
Factorization and Resummation

for Precision Physics at the LHC

Dissertation

zur Erlangung des Doktorgrades

an der Fakultät für Mathematik,

Informatik und Naturwissenschaften

Fachbereich Physik

der Universität Hamburg

vorgelegt von

Johannes Michel

Hamburg

2020





Gutachter̈ınnen der Dissertation: Dr. Frank Tackmann

Prof. Dr. Gudrid Moortgat-Pick
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Abstract

The LHC precision program aims to more thoroughly test the Standard Model of particle

physics than ever before. Precise theory predictions for realistic experimental observables

are a key ingredient in this program. Experimental observables that are sensitive to

radiation in the soft and/or collinear limit of Quantum Chromodynamics often admit a

factorization into simpler pieces that encode the dynamics at different scales. Factorization

in turn enables the use of the renormalization group to predict, at fixed order, or resum, to

all orders in perturbation theory, contributions from large logarithms that can dominate

the cross section.

In this thesis we derive new factorization results for hadronic collisions using the language

of Soft-Collinear Effective Theory. These results extend and improve existing resummation

methods, in particular towards a more detailed description of the final state. We extend

the standard jet pT (jet veto) resummation into a systematic framework that accounts for

a finite jet rapidity cut up to which jets are reconstructed, as required by the finite detector

acceptance in experiments. We also consider the case of a step in the veto parameter at some

value of rapidity, which is of experimental relevance to avoid the increased contamination

from unsuppressed pile-up beyond the reach of the tracking detectors. We next consider the

production cross section for a Z boson differential in the Z boson transverse momentum pZT
and the 0-jettiness event shape T0. We perform, for the first time, the simultaneous analytic

resummation of all large logarithms in both pZT and T0 at NNLL+NLO, and present the

first analytic predictions for a Sudakov peak in two independent resolution variables in pp

collisions. We present and prove a generalization of the classic soft threshold factorization

theorem that holds in the limit where only one proton is probed at a large momentum

fraction by the hard process and collinear radiation into the final state is kinematically still

allowed. This is a much weaker limit than the standard soft limit of taking both momentum

fractions to one. At the partonic level, the new factorization theorem captures all singular

terms in the partonic cross section, including in particular off-diagonal partonic channels.

As a first illustrative example of its many applications, we use it to derive a nontrivial

set of terms in the N3LO Drell-Yan rapidity spectrum. Using consistency relations with

known soft matrix elements that in part arise from our new factorization theorem, we

derive the leading eikonal terms at third order in perturbation theory for the qT and T0

beam functions. Finally, we show how to perform the resummation of so-called fiducial

power corrections in pZT or pWT that arise from experimental measurements on the decay

products of a Z or W boson. We find an improved agreement with precision ATLAS and

CMS measurements of the pZT and φ∗ spectrum when including the resummation of these

power corrections in cutting-edge N3LL+NNLO predictions. Using the same approach, we

present the first analytically resummed result for the lepton p`T spectrum in W decays at

N3LL+NNLO.
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Zusammenfassung

Präzisionsmessungen am LHC zielen darauf ab, das Standardmodell der Teilchenphysik in

unerreichtem Detail zu testen. Eine Voraussetzung dafür sind präzise theoretische Vorhersa-

gen für realistische experimentelle Messgrößen. Messgrößen, die sensitiv auf Abstrahlung im

langwelligen oder kollinearen Grenzfall der Quantenchromodynamik sind, können häufig in

einzelne Terme faktorisiert werden, die die Dynamik an unterschiedlichen Energieskalen be-

schreiben. Faktorisierung wiederum ermöglicht die Verwendung der Renormierungsgruppe,

um dominante logarithmische Terme im Wirkungsquerschnitt entweder zu fester Ordnung

in der Störungstheorie vorherzusagen oder zu allen Ordnungen zu resummieren.

In dieser Arbeit werden neue Faktorisierungsformeln für Hadronenkollisionen im For-

malismus der Soft-Collinear Effective Theory hergeleitet. Diese Ergebnisse erweitern und

verbessern die vorhandenen Resummationsmethoden insbesondere hin zu einer detaillierte-

ren Beschreibungen des Endzustands der Kollision. Zunächst wird die übliche Resummation

für den Transversalimpuls des energetischsten Jets, d.h. eines kollimierten Teilchenbündels,

systematisch erweitert um den Effekt einer maximalen Jet-Rapidität, wie sie die geometri-

sche Akzeptanz des Detektors erfordert. Dabei wird auch die Möglichkeit einer gelockerten

Impulsschwelle berücksichtigt, die zur Vermeidung von Kontamination durch mehrere si-

multane Kollisionsereignisse in denjenigen Bereichen nützlich ist, in denen der Spurdetektor

hierfür nicht mehr greift. Daraufhin wird der differentielle Wirkungsquerschnitt für die

Produktion eines Z-Bosons als Funktion seines Transversalimpulses pZT und der 0-Jettiness

Variable T0 berechnet, die hadronische Aktivität misst. Dies stellt die erste analytische,

gleichzeitige Resummation aller dominanten Logarithmen von pZT und T0 dar, in diesem

Fall auf NNLL+NLO, und die erste analytische Vorhersage für ein Sudakov-Spektrum in

zwei Variablen, die unabhängig voneinander Abstrahlungen in Proton-Proton-Kollisionen

charakterisieren. Weiterhin wird die Verallgemeinerung eines klassischen Faktorisierungs-

theorems gezeigt, das Hadronenkollisionen knapp oberhalb der Energieschwelle für einen

gegebenen Endzustand beschreibt. In der verallgemeinerten Fassung wird nur aus einem

der zwei Protonen (statt im klassischen Fall aus beiden) ein großer Impuls- und Energie-

anteil in den Endzustand absorbiert, so dass kollineare Abstrahlung weiter möglich ist.

Das neue Theorem beschreibt alle singulären Terme im partonischen Wirkungsquerschnitt

und insbesondere den Beitrag nebendiagonaler Kanäle, also z.B. den Effekt kollinearer

Paarerzeugung. Um die vielfältigen Anwendungen des Theorems zu veranschaulichen, wird

eine Reihe nichttrivialer Terme im Rapiditätsspektrum des Drell-Yan-Prozesses auf N3LO

hergeleitet. Darauf aufbauend werden Relationen zu bekannten Matrixelementen im niede-

renergetischen Grenzfall ausgenutzt, um die führenden Terme in der eikonalen Näherung

kollinearer Proton-Matrixelemente auf N3LO herzuleiten. Zuletzt wird die Resummation

von Korrekturen der Ordnung pZT oder pWT hergeleitet, die durch eine Vermessung der Zer-

fallsprodukte des Z- or W -Bosons entstehen. Die Resummation dieser Terme verbessert

die Übereinstimmung von Vorhersagen auf N3LL+NNLO mit präzisen Messungen der pZT -

und φ∗-Spektren in den ATLAS- und CMS-Experimenten. Analog wird das Transversalim-

pulsspektrum von Leptonen in W -Zerfällen zum ersten Mal auf N3LL+NNLO errechnet.
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Chapter 1

Introduction

The search for the fundamental building blocks of Nature has been driving scientific insight

for centuries. Entire fields of science have branched off as the quest has moved on from

electrons and atomic nuclei, held together by the electromagnetic interaction responsible

for all of chemistry, to the protons and neutrons inside the nucleus described by nuclear

physics. A milestone in this quest was reached in 2012 with the discovery of the Higgs boson

at the Large Hadron Collider (LHC) [9, 10]. The Higgs boson was the last, long-expected

piece in the Standard Model of particle physics [11–14], the theory of all known particles

and (almost all) their interactions.

In the Standard Model (SM), the coupling to a field (the Higgs field) that permeates the

visible universe is responsible for the masses of the fundamental particles that propagate

through it. The technical implementation of this idea in terms of a spontaneously broken

symmetry is called the Brout-Englert-Higgs (BEH) mechanism [15–18]. Importantly, the

rate to produce a Higgs boson at the LHC, i.e., to trigger a quantum excitation of the Higgs

field, precisely depends on the coupling of the Higgs field to the other particles that interact

with it, which by the BEH mechanism is tied to their mass.1 These relations between

production rates and particle masses are so far found to be consistent with experimental

results [19–22]. It is quite thrilling that the Higgs boson, a cornerstone of the SM, was only

experimentally confirmed more than 40 years after it was proposed. A non-discovery of the

Higgs boson at the LHC could well have brought down the whole edifice of the SM; instead,

it withstood the test in a triumph of human ingenuity and international cooperation.

Yet we have good evidence that the SM cannot be the fundamental theory of Nature.

For one, the observation of neutrino oscillations [23, 24] implies that neutrinos, contrary

to the SM expectation, must have distinct, nonzero masses. More fundamentally, it is

unclear how to unify the SM with General Relativity, the theory of gravity, in a consistent

theoretical framework at energies near the so-called Planck scale MPl ≈ 1019 GeV where

effective gravitational interactions between SM particles become an O(1) effect. (It is also

unclear how to empirically test such a unification; for comparison, the Higgs boson was

discovered in proton-proton collisions at center-of-mass energies Ecm = 7 TeV = 7000 GeV

and its mass is now measured to be mH = 125.18 ± 0.16 GeV [25].) Lastly, there are

unexplained deviations in astronomical observations from galactic to cosmological scales

when compared to the predictions of General Relativity, if only the particle content of

1That humanity can cause such an excitation in the lab, even just for a brief time, may fill those so inclined

with a sense of immense wonder.
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Chapter 1 – Introduction

the SM is assumed. These deviations point to new degrees of freedom known as Dark

Matter. If the Dark Matter is of particle nature, and if it does not just have gravitational

interactions, it may leave an imprint in low-energy detection experiments or be produced

at the LHC. In any case it is unaccounted for in our current description of Nature.

These phenomena motivate the, admittedly rather open, search for phenomena beyond

the Standard Model (BSM). This search is made challenging by the fact, very much a

mixed blessing, that the Standard Model in isolation and without the effects of gravity is

in principle valid at any energy scale. More specifically, its interactions are self-similar at

every energy scale, with the coupling strengths at different scales related to each other by

a calculable pattern known as renormalization. Thus there is no indication from the theory

itself at what energies we should look for new phenomena. Likewise, searches for new

resonances, i.e., the excitation of new degrees of freedom, at the energies directly accessible

at the LHC have so far returned empty-handed [26–29].

Precision measurements at the LHC

In this situation, a strategy that maximizes the machine potential of the LHC is that of

precision measurements, i.e., to hunt for small, indirect effects of high-energy physics. As a

rule of thumb, the relative effect of new physics at a high energy scale Λ on an observable

O measured on final states produced at the LHC, i.e., around the electroweak scale ∼ mH ,

scales as

∆O
O ∼ mH

Λ
. (1.1)

Thus to constrain new physics up to energies of ∼ 10 TeV, we should measure O down to

a percent; permille-level measurements may even constrain new physics up to energies of

∼ 100 TeV, well beyond the direct energy reach of the LHC.

This undertaking is made possible on the experimental side by a huge effort in continu-

ously upgrading and calibrating the LHC detectors to push down systematic uncertainties

and faithfully reconstruct particles from the (sometimes subtle) traces they leave in the de-

tector. Time itself also favors a precision program as relative statistic uncertainties roughly

decrease as 1/
√
N as the data sample size N grows. E.g., the Higgs discovery was made at

an integrated luminosity Lint ∝ N of Lint ≈ 10 fb−1, while the most recent measurements

can already rely on ≈ 140 fb−1. Projections for the end of the high-luminosity LHC era put

the achievable integrated luminosity at 3000 fb−1, after further upgrades to the machine to

maximize the rate of collisions that are scheduled to be completed in 2027 [30].

A key role in precision measurements is played by first-principle theory predictions, i.e.,

calculations of observable quantities using the Lagrangian of the Standard Model as an

input. In the most obvious case, they enter in a final interpretation step where predictions

are compared to the experimental outcome to search for deviations. Often, theory input is

also required during intermediate steps, e.g. when parameters first need to be determined

from one data set to later predict another. In any of these cases it is mandatory that theory

predictions are pushed at least to the same level of precision as the data so as not to limit
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Figure 1.1: Breakdown of relative statistical and systematic uncertainties in the normalized trans-

verse momentum spectrum (pZT , left) and the rapidity spectrum (yZ , right) of Z bosons decaying in

the µ+µ− channel as measured by the CMS collaboration at the LHC [31]. The actual data, rather

than just their uncertainty, can be found in figure 7.14 for the pZT spectrum, where we also compare

to our predictions. A new tool to improve predictions for the yZ spectrum is presented in chapter 5.

Both panels from ref. [31].

the experimental sensitivity. In particular, all approximations involved in the prediction

must be well controlled and systematically improvable.

The challenge posed to theory is illustrated in figure 1.1: It shows the uncertainty budget

of the normalized transverse momentum spectrum (pZT , left) and the rapidity spectrum (yZ ,

right) of Z bosons decaying in the µ+µ− channel as measured by the CMS collaboration

at the LHC [31]. The measurement reaches sub-percent precision in wide ranges of the

spectra; a similar level of experimental precision for Z boson spectra has been reached in

refs. [32–35].

Understanding spectra like these at the same level of precision from the theory side is

crucial for several important physics goals of the LHC program. For the yZ spectrum that

encodes the distribution of Z bosons along the beam direction, this is immediately clear

because it gives access to the longitudinal momentum fractions carried by the quarks and

gluons, collectively called partons, that make up the proton. This is a piece of information

that enters virtually any prediction for other LHC processes. To appreciate the importance

of the pZT spectrum, which we will deal with repeatedly in this thesis, let us take a step

back and recall that in the SM the masses of all fundamental particles have a common

origin in the BEH mechanism. In particular, a precise test of the SM can be constructed by

considering the ratio of the Z boson mass to that of the W boson, its electrically charged

counterpart. In the SM, this ratio is related, by the BEH mechanism, to the well-measured

couplings of the Z and W to leptons. To constrain BSM physics using this ratio, we should

measure the Z and W boson masses mZ and mW as precisely as possible.

3



Chapter 1 – Introduction

This is challenging for the W because the W decays into a lepton (`) and a neutrino (ν).

The neutrino escapes the detector, so we cannot directly reconstruct the invariant mass

Q2 = (p` + pν)2 of the pair to determine the position of the W resonance. Instead, one way

to determine mW at the LHC is to consider the transverse momentum p`T of the detected

lepton. If the W itself is produced with exactly zero transverse momentum pWT = 0, the

maximum transverse momentum that the detected lepton can carry is p`T ≤ Q/2. Combining

contributions from Q slightly above and below the resonance, the p`T spectrum develops a

characteristic sharp peak at p`T ≈ mW /2, known as a Jacobian peak, from whose position

mW can be measured. Of course, in reality the W boson is never actually produced exactly

at pWT = 0 because any additional bit of radiation from the colliding particles will recoil the

W (and thus the `) a bit in the transverse plane, smearing out the Jacobian peak. However,

because the neutrino is lost, pWT cannot be measured to the precision required to account

for the smearing, either. As a result, the systematic uncertainty due to the modelling of the

pWT distribution is the largest uncertainty contribution in the recent ATLAS determination

of mW [36],

mW = 80370± 7stat. ± 11exp. syst. ± 14modelling syst. MeV = 80370± 19 MeV (1.2)

To maximize the new-physics reach of this permille-level measurement, we must address

this uncertainty component.

This is the point where the pZT spectrum above enters: The W and Z are so similar that

if a prediction is successfully validated against the Z transverse momentum spectrum, it

can be used to predict the pWT spectrum and therefore the precise amount of smearing in

the Jacobian peak. More generally, a thorough theory calculation must also quantify the

dissimilarities between the Z and W . If these are understood, we may also predict ratios of

the two transverse momentum spectra, exploiting that correlated uncertainty components

cancel, or fit the prediction to the Z spectrum first to determine universal parameters.2

For another example, we can consider the pHT spectrum of the Higgs boson itself. At

small pHT � mH , this spectrum is sensitive to the couplings of the Higgs boson to light

quarks. These particles are too light, i.e., their couplings to the Higgs field are too small, to

leave any imprint in total Higgs boson production rates, but the shape of their contributions

to the spectrum is sufficiently characteristic that one can hope to disentangle them and

measure the couplings, or at least constrain them to some multiple of their expected SM

value [37]. This requires precise theory inputs not just for the light-quark signals, but

in particular for the overwhelming background where the Higgs is produced through a

quantum excitation of the much heavier top quark.

2We stress that for this later reason, precision analyses of this kind also serve another purpose that will be

fruitful even in the short term: Much like chemistry, which has not suddenly been solved by the discovery

of its microscopic origins in the electromagnetic interaction, there are unexplained phenomena within

the Standard Model unrelated to the quest for more fundamental physics. These notably include the

behavior of the strong force at low energies, where the fundamental quarks and gluons of the Standard

Model form nonperturbative bound states like the proton. Precisely how this happens is still being

explored, but determinations of the three-dimensional proton structure, as also required as ingredients

for the pWT spectrum, will help shed light on this issue.
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Theory predictions for the LHC

Producing first-principle theory predictions is, in general, hard. By the rules of quantum

mechanics, we must include an in principle infinite set of degenerate final states that

contribute to the observable in question. For example, for the pZT spectrum we encountered

earlier, there is no way of knowing against how many additional particles the Z boson

recoiled to acquire the measured pZT . To be able to compute anything in the first place, we

use perturbation theory, relying on the fact that the probability for an additional particle

to be emitted is suppressed by a factor of the coupling strength between particles. Even

for Quantum Chromodynamics (QCD), the theory of the strong interactions, the coupling

strength αs ∼ 0.1 at typical LHC energies justifies such an expansion. For a given cross

section σ, i.e., the total probability for a given process to occur, it takes the form

σ = σ(0) + αs σ
(1) + α2

s σ
(2) + . . . . (1.3)

The first term is referred to as the leading-order (LO) cross section, the second-term as the

next-to-leading-order (NLO) correction, and so forth. The series can be truncated when

the precision requirement is met. At any given order, we still need to integrate over the

possible momenta of intermediate particles, e.g., there are many ways for two particles

with momenta ~p 1,2
T in the transverse plane to give a total recoil of pZT = |~p 1

T + ~p 2
T | to a Z

boson, but at least only a finite number of particles need to be considered at every order

in perturbation theory.

As we have seen, first-principle theory predictions enter precision measurements at the

LHC in various ways. Depending on the use case, they typically come in one of the following

three forms:

(A) Analytic predictions. Here the experimental measurement is sufficiently simple and

well-defined that the integral over the momenta of intermediate particles at a given

order can be evaluated analytically.

(B) Fully-differential predictions. In this case any measurement may be specified by the

user, but only in terms of the momenta of the (few) particles present at a given order

in perturbation theory. The remaining integrals are then performed numerically.

(C) Event-level predictions that provide the user with a fully realistic list of particles and

their momenta (an event record), as would be obtained from a real-life collision. The

measurement is implemented by generating and binning a large sample of events.

Clearly, the versatility of the prediction and its ability to describe the real-life experiment

increase from (A) to (C). On the other hand, the complexity of the calculation at a given

order increases as well, both in terms of organizing and understanding the calculation and

in terms of the numerical cost to evaluate it on computers.

Soft and collinear limits

A challenge common to the computation of radiative corrections in all three approaches

is that in QCD, the probability for an additional emission diverges in the limit where the
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Chapter 1 – Introduction

emitted particle either becomes soft, i.e., carries little energy compared to the emitter, or

collinear, i.e., is emitted at a small angle.

To make this more precise, let us denote by z the energy fraction carried by the emitted

particle, such that the emitter retains a fraction 1− z, and let θ be the angle between the

two. Then the differential emission probability in the limit where both z → 0 and θ → 0

behaves as

dz dθ P (z, θ) ∼ αs
dz

z

dθ

θ
. (1.4)

Let us deliberately ignore the obvious issue that the integral over this probability distribu-

tion does not exist, and instead pretend that we already know the total NLO correction

σ(1) for the process of interest. (In the real calculation, the total NLO cross section is

rendered finite by the presence of virtual particles in the sum over degenerate states that

are not radiated into the final state, but exhibit the same soft and collinear divergences with

opposite sign in the integral over their momenta.) We now attempt a type (A) calculation

of the NLO cross section σ(1)(zcut, θcut) for an experimental selection that rejects events

where the emission has z > zcut and θ > θcut. This is not unreasonable since detectors have

finite resolution in energy and angles, so we can think of this as rejecting any emission that

the detector can see.

We can easily evaluate this cross section in the limit of a tight selection, zcut, θcut � 1,

by subtracting from the full NLO result the contributions from emissions above the cuts,

αs
[
σ(1)(zcut, θcut)− σ(1)

]
= −

∫ 1

zcut

dz

∫ π

θcut

dθ P (z, θ) (1.5)

= −αs
[
ln zcut ln θcut +O(ln zcut, ln θcut) +O(zcut, θcut)

]
.

We see that the divergent emission probability manifests itself in the cross section as a

double logarithmic dependence on the cuts, and a logarithmic divergence as either zcut or

θcut → 0. The integral runs over regions where the approximation in eq. (1.4) is not valid,

but these corrections only lead to single logarithms or power corrections in the cuts. (For

the same reason, the precise upper integration boundary in θ is irrelevant.)

In many applications, the cuts on energy and angle are set simultaneously by one overall

experimental constraint τcut. For example, measuring the transverse momentum pT ≤ pcut
T

of the emission (also indirectly through recoil) roughly translates to a measurement on the

product zθ ≤ τcut = pcut
T /Q, where Q is the energy carried by a primary emitting parton

inside the proton that later annihilates into an observed final state like the Z boson. For a

single constraint, the analytic cross section to all orders takes the analytic form

σ(τcut) = σ(0)
∞∑
n=0

2n∑
m=0

Cn,m α
n
s lnm τcut +O(τcut) . (1.6)

Of course, we could have guessed that on general grounds, the leading term in a power

expansion of the functions σ(n)(τcut) can only contain logarithms of τcut with some coeffi-

cients Cn,m. Still, the fact that at most two new powers of ln τcut appear at every order in
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perturbation theory contains physical information, namely, that the most divergent contri-

bution from an additional emission arises from the limit where it becomes simultaneously

soft and collinear.

Resummation

The result in eq. (1.6) is problematic because for τcut � 1, the double logarithms of τcut

become large and overcome the suppression by αs, so the perturbative series diverges and

cannot be truncated. To arrive at any meaningful prediction, we must find a way to

reorganize, or resum, the perturbative series. To do so, we retain to first approximation

only the most singular leading logarithmic (LL) terms m = 2n. Using the fact that eq. (1.4)

holds recursively for every subsequent emission, one can show that the coefficients satisfy

Cn,2n = (−C)n/n! with C > 0 a constant that depends on the charge of the primary

emitter. (A pedagogical derivation can be found in ref. [38].) These are the coefficients of

an exponential series, so we find

σ(τcut) = σ(0) exp
[
−C αs ln2 τcut

]
+ (terms with m < 2n) +O(τcut) . (1.7)

This result is known as the Sudakov form factor [39], and is perfectly convergent for τcut → 0,

where it tends to 0. It is the basis of the most elementary type (C) predictions: These

so-called parton showers [40] recursively add emissions in a Markov process using eq. (1.7)

as the probability for no emission to occur above a given cut. It is important to realize

that eq. (1.7), despite being an all-order result in αs, is only the first term in a systematic

expansion to higher logarithmic order, and on its own is essentially as precise (or imprecise)

as a leading-order calculation in the cases where fixed-order perturbation theory converges.

To increase the precision of this result, we should include the next-to-leading logarithmic

(NLL) terms m = 2n−1, the next-to-next-to-leading logarithmic (NNLL) terms m = 2n−2,

and so forth. Many methods exist to extend the analytic resummation to subleading loga-

rithmic orders. They all rely on the principle of factorization, i.e., a systematic separation

of the dynamics at the low energy scale τcutQ, where soft and collinear radiation is emitted,

from the hard production process that occurs at the scale Q� τcutQ. Specifically, we will

make use of effective field theory in this thesis to make the separation of scales manifest at

the level of the cross section.

The drawback of all these methods is that they only apply to type (A) predictions in

the presence of, typically, a single experimental constraint. A common theme of this thesis

is the extension of these analytic resummation methods to more differential observables. In

this way, realistic experimental observables that could previously only be computed using

parton showers can now systematically be computed to higher logarithmic orders for the

first time, extending the range of observables that can benefit from precise analytically

resummed type (A) predictions. In other cases, a component of the calculation that would

otherwise have to be calculated in an expensive type (B) calculation can now be evaluated

in much shorter time using our results.
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Chapter 1 – Introduction

Of course, the benefits of the more versatile type (B) and (C) calculations still stand,

and we stress that our results will also enable improving their formal accuracy in the future:

For one, they can serve as very nontrivial benchmarks for efforts that strive to improve

the formal accuracy of parton showers. More importantly, our results will also enable

the systematic improvement of type (B) and (C) predictions because the infrared (soft

and collinear) structure of QCD is an input to these calculations. For example, type (B)

fixed-order predictions require a systematic way of isolating singularities from the limit

where as in eq. (1.4), n and n + 1 emission configurations become degenerate. These

procedures, known as (fixed-order) subtractions, become particularly challenging starting

at NNLO, where a variety of approaches exists [41–56]. Type (C) predictions in addition

require some infrared cutoff below which the quarks and gluons of perturbative QCD form

nonperturbative bound states. The resummation of logarithms of this cutoff is perturbative,

and can be improved using tools from analytic resummation. We will return to these points

in our outlook in chapter 8, where we highlight how both applications will benefit from our

results.

Survey of research presented in this thesis

We turn to a brief survey of the main research results presented in this thesis, corresponding

to chapters 3–7. A condensed outline of the entire manuscript is given afterwards.

Jet veto resummation with jet rapidity cuts. Collimated bunches of particles called

jets play an important role in many LHC analyses. Binning events by the number of jets

is a widely-used tool to distinguish different hard-interaction processes. Typically, jets

are categorized by whether they pass a certain cut pT < pcut
T on their total transverse

momentum. Jet-binned cross sections are a prime example of an observable that involves

large Sudakov logarithms of pcut
T and requires all-order resummation to obtain an optimal

prediction. The resummation for the 0-jet, or jet-vetoed, production cross section of color-

singlet (i.e., neutral under QCD) final states like the Higgs or the Z boson has been achieved

to high perturbative accuracy [57–71].

Experimental jet selections require a cut on the (pseudo)rapidity of reconstructed jets,

|ηjet| ≤ ηcut, due to the finite acceptance of the detector. We extend the standard jet pT
(jet veto) resummation, which implicitly works in the limit ηcut → ∞, by incorporating

a finite jet rapidity cut. We also consider the case of a step in the required pcut
T at an

intermediate value of |η| ' 2.5. This is of experimental relevance to avoid the increased

contamination from unsuppressed pile-up beyond the reach of the tracking detectors, i.e.,

of radiation from unrelated scattering processes between other protons in the LHC beams.

We identify all relevant parametric regimes, discuss their factorization and resummation as

well as the relations between them, and show that the phenomenologically relevant regimes

are free of large so-called nonglobal logarithms. The ηcut dependence of all resummation

ingredients is computed to the same order to which they are currently known for ηcut →∞.

Our results pave the way for carrying out the jet veto resummation including a sharp cut
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or a step at ηcut to the same order as is currently available in the ηcut → ∞ limit. The

numerical impact of the jet rapidity cut is illustrated for several benchmark LHC processes

at NLL′+NLO. We find that a rapidity cut at high ηcut = 4.5 is safe to use and has little

effect on the cross section. A sharp cut at ηcut = 2.5 can in some cases lead to a substantial

increase in the perturbative uncertainties, which can be mitigated by instead using a step

in the veto.

Joint two-dimensional resummation in qT and 0-jettiness at NNLL. We next

consider a simultaneous measurement of the Z-boson transverse momentum qT ≡ pZT and

the 0-jettiness event shape T0 that quantifies the amount of additional radiation in an

event. Since both observables resolve the initial-state radiation, the double-differential

cross section in qT and T0 contains Sudakov double logarithms of both qT /Q and T0/Q.

We simultaneously resum the logarithms in qT and T0 to next-to-next-to-leading logarith-

mic order (NNLL) matched to next-to-leading fixed order (NLO). Our results provide the

first genuinely two-dimensional analytic Sudakov resummation for initial-state radiation.

Integrating the resummed double-differential spectrum over either T0 or qT recovers the

corresponding single-differential resummation for the remaining variable. We discuss in

detail the required effective field theory setups and their combination using two-dimensional

resummation profile scales. We also introduce a new method to perform the qT resum-

mation where the underlying resummation is carried out in impact-parameter space, but

is consistently turned off depending on the momentum-space target value for qT . Our

methods apply at any order and for any color-singlet production process, such that our

results can be systematically extended when the relevant perturbative ingredients become

available.

Generalized threshold factorization with full collinear dynamics. Soft threshold

factorization has been widely used to study hadronic collisions. It is derived in the limit

where the momentum fractions xa,b carried by the partons that annihilate into the observed

final state approach xa,b → 1. Intuitively, the energy available from the initial state is just

above the production threshold for the observed final state, so any remaining radiation must

be soft. We present and prove a generalized threshold factorization theorem for color-singlet

processes, which holds in the weaker limit of only xa → 1 for generic xb (or vice versa). The

physical intuition for this limit is that the color-singlet final state is produced at generic

energies, but large absolute rapidity, such that all additional radiation is forced to become

collinear to the opposite proton beam. The factorization theorem is found to be much more

powerful than the classic soft one, capturing the full singular structure of the partonic cross

section including off-diagonal partonic channels and its full collinear structure. We show

this explicitly for the Drell-Yan rapidity spectrum and use it to predict a nontrivial set of

its N3LO corrections.

N3LO beam functions in the eikonal limit. Beam functions are universal collinear

matrix elements that describe the multi-dimensional momentum distribution of partons
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Chapter 1 – Introduction

extracted from the proton and enter, for example, in the factorization and resummation for

qT or T0. Using consistency relations with known soft matrix elements, we derive the leading

contributions to the beam functions atO(α3
s) in the so-called eikonal limit where the primary

parton carries almost all the energy. These results constitute an important cross check

on the complete calculations of the beam functions to third order in perturbation theory,

which in turn enable fully-differential calculations at N3LO and resummed predictions at

N4LL.

Resumming fiducial power corrections at N3LL. We consider the production and

decay of a vector boson pp → V ∗X → LX at small qT � Q, where qT = pVT is the total

transverse momentum of V = Z,W, γ. (Here X denotes any additional radiation into the

final state.) Experimental measurements require fiducial acceptance cuts on the decay

products L of V , which in general introduce enhanced, linear power corrections in qT /Q.

We show that they can be unambiguously predicted from factorization, and resummed

to the same order as the leading-power contribution. For the fiducial qT spectrum, they

constitute the complete linear power corrections. We thus obtain predictions for the

fiducial qT spectrum to N3LL and next-to-leading-power in qT /Q. Matching to full NNLO

(α2
s), we find that the linear power corrections are indeed the dominant ones and once

they are included by factorization, the remaining fixed-order corrections become almost

negligible below qT . 40 GeV. We also discuss the implications for more complicated

observables, and provide predictions for the fiducial φ∗ spectrum at N3LL+NNLO. We

find excellent agreement with ATLAS and CMS measurements of qT and φ∗. We also

consider the transverse momentum (p`T ) spectrum of the lepton from a W decay, as relevant

for determinations of the W mass at the LHC. We show that it develops leptonic power

corrections in qT /(Q− 2p`T ), which diverge near the Jacobian peak p`T ∼ Q/2 and must be

kept to all powers to obtain a meaningful result there. Doing so, we obtain for the first

time an analytically resummed result for the p`T spectrum around the Jacobian peak at

N3LL+NNLO. Our method is based on performing a complete tensor decomposition for

the hadronic and leptonic tensors that encode the production and decay of the V , as well as

the correlations between them that arise from angular momentum conservation. We show

that in practice this is equivalent to often-used recoil prescriptions, for which our results

now provide rigorous, formal justification. Our tensor decomposition yields nine Lorentz-

scalar hadronic structure functions, which for Z/γ∗ → `` or W → `ν directly map onto

the angular coefficients commonly considered in experimental analyses, but it continues to

hold for arbitrary leptonic final states. In particular, for suitably defined Born-projected

leptons it still yields a LO-like angular decomposition even when including electromagnetic

final-state radiation, which makes this lepton definition theoretically preferred.
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Outline

This thesis is structured as follows. In chapter 2 we review the basic principles of Quantum

Chromodynamics, introduce the effective field theory description of its soft and collinear

limits, and show how the latter generically give rise to factorization. We also review the

single-differential factorization for several important observables at the LHC that continue

to play a role in our later results.

In chapter 3 we present our analysis of jet veto cross sections with a jet rapidity cut,

highlighting how the single-differential resummation can be seamlessly extended to account

for it. In chapter 4, we produce the first predictions at NNLL+NLO for the double-

differential spectrum in the two independent resolution variables qT and T0, yielding the first

systematically improvable prediction for a Sudakov peak in two dimensions. In chapter 5 we

present the generalized threshold factorization theorem that accounts for the full collinear

dynamics of initial-state radiation. In chapter 6 we derive the leading eikonal terms at third

order in perturbation theory for the qT and T0 beam functions. In chapter 7 we demonstrate

how to perform the resummation of fiducial power corrections that arise from experimental

measurements on the decay products of a Z or W boson. We provide predictions at

N3LL+NNLO, including the resummation of fiducial power corrections, and find excellent

agreement with ATLAS and CMS measurements of qT and the related φ∗ observable. We

also present the first analytically resummed result for the p`T spectrum near the Jacobian

peak at N3LL+NNLO.

We conclude and discuss future applications of our results in chapter 8. Notation

and relevant conventions used in this thesis are summarized in appendix A. Details on

the hard scattering processes considered in this thesis are given in appendix B, where the

generalization to other color-singlet processes is also discussed. In appendix C we collect the

required anomalous dimensions that govern the resummation of large logarithms through

the renormalization group evolution. Explicit expressions for the latter are collected in

appendix D. Expressions for beam and soft functions to the perturbative order required

are collected in appendix E. In appendix F we give compact analytic expressions for the

NLO Z and Higgs partonic rapidity spectra in a convenient parametrization. Additional

numerical results, including further comparisons to data, are given in appendix G.
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Chapter 2

Factorization and resummation

This chapter sets the scene for the research described in this thesis, introducing its greater

context and the tools and methods used to perform it. In section 2.1, we review the basic

principles of Quantum Chromodynamics as the theory of the strong interactions. We intro-

duce some key processes at hadron colliders, focusing on the most precisely measured cases

where a color-singlet probe like the Z boson or photon couples to the strong dynamics. In

section 2.2, we introduce the effective field theory paradigm and review the soft-collinear

effective theory that describes low-energy or small-angle emissions in QCD. Setting up

concepts and notation used throughout this thesis, we show how the soft-collinear effective

theory generically gives rise to factorization. In section 2.3, we discuss how the factor-

ized form of cross sections enables the resummation of large logarithms to all orders in

perturbation theory using the renormalization group. In section 2.4, we introduce several

important experimental observables at hadron colliders and review the concrete form that

factorization takes in each case.

2.1 Quantum Chromodynamics at hadron colliders

2.1.1 Basic principles of QCD

The quantum field theory of the strong interactions is known as Quantum Chromodynamics

(QCD) [72–77]. Its fundamental degrees of freedom are spin-1/2 fermions called quarks

that carry an internal quantum number called color, and vector bosons called gluons that

mediate the interaction between them and themselves carry color. Quarks are described by

a Dirac spinor field qi(x) that transforms in the fundamental representation of the special

unitary group SU(Nc), with Nc = 3 the number of colors,

qi(x)
U7−−→

Nc∑
j=1

U ij qj(x) , U ∈ SU(Nc) . (2.1)

In the following we will suppress the indices i, j for the fundamental representation and write

q(x) 7→ Uq(x) for short. In this notation the antiquark field transforms as q̄(x) 7→ q̄(x)U †,

with U †U = 1F . Gluons are represented by a vector field Aµ(x) that transforms in the

adjoint representation of SU(Nc),

Aµ(x) ≡ Aaµ(x)T a
U7−−→ Aaµ(x)U T a U † = UAµ U

† , (2.2)
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Chapter 2 – Factorization and resummation

where the matrices T a are the generators of SU(Nc) in the fundamental representation, and

we implicitly sum over adjoint indices a. Since SU(Nc) is nonabelian, its Lie algebra has

nonvanishing structure constants fabc,

[T a, T b] = ifabcT c . (2.3)

We conventionally normalize the generators as

Tr
[
T aT b

]
= TF δ

ab =
1

2
δab . (2.4)

The quadratic Casimir operators CF and CA of the fundamental and adjoint representation

are given in terms of the T a and fabc by

T aT a = CF 1F , facdf bcd = CA δ
ab , (2.5)

and for SU(Nc) with Nc = 3 we have

CF =
N2
c − 1

2Nc
=

4

3
, CA = Nc = 3 . (2.6)

We can ask to what extent invariance under global color rotations U , which implies conser-

vation of the total color charge. already determines the form of the QCD Lagrangian. The

operators that can appear in it should be polynomials of fields and derivatives of total mass

dimension four, since there is no explicit mass scale in the theory. In addition, the operators

must be Lorentz scalars to preserve Lorentz invariance. This leaves the SU(Nc)-invariant

combinations

LQCD ⊃ q̄ i/∂q , q̄ /Aq , Tr
[
∂nA4−n

]
, (2.7)

where the last term represents any Lorentz-scalar contraction of derivatives and gluon fields,

traced over fundamental indices. All of these operators so far can appear with arbitrary

coefficients; while we may eliminate two of them by choosing a normalization for the quark

and gluon fields, the resulting Lagrangian is clearly underdetermined, in particular in the

gluon sector.

Instead, all the dynamics of QCD (and its predictive power) follow from promoting

eqs. (2.1) and (2.2) to a local gauge symmetry under transformations U(x) ∈ SU(Nc) that

depend on the spacetime point,

q(x)
U(x)7−−−−→ U(x) q(x) , Aµ(x)

U(x)7−−−−→ U(x)Aµ(x)U †(x) + U(x)
[ i

g
∂µU

†(x)
]
, (2.8)

where g in the last term is the gauge coupling parameter. Assuming this transformation

behavior of Aµ(x) allows us to write down a derivative operator with homogeneous be-

havior under gauge transformations, the covariant derivative, given in the fundamental

representation by

Dµ ≡ ∂µ − igAµ(x) . (2.9)
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It satisfies

Dµ
U(x)7−−−−→ U(x)DµU

†(x) , (2.10)

where the derivative operator acts on all terms to its right, i.e., on the product of the

gauge transformation U †(x) and the (implicit) test function. Note that eq. (2.9) is the

only combination in which derivatives and the gauge field may appear in the Lagrangian as

otherwise, gauge transformations would induce an uncanceled term ∝ U [∂U †] = −[∂U ]U †.

This uniquely fixes all terms in the Lagrangian involving the quark field to

LQCD ⊃ q̄ i /Dq . (2.11)

Furthermore, the only polynomial derivative operators F (Dµ) built out of Dµ that may

appear in the remaining terms in the Lagrangian are those that satisfy

F (Dµ) f(x) =
[
F (Dµ)

]
f(x) , (2.12)

for any test function f(x), i.e., they are proportional to the identity because all derivatives

are saturated within the square brackets by the gauge field itself. To identify these operators,

we can rewrite all derivatives of the gauge field as commutators acting on test functions,[
∂µAν(x)

]
f(x) = ∂µ

[
Aν(x)f(x)

]
−Aν(x) ∂µf(x) =

[
∂µ, Aν(x)

]
f(x) . (2.13)

It follows by gauge invariance that all F (Dµ) that satisfy eq. (2.12) depend on Dµ only

through the gluon field strength tensor

Gµν =
i

g

[
Dµ, Dν

]
, (2.14)

which may be written out in terms of SU(Nc) generators and structure constants as

Gµν = GaµνT
a , Gaµν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (2.15)

At mass dimension four, we therefore find exactly three Lorentz-scalar operators that are

invariant under local gauge transformations,

LQCD = q̄ i /Dq − 1

4
GaµνG

a,µν + θQCD
g2

32π2
εµνρσG

a,ρσGa,µν . (2.16)

The first and second term are the QCD quark and the Yang-Mills Lagrangian [78], respec-

tively. Their normalization is fixed by canonically normalizing the quark and gluon kinetic

terms that they contain. They depend on g through the covariant derivative as their single

parameter. Compared to eq. (2.7), the relative coefficient of the two possible terms in the

quark Lagrangian and the (many) coefficients in the gluon Lagragian have been fixed by

the gauge symmetry to powers of g. The interaction vertices that arise from the first two

terms are illustrated in figure 2.1.

The coefficient of the third term introduces an additional free parameter θQCD into

the theory, with a conventional factor pulled out. Since this term is proportional to
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Figure 2.1: Interaction vertices of QCD, their color structure, and scaling with the gauge coupling.

The Lorentz and spin structure of the vertices is suppressed. In general gauges, an additional ghost

interaction vertex needs to be added.

a total derivative, it never contributes in perturbative calculations (as relevant for this

thesis), where the field is assumed to vanish asymptotically. It can, however, contribute for

nonperturbative bound states where the field does not vanish on the boundary. In this case

its phenomenological significance is that it explicitly breaks the CP (charge conjugation

and parity) symmetry that is otherwise preserved by eq. (2.16). Searches for a permanent

electric dipole moment of the neutron and of mercury atoms [79, 80] set strong limits on

|θQCD| . 10−10 compatible with zero, and there has been much speculation (and some

elegant proposals [81]) why this should be so. In the following we set θQCD = 0.

Two further modifications of the (classical) QCD Lagrangian in eq. (2.16) are in order.

The first modification is practical and concerns the fact that in a quantum path integral

over the gluon field Aµ, many configurations only differ by pure gauge transformations

which leave the action unchanged. This overcounting of physical degrees of freedom can-

cels between the numerator and denominator in the normalized partition function when

computing gauge-invariant quantities, but for perturbative calculations, a definite answer

is also required for gauge-dependent quantities like the gluon propagator. This is achieved

by inserting a gauge constraint δ
[
G(Aµ)

]
, with suitable Jacobian, into the functional in-

tegral over Aµ, where G is some functional of the field strength. In the Faddeev-Popov

method [82], the gauge constraint is elegantly represented as a functional integral over com-

plex, Grassman-valued anticommuting fields ca(x) called ghosts that, like gluons, transform

in the adjoint representation. This allows the gauge constraint to be written as a simple

modification of the action, leading to additional Feynman rules that remedy the overcount-

ing of degrees of freedom in the sum over diagrams at any given order in perturbation

theory. The precise form of the ghost action depends on G(Aµ). In axial gauge, where

one picks some reference vector nµ and imposes G(Aµ) = n · A = 0, the ghosts in fact do

not propagate and also decouple from the gluon field, at the cost of explicitly breaking

Lorentz invariance by nµ (which typically is already present in the problem). On the other

hand, in covariant gauges where G(Aµ) is a function of ∂µAµ, the ghost Lagrangian and

the gauge-fixing term implementing G(Aµ) are given by

Lghost = c̄a(i∂µ)(iDab
µ )cb , Lfix =

1

2ξ
(i∂µAaµ)(i∂νAaν) , (2.17)
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2.1 Quantum Chromodynamics at hadron colliders

where the covariant derivative in the adjoint representation is Dab
µ = δab∂µ + gfabcAcµ, and

ξ parametrizes the precise choice of gauge. In this gauge, the gluon propagator is given by

k
µ, a ν, b =

−iδab

k2 + i0

[
gµν − (1− ξ)kµkν

k2

]
. (2.18)

In this thesis we will use Feynman gauge (ξ = 1) throughout such that the second term

vanishes. Note that even the gauge-fixed Lagrangian containing eq. (2.17) exhibits a

residual symmetry under so-called BRST transformations [83, 84]. These are key in the

all-order proof of the Slavnov-Taylor identities [85, 86] relating the basic Green’s functions

of QCD that generalize the propagators and the elementary vertices in figure 2.1. Since

the divergences of arbitrary higher n-point functions can be represented in terms of these

building blocks, one can then prove using the Slavnov-Taylor identities that all ultraviolet

(UV) divergences from loop integrals may indeed be absorbed into g, i.e., that the QCD

Lagrangian in eq. (2.16) is renormalizable [74].

The second modification is that in Nature, quarks are found to carry an additional

quantum number called flavor that is conserved by the strong interactions. Flavor can take

the values u (up), d (down), c (charm), s (strange), b (bottom, or beauty), and t (top, or

more rarely, truth). Quarks of different flavor f are distinguished by their masses mf . The

masses enter the QCD Lagrangian as the dimensionful coefficients of (six copies of) the

SU(3)-invariant operator q̄fqf ,

LQCD =
∑
f

q̄f (i /D −mf )qf −
1

4
GaµνG

a,µν + Lfix + Lghost . (2.19)

Quarks of flavor u, c, t are further distinguished from d, s, b by their electromagnetic and

weak charges, as discussed in the next sections. The quark masses exhibit a strong hierarchy,

with the top quark at mt ≈ 170 GeV by far the most massive, mb ≈ 5 GeV and mc ≈ 1 GeV

next in line, and the remaining quarks at ms ≈ 100 MeV, md ≈ 5 MeV, and mu ≈ 2 MeV,

respectively [25]. Why this hierarchy should be there, or why the quarks and leptons should

come in three generations only distinguished by their masses in the first place, is unclear.

At typical production energies of mW ,mZ ,mH ≈ 100 GeV at the LHC, the light quark

masses can usually be set to zero to good approximation, while the top quark is too heavy

to be excited as a quantum fluctuation and does not contribute to the dynamics. For

this reason, QCD with nf = 5 massless flavors is the appropriate theory to describe most

phenomena considered in this thesis, with the gauge coupling g as its only parameter.

As hinted at earlier, all UV divergences from quantum corrections can be absorbed by

renormalizing the coupling. The most common renormalization scheme, also employed

in this thesis, is the modified minimal subtraction (MS) scheme. In this scheme the

renormalized strong coupling constant αs(µ) is related to the bare gauge coupling g as

g2

4π
= µ2εαs(µ)Zαs(ε, µ) , (2.20)

where UV divergences are regulated by dimensional regularization, i.e., by performing the

calculation in d = 4− 2ε spacetime dimensions [87], µ is the renormalization scale or the
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Chapter 2 – Factorization and resummation

subtraction point with unit mass dimension, and

Zαs(ε, µ) =
eεγE

(4π)ε

[
1 +

αs(µ)

4π

(
−β0

ε

)
+O(α2

s)
]

(2.21)

is the MS renormalization factor for the coupling. (The prefactor involving the Euler-

Mascheroni constant γE is conventional.) By virtue of the Slavnov-Taylor identities, the

renormalization factor may be obtained by computing the UV divergences in some con-

venient set of elementary Green’s functions; impressively, it is by now known to five

loops [88, 89]. Note that the bare coupling on the left-hand side of eq. (2.20) has mass

dimension [g] = +ε to give the interaction Lagrangian the correct mass dimension when

analytically continuing to d dimensions.1 This in turn requires a dimensionful factor µ2ε

on the right-hand side to ensure that αs(µ) is dimensionless. Renormalizability of QCD

is the powerful statement that in any given perturbative series in αs(µ), reexpanding the

counterterm Zαs against the lower order terms will precisely cancel the UV poles at the

next order, with a universal coefficient

β0 =
11

3
CA −

4

3
TF nf . (2.22)

Since the bare coupling is independent of the renormalization scale that we arbitrarily

introduced, µ dg/dµ = 0, we find, by taking derivatives of both sides of eq. (2.20),

µ
dαs
dµ

= −2εαs(µ)− µ d

dµ
lnZαs(ε, µ) . (2.23)

Solving this order by order in αs and taking ε→ 0 in the end, we find the finite result

µ
dαs(µ)

dµ
= β[αs(µ)] = −2αs(µ)

[
β0
αs(µ)

4π
+O(α2

s)
]
. (2.24)

This expression is known as the β function [90, 91] of QCD. It governs the dependence of

αs(Q) on the physical scale Q ∼ µ probed by a given measurement.2 Crucially, β0 > 0 for

Nc = 3 and nf < 17, and therefore αs(Q) decreases as the energy scale Q increases, as can

be seen by truncating eq. (2.24) to the leading term and solving it in closed form,

αs(µ) =
αs(µ0)

1 + αs(µ0) β0

2π ln µ
µ0

. (2.25)

1This can most easily be seen by noting that [L] = d since the action has 0 = [ddx] + [L], and comparing

d = [∂2A2] = 2 + 2[A] = [g2A4] = 2[g] + 4[A] for the gluon kinetic term and the four-gluon interaction.
2To see the connection between the (in principle arbitrary) renormalization scale µ and the physical

energy scale Q, note that by dimensional analysis, the coefficients of the perturbative series for a given

observable can only depend on Q/µ. In addition, the physical observable must be independent of the

scale µ, which implies that the coefficient of αns contains terms up to lnnQ/µ that are precisely canceled,

order by order, by the β function. To arrive at any sensible prediction, we are forced to choose µ ∼ Q
as otherwise large logarithms of Q/µ would spoil the perturbative convergence. This will be a recurring

theme in the following chapters.
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Figure 2.2: The strong coupling constant αs(µ) of QCD, evolved using the β function for nf = 5

active flavors at different loop orders. The vertical lines indicate the input scale µ0 = mZ and the

1-loop result for the QCD scale ΛQCD where the coupling diverges.

Here αs(µ0) is a boundary condition for the running coupling which must be extracted at

an input scale µ0 from experiment. The current world average, with µ0 = mZ the mass of

the Z boson, is αs(mZ) = 0.1181(11) [25]. The same behavior of decreasing coupling with

increasing energy persists at higher orders in the β function, as shown in figure 2.2. This

special property of QCD, which arises from the nonabelian coupling ∼ CA of gluons to

themselves, is known as asymptotic freedom [76, 77]. It implies that at sufficiently high scales,

perturbation theory with quark and gluon degrees of freedom will give meaningful results.

On the other hand, at low scales αs(Q) diverges towards the Landau pole Q → ΛQCD,

where at one loop

Λ1-loop
QCD = µ0 exp

[
− 2π

β0 αs(µ0)

]
≈ 100 MeV . (2.26)

This can serve as an indication that at energy scales . 1 GeV, we should expect the

formation of quark bound states by the exchange of many gluons, as indeed observed in

Nature in the form of mesons (quark-antiquark) and baryons (three-quark bound states),

collectively called hadrons. Importantly, all observed hadrons are color singlets, and no free

quarks or gluons are observed, a phenomenon known as (color) confinement. Lattice QCD,

i.e., the numerical study of eq. (2.19) using a discretized Euclidean spacetime lattice [92–94],

provides evidence that QCD indeed correctly describes the hadron spectrum. In addition,

the quantum numbers of the quarks, as well as the approximate symmetries implied by the

relations between their masses, are compatible with the observed properties and interactions

of hadrons. Finally, the observed distributions of jets in detectors, i.e., of collimated sprays

of hadronic radiation, are compatible with the assumption that they are initiated by primary

partons scattered by QCD dynamics [95]. However, despite this overwhelming empirical

evidence, no precise analytic argument is known how eq. (2.19) leads to confinement.

The challenge one faces when describing the collision of hadrons in perturbative QCD

is that (at least) the initial state involves hadronic bound states with intrinsically non-

perturbative dynamics. In the remainder of this section we review some key quark and
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Figure 2.3: Kinematics of deep-inelastic scattering and the leading contribution in QCD.

gluon-initiated processes at electron-proton and hadron colliders, introduce the techniques

needed to deal with hadrons in the initial state, and discuss the historical significance of

these processes in establishing QCD as the theory of strong interactions and their current

significance for precision phenomenology at the LHC.

2.1.2 Deep-inelastic scattering

Deep-inelastic scattering (DIS) refers to a lepton scattering off a hadron target in the regime

where the energy transfer is large compared to the binding energy of the hadron, allowing

one to resolve the hadron’s constituents and, in the process, break it up. The prototypical

example is an electron scattering off an unpolarized proton target,

e−(k) p(P )→ e−(k′)X(pX) , (2.27)

where the unresolved hadronic final state X is the remnant of the proton. For simplicity,

we restrict to the electromagnetic interaction between the electron and the charged proton

constituents. To leading order in the electromagnetic coupling αem, the interaction is

mediated by a single off-shell photon γ∗ carrying momentum

q = k − k′ , Q2 ≡ −q2 > 0 . (2.28)

The process is illustrated in figure 2.3. By our assumptions, we will neglect the proton (and

electron) mass as small compared to the momentum transfer, mp,me � Q. The matrix

element for the process factorizes as

M(e−p→ e−X) =Mµ
e→eγ 〈X|Jγµ|p〉 , (2.29)

where Mµ
e→eγ is the amplitude for the emission and propagation of γ∗, and

Jµγ = |e|
∑
f

Qf q̄fγ
µqf , (2.30)
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2.1 Quantum Chromodynamics at hadron colliders

is the contribution of the quark and antiquark fields to the electromagnetic current. The

sum runs over all active quark flavors f = {u, d, s, c, b, t}, and the electromagnetic charges

of the quarks in units of the elementary charge |e| are Qu,c,t = 2/3 and Qd,s,b = −1/3. The

polarizations of the hadronic current and of the intermediate photon are encoded in the

Lorentz indices of Jµγ and Mµ
e→eγ .

The DIS cross section in the center-of-mass frame of the collision, differential in the

momentum of the scattered lepton k′, is given by the square of eq. (2.29) integrated over

the phase space of hadronic radiation,

dσ =
1

2E2
cm

d4k′

(2π)3
δ+(k′

2
)
∑∫
X

|M(e−p→ e−X)|2 (2π)4δ4(P + k − k′ − pX) , (2.31)

where E2
cm = (P + k)2 = 2P · k and we write the on-shell constraint as δ+(p2 − m2) ≡

θ(p0) δ(p2 −m2) for a particle with momentum p, energy p0, and mass m. We have also

introduced the abbreviation∑∫
X

≡
∑
X

∫
d4pX

∏
i∈X

∫
d4pi
(2π)3

δ+(p2
i −m2

i ) δ
4
(∑
i∈X

pi − pX
)

(2.32)

for the sum over all possible hadronic final states X with total momentum pX , integrated

over their respective phase space. This definition is chosen such that by the optical theorem,∑∫
X

|X〉〈X| = 1 (2.33)

is a complete set of states on the Hilbert space of hadronic radiation. Note that we keep

the sum (average) over final-state (initial-state) polarizations implicit in all squared matrix

elements. Inserting the factorized matrix element into eq. (2.29) yields

dσ =
1

2E2
cm

d4k′

(2π)3
δ+(k′

2
)Lµν(k, k′)Wµν(k − k′, P ) , (2.34)

where the leptonic tensor Lµν ≡ M∗µe→eγMν
e→eγ is defined as the square of the leptonic

matrix element, and evaluates to

Lµν(k, k′) =
2e2

q4
(kµk′

ν
+ kνk′

µ − gµνk · k′) . (2.35)

The hadronic tensor Wµν is defined as

Wµν(q, P ) =
∑∫
X

〈p|J†µγ |X〉〈X|Jνγ |p〉 (2π)4δ4(P + q − pX) , (2.36)

and encodes the hadronic dynamics of the collision. In addition to the proton momentum

P , it only depends on the momentum q injected into the hadronic system.
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It is conventional to parametrize the kinematics of DIS in terms of two dimensionless

Lorentz-invariant quantities, namely the Bjorken variable x and the elasticity y defined as

x ≡ −q2

2P · q , y ≡ P · q
P · k . (2.37)

The integral over the azimuthal angle of k′ is trivial because we consider an azimuthally

symmetric unpolarized scattering; changing variables to x and y, we arrive at

dσ

dx dy
=

y

32π2
Lµν(k, k′)Wµν(k − k′, P ) , (2.38)

where on the right-hand side, k′ (and therefore q and pX) is fully specified in terms of x

and y. In particular,

Q2 = xy E2
cm , p2

X =
1− x
x

Q2 . (2.39)

To make progress, we decompose the hadronic tensor Wµν(q, P ) in a covariant way in terms

of its arguments. First note that conservation of the vector current in QCD, ∂µJ
µ
γ = 0,

implies

qµW
µν = qνW

µν = 0 . (2.40)

In addition, it is clear from the definition in eq. (2.36) that the hadronic tensor is hermitian,

Wµν = W ∗νµ. Finally, since the electromagnetic interaction preserves parity, the hadronic

tensor must satisfy W̄µν(q̄, P̄ ) = Wµν(q, P ), where x̄µ = (x0,−~x). This restricts the tensor

structures that can appear to3

Wµν(q, P ) = αem(4π)2
(
−gµν +

qµqν

q2

)
F1(x,Q2)

+
αem(4π)2

P · q
(
Pµ − P · q

q2
qµ
)(
P ν − P · q

q2
qν
)
F2(x,Q2) . (2.41)

The DIS structure functions Fi are scalar functions of q and P and by Lorentz invariance

can only depend on their invariants, i.e., on q2 and q ·P , or equivalently on Q2 and Bjorken

x as indicated. Inserting eq. (2.41) into eq. (2.38) and contracting, we find

dσ

dx dy
=

2πα2
emE

2
cm

q4

[
2xy2F1(x,Q2) + 2(1− y)F2(x,Q2)

]
. (2.42)

So far, we have not actually made use of QCD in our description of DIS, other than

anticipating that the electromagnetic current in eq. (2.30) would be sourced by quark fields.

The key point where the properties of QCD enter is that since we take the hard scale Q

to be large compared to the onset of the nonperturbative regime at scales ΛQCD � Q, the

3Note that we have absorbed a factor ∝ αem into Wµν in order to be consistent with the following sections,

but compensate for it in this definition of the Fi to recover their standard normalization, see e.g. ref. [96].
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2.1 Quantum Chromodynamics at hadron colliders

DIS structure functions can be factorized, using an operator product expansion (OPE) or,

more generally, the methods of effective field theory:

F1(x,Q2) =
1

2

∑
k

∫
dz

z
C1,k(z,Q

2, µ) fk

(x
z
, µ
)[

1 +O
(ΛQCD

Q

)]
,

F2(x,Q2) = x
∑
k

∫
dz

z
C2,k(z,Q

2, µ) fk

(x
z
, µ
)[

1 +O
(ΛQCD

Q

)]
. (2.43)

Here the parton distribution functions (PDFs) fk(ξ, µ) encode the density of partons of

type k at a given momentum fraction ξ inside the proton. Formally, the PDFs are given by

nonperturbative proton matrix elements of effective local quark and gluon operators that

arise in the OPE of the two electromagnetic currents in the hadronic tensor.

These effective operators are independent of the ultraviolet (UV) dynamics at the per-

turbative scale Q, which are absorbed into the matching coefficients Ci,k. Beyond tree

level, this separation gives rise to additional UV divergences in matrix elements of the PDF

operators, and hence the renormalization of the PDFs (and the matching coefficients) at

the renormalization scale µ. This is discussed in section 2.3.1 in more detail. Physically,

the matching coefficients encode the effect of perturbative initial-state radiation, which

may lead to both energy loss (encoded in the momentum fraction z ≤ 1) and a change of

parton type (encoded in the sum over k). E.g., a gluon k = g extracted from the proton

may split into a qq̄ pair, one of which then couples to the photon. At tree level, none of

these things can happen, and the partonic coefficient functions evaluate to

C1,k(z,Q
2) =

∑
q

Q2
q

(
δkq + δkq̄

)
δ(1− z) +O(αs) ,

C2,k(z,Q
2) = C1,k(z,Q

2) +O(αs) , (2.44)

as can be seen by direct evaluation of eq. (2.36) with quark external states [97]. To strict

leading order we may also neglect the renormalization of the PDFs, leading to

F1,LO(x) =
1

2x
F2,LO(x) =

1

2

∑
q

Q2
q

[
fq(x) + fq̄(x)

]
. (2.45)

This is the prediction of the parton model for the DIS structure functions [98]. In this

model, the cross section is given by the incoherent sum of partonic scattering cross sections

weighted with the probability density to find a parton of momentum fraction x in the

proton. A key feature of this result is that the structure functions exhibit Bjorken scaling,

i.e., they only depend on the Bjorken ratio x, but no longer on the momentum transfer Q.

Since we have pulled out the overall ∼ Q−4 dependence of the Møller cross section, this is

indicative of pointlike proton constituents, as composite objects would set an additional

characteristic length scale a that can be probed by the scattering if Q ∼ 1/a.

Another important feature is that the tree-level results for F1,2 satisfy the Callan-Gross

relation 2xF1 = F2 [99]. (In other words, the fact that the Ci,k in our normalization in

eq. (2.43) were exactly equal at tree level.) This is a direct consequence of the assumption
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Figure 2.4: Kinematics of Drell-Yan production and the leading contribution in QCD.

that spin-1/2 partons source the electromagnetic current: By repeating the calculation in

ref. [97] for hypothetical massless scalar partons φ with electromagnetic charge Qφ, one

instead finds

F1,LO(x) = 0 , F2,LO(x) = xQ2
φ

[
fφ(x) + fφ̄(x)

]
. (2.46)

The experimental observation of Bjorken scaling and the Callan-Gross relation [100, 101]

therefore amounted to the discovery of quarks as the constituents of the proton and were

key in establishing QCD as the theory of strong interactions. In hindsight, it is pleasing

that the intuitive parton model is indeed recovered by the all-order factorization theorem

in eq. (2.43) at tree level, and that its success is explained by asymptotic freedom.

2.1.3 Drell-Yan production

We now turn to the production and decay of an electroweak vector boson in unpolarized

proton-proton collisions at the LHC. The most important case is the Drell-Yan process,

where the vector boson immediately decays into a lepton pair [102],

pp→ Z/γ∗X → `+`−X , pp→W+X → `+νX , pp→W−X → `−ν̄X , (2.47)

referred to as neutral-current Drell-Yan production for the Z and γ∗, and charged-current

Drell-Yan production for the W±. As before, X denotes a generic hadronic final state. The

process is illustrated in figure 2.4

As discussed in the introduction, the Drell-Yan process is a precision benchmark at the

LHC due to the experimentally clean final state and the copious statistics, in particular

if the Z or W is produced near its resonance. It also is a prototype for any process

where a colorless leptonic final state L couples to the hadronic dynamics through a single

(possibly off-shell) electroweak vector boson. Important examples include the generalization

of eq. (2.47) to arbitrary QED final-state radiation (FSR), and the Higgsstrahlung process

V ∗ → V H, and we will generically write

p(Pa) p(Pa)→ V (q)X(pX)→ L(q)X(pX). (2.48)
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At leading order in the electroweak interaction, the matrix element factorizes as for DIS,

M(pp→ V +X → L+X) =Mµ
V→L 〈X|JV µ|pp〉 , (2.49)

where Mµ
V→L is the amplitude for V to propagate and decay into the leptonic final state

L, and JµV is the electroweak qq̄ current that couples to V , including electroweak charges

and couplings. The current for V = γ is the same as in eq. (2.30). The current for V = Z

reads [103]

JµZ = −|e|
∑
f

q̄fγ
µ
(
vf − afγ5

)
qf , (2.50)

where the sum again runs over quark flavors f = {u, d, s, c, b, t}. The vector and axial

couplings of flavor f to the Z boson are

vf =
T f3 − 2Qf sin2 θw

sin(2θw)
, af =

T f3
sin(2θw)

, (2.51)

where T u,d3 = ±1/2 is the weak isospin, and θw is the weak mixing angle. For V = W±,

the currents are given by

Jµ
W+ = − |e|√

2 sin θw

∑
f,f ′

Vff ′ q̄fγ
µ 1− γ5

2
qf ′ , Jµ

W− =
(
Jµ
W+

)†
, (2.52)

where the sum runs over f = {u, c, t} and f ′ = {d, s, b}, and Vff ′ is the corresponding CKM

matrix element.

The differential cross section for pp → V X → LX in the lab frame, which we take to

be the hadronic center-of-mass frame, is given by the square of eq. (2.49), integrated over

phase space, and factorizes as

dσ

d4q dOL dOX
=

1

2E2
cm

∑
V,V ′

LV V ′ µν(q,OL)Wµν
V V ′(q, Pa, Pb,OX)

≡ 1

2E2
cm

Lµν(q,OL)Wµν(q, Pa, Pb,OX) . (2.53)

Here, q is the total momentum of the leptonic final state L (i.e., the momentum carried by

V or V ′). Parametrizing it in terms of the total leptonic invariant mass Q2 = q2 > 0 and

the rapidity Y and transverse momentum ~qT of L, we have

qµ = (mT coshY, ~qT ,mT sinhY ) , mT =
√
Q2 + q2

T , d4q =
1

2
dQ2 dY d2~qT , (2.54)

where mT is also known as the transverse mass. Importantly, in addition to q, the cross

section depends on the observable measured on the leptonic final state L, which we generi-

cally denote by OL. For example, we could measure the transverse momentum of one of the

leptons or apply fiducial acceptance cuts. Unlike the case of inclusive DIS, we also allow

for a generic observable OX to be measured on the hadronic final state; this could e.g. be
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the transverse momentum of the leading jet. The sum over V, V ′ in eq. (2.53) runs over

all intermediate vector bosons that contribute to the observed final state. In particular,

it encodes the interference of V = γ with V ′ = Z for neutral-current Drell-Yan. In the

following, we suppress the dependence on V, V ′, as in the second line of eq. (2.53), unless

it is of some relevance.

The hadronic tensor Wµν
V V ′ describes the QCD dynamics of the proton-proton collision. It

is integrated over all hadronic radiationX, subject to the measurementOX , but independent

of the measurement performed on L,

Wµν
V V ′(q, Pa, Pb,OX)

≡
∑∫
X

〈pp|J†µV |X〉〈X|JνV ′ |pp〉 δ4(Pa + Pb − q − pX) δ[OX − ÔX(X)] , (2.55)

where the matrix elements of JµV are implicitly averaged over proton spins. In addition to q,

it depends on the incoming proton momenta Pa,b. In the lab frame (and neglecting proton

masses),

Pµa =
Ecm

2
(1, 0, 0, 1) , Pµb =

Ecm

2
(1, 0, 0,−1) , (2.56)

where E2
cm ≡ (Pa + Pb)

2 is the hadronic center-of-mass energy.

The leptonic tensor LµνV V ′ describes the propagation and decay of the intermediate vector

boson,

LµνV V ′(q,OL) ≡
∫

dΦL(q)LµνV V ′(ΦL) δ[OL − ÔL(q,ΦL)] ,

LµνV V ′(ΦL) ≡M∗µV→L(ΦL)Mν
V ′→L(ΦL) . (2.57)

In addition to q and the polarization of V encoded in the Lorentz indices, it depends

on the measurement OL acting on the leptonic phase space point ΦL. Here the leptonic

phase-space measure with total momentum q is defined as

dΦL(q) =

[∏
i∈L

d4pi
(2π)3

θ(p0
i )δ(p

2
i −m2

i )

]
(2π)4δ4

(
q −

∑
i∈L

pi

)
. (2.58)

For the most part of this thesis, we will consider the cross section fully inclusive over the

decay products, i.e., integrated over OL, such that Lµν only depends on the total vector

boson momentum q. In addition, we mostly focus on the standard Drell-Yan process in

eq. (2.47) with vanishing lepton masses m` = mν = 0. In this case the leptonic current is

conserved, qµL
µν = qνL

µν , and the leptonic tensor in eq. (2.57) by covariance must take

the form

Lµν(q) =

∫
dΦL(q)Lµν(ΦL) =

(qµqν
q2
− gµν

)
L(q2) . (2.59)

Inserting eq. (2.59) into eq. (2.53) yields

dσ

d4q dOX
=

1

2E2
cm

L(q2)Wincl(q, Pa, Pb,OX) , (2.60)
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where all QCD dynamics are encoded in a single Lorentz-scalar inclusive hadronic structure

function

Wincl(q, Pa, Pb,OX) ≡
(qµqν
q2
− gµν

)
Wµν(q, Pa, Pb,OX) . (2.61)

Explicit expressions for the scalar coefficients L(q2) for the case of Drell-Yan are given in

appendix B.2. Since the leptonic dynamics at this point only amount to an overall prefactor,

we will often directly quote results for the cross section on the left-hand side of eq. (2.60);

the underlying hadronic structure function can then easily be recovered, e.g. to apply our

results to an (inclusive) measurement of another Drell-Yan-like process. In chapter 7, we

will carefully do the analogue of the covariant DIS decomposition in eq. (2.41) to allow for

fully generic leptonic observables, and explore its implications for the structure of power

corrections at small qT � Q. A dedicated discussion of non-conserved contributions to the

leptonic and hadronic tensor is also given there.

To introduce the analogue of the DIS factorization in eq. (2.43), let us consider a yet

more inclusive observable and measure only the invariant mass Q2 and rapidity Y of the

leptonic final state. We define the momentum fractions

xa =
Q

Ecm
e+Y , xb =

Q

Ecm
e−Y , (2.62)

which are in one-to-one correspondence to Q and Y , and generalize the Bjorken fraction x

for Drell-Yan production. The cross section differential in xa,b relates to eq. (2.60) as

dσ

dxa dxb
=

1

4
L(Q2)

∫
d2~qT Wincl(q, Pa, Pb) , (2.63)

where Wincl(q, Pa, Pb) is the inclusive hadronic structure function integrated over any OX .

For ΛQCD � Q, the double-differential cross section satisfies the collinear factorization

theorem [104–106]

dσ

dxa dxb
=
∑
i,j

∫
dza
za

dzb
zb

σ̂ij(za, zb, Q, µ) fi

(xa
za
, µ
)
fj

(xb
zb
, µ
) [

1 +O
(ΛQCD

Q

)]
, (2.64)

where σ̂ij(za, zb, Q, µ) denotes the perturbatively calculable partonic cross section for the

scattering of partons i and j into the observed final state, allowing for energy loss through

perturbative initial-state radiation encoded in the momentum fractions za,b ≤ 1. Impor-

tantly, the fi(x, µ) are the same PDFs as in DIS in eq. (2.43), so they may e.g. be extracted

from DIS data like the precise data taken at the HERA e−p collider at DESY, and then

be used to produce predictions for the LHC [107, 108]. More commonly, a global fit to all

available data including pp data sets is performed [109–112]. In either case, higher-order

contributions to the partonic cross section in eq. (2.64) are crucial for a precise prediction

(or extraction), and for the inclusive rapidity spectrum have been known analytically to

NNLO for quite some time [113, 114].
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Generalizations of eq. (2.64) also hold for the more differential cross section in eq. (2.60),

with the partonic cross section now in addition differential in ~qT and OX [104–106],

dσ

dxa dxb d2~qT dOX
=
∑
i,j

∫
dza
za

dzb
zb

σ̂ij(za, zb, Q, ~qT ,OX , µ) fi

(xa
za
, µ
)
fj

(xb
zb
, µ
)

×
[
1 +O

(ΛQCD

ΛX

)]
, (2.65)

In this case the leading power corrections are of the form ΛQCD/ΛX , where ΛX is the

lowest energy or transverse momentum scale probed by the measurement on the hadronic

state. This scale may be set directly through OX , or indirectly by probing small qT . The

fully-differential Drell-Yan cross section, including the dependence on the decay products, is

known at NNLO [115–119], also combined with parton showers [120–122]. NLO electroweak

corrections have also been calculated [123–133], as well as the mixed NNLO QCD+QED

and QCD+electroweak corrections in the limit where production and decay are factorized

as in eq. (2.53) [134–140].

Eq. (2.64) again has a parton-model interpretation when evaluating the partonic cross

section at tree level,4

σ̂ij(za, zb, Q, µ) =
4πα2

em

3NcQ2

∑
q

Q2
q

[
δiqδjq̄ + δiq̄δjq

]
δ(1− za)δ(1− zb) +O(αs) , (2.66)

forcing a quark and an antiquark of the same flavor that are extracted from the proton to

directly annihilate into the vector boson, with no radiative energy loss:

dσLO

dxa dxb
=

4πα2
em

3NcQ2

∑
q

Q2
q

[
fq(xa)fq̄(xb) + fq̄(xa)fq(xb)

]
. (2.67)

As before, the parton-model interpretation of the PDF as a probability density applies: In

this case there are two independent probability densities for finding a quark at a momentum

fraction xa and an antiquark at a momentum fraction xb (or vice-versa), so the cross section

is given by their product times the qq̄ annihilation cross section. The analogous statement

to Bjorken scaling in this case is that the QCD dynamics are fully determined in terms of

the two momentum fractions xa,b, but no longer depend on Q2 after pulling out the overall

Q2 dependence of the propagator.

We note that if the rapidity Y is fully integrated over, Drell-Yan production can be

characterized in terms of a single momentum fraction like DIS,

τ = xaxb =
Q2

E2
cm

, (2.68)

4Here we restrict to photon exchange V = V ′ = γ∗ for simplicity. Complete NLO expressions for σ̂ij can

be found in appendix F.
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and the collinear factorization theorem eq. (2.64) projects onto

dσ

dτ
= E2

cm

dσ

dQ2
=

∫
dxa dxb

dσ

dxa dxb
δ(τ − xaxb)

=
∑
i,j

∫
dz

z
σ̂ij(z,Q, µ) ffij

(τ
z
, µ
)
. (2.69)

On the second line we have defined the partonic luminosity function

ffij(ξ, µ) ≡
∫

dY fi
(
ξe+Y , µ

)
fj
(
ξe−Y , µ

)
, (2.70)

and the projected partonic cross section

σ̂ij(z,Q, µ) ≡
∫

dza dzb σ̂ij(za, zb, Q, µ) δ(z − zazb) , (2.71)

which likewise is a function of only a single partonic momentum fraction. This partonic cross

section has a much simpler structure than the partonic rapidity spectrum, and has recently

been calculated to N3LO for photon exchange [141] and charged-current Drell-Yan [142].

(Earlier results at NNLO were given in refs. [143–145].) These calculations provide intriguing

evidence that perturbative corrections to Drell-Yan production beyond two loops, previously

assumed to be well-convergent, are in fact quite sizable. The use of these N3LO results for

PDF phenomenology, however, is limited because they only provide access to the aggregate

partonic luminosity in eq. (2.70), whereas double-differential measurements in Q and Y

provide access to the full dependence of both PDFs on xa and xb. (Realistically, even more

fine-grained calculations differential in the decay products are needed as detectors have

limited fiducial acceptance.)

2.1.4 Higgs production

Measuring and interpreting the properties of the Higgs boson discovered in 2012 is a key

part of the LHC physics program. In the Standard Model, the Higgs boson couples to

quarks through the scalar current

JH =
∑
f

yf q̄fqf , yf ∝
mf

v
, (2.72)

after electroweak symmetry breaking. The fermion mass term and eq. (2.72) arise from the

same interaction term for the Higgs doublet and the fermion fields in the unbroken phase

of the Standard Model, so the Yukawa couplings yf are proportional to the ratio of the

quark mass mf and the Higgs vacuum expectation value v.

The production mechanisms for the Higgs boson at the LHC can be classified by whether

the Higgs directly couples to the quark Yukawa current in eq. (2.72), figure 2.5, or whether

the interaction is mediated by weak vector bosons, figure 2.6. All of these processes pose

unique challenges when attempting to describe them in QCD. For example, the gluon-fusion

process in figure 2.5, left, is purely loop induced, only starts at O(α2
s) and involves the two
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b̄, c̄

H

Figure 2.5: Higgs boson production modes at the LHC that arise directly from the quark Yukawa

interaction in eq. (2.72). From left to right: gluon fusion gg → H, associated tt̄H production, and

bottom and charm quark annihilation bb̄, cc̄→ H. The proton-proton initial state is as in figure 2.4

and omitted for clarity.

V ∗

V ∗

q

q′

H
V ∗

q

q̄′

H

V

Figure 2.6: Higgs boson production modes at the LHC that are mediated by weak vector bosons

V = W+, Z. Left: vector boson fusion (VBF). Right: Higgsstrahlung (V H production).

Production mode σ(13 TeV) Order Ref.

gg → H 48.61 pb N3LOrEFT + NLOexact mq + LOEW [146]

tt̄H 0.51 pb NLO + NLOEW [146]

bb̄→ H 0.49 pb NNLO [147]

VBF 3.77 pb NNLODIS + NLOEW [146]

WH 1.36 pb NNLO + NLOEW [146]

ZH 0.88 pb NNLO + NLOEW [146]

Table 2.1: Theory predictions for the inclusive Higgs production cross section in different production

modes at the Ecm = 13 TeV LHC for mH = 125.09 GeV, and the corresponding order in fixed-order

perturbation theory in the strong (NnLO) and electroweak (NnLOEW) couplings. The subscript

rEFT refers to taking the limit of mt →∞ in all higher-order QCD corrections, see eqs. (2.73) and

(2.74). The subscript DIS denotes the structure function approach described in the text. References

to the original calculations can be found in refs. [146, 147].
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distinct scales of mH and the quark mass. Nevertheless, much of the technology developed

to describe DIS and Drell-Yan production can be applied to Higgs production, as well.

This is most obvious for the V H and bb̄, cc̄→ H processes, which at most differ from the

Drell-Yan case in the spin structure of the quark vertex. In the structure function approach

to VBF, the two subprocesses that produce the intermediate vector bosons are treated as

independent, allowing one to relate the partonic cross section to the product of DIS hard

scattering coefficients in eq. (2.43). Most importantly, the factorization of the process into

a hard scattering cross section and the nonperturbative PDF as in eq. (2.65) underlies all

theory predictions for Higgs production at the LHC.

Up-to-date predictions for the inclusive production cross sections from refs. [146, 147]

are compiled in table 2.1, together with the status of the calculation. Notable progress

in QCD fixed-order predictions beyond the status summarized in refs. [146, 147] includes

the calculation of the inclusive bb̄→ H cross section to N3LO [148], the calculation of the

inclusive VBF cross section to N3LODIS [149], and a (re)assessment and elegant calculation

of the dominant corrections to the structure function approach to VBF [150].

The gluon fusion (gg → H) production mode by far dominates the total production cross

section, and by virtue of the large statistics allows for the most detailed measurement of

differential Higgs cross sections. The gluon fusion cross section in turn receives its dominant

contribution from diagrams with a top quark mediating the interaction between gluons

and the Higgs. The calculation of the production rate is greatly simplified by working to

leading power in the limit mH � 2mt, where 2mt is the energy required to produce an

additional on-shell top quark pair at rest. This approximation is well justified for quantities

like the total cross section or the Higgs transverse momentum spectrum for pT,H . mH that

probe no kinematic scales of O(mt), and the corrections to it are quadratic in mH/(2mt).

The approximation breaks down e.g. at large pT,H � mH , where the Higgs can recoil

against an additional hard emission that resolves the top loop. In the limit mH � 2mt, the

top loop can be approximated by an effective gluon current coupling to the Higgs boson

directly [151–154],

JEFT
H =

αsCt
12πv

GaµνG
a,µν . (2.73)

The prefactor of αs and the matching coefficient Ct = 1 +O(αs) are determined by power

expanding the full amplitude (figure 2.7) and matching it onto a matrix element of the

effective current. The explicit suppression of the current by 1/mt combines with the

Yukawa coupling into a prefactor proportional to 1/v, which gives the corresponding term

L ⊃ −HJEFT
H in the Lagrangian the correct mass dimension. This effective coupling can

also serve as a prototype for the production of a hypothetical new heavy scalar at the

LHC that couples to gluons indirectly through new strongly interacting physics at another,

much higher scale. In chapter 3 we will provide predictions for the signal strength in such

a scenario under realistic jet selection criteria. In practical applications, the approximation

for Higgs production can be improved by rescaling the effective current by the full mt
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t

H −→ H
αsCt

Figure 2.7: The top-triangle diagram (left) giving the dominant contribution to gluon-fusion

Higgs production in the Standard Model, and the effective interaction vertex it matches onto (right).

Virtual corrections that resolve the top loop are captured by the matching coefficient Ct = 1+O(αs).

Figure adapted from ref. [155].

dependent leading-order amplitude F0(ρ),

J rEFT
H = F0

(m2
H

4m2
t

)
JEFT
H , F0(ρ) =

3

2ρ
− 3

2ρ

∣∣∣∣1− 1

ρ

∣∣∣∣ arcsin2(
√
ρ) for ρ < 1 . (2.74)

This rescaled EFT (rEFT) method pushes corrections to the EFT limit down to O(αs/mt).

For completeness and later reference, we give the general form of the Higgs production

cross section for generic measurements OL and OX on the decay products L of the Higgs

boson and the hadronic final state X. The most important decay channels for precision

determinations of Higgs differential spectra are H → L = γγ, with the decay mediated by

top and W± loops, and the “golden channel” H → ZZ∗ → 4`; see refs. [156–161] for recent

results. In analogy to eq. (2.53) for Drell-Yan, the cross section takes the form

dσ

d4q dOL dOX
=

1

2E2
cm

L(q,OL)W (q, Pa, Pb,OX) . (2.75)

Here the hadronic and leptonic “tensors” W and L are in fact, like the Higgs and the

currents it couples to, Lorentz scalars, and the polarization of the decay products in L is

fully uncorrelated with the production mechanism. The hadronic and leptonic tensors read,

with JH = {JH , JEFT
H , J rEFT

H } any of the currents introduced above,

W (q, Pa, Pb,OX) =
∑∫
X

〈pp|J†H |X〉〈X|JH |pp〉 δ4(Pa + Pb − q − pX) δ[OX − ÔX(X)] ,

L(q,O) =

∫
dΦL(q) |MH→L(ΦL)|2 δ[O − Ô(q,ΦL)] , (2.76)

where MH→L is the matrix element for the propagation and decay of H into L,

MH→L(ΦL) =
1

q2 −m2
H + iΓHmH

Mdecay(ΦL) . (2.77)

The decay matrix elementMdecay is related to the differential Higgs decay rate in the Higgs

rest frame by

dΓH→L
dΦL

=
1

2mH
|Mdecay(ΦL)|2 . (2.78)
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An important property of the Higgs boson is that its total width ΓH is narrow, ΓH � mH :

The predicted width in the SM is ΓH ≈ 4 MeV [25], while the most stringent experimental

constraint is ΓH < 13 MeV at a 95% confidence level [162]. In the limit ΓH � mH , the

narrow width approximation of the squared propagator by a δ function applies,

|MH→L(ΦL)|2 =
∣∣∣ 1

q2 −m2
H + iΓHmH

∣∣∣2 2mH
dΓH→L

dΦL

→ 2πδ(q2 −m2
H)

1

ΓH

dΓH→L
dΦL

. (2.79)

Inserting this result into the expression for the cross section, we find

dσ

dY d~qT dOL dOX
=

π

2E2
cm

W (q, Pa, Pb,OX)

× 1

ΓH

∫
dΦL(q)

dΓH→L
dΦL

δ[OL − ÔL(q,ΦL)] , (2.80)

where q2 = mH is fixed on the right-hand side. Importantly, the observed on-shell signal

cross section is only sensitive to the normalized differential decay rate, making it challenging

to directly observe (rather than put limits on) the total Higgs decay width at the LHC.

If the measurement OL is inclusive over the distribution of the decay products, the

leptonic tensor simplifies further,

L(q2) = 2πδ(q2 −m2
H)

1

ΓH

∫
dΦL

dΓH→L
dΦL(q)

= 2πδ(q2 −m2
H)

ΓH→L
ΓH

≡ 2πδ(q2 −m2
H) BrH→L . (2.81)

On the last line we defined the branching fraction BrH→L for the decay channel L. With

this, the cross section reads

dσ

dY d~qT dOX
=

π

2E2
cm

W (q, Pa, Pb,OX) BrH→L (2.82)

In both eqs. (2.80) and (2.81), accounting for the Higgs decay amounts to a simple multi-

plicative factor, so in this thesis we will simply quote results for the production cross section

of an on-shell Higgs boson, which is given by πW/(2E2
cm) and captures all the initial-state

QCD dynamics.

2.2 Factorization from Soft-Collinear Effective Theory

2.2.1 Effective field theory

Effective field theory (EFT) is a tool to make the separation of energy scales p� Q manifest

at the level of the cross section (or the decay width, the spectrum of states, or any other

physical observable) in a systematic power expansion in p/Q. The general strategy is the

following:
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1. Identify the low-energy degrees of freedom at the scale p. In quantum field theory,

these are the propagating fields with virtualities or masses . p2.

2. Write down all possible terms (operators) Oi ⊂ Leff in their Lagrangian that are

consistent with the symmetries of the theory, keeping terms to the desired order in

the power counting in p/Q.

3. In a third, optional step known as matching, calculate the coefficients Ci in Leff =∑
iCiOi by comparing a set of Green’s functions in the full and the effective theory.

4. Compute the observable using the low-energy Lagrangian.

EFTs whose full theories are known and admit a matching calculation as in step 3 are known

as top-down EFTs. In bottom-up EFTs, the coefficients instead need to be determined from

experiment and can then be used to derive predictions.

The EFT paradigm underlies much of physics. A simple, familiar example of a top-down

EFT is the multipole expansion in classical electrodynamics: The dynamics of a rigid body

with charge distribution ρ(~x) localized at short distances |~x| ∼ 1/Q can be described in

terms of a few multipole moments if the electromagnetic field only varies slowly and over

longer distances |~x| ∼ 1/p. Retaining higher terms in the multipole expansion precisely

corresponds to working to higher power in p/Q, and the calculable multipole moments are

the matching coefficients Ci. More generally, and in somewhat ahistorical hindsight, turning

bottom-up into top-down EFTs is the way in which humanity has learned about Nature:

As our ability to probe higher energy scales and shorter distances increases, the number of

parameters (matching coefficients) we had to simply accept has decreased, and they instead

have been explained by more fundamental theories. An example is the magnetic dipole

moment of the electron as probed by a field varying over long distances |~x| ∼ 1/p. Its

value is predicted in QED [163], the more fundamental theory at the scale 2me ∼ Q where

quantum excitations of the electron field are probed, and the prediction and experimental

measurements have by now reached astonishing precision and agreement.

In the context of contemporary particle physics, an important bottom-up EFT is the

Standard Model itself, where we do not know what lies at energy scales Λ beyond the

weak scale. We can hope, however, to find experimental deviations pointing to nonzero

coefficients Ci at the first subleading orders in 1/Λ that would offer a hint to possible UV

completions. Another example are effective theories for low-energy hadron interactions

like chiral perturbation theory. Here the matching coefficients are challenging to compute

because the full theory (QCD) is nonperturbative at the relevant scales, but truncating the

power expansion ensures these theories remain predictive.

As for top-down effective field theories in collider phenomenology, we have already

encountered one explicit example in section 2.1.4, where quantum fluctuations of the top

quark at the scale 2mt were integrated out, resulting in an effective operator coupling

gluons to the Higgs boson. In this section we review the soft-collinear effective theory

(SCET) [164–169], following the EFT recipe above. The review in part follows ref. [170],

with some segments adapted from ref. [155]. SCET is different from the heavy top quark
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Figure 2.8: Mode setup in SCETI (left) and SCETII (right) in the (p+, p−) plane. In SCETI,

collinear (green) and ultrasoft modes (orange) contribute to the measurement and have paramet-

rically distinct virtuality and perpendicular momentum p2 ∼ p2⊥ ∼ p+p−. In SCETII, collinear

and soft modes with the same virtuality p ∼ λ2Q2 contribute to the measurement. In the hatched

regions soft and collinear modes overlap, giving rise to rapidity divergences. In either case, hard

modes (blue) are integrated out and captured by the matching. Glauber modes are off shell and are

not shown.

Both panels from ref. [155].

limit as it does not involve integrating out an entire particle. Instead, the low-energy

degrees of freedom are those modes of the quark and gluon fields that are near the mass

shell, and only the off-shell modes of the fields are integrated out and absorbed into matching

coefficients. SCET has rich applications and can be used, for example, to formulate the

factorization theorems in eqs. (2.43) and (2.64) [171]. In this thesis, we will be mostly be

interested in its applications to problems with Sudakov double logarithms, as described in

the introduction. We use the label momentum formalism of [164–167] to perform the power

expansions yielding the leading-power SCET Lagrangian and, later in this thesis, power

expand and factorize measurement operators. One may also carry out the power expansion

directly in position space [168, 169], see also ref. [172] for a review.

2.2.2 Degrees of freedom

SCET is an effective field theory of QCD that describes the interactions of collinear and

soft particles in the presence of a hard interaction. Soft particles are low-energy, long-

wavelength fluctuations of the fields. Collinear particles are energetic, but are collimated

with a lightlike direction nµi . This could be the direction of motion of an incoming hadron,

or an outgoing hadron or jet. For every nµi we pick a second lightlike reference vector n̄µi
with n2

i = n̄2
i = 0 and ni · n̄i = 2. A common choice is

nµi = (1, ~ni) , n̄µi = (1,−~ni) , (2.83)

35



Chapter 2 – Factorization and resummation

with ~ni a unit three-vector. In terms of ni, n̄i, any four-momentum p can be decomposed

in light-cone coordinates as

pµ = n̄·p n
µ
i

2
+ n·p n̄

µ
i

2
+ pµ⊥ ≡ (ni ·p, n̄i ·p, ~p⊥) ≡ (p+, p−, ~p⊥) . (2.84)

We can also decompose the metric and define an antisymmetric tensor in the ⊥ plane as

gµν =
nµn̄ν

2
+
n̄µnν

2
+ gµν⊥ , εµν⊥ =

1

2
εµνρσ n

ρn̄σ . (2.85)

It follows in particular that p2 = p+p− + p2
⊥ = p+p− − ~p 2

⊥ . Collinear particles close to nµi
have p− � |~p⊥| � p+. We formalize this by introducing a power counting parameter λ,

ni-collinear: pµ ∼ Q(λ2, 1, λ) , λ� 1 , (2.86)

where Q ∼ n̄i is the energy available from (or absorbed by) the hard interaction process.

The precise definition of λ depends on the experimental observable, and we will see various

examples in this thesis. The collinear modes of the QCD quantum fields that satisfy

eq. (2.86) are one of the degrees of freedom of SCET.

In general, there are distinct ni-collinear modes for every strongly interacting collinear

sector in the problem. Color-singlet production in proton-proton collisions involves two

sectors na and nb, one for each incoming proton. Unless noted otherwise, we pick

nµa = (1,+ẑ)lep , nµb = (1,−ẑ)lep (2.87)

in the leptonic frame, i.e., the frame where the color-singlet final state has vanishing rapidity

and longitudinal momentum. The z-axis of the leptonic frame and the spatial components

of the na,b are aligned with the beam axis. The leptonic frame is reached from the lab

frame through a longitudinal boost by the rapidity Y ,

nµa = e−Y (1,+ẑ)lab , nµb = e+Y (1,−ẑ)lab (2.88)

so the leptonic final state can still have nonzero transverse momentum. For the proton

momenta we have in this convention, neglecting proton masses,

Pµa = e−YEcm
nµa
2

= P−a
nµa
2
, Pµb = e+YEcm

nµb
2

= P−b
nµb
2
. (2.89)

Since na · nb = 2, we can pick

n̄µa = nµb , n̄µb = nµa . (2.90)

This choice is convenient because it allows all light-cone components to be written with

respect to a single n ≡ na,

na-collinear: pµ ∼ Q(λ2, 1, λ) , nb-collinear: pµ ∼ Q(1, λ2, λ) . (2.91)
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In addition, the ⊥ space for this choice coincides with the transverse plane in the detector.

In these coordinates, the color-singlet momentum qµ is given by

qµ = (q+, q−, ~q⊥) =
(√

Q2 + q2
T ,
√
Q2 + q2

T , ~qT
)
. (2.92)

Our list of degrees of freedom is not yet complete. We wish to integrate out physics at

scales p2 ∼ λQ2, Q2, but retain as dynamical degrees of freedom all modes that, like the

collinear modes, have p2 . λ2Q2. This includes isotropic soft modes with low energy,

soft: pµ ∼ Q(λ, λ, λ) . (2.93)

Since one of their p± components is parametrically larger than the respective entry for na.b-

collinear modes, interactions between soft and collinear particles take the collinear particle

off its mass shell. These interactions are therefore incorporated during the matching, see

section 2.2.7. Soft modes can, however, always interact with other modes indirectly through

Glauber modes

Glauber: pµ ∼ Q(λ2, λ2, λ) . (2.94)

These modes are parametrically off shell and therefore cannot be radiated into the final

state. Virtual Glauber exchanges, on the other hand, keep collinear (and soft) particles

on shell and therefore in principle couple all collinear sectors to each other. At the lowest

energies, there are ultrasoft (or usoft) modes,

ultrasoft: pµ ∼ Q(λ2, λ2, λ2) . (2.95)

Like the soft modes, ultrasoft radiation is isotropic, but unlike soft modes it keeps the

emitting (or absorbing) collinear particles parametrically on shell. These interactions are

therefore part of the collinear dynamics, as we will see below.

In summary, the prototypical modes describing color-singlet production in SCET are

na-collinear: pµ ∼ Q(λ2, 1, λ) , soft: pµ ∼ Q(λ, λ, λ) ,

nb-collinear: pµ ∼ Q(1, λ2, λ) , Glauber: pµ ∼ Q(λ2, λ2, λ) ,

ultrasoft: pµ ∼ Q(λ2, λ2, λ2) . (2.96)

Very often, a given observable (up to Glauber exchanges) can be described by collinear

modes and either usoft or soft modes alone, depending on the type of radiation that the

experimental measurement permits or is sensitive to. These scenarios are referred to as

SCETI, when only usoft modes contribute, and as SCETII in the soft case. The relevant

mode setups are summarized in figure 2.8.

In general, the SCET Lagrangian is given by the sum of hard scattering operators Lhard,

which for color-singlet production arise from the coupling to the external color-singlet field,

and a dynamical Lagrangian Ldyn encoding the low-energy interactions. Both contributions

to the Lagrangian can be systematically expanded in λ,

LSCET = Lhard + Ldyn =
∞∑
i=0

L(i)
hard + L(0)

G +
∞∑
i=0

L(i)
dyn , (2.97)
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where (i) denotes power suppression of O(λi). The leading-power Glauber Lagrangian L(0)
G ,

conventionally pulled out of L(0)
dyn, describes leading-power interactions between soft and all

collinear modes through Glauber potentials [173]. The remaining leading-power dynamical

Lagrangian only involves interactions that are local at the scale λQ, and is given by

L(0)
dyn =

∑
ni

L(0)
ni + L(0)

us + L(0)
s , (2.98)

where L(0)
ni describes the leading-power interactions of particles in a collinear sector ni with

each other and with ultrasoft gluons, and L(0)
us and L(0)

s describe the interactions of soft

and ultrasoft particles among themselves.

In the following we focus on the interactions L(0)
ni of usoft particles and particles in a

single ni-collinear sector and write n ≡ ni for short. Collinear quarks are described by a

spinor field ξn(x). (We suppress flavor indices for now.) The collinear quark field satisfies

/n ξn(x) = 0 , (2.99)

i.e., it has two nonzero components corresponding to the two physical helicities of an on-shell

massless quark with respect to its direction of motion. Collinear gluons, ultrasoft gluons,

and ultrasoft quarks are described by vector fields Aµn(x), Aµus(x), and a four-component

Dirac spinor field qus(x), respectively. The derivatives and components of these fields have

definite power counting in a sense that we will make precise now.

2.2.3 Symmetries of SCET

Ultrasoft and collinear gauge invariance. Like for the QCD Lagrangian, SU(Nc)

gauge invariance is the guiding principle in writing down the SCET Lagrangian. However,

not all gauge transformations map propagating degrees of freedom onto each other. Consider,

for example, a gauge transformation

i∂µU(x) ∼ Q(1, 1, 1)U(x) . (2.100)

By eq. (2.8), this injects a large momentum into the quark and gauge fields, taking soft

or collinear modes off shell. Instead, we must restrict to collinear and ultrasoft gauge

transformations whose scaling respects the power counting of the theory,

i∂µÛn(x) ∼ Q(λ2, 1, λ) Ûn(x) , i∂µUus(x) ∼ Q(λ2, λ2, λ2)Uus(x) . (2.101)

These two independent sets of transformations define the residual gauge symmetry of SCET.

To avoid double-counting a global color rotation, we fix Ûn(n · x→∞)→ 1F .

The action of Uus(x) on the soft fields is the same as that of U(x) on full QCD fields

because the scaling of all momenta and spacetime directions is homogeneous,

qus(x)
Uus(x)7−−−−−→ Uus(x) qus(x) ,

Aµus(x)
Uus(x)7−−−−−→ Uus(x)Aµus(x)U †us(x) + Uus(x)

[ i

g
∂µU †us(x)

]
. (2.102)
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p−

p⊥

p̃

k

p

∆p̃− ∼ Q

∆
p̃
⊥
∼
λ
Q

k− ∼ λ2Q

Figure 2.9: Decomposition of a momentum p into label (p̃) and residual momentum (k). The

label momentum p̃ takes discrete values on a grid with spacing ∼ Q in the p− and ∼ λQ in the p⊥
direction. Only one component of the p⊥ momentum is shown. The p+ = k+ component is likewise

not shown. The gray-shaded area at the bottom left is the zero bin p̃ = (0, 0, 0) where collinear and

ultrasoft modes overlap.

Figure adapted from ref. [155].

For collinear fields, Uus(x) amounts to a slowly varying local rotation of the color space,

i.e., a background gauge transformation,

ξn(x)
Uus(x)7−−−−−→ Uus(x) ξn(x) ,

Aµn(x)
Uus(x)7−−−−−→ Uus(x)Aµn(x)U †us(x) . (2.103)

To write down the action of Ûn(x) on the fields, we need some additional notation. Take

the Fourier transform of a given Ûn(x),

Ũ(p) =

∫
d4x eip·xÛn(x) . (2.104)

By our assumptions we know that Ũ(p) only has support in the region where pµ ∼ Q(λ2, 1, λ).

Now decompose the momentum p as

pµ = p̃µ + kµ = n̄ · p̃ n
µ

2
+ p̃µ⊥ + kµ , (2.105)

where p̃µ⊥ ∼ Q(0, 1, λ) is a large label momentum whose first component exactly vanishes,

p̃+ = 0, and kµ ∼ Q(λ2, λ2, λ2) is a small residual momentum. This decomposition is

redundant to the extent that we can shuffle O(λ2) momenta in and out of p̃−, p̃⊥. More

formally, p̃µ + kµ lies in a quotient set R3 × R4/I with I a set of equivalence relations

that specify the redundancy to our working order in λ. One way of choosing I to make

eq. (2.105) unique is to make p̃ a discrete label with grid spacings ∆p̃− ∼ 1 and ∆p̃⊥ ∼ λ,
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taking the continuum limit in the end. As illustrated in figure 2.9, any collinear momentum

p then falls into a bin with a grid point p̃ at its center, and the distance from p̃ defines k.

With this decomposition, we can define

Un,p̃(x) ≡
∫

d4k

(2π)4
e−ik·x Ũn(p̃+ k) , (2.106)

where the dependence on the residual momentum is transformed back to position space,

and write the collinear gauge transformation as

Ûn(x) =

∫
d4p

(2π)4
e−ip·x Ũn(p) =

∑
p̃

∫
d4k

(2π)4
e−i(p̃+k)·x Ũn(p̃+ k)

=
∑
p̃

e−ip̃·x Un,p̃(x) . (2.107)

The x dependence of the Un,p̃(x) is purely residual since we have pulled out the large label

component, i.e.,

i∂µUn,p̃(x) ∼ Q(λ2, λ2, λ2)Un,p̃(x) . (2.108)

The requirement that Ûn(n · x→∞)→ 1F now becomes Un,p̃=0(x) = 1F for the slowest-

oscillating mode p̃ = 0. This mode is called the zero bin and is indicated by gray shading

in figure 2.9. Note that if we did not impose this constraint, the zero bin would precisely

double-count an ultrasoft gauge transformation.

The collinear quark and gluon field are decomposed in an analogous way,

ξn(x) ≡
∑
p̃ 6=0

ξn,p̃(x) , Aµn(x) ≡
∑
p̃ 6=0

Aµn,p̃(x) . (2.109)

The sum explicitly excludes the zero-bin to remove the overlap with the ultrasoft fields that

also carry a total momentum pµ = kµ ∼ Q(λ2, λ2, λ2).5 Fields ξn,p̃ and ξn,q̃ (or Aµn,p̃ and

Aµn,q̃) with different label momenta q̃ 6= p̃ are orthogonal. Our convention is such that ξn,p̃
for n̄ · p̃ > 0 annihilates a quark and for n̄ · p̃ < 0 creates an antiquark, and vice versa for

ξ̄n,p̃. The field An,p̃ annihilates (creates) a gluon for n̄ · p̃ > 0 (n̄ · p̃ < 0).

The combination that enters in a mode decomposition of the full quark field, and therefore

transforms like the full quark field under collinear gauge transformations, is

e−ip̃·x ξn,p̃(x)
Ûn(x)7−−−−−→ e−ip̃·x Ûn(x) ξn,p̃(x) . (2.110)

Written out explicitly, we have

e−ip̃·x ξn,p̃(x)
Ûn(x)7−−−−−→

∑
q̃

e−i(p̃+q̃)·xUn,q̃(x) ξn,p̃(x) , (2.111)

5In practice this means that loop integrals over collinear momenta are also restricted to
∫

d4p =
∑
p̃6=0

∫
d4k.

In dimensional regularization, it is convenient to take the continuum limit of this integral in d dimensions

before evaluating the integral. This is achieved by subtracting the integrand reexpanded in the limit

where all collinear momenta are purely residual [174]. Most commonly, and for all examples in this thesis,

this zero-bin subtraction only produces a scaleless integral
∫

dk k−1+ε which vanishes in dimensional

regularization.
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which is a mode of total label momentum p̃+ q̃. We can interpret this as label momentum

conservation between the gauge transformation and the field. This is expected because the

gauge transformation is a product in position space, and therefore should be a convolution

in momentum space. We can make this more compact by introducing the label momentum

operator Pµ,

PµXn,p̃(x) ≡ p̃µXn,p̃(x) , Xn,p̃ = {Un,p̃, ξn,p̃, Aµn,p̃} . (2.112)

Like a derivative operator, it acts on products as

PµXn,p̃(x)Yn,q̃(x) = (p̃µ + q̃µ)Xn,p̃(x)Yn,q̃(x) . (2.113)

It is common to abbreviate the large component as P ≡ n̄ · P. When different collinear

sectors are present, we will indicate by a subscript that Pni belongs to the sector ni, with

Pni ≡ n̄i · Pni . The label momentum operator allows us to pull phases out of sums,6

Ûn(x) =
∑
p̃

e−ip̃·x Un,p̃(x) = e−iP·x
∑
p̃

Un,p̃(x) ≡ e−iP·x Un(x) . (2.114)

With this, we can compactly write the transformation of ξn(x) as

e−iP·x ξn(x)
Un(x)7−−−−−→ e−iP·xUn(x) ξn(x) , (2.115)

where label momentum conservation is encoded in the overall, rapidly oscillating phases.

We are now ready to write down the action of collinear gauge transformations on all

fields in the theory. Soft fields do not transform because as we have seen, Un(x) would

inject a large momentum into them, making them collinear instead,

qus(x)
Un(x)7−−−−−→ qus(x) , Aµus(x)

Un(x)7−−−−−→ Aµus(x) . (2.116)

The collinear fields transform as

e−iP·xξn(x)
Un(x)7−−−−−→ e−iP·xUn(x) ξn(x) ,

e−iP·xAµn(x)
Un(x)7−−−−−→ e−iP·xUnA

µ
n(x)U †n(x)

+ e−iP·xUn(x)
1

g

[(
Pµ + in·Dµ

us

n̄µ

2

)
U †n(x)

]
. (2.117)

In particular, Un(x) transformations inject large momentum Pµ into the collinear gauge

field as expected. The presence of the usoft covariant derivative Dµ
us = ∂µ − igAµus(x) on

the third line (instead of a regular derivative) ensures that the collinear transformation rule

is itself covariant with respect to usoft background gauge transformations. Both the label

and the usoft covariant derivative operator only act within the square brackets.

6Note that the roles of Ûn(x) and the shorthand Un(x) that we have defined on the last equality are

usually interchanged in the literature, see e.g. ref. [170]. There, Un(x) denotes the original collinear

gauge transformation and a matrix notation in label momentum space is adopted to define Ûn(x). We

prefer to use a single notation in terms of P to indicate label momentum conservation.
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Reparametrization invariance. The second principle that fixed the form of the QCD

Lagrangian was Lorentz invariance. In SCET, Lorentz invariance is broken by the explicit

reference vectors n and n̄. The choice of n and n̄, however, is arbitrary to the extent that

it continues to satisfy n · n̄ = 2 and leaves the scaling of the modes in eq. (2.96) unchanged.

This freedom is manifest as a symmetry of the effective theory known as reparametrization

invariance (RPI) [175, 176]. There are three types of RPI transformations on n and n̄,

RPI-I RPI-II RPI-III

nµi 7→ nµi + ∆µ
⊥ , ∆⊥ ∼ λ nµi 7→ nµi nµi 7→ e+αnµi , α ∼ λ0

n̄µi 7→ n̄µi n̄µi 7→ n̄µi + εµ⊥ , ε⊥ ∼ λ0 n̄µi 7→ e−αnµi
(2.118)

RPI-I and RPI-II transformations rotate the reference vectors into the transverse plane by

an infinitesimal amount ∆µ
⊥ or εµ⊥, with ni ·∆⊥ = n̄i ·∆⊥ = 0 and ni · ε⊥ = n̄i · ε⊥ = 0. The

power-counting constraint on the RPI-I parameter ∆µ
⊥ ∼ λ is more stringent than for εµ⊥

because it mixes the large component of collinear momenta into the smaller ones. Type III

is a finite transformation on the normalization of the reference vectors. Invariants under

RPI-III are particularly easy to identify because for given four-vectors Aµ, Bµ, they can

only involve ratios or products of the form

n ·A
n ·B =

A+

B+
,

n̄ ·A
n̄ ·B =

A−

B−
, (n ·A)(n̄ ·B) = A+B− , A⊥ ·B⊥ . (2.119)

2.2.4 Leading-power SCET Lagrangian

We can now write down the leading-power SCET Lagrangian L(0)
nξ for the collinear quark

field. The complete Dirac basis of bilinears in ξn (which satisfies /nξn = 0), is given by /̄n,

/̄nγ5, and /̄nγµ⊥ [171], so all operators have the form ξ̄n · · · /̄nξn, with · · · a set of derivative

operators. Collinear and usoft gauge invariance imply that derivatives and gauge fields can

only enter the collinear quark Lagrangian in the covariant combinations

in̄·Dn ≡ P + gAµn ∼ λ0 ,

iDµ
n⊥ ≡ P

µ
⊥ + gAµn⊥ ∼ λ ,

in·D ≡ in·∂ + gn·Aus + gn·An ∼ λ2 . (2.120)

In general, to higher orders in the power counting, Pµ+∂µ (and associated gauge fields) must

appear together because of the freedom in the split between label and residual momenta.

