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Abstract

Conformal partial waves are fundamental objects in conformal field theory and their knowl-
edge is a necessary prerequisite for the bootstrap programme. The study of partial waves is
naturally a part of harmonic analysis on the conformal group. We take this observation as the
starting point and use it to derive various results about partial waves. These include relations
of four/higher-point conformal blocks to wavefunctions of Calogero-Moser-Sutherland/Gaudin
integrable models and new explicit expressions for superconformal and defect blocks in terms
of special functions.

Zussamenfassung

Konforme Partialwellen sind fundamentale Objekte in konformen Feldtheorien und sie zu verste-
hen ist eine notwendige Voraussetzung für das Bootstrap-Progamm. Die Untersuchung der Par-
tialwellen ist ein natürlicher Bestandteil bei der harmonischen Analyse der konformen Gruppe.
Diese Beobachtung ist unser Ausgangspunkt von dem aus wir verschiedene weitere Resultate zu
Partialwellen herleiten. Diese Resultate sind beispielswiese Relationen zwischen vier-/vielpunkt
konformen Blöcken und Wellenfunktionen von Calogero-Moser-Sutherland/Gaudin integrablen
Modellen sowie neue explizite Ausdrücke für superkonforme und defect Blöcke gegeben durch
spezielle Functionen.
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Chapter 1

Introduction

1.1 The importance of conformal field theory

Conformal field theories describe quantum systems that are invariant under angle-preserving
transformations of spacetime. In particular, such systems do not have a length scale, which
may at first suggest to discard them as physically irrelevant. Yet, it turns out that conformal
invariance plays an important role in many areas of theoretical physics, two prominent examples
of which are statistical mechanics and quantum gravity.

Let us explain why such relations are to be expected. Consider a statistical physics system
with a large number N of particles. It is well known that in the thermodynamic limit, i.e.
when N −→ ∞, the system becomes formally equivalent to a Euclidean quantum field theory.
Indeed, in the continuum, possible states of the system can be approximated by fields. In
this process, the probability distribution over states becomes a distribution over the space of
field configurations, i.e. a path-integral measure. In general, the field theory defined by this
measure will be massive. However, at a phase transition, when the correlation length of the
statistical system becomes infinite, the resulting field theory enjoys scale invariance and often
the full conformal invariance. Thus, conformal field theories model continuum limits of critical
statistical physics systems.

A typical example of systems that we have in mind is the Ising model. This model was intro-
duced to describe magnets and is defined as a system of spins σk ∈ {±1} on a lattice Λ. Each
spin interacts with its nearest neighbours and they all lie in an external magnetic field. Thus,
the Hamiltonian

H({σk}) = −J
∑
〈ij〉

σiσj − h
∑
i

σi, (1.1)

involves two parameters, the interaction strength J and the magnetic field strength h. (The
notation 〈ij〉 means that the first sum runs over pairs of neighbouring sites on the lattice.) If
J > 0, the model describes a ferromagnet. There are various versions and generalisations of the
Ising model - one can study it on different lattices Λ, allow the interaction strength to depend
on the sites (i, j) etc. We will discuss the simplest case of a hypercubic lattice in Rd with
vanishing magnetic field. Already in this case, the exact computation of the partition function

Z =
∑
{σk}

e−βH({σk}), (1.2)
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CHAPTER 1. INTRODUCTION

is notoriously difficult for d ≥ 3. In one dimension, the model is not very interesting and does
not exhibit a phase transition. In two, it has been analytically solved by Onsager in 1944.

Some interesting properties of system’s behaviour are encoded in the average magnetisation m
(if the number of sites is N , this is 〈 1

N

∑
σi〉). At zero temperature, the system rests in its

lowest energy state where all spins point in the same direction and |m| = 1. In particular, if
we know the direction of any one spin, every other one is fixed by it. On the other extreme of
very high temperatures, the spins behave independently of one another and m tends to zero.
Somewhere in between, there is a critical temperature Tc (for the Ising model, Tc = 2dJ) at
which the propagation of local interactions and effects of randomness balance each other so
that the spins are distributed in roughly the same way on all length scales. At the critical
temperature, the magnetisation becomes zero in a non-differentiable manner, to remain zero
for all T > Tc. We say that the system (or rather, the family of systems parametrised by T )
exhibits a phase transition at Tc.

A familiar, but highly nontrivial, fact from statistical mechanics is that phase transitions are in
some sense universal. For example, as a liquid changes into a gas, the heat capacity diverges as
a power law of the temperature, c ∼ |T − Tc|−γ. The exponent γ turns out to be the same for
all gases. However, the universality goes way beyond this and the liquid - gas phase transition
can be shown to be equivalent to certain critical systems that describe magnets and are similar
to the Ising model.

For the same reasons as in statistical mechanics, CFTs occupy a significant place in the space of
all quantum field theories, viewed in the Wilsonian paradigm. In this heuristic picture, there is
a (renormalisation group) flow on the space of all theories, provided by the integration of field
modes. Fixed points of the flow are, by definition, scale invariant theories. When combined
with other properties of a QFT, scale invariance ”in most cases” enhances to the full conformal
invariance. Thus, conformal theories may be used to organise universality classes of QFTs.
Quantum theories of a class are all the ones that flow into a given fixed point. If one could
solve a certain CFT, then one could hope to access the neighbouring quantum field theories
through perturbation theory.

There are also important applications of CFTs to systems that do not exhibit conformal symme-
try. The most famous such example is the conjectured AdS/CFT correspondence, according
to which quantum theories of gravity with asymptotically AdSd+1 metric are equivalent to
d-dimensional conformal field theories. The conformal group SO(d, 2) is in the original gravi-
tational theory interpreted as the group of isometries of AdSd+1. Here, the CFT is an auxiliary
object whose correlation functions compute the scattering amplitudes of the original theory.
Indeed, the idea that properties of CFTs secretly teach us about gravity has been one of the
driving sources for their study.

We mentioned a number of reasons why one may wish to study conformal field theories. Of
course, there would be hardly any sense in using conformal theories to classify more general
QFTs or describe gravity, if they themselves were intractable. And indeed, there exist powerful
techniques for the study of CFTs. It was realised in the early works [11, 12, 13, 14] that in a
CFT one can define a certain algebra of local operators and that all properties of the theory
are encoded in this algebra (denoted A). Compared to ordinary QFTs, which have also been
studied through their algebras of local operators, expansions of operator products in CFTs are
convergent rather than asymptotic. The construction of conformal theories reduces to that of

16



1.2. INVITATION TO THE CONFORMAL BOOTSTRAP

their associated algebras A. In this language, the most constraining consistency condition that
has to be satisfied in any theory is associativity of A. It can also be formulated as the set of
crossing symmetry equations satisfied by four-point correlation functions.

We will go into more details in later chapters, but for now let us note that the problem cast in
the new language is still a very difficult one. Local operators are in 1-1 correspondence with
the irreducible representations of the conformal group that make up the Hilbert space. One can
easily show that there are necessarily infinitely many irreducible components. Therefore, there
are infinitely many crossing equations. In two dimensions, it is sometimes possible to organise
the irreducible representations into a finite number of modules of (two copies of) the Virasoro
algebra. Theories with this property are known as minimal models. Their construction and
subsequent identification with two-dimensional statistical systems was the major achievement
of the field in the 1980s, [15] .

Nowadays, conformal field theories constitute a substantial part of research in mathematical
physics. They lie at the intersection of several non-perturbative approaches to QFTs. Many
of these apply to theories with supersymmetry and include localisation, superconformal index
calculations and techniques coming from chiral algebras. It is believed that there are continuous
families of consistent SCFTs (parametrising so-called moduli spaces). The maximally super-
symmetric Yang-Mills theory with the gauge group SU(N) is superconformal and has been the
subject of numerous investigations. For some time it was thought that the exact computations
in this theory were possible mainly due to supersymmetry, but there exist deformations of
SYM that break all the supersymmetries but preserve the conformal symmetry and are still
solvable. (These fishnet CFTs are, however, not unitary).

Besides the analysis of concrete models, the approach of constraining general CFTs using
crossing symmetry, known as the conformal bootstrap programme, has seen a revival since
2008 when it was realised in [16] that small subsets of the infinite system of crossing equations
can be studied numerically in their own right to produce interesting conclusions. The crowning
achievement of the bootstrap to date is a precise determination of critical exponents in the 3d
Ising model. Since it is the one that we will follow, let us briefly discuss the basic ideas of this
approach.

1.2 Invitation to the conformal bootstrap

We will illustrate the workings of the bootstrap programme on a simple example that was
originally considered in [16]. Assume that we have a four-dimensional conformal field theory
that is weakly interacting. The free field in four dimensions has conformal weight ∆ = 1. Thus,
we assume the existence of a field ϕ that has dimension ∆ϕ ≈ 1. Two- and three-point functions
of scalar fields are fixed by conformal symmetry - this follows from the fact that any triple of
points in general position can be brought by conformal transformations to some predetermined
configuration. The correlators read

〈ϕ1(x1)ϕ2(x2)〉 =
δ12

x
2∆ϕ

12

, 〈ϕ1(x1)ϕ2(x2)ϕ3(x3)〉 =
λϕ1ϕ2ϕ3

|x12|∆1+∆2−∆3|x23|∆2+∆3−∆1 |x31|∆3+∆1−∆2
.

Here, we consider conformal fields on a flat Euclidean space M = Rd ∪ {∞} and use the
notation xij = xi−xj. The four-point function of ϕ is no longer fixed by symmetry, which only

17



CHAPTER 1. INTRODUCTION

constrains it to take the general form

〈ϕ(x1)...ϕ(x4)〉 =
1

x
2∆ϕ

12 x
2∆ϕ

34

g(u, v), u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
12x

2
34

, (1.3)

for some arbitrary function g. The number of conformal invariants on which g depends is two
because, starting from four points xi in general position, one can use conformal transformations
to map them to

x1 7→ 0, x2 7→
z1 + z2

2
e1 +

z1 − z2

2i
e2, x3 7→ e1, x4 7→ ∞, (1.4)

where {ei} is a standard orthonormal basis of Rd. The coordinates (z1, z2) of the point x2 are
then related to the cross ratios u, v through

z1z2 = u, (1− z1)(1− z2) = v . (1.5)

As we had said already, the Hilbert space of physical states carries a representation of the
conformal group. This representation decomposes as a direct sum (or an integral) of irreducible
components VI . Let PI be the projectors to spaces VI . Then, by inserting the identity 1 =

∑
PI

into (1.3) we get

〈ϕ(x1)...ϕ(x4)〉 =
∑
I

〈ϕ(x1)ϕ(x2)PIϕ(x3)ϕ(x4)〉 =
1

x
2∆ϕ

12 x
2∆ϕ

34

∑
I

gI(u, v) . (1.6)

Another crucial property of conformal field theories is the state-operator correspondence. A
way to formulate this property is by saying that the projectors PI are of the form

PI =
∑
i

OIi|0〉〈0|ÕIi . (1.7)

Here, OI and ÕI are a local primary operator and its shadow, i runs over all their descendants
and |0〉 is the vacuum of the theory. The state-operator correspondence allows to rewrite
the four-point function as a sum of products of three-point functions. Since the three-point
functions that involve descendants of a primary fieldO are fixed in terms of three-point functions
with O itself, one can perform the summation over i

〈ϕ(x1)...ϕ(x4)〉 =
1

x
2∆ϕ

12 x
2∆ϕ

34

∑
∆,l

p∆,lg∆,l(u, v), p∆,l = λ2
ϕϕO∆,l

. (1.8)

The last equation defines conformal partial waves, or conformal blocks g∆,l. By definition, the
blocks are given as sums over i of three-point functions, with a fixed normalisation. They
are therefore some fixed functions. However, explicit expressions for blocks in terms of special
functions were only obtained in the work of Dolan and Osborn [30] almost 30 years after the
integral expressions that capture the above summation process were written down. In four
dimensions, partial waves are

g
(4d)
∆,l =

z1z2

z1 − z2

(
k∆+l(z1)k∆−l−2(z2)− k∆−l−2(z1)k∆+l(z2)

)
, (1.9)
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1.2. INVITATION TO THE CONFORMAL BOOTSTRAP

where k is given in terms of the hypergeometric function by

k2ρ(x) = xρ 2F1(ρ, ρ; 2ρ;x) . (1.10)

The final property of correlators needed for formulation of the bootstrap equations is their
invariance under permutations of the arguments xi. This is one of the axioms of Euclidean
quantum field theory. When combined with the partial wave decomposition, this property
leads to non-trivial functional equations for g

g(u, v) =
(u
v

)∆ϕ

g(v, u), g(u, v) = g(u/v, 1/v) . (1.11)

The idea of conformal bootstrap is to substitute the conformal block decomposition for g on
both sides of these equations and try to find solutions with positive coefficients p∆,l. The
second of these equations is actually satisfied by each block of even spin, while for odd spins
the two sides differ by a sign. Therefore, we learn that only operators of even spin appear in
the decomposition. The first equation, however, leads to a much less trivial condition on the
p∆,l

v∆ϕ
∑
∆,l

p∆,lg∆,l(u, v) = u∆ϕ
∑
∆,l

p∆,lg∆,l(v, u) . (1.12)

It is common to separate the contribution of the identity operator on both sides. This leads to

v∆ϕ

(
1 +

∑
∆,l

p∆,lg∆,l(u, v)

)
= u∆ϕ

(
1 +

∑
∆,l

p∆,lg∆,l(v, u)

)
, (1.13)

which we can further rewrite as

1 =
∑
∆,l

p∆,lF∆ϕ,∆,l, F∆ϕ,∆,l(u, v) =
v∆ϕg∆,l(u, v)− u∆ϕg∆,l(v, u)

u∆ϕ − v∆ϕ
. (1.14)

This is an infinite set of equations for p∆,l since u and v can assume infinitely many values. The
implications of these equations can only be studied once the properties of conformal blocks are
taken into account. In Euclidean kinematics, the coordinates zi are complex conjugates of one
another. In Lorentzian kinematics that one really wishes to study, zi are real and 0 < zi < 1.

Let us put ∆ϕ = 1 and plot F∆ϕ,∆,l. To simplify matters, we set z1 = z2. This subregion of
the unit square will already put restrictions on operator dimensions. For l ≥ 2 and any value
∆ above the unitarity bound, ∆ ≥ l + 2, we get a similar plot

Figure 1.1: F1,∆,l(z, z) for (∆, l) = (5, 2) and (∆, l) = (6, 4), respectively
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For any l ≥ 2 the function on the right hand side of (1.14) is convex at z = 1/2. Since the left
hand side is a constant, there need to be terms with l = 0 in the decomposition as well. But
these terms are also of the above shape as long as ∆ > ∆c ≈ 3.62 (see Figure 2). We conclude
that there exists an operator in the decomposition with conformal dimension less than ∆c. This
may not be a very strong bound, but we used a very small amount of information contained in
the crossing equation (1.14).

Figure 1.2: F1,∆,0(z, z) for ∆ = 3.4 and ∆ = 3.8, respectively

To get a stronger bound, we may observe that the above argument amounts to applying the
linear functional (∂z1 + ∂z2)2|z1=z2=1/2 to both sides of (1.14) and noticing that for any F1,∆,l

with l > 0 it produces a positive number (convexity at the midpoints in Figure 1). To obtain
stronger bounds, one looks for other functionals with certain positivity properties. Let us write

Λ(2m,2n) = (∂z1 + ∂z2)2m(∂z1 + ∂z2)2n|z1=z2=1/2 . (1.15)

It is then possible to show that Λ(2,0) − Λ(0,2) is positive when acting on F1,∆,l for arbitrary
(∆, l) that satisfy the unitarity bound. We show a few values of this functional as a function
of ∆ in Figure 3, for spins 0, 2 and 4.

Figure 1.3: (Λ(2,0) − Λ(0,2))(F1,∆,l) as a function of ∆ for spin l = 0, 2, 4, respectively

It can be further shown that the functional Λ(2,0) − Λ(0,2) becomes zero only for (∆, l) = (2, 0)
and on the unitarity bound (∆ = l + 2, l) for non-zero spins l. This proves, in particular, that
in the OPE of a dimension one scalar ϕ with itself only the operators of twist (the difference
of dimension and spin) two appear, as is the case in the free theory. In passing, we observe
that since all functions F∆ϕ,∆,l(z, z) vanish at the boundaries z ∈ {0, 1}, the crossing equation
immediately requires the presence of infinitely many operators in the OPE.

Bootstrap arguments have become more refined, but they all follow the above logic. After
writing down a crossing symmetry equation, one tries to understand what kind of operators
can/have to appear in the OPE and bound the positive coefficients p∆,l. Properties of conformal
partial waves that allow for any kind of bound to exist, like convexity of functions F1,∆,l at
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z1 = z2 = 1/2, are detected by acting with judiciously chosen linear functionals. For some
representative works in the numerical bootstrap programme, the reader is referred to [17, 18,
19, 20, 21]. The review article [22] contains many more details, examples and references.

1.3 Outline of the thesis

Let us describe the structure of the rest of this thesis. Chapters 2 and 3 give an introduction to
conformal field theory in more than two dimensions. In particular, chapter 2 introduces basic
notions of CFTs and describes some of their simplest properties. For the most part, we focus
on properties themselves rather than specific computational methods of deriving them (e.g. no
mention of embedding space is made). The exception to this rule is made in the discussion of
conformal blocks, for which we also review their derivation as solutions to Casimir equations.
Chapter 3 gives several generalisations of the basic setup considered in chapter 2. This includes
theories with symmetry enhanced to the superconformal group, or broken to a subgroup by the
presence of a defect. The structure introduced in chapter 2 carries over to these cases with only
minor modifications (at least conceptually). We hope that this first part of the thesis may be
useful for someone who wishes to enter the field. Its purpose is also to fix the terminology and
notations used in the rest of the text.

The next three chapters are devoted to mathematical underpinnings of our work. Mathematical
objects that describe symmetries of quantum systems are groups and their linear representa-
tions. In chapter 4, we study properties of the conformal group in some detail. This includes
various group decompositions and a large class of irreducible representations. Representations
that are relevant for us are infinite-dimensional. They are realised on spaces of functions and
constructed using parabolic induction. Chapter 5 focuses on a particular branch of represen-
tation theory - its relation to special functions and integrable systems. In particular, we will
explain how certain irreducible matrix elements of Lie groups, called spherical functions, arise
as wavefunctions of integrable Schrödinger problems (Calogero-Sutherland models). Since the
matrix elements are eigenfunctions of the group Laplacian, their study belongs to the field of
harmonic analysis. The discussion of chapters 4 and 5 is in part about general Lie groups and
in part restricted to the conformal group.

Since superconformal theories occupy a significant portion of our work, there is a chapter
about supermathematics, i.e. mathematics of Z2-graded objects. In its first part, we discuss
super linear algebra and notions such as supermatrices and the Berezinian. This part ends
with the discussion of finite-dimensional Lie superalgebras. Then we move to the general
notion of a supermanifold and explain how they can be reconstructed from their ”algebras of
functions”. Super analogues of standard concepts from differential geometry, such as vector
fields, differential forms and integration are also introduced. The algebraic and geometric
aspects of supersymmetry come together in the notion of a Lie supergroup. The last part of
the chapter discusses supergroups and their actions on cosets.

In chapters 7-12, we present the results of our research. The main result of chapter 7 is a
representation of four-point functions of a superconformal field theory in terms of K-spherical
functions on the superconformal group. In order to arrive at this representation, we lift the
fields of the theory to functions on the supergroup and then construct an isomorphism between
the set of invariant vectors in the four-fold tensor product of principal series representations of

21



CHAPTER 1. INTRODUCTION

the superconformal group and the space of K-spherical functions. The end result is a simple
expression for G4(xi) in terms of a K-spherical function F , which we refer to as the lifting
formula, (7.40). The all important property of the map (7.40) is that it takes conformal partial
waves to harmonic functions. Due to relations of the latter with Calogero-Sutherland models,
we will sometimes say that F is the expression for G4(xi) in the Calogero-Sutherland gauge.

The lifting formula is the starting point for discussions of almost all later chapters. Chapter
8 is devoted to the study of crossing equations in the Calogero-Sutherland gauge. Its main
result is the formula for the so-called crossing factor (2.39) that measures the ratio of four-
point tensor structures in two different OPE channels. The crossing factor for theories without
supersymmetry takes a very simple form that we give explicitly. Chapter 9 uses (7.40) to derive
some previously ”experimentally observed” relations between conformal blocks and Calogero-
Sutherland wavefunctions.

Some of the central ideas of the thesis are contained in chapter 10. In it, we present a system-
atic derivation of superconformal blocks for four-point functions in theories that have type I
supersymmetry. The idea is to reduce the problem to a simpler question about ordinary bosonic
blocks. In mathematical terms, we will compute the K-spherical harmonics on a supergroup
by staring with K-spherical harmonics on its underlying Lie group. The method is illustrated
on examples in one and four dimensions, where it produces simple formulas for superconformal
partial waves as finite sums of bosonic ones.

In chapter 11 we turn to conformal field theories with defects. It turns out that the technology
of chapter 7 goes a long way towards embedding the theory of defect conformal blocks into
harmonic analysis. For this, one more ingredient is needed, namely the lift of bulk fields to
functions on the defect conformal group Gd,p. This lift is constructed in the first part of the
chapter using the Iwasawa decomposition of Gd,p. It allows us to write formulas similar to
(7.40) and represent correlators of various numbers of bulk and defect fields as functions on
Gd,p. As a concrete application, we will compute the partial waves for three-point functions of
one defect and two bulk fields and express them in terms of Appell’s functions.

Finally, chapter 12 is concerned with correlation functions with more than four field insertions.
It is shown that for any number of points, there is a natural action of the Gaudin algebra on
the space of solutions to the Ward identities. Furthermore, upon specialisation of parameters
of this algebra, conformal partial waves may be characterised as simultaneous eigenfunctions
of Gaudin Hamiltonians. This is a promising starting point for investigations that we plan to
take in the future.

We conclude in chapter 13 with a summary of results and the discussion of natural or interesting
directions in which the presented studies might be taken.

Each chapter begins with an introduction that tries to summarise its main points on a non-
technical level.

This thesis is based on articles [1, 2, 3, 4, 5, 6, 7]. Some of the ideas on which it builds were
introduced in [8, 9, 10].
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Chapter 2

Elements of Conformal Field Theory

2.1 Defining properties

Conformal field theories admit a mathematical description, or axiomatisation, as do quantum
field theories in general. Here, we do not wish to go into the details of these axioms, but rather
formulate a list of properties that we want a conformal field theory to satisfy. The properties
will be sufficiently clear to provide a working definition of a CFT for all our purposes. They
will also point to the correct axiomatisation, should one wish to obtain one.

Any conformal field theory is, first of all, a quantum field theory. That is, it has a Hilbert space
of physical states H and quantum fields which are distributions valued in End(H) (operator-
valued distributions). The spacetime M , over which these distributions are defined, will always
be assumed to be either the Euclidean space Rd or the Minkowski space R1,d−1, conformally
compactified at infinity.

The conformal group of M is the group of its angle preserving diffeomorphisms. It is isomorphic
to O(d+ 1, 1) or O(d, 2) in the Euclidean or Lorentzian signature, respectively. The symmetry
group of the theory, denoted by G, is locally isomorphic to the conformal group, e.g. in the
Euclidean case it may be O(d + 1, 1), but also just its identity component SO+(d + 1, 1) or
the connected and simply connected group Spin(d + 1, 1) etc. The precise group depends on
the physical situation. For instance, we may or may not wish parity to be a symmetry of the
physical system under consideration. We leave the discussion of these various choices for the
following chapters and assume that some choice has been made. The statement of symmetry
is formulated as

Property 1 The Hilbert space of physical states H carries a representation of G.

This representation will be denoted by Π. In the Lorentzian signature, the representation is
required to be unitary. In the Euclidean signature, the representation should be an analytic
continuation of a unitary Lorentzian representation, a property called reflection positivity.

So, what are concretely the conformal transformations of Rd? Any isometry is a conformal
transformation, so translations and rotations are examples. Also, rescalings (also called dila-
tions)

x 7→ λx, x ∈ Rd, λ > 0, (2.1)
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are obviously conformal. Finally, it is not difficult to see that the inversion

I : Rd ∪ {∞} −→ Rd ∪ {∞}, I(xµ) =
xµ

x2
, (2.2)

is also a conformal map. These four types of transformations generate the group O(d + 1, 1).
We will often work with the Lie algebra g = so(d+ 1, 1). It has a basis {Pµ,Mµν , D,Kµ} with
non-vanishing brackets

[Mµν , Pρ] = δνρPµ − δµρPν , [Mµν , Kρ] = δνρKµ − δµρKν , (2.3)

[Mµν ,Mρσ] = δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν , (2.4)

[D,Pµ] = Pµ, [D,Kµ] = −Kµ, [Kµ, Pν ] = 2(Mµν − δµνD) . (2.5)

Here Pµ andMµν are the standard generators of translations and rotations, D generates dilations
and Kµ, related to Pµ by Kµ = IPµI, are called the special conformal generators. Obviously,
indices µ, ν run from 1 to d. The conformal algebra g can also be viewed as the Lorentz Lie
algebra in d+ 2 dimensions. Indeed, the generators

L01 = D, L0µ =
1

2
(Pµ +Kµ), L1µ =

1

2
(Pµ −Kµ), Lµν = Mµν , (2.6)

satisfy the standard relations

[Lαβ, Lγδ] = ηβγLαδ − ηαγLβδ + ηβδLγα − ηαδLγβ, (2.7)

with µ, ν = 2, ..., d+1, α, β... = 0, 1, ..., d+1 and η being the mostly-positive Minkowski metric.

Having described the symmetry group, let us turn to the representation that the Hilbert space
carries. The space decomposes into a direct sum (or an integral) of irreducible components Vi.
Further, each Vi is a parabolic Verma module of the form

Vi = Indg
pWi = U(g)⊗U(p) Wi . (2.8)

Here, we are simply saying that one starts with a finite-dimensional representation Wi of the
Lie algebra of rotations and dilations

k = so(1, 1)⊕ so(d) . (2.9)

Such a representation can be characterised by a conformal weight ∆ and an so(d) highest weight
λ (spin). Next, we impose that special conformal generators should act trivially on Wi. This
defines a representation of the subalgebra of g generated by {Kµ,Mµν , D}, that we denote by
p. Finally, we postulate that acting with Pµ on vectors in Wi creates new states. This gives
an infinite-dimensional vector space Vi and the action of p can be uniquely extended from Wi

to it. The notion of induced representations (2.8) that we just described will be given a more
precise treatment in later chapters.

Note that Pµ and Kµ act as raising and lowering operators for the dilation generator D, while
rotations commute with it. It follows that in any representation Vi, and thus the full Hilbert
space as well, the spectrum of D is bounded from below. Vectors that are annihilated by all
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special conformal generators are called primaries. Any vector obtained from a primary by an
application of Pµ-s is called a descendant.

Let us pause for a moment and discuss the Lorentzian case. Now, the conformal algebra is
g = so(d, 2). It is spanned by generators {Lαβ} that obey the brackets (2.7), only with the
metric η = diag(−1, 1, ..., 1,−1). The generators {D,Pµ, Kµ,Mµν}, still defined by (2.6) obey
the non-zero brackets

[Mµν , Pρ] = ηνρPµ − ηµρPν , [Mµν , Kρ] = ηνρKµ − ηµρKν , (2.10)

[Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ + ηνσMρµ − ηµσMρν , (2.11)

[D,Pµ] = Pµ, [D,Kµ] = −Kµ, [Kµ, Pν ] = 2(Mµν − ηµνD), (2.12)

where α, β, ... = 0, ..., d+ 1 and µ, ν, ... = 2, ..., d+ 1. The identification of conformal generators
with Lorentz generators is of course not unique. Notice, however, that in both signatures the
dilation generator has to be picked as a Lorentz generator along directions one of which is
spacelike, while the other is timelike.

We move to the second property of conformal field theories, which goes under the name of the
operator-state correspondence. Fields in the theory are local operators O(x) and as such are
acted on by G via the adjoint representation of H

g · O(x) = Π(g)O(x)Π(g)−1 . (2.13)

By definition we have

O(x) = ex·P · O(0) = Π(ex·P )O(0)Π(e−x·P ) . (2.14)

Furthermore, the space O(0) carries a representation ρ of the Lie algebra p. We suppressed the
indices that O carries. The field is said to be primary if Kµ act trivially on O(0). In this case,
we can write ρ = (∆, λ) as above, that is, label the representation by a conformal weight and a
spin. Given any generator of g, we can compute its action on O(x) using the Leibniz rule and
the Baker-Campbell-Hausdorff formula. For example, in the case of rotations

Mµν · O(x) = [Π(Mµν),O(x)] = [Π(Mµν),Π(ex·P )O(0)Π(e−x·P )] =

= Π(ex·P )
(
Π(e−x·PMµνe

x·P )O(0)−O(0)Π(e−x·PMµνe
x·P )
)

Π(e−x·P ) =

= Π(ex·P )[Π(Mµν − xµPν + xνPµ),O(0)]Π(e−x·P ) = (xν∂µ − xµ∂ν + λ(Mµν))O(x) .

Let us denote the generators Mµν in the representation λ by Σµν . If the last calculation
is repeated for other generators we arrive at a representation of the conformal algebra by
differential operators

pµ = ∂µ, (2.15)

mµν = xν∂µ − xµ∂ν + Σµν , (2.16)

d = xµ∂µ + ∆, (2.17)

kµ = x2∂µ − 2xµ(xν∂ν + ∆) + 2xνΣµν . (2.18)

These operators act on classical fields, i.e. functions on M valued in the carrier space of the
representation ρ. Indeed, field configurations form an infinite-dimensional representation of g,
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which is generically (for general values of ∆) irreducible and non-unitary. As we shall see later,
these representations belong to the principal series of g. The corresponding representation π of
the conformal group is given by

(πgϕ)(gx) = ρ(dgx)ϕ(x) . (2.19)

Here, g is an arbitrary element of G and dg is its differential when g is considered as a dif-
feomorphism of M (the fact that the diffeomorphism g is a conformal map means that the
differential dgx belongs to the group K = SO(1, 1)×SO(d), so evaluating ρ at it makes sense).

As in any quantum field theory, the Hilbert space H should contain a distinguished vacuum
vector, which is invariant under the symmetry group. Given a local primary field O(x), one
can produce a state in H by acting with O(0) on the vacuum

|ψ〉 = O(0)|0〉 . (2.20)

The state is also primary, by conformal invariance of the vacuum

Π(Kµ)|ψ〉 = Π(Kµ)O(0)|0〉 = [Π(Kµ),O(0)]|0〉 = 0 . (2.21)

Now we can state the operator-state correspondence

Property 2 Any primary vector inH is obtained by acting with a primary field on the vacuum,
(2.20).

Descendant vectors are obtained by acting with derivatives of a primary field, e.g

Π(Pµ)|ψ〉 = Π(Pµ)O(0)|0〉 = [Π(Pµ),O(0)]|0〉 = O′(0)|0〉 . (2.22)

A useful corollary of the operator-state correspondence is the so-called operator product ex-
pansion (OPE). This is a way to substitute a product of two fields at different points by an
infinite sum of fields at just one point. In order for the expansion to be valid, the operators
must be applied to the vacuum. Indeed, let O1 and O2 be two primary fields. Then

O1(0)O2(x)|0〉 = |ϕ〉 =
∑
i

|ϕi〉 =
∑
i

Π(F x
i (Pµ))|ψi〉

=
∑
i

Π(F x
i (Pµ))Oi(0)|0〉 =

∑
i

F x
i (∂µ)Oi(0)|0〉 .

We first decomposed the resulting vector |ϕ〉 as a sum of its projections |ϕi〉 to irreducible
components Vi. Each of |ϕi〉-s was then written in terms of a corresponding primary vector
|ψi〉 through an application of translation generators. Functions F x

i are completely fixed up to
overall scaling by the compatibility of the above equalities with conformal transformations. We
therefore write them as F x

i (∂µ) = c12iC(x, ∂µ). Then the OPE is schematically written as

O1(0)O2(x) ∼
∑
i

c12iC(x, ∂µ)Oi(0) . (2.23)

The constants c12i are called OPE coefficients. Morally speaking, they are the structure con-
stants of the operator product algebra. The set of representations {Vi} and the OPE coefficients
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{cijk} define what is called a set of CFT data. If one applies the operator product expansion
inside a correlation function of n fields, it reduces to an infinite sum of (n − 1)-point func-
tions. Therefore, by induction, the knowledge of the CFT data allows for a computation of
any correlation function of local fields, and thus the construction of the theory. However, since
the product of operators is associative, the structure constants cijk satisfy a set of equations,
or consistency conditions. Analysis of these conditions is the object of study of the conformal
bootstrap programme.

2.2 Correlation functions

Quantities of physical interest in a conformal field theory are correlation functions. These are
vacuum expectation values of products of operators. We will be looking at correlation functions
of n local primary fields

Gn(x1, ..., xn) = 〈0|O1(x1)...On(xn)|0〉 . (2.24)

The function Gn is a map from n copies of the spacetime to the vector space W = W1⊗ ...⊗Wn.
In a Lorentzian theory, the operators inside the correlator should be time ordered. In the
Euclidean case, the order does not play a role. The correlation function is invariant under
permutations of its arguments - this is an axiom of a local quantum field theory that expresses
causal independence of events that are spacelike separated.

Correlation functions are constrained by conformal symmetry through Ward identities. For, let
X ∈ g be any conformal generator and denote by Xi the representation on a field Oi that was
introduced above. We have

n∑
i=1

XiGn =
n∑
i=1

〈0|O1(x1)...[Π(X),Oi(xi)]...On(xn)|0〉 = 〈0|[Π(X),O1(x1)...On(xn)]|0〉 = 0 .

(2.25)
In the last step we have used the invariance of the vacuum and in the second to last the Leibniz
rule. We have written the local version of the Ward identities corresponding to the action of
the conformal algebra on the fields. Their global counterparts that correspond to the action of
the group read

Gn(gxi) = (ρ1(dgx1)⊗ · · · ⊗ ρn(dgx4))Gn(xi) . (2.26)

Either way, the identities state that Gn is an invariant vector in the tensor product of n
principal series representations of G. Indeed, the space of function Mn −→ W is naturally the
tensor product of n principal series and Ward identities simply express the G-invariance. We
will return to this point of view in later chapters and focus for the moment on the simplest
constraints that conformal invariance imposes on correlation functions.

We start with one-point functions. Translation invariance, ∂µG1(x) = 0, implies that G1 is a
constant function. Next, using the Ward identity for dilations

DG1(x) = (xµ∂µ + ∆)G1(x) = ∆G1(x) = 0 .

Therefore, a one-point function can be non-zero only for fields of vanishing conformal weight.
The identity operator is the only such field. Moving on to two-point functions of scalars we
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find

〈ϕ1(x1)ϕ2(x2)〉 =
cδ∆1,∆2

x2∆1
12

,

for some constant c. The constant can be absorbed in the normalisation of fields, leaving us
with the standardised form of two-point functions

〈ϕi(x1)ϕj(x2)〉 =
δij

x
2∆ϕ

12

. (2.27)

The fact that the two-point function is of fixed form follows from the possibility to move any
two points in general position to some predetermined configuration, e.g. (0,∞). That is, the
action of conformal transformations on M is (generically) two-point transitive. The same is
true for three points, and the three-point function of scalars reads

〈ϕi(x1)ϕj(x2)ϕk(x3)〉 =
cijk

|x12|∆j+∆j−∆k |x23|∆j+∆k−∆i|x31|∆k+∆i−∆j
. (2.28)

The constants cijk are precisely the OPE coefficients introduced earlier. To see this, one should
expand the product of the first two fields inside the three-point function and use (2.27).

Two- and three-point functions of spinning fields are still fixed by symmetry up to a finite
number of constants. The fixed kinematical expressions that these constants multiply are
known as invariant tensor structures. For example, a two-point function of traceless symmetric
tensors that have the same conformal weight ∆ reads, in canonical normalisation

〈Oµ1...µl(x1)Oν1...νl(x2)〉 =
1

x2∆
12

(
1

l!

∑
σ∈Sl

Jµ1σ(ν1)(x12)...Jµlσ(νl)(x12)− traces

)
, (2.29)

where Jµν(x) = sx is the reflection in the hyperplane orthogonal to x

Jµν(x) = δµν − 2
xµxν
x2

. (2.30)

Due to the fact that it appears in the differential of the conformal inversion, dIx = x−2J(x),
J(x) is also sometimes called the inversion tensor.

Starting from four-point functions, correlators are no longer fixed by symmetry. Instead, the
Ward identities constrain them to depend on an arbitrary function of conformal invariants {ua}

Gα
n(xi) = Ωα

I(xi)F
I(ua) . (2.31)

The index α runs over a basis of the space of field polarisations W , while I runs over a basis of
a generally lower dimensional space of n-point tensor structures. Conformal invariants can be
constructed from cross ratios

uijkl =
x2
ijx

2
kl

x2
ikx

2
jl

. (2.32)

Indeed, we see that such cross ratios are invariant under conformal transformations. In order to
construct them, we need at least four points, in which case there are two independent invariants

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (2.33)
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In general, not all cross ratios that one can build out of n points are functionally independent.
The number of independent ones for an n-point function in d dimensions is

# =
1

2
m(m− 3) + d(n−m), m = min(n, d+ 2) . (2.34)

Let us spend a moment to explain the nature of indices I. For concreteness, we focus on four-
point functions, the analysis for higher-point functions being entirely analogous. Notice that
conformal transformations can be used to put four points in general position to the configuration

x1 7→ 0, x2 7→
z + z̄

2
e1 +

z − z̄
2i

e2, x3 7→ e1, x4 7→ ∞ . (2.35)

The configuration space M4 of four points is foliated into orbits of G under the diagonal action
and the four-point function is completely specified by giving its values on one point of each
orbit. Let us denote the space of orbits by X = M4/G. The structure of this space might be
complicated, but there is an open dense subset of X which is a smooth manifold with local
coordinates (ua). Since the action of G on M4 is not free, not every function X −→ W gives a
well-defined correlation function. To see this, let x1, ..., x4 be four points in general position.
The stabiliser of (x1, ..., x4) in G under the diagonal action is locally isomorphic to SO(d− 2).
Indeed, one can notice that this is the stabiliser when points are chosen as in (2.35) - it consists
of rotations of the space spanned by vectors e3, ..., ed. For other choices of the four points, the
stabiliser subgroup is related to this one by conjugation. Let us denote the points from (2.35)
by x0

i and their stabiliser by B. For any b ∈ B, the Ward identities imply

G4(x0
i ) =

(
ρ1(dbx0

1
)⊗ ...⊗ ρ4(dbx0

4
)
)
G4(x0

i ) = (ρ1(b)⊗ ...⊗ ρ4(b))G4(x0
i ), (2.36)

where in the last equality we used that all elements of B act on M as linear transformations. In
conclusion, G4(x0

i ) belongs to the space of invariants WB. As a vector space, this is the direct
sum of trivial representations of B that appear in the decomposition

ResKB (ρ1 ⊗ ...⊗ ρ4) .

A generic orbit in M4 contains a point of the form χ = (0,∞, x3, x4) and corresponding spaces
W StabG(χ) all have the same dimension. This allows to write the correlation function as in
(2.31) (with n = 4), where I labels a basis of WB. For works on tensor structures, see
[23, 24, 25, 26, 27, 28].

The simplest correlator that is not fixed by symmetry is the four-point function of scalars,
which takes the form

G4(xi) =
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14

x2
24

)a(
x2

14

x2
13

)b
F (u, v), (2.37)

for some function F , with 2a = ∆2−∆1 and 2b = ∆3−∆4. Much of the bootstrap research has
been devoted to the study of this correlation function for reasons that we shall now explain.
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CHAPTER 2. ELEMENTS OF CONFORMAL FIELD THEORY

2.3 Conformal partial waves and crossing symmetry equa-

tions

We have said that the construction of a conformal field theory amounts to solving the constrains
on the CFT data {ρi, cijk} that come from associativity of the operator product algebra. To
formulate these constraints concretely as a set of equations, we consider a four-point function

Gα
4 (xi) = 〈O1(x1)...O4(x4)〉 = Ωα

I(xi)F
I(u, v) . (2.38)

If we permute points 2 and 4 and compare the resulting equation with the one above, we get

F I(u, v) =MI
J(u, v)F J(v, u) . (2.39)

The matrix MI
J is termed the crossing factor and it depends on the representations that

characterise fields Oi. A distinguishing feature of the crossing factor is its conformal invariance.
Therefore, whereas the tensor factors Ω(xi) depend non-trivially on coordinates of all insertion
points, the crossing factor is a function of cross ratios only. For scalars, the equation becomes

F (u, v) =
u

∆3+∆4
2

v
∆2+∆3

2

F (v, u) . (2.40)

Let Pi be the projection operator to the space Vi ⊂ H. Using 1 =
∑
Pi, the correlation function

decomposes as

G4(xi) =
∑
i

〈ϕ1(x1)ϕ2(x2)Piϕ3(x3)ϕ4(x4)〉 . (2.41)

This decomposition defines conformal partial waves (conformal blocks) as

G4(xi) =
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14

x2
24

)a(
x2

14

x2
13

)b∑
i

c12ici34gi(u, v) . (2.42)

An alternative expression for the blocks can be obtained using the operator product expansion.
We expand the products of first two and second two fields

G4(xi) = 〈
∑
O

c12OC(x12, ∂x2)µ1...µlOµ1...µl(x2)
∑
O′

cO′34C(x34, ∂x4)ν1...νkO′ν1...νk
(x4)〉

=
∑
O

c12OcO34C(x12, ∂x2)µ1...µlC(x34, ∂x4)ν1...νl〈Oµ1...µl(x2)Oν1...νl(x4)〉 .

Using expressions for C(x, ∂) and the two-point function of symmetric traceless tensors, it is
possible to compute the partial waves from above. However, a much simpler derivation of these
functions was found by Dolan and Osborn, [30], who characterised the conformal blocks as
solutions of two differential equations. Their idea, that we will now review, has an immense
bearing on the content of this thesis.

Let C2 = κabX
aXb be the quadratic Casimir element of the conformal algebra. We fix an

irreducible representation Vi and denote the corresponding contribution to the sum (2.41) by
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Gi
4. Then

〈ϕ1(x1)ϕ2(x2)Π(C2)Piϕ3(x3)ϕ4(x4)〉 = 〈ϕ1(x1)ϕ2(x2)κabΠ(Xa)Π(Xb)Piϕ3(x3)ϕ4(x4)〉

= κab

(
〈[Π(Xa), ϕ1(x1)]ϕ2(x2)Π(Xb)Piϕ3(x3)ϕ4(x4)〉

+ 〈ϕ1(x1)[Π(Xb), ϕ2(x2)]Π(Xb)Piϕ3(x3)ϕ4(x4)〉
)

= κab(X
a
1 +Xa

2 )〈ϕ1(x1)ϕ2(x2)Π(Xb)Piϕ3(x3)ϕ4(x4)〉 = κab(X
a
1 +Xa

2 )(Xb
1 +Xb

2)Gi
4 .

We have simply commuted the operators Π(Xa) and Π(Xb) past the fields ϕ1,2 and used that
they annihilate the vacuum. However, if we look on the right, the presence of the projector Pi
implies that the expression above is also equal to C2(Vi)G

i
4, where C2(Vi) is the value of the

quadratic Casimir in the irreducible representation Vi. The eigenvalue problem

κab(X
a
1 +Xa

2 )(Xb
1 +Xb

2)Gi
4(xj) = C2(Vi)G

i
4(xj), (2.43)

is a differential equation in 4d variables xµj . However, the operator on the left by construction
preserves the functional form of G4(xj), which allows one to reduce the equation to one in the
cross ratios. Another equation satisfied by partial waves is obtained in the same way from the
fourth order Casimir.

So, what do conformal blocks look like? It turns out that Casimir equations take a simple form
in coordinates (z, z̄), where they reduce to the eigenvalue problem of the operator

∆2 = Dz +Dz̄ + (d− 2)
zz̄

z − z̄
((1− z)∂z − (1− z̄)∂z̄) . (2.44)

Here, the operator Dx = D
(a,b;c)
x reads

D(a,b)
x = x2(1− x)∂2

x − ((a+ b+ 1)x2 − cx)∂x − abx, (2.45)

and parameters a and b are related to conformal dimensions of fields in the correlator as before.
The third parameter is actually c = 0, but we have introduced it in order to emphasise the
similarity of Dx to the hypergeometric differential operator Hx = H(a, b, c, x, ∂x). Namely,
Dx = xHx. Consequently, eigenfunctions of Dx can be expressed in terms of hypergeometric
functions. We see that in two dimensions the term in ∆2 that couples Dz and Dz̄ vanishes.
With some additional work, it is possible to decouple the equations in any even dimension.
Conformal blocks g∆,l are eigenfunctions of ∆2 with eigenvalues 2∆(∆− d) + 2l(l+ d− 2). We
have written the four-dimensional blocks already in (1.9). Here, we give two-dimensional ones

g
(2d)
∆,l (z, z̄) = k∆+l(z)k∆−l(z̄) + k∆−l(z)k∆+l(z̄) . (2.46)

In this formula, it is assumed that the fields have equal conformal weights.

Since [30], conformal partial waves have been derived in a number of circumstances. In odd
dimensions, no closed form expression for blocks is known and in even dimensions blocks for
correlators of spinning fields are given by increasingly complicated expressions in terms of
hypergeometric functions. However, for any four-point function of arbitrary spinning fields,
there is an efficient algorithm that produces the corresponding conformal blocks. We refer the
reader to [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43] for details.
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2.4 Energy-momentum tensor and the central charge

A conformal field theory is said to be local if the symmetry transformations are generated by
an energy-momentum tensor. This is a symmetric traceless primary field Tµν of spin two and
dimension d. Unlike other fields, the normalisation of the energy-momentum tensor is not fixed
by its two-point function, but rather by the requirement of Ward identities

∂µ〈Tµν(x)O1(x1)...On(xn)〉 = −
n∑
i=1

δ(x− xi)〈O1(x1)...∂νOi(xi)...On(xn)〉 . (2.47)

On the other hand, the two-point function of Tµν defines the central charge CT of the theory
by

〈Tµν(x1)Tρσ(x2)〉 =
CT
S2
d

1

x2d
12

(
1

2
(Jµρ(x12)Jνσ(x12) + Jµσ(x12)Jνρ(x12))− 1

d
δµνδρσ

)
. (2.48)

Here, Sd is the volume of the unit d-sphere. We will denote the rescaled energy momentum
tensor, whose two-point function is normalised as for other fields, by T̃ = TSd/

√
CT . In a

somewhat vague sense, the central charge measures the number of degrees of freedom in the
theory. This intuition comes from the fact that the free four-dimensional theory of Nϕ scalars,
Nψ Dirac fermions and NA vectors has central charge

CT =
4

3
Nϕ + 8Nψ + 16NA . (2.49)

It is worth mentioning that one of the first applications of the numerical conformal bootstrap
was to bound the central charge of any four-dimensional CFT in terms of the dimension of its
lowest lying operator. We recall the argument. To see why such a bound should be possible,
let us write schematically the OPE of ϕ with itself as

ϕ× ϕ = 1 + S∆ + Tµν + ... . (2.50)

On the right hand side are written the operators that appear in the expansion, with S∆ being
the lowest appearing scalar operator except for the identity field. In the ... are other operators
of spin 0,2,... . With the normalisations from above, the three-point function 〈ϕϕT̃ 〉 reads

〈ϕ(x1)ϕ(x2)T̃µν(0)〉 = − d∆ϕ

(d− 1)
√
CT

1

(x2
12)∆ϕ−1x2

1x
2
2

(
ZµZν −

1

d
δµνZ

2

)
, Z = Ix1 − Ix2 .

(2.51)
By comparing with the standard form of three-point functions that will be reviewed in the next
chapter, we see that the central charge is related to the cϕϕT OPE coefficient by

cϕϕT = − d∆ϕ

(d− 1)
√
CT

. (2.52)

Now, similarly as in the example from the introduction, any linear functional Λ that satisfies
Λ[F∆ϕ,∆,l] > 0 for all ∆ and l leads to an upper bound on c2

ϕϕT and consequently, a lower bound
on the central charge

c2
ϕϕT ≤

Λ[1]

Λ[F∆ϕ,4,2]
, CT ≥

d2∆2
ϕ

(d− 1)2

Λ[F∆ϕ,4,2]

Λ[1]
. (2.53)
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This simply follows by applying Λ to both sides of (1.14). By ranging over functionals Λ of
the form (1.15) one obtains a bound CT ≥ f(∆ϕ) for some numerical function f , [17]. For
∆ϕ sufficiently close to one, f is above the free-field theory value 4/3. Thus we learn that
interacting theories have more degrees of freedom than the free one.

2.5 Some open problems of conformal field theory

The ultimate goal to be achieved in the conformal bootstrap is the complete classification of
conformal field theories. As we have seen in this chapter, the classification problem is a well-
defined question in mathematics. However, it is believed to be far beyond the present status of
the field and one looks for more modest temporary goals.

One natural direction of research is to try and construct explicit examples of CFTs. The
starting point in this endeavour are the free theories. In any spacetime dimension, there is the
free scalar theory with the Lagrangian

S[ϕ] = −
∫
ddx

1

2
∂µϕ∂

µϕ , ∆ϕ =
1

2
(d− 2) . (2.54)

Similarly, free fermions give an example of a CFT

S[ψ, ψ̄] = −
∫
ddx ψ̄γ̄µ∂µψ , ∆ψ = ∆ψ̄ =

1

2
(d− 1) . (2.55)

Here γµ are d-dimensional gamma matrices. Further, in even dimensions, d = 2n, we have the
free theory of (n− 1)-forms Aµ1...µn−1

S[A] = −
∫
d2nx

1

2n!
F µ1...µnFµ1...µn , ∆A = n− 1 . (2.56)

Conformal weights of fundamental fields ϕ, ψ, ψ̄ and A ensure that the above examples are
classically conformal. Since the theories are free, they are also conformal on the quantum level.

Free theories can be slightly generalised to mean field theories. In the scalar case, the mean field
theory (MFT) is defined by the set of primary operators {On,l | n, l ∈ N0} of scaling weights
∆n,l = 2∆ϕ + 2n + l and the rule that any n-point function is equal to the sum of all possible
Wick contractions. Compared to the free theory given by the Lagrangian (2.54), the MFT is
more general in that it allows for the lowest scaling dimension ∆ϕ to be arbitrary, rather than
fixed by the spacetime dimension d. One can verify that the result is a consistent conformal
field theory. The four-point function of ϕ in an MFT reads

〈ϕ(x1)...ϕ(x4)〉 =
1

(x12x34)2∆ϕ
+

1

(x13x24)2∆ϕ
+

1

(x14x23)2∆ϕ
=

1

(x13x24)2∆ϕ
(1 + u−∆ϕ + v−∆ϕ) .

(2.57)
It is manifestly crossing symmetric. This four-point function has been decomposed in conformal
blocks in any dimension, i.e. the values of the squared OPE coefficients p∆n,l,l such that

1 + u−∆ϕ + v−∆ϕ = v−∆ϕ

(
1 +

∑
n,l

p∆n,l,l g∆n,l,l

)
,
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are known. They can be found, for instance, in [52]. At the moment, mean field theories exhaust
the full set of rigorously constructed CFTs in dimensions higher than two (in two dimensions,
minimal models are a prominent class of further examples).

Perhaps more in line with the philosophy and the methods of conformal bootstrap are questions
about generic properties of CFTs. For example, what is the average shape of the spectrum?
Or, what is the asymptotic behaviour of OPE coefficients?

Some questions of this kind have been given definite answers. We show here an example from
one-dimensional theories. In this case, one can prove that the asymptotic behaviour of a four-
point function determines the integrated asymptotic density of states. More precisely, consider
the correlation function

〈ϕ(0)ϕ(z)ϕ(1)ϕ(∞)〉 = z−2∆ϕG(z), (2.58)

and expand G(z) in one-dimensional conformal blocks (1.10)

G(z) =

∫
R
d∆ p(∆)k2∆(z) . (2.59)

Here we allowed for a continuous spectrum. The squared OPE coefficients define a positive
spectral density p(∆), which is supported on ∆ ≥ 0. The conformal block decomposition
converges for z ∈ (0, 1). By looking at the OPE in the t-channel, and assuming that ϕ is the
lowest primary above the identity operator, one shows that as z −→ 1 the correlator diverges
according to a power-law

G(1− x) ∼ x−2∆ϕ as x −→ 0 . (2.60)

The ∼ sign means that the ratio of two sides approaches one in the limit. We wish to under-
stand what constraints on the spectral density does (2.60) put. In [44] it was shown that the
asymptotic integrated density of states has to behave as∫ Y

0

d∆ 4∆
√

∆p(∆) ∼ 4
√
π

Γ(2∆ϕ)2
Y 2∆ϕ as Y −→∞, (2.61)

in order to achieve (2.60). (This result is kind of a tauberian theorem - asymptotic behaviour
of a function is determined from that of its integral transform. The integral transform at hand
that has conformal blocks as the kernel goes under names of Jacobi, Wilson or the α-space
transform, [45].)

In any higher dimensional CFT, one can consider the crossing equations restricted to the
line z = z̄ and ”forget” the spin labels of intermediate fields that propagate in the OPE.
Therefore, the one-dimensional crossing appears as a part of any conformal field theory. Partly
for this reason, and partly for simplicity, the crossing equations for the simplest correlator (2.58)
received a lot of attention, [46, 47, 48]. These investigations have shown that any solution to
crossing behaves on average as a mean field theory. For example, for any n ∈ N, there is an
operator of dimension between the values of the n-th primary in the spectrum of a generalised
free boson and a generalised free fermion

2∆ϕ + 2n = ∆b
n < ∆ < ∆f

n = 2∆ϕ + 2n+ 1 . (2.62)

This and some other results can be proven by acting on the crossing equations by a set of
judiciously chosen extremal functionals. The extension of extremal functional methods to the
full-fledged crossing in higher dimensions is a subject of intensive research, [49, 50].
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Fundamentally, since crossing expresses a duality between different OPE channels, to formulate
a good bootstrap question, one looks for a correlator and a kinematical regime such that: 1)
in one channel the behaviour of G4(xi) is under good control, e.g. it is dominated by a finite
number of operators, 2) to reproduce the same behaviour in the other channel, the spectrum
has to be of some particular form.

Above we saw an example of this idea: the asymptotic behaviour (2.60) follows from the
presence of the identity operator in the t-channel. In the s-channel, this information gives a
bound on operators of high scaling dimensions. This idea, that goes under the name of the
lightcone bootstrap has led to most of the analytic results obtained over the last ten years,
[51, 52, 53, 54]. More recently, an analysis similar in spirit was done for the ”stress tensor
sector” of the correlator that involves two light and two heavy operators, [55, 56].

Often further progress can be made with theories that satisfy additional special assumptions.
A prominent example here are supersymmetric CFTs. They can be studied by a variety of
non-perturbative techniques and contain classes of protected operators over which one has un-
commonly good control. (This fact has the origin in representation theory of Lie superalgebras.
While generic representations of a Lie superalgebra are labelled by certain parameters that can
be varied continuously, the so-called short representations imply relations between quantum
numbers and cannot be deformed. As a consequence, the appropriate operators in an SCFT
cannot have anomalous dimensions.) Another example are conformal theories with defects. We
may ask for instance, ”what kind of defects does a free theory admit?”, [57, 58].

In time, some of these directions will prove to be more useful than others, but each of them
seems to steam for sound physical questions, as well as being tractable by current methods.
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Chapter 3

Extensions: Spinning Fields, Defects
and Supersymmetry

In the previous chapter, we discussed the structure of a conformal field theory in the most
basic setup and often focused on correlators of scalar fields. A similar analysis can be carried
out in various slightly different contexts. These include correlation functions of fields with spin
or certain modifications of CFTs such as superconformal theories or theories with defects. In
all these setups, in order to study a correlator, one first determines its most general form as
allowed by symmetry and then expands the remaining kinematically unconstrained function
in a basis of partial waves. These waves are in principle determined by symmetry and our
approach will be to always characterise them as solutions to appropriate differential equations.
Finally, the coefficients in the partial wave expansion, that carry the dynamical information
about the theory, are constrained from crossing equations.

Even though the general logic in all setups is the same, each of them comes with, often signif-
icant, technical difficulties. The aim of this chapter is to introduce some standard techniques
to treat spinning, supersymmetric and defect correlators. We will be rather brief and mention
only those methods that have a direct bearing on later chapters.

3.1 Spinning fields and tensor structures

As we have seen, correlation functions of spinning fields depend on a finite number of invariant
tensor structures. The aim of this section is to introduce polarisation vectors, [59], which
provide a way to convert vector-valued fields into scalars that depend on additional auxiliary
variables. Kinematical constraints that spinning correlators satisfy, are often written in a very
simple way using the polarisation vectors.

Before coming to this, however, let us introduce the so-called conformal vectors. Given three
points xi we denote

Xi;jk = Ixij − Ixik . (3.1)

From the definition, one finds that the norm of the conformal vector is X2
i;jk = x2

jk/(x
2
ijx

2
ik).

