chapter 3 User Comment Analysis

We designed a search string, combining synonyms for each criterion, and com-
piled the synonyms by reviewing the keywords and abstracts of sixteen relevant
communication and computer science studies known to the author. With this
query, in December 2016, we searched the titles, keywords, and abstracts of
all entries in the most relevant literature database in communication science,
EBSCO Communication, Mass Media Complete, and popular computer science
repositories ACM Digital Library and IEEE Xplore. They cover together more
than 800 academic journals and 3.400 conference proceedings. We also manu-
ally inspected the two most relevant German journals in communication science
that are not included in EBSCO CMMC—SC|M – Studies in Communication
and Media as well as Medien & Kommunikationswissenschaft; Publizistik is in-
cluded—, and the reading lists of the “Coral Project” [56] and our own previous
research which includes sources from both communication and computer science.
Additionally, we searched four popular multidisciplinary repositories (Springer
Link, ScienceDirect, Web of Science, Google Scholar) to complement the sample
with comment research from other disciplines.

We obtained an overall sample of 2,220 potentially relevant studies. We ex-
cluded: 49 studies, published before 1999 as they did not cover online comments;
8 studies in other languages than German and English due to missing language
skills; 11 publications that we could not find or access from the databases or lo-
cal libraries; and 11 monographs and theses since the repositories did not always
provide them, and their content is too long for a thorough analysis.

We assigned each of the remaining studies to one of six researchers who de-
cided if the study covers the three inclusion criteria based on title, abstract,
and keywords. In cases the abstract was not sufficient, we checked the complete
text of the study and decided consensually. We designed our search string as in-
clusive as possible, which is why we filtered out numerous false-positive results,
including content analysis of newspaper articles. We also excluded studies of
mixed material that mingle comments to journalistic stories with other web con-
tent if they did not report separate results for journalism-related comments. For
example, studies examining tweets with certain hashtags often include tweets
related to journalistic stories, but not exclusively. This filtering process left us
finally with 203 studies, which met all inclusion criteria.

Codebook and coding procedure

We designed a detailed codebook to review these studies, which we summarized
in Table 3.1. It contains all comment-related aspects, we identified in a sub-
sample of fifteen studies from different venues and years. We refined the code-

28

3.2 User Comment Analysis in Online Journalism

book with survey and interview studies on comments in journalism [153, 214,
237]. Thereby, we also considered variables, which might have been neglected in
previous studies but whose study might interest researchers, journalists, users,
or protagonists of news stories. One example of such a variable is the analysis
of addressees in user comments. We grouped our identified different objects of
user comment studies into seven construct categories, shown in Table 3.1.

Table 3.1: Overview of the codebook.

Variable Example (sub-)categories

Bibliographical information Authors, publication year, discipline, etc.

Methodology

Comment analysis method applied,
additional methods applied,
features/algorithms used in
automated approaches,
reliability/evaluation scores, etc.

Sampling
Media brands & news stories
comments refer to,
number of analysed comments, etc.

Construct categories

- Quantitative aspects Length of comments, number of
comments per story, etc.

- Kinds of content
Personal opinion/attitude, argument
for opinion, media criticism,
propaganda, etc.

- Incivility Offensive language, personal insults,
racism, sexism, etc.

- Addressees of comments Other users, journalist, community-moderator, etc.
- Emotionality Anger, hatred, fear, surprise, humour, etc.
- Readability Sentence length, technical/foreign terms, etc.
- Facticity Correctness of facts stated in comments
- Other variable/construct (Open category)

Five coders coded the studies. According to Lombard et al. [152], all coders
should code a ratio of studies together. In our case, eighteen random papers
(∼9%) were coded by all coders. Früh suggests Holsti’s coefficient [71], which
we calculated for the inter-coder agreement (rH). Of the 127 variables in our
codebook 117 reached an acceptable to very good reliability score (58 variables
with 𝑟𝐻 ≥ 0.9; 42 with .9 > 𝑟𝐻 ≥ .8; 17 with .8 > 𝑟𝐻 ≥ .7). Due to the high
relevance, we still included four of ten variables with a reliability value of < .7,
which are “other methods applied in the study,” “number of comments analyzed,”
“kind of content: personal opinion/attitude,” “kind of content: other.”

29

Chapter 3 User Comment Analysis

3.2.3 Results

We first describe our sample in terms of the originating discipline of the studies,
their authors, year of publication, and venue. Then we report which media,
countries, languages, and platforms were the focus of previous comment stud-
ies. Subsequently, we look at the methodology, and sampling procedure of the
studies, including what aspects of comments, have been analyzed automatically
with machine learning techniques. Finally, we analyze the seven construct cat-
egories, i.e., the examined quantitative aspects and kinds of comment content
and the incivility, addressees of comments, emotionality, readability, and factic-
ity of postings. In accordance with our research aims, we emphasize comparing
the two fields of communication studies and computer science throughout this
section.

Media, Countries, Languages, and Platforms Covered

The 203 studies in our sample covered comments from 300 different news out-
lets. Each study considered approximately four outlets on average (M=3.8,
n=176), the maximum being 35. However, more than half of the 176 studies
mentioned how many media they included, analyzed comments from only one
outlet (51.7%). The most prevalent media outlets in our sample were “The New
York Times” and “The Guardian” (26 studies each), probably due to their pop-
ularity and the convenient APIs of their websites. Other media of particular
prominence are the BBC (17 studies), the Washington Post (15), the Daily Mail
(10), the British Daily Telegraph (9), and the Wall Street Journal (8). Espe-
cially the “top group” of the 25 media that were included in studies four or
more times shows a strong tendency towards broadsheet newspapers, whereas
broadcasters (TV: 5, radio: 1), digital natives (3), and tabloids (2) are rarely at
the research focus.

The media outlets come from 43 different countries and all five continents.
However, comment analysis strongly focuses on Anglo-American countries. Nearly
half the studies are concerned with UK or US media (27.1%, 16.7%, n=203).
The next large category contains studies that look at media from more than
one country (11.3%), including another five papers combining UK and US media
only. Another recurring country combination is Qatar and Saudi Arabia/United
Arab Emirates for comparing comments related to Al Jazeera and Al Arabiya
(3 studies). The least attention has been devoted to African media, with only
five respective studies. The focus on Anglo-American media is reflected in the
languages of the comments analyzed. In total, the studies examine comments
in twenty-six different languages.

30

3.2 User Comment Analysis in Online Journalism

Nearly two-thirds of papers, however, are concerned with English comments
(63.6%, n=198). The following most prominent language is German (9.6%). We
found no striking differences between studies, which cover different languages,
except that only one study analyzed German user comments automatically. Re-
searchers automatically analyzed user comments are written which were written
more widespread, more often (Arabic: 4 of 6 studies involve automatic analy-
sis; Spanish: 4 of 9; Chinese: 3 of 5; English: 33 of 116). This indicates that
German-specific analysis, approaches, tools, and lexicons are rare or immature,
given the relatively small number of German-speakers and the high complexity
of the language.

In ninety percent of cases, the researchers collected the comments from the
comment sections of the respective media’s websites. Surprisingly, Facebook
and Twitter are less represented, despite their attention in the public discourse
about online discussions. Comparing the disciplines, we found that Facebook
comments are examined even less in computer science than in communication
studies, whereas it is the opposite for tweets. Only 8.8 percent of studies looked
at comments from more than one platform, and only two studies included three
platforms.

Automatic User Comment Analysis

Nearly all studies, which utilize automatic methods also elaborate on the devel-
opment, implementation, and/or evaluation of software, programmed primarily
for the analysis (90.9%, n=44). In our corpus, two-thirds of automatic analyzes
employ machine learning approaches (supervised: 46.3%, unsupervised: 14.8%,
both: 5.6%, n=54).

We further inspect these studies qualitatively. First, we grouped the different
comment aspects, which were studied in a (semi-)automatic manner, into six
larger categories. Then, we identified promising (semi-)automatic approaches
within each of the six categories that we briefly present now:

• Sentiment. Fifteen studies apply different approaches to identify the
sentiment users express in their comments, such as their positive, neutral,
or negative attitude towards a topic, including political orientation, stock
market analysis, or opinion extraction. Sentiment analysis often supports
other tasks (e.g., named entity recognition, part of speech tagging, or
vector space models) in a larger framework. The approaches are also
developed for different languages. For example, Tumitan and Becker [257]
evaluate different approaches to predict Brazilian election results based on
sentiments expressed in comments before the polls. Kabadjov et al. [126]

31

Chapter 3 User Comment Analysis

describe different approaches to summarize forum discussions, including
argumentation mining and sentiment analysis.

• Trolling, hate speech, and spam. Five papers are concerned with
identifying destructive user contributions, including hate speech, spam,
or troll comments. Supervised machine learning approaches reach high
accuracy scores but also depend on pre-labeled training data. Contrary
to this, De-la-Peña-Sordo et al. [47–49] apply semi-supervised machine
learning approaches and compression models. Their approaches perform
nearly as well as supervised approaches and depend on less labeled data,
and are incrementally improvable.

• On/off-topicness. In seven studies, machine learning is used to detect
whether a comment is related to the original article or fits into the discus-
sion context. This is important for tasks such as discourse and argumen-
tation analysis, troll detection, or forum moderation. Here, the approach
from De-la-Peña-Sordo et al. [48, 49], of comparing the comments’ vector
space model with that of the news story’s lead, seems promising. This
approach, developed for the Spanish language, was only part of a larger
framework, and its performance was not tested individually.

• Discussion structure. Three studies try to determine the structure of
the discussion between users in a forum thread. For instance, Schuth et
al. [224] propose a method for the precise detection of comments referring
to other comments. De-la-Peña-Sordo et al. [47] showed that a Random
Forest algorithm performs best in identifying whether a comment refers
to the news story or another comment.

• Topics. Three studies seek to cluster topics discussed in comments or
identify “hot topics”, for example, themes that spark considerable discus-
sion. Both supervised [276] and unsupervised methods [2, 177] have been
used for these tasks, with the former, more labor-intensive approaches
performing considerably better.

• Diversity and anomaly. Six studies deal with assessing the diversity
of comments or with detecting unusual user contributions. For instance,
Giannopoulos et al. [80] seek to identify within an English language discus-
sion thread a subset of comments that are most heterogeneous concerning
the aspects of the news article they refer to and the sentiments expressed.
These diverse comments, they argue, could be highlighted for other users
in order to counter the risk of filter bubbles and echo chambers.

32

3.2 User Comment Analysis in Online Journalism

Table 3.2: Quantitative aspects researched in comment analyses.

% Total
Communication
studies

Computer
science

Other
discipline

(n=112;
55.2% of corpus) (n=63) (n=30) (n=19)

Number of comments
per individual news story,
media brand, platform, etc.

57.1 61.9 40.0 68.4

Number of individual
commentators 40.2 39.7 36.7 47.4

Length of comments 34.8 28.6 53.3 26.3
Number of comments
per commentator 31.3 30.2 30.0 36.8

Development of amount
of comments over time 24.1 27.0 30.0 5.3

Number of Stories and Comments

The average and the maximum number of news stories considered in a study
seem extremely high: M=6,245.5; Max=200,000. However, this is due to some
extreme outliers, as the median is at 50 stories. The automatic analysis caused
a high mean value because they deal with significantly more news stories than
studies only using other methods (M=26,338.6, n=34 vs. M=780.2, n=125;
Welch-test: t=2.53, p<.05). The result is similar when comparing computer
science and communication research (M=26,797.6, n=32 vs. M=373.6, n=85;
Welch-test: t=2.52, p<.05). Qualitative analysis, in contrast, tends to exam-
ine the comments to a significantly smaller amount of news stories (M=284.9,
n=81 vs. M=12,435.4, n=78; Welch-test: t=2.62, p<.05). Concerning the ac-
tual number of comments analyzed, the high mean value (M=11,200,573.9) is
primarily due to seven studies that analyzed large amounts of approximately
2.5 million up to 1.8 billion comments. The median is 1,773.5 comments, and
the minimum number of comments analyzed is only 25.

Aspects of Comments Analyzed

We organized the aspects of comments that studies may investigate in categories
of similar constructs. The first category is quantitative aspects investigated
in more than half of the studies (102 studies=55.2%). Table 3.2 shows that
“number of comments per individual news story, media outlet, platform, etc.” is
the most prevalent aspect in studies. The “Number of individual commentators
engaged” includes how many comments each commentator posted and the length
of their comments. We found only minor differences between the disciplines
regarding the percentage of studies, including quantitative aspects.

33

Chapter 3 User Comment Analysis

Table 3.3: Kinds of content researched in comment analysis.

% Total
Communication
studies

Computer
science

Other
discipline

(n=181;
89.2% of corpus) (n=93) (n=41) (n=47)

Personal opinion, attitude,
evaluation, judgement,
verdict

71.8 71.0 68.3 76.6

Argument for opinion 35.4 39.8 4.9 53.2
Frame, perspective etc. 32.0 33.3 7.3 51.1
Reaction to other comment 28.2 36.6 24.4 14.9
On-/off-topic 22.7 23.7 29.3 14.9
Personal experience 21.0 26.9 4.9 23.4
Additional information, leads,
material etc. 17.7 25.8 7.3 10.6

Media criticism 16.0 22.6 2.4 14.9
Reference or link to external source 13.8 18.3 9.8 8.5
Additional frame, perspective etc. 12.2 17.2 2.4 10.6
Mentioning of specific persons 11.0 9.7 9.8 14.9
Additional argument 7.2 9.7 4.9 4.3
Propaganda 0.6 1.1 - -
Other kind of content, e.g. questions,
personal information about user,
style/structure (rhetorical, interactional etc.),
meta-discourse on comments

39.8 40.9 34.1 42.6

Table 3.3 shows the most frequently researched kinds of content, the occur-
rence and/or nature of which was examined in nearly all studies in our sample
(181 studies=89.2%). As expected, personal opinions, e.g., on the related jour-
nalistic story, are the most frequently researched aspect of this category. This
includes sentiment analysis which categorizes comments into positive, neutral,
and negative opinions. Researchers often use the sentiment in user comments
as a proxy to determine the public opinion on certain topics, although user
comments do not represent the general population.

Researchers also studied whether users provide an argument in their comment,
which perspective or frame a user has on a topic, and if users react to each other’s
comments or solely post their thoughts. Their prevalence might be due to their
relation to the (deliberative) quality of user discussions.

It is striking that computer science studies neglected “constructive” user com-
ment content until now, which might be useful for other users or journalists.
As an example, media criticism or further aspects could be considered in future
news stories, including personal experiences, additional pro/contra arguments,
new information and leads, or new frames and perspectives [153]. Automatic
content analysis studies also rarely focus on these content types.

More than a third of papers in the sample examined the incivility of com-
ments (74 studies=36.5%). This may be because it is negatively related to the
(deliberative) quality of user debates and a much discussed topic among prac-
titioners [107, 153, 214, 280]. By far, the most researched forms of incivility

34

3.2 User Comment Analysis in Online Journalism

are general hostility and personal insults (60.8%) and profanity, such as the use
of swear words (54.%). Interestingly, hostility and personal insults are exam-
ined more often when automatic methods are involved (65.0% vs. 42.9%) while
more specific forms of hate speech are rarely a topic of automatic analysis: sex-
ism, racism, religious or political intolerance were all investigated in only one
study. This study [76] was conducted by an interdisciplinary team of journalism
practitioners, including a communication scholar, a data scientist, and graphic
editors. The picture regarding hate speech is similar in manual quantitative
analysis. In contrast, if a study involves a qualitative approach, it is more likely
to look at these forms of hate speech (sexism: 16.1 vs. 2.4%; racism: 32.3 vs.
14.3%; religious: 16.1 vs. 4.8%; political: 12.9 vs. 7.1%; n=31 vs. n=41).

In our sample, forty-six studies, or 22.7%, dealt with emotions expressed
in comments or their overall emotionality. The most frequently studied forms
of emotion are irony, sarcasm, and cynicism, which are similarly focused in
communication and computer science (40.0% vs. 33.3%). This is striking as
automatic analyses are considered error-prone when recognizing these particu-
lar variants of human emotion, and language [183, 253], which might explain
computer scientists’ attention for this topic. However, the absolute number of
studies concerned with them is low (8 vs. 3). Positive emotions (pity/sympathy,
surprise, curiosity/interest, love, happiness/joy, enthusiasm, humor: 43.5%) are
researched nearly as often as those feelings with a negative connotation (anger,
hatred, contempt/disgust/nausea, fear, sadness, shame/guilt: 54.3%).

Table 3.4 shows that more than a quarter of studies (55 studies=27.1%) study
variables indicating who is addressed in a comment [102]. Most commonly,
previous research studied whether specific users are addressed. Significantly
less frequently, scholars researched if individual journalists, the newsroom, or
generally the public were addressed. This also applies to protagonists of the
story or other people affected, e.g., obese people in studies on emotions towards
obesity or weight loss surgery. Interestingly, no computer science study looked
at whether media houses, individual journalists, or community-moderators were
addressed.

In approximately one-tenth of our sample (21 studies=10.3%), scholars also
determine aspects of readability or comprehensibility of comments. In these
studies, researchers identify if comments contain technical, foreign, or other
terms that users might not understand (38.1%), how complex and lengthy the
sentences in it are (33.3% and 28.6%, respectively), and if there are typos or
other errors (23.8%). We also looked at facticity, i.e., whether a study investi-
gated if comments contained factual statements or not. This is the case with

35

Chapter 3 User Comment Analysis

Table 3.4: Addressees of comments studied.

% Total
Communication
studies

Computer
science

Other
discipline

(n=55;
27.1% of corpus) (n=40) (n=5) (n=10)

Specific user(s) 72.7 70.0 80.0 70.0
Individual journalist(s) 30.9 32.5 - 40.0
Newsroom 27.3 30.0 - 30.0
Protagonists of journalistic
story or other external figures 27.3 25.0 40.0 30.0

Audience as a whole /
general public 23.6 22.5 40.0 20.0

Community manager(s) /
community-moderator(s) 10.9 15.0 - -

Other addressees 14.5 20.0 - -

only thirteen studies (6.4%), of which only one study comes from computer sci-
ence. Finally, around eleven to thirteen percent of studies across disciplines also
examined comments concerning a variable we could not attribute to any of our
construct categories, such as the location attached to a post.

3.2.4 Threads to Validity

We list the threads to validity of our study. Our study considers studies until late
2016. Due to the thorough coding and analysis effort, we could not consider
recent studies, whereby we might have missed current relevant studies. We
further did not consider studies that analyze user comments, which are not only
on journalistic content, and do not report these results separately. We also
excluded papers, which solely report on developing and testing a software tool
for automatic analysis. Therefore, automatic approaches and computer science
studies could be underrepresented. Also, being a quantitative content analysis,
this paper provides only minor information into what the studies in our sample
found out about the focused comment aspects.

3.3 Conclusion

We summarize the relevant findings for this thesis:

Previous content analysis focused on user comments in English. We
found that research predominantly concentrates on the comment sections of
Anglo-American newspapers and aspects like hate speech, general incivility, or
users’ opinions on specific issues while disregarding media from other parts of
the world, comments in social media, propaganda, and constructive comments.

36

3.3 Conclusion

We derive a research agenda that also highlights potentials for automating the
analysis and cooperation across disciplines. While this may, in part, be due to
our focus on English-language studies, there certainly is a need for further inves-
tigations, as commentary cultures, as well as the diversity of opinions expressed
in comments, the (in-)civility of discourse, and other dimensions, are likely to
vary in different countries with different political and media systems. Addition-
ally, many automatic methods have been developed for the English language so
that there are still considerable gaps for other languages that, like, for example,
German, are more complex and less common.

Previous research rarely focused on identifying constructive user
comments. Another shortage we identified is software that can identify com-
ments with “constructive” content that is likely to be of interest to other users
or even of use to journalists: media criticism that could help improve report-
ing as well as aspects that could result or be included in future stories, such
as personal experiences, additional pro/contra arguments, new information and
leads, or new frames and perspectives. Previous comment analysis research is
rarely concerned with positive or useful aspects of user contributions. This is
especially true for studies in computer science and research involving automatic
analysis in particular. Hence, there is more research needed in the automatic
identification of “constructive user comments.”

Classification of addressings is under-researched. Previous research
primarily focused on researching the addressings among users. However, signif-
icantly less often, researchers analyzed whether user comments address either
individual journalists, the media house, generally the public, protagonists of
the news article, or other people affected. Interestingly, we neither found a
computer science study analyzing the comment addressings of either the media
house, individual journalists, or community-moderator.

Cross-domain studies and domain-independent solutions are rare.
Our literature study findings show that cross-domain cooperation is still rare.
For instance, only three of the 454 authors represented in our sample published
in the communication and computer science venues. We suggest a high po-
tential for cross-domain cooperation to particularly foster the development of
automated comment analysis solutions. The cooperation with computer sci-
ence researchers is highly relevant as they provide knowledge about the tech-
nical solution domain. We also found that although communication science
and computer science studied similar aspects of user comments, they did not
develop domain-independent solutions to identify constructive user comments

37

Chapter 3 User Comment Analysis

across different domains. We found that both domains developed automatic
analysis approaches separately. In the app development domain, researchers
developed, for example, an approach to identify the sentiment towards specific
app features [91]. Similarly to that, in the online journalism domain, researchers
developed an approach to identify the users’ opinions on specific topics, for ex-
ample, climate change [135]. Tasks like these might rely on similar approaches
and offer the potential for generalization. Hence, we see the potential for a
domain-independent solution for the automatic comment analysis.

38

Chapter 4

Requirements for a User Comment
Analysis Tool

Publication. This chapter is based on the exploratory, interdisciplinary study
“Making Sense of User Comments” [153] in journalism research and computer
science and focuses on tool-support for managing user comments in online jour-
nalism. My contributions to this study comprise the interview design, the liter-
ature study, multiple iterations of the mock-up design, including user interface
and their presentation during the group discussions. Further, I analyzed our
findings from the ongoing literature analysis and previous user feedback research
in app stores and incorporated them into the mock-up. I derived the features
and requirements for the content analysis tool based on the group discussion
transcripts. Finally, I assessed the features regarding their technical feasibility
to implement the tool support.

Contribution. This interdisciplinary study contributes with a qualitative anal-
ysis to elicit features for a comment analysis tool. We elaborated concrete re-
quirements for a comment analysis tool, which domain experts consider useful
in online journalism. We further investigate how these requirements could gen-
erally support the comment analysis also in other domains. This chapter aims
to design and develop need-driven tool-support for the automated classification,
clustering, and assessment of user comments in online journalism.

4.1 Motivation

The heterogeneity and large number of user comments raise several challenges
for domain experts in the online journalism domain. First, it increases the mod-
eration workload for community-moderators. Filtering, for example, off-topic
user contributions and contributions that infringe the law or code of conduct
requires a high effort [197]. Second, the large amount of information makes it
hard to grasp the current state of a news discussion. This impedes the usage

39

Chapter 4 Requirements for a User Comment Analysis Tool

of user comments for journalistic purposes for journalists (e.g., to select quality
comments or comments that add new arguments, personal perspectives, or rel-
evant new information) or to capture a sense of the overall picture of opinions
in a discussion thread.

Therefore, tool-support for journalists and moderators to analyze and filter
user comments is a major challenge for media houses [60]. The journalistic field
has recently advanced the development of tools for improving user engagement,
such as the “Coral Project”, a collaboration between the Mozilla Foundation, The
New York Times, and The Washington Post [40] or “Perspective”, a collaboration
between Alphabet incubator Jigsaw, The New York Times and Wikipedia [119].

Rather than focusing on identifying hate comments or spam [47, 139, 234] we
follow a more constructive approach that seeks to detect particularly valuable
or high-quality user contributions to reflect the voices of users better, reduce
analysis workloads, and help journalists make sense of user comments.

Also, we focus on journalists (instead of readers or end-users) as the pri-
mary target group for the comment analysis. Even though users and journalists
have overlapping preferences for the ways comments should be handled, the
tool discussed in this study should first serve the journalists’ work rather than
improving the comment section.

We then surveyed the tool’s effectiveness with two group discussions, one
with comment moderators and another with editors from different editorial de-
partments of a prominent German online newspaper. Features that journalists
and comment moderators considered useful include the categorization of user
comments in pro- and contra-arguments towards a particular topic, the au-
tomated assessment of comments’ quality, and the identification of surprising
or exceptional comments and those that present new questions, arguments, or
viewpoints.

We conducted a case study with an iterative study design. We first developed
a mock-up (an initial visual model for a user interface and its potential features)
to analyze user comments based on a literature review and our preliminary re-
search on audience participation in journalism and user review analysis. We
then conducted two group discussions within a prominent German online news-
paper. In these discussions, we surveyed the practices around user comments
within daily working routines, discussed the mock-up, and identified additional
requirements for a user comment analysis tool. Finally, we consolidated the
requirements for such a tool and reiterated a mock-up that visualizes those
requirements.

40

4.2 Research Design

Figure 4.1: Overview of the research design and process.

4.2 Research Design

As outlined above, previous studies into journalists’ handling of user comments
depict a need to reduce the overall workload for journalists, so they benefit from
them. We suggest that automatically analyzing user comments, for example,
with machine learning techniques, could address this problem. This study aimed
to identify and validate requirements for such a tool by developing, refining and
discussing a collection of possible features with journalists. For this purpose,
we developed a mock-up based on features identified through a literature re-
view that could filter and highlight user comments and offer their potential to
journalists. We then qualitatively explored the ways journalists currently nav-
igate the plethora of user comments and what they consider to be useful user
contributions within a concrete media house case study. Finally, and most im-
portantly, we discussed the mock-up with journalists and comment moderators
to refine requirements and the mock-up itself. Figure 4.1 depicts the research
design and process in its chronological order.

1st Phase

In the first phase, we conducted a literature study to identify journalists’ pref-
erences for a software tool and designed the initial mock-up. In the literature
study, we focused on previous research covering how journalists deal with user
comments in their daily practice. This is in line with our aim to develop a
tool that leverages user comments’ constructive potential. We paid particular

41

Chapter 4 Requirements for a User Comment Analysis Tool

attention to what journalists consider useful user contributions. We also used
our preliminary work from a project on audience participation in journalism
that featured interviews with journalists (n= 33) and audience members (n=
27) about their attitudes towards and experiences with user comments (cf. for
the methodological approach [155, 222].

Parallel to the literature study, we conducted two face-to-face, exploratory,
semi-structured interviews: one with the managing editor and a user forum
specialist from a major German newspaper (in September 2015) and the second
with the producer/editor-in-chief and a comment moderator of a German video
and discussion platform that places particular emphasis on user engagement (in
November 2015). Each interview lasted for approximately ninety minutes and
had two main goals: a) to brainstorm and discuss initial ideas for the automatic
analysis of user comments with practitioners in the field, and b) to request
collaboration for a case study. Both sets of interviewees were enthusiastic about
the idea of developing a comment analysis tool, confirmed the relevance for their
practice. Particularly, they endorse tool-support for collecting user comments
across different platforms and channels. During the interviews, participants
highlighted the need to summarize and visualize users’ debates and filtering
comments that can particularly inspire their journalistic work in the future.

2nd Phase

The preliminary work and the interviews served as the foundation for the sec-
ond phase. We developed and iteratively improved our mock-up within inter-
disciplinary team meetings of journalism and software engineering researchers.
During these meetings, we gradually formulated a list of potential features and
discussed various visualization strategies. We also designed guidelines for the
follow-up group discussions. We defined criteria for an ideal case study, i.e.,
an established online newspaper with a) high popularity, audience reach, and
loyalty, b) broad thematic coverage, and c) a vibrant comment section. We
contacted the deputy editor-in-chief of a suitable online newspaper, who helped
with the recruitment of group discussion participants within the organization.

3rd Phase

The third phase consisted of two face-to-face group discussions that each lasted
approximately 120 minutes. In the first group discussion, conducted in Febru-
ary 2016, members of the audience engagement team, responsible for on-site
comments and the newspaper’s Facebook page, and the deputy editor-in-chief
met with four researchers representing computer scientists and communication

42

4.2 Research Design

scientists from our project team. In the second group discussion, held in April
2016, we spoke to editors from five different editorial departments (politics,
sports, health, technology/digital life, miscellaneous). We addressed the dif-
ferences in their experiences with user comments, differences that may arise
between different topics, as well as their needs and any ideas that they may
have had concerning certain features for their analysis. Table 4.1 provides an
overview of the participants.

Table 4.1: Participants of the group discussions.
First group discussion: Audience engagement team Second group discussion: Editors

1. Head of user comments 1. Political editor
2. Social media editor 2. Science & health editor
3. Managing editor with focus on user comments 3. Sports editor
4. Deputy editor-in-chief 4. Editor for technology / digital life

5. Editor miscellaneous

We guided the group discussions according to the following three topics to
develop and refine possible features for the mock-up:

• Existing practices and tools. Initially, we explored the current practice
of handling (moderating, filtering, and reacting to) user comments within
the media house. This helped us understand existing tools, guidelines,
and practices related to user engagement, spam, and hate speech. We
also discussed the various channels available for user feedback, including
the homepage, email, and social media, and a possible systematic bundling
and comparison of these comments.

• Challenges. While discussing current media house practices when deal-
ing with user comments, we transitioned into the second phase of the dis-
cussion that focused on the most pressing problems practitioners face when
dealing with user comments. We presented our mock-up to explore further
whether a (semi-) automated tool could improve the comment analysis.
Furthermore, we discussed features for the analysis of comments, such as
identifying discussion topics, arguments, and addressees.

• Quality. We also asked the participants what they consider especially
valuable or helpful comments. This then led to questions about types of
comments and commenters. While reflecting on quality indicators and the
value of user comments, we also discussed whether certain topics elicit a
particularly high number of high-quality comments and if their respective
comment sections could benefit, for example, from tailored features such

43

Chapter 4 Requirements for a User Comment Analysis Tool

as a barometer of public opinion or a crowdsourcing application that would
allow users to rate comments.

4st Phase

In the fourth phase, we aggregated and summarized the group discussion results.
Since we were not allowed to record them, three researchers took notes during
the sessions. To create a complete transcript, we combined these notes into one
document for each discussion, which we structured according to the discussion
guidelines. The resulting documents were then analyzed using a joint catego-
rization among three project team members that followed the three dimensions
of our guidelines. We matched the results with our mock-up. One result was
an overview of a) certain characteristics that could be (semi-) automatically
analyzed with a software tool, b) comment aspects that were appreciated or
criticized about features of the mock-up, and c) illustrative quotes.

5th Phase

In the fifth and final phase, we incorporated the new findings from the previous
group discussions into the mock-up. In this iteration, the mock-up became a
web-based website with clickable user interface elements. The figures in the
appendices show the mock-up’s current version.

4.3 Results

Our research led to the following results: a visual mock-up and a feature list
for a software tool for user comment analysis. The feature list combined our
findings based on our previous research, findings from two group discussions in
which we used the mock-up as a stimulus to discuss and learn about journalists’
and comment moderators’ requirements.

In the next section, we structure the results along with these different out-
comes. First, we present the literature study’s main outcomes aimed at identify-
ing analytical dimensions and potential features of the tool. Second, we explain
our findings from the group discussions in terms of the main functionalities and
requirements. Table 4.2 lists all relevant features for a software tool to analyze
user comments.

44

4.3 Results

Table 4.2: Identified features of a software tool for the user comment analysis.

Category Feature Source

Article &
Channel
selection
(Appendix A.1)

Multichannel selection: Select the articles from which
the comments are analyzed (one article or multiple articles)
Select sources of comments such as commentary sections
on the homepage Facebook, Twitter and email
(filter available in all tabs)

Mockup
development

Show the number of comments in time/progress of a discussion
Show the number of comments per commenter of a discussion
Recommend whether commenting should be enabled for an
article

Group
discussions

Topics &
Addressees
(Appendix A.2)

Show an overview of the topics mentioned in comments
Show an overview of the addressees mentioned in comments
Show a set of exemplary comments that refer to mentioned
topics and addressees
Identify and display who is addressed in comments:
e.g., the author/journalist/media house, a person mentioned
in the article, other actors, other users
Identify and display level of reference (topic-related or related
to an aspect of journalistic preparation, e.g., style of writing)

Mockup
development

Discussion &
Argumentation
(Appendix A.3)

Identify and display pro- and contra-arguments in comments
towards the article’s stance on a topic
towards the topics mentioned in the article
Show an overview of pro- and contra-arguments over time
Show an exemplary set of pro- and contra-arguments
Identify hate speech (and highlight indicative
words, phrases, or sentences if possible –
to also help a moderator/journalist to better
understand the system’s decisions)
Show most rated and most discussed comments
Show top rated/most frequent arguments extracted from
comments

Mockup
development

Identify outliers, such as non-typical comments and
commenters to highlight exceptional/surprising comments
Alert feature for journalists: a push notification for interesting
comments or discussed topics
Alert feature for community-moderators: a push notification for
when a discussion escalates (e.g., hate speech)

Group
discussions

45

Chapter 4 Requirements for a User Comment Analysis Tool

Quality
Indicators
(Appendix A.4)

Show high-quality comments based on different
quality indicators such as:
- Length
- Readability
- Information density
- Compliance with netiquette
- Sentiment
- Entertainment value
- Article reference (on-/off-topic or related to a meta aspect of
the journalistic product e.g., style of writing)
- References to other comments
- Quality of arguments/internal coherence
(e.g., do they make a coherent argument?)
Additional sources:
- Identify and show comments that contain a URL
- Extract and show all URLs reported in the comments

Mockup
development

Estimate the originality of a comment: is a new
view/perspective/aspect raised?
Identify comments that serve as ‘bug reports,’ e.g., typos,
factual errors, readers as proofreaders

Group
discussions

Comparison
(Appendix A.5)

Show a comparison of comments based on their metadata, e.g.,
compare different authors, sections, topics
Show a comparison of comments based on their different
variables, e.g., the abovementioned: information density,
level of reference, etc.
Show a comparison of comments based on sociodemographic
data of commenters, e.g., gender or age

Mockup
development

Sociodemo-
graphics &
Commenter
Typologies
(Appendix A.6)

Estimate the commenter’s gender, age and level of education
Mockup
development

Identify commenter types, e.g., expert, affected person, bot,
lobbyist, troll, extremist, spammer
Invite expert commenters to contribute
Identify users misusing the commentary section
Help to deal with misconduct (e.g., recognize spammers with
multiple accounts)

Group
discussions

Further Features
for Commenters

Commenter features
- Notify the commenter about the acceptance or rejection of
her/his comment, including the underlying reasons
- Recommend readers to other readers
- Recommend articles to a reader based on his/her comments
and read articles

Group
discussions

Literature Study and Preliminary Work

Previous research covered in-depth journalists’ rationales for engaging with user
comments. This includes reading user comments and actively responding to

46

4.3 Results

them. We consulted this previous work during the first phase to identify po-
tential analytical dimensions and features for a comment analysis tool for jour-
nalistic purposes. We found the following reasons for journalists to engage with
user comments:

• to feel closer to the user base, i.e. fostering mutually beneficial connections
with their audience [31] allowing them to “gauge their (readers’) reactions,
get closer to them” [150, p. 244], and build relationships [108, 214].

• to learn about their audience’s preferences and views to use comments
as an additional source for coming to and assessing editorial decisions,
[212] which often results in journalists and moderators developing cer-
tain everyday theories on the typologies of commenters and images about
particularly active users that they recognize individually [108, 156, 157,
214].

• to keep the tone civil and increase the quality of news discussions [31],
as comments require editorial control [57, 223], with the added purpose
of minimizing the potential negative effects on users’ perceptions of an
article’s quality and the media brand [110, 207, 229, 262].

• to maintain their gatekeeping function by steering the discussion and giv-
ing additional information and explanations by adopting the role of experts
[108].

• to meet the expectations users have of journalists to engage in discussions
and build audience loyalty [108, 214].

• to find sources and other materials, gather new story ideas and use the
expertise of the audience in a crowdsourcing manner [84, 108, 156, 157,
212, 214].

• to receive feedback on and criticism on their own work and use it to reflect
on their writing [57, 84, 214].

• to identify error reports or questions directed to them personally or to the
media house in general [108, 156, 157, 214].

Moreover, the participants of our exploratory interviews repeatedly high-
lighted two aspects. First, different platforms and social media like Facebook
and Twitter stimulate different kinds of user feedback as they tend to attract
different audiences [108, 156, 157, 214, 223]. Second, an automated comment

47

Chapter 4 Requirements for a User Comment Analysis Tool

analysis tool should reflect the diversity of arguments and the entire spectrum
of a debate among users.

Also, previous studies showed that journalists share a common sense of what
they professionally consider useful audience feedback or high-quality comments.
Appreciated comments are those that [55, 108, 156, 157, 174, 212, 214]:

• add additional information or a new perspective, argument, or opinion to
the commented article.

• describe personal experiences.

• help to identify potential interview partners for a certain topic.

• include links or other references leading to further information on the
story’s topic.

• offer ideas for further stories.

• give hints towards corruption or other illegal or dubious practices.

• report errors or contain criticism addressed to the quality of an article or
its author.

Interestingly, the reasons why users read comments are to a great extent sim-
ilar to those of journalists. For instance, Diakopoulos and Naaman [57] found
that readers’ main motivations for reading user comments include gaining more
information, finding additional reporting on a story, and seeing the “perspec-
tives or views from the community, see people’s true feelings on a topic, gauge
political response or agenda, and take the pulse of the community” [57, p. 137].
Similarly, Ziegele [279] found that the main cognitive objectives for readers of
user comments are to gain additional information on a topic, to broaden their
knowledge on a topic, and to evaluate the general attitude towards a topic [107,
108, 156, 157, 214].

Although the initial aim of our project was to identify journalists’ require-
ments for a software tool for user comment analysis, the parallels between both
groups already indicate that some analytics could serve the needs of journalists
and users alike. However, visualization techniques and front-end design for such
a software tool would have to be adapted to the requirements of each group.
Previous research argued that particular features in the front-end of comment
sections can influence commenting practices [45, 198].

Even though these aspects indicate the notion that journalists (and users)
have specific ideas about how to make sense of user comments and what they

48

4.3 Results

appreciate about them, one of the most recurring problems mentioned by jour-
nalists is that finding particularly useful or high-quality comments is like finding
a needle in a haystack: “More than one source expressed the difficulty they found
in sifting particularly useful comments from the constant flow of user-generated
content” [25, p. 387] [108, 214]. Consequently, like Park, Sachar, Diakopou-
los, and Elmqvist [197, p. 2] point out, we are witnessing “a growing body
of research in the area of computational journalism, which includes tools that
are tailor-designed to suit journalistic tasks and workflows, and which take into
account the professional norms and use-cases of journalists”. They suggest a
system that aims to help moderators identify high-quality comments utilizing
the New York Times’ “Picks” [58, 197].

A software tool could facilitate the workflow and reduce the workload for jour-
nalists who are merely reading the comments and for those who actively engage
in a discussion. Concerning our findings, it could, for instance, be useful for
organizing and displaying information about which topics and actors are actu-
ally mentioned and discussed, the variety of opinions represented in a comments
section, or by pointing at the response- or note-worthy comments such as those
that directly address a journalist with a question or an error report [137].

Group Discussion Findings and Overall Feature List

Based on the findings we gained from the first step of our study, we designed
a mock-up, which we further evaluated and discussed in two group discussions.
We identified three main content-related dimensions for the analysis of user
comments adapted to journalistic needs. These are features that allow the orga-
nization and display of information on (1) topics, mentioned actors, and those
directly addressed (addressees), (2) the division of opinions and arguments,
and (3) different indicators that could help to assess the quality or note- and
response-worthiness of comments. As studies have found that journalists de-
veloped certain typologies of commenters, we thought of features that would
allow the system to identify different commenters based, for example, on their
commenting practices.

The first mock-up version of the comment analysis tool embodied the findings
of the first study phase while simultaneously functioning as a stimulus for the
group discussions during which we talked about its basic functions and features
to refine its functionality. To avoid redundancies, and since several mock-up
features were confirmed by the group discussions as both useful and desirable,
we will combine the mock-up description with the group discussions’ findings.
Table 4.2 presents both the main outcomes of the mock-up development and

49

Chapter 4 Requirements for a User Comment Analysis Tool

the group discussions together as a list of features and analytical variables for
a potential software tool that aims to help journalists analyze and filter user
comments with a constructive potential and to get a sense of the discussion.
The list is divided into seven main categories. The elements and features are
based either on the first or second phase (simplified as mock-up development)
or on the group discussions and analysis of the minutes (group discussions in
the table).

In general, the group discussions supported what we already learned from
previous research. For instance, the interviewees confirmed that journalists
usually feel that they should offer their readers participation options, that they
are partly willing to read comments and engage with commenters, and think
constructive user comments could be leveraged in a journalistic way. How-
ever, making sense of user comments was perceived as coming with a workload
that the interviewees felt was barely manageable. As such, the prospect that
a software system could provide support was welcomed enthusiastically but ac-
companied by a certain incredulity towards what is technically achievable. At
this stage of the discussion, however, we encouraged the participants to neglect
technical feasibility.

We started with the idea to conceptualize the software tool as a “multichannel
aggregator”. Given that journalistic content is produced, used, and distributed
via multiple platforms, including social media, and that each of these channels
generates different kinds of user feedback [108, 156, 157, 162, 214, 223], the
software tool should be able to collect and combine user comments from different
channels [163]. The ‘channel filter’ would allow the user to sort an article’s
comments according to the channel in which the comments appeared (e.g., on
the newspaper’s website, Facebook, Twitter, or sent by email) (see Appendix
A.1). The channel filter is available in every tab of the mock-up so that every
analysis can be done comparatively (see Appendix A.5) or just for selected
channels. During group discussions, this ‘bundling function’ of the mock-up
was evaluated as highly useful, and journalists, as well as comment moderators,
stressed that audiences and their comments vary across different channels. For
instance, journalists indicated that the most valuable feedback is sent via email.
However, this function also raised concerns about the compatibility with the
existing IT infrastructure within the media house.

“Topics, Actors & Addressees” (see Appendix A.2) addresses journalists’ need
to get an overview of what is discussed and who is mentioned and directly ad-
dressed (e.g., the media house or the author of an article) at a glance [160,
194]. Included in all categories of the mock-up is a feature that will highlight

50

4.3 Results

occurrences in comments that point to specific classified samples (for example,
pro-/contra-argument), showing a representing sample to summarize the news
discussions. An additional advantage is that, should a comment be misclassi-
fied, the user can correct the classification to improve the overall accuracy of
the system. Concerning the identification of topics discussed in the comments,
journalists have observed differences between user comments to news articles
with different themes: Comments below articles about sports or hobbies such
as DIY or cookery were perceived as more civil, containing mainly positive sen-
timents. In contrast, debates below health-related articles such as vaccinations
or political issues such as immigration were seen as generating a) a higher num-
ber of comments and b) more heated debates and incivility. Also, ‘Addressees’
(see Table 2) refers to a specification of the actor(s) addressed in a comment
to acknowledge the fact that commenters not only mention actors that are the
objects of the news article, but will sometimes address the journalists (as au-
thors of the article), the particular media house, the media in general, or other
commenters – often at a level beyond the topic covered and with a critical tone
towards the media. In this case, a software system could assist by pointing to
‘response-worthy’ comments such as comments that directly address the jour-
nalist with a question.

“Discussion & Argumentation” (see Appendix A.3) refers to a feature that
allows the classification of comments in terms of pro- and contra-arguments to-
wards a certain question or topic [91]. The number of overlapping comments,
such as those that express a similar viewpoint, is indicated at the top of each
comment box (boxes sorted in descending order). On the diagram, the de-
velopment of the pro/contra comments’ share over time is displayed. During
group discussions, the ‘Discussion & Argumentation’ feature stimulated addi-
tional ideas. For instance, participants in both group discussions remarked that
opinion pieces and commentaries regularly receive more user comments than
other journalistic formats. Consequently, the ability to classify user comments
as pro- or contra-arguments towards a certain topic or opinion was one of the
various features confirmed as useful by the interviewees. Furthermore, it was
considered helpful for media houses and users alike to have tools for analyzing
and illustrating the (chronological) dynamics of news discussions, that is, to
show how discussions develop over time, for example, in terms of their satura-
tion, or to offer an ‘alert function’ that signals to moderators that ‘something
is escalating.’ Another striking idea that came up during the group discussion
with the editors was identifying ‘outliers,’ such as non-typical comments (or
commenters) that highlight something exceptional or surprising. This draws our

51

Chapter 4 Requirements for a User Comment Analysis Tool

attention to the fact that journalists are not only looking for a general overview
of news discussions but also for outliers that stand out from the crowd.

The category “Quality Indicators” (see Appendix A.4) represents a collec-
tion of different (quality) metrics that are meant to offer a condensed overview
about, for example, readability, information density. Here, interviewees appre-
ciated the on-/off-topic feature and also came up with the recurring issue of
redundant comments, which moderators consider particularly annoying. Par-
ticipants from both group discussions felt that users often restate previously
mentioned arguments without reading other comments or even without reading
the article itself, which was considered a hindrance to productive discussion.
One of the editors suggested a feature for users: to display a box with the most
common arguments directly below the article. Commenters would then only be
“allowed” to write a comment if they had read through these arguments and
add something new to the discussion. Editors stated that a software tool could
estimate the originality of a comment and whether it raises a new viewpoint
or adds to the debate. For this purpose, a software tool could help identify
redundant comments and provide a quick overview of what was already said.
However, these ideas also raise awareness for the following two aspects: First,
they illustrate that our interviewees also thought of the mock-up as something
that includes features that could also offer audiences an additional service by
analyzing and providing an overview of news discussions.

This category also includes features to identify, extract and display comments
with related links that may contain additional sources or information on a topic
that may be useful for developing stories or identifying sources that users re-
peatedly refer to (see Appendix A.4).

The “Comparison” tab allows users to compare the quality indicators of user
comments between two different channels, for instance, the newspaper’s website
and their Facebook page (see Appendix A.5).

For “Sociodemographics & Commenter Typologies,” the perspective switched
from the comments themselves to their authors. As shown above, journalists
and moderators regularly develop certain presumptions about particularly active
users that they, on the one hand, recognize individually and, on the other hand,
use to develop certain theories for typologies of commenters [108, 156, 157, 214].
The feature, as shown in Appendix A.6, was designed to learn more about those
who are commenting, for instance, in terms of gender, age, or political orienta-
tion, and to identify certain commenter types, such as the ‘know-it-all’ or the
‘troll.’ It triggered both much enthusiasm, for example, to expand its function-
alities, and reticence, as it was considered a “nightmare for privacy protection”

52

4.4 Discussion

by one of the editors. Also, to react to comments that contained questions, a
feature was developed during the group discussion with the editors that invites
experts to comment on these questions. Another feature enables moderators to
provide feedback to a commenter whenever a comment was rejected, or their
feedback was incorporated.

Generally, one noticeable difference is that comment moderators are mainly
concerned with excluding what they deem low-quality, off-topic, or even hate
comments, whereas editors tend to focus on ways to improve their journalistic
work. Consequently, it was much more apparent for the editors to think of user
comments in terms of potentially constructive feedback that may be leveraged
for journalistic purposes than for moderators. It seems that it lacks resources
rather than ideas that constrain media houses in utilizing user comments better.

4.4 Discussion

In this section, we summarize this study, elaborate on the feasibility of our tool
and discuss how we could transfer our findings to the app development domain
in consideration of previous research.

Previous research on user comments in online journalism showed that most
media houses are overwhelmed by the plethora of user comments. However,
journalists have a clear understanding of what they deem useful user comments
and the potential to improve the journalistic work. This study addressed the
first step towards tool-support to analyze user comments. Our study achieved
two goals: (1) we developed an initial mock-up, highlighting valuable features
for online journalists to utilize user comments constructively, and (2) we studied
its usefulness and added further feature ideas based on group discussions with
practicing journalists and moderators in the context of a newspaper case study.

The participants criticized the classification of the user typologies (see Ap-
pendix A.6) due to data protection concerns. However, they considered the
feature still useful in general. During the group discussion with the audience
engagement team, this feature was considered to be somewhat helpful as a way
to mitigate moderation efforts and to even identify certain lobby groups that
regularly make a concerted effort to “flood” comments sections.

Journalists repeatedly emphasized the software tool’s potential for the users
to improve the structure of news discussions. Most of their additional ideas orig-
inated from the premise of giving user comments added value for the audience.
Analysis features for audiences would have to look and function differently from
what we have conceptualized for journalists. However, previous work found that

53

Chapter 4 Requirements for a User Comment Analysis Tool

both groups have partly similar ideas of useful user comments, whereby our tool
may also serve the users.

4.4.1 Feasibility Analysis

In previous research, developers automated or semi-automated approaches to
implement different features presented in this paper [162]. However, there are
still various technical challenges to overcome for automated analysis of user
comments. Particularly, in journalism, the range of topics is broad, and user
comments address a correspondingly broad thematic range. The first challenge
is to develop techniques and tools that function efficiently and reliably on a
large volume of heterogeneous natural language of typically colloquial and in-
formal text. This requires an automated approach to be particularly robust
(e.g., vocabulary and grammar rules) to support a wide range of issues and
topics.

We assessed the implementation of the category “Article Selection” as straight-
forward. The main challenge for these features is to design a practical data
model, which can store structured and unstructured data from different sources.

The feasibility of the other categories is rather challenging and requires ex-
periments with various technologies, including natural language processing, su-
pervised machine learning, crowdsourcing (to label, train, or correct automated
analysis), and deep learning approaches in case many training samples are avail-
able and active learning strategies to adapt to new trends, topics, and vocab-
ularies. For instance, topic modeling techniques (e.g., LDA) might be suitable
for the category “Topics, Actors & Addressees”. However, since commentators
often use different names for the same entity (e.g., for the German Chancel-
lor: Merkel, Angela, Mutti, Murksel, Angie), a native keyword-based approach
will not be sufficient but has to be combined with approaches that identify the
semantic similarity of different tokens.