Here we have already expanded away ∂µ⊥, n̄ · ∂ ∼ λ2 as subleading to obtain covariant

derivative operators with definite power counting.

The collinear integration measure in the action scales as d4x ∼ (p+p−p2
⊥)−1 ∼ λ−4, so

the leading-power Lagrangian must scale as L(0)
nξ ∼ λ4 in order for repeated insertions of

the interaction Lagrangian to have uniform power counting. Let us take the approach that

we do not know the power counting of the field ξn ∼ λk beforehand, but instead deduce k

from the first nontrivial Lagrangian consistent with gauge invariance and RPI that we find
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in the power counting. At O(λ2k), we can only write down a single operator involving the

large component in̄·Dn, suppressing the overall label-momentum conserving phase e−iP·x,

ξ̄n(in̄ ·Dn)/̄n ξn . (2.121)

which breaks RPI-III and therefore is ruled out. At O(λ2k+1), the only candidate derivative

is Dµ
⊥, which must be contracted with another vector to form a scalar. The only available

vector bilinear is /̄nγµ⊥, resulting in

ξ̄n /̄n /D⊥ ξn , (2.122)

which again breaks RPI-III. Thus the first nontrivial operators in the power counting arise

at O(λ2k+2), where we have for example

ξ̄n in ·D /̄n

2
ξn , ξ̄ni /Dn⊥

1

in̄ ·Dn
i /Dn⊥

/̄n

2
ξn , ξ̄niDµ

n⊥
1

in̄ ·Dn
iDn⊥µ

/̄n

2
ξn . (2.123)

We can use this to fix 4 = 2k+ 2, so the collinear field scales as ξn ∼ λ. One can show [175]

that the unique result for L(0)
nξ compatible with RPI is

L(0)
nξ = e−iP·xξ̄n

(
in ·D + i /Dn⊥

1

in̄ ·Dn
i /Dn⊥

)
/̄n

2
ξn . (2.124)

implying that its form is not affected by loop corrections. The complete calculation is too

lengthy to repeat here; it crucially relies on RPI-II to rule out the third term in eq. (2.123).

It also relies on RPI-II to rule out operators with arbitrary insertions of (in̄ ·D) · · · (in̄ ·D)−1

sandwiching other derivatives, which are compatible with the power counting and have

the correct mass dimension. An interesting remark is that the relative coefficient of the

two terms in eq. (2.124) is fixed already by RPI-I, which ties together the n ·D and Dµ
n⊥

derivatives. The normalization of the collinear quark Lagrangian can be derived by a

tree-level matching from the full QCD Lagrangian by explicitly integrating out the two

subleading components of the quark field. (In fact, this is how eq. (2.124) is most commonly

derived.)

For physical intuition, note that in eq. (2.124) usoft gluons couple to collinear quarks only

through their n ·Aus component and do not exchange label momentum with them, so the

amplitude for the emission of soft gluons only depends on the direction nµ of the mother

particle and its color charge. This is known as an eikonal coupling; the corresponding

Feynman rules are given in figure 2.10. An important consequence is that matrix elements

of color-singlet operators computed in the soft limit exhibit Casimir scaling at the lowest

few orders in perturbation theory, i.e., the results for scattering particles in the adjoint or

fundamental representation only differ by an overall factor CF versus CA. (Starting at four

loops, higher group invariants start to enter, but still only depend on the representation.)

Unlike soft emissions, large momentum can be exchanged between collinear fields, allowing

for collinear splittings along the light-cone direction.
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i j

µ, a

p →
ρ, b σ, c

µ, a

ig(T a)ji n
µ /̄n

2
gfabc nµ n̄·p gρσ

Figure 2.10: SCET Feynman rules for the eikonal interaction between a soft gluon (spring) and

a collinear quark (dashed fermion line, left) or a collinear gluon (strikethrough spring, right) in

Feynman gauge. The amplitude only depends on the direction nµ (up to an overall factor for gluons)

and the color charge of the emitting particle.

The leading-power collinear gluon Lagrangian is fixed by power counting and gauge

invariance [167],

L(0)
ng = e−iP·x 1

2g2
Tr
{

[iDµ, iDν ][iDµ, iDν ]
}

+ 2e−iP·x Tr
{
c̄n[iDµus, [iDµ, cn]]

}
+ e−iP·x 1

ξn
Tr
{

[iDµus, Anµ][iDνus, Anν ]
}
, (2.125)

where the field-strength tensor is given in terms of the leading components of the covariant

derivative in eq. (2.120) as

Dµ ≡ n̄·Dn
nµ

2
+Dµ

n⊥ + n·Dn̄
µ

2
. (2.126)

The last term contains the coupling to usoft gluons, which is again eikonal and leads to the

second Feynman rule in figure 2.10. While the individual terms in Dµ differ in their power

counting, their nonzero contractions in the Lagrangian have homogeneous power counting.

The gauge fixing terms on the second line of eq. (2.125) are covariant with respect to the

usoft background field to ensure they only fix the collinear gauge,

Dµus ≡ P
nµ

2
+ Pµ⊥ + n·Dus

n̄µ

2
= Dµ − gAµn . (2.127)

Note that also the collinear ghost fields cn carry label momentum. The gauge parameter

ξn may be chosen independently of the choice made for full QCD because as we will see

shortly, the matching is performed at the level of gauge invariant quantities.

With this we have gathered all ingredients in the leading-power dynamical SCET La-

grangian in eq. (2.98), where the total collinear Lagrangian for a sector n is

L(0)
n = L(0)

nξ + L(0)
ng . (2.128)

The soft and ultrasoft Lagrangians in eq. (2.98) are simply copies of the QCD Lagrangian

in eq. (2.19) due to the isotropy of the modes, and again contain independent gauge fixing

terms with gauge parameters ξus and ξs.

44



2.2 Factorization from Soft-Collinear Effective Theory

2.2.5 Hard matching and operator building blocks

We now turn to the hard scattering Lagrangian Lhard in eq. (2.97). We are most often

interested in the case where an external color-singlet field mediates an interaction between

two distinct collinear sectors n1, n2 by injecting (or absorbing) a large momentum qµ ∼
Q(1, 1, 1). For definiteness, let us focus on the case of an electroweak vector field Vµ which

couples to a QCD current JµV as L ⊃ −VµJµV . The hard scattering Lagrangian is obtained

order by order in the power counting by matching the full-theory current onto EFT currents

J
(i)µ
V with an explicit power suppression of O(λi) relative to the leading term,

JµV 7→
∑
i≥0

J
(i)µ
V , L(i)

hard = −VµJ (i)µ
V . (2.129)

The J
(i)µ
V are given by a sum over O(λi) operators O

(i)
A built out of EFT fields with matching

coefficient C
(i)µ
A ,

J
(i)µ
V n1n2

(x) =
∑
A

[ `A∏
i=1

∫
dωi

] ∑
{mA}

C
(i)µ
A,{mA}(n1, n2;ω1, · · · , ω`A)

×O(i)
A,{mA}(n1, n2;ω1, · · · , ω`A ;x) . (2.130)

The matching coefficients C
(i)µ
A are determined by comparing suitable matrix elements of

the full theory and EFT currents. The most general EFT current involves a sum over all

possible collinear directions n1, n2,

J
(i)µ
V (x) =

∑
n1,n2

J
(i)µ
V n1n2

(x) . (2.131)

We will typically calculate matrix elements of these operators between na and nb-collinear

proton states, and therefore by label momentum conservation will only need the cases

n1 = na, n2 = nb and vice versa. The sum over directions is relevant in the case of final-

state collinear sectors, e.g. for e+e− → hadrons or for the jet clustering calculation in

section 3.4.4, where it becomes part of the phase space integral.

Apart from the collinear directions n1,2, the matching coefficients (and operators) depend

on the large-label momentum components ωi carried by the `A different collinear fields

in the operator, and are summed over a set of flavor, spin, and color indices {mA}. The

matching coefficients carry the overall vector index µ. In practice, the sum over {mA}
is greatly simplified, and made tractable at subleading power in the first place, by using

operators of definite helicity [177, 178]. Using this approach, the hard-scattering operators

for color-singlet production to O(λ2) have been constructed in refs. [179–181].

The individual operators in eq. (2.130) must respect the symmetries of SCET described in

section 2.2.3, in particular usoft gauge invariance and collinear gauge invariance within each

sector. To make the latter property manifest at the level of the operators, it is convenient

to define gauge-invariant operator building blocks in terms of the fields in each sector n.

There must be at least one excess quark field ξn in the building block because the external
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current annihilates quarks from different sectors, so trivial combinations ξ̄n · · · ξn do not

qualify. Therefore the task is to find a combination of gauge fields Aµn(x) that precisely

counteracts the transformation behavior of ξn under collinear gauge transformations in

eq. (2.117). The unique object that fits the bill is the collinear Wilson line,

Wn(x) = P

{
exp
[
ig

∫ 0

−∞
ds n̄ ·An(x+ n̄s)

]}
=
∑

perm.

exp
[
−−gP n̄ ·An(x)

]
, (2.132)

where P denotes path ordering of the color generators in the exponential along the path

parametrized by s. On the second equality we have Fourier-transformed the fields to

momentum space, performed the integral over s1 < s2 < · · · for each term in the Dyson

series in terms of the label momentum, and Fourier-transformed the residual component

back to position space. In this case we sum over all permutations of the color generators.

To see that the collinear Wilson line indeed transforms as

e−iP·xWn(x)
Un(x)7−−−−−→ e−iP·xUn(x)Wn(x) (2.133)

as desired, note that it satisfies the linear equation[
P + gn̄ ·An(x)

]
Wn(x) = 0 . (2.134)

With the boundary condition Wn(x→ −∞)→ 1F this uniquely determines Wn(x). On the

other hand, we can see that Un(x)Wn(x), satisfies the same equation with the transformed

gauge field [167]: Suppressing overall phases e−iP·x, we have{
P + gUnn̄ ·AnU †n + Un

[
PU †n

]}
UnWn

= Un

{
U †nP + gn̄ ·AnU †n +

[
PU †n

]}
UnWn

= Un

{
PU †n + gn̄ ·AnU †n

}
UnWn

= Un

{
P + gn̄ ·An

}
Wn = 0 , (2.135)

where on the first equality we inserted 1F = UnU
†
n and pulled out the overall Un, on the

second equality we used the product rule PU †n = U †nP+[PU †n], and on the third equality we

canceled off U †nUn = 1F on the right to recover the defining eq. (2.134). Therefore UnWn

is the image of Wn under the gauge transformation, and the combination

e−iP·xχn(x) = e−iP·xW †n(x) ξn(x) , (2.136)

is invariant under n-collinear gauge transformations. In many applications it is convenient

to pick out a definite, continuous large label momentum component ω from χn,

χn,ω(x) =
[
δ(ω − P)W †n(x) ξn(x)

]
. (2.137)
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This notation is to be understood as follows,∑
ω̃

e−iω̃x+/2 χn,ω̃(x+, x−, ~x⊥) =
∑
ω̃

∫
dk− e−i(ω̃+k−)x+/2 χn,ω̃(x−, ~x⊥)

≡
∫

dk− e−iωx+/2 χn,ω(x−, ~x⊥) , (2.138)

i.e., the label momentum ω = ω̃ + k− is made continuous by absorbing the residual

momentum k− carried by the field, and the resulting field χn,ω(x) is exactly flat in the x+

spacetime direction. Note that we already used continuous label momenta when writing

down eq. (2.130). Sometimes we will also need the field χn,p with a definite continuous

label momentum p in all three label directions,

χn,p(x) =
[
δ(ω − P) δ2(~p⊥ − ~P⊥)W †n(x) ξn(x)

]
, pµ = ω

nµ

2
+ pµ⊥ , (2.139)

which is independent of both x+ and ~x⊥, χn,p(x) = χn,p(x
−). Using Wn, we can also write

down a collinearly gauge-invariant gluon building block Bµn,ω⊥, and analogously for Bµn,p⊥,7

Bµn,ω⊥(x) =
1

g

[
δ(ω + P)W †n(x) iDµ

n⊥Wn(x)
]
. (2.140)

The operator building blocks χn,ω and Bµn,ω⊥ power count as

χn,ω ∼ λ , Bµn,ω⊥ ∼ λ (2.141)

To see this, recall that ξn(x), Dµ
n⊥ ∼ λ, and P, n̄ ·An ∼ λ0, so the P operator δ function and

the collinear Wilson line both scale as λ0. Importantly, these operators are not invariant

under usoft gauge transformations under which the Wilson line transforms as a local product

of collinear gauge fields, i.e.,

Wn(x)
Uus(x)7−−−−−→ Uus(x)Wn(x)U †us(x) . (2.142)

Their usoft transformation behavior must be compensated by the opposite collinear sector,

and we can write down exactly two leading-power hard operators with the right mass

dimension that are overall singlets under usoft (and all collinear) gauge transformations.

Restoring flavor labels q, q′ for quark fields, the two operators are

O
(0)αβ
qq̄′ (n1, n2;ω1, ω2;x) = χ̄αq n1,−ω1

(x)χβq′ n2,ω2
(x) ,

O(0)µν
gg (n1, n2;ω1, ω2;x) =

√
ω1ω2 Bµ,an1,−ω1⊥(x)Bν,an2,−ω2⊥(x) , (2.143)

where the quark fields carry Dirac indices α, β, and fundamental color indices are implicit.

Both operators involve exactly one building block from each collinear sector, with the label

momentum signs chosen to annihilate incoming particles for ωi > 0 and preserve fermion

number [57]. Note that the flavor indices on O
(0)αβ
qq̄′ refer to the quantum numbers of the

7Note the sign flip in the δ function, where ω > 0 (ω < 0) now creates (annihilates) a gluon.
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operator (not the external states it overlaps with), so it annihilates an n1-collinear antiquark

q̄ and an n2-collinear quark q′. The complete set of operator building blocks in SCETI in

addition includes Pµ⊥ ∼ λ, the usoft quark field qus ∼ λ3, and the usoft covariant derivative

Dµ
us ∼ λ2 [180], but all of them lead to an additional power suppression. In terms of these

operators, the hard matching in eq. (2.130) at leading power reduces to

J
(0)µ
V n1n2

(x) =

∫
dω1 dω2 e

−i(ω1n1·x+ω2n2·x)/2

×
[∑
q,q′

C
(0)µαβ
V qq̄′ (n1, n2;ω1, ω2)O

(0)αβ
qq̄′ (n1, n2;ω1, ω2;x)

+ C
(0)µ
V gg ρσ(n1, n2;ω1, ω2)O(0)ρσ

gg (n1, n2;ω1, ω2;x)

]
. (2.144)

A few comments on eq. (2.144) are in order. First, the factorization of the physics at the

scales Q and λQ is manifest in eq. (2.144). Specifically, matrix elements of the individual

collinear fields at the low scale will only depend on one of the two label momenta at a time,

but the only possible high-scale quantities ω2
1 ∼ ω2

2 ∼ Q2 formed out of them are not RPI

invariant, so the physical scale of the collinear dynamics can at most be λQ. (In other words,

label momenta are not dynamic anymore in the EFT.) On the other hand, the matching

coefficients depend on both label momenta and in particular on their product ω1ω2 ∼ Q2.

They are determined by comparing two-point functions of the full QCD current, also known

as form factors, to two-point functions of the effective operators, and thus encode virtual

corrections at the scale µ ∼ Q.

Second, we stress that this leading-power matching relation holds true to all orders in the

strong coupling. Specifically, the collinear Wilson lines encode the emission of an arbitrary

number of collinear gluons ∼ [gn̄ ·An(x)]n which all contribute at the same (leading) order

in the power counting. In a sense, collinear gauge invariance allows us to fix the relative

coefficients in an infinite series of operators that arise from integrating out n-collinear gluon

attachments to other sectors at different orders in g, and condense them all into two simple

objects.

As a third, technical comment, note that the flavor indices q, q′ carried by the SCET

operators are in general distinct from the flavors that couple to the vector boson. This is

because starting at two loops in the full theory calculation that determines the matching

coefficients, the vector boson may couple to a closed (heavy) quark loop instead. In the

same way, the gluon operator can contribute to vector boson production: Since the vector

boson may be off shell, the relevant full-theory diagrams are not subject to the Landau-

Yang theorem [182, 183] and do not vanish in general. Details on this, the spin structure,

and the perturbative expansion of the matching coefficients can be found in chapter 7 and

appendix B.
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2.2 Factorization from Soft-Collinear Effective Theory

2.2.6 Ultrasoft-collinear factorization

The dynamical Lagrangian in eq. (2.98) currently has the form

L(0)
dyn =

∑
ni

L(0)
ni (ξni , A

µ
ni , cni , ni ·Aus) + L(0)

us (qus, A
µ
us) + L(0)

us (qs, A
µ
s ) . (2.145)

At this point, the usoft gauge field still interacts with all collinear sectors through its

respective ni · Aus component and couples together all sectors. Similarly, we saw that

the hard operator building blocks introduced in the previous section still transform in a

nontrivial way under usoft gauge transformations.

The key ingredients that allow us to fully factorize collinear and usoft dynamics are

ultrasoft Wilson lines Yni(x) along the ni directions,

Yni(x) = P

{
exp
[
ig

∫ 0

−∞
ds ni ·Aus(x+ nis)

]}
. (2.146)

This expression is valid for an initial-state collinear sector ni; for a final-state sector, the

integral runs over s ∈ [0,+∞).8 Ultrasoft Wilson lines satisfy the defining equation

ini ·DusYni = 0 , (2.147)

which together with Y †niYni = 1F implies the operator relation

Y †ni iniDusYni = ini · ∂ . (2.148)

This relation motivates the Bauer-Pirjol-Stewart (BPS) field redefinition [167],

ξni = Yniξ
BPS
ni , Aµni = YniA

BPSµ
ni Y †ni , cni = Ynic

BPS
ni Y †ni . (2.149)

Note that in these expressions, Yni commutes with the label momentum operator. The

redefinition of the collinear gauge field implies

Wni = YniW
BPS
ni Y †ni (2.150)

for the ni-collinear Wilson lines. After replacing all fields in the collinear Lagrangian by

their BPS-redefined counterparts, all occurrences of ni ·Dus are sandwiched by usoft Wilson

lines and can be converted to simple partial derivatives, eliminating the coupling to the

usoft gauge field:

L(0)
ni (ξni , A

µ
ni , cni , ni ·Aus) = L(0)

ni (ξBPS
ni , ABPSµ

ni , cBPS
ni , 0) . (2.151)

8Consequently, the momentum-space Feynman rules for the two cases differ by i0 prescriptions whose signs

can be derived by requiring that the Fourier transform is finite. Alternatively, the signs can be fixed

by explicitly considering the full-theory diagrams that reduce to the Wilson line Feynman rule in the

eikonal limit. Explicit Feynman rules for (ultra)soft and collinear-soft Wilson lines are given in ref. [155].

49



Chapter 2 – Factorization and resummation

The physical effect of the usoft interactions is of course still present and moved to the hard

operators instead, which at leading power only involved collinear fields before the field

redefinition. The BPS-transformed collinear building blocks read

χni,ω = Yniχ
BPS
ni,ω , Bµni,ω⊥ = YniBBPSµ

ni,ω⊥Y
†
ni . (2.152)

It is convenient to write the second relation in terms of a Wilson line Yabni in the adjoint

representation,

T aYabni ≡ YniT bY †ni , Bµani,ω⊥ = YabniB
BPSµ b
ni,ω⊥ . (2.153)

After the BPS field redefinition, the leading-power hard operators read, with all color

indices explicit,

O
(0)αβ
qq̄′ (n1, n2;ω1, ω2;x) = χ̄BPSαj

q n1,−ω1
(x) T

[
Y †n1

(x)Yn2(x)
]jk
χBPSβk
q′ n2,ω2

(x) ,

O(0)µν
gg (n1, n2;ω1, ω2;x) =

√
ωaωb BBPSµ,a

n1,−ωa⊥(x) T
[
Y†n1

(x)Yn2(x)
]ab BBPS ν,b

n2,−ωb⊥(x) . (2.154)

The time ordering T ensures the proper ordering of ultrasoft gluon fields, with the ordering

of color generators still governed by the (anti)path ordering in the Wilson lines [57]. In

eq. (2.154), the factorization of modes is manifest at the level of the operators. Matrix

elements of eq. (2.154) may be evaluated for each sector individually, using the corresponding

leading-power Lagrangian. In the following we will always work with BPS-redefined fields

and suppress the superscript BPS.

2.2.7 SCETII and rapidity divergences

SCETII is characterized by the sensitivity of the experimental measurement to soft radiation

pµ ∼ Q(λ, λ, λ). Interactions between soft and collinear modes lead to off-shell fluctuations

with pµ ∼ Q(λ, 1, λ) and p2 ∼ λQ2 and are therefore not part of the dynamics of the effective

theory. Instead, these interactions give rise to soft Wilson lines during the matching,

Sni(x) = P

{
exp
[
ig

∫ 0

−∞
ds ni ·As(x+ nis)

]}
,

=
∑

perm.

exp

{ −g
ni · P

ni ·As(x)

}
, T aSabni = SniT

bS†ni , (2.155)

which carry label momentum ni · P ∼ λ and P⊥ ∼ λ. On the second line we used this to

write down a compact expression for the Fourier transform of the Dyson exponential, where

all n̄i · x dependence is purely residual and only the x⊥ ∼ λ−1 dependence is still conjugate

to a label momentum. A proof that only the ni ·As component of the soft gauge field appears

at leading power was given in ref. [167], using the auxiliary Lagrangian method to explicitly

integrate out off-shell fluctuations with p2 ∼ λQ2. The hard scattering operators in SCETII

are the same as in eq. (2.154), but with ultrasoft Wilson lines Yni(x),Yni(x) replaced by

soft ones, Sni(x),Sni(x), as dictated by invariance under soft gauge transformations.
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One can directly construct SCETII and reproduce these operators by first matching

onto a SCETI theory with a power counting parameter λ′ ∼
√
λ, whose ultrasoft modes

can be identified with the soft modes in the final theory, and performing the BPS field

redefinition. In the second step, the collinear modes (λ′2, 1, λ′) of the SCETI theory are

matched onto the final collinear modes (λ2, 1, λ). Since the BPS redefined Lagrangians

are identical, the matching coefficient from the second step (also known as “lowering the

virtuality” of collinear modes) is trivial [184].

An important feature of many SCETII-like measurements is that individual soft and

collinear matrix elements are not well-defined in dimensional regularization alone due to the

presence of rapidity divergences [185–191]. Consider, for example, a common soft function,

i.e., a vacuum expectation value of Wilson lines, with a measurement that picks out the

total soft transverse momentum ~ks in a configuration with two collinear sectors n = na,

n̄ = nb,
9

S(~ks) =
1

Nc

〈
0
∣∣Tr
{

T̄
[
S†n̄Sn

]
δd−2(~ks − ~P⊥) T

[
S†nSn̄

]}∣∣0〉 . (2.156)

Up to O(α2
s), we would find the following bare result in plain dimensional regularization,

S(~ks)
?
= δd−2(~ks) +

αs
4π
CF

eεγE

Γ(1− ε)

∫ ∞
0

dk−

k−

∫ ∞
0

dk+

k+

1

π
δ(~k2

s − k+k−)
(k+k−

µ2

)−ε
= δd−2(~ks) +

αs
4π
CF

eεγE

Γ(1− ε)
θ(~k2

s)

π~k2
s

(~k2
s

µ2

)−ε ∫ ∞
−∞

dyk . (2.157)

On the second line we changed variables to κ = k+k− and the rapidity yk = 1
2 ln(k−/k+) of

the soft emission, where dk−dk+ = dκ dyk, and performed the integral over κ. Clearly, the

unconstrained integral over the rapidity diverges. The physical reason is that for yk → ±∞,

the soft emission enters the momentum regions with collinear scaling, as indicated by the

hatching in figure 2.8. (Note that this is specific to SCETII, as in SCETI ultrasoft and

collinear emissions have distinct virtualities.) There are similar unregulated integrals in

the calculation of the collinear matrix elements where the collinear momentum has small

absolute rapidity and becomes soft.

A complete separation of the soft and collinear contributions requires breaking the

boost invariance of the soft and collinear matrix elements by an appropriate rapidity

regulator. (Dimensional regularization preserves boost invariance and therefore, as we saw,

is insufficient.) A large variety of regulators exists in the literature [185–193]. In explicit

perturbative calculations in this thesis, and in particular for results related to jet veto

resummation, see section 2.4.5 and chapter 3, we will use the η regulator of refs. [190, 191].

9Here all soft Wilson lines are evaluated at a common spacetime position x which we can take to be

x = 0 by translational invariance. In the following we continue to suppress the spacetime argument in

translationally invariant matrix elements when it is the same for all fields. Also note that we have decided

to measure ~ks in d dimensions for simplicity in this illustrative example, which amounts to a scheme choice

in dimensional regularization. A more common choice is to measure transverse momentum in exactly

two dimensions such that the soft function has integer mass dimension and include an unconstrained

momentum component in −2ε dimensions to correct for this.
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It is implemented by inserting an additional term (in square brackets) into the collinear

and soft Wilson lines in eqs. (2.132) and (2.155),

Wn(x) =
∑

perm.

exp

{−g
P

[
w2 |n̄ · Pg|−η

ν−η

]
n̄ ·An(x)

}
,

Sn(x) =
∑

perm.

exp

{ −g
n · P

[
w
|2P3

g |−η/2
ν−η/2

]
n ·As(x)

}
. (2.158)

Here Pg denotes the group momentum injected into a connected web (c-web), i.e., a

maximally nonabelian subdiagram. At one loop, this is simply the momentum of the

emission, so for the soft matrix element above we have |k3/ν|η = |√κ sinh yk|η for the

z-component of the momentum, which regulates the yk integral for η 6= 0.

Expanding matrix elements of the modified Wilson lines yields poles in η that are

minimally subtracted in MS, just like standard poles 1/εn in dimensional regularization.

The different powers of η in the collinear and soft Wilson line are fixed by requiring that

poles cancel in the cross section. The additional mass scale ν is required to make the bare

Wilson lines dimensionless. The book-keeping parameter w renders the bare matrix element

independent of ν by

ν
dw

dν
= −η

2
w , (2.159)

in analogy to the renormalized coupling in d = 4− 2ε dimensions in eq. (2.23). It is set to

w = 1 when the limit η → 0 is taken in the renormalized result. The final renormalized result

depends on the new scale ν in addition to the MS scale µ, and the rapidity renormalization

group equations with respect to ν can be derived from the ν-independence of the bare

result.

For results related to qT (or TMD) factorization, see section 2.4.3, we will use the

exponential regulator of ref. [192], for which results are known to high perturbative orders.

In this case one exploits that the soft and collinear matrix elements become finite in

dimensional regularization if an additional light-cone momentum component is measured,

or equivalently, if the fields are separated by some x± along the light cone. The regulated

matrix elements are then defined by taking, in a particular way, the limit x± → ∞ and

associating 1/x± with the rapidity scale ν. The results obtained in this way have the same

functional form as renormalized results in the η regulator scheme, and the perturbative

results up to two loops have even been found to be identical. In chapter 6 we will exploit

the renormalization condition in the exponential regulator scheme to extract, in a simple

way, the eikonal limit of the collinear proton matrix elements relevant for qT factorization.

2.2.8 SCET+

SCET+ is an effective theory designed to describe multi-differential measurements that set

several physical scales at once [194, 195]. In particular, these scenarios generically involve

an additional power counting parameter λ′, and extend SCET by additional collinear-soft
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modes,

collinear-soft: pµ ∼ Q(λ2/λ′, λ′, λ) . (2.160)

The dominant direction of these modes depends on the hierarchy between λ′ and λ. For

λ � λ′, the above modes are boosted into the n ≡ na direction compared to soft modes,

but still have parametrically smaller energy ∼ λ′Q than genuine n-collinear modes. In this

case the additional modes are also referred to as n-collinear-soft. Depending on the problem

at hand, a second set of n̄-collinear-soft modes in the opposite n̄ ≡ nb direction may be

present. The collinear-soft modes have a SCETI-like relation to other modes with the same

parametric p− scaling, e.g. n̄-collinear modes with pµ ∼ (1, λ′,
√
λ′), and are separated

from them in virtuality by λ2 � λ′. Factorizing their interactions by the analogue of the

BPS field redefinition gives rise to a n-collinear-soft Wilson line along the n̄-collinear quark

trajectory,

Vn(x) = P

{
exp
[
ig

∫ 0

−∞
ds n̄ ·Acs(x+ n̄s)

]}
. (2.161)

Note that the subscript in this case refers to the type of gluon and not the direction of the

Wilson line. After this redefinition, the leading-power dynamics of collinear-soft modes are

described by a copy L(0)
cs of the QCD Lagrangian. On the other hand, the collinear-soft

modes have a SCETII-like relation to other modes on the same invariant-mass hyperbola

p2 ∼ λ2Q2. These could e.g. be n-collinear modes with pµ ∼ (λ, 1, λ). Interactions of these

n-collinear modes with n-collinear-soft gluons take the former off shell and are therefore

captured by another distinct collinear-soft Wilson line during the matching,

Xn(x) = P

{
exp
[
ig

∫ 0

−∞
ds n ·Acs(x+ ns)

]}
. (2.162)

The precise number and type of Wilson lines in the leading-power SCET+ current depends

again on the physics scenario, but can in any case be inferred from gauge invariance in

each respective sector, and we will see a concrete example in chapter 5. To regulate

rapidity divergences in collinear-soft matrix elements, we introduce the η regulator into the

label-momentum space Wilson lines in the form

Vn =
∑

perm.

exp

{ −g
n̄ · P

[
w
|n̄ · Pg|−η/2
ν−η/2

]
n̄ ·Acs

}
,

Xn =
∑

perm.

exp

{ −g
n · P

[
w
|n̄ · Pg|−η/2
ν−η/2

]
n ·Acs

}
. (2.163)

Note that like for the collinear Wilson line in eq. (2.158), we have expanded the regulator

to leading order in the power counting and only kept the dominant component n̄ · Pg of

the collinear-soft group momentum. On the other hand, the exponent −η/2 is like for the

soft Wilson line in eq. (2.158) and follows again from demanding that poles cancel in the

cross section.
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2.3 Resummation from renormalization-group evolution

2.3.1 DGLAP evolution and Bjorken scaling violation

In eq. (2.43) we introduced the separation of the DIS structure functions into perturbative

matching coefficients and nonperturbative PDFs as the prototypical example of factorization.

In SCET, the PDFs are proton matrix elements of effective operators built out of collinear

quark fields with pµ ∼ (Λ2
QCD/Q,Q,ΛQCD) along the proton momentum, and the matching

coefficients Ci,k arise when matching QCD onto these operators at the scale Q. As a

consequence of this separation, additional UV divergences arise when evaluating matrix

elements of the effective operators beyond tree level. One way to understand the origin of

these additional divergences is to think of the EFT as having an explicit cutoff on momenta

p2 ≥ Λ2 ∼ Q2. Lifting the cutoff Λ → ∞ to recover the result in plain dimensional

regularization leads to additional UV poles in ε, which at finite Λ would manifest themselves

as logarithms of Λ. Minimally subtracting these poles results in an additional dependence

of the PDFs on the renormalization scale µ described by the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) equation [196–198],

µ
d

dµ
fi(x, µ) =

∑
j

∫ 1

x

dz

z
2Pij [αs(µ), z] fj

(x
z
, µ
)
,

Pij(αs, z) =
∞∑
n=0

P
(n)
ij (z)

(αs
4π

)n+1
, (2.164)

where the sum runs over all parton types in the proton, including gluons, j = g. By

contrast, the matrix elements of the conserved vector current Jµγ in the full hadronic tensor

are UV-finite. Therefore the same UV divergences (with opposite sign) arise in the matching

coefficient Ci,k when computed as the difference of full and effective theory matrix elements,

and the dependence on µ exactly cancels between the renormalized quantities,

µ
d

dµ
Ci,k(z,Q

2, µ) = −
∑
j

∫ 1

z

dz′

z′
Ci,j

( z
z′
, Q2, µ

)
2Pjk[αs(µ), z′] . (2.165)

The splitting functions P
(n)
kj (z) that drive the renormalization of the PDFs are known

exactly to three loops [199, 200], with partial results at four loops available [201].

Eq. (2.164) has important physical consequences that correct the naive parton model

result in eq. (2.45). These corrections come into play when attempting to compare the DIS

structure functions at two different values of Q0 � Q. Assume that we have measured the

structure functions at Q0, and now would like to extract the PDFs. To do so, note that

the coefficient functions Ci,k(z,Q
2, µ2) can only depend on Q2/µ2 for dimensional reasons,

and by eq. (2.165) only depend on ln(Q2/µ2). Specifically, the coefficient functions contain

terms up to αns lnn(Q2/µ2) at each O(αns ) in perturbation theory. We can eliminate these

logarithms by setting µ = Q0 to extract the parton distribution functions fk(x,Q0) at Q0,

but then consistency requires us to also pick µ = Q0 in the prediction we make for the
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2.3 Resummation from renormalization-group evolution

structure functions at Q. In that prediction, however, the logarithms ln(Q2
0/Q

2)� 1 will

invalidate the perturbative expansion of Ci,k(z,Q
2, Q2

0) as soon as they become comparable

to 1/αs. If, on the other hand, we pick µ = Q, we already face these large logarithms during

the extraction step.

This issue is resolved by renormalization group (RG) evolution of the PDFs, restoring the

predictivity of the DIS factorization. Specifically, from the PDFs we extracted at µ = Q0,

we can obtain the PDF at µ = Q by solving the differential equation in eq. (2.164) with

the input PDF at µ0 as a boundary condition, a procedure also known as running. (Since

eq. (2.164) is an integro-differential equation, this is most commonly done numerically

for the PDFs.) Including at least the first nonvanishing O(αs) term in eq. (2.164) in the

differential equation to capture the leading logarithms, this leads to the characteristic

prediction of Bjorken scaling violation, i.e., a weak logarithmic dependence of the full

structure functions on Q even when using the tree-level coefficient functions. Note that

the renormalization of the PDFs involves an integral over the momentum fraction z and

a sum over parton types. The physical interpretation is that as a function of the energy

scale probed, the distribution of proton momentum is reshuffled between different parton

types. Bjorken scaling violation is well confirmed experimentally e.g. by the precise data

from HERA [202], which covers much wider ranges of Q than were accessible in the early

days of DIS measurements, and allows for an indirect determination of the gluon PDF

which mixes into the quark PDFs through eq. (2.164). Eq. (2.164) also is at the heart of

all modern PDF fits, which successfully describe DIS and hadron-collider data over wide

ranges of energies.

2.3.2 Resumming Sudakov double logarithms

In this thesis, we are mostly concerned with physics scenarios that involve several paramet-

rically separated perturbative scales in one single measurement. This is unlike the case of

inclusive DIS structure functions measured at different scales in different experiments. As

an example, consider a color-singlet production cross section σ0(pcut
T ) at the LHC with a

cut on the transverse momentum pT < pcut
T of identified jets in the final states, also known

as a jet veto. In the limit pcut
T � Q, this 0-jet cross section schematically factorizes as

σ0(pcut
T ) = H(Q,µ)F (pcut

T , µ)
[
1 +O

(pcut
T

Q

)]
. (2.166)

A factorized structure like this one generically comes about from factorizing the matrix

element in SCET based on eq. (2.144), where the hard function H(Q) is the square of the

matching coefficient. The function F (pcut
T ) describing the low-energy dynamics is given by

the squared matrix element of the effective operator. (In reality, the factorization of the

0-jet cross section is more complicated, and is described in section 2.4.5.) We stress that

factorization can be achieved by means other than effective field theory as well, e.g. by a

diagrammatic analysis that identifies the leading singular behavior of intermediate propa-

gators, but the following steps based on the renormalization of the factorized ingredients

apply in either case.
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Figure 2.11: The singular 0-jet cross section for gluon-fusion Higgs production at fixed order in αs
(left) and in resummed perturbation theory (right). The gray dashed line indicates the pjetT spectrum

of the leading jet at NNLL′, i.e., the derivative of the solid red line. We use the input parameters

from ref. [67] for illustration. For the details of the resummation setup, see sections 2.4.5 and 3.5.

Large logarithms of pcut
T /Q are fully captured by eq. (2.166) since they are not suppressed

by powers of pcut
T /Q, and are split up between the two single-scale pieces as

ln
pcut
T

Q
= ln

µ

Q︸ ︷︷ ︸
H

+ ln
pcut
T

µ︸ ︷︷ ︸
F

. (2.167)

At fixed order, these logarithms lead to a divergence of the cross section towards small

values of pcut
T , and a complete breakdown of the perturbative series, as illustrated (using the

real factorization formula) for gluon-fusion Higgs production in the left panel of figure 2.11.

For this reason, the leading-power contribution to σ0(pcut
T ) in eq. (2.166) is also known

as the singular cross section σsing
0 (pcut

T ). For the spectrum differential in the transverse

momentum pjet
T of the leading jet, which is related to σ0(pcut

T ) by a derivative, we would have

a δ(pjet
T ) at tree level that at higher orders is dressed with divergent terms [lnn(pjet

T /Q)/pjet
T ]+

of alternating sign.

The key tool to arrive at a sensible prediction are the renormalization group properties of

the factorized ingredients. The µ dependence of the renormalized ingredients in eq. (2.166)

is governed by renormalization group equations that schematically read

µ
d

dµ
H(Q,µ) = γH(µ)H(Q,µ) , µ

d

dµ
F (pcut

T , µ) = γF (µ)F (pcut
T , µ) , (2.168)

where γH (γF ) is the anomalous dimension of H (F ). The all-order resummation of large

logarithms is achieved by evaluating the two functions at their canonical scales,

µH = Q , µF = pcut
T , (2.169)

and, as for the PDFs, solving the renormalization group equations to evolve them to a

common scale µ,

σres
0 (pcut

T ) = H(Q,µH)UH(µH , µ)F (Q,µF )UF (µF , µ) . (2.170)
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2.3 Resummation from renormalization-group evolution

Here the renormalization group evolution factors UX(µX , µ) for X = H,F are given by

UX(µX , µ) = exp
[∫ µ

µX

dµ′

µ′
γX(µ′)

]
. (2.171)

They satisfy a group property by construction

UX(µ1, µ2)UX(µ2, µ3) = UX(µ1, µ3) . (2.172)

Importantly, like the DIS coefficient functions at their intrinsic scale, the boundary con-

ditions H(Q,µH) and F (pcut
T , µF ) in eq. (2.170) are free of large logarithms, and can be

evaluated in fixed-order perturbation theory. On the other hand, the large logarithms of

µF /µQ ∼ pcut
T /Q are exponentiated, or “resummed”, to all orders by the evolution factors.

This is the generalization of the leading-logarithmic Sudakov form factor in eq. (1.7) to

higher orders in resummed perturbation theory. The outcome of this procedure is shown

in the right panel of figure 2.11: The resummation induces a physical Sudakov suppres-

sion as the veto is made tighter towards pcut
T → 0, ensuring that the probability to emit

no radiation above pcut
T tends to zero in this limit. (In other words, some emission is

guaranteed to happen with unit probability in massless gauge theory.) At the same time,

the convergence of the series towards higher orders in resummed perturbation theory is

restored. At the level of the pjet
T spectrum, indicated by a gray dashed line in figure 2.11,

the resummation leads to a characteristic peak at, in this case, pjet
T ∼ 7 GeV. The pjet

T

spectrum drops off again towards higher values of pjet
T as the resummed 0-jet cross section

begins to saturate. This Sudakov peak is a key prediction of resummed perturbation theory

when applied to massless gauge theories. Its position and width are sensitive to the color

charge of the partons initiating the hard scattering. In chapter 4 we will obtain the first

analytically resummed result for a Sudakov peak in the two-dimensional emission plane of

two independent resolution variables in pp collisions.

We will often appeal to (or check) RG consistency, i.e., the statement that, in this simple

scenario, the anomalous dimensions must cancel as

µ
d

dµ
σ0(pcut

T ) = 0 ⇒ γH(µ) = −γF (µ) , (2.173)

because the physical cross section is independent of µ. An equivalent statement is that

the poles whose renormalization produces γH,F (µ) cancel between the bare ingredients. In

particular, the evolution factors are the inverse of each other,

UH(µ1, µ2) = U−1
H (µ2, µ1) = UF (µ2, µ1) = U−1

F (µ1, µ2) , (2.174)

and the resummed cross section in eq. (2.170) is in fact exactly independent of the common

scale µ, not just upon reexpansion in αs.

In reality, the anomalous dimension of the hard function is more complicated than in

the above toy example, and itself contains a logarithm of Q/µ,

γiH(Q,µ) = 4Γicusp[αs(µ)] ln
Q

µ
+ γiH [αs(µ)] . (2.175)
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Order Γcusp γX β X nonsingular

LL 1-loop - 1-loop LO -

NLL 2-loop 1-loop 2-loop LO -

NNLL 3-loop 2-loop 3-loop NLO -

N3LL 4-loop 3-loop 4-loop NNLO -

NLL′+NLO 2-loop 1-loop 2-loop NLO NLO

NNLL+NLO 3-loop 2-loop 3-loop NLO NLO

NNLL′+NNLO 3-loop 2-loop 3-loop NNLO NNLO

N3LL+NNLO 4-loop 3-loop 4-loop NNLO NNLO

Table 2.2: Required perturbative ingredients at various orders in resummed perturbation theory.

Here Γ is the cusp anomalous dimension, X stands for any of the ingredients in the factorized

singular cross section with noncusp anomalous dimension γX , and β is the β function of QCD. At

NnLL, the fixed-order boundary conditions for X must be included to Nn−1LO to ensure the formal

cancellation of scale dependence between boundary condition and evolution factor. If we include

the fixed-order expansion of X to fixed NnLO in addition, we indicate this by NnLL′. The inclusion

of nonsingular corrections by matching to the fixed-order cross section at NmLO is indicated by

+NmLO. Here NmLO always refers to the order relative to the underlying color-singlet process at

Born level, sometimes made explicit by a superscript NmLO0.

The coefficient Γicusp(αs) of the explicit logarithm is the universal cusp anomalous dimension,

which only depends on the color representation of the annihilating parton i, but otherwise

is common to all soft and collinear matrix elements containing lightlike Wilson line con-

figurations. The noncusp anomalous dimension γiH(αs) is specific to the hard function.10

Both are a pure perturbative series in αs and only depend on µ through αs. Due to the

explicit logarithm in the cusp term, the RGE UH(Q,µH , µ) of the hard function resums

Sudakov double logarithms αns lnm(µ/Q) with m ≤ 2n, and similarly for many soft and

collinear matrix elements we will introduce later on. In resummed perturbation theory,

the standard order counting in powers of αs (LO, NLO, etc.) needs to be generalized

to account for different possible truncation orders in the anomalous dimensions and the

fixed-order boundary conditions. For physics problems with Sudakov double logarithms,

the required perturbative ingredients at different orders in resummed perturbation theory

are summarized in table 2.2. For example, to resum all terms at leading-logarithmic (LL)

order, we only require the leading coefficient of the cusp anomalous dimension, since it is

enhanced by an explicit logarithm compared to the leading noncusp term, and the leading

β function coefficient to ensure that the scale dependence in Γicusp[αs(µ
′)] under the integral

in the evolution factor is properly captured. (This can most easily be seen when explicitly

changing variables from µ to αs(µ) using the β function, in which case β0 has a manifest LL

10We always distinguish γiH(Q,µ) and γH(αs) by their arguments.

58



2.3 Resummation from renormalization-group evolution

effect, see appendix D.) At next-to-leading-logarithmic (NLL) order, we require the first

noncusp term in addition, and Γcusp and β to two loops. At NNLL, the O(αs) corrections

to the fixed-order boundary terms are required, which are down by another logarithm

compared to the leading noncusp term. We note in closing that slightly different ways

of counting logarithmic orders exist [203, 204]. In this thesis we take the approach that

the perturbative order to which the boundary coefficients and anomalous dimensions in

the RGE are evaluated defines the overall logarithmic order, exploiting the fact that they

individually are convergent series.

2.3.3 Fixed-order matching and profile scales

Leading-power factorization theorems, like the toy example in eq. (2.166), only hold up to

power corrections in the ratio of physical scales, in this case pcut
T /Q. When pcut

T becomes

large, it becomes necessary to include those power corrections in the prediction. This can

most straightforwardly be done at fixed order by matching the resummed prediction to the

full fixed-order calculation in QCD,

σ0(pcut
T ) = σres

0 (pcut
T ) +

[
σFO

0 (pcut
T )− σsing

0 (pcut
T )
]
≡ σres

0 (pcut
T ) + σnons

0 (pcut
T ) . (2.176)

The overlap between the two contributions needs to be subtracted to avoid double counting.

As indicated, the overlap is given by the fixed-order reexpansion of the resummed cross

section, i.e., the singular cross section with all ingredients evaluated at the scale µFO ∼ Q
of the fixed-order calculation. The matching, in this form known as additive matching,

preserves the formal accuracy of the individual contributions: Upon fixed-order reexpansion,

the resummed and singular cross sections cancel, so the result has the same formal fixed-

order accuracy as σFO
0 . On the other hand, the term in square brackets, known as the

nonsingular cross section σnons
0 , is of O(pcut

T /Q) because the factorized cross section in the

singular limit agrees with σFO
0 . Thus in the limit pcut

T � Q the formal logarithmic accuracy

is that of the resummed cross section. We denote the outcome of matching the NnLL to

the fixed NmLO cross section by NnLL+NmLO.

Note that for differential spectra like the pjet
T spectrum, the first contribution at finite

pjet
T > 0 arises at O(αs), so we should specify what we mean by the leading order in this

case. For spectra, we will take LO to mean the δ(pjet
T ) term at strict tree level in the

underlying color-singlet process, i.e., without any QCD emissions. In this way, the NLO

spectrum, which includes the NLO virtual corrections ∝ δ(pjet
T ), consistently integrates to

the NLO total cross section for the underlying color-singlet production process. When we

wish to be very explicit, we indicate this by a subscript 0 for the (inclusive) number of hard

QCD emissions into the final state, e.g., the LO0 spectrum is ∝ δ(pjet
T ), whereas the LO1

spectrum is the leading contribution to the process where the color-singlet is produced in

association with at least one hard jet with pjet
T > 0.

We note that eq. (2.176) is not the most general, or most sophisticated, approach to

incorporating the power corrections. In particular, as the precision requirements increase,

the impact of unresummed logarithms x lnn x at subleading order in x = pcut
T /Q may be-
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Chapter 2 – Factorization and resummation

come noticeable. Their resummation is challenging in general. While SCET makes the

analysis of power corrections at least conceptionally straightforward by consistently working

to subleading power everywhere in the EFT construction (including the hard scattering

Lagrangian, dynamical Lagrangian insertions, and the factorization of the measurement

operator), the all-order resummation of even just the leading logarithms at next-to-leading

power has only been achieved for very select observables [205–208] because the all-order

factorization structure is still largely unclear. In chapter 7, we will see that in the exper-

imentally relevant case of the color-singlet transverse momentum spectrum with fiducial

acceptance cuts, these complications can be bypassed, by showing that the leading (linear)

power corrections uniquely arise from the cuts and multiply leading-power SCET dynamics.

As pcut
T → Q, the formula in eq. (2.176) requires additional modification because in

this region, the resummation is no longer justified and we should recover the fixed-order

result exactly. In particular, the σsing
0 term in square brackets continues to grow like some

power of a logarithm (with uncontrolled sign) as pcut
T passes Q, whereas the fixed-order

result, like the physical jet veto cross section in this limit, saturates towards the total

production cross section. (The resummed cross section stays roughly constant if all scales

are canonical.) To ensure these rather delicate cancellations between the resummed and

singular cross section towards the fixed-order result, which in practice are already active

around pcut
T ∼ 0.75Q, the resummation must be turned off towards pcut

T → Q. This is most

easily achieved by recalling that in our toy example, the resummation is controlled by the

scale µF chosen in the low-energy matrix element. (The hard scale µH ∼ Q can always be

chosen as µH = µFO.) In short, the requirements on µF are

µF ∼ pcut
T for pcut

T � Q and µF → µH for pcut
T → Q . (2.177)

A construction that achieves this, suitably generalized to the many low-energy scales in

real factorization theorems, are so-called profile scales that make µF (pcut
T ) an explicit,

continuous function of pcut
T [203, 209]. Importantly, these setups can easily be extended

to account for individual scale variations in the factorized ingredients over some central

choices µF = pcut
T and µH = Q, conventionally by a factor of 2. These variations amount

to including uncanceled higher-order β function or PDF evolution terms in the fixed-order

boundary conditions that very roughly estimate the typical size of perturbative corrections

in the individual perturbative series for F and H. Using a profile scale setup, it is then easy

to turn off these independent variations as pcut
T → Q and the singular and nonsingular cross

sections combine into the total cross section with a single, correlated variation of µFO ∼ Q.

As a final comment, note that if a complete, continuous description of the spectrum or

the veto cross section for all values of pjet
T (pcut

T ) is desired, rather than just of the singular

limit, and eq. (2.176) is used for this purpose, only some combinations of resummed and

fixed orders are practically viable because the two orders essentially need to go in lockstep

to simultaneously satisfy the requirements on nonsingular power suppression as pcut
T → 0

and singular-nonsingular cancellation as pcut
T → Q. The viable combinations relevant for

this thesis are summarized in the bottom half of table 2.2.
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Figure 2.12: Left: Illustration of deep-inelastic scattering at large Bjorken x → 1 in the Breit

frame, where the hadronic system originating from the proton (red) backscatters against the electron

(dark blue). We include a small vertical offset for clarity. As x approaches the kinematic endpoint,

the hadronic final state (light blue) becomes a collimated jet. Right: Illustration of Drell-Yan

production near the hadronic production threshold Q→ Ecm. In this limit, almost all the energy

from the initial-state protons (red) is converted into the observed Drell-Yan pair (blue), and the

remaining hadronic radiation is constrained to be soft (orange).

Right panel adapted from ref. [155].

2.4 Review of factorization for key observables

2.4.1 Deep inelastic scattering at large Bjorken x

The most basic factorization theorems capturing Sudakov double logarithms do not involve

an explicit measurement on the hadronic final state. Instead, the hadronic final state is

indirectly constrained by measuring the leptonic dynamics near a kinematic endpoint. For

DIS, this endpoint is the limit of large Bjorken fraction x→ 1. We can see from eq. (2.39)

that this limit in particular implies p2
X ∼ (1 − x)Q2 → 0 for the invariant mass of the

hadronic final state, i.e., the hadronic final state turns into a single collimated jet initiated

by a primary parton close to its mass shell. This physical picture is particularly clear

in the Breit frame, where the longitudinal momentum of the electron is reversed during

the scattering, k′3 = −k3 = Q/2, knocking the hadronic system backwards.11 DIS near

endpoint in the Breit frame is illustrated in the left panel of figure 2.12.

Aligning a lightlike reference vector nµ with the initial-state proton, and n̄µ with the

hadronic final state, the relevant low-energy degrees of freedom are

n̄-collinear: pµ ∼ (Q,Qλ2, Qλ) , λ ∼
√

1− x ,

n-collinear-soft: pµ ∼
(

Λ2
QCD

Qλ2 , Qλ
2,ΛQCD

)
,

11It is of course possible to boost to a frame where the hadronic final state is approximately at rest and

could instead be characterized as soft. Note, however, that in this frame the other components of the

hadronic system are now highly boosted for x→ 1, so the interpretation of X as collinear relative to the

incoming proton and in particular the proton remnant is unchanged.
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n-collinear: pµ ∼
(

Λ2
QCD

Q , Q,ΛQCD

)
. (2.178)

The n̄-collinear modes describe the hadronic final state. The n-collinear modes describe the

components of the proton that initiate the hard scattering, and the collinear-soft modes

describe the remnant of the proton as x → 1. The collinear-soft modes are often simply

called soft modes, counting ΛQCD ∼ Qλ2 without loss of generality.

The corresponding factorization theorem for the DIS structure functions reads [210–216]

F1(x,Q) =
1

2x
F2(x) =

∑
i,j

1

2
HDIS
ij (Q2, µ)

∫
ds f thr

i

[
x−

(
1 +

s

Q2

)
, µ
]
Jj(s, µ) . (2.179)

It holds up to power corrections in 1 − x. The DIS hard function HDIS
ij (Q2, µ) is given

by the square of (the IR-finite part of) the quark form factor at spacelike momentum

transfer. In SCET it is formally defined as the square of the hard matching coefficient, see

appendix B. The hard function is summed over the parton types i, j participating in the

scattering, e.g. Hij = δij Q
2
i

[
1 +O(αs)] for the flavor-conserving electromagnetic current.

Note that additional hard gluon emissions that could carry away angular momentum are

power suppressed in the x → 1 limit, so the Callan-Gross relation becomes an all-order

relation in this limit.

The bare quark jet function is defined as a vacuum matrix element of n̄-collinear fields,

Jq(s) =
(2π)3

Nc

〈
0
∣∣∣tr{ /n

2
χq n̄

[
δ(ω + P n̄) δ2(~P⊥) δ(s− ω n̄·p̂) χ̄q n̄

]}∣∣∣ 0〉 . (2.180)

The collinear field in square brackets has continuous label momentum in both the n̄ and

perpendicular direction in the sense of eq. (2.139). The residual momentum operator is

p̂µ = i∂µ, tr denotes a trace over spin, and we take χ̄q n̄ to be a column vector in color space

in this definition for notational simplicity. The jet function describes the formation of a

final-state jet from a primary parton with virtuality s. The antiquark jet function Jq̄(s) is

obtained by the replacement

tr
{ /n

2
χqn̄(x) · · · χ̄q n̄(y)

}
↔ χ̄q n̄(x) · · · /n

2
χq n̄(y) , (2.181)

where the ellipses denote the measurement δ functions acting on the field to their right.

Quark and antiquark collinear matrix elements like beam and jet functions are quite

generally related to each other by this replacement, and for brevity we will only give

definitions for the quark case in the following. The renormalized jet function satisfies the

RGE

µ
d

dµ
Jj(s, µ) =

∫
ds′ γjJ(s′, µ) Jj(s− s′, µ) ,

γjJ(s, µ) = −2Γjcusp[αs(µ)]L0(s, µ2) + γjJ [αs(µ)] δ(s) . (2.182)

Note that it is renormalized by a convolution in its argument s, but the renormalization

(unlike the DGLAP equation) is diagonal in flavor.
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The threshold PDF f thr
i describes the extraction of a parton from the proton as x→ 1

and in that limit coincides with the standard PDF. We defer its formal definition in terms of

n-collinear and collinear-soft fields to section 5.3.6, where we will also argue that eq. (2.179)

is indeed the correct convolution structure of the factorization theorem. Physically, the

convolution structure encodes that by momentum conservation, the quark initiating the

final-state jet may only be off shell by an amount dictated by the momentum available

from the proton in addition to Q.

The key utility of the factorization theorem in eq. (2.179) is that it predicts the all-order

structure of the leading singular terms in the perturbative DIS coefficient functions. For

simplicity, we consider the coefficient functions at µ = Q. (Other choices are straightforward

to recover using the RGE.) Comparing eq. (2.179) to eq. (2.43) in the limit x→ 1, one has

Ci,k(z,Q, µ = Q) =
∑
j

ĤDIS
kj Ĵj(z)

[
1 +O(1− z)

]
, (2.183)

where we abbreviated, suppressing the residual dependence on Q through αs(Q),

ĤDIS
ij = HDIS

ij (Q2, µ = Q) , Ĵj(z) = Q2 Jj
[
Q2(1− z), µ = Q

]
. (2.184)

The jet function Jj(s, µ
2) depends on s through terms like δ(s) and plus distributions

Ln(s, µ2) at each order in perturbation theory, so the rescaled jet function Ĵj(z) together

with the hard function predicts all singular terms δ(1− z) and Ln(1− z) in the coefficient

function. The relation eq. (2.183) was recently used to extract the three-loop quark and

gluon jet functions from the known DIS coefficient functions [217], confirming a previous

direct three-loop calculation of the quark jet function [218].

The resummation of the leading singular terms is most commonly performed in Mellin

space, with N � 1 the Mellin conjugate variable to z → 1. This diagonalizes the jet

function RGE, so the resummation can be achieved by multiplicative RG evolution between

the canonical Mellin-space jet scale µJ ∼ Q/
√
N and the hard scale Q [210, 211]. The

resummation can also be performed directly at the level of eq. (2.179) by making a judicious,

fixed choice of the jet scale motivated by the large x power-law behavior of the PDF [213].

2.4.2 Soft threshold factorization

In pp collisions at the LHC, the most obvious kinematic endpoint is the absolute production

threshold Q→ Ecm for a final state with invariant mass Q. In this limit, where τ = xaxb =

Q2/E2
cm → 1 and thus both xa,b = (Qe±Y )/Ecm → 1 in the notation of section 2.1.3, the

hadronic final state becomes (ultra)soft,12

soft: pµ ∼ (λ2Q,λ2Q,λ2Q) , λ ∼
√

1− xa,b . (2.185)

For color-singlet production, the additional low-energy degrees of freedom are separate

pairs of na,b-collinear and na,b-collinear-soft modes that respectively describe the active

12Here we take 1 − xa ∼ 1 − xb without loss of generality, because eq. (2.186) is valid for any hierarchy

between them as long as both are small, see section 5.3.5.
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constituents and the remnants of the two protons in analogy to the endpoint DIS case.

Drell-Yan production for Q→ Ecm is illustrated in figure 2.12, right. In the soft threshold

limit, the following factorization theorem holds for the color-singlet production cross section

differential inQ and Y (xa and xb), up to power corrections in 1−xa and 1−xb [210, 211, 219–

222],

dσ

dxadxb
=
∑
i,j

Hij(Q
2, µ)

∫
dk− dk+Si(k

−, k+, µ) (2.186)

× f thr
i

[
xa

(
1 +

k−

Qe+Y

)
, µ
]
f thr
j

[
xb

(
1 +

k+

Qe−Y

)
, µ
]
.

The hard function Hij is related to the DIS hard function HDIS
ij by crossing. It is given by

the square of the short-distance matrix element for the hard process ij → L that produces

the leptonic final state, and in particular contains the process-dependent hard virtual

corrections, e.g. the square of the timelike quark form factor in Drell-Yan production. On

the other hand, it is independent of the precise low-energy observable, and thus is common

to all factorization results for color-singlet production in pp collisions that we review in this

section or derive in this thesis.13 The hard function is summed over the partons i, j that

participate in the hard process.

The soft function Si encodes soft-gluon emissions from the colliding hard partons. The

bare soft function for quark annihilation is defined as

Sq(k
−, k+) =

1

Nc

〈
0
∣∣Tr
{

T̄
[
Y †nbYna

]
δ(k− − p̂−) δ(k+ − p̂+) T

[
Y †naYnb

]}∣∣0〉 . (2.187)

The gluon case is obtained by taking all Wilson lines to be in the adjoint representation and

adjusting the normalization factor to 1/(N2
c − 1). This replacement is again generally valid

for all the color-singlet soft functions we introduce in the following. Compact expressions

for the threshold soft function to three loops are given in section 6.2.2.

The threshold soft function Si only depends on the SU(3) representation of the parton

i, but not on the precise flavor, so we could have equally well written Sj instead of Si.

In particular, soft radiation cannot change the initial parton type (the index i is fixed

under the sum), so only the hard Born process contributes in the soft limit, e.g. qq̄ → Z

or gg → H, where the quarks or gluons are directly extracted from the proton. Any

off-diagonal partonic channels like qg → Lq vanish for τ → 1.

Similar to DIS near endpoint, the key application of eq. (2.186) is to predict and resum the

singular structure of the perturbative partonic cross section. At partonic level, eq. (2.186)

implies that for z = zazb → 1,

σ̂ij(za, zb, Q, µ = Q) = Ĥij Ŝi(za, zb)
[
1 +O(1− za) +O(1− zb)

]
, (2.188)

13We leave the leptonic tensor, proportional to the squared decay matrix element, and an occasional

Jacobian implicit in the hard function for readability. Explicit expressions for each case are compiled in

appendix B.
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up to power corrections in 1− za,b, where we have rescaled the soft function as

Ŝi(za, zb) ≡ Q2 Si
[
QeY (1− za), Qe−Y (1− zb), µ = Q

]
. (2.189)

Eq. (2.188) has been in ubiquitous use in cutting-edge LHC phenomenology. It predicts all

terms that are leading in the simultaneous limit z = zazb → 1, of the form

σ̂ij(za, zb, Q, µ) ⊃ δ(1− za) δ(1− zb) , Ln(1− za) δ(1− zb) ,
δ(1− za)Ln(1− zb) , Ln(1− za)Lm(1− zb) , (2.190)

and enables their all-order resummation, typically performed using Mellin-space techniques.

Terms of this kind are enhanced even away from the hadronic threshold limit (at τ � 1)

due to the steep fall-off of the PDFs towards larger momentum fractions. For a selection

of resummation techniques and phenomenological results for color-singlet production, see

refs. [210, 211, 219–240]. (Generalizations also exist and are in widespread use for processes

with final-state color like tt̄ production.) Another key application is in approximating

fixed-order cross sections by expanding in 1− z, e.g. at N3LO [219, 229, 241–250].

The catch to the soft threshold limit is that it receives relative power corrections in both

1− za and 1− zb. In particular, there is a tower of terms Ln(1− za) rn(zb) that are singular

in za, but multiplied by regular functions of zb that are also enhanced in the convolution

against the PDFs. Notably, all singular contributions from off-diagonal partonic channels

are of this kind. This much reduces the usefulness of soft threshold factorization in quark-

induced processes, where contributions from the gq initial state at NLO are typically of

comparable size to the qq̄ channel. (Most of the successes of the soft threshold limit are in

fact in gluon-induced processes like Higgs or tt̄ production, where the relative size of the

quark contributions at NLO is smaller.) In chapter 5 we rectify this situation by deriving,

for the first time, the all-order factorization theorem valid in the limit where only one of the

momentum fractions approaches unity. As a byproduct, we resolve a long-running debate

in the literature on the relation between the factorization theorem in eq. (2.186) and the

analogous (but simpler) factorization theorem for the cross section differential only in Q2.

2.4.3 Factorization at small transverse momentum

Another important kinematic limit at the LHC that is dominated by soft and collinear dy-

namics is the color-singlet transverse momentum distribution dσ/d~qT at small qT ≡ |~qT | �
Q. As discussed in the introduction, experimental measurements of Drell-Yan production

in this kinematic range have by now reached sub-percent precision. The relevant modes

describing QCD initial-state radiation are characterized by their transverse momentum

being of O(qT ),

na-collinear: pµ ∼
(
Q,

q2
T
Q , qT

)
,

nb-collinear: pµ ∼
(
q2
T
Q , Q, qT

)
,

soft: pµ ∼ (qT , qT , qT ) , (2.191)

65



Chapter 2 – Factorization and resummation

p p

`

`
soft

soft

nanb

ν

µ

b−1
T

Q

b−1
T Q

S
B

H

µ RGE

ν RGE

Figure 2.13: Left: Illustration of Drell-Yan production at small transverse momentum. The

Drell-Yan pair (blue) picks up a small amount of recoil from soft (orange) and collinear radiation

(green) along the directions of the incoming protons (red). Right: A possible renormalization group

evolution path in the (µ, ν) plane that resums all large logarithms in the transverse momentum

spectrum.

Left panel adapted from ref. [57].

such that the leptonic final state can pick up a small amount of recoil from them. This is

a prototypical SCETII setup. The physical picture of Drell-Yan production at small qT is

illustrated in the left panel of figure 2.13. The factorization of the ~qT distribution in the

limit qT ≡ |~qT | � Q in terms of these modes was first established by Collins, Soper, and

Sterman (CSS) [185, 251–253], and was later elaborated on in refs. [254–257]. Within the

framework of SCET, the factorization for qT was shown in refs. [188, 189, 191, 192]. The

factorization theorem for the transverse momentum distribution, sometimes also referred

to as transverse momentum dependent (TMD) factorization, reads

dσ

dQ2 dY d2~qT
=
∑
i,j

Hij(Q
2, µ) [BiBjSi](Q

2, xa, xb, ~qT , µ)
[
1 +O

( q2
T

Q2
,
Λ2

QCD

Q2

)]
. (2.192)

As written, the factorization theorem receives power corrections in qT /Q and ΛQCD/Q, but

remains valid in the nonperturbative regime qT ∼ ΛQCD. In chapter 7 we will point out

that reconstructing the decay products in general induces linear power corrections in qT /Q

and demonstrate how to perform their all-order resummation. The hard function Hij is

the same as in eq. (2.186) and encodes the hard production process ij → L at the scale

µ ∼ Q. The second factor in eq. (2.192) encodes the physics at the low scale µ ∼ qT , and

can be written in several equivalent forms,

[BiBjSi](Q
2, xa, xb, ~qT , µ)

≡
∫

d2~ka d2~kb d2~ks δ
2(~qT − ~ka − ~kb − ~ks)

×Bi(xa,~ka, µ, ν/ωa)Bj(xb,~kb, µ, ν/ωb)Si(~ks, µ, ν) (2.193a)
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≡
∫

d2~bT
(2π)2

ei~bT ·~qT B̃i(xa,~bT , µ, ν/ωa) B̃j(xb,~bT , µ, ν/ωb) S̃i(bT , µ, ν) (2.193b)

≡
∫

d2~bT
(2π)2

ei~bT ·~qT f̃i(xa,~bT , µ, ζa) f̃j(xb,~bT , µ, ζb) . (2.193c)

We first focus on eq. (2.193a). The beam function Bi(x,~kT , µ, ν/ω) describes the extraction

of an unpolarized parton i with longitudinal momentum fraction x and transverse momen-

tum ~kT from an unpolarized proton with momentum Pµn = P−n n
µ/2. In SCET, the bare

quark and gluon beam functions are defined as proton matrix elements of collinear fields,

Bq

( ω

P−n
,~kT

)
= θ(ω)

〈
pn
∣∣χ̄q n[δ(ω − P) δ2(~kT − ~P⊥)

/̄n

2
χq n

]∣∣pn〉 ,
Bµν
g

( ω

P−n
,~kT

)
= θ(ωn)ω

〈
pn
∣∣Bµn⊥[δ(ω − P) δ2(~kT − ~P⊥)Bνn⊥

]∣∣pn〉 (2.194)

As usual, the average over proton spin is implicit and fields without arguments are evaluated

at equal spacetime position. Here and in all following n-collinear proton matrix elements,

we take the proton to carry momentum Pµn = P−n n
µ/2. Note that in eqs. (2.192) and (2.193)

we suppressed the Lorentz tensor structure of the gluon beam function. There is in general

a nontrivial polarized contribution ∝ (kµTk
ν
T /k

2
T − g

µν
⊥ /2) to the gluon beam function due

to the vectorial nature of the measurement [258]. The transverse momentum-dependent

beam functions in eq. (2.194) also appear in the qT factorization for Z + j and γ + j

production [259, 260], in a recently derived factorization theorem for the closely related

(but theoretically much cleaner) observable of the azimuthal angle between the orientation

and total transverse momentum of the V + j system [261], and in the factorization for the

transverse energy-energy correlator (TEEC) in the back-to-back limit [262].

The soft function Si(~kT , µ, ν) encodes soft radiation with total transverse momentum ~kT ,

and we already encountered the definition of the bare soft function for i = q in eq. (2.156).

Unlike the beam function, the soft function is specific to color-singlet production.

The δ function δ2(~qT − · · · ) in eq. (2.193a) encodes momentum conservation in the

transverse plane. Eq. (2.193b) shows the same expression in Fourier space, where B̃i and

S̃i are the Fourier transforms of Bi and Si in the transverse plane and ~bT is the Fourier

conjugate of ~qT . The overall momentum conservation in this case is encoded in the beam

and soft functions being evaluated at equal ~bT . Yet another equivalent way of writing this is

shown in eq. (2.193c), where the transverse momentum dependent beam and soft functions

have been combined into transverse momentum dependent PDFs (TMDPDFs),

f̃i(x,~bT , µ, ζ) = B̃i
(
x,~bT , µ, ν/

√
ζ
)√

S̃i(bT , µ, ν) . (2.195)

In the gluon case this relation includes polarization indices that we suppress. The arguments

ζ and ν of the renormalized functions are discussed below. Note that the larger universality

of the beam function is lost in the TMDPDF, which in the form above is specific to color-

singlet production due to the presence of the soft function.14 Of course, this may be a

14Explicit constraints on soft radiation into the hadronic final state also upset the universality of the

TMDPDF, whereas the beam function in such a scenario is still the same, see section 4.2.3.
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desired feature when fitting TMDPDFs in the nonperturbative domain qT ∼ ΛQCD to

data: If the data set contains only color-singlet spectra, the nonperturbative soft and beam

functions are degenerate in the fit and it is expedient to combine them into a single model

function.

The soft function and the quark beam function in eqs. (2.156) and (2.194) are azimuthally

symmetric, so their Fourier transforms S̃i(bT ) and B̃q(x, bT ) only depend on the magnitude

bT ≡ |~bT |. Similarly, the gluon beam function can be decomposed in terms of two orthogonal

tensor structures gµν⊥ /2 and kµTk
ν
T /k

2
T−g

µν
⊥ /2 whose coefficients in Fourier space only depend

on bT . After these steps, we can simplify eq. (2.193b) further by performing the integral

over the azimuth of ~bT ,15

[BiBjSi](Q
2, xa, xb, ~qT , µ)

=
1

2π

∫ ∞
0

dbT bTJ0(bT qT )B̃i(xa, bT , µ, ν/ωa) B̃j(xb, bT , µ, ν/ωb) S̃i(bT , µ, ν) , (2.196)

where J0(|x|) = 1
2π

∫ 2π
0 dϕ exp(ix cosϕ) is the zeroth-order Bessel function of the first kind.

We will continue to use this form in the following, where it is understood from the argument

bT that the gluon beam function has been decomposed, effectively absorbing the tensor

structure as two distinct terms for unpolarized and polarized gluons into the sum over

flavors in eq. (2.192).

Renormalization. As discussed in section 2.2.7, the qT factorization is affected by ra-

pidity divergences that must be regulated by a dedicated rapidity regulator. This gives

rise to an additional rapidity scale denoted by ν in eq. (2.193). For all results related to

qT factorization in this thesis we use the exponential regulator of ref. [192], where up to

two loops the renormalized results are the same as for the η regulator of refs. [190, 191].

Note that eq. (2.194) as defined in SCET includes a zero-bin subtraction in integrals over

collinear momenta, which is scaleless for the exponential and η regulator, but for some

choices of rapidity regulator does not vanish.

The renormalized beam and soft functions in Fourier space obey the coupled RGEs

µ
d

dµ
ln B̃i(x, bT , µ, ν/ω) = γ̃iB(µ, ν/ω) , µ

d

dµ
ln S̃i(bT , µ, ν) = γ̃iS(µ, ν) ,

ν
d

dν
ln B̃i(x, bT , µ, ν/ω) = −1

2
γ̃iν(bT , µ) , ν

d

dν
ln S̃i(bT , µ, ν) = γ̃iν(bT , µ) . (2.197)

Importantly, their renormalization group evolution does not just follow a line in µ, but

follows a path in the (µ, ν) plane, as illustrated in the right panel of figure 2.13. Note

that the beam function renormalization, unlike the DGLAP evolution of the PDF, holds

the flavor and the momentum fraction x fixed. The renormalization also does not mix

unpolarized and polarized contributions in the gluon beam function.

15We stress that for the gluon case, this relies on the hard function being a Lorentz scalar (like for the

Higgs), so no cross terms of polarized and unpolarized gluon beam functions appear. In other cases,

like the gluon-induced contribution to diphoton production, there is in general a nontrivial azimuthal

dependence relative to the diphoton orientation.
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The µ anomalous dimensions on the first line have the all-order form

γ̃iB(µ, ν/ω) = 2Γicusp[αs(µ)] ln
ν

ω
+ γ̃iB[αs(µ)] ,

γ̃iS(µ, ν) = 4Γicusp[αs(µ)] ln
µ

ν
+ γ̃iS [αs(µ)] . (2.198)

We will use a tilde to indicate that these belong to the soft and beam functions in the qT
factorization theorem, even though the µ anomalous dimensions themselves are independent

of the space and of qT or bT . The split of the noncusp µ anomalous dimension into γ̃iB and

γ̃iS depends on the rapidity regularization scheme, but their sum combines to cancel the

hard noncusp anomalous dimension independent of the scheme.

The ν anomalous dimension γ̃iν has a richer structure. The cross section and the hard

function are ν independent, so γ̃iν must appear with a relative factor of −1/2 in the ν

RGE of the beam function for the two beam functions to cancel the ν dependence of

the soft function.16 This also implies that like the soft function, γ̃iν only depends on the

group representation, but not the specific flavor of i. Since the soft and beam functions

are evaluated at the same bT , RG consistency does not forbid (and in fact requires) an

explicit physical dependence of γ̃iν on bT . In particular, γ̃iν is itself renormalized at the scale

µ ∼ 1/bT and satisfies the additive RGE

µ
d

dµ
γ̃iν(bT , µ) = −4Γicusp[αs(µ)] = ν

d

dν
γ̃iS(µ, ν) . (2.199)

The second equality follows from path independence in the (µ, ν) plane, which is locally

equivalent to the integrability condition[ d

dµ
,

d

dν

]
= 0 (2.200)

for the RG flow generators acting on B̃i and S̃i. Path independence generalizes the group

property in eq. (2.172) to two dimensions. In momentum space, the bT dependence of γ̃iν
translates into a distribution-valued γiν(~kT ) and the beam and soft functions are renormal-

ized by a convolution over the full transverse plane [263].

Before discussing the detailed structure of γ̃iν , it is worthwhile to point out the physical

consequences of the rapidity renormalization. As discussed in section 2.2.7, the rapidity

regulator must (softly) break boost invariance to disentangle the soft and collinear sectors.

For the beam function this means that it acquires an explicit logarithmic dependence on

the large light-cone component ωa,b of the extracted parton’s momentum,17

ωa = xaP
−
a , ωb = xbP

−
b (2.201)

16We caution the reader that associating γ̃iν with the ν anomalous dimension of S̃i is a common, but by no

means universal convention in the literature.
17The explicit values of ωa,b and ζa,b depend on the choice of light-cone variables. For our default choice

of light-cone variables in terms of nµa,b = (1,±ẑ)lep in the leptonic frame, ωa,b = Q, whereas for nµa,b
chosen in the lab frame we would have ωa,b = Qe±Y . Note, however, that the product of the two beam

functions or TMDPDFs only depends on the product ωaωb = Q2 and ζaζb = Q4, which is the same in

either case.
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Similarly, when combining the beam and soft function into a TMDPDF as in eq. (2.195),

the ν dependence cancels between them, but leaves behind an explicit dependence on the

Collins-Soper scale ζa,b = ω2
a,b. This should be contrasted with PDFs that only depend

on the dimensionless momentum fraction xa,b. In the context of TMDPDFs, the rapidity

anomalous dimension is also known as the Collins-Soper kernel [185, 251], which governs

the ζ dependence of TMD distributions.

Structure of the rapidity anomalous dimension. If the ν evolution is performed at

scales µ� µ0 much higher than the intrinsic scale µ0 ∼ 1/bT of γ̃iν , the rapidity anomalous

dimension itself requires resummation. Solving eq. (2.199) between µ0 and µ, we have

γ̃iν(bT , µ) = −4ηiΓ(µ0, µ) + γ̃iν,FO(bT , µ0) + γ̃iν,np(bT ) , (2.202)

where all logarithms of µ/µ0 are resummed inside

ηiΓ(µ0, µ) =

∫ µ

µ0

dµ′

µ′
Γicusp[αs(µ

′)] . (2.203)

For µ0 ∼ 1/bT � ΛQCD the boundary condition γ̃iν,FO(bT , µ0) can safely be evaluated in

fixed-order perturbation theory,

γ̃iν,FO(bT , µ0) =

∞∑
n=0

γ̃i (n)
ν (bT /µ0)

[
αs(µ0)

4π

]n+1

(2.204)

The logarithmic dependence of γ̃
i (n)
ν on bT /µ0 is predicted by a recursive solution of

eq. (2.199), accounting for the β function. Up to three loops, one has

γ̃i (0)
ν (bT /µ) = −Lb 2Γi0 + γ̃iν 0 ,

γ̃i (1)
ν (bT /µ) = −L2

b Γi0β0 + Lb
(
β0γ̃

i
ν 0 − 2Γi1

)
+ γ̃iν 1 ,

γ̃i (2)
ν (bT /µ) = −L3

b

2

3
Γi0β

2
0 + L2

b

(
β2

0 γ̃
i
ν 0 − 2Γi1β0 − Γi0β1

)
+ Lb

(
2β0γ̃

i
ν 1 + β1γ̃

i
ν 0 − 2Γi2

)
+ γ̃iν 2 . (2.205)

The boundary coefficients γ̃iν n are known to three loops [264–266], see eq. (C.14). In

eq. (2.205) we used the shorthand

Lb = Lb

(bT
µ

)
= ln

b2Tµ
2

b20
, b0 = 2e−γE ≈ 1.12292 . (2.206)

Powers of Lb naturally appear in perturbative calculations of bT -space ingredients as the

Fourier transform of ~qT -dependent plus distributions Ln(~qT , µ). It is therefore common to

include a conventional factor of b0 = O(1) in bT -space boundary scales to fully eliminate

the Lb. For example, the canonical choice of µ0 that eliminates all (large) logarithms in

the fixed-order boundary condition γ̃FO
ν (bT , µ0) is

µ0 ∼ b0/bT . (2.207)
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As bT increases towards long distances 1/ΛQCD, the boundary condition for the rapidity

anomalous dimension becomes sensitive to nonperturbative physics. One possibility to

smoothly extend the perturbative result into this region is to choose µ0 as a function of

bT such that it freezes out at a perturbative scale at large bT , avoiding the Landau pole at

µ0 ∼ 1/ΛQCD in the fixed-order boundary condition. This is the strategy we will pursue in

chapter 4, and our explicit choice of µ0(bT ) is given there. The mismatch to the full result

can then in principle be captured by a nonperturbative model γ̃iν,np(bT ) = O(bTΛQCD),

which can be extracted from experimental measurements at small qT , see refs. [267, 268]

for recent fits. Recently it was shown that γ̃iν,np may also be determined from lattice

calculations [269–273], and that estimates of the first subleading power in bTΛQCD can be

related to the gluon condensate [274]. For the purposes of chapter 4, where nonperturbative

effects are not the main focus, we will set γ̃iν,np = 0 for simplicity. An alternative, even

simpler strategy to extend the perturbative description is to freeze out the entire running

coupling at a perturbative value, which is the approach we will use in chapter 7.

Canonical scales and resummation. The factorization in eq. (2.192) separates the

physics at the invariant-mass and rapidity scales

µH ∼ Q , µB ∼ qT , µS ∼ qT , µ0 ∼ qT ,
νB ∼ Q , νS ∼ qT . (2.208)

It has been known for a long time [275] that directly resumming the logarithms of qT /Q

in momentum space based on eq. (2.193a) is challenging due to the vectorial nature of ~qT ,

though by now approaches for doing so exist [263, 276]. For phenomenological results in

this thesis we bypass this issue, as is commonly done, by carrying out the resummation

in conjugate (bT ) space using eq. (2.193b) [185, 251, 252, 277]. In this formulation, the

canonical scales in bT -space are given by

µH ∼ Q , µB ∼ b0/bT , µS ∼ b0/bT , µ0 ∼ b0/bT ,
νB ∼ Q , νS ∼ b0/bT , (2.209)

where b0 = O(1) as discussed is conventional. (In practice this choice is always covered by

scale variations that form part of the uncertainty estimate.) By evaluating the functions in

the factorization theorem at their canonical scales and evolving them to a common scale

in both µ and ν, all logarithms of µB/µH ∼ µS/µH ∼ νS/νB ∼ (b0/bT )/Q are resummed.

A possible RG evolution path that connects these scales is shown in the right panel of

figure 2.13. Explicit expressions for the RG evolution factors are given in appendix D. In

ref. [263] it was shown that the canonical resummation in bT space is in fact equivalent to

the exact solution of the RGE in momentum space, except for the fact that one effectively

uses a shifted set of finite terms in the boundary conditions (similar to the difference

between renormalization schemes). We exploit this and require that for qT � Q, eq. (2.209)

is exactly satisfied, such that the resummed qT spectrum in this region is obtained from

the inverse Fourier transform of the canonical bT -space result. A set of profile scales that

implements these requirements is given in chapter 4.
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Perturbative content of beam and soft functions. The operator definitions of the

beam and soft functions (or TMDPDFs) are true to all orders and allow for a rigorous field-

theoretic treatment of the ~qT spectrum in the nonperturbative regime qT ∼ b0/bT ∼ ΛQCD.

For b0/bT � ΛQCD, the soft and beam functions exhibit additional perturbative structure.

The soft function in this regime becomes purely perturbative since it is defined by a

vacuum matrix element and involves no hadronic external state. It is known to O(α2
s) for

several regulators [264, 278–280] and has been calculated to O(α3
s) using the exponential

regulator [265].

For the beam functions, the separation of scales ΛQCD � b0/bT in the perturbative

regime justifies an OPE of the defining beam function operator in Fourier space, with fields

separated by ~bT , in terms of local operators. This is very similar to the OPE that gives

rise to the factorization theorem for inclusive DIS in eq. (2.43), where µ ∼ b0/bT takes the

role of the hard scale µ ∼ Q, and the proton matrix elements of the leading term in the

expansion are in fact exactly the leading-twist PDFs. For the quark qT beam function in

Fourier space, the matching relation in our notation reads [252, 281]

B̃q(x, bT , µ, ν/ω) =
∑
j

∫ 1

x

dz

z
Ĩqj(z, bT , µ, ν/ω) fj

(x
z
, µ
)[

1 +O(Λ2
QCDb

2
T )
]
. (2.210)

where the Ĩqj are perturbatively calculable matching coefficients. In the gluon case there are

two distinct matching coefficients Ĩgj and J̃gj for the unpolarized and polarized contribution,

respectively. The physical interpretation of eq. (2.210) is that the only required nonper-

turbative input is the longitudinal momentum distribution described by the PDF, whereas

the collinear dynamics that shape the transverse momentum spectrum (and reshuffle flavor

and longitudinal momentum in the process) are perturbative. All matching coefficients

Iij = δij δ(1 − z) +O(αs) are as of recently known to O(α3
s) [265, 278, 279, 282–288]. In

chapter 6, the all-order structure of the matching coefficients in the z → 1 limit is derived

and the leading terms in this limit are predicted at O(α3
s), which were still unknown at

the time of their original publication in ref. [5] and have later been used as cross checks on

the full calculation in refs. [287, 288]. The matching coefficient Jgj starts at O(αs) and is

known to O(α2
s) [286, 289].

2.4.4 0-jettiness factorization

The observables discussed in the previous sections constrain hadronic radiation only indi-

rectly by measuring properties of the color-singlet final state. The simplest kind of hadronic

observables, at least from the point of view of factorization, are event shapes that measure

an aggregate property of all hadronic radiation in the event. Here we focus on the N -

jettiness event shape, TN , and specifically the case of color-singlet production in hadronic

collisions with N = 0 jets in the final state, where it coincides with beam thrust [57, 59].

0-jettiness can be defined in terms of generic distance measures Qa,b as [290, 291]

T0 =
∑
i∈X

min
{2qa · ki

Qa
,

2qb · ki
Qb

}
, (2.211)
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where the sum runs over the momenta ki of all particles in the hadronic final state. The

reference vectors qa,b = Q (1,±ẑ)lab are aligned with the beam axis in the lab frame. The

distance measures Qa,b determine different definitions of 0-jettiness. Two possible choices,

corresponding to the original definitions in refs. [57, 59], are

leptonic: Qa = Qb = Q , T lep
0 =

∑
i

min
{
na · ki , nb · ki

}
hadronic: Qa,b = Qe±Y , T cm

0 =
∑
i

min
{
e−Y na · ki , e+Y nb · ki

}
, (2.212)

and we remind the reader that our default convention is na,b = (1,±ẑ)lep in the leptonic

frame, leading to the additional factors of e±Y on the second line. For explicit numerical

results in this thesis we will use the leptonic definition. For conceptional purposes the

precise choice of the Qi is not important, so we will simply use the symbol T0.

The factorization formula for N -jettiness has been derived using SCET in refs. [57, 290,

291]. The relevant degrees of freedom for N = 0 are

na-collinear: pµ ∼
(
T0, Q,

√
QT0

)
,

nb-collinear: pµ ∼
(
Q, T0,

√
QT0

)
,

ultrasoft: pµ ∼
(
T0, T0, T0

)
. (2.213)

The scalar products and the minimum in eq. (2.211) constrain the smaller light-cone

component for each emission. For this reason only ultrasoft radiation is allowed at central

rapidities (making this a SCETI problem), while collinear radiation at larger absolute

rapidities can have parametrically larger transverse momentum as long as the smaller

light-cone component stays of O(T0).

The factorization formula derived from eq. (2.213) reads [57]

dσ

dQ2dY dT0
=
∑
i,j

Hij(Q
2, µ)

∫
dta dtbBi(ta, xa, µ)Bj(tb, xb, µ)Si

(
T0 −

ta
Qa
− tb
Qb
, µ
)

×
[
1 +O

(T0

Q

)]
. (2.214)

For N > 0 the minimum in eq. (2.211) in addition includes the projections of the ki onto

the jet directions, which can themselves be chosen to minimize the overall TN . In this

case, the factorization formula includes an additional inclusive jet function as defined in

eq. (2.180) for every final-state jet, and the hard and soft functions become matrices in

color space that depend on the angles ni · nj between the different collinear sectors.

The beam function in eq. (2.214) is the inclusive virtuality-dependent (SCETI) beam

function. It is universal to many event shape factorization formulas involving hadrons in the

initial state, including in particular event shapes measured in deep-inelastic scattering [292].

In chapter 5 we will show that it also appears in a generalized threshold factorization

73



Chapter 2 – Factorization and resummation

theorem for inclusive color-singlet production in hadronic collisions. The bare quark and

gluon beam functions are defined as

Bq

(
t,
ω

P−n

)
= θ(ω)

〈
pn
∣∣χ̄q n[δ(ω − P) δ(t+ ωp̂+)

/̄n

2
χq n

]∣∣pn〉 ,
Bg

(
t,
ω

P−n

)
= θ(ω)ω

〈
pn
∣∣Bµn⊥[δ(ω − P) δ(t+ ωp̂+)Bn⊥µ

]∣∣pn〉 , (2.215)

where p̂µ = i∂µ is the residual momentum operator. Since it acts on a collinear field

that annihilates a parton from the proton, it picks up a negative value and thus the

transverse virtuality t > 0 of that parton is positive. Note that unlike the qT gluon beam

function, the virtuality-dependent gluon beam function is intrinsically unpolarized because

the measurement is scalar, and the Lorentz indices of the gluon fields are contracted within

its definition. The beam function is renormalized as [57, 293]

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t

′, x, µ) ,

γiB(t, µ) = −2Γicusp[αs(µ)]L0(t, µ2) + γiB[αs(µ)] δ(t) . (2.216)

The noncusp anomalous dimension γiB(αs) is equal to the jet noncusp anomalous dimension

γiJ(αs) in eq. (2.182) to all orders in perturbation theory [293]. Similar to the qT beam

function, the virtuality dependent beam functions can be matched onto PDFs for ΛQCD �
t [57, 293],

Bi(t, x, µ) =
∑
j

∫
dz

z
Iij(t, z, µ) fj

(x
z
, µ
)
. (2.217)

The matching coefficients Iij have recently become available to O(α3
s) [59, 293–297] The

results of chapter 5 imply a powerful consistency relation with the threshold soft function

in eq. (2.187). In chapter 6 we demonstrate how the leading z → 1 terms at O(α3
s) were

extracted based on this relation in ref. [5], providing key cross checks on the later ref. [298]

and the full calculation in ref. [299].

The soft function Si(k, µ) in eq. (2.214) is the hemisphere soft function for incoming

Wilson lines. It is defined by measuring k =
∑

i min{k+
i , k

−
i } on all emissions ki in the soft

final state. The RGE of the soft function reads [57, 293]

µ
d

dµ
Si(k, µ) =

∫
dk′γiS(k − k′, µ)Si(k

′, µ) ,

γiS(k, µ) = 4Γicusp[αs(µ)]L0(k, µ) + γiS [αs(µ)] δ(k) . (2.218)

It is closely related to the hemisphere soft function for e+e− → jets, which is known to

NNLO [300–304]. They have the same anomalous dimensions to all orders [57, 293], and

are equal to NNLO [57, 305]. It is an open question whether they remain equivalent at

higher fixed orders.
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The factorization in eq. (2.214) receives power corrections suppressed by T0/Q, as indi-

cated. It also does not account for effects from Glauber gluon exchange. For active-parton

scattering these are expected to enter at O(α4
s) (N4LL′) [306, 307] and can in principle

be included using the framework of ref. [173]. For proton initial states the factorization

formula in addition does not account for spectator forward scattering effects.

The factorization in eq. (4.2) separates the physics at the canonical scales

µH ∼ Q , µB ∼
√
QT0 , µS ∼ T0 . (2.219)

Note that the individual ingredients are well-separated in virtuality, so no evolution in

rapidity is required. By evaluating the ingredients at their natural scale and evolving them

to a common scale, all logarithms of T0/Q ∼ µS/µH ∼ (µB/µH)2 ∼ (µS/µB)2 in the T0

spectrum are resummed. Explicit expressions for the RG evolution factors are given in

appendix D.

2.4.5 Jet veto resummation

Experimentally it is very common to characterize the hadronic final state X not just in

terms of a single number (an event shape), but in terms of the observed jets and their

four-momenta. To make the abstract definition of jets as “collimated sprays of hadronic

radiation” operational, a jet algorithm is required that maps X onto a set of identified jets

by clustering together particles that are close to each other. The characteristic size of the

identified jets is controlled by a jet radius parameter R that enters the jet definition in a

way specific to the algorithm. At the LHC, the most common jet algorithms belong to the

kT class of algorithms [308–312] that cluster particles recursively. To preserve invariance

under longitudinal boosts, the distance measure is defined in terms of the separation in

azimuthal angle and rapidity, rather than the solid angle about the collision point. In

addition, different kT-type algorithms differ in how the distance measure is weighted with

the individual particle transverse momenta. For our purposes here and in chapter 3, the

details of the algorithm are not relevant at our working order, and we only require that R

parametrically controls the angular separation of particles within the same jet.

An important jet-based observable at the LHC are exclusive 0-jet cross sections where

no jet with transverse momentum pT > pcut
T above a certain cut is observed. Measurements

that involve a jet veto like this, or more generally, measurements that bin events by the

number of observed jets above some pcut
T , play an important role e.g. in Higgs and diboson

measurements or in searches for physics beyond the Standard Model where they are used

to suppress background processes and differentiate between contributions to the signal.

Experimental analyses typically choose veto parameters pcut
T = 25 − 30 GeV (with jet

radii R = 0.4− 0.5), These relatively tight choices of the veto, pcut
T � Q, are motivated by

an even split of the total cross section between the bins with 0 and ≥ 1 jet, exploiting the

Sudakov suppression in this limit. The modes describing initial-state radiation that passes
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the jet veto in the limit pcut
T � Q are

soft: pµ ∼
(
pcut
T , pcut

T , pcut
T

)
,

na-collinear: pµ ∼
(

(pcut
T )2

Q , Q, pcut
T

)
,

nb-collinear: pµ ∼
(
Q,

(pcut
T )2

Q , pcut
T

)
. (2.220)

Since both collinear and soft radiation with characteristic transverse momentum pT . pcut
T

is allowed, this is a SCETII scenario. The 0-jet cross section differential in the Born

kinematics Q,Y factorizes as [61, 62, 67],

dσ0(pcut
T , R)

dQ2 dY
=
∑
i,j

Hij(Q
2, µ)Bi(p

cut
T , R, ωa, µ, ν)Bj(p

cut
T , R, ωb, µ, ν)

× Si(pcut
T , R, µ, ν)

[
1 +O

(pcut
T

Q
,R2

)]
. (2.221)

The structure of eq. (2.221) is very similar to the qT -dependent factorization in eq. (2.193),

with the hard function being the same and the beam and soft functions being rapidity

regulated.18 The important difference is that the beam and soft functions enter in a

product rather than a convolution. This reflects the nature of the measurement, which

requires that after clustering emissions into jets in each separate factorized sector, the

hardest jet in each sector must pass the veto. The rate for this to happen is proportional

to the product of individual rates in each sector.19

By contrast, the convolution in the qT -dependent factorization theorem encodes the

fact that we indirectly measure the total vectorial transverse momentum of all initial-state

radiation combined. The formal definitions of the beam and soft functions are analogous to

the qT case with the measurement replaced, but writing out the factorized measurement in a

formula takes exactly as long as saying it in words, so we defer it to the actual perturbative

calculations of jet veto beam and soft functions in section 3.4.1.

The beam functions are given by a standard matching onto inclusive PDFs,

Bi(p
cut
T , R, ω, µ, ν) =

∑
j

∫ 1

x

dz

z
Iij(pcut

T , R, ω, z, µ, ν) fj

( ω

zEcm
, µ
)[

1 +O
(ΛQCD

pcut
T

)]
.

(2.222)

18We note that the ordering of beam function arguments is entirely conventional and that we have made

no effort to make it consistent between observables. As in eq. (2.193), the relevant large label momenta

at which the beam functions are evaluated are ωa,b = Q for our standard choice of na,b in the leptonic

frame, but the product of two beam functions in any case only depends on the invariant ωaωb = Q2.

Also note that we use the same symbols for Bi, Si and their anomalous dimensions as in the 0-jettiness

factorization in eq. (2.214), but the meaning will always be clear from the context.
19As discussed in refs. [62, 67], one formally needs to count R � 1 to avoid soft-collinear mixing terms

of O(R2), as indicated in eq. (2.221). A detailed discussion of possible approaches to include them at

O(α2
s) can be found in ref. [313].
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Unlike the case of qT , the power corrections to this relation can essentially always be

neglected for relevant values of pcut
T . In analogy to eq. (2.197), the renormalized soft and

beam functions obey the following set of coupled multiplicative renormalization group

equations,

µ
d

dµ
lnBi(p

cut
T , R, ω, µ, ν) = γiB(ω, µ, ν) , µ

d

dµ
lnSi(p

cut
T , R, µ, ν) = γiS(µ, ν) ,

ν
d

dν
lnBi(p

cut
T , R, ω, µ, ν) = −1

2
γiν(pcut

T , R, µ) , ν
d

dν
lnSi(p

cut
T , R, µ, ν) = γiν(pcut

T , R, µ) .

(2.223)

The µ anomalous dimensions have the all-order form,

γiB(ω, µ, ν) = 2Γicusp[αs(µ)] ln
ν

ω
+ γiB[αs(µ)] ,

γiS(µ, ν) = 4Γicusp[αs(µ)] ln
µ

ν
+ γiS [αs(µ)] (2.224)

while the resummed ν anomalous dimension is given by

γiν(pcut
T , R, µ) = −4ηiΓ(pcut

T , µ) + γiν [αs(p
cut
T ), R] . (2.225)

Compared to eq. (2.202), we have picked a fixed value of the boundary scale µ0 = pcut
T

and dropped the nonperturbative contribution since ΛQCD � pcut
T . By consistency, the ν

anomalous dimension can depend on all physical quantities that both the soft and beam

function depend on, and in this case the finite term γiν(αs, R) indeed depends on the jet

radius R.

As usual, all large logarithms of the ratio pcut
T /Q in eq. (2.221) are resummed by evalu-

ating the hard, beam, and soft functions at their canonical virtuality and rapidity scales,

µH ∼ Q , µB ∼ µS ∼ pcut
T , νB ∼ Q , νS ∼ pcut

T , (2.226)

and evolving them to common scales µ, ν using RG evolution. The power corrections in

eq. (2.221) can be included at fixed order in αs by matching the resummed result to the

corresponding fixed-order result in full QCD, and a profile scale setup that streamlines this

process was given in ref. [67]. In the next chapter, we will return to eq. (2.221) and show

how to extend it to the experimentally relevant case where jets are only reconstructed (and

vetoed) in a finite rapidity range in the detector.
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Chapter 3

Jet veto resummation with jet

rapidity cuts

Experimental jet selections at the LHC require a cut on the (pseudo)rapidity of recon-

structed jets, |ηjet| ≤ ηcut. In this chapter, we extend the standard jet pT (jet veto)

resummation, which implicitly works in the limit ηcut → ∞, by incorporating a finite jet

rapidity cut. We also consider the case of a step in the required pcut
T at an intermediate value

of |η| ' 2.5, which is of experimental relevance to avoid the increased pile-up contamination

beyond the reach of the tracking detectors.

This chapter is based on ref. [2], reflecting the author’s contribution. Compared to the

version published in ref. [2], the amount of detail in sections 3.4.1 and 3.4.5 has been

expanded for this thesis, and a new all-order result and its derivation have been added in

section 3.4.4, generalizing a two-loop result in ref. [2].

3.1 Motivation

Measurements that involve a veto on additional jets, or more generally that divide events

into exclusive jet bins, play an important role at the LHC, e.g. in Higgs and diboson

measurements or in searches for physics beyond the Standard Model. The jet binning

differentiates between hard processes that differ in the number of hard signal jets, and

hence allows one to separate signal and background processes. The separation into 0-jet

and ≥ 1-jet bins also provides a model-independent way to discriminate between qq̄ and gg

initiated processes [314].

A veto on jets with transverse momentum pT > pcut
T gives rise to double logarithms

ln2(pcut
T /Q) at each order in αs, where Q is the characteristic momentum transfer of the

hard interaction. These logarithms dominate the perturbative series when pcut
T � Q, and

represent an important source of theory uncertainty [59, 315]. As reviewed in section 2.4.5,

they can be systematically resummed to improve the perturbative predictions and assess

the associated uncertainties, which has been well-developed in Drell-Yan and Higgs produc-

tion [57–71], and has also been applied to several other color-singlet processes [314, 316–323].

Experiments can only reconstruct jets up to some maximal pseudorapidity |η| ≤ ηcut due

to the range of the detector, e.g. for ATLAS and CMS ηcut ∼ 4.5. In principle, the utility

of the jet binning to discriminate between different hard processes increases for a tighter jet
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Figure 3.1: Cartoon of possible strategies to avoid contamination from unsuppressed pile up in

jet-binned analyses. The pile-up suppression is much better in the pseudorapidity range |η| . 2.5,

where it can use information from the tracking detectors. To avoid the higher pile-up contamination

in the forward region, one can raise the jet threshold (left panel), only consider central jets (middle

panel), or combine both approaches by using a step-like jet selection (right panel).

veto (smaller pcut
T ). However, jets with small transverse momenta are difficult to reconstruct

experimentally, especially for pseudorapidity |η| & 2.5 beyond the reach of the tracking

detectors, which are important to suppress the large contamination from pile up (e.g. in the

jet vertex tagging algorithm used by ATLAS [324]). This is illustrated in figure 3.1. As the

LHC luminosity increases and pile-up conditions become harsher, the contamination from

unsuppressed pile-up jets grows worse and must be avoided. One option is to increase the

overall pcut
T . For example, in the context of Higgs measurements, the increased pile up in

Run 2 has forced raising the jet threshold from 25 GeV to 30 GeV. This however weakens

the jet veto and thus reduces its utility. Alternatively, to avoid raising the jet threshold, one

can consider jets only in a restricted pseudorapidity range of |η| . 2.5. However, this looses

the discrimination power from forward jets, which are a distinguishing feature of some

processes (most notably weak-boson fusion topologies in Higgs and diboson production, cf.

figure 2.6). The best possible option combines both approaches and performs a step-like jet

selection, with a lower pcut
T threshold for central jets and a somewhat higher p̃cut

T threshold

for forward jets. For example, recent ATLAS Higgs measurements [325] reconstruct jets

using pcut
T = 25 GeV for |η| < 2.4 and p̃cut

T = 30 GeV for |η| > 2.4 (and no jets beyond

rapidity |y| = 4.4).

A discontinuous step in the jet threshold can also pose challenges on its own, as it

makes the experimental measurements more complex. Theoretically, we will see that it can

complicate the resummation of logarithms in some extreme cases. An alternative to a step

is to use jet vetoes that smoothly depend on the jet rapidity [70, 313], providing a tighter

veto at central rapidities and a looser one at forward rapidities.1

The usual jet pT resummations [60–63, 66, 67] do not account for any jet rapidity

dependence, i.e., the resummation is performed for ηcut →∞. Using parton-shower Monte

Carlos, one finds that a jet rapidity cut at ηcut = 4.5 has a very small numerical effect,

while ηcut = 2.5 has a sizable effect on the jet pT spectrum in Higgs production (see e.g.

1These rapidity-dependent vetoes can also be supplemented with an additional sharp jet rapidity cut, see

appendix B of ref. [2].
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refs. [59, 60]), so it is important to properly include it in the resummation. This was already

pointed out in ref. [62], where it was also speculated that a jet rapidity cut might change

the resummation structure.

Our analysis in this chapter fully addresses these questions by systematically incorpo-

rating the jet rapidity cut into the jet pT resummation, including in particular the case

of a step-like veto. For this purpose, we extend the formalism of refs. [62, 67] reviewed in

section 2.4.5. To be concrete, our discussion focuses on color-singlet production, including

the important cases of Higgs and Drell-Yan production. Our results for how to incorporate

the ηcut dependence also carry over to processes with additional signal jets in the final

state to the same extent to which the usual jet pT resummation for color-singlet production

carries over to such cases [64, 65].

We identify all relevant parametric regimes in the veto parameters pcut
T , ηcut, p̃

cut
T , and

discuss the factorization and resummation structure for each regime. We also study the rela-

tions between the different regimes and perform numerical studies to check their respective

ranges of validity. An important conclusion of our analysis is that all regions of parameter

space that are of phenomenological interest can be described by parametric regimes that

are free of large so-called nonglobal logarithms, i.e., logarithms of parametrically distinct

constraints in different regions of phase space that cannot (straightforwardly) be predicted

by solving an RGE.

We analytically compute the ηcut dependence of all ingredients at O(αs) as well as of

the dominant O(α2
s) corrections (those enhanced by jet veto or jet clustering logarithms),

which matches the order to which they are currently known in the ηcut → ∞ limit. Our

results allow for carrying out the jet veto resummation including jet rapidity cuts to the

same order as is currently available without such cuts, which for color-singlet production

is NNLL′+NNLO. (Reaching this level also requires the still unknown nonlogarithmic

O(α2
s), which can be extracted numerically from the full NNLO calculation, as was done

for ηcut →∞ in ref. [67]. Carrying out such an analysis is beyond the scope of this thesis.)

The effect of a rapidity cut for transverse momentum vetoes has also been considered

independently in refs. [326, 327] for dijet production, and more recently for the transverse

energy event shape in Drell-Yan in ref. [328]. We compare their results to our results for

the case of a sharp cut at ηcut and no measurement beyond in section 3.2.5.

This chapter is organized as follows: In section 3.2, we discuss the parametric regimes

and corresponding effective field theory (EFT) setups for a sharp cut on reconstructed jets

at ηcut and no measurement beyond, as in the middle panel of figure 3.1. We give the

perturbative ingredients at O(αs) and the leading small-R clustering terms at O(α2
s) for all

partonic channels. We numerically validate the EFT setup by comparing to the relevant

singular limits of full QCD, and also compare the regimes to each other and identify their

respective ranges of validity. In section 3.3, we generalize the results of section 3.2 to a step

in the jet veto at ηcut, as in the right panel of figure 3.1. In section 3.4 we describe the

perturbative calculation of the relevant ingredients and elucidate the all-order structure of

clustering logarithms in the jet veto beam function both with and without a jet rapidity

cut. In section 3.5, we illustrate the numerical impact of the rapidity cut at NLL′+NLO
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for Drell-Yan at Q = mZ and Q = 1 TeV and for gg → H at mH = 125 GeV and gg → X

at mX = 1 TeV for different values of ηcut. We summarize our results in section 3.6.

3.2 Factorization with no constraint beyond ηcut (p̃cut
T =∞)

3.2.1 Overview of parametric regimes

We consider exclusive 0-jet cross sections, where the veto is applied by identifying jets in

the hadronic final state X using a jet algorithm with radius parameter R and cutting on

the transverse momentum pjet
T of the leading jet within |ηjet| < ηcut,

max
k∈jets(X,R): |ηk|<ηcut

|~pT,k| < pcut
T . (3.1)

The resulting constraints on the rapidities and transverse momenta of initial-state radiation

(ISR) are displayed as black lines in figure 3.2. We can identify two distinct power-counting

parameters that govern the typical angular size of energetic collinear ISR with energy

E ∼ Q, where Q is the momentum transferred in the hard interaction: First, the pT of the

emissions is constrained by pT < pcut
T for |η| < ηcut, corresponding to a maximum opening

angle
pT
E

.
pcut
T

Q
. (3.2)

Second, the pT of an energetic emission at rapidity η is parametrically pT ∼ Qe−|η|. The

rapidity cut removes the first constraint for |η| > ηcut. Hence, if ηcut is central enough, emis-

sions beyond ηcut can reach a characteristic pT . Qe−|ηcut|, corresponding to a maximum

opening angle
pT
E

. e−ηcut . (3.3)

There are three parametric regimes for pcut
T /Q and e−ηcut , which are illustrated in fig-

ure 3.2 for ηcut = 2.5. The thick black lines show the veto for different values of pcut
T /Q.

The thick gray curve shows the relation pT /Q = e−|η|, while the thin gray lines show the

values of ηcut and pT /Q = e−ηcut .

The first parametric regime is pcut
T /Q� e−ηcut . As we will demonstrate in section 3.2.2,

in this regime effects due to the rapidity cut are power suppressed by Qe−ηcut/pcut
T . Hence,

they can be treated as a fixed-order power correction to the standard jet veto resummation,

which implicitly works in the limit ηcut = ∞. For Higgs measurements with pcut
T =

25 GeV, ηcut = 4.5, Q ≡ mH = 125 GeV, this parametric assumption is well justified, as

mHe
−ηcut/pcut

T ∼ 5%.