Another nice property of Xi;jk is related to the inversion tensor that we introduced above

J(Xi;jk)
µ
ν = J(xij)

µ
ρJ(xjk)

ρ
σJ(xki)

σ
ν . (3.2)
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With the help of conformal vectors, the three-point function of two scalar fields and a symmetric
traceless tensor can be written as

〈ϕ1(x1)ϕ2(x2)Oµ1...µl
3 (x3)〉 =

(−1)lc123(Xµ1

3;12...X
µl
3;12 − traces)

(x2
12)

1
2

(∆12;3+l)(x2
23)

1
2

(∆23;1−l)(x2
31)

1
2

(∆31;2−l)
, (3.3)

with ∆ij;k = ∆i+∆j−∆k. Notice that the form of the the correlator is still completely fixed by
symmetry up to overall scaling. Indeed, by the same argument that we have given for four-point
functions in the previous chapter, one can count the number of invariant tensor structures for
three fields that transform in representations ρi as

N3(ρ1, ρ2, ρ3) = dim (W1 ⊗W2 ⊗W3)SO(d−1) . (3.4)

The group SO(d − 1) appears as the stabiliser of three points in general position. So, if W1

and W2 carry the trivial representation of the rotation group, the number of three-point tensor
structures equals the number of SO(d− 1)-invariants in the irreducible representation W3. By
standard group theory, this number is one, in accordance with the general form of the correlator
(3.3).

We have not written the correlator (3.3) fully explicitly yet, as there remains to do the sub-
traction of traces. This seems like a tedious process, but it is captured quite elegantly by
polarisation vectors. Let z be some auxiliary null vector and write

O(x, z) = Oµ1...µl(x)zµ1 ...zµl . (3.5)

In order to be null, the vector z must be complex, z ∈ Cd. The three-point function (3.3) can
now be rewritten as

〈ϕ1(x1)ϕ2(x2)O3(x3, z)〉 = (−1)lc123
(X3;12 · z)l

(x2
12)

1
2

(∆12;3+l)(x2
23)

1
2

(∆23;1−l)(x2
31)

1
2

(∆31;2−l)
. (3.6)

Similarly, the two-point function (2.29) from the last chapter is given by the simple expression

〈O(x1, z1)O(x2, z2)〉 =
1

x2∆
12

(z1µJ
µν(x12)z2ν)

l . (3.7)

Clearly, the function O(x, z) is uniquely determined by Oµ1...µl(x). The converse is also true -
Oµ1...µl(x) can be constructed from O(x, z) by repeated differentiation with respect to z. The
contraction of tensor indices can be written as the integral

Oµ1...µl(x)O′µ1...µl
(x′) =

∫
Cd
d2dz δ(z2)ρ(z̄ · z)O(x, z̄)O(x′, z), (3.8)

where the function ρ appearing in the kernel is expressed in terms of the Bessel function of the
second kind

ρ(t) =

(
2

π

)d−1
(16t)1−d/4

Γ(d/2− 1)
K(d/2−2)(2

√
t) . (3.9)
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Another nice feature of polarisation vectors emerges when we consider correlators with more
than one invariant tensor structure. The simplest such example is a three-point function in-
volving one scalar and two symmetric traceless tensors. It takes the form

〈O1(x1, z1)ϕ3(x3)O2(x2, z2)〉 =
(X1;32 · z1)l1(X2;13 · z2)l2

(X2
3;21)−

∆3
2 (X2

2;13)
l2−∆2

2 (X2
1;32)

l1−∆1
2

t(X) . (3.10)

Here, the variable X is constructed from the insertion points as

X =
1

x2
12

z1µJ
µν(x12)z2ν

(X1;32 · z1)(X2;13 · z2)
. (3.11)

The nature of the function t(X), as dictated by conformal symmetry, depends on the spacetime
dimension. In d > 3, it is a polynomial of degree at most min(l1, l2). In three dimensions, t(X)
can also be of the form

√
X(1−X)P (X), where P (X) is a polynomial of degree less than

of equal to min(l1, l2) − 1. The corresponding class of tensor structures is of odd O(d) parity
and thus not allowed in parity-invariant theories. For future reference, we will introduce the
notation

n12 =

{
2min(l1, l2) + 1, d = 3,
min(l1, l2) + 1, d > 3,

(3.12)

for the total number of invariant tensor structures. What we have achieved is to trade a
finite-dimensional vector space (of three-point tensor structures) for a space of functions in one
variable X. Since the latter space has to be finite-dimensional as well, it consists of (essentially)
polynomials of bounded degree. Nevertheless, for many manipulations that one may want to
perform, the precise space of functions is not important. Examples are addition or composition
of differential operators. The idea to replace the carrier space of a representation given by an
explicit basis {ei}, by a certain function space is a common one. In particular, when working
with infinite-dimensional representations, the function space description is almost always the
simpler one to use.

One can study more complicated correlators along the same lines. We shall not do this presently,
but will return to this idea in a later chapter.

3.2 Defect conformal field theories

One setup in which CFT techniques can be applied with mild modifications are the so-called
defect conformal field theories. By a defect, we will mean a (conformally compactified) subspace
Rp of the spacetime Rd. Typically, it represents an impurity in a critical system or the boundary
of an experimental setup. Alternatively, one can think of defect theories as ordinary CFTs, in
which we are no longer interested only in correlation functions of local fields. Defects are then
non-local operators, such as Wilson or ’t Hooft lines etc.

The presence of a defect reduces the symmetry group of the system to consist of those conformal
transformations of Rd that preserve the p-dimensional subspace Rp along which the defect is
localised. These form the subgroup Gd,p = SO(p + 1, 1) × SO(d − p) of the conformal group
Gd = SO(d+ 1, 1). We will adopt the notation

M = Sd = Rd ∪ {∞}, N = Sp = Rp ∪ {∞}, (3.13)
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and often refer to the spacetime M as the bulk space. Indices a, b... = 1, ..., p will be used to label
a basis of the defect subspace {ea} and indices i, j... = p+1, ..., d for its orthogonal complement
in Rd. Then, the SO(p+1, 1) factor of Gd,p is generated by dilations D, translations and special
conformal transformations along the defect Pa, Ka, and rotations in the defect plane Mab, while
the SO(d − p) factor is generated by transverse rotations Mij, i, j = p + 1, ..., d. We write
q = d − p and for any element g of the defect conformal group, gp and gq will stand for its
unique factors in SO(p+ 1, 1) and SO(q).

Correlation functions that we will be considering admit two kinds of field insertions, those of
bulk and defect fields. Similarly as in an ordinary conformal field theory, the correlators satisfy
a set of consistency conditions. However, there are two types of conditions. Firstly, defect
fields close with respect to operator products and in fact define a p-dimensional CFT. The
group SO(q) of transverse rotations acts as an internal symmetry of this p-dimensional theory.
We will write a generic spacetime point as x and a point on the defect as x̂. Similarly, defect
fields will carry a hat. Then, the defect OPE can be written as

Ô1(0)Ô2(x̂) ∼
∑
i

c12iC(x̂, ∂a)Ôi(0) . (3.14)

In addition to the p-dimensional theory operator product coefficients cîĵk̂, there is another set
of new data a defect brings in: the bulk-defect operator product coefficients biĵ. The latter
appear when a local bulk field is moved close to the defect and expanded in terms of defect
fields

O(x) ∼
∑
i

bOÔiB(x̂, ∂a)Ôi(x̂) . (3.15)

Consistency constraints arise from considering mixed correlators of bulk and defect fields

Gm,n(x1, ..., xm, x̂1, ..., x̂n) = 〈ϕ1(x1)...ϕm(xm)ϕ̂1(x̂1)...ϕ̂n(x̂n)〉 . (3.16)

Let ρ1, ..., ρm, ρ̂1, ..., ρ̂n be representations that label the fields entering the correlation function.
Bulk fields are labelled by representations of the group Kd = SO(1, 1)×SO(d), while the defect
fields are labelled by representations of Kp × SO(q). The Ward identities read

Gm,n(gx1, ..., gxm, hx̂1, ..., gx̂n) =
(
ρ1(dgx1)⊗ ...⊗ ρ̂n(dgx̂n)

)
Gm,n(x1, ..., x̂n) . (3.17)

Similarly as in the non-defect case, symmetry fixes the form of correlation functions with a
small number of field insertions. However, there are some important differences between the
two setups. Firstly, one-point functions of bulk fields do not necessarily vanish. The general
form allowed by symmetry of the scalar one-point function is

〈ϕ(x)〉 =
aϕ
|x⊥|∆ϕ

, (3.18)

for some constant aϕ. Here, x⊥ is the component of x orthogonal to the defect subspace.

Also fixed by symmetry is the two-point function of one bulk and one defect field. For scalars,
it takes the form

〈ϕ(x1)ϕ̂(x̂2)〉 = bϕϕ̂|x1⊥|∆̂−∆(x̂2
12 + x2

1⊥)−∆̂ . (3.19)
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Of course, two- and three-point functions that involve only defect fields are fixed as in an
ordinary CFT. The smallest correlator that is no longer fixed by symmetry is the two-point
function of bulk fields. It admits two invariants

u1 =
x⊥1 · x⊥2
x2

12

, u2 =
|x⊥1 ||x⊥2 |
x2

12

, (3.20)

and takes the general form

〈ϕ1(x1)ϕ2(x2)〉 = |x⊥1 |−∆1|x⊥2 |−∆2F (u1, u2), (3.21)

for an arbitrary function F . Again, we have assumed the fields to be scalar. If the codimension
of the defect is q = 1, the two invariants ui become equal to each other.

In some sense, in the defect setup, the correlators (3.19) and (3.21) play the role of three- and
four-point functions of an ordinary conformal field theory. Knowledge of the two-point functions
(3.19) is equivalent to that of the coefficients bOÔ. Higher correlators are used to constrain the
OPE data through crossing equations and the simplest of these higher-point functions is (3.21).
Due to its non-trivial dependence on cross ratios, this two-point function can be expanded in
conformal partial waves. These were first obtained by McAvity and Osborn in 1995, [60], and
later more generally in [61, 62]. Such bulk-bulk conformal blocks are similar to those of one-
dimensional CFTs and can be written as products of hypergeometric functions and Gegenbauer
polynomials.

Foundational results about defect CFTs that we described above were obtained in [63, 64, 60,
61, 62]. A more complete list of references will be given in a later chapter, when we come to
analyse defects using group theory.

3.3 Superconformal theories

While general conformal field theories have been significantly constrained by consistency, the
bootstrap programme is still very far from classifying them. In principle self-sufficient, its
methods greatly benefit from our knowledge or intuition that come from other sources, such as
statistical mechanics.

Another class of theories that we know a lot about are those that posses supersymmetry.
While the belief in its phenomenological relevance has diminished over the last decades, su-
persymmetry is a rare tool that allows for exact computations in quantum field theory. When
combined with conformal symmetry, the usual supersymmetry algebra is extended to the super-
conformal algebra. In four dimensions, the superconformal algebra is spanned by supertransla-

tions {Q J
α̇ , Q

β
I }, special superconformal transformations1 {S J

α , S
β̇
I } and internal symmetries

{R,R J
I } in addition to the usual conformal algebra. Here, the indices I, J = 1, ...,N are that

of the fundamental representation of su(N ). Indices α, α̇ = 1, 2 are that of the fundamental
and the anti-fundamental representation of the rotation Lie algebra so(4). They are raised and

1We will use the terminology ”special superconformal transformations” rather than ”super special confor-
mal transformations”, although the latter may be logically more appropriate, as ordinary special conformal
transformations are also superconformal maps.
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lowered using the Levi-Civita symbol

ψα = εαβψ
β, εαβ =

(
0 −1
1 0

)
. (3.22)

The same rule holds for dotted indices. To convert a vector index into a pair of a fundamental
and an anti-fundamental index, we make use of the matrices

(γµ)α̇α = (−σ3,−iI2, σ1,−σ2) i.e. xα̇α =

(
−x1 − ix2 x3 + ix4

x3 − ix4 x1 − ix2

)
. (3.23)

Using the spinor notation, conformal group generators may be written as {D,P β
α̇ , K β̇

α ,M
β
α ,M

β̇
α̇ }

and their bracket relations read

[D,P β
α̇ ] = P β

α̇ , [D,K β̇
α ] = −K β̇

α , (3.24)

[M β
α , P

δ
γ̇ ] =

1

2
δ β
α P

δ
γ̇ − δ δ

α P
β
γ̇ , [M β̇

α̇ , P
δ
γ̇ ] = −1

2
δ β̇
α̇ P

δ
γ̇ + δ β̇

γ̇ P
δ
α̇ , (3.25)

[M β
α , K

δ̇
γ ] = −1

2
δ β
α K

δ̇
γ + δ β

γ K
δ̇
α , [M β̇

α̇ , K
δ̇
γ ] =

1

2
δ β̇
α̇ K

δ̇
γ − δ δ̇

α̇ K
β̇
γ , (3.26)

[M β̇
α̇ ,M

δ̇
γ̇ ] = δ β̇

γ̇ M
δ̇
α̇ − δ δ̇

α̇ M
β̇
γ̇ , [M β

α ,M
δ
γ ] = δ β

γ M
δ
α − δ δ

α M
β
γ , (3.27)

[K β̇
α , P

δ
γ̇ ] = δ β̇

γ̇ M
δ
α − δ δ

α M
β̇
γ̇ − 2δ β̇

γ̇ δ
δ
α D . (3.28)

Conformal symmetry commutes with internal U(1)×SU(N ) symmetry. On the other hand, the
commutation relations involving one odd and one even generator are indicated by the indices
that Q-s and S-s carry. They are in either fundamental or anti-fundamental representations of
both Spin(4) and SU(N ). The Q-s have dilation weight 1/2 and S-s have −1/2. They both
split in two sets according to the R-charge. Explicitly

[R,Q J
α̇ ] = Q J

α̇ , [R,Q β
I ] = −Q β

I , [R, S J
α ] = S J

α , [R, S β̇
I ] = −S β̇

I , (3.29)

[D,Q J
α̇ ] =

1

2
Q J
α̇ , [D,Q β

I ] =
1

2
Q β
I , [D,S J

α ] = −1

2
S J
α , [D,S β̇

I ] = −1

2
S β̇
I , (3.30)

[M β
α , Q

δ
K ] =

1

2
δ β
α Q

δ
K − δ δ

α Q
β
K , [M β̇

α̇ , Q
L
γ̇ ] = −1

2
δ β̇
α̇ Q

L
γ̇ + δ β̇

γ̇ Q
L
α̇ , (3.31)

[M β
α , S

L
γ ] = −1

2
δ β
α S

L
γ + δ β

γ S
L
α , [M β̇

α̇ , S
δ̇
K ] =

1

2
δ β̇
α̇ S

δ̇
K − δ δ̇

α̇ S
β̇
K , (3.32)

[P β
α̇ , S L

γ ] = δ β
γ Q

L
α̇ , [P β

α̇ , S α̇
K ] = −δ δ̇

α̇ Q
β
K , [K β̇

α , Q
L
γ̇ ] = δ β̇

γ̇ S
L
α , [K β̇

α , Q
δ
K ] = −δ δ

α S
β̇
K .

(3.33)

Finally, we give the brackets between odd generators

{Q J
α̇ , Q

β
I } = δ J

I P
β
α̇ , {S J

α , S
β̇
I } = δ J

I K
β̇
α , (3.34)

{Q J
α̇ , S

β̇
I } = δ J

I M
β̇
α̇ + δ β̇

α̇ R
J
I + δ J

I δ
β̇
α̇ (aD + bR), (3.35)

{Q β
I , S

J
α } = δ J

I M
β
α + δ β

α R
J
I + δ J

I δ
β
α (cD + dR) . (3.36)
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Together, these generators form the Lie superalgebra sl(4|N ). If we make α, α̇ run over a one-
element set instead, they form the superconformal algebra in one dimension, sl(2|N ). The full
classification of superconformal algebras will be reviewed in a later chapter.

Fields in a superconformal theory are organised in superconformal multiplets. The way to
formulate this that is most useful for our purposes is to say that classical fields (super-
fields) are functions on the superspace. They belong to the algebra generated by coordinates
{xα̇α, θα̇I , θ̄Iα}. Here x-s are commuting and θ-s are Grassmann variables. Each superfield can
be expanded in component fields multiplied by products of Grassmann variables, e.g. for N = 1

Φ(x, θ) = φ(x) + ψα̇(x)θα̇ + ψα(x)θ̄α + F α
α̇ (x)θα̇θ̄α + ... . (3.37)

The superspace is acted on by the supersymmetry algebra 〈P α
α̇ , Q I

α̇ , Q
α
I 〉 through differential

operators

p α
α̇ = ∂ α

α̇ , q I
α̇ = ∂ I

α̇ −
1

2
θ̄Iβ∂

β
α̇ , q α

I = q α
I −

1

2
θβ̇I∂

α
β̇
, (3.38)

and this action extends to a representation of the superconformal algebra on field configura-
tions. Such representations ρ are characterised by their conformal weights, spins and internal
symmetry quantum numbers.

Similarly to the bosonic case, the Hilbert space of physical states decomposes as a sum of
parabolic Verma modules. These representations are constructed by taking the finite-dimensional
representation ρ, extending it trivially to special conformal transformations and their super-
cousins and then acting freely with P -s and Q-s

V = Indg
pρ, p = span{D,M β

α ,M
β̇
α̇ , R,R

J
I , S

J
α , S

β̇
I , K

β̇
α } . (3.39)

More precisely, irreducible components ofH are quotients of these modules. A notable difference
in the representation theory of Lie superalgebras compared to Lie algebras is the existence of so-
called atypical representations. These are representations that are not irreducible and cannot be
written as a sum of irreducible components. Irreducible quotients of atypical modules are called
short or BPS multiplets. Two important kinds of short representations are chiral and anti-chiral
multiplets. A chiral multiplet is obtained by imposing Q I

α v = 0 on the lowest weight vector
v ∈ V (i.e. quotienting out from V the subrepresentation generated from vectors {Q I

α v}). In
the dual context of representations on fields, short multiplets arise as submodules of the full
field representation. The representation spaces for them consist of those field configurations
that satisfy differential equations D̄Φ = 0 (DΦ̄ = 0 for anti-chiral) where

D I
α̇ = ∂ I

α̇ +
1

2
θ̄Iβ∂

β
α̇ , D̄ α

I = −∂ α
I −

1

2
θβ̇I∂

α
β̇
. (3.40)

The operators D, D̄ are called covariant derivatives and they realise the right-regular action
of the supersymmetry algebra on M . On the other hand, the operators (3.38) realise the
left-regular action. Clearly, the property of being chiral is preserved by operator products.
Therefore, all chiral operators form a subalgebra of the full operator product algebra, called
the chiral ring.

The importance of short multiples for quantum field theory lies in the fact that they exist
only when certain relations between the quantum numbers of the representation are satisfied.
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They are, therefore, protected against continuous deformations of the theory, at least if such
deformations preserve some of the quantum numbers (typically this can be inferred for R-
charges).

We could now repeat large parts of the previous chapter and define superconformal Ward
identities, superconformal blocks and crossing equations. These notions will be regarded as
evident. Generalising basic results about the partial waves and crossing factors, rather than
merely their definitions, is more involved. The guiding principle for deriving superconformal
blocks is that they can be written as sums of ordinary bosonic blocks. This idea has been
used to compute the blocks by making an ansatz and fixing undetermined coefficients either
by Ward identities [65, 66, 67, 68, 69, 70, 71, 72] or appropriate Casimir differential equations
[73, 74, 75, 76, 77] (sometimes, the integrals that define superconformal partial waves can also
be evaluated directly, [78, 79]). What is common to these works is that they either focus on
correlators of short operators, or otherwise restrict to the superprimary component of blocks
by setting all Grassmann variables to zero. It is desirable to extend the analysis and derive
all components of superconformal partial waves (termed long blocks) because they lead to a
larger set of crossing equations for the same OPE data. First steps in this direction have
been performed in [80, 81, 82, 83].2 The question of long superconformal blocks will occupy a
significant place in this thesis.

2There is another, very general but less explicit, approach to superconformal partial waves proposed in [84].
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Chapter 4

Conformal Symmetry and Group
Theory

In this chapter, we will analyse the properties of the conformal group and its representations
in some detail. Since the conformal group is locally isomorphic to SO(d + 1, 1), we are led to
the field of representation theory of non-compact semisimple Lie groups.

The need to extend representation theory from the case of compact groups, solved so successfully
by the Peter-Weyl theorem, to non-compact ones arose in quantum theory, through the work
of Dirac and Wigner. The basic reason for this interest lies in the fact that the Hilbert space
of a quantum system carries a (projective) unitary representation of its symmetry group. An
immediate observation is that a unitary representation of a non-compact group has to be
infinite-dimensional. For, a faithful finite-dimensional unitary representation π : G −→ Aut(Cn)
would realise G as a closed bounded subset of Cn2

. However, all such subsets are compact by
the Heine-Borel theorem.

Unitary irreducible representations (UIRs) of the physically most important groups were con-
structed by Stone and von Neumann (Heisenberg group 1930, 1931), Wigner (Poincare group
1939), Bargmann (SL(2,R) 1947) and Gelfand and Naimark (Lorentz group 1947). In fact,
as was shown by Gelfand and his collaborators, any locally compact group possess UIRs in
abundance.

The starting point for the construction of representations is the group algebra L1(G, dg). This
is the space of L1-functions on the group under the convolution product

(f1 ? f2)(h) =

∫
dg f1(g)f2(g−1h) . (4.1)

For a finite group, this is simply the algebra spanned by vectors {eg} where g ∈ G, with the
multiplication eg1eg2 = eg1g2 . For infinite groups, we can consider various classes of functions,
such as continuous functions C(G) or functions with finite support C[G], that all give rise to
different versions of the group algebra. Given a function f ∈ L1(G, dg) and a representation π
of G on a Hilbert space H, we define the operator π(f) by

π(f) =

∫
G

dg f(g)π(g) . (4.2)
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In this way, we obtain a representation of the group algebra due to

π(f1)π(f2) =

∫
dg1dg2 f1(g1)f2(g2)π(g1g2) = π(f1 ? f2) .

So, there is a close connection between representations of G and those of L1(G, dg). The correct
version of the group algebra to use turns out to be the so-called enveloping C∗-algebra of G,
denoted C∗(G). It is defined as the completion of L1(G, dg) with respect to the norm

||f || := sup{||π(f)||, π ∈ Ĝ} .

Here, π runs over the dual group of G (the set of its unitary irreducible representations). With
such a definition, there is an isomorphism between categories of unitary representations of G
and non-singular representations of C∗(G).

Therefore, representation theory for non-compact groups can be studied using C∗-algebra tech-
niques. The latter were developed by Gelfand, Naimark and Segal using the notion of a state,
which is simply a positive linear functional on a C∗-algebra A. It is easy to see that all states
of a C∗-algebra form a convex set. Boundary points of this set are called pure states. There
are certain relations between states on A, representations of A and ideals in A, that can be
summarised as surjective maps

{states} −→ {representations} −→ {ideals} .

These maps specialise to another set of surjections

{pure states} −→ {irreducible representations} −→ {primitive ideals} .

Given a representation π of A on a Hilbert spaceH and a unit cyclic vector ξ inH one constructs
a state as

ω : A −→ C, ω(a) = 〈π(a)ξ, ξ〉 .
If two pairs (π, ξ) and (π′, ξ′) produce the same state, there is a unitary equivalence between
their Hilbert spaces U : H −→ H′ that intertwines between π and π′ and such that U(ξ) = ξ′.
In the case of π being irreducible, Schur’s lemma implies that U is unique.

The converse process, in which one starts form a state ω and obtains from it a pair (π, ξ) goes
under the name of the Gelfand-Naimark-Segal construction. One uses the state ω to construct
a positive semi-definite bilinear form on A via 〈x, y〉 = ω(y∗x). The Hilbert space of the
representation is constructed as (the completion of) the quotient of A by the set of zero-norm
elements. The algebra A acts on this space simply by reducing the left-regular representation.
One shows that π is irreducible if and only if the state from which one started was pure.
Therefore, pure states correspond to rays in irreducible representations of A.

It follows that the first surjection in the above diagram becomes a bijection precisely when each
irreducible representation of A contains only one ray. In other words, irreducible representations
of A are one-dimensional. This only happens when A is commutative. For a group algebra
C∗(G), it means in turn that G is abelian. For non-abelian groups, there are many more states
than representations.

The question of when the second arrow in the diagram becomes a bijection is considerably more
complicated. Primitive ideals are defined as kernels of irreducible representations. Therefore,
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we are asking whether irreducible representations of A are completely determined by their
kernels. This is not true for all C∗-algebras (those for which it is are said to be of class I), but
by a theorem of Harish-Chandra it is true for group algebras of semisimple Lie groups.

The relation between unitary representations and states enables one to prove the existence
of many such representations. Further, the decomposition into irreducible components corre-
sponds to writing some arbitrary element of the convex set of states as a linear combination
of its boundary points. Standard results of convex geometry (Choquet’s theorem) tell us that
such a decomposition is always possible. Therefore, unitary representations are completely
reducible.

Theorem (Gelfand-Rajkov) Every unitary representation π of a locally compact group G
on a Hilbert space can be decomposed into a direct integral of irreducible representations.

It turns out that for semisimple Lie groups, the dual group Ĝ admits a much more concrete
description. All UIRs come in series of three types - principal, discrete and complementary.
They are constructed using parabolic induction (in fact, parabolic induction is used to construct
non-unitary irreducible representations as well). Given a parabolic subgroup P ⊂ G, the
representation space consists of vector-valued functions on G that are covariant with respect
to the (right) regular action of P . On such a function, group elements act simply by (left)
multiplication of the argument. Equivalently, one can realise the representation on vector-
valued functions on the coset space G/P .

The infinitesimal action of the Lie algebra in a parabolically induced representation of G is
by first order differential operators. When these operators are made to act on an appropriate
space of polynomials of bounded degree, one arrives at finite-dimensional representations. We
remark that there is a notion of induction for the Lie algebra g itself which is not equivalent to
taking the infinitesimal action of the induced G-module. Rather, the two are related by duality.

The chapter is organised as follows. We begin by discussing topology of several locally isomor-
phic groups that can all be in different circumstances called the conformal group. Next, we
describe three important decompositions of this group. The first one is the Bruhat (or Gauss)
decomposition and it is closely related to transformation properties of fields in a conformal
theory, thus being very relevant for our considerations. The second one is the Iwasawa decom-
position, which is of central importance in representation theory. It will also find applications
when we consider defect CFTs later. Finally, the Cartan decomposition is used to define spher-
ical functions on the group and we will discuss it further in the next chapter to make contact
with integrable systems. After this part, we will introduce an important class of parabolically
induced representations, called the non-unitary principal series, and explain how all UIRs of the
conformal group are constructed from them. The final part discusses the Lorentzian conformal
group.

In treatment of general topics from group and representation theory, we mostly follow [85, 86].
Their specialisation to the conformal group is made after [87].

4.1 Topology

The Euclidean conformal group is locally isomorphic to SO(d + 1, 1). There are several Lie
groups with the Lie algebra so(d+ 1, 1) that we will now describe.
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We start with the group O(d + 1, 1) of pseudo-orthogonal matrices. This group has four con-
nected components. Two of these are contained in SO(d+ 1, 1) and the identity component is
denoted by G = SO+(d+ 1, 1). The fundamental group of SO+(d+ 1, 1) depends on the value
of d - we have

π1(SO+(1, 1)) = 1, π1(SO+(2, 1)) = Z, π1(SO+(d+ 1, 1)) = Z2, d ≥ 2 . (4.3)

These results follow from the fact that π1 of any Lie group coincides with that of its maximal
compact subgroup, which is in the case of SO+(d+ 1, 1) the group SO(d+ 1). We will mostly
be interested in d ≥ 3 for which the fundamental group is Z2. The simply-connected double
cover of SO+(d+ 1, 1) will be denoted by G̃ = Spin(d+ 1, 1). We have

Z(G̃) ∼= π1(G) . (4.4)

The canonical projection from G̃ to G will be denoted by Π. Since any representation π of G
gives a representation of G̃ by precomposing with the projection, Π ◦ π, the simply connected
group G̃ is often the best candidate for the symmetry group of the field theory.

The conformal inversion is an element of O(d+1, 1) not connected to the identity and thus may
not be part of the symmetry. However, by composing it with a reflection in any hyperplane, we
get an element of SO+(d + 1, 1). We will pick the hyperplane orthogonal to the the d-th unit
vector ed and denote the reflection by sed . As the action of SO+(d+ 1, 1) on the compactified
Euclidean space is faithful, I ◦ sed is a unique element of G. In Spin(d + 1, 1) there are two
elements that project to it, one of which is

w = eπ
Kd−Pd

2 . (4.5)

The element w ∈ G̃ is called the Weyl inversion. One can check that its square is the non-trivial
element of the centre Z(G̃), i.e. that w2 = −1. By a slight abuse of notation, we will use the
same letter w for the element (4.5) of SO+(d+ 1, 1).

4.2 Decompositions of the conformal group

LetG be a real semisimple connected linear non-compact Lie group andKI its maximal compact
subgroup. We denote their Lie algebras by g and kI . It can be shown that there exists an
involutive automorphism θ of g, called a Cartan involution, for which kI is the stationary
subspace. Since θ2 = 1, its eigenvalues are ±1 and we denote the −1 eigenspace by p. Then

g = kI ⊕ p . (4.6)

Notice that the Killing form is positive-definite on p and negative-definite on kI . Let aI be a
subalgebra of g entirely contained in p. Since θ is an automorphism we have

[kI , kI ] ⊂ kI , [kI , p] ⊂ p, [p, p] ⊂ kI . (4.7)

Therefore [aI , aI ] is contained both in p and in kI , so aI must be abelian. From now, we will
assume that aI is of maximal possible dimension (any two such subalgebras are conjugate to
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one another) and denote the corresponding abelian subgroup of G by AI . The dimension of aI
is called the real rank of G.

The Lie algebra g carries the representation of aI under the adjoint action and we denote the
space spanned by positive weight vectors (restricted roots) by n. Then one can show that n is
a maximal nilpotent subalgebra of g and that the latter decomposes as

g = kI ⊕ aI ⊕ n . (4.8)

This is the Iwasawa decomposition of g. Of fundamental importance in the representation
theory of G is the corresponding group decomposition

G = KIAIN . (4.9)

Let us introduce some more notation. The centraliser of AI in KI will be denoted MI . The
group P = MIAIN is called the minimal parabolic subgroup of G. Other parabolic subgroups
P ′ are defined by P ⊂ P ′ ⊂ G. Since we shall have no occasion to consider these other groups,
we will often drop the adjective ”minimal” when referring to P .

We wish to describe two more standard decompositions of G. For the first one, let m be the
space spanned by negative restricted roots of aI . Then the following factorisation holds

G = MMIAIN . (4.10)

This is usually referred to as the Gauss decomposition. Finally, the Cartan decomposition reads

G = KIAIKI . (4.11)

Iwasawa and Cartan decompositions are global, while the Gauss decomposition is not. However,
the set of Gauss-decomposable elements is dense in G, which will suffice for applications that
we have in mind. More important for our considerations is the question of uniqueness of these
factorisations. It is possible to show that factorisations (4.9) and (4.10) are unique. The Cartan
decomposition is not unique as soon as the stabiliser of AI in KI is non-trivial, which is often
the case.

For the conformal group G = SO+(d+1, 1), the maximal compact subgroup is KI = SO(d+1),
generated by rotations and differences Pµ − Kµ of translation and special conformal genera-
tors. The abelian group AI = SO(1, 1) is that of dilations and MI = SO(d) is the group of
rotations. Finally, M and N are the groups of translations and special conformal transforma-
tions, respectively. Note that these two groups are actually abelian, as opposed to just being
nilpotent.

Apart from the factorisation (4.9) we will sometimes use a closely analogous decomposition
G = MAIKI and refer to both of them as Iwasawa decompositions. The order of factors in
these decompositions is a matter of convention.

In the context of the conformal group, the Gauss decomposition is also known as the Bruhat
decomposition. It is the unique factorisation of conformal transformations into translations,
rotations, dilations and special conformal transformations. Validity of the Bruhat decomposi-
tion is clear near the identity e ∈ G by the corresponding decomposition of the conformal Lie
algebra

g = m⊕ n⊕ k . (4.12)
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Recall that we denote by k the Lie algebra of dilations and rotations. For any decomposable
group element, we will write

g = m(g) n(g) k(g) . (4.13)

The Lie algebra p of the parabolic subgroup P consists of all elements in g that have a non-
positive dilation weight, p = k ⊕ n. This is consistent with the notation used in previous
chapters. The conformally compactified space is diffeomorphic to the quotient G/P . We will
write

m(x) = ex
µPµ , n(x) = w−1m(x)w = e(sedx)µKµ . (4.14)

If the space is realised as a right quotient of the conformal group as above, the action of
conformal transformations is the one that descends from the left-regular action of G on itself.
Therefore, we can write

gm(x) = m(y(x, g)) n(z(x, g)) k(x, g), (4.15)

with y(x, g) = gx and some functions z(x, g) and k(x, g). It is not difficult to determine these
functions for all different types of conformal transformations. Obviously

z(x,m(x′)) = 0, k(x,m(x′)) = 1, z(x, k′) = 0, k(x, k′) = k′ . (4.16)

This follows from the grading with respect to the dilation weight and the Baker-Campbell-
Hausdorff formula. Finally, for g = w we have

z(x,w) = −x, k(x,w) = |x|−2Dsedsx . (4.17)

It is important to understand how the Iwasawa and Bruhat decompositions are related to each
other. For the conformal group, we can spell out the relation explicitly. It will be known as
soon as we find the Iwasawa factors of g = ex

µKµ . Elements of G which are Bruhat factors of
other types, that is, translations, rotations and dilations, are by themselves Iwasawa factors as
well. We have

ex
µKµ = e

xµ

1+x2 Pµ(1 + x2)−DkI(x) . (4.18)

Here, the last factor kI(x) reads in the (d+ 2)-dimensional representation of G

kI(x) =

1 0 0

0 1−x2

1+x2
−2xµ

1+x2

0 2xµ

1+x2 δµν − 2xµxν

1+x2

 . (4.19)

We have written the matrix on the right hand side in the block form, as indicated by indices
carried by matrix elements. The usefulness of the formula (4.18) will be seen in the following
chapters. One can conjugate both sides by w to obtain another variant of it, that we will use
frequently

ex
µPµ = e

xµ

1+x2Kµ(1 + x2)DkI(−x) . (4.20)

It is possible to read equations (4.18) and (4.20) as Bruhat decompositions of kI(x) as well

kI(x) = e−x
µPµe

xµ

1+x2Kµ(1 + x2)D = (1 + x2)−De
xµ

1+x2Kµe−x
µPµ . (4.21)
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4.2.1 Cartan decomposition

Apart from the factorisation (4.11) that will play some role in our considerations, we will be
also interested in its ”non-compact” cousin, G = KAK. Here, A is the abelian subgroup
of G generated by {P1 + K1, P2 − K2}. The KAK decomposition is similar to the Cartan
decomposition of the Lorentzian conformal group, in the sense that the factors of the two have
the same complexified Lie algebras. We will parametrise A by complex coordinates (u1, u2) as

a(u1, u2) = e
u1+u2

4
(P1+K1)−iu1−u2

4
(P2−K2) ≡ e

u1+u2
2

A+−iu1−u2
2

A− . (4.22)

Almost all elements of the conformal group can be factorised as

g = kl a(u1, u2) kr, (4.23)

with kl, kr ∈ K. The factorisation is far from unique since elements of A commute with the
group B ∼ SO(d−2) of rotations of the space spanned by {e3, ..., ed}. Consequently, the group
element g is invariant under the action (kl, kr) 7→ (klb, b

−1kr) with b ∈ B. Any factorisation of
the form (4.23) will be referred to as a Cartan decomposition of g.

4.2.2 Decompositions in the vector representation

It will be useful for us to have, besides the abstract notation from above, concrete expressions
for various group elements in the (d+ 2)-dimensional vector representation of SO(d+ 1, 1). In
this representation, the Lorenz-like generators (2.6) of the conformal Lie algebra are

Lαβ = ηαγEγβ − ηβγEγα, (4.24)

where (Eαβ)ij = δαiδβj. Thus in particular

Pµ = E1µ − Eµ1 − E0µ − Eµ0, Kµ = −E1µ + Eµ1 − E0µ − Eµ0 . (4.25)

We will write matrices in the vector representation in block form. For example

xµPµ =

 0 0 −xT
0 0 xT

−x −x 0

 , xµKµ =

 0 0 −xT
0 0 −xT
−x x 0

 . (4.26)

The matrices representing translations and special conformal transformation are easily found
using nilpotency of Pµ and Kµ. Namely (xµPµ)3 = (xµKµ)3 = 0 and

xµxνPµPν = xµxµ(E00 − E11 + E01 − E10), xµxνKµKν = xµxµ(E00 − E11 − E01 + E10) .
(4.27)

Therefore

ex
µPµ =

1 + 1
2
x2 1

2
x2 −xT

−1
2
x2 1− 1

2
x2 xT

−x −x 1

 , ex
µKµ =

1 + 1
2
x2 −1

2
x2 −xT

1
2
x2 1− 1

2
x2 −xT

−x x 1

 . (4.28)
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The dilations are represented as

D = −E01 − E10, eλD =

 coshλ − sinhλ 0
− sinhλ coshλ 0

0 0 1

 . (4.29)

The relation between Iwasawa and Bruhat decompositions written above now follows from the
matrix identity1 + 1

2
x2 −1

2
x2 −xT

1
2
x2 1− 1

2
x2 −xT

−x x 1

 =

=

1 + 1
2
y2 1

2
y2 −yT

−1
2
y2 1− 1

2
y2 yT

−y −y 1

 coshλ − sinhλ 0
− sinhλ coshλ 0

0 0 1

1 0 0

0 1−x2

1+x2
−2xµ

1+x2

0 2xµ

1+x2 δµν − 2xµxν

1+x2

 ,

where

eλ =
1

1 + x2
, yµ =

xµ

1 + x2
. (4.30)

Let us also spell out the Weyl inversion in the vector representation

w = eπ
Kd−Pd

2 = diag(1,−1, 1, 1, ..., 1,−1) . (4.31)

This concludes our discussion of decompositions of the conformal group.

4.3 Unitary irreducible representations

4.3.1 Induced and coinduced representations

A standard method to construct irreducible representations of a Lie group is by induction from
its various subgroups. We will now describe this process in a more general context of algebras,
which will allow us to treat induction for Lie groups and Lie algebras in a unified manner. It
turns out that the induction of representations in the context of groups corresponds to the dual
notion of coindunction (or production) of the Lie algebra representations, as was first shown by
Blattner in [88].

Given any algebra A, a subalgebra B and a representation ρ : B −→ End(W ) of B, we can define
two representations of A on the following spaces

IndABρ = A⊗B W, CoindABρ = HomB(A,W ), (4.32)

Elements of the first space are linear combinations of vectors a⊗ w, under identifications

ab⊗ w ∼ a⊗ bw, a ∈ A, b ∈ B, w ∈ W,

and the action of A is the left regular one. In the second space, elements are B-equivariant
maps

ϕ : A −→ W, ϕ(ba) = bϕ(a),

51



CHAPTER 4. CONFORMAL SYMMETRY AND GROUP THEORY

and the action now is (aϕ)(a′) = ϕ(a′a). The two modules introduced are called induced and
coinduced modules, respectively. We defined them as left A-modules and there is an obvious
analogue for right modules. For an arbitrary algebra, induced and coinduced modules are
formally related by duality. We shall now explain this relation in the context of representations
of Lie groups and Lie algebras.

When studying representations of groups and Lie algebras, one can replace these algebraic
objects by associative algebras that have the same representation theory. For groups, this is
the group algebra and for Lie algebras, it is the universal enveloping algebra. Thus, the above
constructions give definitions of induction and coinduction for groups and Lie algebras. For
example, if G is any group, H ⊂ G a subgroup and ρ a representation of H on the space W ,
we put A = L1(G) and B = L1(H). Thus, the induced module of L1(G) (and thereby G) is

IndGHW = L1(G)⊗L1(H) W,

with the left-regular action. In turn, we can view this module as the space of covariant vector-
valued functions on G

Γ = {f : G −→ W | f(gh−1) = ρ(h)f(g)}, (4.33)

under the action (g · f)(x) = f(g−1x).

There is a close relation between induced representations of Lie groups and coinduced repre-
sentations of their Lie algebras. Let G be a Lie group, H ⊂ G a Lie subgroup and g = Lie(G),
h = Lie(H). Let W be a finite-dimensional representation of H and use the same letter for the
derivative representation of h. Then

d(IndGHW ) ∼= Coindg
hW = HomU(h)(U(g),W ) . (4.34)

To see how this comes about, recall that the representation space on the right hand side
consists of linear maps U(g) −→ W which commute with the action of U(h) on U(g) (by left
multiplication) and W . The action of x ∈ g on such a map is given by

(xψ)(A) = ψ(Ax), A ∈ U(g) .

Let us now consider an analytic function f : G −→ W . This function defines a linear map on
the universal enveloping algebra through its Taylor coefficients

ψ : U(g) −→ W, ψ(A) = RAf(e) . (4.35)

Here RA is a differential operator corresponding to the element A of the universal enveloping
algebra, constructed out of right-invariant vector fields on G. Conversely, the knowledge of all
Taylor coefficients can be used to recover f . If f is has covariance properties as in (4.33) the
resulting ψ is also covariant and belongs to Coindg

hW .

We mentioned that there is a formal relation of duality between induced and coinduced repre-
sentation of arbitrary algebras. For Lie algebras, the duality takes a concrete form

Coindg
h(W

∗) ∼=
(
Indg

hW
)∗
. (4.36)

To see that this is true, let V = Indg
hW . Given f ∈ V ∗ and A ∈ U(g) define the function

ψ = f̂ : U(g) −→ W ∗, ψ(A)(w) = f(σ(A)⊗ w), (4.37)
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where σ is the antipode in U(g). It is clear that ψ(A) is an element of W ∗ and that ψ is a
linear map. It also belongs to the coinduced module π = Coindg

pW
∗. This follows from the

computation

ψ(BA)(w) = f(σ(A)σ(B)⊗ w) = ψ(A)(σ(B)w) =
(
B(ψ(A))

)
(w) .

Here, B is an element of U(h). The last step uses the definition of the dual representation for
the algebra U(h). The map f 7→ ψ is clearly linear. It also commutes with the action of U(g).
To see this, let C ∈ U(g). Then

ˆ(Cf)(A)(w) = (Cf)(σ(A)w) = f(σ(C)σ(A)w) = f(σ(AC)w) = ψ(AC)(w) = (Cψ)(A)(w) .

It is a simple matter to show that f 7→ ψ is a bijection. Therefore, the map establishes
an isomorphism between the coinduced representation from W ∗ and the dual of the induced
representation from W .

In the context of conformal field theory, the states of the Hilbert space belong to representations
induced from a parabolic subalgebra of the conformal Lie algebra g. These representations are
known as the parabolic Verma modules. Their dual modules form the algebraic principal series
of g. By above, algebraic principal series are naturally realised as coinduced representations.
Their name steams from the connection with the principal series representation of the con-
formal group G that we shall now define. The space of smooth vectors in a principal series
representation of G forms the algebraic principal series representation of the Lie algebra g.

4.3.2 Non-unitary principal series representations

Consider a Lie group G with an Iwasawa decomposition G = KIAIN and the corresponding
minimal parabolic subgroup P = MIAIN . A non-unitary principal series representation of G
is a representation π induced from a finite-dimensional irreducible representation ρ of P that
is trivial on N . Such a representation is also called elementary. If the inducing representation
ρ is trivial on MI as well, then it is simply given by a character of AI . The corresponding
elementary representation is said to be spherical.

As their name suggest, elementary representations are typically non-unitary. However for a
particular choice of ρ they can become so. Moreover, elementary representations can be used
to construct all UIRs, at least for many important groups. In particular, this is true for the
conformal group, [87]

Fact Every unitary irreducible representation of SO+(d + 1, 1) is equivalent to a subquotient
of an elementary representation.

Recall that in the conformal case, the representation ρ = (∆, λ) is specified by the conformal
dimension and spin. An elementary representation is said to be of type I if λ = (0, ..., 0, l) is
a symmetric traceless tensor. Elementary representations are generically irreducible. Further,
they are multiplicity free - they contain each irreducible representation of KI at most once. To
see this, notice that the Frobenius reciprocity tells us that the multiplicity of a representation
µ of KI ∼ SO(d + 1) in π = Indρ is equal to the multiplicity of λ in µ. Now, the claim
follows from the well-known fact that the restriction of irreducibles from SO(d + 1) to SO(d)
is multiplicity-free.
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From the Bruhat decomposition, we see that if a vector-valued function f on the group belongs
to an elementary representation, it is completely determined by the values it assumes on M .
This means that we can realise an elementary representation on the space of vector-valued
functions on M . This realisation is nothing else but the representation on the space of fields in
a CFT that was defined in a previous chapter. We will elaborate on this point later on.

Now, we turn to the questions of which elementary representations are unitary. This leads
to the classification of unitary irreducible representations of G. Such representations come in
following series

Principal series

These are elementary representations with ∆ ∈ d/2 + iR and arbitrary λ. One can define an
invariant inner product on the representation space V as

(f1, f2) =

∫
N

dx 〈f̄1, f2〉, (4.38)

where integration is over a submanifold of G that intersects each P -orbit once and 〈f1, f2〉 is
the standard inner product on W . The condition ∆ + ∆̄ = d ensures that (4.38) is independent
of how we choose the section of P -orbits. It leads to the constraint on ∆ written above.

Type I complementary series

For ∆ 6= d/2 + ic, the inner product (4.38) is not well-defined. However, in some cases, there
exist other invariant scalar products which make the elementary representations unitary. These
constitute the complementary series. They are elementary representations of type I with the
following constraints on ∆

l = 0 : 0 < ∆ < d, l > 0 : 1 < ∆ < d− 1, (4.39)

Complementary series representations can be obtained by analytic continuation of the holo-
morphic discrete series of S̃O(d, 2). Unlike the principal and the discrete series representations,
they do not appear in the decomposition of the regular representation L2(G), so one can say
that these representations lie outside the scope of harmonic analysis on G.

Discrete series

Discrete series representations are defined by the condition that their matrix coefficients are
square-integrable functions on the group. For such a representation π on a Hilbert space H,
there exist a positive real number d(π), called its formal dimension, such that∫

G

dg (φ, π(g)ψ)2 =
1

d(π)
||φ||2||ψ||2, ∀φ, ψ ∈ H . (4.40)

Discrete series representations are not elementary. Rather, they are subquotients of elementary
representations. As indicated by their name, discrete series have ∆ = d/2 +n, n ∈ N. In order
for this series to exist, the group G and its maximal compact subgroup have to be of the same
rank. Therefore, only conformal groups with odd d admit discrete series representations.

Example The conformal group in one dimension is isomorphic to SL(2,R). It has two series
of discrete representations commonly denoted as T−l and T+

l . Here, l is a half-integer and in
the first case l ≤ −1, while in the latter l ≥ 1. We describe the series T−l , the other one being
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similar. The representation space is that of analytic functions in the upper half plane H+,
square-integrable with respect to the scalar product

(F1, F2) =
1

2Γ(−2l − 1)

∞∫
−∞

dx

∞∫
0

dy y−2l−2F1(z)F2(z) . (4.41)

The action of the SL(2,R) matrix g =

(
α β
γ δ

)
on a function F is defined as

(
T−l (g)F

)
(z) = (βz + δ)2l F

(αz + γ

βz + δ

)
. (4.42)

The T−l are lowest-weight representations. Note however, that it is not the case that there is
some eigenvector of D that is annihilated by K, from which one would construct the module
by acting with P . Indeed, this would imply that D has a discrete spectrum and only spacelike
vectors (with respect to the Killing form) in sl(2,R) have discrete spectra in T−l . To exhibit the
lowest-weight structure, one needs to consider an SO(2) subgroup generator H and its raising
and lowering operators E±, which are complex linear combinations of D, P and K. In the
above realisation, the lowest-weight vector is the function (z+ i)2l. For more details, the reader
is referred to the original paper [89], or the books [86, 90].

Contrary to the discrete series, representations from the unitary principal series have no lowest
(or highest) weight vectors.

4.4 Euclidean and Lorentzian signature

Let us now make a few comments about the Lorentzian conformal group and its representations.
This group in four dimensions was analysed by Mack and shown to posses some rather different
properties compared to its Euclidean counterpart, [91].

Theorem (Mack) Let π be a unitary, irreducible representation of G̃ of positive energy. Then
π possesses a unique lowest-weight vector. Any two such representations with the same lowest
weight are unitarily equivalent.

Let us clarify the terminology. Similarly to the Euclidean case, the group O(d, 2) has four
connected components and the identity component is denoted by G = SO+(d, 2). The maximal
compact subgroup of G is KL = SO(d) × SO(2). Assuming that d ≥ 3, we conclude that the
fundamental group of G is

π1(SO+(d, 2)) = Z2 × Z . (4.43)

The universal covering group is denoted by G̃ = S̃O
+

(d, 2) and is an infinitely-sheeted covering.
The relation (4.4) is still valid and we denote the centre of G̃ by Γ = 〈γ1, γ2〉.
Let us now specialise to four spacetime dimensions. The Iwasawa decomposition of the Lorentzian
conformal group has the form

G = KLALNL,

where now AL is a two-dimensional abelian group of dilations and Lorentz boosts in the z-
direction and NL is the six-dimensional group that consists of special conformal transformations
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and the two-dimensional abelian group contained in the Wigner’s little group of a vector point-
ing in the z-direction. Both AL and NL are simply-connected and the Iwasawa decomposition
of the universal cover G̃ is

G̃ = K̃LALNL, (4.44)

where K̃L
∼= R× SU(2)× SU(2) is the infinitely sheeted universal covering group of KL. It is

worth noting that the centre Z(G̃) is contained in K̃L.

A representation (π,H) of G̃ is said to have positive energy if the operator P 0 is positive on its
domain of definition in H. Positivity of P 0 implies that of the conformal Hamiltonian

H0 =
1

2
(P 0 +K0) . (4.45)

Indeed, denote by Dπ(P 0) the domain of definition of π(P 0). It is an invariant subset of the
representation space. Given ψ ∈ Dπ(P 0), let ψ′ = π(w−1)ψ (recall that w is the Weyl inversion).
We have

〈ψ, π(H0)ψ〉 =
1

2
〈ψ, π(P 0)ψ〉+

1

2
〈ψ, π(K0)ψ〉 =

1

2
〈ψ, π(P 0)ψ〉+

1

2
〈ψ′, π(P 0)ψ′〉 ≥ 0,

using wP 0w−1 = K0. It is important to note that γ2 = weiπH0 . Therefore, for any natural
number n

γ2n
2 = (weiπH0)2n = e2πinH0 .

The element γ2n
2 is central, so in the representation (π,H) is acts as a number. It follows from

the spectral theorem for self-adjoint operators that π(H0) has an integer-spaced spectrum of
the form

S(H0) = {h0 +m | m ∈ N0} . (4.46)

The restriction that m ≥ 0 comes from the positive-energy condition.

Consider now the restriction of H to the group K̃L. The non-compact factor R of K̃L is
generated by H0 so the restriction decomposes over lowest-weight irreducible representations
labelled by a discrete set

H =
⊕

m(µ)Vµ, (4.47)

just as if the group K̃L was compact. It is a standard result from representation theory of
semisimple Lie groups of finite centre that when a UIR is restricted to the maximal compact
subgroup K, all irreducibles of K appear with finite multiplicities. For the restriction to K̃L

from above, Lüscher was able to show that the multiplicities m(µ) are also finite. Furthermore,
let us denote by V the vector space (4.47) with the Hilbert space sum being replaced by the
algebraic direct sum. That is, only finite linear combinations of vectors from different summands
are allowed. Elements of V are called K̃L-finite vectors. The space V is the common domain
of definition for operators X ∈ g, on which they are essentially self-adjoint. Conversely, any
representation of g by skew-hermitian operators integrates to a representation of G̃. Equivalence
of representations of g implies that of representation of the group G̃.

We can now show that π is a lowest-weight module. For, let h0 be the lowest eigenvalue of
π(H0). Then there has to be a weight µ = (h0, j1, j2) in the above decomposition (4.47). Denote
its lowest-weight vector by v

π(H0)v = h0v, π(Hi)v = −jiv .
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Here Hi = H1,2 are the Cartan generators of the two SU(2)-s in K̃L. By the lowest-weight
condition, v has to be annihilated by lowering operators of {H0, H1, H2} and is therefore a
lowest-weight vector for the whole g-module H (here it is manifestly important that g and
kL are of the same rank). From here, Mack’s result follows by standard Lie-algebra-theoretic
arguments. The last part of the claim is an instance of the general fact that a lowest-weight
g-module admits at most one invariant inner product, up to a normalisation.

Despite having lowest-weight vectors, representations π can be constructed in a similar manner
to principal series ones. This is similar to the example of SL(2,R), where the discrete and
principal series have very different properties, but are realised by the same kind of differential
operators that act on appropriate classes of functions. For the function space realisation of
positive energy UIRs of G̃, the reader is referred to [91].
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Chapter 5

Harmonic Analysis and Quantum
Integrable Systems

Since the 18th century, mathematical physics made use of various functions such as Legen-
dre polynomials, Bessel functions, Jacobi polynomials etc, that were more complicated than
trigonometric and exponential functions, and yet enjoyed many remarkable properties and re-
lations. One refers to these kind of functions by a the vague term special functions. Initially,
most of the special functions arose as solutions of the Laplacian eigenvalue problem in separated
variables. In quantum mechanics, other functions such as Hermite and Laguerre polynomials
appeared as solutions to Schrödinger problems.

There have been several attempts to unify the theory of special functions, that seemed to
consist of a very large number of curious identities without any apparent order. An early
unification was obtained by Chebyshev in the 19th century, who constructed a general theory
of orthogonal polynomials. The notion of self-adjoint operators reveals some basic properties
of these polynomials and other families of special functions parametrised by the spectral value.
Another unification was achieved by classifying differential equations that special functions
satisfy. In this direction, a very important role is played by Gauss’ hypergeometric function

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
. (5.1)

In fact, most one-variable special functions that one meets in applications are either particular
cases of 2F1 or limits thereof.

However, a truly unified view on special functions came from another branch of mathematics -
the representation theory of Lie groups. In 1947, Bargmann found that unitary irreducible ma-
trix elements of SL(2,R) could be expressed in terms of the hypergeometric function. Moreover,
matrix elements of discrete series representations could be written using Jacobi polynomials. In
a similar way, Bessel functions are related to irreducible matrix elements of the group ISO(2) of
isometries of the Euclidean plane. Fundamentally, the Lie groups appear as symmetry groups
of the operator whose eigenfunctions one is considering (Laplacian, d’Alembertian...).

Early observations of Bargmann were vastly extended by many others and notably the Gelfand
school. Curious properties of special functions were derived from the group multiplication law,
Clebsch-Gordan decompositions and other basic constructions of representation theory.
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Matrix elements of unitary irreducible representations of a general Lie group G are eigenfunc-
tions of the Laplace-Beltrami operator on G (at least for the principal and discrete series).
They are functions of dimG variables and trying to write them in terms of a few special func-
tions like 2F1 is presumably a hopeless task. Thus, for higher-dimensional Lie groups, only very
special irreducible matrix elements are expected to have a nice theory, and indeed such a theory
exists for the so-called spherical functions and some of their generalisations. To give a sense
of the scope of these generalisations, we say that a Lie group G and a Lie subgroup K form
a Gelfand pair if the convolution algebra of left-right K-invariant functions on G is commu-
tative. Elements of this algebra are called K-spherical functions and satisfy many interesting
properties.

The group Laplacian ∆ commutes with left and right regular actions and can therefore be
restricted to any space of covariant functions. On this space, one can regard ∆ as an operator
in a smaller number of variables. One often observes that the reduced operator coincides with
the Hamiltonian of some integrable quantum problem. In fact, integrability of the problem can
be explained from its group-theoretic origin as higher order Casimirs (which act as differential
operators on C∞(G) and reduce to the space of covariant functions) provide integrals of motion.
Famously, trigonometric and hyperbolic Calogero-Moser-Sutherland models are of this kind.

The chapter is organised as follows. We will start by reviewing some elementary results from
the representation theory of the simplest noncommutative Lie groups, SU(2) and SL(2,R).
Next, we will give a general definition of K-spherical functions and discuss some examples of
them. Then we change the topic and introduce the Calogero-Sutherland quantum mechanics
problem (and its special case, the Pöschl-Teller Hamiltonian). The two topics are tied together
by showing how the BC2 Calogero-Sutherland Hamiltonian arises from a reduction of the
Laplace-Beltrami operator on the conformal group. The last two sections treat somewhat
different problems, that still belong to the same broader theme. The first one is about Appell’s
hypergeometric functions and the second is about Gaudin integrable systems. All results will
have a direct relevance for conformal field theories, to be studied in later chapters.

5.1 Simplest groups: SU(2) and SL(2,R)

We begin the discussion by considering the simplest noncommutative Lie groups, SU(2) and
SL(2,R). Representation theory of these groups is very well-known.