For implementing the category “Discussion & Argumentation,” syntactical
machine learning features in addition to lexical machine learning features and
topic modeling techniques might play an important role. For instance, dis-
course markers might be used to identify argumentative units [61], while topic
modeling might be useful to identify significant keywords as indicators for pro-
and contra-stances [166]. Additionally, machine learning features such as text
sentiments, text sophistication, and quality metrics might be useful [232] as
similar user arguments might have similar sentiments. While sentiments might
be particularly useful to distinguish between pro- and contra-arguments, text
sophistication might be used as an indicator of the presence of argumentative

54

4.4 Discussion

text. However, vague language use, implicit knowledge [24], and community
bias (e.g., significantly more pro-commenters than contra-commenters) make
identifying arguments a challenging endeavor.

Another prerequisite for successful research and development of the discussed
analytics features is the availability of high-quality datasets and corpora, prefer-
ably with labeled user comments. The creation of such corpora requires mostly
laborious manual effort. However, a commercial crowdsourcing platform (e.g.,
Amazon’s Mechanical Turk [6] or appen [39]) can facilitate this process to ac-
quire a larger number of user comments. Furthermore, some media houses al-
ready store the labels of community-moderators in their databases, which con-
tain information about the quality, informativeness, or whether they blocked
the comment. This data is particularly valuable not only for training machine
learning algorithms but also for evaluating other automatic approaches. Me-
dia houses could publish these labels anonymously, similarly to the One Million
Post Corpus by Schabus et al. [220] to advance the development of automated
analysis methods in this field.

With more datasets available and with the recent advances in natural language
processing and machine learning, we suggest that machine learning engineers can
implement most features with sufficient performance. More advanced research
with the spirit of open source and open data would further accelerate the de-
velopment. The next question that arises is how journalists and their audiences
will utilize and interact with the analysis tools and what impact the results will
have on the behavior of journalists and the quality of public discourse.

4.4.2 Transfer to App Development

We transfer the identified requirements from this study to the app develop-
ment domain using our analysis model and previous research. According to our
domain-independent analysis model (Chapter 2), the app developers are the
domain experts in the app development domain. They develop, update and
maintain apps, which are the products, similar to the journalists who write and
edit their news articles in the online journalism domain.

Maalej et al. [160] identified features for an app review analytics tool, which
helps app developers analyze and harness the plethora of reviews. They iden-
tified relevant app development aspects, which they filtered for the developers.
We can map, for example, their app development aspect “bug report” to “error
detecting” comments in news articles. Both domain-specific aspects detect errors
in the products of their respective domains. The article-specific aspects such as
article topics correspond to the app-specific aspects such as app features, which

55

Chapter 4 Requirements for a User Comment Analysis Tool

users address in their comments. Similarly to our study, they interviewed app
developers and project managers and validated the usefulness of tool-support
for the automatic analysis of app reviews.

Another similarity is that users also post comments to apps via other channels
than the official app stores [89, 240], whereby it is similarly challenging for
developers to aggregate and summarize the distributed comments. Additionally,
users use the same app but on different devices with different app versions.

Further studies also found that app developers utilize the user comments to
extract information about potential errors in their app, ideas or wishes for new
features, or the sentiment [171] on specific app features [91]. Like journalists,
app developers benefit from a tool-supported comment analysis to better under-
stand their users and focus on correcting and improving their product for them.
The app development team can further use extracted insights to prioritize the
features, and bug fixes for their future development [170].

4.5 Threats to Validity

As this study focused on an in-depth qualitative understanding and exploration
of features, we cannot claim completeness or generalizability to all media houses.
Our goal of this study was to identify a set of requirements to provide tool-
support for journalists. Based on these requirements, we can form hypothe-
ses to further test on a broader and larger sample. However, we validated
and grounded our derived and visualized features also on previous research.
Nonetheless, we based the evaluation of our mock-up on two group discussions
with nine participants within one prominent German newspaper covering diverse
topics. Based on our discussions with those participants and their evaluation
of our initial mock-up, we assume that we have a reasonable idea of the chal-
lenges and practices concerning user comments. However, other newspapers,
for instance, focusing on specific interests, a smaller scope, or newspapers in
countries with a different “participatory culture” may require alternative or ad-
ditional features. Moreover, as with any empirical study conducted directly in
the field, this study might be affected by researcher bias, particularly in the
group discussions. We tried to mitigate this by keeping the discussions open
and only asking questions to clarify the answers or encourage the information
flow. During our discussions, we first motivated the participants to express their
needs and preferences and delayed the presentation of our mock-up. Thereby,
we minimized potential influence through features, which we already visualized
in the mock-up.

56

4.6 Conclusion

This study with researchers from two different fields (journalism and computer
science research) presented additional methodological and alignment challenges.
This is, for instance, illustrated by the differing definitions of terms referring to
similar methodological concepts such as “group discussions” and “requirement
workshops” [204, 267].

4.6 Conclusion

In this chapter, we conducted an exploratory interdisciplinary study including
journalism researcher and software requirements engineering. We summarize
the relevant findings for this thesis.

Domain experts endorse tool-support for handling user comments.
The domain experts in the online journalism domain are overwhelmed by the
vast number of user comments, and the manual effort does not scale to ex-
tract value from them. The manual moderation effort is expensive and error-
prone. However, previous research showed that editors and journalists have
a clear understanding of useful user comments, which we could also confirm
in our study. This is why media houses still provide user comment sections
and tolerate the high workload of moderation. To still use the potential in
user comments and find constructive user comments, journalists, editors, and
community-moderators endorse tool-support for extracting high-quality user
comments to improve their journalistic work. Therefore, editors, journalists,
and community-moderators favor tool-support for filtering and sorting user com-
ments. We mapped the findings of this study to the app development domain.
In an exploratory study, Maalej et al. [160] conducted interviews with domain
experts in the app development domain. They found that app developers face
similar challenges with user comments submitted to their apps. Constructive
user comments in the app development main include problem reports or feature
requests, which developers can aggregate to identify critical bugs or user needs.

The tool development requires cross-domain knowledge. The sense-
making process of user comments describes the systematic extraction of con-
structive user comments and their subsequent aggregation to extract insights
from them. We facilitate this process by suggesting features, which require
expertise from both computer science and journalism research domains. The
domain experts (journalists or app developers) define and understand the prob-
lem domain in which user comments occur. The problem domain comprises
knowledge about manual moderation and the characteristic of constructive user
comments. The computer scientists cover the solution domain for automating

57

Chapter 4 Requirements for a User Comment Analysis Tool

the aggregation, analysis, and visualization of the insights from the user com-
ments. Based on the problem domain knowledge, computer scientists develop
a system, which fulfills the requirements. The solution domain covers auto-
matic content analysis approaches by utilizing, for example, machine learning
techniques to extract insights for domain experts. Therefore, developing a user
comment analysis tool requires cross-domain knowledge, including the problem
and solution domain.

Identifying addressings in user comments is an aspired feature for
a comment analysis tool. The findings gained in the first step of our study
were used to build a mock-up, which was then evaluated and discussed in two
group discussions. We identified three main content-related dimensions for the
analysis of user comments adapted to journalistic needs. These are features
that allow the organization and display of information on (1) topics, mentioned
actors, and those directly addressed (addressees), (2) the division of opinions
and arguments, and (3) different indicators that could help to assess the quality
or note- and response-worthiness of comments.

The automatic user comment classification regarding their addressees
is a useful feature. Based on two semi-structured interviews, our previous re-
search, a literature review, and group discussions, we designed our mock-up
as well as requirements and features for the user comment analysis. We dis-
cussed the mock-up in two group discussions and added more feature ideas.
This study provides the basis for developing tool-support for the automatic
user comment analysis. Among the derived features, we highlight a required
feature that summarizes certain addressee types, including actors, topics, or
events. In particular, we learned that user comments often address not only
a topic of the news story but the author, the editors, the media house, or the
community-moderators. These comments can contain valuable corrective and
perfective insights, including constructive feedback, factual corrections, pointing
out typos, suggestions of new topics, or different perspectives.

58

Part II

Solution

59

Chapter 5

Domain-Independent Machine
Learning Pipeline

This chapter introduces a domain-independent machine learning pipeline for the
automatic detection of aspect addressings in user comments. Figure 5.1 shows
a schematic overview of the pipeline. The domain expert first defines the aspect
of interest, which is either a domain-specific or a product-specific aspect.

Subsequently, the machine learning pipeline requires technical knowledge from
the solution domain [113] provided by machine learning engineers. We collect
user comments from the respective user comment sections from online platforms,
preprocess, and aggregate them. Depending on the aspect type, we suggest
matching machine-learning approaches to automatically identify user comments,
addressing this aspect. In the following sections, we describe the components of
the machine learning pipeline.

5.1 User Comment Collection

The initial step of this pipeline is the user comment collection, preprocessing,
and aggregation. Our domain-independent analysis model in Section 2.1 shows

Machine Learning PipelineAspect Definition

Product-specific
Aspect

Domain-specific
Aspect

Machine
Learning
Engineer

Application &
Visualization

Domain
Expert

Classification regarding
Domain-specific Aspects

User Comment
Collection

Collection
Pre-Processing
Aggregation

Traditional Machine Learning
End-to-end Machine Learning

Matching Comments to
Product-specific Aspects

Transfer Learning
Text Embedding Similarity

Extract
Insights

Evaluation

Quantitative
Qualitative

Figure 5.1: Schematic process of the machine learning pipeline to automatically
detect aspect addressings.

61

Chapter 5 Domain-Independent Machine Learning Pipeline

that users can submit their comments via different user comment sections on the
same product. Therefore, the first step requires the collection of user comments
across multiple comment sections.

Collection

User comments consist of structured and unstructured data. The unstructured
part comprises the textual elements, including the comment’s title and body.
The structured elements are the metadata, including timestamp, username, and
reactions by other users. Depending on the data source and the setting, different
data collection options are possible. We describe three different approaches to
collect user comments for the subsequent analysis.

• Database. The optimal option is direct access to the database where the
user comments are stored. For example, news sites, including Spiegel On-
line and New York Times, store their on-site user comments in a database.
In most cases, direct data access is prohibited. However, institutes provide
the data under specific terms of use or as an anonymized data dump.

• API. Some companies offer an API for developers to access their data
controlled and monitored. For example, the New York Times offers an API
for accessing their data, including the news articles and user comments
[9].

• Web crawling. We can also collect user comments directly from their
public comment section, requiring existing libraries or custom-developed
tools specially designed for the respective comment section. This method
requires the most effort, is error-prone, and can lead to inconsistent data.

Preprocessing

Depending on the collection method, we have to preprocess the user comments
for the subsequent analysis step. Common preprocessing steps include con-
verting all letters to lower, converting numbers into words, removing numbers,
removing special characters or other umlauts, removing white spaces, replacing
abbreviations with their written form, removing stop words, sparse terms, and
replacing emoticons [259].

Aggregation

After the user comment collection, we unify the user comment data, which
originates from different user comment sections, to store them in a database.

62

5.1 User Comment Collection

However, user comments across different domains and comment sections do not
have a uniform data schema. For example, a comment via Facebook contains
various reactions [63] whereas a comment on the New York Times comment
section contains different data. Listing 5.1 shows the information of a user
comment provided by the New York Times Community API.

Listing 5.1: Example of a response from the New York Times Community API.
1 {
2 "commentID": 103344942,
3 "status": "approved",
4 "commentSequence": 103344942,
5 "userID": 31215304,
6 "userDisplayName": "Wiltontraveler",
7 "userLocation": "Florida",
8 "userTitle": "NULL",
9 "userURL": "NULL",

10 "picURL": "https://s3.amazonaws.com /...",
11 "commentTitle": "Interesting ...",
12 "commentBody": "So now it appears ...",
13 "createDate": "1572234956",
14 "updateDate": "1572255508",
15 "approveDate": "1572235111",
16 "recommendations": 44,
17 "replyCount": 0,
18 "replies": [],
19 "editorsSelection": false,
20 "parentID": null,
21 "parentUserDisplayName": null,
22 "depth": 1,
23 "commentType": "comment",
24 "trusted": 0,
25 "recommendedFlag": 0,
26 "permID": "103344942",
27 "isAnonymous": false
28 }

Therefore, we developed an abstract data schema, which we utilize to store
user comments from diverse sources. The basic recurrent data elements of a
user comment are:

• Title and Text. The textual data of the user comment. Some comment
sections have the title optional or no title.

• Product. The product that the user commented on, e.g., a news article
or an app.

• Source. The source of the user comment, e.g., Spiegel Online or Google
Play Store.

• User. The username or a user profile of the user who submitted the com-
ment.

• Parent comment. Comments are often structured in a recursive thread
structure. Therefore, a user can reply to a comment, which then becomes
the parent comment of the given comment. If this field is empty, the
comment is a root comment.

63

Chapter 5 Domain-Independent Machine Learning Pipeline

• Status. User comments can have different states within the comment
section. For example, community-moderators review comments in some
comment sections before publishing or blocking them.

• Embedding. Numerical sparse vector representation of the user comment
for machine learning applications.

• Timestamp. The date when the user submitted the comment.

5.2 Comment Classification for Domain-specific
Aspects

This section introduces the approaches, which our pipeline uses to detect domain-
specific aspect addressings in user comments. The following approaches all apply
supervised machine learning to train a model based on annotated training data.
With a training set consisting of known user comment samples, we train a model
to classify unseen user comments. We create the training set based on a manual
coding task. Two annotators independently annotate a random sample of user
comments according to a coding guide [164, 190], which defines whether an as-
pect is addressed. We can also outsource annotation tasks to online platforms
such as Appen [39] or Tagger Life [248], which employ crowd-based annotators
to annotate the data according to the coding guide. An insufficient inter-coder
agreement [17] can indicate that the aspect definition is not precise enough and
needs to be clarified.

5.2.1 Traditional Machine Learning Approach

We introduce the traditional machine learning approach, which relies on manu-
ally extracted features. In traditional machine learning, the researchers conduct
feature engineering to manually compile useful features to encode a user com-
ment to train and apply a machine learning model [136].

Word Count Features

The main content of user comments is the unstructured textual body. This data
has to be converted into a numeric form for an algorithm to train a statistical
model. For textual data, the researchers commonly develop a vocabulary with
frequent words to count or measure the significance of each word in the text.
The outcome of this step is a high-dimensional user comment encoding, whereby
each dimension represents a word [275].

64

5.2 Comment Classification for Domain-specific Aspects

Finding decisive features for the data encoding step is critical and influences
whether the model can find a scheme in the training data. The manual feature
extraction step is often a domain-dependent task and requires knowledge from
the domain experts [106]. The systematic search for significant and informative
features is called feature engineering and an essential part of this approach.

We list three common approaches to convert textual data into numeric vector
representation:

• One-hot encoding. One-hot encoding [225] is a way to convert textual
data into binary flags to represent whether a text contains a word or
not. We can train a one-hot encoder on a text corpus to generate the
vocabulary with all the unique words contained in the text corpus. Given
the pre-trained encoder, we represent a text as a vector. The dimension of
the vector equals the number of words in the vocabulary. Each dimension
represents a flag whether a word is present in the text or not. The major
disadvantage is that the sequential information of the text gets lost.

• Bag-of-words. Similar to the one-hot encoding, the bag-of-words text
representation [274] relies on a pre-trained vocabulary. The vocabulary
contains the words we consider when representing a document. For rep-
resenting a document, we count each word’s occurrences and combine
them in a vector. Practitioners use the bag-of-words model commonly as
a method for feature generation. This method also loses the sequential
information of the text.

• Term frequency - inverse document frequency (tf-idf). This text
representation assesses the relevance of terms in documents of a document
collection. With the weighting of a word in relation to the document in
which it is contained, documents as search hits of a word-based search
can be arranged better in the hit list than would be possible, for example,
using the term frequency alone [149]. This method also loses the sequential
information of the text.

• n-gram. The text representations using n-grams are an approach, which
first splits the text into chunks, mostly in characters or words. Each
chunk and its n successive fragments are summarized as an n-gram. The
advantage of this representation is that we can maintain partly sequential
information of the text. On the other hand, the number of different n-
grams increases drastically with an increasing n. Therefore, practitioners
often have to limit the vocabulary to the top-occurring n-grams [256].

65

Chapter 5 Domain-Independent Machine Learning Pipeline

Comment Embedding Features

Collobert et al. [38] introduced an approach based on neural networks in which
a model learns internal text representations based on a large text corpus called
text embedding. Additional models, including word2vec [181], GloVe [200],
fastText [124], doc2vec [146], improved and extended this approach and enabled
the embedding of longer text passages. Our pipeline uses these approaches to
obtain semantic vector representations for user comments. We can also further
use this representation as a feature for our machine learning model. Our pipeline
applies two different strategies to embed user comments: word-based embedding
and document-based embedding.

• Word embedding. This representation relies on a model representing
single words, tokens, or sub-words in a high-dimensional space. For this
approach, we train a word embedding model (e.g., word2Vec [181]) unsu-
pervised on a large corpus of user comments. Thereby, the model learns
the semantic of the users’ language. To derive a text representation based
on the word embeddings, we can sum up or average all single word vec-
tors [146]. We can also apply a phrase detection algorithm proposed by
Mikolov et al. [181] to obtain a single vector representation for common
phrases, for example, “The New York Times” or “augmented reality”.

• Document embedding. This representation learns embeddings for a
complete paragraph or document via the distributed memory and dis-
tributed bag of words models from Le and Mikolov [146]. Thereby, each
document becomes a vector representation directly in the vector space.

Aspect-based Features

Figure 5.2 shows a schematic overview of the traditional supervised machine
learning approach, which uses seed keywords from the domain experts for the
feature extraction step. These seed keywords describe the domain-specific aspect
provided by the domain expert. Since the users’ language is volatile and changes
quickly, new terms arise and disappear within months depending on current
events and trends. For example, users address the author of an article not only
as “journalist” but also as “author,” “writer,” “editor,” “penpusher,” “trainee,”
“columnist,” or “expert.” Similarly, users address the German chancellor also
other than by name, for example “Fr. Merkel,” “Angy,” “Mutti” Engl. “mother”
or different names of her position, for example “Bundeskanzlerin,” or “Kanzlerin”
[102].

66

5.2 Comment Classification for Domain-specific Aspects

Classification

Model

Comment

Seed keywords
for domain-

specific aspect

Keyword
augmentation

Augmented
keyword set

Feature
Extraction

Domain
Expert

Figure 5.2: Traditional learning with manual feature engineering approach, us-
ing seed words from domain experts, which describe the domain-
specific aspect.

To capture these possible addressing variations for a domain-specific aspect,
we augment the seed keywords using semantic word-level embeddings. For this
purpose, we utilize word embedding models (word2vec [181], or fastText [23]),
which we train unsupervised on a user comment corpus as large as possible with
comments of that particular domain. Thereby, the model learns a dense vector
representation for each word in the corpus, including the seed keywords. We
utilize these vector representations to augment the seed keywords.

For each word, we query the 𝑛 most similar words regarding their cosine
similarity in the word embedding space [41]. Thereby, we identify words that
users use in a similar context [97, 102]. Common augmented words contain
variations of the seed keywords, including synonyms, common misspellings, or
nicknames. Optionally, we further evaluate each keyword candidate and assess
how precisely each keyword identifies the addressing of the respective aspect.

In the next step, domain experts assess the extended keyword set. They con-
sider occurrences of these words in user comments to obtain an impression about
how users use these words in their comment texts [97]. The outcome of this
step is a validated augmented keyword set, which describes the domain-specific
aspect. In the following, we introduce two approaches to extract additional
machine learning features based on the extended keyword set.

• Word occurrences. A simple approach counts the occurrences of each
keyword in the comment and uses them as a machine learning feature. We
extract the occurrence count in the user comment and add them for the
vector representation. In a supervised training scenario, the model can
independently learn the significance of each word.

• Aspect embedding. This feature representation aggregates the dense
vector representations of the augmented keyword set into a single vector.

67

Chapter 5 Domain-Independent Machine Learning Pipeline

According to Mikolov et al. [181] arithmetic operations on word embed-
dings can complete word analogies so that we can utilize their semantic
representation. The aggregation function can either be the average or the
sum of the individual vectors. Both aggregated vectors have the same
angle but differ in their length, which does not affect the cosine similarity.
The resulting vector is a semantic representation of the domain-specific
aspect defined by the domain expert [97]. Since we use the same vector
space for embedding the user comments, we can measure the similarity
between the comment embedding and the domain-specific aspect vector.
Thereby, we provide a distance value that measures to what degree a user
comment addresses the domain-specific aspect. We add the distance value
as a machine learning feature [97].

After extracting all features, we have a variety of models to train and evaluate.
For example, Kotsiantis [136] and Kadhim [127] describe different supervised
machine learning classification models, which we can apply and optimize using
our extracted features.

5.2.2 End-to-end Machine Learning Approach

Besides the traditional approach within the supervised learning approaches, end-
to-end machine learning is a popular field in the deep learning area [81]. This
approach does not require manually extracted features but automatically iden-
tifies informative signals and weights them higher. It uses deep neural networks
with multiple layers to learn effective data representations as the underlying
base to solve complex problems [83]. Each layer automatically learns a specific
intermediate task required to achieve the overall goal [35]. The term end-to-end
describes the independent learning process from one end (raw textual input) to
the other end (classification output).

An initial input vector with a specific dimension represents the first layer,
which is expanded or reduced by further layers of neurons and abstracted
through weightings until a final layer is reached, which yields the output vector.
The output layer represents the classification of a user comment addressing a
specific domain-specific aspect. However, there is no silver bullet for the neural
network architecture and requires different experiments with different variations
and hyperparameters [35]. Furthermore, training a deep neural network from
scratch usually requires millions of training samples [83].

68

5.3 Matching Comments to Product-specific Aspects

Pre-fill the embedding layer with pre-trained word embeddings

We cannot input the raw text into a neural network, which expects numerical
input. Therefore, a tokenizer [201] first splits the text into chunks (tokens) and
assigns an id to each chunk. The first embedding layer learns a distributed vector
representation for each token [10]. These layers require a large text corpus to
learn meaningful vector representations for the tokens [180, 193].

We can pre-fill the embedding layer with word embeddings, which we train
unsupervised with tools like word2vec on a large corpus of user comments.
Thereby, the neural network does not have to learn word embeddings from
scratch but can rely on pre-trained knowledge and focus on the subsequent lay-
ers for training. This method is commonly used to pre-fill embeddings layers
with meaningful weights [102].

Text embeddings based on pre-trained language models

Context-free embedding models as word2vec [146], GloVe [200], or fastText [124]
compute an embedding for every single word in the vocabulary. However, the
same token in different sentences can have two different semantic meanings.
For example, the token “apple” has a different semantic meaning in the two
sentences, “An apple a day keeps the doctor away” and “The stock price of
Apple is rising.” More recent language models like BERT [53] embed tokens
depending on the words’ surrounding context, which leads to more meaningful
embeddings which outperformed existing embeddings in different tasks.

In our approach, we utilize context-sensitive word embeddings based on so-
phisticated language models like BERT to represent the text input. BERT’s
tokenizer adds the leading [CLS] token to its text input. Its embedding is the
pooled text representation, which we can use to embed the complete text [53].
We can use this representation as an input of a dense layer or a logistic regression
model, which we can fine-tune for specific classification tasks [53].

5.3 Matching Comments to Product-specific Aspects

This section introduces the approaches, which our pipeline uses to match user
comments to product-specific aspect addressings. In the two following ap-
proaches, we introduce the transfer learning-based approach and the embedding
similarity-based approach.

69

Chapter 5 Domain-Independent Machine Learning Pipeline

Model

Training with
training set labels

after
training

Text A Text B

Trained Model

Comment Product-specific
Aspect

Classification

Figure 5.3: Teaching a model the concept of addressing (left) and transfer the
learned to identify whether a user comment addresses a product-
specific aspect.

5.3.1 Transfer Learning Approach

Transfer learning [178] describes a machine learning strategy in which we train
a model first on a related task and then apply the learning to the actual task.
Figure 5.3 shows a schematic diagram of the transfer-learning approach. We
apply transfer learning by teaching a model first a general concept of how a text
𝐴 addresses another text 𝐵 based on numerous positive and negative training
pairs. An example of such a training set could be extracted from a comment
section’s thread structure in which users address each other’s comments by
replying to each other. The model would learn how users address each other’s
comments. We then transfer this learned addressing concept to identify whether
a user’s comment addresses the textual description of a product-specific aspect.
The model we train could be a pre-trained language model, for example, BERT
[53], which is a cross-encoder and expects two texts as an input.

5.3.2 Text Embedding Similarity Approach

Figure 5.4 depicts the approach based on a bi-encoder approach, which encodes
the aspect and the comment separately using the same model and uses the
cosine-similarity to measure the degree of the addressing. We designed this
approach to suggest user comments, which address a product-specific aspect.

Aspect Embedding with Seed Texts

This step involves product-specific knowledge to identify relevant characteristics
of its aspects. Domain experts can provide data sources with product-specific
texts describing the aspect. This input serves as seed texts to describe the
product-specific aspect.

In the journalism domain, a seed text could describe a particular topic of an

70

5.3 Matching Comments to Product-specific Aspects

article aspect (e.g., paragraph). A seed text example, which describes an aspect
about the corona measures and their economic effect, could be: “The corona
measures restrict the citizens too much. The economy suffers considerably as a
result. A further lockdown is not a sustainable decision.”.

In the app development domain, a seed text example for an app-specific aspect
could be about the “voice message” feature of the app WhatsApp could be:
“Voice messages let you communicate with contacts instantly. All voicemails are
always downloaded automatically. Consecutive voicemails are played back one
after the other without a conversation, so you don’t always have to press play.”
Developers also record app-specific aspects in issue trackers, including feature
requests and bug reports [98], consisting of textual descriptions, which are also
suitable for app-specific seed texts.

Given a product-specific seed text, we use a language model such as BERT
[53], or DistilBERT [219], to calculate its embedding. These models calculate
a contextualized embedding per token, which we aggregate to a single vector
(Section 5.2.2) to represent the text. The model embeds the seed text of the
aspect, creating an embedding, which we call the aspect embedding.

Querying Aspect Embedding Neighbors

Our approach embeds the user comments with the same model parallel to the
aspect embedding. We receive a vector representation for each comment in
the same vector space as the aspect vector. This approach requires querying 𝑛

most similar comment embeddings to the aspect embedding in the vector space
with millions of embeddings. Therefore, we optimize this query and store the
user comments’ embedding in a performant index [165]. The result ranks user
comments starting with the user comments, which are most similar to the aspect
vector.

Optionally, the domain expert can assess the suggested comments and label
whether the comment addresses the product-specific aspect. Our approach uses
the positive annotated user comments to fine-tune the aspect embedding by
adding their embedding to the aggregated aspect embedding. Depending on
the decision, the aspect vector is updated, and we sample the most similar
comment embeddings again. Thereby, the domain expert constantly provides
feedback and further updates and fine-tunes the aspect vector by annotating
user comments.

71

Chapter 5 Domain-Independent Machine Learning Pipeline

Comment

Model

Aspect
Embedding

Model

Comment
Embeddings Similarity

Ranked
Comments

Product-specific
Seed Texts

- descriptions
- examples
- keywords

Aggregation

CommentComment

Index Creation
manual labeling

to fine-tune
aspect

Figure 5.4: Using text embedding similarity to identify user comments, address-
ing a product-specific aspect.

5.4 Evaluation of the Machine Learning Approach

We evaluate the model, which automatically identifies aspect addressings within
user comments, quantitatively and qualitatively. The approaches we introduced
in the previous sections yield different outputs. Whereas approaches for domain-
specific aspects (Section 5.2) classify user comments, the approaches for product-
specific aspects (Section 5.3) rank comments. We highlight important aspects
regarding the classification metrics for the application in our context.

5.4.1 Quantitative Assessment

We suggest quantitative assessment strategies to evaluate our machine learning
approaches for both a user comment classification and a user comment ranking
scenario.

User Comment Classification

We hold back a share of labeled user comments to evaluate the performance
of our model [34]. For the performance evaluation of our model, we used the
default metrics precision and recall. The precision is the fraction of the training
sample, which the model classified correctly. The recall is the fraction of positive
samples, which the model classified correctly. We calculated them as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

72

5.4 Evaluation of the Machine Learning Approach

𝑇𝑃 is the number of samples classified as positive and actually are positive.
𝐹𝑃 is the number of samples that the model classified as positive, but actually,
they are negative. 𝐹𝑁 is the number of apps that are classified as negative
samples but actually are positive samples.

For an application, we want to minimize type I errors (false positives) for
domain experts when they browse through positive classified samples. There-
fore, domain experts prefer a high precision value for the automatic comment
analysis as it is not important to find all relevant comments but rather a small
number of comments, which are likely to be relevant. The model might not
catch all positive samples, but on the other hand, we minimize the time spent
by the domain expert examining irrelevant samples. Therefore, we rely on the
𝐹0.5 score for evaluating a model for our setting.

Since precision and recall affect each other contrarily, the F1 score is the
harmonic mean of these values, which is the harmonic mean between them.
The 𝐹𝛽 score is more general and adds a beta to adjust the importance between
recall and precision [271, pp. 327-328]. Typical values for 𝛽 are one (F1 score or
the harmonic mean), two (weights recall higher than precision), and 0.5 (weights
recall lower than precision). Different applications require a different focus on
one or the other metric. The 𝐹𝛽 score is the weighted harmonic mean of precision
and recall:

𝐹𝛽 = (1 + 𝛽2) · Precision · Recall
(𝛽2 · Precision) + Recall

The ROC-AUC score is another well-established metric [46], which is indepen-
dent of the classification threshold. It requires the model to output classification
scores.

User Comment Matching

Our approaches output a ranking when matching user comments with product-
specific aspects. The model ranks matchings according to the model’s output
score. For the application, our machine learning model suggests a small ratio
of aspects. The recall is not a helpful metric in this setting, as products might
have various comments matching with product-specific aspects and domain-
based aspects, and domain experts cannot read all of them.

Creating a training set for this task is challenging because the comment com-
parison regarding their addressing is difficult to measure and quantify. In such
cases, we instead suggest manually checking the top 𝑛 ranked aspects of the
model over a sufficient sample of user comments. We further count the ratio

73

Chapter 5 Domain-Independent Machine Learning Pipeline

of relevant vs. irrelevant comment-aspect matchings within the 𝑛 suggestions,
which we can summarize as the mean average precision:

𝑀𝐴𝑃 =

∑𝐴
𝑎=1 𝐴𝑣𝑒𝑃(𝑎)

𝐴

It describes the average precision 𝐴𝑣𝑒𝑃 for each aspect 𝑎 and its comment
suggestions and then calculates the mean over all aspects 𝐴. The MAP is
a conservative evaluation metric because it assumes that at least 𝑛 relevant
aspects exist.

5.4.2 Qualitative Assessment

Additionally, we assess the model suggestions qualitatively. The domain expert
assesses the classifications and checks whether classified comments contain po-
tential insights. For this analysis, we analyze the type I errors (“false positives”)
of the model to understand why the model wrongly classified negative instances.
This analysis can provide inside to further improve the automatic classification
approach. The analysis of true positives is essential to understand that we find
diverse user comments, which provide different insight types. For example, a
user comment, which addresses the journalistic aspect of “article quality” might
only find user comments, which point out spelling mistakes but not factual er-
rors. In case our model only identifies a specific type of comments, we can review
our model improve it. Additionally, the machine learning engineer could also
analyze especially the classification errors (false positives and false negatives)
to potentially fine-tune the model.

5.5 Discussion

Theoretically, we can also use the transfer learning approach (Section 5.3.1)
and the text embedding similarity approach (Section 5.3.2) for classifying user
comments regarding their domain-specific aspect addressing. We could use the
transfer learning approach also with a domain-specific aspect description. Simi-
larly, we can use such a description to compute the embedding similarity between
the comment and the description. We could use the similarity value to rank and
suggest user comments to domain experts.

A simple alternative approach would be a keyword-based search for domain
experts. Domain experts would first collect keywords, which might identify an
aspect relevant to them, and then filter the comments according to their key-
words. However, the language and the vocabulary between domain experts and

74

5.6 Conclusion

the users is different [97, 98, 102]. Whereas domain experts often use domain-
specific terminology, users express their opinions in user comments rather infor-
mally, frequently with abbreviations or misspellings. We address this language
gap and iteratively adapt and extend the domain experts’ keywords using ma-
chine learning techniques. We incorporate the users’ language in user comments
based on word embeddings, text embeddings, and text analysis methods in col-
laboration with domain experts. Thereby, our machine learning approaches
augment the domain-specific language of domain experts with the users’ lan-
guage from comments.

The model’s evaluation requires the domain expert to assess the classification
metrics in collaboration with the domain experts. After we evaluated our ma-
chine learning model, we can apply the model and automatically analyze user
comments at a large scale to classify or match the comments. We can visualize
the model’s suggestions in a dashboard for the domain expert to extract insights
(Section 2.2) from the analysis results.

5.6 Conclusion

This chapter introduced a domain-independent machine learning pipeline that
contains approaches to 1) automatically classify domain-specific aspect address-
ings in user comments and 2) match user comments with product-specific as-
pects. The prerequisite for this pipeline is predefined aspects by domain experts.
The pipeline follows a three-step process to train and evaluate a model. We first
suggested various comment collection strategies to obtain a comprehensive cor-
pus of comments for further analysis. We suggested four different approaches,
which combine the experts’ knowledge in the problem domain with the technical
knowledge in machine learning. The approaches leverage data representations
based on state-of-the-art word embeddings and text embeddings to classify user
comments and rank potential aspect addressings. In the third step, we system-
atically evaluate the models’ performance quantitatively and qualitatively with
suitable classification metrics. The output of the machine learning pipeline is
a model, which domain experts can use for the analysis of user comments at a
large scale. In subsequent steps, we would visualize the results for the domain
experts to extract insights from them.

In the following chapters, we applied our pipeline in the online journalism and
app development domain to validate its applicability. These subsequent studies
provide evidence that our pipeline enables experts to extract insights from user
comments domain-independently.

75

Chapter 6

Classifying Journalistic Aspects in
User Comments

Publication. We base this chapter on the publication “Who is Addressed in
this Comment? Automatically Classifying Meta-Comments in News Comments”
in 2018 [102]. In this work, I designed the study, collected and processed the
data, conducted the machine learning experiments, conducted the qualitative
analysis, discussed the results, and summarized our findings.

Contribution. In this Chapter, we focused on user comments in the on-
line journalism domain. The domain experts are the journalists, editors, and
community-moderators. We applied our domain-independent machine learning
pipeline and addressed the lack of automatic user comment classification, partic-
ularly for identifying addressings in user comments (Chapter 3). In the context
of this thesis, we defined the journalistic aspects as the media house, the jour-
nalist, and the community-moderator. Additionally, we defined user comments
which address at least one of these journalistic aspects as “meta-comments.”
We applied our machine learning pipeline (Chapter 5) to automatically identify
meta-comments. These comments may call for reactions, and domain experts
might extract corrective or perfective insights from them, such as corrections or
ideas for future articles. We developed, optimized, and evaluated these classi-
fiers on a user comment dataset of the large German online newspaper Spiegel

Online and the “One Million Posts” corpus of Der Standard [220], an Austrian
newspaper.

6.1 Motivation

It is becoming increasingly difficult for online newspapers to handle the vast
amount of user comments, which are heterogeneous in content and quality [234].
For example, one of the most popular German online news sites, Spiegel On-
line, publishes ∼1.2 million user comments per year, which amounts to more

77

Chapter 6 Classifying Journalistic Aspects in User Comments

than 3,000 comments per day, and that is disregarding blocked comments and
comments on social media. For community-moderators, a manual selection of
constructive comments is infeasible. Journalists and journalism researchers re-
peatedly mention this problem: finding particularly useful or high-quality com-
ments is like finding a needle in a haystack [25, p.387] [108, 197, 214]. Developing
tools to assist moderators, journalists, and media houses to analyze, filter, and
summarize user comments has been identified as a primary challenge for media
houses [55, 58, 60].

In our exploratory study (Chapter 4), we found that journalists have a clear
sense of what they deem useful user contributions [153]. For instance, journal-
ists particularly appreciate user feedback that reports errors in articles, include
additional information on a topic, or contains criticism addressed to the quality
of an article. Journalists can use this information to improve journalistic work,
correct articles, answer frequent questions, or gather feedback on the quality of
their news coverage.

In our study [153], we found that one feature journalists considered particu-
larly useful is the ability to identify the addressee in comments, for example, the
media house, the author of the article being commented on, actors mentioned
in the article, or other actors and users. This would help direct comments to
the editors or to single journalists that may call for reactions such as correcting
facts, answering questions, or providing additional information. This is all the
more the case as it is also likely that user comments that address the author or
the media house directly contain elements of media critique or praise [42].

In this study, we developed an approach based on our domain-independent
machine learning pipeline to automatically identify and classify user comments
addressing journalistic aspects. We focused on comments that are not (only)
addressing the article but address one of the three journalistic aspects, which
we define for this study: the media house, the journalist, and the community-
moderator. We call comments addressing at least one of these journalistic as-
pects “meta-comments”.

6.2 Research Design

6.2.1 Research Questions

In this study, we focus on the three journalistic aspects, which we call meta-
addressees in this study. We inspired the three meta-addresses by Loosen et
al. [157]:

• Media. Covers the media companies, their editing, and news coverage,

78

6.2 Research Design

for instance, Spiegel Online (de), Der Standard (at), New York Times
(us), or The Guardian (uk).

• Journalist. Refers to the article’s author or other persons involved as
editors or reporters.

• Community-moderator. Refers to those who manage comment sec-
tions, read comments, actively participate in discussions, release, or block
comments from the comment section.

Our goal is to identify whether a user comments is a meta-comment or not
and then to classify meta-comments regarding their meta-addressees. A user
comment is a meta-comment if it addresses at least one meta-addressee. We
focus on three research questions:

• RQ1. Which classification approach/configuration is the most accurate
for classifying meta-comments?

• RQ2. What are informative machine learning features among text fea-
tures, semantic features, and comments’ metadata to identify and classify
meta-comments?

• RQ3. Which information do classified meta-comments contain, and how
would it be useful?

6.2.2 Research Method

Figure 6.1 shows an overview of our methodological framework, which comprises
four consecutive phases. To answer RQ1, we first deduced machine learning
features for a supervised learning approach from a qualitative content analysis
and related work. We trained the word and comment embeddings [146, 180]
for text features, semantic features [218], and for applying transfer learning
[178] on an end-to-end learning approach [147]. We manually labeled a training
set of user comments posted on Spiegel Online and combined it with the
“One Million Posts” corpus to optimize the hyperparameter configuration for
different classifiers and classification approaches. For RQ2, we calculated the
most significant features for each meta-addressee class. For RQ3, we applied
the trained classifier on a random subset of unlabeled user comments, read the
classified comments, and qualitatively analyzed their content. The details of
each step are discussed in the corresponding result section below.

79

Chapter 6 Classifying Journalistic Aspects in User Comments

User comments
on news articles

Machine learning features

Create Training Set

Validate Classification
Results

Data Analysis Classifier Experimentation
Train Word & Comment

Embeddings

Deduce Machine
Learning Features

Optimize
Hyperparameters

Feature Deduction Qualitative Insights

Conduct Qualitative
Content Analysis

User comment classifier

Conduct Qualitative
Content Analysis

User
feedback

Preprocessed data

Apply Classifier to
Unseen User Comments

Identify Feature
Significance

Analyze Structure of
Comment Sections

Conduct Quantitative
Content Analysis

Figure 6.1: Overview of our research methodology with four main consecutive
steps.

6.2.3 Research Data

To answer our research questions, we used two datasets: (1) user comments
posted on Spiegel Online (SPON) [78] and (2) the “One Million Posts” (OMP)
corpus [220]. We selected the SPON news page for two reasons. First, SPON
is the most-read online German newspaper according to Alexa.com [254]. Sec-
ond, the topics covered are diverse and structured in articles, forums, and com-
ments. We collected a comprehensive sample of published user comments from
01-01-2000 to 28-02-2017 with their respective metadata and all archived arti-
cles and forums. The data collection took one week, and we did not notice any
changes of forum features between old and new forums. Our sample comprises
11,276,843 comments (with title, text, timestamp, username, department, and
quoted comments if available), 515,522 articles (with title, introduction, text,
date, and partly author names), and 181,399 forums (with title and depart-
ment). Most SPON articles are signed by an acronym to state the author, while
the acronyms are assigned to full names in the imprint. However, we could only
identify the full author names for 16% of the news articles as many assignments
were missing.

Additionally, we used the partly annotated comments of OMP, a dataset
that consists of 11,773 labeled and one million unlabeled German online user
comments posted on Der Standard, an Austrian newspaper website. The
authors define the annotation category “feedback” as: “Sometimes users ask
questions or give feedback to the author of the article or the newspaper in
general, which may require a reply/reaction” [220]. This description is equivalent
to our meta-comment definition.

80

6.3 Results

alexandermaurer 11.06.2016, 10:11
74. Schadet GB

mehr, als der EU.Mit ihren Sonderwünschengehensie eineminder
EUsowieso auf die Nerven. Zudemhat die schottische
Unabhängigkeitsbewegungschonangekündigt danneine neue
Abstimmungzur LoslösungvonGB zuwollen.

Beitragmelden Antworten /Zitieren

Freifrau vonHase 11.06.2016, 10:14
75.

"Sie werden für die Freiheit eintreten, genausowie sie es 1914"

InGeschichte nicht aufgepasst? ImErstenWeltkriegginges nicht
umFreiheit sondernumImperialismus.

Beitragmelden Antworten /Zitieren

Verärgerter Inselaffe 11.06.2016, 10:14
76. Selbstkritische Aufarbeitungdringendnotwendig

Die Autorenhaben leidernichts verstanden. Ichwerde für denEU-
Verbleib stimmen, abernur aus der Besorgnis, dass Großbritannien
denHandelmit der EUbraucht unddie EU ineinerVerhandlung
über ZugangzumgemeinsamenHandelsraum(aus Sorge von
Nachnahmetätern) eine harte Linie vertritt. Die Sorgenvoneiner
nicht zubändigenden Immigrationswelle infolge einer verfrühten
undübertriebenenOst-Erweiterungsindaberberechtigt.

Beitragmelden Antworten /Zitieren

beat126 11.06.2016, 10:16
77.

"Brexit: Wer klugist bleibt" -Hierdie Gegenargumentation, bei der
sich jeder gleich selbst einBildmachenkann.
https://www.youtube.com/watch?v=eYqzcqDtL3k
(abMinute 50 bis 57)

Undmanbedenke, der Filmwurde nicht voneinemSchweizer
gemacht.

Username
Self-critical revision
urgently needed

Unfortunately, the authors
didn't understand anything.

Reply /
Quote

Report
comment

Figure 6.2: Example of a meta-comment in the SPON comment section.

6.3 Results

6.3.1 Data Analysis

Structure of the Comment Sections

SPON’s comment section sorts user comments by time. It does not structure the
comments in threads. Figure 6.2 shows an example of a SPON meta-comment.
To post a comment on a news article, (1) users have to log in with either a
SPON or Facebook account, (2) browse to the article’s forum, and (3) compose
a comment with a text and an optional title. Alternatively, users can “Reply /
Quote” an existing user comment, which adds its text as a linked quote to the
user comment. SPON community-moderators review each comment to check if
it complies with the terms of use before it is publicly released on the SPON web-
site. In our dataset, SPON community-moderators also contributed infrequently
(1,216 comments) with the username “sysop” to the discussion [20].

Der Standard’s comment section structures comments into threads and
users can rate existing user comments as “worth reading” or “not worth reading.”
There are different filter and sort options. Users can filter the comments to see
all postings, top postings, or postings by moderators and sort the comment
list by date or rating. Community-moderators use their own name to write
comments. They consider themselves as participants instead of rigid comment
administrators and supplement the discussions through active participation if
they consider it beneficial to a discussion [59].

Quantitative Content Analysis

We describe only the SPON dataset as Schabus et al. [220] report on the OMP
dataset in-depth. The number of SPON user comments per year has steadily

81

Chapter 6 Classifying Journalistic Aspects in User Comments

increased from 2005 to 2011 from 0.1 million to 1.6 million. From 2011 to
2015, users posted between 1.2 and 1.6 million user comments per year. Users
posted most comments in the politics (4.5 million, 39.7%) and economy sections
(2.5 million, 21.9%). The other leading sections are sport, panorama, culture,
science, technology, life & learning, car, health, career, and traveling. Each of
them covers less than one million user comments in total (8.9%). The average
length of a comment’s title is two words and 69 words for the text. 61% of
the comments contain a quote. The average number of words for the title of a
SPON article is seven words, while the average length of an article text is 457
words. Users were able to comment on 32.8% of all articles. On average, one
forum (article) contains 66 user comments.

Qualitative Content Analysis

We conducted a qualitative content analysis of 1,000 randomly selected SPON
user comments to better understand and quantify meta-comments and identify
potential useful machine learning features for our classification task. Each of the
1,000 comments was independently labeled by two human coders. We developed
a coding guide for the labeling process in collaboration with communication
researchers. It describes the labeling task with examples and defines each meta-
addressee class to increase the quality of the manual labeling. Provided with a
coding guide, student assistants labeled the comments. The coding guide and
further resources are available on our project website [258]. After coding, the
inter-coder disagreement was at 5%, which we resolved by majority with a third
coder. In this random sample, we found 54 meta-comments (5.4%), of which
only five addressed the community-moderator. The second column of Table 6.1
summarizes the label distribution for this random sample. We interviewed the
coders to deduce machine learning features from their observations.

Table 6.1: The number of each label in the random sample, the SPON training
set, and the OMP training set.

Training Sets
Labels Random Sample SPON OMP

Media 25 404 566
Journalist 33 426 198
Moderator 5 323 421

Meta 54 982 1,301
Non-Meta 946 1,127 4,737

Total 1,000 2,109 6,038

82

6.3 Results

6.3.2 Classifier Experimentation Results

Feature Deduction

We describe the training of word and comment embeddings and the machine
learning features, which we derived from the findings of our qualitative content
analysis.

Training Word and Comment Embeddings

Word embeddings are a geometric way of capturing the meaning of a word by
using low-dimensional vectors [218]. Their main advantage is that the vector
representations of similar words are situated close in vector space. We used
word2vec [180] to obtain a distributed vector representation for German user
comments. As an input word2vec requires a text corpus as large as possi-
ble to produce low-dimensional vectors as an output. Besides word2vec, para-
graph2vec (or doc2vec) [146] produces document embeddings from comments or
articles. We used the Python library gensim [77] to generate the embeddings.

We preprocessed the comments in four steps: (1) concatenated each com-
ment’s title with its text, (2) removed stop words, (3) removed punctuation, and
(4) converted the text to lower case. We noted that for word2vec, using more
than 300 dimensions or a window size of more than five unnecessarily increases
the training time while not improving the precision of the vector representation
[200].

We used three different word embedding models for the end-to-end learning
approach. Table 6.2 compares our generated SPON model with two other mod-
els: the OMP model according to Schabus et al. [220], and the GermanWord
model that Müller [185] trained on German Wikipedia and news articles.

We used the SPON user comments to train both (1) word embeddings with
word2vec and (2) comment embeddings with doc2vec. We used the word em-
beddings to enrich a set of keywords and pre-fill the embedding layer of a neural
network (transfer learning) [178]. We used the comment embeddings to extract
semantic features. To enable replication, our models are publicly available on
our project website.

Machine Learning Features

We categorize all used machine learning features for our dataset into three
groups: text features, semantic features, and metadata. We indicate the features
specific to the SPON dataset with [S].

83

Chapter 6 Classifying Journalistic Aspects in User Comments

Table 6.2: A comparison of the training parameters between the three different
word2vec models we used.

Model SPON OMP GermanWord

Number of dimensions 300 300 300
Vocab size 212,630 129,070 608,130
Corpus size in words 462,269,114 31,489,845 651,219,519
Min count 50 5 5
Window size 5 5 5
Training epochs 5 10 10
Training method CBOW CBOW Skip-gram

Text Features

In the following, we list the text features we identified based on the coders’ find-
ings from the qualitative content analysis and related work discussing the crite-
ria media organizations consider when identifying high-quality comments [123,
175, 211]. Diakopoulos [55, 58] categorized these criteria into twelve human-
centric categories, including emotionality, readability, thoughtfulness, brevity,
and novelty.

• Regular expression pattern. We identified a set of keywords based on
word embeddings, which are likely to be used in meta-comments. We
followed a two-step approach: (1) manual keyword collection and (2) key-
word enrichment with word embeddings. We used the SPON word em-
beddings and fine-tuned the keywords for the SPON dataset. We started
by manually collecting an initial set of keywords with communication re-
searchers. Given the vector representations of the words in comment texts,
we enriched the manually collected keywords by finding the most similar
words (see Table 6.3). This shows how word embeddings can capture fur-
ther words with a similar meaning and common misspellings. We created
a regular expression (regex) based on the keywords to match words in-
dependently of the grammatical gender. We iteratively searched for user
comments that match the regex pattern, assessed the matching comments,
and adjusted the regex pattern to minimize unintended matches. We list
the translated set of keywords for each meta-addressee class: (media) me-
dia, spon, spiegel, spiegelonline, editing, reporting, magazine; (journalist)
article, journalism, contribution, author, writer, editor, penpusher, colum-
nist, expert, reporter, spiegel editor, populist, last names of the SPON
authors; (community-moderator) censorship, censored, moderation, mod-
erator, admin, sysop.