For heavier final states and/or more central rapidity cuts the relevant parametric regime is

pcut
T /Q ∼ e−ηcut . This is the case for example for Q = 1 TeV and ηcut = 4.5 or Q = 125 GeV

and ηcut = 2.5 at pcut
T = 25 GeV. In section 3.2.3, we show that in this regime the rapidity

cut effects must be treated as a leading-power correction, and that they can be seamlessly

incorporated into the existing jet veto resummation without rapidity cut. We will see that
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Figure 3.2: Illustration of the parametric regimes for a jet veto with a jet rapidity cut. Emissions

above the black solid lines are vetoed as pT > pcutT up to |η| < ηcut = 2.5. The thick gray line

corresponds to pT /Q = e−|η|, and emissions above and to the right of it are power suppressed. The

colored circles indicate the relevant modes in the effective theory for a given hierarchy between

pcutT /Q and e−ηcut . For pcutT = 25 GeV, the given examples for pcutT /Q correspond to Q = 125 GeV

(left panel, upper case), Q = 300 GeV (left panel, lower case), Q = 1 TeV (right panel).

they affect only the boundary terms in the resummed cross section, but not the anomalous

dimensions and evolution factors. Hence, they start contributing at NLL′ or NNLL.

Finally in section 3.2.4, we discuss the parametric regime pcut
T /Q � e−ηcut . This case

is conceptually interesting, since logarithms of the ratio of scales Qe−ηcut and pcut
T appear,

changing the logarithmic structure already at leading-logarithmic (LL) order. In addition,

formally large nonglobal logarithms of the same ratio appear. This regime is of very limited

phenomenological relevance for typical jet-binned analyses at the LHC. For example, for

ηcut = 2.3 corresponding to e−ηcut = 0.1, it would require an extremely tight jet veto

pcut
T � 0.1Q, which is unrealistic as it would leave almost no signal in the 0-jet cross

section. For the purpose of explicitly probing this regime experimentally, one could lower

ηcut ' 1.0− 1.5, such that the jet veto only acts on radiation in the very central region.

3.2.2 Regime 1: pcutT /Q� e−ηcut (standard jet veto resummation)

As usual, the scaling of the modes in the EFT follows from the nontrivial constraints imposed

on emissions by the measurement. Soft emissions at central rapidities are always restricted

by the jet veto. Collinear emissions with energy ∼ Q and rapidity η have a transverse

momentum ∼ Qe−|η| and are constrained by the measurement if Qe−|η| ∼ pcut
T , which

determines their scaling. Since Qe−ηcut � pcut
T , these collinear modes are parametrically

not forward enough to be sensitive to the rapidity cut, such that the description of their

dynamics is simply governed by the power counting in pcut
T /Q. The relevant EFT modes

in this regime are thus the same as for a jet veto without any rapidity cut,

soft: pµ ∼
(
pcut
T , pcut

T , pcut
T

)
,

na-collinear: pµ ∼
(

(pcut
T )2

Q , Q, pcut
T

)
,
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nb-collinear: pµ ∼
(
Q,

(pcut
T )2

Q , pcut
T

)
. (3.4)

Here and below, we give the scaling of momenta in terms of light-cone components defined

as (with n ≡ na, n̄ ≡ nb),

pµ = n̄·p n
µ

2
+ n·p n̄

µ

2
+ pµ⊥ ≡ (n·p, n̄·p, ~p⊥) ≡ (p+, p−, ~p⊥) . (3.5)

In addition, there are the usual inclusive collinear modes that describe the initial protons

at the scale ΛQCD, and which are not specific to our discussion here.

In principle, we can consider collinear emissions that are forward enough to resolve

rapidities |η| ∼ ηcut,

na-collinear (ηcut): pµ ∼
(
Qe−2ηcut , Q,Qe−ηcut

)
,

nb-collinear (ηcut): pµ ∼
(
Q,Qe−2ηcut , Qe−ηcut

)
. (3.6)

However, since Qe−ηcut � pcut
T , these emissions have too little transverse momentum to

be affected by the jet veto, and are therefore unconstrained and integrated over without

requiring additional modes in the EFT. To explicitly see that the ηcut dependence is power

suppressed, note that the full jet veto measurement for the collinear modes contains a θ

function

θ(ηcut − |η|) = θ(1− e|η|−ηcut) = 1 +O(Qe−ηcut/pcut
T ) , (3.7)

which thus only induces power corrections in Qe−ηcut/pcut
T .

Therefore, at leading order in the power expansion, we recover the factorization for the

0-jet cross section with ηcut =∞ in eq. (2.221),

dσ0(pcut
T , ηcut, R)

dQ2 dY
=
∑
i,j

Hij(Q
2, µ)Bi(p

cut
T , R, ωa, µ, ν)Bj(p

cut
T , R, ωb, µ, ν)

× Si(pcut
T , R, µ, ν)

[
1 +O

(pcut
T

Q
,
Qe−ηcut

pcut
T

, R2
)]
. (3.8)

The important difference is the presence of the additional power corrections in Qe−ηcut/pcut
T .

This provides formal justification for using the standard result for ηcut →∞ in the presence

of a cut at sufficiently large ηcut, and gives precise meaning to what is sufficient, namely

Qe−ηcut/pcut
T � 1 should be negligible at the desired accuracy. The O(Qe−ηcut/pcut

T ) correc-

tions stop being suppressed for large Q, small pcut
T , or central ηcut. In the next section, we

show that they can be incorporated into the beam functions in eq. (3.8).

3.2.3 Regime 2: pcutT /Q ∼ e−ηcut (ηcut dependent beam functions)

In this regime, the scaling of soft and collinear modes is unchanged from the previous case.

However, the characteristic rapidity of the collinear modes now coincides parametrically
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with ηcut, i.e.,

soft: pµ ∼
(
pcut
T , pcut

T , pcut
T

)
,

na-collinear: pµ ∼
(

(pcut
T )2

Q , Q, pcut
T

)
∼
(
Qe−2ηcut , Q,Qe−ηcut

)
,

nb-collinear: pµ ∼
(
Q,

(pcut
T )2

Q , pcut
T

)
∼
(
Q,Qe−2ηcut , Qe−ηcut

)
. (3.9)

Thus, collinear emissions resolve the rapidity cut, and are constrained by the jet veto for

|η| < ηcut, while for |η| > ηcut they are unconstrained. As a result, the cross section

factorizes at leading power as

dσ0(pcut
T , ηcut, R)

dQ2 dY

=
∑
i,j

Hij(Q
2, µ)Bi(p

cut
T , ηcut, R, ωa, µ, ν)Bj(p

cut
T , ηcut, R, ωb, µ, ν)

× Si(pcut
T , µ, ν)

[
1 +O

(pcut
T

Q
, e−ηcut , R2

)]
. (3.10)

The beam functions now explicitly depend on both pcut
T and ηcut, while the hard and soft

functions are unchanged, with the characteristic scales still given by eq. (2.226). Eq. (3.10)

encodes the key new insight of this chapter, namely, that the leading dependence on the

rapidity cut can be incorporated directly into the resummation by making the low-energy

matrix elements more differential. The following sections elaborate on this idea by treating

other possible hierarchies of pcut
T and Qe−ηcut , and generalizing the idea to a step in the jet

veto.

The RG consistency of the cross section fixes the anomalous dimensions of the beam

function in terms of those for the soft and hard functions. Thus, the ηcut dependence cannot

change the renormalization of the beam function, i.e.,

µ
d

dµ
lnBi(p

cut
T , ηcut, R, ω, x, µ, ν) = γiB(ω, µ, ν) ,

ν
d

dν
lnBi(p

cut
T , ηcut, R, ω, x, µ, ν) = −1

2
γiν(pcut

T , R, µ) , (3.11)

where the anomalous dimensions are the same as the ones in the ηcut → ∞ limit given

in eqs. (2.224) and (2.225), Hence, the ηcut effects do not affect the RG evolution itself,

but only change the beam function boundary conditions, and therefore first appear at

NLL′. The RG evolution between µB ∼ pcut
T ∼ Qe−ηcut and µH ∼ Q now resums all large

logarithms of µB/µH ∼ pcut
T /Q ∼ e−ηcut , while the beam function boundary condition now

explicitly depends on the ratio Qe−ηcut/pcut
T ∼ O(1), which in contrast to regime 1 is not

power suppressed anymore. Power corrections that depend on ηcut are now pushed down to

e−ηcut ∼ pcut
T /Q which sets the characteristic opening angle of collinear modes in the EFT.

In analogy to eq. (2.222) the beam functions can be factorized into collinear matching

coefficients, which now also depend on ηcut, and the PDFs. We write the matching coeffi-

cients as the sum of the usual ηcut-independent matching coefficients plus a correction term
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that encodes the ηcut dependence,

Iij(pcut
T , ηcut, R, ω, z, µ, ν) = Iij(pcut

T , R, ω, z, µ, ν) + ∆Iij(pcut
T , ηcut, R, ω, z, µ, ν) . (3.12)

The ηcut-independent Iij are given in appendix E.4, and in the following we focus on the

correction terms ∆Iij .
Consistency between the cross sections in eqs. (3.8) and (3.10) implies that ∆Iij vanishes

as ηcut →∞. Specifically, defining

ζcut ≡ ωe−ηcut/pcut
T , (3.13)

the ∆Iij scale like

∆Iij
(
pcut
T , ηcut, R, ω, z, µ, ν

)
∼ O(ζcut) for ζcut → 0 , (3.14)

which is simply the statement from the previous subsection that the ηcut effects are power

suppressed in ζcut for ζcut � 1.

In fact, ∆Iij vanishes altogether for z > ζcut/(1 + ζcut), which can be seen from purely

kinematic considerations as follows: For the n-collinear sector the term ∆Iij accounts for

the case where at least one jet with pjet
T ≥ pcut

T and ηjet ≥ ηcut is reconstructed (and no

jet with ηjet < ηcut). For R � 1 all radiation in this jet has η ≥ ηcut, as well. Thus,

contributions to ∆Iij can only appear if

pcut
T ≤ |~p jet

T | ≤
∑
k∈jets

|~pT,k| =
∑
k∈jets

p−k e
−ηk , (3.15)

where the second equality follows from the jets being massless for R� 1. Rewriting this

in terms of momentum fractions p−k = zk P
−
n = zk ω/z yields, with

∑
k zk + z = 1 and P−n

the momentum of the initial state proton,

pcut
T ≤

∑
k∈jets

zk
z
ωe−ηk ≤ 1− z

z
ωe−ηcut . (3.16)

The second inequality follows from all reconstructed n-collinear jets having ηk > ηcut. This

implies that eq. (3.14) is trivially satisfied since the domain of integration in z scales as

x ≤ z . ζcut. Hence ∆Iij is parametrically important for ζcut ∼ z ∼ 1, but vanishes in the

threshold limit z → 1. This leads to an additional numerical suppression due to the falloff

of the PDFs towards larger partonic momentum fractions.

The RGE of ∆Iij follows from the beam-function RGE eq. (3.11) and the analogue of

the matching onto the PDFs in eq. (2.222). It is given by (with the remaining arguments

of ∆Iij understood)

µ
d

dµ
∆Iij(z, µ, ν) = γiB(ω, µ, ν) ∆Iij(z, µ, ν)−

∑
k

∫
dz′

z′
∆Iik

( z
z′
, µ, ν

)
2Pkj [αs(µ), z′] ,

ν
d

dν
∆Iij(z, µ, ν) = −1

2
γiν(pcut

T , R, µ) ∆Iij(z, µ, ν) . (3.17)
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where 2Pij(αs, z) are the DGLAP kernels that renormalize the PDF, see eq. (2.164). Note

that the RGE in eq. (3.17) does not mix ∆Iij with Iij and therefore does not change the

ζcut scaling in eq. (3.14). Solving eq. (3.17) order by order in perturbation theory, we find

the following structure through two loops:

∆Iij(z) =
αs(µ)

4π
∆I(1)

ij (z) +
α2
s(µ)

(4π)2
∆I(2)

ij (z) +O(α3
s) , (3.18)

∆I(1)
ij (z) = ∆I

(1)
ij

(ωe−ηcut

pcut
T

, z
)
,

∆I(2)
ij (z) = ln

µ

pcut
T

[
2Γi0 ln

ν

ω
+ 2β0 + γiB 0

]
∆I

(1)
ij

(ωe−ηcut

pcut
T

, z
)

− 2 ln
µ

pcut
T

∑
k

∫
dz′

z′
∆I

(1)
ik

(ωe−ηcut

pcut
T

,
z

z′

)
P

(0)
kj (z′) + ∆I

(2)
ij

(ωe−ηcut

pcut
T

, R, z
)
,

where ∆I
(n)
ij is the boundary condition of the RGE at µ = pcut

T , ν = ω, and the required

anomalous dimension coefficients are collected in appendix C. By dimensional analysis and

boost invariance, ∆I
(n)
ij can only depend on ζcut = ωe−ηcut/pcut

T in addition to R and z.

In section 3.4.1 we determine the one-loop contribution ∆I
(1)
ij , which has the simple form

∆I
(1)
ij

(
ζcut, z

)
= θ
( ζcut

1 + ζcut
− z
)

2P
(0)
ij (z) ln

ζcut(1− z)
z

, (3.19)

with the one-loop splitting functions P
(0)
ij (z) as given in eq. (C.6). The correction vanishes

at the kinematic threshold encoded in the overall θ-function, which also cuts off the singular

distributions in P
(0)
ij (z) at z = 1.2

While the computation of the full two-loop contribution ∆I
(2)
ij is beyond the scope of

this thesis, we analytically compute its leading contribution in the small-R limit, which

contains a clustering logarithm of R. We write the full two-loop result as

∆I
(2)
ij (ζcut, R, z) = lnR∆I

(2,lnR)
ij (ζcut, z) + ∆I

(2,c)
ij (ζcut, z) +O(R2) . (3.20)

In the limit R� 1, we can exploit that for the emission of two close-by collinear partons

with relative rapidity ∆η ∼ R, the collinear matrix element factorizes into two sequential

collinear splittings at the scale µ ∼ pcut
T and µ ∼ pcut

T R, respectively. In section 3.4.4, we

formalize this procedure using effective field theory methods to separate the two scales. The

result is a formula that predicts the leading logarithms αn+1
s lnnR in the beam function

matching coefficient to all orders in perturbation theory, including the exact dependence

on the jet rapidity cut, as a convolution of the O(αs) amplitude for a primary collinear

emission and the so-called leading jet function Jm lead(zJ) [329]. The latter describes the

probability to observe the hardest subjet in a sample of subjets initiated by a primary

2Additional details on the Mellin convolutions of ∆I
(1)
ik ⊗z P

(0)
kj appearing in the coefficient of ln(µ/pcut

T )

in ∆I(2)
ij (z) are given in appendix A.6 of ref. [2].
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parton m at some given momentum fraction zJ . For ∆I
(2)
ij , we find at n = 1

∆I
(2,lnR)
ij (ζcut, z) = θ

( ζcut

1 + ζcut
− z
)

2P
(0)
ij (z)

[
θ
(
z − ζcut

2 + ζcut

)
cR,cut
ij

( z

ζcut(1− z)
)
− cRij

]
,

(3.21)

where the coefficient functions cR,cut
ij are given by

cR,cut
gg (x) = cR,cut

qq (x) = −2

∫ x

1/2

dz′

z′

∫ z′

1/2
dzJ

[
P (0)
gg (zJ) + 2nfP

(0)
qg (zJ)

]
,

cR,cut
gq (x) = cR,cut

qg (x) = −2

∫ x

1/2

dz′

z′

∫ z′

1/2
dzJ

[
P (0)
qq (zJ) + P (0)

gq (zJ)
]
, (3.22)

depending on whether the primary emission we split is a gluon (first line) or a quark (second

line). Their explicit expressions read

cR,cut
gg (x) = cR,cut

qq (x) = 2CA

[5

8
+
π2

3
− 3x+

9

2
x2 − 2x3 − 2 ln2 x− 4 Li2(x)

]
+ 2β0

[
−29

24
− ln 2 + 3x− 3

2
x2 +

2

3
x3 − lnx

]
,

cR,cut
gq (x) = cR,cut

qg (x) = 2CF

[
−3 +

π2

3
− 3 ln 2 + 6x− 3 lnx− 2 ln2 x− 4 Li2(x)

]
. (3.23)

The coefficients cRij in eq. (3.21) are the (in principle known) coefficients of lnR in the

ηcut-independent two-loop beam function [67, 317], which we also verified.3 They satisfy

cRij = lim
x→1

cR,cut
ij (x) , (3.24)

and are given by

cRgg = cRqq =
1

4

[(
1− 8π2

3

)
CA +

(23

3
− 8 ln 2

)
β0

]
,

cRqg = cRgq = 2CF

(
3− π2

3
− 3 ln 2

)
. (3.25)

Our general setup for computing the small-R clustering contributions, described in more

detail in section 3.4.4, implies that the coefficient of the lnR terms of the two-loop rapidity

anomalous dimension in eq. (C.16) must be equal to cRgg = cRqq, in agreement with the

corresponding result given in refs. [62, 67]. In addition, it also applies to the leading ln2R

and lnR terms in the beam functions for rapidity dependent jet vetoes in ref. [313], with

which we agree as well.

The R-independent term ∆I
(2,c)
ik (ζcut, z) and the O(R2) terms in eq. (3.20) are currently

unknown. Their contribution to the cross section can in principle be obtained numeri-

cally from the singular limit of the full-theory calculation at O(α2
s), as was done for the

corresponding ηcut-independent pieces in ref. [67].
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Figure 3.3: Comparison of the singular contributions to the fixed O(αs) (LO1) pjetT spectrum for

gg → H (left) and Drell-Yan (right). The orange solid lines show the singular contributions in

regime 2 with ηcut dependent beam functions. The dashed blue lines show the singular contributions

in regime 1 in the limit ηcut =∞, pcutT � Qe−ηcut . Their difference, shown by the dotted green lines,

correctly scales as a power in Qe−ηcut/pjetT . The vertical lines indicate the point pjetT = Qe−ηcut .
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Figure 3.4: Comparison of singular and nonsingular contributions to the fixed O(αs) (LO1) pjetT
spectrum with rapidity cut |ηjet| < ηcut for gg → H (top row) and gg → X (bottom row), ηcut = 2.5

(left) and ηcut = 4.5 (right). The orange solid lines show the full results, the dashed blue lines the

regime 2 results with ηcut dependent beam functions, and the dotted green lines their difference.

The dashed and dotted gray lines show the corresponding regime 1 results, which do not describe

the singular behavior of the full cross section for finite ηcut.
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Figure 3.5: Comparison of singular and nonsingular contributions to the fixed O(αs) (LO1) pjetT
spectrum with rapidity cut |ηjet| < ηcut for Drell-Yan at Q = mZ (top row) and Q = 1 TeV (bottom

row), ηcut = 2.5 (left) and ηcut = 4.5 (right). The meaning of the curves are as in figure 3.4.

Numerical validation. To validate our results numerically and highlight the differences

in the singular behavior for regimes 1 and 2, we consider the fixed O(αs) p
jet
T spectrum,

dσ/dpjet
T , where pjet

T is the transverse momentum of the leading jet within |ηjet| < ηcut. Its

relation to the jet veto cross section with a jet rapidity cut is simply

σ0(pcut
T , ηcut, R) =

∫ pcut
T

0
dpjet

T

dσ(ηcut, R)

dpjet
T

. (3.26)

At leading power in pjet
T /Q, we obtain it by taking the derivative with respect to pcut

T of

either eq. (3.10), retaining the exact dependence on ηcut in the beam functions (regime 2),

or of eq. (3.8), incurring power corrections in Qe−ηcut/pjet
T (regime 1). The numerical results

for all singular spectra are obtained with the help of SCETlib [8]. The O(αs) spectra in

full QCD are obtained from MCFM 8.0 [330–332].

As representative gluon-induced processes, we consider gluon-fusion Higgs production

gg → H at mH = 125 GeV in the infinite top-mass limit, rescaled with the exact LO

3The coefficient of the cRgq contribution in eq. (39) of ref. [67] has a typo, missing an overall factor of 2. We

also find that the CA term of the coefficient cRqq in eq. (9) of ref. [317] misses a factor of 1/2 compared

to ref. [67] and our result.
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top-mass dependence for mt = 172.5 GeV (rEFT), see eq. (2.74). In addition, we consider

gluon fusion to a hypothetical heavy color-singlet scalar X, gg → X, mediated by a contact

operator

Leff = −CX
Λ

αsG
a
µνG

a,µνX . (3.27)

We always choose mX = 1 TeV, Λ = 1 TeV, and divide the cross section by |CX |2. To

the order we are working, this is equivalent to setting CX ≡ 1, since CX only starts to

run at O(α2
s).

4 For quark-induced processes we consider Drell-Yan pp → Z/γ∗ → `+`−

at the Z pole (Q = mZ) and at Q = 1 TeV, where Q = m`` is the invariant mass of

the lepton pair. Here we set all scales to µFO = mH , mX , or Q, respectively. We use

PDF4LHC nnlo 100 [109, 110, 337–340] NNLO PDFs with αs(mZ) = 0.118 and nf = 5

active flavors throughout.

In figure 3.3, we compare the regime 2 and regime 1 leading-power (singular) results for

dσ/dpjet
T at fixed pjet

T as a function of ηcut for gg → H and Drell-Yan. The regime 1 result

(dashed blue) does not depend on ηcut, while the regime 2 result (solid orange) decreases as

ηcut becomes more central. The difference between the two (dotted green) has the expected

behavior, vanishing as Qe−ηcut/pjet
T for ηcut →∞. We observe that regime 1 is applicable

beyond ηcut & 4, where the difference to regime 2 is suppressed by an order of magnitude.

Another check is provided by comparing the regime 1 and regime 2 singular results to

the full QCD result, which is shown in figures 3.4 and 3.5 for gluon-fusion and Drell-Yan.

For ηcut = 2.5 (left panels), it is clear that regime 1 (dashed gray) fails to describe the

singular limit of full QCD, with their difference (dotted gray) diverging for pjet
T → 0 like an

inverse power of pjet
T as expected. While the singular mismatch becomes less pronounced

for ηcut = 4.5 (right panels), the uncanceled singular contributions are still clearly visible in

the difference. On the other hand, regime 2 (dashed blue) correctly reproduces the singular

limit pjet
T → 0, with the difference (dotted green) vanishing like a power of pjet

T as it must.

This provides a strong check of the intricate pcut
T dependence encoded in our O(αs) results

for ∆Iij . (The power corrections in e−ηcut , which are present in regime 2, drop out when

taking the derivative of the fixed-order cumulant with respect to pcut
T .)

Note that at mX = 1 TeV or Q = 1 TeV, the fixed-order spectrum is completely dom-

inated by the rapidity-cut dependent singular result up to pjet
T . 100 GeV. Hence, the

resummation should provide a significant improvement over the fixed-order result for typi-

cal pcut
T ∼ 50 GeV, which we will indeed find in section 3.5.

3.2.4 Regime 3: pcutT /Q� e−ηcut (collinear NGLs)

The hierarchy pcut
T � Qe−ηcut (with e−ηcut � 1) exhibits different features than the regimes

discussed before. The typical transverse momentum for emissions with |η| > ηcut is para-

metrically Qe−|η|, indicated by the horizontal gray line in figure 3.2, which is now much

4In MCFM 8.0 we mock up this process using a standard-model Higgs with mH = 1 TeV and manually

account for the nonzero one-loop contribution from integrating out the top quark in the SM, which

differs from our choice of CX = 1 + O(α2
s) for the effective coupling of X to gluons. We also checked

the results against the native gg → X support of SusHi 1.6.1 [333–336].
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larger than for the strongly constrained emissions at |η| < ηcut. While the soft modes at

central rapidities are not affected, there are now two types of collinear modes at forward

rapidities with |η| ∼ ηcut,

na-collinear: pµ ∼ Q
(
e−2ηcut , 1, e−ηcut

)
,

na-soft-collinear: pµ ∼
(
pcut
T e−ηcut , pcut

T eηcut , pcut
T

)
= pcut

T eηcut

(
e−2ηcut , 1, e−ηcut

)
, (3.28)

and analogously for the nb-collinear sector. The collinear and soft-collinear modes have the

same angular resolution and only differ in their energy.5 This makes their all-order factor-

ization challenging and leads to the appearance of nonglobal logarithms ln(Qe−ηcut/pcut
T )

starting at O(α2
s). Their factorization and resummation requires the marginalization over

all possible configurations of energetic collinear emissions, involving soft-collinear matrix

elements with a separate Wilson line along each individual energetic collinear emission, see

e.g. refs. [341–344].

Since this regime has no immediate phenomenological relevance, we will not carry out

this complete procedure but restrict ourselves to the configuration with soft-collinear Wilson

lines along n and n̄, i.e, along the two main collinear emitters. This is sufficient for the

LL resummation, for isolating the nonglobal effects, and for discussing the relation to the

other regimes. Our discussion here is in close analogy to the regime 3 in the factorization

of the exclusive jet mass spectrum with small jet radius R in ref. [345], where the rapidity

cut e−ηcut here takes the role of R there.6

The factorized cross section takes the form

dσ0(pcut
T , ηcut, R)

dQ2 dY
=
∑
i,j

Hij(Q
2, µ)Bi(pcut

T , ηcut, R, ωa, µ, ν)Bj(pcut
T , ηcut, R, ωb, µ, ν)

× Si(pcut
T , R, µ, ν)

[
1 +O

( pcut
T

Qe−ηcut
, e−ηcut , R2

)]
. (3.29)

The initial-state collinear functions Bi encode the contributions of both soft-collinear and

energetic collinear modes. They are related to the ηcut dependent beam functions Bi in

eq. (3.10) by an expansion in the limit pcut
T /(ωe−ηcut)� 1,

Bi(p
cut
T , ηcut, R, ω, µ, ν) = Bi(pcut

T , ηcut, R, ω, µ, ν)

[
1 +O

( pcut
T

ωe−ηcut

)]
. (3.30)

Without further factorization, Bi contains large unresummed Sudakov double logarithms

5While we refer to the additional modes as soft-collinear in this chapter for this reason, the corresponding

Wilson line configurations at the lowest nontrivial order are the same as for the generic collinear-soft

modes of SCET+ for color-singlet production described in section 2.2.8.
6The main difference is that here, emissions for |η| < ηcut are constrained by their pT relative to the same

collinear (beam) direction. In the jet mass case, emissions outside the jet are not constrained by their

pT relative to the same collinear (jet) direction (but also relative to the beam direction).
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αns ln2n(pcut
T /ωe−ηcut). To resum the leading double logarithms, we can decompose Bi as

Bi(pcut
T , ηcut, R, ω, µ, ν) = B

(cut)
i (ηcut, ω, µ)S(cut)

i (pcut
T , ηcut, R, µ, ν)

×
[
1 + B(NG)

i

( pcut
T

ωe−ηcut
, ω,R

)]
. (3.31)

The function B
(cut)
i mainly describes contributions from the energetic collinear modes. It

was dubbed “unmeasured” beam function in refs. [326, 327], in analogy to the unmeasured

jet function [346]. At one loop its matching coefficients account for an energetic collinear

emission with |η| > ηcut. They are calculated in section 3.4.1 and read

I(cut)
gg (ηcut, ω, z, µ) = δ(1− z) +

αs(µ)CA
4π

[
δ(1− z)

(
4 ln2 ωe

−ηcut

µ
− π2

6

)
+ 4Pgg(z) ln

ωe−ηcut

µ z
+ 8L1(1− z) + 8

(1

z
− 2 + z − z2

)
ln(1− z)

]
+O(α2

s) ,

I(cut)
gq (ηcut, ω, z, µ) =

αs(µ)CF
4π

[
4Pgq(z) ln

ωe−ηcut(1− z)
µ z

+ 2z

]
+O(α2

s) ,

I(cut)
qqV (ηcut, ω, z, µ) = δ(1− z) +

αs(µ)CF
4π

[
δ(1− z)

(
4 ln2 ωe

−ηcut

µ
− 6 ln

ωe−ηcut

µ
− π2

6

)
+ 4Pqq(z) ln

ωe−ηcut

µ z
+ 8L1(1− z)− 4(1 + z) ln(1− z) + 2(1− z)

]
+O(α2

s) ,

I(cut)
qg (ηcut, ω, z, µ) =

αs(µ)TF
4π

[
4Pqg(z) ln

ωe−ηcut(1− z)
µ z

+ 4z(1− z)
]

+O(α2
s) , (3.32)

where the Pij(z) are the color-stripped LO splitting functions given in eq. (C.7), and we

have decomposed the flavor structure as in eq. (A.29). As argued in ref. [326] the results

are directly related to the matching coefficients for fragmenting jet functions in ref. [347].

In eq. (3.31), the S(cut)
i mainly describes contributions from soft-collinear modes. At

one loop it accounts for a soft-collinear emission that couples eikonally to the incoming

collinear parton i. The emission is constrained to pT < pcut
T for |η| < ηcut by the jet veto,

and is unconstrained for |η| > ηcut. Using the η regulator [190, 191] it is given by (see

section 3.4.2)

S(cut)
i (pcut

T , ηcut, R, µ, ν) = 1 +
αs(µ)

4π
S(cut,1)
i +

α2
s(µ)

(4π)2
S(cut,2) +O(α3

s) ,

S(cut,1)
i (pcut

T , ηcut, R, µ, ν) = Ci

(
4 ln2 p

cut
T

µ
− 8 ln

pcut
T

µ
ln
νe−ηcut

µ
+
π2

6

)
, (3.33)

where Ci = CF for an incoming quark or antiquark and CA for an incoming gluon. We

checked explicitly that the above results obey the consistency constraint in eq. (3.30). For

this purpose, one has to note that eq. (3.19) becomes distribution valued in (1− z) when

taking the limit ζcut � 1, see section 3.4.5.
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At two loops S(cut)
i contains a lnR enhanced term. Focusing on the constant terms not

predicted by the RG evolution, we have

S(cut,2)
i (pcut

T , ηcut, R, µ = pcut
T , ν = µeηcut) = lnRS(cut,2,lnR)

i + S(cut,2,c)
i +O(R2) , (3.34)

with S(cut,2,c)
i an unknown two-loop constant. The coefficient of lnR is obtained by taking

the limit ζcut →∞ of the lnR coefficient in the ηcut dependent beam function [see eqs. (3.21)

and (E.14)], where it becomes proportional to δ(1− z). This leads to a beautifully simple

relation, derived in detail in section 3.4.5,

S(cut,2,lnR)
i = 8Ci

∫ 1

1/2

dx

x
cR,cut
ii (x) . (3.35)

Inserting eq. (3.22), this is a three-fold iterated integral of one-loop QCD splitting functions

over the range [1/2, 1] that evaluates to

S(cut,2,lnR)
i = Ci

{
CA

[1622

27
− 548

9
ln 2− 88

3
ln2 2− 8ζ3

]
+ nfTF

[
−652

27
+

232

9
ln 2 +

32

3
ln2 2

]}
. (3.36)

The anomalous dimensions of B
(cut)
i and S(cut)

i have the general structure

γiScut(ηcut, µ, ν) = 2Γicusp[αs(µ)] ln
νe−ηcut

µ
+ γiScut [αs(µ)] ,

γiν,Scut(pcut
T , R, µ) = 2ηiΓ(pcut

T , µ) + γiν,Scut [αs(p
cut
T ), R] ,

γiBcut

(
ωe−ηcut , µ

)
= 2Γicusp[αs(µ)] ln

µ

ωe−ηcut
+ γiBcut [αs(µ)] , (3.37)

where the coefficients of the cusp anomalous dimension follow from our explicit one-loop

calculation. Consistency with eq. (3.11) implies

γiScut(αs) + γiBcut(αs) = γiB(αs) ,

γiν,Scut(αs, R) = γiν,B(αs, R) = −1

2
γiν(αs, R) . (3.38)

All of the above noncusp anomalous dimensions vanish at one loop. The canonical scales

for B
(cut)
i and S(cut)

i are

µ
(cut)
B ∼ Qe−ηcut , µ

(cut)
S ∼ pcut

T , ν
(cut)
S ∼ pcut

T eηcut . (3.39)

With these choices and the anomalous dimensions in eq. (3.37) one may resum logarithms

of eηcut , pcut
T /Q to any logarithmic order, and at LL also logarithms of pcut

T /Qe−ηcut .

Starting at O(α2
s), the B(NG)

i term in eq. (3.31) contains nonglobal logarithms of the form

αns lnn(pcut
T /Qe−ηcut). A boost by ηcut translates the measurement into two hemispheres

with one loose (η > ηcut) and one tight constraint (η < ηcut) on emissions. The nonglobal

structure in such a scenario is well understood [304]. Depending on the desired accuracy,
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Figure 3.6: Comparison of the singular contributions to the fixed O(αs) p
jet
T spectrum for gg → H

(top left), gg → X (top right), and Drell-Yan at Q = mZ (bottom left) and Q = 1 TeV (bottom

right). The solid orange lines show the full regime 2 singular spectrum, the blue dashed lines the

further factorized regime 3 result. Their difference shown by the dotted green lines vanishes as a

power in pjetT /Qe−ηcut for small pjetT . The vertical lines indicate where the relation pjetT = Qe−ηcut is

satisfied.

the NGLs may be included at fixed order via B(NG)
i as indicated in eq. (3.31), or (partially)

summed using more steps in a dressed parton expansion [343].

Note that beyond one loop there is some freedom in the choice of measurement that

defines the B
(cut)
i and S(cut)

i . In particular, different measurements that reduce to eqs. (3.32)

and (3.33) for a single emission could give rise to different results for the two-loop noncusp

anomalous dimensions and finite terms because the difference can be absorbed into B(NG)
i .

We stress that the result eq. (3.36) for the lnR coefficient in the two-loop soft-collinear

function is, however, still unique. This is because a lnR contribution to B(NG) requires

a collinear parton in the unconstrained region to emit a soft-collinear gluon into the

constrained region, which then undergoes a further collinear splitting. This is only possible

starting at O(α3
s).

Numerical validation. To illustrate the numerical relevance of regime 3, we again

consider the fixed O(αs) p
jet
T spectrum. In regime 2, it is given to leading power in pjet

T /Q
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by the derivative of eq. (3.10), while in regime 3, it is given to leading power in pjet
T /(Qe

−ηcut)

by the derivative of eq. (3.29).

In figure 3.6 we compare the two results for ηcut = 2.5. In regime 3, the 0-jet cross

section at O(αs) contains only single logarithms of pcut
T , because the double logarithms

cancel between the soft and soft-collinear functions. For this reason, the dashed-blue

regime 3 spectrum with respect to ln pjet
T is just a constant. The exact regime 2 result

(solid orange) becomes well approximated by the further factorized regime 3 expression for

pjet
T → 0, with their difference (dotted green) behaving like a power in pjet

T . This provides a

strong check of the regime 3 ingredients, more precisely, of the pcut
T dependence encoded in

the soft-collinear function. (Since the beam function in regime 3 is independent of pcut
T , it

drops out when computing the fixed-order spectrum.)

We also observe that for gg → H and Drell-Yan at Q = mZ , the regime 3 limit is

applicable only at very small pjet
T . 1 GeV and already at pjet

T ∼ 10 − 20 GeV the power

corrections with respect to regime 2 are of the same size as the full regime 2 result. This

means that one would have to turn off the additional regime 3 resummation above this

region. For gg → X with mX = 1 TeV and Drell-Yan at Q = 1 TeV, the canonical

regime 3 resummation region, i.e., the region where the regime 3 singular corrections clearly

dominate, extends up to pjet
T . 10 GeV, while regime 2 power corrections become O(1)

around pjet
T ∼ 60 GeV.

Hence, we find that the additional resummation of logarithms of pjet
T /(Qe

−ηcut) in regime 3

is not relevant for jet veto analyses at the LHC, where the lowest jet cuts are pcut
T ∼ 25 GeV,

for ηcut = 2.5 and final states in the Q ∼ 100 GeV range. This also holds for final states at

very high invariant mass, e.g. in new physics searches, since in this case one would typically

also apply higher jet thresholds to retain enough signal in the 0-jet bin. Realistically,

one would not go below pcut
T ∼ 0.1Q, which means one never enters the limit where the

regime 3 resummation is necessary. This of course does not exclude the possibility that

measurements designed to probe simultaneously very high Q and very low pjet
T could benefit

from the regime 3 resummation. To explicitly explore this regime experimentally, the best

option is to restrict the jet veto to the very central region with ηcut ∼ 1− 1.5.

3.2.5 Comparison to the literature

Jet vetoes in a restricted rapidity range were already encountered in ref. [326] for the case

of dijet production. Without spelling it out explicitly, ref. [326] used a factorization for

the regime 3 hierarchy pcut
T � Qe−ηcut � Q, but did not distinguish between the soft and

soft-collinear modes necessary in this regime. As a result, parametrically large rapidity

logarithms ln eηcut were not captured, which are relevant starting at NLL. The numerical

results in ref. [326] were obtained for Q ∼ 1 TeV, ηcut = 5, and pcut
T = 20 GeV, which rather

corresponds to the opposite regime 1, pcut
T � Qe−ηcut . The difference between regimes 1

and 3 already matters at LL.

In ref. [327], the soft and soft-collinear modes in regime 3 are distinguished and the

presence of nonglobal logarithms in this regime is recognized. Their factorization for dijet
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production is carried out at a level analogous to ours in the previous subsection. That is,

at NLL and beyond it only captures logarithms of “global” origin, but does not capture

nonglobal logarithms that are parametrically of the same size. Our results for the one-

loop quark matching coefficients in eq. (3.32) and the one-loop soft-collinear function in

eq. (3.33) agree with ref. [327] [see their eqs. (3.27), (B.3), and (B.5)]. Our results for the

gluon channels and the two-loop clustering corrections are new.

Ref. [327] does not consider regime 2 as a separate parametric regime. Instead, it

attempts to extend the validity of the regime 3 factorization into regime 2. This is done

by effectively adding the regime 2 nonsingular corrections appearing in eq. (3.30) to the

unmeasured beam functions. Since some of the regime 3 modes become redundant in

regime 2, this also requires them to account for a nontrivial soft-collinear zero bin. At

fixed order, the sum of all their contributions must reproduce our result for the regime 2

beam function; in section 3.4.3 we check that this is indeed the case for the quark matrix

elements given in ref. [327]. As we have seen in figure 3.6, outside the canonical regime 3,

there are large cancellations between the terms that are singular in the regime 3 limit and

the remaining regime 2 nonsingular contributions. This means that the distinction between

these contributions becomes arbitrary in regime 2 and that they must not be treated

differently, as otherwise one risks inducing large miscancellations. (This is completely

analogous to the situation when matching to full QCD, in which case the pcut
T resummation

must be turned off when entering the fixed-order region at large pcut
T to properly recover

the full-QCD result.) In particular, in regime 2 all contributions that belong to the full

ηcut-dependent regime 2 beam function must be evaluated at a common scale µ ' pcut
T and

evolved together according to eq. (3.11). This is not the case in ref. [327], where individual

contributions to the regime 2 beam function are evaluated at different scales throughout

(µcut
B and µcut

S in our notation).

Recently, the setup of ref. [327] was applied in ref. [328] to the case of transverse energy

ET in a restricted rapidity range in Drell-Yan. In ref. [328], profile scales are used to

combine regimes 3 and 1, requiring that asymptotically µ
(cut)
B = µ

(cut)
S in the regime 1 limit

ET � Qe−ηcut . While this can alleviate the issue raised above, formally this relation must

be satisfied already in regime 2 for ET ∼ Qe−ηcut .

As we have seen in section 3.2.3, there is no need to distinguish collinear and soft-collinear

modes in regime 2. Since for jet veto analyses regimes 1 and 2 are the phenomenologically

relevant ones, doing so unnecessarily complicates the description. Recovering the NNLL′

structure in regime 2 [see eq. (3.18)] based on regime 3 would be quite challenging due to

the intricate nonglobal structure in regime 3. Our dedicated treatment of regime 2 makes

the absence of nonglobal logarithms manifest, avoiding the associated complications, and

automatically ensures the correct treatment of the regime 2 nonsingular terms. Furthermore,

it shows how regime 2 generalizes the well-understood regime 1, and as we will see in the

next section allows for the generalization to a step in the jet veto.

Concerning regime 1, ref. [328] also gave an argument that regime 1 holds up to power

corrections in Qe−ηcut/ET , which was more intricate due to directly comparing regime 1 to

regime 3. The power suppression of ηcut effects at sufficiently large ηcut was also pointed
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out briefly in a somewhat different context in ref. [348].

3.3 Generalization to a step in the jet veto at ηcut

3.3.1 Overview of parametric regimes

We now generalize our results to the experimentally relevant scenario of the step-like jet

veto illustrated in the right panel of figure 3.1. Here, jets with pjet
T > pcut

T are vetoed if

|ηjet| < ηcut, while for |ηjet| > ηcut the veto is loosened to pjet
T > p̃cut

T > pcut
T . The 0-jet cross

section is thus defined by the following measurement:

max
k∈jets: |ηk|<ηcut

|~pT,k| < pcut
T and max

k∈jets: |ηk|>ηcut

|~pT,k| < p̃cut
T . (3.40)

There are now three relevant power-counting parameters pcut
T /Q, p̃cut

T /Q, and e−ηcut with

four distinct parametric regimes (assuming pcut
T ≤ p̃cut

T ), illustrated in figure 3.7:

• pcut
T /Q ∼ p̃cut

T /Q ∼ e−ηcut (collinear step, top left),

• pcut
T /Q� p̃cut

T /Q ∼ e−ηcut (collinear NGLs, top right),

• pcut
T /Q ∼ p̃cut

T /Q� e−ηcut (soft-collinear step, bottom left),

• pcut
T /Q� p̃cut

T /Q� e−ηcut (soft-collinear NGLs, bottom right).

We discuss each of them in turn in the following subsections. For pcut
T /Q ∼ e−ηcut (top left)

the only relevant case is p̃cut
T ∼ pcut

T , leading to a modified measurement on the collinear

modes, a collinear step, compared to the case without a step (p̃cut
T = pcut

T ).

For pcut
T /Q � e−ηcut , we have to distinguish three cases depending on p̃cut

T . Keeping

p̃cut
T ∼ e−ηcut implies the hierarchy pcut

T /Q� p̃cut
T /Q ∼ e−ηcut (top right). Here, the mode

setup is the same as for regime 3 without step (corresponding to p̃cut
T =∞). As in that case,

the large difference in the constraints on collinear radiation above and below ηcut gives rise

to collinear NGLs.

For p̃cut
T /Q � e−ηcut , we can then have either pcut

T /Q ∼ p̃cut
T /Q � e−ηcut (bottom left)

or pcut
T /Q � p̃cut

T /Q � e−ηcut (bottom right). For the former, the standard jet veto

factorization is recovered except that there are additional soft-collinear modes that resolve

the shallow step at ηcut. For the latter, the steep step pcut
T � p̃cut

T at ηcut gives rise to two

distinct sets of soft-collinear modes with parametrically large soft-collinear NGLs between

them.

3.3.2 pcutT /Q ∼ p̃cutT /Q ∼ e−ηcut (collinear step)

We first note that the hierarchy pcut
T /Q ∼ e−ηcut � p̃cut

T /Q is effectively equivalent to the

case without any jet veto beyond ηcut (regime 2 in section 3.2.3). Since collinear emissions

with |η| > ηcut cannot resolve the loose veto at p̃cut
T , its effect is suppressed by 1/p̃cut

T and

vanishes for p̃cut
T →∞.
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Figure 3.7: Illustration of the parametric regimes for a jet veto with a step. Emissions above the

black lines are vetoed, and the thick gray line corresponds to pT /Q = e−|η|. The colored circles

indicate the relevant modes in the effective theory. The regimes in the top row are characterized

by p̃cutT ∼ e−ηcut , while those in the bottom row have p̃cutT � e−ηcut . The regimes on the left have

pcutT ∼ p̃cutT , while those on the right have pcutT � p̃cutT and involve parametrically large non-global

logarithms.

The first nontrivial hierarchy is pcut
T /Q ∼ p̃cut

T /Q ∼ e−ηcut , illustrated in the top left

panel of figure 3.7. In this regime, the required modes are the same as in regime 2 in

section 3.2.3. The collinear radiation resolves the step at ηcut while soft emissions are

insensitive to it, leading to a generalization of eq. (3.10),

dσ0(pcut
T , p̃cut

T , ηcut, R)

dQ2 dY
=
∑
i,j

Hij(Q
2, µ)

×Bi(pcut
T , p̃cut

T , ηcut, R, ωa, µ, ν)Bj(p
cut
T , p̃cut

T , ηcut, R, ωb, µ, ν)

× Si(pcut
T , R, µ, ν)

[
1 +O

(pcut
T

Q
,
p̃cut
T

Q
, e−ηcut , R2

)]
, (3.41)

with the beam functions now additionally dependent on p̃cut
T . In analogy to eq. (3.12) we

write the modified beam function matching coefficients as

Iij(pcut
T , p̃cut

T , ηcut, R, ω, z, µ, ν) = Iij(pcut
T , R, ω, z, µ, ν) + ∆Iij(pcut

T , p̃cut
T , ηcut, R, ω, z, µ, ν) .

(3.42)
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The first term on the right-hand side is again the matching coefficient for a single veto

at pcut
T without any rapidity dependence. The second term is the correction due to the

step in the jet veto at |η| = ηcut, which vanishes for pcut
T = p̃cut

T . The correction is again

renormalized according to eq. (3.17), which as before follows from RG consistency. In

particular, its two-loop structure predicted by the RGE is the same as in eq. (3.18), where

the finite terms now depend on two dimensionless ratios,

ζcut =
ωe−ηcut

pcut
T

, ζ̃cut =
ωe−ηcut

p̃cut
T

. (3.43)

The one-loop and lnR enhanced two-loop finite terms in ∆Iij can be written in terms of

the results in eqs. (3.19) and (3.21) as

∆I
(1)
ij (ζcut, ζ̃cut, z) = ∆I

(1)
ij (ζcut, z)−∆I

(1)
ij (ζ̃cut, z) ,

∆I
(2)
ij (ζcut, ζ̃cut, R, z) = lnR

[
∆I

(2,lnR)
ij (ζcut, z)−∆I

(2,lnR)
ij (ζ̃cut, z)

]
,

+ ∆I
(2,c)
ij (ζcut, ζ̃cut, z) +O(R2) , (3.44)

since for a single (primary) na-collinear emission at (η, pT ) the measurement function for

the step correction can be rewritten as

θ(η − ηcut)
[
θ(p̃cut

T − pT )− θ(pcut
T − pT )

]
= θ(η − ηcut) θ(pT − pcut

T )− θ(η − ηcut) θ(pT − p̃cut
T ) . (3.45)

Due to the presence of correlated emissions with rapidities smaller and larger than ηcut at

two loops, this decomposition no longer applies for the full two-loop finite term ∆I
(2,c)
ij ,

which therefore needs to be determined separately.

This regime is free of large nonglobal logarithms and is of direct phenomenological

interest. The parametric assumptions are satisfied e.g. for high-mass searches, Q & 300 GeV,

a realistic rapidity cut ηcut = 2.5, and veto parameters pcut
T = 25 GeV, p̃cut

T = 50 GeV, which

clearly warrant resummation of logarithms of pcut
T /Q ∼ p̃cut

T /Q ∼ e−ηcut . Evolving the beam

function from µB ∼ pcut
T ∼ p̃cut

T ∼ Qe−ηcut to µH ∼ Q achieves this resummation for all of

the above large ratios in the cross section, while the full (logarithmic and nonlogarithmic)

dependence on all of the O(1) ratios pcut
T /p̃cut

T , Qe−ηcut/pcut
T , and Qe−ηcut/p̃cut

T is included

at fixed order via the beam function boundary condition.

Numerical validation. We now check that the factorized 0-jet cross section in eq. (3.41)

reproduces the singular limit of full QCD. For this purpose, we construct an observable that

simultaneously forces pcut
T → 0 and p̃cut

T → 0 as it approaches its singular limit. Following

the rapidity-dependent jet vetoes in ref. [70], we define

Tstep = max
k∈jets

|~pT,k|fstep(ηk) , fstep(η) =

{
1
ρ , |η| > ηcut ,

1, |η| < ηcut ,
(3.46)
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Figure 3.8: Comparison of singular and nonsingular contributions to the fixed O(αs) (LO1) Tstep
spectrum with a step at ηcut = 2.5 and ρ = p̃cutT /pcutT = 2 for gg → H (left) and Drell-Yan at

Q = mZ (right). The orange solid lines show the full results, the dashed blue lines the singular

result that accounts for the jet veto step at ηcut in the beam function, and the dotted green lines

their difference. The dashed and dotted gray lines show the corresponding results without taking

into account the step in the jet veto, which do not describe the singular behavior of the full cross

section.

i.e., we can express the step veto by ordering the jets with respect to their weighted

transverse momenta, where for |η| > ηcut the corresponding step weight function fstep(η) is

given by the ratio of veto parameters,

ρ ≡ p̃cut
T

pcut
T

> 1 . (3.47)

The differential spectrum in Tstep is then related to the jet-vetoed cross section with a step

by the relation

σ0(pcut
T , ρ pcut

T , ηcut, R) =

∫ pcut
T

0
dTstep

dσ(ρ, ηcut, R)

dTstep
. (3.48)

In figure 3.8 we compare dσ(ρ, ηcut)/dTstep at fixed O(αs) in full QCD to the singular

spectrum predicted by eq. (3.41) as well as the standard factorization eq. (3.8) without a

step for gg → H (left panel) and Drell-Yan at the Z pole (right panel). The singular result

using the full p̃cut
T and ηcut dependent beam functions (dashed blue) correctly reproduces

the singular behavior of full QCD (solid orange) in the limit Tstep → 0, with the difference

to the full QCD spectrum (dotted green) vanishing like a power in Tstep as it should. On

the other hand, the standard factorization without step (dashed gray) does not reproduce

the correct singular behavior of full QCD, with the difference (dotted gray) diverging for

Tstep → 0. Note that the mismatch here is reduced compared to the p̃cut
T =∞ case shown

in figures 3.4 and 3.5, owing to the larger phase space available to unconstrained radiation

at |η| > ηcut for p̃cut
T =∞.
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Chapter 3 – Jet veto resummation with jet rapidity cuts

3.3.3 pcutT /Q� p̃cutT /Q ∼ e−ηcut (collinear NGLs)

This regime is a direct extension of regime 3 without a step in section 3.2.4. For e−ηcut �
p̃cut
T /Q, the effect of p̃cut

T is again suppressed by 1/p̃cut
T and vanishes for p̃cut

T →∞, yielding

the same result as in section 3.2.4. The nontrivial new hierarchy is pcut
T /Q � p̃cut

T /Q ∼
e−ηcut , shown in the top right panel of figure 3.7. In this regime, the mode setup is as in

section 3.2.4. However, the collinear modes are now additionally constrained for |η| > ηcut

by the jet veto at p̃cut
T , making them sensitive to both p̃cut

T and the kinematic scale Qe−ηcut .

This leads to a modification of the overall initial-state collinear functions in eqs. (3.29) and

(3.30) by

Bi(pcut
T , p̃cut

T , ηcut, R, ω, µ, ν) = B
(cut)
i (p̃cut

T , ηcut, R, ω, µ)S(cut)
i (pcut

T , ηcut, R, µ, ν)

×
[
1 + B(NG)

i

( pcut
T

ωe−ηcut
,
pcut
T

p̃cut
T

, ω,R
)]
. (3.49)

Here S(cut)
i is the same soft-collinear function as in eq. (3.31). By RG consistency the

functions B
(cut)
i have the same renormalization as those in eq. (3.31), i.e., the additional

dependence on p̃cut
T does not change their renormalization. The associated matching coeffi-

cients at one loop are given by subtracting the correction term ∆I
(1)
ij in eq. (3.19), which

accounts for an n-collinear emission with η > ηcut and pT > p̃cut
T , from the coefficient I(cut)

ij

in eq. (3.32), which accounts for an n-collinear emission with η > ηcut without constraints

from a jet veto, such that

I(cut)
ij (p̃cut

T , ηcut, R, ω, z, µ) = I(cut)
ij (ηcut, ω, z, µ)− αs(µ)

4π
∆I

(1)
ij

(ωe−ηcut

p̃cut
T

, z, R
)

+O(α2
s) .

(3.50)

The B(NG)
i term in eq. (3.49) contains nonglobal logarithms of pcut

T /p̃cut
T ∼ pcut

T /Qe−ηcut .

3.3.4 pcutT /Q ∼ p̃cutT /Q� e−ηcut (soft-collinear step)

In this regime (bottom left panel of figure 3.7), the mode setup in section 3.2.2 is extended

by soft-collinear modes that resolve the step in the jet veto at ηcut,

na-soft-collinear: pµ ∼ pcut
T (e−ηcut , eηcut , 1) ∼ p̃cut

T (e−ηcut , eηcut , 1) ,

nb-soft-collinear: pµ ∼ pcut
T (eηcut , e−ηcut , 1) ∼ p̃cut

T (eηcut , e−ηcut , 1) . (3.51)

At the same time, the collinear modes only see the jet veto at p̃cut
T , while the soft modes

only see the veto at pcut
T . This yields the factorized cross section

dσ0(pcut
T , p̃cut

T , ηcut, R)

dQ2 dY
=
∑
i,j

Hij(Φ, µ)Bi(p̃
cut
T , R, ω, µ, ν)Bj(p̃

cut
T , R, ω, µ, ν)Si(p

cut
T , µ, ν)

× Si(pcut
T , p̃cut

T , ηcut, R, µ, ν)Sj(pcut
T , p̃cut

T , ηcut, R, µ, ν)

×
[
1 +O

(pcut
T

Q
,
p̃cut
T

Q
,

pcut
T

Qe−ηcut
,

p̃cut
T

Qe−ηcut
, R2

)]
. (3.52)
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3.3 Generalization to a step in the jet veto at ηcut

The soft-collinear function Si encodes the actual step at ηcut and is defined by the mea-

surement eq. (3.40). For p̃cut
T = pcut

T there is no step in the jet veto and Si has to vanish.

The RG consistency of the cross section implies that its µ anomalous dimension vanishes

in general, while its resummed ν anomalous dimension is given by

γiν,S(pcut
T , p̃cut

T , R) = 2ηiΓ(pcut
T , p̃cut

T ) +
1

2

{
γiν [αs(p̃

cut
T ), R]− γiν [αs(p

cut
T ), R]

}
. (3.53)

It does not depend on µ at all, as required by exact path independence in the (µ, ν) plane.

Note that the beam functions in eq. (3.52) depend on p̃cut
T (rather than pcut

T ) because

collinear radiation is too forward to be constrained by the tighter central veto. This is

reflected in the somewhat curious rapidity anomalous dimension of Si in eq. (3.53), which

accounts for the mismatch between the logarithms of pcut
T and p̃cut

T generated by the soft

and beam rapidity evolution, respectively.

Solving eq. (3.53) order by order in αs we find the following very simple structure of the

soft-collinear function through two loops:

Si(pcut
T , p̃cut

T , ηcut, R, µ, ν) = 1 +
αs(µ)

4π

[
2Γi0 ln ρLνS + Si,1(ρ)

]
(3.54)

+
α2
s(µ)

(4π)2

{
2(Γi0)2ln2ρ (LνS)2+2 ln ρLνS

[
2LµSβ0Γi0+Γi0Si,1(ρ)+Γi1

]
+ 2β0L

µ
S Si,1(ρ) + Si,2(ρ,R)

}
+O(α3

s) ,

where

ρ ≡ p̃cut
T

pcut
T

, LνS ≡ ln
ν√

pcut
T p̃cut

T eηcut
, LµS ≡ ln

µ√
pcut
T p̃cut

T

. (3.55)

It is straightforward to check that the one-loop finite term vanishes (see section 3.4.2),

Si,1 = 0 . (3.56)

The two-loop finite term is a generic function of the dimensionless ratio ρ and the jet

radius parameter R, which must satisfy Si,2(ρ = 1, R) = 0. As usual, we can decompose it

according to its R dependence as

Si,2(ρ,R) = −8Cic
R
ii ln ρ lnR+ S(c)

i,2 (ρ) +O(R2) , (3.57)

where cRii is given by eq. (3.25) and Ci = CF (CA) for i = q (g). The coefficient of lnR at

this order is completely determined by the R dependence of the noncusp rapidity anomalous

dimensions in eq. (3.53). The full two-loop finite term Si,2(ρ,R) could readily be obtained

numerically using the methods of refs. [349, 350], which would enable the full NNLL′

resummation.

This regime is again free of nonglobal logarithms and hence can easily be applied to

phenomenological studies. It can be used to supplement the EFT setup from section 3.3.2,

which enables the resummation of logarithms of the ratio pcut
T /Q ∼ p̃cut

T /Q, with an addi-

tional resummation of logarithms of the ratio pcut
T /Qe−ηcut ∼ p̃cut

T /Qe−ηcut by choosing the
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Chapter 3 – Jet veto resummation with jet rapidity cuts

canonical scales

µB ∼ p̃cut
T , µS ∼

√
pcut
T p̃cut

T , µS ∼ pcut
T ,

νB ∼ Q , νS ∼
√
pcut
T p̃cut

T eηcut , νS ∼ pcut
T . (3.58)

Here, the rapidity evolution between νS and νS is responsible for resumming the large

logarithms of e−ηcut ∼ νS/νS .

Numerical Validation. To validate our setup in this regime, we exploit that eq. (3.52)

provides a refactorization of the collinear step in eq. (3.41), where

Iij(pcut
T , p̃cut

T , ηcut, R, ω, z, µ, ν) = Si(pcut
T , p̃cut

T , ηcut, R, µ, ν) Iij(pcut
T , R, ω, z, µ, ν)

×
[
1 +O

( pcut
T

ωe−ηcut
,

p̃cut
T

ωe−ηcut
, R2

)]
. (3.59)

In particular, eq. (3.52) must reproduce eq. (3.41) up to power corrections in pcut
T /Qe−ηcut

and p̃cut
T /Qe−ηcut . We can test this numerically using the Tstep observable defined in

section 3.3.2, which simultaneously probes both classes of power corrections. In figure 3.9,

we show the fixed O(αs) Tstep spectra for the collinear step (solid orange) and soft-collinear

step (dashed blue). In all cases their difference (dotted green) vanishes like a power in Tstep.

The additional resummation using the soft-collinear step may be applicable up to values

of pcut
T = 20 GeV (pcut

T = 80 GeV) for Q ∼ 100 GeV (Q = 1 TeV), for the choice of

ρ = 2, ηcut = 2.5 displayed in figure 3.9. This can be read off from the relative size of

leading-power (soft-collinear step) and subleading power (difference) contributions, which

leave some room where resummation in the leading-power cross section can improve the

prediction. We find a slightly larger potential resummation region than for the analogous

refactorization in the p̃cut
T = ∞ case, where an earlier onset of the power corrections was

observed in figure 3.6.

3.3.5 pcutT /Q� p̃cutT /Q� e−ηcut (soft-collinear NGLs)

For this hierarchy (bottom right panel of figure 3.7), two types of soft-collinear modes arise,

na-soft-collinear (pcut
T ): pµ ∼ pcut

T (e−ηcut , eηcut , 1) ,

na-soft-collinear (p̃cut
T ): pµ ∼ p̃cut

T (e−ηcut , eηcut , 1) , (3.60)

and analogously for the nb-soft-collinear sectors, which are both parametrically distinct

from the energetic collinear modes. Compared to the regime pcut
T ∼ p̃cut

T � Qe−ηcut there

are now parametrically large logarithms ln(pcut
T /p̃cut

T ) in the soft-collinear function Si in

eq. (3.52). The cross section can be written as in eq. (3.52), where the soft-collinear function

is refactorized as

Si(pcut
T , p̃cut

T , ηcut, R, µ, ν) = S(cut)
i (pcut

T , ηcut, R, µ, ν)
[
S(cut)
i (p̃cut

T , ηcut, R, µ, ν)
]−1

×
[
1 + S(NG)

i

(pcut
T

p̃cut
T

, R
)]
×
[
1 +O

(pcut
T

p̃cut
T

)]
, (3.61)
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Figure 3.9: Comparison of the singular contributions to the fixed O(αs) (LO1) Tstep spectrum for

ηcut = 2.5 and ρ = 2 for gg → H (top left), gg → X (top right), and Drell-Yan at Q = mZ (bottom

left) and Q = 1 TeV (bottom right). The solid orange lines show the singular spectrum for the

collinear-step regime and the blue dashed lines the further factorized result in the soft-collinear-step

regime. Their difference, shown by the dotted green lines vanishes as a power of Tstep. The vertical

lines indicate where the parametric relation Tstep/Q = e−ηcut is satisfied.

with S(cut)
i the same soft-collinear function as in eqs. (3.31) and (3.49). Both the power

corrections and the nonglobal piece S(NG)
i are absent at one loop and at O(α2

s lnR). Equiv-

alently this regime can be interpreted as a refactorization of eq. (3.49), where compared to

the hierarchy for pcut
T � p̃cut

T ∼ Qe−ηcut there are large (rapidity) logarithms ln(p̃cut
T eηcut/Q)

in the beam function B
(cut)
i . Evolving the two soft-collinear functions to separate renormal-

ization scales µS,1 = pcut
T , νS,1 = pcut

T eηcut and µS,2 = p̃cut
T , νS,2 = p̃cut

T eηcut resums Sudakov

logarithms of pcut
T /p̃cut

T , but does not account for the nonglobal logarithms of the same ratio

in S(NG)
i .

3.4 Calculation of perturbative ingredients

In this section we provide details on the calculation of all new perturbative ingredients

introduced above. In section 3.4.1 we document the computation of the one-loop beam

function matching coefficients with a jet rapidity cut in eqs. (3.19) and (3.32), also setting
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the scene for calculating beam functions in general. In section 3.4.2 we compute the

soft-collinear functions in eqs. (3.33) and (3.54). In section 3.4.3 we compare to the one-

loop results of ref. [327]. In section 3.4.4 we derive an all-order formula for the leading

clustering logarithms in jet veto beam functions and use it to compute the very nontrivial

clustering coefficients in the two-loop beam function with a jet rapidity cut in eq. (3.21). In

section 3.4.5 we provide analytic details on how to check (or use) the consistency relation

between regimes 2 and 3 in eq. (3.30).

3.4.1 Rapidity cut dependent beam functions at one loop

In this section we give the detailed computation of the one-loop beam function matching

coefficients in eqs. (3.19) and (3.32). Some intermediate results are also needed as ingredients

for the all-order calculation of clustering logarithms in section 3.4.4.

General strategy. Beam functions are in general defined by the measurements or cuts

they impose on collinear initial-state radiation. They may also indirectly constrain the

collinear final state by measuring properties of the annihilating collinear parton. For a

general measurement M̂B acting on a collinear final state |X〉 as

M̂B(m)|X〉 =MB(m;X)|X〉 , (3.62)

the corresponding bare beam functions are defined as forward proton matrix elements of

the beam function operators

Bi

(
m,

ω

P−n

)
=
〈
pn
(
P−n

nµ

2

)∣∣θ(ω)Oi(m,ω)
∣∣pn(P−n nµ

2

)〉
,

Oq(m,ω) = χ̄q n M̂B(m)
[
δ(ω − P)

/̄n

2
χq n

]
,

Og(m,ω) = ωBµn⊥ M̂B(m)
[
δ(ω − P)Bn⊥µ

]
. (3.63)

The beam function and the operators on the left-hand side of eq. (3.63) also depend on the

parameters m of MB, e.g. m = {pcut
T , ηcut, R}. Here we assume that, as in the case of the

jet veto at hand, MB(m,X) only depends on the magnitude of transverse momenta, so all

three operators are scalars under rotations in the transverse plane and the collinear gluon

fields are contracted with each other.

If the lowest scale ΛX probed by the measurement on collinear radiation is perturbative,

ΛQCD � ΛX , the beam function operators can be expanded in an operator product expan-

sion. The leading term for ω > 0 is given by the leading-twist PDF operators Qi. In SCET

the bare PDF operators have the same form as the Oi in eq. (3.63), but are fully inclusive

over radiation up to the overall label momentum constraint,

fi

( ω

P−n

)
=
〈
pn
(
P−n

nµ

2

)∣∣θ(ω)Qi(ω)
∣∣pn(P−n nµ

2

)〉
,

Qq(ω) = χ̄q n
[
δ(ω − P)

/̄n

2
χq n

]
,

Qg(ω) = ωBµn⊥
[
δ(ω − P)Bn⊥µ

]
. (3.64)
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This definition is equivalent to the standard definition in terms of full-QCD quark and gluon

fields connected by Wilson line segments along the light cone [293]. The bare perturbative

beam function matching coefficients Iij(m, z) are computed as the difference of partonic

matrix elements of the bare Oi(m,ω) and Qj(ω′) [293],

〈jn(p)|θ(ω)Oi(m,ω)|jn(p)〉

=
∑
k

∫
dω′

ω′
Iik
(
m,

ω

ω′

)
〈jn(p)|θ(ω′)Qk(ω′)|jn(p)〉 . (3.65)

We match the forward matrix element averaged over the spin and color indices of jn
without loss of generality because the operators are scalar color singlets. To simplify the

calculation, we pick a state with ~p⊥ = 0. As a consequence of the explicit scale separation,

only the matching coefficients can depend on the details m of the measurement. Taking

proton matrix elements of the renormalized operators then leads to beam function matching

relations such as eqs. (2.210), (2.217), and (2.222). Eq. (3.65) can be leveraged as a check

on the EFT construction by computing the PDF and beam function matrix elements with

an explicit IR regulator, for example by retaining p2 = p−p+ 6= 0, and verifying that the

matching coefficient is indeed independent of the regulator [293].

In practical calculations, eq. (3.65) is greatly simplified by using dimensional regulariza-

tion for both UV and IR divergences, i.e., setting p+ = 0. In this case, radiative corrections

to the PDF matrix elements are proportional to scaleless integrals, so to all orders,

p2 = 0 : 〈jn(p)|θ(ω)Qi(ω)|jn(p)〉 = p−δijδ(ω − p−) . (3.66)

We will follow this approach in our calculation.7 We evaluate the partonic beam function

matrix elements by inserting a complete set of states, e.g. for the quark beam function,

〈jn(p)|θ(ω)Oq(m,ω)|jn(p)〉

= θ(ω)
∑∫
X

〈jn(p)|χ̄q n M̂B(m)|X〉〈X|
[
δ(ω − P)

/̄n

2
χq n

]
|jn(p)〉

= θ(ω)
∑∫
X

δ(p−X − ω − p−)〈jn(p)|χ̄q n M̂B(m)|X〉〈X| /̄n
2
χq n|jn(p)〉 , (3.67)

and evaluate the two matrix elements in time-ordered perturbation theory using standard

Feynman rules. This amounts to taking the discontinuity of the full forward scattering

7In this case, it is assumed that the IR poles in the beam function matrix elements are captured by

the scaleless PDF diagrams, so that all remaining poles in the matching coefficient have a UV origin

and either contribute to the overall renormalization of the beam function operator at the scale of the

measurement, or cancel the renormalization of the PDF operators.
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Figure 3.10: Nonvanishing diagrams for the computation of the one-loop beam function in pure

dimensional regularization and Feynman gauge. Mirror diagrams of (b) and (e) are implicit. The

measurement acts on particles crossing the on-shell cut indicated by the vertical dashed line.

diagram directly at the level of the integrand by cutting propagators,8

1

k2 + i0
7→ −2πi δ+(k2) . (3.68)

On the second equality in eq. (3.67) we used label momentum conservation to evaluate

P (that acts on the field) in terms of p−X . We further use the η regulator as described

in section 2.2.7 to regulate rapidity divergences. This ensures that virtual diagrams with

|X〉 = |0〉 and zero-bin subtractions are also scaleless. We work in Feynman gauge.

One-loop amplitudes. The relevant real-radiation diagrams for a generic beam function

at one loop are displayed in figure 3.10. They arise from the interference of collinear

Lagrangian insertions, (a), (c), (d), and (f), or the contraction of a Lagrangian insertion

with a Wilson line in the operator, (b) and (e). In Feynman gauge the Wilson line diagrams

cannot interfere with themselves due to n2 = 0. The cut real-emission diagrams take the

generic form

〈jn|θ(ω)Oi(m,ω)|jn〉(1)

= θ(z)

∫
ddk

(2π)d−1
δ+(k2) δ(p− − k− − ω) g2A(1)

ij (p, k)MB(m; kµ) , (3.69)

whereMB(m; kµ) is the action of M̂B(m) on an on-shell one-particle state with momentum

kµ. We will also refer to MB(m; kµ) as the single-emission measurement. Using the

8In the one-loop calculation of the inclusive (virtuality-dependent) beam function in ref. [293], the discon-

tinuity is instead taken at the level of the full forward matrix element of the time-ordered beam function

operator because there, the two fields in the operator in general have timelike separation for nonzero

virtualities. Since we consider transverse momenta (spacelike separation) and the collinear fields are

local in the p− direction due to the multipole expansion, this is not necessary in our case.
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Feynman rules [351] derived from the collinear Lagrangian in eq. (2.124) and the Wilson

line in eq. (2.132), the spin-averaged squared amplitudes A(1)
ij for the quark case are

A(1)
qq = A(a) +A(b) , A(1)

qg = A(c) ,

A(a) = −CF
p−(d− 2)k2

⊥
[(p− k)2 + i0]2

,

A(b) = −CF
4p−(p− − k−)

[−k−][(p− k)2 + i0]
w2
∣∣∣k−
ν

∣∣∣−η ,
A(c) = −2TF

[(p−)2

k−
− 4(p− − k−)

d− 2

] k2
⊥

[(p− k)2 + i0]2
. (3.70)

A sign in diagram (c) is due to the closed fermion loop. Note that A(b) also contains the

contribution from the mirror diagram of (b). The results for antiquarks are equal by charge

conjugation. Label momentum conservation fixes

k− =
p− − ω
p−

=
1− z
z

ω . (3.71)

We find it convenient to continue to use k−, where it is understood as the above fixed

function of ω and z. Both the amplitude and, by our assumptions, the measurement only

depend on ~k2
⊥, so we can use the on-shell constraint to eliminate ~k⊥,

∫
d2−2ε~k⊥
(2π)2−2ε

δ+(k2) =
1

4π

Ω2−2ε

(2π)1−ε

∫ ∞
0

d|~k⊥|2 |~k⊥|−2ε θ(k+ + k−) δ(k+k− − |~k⊥|2)

=
1

4π

(4π)ε

Γ(1− ε)(k+k−)−ε θ(k+) θ(k−) . (3.72)

This leaves a single k+ integral that depends on the measurement,

θ(ω)〈jn|θ(ω)Oi|jn〉(1)

= θ(z)θ(1− z) αs
4π

eεγE

Γ(1− ε) Aij(z, ω/ν)
(k−
µ

)−ε ∫ ∞
0

dk+

k+

(k+

µ

)−ε
MB(m; kµ) , (3.73)

where we have inserted the MS coupling in eq. (2.20) and defined dimensionless squared

amplitudes A
(1)
ij (z, ω/ν) ≡ k+A(1)

ij ,

A
(1)
qqV = A(a) +A(b) , A(1)

qg = A(c) ,

A(a) = CF (d− 2)(1− z) ,

A(b) = CF 4w2
( z

1− z
)1+η(ω

ν

)−η
,

A(c) = TF 2
[ 1

1− z −
4z

d− 2

]
(1− z) . (3.74)
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These expressions for η → 0 agree with the ones given in ref. [293].9 The corresponding

expressions for the gluon diagrams are found to be, cf. app. A of ref. [59],

A(1)
gg = A(d) +A(e) , A(1)

gq = A(f) ,

A(d) = CA 4
[1− z

z
+ z(1− z) +

z

2

]
,

A(e) = CA 2(1 + z)w2
( z

1− z
)1+η(ω

ν

)−η
,

A(f) = CF 2
[1 + (1− z)2

z
− εz

]
. (3.75)

Results for the beam function with a jet rapidity cut. To evaluate the beam

function in eq. (3.10) at one loop, note that a single on-shell n-collinear emission with

momentum kµ constitutes a jet of its own with transverse momentum and rapidity

kT =
√
k+k− , η =

1

2
ln
k−

k+
. (3.76)

The single-emission measurement is independent of R and reads

MB(pcut
T , ηcut; k

µ) = θ
(
e2ηcut − k−

k+

)
θ(pcut

T − kT ) + θ
(k−
k+
− e2ηcut

)
≡M(η<ηcut)

B (pcut
T , ηcut; k

µ) +M(η>ηcut)
B (ηcut; k

µ) . (3.77)

Here we will separately display the result for each diagram with O(η<ηcut)
i ∝ M̂(η<ηcut)

B

and O(η>ηcut)
i ∝ M̂(η>ηcut)

B inserted, respectively. This also allows one to read off the one-

loop result for the B
(cut)
i beam function in eq. (3.32), for which the measurement on a

single emission is just M(η>ηcut)
B . On the other hand, for a direct computation of the finite

correction due to the rapidity cut in eq. (3.19) it is more convenient to decompose the

measurement function as

MB(pcut
T , ηcut; k

µ) = θ(pcut
T − |~kT |) + θ(|~kT | − pcut

T ) θ
(k−
k+
− e2ηcut

)
=MB(pcut

T ; kµ) + ∆MB(pcut
T , ηcut; k

µ) . (3.78)

Inserting the first term into matrix elements yields the known results for the matching

coefficients without any rapidity cut, while the second term yields the correction.

The relevant diagrams for the computation of the matching coefficient IqqV are (a) and

9Note that there is a potential typo in eq. (C.7) of ref. [293], which differs in the z dependence at O(ε)

from our A(c).
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(b). For diagram (a) we find, performing the k+ integrals and expanding in ε,

〈qn|θ(ω)O(η<ηcut)
q (pcut

T , ηcut, ω)|qn〉(a)

=
αsCF
π

θ
(
z − ωe−ηcut

pcut
T + ωe−ηcut

)
θ(1− z) (1− z) ln

pcut
T z

ωe−ηcut(1− z) +O(ε) ,

〈qn|θ(ω)O(η>ηcut)
q (ηcut, ω)|qn〉(a)

=
αsCF
π

θ(z) θ(1− z) (1− z)
[
− 1

2ε
+ ln

ωe−ηcut(1− z)
µ z

+
1

2
+O(ε)

]
. (3.79)

Diagram (b) together with its mirror diagram gives, after expanding in η and ε,10

〈qn|θ(ω)O(η<ηcut)
q (pcut

T , ηcut, ω)|qn〉(b) (3.80)

=
αsCF
π

θ
(
z − ωe−ηcut

pcut
T + ωe−ηcut

)
θ(1− z)

{
δ(1− z)

[
1

η

(
1

ε
− 2 ln

pcut
T

µ
+O(ε)

)
− 1

2ε2

+
1

ε
ln
νe−ηcut

µ
− ln2 ωe

−ηcut

µ
+ 2 ln

pcut
T

µ
ln
ω

ν
+
π2

24

]
+ 2L0(1− z) ln

pcut
T z

ωe−ηcut

− 2L1(1− z)− 2 ln
pcut
T z

ωe−ηcut(1− z) +O(η, ε)

}
,

〈qn|θ(ω)O(η>ηcut)
q (ηcut, ω)|qn〉(b)

=
αsCF
π

θ(z) θ(1− z)
{
δ(1− z)

[
1

2ε2
− 1

ε
ln
ωe−ηcut

µ
+ ln2 ωe

−ηcut

µ
− π2

24

]
+ L0(1− z)

[
−1

ε
+ 2 ln

ωe−ηcut

µ z

]
+ 2L1(1− z) +

1

ε
− 2 ln

ωe−ηcut(1− z)
µ z

+O(ε)

}
.

The matching coefficient Iqg is computed from diagram (c) giving

〈gn|θ(ω)O(η<ηcut)
q (pcut

T , ηcut, ω)|gn〉(c) (3.81)

=
αsTF
π

θ
(
z − ωe−ηcut

pcut
T + ωe−ηcut

)
θ(1− z) (1− 2z + 2z2) ln

pcut
T z

ωe−ηcut(1− z) +O(ε) ,

〈gn|θ(ω)O(η>ηcut)
q (ηcut, ω)|gn〉(c)

=
αsTF
π

θ(z) θ(1− z)
{

(1− 2z + 2z2)

[
− 1

2ε
+ ln

ωe−ηcut(1− z)
µ z

]
+ z(1− z) +O(ε)

}
.

The relevant diagrams for the computation of the matching coefficient Igg are (d) and (e),

which yield

〈gn|θ(ω)O(η<ηcut)
g (pcut

T , ηcut, ω)|gn〉(d)

=
αsCA
π

θ
(
z − ωe−ηcut

pcut
T + ωe−ηcut

)
θ(1− z) 2− 2z + 3z2 − 2z3

z
ln

pcut
T z

ωe−ηcut(1− z) +O(ε) ,

〈gn|θ(ω)O(η>ηcut)
g (ηcut, ω)|gn〉(d)

=
αsCA
π

θ(z) θ(1− z) 2− 2z + 3z2 − 2z3

z

[
− 1

2ε
+ ln

ωe−ηcut(1− z)
µ z

+O(ε)

]
, (3.82)

10For the renormalization one needs to account for the full d dimensional coefficient of the 1/η divergence,

which we do not display here for simplicity.
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and, including the symmetric contribution of (e),

〈gn|θ(ω)O(η<ηcut)
g (pcut

T , ηcut, ω)|gn〉(e)

=
αsCA
π

θ
(
z − ωe−ηcut

pcut
T + ωe−ηcut

)
θ(1− z)

{
δ(1− z)

[
1

η

(
1

ε
− 2 ln

pcut
T

µ
+O(ε)

)
− 1

2ε2

+
1

ε
ln
νe−ηcut

µ
− ln2 ωe

−ηcut

µ
+ 2 ln

pcut
T

µ
ln
ω

ν
+
π2

24

]
+ 2L0(1− z) ln

pcut
T z

ωe−ηcut

− 2L1(1− z)− (2 + z) ln
pcut
T z

ωe−ηcut(1− z) +O(η, ε)

}
,

〈gn|θ(ω)O(η>ηcut)
g (ηcut, ω)|gn〉(e)

=
αsCA
π

θ(z) θ(1− z)
{
δ(1− z)

[
1

2ε2
− 1

ε
ln
ωe−ηcut

µ
+ ln2 ωe

−ηcut

µ
− π2

24

]
+ L0(1− z)

[
−1

ε
+ 2 ln

ωe−ηcut

µ z

]
+ 2L1(1− z) + (2 + z)

[
1

2ε
− ln

ωe−ηcut(1− z)
µ z

]
+O(ε)

}
. (3.83)

The matching coefficient Igq is computed from diagram (f), giving

〈qn|θ(ω)O(η<ηcut)
g (pcut

T , ηcut, ω)|qn〉(f)

=
αsCF
π

θ
(
z − ωe−ηcut

pcut
T + ωe−ηcut

)
θ(1− z) 2− 2z + z2

z
ln

pcut
T z

ωe−ηcut(1− z) +O(ε) ,

〈qn|θ(ω)O(η>ηcut)
g (ηcut, ω)|qn〉(f)

=
αsCF
π

θ(z) θ(1− z)
{

2− 2z + z2

z

[
− 1

2ε
+ ln

ωe−ηcut(1− z)
µ z

]
+
z

2
+O(ε)

}
. (3.84)

Combining eqs. (3.65) and (3.66), we can directly read off the bare matching coefficients.

Minimally subtracting the poles, the renormalized beam function matching coefficients are

given by the O(ε0η0) terms in these expressions. From the results for M(η>ηcut)
B we get

I(cut,1)
ij in eq. (3.32), while adding M(η<ηcut)

B gives the sum of eq. (3.19) and the second

line of eq. (E.11). Using our setup, we also recalculated the known beam functions for

smoothly rapidity-dependent jet vetoes [62, 70, 313] as a check, and in addition calculated

the corrections for a finite ηcut in an otherwise smoothly rapidity-dependent veto, see

appendix B of ref. [2].

3.4.2 Soft-collinear functions at one loop

We next describe the explicit one-loop calculation of the soft-collinear functions in eq. (3.33)

and its relation to the soft-collinear function resolving the step in the jet veto in eq. (3.52).

We again use pure dimensional regularization and the η regulator, so virtual diagrams and

soft zero-bin subtractions are scaleless. Note that we expand the η regulator to leading

power using the soft-collinear scaling, cf. eq. (2.163). This choice leads to a scaleless soft
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3.4 Calculation of perturbative ingredients

zero bin. In Feynman gauge the bare one-loop real contribution to the n-soft-collinear

function S(cut)
i in eq. (3.31) is given by11

S(cut)
i (pcut

T , ηcut) = 1 + 4g2Ci

∫
ddk

(2π)d−1

∣∣∣ ν
k−

∣∣∣η δ+(k2)

k−k+
M(cut)
S (pcut

T , ηcut; k
µ) +O(α2

s) ,

(3.85)

where Ci = CF (CA) for i = q (g) and the single-emission measurement reads

M(cut)
S (pcut

T , ηcut; k
µ) = θ(pcut

T − |~kT |) θ
(
e2ηcut − k−

k+

)
+ θ
(k−
k+
− e2ηcut

)
. (3.86)

The second term yields a scaleless contribution, while the first term corresponds to a boosted

hemisphere and leads to the result

S(cut)
i (pcut

T , ηcut) = 1 +
αsCi
π

{
1

η

[
1

ε
− 2 ln

pcut
T

µ
+O(ε)

]
− 1

2ε2
+

1

ε
ln
νe−ηcut

µ
+ ln2 p

cut
T

µ

− 2 ln
pcut
T

µ
ln
νe−ηcut

µ
+
π2

24
+O(η, ε)

}
+O(α2

s) . (3.87)

Absorbing the divergent terms (including contributions of the form εn/η, which are not

shown) into counterterms yields the renormalized one-loop result in eq. (3.33).

The bare one-loop contribution to the soft-collinear function in eq. (3.52) resolving

the step in the jet veto is again given by eq. (3.85), but this time the single-emission

measurement reads

M(step)
S (pcut

T , p̃cut
T , ηcut; k

µ) = θ(pcut
T − |~kT |) θ

(
e2ηcut − k−

k+

)
+ θ(p̃cut

T − |~kT |) θ
(k−
k+
− e2ηcut

)
.

(3.88)

Successively dropping terms that yield scaleless integrals we can replace ( 7→)

M(step)
S (pcut

T , p̃cut
T , ηcut; k

µ) 7→ θ
(k−
k+
− e2ηcut

)[
θ(p̃cut

T − |~kT |)− θ(pcut
T − |~kT |)

]
7→ θ

(
e2ηcut − k−

k+

)[
θ(pcut

T − |~kT |)− θ(p̃cut
T − |~kT |)

]
=M(cut)

S (pcut
T , ηcut; k

µ)−M(cut)
S (p̃cut

T , ηcut; k
µ) , (3.89)

so at one loop we find a simple relation between bare results,

S(1)
i (pcut

T , p̃cut
T , ηcut) = S(cut,1)

i (pcut
T , ηcut)− S(cut,1)

i (p̃cut
T , ηcut) . (3.90)

Remapping the measurement on the primary emission as in eq. (3.89), which is justified in

the small-R limit (see the detailed beam function clustering calculation below), yields the

analogous relation for the small-R clustering contributions.

11Note that in ref. [2], g denotes the dimensionless renormalized gauge coupling.
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3.4.3 Comparison to quark beam function results in the literature

In ref. [327] the regime pcut
T ∼ Qe−ηcut was accounted for by adding a finite contribution

∆B
(1)
i/j from so-called out-of-jet radiation to the unmeasured beam function in eq. (3.31) as

I(cut,1)
ij (ηcut, ω, z, µ) 7→ I(cut,1)

ij (ηcut, ω, z, µ) + ∆B
(1)
i/j (p

cut
T , z, ω, e−ηcut) . (3.91)

One-loop consistency with our eq. (3.10) reads, at the level of bare ingredients,

I(1)
ij (pcut

T , ηcut, ω, z) (3.92)

= I(cut,1)
ij (ηcut, ω, z) + ∆B

(1)
i/j (p

cut
T , z, ω, e−ηcut) + δijδ(1− z)S(cut,1)

i (pcut
T , ηcut) ,

where S(cut,1)
i is the bare soft-collinear function at one loop, see eq. (3.87). By eq. (3.77)

we have, in terms of bare collinear matrix elements up to scaleless PDF diagrams,

I(1)
qq (pcut

T , ηcut, ω, z) = I(cut,1)
qq (ηcut, ω, z) + 〈qn|θ(ω)O(η<ηcut)

q (pcut
T , ηcut, ω)|qn〉 , (3.93)

and similarly for Iqg. With this, eq. (3.92) simplifies to

〈qn|θ(ω)O(η<ηcut)
q (pcut

T , ηcut, ω)|qn〉 = ∆B
(1)
q/q(p

cut
T , z, ω, e−ηcut) + δ(1− z)S(cut,1)

q (pcut
T , ηcut) ,

〈gn|θ(ω)O(η<ηcut)
q (pcut

T , ηcut, ω)|gn〉 = ∆B
(1)
q/g(p

cut
T , z, ω, e−ηcut) . (3.94)

Both relations are readily checked after summing over all contributing diagrams.

3.4.4 Leading jet clustering logarithms in beam functions to all orders

We next turn to the computation of the clustering logarithms ∝ α2
s lnR in the two-loop

ηcut-dependent beam function in eq. (3.21). We will address the question more generally

and derive an all-order result for the leading clustering logarithms ∝ αn+1
s lnnR in jet veto

beam functions.

To set the scene, note that the dependence on R in the two-loop matching coefficient

I(2)
ij can only come from diagrams where two partons (with momenta k1 and k2) cross the

on-shell cut. This is because a single real emission dressed with a virtual correction is

always clustered with itself independently of R, while in the double virtual case nothing

happens. In particular, the logarithmic divergence ∝ lnR at R� 1 corresponds to a region

of phase space where an intermediate parton with momentum ` that splits into k1 and k2

can almost go on shell. This region contains the limit of either k1 or k2 becoming soft and

the limit of the two becoming collinear to each other. The soft limit is independent of R

because even if the soft parton is clustered into a separate soft jet, the other jet is harder

and determines whether the event passes the veto. Thus the logarithm of R must arise from

the limit where k1 and k2 are collinear to each other with `2 = 2k1 · k2 ∼ Rpcut
T � pcut

T .

This limit, for a primary parton emitted approximately along a lightlike direction nµJ ,

can be described by SCET with a single nJ -collinear sector at the scale Rpcut
T � pcut

T ,

nJ -collinear: pµ = (p · nJ , p · n̄J , ~p⊥) ∼ pcut
T (R2, 1, R) . (3.95)
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ℓµ
J pµX

×

ω = zp− ω = zp−

pµ pµpµ X

ℓµ
J

Figure 3.11: Matching of the full partonic beam function matrix element (left) onto an effective

operator describing the formation of small-R jets from a single primary parton. The matrix element

factorizes into a hard matching coefficient (left) at the scale of the jet veto, µ ∼ pcutT , and the

effective operator matrix element at the scale µ ∼ RpcutT (right). In the leading-order matching, we

take |X〉 to be a single on-shell parton.

Here we picked n̄J = (1,−~nJ) and we work in the frame where the n-collinear final state

has zero rapidity. In this subsection we reserve ~p⊥ for the momentum perpendicular to the

nJ , n̄J of the primary emission and use ~pT for the momentum perpendicular to the overall

n, n̄, i.e., for the momentum transverse to the beam axis. Explicit light-cone components

p± still refer to n, n̄, while light-cone components with respect to nJ , n̄J are written out as

above.

Hard matching. To set up the “hard” matching of the n-collinear beam function operator

at the scale pcut
T onto an effective nJ -collinear operator at the scale Rpcut

T , we find it

convenient to open up the relevant matrix elements of the beam function operator and

define, for a fixed n-collinear initial state |jn(p)〉 averaged over color and spin,

Oqj(p, ω) = θ(ω) tr
{[
δ(ω − Pn)

/̄n

2
χn

]
|jn(p)〉〈jn(p)|χ̄n

}
,

Ogj(p, ω) = θ(ω)ω
[
δ(ω − Pn)Bµn,ω⊥

]
|jn(p)〉〈jn(p)|Bn,⊥µ . (3.96)

Forward matrix elements of Oi, which determine the bare beam function matching coeffi-

cients by eqs. (3.65) and (3.66), are recovered by tracing Oij over hadronic radiation under

the measurement constraint,

〈jn(p)|θ(ω)Oi(pcut
T , ηcut, R, ω)|jn(p)〉 =

∑∫
X

〈X|Oij(p, ω)M̂B(pcut
T , ηcut, R)|X〉 . (3.97)

So far these are considerations in the full theory at the scale pcut
T . Suppressing a sum over

flavors and the antiquark contribution, the hard matching for Oij takes the form

Oij(p, ω) =

∫
dd`J

(2π)d−1
δ+(`2J)

[
Hαβ
j→i∗q(p, ω, `J)Oβαq (`J) +Hµν

j→i∗g(p, ω, `J)Og µν(`J)
]

+ higher multiplicities (N ≥ 2) +O(R) . (3.98)

The terms on the first line have the standard form for matching onto a single collinear

sector in SCET [171]. The two gauge-invariant operators at leading power are defined in

115



Chapter 3 – Jet veto resummation with jet rapidity cuts

terms of the same building blocks as the ones for two collinear sectors in eq. (2.154),

Oβαq (ωJnJ) =
2(2π)d−1

Nc
χ̄αnJ |0〉〈0|

[
δ(ωJ − PnJ ) δd−2(~PnJ⊥)χβnJ

]
,

Oµνg (ωJnJ) = −ωJ
2(2π)d−1

N2
c − 1

BµnJ ,⊥|0〉〈0|
[
δ(ωJ − PnJ ) δd−2(~PnJ⊥)BνnJ ,⊥

]
, (3.99)

but involve only a single large label momentum ωJnJ rather than a hard momentum transfer.

The soft Wilson lines from the BPS redefinition cancel within each operator. (Note that in

slightly unconventional notation, we included vacuum states and opened up the operators

as we did for Oij .) Here the rightmost fields in the operators have continuous minus and

perpendicular label momentum in the sense of eq. (2.139), and we used12

∑
nJ

∫
dωJ =

∑
nJ

∫
dωJ dd−2~̀⊥ d(nJ ·`J) δd−2(~̀⊥) δ(nJ ·`J)

= 2

∫
dd`J ωJ δ+(`2J) δd−2(~̀⊥) (3.100)

to rewrite a sum over the possible directions and an integral over the support ωJ > 0 of the

operator as the phase-space measure of a continuous on-shell momentum `µJ = ωJn
µ
J , up to

a conventional normalization of the operator and matching coefficient. (The constraint on

additional perpendicular label momentum ~̀⊥ relative to `µJ is absorbed into the operators.)

We left the label momentum of the second field in the effective operator unconstrained,

anticipating that we will evaluate forward matrix elements of the Om(ωJnJ) and thus fix

it by label momentum conservation. We can think of Om(ωJnJ) as describing, together

with the nJ -collinear Lagrangian, the formation of a bunch of partons with angular spread

∼ R from a primary parton m. The matching on the first line of eq. (3.98) is illustrated in

figure 3.11.

The second line in eq. (3.98) contains, apart from operators suppressed by powers of

R, operators encoding configurations with N ≥ 2 well-separated primary partons that

each initiate a bunch of partons with spread ∼ R. These operators appear under a sum

over N distinct jet directions nJ , n
′
J , . . . and involve nontrivial soft Wilson lines with

pµ ∼ pcut
T (R,R,R) along those directions. It is clear that the matching coefficients for

these operators only start at O(αNs ) because they only overlap with Oij for at least N hard

partons in X, so at O(αs), the matching in eq. (3.98) is complete at leading power in R.

We will argue below that higher multiplicites do not contribute to the leading clustering

logarithms to all orders.

The first nontrivial states that have overlap with both the left and the right-hand side

of eq. (3.98) are on-shell single particle states |X〉 = |m(k)〉 with m = q, g and k2 = 0.

12Note that we are using different dimensional regularization schemes in the operator and the matching

coefficient, where we analytically extend ~p⊥ and ~pT to d− 2 dimensions, respectively. This is justified

because the two contributions are factorized and only dd`J appears in eq. (3.98).

116



3.4 Calculation of perturbative ingredients

Implicitly summing over the helicity and color of m, we have at tree level

δ+(`2J) 〈q(k)|Oβαq (`J)|q(k)〉(0) = δd(`J − k)
/n
βα
J

2
+O(αs) ,

δ+(`2J) 〈g(k)|Oµνg (`J)|g(k)〉(0) = δd(`J − k) gµν⊥ +O(αs) (3.101)

Other combinations vanish. The full-theory matrix elements start at O(αs) and are precisely

given by the one-loop spin-contracted amplitudes in eq. (3.69) before phase-space integration

over k,

〈m(k)|Oij(p, ω)|m(k)〉 = δmm(ij) θ(ω) g2A(1)
ij (p, k) δ(p− − k− − ω) +O(α2

s) , (3.102)

where m(ij) is the parton type allowed by fermion number conservation in j → i∗m. By

comparing eqs. (3.101) and (3.102), we can extract the O(αs) hard matching coefficients

summed over polarizations,

/n
βα
J

2
Hαβ
j→i∗q(p, ω, `J) = δq m(ij) θ(ω) g2A(1)

ij (p, `J) δ(p− − `−J − ω) +O(α2
s) ,

g⊥µνH
µν
j→i∗g(p, ω, k) = δgm(ij) θ(ω) g2A(1)

ij (p, `J) δ(p− − `−J − ω) +O(α2
s) . (3.103)

Clustering master formula. We now consider the action of the beam function mea-

surement operator M̂B on nJ -collinear states |XJ〉 that overlap with Oq(`J) and Og(`J).

All emissions in XJ have (p · nJ , p · n̄J , ~p⊥) ∼ ωJ(R2, 1, R), thus we can simplify

MB(pcut
T , ηcut, R;XJ) = θ

(
max

k∈jets(XJ ,R): ηk<ηcut

|~pT,k| < pcut
T

)
(3.104)

= θ(ηJ < ηcut) θ

(
max

k∈jets(XJ ,R)
zk|~̀JT | < pcut

T

)
+ θ(ηJ ≥ ηcut) +O(R) .

The expression on the first right-hand side is the full measurement on the overall n-collinear

state, of which XJ is a subset, including the jet rapidity cut. On the second equality we

have defined nJ = (cosh ηJ , 1, 0, sinh ηJ) in the lab frame and used that at leading power

in R, all subjets in the nJ -collinear final state XJ have the same rapidity ηJ , so they all

pass or fail the rapidity cut together. We have also defined the fraction zk of the total

transverse momentum |~̀JT | carried by each subjet, exploiting that at leading power in R,

all subjets lie in the same azimuthal direction in the transverse plane.

Importantly, the second line is simply the single-emission measurementMB(pcut
T , ηcut; k

µ)

in eq. (3.77) evaluated at kµ = zJ`
µ
J , where zJ is the maximum of the zk. It can be written

as a convolution,

MB(pcut
T , ηcut, R;XJ) =

∫
dzJMB(pcut

T , ηcut; zJ`
µ) δ
(
zJ − max

k∈jets(X,R)
zk

)
+O(R) .

(3.105)

In this form, the measurement is factorized, with all dependence on the dynamics at the

scale R encoded in the δ function with the maximum, which only talks to the high-scale

measurement through zJ .
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Chapter 3 – Jet veto resummation with jet rapidity cuts

Using the factorized form of the measurement, we are ready to evaluate the right-hand

side of eq. (3.97) in the effective theory. The relevant low-energy matrix elements arise

from tracing the nJ -collinear operators over hadronic radiation under the zJ measurement,∑∫
X

〈X|Om(ωJnJ) δ
(
zJ − max

k∈jets(X,R)
zk

)
|X〉 ≡ Jm lead(zJ , ωJ , R) , (3.106)

where we have defined the spin-averaged operators

Oq(`) ≡
/̄nαβJ
4

Oβαq (`) , Og(`) ≡
gµν⊥
d− 2

Oµνg (`) . (3.107)

The matrix element in eq. (3.106) is known as the (bare) leading jet function, which was

introduced in a different context in ref. [329]. It returns the probability to produce the

leading jet at momentum fraction zJ from a primary parton m. In the EFT, only the

low-energy matrix elements Jm lead depend on R and other details of the jet algorithm. The

leading logarithms αn+1
s lnnR in the beam function matching coefficient therefore arise

from the cross terms of the O(αs) hard matching coefficients with the tower of clustering

logarithms αns lnnR in the leading jet function, which in turn are predicted by iterating

the one-loop renormalization of the Jm lead. In particular, the highest logarithms must be

proportional to the tree-level result in eq. (3.101). This justifies taking matrix elements of

the spin-averaged operators in eq. (3.107).13 It also implies that the leading logarithms are

independent of ωJ and the precise choice of clustering algorithm, which only enter at the

level of the O(αs) finite term.

Inserting eq. (3.106) and the result for the matching coefficient into eq. (3.97) and picking

out the leading clustering logarithms, we find

〈jn(p)|Oi(pcut
T , ηcut, R, ω)|jn(p)〉(n+1,lnnR)

= θ(z)

∫
dd`J

(2π)d−1
δ+(`2J) δ(p−− `−J − ω) g2A(1)

ij (p, `J) ,

×
∫

dzJMB(pcut
T , ηcut; zJ`

µ
J)
(αs

4π

)n
J

(n,lnnR)
m(ij) lead(zJ) . (3.108)

We can further refine this by going through the manipulations in section 3.4.1, where we

use n-collinear label momentum conservation and the fact that `J is on shell to eliminate

all but the final `+J and zJ integral. This leads to our main, all-order result in this section

for the leading jet clustering logarithms arising from (collinear) initial-state radiation under

a jet veto,

〈jn(p)|Oi(pcut
T , ηcut, R, ω)|jn(p)〉(n+1,lnnR)

= θ(z)θ(1− z)
(αs

4π

)n+1
A

(1)
ij (z, ω/ν)

×
∫ ∞

0

d`+J
`+J

∫
dzJMB(pcut

T , ηcut; zJ`
µ
J) J

(n,lnnR)
m(ij) lead(zJ) . (3.109)

13Beyond the leading lnR terms there are indeed nontrivial spin correlations already at O(αs)×O(αs), see

appendix D of ref. [313].
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We stress that while we performed the steps in eq. (3.104) for the jet pT veto with a jet

rapidity cut for definiteness, they go through for any measurement that is only sensitive

to the kinematics of the leading jet (with respect to the zk), and eq. (3.109) holds in all

of these cases. In eq. (3.109) it is understood that in the argument of the single-emission

measurement,

`−J =
1− z
z

ω , `JT =
√
`−J `

+
J , (3.110)

and we remind the reader that in pure dimensional regularization, the matrix element

in eq. (3.109) is in one-to-one correspondence to the coefficient I(n+1,lnnR)
ij (z, ζcut) of the

leading clustering logarithms in the n-loop bare beam function matching coefficient. In

eq. (3.109) we dropped several corrections ofO(ε) which are not required since the lnR terms

in the jet function are finite as ε→ 0 and the amplitudes (in SCETII) only exhibit poles in

η.14 On this point, note that the rapidity regulator acting on the primary emission’s `−J is

precisely the correct regulator for the corresponding full theory diagram since all emissions

in XJ arise from the same primary emission and therefore are part of the same connected

web. Also note that the jet function in eq. (3.109) is the bare one expanded in renormalized

couplings at the scale µ ∼ pcut
T , so there will in general be β function cross terms at higher

orders.

When evaluating eq. (3.109) for a concrete measurement, it is useful to note that the

probability to detect the leading jet at any momentum fraction is unity [329],∫
dzJ Jm lead(zJ , ωJ , R) = 1 . (3.111)

This is already satisfied by the tree-level result J
(0)
m lead(zJ , ωJ , R) = δ(1 − zJ). It follows

that the integral of all radiative corrections to Jm lead vanishes, e.g. for the lnnR terms,∫
dzJ J

(n,lnnR)
m lead (zJ) = 0 . (3.112)

This implies that any region in `+J where the zJ integral is unconstrained does not contribute

clustering logarithms. For example, for the jet veto with a jet rapidity cut, with the single-

emission measurement decomposed as in eq. (3.77), we find that the contribution from

ηJ > ηcut vanishes by eq. (3.112),∫
dzJM(η>ηcut)(pcut

T , ηcut; zJ`
µ
J) J

(n,lnnR)
m lead (zJ)

=M(η>ηcut)(pcut
T , ηcut; zJ`

µ
J)

∫
dzJ J

(n,lnnR)
m(ij) lead(zJ) = 0 (3.113)

14Note that in the SCETI beam functions for smoothly rapidity-dependent jet vetoes in ref. [313], where

the full R dependence at two loops is known, the leading clustering terms in the flavor-diagonal channels

that are predicted by our setup at two loops have the form ln2 R, and arise from cross terms of an

explicit pole 1/ε from the `+J integral with the expansion of the bare leading jet function to subleading

order in ε. Accounting for this, we agree with the leading ln2 R terms in the flavor-diagonal and the lnR

terms in the off-diagonal channels.
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Chapter 3 – Jet veto resummation with jet rapidity cuts

because in this region the measurement is only sensitive to the total rapidity of the nJ -

collinear sector, so the dependence on zJ drops out.

Our derivation of eq. (3.109) is not yet complete because we still need to argue that the

higher multiplicity terms in the hard matching in eq. (3.98), which are also leading-power

SCET operators, do not give rise to terms ∝ αn+1
s lnnR. This is not a priori obvious because

the low-energy matrix elements at higher multiplicity N ≥ 2 contain soft dynamics and

could develop Sudakov double logarithms ∝ αns ln2nR. For N = 2, these would overcome

the suppression by the matching coefficient ∝ α2
s already at the combined O(α3

s ln2R). To

see that this is not the case, note that at the lowest nontrivial order, we add a soft emission

to a configuration with N partons (jets) carrying a momentum fraction zk = z′k = · · · = 1

of their respective nJ , n
′
J , . . . collinear sector, so the hardest jet is the one initiated by the

hardest primary emission. The soft emission is either clustered separately, in which case

the resulting jet is parametrically softer than all the N collinear jets and does not affect

the veto, or clustered with one of the N collinear jets. In the latter case, the transverse

momentum of that jet is only affected by an O(R) amount, so at leading power in R the

hardest jet is the same one as in the configuration without the soft emission. Thus the

measurement is insensitive to soft radiation with pµ ∼ pcut
T (R,R,R) at the relative O(αs)

and we can exclude the presence of a tower of Sudakov logarithms in the higher-multiplicity

terms, which would have to start at this order.15

Previous results for clustering logarithms at higher orders in color singlet jet veto cross

sections include the explicit calculation of the leading clustering logarithms in the three-loop

rapidity anomalous dimension [352] and the all-order resummation of clustering logarithms

in what corresponds to γiν in our notation [353]. Eq. (3.109) extends those results to the full

matching coefficient for jet veto beam functions. An analogous factorization can be derived

for the soft function finite terms. The RGE of the leading jet function, which is in close

correspondence to the hardest microjet function of ref. [353], has recently been derived and

solved recursively in ref. [329]. It is a rather complicated nonlinear DGLAP-like equation

and it would be interesting to apply it here to explicitly resum the leading clustering terms

in the leading jet function that we left symbolic in eq. (3.109). We note, however, that the

resummation of the higher-order clustering terms even in the rapidity anomalous dimension

has only a minor phenomenological effect [71].

Finally, we like to point out that the result in eq. (3.109) may equivalently be derived

by explicitly factorizing the phase space and the full-theory amplitude for j → i∗k1 · · · kn
into a primary emission j → i∗m and a subsequent collinear splitting m→ k1 · · · kn, see e.g.

refs. [354, 355] for the required ingredients at two and three loops. Again, the key physical

insight is that the primary emission is approximately on shell at the scale pcut
T , which in

15Note that we have not excluded the possible presence of nonglobal logarithms in the low-energy matrix

elements, which are beyond the scope of this discussion. These may be connected to the physical scenario

where for more than one collinear particle in a given sector, an additional soft emission affects their

clustering history such that the set of {zk} is affected by an O(1) amount. This could happen e.g. if

the soft particle is clustered with one of the subjets first and displaces it by an O(R) amount in the

perpendicular plane, causing it to be merged with another subjet down the line.
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3.4 Calculation of perturbative ingredients

our setup is encoded in the label momentum dependence of the hard matching. To recover

the formal result in terms of the SCET leading jet function in this approach, it is useful to

note that jet functions can be represented in terms of collinear phase space and splitting

functions [356].

Two-loop results. We now turn to evaluating eq. (3.109) at two loops. As discussed

above, clustering logarithms arise exclusively from the region ηJ < ηcut. In this region, the

jet veto is active and sensitive to the precise distribution of subjets within the nJ -collinear

sector, which changes depending on the perturbative order. At O(αs), the leading jet

function is particularly simple and related to the semi-inclusive jet function Jm(z, ω,R) [357]

by

J
(1)
m lead(zJ , ωJ , R) = θ

(
zJ − 1

2

)
J (1)
m (zJ , ωJ , R) . (3.114)

The semi-inclusive jet function encodes the rate at which any jet is observed in the nJ -

collinear final state at a momentum fraction zJ . Since at O(αs) there can be at most two

jets in the final state, the jet with zk > 1/2 is always the hardest one, leading to the simple

relation in eq. (3.114). In particular, the leading jet function at this order only has support

for z > 1/2.16 The coefficients of the one-loop clustering logarithm in the semi-inclusive jet

function are [357]

J (1,lnR)
q (zJ) = −2

[
P (0)
qq (zJ) + P (0)

gq (zJ)
]
,

J (1,lnR)
g (zJ) = −2

[
P (0)
gg (zJ) + 2nfP

(0)
qg (zJ)

]
, (3.115)

It is instructive to first consider the relevant integral without a rapidity cut ηcut →∞,∫ ∞
0

d`+J
`+J

∫
dzJMB(pcut

T ; zJkT ) J
(1,lnR)
m lead (zJ) (3.116)

The pcut
T translates to p+

cut = (pcut
T )2/`−J . For `+J < p+

cut, the primary emission has `J,T < pcut
T ,

therefore the whole range of zJ is included and the integral vanishes by eq. (3.112). In other

words, the event passes the jet veto independent of how the two final-state partons are

clustered, and there are no clustering logarithms.17 On the other hand, for p+
cut < `+J < 4p+

cut,

corresponding to pcut
T < `J,T < 2pcut

T , there is a nonzero contribution because the two

emissions can pass the veto if clustered separately, but fail the veto if clustered together.

Changing variables to z′ =
√
p+

cut/`
+
J , inserting the expressions in eqs. (3.74) and (3.75)

for the primary splitting amplitudes and the clustering coefficients in eq. (3.115), and

16Note that in the original calculation of the O(α2
s) clustering logarithms in ref. [2], the all-order relation

to the leading jet function, defined only later in ref. [329], was not yet understood. Instead, the semi-

inclusive jet function restricted to 1/2 < zJ < 1 was inserted directly, following the above considerations.
17This can also be understood by breaking the veto down into a global veto e.g. on the transverse energy

ET < pcut
T of all emissions, and corrections to the global veto from clustering the emissions into jets [62].