Let us denote the generators of the Lie algebra su(2) by Mij and write them as 2× 2 matrices
Mjk = − i

2
εijkσi. Elements of the group SU(2) can be parametrised by Euler angles (φ, θ, ψ)

defined as

g(φ, θ, ψ) = e−φM12e−θM23e−ψM12 =

(
cos θ

2
ei
φ+ψ

2 i sin θ
2
ei
φ−ψ

2

i sin θ
2
e−i

φ−ψ
2 cos θ

2
e−i

φ+ψ
2

)
≡ π1/2(φ, θ, ψ) . (5.2)

The spin-l representation of SU(2) is spanned by the basis vectors {|l,m〉,m = −l,−l+1, ..., l}.
These are eigenvectors of M12 and obey M12|l,m〉 = −im|l,m〉. Matrix elements in the spin-l
representation are given by

tlmn(φ, θ, ψ) = 〈l,m|g(φ, θ, ψ)|l, n〉 = e−i(mφ+nψ)dlmn(θ) . (5.3)
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Here, the function dlmn is the the Wigner d-function and it can be expressed in terms of Jacobi
polynomials as

dlmn(θ) = im−n

√
(l +m)!(l −m)!

(l + n)!(l − n)!

(
sin

θ

2

)m−n(
cos

θ

2

)m+n

P
(m−n,m+n)
l−m (cos θ) . (5.4)

Therefore, matrix elements of all unitary irreducible representations of SU(2) are very simple
special functions.

The group SL(2,R) admits two kinds of Cartan decompositions. If we regard it as at the
conformal group in one dimension, then K = SO(1, 1) is the non-compact subgroup of dilations.
We parametrise the group elements as

g(φ, u, ψ) = eφDeu
P+K

2 eψD =

(
cosh u

2
e
φ+ψ

2 sinh u
2
e
φ−ψ

2

sinh u
2
e−

φ−ψ
2 cosh u

2
e−

φ+ψ
2

)
. (5.5)

This is the KAK decomposition, in the terminology introduced in the last chapter. To write
the KIAIKI decomposition, it is useful to regard SL(2,R) as the group SU(1, 1). The Lie
algebra of the latter is spanned by M12, iM23 and iM31 and the Euler angles read

g(φ, t, ψ) = e−φM12e−tiM23e−ψM12 =

(
cosh t

2
ei
φ+ψ

2 sinh t
2
ei
φ−ψ

2

sinh t
2
e−i

φ−ψ
2 cosh t

2
e−i

φ+ψ
2

)
. (5.6)

For applications that we have in mind, the decomposition (5.5) is more useful because of the
prominent role played by the dilation generator. The second decomposition (5.6) is somewhat
more natural in mathematics because the group KI is compact and thus has a discrete set of
unitary representations. By general results, any UIR π of SL(2,R) decomposes over KI with
finite multiplicities, so the restriction to it provides a discrete basis for π.

5.2 Spherical functions

In the previous chapter, we have defined the Cartan decomposition G = KIAIKI for a rather
general non-compact semisimple Lie group and another decomposition G = KAK of the Eu-
clidean conformal group. With either of these decompositions, there is an associated space
of so-called spherical functions. We will define this space for the KAK decomposition, the
KIAIKI case being entirely analogous.

Let ρl and ρr be two finite-dimensional representations of K with carrier spaces Vl and Vr. The
space of K-spherical functions is that of vector-valued functions on G that are covariant with
respect to both left and right regular actions of K

Γ = Γρl,ρr = {f : G −→ Vl ⊗ Vr | f(klgkr) = (ρl(kl)⊗ ρr(k−1
r ))f(g)}, kl,r ∈ K, g ∈ G . (5.7)

It is not difficult to define many K-spherical functions using representation theory. For, let π
be an irreducible representation of G on a vector space V . Pick an orthonormal basis {ei} of
V . The matrix elements of πij(g) = 〈ei|π(g)|ej〉 are functions on the group and satisfy

πij(klgkr) = 〈ei|π(kl)π(g)π(kr)|ej〉 = πik(kl)πkl(g)πlj(kr), (5.8)
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where we have simply inserted the identity 1 = |ek〉〈ek| twice. The representation π restricts
to a direct sum of irreducible representations of the subgroup K. Assume that Vl and V ∗r
are among the irreducible components and denote their bases by {ea} and {eα}, respectively.
Then (5.8) tells us that the collection {πaα} is a K-spherical function on G. If either of the
representations ρl,r is trivial, (πaα) is called an associated spherical function. If both ρl,r are
trivial, it is a zonal spherical function, [86].

Example Obviously, anyK-spherical function is determined by values it takes on A, so it can be
regarded as a function of dimA variables. In particular, KI-spherical functions on SO+(p+1, 1)

depend on one variable. Let π∆̂ be the non-unitary principal series representation with labels
(∆̂, 0) (zero spin). Zonal spherical functions on SO+(p + 1, 1) are expressible in terms of the
hypergeometric function

ψp,∆̂(λ) = π∆̂
00(g(λ)) = (coshλ)−∆̂

2F1

(
∆̂ + 1

2
,
∆̂

2
;
p+ 1

2
; tanh2 λ

)
. (5.9)

The coordinate λ is the same as in the discussion of the vector representation of SO+(p+1, 1) in
the previous chapter. The function ψp,∆̂ can be expressed in terms of a Legendre function using
a hypergeometric identity. By analytic continuation, one obtains zonal SO(q − 1)-spherical
functions on SO(q)

ψq,s(κ) =
s!(q − 3)!

(s+ q − 3)!
C(q−2)/2
s (cosκ) . (5.10)

Here C
(q−2)/2
s is the Gegenbauer polynomial. Associated spherical functions in these two cases

are also expressible in terms of 2F1. The reader is referred to [86] for details.

5.3 Calogero-Moser-Sutherland models

5.3.1 Pöschl-Teller Hamiltonian

One of the few exactly solvable one-dimensional Schrödinger problems that one learns about in
the first course on quantum mechanics was discovered by Pöschl and Teller, [92], and has the
Hamiltonian

H
(a,b)
PT = −∂2

u + V PT
(a,b)(u) = −∂2

u −
ab

sinh2 u
2

+
(a+ b)2 − 1

4

sinh2 u
. (5.11)

The potential depends on two arbitrary parameters a and b. It diverges at the origin, so one
often considers the problem on a half-line, e.g. {u > 0}.

Figure 5.1: Pöschl-Teller Hamiltonians for (a, b) = (1, 1) and (a, b) = (2, 1), respectively
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The problem is exactly solvable in the sense that the wavefunctions can be written in terms of
standard special functions. Namely, they are given by

Ψ
(a,b)
λ = 4λc(λ, a, b)

(
tanh

u

2

)a−b+ 1
2
(

cosh
u

2

)2λ

2F1

(1

2
+a−λ, 1

2
−b−λ, 1−2λ,

1

cosh2 u
2

)
, (5.12)

with the normalisation constant

c(λ, a, b) = 4−λ+a+ 1
2

Γ(a− b+ 1)Γ(2λ)

Γ(1
2

+ λ+ a)Γ(1
2

+ λ− b)
.

We have labelled the wavefunctions by a parameter λ which is related to the energy as E = −λ2.
Scattering states have positive energies and λ ∈ iR. They behave as incoming and outgoing
plane waves at u = ∞, where the potential vanishes. Indeed, eigenfunctions Ψ

(a,b)
λ are easily

seen to have such behaviour. These functions are ill-defined at u = 0 and there is a unique
linear combination of them that is regular at zero. With our normalisations, it is simply their
sum ψ

(a,b)
λ = Ψ

(a,b)
λ + Ψ

(a,b)
−λ , which can be written as

ψ
(a,b)
λ =

(
2 cosh

u

2

)2a+1 (
tanh

u

2

)a−b+ 1
2

2F1

(1

2
+ a+ λ,

1

2
+ a− λ, 1 + a− b,− sinh2 u

2

)
.

Of course, the spectrum of H
(a,b)
PT is continuous.

It is common to complexify the coordinate u and consider the Pöschl-Teller problem in other
regions of the complex plane. By substituting u = iµ and requiring µ ∈ [0, π] we arrive at the
trigonometric version

H
(a,b)
PT = −∂2

µ −
ab

sin2 µ
2

+
(a+ b)2 − 1

4

sin2 µ
. (5.13)

In the trigonometric case, the spectrum is discrete and the hypergeometric functions degenerate
to Jacobi polynomials P

(α,β)
n . The wavefunctions now read

ψa,bn (µ) = c(a,b)
n sina−b+

1
2
µ

2
cosa+b+ 1

2
µ

2
P (a−b,a+b)
n (cosµ),

where the normalisation constants are

c(a,b)
n =

( 2(2n+ 2a+ 1)n!Γ(n+ 2a+ 1)

Γ(n+ a− b+ 1)Γ(n+ a+ b+ 1)

) 1
2
.

5.3.2 BCN Calogero-Sutherland system

The Pöschl-Teller Hamiltonian admits integrable generalisations to Schrödinger problems that
involve an arbitrary number of interacting particles moving on a line. For any root system Φ, it
is possible to construct one such generalisation. They are called Calogero(-Moser)-Sutherland
(CS) models, [93, 94, 95]. We will describe these models for (non-reduced) root systems BCN
as they are the ones that appear in connection with the pseudo-orthogonal groups, and thereby
conformal field theory.

Positive roots of the BCN root system come in three types

Φ+ = {ei, ei ± ej, 2ei | 1 ≤ i < j ≤ N}, (5.14)
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of lengths 1,
√

2 and 2. Here {ei} denotes the standard orthonormal basis of RN . If the
shortest roots are thrown away, one ends up with the set of positive roots for the Lie algebra
CN = sp(2N). The Calogero-Sutherland Hamiltonian associated to Φ reads

HCS = −
N∑
i=1

∂2
ui

+ V CS(ui) = −
N∑
i=1

∂2
ui

+
∑
α∈Φ+

kα(kα + 2k2α − 1)〈α, α〉
4 sinh2 〈α,u〉

2

. (5.15)

Here ui are coordinates of the particles and u = uiei. Numbers kα are parameters of the
model and are usually referred to as multiplicities. It may seem that there are many of these
parameters, but in fact one requires them to depend only on the orbit of the root α under the
Weyl group W . Since Φ+ decomposes into three orbits according to different possible lengths
of vectors α, there are in total three parameters. We will express these in terms of another set
of parameters {a, b, ε} as

kei = k1 = −2b, k2ei = k2 = a+ b+
1

2
, kei±ej = k3 =

ε

2
. (5.16)

For N = 1, the Calogero-Sutherland Hamiltonian reduces to the Pöschl-Teller Hamiltonian.
For N = 2 the potential is

V CS
(a,b,ε)(ui) = V PT

(a,b)(u1) + V PT
(a,b)(u2) +

ε(ε− 2)

8 sinh2 u1−u2

2

+
ε(ε− 2)

8 sinh2 u1+u2

2

. (5.17)

Integrability of CS models can be studied from various points of view. We will be mostly
interested in the group-theoretic origin of Hamiltonians, but mention here another common way
to construct them. It uses the so-called Dunkl operators, [96], which are first order ”differential
operators” that include reflections in the roots. Let us describe them in more details for N = 2,
the discussion for higher N being similar.

The set of positive roots for the BC2 system is Φ+ = {e1, e2, e1 + e2, e1− e2, 2e1, 2e2}. Its Weyl
group is isomorphic to the dihedral group, W ∼= D2, and can be presented as

W = 〈w1, w2 | w2
1 = w2

2 = 1, w1w2w1w2 = w2w1w2w1〉 .

The generators w1,2 are the Weyl reflections w1 = we1−e2 and w2 = we2 . The Weyl group has five
irreducible representations, four one-dimensional and one two-dimensional (12+12+12+12+22 =
8). For the two-dimensional representation, there is a corresponding representation on the space
of functions of two variables, (wf)(u) = f(wu).

Let xi = eui and ∂i = ∂ui . Then x±1
i , ∂i and elements of the group algebra C[W ] all act in the

appropriate space of functions of (u1, u2). They form an algebra and it is a simple matter to
verify the relations

w1xiw1 = xi+1, w1x
−1
i w1 = x−1

i+1, w2x
±1
1 w2 = x±1

1 , w2x
±1
2 w2 = x∓1

2 , (5.18)

w1∂1w1 = ∂2, w1∂2w1 = ∂1, w2∂1w2 = ∂1, w2∂2w2 = −∂2 . (5.19)

Together with the obvious relations between coordinates, their inverses and the derivatives,
these define the so-called degenerate double affine Hecke algebra, [97]. Among various elements
of this algebra, especially interesting are the Dunkl operators

yi = ∂i −
∑
α∈Φ+

kα〈α, ei〉
1− e−〈α,u〉

wα . (5.20)
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The fundamental property of Dunkl operators is their commutativity, [yi, yj] = 0. Hamiltonians
of the Calogero-Sutherland model are constructed as sums of powers of yi-s. In the BC2 case,
there are two Hamiltonians

H2 =
2∑
i=1

y2
i , H4 =

2∑
i=1

y4
i . (5.21)

We have defined the Dunkl operators and CS Hamiltonians as differential operators valued in
the group algebra C[W ]. Explicitly

y1 = ∂1 −
k1

1− x−1
1

w1w2w1 −
k3

1− x−1
1 x−1

2

w2w1w2 −
k3

1− x−1
1 x2

w1 −
2k2

1− x−2
1

w1w2w1,

y2 = ∂2 −
k1

1− x−1
2

w2 −
k3

1− x−1
1 x−1

2

w2w1w2 +
k3

1− x−1
1 x2

w1 −
2k2

1− x−2
2

w2,

and

H2 =
2∑
i=1

∂2
i −

(1

4
k2

1 +
1

2
k1k2

) 2∑
i=1

1

sinh2 ui
2

− k2
2

2∑
i=1

1

sinh2 ui

− 1

2
k2

3

( 1

sinh2 u1+u2

2

+
1

sinh2 u1−u2

2

)
+

1

4
k1

( 1

sinh2 u1

2

w1w2w1 +
1

sinh2 u2

2

w2

)
+ k2

( 1

sinh2 u1

w1w2w1 +
1

sinh2 u2

w2

)
+

1

2
k3

( 1

sinh2 u1+u2

2

w2w1w2 +
1

sinh2 u1−u2

2

w1

)
.

To get ordinary differential operators, we need to evaluate the elements of the Weyl group in
a one-dimensional representation. Doing this for the choice wi = 1 turns H2 into (minus) the
Calogero-Sutherland Hamiltonian (5.15), or explicitly

H(a,b,ε)
cs = H

(a,b)
PT (u1) +H

(a,b)
PT (u2) +

ε(ε− 2)

8

(
1

sinh2 u1−u2

2

+
1

sinh2 u1+u2

2

)
. (5.22)

Other choices wi = ±1 also give the CS Hamiltonian from above with different values of the
parameters.

5.3.3 Calogero-Sutherland Hamiltonian from the group Laplacian

We now come to the very important topic of constructing CS Hamiltonians in harmonic analysis.
Irreducible (admissible) matrix elements of a Lie group are eigenfunctions of the quadratic and
higher order Casimirs constructed out of invariant vector fields. Since they commute with left
and right regular actions, these Casimir operators reduce to the space of K-spherical functions
and can be thus regarded as differential operators in dimA coordinates.

For example, the Laplace-Beltrami operator (quadratic Casimir) on SL(2,R) in the Cartan
coordinates (φ, u, ψ) takes the form

∆ = ∂2
u + cothu ∂u −

1

sinh2 u

(
∂2
φ − 2 coshu ∂φ∂ψ + ∂2

ψ

)
. (5.23)
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Acting on a K-spherical function f that obeys ∂φf = af and ∂ψf = bf , it reduces to the
operator

∆red = ∂2
u − cothu ∂u −

1

sinh2 u

(
a2 − 2ab coshu+ b2

)
. (5.24)

There are still first order terms in ∆red and they can be eliminated by conjugation with a unique
(up to normalisation) function of u. Once this is done, we get the Pöschl-Teller Hamiltonian,
namely

√
sinhu ∆red

1√
sinhu

= −H(a,b)
PT −

1

4
. (5.25)

Calogero-Sutherland models arise in a similar way when the dimension of A exceeds one. For
our purposes, the most relevant case is dimA = 2, that occurs for the KAK decomposition of
the conformal group.

Let ρl and ρr be finite-dimensional representations of K. Due to the Cartan decomposition,
any K-spherical function (5.7) on the conformal group is uniquely determined by the values it
takes on the two-dimensional abelian group A. The reduced Laplacian ∆red, defined by

(∆f)(kla(u1, u2)kr) =
(
ρl(kl)⊗ ρr(k−1

r )
)

(∆redf)(a(u1, u2)),

again contains first order derivatives with respect to the two coordinates u1 and u2. One can
eliminate these terms through a transformation of the form

f(u1, u2) = ω−1/2(u1, u2)ψ(u1, u2), (5.26)

with the prefactor

ω(u1, u2) = 4(−1)2−d(sinh
u1

2
sinh

u2

2
)2d−2 coth

u1

2
coth

u2

2
| sinh−2 u1

2
− sinh−2 u2

2
|d−2 . (5.27)

Let us assume that the representations ρl,r are one-dimensional. Then, they are simply two
characters of the dilation group. Denote these characters by 2a = ρl(D) and 2b = ρr(D). In
this case, the conjugated reduced Laplacian is the BC2 Calogero-Sutherland Hamiltonian

ω1/2 ∆red ω
−1/2 =

1

2
H(a,b,d−2)
cs +

1

8
(d− 1)2 . (5.28)

Notice that the result holds for any dimension d ≥ 2. The dependence of the CS model on
d is through its parameter ε = d − 2. At this point, the reader may want to compare these
observations to the Dolan-Osborn Casimir equations satisfied by conformal partial waves. They
are also second order differential equations in two variables, characterised by three parameters,
2a = ∆2 −∆1, 2b = ∆3 −∆4 and ε = d− 2. This similarity is of course not accidental and the
mapping between Casimir equations and the BC2 Calogero-Sutherland problem will be given
in a later chapter.

5.4 Appell’s hypergeometric functions

We have seen how Calogero-Sutherland models provide a sophisticated generalisation of the
hypergeometric equation. A much more basic generalisation of 2F1 to two variables was found

65



CHAPTER 5. HARMONIC ANALYSIS AND QUANTUM
INTEGRABLE SYSTEMS

by Appell in the 19th century. Appell’s functions are defined by convergent powers series
expansions in variables x and y. There are four functions

F1(a, b1, b2; c;x, y) =
∞∑

m,n=0

(a)m+n(b1)m(b2)n
(c)m+nm!n!

xmyn, (5.29)

F2(a, b1, b2; c1, c2;x, y) =
∞∑

m,n=0

(a)m+n(b1)m(b2)n
(c1)m(c2)nm!n!

xmyn, (5.30)

F3(a1, a2, b1, b2; c;x, y) =
∞∑

m,n=0

(a1)m(a2)n(b1)m(b2)n
(c)m+nm!n!

xmyn, (5.31)

F4(a, b; c1, c2;x, y) =
∞∑

m,n=0

(a)m+n(b)m+n

(c1)m(c2)nm!n!
xmyn . (5.32)

More generally, Horn defined double power series Amnx
myn of hypergeometric type by the

requiring the two ratios Am+1,n/Amn and Am,n+1/Amn to be rational functions of m and n. The
highest degree of the four polynomials that appear in these rational expressions is called the
order of the series. It was shown that there are 34 distinct series of order two. These make up
the so-called Horn’s list, the first four entries of which are Appell’s functions F1, ..., F4, [98].

Each function from Horn’s list may be characterised as a solution to a pair of second order
partial differential equations in x and y. We will now explain this on the example of F4. To
write the equations, we start with the one-variable hypergeometric differential operator. It
depends on three parameters a, b, c and reads

H(a, b, c, x, ∂x) = x(1−x)∂2
x+(c−(a+b+1)x)∂x−ab = (x∂x+c)∂x−(x∂x+a)(x∂x+b) . (5.33)

The hypergeometric differential equation, H(a, b, c, x, ∂x)f = 0, has two independent solutions
near the origin of the complex x-plane

f1 = 2F1(a, b, c, x), f2 = x1−c
2F1(1 + a− c, 1 + b− c, 2− c, x) . (5.34)

Appell’s, or more generally Horn’s differential equations are obtained by promoting the param-
eters a, b, c to commuting operators in a variable y, [99]. Concretely, for the Appell’s function
F4 we set

H1 = H(a+ y∂y, b+ y∂y, c1, x, ∂x), H2 = H(a+ x∂x, b+ x∂x, c2, y, ∂y) . (5.35)

The associated system of equations reads H1f(x, y) = H2f(x, y) = 0. There are four indepen-
dent solutions around the origin. We write only one of them

F4(a, b, c1, c2, x, y) = 2F1(a+ y∂y, b+ y∂y, c1, x) 2F1(a, b, c2, y)

= 2F1(a+ x∂x, b+ x∂x, c2, y) 2F1(a, b, c1, x) .

It is clear from the first representation of F4 that it solves the equation H1F4 = 0 and similarly
from the second that it solves H2F4 = 0. What is non-trivial is that the two representations
give the same function. This can be directly verified from the series expansion for F4.
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To solve the hypergeometric eigenvalue problem H(a, b, c, x, ∂x)f = λf with λ 6= 0, one observes
that it takes again the form of a hypergeometric equation with parameters a′, b′, c such that
a′b′ = ab + λ and a′ + b′ = a + b. As a side remark, note that in the analysis of conformal
blocks for four-point functions, a significant role is played by the differential operator Da,b,c

x =
xH(a, b, c, x, ∂x), that was extensively studied by Dolan and Osborn, [30, 31]. The eigenvalue
problem Da,b,c

x f = λ(λ+ c− 1)f has independent solutions

f1 = xλ 2F1(a+λ, b+λ, c+2λ, x), f2 = x1−c−λ
2F1(1+a−c−λ, 1+b−c−λ, 2−c−2λ, x) . (5.36)

This follows from the identity

x−λH(a, b, c, x, ∂x)x
λ = H(a+ λ, b+ λ, c+ 2λ, x, ∂x) +

λ(λ+ c− 1)

x
. (5.37)

Thus indeed

Da,b,c
x xλ 2F1(a+ λ, b+ λ, c+ 2λ, x) = xλ+1

(
H(a+ λ, b+ λ, c+ 2λ, x, ∂x) +

λ(λ+ c− 1)

x

)
2F1(a+ λ, b+ λ, c+ 2λ, x) = λ(λ+ c− 1)xλ 2F1(a+ λ, b+ λ, c+ 2λ, x) .

Our definitions of operators H1 and H2 make it easy to derive similar relations in the two-
variable case. Clearly

x−λH1x
λ = H(a+ λ+ y∂y, b+ λ+ y∂y, c1 + 2λ, x) +

λ(λ+ c1 − 1)

x
. (5.38)

Further, one can readily verify

y−µH1y
µ = H(a+ µ+ y∂y, b+ µ+ y∂y, c1, x) . (5.39)

When combined, these two equations lead to

y−µx−λH1x
λyµ = H(a+ λ+ µ+ y∂y, b+ λ+ µ+ y∂y, c1 + 2λ, x) +

λ(λ+ c1 − 1)

x
. (5.40)

Analogous statements hold for the operator H2. These formulas will play a significant role in
later chapters.

5.5 Gaudin models

Gaudin models were originally defined in the context of quantum spin chains based on the Lie
algebra sl(2), [100]. It was later realised that these models can be naturally defined for any
semisimple Lie algebra and have relations to deep and beautiful mathematics, [101, 102]. Here
we will only give the definition of the model and its most basic properties. This will be sufficient
to establish the relevance of Gaudin models for the theory of n-point conformal partial waves
in the later parts of this work.

Let g be a finite-dimensional simple Lie algebra. We denote a basis for g by {Xa} and write the
corresponding structure constants as f cab. Indices on generators are raised and lowered using
the Killing form κ.
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Fix n numbers z1, ..., zn ∈ CP 1 and imagine attaching a copy of g to each point zi. More
precisely, we consider the tensor product of n commuting copies of the universal enveloping
algebra of g, A = U(g)⊗n. The Gaudin algebra is defined as a certain commutative subalgebra
of A. It is constructed with the help of the Lax matrix with a spectral parameter z

La(z) =
n∑
i=1

X
(i)
a

z − zi
. (5.41)

Here, generators of the Lie algebra attached to the site zi carry the superscript (i). If we take
the generators Xa in some matrix representation and denote L(z) = La(z)Xa, then the object
L(z) is indeed a matrix with values in A, justifying its name. Of fundamental importance in
the analysis of the Gaudin model are the commutation relations

[La(z),Lb(w)] =
n∑

i,j=1

[X
(i)
a , X

(j)
b ]

(z − zi)(w − zj)
=

n∑
i=1

f cabX
(i)
c

(z − zi)(w − zi)

= f cab

n∑
i=1

X
(i)
c

w − z

(
1

z − zi
− 1

w − zi

)
= f cab

Lc(z)− Lc(w)

w − z
.

Gaudin Hamiltonians are constructed using the Lax matrix and invariant tensors of g (i.e.
Casimir elements). The quadratic Hamiltonians are extracted from the object

H2(z) =
1

2
κabLa(z)Lb(z) . (5.42)

Let us look at the commutator of the Lax matrix and H2

[La(w),H2(z)] =
1

2
κbc[La(w),Lb(z)Lc(z)]

=
κbc

2(w − z)

(
fdacLb(z)(Ld(w)− Ld(z)) + fdab(Ld(w)− Ld(z))Lc(z)

)
=

κbcfdac
2(w − z)

(Lb(z)Ld(w) + Ld(w)Lb(z)) .

To get to the last line we used the ad-invariance of the Killing form. Starting from this relation,
a slightly more involved computation shows that the operators H2 commute for any values of
spectral parameters

[H2(z),H2(w)] = 0 . (5.43)

The presence of the spectral parameter allows one to extract from H2(z) many elements of the
algebra A, which will by (5.43) all commute among themselves. The standard way of extracting
operators is by the partial fraction decomposition

H2(z) =
1

2

n∑
i,j=1

κab

(z − zi)(z − zj)
=

1

2

n∑
i=1

κabX
(i)
a X

(i)
b

(z − zi)2
+

1

2

∑
i 6=j

κabX
(i)
a X

(j)
b

zi − zj

(
1

z − zi
− 1

z − zj

)
.

If we denote the quadratic Casimir at site zi by C
(i)
2 , the last expression can be written as

H2(z) =
n∑
i=1

C
(i)
2

(z − zi)2
+

n∑
i=1

H(i)
2

z − zi
, (5.44)
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where the operators H(i)
2 are given by

H(i)
2 =

∑
j 6=i

κabX
(i)
a X

(j)
b

zi − zj
. (5.45)

These are known as the (quadratic) Gaudin Hamiltonians. Besides commuting among them-

selves, they also commute with the diagonal generators Xdiag
a = X

(1)
a + ...+X

(n)
a . Indeed

[Xdiag
a ,H(1)

2 ] = κbc

[
n∑
i=1

X(i)
a ,

n∑
j=2

X
(1)
b X

(j)
c

z1 − zj

]
= κbc

n∑
j=2

fdabX
(1)
d X

(j)
c + fdacX

(1)
b X

(j)
d

z1 − zj

=

(
n∑
j=2

κbcfdab + κdbf cab
z1 − zj

)
X

(1)
d X(j)

c = 0,

where in the last step we have used the ad-invariance of κ. The H(i)
2 commute with diagonal

generators by a similar calculation and the same is clearly true for the Casimirs C
(i)
2 . For the

Lie algebra sl(2), where the model was initially defined, the elements {C(i)
2 ,H(i)

2 } generate the
full Gaudin algebra. For Lie algebras of higher rank, any invariant tensor τa1...ap gives rise to
the object

Hp(z) =
1

p
τa1...apLa1(z)...Lap(z) + ... . (5.46)

The dots represent a correction term that can be written as a polynomial of degree strictly less
than p in the generators. In the classical version of the model, the correction terms are absent.
The elements Hp obey

[Hp(z),Hq(w)] = 0, ∀z, w . (5.47)

Similarly as above one can perform partial fractioning or some other method to extract from
them commuting higher order Hamiltonians. All these Hamiltonians commute with the diagonal
action, which is therefore a symmetry of the model

[Xdiag
a ,Hp(z)] = 0 . (5.48)

From the partial fraction decomposition

Hp(z) =
n∑
i=1

p∑
k=1

H(i)
p,k

(z − zi)k
, (5.49)

it may seem that the Gaudin algebra has n
∑
p generators H(i)

p,k. However, not all of these

elements are independent. For example, it is easy to see that H(1)
2 + ...+H(n)

2 = 0. Subtracting
these and similar relations gives an upper bound

M = (n− 1)
dimg− rkg

2
, (5.50)

on the number of abelian generators of the Gaudin algebra (we say an upper bound, because
there might be additional accidental relations). In this counting we also did not include Casimir
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elements at individual sites, which may be regarded as somewhat trivial elements of the alge-
bra. If one quotients A by the ideal generated by elements Xdiag

a , the number of non-trivial
Hamiltonians reduces to

Mred = (n− 2)
dimg− rkg

2
− rkg . (5.51)

A typical question in the theory of Gaudin integrable systems arises when the copies of the
universal enveloping algebra are replaced by representations π(i) of g. Then the Gaudin Hamil-
tonians become commuting operators on the carrier space of π(1) ⊗ ...⊗ π(n) and one seeks for
solutions of their simultaneous eigenvalue problem. If representations are of highest weight, the
most common way of approaching the diagonalisation is through Bethe-ansatz techniques.
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Chapter 6

Superconformal symmetry

The aim of this chapter is to introduce the mathematical underpinnings of supersymmetry.
Supersymmetry emerged as an important symmetry principle in quantum field theory in the
1970s through the work of Golfand, Likhtman, Wess, Zumino and others, [104, 105]. It relates
bosonic and fermionic excitations of quantum fields and leads to remarkable cancellations of
divergences between Feynman diagrams. One early reason to study supersymmetry was that
the super-Poincare algebra provided a possible non-trivial extension of the symmetry algebra
of an S-matrix for a local relativistic quantum field theory. No such non-trivial extensions exist
if one restricts to ordinary Lie algebras, by the Coleman-Mandula theorem.

Partially motivated by the interest of physicists, the study of Z2-graded, or super, objects
became an integral part of algebra and geometry as well. On the one hand, Lie superalgebras
were studied by Nahm, Rittenberg and Scheunert and independently by Kac, [106, 107]. Kac
obtained a complete classification of finite-dimensional complex simple Lie superalgebras not
so dissimilar to that of ordinary Lie algebras. He also developed the theory of their finite-
dimensional representations. The main difference compared to the ordinary theory is that
Lie superalgebras, or their enveloping algebras, contain nilpotent elements. Recall that in
representation theory of finite groups, the identity g|G| = 1 implies that in any finite-dimensional
representation π, matrices π(g) are diagonalisable. This is a crucial property from which one
proves complete reducibility of finite-dimensional representations etc. Similarly, in a unitary
representation of a Lie group, elements of the Lie algebra are anti-hermitian and therefore
diagonalisable. For Lie superalgebras no such statements hold as nilpotent elements can never
be represented by non-zero diagonalisable operators. Indeed, Lie superalgebras possess so-called
atypical representations which have proper invariant subspaces and yet are not direct sums of
irreducible modules. It turns out that precisely these representations, or their irreducible
quotients, are of special interest in physics.

Parallel to the algebraic developments, supergeometry was introduced by Berezin and Leites
and by Kostant, [108, 109]. Both of these approaches have the spirit of algebraic geometry and
define supermanifolds from their structure algebras (to be thought of as algebras of functions).
The necessity of such a view comes from the fact that while it makes sense to evaluate a
real or complex variable at a point, there is no sense of evaluating a Grassmann variable.
Indeed, in differential geometry one can recover a manifold M (as a set) from its commutative
algebra of functions C∞(M) by taking all one-dimensional representations of C∞(M). In the
super-context, C∞(M) is replaced by a super-commutative algebra A generated by real and
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Grassmann variables and one-dimensional representations of A are in bijective correspondence
with points of the ordinary topological space underlying the supermanifold under consideration.

Despite these obvious differences, one can develop much of the differential geometry for super-
manifolds as in the ordinary commutative case. Starting from the structure algebra A, vector
fields are defined as its graded derivations and form an A-bimodule (i.e. the product of a vector
field and a function is a vector field). One-forms are linear maps Der(A) −→ A. From vector
fields and one-forms one obtains by means of tensor products arbitrary tensors of type (p, q).
The set of all forms Ω(A) constitutes a differential graded algebra whose zero-degree subalgebra
is A. However, one notes that differentials of Grassmann variables commute, dθidθj = dθjdθi,
so there are no forms of highest degree. Related to this is also the fact that differential forms
do not provide the theory of integration for supermanifolds. However, there is a very natural
such theory provided by the notion of the Berezin integral.

General aspects of supergeometry and the theory of Lie superalgebras come together in the
study of Lie supergroups (or just supergroups). A natural and concrete description of these
objects comes from Hopf algebras. Recall that both the universal enveloping algebra of a Lie
algebra, U(g), and the convolution algebra of a group, L1(G), are cocommutative Hopf algebras.
Conversely, any cocommutative Hopf algebra may be constructed from these two types by
means of smash products. Similarly, the universal enveloping algebra of a Lie superalgebra
is a super-cocommutative Hopf algebra. We will say that a supermanifold is a supergroup if
a coalgebra A∗ related to its structure algebra A (distributions with finite support) is a (by
definition super-cocommutative) Hopf algebra. There is a correspondence between supergroups
and Lie superalgebras analogous to the one between Lie groups and Lie algebras. Having defined
supergroups, the meaning of them acting on supermanifolds will be obvious.

Let us note that supergeometry lies somewhere in between ordinary and general noncommu-
tative geometry. Indeed, while the structure algebra A of a supermanifold is noncommutative,
it is so in a very mild way. The approach we follow here is well adopted to further, truly
noncommutative, generalisations, but these will not enjoy all the nice properties from above.
For example, vector fields can be defined for any algebra as the set of derivations, but generally
Der(A) is not a module over A. Any noncommutative algebra A can be embedded in a differ-
ential graded algebra Ω(A), but Ω(A) is by no means unique. All differential calculi over A are
quotients of the canonical universal calculus Ωu(A). Also, the question of the integration be-
comes much more subtle. Famously, Hopf algebras and quantum groups as their special cases,
are the correct framework to study symmetries of quantum spaces. Supergeometry itself may
be studied by another approach, pioneered by de Witt and Rogers, [110, 111], that is more in
line with classical differential geometry. It was shown that this alternative formulation is equiv-
alent to that of Berezin-Leites-Kostant and since it lacks the manifest generality of principles
present in the latter, we will not discuss it here.

The chapter is organised as follows. We will start by giving elements of superalgebra and su-
pergeometry according to the introduction above. The reader mainly interested in applications
may not care for this part, as formal manipulations with Grassmann variables more often than
not lead to correct results. In the later parts, we will tailor the discussion to applications that
we have in mind and consider actions of supergroups on supercosets (including some explicit
methods for computations) and the classification of superconformal algebras.
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6.1 Super linear algebra

Let us recall some basic notions of super (Z2-graded) linear algebra. A super vector space is a
direct sum of two vector spaces

V = V0 ⊕ V1 . (6.1)

The elements of V0 are called even and the elements of V1 odd. A vector which is either even
or odd is said to be homogeneous. A homogeneous subspace of V is a subspace spanned by
homogeneous elements. Not every linear subspace of a super vector space is homogeneous. For
example, if V = C1|1 = span{v0, v1}, the one-dimensional subspace spanned by v0 + v1 is not
homogeneous.

For any super vector space, we denote by ΠV the same space with reversed parity, i.e.

(ΠV )0 = V1, (ΠV )1 = V0 . (6.2)

Any linear map between two super vector spaces V and W can be written uniquely as a sum
of a grade-preserving one and a grade-reversing one. We shall call the grade-preserving linear
maps morphism of super vector spaces and denote the set of all such maps by Hom(V,W ). On
the other hand, the set of all linear maps has the structure of a super vector space as well. We
write

Hom(V,W ) = Hom(V,W )⊕ Hom(V,ΠW ) .

Dual spaces, direct sums and tensor products of super vector spaces are again super vector
spaces defined as

V ∗ = Hom(V,F1|0), (V ⊕W )0 = V0 ⊕W0, (V ⊕W )1 = V1 ⊕W1,

(V ⊗W )0 = (V0 ⊗W0)⊕ (V1 ⊗W1), (V ⊗W )1 = (V0 ⊗W1)⊕ (V1 ⊗W0),

where F denotes the underlying field. In the language of category theory, super vector spaces
over the field F with the above morphisms and the super tensor product form a monoidal
category. The unit object is the field itself, considered as a purely even super vector space, F1|0.
The braiding map

τV,W : V ⊗W −→ W ⊗ V, τV,W (x⊗ y) = (−1)|x||y|y ⊗ x,

makes the category of super vector spaces into a symmetric monoidal category. Here, and
always, |x| stands for the degree of a homogeneous element x. The braiding map expresses the
familiar rule that swapping two odd elements comes with a sign.

A superalgebra is an algebra R, which is also a super vector space R = R0 ⊕R1 such that

RiRj ⊂ Ri+j . (6.3)

The summation of indices is mod 2. The supercommutator of two homogeneous elements x, y
of R is

[x, y]s = xy − (−1)|x||y|yx . (6.4)

The supercommutator with any fixed element x ∈ R is a graded derivation

[x, yz]s = [x, y]sz + (−1)|x||y|y[x, z]s . (6.5)
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We say that a superalgebra is supercommutative if the supercommutator of any two homoge-
neous elements is zero.

The tensor product of two superalgebras A and B is naturally a superalgebra with the multi-
plication

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)|a2||b1|a1a2 ⊗ b1b2, ai ∈ A, bi ∈ B . (6.6)

Example The Grassmann algebra in n variables, Λ(n), is the complex algebra given by the
generators and relations

Λ(n) = 〈θ1, ..., θn | θiθj = −θjθi〉 .
The generators θi are defined to be odd and this gives the unique usual grading on Λ(n). This
is a supercommutative superalgebra. We clearly have Λ(m+ n) ∼= Λ(m)⊗ Λ(n).

Let us now fix a supercommutative superalgebra R. Typically, we are interested in the case
where R is a Grassmann algebra. A left supermodule over R is a module E which can be written
as a direct sum of abelian groups E = E0 ⊕ E1 such that

RiEj ⊂ Ei+j . (6.7)

Right supermodules and super bimodules are defined similarly. Since R is supercommutative,
every left supermodule is naturally a super bimodule. The right action is defined by

rx = (−1)|r||x|xr, r ∈ R, x ∈ E . (6.8)

Then one can check that indeed r1(xr2) = (r1x)r2. From now on, we shall only speak of super
bimodules, assuming the above identifications.

A superalgebraA overR is a super bimodule overR, together with anR-bilinear mapA×A −→ A
which respects the grading. R-bilinearity means that for all homogeneous r ∈ R and x, y ∈ A

r(xy) = (rx)y = (−1)|r||x|x(ry) .

Supermodules over R form a category similar to the one of super vector spaces introduced
above. A morphism of supermodules is a module morphism which respects the grading. The
set of all morphisms between two R-modules E and F is denoted Hom(E,F ). On the other
hand, the set of all module morphisms, including those that do not respect the grading, is
denoted by Hom(E,F ). They are naturally graded and satisfy

ϕ(xr) = ϕ(x)r, ϕ(rx) = (−1)|ϕ||r|rϕ(x), ϕ ∈ Hom(E,F ), r ∈ R .

The set Hom(E,F ) is itself a bimodule over R, by

(r · ϕ)(x) = rϕ(x), (ϕ · r)(x) = ϕ(rx) .

Superalgebras over R are the monoids in the monoidal category of R-supermodules. The unit
object in the category is R.

Example An important class of superalgebras that we shall consider are algebras of superma-
trices. Let R be a Grassmann algebra. We consider the space of matrices with entries in R, of
the block form

M =

(
A B
C D

)
. (6.9)
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If A is of size r×p and D of size s×q, we sat that M has size (r|s)× (p|q). The supermatrix M
is said to be square if both A and D are square. It is even if the entries of A,D are even and of
B,C odd. If the elements of B,C are even an of A,D odd, then M is odd. Two supermatrices
M1 and M2 are allowed to be multiplied together if and only if (p1|q1) = (r2|s2) and then
the product is defined as the ordinary product of matrices. However, the scalar multiplication
differes from the usual one

rM =

(
rA rB

(−1)|r|rC (−1)|r|rD

)
, Mr =

(
Ar B(−1)|r|r
Cr D(−1)|r|r

)
, r ∈ R . (6.10)

With these definitions, one has
rM = (−1)|r||M |Mr, (6.11)

and the set of all (r|s)×(p|q) supermatrices becomes a bimodule over R. The set of (p|q)×(p|q)
supermatrices, on which the multiplication is well-defined, is a superalgebra over R.

The supertrace of a homogeneus square supermatrix M is given by

str(M) = trA− (−1)|M |trD . (6.12)

On the other hand, the role of the determinant is played by the Berezinian. Let M be an even
square supermatrix. Its Berezinian is

Ber(M) = det(A−BD−1C) det(D)−1 . (6.13)

The supertrace and the Berezinian satisfy graded analogues of the familiar relations

str(M1M2) = (−1)|M1||M2|str(M2M1), Ber(M1M2) = Ber(M1)Ber(M2), Ber(eM) = estrM .

6.2 Lie superalgebras

A Lie superalgebra is a super vector space g = g(0) ⊕ g(1) together with a bilinear map [, ] :
g× g −→ g, called the Lie bracket, which is graded anti-symmetric

[x, y] = (−1)|x||y|+1[y, x], (6.14)

and satisfies the graded Jacobi identity

[x, [y, z]] + (−1)|x|(|y|+|z|)[y, [z, x]] + (−1)|z|(|x|+|y|)[z, [x, y]] = 0 . (6.15)

We will mostly use physicists’ notation and write the bracket of two odd elements as {x, y}.
Two immediate corollaries of the definition are that g(0) is a Lie algebra and g(1) carries a
representation of g(0) under the adjoint action. Further, the bracket between odd elements
defines a homomorphism of g(0)-modules ϕ : S2g(1) −→ g(0).

Unless specified otherwise, we will be considering complex Lie superalgebras. Given any com-
plex superalgebra A, the supercommutator satisfies defining properties of a Lie bracket and
thus turns A into a Lie superalgebra. In this way, the algebra of (m|n)×2 complex supermatri-
ces gives rise to the Lie superalgebra gl(m|n). It is possible to impose the super-tracelessness
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condition on these matrices, which is easily seen to be preserved by the bracket. In this way
we obtain the Lie superalgebra sl(m|n).

Example The Lie superalgebra g = sl(2|1) is spanned by even matrices

D =

1/2 0 0
0 −1/2 0
0 0 0

 , P =

0 1 0
0 0 0
0 0 0

 , K =

0 0 0
1 0 0
0 0 0

 , R =

−1 0 0
0 −1 0
0 0 −2

 ,

and odd matrices

Q− =

0 0 0
0 0 0
0 1 0

 , Q+ =

0 0 1
0 0 0
0 0 0

 , S− =

0 0 0
0 0 0
1 0 0

 , S+ =

0 0 0
0 0 1
0 0 0

 .

The even subalgebra g(0) isomorphic to sl(2)⊕ u(1). Finite-dimensional irreducible representa-
tions [j, r] of this Lie algebra are labelled by a spin j and an R-charge r. We see that the odd
subspace g(1) decomposes into a sum of two irreducible representations,

g(1) = g+ ⊕ g− = [1/2, 1]⊕ [1/2,−1] .

The theory of finite-dimensional Lie superalgebras was constructed by Kac. It has many simi-
larities with the theory of ordinary Lie algebras, but also some important differences.

A Lie superalgebra is said to be solvable if its derived series terminates in the zero subalgebra.
It is (semi)simple if it has no (solvable) non-trivial ideals. It is useful to also introduce the
notions of classical and basic Lie superalgebras. The latter is related to properties of invariant
bilinear forms. An inner product on g is a bilinear form κ : g× g −→ C which satisfies

κ(g0, g1) = 0, κ(x, y) = (−1)|x||y|κ(y, x), κ([x, y], z) = κ(x, [y, z]) . (6.16)

The three conditions are called consistency, symmetry and invariance. One can verify that
κ(x, y) = str(xy) is an inner product on gl(m|n). Moreover, given any representation π of g,
κ(x, y) = str(π(x)π(y)) is an inner product. If we take π to be the adjoint representation, κ is
called the Killing form. Clearly, the kernel of an invariant form is an ideal in g. Therefore, for a
simple Lie superalgebra, any invariant form is either non-degenerate or identically zero. Unlike
for Lie algebras, both possibilities can occur. Lie superalgebras for which a non-degenerate
inner product exists are said to be basic. Otherwise, they are called strange.

Finally, a Lie superalgebra is said to be classical if it is simple and the representation of g(0)

on g(1) is completely reducible. Kac showed that in such a case either g(1) is irreducible or it
decomposes as a sum of two irreducible modules, dual to one another. According to these two
cases, Lie superalgebras g are classified in types II and I, respectively.

With all this terminology, we can summarise Kac’s classification of finite-dimensional simple
classical basic Lie superalgebras

Type I: A(m− 1, n− 1) = sl(m|n), A(n− 1, n− 1) = sl(n|n)/u(1), C(n+ 1) = osp(2|2n), G(3),
F (4)

Type II: B(m,n) = osp(2m + 1|2n), D(m,n) = osp(2m|2n), D(n + 1, n) = osp(2n + 2|2n),
D(2, 1;α)
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As the notation suggests, Lie superalgebras osp(m|n) consist of (m + n) × (m + n) complex
supermatrices that satisfy certain linear conditions. Out of the above algebras, A(n− 1, n− 1),
D(n+ 1, n) and D(2, 1;α) have vanishing Killing forms. There are also two families of strange
Lie superalgebras, denoted P (n) and Q(n). Kac furthermore discovered non-classical finite-
dimensional Lie superalgebras of Cartan type, which are in a certain sense similar to infinite-
dimensional Lie algebras. For many more details, see [106, 107, 112].

6.2.1 Universal enveloping algebra

Let g be a finite-dimensional Lie superalgebra with a homogeneous basis {za}. Its universal
enveloping algebra is the associative algebra with generators and relations

U(g) = 〈za | [za, zb] = zazb − (−1)|za||zb|+1zbza〉 . (6.17)

Similarly as for Lie algebras, there is a bijective correspondence between representations of g
and those of U(g). If g(0) is nontrivial, the algebra U(g) is infinite-dimensional. Its linear basis
is described by the super-version of the Poincare-Birkhoff-Witt theorem:

Theorem Let {x1, ..., xm} and {y1, ..., yn} be bases for even and odd subspaces of g. Then the
set {xk1

1 ...x
km
m yε11 ...y

εn
n | ki ∈ N0, εi ∈ {0, 1}} is a linear basis for U(g).

The universal enveloping algebra is a super-cocommutative Hopf algebra. Its coproduct is the
homomorphism ∆ : U(g) → U(g) ⊗ U(g) of superalgebras defined on the generators x ∈ g ⊂
U(g) by

∆(x) = x⊗ 1 + 1⊗ x . (6.18)

From here one can extend ∆ uniquely to the entire universal enveloping algebra as a homo-
morphism of superalgebras. Of course, the tensor product U(g) ⊗ U(g) is to be understood
in the graded sense. The coproduct is the algebraic structure that allows one to build ten-
sor products of representations of the Lie superalgebra g. Namely, given two representations
πi : U(g) −→ End(Vi), their tensor product is defined as

π = (π1 ⊗ π2) ◦∆ : U(g) −→ End(V1 ⊗ V2) . (6.19)

Properties of comultiplication ensure that the tensor product of representations is associative.
The antipode on U(g) is defined by

σ : U(g) −→ U(g), σ(x) = −x, σ(AB) = (−1)|A||B|σ(B)σ(A), x ∈ g, A,B ∈ U(g), (6.20)

and the counit η : U(g) −→ C by η(x) = 0. As for any Hopf algebra, the existence of the counit
ensures that there is a trivial representation and that of the antipode that any module has a
dual.

6.3 Elements of supergeometry

We now move to the geometric part of the theory, where the basic notion is that of a super-
manifold.
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A supermanifold M is a topological space X together with a sheaf A of superalgebras, such that
around any point x ∈ X there is an open neighbourhood U with A(U) ∼= C∞(U)⊗Λ(n), where
Λ(n) is the Grassmann algebra on n generators. The number n is called the odd dimension of
M . Recall that for any open set U ⊂ X, the sheaf associates to it a supercommutative algebra
A(U), in a way compatible with restrictions to subsets.

In the first place, one may ask whether a supermanifold is different from a vector bundle
of rank 2n over X. The difference between the two is in the notion of morphisms: while a
morphism ϕ : M −→ N of ordinary smooth manifolds automatically determines the pull-back
ϕ∗ : C∞(N) −→ C∞(M), for supermanifolds (X,A) and (Y,B) one independently specifies
a continuous map of underlying spaces ϕ : X −→ Y and homomorphisms of superalgebras
ϕ∗V : B(V ) −→ A(ϕ−1(V )) for all open sets V ⊂ Y , and only requires compatibility of these
homomorphisms with restrictions. So, we can say that supermanifolds admit more morphisms
than ordinary ones.

6.3.1 The reconstruction theorem

The all important fact about supermanifolds is that they can be completely recovered from their
structure algebras, defined as A(X). We wish to explain this in more detail. For simplicity,
we will restrict our attention to superdomains, where the main new features compared to
commutative differential geometry are already present. A superdomain is a supermanifold
whose underlying topological space is a domain U in Rm and A(U) ∼= C∞(U)⊗ Λ(n). We will
denote a superdomain as U = (U,A). One has the following theorem of Leites [109]

Theorem (Leites) Let U = (U,A) and V = (V,B) be two superdomains. For any homomor-
phism ψ∗ : B(V ) −→ A(U) of superalgebras there exists a precisely one morphism ϕ : U −→ V of
superdomains for which ϕ∗ = ψ∗.

Here, ϕ∗ denotes the map B(V ) −→ A(U) that is a part of the definition of the morphism ϕ.
We will refer to the above result as the reconstruction theorem and the goal of this section is
to give its proof.

One can describe superdomains using coordinates x = (ui, θj), where ui are coordinate functions
on the underlying domain U and θj are the Grassmann generators. Elements of the algebra
A(U) take the form

f = f0(ui) + fj(ui)θj + ...+ f1...n(ui)θ1...θn . (6.21)

Clearly, the map f 7→ f0 gives rise to a unique morphism of supermanifolds U −→ U , called
the canonical embedding (U is considered as a supermanifold of zero odd dimension). We shall
write f0 = f̃ .

Lemma Canonical embeddings commute with morphisms of superdomains.

Proof: Consider a morphism of superdomains ϕ : U −→ V . Let f ∈ B(V ) and f ∗ = ϕ∗(f).
Further denote by ϕ0 the continuous map U −→ V from the definition of ϕ. Let u ∈ U and
v = ϕ0(u).

Consider the maps f̃ ∈ C∞(V ) and f̃ ∗ ∈ C∞(U). Assume that f̃ ∗(u) 6= f̃(v). Without loss of
generality, assume f̃ ∗(u) = 0 (this can be done, because we can add constant functions - by the
homomorphism conditions they are mapped to the same constant functions under morphisms).
Now, f̃ is invertible in a neighbourhood V ′ of v, so f is an invertible element of the algebra
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B(V ′). Therefore f ∗ is an invertible element of ϕ∗(B(V ′)). So, we conclude that f̃ ∗ is non-zero
on ϕ−1

0 (V ′). But this contradicts the fact that f̃(u) = 0. All in all, we have proved

f̃ ∗(u) = f̃(v) .

But this precisely says that f̃ ∗ = f̃ ◦ ϕ0 which is what we wanted to show.

In particular, since for any smooth f , f ∗ is also smooth, we conclude that ϕ0 must be smooth as
well. The essential ingredient of the proof was the observation that an element of a Grassmann
algebra is invertible iff its part with no Grassmann generators is non-zero. Therefore, this part
of the element, sometimes called its body, admits an algebraic description.

Let us move on and describe points of supermanifolds. It is not immediately obvious what
the right definition of a point should be, but we can recall the familiar idea from the theory
of C∗-algebras that points of a topological space can be described as characters of its abelian
algebra of functions. If one copies this definition, points of a supermanifold turn out to be just
those of its underlying topological space.

Lemma All homomorphisms s : A(U) −→ R are of the form s(f) = f̃(u) ≡ su(f) for some
u ∈ U .

Proof: Let s be any homomorphism A(U) −→ R and x = (ui, θj) a coordinate system on U . We
set u = (s(u1), ..., s(um)). It will be shown that s = su. We first need to establish that u ∈ U .
If this was not the case, the function h = f 2

1 + ...+f 2
m, where fi = ui−s(ui), would be non-zero

on U , and thus invertible. However

s(h) =
m∑
i=1

s
(
(ui − s(ui))2

)
=

m∑
i=1

(
s(ui)− s(ui)s(1)

)2
= 0,

which contradicts the fact that s is a homomorphism. So u ∈ U . Assume now that there exists
a function f ∈ A(U) such that s(f) 6= su(f) and consider

g = f 2
1 + ...+ f 2

m + (f − s(f))2 .

We argue that g is invertible. If g̃(u′) = 0 for some u′ then f̃i(u
′) = 0 for all i, so u′ = u.

But f̃(u) = su(f) 6= s(f), so g̃(u) 6= 0. Therefore g is invertible. However, similarly as above
s(g) = 0, which is a contradiction. This completes the proof of the lemma.

For obvious reasons, homomorphisms su are called evaluations. A third important technical
result about superdomains is a generalisation of the classical Hadamard lemma

Lemma (Hadamard) Let U be an open subset of Rm, star-shaped around a and f : U −→ R
a smooth function. Then there exist smooth g1, ..., gm : U −→ R such that for any x ∈ U we
have f(x) = f(a) +

∑
i(xi − ai)gi(x).

Hadamard’s result has a one line proof. Define h(t) = f(tx+ (1− t)a). Then

f(x)− f(a) = h(1)− h(0) =

∫ 1

0

h′(t)dt =
∑
i

(xi − ai)
∫ 1

0

∂ifdt,

so we can define gi(x) =
∫ 1

0
∂if(tx + (1 − t)a)dt. It is useful to rephrase the conclusion of

the lemma in algebraic terms. It reads that the smooth function f(x) − f(a) lies in the ideal
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〈x1 − a1, ..., xn − an〉 of C∞(U). A very similar reasoning can be used to establish the super-
version

Lemma Let U be a superdomain with coordinates x = (ui, θj) and u a point of the underlying
set U . Denote by Iu the ideal in A(U) generated by {u1 − su(u1), ..., un − su(um), θ1, ..., θn}.
Then for any f ∈ A(U) and any k ∈ N0 there exists a polynomial Pk in (ui, θj) of degree ≤ k
such that f − Pk ∈ Ik+1

u0
.

The reader is referred to [109] for the proof. Note that as a corollary we have Iu = ker(su). For
clearly, su evaluates to zero on the ideal Iu and the above result implies that A(U) = R + Iu.
Another simple consequence is that if f ∈ In+1

u then f(u) = 0. Indeed, a product of n + 1
Grassmann variables is zero, so to get a non-zero element in f ∈ In+1

u we need to include a
factor ui − su(ui) in it. But then f(u) = 0. This gives us an algebraic way to compare two
elements f1, f2 ∈ A(U). Namely, if f1 − f2 ∈ In+1

u for every u ∈ U then we necessarily have
f1 = f2.

We can now prove Leites’ theorem. Let x = (ui, θj) and y = (vi, ηj) be coordinates on superdo-
mains U and V . Given any point u ∈ U , the map su ◦ ψ∗ is a homomorphism B(V ) −→ R, so it
is of the form sv for some v ∈ V . Denote the coordinates of the point v by (v0

i ). By definition,
ideals Iu and Iv satisfy ψ∗(Iv) ⊂ Iu, so we conclude

ψ∗(vi − v0
i ) = v∗i − v0

i ∈ Iu, with v∗i = ψ∗(vi) . (6.22)

Consequently ṽ∗i (u) = v0
i . In particular ṽ∗i (u) ∈ V .

Next, we want to show that any homomorphism ψ∗ : B(V ) −→ A(U) is uniquely determined
by images of coordinate functions ψ∗(y). For this, let z = (w1, ..., wm, ζ

,
1..., ζn) be arbitrary

functions in A(U) such that wi are even, ζj are odd and for any u ∈ U we have (w̃i(u)) ∈ V .
We show that there is a unique superalgebra homomorphism ψ∗ : B(V ) −→ A(U) such that
ψ∗(y) = z.

Uniqueness: Assume that we have found ψ∗ such that ψ∗(y) = z and let u ∈ U . Similarly as
above, there is a unique v ∈ V such that ψ∗(Iv) ⊂ Iu. Given f ∈ B(V ), pick a polynomial P (y)
such that f − P (y) ∈ In+1

v . Then ψ∗(f) − P (y∗) ∈ In+1
u . Therefore, the image of ψ∗ in every

A(U)/In+1
u is fixed. It follows that ψ∗ is unique.

Existence: Assume for simplicity that V = V . The argument in more general cases is very
similar. We write zi = z′i + z′′i , where z′i ∈ C∞(U) and z′′i is nilpotent. Functions z̃i give us a
smooth map ϕ̃ : U −→ V such that ϕ̃∗(vi) = z′i.