84

6.3 Results

Table 6.3: Examples of similar words within the distributed vector space for the
last name of the journalist “Mr. Fleischhauer” and the word “autor”
(author).

Word Similarity Word Similarity

fleischhauer 1.00 autor 1.00
fleischauer 0.91 author 0.86
augstein 0.88 verfasser 0.85
lobo 0.82 spiegelautor 0.80
diez 0.80 artikelschreiber 0.80
matussek 0.77 sponautor 0.80
fleischhauers 0.77 autorin 0.80
kuzmany 0.76 verfasserin 0.72
fleichhauer 0.76 schreiberling 0.71
münchau 0.76 rezensent 0.70
dietz 0.75 schreiber 0.69
nelles 0.73 spiegelredakteur 0.69
broder 0.73 kommentator 0.68
mattusek 0.71 kolumnist 0.68
mattussek 0.71 artikelautor 0.68
kaden 0.70 redakteur 0.65
neubacher 0.70 sponredakteur 0.64
fricke 0.70 artikelverfasser 0.64
rickens 0.69 forist 0.63

• Tf-idf. The tf-idf score of a word reveals the importance of this word in
a user comment. It assigns words a greater weight proportionally to the
occurrence frequency but reduces the significance of a word that frequently
occurs in many documents as stop words. We used the tf-idf representation
of the comment with unigrams and bigrams without stop words.

• Count of “Sie” occurrences. In the German language, the formal ad-
dress of “you” to an unknown person is “Sie” and is written with a capital
“S” even if it is situated within a sentence. We count the occurrences
of this address within the sentence to separate it from the similar third-
person pronoun “sie”. For the identification of each occurrence, we used
the regular expression pattern “[^\.!?]\s+Sie”. We assumed that it is
an indicator of a reference to the article’s author. However, our coders
observed that this formal address often refers to other users. For this,
commenters also use the “@” notation to indicate a reference.

• Number of questions. Questions in comment texts might address the
media company, authors, or community-moderators. Our coders men-
tioned typical user questions as “Why has my comment been blocked? ”.
Therefore, we counted the number of questions contained in a comment.

85

Chapter 6 Classifying Journalistic Aspects in User Comments

• Length. We added up the number of characters in the comment title
and text. We assumed that meta-comments might differ in their length
from other user comments as previous work has also identified brevity as
a quality indicator.

• Average word length. We used the average number of characters per
word as a simple measure of text complexity. Users might put more effort
into the wording of meta-comments and choose more sophisticated and
longer words on average.

• Number of capital letters. We count the number of capital letters.
Users often use capital letters to indicate “yelling” in user comments. We
assumed that these comments are more likely to complain about meta-
addressees. Besides, users also write the names of the media companies in
capital letters such as “Spiegel” or “Der Standard”.

• Sentiment score. We used the sentiment score [250] of the comment title
and text, assuming that a high polarity score is an indicator of media-
critical statements [42].

Semantic Features

We used two different semantic features derived from comment embeddings:

• Document vector. From paragraph2vec, we obtained a 300-dimensional
dense vector representation for each comment in a distributed vector space
in which semantically similar comments have a high cosine similarity. We
used each dimension of this vector as a feature. As we generated the
comment embeddings based on the SPON user comments, the model infers
a vector representation for the OMP comments as we did not use them
for training.

• Vector Space Distance. We utilized the comment embeddings to de-
termine a representative average vector (class vector) for each comment
class. We used the cosine distance and the most similar class vector as
a feature. We formally describe the semantic distance feature. Let 𝐴 be
the set of all comments and C the set of all comment classes. Further, let
𝑊 : 𝐴 → R300 be the comment embedding function that yields a vector
representation for a comment. Then, for each class 𝑋 ∈ C we define a
class vector 𝑋, which is an average vector as follows:

𝑋 =
1

|𝑋 |
∑︁
𝑐∈𝑋

𝑊 (𝑐)

86

6.3 Results

As a feature for a comment 𝑐 ∈ 𝐴, we used the cosine distance function
𝑑 to determine the distance 𝑑 (𝑊 (𝑐), 𝑋) for each 𝑋 ∈ C. Additionally, we
identified the class 𝑋 to which the class vector 𝑋 has the minimal distance
min
𝑋 ∈C

𝑑 (𝑊 (𝑐), 𝑋) and added it one-hot encoded as a feature.

Metadata

The metadata is the set of additional properties of a user comment. We obtained
more additional metadata for SPON user comments. We extracted the following
features from the metadata:

• Comment number [S]. The forum lists the user comments in ascending
order of time, assigning each comment a consecutive number. This number
is the position of the comment in the list. We added the comment position
as a feature, as first user comments might be more likely to identify errors
in the article.

• Department [S]. The SPON page is structured into twelve departments.
As users post their comments to an article, we used the department of the
article as a feature.

• Quote contained [S]. Users can reply to comments from other users.
With this function, users can quote a previous user’s comment text. We
assumed that users instead address another user than a meta-addressee
when they refer to other comments. This assumption corresponded with
our coders’ impressions.

• Time. We further extracted the time stamp precisely to the minute of
each comment. We add both the day of the week and the hour of the day
as features.

Supervised Machine Learning

We used a supervised machine learning approach for the user comment classifi-
cation. The classifier derives a classification model from these labeled training
sets to classify unseen user comments. The training set contains comments with
the label meta-comment (with meta-addresses) or non-meta-comment. Our ap-
proach uses four binary classifiers in two steps: (1) a binary classifier for meta-
comment / non-meta-comment and (2) three binary classifiers to classify each
meta-addressee class. For the second step, we used the classification strategy
one-vs-all [22, p. 182, 338], which trains a binary classifier per class.

87

Chapter 6 Classifying Journalistic Aspects in User Comments

Training Set Creation

For the SPON training set, we collected coded comments for each meta-addressee
class. Due to the small share of meta-comments, random sampling was not fea-
sible for gathering enough comments per meta-addressee class. For sampling
a user comment set with a higher share of meta-comments for annotation, we
used (1) regular expressions and (2) cosine similarity between keywords and
user comments in the vector space of the comment embeddings. We calculated
the average vector of the keywords for each meta-addressee class and labeled
the 100 most similar comments to each average vector. With this approach, we
captured a heterogeneous set of user comments, for which manual labeling was
feasible. We used the non-meta-comments of the random sample as well as the
non-meta-comments of the sampling described above.

For the OMP dataset, we followed the same coding procedure to identify the
meta-addressees for the 1301 feedback comments. Table 6.1 shows the distribu-
tion of meta-comments and meta-addressee comments for our SPON and OMP
training sets. The latter contains 240 comments, which we were unable to assign
to a meta-addressee class.

Classification Approaches

We compare the user comment classification results between a traditional ma-
chine learning approach and an end-to-end learning approach based on a neural
network model. While the traditional classification approach requires a data
representation based on hand-crafted features, neural networks can handle raw
text as an input and learn high-level feature representations automatically [83].
They have been applied with remarkable results in different classification tasks
like object detection in images, machine translation, sentiment analysis, and
text classification tasks [38].

Convolutional neural networks have mainly been used for image classification
tasks, but researchers have also started using them to solve natural language
processing tasks [133]. Given the small training set for an end-to-end approach,
we used a shallow neural network model and experimented with different num-
bers of epochs to prevent the model from overfitting. We padded the input
comment text to a maximum length of 1,000 words. As shown in Figure 6.3,
after the input layer, our network consists of an embedding layer, a 1D con-
volution layer, a 1D global max pooling layer, a dense layer, and a concluding
output layer with a softmax activation. For the other layers, we used the tanh
activation function. We applied transfer learning [178] by pre-initializing the
embedding layer of the model with three different word2vec models, which we

88

6.3 Results

… … …

…

…

…

…

…

…

…

…
1000

300

Unfortunately
the
authors
didn’t
understand
anything
about
…

…

64

998
… 64 … 16

0

1

Comment embedding
based on pre-trained

word embeddings

1D convolution layer
filter: 64
stride: 1

kernel size: 3

Global max
pooling layer

Dense layer
units: 16

Input layer
(padded)

Output layer

Meta
comment
Non-meta
comment

Figure 6.3: Neural network architecture with optimized hyperparameters for the
user comment classification.

compared in Table 6.2. While training the model, we froze the weights of the
embedding layer.

Due to the small size of our training set, we conducted a stratified ten-fold
cross-validation on the training set to acquire reliable results. For assessing the
classification results, we report on precision, recall (to compare our results with
state-of-the-art results), and the 𝐹𝛽 measure (to overvalue precision over recall).
For the experiments, we used the Python libraries scikit [199] for the traditional
approach and Keras [34] for the end-to-end approach.

6.3.3 Hyperparameter Optimization

To answer RQ1, we performed a grid search to optimize the hyperparameters for
both classification approaches. A grid search performs an exhaustive search over
specified hyperparameter values for a classifier. We evaluated each parameter
combination with a stratified three-fold cross-validation to reduce the compu-
tational complexity. To enable replication, we provide the relevant source code
[101].

We value precision over recall to minimize type I errors (false positives) for the
end user so that the comment analyst has to read a minimal number of wrongly
classified meta-comments. The classifier might not catch all meta-comments,
but on the other hand, we minimize the time spent by the analyst reading
irrelevant comments. We used the 𝐹𝛽 score as the scoring method for the grid
search. It is the weighted harmonic mean of precision and recall [271, pp.327-
328]. We specify 𝛽 = 0.5 to overvalue the precision score in our evaluation
metric. We compare the accuracy of five different classifiers.

• Support Vector Machine (SVM) is known to be one of the best text
classifiers found in the literature [18].

89

Chapter 6 Classifying Journalistic Aspects in User Comments

• Decision Tree learning assumes that all features have finite discrete do-
mains and that there is a single target feature representing the classifica-
tion (i.e., the tree leaves) [255].

• Random Forest [26] is a combination of decision tree classifiers on sub-
samples and controls over-fitting.

• The meta-classifier AdaBoost [69] initially fits a classifier on the origi-
nal dataset and then fits additional copies of the classifier, adjusting the
weights for wrongly classified samples.

• KNeighbors does not construct a general model, but stores the training
data and the classification for a point, which is derived from a majority
vote of all nearest neighbors [43].

We additionally varied the number of the most significant features for each
classifier to 10, 50, and “all features”. We conducted multiple grid search runs
and added more fine-grained values into the parameter ranges to find the pa-
rameters for the best results.

The performance of neural networks is dependent on their architecture as
well as the right hyperparameter selection. To optimize the neural network
architecture, we also performed a grid search over the combined dataset and
evaluated each configuration with a stratified three-fold cross-validation. We
achieved the best results with the neural network architecture depicted in Figure
6.3, trained with a batch size of 32 for 5 epochs.

6.3.4 User Comment Classification

The grid search results showed that SVM with a linear kernel using all machine
learning features achieves the best results for the SPON dataset, the OMP
dataset, and the combined dataset. For the SPON and the combined dataset,
the penalty parameter 𝐶 = 0.5 achieves the best 𝐹0.5 values for the OMP dataset
𝐶 = 1.0. The results in Table 6.4 show that the traditional classification ap-
proach outperforms the end-to-end learning approach for the SPON dataset
(𝐹0.5 = 0.91) and the combined dataset (𝐹0.5 = 0.87). The end-to-end approach
outperforms the traditional approach on the OMP dataset (𝐹0.5 = 0.85) pre-
initialized with either the SPON word embedding model or the OMP model.
However, the performance difference between the traditional and the end-to-end
approach is negligible (Δ𝐹0.5 ≤ 0.05).

The results show a higher 𝐹0.5 score if we use pre-trained word embeddings
based on user comments rather than embeddings based on Wikipedia and news

90

6.3 Results

corpora. It is also striking that we achieve the same 𝐹0.5 scores with both the
SPON and OMP embeddings. Schabus et al. [220] have also compared different
classification approaches on the Feedback category of the OMP dataset, where
they achieved the best precision of 0.75, a recall of 0.71, and an F1 score of 0.63.
All of our classification results outperformed their state-of-the-art results by up
to 11% for precision and 12% for recall.

Table 6.4: User comment classification (meta / non-meta) results of a stratified
10-fold cross validation for three different training set compositions.

User Comment Classification Approach Spiegel Online One Million Posts Combined Dataset
Precision Recall 𝐹0.5 Precision Recall 𝐹0.5 Precision Recall 𝐹0.5

Traditional (with manual features) 0.91 0.91 0.91 0.83 0.81 0.82 0.88 0.82 0.87
End-to-End (with SPON embeddings) 0.86 0.87 0.86 0.86 0.81 0.85 0.85 0.83 0.85
End-to-End (with One Million embeddings) 0.84 0.82 0.84 0.85 0.83 0.85 0.84 0.81 0.84
End-to-End (with GermanWord embeddings) 0.73 0.77 0.73 0.77 0.73 0.76 0.73 0.74 0.73

6.3.5 Meta-Comment Classification

For the second step, we classified meta-comments regarding their meta-addressees
for the SPON and OMP datasets. We used SVM with a linear kernel and the
penalty parameter set to 𝐶 = 0.5 as it achieved the best results for the user
comment classification. Table 6.5 shows the results for both datasets and the
classification results using different feature groups, which we describe later. The
SPON dataset classification achieved high scores with 𝐹0.5 ≥ 0.84 for all meta-
addressee classes. The 𝐹0.5 scores for the SPON dataset are higher than the
OMP dataset. For the Media and the Moderator class, the differences between
the datasets are minor with Δ𝐹0.5 ≤ 0.06.

Table 6.5: User comment and meta-comment classification results of a stratified
10-fold cross-validation for both training sets, using an SVM classifier
with different feature groups.

Feature Combination Meta Media Journalist Moderator
Precision Recall 𝐹0.5 Precision Recall 𝐹0.5 Precision Recall 𝐹0.5 Precision Recall 𝐹0.5

All 0.91 0.91 0.91 0.85 0.81 0.84 0.88 0.76 0.86 0.84 0.87 0.84
Without regex patterns 0.82 0.80 0.82 0.80 0.63 0.76 0.73 0.55 0.68 0.84 0.68 0.80
Only regex patterns 0.90 0.93 0.91 0.84 0.85 0.84 0.89 0.69 0.84 0.82 0.86 0.82

S
p
ie

g
el

Only semantic features 0.77 0.71 0.76 0.76 0.36 0.62 0.68 0.42 0.61 0.75 0.34 0.60

All 0.85 0.79 0.84 0.79 0.82 0.79 0.78 0.39 0.65 0.81 0.67 0.78
Without regex patterns 0.81 0.80 0.81 0.76 0.83 0.77 0.79 0.38 0.65 0.82 0.68 0.78
Only regex patterns 0.88 0.44 0.73 0.74 0.53 0.69 0.89 0.09 0.31 0.85 0.07 0.25

O
n
e

M
il
li
on

Only semantic features 0.73 0.62 0.70 0.63 0.80 0.66 0.74 0.17 0.45 0.73 0.47 0.66

91

Chapter 6 Classifying Journalistic Aspects in User Comments

We also performed a cross-dataset classification. We trained the binary
classifiers with the SPON dataset (training set) and classified the labeled user
comments of the OMP dataset (test set) and vice versa. Table 6.6 shows the
results. The 𝐹0.5 scores are higher for all classes when trained on the OMP
dataset and applied to the SPON dataset. The recall values were low for all
classes (< 0.4) when using the SPON training set.

Table 6.6: Cross-dataset classification results of an SVM classifier trained with
the Spiegel Online data and applied on the OMP dataset and vice
versa.

Training Set Test Set Meta Media Journalist Moderator
Precision Recall 𝐹0.5 Precision Recall 𝐹0.5 Precision Recall 𝐹0.5 Precision Recall 𝐹0.5

Spiegel Online One Million Posts 0.90 0.38 0.71 0.82 0.22 0.53 0.38 0.33 0.37 0.59 0.34 0.51
One Million Posts Spiegel Online 0.89 0.71 0.85 0.63 0.88 0.67 0.82 0.60 0.76 0.87 0.75 0.84

We tested the accuracy of the meta-comment classifier on unseen comments
by classifying a random sample of 100,000 SPON comments regarding the three
meta-addressee classes. The classifier assigned a label to a comment when the
confidence score is greater than 0.8. In a comment analytics tool, this could be a
user-adjustable parameter. Instead of ranking the labeled comments according
to the confidence score, we randomly selected 300 meta-comments (100 per
meta-addressee). Following the coding guide (Section 6.3.1), the same coders
manually checked if the classification was correct. This application would be
similar to a desirable use case for comment analysts [153]. We achieved the
following accuracy: 0.94 (Media), 0.64 (Journalist), and 0.67 (Moderator).

6.3.6 Feature Significance

To answer RQ2, we calculated the analysis of variance (ANOVA) F-value for
each single machine learning feature and sorted them accordingly as shown in
Table 6.7. For the SPON dataset, the most significant feature for the meta-
comment identification is the meta property “department_career”. In our train-
ing set, we found only 35 meta-comments posted on the career department. The
results show that our extended regular expression set is a significant feature of
the Spiegel dataset and achieves an 𝐹0.5 score of 91% for the meta-comment
class as well as scores between 82% and 84% for the meta-addressee classes. The
regex patterns for each meta-addressee class are the most significant features,
respectively. Other essential features are the tf-idf scores of uni-grams. Not a
single tf-idf bigram is on the list.

In the OMP dataset, the minimal semantic distance is among the top ten

92

6.3 Results

Table 6.7: Top ten single features for classifying user and meta-comments ac-
cording to their ANOVA F-value.

Meta Media Journalist Moderator

department_carreer 437 regex_media_matches 390 regex_journalist_matches 167 regex_moderator_matches 680
regex_journalist_matches 328 keyword_spon 181 regex_moderator_matches 162 keyword_sysop 206
regex_media_matches 206 tfidf_spiegel 110 tfidf_herr 58 tfidf_zensiert 95
regex_moderator_matches 138 keyword_spiegel 84 keyword_sysop 48 tfidf_sysop 80
keyword_spon 123 keyword_redaktion 66 keyword_zensiert 40 keyword_zensiert 77
tfidf_spiegel 84 tfidf_redaktion 53 tfidf_zensiert 40 tfidf_beitrag 71
keyword_artikel 83 tfidf_medien 51 department_carreer 35 keyword_zensur 71
text_capitalletters 80 tfidf_spon 50 keyword_spon 32 tfidf_beiträge 60
tfidf_artikel 78 keyword_sysop 48 regex_media_matches 32 keyword_moderation 59

S
p
ie

g
el

O
n
li
n
e

keyword_spiegel 78 regex_moderator_matches 43 keyword_zensur 31 keyword_beitrag 59

tfidf_standard 302 tfidf_standard 181 tfidf_herr 173 semantic_min_dist_moderator 174
regex_journalist_matches 257 regex_media_matches 67 tfidf_rauscher 147 tfidf_postings 91
semantic_min_dist_non-meta 212 semantic_min_dist_moderator 54 semantic_min_dist_journalist 82 tfidf_gelöscht 67
semantic_min_dist_meta 212 tfidf_artikel 51 tfidf_herr rauscher 77 tfidf_posting 53
keyword_artikel 207 text_avgwordlength 48 tfidf_frau 76 tfidf_artikel 52
tfidf_artikel 194 tfidf_postings 47 text_num_sie 63 semantic_sem_16 49
keyword_redaktion 88 semantic_min_dist_media 45 semantic_sem_236 46 tfidf_posts 48
regex_media_matches 81 keyword_contained_artikel 42 tfidf_standard 42 tfidf_standard 48
tfidf_redaktion 79 tfidf_gelöscht 41 semantic_sem_158 40 regex_journalist_matches 47

O
n
e

M
il
li
on

P
os

ts

text_avgwordlength 65 keyword_contained_redaktion 40 keyword_contained_Rau 36 semantic_min_dist_media 47

significant features for all classes. “Herr Rauscher” (Mr. Rauscher) is a jour-
nalist for the Austrian news site. The tf-idf bigram score for “herr rauscher” is
significant for the Journalist class. Also, the regex sets for Journalist and Media
are among the top features. The text feature average word length appears in the
list of the Meta and Media class. The text feature occurrence of “Sie” appears
in the Journalist class.

For both datasets, we can see that the names of the media company are sig-
nificant features: “spon”, “spiegel”, and “standard”. We assume that the bigram
“der standard” is not on the list because we removed stop words, which also con-
tain the German article “der” (the). The words “artikel” (article), “redaktion”
(editing), and “herr” (mr.) are significant features for both datasets.

In Table 6.5 we compare four different feature groups using an SVM classifier
as the baseline with a linear kernel and the penalty parameter 𝐶 = 0.5. We also
performed a stratified ten-fold cross-validation to acquire the precision, recall,
and 𝐹0.5 score for the classification.

For the SPON dataset, the regex-based features achieve high results. The
improvement of further features is minor. By adding the remaining features,
the 𝐹0.5 score increased up to 2% (for Moderator). For the Journalist class, the
regex patterns are an essential feature, and the 𝐹0.5 score drastically decreased
when we removed them. Further, additional features do not improve the 𝐹0.5

score. Semantic features by themselves achieve an 𝐹0.5 score of up to 76% on
SPON meta-comments.

In the OMP dataset, the regex features are not relevant for the classes Jour-
nalist and Moderator and barely relevant for Meta and Media with Δ𝐹0.5 ≤ 0.03.

93

Chapter 6 Classifying Journalistic Aspects in User Comments

The Journalist class achieves the lowest 𝐹0.5 score of 0.65. The Media and Mod-
erator class achieve a similar 𝐹0.5 score of 0.79 and 0.78.

6.4 Insights extracted from Classified
Meta-Comments

To answer RQ3, we describe examples from the content of correctly classified
meta-comments (true positives) from both datasets, a qualitative method in-
spired by Kurtanović and Maalej [143]. The purpose of this qualitative analysis
is to understand the content and the potential usefulness of meta-comments.
We classified meta-comments for each meta-addressee class and dataset and
identified different information types. We translated the user comments into
English.

6.4.1 Comments Addressing the Media

The meta-comments addressing the media criticize the prioritization of the me-
dia company. These users demand justification for the attention the authors
pay to a particular topic (e.g. #1,#2), report an error in the article text
(e.g. #3), and praise the media coverage (e.g. #4):

#1 SPON: “[...], but it gets a whole article in the Spiegel. Please, someone
explain this over-dramatization! It shows, however, that the drug policy and the
anti-drug laws are lacking in goals and are, therefore, practically nonsense, but
both have a lot of support from the press (Spiegel?). [...]”

#2 SPON: “[...] it’s just disgusting, how journalists in Germany keep them-
selves busy and can seriously make a big thing out of this farce. Words fail
me, that something like this does not appear as a 3-line message in the furthest
corner of a tabloid newspaper, [...]”

#3 OMP: “ “They complete reconnaissance aircrafts.” How does such an
article come about? Is this proofread or will you press Enter after the last word
and go to the coffee machine?”

#4 OMP: “Thanks, mka for the background. Most media have always only
reported on the prayer room, and nebulously mentioned that the day before fire-
fighters and a police officer had been injured, but neither how, where, in what
context. Like this article, I want journalism.”

6.4.2 Comments Addressing the Journalist

The listed classified meta-comments addressing the journalist contain praise
(#5), recommendations for other readers (#5), further questions (#6),

94

6.5 Threats to Validity

missing information (#7), critiques (#6,#8), and corrections of factual
errors (#8):

#5 SPON: “I find it very good that parents are reminded about that. All
parents should read this article! [...]”

#6 SPON: “Mr. Fleischhauer, what do the colleagues say about your com-
ment? [...] Are you insane?”

#7 OMP: “One should not forget in an article like this to mention who’s really
to blame [...]”

#8 OMP: “[...] The author of this short note (either APA or Standard) has
obviously very poor geography skills: the Traunstein is a very distinctive moun-
tain in Austria [...]”

6.4.3 Comments Addressing the Moderator

The authors of the following meta-comments complain and ask the moderator
for the rationale behind blocking previous comments (#9,#10,#12). One
user requests a feedback feature for moderators so that users understand the
rationale behind their decisions (#9,#11):

#9 SPON: “[...] It would be beneficial, if you could receive brief feedback on
the censored contributions, why the censorship occurred. If e.g. in a longer post
a part does not conform to the guidelines, one could replace it with a “[because of
xxx]”, where instead of xxx it says “insulting other participants” or “glorification
of violence” or whatever. A few template formulations would be enough. Then
one would at least know why a contribution was censored and could be addressed
in future contributions.”

#10 SPON: “It seems as if postings with the reference to “censorship” were
systematically deleted here in the forum. Would you like us to spread this fact
in other forums, blogs, etc.? Where among other things has this post remained:
[link to a screenshot] Nothing against a deletion of unclean and unlawful contri-
butions. [...]”

#11 OMP: “Uiui, Standard deletes already published comments. I would like
to know how...”

#12 OMP: “Haha and Der Standard actually censored a posting from me
again. Why? [...]”

6.5 Threats to Validity

We mention threats to its internal and external validity. Regarding the inter-
nal validity, this study contains multiple coding tasks, and human coders can

95

Chapter 6 Classifying Journalistic Aspects in User Comments

cause noise in the training set data. We dealt with that issue by designing a
coding guide over many iterations [190]. It defines the criteria for a comment
to belong to a specific meta-addressee class with examples. However, anno-
tating 1,000 random user comments is tedious. Some user comments are long,
and the comment classes occur at imbalanced frequencies. For example, the
internal media responsibilities are unclear, whereby the coders sometimes as-
sumed the addressee. For example, SPON uses the username “sysop” to reply
to single user questions, but it is unclear who composes these comments. This
uncertainty caused disagreements between the peer-coders.

Addressees in comments is a broad field, and users also address and men-
tion, for instance, celebrities, institutions, other users, or the public. This
study only focuses on the identification and classification of German meta-
comments. However, it is possible to categorize meta-comments into a different
set of addressee-classes which would lead to different results. We sampled part
of our SPON training set based on regular expressions due to the small share
of meta-comments. This procedure affected the ANOVA F-value as well as the
significance of word-based features for the SPON dataset.

Regarding external validity, our work uses comments from the news sites
Spiegel Online and Der Standard. User comments posted on respective
Facebook or Twitter pages might use different terms or have a different style of
writing. The accuracy of our classifier might be different.

The cross-dataset classification in Table 6.6 is an initial step to check whether
the automatic classification can be used for comments on other media companies’
sites without using labeled data from their site. When training the traditional
classifier on the OMP dataset and testing it on the SPON comments, we achieved
a promising 𝐹0.5 score of 0.85. However, as we used user comments from only
two different datasets, further evaluation will be needed in the future if we are
to generalize this statement.

6.6 Discussion

This paper focuses on automatically identifying and classifying meta-comments
– while maximizing the accuracy and generalizability of the automated ap-
proach. Our classification approach was inspired by previous work by Maalej
and Nabil [161] who classified app reviews in the domain of mobile app stores
into four different feedback categories. We discuss the findings from both the
technical and the application perspectives.

96

6.6 Discussion

Using and Improving the Approach on Different Datasets

We expect our supervised learning approach to be applicable to other comment
sections and other languages as it only requires the comment text and basic
metadata. Applying our approach to other languages would require as many
user comments as possible to precisely capture word similarities with word em-
beddings in that language. Additionally, a training set of a similar size to ours
would be needed. The remainder of the process is language independent. One
advantage of our approach is that it operates without common natural lan-
guage processing methods such as lemmatization, named entity recognition, or
part-of-speech tagging, which depend on pre-trained language-specific models.
Although word embeddings are also language-specific, we can train them unsu-
pervised on a large corpus of user comments to find words that users use in a
similar context. However, it is unclear whether our approach is generalizable
in other domains, for example, as part of online courses where students’ com-
ments might address teaching materials, instructors, community-moderators, or
other students; or an online store where users’ comments might address vendors,
developers, or delivery services.

We used transfer learning [178] in the end-to-end classification by pre-initializing
the embedding layer with pre-trained weights from the word embeddings. This
approach did not use any hand-crafted features and achieved encouraging results
with 𝐹0.5 scores of 0.73 to 0.86. Typically, neural networks need large training
sets to outperform traditional approaches [83]. Traditional approaches often
perform better on small training sets as domain experts implicitly incorporate
significant information through hand-crafted features [35]. We assume that for
our experiments, the hand-crafted keywords for the SPON dataset provided a
considerable advantage, whereas the end-to-end approach has to derive high-
level features with many training samples. We presume that, given more train-
ing data, an end-to-end classification would outperform traditional approaches.
More sophisticated features from the comment thread, comment ratings, user
profiles, user comment history, or the respective article might improve the ac-
curacy, but this would require additional metadata from the comment section.

Application and Utilization of User Feedback

While this work is empirical and exploratory in nature, our intermediate goal
is to develop and evaluate a tool for user comment analysis that we plan to
evaluate with domain experts in future work. Our qualitative insights into clas-
sified meta-comments showed that our classification can capture meta-comments
from which journalists can extract diverse insights. A comment analysis tool

97

Chapter 6 Classifying Journalistic Aspects in User Comments

can aggregate and forward the identified meta-comments to the concerned stake-
holders. Further, it can enable moderators and journalists to directly reply to
users to allow direct participation in the forum conversations while reducing the
effort of manually searching for response worthy user comments.

Media houses can utilize user feedback from the meta-comments. The com-
menters addressing the media houses demand a transparent prioritization of
topics by the news. They further seek for understanding of journalistic produc-
tion routines and the sources used for an online article. Media houses might
explain their working routines more transparently To meet the users’ demand.
An article recommendation system could utilize user recommendations as an
input to highlight articles for other user groups. Journalists could reply to
questions and aggregate frequent questions to a “frequently asked questions”
section. Journalists could incorporate additional information provided by users
either into the article or link to them. A new perspective might inspire jour-
nalists to produce an additional news article. Identifying meta-comments could
help journalists double-check factual errors and fix them immediately.

In comments addressing the moderator, users actively ask for the ratio-
nale behind blocking their comments. Users even show interest in improving
their contribution if moderators would provide feedback about their decision.
Community-moderators could reply to deescalate the dialog with unruly users.
The online forum development team could consider user feature requests such as
a reply function for community-moderators to educate and provide feedback to
users about what constitutes a desirable high-quality contribution. The dialogue
between users and moderators could further help to improve the netiquette for
user contributions.

Our classification approach identifies meta-comments that stakeholders deem
useful, as they contain diverse user feedback and complaints, corrections, addi-
tional information, open questions, or clarification and feature requests. Feed-
back information of meta-comments could be further classified and clustered
into categories, for example, as bug reports regarding the article, questions to
the author, or forum feature requests. Subsequently, such automatic classifica-
tion could help to forward user comments to the relevant person responsible. In
summary, identifying meta-comments would support stakeholders in extracting
valuable information from user comments while also representing a crucial pre-
requisite for fostering a better dialog between media providers and users and
increase the chances that response-worthy user comments are found at all.

98

6.7 Conclusion

6.7 Conclusion

In this chapter, we applied our machine learning pipeline (Chapter 5) to identify
addressings of journalistic aspects in user comments. Particularly, in the online
journalism domain, we found that identifying addressings is a useful feature, as
we found in our preceding exploratory study described in Chapter 4. Addition-
ally, we found in Chapter 3 that the automatic identification of addressees is
yet an under-researched area in the online journalism domain. Therefore, we
defined meta-comments as comments that address either the journalist, the me-
dia house, or the community-moderator. These classes are journalistic aspects
in the context of this thesis. We summarize our relevant findings.

Promising classification results for identifying journalistic aspect
addressings. We applied and optimized both the traditional machine learning
approach and the end-to-end learning approach based on the machine learning
pipeline. Based on our machine learning pipeline, we incorporated the journal-
ists’ expertise into our approach. We computed word and comment embeddings
based on ∼11 million German user comments for enriching text features, deriv-
ing semantic features, and our end-to-end learning approach. Both approaches
achieved encouraging 𝐹0.5 values between 76% and 91%. We reported on the
most significant classification features with qualitative analysis and discuss how
our work contributes to foster more constructive user participation. Our super-
vised machine learning approach achieved encouraging results with 𝐹0.5 scores
between 76% and 91%. The end-to-end learning approach outperformed the
traditional approach on the “One Million Posts” dataset. We found similarities
between the most significant features of two large datasets. These results are
encouraging and could be incorporated into a user comment analysis tool to
facilitate the identification of constructive user comments.

Insights from user comments addressing journalistic aspects. In this
study, we automatically identified addressings towards the domain-specific as-
pects: the media company, a journalist, or a community-moderator. We defined
comments, which address these journalistic aspects as “meta-comments”. Jour-
nalists benefit from these comments as they can direct comments to the editors
or to single journalists that may call for reactions as correcting facts, answering
questions, or providing additional information. We further found that journal-
ists can extract different insight types from these comments as they, for instance,
report errors in articles (corrective insights), include additional information on
a topic (pefective insights), or contain criticism addressed to the quality of an
article (corrective insights). We also discuss how domain experts could ap-

99

Chapter 6 Classifying Journalistic Aspects in User Comments

ply automatic identification in their journalistic workflow. For example, media
houses could improve their theme coverage, journalists could correct errors in
their articles and improve their journalistic work, and community-moderators
learn feature ideas for the comment section.

100

Chapter 7

Matching User Comments to Article
Aspects

Contribution. This chapter contributes to the thesis by applying our domain-
independent machine learning pipeline (Chapter 5) to the online journalism
domain. We developed CoLiBERT, an automatic approach based on transfer-
learning, which identifies addressings in user comments regarding article-specific
aspects. In the context of this thesis, we defined the article-specific aspects as
article paragraphs. We further discuss how journalists can utilize CoLiBERT to
improve the work with user comments. We suggest a redesign of the comment
section to further improve the users’ discussion in the comment sections.

7.1 Motivation

While traditional print media are progressively replaced by online news sites [4,
52], one of the main differences is the ability of readers to submit user com-
ments in comment sections attached to news articles [154, 212, 216, 217, 265].
Comment sections list user comments and allow users to submit new comments
or reply to existing comments [245]. Thereby, users can react to the article by,
for example, contradicting the author’s statement, asking questions, adding ar-
guments or facts, pointing out errors, or providing feedback to the journalistic
editing [55, 108]. Journalists are aware that high-quality user comments contain
valuable information, but finding them in the mass of comments is challenging
[25, p.387][197, 214]. Therefore, they seek tools to assist in structuring and
navigating through the high number of comments [153].

Journalists structure their news articles in paragraphs, which define article-
specific aspects. Approximately 50% of user comments specifically refer to a
specific aspect of the article [44]. As an example, Figure 7.1 shows two article
paragraphs of a news article (left side) along with two user comments (right
side) on The New York Times website [251]. In this example, the two user

101

Chapter 7 Matching User Comments to Article Aspects

Figure 7.1: Two article paragraphs (AP) of an article on the New York Times
website (left) and two user comments from the comment section
referencing AP2 (right).

comments both refer to the second paragraph (AP2). As comments sections list
user comments mostly sorted in chronological order, they are detached from the
article context. This makes it difficult for journalists, community-moderators,
and readers to use the comments’ references for the analysis, navigation, and
structure of the debate.

In this work, we developed a model based on our domain-independent ma-
chine learning pipeline to find addressings to article-specific aspects (article
paragraphs) in user comments automatically. We first trained CoLiBERT on
comment replies. We utilized CoLiBERT to suggest user comments, which
address the corresponding paragraph. We manually analyzed examples of CoL-
iBERT’s suggestions to understand their characteristics. In a workshop with
journalists, community-moderators, and readers, we found that a paragraph
to comment association can be useful for them as they all read and use user
comments for different purposes. Journalists read user comments to acquire
resonance about their article, corrections of typos, factual errors, or additional
arguments, which is a challenging task. Community-moderators need to know
the news article’s context information to decide whether they publish or block
a user comment. With our model, community-moderators can focus on a few
paragraphs to learn about the context of the comment. For readers, our ap-
proach could also display user comments next to the relevant article paragraph
to enable a focused discussion.

First, we trained two models, one for English and one for German, which
accurately classify for a user comment pair whether the first user comment is a

102

7.2 Methodology

Table 7.1: Overview of the study data.
Media outlet #News articles #User comments

Root comments Replies

The New York Times (en) 167,535 6,518,631 4,335,021
Spiegel Online (de) 643,012 6,217,023 8,227,712

Total 810,547 12,735,654 12,562,733

reply to the second user comment. Second, we showed that these models achieve
promising results to automatically match user comments to corresponding ar-
ticle paragraphs for English and German. Third, in a facilitated workshop,
we developed user scenarios for journalists, community-moderators, and readers
and designed a new user comment section. We further discuss its implications.

7.2 Methodology

In this study, we introduce a model to match user comments to corresponding
article paragraphs. To solve this task, we train CoLiBERT, a model that learns
how users reply to previous user comments based on the thread structure in user
comment sections. We then utilize CoLiBERT to find links to article paragraphs
in user comments. We describe the study data we used to train and evaluate
our model, introduce CoLiBERT, and discuss the research questions.

7.2.1 Study Data

For the training and evaluation of our model, we used news articles and user
comments from the US media outlet The New York Times (NYT) [251] and the
German media outlet Spiegel Online (SPON) [78]. The New York Times is
a popular news media site, covers diverse topics, and offers a well-structured
user comment section with a thread structure. We selected Spiegel Online for
two reasons. First, Spiegel Online is the most-read online German newspaper,
according to Alexa.com [254]. Second, the topics covered are heterogeneous and
provide user comment sections with an active readership.

Table 7.1 summarizes the collected data for both media outlets, which we
used in this study. We collected a comprehensive sample of published user
comments and their metadata from 01-01-2000 to 20-03-2019 from Spiegel

Online and from 01-10-2016 to 05-01-2020 from The New York Times. The
data collection took 382 hours in total. Our data comprises ∼ 25.3 million user
comments, including title, text, timestamp, username, and their news article.
They comprise ∼12.7 million root comments, which users submitted directly to

103

Chapter 7 Matching User Comments to Article Aspects

the comment section and ∼12.6 million replies.
On average, Spiegel Online (SPON) publishes 86 news stories per day, and

The New York Times (NYT) publishes 141 news stories per day. News stories
on SPON have nine paragraphs on average and 21 paragraphs on NYT. The
average length of a news article paragraph is 45 words on SPON and 42 words
on NYT. 30% of SPON articles and 25% of NYT articles have at least one
comment. The news articles with at least one comment on SPON have 74 user
comments on average and 257 user comments on NYT. They have an average
length of 70 words on SPON and 72 words on NYT. To enable replicability, we
provide all scripts, the labeled datasets, and the models upon request.

7.2.2 CoLiBERT

We introduce CoLiBERT by describing how we applied transfer learning, the
sampling strategy for our training data, the data preprocessing, and how we
trained the model.

Transfer Learning. In our study, we applied transfer learning to the lan-
guage representation model BERT, which Devlin et al. [53] trained on a large
corpus. Transfer learning is a method often applied to deep neural networks
using models pre-trained on another task [83]. In natural language process-
ing, a typical transfer learning application is to reuse a language model, e.g.,
BERT [53], which was previously trained on a large corpus of text and then
fine-tune it towards a different task. In this study, we applied transfer learning
by fine-tuning the BERT model for a specific classification task on pairs of user
comments. We call our model the Comment Linking BERT model (CoLiBERT).

BERT’s underlying model architecture is a multi-layer bidirectional trans-
former encoder. Besides the deep neural network architecture, Devlin et al.
also provide base and large forms of pre-trained models with deep bidirectional
representations for different languages. For the English language, the model has
been pre-trained on Wikipedia and the Books Corpus. They trained the multi-
lingual model for 104 languages, including German. The model uses 12 hidden
layers (transformer blocks), a hidden size of 768, and 12 attention heads.

In this paper, we used two base models, one pre-trained on English texts and
another multilingual model, pre-trained on German texts. We carefully fine-
tuned BERT towards a binary classification task. Given two user comments, A
and B, we automatically classify whether user comment B is the reply (true)
to user comment A or not (false). We sampled and preprocessed positive and
negative user comment pairs from our collected user comment sources, which
we used to fine-tune our model and evaluate it.

104

7.2 Methodology

Table 7.2: Composition of the negative comment pair samples in the training
set.

paired with
user comment from Same article Different article

Root comment (T1) 382,737 (T3) 381,011
User reply (T2) 382,171 (T4) 379,145

From our collected user comment sources, we sampled and preprocessed pos-
itive and negative user comment pairs, which we used for fine-tuning our model
and subsequently for the evaluation.

Pre-processing. BERT’s model architecture allows a maximum length of
512 tokens in total for both combined user comment sequences. We trimmed the
user comments depending on the training batch size. The previous version of the
SPON user comment section did not provide a reply function but a function to
quote previous user comments. Therefore, we needed to reconstruct the thread
structure based on the information contained in the markdown and the quoted
text passages.

Training Set Creation. A single labeled instance consists of two user com-
ments and the label, which encodes whether the second user comment replies to
the first (positive) or not (negative). For each media outlet, we created a bal-
anced training set so that half of the training samples are positive and the other
half is negative. We sampled the positive comment pairs randomly from the
collected user comments and their replies. We sampled the negative comment
pairs from four different types (T), which we show in Table 7.2:

• T1. A root comment and a random other user comment, both written for
the same article.

• T2. A user reply and a random other user comment, both written for the
same article.

• T3. A root comment and a random other user comment, written on dif-
ferent articles.

• T4. A user reply and a random other user comment, written on different
articles.

Training. Following well-established machine learning practices, we split off
50,000 labeled user comment pairs for testing and used the remaining pairs for
training and validation. We fine-tuned different instances of the model with
different hyperparameter settings. We tried different sequence lengths and ad-
justed the batch size accordingly. Due to high computational demand, time

105

Chapter 7 Matching User Comments to Article Aspects

restrictions, and long training times, a systematic hyperparameter search was
not feasible. However, our best model used a sequence length of 320, a learning
rate of 2e-6, and a batch size of 10. We trained a single CoLiBERT instance
with 960,000 training samples for 12 hours on eight Tesla K80s, each equipped
with two GPUs.

7.2.3 Research Question

We ask the following research questions:

• RQ1. How accurately can CoLiBERT determine if a user comment is a
reply to another user comment?

• RQ2. How accurately can CoLiBERT detect an association between a
user comment and an article paragraph?

7.2.4 Study Design

Train
CoLiBERT	Model

Analyze	Results

Ar#cles	and	User	Comments

2.	Machine	Learning	Experiments 3.	Facilitated	Workshops

Design	Workshop

User	ScenariosEvalua#on	Results

1.	Data	Collec>on

Collect	News	Ar@cles	
and	User	Comments

Pre-process
User	Comments

Conduct	Workshop
Evaluate

CoLiBERT	Model

Analyze	Results

Figure 7.2: Research overview.

Figure 7.2 shows the three phases of our overall study design. In the first
phase, we collected the data, including German and English news articles and
their comments, and preprocessed the data for the second phase. In the second
phase, we trained CoLiBERT, a fine-tuned version of the BERT model [53]. We
evaluated CoLiBERT to decide for two user comments, A and B, whether user
comment A is a reply to user comment B. The evaluation of this model answers
RQ1. We then applied CoLiBERT from the previous step to user comments
and article paragraphs. We assessed the association between a user comment
and an article paragraph to answer RQ2. We also qualitatively analyzed CoL-
iBERT’s comment suggestions. In the third phase, we designed user scenarios
that utilized our model and evaluated their usefulness in facilitated workshops
with journalists, community-moderators, and journalism researchers.

106

7.3 CoLiBERT Evaluation

7.3 CoLiBERT Evaluation

In this section, we describe the evaluation of CoLiBERT. To answer RQ1, we
evaluated CoLiBERT for the classification accuracy on the test set. To answer
RQ2, we first describe how we applied CoLiBERT to user comments and news
article paragraphs. For this application, instead of using two user comments
as an input for the model, we input a user comment and an article paragraph.
The goal is to find the article paragraph, which the user comment references.
We used the numeric classification score of CoLiBERT to measure the reference
level between a user comment and the article paragraphs, which it uses for the
binary classification task. We calculated the numeric scores between all news
paragraphs and user comment pairs. CoLiBERT’s suggested user comment for
a paragraph is the user comment with the highest score.

We describe the setup we used to evaluate CoLiBERT for this application. We
prepared manual coding tasks, each consisting of three consecutive paragraphs.
For each paragraph, the coder decided which of two user comments addresses the
paragraph more clearly. We used CoLiBERT to suggest one user comment and
randomly select a second user comment from all user comments to this article.
Figure 7.3 shows the user interface of a coding task for a single paragraph. It
shows an excerpt from a news article and two user comments side-by-side below
the article paragraph. The two user comments are shuffled so that the coder
does not know which user comment is the random comment and which one is
CoLiBERT’s suggestion. On the top, it shows the article’s title followed by a
button to show or hide the previous article paragraphs, which the coder might
require to understand the context.

The coder read the paragraph and both user comments and decided which
user comment contains a stronger link to the article paragraph. The coder
selected the choice by clicking on the user comment. In case neither of both
refer to the paragraph, the coder ticked the checkbox.

Four coders, native in German and fluent in English, peer-coded 300 coding
tasks consisting of 150 NYT paragraphs and 150 SPON paragraphs. We ran-
domly generated the tasks from articles with at least ten paragraphs and at least
five root comments per paragraph. We chose these conditions to consider long
enough articles with enough user comments to choose from for the evaluation.

We compared CoLiBERT’s suggestion to a second random user comment, en-
suring a representative sample of the user comment section. Other approaches,
e.g., based on tf-idf, would restrict the suggestions to user comments, which con-
tain a literal word overlap with the article paragraph. Furthermore, we tested
other coding task variants with a scaled coding task also with more than two

107

Chapter 7 Matching User Comments to Article Aspects

Figure 7.3: User interface excerpt of the manual coding task.

user comments, which was not feasible. To answer RQ2, we analyzed how often
the coders chose CoLiBERT’s suggestion.

7.3.1 Quantitative Results

We report on the evaluation results when applying CoLiBERT to user comments
and news story paragraphs.

7.3.2 Comment-Reply Classification.

In this section, we describe the evaluation results of our machine learning ex-
periments to answer RQ1. We report on the accuracy of CoLiBERT on our test
set. Table 7.3 shows an extended confusion matrix with the classification results
for the positive and negative samples. For The New York Times, we achieved
an accuracy of 88% on our test set. We can see that 44% of the training set
were true and CoLiBERT classified these samples correctly. Among all false

108

7.3 CoLiBERT Evaluation

Table 7.3: Accuracy results for the user comment pair classification task. The
false samples are decomposed by each type.

Media True sample False sample
Type Reply Reply Root comment
Paired
with Root comment Same article (T1) Different article (T2) Same article (T3) Different article (T4)

NYT 44%
(22130)

3%
(1742)

1%
(456)

2%
(816)

0%
(106)

Predicted
true SPON 41%

(20317)
4%

(1765)
1%

(369)
3%

(1273)
0%

(151)

NYT 6%
(2978)

9%
(4564)

12%
(5750)

11%
(5311)

12%
(6147)

Predicted
false SPON 9%

(4557)
9%

(4648)
11%

(5706)
10%

(5009)
12%

(6205)

NYT 50%
(25108)

13%
(6306)

12%
(6206)

12%
(6127)

13%
(6253)

Total SPON 50%
(24874)

13%
(6413)

12%
(6075)

13%
(6282)

13%
(6356)

positives, the most user comment pairs classified wrongly were of type 1 with
4%, which are user comments written as a reply to the same article. The best
performing type is T4, with 12% classified correctly, which are root comments
on a different article.

For Spiegel Online, we achieved an accuracy of 84% on our test set. We can
see that our model classified 44% of the true samples correctly. Among all false
positives, the most user comment pairs classified wrongly are also from type 1
with 3%. The best performing types are T2, and T4, each with 12% classified
correctly, which are replies matched with replies from different articles (T2) and
root comments matched with comments from a different article (T4).

In summary, we can classify a pair of user comments as a comment and its
reply with an accuracy of 88% for The New York Times user comments and
84% for Spiegel Online user comments.

7.3.3 Comment-Paragraph Association.

To answer RQ2, we analyzed the manual coding results. Table 7.4 shows the
results of the manual annotation task for The New York Times and Spiegel

Online. We can see that the inter-coder agreement for the annotation tasks
reached 77% for NYT and 70% for Spiegel Online. Among the NYT coding
agreements, the coders chose CoLiBERT’s suggestion in 85%, unfitting in 11%,
and the random comment in 4% of the cases. Among the SPON coding agree-
ments, the coders chose CoLiBERT’s suggestion in 83%, unfitting in 13%, and
the random comment in 4% of the cases. In summary, CoLiBERT detects user
comments, which contain a clear link to an article paragraph in English and
German language.

109

Chapter 7 Matching User Comments to Article Aspects

Table 7.4: Results of 300 manual coding tasks. The share of the selections refer
to the paragraphs in which both coders agreed.

Number
paragraphs

Inter-coder
agreement

Selected
CoLiBERT

Selected
random

Selected
unfitting

The New York Times 150 77% 85.2% 3.5% 11.3%
Spiegel Online 150 70% 82.9% 3.8% 13.3%

Table 7.5: Example user comments suggested by CoLiBERT.
No. Article paragraph CoLiBERT’s user comment suggestion

1

“In those few minutes, according to multiple people briefed on
the, events, Mr. Trump had made one of the most consequential
foreign policy,decisions of his presidency, giving final
authorization to a drone,strike halfway around the world that
would eliminate one of America’s,deadliest enemies while
pushing the United States to the edge of an,escalating
confrontation with Iran that could transform the Middle East.”

“One of America’s deadliest enemies? How so?,No one seems to be able
to explain this in detail - it’s just repeated over and over. How about
reserving that title for Saudi terrorists and their friends in Isis? It’s really
hard to win when you don’t know who your most dangerous enemies are.
If Israel want to fight Iran let them - we are not their proxy.”