In this picture the region `J,T < pcut
T is precisely the region where the global and the jet veto coincide.
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Chapter 3 – Jet veto resummation with jet rapidity cuts

comparing to eq. (E.14) yields the compact result

cRij =

∫ 1

1/2

dz′

z′

∫ z′

1/2
dzJ J

(1,lnR)
m (zJ) , (3.117)

for the ηcut → ∞ clustering coefficients cRij . Note that renormalizing the pole in η in the

primary emission amplitudes recovers the clustering logarithm in the rapidity anomalous

dimension with coefficient cRii , see eq. (C.16).

The physical picture is very similar if a finite ηcut is retained. As discussed, the only

integration region contributing clustering logarithms is ηJ < ηcut. Within this region it

is again only the range pcut
T < `J,T < 2pcut

T that is sensitive to how the two partons are

clustered. Comparing to eq. (3.21), we find the very compact expressions in eq. (3.22) for

the two-loop lnR coefficient functions cR,cut
ij (x),

c
(R,cut)
ij (x) =

∫ x

1/2

dz′

z′

∫ z′

1/2
dzJ J

(1,lnR)
m (zJ) . (3.118)

Note that restricting to the region ηJ < ηcut leads to a competing constraint on `+J , which

cuts off the z′ integral at z′ ≤ x = z/[ζcut(1 − z)] rather than at z′ ≤ 1, where z is the

overall partonic momentum fraction in the convolution against the PDF. This means that

in the presence of a rapidity cut, the jet veto ties up the momentum distributions inside

the proton and the sample of small-R subjets in a nontrivial way by probing different,

truncated moments of the leading jet function at different points in partonic phase space.

This conclusion also holds generally to higher orders in αs by eq. (3.109), and should be

contrasted with the clustering coefficients in the rapidity anomalous dimension (that were

resummed or computed in refs. [352, 353]) and the ηcut → ∞ beam function, which are

simple numbers given by a fixed moment of the leading jet function, and multiply a standard

primary splitting amplitude in z.

3.4.5 Analytic consistency relations between regimes 2 and 3

We checked explicitly that the above results obey the consistency constraint in eq. (3.30),

which at one loop reads

I(1)
ij + ∆I(1)

ij = I(cut,1)
ij + δ(1− z)δij S(cut,1)

i +O
( 1

ζcut

)
. (3.119)

To verify eq. (3.119), note that eq. (3.19) becomes distribution valued in (1 − z) when

taking the limit ζcut � 1. Specifically, the following distributional identities are required,

θ
(
z <

ζcut

1 + ζcut

)
r(z) = r(z) +O

( 1

ζcut

)
,

θ
(
z <

ζcut

1 + ζcut

)
L0(1− z) = L0(1− z) + ln ζcutδ(1− z) +O

( 1

ζcut

)
,

θ
(
z <

ζcut

1 + ζcut

)
L0(1− z) ln

[
ζcut(1− z)

]
= L1(1− z) + ln ζcut L0(1− z)

+
1

2
ln2 ζcutδ(1− z) +O

( 1

ζcut

)
, (3.120)
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where r(z) = O[(1− z)0] is at most logarithmically divergent in the limit z → 1. To derive

eq. (3.120), we compared the left and right-hand sides in the bulk, z < ζcut/(1 + ζcut), and

integrated over the full range of z.

For the terms multiplying lnR at two loops, the consistency relation reads

I(2,lnR)
ij + ∆I(2,lnR)

ij = δijδ(1− z)S(cut,2,lnR)
i +O

( 1

ζcut

)
, (3.121)

since the unmeasured beam function is independent of R and the NGL contribution will

only depend on it at the next order. Including the lnR piece from the rapidity anomalous

dimension, the left-hand side evaluates to

I(2,lnR)
ij + ∆I(2,lnR)

ij

= −1

2
γi, lnRν1 δijδ(1− z) ln

ν

ω
+ cRij

[
2P

(0)
ij (z)− γiB 0 δijδ(1− z)

]
+ 2P

(0)
ij (z) θ

( ζcut

1 + ζcut
> z
)[
−cRij + θ

(
z >

ζcut

2 + ζcut

)
cR,cut
ij

( z

ζcut(1− z)
)]

= δijδ(1− z)
[
−1

2
γi,lnRν1 ln

ν

ω
− 8Cic

R
ij ln ζcut + Ci # +O

( 1

ζcut

)]
(3.122)

where the first term in square brackets simply goes through, the second term is left over from

the cancellation between the two cRij pieces, and the third term arises as the distributional

limit of 8Ci L0(1− z) θ(z > · · · ) θ(z < · · · ) as the arguments of both θ functions approach

unity for ζcut → ∞. (Nondiagonal splittings no longer contribute when taking both

integration boundaries → 1, whereas the flavor-diagonal splitting functions reduce to their

leading eikonal limit.) The coefficient # is fixed by expanding the integral of the left-hand

side as

8

∫
dz L0(1− z) θ

( ζcut

1 + ζcut
> z
)
θ
(
z >

ζcut

2 + ζcut

)
cR,cut
ij

( z

ζcut(1− z)
)

= 8

∫ 1

1/2
dx

ζcut

1 + ζcutx
cR,cut
ij (x) = 8

∫ 1

1/2

dx

x
cR,cut
ij (x) +O

( 1

ζcut

)
= # +O

( 1

ζcut

)
, (3.123)

where the integral in the first line covers the whole support of the integrand. On the second

line we changed variables to x = z/[ζcut(1− z)] and expanded over ζcut →∞. With this we

confirm the consistency of the RG predicted terms in the soft-collinear function and arrive

at the very simple relation in eq. (3.35) for the clustering coefficient in the soft-collinear

finite term.

3.5 Numerical results

In section 3.2 we discussed in detail how to incorporate the jet rapidity cut into the

resummed 0-jet cross section. In particular, in the regime pcut
T /Q ∼ e−ηcut (regime 2),

the dependence on ηcut is incorporated into the resummation via the RG evolution of the

ηcut dependent beam functions. In this section, we illustrate these results by presenting

numerical predictions for the resummed cross section at NLL′+NLO.

123



Chapter 3 – Jet veto resummation with jet rapidity cuts

In section 3.5.1, we outline how the resummed results are combined with the full QCD

results, as well as our estimation of perturbative uncertainties. In section 3.5.2, we assess

the impact of the additional perturbative ingredients by comparing the different treatments

of ηcut. In section 3.5.3, we show the predictions for selected ηcut as a function of pcut
T .

In the following, we consider the four cases of gluon-fusion Higgs production gg → H

at mH = 125 GeV, gluon fusion to a generic heavy scalar gg → X with mX = 1 TeV,

and Drell-Yan production at Q = mZ and Q = 1 TeV, with the same setup and inputs

as described in section 3.2.3. The numerical results for the resummed predictions for all

processes are obtained from our implementation in SCETlib [8]. The NLO results in full

QCD are obtained from MCFM 8.0 [330–332].

3.5.1 Fixed-order matching and perturbative uncertainties

The resummed cross section obtained from eq. (3.10) describes the 0-jet cross section up to

power corrections in pcut
T /Q, which become relevant when pcut

T ∼ Q. We account for them

by the usual additive matching,

σ0(pcut
T , ηcut) = σres

0 (pcut
T , ηcut) +

[
σFO

0 (pcut
T , ηcut)− σsing

0 (pcut
T , ηcut)

]
. (3.124)

Here, σres
0 is the resummed singular cross section obtained from eq. (3.10), σsing

0 is its

fixed-order expansion, and σFO
0 is the fixed-order result in full QCD. By construction,

the difference in square brackets is nonsingular and vanishes as pcut
T → 0, ηcut → ∞ and

can therefore be included at fixed order even at small pcut
T . The dominant corrections

at small pcut
T are resummed in σres

0 . At large pcut
T , fixed-order perturbation theory is the

appropriate description, so eq. (3.124) should recover σFO
0 . This is achieved by turning off

the resummation in σres
0 as a function of pcut

T , and by constructing σres
0 such that it precisely

reproduces σsing when the resummation is fully turned off.

To smoothly turn off the resummation as pcut
T → Q, we use profile scales [203, 209],

following the setup developed in ref. [67]. We stress that the profile scales for regime 2 are

in one-to-one correspondence with the standard treatment in regime 1, since both regimes

have the same RG structure. Similarly, our treatment of perturbative uncertainties is based

on profile scale variations following ref. [67]. We distinguish an overall yield uncertainty ∆µ0,

which is determined by a collective variation of all scales up and down, and a resummation

(jet bin migration) uncertainty ∆resum from varying individual scales in the beam and soft

functions. For the gluon-induced processes, we follow ref. [1] and include an additional

uncertainty ∆ϕ from varying the complex phase of the hard scale, which was not considered

in ref. [67]. The total uncertainty is then obtained by considering the different uncertainty

sources as independent, and hence uncorrelated, and adding them in quadrature,

∆total = ∆µ0 ⊕∆ϕ ⊕∆resum ≡
(
∆2
µ0 + ∆2

ϕ + ∆2
resum

)1/2
. (3.125)

3.5.2 Comparing different treatments of the jet rapidity cut

It is interesting to consider the impact of the additional perturbative ingredients in the

ηcut dependent beam function on the prediction, e.g. compared to treating the rapidity cut

124



3.5 Numerical results

∞ 2.533.54.5 2
0
5

10
15
20
25
30
35
40

0 2 4 6 8 10 12 14 16

∞ 2.533.54.5 2
0

2

4

6

0 20 40 60 80 100 120

Figure 3.12: The 0-jet cross section for gg → H at mH = 125 GeV for pcutT = 30 GeV (left) and

gg → X at mX = 1 TeV and pcutT = 50 GeV (right) as a function of ηcut. The same observable (σ0)

is calculated in three different ways, shown by the different bands, as described in the text.

effects purely at fixed order. In figures 3.12 and 3.13, we plot the results for fixed pcut
T as

a function of ηcut starting at ηcut = ∞ on the left and decreasing toward the right. The

corresponding values of the Qe−ηcut scale are shown at the top.

Our result for the 0-jet cross section using the matching in eq. (3.124) is shown as

orange bands. We refer to this prediction as NLL′(ηcut)+NLO(ηcut), because both the

NLL′ resummed singular cross section and the fixed-order matching are exact in ηcut. To

highlight the effect of the additional ηcut dependence in the regime 2 beam function, we

consider two more alternative treatments of ηcut. For the regime 1 result, shown by the

blue bands and denoted by NLL′(∞)+NLO(ηcut), the ηcut dependence in the resummed

cross section is dropped,

σ0(pcut
T , ηcut) = σres

0 (pcut
T ,∞) +

[
σFO

0 (pcut
T , ηcut)− σsing

0 (pcut
T ,∞)

]
. (3.126)

The resummation then only acts on the singular cross section for ηcut =∞, while all ηcut

effects are included purely at fixed order via the matching term in square brackets. Note

that the matching term is now no longer nonsingular, i.e., it no longer vanishes like a power

in pcut
T as pcut

T → 0, as we saw in figures 3.4 and 3.5. The plain fixed-order calculation

without any resummation,

σ0(pcut
T , ηcut) = σFO

0 (pcut
T , ηcut) , (3.127)

is denoted by NLO(ηcut) and shown by the gray bands. In this case, the uncertainties are

evaluated using the procedure of ref. [315].

We first consider gluon-fusion Higgs production shown in the left panel of figure 3.12,

where we set pcut
T = 30 GeV. The NLO(ηcut) prediction (gray band) exhibits a slight, phys-

ical rise in the cross section as ηcut decreases towards the right. This is not surprising as

at fixed order, decreasing ηcut simply amounts to accumulating the squared LO1 matrix
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element over a larger part of phase space. The rise is less pronounced than for the re-

summed results (orange and blue bands), but still compatible with them within each others’

uncertainties. Comparing NLL′(ηcut)+NLO(ηcut) (orange) to NLL′(∞)+NLO(ηcut) (blue)

we find that the additional tower of logarithms predicted by NLL′(ηcut) on top of the fixed

NLO ηcut dependence barely affects the central value of the prediction down to ηcut = 2.

This is perhaps not surprising since Qe−ηcut is at most half of pcut
T , which means we are

not far from regime 1. However, we do observe a noticeable increase in the perturbative

uncertainty estimate. This is mainly due to the resummation uncertainty, which is reason-

able: ∆resum probes the unknown higher-order finite terms (the RGE boundary condition)

and is therefore sensitive to a change of the beam function boundary condition by the ηcut

correction ∆I
(1)
ij (see section 3.2.3). On the other hand, ∆I

(1)
ij must be large enough to

accommodate — up to power corrections — the fixed-order difference to ηcut =∞ (roughly

2 pb at ηcut = 2.5, as can be read off from the gray line), so we expect an impact on ∆resum

of similar size. Hence, the conclusion is not that the NLL′(∞)+NLO(ηcut) result is more

precise, but rather that its uncertainty is potentially underestimated because it cannot

capture the ηcut dependence.

In the right panel of figure 3.12, we show the same results for a hypothetical color-singlet

scalar resonance gg → X at mX = 1 TeV using pcut
T = 50 GeV. [The dimension-five operator

mediating the production of X is given in eq. (3.27).] The NLO(ηcut) result (gray) is now off

by a large amount already at ηcut =∞, where it is not covered by the resummed predictions.

This is expected because the high production energy of 1 TeV implies we are deep in the

resummation region, even for the larger value of pcut
T = 50 GeV. The central values of the

two resummed treatments start to differ below ηcut = 3 or above Qe−ηcut ' 50 GeV, where

we are now fully in regime 2. However, the main difference is again the larger and likely

more reliable uncertainty estimate in the NLL′(ηcut) prediction.

In figure 3.13 we show the analogous results for Drell-Yan production at Q = mZ using

pcut
T = 20 GeV (left panel) and Q = 1 TeV using pcut

T = 25 GeV (right panel). For better

readability, these results are normalized to the resummed 0-jet cross section at ηcut =∞.

While all predictions agree in the slope of the cross section with respect to ηcut, the NLO(ηcut)

result has a constant offset and an unrealistically small uncertainty estimate. At the lower

Q ∼ 100 GeV, we find practically no difference between the NLL′(ηcut) and NLL′(∞)

calculations, so here the effects of the jet rapidity cut can safely be included via the fixed-

order matching corrections to the regime 1 resummation. At higher production energies,

the intrinsic NLL′(ηcut) ingredients become more relevant, similar to gluon-fusion, as shown

by the increasing uncertainty estimates as ηcut decreases. Note that below ηcut = 2.5,

Qe−ηcut & 80 GeV becomes large compared to this choice of pcut
T = 25 GeV, so resumming

logarithms of pcut
T /(Qe−ηcut) using the regime 3 factorization given in section 3.2.4 might

help reduce the uncertainties.
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Figure 3.13: The 0-jet cross section for Drell-Yan at Q = mZ and pcutT = 20 GeV (left) and

Q = 1 TeV and pcutT = 25 GeV (right) as a function of ηcut. The same observable (σ0) is calculated

in three different ways, shown by the different bands, as described in the text. For better readability,

all results are normalized to the resummed central value at ηcut =∞.
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Figure 3.14: 0-jet cross section σ0(pcutT , ηcut) for gg → H for mH = 125 GeV at NLL′+NLO for

different values of ηcut. The bands indicate the total uncertainty ∆µ0 ⊕∆ϕ ⊕∆res. The absolute

cross section is shown on the left. On the right, the same results are shown as the percent difference

relative to the 0-jet cross section at ηcut =∞.

3.5.3 Resummed predictions with a sharp rapidity cut

Here, we compare predictions for different values of ηcut as a function of pcut
T . Our working

order is NLL′(ηcut)+NLO(ηcut) in the notation of the previous section, which from now

on we simply refer to as NLL′+NLO, i.e., the ηcut dependence is always included in the

resummation. We stress that the differences we observe between predictions in this subsec-

tion are physical differences due to the different jet rapidity cuts, and not due to different

theoretical treatments as in the previous subsection.

In figure 3.14 and table 3.1 we present results for gg → H. Going from ηcut = ∞ to

ηcut = 4.5 we find a 1% increase of the cross section for the typical values of pcut
T = 25 GeV
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σ0(pcut
T , ηcut) [pb], gg → H (13 TeV), rEFT, mH = 125 GeV

ηcut pcut
T = 25 GeV pcut

T = 30 GeV

2.5 25.9±3.8µ0±1.5ϕ±5.0res (25.0%) 28.5±4.0µ0±1.6ϕ±4.6res (22.0%)

4.5 22.0±2.0µ0±1.0ϕ±2.8res (16.2%) 25.2±2.2µ0±1.2ϕ±2.8res (15.0%)

∞ 21.8±1.9µ0±1.0ϕ±2.7res (15.6%) 25.0±2.2µ0±1.2ϕ±2.7res (14.7%)

Table 3.1: 0-jet cross section for gg → H for mH = 125 GeV at NLL′+NLO for different values of

pcutT and ηcut with a breakdown of the uncertainties.
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Figure 3.15: 0-jet cross section σ0(pcutT , ηcut) for gg → X for mX = 1 TeV at NLL′+NLO for

different values of ηcut. The bands indicate the total uncertainty ∆µ0 ⊕∆ϕ ⊕∆res. The absolute

cross section is shown on the left. On the right, the same results are shown as the percent difference

relative to the 0-jet cross section at ηcut =∞.

σ0(pcut
T , ηcut)/|CX |2 [pb], gg → X (13 TeV), Λ = mX = 1 TeV

ηcut pcut
T = 50 GeV pcut

T = 100 GeV

2.5 4.9±0.7µ0±0.1ϕ±1.2res (28.3%) 7.8±0.8µ0±0.1ϕ±1.3res (19.4%)

4.5 4.1±0.3µ0±0.1ϕ±0.7res (19.6%) 7.4±0.6µ0±0.1ϕ±1.1res (16.4%)

∞ 4.1±0.3µ0±0.1ϕ±0.7res (19.5%) 7.4±0.6µ0±0.1ϕ±1.1res (16.4%)

Table 3.2: 0-jet cross section for gg → X for mX = 1 TeV at NLL′+NLO for different values of

pcutT and ηcut with a breakdown of the uncertainties.

and 30 GeV. At ηcut = 2.5 the increase becomes more sizable, 14% (19%) for pcut
T = 30 GeV

(25 GeV). The differences vanish as the cross section saturates around pcut
T ∼ 100 GeV.

The analogous results for gg → X for mX = 1 TeV are shown in figure 3.15 and table 3.2.

At such a high hard scale, the uncertainties for ηcut = 2.5 become essentially beyond

control for very tight vetoes pcut
T . 25 GeV, which would make an additional resummation
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Figure 3.16: The 0-jet cross section dσ0(pcutT , ηcut)/dQ for Drell-Yan production at the Z pole

Q = mZ (top row) and at Q = 1 TeV (bottom row) at NLL′+NLO for different values of ηcut. The

bands indicate the total uncertainty ∆µ0 ⊕∆res. The absolute cross section is shown on the left.

On the right, the same results are shown as the percent difference relative to the 0-jet cross section

at ηcut =∞.

of ln pcut
T /(Qe−ηcut) as outlined in section 3.2.4 necessary. As we will see in the next

subsection, this effect can be tamed by replacing the sharp rapidity cut by a step in the jet

veto. However, for any choice of ηcut the cross section is very strongly Sudakov suppressed

for such small values of pcut
T . At more realistic values of the veto, the jet rapidity cut

for ηcut = 2.5 compared to ηcut = ∞ still leads to a sizable increase of 20% (5%) for

pcut
T = 50 GeV (pcut

T = 100 GeV). In contrast, the effect for ηcut = 4.5 is very small.

The results for Drell-Yan production are given in figure 3.16 and table 3.3. For Q = mZ

(top rows), we find a 5−7% increase in the cross section at ηcut = 2.5 for pcut
T = 20−25 GeV.

Here the uncertainty for ηcut = 2.5 is under good control even down to pcut
T ∼ 10 GeV.

For Q = 1 TeV (bottom rows), the cross section for ηcut = 2.5 increases by 14% (4%)

for pcut
T = 25 GeV (50 GeV) compared to ηcut = ∞. The Sudakov suppression and the

accompanying increase in relative uncertainty at small pcut
T are weaker than for gg → X

due to the smaller color factor (CF vs. CA) in the Sudakov exponent, but are still substantial

for a quark-induced process. The effect of the rapidity cut at ηcut = 4.5 is negligible.
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dσ0(pcut
T , ηcut)/dQ [pb/GeV], pp→ Z/γ∗ → `+`− (13 TeV), Q = mZ

ηcut pcut
T = 20 GeV pcut

T = 25 GeV

2.5 362±22µ0±21res (8.5%) 393±22µ0±14res (6.6%)

4.5 340±24µ0±22res (9.4%) 377±24µ0±15res (7.4%)

∞ 339±24µ0±22res (9.5%) 376±24µ0±15res (7.4%)

dσ0(pcut
T , ηcut)/dQ [ab/GeV], pp→ Z/γ∗ → `+`− (13 TeV), Q = 1 TeV

ηcut pcut
T = 25 GeV pcut

T = 50 GeV

2.5 14.1±0.8µ±1.7res (13.6%) 19.7±0.6µ±1.7res (9.0%)

4.5 12.4±0.4µ±1.1res (9.2%) 18.9±0.4µ±1.4res (7.6%)

∞ 12.4±0.4µ±1.1res (9.1%) 18.9±0.4µ±1.4res (7.6%)

Table 3.3: The 0-jet cross section for Drell-Yan production at the Z pole Q = mZ (top) and at

Q = 1 TeV (bottom) at NLL′+NLO for different values of pcutT and ηcut with a breakdown of the

uncertainties.

3.5.4 Resummed predictions with a step in the jet veto

In the previous subsection we have seen that a sharp rapidity cut at ηcut = 2.5 can lead

to a substantial loss of precision in the theory predictions, especially for gluon-induced

processes and at high production energies.

In figure 3.17 we show the resummed 0-jet cross section for gg → H and gg → X with a

step in the jet veto at ηcut = 2.5 as a function of the second jet veto parameter p̃cut
T that

is applied beyond ηcut. The central jet veto below ηcut is fixed to pcut
T = 25 GeV. On the

left of the plot p̃cut
T = pcut

T , which is equivalent to having no rapidity cut, in which case the

uncertainties are well under control. In the limit p̃cut
T → ∞ (towards the right) the step

becomes a sharp cut, corresponding to the results of the previous subsection. While the

step in the jet veto still leads to an increase in the uncertainties, this can now be controlled

by the choice of p̃cut
T . At this order, a small step from pcut

T = 25 GeV to p̃cut
T = 30 GeV only

leads to a small increase in uncertainty. For a larger step to p̃cut
T = 50 GeV = 2pcut

T , the

uncertainties already increase substantially but are still much smaller than for a sharp cut.

3.6 Summary

We have developed a systematic framework to seamlessly incorporate a cut on the rapidity of

reconstructed jets, |ηjet| < ηcut, into the theoretical description of jet-vetoed processes at the

LHC. We have shown that the standard jet veto resummation, which neglects the rapidity

cut, is correct up to power corrections of O(Qe−ηcut/pcut
T ), with Q the hard-interaction scale
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Figure 3.17: 0-jet cross section σ0(pcutT , p̃cutT , ηcut) with a step at ηcut = 2.5 for gg → H (left

panel) and gg → X (right panel) at NLL′+NLO. The results are shown for a fixed central veto

at pcutT = 25 GeV as a function of the jet veto p̃cutT that is applied beyond ηcut. We show the

percent differences relative to the result for a uniform veto p̃cutT = pcutT . The bands indicate the total

uncertainty ∆µ0 ⊕∆ϕ ⊕∆res.

Figure replotted after ref. [2] on larger vertical range for aesthetic reasons.

and pcut
T the jet veto cut.

We calculated the necessary ηcut-dependent corrections at one loop as well as all loga-

rithmic contributions to them at two loops (including both small-R clustering logarithms

and all jet veto logarithms predicted by the RGE; see section 3.2.3). We also derived a

factorized expression for the leading clustering logarithms in the beam function, including

the jet rapidity cut, to all orders in perturbation theory in terms of the O(αs) amplitudes for

a primary collinear emission and the recently introduced leading jet function. In addition,

we considered for the first time the case of a step in the jet veto, i.e., an increase in the

veto parameter to p̃cut
T > pcut

T beyond ηcut, and showed how to similarly incorporate it into

the jet veto resummation (see section 3.3.2).

We also considered the jet veto cross section in the limit pcut
T � Qe−ηcut , corresponding to

either very tight vetoes or very central rapidity cuts (see section 3.2.4). In this regime, the

jet veto resummation becomes impaired by the presence of nonglobal logarithms, requiring

a refactorization of the cross section. However, we have argued that this parametric region

will most likely not play a role for typical jet binning analyses at the LHC. If experimentally

necessary, it can be avoided by replacing the sharp rapidity cut by a moderate step in the

jet veto, which is free of nonglobal logarithms (see section 3.3.4).
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Chapter 4

Joint two-dimensional

resummation in qT and 0-jettiness

at NNLL

In this chapter we consider the simultaneous measurement of the Z-boson transverse

momentum qT and the 0-jettiness event shape T0 in Drell-Yan production. Since both

observables resolve the initial-state QCD radiation, the double-differential cross section in

qT and T0 contains Sudakov double logarithms of both qT /Q and T0/Q. We simultaneously

resum the logarithms in qT and T0 to next-to-next-to-leading logarithmic order (NNLL)

matched to next-to-leading fixed order (NLO), providing the first genuinely two-dimensional

analytic Sudakov resummation for initial-state radiation.

This chapter is based on ref. [3], where work in close collaboration with the author of

ref. [358] was presented, and some of the results have also appeared in ref. [358]. Compared

to the published version in ref. [3], the discussion in section 4.3 has been expanded.

4.1 Motivation

Many analytic methods for the higher-order resummation of infrared-sensitive observables

are available. These include the CSS formalism [105, 106, 359], seminumerical methods

based on the coherent-branching formalism [360–363], and the methods based on renormal-

ization group evolution (RGE) in effective field theories (EFTs) of QCD that we reviewed in

chapter 2. A common drawback of these methods is that they only apply after a sufficient

amount of emissions have been integrated over, which is why they have been primarily used

for the resummation of single-differential observables. Their crucial advantage is that they

can be systematically extended to higher orders, and that theoretical uncertainties can be

addressed in a reliable way.

As discussed in the introduction, the resummation for measurements sensitive to infrared

(soft and/or collinear) physics can, in part, also be achieved through the use of parton-shower

Monte Carlo event generators; popular examples include Pythia [364, 365], Herwig [366,

367], or Sherpa [368]. Unlike analytic resummation methods, parton showers provide fully

exclusive final states so that in principle, any desired measurements or cuts can be imposed

on the generated events. The disadvantage of existing implementations of parton showers
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is that they are only formally accurate at about leading-logarithmic (LL) level, depending

on the shower’s evolution variable (and other implementation details) and the observable

in question.1 Furthermore, estimating the perturbative uncertainties of parton showers is

challenging, which is in part due to their limited perturbative accuracy.

There has been much progress in extending analytic resummation methods to cases

involving multiple resummation variables. Examples include the joint resummation of

transverse momentum qT and threshold (large x) logarithms [375–381], qT and high-energy

(small x) logarithms [382], N -jettiness (or jet mass) together with dijet invariant masses [194,

383], two angularities [384, 385], jet mass and jet radius [345], threshold and jet radius

logarithms in inclusive jet production [386, 387], as well as the work presented in chapter 3.

Most of these examples either involve different variables that effectively resolve different

subsequent emissions, or involve a primary resummation variable that is modified by an

auxiliary measurement or constraint. Another well-understood case is when an infrared-

sensitive measurement is separated into its contributions from mutually exclusive regions

of phase space [291, 388, 389].2

In contrast, in this chapter we are interested in resolving emissions at the same level

by simultaneously measuring two independent infrared-sensitive observables. Extending

analytic resummation to such genuinely multi-dimensional resolution variables is of key

theoretical concern, as it allows for a more complete description of the emission pattern

beyond LL, effectively filling a gap between analytic resummations and parton showers. So

far, this has been achieved only for the case of simultaneously measuring two angularities

in e+e− collisions [385].3

We consider neutral-current Drell-Yan production, pp → Z/γ∗ → `+`−, with a simul-

taneous measurement of (1) the transverse momentum qT of the lepton pair and (2) the

hadronic resolution variable 0-jettiness T0. We will refer to T ≡ T0 in this chapter and

write pp→ Z for the Drell-Yan process for short, with the decay to leptons and the photon

interference contribution understood. Achieving the combined resummation of qT and T is

important conceptually because as we reviewed in sections 2.4.3 and 2.4.4, qT and T are

prototypes for two large classes of infrared-sensitive observables: qT constrains the trans-

verse momentum of initial-state radiation, while T constrains its virtuality. These different

behaviors lead to very different logarithmic structures already at LL, which in SCET is

reflected in the different RGE structures of SCETI and SCETII, respectively. (For parton

showers, these correspond to evolution variables based on either transverse momentum or

virtuality, respectively.)

Beyond providing a prototype for combining SCETI and SCETII resummations, the

1A recent detailed analysis can be found in ref. [369]. See also refs. [370–374] for work striving to improve

the formal accuracy of the shower.
2Yet another case, which will not be relevant here, arises when different infrared-sensitive measurements

are performed in different regions of phase space, which may require the resummation of nonglobal

logarithms [341–343, 390–392].
3Since the original publication of these results in ref. [3], the simultaneous resummation of qT and jet veto

logarithms in pp collisions has been achieved in ref. [393] using the coherent branching formalism, and

phenomenological results for W+W− production have been given in ref. [394].
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4.1 Motivation

Figure 4.1: The Drell-Yan cross section double-differential in the transverse momentum qT of the

Z boson and the 0-jettiness event shape T at NNLL+NLO. For better visibility, the spectrum is

plotted with respect to log10 qT and log10 T . On the two side walls we show the corresponding

single-differential spectra in qT and T obtained by integrating the double-differential spectrum up

to Tcut = 100 GeV and qcutT = 100 GeV, respectively.

joint resummation of qT and T is also of direct phenomenological interest. First, they

are important variables individually. The measurement of T in bins of qT [395] can probe

the so-called underlying event in hadronic collisions. Furthermore, the Geneva Monte

Carlo event generator [122, 396] uses T as the underlying resolution variable for the event

generation, achieving NNLL′+NNLO accuracy in T in conjunction with fully showered and

hadronized events. While other observables, such as qT , benefit from the underlying high

resummation order, they do not enjoy the same level of formal accuracy in Geneva as T
itself. The joint resummation of T and qT to a given order enables extending the event

generation in Geneva to also be accurate in qT to the same order.

The double-differential factorization for qT and T was first considered in ref. [195].

There, the regions of phase space where qT (SCETII) and T (SCETI) determine the

resummation structure were identified, together with the appropriate intermediate effective

theory SCET+ [194, 195] that connects them. Here, we develop an explicit matching

procedure that combines the three different theories, SCETI, SCET+, and SCETII, such

that the resummation structure of each is recovered in its respective region of phase space.

In particular, our method ensures that the single-differential resummation in one variable

is recovered upon integration over the other. We discuss in detail the technical challenges

involved. These include the construction of appropriate two-dimensional profile scales to

combine the SCETII resummation for qT , which is performed in position (impact-parameter)

space, with the SCETI resummation for T , which is performed in momentum space, the

estimation of perturbative uncertainties, and the matching to full QCD at large qT and/or

T in a flexible way and consistent with the corresponding single-differential cases. We

obtain explicit numerical predictions for the double-differential (qT , T ) spectrum, achieving
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its complete and fully two-dimensional Sudakov resummation at NNLL+NLO. Our main

result is shown in figure 4.1, featuring a nice two-dimensional Sudakov peak structure.

We like to stress that our methods are completely general and can be applied to any color-

singlet production process and at any order for which the relevant perturbative ingredients

are available. (Some of the double-differential ingredients required at NNLL′ and N3LL are

already known [397].) Furthermore, our matching procedure is generic and can be applied

to any type of two-dimensional resummation for which the relevant EFTs on the boundaries

and in the bulk are known.

The chapter is organized as follows. In section 4.2, we discuss the three different para-

metric regimes and the factorization and resummation for each individually. In section 4.4,

we discuss in detail our method for consistently combining them to obtain a complete

description of the two-dimensional (qT , T ) plane. Our numerical results for the double-

differential spectrum at NNLL+NLO are presented in section 4.5. We summarize our

results in section 4.6.

4.2 Resummation framework

4.2.1 Overview of parametric regimes

We consider color-singlet production at hadron colliders. Although the process dependence

is not important for our discussion, we consider the example of neutral-current Drell-Yan

production as described in section 2.1.3 for concreteness. We measure the total invariant

mass Q and rapidity Y of the color-singlet final state (the lepton pair). The two resolution

variables we measure are the transverse momentum qT of the color-singlet final state and

the 0-jettiness T introduced in section 2.4.4.

We are interested in the contribution of initial-state radiation (ISR) to the simultaneous

measurement of qT , T � Q, where Q� ΛQCD sets the scale of the hard interaction. The

dynamics of perturbative ISR is then governed by three distinct momentum scales set by

the measurement of qT and T . First, the typical transverse momentum of emissions that

recoil against the lepton pair is set by qT . Second, isotropic (soft) emissions at central

rapidities can contribute to T via either of the projections onto qµa and qµb in eq. (2.211).

This implies that their characteristic transverse momentum is ∼ T . Third, ISR with typical

energy ∼ Q can contribute to T as long as it is collinear to either of the incoming beams,

such that its contribution to T in eq. (2.211) is small. These collinear emissions then have

a typical transverse momentum ∼ √QT . The factorization and resummation structure of

the cross section for qT , T � Q depends on the parametric hierarchy between these scales.

There are three relevant parametric regimes [195], which are illustrated in figure 4.2 and

are discussed in the following.

In the first (blue) regime, T � qT ∼
√
QT , soft emissions with transverse momentum

∼ T and collinear emissions with transverse momentum ∼ √QT both contribute to the

T measurement. Due to the separation in transverse momentum, the qT measurement

is determined by collinear emissions, while soft emissions do not contribute to it. The
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Figure 4.2: Parametric regimes in the (qT , T ) plane and their SCET description. The solid lines

correspond to the phase-space boundaries qT = T (green) and qT =
√
QT (blue).

appropriate EFT description for this regime is SCETI. It has the same RG structure as the

single-differential T spectrum, with qT acting as an auxiliary variable. The SCETI regime

is discussed in more detail in section 4.2.2.

In the opposite (green) regime, T ∼ qT �
√
QT , both soft and collinear emissions

have transverse momentum ∼ qT and thus contribute to qT . On the other hand, only

soft radiation at central rapidities contributes to T , while the contribution from collinear

radiation is suppressed. This regime is described by SCETII, whose RG structure is

analogous to that of the single-differential qT spectrum, with T as the auxiliary variable.

The SCETII regime is discussed in more detail in section 4.2.3.

Third, the intermediate (orange) regime in the bulk, T � qT �
√
QT , shares features

with both boundary cases. As in the SCETI regime, central soft radiation contributes to T ,

while as in the SCETII regime, collinear radiation contributes to qT . In addition, this regime

requires a distinct collinear-soft mode at an intermediate rapidity scale that can contribute

to both measurements [195]. The relevant EFT description is provided by SCET+, which

in this case shares elements of both SCETI and SCETII. The SCET+ regime, as well as

its relation to the regimes on the two boundaries, is discussed in section 4.2.4. We briefly

comment on the regions beyond the phase-space boundaries (left blank in figure 4.2) in

section 4.2.5.

All numerical results for the SCET predictions in the following are obtained from our

implementation in SCETlib [8]. All fixed NLO results in full QCD are obtained from

MCFM 8.0 [330–332]. Throughout this chapter we use MMHT2014nnlo68cl [110] NNLO

PDFs with αs(mZ) = 0.118 and five active quark flavors.
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4.2.2 SCETI: T � qT ∼
√
QT

In this regime, both soft and collinear modes are constrained by T , while only collinear

modes can contribute to qT , whose characteristic transverse momentum
√
QT coincides

parametrically with qT . The scaling of the relevant EFT modes reads

na-collinear: pµ ∼
(
T , Q,

√
QT

)
∼
(
q2
T
Q , Q, qT

)
,

nb-collinear: pµ ∼
(
Q, T ,

√
QT

)
∼
(
Q,

q2
T
Q , qT

)
,

soft: pµ ∼
(
T , T , T

)
. (4.1)

Notably, these are the same modes as for the single-differential case in eq. (2.213), except

that the collinear modes are now sensitive to qT . This leads to the following factorization

formula for the cross section [57, 398],4

dσI

dQ2 dY dqT dT =
∑
i,j

Hij(Q
2, µ)

∫
dta

∫
d2~kaBi(ta, xa,~ka, µ)

∫
dtb

∫
d2~kbBj(tb, xb,~kb, µ)

×
∫

dk Si(k, µ) δ
(
qT − |~ka + ~kb|

)
δ
(
T − ta

Qa
− tb
Qb
− k
)
, (4.2)

which holds up to power corrections of the form5

dσ

dQdY dqT dT =
dσI

dQdY dqT dT
[
1 +O

(T
Q
,
q2
T

Q2
,
T 2

q2
T

)]
. (4.3)

The hard and soft function in eq. (4.2) are the same as in eq. (2.214), and the momentum

fractions xa,b are as defined in eq. (2.62). The crucial difference is the appearance of double-

differential beam functions Bq(t, x,~kT , µ). They describe the extraction of a quark (or

antiquark) from the proton with momentum fraction x and virtuality t like the inclusive

beam function Bq(t, x, µ), but in addition measure the transverse momentum ~kT of the

extracted parton.6 Formally, the bare double-differential quark beam function is defined as

Bq

(
t,
ω

P−n
,~kT

)
= θ(ω)

〈
pn
∣∣χ̄q n[δ(ω − P) δ(t+ ωp̂+) δ(~kT − ~P)

/̄n

2
χq n

]∣∣pn〉 , (4.4)

which should be contrasted with the first line of eq. (2.215). The t and ~kT translate into

the contribution of collinear radiation to the T and qT measurement, as captured by the

4We note that as in the single-differential case, Glauber effects are not included in eq. (4.2). We refer to

the discussion in section 2.4.4 for details.
5Lorentz invariance suggests that power corrections in qT always appear in terms of q2

T . The distinction is

irrelevant for the purposes of this chapter because we work to leading power in each respective regime.

In chapter 7 we will formally show for power corrections in qT /Q that the linear order vanishes as long

as, like in this case, the individual decay products of the Z are not resolved.
6Here “double-differential” refers to the number of properties probed by IR-sensitive resolution variables,

which in this case are qT ↔ kT and T ↔ t. Of course, like any beam function, the double-differential

beam function in addition depends on the longitudinal momentum fraction x set by the Born kinematics.

For this reason it is also referred to as “fully-differential” in the literature since it measures all components

of the active parton’s momentum.
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Figure 4.3: Left: Comparison of singular and nonsingular contributions to the fixed O(αs) double

spectrum as a function of T , with qT =
√
QT kept fixed. The orange solid line shows the full QCD

result and the dashed blue line the singular contributions contained in the SCETI result eq. (4.2).

The dotted green line shows their difference, which corresponds to the power corrections indicated

in eq. (4.3). Right: SCETI profile scales and their associated variations. The dotted lines (and the

yellow band) indicate common up/down variations of µI
S and µI

B from varying α. The dashed lines

(and the green band) are variations of β that only act on µI
B . In both plots, the thin vertical lines

correspond to the transition points (x0, x1, x2, x3) given in the text.

δ functions on the last line of eq. (4.2). For t ∼ k2
T � Λ2

QCD, the double-differential beam

function can be matched onto PDFs [57, 293, 398],

Bq(t, x,~kT , µ) =
∑
j

∫
dz

z
Iqj(t, z,~kT , µ) fj

(x
z
, µ
)[

1 +O
(Λ2

QCD

t
,
Λ2

QCD

k2
T

)]
. (4.5)

Because the hard and soft function in eq. (4.2) are the same as in the single-differential

case, the RG consistency of the cross section implies that the RGE of the double-differential

beam functions cannot depend on qT , such that the overall RG structure of the cross

section is equivalent to the single-differential case, i.e., qT takes the role of an auxiliary

measurement in the SCETI resummation, with no large logarithms of qT appearing in the

cross section as long as qT ∼
√
QT is satisfied. In particular, the canonical scales µI

X that

achieve the resummation of all large logarithms of T /Q ∼ q2
T /Q

2 in the SCETI regime are

the same as for the single-differential case,

µI
H ∼ Q , µI

B ∼
√
QT , µI

S ∼ T . (4.6)

We stress that eq. (4.2) nevertheless provides a nontrivial and genuinely double-differential

extension of the single-differential case. This is already visible from the structure of power

corrections in eq. (4.3). Furthermore, the qT dependence does affect and is affected by the

T resummation because the double-differential beam functions enter in a convolution with

the beam and soft renormalization group kernels; some technical challenges in evaluating

these convolutions are addressed in section 4.3. Physically, the convolutions account for

the total qT recoil from all collinear emissions that are being resummed in T .

139



Chapter 4 – Joint two-dimensional resummation in qT and 0-jettiness at NNLL

Scale setting and fixed-order matching. To extend the description of the cross section

to large T ∼ q2
T /Q . Q, we have to reinstate the power corrections dropped in eq. (4.3).

This is achieved by matching to the full fixed-order result, for which we use the standard

additive matching,

dσmatch
I = dσI

∣∣
µI +

[
dσFO − dσI

]
µFO

. (4.7)

Here we abbreviated dσ ≡ dσ/(dQ2 dY dqT dT ), and dσFO denotes the fixed-order cross

section in full QCD. The scale subscripts on the right-hand side indicate whether dσI is

RG evolved using the SCETI resummation scales µI, with their precise choices given below,

or whether it is evaluated with all scales set to a common fixed-order scale µFO.

By construction, dσI evaluated at common scales µFO exactly reproduces the singular

limit of dσFO, such that the term in square brackets in eq. (4.7) is a pure nonsingular power

correction at small T , which we can simply add to the resummed cross section. In the left

panel of figure 4.3, we explicitly check that this is satisfied at fixed O(αs), and numerically

assess the size of the power corrections. We compare the full QCD result (solid orange) to

the SCETI singular limit (dashed blue) as a function of T , while keeping qT =
√
QT fixed

to ensure that all classes of power corrections in eq. (4.3) uniformly vanish as T → 0. This

is indeed satisfied, as the difference (dotted green) vanishes like a power.

For T ∼ Q, the SCETI singular contribution and the power corrections are of the same

size, implying that the resummation must be turned off to not upset the O(1) cancellation

between them and correctly reproduce the fixed-order result. As discussed in section 2.3.3

this can be achieved by using profile scales, i.e., by having µI
B ≡ µI

B(T ) and µI
S ≡ µI

S(T )

transition from their canonical values eq. (4.6) at small T to a common high scale for large

T , schematically,

µI
B(T ) , µI

S(T )→ µI
H = µFO for T → Q . (4.8)

As a result, the first and third term in eq. (4.7) exactly cancel in this limit, so the matched

result reproduces dσFO as desired.

For the concrete choices of µI
B, µI

S we can rely on those used for the single-differential

spectrum due to the equivalent RG structure. We use the profile scale setup developed for

the closely related case of SCETI-like jet vetoes in ref. [70] and used for the T resummation

in Geneva [122]. The profile scales are chosen as

µI
S = µFO f

I
run

(T
Q

)
, µI

B = µFO

[
f I

run

(T
Q

)]1/2
, µI

H = µFO , (4.9)

with the profile function f I
run given by [67]

f I
run(x) =



x0

(
1 + x2

4x2
0

)
x ≤ 2x0 ,

x 2x0 < x ≤ x1 ,

x+ (2−x2−x3)(x−x1)2

2(x2−x1)(x3−x1) x1 < x ≤ x2 ,

1− (2−x1−x2)(x−x3)2

2(x3−x1)(x3−x2) x2 < x ≤ x3 ,

1 x3 < x .

(4.10)
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Based on figure 4.3, we take (x1, x2, x3) = (0.2, 0.5, 0.8) for the transition points towards

the fixed-order region x ∼ 1. In addition, eq. (4.10) turns off the resummation in the

nonperturbative region x . 2x0, where we set x0 = 1 GeV/Q. This cuts off the nonpertur-

bative region and ensures that RG running induced by perturbative anomalous dimensions

always starts from a perturbative boundary condition. For µFO itself we use µFO = Q as

the central scale. Our central scale choices are illustrated as solid lines in the right panel

of figure 4.3.

Perturbative uncertainties. We estimate perturbative uncertainties in dσmatch
I by con-

sidering two different sources. The first uncertainty contribution ∆I is inherent to the

SCETI resummation. It is estimated by varying the individual SCETI scales while keeping

µFO fixed, effectively probing the tower of higher-order logarithms that are being resummed.

For this we use the profile scale variations [70]

µI
S = µFO

[
fvary

(T
Q

)]α
f I

run

(T
Q

)
,

µI
B = µFO

{[
fvary

(T
Q

)]α
f I

run

(T
Q

)}1/2−β
, (4.11)

where α = β = 0 corresponds to the central scale choice in eq. (4.9), and the variation

factor is defined as

fvary(x) =


2(1− x2/x2

3) 0 ≤ x < x3/2 ,

1 + 2(1− x/x3)2 x3/2 ≤ x < x3 ,

1 x3 ≤ x .
(4.12)

It approaches a factor of two in the resummation region at small x and reduces to unity

toward the fixed-order regime at x = x3, where the resummation is turned off. The estimate

for ∆I is obtained by computing dσI
match for each of the four profile scale variations

(α, β) = {(+1, 0), (−1, 0), (0,+1/6), (0,−1/6)} , (4.13)

and taking the maximum absolute deviation from the central result. These variations are

also indicated in the right panel of figure 4.3. Note that for simplicity we do not perform

explicit variations of the transition points since they are known to have a subdominant

effect, and the uncertainty in the fixed-order matching is not essential to the results in

this chapter. Also note that independent variations of µH need not be considered as part

of resummation uncertainties because the corresponding change in the argument of the

resummed logarithms is already covered by varying the low scales.

For the second uncertainty contribution, ∆FO, we consider common variations of µFO

up and down by a factor of two in all pieces of eq. (4.7). Since µFO enters all µI scales

as a common overall factor, they inherit the same variation, which keeps all resummed

logarithms invariant. Hence, the µFO variation effectively probes the effect of missing
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higher-order corrections in the fixed-order contributions. The final uncertainty estimate for

dσmatch
I is obtained by adding both contributions in quadrature,

∆I
total = ∆I ⊕∆FO ≡

(
∆2

I + ∆2
FO

)1/2
. (4.14)

The matched result dσmatch
I in eq. (4.7) on its own constitutes a prediction for the

double-differential spectrum that covers the part of phase space where qT ∼
√
QT .

4.2.3 SCETII: T ∼ qT �
√
QT

In this regime, both soft and collinear emissions are constrained by qT . Only soft radiation

is constrained by the T measurement, while collinear radiation at transverse momenta

∼ qT �
√
QT is not affected by it. The relevant EFT modes scale as

na-collinear: pµ ∼
(
q2
T
Q , Q, qT

)
,

nb-collinear: pµ ∼
(
Q,

q2
T
Q , qT

)
,

soft: pµ ∼
(
qT , qT , qT

)
∼
(
T , T , T

)
. (4.15)

In this case, the cross section factorizes as [195]

dσII

dQ2 dY dqT dT =
∑
i,j

Hij(Q
2, µ)

∫
d2~kaBi(xa,~ka, µ, ν/ωa)

∫
d2~kbBj(xb,~kb, µ, ν/ωb)

×
∫

dk

∫
d2~ks Si(k,~ks, µ, ν) δ

(
qT − |~ka + ~kb + ~ks|

)
δ
(
T − k

)
. (4.16)

The factorization receives power corrections of the form

dσ

dQdY dqT dT =
dσII

dQdY dqT dT
[
1 +O

(T
Q
,
q2
T

T Q
)]
. (4.17)

We see that in this case the factorization has a form closely analogous to the single-

differential qT spectrum in eqs. (2.192) and (2.193), with hard and beam functions being

the same this time. The difference in this case is the presence of a double-differential soft

function Si(k,~ks, µ, ν) that encodes the contribution of soft radiation to both T and qT .

The RG consistency of the cross section implies that its µ and ν RGEs do not depend

on T , and are the same as for the single-differential soft function in eq. (2.193a). Hence,

the overall RG structure of the double-differential cross section is equivalent to the single-

differential qT spectrum, including the evolution in rapidity, with T acting as an auxiliary

measurement. As for the single-differential spectrum, it is challenging to carry out the

resummation in momentum space, and we will instead carry out the resummation in bT
space, turning the vectorial convolutions in eq. (4.16) into products of functions evaluated

at bT ≡ |~bT |. (Details on the Fourier transform of the double-differential soft function are

given in section 4.3.) The canonical SCETII scales in bT -space are as in eq. (2.209),

µII
H ∼ Q , µII

B ∼ b0/bT , µII
S ∼ b0/bT , µ0 ∼ b0/bT ,

νII
B ∼ Q , νII

S ∼ b0/bT . (4.18)

142



4.2 Resummation framework

1 10 100
1

10

100

0 1 2 3
0

1

2

3

0 20 40 60 80 100
0

20

40

60

80

100

Figure 4.4: Left: Comparison of singular and nonsingular contributions to the fixed O(αs) double

spectrum as a function of qT , with T = qT kept fixed. The orange solid line shows the full QCD

result and the dashed blue line the singular contributions contained in the SCETII result eq. (4.16).

The dotted green line shows their difference, which corresponds to the power corrections indicated

in eq. (4.17). The thin vertical lines correspond to the transition points (x1, x2, x3) given in the text.

Right: SCETII hybrid profile scales as a function of b0/bT for representative values of qT . The thin

vertical line in the main plot corresponds to Q. The inset shows the behavior of the profile in the

nonperturbative region b0/bT ∼ ΛQCD, where the gray horizontal line indicates the scale b0/bmax at

which we freeze out the resummation. The dashed orange line in the inset indicates the canonical

value of µII
B , µ

II
S , ν

II
S .

In our profile scale construction in the next paragraph we will require that for qT �
Q, eq. (4.18) is exactly satisfied, such that the resummed qT spectrum in this region is

obtained from the inverse Fourier transform of the canonical bT -space result, ensuring the

formal equivalence to the qT -space solution [263]. The rapidity evolution of the beam and

double-differential soft function is driven by the resummed rapidity anomalous dimension

in eq. (2.202), where we set the nonperturbative component to zero, γ̃iν,np(bT ) = 0, since it

is not the focus of this work. We similarly ignore nonperturbative effects of O(ΛQCD/qT )

in the SCETII beam and soft function boundary conditions. To extend the perturbative

contribution we will make the boundary scales µ = {µS , µB, µ0} asymptote to a fixed value

at large bT in our profile scale construction such that αs(µ) remains perturbative.7

Scale setting and fixed-order matching. We again extend the description of the cross

section to the fixed-order region qT ∼ T . Q by an additive matching,

dσmatch
II = dσII

∣∣
µII +

[
dσFO − dσII

]
µFO

. (4.19)

Here the subscript µII indicates that we evaluate dσII at the SCETII resummation scales

µII (given below) in bT space, and take a numerical inverse Fourier transform in the end.

7We note that in addition, this leaves fixed-order logarithms of µ0bT in γ̃iν,FO that lead to an exponential

suppression of the bT space cross section as bT →∞. This increases the numerical stability of the inverse

Fourier transform.
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The subscript µFO indicates that it is instead evaluated at common fixed-order scales µFO,

which can be done directly in momentum space.

Analogous to the discussion for SCETI, the term in square brackets in eq. (4.19) is by

construction a pure nonsingular power correction at small qT . This is illustrated in the left

panel of figure 4.4, which shows that the difference (green dotted) between the full QCD

result (solid orange) and the SCETII singular result (dashed blue) indeed vanishes like a

power as qT → 0 along the line of fixed T = qT .

Approaching qT ∼ T ∼ Q, the qT resummation must again be turned off to ensure

the delicate cancellations between singular and nonsingular contributions and to properly

recover the correct fixed-order result for the spectrum. We achieve this by constructing

hybrid profile scales that depend on both bT and qT , and undergo a continuous deformation

away from the canonical bT scales in eq. (4.18) as a function of the target qT value,

µII
B,S(qT , bT ) , νII

B,S(qT , bT )→ µII
H = µFO for qT → Q . (4.20)

We note that µ0 does not need to asymptote to µFO towards large qT because its effect on

the matched result is already turned off as νII
S → νII

B . In this limit, the first and last term

in eq. (4.19) exactly cancel, leaving the fixed-order result dσFO.

We strive to achieve eq. (4.20) and the perturbativity requirements in the simplest

possible way. We choose central scales as

µII
H = νII

B = µFO , µII
B = µII

S = νII
S = µFO f

II
run

(qT
Q
,

b0
b∗(bT )Q

)
, µ0 =

b0
b∗(bT )

, (4.21)

where f II
run is a hybrid profile function given by

f II
run(x, y) = 1 + grun(x)(y − 1) . (4.22)

It controls the amount of resummation by adjusting the slope of the scales in bT space as

a function of qT /Q via the function

grun(x) =


1 0 < x ≤ x1 ,

1− (x−x1)2

(x2−x1)(x3−x1) x1 < x ≤ x2 ,
(x−x3)2

(x3−x1)(x3−x2) x2 < x ≤ x3 ,

0 x3 ≤ x .

(4.23)

As a result, for qT ≤ x1Q, the slope is unity yielding the canonical resummation, while

for qT ≥ x3Q, the slope vanishes so the resummation is fully turned off. In between, the

slope smoothly transitions from one to zero, which transitions the resummation from being

canonical to being turned off. This is illustrated in the right panel of figure 4.4. We use

the same transition points (x1, x2, x3) = (0.2, 0.5, 0.8) as for SCETI, which is supported by

figure 4.4.

We note that our approach differs from the hybrid profile scales introduced in ref. [399].

While the latter also satisfy the requirement in eq. (4.20), they do not reproduce the exact
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canonical bT -space scales for qT � Q because they introduce a profile shape directly in bT
space.

As discussed below eq. (2.207), we require a nonperturbative prescription when the

canonical value of µ0 (or µII
S , or µII

B) approaches the Landau pole b0/bT ∼ ΛQCD. This is

encoded in evaluating the hybrid scales at b∗(bT ) rather than bT itself,

b∗(bT ) =
bT√

1 + b2T /b
2
max

, (4.24)

where b0/bmax & ΛQCD ensures that all scales are canonical for small bT ≈ b∗, but remain

perturbative for large bT where b∗ → bmax, as shown in the inset in the right panel of

figure 4.4. In practice we pick

b0/bmax = 1 GeV , (4.25)

in keeping with our choice of nonperturbative turn-off parameter in the SCETI case. The

functional form of eq. (4.24) is the same as in the standard b∗ prescription [185, 251],

although any other functional form with the same asymptotic behavior is also viable.

We stress, however, that a key difference in our case is that b∗ only affects the scales,

so it essentially serves the same purpose as the x0 nonperturbative cutoff in the SCETI

scales in eq. (4.10). By contrast, the standard b∗ prescription corresponds to a global

replacement of bT by b∗, including the measurement itself. For the single-differential qT
spectrum, this global replacement induces power corrections O(b2T /b

2
max) that scale like

a generic nonperturbative contribution. While they might complicate the extraction of

nonperturbative model parameters from data [400], they are not a critical issue.

For the double-differential case, we find that a standard b∗ prescription does in fact not

work. This is because substituting b∗ for bT in the physical measurement renders Fourier

integrals of the double-differential SCETII soft function divergent, at least at fixed order

(i.e., without Sudakov suppression). This can be seen from eqs. (4.59) and (4.60), which

only depend on x = bTT . Substituting b∗ for bT makes them asymptote to a constant

for any given T , which upsets their required asymptotic behavior ∼ 1/x2. Physically this

means that the deformation of the measurement at large bT also deforms the observable of

interest, i.e., the dependence on T .

Perturbative uncertainties. To estimate the resummation uncertainty for dσmatch
II , we

adopt the set of profile scale variations introduced for the SCETII-like jet veto in ref. [67].

They are given by

µII
S = µFO

[
fvary

(qT
Q

)]vµS
f II

run

(qT
Q
,
b0
b∗Q

)
,

νII
S = µFO

[
fvary

(qT
Q

)]vνS
f II

run

(qT
Q
,
b0
b∗Q

)
,

µII
B = µFO

[
fvary

(qT
Q

)]vµB
f II

run

(qT
Q
,
b0
b∗Q

)
,

νII
B = µFO

[
fvary

(qT
Q

)]vνB
, (4.26)
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Figure 4.5: The single-differential qT spectrum at NLL (blue) and NNLL+NLO (orange), using

the qT resummation method described in the text. The bands indicate ∆II ⊕ ∆FO. In the right

panel, the uncertainties are shown as percent differences relative to the central result at each order.

where each of the four variation exponents can be vi = {+1, 0,−1}, and fvary was given in

eq. (4.12). The central scale choice corresponds to (vµS , vνS , vµB , vνB) = (0, 0, 0, 0), and a

priori there are 80 possible different combinations of the vi. Since the arguments of the

resummed logarithms are ratios of scales, some combinations of scale variations will lead to

variations of these arguments that are larger than a factor of two, and therefore should be

excluded [67]. After dropping these combinations we are left with 36 different scale variations

for the SCETII regime. We add two independent variations of b0/bmax = {0.5 GeV, 2 GeV}
to probe the uncertainty in our nonperturbative prescription. The SCETII resummation

uncertainty ∆II is then determined as the maximum absolute deviation from the central

result among all 38 variations. For simplicity we again refrain from variations of the

transition points. As for SCETI, ∆FO is estimated by overall variations of µFO by a factor

of two, which is inherited by all SCETII scales, so it probes the fixed-order uncertainties

while leaving the resummed logarithms invariant. The total uncertainty estimate for dσmatch
II

is then obtained as

∆II
total = ∆II ⊕∆FO . (4.27)

The matched result dσmatch
II in eq. (4.19) provides a prediction for the double-differential

spectrum that covers the part of phase space where T ∼ qT .

Results for the single-differential spectrum. Since we are using a new method to

perform the qT resummation, we also briefly consider the single-differential qT spectrum

as a sanity check of our setup. The setup described in this section immediately carries

over to the single-differential spectrum. In figure 4.5 we show the qT spectrum at the

NNLL+NLO order we are aiming for in the double-differential spectrum, as well as one

order lower at NLL, and with the uncertainties estimated as described above. The results

look very reasonable, providing us with confidence in our qT resummation procedure. Note

that there is a slight pinch in the uncertainty bands around qT = 15 GeV, indicating that
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4.2 Resummation framework

the uncertainties there are likely a bit underestimated. This is an artifact of scale variations

that is not unusual to be seen in resummed spectrum predictions.

4.2.4 SCET+: T � qT �
√
QT

This regime is characterized by the presence of intermediate collinear-soft modes that

contribute both to the qT and the T measurement, which uniquely fixes their scaling.

Central soft modes only contribute to T as in SCETI, while the energetic collinear modes

only contribute to qT as in SCETII,

na-collinear: pµ ∼
(
q2
T
Q , Q, qT

)
, na-collinear-soft: pµ ∼

(
T , q

2
T

T , qT
)
,

nb-collinear: pµ ∼
(
Q,

q2
T
Q , qT

)
, nb-collinear-soft: pµ ∼

(q2
T

T , T , qT
)
,

soft: pµ ∼
(
T , T , T

)
. (4.28)

The collinear-soft modes have the same virtuality as the collinear modes, p2 ∼ q2
T , but live

at more central rapidity e|y| ∼ qT /T , which is small compared to the rapidity e|y| ∼ Q/qT
of the collinear modes. Hence, the two have a SCETII-like relation and become a single

collinear mode in the SCETI limit qT ∼
√
QT . At the same time, the collinear-soft and

soft modes have a SCETI-like relation, being separated in virtuality, and become a single

soft mode in the SCETII limit T ∼ qT . In this way, SCET+ is able to connect the SCETI

and SCETII regimes. This is similar to the collinear-soft mode originally introduced in

ref. [194], which instead connected two SCETI theories.

The cross section in SCET+ factorizes as [195]

dσ+

dQdY dqT dT =
∑
i,j

Hij(Q,µ)

∫
d2~kaBi(xa,~ka, µ, ν/ωa)

∫
d2~kbBj(xb,~kb, µ, ν/ωb) (4.29)

×
∫

d`+a

∫
d2~̀

a Si(`+a , ~̀a, µ, ν)

∫
d`−b

∫
d2~̀

b Sj(`−b , ~̀b, µ, ν)

×
∫

dk Si(k, µ) δ
(
qT − |~ka + ~kb + ~̀

a + ~̀
b|
)
δ
(
T − ωa`

+
a

Qa
− ωb`

−
b

Qb
− k
)
,

which holds up to power corrections

dσ

dQdY dqT dT =
dσ+

dQdY dqT dT
[
1 +O

( q2
T

T Q,
T 2

q2
T

)]
. (4.30)

The hard function is the same as before. The beam functions are the qT -dependent ones

from SCETII, while the soft function is the T -dependent one from SCETI. The new

ingredient is the double-differential collinear-soft function Si(k,~kT , µ, ν), which encodes the

contributions of the collinear-soft modes to both qT and T . Like the soft function it is

defined as a matrix element of eikonal Wilson lines, but like the beam functions it describes

radiation that goes into a definite hemisphere.
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Chapter 4 – Joint two-dimensional resummation in qT and 0-jettiness at NNLL

Equation (4.29) can be interpreted as a refactorization of the double-differential SCETI

and SCETII cross sections [195], which precisely reflects the relation between the EFT

modes described above. Expanding the SCETI double-differential beam function in the

limit qT �
√
QT , it factorizes into the SCETII beam function and the collinear-soft

function,

Bq(ωk, x,~kT , µ) =

∫
d2~̀

T Bq(x,~kT − ~̀T , µ, ν/ω)Sκ(k, ~̀T , µ, ν)
[
1 +O

(k2
T

ωk

)]
. (4.31)

The ν dependence of the two terms on the right-hand side must cancel, while their µ

dependence must combine into that of the left-hand side. This allows us to completely fix

the RGE of the collinear-soft function, where in bT space we have

µ
d

dµ
S̃i(k, bT , µ, ν) =

∫
dk′ γiS(k − k′, µ, ν) S̃i(k′, bT , µ, ν) ,

ν
d

dν
S̃i(k, bT , µ, ν) =

1

2
γ̃iν(bT , µ) S̃i(k, bT , µ, ν) ,

γiS(k, µ, ν) = −2Γicusp(αs)L0

(
k,
µ2

ν

)
+ γiS [αs(µ)]δ(k) , (4.32)

and all anomalous dimensions can be inferred from consistency,8

−γiS(αs) = γiS(αs) = γ̃iS(αs) , −γiS n = γiS n = γ̃iS n . (4.33)

Similarly, expanding the SCETII double-differential soft function in the limit T � qT , it

factorizes into the SCETI soft function and the two na-collinear-soft and nb-collinear-soft

functions,

Sκ(k,~kT , µ, ν) =

∫
d2~̀

T

∫
d`+a Sκ(`+a ,

~̀
T , µ, ν)

∫
d`−b Sκ(`−b ,

~kT − ~̀T , µ, ν)

× Sκ
(
k − ωa`

+
a

Qa
− ωb`

−
b

Qb

) [
1 +O

( k2

k2
T

)]
. (4.34)

Since the left-hand side does not depend on ωa,b and Qa,b, this dependence must also drop

out on the right-hand side, and therefore in the whole SCET+ cross section in eq. (4.29).

To see this explicitly, first recall that the large label momenta and the distance measures

satisfy ωaωb = QaQb = Q2. In addition, boost invariance at the level of the collinear-soft

matrix element implies that d`+a Sκ(`+a ,
~kT , µ, ν) can only depend on the product `+a ν (and

8We note that ref. [195] incorrectly did not distinguish between γiB(αs) and γ̃iB(αs). This lead to the

noncusp contribution to the collinear-soft anomalous dimension being missing in their eq. (3.26), whereas

the difference is in fact nonzero already at two loops, c.f. eq. (C.11).
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analogously for `−b ).9 Hence, we can rewrite

d`+a Sκ(`+a ,
~̀
a, µ, ν) d`−b Sκ(`−b ,

~̀
b, µ, ν) δ

(
T − ωa`

+
a

Qa
− ωb`

−
b

Qb
− k
)

= dk+
a Sκ

(
k+
a ,
~̀
a, µ,

Qaν

ωa

)
dk−b Sκ

(
k−b ,

~̀
b, µ,

Qbν

ωb

)
δ(T − k+

a − k−b − k)

= dk+
a Sκ(k+

a ,
~̀
a, µ, ν) dk−b Sκ(k−b ,

~̀
b, µ, ν) δ(T − k+

a − k−b − k) , (4.35)

where in the first step we changed variables from `±a,b to k+
a = ωa`

+
a /Qa and k−b = ωb`

−
b /Qb.

In the second step we performed the rapidity evolution from νa,b ≡ Qa,b ν/ωa,b back to a

common ν at fixed µ [see eq. (D.5)], for which the rapidity evolution factors exactly cancel

because

ln
νa
ν

+ ln
νb
ν

= ln
QaQb
ωaωb

= 0 . (4.36)

The SCET+ factorization in eq. (4.29) fully disentangles the physics at the following

SCET+ canonical energy and rapidity scales:

µ+
H ∼ Q , µ+

B ∼ qT , µ+
S ∼ qT , µ+

S ∼ T ,
ν+
B ∼ Q , ν+

S ∼ q2
T /T . (4.37)

As for SCETII, we perform the qT resummation in bT space, transforming the vectorial

convolutions in eq. (4.29) into simple products. In bT space, the canonical scales are

µ+
H ∼ Q , µ+

B ∼ b0/bT , µ+
S ∼ b0/bT , µ+

S ∼ T ,
ν+
B ∼ Q , ν+

S ∼ (b0/bT )2/T . (4.38)

By evaluating all functions at their natural scales and evolving them to common scales, all

logarithms of large scale ratios in the problem are resummed, e.g.,

(b0/bT )2

QT ∼ ν+
S
ν+
B

,
T

b0/bT
∼ µ+

S

µ+
S
,

b0/bT
Q
∼ µ+

B

µ+
H

∼ µ+
S
µ+
H

,
T
Q
∼ µ+

S

µ+
H

. (4.39)

The logarithms of the first ratio appear in the double-differential SCETI beam function

in the limit qT �
√
QT , and are resummed in SCET+ by the additional ν evolution in

the refactorization in eq. (4.31). Similarly, logarithms of the second ratio appear in the

double-differential SCETII soft function in the limit T � qT , and are resummed in SCET+

by the additional µ evolution in eq. (4.34). Our framework to match between the rich

logarithmic structure predicted by eq. (4.29) and the two boundary regimes is the subject

of section 4.4.

9More specifically, the rapidity regulator softly breaks the RPI-III invariance of SCET, see section 2.2.3

and the implementation of the regulator for collinear-soft Wilson lines in eq. (2.163). To restore it, ν

must transform under RPI-III like n̄ · p in each n-collinear-soft sector. The RPI-III transformation of

the explicit measurement δ function in the matrix element is canceled by the corresponding integration

measure in eqs. (4.29) and (4.34). Therefore, RPI-III invariance implies that each collinear-soft function

can only depend on the RPI-III invariant combination ν n · k.
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Chapter 4 – Joint two-dimensional resummation in qT and 0-jettiness at NNLL

4.2.5 Outer space

We now briefly discuss the outer phase-space regions left blank in figure 4.2. The region

above the SCETII regime is characterized by the hierarchy qT � T �
√
QT , while the

region to the right of the SCETI regime corresponds to T � √QT � qT . Both regions are

power suppressed.

As we have discussed in section 4.2.3, only the soft function contributes to T in SCETII,

as the collinear contribution is power suppressed. However, for qT � T , even the soft

contribution to T becomes power suppressed. In particular, for a single real emission at

fixed O(αs), the region T > qT is kinematically forbidden both in SCETII as well as in full

QCD. At higher orders only (soft) emissions that are mostly back-to-back such that their

transverse momenta largely cancel can fill out this region. The cross section in this region

is power suppressed by O(q2
T /T 2). Equivalently, expanding the SCETII factorization of

the double-differential cross section in the limit qT � T reduces it to the single-differential

qT spectrum with an overall δ(T ), which we exploit in our numerical implementation,

cf. eq. (4.52). Physically this means that by integrating the double spectrum in SCETII

up to some Tcut � qT , we recover the single-differential qT spectrum, while the effect

of the cut is power suppressed in this limit. Note that there is also a contribution from

double-parton scattering [401–404] in this region, where the two jets produced in the second

interaction alongside the Z boson are naturally back to back and not power suppressed. This

contribution is still not expected to much exceed the single-parton scattering contribution

because double-parton scattering itself is power suppressed by O(Λ2
QCD/T 2), with T setting

the scale of the second hard scatter producing the back-to-back jets.

Similarly, in the limit
√
QT � qT , even the contribution from collinear radiation to

qT becomes power suppressed in SCETI [cf. eq. (4.41)], and at leading power we recover

the single-differential T spectrum with an overall δ(qT ). This is analogous to the relation

between the regimes 1 and 2 for a jet veto with a jet rapidity cut in ref. [2], where the

effect of a very forward jet rapidity cut (the auxiliary measurement) on collinear radiation

becomes power suppressed. An additional subtlety for
√
QT � qT is that very energetic

forward radiation with energy ∼ q2
T /T can theoretically contribute [195], pushing the hard

scale up to q2
T /T � Q. However, the cross section in this kinematic configuration is very

strongly suppressed by the PDFs, so we choose to describe it at fixed order.

The above analysis justifies focusing on the shaded regions of phase space in figure 4.2,

corresponding to the main SCETI, SCETII, and SCET+ regimes.

4.3 RG evolution of double-differential matrix elements

A specific challenge in evaluating the resummed SCETI and SCETII cross sections is that

they involve the action of the renormalization group evolution on the double-differential

beam or soft function that have a more intricate structure than their single-differential

counterparts. In particular, the matrix elements have an a priori arbitrary dependence on

certain dimensionless combinations of their arguments and do not admit a straightforward
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4.3 RG evolution of double-differential matrix elements

evaluation in terms of powers of logarithms or a basis of plus distributions.

4.3.1 Double-differential beam function

For the double-differential SCETI beam function, the task at hand is to analytically evaluate

convolutions of the form

Qi

∫
dk′ Vη(k − k′, µ) Iqj(Qik′, z,~kT , µ2) , (4.40)

between the distribution-valued RG evolution kernel and the double-differential matching

coefficient, i.e., before performing the numerical convolution with the PDF to maximize

evaluation speed. What is more, the outcome of eq. (4.40) is again a distribution in k, ~kT ,

and (potentially) in z, and in full generality we need either its value at finite T = k or its

integral over k ≤ Tcut, and similarly for qT = |~kT | and |~kT | ≤ qcut
T . (There is no nontrivial

cross term with the opposite beam function at this order.)

To evaluate eq. (4.40), it is convenient to decompose the matching coefficients as

Iqj(t, z,~kT , µ) = δ(~kT ) Iqj(t, z, µ) + ∆Iqj(t, z,~kT , µ) , (4.41)

where Iqj(t, z, µ) is the matching coefficient for the inclusive quark beam function, whose

contribution to eq. (4.40) can be evaluated in a straightforward way. The ∆Iqj piece can

be interpreted as a correction over the limit t� k2
T , where recoil from collinear radiation is

power suppressed and the double-differential beam function becomes proportional to δ(~kT ).

Specifically, it scales as

∆Iqj(t, z,~kT , µ) ∼ 1

t

1

k2
T

O
( t

k2
T

)
for t� k2

T , (4.42)

and by construction satisfies ∫
d2~kT ∆Iqj(t, z,~kT , µ) = 0 . (4.43)

At one loop it can be extracted from the full calculation of Iqj(t, z,~kT , µ) [398, 405],

∆Iqj(t, z,~kT , µ) =
αs(µ)

4π
∆I

(1)
qj (t, z,~kT ) +O(α2

s) ,

∆I
(1)
qj (t, z,~kT ) =

θ(t)

t
P̃

(0)
qj (z)

[
1

π
δ
(
k2
T −

1− z
z

t
)
− δ(~kT )

]
, (4.44)

using the shorthand

P̃
(0)
qj (z) ≡ P (0)

qj (z)− δqjδ(1− z)
γqB 0

2
=

2CFL0(1− z)(1 + z2) , j = q ,

2TF

[
(1− z)2 + z2

]
, j = g .

The second line in eq. (4.44) is regular in t because the term in square brackets vanishes as

t→ 0. After accumulating over the transverse plane up to qcut
T > 0, we have∫

d2~kT θ(q
cut
T − |~kT |) ∆I

(1)
qj (t, z,~kT ) = −θ(t)

t
P̃

(0)
qj (z) θ

[
(qcut
T )2 <

1− z
z

t
]
. (4.45)
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So far, these are the fixed-order results for η = 0 in eq. (4.40). The key insight allowing

for an efficient organization of the result also at finite η 6= 0 is that also after performing

the convolution with the measurement inserted, the final result can only depend on a

certain dimensionless combination r of the final measured quantities that is dictated by

the power counting, e.g. r = (q2
T )/(QiT ) for the double spectrum. This is because ∆Iqj

is independent of µ, and we can shift the explicit boundary condition µ of the evolution

kernel ∝ Vη(k′, µ) e.g. to µ = T (or Tcut) using eq. (A.19) and pull out the resulting factor

of (µ/T )−η. Depending on the measurement, we distinguish the following four cases for

the resulting Mellin kernel in z:

1. cumulant up to Tcut > 0, cumulant up to qcut
T > 0, r ≡ (qcut

T )2/(QiTcut):

Qi

∫
dk

∫
d2~kT θ(Tcut − k) θ(qcut

T − |~kT |)
∫

dk′ Vη(k − k′, Tcut) ∆I
(1)
qj (Qik

′, z,~kT )

= θ
(
r >

1− z
z

)
P

(0)
qj (z)

e−γEη

Γ(1 + η)

[
−B1−rz/(1−z)(1 + η, 0)

]
, (4.46)

where Bx(a, b) is the incomplete Beta function,

Bx(a, b) =

∫ x

0
dt ta−1(1− t)b−1 . (4.47)

2. spectrum at T > 0, cumulant up to qcut
T > 0, r ≡ (qcut

T )2/(QiT ):

Qi

∫
dk

∫
d2~kT δ(T − k) θ(qcut

T − |~kT |)
∫

dk′ Vη(k − k′, T ) ∆I
(1)
qj (Qik

′, z,~kT ) (4.48)

=
1

T θ
(
r >

1− z
z

)
P

(0)
qj (z)

e−γEη

Γ(1 + η)

[
−ηB1−rz/(1−z)(1 + η, 0)−

(
1− rz

1− z
)η]

.

3. cumulant up to Tcut, spectrum at qT > 0, r ≡ (qT )2/(QiTcut):

Qi

∫
dk

∫
d2~kT θ(Tcut − k) δ(qT − |~kT |)

∫
dk′ Vη(k − k′, Tcut) ∆I

(1)
qj (Qik

′, z,~kT )

=
2

qT
θ
(
r >

1− z
z

)
P

(0)
qj (z)

e−γEη

Γ(1 + η)

(
1− rz

1− z
)η
. (4.49)

4. spectrum at T > 0, spectrum at qT > 0, r ≡ (qT )2/(QiT ):

Qi

∫
dk

∫
d2~kT δ(T − k) δ(qT − |~kT |)

∫
dk′ Vη(k − k′, T ) ∆I

(1)
qj (Qik

′, z,~kT )

=
2

qT

1

T P
(0)
qj (z)Vη

(
1− rz

1− z
)

(4.50)

In the first three cases the overall θ function cuts off the final PDF integral at

z < zcut ≡
1

1 + r
, (4.51)
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and the Mellin kernel is regular up to and including zcut. In the last case we instead find a

singularity at z = zcut, i.e., the subtraction from Vη now acts directly on the PDF integral.

This highlights the richer structure of the double-differential resummation compared to

the single-differential case, where the RG evolution that encodes the dependence on the

measurement only multiplies fixed functions I
(n)
ij (z) of the longitudinal momentum fraction,

but never acts on the z integral directly. We have also exploited that terms proportional

to δ(1 − z) are cut off since r > 0, so we could replace P̃
(0)
qj back by P

(0)
qj . Note that the

right-hand side depends only on the dimensionless parameters r and η as expected, up to

an overall dimensionful Jacobian. It is straightforward to check that for η → 0 (at fixed

order), the above results reduce to cumulants (spectra) of ∆I
(1)
qj itself.

4.3.2 Double-differential soft function

For the double-differential SCETII soft function, which has been computed in momentum

space in ref. [195], the task is to analytically evaluate its Fourier transform to bT space for a

fixed value of k = T and integrated over k ≤ Tcut, respectively. With the result in bT space

at hand, the multiplicative RG evolution can be trivially performed. It is again convenient

to decompose the double-differential soft function into separate pieces with distinct power

counting,

Si(k,~kT , µ, ν) = δ(k)Si(~kT , µ, ν) + ∆Si(k,~kT , µ, ν) . (4.52)

Here Si(~kT , µ, ν) is the standard single-differential qT soft function. The second term in

eq. (4.52) can again be interpreted as a correction, in this case over the limit k � ~kT where

the contribution of soft radiation to the T = k measurement becomes power suppressed.

In momentum space this term satisfies∫
dk∆Si(k,~kT , µ, ν) = 0 , ∆Si(k,~kT , µ, ν) ∼ 1

k

1

k2
T

O
(k2

T

k2

)
for k2

T � k2 . (4.53)

Equivalently, in position space we have∫
dk∆S̃i(k, bT , µ, ν) = 0 , ∆S̃i(k, bT , µ, ν) ∼ 1

k
O
( 1

b2Tk
2

)
for

1

b2T
� k2 . (4.54)

At one loop, ∆Si is given by

∆Si(k,~kT , µ, ν) =
αs(µ)

4π
∆Si,1(k,~kT ) +O(α2

s) ,

∆Si,1(k,~kT ) = 4Ci

[
2

πµ3
L∆

(k
µ
,
k2
T

µ2

)
− δ(k)L1(~kT , µ)

]
. (4.55)

Here we used a two-dimensional plus distribution originally defined in ref. [195],

L∆(x1, x2) ≡ lim
β→0

d

dx1

d

dx2

[
θ(x2 − x2

1)θ(x1 − β) lnx1 (lnx2 − lnx1)

+
1

4
θ(x2

1 − x2)θ(x2 − β2) ln2 x2

]
. (4.56)
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The second line in eq. (4.55) is not yet manifestly independent of µ, but can be simplified

noting that

L∆(x1, x2)− δ(x1)L1(x2) =
d

dx1

d

dx2
θ(x2 − x2

1)
[
−1

2
ln2 x

2
1

x2

]
. (4.57)

It is straightforward to show this by writing all three distributions in terms of θ(x1 − β)

and θ(x2 − β2) for infinitesimal β, collecting terms, and noting that the result is finite as

β → 0. From eq. (4.57) we can immediately read off the fixed-order double cumulant of

∆Si,1 for Tcut > 0, qcut
T > 0,∫ Tcut

dk

∫
d2~kT θ(q

cut
T − |~kT |) ∆Si,1(k,~kT ) = 4CF θ(q

cut
T − Tcut)

[
−2 ln2 Tcut

qcut
T

]
, (4.58)

where the dependence on µ drops out as expected. Inserting eq. (4.57) and integrating by

parts also yields the cumulant up to Tcut > 0 in position space,∫ Tcut

dk∆S̃i,1(k, bT ) = 4CF

[
1

4
x2

3F4

(
1, 1, 1; 2, 2, 2, 2;−x

2

4

)
− 2 ln2 xe

γE

2

]
, (4.59)

where x ≡ bTTcut and iFj(x1, . . . , xi; y1, . . . , yj ; z) is the generalized hypergeometric function.

The right hand side of eq. (4.59) asymptotes to 1/x2 as x→∞, as required by the scaling

law in eq. (4.54). We also need the spectrum of ∆S̃i,1 at T > 0 in position space,

∆S̃i,1(T , bT ) = 4CF
1

T

[
1

2
x2

2F3

(
1, 1; 2, 2, 2;−x

2

4

)
− 4 ln

xeγE

2

]
, (4.60)

where this time x ≡ bTT and the term in square brackets again asymptotes to 1/x2 as

x → ∞. It is interesting to note that an important physical feature of the resummed

spectrum we already presented in figure 4.1, namely the smooth suppression towards the

intrinsic two-emission region T > qT , is entirely encoded in eq. (4.60) weighted with the

Sudakov evolution factor in bT space.

4.4 Matching effective theories

4.4.1 Structure of power corrections

An important feature of our EFT setup is that the factorized cross section in SCET+ differs

from the ones in SCETI and SCETII only by a subset of the power corrections it receives

relative to the full QCD result,

dσI

dQdY dqT dT =
dσ+

dQdY dqT dT
[
1 +O

( q2
T

T Q
)]
,

dσII

dQdY dqT dT =
dσ+

dQdY dqT dT
[
1 +O

(T 2

q2
T

)]
. (4.61)
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Figure 4.6: Venn diagram of power corrections to the factorized double-differential spectrum.

SCETI (blue) and SCETII (green) each capture a set of power corrections that is expanded away in

the SCET+ factorization (red) and the opposite boundary regime. A third class of power corrections

to the overall soft-collinear limit is captured by the fixed-order calculation in full QCD (gray).

This is illustrated in figure 4.6, and follows from comparing eq. (4.30) to eq. (4.3) and

eq. (4.17), respectively. Crucially, eq. (4.61) also holds when the cross sections are evaluated

at common (but not necessarily fixed-order) scales.

For example, both σI and σ+ share a logarithmic singularity with respect to T /Q,

which can be resummed by running between the scales of the hard, soft, and (refactorized)

beam functions. In SCET+ this amounts to setting the µ+ scales to be equal to their µI

counterparts,

µ+
B = µ+

S = µI
B , ν+

B = ν+
S = µFO , µ+

S = µI
S , (4.62)

such that any large logarithms inside the refactorized beam function in eq. (4.31) are treated

at fixed order. We write dσ+

∣∣
µI to indicate that dσ+ is evaluated at scales that satisfy

eq. (4.62). A natural way to judge the size of the power corrections in eq. (4.61) then is to

compare dσ+

∣∣
µI to dσI

∣∣
µI , with our choices for µI as given in section 4.2.2, i.e., including

the whole set of all-order terms from the T resummation in both of them. This comparison

is shown in figure 4.7 for representative choices of fixed T and qT at NNLL. We can clearly

read off a power-like behavior of the difference
[
dσI−dσ+

]
µI (dotted green) as either qT → 0

for fixed T (left panel) or T → ∞ for fixed qT (right panel). This also provides a nontrivial

check on our implementation of σI and σ+. This comparison in figure 4.7 is analogous to

the usual procedure of comparing the full-theory result for a cross section with its singular

EFT limit at a common scale µFO. Here, SCETI takes on the role of the full theory, while

SCET+ provides the singular limit, and the comparison is performed at common scales µI.

Similarly, both σII and σ+ have a common singular structure as qT /Q→ 0. In this case,

resumming the shared logarithmic terms requires running between the hard, beam, and

(refactorized) soft function. In SCET+ this amounts to setting the µ+ scales to be equal

to their µII counterparts,

µ+
S = µ+

S = µII
S , ν+

S = νII
S , (4.63)

which treats the large logarithms in the refactorized double-differential soft function in
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Figure 4.7: Singular/nonsingular comparison between SCETI and SCET+ at NNLL as a function

of qT for fixed T = 5 GeV (left) and as a function of T for fixed qT = 15 GeV (right). The orange

solid lines show the full SCETI result including resummation. The dashed blue lines show the

corresponding SCET+ singular limit with only SCETI resummation. The dotted green lines show

their difference, corresponding to the power corrections indicated in eq. (4.61). The thin vertical

lines indicate our choice of transition points (a1, a2, a3) with respect to the regime parameter a

(upper horizontal axis), as discussed in section 4.4.3.
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Figure 4.8: Singular/nonsingular comparison between SCETII and SCET+ at NNLL as a function

of T for fixed qT = 15 GeV (left) and as a function of qT for fixed T = 5 GeV (right). The orange

solid lines show the full SCETII result including resummation. The dashed blue lines show the

corresponding SCET+ singular limit with only SCETII resummation. The dotted green lines show

their difference, corresponding to the power corrections indicated in eq. (4.61). The thin vertical

lines indicate our choice of transition points (a4, a5, a6) with respect to the regime parameter a

(upper horizontal axis), as discussed in section 4.4.3.
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Figure 4.9: Singular/nonsingular comparison between the matched SCET descriptions and QCD

at fixed O(αs) as a function of qT for T = qT /2 (left) and T = qT (right). The orange solid line

shows the fixed-order QCD double spectrum, the dashed blue the matched SCET result in eq. (4.64),

and the dotted green the difference.

eq. (4.34) at fixed order. We denote this choice of scales by dσ+

∣∣
µII , with scale setting in

bT space and the inverse Fourier transform understood as in section 4.2.3. In figure 4.8

we compare dσ+

∣∣
µII to dσII

∣∣
µII at NNLL as a function of T at fixed qT (left) and vice

versa (right). It is clear that even when evaluated at its intrinsic scales, dσII

∣∣
µII (solid

orange) exhibits an unresummed singularity as T /qT � 1, which, as expected, is captured

by dσ+

∣∣
µII (dashed blue) up to power corrections (dotted green). This check is highly

nontrivial as it involves an additional Fourier transform on both sides of the comparison.

We note that the strong kinematic suppression of the double spectrum for T & qT is

correctly captured by SCETII, where central soft modes resolve the phase-space boundary.

In SCET+, soft modes have too little energy and collinear-soft modes are too forward to

resolve it, leading to large power corrections in this region.

As a final important consequence of figure 4.6, the complete infrared structure of the

double-differential spectrum for qT � Q and T � Q, i.e., for any hierarchy between qT and

T , is described by adding the SCETI and SCETII cross sections and removing the overlap

between the two by subtracting the SCET+ cross section,

dσ

dQdY dqT dT =
[ dσI

dQdY dqT dT +
dσII

dQdY dqT dT −
dσ+

dQdY dqT dT
]

×
[
1 +O

( q2
T

Q2
,
T
Q

)]
. (4.64)

In figure 4.9 we numerically check this relation at fixed O(αs), which requires setting all

scales equal to a common µFO. We plot the comparison as a function of qT along lines of

fixed T /qT = 1/2 (left) and T /qT = 1 (right), finding excellent agreement between the full

result (solid orange) and the first line on the right-hand side of eq. (4.64) (dashed blue), as

evident from the power-like behavior of their difference (dotted green) as qT , T → 0.

This singular/nonsingular comparison is qualitatively different from the structure of

power corrections in either SCETI or SCETII alone, which we already verified in figure 4.3
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and figure 4.4. Because SCETI and SCETII both involve an additional expansion about a

specific hierarchy between qT and T , they incur power correctionsO(T 2/q2
T ) orO(q2

T /(QT )),

respectively. Accordingly, they only recover the singular limit of full QCD when approaching

it along specific lines in the (qT , T ) plane. This is different from figure 4.9, where the

combined expression in eq. (4.64) (dashed blue) describes the singular limit qT , T → 0 along

an arbitrary line of approach, with the ratio qT /T effectively controlling the “admixture”

of power corrections O(q2
T /Q

2) and O(T /Q), respectively. We have verified that also for

other fixed ratios of qT and T , the singular behavior of full QCD is correctly described.

As a final remark, as noted in ref. [50], this property actually qualifies the expression

dσI+dσII−dσ+ for use as a double-differential subtraction term to treat infrared divergences

in fixed-order calculations.

4.4.2 Matching formula

The structure of power corrections discussed in the previous section, together with the all-

order resummation shared between SCET+ and SCETI or SCETII, suggests the following

matching formula to describe all regions of the double-differential spectrum:

dσmatch = dσ+

∣∣
µ+ +

[
dσI − dσ+

]
µI +

[
dσII − dσ+

]
µII

+
[
dσFO − dσI − dσII + dσ+

]
µFO

. (4.65)

The only ingredient in this matching formula we have not yet discussed is dσ+

∣∣
µ+ , for which

all ingredients in the SCET+ factorization are evaluated at the SCET+ scales µ+, such

that the full RGE of SCET+ is in effect. In the following we describe the requirements on

µ+ to ensure the best possible prediction across phase space. Our precise construction of

µ+ to satisfy all requirements is the subject of section 4.4.3.

In the simplest case, i.e., when the power corrections in eq. (4.30) are small, and thus the

SCET+ parametric assumptions are satisfied, µ+ is given by the canonical SCET+ scales

in eq. (4.38). As for µII, these scales are set in bT space, followed by an inverse Fourier

transform.

As we approach the SCETI region, the resummation inside the refactorization of the

beam function in eq. (4.31) must be turned off,

µ+
B(qT , T , bT )→ µI

B(T )

µ+
S (qT , T , bT )→ µI

B(T )

ν+
S (qT , T , bT )→ ν+

B (qT , T , bT )

 for qT →
√
QT . (4.66)

In addition we can identify the soft scales in SCETI and SCET+ because the soft functions

are identical,

µ+
S (qT , T , bT )→ µI

S(T ) for qT →
√
QT . (4.67)

These relations must hold for every value of the bT argument of the scale.
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Similarly, as we approach the SCETII region, the scales inside the refactorized soft

function eq. (4.34) must become equal

µ+
S (qT , T , bT )→ µII

S (qT , bT )

µ+
S (qT , T , bT )→ µII

S (qT , bT )

ν+
S (qT , T , bT )→ νII

S (qT , bT )

 for qT → T , (4.68)

and we can identify the scales of the common beam function in SCETII and SCET+,

µ+
B(qT , T , bT )→ µII

B(qT , bT )

ν+
B (qT , T , bT )→ νII

B(qT , bT )

}
for qT → T . (4.69)

Some of the above requirements for the behavior at the boundary are already satisfied by

the canonical SCET+ scales, e.g., the canonical soft scales in SCET+ and SCETI are simply

equal. The challenge in these cases is to extend the scale choice onto the opposite boundary,

where they are constrained in a nontrivial way. The nontrivial all-order information in

SCET+ is mostly encoded in the canonical choice of

ν+
S (qT , T , bT ) =

(b0/bT )2

T for T � qT �
√
QT , (4.70)

which does not coincide with any scale on either boundary.

It is instructive to explicitly consider the behavior of eq. (4.65) on the SCETI and SCETII

phase-space boundaries, as well as in the fixed-order region. By construction, for any choice

of µ+ scales satisfying eqs. (4.66) and (4.67) we have

dσ+

∣∣
µ+ → dσ+

∣∣
µI for qT →

√
QT . (4.71)

It follows that

dσmatch → dσI

∣∣
µI +

[
dσFO − dσI

]
µFO

+
[
dσII − dσ+

]
µII −

[
dσII − dσ+

]
µFO

for qT →
√
QT . (4.72)

This mostly coincides with the result in eq. (4.7) of matching dσI to the fixed-order result

dσFO, and is guaranteed to capture all large logarithms of T /Q captured by the SCETI RGE.

It improves over eq. (4.7) by also resumming logarithms of qT /Q in the power corrections

O(T 2/q2
T ), encoded in

[
σII − σ+

]
µII . This is not a numerically large effect and cannot be

exploited to achieve the resummation of T at next-to-leading power, as it is only a subset

of all power corrections.

Similarly, eqs. (4.68) and (4.69) imply that

dσ+

∣∣
µ+ → dσ+

∣∣
µII for qT → T , (4.73)

and consequently

dσmatch → dσII

∣∣
µII +

[
dσFO − dσII

]
µFO

+
[
dσI − dσ+

]
µI −

[
dσI − dσ+

]
µFO

for qT → T . (4.74)
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Scale SCETI SCET+ SCETII

µH Q Q Q

µB
√T Q b0/bT b0/bT

νB Q Q

µS b0/bT

νS (b0/bT )2/T
µS T T b0/bT

νS b0/bT

Table 4.1: Summary of canonical scales in SCETI, SCET+, and SCETII [see eq. (4.6), (4.18) and

(4.38)]. For SCET+ and SCETII we give the canonical scales in bT space.

This mostly coincides with the result in eq. (4.19) of matching dσII to the fixed-order result

dσFO, and thus captures all large logarithms of qT /Q captured by the SCETII RGE. In

addition, it resums logarithms of T /Q in the O(q2
T /(T Q)) power corrections encoded in

[dσI − dσ+]µI .

Finally, in the fixed-order region, all µ+, µI, and µII scales become equal to µFO. Thus

as desired, the matched prediction reduces to the fixed-order result,

dσmatch → dσFO

∣∣
µFO

for qT , T → Q . (4.75)

4.4.3 Profile scales

In this section, we describe our choice of the central µ+ scales for the various ingredients in

the SCET+ factorized cross section, taking into account the transition to the SCETI and

SCETII boundary theories as well as the transition to the fixed-order region. The SCET+

scales are obtained using a regime parameter that selects the appropriate combination

of scales from the boundary theories in each region of phase space, and selects a third,

independent choice in the SCET+ “bulk” when necessary. The profile functions that handle

the transition to fixed order can conveniently be reused from SCETI and SCETII.

We start by summarizing the canonical scales for SCETI, SCETII, SCET+ in table 4.1.

At these scales, the arguments of logarithms in the ingredients of the factorized cross section

are order one, i.e., all large logarithms are resummed by RG evolution. To interpolate

between the canonical scales in different regimes, we find it convenient to introduce the

regime parameter

a = 3− |ln(T /Q)|
|ln(qT /Q)| . (4.76)

Its definition is carefully chosen such that a = 1 when the SCETI parametric relation

is exactly satisfied, qT =
√T Q, and a = 2 on the SCETII boundary of phase space,
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Figure 4.10: Left: Illustration of the regime parameter a that governs the matching between EFTs.

We show lines of constant a in the (qT , T ) plane. For a = 1 the SCETI parametric relation is exactly

satisfied, qT =
√
QT , whereas for a = 2, the SCETII parametric relation is exactly satisfied, qT = T .

Right: Helper functions used to interpolate between scales on the boundaries (SCETI, SCETII) and

in the bulk (SCET+). The helper functions have continuous derivatives and always sum to one.

The individual helper functions are exactly one in their respective canonical regions. See the text

for a detailed discussion.

qT = T . As illustrated in the left panel of figure 4.10, the canonical SCET+ region lies at

intermediate a ∼ 1.5. The requirements on the SCET+ scales were given in eqs. (4.66) and

(4.67) for the transition to SCETI, and in eqs. (4.68) and (4.69) for SCETII. To satisfy

these requirements, we take weighted products of scales on the boundary and in the bulk,

schematically,

µ+ =
[
µI
]hI(a) [

µ+
bulk

]h+(a)[
µII
]hII(a)

. (4.77)

The weights in the exponent are given by helper functions that depend on a, as illustrated

in the right panel of figure 4.10. They satisfy

hI(a) + h+(a) + hII(a) = 1 , (4.78)

for any a and are given explicitly in eq. (4.82) below. The helper functions ensure that the

appropriate scales are used in each region, e.g., hII(a) is one in the vicinity of a = 2 and

vanishes for a < 1.5, with a smooth transition between regions.

For the soft and collinear-soft scales, eq. (4.77) takes the following concrete form:

µ+
S =

[
µI
B

]hI(a) [
µ+
S,bulk

]h+(a) [
µII
S

]hII(a)
,

ν+
S =

[
ν
]hI(a) [

ν+
S,bulk

]h+(a) [
νII
S

]hII(a)
,

µ+
S =

[
µI
S

]hI(a) [
µ+
S,bulk

]h+(a) [
µII
S

]hII(a)
. (4.79)

The most nontrivial of these cases is νS , which must be equal to the overall ν in the SCETI

region to turn off the rapidity resummation there, has a distinct canonical value in the

SCET+ bulk, and must asymptote to yet another value on the SCETII boundary. We note
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that µ+
S also requires a distinct treatment in the bulk to ensure that the hierarchy µ+

S < µ+
S

inside the refactorized soft function, as implied by the SCET+ power counting, is not upset

by variations (see next subsection). Our central choices for the above scales in the bulk are

µ+
S,bulk = µFO f

II
run

(qT
Q
,

b0
b∗(bT )Q

)
, ν+

S,bulk = µFO

[
f II

run

(
qT
Q ,

b0
b∗(bT )Q

)]2

f I
run

(
T
Q

) ,

µ+
S,bulk = µFO f

I
run

(T
Q

)
. (4.80)

The profile function f I
run was introduced for the transition between SCETI and fixed-

order QCD in eq. (4.10), and similarly for the hybrid profile f II
run in eq. (4.22) and the

nonperturbative b∗(bT ) prescription in eq. (4.24). These functions turn off the resummation

of logarithms involving qT (bT ) and T , respectively, as the fixed-order regime is approached,

and also ensure that scales are frozen in the nonperturbative regime to avoid the Landau

pole. It is straightforward to check that away from the nonperturbative region, the above

bulk scales all assume their canonical values for qT , T � Q as given in table 4.1, and

asymptote to µFO when simultaneously taking qT , T → Q. The beam function scales in the

bulk can simply be associated with their SCETII counterparts and only require a transition

towards the SCETI boundary,

µ+
B =

[
µI
B

]hI(a) [
µII
B

]h+(a)+hII(a)
,

ν+
B =

[
ν
]hI(a) [

νII
B

]h+(a)+hII(a)
. (4.81)

In our numerical implementation, we choose the helper functions hI,II,+ as

hI(a) ≡


1 a < a1 ,

1− c123(a) a1 ≤ a < a2 ,

c312(a) a2 ≤ a < a3 ,

0 a3 ≤ a ,

hII(a) ≡


0 a < a4 ,

c456(a) a4 ≤ a < a5 ,

1− c645(a) a5 ≤ a < a6 ,

1 a6 ≤ a ,

h+(a) ≡ 1− hI(a)− hII(a) , (4.82)

where the polynomials governing the interpolation between zero and one are

cijk(a) =
(a− ai)2

(ai − aj)(ai − ak)
. (4.83)

The transition points a1,...,6 determine the transition between the different regions, as can

be seen from the helper functions in figure 4.10: For values a3 ≤ a < a4, the exact canonical

SCET+ scales are selected, implying that the resummation of logarithms of both qT and

T is fully turned on. For lower values a1 ≤ a < a3, the additional qT resummation is

smoothly turned off and for a < a1, SCETI scales are used so that only logarithms of T
are resummed. Conversely, for higher values of the regime parameter a4 ≤ a < a6, the
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resummation of T logarithms is smoothly turned off. At values a6 ≤ a, SCETII scales are

selected by the helper functions, and the additional resummation of logarithms of T is

completely turned off.

In practice we use (a1, a2, a3, a4, a5, a6) = (0.5, 1.0, 1.5, 1.5, 1.75, 2.0). This choice en-

sures that for a ≥ a6 = 2, we fully recover SCETII resummation and faithfully describe

the kinematic edge at qT ∼ T by preserving the O(1) cancellation between σ+

∣∣
µII and the

SCETII nonsingular contribution visible at a ∼ 2 in the left panel of figure 4.8. (In both

figures 4.7 and 4.8, corresponding values of a are indicated on the horizontal axis at the top

of the panels.) On the other hand, from figure 4.7 we observe that power corrections from

SCETI are smaller and tend to set in at values of a lower than the naively expected a = 1.

E.g., an O(1) cancellation between σ+

∣∣
µI and the SCETI nonsingular only is in effect around

a ∼ 0.5 in the right panel of figure 4.7, leaving more room for slowly turning off the SCET+

resummation down towards a1 = 0.5. This is expected because the SCETI nonsingular

encodes the suppression of collinear recoil beyond the naive phase-space boundary at a ∼ 1

(qT ∼
√
QT ) that is washed out by the PDFs, unlike the sharp kinematic edge at qT ∼ T

encoded in the SCETII nonsingular. For simplicity we set a3 = a4 for our central prediction,

i.e., we shrink the canonical SCET+ region to a point at a = 1.5, and fix a2 (a5) to be

the midpoint between a1 and a3 (a4 and a6). Variations of the transition points, including

independent variations of a3 and a4, are considered as part of our uncertainty estimate

described in the next section.

4.4.4 Perturbative uncertainties

In this section we describe how we assess perturbative uncertainties by varying the scales

entering the matched prediction in eq. (4.65). Following the same approach as for SCETI

and SCETII on their own (see sections 4.2.2 and 4.2.3), we distinguish between resummation

uncertainties and a fixed-order uncertainty. The fixed-order uncertainty ∆FO is estimated

by varying µFO up and down by a factor of two, i.e., by setting µFO = {Q/2, 2Q}. Since

all scales (in any piece of the matching formula) include an overall factor of µFO, the ratios

between the various scales remain unchanged and the same logarithms are resummed. The

fixed-order uncertainty ∆FO is then taken to be the maximum deviation from the central

cross section.

We consider several sources of resummation uncertainty entering the matched prediction

in eq. (4.65). To probe the tower of logarithms of T /Q predicted by the SCETI RGE, we

perform variations of µI
B and µI

S parametrized by α and β as in eq. (4.11). This directly

affects the resummed power corrections
[
dσI − dσ+

]
µI

captured by SCETI. In addition,

however, dσ+

∣∣
µ+

near the SCETI boundary also undergoes variations because for large hI,

the SCET+ scales in eqs. (4.79) and (4.81) strongly depend on their SCETI counterparts

and inherit their variations. Our setup thus ensures that in (or near) the SCETI region,

variations probing resummed logarithms of T /Q are properly treated as correlated between

the SCET+ cross section and the SCETI matching correction. When referring to the

matched prediction in eq. (4.65), we take ∆I to be the maximum deviation of dσmatch from

163



Chapter 4 – Joint two-dimensional resummation in qT and 0-jettiness at NNLL

its central value under these correlated variations of α, β.

In complete analogy, we define ∆II as the maximum deviation under correlated variations

of µII as described in section 4.2.3. These variations act on both
[
dσII−dσ+

]
µII

and dσ+

∣∣
µ+

,

where now the SCET+ scales inherit variations from µII near the SCETII boundary (where

hII is large). As a result, ∆II probes an all-order set of logarithms of (b0/bT )/Q predicted and

resummed by the SCETII RGE, and properly captures the correlated tower of logarithms in

SCET+. We like to stress that our setup is fully general with respect to the method chosen

to perform scale variations for the boundary theories, as any variation will automatically

be inherited by SCET+.

As a final source of uncertainty, we consider the uncertainty inherent in our matching

procedure and in our choice of SCET+ scales in the bulk. To estimate this we perform the

following 8 variations of the (in principle arbitrary) transition points (a1, a3, a4, a6),

(↑,−,−,−) , (−, ↓,−,−) , (−,−,−, ↓) , (−, ↑, ↑,−) ,

(↓,−,−,−) , (−,−, ↑,−) , (−,−,−, ↑) , (−, ↓, ↓,−) , (4.84)

where ↑ (↓) indicates a variation by +0.2 (−0.2), a dash indicates keeping the transition

point fixed, and we always maintain a2 = (a1 + a3)/2 and a5 = (a4 + a6)/2. In addition,

we perform the following two variations of the SCET+ bulk scales,

µ+
S,bulk = µFO

(qT
T
)+γ/2

f II
run

(qT
Q
,
b0
b∗Q

)
,

µ+
S,bulk = µFO

(qT
T
)−γ/2

f I
run

(T
Q

)
, γ = {+1/6,−1/6} , (4.85)

where γ = 0 corresponds to the central scales in eq. (4.80). Similarly to the role of β in

the SCETI variations [see eq. (4.11)], making the strength of the γ variations depend on

the ratio qT /T ensures that the hierarchy µS < µS implied by the SCET+ power counting

is not upset by variations, counting b0/bT ∼ qT . We note that the third independent bulk

scale ν+
S,bulk does not require independent variation because it only enters through rapidity

logarithms of ν+
B/ν

+
S , which are already being probed by variations of ν+

B inherited from

SCETII. Taking the envelope of the eight transition point variations and the two bulk

scale variations, we obtain a third contribution to the resummation uncertainty denoted by

∆+. The total uncertainty assigned to the matched prediction is then given by adding all

contributions in quadrature,

∆total = ∆+ ⊕∆I ⊕∆II ⊕∆FO . (4.86)

4.5 Results

In this section we present our results for Drell-Yan production pp→ Z/γ∗ → `+`− at the

LHC, with a simultaneous measurement of the transverse momentum qT of the lepton pair

and the 0-jettiness event shape T . The center-of-mass energy is taken to be Ecm = 13 TeV.
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We assume that in addition, the invariant mass Q of the lepton pair is measured, and write

pp→ Z for short if Q = mZ , and pp→ Z∗ otherwise.

To obtain numerical results for the SCETI, SCETII, and SCET+ contributions, we have

implemented all pieces of the relevant double-differential factorized cross sections to O(αs)

and their RGEs to NNLL in SCETlib [8]. The fixed NLO contributions in full QCD are

obtained from MCFM 8.0 [330–332]. We make use of the MMHT2014nnlo68cl [110] NNLO

PDFs with five-flavor running and αs(mZ) = 0.118. Since we focus on the perturbative

calculation and do not include any nonperturbative effects, we provide the results down to

1 GeV in qT and T .

The outline of this section is as follows: In section 4.5.1 we present our fully resummed

prediction for the double-differential spectrum, both as surface plots over the (qT , T ) plane

and for selected slices along lines of constant qT or T . We demonstrate that our prediction

smoothly interpolates between the SCETI and SCETII boundary theories, i.e., we show that

our matching formula in eq. (4.65) recovers the matched predictions on either boundary

and improves over them by an additional resummation of power-suppressed terms. Finally,

in section 4.5.2 we present our predictions for the single-differential spectra dσ(qcut
T )/dT

and dσ(Tcut)/dqT with a cut on the other variable, and show how they recover the inclusive

single-differential T and qT spectra for large values of qcut
T and Tcut, respectively.