For any f ∈ B(V ) let f̂ be the formal power series expansion of f(y1 + t1, ..., ym + tm) in t.
Coefficients of this expansion elements fα ∈ B(V ). These series satisfy

f̂ + g = f̂ + ĝ, f̂g = f̂ ĝ .

Notice that, computing each term in the product requires only finitely many terms in f and
g, so the operations are well-defined. Define ψ∗(f) by replacing fα by ϕ∗(fα) and ti by z′′i in
f̂ . Since z′′i are nilpotent, the series truncates to give a well-defined element of A(U) and ψ∗ is
clearly a homomorphism. Finally

ψ∗(yi) = ϕ∗(yi) + z′′i = z′i + z′′i = zi . (6.23)

Thus, we have constructed the required homomorphism. This establishes Leites’ theorem.
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The way supermanifolds are built by patching up superdomains is entirely analogous to one in
ordinary differential geometry. As we have mentioned, the superalgebra A(X) that the sheaf
assigns to the whole underlying space is called the structure algebra of (X,A). Some con-
structions regarding supermanifolds are more easily formulated in terms of a certain coalgebra
A(X)∗ rather than A(X) itself, [108]. The A(X)∗ is defined as the space of all elements in
the full dual A(X)′ which vanish on some ideal of finite codimension in A(X). Elements of
A(X)∗ are referred to as distributions with finite support. One observes that A(X)∗ is a su-
percocommutative coalgebra. Namely, let i and ∆ be the natural injection and the diagonal
map

i : A(X)′ ⊗ A(X)′ −→ (A(X)⊗ A(X))′, i(v ⊗ w)(f ⊗ g) = (−1)|w||f |v(f)w(g),

∆ : A(X)′ −→ (A(X)⊗ A(X))′, (∆v)(f ⊗ g) = v(fg), v, w ∈ A(X)′, f, g ∈ A(X) .

Then one can show ∆(A(X)∗) ⊂ A(X)∗ ⊗ A(X)∗, so the diagonal map makes A(X)∗ into a
coalgebra. One again has that A(X)∗ determines the sheaf A. For example, X as a set can
be recovered as the set of all group-like elements in A(X)∗. The coalgebra A(X)∗ also plays a
prominent role in the theory of Lie supergroups and their actions on supermanifolds.

6.3.2 Vector fields and differential forms

Having dealt with the basic theory in some detail, we will go through other notions of differential
geometry more quickly. We continue to use the notation for superdomains introduced above.

A vector field on U is a graded derivation of A = A(U). That is, it is a linear map D : A −→ A,
which satisfies the super Leibniz rule

D(fg) = D(f)g + (−1)|D||f |fD(g) . (6.24)

The set of vector fields Der(A) has the structure of a Lie superalgebra. As in the ordinary
differential geometry, vector fields form a module over A. This is a somewhat fortunate fact
that is no longer true in more general noncommutative geometries. It can be shown that Der(A)
is spanned over A by coordinate derivatives ∂xi , defined in the obvious way, and that it is a
free A-module of rank m+ n.

One can define the tensor algebra T (U) starting from vector fields as in ordinary differential
geometry. Similarly, differential forms Ω(U) are defined as graded antisymmetric multilinear
maps on Der(A) with values in A. Important is to observe that T (U) and Ω(U) are bi-graded.
One degree a is the same as in differential geometry, and the other one b comes form the grading
on A. The commutation rule for forms with respect to the bi-grading reads

ω1ω2 = (−1)a1a2+b1b2ω2ω1 . (6.25)

In particular, dθdθ is not zero. Thus, there are no top forms on a supermanifold. One shows
that on a superdomain, dxi span the space of one-forms Ω1(A) (if only one degree of a form is
indicated, it is the first one, a). Higher forms are generated by Ω1(A) over A.

There is a unique derivation d : Ω(U) −→ Ω(U) of bi-degree (1, 0) that on one-forms evaluates
to df(D) = D(f) and satisfies d2 = 0. It is called the differential. For future reference, we give
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here some properties of d

df = dxi
∂f

∂xi
, ((df)h)(D) = (df(D))h = D(f)h, f, h ∈ A, D ∈ Der(A) . (6.26)

Our conventions agree with [108, 109, 113].

6.3.3 Berezin integration

Unlike for ordinary manifolds, differential forms do not provide us with the theory of integration
on supermanifolds. In particular, we saw that top forms do not even exist. The right notion
of the integral was found by Berezin, but before spelling it out, we shall motivate it with an
example.

Let S be the space of Schwarz functions R −→ C. For such functions, we have the usual Lebesgue
integral

I : S −→ C, I(f) =

∫ +∞

−∞
f(x)dx .

The Lebesgue integral obeys the obvious properties of linearity and translational invariance

I(af + bg) = aI(f) + bI(g), I(Taf) = I(f), where (Taf)(x) = f(x+ a) .

Further, it is a continuous map, when S carries the usual Schwarz topology. It turns out that
these three properties determine I uniquely up to a normalisation constant. Let us see how
this comes about. First, the integral of any derivative is zero

I(f ′) = I

(
lim
a−→0

Taf − f
a

)
= lim

a−→0

(
I(Taf)− I(f)

a

)
= 0 .

We have used continuity to move I inside the limit and then the other two properties stated
above. Next, let f ∈ S be a function such that

∫
f = 0. It is a fact that there exists a Schwarz

function F ∈ S with F ′ = f . Thus∫
f = 0 =⇒ I(f) = 0 .

It follows that I is a scalar multiple of
∫

, as required. One can use the above three properties
as an abstract definition of integration which generalises to other spaces of functions. Let us
see what they lead to for the space Pd of polynomials R −→ C of degree less than or equal
to d. If P is a polynomial of degree n so is TaP , so translations are well-defined on Pd. Let
I : Pd −→ C be linear, translationally invariant and continuous. As above, we have I(f ′) = 0 for
any f ∈ Pd. Any polynomial of degree less than d is a derivative of some function in Pd. Thus
the only solutions for I are

I(a0 + a1x+ ...+ adx
d) = cad,

for a constant c = I(xd). The integral only sees the top degree coefficient in f . Integrals on
Pd and Sd (Schwarz functions Rd −→ C) have some rather different properties. Let us denote
(δλf)(x) = f(x/λ). Then

ISd(δλf) = λdISd(f), IPd(δλf) = λ−dIPd(f) .
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Integration on Pd already captures many of the main features of the Berezin integral, that we
turn to now. Let ϕ : U −→ V be a morphism of superdomains and x and y coordinate systems
on U and V . The matrix of derivatives of ϕ with respect to these coordinates is

(Ixy)ij = ∂xiϕ
∗(yj) . (6.27)

In is an even square supermatrix of size (m|n), so it makes sense to define the Jacobian of ϕ as
the Berezinian of Ixy

J(ϕ) =
D(y)

D(x)
= Ber(Ixy) . (6.28)

A volume form on U is a correspondence between coordinate systems of U and functions f ∈
A(U), with the identification

(x, f) ∼
(
y,
D(x)

D(y)
f
)
.

We write the volume form as ρ = [(x, f)]. Its integral over U is defined as∫
(U ,x)

ρ :=

∫
U

f1...n(u)du . (6.29)

It can be shown that the integral depends on (x, f) (up to a sign) only through the equivalence
class [(x, f)] (i.e. is well-defined) provided that f has compact support. Therefore, we see that
the Berezin integral combines the two types of integrals on Sm and Pn from above.

6.4 Supergroups

Supergroups can be defined as group objects in the the category of supermanifolds. However,
we will find it useful for applications to have several other, more concrete descriptions of these
objects.

Let g be a Lie superalgebra, H a group and π : H −→ Aut(U(g)) a representation of H by Lie
superalgebra automorphisms. Further, write L1(H) for the group algebra of H. The smash
product E(H, g, π) is a super-cocommutative Hopf algebra constructed as follows:

1) As a vector space E = L1(H)⊗ U(g).
2) The comultiplication ∆, counit η and the antipode σ are defined on L1(H) and U(g) as
usual.
3) The multiplication in L1(H) and U(g) is defined in the usual way and ehxe

−1
h = π(h)x.

Here h ∈ H and x ∈ g. (The alert reader will have noticed that we glossed over some subtleties
here. Namely, eh are delta-functions on H and it takes care to define them. See [108].) The
set of group-like elements of E is precisely H and that of primitive elements is g. Here g is
identified with a subspace of U(g) in the obvious way. Conversely, given a super-cocommutative
Hopf algebra E with the group of group-like elements H and the Lie superalgebra of primitive
elements g one can show that a representation π exists such that E = E(H, g, π).

Now assume that g = g(0)⊕g(1) is a Lie superalgebra and G(0) the connected, simply connected
Lie group whose Lie algebra is g(0). Then there is a unique representation π on g by Lie
superalgebra automorphisms which reduces to the adjoint representation on g(0). The smash
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product E(G(0), g, π) is called the simply-connected Lie-Hopf algebra associated with g and it
is denoted by E(g).

We will say that a supermanifold (X,A) is a (Lie) supergroup if the coalgebra A(X)∗ is a
Hopf algebra. By the above remarks, in this case A(X)∗ is a smash product E(G(0), g, π) with
X = G(0). In fact, if X is simply connected, it can be shown that A(X)∗ = E(g) for some Lie
superalgebra, called the Lie superalgebra of (X,A).

Remark In the rest of the text, we will be abusing notation as follows. A Lie supergroup
is typically denoted by G = (G(0), A). Up to now, we have written A(G(0)) for the structure
algebra of G, whereas A(G) had no meaning. From now on, A(G) should also be understood
to mean the structure algebra of G.

6.4.1 Supergroup actions

Assume now that G = (G(0), A) is a Lie supergroup and M = (Y,B) another supermanifold.
We will say that G acts on M if there is a map A(G(0))

∗ ⊗ B(Y )∗ −→ B(Y )∗, u ⊗ w 7→ u · w,
which satisfies

∆u =
∑
i

u′i ⊗ u′′i , ∆w =
∑
j

w′j ⊗ w′′j =⇒ ∆(u · w) =
∑
i,j

(−1)|u
′′
i ||w′j |u′i · w′j ⊗ u′′i · w′′j . (6.30)

In this case, the structure algebra B(Y ) is a A(G(0))
∗-module through

π : A(G(0))
∗ −→ End(B(Y )), 〈w, π(u)f〉 = (−1)|u||w|〈σ(u) · w, f〉 . (6.31)

The latter is called the coaction representation of G. The action of G is fully determined by
the corresponding coaction representation. Bearing in mind that A(G(0))

∗ = E(g), we see that
a Lie supergroup action can be though of as a pair of representations of the underlying group
G(0) and of the Lie superalgebra g on the vector space B(Y ), which satisfy a compatibility
condition.

Dually, there is a map ϕ : B(Y ) −→ B(Y )⊗ A(G(0)) that makes B(Y ) into a comodule-algebra
of A(G(0)). This means that ϕ is a morphism of algebras which is compatible with the Hopf
algebra structure of A(G(0)). For example, ϕ satisfies

(1⊗∆) ◦ ϕ = (ϕ⊗ 1) ◦ ϕ : B(Y ) −→ B(Y )⊗ A(G(0))⊗ A(G(0)), (6.32)

along with a number of other compatibility conditions, see e.g. [115]. Let p be a point in G(0),
regarded as a morphism p : A(G(0)) −→ R. Then one can form the map (1 ⊗ p) ◦ ϕ : B(Y ) −→
B(Y ). For obvious reasons, we refer to such compositions with p as evaluations. Running
over all points p, we get a representation of the G(0) on B(Y ). This agrees with the coaction
representation π from above.

6.4.2 Maurer-Cartan form and invariant vector fields

In this section we will explain how one can compute invariant vector fields on a supergroup. We
will consider a supergroup G with local coordinates xA and denote by g its Lie superalgebra.

84



6.4. SUPERGROUPS

We can use the same indexing set to label a basis for g, denoted {XA}. Coordinates and
generators can be chosen such that they have the same parity, i.e. |xA| = |XA|.
The two algebras we have associated to G, A(G(0)) and U(g), are closely related. In the case
of bosonic groups, the generators X of the Lie algebra give rise to (right) invariant vector
fields that act on functions as first order differential operators. These differential operators
RX can be multiplied and added and thereby provide an action of elements A in the universal
enveloping algebra U(g) through differential operators RA of higher order. One may combine
the application of any such differential operator to a function on the group with the evaluation
at the group unit e to obtain a map that assigns a number

RA(f)(e) = f(A) = 〈f, A〉 ∈ C (6.33)

to a pair of an element A ∈ U(g) and a (complex valued) function f on the group. In other
words, elements of U(g) give linear functionals of the structure algebra A(G(0)) and vice versa.
In this form, the statement remains true for Lie superalgebras and is often expressed by saying
that there is a duality between A(G(0)) and U(g). See also [114] for a nice discussion of this
point.

Let us consider a sort of ”supergroup element” g = exp(xAX
A) within an appropriate closure

of the tensor product U(g)⊗A(G(0)). A quick formal calculation gives an interesting property
of this element

(∆⊗ id)g = exA(XA⊗1+1⊗XA) = exA(XA⊗1)exA(1⊗XA) =
1
g

2
g . (6.34)

Here, the application of the co-product ∆ to the first tensor factor produces an element in
U(g)⊗ U(g)⊗ A(G(0)). The factors on the right hand side are elements in the same threefold

tensor product. More concretely,
2
g is the element 1⊗ g with the trivial entry in the first tensor

factor. Similarly
1
g denotes the element g with the trivial entry in the second tensor factor. In

writing the single exponential as a product of exponentials we used the fact that the exponent
is an even object so that xA(XA ⊗ 1) commutes with xA(1 ⊗ XA). We will call all elements
g ∈ U(g)⊗ A(G(0)) that satisfy

(∆⊗ id)g =
1
g

2
g, (6.35)

supergroup elements. In physics, it is customary to evaluate g in some representation π of
the Lie superalgebra g. Thereby one obtains a finite-dimensional supermatrix gπ = (π ⊗ id)g
with entries from the structure algebra A(G(0)). In the following chapters we will often use the
symbol g for such a matrix rather than an element of U(g)⊗ A(G(0)).

Since the structure algebra A(G(0)) is contained in the differential graded algebra Ω(G) (which
is generated by xA and dxA) we can also regard the supergroup element g as an element of the
differential graded algebra U(g)⊗Ω(G), with the additional rule that dXA = 0, i.e. we regard
the generators XA of the Lie superalgebra as constants. Now it makes sense to consider the
Maurer-Cartan form

dgg−1 ∈ U(g)⊗ Ω(G) . (6.36)

If we apply the differential to the equation (6.35) that characterises g we obtain

∆(dgg−1) =

(
d

1
g

2
g +

1
g d

2
g

)
2
g−1

1
g−1 = d

1
g

1
g−1+ d

2
g

2
g−1 . (6.37)
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We conclude that the Maurer-Cartan form takes values in the Lie superalgebra g ⊂ U(g), as is
the case for usual bosonic Lie groups. Consequently, it may be expanded as

dgg−1 = dxACABX
B where CAB ∈ A(G(0)) . (6.38)

The matrix elements CAB possess degree |A|+ |B|, i.e. they are even elements of the structure
algebra if |A| = |B| and odd otherwise. We also stress that coefficients CAB depend on the
choice of the supergroup element g. One of the main uses of the matrix elements CAB is to
construct the right-invariant vector fields. These vector fields are given by

RXA = RA := CGAB∂B,

where C = C−1 denotes the inverse of C and ∂B is the (graded) derivative with respect to the
coordinate xB. Since we have assumed that the differential d acts trivially on the generators
XA of the universal enveloping algebra, we conclude that ∂βX

A = 0, i.e. the generators XA are
constant objects on the supergroup satisfying

∂BX
A = (−1)|A||B|XA∂B . (6.39)

6.4.3 Actions on supercosets

We will now extend the previous discussion and explain how to obtain the infinitesimal action
of a supergroup G on a supercoset. The crucial example that we have in mind is the action of
the superconformal group on the superspace. In general, we are interested in a case when the
Lie superalgebra g can be written as a direct sum of two subalgebras

g = m⊕ p . (6.40)

The unique simply connected super subgroup of G whose Lie superalgebra is p is denoted
by P . Then the quotient M = G/P is a supermanifold (we are not concerned with possible
singularities of G/P ). We are considering here a rather particular case when M itself is a
supergroup. Looking ahead, the standard choice in superconformal field theory is to define p
as the span of all elements in g that have non-positive dilation weights. For this choice, m
consists of generators P of translations and the supercharges Q. We shall briefly comment on
other choices below. We also choose a basis XA of elements in g that is compatible with the
decomposition (6.40). Elements XA that lie in the subspace m will be labelled by lower case
Latin indices while those that lie in the complement p carry Greek indices.

The decomposition of the Lie superalgebra g into m and p determines a decomposition of the
corresponding universal enveloping algebra U(g) = U(m) ⊗ U(p) as well as of the structure
algebra A(G(0)) = A(M(0))⊗A(P(0)). The structure algebras A(M(0)) and A(P0) are generated
by the coordinates xa and xα, respectively.

Let us now construct the infinitesimal action of G on the coset space M . We shall follow the
logic of the previous section and introduce supergroup elements m = m(xa) and p = p(xα). In
case of m we work with the following standard choice

m(xa) = exaX
a

. (6.41)
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The infinitesimal action of the Lie superalgebra on the coordinates xa of the coset space M
descends from the left-regular action of g and thus can be computed from the Maurer-Cartan
form,

dgg−1 = dxAC
G
ABX

B . (6.42)

To compute the Maurer-Cartan form for G we express it terms of Maurer-Cartan forms of M
and P

dmm−1 = dxaC
M
abX

b, dpp−1 = dxαC
P
αβX

β .

With our choice g = mp of the supergroup element g as a product of the two elements m and
p it follows that

dgg−1 = dxA∂A(mp)(mp)−1 = dxa(∂am)m−1 + dxαm(∂αp)p
−1m−1 =

= dxaC
M
abX

b + dxαmCαβX
βm−1 = dxaC

M
abX

b + dxαC
P
αβ

(
(M1)βaX

a + (M2)βγX
γ
)
. (6.43)

The last equality defines the two matrices M1,2,

mXβm−1 = (M1)βaX
a + (M2)βγX

γ . (6.44)

From the equation (6.43) we can read off the coefficients CG
AB of the Maurer-Cartan form for

g. The inverse CG of this matrix is easily seen to take the form

CG =

(
CM 0

−M−1
2 M1CM M−1

2 CP
)
,

where the first row/column corresponds to directions in m while the second row/column collects
all the directions in p. As stated before, the matrix CG provides us with the right-invariant
vector fields (6.39) on the supergroup G. To project these operators to the superspace one
simply sets ∂α = 0,

R(M) =

(
CM 0

−M−1
2 M1CM M−1

2 CP
)(

∂
0

)
=

(
CMab ∂b

−(M−1
2 M1CM)αb∂b

)
. (6.45)

This is the main result of this subsection. As advertised above, differential operators R(M)

depend on the choice of coordinates on M , but not on that on P . In practical computations,
it is way more economic to use (6.45) directly, rather than first derive the vector fields in all
supergroup coordinates and then reduce them to the superspace.

Remark The formula (6.45) applies to all decompositions of g into two Lie subalgebras m and
p. As we pointed out above, the standard choice is to take p to contain generators that have
non-positive conformal weight. In that case, the structure algebra M = A(M(0)) is called the
standard superspace. If the superconformal algebra g is of type I, however, there exist other
natural choices to which the constructions of this subsection apply. Such a Lie superalgebra
contains a u(1) subalgebra (in the R-symmetry part) that commutes with g(0) and such that
the two irreducible modules that make up g(1) have charges ±1. It turns out that half of
supertranslations Q have charge 1 and half -1, q = q+ ⊕ q−. With this in mind we can
introduce two new decompositions g = m± ⊕ p± of the superconformal algebra where

p± = g≤0 ⊕ q± , m± = g1 ⊕ q∓ = g/p± .
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From the properties of type I Lie superalgebras, one may easily show that both p± and m±
are subalgebras of g. The associated superspaces M± are called the chiral and anti-chiral
superspace, respectively.

Example: As an example, let us illustrate the construction of superspace and the differential
operators in the case of the one-dimensional N = 2 superconformal algebra g = sl(2|1). The
smallest faithful representation of g is three-dimensional. Here we shall consider the decompo-
sition g = m ⊕ p with the Lie superalgebra m spanned by P,Q+ and Q−. The corresponding
superspace M is generated by one bosonic variable u along with two Grassmann variables θ
and θ̄. The supergroup element m we introduced above takes the following matrix form

m(x) = euP+θQ++θ̄Q− =

1 X θ
0 1 0
0 −θ̄ 1

 , (6.46)

where X = u − 1
2
θθ̄ and x = (u, θ, θ̄) represents the three generators of the structure algebra

A(M).

The construction we described above provides us with an action of the superconformal algebra
g on this superspace with differential operators RX of the form

p = ∂u , k = −u2∂u − uθ∂θ − uθ̄∂θ̄ , (6.47)

d = u∂u +
1

2
θ∂θ +

1

2
θ̄∂θ̄ , r = θ∂θ − θ̄∂θ̄ , (6.48)

q+ = ∂θ −
1

2
θ̄∂u , q− = ∂θ̄ −

1

2
θ∂u , (6.49)

s+ = −(u+
1

2
θθ̄)q+ , s− = (u− 1

2
θθ̄)q− . (6.50)

As we pointed out in our discussion above, the choice of p is not relevant for the final result.
We encourage the reader to derive these explicit expressions from our general formula (6.45).

6.5 Superconformal algebras

In this section we will give the defining properties of a superconformal algebra and list all such
algebras. To obtain the classification, one simply has to go through Kac’s list and select from it
the Lie superalgebras that satisfy the additional properties. Indeed, this was the way in which
Nahm arrived at the result in [116]. Famously, no superconformal algebras exist in dimensions
above six.

Let g = g(0) ⊕ g(1) be a finite-dimensional Lie superalgebra. We say that g is a superconformal
algebra if its even part g(0) contains the conformal Lie algebra so(d+ 1, 1) as a direct summand
and the odd part g(1) decomposes as a direct sum of spinor representations of so(d) ⊂ so(d+1, 1)
under the adjoint action.

If this is the case, we denote the dilation generator of the bosonic conformal Lie algebra by D.
Eigenvalues with respect to adD give a decomposition of g into the sum of eigenspaces

g = g−1 ⊕ g−1/2 ⊕ g0 ⊕ g1/2 ⊕ g1 = g−1 ⊕ s⊕ k⊕ q⊕ g1 . (6.51)
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The even part of g is composed of g±1 and k, where g−1 = n contains the generators Kµ of
special conformal transformations, while g1 = m is spanned by translations Pµ. Dilations,
rotations and internal symmetries make up

k = so(1, 1)⊕ so(d)⊕ u .

Generators of g±1/2, are supertranslations Qα and special superconformal transformations Sα.
We shall also denote these summands as s = g−1/2 and q = g1/2. All elements of non-positive
degree make up a subalgebra p of g that will be referred to as the parabolic subalgebra

p = g−1 ⊕ g−1/2 ⊕ g0 . (6.52)

Let G be the superconformal group, i.e. some supergroup with g = Lie(G). There is a
unique (connected) corresponding subgroup P ⊂ G such that p = Lie(P ). The superspace can
be identified with the supergroup of translations and supertranslations. It is defined as the
homogeneous space M = G/P .

The above structure is present in any superconformal algebra. We shall often focus on Lie
superalgebras that are in addition of type I and denote the two irreducibles representations of
g(0) that make up g(1) as g±

g(1) = g+ ⊕ g− . (6.53)

The two modules g± are then necessarily dual to each other and further satisfy

{g±, g±} = 0 . (6.54)

In addition, the bosonic algebra assumes the form

g(0) = [g(0), g(0)]⊕ u(1) . (6.55)

The u(1) summand is a part of the internal symmetry algebra. Its generator will be denoted
by R. All elements in g+ possess the same R-charge. The same is true for the elements of g−,
but the R-charge of these elements has the opposite value. Elements in the even subalgebra
g(0), on the other hand, commute with R.

Let us denote the intersections of the subspaces q and s with g± by

q± = q ∩ g± , s± = s ∩ g± . (6.56)

The subspaces q± and s± do not carry a representation of g(0), but they do carry a representation
of k. This also means that in type I superconformal algebras, the action of k on supertranslations
decomposes into two or more irreducible representations. It turns out that

dim(q±) = dim(s±) =
1

4
dim(g(1)) . (6.57)

Kac’s classification leads to the following list of complexified type I superconformal algebras

sl(2|N ), sl(2|N1)⊕sl(2|N2), psl(2|2), sl(2|N )⊕psl(2|2), osp(2|4), sl(4|N ), psl(4|4) .

In dimensions higher than two, complexified superconformal algebras of type II are

osp(N|4), F (4), osp(8|2N ) .
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In addition, each of osp(N|2), osp(4|2N ), F (4), G(3) and D(2, 1;α) may be regarded as a
one-dimensional superconformal algebra, [117]. Their direct sums give rise to possible algebras
in two dimensions.

In physics, one is interested in real Lie superalgebras and for different spacetime signatures
one considers various real forms of the above. For the classification of real forms, the reader is
referred to the work of Monique Parker, [118].
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Chapter 7

Correlators as covariant functions on
the superconformal group

Starting from the present chapter, we turn to the new results obtained in our work (while we
do not know if some formulas from previous chapters exist in the literature, they are certainly
not new in any essential way). Therefore, it may be an opportune moment to state our aims
and describe the general strategy that we will follow over the next chapters to achieve them.

The central object of study in the conformal bootstrap programme, the crossing symmetry
equations, consist of two ingredients. These are the conformal partial waves and tensor struc-
tures. It is perhaps fair to say that out of these two, the partial waves are more difficult to come
by, since even in the simplest description they are defined as solutions to second order PDEs.
Conformal blocks for four-point functions of arbitrary spinning fields are fairly well understood,
but no so well in other cases such as superconformal theories, defect CFTs or n-point functions
with n ≥ 5. This is the main issue that we want to address.

One may ask if a well-behaved theory of conformal blocks should exist at all. There are several
reasons to believe that it actually should, the first one being compact expressions for certain
blocks found by Dolan and Osborn. Secondly, from their definition, partial waves come with a
group theoretical interpretation. It is therefore desirable to identify them in the vast literature
on representation theory. Once this is done, it could open the way to establish relations of
blocks with integrable systems and special functions, derive integral representations for them
etc.

With the motive and the means in place, all that we need is an opportunity. This brings
us to the topic of the present chapter. The main result that we will show is that there is
a bijective correspondence between solutions of four-point conformal Ward identities and K-
spherical functions on the conformal group. The map that gives a solution G4(xi) from a
K-spherical function F is written in (7.40). In fact, this formula applies equally well to bosonic
and supersymmetric setups. However, to define its meaning for a SCFT, we will need to
introduce the analogue of the Bruhat decomposition for the superconformal group. This is the
subject of the first section. In the second section we introduce the non-unitary principal series
representations of the superconformal group by mimicking the bosonic construction, only using
our new Bruhat decomposition. Next, we explain the fact that was alluded to a few times
already, that principal series representations are naturally associated with fields in a (S)CFT.
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This will be achieved by lifting an arbitrary vector-valued function defined on a superspace, to
a covariant function on the superconformal group. If all fields of the theory are lifted in this
way, n-point correlation functions become functions on a number of copies of the supergroup,
namely Gn. However, covariance laws of these functions allow us to map them to functions
on a smaller number of copies of G. For example, a function on G × G that is covariant with
respect to P ×P can be mapped to a function on G covariant with respect to K. In particular,
this observation allows for a nice reinterpretation of four-point functions

A (G/P ×G/P ×G/P ×G/P )G ∼= A(G/K ×G/K)G ∼= A(K\G/K) . (7.1)

The is a heuristic explanation of how spherical functions appear and its precise version is
presented in the fourth section. Here A(X) denotes the structure algebra of the supermanifold
X and A(X)G stands for the space of G-invariants when X carries an action of G (using the
theory of the last chapter, we could also write A(X/G)). The leftmost space above models
solutions to Ward identities. The last two sections go into more details of the superconformal
Bruhat decomposition. The first one discusses some functorial properties of Bruhat factors
(Assume we have a factorisation of some group element g and apply some specific transformation
to g. We ask how does this change each individual factor of g.) The second one computes the
Bruhat decomposition of various group elements for a class of supergroups using a representation
by supermatrices.

Having found the representation (7.40) of four-point functions, we may ask what it is useful
for. This is the subject of the following chapters. The main reason was already hinted at:
under (7.40) Casimir equations map to the eigenvalue problem for the Laplacian. Four-point
correlators are particularly convenient as we end up with K-spherical functions that have a
well-behaved theory. However, the methods of this chapter can be adopted with very slight
modifications to obtain similar representations of other types of correlators. In particular, this
will be done for two- and three-point functions of defect CFTs later on. Further extensions are
also possible and often straightforward. In this sense, the next pages contain some of the main
ideas of this thesis. They are largely based on [2, 3].

Unless specified otherwise, G will stand for the superconformal group, P for its parabolic
subgroup and the corresponding superspace will be denoted by M = G/P . The structure
algebra of M is written as M and the Lie superalgebra of M as m.

7.1 Bruhat decomposition of the superconformal group

We shall now introduce a supersymmetric generalisation of the Bruhat decomposition that was
described in a previous chapter. Consider a number of commuting copies of some superspace M .
We label these by an index i and write their coordinates as xia. The corresponding supergroup
elements m(xi) are defined by

m(xi) = exiaX
a

. (7.2)

Here, {Xa} is a basis for m and the summation over a is understood. Given any pair of labels
i, j we define the variables xij = (xija) ∈Mi ⊗Mj through

m(xij) = m(xj)
−1m(xi) . (7.3)
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The possibility to define these variables follows from the fact that M itself is a supergroup.
Recall that we have defined the Weyl inversion as the element (4.5) of the conformal group. We
use the same formula as the definition of the Weyl inversion of the superconformal group G. It
is an element of the underlying even subgroup G(0), trivial in the internal symmetry factor U .
Using that conjugation of the generator D of dilations with w is given by Adw(D) = −D, we
obtain

1

2
Adw(Q) = Adw([D,Q]) = [Adw(D),Adw(Q)] = −[D,Adw(Q)] ,

i.e. when a supercharge Q is acted upon by the Weyl inversion it is sent to a generator whose
conformal weight is −1/2. Consequently, the Weyl inversion interchanges generators of super-
translations and special superconformal transformations. For superconformal algebras of type
I, one can similarly use that Adw(R) = R to deduce

Adw(q±) ⊂ s± . (7.4)

Remark Recall that in the superconformal context, G(0) is required to be simply connected.
We defined the bosonic Weyl inversion for the simply connected conformal group, so w is
well-defined for any superconformal group. This is to be contrasted with the fact that a
supersymmetric analogue of the ordinary conformal inversion may actually not exist. Assuming
that one could choose the superconformal group such that the inversion I belonged to its even
subgroup, then the arguments leading to (7.4) with w replaced by I would remain valid. On
the other hand, as the example g = sl(4|1) shows, the fact that I commutes with rotations
is inconsistent with (7.4), bearing in mind that q+ and s+ are non-isomorphic modules of the
rotation group.

With the help of the Weyl inversion, we define a new family of supergroup elements n(x)
through

n(x) = w−1m(x)w . (7.5)

Since m involves only generators of the superconformal algebra of positive conformal weight,
the element n is built using generators of negative weight. This means that n involves special
conformal generators K and the fermionic generators S.

The Bruhat decomposition of the superconformal algebra is that into subspaces of positive,
negative and zero conformal weights

g = m⊕ n⊕ k . (7.6)

The corresponding decomposition of the superconformal group will also be called the Bruhat
decomposition, or the Bruhat factorisation. It makes use of elements m(x) and n(y), together
with k = k(t) that are build by exponentiating the generators X ∈ g that commute with D,
i.e. dilations, rotations and R-symmetry transformations.

Using the Bruhat decomposition we can, similarly as in the bosonic case, define functions
y(x, h), z(x, h) and t(x, h) through the factorisation

hm(x) = m(y(x, h))n(z(x, h)) k(t(x, h)) . (7.7)

Here h is an arbitrary element of G. In the case h = w we simply write y(x) = y(x,w) etc, i.e.

wm(x) = m(y(x))n(z(x)) k(t(x)) . (7.8)
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Explicit expressions for y(x), z(x) and t(x) in a number of cases will be worked out later. The
first factor y(x, h) gives by definition the action of h on the superspace, i.e. y(x, h) = hx (It
is easy to see from (7.7) that y(x, h) is indeed an action. This will be shown later on.) In
particular y(x) = wx. Finally, we will write yij = y(xij) etc. That is

wm(xij) = m(yij)n(zij) k(tij) . (7.9)

The components of xij, yij, zij and tij are elements in the tensor product M⊗2 of superspace
structure algebras M, one copy for each insertion point.

Example Let us briefly discuss superconformal transformations and in particular the Weyl
inversion for the Lie superalgebra sl(2|1). As we said in the last chapter, this Lie superalgebra
admits a three-dimensional representation. All generators have been spelled out in this repre-
sentations above. Within the three-dimensional representation, the supergroup element m(x)
takes the form (6.46). The subgroup K is generated by dilations and U(1) R-symmetry trans-
formations, k = span{D,R}. Under the action of elements k = exp(λD + ϑR) the superspace
coordinates x = (u, θ, θ̄) transform as

y(x, k) = (eλu, e
1
2
λ+ϑθ, e

1
2
λ−ϑθ̄) . (7.10)

Here we can either regard λ and ϑ as elements of the structure algebra A(G) or some real or
complex parameters. Supertranslations with an element m(c) = m(v, η, η̄) act as m(c)m(x) =
m(y(x, c)) with

y(x, c) = (u+ v +
1

2
θη̄ +

1

2
θ̄η, θ + η, θ̄ + η̄) . (7.11)

This action admits only the first interpretation from above and v, η, η̄ have to be regarded
as elements of A(G). It remains to discuss the Weyl inversion. Within the three-dimensional
representation it is straightforward to find w from (4.5),

w = eπ
K−P

2 =

0 −1 0
1 0 0
0 0 1

 . (7.12)

Note that w2 = diag(−1,−1, 1), i.e. it squares to −1 within the bosonic conformal group and
is trivially extended to the R-symmetry group.

Going further, the elements n(x) read

n(x) = w−1m(x)w =

 1 0 0
−X 1 −θ
−θ̄ 0 1

 . (7.13)

The Bruhat decomposition of wm(x) now takes the from of the matrix identity

0 −1 0
1 X θ
0 −θ̄ 1

 =

1 − 1
u

(
1 + θθ̄

2u

)
θ/u

0 1 0
0 −θ̄/u 1


 1 0 0
u+ 1

2
θθ̄ 1 θ

θ̄ 0 1




1
u

(
1− θθ̄

2u

)
0 0

0 u
(

1− θθ̄
2u

)
0

0 0 1− θθ̄
u

 ,

(7.14)
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from which we can read off the functions y(x), z(x) and k(t(x)). Comparing the first of the
three factors with the expression (6.46) for m(y) we deduce

y(x) = w(u, θ, θ̄) =

(
−1

u
,
θ

u
,
θ̄

u

)
. (7.15)

Note that the action of w on the bosonic coordinate u is the same as in bosonic conformal field
theory. This had to be the case, since in the chosen coordinate system on the superspace M
the action of the conformal algebra generators on u is the same as in the bosonic theory. The
second and third factor are similarly computed by comparing matrices in (7.14) with definitions
of n(x) and k to give

z(x) = (−u,−θ,−θ̄), k(t(x)) = e− log u2D+ θθ̄
2u
R . (7.16)

Putting everything together, the matrix equation (7.14) leads to the following Bruhat factori-
sation for supergroup elements

wm(x) = ew(x)·Xe−x·X
w

e− log u2D+ θθ̄
2u
R, (7.17)

where Xw = w−1(P,Q+, Q−)w = (−K,−S+, S−). Notice that the last identity does not make
any reference to a particular representation of G.

7.2 Non-unitary principal series representations

The Bruhat decomposition of the ordinary conformal group gives rise to the non-unitary prin-
cipal series of representations. We can use the analogous construction which starts from the
supersymmetric Bruhat decomposition to define the non-unitary principal series of the super-
conformal group. In fact, we shall define these representations as coinduced modules of the
superconformal algebra g, because the construction is simplest and cleanest in this algebraic
setup. However, later we will freely move between the superalgebra and supergroup represen-
tations according to whichever is better suited to the problem at hand.

Let ρ be a finite-dimensional representation of the parabolic subalgebra p = k ⊕ n of g on
the space W . The coinduced module π = Coindg

pW is called an algebraic principal series
representation if ρ is trivial on n. The carrier space of π is that of left-covariant linear maps

V = HomU(p)(U(g),W ) . (7.18)

Explicitly, the maps ϕ ∈ V satisfy

ϕ(xA) = (−1)|x||ϕ|π(x)ϕ(A) for x ∈ p, (7.19)

where, as always, |.| denotes the parity of a homogeneous element in a super vector space. The
equation above defines the parity of the covariant map ϕ. For later use we also note that our
definition (7.18) implies that any element ϕ of V satisfies

ϕ(yU(g)) = 0 for y ∈ n, (7.20)
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as a consequence of the fact that special (super)conformal transformations act trivially on the
space W . The action of x ∈ g on maps ϕ ∈ V is given by

(xϕ)(A) = (−1)|x|(|ϕ|+|A|)ϕ(Ax), A ∈ U(g) . (7.21)

Therefore, the coinduction for Lie superalgebra representations is analogous to its bosonic
counterpart. One only needs to take care of additional minus signs in (7.19) and (7.21).

7.2.1 Tensor products of principal series representations

We now turn to tensor products of principal series representations. They will also be realised
as coinduced representations, however from the smaller subalgebra k. Such a tensor product
is typically highly reducible, but we are not interested here in its decomposition into irre-
ducible components. Our result is a natural generalisation of the theorem 9.2 from [87] to the
supersymmetric setting. (See also [119] for similar results about ordinary Lie groups.)

The possibility to realise the tensor product of two principal series representations πi as a
module coinduced from k should not be very surprising. Indeed, vectors in a principal series
representation may be regarded as functions on the superspace M . Therefore, vectors in the
tensor product of two principal series representations should be realisable as functions on two
copies of the superspace. Recall that the Lie superalgebra m of M has another isomorphic copy
n in the full superconformal algebra. The two subalgebras are conjugate to each other under
the Weyl inversion. With the help of w, one can replace the second of the two copies of the
superspace by the supergroup generated by n. Since g = m⊕ n⊕ k, the resulting functions can
be regarded as those on G/K.

To turn this heuristics into a theorem, let us denote by s = Adw the automorphism of g
corresponding to w. (To see that Adw is uniquely defined as an automorphism of g, recall
our definition of a Lie-Hopf algebra). Given any representation π of g, we denote by πs the
representation obtained by precomposing it with s, πs = π ◦ s. Clearly, for the coinduced
module πW the carrier space of πsW takes the form

V̄ ′ := HomU(s(p)) (U(g),W ′) , (7.22)

where the representation W ′ of s(p) is obtained from the representation W of k by composition
with the Weyl inversion and the trivial extension to s(p). As we recalled above, the inversion
flips the sign of D and acts trivially on the generators of u. We will denote the representation
of g on the space V̄ ′ by π̄W ′ . The bar is supposed to remind us that we perform our coinduction
from s(p) rather than p itself. Since s is an inner automorphism, we have πW ∼= π̄W ′ . Now we
are prepared to state our theorem.

Theorem Let Vi be two principal series representations (7.18). Their tensor product is iso-
morphic to

V1 ⊗ V2
∼= HomU(k) (U(g),W1 ⊗W ′

2) . (7.23)

Proof: We will show that following map F is an isomorphism of modules on the left and the
right hand sides,

F : V1 ⊗ V̄ ′2 −→ HomU(k)(U(g),W1 ⊗W ′
2),

ϕ1 ⊗ ϕ2 7→ ψ = (ϕ1 ⊗ ϕ2) ◦∆ .
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The symbol ∆ denotes the coproduct in U(g). Using standard properties of the coproduct, it
is easy to see that F is well-defined and a homomorphism of g-modules, so we will only show
that it is invertible. Let ψ be an arbitrary element of the module on the right hand side. We
shall reconstruct from it a function

ϕ : U(g)⊗ U(g) −→ W1 ⊗W ′
2,

which is its preimage in the representation space on the left. Due to covariance properties, such
a function is completely specified by the values

ϕ(P n1
1 ...P nd

d Qε1
1 ...Q

εk
k ⊗ 1), ϕ(1⊗ Sη1

1 ...S
ηk
k K

m1
1 ...Kmd

d ) . (7.24)

Further, by the equation (7.20)

ϕ(Sη1

1 ...S
ηk
k K

m1
1 ...Kmd

d ⊗ 1) = 0 = ϕ(1⊗ P n1
1 ...P nd

d Qε1
1 ...Q

εk
k ).

Using that ∆(X) = X ⊗ 1 + 1⊗X for all elements X ∈ g we conclude that

ψ(P n1
1 ...P nd

d Qε1
1 ...Q

εk
k ) = ϕ(P n1

1 ...P nd
d Qε1

1 ...Q
εk
k ⊗ 1), (7.25)

and similarly for the second type of elements. Hence, we are able to recover ϕ from ψ. This
completes the proof of the theorem.

7.2.2 Shortening conditions

We shall now extend the above discussion, so far restricted to typical representations of the
superconformal algebra g, and consider multiplet shortening. In fact, our comments will also
apply to bosonic theories, where short representations occur e.g. by ”imposing equations of
motion” ∂2ϕ = 0.

To set the stage, let g be some superconformal algebra and V = Indg
pW a parabolic Verma

module with a highest-weight vector v0. Pick some finite number of elements Aα of the universal
enveloping algebra U(g) and set

uα = Aαv, X = span{uα}, U = U(g)X .

By construction, U is a subrepresentation of V . Therefore, we can form the quotient represen-
tation M = V/U . As vector spaces V = M ⊕ U and there is a natural projection

p : V −→M, p(v) = v + U .

The module M is clearly a highest-weight representation with a highest-weight vector v0 + U .
Moreover

Aα(v0 + U) = uα + U = 0 in M .

For this reason, the representation M will be called a short multiplet obtained from V by setting
Aαv0 = 0.

Let M∗ be the dual module to M . Since M is a quotient of V , M∗ is a subrepresentation of
π = V ∗. It is the subspace of functions F : V −→ C which are well-defined on M . This in turn
means that F s vanish on U . Therefore, we have

F (U(g)Aαv0) = 0 .
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As mentioned before, π can be regarded as the coinduced module Coindg
pW

∗. In terms of ψ
introduced in (4.37), the conditions on F translate to

ψ(σ(Aα)U(g))(w0) = 0, (7.26)

where w0 is the highest weight vector of W . Obviously, the space of functions ψ that satisfy
(7.26) is g invariant

(x · ψ)(σ(Aα)B)(w0) = ±ψ(σ(Aα)Bx)(w0) = 0, x ∈ X, B ∈ U(g) .

If ψ is interpreted as the Taylor expansion of a function on the supergroup f : G −→ W , the
condition (7.26) can be rewritten as the set of differential equations

(Rσ(Aα)f)(w0) = 0, (7.27)

where, recall, RA is the right-invariant differential operator corresponding to A ∈ U(g). If W
is one-dimensional, we simply have Rσ(Aα)f = 0, which is the often seen form of shortening.
Another case that we wish to describe is when the elements σ(Aα) form a representation of k.
Let k ∈ k and B ∈ U(g) be arbitrary and [k, σ(Aα)] = σ(Aβ). Then we have the sequence of
equalities

ψ(σ(Aα)B)(kw0) =
(
k·ψ(σ(Aα)B)

)
(w0) = ψ(kσ(Aα)B)(w0) = ψ(σ(Aα)kB+σ(Aβ)B)(w0) = 0 .

In the first step we used duality of representations W and W ∗ and in the second covariance
property of the function ψ. Finally, we applied the commutation relation above and used the
shortening conditions. Since the representation W is irreducible, we can get any vector in it by
applying an appropriate k to w0. Therefore, the condition (7.26) again reduces to Rσ(Aα)f = 0.

In the context of superconformal algebras, the shortening is usually performed by a set of
supercharges Qα. That is, we restrict to vectors in the principal series representation (7.18)
that satisfy

ϕ(QαU(g))(w0) = 0 . (7.28)

Let us now consider two, possibly short, representations that are submodules of principal series
πi = Coindg

pWi. According to our discussion above, the tensor product π1 ⊗ π2 is isomorphic
to Coindg

k (W1⊗W ′
2). By substituting the explicit form of the isomorphism, ψ = (ϕ1⊗ϕ2) ◦∆,

we see that shortening conditions imply that elements ψ satisfy

ψ(QαU(g))(w1 ⊗ w′2) = ψ(s(Qβ)U(g))(w1 ⊗ w′2) = 0, (7.29)

for all α ∈ I1 and β ∈ I2. Note that s(Qβ) = Sβ are generators of special superconformal
transformations. If the representation Wi are scalar, there is only one vector in the dual of
W1 ⊗W ′

2 and conditions consequently simplify to

ψ(QαU(g)) = ψ(s(Qβ)U(g)) = 0 . (7.30)

In summary, we have defined principal series representations of g on the space of covariant linear
maps on U(g) that take values in some vector space. We can think of these as covariant vector-
valued functions on the superconformal group. Tensor products of two such representations
admits a similar description in terms of functions on G that are covariant with respect to K. If
some of the representations are short, functions in these spaces are required to satisfy further
differential equations.

98



7.3. FROM QUANTUM FIELDS TO COVARIANT FUNCTIONS

7.3 From quantum fields to covariant functions

The space of fields ϕ : M −→ W in a superconformal theory carries a representation of G. This
representation, denoted π, was written for bosonic theories in (2.19) and the same formula holds
in the supersymmetric case. Thanks to the identity dgx = k(t(x, g)), we can rewrite (2.19) as

(πgϕ)(gx) = ρ(k(t(x, g)))ϕ(x), (7.31)

where the element k(t(x, g)) is defined by means of the Bruhat decomposition. The statement
that dgx = k(t(x, g)) is a familiar one. To explain it a bit more, we focus on a bosonic CFT.
If g is a conformal transformation, by definition its differential at any point is of the form
dgx = Ω(x)Rµ

ν(x), with some scale factor Ω(x) and some rotation matrix Rµ
ν(x). These are

precisely the dilation and rotation Bruhat factors of gm(x). E.g. if g is a translation, then
Ω(x) = 1 and R(x) = 1. For a rotation g = r, one has Ω(x) = 1 and R(x) = r, while
dilations g = eλD have Ω(x) = eλ and R(x) = 1. Finally, the differential of the Weyl inversion
decomposes as

dwx =
1

x2
sedsx =⇒ Ω(x) =

1

x2
, R(x) = sedsx . (7.32)

These results should be compared with the Bruhat factors given in (4.16) and (4.17). This
leads to the conclusion dgx = k(t(x, g)).

A fundamental observation that we mentioned already a few times is that the field repre-
sentation (7.31) belongs to the non-unitary principal series. Indeed, let us promote ϕ to a
vector-valued function f : G −→ W by

f(m(x)) = ϕ(x), f(gp) = ρ(p)−1f(g), g ∈ G, p ∈ P . (7.33)

Clearly, the function f is uniquely determined almost everywhere on G by these properties.
The space of functions with covariance properties as above is nothing else but a non-unitary
principal series representation of the superconformal group under (the restriction of) the left
regular-representation (denoted L). Moreover, we have

Lh−1fϕ(g) = fϕ(hg) = fϕ(hm(x)p) = fϕ (m(y(x, h))n(z(x, h))k(t(x, h))p)

= ρ(p−1)ρ(k(t(x, h))−1)ϕ(y(x, h)) = ρ(p−1)πh−1ϕ(x) = ρ(p−1)fπh−1ϕ(m(x)) = fπh−1ϕ(g) .

In this calculation we used that y(x, h) = hx, which is true by definition. The result shows
that the lift (7.33) is an intertwiner between a field representation and a principal series rep-
resentation. Since bijectivity of the lift is clear, the two representations are isomorphic. The
argument is valid for bosonic and super conformal groups alike.

Given n fields, the Ward identities (2.26) say precisely that the correlation function Gn(xi) is
an invariant vector in the tensor product of representations πi, Gn(xi) ∈ (π1 ⊗ ... ⊗ πn)G. We
can lift each field to a function on the superconformal group as above, so to obtain from the
correlator a function Fn : Gn −→ W (W is the tensor product of spaces of polarisations of the
fields) which satisfies

Fn(m(xi)) = Gn(xi), Fn(g1p1, ..., gnpn) =
(
ρ1(p−1

1 )⊗ ...⊗ ρn(p−1
n )
)
Fn(g1, ..., gn) . (7.34)
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These two properties ensure that Fn is defined almost everywhere on Gn. Now, the invariance
of Gn and the intertwining property of lifts imply that Fn is invariant under the diagonal left
regular action of G

Fn(hgi) = Fn(gi) . (7.35)

The function Fn is the representation of the correlator that will be the starting point for several
other representations to be constructed below.

Remark In the mathematics literature, the two different realisations of principal series repre-
sentations as sometimes referred to as the non-compact picture (the field representation) and
the induced picture (the representation on covariant functions on G), [120].

7.4 Lifting formula: a new representation of four-point

functions

Now we come to one of the main results of this chapter. Starting from the representation of a
conformal four-point function by a covariant function F4 introduced above, we will derive a new
representation of it as a K-spherical function. This will allow us later to embed the theory of
superconformal partial waves into a well-established branch of representation theory and make
contact with integrable models. Our result reads

Theorem There is a bijective correspondence between solutions of Ward identities (2.26) for
four-point functions and K-spherical functions on the superconformal group G. The latter are
elements of the space A(G)⊗W which satisfy, for all kl, kr ∈ K

F (klgkr) =
(
ρ1(kl)⊗ ρ2(wklw

−1)⊗ ρ3(k−1
r )⊗ ρ4(wk−1

r w−1)
)
F (g) . (7.36)

Proof: We would first like to show how a solution of Ward identities can be used to produce a
K-spherical function. Given any solution G4(xi), let F4 ∈ A(G)⊗4⊗W be the covariant function
as constructed in the last section. Using F4 and the Weyl inversion w we can construct a new
object F ∈ A(G)⊗W by

F (g) := F4(e, w−1, g, gw−1) . (7.37)

While the motivation for such a map might not be clear, it is readily verified that F is a
K-spherical function. Indeed, from the definition of F , and covariance properties of F4 we
obtain

F (klgkr) = F4(e, w−1, klgkr, klgkrw
−1) = F4(k−1

l , w−1wk−1
l w−1, gkr, gw

−1wkrw
−1)

=
(
ρ1(kl)⊗ ρ2(wklw

−1)⊗ ρ3(k−1
r )⊗ ρ4(wk−1

r w−1)
)
F (g) .

We shall now go in the other direction and show how to recover G4 from F . Suppressing the
last two arguments and their corresponding prefactors for simplicity, we have

F4(m(x1),m(x2)) =
(
1⊗ ρ2(k(t21)−1)

)
F4

(
m(x1)n(y21),m(x2)k(t21)−1n(z21)−1

)
=

(
1⊗ ρ2(k(t21)−1)

)
F4

(
m(x1)n(y21),m(x1)m(x21)k(t21)−1n(z21)−1

)
=

(
1⊗ ρ2(k(t21)−1)

)
F4

(
m(x1)n(y21),m(x1)w−1m(y21)

)
=

(
1⊗ ρ2(k(t21)−1)

)
F4

(
m(x1)n(y21),m(x1)n(y21)w−1

)
.
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In the first step we used the right covariance covariance property of F4 and the fact that the
compensating prefactors are trivial on elements of the form n(x). Next, we inserted m(x21)
using its definition (7.3) and applied the formula

m(x21) = w−1m(y21)n(z21)k(t21),

which is essentially the definition of y21, z21 and t21. Finally we commuted the element w−1

past m(y21) by an application of (7.5). The same steps can be repeated for the second two
arguments of F4 to arrive at

F4(m(xi)) =
(
1⊗ ρ2(k(t21)−1)⊗ 1⊗ ρ4(k(t43)−1)

)
F4

(
g12(xi), g12(xi)w

−1, g34(xi), g34(xi)w
−1
)
,

where we introduced the elements

gij = m(xi)n(yji) . (7.38)

To complete the derivation, we use the left invariance property of F4, with h = g−1
12

F4(m(xi)) =
(
1⊗ ρ2(k(t21)−1)⊗ 1⊗ ρ4(k(t43)−1)

)
F4

(
e, w−1, g(xi), g(xi)w

−1
)
,

where the element g(xi) is defined as

g(xi) = g−1
12 g34 = n(y21)−1m(x31)n(y43) . (7.39)

Putting everything together, the correlation function G4 is recovered from the corresponding
K-spherical function F as

G4(xi) =
(

1⊗ ρ2(k(t21))−1 ⊗ 1⊗ ρ4(k(t43))−1
)
F (g(xi)) . (7.40)

This establishes the theorem. The last relation will be referred to as the lifting formula and it
is the main result of this section.

Example Let us write the lifting formula explicitly for g = sl(2|1). By matrix multiplication,
the variables xij = (uij, θij, θ̄ij) defined in (7.3) are

uij = ui − uj −
1

2
θiθ̄j −

1

2
θ̄iθj , θij = θi − θj , θ̄ij = θ̄i − θ̄j . (7.41)

Let G4(xi) be a four-point function of primary fields with conformal weights ∆i and R-charges
ri for i = 1, . . . , 4. Given ∆ and r, the corresponding representation ρ of the group K =
SO(1, 1)× U(1) reads

ρ∆,r(e
λD+κR) = e−∆λ+rκ . (7.42)

Since the group K is abelian, the spaces of polarisations Wi are one-dimensional and so is their
tensor product W = W1⊗· · ·⊗W4. According to (7.40), there exists a unique function F with
the covariance properties

F (eλlD+κlRgeλrD+κrR) = e(∆2−∆1)λl+(r1+r2)κle(∆3−∆4)λr−(r3+r4)κrF (g) , (7.43)

such that

G4(xi) =
e
r2
θ12θ̄12
2u12

+r4
θ34θ̄34
2u34

u2∆2
12 u2∆4

34

F (e−w(x21)·Xw

ex31·Xew(x43)·Xw

) . (7.44)
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7.5 Transformation properties of Bruhat factors

Before we go on to applications of the lifting formula, we will pause to investigate how the
various factors introduced in previous sections transform under x 7→ hx. Keeping track of
these transformation properties will become especially important in the analysis of crossing
symmetry equations.

Proposition Under a superconformal transformation h, elements gij and k(tji) transform as

gij(x
h) = hgij(x)k(t(xi, h))−1, k(thji) = wk(t(xi, h))w−1k(tji)k(t(xj, h))−1 . (7.45)

Let us make a comment on the notation. Various objects in this chapter depend on the insertion
points xi. However, to avoid having long expressions we have not kept explicitly this dependence
in the notation, e.g. we have written yij = y(xij) etc. We will adopt the rule that if the insertion
points are transformed by a group element h, the corresponding objects will carry an upper
index h, e.g. yhij, t

h
ij etc. In particular, we alternatively write xh or hx (or very rarely y(x, h)).

Proof: Consider the system of equations

m(xi)n(yji) = gij(x), m(xj)k(tji)
−1n(zji)

−1 = gij(x)w−1 . (7.46)

The first equation is the definition of gij(x) and the second one was proved in the previous
section. Let us apply a transformation h to all xi-s and use

m(xh) = hm(x)k(t(x, h))−1n(z(x, h))−1 . (7.47)

This relation follows at once from definitions of k(t(x, h)) and n(z(x, h)). Doing these two
steps, we get another system of equations

hm(xi)k(t(xi, h))−1n(z(xi, h))−1n(yhji) = gij(x
h), (7.48)

hm(xj)k(t(xj, h))−1n(z(xj, h))−1k(thji)
−1n(zhji)

−1 = gij(x
h)w−1. (7.49)

We can compare this system to (7.46). Elements gij(x) and h−1gij(x
h) have the same m Bruhat

factor and similarly gij(x)w−1 and h−1gij(x
h)w−1. It follows that they are related by

h−1gij(x
h) = gij(x)kijnij, h−1gij(x

h)w−1 = gij(x)w−1k′ijn
′
ij, (7.50)

for some kij, k
′
ij, nij, n

′
ij. Putting these two equations together, we have

kijnij = (w−1k′ijw)(w−1n′ijw) . (7.51)

We now make the key observation - the grading with respect to the dilation weight requires
nij = n′ij = 1. Also, by looking at elements of conformal weight zero in the first equation of
(7.46) and (7.48), we see that kij = k(t(xi, h))−1. Having established these facts, the proposition
follows from (7.50). To get the first claim, one simply substitutes the expressions for kij and nij
into the first equation. The second claim requires a few more steps. Let us begin by substituting
n′ij = 1 and k′ij = wkijw

−1 into the second equation in (7.50). After cancelling w−1 factors on
the right

h−1gij(x
h) = gij(x)k(t(xi, h))−1 . (7.52)

102



7.6. BRUHAT DECOMPOSITION FOR SL(2M |N )

Next, we use (7.49) and the second equation of (7.46) the to expand gij(x
h) and gij(x) on the

two sides and cancel the m(xj) factors

k(t(xj, h))−1n(z(xj, h))−1k(thji)
−1n(zhji)

−1w = k(tji)
−1n(zji)

−1wk(t(xi, h))−1 . (7.53)

The grading on g allows to equate the k-factors from the two sides

k(t(xj, h))−1k(thji)
−1 = k(tji)

−1wk(t(xi, h))−1w−1 . (7.54)

Rearranging terms now gives the second claim and completes the proof of the proposition.