2

“The military operation that killed Maj. Gen. Qassim Suleimani,
the, Iranian security and intelligence commander responsible for
the deaths,of hundreds of American troops over the years, was
unlike the ones that, took out Osama bin Laden or Abu Bakr
al-Baghdadi, terrorist leaders,caught after long manhunts. [...]”

“If one more commenter justifies this by referencing “hundreds” of
killed (or imaginarily killed) servicemen I think I’m going to throw
up. Did you feel this passionately about the,3/4 of a MILLION Iraqi
civilians we slaughtered during the war?, Huh?,Speak up, I can’t hear you!”

3

“The drone strike came at a charged time for Mr. Trump, who
faces a,Senate trial after being impeached by the House largely
along party,lines last month for abuse of power and obstruction
of Congress. While, advisers insisted politics had nothing to do
with the decision, the,timing was bound to raise questions in an
era marked by deep suspicion,across party lines.”

“The timing of the strike of course had nothing to do with the release of
unredacted emails about the withholding Ukraine aid or the release
of news about the possible Russian backing of Deutsche Bank loans to
Trump. No pattern here ;)”

7.3.4 Qualitative Results

We highlight cases from the coding task, in which the coders selected CoLiB-
ERT’s suggested user comment and cases in which they selected the alternative.
Table 7.5 lists article paragraphs and CoLiBERT’s suggestions for them. The

first example shows that CoLiBERT finds user comments, which quote verbatim
parts of the article paragraph. In these examples, the user asks for a justifica-
tion of why someone is considered the deadliest threat to America. Example
#2 shows that users sometimes quote only single words from the article, which
CoLiBERT also discovers. Example #3 shows how CoLiBERT understands
that the article paragraph describes the timing of a drone strike and suggests
the user comment, which ironically describes a different opinion on the timing
of the drone strike. Generally, we found that CoLiBERT was able to trans-
fer the learned knowledge from the first training task to user comments and
article paragraphs. CoLiBERT also found references via similar entities and
similar verbatim parts. In summary, we found that CoLiBERT’s suggested user
comments contain different types of information, including users providing ad-
ditional information, users agreeing and disagreeing with the author’s opinion,
or correcting errors in the article paragraph.

Figure 7.4 shows a sample for which the coders chose the alternative rather
than CoLiBERT’s suggested user comment. This article paragraph addresses

110

7.4 Facilitated Workshops

NYT article paragraph: “A lot of us across the country are doing that, shoring
up of our business, being more efficient and looking for alternative funding,’ says
Vicki Cowart, chief executive of Planned Parenthood of the Rocky Mountains, which
serves about 100,000 patients a year across Colorado, southern Nevada, New Mexico
and Wyoming.”

CoLiBERT’s comment: “Sure sure
Planned Parenthood serves 2.4 million
people per year and provides them with
non abortion related crucial, often life
saving medical screenings and more. But
don’t you understand? Most of the peo-
ple served are poor and republicans in
Congress’ hearts go out only to those who
desperately need an 880 billion dollar tax
cut.”

Alternative comment: “I buy every-
thing "Amazon" on Smile.Amazon.com
which means that .5% of my purchase is
donated to the charity of my choice which
is PPA in Memphis TN. I’ve never even
been to Memphis but I figure they can use
the money!”

Figure 7.4: Coding task example for which the coders considered the alternative
comment better fitting.

the funding situations on planned parenthood. Vicki Cowart describes how
companies look for alternative funding options. Although CoLiBERT’s user
comment also mentions planned parenthood, it addresses, in particular, the
lack of funding from congress. The alternative comment refers more accurately
to the paragraph as it mentions Amazon Smile as a concrete alternative fund-
ing method. This example also highlights why we decided to choose random
comments as a baseline as tf-idf based approaches would not find such a user
comment. In some other cases, CoLiBERT’s suggested user comment also ad-
dressed the article’s paragraph, but the coders considered the addressing in the
random user comment more accurate.

7.4 Facilitated Workshops

To understand the applicability and usefulness of CoLiBERT in real user sce-
narios, we conducted a facilitated workshop with practitioners representing
three different user groups: (1) journalists, (2) community-moderators, and
(3) readers. Journalists investigate, write, and publish articles on news sites.
Community-moderators read user comments and decide whether they can pub-
lish the comment or whether it contradicts the netiquette and should be blocked.

7.4.1 Workshop Design and Implementation

First, we designed the overall structure of the workshop. We identified suitable
participants and visualized our user scenario ideas as mock-ups based on previ-

111

Chapter 7 Matching User Comments to Article Aspects

ous work from our related research project [153]. We conducted the workshop
in February 2020, which lasted approximately two hours. Three of the four
participants have worked previously as journalists and community-moderators
in different media houses. The fourth participant only worked as a community-
moderator before. All participants read online news and user comments daily.
All participants received a voucher for their participation. After a short intro-
duction round, we summarized existing research on constructive user participa-
tion on news sites and aspects that journalists deem useful user comments.

We introduced an example of a user comment, which contains a reference to
an article paragraph. We asked the participants to imagine that the automatic
detection of these links between user comments and article paragraphs would be
feasible as well as other automatic comment analysis approaches and followed
with the central questions: Would you use this and, if yes, how? Which infor-
mation would you like to see for a comment analysis tool, and how would you
visualize it? How could we use this reference detection to redesign the news arti-
cle and the user comment section? After the participants explained their ideas,
we introduced and discussed our prepared visualizations of our user scenarios
and finally closed the workshop.

7.4.2 Results

We describe the mock-up, which showcases the majority of user scenarios and
further the user scenarios for the three user groups: (1) journalists, (2) community-
moderators, and (3) readers. Figure 7.5 shows a mock-up for a comment analysis
tool. It shows an NYT article on the left-hand side with a headline and the arti-
cle text structured in multiple paragraphs. To the left of each article paragraph,
we see the number of user comments, which refer to the respective paragraph
with a stacked bar chart, which indicates the distribution of user comments
regarding different dimensions, for example, the distribution of “agreeing” and
“disagreeing” user comments.

On the right side, we can see user comments, which link to the respective
paragraph. Further user comment classification models could tag with differ-
ent labels. Related research trained diverse user comment classification models,
which can discover diverse characteristics, including “positive/negative senti-
ment [257],” “question to the journalist [102],” “agreement/rejection towards
certain topics [202, 220],” “additional information,” “typo corrections,” “offen-
sive language [220, 266],” or “experts with additional information [55].”

Journalists. Generally, the journalists reported that each journalist handles
user comments differently, depending on the article type and the number of user

112

7.4 Facilitated Workshops

What Do You Do With a Stolen van
Gogh? This Thief Knows

Octave Durham, who went to prison for stealing two paintings by
the artist, explains the difficulties encountered in this line of work.

By Nina Siegal

May 27, 2020

AMSTERDAM — The televised security footage clearly showed
the man smashing glass doors at the Singer Laren Museum, then
walking out moments later with a painting by Vincent van Gogh
under his arm.

“Look at that,” Octave Durham said as he watched. “His gear is
not even professional. If you’re a professional you’re fully in
black. He’s got jeans and Nike sneakers on.”

Mr. Durham’s exasperation is not that of some couch potato who
has seen one too many crime shows. He’s a thief who 18 years ago
stole not one, but two van Gogh paintings from Amsterdam’s
famous Van Gogh Museum.

One of two burglars convicted of the crime in 2004, he served just
over 25 months in prison. In 2016, Italian police found the two
paintings he stole in the kitchen wall of a house in the town of
Castellammare di Stabia, near Naples, belonging to Raffael
Imperiale, a member of an Italian drug trafficking gang. They
were returned to the museum.

“This is the easiest art heist I’ve ever seen,” Mr. Durham, 47,
concluded of the Singer Laren theft, which took place in the early
morning hours of March 30.

Police in the Netherlands declined to comment on their
investigation. But Arthur Brand, a private art crime detective who
has helped recover many stolen artworks, said that he was
working with the police on the case and that he saw some
similarities in this theft and Mr. Durham’s crime.

53

39

7

11

25

5

6

Tag
Souderton PA | May 27
Andrew Weaver 

He calls the other guy incompetent, but was caught after less than a
year himelf. I love it!

Feedback Negative
Greensboro NC | May 27
Serena Thoms 

He's a criminal. That's not work; that's cheating. That's the relentless
drive of sociopathy and criminality. I would prefer it if the NYT wouldn’t
give him such a stage to show off on.

Positive
New York NY | May 27
Harry Egan 

I love how he calls the other guy incompetent, but was caught after
less than a year himelf!

Correction
Greeley NE | May 27
Brandy Edwards 

There’s a typo: It should be Raffaele, not Raffael

Suggestion
Houston TX | May 27
Wesley Palmer 

I have visited a few museums around Europe and feel like even I could
steal a Gogh or two there! Perhaps Ms Siegal can write a follow-up on
the creless way there museums house some of the greatest artwork in
the world.

Figure 7.5: Mock-up for a user comment link detection combined with further
comment classifications. We slightly edited the original article [228].

comments: “Some journalists get involved into the user discussions, read, and re-
ply to user comments whereas other journalists ignore all user comments.” This
is especially the case for opinion articles and satires. The participants pointed
out that a column, for example, is highly opinionated whereby journalists expect
harsh user comments, which journalists tend to ignore.

Journalists reported that they do not need a link between a single user com-
ment to an article paragraph to facilitate their reading as “they know their
article’s content.” However, all participants considered an aggregation of user
comments based on article paragraphs as helpful.

The aggregation based on paragraphs is, in particular, helpful in combination
with other classifications. Thereby, journalists could analyze their articles and
check precisely for (1) potential typos or factual errors, (2) extending the article
with additional information or sources provided by users, (3) identifying further
topics worth investigating, (4) contact individual users, which appear to be
domain experts for further journalistic interviews and news stories. Especially
when an article touches on different topics, in each paragraph, journalists learn
about the users’ resonance towards these topics. They could then follow up with
an article to provide more detailed information.

Journalists also reported that user comments often spot contradictions be-
tween multiple news articles of the same media house. “Sometimes different

113

Chapter 7 Matching User Comments to Article Aspects

journalists write articles about a similar topic and publish contradicting perspec-
tives on a topic.” CoLiBERT could identify a link between these contradicting
articles via a user comment, which links to two paragraphs from these different
articles. This helps to resolve contradicting and misleading information in differ-
ent articles. For an analytical view on their article, they suggested a side-by-side
view with their article on the left and respective user comments per paragraph
on the right side, which appears by clicking or hovering over the article section.

Community-moderators. As community-moderators, they reported that
“it is not feasible to read every article of which they moderate the user com-
ments.” However, sometimes the community-moderator requires context infor-
mation, including the article’s content, to understand and decide whether to
delete or publish a user comment. For this purpose, our model could auto-
matically find the link to the article and display the relevant article paragraph.
Furthermore, community-moderators reported that “some users do not use the
feature ‘reply to user comment’ correctly.” Instead, they compose a new root
user comment without replying to the previous one. CoLiBERT could recom-
mend a correcting for this misuse.

Additionally, community-moderators reported that “some users submit user
comments, without reading the full article.” In this case, our model could rec-
ommend the user an unconsidered article paragraph to read while the user is
still writing his user comment.

Readers. A prevalent challenge in user comments is redundancy, as users
often mention similar arguments. As CoLiBERT is also able to identify user
replies to user comments, it could recommend existing user comments as replies
to the user who is currently composing a comment. In an ideal case, this would
be a user comment, which makes posting the comment obsolete because, e.g.,
it answers a question or provides a counter-argument. These recommendations
might improve the user comment quality of users who do not read the complete
news article.

Furthermore, the reader could happen to write a suitable reply for one of the
other user comments without knowing. CoLiBERT could suggest other users’
comments worth reading before they submit their own. This might also improve
the discourse quality and helps the users reflect on their contribution.

7.5 Discussion

We discuss the implications of our results, further potential fields of applications,
and threats to validity.

114

7.5 Discussion

7.5.1 Implications of the Results

CoLiBERT achieved promising comment pair classifications results for English
(accuracy=88%) and German (accuracy=84%) user comments. The accuracy
difference is minor (4%). As we used the multilingual model for the German
user comments, we might be able to achieve similar results for user comments in
other languages, which is subject to future work. We sampled the training set
randomly from four different comment pair types so that CoLiBERT not only
learned the anatomy of a user reply but also takes the semantic into account.

We also achieved promising results for mapping the user comments to article
paragraphs. Human annotators assessed CoLiBERT’s suggestion as more clearly
referencing the paragraph than a random comment in more than ≥80% of the
cases. It shows that CoLiBERT has learned to understand references to article
paragraphs in user comments, similar to humans.

Media houses not only publish news articles on their news site but also on
social media websites, including Twitter and Facebook. Users also comment on
articles via platforms like Twitter and Facebook. In our work, we only used
user comments from news media websites, but we could also apply CoLiBERT
to Tweets or Facebook posts. However, the evaluation is subject to future work.

We further used article paragraphs as the granularity level as they address a
coherent aspect of the news story. However, our approach could also be applied
to a more fine-grained granularity as, for example, sentence-based.

7.5.2 Field of Application

We foresee diverse potential uses for CoLiBERT to redesign user comment sec-
tions. As user comment sections gained more activity in the past, there is a
need to improve their presentation. Our workshop results showed that journal-
ists, community-moderators, and readers could improve the usage of valuable
information in user comments using CoLiBERT. It could classify and work on
existing user comment databases to restructure and automatically link the arti-
cle paragraphs and user comments. Media-houses could afterward redesign their
user comment sections to visualize these links. For example, as chronologically
sorted lists, we could utilize our model to cluster user comments according to
their reference to the news article. They could utilize this additional context-
information to position and display user comments close to the referencing sec-
tion paragraph.

Further, we see the potential to apply CoLiBERT to other domains than
online journalism. As the topics on NYT and SPON are diverse and touch
upon various topics, a re-training might not be necessary to apply CoLiBERT

115

Chapter 7 Matching User Comments to Article Aspects

successfully.

For example, in online stores, vendors describe their articles with a detailed
description text also with paragraphs. We could use our model to link article
reviews to specific paragraphs of the article description to aggregate and better
visualize the users’ opinions and feedback on these aspects. Another domain
with user comments is app stores such as Google’s Play Store or Apple’s App
Store. App vendors advertise their apps in an app description text, which often
describes each app feature in a dedicated paragraph. The app reviews contain
valuable information for app developers [160], which is why their aggregation
and references to app features, as additional context information, would be
helpful for app vendors. Our model could link the app reviews to individual
paragraphs in app descriptions, targeting a specific aspect of the app (e.g., an
app feature). Alternatively, our model might find associations in app reviews
to software specifications or bugs in issue tracking systems [74, 195] to support
the traceability in software engineering [235].

7.6 Threats to Validity

We discuss threats to internal and external validity. Regarding the internal va-
lidity, our study contains multiple coding tasks, and human coders could cause
noise in our evaluation results. To mitigate the risk, we conducted multiple
test runs and held a detailed briefing session with all coders, in which we dis-
cussed different examples. As we sampled the annotation tasks randomly from
frequently commented articles, all topics are not equally represented. We tried
and refrained from using crowd studies to minimize the selection bias, and the
coders did not receive any feedback on which user comment was suggested by
CoLiBERT. We further chose random user comments for our baseline approach
as we evaluated how CoLiBERT performs compared to an equal distribution
of other user comments. A comparison with a simple keyword or tf-idf-based
approach could achieve similar results. However, we might miss valuable quali-
tative insights from random suggestions, which neither approach would not find.
For example, with a random baseline, we found the example in Section 7.3.4,
which we would have missed using a keyword-based approach.

When selecting the participants, we ensured that our participants collected
experiences within different media houses. When designing our workshop, we
ensured that we did not bias the participants by introducing our own ideas too
early. We withheld our mock-up ideas and thoughts until the participants did
not add new ideas. However, given the limited number of workshop participants,

116

7.7 Conclusion

we cannot generalize our results, and an evaluation for the applicability of the
user scenarios is subject to future work.

Regarding external validity, we strive for language-independent results. There-
fore, we conducted our experiments with English and German user comments
from two different news media sites. Additionally, we used the multilingual
model, trained on a diverse set of languages. We, therefore, think that we could
achieve similar results in other languages. However, we trained CoLiBERT only
on user comments in the news media, and the characteristics of user comments
in other domains might differ.

Experiments on user comments in other languages and for other user comment
sources are subject to future work.

7.7 Conclusion

In this chapter, we applied our machine learning pipeline in the online journalism
domain to identify whether user comments address a specific article paragraph.
We summarize the relevant findings in the context of this thesis.

Identifying addressings to article-specific aspects in comments. On-
line news sites list user comments in dedicated comment sections below each
of their news articles. However, users often address specific paragraphs of the
news article in their user comments and not the whole article. The automatic de-
tection of these references would improve the analysis and navigation through
the high number of user comments on news articles for journalists and read-
ers. To achieve this goal, we developed CoLiBERT, a fine-tuned version of the
language representation model BERT. We trained CoLiBERT on English user
comments from The New York Times (NYT) and German user comments from
the Spiegel Online (SPON) news websites. We based the design of CoLiBERT
on our machine learning pipeline (Chapter 5) to match the user comments to
article-specific aspects, which we define as article paragraphs in the context of
this study. We first trained and evaluated CoLiBERT towards a binary com-
ment pair classification task. The task was to decide for two user comments,
whether one user comment is the reply to the other user comment. CoLiB-
ERT achieved promising results with accuracies of 88% on NYT and 84% on
SPON user comments. In the second step, we utilized CoLiBERT to detect links
between user comments and article paragraphs. We evaluated CoLiBERT’s sug-
gestion with a manual coding task. Among the coders’ agreements (inter-coder
agreement ≥ 70%), the coders selected CoLiBERT’s suggested user comment in
≥84% of the cases.

117

Chapter 7 Matching User Comments to Article Aspects

Redesign of user comment sections, using CoLiBERT. We conducted
a facilitated workshop with domain experts in the online journalism domain:
journalists, community-moderators, and readers. We highlighted potential user
scenarios based on CoLiBERT. In particular, the workshop participants con-
sidered an aggregation of user comments based on article paragraphs useful
for analysis purposes. As an outlook, we highlight how our approach could be
applied to user comments sections in other domains to improve the usage of
comments and structure the users’ discourse.

118

Chapter 8

Classifying App Development
Aspects in User Comments

Publication. This chapter is based on the study titled “Classifying Multilin-
gual User Feedback using Traditional Machine Learning and Deep Learning”
[240]. My contribution to this study was the development of the deep learn-
ing approach, which I developed in a previous study [102] in accordance with
our machine learning pipeline (Chapter 5). I designed the convolutional neural
network, conducted the deep learning experiments, and analyzed the results.
Finally, we jointly discussed the implications of this study. For this thesis, I
extended the deep learning classification experiments using state-of-the-art em-
beddings for the comment representation.

Contribution. In this study, we developed an automatic approach to identify
user comments, which address domain-specific aspects. In the context of this
chapter, the domain-specific aspects are app development aspects. We applied
the approaches of our machine learning pipeline (Chapter 5) based on tradi-
tional learning and end-to-end learning to identify app development aspects in
app reviews and tweets. We used user comments from two different sources (app
stores and social media) in English and Italian. Thereby, we address the research
gap we identified within our literature study (Chapter 3) and exploratory study
(Chapter 4). Finally, we conducted diverse experiments with different param-
eter settings, compared the results, and reported the best performances. The
new approach based on state-of-the-art embeddings outperformed all previous
classification results within the study.

8.1 Motivation

Previous research showed that the analysis of user comments regarding requirements-
related information is essential to optimize software products and user satisfac-
tion [195]. Manual analysis is cumbersome as users send thousands of comments

119

Chapter 8 Classifying App Development Aspects in User Comments

via social media daily [194]. However, the analysis of these comments opens po-
tential to learn about the users’ opinions as they contain useful information like
problems users encounter or features they request [89, 194]. Previous research
experimented with supervised machine learning approaches to filter out irrele-
vant user comments and focus on the relevant information [90, 160]. The ma-
jority of related work relies on traditional machine learning approaches. These
approaches require domain knowledge to support the machine learning engineer
about how to represent the data. On the contrary, end-to-end deep learning ap-
proaches implicitly learn high-level feature representations from the input data
without domain knowledge. These approaches achieved remarkable results for
various classification tasks [53, 83, 233, 273].

In this study, our goal is to compare both approaches of our domain-indepen-
dent machine learning pipeline (Chapter 5.2.1) for identifying addressings of app
development aspects. In the context of this thesis, we defined the app develop-
ment aspects as the three classes “problem report,” “inquiry,” and “irrelevant.”
We focused on these aspects as previous research found that these aspects are
valuable for app developers [194], and they strive for the automatic identifi-
cation of these aspects. From these user comments, they can first filter out
irrelevant comments and then extract corrective insights for fixing bug reports
and perfective insights for inspiring feature requests for future versions [160].

We defined problem reports as comments, which describe a concrete prob-
lem regarding a software product, for example, “since the previous update the
app freezes after launch.” We defined inquires as comments, which requests ei-
ther additional features, an enhancement, or inquiries support, for example, “it
would be awesome if one could invite more friends at a time.” We defined user
comments as irrelevant if it belongs to neither problem report nor inquiries, for
example, “I love this app.”

To achieve this goal, we employed supervised machine learning approaches
with crowd-sourced annotations of 10,000 English and 15,000 Italian tweets
posted on Twitter support accounts of telecommunication companies and 6,000
annotations of English app reviews. We applied well-established practices for
traditional and deep learning approaches, of which we describe the results of
our experiments.

In our setting, the deep learning approach based on state-of-the-art embed-
dings outperformed the traditional approach as well as the convolutional neural
network. This shows that pre-trained language models, trained on large corpora,
compute meaningful embeddings, also usable for domain-specific aspect identi-
fication. Overall, we reached the best results for the classification of irrelevant

120

8.2 Methodology

Deep Learning
Benchmark

Data Annotation

Study Data Report

Data Crawling
Designing Network

Architecture

Traditional ML
Benchmark

Transfer LearningClassifier Selection

Approach Description

Hyperparameter
tuning

Result
Comparison

Data Collection

Classification
Benchmark

Model Configuration

Discussion
Hyperparameter

tuning

Approach Description

Feature Engineering

Report with insights

Descriptive Statistics

Figure 8.1: Overview of the study design.

comments, which domain experts can use to filter noisy comments.

8.2 Methodology

We introduce the research questions, the study design, and the study data.

8.2.1 Research Question

In this study, we searched the optimal model to classify user comments (app
reviews and tweets) into three classes problem reports, inquires, and irrelevant.
We compared the traditional machine learning approach with the deep learning
approach. Our research questions are:

• RQ1. To what extent can we extract problem reports, inquires, and irrel-
evant information from user feedback using traditional machine learning?

• RQ2. To what extent can we extract problem reports, inquires, and
irrelevant information from user feedback using deep learning?

• RQ3. How do the results of the traditional machine learning and the deep
learning approach compare, and what can we learn?

8.2.2 Research Design

Figure 8.1 shows an overview of our study design. The white boxes within the
four parts represent an activity, and the gray boxes represent the outcome of

121

Chapter 8 Classifying App Development Aspects in User Comments

Table 8.1: Overview of the study data.
Comment Classes App Reviews Tweets

English English Italian

problem report 1,437 2,933 3,414
inquiry 1,100 1,405 2,594
irrelevant 3,869 6,026 9,794

Total 6,406 10,364 15,802

each part. In the first part, we collected and prepared the Study Data. In
the second part, Traditional Approach, we performed the traditional machine
learning approach, consisting of feature engineering and hyperparameter tuning.
In Deep Learning Approach part, we adopted and evaluated the convolutional
neural network architecture by Häring et al. [102], which utilizes pre-trained
embeddings for the embedding layer. We extended this part of the study with
a second deep learning approach, which uses state-of-the-art embeddings based
on the DistilBERT [219] to represent the comments for the classification. In
the Result Comparison part, we summarized the results of our experiments and
compared the traditional with the deep learning approach.

8.2.3 Research Data

We collected ∼5 million English and ∼1.3 million Italian tweets on Twitter sup-
port accounts of telecommunication companies. Based on that dataset, we ran-
domly sampled ∼10,000 English tweets and ∼15,000 Italian tweets submitted
by users. We conducted a coding task on the crowd-annotation platform figure
eight (now appen) [39] because the manual annotation of thousands of tweets is
time-consuming and therefore not feasible.

We developed a coding guide with the support of the innovation center of
a prominent Italian telecommunication company for the crowd-annotation task
to define each of the comment classes problem report, inquiry, and irrelevant
tweets. Second, we performed a test run to assess the quality of our coding
guide and the annotations we received. At least two native speakers wrote and
proofread the coding guides. We further defined set the condition that the
annotators are natives in the respective language. An annotator labeled exactly
one class per tweet. Two annotators independently annotate each tweet, three
in case of a disagreement. We used the dataset of Maalej et al. [160] for the
annotated app reviews. Table 8.1 summarizes the annotated datasets for English
and Italian. To enable replicability, we published all scripts, classification results
and provide the annotated dataset upon request [93, 239].

122

8.3 Machine Learning Pipelines

Table 8.2: Extracted features before scaling. If not further specified, the number
of features applies to all datasets.
Feature Group Value Boundaries Number of Features

n_words N 1
n_stopwords N 1
sentiment𝑛𝑒𝑔 {𝑥 ∈ Z | − 5 ≤ 𝑥 ≤ −1} 1
sentiment𝑝𝑜𝑠 {𝑥 ∈ N | 1 ≤ 𝑥 ≤ 5} 1
keywords {0, 1} 37 (IT), 60 (EN)
POS tags N 18 (IT), 16 (EN)
tense N 4 (IT), 2 (EN)
tf-idf {𝑥 ∈ R | 0 ≤ 𝑥 ≤ 1} 665 (app reviews, EN)

899 (tweets, EN)
938 (tweets IT)

fastText {𝑥 ∈ R | 0 ≤ 𝑥 ≤ 1} 300

Total 1.047 (app reviews, EN)
1.281 (tweets, EN)
1.301 (tweets IT)

8.3 Machine Learning Pipelines

We explain how we performed our machine learning pipeline (Chapter 5) and
explain our rationale for choosing the selected features. For a fair comparison
between both machine learning approaches, we used the same datasets with the
same train and test set splits.

8.3.1 Traditional Machine Learning

Preprocessing

We preprocessed the comments in three steps to mitigate ambiguity. In the first
step, we convert the text into lower case, reducing the ambiguity by unifying, for
example, “Crash”, “CRASH”, and “crash”, All variations become the lower case
version “crash”. In the second step, we masked special keywords. As an example,
we masked the account name of an “@” addressing with the string “account”.
We further masked links and hashtags. In the third step, we lemmatized the
text, converting each word into its root form. This, as an example, converts the
words “do,” “does,” “done,” “did,” “doing” into the normalized form “do”.

Feature Engineering

The machine learning pipeline performs a manual feature engineering step,
which utilizes the domain experts’ knowledge to find a meaningful data rep-
resentation for the machine learning model. In natural language processing, it
involves steps including text feature extraction, text selection, and text opti-

123

Chapter 8 Classifying App Development Aspects in User Comments

mization. Table 8.2 lists the feature groups, their numeric representation, and
the number of extracted features for each feature group. For example, the ta-
ble contains the feature group “keywords”, which contains 60 one-hot encoded
keywords for the English language.

Further, we used the comments’ length (in number of words) as Pagano and
Maalej [194] found that irrelevant comments tend to be short. The app reviews’
ratings do not contain useful information for developers because the majority
of comments simply praise the app, for example, “The app is awesome.” Both
variations, excluding and including stop words, in the data preprocessing step
are popular in research. We found studies, which identified excluding stop words
as an important step [91], studies, which included special stop words [122], and
other which experimented with both [160]. We used the number of stop words
in a comment as a feature.

Additionally, we analyzed the sentiment within the user comments using the
sentistrength library [253]. We used the full comment text (app review or tweet)
as the input. Sentistength returns two integers from -5 to -1, which indicate the
negative sentiment, and from +1 to +5 for the positive sentiment. The sentiment
proved to be a significant feature because users tend to write problem reports
rather with a negative sentiment and inquiries with a rather neutral to positive
tone [91, 160, 194]. In particular, keywords proved to be significant features for
text classification [102, 160, 260] because it allows domain experts to incorporate
their knowledge and experiences with user comments. However, keywords tend
to overfit for a single domain and, therefore, might not be generalizable. In
this work, we use the same set of keywords for the English app reviews and
tweets. We extracted our set of keywords by first looking into related work [114,
160, 260], and second by manually analyzing 1,000 comments from the training
set from all three datasets following the approach of Iacob and Harrison [114].
Kurtanović and Maalej [142, 143] achieved promising results by using the counts
of Part-of-speech (POS) tags for their classification approaches in requirements
engineering. We, therefore, also included them in our experiments.

Maalej et al. [160] added the tenses of sentences as a feature. This feature
could be useful for our classification as users write problem reports often in the
past or present tense, for example, “I updated the app yesterday. Since then, it
crashes.” Inquiries (i.e., feature requests) tend to use the present or future tense,
for example, “hopefully, you will add more emojis.” When analyzing the tense
with spaCy [109], the Italian language model supported four tenses. Meanwhile,
for the English comments, we had to derive the tense by using the part-of-speech
tags.

124

8.3 Machine Learning Pipelines

Researchers use tf-idf (term frequency-inverse document frequency) [236] fre-
quently as a feature to represent text as a vector. This feature increases the
value of each word proportionally with the occurrences in a document but re-
duces its significance with respect to the frequency of that worm within the
whole corpus. It considers both the term’s frequency within a document and
within the whole corpus to measure its significance for a particular document.

FastText [124] is an approach to learn high-dimensional vector representations
for text based on a large training corpus. The vectors, which are close in that
vector space, occur in a similar context. The fastText library provides pre-
trained models for different languages. However, we train our own domain-
specific models based on our dataset of ∼5 million English tweets and ∼1.3
million Italian tweets. We represented a document as the mean vector of all
individual word vectors of the comment. This also resulted in a 300-dimensional
vector. We chose the fastText model for text embedding because it is based on
subword embeddings. Thereby, our model is first able to embed words, which
are not part of the training corpus second capture spelling mistakes, which
frequently occur in user comments. Word2vec [180], on the other hand, embeds
words as a whole.

Experiment Configuration

We tried to find the optimal machine learning model by varying five dimensions
(no particular order) for the experiment setup. In the first dimension, we aim to
find the best-performing features of Table 8.2 and tested different combinations.
Overall, we tested 30 feature combinations such as “sentiment + fastText” and
“n_words + keywords + POS tags + tf-idf”.

As the second dimension, we enabled or disabled feature scaling for the input
values. While tf-idf values are already floating point numbers between 0 and 1,
the number of words can be any integer greater than 0. This could cause a bias
within the model training as the features are not treated equally, but higher
values have a higher impact on the outcome.

For the third dimension, we performed a grid search [19] to fine-tune the hy-
perparameters. In contrast to random search, grid search samples hyperparam-
eter combinations for fixed predefined values [19] and comprehensively combines
different hyperparameter combinations within the grid. We performed five-fold
cross-validation of the training set for each hyperparameter combination. We
optimized the hyperparameters towards the F1 score, which is the harmonic
mean of precision and recall.

With the fourth dimension, we check whether balancing the samples within

125

Chapter 8 Classifying App Development Aspects in User Comments

the training data improves the classifiers’ performance. For unbalanced data,
the machine learning algorithm could classify a comment as the majority class as
it is the most represented in the training set. In this dimension, we trained the
model with the original distribution of comments per class and with applying
random under-sampling on the majority class to balance the training set.

In the fifth dimension, we evaluated various machine learning algorithms.
Similar to previous research, we evaluated the most commonly applied algo-
rithms: decision tree, random forest, naïve Bayes, and support vector machine
[90, 160, 269]. We utilized the classifiers as binary classifiers, following the
findings from Maalej et al. [160]. Therefore, we trained one classifier for each
comment class (problem report, inquiry, and irrelevant).

8.3.2 Deep Learning

Traditional machine learning approaches require a data representation based
on manually extracted features. Domain experts support the machine learn-
ing engineers and provide useful criteria, which might support the automatic
classification. In contrast, deep learning approaches use the raw text as in-
put and learn high-level feature representations automatically [83]. In previous
work, researchers applied neural networks in various applications with impres-
sive results. These achievements covered classification tasks, including object
detection in images, machine translation, sentiment analysis, and text classifi-
cation tasks [38]. However, neural networks are not a silver bullet, and they
achieved only limited results in the domain of software engineering [64, 73, 87].

We describe both end-to-end deep learning approaches, which we applied to
identify app development aspects in user comments. The first approach is based
on a self-designed convolutional neural network [102], which achieved promising
results in identifying journalistic aspects. The second approach is based on
state-of-the-art text embeddings from DistilBERT [219], a pre-trained language
model.

Convolutional Neural Networks

Although researchers used convolutional neural networks (CNNs) primarily for
image classification, they also applied them successfully to natural language
processing tasks [133, 158]. Mostly, deep learning approaches require a large
amount of training data in order to outperform traditional approaches. Figure
8.2 shows the neural network architecture that we used for the experiments in
this study. Häring et al. [102] used this network to identify addressings towards
domain-specific aspects in online journalism. Their results partly outperformed

126

8.3 Machine Learning Pipelines

… … …

…

…

…

…

…

…

…

…
200

300

I
have
no
service
at
home
!
PADDING

…

64

198
… 64 … 16

0

1

Embedding layer
(pre-filled with fastText model)

1D convolution layer
filter: 64
stride: 1

kernel size: 3

Global max
pooling layer

Dense layer
units: 16

Input layer
(padded)

Output layer

Problem report

Irrelevant

Figure 8.2: Neural network architecture for the classification.

traditional machine learning approaches. The input layer requires a fixed size
for the text inputs. We choose the size 200, which we found appropriate for both
the app review and the Twitter dataset as tweets are generally shorter, and we
identified less than 20 app reviews that exceed 200 words. We truncated the
part, which is longer than 200 words, and padded shorter input texts so they
reached the required length.

After the input layer, our network consists of an embedding layer, a 1D con-
volution layer, a 1D global max-pooling layer, a dense layer, and a concluding
output layer with a softmax activation function. For the previous layers, we
used the tanh activation function. We pre-initialized the embedding layer with
a pre-trained embedding model, trained on a domain-specific corpus. Common
embedding models for this purpose are word2vec [180] or fastText [124] models.
In this study, we pre-trained fastText models using English app reviews, English
tweets, and Italian tweets. We froze the weights of the embedding layer during
training, which left us with ∼15,000 trainable parameters.

Hyperparameter Tuning

The architecture and the hyperparameter configuration are substantial factors
for the performance of a neural network. We, therefore, compared different con-
figurations of both our convolutional neural network architecture and training
parameters. We evaluated the best-performing model with the test set.

For the experiments, we conducted a grid search, altering the number of filters,
the kernel size of the 1D convolutional layer, the number of units of the dense
layer, the number of epochs, the training’s batch size, and the dense layer’s
number of units. Because of the small size of our training set, we conducted a
stratified three-fold cross-validation [244] using only samples from the training
set for each parameter configuration to acquire reliable results. We trained the

127

Chapter 8 Classifying App Development Aspects in User Comments

Table 8.3: Classification benchmark for the traditional machine learning ap-
proach (Trad.), and both deep learning approaches (CNN and Dis-
tilBERT embeddings). The best F1 score per classification problem
and dataset is marked in bold font.

App review EN Tweet EN Tweet IT
p r F1 auc p r F1 auc p r F1 auc

T
ra

d. problem report .83 .75 .79 .85 .46 .82 .59 .72 .51 .88 .65 .83
inquiry .68 .76 .72 .85 .32 .70 .43 .73 .47 .82 .60 .82
irrelevant .88 .89 .89 .86 .73 .75 .74 .69 .78 .89 .83 .73

C
N

N problem report .46 .60 .52 .82 .51 .42 .46 .74 .62 .57 .59 .84
inquiry .69 .79 .74 .94 .40 .40 .40 .75 .51 .57 .54 .83
irrelevant .78 .93 .85 .90 .74 .70 .72 .75 .85 .77 .81 .86

D
.B

E
R
T problem report .81 .89 .85 .98 .59 .64 .62 .83 .69 .69 .69 .91

inquiry .81 .78 .80 .97 .59 .43 .50 .85 .78 .64 .70 .95
irrelevant .95 .90 .92 .98 .81 .75 .78 .83 .90 .90 .90 .94

models with seven epochs and a batch size of 32. We used the Python library
Keras [34] for composing, training, and evaluating the models.

State-of-the-art text embeddings

We extended this research with an additional deep learning approach, which
uses state-of-the-art text embeddings based on a pre-trained language model.
We used context-sensitive text embeddings based on DistilBERT [219] to com-
pute meaningful numerical representations for the user comments. DistilBERT
is a transformer-based model trained by distilling the BERT [53] base model.
It contains fewer parameters (40% less), training is faster (60%), and maintains
more than 95% of BERT’s performances on the GLUE [208] language under-
standing benchmark. We chose DistilBERT over larger models as for example
XLNet [270], RoBERTa [50], to keep the computational costs at a feasible and
practical level.

We used the uncased DistilBERT base model for our experiments, which
transfers all characters to lower case. Similar to the BERT model, DistilBERT
outputs a pooled embedding, which embeds and summarizes the whole text.
For our specific classification task, we use the pooled text representation of the
[CLS] token, which represents the complete text with a fixed vector size. We
feed this representation into a dense layer followed by the final classification
layer for two classes, positive and negative. The model calculates the labels’
probabilities with a standard softmax function.

We used the same parameter configurations for all experiments. We trained
the models with two epochs, a batch size of 32, and the Adam optimizer algo-

128

8.4 Results

Table 8.4: Configuration of the best performing classification experiments for
the traditional machine learning and the convolutional neural network
approaches. RF = Random Forest, DT = Decision Tree. CNN =
Convolutional Neural Network.

T
ra

di
ti
on

al
M

ac
hi

ne
Le

ar
ni

ng

app review EN

problem report RF(max_features:None, n_estimators:500).
features:sentiment, tfidf, sampling:true, scaling:false

inquiry DT(criterion:gini, max_depth:1, min_samples_leaf:1, min_samples_split:4, splitter:random).
features:tfidf, keywords, sampling:false, scaling:false

irrelevant DT(criterion:gini, max_depth:8, min_samples_leaf:2, min_samples_split:4, splitter:random).
features:n_words,n_stopwords, n_tense, n_pos, keywords, tfidf, sampling:false, scaling:false

tweet EN

problem report RF(max_features:auto, n_estimators:1000).
features:sentiment, tfidf, sampling:true, scaling:true

inquiry DT(criterion:gini, max_depth:1, min_samples_leaf:1, min_samples_split:2, splitter:best).
features:n_words,n_stopwords, n_tense, n_pos, keywords, tfidf, fastText, sampling:true, scaling:true

irrelevant RF(max_features:none, n_estimators:1000).
features:n_words,n_stopwords, n_tense, n_pos, keywords, fastText, sampling:true, scaling:false

tweet IT

problem report RF(max_features:log2, n_estimators:1000)
features:sentiment, n_words,n_stopwords, n_tense, n_pos, tfidf, sampling:true, scaling:true

inquiry DT(criterion:entropy, max_depth:8, min_samples_leaf:10, min_samples_split:6, splitter:random)
features:n_words,n_stopwords, n_tense, n_pos, keywords, sampling:true, scaling:false

irrelevant DT(criterion:entropy, max_depth:8, min_samples_leaf:8, min_samples_split:2, splitter:random)
features:sentiment, n_words,n_stopwords, n_tense, n_pos, tfidf, keywords, sampling:false, scaling:true

C
on

vo
lu

ti
on

al
N

N app review EN
problem report CNN(dense_number_units:32, kernel_size:3, number_filters:16). sampling:true, scaling:true
inquiry CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true
irrelevant CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true

tweet EN
problem report CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true
inquiry CNN(dense_number_units:16, kernel_size:5, number_filters:16). sampling:true, scaling:true
irrelevant CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true

tweet IT
problem report CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true
inquiry CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true
irrelevant CNN(dense_number_units:32, kernel_size:5, number_filters:16). sampling:true, scaling:true

rithm [159] with a weight decay set to 0.01. We did not tune the model regarding
any hyperparameters. To enable reproducibility, we add the source code of our
extended experiments [93] to the replication package of this study [240].

8.4 Results

In this section, we outline and discuss the results of the classification experi-
ments. We first explain the evaluation metrics. Then, we report on the bench-
mark results in Table 8.3, highlighting the top accuracy. Finally, we describe
the configuration of the leading models with the best results shown in Table 8.4.

For this work, we report on the well-established classification metrics preci-
sion, recall, and f1 in accordance with related work [91, 160, 260]. For calcu-
lating the evaluation metrics, we used sklearn’s conservative parameter setting
average=binary, which only reports the result for classifying the positive class.
We also report on the Area Under the Curve AUC value, which is independent
of a certain threshold and suitable for imbalanced datasets [46]. We optimized
the classification models based on the F1 score, which is the harmonic mean
between precision and recall.

Table 8.3 summarizes the classification results of the models with the best
configuration for all classification problems for each dataset. We can see that the
model, which uses state-of-the-art text embeddings based on the DistilBERT,
outperforms both the traditional and the CNN approach on all datasets and

129

Chapter 8 Classifying App Development Aspects in User Comments

classification problems regarding the most important metrics F1 and AUC score.
For the English app review dataset, the traditional machine learning approach

reaches a higher F1 score than the CNN approach. The reason for this result
might be the different number of training samples (6,000 app reviews, 10,000
English tweets, 15,000 Italian tweets). The traditional and CNN approach both
similar results for the English tweets. While the F1 score seems to be lower for
the deep learning approach, the AUC values are similar for both approaches.
The results for the Italian tweets show a higher precision for the deep learning
approach, while the traditional approaches achieved higher recall values. The F1
score showed again that the traditional and the CNN approach reached similar
scores.

8.5 Discussion

8.5.1 Implications of the Results

In this work, we classified user comments for English and Italian from two
different feedback channels. We found that the state-of-the-art DistilBERT
embeddings outperformed both the traditional machine learning approach and
our model based on a convolutional neural network. As DistilBERT is based on
BERT, which Devlin et al. [53] trained on a gigantic corpus of 16 GB text data,
including book texts and the Wikipedia pages, the embeddings encode a general
understanding of natural language. We further see that we can train a classifier
to extract the significant characteristics from these embeddings to identify app
development aspects. This is particularly interesting, as neither DistilBERT nor
BERT were trained with colloquial user comment texts. Therefore, we provide
an indication that a few thousand training samples are enough to transfer the
general concept of language to the vocabulary in user comments. Although we
used the language-dependent base version of the DistilBERT model, we also an
F1 score of 0.70 on Italian tweets, which shows that the tokenizer manages to
decompose unknown strings into sub-tokens for DistilBERT to embed. However,
we expect improved results with embeddings based on either multilingual models
or models specifically trained on Italian comments.

Regarding the other approaches, traditional machine learning performs slightly
better than the CNN in most of the examined cases with respect to the F1 score.
For example, our CNN requires, on top of a training set, a pre-trained word em-
bedding model for each language, similar to the English and Italian models we
trained for this study. These embeddings capture the similarity between words
depending on the domain and language. They are highly adaptable to develop-

130

8.5 Discussion

ing languages, and we can regularly retrain them on current app reviews and
tweets. Thereby, it can encode the meaning of topical terms as current hash-
tags on Twitter or emoticons. In traditional machine learning approaches, the
language-dependent features are keywords provided by the domain expert, POS
tags, and the tf-idf vocabulary. This requires further effort for creating models
for other languages. The rest remains language and domain-independent.

Traditional approaches often performed better on small training sets as do-
main experts implicitly incorporate significant information through hand-crafted
features [35]. However, our findings provide evidence that we can reuse the
general language understanding of pre-trained models and fine-tune the model
regarding a specific classification task. Thereby, we can leverage the immense
training effort for large language models for our purposes.

8.5.2 Field of Application

Classifying user feedback is an ongoing research area due to the numerous com-
ments companies receive daily. Pagano and Maalej [194] show that, back in
2012, visible app vendors received, on average, 22 reviews per day in the app
stores. Free apps received a significantly higher amount of reviews (∼37 re-
views/day) compared to paid apps (∼7 reviews per day). Popular apps such
as Facebook or WhatsApp or receive ∼4,000 comments daily. Guzman et al.
[89] showed that popular app development companies also receive on average
∼31,000 comments daily via Twitter. These high numbers of comments impede
the manual analysis, particularly for popular apps [88]. Due to these reasons,
we aim to first filter deconstructive noise and second extract insights for app
developers from the comments [160].

The automatic classification of app development aspects supports domain
experts to identify the constructive insights hidden in the comments. Based
on our approaches, we can extract descriptive insights for the domain experts
based on statistic summaries of these classes. This would answer their important
questions as, for example, “How many problem reports, inquiries, or noise do we
have compared to previous versions of our apps or our competitors?” [160]. App
developers can further extract corrective insights from problem reports, which
we can forward to the developers, which they could use to augment existing bug
reports with information from problem reports or discover undetected bugs.
The users’ inquiries also contain perfective insights specifically for requirements
engineers to improve the app as they decide which features to integrate into the
next version.

131

Chapter 8 Classifying App Development Aspects in User Comments

8.5.3 Threats to Validity

We discuss the threats to their internal and external validity.
Regarding the internal validity, our study conducted crowdsourced manual

coding tasks. Coders can make errors, and the labeled dataset could consequen-
tially contain false labels. The model would learn from a noisy training set,
which could influence our classification results. However, we applied the follow-
ing methods to mitigate this thread. First, we developed a coding guide for the
annotation tasks, which defines in detail with examples how to annotate the
comments. At least two native speakers wrote and proofread the English and
the Italian coding guide. Second, we conducted a pilot run to check the quality
of the crowdsourced labels. Third, we required the manual coders to be native
speakers in the user comments’ language. Fourth, we conducted a peer-coding
strategy, which requires at least two annotators to label the same user comment
independently. In case of disagreement, we added a third annotator.

Regarding the external validity, we chose user comments from app stores and
Twitter and covered two different languages. User comments on other social
media platforms such as Facebook or YouTube might have different characteris-
tics, which would lead to different classification results. However, we employed
well-established machine learning practices ensuring generalizability, including
the hyperparameter optimization within the training set and the separate eval-
uation on the unseen test set.

8.6 Conclusion

In this chapter, we applied our machine learning pipeline (Chapter 5) to auto-
matically identify domain-specific aspects, which are app development aspects
in this context. We summarize the contributions in the context of this thesis.

Insight extraction for app developers. We conducted a series of classi-
fication experiments to identify the app development specific aspects: problem
report and inquiry in user comments. Comments addressing these aspects con-
tain requirement-relevant information for the app developers. App developers
can extract corrective insights (Section 2.2.3) from problem reports as they can
contain additional information for existing bug reports or reveal so far unde-
tected bugs. Furthermore, from inquiries, app developers can extract perfective
insights (Section 2.2.4), which help developers to identify new features, use
cases, or user scenarios, which they could utilize to improve the app. The third
class, irrelevant, represents noisy comments, which are mostly useless for app
developers.

132

8.6 Conclusion

Promising classification results for classifying app development as-
pects. We applied supervised machine learning and compared traditional ma-
chine learning and end-to-end deep learning approaches based on our machine
learning pipeline (Chapter 5). Our results show that state-of-the-art embeddings
achieved the best results with F1 scores up to 0.92 for classifying irrelevant app
reviews in English. We also achieved promising classification results for the
identification of the app development aspects problem report (f1=0.85) and in-
quiry (f1=0.80). Our additional experiments outperformed all previous study
results regarding the most important metrics, F1 score, and Area Under the
Curve (AUC).

Domain-specific aspect detection in non-English comments from so-
cial media sites. We conducted our experiments with ∼6,000 annotated En-
glish app reviews, ∼10,000 annotated English, and ∼15,000 Italian tweets from
Twitter support accounts of telecommunication companies. Our results show
that in this setting, we can also identify app development aspects in non-English
comments from Twitter. Thereby, we address the lack of research for analyzing
non-English user comments, which we identified in our literature study in Chap-
ter 3. We achieved promising results for the classification of problem reports
(f1=0.69) and inquiries (f1=0.70) in Italian tweets.

133

Chapter 9

Matching User Comments to App
Aspects

Publication. This chapter is based on the study “Automatically Matching
Bug Reports with Related App Reviews” [98]. My contribution to this study
is the systematic development and application of DeepMatcher, which matches
problem reports to relevant bug reports. I also led the writing and analyzed the
results of the experiments. My co-authors supported the qualitative analysis of
the relevant matches, and we jointly discussed the implications of this study.

Contribution. In this study, we developed DeepMatcher, a fully automated
approach, which matches user comments to relevant matching bug reports in
issue trackers. We defined bug reports as app-specific aspects and based Deep-
Matcher on the similarity-based approach of our domain-independent machine
learning pipeline (Section 5.3.2). We first discussed the individual natural lan-
guage processing challenges when matching official and technically written bug
reports with informally, colloquially written app reviews. To the best of our
knowledge, DeepMatcher is the first approach that automatically matches these
two data sources. We further discuss how DeepMatcher can support app devel-
opers to extract insights from DeepMatcher’s suggestions.

9.1 Motivation

The app market is highly competitive and dynamic. Google Play Store and
Apple App Store offer together more than ∼4 million apps [243] to users. In
this market, it is essential for app vendors to regularly release new versions to
fix bugs and introduce new features [176], as unsatisfied users are likely to look
for alternatives [65, 268]. User dissatisfaction can quickly lead to the fall of
even popular apps [148]. It is thus indispensable to continuously monitor and
understand the changing user needs and habits for a successful app evolution.

