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Abstract
Since the first creation of bosonic and fermionic quantum gases in the nineties, the field
of ultracold atoms has expanded rapidly. Alkaline-earth(-like) atoms have been estab-
lished as potent platforms for high-precision metrology and quantum simulations of
strongly-interacting many-body physics. Due to their helium-like level structure, they
feature a doubly-forbidden 1S0 →

3P0 transition, making them ideal for high-precision
clock applications with current relative uncertainties reaching about 10−18. The ultra-
narrow clock transition further enables measuring atomic interactions directly, and con-
trol of the clock state is expected to pave the way for the quantum simulation of many-
body models with orbital degrees of freedom such as the Kondo lattice model and the
Kugel-Khomskii model, going beyond the paradigm of the much-studied Bose- and
Fermi-Hubbard models. Furthermore, the SU(N) symmetry of the ground and ex-
cited clock state, caused by the decoupling of the nuclear from the electronic spin,
has enabled studying many exotic phenomena such as SU(N) quantum magnetism and
Pomeranchuk cooling in SU(N) Mott insulators. Additionally, ytterbium, the element
used in this work, has seven stable isotopes, of which two are fermionic, enabling the
study of a large variety of mixtures.

In this work, measurements with fermionic ytterbium in optical lattices are pre-
sented. The spin-exchanging interaction between the 1S0 ground and 3P0 excited state
of 171Yb was measured spectroscopically, paving the way for the quantum simulation
of the anti-ferromagnetic Kondo lattice model. Furthermore, high-resolution spectro-
scopic measurements on interorbital SU(2)⊗SU(6)-symmetric Fermi-Fermi mixtures
of 171

e/g Yb -173
g/e Yb are described, which provide, among others, a benchmark for accu-

rate ground-excited state Yb2 molecular models and a possible platform to study two-
flavour symmetry-locking phases. Lastly, measurements on the 1D dissipative Fermi-
Hubbard model are presented, where the two- and six-spin mixtures of 173Yb show a
dynamic inhibition of two-body losses. We attribute this to the formation of a highly-
entangled Dicke state, which is protected from further decay by the continuous quan-
tum Zeno effect, and which has optimal metrological properties enabling beating the
standard quantum limit and reaching Heisenberg-limited spectroscopy.
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Zusammenfassung
Seit der ersten Realisierung von bosonischen und fermionischen Quantengasen, erlebte
das Feld der ultrakalten Atome eine schnelle Entwicklung. Erdalkali(-ähnliche) Atome
etablierten sich als nützliche Systeme für hochprz̈ise Metrologie und die Quantensimu-
lation von stark wechselwirkenden Vielteilchensystemen. Aufgrund ihrer Helium-ähn-
lichen Energieniveaustruktur haben diese einen zweifach verbotenen 1S0 →

3P0 Über-
gang, was sie ideal macht für hochpräzise Uhrenanwendungen mit relativen Unge-
nauigkeiten bis zu ungefähr 10−18. Der ultraschmale Uhrenübergang ermöglicht zusät-
zlich das direkte Messen von atomaren Wechselwirkungen und die Kontrolle über
den Uhrenzustand eröffnet neue Möglichkeiten für die Quantensimulation von Viel-
teilchenmodellen mit orbitalen Freiheitsgraden wie dem Kondo Gitter Modell und dem
Kugel Kugel-Khomskii Model, welche über das Paradigma der intensiv erforschten
Bose- und Fermi-Hubbard Modelle hinausgehen. Darüber hinaus besitzen der Grund-
und angeregte Uhrenzustand aufgrund der Entkopplung des nuklearen und elektro-
nischen Spins eine SU(N)-Symmetrie, was die Erforschung von vielen exotischen
Phänomenen zur Folge hat, wie etwa dem SU(N)-Quantenmagnetismus und der Pome-
ranchuk-Kühlung in SU(N) Mott-Isolatoren. Zusätzlich besitzt Ytterbium, das Ele-
ment welches in dieser Arbeit verwendet wird, sieben stabile Isotope, wovon zwei
fermionisch und fünf bosonisch sind und daher die Forschung einer großen Anzahl an
Mischungen ermöglicht.

In diesem Werk werden Messungen mit fermionischem Ytterbium in optischen
Gittern präsentiert. Die Spin-Austauschwechselwirkungen zwischen dem 1S0 Grund
und 3P0 angeregten Zustand von 171Yb werden spektroskopisch gemessen, welche
wichtig für die Quantensimulation des antiferromagnetischen Kondo Gitter Modells
sind. Außerdem werden hoch-präzise Spektroskopie-Messungen an interorbitalen
SU(2)⊗SU(6) symmetrischen Fermi-Fermi Mischungen beschrieben, die unter anderem
als Grundlage für zukünftige Yb2 Molekülmodelle dienen können und eine mögliche
Plattform für die Erforschung von zwei-flavour Symmetrie-fixierten Phasen darstellen.
Abschließend werden Messungen an dem 1D dissipativen Fermi-Hubbard Modells
präsentiert, bei dem die zwei und sechs Spin-Mischungen von 173Yb eine dynamische
Unterdrückung der Zweikörperverluste erfahren. Wir schreiben dies der Entstehung
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eines hoch verschränkten Dicke-Zustandes zu, welcher vor weiterem Zerfall durch den
kontinuierlichen Quanten-Zeno-Effekt geschützt wird. Diese Dicke-Zustände haben
optimale metrologische Eigenschaften, die es ermöglichen das Standard-Quantenlimit
zu brechen und das Heisenberg-Limit zu erreichen.
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Chapter 1

Introduction

After the first creation of Bose-Einstein condensates [3, 4] in 1995, and degenerate
Fermi gases in 1999 [5], the field of ultracold quantum gases has grown steadily.
Though the first quantum gas experiments were performed with rubidium, sodium and
potassium atoms, quantum degeneracy has now been reached using several other alkali
and alkaline-earth(-like) atoms, molecules, photons and other systems.

One of the main interests within the quantum gas community is the pursuit of quan-
tum simulators. The idea, coined in 1981 by R.P. Feynman [6], is a way of countering
the limitations classical computers have when calculating quantum behaviour. To this
end, well-controlled quantum systems which obey model Hamiltonians are studied.
Though quantum simulators have been realised using various systems, this thesis fo-
cusses on ultracold atoms, which exhibit a large degree of control and tunability. Of
particular interest are quantum-degenerate atoms to study many-body physics [7] or
atoms in optical lattices [8], where, among others, the Bose- and Fermi-Hubbard mod-
els [9–12] have been studied extensively.

The atom of our interest, the alkaline-earth-like atom ytterbium, has seven stable
isotopes, five of which are bosonic and two of which are fermionic, and it was first
cooled to quantum degeneracy by the group of Y. Takahashi in 2003 [13]. Due to the
two electrons in the outer shell, alkaline-earth(-like) atoms have a helium-like level
structure, which gives rise to several interesting properties. One of these is the exis-
tence of the doubly-forbidden 1S0 →

3P0 clock transition, which is used to make some
of the most accurate clocks with relative uncertainties of about 10−18 [14–19]. The
clock transition further enables the direct measurement of atomic interactions through
high-resolution spectroscopy [20–23], and the utilisation of a second long-lived quasi-
ground state with a natural lifetime of 1/Γ > 16 s [24]. Atomic interactions are no-
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2 CHAPTER 1. INTRODUCTION

toriously difficult to calculate accurately, especially for heavy atoms such as ytter-
bium, making direct spectroscopic measurement desirable. Mixtures of ground- and
3P0 excited-state atoms, referred to as interorbital mixtures, are expected to enable
quantum simulating the Kugel-Khomskii model [25, 26], and the interorbital Feshbach
resonance is expected to allow for the observation of interorbital superfluidity [27–
30]. However, one of the main interests in alkaline-earth(-like) atoms comes from the
prospect of studying the Kondo lattice model [25, 31–34], especially the exotic 1D
case which is not realised in condensed-matter systems [25, 31], or the 2D and 3D
cases which are not yet well understood [32].

Due to the closed-shell structure of ytterbium, the electronic angular momentum
J is zero for both the spin-singlet 1S0 ground state and for the spin-triplet 3P0 excited
state, resulting in a decoupling from the nuclear spin I, which for bosons is I = 0 and
for fermions is I = 1/2 (I = 5/2) for 171Yb (173Yb). This decoupling leads to SU(N)
symmetry, where N = 2I + 1 [25, 26], or specifically SU(2) and SU(6) symmetry
for 171Yb and 173Yb [35, 36], respectively, and SU(10) symmetry of the alkaline-earth
atom 87Sr [37, 38]. These highly-symmetric systems have enabled studying SU(N)
quantum magnetism in 1D [39], contact interactions in an SU(N)-symmetric Fermi gas
[40, 41] and Pomeranchuk cooling in SU(N) Mott insulators [42–47]. Furthermore,
the nuclear-spin degree of freedom has been utilised to study topology in synthetic
dimensions [48], similar to realisations with the interorbital degree of freedom [49]
and lattice momentum states [50, 51].