For bosonic conformal groups, one could have proven the proposition by a cumbersome but
explicit calculation. In the supersymmetric setting, such an approach is not at all efficient
because there is no uniform description of all superconformal groups and different groups would
require separate computations. As the above argument shows however, for results to be true,
one only needs to use the grading on g with respect to the dilation weight and the properties of
the Weyl inversion. Indeed, these are among very few structures shared by all superconformal
groups.

7.6 Bruhat decomposition for sl(2m|N )

We end this chapter by determining explicitly the Bruhat decomposition of wm(x) for two
infinite families of superconformal groups. This is an important step required in order to apply
the abstract results of above sections to field theory.

Let g be a simple complex superconformal algebra of type I. These include a few isolated Lie
superalgebras, namely osp(2|4), psl(2|2) and psl(4|4), as well as two infinite families sl(2|N )
and sl(4|N ). We shall focus on these infinite families and set g = sl(2m|N ). For this choice of
g one finds

g(0) = sl(2m)⊕ sl(N )⊕ u(1), g+ = (2m,N , 1), g− = (2m,N ,−1) . (7.55)

Generators {D,P β
α̇ , K β̇

α ,M
β
α ,M

β̇
α̇ }, {R,R J

I } and {Q J
α̇ , Q

β
I , S

J
α , S

β̇
I } have already been in-

troduced. The four irreducible k-modules that make up the odd subspace and whose existence
is guaranteed by the type I condition are

q+ = span{Q J
α̇ }, q− = span{Q β

I }, s+ = span{S J
α }, s− = span{S β̇

I } . (7.56)

The representations of k which these carry are indicated by the type of indices of their genera-
tors. The dual basis of g∗(1) to the one above will be denoted by {qα̇J , qIβ, sαJ , sIβ̇}. Spaces g±
carry representations of g(0) which are dual to each other. Explicitly, the dual bases are

(S I
α )∗ = Q α

I , (Q I
α̇ )∗ = S α̇

I . (7.57)

The Lie superalgebra g has a fundamental (2m+N )-dimensional representation. We will denote
by E j

i the matrix with 1 at position (i, j) and zeros elsewhere, i, j = 1, ..., 2m+N . Such indices
are split in three pieces α̇, α, I, that is, we write

A = Ai jE
j
i =

 Aα̇
β̇

Aα̇β Aα̇J
Aα

β̇
Aαβ AαJ

(−1)
|AI

β̇
|
AI

β̇
(−1)|A

I
β |AIβ (−1)|A

I
J |AIJ

 . (7.58)
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We can choose the generators so that the sl(2m) and sl(N ) algebras sit in the top left and
bottom right corners, respectively, while the subspaces g± occupy the top right and bottom left
corners. Schematically k ∩ sl(2m) g1 q+

g−1 k ∩ sl(2m) s+

s− q− sl(N )

 . (7.59)

For the precise definition of the fundamental representation, see subsection (7.6.1).1

In the remainder of this section, we will derive expression for y(x), z(x) and t(x) appearing
in the decomposition (7.8). In order to do this, we spell out the supermatrices representing
various factors in this equation. The Weyl inversion and its inverse take the form

w =

 0 −wα̇β 0
−wα

β̇
0 0

0 0 δIJ

 , w−1 =

 0 wα̇β 0
wα

β̇
0 0

0 0 δIJ

 , (7.60)

where −wα̇β = wα
β̇

= σ2 for m = 2 and wα̇β = −wα
β̇

= 1 for m = 1.

The superspace structure algebra M is generated by variables xα̇β, θ
α̇
J , θ̄

I
β, obeying the usual

(anti)commutation relations. We see that

m(x) = ex
α̇
βP

β
α̇ +θα̇JQ

J
α̇ +θ̄IβQ

β
I =

δα̇β̇ X α̇
β θα̇J

0 δαβ 0
0 −θ̄Iβ δIJ

 , with X α̇
β = xα̇β −

1

2
θα̇K θ̄

K
β . (7.61)

Using wα̇δw
δ
β̇

= −δα̇
β̇

and wα
δ̇
wδ̇β = −δαβ we get for elements n(x)

n(x) = w−1m(x)w =

 δα̇
β̇

0 0

−wαγ̇X
γ̇
δw

δ
β̇

δαβ wαγ̇θ
γ̇
J

θ̄Iδw
δ
β̇

0 δIJ

 . (7.62)

Finally, elements of the subgroup K assume the form

k(t) =

e
Nκ
N−2m

+ 1
2
λ(r1)α̇

β̇
0 0

0 e
Nκ
N−2m

− 1
2
λ(r2)αβ 0

0 0 e
2mκ
N−2mU I

J

 ≡ diag(k1, k2, k3) . (7.63)

Matrices r1,2 are purely rotational. That is, they belong to SL(2,C) for m = 2 and are equal
to 1 if m = 1.

In the following we will suppress indices where no confusion can arise. They can be put back
at any point by looking at what type of indices a certain object carries and contracting over
the appropriate number and type of dummy indices. We shall agree to write J = wα

β̇
, then

1The early works [121, 122, 123] use the same representation both of the Lie superalgebra and the supergroup
and have inspired some of our calculations.
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−J−1 = wα̇β. With these conventions, the above expressions can be rewritten as

w =

 0 J−1 0
−J 0 0
0 0 1

 , w−1 =

0 −J−1 0
J 0 0
0 0 1

 , (7.64)

m(x) =

1 X θ
0 1 0
0 −θ̄ 1

 , n(x) =

 1 0 0
−JXJ 1 Jθ
θ̄J 0 1

 . (7.65)

Therefore, the equation wm(x) = m(y)n(z)k(t) reads 0 J−1 0
−J −JX −Jθ
0 −θ̄ 1

 =

(1− Y JZJ + ηζ̄J)k1 Y k2 (Y Jζ + η)k3

−JZJk1 k2 Jζk3

(η̄JZJ + ζ̄J)k1 −η̄k2 (1− η̄Jζ)k3

 . (7.66)

Here, the notation is y = (yα̇β, η
α̇
J , η̄

I
β), z = (zα̇β, ζ

α̇
J , ζ̄

I
β) and Y, Z are introduced analogously

to X. To write down the solution for y, z and t we introduce

T = 1 + θ̄X−1θ, Λ = 1 +X−1θθ̄ . (7.67)

Then one observes that Λ−1 = 1−X−1θT−1θ̄. Using this, the solution to the above system is
found

(Y, η, η̄) = (−(JXJ)−1,−(XJ)−1θT−1,−θ̄(JX)−1), (7.68)

(Z, ζ, ζ̄) = (−X − θθ̄,−θT−1,−θ̄Λ), (7.69)

(k1, k2, k3) = (−((X + θθ̄)J)−1,−JX, T ) . (7.70)

In particular zα̇β = −xα̇β, as in the bosonic theory. This completes our analysis of the equation
(7.8) for superconformal algebras sl(2m|N ) and with it the discussion of the present chapter.

7.6.1 Fundamental representation of sl(2m|N )

D =
1

2
diag(Im,−Im, 0), R =

1

N − 2m
diag(N Im,N Im, 2mIN ) . (7.71)

M 2̇
1̇

= E 2̇
1̇
, M 1̇

2̇
= E 1̇

2̇
, M 1̇

1̇
= −M 2̇

2̇
=

1

2
(E 1̇

1̇
− E 2̇

2̇
), (7.72)

M 2
1 = E 2

1 , M 1
2 = E 1

2 , M 1
1 = −M 2

2 =
1

2
(E 1

1 − E 2
2 ) . (7.73)

P β
α̇ = E β

α̇ , Q J
α̇ = E J

α̇ , Q β
I = E β

I , K β̇
α = E β̇

α , S J
α = E J

α , S β̇
I = E β̇

I . (7.74)

R J
I = E J

I , R I
I =

1

2
(E I

I − E I+1
I+1 ) . (7.75)
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Chapter 8

Crossing factors from the Cartan
decomposition

In the last chapter, we have seen how to interpret four-point functions of an SCFT as K-
spherical functions on the superconformal group. The next task, that will keep us occupied in
the present and the following chapter, is to derive crossing symmetry equations within this new
representation.

The starting point for analysis of K-spherical functions is the Cartan KAK decomposition.
Covariance properties of these functions allow one to regard them as functions on A, possibly
satisfying additional constraints (which come from non-uniqueness of the KAK factorisation).
However, there is no standard definition of the Cartan decomposition for supergroups. In
principle, one could write several sensible definitions that would apply to a certain class of
supergroups and then study their properties. Any such definition should give the usual Cartan
decomposition when applied to the bosonic conformal group.

To elaborate on possible choices, let us assume that G is some superconformal group and that
we have already decomposed its underlying Lie group as

G(0) = KAK . (8.1)

Notice that the internal symmetry group U is contained in K. Therefore, A from above is the
usual two-dimensional abelian factor of the bosonic conformal group. To obtain a coordinate
system on G, we still need to include exponentials of fermionic generators. There is an even
number of these generators and we can distribute them democratically on both sides of A by
including an exponential eθQ on the left and eθ̄S on the right. Here, we are being schematic
and use θ, θ̄ to denote collections of fermionic variables.

While legitimate, it seems that this choice of coordinates does not lead to a particularly nice
expression for the Laplacian. We can improve the situation considerably by requiring the
supergroup to be of type I. Then there is a natural split of fermionic generators into two sets
that span two irreducible modules of g(0). When exponentials built out of these sets of generators
are placed on either side of A as above, we arrive at what will be called the (supersymmetric)
Cartan decomposition.

Having defined the coordinate system on G, we will turn to questions of conformal field theory.
First, the coordinates on which K-spherical functions essentially depend are naturally related
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to cross ratios. For the bosonic group, these are the coordinates (u1, u2) on A(0), that we will
explicitly relate to (z1, z2) using the lifting formula (7.40). It is well-known that superconfor-
mal four-point functions depend on additional nilpotent invariants. These are related to the
fermionic variables in the decomposition. In fact, we will see how to give a simple count of
nilpotent invariants using the Cartan coordinates.

Next, we will turn to the computation of the crossing factor MI
J . Recall that this matrix,

introduced in (2.39), is roughly speaking the ratio of factors Ω(xi) that capture the kinematical
dependence of G4(xi), in two different channels. The Ω(xi)-s are not uniquely fixed, because
multiplying them by any function of cross ratios gives a correlator of the correct kinematical
form. Within our approach, there is a relatively natural way of fixing these factors.

Notice that Ω(xi) is a relatively complicated object. In a bosonic CFT, it is a (matrix-valued)
function 4d of coordinates xµi and depends on four representations of SO(1, 1) × SO(d). In
contrast, MI

J is a function of just two cross ratios. Furthermore, its matrix elements can be
computed using representation theory of SO(1, 1) × SO(2) only. A quick explanation of this
can be given as follows. Since MI

J is conformally invariant, we can without loss of generality
assume that all points xi lie in the e1-e2 plane of Rd. Then all the group elements of G that
appear in (7.40) belong to the SO(3, 1) subgroup GΠ of conformal transformations of this plane
(the Weyl inversion w drops out because it always appears together with its inverse). Crucially,
the group A is contained in GΠ, so the Cartan decomposition can be consistently restricted to
this group. Therefore, the computation ofMI

J uses only a conformal group in two dimensions,
for which K = SO(1, 1)× SO(2).

The chapter contains a number of explicit examples and calculations for both bosonic and
supersymmetric conformal theories. It is mostly based on [2, 3].

8.1 Cartan decomposition of the superconformal group

Let G be a superconformal group which is also a supergroup of type I. There is a basis {XA} =
{Xa, Xµ, Xµ} of the Lie superalgebra g = Lie(G) such that

g(0) = span{Xa}, g+ = span{Xµ}, g− = span{Xµ} . (8.2)

Since g± are modules of g(0) dual to each other, we can choose {Xµ} and {Xµ} as their dual
bases. We will denote the representation of g(0) on the space g+ by π. Then

g(0)X
µg−1

(0) = π(g(0))
µ
νX

ν , g(0)Xνg
−1
(0) = π(g−1

(0))
µ
νXµ, g(0) ∈ G(0) . (8.3)

Supergroup elements of G may be factorised as, [124],

g = ex
µXµg(0)e

xνXν

. (8.4)

Here, the middle factor g(0) is an element of the underlying Lie group G(0) = Gbos × U . To
parametrise these elements, we use the Cartan coordinates on Gbos and some arbitrary set of
coordinates on U . As usual, the full coordinate system on G is denoted by (xA) and we have
|xA| = |XA|. Since the internal transformations are contained in K, the subgroup A is still
two-dimensional and we parametrise it by (u1, u2) as in (4.22). We shall also write

g = ηl kl a kr ηr, kl, kr ∈ K . (8.5)
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In order to have a simple formulation of K-covariance laws in terms of coordinates, it is con-
venient to move the factors kl,r past ηl,r to the furthest left and right positions. This can be
done using relations (8.3) and the Baker-Campbell-Hausdorff formula to find

g = kl e
π(kl)

µ
ρx
ρXµ

a eπ(kr)σνxσX
ν

kr ≡ kl η
′
l a η

′
r kr . (8.6)

We will refer to (8.5) and (8.6) as unprimed and primed Cartan coordinates, respectively.

Let us note that the Cartan factorisations of supergroup elements g are not unique. Focusing
for concreteness on the primed version, we see that, given any one factorisation, we can produce
another by the transformation

(kl, η
′
l, kr, η

′
r) 7→

(
klb, b

−1η′lb, b
−1kr, b

−1η′rb
)
, (8.7)

where b belongs to the stabiliser of A in K. The stabiliser group will be denoted by B and one
observes that B ∼ SO(d− 2)× U . Let P be the element of the group algebra L1(B) given by

P =
1

Vol B

∫
B

db b . (8.8)

In any representation of B, the element P acts as a projection operator to invariant vectors.
Indeed, it satisfies

bP = P, P 2 = P . (8.9)

The first property follows from left invariance of the Haar measure db. Once the first equation
is integrated over B, it gives the second one.

Let us consider a K-spherical function F whose transformation properties under K are deter-
mined by representations ρl and ρr. For any b ∈ B, we have(

ρl(kl)⊗ ρr(k−1
r )
)
F (η′laη

′
r) =

(
ρl(klb)⊗ ρr(k−1

r b)
)
F (b−1η′lb a b

−1η′rb) . (8.10)

If we denote the fermionic primed Cartan coordinates by {yµ, yµ}, it follows that

F (ey
µXµaeyνX

ν

) = (ρl(b)⊗ ρr(b))F (eπ(b)µρy
ρXµaeπ(b−1)σνyσX

ν

) . (8.11)

Let us define the action of the projector P on functions f(ui, y
µ, yν) that take values in the

representation space W of B by

P [f(ui, y
µ, yν)] =

1

Vol B

∫
B

db (ρl(b)⊗ ρr(b)) f(ui, π(b)µρy
ρ, π(b−1)σνyσ) . (8.12)

Then, if f arises as a restriction of a K-spherical function F , clearly P [f ] = f . Conversely, any
f that is preserved by P can be extended to a K-spherical function on G.

Let us note that in practical computations it is convenient to make some specific choices for the
Cartan factors that remove the gauge freedom (8.7). Such gauge fixing conditions are arbitrary
and at the end of every calculation one has to check that the result does not depend on them.
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8.1.1 Cross ratios in bosonic theories

We have seen that K-spherical functions on the conformal group can be regarded as functions
of two variables (u1, u2) that parametrise the abelian group A. This is a reformulation of the
familiar fact that four-point functions in a CFT depend on two cross ratios (u, v). Our first
task in establishing the theory of conformal correlators in the gauge (7.40) is two relate these
two sets of variables. In order to do this, we decompose g(xi) = kla(u1, u2)kr and determine
the factor a. Let us work in the (d + 2)-dimensional representation of G and focus on the
upper-left 2 × 2 blocks of the two sides. For an element g = rle

λlDa(u1, u2)eλrDrr, with rl,r
rotation matrices, this block has entries

g11 = coshu+ coshλl coshλr + coshu− sinhλl sinhλr,

g12 = − coshu+ coshλl sinhλr − coshu− sinhλl coshλr,

g12 = − coshu+ sinhλl coshλr − coshu− coshλl sinhλr,

g22 = coshu+ sinhλl sinhλr + coshu− coshλl coshλr .

Here u± = (u1 ± u2)/2. On the other hand, the upper-left corner of g(xi) reads

1

2

(
x2

13 +
x2

23

x2
12

+
x2

14

x2
34

+
x2

24

x2
12x

2
34

x2
13 +

x2
23

x2
12
− x2

14

x2
34
− x2

24

x2
12x

2
34

−x2
13 +

x2
23

x2
12
− x2

14

x2
34

+
x2

24

x2
12x

2
34
−x2

13 +
x2

23

x2
12

+
x2

14

x2
34
− x2

24

x2
12x

2
34

)
,

By comparing the entries of the two matrices we conclude

eui = 1− 2

zi

(
1 +
√

1− zi
)
, i = 1, 2 . (8.13)

As a side result, we also write the dilation coordinates

e2λl =
x2

12x
2
14

x2
24

1√
(1− z1)(1− z2)

, e2λr =
x2

14

x2
13x

2
34

1√
(1− z1)(1− z2)

. (8.14)

Coordinates ui appeared in the literature before. Their exponentials are equal to the so-called
radial coordinates of [34]. The relation (8.13) has already been observed on a case-by-case basis
in [8, 9, 10]. Our analysis here provides a proper derivation for all four-point functions, of both
scalar and spinning fields.

8.2 Tensor and crossing factors

The Cartan decomposition (8.6) and the lifting formula (7.40) are everything that we need in
order to construct the four-point tensor structures in the Calogero-Sutherland gauge. Note
that (7.40) treats each of the four insertion points differently and hence breaks the permutation
symmetry of Euclidean field theory correlators. Different permutations σ of the four points are
associated with different channels. We will refer to the channel that corresponds to the identity
permutation σs = 1 as the s-channel. The t-channel has σt = (24). Given any choice of the
channel σ, we can extend the lifting formula to become

G4(xi) = ρσ(2)(k(tσ(2)σ(1))
−1)ρσ(4)(k(tσ(4)σ(3))

−1)Fσ(g(xσ(i))) . (8.15)
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Here, the matrix ρσ(i) acts on the σ(i)th tensor factor in the space of polarisations and it acts
trivially on all other tensor factors. The last equation defines the function Fσ, which is K-
spherical by the proof of (7.40). Let us now apply the Cartan factorisation to the argument
g(xσ(i))

g(xσ(i)) = kσ,l(xi)η
′
σ,l(xi)aσ(xi)η

′
σ,r(xi)kσ,r(xi) . (8.16)

Covariance properties of Fσ give us

G4(xi) = ρσ(2)(k(tσ(2)σ(1))
−1)ρσ(4)(k(tσ(4)σ(3))

−1)Fσ(g(xσ(i)))

= ρσ(2)

(
k(tσ(2)σ(1))

)−1
ρσ(4)

(
k(tσ(4)σ(3))

)−1
Fσ(kσ,lη

′
σ,laση

′
σ,rkσ,r) (8.17)

= ρσ(1)(kσ,l)ρσ(2)

(
k(tσ(2)σ(1))

−1kwσ,l
)
ρσ(3)(k

−1
σ,r)ρσ(4)

(
k(tσ(4)σ(3))

−1(k−1
σ,r)

w
)
Fσ(η′σ,laση

′
σ,r) .

For simplicity of notation, we dropped the dependence of Cartan factors on the insertion points,
i.e. for example kσ,l = kσ,l(xi) = kl(xσ(i)), and further have written kw = wkw−1. Let us spell
out the previous formula for the s- and t-channels. In the s-channel one obtains

G4(xi) = ρ1(ks,l)ρ2(k(t21)−1kws,l)ρ3(k−1
s,r )ρ4(k(t43)−1(kws,r)

−1)PsFs(η′s,lasη′s,r), (8.18)

while the t-channel gives

G4(xi) = ρ1(kt,l)ρ4(k(t41)−1kwt,l)ρ3(k−1
t,r )ρ2(k(t23)−1(kwt,r)

−1)PtFt(η′t,latη′t,r) . (8.19)

Here we introduced projectors Ps and Pt explicitly to stress that Fs,t(η
′
laη
′
r) are invariant under

their action. The prefactors that multiply Fs and Ft are the s- and t-channel tensor structures.

The ratio of these tensor structures is referred to as the supercrossing factor and we denote it
by M. More precisely, Mst is defined as

Mst(xi) = Pt
4⊗
i=1

ρi(κi)Ps, (8.20)

where the four elements κi are given by

κ1 = k−1
t,l ks,l, κ2 = kwt,rk(t23)k(t21)−1kws,l, (8.21)

κ3 = kt,rk
−1
s,r , κ4 = (kwt,l)

−1k(t41)k(t43)−1(kws,r)
−1 . (8.22)

Obviously, there is an analogous definition of Mσ1σ2 for any two channels σ1,2. It is important
to stress the two projectors in (8.20) make the supercrossing factor independent of any gauge
fixing conditions for our gauge symmetry (8.7). Indeed, using (8.9) one can easily check that
any gauge transformation with some element b is absorbed by the projectors.

The matrixMst that we wish to compute depends on the insertion points xi through the Bruhat
factors k(tij) = k(t(xij)), as well as the factors kl,r in the Cartan decomposition (8.16) of the
supergroup elements gs,t(xi). Our strategy will be to first show that Mst is invariant under
superconformal transformations, i.e. Mst(x

h
i ) = Mst(xi), and then evaluate it after moving

the insertion points into special positions.
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To see thatMst is superconformally invariant we shall study the dependence of the four tensor
components one after another. In this endeavour, the principal role is played by the proposition
(7.45). Notice that as its direct consequence we have

gσ(xhi ) = k(t(xσ(1), h)) gσ(xi) k(t(xσ(3), h))−1 . (8.23)

Because of the gauge freedom of the Cartan decomposition which we described in (8.7), knowing
the behaviour of gσ(xi) under superconformal transformations does not allow us to uniquely
determine the transformation law of the factors, but we can conclude that

kσ,l(x
h
i ) = k(t(xσ(1), h))kσ,l(xi)bσ(xi, h), kσ,r(x

h
i ) = b−1

σ (xi, h)kσ,r(xi)k(t(xσ(3), h))−1, (8.24)

for some element b ∈ B that may depend on the channel, the superspace insertion points xi
and the superconformal transformation h, but must be the same for the left and right factors
kl and kr. For the case of s- and t-channels, the transformation laws become

ks/t,l(x
h
i ) = k(t(x1, h))ks/t,lbs/t(xi, h), ks/t,r(x

h
i ) = b−1

s/t(xi, h)ks/t,rk(t(x3, h))−1 . (8.25)

It is now easy to verify that all four tensor components κi of the super-crossing factor M are
invariant under superconformal transformations, up to gauge transformations, i.e.

κi(x
h
k) = b−1

t (xk, h)κi(xk) bs(xk, h), κj(x
h
k) = wb−1

t (xkh)w−1 κj(xk)wbs(xk, h)w−1 , (8.26)

where i = 1, 3 and j = 2, 4. To get the last two relations one, employs the formula for k(thji)
written in (7.45). Using the properties (8.9) of P , we see that the factors by which κi,j get
multiplied are absorbed by projectors Ps and Pt. Therefore,Mst(xi) is indeed invariant under
superconformal transformations.

A similar argument can be used to show thatMσ1σ2 is invariant for any two permutations σ1,2.

8.2.1 Crossing factor in bosonic theories

The analysis we have performed in this section holds for conformal and superconformal symme-
try alike. In the bosonic setup, it leads to a very simple expression forMst for arbitrary spinning
fields. As we shall now show, in this case it is possible to reduce the problem to one on the
two-dimensional conformal group. For the following argument, we will write G = SO+(d+1, 1)
and assume d > 2.

Since the crossing factor is conformally invariant, in computing M(u, v) we may assume that
xi are any points that give the correct cross ratios u and v. In particular, all points can be
assumed to lie in the two-dimensional plane Π that is spanned by the first two unit vectors
e1, e2 of the d-dimensional space Rd. In this case, the element gσ(xi) is seen to belong to the
conformal group of the plane, i.e. gσ(xi) ∈ GΠ = SO+(3, 1) ⊂ G. Within this group, gσ(xi)
admits a unique Cartan decomposition. Since A is a subgroup of GΠ, the latter serves as a valid
Cartan decomposition of g(xi) in G as well. Put in another way, the Cartan decomposition of
GΠ defines a particular gauge fixing for Cartan factors of g(xi). Note that all relevant rotations
are generated by M12, which commutes with the Weyl inversion w when d > 2. Hence, we
conclude that the factors κi that arise in the transition from s- to t-channels must be of the
form

κi = eγiDeϕiM12 , (8.27)
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for some functions γi and ϕi that depend on the insertion points xi of the four fields through
their two cross ratios. Having determined the general from of κi, we can find the undetermined
coefficients by a direct calculation. Since we can perform the calculation in any conformal
frame, let us set for convenience

x1 =
cosh2 u1

2
+ cosh2 u2

2

2 cosh2 u1

2
cosh2 u2

2

e1 − i
cosh2 u1

2
− cosh2 u2

2

2 cosh2 u1

2
cosh2 u2

2

e2 , x2 = 0 , x3 = e1 , x4 =∞e1 . (8.28)

Then it follows

κ1 = κ3 = eγD+αM12 , κ2 = κ4 = eγD−αM12 where e4γ =
x2

12x
2
34

x2
14x

2
23

, e2iα =
cosh u1

2

cosh u2

2

. (8.29)

Let us note thatM was originally defined using representations of K = SO(1, 1)×SO(d), but
is computed using only representation theory of SO(1, 1)× SO(2).

Example To make the last point manifest, we give some more details for conformal theories
in three dimensions. Let us decompose the factors kl = dlrl and kr = drrr into dilations dl/r
and rotations rl/r. We parametrise the elements r of the three-dimensional rotation group
through Euler angles (5.2). With this choice of coordinates, the elements κi have φ = ±α and
θ = ψ = 0. For θ = 0, the only non-zero matrix elements are those with m = n. Furthermore

tjnn(±α, 0, 0) = e∓inαP
(0,2n)
j−n (1) = e∓inα =

(
cosh u1

2

cosh u2

2

)∓n
2

. (8.30)

Since the stabiliser group B ∼ SO(d−2) for a bosonic conformal field theory in three dimensions
is trivial, so it the projector P . Putting all this together we conclude that the crossing factor
reads

(Mst)
ijkl
pqrs =

(u
v

)− 1
4

∑
∆i

(
cosh u1

2

cosh u2

2

) 1
2

(i+k−j−l)

δipδ
j
qδ
k
r δ

l
s , (8.31)

where u, v are the usual s-channel cross ratios. The first term in this result is the crossing factor
for correlators of scalar fields. The corrections it receives for spinning correlators are diagonal
in the space of polarisations but depend on the eigenvalues of the generator of rotations around
one particular direction.

8.2.2 Expansion in fermionic variables

In contrast to the bosonic case, where the previous subsection provides a complete solution
for M, in the supersymmetric context, we need to make a further expansion in the fermionic
variables on G. Let f(ui, y

µ, yν) be a function that arises by the restriction of a K-spherical
function on G. If Wi are the polarisation spaces of the four fields in the correlation function,
then upon expansion f takes values in

Wl = W1 ⊗W ′
2 ⊗ Λg−, Wr = W ′

3 ⊗W4 ⊗ Λg+ . (8.32)

Here, W ′ denotes the module of K that is obtained from W by conjugation with the Weyl
inversion. The two spaces (8.32) carry representations of B by restriction and we have shown
that f takes values in T = (Wl ⊗Wr)

B. Assume for a moment that Wi are trivial. Then

dim(Wl ⊗Wr)
B − 1 = dim(Λg(1))

B − 1, (8.33)
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computes the number of nilpotent four-point invariants. In the present framework, this state-
ment is obvious and the number itself is easily computed. In conventional approaches to SCFTs
however, already this number is not trivial to come by.

Let us fix some basis v of T . Through the Cartan decomposition of g(xi), the Grassmann
coordinates yµ, yν and thereby v becomes a function of insertion points xi. Computation of
v(xi) is what is needed in addition toM in order to write the superconformal crossing equations.
Examples that illustrate how this works will be given presently.

8.3 Illustration for a one-dimensional superconformal al-

gebra

We will now use the above theory to compute the crossing factor between s- and t-channels
for the N = 2 superconformal algebra in one dimension. For all computations, we will use the
three-dimensional representation introduced in previous chapters.

Our first task is to write the elements gs(xi) and gt(xi) in Cartan coordinates. The ingredients
of which these elements are built, m(xij) and n(xij), were determined previously and this
in principle gives expressions for gs(xi) as 3 × 3 whose entries are complicated functions of
xi-s. However, we can now use superconformal invariance of the crossing factor and fix the
coordinates of the four insertion points. The following choice turns out to be convenient

x1 = (x, θ1, θ̄1), x2 = (0, 0, 0), x3 = (1, θ3, θ̄3), x4 = (∞, 0, 0) . (8.34)

With this gauge choice, the entries of the matrices gs(xi) and gt(xi) depend on the bosonic
coordinate x and the four Grassmann variables θ1,3, θ̄1,3 only.

The primed Cartan coordinates on SL(2|1) are introduced via

g = eκReλlDeq̄
′Q−+s̄′S−e

u
2

(P+K)eq
′Q++s′S+eλrD . (8.35)

This agrees with the general prescription (8.6), except that the abelian group A is parametrised
by a single variable u in this case. Through simple manipulations of supermatrices one finds
expressions for the Cartan coordinates of gs(xi) and gt(xi) in the gauge (8.34). For the bosonic
Cartan coordinates in the s-channel one has

cosh2 us
2

=
1

x

(
1− 1

2
θ3θ̄3 −

θ1θ̄1

2x
+
θ1θ̄3

x
+
θ1θ̄1θ3θ̄3

4x

)
, e−2κs = 1 +

θ1

x
(θ̄1 − θ̄3) , (8.36)

eλs,l−λs,r =
(

1− x− 1

2
θ1θ̄1 −

1

2
θ3θ̄3 + θ1θ̄3

)(
x− 1

2
θ1θ̄1

)
, (8.37)

eλs,l+λs,r =
(

1 +
1

2
θ3θ̄3

)(
x− 1

2
θ1θ̄1

)
, (8.38)
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while in the t-channel these coordinates read

cosh2 ut
2

= x
(

1 +
1

2
θ3θ̄3 +

θ1θ̄1

2x
− θ1θ̄3 +

θ1θ̄1θ3θ̄3

4x

)
, e−2κt = 1 + θ̄3(θ3 − θ1) , (8.39)

eλt,l−λt,r = −
(

1− x− 1

2
θ1θ̄1 −

1

2
θ3θ̄3 + θ1θ̄3

)(
1 +

1

2
θ3θ̄3

)
, (8.40)

eλt,l+λt,r =
(

1− 1

2
θ3θ̄3

)(
x+

1

2
θ1θ̄1

)
. (8.41)

The fermionic Cartan coordinates, on the other hand, are given by the following expressions

q′s = e
1
2
λs,r
(
θ3 −

θ1

x

(
1− 1

2
θ3θ̄3

))
, s′s = e−

1
2
λs,r

θ1

x
, (8.42)

q̄′s = e−
1
2
λs,l(θ̄3 − θ̄1) , s̄s = −e

1
2
λs,l

θ̄3

x
, (8.43)

q′t = e
1
2
λt,r(θ3 − θ1) , s′t = −e−

1
2
λt,rθ1

(
1− 1

2
θ3θ̄3

)
, (8.44)

q̄′t = −e−
1
2
λt,l
(
θ̄1 − θ̄3

(
x+

1

2
θ3θ̄1

))
, s̄′t = e

1
2
λt,l θ̄3 . (8.45)

As the next step, we want to compute the crossing factor Mst. Since all irreducible represen-
tations of K are one-dimensional, Mst is a single function in the variables x, θ1,3 and θ̄1,3. It
depends, of course, on the choice of representations for the external superfields. We shall pick
four such representations (∆i, ri). Note that in our gauge (8.34) the factors k(t41) and k(t43)
are trivial. Therefore, we have

κ1 = e(λs,l−λt,l)D+(κs−κt)R , κ4 = e(λt,l+λs,r)D−κtR, (8.46)

κ3 = e(λt,r−λs,r)D , κ2 = e−(λt,r+λs,l−log x2)D+(κs− 1
2
θ3θ̄3+

θ1θ̄1
2x

)R. (8.47)

The functionMst is written in terms of superspace coordinates by inserting in κi the formulas
(8.36)-(8.41) for the Cartan coordinates in the s- and t-channels. This gives

Mst = e
iπ
2

(∆2+∆4−∆1−∆3)x−2∆1α
3
2

∆1− 1
2

∆2− 1
2

∆3− 1
2

∆4×

× β
1
2

∆1+ 1
2

∆2− 3
2

∆3+ 1
2

∆4er1(κs−κt)+r2(κs− 1
2
θ3θ̄3+

θ1θ̄1
2x

)−r4κt , (8.48)

where α and β denote the following superspace elements

α = x+
1

2
θ1θ̄1, β = 1− 1

2
θ3θ̄3 . (8.49)

Finally, we want to expand the functions Fs and Ft in fermionic variables and write the crossing
factor as a matrix of functions that depend on x. The space of B = R-invariants in Λg∗ has a
basis

v = (1, q′q̄′, q′s̄′, s′q̄′, s′s̄′, q′s′q̄′s̄′) . (8.50)
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Once we insert the expressions (8.36)-(8.45) for Cartan coordinates in the two channels we
obtain

vs =
(

1,−(θ̄1 − θ̄3)(θ1 − xθ3)

x3/2
√

1− x
,
(θ1 − xθ3)θ̄3 + 1

4
Ω

x3/2
,
(θ̄1 − θ̄3)θ1 + 1

4
Ω

x3/2
,
−θ1θ̄3

√
1− x

x3/2
,

Ω

x2

)
,

(8.51)

vt =
(

1, i
(θ1 − θ3)(θ̄1 − xθ̄3)√

1− x
,
xθ̄3(θ1 − θ3) + 1

4
Ω

√
x

,
θ1(θ̄1 − xθ̄3) + 1

4
Ω

√
x

, iθ1θ̄3

√
1− x ,Ω

)
, (8.52)

where Ω = θ1θ̄1θ3θ̄3. All factors that enter our expression for Mst belong to the algebra
C[x, x−1]⊗A, where A is the six-dimensional algebra that is spanned by the elements

e1 = 1 , e2 = θ1θ̄1 , e3 = θ1θ̄3 , e4 = θ3θ̄1 , e2 = θ3θ̄3 , e6 = Ω . (8.53)

If we represent the ei by column vectors, the row vectors vs/t become 6 × 6 matrices whose

entries are functions of x. Similarly we can also turn the factor
√

sinhut
sinhus

Mst into a 6×6 matrix

if we replace the elements ei by their representatives in the left-regular representation of A.
Multiplying all these matrices gives Mst as a 6× 6 matrix of functions in x

Mst = v−1
t

√
sinhut
sinhus

Mstvs . (8.54)

Having computed the crossing factor between s- and t-channels, there is one final step left,
namely to relate the s- and t-channel cross ratios. Since the arguments of the functions f in
the two channels are related by a change of variables that involves Grassmann coordinates, we
need to perform a fermionic Taylor expansion in order to write the crossing equation in terms
of functions of the bosonic cross ratio x only. For example, in the t-channel this expansion of
ft(cosh2 ut

2
) takes the following form

ft =

(
1 + x

(1

2
θ3θ̄3 +

θ1θ̄1

2x
− θ1θ̄3 +

θ1θ̄1θ3θ̄3

4x

)
∂ +

1

4
xΩ∂2

)
ft(x) . (8.55)

Upon substitution, the crossing factor is a 6 × 6 matrix of second order differential operators
in x. This concludes our construction of the crossing symmetry equations for long multiplets
of N = 2 superconformal field theories in one dimension.

8.3.1 Multiplet shortening

The formulas from above simplify drastically when some of the operators in the four-point
function are short. To see this, let us set either θ1 = θ̄3 = 0 or θ̄1 = θ3 = 0 in (8.34). Then the
crossing factor Mst is simply

Mred
st = e

iπ
2

(∆2+∆4−∆1−∆3)x−
1
2

∑
∆i . (8.56)

In the first case, θ1 = θ̄3 = 0, the fermionic coordinates s′s,t and s̄′s,t are seen to vanish, while

q′s = e
1
2
λs,rθ3, q̄′s = −e−

1
2
λs,l θ̄1, q′t = e

1
2
λt,rθ3, q̄′t = −e−

1
2
λt,l θ̄1 .
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The R-symmetry coordinate is also equal to zero in both channels, κs = κt = 0. Other bosonic
coordinates do not depend on remaining Grassmann variables and are the same as for the
bosonic conformal group

cosh2 us
2

=
1

x
, cosh2 ut

2
= x,

and

eλs,l−λs,r = (1− x)x, eλs,l+λs,r = x, eλt,l−λt,r = x− 1, eλt,l+λt,r = x .

Furthermore, all components of vs and vt except the first two vanish. We write

vreds =
(

1,
θ̄1θ3√
x(1− x)

)
≡

(
1 0
0 1√

x(1−x)

)
, vredt =

(
1, i

θ̄1θ3√
1− x

)
≡
(

1 0
0 i√

1−x

)
.

We have turned vs and vt into matrices as explained above. Now, they are 2 × 2 matrices,
rather than 6× 6. The expanded crossing factor is

M red
st = (vredt )−1

√
sinhut
sinhus

Mred
st v

red
s = e

iπ
2

(∆2+∆4−∆1−∆3)x−
1
2

∑
∆i(−x3)

1
4

(
1 0
0 i
√
x

)
. (8.57)

Its entries no longer involve derivatives with respect to x because the relation between cross
ratios in two channels does not depend on Grassmann variables. The features that we exhibited
here are generic and happen for shortening in a large class of superconformal algebras. This
will be proven elsewhere. Simplifications in the other case, θ̄1 = θ3 = 0, are not as dramatic,
but still considerable.

8.4 Cartan decomposition and the crossing factor for

SL(2m|N )

The second supersymmetric example that we will treat is the family of superconformal algebras
sl(2m|N ). The elements m(x), n(x), k(t) and Bruhat decompositions of the corresponding
supergroups SL(2m|N ) were studied in the last chapter. Now we will determine the crossing
factor Mst for this two-parameter family in the case of scalar external fields. Let us use
superconformal transformations to set

x1 = (ae1 + be2, θ1, θ̄1), x2 = (0, 0, 0), x3 = (e1, θ3, θ̄3), x4 = (∞e1, 0, 0) . (8.58)

To write the crossing symmetry equations, one should consider the primed Cartan decomposi-
tion of G. We start from its unprimed cousin

g = e
qIβQ

β
I +sI

β̇
S β̇
I kla(u1, u2)kr e

qα̇JQ
J
α̇ +sαJS

J
α . (8.59)

In the fundamental representation this reads

g =

 δα̇γ̇ 0 0
0 δαγ 0
−sIγ̇ −qIγ δIK


e

Nκ
N−2m (gb)

γ̇

δ̇
e
Nκ
N−2m (gb)

γ̇
δ 0

e
Nκ
N−2m (gb)

γ

δ̇
e
Nκ
N−2m (gb)

γ
δ 0

0 0 e
2mκ
N−2mUK

L


δδ̇β̇ 0 qδ̇J

0 δδβ sδJ
0 0 δLJ

 , (8.60)
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where gb = kbl ak
b
r is an element of the bosonic conformal group. We see that the top left

2m× 2m corner is simply a scalar multiple of gb. When written without indices, generators of
g∗− will carry a bar, to be distinguished from generators of g∗+. With this convention, the above
Cartan decomposition reads

g = e
Nκ
N−2m

 A B Aq +Bs
C D Cq +Ds

−s̄A− q̄C −s̄B − q̄D e−κU − (s̄A+ q̄C)q − (s̄B + q̄D)s

 . (8.61)

Here A,B,C,D are m×m blocks of gb and how to extract Cartan coordinates from them will
be explained in the next chapter. The elements that we want to decompose are

gs(xi) = n(y21)−1m(x31)n(y43), gt(xi) = n(y41)−1m(x31)n(y23) . (8.62)

As can be seen from the solutions of (7.8) found in the last chapter, when x is sent to (∞e1, θ, θ̄)
then y(x) = 0 and consequently n(y(x)) = 1. Therefore, in the special configuration that we
chose, one has

gs(xi) = n(y21)−1m(x31), gt(xi) = m(x31)n(y23) . (8.63)

Thus, we are led to consider the decomposition of elements that take the general form n(y)m(x)
and m(x)n(y′). We treat these in turn. In the notation of the previous chapter

n(y)m(x) =

 1 X θ
−JY J 1− JY JX − Jηθ̄ Jη − JY Jθ
η̄J η̄JX − θ̄ 1 + η̄Jθ

 .

One immediately finds

ss = (1− Jηθ̄)−1Jη, qs = θ−Xss, q̄s = θ̄(1− Jηθ̄)−1, s̄s = (q̄sJY − η̄)J, e
2mκs
N−2mUs = 1 + θ̄ss .

(8.64)
The last expression can be simplified by substituting for ss and performing the following ma-
nipulation

1 + θ̄ss = 1 + θ̄(1− Jηθ̄)−1Jη = 1 + θ̄
( ∞∑
n=0

(Jηθ̄)n
)
Jη =

∞∑
n=0

(θ̄Jη)n = (1− θ̄Jη)−1 .

Therefore, taking the determinant of the last equation in (8.64) gives

e
2mNκs
N−2m = det(1− θ̄Jη)−1 . (8.65)

Next, by looking at determinants of top left four m × m blocks, we obtain the coordinates
associated with dilations

e2(λs,l+λs,r) = −det(J−1 − Y JX − ηθ̄)−1, e2(λs,l−λs,r) = detXdetY −1, (8.66)

as well as the coordinates (u1, u2) of the abelian torus

sinh2 u
s
1

2
sinh2 u

s
2

2
= detXdetY det(1− θ̄Jη), (8.67)

cosh2 u
s
1

2
cosh2 u

s
2

2
= −det(J−1 − Y JX − ηθ̄)det(1− θ̄Jη) . (8.68)
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We have already put a label s on the coordinates, as they are indeed the s-channel coordinates
for appropriate choices of x and y as in (8.63). For the other channel, we decompose

m(x)n(y′) =

1−XJY ′J + θη̄′J X XJη′ + θ
−JY ′J 1 Jη′

θ̄JY ′J + η̄′J −θ̄ 1− θ̄Jη′

 .

Following similar steps as above, we find

qt = (1+θη̄′J)−1θ, st = J(η′+Y ′Jqt), s̄t = −η̄′J(1+θη̄′J)−1, q̄t = θ̄−s̄tX, e
2mκt
N−2mUt = 1−η̄Jqt,

(8.69)
and therefore

e
2mκt
N−2m = det(1 + η̄′Jθ)−1 . (8.70)

Dilation coordinates are now

e2(λt,l+λt,r) = −det(J−1 −XJY ′ + θη̄′), e2(λt,l−λt,r) = detXdetY ′−1 . (8.71)

Finally the coordinates on the abelian torus read

sinh2 u
t
1

2
sinh2 u

t
2

2
= detXdetY ′det(1 + η̄′Jθ), (8.72)

cosh2 u
t
1

2
cosh2 u

t
2

2
= −det(J−1 −XJY ′ + θη̄′)det(1 + η̄′Jθ) . (8.73)

Expressions written so far are sufficient to determine the crossing factor for fields which trans-
form trivially under rotations and SU(N ) internal symmetries. For applications that we have
in mind in this work, these conditions are satisfied. A field that transforms trivially both under
spatial rotations and SU(N ) internal symmetries is associated with a one-dimensional repre-
sentation ρ∆,r of K. Here ∆ is the conformal weight and r the U(1)R-charge of the field. Our
parametrisation of K is such that

ρ∆,r(e
λD+κRe

rαβM
β
α +rα̇

β̇
M β̇
α̇ +uIJR

J
I ) = e−∆λ+rκ. (8.74)

Therefore, the tensor factors appearing in Mst are

ρ3(κ3) = e∆3(λs,r−λt,r), ρ4(κ4) = e−∆4(λt,l+λs,r)−r4κt , (8.75)

ρ1(κ1) = e∆1(λt,l−λs,l)+r1(κs−κt), ρ2(κ2) = e∆2(λt,r+λs,l)+r2κsρ2(k(t23)k(t21)−1) . (8.76)

In the last expression we have used that the middle two factors in κ4 trivialise in our gauge.
All the coordinates appearing on right hand sides of previous equations have been spelled out
and one simply substitutes for them to find the product.

8.5 Four-dimensional N = 1 SCFTs

Let us apply the results from previous sections to the complexified N = 1 superconformal
algebra in four dimensions, g = sl(4|1). We use the same notation as above, only sl(N ) indices
become redundant as this summand disappears for N = 1.

118



8.5. FOUR-DIMENSIONAL N = 1 SCFTS

The correlation function we want to consider is that of two long multiplets O, along with one
anti-chiral field ϕ̄1 and one chiral ϕ3

G4(xi) = 〈ϕ̄(x1)O(x2)ϕ(x3)O(x4)〉 . (8.77)

The fields have conformal weights ∆i andR-charges ri, and we assume that
∑
ri = 0. Therefore,

we can write r = r1 + r2 = −r3 − r4. Chirality conditions further imply

∆1 = −3

2
r1, ∆3 =

3

2
r3 . (8.78)

The general solution for y(x) specialises in the case m = 2, N = 1 to

y = −
1 + Ω

4detx

detx
xt, η =

−i
detx

(
x2̇

1θ
1̇ − x1̇

1θ
2̇ + 1

2
θ̄1θ

1̇θ2̇

x2̇
2θ

1̇ − x1̇
2θ

2̇ + 1
2
θ̄2θ

1̇θ2̇

)
, η̄T =

−i
detx

(
x1̇

1θ̄2 − x1̇
2θ̄1 − 1

2
θ1̇θ̄1θ̄2

x2̇
1θ̄2 − x2̇

2θ̄1 − 1
2
θ2̇θ̄1θ̄2

)
.

In these formulas, x and y denote 2× 2 matrices of bosonic coordinates of super-points x and
y. This is a slight abuse of notation, but in any equation the meaning of symbols x, y is clear
from the context. By Ω we denote the element θ1̇θ2̇θ̄1θ̄2. The covariant derivatives, realising
the right-regular action of m, read in our coordinates

D I
α̇ = ∂ I

α̇ +
1

2
θ̄Iβ∂

β
α̇ , D̄ α

I = −∂ α
I −

1

2
θβ̇I∂

α
β̇
. (8.79)

One can verify that they anti-commute with the right-invariant vector fields written in the
subsection (8.5.1). Let us introduce the corresponding chiral and anti-chiral coordinates

x′α̇β = xα̇β +
1

2
θα̇I θ̄

I
β, x′′α̇β = xα̇β −

1

2
θα̇I θ̄

I
β . (8.80)

We further set θ′ = θ′′ = θ and θ̄′ = θ̄′′ = θ̄. Then the following equalities hold

Dx′′ = Dθ̄′′ = 0, D̄x′ = D̄θ′ = 0 . (8.81)

The chirality conditions satisfied by the fields allow us to set θ1 and θ̄3 to zero. Let us write
α = a + ib, α∗ = a − ib and fix the insertion points to positions as explained in the previous
subsection. Further, we write y = −y21 and y′ = y23. Then, a computation gives

y =
((−1/α∗ 0

0 1/α

)
,

(
0
0

)
, i

(
(θ̄1)2/α

∗

(θ̄1)1/α

)t )
, y′ =

((1 0
0 −1

)
, i

(
(θ3)2̇

(θ3)1̇

)
,

(
0
0

)t )
. (8.82)

Next, the factor m(x31) is found

m(x31) =

1 X θ3

0 1 0
0 θ̄1 1

 , with X = X3 −X1 =

(
−1 + α 0

0 1− α∗
)
. (8.83)

We are now ready to consider the Cartan decomposition of n(y)m(x) and m(x)n(y′). Using
the formulas of the previous section, the fermionic coordinates and dilation coordinates are

qs = qt = θ3, q̄s = q̄t = −θ̄1, ss = s̄s = st = s̄t = 0, (8.84)

e4λs,l = α2(α∗)2(1− α)(1− α∗), e4λs,r =
1

(1− α)(1− α∗)
, (8.85)

e4λt,l = αα∗(1− α)(1− α∗), e4λt,r =
αα∗

(1− α)(1− α∗)
. (8.86)
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The other factors that appear in ks/t,l/r, which are products of rotations and R-symmetry
transformations, assume the following diagonal form

rs/t,l =

Ls/t 0 0
0 L−1

s/t 0

0 0 1

 , rs/t,r =

Rs/t 0 0
0 R−1

s/t 0

0 0 1

 , with Ls,t =

(
ls,t 0
0 l−1

s,t

)
, Rs,t =

(
rs,t 0
0 r−1

s,t

)
,

(8.87)
and ls,t, rs,t are in turn given by

ls =
( α2(1− α)

(α∗)2(1− α∗)

)1/8

, rs =
(1− α∗

1− α

)1/8

, lt =
√
−i
( α(1− α)

α∗(1− α∗)

)1/8

, rt =
1√
−i

(α(1− α∗)
α∗(1− α)

)1/8

.

Finally, the coordinates on the torus are

cosh2 u
s
1

2
=

1

α
, cosh2 u

s
2

2
=

1

α∗
, cosh2 u

t
1

2
= α, cosh2 u

t
2

2
= α∗ . (8.88)

This completes the determination of Cartan coordinates of the elements gs and gt. To find the
matrix Mst, it is still required to determine k(t21) and k(t23). These are

k(t21) = (αα∗)−D, k(t23) = 1 . (8.89)

This allows for the computation of factors appearing in Mst. The computation gives

ρi(κi) = (αα∗)−
∆i
4 . (8.90)

To derive the crossing equations, there is one remaining step, namely to perform the expansion
in nilpotent invariants in both channels. In order to do this, we need to switch to the primed
Cartan coordinates by moving the exponentials containing fermionic variables past the elements
of the left and right K-subgroups. We have in both channels that s′ = s̄′ = 0 and

q̄′s = −θ̄1L
−1
s e−

1
2
λs,l , q′s = Rse

1
2
λs,rθ3, q̄′t = −θ̄1L

−1
t e−

1
2
λt,l , q′t = Rte

1
2
λt,rθ3 . (8.91)

Recall that B is the commutant in G(0) of the two-dimensional abelian group A. In the case at
hand, B ∼= SO(2)× SO(2) and Lie algebras of A and B are

a = span{P1 +K1, P2 −K2}, b = span{R,M 1
1 +M 1̇

1̇
} . (8.92)

Irreducible finite-dimensional representations of k are labelled by two spins, a conformal weight
and an R-charge, (j1, j2)∆

r . In such notation, the four modules q±, s± are

q+ = (0, 1/2)
1/2
1 , q− = (1/2, 0)

1/2
−1 , s+ = (1/2, 0)

−1/2
1 , s− = (0, 1/2)

−1/2
−1 . (8.93)

According to our general theory, to the correlator (8.77) is associated a function on A with
values in the space

(W1 ⊗W ′
2 ⊗ Λq− ⊗W3 ⊗W ′

4 ⊗ Λq+)
b

= (Λq)b . (8.94)

Under the action of k the 16-dimensional exterior algebra inside the brackets transforms as

Λq ∼= 10
0 ⊕ 11

2 ⊕ 11
−2 ⊕ 12

0 ⊕ (1/2, 0)
1/2
−1 ⊕ (0, 1/2)

1/2
1 ⊕ (1/2, 1/2)1

0 ⊕ (1/2, 0)
3/2
1 ⊕ (0, 1/2)

3/2
−1 .
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We have written 1 for the trivial representation of SU(2) × SU(2). Two of the singlets are
b-invariant and the four-dimensional representation (1/2, 1/2) contains a two-dimensional in-
variant subspace. Hence, the space of invariants is four-dimensional and spanned by

Wϕ̄OϕO = (Λq)B = span{1, Q1̇Q
1, Q2̇Q

2, Q1̇Q
1Q2̇Q

2} . (8.95)

Indeed, from the bracket relations one checks that these combinations of generators commute,
in the universal enveloping algebra U(g), with M 1

1 + M 1̇
1̇

and R. In the two channels, the
invariant combinations read

(q̄′t)1(q′t)
1̇ = −i(1− α)−1/2(θ̄1)1(θ3)1̇, (q̄′t)2(q′s)

2̇ = i(1− α∗)−1/2(θ̄1)2(θ3)2̇, (8.96)

(q̄′s)1(q′s)
1̇ = −α−1/2(1− α)−1/2(θ̄1)1(θ3)1̇, (q̄′s)2(q′s)

2̇ = −(α∗)−1/2(1− α∗)−1/2(θ̄1)2(θ3)2̇ .
(8.97)

Putting everything together, the crossing factor between s- and t-channels reads

Mst = (αα∗)
7
4
− 1

4

∑
∆i


1 0 0 0
0 i
√
α 0 0

0 0 −i
√
α∗ 0

0 0 0
√
αα∗


−1

. (8.98)

The factor (αα∗)7/4 is the ratio of Haar measure densities in the two channels. We may observe
that variables α, α∗ are related to the usual variables z, z̄ by

α =
z

z − 1
, α∗ =

z̄

z̄ − 1
. (8.99)

Thus the top left entry of the crossing matrix is the one that we would get in the bosonic
theory, as expected.

8.5.1 Conventions for sl(4|1)

Here we write the relation between primed and unprimed Cartan coordinates. The primed
bosonic coordinates are equal to the unprimed, so we only need to consider the fermionic ones.
The relation between two sets of coordinates reads(

q′1
q′2

)
= eκ−

1
2
λlπ1/2(−ψl1,−θl2, ϕl2)

(
q1

q2

)
,

(
q′1̇

q′2̇

)
= e

1
2
λrπ1/2(ϕr1, θ

r
1, ψ

r
1)

(
q1̇

q2̇

)
, (8.100)(

s′
1̇

s′
2̇

)
= eκ+ 1

2
λlπ1/2(ψl1, θ

l
1, ϕ

l
1)

(
s1̇

s2̇

)
,

(
s′1

s′2

)
= e−

1
2
λrπ1/2(ϕr2,−θr2, ψr2)

(
s1

s2

)
. (8.101)

From these equations, one gets relations between partial derivatives in the two systems. Among
others, we have

∂κ′ = ∂κ − qα∂qα , ∂λ′l = ∂λl +
1

2
qα∂qα , ∂λ′r = ∂λr −

1

2
qα̇∂qα̇ , (8.102)
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Chapter 9

Explicit tensor structures

In the previous chapter we have analysed four-point tensor structures in order to derive the
crossing factor for an arbitrary four-point function in the Calogero-Sutherland gauge. Indeed,
whereas the invariance of G4(xi) under permutations of insertion points is easy to impose in
coordinate space, it becomes less obvious in our group-theoretic coordinates. In principle, one
of our aims is to be able to forget the coordinate space altogether and implement all aspects of
the bootstrap programme in the group-theoretic gauge. The previous chapter was one major
step in this direction and the treatment of conformal partial waves, to be done in the next,
is another one. However, it is certainly useful to keep track of the relation between objects
in the CS gauge and their counterparts in the coordinate space. By doing this, one can make
consistency checks of both approaches. More importantly, it may turn out that the two gauges
complement each other, in the sense that some difficult problems in one simplify in the other.
It seems that the complexity of the map (7.40) is sufficient to allow for such phenomena to
occur.

Our goal in this chapter is to provide explicit relations between certain four-point functions in
the above two coordinate systems. In particular, this will be done for four-point functions of
scalars in any spacetime dimension, arbitrary spinning correlators in three dimensions and seed-
1/2 correlation functions in four dimensions. The main technical tool used for computations
of this chapter is the four-dimensional representation of the four-dimensional conformal group,
i.e. the accidental isomorphism of Lie algebras so(6) ∼= su(4). Of course, the three-dimensional
conformal group is contained in the four-dimensional one, a fact related to another accidental
isomorphism so(5) ∼= sp(4). The existence of four-dimensional representations will allow us to
treat the two groups simultaneously, at least in parts of our discussion.