However, identifying and understanding user needs and encountered problems

135

Chapter 9 Matching User Comments to App Aspects

Figure 9.1: Example problem report
for Nextcloud answered by
the app developer.

Figure 9.2: List of bug reports from
the issue tracker of the app
Signal Messenger.

is challenging as users and app developers work in different environments and
have different goals in mind. On the one hand, software developers professionally
report bugs in issue trackers to document and keep track of them, as illustrated
in Figure 9.2. On the other hand, users voluntarily provide feedback on apps in,
e.g., app reviews as shown in Figure 9.1 – using a different, often non-technical,
and potentially imprecise language. Consequently, seriously considering and
using app reviews in software development and evolution processes can become
time-consuming and error-prone.

App vendors can regularly receive a large number of user comments via various
channels, including app stores or social media [89, 194]. Manually filtering and
processing these comments is challenging. In recent years, research developed
approaches for filtering comments, e.g., by automatically identifying relevant
user comments [27] like problem reports [240] and feature requests [114], or by
clustering the comments [260] to understand how many users address similar
topics [269]. While these approaches are helpful to cope with and aggregate
large amounts of user comments, the gap between what happens in the issue
tracker and what happens online in the user space remains unfilled. For instance,
developers remain unable to easily track whether a problem reported in an app
review is already filed as a bug report in the issue tracker; or to quickly find a
related bug they thought is already resolved. Additionally, user feedback items
often lack information that is relevant for developers, such as steps to reproduce
or versions affected [170, 281].

To address this gap, we developed DeepMatcher based on the similarity-based
approach of our domain-independent machine learning pipeline (Section 5.3.2)
and defined the bug reports in issue trackers as app-specific aspects. Deep-
Matcher is, to the best of our knowledge, the first approach that matches offi-

136

9.2 Approach

cial and technically written bug reports with informal, colloquially written app
reviews. DeepMatcher first filters app reviews into problem reports using our
classification approach, which we described in Chapter 8. Subsequently, our ap-
proach matches the problem reports with bug reports in issue trackers using
deep learning techniques. We used the state-of-the-art, context-sensitive text
embedding method DistilBERT [219] to transform the problem report and bug
report texts into the same vector space. Given their vector embeddings, we then
use cosine similarity as a distance metric to identify matches.

For 200 randomly sampled problem reports submitted by users of four Google
apps, DeepMatcher identified 167 matching bug reports when configured to
show three suggestions per problem report. In about 91 cases, DeepMatcher
did not find any matches. We manually searched for these 91 cases in the
issue trackers to check whether there are indeed no matching bug reports. We
found that in 47 cases, developers would have benefited from DeepMatcher, as
no corresponding bug reports were filed. We also qualitatively analyzed the
context-sensitive text embeddings, which identified recurring bug reports and
cases in which users reported problems before developers documented them. We
found that our approach can detect semantically similar texts such as “draining
vs. consuming battery” and “download vs. save PDF”, filling the gap between
users’ and developers’ language. Our qualitative analysis further revealed cases
of recurring and duplicated bug reports. We share our replication package [99]
for reproducibility.

9.2 Approach

Figure 9.3 shows an overview of DeepMatcher’s technical approach. The input
of DeepMatcher is a problem report (an app review describing a problem with
an app) and a bug report summary. In Section 9.2.1, we discuss how we au-
tomatically identified problem reports from the review. Section 9.2.2 describes
the text embedding creation process shown in the middle part of the figure.
This represents the transformation of textual data into numeric values, which
we then use to calculate a similarity value as explained in Section 9.2.3.

9.2.1 Automatic Problem Reports Classification

Challenges. One of the major problems when working with user feedback is
the vast amount that software developers receive. Particularly in app stores,
Pagano and Maalej [194] showed that developers of popular apps receive about
4,000 app reviews daily. When considering Twitter as an alternative feedback

137

Chapter 9 Matching User Comments to App Aspects

When I type into the search
box's it type's random words on
it's own even when I delete the
random words it adds words in,
it's not my prediction keyboard
that's messing up it only
happens on Firefox.

I am able to type words in
Firefox search bar but unable to
type anything in the websites

Problem Report

Bug Report Summary

DistilBERT
Tokenizer

SpaCy
Tokenizer

DistilBERT

POS-Tagger

Contextualized
Embeddings

Nouns

Token
Mapping

Embedding

Text
Embedding

Bug Report
Embedding

Problem
Report

Embedding
Cosine

Similarity
0.91

Automatic
Problem Report
Classification

App Reviews

relevant
match

Figure 9.3: Overview of the DeepMatcher approach.

source, Twitter accounts of popular software vendors receive about 31,000 tweets
daily [89]. Besides the amount, the quality of the written feedback differs. Most
of the received app reviews simply praise, e.g., “I like this app” or dispraise,
e.g. “I hate this app!” [194]. However, developers are particularly interested
in the user experience, feature requests, and problem reports [90, 160, 260].
Our approach automatically classified problem reports from app reviews and
subsequently matched them to bug reports in issue trackers.
Approach and Rationale. We applied a four-step process to filter relevant
app reviews. First, we removed all user feedback containing less than ten words
as previous research has shown that such feedback is most likely praise or spam
[194] and does not contain helpful information [230]. Second, we used our repli-
cation package [240], and applied the problem report, inquiry, and irrelevant
classification approach to also filter the user feedback for problem reports. The
classification reduced the initial number of app reviews to 9,132 problem re-
ports. Fourth, to check the reliability of the classification, we randomly sampled
and manually analyzed automatically classified app reviews for each of the four
studied apps for manual analysis. Two coders manually checked if the classified
problem reports were correctly classified. In case of disagreement, we did not
include the app review but sampled a new one. We repeated this step until we
had 50 verified problem reports for each app, which is 200 in total.

9.2.2 Text Representation with Word Embeddings

Challenges. We further convert the text into a numerical presentation for
further interpretation. In natural language processing, practitioners usually
transfer texts into vectors by applying techniques including bag-of-words, tf-
idf [167], or fastText [125]. When representing text in a vector space, we can
perform calculations, such as comparing text similarity, which becomes essen-
tial in a later step for identifying matches. Selecting the right word embedding
technique is crucial, as it decides how precisely the vectors represent the text.
We face two major challenges. First, users and developers usually use different
vocabularies. User feedback is more prone to spelling mistakes and often con-

138

9.2 Approach

tains emoticons. Moreover, users write mostly in an informal, colloquial, and
non-technical way. Second, bug reports are usually written in a more formal
way, e.g., following templates, containing metadata, and may provide technical
information like stack traces [281].

Approach and Rationale. Both data sources consist of different text com-
ponents. While user feedback consists of a single text body, bug reports have
a summary and a detailed description. The description may contain a long
explanation, including steps to reproduce, stack traces, and error logs. We de-
termined which text components of the bug report to include for the calculation
of the text embedding. Previous research showed that the detailed bug report
description contains noise for information retrieval tasks [277]. In particular, it
contains technical details that users usually omit in their user feedback [170].
Further, research shows that the summary already contains the essential con-
tent of the long description [134, 145, 264]. Therefore, we calculated the word
embeddings only based on the bug report’s summary.

Regarding the word embedding technique, we chose DistilBERT [219], a light-
weight version of BERT [53] that is trained with a fewer number of parameters
but has a similar generalization potential. Alternative techniques would be, e.g.,
BERT, XLNet, or RoBERTa. But as DistilBERT requires significantly fewer
hardware resources and training time, it is more applicable for various develop-
ment teams. Our technique first tokenizes the input text and then calculates
vectors for each token. Compared to other text representations like bag-of-
words or tf-idf, these vectors are contextualized; they consider the context of
the surrounding words. For example, the two sentences “I love apples” and “I
love Apple macbooks” contain the token “apple”. Contextualized embeddings
take into account that the token’s semantics differs in these two sentences. In
our approach, DistilBERT creates a 768-dimensional contextualized embedding
for each token.

We calculated the document embedding from the individual token embed-
dings. To reduce the weight of frequent but unimportant words such as “I”,
“have”, or “to”, previous research in text mining suggests removing stopwords
[196, 242, 260]. In our approach, we went one step further and only included
embeddings of nouns, which we can automatically detect with a part-of-speech
(POS) tagger. We carefully decided to remove other parts of speech like the
verb tokens as first trials showed that including frequent verbs like “crash,”
“freeze,” and “hangs” heavily biased our results toward these terms. For ex-
ample, DeepMatcher would match “The app crashes when I open a new tab”
(problem report) with “Firefox crashes on the home screen” (bug report) because

139

Chapter 9 Matching User Comments to App Aspects

the verb “crash” puts the vectors of both texts closer together. Based on this
design decision, DeepMatcher weights essential words, i.e., nouns that describe
components or features higher, while the contextualized token embeddings still
contain information about the surrounding context, e.g., the verbs. As a result,
DeepMatcher, e.g., emphasizes the nouns “new tab” and “home screen” in the
previous example and, therefore, would not consider the bug and problem report
as a potential match. Another positive side-effect of the surrounding context
is that it helps to deal with misspelled words as their surrounding context is
usually similar to the correct word’s context. Therefore DistilBERT calculates
similar embeddings for them.

The automatic noun detection of the input texts is part of DeepMatcher and
uses SpaCy’s tokenizer, and POS-tagger [109]. As SpaCy’s tokenizer and the
DistilBERT’s tokenizer split the input text into different token sequences, we
mapped the two sequences to each other by aligning them using pytokenizations.
For calculating the embedding for the full text of the problem report or bug
report’s summary, we added all noun word vectors of the text and averaged
them. Alternatively, we could have summed up the noun word vectors but
decided to average them as the cosine similarity function depends on the vector
angles and not on their lengths. Therefore, the choice of summing or averaging
would not influence the cosine similarity score in our approach.

9.2.3 Identifying relevant Bug Reports for a Problem Report

Challenges. Given the numerical representation of the problem report and
the bug report, DeepMatcher finally requires a method to decide whether a bug
report is relevant for a problem report or not. The main challenge in this task is
calculating matching problem reports and bug reports with short text similarity
[210]. Besides semantic features, research tried text similarity approaches like
simple substring comparisons [116], lexical overlap [120], or edit distances [179].
Kenter and de Rijke [132] state that these approaches can work in some simple
cases but are prone to mistakes.

Approach and Rationale. We considered two options for this task. One
option is to model this task as a binary classification problem using the two
classes, “relevant” or “not relevant”. However, this approach would require a
large labeled dataset to train a classifier for this task, which is expensive and
time-consuming [35]. Therefore, we chose the second option, which models this
task as an information retrieval task. Given a problem report as a query, we
designed DeepMatcher to return a ranked list of suggested relevant bug reports.
We chose a distance function to measure the similarity between the two text

140

9.3 Empirical Evaluation

embeddings and further rank the bug report summaries in decreasing order.
Two popular similarity measures for text embeddings are the euclidian similar-

ity and cosine similarity [79, 231]. The euclidian distance can increase depending
on the number of dimensions. In contrast, the cosine similarity measures the
angle of the two text vectors and is independent of their magnitude. The benefit
is that it results in a similarity value of 1 if the two vectors have a zero-degree
angle. A non-similarity occurs when the vectors have a 90-degree angle to each
other. Previous research [11–13, 79], showed that cosine similarity performs
equally or outperforms other similarity measures for dense text embedding vec-
tors, which is why we also used it for DeepMatcher.

9.3 Empirical Evaluation

9.3.1 Research Questions

Apps usually receive user feedback as app reviews, which may contain the user’s
opinion and experience with the software. Our study focuses on the app review
category problem reports, which is about users describing a faulty app behavior.
Figure 9.1 shows an example of a problem report. Bug reports are issues in
an issue tracker, complying with a certain template and contain information
including summary, body, app version, timestamp, and steps to reproduce. Fig-
ure 9.2 shows a list of four bug report summaries of the Signal Messenger app
in GitHub. Our evaluation focuses on the following research questions:

RQ1 How accurate can DeepMatcher match app reviews with bug
reports?

We analyze if we can identify bug reports in issue trackers for which users
wrote app reviews. For example, a developer filed the following bug report:
“I am able to type words in Firefox search bar but unable to type anything in
the websites”. Can we find app reviews that describe the same issue, like the
following app review? “When I type into the search box’s it type’s random words
on it’s own even when I delete the random words it adds words in, it’s not my
prediction keyboard that’s messing up it only happens on Firefox.”

RQ2 What can we learn from DeepMatcher’s relevant and irrelevant
matches?

To answer this question, we checked a sample of relevant and irrelevant
matches. We analyzed cases in which contextual embeddings identify words

141

Chapter 9 Matching User Comments to App Aspects

Table 9.1: Overview of the study data.

App Name Bug Reports App Review
Time
Frame Number

Time
Frame All

Problem
Reports [240]

Firefox Browser 01/2011
-08/2019 29,941 09/2018

-07/2020 5,706 3,314

VLC Media Player 05/2012
-07/2020 553 09/2018

-07/2020 5,026 2,988

Signal Messenger 12/2011
-08/2020 7,768 09/2018

-08/2020 10,000 2,583

Nextcloud 06/2016
-08/2020 2,462 06/2016

-08/2020 774 247

Total 40,724 21,506 9,132

with similar meanings, the language gap between developers and users, recur-
ring bug reports, and a potential chronological dependency between problem
reports and bug reports. We highlight our findings and explain them with ex-
amples from our dataset.

9.3.2 Evaluation Data

For creating the evaluation data, we first collected app reviews and issues of
four diverse apps. We selected the apps Firefox (browser), VLC (media player),
Signal (messenger), and NextCloud (cloud storage) to cover different app do-
mains and usage scenarios in our analysis. As Pagano and Maalej showed [194],
most app reviews rather represent noise for software developers as they only
contain praise like “I like this app” or insults like “this app is trash”. There-
fore, we applied our problem report classification approach to identify problem
reports [240]. We chose this classification approach, as it uses state-of-the-art
approaches, achieves high F1 scores of 79% for English app reviews, and we
could include our replication package in our pipeline without major modifica-
tions. Eventually, we created a random sample from the collected data that we
then used in the evaluation.

As our study is concerned with matching problem reports found in app re-
views with bug reports documents in issue trackers, we collected both—problem
reports and bug reports. In our study, we decided to evaluate our approach
against four popular open source Android apps, which stretch over different app
categories. We cover the categories browsing (Firefox), media player for audio,
video, and streaming (VLC), a cloud storage client (Nextcloud), and a messaging

142

9.3 Empirical Evaluation

app (Signal). As these apps use different issue tracker systems to document bug
reports, we developed crawlers for Bugzilla (Firefox), Trac (VLC), and GitHub
(Nextcloud and Signal). For each app, we collected all bug reports from the is-
sue tracker systems. As a requirement for our analysis, each bug report contains
at least an ID, summary, and status (e.g., open and resolved), as well as the cre-
ation date. Additionally, we also collected the remaining data fields provided by
the issue tracker systems, such as issue descriptions and comments. A complete
list of the collected data fields is documented in our replication package.

We then collected up to 10,000 app reviews of the corresponding apps follow-
ing Google’s default sort order “by helpfulness”. Sorting by helpfulness helped
us to not only considering the most recent app reviews (sort by date) but also
emphasized the app reviews that other users deemed helpful. For Nextcloud,
we could not collect more than 774 app reviews as it seems that from their total
5,900 reviews in the Google Play Store, 5,126 reviews only contain a star rating
without any text. Our app review dataset covers a time frame of two to four
years. In total, we were able to collect 21,506 app reviews from the Google Play
Store. After applying our problem report classifier [240], we could reduce the
number of app reviews to 9,132 problem reports.

Table 9.1 summarizes our study data. The table reveals that while the time
range of bug reports covers at least four years, Firefox has the highest number
of bug reports filed from January 2011 to August 2019. In total, we collected
40,724 bug reports, of which 29,941 belong to Firefox. We focused on bug reports
but ignored other issues like feature or enhancement requests by filtering the
issues that developers labeled as such in the issue tracker systems.

9.3.3 Evaluation Method

We evaluated DeepMatcher with respect to quantitative and qualitative aspects.
Starting from a set of manually verified problem reports, DeepMatcher suggested
three bug reports for each. We evaluated how accurately DeepMatcher finds
matching bug reports based on their summaries for a given problem report. We
conducted a manual coding task, which consisted of two steps.

In the first step, we classified the app reviews using our existing approach
[240] into problem reports to remove irrelevant feedback. Then, we randomly
sampled 50 problem reports per app and manually verified whether the classified
app reviews are problem reports. Two coders independently annotated the
classification results according to a coding guide from previous research [160].
We randomly sampled new problem reports until we reached 50 verified problem
reports per app, which made 200 in total.

143

Chapter 9 Matching User Comments to App Aspects

In the second step, we used DeepMatcher to calculate three suggestions of
potentially matching bug reports for each of the 200 problem reports. Again,
two coders independently read each problem report and the three suggested bug
reports. For each matching, the coders annotated whether the match is rele-
vant or irrelevant. We consider the match relevant if the problem report and
the bug report describe the same app feature (e.g., watch video) and behavior
(e.g., crashes in full screen). For example, for the problem report: “Latest up-
date started consuming over 80% battery. Had to uninstall to even charge the
phone!” DeepMatcher suggested the relevant bug report match “Only happen-
ing with latest version, But keep getting FFbeta draining battery too fast”. We
documented the inter-coder agreement and resolved disagreements by having
the two coders discussing each. We report further analysis results based on the
resolved annotations.

To answer RQ1, we calculated DeepMatcher’s performance. We report the
number of relevant/irrelevant matches found per app and the mean average
precision (MAP) [278]. It describes the average precision 𝐴𝑣𝑒𝑃 for each problem
report 𝑝 and its suggestions and then calculates the mean over all problem
reports 𝑃:

𝑀𝐴𝑃 =

∑𝑃
𝑝=1 𝐴𝑣𝑒𝑃(𝑝)

𝑃

This is a conservative evaluation metric because it assumes that we have at
least three relevant bug reports per problem report. If this is not the case, even
a perfect tool cannot achieve the highest average precision [168]. However, in
our setting, the actual number of relevant bug reports is unknown. Therefore,
we additionally report on the hit ratio, which describes the share of problem
reports for which DeepMatcher has suggested at least one relevant match. For
the irrelevant matches, we further tried to manually find relevant bug reports in
issue trackers. We further analyzed DeepMatcher’s similarity score to identify
a possible threshold, which users can use for the relevance assessment.

To answer RQ2, we conducted a qualitative analysis of the data. For each app,
we analyzed the language of app reviews and bug reports by counting the nouns
used in both datasets in relation to the nouns used overall. We highlight the
strength of contextual word embeddings and show how DeepMatcher matches
different words with similar semantic meaning. We further analyze the cases in
which developers report a bug report after a user submitted a related problem
report in the app store.

144

9.4 Evaluation Results

Table 9.2: Results of the manual coding for 4 open source apps, each with 50
app reviews. Legend: mean average precision (MAP), number of
suggested bug reports (#).

App 1 Suggestion 2 Suggestions 3 Suggestions

MAP
Hit

Ratio # MAP
Hit

Ratio # MAP
Hit

Ratio

#
Relevant
Matches

Coder
Agreement

Firefox 50 0.50 0.50 100 0.54 0.58 150 0.58 0.74 38 0.93
VLC 50 0.32 0.32 100 0.38 0.44 150 0.40 0.51 26 0.91
Signal 50 0.38 0.38 100 0.47 0.57 150 0.50 0.68 45 0.89
Nextcloud 50 0.62 0.62 100 0.73 0.84 150 0.73 0.89 58 0.88

Total 200 ∅ 0.45 ∅ 0.46 400 ∅ 0.53 ∅ 0.61 600 ∅ 0.55 ∅ 0.71 167 ∅ 0.90

9.4 Evaluation Results

This section reports the results of our evaluation study. We analyze Deep-
Matcher’s cosine similarity values to understand if we could use a certain sim-
ilarity score threshold to identify matching problem reports and bug reports.
Further, we report on our qualitative analysis and describe relevant and irrel-
evant suggestions to find potential ways to improve automatic matching ap-
proaches.

Matching Problem Reports with Bug Reports (RQ1)

We sampled 50 problem reports per app (200 in total) and applied DeepMatcher
to suggest matching bug reports. In the first step, DeepMatcher suggested one
matching bug report per problem report. Then, we changed that parameter
and let DeepMatcher suggest two matching bug reports. Finally, DeepMatcher
suggested three matching bug reports per problem report, which led to 600 sug-
gestions. Since DeepMatcher suggests bug reports based on the highest cosine
similarity, it added one additional suggestion per step while keeping the pre-
vious ones. This way, we could evaluate DeepMatcher’s performance based on
this parameter (number of suggestions). Two authors independently annotated
each of the 600 bug report suggestions as either a relevant or irrelevant match.

Table 9.2 summarizes the overall result of the peer-coding evaluation. The ta-
ble shows that the inter-coder agreement for the whole dataset (3 suggested bug
reports per problem report) is ≥ 0.88. From the 600 matching bug report sug-
gestions, the two coders identified 167 developer-relevant matching suggestions.
These 167 suggestions occurred in 109 problem reports with the parameter num-
ber of suggestions set to three. Multiple relevant matches occurred either for
generic problem reports like “the app crashes often” or for similar, recurring, or
duplicated bug reports in the issue tracker.

145

Chapter 9 Matching User Comments to App Aspects

Suggestions without relevant matches. For 91 problem reports, Deep-
Matcher could not find a relevant match within the three suggestions. The rea-
son for this is twofold: either no relevant bug report actually exists in the issue
tracker system, or DeepMatcher missed relevant matches. To understand why
DeepMatcher did not identify any matches for 91 problem reports, we manually
searched the issue tracker systems by building a query using different keyword
combinations from the problem reports. For example, Table 9.3 shows a problem
report of VLC for which DeepMatcher could not find a relevant matching bug
report. However, in our manual check, we found the bug report “When the de-
vice’s UI language is RTL, no controls are shown in the notification card”, which
the two coders consider a relevant match. For 47 problem reports, we could not
find any relevant match in the issue tracker system, while DeepMatcher missed
potentially relevant matches in 44 cases. Consequently, DeepMatcher identified
47 problem reports that were undocumented in the issue trackers. This can help
developers create new bug reports.

Average mean precision and hit ratio. We calculated the mean average
precision (MAP) and the hit ratio of our manual annotated data for one, two,
and three suggestions. The MAP is a conservative score, which assumes that
each problem report has at least as many relevant bug reports as we automati-
cally suggest. For example, if we set the parameter for the number of suggested
bug reports to three, the MAP score assumes that at least three relevant match-
ing bug reports exist. In case the problem report has less than three relevant
bug reports, the average precision for that problem report cannot get the max-
imum value of one [168]. For our calculation, we excluded the problem reports
for which we could not find a relevant bug report manually. The hit ratio, on
the other hand, is the number of problem reports for which DeepMatcher found
at least one relevant match divided by the number of all problem reports.

Table 9.2 shows the MAP and the hit ratio scores for each parameter setting.
Increasing the parameter from one to two shows that the MAP score increases
by 8%, while the hit ratio increases by 15%, which means that we increase
the chance of finding a relevant match to 61%. When further increasing the
parameter to three, we observe that the probability of having at least one rel-
evant match increases to 71%, however as the MAP score reveals, developers
might have to consider more irrelevant matches. We found that for Nextcloud,
DeepMatcher achieved the highest Mean Average Precision (0.73) and Hit Ratio
(0.89). In contrast, VLC achieved the lowest scores with a MAP of 0.40 and a
hit ratio of 0.51. Averaged over all apps, DeepMatcher achieved a mean average
precision of 0.55 and a hit ratio of 0.71.

146

9.4 Evaluation Results

Firefox VLC Signal Nextcloud
App

0.70

0.75

0.80

0.85

0.90

0.95

Si
m

ila
rit

y

Matching Bug Report
False
True

Figure 9.4: Similarity values for relevant and irrelevant matches per app.

Cosine Similarity Analysis. We analyzed the cosine similarity values of
relevant bug report suggestions and the irrelevant bug report suggestions. Figure
9.4 shows the cosine similarity values for the manual labeled suggestions for each
app. It shows that the medians of the similarity scores of relevant bug report
matches are higher than the irrelevant matches. However, the similarity scores
vary between their min and max values by up to ∼ 0.15. All similarity scores
are overall high (≥ 0.5) as all texts are in the technical domain.

We found that VLC has the lowest cosine similarity score compared to the
other apps, which is also the app for which DeepMatcher found the fewest rel-
evant bug report matches (26 matches). The lower cosine similarity indicates
a higher language gap between VLC problem reports and bug reports. To fur-
ther analyze this indication, we calculated the overlap of nouns used in problem
reports with the nouns used in bug report summaries. We only checked the
noun overlap as this is the part-of-speech category DeepMatcher uses to gener-
ate matches. For each app, we calculated the ratio between the number of nouns
used in problem reports and bug reports, and the number of nouns used over-
all. The apps’ ratios are: Firefox 19%, VLC 11%, Signal 24%, and Nextcloud
25%. The noun overlap calculation strengthens our assumption that the lan-
guage between the VLC problem reports and the bug report summaries diverge
more than the other apps, which negatively affects DeepMatcher’s automatic
matching approach.

147

Chapter 9 Matching User Comments to App Aspects

Qualitative Analysis of DeepMatcher’s Relevant, Wrong, and
Missed Suggestions (RQ2)

We summarize and describe qualitative findings to learn about DeepMatcher’s
relevant and irrelevant suggestions. Table 9.3 provides examples of problem re-
ports, DeepMatcher suggested bug report summaries and our coding of whether
we think that there is a relevant match for developers. In the table, we selected
one problem report per app and searched for cases that highlight some of our
findings, like recurring bug reports for Signal or a problem report, submitted
long before a bug report was filed in the Nextcloud app. In the following, we
discuss our findings.

Table 9.3: Example problem reports from app reviews and DICAP’s suggested
matching bug reports. The relevant column shows whether the two
coders annotated the suggestions as relevant for developers.

Problem Report Suggested Bug Report Summary Relevant

App: Firefox
Date: 2020-04-21

Report:
Latest update started consuming over
80% battery. Had to uninstall to even
charge the phone!

Date: 2018-01-04

Report: Only happening with latest version, But keep getting FFbeta draining battery too fast
yes

Date: 2017-11-20

Report: The topbar on android phone becomes white, which makes the time and battery life invisible.
no

Date: 2016-12-13

Report: "Offline version" snackbar is displayed when device is very low on power and in battery saving mode
no

App: Signal
Date: 2017-10-09

Report:
it is a good app. i am mostly satisfied with
it but sometimes, the notifications would not
work; so, I would not know that someone
messaged me until I open the app. it might
have been fixed because it hasn’t been
happening in the last month or so. Would
recommended.

Date: 2015-09-13

After update: no notification sent with TextSecure message. I have to open the app to see if there’s something new
yes

Date: 2016-01-17

Report: No notifications show up until the app is manually open
yes

Date: 2016-04-17

Report: Not getting notification in real time unless I open the app
yes

App: VLC
Date: 2020-05-17

Report:
So many bugs... Plays in background, but
no controls in notifications. When you tap
the app to bring up the controls, the video
is a still screen. Navigating is a pain.
Resuming forgets my place constantly.
Basically unusable

Date: 2019-04-13

Report: android navigation bar, shown after a click, shifts and resizes full-screen video
no

Date: 2018-09-27

Report: Play/pause button icon is not shifting while pausing the audio on notification area
no

Date: 2013-09-16

Report: [Android] On video playing the navigation bar is not hidden on some tablets
no

App: Nextcloud
Date: 2017-10-09

Report:
I have a nextcloud server and the way I
access my server is via OpenVPN. The
problem now is the nextcloud native app
doesn’t work through vpn. It is an odd
behavior. I highly recommend to use
owncloud app instead.

Date: 2016-07-09

Report: nextcloud android client can’t login but android webdev clients do
no

Date: 2018-07-20

Report: AutoUpload stuck on "Waiting for Wifi" when using VPN
yes

Date: 2020-06-18

Report: SecurityException in OCFileListAdapter: uid 10410 cannot get user data for accounts of type: nextcloud
no

Strength of Contextual Embeddings. One strength of our approach is
to learn the context of words (which words belong together). Other approaches
like bag-of-words or tf-idf do not consider the context of words and, therefore,
fall short in representing a deeper understanding of the language. The following
two examples illustrate the strength of word context. DeepMatcher suggested
matches that included the phrases “automatic synchronization” and “auto up-
load” in Nextcloud bug reports, as well as “download pdf” and “save pdf” for

148

9.4 Evaluation Results

the Firefox browser. One complete example is shown in Table 9.3. The Fire-
fox problem report discusses a “consuming battery” problem that happens since
the “latest update”. The relevant matching bug report states that the “battery
draining” becomes a problem in the “latest version”. It shows that the contex-
tual embeddings of the noun tokens, e.g., “synchronization” and “upload” reach
a high text similarity score as they are considered closely related.

Language Gap Leads to Fewer Relevant Matches. During the manual
coding task, we noticed that the phrasings in VLC’s bug reports often contain
technical terms, for example: “Freeze entire android OS when playing a video.
libvlc stream: unknown box type cTIM (incompletely loaded)”. However, users
are typically not part of the development team and do not include technical
words like specific library names used by the developers. Our previously re-
ported plot of the cosine similarity values in Figure 9.4 quantitatively indicated
that there might be a language gap as the text similarity scores between problem
reports and bug reports were the lowest for VLC. We then performed a noun
overlap analysis, which strengthened the indicator for the language gap as VLC
has the lowest noun overlap with 11%. Eventually, we looked into the problem
reports, bug reports, the Google Play Store, and the issue trackers.

We found that the developers of Nextcloud sometimes reply to problem re-
ports in the Google Play Store and ask the users to also file a bug report in the
issue tracker systems. We do not know how many users are actually going to the
issue tracker to report a bug. But this could also explain why Nextcloud has the
highest cosine similarity score and highest noun overlap (25%). Consequently,
DeepMatcher is more accurate if bug report summaries contain non-technical
phrases, as users rarely use technical terms.

Sometimes users do not understand the app features. The following example
from a Signal problem report shows a user confusing a feature with a bug:
“Works well but gives me 2 check marks immediately after sending my text. I
know the receivers are not reading the texts so fast. Why 2 checkmarks?” The
two checkmarks in Signal are shown as soon as the addressed user successfully
received the message. Signal has an optional feature that changes the color of
the two checkmarks to blue if the recipient reads the message.

Recurring bug reports. Table 9.3 shows an example of recurring bug
reports. The problem report of the Signal app states that the user did not receive
notifications of incoming messages. We considered all three matching bug report
suggestions of DeepMatcher as relevant, as they state the same problem. The
interesting finding in this example is that with DeepMatcher, we were able to
identify a recurring bug report, as the first one was filed in September 2015, the

149

Chapter 9 Matching User Comments to App Aspects

second in January 2016, the third in April 2016. The problem report of the user
happened in October 2017, more than one year after the last suggested match.
In Section 9.5, we discuss how DeepMatcher can help systematically find such
cases.

Date Case Analysis. Regarding the date analysis, we found that in 35 of 167
relevant matches, developers reported the bug reports after the users submitted
the corresponding review in the Google App Store. The time differences of the
35 cases in which the problem report submission happened before the bug report
is 490 days later, on average. In the following, we illustrate three examples.

Table 9.3 shows one problem report for Nextcloud, submitted in October 2017,
while the matching bug report was filed in July 2018. Another user submitted
the following problem report on the Nextcloud app: “Autoupload not working,
android 7, otherwise all seems good. Happy with app and will increase stars to 5
when auto upload is working.” DeepMatcher identified the matching bug report
“Android auto upload doesn’t do anything” that was created 29 days after the
problem report. In the last example, a developer documented a matching bug
report 546 days after the corresponding problem report for the Signal app. Both
the user and the developer address the in-app camera feature: “Newest update
changes camera to add features, but drastically reduces quality of photos. Now it
seems like the app just takes a screenshot of the viewfinder, rather than taking a
photo and gaining from software post-processing on my phone. [...]”. The bug
report stated: “In-app camera shows different images for preview and captured”.

9.5 Discussion

This section discusses potential use cases of DeepMatcher to support app devel-
opers in their software evolution process.

Detecting Bugs Earlier

It is essential for app developers to address users’ problems as their dissatisfac-
tion may lead to the fall of previously successful apps [148, 268]. One way to cope
with user satisfaction is to quickly fix frustrating bugs, which may cause users to
switch to a competitor and submit negative reviews. However, bugs may occur
for different reasons. Some bugs affect only a few users with specific hardware
or software versions, while others affect a large user group. Further, not all bugs
are immediately known to developers, particularly non-crashing bugs, which are
hard to discover in automated testing and quality assurance [170]. Our results
show that some users submit problem reports in the Google Play Store months

150

9.5 Discussion

before developers document them as bug reports in the project’s issue tracker.
When considering additional feedback channels such as social media and other
stores, this might get even worse.

Our qualitative analysis of bug reports shows that these earlier submitted
problem reports contain valuable information for app developers, such as the
affected hardware. Therefore, we emphasize that developers should continuously
monitor user feedback in app stores to discover problems early and document
them as bug reports in their issue trackers [171]. For this purpose, developers
can first apply the automatic problem report classification of app reviews and
subsequently use DeepMatcher to find existing matching bug reports. In case
DeepMatcher does not find matching bug reports, we suggest that developers
should consider the problem report as an unknown bug. However, to avoid
the creation of duplicate bugs, we further suggest checking the issue tracker
beforehand. Mezouar et al. [62] suggest a similar recommendation for developers
when considering tweets instead of app reviews. They show that developers can
identify bugs 8.4 days earlier for Firefox and 7.6 days earlier for Chrome (on
average).

We envision different ways to suggest new bugs to developers. First, we could
build a system that shows newly discovered bugs to developers. From that
system, developers can decide to file a new issue in the issue tracker, delay,
or reject it. Alternatively, a bot can, e.g., file a new issue in the issue tracker
systems automatically [170]. For the latter, future research could develop, e.g.,
approaches could prepare certain text artifacts, including steps to reproduce,
meaningful issue description, or context information in a template for creating
a new issue.

Furthermore, DeepMatcher’s application is not limited to user feedback in
the form of app reviews. Our approach can generally process user feedback on
various software, which developers receive via different channels, including app
stores, social media platforms like Twitter and Facebook, or user support sites.
DeepMatcher’s main prerequisite is written text.

Enhancing Bug Reports with User Feedback

Martens and Maalej [170] analyzed Twitter conversations between vendors’ sup-
port accounts like @SpotifyCares and their users. Similarly to our statement, the
authors highlight that users who provide feedback via social media are mostly
non-technical users and rarely provide technical details. As support teams are
interested in helping users, they initiate a conversation to ask for more con-
text and details. They ask for context information like the affected hardware

151

Chapter 9 Matching User Comments to App Aspects

device, the app version, and its platform. Their objective is to better under-
stand the issue to potentially forward that feedback to the development team
and provide more helpful answers. Hassan et al. [104] show that developers also
communicate with their users in the app stores to better understand their users.

Zimmermann et al. [281] show that the most important information in bug
reports are steps to reproduce, stack traces, and test cases. Their survey par-
ticipants found that the version and operating system have lower importance
than the previously mentioned information. However, the authors also argue
that these details are helpful and might be needed to understand, reproduce,
or triage bugs. Nevertheless, the authors did not focus on apps but developers
and users of Apache, Eclipse, and Mozilla.

Developers could further use DeepMatcher to understand the popularity of
bugs. They can achieve this in two steps. First, change DeepMatcher to take bug
reports as an input to suggest problem reports (inverting the order as reported
in the approach). Second, the number of suggestions can either be increased or
removed to enable suggesting all problem reports sorted by the similarity to the
given bug report. This leads to an aggregated crowd-based severity level, a bug
popularity score, or an indicator of how many users are affected by a certain
bug report.

We further envision extracting context information and steps to reproduce
from user feedback to enhance the issue tracker’s bug report description. Hav-
ing this information at hand can help developers narrow down the location
of an issue and understand how many users are affected. Developers can use
DeepMatcher to find problem reports related to bug reports by simply using a
bug report summary as the input in our approach. Then, developers can skim
through the suggested problem reports, select those that seem relevant, and
then check whether they contain relevant context information. In case users
did not provide useful information, developers can take the IDs of the relevant
problem reports and request more information from users in the Google Play
Store. This process can partly be automated, e.g., using bots.

Extending DeepMatcher to Identify Duplicated, Recurring, or
Similar Bug Reports

In Section 9.4, we found that DeepMatcher identified recurring bug reports. The
Signal example in Table 9.3 shows a recurring bug report. Within the three bug
report suggestions, DeepMatcher found three relevant matches. While the first
bug report was filed in September 2015, the second in January 2016, the third
in April 2016, a user reported the problem again in October 2017.

152

9.6 Threats to Validity

Consequently, developers might want to adapt DeepMatcher to either find
recurring, similar, or duplicated bug reports even though it is not DeepMatcher’s
primary goal. However, since the approach evaluates the matches based on
context-sensitive text similarity, it could lead to promising results. Developers
interested in these cases could, for example, increase DeepMatcher’s parameter
number of matching bug report suggestions and use a bug report summary as the
input for DeepMatcher to identify these cases. Future work could investigate
and evaluate the use of DeepMatcher for such cases by utilizing our replication
package.

9.6 Threats to Validity

We discuss threats to internal and external validity. Concerning the internal
validity, we evaluated DeepMatcher by manually annotating 600 suggested bug
reports for 200 problem reports. We performed two annotation tasks. One
task to verify that the automatically classified app reviews are problem reports,
and one to annotate whether DeepMatcher’s suggested matches are relevant
for developers. As in every other manual labeling study, human coders are
prone to errors. Additionally, their understanding of “a relevant match” may
differ, which could lead to disagreements. To mitigate this risk, we designed
both annotation tasks as peer-coding tasks. Two coders, each with several
years of app development experience, independently annotated the bug report
matches. For the verification of problem reports, we used a well-established
coding guide by Maalej et al. [160], which we also reused for the automatic
problem report classification. To mitigate the threat to validity regarding the
annotation of relevant matches, we performed test iterations on smaller samples
of our collected dataset and discussed different interpretations and examples to
create a shared understanding.

Further, we tried to collect a representative sample of meaningful app reviews.
Thereby, we collected up to 10,000 app reviews for each app, ordered by help-
fulness, covering more than two years. We did not aim for a comprehensive app
review sample for a specific time frame but prioritized a meaningful app review
sample from a larger time frame. Thereby, we could identify diverse findings
within our qualitative analysis.

Another potential limitation is that we only considered 50 app reviews per
app (200 in total), which we automatically classified as problem reports. This
classification might only find a specific problem report type, neglecting other
informative problem reports. Other kinds of app reviews, including feature re-

153

Chapter 9 Matching User Comments to App Aspects

quests or praises, might also contain valuable information for developers, which
DeepMatcher could match to bug reports. Therefore, our observations might
differ for another sample of app reviews.

In the case DeepMatcher could not find any matching bug report among the
three suggestions, we manually searched for relevant bugs in the issue trackers.
We queried different term combinations and synonyms for certain features and
components similar to how developers would proceed. However, not finding a
relevant match in the issue tracker systems does not prove the non-existence of
a relevant bug report in the issue tracker as we could have missed important
terms in the query.

Concerning the external validity, our results are only valid for the four open
source apps of our dataset. We considered different app categories, covering
many tasks that users perform daily by including Firefox as an app for browsing
the internet, Signal for messaging, Nextcloud for cloud storage, and VLC as a
media player for music, videos, and streaming. However, these app categories
include popular apps that we do not cover in our study, like Chrome or Safari.
Further, the bug report suggestions could differ for closed source projects or
apps of other mobile operating systems.

9.7 Conclusion

In this study, we introduced DeepMatcher, an approach that first identifies
“problem report” aspect addressings in user comments and then matches them
with bug reports in the issue tracker for app developers. We summarize the
relevant findings for this thesis.

DeepMatcher– Automatically associating comments with bug re-
ports. Our contribution of this study is the systematic design of DeepMatcher,
which we base on the similarity-based machine learning pipeline described in
Section 5.3.2. We first analyzed the natural language processing challenges,
which arise when we match formal bug reports with colloquial user comments
in app stores. We first classified app reviews into problem reports by apply-
ing a classification approach from related work. After manually validating the
problem reports, we applied DeepMatcher, which takes a problem report and
a bug report summary as its input. DeepMatcher then transforms the text
into context-sensitive embeddings on which we applied cosine similarity to iden-
tify potential matching problem reports and bug reports. For this particular
problem, we aggregated the nouns’ token embeddings, whereby we reduced the
importance of words, which generally describe malfunction. From 200 prob-

154

9.7 Conclusion

lem reports, DeepMatcher was able to identify 167 relevant matches with bug
reports. In 91 cases, DeepMatcher did not find any match. To understand
whether no match exists, we manually looked into corresponding issue trackers
and found that in 44 cases, DeepMatcher missed a potential match while in 47
cases, no bug report existed. Our results show that our approach can identify
bugs in user feedback that are undocumented in issue trackers.

Insight extraction based on user comments for domain experts.
Since developers receive thousands of app reviews daily, the manual insight ex-
traction from these comments is unfeasible. With DeepMatcher, we developed
an automatic approach, which supports the insight extraction by automatically
matching users’ problem reports to bug reports. In our study, we presented
three use cases of DeepMatcher for developers, which support domain experts
to utilize the users’ comments. First, DeepMatcher could help to detect bugs
earlier by identifying problem reports, which developers did not report in the
issue tracker yet. Second, DeepMatcher could augment existing bug reports
with additional information from user comments. Third, developers could use
DeepMatcher to identify bug duplicates, recurring bugs, or similar bugs.

155

Part III

Synopsis

157

Chapter 10

DICAP — Domain-Independent
Comment Analysis Prototype

Publication. We based this chapter on the publication “Forum 4.0: An Open-
Source User Comment Analysis Framework” in 2021 [94]. My contribution to
this work consisted of a significant part of DICAP’s concept and implementation,
the study design, including the machine learning experiments, the analysis of
the results, and leading the writing.

Contribution. In this chapter, we introduce DICAP, a domain-independent
prototype to semi-automatically analyze, aggregate, and visualize user com-
ments regarding pre-defined aspects for experts from different domains. This
prototype employs components from our machine learning pipeline, described in
Chapter 5. To demonstrate user scenarios and the applicability of DICAP, we
focus on user comments in the online journalism and app development domain.
We specified requirements, outlined the underlying container-based architecture,
the machine learning components, and the data model. We further describe the
parts of the user interface and the workflow for the domain experts. We finally
conducted and timed machine learning experiments with simulated annotations
using different text embeddings and sampling strategies on existing datasets
from both domains to evaluate DICAP’s applicability. DICAP achieved promis-
ing classification results (ROC-AUC ≥ 0.9 with 100 annotated samples), utilizing
transformer-based embeddings with a lightweight logistic regression model. Our
results provide evidence that DICAP’s architecture is applicable for millions of
user comments in real-time, yet with a feasible training and classification time.

10.1 Motivation

Comment sections are ubiquitous on today’s online platforms, for example, on
news websites, e-commerce platforms, or mobile app stores. In these comment
sections, users submit user comments to provide their feedback and opinion,

159

Chapter 10 DICAP — Domain-Independent Comment Analysis Prototype

request features and information, or report issues and bugs. Also, in social
media, for example, Twitter or Facebook, users frequently comment on specific
topics, events, products, or services. In many domains, including journalism and
e-commerce, users discuss or read each others’ opinions for different purposes.
For example, they assess the quality of the service or the product [140, 237],
provide feedback to other domain experts like the journalist [102] who wrote the
article or the app developer, who developed the app [162].

Even though research has criticized phenomena such as ”dark participation”
[70], comments can contain constructive information for different domain experts
in different fields [153, 160]. For example, in app development, developers utilize
user comments in app stores to identify new feature ideas, bug reports, or ideas
for additional user scenarios for their app [240]. Software vendors consider the
reviews to decide which bug or feature request to prioritize in the next develop-
ment cycle [171]. In online journalism, media outlets harvest user comments to
acquire a broader perspective on additional arguments, collect resonance about
their articles, or identify and contact experts or persons concerned for follow-up
stories [153]. However, the quality of the comments varies significantly, and
their amount is sometimes overwhelming, which makes manual monitoring and
analysis a real challenge [194, 197].

In this chapter, we propose DICAP, a domain-independent user comment
analysis prototype to semi-automatically analyze a large number of user com-
ments for domain experts from various domains. DICAP leverages a combina-
tion of transfer learning [111], human-in-the-loop [15], and active learning [227]
strategies to automatically analyze the comments’ content. To enable replica-
tion and further research, we published DICAP’s source code under the Apache
License 2.0 [95], the scripts, and datasets we used for our research [95] and a
video [96], which showcases DICAP.

10.2 Usage of DICAP

We describe usage scenarios of DICAP for the journalists and app developers in
their respective online journalism and app development domains and introduce
DICAP’s user interface.

10.2.1 Online Journalism

The manual effort for comment moderation in online journalism is high [197].
On the one hand, media outlets filter destructive comments such as hate speech
[75], as it might negatively affect their credibility [186]. On the other hand,

160

10.2 Usage of DICAP

journalists consider user comments helpful for different journalistic purposes
[55]. For example, journalists can obtain new perspectives and opinions on an
article, learn from users’ described personal experiences, or identify potential
interview partners among the commenting users [153]. Journalists can also ag-
gregate comments to identify and visualize their audience’s opinion on current
news topics [263]. Users can also mention errors in reporting, contribute addi-
tional or missing sources and information, add new ideas for further news, or
even address the editorial team or authors directly, for example, by criticizing
the article’s quality [102].

Journalists first define a relevant user comment label in DICAP. Examples
for such labels could be: “criticism towards corona measures,” or “pros/cons
regarding a legislative proposal”. Journalists annotate user comments regarding
these labels, whereby they gradually increase the number of training samples.
DICAP trains a machine learning model using the annotated comments and
classifies all other user comments. The automatic classification will improve
with more annotations until it reaches enough precision so that journalists can
conduct quantitative and qualitative analysis with the classification results.

10.2.2 App Development

In app stores, developers use comments for multiple purposes: users’ crash
and bug reports in app reviews with valuable context information (e.g., device
or app version), helping developers identifying and fixing them [194]. This is
particularly helpful to acquire immediate feedback after a new major release or
update [91]. Additionally, users suggest desired and useful app feature ideas
[160]. Thereby, the developers get an overview of current app issues, which they
can consider for their further development. In the field of mobile learning, the
developers can utilize comments for the automatic evaluation of education apps
[97].

Like the online journalism domain, the developers can use DICAP to create
labels for insightful user comments. In the app development domain, insightful
labels include “problems since the last app update”, “positive/negative feedback
on a certain app feature”, or “missing or requested features”. The domain expert
further annotates app reviews, compiling a training set. DICAP trains a model
and classifies the other app reviews for the domain expert to analyze.

161

Chapter 10 DICAP — Domain-Independent Comment Analysis Prototype

User Comment Analysis Prototype

login

annotate
comment

filter comments

show similar
comments

Domain
expert

(logged-in)

select data source

select labels

filter by
category

filter by keyword

filter by
labels

classify user
comment labels

train model

sort by
classification

score

sort comments sort by uncertain
classifications

evaluate model

<<include>>

<<include>>

<<System>>
Task manager

User

<<System>>
Data importer

import comments

import products

create label

show comment
context infos

show
comment
 statistics

development over
time for a label

distribution over
document category

show
training/update

progress

Figure 10.1: Use case diagram showing DICAP’s boundaries and the interaction
with the domain expert.

10.3 Requirements

The requirements we specify in this section we based on our exploratory study
in Chapter 4. In the following, we describe all the requirements, which we
considered for DICAP’s development.

10.3.1 Functional Requirements

Figure 10.1 shows a UML use case diagram, which displays all the available
functions of DICAP, the boundary of the system, and the interaction with other
external actors, including the user and other systems.

According to our domain-independent analysis model in Chapter 3, DICAP
shall store products and their user comments domain-independently. For our
prototype, we focus again on online journalism and app stores. DICAP shall
group all user comments from a specific domain within a data source.

162

10.3 Requirements

All users shall be able to select labels and inspect the manual annotations by
users and the classifications. The user shall be able to see the structured and
unstructured data of a selected user comment and context information of the
comment, including the associated comment thread and the addressed product.
The prediction of the addressed product-specific aspect should be highlighted.
Users shall be able to query similar comments, which are likely to address the
same label for rapid annotation. The user shall be able to filter the comment
list regarding the classified labels, the product category, and keywords. The
matching keywords shall be highlighted in the comment list. The user shall be
able to sort the comment list for analysis purposes and further annotations.

Users shall be able to see descriptive statistics about the comments. First,
they can inspect the distribution of comments over the products’ categories to
grasp an overview of the quantity of the data source. Additionally, the user shall
be able to see the development of the classified user comments for the selected
labels grouped by year, months, and days.

The domain expert is a logged-in user who can do all the actions of a user.
Additionally, the domain expert shall be able to create new labels and annotate
user comments regarding all selected labels. After the annotation, users shall
be able to see and correct their annotations. If an expert’s annotation triggers
a new model training, the user shall see the progress of both the training and
the classification updates of the comments.

Furthermore, DICAP displays the user comments in a non-anonymous form,
which might contain sensitive information and reveals the users’ true identity.
Therefore, data sources can be set to protected, whereby only domain experts
can see the associated comments of that data source.

An external data importer system shall be able to import new products and
comments into DICAP. Another external system shall be able to train a new
model, which DICAP evaluates subsequently and uses to classify all other stored
comments.

10.3.2 Quality Requirements

We summarize essential quality requirements we took into account for the ar-
chitectural design and implementation of DICAP.