Mixtures of quantum gases have enabled studying a large variety of exotic sys-
tems, such as weakly-bound heteronuclear molecules [52], dipolar molecules [53–55]
and polaronic quasiparticles [56–59], exotic superfluidity [60], interaction-induced in-
sulating phases [45, 52, 61–64] and quantum magnetism [65–67]. Such mixtures have
been implemented using, for instance, hyperfine-state mixtures [68–71], isotope mix-
tures [38, 72–75], element mixtures [52, 76–81] and orbital-state mixtures [20–22].
Because of its large number of stable isotopes, ytterbium is a promising candidate for
studying various Bose-Bose [82, 83], Bose-Fermi [84, 85] and Fermi-Fermi mixtures
[60]. With these many available mixtures, all exhibiting different s-wave interactions
in the ground state [86, 87], ytterbium offers an ideal candidate to study the interplay of
intra- and interisotope interactions which is expected to lead to exotic quantum phases
[87]. Fermi-Fermi mixtures have been of particular interest, among others, due to their
analogy with fermionic pairing [5, 79, 88–91]. Furthermore, Fermi-Fermi mixtures of
171Yb and 173Yb exhibit SU(2)⊗SU(6) symmetry [36, 92], which is expected to display
d-wave superfluidity [93] and two-flavour superfluid symmetry-locking phases [94, 95]
due to the competition of different interactions. In this work, we go beyond ground-
ground state interactions [36] and directly measure elastic and inelastic s-wave interac-
tions in excited-ground state pairs of 171Yb -173Yb mixtures, as treated in Ref. [2] and
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In real-world quantum simulators, dissipation, or coupling to the environment, is

typically one of the main obstacles. However, dissipation has also been proposed
for state engineering [96–100], entropy transfer [101], and correlation measurements
[102]. The high degree of tunability of quantum gases enables controlled studying of
dissipation by coupling to an external bath [103, 104]. Various types of dissipation
have been studied experimentally, such as one-body losses [105–109], two-body losses
[110–113], losses of polar fermionic molecules [114, 115], tunable inelastic losses due
to photo-association [116], and in synthetic lattices of momentum states [117]. A sup-
pression of losses was seen in a BEC of 87Rb, which was attributed to the continuous
quantum Zeno effect [105]. Dissipation has also been subject to continued theoretical
work [118–123]. We have performed measurements [1] on the SU(2)-symmetric dissi-
pative Fermi-Hubbard model in 1D, where it was predicted that a highly-entangled
Dicke state [124] forms dynamically due to spin-conserving two-body losses [99].
Dicke states exhibit optimal metrological properties, which allow for beating the stan-
dard quantum limit and reaching the Heisenberg limit, which can drastically improve
the accuracy of atomic clocks [99]. It was further shown that the magnetic correlations
in this system undergo a dynamical sign-reversal [118].

This work is structures as follows.

• Chapter 2 gives a brief summary of the relevant properties of ytterbium, and
gives an overview of the various elements of the experimental apparatus used to
cool atoms to quantum degeneracy.

• Chapter 3 treats quantum two-level systems in the context of clock excitation.
Two typical measurements, Rabi oscillations and clock spectroscopy, are shown
for single atoms localised in a deep optical lattice.

• Chapter 4 expands on these spectroscopic measurements by studying a lattice
filled with a mixture of two spin states of 171Yb. As explained there, the Pauli
exclusion principle gives rise to an interorbital spin-exchanging interaction after
excitation, and this interaction is measured.

• Chapter 5 presents studies on interacting Fermi-Fermi mixtures of 171Yb and
173Yb, and both the elastic and inelastic part of the interorbital scattering lengths
are measured. Though the elastic interactions turn out to be small and attractive
for both possible interorbital interactions, the inelastic interactions are different
by several orders of magnitude. Furthermore, the SU(2)⊗SU(6) symmetry of the
elastic interorbital interactions is directly observed, and the p-wave scattering
lengths are estimated.
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• Chapter 6 discusses measurements on the dissipative 1D Fermi-Hubbard model,
where the intrinsic two-body losses of excited ytterbium atoms are studied. After
a transient time, the two-body losses cease, which we attribute to the dynamical
build-up of a highly-entangled Dicke state, as predicted for this system [99].



Chapter 2

Experimental Setup

Before treating the measurements done for this work, this chapter gives an overview of
both the relevant properties of ytterbium, and the experimental setup. Though modifi-
cations have been made to parts of the setup, the largest part of the apparatus was built
up before the beginning of this work. For a more detailed treatment of the different
iterations and parts of the setup, see the previous publications [1, 2, 125] and theses
[126–142]. For additional information on the current setup, see Refs. [143, 144].

The work in this chapter was supervised by K. Sengstock & C. Becker. The data
presented in this chapter was taken by B. Abeln, M. Diem and the author. The analysis
was done by the author.

2.1 Properties of Ytterbium
The alkaline-earth-like atom ytterbium (Yb) is a lanthanide atom with atom number
70 and seven stable isotopes. Five of these, 168Yb, 170Yb, 172Yb, 174Yb and 176Yb are
bosonic and have nuclear spin I = 0. The two fermionic isotopes 171Yb and 173Yb have
I = 1/2 and I = 5/2 and natural abundancies 14.1% and 16.1% [145], respectively.

Due to the two electrons in the outer shell, ytterbium has a helium-like level struc-
ture, as depicted schematically in Fig. 2.1. Here the term symbol 2S +1LJ denotes the
angular momentum eigenvalues of the electrons, with the spin multiplicity 2S + 1, the
orbital angular momentum L and the total electronic angular momentum J, which is
the eigenvalue of the total electronic angular momentum operator Ĵ = Ŝ+ L̂. The states
and transitions relevant for this work are shown in Fig. 2.1, with the spin-singlet states
(total spin S = 0) on the left and the triplet states (S = 1) on the right.

5
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Figure 2.1: Energy level scheme of ytterbium (not to scale). The relevant transitions
are shown as coloured arrows, with the wavelength λ and natural linewidth Γ. The
horizontal grey lines indicate the energy levels of 174Yb, 171Yb 173Yb (see text). The
hyperfine F′ manifold is denoted above or below the fermionic hyperfine states and
the frequency denotes the detuning δ/2π with respect to the transition of 174Yb. The
literature values are taken from Refs. [24, 146–150], and the linewidth of the 3P0 →

3D1
transition was obtained by Refs. [129, 151].



2.1. PROPERTIES OF YTTERBIUM 7

Both the 1S0 ground state and the long-lived 3P0 excited clock state have J = 0,
which leads to a decoupling of the total electronic spin and the nuclear spin I, such that
the total atomic angular momentum F̂ = Î + Ĵ is simply given by F = I, where F is the
eigenvalue of the total atomic angular momentum operator F̂. For 171Yb and 173Yb, the
total angular momenta of the ground and clock states are thus given by F = I = 1/2
and F = I = 5/2, respectively, and since the magnetic moment of the nucleus is
about 2000 times smaller than that of an electron, these states are barely sensitive to
magnetic fields. Crucially, for the ground and clock states the decoupling leads to
SU(N = 2I + 1)-symmetric interactions, in other words, the interactions are invariant
under rotation of angular momentum [25, 26, 152]. This symmetry is not exact, but
is predicted to hold to a relative accuracy of ∆agg/agg ≈ 10−9 for ground-ground-state
interactions, and ∆aeg,ee/aeg,ee ≈ 10−3 for excited-ground-state and excited-excited-
state interactions [25], where ao1o2 is the s-wave scattering length of two atoms in
orbitals o1 and o2. SU(N)-symmetric systems have been realised experimentally with
ytterbium [21, 35, 36] and strontium∗ [20, 37, 38].

Figure 2.1 further shows the hyperfine splittings of the fermionic isotopes, caused
by the different possible total angular momenta F ∈

[
|I − J|, . . . , I + J

]
for states with

J ≥ 1. Since bosonic ytterbium has a nuclear spin of I = 0, the total atomic angu-
lar momentum is equal to the total electronic angular momentum J, and hence does
not exhibit a hyperfine splitting. The fermionic hyperfine splittings† are denoted with
respect to the energy of the boson 174Yb which has the highest natural abundance.