Our starting point will be the relation between the four-point function and the restriction F
of the corresponding K-spherical function to A, which for bosonic conformal groups in the
s-channel reads

G4(xi) =
(
ρ2(k(t21)−1)ρ4(k(t43)−1)

)(
ρ1(kl)ρ2(kwl )ρ3(k−1

r )ρ4((k−1
r )w)

)
F (u1, u2) . (9.1)

The two factors that multiply F (u1, u2) will be denoted for short by Θ1(xi) and Θ2(xi).
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9.1. SCALAR FIELDS

9.1 Scalar fields

The first case that we want to discuss is that of a four-point function of scalars in a bosonic
CFT. Let us denote by f the restriction of the K-spherical function F to the two-dimensional
group A. Then our expression for the correlator in the s-channel reads

G4(xi) =
1

x∆1+∆2
12 x∆3+∆4

34

(
x14

x24

)2a(
x14

x13

)2b

[(1− z1)(1− z2)]−
a
2
− b

2 f(u1, u2) (9.2)

=
1

x∆1+∆2
12 x∆3+∆4

34

(
x14

x24

)2a(
x14

x13

)2b

· (−1)
d−2

2

2

(z1z2)
d−1

2 |z1 − z2|−
d−2

2

[(1− z1)(1− z2)]
a
2

+ b
2

+ 1
4

· ψ(u1, u2) .

In the second line we expressed f in terms of a functions ψ as f = ω−1/2ψ, with the factor ω
from (5.27). This conventional factor is introduced in order for the Laplacian on G to reduce
to an operator of Schrödinger type, as we have explained before. The final result is written as
a product of two terms that multiply ψ. The first term coincides with the function Ω(xi) that
was used in the works of Dolan and Osborn. The second one is, therefore, a function of cross
ratios only. It can be viewed as a gauge transformation that takes the Dolan-Osborn Casimir
equations to the BC2 Calogero-Sutherland problem. Throughout this chapter, the scalar factor
from above will be denoted by Ω̃(xi), i.e. G4(xi) = Ω̃(xi)ψ(u1, u2).

9.2 Spinor representation of the conformal group

Let us move to correlators of spinning fields. What we wish to achieve is to explicitly compute
the Cartan factors of g(xi), thereby relating the four-point function to f , or alternatively ψ.
We will consider examples in three and four dimensions. In these two cases, the smallest
faithful representation of the complexified conformal algebra is four-dimensional. We will use
this representation to do computations and refer to it as the spinor representation. The three-
dimensional conformal group Spin(4, 1) is a subgroup of Spin(5, 1) and hence we can pass from
the latter to the former by restricting the range of indices µ, ν.

In the four-dimensional representation, we work in a basis in which the generators of dilations,
translations and special conformal transformations read

D =
1

2

(
I 0
0 −I

)
, Pµ =

(
0 σµ
0 0

)
, Kµ =

(
0 0
σ̄µ 0

)
, (9.3)

while the rotation generators Mµν are

M23 = − i
2

(
σ1 0
0 −σ1

)
, M13 = − i

2

(
σ2 0
0 σ2

)
, M12 = − i

2

(
σ3 0
0 −σ3

)
, (9.4)

M14 = − i
2

(
σ1 0
0 σ1

)
, M24 = − i

2

(
−σ2 0

0 σ2

)
, M34 = − i

2

(
σ3 0
0 σ3

)
. (9.5)

All these matrices are written in terms of 2×2 blocks, with I denoting the 2×2 identity matrix
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and σµ and σ̄µ given by1

σµ = (−σ3,−iI, σ1,−σ2), σ̄µ = (−σ3, iI, σ1,−σ2) .

In particular det(xµσ
µ) = −xµxµ. With these conventions, the elements m(x) take the form

m(x) = ex
µPµ =

(
1 xµσµ
0 1

)
≡
(

1 x
0 1

)
. (9.6)

In the last expression, we have written the 2× 2 matrix x without any indices. We will adhere
to such simplified notation, as it should not cause any confusion.

By definition, the two groups have different Weyl inversions that we will denote by w3 and w4.
They read

w3 = eπ
K3−P3

2 =

(
0 −σ1

σ1 0

)
, w4 = eπ

K4−P4
2 =

(
0 σ2

−σ2 0

)
. (9.7)

One can readily verify that both these matrices square to the negative identity matrix. The
Weyl inversion gives rise to elements n(x) which take the form

n(x) =

(
1 0

(sedx)µσ̄µ 1

)
. (9.8)

We already said that the functions y(x), z(x) and k(x) defined by the Bruhat decomposition
of wm(x) are given by y(x) = wx, z(x) = −x and k(x) = |x|−2Dsedsx in any dimension d. In
the spinor representation, the matrices k(x) read explicitly

k3(x) =


−y3 y1 + iy2 0 0

−y1 + iy2 −y3 0 0
0 0 x3 x1 − ix2

0 0 −x1 − ix2 x3

 ,

k4(x) =


iy3 − y4 y1 − iy2 0 0
iy1 + y2 −iy3 − y4 0 0

0 0 ix3 + x4 ix1 + x2

0 0 ix1 − x2 −ix3 + x4

 .

Above formulas make it easy to work out the group elements g(xi). This is the matrix we want
to decompose into a product klakr. If we split the elements k ∈ K explicitly into dilations and
rotations, the Cartan decomposition in the spinor representation and with our notation using
2× 2 matrices, assumes the form

g(xi) =

(
e

1
2
λl 0

0 e−
1
2
λl

)
rl(xi)

(
C S
S C

)
rr(xi)

(
e

1
2
λr 0

0 e−
1
2
λr

)
, (9.9)

where exp(λl/2) should be read as a scalar multiple of the 2×2 identity matrix etc. The matrix
in the middle is the representative of the factor a(xi). Its blocks are given by

C =

(
cosh u1

2
0

0 cosh u2

2

)
, S =

(
− sinh u1

2
0

0 sinh u2

2

)
. (9.10)

1There is an obvious abuse of notation here: if we put µ = 1 in σµ, the resulting matrix is not the first Pauli
matrix σ1. However, there should be no confusion because µ usually appears as an abstract index.
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The rotation matrices rl and rr are block diagonal. They read

rl(xi) =

(
L(xi) 0

0 L′(xi)

)
, rr(xi) =

(
R(xi) 0

0 R′(xi)

)
.

where L,L′, R,R′ are 2 × 2 rotation matrices with unit determinant. The coordinates λi and
ui can be extracted from g by considering determinants of its 2×2 blocks. Computing the four
possible 2× 2 subdeterminants of g(xi) yields the following relations

e4λl =
x4

12x
2
13x

2
14

x2
23x

2
24

, e4λr =
x2

14x
2
24

x2
13x

2
23x

4
34

, (9.11)

and

cosh2 u1

2
cosh2 u2

2
=
x2

14x
2
23

x2
12x

2
34

, sinh2 u1

2
sinh2 u2

2
=
x2

13x
2
24

x2
12x

2
34

. (9.12)

These equations are equivalent to (8.13) and (8.14) that we derived in general dimension previ-
ously. Our main goal now, however, is to determine rl and rr. This analysis is case dependent
and will be carried out separately for d = 3 and d = 4.

9.3 Three-dimensional spinning correlators

Elements of the three-dimensional rotation group are parametrised by three Euler angles (5.2)
and since the stabiliser subgroup B is trivial in this case, we need to determine six angles in
terms of the insertion points xi by decomposing g(xi). In the four-dimensional representation

rl,r =

(
π1/2(φl,r, θl,r, ψl,r) 0

0 π1/2(−φl,r,−θl,r,−ψl,r)

)
. (9.13)

When these matrices are inserted into (9.9), we obtain eight equations that allow to determine
the six unknown angles in terms of xi. Once these angles are known, we can compute the tensor
factor for fields of arbitrary spin.

This may sound tedious, but it can be carried out quite efficiently. We will first see how it is
done for seed correlators and then use elementary SU(2) representation theory to write (9.1)
for correlators of fields that have arbitrary spin.

9.3.1 Seed four-point functions

The seed correlation function that we want to look at

Gα
β(xi) = 〈ψα1 (x1)φ2(x2)φ3(x3)ψ4β(x4)〉, (9.14)

involves two scalar fields at x2 and x3 of weights ∆2 and ∆3, respectively, along with two
fermionic fields of spin 1/2 and weights ∆1 and ∆4. In this case, the spaces W2 and W3 are
one-dimensional while W1 and W4 are two-dimensional (vectors in the spin-1/2 representation
carry a Greek index α, β...). Hence, the space W of polarisations has four basis elements, as
does the space WB = W of tensor structures.
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We compute the two factors Θ1,2(xi) in turn. The first one is easy to determine. Since ρ2 is
trivial and ρ4 is the spin 1/2 representation, we find

Θ1(xi) = x−2∆2
21 x−2∆4

43

(
1 0
0 1

)
⊗ 1

|x34|

(
x3

34 −x1
34 − ix2

34

x1
34 − ix2

34 x3
34

)
. (9.15)

Calculating Θ2(xi) is a bit more of a challenge. From its definition, one quickly gets

Θ2(xi) = e2aλle2bλrπ1/2(rl)⊗ π1/2((r−1
r )w) . (9.16)

Through an explicit computation one may show that the product of the last two factors can be
expressed in terms of g itself in the four-dimensional representation as

π1/2(rl)⊗ π1/2((r−1
r )w) = p(g)D−1

1 p(a)−1. (9.17)

Here, p is the following linear map on the space of 4× 4 matrices M ,

p(M) =


−M13 M12 −M43 −M42

M14 M11 M44 −M41

−M23 M22 M33 M32

M24 M21 −M34 M31

 . (9.18)

Finally, the matrix D1 reads

D1 = diag
(
e
λ1−λ2

2 , e
λ1+λ2

2 , e
−λ1−λ2

2 , e
−λ1+λ2

2

)
. (9.19)

The simplicity of the relation (9.16) follows from the fact that in the four-dimensional rep-
resentation of the conformal group, rotations are represented essentially as in the spin-1/2
representation of SU(2) in terms of Pauli matrices. The identity holds true for any element g
that admits a Cartan decomposition. Once it is applied to special elements g(xi), we obtain
Θ2(xi). More precisely, one also needs to insert expressions for ui and λi in terms of insertion
points into (9.16) and the formula for D1. This completes the construction of Θ2(xi) and hence,
along with the expression (9.15) for Θ1(xi), of the tensor structures for seed four-point functions
in three dimensions.

9.3.2 Tensor structures for arbitrary spins

The tensor structures for seed correlators we just constructed and in particular the factor Θ2(xi)
were so simple because Θ2(xi) contained the same combinations of left and right Euler angles as
the matrix elements of g(xi) in the four-dimensional representation. When dealing with more
general spinning fields, we need to construct the left and right Euler angles separately in terms
of the insertion points. This is possible, but the formulas are a bit more cumbersome than
ones above. Starting from the 4× 4 matrix defined in (9.16), we can reconstruct the individual
tensor factors as

π1/2(rl) =


√

$33

$11
($11$44 −$12$43) i

√
$13

$31
(1−$11$44 +$12$43)

i
√

$31

$13
(1−$11$44 +$12$43)

√
$11

$33
($11$44 −$12$43)

 , (9.20)
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and

π1/2((r−1
r )w) =


√

$22

$11
($22$33 −$13$42) i

√
$12

$21
(1−$22$33 +$13$42)

i
√

$21

$12
(1−$22$33 +$13$42)

√
$11

$22
($22$33 −$13$42)

 . (9.21)

Here $(xi) is the inverse of the matrix (9.16). Note that the matrix elements of $ and hence
the matrix entries of π1/2(rl) and π1/2((r−1

r )w) are functions of the insertion points xi.

Having constructed the factors Θ2(xi) for fields in the fundamental two-dimensional represen-
tation of SU(2), we can now obtain these factors for all other representations with the help of
some standard group theory. From the matrix elements of the fundamental representation, we
can obtain matrix elements of any other irreducible representation as

tlmn(g) = (−1)m−n

√
(l +m)!(l −m)!

(l + n)!(l − n)!
τm+n

22 τm−n21 P
(m−n,m+n)
l−m (τ11τ22 + τ12τ21) . (9.22)

Suppose now that we want to find the tensor structures for correlators in which we insert a field
of spin l at x1, while keeping the field at x2 to be scalar. Then the corresponding matrix factor
ρ1(rl)ρ2(rl)

w can be obtained by inserting the matrix elements of the matrix defined in (9.20)
into the previous formula. Other spin assignments may be dealt with similarly and hence,
our equations (9.20), (9.21) and (9.22) completely solve the problem of constructing tensor
structures for all three-dimensional spinning correlators in the Calogero-Sutherland gauge.

Remark While the above prescription for the evaluation of tensor structures is entirely explicit,
the resulting formulas are still relatively complicated. We believe that there is an inherent
complexity in tensor structures which no method of calculation can circumvent. For some
purposes, one actually does not need the tensor structures - this was the topic of the last
chapter.

9.3.3 Comparison with the literature

Let us compare our findings with those of [39]. The constructions in that work are performed
in the Minkowski space with the metric

gµν = diag(−1, 1, 1) .

Greek indices µ, ν... are raised and lowered with this metric. Greek indices α, β... from the
beginning of the alphabet are raised and lowered with the Levi-Civita symbol according to

ψα = εαβψ
β, ε12 = 1 .

A vector xµ is turned into a 2× 2 matrix with the help of three-dimensional gamma matrices

xαβ = xµ(γµ)αβ, (γµ)αβ = (iσ2, σ1, σ3) .

The correlation function of two scalar and two spinor fields then assumes the form

〈ψα1 (x1)ϕ2(x2)ϕ3(x3)ψβ4 (x4)〉 = Ω(xi)
4∑
I=1

tαβI gI(z, z̄),
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CHAPTER 9. EXPLICIT TENSOR STRUCTURES

where the index I = 1, . . . , 4 runs over the following four four-point tensor structures

tαβ1 = i
(x14iσ2)αβ

|x14|
, tαβ2 = −i(x12x23x34iσ2)αβ

|x12||x23||x34|
, tαβ3 = i

(x12x24iσ2)αβ

|x12||x24|
, tαβ4 = i

(x13x34iσ2)αβ

|x13||x34|
.

The matrix T = (tαβI ) that collects these tensor structures bears some resemblance to the matrix
p(g(xi)) defined above. More precisely one can see that

Ω(xi)T χ = Θ1(xi) e
2aλle2bλr p(g(xi))D

−1
1 p(a(xi))

−1 = Θ1(xi)Θ2(xi),

where the matrix χ takes the form

χ =


0 A(χ1 − χ2) A(−χ1 − χ2) 0
0 A(−χ1 − χ2) A(χ1 − χ2) 0

B(χ3 − χ4) 0 0 B(χ3 + χ4)
B(−χ3 − χ4) 0 0 B(−χ3 + χ4)

 . (9.23)

Here, A = −i/2 and B = −1/2. The functions χi(u1, u2) are defined in (A.10) of [9], with
x = u1 and y = u2. In order to check (9.23), it is useful to first establish

Ω(xi)

Ω̃(xi)
χ p(a(xi)) =


0 v

1
4 0 0

0 0 v
1
4 0

0 0 0 u−
1
4

u−
1
4 0 0 0

 .

The matrix χ thus relates conformal blocks in coordinate space and the CS gauge. This fact was
observed already in [9] by comparing associated sets of Casimir equations. 2 With this remark,
we conclude the discussion of tensor structures for three-dimensional four-point functions.

9.4 Four-dimensional spinning seed correlators

Our goal in this section is to construct the tensor structures for the simplest non-trivial seed
correlators in four dimensions. In order to do so, we follow the steps described previously. In
the four-dimensional theory, we need to determine 11 Euler angles in total. The rotation group
Spin(4) itself is six-dimensional, so left and right rotations together are parametrised by 12
angles. However, one of these angles is redundant because of the non-trivial stabiliser subgroup
B ∼= Spin(2). To be specific, we parametrise the left and right rotations rl and rr as

rl = eϕ
l
1X1eθ

l
1Z1eψ

l
1X1eϕ

l
2X2eθ

l
2Z2eψ

l
2X2 , rr = eϕ

r
1X1eθ

r
1Z1eψ

r
1X1eϕ

r
2X2eθ

r
2Z2eψ

r
2X2 . (9.24)

In order to reduce down to 11 angles, we impose the additional condition ψl2 = −ψl1. The
symbols Xi and Zi with i = 1, 2 denote the following linear combinations of the rotation
matrices Mij

X1 = −1

2
(M12 +M34), X2 =

1

2
(M12 −M34), Z1 = −1

2
(M14 +M23), Z2 =

1

2
(M14 −M23) .

2The comparison of Casimir equations that was used in [9] to determine χ does not determine the numerical
factors A and B. The map that was spelled out in that work corresponds to A = 1/

√
2 = B.
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We shall study correlation functions that involve the non-trivial four-dimensional seed blocks
of [37]. These blocks appear in the decomposition of

G4(xi)
b
ȧ = 〈Φ0,0(x1)Φs,0(x2)Φ0,0(x3)Φ0,s(x4)〉, (9.25)

where s ∈ (0, 1/2, 1, . . . ). Labels (s1, s2) = (j1, j2) that we attached to the operators Φs1,s2

refer to the representation of the rotation group. We consider the case with s = 1/2. The
corresponding representations W2 and W4 are then both two-dimensional. Their vectors are
written with undotted and dotted Latin indices, respectively. The space of polarisations W has
dimension four and the space of B-invariants is two-dimensional.

We turn to the construction of factors Θ1,2(xi). The first one is easily found

Θ1(xi) =
x−2∆2

21 x−2∆4
43

|x12||x34|

(
x4

21 − ix3
21 x2

21 − ix1
21

−x2
21 − ix1

21 x4
21 + ix3

21

)
⊗
(

x4
34 − ix3

34 x2
34 + ix1

34

−x2
34 + ix1

34 x4
34 + ix3

34

)
. (9.26)

This is obtained by evaluating the rotation sxsed in the two-dimensional representations (1/2, 0)
and (0, 1/2) of the rotation group. Calculating Θ2(xi) is a bit more involved. Similarly to the
three-dimensional case

Θ2(xi) = e2aλle2bλrπ(1/2,0)(r
w
l )⊗ π(0,1/2)((r

−1
r )w) . (9.27)

With the Cartan coordinates as introduced above, the last two factors give

π(1/2,0)(r
w
l )⊗ π(0,1/2)((r

−1
r )w) = π1/2(−φl2, θl2,−ψl2)⊗ π1/2(ψr1,−θr1, φr1) ≡ π̂(rl, rr),

where ψl2 = −ψl1. We need to calculate this tensor product as a function of the insertion
points xi to obtain the main building block for the desired tensor structure. As in the previous
section, the resulting expression is quite simple. It requires to introduce the following linear
map q : M2×2 ×M2×2 −→M2×4 that sends a pair of 2× 2 matrices M,N to a rectangular 2× 4
matrix of the form

q(M,N) =

(
r(M)
r(N)

)
, r(M) =

(
M12 M11 M22 M21

)
.

From the four 2×2 matrix blocks of the group element g in the four-dimensional representation
we can construct a pair of 2× 2 matrices M = M2 and N = M1 as

Mi = sinh2 ui
2
DB−1A− cosh2 ui

2
C . (9.28)

In terms of these two matrices one can now compute π̂ as

π̂(rl, rr)
−1 := P(π(1/2,0)(r

w
l )⊗π(0,1/2)((r

−1
r )w))−1 =

2e
λ1−λ2

2

coshu1 − coshu2

(
sinh u1

2
0

0 sinh u2

2

)
q(M2,M1) .

(9.29)
Here, P is the projector to the space of B-invariants

P =

(
0 1 0 0
0 0 1 0

)
.
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Note that the matrices π̂ and π̂−1 are not square. Rather, they are pseudo-inverses of one
another in the sense that

π̂(rl, rr)
−1π̂(rl, rr) = I2 .

The identity (9.29) holds for any element of the conformal group that has a Cartan decompo-
sition, as can be checked by calculating both sides. Tensor structures arise upon substituting
the expression for g(xi) into (9.29).

9.4.1 Comparison with the literature

The four-point function (9.25) was analysed in [37, 26] and we will quickly review results of
these works. They are done in Lorentzian signature with the metric

gµν = diag(−1, 1, 1, 1) .

Greek indices from the second half of the alphabet are raised and lowered with this metric g.
Indices α, β... from the beginning of the Greek alphabet label a basis of the two-dimensional
representation (1/2, 0) of SO(1, 3). Similarly, the dotted indices α̇, β̇... enumerate a basis in the
representation (0, 1/2). These are raised and lowered with the Levi-Civita symbol according to

ψα = εαβψ
β, ε12 = −1 .

The same formulas hold for the dotted indices. The vector representation is equivalent to the
tensor product (1/2, 0) ⊗ (0, 1/2). This equivalence can be realised explicitly with the help of
σ-matrices

xαβ̇ = xµσ
µ

αβ̇
, σµ

αβ̇
= (−I, σi) .

Further, we write (σ̄µ)α̇β = (−I,−σi) and define the corresponding x̄α̇β in the obvious way.

With the notation set up, let us now look at the correlation function (9.25). It decomposes
over the tensor structures introduced above as3

Gα̇β
4 (xi) = K4(xi)T

α̇β
I (xi) g

I(u, v) = K4(xi)
2s∑
e=0

g(2s)
e (u, v)Ie42J

p−e
42,31,

where the scalar prefactor K4 is defined by

K4(xi) = Ω(xi)

√
x13

x12x24x34

,

and the tensors I and J on the right hand side take the form

I α̇βij = xµijσ̄
α̇β
µ , J α̇βij,kl =

2

x2
kl

x̄α̇γik (xkl)γδ̇x̄
δ̇β
lj .

The case we analyse corresponds to 2s = p = 1 and hence the correlation function has the form

Gα̇β
4 (xi) = K4(xi)

(
g

(1)
0 (u, v)J α̇β42,31 + g

(1)
1 (u, v)I α̇β42

)
.

3Following the conventions in [37] we label seed blocks by an integer p = 2s rather than the spin s itself.
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There are two tensor structures, in agreement with the dimension of the space WB in our
analysis.

In order to compare the tensor structures from [37] with our tensor structures given in (9.26)
and (9.27), we note that the two discussions of the seed correlators use a different basis in the
space of polarisations. Comparing the conventions in [26] and [10] one can see that the basis
transformation is mediated by the following matrix

M b β
ȧ α̇ =

i

2


1 1 −1 −1
−1 −1 −1 −1
1 −1 −1 1
−1 1 −1 1

 .

Taking this necessary change of basis into account we have to prove that

1

2
√

2
MΩ(xi)T (xi)S = Θ1(xi)Θ2(xi) . (9.30)

It is not difficult to check that this equation is indeed satisfied with S given by

S(u1, u2) =
2
√

2
(
tanh u1

2
tanh u2

2

) 1
2

+a+b

(coshu1 − coshu2)2

(
sinh u1

2
sinh u2

2
2

sinh
u1
2

2
sinh

u2
2

)
. (9.31)

This coincides with the map between Calogero-Sutherland eigenfunctions and conformal blocks
that was found in [10] based on the comparison of the Casimir differential equations.
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Chapter 10

Superconformal partial waves

Casimir equations of Dolan and Osborn are probably the best known characterisation of con-
formal partial waves. From their works [29, 30] one can take at least two important messages.
Firstly, there is a differential equation that characterises the partial waves and can be derived
in a relatively straightforward way, and secondly, the equation simplifies considerably once one
changes coordinates from (u, v) to (z, z̄). The second of these facts could be explained by notic-
ing that (z, z̄) are coordinates of x2 once x1, x3 and x4 are sent to 0, e1 and∞ using conformal
transformations. Therefore, (z, z̄) have, in some sense, a geometric origin. We want to take the
idea that not all coordinate systems are good coordinate systems seriously.

The Casimir differential operator of Dolan and Osborn is constructed as the quadratic Casimir
built out of sums of operators that represent the action of g on fields 1 and 2 in the correlator.
When we map the four-point function G4(xi) to a K-spherical function F using (7.40), the
Casimir is carried to the Laplace-Beltrami operator on the (super)conformal group. This is not
difficult to see and will be shown in a later chapter. Thus, we are led to study the reduction of the
Laplacian to the space of K-spherical functions. For bosonic conformal groups and covariance
properties characterised by one-dimensional representations of K, the resulting operator was
seen to be conjugate to the BC2 Calogero-Sutherland Hamiltonian.

The situation becomes more complicated if we allow for higher-dimensional representations of
K. Via (7.40), this corresponds to considering correlation functions of spinning fields. Any
pair of K-modules (ρl, ρr) leads to a Schrödinger problem for functions in two variables with
dim(ρl⊗ρr)B components. As far as we know, there is no general theory of all such Schrödinger
problems. An idea that has proved fruitful in the CFT community is to construct a set of
covariant differential operators that produce spinning conformal blocks by acting on scalar
ones. In the CS gauge, some of these weight-shifting operators are obtained from invariant
vector fields on G. They can be used to construct eigenfunctions of infinitely many matrix
Calogero-Sutherland Hamiltonians, although not all of them.

A lot less seems to be known about superconformal partial waves. From the physics side, they
have been computed in a number of cases, which all however contain considerable simplifying
assumptions. One usually either considers correlation functions where all field multiplets are
short, or allows for long multiplets but only seeks for the superprimary component of the blocks
(i.e. sets all Grassmann variables to zero). Finally, the full blocks with all representations being
long have been computed in some cases, but all these cases are essentially one-dimensional. In

132
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mathematics, spherical functions on supergroups received much less attention than those on
Lie groups.

In view of these comments, it makes sense to try and reduce the computation of superconformal
blocks to that of spinning bosonic blocks. Or, in other words, to construct K-spherical har-
monics on a supergroup from those on its underlying Lie group. This is the problem addressed
in the present chapter.

Our result is a method that gives K-spherical harmonics on G as finite sums of (a small number
of) K-spherical harmonics on G(0). Terms that appear in the sum are easy to determine from
representation theory of G(0). The coefficients that multiply these terms are also easy to define
as certain Clebsch-Gordan coefficients, but it may still be difficult to compute these in practice.
From the point of view of Schrödinger problems, the potential of the super Calogero-Sutherland
Hamiltonian equals that of a matrix CS Hamiltonian with two corrections. The first correction
is a set of constants along the diagonal and the second is an upper triangular matrix of functions.
Notice that if the bosonic Hamiltonian H0 was hermitian with respect to the standard inner
product on vector-valued wavefunctions, the supersymmetric one H will not be so (one can
make the latter operator hermitian by changing the inner product in a way dictated by the
Berezin integral on G. However, we shall not do this.). Regardless of this fact, it is possible to
apply the standard quantum mechanical perturbation theory and construct eigenfunctions of H
by starting from those of H0. Since the perturbation is by a nilpotent operator, the procedure
gives exact results at a finite order.

The structure of the supersymmetric Hamiltonian H follows from the form of the Laplacian on
G. The required split into a bosonic piece and two simple correction terms is a property satisfied
by Laplacians on supergroups of type I (and is exhibited in unprimed Cartan coordinates).
Thus, our results in this chapter only apply to such supergroups.

The chapter is organised as follows. We begin by giving two examples of bosonic matrix CS
Hamiltonians. They appear in relation with three- and four-dimensional seed correlators that
were studied in the last chapter. Next, some properties of scalar and seed blocks, such as their
symmetries, asymptotic behaviour and identities that follow from their description as spherical
functions, are discussed. In the second section we derive the expression for the Laplacian
on a supergroup of type I. The third one reviews quantum mechanical perturbation theory,
specialising to the case of a nilpotent perturbation. The rest of the chapter treats two examples.
We compute partial waves for four-point functions of long multiples in one-dimensional N = 2
theories and certain multiplets involving long and short operators in four-dimensional N = 1
theories. The chapter is mostly based on the articles [1, 6].

10.1 Matrix Calogero-Sutherland models

Let us consider a four-point function of some arbitrary spinning fields in a bosonic CFT. As
usual, we denote the spaces of field polarisations by W1, ...,W4. The spherical function F that
(7.40) associates to G4(xi) is left K-covariant according to Wl = W1⊗W ′

2 and right K-covariant
according to Wr = W3⊗W ′

4. Recall that W ′ denotes the representation of K obtained from W
by conjugation with the Weyl inversion. The function F is uniquely determined by its restriction
to A and moreover the restriction takes values in the space of invariants T = (Wl ⊗ Wr)

B.
Conversely, any function f : A −→ T extends to a K-spherical function.
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It is in principle an easy matter to compute how the group Laplacian acts on f for any given pair
of modules (Wl,Wr) (at least in three and four dimensions. The complexity of the calculation
grows for larger groups.). Upon conjugation with ω1/2 this gives rise to the corresponding
matrix Calogero-Sutherland Hamiltonian. Let us state the results from the literature for the
two examples that we considered when studying four-point tensor structures in the last chapter.

10.1.1 Two matrix Hamiltonians

The Hamiltonian for the three-dimensional seed correlator (9.14) has the block-diagonal1 form
H = diag{H3d

1 , H
3d
2 } with

H3d
1 =

(
1
2
H

(a+ 1
4
,b− 1

4
)

PT (u1) + 1
2
H

(a− 1
4
,b+ 1

4
)

PT (u2) −1
2
V

−1
2
V 1

2
H

(a− 1
4
,b+ 1

4
)

PT (u1) + 1
2
H

(a+ 1
4
,b− 1

4
)

PT (u2)

)
+
U

4
+

5

8
,

(10.1)
and

H3d
2 =

(
1
2
H

(a+ 1
4
,b+ 1

4
)

PT (u1) + 1
2
H

(a− 1
4
,b− 1

4
)

PT (u2) −1
2
V ′

−1
2
V ′ 1

2
H

(a− 1
4
,b− 1

4
)

PT (u1) + 1
2
H

(a+ 1
4
,b+ 1

4
)

PT (u2)

)
+
U

4
+

5

8
.

(10.2)
Here, the functions V and V ′ read

V =
(2 + coshu1 + coshu2) sinh u1

2
sinh u2

2

4 sinh2 u1+u2

2
sinh2 u1−u2

2

, V ′ =
(−2 + coshu1 + coshu2) cosh u1

2
cosh u2

2

4 sinh2 u1+u2

2
sinh2 u1−u2

2

,

and U is given by

U =
1

4 sinh2 u1+u2

2

+
1

4 sinh2 u1−u2

2

. (10.3)

The second Hamiltonian that we spell out arises in relation with the four-dimensional correlator
(9.25) with s = 1/2. It is similar to operators H3d

i from above and can be compactly written
in terms of the same functions

Ha,b
1
2

=

(
1
2
H

(a+ 1
4
,b− 1

4
)

PT (u1) + 1
2
H

(a− 1
4
,b+ 1

4
)

PT (u2) V

V 1
2
H

(a− 1
4
,b+ 1

4
)

PT (u1) + 1
2
H

(a+ 1
4
,b− 1

4
)

PT (u2)

)
+ U +

19

16
.

(10.4)

10.1.2 Calogero-Sutherland wavefunctions

This section is dedicated to various properties of Calogero-Sutherland eigenfunctions. In par-
ticular, we will study their asymptotic behaviour as ui −→∞, symmetries with respect to their
arguments and parameters and also some special identities that are derived using Clebsch-
Gordan decompositions for G(0). All these properties will be important for the analysis of
superconformal blocks.

1In the basis we use throughout this work, the first block matrix H1 actually appears in the second and third
row/column while H2 acts on the subspace spanned by the first and fourth basis vector
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Our main focus will be on partial waves in four dimensions. So, let us begin by reviewing some
of the known facts about them. To write the blocks for non-identical scalars, we introduce a
generalisation of the function k2ρ given in (1.10) by

k
(a,b;c)
2ρ (x) = xρ 2F1(a+ ρ, b+ ρ; c+ 2ρ;x) . (10.5)

The partial waves are expressed in terms of these functions as

g
(4d)
∆,l (z1, z2) =

z1z2

z1 − z2

(
k

(a,b;0)
∆+l (z1)k

(a,b;0)
∆−l−2(z2)− (z1 ↔ z2)

)
. (10.6)

Conformal blocks for arbitrary spinning fields can be constructed in a systematic way from
the so-called seed conformal blocks. These are labelled by a positive integer p and have been
computed in a large number of cases in [37]. Seed conformal blocks G

(p)
e appear in the decom-

position of four-point functions (9.25) that involve two scalar and two spinning fields. They
take the general form

G(p)
e (z1, z2) =

( z1z2

z1 − z2

)2p+1∑
m,n

cemnF
−,(ae,be;ce)
ρ1+m,ρ2+n(z1, z2) . (10.7)

Here, e = 0, 1, ..., p are components of the block G(p), the sum runs over a finite set of points
(m,n) and functions F± are defined as

F±,(a,b;c)ρ1,ρ2
=
(
k

(a,b;c)
2ρ1

(z1)k
(a,b;c)
2ρ2

(z2)± (z1 ↔ z2)
)
. (10.8)

For the parameters of these functions that appear in the sum (10.7) and coefficients cemn, the
reader is referred to [37]. The seed block is associated to the propagation of a field with spins
(2j1, 2j2) = (l, l + p) in the OPE. The contribution of the field with spins (2j1, 2j2) = (l + p, l)
is captured by the conjugate seed block Ḡ(p) that has an expansion similar to (10.7). In what

follows, we will denote the lowest seed blocks with p = 1 by G+ = (G
(1)
e ) and their conjugates

by G− = (Ḡ
(1)
e ).

In order to characterise any conformal block, the Casimir equations that it solves have to be
supplemented by boundary conditions. What the appropriate conditions are can be determined
in the OPE limit, zi −→ 0. In this limit, the scalar blocks behave as

g
(4d)
∆,l (z1, z2) ∼ z

∆−l
2

1 z
∆+l

2
2 as zi −→ 0 . (10.9)

We write ∼ to indicate that the ratio of two sides is finite in the limit, and not necessarily equal
to one. The asymptotics of seed blocks were derived in [37]. For p = 1 and assuming l ≥ 1, we
have

G(1)
e ∼ z

∆−l
2

+ 1
4

1 z
∆+l

2
− 3

4
+e

2 , Ḡ(1)
e ∼ z

∆−l
2
− 1

4
+e

1 z
∆+l

2
− 1

4
2 as zi −→ 0 . (10.10)

The case of zero spin has to be treated separately, see [37].

Let us now map the scalar and seed blocks to Calogero-Sutherland eigenfunctions. For the
scalar ones, it is convenient to use a hypergeometric identity and write F− as

F±,(a,b;c)ρ1,ρ2
(z1, z2) =

(
coth

u1

2

)−2a (
− cosh

u1

2

)−2ρ1

2F1

(
a+ ρ1, c− b+ ρ1; c+ 2ρ1;

1

cosh2 u1

2

)
(

coth
u2

2

)−2a (
− cosh

u1

2

)−2ρ2

2F1

(
a+ ρ2, c− b+ ρ2; c+ 2ρ2;

1

cosh2 u2

2

)
± (u1 ↔ u2) .
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The Calogero-Sutherland wavefunctions are obtained by applying (9.2) to the Dolan-Osborn
blocks (10.6). This gives us the functions

φa,b∆,l(u1, u2) =
(

coth
u1

2
coth

u2

2

)a+b+ 1
2

sinh
u1

2
sinh

u2

2
F−(a,b;0)

∆+l
2
,∆−l−2

2

(10.11)

= C(a, b,∆, l)
(

Ψ
(a,b)
1−∆−l

2

(u1)Ψ
(a,b)
3−∆+l

2

(u2)−Ψ
(a,b)
1−∆−l

2

(u2)Ψ
(a,b)
3−∆+l

2

(u1)
)
, (10.12)

where

C(a, b,∆, l) = (−1)−4∆4−2a−1 Γ
(
a+ 3−∆−l

2

)
Γ
(
a+ 5−∆+l

2

)
Γ
(
−b+ 3−∆−l

2

)
Γ
(
−b+ 5−∆+l

2

)
Γ(1−∆− l)Γ(3−∆ + l)Γ(a− b+ 1)2

.

(10.13)
According to previous chapters, the φa,b∆,l should be eigenfunctions of the scalar CS Hamiltonian

Ha,b
sc = 1

2
H

(a,b,2)
cs + 5

4
. Indeed, this operator is a sum of two Pöschl-Teller Hamiltonians in u1

and u2, so the above are manifestly its eigenfunctions. We read off the eigenvalues

Ha,b
sc φ

a,b
∆,l = Csc

∆,l φ
a,b
∆,l, Csc

∆,l = −1

4
∆(∆− 4)− 1

4
l(l + 2) . (10.14)

The CS wavefunctions related to seed blocks G± are obtained by applying the map S from
(9.31)

Ψa,b
±,∆,l(ui) = S−1(ui)G±(ui) . (10.15)

These Ψa,b
±,∆,l are eigenfunctions of the seed CS Hamiltonian of the last section. They have the

same eigenvalue

Ha,b
1
2

Ψa,b
±,∆,l = Cseed

∆,l Ψa,b
±,∆,l, Cseed

∆,l = −1

4
∆(∆− 4)− 1

4
l(l + 3)− 3

8
. (10.16)

Wavefunctions Ψ
(a,b)
λ , φa,b∆,l and Ψa,b

±,∆,l have many satisfactory properties. We start the discussion
of them with some elementary symmetries under transformations of parameters of the Calogero-
Sutherland model. Notice first that Hamiltonians Ha,b

sc and Ha,b
1
2

admit no automorphism of the

form
H 7→ U−1HU . (10.17)

Here U is an invertible function in the scalar case and a 2 × 2 matrix of functions in the seed
case. The only exception occurs when a = b. Then the seed Hamiltonian is invariant under
conjugation by U = σ1.

The Pöschl-Teller potential is invariant under transformations (a, b) 7→ (b, a) and (a, b) 7→
(−a,−b). Eigenfunctions Ψ

(a,b)
λ are not invariant under these, but are invariant under their

product, i.e.
Ψ

(a,b)
λ (u) = Ψ

(−b,−a)
λ (u) . (10.18)

The scalar Hamiltonian Ha,b
sc is the sum of two Pöschl-Teller Hamiltonians in independent vari-

ables u1 and u2. Therefore, it enjoys all the symmetries of H
(a,b)
PT , together with the additional

one, (u1, u2) 7→ (u2, u1). Under this transformation the wavefunctions are antisymmetric. They
enjoy

φa,b∆,l(u1, u2) = φb,a∆,l(u1, u2), φa,b∆,l(u1, u2) = −φa,b∆,l(u2, u1) . (10.19)
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For vector-valued functions, we can combine transformations of parameters with a change of
basis of the target vector space. Let us denote by {e1, e2} the basis for the target space of seed
blocks. Then the seed Hamiltonian is invariant under transformations

(a, b, u1, u2) 7→ (b, a, u2, u1), (a, b, u1, u2) 7→ (−a,−b, u2, u1), (u1, u2, e1, e2) 7→ (u2, u1, e2, e1) .

We will denote the permutation of components of a two-vector by a tilde. Then

Ψa,b
±,∆,l(u1, u2) = Ψ−b,−a±,∆,l (u1, u2), Ψa,b

±,∆,l(u1, u2) = Ψ̃a,b
±,∆,l(u2, u1) . (10.20)

Finally, the two solutions Ψ± can be obtained from one another by swapping the parameters a
and b

Ψa,b
+,∆,l(u1, u2) = −1

2
Ψ̃b,a
−,∆,l(u1, u2) = −1

2
Ψ̃−a,−b−,∆,l (u1, u2) . (10.21)

Certain identities for Calogero-Sutherland eigenfunctions may be derived from Clebsch-Gordan
decompositions of irreducible representations of the conformal group. Recall that K-spherical
functions on G are provided by matrix elements of vectors that transform irreducibly under
K. Furthermore, products of matrix elements of two representations π1, π2 of G are matrix
elements of the tensor product π1⊗π2. By decomposing the latter into irreducible components,
one can write the product of two matrix elements as a sum of some other matrix elements
determined by the Clebsch-Gordan decomposition. In one dimension, this method leads to the
identities

cosh
u

2
Ψ

(a,b)
λ = γ++

+ Ψ
(a+ 1

2
,b+ 1

2
)

λ+ 1
2

+ γ++
− Ψ

(a+ 1
2
,b+ 1

2
)

λ− 1
2

= γ−−+ Ψ
(a− 1

2
,b− 1

2
)

λ+ 1
2

+ γ−−− Ψ
(a− 1

2
,b− 1

2
)

λ− 1
2

, (10.22)

sinh
u

2
Ψ

(a,b)
λ = γ+−

+ Ψ
(a+ 1

2
,b− 1

2
)

λ+ 1
2

+ γ+−
− Ψ

(a+ 1
2
,b− 1

2
)

λ− 1
2

= γ−+
+ Ψ

(a− 1
2
,b+ 1

2
)

λ+ 1
2

+ γ−+
− Ψ

(a− 1
2
,b+ 1

2
)

λ− 1
2

, (10.23)

with the coefficients

γ++
+ =

1
2

+ a+ λ

4λ
, γ++

− = −
1
2

+ a− λ
4λ

, γ−−+ =
1
2
− b+ λ

λ
, γ−−− = −

1
2
− b− λ
λ

, (10.24)

γ+−
+ =

(
1
2

+ a+ λ
) (

1
2
− b+ λ

)
4λ(a− b+ 1)

, γ+−
− = −

(
1
2

+ a− λ
) (

1
2
− b− λ

)
4λ(a− b+ 1)

, γ−+
+ = −γ−+

− =
a− b
λ

.

(10.25)

Here, γ++
+ etc. are regarded as functions of a, b and λ and we have only suppressed this

dependence for simplicity. These relatively simple relations can be also directly derived using
Gauss’ contiguous relations for 2F1.

In four dimensions, the same method can be used to establish the following identities between
scalar and seed blocks, which are to the best of our knowledge, new

2
(
sinh u1

2
, − sinh u2

2

)
Ψ̃
a− 1

4
,b+ 1

4
−,∆+1,l = γ−1

∆,l φ
a,b

∆+ 1
2
,l

+ γ−2
∆,l φ

a,b

∆+ 3
2
,l+1

, (10.26)

2
(
sinh u1

2
, − sinh u2

2

)
Ψ̃
a− 1

4
,b+ 1

4
+,∆+1,l = γ+1

∆,l φ
a,b

∆+ 1
2
,l+1

+ γ+2
∆,l φ

a,b

∆+ 3
2
,l
, (10.27)

2

(
sinh u2

2

− sinh u1

2

)
φ
a− 1

2
,b+ 1

2
∆+1,l = γ1−

∆,l Ψ̃
a− 1

4
,b+ 1

4

−,∆+ 1
2
,l

+ γ2−
∆,l Ψ̃

a− 1
4
,b+ 1

4

−,∆+ 3
2
,l−1

+ γ1+
∆,l Ψ̃

a− 1
4
,b+ 1

4

+,∆+ 1
2
,l−1

+ γ2+
∆,l Ψ̃

a− 1
4
,b+ 1

4

+,∆+ 3
2
,l
.

(10.28)
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The coefficients in this sum are certain SO(6) Clebsch-Gordan coefficients. This characteri-
sation does not give a simple way to compute them, but the coefficients can be derived by
expanding both sides in zi and comparing the first few terms. In any case

γ−1
∆,l =

2
√

2

i(−1)a+b

l + 2

l + 1
, γ−2

∆,l =
i(−1)−a−b√

2

(4b− 2l − 2∆− 1)(2∆− 3)(4a+ 2l + 2∆ + 1)

(2∆− 1)(2∆ + 2l + 1)(2∆ + 2l + 3)
,

(10.29)

γ+1
∆,l =

√
2

i(−1)a+b
, γ+2

∆,l =
(−1)−a−b

2
√

2i

(l + 2)(4b+ 2l − 2∆ + 5)(2∆− 3)(−4a+ 2l − 2∆ + 5)

(l + 1)(2l − 2∆ + 3)(2l − 2∆ + 5)(2∆− 1)
,

(10.30)

γ1−
∆,l =

√
2

i
(−1)a+b, γ2−

∆,l =
(−1)a+b

2
√

2i

∆l(2b+ l −∆ + 2)(−2a+ l −∆ + 2)

(∆− 1)(l + 1)(l −∆ + 1)(l −∆ + 2)
, (10.31)

γ1+
∆,l =

2
√

2

i
(−1)a+b l

l + 1
, γ2+

∆,l =
i(−1)a+b

√
2

∆(2b− l −∆)(2a+ l + ∆)

(∆− 1)(l + ∆)(l + ∆ + 1)
. (10.32)

10.2 Laplacian on supergroups of type I

The superconformal algebra is represented on the structure algebra of the superconformal group
by left and right invariant vector fields. As in the bosonic case, quadratic Casimirs constructed
out of left and right invariant fields coincide and are both equal to the Riemannian Laplace-
Beltrami operator associated with the bi-invariant metric.

We continue to use the same notation for a general Lie superalgebra of type I that was in-
troduced in the discussion of Cartan coordinates. The quadratic Casimir element for such an
algebra takes the form

C2 = KabX
aXb −XµXµ +XµX

µ, (10.33)

where Kab is the Killing form of the even subalgebra. Indeed, the bases {Xµ} and {Xµ} of
modules g± are dual to each other and so the Killing form reads

Kab = 〈Xa, Xb〉 = 〈Xb, Xa〉, 〈Xµ, Xν〉 = −〈Xν , X
µ〉 = δµν , (10.34)

other inner products being zero. The non-vanishing brackets between odd generators read

{Xµ, Xν} = Kabπ(Xa)µνX
b . (10.35)

These brackets imply that the Killing form is ad-invariant, 〈XA, [XB, XC}〉 = 〈[XA, XB}, XC〉.
Indeed the only non-trivial cases to check are

〈Xa, {Xµ, Xν}〉 = 〈[Xa, Xµ], Xν〉 = π(Xa)µν , 〈Xµ, [Xa, Xν ]〉 = 〈[Xµ, Xa], Xν〉 = −π(Xa)µν .

From the bracket relations written above, one can directly verify that C2 commutes with all
the generators XA in the universal enveloping algebra U(g).

Let us turn to (right-)invariant vector fields on the supergroup G. The Maurer-Cartan form
reads

dgg−1 = dxµXµ + dxaex
µXµ(∂xag(0))g

−1
(0)e

−xµXµ + dxνe
xµXµg(0)X

νg−1
(0)e

−xµXµ . (10.36)
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Let us denote the coefficients of the bosonic Maurer-Cartan form by C
(0)
ab , that is

(∂xag(0))g
−1
(0) = C

(0)
ab X

b . (10.37)

By using the relations

ex
ρXρXae−x

σXσ = Xa + π(Xa)µνx
νXµ, (10.38)

ex
ρXρXµe−x

σXσ = Xµ +Kabπ(Xa)µνx
νXb +

1

2
Kabπ(Xa)µνπ(Xb)ρσx

νxσXρ, (10.39)

the Maurer-Cartan form can be further evaluated to

dgg−1 = dxµXµ + dxaC
(0)
ab

(
Xb + π(Xb)µνx

νXµ

)
(10.40)

+ dxνπ(g(0))
ν
µ

(
Xµ +Kabπ(Xa)µρx

ρXb +
1

2
Kabπ(Xa)µλπ(Xb)ρσx

λxσXρ

)
. (10.41)

The right-invariant vector fields therefore read

RXµ = ∂xµ , RXb = R(0)

Xb − π(Xb)µνx
ν∂xµ , (10.42)

RXµ = π(g−1
(0))

µ
ν∂xν −Kabπ(Xa)µνx

ν

(
R(0)

Xb −
1

2
π(Xb)ρσx

σ∂xρ

)
. (10.43)

Here R(0)
Xa are the right-invariant vector fields of the underlying Lie group G(0). From the

expressions (10.42)− (10.43), we compute the Laplacian

RC2 = R(0)
C2
−2π(g−1

(0))
µ
ν∂xν∂xµ+

1

2
Kab

(
π(Xa)µνπ(Xb)ρµ + π(Xa)µµπ(Xb)ρν

)
xν∂xρ−Kabπ(Xa)µµR

(0)

Xb .

We can simplify the result using the Jacobi identity

[Xµ, {Xν , X
ρ}] + [Xν , {Xρ, Xµ}] + [Xρ, {Xµ, Xν}] = 0, (10.44)

which implies

Kab

(
π(Xa)ρνπ(Xb)σµ + π(Xa)ρµπ(Xb)σν

)
= 0 . (10.45)

Upon substitution in the above formula, we are left with

RC2 = R(0)
C2
− 2π(g−1

(0))
µ
ν∂xν∂xµ −Kabπ(Xa)µµR

(0)

Xb . (10.46)

This is the main result of the present section. It expresses the Laplacian on a type I supergroup
G in terms of the Laplace operator of its underlying Lie group and the representation π that
is a part of the defining data of the supergroup. As can be seen, RC2 differs from R(0)

C2
by two

terms. The reduction of the Laplacian to K-spherical functions and the role played in it by
these terms will be discussed presently.
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10.3 Reduction to the bosonic case

Consider a K-spherical function F the superconformal group. Assume for the moment that
F is a scalar function. Upon expansion in fermionic coordinates, F becomes a vector-valued
function on the underlying Lie group, F : G(0) −→ Λg1. Depending on which fermionic coordi-
nates are used to perform the expansion, the resulting function can satisfy different covariance
properties. In the primed Cartan coordinates, all components of F obey the same covariance
laws. However, in the unprimed coordinates, this is no longer the case because the generators
of g± transform non-trivially under K. As the effect, the components Fi mix under the left
and right multiplication so to make {Fi} a (Λg−,Λg+)-spherical function. More generally, a
vector-valued function F on G with covariance laws dictated by representations Wl and Wr,
gives upon the expansion a K-spherical function on G(0) with the representations

Vl = Wl ⊗ Λg−, Vr = Wr ⊗ Λg+ . (10.47)

Therefore, we have turned the space of K-spherical functions on G into what we have been
denoting ΓVl,Vr . Since the internal symmetry subgroup of G(0) is a part of K, we deduce that
functions in ΓVl,Vr are still determined by their values on the abelian group A. Moreover,
their restrictions have to take values in (Vl ⊗ Vr)B where, recall, the stabiliser group is B ∼
SO(d− 2)× U .

With this description of the space of functions and the expression for the Laplacian (10.46),
the use of unprimed Cartan coordinates allows us to construct the CS Casimir equations. By
performing the ordinary bosonic reduction, we end up with the super Calogero-Sutherland
Hamiltonian of the form

H = H0 + A . (10.48)

Here H0 comes form the first and the third (trace) term in the Laplacian. It is the matrix
CS Hamiltonian determined by the pair of representations (Vl, Vr), with added diagonal terms.
These additional terms come from two sources. Firstly, the quadratic Casimir of G(0) contains
and internal symmetry part. Since the internal symmetries are included in K, this part acts
as a set of constants on K-spherical functions. The second contribution comes from the trace
term in (10.46) and is by the same token equal to a constant diagonal matrix. Finally, let us
look at the operator A, defined as the reduction of the second term in the Laplacian. Since
the coefficients that multiply the fermionic derivatives in this term are purely bosonic, A is a
nilpotent operator. Therefore, it is a triangular matrix of functions. Its entries involve matrix
coefficients of the abelian group A and therefore are extremely simple.2

Unprimed Cartan coordinates are also convenient for the implementation of shortening condi-
tions. In particular, if we have half-BPS multiplets with Q−O1,2 = Q+O3,4 = 0, the second
term in (10.46) vanishes and hence superconformal partial waves coincide with bosonic ones.
This applies to the case in which we insert chiral fields in positions 1, 2 and anti-chiral fields in
positions 3, 4. If, on the other hand, we insert pairs of chiral and anti-chiral fields in positions
1, 2 and 3, 4, the shortening conditions are not quite as simple. We shall study these in more
detail on concrete examples in the following section sections.

2The reader should not confuse the two-dimensional group A with the matrix A that appears in (10.48).
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10.4 Nilpotent perturbation theory

Having seen that the Casimir operator for a type I superconformal symmetry can be regarded as
a nilpotent perturbation of the Casimir operator for a set of spinning bosonic conformal partial
waves, our strategy is to construct supersymmetric partial waves as a perturbation of spinning
bosonic ones. Since the perturbing term A is nilpotent, we can obtain exact formulas at some
finite order N , which depends on the precise setup, and is trivially bounded as N ≤ dimg(1).
The general methods to solve for eigenfunctions of a Hamiltonian H = H0 + A in terms of
those of H0 are certainly well established. In our exposition we shall follow [125], and assume
for simplicity that H and H0 have discrete spectra and finite-dimensional eigenspaces. By a
limiting process, the construction can be extended to more general spectra.

The Hilbert space on which the operators act is denoted by H and H0 is assumed to be
hermitian. We will attach an index [0] and write H[0] to mean either H0 or H and use the

similar notation for other objects as well. Eigenspaces of H[0] are written as V
[0]
n and have

eigenvalues ε
[0]
n . Projectors to these eigenspaces are denoted by P

[0]
n . Recall the definition of

the resolvent
G[0] : C −→ L(H) , G[0](z) = (z −H[0])

−1 . (10.49)

The resolvent of an operator can be expanded in the projectors to eigenspaces with simple poles
at the eigenvalues. Conversely, projectors are residues of the resolvent

G[0](z) =
∑
n

1

z − ε[0]
n

P [0]
n , P [0]

n =
1

2πi

∮
Γn

G[0](z)dz . (10.50)

Here, Γn is a small contour encircling ε
[0]
n and none of the other eigenvalues. If we insert the

relation H = H0 + A into the definition of the resolvent G and perform an expansion in A we
get

G = G0

∞∑
n=0

(AG0)n = G0

N∑
n=0

(AG0)n . (10.51)

We have used that AN+1 = 0 for some N to truncate the sum, and also the fact that Ak = 0
implies (AG0)k = 0, which is clearly true for the kind of operators that we wish to consider.
In particular, from (10.51) it follows that G has the same singularities ε0

i as G0. Computing
residues of the above expansion for G at ε0

i we obtain a finite expansion for the projector Pi

Pi = P 0
i +

N∑
n=1

Res(G0(AG0)n, ε0
i ) ≡ P 0

i + P
(1)
i + ...+ P

(N)
i . (10.52)

All terms in the above sum are expressed trough projectors P 0
i , the perturbation A and the

operator

Si =
∑
j 6=i

P 0
j

ε0
i − ε0

j

. (10.53)

For example, the first two terms read

P
(1)
i = P 0

i ASi + SiAP
0
i , (10.54)

P
(2)
i = P 0

i ASiASi + SiAP
0
i ASi + SiASiAP

0
i − P 0

i AP
0
i AS

2
i − P 0

i AS
2
iAP

0
i − S2

iAP
0
i AP

0
i ,

(10.55)
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It is a simple matter to write the higher order terms as well. Thus, what we have achieved is to
write Pi in a finite manner in terms of known operators. For any vector v in the Hilbert space,
Piv is an eigenvector of H. Therefore, one can obtain all eigenvectors of H as soon as one is
able to evaluate Piv on sufficiently many vectors v. In practical applications, we will apply Pi
to the eigenbasis for the unperturbed operator H0. Under assumption that Pi : V 0

i −→ Vi are
vector space isomorphisms, this produces an eigenbasis for H.

10.5 Superconformal blocks for one-dimensional N = 2

SCFTs

The goal of this section is to illustrate the general theory we have developed at the example of
N = 2 supersymmetry in one dimension, i.e. for the superconformal algebra sl(2|1).

10.5.1 Calogero-Sutherland Casimir equations

The superconformal group SL(2|1) was introduced in previous chapters. To study the Lapla-
cian, we start by defining the unprimed Cartan coordinates

g = eq̄Q−+s̄S−eκR+λlDe
u
2

(P+K)eλrDeqQ++sS+ . (10.56)

They are related to primed Cartan coordinates (8.35) by

q̄′ = eκ−
1
2
λl q̄, s̄′ = eκ+ 1

2
λl s̄, q′ = e

1
2
λrq, s′ = e−

1
2
λrs . (10.57)

The quadratic Casimir is given in terms of generators by

C2 = 2D2 + {P,K} − 1

2
R2 − [Q+, S−] + [Q−, S+] . (10.58)

There is one more algebraically independent Casimir element, of third order

C3 =

(
D2 − 1

4
R2 + PK

)
R−Q+S−

(
D +

3

2
R

)
−Q−S+

(
D − 3

2
R

)
−KQ+Q−+PS−S+−D−

1

2
R .

Typical representations of sl(2|1) can be distinguished by the values of these two Casimir
elements. This is no longer the case for short multiplets, in which both Casimirs vanish, [106].

We will assume that the R-charges of fields that enter into the correlation function add up to
zero,

∑
ri = 0. The restriction of a K-spherical function F : G(0) −→ Λg1 is denoted ω1/2G(u),

with

G(u) = G(1)(u) +G(2)(u)q̄q +G(3)(u)q̄s+G(4)(u)s̄q +G(5)(u)s̄s+G(6)(u)q̄s̄qs . (10.59)

Recall that in one dimension ω = sinh−1 u. Other components of G vanish due to B-invariance.
In primed Cartan coordinates any component of F is a covariant function that obeys

Fi(e
κR+λlDg(0)e

λrD) = erκ+aλl+bλrFi(g(0)), (10.60)
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where a = ∆2 −∆1, b = ∆3 −∆4 and r = r1 + r2. Therefore, in the unprimed coordinates, F
satisfies

ω−1/2F = erκ+aλl+bλrG(1)(u) + e(r+1)κ+(a− 1
2

)λl+(b+ 1
2

)λrG(2)(u)q̄q + e(r+1)κ+(a− 1
2

)λl+(b− 1
2

)λrG(3)(u)q̄s

+ e(r+1)κ+(a+ 1
2

)λl+(b+ 1
2

)λrG(4)(u)s̄q + e(r+1)κ+(a+ 1
2

)λl+(b− 1
2

)λrG(5)(u)s̄s+ e(r+2)κ+aλl+bλrG(6)(u)q̄s̄qs .