Performance and Scalability

DICAP collects and processes millions of products and their user comments
from different domains. In particular, the performance of two tasks is crucial:
the model training with the annotated training set and the classification of user

163

Chapter 10 DICAP — Domain-Independent Comment Analysis Prototype

comments on the remaining comments. The duration of these two tasks increases
with an increasing number of comments. The training on 100 comments should
not exceed one second, and the classification of 100,000 comments shall not
exceed one second either. Furthermore, the sorting and filtering of the comments
also scale with the number of comments, which should take less than three
seconds for one million comments.

Security

DICAP distinguishes between the roles: user and the domain expert. The do-
main expert is authorized to perform additional actions, which DICAP must
secure from unauthorized users. This also applies to the actions “import com-
ments” and “import products”, which DICAP must also protect from unautho-
rized access. The authorization shall require a user to log in, which requires a
username and a password. The users’ credentials must be stored and transmit-
ted securely.

10.4 Architecture

We describe DICAP’s container-based architecture and its machine learning
pipelines.

10.4.1 Container-based Architecture

DICAP is composed of containers, interacting with each other via a restful API.
Figure 10.2 outlines a UML deployment diagram.

The Comment Collector aggregates user comments from various sources, in-
cluding media sites, app stores, and social media. DICAP currently contains
the “One Million Posts Corpus” and imports comments from the Google Play
store and the German news site Spiegel Online [78].

The client accessing DICAP’s web page requests the Reverse Proxy, which
forwards the requests depending on the URL path to the responsible container.
The first request loads the single page application [66] from the Front-End web
server, which further communicates via a restful API with the Back-End con-
tainer.

The containers within the Docker host are only accessible from the outside
through the reverse proxy for security. The Back-End provides the restful API.
It invokes all machine learning, NLP, and embedding tasks via a task manager
in isolated processes as they are time-consuming and would exceed the request
time out. It further calculates the comment embedding index and queries the

164

10.4 Architecture

<<host>>

Docker Host
 <<WebServer>>

serving Front-End
(NodeJS)

<<WebServer>>
Embedding

(Flask)

<<Reverseproxy>>
(Nginx)

/index.html

WebSocket

/api/embedding

Database
(Postgres)

<<WebBrowser>>
Front-End
(Vue.JS)

<<WebCrawler>>
Comment Collector

REST (HTTPS)
Web Socket

/api

<<WebServer>>
CoLiBERT
(FastAPI)

<<WebServer>>
Back-End

(Flask)

EmbeddingIndex

TaskManager

Figure 10.2: DICAP’s container architecture.

database. The Embedding Container calculates the embeddings for newly im-
ported user comments. This container can also run on a dedicated host to
calculate the embeddings with GPU support.

After login, the Back-End issues a JSON web token [117] for the Front-End.
All sensitive API endpoints of the Back-End are protected and require a valid
JSON web token in the request’s body. Protected actions include the comment
and product import, the creation of new labels, and posting annotations.

10.4.2 Machine Learning Pipelines

Two essential parts of the architecture are the model training pipeline (Figure
10.3a) and the comment import pipeline (Figure 10.3b).

The model training pipeline uses supervised machine learning and active
learning strategies [227] to improve the comment classification continuously.
This step implements our machine learning pipeline described in Chapter 5 in-
cluding the definition of a domain-specific aspect, the training set annotations,
and the model training according to the end-to-end machine learning approach
5.2.2.

To define a label and train a model for the automatic classification, the domain
expert must first log in and create a new label. Domain experts can select the
new label from the menu and start annotating samples. The domain expert
is the human in the loop [15], who annotates and enlarges the training set to
improve the automatic classification iteratively. Annotators can sort the user
comments according to the uncertainty score to keep the annotation process

165

Chapter 10 DICAP — Domain-Independent Comment Analysis Prototype

enough new
samples?

no

yes

create label

select label

login

annotate

train new model

evaluate model

classify comments

(a) The model training pipeline.

batch finished?

no

yes

import user comment

embed user comment

classify batch with
existing labels

(b) The comment import pipeline.

Figure 10.3: DICAP’s machine learning pipelines.

most rewarding [7]. DICAP uses the label probability as the uncertainty value.
Uncertain instances are those whose classification is the least confident, i.e.
𝑃(𝑐 |𝑑) ≈ 0.5 for comment 𝑑 belonging to class 𝑐.

DICAP provides rapid annotation techniques to support and accelerate the
collection of training samples. DICAP lists semantically similar comments to
an existing comment based on the similarity of the comment embeddings. In
case the annotator found a positive training example, chances are higher that
semantically similar user comments are also positive user comments, which the
annotator can quickly check.

We can adjust the number of required new training samples, which trigger
the training of a new model. After each annotation, DICAP checks whether
enough new training samples are available to invoke (re-)training of the model.
The task manager executes each model training as a dedicated process, logs its
training, and records the evaluation results. DICAP evaluates each model using
ten-fold cross-validation [244] to determine the classification performance. The
newly trained model classifies all other user comments, which are not part of
the training set, and DICAP persists its classification scores for that label.

The Data Import Pipeline enables the import and processing of new user com-
ments. After importing a new user comment batch, the task manager triggers
the embedding process, which calculates the embeddings for the imported user

166

10.4 Architecture

labels

PK id

FK source_id

name

description

sources

PK id

name

protected

products

PK id

FK source_id

external_id

category

timestamp

url

metadata

markup

title

text

embedding

comments

PK id

FK source_id

FK prod_id

FK user_id

FK parent_comment_id

external_id

status

timestamp

title

text

embedding

users

PK id

external_id

name

password

role

classifications

PK label_id

PK comment_id

label

value

confidence

uncertaintyorder

models

PK id

FK label_id

timestamp

number_training_samples

acc

f1

fit_time

tasks

PK id

name

timestamp

data

annotations

PK id

FK label_id

FK comment_id

FK user_id

label

Figure 10.4: Entity relationship diagram of the database schema of DICAP.

comments. DICAP employs transfer learning [111] by using the embeddings of
well-established pre-trained language models, for example, BERT embeddings
[53], as machine learning features for the classification model. Subsequently, all
existing models classify the new user comment batch.

10.4.3 Data Model

Figure 10.4 shows an overview of the database schema. In the following, we
describe the data DICAP stores in each table.

DICAP’s data model persists the products and user comments for different
sources, the domain experts’ labels, manual annotations, the comments’ auto-
matic classifications, evaluation results, and the users’ credentials. Figure 10.4
shows a detailed overview of the designed data model, which DICAP uses.

We derived the basic structure of the data model from our domain-independent
analysis model in Section 3. DICAP groups the products’ comments for a par-
ticular domain as a source. Each source has an id, a name, and a flag, which
indicates whether the domain is protected and requires authentication to access

167

Chapter 10 DICAP — Domain-Independent Comment Analysis Prototype

data related to it. Products are assigned to a source. For each product, we
store its meta-data including, an optional external id from the source site, the
category, the timestamp when the product was published, and the URL from
which we accessed the product. Any additional uncommon metadata we store
as JSON in the metadata field. DICAP stores the raw web-based version of the
product in the markup field, which stores the product with HTML markup tags
for further processing. The product’s title (e.g., news article title or app name)
and its text (e.g., the body of the news article or app description) are stored in
the respective title and text fields. For further processing, we store a numeric
representation of the product in the embedding field.

The comments hold a reference to the respective source, the product to which
the comment was posted, and the user who posted it. The external id stores
the source site’s comment ID to identify duplicates when crawling for them reg-
ularly. The majority of user comment sections allow users to reply to previous
user comments, creating a nested comment structure. DICAP implements the
thread structure with a recursive reference to the parent comment. Additionally,
DICAP stores the comments’ meta-data, including the comment’s status (e.g.,
published or blocked) and the timestamp when the user posted the comment.
The unstructured data covers the title and the text of the comment. For the
automatic analysis, DICAP also stores a numerical representation of the com-
ment as an embedding. One requirement of DICAP is handling user comments
from diverse domains. The data model has to represent all the information that
user comments provide from different comment sections. For example, an app
review contains a star rating for an app, whereas a comment on a news article
might contain a discussion thread. We added a metadata field to cope with this
diverse set of comments, which stores all custom metadata as key-value pairs in
a JSON object.

The users table holds the users’ names and hashed passwords. The external
id field stores an optional user id from the source site. With the role field, we
can grant users access to the data associated with specific domains. The labels
table stores the domain experts’ defined labels, which are associated with a
source. Each label consists of a name and a descriptive text. The annotations
table stores the domain experts’ manual annotations. Each annotation holds
a reference to the respective label, the labeled comment, and the user who
annotated the comment. The label field stores the actual value as a flag with
the values true or false.

DICAP uses the annotations for a label as a training set and trains models to
classify user comments. The models table stores the relevant information after

168

10.4 Architecture

a new model was trained including, a reference to the label, a timestamp of
the training, the number of used training samples, the training time, and the
accuracy and the F1 score as evaluation metrics.

The classifications table stores the latest model’s automatic classifications,
which are updated after a new model is trained. Each entry represents a classi-
fication of a single comment for the referenced label. We store both the model’s
output score and the associated binary classification label. The uncertainty-
order is defined as 𝑃(𝑙 |𝑐) ∗ (1 − 𝑃(𝑙 |𝑐)) for a comment 𝑐 with an output score
for a label 𝑙 as 𝑃(𝑙 |𝑐). DICAP utilizes this value to order comments according
to their classification uncertainty.

The tasks table logs the events’ name, the timestamp, and a JSON string
with additional event information, which the user triggers. We log the embed-
ding of user comments, the models’ training, evaluation, and classification of
other comments for each batch. The tasks table is observable and notifies all
subscribers about new entries.

10.4.4 Dynamic View

In this section, we describe the processes of DICAP’s relevant parts. We visu-
alize the process with sequence diagrams.

Importing Comments and Products

Figure 10.5 is a UML sequence diagram, which shows the detailed process of the
product and comment import, which we showed previously in the UML activity
diagram 10.3b. The DataImporter is an independent component, which runs
continuously and collects comments and products periodically from the source
website (e.g., news site or app store). Depending on the source website, the
DataImporter either accesses the content via an API or scrapes the content from
their website. The DataImporter prepares the collected data into the expected
format for the import. This might include flattening a nested comment structure
or the conversion of timestamps.

Posting new products and comments into the system is a protected operation
and requires the user to be authenticated. DICAP stores special credentials
designated for data importers. The data importer authenticates with these
credentials and receives a valid token. The data importer authenticates itself
with every further request by attaching the token.

The data importer first checks whether the Back-End already stores the data
source. In case the data source is already present, the request handler returns
the source id. Otherwise, the data importer creates a new data source and

169

Chapter 10 DICAP — Domain-Independent Comment Analysis Prototype

D a t a
Im port er

Source
W ebsit e

Ba ck -End

:DataCollector
:Request
Handler

:Request
Handler

:Com m ent
Em bedder

:Label
Updater

loop [e ve ry 2 4 h]

get_recent_com m ents

com m ents

get_recent_products

products

GET /auth/login/< username:string> /< password:string>
(HTTPS)

token

get_source_id

source_id

loop [for e a ch a r t icle]

POST /products (HTTPS)

art icle_id

loop [for e a ch com m e nt]

POST /com m ents (HTTPS)

com m ent_id

POST /embeddings/source/< source_id:int> /embed (HTTPS)

enqueue_task(embedding)

POST /clasificat ion/update
Body: label_id
(HTTPS)

update

loop [for e a ch com m e nt]
em bed

loop [for e a ch com m e nt]
classify

Figure 10.5: Sequence diagram of the periodic import of new products and user
comments from a news site.

receives the id of the created source id. The data importer requires the source
id to link the products and comments to this data source. In the next step, the
data importer iterates through the articles and sends first the article’s data to
the Back-End. The Back-End replies with the id of the newly added article.
The data importer then adds the product id to the comments and posts each
of the comments. Once the import of a batch is completed, the data importer
triggers the embedding of the new comments followed by the classification. The
Back-End schedules the embedding and the classification of the newly added
user comments as a task.

Authentication and Annotations of User Comments

Figure 10.6 shows the user’s authentication process followed by an annotation.
The user requires an assigned account consisting of a username and a pass-

170

10.4 Architecture

Front -End Ba ck-End D a t a ba se

User
:Login

Com ponent
:Api

Com ponent
:Request
Handler :Postgres

enter username
and password

login(username, password)

GET /auth/login/< username:string> /
< password:st ring>
(HTTPS)

hash(password)

hash

find_user(username, hash)

user

isValidUser(user)

t rue

JSON web token

success

authent icated

authent icated_calls(token)
(HTTPS)

isTokenValid(token)

user

Figure 10.6: Sequence diagram, showing the user’s authentication and a subse-
quent authenticated call with a valid token.

word to authenticate. The user enters the credentials in a login form of the
web-based Front-end. The LoginComponent delegates the login to the ApiCom-
ponent, which sends the login request to the Back-End via a TLS encrypted
HTTP request (HTTPS) in accordance to the security quality requirements.
DICAP prefixes a salt value to a user’s password and stores the hash of the
concatenated string in the Database. Therefore, DICAP repeats the same op-
erations with the login’s password and compares the resulting hash with the
hash stored in the Database. If the strings match, the user is authorized suc-
cessfully, and the Back-End issues a JSON web token [117] for the Front-end
valid for one hour. The token enables the user to perform the protected actions
in the Back-End. The JSON web token stores basic user information, including
the expiration timestamp, the user id, and the username. Therefore, in subse-
quent authenticated requests, the RequestHandler can validate the JSON web
token and extract the information directly from the token without accessing the
Database.

171

Chapter 10 DICAP — Domain-Independent Comment Analysis Prototype

Front -End Ba ck-End D a t a ba se

Domain Expert
(authent icated User)

:Annotat ion
Com ponent

:Update
Notificatoin
Com ponent

:Api
Com ponent

:Request
Handler

:Label
Updater

:Update
Observer :Postgres

annotate com m ent

annotate(comment , label, value)

PUT /annotat ions/< id:int> /
< label_id:int> /< value:int>
Body: token
(HTTPS)

storeAnnotat ion(user, comment_id)

(HTTPS)

get_t raining_set_info(label_id)

t raining set info

t riggerUpdate

training set info (json)

loop [e a ch ne w log e nt ry]

log_progress(info)

notify
observers(info)

update(info) (WebSocket)

update_interface(info)

Figure 10.7: Sequence diagram, showing an annotation, which triggers the train-
ing of a new model and updates the Front-end.

Model Training and Updates

The UML sequence diagram in Figure 10.7 shows the process, of a user which
annotates a user comment in the Front-End. The AnnotationComponent cap-
tures the annotation and delegates the annotation to the ApiComponent, which
performs a secure REST call to the Back-End via HTTPS. After the Re-
questHandler stored the annotation in the Database, it queries the distribution
of training data and responds to the Front-End. If enough new annotated com-
ments are available, the Back-End triggers the LabelUpdater to train a new
model. While training, the LabelUpdater logs its process with event entries to
the Database. The UpdateObserver is a thread, which starts when the first
client connects to the Back-End. It subscribes as an observer to the Database
and pushes the updates to the Front-End via a WebSocket connection. The
Front-End then updates the UserNotificationComponent, which updates the
user interface.

Comment’s Context Information

The user can request three different additional context information for a spe-
cific user comment. First, the user can request the complete comment thread
in which the comment was posted. Second, the user can request the comment’s
product description article with a prediction of which paragraph the comment

172

10.4 Architecture

Front -End Ba ck-End CoLiBERT
Service

D a t a ba se

User
:CommentList
Com ponent

:Api
Com ponent

:Request
Handler

:Request
Handler :Postgres

select user comment

get_com m ent_infos(id)

GET /comments/< id:int>
(HTTPS)

get_com m ent_thread(id)

com m ent_thread

get_product_for(id)

product

/predict
Body:product aspects, comment
(HTTP)

scores (json)

context_infos (json)

context_infos

show comment thread
and product aspect
addressing predict ion

Figure 10.8: Sequence diagram, showing the process for requesting additional
context information for a specific comment in the Front-End.

addresses. Third, the user can request similar comments to the selected com-
ment.

Figure 10.8 shows how the user queries the comment thread and the associated
product text. When the user selects a specific user comment, the CommentList-
Component delegates a request for additional comment information to the Api-
Component, which requests the Back-End via a secure REST call for additional
comment information. The Back-End queries the database for reconstructing
the thread structure using the recursive parent comment id structure of the data
model. It also requests the associated product from the database. Further, the
Back-End splits the product text into separate elements and uses the CoLiBERT
Service to predict which product-specific aspect the comment addresses. The
service returns the scores as a JSON object, which the Back-End combines with
the comment thread information and replies to the HTTPS request to the Api
Component. The call chain ends, and the user can see the comment thread and
the product-specific aspect with the addressing predictions in the Front-End.

Figure 10.9 shows the process when the user requests similar comments. For
this, the Front-End sends the particular comment id to the Back-End, querying
the Embedding Index. We used an embedding index to enable a fast approxi-
mate nearest neighbor search using the hnswlib library [165], which satisfies our
performance and scalability requirements. The index returns the closest com-
ment ids to a given comment. We query the complete comment information for
the comment ids from the database and return the request to the Front-End.

173

Chapter 10 DICAP — Domain-Independent Comment Analysis Prototype

Front -End Ba ck-End D a t a ba se

User
:CommentList
Com ponent

:Api
Com ponent

:Request
Handler

:Em bedding
Index :Postgres

request
sim ilar comments

sim ilar_comments(id)

GET /comments/< id:int> /similar
(HTTPS)

get_sim ilar_comments(id)

ids

get_com m ents(ids)

com m ents

sim ilar comments
(json)

context_infos

sim ilar comments

Figure 10.9: Sequence diagram, showing the process when the user requests sim-
ilar comments in the Front-End.

10.5 User Interface

Figure 10.10 shows DICAP’s user interface. The domain expert can log in
to create a new label or annotate user comments. Below the title bar, the
domain expert selects a data source, which contains the comment corpus for the
analysis. In the figure, the we selected comments from the Austrian newspaper
Der Standard[51], which contains the comments of the “One Million Posts
Corpus” published by Schabus et al. (2017). Next to the data source selector,
the domain expert can select relevant existing labels or create a new label to
analyze and annotate the comments.

The pie chart shows the comment distribution among the product categories
(news article or app categories). The bar chart shows the number of positive
classifications for the selected labels over time with different granularity options.
DICAP trains one classification model for each label and shows the accuracy
and the development of the F1 scores with an increasing number of training
samples.

The lower part of the DICAP interface lists the actual user comments for
exploration and annotation. With a full-text search, the domain expert can
further filter the comment results. The list contains the comment text, the
timestamp, and a column for each selected label. Each label column has two
sub-columns. The first sub-column with the person symbol shows either existing
human annotations when logged out or the own annotations when logged in. A
logged-in user can correct the automatic classification or annotate comments as
a positive or negative sample for the selected labels. The second sub-column

174

10.5 User Interface

Login

Data source Label selection

Classifier performance

Comment list

Figure 10.10: Main user interface of DICAP.

with the robot icon shows binary labels and confidence scores. The domain
expert has three sorting options for the classifications: (1) positives first, (2)
negatives first, (3) uncertain first (circle with tick mark). DICAP supports find-
ing positive samples for rare comment labels by suggesting semantically similar
user comments. Thereby, DICAP employs the rapid annotation approach to
quickly retrieve additional positive samples for a specific comment label.

Figure 10.11 shows an overlay, which appears in the bottom right corner of the
viewport, showing the training and real-time update process while the model is
training.

Figure 10.11: An overlay, showing the training and classification update process
to the user.

175

Chapter 10 DICAP — Domain-Independent Comment Analysis Prototype

Figure 10.12: This overlay, shows the comment thread (top) and the addressing
product text paragraph (bottom) for a selected user comment.

Figure 10.12 shows the additional context information for a user comment,
after the user clicks on the comment. At the top, the additional information
contains the comment’s thread, which is the comment itself since the example
has no replies. Below the user can see a prediction of which article paragraph
(product-specific aspect) is most likely addressed.

10.6 Machine Learning Experiments

To preliminary evaluate the applicability of DICAP and its machine learning
models’ performance, we conducted experiments with comments from news sites
and app stores. We used the One Million Post (OMP) corpus [220] for the
online journalism domain. It consists of ∼1M German user comments submitted
to the Austrian newspaper Der Standard, partly annotated by community-
moderators. For the app store domain, we used an existing annotated app
review dataset (ARD) [240]. We used 9,336 annotated German comments (1,625
positives and 7,711 negatives) regarding OMP’s “personal story” label. These
user comments share the users’ personal stories regarding the respective topic,
including experiences and anecdotes. We used 6,406 annotated English app
reviews (1,437 positives and 4,969 negatives) regarding the ARD’s “bug report”
label. In bug reports, users describe problems with the app that should be fixed,
such as a crash, an erroneous behavior, or a performance issue.

We simulated the human annotator, who gradually annotates a batch of user
comments, triggering a new training and evaluation cycle. We trained the clas-
sifier on the training set and evaluated the model on the remaining comments.
We started our first training with ten samples and triggered new training for

176

10.7 Experiments Results

every ten new annotations.

DICAP allows random sampling and uncertainty sampling for new annota-
tions, which we compared in our experiments. With random sampling, we ran-
domly chose and added ten new samples to our training set. With uncertainty
sampling, we added the user comments for which the classifier’s output is closest
to 0.5. We stopped adding more user comments to the training set as soon as
the balanced accuracy score converged.

We evaluated the classification model on the remaining user comments after
each training, using the balanced accuracy, F1 score, and the Receiver Operating
Characteristics (ROC-AUC) metrics.

For the comment embeddings, we used two different multi-lingual pre-trained
language models to embed the comments: (1) BERT [53] is based on a trans-
former architecture, which learns contextual relations between sub-(word) units
in a text. We used an average token embedding of the four last layers of the
BERT model as the comment embeddings. (2) Sentence-BERT (S-BERT) [215]
is based on a modification of the BERT network and infers semantically mean-
ingful sentence embeddings. We used a lightweight logistic regression model as
a classifier due to performance requirements for quick updates of machine labels
during human-in-the-loop coding. To assess the feasibility of our architecture,
we further timed the model’s training and evaluation. To mitigate the noise of
our results, we performed 50 rounds for each experiment. The line plots show
the average results of all rounds and the standard deviation.

10.7 Experiments Results

Figure 10.13 shows the balanced accuracy, ROC-AUC, and F1 scores for all our
classification experiments. Overall, all classification metrics improve with in-
creasing training data. Additionally, the uncertainty sampling strategy outper-
forms random sampling, and the S-BERT embeddings outperform the BERT
embeddings given the same sampling strategy. All evaluation metrics signifi-
cantly improve within the first 100 training samples and converge afterward.

On the OMP dataset, we achieved a balanced accuracy of 0.86 with 100
training samples using uncertainty sampling and S-BERT embeddings. With
500 training samples, we reached 0.91. Within the first 100 training samples, S-
BERT embeddings outperformed the BERT embeddings. We achieved a similar
F1 score as Schabus et al. (2017) with ∼50 training samples (0.70) and outper-
formed their model using 500 training samples with an F1 score of 0.82. On the
app review dataset, we achieved a balanced accuracy of 0.92, a ROC-AUC of

177

Chapter 10 DICAP — Domain-Independent Comment Analysis Prototype

100 200 300 400 500
#Training Data

0.5

0.6

0.7

0.8

0.9

1.0

Ba
la

nc
ed

 A
cc

ur
ac

y

PersonalStories

model
BERT
SBERT

strategy
rnd
unc

100 200 300 400 500
#Training Data

0.5

0.6

0.7

0.8

0.9

1.0

Ba
la

nc
ed

 A
cc

ur
ac

y

Bug Report

model
BERT
SBERT

strategy
rnd
unc

100 200 300 400 500
#Training Data

0.5

0.6

0.7

0.8

0.9

1.0

RO
C

AU
C

model
BERT
SBERT

strategy
rnd
unc

100 200 300 400 500
#Training Data

0.5

0.6

0.7

0.8

0.9

1.0

RO
C

AU
C

model
BERT
SBERT

strategy
rnd
unc

100 200 300 400 500
#Training Data

0.5

0.6

0.7

0.8

0.9

1.0

F1

model
BERT
SBERT

strategy
rnd
unc

100 200 300 400 500
#Training Data

0.5

0.6

0.7

0.8

0.9

1.0
F1 model

BERT
SBERT

strategy
rnd
unc

Figure 10.13: Balanced accuracy (top), ROC-AUC (center), and F1 scores (bot-
tom) for all classification experiments on the OMP (left column)
and the ARD (right column).

0.96, and an F1 score of 0.85 using 500 training samples.
Figure 10.14 shows the time measurements for training the logistic regression

model. In all cases, the training size has a linear increase. Overall, the train-
ing time with the S-BERT embeddings (0.1s for 500 samples) takes a shorter
time than training with the BERT embeddings (0.4s for 500 samples) on both
datasets. We also measured the classification time on the remaining test set,
which takes less than ∼3ms on the OMP (∼8,000 test samples) and the ARD
(∼6,000 test samples) dataset.

10.8 Discussion

We designed DICAP according to our domain-independent requirements (Sec-
tion 10.3), which we derived from our domain-independent analysis model (Sec-
tion 2.1). DICAP satisfies all the specified requirements and combined the prob-
lem domain with the solution domain. The domain experts contribute with the
knowledge about the problem domain and add the relevant aspects to analyze

178

10.9 Conclusion

100 200 300 400 500
#Training Data

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 T
im

e
(s

)

PersonalStories
model

BERT
SBERT

strategy
rnd
unc

100 200 300 400 500
#Training Data

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 T
im

e
(s

)

Bug Report
model

BERT
SBERT

strategy
rnd
unc

Figure 10.14: Time measurements of training the logistic regression model.

the user comments. The machine learning engineer knows about the problem
domain and implemented the automated pipeline in the back-end, which we
designed according to our pipeline described in Chapter 5. Thereby, DICAP
provides technical machine learning support for non-technical domain experts
to analyze user comments.

The charts and the user comment list visualize the results of the automatically
classified user comments. Each component of the user interface enables the do-
main expert to extract different insight types. For descriptive insights, the bar
chart aggregates the occurrences of domain-specific aspect addressings. The
domain expert can extract corrective insights with respective domain-specific
aspect definitions, which address errors or inconsistencies in the product. Sim-
ilarly, the domain expert can identify perfective insights with suitable domain-
specific aspects, identifying additional perspectives to improve the product. DI-
CAP currently does not support the aggregation of user comments regarding
product-specific aspects. However, for a single comment, we can see the pre-
diction for the product-specific addressing powered by the CoLiBERT model
(Section 7.2.2). This feature helps trace the corrective insights more precisely
to specific product-specific aspects, for example, article paragraphs (Chapter 7)
or specific bugs of apps (Chapter 9).

10.9 Conclusion

In this chapter, we presented DICAP, a domain-independent comment analysis
prototype to semi-automatically analyze user comments. We summarize the
contributions in the context of the thesis.

DICAP is a functional implementation of our domain-independent
machine learning pipeline. DICAP supports the creation of custom domain-
specific aspect and applies the end-to-end learning approach (Section 5.2.2) us-
ing state-of-the-art text embeddings (Section 5.2.2). Additionally, we integrated

179

Chapter 10 DICAP — Domain-Independent Comment Analysis Prototype

the CoLiBERT model (Section 7.2.2), which we based on the transfer-learning
approach (Section 5.3.1) to match user comments with product-specific aspects.

DICAP application in online journalism and app development. We
used DICAP to analyze user comments in the online journalism and app de-
velopment domain. Domain experts can flexibly define or reuse domain-specific
aspects as classification labels in our prototype. DICAP’s architecture leverages
state-of-the-art semantic text embeddings with a lightweight logistic regression
model to address the labeling flexibility and the scalability requirements for an
application to millions of user comments. DICAP starts a new model training
after the domain expert annotated additional comments for the concerned label.
DICAP evaluates each new model and classifies the remaining user comments
for further analysis. We achieved promising results with our machine learning
experiments in both domains with different semantic embedding and sampling
strategies already after n ≥ 100 annotations with a low training time (𝑡 = 0.1𝑠).
Our evaluation suggests that DICAP can also be applied at a larger scale with
millions of user comments.

DICAP enables domain experts to extract insights. We designed DI-
CAP according to our requirements, which we tailored to the domain experts’
requirements to extract insights. With DICAP’s custom domain-specific label
creation, the domain expert can first find relevant aspect addressings and sub-
sequently extract insights from the classified comments.

180

Chapter 11

Conclusion

This chapter summarizes the contributions and discusses the results and the
limitations of this thesis.

11.1 Summary of the Contributions

Nowadays, users post comments on online platforms across different domains.
Domain experts are aware that they can improve their product based on ex-
tracted insights from constructive user comments. However, these comments
are hidden among the plethora of comments, and manually finding and analyz-
ing them is expensive and time-consuming. In this thesis, we support domain
experts in utilizing the potential of user comments to improve their product.
We developed a domain-independent machine learning pipeline to automatically
identify user comments, which address relevant aspects for domain experts. Do-
main experts can further extract insights from the automatically classified user
comments.

In Chapter 2, we identified the similarities between the online journalism and
the app development domain and derived a domain-independent analysis model,
which defines the core concepts for this thesis. In Chapter 3, we conducted
a literature study, and in Chapter 4 we conducted an exploratory study to
identify the requirements for a comment analysis tool for domain experts. In
the following, we provide a summary of our main findings:

Tool-support for domain experts to analyze comments. Previous re-
search has shown that domain experts are overwhelmed with a large number of
user comments, and they lack tool-support to analyze and harness the potential
of their comments. To gain an overview of this vibrant field of research and to
identify potential research gaps, we conducted a literature review in the online
journalism [213] and the app development domain (Chapter 3). Additionally, we
conducted an exploratory study in the online journalism domain [153] and identi-
fied requirements for a software analysis tool. Generally, we found that research

181

Chapter 11 Conclusion

primarily focused on filtering destructive user comments and neglected the au-
tomatic identification of constructive user comments. Furthermore, researchers
rarely conducted cross-domain studies or developed domain-independent solu-
tions but instead researched separately on similar topics.

We focused on the automatic identification of aspect addressings in user com-
ments, which previous research neglected, although domain experts considered
this a useful feature. For example, this feature helps journalists understand
the users’ resonance towards specific topics or identify the comments, which
are worth a reply. Additionally, we found that cross-domain studies involving
journalism research and computer science are rare. This research lack is all the
more problematic, as we found that tool-development for comment analysis re-
quires cross-domain knowledge. We also found a lack of studies focusing on user
comments in languages other than English. This is particularly challenging as
most natural language processing approaches are most advanced for English.

Domain-independent machine learning pipeline. In Chapter 5, we
developed a domain-independent machine learning pipeline, which addresses the
shortcomings we identified in Part I. With our pipeline, we developed approaches
that enable domain experts to identify aspect addressings in user comments
automatically. Our pipeline incorporates the domain experts’ knowledge and
the technical knowledge from the solution domain. Due to the language gap
between the users’ colloquial language and the domain experts’ terminology, a
mere keyword-based search for domain experts is unlikely to identify relevant
comments. Our pipeline addresses this language gap and iteratively adapts
domain-specific keywords in collaboration with domain experts using state-of-
the-art text embeddings [97, 98, 102].

We distinguish between the addressings of two different aspect types: domain-
specific aspects and product-specific aspects. For each aspect type, we developed
two automatic approaches. We applied our pipeline to four studies, two in
the online journalism and two in the app development domain, to validate its
applicability. Thereby, we extracted insights for the domain experts in their
respective domains. In each domain, we first identified addressings regarding
domain-specific aspects, and in the second study, we matched the user comments
to product-specific aspects.

Identifying user comments addressing journalistic aspects. In Chap-
ter 6, we conducted a study [102], in which we developed an automatic approach
based on our machine learning pipeline to identify journalistic aspect address-
ings in user comments automatically. For this study, we deliberately chose two
data sets with German news articles and user comments (Spiegel Online and

182

11.1 Summary of the Contributions

Der Standard) to evaluate our pipeline for non-English user comments. Ad-
ditionally, we incorporated the journalists’ domain knowledge into the machine
learning pipeline to match domain-specific terminology to the users’ language.

We achieved promising classification results with 𝐹0.5 scores between 76%
and 91%. Our qualitative analysis of automatically classified user comments
identified relevant insights for experts in the online journalism domain. Using
our pipeline, domain experts can extract corrective insights from automatically
classified user comments such as mistakes in articles (typos and factual errors)
and perfective insights such as additional information, feedback on the article,
or users’ personal experience or expertise for further news stories. We further
discussed how domain experts could include this approach into their journalistic
workflow to improve their work. The uses of these insights are diverse: media
houses could use these insights to improve their theme coverage, journalists
could improve their editorial work, and community-moderators could discover
additional features for the comment section.

Identifying user comments addressing article-specific aspects. In
Chapter 7, we conducted a second study in the online journalism domain and
used our pipeline to identify addressings to article-specific aspects. In this con-
text, we defined the article-specific aspects as article paragraph, which encap-
sulates a specific aspect of the news story. We developed CoLiBERT, which au-
tomatically matches user comments to article paragraphs based on our machine
learning pipeline. We applied the transfer learning approach of our machine
learning pipeline using state-of-the-art language models. CoLiBERT learned
from user comment pairs how users address each others’ comments. It classifies
for two user comments whether the first comment replies to the second com-
ment. For this classification task, we achieved an accuracy of 88% for English
user comments from The New York Times and 84% for German user comments
from Spiegel Online. We included English and German news sites to address
the research lack for non-English user comment analysis.

We then applied CoLiBERT to identify article paragraph addressings in user
comments. We evaluated CoLiBERT’s suggestions with a manual coding task.
Coders manually compared CoLiBERT’s comment suggestion with a random
second comment suggestion and decided which user comment addresses the ar-
ticle paragraph more clearly. In more than 84% of the annotations from the
coders’ agreements (inter-coder agreement ≥ 70%), CoLiBERT’s suggestion ad-
dressed the article paragraph and more clearly than the random other comment.
In a subsequent facilitated workshop with domain experts, we identified user
scenarios in which CoLiBERT could support the insight extraction for journal-

183

Chapter 11 Conclusion

ists. These scenarios include the aggregation of user comments regarding their
paragraph addressings to extract descriptive insights such as top-discussed para-
graphs. We also suggested a redesign of the user comment section, which places
user comments closer to their addressing article paragraph to improve the users’
discourse.

Identifying user comments addressing app development aspects. In
Chapter 8, we conducted and extended a study [240] in which we automatically
classified user comments regarding their app development aspect addressings.
In this study, we defined the aspects as “problem report,” “inquiry,” and “irrele-
vant.”

User comments addressing these aspects contain valuable insights for the app
developers. App developers can extract descriptive insights such as problem
report ratios after a new release, corrective insights such as unnoticed bugs, and
perfective insights such as frequently requested app features.

We applied, optimized, and compared our pipeline’s traditional and end-to-
end machine learning approaches. We extended the study with additional classi-
fication experiments using state-of-the-art text embeddings with an end-to-end
learning approach. In this study, we included English and Italian comments to
address the lack of research for non-English user comments. Additionally, we
considered user comments (tweets) on Twitter support accounts of telecommu-
nication companies to include a different comment section.

Our extended experiments outperformed all our previous classification results.
We provide the evaluation script for replication purposes [93]. We reached
promising classification results with F1 scores up to 85% for classifying English
problem reports, up to 80% for English inquiries, up to 69% for Italian tweets
reporting a problem, and up to 70% for Italian inquiry tweets. Our results
provide evidence that our pipeline is also applicable to user comments from
social media sites in a non-English language.

Identifying user comments addressing app-specific aspects. In our
second study in the app development domain [98], we identified user com-
ments adderssing bug reports. In the context of this study, we defined bug re-
ports as app-specific aspects. Based on our domain-independent machine learn-
ing pipeline, we developed DeepMatcher, the first automatic approach, which
matches app reviews with bug reports. We manually validated DeepMatcher’s
suggestions and found that out of 200 problem reports, DeepMatcher was able
to identify 167 relevant matches with bug reports, given three suggestions per
problem report.

We suggested three use cases for which DeepMatcher could support app de-

184

11.2 Threats to Validity

velopers to extract insights from user comments. First, app developers can
extract corrective insights by identifying problem reports, which developers did
not record in the issue tracker yet. Second, app developers can extract addi-
tional context information from problem reports to extend existing bug reports.
Third, app developers can extract descriptive insights as top-addressed bug re-
ports or a list of duplicates in issue trackers. We discussed how developers could
use DeepMatcher to identify bugs earlier, enrich bug reports with user feedback,
and detect duplicates or similar bugs.

Domain-independent comment analysis prototype. With our domain-
independent machine learning pipeline (Chapter 5), we extracted insightful find-
ings for domain experts in two different domains. Thereby, we supported our
hypothesis that our pipeline is applicable for extracting insights from user com-
ments domain-independently.

In Part II, we developed a functional prototype, which supports domain ex-
perts by incorporating the machine learning pipeline into DICAP’s back-end.
Thereby, we addressed the lack of cross-domain studies and combined both the
domain experts’ knowledge and the technical knowledge into our prototype. DI-
CAP enables domain experts to extract corrective and perfective insights with
custom aspects or descriptive insights using the bar chart.

We achieved promising results with our machine learning experiments in the
online journalism and app development domain using different semantic embed-
dings and sampling strategies with few annotations (n ≥ 100) within a short
training time (𝑡 = 0.1𝑠). Our training and evaluation time measurements pro-
vide evidence that DICAP is also feasible for an application at a larger scale
with millions of user comments.

11.2 Threats to Validity

In the following, we summarize the threats to validity from our previous chapters
and put them into context for the thesis.

Problem identification. Our literature study in the online journalism do-
main [213] only considered studies until the year 2016. We were not able to
consider more recent studies due to the high coding effort. Further, we neither
consider studies, which analyzed user comments on other content than news
articles nor studies, which only developed automatic comment analysis tools
without a content analysis. Additionally, our literature study involved manual
annotation tasks, which could introduce noise into our dataset due to human
error. We tried to mitigate this threat by having ∼10% of all studies coded by

185

Chapter 11 Conclusion

all coders. We also briefed all coders and conducted a trial coding session, and
matched the coding results.

In our exploratory study [153], we based the development of our initial mock-
up on two group discussions with editors and community-moderators from a
large German online news site. We prepared and structured the discussion to
mitigate the researcher bias by maintaining an open discussion and delayed
presenting our own ideas. We cannot generalize our findings of the tool re-
quirements across different media houses or other domains. However, since we
additionally studied related work in the app development domain, we could iden-
tify parallels and map specific requirements from the online journalism domain
to the app development domain.

Domain-independent machine learning pipeline. We developed our
domain-independent machine learning pipeline to incorporate both the domain
experts’ knowledge and the technical solution domain. One problem our pipeline
addresses is the language gap between domain-specific terminology and users’
colloquial language. Domain experts can provide seed keywords for domain-
specific aspects, which our pipeline augments with keywords based on user
comments using state-of-the-art word embeddings. We deliberately train the
word embeddings on a user comment corpus to learn embeddings based on the
users’ language. The technical threat arises when domain-specific terms rarely
appear in user comments, leading to imprecise embeddings. Tools like fast-
Text [124] use n-gram characters as the smallest text chunks. For example, the
word “apple” would be split into word chunks such as “ap,” “app,” and “ple”.
Thereby, fastText generates more precise word embeddings for rare words or
even for words that did not occur in the training corpus. This is a limitation
of other models such as word2Vec [181], and GloVe [200], which cannot derive
embeddings for unknown words.

Furthermore, the evaluations of our studies required manual annotations of
the models’ classifications and suggestions. These tasks are prone to errors
and might introduce noise in our training sets or the evaluation results. To
mitigate this threat, we elaborated detailed coding guides with examples, briefed
the coders beforehand, and conducted trial runs. We further conducted peer-
labeling and ensured that two annotators independently coded the same sample.
To assess the coding guide and the quality of the dataset, we reported on the
inter-coder agreement.

We did not compare our approaches with simple, keyword-based approaches.
Such approaches could use the similarity between the keyword-based vector rep-
resentations (bag-of-words or tf-idf) of aspect descriptions and user comments

186

11.3 Discussion

to identify addressings. However, these approaches are limited and cannot find
word matches between different words with similar meanings. Our studies pro-
vide evidence [97, 98, 102] that we would miss relevant user comments due to
the language gap between domain-specific terminologies and users’ colloquial
language.

Regarding the external validity, we cannot claim complete domain indepen-
dence of our pipeline as we validated our pipeline only on the online journalism
and app development domains. The length or wording of user comments on
online platforms in other domains might be different, and we would have to
adapt our pipeline. The topics of both domains are different, and in particular
online journalism covers a wide range of topics. However, we conducted our
experiments with real news articles and user comments in different languages
from different sources. In total, our datasets cover user comments in English,
German, and Italian from the Google Play store, comment sections of four dif-
ferent news sites (Spiegel Online, Der Standard, The New York Times),
and the social media site Twitter.

DICAP- Domain-independent comment analysis prototype. DICAP
provides tool-support for domain experts to find constructive user comments.
One of DICAP’s features is the keyword-based comment search to filter the user
comments. Domain experts might use this feature to find positives comment
samples to annotate regarding their custom aspect. The underlying model might
learn a bias towards the searched keyword if the keyword frequently identifies
comments, which address the defined aspect. However, using the contextualized
embeddings as features, the model might learn the semantic meaning of these
comments and correctly classify semantically similar comments, which do not
contain the initial keyword.

11.3 Discussion

In this section, we discuss how we could transfer the findings of this thesis to
other domains, cross-domain aspects, and how domain experts could apply and
integrate DICAP into their workflow to improve their products. We finally
suggest directions for future work to extend and improve DICAP.

Transfer to e-commerce and e-learning. In the following, we concep-
tually transfer our domain-independent analysis model to the e-commerce and
e-learning domains. For example, in the e-commerce domain, the domain ex-
perts are the manufacturers, the products are the items for sale, and the user
comments are the user reviews for the items. In this domain, users address

187

Chapter 11 Conclusion

e-commerce-specific aspects in their reviews, such as “quality,” or “warranty”
[100]. Manufacturers could define item-specific aspects such as “battery du-
ration,” “performance,” or “camera resolution” for a technical item. In the e-
learning domain, teachers offer their courses in online learning platforms such
as Moodle [3]. In this domain, the product could be defined as the teaching
material such as videos, exercises, or slides. The users are the students dis-
cussing the teaching content. The domain-specific aspects could be defined as
e-learning quality criteria [118]. The product-specific aspects could be defined
as “questions regarding specific topics” or “ideas for further teaching content”.

Transfer to the mobile learning domain. We also conducted a study [97]
in which we applied and transferred our domain-independent machine learning
pipeline to the mobile learning domain. In this domain, the products are the
education apps; the teachers are the domain experts. Teachers use pedagogi-
cal frameworks to evaluate educational apps [16, 112], which is time-consuming
[33, 129] due to the increasing number of available apps [36]. One robust and
validated mobile pedagogical framework is called iPAC [130, 131]. It focuses on
the three mobile learning evaluation dimensions: personalization (P), authen-
ticity (A), and collaboration (C). In our study, we defined the domain-specific
aspects as the three iPAC evaluation dimensions. To identify the app reviews
of users addressing these aspects, we used a keyword set provided by domain
experts [131]. We extended these keywords according to our machine learn-
ing pipeline and applied the traditional supervised learning approach (Section
5.2.1). We suggested a tool to automate the pedagogical assessment of edu-
cation apps. Teachers could extract, for example, descriptive insights with our
tool to rank the education apps according to their pedagogical assessment. This
supports teachers to navigate through the increasingly unmanageable number
of education apps to find a relevant resource for their class activity.

Cross-domain aspects. Further, we can study whether we can transfer
domain-specific aspects to other domains. Thereby, domain experts could build
upon previous annotation efforts and use a pre-trained model to identify this
aspect in their domain. For example, a model trained on “feature requests” in
the app development domain [160] might also reveal feature ideas for a comment
section on an online news site. We could extend our aspect taxonomy (Section 3)
with cross-domain aspects, which users address in user comments across various
domains. These aspects could be derived from relevant service quality aspects
and economic aspects when users use or purchase a service or product. Examples
for cross-domain aspects could include “product quality,” “price/performance,”
“expectations,” or “customer support.”

188

11.3 Discussion

Application and integration of DICAP. In the following, we discuss how
we can integrate DICAP into the domain experts’ workflow so they can improve
their product using descriptive, corrective, and perfective insights.

For example, in online journalism, journalists could create aspects to obtain
descriptive insights on the users’ resonance about the “relevance of the covered
topics” or corrective insights pointing out “textual or factual errors” [153]. We
suggest that domain experts use DICAP to monitor the user comments, espe-
cially after a new product release, and extract corrective insights. For example,
journalists might be able to fix unnoticed errors in their news articles, which
users might detect shortly after the publication of a news article.

Similarly, app developers develop their apps often using an agile software
development framework [1] and incorporate user feedback for a continuous soft-
ware evolution [169]. Previous research studied and integrated implicit [241]
and explicit user feedback into the app development process [238]. This thesis
focuses on a domain-independent user comment (explicit user feedback) analy-
sis approach for domain experts with custom analysis dimensions. For example,
app developers could create app development aspects such as “problem since up-
date” or “non-crashing bugs” [169] within DICAP to extract corrective insights
from comments addressing these aspects.

Furthermore, app developers could constantly monitor user comments ad-
dressing “missing features” or “user interface change requests” to extract perfec-
tive insights for their product. These insights could be collected and discussed
when planning a new product release.

Generally, the domain experts could further convert the insights into action-
able items such as editing an article or quick-fixing a bug after an update to
improve the product. The domain experts could prioritize the identified action-
able items for future product releases or updates based on descriptive insights.

Collaborative open-data set creation. Online platform providers often
have community-moderators, which block or publish user comments. These
moderators could additionally annotate the comments regarding the aspect ad-
dressings and create the training set. However, the extra annotations might
lead to an added workload for the community-moderators and require more re-
sources. Platform providers need to evaluate the benefit of extracted insights
from user comments considering the additional costs for annotation resources.

We suggest that in practice, online platform providers collaborate, share or
trade their annotated training sets and their trained classifiers for custom labels
across different domains openly for reuse. Other companies, possibly in other
domains, could save resources on the manual annotation and benefit from each

189

Chapter 11 Conclusion

other’s manual annotation effort. This could be in particular useful for training
sets within the same domain.

For example, media houses could annotate user comments as hate speech and
augment their annotated training set with annotated user comments from other
data sources, which might increase the classifier’s robustness. Well-established
platforms such as TensorFlowHub [249] or PyTorchHub [209] provide strong
evidence that the sharing and reusing of trained machine learning models are
widely adopted and proven to be practical. However, for sharing user comments,
the companies have to negotiate specific terms of use and anonymize sensitive
user data.

DICAP improvements and extensions. In future work, we could extend
DICAP’s current implementation of the active learning strategy. We could
optimize the calculation of the uncertainty score and use other metrics than
the model’s conditional class prediction. Additionally, we could visualize the
uncertainty of the underlying classification model [7]. For example, DICAP
could highlight the comments’ parts that influence the uncertainty the most.
This transparency could help annotators understand the classification model,
and DICAP could suggest unclear words or phrases for the domain expert to
annotate to improve the model.

A further extension could monitor the user comments in real-time. DICAP
currently imports data of the previous day and does not monitor the source
websites in real-time. This would be helpful for live events such as a press
conference or an app release. In these cases, monitoring the users’ reactions in
real-time might be crucial to react quickly.

Furthermore, web content shifts increasingly from textual to video content.
We could research how we can adapt our machine learning pipeline to identify
video segment addressings in user comments in future work. This could also
be particularly interesting for news videos or app tutorial videos, whereby the
video creators extract descriptive insights about the top-discussed parts of the
video.

190

Part IV

Appendencies

191

Appendix A

Mock-Up Design

Screenshots

Figure A.1: Article and channel selection.

193

Appendix A Mock-Up Design

Figure A.2: Topics and addressees.

Figure A.3: Discussion and argumentation.

194

Figure A.4: Quality indicators.

195

Appendix A Mock-Up Design

Figure A.5: Channel comparison.

Figure A.6: Sociodemographic and commenter typologies.