4.5.1 Double spectrum and comparison with boundary theories

To highlight the necessity of the simultaneous resummation of large logarithms of both

qT and T , we start by showing results for the double spectrum (the cross section double-

differential in qT and T ) where only some of the logarithms are resummed. These results

are shown as surface plots in figure 4.11, where we plot the double-differential spectrum

with respect to log10 qT and log10 T for better visibility. In each case the left rear wall

of the surface plot shows the result of integrating the double-differential spectrum up to

Tcut = 100 GeV, but staying differential in log10 qT . Similarly, the right rear wall shows the

projection onto the single-differential spectrum in log10 T , with a cut at qcut
T = 100 GeV.10

The top left panel of figure 4.11 shows the spectrum evaluated at fixed O(αs), without

any resummation. The double-differential fixed-order spectrum diverges logarithmically for

small T at any value of qT , while its projections onto the single-differential spectra in qT and

T feature double-logarithmic singularities. Notably, the double-differential spectrum has a

sharp kinematic edge along qT = T . This sharp edge is unphysical because it only reflects

the kinematics of a single on-shell emission with transverse momentum kT at rapidity η,

which contributes at most T = kT e
−|η| ≤ kT = qT . Due to the vectorial nature of qT ,

however, back-to-back emissions can populate the region T > qT at higher orders, and the

kinematic edge must be smeared out.

Next, we consider the cases in which only logarithms of one variable are resummed, while

logarithms involving the auxiliary variable are treated at fixed order. In the middle panel

of figure 4.11, we show the result of resumming logarithms of T using the SCETI matched

10We refer the reader to appendix G.1 for the precise way we perform these integrals.
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Figure 4.11: The double-differential Drell-Yan cross section at fixed NLO (top), resummed

NNLLT +NLO (center), and NNLLqT +NLO (bottom). The resummed predictions are obtained by

using only SCETI (SCETII) renormalization group evolution to resum logarithms of T (qT ), as

outlined in section 4.2.2 (section 4.2.3), and matching the result to the fixed-order cross section.

For better visibility we show the spectrum with respect to log10 qT and log10 T . On the rear walls

we show the result of integrating the double spectrum over either variable up to a cut at 100 GeV.
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result in eq. (4.7). The resummation is performed at NNLL and is matched to full NLO,

which we refer to as NNLLT+NLO. As discussed in section 4.2.2, this prediction is valid

as long as the parametric relation T � qT ∼
√
QT is satisfied. This corresponds to the

SCETI phase-space boundary (blue) in figure 4.2, running from the region of small T and

intermediate qT towards the fixed-order region where qT ∼ T ∼ Q. It is clear that away

from its region of validity, the NNLLT +NLO result contains unresummed logarithms of qT
because at any point in T , the prediction diverges for very small qT . In particular, power

corrections of O(T 2/q2
T ) are only captured by the fixed-order matching. They become

O(1) as one approaches the diagonal T = qT (the green line in figure 4.2), and encode the

phase-space boundary at qT ∼ T . As in the NLO case, treating this phase-space boundary

at fixed order leads to the sharp kinematic edge along the diagonal; physically, the all-order

tower of collinear emissions that contribute to qT in SCETI cannot resolve the boundary

because it arises from the dynamics at central rapidities. The projections onto the rear

walls highlight that only T is resummed. The single-differential qT spectrum still diverges

as qT → 0, while the T spectrum features a physical Sudakov peak.

In the bottom panel of figure 4.11, we show the result of resumming logarithms of

(the bT variable conjugate to) qT to NNLL and matching to fixed NLO, using the SCETII

matched result in eq. (4.19). We denote this order by NNLLqT+NLO. This result is valid for

T ∼ qT �
√
QT , i.e., around the SCETII phase-space boundary (green) in figure 4.2, where

we find the onset of a Sudakov peak from the qT resummation and a smooth kinematic

suppression towards T � qT . However, the NNLLqT+NLO result diverges for smaller

values of T . This is due to unresummed logarithms of T in both the factorized cross section

in SCETII and terms of O(q2
T /(QT )) that are treated at fixed order as part of the matching

correction. In this case the single-differential projections show a Sudakov peak in qT , but

a logarithmic divergence at small T .

Our final results for the Drell-Yan double spectrum are shown in figure 4.12, as given by

the fully matched prediction in eq. (4.65). Here all resummed contributions are evaluated

at NNLL, and we match to fixed NLO. This achieves, for the first time, the complete

resummation of all large logarithms in the double spectrum, so we simply refer to this order

as NNLL+NLO. The top row of plots is for Q = mZ , i.e., for Drell-Yan production at the

Z pole. In the bottom row we consider Q = 300 GeV as a representative phase-space point

at higher production energies. Our matched and fully resummed double spectrum features

a two-dimensional Sudakov peak that is situated between the two parametric phase-space

boundaries (cf. figure 4.2), is smoothly suppressed beyond, and shifts towards higher values

of qT and T for Q = 300 GeV, as expected. Integrating the double spectrum over either

variable also results in a physical Sudakov peak, as can be seen from the projections onto the

rear walls. Up to small differences in scale setting discussed in appendix G.1, the left and

right rear walls agree with the result of integrating the NNLLqT+NLO and NNLLT +NLO

results in figure 4.11 over T and qT , respectively. The contour plots in figure 4.12 show the

total perturbative uncertainties ∆total as percent deviations from the central result for the

double spectrum. As described in section 4.4.4, ∆total combines estimates of all sources of

resummation uncertainty in the prediction.
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Figure 4.12: The double-differential Drell-Yan cross section at NNLL+NLO, at Q = mZ (top) and

Q = 300 GeV (bottom), with respect to log10 qT and log10 T . On the rear walls we show the result

of integrating the double spectrum over either variable up to a cut at 100 GeV. The contour plots

indicate total perturbative uncertainties relative to the cross section, ∆total = ∆+⊕∆I⊕∆II⊕∆FO.

The contour plots are left blank in the region where dσ/(dQ d log10 qT d log10 T ) is less than 3% of

its peak height.

In figure 4.13, we break down the uncertainty for the Drell-Yan double-differential

spectrum at Q = mZ into its contributions from SCETI, SCETII and SCET+ resummation

uncertainties, respectively. As expected, the SCETI resummation uncertainty dominates

in the SCETI region of phase space, and similarly for SCETII. The SCET+ resummation

uncertainty is largest along the phase-space boundaries, indicating that it is mostly sensitive

to variations of the transition points, i.e., the points where the intrinsic SCET+ resummation

is turned off in our matched prediction.

To further highlight the differences between our fully double-differential resummation

and the single-differential resummation at either NNLLqT or NNLLT , we take slices of the
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Figure 4.13: Breakdown of resummation uncertainties contributing to the relative uncertainty in

the top right panel of figure 4.12, showing (from left to right) ∆I, ∆II, and ∆+. As in figure 4.12

we leave regions blank where the cross section is small.

surface plots and overlay them in figure 4.14, keeping qT (left) or T (right) fixed. The solid

red curve corresponds to the matched and fully resummed cross section in eq. (4.65), with

the uncertainty band given by the total perturbative uncertainty ∆total, see eq. (4.86). The

matched SCETI (dashed blue) and SCETII (dotted green) predictions correspond to the

middle and bottom panel of figure 4.11, respectively. Their uncertainty bands are given

by ∆I
total and ∆II

total, which only probe a subset of higher-order terms as predicted by the

respective RGE, see eqs. (4.14) and (4.27). The SCETI prediction features an unphysical

sharp edge at T = qT , cf. the middle panel of figure 4.11, and for this reason is cut off at

T = 0.8 qT .

All panels in figure 4.14 show that our final prediction smoothly interpolates between the

SCETI and SCETII boundary theories, both for the central values and for the uncertainties.

Specifically, the matched prediction tends towards SCETI (SCETII) for small (large) values

of T and large (small) values of qT . In the left column one clearly sees that SCETII only

captures logarithms of T at fixed order, leading to a diverging spectrum as T → 0, while

the complete NNLL result features a physical Sudakov peak. Conversely, the SCETI result

diverges as qT → 0, but is rendered physical by the additional qT resummation at NNLL.

We would like to stress that our fully resummed prediction does not exactly agree with

either boundary theory, even beyond the final transition points a1 and a6 where the intrinsic

SCET+ resummation is turned off. The reason for this is that even in these limits, the

matched cross section in eq. (4.65) improves over the matched SCETI and SCETII cross

sections in eq. (4.7) and eq. (4.19) by an additional resummation of power-suppressed terms,

cf. eqs. (4.72) and (4.74). To assess the size of this effect, we again compare both single-

differential resummations (dashed blue and dotted green) to our matched prediction (solid

red) in figure 4.15, but for reference include the case where σ+ in the matched prediction

is evaluated at µI (solid blue) or µII (solid green) directly. One can easily verify from
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Figure 4.14: The double-differential Drell-Yan cross section for fixed qT , as a function of T (left)

and for fixed T , as a function of qT (right). The solid red curves are slices of the surface plots shown in

the top left panel in figure 4.12, up to Jacobians. The blue dashed (green dotted) curve corresponds

to the middle (bottom) panel of figure 4.11. The thin vertical lines indicate the transition points ai
described in section 4.4.3. The SCETI prediction (dashed blue) has an unphysical edge at T = qT ,

see figure 4.11, and is not shown beyond T = 0.8 qT to avoid distraction. See the text for details on

the uncertainty bands.

e.g. the right panel that for qT above the right-most vertical line (where a < a1), the

difference between the solid blue and the dashed blue curves indeed amounts to a small

power-suppressed set of higher-order terms, while our best prediction (solid red) recovers

the solid blue curve as it must. Similarly, for qT below the left-most vertical line (where

a > a6), the difference between the solid green (and solid red) and dashed green curves can

be seen to be a small correction, reflecting the size of power-suppressed higher-order terms

predicted by the SCETI RGE in this region. The asymptotic limits are interchanged in the

left panel, where a < a1 towards the left and a > a6 towards the very right of the plot.

4.5.2 Single-differential spectra with a cut on the other variable

So far we have turned our attention to the cross section differential in both qT and T . In

addition to this double spectrum, our setup also predicts the fully matched and resummed
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Figure 4.15: Slices of the double-differential Drell-Yan cross section at qT = 15 GeV (left) and

T = 5 GeV (right). The solid red, dashed blue, and dotted green curves are identical to the central

results in figure 4.14. The solid blue and green curves depict the SCETI and SCETII limits of our

fully resummed result, given in eqs. (4.72) and (4.74). The thin vertical lines indicate the transition

points ai described in section 4.4.3.

double cumulant cross section, and the single-differential qT (or T ) spectrum with a cut on

the other variable; selected results for these observables are also discussed in appendix G.1

from a more technical point of view. In figure 4.16, we show some more detailed results for

the single-differential spectra with an additional cut, where the left panel shows dσ(qcut
T )/dT

as a function of T for various values of qcut
T , and the right panel shows dσ(Tcut)/dqT as a

function of qT for various values of Tcut. By increasing the value of the cut, they can be seen

to approach the inclusive single-differential spectra (orange solid), with which they must

agree when sending qcut
T →∞ or Tcut →∞, respectively. This is by construction because

we employ cumulant scale setting as appropriate for this prediction, cf. appendix G.1. We

observe that cuts on the other variable shape either spectrum in a very nontrivial way. Tight

cuts . 10 GeV push the peak to lower values and suppress the tail, where the qT spectrum

is somewhat more resilient to cuts on T than vice versa. Intermediate cuts ∼ 10− 15 GeV

keep the peak and mostly lead to a suppression in the tail, while the effect of cuts & 40 GeV

is almost negligible in the qT and T ranges of interest.

4.6 Summary

In this chapter we calculated the Drell-Yan cross section double-differential in the transverse

momentum qT of the lepton pair and the 0-jettiness T . Both T and qT probe the initial

state radiation, leading to Sudakov double logarithms of T /Q and qT /Q in the cross section.

We performed, for the first time, the simultaneous resummation of both kinds of logarithms,

achieving next-to-next-to-leading logarithmic accuracy and matching the result to next-

to-leading fixed order. We accomplish this resummation by using SCETI and SCETII to

describe the regions T � qT ∼
√T Q and T ∼ qT �

√T Q, respectively, and SCET+ to

describe the bulk of phase space in between these boundaries [195].
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Figure 4.16: The single-differential T (left) and qT (right) spectrum with a cut on the other

variable at NNLL+NLO. The different curves represent different values of the cut. The solid orange

lines correspond to the inclusive single-differential spectrum obtained by lifting the cut.

Obtaining reliable numerical predictions required several nontrivial steps: (1) Matching

several factorized cross sections for the different regions of phase space, for which we use

a Venn-diagram method to avoid double counting. (2) Choosing appropriate profile scales

for the various ingredients in the factorization formulas that respect all relevant canonical

scaling relations and at the same time smoothly interpolate between the different regions of

phase space, and varying these scales to estimate perturbative uncertainties. This is signifi-

cantly more involved than in the usual single-differential case, and is further complicated by

the requirement to choose scales in impact parameter (bT ) space for SCETII. For example,

the rapidity scale for the collinear-soft function in SCET+ has a canonical scaling that does

not coincide with any scale on the SCETI and SCETII boundaries. (3) Ensuring that scales

and scale variations are still, to the extent possible, inherited from the single-differential

resummation of T and qT . This makes our setup flexible enough to incorporate other

procedures for estimating the uncertainty in the individual resummations. (4) To handle

the transition between SCETI, SCET+ and SCETII, we introduced profile scales in terms

of a regime parameter a, designed such that a = 1 for SCETI and a = 2 for SCETII. The

precise transition points in a were chosen by comparing the various singular and nonsingular

cross section, and are varied as part of the uncertainty estimate. (5) We also introduced

a new hybrid (i.e., qT and bT dependent) scale choice for qT resummation, allowing the

resummation to strictly take place in bT space, while turning the resummation on and off

using qT .

We demonstrated that our simultaneous resummation of T and qT yields the correct

resummed single-differential cross sections after integrating over either T or qT . This

requires choosing scales at the level of the differential or integrated (cumulative) cross

section as appropriate, which we discuss in more detail in appendix G.1.
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Chapter 5

Generalized threshold factorization

with full collinear dynamics

In this chapter we present and prove a generalized threshold factorization theorem for

color-singlet production processes. It holds in the weaker limit of only xa → 1 for generic xb
(or vice versa), whereas the well-known soft threshold factorization theorem in eq. (2.186)

holds only when xa → 1 and xb → 1 simultaneously. As a first illustrative application of

the new factorization theorem, we use it to predict a nontrivial set of the N3LO corrections

to the Drell-Yan rapidity spectrum.

This chapter is based on ref. [4], where work in close collaboration with the author of

ref. [358] was presented, and some of the results have also appeared in ref. [358]. Compared

to ref. [4], the detailed proof in section 5.3 has been added, and the discussion has been

deepened throughout.

5.1 Motivation

The soft threshold factorization theorem in eq. (2.186) has been widely used in QCD collider

physics for decades. The utility of its partonic version in eq. (2.188) in particular lies in

the fact that while taking τ = Q2/E2
cm → 1 forces the partonic momentum fraction z → 1,

even for typical LHC values of τ � 1, the z ∼ 1 region often numerically dominates the

cross section.

Eq. (2.186) enables the all-order resummation of the leading terms in 1−z, see for example

refs. [210, 211, 219–240]. The resummation at next-to-leading power (NLP) in 1−z has also

received recent interest [206, 207, 406–410]. Another important use is to approximate the

fixed-order cross section by expanding in 1− z, e.g. at N3LO [241, 242, 244–246, 248–250].

However, its applicability is limited by requiring that both partonic momentum fractions in

the proton approach 1, which neglects a tower of singular terms in each momentum fraction.

In particular, all off-diagonal partonic channels are power suppressed in this limit.

In this chapter, we present, derive, and apply the factorization theorem that generalizes

eqs. (2.186) and (2.188) to the weaker limit where only one of

xa =
Q

Ecm
e+Y , xb =

Q

Ecm
e−Y , (5.1)
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p p
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Figure 5.1: Illustration of the inclusive production of a Drell-Yan pair (blue) at large rapidity. The

right-moving proton (red) is probed at large momentum fraction. The hadronic final state (green)

by momentum conservation becomes collimated in the direction opposite to the color-singlet final

state, and predominantly consists of collinear initial-state radiation emitted from the active parton

in the left-moving proton.

or the corresponding partonic momentum fraction, approaches 1, while keeping the exact

dependence on the other variable. This corresponds to the kinematic limit |Y | → Ymax =

ln(Ecm/Q) for generic (including small) Q values.

This chapter is structured as follows: In section 5.2, we present the new factorization

theorem and introduce the relevant ingredients in nontechnical terms. A formal proof

of the factorization theorem using soft-collinear effective theory is given in section 5.3.

The extraction of a new beam function matching coefficient to O(α2
s) that arises in the

theorem is described in section 5.4. In section 5.5, we perform an extensive validation

of the factorization against known fixed-order results in full QCD through NNLO. In

section 5.6, we present some illustrative applications of the new factorization theorem,

including color-singlet rapidity spectra at N3LO. We summarize our results in section 5.7.

5.2 Generalized threshold factorization theorem

We use light-cone coordinates pµ ≡ (n · p, n̄ · p, ~p⊥) ≡ (p+, p−, ~p⊥) with respect to lightlike

vectors nµ ≡ (1, ẑ) and n̄µ ≡ (1,−ẑ) along the beam axis ẑ.1 We first consider the

observables q∓ instead of Q and Y , with corresponding momentum fractions

x∓ ≡
q∓

P∓a,b
=

√
Q2 + q2

T

Ecm
e±Y . (5.2)

We consider the generalized threshold limit

λ2
QCD � λ2 ∼ 1− x− � 1 for generic x+ , (5.3)

where λQCD ≡ ΛQCD/Q and λ are power-counting parameters. In this limit, illustrated in

figure 5.1, the leptonic final state L has large Y while the emissions in X become collimated

1Note that at variance with our conventions in section 2.2, we start out with nµ and n̄µ defined in the

hadronic center-of-mass frame (the lab frame) for the purposes of this section, so that in general q+ 6= q−.

In the next section we will explicitly transition to the leptonic frame and recover our standard choice of

nµ, n̄µ ≡ nµa,b = (1,±ẑ)lep. The boost-invariant ratios x± are independent of this choice in any case.
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in the opposite direction with typical momenta

pµX ∼ (q+, P−a − q−, ~pX⊥) ∼ (q+, λ2q−, λ
√
q+q−) . (5.4)

In this situation, the following factorization theorem holds to leading power in 1− x−,

dσ

dx−dx+
=
∑
i,j

Hij(q
+q−, µ)

∫
dt f thr

i

[
x−

(
1 +

t

q+q−

)
, µ
]
Bj(t, x+, µ) . (5.5)

To derive eq. (5.5), we use the soft-collinear effective theory (SCET) reviewed in section 2.2.

The key element in the derivation are the necessary degrees of freedom (modes) in the

effective theory. Here we go through the terms in eq. (5.5) and briefly introduce the

corresponding modes and the physics they describe. A detailed technical derivation of

the factorization theorem, including modes whose contributions cancel and the formal

definitions of all ingredients, is given in section 5.3 below.

In eq. (5.5), Bj(t, x, µ) is the inclusive beam function that also appears in the factorization

for N -jettiness, e.g. for N = 0 as given in eq. (2.214). It describes the QCD final state at

the scale λQ, whose scaling by eq. (5.4) is constrained to be

n̄-collinear: pµ ∼ (q+, λ2q−, λ
√
q−q+) . (5.6)

The beam function depends on the transverse virtuality t and momentum fraction x of the

colliding parton j. Since t ∼ p2
X ∼ λ2Q2 � Λ2

QCD, the beam function can be calculated

perturbatively in terms of standard PDFs using the beam function OPE in eq. (2.217).

The hard function Hij encodes hard virtual corrections pµ ∼ Q(1, 1, 1) that are integrated

out in SCET, and arises from matching the electroweak current for L onto the corresponding

SCET current. It is the same universal hard function as for all other factorization results

for color-singlet production in this thesis.

The threshold PDF f thr
i (x, µ) describes the extraction of a parton i from the proton at

large values x→ 1 of the momentum fraction,

fi(x, µ) = f thr
i (x, µ)

[
1 +O(1− x)

]
. (5.7)

It combines contributions from two modes,

n-collinear: pµ ∼
(

Λ2
QCD

q− , q−,ΛQCD

)
,

n-collinear-soft: pµ ∼
(

Λ2
QCD

λ2q− , λ
2q−,ΛQCD

)
. (5.8)

The n-collinear modes are the active constituents of the proton that initiate the hard

scattering. The n-collinear-soft modes mostly describe the low-energy remnant of the

proton after converting a large fraction x→ 1 of its energy into the leptonic final state. As

we will see in detail in section 5.3, the threshold PDF is in fact the same as in the standard

endpoint DIS, eq. (2.179), and soft threshold factorization theorems, eq. (2.186).
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Next, we consider also measuring ~qT . From eq. (5.4), it follows that generically ~qT ∼
~pX⊥ ∼ λQ, so the ~qT dependence is entirely described by the pn̄ modes, which yields the

factorization theorem

dσ

dx−dx+ d~qT
=
∑
i,j

Hij(q
+q−, µ)

∫
dt f thr

i

[
x−

(
1 +

t

q+q−

)
, µ
]
Bj(t, x+, ~qT , µ) . (5.9)

Here, Bj(t,~kT , x, µ) is the double-differential beam function [397, 398] that we also encoun-

tered in the joint resummation of qT and 0-jettiness in chapter 4.

So far we have been working with the momentum fractions x∓, which are not in direct

correspondence to Q and Y , i.e., the inclusive rapidity spectrum. However, since we have

full control over the transverse momentum ~qT in eq. (5.9), we can change variables to xa,b,

using eq. (5.2) and expanding in λ, which yields

dσ

dxadxb d~qT
=
∑
i,j

Hij(Q
2, µ)

∫
dt f thr

i

[
xa

(
1 +

q2
T

2Q2
+

t

Q2

)
, µ
]
Bj(t, xb, ~qT , µ) . (5.10)

Crucially, when expanding x− = xa[1+q2
T /(2Q

2)+O(λ4)], we have to keep the q2
T /(2Q

2) ∼
λ2 term in the PDF argument because it is of the same order as t/Q2 ∼ λ2. Integrating

eq. (5.10) over ~qT , we obtain

dσ

dxadxb
=
∑
i,j

Hij(Q
2, µ)

∫
dt̃ f thr

i

[
xa

(
1 +

t̃

Q2

)
, µ
]
B̃j(t̃, xb, µ) . (5.11)

The factorization theorems in eqs. (5.10) and (5.11) hold at leading power in the generalized

threshold limit λ2 ∼ 1− xa � 1 for generic xb. They are our key new results. In eq. (5.11)

we changed variables to t̃ = t+ q2
T /2, and defined the new modified beam function

B̃j(t̃, x, µ) =

∫
d2~kT Bj

(
t̃− k2

T

2
, x,~kT , µ

)
. (5.12)

It has the same µ evolution as Bj(t, x, µ) but different constant terms. It obeys a matching

relation analogous to eq. (2.217),2

B̃i(t̃, x, µ) =
∑
j

∫
dz

z
Ĩij(t̃, z, µ) fj

(x
z
, µ
)
. (5.13)

Using the known results for Bj(t,~kT , x, µ) [397, 398], we have calculated the matching

coefficients Ĩjk(t̃, z, µ) to O(α2
s) for j = q and O(αs) for j = g, see section 5.4.3

2In this chapter we reserve the symbol Ĩij for the matching coefficients of the above modified virtuality-

dependent beam function, not to be confused with the bT -space matching coefficients of the qT beam

function in eq. (2.210) as used in the rest of this thesis. The two are also distinguished by their arguments.
3Since the original publication of these results in ref. [4], the double-differential gluon beam function and

the finite terms of the modified beam function introduced here have been calculated to O(α2
s) [411].
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5.2 Generalized threshold factorization theorem

5.2.1 RG consistency and relation to DIS near endpoint

A nontrivial consistency check for Eqs. (5.5), (5.9), (5.10), (5.11) is that they must satisfy

RGE consistency, i.e., the µ dependence must cancel between the different functions on the

right-hand side, since the cross section on the left-hand side does not depend on µ. It is

instructive to see explicitly how this happens, picking out eq. (5.5) as an example. The

hard function satisfies the RGE

µ
d

dµ
Hij(q

+q−, µ) = γiH(q+q−, µ)Hij(q
+q−, µ) ,

γiH(q+q−, µ) = 2Γicusp[αs(µ)] ln
q+q−

µ2
+ γiH [αs(µ)] . (5.14)

Here and below, the superscript i on the cusp and noncusp anomalous dimensions denotes

the relevant color channel i = q or i = g. The beam function is renormalized as in eq. (2.216).

The RGE for the threshold PDF can be read off from that of the full PDF in eq. (2.164).

Taking the limit x → 1, which implies z → 1, and changing variables to ξ = 1 − z yields

the RGE for the threshold PDF,

µ
d

dµ
f thr
i (x, µ) =

∫
dξ γif

[
αs(µ), ξ

]
f thr
i [x(1 + ξ), µ] ,

γif (αs, ξ) = 2Γicusp(αs)L0(ξ) + γif (αs) δ(ξ) , (5.15)

which becomes a Fourier convolution diagonal in flavor with the threshold anomalous

dimension γif (αs, ξ) given by the z → 1 limit of the full splitting functions,

2Pij(αs, z) = δijγ
i
f (αs, 1− z) +O[(1− z)0] . (5.16)

The RGE in eq. (5.15) was also confirmed by direct calculation [214, 216].

Requiring the µ derivative of eq. (5.23) to vanish leads to the following consistency

condition for the anomalous dimensions, after pulling them under a single convolution,

0 = δ(t) γiH(q−q+, µ) +
1

q+q−
γif

[
αs(µ),

t

q+q−

]
+ γiB(t, µ)

= 2Γicusp[αs(µ)]

[
δ(t) ln

q+q−

µ2
+

1

q+q−
L0

( t

q+q−
)
− 1

µ2
L0

( t

µ2

)]
+
{
γiH [αs(µ)] + γif [αs(µ)] + γiB[αs(µ)]

}
δ(t) . (5.17)

The terms proportional to Γicusp can easily be seen to vanish by rescaling the plus distri-

butions to a common argument. For the noncusp terms, the endpoint DIS factorization

in eq. (2.179) implies the relation γiH(αs) + γif (αs) + γiJ(αs) = 0, where γiJ(αs) is the

jet-function noncusp anomalous dimension. Hence, requiring the noncusp terms to vanish

is equivalent to the statement that the beam and jet anomalous dimensions are equal to all

orders, γiB(αs) = γiJ(αs) [293]. The existence of our new factorization theorems provides

an independent confirmation of this fact. The above discussion also shows that to be fully

177



Chapter 5 – Generalized threshold factorization with full collinear dynamics
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Figure 5.2: Terms in the partonic cross section σ̂(za, zb) captured by the soft and generalized

threshold expansions. The leading-power factorization theorems without matching are indicated by

the dark blue and filled orange boxes, respectively. Terms captured by the generalized threshold

expansion at different orders are indicated by successively lighter shades of blue. (The LPgen includes

the soft orange box.) Terms captured by the soft expansion at different orders are indicated by

boxes with successively lighter gray edges.

consistent, the factorization theorem has to contain the threshold PDFs. Using the full

PDFs, the RGE consistency would only hold up to power corrections in 1− x.

The equivalence of RG consistency in the two cases underlines the close physical con-

nection to inclusive DIS near endpoint, which, roughly speaking, is related to our new

factorization theorem by crossing, with the jet function Jj describing collimated final-state

radiation. The key differences to endpoint DIS, allowing for a richer perturbative structure,

are the additional dependence on xb, the presence of off-diagonal partonic channels at

leading power, and the nontrivial dependence on qT . The latter in particular allows for the

subtle distinction between the factorization theorems for x∓ and xa,b, which bears some

resemblance to different 1-jettiness definitions in exclusive DIS [292].4

5.2.2 Matching and partonic factorization theorem

Since eq. (5.11) is valid for xa → 1 and arbitrary xb, it must contain the soft threshold

factorization in eq. (2.186) for xb → 1 as a special case. Stripping off common ingredients,

this implies

B̃j(ωk
−, xb, µ) =

∫
dk+

ω
Sj(k

−, k+, µ) f thr
j

[
xb

(
1 +

k+

ω

)
, µ
]

(5.18)

to leading power in 1−xb. Identical results hold for x±, i.e., for the standard inclusive beam

function Bj(t, x, µ) on the left-hand side, as well as differential in transverse momentum.

4We note that some of the factorization theorems in ref. [292] could also be marginalized over the transverse

momentum of collinear ISR, giving rise to projections of the double-differential beam function similar

to eq. (5.12). In the case of ref. [292], however, the factor multiplying k2
T in the first argument of the

beam function would be −1 rather than −1/2, so our explicit results for Ĩij computed in this chapter

unfortunately do not carry over immediately. We thank C. Lee and D. Kang for discussion on this point.
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5.3 Proof of the factorization theorem

A formal derivation of eq. (5.18) is given in section 5.3.5, with particular attention to the

possible issue of noncommuting limits in xa and xb.

With the relation to the soft limit at hand, we can ask what terms are captured by our

new factorization theorem at the level of the partonic cross section. Expanding fi(x/z)/z =

f thr
i [x(1 + 1− z)]× [1 +O(1− z)] in eq. (2.64) and comparing to eq. (5.11), we find

σ̂ij(za, zb, Q, µ = Q) =
∑
k

Ĥik Îkj(za, zb)
[
1 +O(1− za)

]
, (5.19)

where we changed variables to za,b and defined

Ĥij ≡ Hij(Q
2, µ = Q) ,

Îij(za, zb) ≡ Q2 Ĩij
[
Q2(1− za), zb, µ = Q

]
. (5.20)

Here we focus on the partonic cross section at a fixed scale for simplicity and suppress

the residual dependence on Q through αs(Q). From eq. (5.19), we see that all singular

terms ∼ (1 − za)−1 are captured by the beam function coefficient, including their exact

dependence on zb and across partonic channels. This is illustrated by the vertical blue box

with ma = −1 in figure 5.2. The overlap with the opposite limit zb → 1, indicated by the

horizontal blue box with mb = −1, is precisely given by the soft function (the filled orange

box at ma = mb = −1),

Îij(za, zb) = δij Ŝi(za, zb)
[
1 +O(1− zb)

]
, (5.21)

where Ŝi(za, zb) was defined in eq. (2.189). This is the partonic version of eq. (5.18).

Combining the leading terms encoded in Îij(za, zb) and Îij(zb, za) and removing the soft

overlap, we obtain, at the partonic level, the generalized threshold factorization theorem

σ̂ij(za, zb, Q, µ = Q) =
∑
k,`

Ĥk`

[
δki Î`j(za, zb) + Îki(zb, za) δ`j − δki δ`j Ŝi(za, zb)

]
+O

[
(1− za)0(1− zb)0

]
. (5.22)

As written, all remaining power corrections to this expression are integrable in za,b in all

possible limits, with ma,mb ≥ 0. Thus we see that eq. (5.22) isolates all singularities in

color-singlet rapidity spectra in a fully process-independent way, with the process-dependent

virtual corrections captured by the overall hard function. This should be contrasted with

eq. (2.188), which only captures the doubly singular terms in za,b, but drops relative power

corrections of both O(1 − za) and O(1 − zb), i.e., the boxes immediately adjacent to the

soft orange box in figure 5.2. An analogous expression to eq. (5.22) holds at hadronic level

by directly matching the hadronic factorization theorems.

179



Chapter 5 – Generalized threshold factorization with full collinear dynamics

Mode Lab frame Leptonic (Ŷ = 0) frame

(+,−,⊥) (+,−,⊥)

pn̄ (q+, λ2q−, λ
√
q−q+) Q (1, λ2, λ)

Pn̄

(
q+,

Λ2
QCD

q+
,ΛQCD

)
Q (1, λ2

QCD, λQCD)

Pn

(Λ2
QCD

q−
, q−,ΛQCD

)
Q (λ2

QCD, 1, λQCD)

Pcs

( 1

λ2

Λ2
QCD

q−
, λ2q−,ΛQCD

)
Q
(λ2

QCD

λ2
, λ2, λQCD

)

Pus

(Λ2
QCD

q−
,
Λ2

QCD

q+
,

Λ2
QCD√
q+q−

)
Q (λ2

QCD, λ
2
QCD, λ

2
QCD)

PG

(Λ2
QCD

q−
,
Λ2

QCD

q+
,ΛQCD

)
Q (λ2

QCD, λ
2
QCD, λQCD)

Table 5.1: Relevant EFT modes in the limit λQCD ∼ λ2 ∼ 1 − x− � 1 in the lab (hadronic

center-of-mass) frame and the leptonic frame where Ŷ = 0. Lowercase p (uppercase P ) indicates

that a mode is perturbative (nonperturbative). In the right column we used that in the leptonic

frame, q± → q̂± =
√
q+q− ∼ Q.

5.3 Proof of the factorization theorem

In this section we give a detailed derivation of the factorization theorem in eq. (5.9), from

which all the other factorization theorems follow. We repeat it here for easy reference:

dσ

dx−dx+ d~qT
= Hij(q

+q−, µ)

∫
dt f thr

i

[
x−

(
1 +

t

q+q−

)
, µ
]
Bj(t, x+, ~qT , µ) . (5.23)

For definiteness, and because it provides some additional insight on the spin dynamics as

x− → 1, we focus on the Drell-Yan process, described in detail in section 2.1.3. Our results

readily generalize to other color-singlet process.

Equation (5.23) is valid up to power corrections in λ2 in the generalized threshold limit

λ2 ∼ 1− x− � 1 for generic x+ , λQCD ≡ ΛQCD/Q ∼ λ2 � λ . (5.24)

We require λQCD � λ for reasons that will be apparent soon. Without loss of generality

we can then consider λQCD ∼ λ2. This relation is to be interpreted as follows: First, in

our context, λQCD denotes the scale of the PDFs, which is generically allowed to be as

large as λ2 and does not necessarily have to be nonperturbative. If it happens to be a

perturbative scale, then the physics below λQCD is simply described by the PDF evolution.

Conversely, it also means that λ2 is in principle allowed to be as small as λQCD including

being nonperturbative, i.e., it is only relevant that λ� λQCD is perturbative.
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5.3 Proof of the factorization theorem

5.3.1 Degrees of freedom and Glauber cancellation

The key step in deriving eq. (5.23) is to identify the relevant degrees of freedom (modes)

in the effective field theory (EFT) that describe the physical situation. They are defined

by the relative scaling of their light-cone momentum components and are summarized in

table 5.1.

The pn̄ modes describe the hadronic final state of the collision. Their scaling is determined

by the fact that in the limit of eq. (5.24), there is only p−n̄ ∼ λ2Ecm ∼ λ2q− minus

momentum available. On the other hand, their plus momentum is unconstrained, which

means it has generic scaling set by the hard interaction, p+
n̄ ∼ ξbEcm ∼ xbEcm ∼ q+. Since

p2
n̄ ∼ λ2q+q− ∼ λ2Q2 � Λ2

QCD, the pn̄ modes are perturbative. Therefore, they describe

the perturbative QCD final state produced in the partonic collision in addition to L (but

excluding the beam remnant). The Pn and Pn̄ modes describe the incoming protons, or

more precisely, the partons in the proton with the typical momentum fractions required

to produce the hard final state. This means their scaling is determined by P−n ∼ q− and

P+
n̄ ∼ ξbEcm ∼ xbEcm ∼ q+ and P 2

n ∼ P 2
n̄ ∼ Λ2

QCD.

The collinear-soft Pcs modes describe the interactions between the pn̄ and Pn modes.5

Their scaling is thus determined by P−cs ∼ p−n̄ ∼ λ2Q and Ps⊥ ∼ Pn⊥ ∼ ΛQCD or equivalently

P 2
cs ∼ P 2

n ∼ Λ2
QCD. Hence, they keep the pn̄ modes on shell and have a SCETI-like relation

to them. Their interactions with the pn̄ modes in the leading-power SCET Lagrangian

are decoupled and moved into collinear-soft Wilson lines Vn(x) in the SCET current via

the BPS field redefinition. At the same time, the Pcs modes have a SCETII-like relation

to the Pn modes, i.e., they have the same virtuality but are parametrically separated in

rapidity. Hence, their interactions with the Pn modes, which take the Pn modes off shell,

are described by collinear-soft Wilson lines Xn(x) in the SCET current that are generated

during the matching onto SCET. The distinction of the Pcs modes relies on λQCD � λ,

while for λQCD ∼ λ, they would become degenerate with the pn̄ and Pn̄ modes.

The power counting and the relations between the modes are most transparent in the

leptonic frame, which is the frame where the color-singlet final state has total rapidity Ŷ = 0.

Boosting from the lab frame to the leptonic frame by Y , we have q̂± = q±e±Y =
√
q+q− ∼

Q. In the leptonic frame, the pn̄ modes are genuinely n̄-collinear with p−n̄ ∼ λ2p+
n̄ , and

the collinear-soft modes become isotropic when we take λ2 ∼ λQCD, Ps ∼ λ2Q ∼ λQCDQ.

By contrast, in the lab frame we must separately keep track of q+ and q−, i.e., we cannot

count them as q+ ∼ q−, because we want to take the limit of large q− for generic q+. As a

result, the pn̄ modes do not necessarily appear to be n̄-collinear in the lab frame because

q+ ∼ λ2q− is allowed. However, the key requirement for their factorization is that they

are collinear relative to the collinear-soft modes, which in the lab frame are boosted in the

n-collinear direction i.e., they are n-collinear-soft.

5Note that e.g. in ref. [216], these collinear-soft modes were referred to as soft since one can take λQCD ∼ λ2

without loss of generality as discussed, in which case they indeed become isotropic central soft modes

in the lab frame (or Breit frame, for DIS). Here we refer to them as collinear-soft to highlight that

they have simultaneous SCETI and SCETII relations with neighboring collinear modes, and to avoid

confusion with the perturbative soft modes contributing to the soft threshold factorization theorem.
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Chapter 5 – Generalized threshold factorization with full collinear dynamics

Finally, the ultrasoft (usoft) Pus and Glauber PG modes describe the interactions between

the Pn and Pn̄ modes that are possible without pushing either of them off shell, which

requires P−us ∼ P−n̄ and P+
us ∼ P+

n . The ⊥ component of the usoft modes is fixed by requiring

them to be on-shell modes, P 2
us⊥ ∼ P+

usP
−
us. The corresponding Glauber modes are allowed

to be off shell, so their ⊥ component can be as large as PG⊥ ∼ Pn⊥ ∼ Pn̄⊥ ∼ ΛQCD. The

effects of the usoft and Glauber modes cancel, so we do not need to consider them further.

To see this, note that we are still in the domain of applicability of the general collinear

factorization theorem in eq. (2.65) because in the limit we consider, the lowest scale probed

by the measurement is ΛX ∼ qT ∼ Q
√

1− x− � λQCDQ, and the measurement is still fully

inclusive over transverse momenta at the scale λQCDQ� ΛX . Thus the cancellation of the

Pus and PG degrees of freedom follows in the same way as in the original proof of eq. (2.65)

in refs. [104–106]. This is another reason why we require λQCD � λ.

Importantly, there is only a single collinear sector at the scale λQ, so Glauber modes

with the other possible parametric scaling Q(λ2, λ2, λ) are absent in the EFT and cannot

spoil factorization; while interactions with them would keep the pn̄ modes on shell, there is

no other collinear sector at that scale that they could couple to.

5.3.2 Fields and hard matching

With the modes at hand, we can write down the leading-power EFT operators. All light-

cone momenta from now on are given in the leptonic frame, returning to our standard

conventions, and we drop the hat. The relevant n-collinear operator building block reads

χq n,ω̃n(x) =
[
δPnω̃nχq n(x)

]
, (5.25)

where we pick out a discrete large label momentum ω̃n as indicated by the Kronecker δ, i.e.,

the field on the left-hand side depends on all residual spacetime directions, χq n,ω̃n(x) =

χq n,ω̃n(x+, x−, ~x⊥). Working with discrete label momentum on n-collinear fields will turn

out to be a convenient choice to describe the physics and disentangle n-collinear and

collinear-soft contributions. To further reduce the risk of confusion, we indicate the dis-

creteness of ω̃n by a tilde.

The building blocks in the n̄-collinear sector read

χq n̄,pn̄(x) =
[
δ(ωn̄ − P n̄) δ2(~pn̄⊥ − ~Pn̄⊥)χq n(x)

]
, pµn̄ = ωn̄

nµ

2
+ pn̄⊥ , (5.26)

and have continuous label momentum in all three directions in the sense of eq. (2.139),

so they only depend on χq n̄,pn̄(x) = χq n̄,pn̄(x+), where x+ = n̄ · x is conjugate to a small

residual momentum k−n̄ . The indicated relation between pµn̄ and its components is always

understood in the following. Analogous definitions hold for Bµn,ω̃n⊥ and Bµn̄,pn̄⊥.

Collinear-soft fields always appear in the combination

Ocs(x) ≡ V †n (x)Xn(x) , Ocs(x) ≡ V†n(x)Xn(x) , (5.27)

as dictated by invariance under collinear-soft gauge transformations. Whether Ocs(x) or

O†cs(x) appears in the leading-power hard operators below is determined by the neighboring
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5.3 Proof of the factorization theorem

n and n̄-collinear fields that induced the Wilson lines during the BPS redefinition or the

matching, respectively.

In terms of the above building blocks, the leading-power hard operators read

Oαβq′q̄ (ω̃n, pn̄;x) = χ̄αjq′ n,−ω̃n(x) T
[
O†cs(x)

]jk
χβkq n̄,pn̄(x) ,

Oαβq̄q′(ω̃n, pn̄;x) = χ̄αjq′ n̄,−pn̄(x) T
[
Ocs(x)

]jk
χβkq n,ω̃n(x) ,

Oµνgg (ωn, pn̄;x) =
√
ωnωn̄

{
Bµ,an,−ω̃n⊥(x) T

[
O†cs(x)

]ab Bν,bn̄,−pn̄⊥(x)

+ Bµ,an̄,−pn̄⊥(x) T
[
Ocs(x)

]ab Bν,bn,−ω̃n⊥(x)
}
. (5.28)

These are very similar to the hard operators in eq. (2.154), with an obvious replacement

of ultrasoft by collinear-soft Wilson lines and a relabelling of flavor indices. The more

important difference is that in our current setup, n and n̄-collinear modes are distinguished

not just by their directions, but also by their virtualities and by the fact that only one of

them (n) is accompanied by collinear-soft modes at the same virtuality. Therefore instead

of the generic directions in eq. (2.154), which would allow for permutations n1 ↔ n2, we

should directly pick up the combinations n1 ≡ n, n2 ≡ n̄ and vice versa that are allowed

by label momentum conservation with the external proton states, and dress each with the

appropriate Wilson line.

In terms of these operators, the leading-power current reads

J
(0)µ
V (x) =

∑
ω̃n

∫
dωn̄ d2~pn̄⊥e

−i(ω̃nn·x/2+pn̄·x)

×
[∑
q,q′

CµαβV q′q̄(n, n̄; ω̃n, ωn̄)Oαβq′q̄ (ω̃n, pn̄;x) + CµαβV q̄q′(n, n̄; ω̃n, ωn̄)Oαβq̄q′(ω̃n, pn̄;x)

+ CµV gg ρσ(n, n̄; ω̃n, ωn̄)Oρσgg (ω̃n, pn̄;x)

]
+ other directions . (5.29)

We drop the superscript (0) on the right-hand side because we always work to leading power.

The matching coefficients CµV are exactly the same as when matching QCD onto SCETI in

eq. (2.144). To see this, note that we can perform the matching using the fully factorized

operators to compute the relevant matrix elements in the EFT, in which case the result is

independent of the precise relation between the modes and only depends on the number of

collinear sectors (two) and soft or collinear-soft Wilson lines (two, with matching orientation

and charges). In addition, the leading-power Wilson coefficients can only depend on the

large label components ω̃n, ωn̄, but not on ~pn̄⊥ ∼ λQ, and are independent of whether the

label momenta are discrete or continuous. The matching coefficient in the second quark

term in eq. (5.29), where we interchanged the directions, is related to the first by

CµαβV q′q̄(n, n̄; ω̃n, ωn̄) = CµαβV q̄q′(n̄, n;ωn̄, ω̃n) . (5.30)

The two terms in the gluon operator in eq. (5.28) have the same matching coefficient

CµV gg ρσ(n, n̄; ω̃n, ωn̄) due to Bose symmetry [57]. We note that rather than matching QCD

directly onto these modes, one may also perform a multi-stage matching, as was done for

endpoint DIS in ref. [216], which yields the same end result.
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Chapter 5 – Generalized threshold factorization with full collinear dynamics

5.3.3 Factorizing the effective operator matrix element

Our starting point for factorizing the cross section is the hadronic tensor for inclusive

Drell-Yan production in eq. (2.55) integrated over any hadronic observables OX ,

Wµν
V V ′(q, Pn, Pn̄) =

∑∫
X

〈pp|J†µV |X〉〈X|JνV ′ |pp〉 δ4(Pn + Pn̄ − q − pX)

=

∫
d4x

(2π)4
e−iq·x〈pp|J†µV (x) JνV ′(0)|pp〉 . (5.31)

On the second line we have used momentum conservation in the first matrix element to

translate the current to x, and used the completeness relation in eq. (2.33) to eliminate

the sum over final states. After inserting eq. (5.28), the relevant matrix elements in the

EFT take the form 〈pp|O†(x)O′(0)|pp〉, where O and O′ are any of Oq′q̄, Oq̄q′ , Ogg. We

first consider the interference O†βαq̄q′ (ω̃n, pn̄;x)Oα
′β′

q̄q′ (ω̃′n, p
′
n̄; 0) of Oq̄q′ with itself for identical

flavors, but potentially different label momenta, spin, and color indices indicated by a

prime. Since the interactions between different sectors are fully factorized at the level of

the Lagrangian and Glauber and usoft interactions cancel as discussed above, the matrix

element factorizes into individual forward matrix elements in each sector,

〈pp|O†βαq̄q′ (ω̃n, pn̄;x)Oα
′β′

q̄q′ (ω̃′n, p
′
n̄; 0)|pp〉

= θ(ω̃n)θ(ω̃′n)
〈
pn
∣∣χ̄βkq n,ω̃n(x) T̄

[
O†cs(x)

]kj
T
[
Ocs(0)

]j′k′
χβ
′k′

q n,ω̃′n
(0)
∣∣pn〉

× θ(ωn̄)θ(ω′n̄)
〈
pn̄
∣∣χαjq′ n̄,−pn̄(x) χ̄α

′j′

q′ n̄,−p′n̄
(0)
∣∣pn̄〉

=
1

Nc
δω̃nω̃′nθ(ω̃n)

〈
pn
∣∣χ̄βq n(x) T̄

[
O†cs(x)

]
T
[
Ocs(0)

]
χβ
′

q n,ω̃n
(0)
∣∣pn〉

× δ(ωn̄ − ω′n̄) δ2(~pn̄⊥ − ~p ′n̄⊥) θ(ωn̄)
〈
pn̄
∣∣χαq′ n̄(x) χ̄α

′
q′ n̄,−pn̄(0)

∣∣pn̄〉 . (5.32)

Note that the proton state |pn〉 moving in the n-collinear direction must in general contain

collinear-soft degrees of freedom, as discussed in more detail in section 5.3.6, so the collinear-

soft Wilson lines cannot a priori be moved into a separate vacuum matrix element. The

θ functions in front of the matrix elements encode the constraint that the fields in the

operators must annihilate positive-energy states in the proton. On the second equality

we used label momentum conservation in each matrix element to eliminate the primed

label momenta, and the QCD Fierz identity for fields in the fundamental representation to

eliminate primed color indices,

δj` δj′`′ =
1

Nc
δjj′δ``′ − 2(T a)jj′(T

a)``′ . (5.33)

Only the first term survives because matrix elements of color-octet operators between the

color-singlet proton states vanish. We will deal with the spin structure later on.

There are analogous contributions from the square of Oq′q̄ and Ogg. The matching

coefficient CµV gg of Ogg is proportional to qµ [57], so this contribution vanishes when dotted

into the conserved leptonic tensor for inclusive Drell-Yan in eq. (2.59). We will give final
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5.3 Proof of the factorization theorem

results for the square of Oq′q̄ in the end. The contributions from the interference of different

operators vanish because forward matrix elements 〈p|χχ|p〉 = 〈p|χ̄χ̄|p〉 = 〈p|χB⊥|p〉 = 0

due to fermion number conservation. Similarly, the interference of quark operators with

flavors that do not match up vanishes, i.e., 〈p|χ̄qχq′ |p〉 = 〈p|χqχ̄q′ |p〉 = 0 due to the flavor

symmetry of QCD.

We next translate all fields in the EFT matrix element back from x to 0 using the

residual momentum operator p̂µ = i∂µ, where we have p̂µ act on the fields to its right (in

the same set of square brackets) using overall momentum conservation,

〈pnpn̄|O†βαq̄q′ (ω̃n, pn̄;x)Oα
′β′

q̄q′ (ω̃′n, p
′
n̄; 0)|pnpn̄〉 (5.34)

=
1

Nc
δω̃nω̃′nθ(ω̃n)

〈
pn
∣∣χ̄βq nT̄[O†cs]

[
eip̂·x T[Ocs]χ

β′

q n,ω̃n

]∣∣pn〉
× δ(ωn̄ − ω′n̄) δ2(~pn̄⊥ − ~p′n̄⊥) θ(ωn̄)

〈
pn̄
∣∣χαjq′ n̄[eip̂·xχα

′j
q′ n̄,−pn̄

]∣∣pn̄〉
=

1

Nc
δω̃nω̃′nθ(ω̃n)

∫
d4kcs e

ikcs·x 〈pn∣∣χ̄βq nT̄[O†cs]
[
δ4(kcs − p̂) T[Ocs]χ

β′

q n,ω̃n

]∣∣pn〉
× δ(ωn̄ − ω′n̄) δ2(~pn̄⊥ − ~p′n̄⊥) θ(ωn̄)

∫
dk−n̄ e

ik−n̄ x
+/2
〈
pn̄
∣∣χαq′ n̄[δ(k−n̄ − p̂−)χ̄α

′
q′ n̄,−pn̄

]∣∣pn̄〉 .
On the second equality we have rewritten the exponentials of p̂µ in terms of its eigenvalues,

i.e., the residual momenta kµcs and k−n̄ as measured on the fields by the δ functions. Note that

when acting on the n̄-collinear fields in the last line, the p̂µ only picks up a minus component

k−n̄ because the fields have continuous label momentum and only depend on residual x+.

Also note that kµcs arises from the action of p̂µ on both n-collinear and collinear-soft fields,

but we will see shortly that the name is justified.

Taking the x integral of the forward matrix element as in eq. (5.31), including the label

momentum phases from the translated EFT operator, leads to three δ functions that encode

the overall momentum conservation for the q+, q−, and ~q⊥ component, respectively,∫
d4x

(2π)4
e−iq·x e+i(ω̃nn·x/2+pn̄·x) 〈pnpn̄|O†βαq̄q′ (ω̃n, pn̄;x)Oα

′β′

q̄q′ (ω̃′n, p
′
n̄; 0)|pnpn̄〉

=
2

Nc

∫
d4kcs

∫
dk−n̄ δ(ω̃n + k−cs + k−n̄ − q−) δ(ωn̄ + k+

cs − q+) δ2(~pn̄⊥ + ~kcs⊥ − ~q⊥)

× δω̃nω̃′nθ(ω̃n)
〈
pn
∣∣χ̄βq nT̄[O†cs]

[
δ4(kcs − p̂) T[Ocs]χ

β′

q n,ω̃n

]∣∣pn〉
× δ(ωn̄ − ω′n̄) δ2(~pn̄⊥ − ~p′n̄⊥) θ(ωn̄)

〈
pn̄
∣∣χαq′ n̄[δ(k−n̄ − p̂−)χ̄α

′
q′ n̄,−pn̄

]∣∣pn̄〉 (5.35)

We now arrive at the key point of this derivation. Since every term in the momentum-

conserving δ functions has definite power counting, we can expand, to leading power,

δ(ω̃n + k−cs + k−n̄ − q−) δ(ωn̄ + k+
cs − q+) δ2(~pn̄⊥ + ~kcs⊥ − ~q⊥)

= δω̃nq−δ(k
−
cs + k−n̄ ) δ(ωn̄ − q+) δ2(~pn̄⊥ − ~q⊥)

[
1 +O(λ, λQCD)

]
. (5.36)

In the δ functions involving the q+ and ~q⊥ components we have expanded away the sub-

leading contributions from kµcs. Importantly, we cannot do so for the δ function involving
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Chapter 5 – Generalized threshold factorization with full collinear dynamics

q− because the difference between q− and ω̃n, which is bounded by ω̃n ≤ P−a due to the

support of the matrix element, is itself of O(λ2). Instead, label and residual momentum in

the q− direction (that together make up the argument of the first δ function on the first line)

are separately conserved in the EFT. Here the Kronecker δ function on the second line is to

be interpreted as having aligned the label momentum grid with the Born kinematics such

that q− exactly coincides with a grid point ω̃n, while any additional residual momentum

is subject to the continuous constraint δ(k−cs + k−n̄ ). (Being able to make this distinction

transparent was the reason we chose discrete label momenta for n-collinear modes.) Note

that in the derivation of an exclusive factorization formula away from the endpoints, one

would have expanded away all residual momenta in this step, such that the large label

momenta would simply be set to ωn,n̄ = q∓ and nontrivial convolutions between matrix

elements would only arise from the factorized measurement.

Plugging eq. (5.36) into eq. (5.35) allows us to perform the integrals over the k+
cs and

~kcs⊥ components that are now unconstrained,∫
d4x

(2π)4
e−iq·x e+i(ω̃nn·x/2+pn̄·x) 〈pnpn̄|O†βαq̄q′ (ω̃n, pn̄;x)Oα

′β′

q̄q′ (ω̃′n, p
′
n̄; 0)|pnpn̄〉

=
2

Nc

∫
dk−cs

∫
dk−n̄ δω̃nq−δ(k

−
cs + k−n̄ ) δ(ωn̄ − q+) δ2(~pn̄⊥ − ~q⊥)

× δω̃nω̃′nθ(ω̃n)
〈
pn
∣∣χ̄βq nT̄[O†cs]

[
δ(k−cs − p̂−) T[Ocs]

]
χβ
′

q n,ω̃n

∣∣pn〉
× δ(ωn̄ − ω′n̄) δ2(~pn̄⊥ − ~p′n̄⊥) θ(ωn̄)

〈
pn̄
∣∣χαq′ n̄[δ(k−n̄ − p̂−)χ̄α

′
q′ n̄,−pn̄

]∣∣pn̄〉
≡ 2

Nc

∫
dt δω̃nq−δ(ωn̄ − q+) δ2(p

n̄~⊥ − ~q⊥)

× δω̃nω̃′nMβ′β
q n

( ω̃n + t/ωn̄

P−n

)
δ(ωn̄ − ω′n̄) δ2(~pn̄⊥ − ~p′n̄⊥)Mαα′

q̄′ n̄

(
t,
ωn̄

P−n̄
, ~pn̄⊥

)
, (5.37)

where we used that the dominant contribution to k−cs indeed comes from the collinear-soft

modes to move the n-collinear field out of the square brackets on the third line,

[
δ(k−cs − p̂−) T[Ocs]χ

β′

q n,ω̃n

]
=
[
δ(k−cs − p̂−) T[Ocs]

]
χβ
′

q n,ω̃n

[
1 +O

(λ2
QCD

λ

)]
(5.38)

On the second equality we performed the k−cs integral and changed variables to t = −ωn̄k−n̄ >

0. Making all δ functions explicit, the n̄-collinear matrix element Mq̄′ n̄ is defined as

Mαα′
q̄′ n̄

(
t,
ωn̄

P+
n̄

, ~pn̄⊥

)
= θ(ωn̄)

〈
pn̄
∣∣χαq′ n̄[δ(t+ ωn̄p̂

−) δ(ωn̄ − P n̄) δ(~pn̄⊥ − ~Pn̄⊥) χ̄α
′
q′ n̄

]∣∣pn̄〉 ,
(5.39)

where we used that the matrix element can only depend on the RPI-III invariant quantities

t, ~pn̄⊥, and ωn̄/P
+
n̄ . Note that RPI-III invariance of the matrix elements is not yet manifest

due to the open spin indices. However, the possible spin structures for the n (n̄) collinear

matrix element all involve /n (/̄n), see eq. (5.44), so the open spin indices count as n (n̄) in

an RPI-III transformation.
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5.3 Proof of the factorization theorem

The combined n-collinear and collinear-soft matrix element is defined as

Mβ′β
q n

( ωn
P−n

)
= θ(ωn)

〈
pn
∣∣χ̄βq nT̄[O†cs]

[
δ(ωn − ω̃n − p̂−) T[Ocs]

][
δω̃nPnχ

β′
q n

]∣∣pn〉 . (5.40)

Here the unique combination of partonic light-cone momenta that the matrix element can

depend on is ωn ≡ ω̃n + k−cs due to the freedom in the split between label and residual

momentum.6 By RPI-III it then follows that the proton matrix element depends only on

ωn/P
−
n .

Inserting eq. (5.37) into eq. (5.31) yields the following contribution from the square of

Oq̄q′ to the hadronic tensor, including the hard matching and after performing the now

trivial integrals and sums over the various label momenta,

Wµν
V V ′ q̄q′(q, Pn, Pn̄) =

2

Nc
C̄µβαV q̄q′(n, n̄; q−, q+)Cν α

′β′

V ′ q̄q′ (n, n̄; q−, q+)

×
∫

dtMβ′β
q n

(q− + t/q+

P−n

)
Mαα′
q̄′ n̄

(
t,
q+

P+
n̄

, ~q⊥

)
. (5.41)

Note that this result already has the convolution structure in eq. (5.23), where

q− + t/q+

P−n
= x−

(
1 +

t

q+q−

)
,

q+

P+
n̄

= x+ . (5.42)

While eq. (5.41) is formally derived in the leptonic frame, it has exactly the same form in

the lab frame. This is because the measured observables x∓ and ~qT are boost invariant

along the beam axis, and RPI-III forces all functions to only depend on quantities that are

likewise invariant under longitudinal boosts.

5.3.4 Spin structure

We next deal with the spin structure of eq. (5.41). We already used in the derivation of

the leading-power collinear quark Lagrangian in section 2.2.4 that /n, /nγ5, and /nγ
µ
⊥ form a

complete basis of bilinears in ξn because the collinear quark field ξn has only two components

and satisfies /nξn = 0. It follows that for any spin structure Γ, the following trace formula

holds when inserted in a bilinear of ξn fields [171],

ξ̄nΓξn : Γ =
/̄n

8
tr
[
/nΓ
]
− /̄nγ5

8
tr
[
/nγ5Γ

]
− /̄nγµ⊥

8
tr
[
/nγ⊥µΓ

]
(5.43)

A similar trace formula holds for bilinears of n and n̄ fields [171]. Eq. (5.43) implies that

matrix elements Mαα′
n = 〈ξ̄αn · · · ξα

′
n 〉 of a collinear quark bilinear, with additional Wilson

lines and measurements indicated by · · · , may be decomposed as

Mαα′
n =

(/n)αα
′

4
tr
[
Mn

/̄n

2

]
− (/nγ5)αα

′

4
tr
[
Mn

/̄nγ5

2

]
− (/nγ⊥µ)αα

′

4
tr
[
Mn

/̄nγµ⊥
2

]
,

≡ (/n)αα
′

4
M (f)
n − (/nγ5)αα

′

4
M (g)
n −

(/nγ⊥µ)αα
′

4
M (h)µ
n , (5.44)

6For the n̄-collinear matrix element, where only one set of modes contribute, this was built in by using

continuous label momenta, which is why we use this suggestive notation also for ωn. Note, however,

that in this case the dominant residual momentum dependence is carried by a different set of modes.
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Chapter 5 – Generalized threshold factorization with full collinear dynamics

and analogously for n ↔ n̄. In the case where the spin indices β′β (αα′) of n (n̄) quark

bilinears are directly contracted with each other, this implies the SCET spin Fierz identity

δβαδα
′β′ =

1

2

[(/̄n)β
′β

2

(/n)αα
′

2
− (/̄nγ5)β

′β

2

(/nγ5)αα
′

2
− (/̄nγµ⊥)β

′β

2

(/nγ⊥µ)αα
′

2

]
. (5.45)

This identity is useful when working with SCET helicity operators that, like their matching

coefficients, are overall Dirac scalars [177].

We are instead interested in the case of open spin indices contracted with the hard

matching coefficients, and therefore will directly apply eq. (5.44), using constraints from

the possible Lorentz four-vectors that the matrix elements depend on. Suppressing all but

the vector-valued arguments relevant for the spin structure, our result in eq. (5.41) reads

2

Nc
C̄µβαV q̄q′(n, n̄)Cν α

′β′

V ′ q̄q′ (n, n̄)Mβ′β
q n Mαα′

q̄′ n̄ (~pn̄⊥)

=
2

Nc
tr
[
C̄µV q̄q′(n, n̄)Mq̄′ n̄(~pn̄⊥)CνV ′ q̄q′(n, n̄)Mq n

]
. (5.46)

We remind the reader that n, n̄ were chosen along the proton directions, so the momenta of

the external states do not provide additional reference vectors. We will also need the fact

that the leading-power hard matching coefficients are linear combinations of [see eq. (7.93)]

CµV q̄q′(n, n̄) ∝ γµ⊥ , γ
µ
⊥γ5 (5.47)

Applying the decomposition in eq. (5.44) to our matrix elements at hand, we find that the

combinations involving γ5 vanish,

M (g)
q n = 0 , M

(g)
q̄′ n̄(~pn̄⊥) = 0 (5.48)

because they measure the difference of the number densities of quarks with positive and

negative helicity along the n (n̄) direction, which must be zero for an unpolarized proton.

This can most easily be seen when working in the helicity basis for Dirac spinors, where

γ5 = diag(1,−1) on the subspace on nonvanishing components of ξn [171].

Importantly, by rotational invariance in the perpendicular plane, we can also eliminate

M (h)µ
q n = 0 , (5.49)

because Mq n only depends on the single vector nµ. On the other hand, M
(h)µ
q̄′ n̄ (~pn̄⊥) is

nonzero in general due to the explicit measurement on perpendicular momenta. However,

it only contributes to the hadronic tensor through

M (f)
q n M

(h)µ
q̄′ n̄ tr

[
C̄µV q̄q′ /nγ⊥µC

ν
V ′ q̄q′ /n

]
= 0 , (5.50)

which due to eq. (5.47) contains an odd number of γ⊥ matrices and therefore vanishes.
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5.3 Proof of the factorization theorem

We thus find only a single nonvanishing contribution to the hadronic tensor proportional

to the product of unpolarized proton matrix elements,

2

Nc
tr
[
C̄µV q̄q′(n, n̄)Mq̄′ n̄(~pn̄⊥)CνV ′ q̄q′(n, n̄)Mq n

]
=

1

2Nc
tr
[
C̄µV q̄q′(n, n̄)

/̄n

2
CνV ′ q̄q′(n, n̄)

/n

2

]
M (f)
q nM

(f)
q̄′ n̄(~pn̄⊥)

≡ Hµν
V V ′ q̄q′(n, n̄)M (f)

q nM
(f)
q̄′ n̄(~pn̄⊥) (5.51)

The unpolarized n-collinear matrix element M
(f)
q n (x) = tr

[
Mq n(x) /̄n2

]
≡ f thr

q (x) defines the

bare quark threshold PDF of flavor q, with Pµn = P−n n
µ/2,

f thr
q

( ωn
P−n

)
≡ θ(ωn)

〈
pn
∣∣χ̄q nT̄[O†cs]

[
δ(ωn − ω̃n − p̂−) T[Ocs]

][
δω̃nPn

/̄n

2
χq n

]∣∣pn〉 , (5.52)

while M
(f)
q̄′ n̄(t, ~pn̄⊥, x) = tr

[
Mq̄′ n̄(t, ~pn̄⊥, x) /

n
2

]
= Bq̄′(t, ~pn̄⊥, x) precisely recovers the defini-

tion of the bare double-differential antiquark beam function of flavor q′, with Pµn̄ = P+
n̄ n̄

µ/2,

Bq̄′
(
t,
ωn̄

P+
n̄

, ~pn̄⊥

)
= θ(ωn̄)

〈
pn̄
∣∣tr{ /̄n

2
χq′ n̄

[
δ(t+ ωn̄p̂

−)δ(ωn̄ − P n̄)δ(~pn̄⊥ − ~Pn̄⊥)χ̄q′ n̄
]}∣∣pn̄〉 ,

(5.53)

which should be compared with the quark beam function definition in eq. (4.4). With this,

our final result for the contribution to the hadronic tensor from the Oq̄q′ operator reads

Wµν
V V ′ q̄q′(q, Pn, Pn̄) = Hµν

V V ′ q̄q′(n, n̄; q−, q+)

∫
dt f thr

q

(q− + t/q+

P−n

)
Bq̄′
(
t,
q+

P+
n̄

, ~pn̄⊥

)
(5.54)

The contribution from the Oq′q̄ operator can be worked out in full analogy and yields a

product of f thr
q̄′ and Bq. Summing both over quark flavors and contracting with the inclusive

leptonic tensor proves the factorization theorem in eq. (5.23), where the hard function is

given by the contraction of the squared matching coefficient with the inclusive leptonic

tensor summed over all contributing vector bosons, see appendix B. The above expression

for the hadronic tensor can serve as a starting point for the straightforward extension of

the factorization theorem to a fully differential description of the decay products using the

results of chapter 7.

As a final comment on the spin structure, we note that the spin Fierzing steps lead-

ing to inclusive beam functions in the derivation of the single-differential T0 factorization,

eq. (2.214), were not made explicit in ref. [57], but the result nevertheless holds because

the measurement on the collinear sectors is scalar. The restriction to unpolarized matrix

elements actually breaks down for the double-differential SCETI factorization for (qT , T0)

in eq. (4.2) due to the explicit vectorial measurements, and to all orders a contribution

analogous to the double Boer-Mulders effect, proportional to two so-called Boer-Mulders

functions parametrizing matrix elements of the form M
(h)
n , must be expected also in SCETI.

As discussed in chapter 7 below eq. (7.89), however, the Boer-Mulders functions are sup-

pressed for ΛQCD � qT and therefore do not affect our results in chapter 4, where we were

concerned with the perturbative domain. In addition, the double Boer-Mulders effect drops

out when the decay products are not resolved, see also chapter 7.
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Chapter 5 – Generalized threshold factorization with full collinear dynamics

5.3.5 Formal relation to the soft threshold limit

We now show that the generalized threshold limit contains the soft threshold limit in the

sense of eq. (5.18) In particular, the limits x− → 1 and x+ → 1 commute, so taking

one limit after the other is equivalent to taking x−, x+ → 1 simultaneously. To see this,

consider the hierarchy λ2
− ∼ 1− x− � λ2

+ ∼ 1− x+ � 1, which we can interpret as taking

x+ → 1 after having already taken x− → 1. In this limit, the pn̄ modes factorize into

perturbative n̄-collinear-soft modes pn̄,cs ∼ Q(λ2
+, λ

2
−, λ+λ−) and n̄-collinear-soft modes

Pn̄,cs ∼ Q(λ2
+, λ

2
QCD/λ

2
+, λQCD). Including λ+, the condition λQCD � λ becomes λQCD �

λ−λ+ and without loss of generality we can consider λQCD ∼ λ2
−λ

2
+. This also implies that

the Pcs modes now get boosted in the n direction and become n-collinear-soft modes Pn,cs.

The beam function matching onto PDFs in this limit takes the form

Bj(ωn̄k
−, x+,~kT , µ) =

∫
dk+

ωn̄
Sj(k−, k+,~kT , µ) f thr

j

[
x+

(
1 +

k+

ωn̄

)
, µ
] [

1 +O(λ+)
]
, (5.55)

where the combined Pn̄,cs and Pn̄ modes yield another threshold PDF, and Sj(k−, k+,~kT ) is

the matrix element of the perturbative pn̄,cs modes. It has the same Wilson line structure as

the soft function appearing in eq. (2.186), and thus upon integration over ~kT becomes equal

to it to all orders by reparametrization invariance. We now have k2
T /Q

2 ∼ λ2
−λ

2
+ � t/Q2 ∼

λ2
−, so Bj and B̃j become the same and integrating eq. (5.55) over ~kT yields eq. (5.18) for

either of them.

5.3.6 Comment on the threshold PDF

To close the formal discussion of eq. (5.23), we briefly return to the definition of the bare

quark threshold PDF in eq. (5.52), which reads, for a proton with momentum Pµn = P−n n
µ/2,

f thr
q

( ωn
P−n

)
≡ θ(x)

〈
pn
∣∣χ̄q nT̄[O†cs]

[
δ(ωn − ω̃n − p̂−) T[Ocs]

][
δω̃nPn

/̄n

2
χq n

]∣∣pn〉 , (5.56)

and discuss its precise relation to other expressions in the literature on the DIS endpoint and

soft threshold factorization theorems, where it also appears. We focus on refs. [214, 216],

which are the most explicit recent references in terms of their formal EFT construction.

As a first comment, we tend to disagree with the assertion that the threshold PDF can

be factorized into a collinear-soft vacuum matrix element and a collinear proton matrix

element because on physical grounds, we expect collinear-soft degrees of freedom to be

part of the proton wave function when probed at large x. Specifically, if the proton wave

function has any overlap with a collinear parton field with label momentum ω̃n → P−n at

all, as required for the concept of a threshold PDF to make sense in the first place, then

by momentum conservation it cannot contain additional collinear partons that could form

an overall color singlet, and hence must contain collinear-soft partons whose presence is

parametrically still allowed to make up for this. After the collision, the collinear-soft degrees

of freedom form the proton remnant radiated into the final state. This picture receives

additional support from comparing to the case of a heavy quark, where the analogous
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5.3 Proof of the factorization theorem

threshold fragmentation function can explicitly be computed by matching onto (boosted)

heavy quark effective theory [412]. In this case the collinear-soft “brown muck” that forms

the observed color-singlet heavy meson together with the heavy quark does have a matrix

element in isolation, the (fragmentation) shape function, but it still involves a nontrivial

external bound state.

On a second, related note, we stress that residual momentum conservation, leading to

the physical support of the threshold PDF ωn/P
−
n ≤ 1, is an O(1) effect. To see this, note

that P−n = q−
[
1 + O(λ)2

]
, so the discrete large label component P̃−n of P−n is equal to

q−, as also noted in ref. [214]. Thus the residual momentum P−n − q− = P−n − P̃−n ≡ K−n
available from the proton in addition is of O(λ2Q), which is precisely the scaling of the

residual momentum carried by the collinear-soft operators. Expanding k−n /K
−
n � 1, or

equivalently taking K−n →∞ when factoring off a vacuum collinear-soft matrix element, is

therefore not justified.

Third, turning to the argument of the threshold PDF and the way it enters in factorization

theorems, recall that due to the freedom in the split between label and residual momentum,

the threshold PDF can only depend on ω̃n + k−cs = q− + t/q+ and P−n = P̃−n +K−n , and by

RPI-III must exclusively depend on their ratio,

ω̃n + k−cs
P−n

= x−
(

1 +
t

q+q−

)
. (5.57)

The analogous expressions are x
(
1 + s/Q2

)
for endpoint DIS and xa,b

(
1 + k∓/ωa,b

)
for the

soft threshold factorization theorem, which we already used in our review in sections 2.4.1

and 2.4.2. In ref. [216], the argument of the threshold PDF (for DIS) instead involved the

combination x + s/Q2 = q−/P−n + k−cs/q
−. This is an RPI-III invariant, but it does not

reflect the freedom in the label/residual split. While the difference to eq. (5.57) is power

suppressed, we stress that the form of the threshold PDF in eq. (5.56) is the unique way

to split the single continuous argument ξ into the momenta carried by the fields and the

external state in a way compatible with the symmetries.

We hasten to add that the important physics conclusions reached in refs. [214, 216]

about the properties of the threshold PDF are unaffected by the above subtleties, and

that we have in fact made repeated use of those results already. A first important point

is the renormalization of f thr
i , which was explicitly computed in refs. [214, 216] based on

the operator definition and compared to the full DGLAP kernels. This result continues

to hold because the renormalization is performed at the level of the composite operator

that defines the threshold PDF. To determine the counterterm, one may use the simplest

(factorized) external state with nontrivial overlap, which is indeed the product of a collinear-

soft vacuum and a collinear single-parton state carrying label momentum ω̃n, as used in

refs. [214, 216]. The combined counter term, after the cancellation of rapidity divergences

between the two contributions [214], contains a cusp term proportional to L0(k−cs/ω̃n), and

the partonic threshold PDF is renormalized by a convolution in ξ = k−cs/ω̃n. This result

goes through for the hadronic matrix element of the operator and yields the RGE of the

threshold PDF in eq. (5.15) that we already used to check consistency, where the factor of

191



Chapter 5 – Generalized threshold factorization with full collinear dynamics

x in the argument under the convolution accounts for eq. (5.57).

Another important property of the threshold PDF is that it is indeed, like the full PDF,

universal to both the DIS and Drell-Yan process. This is not a priori obvious because in

DIS, the operator Ocs(x) contains a future-pointing collinear-soft Wilson line along the

path x + sn̄, 0 ≤ s < ∞, and no explicit time ordering is required as it coincides with

the path ordering of the Wilson lines. In ref. [214] it was shown that the direction of the

Wilson line can be flipped and that the two definitions are equivalent. These manipulations

were also done at operator level, and therefore remain valid when the external collinear-soft

state is not the vacuum.

5.4 Calculation of two-loop beam function boundary terms

In this section we describe the computation of the matching coefficients Ĩij(t, z, µ) of the

modified virtuality-dependent beam function defined in eq. (5.58). (We drop the tilde on t̃

for the purposes of this section for brevity.) Since the renormalization of B̃i(t, x, µ) and of

the double-differential beam function is the same as for the inclusive beam function, the

two only differ in their boundary terms I
(n)
ij (z) 6= Ĩ

(n)
ij (z) at each order, with an otherwise

identical structure given in appendix E.1. The definition in eq. (5.12) implies, at the level

of the matching coefficients,

Ĩij(t, z, µ) =

∫
d2~kT Iij

(
t− k2

T

2
, z,~kT , µ

)
, (5.58)

which we use to calculate Ĩ
(n)
ij (z) from the one-loop result for i = g [398] and from the two-

loop result for i = q [397, 398].7 Note that for i = g, the integral over all ~kT leaves behind

only the polarization-independent piece of the double-differential gluon beam function. We

have also verified that the µ-dependent pieces ∝ Ln(t, µ) obtained from eq. (5.58) agree

with the RGE prediction in appendix E.1, i.e., we have explicitly checked that the projection

and the RGE commute.

Analytic structure. All terms in the double-differential beam function belong to one of

the following three categories,

T ↑n,m(t, z, k2
T , µ) ≡ Ln(t, µ2)

1

πt
Lm
(1− z

z
− k2

T

t

)
,

T ↓n,m(t, z, k2
T , µ) ≡ Ln(t, µ2)

1

πt
Lm
(k2

T

t

)
θ
(1− z

z
t− k2

T

)
,

TRn (t, z, k2
T , µ) ≡ Ln(t, µ2)

1

πt
θ(k2

T )R
(k2

T

t
, z
)
θ
(1− z

z
t− k2

T

)
, (5.59)

typically multiplied with a regular or distribution-valued function of z. The overall factors

of Ln(t, µ2)/t are dictated by the power counting and dimensional analysis, and are only

7We thank M. Stahlhofen for providing us with the results of ref. [397] in machine-readable form.
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5.4 Calculation of two-loop beam function boundary terms

superficially divergent because the 1/t simply rescales the neighboring terms to be dimen-

sionless. The θ functions of t(1 − z)/z − k2
T , partially implicit in the plus distributions,

encode the maximum amount of recoil the collinear final state can kinematically provide.

The terms in eq. (5.59) are classified by the order of the plus distributions involved, where

we take L−1(x) = δ(x) for short, and by whether the range in k2
T has a singularity at the

lower edge (↓), the upper edge (↑), or is regular, i.e., R(s, z) is integrable as s → 0 and

s→ (1− z)/z. The overall transcendental weight at O(α2
s) is bounded by n+m+ 2 = 4.

To project structures like eq. (5.59) onto the modified beam function, it is convenient to

split up the double-differential beam function as in eq. (4.41). In this way the inclusive beam

function Iij(t, z, µ) projects onto itself, and we only require the projection of ∆Iij(t, z,~kT , µ)

as an additive correction. In particular, we can exploit that all singular terms as z → 1

cancel in ∆Iij(t, z,~kT , µ), as we saw explicitly at NLO in eq. (4.44), and can therefore treat

all functions of z as regular. Many terms at higher weight also drop out during this step.

With this, the task is to compute, for T = {T ↑n,m, T ↓n,m, TRn } any of the structures above,

S(t, z, µ2) =

∫
dk2

T

[
T
(
t− k2

T

2
, z, k2

T , µ
)
− T (t, z, k2

T , µ)

]
. (5.60)

By careful repeated application of plus distribution identities in the bulk, i.e., at finite

values of t and integrated over t up to µ2, we find the following dictionary: For terms that

are singular as k2
T → 0, we have

S↓n,−1(t, z) = 0 ,

S↓0,0(t, z) = δ(t) Li2

(
− 1− z

2z
+ i0

)
,

S↓0,1(t, z) = δ(t)
[
− Li3

(
− 1− z

2z
+ i0

)
+ Li2

(
− 1− z

2z
+ i0

)
ln
(1− z

z

)]
, (5.61)

where the branch cuts of polylogarithms are chosen as indicated, and cancel in final results.

Terms with a singularity as k2
T → t(1− z)/z are more intricate,

S↑2,−1(t, z) = L1(t, µ2)2 ln
( 2z

1 + z

)
+ L0(t, µ2) ln2

( 2z

1 + z

)
+ δ(t)

1

3
ln3
( 2z

1 + z

)
, (5.62)

S↑1,−1(t, z) = L0(t, µ2) ln
( 2z

1 + z

)
+ δ(t)

1

2
ln2
( 2z

1 + z

)
,

S↑0,−1(t, z) = δ(t) ln
( 2z

1 + z

)
,

S↑0,0(t, z) = δ(t)
[

Li2

(1− z
1 + z

)
+ ln

( 2z

1 + z

)
ln
(1− z

z

)]
,

S↑0,1(t, z) = δ(t)
[
− Li3

(1− z
1 + z

)
+ Li2

(1− z
1 + z

)
ln
(1− z

z

)
+

1

2
ln
( 2z

1 + z

)
ln2
(1− z

z

)]
.

The rule for T ↑0,−1 is already relevant at O(αs). For regular terms, we have

SR0 (t, z) = δ(t)

∫ 1−z
z

0
ds ln

( 2

2 + s

)
R(s) . (5.63)
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Results. In the following we summarize the results we obtained using the above pro-

jections. At one loop, we find that the following simple relation holds for all partonic

channels,

Ĩ(1)
ij (t, z, µ) = I(1)

ij (t, z, µ) + δ(t)P
(0)
ij (z) ln

2z

1 + z
, (5.64)

where I(1)
ij is the one-loop matching coefficient for the inclusive beam function. Explicitly,

the one-loop finite terms in the flavor decomposition in eq. (A.29) are given by

Ĩ
(1)
qqV (z) = 2CF θ(z)

[
L1(1− z)(1 + z2)− π2

6
δ(1− z) + θ(1− z)(1− z) + Pqq(z) ln

2

1 + z

]
,

Ĩ(1)
qg (z) = 2TF θ(z)

[
Pqg(z) ln

2(1− z)
1 + z

+ θ(1− z) 2z(1− z)
]
,

Ĩ(1)
gg (z) = 2CA θ(z)

[
L1(1− z)2(1− z + z2)2

z
− π2

6
δ(1− z) + Pgg(z) ln

2

1 + z

]
,

Ĩ(1)
gq (z) = 2CF θ(z)

[
Pgq(z) ln

2(1− z)
1 + z

+ θ(1− z) z
]
. (5.65)

The Pij are given in eq. (C.7). At two loops, we find it convenient to pull common rational

factors out of recurring terms with transcendental weight three (S̃3, T̃3, Ũ3, Ṽ3, R̃...), as was

done for the I
(2)
ij (z) in refs. [294, 295], and group terms of lower transcendental weight

separately by color factor and flavor structure (C̃...). We also pull out a conventional factor

of four:

Ĩ
(2)
qqV (z) = 4C2

F

{
DqqV,CF (z)− 2

1− z T̃3(z) +
1 + z2

1− z
[
Ṽ3(z)− 2Ũ3(z)

]
+ C̃qqV,CF (z)

}
+ 4CFCA

{
DqqV,CA(z) +

1 + z2

1− z
[
Ũ3(z) + R̃qqV (z)

]
+ C̃qqV,CA(z)

}
+ 4CFβ0

[
DqqV,β0(z) + C̃qqV,β0(z)

]
,

Ĩ
(2)
qq̄V (z) = 4CF (2CF − CA)

[1 + z2

1 + z
S̃3(z) + C̃qq̄V (z)

]
,

Ĩ
(2)
qqS(z) = 4CFTF

[
−2(1 + z) T̃3(z) + C̃qqS(z)

]
,

Ĩ(2)
qg (z) = 4TFCF

{
−2(1− z)2 T̃3(z) + Pqg(z)

[
Ṽ3(z) + R̃qg,CF (z)

]
+ C̃qg,CF (z)

}
+ 4TFCA

{
−2(1 + 4z) T̃3(z)− Pqg(z)

[
Ũ3(z) + R̃qg,CA(z)

]
+ Pqg(−z) S̃3(z) + C̃qg,CA(z)

}
. (5.66)

Here, overall factors of θ(z) θ(1−z) are understood, but omitted for brevity. The DqqV,...(z)

contain all distributional terms in 1 − z and are the same as for the standard inclusive

beam function [294], cf. the eikonal three-loop result in eq. (6.17),

DqqV,CF (z) = (1 + z2)
[
L3(1− z)− 5π2

6
L1(1− z) + 4ζ3L0(1− z)

]
+

7π4

120
δ(1− z) ,
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DqqV,CA(z) = (1 + z2)
[(2

3
− π2

6

)
L1(1− z) +

(
−8

9
+

7ζ3

2

)
L0(1− z)

]
+
(52

27
− π2

6
− π4

36

)
δ(1− z) ,

DqqV,β0(z) = (1 + z2)
[
−1

4
L2(1− z) +

5

6
L1(1− z) +

(
−7

9
+
π2

12

)
L0(1− z)

]
+
(41

27
− 5π2

24
− 5ζ3

6

)
δ(1− z) . (5.67)

All remaining terms in eq. (5.66) are integrable for z → 1. Their full expressions are lengthy

and are available in machine-readable form upon request. As an example of the structures

that occur, we give

S̃3(z) = 2G
(
−1,−1,−1

2 ; z
)
− 3G

(
−1, 0,−1

2 ; z
)
− 3G

(
0,−1,−1

2 ; z
)

+ 4G
(
0, 0,−1

2 ; z
)

− 2H(−1,−1, 0; z) + 2H(−1, 0,−1; z)− 3H(−1, 0, 0; z)

− 2H(−1, 1, 0; z) +H(0,−1, 0; z)−H(0, 0,−1; z)

−H(0, 0, 1; z)− 2H(1,−1, 0; z)− ln3(z)

12
− 2H(−1, 0; z) ln(1− z)

+ ln(2)
[
−π

2

6
+G

(
−1,−1

2 ; z
)
−G

(
0,−1

2 ; z
)
− 2H(−1, 0; z) +

ln2(z)

2

]
+ ln(1 + z)

[
−5π2

12
−G

(
−1,−1

2 ; z
)

+G
(
0,−1

2 ; z
)]

+ ln(z)
[π2

4
+ 2G

(
−1,−1

2 ; z
)
− 2G

(
0,−1

2 ; z
)

+ 2H(−1, 0, z)
]

+
9ζ3

4
. (5.68)

Here, we have used the recent PolyLogTools package [413] to convert all polylogarithms

of rational functions of z to standard harmonic polylogarithms H(a1, . . . , an; z) as well as

multiple polylogarithms G(a1, . . . , an; z) of z ∈ [0, 1]. The latter are as defined in ref. [413],

and for all ai = 0,±1 reduce to standard harmonic polylogarithms up to a sign. We find

no evidence for a simple generalization of the one-loop relation eq. (5.64) at two loops.

Finally, we note that the two-loop Ĩ
(2)
ij (z) for the modified beam function are substantially

more complicated than those for the standard inclusive beam function. For example, the

latter does not involve polylogarithms with fractional weights, which only arise from the

projection integral in eq. (5.58). We expect that similarly the three-loop cross section in

terms of (q+, q−) will have a much simpler structure than in terms of (Q,Y ), and will

provide an easier target for an expansion in the generalized threshold limit.8

5.5 Validation

A first, necessary check of eq. (5.11) is consistency with the known soft limit. At the level

of the perturbative ingredients, the relevant relation is given in eq. (5.21), which we verified

8In fact, the full leading-power term is already available after the recent complete calculation of the

inclusive beam function at O(α3
s) [299].
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analytically to two loops.9 Details on this check can be found in section 6.2, where we

extend the calculation to three loops and turn it around to predict the beam function finite

terms in the eikonal limit at three loops.

A much more nontrivial check is to validate eq. (5.22) against the full fixed-order result

for the partonic cross section in QCD. Because the soft limit checks out, it suffices to verify

that eq. (5.19) is satisfied in the limit za → 1, and we perform this check in the following.

5.5.1 Analytic validation at NLO

At NLO, we perform an analytic check for Drell-Yan and gg → H in the EFT limit [see

eq. (2.73)] against the results of refs. [113, 414], which are given as distributions in z = zazb
and a variable y(za, zb). Their translation to (za, zb) is nontrivial, and is described in

detail in the remainder of this subsection. We find complete agreement for all partonic

channels. We also combined all singular terms from eq. (5.22) with the regular terms from

refs. [113, 414] to reconstruct the full σ̂ij(za, zb) in terms of the more convenient variables

za,b at NLO. The results are given in appendix F and agree with refs. [219, 415, 416], where

results were given in terms of xa,b and za,b as well, but subtractions were written out in

full at the level of the hadronic cross section.10

Plus distribution identities. In refs. [113, 114, 414], the partonic cross section for

(Q,Y ) is given in terms of partonic variables (z, y), defined as

z = zazb , y =
zb(1− z2

a)

(1− zazb)(za + zb)
, 1− y =

za(1− z2
b )

(1− zazb)(za + zb)
= y|a↔b , (5.69)

where za,b are defined by eq. (2.64), and the integration limits 0 ≤ za,b ≤ 1 correspond to

0 ≤ z ≤ 1 and 0 ≤ y ≤ 1. The inverse relations and the Jacobian read

za =

√
z[1− y(1− z)]
z + y(1− z) , zb = za|y↔1−y ,

dz dy

dzadzb
=

2[1− y(1− z)][1− (1− y)(1− z)]
1− z2

,

(5.70)

The parametrization of the (za, zb) plane in terms of (z, y) is illustrated in figure 5.3. In

the following, we derive relations between plus distributions in (z, y) and (za, zb).

In general, the two-dimensional plus distributions are uniquely defined by their functional

form in the bulk, i.e. for za,b < 1 away from any singularity, and their integrals (against

unit test functions) over arbitrary integration regions that include the singularities. In

a first step, the functional form in the bulk is easily obtained by plugging in eq. (5.70).

Next, the correct boundary terms at za = 1 as a function of zb, at zb = 1 as a function of

za, and at za = zb = 1 are determined by comparing integrals over the integration region

xa ≤ za(z, y) ≤ 1 and xb ≤ zb(z, y) ≤ 1 for generic xa and xb. This integration region is

9 As discussed further in section 5.5.3, several soft threshold factorizations differential in rapidity [232–236]

differ from eq. (2.186) and do not reproduce the correct soft limit already at NLO.
10We thank P. Mathews and V. Ravindran for help in comparing with refs. [219, 416].
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Figure 5.3: The (za, zb) plane as parametrized by (z, y). The gray area shows the integration

region xa ≤ za ≤ 1 and xb ≤ zb ≤ 1 (for the case of xa > xb) used to derive the distribution

identities. The dotted black lines indicate integration paths over y at representative fixed values of

z. The solid red lines indicate the edge cases in z. The dashed blue lines are lines of constant y.

indicated by the gray box in the (za, zb) plane in figure 5.3. It is sufficiently general to

fix all boundary terms and precisely corresponds to the relevant integration region for the

physical cross section in (Q,Y ). In terms of (z, y), the integration region is given by

θ
[
za(z, y) ≥ xa

]
θ
[
zb(z, y) ≥ xb

]
= θ
[
xaxb ≤ z < min{xa, xb}

]
θ
[
ylow(z) ≤ y ≤ yhigh(z)

]
+ θ
[
max{xa, xb} ≤ z

]
+ θ
[
xb ≤ z < xa

]
θ
[
y ≤ yhigh(z)

]
+ θ
[
xa ≤ z < xb

]
θ
[
ylow(z) ≤ y

]
, (5.71)

where the integration bounds in y, also illustrated in figure 5.3, are given by

yhigh(z) =
z(1− x2

a)

(1− z)(x2
a + z)

, ylow(z) =
x2
b − z2

(1− z)(z + x2
b)
. (5.72)

In table 5.2, we collect the resulting distribution identities at leading power in 1− za and

arbitrary zb that are required for validating eq. (5.11) at NLO. Our conventions for one-

dimensional plus distributions are summarized in appendix A.3. The relations are derived by

integrating each structure in the left column in terms of (z, y) over the region in eq. (5.71),

expanding the result to leading power in 1 − xa, and comparing to the corresponding

(straightforward) integral over the same region in terms of za,b of each structure in the right

column.

The last entry in table 5.2 has the most intricate structure. Its exact integral without

any expansion is given by∫
dzdy θ

[
za(z, y)− xa

]
θ
[
zb(z, y)− xb

]
L0(1− z)

[
L0(y) + L0(1− y)

]
= Fa(xa) + Fb(xb)− Fa(xaxb)− Fb(xaxb) , (5.73)
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dz dy × (left-hand side) = dzadzb × (right-hand side)

f(z) δ(y) f(zb) δ(1− za)

r(z)L0(y) r(zb)
[
L0(1− za) + δ(1− za) ln

2zb
(1 + zb)(1− zb)

]
+O(1)

f(z) δ(1− y) f(za)δ(1− zb)

r(z)L0(1− y) O(1)

r(z)O[y0(1− y)0] O(1)

L0(1− z)
[
L0(y) + L0(1− y)

]
−L1(1− za) δ(1− zb) + L0(1− za)L0(1− zb)

−δ(1− za)L1(1− zb) +
π2

6
δ(1− za) δ(1− zb)

+δ(1− za)
1

1− zb
ln

2zb
1 + zb

+O(1)

Table 5.2: Translation identities of two-dimensional plus distributions between the (z, y) and (za, zb)

parametrizations. Here, f(x) is an arbitrary function of x, potentially distribution-valued for x→ 1,

while r(x) = O[(1 − x)0] has at most an integrable singularity for x → 1. When indicated, the

relations receive power corrections in 1 − za starting at O(1) ≡ O[(1 − za)0]. Overall factors of

θ(1− z) θ(y) θ(1− y) = θ(1− za) θ(1− zb) are understood on both sides.

with Fa,b(z) = − ln(1− z) ln(−z + i0)− Li2

( 1− z
1 + xa,b

)
− Li2

( 1− z
1− xa,b

− i0
)
− Li2(z) ,

where the imaginary parts from the branch cuts cancel between the different terms. Match-

ing this with the exact distribution in the bulk, we obtain the distributional identity

dz dyL0(1− z)
[
L0(y) + L0(1− y)

]
(5.74)

= dzadzb

[
π2

6
δ(1−za) δ(1−zb)− L1(1−za) δ(1−zb) + L0(1−za)L0(1−zb)− δ(1−za)L1(1−zb)

+ δ(1− za)
1

1− zb
ln

2zb
1 + zb

+ δ(1− zb)
1

1− za
ln

2za
1 + za

+
1

(1 + za)(1 + zb)

]
.

Expanding the right-hand side to leading power in 1− za yields the result given in the last

line of table 5.2. The way to think of eq. (5.74) is as a two-dimensional version of a typical

distribution identity like[1 + z2

1− z
]

+
= 2L0(1− z) +

3

2
δ(1− z)− (1 + z) . (5.75)

Namely, it expresses plus distributions of a function y(za, zb) in terms of simpler plus

distributions of 1 − za,b plus regular terms. Moving the regular terms out of the plus

distribution incurs additional boundary terms.

A key property of the left-hand side of eq. (5.74) is that it vanishes when integrated over

all of y. It is instructive to see how this is reproduced by the right-hand side by projecting
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onto z via
∫

dzadzb δ(z − zazb). The only nontrivial projection integral involved is∫
dzadzb δ(z − zazb)L0(1− za)L0(1− zb) = 2L1(1− z)− π2

6
δ(1− z)− ln z

1− z . (5.76)

These terms are precisely the ones required to cancel contributions from the other terms

upon projecting onto z.

5.5.2 Numerical validation at NNLO

At NNLO, we numerically validate our own implementation of eq. (5.11) in SCETlib [8]

against Vrap [114]. We use flat PDFs, f thr
i (x) = fi(x) = θ(1− x), which amounts to taking

cumulant integrals of the partonic cross section with a cutoff at 1− xa,b, and ensures the

check covers the complete singular structure of the partonic cross section. In figure 5.4, we

compare the O(α2
s) contributions for Drell-Yan as a function of 1− xa at fixed xb = 10−2.

We find perfect agreement in the singular limit xa → 1, with the difference vanishing like

a power in 1− xa. We also find similar agreement for other xb and for pp→ Z/γ∗ on the

resonance.

We next consider the breakdown of figure 5.4 by partonic channel. Following Vrap [114],

we take the ij = qq̄ channel to include all topologies where i and j are part of the same quark

line. The leading-power limit of these diagrams corresponds to the qqV beam function

matching coefficient in the decomposition in eq. (A.29). In addition, the qq̄ channel also

includes purely nonsingular contributions with topologies qq̄ → g → qq̄V . We then take

the qq′ channel to include the remaining quark-initiated processes, which at leading power

reduces to the sum of the qqS and qq̄V beam function contributions in eq. (A.29). The qg

channel maps onto the qg beam function contribution at leading power, while the gq and

gg channels are purely nonsingular.

The results are shown in figure 5.5. In all cases, the prediction of eq. (5.11) is in excellent

agreement with the singular limit of the full calculation, with their difference vanishing as a

power of 1− xa as it should. The excellent numerical stability of Vrap for the off-diagonal

channels allows us to extend the check down to 1− xa = 10−5, where it becomes limited by

Monte Carlo statistics. For the qq̄ channel, we start to see a systematic deviation at the

10−4 level below 1− xa . 10−4. We observe a similar deviation already at NLO, where the

partonic cross sections agree analytically, and thus tend to attribute this to a systematic

effect in the PDF integrations in Vrap.

5.5.3 Comment on soft threshold results in the literature

As we have discussed, the soft threshold limit is fully contained in the generalized threshold

limit. Our results thus provide an independent confirmation that eq. (2.186) is the correct

soft threshold factorization for the cross section differential in both Q and Y , or equivalently

eq. (2.188) for the two-dimensional partonic cross section in (za, zb).

Several results in the literature [232–236] considering the soft threshold factorization

differential in rapidity differ from eq. (2.186). The difference is manifest already at fixed
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Figure 5.4: Numerical validation of the O(α2
s) contribution to dσ/dxadxb predicted for xa → 1

by eq. (5.11) (blue) against the full result from Vrap (red). Their difference (green) vanishes like a

power as 1− xa → 0, as it must. The error bars indicate the integration uncertainties.
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Figure 5.5: Breakdown of figure 5.4 by partonic channel. Shown are the O(α2
s) contributions to

σ ≡ dσ/dxadxb predicted for xa → 1 by eq. (5.11) (blue), and the full result from Vrap (red). In

all cases, their difference (green) vanishes like a power as 1− xa → 0, as it must. The gg channel

is power suppressed, so its full result by itself vanishes like a power. The error bars indicate the

integration uncertainties. Dashing in the blue line indicates negative sign.
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NLO in the term L0(1−z)[L0(y)+L0(1−y)], which appears in the flavor-diagonal partonic

cross sections. The distributional identity in eq. (5.74) unambiguously shows that this term

has a double singularity in the limit za → 1 and zb → 1, which means it contributes a priori

at leading power in the soft limit z = zazb → 1, i.e., it contributes to the ma = mb = −1

term in eq. (5.88). This can already be seen just by considering the distribution in the bulk

since

dz dy
1

1− z
(1

y
+

1

1− y
)

= dzadzb
1

(1− za)(1− zb)
[
1 +O(1− za, 1− zb)

]
. (5.77)

Moreover, eq. (5.74) shows that it contributes at leading-logarithmic order. The soft

function in eqs. (2.186) and (2.188) precisely contains the leading-power contribution of

this term, which is given by the first four terms on the right-hand side of eq. (5.74).

By contrast, this term and analogous ones at higher order are missing in the leading-power

resummed results in refs. [232–236]. There, it is effectively argued that the contribution of

such terms to the rapidity spectrum is power-suppressed in 1− z, leading to the incorrect

conclusion that the rapidity dependence in the soft threshold limit can be included simply by

taking σ̂ij(za, zb) to be σ̂ij(z) [δ(y) + δ(1−y)]/2 or, depending on the reference, σ̂ij(z) δ(y−
1/2), where σ̂ij(z) is the inclusive, rapidity-integrated, partonic cross section in eq. (2.71)

evaluated in the soft limit z → 1. In the following, we give a critical appraisal of the

arguments used to support this conclusion and show why they are flawed.

This replacement first appeared in ref. [417], where it was conjectured to provide an

approximation to the threshold-resummed rapidity spectrum at small Y . The phenomeno-

logical impact of the correct convolution structure on PDF determinations relying on soft

threshold resummation was discussed in ref. [220]. A detailed numerical study of the differ-

ence at the level of the resummed Drell-Yan rapidity spectrum was performed in ref. [222].

The different forms of soft threshold factorization differential in rapidity have led to con-

siderable confusion and debate in the literature. We hope that with the evidence collected

here, the debate can be considered resolved.

Argument based on PDF momentum fractions What makes the L0(1− z)[L0(y) +

L0(1 − y)] term subtle is that it vanishes upon integration over y, so it drops out in the

inclusive cross section. This fact alone is of course insufficient to argue that it is power

suppressed at each point in the spectrum. It simply means that different leading-power

terms conspire to cancel upon integration, which is clear in terms of (za, zb), as discussed

below eq. (5.74).

The argument in ref. [234] rests on the observation that the PDF arguments, xa/za(z, y)

and xb/zb(z, y), in the two-dimensional convolution integral are independent of y at z = 1,

from which it is concluded that the y dependence of the PDF arguments is power suppressed

in 1− z and can be dropped. If this is done, the y integral becomes unconstrained and can

be carried out freely, which eliminates this term. More generally, one could then replace

σ̂ij(z, y) = σ̂ij(z) δ(y − 1/2)[1 +O(1− z)] underneath the convolution integral.
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However, a closer inspection of the PDF arguments in terms of (z, y) reveals that

xa
za(z, y)

= xa

{
1 + y(1− z) +O[(1− z)2]

}
,

xb
zb(z, y)

= xb

{
1 + (1− y)(1− z) +O[(1− z)2]

}
. (5.78)

Hence, the y dependence is not power suppressed but multiplies the leading dependence of

the PDF arguments on z itself, and so it cannot be dropped. This becomes even clearer in

terms of (za, zb),

y(1− z) = 1− za +O[(1− z)2] , (1− y)(1− z) = 1− zb +O[(1− z)2] , (5.79)

which are precisely the O(λ2) convolution variables k∓/(Qe±Y ) in eq. (2.186).

To illustrate explicitly that the y dependence has a leading-power effect, consider the

hadronic soft threshold limit 1− xa ∼ 1− xb � 1 and a simple toy PDF with a power-law

behavior near the endpoint, with α > 0,

f(x) ≡ θ(1− x)(1− x)α . (5.80)

Using eq. (5.74), it is straightforward to show that L0(1− z)[L0(y) + L0(1− y)] gives rise

to double logarithms of 1− xa,b, but performing the integral directly in terms of (z, y) is

tedious, essentially as tedious as deriving eq. (5.74) itself. Instead, to disprove the above

argument and show that the y dependence is not power suppressed, it suffices to consider

two terms that have the same y integral,

A(z, y) ≡ L0(1− z) δ(y) + δ(1− y)

2
, B(z, y) ≡ L0(1− z) δ

(
y − 1

2

)
, (5.81)

and show that they give different results at leading power, while the above argument would

imply that they do not. Convolving A(z, y) and B(z, y) against the toy PDFs over the

domain shown in figure 5.3 yields, up to relative power corrections of O(1− xa, 1− xb),∫
dz dy A(z, y) f

[ xa
za(z, y)

]
f
[ xb
zb(z, y)

]
= f(xa)f(xb)

[1

2
ln
(
1− xa

)
+

1

2
ln
(
1− xb

)
−Hα

]
,∫

dz dy B(z, y) f
[ xa
za(z, y)

]
f
[ xb
zb(z, y)

]
= f(xa)f(xb)

[
ln
(
1−max{xa, xb}

)
−Hα

]
, (5.82)

where Hα is the harmonic number. To evaluate the integrals it is convenient to already

expand at integrand level, e.g. 1− xa/za = 1− xa + y(1− z) up to higher powers in 1− z
and 1 − xa. The maximum in the second case arises because the integration region in z

along fixed y = 1/2 is cut off by the square of the larger of the two momentum fractions.

(The order of expanding in 1− xa and 1− xb also needs to be picked accordingly.) Clearly,

the two results only coincide for Y = 0, where xa = xb. Away from Y = 0, the logarithmic

dependence on xa,b and thus on Y differs at leading power.
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Fourier-transform argument An alternative line of argument [232, 233, 235] relies

on taking the Fourier transform of the partonic cross section to also argue that the y

dependence is trivial. A first step is to change variables from y to

u ≡ 1

2
ln
za
zb
, −umax ≤ u ≤ umax , umax ≡ ln

1√
z
. (5.83)

(Note that the variables u and y are precisely interchanged in the notation used in ref. [235].)

One then considers the Fourier transform of the partonic cross section C(z, u) with respect

to u,

C̃(z,M) ≡
∫

du eiMuC(z, u)
?
=

∫
duC(z, u)

[
1 +O(1− z)

]
. (5.84)

The second equality, which is in question, is based on observing that C(z, u) only has

support on an interval bounded by umax ∼ 1− z, and concluding that the Fourier kernel

can be expanded in u ∼ 1 − z as eiMu ?
= 1 +O(1 − z), and so C̃(z,M) is independent of

M at leading power. Thus, taking the inverse Fourier transform, the partonic cross section

may be approximated as

C(z, u) =

∫
dM

2π
e−iMu C̃(z,M)

?
= δ(u)

∫
du′C(z, u′)

[
1 +O(1− z)

]
. (5.85)

This argument is flawed because in order to satisfy the Fourier inversion theorem, one must

count M ∼ (1− z)−1 if one wants to count u ∼ 1− z. In particular, one is not allowed to

count M ∼ 1 when taking the limit z → 1 (or equivalently N →∞ for the Mellin conjugate

N of z). This is essential because C(z, u) contains distributional terms in u that cancel the

suppression by the integration domain.

To disprove eq. (5.85), it again suffices to consider the distributions A(z, y) and B(z, y)

defined in eq. (5.81). Changing variables to u, we have

dy A(z, y) = duL0(1− z) δ(u+ umax) + δ(u− umax)

2
, dy B(z, y) = duL0(1− z) δ(u) .

(5.86)

Both terms satisfy the assumptions of the above argument, i.e., they only have support

for |u| ≤ umax. Changing variables back to y, eq. (5.85) would imply that up to power

corrections in 1− z,

A(z, y) = L0(1− z) δ(y) + δ(1− y)

2

?
= L0(1− z) δ

(
y − 1

2

)
= B(z, y) . (5.87)

In fact, the overall factor found in ref. [235] is δ(y − 1/2), while it is [δ(y) + δ(1 − y)]/2

in ref. [234], and the above argument was used in ref. [235] to argue that the two are

equivalent. As a distributional identity, this is obviously incorrect. The only thing that is

equal between A(z, y) and B(z, y) are their y integrals, and as demonstrated before, this is

insufficient because the y dependence of the PDF arguments is a leading-power effect and

cannot be neglected.
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Discussion We conclude that for pp production processes in general, to correctly describe

the soft threshold limit of differential observables that are sensitive to the total rapidity of

the Born system, one must maintain the two-dimensional dependence on za and zb in the

convolutions against the PDFs. Equivalently, in Mellin space one must maintain two Mellin

fractions Na and Nb as in the original ref. [211]. In terms of the Mellin conjugate N of z

and the Fourier conjugate M of another variable like u, one has to keep the dependence on

M ∼ |Na −Nb| ∼ N . In particular, reducing the two-dimensional convolution structure to

one dimension, such that the rapidity dependence is only carried by the luminosity function,

amounts to making an additional assumption that is not justified by taking the soft limit.

5.6 Applications

5.6.1 Fixed-order approximants at leading power

The immediate question arises how well the generalized threshold limit approximates the

full fixed-order result for physical PDFs, particularly in comparison to the soft limit. We

work with the MMHT2014nnlo68cl PDFs [110] and use Vrap 0.9 [114] to obtain full NNLO

results for the cross section,11 and SCETlib [8] to implement eq. (5.22). In figure 5.6

we compare the O(αs) (top) and O(α2
s) (center) contributions to the Drell-Yan rapidity

spectrum at Q = mZ , separated into quark channels (qq̄ + qq′) and channels involving

a gluon (qg + gq + gg). We also show results for the relative O(αs) contribution to the

gg → H rapidity spectrum (bottom) in the (r)EFT limit, see eq. (2.74). In both cases we

include results at µ = Q (left) and µ = Q/2 (right), where Q = mH in the case of Higgs

production.

We note that when performing any threshold expansion for different scale choices, there

are several options how to treat the terms in the partonic cross section that are predicted by

the running of the PDFs or αs. One option is to expand these terms to the working order

in the threshold expansion. This ensures that the partonic cross section has homogeneous

power counting at any scale, but leaves the running of the PDFs and the coupling uncanceled

beyond the working order. Another option is to threshold-expand the partonic cross section

at a given reference scale and treat the running exactly. This leads to a privileged scale

where the expansion was performed, but ensures the cancellation of αs and PDF running

to all powers (up to higher orders in αs). For the results in figure 5.6, we choose the first

option for definiteness. The difference between the two approaches could serve as a way to

estimate the size of power corrections in phenomenological applications.