One of the main research interests of ytterbium comes from the presence of a
metastable excited state 3P0, often simply referred to as the excited state, |e〉, or the
clock state. It is connected to the ground state by a doubly-forbidden‡ ultranarrow
transition, and thus has a natural lifetime of many seconds§, which is effectively stable
for most measurements on the ms timescale. Therefore, exciting ground-state atoms to
the 3P0 state yields an additional degree of freedom, which is promising for the study
of, among others, Kondo-like physics [25, 31–34], the Kugel-Khomskii model [25,
26] and synthetic topological systems [49]. Furthermore, the small natural linewidth
makes it an excellent platform for so-called optical clock experiments [14–19], where
a frequency-narrowed laser can perform spectroscopy on interacting systems. Since

∗ In the alkaline-earth atom 87Sr, N can be as large as ten due to the nuclear spin of I = 9/2.
† The hyperfine splittings of the 3P2 state and the 3D states are omitted since these do not directly play a

role in this work.
‡ That is, the transition is both electric and magnetic dipole forbidden. The transition is nonetheless

possible due to a small admixing of the 3P1 and 1P1 state in the 3P0 state [153].
§ Though it has not directly been measured, theoretical predictions have shown a natural linewidth of

Γ/2π < 10 mHz [24]. Further note that the metastable 3P2 state is similarly long-lived, though not utilised in
this work.
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Table 2.1: Summary of the elastic scattering lengths of 1S0 ground and 3P0 excited-
state pairs of fermionic Yb. The interorbital spin-exchange interaction of 171Yb and of
the interorbital interisotope interactions of 171Yb -173Yb are measured in our work [2]
and presented in Ch. 4 and 5. The interaction of 171

e Yb -173
e Yb has not been measured

yet. All values are in units of the Bohr radius a0 ≈ 5.29 × 10−11 m [156].

171
g Yb 171

e Yb 173
g Yb 173

e Yb

171
g Yb −3(4) [86] aeg+ = 201(5)

aeg− = 306(6)
[2] −5.8(6) × 102 [86] −1.0(6) × 102 [2]

171
e Yb 104(7) [155] −8(6) × 101 [2] -

173
g Yb 199(2) [86] aeg+ = 1894(18)

aeg− = 220(2)
[21, 157]

173
e Yb 306(11) [21]

interactions in ultracold systems are typically on the order of kHz, a narrow laser and
transition are needed to measure these directly, for which the clock setup was built (see
Sec. 2.5).

In the ultracold-temperature regime, only s-wave scattering plays a role, which,
for 1S0 ground and 3P0 excited states of ytterbium, are described by a single scatter-
ing length a due to their SU(N) symmetry. Whereas in alkali atoms these interactions
can be tuned by magnetic Feshbach resonances [154], these are not available due to
the small total angular momentum of ytterbium. Though interorbital Feshbach reso-
nances [27–30] exist at 1300 G for 171Yb [155] and 55(8) G for 173Yb [28], another
opportunity the large number of abundant ytterbium isotopes offers is to study different
pair interactions which naturally exhibit different scattering lengths. Table 2.1 gives an
overview of all known s-wave scattering lengths of pairs of ground-state and excited-
state fermionic ytterbium, which shows the availability of scattering lengths from large
and attractive (a < 0) to large repulsive (a > 0). As explained in Ch. 4, intraisotope
interorbital interactions are quantified by two scattering lengths aeg± due to the Pauli
exclusion principle. The intraisotope interorbital interactions of 171Yb were measured
by the Kyoto [23] ground, the Munich group [155], and in our group [2], which is ex-
plained in detail in Ch. 4. Additionally, we have measured the interisotope interorbital
interactions in 171

e/g Yb -173
g/e Yb mixtures [2], as treated at length in Ch. 5.
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2.2 Atom Cooling
In our experiment, ytterbium is cooled down to quantum degeneracy in four steps. The
experimental setup to achieve this is described in detail in previous publications [1, 2,
125] and theses [126–130, 132, 138, 143], here only a brief overview is given. The
cooling relies on two principles, laser cooling in a magneto-optical trap (MOT) and
evaporative cooling (see, for instance, Ref. [158]).

Figure 2.2 depicts the laser beam powers during a typical DFG-creation sequence.
Gaseous atoms supplied by a dispenser are cooled down in the 2D MOT and transferred
to the 3D MOT by gravity and the push beam (‘MOT loading’ in the figure), typically
for about 18 s. The push beam is switched off and the 3D MOT is compressed (MC)
in two steps of 200 ms by reducing the laser power and by shifting the laser frequency
towards resonance. After switching off the blue and green MOTs, the atoms are held in
the bi-colour crossed dipole traps consisting of a green 532 nm beam (see Sec. 2.2.3)
and two crossed infrared 1064 nm beams (see Sec. 2.2.4). The green dipole trap is
ramped down exponentially (GDT ramp) in 6 s and switched off. In experiments where
a non-balanced spin preparation is required, optical pumping (OP) is performed (see
Sec. 2.3). The IR beams (IR1 & IR2) are ramped down exponentially (IR ramp) in 3 s
to cool the atoms down to quantum degeneracy. The final depths of the IR1 and IR2
beams can be tuned to vary the final atom number and temperature. The IR beams are
switched off and after a time-of-flight (ToF), typically of 16 ms, the atoms are imaged
(‘im’ and ‘ref’, see Sec. 2.6). In this way, degenerate Fermi gases are created and
observed.

2.2.1 The 2D Magneto-Optical Trap
Gaseous Yb emitted by the dispenser is trapped in a 2D-MOT setup in the horizontal x-
z plane, which runs at the 1S0 →

1P1 transition at wavelength λ = 399 nm. This reduces
the motion of the atoms in that plane, and a push beam in the direction of gravity,
defined as the y-direction, is used to optimise the atom transfer into the 3D MOT. The
initial setup has been treated in detail in Refs. [125–129, 132], though the majority of
the setup was rebuilt by B. Santra, B. Abeln and the author, and is described in the
following.

Figure 2.3 shows a schematic of the 2D-MOT setup, consisting of the so-called
laser board (left) and the upside-down experimental board (right)∗. A commercial
tapered-amplified diode laser with frequency doubling in a second-harmonic-generation

∗ Note that the optical elements on the experiment board are mounted upside-down, such that in reality
this top-view direction cannot been seen. Hence, when looking from below, the scheme is mirrored top to
bottom.
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Figure 2.2: Schematic of a DFG creation sequence (not to scale), showing the laser
beam powers P as a function of time t. The solid blue lines show the 2D MOT and
imaging laser beams, the dashed blue lines shows the push beam, the dark green lines
indicate the 3D MOT and optical pumping (OP) beams, the light green shows the green
dipole trap (GDT) beam, and the grey lines show the infrared dipole trap beams (IR1
& IR2). The different time steps are indicated below the x-axis (see text).

(SHG) cavity is used∗ to create an approximately 1.5 W-power beam at a wavelength
of 399 nm. Due to the higher laser power, the 2D-MOT loading rate is saturated and
is therefore insensitive to small fluctuations in the laser output power. Using two mir-
rors, depicted by the blue-grey rectangles with a black back, the laser beam is aimed at
a half-wave plate (λ/2) and is split by a polarising beamsplitter (PBS). The deflected
beam passes through another λ/2 plate and PBS to further reduce the beam power,
the remainder of which is deposited onto a beam dump (BD). About 2 mW of power
remains and passes through a 50/50 beamsplitter (BS), which overlaps the beam with
the so-called offset-lock laser beam from the imaging laser setup (see Sec. 2.6 and
Ref. [143]). This offset-lock beam is coupled out of a fibre (upper left), polarisation-
cleaned by a PBS and its beam size is changed by a telescope. The two overlapped
beams are focussed on a photodiode (PD) by a lens to make the signal less sensitive
to small misalignments. The offset-lock beam polarisation is set by variable stress
loops on the fibre to optimise the signal on the PD. Using the photodiode, the 2D-MOT
laser is locked to the imaging laser frequency with a variable frequency offset, which is
called the offset lock. The offset frequency can be changed in-cycle to different isotopic
resonances (see Sec. 2.2.5).