196

Appendix B

List of Figures

2.1 Domain-independent analysis model for user comments on online
platforms. 11

2.2 Products from two different domains. 12
2.3 User comments on a Spiegel Online news article (left) and app

reviews on the Google Play store (right). 14
2.4 Aggregation of user comments regarding an article-specific aspect. 20
2.5 Users’ aggregated sentiment regarding Dropbox-specific app as-

pects [91]. 20

4.1 Overview of the research design and process. 41

5.1 Schematic process of the machine learning pipeline to automati-
cally detect aspect addressings. 61

5.2 Traditional learning with manual feature engineering approach,
using seed words from domain experts, which describe the domain-
specific aspect. 67

5.3 Teaching a model the concept of addressing (left) and transfer the
learned to identify whether a user comment addresses a product-
specific aspect. 70

5.4 Using text embedding similarity to identify user comments, ad-
dressing a product-specific aspect. 72

6.1 Overview of our research methodology with four main consecutive
steps. 80

6.2 Example of a meta-comment in the SPON comment section. . . . 81
6.3 Neural network architecture with optimized hyperparameters for

the user comment classification. 89

7.1 Two article paragraphs (AP) of an article on the New York Times
website (left) and two user comments from the comment section
referencing AP2 (right). 102

197

Appendix B List of Figures

7.2 Research overview. 106
7.3 User interface excerpt of the manual coding task. 108
7.4 Coding task example for which the coders considered the alter-

native comment better fitting. 111
7.5 Mock-up for a user comment link detection combined with further

comment classifications. We slightly edited the original article [228].113

8.1 Overview of the study design. 121
8.2 Neural network architecture for the classification. 127

9.1 Example problem report for Nextcloud answered by the app de-
veloper. 136

9.2 List of bug reports from the issue tracker of the app Signal Mes-
senger. 136

9.3 Overview of the DeepMatcher approach. 138
9.4 Similarity values for relevant and irrelevant matches per app. . . 147

10.1 Use case diagram showing DICAP’s boundaries and the interac-
tion with the domain expert. 162

10.2 DICAP’s container architecture. 165
10.3 DICAP’s machine learning pipelines. 166
10.4 Entity relationship diagram of the database schema of DICAP. . 167
10.5 Sequence diagram of the periodic import of new products and

user comments from a news site. 170
10.6 Sequence diagram, showing the user’s authentication and a sub-

sequent authenticated call with a valid token. 171
10.7 Sequence diagram, showing an annotation, which triggers the

training of a new model and updates the Front-end. 172
10.8 Sequence diagram, showing the process for requesting additional

context information for a specific comment in the Front-End. . . 173
10.9 Sequence diagram, showing the process when the user requests

similar comments in the Front-End. 174
10.10Main user interface of DICAP. 175
10.11An overlay, showing the training and classification update process

to the user. 175
10.12This overlay, shows the comment thread (top) and the addressing

product text paragraph (bottom) for a selected user comment. . . 176
10.13Balanced accuracy (top), ROC-AUC (center), and F1 scores (bot-

tom) for all classification experiments on the OMP (left column)
and the ARD (right column). 178

198

10.14Time measurements of training the logistic regression model. . . 179

A.1 Article and channel selection. 193
A.2 Topics and addressees. 194
A.3 Discussion and argumentation. 194
A.4 Quality indicators. 195
A.5 Channel comparison. 196
A.6 Sociodemographic and commenter typologies. 196

199

Appendix C

List of Tables

3.1 Overview of the codebook. 29
3.2 Quantitative aspects researched in comment analyses. 33
3.3 Kinds of content researched in comment analysis. 34
3.4 Addressees of comments studied. 36

4.1 Participants of the group discussions. 43
4.2 Identified features of a software tool for the user comment analysis. 45

6.1 The number of each label in the random sample, the SPON train-
ing set, and the OMP training set. 82

6.2 A comparison of the training parameters between the three dif-
ferent word2vec models we used. 84

6.3 Examples of similar words within the distributed vector space for
the last name of the journalist “Mr. Fleischhauer” and the word
“autor” (author). 85

6.4 User comment classification (meta / non-meta) results of a strat-
ified 10-fold cross validation for three different training set com-
positions. 91

6.5 User comment and meta-comment classification results of a strat-
ified 10-fold cross-validation for both training sets, using an SVM
classifier with different feature groups. 91

6.6 Cross-dataset classification results of an SVM classifier trained
with the Spiegel Online data and applied on the OMP dataset
and vice versa. 92

6.7 Top ten single features for classifying user and meta-comments
according to their ANOVA F-value. 93

7.1 Overview of the study data. 103
7.2 Composition of the negative comment pair samples in the training

set. 105

201

Appendix C List of Tables

7.3 Accuracy results for the user comment pair classification task.
The false samples are decomposed by each type. 109

7.4 Results of 300 manual coding tasks. The share of the selections
refer to the paragraphs in which both coders agreed. 110

7.5 Example user comments suggested by CoLiBERT. 110

8.1 Overview of the study data. 122
8.2 Extracted features before scaling. If not further specified, the

number of features applies to all datasets. 123
8.3 Classification benchmark for the traditional machine learning ap-

proach (Trad.), and both deep learning approaches (CNN and
DistilBERT embeddings). The best F1 score per classification
problem and dataset is marked in bold font. 128

8.4 Configuration of the best performing classification experiments
for the traditional machine learning and the convolutional neural
network approaches. RF = Random Forest, DT = Decision Tree.
CNN = Convolutional Neural Network. 129

9.1 Overview of the study data. 142
9.2 Results of the manual coding for 4 open source apps, each with

50 app reviews. Legend: mean average precision (MAP), number
of suggested bug reports (#). 145

9.3 Example problem reports from app reviews and DICAP’s sug-
gested matching bug reports. The relevant column shows whether
the two coders annotated the suggestions as relevant for developers.148

202

Appendix D

List of Own Publications

The thesis is based on the following publications. We used parts of them ver-
batim in the corresponding chapters:

• M. Haering, C. Stanik, and W. Maalej, “Automatically matching bug re-
ports with related app reviews,” in 43rd International Conference on Soft-
ware Engineering (ICSE), May 2021, p. to appear.

• M. Haering, M. Bano, D. Zowghi, M. Kearney, and W. Maalej, “Automat-
ing the Evaluation of Education Apps With App Store Data,” IEEE Trans-
actions on Learning Technologies, vol. 14, no. 1, pp. 16–27, Feb. 2021.

• M. Haering, J. S. Andersen, C. Biemann, W. Loosen, B. Milde, T. Pietz,
C. Stoecker, G. Wiedemann, O. Zukunft, and W. Maalej, “Forum 4.0: An
Open-Source User Comment Analysis Framework,” in Proceedings of the
Software Demonstrations of the 16th Conference of the European Chapter
of the Association for Computational Linguistics, 2021, p. to appear.

• J. Reimer, M. Häring, W. Loosen, W. Maalej, and L. Merten, “Content
analyses of user comments in journalism: a systematic literature review
spanning communication studies and computer science,” Digital Journal-
ism (RDIJ), p. to appear, 2021.

• C. Stanik, M. Haering, and W. Maalej, “Classifying multilingual user feed-
back using traditional machine learning and deep learning,” in IEEE 27th
International Requirements Engineering Conference Workshops (REW),
2019, pp. 220–226.

• M. Häring, W. Loosen, and W. Maalej, “Who is Addressed in This Com-
ment? Automatically Classifying Meta-Comments in News Comments,”
Proceedings of the ACM on Human-Computer Interaction, vol. 2, no.
CSCW, p. 67:1-67:20, Nov. 2018.

203

Appendix D List of Own Publications

• W. Loosen, M. Häring, Z. Kurtanović, L. Merten, J. Reimer, L. van Roes-
sel, and W. Maalej, “Making sense of user comments: Identifying jour-
nalists’ requirements for a comment analysis framework,” SCM Studies in
Communication and Media, vol. 6, no. 4, pp. 333–364, 2018.

Additionally, my co-authored and peer-reviewed publications, which I did not
include in this thesis:

• C. Stanik, M. Häring, C. Jesdabodi, and W. Maalej, “Which app fea-
tures are being used? Learning app feature usages from interaction data,”
in 28th IEEE International Requirements Engineering Conference (RE),
2020, pp. 66–77.

• M. Haering and W. Maalej, “A Socio-Technical Framework for Face-to-
Face Teaching in Large Software Development Courses,” in Proceedings
of the Workshops of the Software Engineering Conference 2019, Feb. 2019,
pp. 3–6.

204

Appendix E

Bibliography

[1] Abrahamsson, P., Oza, N., and Siponen, M. T. “Agile Software Devel-
opment Methods: A Comparative Review”. en. In: Agile Software Devel-
opment: Current Research and Future Directions. Ed. by T. Dingsøyr,
T. Dybå, and N. B. Moe. Berlin, Heidelberg: Springer, 2010, pp. 31–59.
doi: 10.1007/978-3-642-12575-1_3.

[2] Aker, A., Kurtic, E., Balamurali, A. R., Paramita, M., Barker, E., Hepple,
M., and Gaizauskas, R. “A Graph-Based Approach to Topic Clustering
for Online Comments to News”. en. In: Advances in Information Re-
trieval. Lecture Notes in Computer Science. Springer, Cham, Mar. 2016,
pp. 15–29. doi: 10.1007/978-3-319-30671-1_2.

[3] Al-Ajlan, A. and Zedan, H. “Why Moodle”. In: 2008 12th IEEE Inter-
national Workshop on Future Trends of Distributed Computing Systems.
Oct. 2008, pp. 58–64. doi: 10.1109/FTDCS.2008.22.

[4] Allan, S. Online News: Journalism and the Internet. eng. Maidenhead:
Open Univ. Press, 2006.

[5] Almgren, S. M. and Olsson, T. “‘Let’s Get Them Involved’ . . . to Some
Extent: Analyzing Online News Participation”. en. In: Social Media +
Society 1.2 (Sept. 2015), pp. 1–11. doi: 10.1177/2056305115621934.

[6] Amazon Mechanical Turk. url: https://www.mturk.com/ (visited on
04/05/2021).

[7] Andersen, J. S., Schöner, T., and Maalej, W. “Word-Level Uncertainty
Estimation for Black-Box Text Classifiers Using RNNs”. en. In: Proceed-
ings of the 28th International Conference on Computational Linguistics.
Barcelona, Spain (Online): International Committee on Computational
Linguistics, 2020, pp. 5541–5546. doi: 10.18653/v1/2020.coling-main
.484.

[8] Apache Lucene Core. url: https://lucene.apache.org/core/index
.html (visited on 03/17/2021).

205

https://doi.org/10.1007/978-3-642-12575-1_3
https://doi.org/10.1007/978-3-319-30671-1_2
https://doi.org/10.1109/FTDCS.2008.22
https://doi.org/10.1177/2056305115621934
https://www.mturk.com/
https://doi.org/10.18653/v1/2020.coling-main.484
https://doi.org/10.18653/v1/2020.coling-main.484
https://lucene.apache.org/core/index.html
https://lucene.apache.org/core/index.html

Appendix E Bibliography

[9] APIs | Dev Portal. url: https://developer.nytimes.com/apis (vis-
ited on 03/17/2021).

[10] Arora, M. and Kansal, V. “Character Level Embedding with Deep Con-
volutional Neural Network for Text Normalization of Unstructured Data
for Twitter Sentiment Analysis”. en. In: Social Network Analysis and
Mining 9.1 (Mar. 2019), p. 12. doi: 10.1007/s13278-019-0557-y.

[11] Ayata, D. “Applying Machine Learning and Natural Language Processing
Techniques to Twitter Sentiment Classification for Turkish and English”.
PhD thesis. June 2018.

[12] Ayata, D., Saraclar, M., and Ozgur, A. “BUSEM at SemEval-2017 Task
4A Sentiment Analysis with Word Embedding and Long Short Term
Memory RNN Approaches”. en. In: Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017). Proceedings of the
11th International Workshop on Semantic Evaluation (SemEval-2017).
Vancouver, Canada: Association for Computational Linguistics, 2017,
pp. 777–783. doi: 10.18653/v1/S17-2131.

[13] Ayata, D., Saraclar, M., and Ozgur, A. “Turkish Tweet Sentiment Anal-
ysis with Word Embedding and Machine Learning”. In: 2017 25th Signal
Processing and Communications Applications Conference (SIU). 2017
25th Signal Processing and Communications Applications Conference
(SIU). Antalya, Turkey: IEEE, May 2017, pp. 1–4. doi: 10.1109/SI

U.2017.7960195.

[14] Baden, C. and Springer, N. “Com(Ple)Menting the News on the Financial
Crisis: The Contribution of News Users’ Commentary to the Diversity of
Viewpoints in the Public Debate”. en. In: European Journal of Communi-
cation 29.5 (Oct. 2014), pp. 529–548. doi: 10.1177/0267323114538724.

[15] Bailey, K. and Chopra, S. “Few-Shot Text Classification with Pre-Trained
Word Embeddings and a Human in the Loop”. In: arXiv:1804.02063 [cs]
(Apr. 2018). arXiv: 1804.02063 [cs]. url: http://arxiv.org/abs/18
04.02063 (visited on 04/04/2021).

[16] Bano, M., Zowghi, D., Kearney, M., Schuck, S., and Aubusson, P. “Mobile
Learning for Science and Mathematics School Education: A Systematic
Review of Empirical Evidence”. In: Comput. & Educ. 121 (June 2018),
pp. 30–58. doi: 10.1016/j.compedu.2018.02.006.

[17] Bayerl, P. S. and Paul, K. I. “What Determines Inter-Coder Agreement in
Manual Annotations? A Meta-Analytic Investigation”. In: Computational
Linguistics 37.4 (Dec. 2011), pp. 699–725. doi: 10.1162/COLI_a_00074.

206

https://developer.nytimes.com/apis
https://doi.org/10.1007/s13278-019-0557-y
https://doi.org/10.18653/v1/S17-2131
https://doi.org/10.1109/SIU.2017.7960195
https://doi.org/10.1109/SIU.2017.7960195
https://doi.org/10.1177/0267323114538724
https://arxiv.org/abs/1804.02063
http://arxiv.org/abs/1804.02063
http://arxiv.org/abs/1804.02063
https://doi.org/10.1016/j.compedu.2018.02.006
https://doi.org/10.1162/COLI_a_00074

[18] Ben-Hur, A. and Weston, J. “A User’s Guide to Support Vector Ma-
chines”. In: Data mining techniques for the life sciences (2010), pp. 223–
239.

[19] Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. “Algorithms
for Hyper-Parameter Optimization”. In: Advances in Neural Information
Processing Systems. 2011, pp. 2546–2554.

[20] “Besondere Nutzungsbedingungen Für Ihre Beiträge”. In: Spiegel Online
(May 2018). url: http://www.spiegel.de/extra/besondere-nutzu
ngsbedingungen-fuer-ihre-beitraege-a-1207779.html (visited on
06/18/2018).

[21] Biggest App Stores in the World 2020 | Statista. url: https://www.sta
tista.com/statistics/276623/number-of-apps-available-in-lead

ing-app-stores/ (visited on 02/28/2021).

[22] Bishop, C. M. Pattern Recognition and Machine Learning. springer, 2006.

[23] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. “Enriching Word
Vectors with Subword Information”. In: arXiv:1607.04606 [cs] (July 2016).
arXiv: 1607.04606 [cs]. url: http://arxiv.org/abs/1607.04606
(visited on 12/20/2018).

[24] Boltužić, F. and Šnajder, J. “Fill the Gap! Analyzing Implicit Premises
between Claims from Online Debates”. In: Proceedings of the Third Work-
shop on Argument Mining (ArgMining2016). 2016, pp. 124–133.

[25] Braun, J. and Gillespie, T. “Hosting the Public Discourse, Hosting the
Public”. In: Journalism Practice 5.4 (Aug. 2011), pp. 383–398. doi: 10
.1080/17512786.2011.557560.

[26] Breiman, L. “Random Forests”. In: Machine learning 45.1 (2001), pp. 5–
32.

[27] Carreno, L. V. G. and Winbladh, K. “Analysis of User Comments: An
Approach for Software Requirements Evolution”. In: 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE. San Francisco,
CA, USA: IEEE, May 2013, pp. 582–591. doi: 10.1109/ICSE.2013.660
6604.

[28] Cen, L., Si, L., Li, N., and Jin, H. “User Comment Analysis for Android
Apps and CSPI Detection with Comment Expansion.” In: PIR@ SIGIR.
Citeseer. 2014, pp. 25–30.

207

http://www.spiegel.de/extra/besondere-nutzungsbedingungen-fuer-ihre-beitraege-a-1207779.html
http://www.spiegel.de/extra/besondere-nutzungsbedingungen-fuer-ihre-beitraege-a-1207779.html
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
https://doi.org/10.1080/17512786.2011.557560
https://doi.org/10.1080/17512786.2011.557560
https://doi.org/10.1109/ICSE.2013.6606604
https://doi.org/10.1109/ICSE.2013.6606604

Appendix E Bibliography

[29] Chandy, R. and Gu, H. “Identifying Spam in the iOS App Store”. en.
In: Proceedings of the 2nd Joint WICOW/AIRWeb Workshop on Web
Quality - WebQuality ’12. Lyon, France: ACM Press, 2012, p. 56. doi:
10.1145/2184305.2184317.

[30] Chapin, N., Hale, J. E., Khan, K. M., Ramil, J. F., and Tan, W.-G.
“Types of Software Evolution and Software Maintenance”. en. In: Journal
of Software Maintenance and Evolution: Research and Practice 13.1 (Jan.
2001), pp. 3–30. doi: 10.1002/smr.220.

[31] Chen, G. M. and Pain, P. “Normalizing Online Comments”. In: Journal-
ism Practice 11.7 (Aug. 2017), pp. 876–892. doi: 10.1080/17512786.2
016.1205954.

[32] Chen, Y., Xu, H., Zhou, Y., and Zhu, S. “Is This App Safe for Chil-
dren?: A Comparison Study of Maturity Ratings on Android and iOS
Applications”. en. In: Proceedings of the 22nd International Conference
on World Wide Web - WWW ’13. Rio de Janeiro, Brazil: ACM Press,
2013, pp. 201–212. doi: 10.1145/2488388.2488407.

[33] Cherner, T. “Cleaning Up That Mess: A Framework for Classifying Ed-
ucational Apps”. en. In: Contemporary Issues Technol. and Teacher Ed-
ucation 14.2 (June 2014), pp. 158–193. url: https://www.learntechl
ib.org/p/129859/ (visited on 03/26/2018).

[34] Chollet, F. “Keras”. In: (2015). url: https://keras.io.

[35] Chollet, F. Deep Learning with Python. Manning Publications, 2018.

[36] Clement, J. Number of Apps Available in Leading App Stores as of 1st
Quarter 2020. en. url: https://www.statista.com/statistics/2766
23/number-of-apps-available-in-leading-app-stores/ (visited on
05/27/2020).

[37] Coe Kevin, Kenski Kate, and Rains Stephen A. “Online and Uncivil? Pat-
terns and Determinants of Incivility in Newspaper Website Comments”.
In: Journal of Communication 64.4 (June 2014), pp. 658–679. doi: 10.1
111/jcom.12104.

[38] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and
Kuksa, P. “Natural Language Processing (Almost) from Scratch”. In:
Journal of Machine Learning Research 12.Aug (2011), pp. 2493–2537.

[39] Confidence to Deploy AI with World-Class Training Data. en-GB. url:
https://appen.com/ (visited on 03/17/2021).

208

https://doi.org/10.1145/2184305.2184317
https://doi.org/10.1002/smr.220
https://doi.org/10.1080/17512786.2016.1205954
https://doi.org/10.1080/17512786.2016.1205954
https://doi.org/10.1145/2488388.2488407
https://www.learntechlib.org/p/129859/
https://www.learntechlib.org/p/129859/
https://keras.io
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://doi.org/10.1111/jcom.12104
https://doi.org/10.1111/jcom.12104
https://appen.com/

[40] Coral by Vox Media. en-US. url: https://coralproject.net/ (visited
on 03/19/2021).

[41] Costa Bertaglia, T. F. and Volpe Nunes, M. d. G. “Exploring Word Em-
beddings for Unsupervised Textual User-Generated Content Normaliza-
tion”. In: Proceedings of the 2nd Workshop on Noisy User-Generated Text
(WNUT). Osaka, Japan: The COLING 2016 Organizing Committee, Dec.
2016, pp. 112–120. url: https://www.aclweb.org/anthology/W16-39
16.

[42] Craft, S., Vos, T. P., and David Wolfgang, J. “Reader Comments as Press
Criticism: Implications for the Journalistic Field”. en. In: Journalism 17.6
(Aug. 2016), pp. 677–693. doi: 10.1177/1464884915579332.

[43] Cunningham, P. and Delany, S. J. “K-Nearest Neighbour Classifiers”. In:
Multiple Classifier Systems 34 (2007), pp. 1–17.

[44] Das, M. K., Bansal, T., and Bhattacharyya, C. “Going beyond Corr-LDA
for Detecting Specific Comments on News & Blogs”. en. In: Proceedings of
the 7th ACM International Conference on Web Search and Data Mining -
WSDM ’14. New York, New York, USA: ACM Press, 2014, pp. 483–492.
doi: 10.1145/2556195.2556231.

[45] Davies, T. and Chandler, R. “Online Deliberation Design”. In: Democ-
racy in motion: Evaluation the practice and impact of deliberative civic
engagement (2012), pp. 103–131.

[46] Davis, J. and Goadrich, M. “The Relationship between Precision-Recall
and ROC Curves”. In: Proceedings of the 23rd International Conference
on Machine Learning. ICML ’06. New York, NY, USA: ACM, 2006,
pp. 233–240. doi: 10.1145/1143844.1143874.

[47] De-la-Peña-Sordo, J., Pastor-López, I., Santos, I., and Bringas, P. G.
“Using Compression Models for Filtering Troll Comments”. In: IEEE 10th
Conference on Industrial Electronics and Applications (ICIEA), 2015.
Auckland: IEEE, June 2015, pp. 655–660. doi: 10.1109/ICIEA.2015.7
334191.

[48] De-la-Peña-Sordo, J., Pastor-López, I., Ugarte-Pedrero, X., Santos, I.,
and Bringas, P. G. “Anomalous User Comment Detection in Social News
Websites”. In: International Joint Conference SOCO’14-CISIS’14-ICEUTE’14.
Ed. by J. G. De la Puerta, I. G. Ferreira, P. G. Bringas, F. Klett, A.
Abraham, A. C. De Carvalho, Á. Herrero, B. Baruque, H. Quintián, and
E. Corchado. Vol. 299. Cham: Springer International Publishing, 2014,
pp. 517–526. doi: 10.1007/978-3-319-07995-0_51.

209

https://coralproject.net/
https://www.aclweb.org/anthology/W16-3916
https://www.aclweb.org/anthology/W16-3916
https://doi.org/10.1177/1464884915579332
https://doi.org/10.1145/2556195.2556231
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1109/ICIEA.2015.7334191
https://doi.org/10.1109/ICIEA.2015.7334191
https://doi.org/10.1007/978-3-319-07995-0_51

Appendix E Bibliography

[49] De-la-Peña-Sordo, J., Santos, I., Pastor-López, I., and Bringas, P. G.
“Social News Website Moderation through Semi-Supervised Troll User
Filtering”. en. In: International Joint Conference SOCO’13-CISIS’13-
ICEUTE’13. Ed. by Á. Herrero, B. Baruque, F. Klett, A. Abraham,
V. Snášel, A. C. de Carvalho, P. G. Bringas, I. Zelinka, H. Quintián, and
E. Corchado. Advances in Intelligent Systems and Computing. Springer
International Publishing, 2014, pp. 577–587.

[50] Delobelle, P., Winters, T., and Berendt, B. “RobBERT: A Dutch RoBERTa-
Based Language Model”. en. In: Findings of the Association for Computa-
tional Linguistics: EMNLP 2020. Online: Association for Computational
Linguistics, 2020, pp. 3255–3265. doi: 10.18653/v1/2020.findings-em
nlp.292.

[51] DerStandard.at | Nachrichten, Kommentare & Community. de-AT. url:
https://www.derstandard.at/ (visited on 03/17/2021).

[52] Deuze, M. “Journalism and the Web: An Analysis of Skills and Standards
in an Online Environment”. en. In: Gazette (Leiden, Netherlands) 61.5
(Oct. 1999), pp. 373–390. doi: 10.1177/0016549299061005002.

[53] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. “BERT: Pre-
Training of Deep Bidirectional Transformers for Language Understand-
ing”. In: arXiv:1810.04805 [cs] (Oct. 2018). arXiv: 1810.04805 [cs].
url: http://arxiv.org/abs/1810.04805 (visited on 02/06/2019).

[54] Di Sorbo, A., Panichella, S., Alexandru, C. V., Shimagaki, J., Visaggio,
C. A., Canfora, G., and Gall, H. C. “What Would Users Change in My
App? Summarizing App Reviews for Recommending Software Changes”.
en. In: Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering - FSE 2016. Seattle, WA,
USA: ACM Press, 2016, pp. 499–510. doi: 10.1145/2950290.2950299.

[55] Diakopoulos, N. “Picking the NYT Picks: Editorial Criteria and Au-
tomation in the Curation of Online News Comments”. In: Editors‘ Note
(2015), p. 147.

[56] Diakopoulos, N. Artificial Moderation: A Reading List. en-US. Mar. 2016.
url: https://coralproject.net/blog/artificial-moderation-a-r
eading-list/ (visited on 10/02/2019).

[57] Diakopoulos, N. and Naaman, M. “Towards Quality Discourse in On-
line News Comments”. In: Proceedings of the ACM 2011 Conference on
Computer Supported Cooperative Work. CSCW ’11. New York, NY, USA:
ACM, 2011, pp. 133–142. doi: 10.1145/1958824.1958844.

210

https://doi.org/10.18653/v1/2020.findings-emnlp.292
https://doi.org/10.18653/v1/2020.findings-emnlp.292
https://www.derstandard.at/
https://doi.org/10.1177/0016549299061005002
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/2950290.2950299
https://coralproject.net/blog/artificial-moderation-a-reading-list/
https://coralproject.net/blog/artificial-moderation-a-reading-list/
https://doi.org/10.1145/1958824.1958844

[58] Diakopoulos, N. A. “The Editor’s Eye: Curation and Comment Relevance
on the New York Times”. In: Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social Computing. ACM,
2015, pp. 1153–1157.

[59] Die Community-Moderatoren. url: https://www.derstandard.at/sto
ry/1385171179346/die-community-moderatoren (visited on 06/19/2018).

[60] Diplaris, S., Papadopoulos, S., Kompatsiaris, I., Heise, N., Spangenberg,
J., Newman, N., and Hacid, H. “"Making Sense of It All": An Attempt to
Aid Journalists in Analysing and Filtering User Generated Content”. In:
Proceedings of the 21st International Conference on World Wide Web.
WWW ’12 Companion. New York, NY, USA: ACM, 2012, pp. 1241–
1246. doi: 10.1145/2187980.2188267.

[61] Eckle-Kohler, J., Kluge, R., and Gurevych, I. “On the Role of Discourse
Markers for Discriminating Claims and Premises in Argumentative Dis-
course”. In: Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing. 2015, pp. 2236–2242.

[62] El Mezouar, M., Zhang, F., and Zou, Y. “Are Tweets Useful in the Bug
Fixing Process? An Empirical Study on Firefox and Chrome”. In: Em-
pirical Software Engineering 23.3 (2018), pp. 1704–1742.

[63] Eranti, V. and Lonkila, M. “The Social Significance of the Facebook Like
Button”. In: First Monday (May 2015). doi: 10.5210/fm.v20i6.5505.

[64] Fakhoury, S., Arnaoudova, V., Noiseux, C., Khomh, F., and Antoniol, G.
“Keep It Simple: Is Deep Learning Good for Linguistic Smell Detection?”
In: 2018 IEEE 25th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER). IEEE. 2018, pp. 602–611.

[65] Finkelstein, A., Harman, M., Jia, Y., Martin, W., Sarro, F., and Zhang,
Y. “Investigating the Relationship between Price, Rating, and Popularity
in the Blackberry World App Store”. en. In: Information and Software
Technology 87 (July 2017), pp. 119–139. doi: 10.1016/j.infsof.2017
.03.002.

[66] Flanagan, D. and Like, W. S. “JavaScript: The Definitive Guide, 5th”.
In: (2006).

[67] Fornacciari, P., Mordonini, M., Poggi, A., Sani, L., and Tomaiuolo, M.
“A Holistic System for Troll Detection on Twitter”. en. In: Computers in
Human Behavior 89 (Dec. 2018), pp. 258–268. doi: 10.1016/j.chb.20
18.08.008.

211

https://www.derstandard.at/story/1385171179346/die-community-moderatoren
https://www.derstandard.at/story/1385171179346/die-community-moderatoren
https://doi.org/10.1145/2187980.2188267
https://doi.org/10.5210/fm.v20i6.5505
https://doi.org/10.1016/j.infsof.2017.03.002
https://doi.org/10.1016/j.infsof.2017.03.002
https://doi.org/10.1016/j.chb.2018.08.008
https://doi.org/10.1016/j.chb.2018.08.008

Appendix E Bibliography

[68] Freelon, D. “Discourse Architecture, Ideology, and Democratic Norms
in Online Political Discussion”. In: New Media & Society 17.5 (2015),
pp. 772–791.

[69] Freund, Y. and Schapire, R. E. “A Desicion-Theoretic Generalization of
on-Line Learning and an Application to Boosting”. In: European Confer-
ence on Computational Learning Theory. Springer, 1995, pp. 23–37.

[70] Frischlich, L., Boberg, S., and Quandt, T. “Comment Sections as Tar-
gets of Dark Participation? Journalists’ Evaluation and Moderation of
Deviant User Comments”. en. In: Journalism Studies 20.14 (Oct. 2019),
pp. 2014–2033. doi: 10.1080/1461670X.2018.1556320.

[71] Früh, W. “Inhaltsanalyse: Theorie Und Praxis [Content Analysis: Theory
and Practice]”. In: Konstanz: UVK Verlagsgesellschaft (2007).

[72] Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., and Sadeh, N. “Why People
Hate Your App: Making Sense of User Feedback in a Mobile App Store”.
en. In: Proceedings of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. Chicago Illinois USA: ACM,
Aug. 2013, pp. 1276–1284. doi: 10.1145/2487575.2488202.

[73] Fu, W. and Menzies, T. “Easy over Hard: A Case Study on Deep Learn-
ing”. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. ACM. 2017, pp. 49–60.

[74] Gao, C., Zeng, J., Lyu, M. R., and King, I. “Online App Review Analysis
for Identifying Emerging Issues”. en. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering. Gothenburg Sweden: ACM,
May 2018, pp. 48–58. doi: 10.1145/3180155.3180218.

[75] Gao, L. and Huang, R. “Detecting Online Hate Speech Using Context
Aware Models”. In: Proceedings of the International Conference Recent
Advances in Natural Language Processing, RANLP 2017. Varna, Bul-
garia: INCOMA Ltd., Sept. 2017, pp. 260–266. doi: 10.26615/978-954
-452-049-6âĆĂ36.

[76] Gardiner, B., Mansfield, M., Anderson, I., Holder, J., Louter, D., and
Ulmanu, M. “The Dark Side of Guardian Comments”. en-GB. In: The
Guardian (Apr. 2016). url: http://www.theguardian.com/technolo
gy/2016/apr/12/the-dark-side-of-guardian-comments (visited on
04/19/2018).

[77] Gensim: Topic Modelling for Humans. url: https://radimrehurek.co
m/gensim/ (visited on 02/23/2017).

212

https://doi.org/10.1080/1461670X.2018.1556320
https://doi.org/10.1145/2487575.2488202
https://doi.org/10.1145/3180155.3180218
https://doi.org/10.26615/978-954-452-049-6₀36
https://doi.org/10.26615/978-954-452-049-6₀36
http://www.theguardian.com/technology/2016/apr/12/the-dark-side-of-guardian-comments
http://www.theguardian.com/technology/2016/apr/12/the-dark-side-of-guardian-comments
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/

[78] Germany Hamburg, D. S. DER SPIEGEL | Online-Nachrichten. de. url:
https://www.spiegel.de/ (visited on 03/17/2021).

[79] Ghosh, J. and Strehl, A. “Similarity-Based Text Clustering: A Compar-
ative Study”. en. In: Grouping Multidimensional Data. Ed. by J. Kogan,
C. Nicholas, and M. Teboulle. Berlin/Heidelberg: Springer-Verlag, 2006,
pp. 73–97. doi: 10.1007/3-540-28349-8_3.

[80] Giannopoulos, G., Weber, I., Jaimes, A., and Sellis, T. “Diversifying User
Comments on News Articles”. en. In: Web Information Systems Engineer-
ing - WISE 2012. Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, Nov. 2012, pp. 100–113. doi: 10.1007/978-3-642-35063-4
_8.

[81] Glasmachers, T. “Limits of End-to-End Learning”. In: Proceedings of the
Ninth Asian Conference on Machine Learning. Ed. by M.-L. Zhang and
Y.-K. Noh. Vol. 77. Proceedings of Machine Learning Research. PMLR,
Nov. 2017, pp. 17–32. url: http://proceedings.mlr.press/v77/glas
machers17a.html.

[82] Gomez, M., Rouvoy, R., Monperrus, M., and Seinturier, L. “A Recom-
mender System of Buggy App Checkers for App Store Moderators”. In:
2015 2nd ACM International Conference on Mobile Software Engineer-
ing and Systems. Florence, Italy: IEEE, May 2015, pp. 1–11. doi: 10.1
109/MobileSoft.2015.8.

[83] Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. Deep Learning.
Vol. 1. MIT press Cambridge, 2016.

[84] Graham, T. and Wright, S. “A Tale of Two Stories from "Below the Line":
Comment Fields at the Guardian”. en. In: The International Journal of
Press/Politics 20.3 (July 2015), pp. 317–338. doi: 10.1177/1940161215
581926.

[85] Grant, A. ““#discrimination”: The Online Response to a Case of a Breast-
feeding Mother Being Ejected from a UK Retail Premises”. en. In: Journal
of Human Lactation 32.1 (Feb. 2016), pp. 141–151. doi: 10.1177/0890
334415592403.

[86] Greenhalgh, T., Robert, G., Macfarlane, F., Bate, P., and Kyriakidou,
O. “Diffusion of Innovations in Service Organizations: Systematic Review
and Recommendations”. en. In: The Milbank Quarterly 82.4 (Dec. 2004),
pp. 581–629. doi: 10.1111/j.0887-378X.2004.00325.x.

213

https://www.spiegel.de/
https://doi.org/10.1007/3-540-28349-8_3
https://doi.org/10.1007/978-3-642-35063-4_8
https://doi.org/10.1007/978-3-642-35063-4_8
http://proceedings.mlr.press/v77/glasmachers17a.html
http://proceedings.mlr.press/v77/glasmachers17a.html
https://doi.org/10.1109/MobileSoft.2015.8
https://doi.org/10.1109/MobileSoft.2015.8
https://doi.org/10.1177/1940161215581926
https://doi.org/10.1177/1940161215581926
https://doi.org/10.1177/0890334415592403
https://doi.org/10.1177/0890334415592403
https://doi.org/10.1111/j.0887-378X.2004.00325.x

Appendix E Bibliography

[87] Guzman, E., El-Haliby, M., and Bruegge, B. “Ensemble Methods for
App Review Classification: An Approach for Software Evolution (N)”. In:
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). Nov. 2015, pp. 771–776. doi: 10.1109/ASE.2015.88.

[88] Guzman, E., Ibrahim, M., and Glinz, M. “Prioritizing User Feedback from
Twitter: A Survey Report”. In: 2017 IEEE/ACM 4th International Work-
shop on CrowdSourcing in Software Engineering (CSI-SE). May 2017,
pp. 21–24. doi: 10.1109/CSI-SE.2017.4.

[89] Guzman, E., Alkadhi, R., and Seyff, N. “A Needle in a Haystack: What
Do Twitter Users Say about Software?” In: 2016 IEEE 24th International
Requirements Engineering Conference (RE). IEEE. Sept. 2016, pp. 96–
105. doi: 10.1109/RE.2016.67.

[90] Guzman, E., Ibrahim, M., and Glinz, M. “A Little Bird Told Me: Mining
Tweets for Requirements and Software Evolution”. In: 2017 IEEE 25th
International Requirements Engineering Conference (RE). IEEE. 2017,
pp. 11–20.

[91] Guzman, E. and Maalej, W. “How Do Users Like This Feature? A Fine
Grained Sentiment Analysis of App Reviews”. In: 2014 IEEE 22nd Int.
Requirements Engineering Conf. (RE). IEEE. Aug. 2014, pp. 153–162.
doi: 10.1109/RE.2014.6912257.

[92] Ha, E. and Wagner, D. “Do Android Users Write about Electric Sheep?
Examining Consumer Reviews in Google Play”. In: 2013 IEEE 10th Con-
sumer Communications and Networking Conference (CCNC). Las Vegas,
NV: IEEE, Jan. 2013, pp. 149–157. doi: 10.1109/CCNC.2013.6488439.

[93] Haering, M. Classification of App Development Aspects Using Distil-
BERT Embeddings. en. url: https://gist.github.com/marlohaer
ing/cb6328c5e7492eb541d7dbd6d4b115c7 (visited on 03/09/2021).

[94] Haering, M., Andersen, J. S., Biemann, C., Loosen, W., Milde, B., Pietz,
T., Stoecker, C., Wiedemann, G., Zukunft, O., and Maalej, W. “Forum
4.0: An Open-Source User Comment Analysis Framework”. In: Proceed-
ings of the Software Demonstrations of the 16th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics. Associa-
tion for Computational Linguistics, 2021, to appear.

[95] Haering, M., Andersen, J. S., Biemann, C., Loosen, W., Milde, B., Pietz,
T., Stoecker, C., Wiedemann, G., Zukunft, O., and Maalej, W. Forum
4.0: An Open-Source User Comment Analysis Framework (Source Code).
2021. url: https://forum40.informatik.uni-hamburg.de/git/.

214

https://doi.org/10.1109/ASE.2015.88
https://doi.org/10.1109/CSI-SE.2017.4
https://doi.org/10.1109/RE.2016.67
https://doi.org/10.1109/RE.2014.6912257
https://doi.org/10.1109/CCNC.2013.6488439
https://gist.github.com/marlohaering/cb6328c5e7492eb541d7dbd6d4b115c7
https://gist.github.com/marlohaering/cb6328c5e7492eb541d7dbd6d4b115c7
https://forum40.informatik.uni-hamburg.de/git/

[96] Haering, M., Andersen, J. S., Biemann, C., Loosen, W., Milde, B., Pietz,
T., Stoecker, C., Wiedemann, G., Zukunft, O., and Maalej, W. Forum
4.0: An Open-Source User Comment Analysis Framework (Video). 2021.
url: https://forum40.informatik.uni-hamburg.de/demo.mp4.

[97] Haering, M., Bano, M., Zowghi, D., Kearney, M., and Maalej, W. “Au-
tomating the Evaluation of Education Apps With App Store Data”. In:
IEEE Transactions on Learning Technologies 14.1 (Feb. 2021), pp. 16–
27. doi: 10.1109/TLT.2021.3055121.

[98] Haering, M., Stanik, C., and Maalej, W. “Automatically Matching Bug
Reports with Related App Reviews”. In: 43rd International Conference
on Software Engineering (ICSE). 2021, to appear. Forthcoming.

[99] Haering, M., Stanik, C., and Maalej, W. Replication Package - Auto-
matically Matching Bug Reports With Related App Reviews. Accessed
Februrary 25, 2021. url: https://mast.informatik.uni-hamburg.de
/replication-packages/.

[100] Haque, T. U., Saber, N. N., and Shah, F. M. “Sentiment Analysis on
Large Scale Amazon Product Reviews”. In: 2018 IEEE International
Conference on Innovative Research and Development (ICIRD). Bangkok:
IEEE, May 2018, pp. 1–6. doi: 10.1109/ICIRD.2018.8376299.

[101] Häring, M. Replication Package - User Comment Analysis in Online
Journalism – Journalism, Users and Technology. en-US. url: https:

//scan.informatik.uni-hamburg.de/user-comment-analysis/ (vis-
ited on 04/04/2021).

[102] Häring, M., Loosen, W., and Maalej, W. “Who Is Addressed in This Com-
ment? Automatically Classifying Meta-Comments in News Comments”.
In: Proceedings of the ACM on Human-Computer Interaction 2.CSCW
(Nov. 2018), 67:1–67:20. doi: 10.1145/3274336.

[103] Harman, M., Jia, Y., and Zhang, Y. “App Store Mining and Analysis:
MSR for App Stores”. In: Proceedings of the 9th IEEE Working Confer-
ence on Mining Software Repositories. MSR ’12. IEEE. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 108–111. url: http://dl.acm.org/citat
ion.cfm?id=2664446.2664461 (visited on 07/12/2019).

[104] Hassan, S., Tantithamthavorn, C., Bezemer, C.-P., and Hassan, A. E.
“Studying the Dialogue between Users and Developers of Free Apps in the
Google Play Store”. en. In: Empirical Software Engineering 23.3 (June
2018), pp. 1275–1312. doi: 10.1007/s10664-017-9538-9.

215

https://forum40.informatik.uni-hamburg.de/demo.mp4
https://doi.org/10.1109/TLT.2021.3055121
https://mast.informatik.uni-hamburg.de/replication-packages/
https://mast.informatik.uni-hamburg.de/replication-packages/
https://doi.org/10.1109/ICIRD.2018.8376299
https://scan.informatik.uni-hamburg.de/user-comment-analysis/
https://scan.informatik.uni-hamburg.de/user-comment-analysis/
https://doi.org/10.1145/3274336
http://dl.acm.org/citation.cfm?id=2664446.2664461
http://dl.acm.org/citation.cfm?id=2664446.2664461
https://doi.org/10.1007/s10664-017-9538-9

Appendix E Bibliography

[105] Hawdon, J., Oksanen, A., and Räsänen, P. “Exposure to Online Hate in
Four Nations: A Cross-National Consideration”. en. In: Deviant Behavior
38.3 (Mar. 2017), pp. 254–266. doi: 10.1080/01639625.2016.1196985.

[106] Heaton, J. “An Empirical Analysis of Feature Engineering for Predictive
Modeling”. In: SoutheastCon 2016. Mar. 2016, pp. 1–6. doi: 10.1109/S
ECON.2016.7506650.

[107] Heise, N., Loosen, W., Reimer, J., and Schmidt, J.-H. “Including the
Audience. Comparing the Attitudes and Expectations of Journalists and
Users towards Participation in German TV News Journalism”. In: Jour-
nalism Studies 15.4 (July 2014), pp. 411–430. doi: 10.1080/1461670X
.2013.831232.

[108] Heise, N., Reimer, J., Loosen, W., Schmidt, J.-H., Heller, C., and Quader,
A. Publikumsinklusion Bei Der Süddeutschen Zeitung. Fallstudienbericht
Aus Dem DFG-Projekt „Die (Wieder-)Entdeckung Des Publikums“. Tech.
rep. 31. Hamburg: Hans-Bredow-Institut für Medienforschung an der
Universität Hamburg, Oct. 2014. url: http://www.hans-bredow-in
stitut.de/webfm_send/1050 (visited on 06/30/2015).

[109] Honnibal, M., Montani, I., Van Landeghem, S., and Boyd, A. spaCy:
Industrial-Strength Natural Language Processing in Python. Zenodo. 2020.
doi: 10.5281/zenodo.1212303.

[110] Houston, J. B., Hansen, G. J., and Nisbett, G. S. “Influence of User Com-
ments on Perceptions of Media Bias and Third-Person Effect in Online
News”. en. In: Electronic News 5.2 (June 2011), pp. 79–92. doi: 10.117
7/1931243111407618.

[111] Howard, J. and Ruder, S. “Universal Language Model Fine-Tuning for
Text Classification”. en. In: Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers).
Melbourne, Australia: Association for Computational Linguistics, 2018,
pp. 328–339. doi: 10.18653/v1/P18-1031.

[112] Hsu, Y.-C. and Ching, Y.-H. “A Review of Models and Frameworks for
Designing Mobile Learning Experiences and Environments”. en. In: Cana-
dian J. Learn. Technol. 41.3 (Oct. 2015). url: https://www.learntech
lib.org/p/161856/ (visited on 05/27/2019).

[113] “Requirements Engineering in the Solution Domain”. en. In: Require-
ments Engineering. Ed. by E. Hull, K. Jackson, and J. Dick. London:
Springer, 2005, pp. 109–129. doi: 10.1007/1-84628-075-3_6.

216

https://doi.org/10.1080/01639625.2016.1196985
https://doi.org/10.1109/SECON.2016.7506650
https://doi.org/10.1109/SECON.2016.7506650
https://doi.org/10.1080/1461670X.2013.831232
https://doi.org/10.1080/1461670X.2013.831232
http://www.hans-bredow-institut.de/webfm_send/1050
http://www.hans-bredow-institut.de/webfm_send/1050
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.1177/1931243111407618
https://doi.org/10.1177/1931243111407618
https://doi.org/10.18653/v1/P18-1031
https://www.learntechlib.org/p/161856/
https://www.learntechlib.org/p/161856/
https://doi.org/10.1007/1-84628-075-3_6

[114] Iacob, C. and Harrison, R. “Retrieving and Analyzing Mobile Apps Fea-
ture Requests from Online Reviews”. In: 2013 10th Working Conference
on Mining Software Repositories (MSR). IEEE. San Francisco, CA, USA:
IEEE, May 2013, pp. 41–44. doi: 10.1109/MSR.2013.6624001.

[115] IEEE Standard Glossary of Software Engineering Terminology. Tech. rep.
IEEE. doi: 10.1109/IEEESTD.1990.101064.

[116] Islam, A. and Inkpen, D. “Semantic Text Similarity Using Corpus-Based
Word Similarity and String Similarity”. In: ACM Transactions on Knowl-
edge Discovery from Data (TKDD) 2.2 (2008), pp. 1–25.

[117] Jánoky, L. V., Levendovszky, J., and Ekler, P. “An Analysis on the Re-
voking Mechanisms for JSON Web Tokens”. en. In: International Journal
of Distributed Sensor Networks 14.9 (Sept. 2018), p. 155014771880153.
doi: 10.1177/1550147718801535.

[118] JECRC University, Jaipur , India, Ajmera, R., and Dharamdasani, D. K.
“E-Learning Quality Criteria and Aspects”. In: International Journal of
Computer Trends and Technology 12.2 (June 2014), pp. 90–93. doi: 10
.14445/22312803/IJCTT-V12P117.

[119] Jigsaw. en. url: https://jigsaw.google.com/ (visited on 03/19/2021).

[120] Jijkoun, V. and de Rijke, M. “Recognizing Textual Entailment Using
Lexical Similarity”. In: Proceedings of the PASCAL Challenges Workshop
on Recognising Textual Entailment. Citeseer. 2005, pp. 73–76.

[121] Jo, Y. and Oh, A. H. “Aspect and Sentiment Unification Model for On-
line Review Analysis”. In: Proceedings of the Fourth ACM International
Conference on Web Search and Data Mining. WSDM ’11. New York,
NY, USA: Association for Computing Machinery, Feb. 2011, pp. 815–
824. doi: 10.1145/1935826.1935932.

[122] Johann, T., Stanik, C., Alizadeh B., A. M., and Maalej, W. “Safe: A
Simple Approach for Feature Extraction from App Descriptions and App
Reviews”. In: 2017 IEEE 25th International Requirements Engineering
Conference (RE). IEEE. 2017, pp. 21–30.

[123] Jorgensen, K. W. “Understanding the Conditions for Public Discourse:
Four Rules for Selecting Letters to the Editor”. In: Journalism Studies
3.1 (Jan. 2002), pp. 69–81. doi: 10.1080/14616700120107347.

[124] Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., and Mikolov,
T. “FastText.Zip: Compressing Text Classification Models”. In: arXiv
preprint arXiv:1612.03651 (2016). arXiv: 1612.03651.

217

https://doi.org/10.1109/MSR.2013.6624001
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1177/1550147718801535
https://doi.org/10.14445/22312803/IJCTT-V12P117
https://doi.org/10.14445/22312803/IJCTT-V12P117
https://jigsaw.google.com/
https://doi.org/10.1145/1935826.1935932
https://doi.org/10.1080/14616700120107347
https://arxiv.org/abs/1612.03651

Appendix E Bibliography

[125] Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. “Bag of Tricks for
Efficient Text Classification”. In: Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers. Valencia, Spain: Association for Computational
Linguistics, Apr. 2017, pp. 427–431. url: https://www.aclweb.org/an
thology/E17-2068.

[126] Kabadjov, M., Kruschwitz, U., Poesio, M., Steinberger, J., Valderrama,
J., and Zaragoza, H. “The OnForumS Corpus from the Shared Task on
Online Forum Summarisation at MultiLing 2015”. In: Proceedings of the
Tenth International Conference on Language Resources and Evaluation
(LREC’16). 2016, pp. 814–818.

[127] Kadhim, A. I. “Survey on Supervised Machine Learning Techniques for
Automatic Text Classification”. en. In: Artificial Intelligence Review 52.1
(June 2019), pp. 273–292. doi: 10.1007/s10462-018-09677-1.

[128] Kant, R., Sengamedu, S. H., and Kumar, K. S. “Comment Spam Detec-
tion by Sequence Mining”. en. In: Proceedings of the Fifth ACM Interna-
tional Conference on Web Search and Data Mining - WSDM ’12. Seattle,
Washington, USA: ACM Press, 2012, p. 183. doi: 10.1145/2124295.21
24318.

[129] Kay, R. and Kwak, J. “Creating an Evidence-Based Framework for Se-
lecting and Evaluating Mathematics Apps”. en. In: Society Information
Technology & Teacher Education International Conf. Association for the
Advancement of Computing in Education (AACE). Association for the
Advancement of Computing in Education (AACE), Mar. 2018, pp. 755–
760. url: https://www.learntechlib.org/primary/p/182607/ (vis-
ited on 11/27/2018).

[130] Kearney, M., Burden, K., and Schuck, S. “Theorising and Implementing
Mobile Learning: Using the iPAC Framework to Inform Research and
Teaching Practice”. In: Dordrecht, Netherlands: Springer, In Press, in
press.

[131] Kearney, M., Schuck, S., Burden, K., and Aubusson, P. “Viewing Mo-
bile Learning from a Pedagogical Perspective”. en. In: Research Learning
Technol. 20.1 (Feb. 2012), p. 14406. doi: 10.3402/rlt.v20i0.14406.

[132] Kenter, T. and De Rijke, M. “Short Text Similarity with Word Embed-
dings”. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management. 2015, pp. 1411–1420.

218

https://www.aclweb.org/anthology/E17-2068
https://www.aclweb.org/anthology/E17-2068
https://doi.org/10.1007/s10462-018-09677-1
https://doi.org/10.1145/2124295.2124318
https://doi.org/10.1145/2124295.2124318
https://www.learntechlib.org/primary/p/182607/
https://doi.org/10.3402/rlt.v20i0.14406

[133] Kim, Y. “Convolutional Neural Networks for Sentence Classification”. In:
arXiv preprint arXiv:1408.5882 (2014). arXiv: 1408.5882.