The reduced Laplacian can be written down directly using the general theory from above. Its
two pieces H0 and A are

H0 = −2diag
(
H

(a,b)
PT +

(r − 1)2

4
, H

(a− 1
2
,b+ 1

2
)

PT +
r2

4
, H

(a− 1
2
,b− 1

2
)

PT +
r2

4
, (10.61)

H
(a+ 1

2
,b+ 1

2
)

PT +
r2

4
, H

(a+ 1
2
,b− 1

2
)

PT +
r2

4
, H

(a,b)
PT +

(r + 1)2

4

)
,

(10.62)

and

A = −2


0 a2

1 a2
2 a1

1 a1
2 0

0 0 0 0 0 −a1
2

0 0 0 0 0 a1
1

0 0 0 0 0 a2
2

0 0 0 0 0 −a2
1

0 0 0 0 0 0

 = −2


0 − sinh u

2
cosh u

2
cosh u

2
− sinh u

2
0

0 0 0 0 0 sinh u
2

0 0 0 0 0 cosh u
2

0 0 0 0 0 cosh u
2

0 0 0 0 0 sinh u
2

0 0 0 0 0 0

 .

(10.63)
To derive these formulas, note that the SL(2)-part of the Laplacian in the above conventions

(see (5.25)), reduces upon conjugation with ω−1/2 to−2H
(a,b)
PT − 1

2
. This ”basic operator” receives

two corrections, from −R2/2 term in the quadratic Casimir and the trace terms in (10.46) to
give the top left entry of H0. In other terms along the diagonal of H0, the parameters a, b and
r receive shifts according to covariance laws in unprimed Cartan coordinates.

Two obtain the nilpotent term A, we need to compute the matrix a(u)−1 in the representation
of g0 on g+. To notations for fermionic generators that we have used are related by

X1 = Q+, X2 = S+, X1 = S−, X2 = S+ .

Therefore, the representation matrix is

π(a(u)−1)µν =

(
cosh u

2
− sinh u

2

− sinh u
2

cosh u
2

)
≡ (aµν) . (10.64)

We will introduce an additional factor for convenience and write the super CS Hamiltonian as
Hs = −1

2
(H0 +A). Notice that the above derivation did not require us to do any calculations.

The supergroup SL(2|1) is sufficiently small and one can actually obtain Hs by computing the
Laplacian in all supergroup coordinates and then imposing covariance conditions with respect
to K. We have done this as a check of our method and obtained the same operator from above.
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10.5.2 Superconformal partial waves

Having derived the supersymmetric Calogero-Sutherland Hamiltonian, we turn its eigenfunc-
tions. The form of the wavefunctions is tightly constrained by representation theory. Techni-
cally the easiest way to obtain them is to write the most general ansatz as allowed by repre-
sentation theory and then fix the undetermined coefficients using identities (10.22)-(10.23).

For each value of λ, there are six solutions of the form

G
(1)
λ = Ψ

(a,b)
λ e1,

G
(2)
λ = Ψ

(a− 1
2
,b+ 1

2
)

λ e2 +
(
α2,+Ψ

(a,b)

λ+ 1
2

+ α2,−Ψ
(a,b)

λ− 1
2

)
e1, (10.65)

G
(3)
λ = Ψ

(a− 1
2
,b− 1

2
)

λ e3 +
(
α3,+Ψ

(a,b)

λ+ 1
2

+ α3,−Ψ
(a,b)

λ− 1
2

)
e1, (10.66)

G
(4)
λ = Ψ

(a+ 1
2
,b+ 1

2
)

λ e4 +
(
α4,+Ψ

(a,b)

λ+ 1
2

+ α4,−Ψ
(a,b)

λ− 1
2

)
e1, (10.67)

G
(5)
λ = Ψ

(a+ 1
2
,b− 1

2
)

λ e5 +
(
α5,+Ψ

(a,b)

λ+ 1
2

+ α5,−Ψ
(a,b)

λ− 1
2

)
e1 (10.68)

G
(6)
λ = Ψ

(a,b)
λ e6 +

(
β2,+Ψ

(a− 1
2
,b+ 1

2
)

λ+ 1
2

+ β2,−Ψ
(a− 1

2
,b+ 1

2
)

λ− 1
2

)
e2 (10.69)

+
(
β3,+Ψ

(a− 1
2
,b− 1

2
)

λ+ 1
2

+ β3,−Ψ
(a− 1

2
,b− 1

2
)

λ− 1
2

)
e3 +

(
β4,+Ψ

(a+ 1
2
,b+ 1

2
)

λ+ 1
2

+ β4,−Ψ
(a+ 1

2
,b+ 1

2
)

λ− 1
2

)
e4 (10.70)

+
(
β5,+Ψ

(a+ 1
2
,b− 1

2
)

λ+ 1
2

+ β5,−Ψ
(a+ 1

2
,b− 1

2
)

λ− 1
2

)
e5 +

(
β1,+Ψ

(a,b)
λ+1 + β1,0Ψ

(a,b)
λ + β1,−Ψ

(a,b)
λ−1

)
e1 . (10.71)

They have the same eigenvalues as eigenfunctions of the unperturbed Hamiltonian. Explicitly

E
(1)
λ =

1

4
(r − 1)2 − λ2, E

(2)
λ = ... = E

(5)
λ =

1

4
r2 − λ2, E

(6)
λ =

1

4
(r + 1)2 − λ2 . (10.72)

Coefficients αi,±, βj,± and β1,0 are, upon substitution of (10.22)− (10.23), obtained by solving
a linear algebraic system. This gives

α2,± = ∓
γ+−
± (a− 1

2
, b+ 1

2
, λ)

λ± 1
2
r

, β2,± =
γ−+
± (a, b, λ)

±λ+ 1
2
(r + 1)

, (10.73)

α3,± = ±
γ++
± (a− 1

2
, b− 1

2
, λ)

λ± 1
2
r

, β3,± =
γ−−± (a, b, λ)

±λ+ 1
2
(r + 1)

, (10.74)

α4,± = ±
γ−−± (a+ 1

2
, b+ 1

2
, λ)

λ± 1
2
r

, β4,± =
γ++
± (a, b, λ)

±λ+ 1
2
(r + 1)

, (10.75)

α5,± = ∓
γ−+
± (a+ 1

2
, b− 1

2
, λ)

λ± 1
2
r

, β5,± =
γ+−
± (a, b, λ)

±λ+ 1
2
(r + 1)

. (10.76)
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and

β1,±1 =
−1

±2λ+ r + 1

(
β2,±γ

+−
± (a− 1

2
, b+

1

2
, λ± 1

2
)− β3,±γ

++
± (a− 1

2
, b− 1

2
, λ± 1

2
)

− β4,±γ
−−
± (a+

1

2
, b+

1

2
, λ± 1

2
) + β5,±γ

−+
± (a+

1

2
, b− 1

2
, λ± 1

2
)
)
,

β1,0 =
−1

r

∑
±

(
β2,±γ

+−
∓ (a− 1

2
, b+

1

2
, λ± 1

2
)− β3,±γ

++
∓ (a− 1

2
, b− 1

2
, λ± 1

2
)

− β4,±γ
−−
∓ (a+

1

2
, b+

1

2
, λ± 1

2
) + β5,±γ

−+
∓ (a+

1

2
, b− 1

2
, λ± 1

2
)
)
.

Notice that, with the preparation from previous sections, solving the eigenvalue problem re-
quired hardly any computation. Essentially, equations (10.46), (10.22) and (10.23) allow to
more or less directly write down the wavefunctions.

10.5.3 Multiplet shortening

Superconformal blocks that we just computed are the most complicated ones in one-dimensional
N = 2 theories and they can be used to derive the partial waves for cases in which some of the
fields in the correlator are short. However, it would be desirable if these simpler blocks could
be obtained directly, without the use of the above results. For some types of correlators this
can indeed be done. Assume that a K-spherical function F either does not depend on variables
(s, s̄) or on the other pair (q, q̄). We can impose these conditions on the expansion (10.59) by
keeping only the terms (G(1), G(2)) and (G(1), G(5)), respectively. The resulting Hamiltonians
read

H± = −2

(
H

(a,b)
PT + (r−1)2

4
− sinh u

2

0 H
(a∓ 1

2
,b± 1

2
)

PT + r2

4

)
. (10.77)

Obviously, eigenfunctions of H+ are G
(2)
λ and of H− are G

(5)
λ . Indeed, out of all eigenfunctions

of the full super CS Hamiltonian, these were the ones that did not depend on (s, s̄) and (q, q̄).

10.6 Superconformal blocks for four-dimensional N = 1

SCFTs

The goal of this section is to apply the general theory we have developed to the example of
N = 1 supersymmetry in four dimensions, i.e. for the superconformal algebra sl(4|1).

10.6.1 Casimir equations for four-dimensional N = 1 SCFTs

Even with the methods of previous sections, the computation of completely general scalar
K-spherical harmonics on the supergroup SL(4|1) requires significant additional efforts. To
appreciate this fact, notice that if the R-charges of modules Wl and Wr add up to zero, K-
spherical functions depend on 35 nilpotent invariants. Therefore, we arrive at the eigenvalue
problem for a 36× 36 matrix Hamiltonian, albeit of a relatively simple structure. We will leave
the analysis of this full Hamiltonian for another occasion and impose here further conditions
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on K-spherical functions that correspond through (7.40) to multiplet shortening in the field
theory.

We will make use of both primed and unprimed Cartan coordinates on the supergroup SL(4|1).
The unprimed ones read

g = eqαQ
α+sα̇S

α̇

eκReλlDrle
u1+u2

4
(P1+K1)−iu1−u2

4
(P2−K2)rre

λrDeq
α̇Qα̇+sαSα , (10.78)

with rl, rr as defined in (9.24). On the other hand, the primed Cartan coordinates are

g = eκReλlDrle
q′αQ

α+s′α̇S
α̇

e
u1+u2

4
(P1+K1)−iu1−u2

4
(P2−K2)eq

′α̇Qα̇+s′αSαrre
λrD . (10.79)

The explicit relation between coordinate systems (10.78) and (10.79) is written in section (8.5.1).

Let ρl and ρr be two characters of K given by

ρl(D) = 2a, ρl(R) = r, ρr(D) = −2b, ρr(R) = −r . (10.80)

In particular, ρl,r are trivial representations of the rotation group Spin(4). The pair (ρl, ρr)
defines the space of K-spherical functions Γρl,ρr = Γra,b whose elements are functions f ∈
A(SL(4|1)) with covariance properties

(∂λ′l − 2a)f = (∂λ′r − 2b)f = (∂κ′ − r)f = ∂ϕ′l1
f = ... = ∂ψ′r2

f = 0 . (10.81)

As we explained before, λ′l = λl and similarly for all other variables that appear in (10.81), but
the partial derivatives of course depend on the full system of coordinates and ∂λ′l 6= ∂λl etc.
Inside Γρl,ρr we consider two subspaces of functions that satisfy further conditions

Γ1 = {f ∈ Γρl,ρr | ∂sα̇f = ∂sαf = 0}, Γ2 = {f ∈ Γρl,ρr | ∂qα̇f = ∂qαf = 0} . (10.82)

The rest of this section is devoted to solving the eigenvalue problem for the Laplacian on spaces
Γi.

The quadratic Casimir on SL(4|1) takes the general form (10.33). The Killing form can, up
to normalisation, be computed from the supertrace in any faithful representation of sl(4|1). In
the five-dimensional representation that we have been using, the correct normalisation is

Kab = str(XaXb) . (10.83)

Then, if we set (Xµ) = (Q1̇, Q2̇, S1, S2) and (Xµ) = (S 1̇, S 2̇, Q1, Q2), one can verify that the
anticommutation relations (10.35) hold. We will rescale the Casimir (10.33) by a factor 1/4,
thereby obtaining

C2 = − 3

16
R2 +

1

4
D2 + ... . (10.84)

With such a normalisation, the coefficients of second derivatives ∂2
ui

in the super CS Hamiltonian
will be equal to 1/2.

On the two-dimensional abelian group A, a function f ∈ Γ1 restricts to ω1/2G1 with

G1 = G
(1)
1 (ui) +G

(2)
1 (ui)q1q

1̇ +G
(3)
1 (ui)q2q

2̇ +G
(4)
1 (ui)q1q

1̇q2q
2̇ . (10.85)
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Other components of G1 vanish due to requirements of B-invariance. The unperturbed part of
the Hamiltonian reads

H01 = −


Ha,b
sc + 3

16
r2 − 3

4
r 0 0

0 H̃
a− 1

4
,b+ 1

4
1
2

+ 3
16

(r + 1)2 − 3
4
(r + 1) 0

0 0 H
a− 1

2
,b+ 1

2
sc + 3

16
(r + 2)2 − 3

4
(r + 2)

 .

(10.86)
Here, the operators on the diagonal are the scalar and seed Calogero-Sutherland Hamiltonians.
Indeed, covariance conditions (10.81) and the above normalisations imply that the SO(5, 1)-
part of the Casimir gives the scalar CS Hamiltonian with an overall minus sign. This operator
receives −3r2/16 correction from the R-symmetry part in the Casimir (10.84) and a further
correction 3r/4 from the trace term in (10.46). Hence, we end up with the top left entry of H0.

To obtain the other elements on the diagonal, notice that in primed Cartan coordinates all
components of f (which is expanded in Grassmann variables) have covariance laws

f ′i(e
κR+λlDg(0)e

λrD) = erκ+2aλl+2bλrf ′i(g(0)) . (10.87)

In the unprimed coordinates, these laws receive shifts. For instance

fαα̇(xa)qαq
α̇ = f ′β

β̇
(xa)q

′
βq
′β̇ = eκ−

1
2
λl+

1
2
λrf ′β

β̇
(xa)L β

α Rα̇
β̇
qαq

α̇ (10.88)

The SU(2) matrices L and R can read off from equations of the section (8.5.1). Therefore,
components fαα̇ are covariant functions with parameters a and b shifted by ∓1/4 and r shifted
by 1. By considering rotations, we similarly conclude that fαα̇ is a (ρl = (1/2, 0), ρr = (0, 1/2))
spherical function with respect to Spin(4) (while f ′αα̇ are invariant under rotations). This leads
to the seed Hamiltonian with parameters written above. Finally, the bottom right entry of H0

is deduced by the same kind of arguments.

Having described the unperturbed Hamiltonian, let us turn to the perturbation A. It reads

A = −2


0 a3

1 a4
2 0

0 0 0 a4
2

0 0 0 a3
1

0 0 0 0

 = −2


0 sinh u1

2
− sinh u2

2
0

0 0 0 − sinh u2

2

0 0 0 sinh u1

2

0 0 0 0

 . (10.89)

To derive this, notice that in the representation g+, with the basis {Xµ} as defined above, the
element a(u1, u2) is given by

π
(
a(u1, u2)−1

)µ
ν

=


cosh u1

2
0 sinh u1

2
0

0 cosh u2

2
0 − sinh u2

2

sinh u1

2
0 cosh u1

2
0

0 − sinh u2

2
0 cosh u2

2

 ≡ (aµν) . (10.90)

Now, an inspection of the second term in (10.46) leads to (10.89).

The reduction of the Laplacian to the space Γ2 is very similar. Now, the functions restricted
to A assume the form

G2 = G
(1)
2 (ui) +G

(2)
2 (ui)s1̇s

1 +G
(3)
2 (ui)s2̇s

2 +G
(4)
2 (ui)s1̇s

1s2̇s
2 . (10.91)
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The unperturbed part of the Hamiltonian is given by

H02 = −


Ha,b
sc + 3

16
r2 − 3

4
r 0 0

0 H
a+ 1

4
,b− 1

4
1
2

+ 3
16

(r + 1)2 − 3
4
(r + 1) 0

0 0 H
a+ 1

2
,b− 1

2
sc + 3

16
(r + 2)2 − 3

4
(r + 2)

 .

(10.92)
Compared to the previous case, parameters a and b get shifted in the opposite direction, while
the shift in r stays the same. Due to the fact that (aµν) is a symmetric matrix, the nilpotent
term is the same in two cases.

A = −2


0 a1

3 a2
4 0

0 0 0 a2
4

0 0 0 a1
3

0 0 0 0

 = −2


0 sinh u1

2
− sinh u2

2
0

0 0 0 − sinh u2

2

0 0 0 sinh u1

2

0 0 0 0

 . (10.93)

To summarise, the Laplacian on SL(4|1) reduces on the spaces Γi of K-spherical functions to
operators Hi = H0i + A, with H0i written in (10.86) and (10.92) and A given in (10.89). We
now turn to solutions of the eigenvalue equations for Hi.

10.6.2 Construction of superconformal blocks

Eigenfunctions of Hamiltonians Hi are found similarly as in the one-dimensional example. We
will derive them for the operator H1 and just state the result for H2. The eigenfunctions of the
unperturbed Hamiltonian H01 read

G0
1 = φa,b∆+1,le1, G0

2 = Ψ̃
a− 1

4
,b+ 1

4
−,∆+1,l , G0

3 = Ψ̃
a− 1

4
,b+ 1

4
+,∆+1,l , G0

4 = φ
a− 1

2
,b+ 1

2
∆+1,l e4 . (10.94)

Here, {e1, ..., e4} denotes the standard basis of C4 and it is understood that the two non-zero
components of G2 and G3 are in the space spanned by e2 and e3. The corresponding eigenvalues
are

C2 = C3 =
1

4
∆(∆− 2) +

1

4
l(l + 3)− 3

16
(r − 1)2 +

3

8
, (10.95)

C1 =
1

4
∆(∆− 2) +

1

4
l(l + 2)− 3

16
(r − 2)2, C4 =

1

4
∆(∆− 2) +

1

4
l(l + 2)− 3

16
r2 . (10.96)
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Now, the most general form of eigenfunctions of H as allowed by representation theory is3

G1 = φa,b∆+1,le1, (10.98)

G2 = Ψ̃
a− 1

4
,b+ 1

4
−,∆+1,l +

(
c−1

∆,l φ
a,b

∆+ 1
2
,l

+ c−2
∆,l φ

a,b

∆+ 3
2
,l+1

)
e1, (10.99)

G3 = Ψ̃
a− 1

4
,b+ 1

4
+,∆+1,l +

(
c+1

∆,l φ
a,b

∆+ 1
2
,l+1

+ c+2
∆,l φ

a,b

∆+ 3
2
,l

)
e1, (10.100)

G4 = φ
a− 1

2
,b+ 1

2
∆+1,l e4 + c1−

∆,l Ψ̃
a− 1

4
,b+ 1

4

−,∆+ 1
2
,l

+ c2−
∆,l Ψ̃

a− 1
4
,b+ 1

4

−,∆+ 3
2
,l−1

+ c1+
∆,l Ψ̃

a− 1
4
,b+ 1

4

+,∆+ 1
2
,l−1

+ c2+
∆,l Ψ̃

a− 1
4
,b+ 1

4

+,∆+ 3
2
,l

+

+
(
k00

∆,l φ
a,b
∆,l + k01

∆,l φ
a,b
∆+1,l+1 + k10

∆,l φ
a,b
∆+1,l−1 + k11

∆,l φ
a,b
∆+2,l

)
e1 . (10.101)

Each Gi is obtained as a perturbation of G
(0)
i and they have the same eigenvalue. The con-

struction of these four solutions requires increasing orders of perturbation theory. The solution
G1 is obviously obtained at the zeroth order and equal to the scalar bosonic block G0

1. The
second and the third solution G2 and G3 are obtained at the first order while the last solution
G4 required to go to the second order. However, as before, once the Clebsch-Gordan identities
(10.26)−(10.28) are used, the above ansatz turns the eigenvalue problem into a system of linear
algebraic equations for the coefficients c±i, ci± and kij. The solutions read

c±i =
−γ±i

3
16

(3− 2r) + Csc
±i − Cseed

∆+1,l

, ci± =
γi±

3
16

(1− 2r) + Cseed
i± − Csc

∆+1,l

(10.102)

and

k00
∆,l = −

c1−
∆,lγ

−1
∆− 1

2
,l

+ c1+
∆,lγ

+1
∆− 1

2
,l−1

3
4
(1− r)− C∆+1,l + C∆,l

, k01
∆,l = −

c1−
∆,lγ

−2
∆− 1

2
,l

+ c2+
∆,lγ

+1
∆+ 1

2
,l

3
4
(1− r)− C∆+1,l + C∆+1,l+1

, (10.103)

k10
∆,l = −

c2−
∆,lγ

−1
∆+ 1

2
,l−1

+ c1+
∆,lγ

+2
∆− 1

2
,l−1

3
4
(1− r)− C∆+1,l + C∆+1,l−1

, k11
∆,l = −

c2−
∆,lγ

−2
∆+ 1

2
,l−1

+ c2+
∆,lγ

+2
∆+ 1

2
,l

3
4
(1− r)− C∆+1,l + C∆+2,l

. (10.104)

Here, we have introduced the notation(
Cσ
−1 Cσ

−2

Cσ
+1 Cσ

+2

)
=

(
Cσ

∆+ 1
2
,l

Cσ
∆+ 3

2
,l+1

Cσ
∆+ 1

2
,l+1

Cσ
∆+ 3

2
,l

)
,

(
Cσ

1− Cσ
1+

Cσ
2− Cσ

2+

)
=

(
Cσ

∆+ 1
2
,l

Cσ
∆+ 1

2
,l−1

Cσ
∆+ 3

2
,l−1

Cσ
∆+ 3

2
,l

)
,

(10.105)

3The tensor product of any given finite dimensional SO(d + 1, 1) representation Tν labelled by a Young
tableau ν and the induced representation π∆,µ can be decomposed into a finite sum of induced representations
as

Tν ⊗ π∆,µ =

j⊕
i=−j

⊕
λ∈νi⊗µ

π∆+i,λ (10.97)

where indices (i, νi) are defined through the decomposition of the SO(d+2) representation ν with respect to its
SO(2)×SO(d) subgroup and enumerate a (semi) integer SO(2) conformal weight i along with an SO(d) Young
tableau νi.Bosonic conformal blocks are particular matrix elements of some representation π∆,µ of G(0), [9].
In the course of perturbation theory they are multiplied by matrix elements of the fundamental representation
π = πf of G(0). Therefore, the bosonic blocks that appear in the n-th order of the perturbation theory are

matrix elements of π∆,µ ⊗ π⊗nf . This fixes the functional form of our solutions.
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for σ = sc, seed. This completes our discussion of the solution to the eigenvalue problem of
H1 and thereby the construction of harmonic functions in the space Γ1. Harmonics in Γ2 are
very similar. This is in particular due to symmetry properties of seed blocks (10.20)− (10.21).
In fact, these relations can be used to find eigenfunctions of H2 based on the solutions for H1.
They are

G1 = φa,b∆+1,le1, (10.106)

G2 = Ψ
a+ 1

4
,b− 1

4
+,∆+1,l +

(
d+1

∆,l φ
a,b

∆+ 1
2
,l

+ d+2
∆,l φ

a,b

∆+ 3
2
,l+1

)
e1, (10.107)

G3 = Ψ
a+ 1

4
,b− 1

4
−,∆+1,l +

(
d−1

∆,l φ
a,b

∆+ 1
2
,l+1

+ d−2
∆,l φ

a,b

∆+ 3
2
,l

)
e1, (10.108)

G4 = φ
a+ 1

2
,b− 1

2
∆+1,l e4 + d1+

∆,l Ψ
a+ 1

4
,b− 1

4

+,∆+ 1
2
,l

+ d2+
∆,l Ψ

a+ 1
4
,b− 1

4

+,∆+ 3
2
,l−1

+ d1−
∆,l Ψ

a+ 1
4
,b− 1

4

−,∆+ 1
2
,l−1

+ d2−
∆,l Ψ

a+ 1
4
,b− 1

4

−,∆+ 3
2
,l

+

+
(
κ00

∆,l φ
a,b
∆,l + κ01

∆,l φ
a,b
∆+1,l+1 + κ10

∆,l φ
a,b
∆+1,l−1 + κ11

∆,l φ
a,b
∆+2,l

)
e1, (10.109)

with the coefficients

d+i = −1

2
(−1)−2a−2bc−i(−a,−b), d−i = −2(−1)−2a−2bc+i(−a,−b), (10.110)

di− = −1

2
(−1)2a+2bci+(−a,−b), di+ = −2(−1)2a+2bci−(−a,−b), (10.111)

and
κij = kij(−a,−b) . (10.112)

This concludes our discussion of four-dimensional superconformal blocks.
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Chapter 11

Defect conformal correlators and
conformal blocks

In the introductory chapters we have mentioned that techniques of conformal bootstrap apply
to theories in which conformal symmetry is broken to a subgroup. The subgroup in question
consists of all those conformal transformation that preserve some submanifold of the full space,
conventionally referred to as the defect. Defects typically model an impurity in a statistical
system or a boundary of the experimental setup. In order to be able to apply the bootstrap
methods, the broken symmetry group has to be sufficiently large and therefore, the defect is
usually assumed to be a p-dimensional subspace of Rd. Then, in a way not very different
from that in ordinary CFTs, one can expand correlators in partial waves and formulate the
appropriate crossing symmetry relations.

Since the symmetry group is reduced, correlation functions are less constrained compared to
those of CFTs. The functional form of correlators, as allowed by symmetry, was determined
in [63, 64, 126] and the possible tensor structures that appear in them were subsequently
studied in [127, 128, 129]. A simple analysis shows that the smallest correlator not fixed by
Ward identities is the two-point function of bulk fields. Corresponding conformal blocks were
first computed in [60] and slightly more generally in [61, 62] (see also [130, 131] for related
work). While these kinematical aspects are similar in spirit to those of ordinary conformal
theories, the bootstrap analysis proceeds very differently. Namely, coefficients that appear in the
crossing equations are no longer positive, which makes it difficult to use numerical techniques
(see however [132, 133]). However, the equations may be amenable to analytic treatments,
[134, 135]. In this regard, especially popular are defects of codimension one, i.e. boundaries.
In the presence of a boundary, two-point functions of bulk operators depend on a single cross
ratio and can be analysed using methods of one-dimensional CFTs, [136, 137, 138, 139].

In this chapter, we will not be concerned with these interesting questions about dynamics, but
instead try to construct a unified theory for the kinematical aspects of defect CFTs. It turns
out that harmonic analysis provides a very satisfactory (in our opinion) such a theory, based
on the notion of a lift of a conformal field. In ordinary conformal field theory, functions on the
Euclidean space can be lifted to covariant functions on the conformal group Gd in a way that
carries the action on fields to the left-regular action of Gd. In other words, the lifting is an
intertwiner between two different realisations of a non-unitary principal series representation
of Gd. The correspondence between functions on M and covariant functions on Gd becomes
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particularly clear when the conformal group is decomposed into Bruhat factors. Then, one of
the factors is diffeomorphic to the spacetime and the remaining ones make up the parabolic
subgroup P , with respect to which covariance laws are imposed.

It turns out that a similar realisation of fields as functions on the symmetry group is possible
also in defect CFTs. Fields on the defect can be lifted to the group in the obvious way, but
it is a priori not clear how to lift the bulk fields, since the spacetime M can no longer be
naturally regarded as a subset of Gd,p. However, we will see that the Iwasawa decomposition
of Gp provides us with the correct group to replace P with. This will allow us to explicitly lift
bulk fields to functions on Gd,p so that the CFT action on them is carried to the left-regular
one.

This initial step places us in a favourable situation where correlation functions of m bulk and
n defect fields are represented as certain covariant functions on Gm+n

d,p . By making some very
natural transformations from the group theory point of view, such functions are reduced to
ones on a smaller number of copies of Gd,p. Notice that this is precisely what we have done
in ordinary CFTs to relate four-point functions to K-spherical functions through (7.40). We
will obtain formulas similar to (7.40) for various two- and three-point functions. In each case,
the space of solutions to Ward identities is put in bijective correspondence with that of certain
covariant functions on Gd,p.

Conformal partial waves in defect theories can, similarly as in ordinary CFTs, be characterised
as solutions to appropriate Casimir equations. However, for bulk-bulk-defect three-point func-
tions or higher, there is more than one quadratic Casimir operator (here, we are not merely
talking about the fact that quadratic Casimirs of two simple factors of Gd,p commute). Under
the above correspondence, one of these Casimirs is mapped to the Laplacian on Gd,p. For
bulk-bulk two-point functions and bulk-defect-defect three-point functions, there is essentially
one non-trivial cross ratio and one quadratic Casimir. It is mapped to the Laplacian and the
eigenfunctions are constructed in terms of one-variable hypergeometric functions. We say ”es-
sentially”, because all defect correlators depend on one ”transverse” cross ratio κ. Casimir
equations factorise in the transverse and longitudinal variables and any conformal block is a
function of the longitudinal cross ratios multiplied by a Gegenbauer polynomial in cosκ.

In this sense, the first truly non-trivial correlator to consider is the bulk-bulk-defect three-point
function. It depends on three cross ratios, κ and two longitudinal variables v1,2. Correspond-
ingly, there are two quadratic Casimir operators that arise physically by bringing each of the
bulk fields to the defect and performing the bulk-defect OPE. Either of these Casimirs can be
brought to the Laplacian by an appropriate version of our map, but obviously not both simul-
taneously. Nevertheless, one can pick one of these maps and compute the two second order
operators in vi. It turns out that the operators form the Appell’s system of hypergeometric
equations. This will allow us to construct the partial waves in terms of Appell’s function F4

(and Gegenbauer polynomials in cosκ). Our result is the first of its kind - all previous studies
focused on blocks that can be built by solving one-variable problems. Indeed, blocks for the
three-point function of one bulk and two defect fields were constructed only recently in [58],
where the authors also considered the more difficult case of two bulk and one defect field.
The latter blocks were determined for special configurations of points that are parametrised
by two cross ratios. Upon restriction to a two-dimensional submanifold of configurations, our
results reproduce those of [58]. Before computing bulk-bulk-defect partial waves, we will treat
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two-point functions and bulk-defect-defect three-point functions. Our findings agree with the
existing literature wherever a comparison is possible.

Constructions just described lead to some natural questions. Can we go on and compute partial
waves for higher-point functions? And should we care? To start with the second question, the
study of multipoint functions in (ordinary or defect) conformal field theories is in its early
stages, but holds a promise of being very rewarding. We will give the basic reasoning for such
an expectation in the next chapter. That said, the four-point function of two bulk and two
defect fields seems to be within reach of our current methods. It still admits a representation
as a function on a single copy of Gd,p and depends on five variables. In fact, the representation
takes G2,2(xi) to a spherical function (which is e.g. not the case for G2,1(xi) or G1,2(xi)), so
despite a large number of cross ratios, there is a hope of developing a well-behaved theory for
the blocks. Analysis of this correlator is certainly an interesting problem for the future.

The chapter is organised as follows. In the first section, we will introduce the notion of a lift and
discuss under which circumstances is such a lift compatible with the action of the symmetry
group. In the second section, the lifts of scalar bulk and defect conformal fields to functions
on the defect conformal group are constructed. Later parts of the chapter use these results to
provide new representations of various two- and three-point functions and compute associated
partial waves. In particular, our main new results are given in the last section. The chapter is
almost entirely based on the article [7].

11.1 Lifting conformal primary fields

In earlier chapters we have on many occasions used the fact that fields in a CFT carry a principal
series representation of the conformal group. The mathematical origin of this fact was that
the spacetime Rd ∪ {∞} could be identified with the nilpotent factor of the Bruhat (Gauss)
decomposition of G. Thus, we could extend any function on M to the whole group using some
specified covariance law with respect to the parabolic subgroup P . The resulting function was a
vector in a (non-unitary) principal series representation of G. Finally, the extension was shown
to carry the usual action on spacetime fields to the (restriction of the) left-regular action of G.

We shall now generalise this construction and realise the field representations of a defect con-
formal theory as induced representations of the defect conformal group. Let ϕ : M −→ W be
a bulk primary field valued in some vector space W . The space of fields carries a representa-
tion of the conformal group Gd, and thus by restriction, of the defect group Gd,p as well. The
representation, denoted π, is given by

(πhϕ)(hx) = ρ(dhx)ϕ(x) = ρ(k(x, h))ϕ(x) . (11.1)

Here, ρ is the representation of the group Kd = SO(1, 1) × SO(d) that characterises transfor-
mation properties of ϕ. Further, h is an arbitrary element of Gd,p and dh is its differential when
h is regarded as a smooth map M −→M .

In order to extend the field ϕ to a vector valued function f : Gd,p −→ W on the defect conformal
group, we will specify four pieces of data. First, we need an embedding of the bulk space M
into the defect conformal group,

gd : M −→ Gd,p . (11.2)
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This replaces the identification of the spacetime with the group of translations in Gd. Since the
group of translations Rd is not contained in Gd,p there is no obviously natural way to regard
M as a submanifold of Gd,p, and therefore we keep gd as part of the lift data. On the manifold
gd(M) we require that f agrees with ϕ, possibly up to some specified prefactor Φ(x)

f(gd(x)) = Φ(x)ϕ(x) . (11.3)

Next, we pick a subgroup Sd,p ⊂ Gd,p such that almost all of its orbits in Gd,p (under the
right-regular action) intersect gd(M) exactly once. We postulate that f is right-covariant with
respect to Sd,p

f(gs) = µ(s)−1f(g), g ∈ Gd,p, s ∈ Sd,p . (11.4)

Here, µ : Sd,p −→ Aut(W ) is some finite-dimensional representation of Sd,p. Clearly, the function
f is uniquely determined almost everywhere on Gd,p by the properties (11.3) and (11.4). We
shall call the quadruple (gd, Sd,p, µ,Φ) a lift of the bulk field. By definition, the function f is an

element of the induced module Ind
Gd,p
Sd,p

µ and there is a bijective correspondence between Ind
Gd,p
Sd,p

µ
and the space of fields ϕ. We wish to determine under what conditions is this correspondence
an isomorphism of representations.

As the first step in this direction, note that the data just introduced allows to factorise almost
all elements of Gd,p uniquely as g = gd(x)s. Moreover, it defines an action of Gd,p on the space
M as follows. Given any h ∈ Gd,p, the factorisation

hgd(x) = gd(y(x, h))sd(x, h), (11.5)

defines functions y(x, h) and sd(x, h). In particular, the function y(x, h) is an action of the
group Gd,p on the bulk space. Indeed, we can write h1h2gd(x) in two ways

h1h2gd(x) = gd(y(x, h1h2))sd(x, h1h2)

= h1gd(y(x, h2))sd(x, h2) = gd(y(y(x, h2), h1))sd(y(x, h2), h1)sd(x, h1) .

The product of last two terms in the second line is again an element of Sd,p, so we conclude

y(x, h1h2) = y(y(x, h2), h1) .

This precisely says that y(x, h) is an action of Gd,p on M . In principle, this action may or
may not coincide with the geometric action of the defect conformal group on the bulk.1 This
depends both on the map gd and on the subgroup Sd,p, but not on Φ or µ. If the action y(x, h)
is the geometric action on M we shall say that the lift is geometric.

Having a geometric lift goes a long way towards a construction of an intertwiner. For, let fϕ be
the lift of a function ϕ and denote by L the left regular representation of Gd,p. Then we have

Lh−1fϕ(g) = fϕ(hg) = fϕ(hgd(x)s) = fϕ (gd(y(x, h))sd(x, h)s) = µ(s−1)µ(sd(x, h)−1)

Φ(y(x, h)))ϕ(y(x, h)) = µ(s−1)Φ(x)πh−1ϕ(x) = µ(s−1)fπh−1ϕ(gd(x)) = fπh−1ϕ(g) .

In order to get to the second line we have used the fact that the lift is geometric and the identity

µ(sd(x, h)−1)Φ(hx)ϕ(hx) = Φ(x)πh−1ϕ(x) .

1The geometric action of a transformation h on the point x is always written as hx.
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Looking back at (11.1) , a sufficient condition for this identity to hold is

Φ(hx)−1µ(sd(x, h))Φ(x) = ρ(k(x, h)) . (11.6)

This is an equation for both Φ and µ that were left completely arbitrary by the requirement of
geometricity of the lift. If they are satisfied, the lift is an intertwiner between the representation
on fields ϕ and the left regular representation of Gd,p restricted to the space of right Sd,p-
covariant functions. We observe that, if ρ is trivial, then a geometric lift with Φ = 1 and µ = 1
is an intertwiner.

11.2 Construction of the lift

Let us now explicitly construct a geometric lift of bulk fields to the defect conformal group.
The group with respect to which the associated function f is required to be covariant is

Sd,p = SO(p+ 1)× SO(q − 1) . (11.7)

It is generated by rotations in the defect plane, transverse rotations that preserve one particular
direction, say ed, together with elements of the form Pa −Ka. Next, we embed the bulk space
into Gd,p by the map

gd : Rd −→ Gd,p, gd(x) = ex
aPa|x⊥|Deϕ

iMid . (11.8)

Here ϕp+1, ..., ϕd−1 are the angles of a spherical coordinate system on Rq. To be precise, these
coordinates are defined in such a way that eϕ

iMid maps the vector ed to x⊥/|x⊥| in Rq. There is
a unique element with this property of the above form. To show that the pair (Sd,p, gd) defines
a geometric lift, we determine y(x, h) and sd(x, h)

m(x̂′)ex
aPa |x⊥|Deϕ

iMid = e(x̂′+x)aPa|x⊥|Deϕ
iMid =⇒ y(x,m(x̂′)) = m(x̂′)x, sd(x,m(x̂′)) = 1,

eλDex
aPa |x⊥|Deϕ

iMid = e(eλx)aPa(eλ|x⊥|)Deϕ
iMid =⇒ y(x, eλD) = eλDx, sd(x, e

λD) = 1,

rpe
xaPa|x⊥|Deϕ

iMid = e(rpx)aPa |x⊥|Deϕ
iMidrp =⇒ y(x, rp) = rpx, sd(x, rp) = rp .

Here rp ∈ SO(p). Let us now consider transverse rotations rq ∈ SO(q). In order for the
decomposition

rqe
xaPa|x⊥|Deϕ

iMid = ex
aPa|x⊥|Drqeϕ

iMid = ex
aPa |x⊥|Deψ

iMidr′q−1, (11.9)

to hold, we must have the equality

rqe
ϕiMid = eψ

iMidr′q−1 . (11.10)

Here the factor r′q−1 belongs to the group SO(q − 1) that stabilises the vector ed. If one acts
with both sides on ed, one learns

1

|x⊥|
rq(x⊥) = rq

(
x⊥
|x⊥|

)
= eψ

iMid(ed) =
y⊥(x, rq)

|y⊥(x, rq)|
. (11.11)
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But we already know from the dilation factor in the decomposition (11.9) that |y⊥(x, rq)| = |x⊥|,
so we conclude

y(x, rq) = rqx, sd(rq, x) = r′q−1 . (11.12)

The precise form of r′q−1 is not important for us at the moment, but we observe that r′q−1 = rq
whenever rq ∈ SO(q − 1). This follows from the fact that the space spanned by {Mid} is
closed under conjugation by elements in SO(q − 1) (it carries the vector representation under
the adjoint action). Finally, the action of the Weyl inversion wp is found with the help of the
Iwasawa decomposition

wpgd(x) = e

(
spx‖
|x‖|

2

)a
Pa
e−spx

a
‖Ka |x‖|−2Dsepsx‖|x⊥|

Deϕ
iMid

= e

(
spx‖
|x‖|

2

)a
Pa
(
|x⊥|
|x‖|2

)D
e
− |x⊥|
|x‖|

2 spx
a
‖Ka

sepsx‖e
ϕiMid

= e

(
spx‖
|x‖|

2

)a
Pa
(
|x⊥|
|x‖|2

)D
e

(
−
|x⊥|spx‖/|x‖|

2

1+|x⊥|2/|x‖|
2

)a
Pa
(

1 +
|x⊥|2

|x‖|2

)−D
kI

(
−|x⊥|spx‖
|x‖|2

)
sepsx‖e

ϕiMid

= e

( spx‖
|x|2

)a
Pa

(
|x⊥|
|x|2

)D
eϕ

iMidkI

(
−|x⊥|spx‖
|x‖|2

)
sepsx‖ .

The decomposition was used to get to the second to last line by an application of (4.18).
We also applied the Gp-Bruhat decomposition in the first step. Other manipulations in the
derivation above, such as moving dilations past rotations and special conformal transformations,
are evident. We read off

y(x,wp) = wpx, sd(x,wp) = kI

(
−|x⊥|spx‖
|x‖|2

)
sepsx‖ . (11.13)

Elements of the form m(x̂′), eλD, rp, rq together with the Weyl inversion wp generate the whole
defect conformal group. Therefore, we have the following important corollary

y(x, h) = hx, h ∈ Gd,p . (11.14)

The action y(x, h) defined in the manner explained above through the choice of the group
(11.7) and the embedding (11.8) is precisely the action of the defect conformal group on the
bulk space. That is, (gd, Sd,p) gives rise to a geometric lift. The equation (11.14) is the most
important result of this chapter and all subsequent applications will rely on it in an essential
way.

Having found the group Sd,p and the map gd, we still need to solve equations (11.6) in order
to turn a lift into a morphism of representations. For various types of group elements, the
equations read

Φ(m(x̂′)x)−1Φ(x) = 1, Φ(eλDx)−1Φ(x) = e−∆λ, Φ(rpx)−1µ(rp)Φ(x) = ρ(rp), (11.15)

Φ(rqx)−1µ(r′q−1)Φ(x) = ρ(rq), Φ(wpx)−1µ

(
kI

(
−|x⊥|spx‖
|x‖|2

)
sepsx‖

)
Φ(x) = ρ(k(x,wp)) .

(11.16)
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We learn that Φ is a homogeneous function of x⊥, that is

Φ = Φ(x⊥), Φ(λx⊥) = λ∆Φ(x⊥) . (11.17)

Under these conditions, the remaining equations simplify

Φ(x⊥)ρ(rp) = µ(rp)Φ(x⊥), Φ(rqx⊥)ρ(rq) = µ(r′q−1)Φ(x⊥), (11.18)

Φ(x⊥)−1µ

(
kI

(
−|x⊥|spx‖
|x‖|2

)
sepsx‖

)
Φ(x⊥) = ρ(sepsx) . (11.19)

Let us consider the case of a scalar bulk field and try to put µ to be the trivial representation.
Then the equations (11.18) and (11.19) give only one non-trivial condition

Φ(rqx⊥) = Φ(x⊥) . (11.20)

Combining it with (11.17) we arrive at the unique solution

Φ(x) = |x⊥|∆ . (11.21)

Thus, we have constructed an isomorphism between scalar fields in the bulk and a class of
covariant functions on Gd,p. As this is the only setup that we will consider in applications of
later sections, we will not discuss extensions to the case of spinning bulk fields at present.

Example Let us illustrate parts of the above discussion on the simplest non-trivial example,
that of a line defect in a two-dimensional conformal field theory. The conformal group of the
Euclidean plane is Gd ∼ SO(3, 1) and the defect group is Gd,p ∼ SO(2, 1). Let gd = so(3, 1) be
the complexified Lie algebra of Gd. We choose its basis

gd = span{Pµ, Kµ, D,M}, µ = 1, 2 . (11.22)

The notation here is M = M12 = −M21. The representation on fields of conformal weight ∆
and spin l by differential operators reads

pµ = ∂µ, mµν = xν∂µ− xµ∂ν − lεµν , d = xµ∂µ + ∆, kµ = x2∂µ− 2xµd− 2lxνεµν . (11.23)

The Levi-Civita symbol has ε12 = 1. Differential operators satisfy the opposite brackets com-
pared to the generators (11.22). The defect algebra is spanned by {P1, K1, D} and is isomorphic
to the Lie algebra of the conformal group in one dimension. We write the differential operators
explicitly

p1 = ∂1, d = x1∂1 + x2∂2 + ∆, k1 = (x2
2 − x2

1)∂1 − 2x1x2∂2 − 2∆x1 − 2lx2 . (11.24)

These operators should be compared with the right-invariant vector fields on SL(2,R) in the
coordinates specified by

g = gd(x)eµ(P1−K1) = ex1P1elog x2Deµ(P1−K1) . (11.25)

The vector fields are computed form the Maurer-Cartan form to give

p̃ = ∂1, d̃ = x1∂1 + x2∂2, k̃ = (x2
2 − x2

1)∂1 − 2x1x2∂2 − x2∂µ . (11.26)

If we look at scalar fields, the construction above instructs us to set ∂µ = 0 and conjugate the
operators (11.26) by |x2|−∆ in order to obtain (11.24) with l = 0. A simple calculation verifies
that this is indeed the case.
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11.2.1 Lifts of defect fields

Lifts of defect fields ϕ̂ : N −→ Ŵ are defined completely analogously to those of fields in the
bulk. These can be constructed in the same way as for ordinary CFTs. The representation of
Gd,p on ϕ̂ reads

(π̂hϕ̂)(hx̂) = ρ̂(dhx̂)ϕ̂(x̂) . (11.27)

In order to lift ϕ̂ from N to the defect conformal group, we must fix an embedding gp : N −→ Gd,p

that intersects almost all orbits of the right regular action of Ŝd,p on Gd,p exactly once. The
embedding we will be using is given by

gp(x̂) = ex̂
aPa . (11.28)

Clearly, there is a decomposition Gd,p = gp(N)Ŝd,p with the group

Ŝd,p = (SO(1, 1)× SO(p)) nRp × SO(q), (11.29)

generated by dilations, special conformal transformations and (parallel and transverse) rota-
tions. The action of the defect conformal group on the points x̂ is transitive and the stabiliser
of any point is isomorphic to Ŝd,p (stabilisers of different points are related by conjugation). As

the lift of the defect primary ϕ̂ we define the function f̂ : Gd,p −→ Ŵ which agrees with ϕ̂ on

gp(N) and transforms covariantly under the right multiplication by ŝ ∈ Ŝd,p,

f̂(gp(x̂)) = ϕ̂(x̂), f̂(gŝ) = µ̂(ŝ)−1f̂(g), g ∈ Gd,p, ŝ ∈ Ŝd,p . (11.30)

Here, µ̂ is the finite-dimensional representation of Ŝd,p obtained from the representation ρ̂ by
trivial extension to the abelian factor Rp. Clearly, conditions (11.30) define f uniquely almost
everywhere on Gd,p and the lift defined in this way is an intertwiner.

For future reference, we introduce the notation for the factorisation

hgp(x̂) = gp(ŷ(x̂, h))ŝp(x̂, h) for h ∈ Gd,p . (11.31)

These factors are essentially the same as in an ordinary conformal field theory, since transverse
rotations commute with the image of gp.

11.3 Lifting correlation functions

The lifts of bulk and defect fields that we just constructed can be used to write down a new
representation of correlation functions as functions on a number of copies of the defect conformal
group. A correlator of m bulk and n defect fields will be written in terms of a covariant function
on Gm+n

d,p . Our goal is to eventually end up with functions on just one copy of Gd,p which can
be done if the number of insertion points is sufficiently small. As a first step in this direction,
we will show how one can lift pairs of bulk and defect fields, a trick that will be useful when
we come to analyse three-point functions later.

Ward identities satisfied by a correlation function of m bulk and n defect fields can be compactly
written using the field representations πi and π̂j as

Gm,n = (π1(h)⊗ ...⊗ π̂n(h))Gm,n . (11.32)
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That is, Gm,n is an invariant vector in the tensor product π1 ⊗ ... ⊗ π̂n. Let us now assume

that we are given two sets of intertwiners (gd, Sd,p, µi,Φi) and (gp, Ŝd,p, µ̂j, Φ̂j) as described in

the last section (in particular Φ̂j = 1). They allow to lift any solution to the Ward identities
Gm,n to a function Fm,n : Gm+n

d,p −→ W (W is the tensor product of spaces of polarisations of the
fields) which satisfies

Fm,n(gd(x1), ..., gp(x̂n)) = Φ1(x1)...Φ̂n(x̂n)Gm,n(x1, ..., x̂n), (11.33)

and is right covariant

Fm,n(g1s1, ..., gmsm, gm+1ŝ1, ..., gm+nŝn) = (11.34)

=
(
µ1(s−1

1 )⊗ ...⊗ µm(s−1
m )⊗ µ̂1(ŝ−1

1 )⊗ ...⊗ µ̂n(ŝ−1
n )
)
Fm,n(g1, ..., gm+n) . (11.35)

These two properties ensure that Fm,n is defined almost everywhere on Gm+n
d,p . Now, the invari-

ance of Gm,n, (11.32), and the intertwining property of lifts imply that Fm,n is invariant under
the diagonal left regular action of Gd,p

Fm,n(hgi) = Fm,n(gi) . (11.36)

The function Fm,n is our new representation of the correlator and the starting point for several
other representations that will be constructed below.

11.3.1 Pairing up bulk and defect fields

A tool that efficiently reduces the number of copies needed to encode the function Fm,n is
”pairing up bulk and defect points”. We can think of it as lifting pairs of fields, rather than
individual ones. We now explain this process in more detail.

As mentioned before, functions f, f̂ belong to induced representations of the defect conformal
group

f ∈ π = Ind
Gd,p
Sd,p

W, f̂ ∈ π̂ = Ind
Gd,p

Ŝd,p
Ŵ . (11.37)

We have used the same notation π, π̂ as for the representations on fields because our analysis
indeed showed that these representations are isomorphic to one another. The tensor product
π ⊗ π̂ is naturally realised in the space of functions

F : G2
d,p −→ W ⊗ Ŵ , F (g1s, g2ŝ) =

(
µ(s)−1 ⊗ µ̂(ŝ)−1

)
F (g1, g2), (11.38)

under the diagonal left-regular action. We will be interested in another way of realising this
representation:

Proposition Let K = SO(p)×SO(q− 1) be the stabiliser of a pair of one bulk and one defect
point in Gd,p. The following is an isomorphism of Gd,p-modules

Q : π ⊗ π̂ −→ χ = Ind
Gd,p
K (µ⊗ µ̂), (QF )(g) = F (g, g) . (11.39)

Thus, Q is essentially composing a function F with the coproduct map on the group algebra
L1(G). It is the properties of the coproduct that ensure Q respects the Gd,p-action.
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Proof: First, observe that the representation χ is well-defined. Indeed, both µ and µ̂ are
representations of K by restriction. Let us show that Q(F ) ∈ χ, that is, that is has the
required covariant properties

Q(F )(gk) = F (gk, gk) =
(
µ(k)−1 ⊗ µ̂(k)−1

)
F (g, g) = (µ⊗ µ̂)(k−1)Q(F )(g) . (11.40)

Thus, Q is well-defined. It is clearly a Gd,p-module homomorphism

Q(g · F )(g′) = (g · F )(g′, g′) = F (gg′, gg′) = Q(F )(gg′) = (g ·Q(F ))(g′) . (11.41)

It remains to prove that Q is a bijection. To this end, notice that almost any element g ∈ Gd,p

can be written as g = ŝs with ŝ ∈ Ŝd,p and s ∈ Sd,p. This is true by the following argument

g = gpgq = nI(gp)aI(gp)kI(gp)gq = nI(gp)aI(gp)gq kI(gp) . (11.42)

In the first step, we have written g as a product of elements in SO(p+ 1, 1) and SO(q). Then
we have factorised the first term according to the Iwasawa decomposition and moved gq past
kI(gp). The last expression is of the correct form ŝs.

We can now reconstruct F from Q(F ). Given two elements g1, g2 ∈ Gd,p, let s1, ŝ2, be the above
solutions to the decomposition g−1

2 g1 = ŝ2s
−1
1 . Then we have

F (g1, g2) = (µ(s1)⊗ µ̂(ŝ2))F (g1s1, g2ŝ2)

= (µ(s1)⊗ µ̂(ŝ2))F (g1s1, g1s1) = (µ(s1)⊗ µ̂2(ŝ2))Q(F )(g1s1) .

This completes the proof of the proposition.

As a consequence, we can lift a pair of primary fields, one bulk and one defect, by composing
the individual lifts with the isomorphism Q. The constructions allows us to uplift correlation
functions of m bulk and n defect fields to the product group with max(m,n)− 1 factors Gd,p.
In particular, correlation functions of two bulk and two defect fields can be lifted to functions
on a single copy of the defect conformal group.

11.3.2 An example: bulk-defect two-point function

As a simple example of the above ideas, let us determine the form of a two-point function of one
bulk and one defect field, G1,1(xi). The correlator G1,1(xi) lifts to a function F1,1 : G2

d,p −→ V
which satisfies

F1,1(g1s1, g2ŝ2) =
(
µ1(s−1

1 )⊗ µ̂2(ŝ−1
2 )
)
F1,1(g1, g2), F1,1(hgi) = F1,1(gi) . (11.43)

Let us put F = Q(F1,1) , that is F (g) = F1,1(g, g). Then F is a constant function

F (hg) = F1,1(hg, hg) = F1,1(g, g) = F (g) . (11.44)

To write the two-point function in terms of F we need to Iwasawa-decompose

g12(xi) = gp(x̂2)−1gd(x1) = e(xa1−x̂a2)Pa|x1⊥|Deϕ
iMid ≡ ŝ12s

−1
12 . (11.45)
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As explained in the previous section, s12 and ŝ12 are essentially the Iwasawa factors of g12. We
have

ex̂
a
12Pa |x1⊥|D = |x1⊥|De

x̂a12
|x1⊥|

Pa = |x1⊥|De
|x1⊥|x̂

a
12

x2
1⊥+x̂2

12
Ka
(
x̂2

12 + x2
1⊥

x2
1⊥

)D
kI

(
− x̂12

|x1⊥|

)
= e

x̂a12
x2
1⊥+x̂2

12
Ka
(
x̂2

12 + x2
1⊥

|x1⊥|

)D
kI

(
x̂21

|x1⊥|

)
.

Therefore, the factors are

ŝ12 = e
x̂a12

x2
1⊥+x̂2

12
Ka
(
x̂2

12 + x2
1⊥

|x1⊥|

)D
eϕ

i
1Mid , s12 = kI

(
x̂21

|x1⊥|

)−1

. (11.46)

In terms of F , the two point function reads

G1,1(xi) =
1

Φ1(x1)
F1,1(gd(x1), gp(x̂2)) =

1

Φ1(x1)
(µ1(s12)⊗ ρ̂2(ŝ12))F (gd(x1)s12) . (11.47)

Let us evaluate this expression further in the case where the bulk field is a scalar. Then we
should put µ1 = 1, hence

G1,1(xi) = c
(x2

1⊥ + x̂2
12)−∆2̂

|x1⊥|∆12̂
ρ̂2(eϕ

i
1Mid), (11.48)

for some constant c (such that F ≡ c). We have written the conformal dimensions of two fields
as ∆1 and ∆2̂ and used the shorthand notation ∆12̂ = ∆1 −∆2̂. If one assumes the transverse
(internal) spin of the second field to be trivial, i.e. ρ̂2(eϕ

i
1Mid) = 1, one recognises the usual

expression for the two-point function.

11.4 Bulk-bulk two-point function

Let us move to two-point functions of bulk fields. Their kinematical form is no longer completely
fixed by symmetry and there are two invariants on which they can depend. According to the
general theory, the correlator G2,0(xi) lifts to a function F2,0 : G2

d,p −→ W which satisfies

F2,0(g1s1, g2s2) =
(
µ1(s−1

1 )⊗ µ2(s−1
2 )
)
F2,0(g1, g2), F2,0(hgi) = F2,0(gi) . (11.49)

Let us define a function F : Gd,p −→ W by F (g) = F2,0(e, g). We can easily recover F2,0 from F
using the above covariance properties

F2,0(g1, g2) = F2,0(e, g−1
1 g2) = F (g−1

1 g2) .

On the other hand, F is left-right covariant with respect to the subgroup Sd,p ⊂ Gd,p

F (s1gs2) = F2,0(e, s1gs2) = F2,0(s−1
1 , gs2) =

(
µ1(s1)⊗ µ2(s−1

2 )
)
F2,0(e, g) =

(
µ1(s1)⊗ µ2(s−1

2 )
)
F (g) .

Therefore F can be regarded as a function on the double quotient M2pt = Sd,p\Gd,p/Sd,p. This
space is two-dimensional as almost any element of Gd,p can be written in the form

g = rp+1
l eλDrp+1

r rq−1
l eκMd−1,drq−1

r , (11.50)
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with rp+1
l,r ∈ SO(p+ 1) and rq−1

l,r ∈ SO(q − 1). We will refer to this factorisation as the Cartan
decomposition of g, as it is indeed the Cartan decomposition on each simple factor of Gd,p. The
space M2pt is the direct product of two double quotients of similar forms, SO(p + 1)\SO(p +
1, 1)/SO(p+1) and SO(q−1)\SO(q)/SO(q−1), each of which is one-dimensional. The function
F satisfies

F (g) =
(
µ1(rp+1

l rq−1
l )⊗ µ2(rp+1

r rq−1
r )−1

)
F (eλD+κMd−1,d) . (11.51)

The restriction of F to the two-dimensional abelian subgroup generated by D and Md−1,d will
be denoted by ψ(λ, κ) = F (eλD+κMd−1,d). We can relate ψ and the two-point function as soon
as the Cartan decomposition of gd(x1)−1gd(x2) is known

G2,0(xi) =
1

Φ1(x1)Φ2(x2)
F2,0(gd(x1), gd(x2)) =

1

Φ1(x1)Φ2(x2)
F
(
gd(x1)−1gd(x2)

)
. (11.52)

Let us denote the argument of F by g2pt(xi). We determine its Cartan factors

g2pt(xi)p = |x1⊥|−Dex
a
21Pa |x2⊥|D = rp+1

l (xi)e
λDrp+1

r (xi) with coshλ =
x2

1⊥ + x2
2⊥ + x̂2

12

2|x1⊥||x2⊥|
.