∗ Toptica TA SHG Pro.
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Figure 2.3: Top view schematic of the 2D-MOT setup (not to scale), with (left) the
laser board and (right) the upside-down experiment board (see text). The coordinate
system is shown in the upper right corner. [159]

The beam emitted by the first PBS is the main 2D-MOT beam, and passes through
another λ/2 plate and is transferred to the experimental board. A flip mirror (FM) is
switched to deflect the 2D-MOT beam onto a beam dump to prevent resonant stray light
from the laser board reaching the atoms in following cooling stages∗. The 2D-MOT
beam passes through a telescope which increases the beam size to about 50 mm. This
beam is split in a 50/50 beamsplitter, and both beams pass through a quarter-waveplate
(λ/4) to create circularly-polarised light. The two beams pass through a cylindrical
telescope† and fall onto the 2D-MOT glass cell (GC) approximately perpendicularly.
Both beams pass through a lens which focusses the beam on a retro-reflecting mirror,
forming a so-called cat’s eye setup. A λ/4 waveplate is placed between the lens and
mirror to ensure the retro-reflected beam polarisation is rotated correctly. Razor blades
in front of the cylindrical telescope and in the cat’s eye setup ensure that the counter-
propagating beams are perfectly overlapped.

Using this setup, atoms are trapped in the 2D MOT and transferred continuously to
the 3D MOT by gravity and the push beam. For further information, see Refs. [125–
130].

∗ For the same reason the laser board and experiment board are both shielded by blackened aluminium.
The laser board further has a lid and the beam between the boards passes through a pipe, both made out of
blackened aluminium.
† The cylindrical telescope and the retro-reflecting mirrors were part of the original setup, for details see

Refs. [125–129, 132].
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2.2.2 The 3D Magneto-Optical Trap

The working principle of the 3D MOT is the same as for the 2D MOT, except in all
three spatial dimensions, hence trapping the atoms in an approximately spherical cloud.
It is set to the 1S0 →

3P1 intercombination transition at λ = 556 nm, which with its nar-
row natural linewidth Γ = 183 kHz [146] allows for laser cooling to low temperatures.
Various versions of the setup have been explained in detail in Refs. [125–130, 138], but
for the most recent version see Ref. [143]. Here only a brief overview is given.

Similar to the 2D-MOT laser, a commercial tapered-amplified diode laser with fre-
quency doubling in a SHG cavity is used∗ to create an approximately 250 mW-power
beam at a wavelength of 556 nm. The laser beam is split into several beams. First, a part
of the beam is split off and used to lock the laser to a high-finesse ultra-low-expansion
(ULE) cavity using a Pound-Drever-Hall (PDH) method [143, 160]. The frequency
stability of the cavity was observed over a few months, as shown in Fig. 2.4, where the
detuning δ is shown with respect to the resonance on the first day. The drifts seem to be
non-linear, and hence the resonance frequency is checked and optimised on a daily ba-
sis. Second, a part of the laser beam is split off to create an Optical-Stern-Gerlach
(OSG) beam [161] (see Sec. 2.3.2) which is shifted by two double-pass 200 MHz
acousto-optical modulators (AOMs) and one single-pass 200 MHz AOM. Third, a part
of the beam is used to create the 173Yb 3D-MOT light, which is transferred to the so-
called 3D-MOT cluster [138, 143]. Here the beam is split up into four power-balanced
beams, which are coupled into optical fibres and make up the 3D-MOT beams. Two
beams are counter-propagating and two beams are retro-reflected, such that atoms are
illuminated from all six directions. Fourth, a part of the beam is split off as a reference
frequency for a 1.5 W commercial TA-SHG laser† which is offset-locked to create the
171Yb‡ 3D-MOT light [143]. The light of this second 556 nm laser is also brought to
the cluster using an optical fibre and overlapped with the 173Yb laser beam to create a
bi-colour 3D MOT (see Sec. 2.2.5 and Ref. [143]).

The 3D MOT thus traps 171Yb, 173Yb or both isotopes, and the frequency of the
3D MOT beams is broadened [143] to optimise the atom loading and enable capturing
atoms from a larger velocity range. After a variable loading time, the 3D MOT is com-
pressed in two steps by reducing the power linearly and by shifting the frequency to
resonance. In this way, cold atomic clouds of 171Yb and 173Yb are made with loading
rates typically of 4.7 × 106 s−1 and 2.5 × 106 s−1, respectively. The minimal tempera-
ture that can be achieved in the MOT is the Doppler temperature TD = ~Γ/2kB [158],

∗ Toptica BoosTA SHG.
† Toptica TA SHG Pro.
‡ The frequency of this second laser can also be set to the 174Yb intercombination resonance, enabling

the creation of ytterbium Bose-Einstein condensates, but this is omitted from this work.
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Figure 2.4: Green master laser resonance position drifts due to locking cavity drifts.
The detuning is noted with respect to the frequency of day one. The data points are
obtained through manual optimisation and error bars indicate the estimated uncertainty
of 100 kHz.

where ~ is the reduced Planck’s constant and kB is the Boltzmann constant, yielding
TD = 4.37 µK for the intercombination transition. The temperatures reached in the
experiment were typically 17(2) µK and 15(2) µK for 171Yb and 173Yb, respectively,
shown in Fig. 2.5. While this is larger than the Doppler temperature, it is cold enough
to efficiently load into the dipole traps. For this measurement, a MOT loading time
of 0.5 s was used to capture about 106 atoms to ensure the image was not saturated,
and the atomic cloud radius is observed as a function of time-of-flight. To obtain the
temperature of a ballistically-expanding gas, a fit was made using the expected cloud
radius rc(t) = (r2

c,0 + 2kBTt2/m)−1/2, where rc,0 is the cloud radius at t = 0, T is the
temperature and m is the atomic mass∗. At the temperatures obtained here the gas is
still thermal and further cooling is needed to reach quantum degeneracy.

2.2.3 The Green Dipole Trap
Since the magnetic moment of the ground state Yb depends on the nuclear spin while
the electronic angular momentum is zero, the magnetic moment of fermionic Yb is
about three orders of magnitude smaller than that of alkali atoms such as Rb, which
renders magnetic trapping inadequate for our purposes. Hence, a full-optical setup is
used, utilising the dipole force of far-off-resonant beams [162]. The optical dipole traps
are used for evaporative cooling [158] by lowering the trap depths, initiating the loss of

∗ Here the average thermal velocity v̄2 = 2kBT/m was used.
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(a) (b)

Figure 2.5: 3D MOT temperature measurement, the cloud radius rc as a function of
time-of-flight duration tToF. Data points are obtained from fits to the atomic cloud
and are averaged twice, and error bars denote the standard deviation. The solid lines
show the best fit (see text) and the shaded area its 95% confidence interval. (a) and (b)
show measurements for 171Yb and 173Yb, with temperatures of 17(2) µK and 15(2) µK,
respectively.

atoms with the highest kinetic energies. The remaining atoms rethermalise via elastic
scattering and are thus cooled. In this way 173Yb and 174Yb, with s-wave scattering
lengths of 199(2)a0 and 104.9(1.5)a0 [86], respectively, can be cooled to quantum de-
generacy efficiently. Evaporative cooling, however, does not work for 171Yb since its
elastic scattering length is agg = −3(4)a0 [86], preventing it from rethermalising. For
this reason, we use sympathetic cooling with 173Yb atoms, exhibiting an interisotope
ground-ground state scattering length of −5.8(6) × 102a0 [86], to create degenerate
Fermi gases of 171Yb. The interactions between two different isotopes enable the ther-
malisation of both gases.

As explained in previous theses [126–129], the bi-colour optical trap is chosen
to both directly trap atoms from the 3D MOT and to load the quantum gases into
the lowest band of an optical lattice. A green dipole trap (GDT) provides the first
functionality. A commercial Nd:YAG laser∗ at λ = 532 nm passes through an AOM,
used for power controlling and switching, and passes through a telescope to create a
14 W beam with a waist of 18 µm by 29 µm propagating in the z-direction [129]. At this
wavelength, the real part of the polarisability α is negative, such that the dipole force
Fdip = Re(α)∇I(r)/2ε0c is attractive, where I(r) is the Gaussian laser-beam intensity
dependent on the position r, ε0 is the permittivity of vacuum and c is the speed of light

∗ Coherent VERDI V18.
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[162].
After compressing and switching off the 3D MOT, the atoms are held in the dipole

traps. The first evaporative cooling stage consists of ramping down the GDT exponen-
tially in 6 s and switching the beam off using an AOM. Sympathetic cooling is done in
the same way, except with an isotope mixture (see Sec. 2.2.5).