[134] Ko, A. J., Myers, B. A., and Chau, D. H. “A Linguistic Analysis of How
People Describe Software Problems”. In: Visual Languages and Human-
Centric Computing (VL/HCC’06). IEEE. 2006, pp. 127–134.

[135] Koteyko, N., Jaspal, R., and Nerlich, B. “Climate Change and ‘Climate-
gate’ in Online Reader Comments: A Mixed Methods Study: Climate
Change and ‘Climategate’ in Online Reader Comments”. en. In: The Ge-
ographical Journal 179.1 (Mar. 2013), pp. 74–86. doi: 10.1111/j.1475
-4959.2012.00479.x.

[136] Kotsiantis, S. B. “Supervised Machine Learning: A Review of Classifi-
cation Techniques”. In: Proceedings of the 2007 Conference on Emerging
Artificial Intelligence Applications in Computer Engineering: Real Word
AI Systems with Applications in EHealth, HCI, Information Retrieval
and Pervasive Technologies. NLD: IOS Press, 2007, pp. 3–24.

[137] Kramp, L. and Loosen, W. “The Transformation of Journalism: From
Changing Newsroom Cultures to a New Communicative Orientation?”
In: Communicative Figurations. Palgrave Macmillan, Cham, 2018, pp. 205–
239.

[138] Krusche, S. and Bruegge, B. “User Feedback in Mobile Development”.
en. In: Proceedings of the 2nd International Workshop on Mobile Devel-
opment Lifecycle - MobileDeLi ’14. Portland, Oregon, USA: ACM Press,
2014, pp. 25–26. doi: 10.1145/2688412.2688420.

[139] Ksiazek, T. B., Peer, L., and Lessard, K. “User Engagement with Online
News: Conceptualizing Interactivity and Exploring the Relationship be-
tween Online News Videos and User Comments”. en. In: New Media &
Society 18.3 (Mar. 2016), pp. 502–520. doi: 10.1177/1461444814545073.

[140] Kümpel, A. S. and Springer, N. “Qualität Kommentieren. Die Wirkung
von Nutzerkommentaren Auf Die Wahrnehmung Journalistischer Qual-
ität”. In: Studies in Communication | Media 5.3 (2016), pp. 353–366. doi:
10.5771/2192-4007-2016-3-353.

[141] Kurtanović, Z. “Mining and Analyzing User Rationale in Software Engi-
neering”. en. In: (2018). url: https://ediss.sub.uni-hamburg.de/ha
ndle/ediss/7722 (visited on 04/02/2021).

219

https://arxiv.org/abs/1408.5882
https://doi.org/10.1111/j.1475-4959.2012.00479.x
https://doi.org/10.1111/j.1475-4959.2012.00479.x
https://doi.org/10.1145/2688412.2688420
https://doi.org/10.1177/1461444814545073
https://doi.org/10.5771/2192-4007-2016-3-353
https://ediss.sub.uni-hamburg.de/handle/ediss/7722
https://ediss.sub.uni-hamburg.de/handle/ediss/7722

Appendix E Bibliography

[142] Kurtanovic, Z. and Maalej, W. “Automatically Classifying Functional
and Non-Functional Requirements Using Supervised Machine Learning”.
In: 2017 IEEE 25th International Requirements Engineering Conference
(RE). Lisbon, Portugal: IEEE, Sept. 2017, pp. 490–495. doi: 10.1109/R
E.2017.82.

[143] Kurtanović, Z. and Maalej, W. “Mining User Rationale from Software
Reviews”. In: 2017 IEEE 25th Int. Requirements Engineering Conf. (RE).
IEEE. Sept. 2017, pp. 61–70. doi: 10.1109/RE.2017.86.

[144] Kurtanovic, Z. and Maalej, W. “On User Rationale in Software Engineer-
ing”. en. In: Requirements Engineering 23.3 (Sept. 2018), pp. 357–379.
doi: 10.1007/s00766-018-0293-2.

[145] Lamkanfi, A., Demeyer, S., Giger, E., and Goethals, B. “Predicting the
Severity of a Reported Bug”. In: 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010). IEEE. 2010, pp. 1–10.

[146] Le, Q. and Mikolov, T. “Distributed Representations of Sentences and
Documents”. In: Proceedings of the 31st Int. Conf. Machine Learning
(ICML-14). 2014, pp. 1188–1196.

[147] LeCun, Y., Bengio, Y., and Hinton, G. “Deep Learning”. en. In: Nature
521.7553 (May 2015), pp. 436–444. doi: 10.1038/nature14539.

[148] Li, H., Zhang, L., Zhang, L., and Shen, J. “A User Satisfaction Analysis
Approach for Software Evolution”. In: IEEE International Conference on
Progress in Informatics and Computing. Vol. 2. 2010.

[149] Li-Ping Jing, Hou-Kuan Huang, and Hong-Bo Shi. “Improved Feature
Selection Approach TFIDF in Text Mining”. In: Proceedings. Interna-
tional Conference on Machine Learning and Cybernetics. Vol. 2. Nov.
2002, 944–946 vol.2. doi: 10.1109/ICMLC.2002.1174522.

[150] Loke, J. “Old Turf, New Neighbours. Journalists’ Perspectives on Their
New Shared Space”. In: Journalism Practice 6.2 (2012), pp. 233–249.

[151] Loke, J. “Public Expressions of Private Sentiments: Unveiling the Pulse of
Racial Tolerance through Online News Readers’ Comments”. In: Howard
Journal of Communications 23.3 (July 2012), pp. 235–252. doi: 10.108
0/10646175.2012.695643.

[152] Lombard, M., Snyder-Duch, J., and Bracken, C. C. “Content Analysis in
Mass Communication: Assessment and Reporting of Intercoder Reliabil-
ity”. en. In: Human Communication Research 28.4 (Oct. 2002), pp. 587–
604. doi: 10.1111/j.1468-2958.2002.tb00826.x.

220

https://doi.org/10.1109/RE.2017.82
https://doi.org/10.1109/RE.2017.82
https://doi.org/10.1109/RE.2017.86
https://doi.org/10.1007/s00766-018-0293-2
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ICMLC.2002.1174522
https://doi.org/10.1080/10646175.2012.695643
https://doi.org/10.1080/10646175.2012.695643
https://doi.org/10.1111/j.1468-2958.2002.tb00826.x

[153] Loosen, W., Häring, M., Kurtanović, Z., Merten, L., Reimer, J., van
Roessel, L., and Maalej, W. “Making Sense of User Comments: Identify-
ing Journalists’ Requirements for a Comment Analysis Framework”. In:
SCM Studies in Communication and Media 6.4 (2018), pp. 333–364.

[154] Loosen, W. and Schmidt, J.-H. “(RE-)DISCOVERING THE AUDIENCE:
The Relationship between Journalism and Audience in Networked Dig-
ital Media”. en. In: Information, Communication & Society 15.6 (Aug.
2012), pp. 867–887. doi: 10.1080/1369118X.2012.665467.

[155] Loosen, W. and Schmidt, J.-H. “Multi-Method Approaches”. In: The
SAGE handbook of digital journalism (2016), pp. 562–575.

[156] Loosen, W., Schmidt, J.-H., Heise, N., and Reimer, J. Publikumsin-
klusion Bei Einem ARD-Polittalk. Fallstudienbericht Aus Dem DFG-
Projekt „Die (Wieder-)Entdeckung Des Publikums“. Tech. rep. 28. Ham-
burg: Hans-Bredow-Institut für Medienforschung an der Universität Ham-
burg, Dec. 2013. url: http://www.hans-bredow-institut.de/webfm
_send/739 (visited on 06/30/2015).

[157] Loosen, W., Schmidt, J.-H., Heise, N., Reimer, J., and Scheler, M. Pub-
likumsinklusion Bei Der Tagesschau. Fallstudienbericht Aus Dem DFG-
Projekt „Die (Wieder-)Entdeckung Des Publikums“. Tech. rep. 26. Ham-
burg: Hans-Bredow-Institut für Medienforschung an der Universität Ham-
burg, Mar. 2013. url: http://www.hans-bredow-institut.de/webfm
_send/709 (visited on 06/30/2015).

[158] Lopez, M. M. and Kalita, J. “Deep Learning Applied to NLP”. In: (Mar.
2017). arXiv: 1703.03091. url: http://arxiv.org/abs/1703.03091
(visited on 07/05/2019).

[159] Loshchilov, I. and Hutter, F. “Decoupled Weight Decay Regularization”.
In: International Conference on Learning Representations. 2019. url:
https://openreview.net/forum?id=Bkg6RiCqY7.

[160] Maalej, W., Kurtanović, Z., Nabil, H., and Stanik, C. “On the Automatic
Classification of App Reviews”. en. In: Requirements Engineering 21.3
(Sept. 2016), pp. 311–331. doi: 10.1007/s00766-016-0251-9.

[161] Maalej, W. and Nabil, H. “Bug Report, Feature Request, or Simply
Praise? On Automatically Classifying App Reviews”. In: 2015 IEEE 23rd
Int. Requirements Engineering Conf. (RE). Aug. 2015, pp. 116–125. doi:
10.1109/RE.2015.7320414.

[162] Maalej, W., Nayebi, M., Johann, T., and Ruhe, G. “Toward Data-Driven
Requirements Engineering”. In: IEEE Software 33.1 (2016), pp. 48–54.

221

https://doi.org/10.1080/1369118X.2012.665467
http://www.hans-bredow-institut.de/webfm_send/739
http://www.hans-bredow-institut.de/webfm_send/739
http://www.hans-bredow-institut.de/webfm_send/709
http://www.hans-bredow-institut.de/webfm_send/709
https://arxiv.org/abs/1703.03091
http://arxiv.org/abs/1703.03091
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1109/RE.2015.7320414

Appendix E Bibliography

[163] Maalej, W. and Pagano, D. “On the Socialness of Software”. In: 2011
IEEE Ninth International Conference on Dependable, Autonomic and
Secure Computing. IEEE. 2011, pp. 864–871.

[164] Maalej, W. and Robillard, M. P. “Patterns of Knowledge in API Refer-
ence Documentation”. In: IEEE Transactions on Software Engineering
39.9 (Sept. 2013), pp. 1264–1282. doi: 10.1109/TSE.2013.12.

[165] Malkov, Y. A. and Yashunin, D. A. “Efficient and Robust Approxi-
mate Nearest Neighbor Search Using Hierarchical Navigable Small World
Graphs”. In: IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 42.4 (Apr. 2020), pp. 824–836. doi: 10.1109/TPAMI.2018.2889
473.

[166] Mandya, A., Siddharthan, A., and Wyner, A. “Scrutable Feature Sets for
Stance Classification”. In: Proceedings of the Third Workshop on Argu-
ment Mining (ArgMining2016). 2016, pp. 60–69.

[167] Manning, C. and Schutze, H. Foundations of Statistical Natural Language
Processing. MIT press, 1999.

[168] Manning, C. D., Raghavan, P., and Schütze, H. “Chapter 8: Evaluation
in Information Retrieval”. In: Introduction to information retrieval 10
(2009), pp. 1–18.

[169] Martens, D. “Improving the Quality of User Feedback for Continuous
Software Evolution”. en. In: (2020). url: https://ediss.sub.uni-ham
burg.de/handle/ediss/8398 (visited on 03/27/2021).

[170] Martens, D. and Maalej, W. “Extracting and Analyzing Context Infor-
mation in User-Support Conversations on Twitter”. In: 2019 IEEE 27th
International Requirements Engineering Conference (RE). IEEE. Jeju Is-
land, Korea (South): IEEE, Sept. 2019, pp. 131–141. doi: 10.1109/RE
.2019.00024.

[171] Martens, D. and Maalej, W. “Release Early, Release Often, and Watch
Your Users’ Emotions: Lessons from Emotional Patterns”. In: IEEE Soft-
ware 36.5 (2019), pp. 32–37.

[172] Martin, W., Sarro, F., Jia, Y., Zhang, Y., and Harman, M. “A Survey
of App Store Analysis for Software Engineering”. In: IEEE Trans. Softw.
Eng. 43.9 (Sept. 2017), pp. 817–847. doi: 10.1109/TSE.2016.2630689.

222

https://doi.org/10.1109/TSE.2013.12
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://ediss.sub.uni-hamburg.de/handle/ediss/8398
https://ediss.sub.uni-hamburg.de/handle/ediss/8398
https://doi.org/10.1109/RE.2019.00024
https://doi.org/10.1109/RE.2019.00024
https://doi.org/10.1109/TSE.2016.2630689

[173] Massaro, M., Dumay, J., and Garlatti, A. “Public Sector Knowledge Man-
agement: A Structured Literature Review”. en. In: Journal of Knowledge
Management 19.3 (May 2015), pp. 530–558. doi: 10.1108/JKM-11-201
4-0466.

[174] McElroy, K. “Where Old (Gatekeepers) Meets New (Media)”. In: Jour-
nalism Practice 7.6 (Dec. 2013), pp. 755–771. doi: 10.1080/17512786
.2013.774117.

[175] McEnroy, K. “Where Old (Gatekeepers) Meets New (Media): Herding
Reader Comments into Print”. In: Journalism Practice 7.6 (2013), pp. 755–
771.

[176] McIlroy, S., Ali, N., and Hassan, A. E. “Fresh Apps: An Empirical Study
of Frequently-Updated Mobile Apps in the Google Play Store”. en. In:
Empirical Software Engineering 21.3 (June 2016), pp. 1346–1370. doi:
10.1007/s10664-015-9388-2.

[177] Meguebli, Y., Kacimi, M., Doan, B.-l., and Popineau, F. “Building Rich
User Profiles for Personalized News Recommendation.” In: UMAP Work-
shops. 2014.

[178] Michalski, R. S. “A Theory and Methodology of Inductive Learning”. In:
Machine Learning, Volume I. Elsevier, 1983, pp. 83–134.

[179] Mihalcea, R., Corley, C., and Strapparava, C. “Corpus-Based and Knowledge-
Based Measures of Text Semantic Similarity”. In: Aaai. Vol. 6. 2006,
pp. 775–780.

[180] Mikolov, T., Chen, K., Corrado, G., and Dean, J. “Efficient Estimation of
Word Representations in Vector Space”. In: arXiv preprint arXiv:1301.3781
(2013). arXiv: 1301.3781.

[181] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. “Dis-
tributed Representations of Words and Phrases and Their Composition-
ality”. In: arXiv:1310.4546 [cs, stat] (Oct. 2013). arXiv: 1310.4546 [cs,

stat]. url: http://arxiv.org/abs/1310.4546.

[182] Mining User Generated Content. en. url: https://www.taylorfranci
s.com/books/e/9780429087615 (visited on 06/17/2019).

[183] Moreo, A., Romero, M., Castro, J. L., and Zurita, J. M. “Lexicon-Based
Comments-Oriented News Sentiment Analyzer System”. In: Expert Sys-
tems with Applications 39.10 (Aug. 2012), pp. 9166–9180. doi: 10.1016
/j.eswa.2012.02.057.

223

https://doi.org/10.1108/JKM-11-2014-0466
https://doi.org/10.1108/JKM-11-2014-0466
https://doi.org/10.1080/17512786.2013.774117
https://doi.org/10.1080/17512786.2013.774117
https://doi.org/10.1007/s10664-015-9388-2
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
https://www.taylorfrancis.com/books/e/9780429087615
https://www.taylorfrancis.com/books/e/9780429087615
https://doi.org/10.1016/j.eswa.2012.02.057
https://doi.org/10.1016/j.eswa.2012.02.057

Appendix E Bibliography

[184] Muddiman, A. and Stroud, N. J. 10 Things We Learned by Analyzing 9
Million Comments from The New York Times. June 2016. url: http://e
ngagingnewsproject.org/research/10-things-we-learned-by-anal

yzing-9-million-comments-from-the-new-york-times/#fn-2495-1

(visited on 06/21/2016).

[185] Müller, A. “Analyse von Wort-Vektoren Deutscher Textkorpora”. Bach-
elor’s Thesis. Technische Universität Berlin, July 2015. url: http://de
vmount.github.io/GermanWordEmbeddings/.

[186] Naab, T. K., Heinbach, D., Ziegele, M., and Grasberger, M.-T. “Com-
ments and Credibility: How Critical User Comments Decrease Perceived
News Article Credibility”. en. In: Journalism Studies 21.6 (Apr. 2020),
pp. 783–801. doi: 10.1080/1461670X.2020.1724181.

[187] Nayebi, M., Dicke, L., Ittyipe, R., Carlson, C., and Ruhe, G. “ESSMArT
Way to Manage User Requests”. In: CoRR abs/1808.03796 (2018). arXiv:
1808.03796. url: http://arxiv.org/abs/1808.03796.

[188] Nayebi, M. and Ruhe, G. “Asymmetric Release Planning-Compromising
Satisfaction against Dissatisfaction”. In: IEEE Transactions on Software
Engineering (2018).

[189] Neuberger, C. “Internet, Journalismus Und Öffentlichkeit. Analyse Des
Medienumbruchs. S. 19-105”. In: Christoph Neuberger, Christian Nuern-
bergk (2009), p. 79.

[190] Neuendorf, K. A. The Content Analysis Guidebook. Sage, 2016.

[191] North, C. “Toward Measuring Visualization Insight”. In: IEEE Computer
Graphics and Applications 26.3 (May 2006), pp. 6–9. doi: 10.1109/MCG
.2006.70.

[192] ONLINE, Z. “Netiquette”. de-DE. In: Die Zeit (Aug. 2013). url: http
s://www.zeit.de/administratives/2010-03/netiquette (visited on
03/17/2021).

[193] Ouyang, X., Zhou, P., Li, C. H., and Liu, L. “Sentiment Analysis Using
Convolutional Neural Network”. In: 2015 IEEE International Confer-
ence on Computer and Information Technology; Ubiquitous Computing
and Communications; Dependable, Autonomic and Secure Computing;
Pervasive Intelligence and Computing. Oct. 2015, pp. 2359–2364. doi:
10.1109/CIT/IUCC/DASC/PICOM.2015.349.

224

http://engagingnewsproject.org/research/10-things-we-learned-by-analyzing-9-million-comments-from-the-new-york-times/#fn-2495-1
http://engagingnewsproject.org/research/10-things-we-learned-by-analyzing-9-million-comments-from-the-new-york-times/#fn-2495-1
http://engagingnewsproject.org/research/10-things-we-learned-by-analyzing-9-million-comments-from-the-new-york-times/#fn-2495-1
http://devmount.github.io/GermanWordEmbeddings/
http://devmount.github.io/GermanWordEmbeddings/
https://doi.org/10.1080/1461670X.2020.1724181
https://arxiv.org/abs/1808.03796
http://arxiv.org/abs/1808.03796
https://doi.org/10.1109/MCG.2006.70
https://doi.org/10.1109/MCG.2006.70
https://www.zeit.de/administratives/2010-03/netiquette
https://www.zeit.de/administratives/2010-03/netiquette
https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.349

[194] Pagano, D. and Maalej, W. “User Feedback in the Appstore: An Empir-
ical Study”. In: 2013 21st IEEE International Requirements Engineering
Conference (RE). IEEE. 2013, pp. 125–134.

[195] Palomba, F., Linares-Vasquez, M., Bavota, G., Oliveto, R., Di Penta,
M., Poshyvanyk, D., and De Lucia, A. “User Reviews Matter! Track-
ing Crowdsourced Reviews to Support Evolution of Successful Apps”. In:
2015 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME). Bremen, Germany: IEEE, Sept. 2015, pp. 291–300. doi:
10.1109/ICSM.2015.7332475.

[196] Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C. A., Canfora, G.,
and Gall, H. C. “How Can i Improve My App? Classifying User Re-
views for Software Maintenance and Evolution”. In: 2015 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE. 2015, pp. 281–290.

[197] Park, D., Sachar, S., Diakopoulos, N., and Elmqvist, N. “Supporting
Comment Moderators in Identifying High Quality Online News Com-
ments”. In: Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems. ACM, 2016, pp. 1114–1125.

[198] Peacock, C., Scacco, J. M., and Jomini Stroud, N. “The Deliberative
Influence of Comment Section Structure”. en. In: Journalism (July 2017).
doi: 10.1177/1464884917711791.

[199] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-
derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, É. “Scikit-Learn: Machine Learning in Python”. In: The Jour-
nal of Machine Learning Research 12.null (Nov. 2011), pp. 2825–2830.

[200] Pennington, J., Socher, R., and Manning, C. D. “Glove: Global Vectors
for Word Representation.” In: EMNLP. Vol. 14. 2014, pp. 1532–1543.

[201] Pentheroudakis, J. E., Bradlee, D. G., and Knoll, S. S. “Tokenizer for
a Natural Language Processing System”. en. Pat. US7092871B2. Aug.
2006. url: https://patents.google.com/patent/US7092871B2/en
(visited on 03/13/2021).

[202] Perikos, I. and Hatzilygeroudis, I. “Aspect Based Sentiment Analysis
in Social Media with Classifier Ensembles”. In: 2017 IEEE/ACIS 16th
International Conference on Computer and Information Science (ICIS).
Wuhan, China: IEEE, May 2017, pp. 273–278. doi: 10.1109/ICIS.201
7.7960005.

225

https://doi.org/10.1109/ICSM.2015.7332475
https://doi.org/10.1177/1464884917711791
https://patents.google.com/patent/US7092871B2/en
https://doi.org/10.1109/ICIS.2017.7960005
https://doi.org/10.1109/ICIS.2017.7960005

Appendix E Bibliography

[203] Petticrew, M. and Roberts, H. Systematic Reviews in the Social Sciences:
A Practical Guide. en. Malden, Oxford, Carlton: Blackwell, 2006.

[204] Pohl, K. Requirements Engineering: Fundamentals, Principles, and Tech-
niques. Springer, 2010.

[205] Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Man-
andhar, S., AL-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq,
O., Hoste, V., Apidianaki, M., Tannier, X., Loukachevitch, N., Kotel-
nikov, E., Bel, N., Jiménez-Zafra, S. M., and Eryiğit, G. “SemEval-2016
Task 5: Aspect Based Sentiment Analysis”. en. In: Proceedings of the
10th International Workshop on Semantic Evaluation (SemEval-2016).
San Diego, California: Association for Computational Linguistics, 2016,
pp. 19–30. doi: 10.18653/v1/S16-1002.

[206] Porter, M. F. “An Algorithm for Suffix Stripping.” In: Program 14.3
(1980), pp. 130–137.

[207] Prochazka, F. and Schweiger, W. “Medienkritik Online: Was Kommen-
tierende Nutzer Am Journalismus Kritisieren”. In: Studies in Communi-
cation | Media 5.4 (2016), pp. 454–469. doi: 10.5771/2192-4007-2016
-4-454.

[208] Pruksachatkun, Y., Yeres, P., Liu, H., Phang, J., Htut, P. M., Wang, A.,
Tenney, I., and Bowman, S. R. “Jiant: A Software Toolkit for Research on
General-Purpose Text Understanding Models”. en. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics:
System Demonstrations. Online: Association for Computational Linguis-
tics, 2020, pp. 109–117. doi: 10.18653/v1/2020.acl-demos.15.

[209] PyTorch. en. url: https://www.pytorch.org (visited on 03/28/2021).

[210] Quan, X., Liu, G., Lu, Z., Ni, X., and Wenyin, L. “Short Text Similarity
Based on Probabilistic Topics”. In: Knowledge and information systems
25.3 (2010), pp. 473–491.

[211] Reader, B. “Air Mail: NPR Sees "Community" in Letters From Listen-
ers”. In: Journal of Broadcasting & Electronic Media 51.4 (Dec. 2007),
pp. 651–669. doi: 10.1080/08838150701626529.

[212] Reich, Z. “User Comments: The Transformation of Participatory Space”.
In: Participatory Journalism. Guarding Open Gates at Online Newspa-
pers. Ed. by J. B. Singer, A. Hermida, D. Domingo, A. Heinonen, S.
Paulussen, T. Quandt, Z. Reich, and M. Vujnovic. Chichester: Wiley-
Blackwell, 2011, pp. 96–117.

226

https://doi.org/10.18653/v1/S16-1002
https://doi.org/10.5771/2192-4007-2016-4-454
https://doi.org/10.5771/2192-4007-2016-4-454
https://doi.org/10.18653/v1/2020.acl-demos.15
https://www.pytorch.org
https://doi.org/10.1080/08838150701626529

[213] Reimer, J., Häring, M., Loosen, W., Maalej, W., and Merten, L. “Con-
tent Analyses of User Comments in Journalism: A Systematic Literature
Review Spanning Communication Studies and Computer Science”. In:
Digital Journalism (RDIJ) (2021), to appear. doi: 10.1080/21670811
.2021.1882868. Forthcoming.

[214] Reimer, J., Heise, N., Loosen, W., Schmidt, J.-H., Klein, J., Attrodt, A.,
and Quader, A. Publikumsinklusion Beim "Freitag". Fallstudienbericht
Aus Dem DFG-Projekt „Die (Wieder-)Entdeckung Des Publikums“. Tech.
rep. 36. Hamburg: Hans-Bredow-Institut für Medienforschung an der
Universität Hamburg, Dec. 2015. url: http://www.hans- bredow- i
nstitut.de/webfm_send/1115 (visited on 01/30/2016).

[215] Reimers, N. and Gurevych, I. “Sentence-BERT: Sentence Embeddings
Using Siamese BERT-Networks”. In: Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Hong Kong, China: Association for Computational Linguistics,
Nov. 2019, pp. 3982–3992. doi: 10.18653/v1/D19-1410.

[216] Rosen, J. “The People Formerly Known as the Audience”. In: The Social
Media Reader. NYU Press, 2012, pp. 13–16.

[217] Ruiz, C., Domingo, D., Micó, J. L., Díaz-Noci, J., Meso, K., and Masip,
P. “Public Sphere 2.0? The Democratic Qualities of Citizen Debates in
Online Newspapers”. In: The International Journal of Press/Politics 16.4
(2011), pp. 463–487.

[218] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. “Learning Represen-
tations by Back-Propagating Errors”. In: Cognitive modeling 5.3 (1988),
p. 1.

[219] Sanh, V., Debut, L., Chaumond, J., and Wolf, T. “DistilBERT, a Dis-
tilled Version of BERT: Smaller, Faster, Cheaper and Lighter”. In: arXiv
preprint arXiv:1910.01108 (2019). arXiv: 1910.01108.

[220] Schabus, D., Skowron, M., and Trapp, M. “One Million Posts: A Data
Set of German Online Discussions”. en. In: ACM Press, 2017, pp. 1241–
1244. doi: 10.1145/3077136.3080711.

[221] Schmidt, A. and Wiegand, M. “A Survey on Hate Speech Detection Us-
ing Natural Language Processing”. en. In: Proceedings of the Fifth In-
ternational Workshop on Natural Language Processing for Social Media.
Valencia, Spain: Association for Computational Linguistics, 2017, pp. 1–
10. doi: 10.18653/v1/W17-1101.

227

https://doi.org/10.1080/21670811.2021.1882868
https://doi.org/10.1080/21670811.2021.1882868
http://www.hans-bredow-institut.de/webfm_send/1115
http://www.hans-bredow-institut.de/webfm_send/1115
https://doi.org/10.18653/v1/D19-1410
https://arxiv.org/abs/1910.01108
https://doi.org/10.1145/3077136.3080711
https://doi.org/10.18653/v1/W17-1101

Appendix E Bibliography

[222] Schmidt, J.-H. and Loosen, W. “Both Sides of the Story: Assessing Audi-
ence Participation in Journalism through the Concept of Inclusion Dis-
tance”. en. In: Digital Journalism 3.2 (Mar. 2015), pp. 259–278. doi:
10.1080/21670811.2014.930243.

[223] Schmidt, J.-H., Loosen, W., Heise, N., and Reimer, J. “Journalism and
Participatory Practices–Blurring or Reinforcement of Boundaries between
Journalism and Audiences?” In: Recherches en Communication 39.39
(2013), pp. 91–109.

[224] Schuth, A., Marx, M., and De Rijke, M. “Extracting the Discussion Struc-
ture in Comments on News-Articles”. In: Proceedings of the 9th Annual
ACM International Workshop on Web Information and Data Manage-
ment. ACM, 2007, pp. 97–104.

[225] Seger, C. An Investigation of Categorical Variable Encoding Techniques
in Machine Learning: Binary versus One-Hot and Feature Hashing. eng.
2018. url: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2
37426 (visited on 03/12/2021).

[226] Sehl, A. and Naab, T. K. “User Generated Content Im Auge Der Kommu-
nikationswissenschaft: Deskription Eines Forschungsfeldes”. In: Von Der
Gutenberg-Galaxis Zur Google-Galaxis. Alte Und Neue Grenzvermessun-
gen Nach 50 Jahren DGPuK. Ed. by B. Stark, O. Quiring, and N. Jackob.
Konstanz: UVK, 2014, pp. 117–133.

[227] Settles, B. “Active Learning Literature Survey”. In: (July 2010).

[228] Siegal, N. “What Do You Do With a Stolen van Gogh? This Thief
Knows”. en-US. In: The New York Times (May 2020). url: https://w
ww.nytimes.com/2020/05/27/arts/design/van-gogh-stolen.html

(visited on 03/17/2021).

[229] Sikorski, C. von. “The Effects of Reader Comments on the Perception
of Personalized Scandals: Exploring the Roles of Comment Valence and
Commenters’ Social Status”. en. In: International Journal of Communi-
cation 10.0 (Aug. 2016), p. 22. url: http://ijoc.org/index.php/ijo
c/article/view/5748 (visited on 04/19/2018).

[230] Simmons, A. and Hoon, L. “Agree to Disagree: On Labelling Helpful
App Reviews”. In: Proceedings of the 28th Australian Conference on
Computer-Human Interaction. 2016, pp. 416–420.

228

https://doi.org/10.1080/21670811.2014.930243
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237426
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237426
https://www.nytimes.com/2020/05/27/arts/design/van-gogh-stolen.html
https://www.nytimes.com/2020/05/27/arts/design/van-gogh-stolen.html
http://ijoc.org/index.php/ijoc/article/view/5748
http://ijoc.org/index.php/ijoc/article/view/5748

[231] Sitikhu, P., Pahi, K., Thapa, P., and Shakya, S. “A Comparison of Seman-
tic Similarity Methods for Maximum Human Interpretability”. In: 2019
Artificial Intelligence for Transforming Business and Society (AITB).
Vol. 1. 2019, pp. 1–4.

[232] Somasundaran, S. and Wiebe, J. “Recognizing Stances in Ideological On-
Line Debates”. In: Proceedings of the NAACL HLT 2010 Workshop on
Computational Approaches to Analysis and Generation of Emotion in
Text. CAAGET ’10. USA: Association for Computational Linguistics,
2010, pp. 116–124.

[233] Song, W. and Cai, J. “End-to-End Deep Neural Network for Automatic
Speech Recognition”. In: Standford CS224D Reports (2015).

[234] Sood, S. O., Churchill, E. F., and Antin, J. “Automatic Identification of
Personal Insults on Social News Sites”. In: Journal of the Association for
Information Science and Technology 63.2 (2012), pp. 270–285.

[235] Spanoudakis, G. and Zisman, A. “SOFTWARE TRACEABILITY: A
ROADMAP”. en. In: Handbook Of Software Engineering And Knowledge
Engineering. WORLD SCIENTIFIC, Aug. 2005, pp. 395–428. doi: 10.1
142/9789812775245_0014.

[236] Sparck Jones, K. “A Statistical Interpretation of Term Specificity and
Its Application in Retrieval”. In: Journal of documentation 28.1 (1972),
pp. 11–21.

[237] Springer, N., Engelmann, I., and Pfaffinger, C. “User Comments: Motives
and Inhibitors to Write and Read”. In: Information, Communication &
Society 18.7 (July 2015), pp. 798–815. doi: 10.1080/1369118X.2014.9
97268.

[238] Stanik, C. “Requirements Intelligence : On the Analysis of User Feed-
back”. en. In: (2020). url: https://ediss.sub.uni-hamburg.de/hand
le/ediss/8392 (visited on 03/27/2021).

[239] Stanik, C., Haering, M., and Maalej, W. Replication Package - Classify-
ing Multilingual User Feedback Using Traditional Machine Learning and
Deep Learning. en-US. url: https://mast.informatik.uni-hamburg
.de/replication-packages/ (visited on 03/09/2021).

[240] Stanik, C., Haering, M., and Maalej, W. “Classifying Multilingual User
Feedback Using Traditional Machine Learning and Deep Learning”. In:
IEEE 27th International Requirements Engineering Conference Work-
shops (REW). 2019, pp. 220–226. doi: 10.1109/REW.2019.00046.

229

https://doi.org/10.1142/9789812775245_0014
https://doi.org/10.1142/9789812775245_0014
https://doi.org/10.1080/1369118X.2014.997268
https://doi.org/10.1080/1369118X.2014.997268
https://ediss.sub.uni-hamburg.de/handle/ediss/8392
https://ediss.sub.uni-hamburg.de/handle/ediss/8392
https://mast.informatik.uni-hamburg.de/replication-packages/
https://mast.informatik.uni-hamburg.de/replication-packages/
https://doi.org/10.1109/REW.2019.00046

Appendix E Bibliography

[241] Stanik, C., Häring, M., Jesdabodi, C., and Maalej, W. “Which App Fea-
tures Are Being Used? Learning App Feature Usages from Interaction
Data”. In: 28th IEEE International Requirements Engineering Confer-
ence (RE). Ed. by T. D. Breaux, A. Zisman, S. Fricker, and M. Glinz.
IEEE, 2020, pp. 66–77. doi: 10.1109/RE48521.2020.00019.

[242] Stanik, C., Montgomery, L., Martens, D., Fucci, D., and Maalej, W. “A
Simple NLP-Based Approach to Support Onboarding and Retention in
Open Source Communities”. In: 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE. 2018, pp. 172–182.

[243] Statistia. “Number of Apps Available in Leading App Stores as of 3rd
Quarter 2019”. In: (). url: https://www.statista.com/statistics/2
76623.

[244] Stone, M. “Cross-Validatory Choice and Assessment of Statistical Predic-
tions”. en. In: Journal of the Royal Statistical Society: Series B (Method-
ological) 36.2 (Jan. 1974), pp. 111–133. doi: 10.1111/j.2517-6161.19
74.tb00994.x.

[245] Stroud, N. J., Scacco, J. M., and Curry, A. L. “The Presence and Use of
Interactive Features on News Websites”. In: Digital Journalism 4.3 (Apr.
2016), pp. 339–358. doi: 10.1080/21670811.2015.1042982.

[246] Stroud, N. J., Van Duyn, E., and Peacock, C. “News Commenters and
News Comment Readers”. In: Microsoft Word-Egaging News Projet (2016),
pp. 1–21.

[247] Sun, C., Huang, L., and Qiu, X. “Utilizing BERT for Aspect-Based Sen-
timent Analysis via Constructing Auxiliary Sentence”. In: Proceedings of
the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Minneapolis, Minnesota: Association for Com-
putational Linguistics, June 2019, pp. 380–385. doi: 10.18653/v1/N19-
1035.

[248] Tagger Life. url: https://www.taggerlife.com/ (visited on 04/02/2021).

[249] TensorFlow Hub. en. url: https://www.tensorflow.org/hub (visited
on 03/28/2021).

[250] TextBlob: Simplified Text Processing - TextBlob 0.13.0 Documentation.
url: https://textblob.readthedocs.io/ (visited on 09/19/2017).

[251] The New York Times - Breaking News, US News, World News and Videos.
en-US. url: https://www.nytimes.com (visited on 03/17/2021).

230

https://doi.org/10.1109/RE48521.2020.00019
https://www.statista.com/statistics/276623
https://www.statista.com/statistics/276623
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1080/21670811.2015.1042982
https://doi.org/10.18653/v1/N19-1035
https://doi.org/10.18653/v1/N19-1035
https://www.taggerlife.com/
https://www.tensorflow.org/hub
https://textblob.readthedocs.io/
https://www.nytimes.com

[252] The New York Times (online). Help > Using Nytimes.Com > Comments.
o. J. url: https://www.nytimes.com/content/help/site/userconte
nt/usercontent.html (visited on 04/13/2017).

[253] Thelwall, M., Buckley, K., and Paltoglou, G. “Sentiment Strength De-
tection for the Social Web”. en. In: Journal of the American Society for
Information Science and Technology 63.1 (Jan. 2012), pp. 163–173. doi:
10.1002/asi.21662.

[254] Top Sites in Germany - Alexa. url: https://www.alexa.com/topsite
s/countries/DE (visited on 08/28/2017).

[255] Torgo, L. Data Mining with R: Learning with Case Studies. CRC press,
2016.

[256] Tripathy, A., Agrawal, A., and Rath, S. K. “Classification of Sentiment
Reviews Using N-Gram Machine Learning Approach”. en. In: Expert Sys-
tems with Applications 57 (Sept. 2016), pp. 117–126. doi: 10.1016/j.e
swa.2016.03.028.

[257] Tumitan, D. and Becker, K. “Sentiment-Based Features for Predicting
Election Polls: A Case Study on the Brazilian Scenario”. In: IEEE, Aug.
2014, pp. 126–133. doi: 10.1109/WI-IAT.2014.89.

[258] User Comment Analysis in Online Journalism – Journalism, Users and
Technology. en-US. url: https://scan.informatik.uni-hamburg.de
/user-comment-analysis/ (visited on 03/17/2021).

[259] Vijayarani, S, Ilamathi, J., and Nithya, M. “Preprocessing Techniques
for Text Mining - an Overview”. In: International Journal of Computer
Science & Communication Networks 5.1 (2015), pp. 7–16.

[260] Villarroel, L., Bavota, G., Russo, B., Oliveto, R., and Di Penta, M.
“Release Planning of Mobile Apps Based on User Reviews”. In: 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE).
IEEE. 2016.

[261] Virmani, C., Pillai, A., and Juneja, D. “Study and Analysis of Social
Network Aggregator”. In: 2014 International Conference on Reliability
Optimization and Information Technology (ICROIT). Feb. 2014, pp. 145–
148. doi: 10.1109/ICROIT.2014.6798314.

[262] von Sikorski, C. and Hänelt, M. “Scandal 2.0: How Valenced Reader
Comments Affect Recipients’ Perception of Scandalized Individuals and
the Journalistic Quality of Online News”. en. In: Journalism & Mass

231

https://www.nytimes.com/content/help/site/usercontent/usercontent.html
https://www.nytimes.com/content/help/site/usercontent/usercontent.html
https://doi.org/10.1002/asi.21662
https://www.alexa.com/topsites/countries/DE
https://www.alexa.com/topsites/countries/DE
https://doi.org/10.1016/j.eswa.2016.03.028
https://doi.org/10.1016/j.eswa.2016.03.028
https://doi.org/10.1109/WI-IAT.2014.89
https://scan.informatik.uni-hamburg.de/user-comment-analysis/
https://scan.informatik.uni-hamburg.de/user-comment-analysis/
https://doi.org/10.1109/ICROIT.2014.6798314

Appendix E Bibliography

Communication Quarterly 93.3 (Sept. 2016), pp. 551–571. doi: 10.1177
/1077699016628822.

[263] Wang, C., Xiao, Z., Liu, Y., Xu, Y., Zhou, A., and Zhang, K. “SentiView:
Sentiment Analysis and Visualization for Internet Popular Topics”. In:
IEEE Transactions on Human-Machine Systems 43.6 (Nov. 2013), pp. 620–
630. doi: 10.1109/THMS.2013.2285047.

[264] Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J. “An Approach to
Detecting Duplicate Bug Reports Using Natural Language and Execution
Information”. In: Proceedings of the 30th International Conference on
Software Engineering. 2008, pp. 461–470.

[265] Weber, P. “Discussions in the Comments Section: Factors Influencing
Participation and Interactivity in Online Newspapers’ Reader Comments”.
In: New Media & Society 16.6 (2014), pp. 941–957.

[266] Wiedemann, G., Ruppert, E., Jindal, R., and Biemann, C. “Transfer
Learning from LDA to BiLSTM-CNN for Offensive Language Detec-
tion in Twitter”. In: arXiv:1811.02906 [cs] (Nov. 2018). arXiv: 1811

.02906 [cs]. url: http://arxiv.org/abs/1811.02906 (visited on
01/10/2019).

[267] Wiegers, K. E. and Beatty, J. Software Requirements. Third edition. Red-
mond, Washington: Microsoft Press, s division of Microsoft Corporation,
2013.

[268] Williams, G. and Mahmoud, A. “Modeling User Concerns in the App
Store: A Case Study on the Rise and Fall of Yik Yak”. In: 26th IEEE
International Requirements Engineering Conference. 2018.

[269] Williams, G. and Mahmoud, A. “Mining Twitter Feeds for Software User
Requirements”. In: 2017 IEEE 25th International Requirements Engi-
neering Conference (RE). IEEE. 2017, pp. 1–10.

[270] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and
Le, Q. V. “XLNet: Generalized Autoregressive Pretraining for Language
Understanding”. In: Advances in Neural Information Processing Systems.
Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle
Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc.,
2019. url: https://proceedings.neurips.cc/paper/2019/file/dc6a
7e655d7e5840e66733e9ee67cc69-Paper.pdf.

[271] Yates, R. B. and Neto, B. R. “Modern Information Retrieval: The Con-
cepts and Technology behind Search”. In: Addison-Wesley Professional
(2011).

232

https://doi.org/10.1177/1077699016628822
https://doi.org/10.1177/1077699016628822
https://doi.org/10.1109/THMS.2013.2285047
https://arxiv.org/abs/1811.02906
https://arxiv.org/abs/1811.02906
http://arxiv.org/abs/1811.02906
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

[272] Yi, J. S., Kang, Y.-a., Stasko, J. T., and Jacko, J. A. “Understanding
and Characterizing Insights: How Do People Gain Insights Using Infor-
mation Visualization?” en. In: Proceedings of the 2008 Conference on
BEyond Time and Errors Novel evaLuation Methods for Information
Visualization - BELIV ’08. Florence, Italy: ACM Press, 2008, p. 1. doi:
10.1145/1377966.1377971.

[273] Young, T., Hazarika, D., Poria, S., and Cambria, E. “Recent Trends in
Deep Learning Based Natural Language Processing”. In: IEEE Compu-
tational Intelligence Magazine 13.3 (Aug. 2018), pp. 55–75. doi: 10.110
9/MCI.2018.2840738.

[274] Zhang, Y., Jin, R., and Zhou, Z.-H. “Understanding Bag-of-Words Model:
A Statistical Framework”. en. In: International Journal of Machine Learn-
ing and Cybernetics 1.1 (Dec. 2010), pp. 43–52. doi: 10.1007/s13042-
010-0001-0.

[275] Zheng, A. and Casari, A. Feature Engineering for Machine Learning:
Principles and Techniques for Data Scientists. O’Reilly Media, Inc., 2018.

[276] Zhou, E., Zhong, N., and Li, Y. “Extracting News Blog Hot Topics Based
on the W2T Methodology”. In: World Wide Web-internet and Web In-
formation Systems 17.3 (2014), pp. 377–404.

[277] Zhou, Y., Tong, Y., Gu, R., and Gall, H. “Combining Text Mining and
Data Mining for Bug Report Classification”. In: Journal of Software:
Evolution and Process 28.3 (2016), pp. 150–176.

[278] Zhu, M. “Recall, Precision and Average Precision”. In: Department of
Statistics and Actuarial Science, University of Waterloo, Waterloo 2 (2004),
p. 30.

[279] Ziegele, M. Nutzerkommentare als Anschlusskommunikation: Theorie und
qualitative Analyse des Diskussionswerts von Online-Nachrichten. ger.
Wiesbaden: Springer, 2016.

[280] Ziegele, M. and Jost, P. B. “Not Funny? The Effects of Factual Ver-
sus Sarcastic Journalistic Responses to Uncivil User Comments , Not
Funny? The Effects of Factual Versus Sarcastic Journalistic Responses to
Uncivil User Comments”. en. In: Communication Research (Oct. 2016),
p. 0093650216671854. doi: 10.1177/0093650216671854.

[281] Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schroter, A., and
Weiss, C. “What Makes a Good Bug Report?” In: IEEE Transactions on
Software Engineering 36.5 (2010), pp. 618–643.

233

https://doi.org/10.1145/1377966.1377971
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1007/s13042-010-0001-0
https://doi.org/10.1007/s13042-010-0001-0
https://doi.org/10.1177/0093650216671854

Eidesstattliche Erklärung:

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift
selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe.

Hamburg, den
Marlo Häring

	1 Introduction
	1.1 Problem Statement
	1.2 Objectives & Contribution
	1.3 Scope
	1.4 Thesis Structure

	I Problem
	2 Foundation
	2.1 User Comments on Online Platforms
	2.1.1 Product
	2.1.2 User Comments
	2.1.3 User Comment Sections
	2.1.4 Domain Experts
	2.1.5 Users
	2.1.6 Aspect Addressing in User Comments

	2.2 Insights from User Comments
	2.2.1 Insights in Literature
	2.2.2 Descriptive Insights
	2.2.3 Corrective Insights
	2.2.4 Perfective Insights

	2.3 Summary

	3 User Comment Analysis
	3.1 User Comment Analysis in App Development
	3.1.1 User Feedback Analytics
	3.1.2 Combining User Feedback and Bug Reports
	3.1.3 Automatic App Review Classification

	3.2 User Comment Analysis in Online Journalism
	3.2.1 Motivation
	3.2.2 Research Design
	3.2.3 Results
	3.2.4 Threads to Validity

	3.3 Conclusion

	4 Requirements for a User Comment Analysis Tool
	4.1 Motivation
	4.2 Research Design
	4.3 Results
	4.4 Discussion
	4.4.1 Feasibility Analysis
	4.4.2 Transfer to App Development

	4.5 Threats to Validity
	4.6 Conclusion

	II Solution
	5 Domain-Independent Machine Learning Pipeline
	5.1 User Comment Collection
	5.2 Comment Classification for Domain-specific Aspects
	5.2.1 Traditional Machine Learning Approach
	5.2.2 End-to-end Machine Learning Approach

	5.3 Matching Comments to Product-specific Aspects
	5.3.1 Transfer Learning Approach
	5.3.2 Text Embedding Similarity Approach

	5.4 Evaluation of the Machine Learning Approach
	5.4.1 Quantitative Assessment
	5.4.2 Qualitative Assessment

	5.5 Discussion
	5.6 Conclusion

	6 Classifying Journalistic Aspects in User Comments
	6.1 Motivation
	6.2 Research Design
	6.2.1 Research Questions
	6.2.2 Research Method
	6.2.3 Research Data

	6.3 Results
	6.3.1 Data Analysis
	6.3.2 Classifier Experimentation Results
	6.3.3 Hyperparameter Optimization
	6.3.4 User Comment Classification
	6.3.5 Meta-Comment Classification
	6.3.6 Feature Significance

	6.4 Insights extracted from Classified Meta-Comments
	6.4.1 Comments Addressing the Media
	6.4.2 Comments Addressing the Journalist
	6.4.3 Comments Addressing the Moderator

	6.5 Threats to Validity
	6.6 Discussion
	6.7 Conclusion

	7 Matching User Comments to Article Aspects
	7.1 Motivation
	7.2 Methodology
	7.2.1 Study Data
	7.2.2 CoLiBERT
	7.2.3 Research Question
	7.2.4 Study Design

	7.3 CoLiBERT Evaluation
	7.3.1 Quantitative Results
	7.3.2 Comment-Reply Classification.
	7.3.3 Comment-Paragraph Association.
	7.3.4 Qualitative Results

	7.4 Facilitated Workshops
	7.4.1 Workshop Design and Implementation
	7.4.2 Results

	7.5 Discussion
	7.5.1 Implications of the Results
	7.5.2 Field of Application

	7.6 Threats to Validity
	7.7 Conclusion

	8 Classifying App Development Aspects in User Comments
	8.1 Motivation
	8.2 Methodology
	8.2.1 Research Question
	8.2.2 Research Design
	8.2.3 Research Data

	8.3 Machine Learning Pipelines
	8.3.1 Traditional Machine Learning
	8.3.2 Deep Learning

	8.4 Results
	8.5 Discussion
	8.5.1 Implications of the Results
	8.5.2 Field of Application
	8.5.3 Threats to Validity

	8.6 Conclusion

	9 Matching User Comments to App Aspects
	9.1 Motivation
	9.2 Approach
	9.2.1 Automatic Problem Reports Classification
	9.2.2 Text Representation with Word Embeddings
	9.2.3 Identifying relevant Bug Reports for a Problem Report

	9.3 Empirical Evaluation
	9.3.1 Research Questions
	9.3.2 Evaluation Data
	9.3.3 Evaluation Method

	9.4 Evaluation Results
	9.5 Discussion
	9.6 Threats to Validity
	9.7 Conclusion

	III Synopsis
	10 DICAP — Domain-Independent Comment Analysis Prototype
	10.1 Motivation
	10.2 Usage of DICAP
	10.2.1 Online Journalism
	10.2.2 App Development

	10.3 Requirements
	10.3.1 Functional Requirements
	10.3.2 Quality Requirements

	10.4 Architecture
	10.4.1 Container-based Architecture
	10.4.2 Machine Learning Pipelines
	10.4.3 Data Model
	10.4.4 Dynamic View

	10.5 User Interface
	10.6 Machine Learning Experiments
	10.7 Experiments Results
	10.8 Discussion
	10.9 Conclusion

	11 Conclusion
	11.1 Summary of the Contributions
	11.2 Threats to Validity
	11.3 Discussion

	IV Appendencies
	A Mock-Up Design
	B List of Figures
	C List of Tables
	D List of Own Publications
	E Bibliography