We find that the generalized threshold limit approximates the full result for Drell-Yan well

for all channels, at both orders considered, and at all Y . As expected, it works particularly

well toward large Y and correctly captures the divergent behavior (with opposite sign)

of the different partonic channels in this region, suggesting that resummation based on

the generalized threshold factorization theorem could greatly improve the prediction. The

11 The public Vrap 0.9 assumes fq(x) = fq̄(x) for q = s, c, b. We modified it to allow for different sea quark

and antiquark PDFs.
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Figure 5.6: Generalized threshold approximation of the O(αs) (top) and O(α2
s) contribution

(center) to the Drell-Yan rapidity spectrum σ ≡ dσ/(dQdY ), and of the O(αs) contribution to the

gg → H rapidity spectrum σ ≡ dσ/dY (bottom). We show the full result (red), the generalized

threshold approximation (blue), and the soft threshold approximation (gray) for different partonic

channels, at µ = Q (left column) and µ = Q/2 (right column) normalized to the respective total

LO result.

205



Chapter 5 – Generalized threshold factorization with full collinear dynamics

generalized threshold limit works significantly better than the soft limit, which only provides

a poor approximation for the qq̄ channel and none for the others.

For gg → H at O(αs), the generalized threshold expansion again performs in a manner

clearly superior to the soft one. Here, the increment from the leading-power soft to the

leading-power generalized approximation of the gg channel at NLO is roughly comparable

to the piece still missing to the full result; either contribution amounts to O(20%) in units

of the Born cross section. This is consistent with the expectation that for a gluon-induced

process, hard central radiation plays a larger role than for Drell-Yan. The shape of the NLO

contributions at large Y is well captured by the leading-power generalized approximation

for both the gg and gq + qg channel. The leading-power soft approximation for the gg

channel (on close inspection) turns out to be off at large Y , and in both channels there is

barely any convergence beyond leading power in the soft expansion at any Y .

5.6.2 Convergence of the expansion

Next, we may ask how well the power expansion around the generalized threshold limit

works and how it relates to the soft expansion. Consider the double expansion in 1 − za
and 1− zb, also illustrated in figure 5.2,

σ̂ij(za, zb) =
∑
ma,mb

σ̂
(ma,mb)
ij (za, zb) , (5.88)

where σ̂
(ma,mb)
ij (za, zb) ∼ (1 − za)ma(1 − zb)mb . Expanding around the soft z = zazb → 1

limit corresponds to counting powers of (1− z)ma+mb+1, as indicated by successively lighter

shades of gray in figure 5.2. The leading-power result in eq. (2.188) gives the ma = mb = −1

term. At the mth order, NmLPsoft, we keep all terms with ma +mb + 2 ≤ m. At leading

power in the generalized expansion, eq. (5.22) includes all terms with min{ma,mb} = −1.

Similarly, at the mth order, NmLPgen, we keep all terms with min{ma,mb} = m − 1, so

the missing corrections at NmLPgen are O[(1− za)m(1− zb)m].

In figure 5.7, we show the deviation from the exact result at various orders in both

expansions for Drell-Yan and Higgs production at NLO, where we have full analytic control.

The generalized expansion performs significantly better than the soft one for both flavor-

diagonal and off-diagonal partonic channels. We expect this to hold in general, since

expanding a two-dimensional function along a one-dimensional boundary is superior to

expanding it in a single point on that boundary.

In fact, as seen in figure 5.2, each order in the generalized expansion fully contains two

orders in the soft expansion, and in particular, the LPgen result eq. (5.22) contains the

entire NLPsoft contribution. This does not mean it can be used to perform the NLPsoft

resummation because the µ evolution of Bi(t, x) does not predict its x dependence. It does,

however, show that Hij factorizes for all partonic channels and reduces the problem to

deriving the NLPsoft factorization for eq. (5.18).
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Figure 5.7: Convergence of the generalized (blue) and soft (gray) threshold expansions. Shown

are the deviations from the full NLO result normalized to the total LO result for the flavor-diagonal

qq̄ or gg channel (left) and the off-diagonal qg + gq contribution (right). We show results for the

rapidity spectrum for Drell-Yan production at µ = Q = mZ (top) and µ = Q/2 (center), and for

gg → H at µ = mH/2 (bottom).
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5.6.3 Towards the Drell-Yan rapidity spectrum at N3LO

At N3LO, eq. (5.22) predicts a highly nontrivial set of terms for any color-singlet pro-

cess, since all terms ∼ Ln(1 − za) in Îij(za, zb) are known from its µ evolution, where

Ln(y) ≡ [lnn(y)/y]+. In particular, their coefficients are predicted including their exact zb
dependence and all possible contributions from off-diagonal channels. This also provides a

powerful tools to organize future calculations and check intermediate results. To illustrate

this, the terms with n ≥ 3 in the N3LO partonic rapidity spectrum for any color-singlet

process are predicted to be

σ̂
(3)
ij (za, zb) = L5(1− za)Ĥ(0)

ij δ(1− zb)
(Γi0)3

8
(5.89)

+ L4(1− za)Ĥ(0)
ik

[
δkjδ(1− zb)

(
−2β0

3
− γiB 0

2

)
+ P

(0)
kj (zb)

]
5

8
(Γi0)2

+ L3(1− za)
{
Ĥ

(1)
ij δ(1− zb)

Γi0
2

+ Ĥ
(0)
ik

[
δkjδ(1− zb)

(
Γi1 −

π2

6
(Γi0)2 +

β2
0

3

+
(γiB 0)2

4
+

5

6
β0γ

i
B 0

)
− P (0)

kj (zb)
(5β0

3
+ γiB 0

)
+
(
P (0) ⊗ P (0)

)
kj

(zb) + Ĩ
(1)
kj (zb)

Γi0
2

]}
Γi0 + · · · .

Note the appearance of the modified beam function finite term, which is specific to the

(Q,Y ) measurement, already at this high logarithmic order, and that none of these terms

are predicted by the running of the PDFs or the coupling since we are given a prediction

for the boundary terms of the cross section at µ = Q. Instead, these terms are predicted

by the RG evolution of the beam function between
√
t and Q in the context of our new

factorization theorem, which exposes for the first time that even at fixed Q, the partonic

cross section is sensitive to the lower scale
√
t ∼ Q

√
1− za of collinear radiation in the

limit za → 1. The extension down to L0(1− za), indicated by the ellipses, and to the full

za dependence for zb → 1 is straightforward, see ref. [5]. The relevant pieces of the beam

function entering eq. (5.89) are also given in appendix E.1. The δ(1−za) coefficient requires

the still unknown O(α3
s) finite terms of the (modified) virtuality-dependent beam function.

For Drell-Yan, eq. (5.89) significantly extends the current knowledge at O(α3
s) [219, 244],

providing the full zb dependence for all partonic channels. For gg → H, the extension to

L0(1− za) would also provide additional information beyond what is currently known [250].

5.7 Summary

In this chapter we presented and derived a factorization theorem that generalizes the often-

used soft threshold factorization by including the full collinear dynamics, and demonstrated

that it has much wider applicability. The new factorization theorem describes all kinematic

limits in (xa, xb) or (Q,Y ), including in particular |Y | → Ymax at generic Q, which is

directly accessible at the LHC. We gave a proof of the theorem that draws on many
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aspects of soft-collinear effective theory and improves the formal understanding of the

foundations of leading-power threshold factorization in general. We extensively validated

the perturbative content of the factorization theorem against exact calculations. As a

corollary to the theorem, we have been able to resolve a long-standing issue in the description

of rapidity spectra in the soft limit. At the partonic level, the new factorization theorem

captures all singularities of σ̂ij(za, zb), including off-diagonal partonic channels. It can be

used to predict a rich set of terms at higher fixed order or to resum them to all orders.

As a first illustrative application, we have demonstrated that the factorization theorem

predicts a highly nontrivial set of previously unknown terms in the N3LO Drell-Yan rapidity

spectrum.
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Chapter 6

N3LO beam functions in the

eikonal limit

In this chapter, we show that the matching coefficients for the qT and T0 beam functions

in the limit of large partonic momentum fraction z → 1 satisfy all-order relations to known

soft matrix elements, and use these relations to extract the previously unknown complete

three-loop results for the beam functions in the z → 1 limit.

This chapter is based on ref. [5], reflecting the author’s contribution. Compared to ref. [5],

the discussion in section 6.3.3 has been added.

6.1 Motivation

Beam functions Bi describe the collinear emission pattern from an incoming parton i. In

SCET, they can formally be defined as proton matrix elements of renormalized quark and

gluon operators. They are universal objects that do not depend on the details of the hard

process. When the scale of collinear emissions resolved by the measurement constraint is

perturbative, the associated beam function can be matched onto standard PDFs to isolate

its perturbative content in perturbative matching coefficients.

The beam and soft functions appearing in the factorization for qT and T0 in eqs. (2.192)

and (2.214) are the most basic of their kind, measuring the total transverse momentum or

the small light-cone momentum of the inclusive sum of all collinear emissions, respectively.

For this reason, they are important objects in their own right, encoding fundamental

properties of the singular structure of QCD, and also appear in a variety of other contexts.

Among these are the generalizations of the pp color-singlet factorization for qT and T0 to

the case of (semi-inclusive) DIS and to pp collisions with identified jets in the final state,

see e.g. refs. [57, 259–262, 292, 293, 418]. In addition, they often serve as building blocks

for constructing the beam and soft functions necessary for more complicated scenarios or

observables, see e.g. refs. [66, 67, 195, 291, 313, 349, 389, 397, 398, 419, 420]. Finally, as

we showed in chapter 5 above, the T0 beam function and its variants also describe inclusive

color-singlet production in a generalized threshold limit.

In these applications, knowledge of the beam function matching coefficients to high

perturbative orders is key. Percent-level predictions for color-singlet spectra in particular

mandate a full N3LO calculation of the beam functions. The most challenging part are
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Chapter 6 – N 3LO beam functions in the eikonal limit

the nonlogarithmic boundary coefficients at O(α3
s) that are not predicted by the RGE,

require a dedicated three-loop calculation, and are in general nontrivial functions of the

partonic momentum fraction z. However, they simplify in the limit z → 1. In this limit,

the energy of collinear emissions is constrained to be small which means their interactions

with the primary collinear parton can be described in the eikonal approximation where

they only resolve its color charge and direction. This was already pointed out and exploited

at NNLO in refs. [294, 295]. In this chapter, we derive the explicit relations between the

beam function matching coefficients in the z → 1 limit to known soft matrix elements, and

use these relations to extract the leading terms in the eikonal limit at three loops.1

6.2 T0 beam function

6.2.1 Consistency relation

We first consider the matching coefficients I
(n)
ij (z) of the T0 beam function in the z → 1

limit. In this case, the relevant consistency relation with an eikonal matrix element is a

byproduct of the generalized threshold factorization theorem presented in chapter 5. It

involves the double-differential threshold soft function and reads at the hadronic level, as

given in eq. (5.18),

Bi(t, x, µ) =

∫
dk

ω
Sthr
i

( t
ω
, k, µ

)
f thr
i

[
x
(

1 +
k

ω

)
, µ
] [

1 +O(1− x)
]
. (6.1)

Eq. (6.1) follows from comparing one of the main results of chapter 5, eq. (5.5), with the

standard soft threshold factorization for color-singlet rapidity spectra in eq. (2.186).

The threshold soft function is defined as a vacuum matrix element of Wilson lines that

are invariant under longitudinal boosts, and therefore satisfies the rescaling property

Sthr
i (k−, k+, µ) = Sthr

i (e+yk−, e−yk+, µ) . (6.2)

More specifically, in the context of SCET, the soft function is invariant under RPI-III

transformations, see section 2.2.3. Exploiting this property, the soft function can be

extracted [192, 219, 244, 250, 265] from the soft-virtual limit of the total color-singlet

production cross section dσ/dQ2, which is known to O(α3
s) [241, 246]. In section 6.2.2, we

review this procedure and give explicit results for Sthr
i (k−, k+, µ) to three loops.

Replacing f thr
i [x(1 + 1 − z)] by fi(x/z)/z, which is justified at leading power in 1 − z,

yields the corresponding relation for the matching coefficient,

Iij(t, z, µ) = δij S
thr
i

[ t
ω
, ω(1− z), µ

] [
1 +O(1− z)

]
. (6.3)

1At the time of the original publication of the results of this chapter in ref. [5], only a few master integrals

for selected topologies in the T0 beam function at O(α3
s) were known [296, 297]. Since the appearance of

ref. [5], results for the three-loop T0 quark beam function in the generalized large-Nc approximation have

appeared in ref. [298], and the complete three-loop beam functions have been calculated in refs. [287, 288]

for the qT quark and qT quark and gluon cases, respectively, and in ref. [299] for the T0 quark and gluon

cases. In these works, the eikonal terms derived in this work were used as an important cross check,

finding full agreement.

212



6.2 T0 beam function

This relation captures all terms in Iij(t, z, µ) that are singular for z → 1, while power

corrections have at most an integrable singularity for z → 1. Notably, the beam function

becomes flavor diagonal as z → 1, while off-diagonal channels are O(1 − z) suppressed.

By eq. (6.3), the matching coefficients also inherit the rescaling property in eq. (6.2), i.e.,

in the limit z → 1, they become invariant under a simultaneous rescaling t 7→ e+yt and

1− z 7→ e−y(1− z). In other words, they are symmetric in t/ω and ω(1− z) such that the

dependence on ω cancels on the right-hand side.

6.2.2 Threshold soft function to three loops

In this section we discuss the double-differential threshold soft function Sthr
i (k−, k+, µ),

which determines the eikonal limit of the T0 beam function in eq. (6.3). We give a compact,

complete N3LO expression in terms of a convenient plus distribution basis defined below,

and discuss how the three-loop coefficients are extracted from the known three-loop results

for the closely-related inclusive threshold soft function.

Plus distribution basis. A key property of the threshold soft function is that is invariant

under the simultaneous rescaling k− 7→ k−e+y and k+ 7→ k+e−y, see eq. (6.2). To make

this property manifest, we define a basis of plus distributions in k± that individually have

this property,

θ(k−)θ(k+)

µ2

(k−k+

µ2

)−1+a
=

[
δ(k−)

a
+

∞∑
n=0

an

n!
Ln(k−, µ)

][
δ(k+)

a
+

∞∑
m=0

am

m!
Lm(k+, µ)

]

≡ δ(k−, k+)

a2
+
∞∑
n=0

an−1

n!
Ln(k−, k+, µ) . (6.4)

Note that the leading δ(k−, k+) term multiplies a double pole in a. The second line

implicitly defines the Ln(k−, k+, µ) by the expansion of the first line in powers of a. They

are by construction invariant under rescaling, because the left-hand side is. Explicitly, they

are given by

δ(k−, k+) = δ(k−) δ(k+) ,

Ln(k−, k+, µ) = δ(k−)Ln(k+, µ) + Ln(k−, µ) δ(k+)

+ n

n−1∑
m=0

(
n− 1

m

)
Lm(k−, µ)Ln−1−m(k+, µ) . (6.5)

Three-loop structure. The threshold soft function satisfies the all-order RGE

µ
d

dµ
Sthr
i (k−, k+, µ) =

∫
d`−d`+ γithr(k

− − `−, k+ − `+, µ)Sthr
i (`−, `+, µ) ,

γithr(k
−, k+, µ) = −2Γicusp[αs(µ)]L0(k−, k+, µ) + γithr[αs(µ)] δ(k−, k+) . (6.6)
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Expanding the threshold soft function in αs as

Sthr
i (k−, k+, µ) =

∞∑
n=0

S
thr(n)
i (k−, k+, µ)

[αs(µ)

4π

]n
, (6.7)

and suppressing all arguments for brevity, S
thr(n)
i ≡ Sthr(n)

i (k−, k+, µ), Ln ≡ Ln(k−, k+, µ),

δ ≡ δ(k−, k+), the three-loop solution of eq. (6.6) takes the very compact form

S
thr(0)
i = δ ,

S
thr(1)
i = L1 Γi0 − L0

γithr 0

2
+ δ s

thr(1)
i ,

S
thr(2)
i = L3

(Γi0)2

2
− L2

Γi0
2

(
β0 +

3

2
γithr 0

)
+ L1

[
−2ζ2(Γi0)2 +

(
β0 +

γithr 0

2

)γithr 0

2
+ Γi1 + Γi0 s

thr(1)
i

]
+ L0

[
Γi0
(
2ζ3Γi0 + ζ2γ

i
thr 0

)
− γithr 1

2
−
(
β0 +

γithr 0

2

)
s

thr(1)
i

]
+ δ s

thr(2)
i ,

S
thr(3)
i = L5

(Γi0)3

8
− L4

5

8
(Γi0)2

(2

3
β0 +

γithr 0

2

)
+ L3 Γi0

[
−2ζ2(Γi0)2 +

β2
0

3
+
(5

3
β0 +

γithr 0

2

)γithr 0

2
+ Γi1 +

Γi0
2
s

thr(1)
i

]
+ L2

{
(Γi0)2

[
5ζ3Γi0 + 3ζ2(β0 + γithr 0)

]
−
(
β0 +

3

4
γithr 0

)(
β0
γithr 0

2
+ Γi1

)
− (γithr 0)3

16
− Γi0

2

[
β1 +

3

2
γithr 1 +

(
4β0 +

3

2
γithr 0

)
s

thr(1)
i

]}
+ L1

{
(Γi0)2

[
4ζ4Γi0 − ζ3(6β0 + 4γithr 0)

]
− ζ2Γi0

[
(3β0 + γithr 0)γithr 0 + 4Γi1

]
+ β0γ

i
thr 1 +

γithr 0

2
(β1 + γithr 1) + Γi2

+
[
−2ζ2(Γi0)2 + 2β2

0 +
(

3β0 +
γithr 0

2

)γithr 0

2
+ Γi1

]
s

thr(1)
i + Γi0 s

thr(2)
i

}
+ L0

{
(Γi0)2

[
−Γi0(8ζ2ζ3 − 6ζ5) + 2ζ4(β0 − γithr 0)

]
+ ζ3Γi0

[(
β0 +

γithr 0

2

)
γithr 0

+ 4Γi1

]
+ ζ2

(
γithr 0Γi1 + Γi0γ

i
thr 1

)
− γithr 2

2
+
[
(Γi0)22ζ3 + Γi0ζ2(2β0 + γithr 0)

−
(
β1 +

γithr 1

2

)]
s

thr(1)
i −

(
2β0 +

γithr 0

2

)
s

thr(2)
i

}
+ δ s

thr(3)
i . (6.8)

Anomalous dimensions. The noncusp threshold anomalous dimension γithr(αs) appear-

ing in eq. (6.6) is not an independent quantity, but strongly constrained by consistency

relations. Drawing on the RG consistency of several factorization theorems we already

encountered or derived, namely eqs. (2.186), (2.214), and (5.5), we have, in this order,

2γif (αs) + γithr(αs) = 2γiB(αs) + γiS(αs) = γif (αs) + γiB(αs) , (6.9)
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6.2 T0 beam function

because the hard function is the same in all cases. Here, γif (αs) is the coefficient of δ(1− z)

in the PDF anomalous dimension eq. (2.164), see eqs. (5.15) and (5.16). Solving eq. (6.9)

for γithr(αs), we find

γithr(αs) = −γiS(αs) , γithrn = −γiS n , (6.10)

where the (beam)thrust soft anomalous dimension coefficients γiS n are given in eq. (C.11).

We are not aware of any reference pointing out the very simple relation eq. (6.10), even

though the ingredients would have been at hand already without the results of chapter 5

by combining the DIS endpoint factorization in eq. (2.179), which involves the jet function,

and the factorization theorem for thrust in e+e− collisions, which involves γiS and two jet

anomalous dimensions.

Extracting the finite terms. The double-differential threshold soft function depends on

the total light-cone momentum components k± of the soft hadronic final state. Equivalently,

its Fourier transform

Ŝthr
i (b+, b−, µ) =

∫
dk−dk+ e+i(k−b++k+b−)/2 Sthr

i (k−, k+, µ) , (6.11)

depends on the time-like separation (b−nµ + b+n̄µ)/2 between the Wilson lines in the soft

matrix element.

Importantly, Ŝthr
i (b+, b−, µ) only depends on the product b+b− by the rescaling relation

eq. (6.2), and thus only depends on b+b−µ2 by dimensional analysis. On the other hand,

the dependence on µ is fully predicted by the RGE eq. (6.6), which in position space reads

µ
d

dµ
Ŝthr
i (b+, b−, µ) =

{
2Γicusp[αs(µ)]Lthr(b

+, b−, µ) + γithr[αs(µ)]
}
Ŝthr
i (b+, b−, µ) . (6.12)

This implies that at any order in perturbation theory, Ŝthr
i (b+, b−, µ) is a polynomial in

Lthr(b
+, b−, µ) ≡ ln

(
−b

+b−µ2e2γE

4
− i0

)
. (6.13)

The relevant Fourier transforms between Lnthr and Ln(k−, k+, µ) follow from the one-

dimensional Fourier transforms in appendix B of ref. [263], accounting for the relative

factors of −1/2 in the Fourier exponent in eq. (6.11).

A factorization analogous to eq. (2.186) holds for the inclusive cross section dσ/dQ2

in eq. (2.69), where the corresponding inclusive threshold soft function Sthr
i (k0, µ) only

depends on the total energy k0 of soft radiation. In particular, Sthr
i (k0, µ) is the process-

independent soft contribution to the inclusive partonic cross section σ̂ij(z) in eq. (2.71) in

the soft-virtual limit z → 1, where 1−z = 2k0/Q. In position space, the inclusive threshold

soft function Ŝthr
i (b0, µ) is defined in terms of Wilson lines separated by b0(nµ + n̄µ)/2, i.e.,

strictly along the time axis. This is a special case of eq. (6.11), so the two position-space

threshold soft functions are simply related by

Ŝthr
i (b0, b0, µ) = Ŝthr

i (b0, µ) . (6.14)
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Chapter 6 – N 3LO beam functions in the eikonal limit

This is of course equivalent to integrating over the longitudinal momentum k3 of soft

radiation. We stress that eq. (6.14) cannot be used to approximate Ŝthr
i (b+, b−, µ) by

taking b+ = b− in general. This is because in eq. (2.186) the soft function is separately

convolved in its k+ and k− arguments with the two different PDFs, and thus the rescaling

property eq. (6.2) is lost at the level of the cross section. We refer the reader to section 5.5.3

for further discussion of this point.

Inserting eq. (6.14) into eq. (6.12) implies that both threshold soft functions have the same

noncusp anomalous dimension given by eq. (6.10). Moreover, the position-space boundary

coefficients of the double-differential soft function at Lthr = 0, i.e., at µ = µ∗ ≡ +i2e−γE/b0,

are equal to the inclusive ones at the same scale. Hence, the double-differential threshold

soft function can be constructed from the inclusive one.

The inclusive threshold soft function was calculated to three loops in refs. [241, 246].

Here we use the results of ref. [246], where the three-loop soft function for i = g is reported

in exponentiated form,

Ŝthr
i (b0, µ∗) = exp

{
Ci
CA

[αs(µ∗)
4π

cH1 ref. [246]+
α2
s(µ∗)

(4π)2
∆cH2 ref. [246]+

α3
s(µ∗)

(4π)3
∆cH3 ref. [246]

]
+O(α4

s)

}
.

(6.15)

We have also exploited Casimir scaling to three loops to restore the dependence on Ci.

Comparing eq. (6.15) to the position-space solution of eq. (6.12) at Lthr = 0, and comparing

the inverse Fourier transform of the outcome to eq. (6.8), we find the following momentum-

space boundary coefficients:2

s
thr(1)
i = −Ci 2ζ2 ,

s
thr(2)
i = Ci

[
Ci 21ζ4 + CA

(208

27
− 4ζ2 − 10ζ4

)
+β0

(164

27
− 5ζ2 −

10ζ3

3

)]
,

s
thr(3)
i = Ci

[
C2
i

(640

3
ζ2

3 −
499

6
ζ6

)
+ CiCA

(
−416

27
ζ2 −

512

9
ζ3 +

188

3
ζ4 + 224ζ2

3 − 77ζ6

)
+ Ciβ0

(
−328

27
ζ2 −

448

9
ζ3 +

235

3
ζ4 +

308

3
ζ2ζ3 − 64ζ5

)
+ C2

A

(115895

324
− 45239

486
ζ2 −

23396

81
ζ3 −

334

3
ζ4 + 240ζ2ζ3 − 224ζ5 +

1072

9
ζ2

3 +
4348

27
ζ6

)
+ CAβ0

(
−363851

2916
+

1043

486
ζ2 −

140

81
ζ3 +

230

9
ζ4 −

164

3
ζ2ζ3 +

632

9
ζ5

)
+ β2

0

(
− 64

729
− 34

3
ζ2 −

20

27
ζ3 +

31

3
ζ4

)
+ β1

(42727

972
− 275

18
ζ2 −

1636

81
ζ3 −

76

9
ζ4 +

40

3
ζ2ζ3 −

112

9
ζ5

)]
. (6.16)

2We note that the coefficient of CiCA in the two-loop finite term disagrees with the ~bT → 0 limit of the

fully-differential soft function as reported in terms of k± and ~bT in ref. [421]. This color structure only

enters at two loops and thus is unaffected by nonabelian exponentation. We were unable to resolve this

difference, but tend to attribute it to a typographical error in ref. [421] because refs. [192, 265] agreed

with the pure position-space result of ref. [421] in terms of b± and ~bT .
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6.2 T0 beam function

We have checked that inserting the above coefficients into eq. (6.8) and expanding against

the Drell-Yan hard function, we reproduce the three-loop soft-virtual partonic cross section

in refs. [219, 244] in terms of 1− za = k−/(Qe+Y ) and 1− zb = k+/(Qe−Y ).3

6.2.3 Results for the beam function

With the three-loop expressions for the threshold soft function at hand, we return to the

consistency relation in eq. (6.3). At two loops, we explicitly verified eq. (6.3) by comparing

the above results for the threshold soft function to the full results of refs. [294, 295]. We

now use it to predict the beam function coefficients in the eikonal limit at three loops.

They are given by the coefficient of δ(k−) in the threshold soft function upon identifying

δ(k+) 7→ δ(1− z) and Ln(k+, µ) 7→ Ln(1− z). Including the one-loop and two-loop results

for reference, we find

I
(1)
ij (z) = δij

[
L1(1− z) Γi0 + δ(1− z) sthr(1)

i

]
+O

[
(1− z)0

]
,

I
(2)
ij (z) = δij

{
L3(1− z) (Γi0)2

2
− L2(1− z) Γi0

2
β0 + L1(1− z)

[
−2ζ2(Γi0)2 + Γi1 + Γi0 s

thr(1)
i

]
+ L0(1− z)

[
2ζ3(Γi0)2 +

γiS 1

2
− β0 s

thr(1)
i

]
+ δ(1− z) sthr(2)

i

}
+O

[
(1− z)0

]
,

I
(3)
ij (z) = δij

{
L5(1− z) (Γi0)3

8
− L4(1− z) 5

12
(Γi0)2β0

+ L3(1− z) Γi0

[
−2ζ2(Γi0)2 +

β2
0

3
+ Γi1 +

Γi0
2
s

thr(1)
i

]
+ L2(1− z)

[
(Γi0)2(5ζ3Γi0 + 3ζ2β0)− β0Γi1 −

Γi0
2

(
β1 −

3

2
γiS 1 + 4β0 s

thr(1)
i

)]
+ L1(1− z)

[
(Γi0)2(4ζ4Γi0 − 6ζ3β0)− 4ζ2Γi0Γi1 − β0γ

i
S 1 + Γi2

+
(
−2ζ2(Γi0)2 + 2β2

0 + Γi1
)
s

thr(1)
i + Γi0 s

thr(2)
i

]
+ L0(1− z)

[
(Γi0)2

(
−Γi0(8ζ2ζ3 − 6ζ5) + 2ζ4β0

)
+ Γi0(4ζ3Γi1 − ζ2γ

i
S 1) +

γiS 2

2

+
(

(Γi0)22ζ3 + Γi02ζ2β0 − β1 +
γiS 1

2

)
s

thr(1)
i − 2β0 s

thr(2)
i

]
+ δ(1− z) sthr(3)

i

}
+O

[
(1− z)0

]
. (6.17)

The boundary coefficients s
thr(n)
i of the threshold soft function are given in eq. (6.16). We

have exploited that the noncusp anomalous dimension of the threshold soft function is

given by the negative of the thrust soft anomalous dimension −γiS(αs), see eq. (6.10). For

brevity, we also used that γiS 0 = 0. The result for generic γiS 0 can be read off from the full

expression for the threshold soft function in eq. (6.8).

The three-loop result in eq. (6.17) is new and a genuine prediction of the consistency

relation in eq. (6.3). We stress that the information provided by it goes beyond the three-

3We thank V. Ravindran for providing us with the results of refs. [219, 244] in machine-readable form.
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loop structure predicted by the RGE. The fact that the leading z → 1 terms must be

symmetric in t/ω and ω(1− z) allows one to directly determine (or check) the δ(t)Ln(1− z)

terms from the RGE-predicted Ln(t)δ(1− z) terms, which was already noted in refs. [294,

347]. However, the δ(t)δ(1 − z) coefficient cannot be predicted in this way, and eq. (6.3)

explicitly identifies it with the threshold soft function coefficients s
thr(3)
i .

We remind the reader that the modified virtuality-dependent beam function defined in

eq. (5.12) in the eikonal limit x→ 1 (or z → 1) coincides with the standard inclusive beam

function Bi(t, x, µ), see the discussion below eq. (5.55). For this reason, the z → 1 limit of

the modified Ĩ
(n)
ij matching coefficients at three loop is also given by eq. (6.17), and could

e.g. be used to predict N3LO color-singlet rapidity spectra with all finite terms correct in

the soft limit za,b → 1, and all logarithmically enhanced terms correct in all singular limits,

as predicted by the beam function RGE.

6.3 qT beam function

6.3.1 Consistency relations

We now proceed to extract the three-loop matching coefficients for the qT beam function

in the z → 1 limit from consistency relations with known soft matrix elements. For the qT
beam function, these consistency relations arise from factorization theorems for the triple-

differential cross section dσpp→L/dQ
2dY dqT that enable the joint qT and soft threshold

resummation [375–378]. In terms of the momentum fractions xa,b defined in eq. (2.62), the

soft threshold limit is equivalent to taking both xa → 1 and xb → 1. As xa,b → 1, initial

state radiation is constrained to have energy . λ−λ+Q, where

λ2
− ∼ 1− xa and λ2

+ ∼ 1− xb (6.18)

are power-counting parameters that encode the distance from the kinematic endpoint.

The all-order factorization relevant for different hierarchies in qT /Q and the threshold

constraint λ−λ+ was derived in refs. [192, 379]. Some consequences of the resulting con-

sistency relations have already been explored in refs. [192, 379]. In fact, the exponential

regulator is defined by its action on the refactorized pieces in these consistency relations. In

the following, we briefly review the relevant factorization theorems and derive the all-order

structure that arises for the qT beam function in the eikonal limit.

qT/Q � λ−λ+ ∼ 1. In this regime, initial-state radiation is not yet subject to the

threshold constraint, and the standard qT factorization theorem eq. (2.192) holds. It

receives power corrections O(q2
T /Q

2), but captures the exact dependence on xa,b via the

beam functions.

qT/Q � λ−λ+ � 1. For this hierarchy, the factorization takes a form similar to

eq. (2.192), but real collinear radiation into the final state is constrained in energy by

1− xa,b � 1. The leftover radiation in this limit is described by intermediate collinear-soft
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6.3 qT beam function

modes [194, 195] in terms of na,b-collinear-soft functions S̃i(k, bT , µ, ν). They are matrix

elements of collinear-soft Wilson lines and depend on the additional momentum k = k∓

available from either one of the (threshold) PDFs and on the color charge of the colliding

partons.4 The factorization theorem in this regime reads [192, 379], working in bT space

for convenience,

dσ̃(~bT )

dQ2 dY
=
∑
i,j

Hij(Q
2, µ)

∫
dk− S̃i(k

−, bT , µ, ν) f thr
i

[
xa

(
1 +

k−

ωa

)
, µ
]

×
∫

dk+ S̃j(k
+, bT , µ, ν) f thr

j

[
xb

(
1 +

k+

ωb

)
, µ
]
S̃i(bT , µ, ν)

×
[
1 +O

( 1

b2Tλ
2
−λ

2
+Q

2
, λ2
−, λ

2
+

)]
. (6.19)

Collinear-soft emissions do not contribute angular momentum, so the polarization indices for

gluon-induced processes [left implicit in eq. (2.192)] become trivial in this limit. The formal

definition of the threshold PDF and a discussion of the way it enters in the convolution

above are given in section 5.3.6.

qT/Q ∼ λ−λ+ � 1. In this regime, the threshold constraint dominates and all radiation

is forced to be soft. The recoil against soft radiation with transverse momentum ~kT = −~qT
is encoded in the fully-differential threshold soft function Sthr

i (k−, k+,~kT ). In terms of its

Fourier transform S̃thr
i (k−, k+, bT ) with respect to ~kT , the factorization theorem reads

dσ̃(~bT )

dQ2 dY
=
∑
i,j

Hij(Q
2, µ)

∫
dk−dk+f thr

i

[
xa

(
1 +

k−

ωa

)
, µ
]
f thr
j

[
xb

(
1 +

k+

ωb

)
, µ
]

× S̃thr
i (k−, k+, bT , µ)

[
1 +O(λ2

−, λ
2
+)
]
. (6.20)

Notably, the fully-differential threshold soft function is free of rapidity divergences because

they are regulated by the threshold constraint. (This is the starting point of the exponential

regularization procedure.) The fully-differential soft function was calculated to O(α2
s) in

ref. [421], albeit in a different context, and to O(α3
s) in ref. [265]. By construction, it

satisfies∫
d2~kT S

thr
i (k−, k+,~kT , µ) = S̃thr

i (k−, k+, bT = 0, µ) = Sthr
i (k−, k+, µ) , (6.21)

where Sthr
i (k−, k+, µ) is the double-differential threshold soft function in eq. (2.186).

Consistency between eqs. (2.192) and (6.19) implies that the x→ 1 limit of the qT beam

function is captured by the collinear-soft function [192, 379],

B̃i(x,~bT , µ, ν/ω) =

∫
dk S̃i(k, bT , µ, ν) f thr

i

[
x
(

1 +
k

ω

)
, µ
] [

1 +O(1− x)
]
. (6.22)

4Note that the collinear-soft function S̃i(k, bT , µ, ν) is distinct from the S̃i(k, bT , µ, ν) considered in chap-

ter 4; see section 6.3.3 for their precise relation. Also note that in ref. [5] that this chapter is based on,

our S̃i was indicated by S̃i.
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Chapter 6 – N 3LO beam functions in the eikonal limit

This is the analog of eq. (6.1) for qT , but this time relates the eikonal limit of the beam

function to an exclusive collinear-soft matrix element instead of the inclusive threshold soft

function. At the partonic level, eq. (6.22) implies [192, 379]

Ĩij(z, bT , µ, ν/ω) = δij ω S̃i
[
ω(1− z), bT , µ, ν

] [
1 +O(1− z)

]
. (6.23)

Note that eq. (6.23) is true for any rapidity regulator as long as the same regulator is used

on both sides. The consistency between eqs. (6.19) and (6.20) implies [192, 379]

S̃thr
i (k−, k+, bT , µ) = S̃i(k

−, bT , µ, ν) S̃i(k
+, bT , µ, ν) S̃i(bT , µ, ν)

[
1 +O

( 1

b2Tk
−k+

)]
,

(6.24)

which again holds for any choice of rapidity regulator. In particular, the left-hand side

has no rapidity divergences, so the dependence on the rapidity regulator cancels between

the terms on the right-hand side. Together, eqs. (6.22) and (6.24) uniquely determine the

eikonal limit of the beam function in any given rapidity regulator scheme in terms of the

fully-differential soft function (which is independent of the scheme) and the qT soft function

S̃i(bT , µ, ν) (which determines the scheme). Furthermore, the scheme ambiguity amounts

to moving terms from the soft function boundary coefficients into the coefficient of δ(1− z)

in the beam function coefficients. Since δ(1−z) is a leading-power contribution as z → 1, it

follows that up to lower-order cross terms, all scheme-dependent terms in the beam function

are contained in the leading eikonal terms predicted by eq. (6.23).

6.3.2 All-order result for the collinear-soft function

We next derive a simple all-order expression for the collinear-soft function for the specific

case of the exponential regulator. We start by defining the complete Fourier transform of

the fully-differential threshold soft function

Ŝthr
i (b+, b−, bT , µ) =

∫
d4k e+ib·k Sthr

i (k−, k+, kT , µ) , (6.25)

where bµ = (b+, b−,~bT ) is the four-vector Fourier conjugate of kµ = (k+, k−,~kT ) with

b · k = b+k−/2 + b−k+/2 −~bT · ~kT . Correspondingly, we define the Fourier transform of

S̃i(k±, bT , µ, ν) with respect to its light-cone momentum argument k± as

Ŝi(b
+, bT , µ, ν) =

∫
dk− e+ik−b+/2 S̃i(k

−, bT , µ, ν) , (6.26)

and analogously for b− ↔ b+ and k+ ↔ k−. Fully in position space, the consistency relation

eq. (6.24) reads

Ŝthr
i (b+, b−, bT , µ) = Ŝi(b

+, bT , µ, ν) Ŝi(b
−, bT , µ, ν) S̃i(bT , µ, ν)

[
1 +O

(b+b−
b2T

)]
. (6.27)
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6.3 qT beam function

In the exponential regulator scheme, the regulated qT soft function is defined as [192,

265]5

S̃i(bT , µ, ν
′) = lim

ν′→∞
Ŝthr
i

( ib0
ν ′
,
ib0
ν ′
, bT , µ

)
, (6.28)

where we use ν ′ to distinguish it from the scale at which we later wish to evaluate the

collinear-soft function. The prescription for taking the limit is to keep all nonvanishing

terms. In particular, a logarithmic dependence of the right-hand side on ν ′ is to be kept.

Inserting eq. (6.27), we have

S̃i(bT , µ, ν
′) = lim

ν′→∞

[
Ŝi
( ib0
ν ′
, bT , µ, ν

)
Ŝi
( ib0
ν ′
, bT , µ, ν

)
S̃i(bT , µ, ν) +O

( 1

ν ′2b2T

)]
= S̃i(bT , µ, ν) lim

ν′→∞

[
Ŝi
( ib0
ν ′
, bT , µ, ν

)
Ŝi
( ib0
ν ′
, bT , µ, ν

)]
= S̃i(bT , µ, ν) Ŝi

( ib0
ν ′
, bT , µ, ν

)
Ŝi
( ib0
ν ′
, bT , µ, ν

)
. (6.29)

In the second line we moved the qT soft function out of the limit, since it does not depend

on ν ′, and dropped the power corrections. On the third line we used that all dependence

of the Ŝi on ν ′ is logarithmic, so the limit is trivial. Because the exponential regulator is

symmetric under an interchange of collinear-soft directions, we find

Ŝ2
i

( ib0
ν ′
, bT , µ, ν

)
=
S̃i(bT , µ, ν

′)

S̃i(bT , µ, ν)
= exp

[
γ̃iν(bT , µ) ln

ν ′

ν

]
, (6.30)

where the second equality follows from solving the rapidity RGE of the soft function

between ν and ν ′ at fixed µ. Assuming we are dealing with the na-collinear-soft function

that depends on b+, we can analytically continue back to ν ′ = ib0/b
+ = 2i/(b+eγE ), leaving

Ŝi(b
+, bT , µ, ν) = exp

[
−1

2
γ̃iν(bT , µ) ln(−ib+νeγE/2)

]
. (6.31)

Evaluating the inverse Fourier transform using eq. (A.21), we find the following all-order

relation for the momentum-space na-collinear-soft function in the exponential regulator

scheme,

S̃i(k
−, bT , µ, ν) = Vγ̃iν(bT ,µ)/2(k−, ν) , (6.32)

and identically for the nb-collinear one as a function of k+. In other words, the collinear-soft

function in the exponential regulator scheme is simply given by the rapidity RG evolution

between its canonical rapidity scale νS ∼ k− and ν, with trivial boundary condition at νS.

6.3.3 Relation to the collinear-soft function for (qT ,T0) resummation

Here we briefly clarify the relation of S̃i to the collinear-soft function S̃i(k, bT , µ, ν) relevant

for the two-dimensional (qT , T0) resummation considered in chapter 4. The two functions

5Comparing eq. (2) in ref. [265] to eq. (33) in ref. [192] suggests that the latter has a spurious factor of 2

in the denominator, noting that their τ = 1/ν.
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Chapter 6 – N 3LO beam functions in the eikonal limit

are distinct because S̃i(k, bT , µ, ν) measures the large rather than the small light-cone

momentum of collinear-soft radiation. However, the two are related to each other by a

factor of the standard qT soft function [155, 379],

S̃i(k, bT , µ, ν) = S̃i(k, bT , µ, ν) S̃i(bT , µ, ν) . (6.33)

This relation holds independently of the regulator and can be interpreted as a (soft) zero-bin

subtraction in the computation of S̃i when the η regulator is not expanded to leading power

in the collinear-soft mode scaling [379]. It can be proven using the rapidity renormalization

group and the RPI-III properties of the three matrix elements, accounting for soft RPI-III

breaking by the η rapidity regulator [155].6 The most straightforward way to see that

eq. (6.33) holds is to use a rapidity regulator that always regulates the same light-cone

component, e.g. the analytic or α regulator [422] or the pure rapidity regulator [193]. In

this case the soft function is scaleless, S̃i(bT , µ, ν) = 1, and the two collinear-soft functions

are manifestly equal.

Specifying to the exponential regulator and inserting the result in eq. (6.32), we have

S̃i(k, bT , µ, ν) = Vγ̃iν(bT ,µ)/2(k, ν) S̃i(bT , µ, ν) . (6.34)

It is straightforward to check this relation at one loop, where the S̃i is known explicitly.

Beyond one loop, it can be used to extract the (qT , T0) collinear-soft function S̃i to the order

that the soft function is known, i.e., currently to three loops. It also holds nonperturbatively

and can serve as a starting point for nonperturbative modeling in the double-differential

(qT , T0) spectrum.

6.3.4 Results for the beam function

As we saw, the relation between the fully-differential and standard TMD soft function

is particularly simple for the exponential regulator, leading to an all-order result for the

collinear-soft function in terms of the rapidity anomalous dimension in eq. (6.32). Inserting

this result into eq. (6.23), we find for the eikonal limit of the bT -space beam function

matching coefficient Ĩij in the exponential regulator scheme,

Ĩij(z, bT , µ, ν/ω) = δij
ω

ν
Vγ̃iν(bT ,µ)/2

[ω
ν

(1− z)
] [

1 +O(1− z)
]
, (6.35)

where the plus distribution Va(x) is defined in eq. (A.17). The simplicity of this result

is a direct consequence of the specific rapidity regulator, i.e., one may equally well have

imposed this form of the eikonal limit as the renormalization condition. Nonetheless, when

combined with the soft function to a given order, the scheme dependence cancels and leaves

6Note that the S′(~kT , k, µ, ν) of ref. [155] is equal to the Fourier transform of our S̃i in the transverse plane;

while defined as a soft matrix element there, the two are related by a simple boost. This can be seen

explicitly from the refactorization relation for the double-differential beam function in eq. (4.31) in terms

of S̃i, and noting that the factorization theorem in eq. (3.26) of ref. [155] that contains S̃′(k, bT , µ, ν) is

the refactorization limit of the generalized threshold factorization theorem in eq. (5.9), which involves

the double-differential beam function.
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6.4 Summary

behind a unique set of terms that capture the threshold limit of the singular cross section

in eq. (2.192). We note that a close relation between the rapidity anomalous dimension

and the eikonal limit of the beam function is a scheme-independent feature [379], and was

also conjectured for the δ-regulator in ref. [284].

It is straightforward to expand eq. (6.35) in αs to obtain the finite terms in the matching

coefficient at any given fixed order using eqs. (2.205) and (A.20). Up to two loops we have

Ĩ
(1)
ij (z) = O

[
(1− z)0

]
,

Ĩ
(2)
ij (z) = δij

γ̃iν 1

2
L0(1− z) +O

[
(1− z)0

]
, (6.36)

in agreement with the full two-loop result [264], and where we have used that γ̃iν 0 = 0.

Including terms up to six loops for illustration, we find

Ĩ
(3)
ij (z) = δij

γ̃iν 2

2
L0(1− z) +O

[
(1− z)0

]
,

Ĩ
(4)
ij (z) = δij

γ̃iν 3

2
L0(1− z) +

(γ̃iν 1)2

4

[
L1(1− z)− ζ2

2
δ(1− z)

]
+O

[
(1− z)0

]
,

Ĩ
(5)
ij (z) = δij

γ̃iν 4

2
L0(1− z) +

γ̃iν 1γ̃
i
ν 2

2

[
L1(1− z)− ζ2

2
δ(1− z)

]
+O

[
(1− z)0

]
,

Ĩ
(6)
ij (z) = δij

γ̃iν 5

2
L0(1− z) +

(γ̃iν 2)2 + 2γ̃iν 1γ̃
i
ν 3

4

[
L1(1− z)− ζ2

2
δ(1− z)

]
+

(γ̃iν 1)3

8

[L2(1− z)
2

− ζ2

2
L0(1− z) +

ζ3

3
δ(1− z)

]
+O

[
(1− z)0

]
. (6.37)

We again stress that these expressions are a direct consequence of the renormalization

condition in the exponential regulator scheme and must be combined with the soft function

in the same scheme to obtain a scheme-independent result. It is interesting to note that

starting at four loops, eq. (6.35) does in fact predict a term proportional to δ(1− z) in the

beam function matching coefficient due to the inverse Fourier transform to k± back from

the conjugate b± space, where the regularization procedure is applied.

6.4 Summary

We have studied the three-loop structure of the beam functions relevant for N -jettiness

TN and transverse momentum-dependent factorization. These functions are defined as

collinear proton matrix elements that measure the small light-cone momentum (for T0) or

total transverse momentum (for qT ) of all collinear emissions, and thus are universal objects

describing the infrared structure of QCD.

We considered the previously unknown scale-independent boundary coefficients I
(3)
ij (z) of

the N3LO beam functions and employed consistency relations between different factorization

limits to derive their leading eikonal limit I
(3)
ij (z → 1), i.e. the full singular limit of the beam

functions as z → 1. These results were a step towards, and are an important check on, the

full calculation of the three-loop beam functions, which will enable three-loop predictions

in resummed and fixed-order perturbation theory in the future.
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Chapter 7

Resumming fiducial power

corrections at N3LL

In this chapter we consider Drell-Yan production pp→ V X → LX at small qT � Q. We

point out that experimental measurements that resolve the details of L in general introduce

enhanced, linear power corrections in qT /Q, and show that they can be unambiguously

predicted from factorization and resummed to the same order as the leading-power contribu-

tion. Matching to full NNLO (α2
s), we find that the linear power corrections are indeed the

dominant ones, and once included by factorization, the remaining fixed-order corrections

become almost negligible below qT . 40 GeV. We also discuss the implications for more

complicated observables, provide predictions for the fiducial φ∗ and the lepton pT spectrum

at N3LL+NNLO, and compare to ATLAS and CMS data for the qT and φ∗ spectrum.

This chapter is based on ref. [6], reflecting the author’s contribution.

7.1 Motivation

The neutral and charged-current Drell-Yan processes, pp→ Z/γ∗ → `` and pp→W → `ν,

are important benchmark processes at the LHC. We are interested in the kinematic region

where the vector boson is produced with small or moderate transverse momentum qT , which

contains the bulk of the total cross section. As discussed in the introduction, differential

distributions in this region can be measured to sub-percent precision [31–33, 35, 36, 423–

432], allowing for high-precision tests of the electroweak sector of the SM, including the

precise measurement of the W boson mass [36] and the weak mixing angle [425, 432].

For small transverse momentum qT � Q, the differential cross section admits an expan-

sion in qT /Q

dσ

dq2
T

=
dσ(0)

dq2
T

+
dσ(1)

dq2
T

+
dσ(2)

dq2
T

+ · · ·

∼ 1

q2
T

[
1 + O

(qT
Q

)
+ O

( q2
T

Q2

)
+ · · ·

]
. (7.1)

The dominant term scales as dσ(0)/dq2
T ∼ 1/q2

T and is referred to as the leading-power (LP)

contribution. The additional terms dσ(n) are suppressed by (qT /Q)n relative to dσ(0), and

are referred to as power corrections or subleading-power contributions.
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Chapter 7 – Resumming fiducial power corrections at N 3LL

At small qT � Q, the fixed-order expansion contains logarithmically enhanced terms

αns lnm(qT /Q) caused by soft and collinear emissions. These series of logarithms need to be

resummed to all orders in perturbation theory to obtain precise and reliable perturbative

predictions. For the LP term, this resummation is possible thanks to the qT -dependent

(TMD) factorization theorem for dσ(0) in eqs. (2.192) and (2.193), originally derived in

refs. [185, 251, 252], with several equivalent formulations [188, 189, 191, 192, 253, 257] based

on different regularization methods. A large variety of approaches for the resummation

exist [258, 263, 276, 399, 433–443] and by now have reached N3LL precision [267, 268, 363,

394, 444–447], the inclusion of quark-mass effects [420] and of QED corrections [448–450].

The power corrections dσ(n) in eq. (7.1) are classified by their relative (qT /Q)n suppres-

sion, and we refer to dσ(1) as the next-to-leading power (NLP) term, dσ(2) as NNLP etc.

Due to their suppression, they are less relevant at small qT � Q, and are included by

matching to the full fixed-order calculations, which amounts to numerically extracting the

complete set of power-suppressed terms at a given fixed order in αs. They are in principle

known to O(α3
s) from the NNLO V + 1-parton calculations [49, 451–457].

Nevertheless, the subleading-power terms also contain logarithms αns lnm(qT /Q), and so

in principle should be resummed as well to maintain their power suppression relative to

the resummed LP term. Hence, given the high precision reached at LP, it is important to

investigate the resummation of the subleading-power corrections to avoid them limiting

the theoretical precision. First progress towards this direction has been made in ref. [193],

where the power corrections were explicitly calculated at NLO, and in ref. [208], where the

resummation at subleading power in a related, simpler context was studied. In ref. [193],

it was explicitly shown that the linear NLP corrections for the inclusive qT spectrum are

absent, i.e. dσ(1) = 0, consistent with earlier numerical observations, see e.g. ref. [458]. On

the other hand, in ref. [459], it was shown explicitly that linear corrections do generically

arise once fiducial cuts on the final-state leptons are applied.1

In this work, we consider the generic Drell-Yan process pp → V X → LX, with the

intermediate vector boson decaying to the leptonic (color-singlet) final state L. We study

the origin and resummation of power corrections that arise from applying fiducial cuts or

performing measurements on L, to which we will refer as fiducial power corrections. While

our primary application will be to Z/γ∗ → `` and W → `ν, most of our general analysis,

which is carried out in section 7.2, will be for generic L. Our analysis and general results

also immediately apply to the simpler case of an intermediate color-singlet scalar, such as

Higgs production, though we will not consider this case explicitly here.

We encounter two classes of fiducial power corrections in our analysis:

1. Linear fiducial power corrections in qT /Q arise when azimuthal symmetry is preserved

by the leptonic measurement at leading power, but is broken at O(qT /Q). For

such measurements, the linear fiducial power corrections constitute the complete

NLP corrections dσ(1), and can be unambiguously predicted from factorization, and

resummed to the same logarithmic order as the LP term dσ(0).

1In case of isolation cuts, the power corrections can be even further enhanced [459].
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7.1 Motivation

The prototypical example is the qT spectrum in the presence of fiducial cuts on L,

which generically break azimuthal symmetry and induce linear power corrections. It

also applies to other more complicated qT -like observables, that resolve the recoil of

the leptonic final state and vanish at Born level, e.g. the φ∗ observable or the scalar

pT -imbalance p`T1 − p`T2.

2. Leptonic fiducial power corrections in qT /pL arise when the leptonic measurement is

sensitive to the edge of Born phase space, with pL corresponding to the distance to

the Born edge. In the bulk of the leptonic phase space pL ∼ Q, and the discussion in

point 1) applies. As pL gets smaller, the leptonic power corrections become enhanced,

and for qT ∼ pL they become O(1) and must be retained exactly to all powers to

obtain the actual LP result.

The prototypical example is the lepton p`T spectrum close to the Jacobian peak

p`T = Q/2, with pL = Q− 2p`T . Close to the Jacobian peak qT ∼ pL � Q, fixed-order

predictions are not reliable, which is a well-known effect. The resummation at strict

LP is also not sufficient as it neglects the O(1) corrections in qT /pL. Hence, in this

limit the resummation including all leptonic power corrections is required.

The inclusion of the fiducial power corrections in the qT factorization is derived in

section 7.2. As we will see, the fiducial power corrections are a property of the leptonic

decay and are independent of the underlying production of the decaying vector boson. This

allows one to include them in the factorization theorem by treating the leptonic vector-

boson decay exactly in qT and consequently makes it possible to resum them at the same

level of precision as the singular cross section dσ(0). In particular, this yields a resummation

of the NLP terms dσ(1) to N3LL.

Our derivation in section 7.2 is general and independent of the specific method to perform

the actual resummation, and of whether qT is treated as a perturbative scale or not. It is

based on performing a Lorentz decomposition of the hadronic and leptonic tensors, which

encode the production and decay of the intermediate vector boson. The basic idea of

Lorentz-decomposing the hadronic tensor is of course not new and has been used before,

typically to analyze the angular dependence for lepton pair production, see e.g. [456, 460–

463]. Here, we use it for both hadronic and leptonic tensors to discuss the power counting

at small qT . Some preparatory remarks on current conservation relations that constrain

the structure of the leptonic and hadronic tensor are made in section 7.2.1. The tensor

decomposition is discussed in section 7.2.2. It is constructed in a fully Lorentz-covariant

way based on minimal requirements on symmetry and to make the small-qT limit maximally

transparent, which leads to a direct equivalence with the Collins-Soper (CS) frame.

Our tensor decomposition holds for any leptonic final state L. In section 7.2.3, we show

that for the specific cases of Z/γ∗ → `` and W → `ν it directly maps onto the angular

decomposition of the fully differential cross section in terms of CS angles. In section 7.2.3, we

discuss that Born leptons have a well-defined theoretical interpretation as a Born projection

of the full leptonic final state, and that in this case an analogous angular decomposition

in terms of generalized angular coefficients also holds for generic L, in particular when
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including QED final-state radiation. This implies that the use of so-defined Born leptons

is theoretically preferred over other lepton definitions in this context.

Our main power-counting analysis of both linear and leptonic fiducial corrections and

their inclusion in the factorization is given in section 7.2.4. Some of the more technical

details, such as the required power-counting of the hadronic tensor, are derived in using

the soft-collinear effective theory reviewed in section 2.2. Our analysis does not rely on

the precise formalism to factorize dσ(0), and thus provides formal justification for existing

approaches in the literature that include the exact lepton kinematics in the factorized cross

section [267, 268, 433–435, 439, 440], as discussed in section 7.2.6.

In section 7.3, we summarize our specific qT resummation setup, implemented in the C++

library SCETlib [8], which we use to obtain numerical results for all factorized cross sections

at fixed order and including resummation up to N3LL. Some additional details on the

numerical inputs and computational setup can be found in section 7.4.1. In section 7.4, we

discuss and illustrate in more detail the different sources of fiducial power corrections and the

mechanism for their resummation. We consider three concrete examples, the qT spectrum

with fiducial cuts (section 7.4.2), the p`T distribution near the Jacobian peak (section 7.4.3),

and the φ∗ distribution (section 7.4.4). In all cases, we validate numerically that the fiducial

power corrections are indeed captured by the qT factorization, that their resummation

significantly improves their perturbative stability, and that the size of remaining fixed-order

power corrections is significantly reduced. In addition, we provide for the first time the

resummed p`T spectrum at N3LL+NNLO accuracy.

In section 7.5 we compare our resummed predictions at N3LL+NNLO for the fiducial

qT and φ∗ distributions in pp → Z/γ∗ → `+`− with measurements by ATLAS [426] and

CMS [31]. We compare the results both with the fiducial power corrections included at

fixed order as well as resummed, illustrating the improvement from resumming the fiducial

power corrections and the fact that this significantly reduces the impact of the remaining

fixed-order matching corrections.

In short, the outline of this chapter is as follows: Our general analysis is given in

section 7.2, with a discussion of current conservation relations in section 7.2.1, the hadronic

tensor decomposition in section 7.2.2, the leptonic tensor and relation to angular coefficients

in section 7.2.3, the main power-counting analysis in section 7.2.4, some of the more

technical details in section 7.2.5, and the relation to other approaches in section 7.2.6.

In section 7.3, we specify the qT resummation setup used in this chapter. In section 7.4,

we provide a detailed analysis of fiducial power corrections for the fiducial qT spectrum,

the p`T distribution, and the φ∗ observable. In section 7.5, we compare our resummed

N3LL+NNLO results for qT and φ∗ to ATLAS and CMS measurements. We summarize

our results in section 7.6.
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7.2 Theory

Our goal is to compute the differential Drell-Yan cross section with an arbitrary measure-

ment on the leptonic final state, but inclusive over hadronic radiation,

dσ(Θ)

d4q dO =
1

2E2
cm

Lµν(q,O,Θ)Wµν(q, Pa, Pb) , (7.2)

Compared to the more general eq. (2.53), we have integrated Wµν over the hadronic

observable OX . We write the leptonic observable as O = OL and, to stay explicit, allow

for a set of fiducial cuts Θ to be applied to the leptonic final state in addition. (This is of

course equivalent to integrating a more differential measurement over a suitable region.)

As in eq. (2.53) we keep the sum over the intermediate vector bosons implicit most of the

time.

Importantly, the hadronic tensor in this setup only depends on the four-momenta q, Pa, Pb,

which strongly constrains its structure. For a simple example, consider the cross section

integrated over the leptonic measurement as in eq. (2.60), which now takes the form

dσ

d4q
=

1

2E2
cm

L(q2)Wincl(q
2, saq, sbq) . (7.3)

Here we have used that by Lorentz invariance, the scalar function Wincl = (qµqν/q2 −
gµν)Wµν can only depend on the six independent kinematic invariants of q, Pa, Pb. Three of

these contain nontrivial kinematic information, which we choose as (recall m2
T = Q2 + q2

T )

q2 = Q2 , saq ≡ 2q · Pa = EcmmT e
−Y , sbq ≡ 2q · Pb = EcmmT e

+Y . (7.4)

These are in one-to-one correspondence to the three kinematic variables Q, Y , q2
T = ~q 2

T . In

particular, since L(q2) only depends on q2, the entire dependence on Y and q2
T in eq. (7.3)

is carried by Wincl, so Wincl encodes the inclusive (without fiducial cuts) qT distribution for

fixed Q, Y . The three remaining invariants, which we suppress in the arguments of Wincl,

only encode the beam parameters, and two of them are trivial due to our assumption of

massless protons,

P 2
a,b = 0 , sab ≡ 2Pa · Pb = E2

cm . (7.5)

Expanding the inclusive hadronic tensor and factorizing the leading term leads to the

factorization theorem for the inclusive qT spectrum in eq. (2.192), which receives corrections

that are suppressed by powers of qT /Q relative to the leading term. As indicated in

eq. (2.192), the leading corrections scale as (qT /Q)2, while linear power corrections are

absent. This can be understood intuitively from the azimuthal symmetry of Wincl, i.e.,

the fact that it only depends on the Lorentz invariants in eq. (7.4), which in turn only

depend on q2
T . The absence of linear power corrections in Wincl has been verified explicitly

by analytic O(αs) calculations at next-to-leading power [193]. More formally, an argument

for their absence to all orders in the inclusive case is presented in section 7.2.5. In the

remainder of this section, we discuss how eq. (2.192) is extended to the case where the

decay products are resolved and, notably, linear power corrections arise.
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We note that there are various approaches in the literature on how to perform the

resummation that eq. (2.192) gives rise to. While they all aim to describe the same inclusive

hadronic tensor Wincl, they can differ in practice, e.g., due to differences in the rapidity

regularization scheme, the different equivalent forms of eq. (2.193), different mathematical

methods of performing the actual resummation, and different choices for the precise form of

the logarithms that are being resummed. Crucially, all our results in this section are general

and hold independently of how the resummation is carried out, and thus immediately apply

to all formulations in the literature.2 This is because they only rely on general arguments,

such as Lorentz invariance and power counting, and the general structure of the hadronic

and leptonic tensors.

7.2.1 Constraints on tensor structure from current conservation

In this section we apply current conservation to identify the possible tensor structures in

Wµν that are nonzero, or give nonzero contributions to the cross section. The relevant

hadronic currents were given in eqs. (2.30), (2.50), and (2.52). The conservation of the

vector current in QCD, ∂µJ
µ
γ = 0, implies

qµW
µν
γγ = qνW

µν
γγ = 0 . (7.6)

The same relation for V = Z does not automatically follow from gauge invariance, because

the axial-vector current is not conserved in QCD due to finite quark masses and because

of the Adler-Bell-Jackiw axial anomaly [464–466]. In the unbroken electroweak theory,

the axial anomaly cancels in all gauge currents thanks to the anomaly cancellation in the

SM. Since the anomaly coefficient is mass independent, it also does not contribute to the

divergence of JµZ after electroweak symmetry breaking, namely it still cancels between

up-type and down-type quarks due to their opposite T u,d3 = ±1/2. However, the nonzero

quark masses now explicitly break the axial-vector current conservation. Therefore, we

have the non-conservation relation3

− i∂µJ
µ
Z = |e|

∑
f

af 2mf q̄fγ5qf . (7.7)

In practice, neglecting all but the top-quark masses, we thus have the chiral Ward identity

qµ〈X|JµZ |pp〉 = |e|at 2mt 〈X|t̄γ5t|pp〉 . (7.8)

At the partonic level, the leading contribution to this relation (without explicit top quarks

in the final state) is the gluon-fusion top-quark triangle diagram. To isolate these non-

conserved contributions, we write the hadronic matrix element as[
〈X|JµV |pp〉 −

qµqν
q2
〈X|JνV |pp〉

]
cons

+
qµqν
q2
〈X|JνV |pp〉 , (7.9)

2This of course only holds to the extent that an approach itself does not induce new power corrections.
3As discussed, this relation is not anomalous. It also holds after suitable renormalization that preserves

the non-renormalization of the axial anomaly [466], see e.g. refs. [467, 468] for a detailed discussion.
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where the first term is “conserved” by construction, i.e., it vanishes when contracted with

qµ, while the second term ∼ qµ contains the non-conserved pieces in eq. (7.8). Similarly,

we can write the hadronic tensor as

Wµν = Wµν
cons + (terms ∝ qµ or qν) ,

qµW
µν
cons = qνW

µν
cons = 0 , (7.10)

where the conserved part Wµν
cons arises from squaring the conserved parts of the currents.

In practice, the non-conserved pieces rarely matter for various reasons: First, for a real,

on-shell massive vector boson with physical polarization ε, they vanish due to q · ε = 0. As

a result, for an off-shell vector boson near the resonance, they are suppressed by 1− q2/m2
V .

This is easy to see in unitary gauge, where all Goldstone bosons have been eaten up and the

vector-boson propagator is proportional to gµν−qµqν/m2
V . (In ’t Hooft-Feynman gauge, the

second term is generated by the exchange of Goldstone bosons.) Second, we can repeat the

analogous discussion on the leptonic decay side, and split the leptonic tensor into conserved

parts, qµL
µν
cons = qνL

µν
cons = 0, and non-conserved parts. The non-conserved parts of Wµν

are ∝ qµ,ν , and thus they only survive when contracted with the non-conserved parts of the

leptonic tensor. However, considering leptonic decays (i.e., with the intermediate vector

boson coupling to a leptonic current) the non-conserved leptonic parts are proportional

to the lepton masses and can thus be neglected.4 Therefore, for simplicity, we will ignore

the non-conserved contributions for the most part, though we emphasize that they do not

pose any additional conceptual problems and could be straightforwardly included in our

analysis.

7.2.2 Hadronic tensor decomposition

We now return to the generic, fiducial cross section in eq. (7.2), and bring it into a form

suitable for factorization at small qT . The manipulations of this section are exact in qT ,

i.e., we do not yet expand in qT � Q. For the purposes of this section only, we consider

the collision of generic hadrons ha(Pa) and hb(Pb) with nonzero, possibly distinct masses

ma and mb. This is relevant for treating proton or ion mass corrections in pp → XL,

pA → XL, or AA′ → XL, where A and A′ are ions with these atomic numbers. We will

find that retaining the masses exposes interesting subtleties in the decomposition that were

not previously considered. Allowing for finite masses and arbitrary beam velocities va,b,

the proton momenta in the lab-frame are given by

Pµa = Ea(1, 0, 0, va) , Pµb = Eb(1, 0, 0,−vb) , va,b =
1

Ea,b

√
E2
a,b −m2

a,b , (7.11)

4A notable exception is associated Higgs production, which has a gg → Z∗ → ZH contribution. As

a consequence of Yang’s theorem, the ggZ vertex vanishes if all three bosons are real and on shell.

Therefore, for real, on-shell gluons, the effective gg → Z contribution via a top-quark triangle is purely

∝ qµ and thus the gg → Z∗ → ZH process proceeds entirely via the non-conserved parts in eq. (7.8).

Starting at O(α2
s), one or both gluons are off shell, and the ggZ vertex also contributes to the conserved

parts, and therefore also to the Drell-Yan process Z → `` [144, 469].
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the three kinematic invariants containing nontrivial kinematic information become

q2 = Q2 ,

saq ≡ 2q · Pa = 2EamT (coshY − va sinhY ) ,

sbq ≡ 2q · Pb = 2EbmT (coshY + vb sinhY ) . (7.12)

As before, the three remaining invariants only encode the beam parameters,

P 2
a,b = m2

a,b , sab ≡ 2Pa · Pb = 2EaEb(1 + vavb) . (7.13)

The key idea is to decompose the hadronic tensor Wµν(q, Pa, Pb) into Lorentz-scalar

projections with respect to four orthogonal unit four-vectors that are constructed from

the four-vectors Pµa,b and qµ and their invariants, and by imposing reasonable symmetry

constraints. For the tensor decomposition to be complete, we should pick one timelike

vector tµ and three spacelike vectors xµ, yµ, zµ,

t2 = 1 , x2 = y2 = z2 = −1 . (7.14)

Motivated by eq. (7.10), we take the timelike vector to be

tµ =
qµ√
q2
, (7.15)

such that the conserved and non-conserved parts of Wµν will get projected onto orthogonal

components. The spacelike vectors must be given by linear combinations of Pµa,b and qµ. It

will prove convenient to take zµ to lie in the plane spanned by Pµa and Pµb ,

zµ = λaP
µ
a + λbP

µ
b , (7.16)

where λa and λb are scalar functions of the kinematic invariants. Imposing t · z = 0 and

z2 = −1 then uniquely fixes zµ to

zµ =
sbq P

µ
a − saq Pµb

(sabsaqsbq −m2
bs

2
aq −m2

as
2
bq)

1/2
, (7.17)

up to a conventional overall sign. The sij are all positive definite, as can be seen from their

explicit expressions in eqs. (7.12) and (7.13), and sabsaqsbq −m2
bs

2
aq −m2

as
2
bq = [2EaEb(va +

vb)mT ]2 > 0, so zµ is real. Interchanging Pa ↔ Pb, eq. (7.17) satisfies zµ 7→ −zµ. The

choice for the remaining xµ and yµ is degenerate in principle. To reflect the fact that

interchanging the initial-state hadrons is equivalent to a 180◦ rotation about an axis in the

transverse plane, we require xµ to be invariant under Pa ↔ Pb and yµ to only change sign.

All together we then have

Pa ↔ Pb : xµ 7→ +xµ , yµ 7→ −yµ , zµ 7→ −zµ . (7.18)

We can write xµ as a linear combination of qµ and Pµa,b,

xµ =
cx√
q2

(
qµ − κaPµa − κbPµb

)
, (7.19)
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where we chose the qµ coefficient to be positive to fix the overall sign of xµ. Imposing

t · x = z · x = 0 and x2 = −1, we find for the scalar coefficients and normalization factor

κa =
q2(sabsbq − 2m2

bsaq)

sabsaqsbq −m2
as

2
bq −m2

bs
2
aq

=
Q2

mTEa

vb coshY + sinhY

va + vb
,

κb =
q2(sabsaq − 2m2

asbq)

sabsaqsbq −m2
as

2
bq −m2

bs
2
aq

=
Q2

mTEb

va coshY − sinhY

va + vb
,

c2
x =

sabsaqsbq −m2
bs

2
aq −m2

as
2
bq

sabsaqsbq − q2s2
ab −m2

bs
2
aq −m2

as
2
bq + 4m2

am
2
bq

2
= 1 +

Q2

q2
T

=
m2
T

q2
T

. (7.20)

Finally, yµ is chosen to complete a right-handed coordinate system

yµ = εµνρσtνxρzσ , (7.21)

where we use the convention ε0123 = +1. For completeness, the results for the unit vectors

in the massless limit are

tµ =
qµ√
q2
, xµ =

saqsbq q
µ − sbqq2 Pµa − saqq2 Pµb

[saqsbqq2(saqsbq − sabq2)]1/2

zµ =
sbq P

µ
a − saq Pµb

(sabsaqsbq)1/2
, yµ = εµνρσtνxρzσ . (7.22)

Reference frame interpretation

The four-vectors tµ, xµ, yµ, zµ are orthogonal and normalized, and thus uniquely define

a reference frame, namely the frame in which they have components tµ = (1, 0, 0, 0),

xµ = (0, 1, 0, 0), yµ = (0, 0, 1, 0), and zµ = (0, 0, 0, 1). Since tµ = qµ/
√
q2, this frame is

automatically a frame where the vector boson is at rest, i.e., where qµ = (
√
q2, 0, 0, 0). A

goal of this section is to show that this frame turns out to be the well-known Collins-Soper

(CS) frame [470]. We will also find and discuss some subtleties in the massive case due to

the fact that different CS-frame definitions that are equivalent in the massless case are no

longer equivalent in the massive case.

Let us first remind the reader that the vector-boson rest frame is not unique in itself

because different rest frames can still differ by spatial rotations, i.e., by their orientation of

the x, y, z-axes. There are many ways to perform a sequence of pure boosts to go from a

given frame, say the lab frame, to the rest frame, and the difference between them precisely

corresponds to an overall spatial rotation in the rest frame. Hence, a unique way to define

a specific vector-boson rest frame is to specify the precise boost sequence to go from the lab

frame to the rest frame. We will show how to rotate between different rest frames during

the discussion leading up to eq. (7.105).

Intuitively, the CS frame is defined such that its z-axis points into the same direction as

in the lab frame and its x-axis points in the direction of ~qT in the lab frame. In terms of

boosts from the lab frame, the CS frame is defined by performing two boosts (see figure 7.4):
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1. A longitudinal boost by Y in the beam direction (taken to be the z-axis) that takes

us to the leptonic frame in which Ỹ = 0 and q̃z = 0. Here and in the following, the

tilde denotes the same physical quantity but evaluated in the leptonic frame.

2. A transverse boost in the direction of ~qT (taken to be the x-axis) with boost parameters

βγ = ε =
qT
Q
, γ =

√
1 + ε2 =

mT

Q
, (7.23)

which takes us from the leptonic frame to the rest frame.

Under these boosts a generic four-vector pµ transforms as

pµ = (p0, px, py, pz)lab

= (p0 coshY − pz sinhY, px, py, pz coshY − p0 sinhY )lep ≡ (p̃0, p̃x, p̃y, p̃z)lep

= (γp̃0 − εp̃x, γp̃x − εp̃0, p̃y, p̃z)CS , (7.24)

where we explicitly indicated by a subscript in which frame the component-form is given,

with p0,x,y,z always denoting the lab-frame components and p̃0,x,y,z always denoting the

leptonic-frame components. To illustrate the boosts, applying them to qµ itself, we obtain

qµ = Q(γ coshY, ε, 0, γ sinhY )lab = Q(γ, ε, 0, 0)lep = Q(1, 0, 0, 0)CS . (7.25)

Hence, we indeed arrive in the vector-boson rest frame, which is of course how eq. (7.23)

was chosen in the first place.

We can now use this definition of the CS frame to make contact with our unit vectors

tµ, xµ, yµ, zµ. To do so, we perform the same exercise for them, i.e., evaluate them in the

lab frame and then boost them to the CS frame. For tµ = qµ/Q, this would just repeat

eq. (7.25). For zµ, evaluating its general covariant expression in eq. (7.17) in the lab frame

and applying the two boosts to the CS frame, we obtain

zµ = λaP
µ
a + λbP

µ
b

=
1

va + vb

(
coshY + vb sinhY

Ea
Pµa −

coshY − va sinhY

Eb
Pµb

)
= (sinhY, 0, 0, coshY )lab = (0, 0, 0, 1)lep = (0, 0, 0, 1)CS . (7.26)

Similarly, starting from the expression for xµ in eq. (7.19), we obtain

xµ =
cx√
q2

(
qµ − κaPµa − κbPµb

)
=
γ

ε

qµ

Q
− 1

ε(va + vb)

(vb coshY + sinhY

Ea
Pµa +

va coshY − sinhY

Eb
Pµb

)
= (ε coshY, γ, 0, ε sinhY )lab = (ε, γ, 0, 0)lep = (0, 1, 0, 0)CS . (7.27)

This shows explicitly that the frame defined by tµ, xµ, yµ, zµ is equivalent to the CS frame

(in its boost definition), and that this equivalence also holds in the general massive case.
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It is quite pleasing to see that the CS frame naturally appears in a covariant way only by

imposing eq. (7.16) and the symmetry constraints in eq. (7.18).

Another definition of the CS frame [470], which is also often used in practice, is to

consider ~Pa and ~Pb in the vector-boson rest frame, and to define the z-axis to bisect the

angle between ~Pa and −~Pb, while the x-axis is chosen to lie in the plane defined by ~Pa and
~Pb. Denoting individual components in the CS frame (defined via the above boosts) by

hats, we have

Pµa = Ea(1, 0, 0,+va)lab = (P̂ 0
a , P̂

x
a , 0, P̂

z
a )CS ,

Pµb = Eb(1, 0, 0,−vb)lab = (P̂ 0
b , P̂

x
b , 0, P̂

z
b )CS , (7.28)

where explicit expressions for the components can be straightforwardly obtained from

eq. (7.24). The angles γa,b between ~Pa,b and the z-axis (see figure 7.1 right) are given by

tan γa = +
P̂ xa

P̂ za
= ε

va sinhY − coshY

va coshY − sinhY
,

tan γb = − P̂
x
b

P̂ zb
= −εvb sinhY + coshY

vb coshY + sinhY
. (7.29)

The bisector criterion amounts to requiring these two angles to be equal, i.e.,

tan γa − tan γb = ε
(va − vb) cosh(2Y )− (1− vavb) sinh(2Y )

(va coshY − sinhY )(vb coshY + sinhY )

!
= 0 . (7.30)

This can only be satisfied for generic Y if and only if va = vb = 1, i.e., both hadrons are

massless. This means the bisector definition of the CS frame is only equivalent to the

above boost definition for massless hadrons, for which both definitions where originally

introduced in ref. [470], while for nonzero hadron masses the two definitions are no longer

equivalent.5 The key advantage of our construction of tµ, xµ, yµ, zµ and the corresponding

boost definition of the CS frame is that they are symmetric under interchanging the beams

[see eq. (7.18)] and furthermore are manifestly independent of the beam parameters, i.e.,

they only depend on qµ without reference to the beam momenta beyond the beam direction

itself. In the rest of the chapter, we will always use this definition, unless stated otherwise.

Helicity decomposition

Using tµ, xµ, yµ, zµ, we can define polarization vectors for the vector boson in a fully

covariant way as

εµ± =
1√
2

(
xµ ∓ iyµ

)
, εµ0 = zµ , (7.31)

5In some of the literature, the equivalence of the two definitions for the massive case seems to be incorrectly

assumed. For example, in ref. [463] expressions for the proton momenta in the CS frame are given that

would suggest the equivalence to also hold in the massive case, but can be easily seen to contradict the

explicit expression for the Lorentz boost.
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which correspond to positive/negative helicity and longitudinal polarization with respect

to zµ. Using these, we project the hadronic tensor onto the entries of a helicity density

matrix [461],

Wλλ′(q, Pa, Pb) ≡ εµλε∗νλ′ Wµν(q, Pa, Pb) with λ = {+,−, 0} . (7.32)

Since the εµ±,0 span the space orthogonal to tµ = qµ/Q, this decomposition fully captures the

conserved part of the hadronic tensor, see eq. (7.10). (To also account for the non-conserved

parts, we would just have to include the fourth time-like polarization tµ.)

From its definition in eq. (2.55), it is clear that Wµν is hermitian, W ∗µν = W νµ, so its

symmetric (antisymmetric) components are purely real (imaginary). Therefore, the nine

helicity components Wλλ′ are fully specified by a total of nine real-valued, Lorentz-scalar

hadronic structure functions. We will use the following linear combinations:

W−1 = W++ +W−− = (xµxν + yµyν)Wµν ,

W0 = 2W00 = 2 zµzνW
µν ,

W1 = − 1√
2

(
W+0 +W0+ +W−0 +W0−

)
= −(xµzν + xνzµ)Wµν ,

W2 = −2
(
W+− +W−+

)
= 2 (yµyν − xµxν)Wµν ,

W3 = −
√

2
(
W+0 +W0+ −W−0 −W0−

)
= 2i (yµzν − yνzµ)Wµν ,

W4 = 2
(
W++ −W−−

)
= 2i (xµyν − xνyµ)Wµν ,

W5 = −i
(
W+− −W−+

)
= −(xµyν + xνyµ)Wµν ,

W6 = − i√
2

(
W+0 −W0+ −W−0 +W0−

)
= −(yµzν + yνzµ)Wµν ,

W7 = −i
√

2
(
W+0 −W0+ +W−0 −W0−

)
= −2i (xµzν − xνzµ)Wµν . (7.33)

The reason for the somewhat odd numbering and normalization will become apparent

shortly. In the second equality, we have given the projections in terms of xµ, yµ, zµ,

corresponding to linear vector-boson polarizations. The inclusive structure function from

eq. (2.61) is given by

Wincl ≡W++ +W−− +W00 = W−1 +
1

2
W0 . (7.34)

Since the projections of Wµν that define the Wi are orthogonal, we can easily invert

them and write Wµν in terms of the Wi as

Wµν =
7∑

i=−1

Pµνi Wi (+ terms ∝ qµ or qν) , (7.35)

where the Pµνi are the same projections as in eq. (7.33) up to a trivial difference in normal-

236



7.2 Theory

ization, for example,

Pµν−1 =
1

2

(
ε∗µ+ εν+ + ε∗µ− ε

ν
−
)

=
1

2
(xµxν + yµyν) ,

Pµν0 =
1

2
ε∗µ0 εν0 =

1

2
zµzν ,

Pµν4 =
1

4

(
ε∗µ+ εν+ − ε∗µ− εν−

)
=

1

4i
(xµyν − xνyµ) . (7.36)

Contracting the leptonic tensor Lµν with Wµν decomposed as in eq. (7.35), we have

LµνW
µν =

∑
i

LµνP
µν
i Wi ≡

∑
i

LiWi , (7.37)

with the corresponding leptonic structure functions defined as

Li(q,O,Θ) =

∫
dΦL(q)Pµνi Lµν(ΦL) δ[O − Ô(q,ΦL)] Θ̂(q,ΦL) . (7.38)

The cross section in eq. (7.2) in terms of the scalar structure functions now becomes

dσ(Θ)

d4q dO ≡
1

2E2
cm

∑
i

Li(q,O,Θ)Wi(q
2, saq, sbq) , (7.39)

which generalizes the inclusive cross section in eq. (7.3) to arbitrary leptonic observables and

fiducial cuts. Here and in the following we return to the limit of center-of-mass collisions of

approximately massless hadrons as relevant for the LHC, cf. the flux factor in eq. (7.39). As

for Wincl before, Lorentz invariance implies that the hadronic structure functions Wi only

depend on the three kinematic invariants q2, saq, sbq, or equivalently the three kinematic

variables Q2, Y , q2
T , see eq. (7.4). In particular, they do not depend on the orientation

of ~qT . Since the xµ, yµ, zµ reduce to the spatial coordinate axes in the CS frame, the

structure functions correspond to the individual tensor components of the hadronic tensor

Ŵµν evaluated in the CS frame, e.g., W−1 = Ŵ xx + Ŵ yy, W0 = 2W zz, etc. We will refer

to eqs. (7.33) and (7.35) as the CS tensor decomposition.

We note that one may also decompose the hadronic tensor in terms of Lorentz structures

directly formed out of gµν − qµqν/q2 and its contractions with Pµa,b, see e.g. refs. [456, 460,

462, 463]. This automatically ensures that the projectors are covariant combinations of qµ

and Pµa,b and that the corresponding coefficients are Lorentz-scalar functions. This is usually

not manifest when one considers the individual tensor components in the CS frame (or any

other rest frame). However, as we have seen, the CS-frame components are reproduced

by the CS tensor decomposition in a manifestly covariant manner as the Lorentz-scalar

structure functions Wi that only depend on Lorentz invariants. Hence, there is no formal

preference for either decomposition and the two are related by a straightforward change

of basis. We will see in the following sections that the physics at small qT � Q becomes

particularly transparent when using the CS tensor decomposition.
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Figure 7.1: Kinematics in the lab frame (left) and the Collins-Soper frame (right). In the lab

frame, the incoming hadron momenta are head-to-head (assuming the lab frame and hadronic

center-of-mass frame coincide), while the vector boson has nonvanishing three-momentum ~q. The

scattering p(Pa) p(Pb) → V (q)X(pX) defines the hadron plane (green). In the CS frame (right),

the vector boson is at rest. The leptons are produced back to back in the lepton plane (blue). The

magnitudes of the hadron momenta in general differ for Y 6= 0, but their angles γa,b with respect

to the z axis (indicated by the double arcs) become equal in the limit of vanishing hadron masses.

The Collins-Soper angles θ and ϕ are defined as indicated.

7.2.3 Leptonic decomposition and relation to angular coefficients

In this subsection, we discuss the leptonic decay in more detail. For the most part, we

specifically consider the leading-order Drell-Yan decays

Z/γ∗(q)→ `−(p1) `+(p2) , Z → ν(p1) ν̄(p2) ,

W+(q)→ ν`(p1) `+(p2) , W−(q)→ `−(p1) ν̄`(p2) , (7.40)

neglecting lepton masses, m1,2 = 0, and summing over lepton polarizations. These are the

primary application we are eventually interested in. The kinematics of the process in the

lab and CS frames are illustrated in the left and right panels of figure 7.1.

In section 7.2.3, we discuss the extension to more complicated leptonic final states, e.g.

including QED final-state radiation, which is important at the precision of current Drell-

Yan measurements. In particular, there we show to what extent the LO discussion carries

over for measurements that are performed in terms of suitably defined Born leptons.

Definition of CS angles

It is convenient to introduce spherical coordinates (cos θ, ϕ) in the CS frame, in terms of

which we can parametrize p1,2, as illustrated in the right panel of figure 7.1, as

pµ1,2 =
Q

2

(
tµ ± xµ sin θ cosϕ± yµ sin θ sinϕ± zµ cos θ

)
. (7.41)
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The angles θ, ϕ are known as Collins-Soper angles.6 From eq. (7.41), one can easily derive

their explicit expressions in terms of lab-frame quantities E1,2, px,y,z1,2 ,

cos θ =
1

QmT

[
(E1 + pz1)(E2 − pz2)− (E1 − pz1)(E2 + pz2)

]
,

cosϕ =
1

sin θ

p2
1T − p2

2T

qTmT
, sinϕ =

2

sin θ

py1p
x
2 − py2px1
qTQ

, (7.42)

Note that we have arbitrarily chosen the positive orientation of the z axis by having

hadron a move in the z direction in the lab frame. As a result, the negatively charged lepton

moves into the same rest-frame hemisphere as hadron a for cos θ > 0. In experimental

measurements at the LHC, where the choice of a and b is arbitrary, hadron b is often taken

to be the one closer to the vector boson in rapidity to ensure that angular distributions

do not average out when integrating over rapidity, see e.g. refs. [425, 427, 430, 432]. The

resulting angles θ∗ and ϕ∗, which are often also referred to as Collins-Soper angles, are

then related to eq. (7.42) by

cos θ∗ =
Y

|Y | cos θ , ϕ∗ =
Y

|Y |ϕ . (7.43)

On the other hand, eq. (7.42) does not depend on the chosen orientations of the x and y

axes in the lab frame as long as they form a right-handed coordinate system.

The advantage of eq. (7.41), or equivalently the boost definition to define the CS frame,

is that it stays true regardless of whether hadron masses are included or neglected, and

thus also any relations like eq. (7.42) that are derived from it are independent of any beam

parameters. On the other hand, with the bisector construction including hadron masses,

eq. (7.42) no longer holds, see the discussion below eq. (7.30).

Leptonic decay parametrization by angles

The fully-differential leptonic tensor for the 1 → 2 Drell-Yan decays in eq. (7.40) at tree

level has the form

Lµν(p1, p2) =
24π

q2

[
L+(q2)

(
pµ1p

ν
2 + pν1p

µ
2 − gµνp1 · p2

)
+ iL−(q2) εµνρσp1ρp2σ

]
. (7.44)

Only the contribution proportional to L+ (L−) survives the contraction with the symmetric

(antisymmetric) Pµνi corresponding to the parity-even (parity-odd) hadronic structure

functions W−1,0,1,2,5,6 (W3,4,7). The normalization is chosen such that L+(q2) = L(q2)

agrees with the inclusive coefficient in eq. (2.59), and such that L−(q2) = L+(q2) for W

decays, where parity is maximally violated. Explicit expressions for the L±(q2) are given

in appendix B.

6To be precise, here we have defined the CS angles by θ ≡ θ1 and ϕ ≡ ϕ1, where (θ1, ϕ1) are the spherical

coordinates of p1. Since at LO in QED p1 and p2 are back-to-back, the spherical coordinates for p2 are

then (π − θ, π + ϕ).

239



Chapter 7 – Resumming fiducial power corrections at N 3LL

It is convenient to parametrize the 2-body decay phase space using the CS angles θ, ϕ,

in terms of which the phase-space measure is isotropic,

dΦL(q) =
d cos θ dϕ

32π2
. (7.45)

Applying this parametrization to eq. (7.38), we find

Li(q,O,Θ) =

∫ 1

−1
d cos θ

∫ 2π

0
dϕLi(q

2, θ, ϕ) δ[O − Ô(q, θ, ϕ)] Θ̂(q, θ, ϕ) , (7.46)

Li(q
2, θ, ϕ) =

3

16π
L±(i)(q

2) gi(θ, ϕ) with ±(i) =

{
+ , i ∈ {−1, 0, 1, 2, 5, 6} ,
− , i ∈ {3, 4, 7} ,

where the angular dependence arises from contracting Pµνi with the Lorentz structures in

eq. (7.44), and is encoded in nine (real combinations of) spherical harmonics

g−1(θ, ϕ) = 1 + cos2 θ , g2(θ, ϕ) = 1
2 sin2 θ cos(2ϕ) , g5(θ, ϕ) = sin2 θ sin(2ϕ) ,

g0(θ, ϕ) = 1− cos2 θ , g3(θ, ϕ) = sin θ cosϕ , g6(θ, ϕ) = sin(2θ) sinϕ ,

g1(θ, ϕ) = sin(2θ) cosϕ , g4(θ, ϕ) = cos θ , g7(θ, ϕ) = sin θ sinϕ .

(7.47)

Putting everything together, we obtain

dσ(Θ)

d4q dO =

∫ 1

−1
d cos θ

∫ 2π

0
dϕ

dσ

d4q d cos θ dϕ
δ[O − Ô(q, θ, ϕ)] Θ̂(q, θ, ϕ) ,

dσ

d4q d cos θ dϕ
=

1

2E2
cm

7∑
i=−1

Li(q
2, θ, ϕ)Wi(q

2, saq, sbq) ≡
3

16π

7∑
i=−1

dσi
d4q

gi(θ, ϕ) , (7.48)

where in the last step we defined the so-called helicity cross sections

dσi
d4q

=
1

2E2
cm

L±(i)(q
2)Wi(q

2, saq, sbq) . (7.49)

Integrating over O and setting Θ̂ = 1, we recover the inclusive cross section in eq. (2.60),

dσ

d4q
=

dσ−1

d4q
+

1

2

dσ0

d4q
, Wincl = W−1 +

W0

2
. (7.50)

Relation to angular coefficients

From eq. (7.48), we can write the fully-differential cross section in the CS angles as

dσ

d4q d cos θ dϕ
=

3

16π

dσ

d4q

[
1 + cos2 θ +

A0

2

(
1− 3 cos2 θ

)
+

7∑
i=1

Ai gi(θ, ϕ)

]
, (7.51)

where the angular coefficients Ai are given in terms of the helicity cross sections or the

hadronic structure functions as

Ai =
dσi

dσ−1 + 1
2dσ0

=
L±(i)(q

2)Wi(q
2, saq, sbq)

L+(q2) (W−1 + 1
2W0

)
(q2, saq, sbq)

. (7.52)
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We deliberately chose the numbering and normalization of the Wi in eq. (7.33) to match

the often used form of the cross section in eq. (7.51). The only exception is the inclusive

cross section, which is split into orthogonal contributions from W0 and W−1. For the same

reason, we refrained from normalizing the spherical harmonics in eq. (7.47). We remind

the reader that both numerator and denominator in eq. (7.52) in general involve a sum

over the intermediate vector bosons, L±Wi ≡
∑

V,V ′ L±V V ′Wi V V ′ so for neutral-current

Drell-Yan (V = Z, γ), the parity-even leptonic prefactors L+(q2) ≡ L+V V ′(q
2) do not in

general cancel in the ratio in eq. (7.52).

A priori, eq. (7.48) or eq. (7.51) simply provide a convenient way to parametrize the

fully-differential Drell-Yan cross section for massless 2-body decays. For this purpose, it is

irrelevant whether or not the CS angles can be reconstructed experimentally. Similarly, the

choice of the CS tensor decomposition is a priori arbitrary, and we could have used another

decomposition. Of course, the combination of using the CS tensor decomposition for the

hadronic tensor together with using the CS angles to parametrize the leptonic tensor is

what leads to the simple angular dependence in eq. (7.48). If we were to choose a different

tensor decomposition W ′i , we would also choose polar coordinates cos θ′, ϕ′ with respect to

its corresponding rest frame, and arrive at eqs. (7.51) and (7.52) in terms of cos θ′, ϕ′, A′i,

and W ′i . On the other hand, when cos θ and ϕ are explicitly measured, or when eq. (7.51)

is used as a template to measure the Ai, it obviously does matter with respect to which

frame they are defined. It is also straightforward to relate the Wi or Ai for different frames,

see section 7.2.5 below.

Extension to more complicated leptonic final states

Up to now, our discussion in this subsection assumed the leading-order dilepton final states

in eq. (7.40), and so in particular eq. (7.51) is derived in this limit. For a generic leptonic

final state L, e.g. when including QED final-state radiation (FSR) or for more complicated

electroweak decays like V ∗ → V H or V ∗ → V1V2, there is a priori no reason that the Li
are proportional to spherical harmonics gi(θ, ϕ) any longer, in which case one cannot use

eq. (7.51) to define the Ai beyond this LO.

On the other hand, as we saw in eq. (7.52), the Ai are in one-to-one correspondence with

the underlying hadronic structure functions Wi. The Wi are by construction independent of

L (apart from its total momentum qµ) and thus well-defined for arbitrary L. The physical

reason for the appearance of nine independent structures in both cases is exactly the same,

namely the spin-1 nature of the intermediate vector boson (and the fact that we ignore the

non-conserved parts). Hence, the cross section in the CS tensor decomposition in eq. (7.39)

should be considered as the generalization of the LO angular decomposition in eq. (7.51)

to arbitrary leptonic final states and measurements. One could also use eq. (7.52) as the

all-order definition of the Ai in terms of the Wi and conventional LO weak couplings and

propagators included in the L±(q2). One could then easily rewrite eq. (7.39) in terms of the

so-defined Ai multiplied by generic leptonic coefficients Li(q,O,Θ), which in the simplest

case reduce to L±(q2)gi(θ, ϕ) as in eq. (7.46), but in general can also be more complicated.
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Although at that point, it is easier and perhaps less confusing to directly work in terms of

the Wi and eq. (7.39) as it is.

Nevertheless, in the context of Drell-Yan measurements, the LO relation in eq. (7.51) is

very useful in practice because the gi are orthogonal spherical harmonics. This allows one

to directly measure the Ai (or Wi) by performing a fit to the angular dependence of the

(θ, ϕ) distribution or by projecting out different terms by taking suitably weighted angular

integrals of it [427, 430]. This procedure has received some criticism, since it seemingly relies

on a LO QED interpretation of the angular dependence, while QED final-state radiation can

be relevant at the level of precision reached by Drell-Yan measurements. In fact, even the

definition of the CS angles (θ, ϕ) themselves becomes nonobvious, because with additional

QED radiation in the final state, the lepton momenta generically no longer add to the full

vector-boson momentum qµ. Instead, we now have

qµ = pµ1 + pµ2 + kµ , (7.53)

where pµ1,2 are the measured lepton momenta, which depend on the lepton definition, and kµ

is the remaining momentum not included in the definitions of p1,2. We stress that here we

are not concerned with the experimental methods to reconstruct and calibrate the leptons

or to recover photon radiation. The “measured” lepton momenta pµ1,2 refer to the truth-level

lepton definition to which the raw reconstructed momenta are corrected or unfolded. This

truth-level definition must be theoretically well-defined to have a meaningful measurement

that can be compared to theoretical calculations, and one can consider the question whether

certain truth-level definitions are theoretically preferred or not.7

Obviously, the (θ1, ϕ1) angles describing the orientation of p1 now depend on the lepton

definition and also on whether they are defined in the full vector-boson rest frame (where

qµ or equivalently the full L is at rest) or the dilepton rest frame (where only pµ1 + pµ2 is at

rest). Especially in the latter case, there is no guarantee (in fact it seems quite unlikely)

that the angular distribution in (θ1, ϕ1) will still admit a decomposition in terms of the

nine spherical harmonics gi(θ1, ϕ1).

For “bare” leptons, pµ1,2 are defined without including any FSR photons. This means

infrared QED singularities are regulated by the lepton mass leading to potentially large

logarithms of the lepton mass. This effect is reduced by defining “dressed” leptons, which

include all photons radiated within a cone of some size around the leptons, and hence can

be theoretically thought of as QED “lepton jets”. With either definition, the remaining

momentum kµ in eq. (7.53) is nonzero and so the dilepton and vector-boson rest frames

are no longer equivalent.

Another option is to include all kµ into pµ1,2, i.e., the lepton momenta are (partially)

defined by the condition qµ = pµ1 + pµ2 . This is basically what “Born” leptons are. Their

full definition corresponds to defining an IR-safe projection of the full leptonic final state

7On the other hand, whether a specific truth-level definition receives more or less associated experimental

uncertainties is a separate, experimental question, to which we have nothing to say here. While these

two questions are not entirely unrelated, they should nevertheless be kept well separated. We thank

Daniel Froidevaux for discussions on this issue.
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L onto a Born-like 2-body final state. In principle there are many ways to do so, but as

long as the Born projection is well defined so are the Born leptons.

To illustrate this, let us consider an explicit example: We start by defining the leptonic

thrust axis ~nL of the full leptonic final state L in its rest frame. The thrust axis ~nL is

defined in the usual way as the axis ~n, with ~n2 = 1, that minimizes

~nL : min
~n

∑
i∈L

(Ei − |~n · ~pi|) = Q−max
~n

∑
i

|~n · ~pi| , (7.54)

where the sum runs over all particles in L, including in particular all QED FSR, and Ei,

~pi are defined in the rest frame of L. The overall positive (negative) orientation of ~nL
can be fixed by convention, e.g., to point into the hemisphere that contains the lepton

(antilepton).8 Imposing the condition pµ1 + pµ2 = qµ, requiring massless on-shell momenta,

p2
1,2 = 0, and using ~nL to define the direction of ~p1 = −~p2, then uniquely determines (recall

Q =
√
q2)

pµ1,2 =
Q

2
(1,±~nL)CS ≡

Q

2
(tµ ± nµL) . (7.55)

In the second step we defined the unit vectors

tµ =
qµ

Q
= (1,~0)CS , nµL = (0, ~nL)CS , n2

L = −1 , t · nL = 0 , (7.56)

where tµ is the same as before, and nµL describes the overall orientation of L.

More generally, we can also carry out the construction in two steps, first constructing

qµ = Pµ1 +Pµ2 with massive P 2
1,2 6= 0 and then projecting them onto massless p1,2. Here, we

first cluster all emissions with either the lepton or antilepton based on whose hemisphere

they are in, which yields the massive hemisphere momenta Pµ1,2,

Pµ1,2 =
Q

2

[
x1,2 t

µ ± λ(q2, P 2
1 , P

2
2 )nµL

]
,

x1,2 = 1 +
P 2

1,2 − P 2
2,1

q2
, λ(q2, P 2

1 , P
2
2 ) =

1

q2

√
(q2 − P 2

1 − P 2
2 )2 − 4P 2

1P
2
2 . (7.57)

Next, we project Pµ1,2 onto massless momenta pµ1,2 by preserving the three-momentum

direction, ~p1/|~p1| = ~P1/|~P1| = ~nL, and the total energy, p0
1 + p0

2 = P 0
1 + P 0

2 = Q, which

yields eq. (7.55). The spherical coordinates (θL, ϕL) of ~nL in the CS frame now provide a

unique, all-order definition of the CS angles (θ, ϕ) ≡ (θL, ϕL), i.e.,

nµL = xµ sin θ cosϕ+ yµ sin θ sinϕ+ zµ cos θ . (7.58)

This is the generalization of eq. (7.41), where the CS angles now describe the overall

orientation of L in the CS frame, as illustrated in figure 7.2.

It is easy to see that the above definitions are IR safe and reduce to the respective

LO definitions. In principle, any other IR-safe way of clustering the emissions into Pµ1,2 is

8In practice, one would use a flavor-aware minimization or clustering procedure to exclude minima or

solutions for ~nL for which lepton and antilepton are clustered into the same hemisphere.
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Figure 7.2: Definition of the Collins-Soper angles θ, ϕ for a generic leptonic final state including

FSR (blue) in terms of the leptonic thrust axis nL. The leptonic thrust axis plane in the CS frame

is spanned by the z axis and nL and generalizes the lepton plane in figure 7.1. Beyond LO in QED,

the decay products do no longer have to lie in this plane. The hadronic scattering in the hadron

plane (green) is as in figure 7.1 and omitted for clarity. The hemisphere boundary (dashed line) is

perpendicular to the thrust axis and separates the emissions into hemisphere 1 (clustered with the

lepton) and hemisphere 2 (clustered with the antilepton).

possible. Other ways to project them onto massless pµ1,2 are also possible, as long as the

projection is IR safe and preserves the total leptonic momentum qµ = Pµ1 + Pµ2 = pµ1 + pµ2 .

In practice, defining the projection by keeping the orientation fixed is the most natural

and also the easiest, as it avoids any confusion about which particular direction is used to

define the CS angles.

The advantage of Born leptons is that they do admit an analogous LO-like angular

decomposition as we will now show. More generally, it is sufficient to restrict to leptonic

measurements that can be written in terms of Pµ1,2,

Ô(q,ΦL) ≡ Ô(q, P1, P2) = Ô(q, θ, ϕ, P 2
1 , P

2
2 ) ,

Θ̂(q,ΦL) ≡ Θ̂(q, P1, P2) = Θ̂(q, θ, ϕ, P 2
1 , P

2
2 ) . (7.59)

For such measurements we can write the general leptonic tensor in eq. (2.57) as

Lµν(q,O,Θ) =

∫
d4P1

(2π)3

d4P2

(2π)3
(2π)4δ4(q − P1 − P2)Fµν(P1, P2)

× δ[O − Ô(q, P1, P2)] Θ̂(q, P1, P2) , (7.60)

where Fµν(P1, P2) is the projection of the full leptonic decay Lµν(ΦL) onto the massive

2-body (P1, P2) phase space,

Fµν(P1, P2) = (2π)2

∫
dΦL(P1 + P2)Lµν(ΦL) δ4[P1 − P̂ (ΦL)] , (7.61)

where P̂µ(ΦL) implements the clustering of ΦL into Pµ1 , and Pµ2 is implicitly defined via

qµ = Pµ1 + Pµ2 . For the LO decays in eq. (7.40), we have ΦL = (p1, p2) and P̂ (ΦL) = p1
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such that

FµνLO(P1, P2) = Lµν(P1, P2) δ(P 2
1 ) δ(P 2

2 ) , (7.62)

with Lµν(p1, p2) given by the LO result in eq. (7.44).

The key point is that Fµν(P1, P2) is defined in a Lorentz-covariant way, and therefore

obeys the following Lorentz decomposition (ignoring as before the non-conserved parts)

Fµν(P1, P2) = 12π
[
(tµtν − gµν − nµLnνL)F+ + (tµtν − gµν)F0 + iεµνρσnLρtσ F−

]
(+ terms ∝ qµ or qν) , (7.63)

where F±,0 ≡ F±,0(q2, P 2
1 , P

2
2 ) are Lorentz-scalar functions that can only depend on three

independent invariants formed out of P1,2, which we chose as q2 = (P1 +P2)2 and P 2
1,2. The

decomposition in eq. (7.63) is chosen so that at LO, comparing to eq. (7.44), we have

F±(q2, P 2
1 , P

2
2 ) = L±(q2) δ(P 2

1 )δ(P 2
2 ) +O(αem) , F0(q2, P 2

1 , P
2
2 ) = O(αem) . (7.64)

The leptonic structure functions are now obtained as defined in eq. (7.38), by contracting

eq. (7.63) with the projectors Pµνi and performing the phase-space integrals in eq. (7.60),

Li(q,O,Θ) =

∫
d cos θ dϕdP 2

1 dP 2
2 λ(q2, P 2

1 , P
2
2 )Li(q

2, θ, ϕ, P 2
1 , P

2
2 )

× δ
[
O − Ô(q, θ, ϕ, P 2

1 , P
2
2 )
]

Θ̂(q, θ, ϕ, P 2
1 , P

2
2 ) , (7.65)

with the underlying leptonic structure functions given by

L−1(q2, θ, ϕ, P 2
1 , P

2
2 ) =

3

16π

[
F+(q2, P 2

1 , P
2
2 ) g−1(θ, ϕ) + 2F0(q2, P 2

1 , P
2
2 )
]
,

L0(q2, θ, ϕ, P 2
1 , P

2
2 ) =

3

16π

[
F+(q2, P 2

1 , P
2
2 ) g0(θ, ϕ) + F0(q2, P 2

1 , P
2
2 )
]
,

L1,2,5,6(q2, θ, ϕ, P 2
1 , P

2
2 ) =

3

16π
F+(q2, P 2

1 , P
2
2 ) g1,2,5,6(θ, ϕ) ,

L3,4,7(q2, θ, ϕ, P 2
1 , P

2
2 ) =

3

16π
F−(q2, P 2

1 , P
2
2 ) g3,4,7(θ, ϕ) . (7.66)

Eqs. (7.65) and (7.66) are the generalization of eq. (7.46) to an arbitrary Born-projected

leptonic final state L. The (θ, ϕ) dependence is still completely described by the same

gi(θ, ϕ) in eq. (7.47). The Li for i ≥ 1 are still given by their own respective gi times a

common leptonic form factor F+ for i = 1, 2, 5, 6 and F− for i = 3, 4, 7. On the other hand,

the angular dependence of L−1 and L0 now gets mixed up by F0, which enters with a flat

(θ, ϕ) dependence corresponding to g−1 + g0 = 2.

If the measurements are defined in terms of massless Born leptons, then they are also

independent of P 2
1,2, such that the P 2

1,2 integrals in eq. (7.65) can be performed to give

Li(q
2, θ, ϕ) that are given by the same expressions as in eq. (7.66) but in terms of corre-

sponding integrated

F±,0(q2) =

∫
dP 2

1 dP 2
2 λ(q2, P 2

1 , P
2
2 )F±,0(q2, P 2

1 , P
2
2 ) . (7.67)
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Removing all leptonic measurements, the inclusive qT spectrum is now given by

dσ

d4q
=

1

2E2
cm

[
F+(q2) +

3

2
F0(q2)

]
Wincl(q

2, saq, sbq) , Wincl = W−1 +
W0

2
, (7.68)

i.e., in terms of the same inclusive hadronic structure function multiplied by a generalized

inclusive leptonic function. We remind the reader that also here there is always an implicit

sum over intermediate vector bosons, F±,0Wi ≡
∑

V,V ′ F±,0V V ′Wi V V ′ . The cross section

differential in the CS angles becomes

dσ

d4q d cos θ dϕ
=

1

2E2
cm

3

16π

[
2F0Wincl +

7∑
i=−1

F±(i)Wi gi(θ, ϕ)

]
(7.69)

=
1

2E2
cm

3

16π

[(
F++

3

2
F0

)
Wincl(1 + cos2 θ) +

F+W0 + F0Wincl

2

(
1− 3 cos2 θ

)
+

7∑
i=1

F±(i)Wi gi(θ, ϕ)

]

≡ dσ

d4q

[
1 + cos2 θ +

Ã0

2

(
1− 3 cos2 θ

)
+

7∑
i=1

Ãi gi(θ, ϕ)

]
,

where we suppressed the arguments of the structure functions for brevity, and the analogous

expression also holds differential in P 2
1,2. To make contact with eq. (7.51), in the second

step we split the flat contribution from F0 as (3/2)(1 + cos2 θ) + (1/2)(1 − 3 cos2 θ) = 2,

and in the last step we factored out the inclusive cross section in eq. (7.68), denoting the

resulting normalized coefficients of the angular dependence as Ãi,

Ã0 =
F+W0 + F0Wincl(
F+ + 3

2F0

)
Wincl

, Ãi≥1 =
F±(i)Wi(

F+ + 3
2F0

)
Wincl

. (7.70)

These are the generalization of the Ai in eq. (7.52) for an arbitrary Born-projected final

state. They implicitly depend on the specific Born projection used because the CS angles

(θ, ϕ) implicitly depend on it. The Ãi are the angular coefficients that are measured by

decomposing or projecting the (θ, ϕ) dependence defined in terms of Born-projected leptons.