2.2.4 The Crossed Infrared Dipole Trap
The green dipole trap is overlapped with a crossed dipole trap at λ = 1064 nm. A
commercial laser∗ at λ = 1064 nm is split in two beams, each of which passes through
an AOM for power controlling and switching. The two beams are coupled into a fibre
and transferred to the main experimental table. One beam, referred to as ‘IR1’, with
waists 52.2(1) µm by 51.3(1) µm at 1.5 W [129] on the atoms, is overlapped in the z
direction with the GDT. A second beam, ‘IR2’, with waists 67(4) µm by 192(1) µm
at 11.5 W [129] illuminates the atoms along the x-axis. The waist in the direction of
gravity was smaller by design to counteract gravitational sag [129].

The second evaporative or sympathetic cooling stage is performed by simultane-
ously ramping down the power in the IR1 and IR2 beams exponentially in 3 s to
about 50% and 75% of the initial power, respectively. The exact final powers were
adjusted per experiment to optimise final atom number and temperature. The final
trap depths ωx,y,z in the different directions are typically about ωx = 2π×26.6(5) Hz,
ωy = 2π×70.5(3) Hz and ωz = 2π×24.0(1) Hz [129]. In this way, 173Yb DFGs with
typically 1.5 × 105 atoms at temperature T ≈ 20%TF are made, or 171Yb DFGs with
about 105 atoms at T ≈ 25%TF

†.
For more details on the design considerations of the dipole traps, see Refs. [125–

129].

2.2.5 Creating Fermi-Fermi Mixtures
The setup used to create isotope mixtures was planned by A. Kochanke, B. Hundt and
B. Abeln and described in detail in Ref. [138]. Changes after the initial planning were
made by B. Abeln and described in Ref. [143]. Here only a brief overview is given.

In order to create pure 171Yb Fermi gases or 171Yb -173Yb mixtures‡, the follow-
ing procedure is used. Though the 3D MOT continuously traps 171Yb and 173Yb (see

∗ Coherent Mephisto.
† Over the course of this work, BECs of 174Yb were also made, though not described here since our

research focus lies on fermionic ytterbium.
‡ Though the setup was used to create fermionic mixtures, it can also be used to create Bose-Fermi

mixtures.
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Sec. 2.2.2), the 2D MOT operates at a single frequency. Therefore, the 2D MOT offset
frequency starts red-detuned with respect to the 1S0 →

1P1 transition of 171Yb and is
sweeped to the 173Yb frequency in 500 ms. In this way we consecutively load 171Yb and
173Yb into the 3D MOT∗. We typically load the first isotope for about 4 s to 6 s and the
latter for 10 s to 12 s, though the exact timing was varied to obtain the desired isotope
ratios in the final mixture†. Furthermore, when creating a pure 171Yb DFG, the residual
173Yb atoms used for sympathetic cooling are blasted away on the 1S0 →

3P1(F′ = 7/2)
transition using a 10 ms pulse.

In this way, we typically create spin-polarised Fermi-Fermi mixtures of 10 to 30
thousand atoms per isotope at temperatures of 25% to 55%TF. Isotope mixtures cre-
ated with two spin-polarised isotopes were larger and colder than those with multiple
mF states. Though the cause is as yet unknown, we think this could be because of
three-body recombination in non-polarised mixtures, driven by the large attractive in-
terisotope interaction of −5.8(6) × 102a0 [86].

2.3 Spin Preparation
The nuclear spin of I = 1/2 (I = 5/2) of fermionic 171Yb (173Yb) atoms allows for the
study of interacting spin mixtures with up to two (six) spin states. The nuclear spin
of each atom after evaporative cooling is approximately random, resulting in a roughly
balanced spin-mixture. To utilise the spin degree of freedom, optical pumping is used
to create samples with a tunable atom number in the different spin states, and to image
the spin occupations, an optical Stern-Gerlach method is applied, both explained in the
following.

2.3.1 Optical Pumping
To enable mF-state-specific addressing of the atoms, a homogeneous magnetic field of
about 18 G is applied. The different nuclear spin states can be addressed separately be-
cause the differential Zeeman shift of the 1S0 →

3P1(F′ = 3/2) transition is 1.4 MHz/G
for 171Yb, whereas it is 597 kHz/G for the 1S0 →

3P1(F′ = 7/2) transition of 173Yb‡.
Then, on-resonant optical pumping [158] on the intercombination transition§ is used to

∗ In this way, 171Yb spends more time in the 3D MOT. This order was preferred because of the small
scattering length of 171Yb, which is therefore expected to be less sensitive to losses.
† The large difference in loading times is in part caused by the larger MOT loading rate of 171Yb, see

Sec. 2.2.1.
‡ These were calculated using the Land’e factors, see for instance Ref. [126].
§ Note that the hyperfine and isotope splittings of both fermionic isotopes is such that the 171Yb F′ = 3/2

line is only 2.7 MHz removed from the 173Yb F′ = 3/2 line (see Fig. 2.1). Hence, optical pumping of 171Yb
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excite atoms to the rapidly decaying 3P1 state (1/Γ ≈ 870 ns [146]), using the circularly-
polarised 3D-MOT beams on the z-axis. In this way, the relative number of atoms in
each spin can be changed.

Though previously∗ optical pumping was done before evaporative cooling in the
GDT, the spin preparation improved when applying it after the first evaporation stage
(as depicted in Fig. 2.2). Throughout this work, spin-polarised gases are typically
created in the mF = −1/2 and mF = +5/2 state for 171Yb and 173Yb, respectively. For
a more detailed treatment, see Ref. [143].

2.3.2 Optical Stern-Gerlach
For alkali atoms, a Stern-Gerlach method using a magnetic field gradient is typically
implemented to spatially separate atoms in different spin states. Due to the small mag-
netic moment of fermionic ytterbium, experimentally feasible magnetic fields are not
large enough for this purpose. Hence, optical Stern-Gerlach [161] is used to split
atoms in different nuclear-spin states , relying on the different polarisabilities of mF

states close to resonance†. For a detailed treatment of the theoretical principles, see
Refs. [127, 129, 138, 141], and for explanations of the setup see Ref. [127, 129, 138],
here only a brief overview is given.

A circularly-polarised laser beam is blue detuned by 1.4 GHz with respect to the
1S0 →

3P1(F′ = 7/2) transition of 173Yb [129]. The power is set to about 30 mW,
and the beam illuminates the atoms typically for 550 µs. Because the beam comes in
under an angle of about 11◦ with respect to the z-axis, the quantisation axis is turned
accordingly. By shining in the beam at the beginning of time-of-flight, the atoms in
different mF states are subject to an mF-dependent force and are detected separately
(see Sec. 2.6 for a typical absorption image).

2.4 The Optical Lattices
After creating a degenerate Fermi gas with the desired number of nuclear spin states,
the atoms are loaded into an optical lattice. Optical lattices allow one to study, among
others, localised interacting particles, high-resolution clock spectroscopy, and tight-
binding models such as the Fermi-Hubbard model [8]. An optical lattice is made using

also affects 173Yb. We therefore first perform optical pumping on the former, and then apply optical pumping
on the 173Yb F′ = 7/2 line which is far-detuned from the 171Yb intercombination transition.
∗ Such as in the dissipation measurements treated in Ref. [1] and Sec. 6. For more information on the

formerly-used optical pumping scheme, see Refs. [128, 129].
† The difference in polarisabilities is mostly due to the different Clebsch-Gordan coefficients.
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interfering laser beams, which create a sin2-shaped standing wave, and which attract
or repel atoms with a dipole force. Due to the Gaussian shape of the individual laser
beams, the resulting lattice has the same envelope, though this effect is negligible for
our purposes (see App. A).

The polarisabilities α of the orbital states of interest are crucial to the functioning of
the optical lattice. The polarisability of a state depends on the transition strengths and
wavelengths to all other states, which are thus typically different for different orbital
states.

The experimental setup features a state-dependent lattice at 660 nm, where the ratio
of excited-ground state polarisability is αe/αg ≈ 5.5. Since the excited-state has a much
larger polarisability than the ground-state, this enables studying Kondo-like systems
[25, 31–34, 163]. Measurements on such systems have been done with 171Yb and are
presented in Ref. [143], though are not further discussed here.

Of crucial interest in this work, however, is the existence of a so-called ‘magic’
wavelength∗ [14] at 759 nm [164], where the polarisabilities of the 1S0 ground and 3P0
excited states are equal αe/αg = 1. Because of this, both orbital states are subject to
the same dipole potential, preventing site-dependent frequency shifts in high-resolution
clock spectroscopy.

2.4.1 The ‘Magic’ Lattice
The essential information on the experimental realisation of our ‘magic’ lattice is dis-
cussed in the following, though for a detailed treatment, see the theses of A. Thobe
[127], B. Hundt [128], N. Petersen [135] and A. Kochanke [129] who have set up the
lattice. More recent modifications to the lattice are described in Ref. [143, 144].