(11.53)

For a simple proof of (11.53), see the end of this section, (11.4.1). The factors rp+1
l,r are computed

similarly. Let us now turn to the SO(q)-part. Again, in the subsection (11.4.1), it is shown
that

g2pt(xi)q = e−ϕ
i
1Mideϕ

j
2Mjd = rq−1

l (xi)e
κMd−1,drq−1

r (xi) with cosκ =
xi1x

i
2

|x1⊥||x2⊥|
. (11.54)

Hence, the correlation function becomes

G2,0(xi) =
1

Φ1(x1)Φ2(x2)

(
µ1(rp+1

l (xi)r
q−1
l (xi))⊗ µ2(rp+1

r (xi)r
q−1
r (xi))

−1
)
ψ(λ, κ) . (11.55)

Let us evaluate this expression further in the case when the fields are scalar. Then we should
put µi = 1, so

G2,0(xi) =
1

|x1⊥|∆1|x2⊥|∆2
ψ(λ, κ) . (11.56)

The coordinates (λ, κ) are the two independent conformal invariants. They are related to
coordinates (φ, χ) used in [62] by

κ = φ, coshλ =
1

2
χ . (11.57)

We recognise in (11.56) the usual expression for the two point function.

Conformal blocks are eigenfunctions of the Laplace-Beltrami operator within the space of co-
variant functions (11.51) . Let us show how this comes about. Partial waves for the two-point
functionG2,0(xi) are characterised as eigenfunctions of the quadratic Casimir that is constructed
out of the vector fields that represent the action of the defect conformal algebra gd,p on a scalar
field. We may chose either the first or the second point for these differential operators. Let us
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choose the second one to be concrete. After the correlation function is lifted to F2,0, results
of the previous section tell us that the action generated by these vector fields maps to the
left-regular action on the second copy of Gd,p. The corresponding geometric representation on
F2,0 reads

(g · F2,0)(g1, g2) = F2,0(g1, g
−1g2) . (11.58)

This is indeed a representation of Gd,p on the space L1(G2
d,p, V ), but clearly it does not respect

the covariance properties satisfied by F2,0. However, the quadratic Casimir does respect the
covariance properties and equals the Riemannian Laplace-Beltrami operator ∆ on the second
copy of Gd,p, denoted ∆(2). Furthermore, by the definition of F

∆F = ∆(2)F2,0, (11.59)

and hence the Casimir operator acting on F coincides with the Laplacian, as claimed. Confor-
mal blocks factorise according to the direct product structure of Gd,p. It is possible to write the
restriction ψ∆̂,s(λ, κ) = ψp,∆̂(λ)ψq,s(κ) using standard representation theory. For scalar fields,
conditions (11.51) tell us that ψp,∆̂ and ψq,s are zonal spherical functions written in (5.9) and
(5.10). The function ψp,∆̂ can be expressed in terms of a Legendre function using a hyperge-
ometric identity. In fact, the functions ψp,∆̂ and ψq,s are very similar to each other, which is
clear from the fact that they come from quotients that are related by analytic continuation.
See [86] for more details.

Let us compare our conformal blocks to those of [62]. For the transverse part, we observe that
the polynomials ψq,s(κ) readily agree with the functions (4.9) from that paper. As for ψp,∆̂,
notice that the function

ψ̃p,∆̂ = (coshλ)∆̂
2F1

(
∆̂ + 1

2
,
∆̂

2
; 1 + ∆̂− p

2
; 1− tanh2 λ

)
, (11.60)

solves the same hypergeometric equation as ψp,∆̂. Indeed, in our discussion above, we did not
include the analysis of boundary conditions that supplement the Casimir differential equation.
Once this is done, it turns out the ψ̃p,∆̂ is the correct eigenfunction to use. Now from (11.57)
we can rewrite

ψ̃p,∆̂ =
(χ

2

)−∆̂

2F1

(
∆̂ + 1

2
,
∆̂

2
, 1 + ∆̂− p

2
,

4

χ2

)
, (11.61)

in agreement with the equation (4.7) of [62]. This concludes our analysis of two-point correlation
functions of scalar bulk fields in the presence of a defect. Of course our results here are not
new, but the well-studied setup illustrates nicely how the group theoretic approach works.

11.4.1 Calculation of cross ratios

In this subsection we prove relations (11.53) and (11.54) . The formula (11.53) is obtained by
taking the (1, 1) matrix element in the vector representation of both sides of

|x1⊥|−Dex
a
21Pa |x2⊥|D = rp+1

l (xi)e
λDrp+1

r (xi) . (11.62)
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For the coordinate defined in (11.54) consider the space Rq spanned by the vectors ep+1, ..., ed.
A direct calculation shows that

eϕ
iMided =

(
ϕp+1 sin |ϕ|
|ϕ|

, ...,
ϕd−1 sin |ϕ|
|ϕ|

, cos |ϕ|
)t
, |ϕ| =

(
d−1∑
p+1

ϕiϕi

) 1
2

. (11.63)

By definition, this is the vector x⊥/|x⊥| if the element eϕ
iMid is associated to x. Furthermore,

the bottom right matrix element of e−ϕ
i
1Mideϕ

j
2Mjd is seen to be

cos |ϕ1| cos |ϕ2|+
sin |ϕ1| sin |ϕ2|
|ϕ1||ϕ2|

d−1∑
j=p+1

ϕj1ϕ
j
2 =

xi1x
i
2

|x1⊥||x2⊥|
. (11.64)

This is compared with the bottom right element of the matrix rq−1
l eκMd−1,drq−1

r , which is cosκ.
Thus, (11.54) follows.

11.5 Bulk-defect-defect three-point function

In order to address the less studied example of a three-point function involving one bulk and
two defect fields, we start with by now familiar lift of the correlator G1,2(xi) to a function
F1,2 : G3

d,p −→ W which satisfies

F1,2(g1s1, g2ŝ2, g3ŝ3) =
(
µ1(s−1

1 )⊗ µ̂2(ŝ−1
2 )⊗ µ̂3(ŝ−1

3 )
)
F1,2(g1, g2, g3), F1,2(hgi) = F1,2(gi) .

(11.65)
To simplify the lift, we can pair up the two defect fields in the correlation function and set
F (g) = F1,2(e, g, gw−1

p ). The function F1,2 is now reconstructed from F as

F1,2(g1, g2, g3) = (µ̂2(ŝ2)⊗ µ̂3(ŝ3))F1,2(g1, g2ŝ2, g3ŝ3) = (µ̂2(ŝ2)⊗ µ̂3(ŝ3))F (g−1
1 g2ŝ2), (11.66)

where the elements ŝ2, ŝ3 ∈ Ŝd,p solve the equation g3ŝ3 = g2ŝ2w
−1
p . The function F has

left-right covariance properties

F (sgl) = F1,2(e, sgl, sglw−1
p ) = F1,2(s−1, gl, gw−1

p wplw
−1
p ) =

(
µ1(s)⊗ µ̂2(l−1)⊗ µ̂3(wpl

−1w−1
p )
)
F (g),

with l ∈ L = SO(1, 1) × SO(p) × SO(q). The way we constructed F mimics the pairing up
of points in a bulk conformal field theory without defects. Indeed, there one associates to a
pair of fields in Rd a Kd-covariant function on the conformal group. The group Kd naturally
appears as the stabiliser of the pair (0,∞). Here the same construction is performed along the
defect, while transverse directions play no role. The function F can be regarded as a function
on the coset space Sd,p\Gd,p/L. This space is one-dimensional

X = Sd,p\Gd,p/L = SO(p+ 1)\SO(p+ 1, 1)/ (SO(1, 1)× SO(p)) . (11.67)

We parametrise it by writing group elements as

g = kIe
yK1rpeλD rq, (11.68)

164



11.5. BULK-DEFECT-DEFECT THREE-POINT FUNCTION

with kI ∈ SO(p + 1), rp ∈ SO(p) and rq ∈ SO(q). The function F is determined by its
restriction to the group generated by K1

F (g) =
(
µ1(kI)⊗ µ̂2(rpeλDrq)−1 ⊗ µ̂3(wpr

peλDrqw−1
p )−1

)
ϕ(y) . (11.69)

We have denoted the restriction by ϕ(y) = F (eyK1). The correlation function is related to F
by

G1,2(xi) =
1

Φ1(x1)
F1,2(gd(x1), gp(x̂2), gp(x̂3)) =

1

Φ1(x1)
(µ̂2(ŝ2)⊗ µ̂3(ŝ3))F (gd(x1)−1gp(x̂2)ŝ2) .

(11.70)
Group elements ŝ2 and ŝ3 are determined as in the non-defect theory on SO(p+ 1, 1) and read

ŝ2 = w−1
p m(wpx̂32)wp, ŝ3 = kp(t32)−1w−1

p m(x̂32)wp . (11.71)

Therefore, the argument of F has the SO(p+ 1, 1)-part

(gd(x1)−1gp(x̂2)ŝ2)p = |x1⊥|−Dex̂
a
21Pae

x̂a32
x̂2
32
Ka

= e
x̂a21
|x1⊥|

Pae
|x1⊥|x̂

a
32

x̂2
32

Ka |x1⊥|−D

= kI

(
x̂12

|x1⊥|

)(
x̂2

12 + x2
1⊥

x2
1⊥

)−D
e

(
|x1⊥|x̂

a
21

x̂2
12+x2

1⊥
+
|x1⊥|x̂

a
32

x̂2
32

)
Ka |x1⊥|−D

= kI

(
x̂12

|x1⊥|

)
e

1
|x1⊥|

(
x̂21+(x̂2

12+x2
1⊥)

x̂32
x̂2
32

)a
Ka
(
x̂2

12 + x2
1⊥

|x1⊥|

)−D
.

In the first step we used the result (4.20). The coordinate y may be read off as

y =
1

|x1⊥||x̂23|

√
(x̂2

12 + x2
1⊥)(x̂2

13 + x2
1⊥)− x2

1⊥x̂
2
23 =

√
u−1

23,1 − 1 , (11.72)

where the cross ratio u23,1 is defined as in [126]2

u23,1 =
x2

1⊥x̂
2
23

(x̂2
12 + x2

1⊥)(x̂2
13 + x2

1⊥)
. (11.73)

For SO(p)-scalar fields, the correlation function (11.70) is further evaluated

G1,2(xi) =
1

|x1⊥|∆1

1

x̂
2∆3̂
23

(
x̂2

12 + x2
1⊥

|x1⊥|

)∆3̂2̂

(ρ̂2 ⊗ ρ̂3)(eϕ
i
1Mid)ϕ(y) . (11.74)

Let us now solve for eigenfunctions of the Laplacian on the space of left-right covariant functions
F . From the simple relation

∆(1)F1,2 = ∆(23)F1,2 7→ ∆F, (11.75)

under the above mapping, it follows that these eigenfunctions are conformal blocks. Here,
∆(23) is the quadratic Casimir constructed from the vector fields that generate the diagonal

2Cross ratios ui,jk, uij,k used in this work may differ from those of [126] by factors such as 2,−1 etc. In all
formulas, these functions mean the ones explicitly defined in the present paper.
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left-regular action on the last two copies of Gd,p. We can first consider only the left quotient
Sd,p\Gd,p and parametrise it according to

g = kIe
yaKaeλD . (11.76)

Since the SO(q)-factor will be trivialised by the right quotient we omitted writing it in the above
equation. Later, we will trade (ya) for spherical polar coordinates (y, φ) on Rp. We compute
the Laplacian from the left-invariant vector fields - ones that generate the right regular action.
The action of dilations, special conformal transformations and rotations is simple

kIe
yaKaeλDeµD = kIe

yaKae(λ+µ)D, kIe
yaKaeλDez

aKa = kIe
(ya+e−λza)KaeλD, (11.77)

kIe
yaKaeλDrp = kIr

pe((rp)−1y)aKaeλD . (11.78)

Finally, the action of translations is found by the following calculation

kIe
yaKaeλDez

bPb = kIwpe
(spy)·Pwpe

eλz·P eλD

= k′Ie
sp(y+z−2e−λz)·P e−e

−λspz·Kspsz

(
1

e2λz2

)D
eλD = k′′I e

(szy−z−2e−λz)·P ee
λz·K

(
1

eλz2

)D
= k′′′I e

(szy−z−2e−λz+(1+(szy−z−2e−λz)2)eλz)·K
(

1

(1 + (szy − z−2e−λz)2)eλz2

)D
.

Group elements k′I , k
′′
I , k

′′′
I all belong to SO(p+1) and their precise form does not matter for the

action on the coset. By linearising the above action, the Lie algebra is found to be represented
by differential operators

ka = e−λ∂ya , d = ∂λ, mab = ya∂yb − yb∂ya , pa = eλ
(
(1 + y2)∂ya − 2ya∂λ

)
. (11.79)

The quadratic Casimir, restricted to functions of (λ, y) is computed

C2 = ∂2
λ + (1 + y2)∂2

y − 2y∂y∂λ +

(
(p+ 1)y +

p− 1

y

)
∂y − p∂λ . (11.80)

To pass to the final quotient, we set ∂λ −→ ∆2̂3̂. Therefore, conformal blocks satisfy the eigen-
value equation(

(1 + y2)∂2
y +

(
(p+ 1− 2∆2̂3̂)y +

p− 1

y

)
∂y + ∆2̂3̂(∆2̂3̂ − p)

)
ϕ = ∆̂(∆̂− p)ϕ . (11.81)

This equation is solved by hypergeometric functions

ϕ = A 2F1

(
p− ∆̂−∆2̂3̂

2
,
∆̂−∆2̂3̂

2
;
p

2
;−y2

)
(11.82)

+By2−p
2F1

(
2− ∆̂−∆2̂3̂

2
,
2− p+ ∆̂−∆2̂3̂

2
; 2− p

2
;−y2

)
.
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Let us compare our results with conformal blocks from [58]. The authors there take the limit
x̂3 −→ ∞, in which their coordinate χ̂ is related to y as χ̂ = y2. They consider the three-point
function

x̂
2∆3̂
3 〈O1(x1)Ô2(x̂2)Ô3(x̂3)〉 ∼ ei(s2̂+s3̂)ϕ1

|x1⊥|∆1+∆2̂3̂

∑
F Ô2Ô3

p,s (χ̂) . (11.83)

Conformal blocks F Ô2Ô3
p,s read

F Ô2Ô3
p,s (χ̂) = χ̂−

1
2

(∆̂+∆2̂3̂)
2F1

(
∆̂ + ∆2̂3̂

2
,
2− p+ ∆̂ + ∆2̂3̂

2
, 1− p

2
+ ∆̂;− 1

χ̂

)
. (11.84)

By expanding around zero instead of infinity, we can rewrite these as

F Ô2Ô3
p,s (χ̂) = 2F1

(
p− ∆̂ + ∆2̂3̂

2
,
∆̂ + ∆2̂3̂

2
,
p

2
;−χ̂

)
. (11.85)

On the other hand, our expression for G1,2(xi) becomes in the x̂3 −→∞ limit

x̂
2∆3̂
3 G1,2(xi) =

(ρ̂2 ⊗ ρ̂3)(eϕ
i
1Mid)

|x1⊥|∆1+∆2̂3̂
(1 + y2)∆3̂2̂ϕ(y) . (11.86)

Therefore, we should have the relation F Ô2Ô3
p,s = (1 + y2)∆3̂2̂ϕ. There is a number of ways to

verify that this is true. Perhaps the simplest one is to conjugate the operator on the left hand
side of eq. (11.81) by (1 + y2)∆3̂2̂ . Then eigenfunctions of this new operator should coincide

with F Ô2Ô3
p,s . Indeed, the eigenfunctions read

A 2F1

(
p− ∆̂ + ∆2̂3̂

2
,
∆̂ + ∆2̂3̂

2
;
p

2
;−y2

)
+By2−p

2F1

(
2− ∆̂ + ∆2̂3̂

2
,
2− p+ ∆̂ + ∆2̂3̂

2
; 2− p

2
;−y2

)
,

so putting A = 1 and B = 0 gives us F Ô2Ô3
p,s . With this we end the discussion of three-point

functions of two defect and one bulk field.

11.6 Bulk-bulk-defect three point function

We move to the three-point function that involves two fields in the bulk and one on the defect.
Following the familiar strategy, we start by lifting the three-point function G2,1(xi) to a function
F2,1 : G3

d,p −→ W which satisfies

F2,1(g1s1, g2s2, g3ŝ3) =
(
µ1(s−1

1 )⊗ µ2(s−1
2 )⊗ µ̂3(ŝ−1

3 )
)
F2,1(g1, g2, g3), F2,1(hgi) = F2,1(gi) .

(11.87)
Let us pair up the last two fields by setting F ′(g1, g2) = F2,1(g1, g2, g2). Then F ′ obeys F ′(hgi) =
F ′(gi) and we put F (g) = F ′(e, g) = F2,1(e, g, g). In particular, this implies that solutions to
∆F = cF will correspond to eigenfunctions of the quadratic Casimir acting at the point x1.
One reconstructs F2,1 from F by

F2,1(g1, g2, g3) = (µ2(s2)⊗ µ̂3(ŝ3))F2,1(g1, g2s2, g2s2) = (µ2(s2)⊗ µ̂3(ŝ3))F
(
g−1

1 g2s2

)
, (11.88)

167



CHAPTER 11. DEFECT CONFORMAL CORRELATORS AND
CONFORMAL BLOCKS

where s2, ŝ3 solve the equation g2s2 = g3ŝ3. The function F is right-covariant with respect to
the group K and left-covariant with respect to Sd,p

F (sgk) = F2,1(e, sgk, sgk) = F2,1(s−1, gk, gk) =
(
µ1(s)⊗ µ2(k−1)⊗ µ̂3(k−1)

)
F (g) . (11.89)

Therefore, it can be regarded as a function on the double quotient

Y = Sd,p\Gd,p/K = SO(p+ 1)\SO(p+ 1, 1)/SO(p) × SO(q− 1)\SO(q)/SO(q− 1) . (11.90)

Both direct factors were already analysed in previous sections. The first one is two-dimensional
and the second one one-dimensional. Cartan coordinates on the double coset are introduced
by writing elements of Gd,p as

g = kIe
yK1eλDrp rq−1

l eκMd−1,drq−1
r , (11.91)

with rp ∈ SO(p) and rq−1
l,r ∈ SO(q−1). The function F is determined in terms of its restriction

ψ(λ, y, κ) = F (eyK1eλDeκMd−1,d) by

F (g) =
(
µ1(kIr

q−1
l )⊗ µ2(rprq−1

r )−1 ⊗ µ̂3(rprq−1
r )−1

)
ψ(λ, y, κ) . (11.92)

The correlation function is related to F by

G2,1(xi) =
1

Φ1(x1)Φ2(x2)
F2,1(gd(x1), gd(x2), gp(x̂3)) =

µ2(s23)⊗ µ̂3(ŝ23)

Φ1(x1)Φ2(x2)
F (gd(x1)−1gd(x2)s23) .

(11.93)
Here s23 and ŝ23 are given analogously to (11.46) . We can evaluate the argument of F similarly
as before using the Bruhat and Iwasawa decompositions. For the SO(p+ 1)-part

(gd(x1)−1gd(x2)s23)p = |x1⊥|−Dex̂
a
21Pa |x2⊥|DkI

(
x̂23

|x2⊥|

)
= |x1⊥|−Dex̂

a
21Pa|x2⊥|De

− x̂a23
|x2⊥|

Pa

(
x̂2

23 + x2
2⊥

x2
2⊥

)D
e

x̂a23
|x2⊥|

Ka = e
x̂a31
|x1⊥|

Pa

(
x̂2

23 + x2
1⊥

|x1⊥||x2⊥|

)D
e

x̂a23
|x2⊥|

Ka

= kI

(
x̂13

|x1⊥|

)(
x̂2

13 + x2
1⊥

x2
1⊥

)D
e
|x1⊥|x̂

a
31

x̂2
13+x2

1⊥
Ka
(
x̂2

23 + x2
2⊥

|x1⊥||x2⊥|

)D
e

x̂a23
|x1⊥|

Ka

= kI

(
x̂13

|x1⊥|

)
e

1
|x1⊥|

(
x̂31+

x̂2
13+x2

1⊥
x̂2
23+x2

2⊥
x̂23

)
·K
(
|x1⊥|(x̂2

23 + x2
2⊥)

|x2⊥|(x̂2
13 + x2

1⊥)

)D
.

We read off the coordinate y

y =
1

|x1⊥|(x̂2
23 + x2

2⊥)

√
x̂2

12(x̂2
13 + x2

1⊥)(x̂2
23 + x2

2⊥) + (x̂2
13x

2
2⊥ − x̂2

23x
2
1⊥)(x̂2

23 + x2
2⊥ − x̂2

13 − x2
1⊥)

=
1

|x1⊥|(x̂2
23 + x2

2⊥)

√
(x̂2

12 + x2
1⊥ + x2

2⊥)(x̂2
13 + x2

1⊥)(x̂2
23 + x2

2⊥)− x2
2⊥(x̂2

13 + x2
1⊥)2 − x2

1⊥(x̂2
23 + x2

2⊥)2 .

Therefore, the Cartan coordinates (y, λ) are given by

y =
√
u•12u3,12 − u2

3,12 − 1, eλ = u−1
3,12, (11.94)
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where u•12 and u3,12 are cross ratios of [126]

u•12 =
x̂2

12 + x2
1⊥ + x2

2⊥
|x1⊥||x2⊥|

, u3,12 =
x̂2

13 + x2
1⊥

x̂2
23 + x2

2⊥

|x2⊥|
|x1⊥|

. (11.95)

The coordinate κ was determined in (11.54). These results give the relation between the
correlator G2,1(xi) and ψ in the case the fields are scalars

G2,1(xi) =
1

|x1⊥|∆1|x2⊥|∆2

(
x̂2

23 + x2
2⊥

|x2⊥|

)−∆3̂

ψ(λ, y, κ) . (11.96)

Eigenfunctions of the Laplacian correspond to eigenfunctions of the quadratic Casimir at the
first insertion point x1. Clearly, it is possible to repeat the whole argument with points x1 and
x2 interchanged. This would lead to another representation of the correlator

G2,1(xi) =
1

|x1⊥|∆1|x2⊥|∆2

(
x̂2

13 + x2
1⊥

|x1⊥|

)−∆3̂

ψ̃(λ̃, ỹ, κ), (11.97)

with ỹ, λ̃ obtained from y, λ by swapping indices 1 and 2. One can parametrise the coset space
Y by (y, ỹ) and it is not hard to establish that ỹ = eλy ≡ x. The Laplacian (11.80) in these
coordinates reads

C
(2)
2 = (1 + y2)∂2

y +
x2

y2
∂2
x +

2x

y
∂y∂x +

(
(p+ 1)y +

p− 1

y

)
∂y +

(p− 1)x

y2
∂x . (11.98)

If we performed the construction with x1 and x2 exchanged, the Laplacian would be given by
the operator C

(1)
2 that is obtained from C

(2)
2 by exchanging x and y. We have to remember

that the prefactors multiplying ψ and ψ̃ are different. Conformal blocks are therefore simulta-
neous eigenfunctions of C

(2)
2 and (x/y)∆3̂C

(1)
2 (x/y)−∆3̂ . These two operators are easily seen to

commute. We will consider a more symmetric pair of differential operators

L1 =
1

4

(
x

y

)∆
3̂

2

C
(1)
2

(
x

y

)−∆
3̂

2

, L2 =
1

4

(
x

y

)−∆
3̂

2

C
(2)
2

(
x

y

)∆
3̂

2

, (11.99)

and solve an equivalent eigenvalue problem

L1f(x, y) =
1

4
∆̂(∆̂− p)f(x, y), L2f(x, y) =

1

4
∆̂′(∆̂′ − p)f(x, y) . (11.100)

To proceed, let us introduce variables v1 = −x−2, v2 = −y−2. Then the two operators can be
written as

L1 = v1Dv1v2(0,
2− p

2
,
∆3̂ − p+ 2

2
) +

∆3̂

2

(
∆3̂

2
− p
)

4
,

L2 = v2Dv2v1(0,
2− p

2
,
∆3̂ − p+ 2

2
) +

∆3̂

2

(
∆3̂

2
− p
)

4
,
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where Dxy(a, b, c) is defined as

Dxy(a, b, c) = x(1−x)∂2
x−2xy∂x∂y−y2∂2

y +(c− (a+ b+1)x)∂x− (a+ b+1)y∂y−ab . (11.101)

The significance of this operator is that it appears in connection with Appell’s hypergeometric
function F4. Namely, the system of equations satisfied by F4 with labels (a, b, c1, c2) can be
written as

Dxy(a, b, c1)F4(x, y) = Dyx(a, b, c2)F4(x, y) = 0 . (11.102)

Our equations are not quite in the form of the Appell’s system, but they become so once we

introduce f(v1, v2) = v
∆̂
2
−

∆
3̂

4
1 v

∆̂′
2
−

∆
3̂

4
2 F (v1, v2). Then, using formulas from a previous chapter,

the eigenvalue equations (11.99) can be written in terms of F as

v1Dv1v2

(
∆̂ + ∆̂′ −∆3̂

2
,
∆̂ + ∆̂′ −∆3̂ + 2− p

2
, ∆̂− p

2
+ 1

)
F = 0, (11.103)

v2Dv2v1

(
∆̂ + ∆̂′ −∆3̂

2
,
∆̂ + ∆̂′ −∆3̂ + 2− p

2
, ∆̂′ − p

2
+ 1

)
F = 0 . (11.104)

Therefore, the Appell function

F (v1, v2) = F4

(
∆̂ + ∆̂′ −∆3̂

2
,
∆̂ + ∆̂′ −∆3̂ + 2− p

2
, ∆̂− p

2
+ 1, ∆̂′ − p

2
+ 1; v1, v2

)
,

(11.105)
solves the eigenvalue problem. There are three more independent solutions, all expressible in
terms of Appell functions, but the one we have written has the correct boundary behaviour
and we will see that it reproduces the result of [58] in a special limit. Before doing that, let us
give the final formula for Laplacian eigenfunctions that correspond to conformal blocks. They
are labelled by three quantum numbers (∆̂, ∆̂′, s) and read3

Ψ∆̂,∆̂′,s(v1, v2, κ) = v
∆̂
2
−

∆
3̂

4
1 v

∆̂′
2
−

∆
3̂

4
2 F (v1, v2) C(q−2)/2

s (cosκ) . (11.106)

The authors of [58] consider the three-point function of two bulk and one defect field in the
limit x̂3 −→∞ and in the special configuration x1⊥ = x2⊥. In such a configuration, v1 = v2 and
there are two independent cross ratios, ϕ = κ and χ̂ = −v−1

1 . The correlator in [58] reads

x̂
2∆3̂
3 〈O1(x1)O2(x2)Ô3(x̂3)〉 ∼ e−is1ϕ1

|x1⊥|∆1+∆2−∆3̂

∑
F Ô3

ÔÔ′(χ̂)F (ϕ) . (11.107)

The conformal blocks factorise in χ̂ and ϕ in the usual way and the transverse parts agree with
ours by the same calculation as in the previous sections. Let us focus therefore on longitudinal
parts, which are given in [58] by

F Ô3

ÔÔ′(χ̂) = χ̂−
1
2

(∆̂+∆̂′−∆3̂)
4F3

(∆̂ + ∆̂′ − p+ 1

2
,
∆̂ + ∆̂′ − p+ 2

2
, (11.108)

∆̂ + ∆̂′ −∆3̂

2
,
∆̂ + ∆̂′ −∆3̂ − p+ 2

2
; ∆̂− p

2
+ 1, ∆̂′ − p

2
+ 1, ∆̂ + ∆̂′ − p+ 1;− 4

χ̂

)
. (11.109)

3The relation between Ψ and ψ is Ψ = (v1/v2)∆3̂ψ. We use Ψ in the final formula as it gives the most
symmetric form of blocks.
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We can rewrite this using an identity due to Burchnall as

F Ô3

ÔÔ′(χ̂) = χ̂−
1
2

(∆̂+∆̂′−∆3̂) F4

(∆̂ + ∆̂′ −∆3̂

2
,
∆̂ + ∆̂′ −∆3̂ − p+ 2

2
; ∆̂−p

2
+1, ∆̂′−p

2
+1, ;− 1

χ̂
,− 1

χ̂

)
.

The prefactor in the correlation function that multiplies F Ô3

ÔÔ′(χ̂) is the same as the prefactor

of f , so we need to show that f(v1, v1) and F Ô3

ÔÔ′(χ̂) agree, up to a multiplicative constant. But
one readily observes that

F Ô3

ÔÔ′(χ̂) = (−1)−
1
2

(∆̂+∆̂′−∆3̂)f(v1, v1) . (11.110)

Therefore, the blocks from [58] follow from those written in (11.106).
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Chapter 12

Multipoint correlation functions and
Gaudin models

A promising direction in which the present bootstrap studies may be extended is the analysis of
correlation functions that involve more than four field insertions. Since the associativity of the
operator product algebra is equivalent to crossing symmetry of all four-point functions in the
theory, in principle no additional constraints arise from consistency of higher-point functions
and one may jump to a conclusion that these correlators are irrelevant.

However, such a reasoning is very far from the truth. As we have seen in the first few chapters,
most conformal bootstrap studies focus on a handful of (or simply one) four-point functions.
Considering systems of infinitely many correlators looks like a notoriously difficult task. In the
light of these issues, higher-point functions arise as an economical repackaging of bootstrap
equations. This comes from the fact that a single five-point function contains information that
is available only by looking at an infinite number of four-point functions. Indeed, when one
expands the product of the first two fields in the OPE, an infinite number of internal fields
that appear in their product act as external operators for the remaining four-point function.
Similarly, any higher-point correlator captures information available from infinitely many four-
point functions.

This simple heuristic argument suggests that the so called multipoint bootstrap holds a great
promise. However, the derivation of crossing symmetry equations for higher-point functions
meets significant technical difficulties, the main of which is the computation of conformal blocks,
[140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152].

To start appreciating the challenges that appear in developing a theory of multipoint conformal
blocks, one can simply observe that these are functions depending on a large number of variables.
We have written the number of conformal invariants for an n-point function in d-dimensions
in (2.34). This number stabilises in high enough dimensions, starting from the critical one
dc = n − 2, and equals n(n − 3)/2. Thus, the simplest interesting case beyond four-point
functions, a five-point function in d = 3, already depends on five cross ratios.

The issues do not end here though, as there remains the question of how to characterise mul-
tipoint blocks. For any n-point correlation function, partial waves admit a basic description
using the shadow formalism of [11]. The latter provides integral formulas for conformal blocks
that may be regarded simply as definitions of these functions. Starting with such integrals, it

172



requires significant effort to find analytical expressions for blocks in terms of special functions
or even just efficiently numerically evaluate them. In the four-point case, the decisive step
forward was made by Dolan and Osborn who characterised the blocks as solutions of Casimir
differential equations. We have seen how their approach leads to wonderfully simple formulas
for scalar fields in even number of dimensions, but the scope of applications of the basic idea
goes far beyond these cases. Even when no explicit solution in terms of known special functions
can be found, differential equations can be used to efficiently obtain series expansions for blocks
to an arbitrary order.

As soon as one looks at a five-point function in d ≥ 3 and tries to apply the same strategy as
above and write a complete set of differential equations satisfied by partial waves, one runs into
trouble. Let us for definiteness focus on a five-point function of scalar fields. The corresponding
OPE diagram contains two intermediate fields, characterised by weights ∆ and spins l. Once
these intermediate fields are fixed, one remains with a three-point function of a scalar and
two symmetric traceless tensors. Such a three-point function depends on a number of tensor
structures. Therefore, to specify a conformal block, one needs to fix a vector in the space of
three-point tensor structures, in addition to the two intermediate fields.

2

1

3 4

5

∆a, la ∆b, lb
1

Figure 12.1: OPE diagram for a five-point function

There are four Dolan-Osborn type operators that measure the quantum numbers ∆a,b and la,b
of the intermediate fields, but it is not obvious what operator could be used to measure a fifth
quantum number. It is at this point that Gaudin models come to our rescue. We will show that
the set of commuting Hamiltonians for the Gaudin model based on the conformal Lie algebra
g = so(d + 1, 1), with five sites that carry field representations πi and some particular values
of parameters zi, contains the four Dolan-Osborn operators and also a fifth operator of order
four that we will call the vertex operator. Therefore, the Gaudin model provides us with the
desired set of differential equations.

The relation between Gaudin models and correlation functions is by no means accidental and
holds for any number of insertion point and in any dimension. To be precise, on the space of
solutions to Ward identities, there is an action of the Gaudin algebra. For an appropriate choice
of parameters zi, the algebra contains the Dolan-Osborn type operators that measure quantum
numbers of intermediate fields propagating in the OPE diagram. It seems that number of
independent operators always matches that of cross ratios, although this is yet to be proved.

The chapter is organised as follows. In the first section, we will show how the Gaudin Hamil-
tonians act on the space of n-point correlation functions and illustrate this on the example of
five-point functions. The second section will focus on the vertex of the OPE diagram (12.1) and
the choice of tensor structures for which conformal partial waves diagonalise the fifth Gaudin
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Hamiltonian. These tensor structures are through the use of polarisation vectors characterised
as eigenfunctions of a particular fourth-order operator H. The operator H is itself a quite
interesting mathematical object, but its further study is left for future work. The chapter is
mostly based on the article [5].

12.1 Gaudin models for correlation functions

It is not difficult to understand how Gaudin models appear in the context of n-point conformal
correlation functions. Let us recall that these functions live in the space (π1 ⊗ ... ⊗ πn)G of
invariant vectors in the tensor product of n principal series representations of G.

Now consider a Gaudin model with n arbitrary sites, based on the conformal Lie algebra
so(d + 1, 1). To each site i we attach the corresponding principal series representation πi.
Gaudin Hamiltonians then act on the carrier space of π1 ⊗ ...⊗ πn. However, as we have seen,
the Hamiltonians also commute with the diagonal action of g. Therefore, they map invariant
vectors to other invariant vectors, thereby preserving the space of solutions to Ward identities,
(π1 ⊗ ...⊗ πn)G.

This is our basic observation, but it is not quite enough in order to be able to use Gaudin
Hamiltonians to characterise conformal blocks. For this to be the case, the Dolan-Osborn-
type operators that measure the quantum numbers of intermediate fields have to belong to
the Gaudin algebra. For concreteness, let us focus on the scalar five-point function from the
introduction to this chapter. In agreement with our previous notation for Gaudin models, a
basis of the conformal Lie algebra at the site i is denoted {X(i)

a }. The four Dolan-Osborn
operators are of the form

C(ij)
p =

1

p
κa1...ap(X(i)

a1
+X(j)

a1
)...(X(i)

ap +X(j)
ap ) . (12.1)

The operators are either quadratic, p = 2, or quartic, p = 4, and inserted between the pairs of
points (12) and (45).

To recover these operators from the Gaudin model, we start by fixing three of the sites to z1 = 0,
zn−1 = 1 and zn = ∞. This can always be done, since two Gaudin models whose parameters
are related by an SL(2,C) transformation are equivalent. The remaining two parameters are
set to be z2 = $2 and z3 = $ and we take the limit $ −→ 01

H̃p(z) := lim
$→0

$pHp($z) . (12.2)

The limiting process does not spoil commutativity of these Hamiltonians. They are regular
in z everywhere except form z ∈ {0, 1,∞}. At this point, H̃p(z) are differential operators in
spacetime coordinates xi. However, since they preserve the functional form of correlators, they
reduce to differential operators in cross ratios.

After performing the special limit on the parameters zi we can now extract the multipoint
Casimir operators rather easily. In fact, it is not difficult to check that

C(12)
p = lim

z→0
zpH̃p(z), C(45)

p = lim
z→∞

zpH̃p(z), (12.3)

1Such limits have also been considered in [153, 154] to study bending flow Hamiltonians and their generali-
sations [155, 156, 157, 158].
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for p = 2, 4. But now we come to the upshot of the construction: any additional independent
operator we can obtain from H̃p(z) may be used to measure a fifth quantum number. One can

show that the two second order Casimir operators C
(ij)
2 exhaust all the independent operators

that can be obtained from H̃2(z). The family H̃4(z), on the other hand, indeed provides one

independent operator in addition to the fourth order Casimir operators C
(ij)
4 . We propose to

use the operator V4 defined through

H̃4 (z = 1/2) = 16V4 + . . . , (12.4)

where the dots represent quadratic terms coming from the corrections in (5.46). In the particular
limit $ → 0 that we consider here, these corrections can be re-expressed in terms of the
quadratic Casimirs C

(ij)
2 , and can thus be discarded without spoiling commutativity of V4 with

the Casimirs. An explicit computation then shows that V4 is expressed in terms of the conformal
generators X

(i)
a as

V4 = κa1...a4
4 (X(1)

a1
+X(2)

a1
−X(3)

a1
) · · · (X(1)

a4
+X(2)

a4
−X(3)

a4
) . (12.5)

The explicit form of V4 as a differential operator acting on functions ψ(u) of five cross ratios
will be spelled out in our forthcoming work.

In the end, the vertex operator V4 is quite simple and obviously commutes with Dolan-Osborn
operators, so one cannot help but wander whether we could have found it without the help of
Gaudin models. Indeed, we probably could have. Let us therefore briefly sketch how the above
exposition extends to some more involved cases. We focus on the the comb channel, [140], of
general n-point functions in arbitrary dimension d. In this case, the Lax matrix of the Gaudin
model depends on n complex parameters zi. We can set three of these to the values z1 = 0,
zn−1 = 1 and zn = ∞, before scaling the remaining ones as zi = $n−i−1, i = 2, . . . , n − 2 in
terms of a single complex parameter $ that we send to zero. Generalising our construction of
the commuting families of operators in (12.3), we now introduce

H̃[i]
p (z) := lim

$→0
$(n−i−2)pHp($

n−i−2z), (12.6)

where p = 2, 4, . . . enumerates the different (Casimir) invariants of the d-dimensional conformal
algebra and z ∈ C is the spectral parameter. Through the label i ∈ {1, . . . , n−2} we characterise
different ways to perform the scaling limit of the original Gaudin Hamiltonians. It is not
difficult to show that the resulting family of commuting Hamiltonians includes all the Casimir
operators that are needed to measure the weight and spin of intermediate fields, similarly to
(12.3). The other Hamiltonians extracted from the families (12.6) then provide additional
commuting operators characterising the vertices in the n-point OPE diagram (note that the
range of our index i indeed allows us to enumerate these vertices). One thereby expects to
complete the full set of Casimir operators into a system of independent commuting operators
that suffices to characterise the dependence of n-point comb channel blocks on all conformal
cross ratios, for any dimension d and an arbitrary choice of representations for external fields.
We have checked this claim for various choices of n and d.

For d = 3, an n-point function with scalar external fields involves 3n − 10 cross ratios. The
intermediate fields in the comb channel OPE diagram are characterised by 2n − 6 Casimir
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operators, of degree two and four. In addition, each of the n− 4 internal vertices is associated
with an operator V [i]

4 , extracted similarly to V4 in (12.4) as

H̃[i]
4 (z = 1/2) = 16V [i]

4 + . . . , (12.7)

where i ∈ {2, . . . , n− 3} 2. The spectrum of these n− 4 operators is independent of i and we
will say more about it in the next section. With the additional index i ∈ {2, . . . , n− 3} on the
left hand side of the vertex eigenvalue equation (12.11), we obtain enough differential equations
to characterise three-dimensional n-point blocks in the comb channel.

12.2 Vertex systems

The operator V4 provided us with the definition the fifth quantum number needed to characterise
five-point partial waves, but did not shed much light on the intuition that a choice this quantum
number is related to fixing a particular basis in the space of tensor structures at the vertex of
OPE diagram. The tensor structures that appear in the three-point function of a scalar and two
symmetric traceless tensor fields were written down in (3.10). Let us denote this three-point
function by Φt

123. If of the symmetric traceless tensors is actually a scalar, there is only one
tensor structure and we can drop the superscript t.

Having described the vertex, we can now write down the shadow integral representations of
partial waves. Let Ψ be the integral

Ψ(xi) =
∏
s=a,b

∫
Rd
ddxs

∫
Cd
d2dzs δ(z

2
s)ρ(z̄s · zs) (12.8)

Φ12ã(x1, x2, xa; z̄a)Φ
t
a3b(xa, x3, xb; za, zb)Φb̃45(xb, x4, x5; z̄b) . (12.9)

Here, the tilde on the indices of the first and third vertex means that we use (3.10) for two scalar
legs but with ∆a and ∆b replaced by d−∆a and d−∆b, respectively. The integral depends on
external weights ∆i, internal weights and spins ∆a,b, la,b and the choice of the function t(X).
For simplicity, we do not display these dependencies in the notation. After splitting off the
factor Ω(xi) that accounts for the nontrivial covariance law of the scalar fields under conformal
transformations

Ψ(xi) = (X2
23;1)

∆1
2 (X2

34;5)
∆5
2

4∏
i=2

(X2
i+1,i−1;i)

∆i
2 ψ(ua),

the shadow integral (12.9) gives rise to a finite conformal integral that defines the conformal
block ψ as a function of five conformally invariant cross ratios ua.

3 The function ψ is labelled
by (∆a, la), (∆b, lb) and the function t(X). By the argument of Dolan and Osborn, ψ satisfies
eigenvalue equations

D(12)
p ψ(u) = Cp(∆a, la)ψ(u), D(45)

p ψ(u) = Cp(∆b, lb)ψ(u), (12.10)

2Note that for the case of scalar external fields, the extremal vertices of the comb channel diagram are trivial,
which is why we restrict i to the range {2, . . . , n− 3} in this case.

3There is no relation between the index a on cross ratios and the index a used for one of the intermediate
fields.
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where p = 2, 4 and D(ij)
p denotes the operator C

(ij)
p reduced to the space of cross ratios. Our

addition to these results is the characterisation of the tensor structures tn(X) such that the
fifth equation

V4 ψ(u) = τn ψ(u), (12.11)

holds. Functions tn(X) are eigenfunctions of a particular fourth order differential operator

H(d,∆i,li) = h0(X) +
4∑
q=1

hq(X)Xq−1(1−X)q−1∂qX , (12.12)

where hq = h
(d,∆i,li)
q are polynomials of order at most three. Except for a constant term in

h0 which depends a bit on the precise choice of the fifth Gaudin Hamiltonian we extract, all
coefficients are symmetric w.r.t. exchange of a and b. Hence we will write them as

h(∆a,la;∆c;∆b,lb)(X) = χ(∆a,la;∆c;∆b,lb)(X) + a↔ b,

and display the polynomials χ(X) instead of h(X)

χ4 = 8,

χ3 = 32X (la − 2)− 4 (4la + 2∆c − d− 8) ,

χ2 = 16X2
(
l2a + 2lalb − 9la + 7

)
− 4X

(
4l2a + 8lalb + 2la (2∆c − d− 18) + 2∆a∆b − 2d∆a − (4 + d)∆c + d2 + 2d+ 28

)
+ 2
(

(la + lb)
2 + 2la (2∆c − 2d− 4)− 2∆2

a + ∆2
c + 2∆a∆b − 2(d+ 2)∆c + 6d+ 4

)
χ1 = 16X3 (la − 1) (lb − 1) (la + lb − 2)

− 2X2
(

24l2a(lb − 1) + 2lalb(2∆c − 24− d) + (4la − 2)(2∆a∆b − d(∆a + ∆b + ∆c) + 18 + d2) + 12
)

+ 2X
(

2l2a (4lb − d− 2) + 4lalb (∆c − d− 3) + 2la
(
4∆a∆b − 2d(∆a + ∆b + ∆c − 3) + d2 + 4

)
+ (d− 2)(2∆2

a −∆2
c)− 4∆a∆b − 2d(d− 4)∆a + d2∆c − 8d

)
+ (d− 2)

(
(la + lb)

2 + 4la(∆c − 2)− 2∆2
a + ∆2

c + 2∆a∆b − 4∆c + 4
)

χ0 = −8X2 la (la − 1) lb (lb − 1) + 4Xlalb

(
2lalb − 4la + 2∆a∆b − 2d∆a − (d− 2)∆c + d2 − d+ 2

)
.

The operator H has many interesting properties that we shall discuss on a future occasion.
For the present, it is most important to note that H leaves the two subspaces W±

t invariant
whenever both la and lb are integers. Consequently, it specifies a special basis tn of functions
t(X) in the space of tensor structures,

H(d,∆i,li)tn(X) = τntn(X) , n = 0, . . . , nab . (12.13)

Explicit formulas for the eigenvalues τn and the eigenfunctions tn(X) can be worked out, and
it is this basis of three-point tensor structures that we use to write down differential equations
for the associated conformal partial waves.
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Starting from six points, there exist topologically distinct channels that can include vertices in
which all three legs carry spin, such as the so-called snowflake channel for n = 6, [146]. These
vertices involve functions t of several variables and hence the choice of basis in the space of
tensor structures needs to be extended. As we increase the dimensions d, internal edges of
the OPE diagram can carry new representations beyond symmetric traceless tensors. Treating
these more general representations requires us to consider higher order Casimir operators, but
does not seem to bring significant new complications for the construction of multipoint blocks
in any d, at least conceptually.
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Concluding remarks

We wish to conclude with a summary and suggest some directions for future developments of
the ideas presented over the previous chapters.

The main purpose of the text was to embed the theory of conformal partial waves into harmonic
analysis of the conformal group. Actually, we hope to have convinced the reader that the
theory of partial waves is a part of harmonic analysis by its very definition. We merely tried
to thoroughly explore the consequences of this initial observation. The main results that were
obtained are explicit expressions for various previously unknown blocks in terms of special
functions.

The first two chapters after the introduction reviewed elementary properties of higher-dimensional
CFTs, focusing in particular on kinematical aspects. The next two chapters introduced some
basic notions from the representation theory of non-compact Lie groups and harmonic anal-
ysis. While our discussion was tailored to the applications to CFTs, it did not deviate in a
significant way from mathematical treatments of the subject, such as [86]. For example, the
three decompositions most relevant in harmonic analysis on general non-compact Lie groups
- the Iwasawa, Cartan and Gauss decompositions, all feature prominently in the analysis of
conformal correlators. Similarly, conformal primary fields are associated to the main class of
representations of the conformal group, the non-unitary principal series.

If the importance of equations in this work is to be measured by the number of times they
were referred to throughout the text, then our main result is undoubtedly (7.40). This formula
relates conformal blocks of four-point functions to spherical functions on the conformal group.
The latter are a particularly well-behaved class of functions of two variables (two cross ratios)
that can for even spacetime dimensions be written in terms of Gauss’ hypergeometric function.
The corresponding properties of conformal blocks were discovered by Dolan and Osborn in
[30]. The proof of the relation (7.40) does not rely on the explicit description of the conformal
group as an indefinite orthogonal group, but uses only a few of its properties. Namely, these
are the grading structure of the conformal Lie algebra with respect to the dilation weight and
the existence of an automorphism of g that exchanges spaces of positive and negative dilation
weights (conformal inversion). As such, the proof applies to superconformal groups as well.

Another prominent equation of this thesis is (10.46), which expresses the Laplace-Beltrami
operator on a type I supergroup in terms of the Laplacian of its underlying Lie group. This
equation is not new, but it acquires a new significance when restricted to the space of K-
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spherical functions. It allows to write the eigenvalue equation for K-spherical harmonics on G
as a nilpotent perturbation of a corresponding bosonic equation. Once this equation is derived,
any method of solving it produces superconformal blocks via (7.40). In particular cases on
groups SL(2|1) and SL(4|1) we solved the equation by reducing it to a linear algebraic one
with the help of certain Clebsch-Gordan identities for the bosonic conformal group.

The formula (7.40) is only one instance of a representation of a certain space of conformal cor-
relation functions in terms of covariant functions on the conformal group itself. Ideas that lead
to it can be extended to produce several other representations of different kinds of correlators.
It seems that the context of defect CFTs is particularly well-suited to such representations.
Roughly, the reason for this is that the presence of defects allows for analogues of higher-point
functions (in an ordinary CFT, we use the term ”higher-point function” if there are at least
five field insertions) that are still simple enough for partial waves to be exactly computable.
An example is the bulk-bulk-defect three-point function, whose partial waves were expressed
in terms of Appell’s functions, (11.106).

Once various decompositions of the conformal group are introduced, our new representations
of correlators can be written in a compact way, but they in fact involve relatively complicated
changes of coordinates and function redefinitions. This is a desirable property, because only a
transformation of sufficient complexity can be hoped to map a difficult problem to a simple one.
However, the price we pay is that some notions that are obvious in the coordinate representation,
such as the permutation invariance of correlation functions, become obscured in the group-
theoretic coordinates. To gain control over these aspects of the theory, one should establish
covariance (or functorial) properties of factors in the Bruhat and other decompositions of G.
Once this is done, one can write the crossing equations in the group-theoretic gauge, without
any reference to the coordinate space. An important step in this direction was the computation
of the four-point crossing factor (8.20).

The systematic study of partial waves in harmonic analysis provided us with new results, but
one should wander about the aims and limitations of this approach. We have said that it is
hopeless to try and write closed form expressions for arbitrary irreducible matrix elements of a
Lie group such as SO(d+ 1, 1). Probably is equally unlikely to obtain closed form expressions
for 2437-point conformal blocks. With every new variable, the solutions to partial differential
equations become significantly more difficult to come by.

If the future developments of the bootstrap will rely on higher-point functions, then the obser-
vation that the Gaudin algebra acts on these correlators and can be used to characterise partial
waves, (12.3), is a useful starting point. A complete solution of the scalar five-point problem
would be a great achievement for this, or any other approach.

Interesting variations on the theme of higher-point functions occur when defects are involved.
There is a richer class of examples to consider and some of them may turn out to be particularly
well-behaved. This is expected of the four-point function that involves two bulk and two
defect field insertions. There is a realisation of this correlator as a spherical function on Gd,p

which depends on four longitudinal and one transverse cross ratio. Moreover, the correlator
is particularly interesting because it satisfies a simple crossing equation obtained by switching
the two bulk fields. It would be certainly worthwhile to try and compute the corresponding
partial waves.

Superconformal blocks for fields that belong to long representations have for some time resisted
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computation. There was a feeling, however, that the required methods are in place, and that by
a skilled application of weight-shifting operators one should be able to compute these partial
waves. In some sense, the missing element was the universal and simple form of Casimir
equations, such as (10.46). Indeed, once we had (10.46) and the Clebsch-Gordan identities
(10.26) − (10.28), which are essentially a type of weight-shifting, it was extremely simple to
find the blocks. It would be of great importance to use this method to obtain partial waves
of four long operators in four-dimensional N = 1 theories and other four-point functions in
N ≥ 2 theories. From the mathematical point of view, this would amount to computing
various spherical harmonics on supergroups SL(4|N ).

Lastly, there has recently been some interest in defects in superconformal field theories. There
is a variety of ways in which a super-defect can be embedded in a superspace so that a certain
amount of supersymmetry is preserved, [159, 160, 161]. We do not see any obstacle to extend-
ing our theory of defect kinematics and lifts (11.7) − (11.8) to the supersymmetric case. In
particular, all our new results, such as (11.106) should have their super-partners.

At this point we will stop. Ever since the early works of Schrödinger, Heisenberg and Dirac,
quantum theory has inspired truly magnificent mathematics. Some of the most fruitful interac-
tions between the two disciplines came from the study of symmetry. The universal mathematical
notion for the description of symmetry is a group. Linearity inherent in quantum mechanics
allows one not to study the intractable space of all group actions, but a particularly beautiful
subset of them - linear representations.

All known exactly solvable quantum systems, be it the harmonic oscillator, hydrogen atom or
minimal models of two-dimensional CFTs, are so because of symmetry. Solubility is closely
related to the concept of integrability, if not taken as the definition of the latter. It is, therefore,
no surprise that representation theory and integrable systems are so heavily intertwined fields
of mathematics. All our investigations have been based on methods of these two fields.

For a period of time, especially through the popularity of string theory, systems with finite-
dimensional symmetry groups fell out of fashion. However, rather than searching for ever
larger groups, a possible direction of study that one may take is to explore consequences of
some symmetry more fully. In the context of conformal field theories, this idea was revived
with the realisation that SO(d + 1, 1) symmetry can be combined with numerical techniques
to great effects, [16]. Aided by physical intuition in order to ask useful questions, methods of
[16] paved way to obtaining rigorous results about CFTs that were previously out of reach.
Conformal bootstrap is similar in spirit to the S-matrix approach to quantum field theory and
the latter also received renewed attention in the last few years.

In relation to these facts, the mathematics that we used was not exactly modern. Its founda-
tions were laid down in the 1940s and 1950s by Gelfand, Bargmann, Harish-Chandra and their
collaborators and developed over the next decades into an immense body of knowledge. Sur-
prisingly few of these results found their way into conformal field theory literature, at least until
recently (with notable exceptions such as [87]). However, with a number of relevant physics
questions lined up, it is a good moment to return to this beautiful part of the 20th century
mathematics. We view our work as a small step in this direction.
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[2] I. Burić, M. Isachenkov and V. Schomerus, “Conformal Group Theory of Tensor Structures”,
JHEP 10, 004 (2020), arxiv:1910.08099.
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[139] D. Mazáč, L. Rastelli and X. Zhou, “An analytic approach to BCFTd”, JHEP 12, 004 (2019),
arxiv:1812.09314.

[140] V. Rosenhaus, “Multipoint Conformal Blocks in the Comb Channel”, JHEP 1902, 142 (2019),
arxiv:1810.03244.

[141] S. Parikh, “Holographic dual of the five-point conformal block”, JHEP 1905, 051 (2019),
arxiv:1901.01267.

[142] J.-F. Fortin and W. Skiba, “New methods for conformal correlation functions”,
JHEP 2006, 028 (2020), arxiv:1905.00434.

188



BIBLIOGRAPHY

[143] S. Parikh, “A multipoint conformal block chain in d dimensions”, JHEP 2005, 120 (2020),
arxiv:1911.09190.

[144] J.-F. Fortin, W. Ma and W. Skiba, “Higher-Point Conformal Blocks in the Comb Channel”,
arxiv:1911.11046.

[145] N. Irges, F. Koutroulis and D. Theofilopoulos, “The conformal N -point scalar correlator in
coordinate space”, arxiv:2001.07171.

[146] J.-F. Fortin, W.-J. Ma and W. Skiba, “Six-Point Conformal Blocks in the Snowflake Channel”,
arxiv:2004.02824.

[147] A. Pal and K. Ray, “Conformal Correlation functions in four dimensions from Quaternionic
Lauricella system”, arxiv:2005.12523.

[148] J.-F. Fortin, W.-J. Ma and W. Skiba, “Seven-Point Conformal Blocks in the Extended
Snowflake Channel and Beyond”, arxiv:2006.13964.

[149] S. Hoback and S. Parikh, “Towards Feynman rules for conformal blocks”, arxiv:2006.14736.

[150] P. Vieira, V. Gonccalves and C. Bercini, “Multipoint Bootstrap I: Light-Cone Snowflake OPE
and the WL Origin”, arxiv:2008.10407.

[151] T. Anous and F. M. Haehl, “On the Virasoro six-point identity block and chaos”,
JHEP 2008, 002 (2020), arxiv:2005.06440.

[152] J.-F. Fortin, W.-J. Ma and W. Skiba, “All Global One- and Two-Dimensional Higher-Point
Conformal Blocks”, arxiv:2009.07674.

[153] A. Chervov, G. Falqui and L. Rybnikov, “Limits of Gaudin algebras, quantization of bending
flows, Jucys-Murphy elements and Gelfand-Tsetlin bases”, Lett. Math. Phys. 91, 129 (2010),
arxiv:0710.4971.

[154] A. Chervov, G. Falqui and L. Rybnikov, “Limits of Gaudin Systems: Classical and Quantum
Cases”, SIGMA 5, 029 (2009), arxiv:0903.1604.

[155] M. Kapovich and J. Millson, “On the moduli space of polygons in the Euclidean plane”,
J. Differential Geom. 42, 430 (1995).

[156] M. Kapovich and J. J. Millson, “The symplectic geometry of polygons in Euclidean space”,
J. Differential Geom. 44, 479 (1996).

[157] H. Flaschka and J. Millson, “Bending flows for sums of rank one matrices”,
Canadian Journal of Mathematics 57, 114–158 (2005), math/0108191.

[158] G. Falqui and F. Musso, “Gaudin models and bending flows: a geometrical point of view”,
J. of Phys. A 36, 11655, nlin/0306005.

[159] L. Bianchi, M. Lemos and M. Meineri, “Line Defects and Radiation in N = 2 Conformal
Theories”, Phys. Rev. Lett. no.14, 121 (2018), arxiv:1805.04111.

[160] L. Bianchi and M. Lemos, “Superconformal surfaces in four dimensions”, JHEP 06, 056 (2020),
arxiv:1911.05082.

[161] A. Gimenez-Grau, P. Liendo and P. van Vliet, “Superconformal Boundaries in 4− ε
dimensions”, arxiv:2012.00018.

189