It would be interesting to precisely identify the underlying Born projection that is effectively

used in the measurements [427, 430].

Generically, the QED corrections to F+, F−, and F0 will differ and thus not cancel in

eq. (7.70). In other words, even though Born-projected leptons admit a well-defined LO-like

angular decomposition as shown in eq. (7.69), the resulting Ãi in eq. (7.70) still differ by

QED FSR corrections from the LO Ai in eq. (7.52). These corrections should be of generic

O(αem) size, i.e., neither enhanced by soft or collinear photon emissions nor suppressed near

the Z pole. In the limit of an on-shell Z boson, they would produce the QED corrections

to the Z decay rate to leptons. For i ≥ 1, the hadronic contributions to Ai and Ãi are the

same. As we will discuss below, W0 is suppressed by O(q2
T /Q

2) relative to Wincl at small

qT , such that at LO in QED A0 vanishes like q2
T for qT → 0. Interestingly, Ã0 receives an
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additional contribution F0Wincl, and therefore it no longer vanishes for qT → 0 but goes

to a calculable O(αem) constant.

Ref. [471] considered QED radiation off massive final-state leptons, and found linear

power corrections even in the inclusive case. Since their massive leptons correspond to bare

leptons, this is not entirely surprising. It would be interesting to identify the precise source

of linear power corrections, i.e, whether the bare leptons induce linear corrections in the

leptonic tensor itself, or populate additional leptonic structure functions that come with

linearly suppressed hadronic structure functions, or both.

Finally, while most of the above discussion was phrased in terms of QED FSR corrections

to Drell-Yan, it applies to an arbitrary Born-projected final state L. For example, keeping

the P 2
1,2 dependence, it applies to Drell-Yan-like electroweak diboson production V ∗ → V H

or V ∗ → V1V2 if one remains inclusive over the decays of the final-state bosons.

7.2.4 Factorization for fiducial power corrections

We now investigate the structure of power corrections in the limit qT � Q in the presence

of measurements on the leptonic final state. To expand in qT � Q, we introduce a formal

power-counting parameter

λ ∼ qT /Q . (7.71)

The leptonic measurements Ô and Θ̂ in eq. (7.38) are functions of the total four-momentum

q of the final state, and admit an expansion in λ as

Ô(q,ΦL) = Ô(0)(q,ΦL)
[
1 +O(λ)

]
,

Θ̂(q,ΦL) = Θ̂(0)(q,ΦL)
[
1 +O(λ)

]
. (7.72)

We refer to the corrections in λ in these expansions as fiducial power corrections. For

observables that exist at Born level, e.g., cuts on the lepton momenta, the leading-power

(LP) observables Ô(0) and Θ̂(0) are simply obtained by taking the Born limit qT → 0. For

qT -like resolution variables like φ∗ that scale like qT itself and vanish at Born level, Ô(0) or

Θ̂(0) are given by the leading, nontrivial contribution in the qT → 0 limit.

Linear fiducial power corrections

We first assume that the leptonic measurement does not induce any additional nontrivial

dynamic scale pL, such that the power expansion in eq. (7.72) is genuinely an expansion in

qT /Q. We can then focus on the linear O(λ) fiducial power corrections.

Let us consider leptonic measurements that are azimuthally symmetric at leading power,

which we will indicate by L(0)(/ϕ) and define more precisely in a moment. We will show

that for such measurements the only linear O(λ) power corrections that arise are due to

the linear fiducial power corrections in eq. (7.72). As a result, the O(λ) power corrections

can be uniquely predicted and resummed in terms of leading-power hadronic structure

functions.
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Wi Scaling ±(i) gi(θ, ϕ) L
(0)
i

W−1 ∼ λ0 + 1 + cos2 θ X

W0 ∼ λ2 + 1− cos2 θ X

W1 ∼ λ1 + sin(2θ) cosϕ −
W2 ∼ λ0 + 1

2 sin2 θ cos(2ϕ) −
W3 ∼ λ≥1 − sin θ cosϕ −
W4 ∼ λ0 − cos θ X

W5 ∼ λ0 + sin2 θ sin(2ϕ) −
W6 ∼ λ≥1 + sin(2θ) sinϕ −
W7 ∼ λ≥1 − sin θ sinϕ −

Table 7.1: Scaling of the hadronic structure functions Wi in the CS tensor decomposition in

eq. (7.33) in the limit λ ∼ qT /Q � 1 relative to the leading W−1,4 ∼ 1/q2T . In this table we

generically count ΛQCD ∼ qT . In several cases we only derive bounds on the scaling, where ∼ λ≥m
means the Wi is suppressed by at least λm. We group the structure functions by parity and whether

they arise from the dispersive (i = −1 . . . 4) or absorptive parts (i = 5 . . . 7) of the production

amplitude [472]. The second-to-last column shows the corresponding angular dependence gi(θ, ϕ)

on the Collins-Soper angles for 2-body decays, and in the last column we indicate whether there is a

nonvanishing LP leptonic tensor L
(0)
i for observables that are azimuthally symmetric at Born level.

For measurements that can be parameterized in terms of CS angles θ, ϕ, which includes

our default Drell-Yan cases in eq. (7.40), azimuthal symmetry means that they do not

depend on ϕ. Azimuthal symmetry at leading power then simply means that the LP

measurements Ô(0)(q, θ) and Θ̂(0)(q, θ) are ϕ independent, which implies that they average

out against cos(nϕ) and sin(nϕ),

L(0)(/ϕ) :

∫ 2π

0
dϕeinϕ δ[O − Ô(0)(q, θ)] Θ̂(0)(q, θ) = 0 , (n ≥ 1) . (7.73)

In particular, the integration against all spherical harmonics gi(θ, ϕ) in eqs. (7.46) and

(7.47) vanishes, except for i = −1, 0, 4, which do not depend on ϕ. More generally, we

define a generic leptonic measurement as azimuthally symmetric if it only contributes to

L−1,0,4, such that azimuthal symmetry at leading power is defined by

L(0)(/ϕ) : L
(0)
i (q,O,Θ) = 0 , i 6= −1, 0, 4 . (7.74)

Note that this definition is also natural from the point of view of the CS tensor decomposition

in eq. (7.33). Azimuthal symmetry corresponds to symmetry under rotations of the x and

y axes around the z axis. The projections for i = −1, 0, 4 are precisely those that are

invariant under azimuthal rotations (corresponding to the norm and cross product, or are

independent of x and y), which is the physical reason why their corresponding gi(θ, ϕ) do

not depend on ϕ.
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A primary example is a fiducial cut on the lepton transverse momenta pT1,2 ≥ pmin
T , for

which we have

Θ̂(0)(Q,Y, ~qT , θ) = θ
(
pmin
T ≤ Q

2
sin θ

)
= Θ̂(Q,Y, ~qT = 0, θ, ϕ) . (7.75)

In words, the leptons are exactly back-to-back at leading power, and whether they pass

the cut only depends on their rest-frame energy Q/2 and scattering angle θ. We discuss

this case as well as a cut on the lepton rapidity in more detail in section 7.4.2. On the

other hand, angular asymmetries that are designed to project out the cosϕ or cos(2ϕ)

dependence in the angular distribution (by construction) do not qualify under eq. (7.74).

Power expanding the leptonic structure functions, which includes the power expansion

of the measurement, we have

Li(q,O,Θ) = L
(0)
i (q,O,Θ) + L

(1)
i (q,O,Θ) + · · · , (7.76)

where with the assumption in eq. (7.74) only L
(0)
i with i = −1, 0, 4 are nonzero. The L

(1)
i

contain the linear fiducial power corrections. They can be, and in general are, nonzero for

other i, as our azimuthal symmetry assumption only concerns the leading-power L
(0)
i .

We also need to power-count the hadronic structure functions Wi,

Wi =
∞∑
m=0

W
(m)
i , W

(m)
i ∼ λm

q2
T

. (7.77)

The λ scaling of the first nonzero contributions W
(m)
i relative to the leading-power W

(0)
−1,4 ∼

1/q2
T is summarized in table 7.1, and is derived more carefully using SCET in section 7.2.5.

From table 7.1, we see that the only nonvanishing LP structure functions W
(0)
i are for

i = −1, 2, 4, 5. The physical reason is that at LP, angular momentum conservation works

the same way as at tree level, i.e., as in the collision of two massless partons with pa+pb = q,

pTa = pTb = qT = 0. In this limit, the CS frame coincides with the leptonic frame, and the

longitudinal polarization vector is given by

εµ0 =
pµa − pµb
Q

(tree level) . (7.78)

It is easy to see that projections of the tree-level partonic matrix element onto εµ0 vanish,

ε∗0µ〈0|Jµγ |q(pa, sa)q̄(pb, sb)〉 ∝ v̄sb(pb)(p/a − p/b)usa(pa) = 0 (7.79)

for any polarization sa (sb) of the quark (antiquark), and similarly for the axial-vector

current. It follows that structure functions Wi that involve contractions with εµ0 vanish at

tree level. We will see in section 7.2.5 that to all orders, each contraction with εµ0 is in fact

penalized by at least one power of λ.

Suppressing the arguments of Li and Wi, the strict LP cross section is given by

L(0)(/ϕ) :
dσ(0)(Θ)

d4q dO =
1

2E2
cm

∑
i=−1,4

L
(0)
i W

(0)
i . (7.80)
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Figure 7.3: Power counting of hadronic structure functions and their leptonic counterparts for

λ ∼ qT /Q � 1, assuming azimuthal symmetry at leading power. Nonzero contributions to the

hadronic and leptonic tensors are indicated by solid orange and blue filling, respectively. Nonzero

contributions to the cross section are indicated by solid light orange filling. Hatched filling for W
(0)
2,5

indicates that this contribution does not match onto leading-twist collinear PDFs and is suppressed

for ΛQCD � qT . Gray boxes indicate contributions to the LP and linear NLP cross sections σ(0)

and σ(1). The latter solely arise through the leptonic tensor as L
(1)
i W

(0)
i while all contributions of

the form L
(0)
i W

(1)
i vanish. Dashes indicate that a contribution vanishes. In the bottom right panel,

“rest” refers to structure functions i = 1, 3, 6, 7.

The i = 2, 5 contribution does not survive because L
(0)
2,5 = 0 due to eq. (7.74), and the

nonzero L
(0)
0 does not contribute because W

(0)
0 = 0.

Next, the linear O(λ) power corrections to the cross section are given by

dσ(1)(Θ)

d4q dO =
1

2E2
cm

7∑
i=−1

[
L

(1)
i W

(0)
i + L

(0)
i W

(1)
i

]
. (7.81)

In the first term, only i = −1, 2, 4, 5 contribute to the sum due to table 7.1. For the second

term, assuming LP azimuthal symmetry, only i = −1, 0, 4 contribute. From table 7.1,

W0 ∼ O(λ2), and as we will argue in section 7.2.5, all power corrections to W−1,4 are

quadratic in λ, so we have

W
(1)
−1 = 0 , W

(1)
0 = 0 , W

(1)
4 = 0 . (7.82)
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For W−1 and W0, this statement is equivalent to the absence of linear power corrections in

the inclusive cross section ∝W−1 + 1
2W0. For W4, it is equivalent to the absence of linear

power corrections in the inclusive forward-backward asymmetry. Hence, the second term

in eq. (7.81) vanishes, and we arrive at

L(0)(/ϕ) :
dσ(1)(Θ)

d4q dO =
1

2E2
cm

∑
i=−1,2,4,5

L
(1)
i W

(0)
i . (7.83)

We have thus shown that for leptonic measurements that are azimuthally symmetric at

leading power, all linear power corrections uniquely arise from linear fiducial power cor-

rections L
(1)
i multiplying the leading-power hadronic structure functions W

(0)
−1,2,4,5. The

power-counting logic leading to eq. (7.83) is summarized in figure 7.3.

Leptonic fiducial power corrections

We now turn to leptonic fiducial power corrections that arise from the presence of an

additional, physical scale pL induced by the leptonic measurement. In this case, the power

expansion of the measurements a priori receives power corrections in both qT /Q and qT /pL,

Ô(q,ΦL) = Ô(0)(q,ΦL)
[
1 +O

(qT
Q
,
qT
pL

)]
,

Θ̂(q,ΦL) = Θ̂(0)(q,ΦL)
[
1 +O

(qT
Q
,
qT
pL

)]
. (7.84)

The case of linear fiducial power corrections discussed above corresponds to pL ∼ Q. We

refer to the qT /pL corrections as leptonic fiducial power corrections. For qT � pL � Q,

they become enhanced compared to the qT /Q corrections and for qT ∼ pL they become

O(1) and cause the naive expansion in qT to break down.

Generically this happens when the leptonic measurement is close to an edge of Born

phase space that is sensitive to additional radiation, such that a nonzero qT opens up new

phase space beyond the Born edge, with pL ∼ qT parametrizing the distance from the Born

edge. We will demonstrate this effect in detail in section 7.4.3 for the important example

of the p`T spectrum near the Jacobian peak p`T ∼ Q/2, in which case pL = Q− 2p`T .

To expand in such regions, it is necessary to count both

qT
Q
∼ pL

Q
∼ λ , (7.85)

which explicitly avoids expanding in qT /pL ∼ O(1) and thereby retains all leptonic power

corrections exactly to all powers. Expanding the leptonic measurements in this limit

Ô(q,ΦL) = Ô(0)(q,ΦL; qT /pL)
[
1 +O

(qT
Q
,
pL
Q

)]
,

Θ̂(q,ΦL) = Θ̂(0)(q,ΦL; qT /pL)
[
1 +O

(qT
Q
,
pL
Q

)]
, (7.86)

where with a slight abuse of notation the superscript (0) now refers to the leading-power

term in λ with the modified power counting in eq. (7.85), and the qT /pL argument is meant

to remind us that we have not expanded in this ratio.
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The cross section at leading power in λ in this limit is given by

dσ(Θ)

d4q dO =
1

2E2
cm

∑
i=−1,2,4,5

L
(0)
i (qT /pL)W

(0)
i

[
1 +O

(qT
Q
,
pL
Q

)]
, (7.87)

where the L
(0)
i (qT /pL) arise from the modified LP leptonic measurements in eq. (7.86). The

hadronic tensor does not know anything about pL, and so its power expansion is unaffected

by eq. (7.85). However, as we are now keeping some terms in the leptonic measurement

that we would otherwise drop in the strict qT → 0 limit, the azimuthal symmetry we might

have in the strict qT → 0 limit is typically lost now, and so we do not require it. As a

result, also the W2,5 contribute at LP in eq. (7.87). Furthermore, there are now generically

linear power corrections to eq. (7.87) from both L
(1)
i and W

(1)
i .

Generic fiducial power corrections

Since eq. (7.87) relies on counting pL/Q ∼ λ it is not valid for pL ∼ Q. Hence, to cover the

full leptonic phase space, we have to satisfy two competing conditions from the different

regions. For qT � pL ∼ Q we must not expand in pL/Q, while for qT ∼ pL � Q we must

count qT ∼ pL to avoid uncontrolled power corrections in qT /pL. The natural way to satisfy

both requirements is to expand the leptonic measurements neither in qT nor pL and thus

keep the exact leptonic tensor,

dσ(0+L)(Θ)

d4q dO ≡ 1

2E2
cm

∑
i=−1,2,4,5

Li(q,O,Θ)W
(0)
i (q2, saq, sbq) . (7.88)

Of course, we still need to expand the hadronic tensor in qT /Q ∼ λ, and all four LP

hadronic structure functions in principle contribute. For qT � pL ∼ Q, eq. (7.88) obviously

captures the linear power corrections as in eq. (7.83), while for qT ∼ pL � Q it captures

as required all leptonic power corrections as in eq. (7.87). In the following, we always use

the notation dσ(0+L) to denote the inclusion of the exact leptonic tensor as in eq. (7.88).

Eq. (7.88) is our final master formula. By treating the leptonic tensor exactly, it in

fact incorporates all fiducial power corrections that multiply the leading-power hadronic

structure functions. The leptonic tensor does not produce small-qT logarithms, which solely

arise from the hadronic tensor. Therefore, eq. (7.88) automatically resums all logarithms in

fiducial power corrections to the same order as the resummation is included for the hadronic

tensor. All further power corrections to dσ(0+L) are obtained by working to subleading

power in the hadronic structure functions, and arise purely from subleading-power QCD

dynamics.

One might argue that we could have immediately kept the leptonic tensor exact from

the start, just because there is no reason or benefit to expanding it, and so one should not.

On the other hand, one might argue that by doing so one keeps a seemingly arbitrary set

of power corrections in the cross section, and there is a priori no guarantee that doing so

would make things better and not worse, and so one should expand the leptonic tensor in
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order to have a consistent power expansion for the cross section at each order in the power

expansion. Both arguments are found in the literature.

Our analysis provides several formal justifications for keeping the exact leptonic tensor.

First, for the common case of leptonic measurements that are azimuthally symmetric

at Born level (and generic pL ∼ Q), it uniquely predicts all linear O(λ) next-to-leading

power corrections in the cross section. In other words, in this limit the retained power

corrections are not arbitrary but provide an unambiguous, systematic improvement in the

power expansion of the cross section, including their logarithmic resummation. Second, it

retains all leptonic power corrections, which as argued is mandatory to correctly obtain the

actual leading-power result for qT ∼ pL. Third, the actual regions and relevant scales pL
depend on the leptonic measurement and identifying them can be quite involved. Keeping

the exact leptonic tensor is by far the simplest (and perhaps only sensible) way to guarantee

that all such possible regions are correctly treated. Finally, it ensures that any in-between

regions qT � pL � Q are smoothly covered.

The LP hadronic structure functions entering in eq. (7.88) are given by

W
(0)
i =

∑
a,b

Hi ab(Q
2, µ)

{
[BaBbSa](Q

2, xa, xb, ~qT , µ) , i = −1, 4

[h⊥1ah
⊥
1b](Q

2, xa, xb, ~qT , µ) , i = 2, 5 .
(7.89)

The cases i = −1, 4 are a straightforward generalization of the standard inclusive factoriza-

tion theorem in eqs. (2.192) and (2.193a), where Ba,b and Sa are the same beam and soft

functions, and only the hard functions Hi ab depend on the projection i. They are collected

in appendix B.1. Eq. (7.89) is summed over the contributing quark-antiquark combinations

a, b. (We use a, b here to reserve i for numbering structure functions.)

The W
(0)
2,5 contribution, which corresponds to the cos(2ϕ) and sin(2ϕ) angular modula-

tions of the cross section, are proportional to a (weighted) convolution of two Boer-Mulders

functions h⊥1 in the transverse plane [473–475], where h⊥1a measures the net transverse polar-

ization of flavor a, longitudinal momentum fraction x, and given transverse momentum ~kT
within an unpolarized proton [476]. It does not match onto leading twist-2 collinear PDFs,

i.e., for ΛQCD � qT , each h⊥1 is suppressed by at least one power of ΛQCD/qT [477] relative

to the leading-power beam functions Ba in W−1,4, which do match onto leading twist-2

PDFs. The matching of h⊥1 onto subleading twist-3 PDFs was carried out in ref. [478]. On

the other hand, the first contribution to W2,5 that does match onto leading twist-2 PDFs is

suppressed by q2
T /Q

2 relative to W−1,4 [462]. For these reasons, we will neglect the i = 2, 5

contributions in our numerical results. However, it should be stressed that for qT ∼ ΛQCD

they do become formally leading contributions.

Perturbatively, eqs. (7.88) and (7.89) allow us to resum fiducial power corrections to the

same order to which the LP hadronic structure functions are known. We stress that due

to the different sum over flavors with different weights Hi ab, the resummation effects do

not in general cancel in the ratio W
(0)
4 /W

(0)
−1 . This is relevant when computing the angular

coefficient A4, corresponding to the forward-backward asymmetry, at small qT .
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7.2.5 Uniqueness of linear power corrections

There are several loose ends in the nontechnical discussion of the previous subsection that

we now tie up to establish that eq. (7.83) uniquely and unambiguously captures all linear

power corrections for LP-azimuthally symmetric observables.

1. We derive the power counting of the hadronic structure functions in table 7.1.

2. We argue that power corrections to W
(0)
−1,4 are quadratic, such that eq. (7.82) holds.

3. We show explicitly that the linear power corrections in eq. (7.83) are unique, i.e., that

switching to a different basis induces only quadratic power corrections.

Power counting hadronic structure functions

To derive the λ scaling of the Wi in table 7.1, we use the soft-collinear effective theory

reviewed in section 2.2. We choose the lightlike reference vectors nµa,b and n̄µa,b along the

proton directions as in eqs. (2.87) and (2.90). In addition, we need to distinguish a direction

in the transverse plane, which we take to be

nµ⊥ =
qµ⊥

(−q2
⊥)1/2

= (0, 1, 0, 0)lep , n2
⊥ = −1 , n⊥ · na = n⊥ · nb = 0 , (7.90)

where qµ⊥ ≡ gµν⊥ qν , and we remind the reader that we aligned the x axis in the leptonic

frame with the transverse component of qµ.

To discuss the power counting of the hadronic structure functions in SCET, we first

write tµ, xµ, zµ in terms of nµa,b and nµ⊥. From their explicit expressions in the leptonic

frame in eqs. (7.26) and (7.27), we have

tµ = γ
nµa + nµb

2
+ ε nµ⊥ , yµ = εµν⊥ n⊥ν ,

xµ = ε
nµa + nµb

2
+ γ nµ⊥ , zµ =

nµa − nµb
2

, (7.91)

where as before ε = qT /Q ∼ λ and γ =
√

1 + ε2 = 1 + O(λ2). It is straightforward to

expand eq. (7.91) in λ,

tµ =
nµa + nµb

2
+ ε nµ⊥ +O(λ2) , yµ = εµν⊥ n⊥ν ,

xµ = nµ⊥ + ε
nµa + nµb

2
+O(λ2) , zµ =

nµa − nµb
2

. (7.92)

Note that the relations for yµ and zµ are exact and do not receive power corrections, which

is a direct consequence of the symmetry we imposed on zµ. The simple form of eq. (7.92)

motivates our choice of na,b in the leptonic frame. If we had chosen na,b as (1, 0, 0,±1)lab

in the lab frame instead, there would be additional factors of e±Y in eq. (7.92).

The power counting of the hadronic structure functions is determined by the order in λ

at which contractions of eq. (7.92) with the hadronic current are populated when expanding
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the hadronic currents JµV in an explicit power expansion in λ in terms of the corresponding

SCET currents, as in eq. (2.129).

The leading-power current for generic collinear directions n1,2 was given in eq. (2.144).

The matching coefficient of the leading-power gluon operator O
(0)
gg in eq. (2.144) is propor-

tional to qµ [57]. It precisely captures the non-conserved part of the current, see eq. (7.8)

and the discussion below it. It does not contribute to the (conserved) hadronic structure

function in table 7.1, so we can focus on the quark operator O
(0)
qq̄′ . When evaluating proton

matrix elements of O
(0)
qq̄′ (n1, n2;ω1, ω2;x), momentum conservation requires n2,1 = na,b and

ω2,1 = ωa,b in the case where parton a is a quark. Making use of these identifications

and the fact that ωaωb = q2, the hard matching coefficients for V = γ, Z,W are given

by [57, 177]

C
(0)µαβ
γ qq̄′ (nb, na;ωb, ωa) = δqq′ |e|(γµ⊥)αβ

[
Qq Cq(q

2) +
∑
f

Qf Cvf (q2)
]
,

C
(0)µαβ
Z qq̄′ (nb, na;ωb, ωa) = δqq′(−|e|)

{[
γµ⊥(vq − aqγ5

)]αβ
Cq(q

2)

+
∑
f

[
(γµ⊥)αβvf Cvf (q2)−

(
γµ⊥γ5

)αβ
af Caf (q2)

]}
,

C
(0)µαβ
W+qq̄′ (nb, na;ωb, ωa) = − |e|Vqq′

2
√

2 sin θw

[
γµ⊥(1− γ5)

]αβ
Cq(q

2) ,

C
(0)µαβ
W−qq̄′ (nb, na;ωb, ωa) = −

|e|V ∗q′q
2
√

2 sin θw

[
γµ⊥(1− γ5)

]αβ
Cq(q

2) , (7.93)

where the vector and axial-vector contributions have the same flavor-diagonal matching

coefficient Cq(q
2) because massless QCD preserves chirality, but in general have different

singlet coefficients Cvf (q2) and Caf (q2). The latter arise from closed quark loops coupling

to the vector boson, and thus involve an electroweak coupling different from the external

quark flavors. Here, Vqq′ is the CKM-matrix element for q ∈ {u, c, t} and q′ ∈ {d, s, b} (and

we take it to vanish in all other cases).

Importantly, the spin structure of the leading-power hard matching coefficient is propor-

tional to γµ⊥ = gµν⊥ γν , and therefore satisfies

na · C(0)αβ
V qq̄′ (nb, na;ωb, ωa) = nb · C(0)αβ

V qq̄′ (nb, na;ωb, ωa) = 0 . (7.94)

Using eq. (7.92), it is easy to see that contractions with the longitudinal polarization vector

εµ0 = zµ vanish to all orders at the level of the amplitude,

ε∗0µ 〈X|J (0)µ
V |pp〉 = 0 . (7.95)

This is the all-order analogue of eq. (7.79) in the limit λ� 1. It follows that projections

onto εµ0 in eq. (7.33) are only populated by matrix elements of the subleading-power currents

J
(i)µ
V with i ≥ 1 in eq. (2.130), and are penalized by at least one power of λ. This implies

that only W−1,2,4,5, which do not involve longitudinal polarizations, can scale as O(λ0),
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while W1,3,6,7 are suppressed at least by O(λ), and W0 = 2W00 is suppressed by at least

O(λ2). This completes the derivation of table 7.1.

For W−1,2,4,5, our power-counting argument agrees with the well-known scaling of the

leading contributions given by eq. (7.89), while for W0 and W1 it reproduces the known

scaling at fixed O(αs) [462]. For the remaining W3,6,7, our argument provides a lower bound

on the degree of power suppression. To our knowledge, this is the first time that the scaling

of W3,6,7 at small qT has been explicitly considered for generic currents.

We also point out that starting from eq. (7.92), it is straightforward to identify the

subleading-power SCET currents that populate a given Wi. For example, W1,3,6,7 can only

receive their leading contributions from the interference of J
(1)µ
V with the leading-power

current J
(0)µ
V , while the leading contribution to W0 must arise from the interference of

J
(1)µ
V with itself due to eq. (7.95). The hard-scattering operators to O(λ2) relevant for

color-singlet production have been constructed in refs. [179–181] using the approach of

helicity operators [177, 178], and the list of operators contributing to J
(1)µ
V is fairly short.

Due to the explicit power suppression from the current, it should be possible to derive

factorization theorems for these Wi in the qT � Q limit using SCET. This would be relevant

e.g. to understand the degree to which resummation effects are universal between Wi and

W−1, and hence to what extent they cancel in predictions for the angular coefficients Ai.

A conjecture for the factorization of W1 at small qT was given in ref. [479], and it would

be interesting to analyze it using the systematic organization of subleading operators in

SCET.

Vanishing O(λ) corrections in W−1,4

We next discuss the absence of linear power corrections in W−1,4, cf. eq. (7.82). The pro-

jectors defining W−1,4 involve xµ, which in principle receives a linear power correction, see

eq. (7.92). However, this O(λ) correction is proportional to na +nb and thus orthogonal to

the leading-power SCET current in eq. (2.144) due to eq. (7.94), similar to the longitudinal

polarization vector discussed above. We therefore have up to quadratic power corrections,

W−1 = −g⊥µνWµν
[
1 +O(λ2)

]
, W4 = 2iε⊥µνW

µν
[
1 +O(λ2)

]
. (7.96)

The question then reduces to why −g⊥µνWµν and 2iε⊥µνW
µν do not receive linear power

corrections relative to the contribution from the squared LP current.

It is well known that for e+e− → dijets event shapes such as thrust, the leading O(λ)

corrections vanish [180, 480–483]. The explicit proof in refs. [180, 483] relies on invariance

under rotations about the axis defined by the lightlike directions that parametrize the

collinear sectors for the outgoing jets. The analogous statement here is that −g⊥µνWµν

and 2iε⊥µνW
µν are indeed invariant under rotations about nµa−nµb . To see that this implies

the absence of linear power corrections, we discuss the possible sources of power corrections

in turn:

1. Subleading hard-scattering operators were shown not to contribute to the thrust

spectrum at O(λ) in ref. [180], using the rotational symmetry. While thrust is
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described by SCETI and qT is a SCETII observable, the operator basis involving

only collinear fields is identical and has manifest crossing symmetry, so for these

contributions the argument carries over to the case of Drell-Yan.

2. On the other hand, contributions involving soft fields differ between SCETI and

SCETII, and occur both through subleading hard-scattering operators and subleading

Lagrangian insertions. For SCETI-like event shapes the vanishing of such terms at

O(λ) was demonstrated in refs. [180, 483]. The analysis of O(λ) terms in SCETII is

more difficult due to the non-locality of the theory and existence of O(λ1/2) opera-

tors [484]. In ref. [485], subleading-power Lagrangians and hard-scattering operators

involving soft fields in SCETII are constructed, and it is demonstrated that soft O(λ)

contributions are absent for the inclusive Drell-Yan small qT spectrum, including the

forward-backward asymmetry.

3. For our choice of na,b in eq. (2.87), the measurement function for ~qT is the vectorial sum

of the perpendicular momenta of all particles in the hadronic final state. Unlike the

case of e+e− event shapes, the sum factorizes into na-collinear, nb-collinear, and soft

contributions without approximation, so power corrections from the ~qT measurement

are absent. Since fundamentally the hadronic structure functions only depend on

the Lorentz invariants in eq. (7.4), the measurement can be marginalized over the

azimuthal angle of ~qT and thus preserves the rotational symmetry.

4. A source of power corrections absent in the e+e− case are the Born measurements

on Q and Y that set the arguments of the PDFs. As has been discussed in detail in

refs. [193, 486], these give rise to new nonperturbative functions such as derivatives

of the PDFs at subleading power in qT . It can easily be seen from the exact result

that these corrections are quadratic,

q−

P−a
=

√
Q2 + q2

T e
Y

Ecm
=
QeY

Ecm

[
1 +O(λ2)

]
= xa

[
1 +O(λ2)

]
. (7.97)

Recall that Wincl = W−1 +W0/2 and we already showed that W0 ∼ λ2, so the absence of

linear power corrections for Wincl and W−1 is equivalent. We can thus conclude that W−1

and W4 do not receive linear power corrections.

Choice of tensor decomposition is O(λ2)

In section 7.2.2, we defined a set of reference vectors tµ, xµ, yµ, zµ to perform the tensor

decomposition into hadronic structure functions, which turned out to be equivalent to the

CS frame (using the boost definition). The xµ, yµ, zµ were uniquely determined by imposing

eqs. (7.16) and (7.18), but these constraints are not technically required. In general, we

can also pick a different set x′µ, y′µ, z′µ of orthonormal, spacelike reference vectors. These

in turn define a vector-boson rest frame related to the CS frame by a rotation r ∈ SO(3)
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Figure 7.4: Sequence of boosts defining different vector-boson rest frames. In the general case

(gray), we first boost by a rapidity y along the lab-frame beam axis, and then boost into the rest

frame. Different choices of y lead to a relative Wigner rotation of the resulting rest frames. Relevant

special cases are y = Y (Collins-Soper frame, red), y = 0 (the naive rest frame, blue) and y → ±∞,

(Gottfried-Jackson frame, green).

that in general depends on q, 
x′µ

y′µ

z′µ

 = r(q)


xµ

yµ

zµ

 . (7.98)

The corresponding hadronic structure functions W ′i are related to the Wi by a corresponding

orthogonal transformation

W ′i =
∑
j

Rij(q)Wj . (7.99)

In terms of the W ′i , the fully differential cross section is given by

dσ(Θ)

d4q dO =
1

2E2
cm

∑
i

Li(q,O,Θ)
∑
j

R−1
ij (q)W ′j(q

2, saq, sbq) . (7.100)

Note that the parametrization of the lepton phase space used to evaluate the Li is irrelevant

here. Of course, if corresponding angles θ′, ϕ′ are considered, the corresponding spherical

harmonics are related by the same rotation Rij(q), such that their angular coefficients are

given by ratios of the W ′i .

First, let us point out that there is never any frame ambiguity to the order in the power

expansion we are working in, because to the working order different frame choices simply

amount to a specific choice of basis or coordinate system, which the final result cannot

depend on. An ambiguity can only arise in the higher-order terms that are partially retained

and partially neglected, which in general do depend on the frame choice.

To remove the trivial effect from a mere basis choice at LP, we start from a common LP

rest frame at qT = 0, which is the leptonic frame. A convenient way to parametrize the

different possible frames for nonzero qT is by the sequence of boosts starting from the lab

frame as shown in figure 7.4. Specifically, we first boost by a rapidity y along the beam
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direction and then directly into the rest frame. Some cases of interest are the “naive” rest

frame, obtained by performing a single direct boost from the lab frame (y = 0) into the

rest frame, the CS frame (y = Y ), the Gottfried-Jackson (GJ) frame defined by the limit

y → −∞, or the GJ frame obtained by taking y → +∞. Another way to conceptualize

these frames is through the angles between their respective z′µ axes and the momenta of

the incoming protons. In the CS frame, those angles become precisely equal for massless

hadrons, see figure 7.1. In the GJ frame, the z axis is aligned with the direction of Pa,

while the naive case falls in between for Y > 0.

It is easy to see that for qT → 0, the two boosts for any frame collapse into a single boost

from the lab frame to the leptonic frame. Since for qT → 0 all frames coincide, we have

r(q) = 13×3 +O(λ) , Rij(q) = δij +O(λ) . (7.101)

Working at LP in the hadronic tensor, the O(λ) corrections in eq. (7.101) could in principle

induce an O(λ) ambiguity in the hadronic power corrections. We now show that this is not

the case, which means that the linear power corrections predicted by eq. (7.83) are unique.

In other words, we have to show that the absence of additional linear corrections from the

hadronic tensor that lead to eq. (7.83) was not just an accident of our particular choice of

tensor decomposition.

Eq. (7.101) immediately implies that the new axes still satisfy

x′µ = nµ⊥ +O(λ) , y′µ = εµν⊥ n⊥ν +O(λ) , z′µ =
nµa − nµb

2
+O(λ) , (7.102)

so the scaling properties in table 7.1 also hold for theW ′j . Following our previous analysis, we

would now discard all power-suppressed W ′j structure functions, evaluate the remaining ones

(j = −1, 2, 4, 5) at leading power, and dress them with exact leptonic tensor components,

dσ(0+L)(Θ)

d4q dO =
1

2E2
cm

∑
i

Li(q,O,Θ)
∑

j=−1,2,4,5

R−1
ij (q)W

′(0)
j (q2, saq, sbq)

[
1 +O(λ2)

]
.

(7.103)

Since all i = −1, . . . , 7 are now populated by R−1
ij , one might think that the different choice

of tensor decomposition amounts to a linear power correction compared to the left-hand

side as given in eq. (7.88), because the Rij differ from unity by O(λ), but as indicated it is

only of O(λ2).

To show that the induced difference is indeed only O(λ2), first note that rotations around

the z axis amount to a trivial shift in ϕ. This induces an O(λ2) difference at cross-section

level due to our assumption of azimuthal symmetry at leading power in eq. (7.74). Hence,

it is sufficient to consider the SO(2) subgroup of rotations around the y axis parametrized

by one remaining Euler angle α,x′µ
z′µ

 =

 cα sα

−sα cα

xµ
zµ

 , y′µ = yµ , (7.104)
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with cα ≡ cosα and sα ≡ sinα. By a straightforward calculation, the Wi can be shown to

transform under the following representations of SO(2):
W ′−1

W ′0

W ′1

W ′2

 =


1− s2α

2
s2α
2 −sαcα s2α

4

s2
α 1− s2

α 2sαcα − s2α
2

sαcα −sαcα 1− 2s2
α − sαcα

2

s2
α −s2

α 2sαcα 1− s2α
2




W−1

W0

W1

W2

 , (7.105)

W ′3
W ′4

 =

 cα sα

−sα cα

W3

W4

 ,

W ′5
W ′6

 =

 cα sα

−sα cα

W5

W6

 , W ′7 = W7 .

It is a simple exercise in special relativity to show that the resulting Wigner rotation of

a generic frame defined by boost y relative to the CS frame with y = Y is

tanα =
ε sinh(Y − y)

[
γ cosh(Y − y)− 1

]
γ sinh2(Y − y) + ε2 cosh(Y − y)

= ε tanh
Y − y

2
+O(ε3) , (7.106)

where ε = qT /Q ∼ λ and γ =
√

1 + ε2. For any Y, y, eq. (7.106) turns out to be bounded

by the leading term, |tanα| ≤ ε|tanh Y−y
2 | ≤ ε. In particular for the GJ frame we have

tanαGJ = ε, with which we recover the well-known result for the relation between W−1,0,1,2

in the CS and GJ frames [462].

Eq. (7.106) shows explicitly that α ∼ λ. To see that eq. (7.103) indeed holds up to

quadratic power corrections, we invert eq. (7.105) by taking α 7→ −α, and expand in α ∼ λ
to find 

W−1

W0

W1

W2

 =

14×4 +O


λ2 λ2 λ λ2

λ2 λ2 λ λ2

λ λ λ2 λ

λ2 λ2 λ λ2






W ′−1

W ′0

W ′1

W ′2

 ,

W3

W4

 =

12×2 +O

λ2 λ

λ λ2

W ′3
W ′4

 ,

W5

W6

 =

12×2 +O

λ2 λ

λ λ2

W ′5
W ′6

 , W7 = W ′7 . (7.107)

We see that under the rotation, the leading structure functions mix into themselves and into

each other only by an O(λ2) amount. The subleading structure functions are populated

precisely by an amount commensurate with their intrinsic scaling, see table 7.1. Combined

with the scaling of the corresponding leptonic structure functions as in figure 7.3, we

find that the effect of any O(λ) rotation on the cross section is indeed only of O(λ2) for

LP-azimuthally symmetric observables.
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It is natural to ask whether a specific frame choice should be preferred in order to also

capture an optimal set of terms at O(λ2). It is well known that leading-logarithmic terms

are absent in W1 in the CS frame [462]. This is natural from the point of view that the CS

z axis does not receive power corrections, reducing “spill-over” of terms from the leading-

power currents. A reduced size of power corrections by a symmetric choice of frame has also

been found for 0-jettiness T0 [486–488], albeit for a somewhat different physical reason. In

section 7.4.4 we will find some numerical evidence that the CS decomposition also reduces

the size of power corrections in the φ∗ spectrum. Taken together, this suggests that the CS

frame might indeed be the optimal choice, although the size of the frame-dependent O(λ2)

corrections should still be assessed.

7.2.6 Relation to the literature

Early approaches to resummation effects on the Drell-Yan cross section differential in the

lepton kinematics [433–435] typically picked the CS angles to parametrize the decay phase-

space integral, but did not discuss the ambiguity inherent in this choice or the relative size

of power corrections. In these approaches, the CS frame primarily serves as a tool to enable

generic lepton-differential observables. In ref. [462], the logarithmic structure of W−1,0,1,2

at low qT in collinear factorization was discussed in detail, but the implications for the

structure of power corrections to e.g. the fiducial cross section were not explored.

An implementation of generic lepton-differential observables in qT resummation was

presented in ref. [439] and more recently in ref. [440] based on a parton-level Monte-Carlo

generation of the leptonic final state. There, the choice of rest frame used in earlier results

was recast as a qT -recoil prescription for how to distribute the nonzero qT between the

colliding partons in the rest frame where the leptonic decay is evaluated. They also showed

that the ambiguity in the qT -recoil prescription is in one-to-one correspondence with the

ambiguity of the rest-frame choice and that it vanishes for qT → 0. They thus argue that

the recoil effects are O(qT /Q) effects that cannot be unambiguously computed through the

qT resummation, but some recoil prescription is nevertheless required for practical purposes

to satisfy transverse momentum conservation in the parton-level generation of the leptonic

decay. (Note that similar recoil prescriptions to preserve momentum conservation are also

commonly used in parton-shower Monte Carlos.)

Very recently, refs. [267, 268] used N3LL perturbative baselines to fit nonperturbative

models for the rapidity anomalous dimension and TMDPDFs using fiducial Z qT spectra

among other data. They also retain the exact dependence of the fiducial phase space on qT ,

with the analytic leptonic decay matrix element contracted against the LP hadronic tensor

∝ gµν⊥ (see also ref. [489]).9 This is essentially equivalent to an exact treatment of L−1 in

our notation (up to an overall O(λ2) difference in the projection itself), while L4 does not

contribute to the observables they consider. They also do not provide formal arguments

for the exact treatment of the leptonic contributions.

9The leptonic qT dependence is extrapolated across a given qT bin in ref. [268] to simplify the qT bin

integral, which should give a good approximation of the exact bin integral, especially for small bin width.
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If the fully-differential and flavor-channel dependent leptonic decay matrix element is

evaluated in the vector-boson rest frame, including exact leptonic cuts, and contracted

against the resummed LP hadronic tensor, either explicitly at the analytic level or during

the parton-level generation via the recoil prescription, then this essentially amounts to

retaining the exact qT dependence of the leptonic tensor. To the best of our understanding

this is the case in refs. [267, 268, 439, 440]. Our analysis thus provides formal justification for

doing so, showing that the ambiguity is only of O(λ2) and that for a large class of common

measurements (those that are azimuthally symmetric at LP) it actually unambiguously

predicts all linear power corrections along with their resummation. In addition, it is formally

required in phase-space regions that exhibit leptonic power corrections.

In ref. [445], fiducial lepton cuts are implemented in the resummed cross section strictly

on Born kinematics at qT = 0, while fiducial power corrections are obtained through the

fixed-order matching. Large power corrections from the fixed-order matching were observed

in the fiducial case compared to the inclusive case. From our analysis, this is explained by

the linear power corrections induced by the fiducial cuts.

Sometimes a multiplicative fixed-order matching procedure is employed, see for example

refs. [394, 445], where in order to Sudakov-suppress the fixed-order matching corrections at

small qT they are multiplied by the ratio of the LP resummed contribution to its fixed-order

expansion. While this procedure is unlikely to produce the correct Sudakov suppression

for genuine hadronic power corrections, one might ask if it correctly “dresses” the fiducial

power corrections with the LP resummation to achieve their resummation. For this to

be the case, the multiplicative matching at minimum has to reproduce eq. (7.83) for the

linear power corrections. Clearly, this can only happen if the multiplicative matching only

involves a single (effective) hadronic structure function at a time and if it is performed

fully differentially in q2, Y , and q2
T . This is typically not the case. For example, the

multiplicative matching in refs. [394, 445] is performed at the cumulant level, and thus does

not satisfy this requirement.
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7.3 Resummation of leading-power hadronic tensor

In this section, we discuss our specific resummation setup for the leading-power hadronic

structure functions W
(0)
−1,4 in eq. (7.89). The setup follows standard procedures as reviewed

in section 2.4.3, and is deliberately kept simple, e.g., by ignoring nonperturbative corrections

or quark-mass effects [420] at small qT , allowing us to focus on the effect of resumming the

fiducial power corrections in the following sections. As discussed in the previous section,

the fact that their resummation can be obtained in terms of the leading-power hadronic

structure functions, and that this captures all linear as well as leptonic power corrections,

holds independently of how the LP resummation is performed.

7.3.1 Canonical scales and nonperturbative prescription

The canonical scales of the hard, beam, and soft functions, and the rapidity anomalous

dimension in bT were given in eq. (2.209), and we repeat them here for reference:

µH ∼ Q , µB ∼ b0/bT , µS ∼ b0/bT , µ0 ∼ b0/bT ,
νB ∼ Q , νS ∼ b0/bT . (7.108)

For our resummed numerical results we evaluate the ingredients in eq. (2.196) at these

scales, perform the RG evolution between them as described in appendix D, and take a

numerical inverse Fourier transform in the end. Note that with the choice in eq. (7.108),

the beam and soft functions and the rapidity anomalous dimension become sensitive to

nonperturbative effects at large bT & Λ−1
QCD. To extend the perturbative description into

the nonperturbative domain, in chapter 4 we chose µ0 (and µB, µS) as a function of bT such

that it asymptotes to a perturbative scale at large bT . Alternatively, a global replacement

of bT by a suitable function b∗(bT ) may be performed at the level of the cross section,

where b∗(bT ) itself is bounded by some perturbative value bmax . 1/ΛQCD [185, 251]. Since

nonperturbative effects in the region qT ∼ ΛQCD are not our main focus here, we use an

even simpler prescription to ensure that αs remains perturbative. Specifically, we freeze out

both the running coupling and the PDFs entering the hadronic structure functions W
(0)
−1,4

at a perturbative scale by performing the replacement

αs(µ) 7→ αfr
s (µ) ≡ αs

[
µfr(µ)

]
, fi(µ) 7→ f fr

i (µ) ≡ fi[µfr(µ)
]
. (7.109)

We choose the smooth function µfr(µ) governing the freeze-out as

µfr(µ) =

{
Λfr + µ2

4Λfr
µ ≤ 2Λfr ,

µ µ > 2Λfr .
(7.110)

In practice, we pick Λfr = 1 GeV for our central results. The behavior of αfr
s at low

scales is illustrated in the left panel of figure 7.5. This choice constitutes a (fairly crude)

model for the large bT behavior of γ̃iν that is sufficient to regulate the large bT region, and

formally amounts to a power correction in ΛQCD � qT . We similarly ignore contributions of
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Figure 7.5: Left: Illustration of the freeze-out prescription used to ensure that αs is evaluated at

perturbative scales. Right: Hybrid profile scales as a function of b0/bT for representative values of

qT . The thin vertical line corresponds to b0/bT = Q, where Q = mZ for illustration purposes.

O(bTΛQCD) in the beam and soft function boundary conditions, beyond the ones encoded

in our global choice of µfr(µ). This is also consistent with neglecting the hadronic structure

functions W2,5 involving Boer-Mulders functions in the regime ΛQCD � qT � Q altogether,

see the discussion below eq. (7.89).

7.3.2 Fixed-order matching and profile scales

We extend the description of the cross section to the fixed-order region qT ∼ Q by an

additive matching to the fixed-order result via profile scales,

dσ = dσ(0+L)
∣∣
µres

+
[
dσFO

∣∣
µFO
− dσ(0+L)

∣∣
µFO

. (7.111)

Here the subscript µres on the first term indicates that we evaluate the resummed LP

hadronic structure functions in dσ(0+L) using resummation (profile) scales in bT space and

numerically perform the inverse Fourier transform. The superscript µFO indicates that

the structure functions are instead evaluated at common fixed-order scales µFO, which

can be done directly in momentum space. The last term effectively acts as a differential

subtraction term for the full fixed-order cross section dσFO in the second term, such that

the difference in square brackets is a nonsingular power correction. We will refer to the

outcome of eq. (7.111) as N3LL(0+L)+NNLO0 when the resummed LP hadronic structure

functions at N3LL are combined with the exact leptonic tensor as discussed in section 7.2.4,

and matched to the fixed O(α2
s) NNLL0 result. When instead evaluating the leptonic tensor

at strict LP, we refer to it as N3LL(0)+NNLO0, in which case the fiducial power corrections

are only included through the fixed-order matching. The analogous notation is used at

lower orders.

Approaching qT ∼ Q, the qT resummation must be turned off, while in the canonical

region qT � Q the resummation scales should be exactly equal to the canonical bT space

scales in eq. (2.209). To achieve this, we use the hybrid profile scales constructed in
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chapter 4. We choose central scales as

µH = νB = µFO , µB = µS = νS = µFO frun

(qT
Q
,
b0
bT Q

)
, µ0 =

b0
bT

, (7.112)

where the hybrid profile function frun ≡ f II
run was given in eq. (4.22). It controls the amount

of resummation by adjusting the slope of the scales in bT space as a function of qT /Q. Note

that in contrast to chapter 4, we do not require a deformation away from the canonical

scales to regulate the Landau pole at large bT , but instead rely on the replacement in

eq. (7.109), so the scales can stay canonical all the way down to b0/bT → 0. For our central

results, we use the transition points (x1, x2, x3) = (0.3, 0.6, 0.9). Our central profiles in bT
space as used in this chapter are illustrated for different values of qT in figure 7.5.

7.3.3 Estimate of perturbative uncertainties

We identify several sources of perturbative uncertainties, which we estimate as follows. In

the limit qT � Q, the perturbative uncertainty is driven by the combined uncertainty

from truncating the expansion of the soft, beam, and rapidity anomalous dimensions. To

estimate them, we adopt the set of profile scale variations introduced for the SCETII-like

jet veto in ref. [67] as applied to qT resummation in chapter 4. The explicit variations for

µX ≡ µII
X were given in eq. (4.26). Dropping combinations of scale variations that vary the

resummed logarithm by a factor of four, we are left with 36 different scale variations. By

taking their maximum envelope, we obtain an estimate of the resummation uncertainty

∆res.

Second, we estimate the fixed-order perturbative uncertainty ∆FO from the maximum

envelope of overall variations of µFO by a factor of two. These variations are inherited by

all the resummation scales in eq. (7.112), so they leave the resummed logarithms invariant.

Third, we estimate the inherent uncertainty ∆match in our matching procedure eq. (7.111)

by taking the maximum envelope of explicit variations of the transition points xi,

(x1, x2, x3) =
{

(0.4, 0.75, 1.1), (0.2, 0.45, 0.7), (0.4, 0.55, 0.7), (0.2, 0.65, 1.1)
}
. (7.113)

Finally, we consider two independent variations of Λfr = {0.8, 1.5}GeV away from our

central choice Λfr = 1 GeV as a rough estimate of the uncertainty ∆Λ in our nonper-

turbative prescription. Note that at variance with chapter 4, where the variation of the

nonperturbative parameter bmax entering the resummation scales was grouped with the

overall resummation uncertainty (yielding a total of 38 variations), we keep variations of

Λfr separate in this chapter because it amounts to a physical parameter that parametrizes

our nonperturbative model rather than a resummation scale. For the same reason we only

vary it in a reasonable physical range instead of the factor of two conventionally applied to

resummation scales.

Combining all sources of uncertainty in quadrature, we take

∆total =
√

∆2
res + ∆2

FO + ∆2
match + ∆2

Λ (7.114)

as an estimate of the total (perturbative) uncertainty on our results.
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7.4 Resumming fiducial power corrections

As discussed in section 7.2.4, fiducial power corrections arise entirely from the leptonic

tensors Li(q,O,Θ), and accordingly can be treated exactly in the factorization by keeping

the Li exact. In this section, we consider three applications to discuss this mechanism in

more detail, namely the qT spectrum with fiducial cuts (section 7.4.2), the lepton transverse

momentum distribution (p`T ) (section 7.4.3), and the φ∗ observable (section 7.4.4). In all

cases, we consider our primary examples of Z → `+`− or W → `ν.

7.4.1 Numerical inputs and computational setup

All our numerical results in this and the following sections are obtained using the following

setup. We use the CT18NNLO [112] PDF set, and correspondingly use the three-loop running

to obtain the numerical value of αs at any required scale with αs(91.1870) = 0.118 as

starting point. We use the same PDF also at lower orders, which is consistent and allows

us to exhibit the genuine size of perturbative corrections.

For the resonant W and Z propagators, we work in the fixed-width pole scheme. We

use the following electroweak parameters [25]10

mZ = 91.1535 GeV , ΓZ = 2.4943 GeV ,

mW = 80.3580 GeV , ΓW = 2.0843 GeV , (7.115)

GF = 1.1663787× 10−5 GeV−2 ,

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


0.97446 0.22452 0.00365

0.22438 0.97359 0.04214

0.00896 0.04133 0.999105

 . (7.116)

For the electroweak couplings, we use the Gµ scheme, with the values for αem and sin2 θw
obtained from mW , mZ , and GF as

sin2 θw = 1− m2
W

m2
Z

= 0.22284 ,

αem ≡ αµ =

√
2GF
π

m2
W

(
1− m2

W

m2
Z

)
=

1

132.357
. (7.117)

All factorized cross sections, both at fixed order and including resummation up to N3LL

accuracy as described in section 7.3 are obtained from the C++ library SCETlib [8]. By

default we use the CS tensor decomposition, and LP cross sections including fiducial power

corrections are denoted as σ(0+L), while those at strict LP without fiducial power corrections

10The pole-scheme values are converted from the on-shell ones using

mV = mOS
V

[
1 +

(
ΓOS
V /mOS

V

)2]−1/2
, ΓV = ΓOS

V

[
1 +

(
ΓOS
V /mOS

V

)2]−1/2
.
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are denoted by σ(0). We have also implemented alternative tensor decompositions using

eq. (7.103), in particular the one that corresponds to the GJ frame, and will denote cross

sections evaluated using this choice as σ
(0+L)
GJ . SCETlib uses the Cuba 4.2 library [490, 491]

for adaptive multi-dimensional integration over Q and Y , combined with qT integrals

whenever they cannot be performed analytically. To perform oscillatory Bessel integrals for

inverse Fourier transforms we use a double-exponential method for oscillatory integrals [492–

494].

The integral over the leptonic phase space appearing in eq. (7.46),∫ 1

−1
d cos θ

∫ 2π

0
dϕgi(θ, ϕ) δ[O − Ô(q, θ, ϕ)] Θ̂(q, θ, ϕ) , (7.118)

is carried out semi-analytically as follows. We focus on binned observables Θ̂(q, θ, ϕ) and

assume that the differential measurement O on the decay products is being integrated over.

We assume that the measurement cuts and bins Θ̂(q, θ, ϕ) evaluate to 1 when all cuts are

passed and 0 otherwise, i.e., we take it to be a product of θ functions. An explicit dependence

on θ or ϕ, e.g. to apply angular projections, can also easily be accommodated, but this is not

needed for our purposes here. For given values of q and ϕ, we first determine all intervals in

cos θ that pass the given cuts. Notably, for all observables considered here (pT1,2, η1,2, φ∗,

and any of their combinations), the interval boundaries can be evaluated analytically even

for nonzero qT . The integral over cos θ over these intervals is then carried out analytically.

The remaining integral over ϕ is performed by adaptive numerical integration. In practice,

the sum over hadronic structure functions i, see eq. (7.88), can be pulled under the integral

in eq. (7.118) because the structure functions only depend on the given value of q, so the

decay phase-space boundaries only have to be determined once. Typical evaluation times

even for complicated phase-space volumes are in the few-millisecond range on a single

Intel R© CoreTM i5-7200U CPU @ 2.50 GHz for a target relative numerical precision of 10−7.

The algorithm is not restricted to the leading-power structure functions, but can also be

used standalone with generic hadronic structure functions that are provided.

Fixed-order results for qT and φ∗ at LO1 and NLO1 for the relevant Born+1-parton

cross sections are obtained from MCFM 8.0 [330, 332, 495]. These results are used in the

fixed-order matching. In addition, they are used to obtain qT (or φ∗) integrated cross

sections at NLO0 and NNLO0 by combining them with qT (or φ∗) subtractions including

fiducial power corrections supplied by SCETlib. This setup is discussed in more detail

in section 5 of ref. [6]. The inclusion of fiducial power corrections in the subtractions is

essential to obtain numerically stable results down to very small qT and φ∗ and for p`T near

the Jacobian peak.

7.4.2 qT spectrum with fiducial cuts

We first discuss the impact of fiducial cuts on the Drell-Yan qT spectrum. We consider the

standard kinematic selection cuts of requiring a minimum transverse momentum pmin
T and
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maximum rapidity ηmax of the final-state leptons,

Θ : pT,i ≥ pmin
T , |ηi| ≤ ηmax , (7.119)

where pT,i and ηi with i = 1, 2 are the transverse momentum and pseudorapidity of the two

leptons.

Origin of power corrections

The pmin
T cut was already discussed in detail in ref. [459]. Here, we briefly review the key

steps and results, and in addition discuss the rapidity cut. A useful parametrization of the

total momentum qµ and the lepton momenta pµ1,2 in the lab frame is

qµ =
(
mT coshY , qT , 0 ,mT sinhY

)
,

pµ1 = pT,1
(
cosh(Y + ∆y) , cosψ , sinψ , sinh(Y + ∆y)

)
,

pµ2 = qµ − pµ1 , (7.120)

where mT = (Q2 + q2
T )1/2. As before, we neglect the lepton masses and align the total

transverse momentum ~qT with the x-axis. We denote the azimuthal angle of the first lepton

in the lab frame as ψ to distinguish it from the CS angle ϕ, and write its rapidity as

y1 = Y + ∆y. Momentum conservation determines pµ2 , and fixes the transverse momenta

and rapidities of the leptons to

pT,1 =
Q2/2

mT cosh(∆y)− qT cosψ
, η1 = Y + ∆y ,

pT,2 =
√
p2
T,1 − 2qT pT,1 cosψ + q2

T , η2 = Y +
1

2
ln
mT − pT,1e+∆y

mT − pT,1e−∆y
. (7.121)

For compactness, here we do not substitute pT,1 in the expressions for pT,2 and η2. The

two-particle phase space defined in eq. (2.58) then takes the form

dΦL(q) =
p2
T,1

8π2Q2
dψ d∆y . (7.122)

The integrated phase space with the cuts in eq. (7.119) can now be written as

ΦL(q, pmin
T , ηmax) =

∫
dΦL(q) θ

(
pT,1 ≥ pmin

T

)
θ
(
pT,2 ≥ pmin

T

)
θ
(
|η1| ≤ ηmax)θ

(
|η2| ≤ ηmax)

=

∫ 2π

0
dψ

∫ ∞
−∞

d∆y
p2
T,1

8π2Q2

× θ
(
min{pT,1, pT,2} ≥ pmin

T

)
θ
(
max{|η1|, |η2|} ≤ ηmax

)
. (7.123)

The integrand in eq. (7.123) depends on qT only through the combinations q2
T and qT cosψ.

Thus, the expansion of the integrand in the limit qT � Q can only yield linear fiducial

corrections if the ψ integral does not average out. This is equivalent to requiring that the

cuts break azimuthal symmetry, as otherwise the ψ integral can always be trivially carried

268



7.4 Resumming fiducial power corrections

out, such that all odd powers of qT cosψ integrate to zero and only quadratic corrections in

(qT /Q)2 arise. Inclusive measurements are a special case, as without cuts ΦL(q) can only

depend on q2.

To see this mechanism explicitly for cuts on pT and η, we expand the lepton transverse

momenta and rapidities in eq. (7.121) in qT /Q ∼ λ,

pT,1 =
Q

2 cosh ∆y

[
1 +

qT
Q

cosψ

cosh ∆y
+O(q2

T /Q
2)

]
,

pT,2 = pT,1 − qT cosψ +O(q2
T /Q

2) ,

η1 = Y + ∆y ,

η2 = Y −∆y − 2
qT
Q

cosψ sinh ∆y +O(q2
T /Q

2) . (7.124)

All observables in eq. (7.124) have a well-defined, nonvanishing LP limit as qT → 0, and

the first correction is proportional to qT cosψ. Since at qT = 0, ψ and ϕ coincide, we

immediately find that the fiducial qT spectrum obeys azimuthal symmetry at leading

power, so the discussion in section 7.2.4 applies.

Naively, one might also expect that all linear fiducial corrections vanish upon integration

over ψ. However, this is spoiled by the minimum and maximum in the θ functions in

eq. (7.123), as can be easily seen for the pmin
T cut. For cosψ > 0, one has pT,1 > pT,2, and

thus the θ function in eq. (7.123) only restricts pT,2. Vice versa, for cosψ < 0 it is pT,1
that is constrained. This leads to two different integrands of the ψ integral in the two

integration regions, leading to a nonvanishing ψ integral. This shows that the azimuthal

symmetry is explicitly broken at O(λ) leading to linear fiducial power corrections. However,

it also shows that if one were to only apply cuts to one of the leptons while being fully

inclusive in the other, no linear power corrections from the cuts would arise, since the ψ

integral would average out when integrated against the g−1,2,4,5(θ, ϕ) (using again that the

difference between ψ and ϕ is itself of order qT ).

The situation is more complicated for the rapidity cut. Determining the transition point

of the maximum in the corresponding θ function in eq. (7.123), i.e. the value ψtp for which

|η1| = |η2|, we find that

cosψtp =
Q

2qT

sinh(2Y )

sinh(2Y + ∆y)
×
[
1 +O(q2

T /Q
2)
]
. (7.125)

If |cosψtp| ≥ 1, then the θ function in eq. (7.123) only restricts either |η1| or |η2| but

not both for the whole ψ range. In this case, the rapidity cut does not break azimuthal

symmetry.

For small but nonvanishing values of qT , the Q/qT scaling in eq. (7.125) can be overcome

by a sufficiently small value of the vector-boson rapidity Y . To be precise, eq. (7.125) has

a solution in the physical range |cosψtp| < 1 when

qT >
Q

2

∣∣∣∣ sinh(2Y )

sinh(2Y + ∆y)

∣∣∣∣ . (7.126)
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Figure 7.6: Relative difference of the exact dilepton phase space with fiducial cuts to its LP (Born)

limit, for various values of the total dilepton rapidity Y for a pure rapidity cut (left) and both

rapidity and pT cuts (right). The thick vertical line on the left shows transition point in eq. (7.126)

for Y = 0.1.

Note that the η1 constraint always requires that |Y + ∆y| ≤ ηmax. Furthermore, we are

only interested in the qT � Q limit, which implies that eq. (7.126) only becomes important

when |Y | � 1. Hence, linear fiducial corrections will only arise in the region

qT
Q

&
qtp
T

Q
≡ |Y |

sinh(ηmax)
, |Y | � 1 , (7.127)

while for qT . qtp
T only quadratic power corrections arise. Note that in the region qT ∼

qtp
T � Q the standard power counting breaks down, as one has to simultaneously expand

|Y | ∼ qT /Q� 1. This is an example of a leptonic fiducial power correction as discussed in

section 7.2.4, where it is crucial to keep the lepton phase space exact to correctly account

for both small scales qT /Q and |Y |. In practice, the size of this region is of O(|Y |) and

thus small by construction, and hence its contribution to the cross section when integrated

over or binned in Y is suppressed as well.

To illustrate and validate our observations, we have numerically implemented the exact

phase space with cuts in eq. (7.123). In figure 7.6, we show the relative difference of the

dilepton phase space as a function of qT /Q for the cut ηmax = 2.4 (left) and the combined

cut pmin
T = 25 GeV and ηmax = 2.4 (right), for different values of the total rapidity Y

and fixed Q = mZ . In the left plot, one can clearly see that for Y = 0 one has a linear

power correction for small qT up to qT /Q ∼ 0.1 (red solid line). For the slightly larger

value Y = 0.1 (blue dashed line), we observe quadratic corrections up to the transition

point qtp
T /Q ≈ 0.2, indicated by the thick vertical line, while above this transition the

correction has no simple scaling behavior. Finally, for the relatively large value Y = 1 one

has quadratic corrections essentially throughout the whole qT spectrum (green dotted line).

Also note that, in general, the corrections to the phase space are rather small, as even for

Y = 0.1 they do not exceed 1% for qT /Q < 0.1.

In the right plot in figure 7.6, we apply both ηmax and pmin
T cuts. For small values of Y ,
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the pmin
T cut is a stronger constraint on the phase space than the ηmax cut. Hence, the two

curves for Y = 0 (red solid) and Y = 1 (blue dashed) are equal, as the pmin
T constraint is

independent of rapidity. For large Y ∼ ηmax, the rapidity cut dominates over the pT cut,

as illustrated for Y = 2 (green dotted), and one only has quadratic power corrections.

Numerical results

Having explicitly demonstrated that linear power corrections to the qT spectrum arise from

fiducial cuts on the final-state leptons, we now verify that they can indeed be captured in the

factorization theorem by keeping the lepton kinematics exact, as discussed in section 7.2.4.

In the following, we will always consider the fiducial cut

p`T ≥ 25 GeV , |η`| ≤ 2.4 , (7.128)

as employed in the CMS Drell-Yan measurement at 13 TeV [31].

In figure 7.7, we show the qT spectrum for Q = mZ at NLO0, both without (left) and with

(right) fiducial cuts. In both figures, the red points illustrate the full NLO0 result, while

the solid blue line shows the result at σ(0) (left) and at σ(0+L) (right). The various dotted

and dashed lines show the differences between the full result and different singular limits.

In the inclusive case (left panel), there are no linear power corrections, and thus σ − σ(0)

(green, dashed) scales quadratically in qT , as expected. With fiducial cuts (right panel),

σ−σ(0) (gray, dotted) clearly suffers from linear power corrections, and as explained before,

these linear corrections can be accounted for by keeping the leptonic tensor exact. This

is illustrated by the green-dashed line, which shows the difference σ − σ(0+L) between the

exact and NLP result, and only depends quadratically on qT . In particular, the size of these

corrections is comparable to the quadratic corrections in the inclusive case. The orange,

dot-dashed curve shows the difference σ
(0+L)
GJ − σ(0+L) between two choices of the tensor

decomposition, corresponding to the CS frame and the GJ frame. This difference scales

quadratically in qT , confirming that the ambiguity from the choice of tensor decomposition

is quadratically suppressed. Moreover, we observe that this ambiguity is numerically much

smaller than σ(0+L) itself, indicating that it may be completely negligible in practice.

It is also interesting to study the impact of the NLP corrections on the resummed qT
spectrum. In the top-left panel of figure 7.8, we show the difference between the LP and

the exact qT spectrum at NLO0 (blue, short-dashed) and NNLO0 (red, long-dashed). For

reference, the gray line shows our best prediction σ∗ at N3LL(0+L)+NNLO0, scaled down

to 5% of its original size. At both NLO0 and NNLO0, the power corrections diverge as

qT → 0 due to the overall 1/qT behavior (compared to 1/q2
T at LP). The opposite signs at

small qT also illustrates the poor perturbative convergence in this regime.

In the top-right panel of figure 7.8, we show the difference between the LP qT spectrum

and the resummed and matched qT spectrum, at NLL(0+L) (green, dotted), NNLL(0+L)+

NLO0 (blue, dashed) and N3LL(0+L)+NNLO0 (red, solid). Since the resummation includes

the linear power corrections, the divergence as qT → 0 is cured, and we observe very good

perturbative convergence between the different resummed predictions.
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Figure 7.7: Power corrections for the qT spectrum in Drell-Yan production, inclusive in the decay

products (left) and with fiducial cuts (right).
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Figure 7.8: Breakdown of subleading-power contributions to the fiducial Drell-Yan qT on the

resonance, Q = mZ . We compare the sum of all subleading power contributions, treating the

linear fiducial power corrections at fixed order (top left) or resumming them (top right). Our best

prediction dσ∗ for the total spectrum at N3LL(0+L)+NNLO0 is indicated as a light gray line for

reference, scaled down to 5% of its original size. In the bottom row we restrict to the remaining

nonsingular (quadratic) power corrections, which are finite for qT → 0 (note the difference in vertical

scale).
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Finally, in the bottom panel of figure 7.8 we show the difference between the NLP and

the exact qT spectrum at NLO0 (blue, short-dashed) and NNLO0 (red, long-dashed), again

including our best prediction σ∗ for reference. Since all terms diverging as 1/q2
T or 1/qT are

included in σ(0+L), this difference is finite as qT → 0, and the overall size is much smaller

compared to the top left panel, indicating that corrections beyond the linear NLP limit can

be safely included at fixed order.

Given the large effect that the resummation of fiducial power corrections has on the qT
spectrum at small qT , it would be very interesting to investigate whether a net resummation

effect on the total fiducial cross section remains after integration over qT , as would be

relevant for PDF determinations from fiducial Z and W rapidity spectra. It has been argued

that recoil ambiguities might prevent a first-principle calculation of these effects [496], but

since the ambiguity from the choice of tensor decomposition is fairly small, and vanishes

as soon as the resummation is fully turned off, it is not unlikely that a surviving net effect

is unambiguous and can be calculated.

7.4.3 Lepton pT spectrum

We next study the distribution in the lepton transverse momentum p`T . To be concrete,

we consider W± → `±ν`, for which p`T is an essential observable. For simplicity, we do

not consider any additional fiducial cuts. This serves as a prototypical example of the

appearance of leptonic power corrections near a radiation-sensitive edge of Born phase

space as discussed in section 7.2.4, which in this case happens near the Jacobian peak at

p`T ∼ Q/2.

Origin of power corrections

Using the parametrization of the lepton momenta in terms of CS angles in eq. (7.41), the

lepton p`T can be expressed as

p`T =
Q

2

√
(γsθcϕ + ε)2 + s2

θs
2
ϕ ≡

Q

2
κ , ε =

qT
Q
, γ =

√
1 + ε2 , (7.129)

where sθ ≡ sin θ, sϕ ≡ sinϕ, cϕ ≡ cosϕ. We also introduced the variable κ = 2p`T /Q to

parameterize the distance of p`T from the Jacobian peak at p`T = Q/2, which will be useful

in the following. Eq. (7.129) can be easily solved for sθ, with physical solutions constrained

by 0 ≤ sθ ≤ 1. In the following, we restrict ourselves to the case κ > ε, which will be the

relevant region to describe large p`T . In this case, the only physical solution for sθ is given

by

sin(θϕ) = s(cϕ) = −βγ εcϕ +
√

∆ , (7.130)

where for brevity we introduced the abbreviations

∆ = (βγ εcϕ)2 + β(κ2 − ε2) , β =
1

1 + (εcϕ)2
. (7.131)
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The leptonic structure functions defined in eq. (7.46) are then given by

Li(q, p
`
T )

L±(i)(q2)
=

3p`T
4πQ2

∫ 2π

0
dϕ

β√
∆
θ
(
cϕ −

κ− γ
ε

)∫ π

0
dθ sθ gi(θ, ϕ) δ[sθ − s(cϕ)] . (7.132)

Note that eq. (7.132) still shows the full dependence on ϕ and sθ, such that one could easily

reinstate fiducial cuts.

Eq. (7.130) yields two solutions for θϕ, related by θ → π − θ. Since the gi(θ, ϕ) for

i = 1, 4, 6 are odd under this transformation, eq. (7.132) immediately vanishes for these

cases. In all other cases, the gi are even under this transformation, such that we obtain

Li(q, p
`
T )

L±(i)(q2)
=

3p`T
2πQ2

∫ 2π

0
dϕ

β√
∆
θ
(
cϕ −

κ− γ
ε

) s(cϕ) gi(θϕ, ϕ)

[1− s(cϕ)2]1/2
(i 6= 1, 4, 6) , (7.133)

where θϕ can be either of the two physical solutions defined by eq. (7.130).

It is now straightforward to expand in ε to study the qT → 0 limit, which yields

Li(q, p
`
T )

L±(i)(q2)
=

3p`T
2πQ2

θ(1− κ)√
1− κ2

∫ 2π

0
dϕgi(arcsinκ, ϕ) +O(ε)

=
3p`T
Q2

θ(1− κ)√
1− κ2


2− κ2 , i = −1 ,

κ2 , i = 0 ,

0 , i = 1, . . . , 7 .

(7.134)

The constraint κ ≤ 1 reflects the strict bound p`T ≤ Q/2 in the Born limit. We also recover

that at LP only the i = −1, 0 contributions survive. The i = 4 contribution, which in

principle can contribute at LP and gives rise to the forward-backward asymmetry, vanishes

due to the symmetry of p`T under θ → π − θ.
Before proceeding, it is instructive to illustrate the phase space differential in p`T , which

is closely related to Li(q, p
`
T ) and provides a bound on the Li(q, p

`
T ) since all gi(θ, ϕ) are

bounded. It can be evaluated more easily using the parametrization of the lepton momenta

given in eq. (7.120). After some effort, one obtains

dΦL(q)

dp`T
=

∫
dΦL(q) δ

[
p`T − p`T (ΦL)

]

=



1

2π2Q

ακ√
α2 − κ2

K

[
−(1− α4)κ2

α2 − κ2

]
0 < κ ≤ α ,

1

2π2Q

ακ√
κ2 − α2

K

[
α2(1− α2κ2)

α2 − κ2

]
, α < κ < 1/α ,

0 κ ≥ 1/α

(7.135)

Here, α =
√

1 + ε2 − ε, and K(x) is the complete elliptic integral of the first kind. The

appearance of three distinct regions can easily be understood from eq. (7.133): For κ > 1/α,

the θ function in eq. (7.133) becomes incompatible with cϕ ≤ 1, while for κ < α it imposes

no constraint in addition to cϕ ≥ −1.
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Figure 7.9: Leptonic phase space dΦL(q)/dp`T , as a function of p`T for fixed qT (left) and as a

function of qT for fixed p`T = 40.1 GeV (right). In both cases we fix Q = mW = 80.358 GeV. Left:

The red solid curve shows the exact result for qT = 8 GeV, and the blue dashed curve shows the

qT = 0 Born limit. Right: The red solid curve shows the exact phase space, the blue dashed line

the LP limit, and the green dotted curve their difference.

In figure 7.9, we show the differential phase space in p`T in eq. (7.135) for Q = mW . In

the left panel, we show the exact phase space as a function of p`T for fixed qT = 8 GeV (red

solid), with the gray vertical lines indicating the edges of the different regions in eq. (7.135).

In the qT = 0 LP limit (blue dashed), they collapse to the kinematic Born limit p`T ≤ Q/2.

In the right panel, we fix p`T = 40.1 GeV very close to the Born edge, and show the phase

space as a function of qT . The exact result is shown by the red curve, the qT = 0 LP limit

by the blue dashed line, and their difference by the green dotted line. The thick vertical

line at qT = Q − 2p`T ≡ pL shows the transition to the second region of eq. (7.135). For

sufficiently small qT � pL, we see a clear (quadratic) power suppression, while near and

above this value the power corrections become O(1). (The sharp dip in the green line is

just an artefact of the logarithmic scale and the green line changing its sign.)

Clearly, expanding in ε ∼ λ is only well-defined if κ � 1, i.e., away from the Jacobian

peak p`T � Q/2. This is already evident from the divergence of eq. (7.134) as κ → 1. As

long as κ � 1, ε is the only small scale in the problem, which justifies expanding in ε

and leads to at most linear fiducial power corrections. On the other hand, close to the

Jacobian peak, the distance pL = Q − 2p`T emerges as an additional small scale, and the

naive expansion in qT is actually an expansion in qT /pL, which is only allowed for qT � pL
but breaks down for pL ∼ qT . To illustrate this explicitly, we can expand in the regime

pL ∼ qT by simultaneously counting both scales as small. To do so, we take

pL = Q− 2p`T ∼ λQ , 1− κ =
pL
Q
∼ λ , (7.136)

where as before ε = qT /Q ∼ λ, such that formally qT /(Q−2p`T ) ∼ 1. With this replacement,
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we can expand eq. (7.133) in λ,

Li(q, p
`
T )

L±(i)(q2)
=

3

4π

1√
2Q

∫ 2π

0
dϕ

θ(qT cϕ + pL)√
qT cϕ + pL

gi
(
π/2, ϕ

)
×
[
1 +O(λ)

]
. (7.137)

This vanishes for all gi odd in ϕ, which only leaves i = −1, 0, 2, 3. This should be contrasted

with the naive LP result in eq. (7.134), which only receives contributions from i = −1, 0.

The i = 2 contribution is proportional to the double Boer-Mulders effect, which we can

neglect, see the discussion below eq. (7.89). For i = 3 we have W3 ∼ O(λ), see table 7.1,

which thus yields a linear power correction. Hence, we find the interesting effect that the

proximity to the Jacobian peak induces sensitivity to new hadronic structure functions at

O(λ), which do not contribute at O(λ) away from the peak region.

From eq. (7.137) it is evident that naively expanding in qT near the Jacobian peak would

amount to expanding in qT /pL, which is not allowed. However, eq. (7.137) is only valid

near the peak, because by counting pL/Q ∼ λ we have expanded away the dependence on

κ = 1 + O(λ), which is not allowed away from the peak. Hence, to cover the full range

of p`T , we must not expand in pL, while near the peak we must count qT ∼ pL to avoid

inducing uncontrolled leptonic power corrections in qT /pL. Clearly, the simplest way to

satisfy both requirements is to not expand at all and keep the exact result corresponding

to eq. (7.133).

Finally, note that the breakdown of the naive power expansion around p`T = Q/2 does

not immediately affect the leptonic tensor if we only consider a fiducial cut p`T ≥ pmin
T , since

we can evaluate it as

ΦL(q, pmin
T ) =

∫
pmin
T

dp`T
dΦL(q)

dp`T
=

1

8π
−
∫ pmin

T

0
dp`T

dΦL(q)

dp`T
. (7.138)

Thus, the leptonic power corrections in this case scale as qT /(Q − 2pmin
T ), and so as long

as pmin
T � Q/2, the effect of pmin

T can be treated as a linear fiducial power correction as

discussed for the qT spectrum with fiducial cuts in section 7.4.2.

Numerical results

There are two key insights from our analysis of the differential p`T phase space. First, the

p`T spectrum near the Jacobian peak is directly sensitive to the small transverse momentum

qT of the decaying vector boson. This causes fixed-order predictions to become unreliable

in this region, which is a well-known effect. Second, the strict qT → 0 limit by itself cannot

describe the p`T spectrum in this region, which means the strict LP qT resummation is

also insufficient. Both problems are cured simultaneously by combining the exact leptonic

tensor, which encodes the exact decay kinematics and automatically retains all leptonic

power corrections, with the qT -resummed hadronic tensor, thus allowing us to obtain

physical predictions around the Jacobian peak.

We illustrate this in figure 7.10 for the p`T spectrum in W+ → `+ν` decays, where we

show the spectrum both at fixed order (left) and after resummation including fiducial
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Figure 7.10: Lepton transverse momentum spectrum for on-resonance W+ production at the LHC

at fixed order (left) and including the resummation of fiducial power corrections to N3LL (right).

The horizontal axes shows the distance to the Jacobian peak at p`T = mW /2.

power corrections (right). In both panels, the horizontal axis shows the distance of p`T
to the Jacobian peak at p`T = mW /2, and to avoid smearing out the peak we consider

the spectrum at a fixed point Q = mW . The fixed-order spectrum (left) is shown at LO0

(green dotted), NLO0 (blue dashed), and NNLO0 (red solid). The LO0 result corresponds

to Born kinematics and clearly shows the kinematic edge at p`T = Q/2. Starting at NLO0,

the W boson can have nonvanishing qT , which opens up the phase space beyond the edge.

However, in the vicinity of the edge, the fixed-order predictions become unstable due to the

sensitivity to small qT , which is clearly visible by the diverging NLO0 and NNLO0 curves,

and in particular by the sign change between NLO0 and NNLO0 at p`T ≈ Q/2.

In the right panel in figure 7.10, we show the resummed p`T spectrum at NLL(0+L)

(green dotted), NNLL(0+L)+NLO0 (blue dashed), and N3LL(0+L)+NNLO0 (red solid). The

resummation including leptonic power corrections cures the unphysical behaviour of the

fixed-order results, yielding a well-behaved spectrum in the full p`T range, with a resummed

Sudakov shoulder at p`T ≈ mW /2. Note that the cross section beyond the edge is already

populated at NLL(0+L) without any fixed-order matching. We stress that without including

the exact leptonic tensor, the resummation would only affect the region p`T < mW /2,

and not cure the peak region. In fact, the results with strict LP resummation would

look very similar to the pure fixed-order results, with the N3LL(0)+NNLO0 essentially

indistinguishable from the pure NNLO0 result.

This is the first time that resummed N3LL results for the p`T spectrum are presented, and

we observe extremely good perturbative convergence, with the results at NNLL(0+L)+NLO0

and N3LL(0+L)+NNLO0 falling on top of each other. We leave a more detailed phenomeno-

logical analysis of the p`T spectrum to future work.

7.4.4 φ∗ spectrum

The φ∗ observable was first proposed in ref. [497], extending earlier work on the aT observ-

able [498, 499]. Both observables are sensitive to small qT , but promise better experimental
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resolution than qT itself due to being based on angular measurements, which are less

susceptible to the momentum resolution of the individual lepton momenta than qT itself.

The factorization and resummation for aT was first studied in ref. [500] at NLL, and

extended to both aT and φ∗ at NNLL+NLO in refs. [438, 501, 502], and also in refs. [503]

including a study of nonperturbative contributions, and also more recently at N3LL+NNLO

in refs. [363, 445]. None of these calculations incorporate the finite recoil of the dilepton

system in the calculation of the φ∗ observable, i.e. the employed definition of φ∗ is only an

approximation of the actually measured observable, as discussed below. The resummation

with the exact definition of φ∗ was considered in refs. [439, 446] at NNLL+NNLO and

NNLL+NLO via parton-level MC integration of the leptonic final state.

Ref. [497] defines the two closely related observables φ∗CS and φ∗η. We only consider the

latter, as it is more commonly used in experiments. It is defined as

φ∗ ≡ φ∗η = tan(φacop/2) sin θ∗η , (7.139)

where the acoplanarity angle is φacop = π − ∆ϕ, with ∆ϕ being the azimuthal opening

angle between the leptons in the lab frame, and

cos θ∗η = tanh
η1 − η2

2
, (7.140)

where η1,2 are the two lepton rapidities.

Origin of power corrections

Using the parametrization of the lepton momenta in the Collins-Soper frame as given in

eq. (7.41), eq. (7.139) can be written as

(φ∗)2 =
8κ(ε sinϕ sin θ)2

(κ− ε2 + α2)2(κ+ ε2 − α2 + 2)
,

κ2 = (ε2 − α2)2 + 4ε2 sin2 θ sin2 ϕ , α2 =
(
1 + ε2 cos2 ϕ

)
sin2 θ . (7.141)

Note that φ∗ is boost invariant and thus independent of Y , and can depend on qT only

through the dimensionless ratio ε = qT /Q. From eq. (7.141), one easily finds the special

values

φ∗|θ=π/2 = ε|sinϕ| , lim
θ→0,π

φ∗ =∞ . (7.142)

The singularity arises from the case where both momenta are parallel to each other in the

transverse plane, such that φacop = π and eq. (7.139) becomes ill-defined. Numerically, we

have also tested that φ∗ monotonically decreases with |sin θ|, such that φ∗ can be uniquely

inverted on the intervals θ ∈ [0, π/2] and θ ∈ [π/2, π], with the two solutions trivially

related by θ1 = π − θ2.

Expanding eq. (7.141) in ε� 1, one obtains the commonly employed approximation

φ∗ (0) = ε |sinϕ| . (7.143)
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The monotonicity of φ∗ with |sin θ| implies that this is a lower bound to φ∗,11 but from

eq. (7.142) it follows that this bound is only saturated for θ = π/2. It is thus natural to

ask whether there is a better approximation of φ∗. From eq. (7.141), it is easy to see that

φ∗ only vanishes if either ε = 0 or sinϕ = 0. Expanding eq. (7.141) in these limits, we find

(φ∗)2 =
ε2 sin2 ϕ

1 + ε2(1− sin−2 θ)
+O(sin4 ϕ)

= ε2 sin2 ϕ
[
1 + ε2 cot2 θ + O(ε4)

]
. (7.144)

Note that the expansion in small ε in the second line can be recovered by reexpanding the

small-sinϕ limit, because in eq. (7.141) each term in ε either multiplies sinϕ or is enhanced

relative to ε sinϕ. The first line in eq. (7.144) is ill-defined for |tan θ| < ε already at the

leading O(sin2 ϕ), while this singularity only appears at the second order in ε. Eq. (7.144)

suggests that the fundamentally small quantity to be power counted is ε|sinϕ|, not ε itself.

In particular, any given value in φ∗ can in principle receive contributions from arbitrarily

large ε.

In figure 7.11, we compare the exact result for φ∗ (red solid) to its leading expansions in

small sinϕ (blue dashed) and small ε (green dotted). We fix ϕ = π/8 and show results for

ε = 0.25 (left panel) and ε = 0.5 (right panel). The gray vertical line shows the breakdown

of the small-sinϕ approximation at cos θ = (1 + ε2)−1/2. Since φ∗ is fairly insensitive to

cos θ in a rather large range of cos θ, the small-ε expansion is a fairly good approximation

in that region. However, it quickly deteriorates for moderate to large cos θ. In contrast,

the small-sinϕ expansions follows the exact curve remarkably well, almost up to the point

where it becomes ill-defined. At large cos θ, both approximations break down, as φ∗ is

driven by the small-θ behavior φ∗ ∼ 1/θ2.

We find that the region |tan θ| < ε cannot be described by the expansion in small-sinϕ,

which breaks down, or by the expansion small-ε, which assigns an artificially small value

φ∗(0) in this region. However, this does not invalidate the LP description of φ∗, as this

region of phase space is suppressed as O(ε2),∫
dΦL(q) θ(|tan θ| < ε) =

1

8π

(
1−

√
1− ε2

)
=

ε2

16π
+O(ε4) . (7.145)

Another important property of φ∗ is that it is not azimuthally symmetric at LP due to

its explicit dependence on ϕ. To identify which Wi contribute to φ∗ at LP, we evaluate

eq. (7.46) with the approximate observable in eq. (7.143), which yields

dσ

dQ2dY dcos θ dφ∗(0)
=

3Q

16πE2
cm

∑
i=−1,0,2,4

L±(i)(Q
2) gi(θ, 0)

×
∫ ∞

0
dbT Ki(bTQφ

∗(0))W̃i(Q
2, Y, bT ) . (7.146)

11This implies that a phase space generator producing events with qT ≥ qmin
T is guaranteed to correctly

describe φ∗ ≥ qmin
T /Q.

279



Chapter 7 – Resumming fiducial power corrections at N 3LL

0.0 0.2 0.4 0.6 0.8 1.0

10-2

10-1

100

101

0.0 0.2 0.4 0.6 0.8 1.0

10-2

10-1

100

101

Figure 7.11: Comparison of the different expansions of φ∗, as given in eq. (7.144), as function of

cos θ for two different choices of ε and ϕ. The vertical gray line indicates the breakdown of the

expansion in small sinϕ.

Here, the W̃i are the hadronic structure functions in Fourier space. In eq. (7.146), we

have already carried out the integral over ϕ, which gives rise to kernels Ki, while we are

still differential in cos θ. One can easily incorporate any LP fiducial cuts that depend on

θ, but are independent of ϕ into eq. (7.146), which holds for most common cuts such as

eq. (7.119).

The nonvanishing kernels entering eq. (7.146) are given by

K−1,0,4(β) = cos(β) , K2(β) = cos(β) + 2β si(β) , (7.147)

where si(β) = −
∫∞
β dt sin t/t is the sine integral. The kernels for i = 1, 3, 5, 6, 7 vanish

because the corresponding gi(θ, ϕ) are odd in ϕ or under ϕ → ϕ + π. Since g−1,0,4(θ, ϕ)

are independent of ϕ, they give rise to the same kernel K−1,0,4. In contrast, W2 is dressed

with a different kernel K2 due to the nontrivial ϕ dependence of g2(θ, ϕ) ∝ cos(2ϕ). In

particular, for β →∞ one has K2(β) ≈ − cosβ = K−1,0,4(β), and thus there is a relative

phase shift of π.

Eq. (7.146) is convenient, as it effectively only reweights the (resummed) hadronic tensor

in Fourier space with Ki(bTQφ
∗), compared to J0(bT qT ) appearing in qT resummation.

In momentum space, this is equivalent to the fact that the spectrum for the LP φ∗(0) in

eq. (7.143) can be obtained by reweighting the (resummed) qT distribution with the angle to

the dilepton system. The convenient form of eq. (7.146) was first noticed in refs. [500, 501],

where it was also noted that the cos(bTQφ
∗) gives rise to a plateau in the resummed φ∗

spectrum, in contrast to the Sudakov peak encountered in qT resummation. However, the

form in eq. (7.146) has the distinct disadvantage that it does not allow one any longer to

include fiducial power corrections due to additional fiducial cuts beyond the strict LP.

The above previous works did not consider the contribution from W
(0)
2 , which involves

the double Boer-Mulders contribution, see eq. (7.89). Comparing to table 7.1, W2 does

not contribute to azimuthally symmetric observables at LP, and thus is not encountered in
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Figure 7.12: Power corrections for φ∗ for inclusive (left) and fiducial (right) Drell-Yan production.

the LP ~qT resummation. In practice, we expect this contribution to be rather small, as h⊥1
only matches onto subleading twist-3 collinear PDFs, and thus we will not consider it in

our numerical study. Nevertheless, it is interesting to note that the φ∗ spectrum may give

direct access to the double Boer-Mulders effect, and we leave a more detailed study of this

for future work. At leading twist-2, W2 is suppressed as O(λ2), such that our resummed

spectrum σ(0+L) still fully captures all linear power corrections arising from small qT with

leading-twist collinear PDFs, and this also holds when including additional fiducial cuts.

Numerical results

We now turn to the numerical study of power corrections to φ∗ at one loop. For simplicity,

we work at fixed Q = mZ , and normalize all results to the tree-level cross section. The

results for inclusive and fiducial Drell-Yan are shown in the left and right panel of figure 7.12,

respectively. In both plots, the exact results σ are shown by the red points, the factorized

prediction including fiducial power corrections σ(0+L) by the blue line, and their difference

by the green dot-dashed curve. This is contrasted by the gray-dashed curve which shows

the difference σ − σ(0) between the exact and strict LP (i.e. employing φ∗(0)) result. The

orange, dot-dashed curve shows the difference σ
(0+L)
GJ − σ(0+L) between our default CS

tensor decomposition, and an alternative choice corresponding to the GJ frame.

In the inclusive case (left panel), σ(0+L) and σ(0) only differ by whether φ∗ is implemented

exactly or using φ∗(0). In this case, we observe large linear corrections to σ(0), whereas

corrections to σ(0+L) appear to be quadratically suppressed. Interestingly, the σ
(0+L)
GJ

seems to have linear corrections as can be seen from the linear scaling of the difference

σ
(0+L)
GJ − σ(0+L). Hence, σ(0+L) for a generic frame receives linear corrections, although

they are roughly an order of magnitude suppressed compared to σ(0).

For fiducial Drell-Yan production (right panel), we observe linear power corrections

for both σ(0) and σ(0+L), which are larger than the power corrections in the inclusive

case, especially for σ(0). Nevertheless, we again see that σ(0+L) has significantly smaller

corrections than σ(0), despite having the same linear scaling in φ∗. The ambiguity between
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Figure 7.13: Subleading-power contributions to the fiducial φ∗ spectrum for Drell-Yan on the

resonance, Q = mZ . We compare the sum of all subleading power contributions, treating the linear

fiducial power corrections at fixed order (top left) or resumming them to all orders (top right). Our

best prediction dσ∗ for the total spectrum at N3LL(0+L)+NNLO0 is indicated as a light gray line for

reference, scaled down to 5% of its original size. The bottom panel shows the remaining fixed-order

power corrections, which are finite for φ∗ → 0 (note the difference in vertical scale).

the two choices of tensor decomposition is again a linear effect, but again at much smaller

overall magnitude than the corrections beyond σ(0).

Overall, we find that φ∗ generically receives linear power corrections. In addition to the

common fiducial corrections, φ∗ is affected by corrections from expanding the observable

itself, and by the fact that even very small φ∗ receives contributions from large qT , as is

apparent from eq. (7.143). Hence, a priori there is no reason to expect that corrections to

φ∗ are quadratically suppressed. Nevertheless, σ(0+L) includes all linear power corrections

from small-qT , which is reflected by the corrections to σ(0+L) being significantly reduced

compared to σ(0). We also note that the choice of tensor decomposition strongly affects

how well contributions from large qT are captured. Empirically, we find that our default

choice corresponding to the CS frame minimizes the size of power corrections, but we have

not been able to identify an underlying reason for this observation.

We conclude this section by studying the impact of the fiducial power corrections on the

resummed φ∗ spectrum with fiducial cuts. In the top-left panel of figure 7.13, we show the

difference between the strict LP and the exact φ∗ spectrum at NLO0 (blue, short-dashed)
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and NNLO0 (red, long-dashed). For reference, the gray line shows our best prediction σ∗
at N3LL(L)+NNLO0, scaled down to 5% of its original size. We note a large discrepancy

between NLO0 and NNLO0 as φ∗ → 0, indicating large, unresummed logarithms in the

power corrections and consequently poor perturbative convergence in this regime.

In the top-right panel of figure 7.13, we show the difference between the LP φ∗ spectrum

and the resummed and matched φ∗ spectrum, at NLL(0+L) (green, dotted), NNLL(0+L)

+NLO0 (blue, dashed) and N3LL(0+L)+NNLO0 (red, solid), which corresponds to the left

panel but with the linear power corrections resummed. As a result, the divergence as

φ∗ → 0 is cured, and we observe very good perturbative convergence between the different

resummed predictions. Note that in contrast to qT , see figure 7.8, the resummed power

corrections do not vanish as φ∗ → 0, due to the different weighting of the Sudakov factor

with cos(bTQφ
∗) rather than J0(bT qT ), cf. eq. (7.146).

Finally, in the bottom panel of figure 7.13 we show the remaining fixed-order power

corrections after including the fiducial power corrections in the resummation at NLO0

(blue, short-dashed) and NNLO0 (red solid), again including our best prediction σ∗ for

reference. Since all terms diverging as φ∗ → 0 are included in σ(0+L), the remaining power

corrections are well-behaved as φ∗ → 0, which makes their overall size almost negligible.

7.5 Comparison to data

In this section, we compare our N3LL+NNLO0 resummed predictions for qT and φ∗ for

Drell-Yan, pp→ Z/γ∗ → `+`− (` = e, µ), with the following precision LHC measurements:

• The ATLAS measurement from ref. [426] using 20.3 fb−1 of 8 TeV data. We consider

the m`+`− ∈ [66, 116] GeV invariant mass bin. The fiducial lepton cuts are pT >

20 GeV, |η| < 2.4 for both electrons and muons, with an additional exclusion region

of 1.37 < |η| < 1.52 for electrons. Separate results for the electron and muon channels

are reported, in both cases we compare to the measurements using Born leptons.

• The CMS measurement from ref. [31] using 35.9 fb−1 of 13 TeV data in the m`+`− =

mZ ± 15 GeV invariant mass bin. The fiducial cuts are given by pT > 25 GeV and

|η| < 2.4 for both electrons and muons. We compare to the combined measurements

of dressed electrons and muons.

We consider two sets of predictions: The strict LP resummation with fiducial power cor-

rections only included via the fixed-order matching is denoted as N3LL(0)+NNLO0, and

analogously at lower orders. The resummation including fiducial power corrections is de-

noted as N3LL(0+L)+NNLO0, and analogously at lower orders. In this case, the fixed-order

matching only adds the remaining genuine (non-fiducial) power corrections.

By default we compare to the measured spectra that are normalized to the total cross

section. We correspondingly normalize our predictions to the total fiducial cross section at

the corresponding order obtained by integrating the central value for the spectrum to infin-

ity. This effectively amounts to obtaining the total cross section via qT or φ∗ subtractions
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including fiducial power corrections. Since the uncertainties for the total cross section are

much smaller than for the spectrum, they are practically irrelevant for this purpose. We

have also checked that treating the µFO variation in a correlated fashion or treating it fully

uncorrelated between spectrum and normalization and adding it in quadrature leads to es-

sentially identical estimates of the total perturbative uncertainty. For completeness, we also

provide analogous comparisons for the unnormalized CMS measurements in appendix G.2.

7.5.1 qT spectrum

In figure 7.14, we compare our results to the CMS 13 TeV measurements for qT . The top

panels show the qT spectrum at NLL (green), NNLL+NLO0 (blue), and N3LL+NNLO0

(orange). The bands show the estimated perturbative uncertainties as discussed in sec-

tion 7.3.3. Note that the theory predictions are obtained for the measured binning, but

are drawn as smooth curves for clearer visibility. The lower panels show the same results

normalized to the respective highest-order prediction. The results using strict LP resum-

mation are shown on the left (lighter shading), while those including the resummation

of fiducial power corrections are shown on the right (darker shading). In both cases, we

observe good convergence of the resummed predictions, with substantially reduced pertur-

bative uncertainties at subsequent higher orders, as well as good agreement with the data.

Nevertheless, resumming the fiducial power corrections on the right further improves the

perturbative convergence and also yields a systematically better agreement with the data.

The data agreement deteriorates in the first two bins, which can be attributed to small-qT
nonperturbative effects. These are expected to become important for qT . 2 GeV, but the

nonperturbative ingredients necessary to account for these effects are not included in our

predictions. This is also reflected in the substantially increased perturbative uncertainties

in this region.

To further illustrate the importance and impact of the fiducial power corrections, in

figure 7.15 we show the analog of the bottom panel of figure 7.14 but comparing to the

pure resummed results, i.e., without including the fixed-order matching corrections to the

spectrum. (We still normalize to the same total cross section as in figure 7.14.) The strict

LP resummation (left) completely fails to describe the data, showing that in this case the

fixed-order matching corrections that supply the fiducial power corrections at fixed order

are essential. On the other hand, upon resumming the fiducial power corrections (right),

the excellent data agreement is restored even without the fixed-order matching. In other

words, with the fiducial power corrections included in the resummation, the fixed-order

matching becomes essentially unimportant for qT . 40 GeV, both at NNLL and N3LL.

In figure 7.16, we show the analogous comparison for the ATLAS 8 TeV measure-

ments [426] in the electron channel, with the top panel showing the qT spectrum itself,

while the bottom panel shows the relative differences to the respective highest-order pre-

diction. As before, we see good perturbative convergence of the predictions, as well as

good agreement with the data. The data agreement again improves when resumming the

fiducial power corrections on the right, leading to an overall flatter shape and reduced size
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Figure 7.14: Predictions for the normalized Drell-Yan fiducial qT spectrum without (left) and with

(right) resummed fiducial power corrections compared to CMS 13 TeV measurements [31]. The top

panels show the spectrum, with the theory predictions drawn as smooth curves for better visibility.

The bottom panels show the percent differences to the respective highest-order prediction central

value.
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Figure 7.15: Same as the bottom row of figure 7.14, but without including power corrections from

the fixed-order matching.
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Figure 7.16: Predictions for the normalized Drell-Yan fiducial qT spectrum without (left) and with

(right) resummed fiducial power corrections compared to ATLAS 8 TeV measurements [426] in the

e+e− channel. The top panels show the normalized spectrum. The bottom panels show the percent

differences to the respective highest-order prediction central value. The analogous results for the

µ+µ− channel can be seen in appendix G.2 in figure G.7.

in the difference between predictions and measurement. The results in the muon channel

are practically identical, and are provided for completeness in figure G.7 in appendix G.2.

7.5.2 φ∗ distribution

In figure 7.17, we compare our results for the φ∗ spectrum to the ATLAS 8 TeV mea-

surements [426] in the electron channel. The analogous results in the muon channel are

provided in appendix G.2 in figure G.8. The top panel shows the predictions at NLL (green),

NNLL+NLO0 (blue), and N3LL+NNLO0 (orange), with the bands showing the estimated

perturbative uncertainties as discussed in section 7.3.3. The predictions are obtained with

the experimental binning but are drawn as smooth curves for better visibility. The lower

panels show the same results normalized to the respective highest-order predictions. The

results using strict LP resummation for both the observable itself and the fiducial cuts

are shown on the left (lighter shading), while those including the resummation of fiducial

power corrections for observable and cuts are shown on the right (darker shading). In both

cases we observe good convergence of the resummed predictions. For large φ∗ & 0.5, the
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Figure 7.17: Predictions for the normalized Drell-Yan fiducial φ∗ spectrum using the LP resum-

mation (left) and including the resummation of fiducial power corrections (right) compared to

ATLAS 8 TeV measurements [426] in the e+e− channel. The top panels show the spectrum, with

the predictions drawn as smooth curves for better visibility. The bottom panels show the percent

differences to the respective highest-order prediction central value. The analogous result for the

µ+µ− channel can be seen in appendix G.2 in figure G.8.

spectrum enters the fixed-order region and consequently the NLL (green) results start to

deviate substantially, and to lesser extent also the NNLL+NLO0 (blue) results. The first

one or two bins are again sensitive to small-qT nonperturbative effects, which is reflected

in their increased perturbative uncertainties. As for the qT spectrum, we find excellent

agreement with the data, which is further improved on the right by resumming the fiducial

power corrections, especially at NNLL+NLO0 where the shape improves significantly.

In figure 7.18, we show the analogous comparison for the CMS 13 TeV φ∗ measure-

ments [31]. The top panels show the spectrum itself, and the bottom panels the relative dif-

ference to the respective highest-order prediction. The predictions show the same behaviour

as at 8 TeV, and we again find good agreement with the data. Here, the improvements

from resumming the fiducial power corrections are even more striking. While the strict LP

resummation on the left shows a clear trend of overshooting the data at small φ∗, we find

nigh-perfect agreement across the spectrum with resummed fiducial power corrections. To

further highlight this, in figure 7.19 we show the analog of the bottom panel of figure 7.18

but comparing to the pure resummed results only, i.e., without including fixed-order match-
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Figure 7.18: Predictions for the normalized Drell-Yan fiducial φ∗ spectrum using the LP resum-

mation (left) and including the resummation of fiducial power corrections (right) compared to CMS

13 TeV measurements [31]. The top panels show the spectrum, and the bottom panels show the

percent differences to the respective highest-order prediction central value.
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Figure 7.19: Same as the bottom row of figure 7.18, but without including power corrections from

the fixed-order matching.

ing corrections. As we already saw for the qT spectrum, the LP resummation alone (left)

basically fails to describe the data, showing that in this case the fixed-order matching

is necessary in order to supply the fiducial power corrections at least at fixed order. In

contrast, when resumming the fiducial power corrections (right), we find the same excellent
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7.6 Summary

data agreement as before up to φ∗ . 0.5. This shows that the φ∗ spectrum has rather

large sensitivity to power corrections throughout its spectrum and profits enormously from

including them in the resummation. At the same time, the remaining fixed-order power

corrections become almost negligible in this range. Beyond φ∗ & 0.5, we enter the fixed-

order region and as expected, the pure resummed results quickly deteriorate and matching

to the fixed-order results becomes strictly necessary.

7.6 Summary

We have studied the impact of fiducial cuts and other generic leptonic measurements on

the factorization of the Drell-Yan process at small transverse momentum qT � Q. They

generically induce fiducial power corrections in qT /Q relative to the well-studied leading-

power terms predicted by qT (equivalently TMD) factorization, which are significantly

larger than the quadratic power corrections arising for the inclusive qT spectrum.

Using a Lorentz-covariant tensor decomposition of the leptonic and hadronic tensors

combined with formal power-counting arguments in SCET, we have shown that for a large

class of observables (those that are azimuthally symmetric at leading power), the fiducial

power corrections are the only source of linear power corrections. Furthermore, by retaining

the exact leptonic structure functions, the fiducial power corrections are unambiguously

predicted from factorization and are correctly resummed to the same order as the leading-

power terms.

We have also shown that the naive power expansion in qT /Q� 1 can break down near

the edge of Born phase space due to uncontrolled leptonic power corrections ∼ qT /pL,

where pL is the distance from the edge of Born phase space. In such regions, it is strictly

required to keep all leptonic power corrections ∼ qT /pL to correctly describe the actual

leading-power limit. An important example is the p`T spectrum near the Jacobian peak

p`T = Q/2 with pL = Q − 2p`T . This provides another formal reason to keep the exact

leptonic structure functions, because doing so guarantees that all required leptonic power

corrections are automatically retained. The kinematic recoil prescriptions used in practical

implementations usually yield an exact description of the leptonic decay and measurements.

Our analysis shows for the first time that this is not only justified, but even necessary to

obtain a description that is formally valid across the entire leptonic phase space. These

conclusions also immediately apply to scalar processes such as Higgs production.

The tensor decomposition can be interpreted as a specific choice of vector-boson rest

frame, which naturally emerged to be the Collins-Soper frame as defined by boosting from

the lab frame, even when keeping nonzero masses of the initial state hadrons. The CS tensor

decomposition yields nine Lorentz-scalar hadronic structure functions, which are defined for

an arbitrary leptonic final state, and for Z/γ∗ → `` or W → `ν decays directly map onto the

commonly used angular coefficients for the cross section in the CS angles. We also discussed

that Born leptons can be theoretically well defined in terms of an IR-safe Born projection

of the full leptonic final state, including QED final-state radiation. We have shown that

the cross section in the CS angles of the so-defined Born leptons admits a LO-like complete
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angular decomposition in terms of spherical harmonics, with the corresponding generalized

angular coefficients modified by QED corrections.

We have presented resummed predictions with and without the resummation of fiducial

power corrections at N3LL. The comparison of our predictions to precision Drell-Yan qT
and φ∗ measurements from ATLAS and CMS confirms the importance of fiducial power

corrections and their resummation in a striking way: While the strict LP resummation is

able to describe the data within (theory) uncertainties, it fails to do so without including the

sizeable fixed-order corrections. On the other hand, including the fiducial power corrections

in the resummation systematically improves the agreement with the data, particularly at

very small qT and φ∗. Furthermore, the fixed-order matching corrections now become

very small and do not play much of a role below qT . 40 GeV and φ∗ . 0.5. We note

that computationally, even at fixed order it is much cheaper to predict the fiducial power

corrections via factorization instead of including them numerically through a full fixed-order

calculation, since the latter becomes expensive quickly toward small qT or may not even

be available.

We have also considered the resummed p`T spectrum, which plays a crucial role in the

precision mW measurement at the LHC, and have obtained the first N3LL predictions for

it. We have demonstrated that a reliable prediction of the physical p`T spectrum near the

Jacobian peak is possible and that it relies in an essential way on the interplay between

small-qT resummation effects and the exact treatment of leptonic power corrections that

describe the recoil of the leptonic system.
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Chapter 8

Conclusion and outlook

In this thesis we derived new factorization results for hadronic collisions that extend and im-

prove existing resummation methods, and applied them to the study of precisely measured

differential distributions at the LHC. First-principle analytic theory predictions like these

are important ingredients in the upcoming LHC precision program. The threefold aim of

this program is (1) to thoroughly test the Standard Model at LHC energies, including the

physics of the newly discovered Higgs boson, (2) to search for possible deviations pointing

to new phenomena, and (3) to precisely determine universal ingredients for collider physics

like the proton structure that will also shed light on strongly-bound physics. Differential

distributions that are sensitive to emissions in the soft and collinear limits of QCD generi-

cally exhibit large Sudakov double logarithms that deteriorate the quality of a fixed-order

perturbative expansion and require a resummation of the perturbative series to all orders.

The results in this thesis extend the toolbox of analytic resummation methods, in particu-

lar to more realistic, or more differential, experimental measurements. We worked in the

framework of soft-collinear-effective theory (SCET) that enables resummation through the

renormalization group (RG) evolution of operators in the effective field theory (EFT).