A commercial Ti:Saphh laser† is used to create a 4.5 W power beam at the ‘magic’
wavelength. The beam is split up in 5 beams, one for the 1D lattice, three for the 2D
lattice and one for the wavelength monitoring with a wavelength meter. Each lattice
beam passes through an AOM‡ and is coupled into an optical fibre. There, the 1D lattice
beam (83 µm waist) is focussed on the atoms along the z axis and is retroreflected by
a concave mirror to focus the beam back on the atoms. The 2D lattice in the x-y plane
is formed by three beams which illuminate the atoms from three sides, such that the
incident angles are 120◦ in between. This creates a traingular, hexagonal or variable AB
lattice, depending on the polarisation of the beams [165, 166]. Here, the polarisation

∗ A state-independent wavelength would be more accurate, though for historic reasons we are stuck with
the other name.
† Coherent VERDI V18 & MBR 110.
‡ The AOMs run at −80 kHz and 80 kHz for the 1D and 2D lattices, respectively, to prevent the 1D and

2D lattice from interfering with each other.
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Figure 2.6: Stability measurement of the 1D ‘magic’ lattice. Data points are the mea-
sured 1D lattice depths as obtained from lattice-modulation spectroscopy measure-
ments and error bars indicate the uncertainty in the determination.

is set to create a triangular lattice. This enables us to create lattices of typical depths
s1D ≈ 50Er and s2D ≈ 25Er, where Er = ~2k2/2m ≈ h×2 kHz is the recoil energy and
k = 2π/λ is the lattice laser wavenumber.

The calibration of the lattice depth is done by lattice-modulation spectroscopy
[167]. Here, atoms are loaded into a lattice and the laser power is modulated by a
variable frequency. At the interband resonance, atoms are excited from the first lat-
tice band into the third lattice band, enabling the determination of the depth. Calibra-
tions are done prior to each measurement, and typically also after each measurement
to check the stability. Additionally, the mid-term stability is further characterised in
the following measurement. To this end, 32(1) thousand 173Yb atoms are loaded into
a 1D lattice∗. The atoms are spin-polarised to prevent interactions of atomic pairs in
the lattice. Figure 2.6 shows the resulting 1D lattice depth s1D over the course of about
4.5 hours. Each calibration sequence consists of a series of 23 images, resulting in a
single measured 1D lattice depth. Though there are some fluctuations over time, the
uncertainty in the determination of each s1D is approximately the same as the spread of
the data, implying that systematic effects are small on this timescale.

The lifetime of atoms in a deep lattice is further characterised by loading a spin-
polarised 173Yb into a lattice of depths s1D = 30Er and s2D = 17Er. Figure 2.7 shows
the results, where the atom number is observed over various hold times th in the lattice,
and fitted with an exponential N(th) = N0 exp(−th/τ), where the initial atom number

∗ During calibrations, only beams that are to be calibrated are switched on. The 2D lattice beams are
likewise calibrated pair-wise.
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(a) (b) (c)

Figure 2.7: Lifetime measurements showing (a) the ground-state atom number Ng, (b)
the number of excited-state atoms in the first lattice band Ne and (c) the number of
excited-state atoms in the second lattice band Ne,2nd, as a function of hold time. Data
points show the measured atom numbers which are typically averaged 18 times, and
the error bars represent the propagated uncertainties. The solid lines show the best fit
using an exponential and the shaded areas show the 95% confidence interval. The fits
yield lifetimes of τg = 8.7(9) s, τe = 3.7(4) s and τe,2nd = 1.0(2) s. Note the log scale of
the x axis.

N0 and lifetime τ are free parameters. Ground state atoms, shown in Fig. 2.7a, have a
lifetime of τg = 8.7(9) s. Using a rapid-adiabatic passage (RAP, see Sec. 6.1.1) over
the 1S0 →

3P0 transition, the atoms are brought into the excited state and the same
experiment is repeated, yielding a lifetime of τe = 3.7(4) s. Note that a narrow 10 kHz
RAP was used to only excite atoms on the carrier transition. The second lattice band
lies about 30 kHz higher for this 1D lattice depth, and can thus be addressed separately.
Figure 2.7c shows a lifetime measurement of excited-state atoms in the second band
of the lattice, where the atoms have a lifetime of τe,2nd = 1.0(2) s. Though the cause is
unknown, the lifetime of excited-state atoms in the second band could be shorter than
those in the first band because the atoms in the first band are subject to a deeper trap.

Since the atoms are spin-polarised, the Pauli exclusion principle prevents double
occupation, and thus the various lifetimes quantify the single-body losses. Single atom
losses are caused by collisions of residual vacuum atoms∗ and light scattering due to
the lattice-laser light. Excited-state atoms are also lost by spontaneous decay to the
ground state, but due to the long natural lifetime 1/Γ > 16 s [24], these are expected to
play a minor role. Since the lifetimes are several orders of magnitude larger than the
timescale of typical experiments, single-atom losses can often be neglected.

∗ The pressure in the experimental glass cell is below 10−11 mbar.
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2.5 Exciting Atoms to the 3P0 State

To transfer atoms from the ground state to the long-lived 3P0 excited state, a laser is
used, referred to as the clock laser. The setup was designed and built up initially by S.
Dörscher [126], A. Thobe [127], T. Rützel [131], J.H. Carstens [133] and R. Le Targat.
Later improvements are described by B. Hundt [128], A. Kochanke [129] and T. Ponath
[130], and the most recent changes were done by B. Abeln [143]. Here, the setup and
functionality is summarised.

A 300 mW power commercial laser∗ at 578 nm is split up in several beams. A
part of the beam is transferred to the experimental table with an optical fibre, where
fibre-noise-cancellation [130, 168] is implemented to reduce phase fluctuations caused
by mechanical vibrations and temperature fluctuations of the fibre. Using a Pound-
Drever-Hall scheme [130, 160], another part of the beam is locked to a high-finesse
cavity with a finesse of F = 216.9(4) × 103 and free-spectral range of 1.934(3) GHz
[130]. The cavity spacer is made out of ultra-low-expansion (ULE) glass, which has a
zero crossing of the expansion coefficient at a temperature of 32.3(1) ◦C [130]. Since
the crucial working principle of all clocks is counting oscillations, it is essential that
the light oscillates in the cavity regularly. Using a ULE cavity stabilised to its zero-
crossing temperature provides an ultrastable platform for locking the clock laser. A
linear-drift compensation is further applied to counteract linear drifts due to small long-
term expansion of the ULE spacer [130]. This drift compensation is optimised prior to
each spectroscopy measurement, but is typically −0.11(1) Hz/s.

In this way, a short-time laser stability of about 1 Hz within 2 s was found [130].
The full-width-half-maximum of the narrowest single-atom feature measured in spec-
troscopy was found to be 25 Hz over about 30 minutes (see Sec. 3.2.1). This provides a
more than sufficient resolution to spectroscopically measure atomic interactions, which
are typically on the order of kHz (see Ch. 4 and 5).

2.6 Imaging

Absorption imaging on the 1S0 →
1P1 transition is performed to observe ground-state

atoms. Here atoms absorb the resonant laser light and soon after emit it in a random
direction, in this way casting a shadow on an EMCCD camera† in the beam path.
Atomic clouds can be imaged along the x or z axis, though due to the better resolution

∗ Toptica SHG Pro.
† Andor iXon 3A-DU888-DC-QBB.
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of the x-axis imaging setup, this axis is predominantly used∗. The imaging setup was
described in detail in Ref. [136] and improvements to the laser setup providing the
imaging light are described in Ref. [143].

For each run, four images are taken, the last two of which are without imaging light.
The first image is taken after typically 16 ms of time-of-flight (ToF) and images ground-
state atoms. Briefly after the first image, the atoms are illuminated with 399 nm light
by the perpendicular imaging beam for another 1 ms, which further heats the atoms
and blasts them out of focus. The second image after typically 19 ms ToF is therefore
empty. By subtracting the second from the first, all inhomogeneities of the beam are
accounted for and only ground-state atoms are observed. The third and fourth image
are taken after an additional 2 s and 2.05 s but without the imaging light, to measure the
background illumination due to ambient light. Illumination times of 20 µs and 50 µs
are typically used for the first two and last two images, respectively.

This scheme is adapted to perform double imaging of two isotopes in a mixture. As
described in Ref. [143], the two beams are overlapped before being transmitted to the
experimental table. These two beams are set to the 171Yb and 173Yb resonance using
AOMs†. The AOMs further enable fast switching, such that both isotopes are imaged
separately in the first two images. Figure 2.8a shows a typical absorption image of a
DFG Fermi-Fermi mixture, where 171Yb and 173Yb are imaged consecutively. Note
that due to the subtraction, atoms in the second image show up as having a negative
optical density (OD), which is accounted for in the image analysis [143].

Alternatively, the ground and excited state can be measured by using a so-called
repumper technique. The first image again measures the ground-state atoms, and a
1 ms blast pulse over the other axis removes these atoms. This light is far off-resonant
with respect to the excited-state atoms, so these are unaffected. A 1 ms pulse on the
3P0 →

3D1 line at λ = 1388 nm transfers all excited-state atoms to the 3D1 state, which
rapidly decays into the ground state via the 3P1 state (compare Fig. 2.1). The illumina-
tion time is chosen such that atoms decaying back into the clock state are excited again,
until about 97.5% of the excited-state atoms end up in the 3P1 state [129]. The remain-
ing 2.5% of the atoms decay into the long-lived 3P2 state, which is accounted for in the
atom-number analysis. After another 0.9 ms ToF, the formerly-excited-state atoms are
imaged on the 1S0 →

1P1 transition. In this way, both orbital states are observed‡.

∗ Imaging along the z axis is done to calibrate the 2D lattice, which is in the x-y plane. For all other
measurements in this work, imaging is done along the x axis.
† Though generally the frequencies can also be set to the 1S0 →

1P1 resonance of 174Yb to investigate
other mixtures.
‡ Though for mixtures this technique can be used to observe ground-state atoms in one isotope and

excited-state atom in the other isotope, it is typically more useful for us to image both orbital states of the
same isotope. This enables us to normalise the excited-state atoms to the total atom number, which accounts



2.7. CONCLUSION 23

(a) (b) (c)

Figure 2.8: Typical absorption images of various atomic clouds, showing I1 − I2 − Ibg.
Atoms in the first and second image show up as positive and negative OD, respectively.
(a) Double imaging of a spin-polarised 171Yb (red) and 173Yb (blue) ground state mix-
ture. (b) Double imaging of 1S0 ground (red) and 3P0 excited state (blue) atoms of a
spin-polarised 173Yb gas in a magic lattice. (c) OSG imaging of ground state 173Yb.
The six clouds have nuclear spins mF = −5/2 to mF = 5/2 from top to bottom.

The repumper scheme explained here does not conserve the spin of the excited
state, due to the two decay channels from the 3D1 state. Since this information is
important for certain measurements, several upgrades for the repumper scheme have
been conceived, and are explained in Ref. [142].

Figure 2.8b shows a typical absorption image with the repumping scheme, where
about half of the atoms is in the ground state (red) and the other half in excited state
(blue). Additionally, a typical OSG image of 173Yb is shown in Fig. 2.8c, where the six
different nuclear spin states are clearly separated spatially. Using fits to the linesums
over the z axis, the relative occupation per spin state can be found [143].

2.7 Conclusion
With the brief overview of the interesting features of ytterbium and the experimen-
tal apparatus, we continue to experiments performed on interacting fermionic ytter-
bium in optical lattices excited on the clock transition. In the following chapters, high-

for atom number fluctuations and thus greatly reduces noise.
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resolution clock spectroscopy is explained and performed to measure interorbital spin-
exchanging interactions of 171Yb and to measure interorbital interisotope interactions
in highly-symmetric 171

e/g Yb -173
g/e Yb Fermi-Fermi mixtures. Lastly, clock excitation will

be used to study dynamics in the dissipative Fermi Hubbard model, showing the build-
up of strong spin-correlations compatible with the creation of a highly-entangled Dicke
state.



Chapter 3

Clock Spectroscopy of Polarised
Gases

One of the largest appeals of using ultracold ytterbium atoms for lattice experiments is
the existence of a long-lived excited state. As discussed before, the 3P0 excited states
is connected to the 1S0 ground state by a very narrow clock transition, which can be
addressed with a narrow-frequency laser to directly measure small energy shifts caused
by interactions between atoms in a lattice.

In this chapter the basic principles of clock excitation are discussed in the context
of the well-known quantum two-level systems, where two orbital atomic states are
coupled by a light field which is far off-resonant from all other transitions. A two-level
system is used to describe single atoms, realised by spin-polarised Fermi gases in a
‘magic’ lattice, which are non-interacting due to the Pauli exclusion principle. Two-
atom interactions are introduced in the next chapter.

This chapter is built up as follows. After a theoretical treatment of two-level sys-
tems and the resulting Rabi oscillations and spectra, the effect of linear drifts and the
effect of different decay mechanisms is discussed. In the second half, measurements
of Rabi oscillations and spectra are shown, which are described well by the two-level
description.

The work in this chapter was supervised by K. Sengstock & C. Becker. The theory
plots in this chapter were made by the author. The measurements were taken by B.
Abeln, M. Diem and the author, and the analysis was done by B. Abeln and the author.

25
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3.1 Two-Level Systems
The physics of two-level systems is well-established and has been treated in many
textbooks [158, 169]. Here, only a brief overview is given.

The main assumption for a two-level system treatment is that a light field couples
only two atomic states. To satisfy this condition, both the atomic linewidth and the light
field frequency need to be narrow compared to other atomic transitions. With an atomic
linewidth of less than 10 mHz [24] (see Fig. 2.1) and a short-term laser linewidth of as
little as 1 Hz in 2 s [130], this criterion is easily satisfied, since the nearest transition
is 20 THz removed. Using the rotating wave approximation and the electric dipole
approximation [158], the probability of measuring an atom in the excited state ne is
given by [158]

ne(δ, tp) = |ce(δ, tp)|2 =
Ω2

0

Ω2
0 + δ2

sin2
(√

Ω2
0 + δ2 tp2

)
, (3.1)

where ce is the excited-state occupation coefficient, Ω0 is the bare Rabi frequency, and
δ = ωc − ω0 is the detuning, where ωc and ω0 are the clock laser and resonance fre-
quencies, respectively. Here illumination with a square pulse of duration tp is assumed.
Further note that Ω0 and δ are given as angular frequencies.

To get an intuition of the excitation probability, the excitation probability is plotted
ne for several circumstances. Figure 3.1a shows the excitation probability as a function
of pulse time tp for four fixed detunings δ, assuming the atom starts in the ground
state prior to illumination. The resulting oscillations of ne as a function of pulse time
are called Rabi oscillations. On resonance δ = 0 (the solid line in Fig. 3.1a) the
probability of measuring the atom in the excited state increases and reaches unity at
tp = π/Ω0. This is referred to as a π-pulse, which is one way of transferring atoms
from the ground to the excited state∗. When illuminating the atom for longer than a
π pulse, the excitation probability decreases as the atom oscillates between the ground
and excited state.

Away from resonance δ , 0, shown as the dotted, dash-dotted and dashed lines in
Fig. 3.1a, the maximum excitation probability does not reach unity, since the maximum
ne is given by Ω2

0/(Ω
2
0 + δ2). Furthermore, the frequency of the oscillation increases for

increasing δ. Because of this change in frequency, a new quantity is often defined: the

effective Rabi frequency Ωeff =

√
Ω2

0 + δ2.
Figure 3.1b shows the excitation probability ne as a function of detuning δ for four

different fixed pulse times tp, referred to as spectra, since they can be used to mea-
sure energy differences in multi-component systems. In spectra made with π-pulse
∗ Another method is to use a rapid-adiabatic passage, as explained in Sec. 6.1.1.



3.1. TWO-LEVEL SYSTEMS 27

(a) (b)

Figure 3.1: (a) Rabi oscillations: the excitation probability as a function of pulse time,
here plotted as a dimensionless quantity tpΩ0/π. The different lines indicate various
detunings (see legend). (b) Spectra: the excitation probability as a function of detuning,
here plotted as a dimensionless quantity δ/Ω0. The different lines indicate various pulse
times (see legend).

illumination (solid line), the excitation probability reaches ne = 1 on resonance, and
away from resonance, it goes down to zero and has secondary peaks. These secondary
peaks are referred to as sinc lobes throughout this work, and these are a characteristic
sign of a sinc2 function∗. For a π/2-pulse (dotted line) the shape of the spectrum re-
mains the same, but the maximum peak height becomes 1/2. At a larger pulse time of
tp = 1.3π/Ω0 (dashed line) the spectrum still looks distinctively like a sinc2, though
the maximum peak height is smaller than one, even on resonance. However, here the
height of the sinc lobes compared to the central peak is larger than it is for a π-pulse,
both absolutely and relatively to the peak height. For a pulse time of tp = 1.8π/Ω0
(dash-dotted line) the spectrum consists of two equally-high peaks, and a small peak
on resonance (which disappears completely for tpΩ0/π = 2). Spectra exhibit this two-
peak feature between 1.63 . tpΩ0/π < 3†.