We first discussed the extension of jet veto resummation to fully realistic experimental

jet selection criteria involving a jet rapidity cut. We next considered the double-differential

spectrum in color-singlet transverse momentum qT and the 0-jettiness event shape T0,

providing the first analytic prediction for a Sudakov peak in two dimensions. We then

presented a generalized threshold factorization theorem that accounts for the full collinear

dynamics of initial-state radiation and holds in a much weaker limit than the standard soft

threshold factorization. Using consistency relations partly based on this new result, we

derived the leading eikonal terms at third order in perturbation theory for the qT and T0

beam functions. Finally we demonstrated how to perform the resummation of so-called

fiducial power corrections that arise from experimental measurements on the decay products

of a Z or W boson. We found an improved agreement with precision ATLAS and CMS

measurements when including the resummation of these power corrections in cutting-edge

N3LL+NNLO predictions, which also reduces the overall numerical cost. Using the same

approach, we presented the first analytically resummed result for the p`T spectrum near the

Jacobian peak at N3LL+NNLO. In the following we go through each of these main research

results in turn, summarizing their key outcomes and pointing out future applications, before

closing with a general summary and outlook.

291



Chapter 8 – Conclusion and outlook

Jet veto resummation with jet rapidity cuts. We developed a systematic frame-

work to incorporate a cut on the rapidity of reconstructed jets, |ηjet| < ηcut, into the

theoretical description of jet-vetoed processes at the LHC. We showed that the standard

jet veto resummation, which neglects the rapidity cut, is correct up to power corrections of

O(Qe−ηcut/pcut
T ), with Q the hard-interaction scale and pcut

T the jet veto cut, and demon-

strated that these power corrections can be seamlessly incorporated into the resummed

description by introducing more differential collinear matrix elements. The same holds true

for a step in the jet veto selection, i.e., an increase in the veto parameter to p̃cut
T > pcut

T

beyond ηcut, which we considered in detail.

We calculated the necessary ηcut-dependent corrections at one loop as well as all loga-

rithmic contributions to them at two loops. This includes in particular small-R clustering

logarithms, for which we gave an all-order factorized result at the leading-logarithmic level

by explicitly matching onto collinear modes at the scale Rpcut
T that form the final-state

small-R jets. The remaining ingredients required for a full NNLL′ analysis with ηcut ef-

fects are finite nonlogarithmic pieces that could be either calculated explicitly or extracted

numerically from the full-QCD results, which we leave to future work.

There are several important outcomes of our analysis. First, a jet rapidity cut at very

forward rapidities due to the finite detector acceptance, ηcut ' 4.5, is theoretically safe

and unproblematic. The power counting that we introduced to arrive at this conclusion

has already been picked up in the meantime in refs. [504–507] to estimate the effect of jet

rapidity cuts on theory predictions for high-mass BSM signals under a jet veto. By contrast,

restricting the jet veto to the more central region, with a sharp rapidity cut at the edge

of the tracking detectors, ηcut ' 2.5, leads to an increase in the perturbative uncertainties

(which may not be captured if the jet rapidity cut is not included in the resummation). This

loss in theoretical precision can become particularly severe for gluon-induced processes and

for processes at high scales. It can however be mitigated by replacing the sharp rapidity

cut by a moderate step in the jet veto. We expect this to be a generic feature that also

holds at higher orders, and it will be interesting to extend our resummed predictions to the

next order (NNLL′) to confirm this as well as to reduce the overall size of the theoretical

uncertainties. We encourage our experimental colleagues to take full advantage of such

step-like jet vetoes in order to benefit from suitably tight jet vetoes at central rapidities,

while avoiding the increased pile-up contamination in the forward region.

Joint two-dimensional resummation in qT and 0-jettiness at NNLL. We calcu-

lated the Drell-Yan cross section double-differential in the transverse momentum qT of the

lepton pair and the 0-jettiness event shape T0. Since both T0 and qT probe the initial

state radiation, the cross section contains Sudakov double logarithms of T0/Q and qT /Q.

We performed, for the first time, the simultaneous resummation of both kinds of loga-

rithms, achieving next-to-next-to-leading logarithmic accuracy and matching the result to

next-to-leading fixed order.

The predictions we obtained are of some phenomenological interest, as T0 has been

measured in bins of qT [395], and constitute the perturbative baseline for a detailed study
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of the various soft-QCD effects that this measurement is sensitive to. More importantly,

our analysis is a key step towards precise and fully exclusive predictions for LHC cross

sections in general. Specifically, the Monte Carlo event generator Geneva [122, 396] is based

on a NNLL′ resummed prediction for the cross section differential in T0, and would benefit

from the simultaneous resummation of qT . Indeed, our NNLL results clearly indicate that

only resumming the logarithms of either T0 or qT gives a poor description of the double-

differential cross section. Using our results, Monte Carlo event generators like Geneva

can be pushed to higher formal accuracy for the qT spectrum, while still maintaining full

control over the hadronic final state through T0. High-precision event-level predictions for qT
spectra are of key experimental relevance, and we plan to address this in the future. Finally,

the stability of fixed-order predictions may also be improved by using our matched result

as a double-differential subtraction term [50], exploiting that it simultaneously describes

all singular limits in the one-emission phase space in terms of (qT , T0). Our methods apply

at any order and for any color-singlet production process, allowing for a straightforward

extension once the relevant perturbative ingredients become available. We believe that our

analysis, and our general strategy of matching bulk and boundary descriptions, can pave

the way for going beyond single-differential resummations in many other contexts as well.

Generalized threshold factorization with full collinear dynamics. We presented

and proved a generalization of the classic soft threshold factorization theorem. It notably

includes the full collinear dynamics of hadronic radiation in the limit where a color-singlet

final state is produced at large absolute rapidity |Y | → Ymax at generic Q, which is directly

accessible at the LHC. Combining it with the standard soft and the opposite collinear

limit, we obtained a unified description of all singular limits in color-singlet rapidity spectra.

The dependence on the hard process is manifestly factorized in terms of the purely virtual

amplitudes contained in the hard function. The new factorization theorem enables the

resummation of large logarithms of 1 − xa,b in the limit where only one PDF is probed

at large x, which is not captured by the soft limit. At the partonic level, it captures all

singularities of σ̂ij(za, zb), including off-diagonal partonic channels. As a first application

of the rich perturbative structure it predicts, we have derived a nontrivial set of terms in

the N3LO Drell-Yan rapidity spectrum.

We believe our results will have far-reaching impact on precision phenomenology on

various fronts, which we now discuss in turn. (Each of the following bullet points amounts

to one or several research projects in their own right.) For their most obvious application,

our results will enable taking practical theory predictions for color-singlet spectra at the

LHC to a new level of precision, as follows:

• As an immediate next step, the ingredients we calculated enable a complete resum-

mation of endpoint logarithms in the Drell-Yan rapidity spectrum at N3LL+NNLO, in

particular accounting for the subtle cancellations between partonic channels that the soft

threshold resummation is known to fail taking into account [222]. We plan to address this

in upcoming work. These results will readily carry over to any color-singlet process for
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which the two-loop virtual amplitudes are known.

• More generally, the leading-power factorization we derived, and the excellent conver-

gence of the generalized threshold expansion that we demonstrated beyond the leading

power, can guide the organization of a future N3LO calculation of the Drell-Yan rapidity

spectrum. In fact, the quality of the expansion has in the meantime been confirmed also for

Higgs production at NNLO in ref. [508], and the methods in ref. [508] are tailored towards

extensions to N3LO. (The leading-power two-loop term for gluon-induced processes, given

by the gluon threshold beam function up to the well-known form factor, has also been inde-

pendently calculated in ref. [411] in the meantime as a byproduct of the two-loop calculation

of the double-differential gluon beam function.) A calculation of the leading-power term

in the generalized threshold expansion at three loops would be highly desirable, for both

Drell-Yan production and gluon fusion, and the threshold beam function renormalization

in the context of our factorization theorem will serve as a powerful cross check on these

results. With the leading-power three-loop term at hand, the resummation can immediately

be pushed to N4LL using RG consistency and the results in ref. [509–511] for the required

anomalous dimensions. Any available power corrections may then be incorporated by an

additive matching to achieve an ultimate precision of N4LL+N3LO.

• The (Q,Y )-differential color-singlet production spectrum is also a key ingredient for

applications of the projection-to-Born (P2B) method [51] at N3LO, where an inclusive

N3LO0 prediction differential in the Born phase space is combined with a fully-differential

NNLO1 calculation into a fully-differential N3LO0 prediction.1 For future applications in

P2B calculations, we stress that the N3LO spectrum differential in (q+, q−) is an equally

viable input because both (Q,Y ) and (q+, q−) are viable parametrizations of the Born phase

space. By one of the corollaries of our new factorization theorem, the (q+, q−) spectrum

at leading power in the generalized threshold expansion is precisely given by the inclusive

beam function that was calculated to O(α3
s) in ref. [299] in the meantime, and thus the

full leading-power inputs for an N3LO0 P2B calculation are already known. Based on our

explicit results at two loops, we also anticipate that the (q+, q−) spectrum will continue to

have a simpler analytic structure than the (Q,Y ) spectrum. Pending a thorough assessment

of the size of next-lo-leading power terms in a generalized threshold expansion of the (q+, q−)

spectrum at lower orders, which we expect to be similarly convergent as in the (Q,Y ) case,

this will put fully-differential N3LO predictions for Drell-Yan production within reach.

• As a last note on applications to color-singlet production at the LHC, we stress that our

results also make the dependence on the color-singlet transverse momentum at generalized

threshold fully transparent in terms of the double-differential beam function. This makes

it straightforward to also perform the generalized threshold resummation differential in

1For Higgs production this combination may already be performed using the results of ref. [250], but the

soft expansion used for the Higgs N3LO rapidity spectrum in that case manifestly fails for the Drell-Yan

case. To restore the dependence on the decay products for Drell-Yan, note that at Born level the hadronic

tensor only contains terms ∝ gµν⊥ and ∝ εµν⊥ .
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qT and match it with qT resummation using the approach of chapter 4 to reach the best

possible precision for the triple-differential color-singlet cross section dσ/(dQdY dqT ). It

also opens up a road to N3LO predictions for dσ/(dQdY dqT ) that are correct at leading

power in a generalized threshold expansion by calculating the double-differential O(α3
s)

beam function only at finite qT , which we expect to be much simpler than the full N3LO

result including the singularity at qT = 0, and perform a qT subtraction to recover the

full result. In both cases, restoring the full dependence on the decay products poses no

conceptional difficulty, and the leptonic phase space integration can be performed point by

point in qT using the methods of chapter 7.

We next turn to the impact that we expect the results of chapter 5 to have on the formal

understanding of the behavior of QCD near kinematic endpoints:

• As discussed, our generalized threshold factorization theorem contains, after matching

with the opposite limit, the complete next-to-soft contribution to the rapidity spectrum.

Since the power suppression can only arise from either 1− za or 1− zb at this power and

the spectrum is symmetric under za ↔ zb, these are in one-to-one correspondence to the

next-to-soft terms in the inclusive partonic cross section σ̂ij(z). For the latter, our results

prove that only the leading-power SCET hard matching coefficient (corresponding to the

form factor) arises even at next-to-leading power in the soft expansion for all partonic

channels. This was later confirmed in ref. [408] as part of the full next-to-soft threshold

factorization for σ̂ij(z).

• Interestingly, the results of refs. [206, 207, 408] can be mapped back onto the rapidity

spectrum using the above correspondence, and through our new factorization theorem

also govern the factorization and resummation of next-to-eikonal terms within the beam

function. It will be interesting to explore this connection further in the future.

Finally, we foresee rich applications of our general approach, i.e., of taking one momentum

fraction to one at a time, beyond color-singlet production in pp collisions:

• For LHC phenomenology, we anticipate that similar factorization results can be de-

rived for processes with top quarks, jets, or identified hadrons in the final state. (It will be

interesting to determine the precise form that these factorizations take, given that perturba-

tive soft radiation resolving all sectors should be present, but is absent in our color-singlet

results.) For many of these processes, the standard soft threshold factorization has been

applied to obtain fixed-order approximants or perform the resummation, and generalizing it

will enable its extension to off-diagonal channels. We expect this to be particularly relevant

for processes involving sizable contributions from initial-state quarks, which in turn can re-

ceive large corrections from gluon splittings. Important examples are single-top production

(with an initial-state bottom quark) or highly boosted gluon-fusion Higgs production at

pHT � mH with an identified hard jet. Deriving a factorized expression capturing the bulk

of the large-pHT spectrum, which is a key place to look for the effect of new physics, is of

particular interest because it may help explain why the NLO1 spectrum in the full SM can
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be surprisingly well approximated [512] by a roughly constant correction factor multiplying

the NLO1 result in the contact-operator approximation of eq. (2.73). There is no reason

for this to happen in general because at these values of pHT , we are completely outside the

validity region of the heavy-top expansion.

• Looking beyond LHC phenomenology, our approach readily generalizes to semi-in-

clusive DIS (SIDIS), which is characterized by the Bjorken fraction x and the light-cone

momentum fraction zh carried by the identified final-state hadron. So far, the threshold

resummation for SIDIS is only available in the simultaneous limit x, zh → 1 [513], and our

results generalize it to a weaker limit by either crossing the beam function into a final-state

fragmenting jet function [347] (x→ 1) or the threshold PDF into a threshold fragmentation

function (zh → 1). The latter is of particular phenomenological interest in the case of a

fragmenting heavy quark, which naturally leads to a large amount of momentum being

transferred into the resulting heavy meson.2 Thus our results pave the way for turning

the results of ref. [412] for heavy-quark fragmentation in single-inclusive e+e− annihilation

(characterized by a single zh, i.e., the crossed version of inclusive DIS near endpoint) into

a possible precision observable at the future EIC [514], retaining the exact dependence

on the Bjorken fraction x in the resummation. We expect that control over x and the

associated off-diagonal beam function channels, which would be missed by the soft limit,

will be crucial for a sensible description of heavy quark production in particular because

there is an O(1) contribution from a gluon splitting at the beam scale. It should be possible

to derive analogous results for the fragmentation into a jet (at large zjet), another key

process of interest at the EIC.

N3LO beam functions in the eikonal limit. We considered the previously unknown

scale-independent boundary coefficients I
(3)
ij (z) of the N3LO qT and inclusive beam functions

and employed consistency relations with known three-loop soft matrix elements to derive

explicit expressions for the leading eikonal terms in I
(3)
ij (z) as z → 1. These consistency

relations were already known in the literature for the case of qT , but for the case of the

inclusive (T0) beam function only follow as a nontrivial corollary from the new generalized

threshold factorization theorem in chapter 5.

Since the original publication of these results in ref. [5], results for the three-loop T0

quark beam function in the generalized large-Nc approximation have appeared in ref. [298],

and the complete three-loop beam functions have been calculated in refs. [287, 288] for the

qT quark and qT quark and gluon cases, respectively, and in ref. [299] for the T0 quark

and gluon cases. In these works, which enter the resummation of T0 and qT at N3LL′

and N4LL order and the application of T0 and qT subtractions [46, 49, 50] at N3LO0, the

eikonal terms derived in this thesis were used as an important cross check, finding full

agreement. The leading eikonal structure encoded in our results also enables estimating

the four-loop contributions to beam functions as part of a completely thorough estimate of

2We thank D. Neill for discussion on this point, and F. Ringer for discussion on SIDIS threshold resum-

mation in general.
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missing higher-order uncertainties e.g. in a future high-precision N4LL prediction for the qT
spectrum. This estimate will in particular capture the leading eikonal rapidity dependence.

Resumming fiducial power corrections at N3LL. We studied the impact of fiducial

acceptance cuts and other experimental measurements on the leptonic final state the factor-

ization of the Drell-Yan process at small transverse momentum qT � Q. Measurements that

resolve the decay products generically lead to fiducial power corrections in qT /Q relative to

the well-studied leading-power terms predicted by qT factorization. These corrections are

significantly larger than the quadratic corrections that arise in the inclusive qT spectrum.

We showed that for a large class of leptonic observables (those that exhibit azimuthal

symmetry at leading power), the fiducial power corrections are the unique source of linear

power corrections. By retaining the exact leptonic structure functions, we were able to

unambiguously predict the fiducial power corrections from factorization and resum them

to the same order as the leading-power terms. We also discussed in detail how keeping the

leptonic structure functions exact ensures a correct treatment of another class of fiducial

power corrections, which we dubbed leptonic power corrections. These scale as ∼ qT /pL,

where pL is the distance from the edge of Born phase space, and cause a naive power

expansion in qT /Q � 1 to break down altogether in the limit of pL → 0. An important

example is the p`T spectrum near the Jacobian peak at p`T = Q/2 with pL = Q− 2p`T . Our

results provide formal justification for the kinematic recoil prescriptions that are commonly

used in practical implementations of qT resummation. Our conclusions also immediately

apply to scalar processes such as Higgs production, which will be an interesting place to

study the impact of fiducial power corrections in the future.3

Since the importance of unresummed, fixed-order power corrections is significantly re-

duced by resumming the dominant fiducial ones, our results have important implications for

all phenomenological applications at small qT , for example the extraction of nonperturbative

inputs to TMD distributions from data.

There are many interesting avenues that our analysis opens up and that we were only

able to briefly point out in chapter 7:

• For the lepton pT spectrum in W decays, we made the interesting observation that at

the first subleading power in p`T −Q/2 near the Jacobian peak, the p`T spectrum is sensitive

to an additional O(qT /Q) hadronic structure functions (W3, in the notation of chapter 7).

We stress that these effects are suppressed in the qT spectrum itself, where they only enter

indirectly and at O(q2
T /Q

2) through fiducial cuts. By contrast, they are directly exposed

in the p`T spectrum near the Jacobian peak, and can be expected to affect the shape of the

peak at the level of precision required for mW determinations at the LHC. We therefore

encourage precise, unfolded measurements of the p`T spectrum for both W and Z in this

3Very recently, results for fiducial Higgs, Drell-Yan, and diboson production at N3LL+NNLO0 were

presented in ref. [515], achieving the resummation of fiducial power corrections through a standard recoil

prescription. In ref. [515] it was observed that, in line with our expectations, the linear power corrections

in the qT spectrum uniquely arise from the fiducial cuts also for H → γγ.
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region to further experimentally constrain these effects. Other interesting measurements

sensitive to these effects would be the double-differential spectrum in the lepton momenta

pT1, pT2, or measurements of the scalar difference |pT1 − pT2|.

• On the theory side, we pointed out that W3 and related O(qT /Q) structure functions

receive their power suppression exclusively from the subleading hard currents that they

match on in SCET. This can be the starting point of a rigorous factorization analysis,

which will further elucidate to which extent resummation effects can be considered to be

correlated between hadronic structure functions, e.g. between W3 and the leading-power

unpolarized structure functions W−1,4. Awaiting these improvements, we leave a more

detailed phenomenological analysis of the p`T spectrum for future work.

• As another intriguing observation, we found that the precisely measured φ∗ spectrum

receives a leading-power contribution from the so-called double Boer-Mulders effect, i.e.,

from intrinsically nonperturbative spin correlations in unpolarized protons, which so far

have proven elusive at the LHC [516]. If the dominant contribution from the unpolarized

structure function can be isolated, e.g. by using the equally precisely measured qT spectrum,

the φ∗ spectrum could become a particularly clean probe of the double Boer-Mulders effect.

We again leave a detailed study for future work.

• On the computational side, we found that it is numerically much cheaper to predict or

obtain the fiducial power corrections via factorization instead of including (or extracting)

them through full fixed-order calculations, since the latter quickly become expensive toward

small qT or may not even be available. As discussed in more detail in section 5 of ref. [6],

this is also reflected in a significantly improved performance of the qT subtraction method

when the fiducial power corrections are included in the subtraction term. In particular, this

extends the applicability of the popular qT subtraction method to phase-space regions where

it would otherwise break down due to uncontrolled leptonic power corrections, e.g. for the

p`T spectrum near p`T = mW /2, or would deteriorate due to large linear power corrections,

e.g. in the presence of symmetric lepton acceptance cuts. The latter in particular were

previously considered to be a challenge for fixed-order subtractions methods [517, 518].

We have already made use of these improvements in chapter 7 to compute the necessary

fixed-order matching pieces, but anticipate that they will be of wider utility in the future.

Closing remarks. The research in this thesis is part of an ongoing effort to produce the-

ory predictions that can keep up with the impressive level of precision to which experimental

observables are already being measured at the LHC, or will be measured in the near future.

This involves pushing predictions to higher orders in perturbation theory, but in particular

requires upgrading the tools used in theory predictions to handle realistic, multi-differential

experimental observables. We hope that the new factorization and resummation methods

we developed in this thesis will prove to be useful additions to the theory toolbox and will

help maximize the potential of the LHC to discover even faint hints of new physics.
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Appendix A

Notation and conventions

A.1 General notation

We use light-cone coordinates with respect to lightlike reference vectors nµ and n̄µ that

satisfy n2 = n̄2 = 0 and n · n̄ = 2,

pµ = n̄·p n
µ

2
+ n·p n̄

µ

2
+ pµ⊥ ≡ (n·p, n̄·p, ~p⊥) ≡ (p+, p−, ~p⊥) . (A.1)

Unless otherwise noted, for color-singlet production in pp collisions we take

n ≡ na = (1,+ẑ)lep = e+Y (1,+ẑ)lab , n̄ ≡ nb = (1,−ẑ)lep = e−Y (1,−ẑ)lab , (A.2)

aligned with the beam and z axis in the leptonic frame where the longitudinal momentum

of the color-singlet final state vanishes. As written, the leptonic frame is reached from

the lab frame through a boost by the color-singlet rapidity Y . The metric, antisymmetric

tensor, and Dirac matrices in the ⊥ plane are

gµν⊥ = gµν − nµn̄ν

2
− n̄µnν

2
, εµν⊥ =

1

2
εµνρσ n

ρn̄σ , γµ⊥ = gµν⊥ γν . (A.3)

We write the phase-space measure for a particle with momentum k and mass m as

ddk

(2π)d−1
δ+(k2 −m2) ≡ ddk

(2π)d−1
θ(k0) δ(k2 −m2) =

dd−1~k

(2π)d−1

1

2
√
~k2 +m2

, (A.4)

where d = 4− 2ε is the number of spacetime dimensions. In light-cone coordinates,

ddk

(2π)d−1
δ+(k2 −m2) =

1

2(2π)d−1
dk− dk+ θ(k−+ k+) dΩ2−2ε d|~k⊥||~k⊥|1−2ε

× δ(k+k− − |~k⊥|2 −m2) . (A.5)

We use the Einstein summation convention for Lorentz indices (µ, ν, . . . ), Dirac spin indices

(superscript α, β, . . . ), fundamental color indices (superscript j, k, . . . , mostly implicit) and

adjoint color indices (superscript a, b, . . . ), but not for parton indices (subscript i, j, k, ` =

qf , q̄f , g). We use uppercase Tr for traces over fundamental color indices and lowercase tr

for traces over Dirac indices. Our convention for the antisymmetric tensor is

ε0123 = +1 . (A.6)
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Throughout this thesis, we denote the perturbative expansion of renormalized functions

F (. . . , µ) in terms of the renormalized MS coupling αs(µ) by

F (. . . , µ) =
∞∑
n=0

F (n)(. . . , µ)
[αs(µ)

4π

]n
. (A.7)

We always expand in αs/4π.

A.2 Fourier transformation

Fourier-transformed quantities in one and d dimensions are explicitly introduced in the

text. For the two-dimensional Fourier transform in the transverse plane, our convention is

df

d~kT
=

∫
d2~bT
(2π)2

e+i~kT ·~bT f̃(~bT ) , f̃(~bT ) =

∫
d2~kT e

−i~kT ·~bT df

d~kT
. (A.8)

Here we make the differential d~kT = dkx dky explicit as e.g. in a cross section. (For

transverse momentum dependent soft and beam functions the differential is implicit in the

function.) If f is azimuthally symmetric, i.e., if for kT ≡ |~kT |, bT ≡ |~bT |,

df

d~kT
=

1

2πkT

df

dkT
, f̃(~bT ) = f̃(bT ) , (A.9)

the azimuthal integral can be performed, leaving the Hankel transform pair

df

dkT
= kT

∫ ∞
0

dbT bT J0(bTkT ) f̃(bT ) , f̃(bT ) =

∫ ∞
0

dkT J0(bTkT )
df

dkT
, (A.10)

where J0(x) is the zeroth-order Bessel function of the first kind. Integrating the first

expression in eq. (A.10) by parts, the cumulant in kT is given by∫ kcut
T

dkT
df

dkT
= kcut

T

∫ ∞
0

dbT J1(bTk
cut
T ) f̃(bT ) , (A.11)

where the integral includes a potential singularity at ~kT = 0 regulated by plus distributions

and J1(x) is the first-order Bessel function of the first kind.

A.3 Plus distributions

Following ref. [209], we denote plus distributions with dimensionless arguments as

Ln(x) ≡
[
θ(x) lnn x

x

]
+

= lim
β→0

[
θ(x− β) lnn x

x
+ δ(x− β)

lnn+1β

n+ 1

]
, (A.12)

La(x) ≡
[
θ(x)

x1−a

]
+

= lim
β→0

[
θ(x− β)

x1−a + δ(x− β)
xa − 1

a

]
. (A.13)
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A.3 Plus distributions

They have the defining properties

Ln(x > 0) =
lnn x

x
, La(x > 0) =

1

x1−a ,

∫ 1

dxLn(x) =

∫ 1

dxLa(x) = 0 , (A.14)

where the integral includes the singularity. Their action on a test function g(x) is∫ 1

dx g(x)Ln(x) =

∫ 1

dx
[
g(x)− g(0)

] θ(x) lnn x

x
,∫ 1

dx g(x)La(x) =

∫ 1

dx
[
g(x)− g(0)

] θ(x)

x1−a (A.15)

Our shorthands for distributions with dimensionful arguments in one spatial dimension are

Ln(k, µ) ≡ 1

µ
Ln
(k
µ

)
, Ln(t, µ2) ≡ 1

µ2
Ln
( t

µ2

)
,

La(k, µ) ≡ 1

µ
La
(k
µ

)
, La(t, µ2) ≡ 1

µ2
La
( t

µ2

)
. (A.16)

In terms of La, we further define

Va(x) ≡ e−γEa

Γ(1 + a)

[
aLa(x) + δ(x)

]
, Va(k, µ) ≡ 1

µ
Va
(k
µ

)
, (A.17)

with an analogous definition for Va(t, µ2). The Va satisfy a group property,∫
dk′ Va(k′, µ)Vb(k − k′, µ) = Va+b(k, µ) , V0(k, µ) = δ(k) . (A.18)

The µ dependence of Va(k, µ) is given by

Va(k, µ) =
(µ′
µ

)a
Va(k, µ′) , µ

d

dµ
Va(k, µ) = −aVa(k, µ) . (A.19)

Expanding Va(k, µ) in powers of a we find

Va(k, µ) = δ(k) + aL0(k, µ) +
a2

2!

[
2L1(k, µ)− ζ2δ(k)

]
+
a3

3!

[
3L2(k, µ)− 3ζ2L0(k, µ) + 2ζ3δ(k)

]
+O(a4) . (A.20)

The Fourier transform of Va(k, µ) is given by∫
dk e−iky Va(k, µ) = e−aLy ,

∫
dy

2π
eiky e−aLy = Va(k, µ) , Ly = ln(iyµeγE ) . (A.21)

For plus distributions in the transverse plane, we use the conventions from app. C of

ref. [263]. With k2
T ≡ ~k2

T ≥ 0 understood, we define

δ(~kT ) =
1

π
δ(k2

T ) , Ln(~kT , µ) ≡ 1

πµ2
Ln
(
k2
T

µ2

)
, (A.22)
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Lnb
∫

d2~bT
(2π)2 e

+i~kT ·~bT Lnb

1 δ(2)(~kT )

Lb −L0(~kT , µ)

L2
b +2L1(~kT , µ)

L3
b −3L2(~kT , µ)− 4ζ3δ

(2)(~kT )

L4
b +4L3(~kT , µ) + 16ζ3L0(~kT , µ)

L5
b −5L4(~kT , µ)− 80ζ3L1(~kT , µ)− 48ζ5δ

(2)(~kT )

L6
b +6L5(~kT , µ) + 240ζ3L2(~kT , µ) + 288ζ5L0(~kT , µ) + 160ζ2

3δ
(2)(~kT )

Table A.1: Fourier transform of Lnb = lnn(b2Tµ
2/b20) to ~kT space for n ≤ 6 [263].

where Ln(x) is defined as above in eq. (A.12), such that∫
|~kT |≤µ

d2~kT Ln(~kT , µ) = π

∫ µ2

0
dq2
T

1

πµ2
Ln
(
q2
T

µ2

)
= 0 . (A.23)

The cumulant for a generic cut |~kT | ≤ kcut
T follows to be∫

|~kT |≤kcut
T

d2~kT Ln(~kT , µ) =
θ(kcut

T )

n+ 1
lnn+1 (kcut

T )2

µ2
. (A.24)

Fourier transforms of Ln(~kT , µ) are most conveniently expressed in terms of

Lb ≡ ln
b2Tµ

2

b20
, b0 ≡ 2e−γE . (A.25)

The inverse Fourier transforms of Lnb with n ≤ 6 are given in terms of the Ln(~kT , µ) in

table A.1. (The general expression can be found in ref. [263].) These are in required to

evaluate the fixed-order singular section in chapter 7 and the SCET+ and SCETII cross

sections in chapter 4 at fixed-order and µI scales.

A.4 Mellin convolution and flavor decomposition

We denote the Mellin convolution of z dependent functions g(z), h(z) by

(g ⊗ h)(z) ≡
∫

dz′

z′
g
( z
z′

)
h(z′) . (A.26)

For all concrete results in this thesis, we have used the MT package [519] to analytically

evaluate convolutions of this kind before implementing them numerically in SCETlib [8]. We
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have validated the implementation in SCETlib by a numerical implementation of eq. (A.26).

If the Mellin kernels are tensors Gij(z), Hij(z) in flavor space in addition, we write

(G⊗H)ij(z) ≡
∑
k

(Gik ⊗Hkj)(z) =
∑
k

∫
dz′

z′
Gik

( z
z′

)
Hkj(z

′) . (A.27)

Note that for pure z dependent kernels, the product is commutative, (g ⊗ h)(z) = (h ⊗
g)(z), whereas for tensor-valued kernels it is not. In appendix E we also make use of the

corresponding identity element,

1ij(z) ≡ δij δ(1− z) , (1⊗G)ij(z) = Gij(z) . (A.28)

Throughout the text, we decompose the flavor structure of Mellin kernels Gij(z) as

Gqiqj (z) = Gq̄iq̄j (z) = δijGqqV (z) +GqqS(z) +Gqq∆S(z) ,

Gqiq̄j (z) = Gq̄iqj (z) = δijGqq̄V (z) +GqqS(z)−Gqq∆S(z) ,

Gqig(z) = Gq̄ig(z) = Gqg(z) ,

Ggg(z) = Ggg(z) ,

Ggqi(z) = Ggq̄i(z) = Ggq(z) . (A.29)

This decomposition is sufficient and unique to all orders by the flavor symmetry and

charge conjugation invariance of massless QCD. We apply it to the perturbative coefficients

G = P (n) of the DGLAP kernels in eq. (2.164) and to the finite terms G = I(n) of beam

function matching coefficients at each order in αs. The GqqV and Ggg contributions are

typically already present at tree level, the Gqg and Ggq channels start at one loop, the GqqS
and Gqq̄V channels open up at two loops, and the Gqq∆S channel only receives contributions

from topologies at three loops and beyond.

The decomposition in eq. (A.29) also makes it straightforward to evaluate and iterate

sums over intermediate partons. For example, for the convolution in eq. (A.27), we have

(G⊗H)gg(z) = (Ggg ⊗Hgg)(z) + 2nf (Ggq ⊗Hqg)(z) ,

(G⊗H)qg(z) =
[(
GqqV +Gqq̄V + 2nfGqqS

)
⊗Hqg

]
(z) + (Gqg ⊗Hgg)(z) ,

(G⊗H)gq(z) =
[
Ggq ⊗

(
HqqV +Hqq̄V + 2nfHqqS

)]
(z) + (Ggg ⊗Hgq)(z) ,

(G⊗H)qqV (z) = (GqqV ⊗HqqV )(z) + (Gqq̄V ⊗Hqq̄V )(z) ,

(G⊗H)qq̄V (z) = (GqqV ⊗Hqq̄V )(z) + (Gqq̄V ⊗HqqV )(z) ,

(G⊗H)qqS(z) =
[
GqqS ⊗

(
HqqV +Hqq̄V

)]
(z) +

[(
GqqV +Gqq̄V

)
⊗HqqS

]
(z)

+ 2nf
(
GqqS ⊗HqqS

)
(z) +

(
Gqg ⊗Hgq

)
(z) ,

(G⊗H)qq∆S(z) =
[
Gqq∆S ⊗ (HqqV −Hqq̄V )

]
(z) +

[
(GqqV −Gqq̄V )⊗Hqq∆S

]
(z)

+ 2nf
(
Gqq∆S ⊗Hqq∆S

)
(z) , (A.30)

where nf is the number of active flavors, and all products on the right-hand side only

involve pure functions of z.
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Appendix B

Hard scattering processes

In this appendix we collect expressions that are specific to the hard scattering process, but

common to all factorized color-singlet cross sections. We use the notation of chapter 7,

which explicitly separates the hard functions for different leading-power hadronic structure

functions (appendix B.1) from the leptonic tensor (appendix B.2). The combined hard

functions used at cross-section level in the rest of the text, which in addition include the

flux factor and occasional Jacobians, are given in terms of these ingredients in appendix B.3.

In appendix B.3 we also discuss how our notation generalizes to processes that are not

mediated by a single hard current, e.g. diboson production.

B.1 Hard functions for hadronic structure functions

Drell-Yan production. At leading power in λ, the hard contribution to the hadronic

tensor in the limit λ� 1 is given by [57],1

Hµν
V V ′ qq̄′(na, nb;ωa, ωb) =

1

2Nc
tr
[ /na

2
C̄

(0)µ
V qq̄′(nb, na;ωb, ωa)

/nb
2
C

(0)ν
V ′ qq̄′(nb, na;ωb, ωa)

]
+
(

terms ∝ tr
[
/na/n⊥aC̄

(0)µ
V qq̄′ /n⊥b/nbC

(0)ν
V ′ qq̄′

])
, (B.1)

where C
(0)µαβ
V,qq̄′ are the hard matching coefficients in eq. (7.93), C̄µβα = [γ0C†µγ0]βα, and

the trace is over the Dirac indices. The additional terms in parenthesis in the second line do

not contribute to H−1,4 but only to H2,5 relevant for the Boer-Mulders effect, see eq. (7.89),

where the n⊥a,b are transverse unit vectors associated with the Boer-Mulders functions

h⊥1a,b.

We remind the reader that the V V ′ indices were largely left implicit in the main text.

Using eq. (7.33), the hard functions Hi V V ′ qq̄′ for i = −1, 4 are given by the projections

onto xµxν + yµyν = −g⊥µν +O(λ) and 2i
(
xµyν − xνyµ

)
= 2iε⊥µν +O(λ),

H−1V V ′ qq̄′(q
2) = −g⊥µνHµν

V V ′ qq̄′(na, nb;ωa, ωb) ,

H4V V ′ qq̄′(q
2) = 2iε⊥µνH

µν
V V ′ qq̄′(na, nb;ωa, ωb) . (B.2)

Here we used that the projected hard function can only depend on the Lorentz-scalar

product of the label momenta. Most commonly this is ωaωb = q2 = Q2 as written here. In

some occasions in chapter 5, the product evaluates to ωaωb = q+q− = Q2 + q2
T instead.

1An additional factor of 2 compared to ref. [57] is due to the fact that the hadronic tensor there is defined

for dσ/dQ2dY d2~qT whereas here it is defined for dσ/d4q = 2 dσ/dQ2dY d2~qT .
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The case of an incoming antiquark in the a direction follows from a↔ b,

Hµν
V V ′ q̄′q(na, nb;ωa, ωb) = Hµν

V V ′ qq̄′(nb, na;ωb, ωa) . (B.3)

This implies

H−1V V ′ q̄′q(q
2) = +H−1V V ′ qq̄′(q

2) , H4V V ′ q̄′q(q
2) = −H4V V ′ qq̄′(q

2) , (B.4)

as expected from parity. In the inclusive case we also use the shorthand

HV V ′ qq̄′(q
2) ≡ H−1V V ′ qq̄′(q

2) . (B.5)

Inserting the expression in eq. (7.93) into eq. (B.1), and suppressing the q2 argument for

brevity, we find

H−1ZZ qq̄′ =
8παem

Nc
δqq′
{

(v2
q + a2

q)|Cq|2 + 2 Re
∑
f

(
vqvfC

∗
qCvf + aqafC

∗
qCaf

)
+O(α4

s)
}
,

H−1 γγ qq̄′ =
8παem

Nc
δqq′
{
Q2
q |Cq|2 + 2 Re

∑
f

QqQfC
∗
qCvf +O(α6

s)
}
,

H−1Zγ qq̄′ =
8παem

Nc
δqq′
{
−vqQq|Cq|2 −

∑
f

(
vfQqC

∗
vfCq + vqQfC

∗
qCvf

)
+O(α6

s)
}

= H∗−1 γZ qq̄′ , (B.6)

where Re denotes the real part, the vector (vf ) and axial (af ) couplings of a quark of flavor

f to the Z boson were given in eq. (2.51). The terms denoted as O(α4,6
s ) are proportional

to the square of the singlet matching coefficients, which only start at Caf = O(α2
s) and

Cvf = O(α3
s), whereas the nonsinglet coefficient Cq = 1 +O(αs). In the parity-odd case,

we have

H4ZZ qq̄′ =
16παem

Nc
δqq′
{

2vqaq|Cq|2 + 2 Re
∑
f

(
vqafC

∗
qCaf + aqvfC

∗
qCvf

)
+O(α5

s)
}
,

H4 γγ qq̄′ = 0 ,

H4Zγ qq̄′ =
16παem

Nc
δqq′
{
−aqQq|Cq|2 −

∑
f

(
afQqC

∗
afCq + aqQfC

∗
qCvf

)
+O(α5

s)
}

= H∗4 γZ qq̄′ . (B.7)

For W± exchange, we have

H−1W+W+ qq̄′ =
2παem

Nc

|Vqq′ |2
sin2 θw

|Cq|2 , H4W+W+ qq̄′ =
4παem

Nc

|Vqq′ |2
sin2 θw

|Cq|2 ,

H−1W−W− qq̄′ =
2παem

Nc

|Vq′q|2
sin2 θw

|Cq|2 , H4W−W− qq̄′ =
4παem

Nc

|Vq′q|2
sin2 θw

|Cq|2 , (B.8)

where Vqq′ denotes the CKM-matrix element for q ∈ {u, c, t} and q′ ∈ {d, s, b} (and we take

it to vanish in all other cases). The overall relative factor of 2 between H−1 and H4 is due

to the conventional normalization of g4(θ, ϕ) = cos θ rather than 2 cos θ in eq. (7.47).

306



B.2 Leptonic tensors

The renormalized matching coefficients Cq(q
2, µ) and Cvf,af (q2, µ) can be extracted from

the IR-finite parts of the qq̄ vector and axial-vector form factors, which admit the same flavor

decomposition as eq. (7.93). The one-loop nonsinglet matching coefficient reads [212, 520]

Cq(q
2, µ) = 1 +

αs
4π
CF

[
− ln2 −q2 − i0

µ2
+ 3 ln

−q2 − i0

µ2
− 8 + ζ2

]
+O(α2

s) (B.9)

Explicit expressions for Cq(q
2, µ) to three loops in our notation can be found in ref. [1],

including also its renormalization and running. The two-loop results which enter in our

analysis in chapter 7 follow from the two-loop quark form factors [521–524]. In principle,

there is an O(α2
s) contribution to the axial-vector singlet coefficient if the top quark is taken

to be massive at the hard scale [57]. These contributions have however been found to be

small at the level of the total cross section [144, 469], and we neglect them in this thesis.

Gluon-fusion Higgs production. For gluon-fusion Higgs production, the hadronic

tensor is an overall scalar. For the case where the collinear matrix elements are scalar

functions normalized to fg + O(αs), the hard contribution to the hadronic tensor in the

EFT approximation [see eq. (2.73)] reads

HEFT
HH gg(m

2
t , q

2, µ2) =
|q2|

36π2v2(N2
c − 1)

|αsCt(mt, µ)|2 |Cg(q2, µ)|2 , (B.10)

where v2 = 1/(
√

2GF ) is the square of the Higgs vacuum expectation value. The matching

coefficient from integrating out the top quark reads [151–154],

Ct = 1 +
αs
4π

(5CA − 3CF ) +O(α2
s) . (B.11)

In the rEFT scheme, eq. (B.10) is multiplied by an additional factor of |F0[m2
H/(4m

2
t )]|2 as

given in eq. (2.74), accordingly. The renormalized SCET matching coefficient Cg(q
2, µ) can

be extracted from the IR-finite part of the gg scalar form factor. At one loop, the matching

coefficient is given by [231, 525]

Cg(q
2, µ) = 1 +

αs
4π
CA

[
− ln2 −q2 − i0

µ2
+ ζ2

]
+O(α2

s) (B.12)

Explicit expressions for Cg(q
2, µ) to three loops can be found in ref. [1].

B.2 Leptonic tensors

Drell-Yan production. The leptonic scalar coefficients L±V V ′(q
2) defined in eq. (7.44)

encode the squared electroweak decay matrix element including the vector-boson propagator.

In the inclusive case we also use the shorthand

LV V ′(q
2) ≡ L+V V ′(q

2) . (B.13)
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Appendix B – Hard scattering processes

For Z/γ∗ → `+`−, the parity-even leptonic coefficients read

L+ZZ(q2) =
2

3

αem

q2
(v2
` + a2

` )
∣∣PZ(q2)

∣∣2 , L+ γγ(q2) =
2

3

αem

q2
Q2
` ,

L+ γZ(q2) =
2

3

αem

q2
(−v`Q`)PZ(q2) , L+Zγ(q2) = L∗+ γZ(q2) . (B.14)

The parity-odd coefficients arise from the interference of axial and vector current contribu-

tions,

L−ZZ(q2) =
2

3

αem

q2
(2v` a`)

∣∣PZ(q2)
∣∣2 , L− γγ(q2) = 0 ,

L− γZ(q2) =
2

3

αem

q2
(−a`Q`)PZ(q2) , L−Zγ(q2) = L∗− γZ(q2) . (B.15)

Here, Q` = −1, and the vector (v`) and axial couplings (a`) of the lepton ` to the Z boson

have the same form as eq. (2.51) with T `3 = −1/2. The Z → νν̄ process is obtained by the

replacement `→ ν with Qν = 0 and T ν3 = +1/2. The reduced propagator PV is given by

PV (q2) =
q2

q2 −m2
V + iΓVmV

. (B.16)

For W → `ν, the L±(q2) are equal due to the current’s V −A structure, and are given by

L+W±W±(q2) = L−W±W±(q2) =
1

6

αem

q2

1

sin2 θw

∣∣PW (q2)
∣∣2 . (B.17)

Gluon-fusion Higgs production. For gluon-fusion Higgs production in the narrow-

width approximation, the inclusive leptonic tensor for a given decay channel H → L reads

LHH(q2) = 2πδ(q2 −m2
H) BrH→L . (B.18)

The scalar decay is isotropic in the Higgs rest frame, so a massless two-body decay like

H → γγ is simply flat in the Collins-Soper angles,

d cos θ dϕLHH(q2, cos θ, ϕ) =
d cos θ dϕ

4π
LHH(q2) . (B.19)

B.3 Combined hard functions

Throughout the main text we used the shorthand Hij for the total contribution of the hard

scattering process at the level of the total pp cross section. We used two distinct choices of

normalization that differ by a Jacobian:

(A) In section 2.4.2 and chapter 5, we give the cross section differential in dimensionless

momentum fractions like xa,b or x∓. In these cases the combined hard function is

given in terms of the unpolarized hard function and the inclusive leptonic tensor as

H
(A)
ij (q2, µ) =

1

4

∑
V,V ′

HV V ′ ij(q
2, µ)LV V ′(q

2) . (B.20)
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B.3 Combined hard functions

It includes the interference sum over all intermediate bosons, which for the Higgs is

trivial due to the narrow-width approximation, V = V ′ = H. In section 2.4.1 we also

used the DIS hard function, which is related to the above by crossing,

HDIS
qq̄′ (−q2, µ) = H

(A)
qq′ (q2, µ) . (B.21)

Note that in DIS, the SCET hard matching coefficients are evaluated at q2 = −Q2 < 0

and thus are purely real.

(B) In sections 2.4.3, 2.4.4, and 2.4.5 and chapters 3 and 4, we give the cross section

differential in dQ2 dY , so the combined hard function differs from the above by an

additional Jacobian dQ2 dY = E2
cmdxa dxb,

H
(B)
ij (q2, µ) =

1

E2
cm

H
(A)
ij (q2, µ) . (B.22)

We suppress the dependence on Ecm in this case.

The precise choice of (A) or (B) can always be read off from the left-hand side in factorization

formulas, also on dimensional grounds, so we just dropped the superscripts in the main

text. To account for more complicated final states produced from the decay of a single

intermediate boson, one may simply adjust the leptonic tensor in the above.

Our notation for combined hard functions, and all our results for factorized cross sections

in chapters 3, 4, and 5, also readily generalize to color-singlet production processes that are

not mediated by a single electroweak current, e.g. to diboson production. In these cases it

is tedious to factorize the cross section into high-rank hadronic and leptonic tensors. (As

this is a requirement for the results in chapter 7, their extension to diboson processes, while

desirable, is beyond the scope of this thesis.) Instead, it is more expedient to consider

the combined hard function as a whole. For a general color-singlet production process

pp→ LX, the hard function for normalization choice (A) is given by

H
(A)
ij (Q2, µ) =

1

2Q2

∫
dΦL δ

4
(
Q
nµ + n̄µ

2
− pµL

)∣∣Mfin(ij → L)
∣∣2 (B.23)

Here Mfin(ij → L) is the all-order virtual amplitude for the partonic process ij → L

computed in dimensional regularization (with d− 2 helicities for internal gluon lines) and

with the poles minimally subtracted [177]. As a check, this subtraction must be equivalent

to applying the MS counterterm of the SCET quark/gluon matching coefficient Ci(q
2). Our

normalization of the matrix element is such that at leading order,

dσ(0)

dxa dxb
=
∑
i,j

fi(xa) fj(xb)
1

2Q2

∫
dΦL δ

4(xaP
µ
a + xbP

µ
b − p

µ
L)
∣∣M(0)(ij → L)

∣∣2 . (B.24)

It is straightforward to make the calculation differential in the full color-singlet Born phase

space ΦL by inserting additional δ functions measuring e.g. the rapidity difference ∆y of

the diboson pair on the right-hand side of eq. (B.23). If fiducial cuts are applied on the
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individual boson rapidities or that of their decay products, the hard function will also start

to explicitly depend on the total rapidity Y of the diboson system, which drops out in the

boost-invariant expression above. (Should fiducial cuts be applied, we remind the reader

that nµ, n̄µ = (1,±ẑ)lep are chosen in the leptonic frame.)

Finally, note that the matrix element in eq. (B.23) is implicitly averaged over the spin

and color of the i, j, i.e., this expression assumes unpolarized collinear matrix elements.

This assumption is satisfied in chapters 3 and 5 and for quark production processes in the

perturbative domain ΛQCD � qT , where Boer-Mulders effects are suppressed. More care is

required if vectorial transverse momentum is measured on gluon collinear matrix elements.

This would e.g. matter if the results of chapter 4 are applied to the gg → γγ diphoton

production channel. In this case there will be nontrivial spin correlations between the total

~qT of the color-singlet system and its orientation in the transverse plane starting at O(α2
s)

relative to the tree-level quark channel.
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Appendix C

Anomalous dimensions

C.1 QCD anomalous dimensions

We expand the β function of QCD in d = 4 spacetime dimensions as

µ
dαs(µ)

dµ
= β[αs(µ)] , β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
. (C.1)

The coefficients up to three loops in the MS scheme are [526, 527]

β0 =
11

3
CA −

4

3
TF nf , (C.2)

β1 =
34

3
C2
A − 2TF nf

(10

3
CA + 2CF

)
,

β2 =
2857

54
C3
A + 2TF nf

(
−1415

54
C2
A −

205

18
CFCA + C2

F

)
+ 4T 2

F n
2
f

(79

54
CA +

11

9
CF

)
.

The N3LL analysis in chapter 7 in addition uses the four-loop β function [526–529]. The

cusp anomalous dimension and all noncusp anomalous dimensions are expanded as

Γicusp(αs) =
∞∑
n=0

Γin

(αs
4π

)n+1
, γ(αs) =

∞∑
n=0

γn

(αs
4π

)n+1
. (C.3)

The coefficients of the MS cusp anomalous dimension to three loops are [199, 200, 530]

Γi0 = 4Ci ,

Γi1 = 4Ci

[
CA

(67

9
− 2ζ2

)
− 20

9
TF nf

]
,

Γi2 = 4Ci

{
C2
A

(245

6
− 268

9
ζ2 +

22

3
ζ3 + 22ζ4

)
+ 2TF nf

[
CA

(
−209

27
+

40

9
ζ2 −

28

3
ζ3

)
+ CF

(
−55

6
+ 8ζ3

)]
− 16

27
T 2
F n

2
f

}
, (C.4)

where Ci = CF for i = q and Ci = CA for i = g. For the N3LL analysis in chapter 7 we

also need the four-loop coefficient [199–201, 511, 530–535]; see ref. [534] for a complete list

of earlier references.

The PDF anomalous dimension in eq. (2.164) is expanded as

Pij(αs, z) =

∞∑
n=0

P
(n)
ij (z)

(αs
4π

)n+1
. (C.5)
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Note that we expand the PDF anomalous dimension in αs/(4π) and not αs/(2π) as is often

done. We decompose the flavor dependence of the DGLAP kernels as in eq. (A.29). The

one-loop coefficients of the PDF anomalous dimension read

P
(0)
qqV (z) = 2CF δij θ(z)Pqq(z) , P (0)

gg (z) = 2CA θ(z)Pgg(z) + β0 δ(1− z) ,
P (0)
qg (z) = 2TF θ(z)Pqg(z) , P (0)

gq (z) = 2CF θ(z)Pgq(z) ,

P
(0)
qqS = P

(0)
qq̄V = P

(0)
qq∆S = 0 , (C.6)

in terms of the standard color-stripped one-loop QCD splitting functions

Pqq(z) = 2L0(1− z)− θ(1− z)(1 + z) +
3

2
δ(1− z) =

[
θ(1− z)1 + z2

1− z
]

+
,

Pgg(z) = 2L0(1− z) + θ(1− z)
[
2z(1− z) +

2(1− z)
z

− 2
]

= 2L0(1− z)(1− z + z2)2

z
,

Pqg(z) = θ(1− z)
[
1− 2z(1− z)

]
,

Pgq(z) = θ(1− z)1 + (1− z)2

z
. (C.7)

The DGLAP kernels have been calculated to two loops in refs. [536–538] and to three loops

in refs. [199, 200]. Denoting the results of refs. [199, 200] by a calligraphic P to distinguish

them from our P
(n)
ij , their results relate to our notation as

P
(n)
qqV (z) =

1

2

[
P(n)+
ns (z) + P(n)−

ns (z)
]
, P (n)

gg (z) = P(n)
gg (z) ,

P
(n)
qq̄V (z) =

1

2

[
P(n)+
ns (z)− P(n)−

ns (z)
]
, P (n)

gq (z) = P(n)
gq (z) ,

P
(n)
qqS(z) =

1

2nf
P(n)
ps (z) , P (n)

qg (z) =
1

2nf
P(n)
qg (z) ,

P
(n)
qq∆S(z) =

1

2nf
P(n)s
ns (z) . (C.8)

C.2 Threshold and 0-jettiness factorization

The quark beam function noncusp anomalous dimension coefficients to three loops are [293]

γqB 0 = 6CF ,

γqB 1 = 2CF

[
CA

(73

9
− 40ζ3

)
+ CF

(3

2
− 12ζ2 + 24ζ3

)
+ β0

(121

18
+ 2ζ2

)]
,

γqB 2 = 2CF

[
C2
A

(52019

162
− 1682

27
ζ2 −

2056

9
ζ3 −

820

3
ζ4 +

176

3
ζ2ζ3 + 232ζ5

)
+ CACF

(151

4
− 410

3
ζ2 +

844

3
ζ3 −

494

3
ζ4 + 16ζ2ζ3 + 120ζ5

)
+ C2

F

(29

2
+ 18ζ2 + 68ζ3 + 144ζ4 − 32ζ2ζ3 − 240ζ5

)
+ CAβ0

(
−7739

54
+

650

27
ζ2 −

1276

9
ζ3 +

617

3
ζ4

)
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+ β2
0

(
−3457

324
+

10

3
ζ2 +

16

3
ζ3

)
+ β1

(1166

27
− 16

3
ζ2 +

52

9
ζ3 −

82

3
ζ4

)]
. (C.9)

They have been confirmed recently by an explicit three-loop calculation of the quark jet

function [218], see also ref. [217]. The gluon beam function noncusp anomalous dimension

coefficients to three loops are [59]

γgB 0 = 2β0 ,

γgB 1 = 2CA

[
CA

(91

9
− 16ζ3

)
+ β0

(47

9
− 2ζ2

)]
+ 2β1 ,

γgB 2 = 2CA

[
C2
A

(49373

162
− 944

27
ζ2 −

2260

9
ζ3 − 144ζ4 +

128

3
ζ2ζ3 + 112ζ5

)
+ CA β0

(
−6173

54
− 376

27
ζ2 +

140

9
ζ3 + 117ζ4

)
+ β2

0

(
−493

81
− 10

3
ζ2 +

28

3
ζ3

)
+ β1

(1765

54
− 2ζ2 −

152

9
ζ3 − 8ζ4

)]
+ 2β2 . (C.10)

The (beam)thrust soft noncusp anomalous dimension coefficients to three loops follow

from consistency by γiS(αs) = −2γiB(αs)−4γiC(αs), where the γiC(αs) are taken from ref. [1].

They are the hard noncusp anomalous dimensions and are known up to three loops from

the quark and gluon form factors [521–524, 539–541]. We obtain,

γiS 0 = 0 ,

γiS 1 = 2Ci

[
CA

(
−64

9
+ 28ζ3

)
+ β0

(
−56

9
+ 2ζ2

)]
,

γiS 2 = 2Ci

[
C2
A

(
−37871

162
+

620

27
ζ2 +

2548

9
ζ3 + 144ζ4 −

176

3
ζ2ζ3 − 192ζ5

)
+ CA β0

(4697

54
+

484

27
ζ2 +

220

9
ζ3 − 112ζ4

)
+ β2

0

(520

81
+

10

3
ζ2 −

28

3
ζ3

)
+ β1

(
−1711

54
+ 2ζ2 +

152

9
ζ3 + 8ζ4

)]
. (C.11)

The threshold soft noncusp anomalous dimension only differs from the thrust soft anoma-

lous dimension by an overall sign as shown in the main text in eq. (6.10),

γithr(αs) = −γiS(αs) , γithrn = −γiS n . (C.12)

C.3 Factorization at small qT

In the exponential regulator, the noncusp anomalous dimension γ̃iS of the qT soft function

is equal to that of the threshold soft function γithr, which in turn is the negative of the T0

soft anomalous dimension γiS , see eq. (C.12). As a result, we have

γ̃iS(αs) = γithr(αs) = −γiS(αs) , γ̃iS n = −γiS n ,
γ̃iB(αs) = γiB(αs) + γiS(αs) , γ̃iB n = γiB n + γiS n . (C.13)
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The result for γ̃iB follows from RG consistency and the fact that the hard anomalous

dimension is the same for qT and T0. The γiS n and γiB n coefficients are given in eqs. (C.9),

(C.10), and (C.11) above.

The rapidity anomalous dimensions coefficients, which enter the fixed-order expansion

of γ̃iν in eq. (2.205), are known up to three loops [264–266]. They are given by

γ̃iν 0 = 0 ,

γ̃iν 1 = 2Ci

[
CA

(
−64

9
+ 28ζ3

)
− 56

9
β0

]
,

γ̃iν 2 = 2Ci

[
C2
A

(
−37871

162
+

620

27
ζ2 +

2548

9
ζ3 + 144ζ4 −

176

3
ζ2ζ3 − 192ζ5

)
+ CAβ0

(3865

54
+

412

27
ζ2 +

220

9
ζ3 − 50ζ4

)
+ β2

0

(
−464

81
− 8ζ3

)
+ β1

(
−1711

54
+

152

9
ζ3 + 8ζ4

)]
. (C.14)

C.4 Jet veto factorization

The coefficients of the noncusp jet veto beam anomalous dimensions are [67, 322]

γqB 0 = 6CF ,

γqB 1 = CF

[
(3− 4π2 + 48ζ3)CF +

(
−14 + 16(1 + π2) ln 2− 96ζ3

)
CA

+
(19

3
− 4

3
π2 +

80

3
ln 2
)
β0

]
,

γgB 0 = 2β0 ,

γgB 1 = 2β1 + 8CA

[(
−5

4
+ 2(1 + π2) ln 2− 6ζ3

)
CA +

( 5

24
− π2

3
+

10

3
ln 2
)
β0

]
(C.15)

The coefficients of the rapidity noncusp anomalous dimension depend on the jet radius R.

They read [67]

γiν 0(R) = 0 , (C.16)

γiν 1(R) = −16Ci

[(17

9
− (1 + π2) ln 2 + ζ3

)
CA +

(4

9
+
π2

12
− 5

3
ln 2
)
β0

]
+ Ci2(R) .

Here Ci = CF (CA) for i = q (g) and Ci2(R) is the clustering correction due to the jet

algorithm relative to a global ET veto, as computed in refs. [62, 67],

Ci2(R) = 16Cic
R
ii lnR+ 15.62CiCA − 9.17Ciβ0 +O(R2) . (C.17)

The small-R clustering coefficient cii = cgg = cqq is given in eq. (3.25).
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Appendix D

Renormalization group evolution

In this appendix we collect explicit expressions for the renormalization group evolution of

various beam and soft functions in the main text. The renormalization and running of

color-singlet hard functions can be found in our notation in ref. [1].

qT factorization. The RG evolution factors for the qT beam and soft functions B̃i and

S̃i follow by solving the coupled systems of equations in eq. (2.197). Evolving first in ν and

then in µ (from right to left), the solution of the beam function RGE in eq. (2.197) is

B̃i(ω, bT , µ, ν) = exp
[
2ηiΓ(µB, µ) ln

ν

ω
+Ki

γ̃B
(µB, µ)

]
× exp

[
−1

2
ln

ν

νB
γ̃iν(bT , µB)

]
B̃i(ω, bT , µB, νB) , (D.1)

where the resummed rapidity anomalous dimension γ̃iν(bT , µB) is given by eq. (2.202). Here

we evolve first in ν and then in µ, where the final scale µ is ultimately set to the scale µH at

which the hard function is evaluated. Any other path in the two-dimensional (µ, ν) space

connecting (µH , µB, νB, µS , νS) is viable as well, and the path independence is ensured

by exactly satisfying the RG consistency relations between all anomalous dimensions,

in particular by using eq. (2.202). The definitions of ηiΓ and Ki
γ for a generic noncusp

anomalous dimension γ are given in eq. (D.6) below.

For the qT soft function renormalized as in eq. (2.197), we have

S̃i(bT , µ, ν) = exp
[
−4ηiΓ(µS , µ) ln

ν

µS
+ 4Ki

Γ(µS , µ) +Ki
γ̃S

(µS , µ)
]

× exp
[
ln

ν

νS
γ̃iν(bT , µS)

]
S̃i(bT , µS , νS) . (D.2)

The exponent Ki
Γ is defined in eq. (D.6) below. The evolution of the double-differential

SCETII soft function of chapter 4 in bT space takes the exact same form with an additional

argument k held fixed by the evolution on the left and right-hand side.

T0 factorization. The closed-form solution of eq. (2.216) is [209, 301]

Bi(t, x, µ) = exp
[
4Ki

Γ(µB, µ) +Ki
γB

(µB, µ)
]

×
∫

dt′ V−2ηiΓ(µB , µ)(t− t′, µ2
B)Bi(t

′, x, µB) , (D.3)
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where Vη was defined in eq. (A.17). The evolution of the double-differential SCETI beam

function again takes the same form with an additional argument ~kT held fixed in this case.

t is straightforward to evaluate using results in app. B of ref. [209] for all terms in the

inclusive beam function. The required nontrivial convolutions with the finite terms in the

double-differential beam function are discussed in section 4.3. The solution of eq. (2.218) is

Si(k, µ) = exp
[
−4Ki

Γ(µS , µ) +Ki
γS

(µS , µ)
] ∫

dk′ V4ηiΓ(µS , µ)(k − k′, µS)Si(k
′, µS) . (D.4)

Collinear-soft function in (qT ,T0) resummation. Another nontrivial RG solution

required in the main text is that of the collinear-soft SCET+ function of chapter 4, which

is multiplicative in bT , but a convolution in k. Again evolving first in ν and then in µ, the

solution of the collinear-soft RGE in eq. (4.32) in bT space is given by

S̃i(k, bT , µ, ν) = exp
[
4Ki

Γ(µS , µ) +Ki
γS (µS , µ)

] ∫
dk′ V−2ηiΓ(µS , µ)

(
k − k′, µ

2
S
ν

)
× exp

[1

2
ln

ν

νS
γ̃iν(bT , µS)

]
S̃i(k′, bT , µS , νS) . (D.5)

The rapidity evolution factor on the second line does not depend on k′ and thus may be

taken out of the convolution integral. Note the nontrivial boundary condition of the Vη
plus distribution on the first line.

RG building blocks. The symbolic solutions above all make use of integrals over anoma-

lous dimensions defined as

Ki
Γ(µ0, µ) ≡

∫ µ

µ0

dµ′

µ′
Γicusp[αs(µ

′)] ln
µ′

µ0
, ηiΓ(µ0, µ) ≡

∫ µ

µ0

dµ′

µ′
Γicusp[αs(µ

′)] ,

Ki
γ(µ0, µ) ≡

∫ µ

µ0

dµ′

µ′
γi[αs(µ

′)] . (D.6)

Different methods to numerically evaluate these integrals were analyzed in detail in ref. [450],

which found that their numerical precision becomes relevant at N3LL. Here we use the

approximate unexpanded analytic results in the language of ref. [450], which provide sufficient

numerical precision for our purposes. These solutions are obtained by changing variables

from µ′ to αs(µ
′) using the β function and recursively evaluating the integral in terms of

the lower-order results. For Ki
Γ this requires rewriting the explicit logarithm as another

nested integral over an α′′s . Through NNLL, the relevant expressions read, suppressing the

indices i on the right hand side,

Ki
Γ(µ0, µ) = − Γ0

4β2
0

{
4π

αs(µ0)

(
1− 1

r
− ln r

)
+

(
Γ1

Γ0
− β1

β0

)
(1− r + ln r) +

β1

2β0
ln2 r

+
αs(µ0)

4π

[(
β2

1

β2
0

− β2

β0

)(1− r2

2
+ ln r

)
+

(
β1Γ1

β0Γ0
− β2

1

β2
0

)
(1− r + r ln r)

−
(

Γ2

Γ0
− β1Γ1

β0Γ0

)
(1− r)2

2

]}
,
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ηiΓ(µ0, µ) = − Γ0

2β0

[
ln r +

αs(µ0)

4π

(
Γ1

Γ0
− β1

β0

)
(r − 1)

+
α2
s(µ0)

16π2

(
Γ2

Γ0
− β1Γ1

β0Γ0
+
β2

1

β2
0

− β2

β0

)
r2 − 1

2

]
,

Ki
γ(µ0, µ) = − γ0

2β0

[
ln r +

αs(µ0)

4π

(
γ1

γ0
− β1

β0

)
(r − 1)

]
, (D.7)

where r = αs(µ)/αs(µ0) and the running coupling is given by the three-loop expression

1

αs(µ)
=

X

αs(µ0)
+

β1

4πβ0
lnX +

αs(µ0)

16π2

[
β2

β0

(
1− 1

X

)
+
β2

1

β2
0

( lnX

X
+

1

X
− 1
)]
, (D.8)

with X ≡ 1 + αs(µ0)β0 ln(µ/µ0)/(2π). At lower logarithmic accuracies, the expressions in

eq. (D.7) are truncated after the term multiplied ∼ 1/αs(µ0) (LL) or ∼ [αs(µ0)]0 (NLL),

respectively. The explicit N3LL expressions entering our analysis in chapter 7 are given in

ref. [450].
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Appendix E

Fixed-order ingredients

In this appendix we collect expressions for various single-differential beam and soft functions

in the main text to the order they are required for our analysis. The expressions are obtained

by recursively solving the relevant RGEs order by order in perturbation theory, accounting

for the running of the coupling and the PDFs, and we attempt to make the structure of

the final results in terms of anomalous dimensions and the boundary conditions maximally

explicit. Details on the recursive solution and the extension of many of these expressions

to the full RG-predicted structure at N3LO can be found in ref. [5].

E.1 Virtuality-dependent beam functions

The analysis in chapter 4, requires the matching coefficients Iij(t, z, µ) for the inclusive

beam function Bi(t, x, µ) as a baseline to evaluate the double-differential beam function. In

chapter 5 we need the matching coefficients Ĩij(t̃, z, µ) of the modified virtuality-dependent

beam function B̃i(t̃, x, µ) as introduced in that chapter to two loops, and partially at three

loops. As discussed in chapter 5, Bi and B̃i have an identical RGE, so we only give results for

Iij(t, z, µ) in the following. Results for Ĩij(t̃, z, µ) are obtained by replacing the boundary

terms I
(n)
ij (z) by the modified boundary terms Ĩ

(n)
ij (z) calculated in section 5.4. Note that

in this appendix we reserve the notation Ĩ
(n)
ij (z) for the finite terms of the bT -dependent

SCETII beam function instead.

Combining the inclusive beam function matching relation and its RGE in eqs. (2.216)

and (2.217), we find the following RGE for the matching coefficient [293],

µ
d

dµ
Iij(t, z, µ)

=
∑
k

∫
dt′
∫

dz′

z′
Iik
(
t− t′, z

z′
, µ
){

1kj(z
′) γiB(t′, µ)− 2δ(t′)Pkj

[
αs(µ), z′

]}
. (E.1)

Solving eq. (E.1) order by order in αs, we obtain a general expression for I(n)
ij (t, z, µ),

I(0)
ij (t, z, µ) = δ(t) 1ij(z) ,

I(1)
ij (t, z, µ) = L1(t, µ2) Γi0 1ij(z) + L0(t, µ2)

[
P

(0)
ij (z)− γiB 0

2

]
+ δ(t) I

(1)
ij (z) ,

I(2)
ij (t, z, µ) = L3(t, µ2)

(Γi0)2

2
1ij(z)
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+ L2(t, µ2)
Γi0
2

[
−
(
β0 +

3

2
γiB 0

)
1ij(z) + 3P

(0)
ij (z)

]
+ L1(t, µ2)

[(
−π

2

6
(Γi0)2 +

β0

2
γiB 0 +

(γiB 0)2

4
+ Γi1

)
1ij(z)

−
(
β0 + γiB 0

)
P

(0)
ij (z) +

(
P (0) ⊗ P (0)

)
ij

(z) + Γi0I
(1)
ij (z)

]
+ L0(t, µ2)

[(
ζ3(Γi0)2 +

π2

12
Γi0γ

i
B 0 −

γiB 1

2

)
1ij(z)−

π2

6
Γi0P

(0)
ij (z) + P

(1)
ij (z)

−
(
β0 +

γiB 0

2

)
I

(1)
ij (z) +

(
I(1) ⊗ P (0)

)
ij

(z)

]
+ δ(t) I

(2)
ij (z) ,

I(3)
ij (t, z, µ) = L5(t, µ2)

(Γi0)3

8
1ij(z)

+ L4(t, µ2)
5

8
(Γi0)2

[
−
(2

3
β0 +

γiB 0

2

)
1ij(z) + P

(0)
ij (z)

]
+ L3(t, µ2) Γi0

[(
−π

2

6
(Γi0)2 +

β2
0

3
+

5

6
β0γ

i
B 0 +

(γiB 0)2

4
+ Γi1

)
1ij(z)

−
(5

3
β0 + γiB 0

)
P

(0)
ij (z) +

(
P (0) ⊗ P (0)

)
ij

(z) +
Γi0
2
I

(1)
ij (z)

]
+ · · ·+ δ(t) I

(3)
ij (z) , (E.2)

where I
(n)
ij (z) is the O(αns ) boundary term multiplying δ(t) at the respective order. The

ellipses in the three-loop result indicate terms proportional to Ln(t, µ2) with 0 ≤ n ≤ 2

and are not needed for the results in this thesis. Expanding eq. (E.2) against the hard

function yields eq. (5.89) in the main text. The one-loop boundary terms for the standard

(inclusive) virtuality dependent quark beam function are [57, 293],

I
(1)
qqV (z) = 2CF θ(z)

[
L1(1− z)(1 + z2)− π2

6
δ(1− z) + θ(1− z)

(
1− z − 1 + z2

1− z ln z
)]
,

I(1)
qg (z) = 2TF θ(z)

[
Pqg(z)

(
ln

1− z
z
− 1
)

+ θ(1− z)
]
. (E.3)

E.2 qT soft function

The qT soft function is most conveniently expressed in terms of

Lb = ln
b2Tµ

2

b20
, b0 = 2e−γE , Lν = ln

µ

ν
. (E.4)

For our N3LL analysis in chapter 7, we require the two-loop expression

S̃
(0)
i (bT , µ, ν) = 1 ,

S̃
(1)
i (bT , µ, ν) = −L2

b

Γi0
2

+ Lb

(
Lν 2Γi0 +

γ̃iS 0

2
+
γ̃iν 0

2

)
− Lν γ̃iν 0 + s̃

(1)
i ,
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S̃
(2)
i (bT , µ, ν) = L4

b

(Γi0)2

8
− L3

b Γi0

(
LνΓi0 +

β0

3
+
γ̃iS 0

4
+
γ̃iν 0

4

)
+ L2

b

[
L2
ν 2(Γi0)2 + LνΓi0

(
β0 + γ̃iS 0 +

3

2
γ̃iν 0

)
+ β0

( γ̃iS 0

4
+
γ̃iν 0

2

)
+

1

8
(γ̃iS 0 + γ̃iν 0)2 − Γi1

2
− Γi0

2
s̃

(1)
i

]
+ Lb

{
−L2

ν 2Γi0γ̃
i
ν 0 + Lν

[
−
(
β0 +

γ̃iS 0

2
+
γ̃iν 0

2

)
γ̃iν 0 + 2Γi1 + 2Γi0 s̃

(1)
i

]
+
γ̃iS 1

2
+
γ̃iν 1

2
+
(
β0 +

γ̃iS 0

2
+
γ̃iν 0

2

)
s̃

(1)
i

}
+ L2

ν

(γ̃iν 0)2

2
− Lν

(
γ̃iν 1 + γ̃iν 0 s̃

(1)
i

)
+ s̃

(2)
i . (E.5)

The required anomalous dimension are given in appendix C.3. The boundary coefficients

s
(n)
i through two loops are [264, 265], with Ci = CF for i = q and Ci = CA for i = g,

s̃
(1)
i = −Ci 2ζ2 ,

s̃
(2)
i = Ci

[
Ci 5ζ4 + CA

(208

27
− 4ζ2 + 10ζ4

)
+ β0

(164

27
− 5ζ2 −

14

3
ζ3

)]
. (E.6)

E.3 qT beam function

The matching coefficients for the qT beam functions can be written in terms of

Lb = ln
b2Tµ

2

b20
, b0 = 2e−γE , Lω = ln

ν

ω
. (E.7)

Note that Lω differs from the characteristic logarithm of the soft function in the previous

section. For the N3LL analysis in chapter 7 and the NNLL analysis in chapter 4, we require

the qT quark beam function i = q, q̄ up to two loops,

Ĩ(0)
ij (z, bT , µ, ν/ω) = 1ij(z) ,

Ĩ(1)
ij (z, bT , µ, ν/ω) = Lb

[(
LωΓi0 +

γ̃iB 0

2

)
1ij(z)− P (0)

ij (z)
]
− Lω

γ̃iν 0

2
1ij(z) + Ĩ

(1)
ij (z) ,

Ĩ(2)
ij (z, bT , µ, ν/ω) = L2

b

{[
L2
ω

(Γi0)2

2
+ Lω

Γi0
2

(β0 + γ̃iB 0) +
(
β0 +

γ̃iB 0

2

) γ̃iB 0

4

]
1ij(z)

−
(
LωΓi0 +

β0

2
+
γ̃iB 0

2

)
P

(0)
ij (z) +

1

2

(
P (0) ⊗ P (0)

)
ij

(z)

}
+ Lb

{[
−L2

ω Γi0
γ̃iν 0

2
+ Lω

[
−
(
β0 +

γ̃iB 0

2

) γ̃iν 0

2
+ Γi1

]
+
γ̃iB 1

2

]
1ij(z)

+ Lω
γ̃iν 0

2
P

(0)
ij (z)− P (1)

ij (z)

+
(
LωΓi0 + β0 +

γ̃iB 0

2

)
Ĩ

(1)
ij (z)−

(
Ĩ(1) ⊗ P (0)

)
ij

(z)

}
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+
[
L2
ω

(γ̃iν 0)2

8
− Lω

γ̃iν 1

2

]
1ij(z)− Lω

γ̃iν 0

2
Ĩ

(1)
ij (z) + Ĩ

(2)
ij (z) . (E.8)

The matching coefficients Igj for the unpolarized contribution to the gluon beam function

have the same form. The Ĩ
(n)
ij (z) up to n = 2 are given for the η regulator in ref. [264]

in terms of the results of ref. [279], and up to that order are equal to the more compact

expressions given in ref. [285, 286], where they were directly calculated using the exponential

regulator. The one-loop results are

Ĩ
(1)
qqV (z) = CF δij θ(z)θ(1− z) 2(1− z) ,
Ĩ(1)
qg (z) = TF θ(z)θ(1− z) 4z(1− z) ,
Ĩ(1)
gg (z) = 0 ,

Ĩ(1)
gq (z) = CF θ(z)θ(1− z) 2z . (E.9)

Here we use a tilde to indicate that the Ĩ
(n)
ij belong to the bT -dependent beam function.

(They are distinct from the modified SCETI beam function finite terms calculated in

section 5.4.) In general, the boundary terms as derived to all orders in αs and to leading

power in 1− z in chapter 6 are related to the full Ĩ(n)
ij by

Ĩ
(n)
ij (z) = Ĩ(n)

ij (z, bT , µ = b0/bT , ν/ω = 1) . (E.10)

E.4 Jet veto beam function for ηcut →∞
The matching coefficient Iij(pcut

T , R, ω, z, µ, ν) of the ηcut → ∞ beam functions satisfies

an identical RGE to eq. (3.17). Solving it order by order in αs yields, suppressing the

arguments of I(n)
ij (pcut

T , R, ω, z, µ, ν) on the left-hand side,

I(0)
ij = 1ij(1− z) ,
I(1)
ij = 1ij(1− z)LµB(2Γi0L

ν
B + γiB 0)− 2LµBP

(0)
ij (z) + Ĩ

(1)
ij ,

I(2)
ij = 1ij(1− z)

{
(LµB)2

[
2(Γi0)2(LνB)2 + LνB(2β0Γi0 + 2Γi0γ

i
B 0) + β0γ

i
B 0 +

(γiB 0)2

2

]
+ LµB

[
2Γi1L

ν
B + γiB 1

]
− 1

2
γiν 1(R)LνB

}
+ P

(0)
ij (z) (LµB)2

[
−4Γi0L

ν
B − 2β0 − 2γiB 0

]
+ Ĩ

(1)
ij (z)LµB

[
2Γi0L

ν
B + 2β0 + γiB 0

]
− 2LµB

(
Ĩ(1) ⊗ P (0)

)
ij

(z)− 2LµBP
(1)
ij (z) + 2(LµB)2

(
P (0) ⊗ P (0)

)
ij

(z)

+ I
(2)
ij (R, z) , (E.11)

where we abbreviated

LµB = ln
µ

pcut
T

, LνB = ln
ν

ω
. (E.12)

We also used that the one-loop rapidity anomalous dimension vanishes, γiν 0 = 0, and that

the one-loop finite terms at µ = pcut
T and ν = ω are equal to the finite terms Ĩij(z) of
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the bT -dependent beam function in eq. (E.9) when using the same rapidity regulator. The

two-loop finite terms in eq. (E.11), for which the relation to the bT case no longer holds,

depend on R. Expanding them as

I
(2)
ij (R, z) = lnRI

(2,lnR)
ij (z) + I

(2,c)
ij (z) +O(R2) , (E.13)

the coefficient of lnR can be written as

I
(2,lnR)
ij (z) = cRij

[
2P

(0)
ij (z)− γiB 0 1ij(z)

]
. (E.14)

We explicitly recomputed the coefficients cRij , for which we found some discrepancies in the

literature. [See eq. (3.25) in the main text.] Note that the terms proportional to δ(1− z)
cancel in eq. (E.14) when the distributional structure of the splitting function is written

purely in terms of δ(1− z), Ln(1− z), and regular terms in 1− z.

E.5 Other one-loop soft and collinear-soft functions

In chapter 4 we require the one-loop T0 soft function [57, 300, 301],

Si(k, µ) = δ(k) +
αs(µ)

4π

[
−4Γi0 L1(k, µ) +

π2

3
Ci δ(k)

]
+O(α2

s) . (E.15)

and the one-loop collinear-soft function in bT space [195],

S̃i(k, bT , µ, ν) = δ(k) +
αs(µ)

4π

{
−Γi0Lb L0(k, µ) + Γi0

[
−1

2
L2
b − Lb ln

ν

µ

]
δ(k)− π2

3
Ci δ(k)

}
+O(α2

s) . (E.16)

For the analysis in chapter 3 we also need the one-loop jet veto soft function [67],

Si(p
cut
T , R, µ, ν) = 1 +

αs(µ)

4π

[
2Γi0 ln

µ

pcut
T

(
ln

µ

pcut
T

− 2 ln
ν

pcut
T

)
− π2

3
Ci

]
+O(α2

s) . (E.17)

In these expressions, we used that all the one-loop soft noncusp and rapidity anomalous

dimensions vanish, and abbreviated Ci = CF for i = q and Ci = CA for i = g.
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Appendix F

Analytic NLO rapidity spectra

In this appendix we collect self-contained expressions for the Drell-Yan and gg → H

partonic rapidity spectra to NLO in terms of the convenient variables (za, zb), see eq. (2.64).

These results, while standard, are not readily available from the literature. Since eq. (5.22)

captures the full singularity structure as za → 1 and/or zb → 1, the power corrections to

it are of relative O[(1− za)(1− zb)] and are fully integrable. Hence we can construct the

exact partonic cross section in terms of (za, zb) from the results in terms of (z, y) from

refs. [113, 414] as

σ̂ij(za, zb) = eq. (5.22) +

[
dz dy

dzadzb
σ̂ij
[
z(za, zb), y(za, zb)

]
− eq. (5.22)

]
za,b<1

. (F.1)

Here the term in square brackets is evaluated in the bulk, away from any singularities, so

we can simply plug in eq. (5.69).

We find the expressions below to be in full agreement with refs. [219, 416], which in turn

for Drell-Yan agree with the earliest result for the NLO rapidity spectrum in ref. [415]. In

refs. [219, 416], the cross section was also parametrized in terms of xa,b and za,b, but all

subtractions were written out in full at the level of the hadronic cross section.

In ref. [113], only the sum of the gq and qg coefficient functions for Higgs productions

was given. The separation of the singular terms into the two channels is unique because

only the gq (qg) channel can be singular as y → 0 (y → 1). We determined the separation

of the regular terms by comparing to ref. [219]. To the best of our knowledge, this is the

first time that the explicit analytic agreement between the independent NLO calculations

in terms of (za, zb) and (z, y) has been established.

Finally, we have also compared our numerical implementation of eqs. (F.4) through

(F.11) with the rapidity spectra obtained from Vrap 0.9 [114] for Drell-Yan and from

SusHi 1.7.0 [333, 334] for Higgs production, finding excellent agreement. Since Vrap 0.9

implements the (z, y) parametrization, this effectively confirms the distributional identities

in table 5.2 numerically with physical PDFs as test functions.

F.1 Drell-Yan production

The Born cross section for Drell-Yan production, qq̄ → Z/γ∗ → `+`−, is given by

σDY
B,q =

4πα2
em

3NcQ2

[
Q2
q +

(v2
q + a2

q)(v
2
` + a2

` )− 2Qqvqv`(1−m2
Z/Q

2)

(1−m2
Z/Q

2)2 +m2
ZΓ2

Z/Q
4

]
, (F.2)
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with Nc the number of colors, Qq the quark charge in units of |e|, v`,q and a`,q the standard

electroweak vector and axial couplings of the leptons and quarks, and mZ and ΓZ the mass

and width of the Z boson. The complete LO cross section is given by

dσDY
LO

dQ2 dY
=

1

E2
cm

dσDY
LO

dxadxb
=

1

E2
cm

∑
q

σDY
B,q

[
fq(xa) fq̄(xb) + fq̄(xa) fq(xb)

]
, (F.3)

where the sum runs over q = {u, d, c, s, b}. We expand the partonic cross section for

Drell-Yan as

σ̂ij(za, zb, Q, µ) =
∞∑
n=0

[αs(µ)

4π

]n
σ

(n)
ij (za, zb, Q, µ) . (F.4)

The LO result corresponding to eq. (F.3) is given by σ̂
(0)
qq̄ (za, zb, Q, µ) = σDY

B,q δ(1− za) δ(1−
zb). Writing z̄a ≡ 1− za and z̄b ≡ 1− zb for short, the NLO coefficient for the qq̄ channel

is given by

1

σDY
B,q

σ̂
(1)
qq̄ (za, zb, Q, µ)

CF

= δ(z̄a)δ(z̄b)(2π
2 − 16) + 4L1(z̄a)δ(z̄b) + 4L0(z̄a)L0(z̄b) + 4δ(z̄a)L1(z̄b)

+

{
−2(1 + zb)L0(z̄a) + δ(z̄a)

[
2z̄b − 4(1 + zb) ln z̄b −

2(1 + z2
b ) ln zb
z̄b

+
4

z̄b
ln

2zb
1 + zb

+ 2(1 + zb) ln
1− z2

b

2zb

]
− 4 ln

µ

Q
δ(z̄a)

[
2L0(z̄b) +

3

2
δ(z̄b)− (1 + zb)

]
+

2(z2
a + z2

b )[(1 + za)
2 + zazb(3 + 2za + zazb)]

(1 + za)(1 + zb)(za + zb)2
+ (za ↔ zb)

}
, (F.5)

where (za ↔ zb) indicates all previous expressions in the curly brackets repeated with za
and zb interchanged. For the qg channel we have

1

σDY
B,q

σ̂
(1)
qg (za, zb, Q, µ)

TF

= 2(z2
b + z̄2

b )L0(z̄a) + δ(z̄a)
[
2(z2

b + z̄2
b ) ln

2z̄b
1 + zb

+ 4zbz̄b

]
− 4 ln

µ

Q
δ(z̄a)

(
z2
b + z̄2

b

)
(F.6)

+
1

(1 + za)(za + zb)3

[
−4z5

az
3
b − 4z4

az
2
b (−1 + zb + 2z2

b ) + 2z3
a(1 + 4z2

b + 2z3
b − 4z4

b − 4z5
b )

+ 2z2
azb(1 + 4zb + 8z2

b − 8z3
b − 4z4

b ) + 2zaz
2
b (1 + 4zb − 2z2

b − 4z3
b )− 2z3

b (1− 2zb + 2z2
b )
]
.

The gq channel is given by σ
(1)
gq (za, zb, Q, µ) = σ

(1)
qg (zb, za, Q, µ). The results for q ↔ q̄ are

identical.

F.2 Gluon-fusion Higgs production

For gluon-fusion Higgs production, gg → H, we use the effective coupling to gluons in the

limit m2
H � 4m2

t , see eq. (2.73) The Born cross section and LO rapidity spectrum for an
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on-shell Higgs boson are given by

σggHB =
1

72πv2(N2
c − 1)

,
dσggHLO

dY
= xaxb σ

ggH
B α2

s fg(xa) fg(xb) . (F.7)

We write the partonic cross section as

σ̂ij(za, zb,mt,mH , µ) ≡ σggHB α2
s(µ) |Ct(mt, µ)|2

∞∑
n=0

[αs(µ)

4π

]n
η̂

(n)
ij (za, zb,mH , µ) . (F.8)

The NLO coefficient function for the gg channel is given by

η̂
(1)
gg (za, zb,mH , µ)

CA

= 2π2δ(z̄a)δ(z̄b) + 4L1(z̄a)δ(z̄b) + 4δ(z̄a)L1(z̄b) + 4L0(z̄a)L0(z̄b) (F.9)

+

{
4L0(z̄a)

[ 1

zb
− 2 + zb − z2

b

]
+ 4δ(z̄a)

1

z̄b

[ ln(2z̄b)

zb
− 3 ln z̄b + 2 ln

1 + zb
2
− ln(1 + zb)

zb

− zb(3− 2zb + z2
b ) ln

1 + zb
2z̄b

]
− 4 ln

µ

mH
δ(z̄a)

[
2L0(z̄b)

(1− zb + z2
b )2

zb

]
+

4zb
za(1 + za)(1 + zb)(za + zb)4

[
2z2
b + z3

b + 3z6
az

4
b + 2z5

az
3
b (5 + 5zb + 2z2

b )

+ z4
az

2
b (16 + 17zb + 12z2

b + 6z3
b + 2z4

b ) + z3
azb(5 + 22zb + 12z2

b + 8z3
b + 8z4

b + 2z5
b )

+ z2
a(3 + 2z2

b + 7z3
b + 2z4

b + 4z5
b + 2z6

b ) + zazb(4 + zb + z2
b + z3

b + z5
b )
]

+ (za ↔ zb)

}
.

For the gq and qg channels we find, with η̂
(1)
qg (za, zb,mH , µ) = η̂

(1)
gq (zb, za,mH , µ),

η̂
(1)
gq (za, zb,mH , µ)

CF

= 2L0(z̄a)
2− 2zb + z2

b

zb
+ 2δ(z̄a)

[
zb +

2− 2zb + z2
b

zb

(
ln

2z̄b
1 + zb

− 2 ln
µ

mH

)]
+

2

(1 + za)zb(za + zb)3

[
z3
a(2− 2zb + z2

b ) + z2
a(4− 2zb − 4z2

b + 7z3
b − 2z5

b )

+ zazb(4− 4zb + 4z2
b + z3

b − 2z4
b )− z2

b (−2 + 2zb − 2z2
b + z3

b )
]
. (F.10)

The qq̄ channel is fully regular and given by

η̂
(1)
qq̄ (za, zb,mH , µ)

CF
=
N2
c − 1

Nc

4(1 + zazb)(z
4
az

2
b + z2

az
4
b − 4z2

az
2
b + z2

a + z2
b )

(za + zb)4
. (F.11)

The Nc-dependent prefactor accounts for the different color average compared to the Born

cross section. All results for q ↔ q̄ are again identical.
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Appendix G

Additional numerical results

G.1 Differential and cumulant scale setting in (qT ,T0)

In this appendix we discuss the issue of differential versus cumulant scale setting as relevant

for the double-differential spectra computed in chapter 4, starting with the simpler case

of a cross section differential in a single observable and using 0-jettiness T0 ≡ T as an

example. There are two equivalent quantities of interest in this case, namely the spectrum

dσ/dT with respect to T and the cumulant cross section σ(Tcut) with a cut on T . The two

quantities are related by

σ(Tcut) =

∫ Tcut

0
dT dσ

dT , (G.1)

where we suppress the dependence on Q2 and Y for the purposes of this subsection. Accord-

ingly, in a resummation analysis one can implement the resummation scales either in terms

of the differential variable T to directly predict the spectrum, or in terms of the cumulant

variable Tcut to predict the cross section integrated up to Tcut. The other observable then

follows from eq. (G.1).

Explicitly, with differential scale setting (indicated by the subscript), the differential and

cumulant cross section are given by

dσdiff

dT =
dσ

dT
∣∣∣
µ(T )

,

σdiff(Tcut) =

∫ Tcut

dT
[
θ(T > Tnp)

dσ

dT
∣∣∣
µ(T )

+ θ(T ≤ Tnp)
dσ

dT
∣∣∣
µ(Tnp)

]
. (G.2)

In the first term under the integral in the cumulant cross section, all scales µ entering

the resummed and matched prediction depend on the integration variable T . Because our

setup only reliably predicts the spectrum away from the nonperturbative region, we choose

to integrate the resummed spectrum with differential scale setting up from some small

cutoff Tnp, and include an “underflow” contribution given by the second term under the

integral. For the underflow contribution for T ≤ Tnp, the spectrum is evaluated at fixed

scales corresponding to Tnp, such that the integral can be done analytically. The underflow

contribution is Sudakov suppressed and thus typically small.
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Using cumulant scale setting, we instead use

σcumul(Tcut) =

∫ Tcut

dT dσ

dT
∣∣∣
µ(Tcut)

,

dσcumul

dT =
dσ

dT
∣∣∣
µ(T )

+
∑
i

[
d

dµi

∫ T
dT ′ dσ

dT ′
]
µ(T )

dµi(T )

dT . (G.3)

In this case, the scales in the cumulant cross section depend on Tcut, and not the integration

variable T , so the integral up to Tcut can easily be performed analytically. The expression

for the differential cross section arises from taking the derivative of the cumulant cross

section, where the chain rule leads to the sum of derivatives of each of the scales µi in µ

with respect to T .

Cumulant scale setting ensures that for Tcut → Q, the resummed and matched cumulant

cross section exactly reproduces the inclusive fixed-order cross section. This follows from

the generic requirement on profile scales in the fixed-order region,

µi(Tcut)→ µFO for Tcut → Q . (G.4)

Thus for cumulant scale setting, the spectrum has the correct (fixed-order) normalization.

However, the additional derivatives of the scales in eq. (G.3) tend to produce artifacts in

the spectrum if the profile functions µi(T ) used to interpolate between the resummation

region T � Q to the fixed-order region T ∼ Q undergo a rapid transition. In particular,

a smooth matching to the fixed-order prediction at the level of the differential spectrum

typically requires differential scale setting. Moreover, the scale variations using cumulant

scale setting tend to produce unreliable uncertainties for the spectrum.

If instead differential scale setting is used, the spectrum is free from such artifacts.

However, the integral of the spectrum will not exactly recover the inclusive fixed-order

cross section, and the uncertainties obtained for the cumulant by integrating the spectrum

scale variations tend to accumulate and end up being much larger than they should be for

the total cross section. As in the case of the spectrum with cumulant scale setting, this

mismatch purely arises from residual scale dependence, and therefore is formally beyond

the working order. It can however still be numerically significant.

Therefore, in general one should use the scale setting that is appropriate for the quantity

of interest, i.e., one should use cumulant scale setting when making predictions for the

cumulant, and differential scale setting when one is interested in the spectrum. This issue

of differential versus cumulant scale setting is well appreciated in the literature for the

single-differential case, see e.g. refs. [122, 203, 204, 542]. It fundamentally results from the

fact that long-range correlations across the spectrum are not accounted for by the profile

scales used for the differential predictions. Conversely, profile scales for the cumulant do

not correctly capture the slope of the cumulant and its uncertainty. An elaborate procedure

for obtaining a spectrum with differential scales that still produce the exact cross section

and uncertainties was developed in ref. [542]. In the Geneva Monte Carlo generator, the

mismatch between differential and cumulant scales is accounted for by adding explicit

higher-order terms [122].
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G.1 Differential and cumulant scale setting in (qT , T0)

For a simultaneous measurement of qT and T , there are in principle four quantities of

interest, namely the double-differential spectrum dσ/dqT dT , the single-differential spectra

dσ(qcut
T )/dT and dσ(Tcut)/dqT with a cut on the other variable, and the double cumulant

σ(qcut
T , Tcut). They are all related by integration or differentiation, allowing for four different

ways of setting scales in each case. For our explicit numerical results in section 4.5, we

take a pragmatic approach and use the appropriate combination of differential or cumulant

scale setting with respect to either qT or T for each of these quantities. This is achieved

by evaluating the resummed prediction at profile scales given by the setup described in

sections 4.2.2 and 4.2.3 as well as section 4.4.3, but with qT (T ) replaced by qcut
T (Tcut)

as appropriate. In this way we are guaranteed to avoid artifacts from profile functions in

spectrum observables, and on the other hand ensure that cumulant observables have the

correct limiting behavior; e.g., σ(qcut
T , Tcut) will by construction recover the inclusive fixed-

order cross section when lifting both cuts, while dσ(qcut
T )/dT and dσ(Tcut)/dqT exactly

recover the resummed and matched prediction for the respective inclusive spectrum at large

values of the cut.

Nevertheless, it is interesting to ask how well the different combinations of differential

and cumulant scale setting fare for observables other than the one they are designed to

describe. In particular we should ask how well the (qT , T ) scale setting we described in

earlier sections performs at the level of cumulant observables and their inclusive limit. To

do so, we can always promote a spectrum using differential scale setting in qT (T ) to a

prediction for the cumulant up to qcut
T (Tcut) using the analogue of eq. (G.2). The only

nontrivial new procedure is computing the double cumulant directly from (qT , T ) scales,

where we need to account for an overlap in underflow contributions as

σdiff,diff(qcut
T , Tcut) =

∫ qcut
T

dqT

∫ Tcut

dT
[
θ(qT > qnp

T ) θ(T > Tnp)
dσ

dqT dT
∣∣∣
µ(qT ,T )

(G.5)

+ θ(qT ≤ qnp
T ) θ(T > Tnp)

dσ

dqT dT
∣∣∣
µ(qnp

T ,T )

+ θ(qT > qnp
T ) θ(T ≤ Tnp)

dσ

dqT dT
∣∣∣
µ(qT ,Tnp)

− θ(qT ≤ qnp
T ) θ(T ≤ Tnp)

dσ

dqT dT
∣∣∣
µ(qnp

T ,Tnp)

]
.

The distinction between differential or cumulant scale setting is only relevant for qT versus

qcut
T but not for the underlying resummation in bT space, so we suppress the dependence

of the hybrid scales on bT . In practice we use qnp
T = Tnp = 1 GeV, and implement the

integrals in eqs. (G.2) and (G.5) as sums over logarithmically spaced bins with bin size

∆(log10 qT ) = ∆(log10 T ) = 0.08, where the spectrum is evaluated at the logarithmic

midpoint of the bin. Scale variations in the integrated results are performed by integrating

each instance of the spectrum separately and computing maximum deviations from central

in the end. The final results are interpolated for clarity.

In figures G.1 to G.3, we compare our default scale setting for various cumulant observ-

ables (solid orange) to more differential scale setting (dashed blue and dotted green), i.e.,
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Figure G.1: The double cumulant cross section as a function of Tcut for qcutT = 100 GeV (left)

and as a function of qcutT for Tcut = 100 GeV (right). The bands indicate the total perturbative

uncertainty ∆total, see section 4.4.4. The colors correspond to different scale setting prescriptions

(default: solid orange); see the text for details.

choosing µ in terms of qT rather than qcut
T and/or T rather than Tcut. In figure G.1, we

show the double cumulant cross section, for which our default is to use scales in terms of

qcut
T and Tcut. The horizontal reference line indicates the inclusive fixed-order cross section.

In figure G.2 we show the T spectrum with a cut on qT , for which our default scales are in

terms of qcut
T and T , and the converse for figure G.3. In figures G.2 and G.3 the left panel

shows the dependence on the cut at a representative point along the spectrum, with the ref-

erence line indicating the resummed prediction for the inclusive (strictly single-differential)

spectrum. The right panel shows the spectrum at a representative choice of the cut.

We start by observing that in all cases, the predictions obtained using the default

scale setting (solid orange) cleanly asymptote to the respective target observable (the

reference line) for large values of the cut. The central double-differential prediction in

the left panel of figure G.3 slightly overshoots the inclusive result beyond the phase-space

boundary Tcut & qT (where our calculation is effectively a leading-order calculation), but is

monotonic within uncertainties. Furthermore, the uncertainty obtained using our default is

smaller than any of the ones obtained from more differential scale setting. This is expected

because differential scale setting cannot account for correlations between different bins of

the spectrum, giving rise to a larger band in the cumulant cross sections.

We further note that predictions obtained using qT or qcut
T scale setting are mutually

compatible, i.e., their uncertainty bands (very nearly) overlap, as long as the scale setting

with respect to T is done the same way in both cases. This can be seen from the right panel

of figure G.1 by contrasting the default (qcut
T , Tcut) scales (solid orange) and (qT , Tcut) scales

(dotted green). Similarly, in figure G.2 we find that the default (qcut
T , T ) scales (solid orange)

and (qT , T ) scale setting (dashed blue) roughly differ by their respective uncertainties. In

principle these relations are expected since the unphysical scale dependence is canceled by

higher-order corrections, which our scale variations are designed to probe. For the case of

qT versus qcut
T scales in particular, we note that due to our specific choice of hybrid profile
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Figure G.2: The T spectrum with a cut on qT as a function of qcutT at fixed T = 5 GeV (left)

and as a function of T at fixed qcutT = 100 GeV (right). The bands indicate the total perturbative

uncertainty ∆total, see section 4.4.4. The colors correspond to different scale setting prescriptions

(default: solid orange); see the text for details.
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Figure G.3: The qT spectrum with a cut on T as a function of Tcut for qT = 15 GeV (left) and as

a function of qT for Tcut = 100 GeV (right). The bands indicate the total perturbative uncertainty

∆total, see section 4.4.4. The colors correspond to different scale setting prescriptions (default: solid

orange); see the text for detail.

scales in eq. (4.22), differences between the two prescriptions only start to appear when

turning off the resummation, such that grun is nonzero. E.g. for a high Tcut = 100 GeV,

which is also a good proxy for the inclusive qT spectrum, the two prescriptions fully agree

in the canonical region qcut
T ≤ 20 GeV (see the right panel of figure G.1). This is responsible

for the good overall agreement because most of the cross section is concentrated in the

canonical region.

The comparison of T versus Tcut scales is much less favorable, with the former failing to

reproduce the latter’s inclusive limit within uncertainties in all cases. This is in line with

the discrepancy reported in ref. [542] for a single-differential measurement of thrust in e+e−

collisions and at a comparable working order (NLL′+NLO). The mismatch is most striking

between the default scales (solid orange) and (qT , T ) scales (dashed blue) in figures G.1
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Figure G.4: Left: The double cumulant cross section as a function of Tcut for qcutT = 100 GeV for

different scale setting prescriptions, with a modified slope c = 0.5 of the SCETI profile scales, see

eq. (G.6). Right: The qT spectrum with a cut on T as a function of Tcut for different scale setting

prescriptions, also using modified SCETI profile scales with c = 0.5. The bands indicate the total

perturbative uncertainty ∆total, see section 4.4.4.

and G.3, implying that more effort is required to ensure both a correct integral and the

best possible prediction for the shape of the double-differential spectrum.

From our previous discussion we conclude that the mismatch mostly reduces to the

question of differential versus cumulant scale setting in T alone, so that the methods

developed for the single-differential case in refs. [122, 542] can be brought to bear here as

well if desired. However, since this is a well-known issue that is merely inherited from the

single-differential case, we do not pursue this further in the main text.

Instead, we consider a modification of our profile scales to illustrate that the issue is

indeed a correlated higher-order effect related to scale choices. Specifically, we can consider

lowering the canonical low scale µI
S ∼ (µI

B)2/µI
H ∼ T in SCETI by a factor of c = 0.5, which

does not parametrically violate the canonical scaling. Including a smooth interpolation to

the fixed-order and nonperturbative region, this can be achieved by replacing eq. (4.10)

with

f I
run(c;x) =



x0

(
1 + c2x2

4x2
0

)
x ≤ 2x0/c ,

cx 2x0/c < x ≤ x1 ,

cx+ (2−cx2−cx3)(x−x1)2

2(x2−x1)(x3−x1) x1 < x ≤ x2 ,

1− (2−cx1−cx2)(x−x3)2

2(x3−x1)(x3−x2) x2 < x ≤ x3 ,

1 x3 < x ,

(G.6)

and keeping the entire remaining profile setup unchanged; setting c = 1 recovers eq. (4.10).

Our results using eq. (G.6) are shown in figure G.4, where we repeat the left panels of

figures G.1 and G.3 using the modified setup. Note that for simplicity, we use eq. (G.6) for

all results in this figure, i.e., for both differential and cumulant scale setting. We find that

the simple modification eq. (G.6) already substantially improves the agreement between
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Figure G.5: Comparison to CMS 13 TeV measurements [31] analogous to figure 7.14 but for the

unnormalized, absolute qT spectrum.

differential and cumulant scale setting, with the result from (qcut
T , T ) scales (dotted green,

left panel) covering the inclusive fixed-order cross section and the result from (qT , T ) scales

(dashed blue, right panel) covering the result from single-differential qT resummation, at

the price of much larger uncertainties.

We conclude that with additional effort, e.g. applying the methods used in refs. [122, 542],

it would be possible to fully reconcile the best possible predictions for both the differential

shape and the cumulant of the double-differential spectrum. However, for our purposes we

can simply use the appropriate scale setting for the observable of interest. In particular, if

the experimental observable of interest has cumulant-like character in either qT or T , e.g. if

large bins in either observable are considered, the double-differential profile setup given in

chapter 4, using (qcut
T , T ) or (qT , Tcut) scales as appropriate, will be completely sufficient.

G.2 Comparison to additional experimental data

G.2.1 Unnormalized CMS 13 TeV measurements

In section 7.5, we compared our predictions to the CMS 13 TeV measurements from ref. [31]

using the normalized qT and φ∗ spectra. For completeness, here we show the correspond-

ing results for the unnormalized, absolute qT spectrum in figure G.5 and φ∗ spectrum in
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Figure G.6: Comparison to CMS 13 TeV measurements [31] analogous to figure 7.18 but for the

unnormalized, absolute φ∗ spectrum.

figure G.6. The experimental uncertainties are larger for the absolute spectra than the

normalized ones but include a substantial correlated component from the overall abso-

lute normalization of the measurement. The absolute spectra show the same systematic

improvement in the predictions from resumming the fiducial power corrections.

G.2.2 Results for µ+µ− channel

In section 7.5, we compared our predictions to the ATLAS 8 TeV measurements [426] in the

pp → Z/γ∗ → e+e− channel. For completeness, here we provide the analogous results in

the pp→ Z/γ∗ → µ+µ− channel, which differ from the electron measurements by the lack

of the lepton-rapidity exclusion region 1.37 < |η| < 1.52. In figure G.7, we show the results

for the qT spectrum in the muon channel, which corresponds to figure 7.16 in the electron

channel. In figure G.8, we show the results for the φ∗ spectrum in the muon channel, which

corresponds to figure 7.17 in the electron channel. The results for the muon channel are

essentially identical and confirm the conclusions drawn in section 7.5.
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G.2 Comparison to additional experimental data
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Figure G.7: Comparison to ATLAS 8 TeV qT measurements [426] in the µ+µ− channel, analogous

to the e+e− channel in figure 7.16.
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Figure G.8: Comparison to ATLAS 8 TeV φ∗ measurements [426] in the µ+µ− channel, analogous

to the e+e− channel in figure 7.17.
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[534] R. Brüser, A. Grozin, J. M. Henn and M. Stahlhofen, Matter dependence of the

four-loop QCD cusp anomalous dimension: from small angles to all angles, JHEP

05 (2019) 186 [1902.05076]. [p. 311]

[535] J. M. Henn, G. P. Korchemsky and B. Mistlberger, The full four-loop cusp

anomalous dimension in N = 4 super Yang-Mills and QCD, JHEP 04 (2020) 018

[1911.10174]. [p. 311]

[536] G. Curci, W. Furmanski and R. Petronzio, Evolution of Parton Densities Beyond

Leading Order: The Nonsinglet Case, Nucl. Phys. B175 (1980) 27. [p. 312]

[537] W. Furmanski and R. Petronzio, Singlet Parton Densities Beyond Leading Order,

Phys. Lett. 97B (1980) 437. [p. 312]

[538] R. K. Ellis and W. Vogelsang, The Evolution of parton distributions beyond leading

order: The Singlet case, hep-ph/9602356. [p. 312]

[539] R. V. Harlander, Virtual corrections to gg → H to two loops in the heavy top limit,

Phys. Lett. B492 (2000) 74 [hep-ph/0007289]. [p. 313]

[540] S. Moch, J. A. M. Vermaseren and A. Vogt, The Quark form-factor at higher orders,

JHEP 08 (2005) 049 [hep-ph/0507039]. [p. 313]

[541] S. Moch, J. A. M. Vermaseren and A. Vogt, Three-loop results for quark and gluon

form-factors, Phys. Lett. B625 (2005) 245 [hep-ph/0508055]. [p. 313]

[542] D. Bertolini, M. P. Solon and J. R. Walsh, Integrated and Differential Accuracy in

Resummed Cross Sections, Phys. Rev. D95 (2017) 054024 [1701.07919]. [pp. 330,

333, 334, and 335]

https://doi.org/10.1103/PhysRevLett.122.201602
https://arxiv.org/abs/1901.03693
https://doi.org/10.1007/JHEP05(2019)186
https://doi.org/10.1007/JHEP05(2019)186
https://arxiv.org/abs/1902.05076
https://doi.org/10.1007/JHEP04(2020)018
https://arxiv.org/abs/1911.10174
https://doi.org/10.1016/0550-3213(80)90003-6
https://doi.org/10.1016/0370-2693(80)90636-X
https://arxiv.org/abs/hep-ph/9602356
https://doi.org/10.1016/S0370-2693(00)01042-X
https://arxiv.org/abs/hep-ph/0007289
https://doi.org/10.1088/1126-6708/2005/08/049
https://arxiv.org/abs/hep-ph/0507039
https://doi.org/10.1016/j.physletb.2005.08.067
https://arxiv.org/abs/hep-ph/0508055
https://doi.org/10.1103/PhysRevD.95.054024
https://arxiv.org/abs/1701.07919




Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, die vorliegende Dissertationsschrift selbst verfasst und

keine anderen als die angegebenen Hilfsmittel und Quellen benutzt zu haben.

Die eingereichte schriftliche Fassung entspricht der auf dem elektronischen Speichermedium.

Die Dissertation wurde in der vorgelegten oder einer ähnlichen Form nicht schon einmal in
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