Further note that spectra are symmetric, which can also be seen by evaluating

∗ Recall that the definition of a sinc is sinc(ax) = sin(ax)/(ax) for any a , 0, and note that ne is a sinc2

as a function of δ.
† For longer times below (3 + 2k)π/Ω0 for k ∈ N there are further spectra with two main peaks, but no

exact function exists for the lower boundary due to the nature of sinc2 functions.
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Figure 3.2: Excitation probability as a function of both the dimensionless detuning
δ/Ω0 and the dimensionless pulse time tpΩ0/π. The colour (z-axis) shows the excitation
probability.

Eq. 3.1, since ne(δ, tp) = ne(−δ, tp). The width of the peak on resonance is inversely
proportional to the pulse time, since the sinc2 in the frequency domain is the Fourier
transform of the square pulse in the time domain. A Fourier-limited spectrum is one
where the peak width is the minimum it can be due to Fourier broadening.

Having considered Rabi oscillations and spectra separately, now consider the ex-
citation probability as function of both detuning and pulse time simultaneously. Fig-
ure 3.2 shows the excitation probability ne as a function of dimensionless detuning
δ/Ω0 and pulse time tpΩ0/π, where the colour indicates the excitation probability. In
this representation, Rabi oscillations are vertical cuts, and spectra are horizontal cuts.
Over the whole plotted area, the excitation probability goes through multiple maxima
and minima for various combinations of (δ, tp).
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3.1.1 The Effect of Linear Frequency Drifts
Real experiments are often prone to drifts of the laser frequency, which are to first
order linear in time∗. Consider the effective detuning δeff under the effect of a linear
drift ∆δdrift

δeff(t) = δ + ∆δdriftt, (3.2)

where t is the time after the beginning of the experiment. In this definition, δ is the
set value of the detuning in the experiment and δeff is the real detuning of the light
illuminating the atom. Further note that ∆δdrift has units of 1/s2.

Figure 3.3a shows the effect of linear frequency drifts on Rabi oscillations, where
the excitation probability is ne(δeff, tp) is plotted as a function of dimensionless time,
such that the timescale is given by π/Ω0. Three cases are plotted. Rabi oscillations on
resonance and without drifts are shown as the solid line for comparison. The dashed
line shows Rabi oscillations with δeff(tp)/Ω0 = −1/3 + tpΩ0/(9π), which is a Rabi
oscillation which starts off-resonance, consecutively drifts to and then away from res-
onance. The first Rabi peak at tpΩ0/π = 1 does not reach unity because it is not on
resonance, but at tpΩ0/π = 3, the interrogation frequency has drifted on resonance such
that ne = 1. For larger times, however, the peak heights decrease and the oscillation
frequency increases. The dash-dotted line shows oscillations which start on resonance
and drift away as δeff(tp)/Ω0 = tpΩ0/(9π). The first peak reaches an excitation proba-
bility close to unity, whereas later peaks decrease in height steadily, and the effective
Rabi frequency increases. Lastly, note that the minima go to zero, regardless of which
drift is chosen.

The effect of linear frequency drifts on spectra is markedly different. Consider the
excitation probability ne(δeff, π/Ω0) as a function of the detuning δ, not of the effective
or real detuning. This is a similar situation to what one has in experiments, where the
set detuning is known, while an unknown drift changes the real detuning that affects
the atoms. This thus gives an intuition about the effect of different drifts on spectra.

Figure 3.3b shows three spectra with different drifts. The solid line shows a spec-
trum without any drifts, whereas the dashed and dash-dotted lines show drifts of Ω2

0/4
and −Ω2

0/4
†, respectively. In other words, over the duration of whole spectrum, the

former exhibits a drift of +2/Ω0 and the latter a drift of −2/Ω0. First of all note that
the peak height does not change, whereas the position does. This can be understood
by considering δeff. The peak of the spectrum is at δeff = 0, so for δ = −∆δdriftt (see
Eq. 3.2). The ‘resonance’ peak therefore artificially shows up below (above) resonance

∗ Though in our experiments a linear drift compensation is applied to counteract this effect (see Sec. 2.5),
one can never perfectly compensate for this. The residual, uncompensated linear drifts during measurements
are typically orders of magnitude smaller than those used here.
† The zero-point of time is δ/Ω0 = −4, such that the spectrum is scanned from left to right.
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(a) (b)

Figure 3.3: (a) Rabi oscillations under the influence of linear frequency drifts. The
solid line shows Rabi oscillations for δ(tp) = 0, the dashed line has a detuning of
the form δeff(tp)/Ω0 = −1/3 + tpΩ0/(9π), and the dash-dotted line has a detuning of
δeff(tp)/Ω0 = tpΩ0/(9π). (b) Excitation spectra under the influence of linear frequency
drifts. The solid line has no drifts, the dashed line shows a drift of ∆δdrift = Ω2

0/4 and
the dash-dotted line shows a drift of ∆δdrift = −Ω2

0/4. Here time is in units of 1/Ω0 and
the zero-point of time is chosen to be δ/Ω0 = −4.

for positive (negative) drifts. Drifts furthermore change the width of the peak. For pos-
itive drifts, the peak becomes narrower, whereas it becomes broader for negative drifts.
The peaks however remain symmetric around the peak.

3.1.2 The Effect of Spontaneous Decay & Decoherence
In the following the effect of two decay mechanisms are considered: spontaneous decay
from the excited to the ground state, and decoherence. To do so, the description of the
previous section is extended by studying the time evolution of the density matrix ρ
[158]

ρ =

ρee ρeg

ρge ρgg

 , (3.3)

where the matrix elements are given by ρab = cac∗b, where the subscripts ‘a’ and ‘b’
indicate the orbital state. Note that previously only ne = |ce|

2 was considered.
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The differential equations governing the time evolution of the density matrix are
the well-known optical Bloch equations. In the rotating frame where ρ̃ab = ρabeiωct

these are given by [158, 169]

dρee

dt
= i

Ω0

2

(
ρ̃eg − ρ̃ge

)
− Γsρee

dρgg

dt
= −i

Ω0

2

(
ρ̃eg − ρ̃ge

)
+ Γsρee

dρ̃ge

dt
= −(Γ⊥ + iδ)ρ̃ge − i

Ω0

2
(ρee − ρgg)

dρ̃eg

dt
= −(Γ⊥ − iδ)ρ̃ge + i

Ω0

2
(ρee − ρgg),

(3.4)

where Γs is the rate of spontaneous decay from the excited to the ground state and Γ⊥ is
the damping rate of the coherence, or the decoherence rate.∗ The decoherence is given
by Γ⊥ = Γs/2 + Γc, where Γc accounts for additional decoherence effects which do not
change the excitation probability, such as dephasing collisions and finite laser linewidth
[169, 170]. Because spontaneous decay also affects the total decoherence rate Γ⊥, in
the following the effect of spontaneous decay Γs and the additional decoherence Γc is
studied separately.

In general, Eqs. 3.4 cannot be solved analytically and the differential equations are
therefore solved numerically†. To unambiguously determine the effect of the two decay
mechanisms, the calculations are performed on resonance and without frequency drifts.

Figure 3.4 shows Rabi oscillations under the effect of the two decay mechanisms
(dashed and dash-dotted lines) in comparison to unperturbed Rabi oscillations (solid
line). Both decay mechanisms result in a damping of the Rabi oscillations, i.e. the
amplitude of the oscillation decreases over time. Therefore, particles subject to sig-
nificant spontaneous decay or decoherence neither fully reach |g〉 nor |e〉 for non-zero
illumination times‡. Since off-resonant Rabi oscillations (see Fig. 3.1a) and Rabi oscil-
lations with drifts (see Fig. 3.3a) do reach ne = 0 for non-zero times, this can be used
to distinguish which processes play a significant role in experiments. Finally, note that
the same decay rates Γs and Γc yield different dampings, which can be understood by
considering Eqs. 3.4, where Γs and Γc enter differently.

The effect of spontaneous decay and additional decoherence on spectra is shown
in Fig. 3.5 (dashed and dash-dotted lines) in comparison to a spectrum without de-
∗ Furthermore, ρ̃ee = ρee and ρ̃gg = ρgg was used.[169]
† The code used to numerically solve the optical Bloch equations for Rabi oscillations was made by B.

Abeln and extended by the author to enable studying the effect of the decay mechanisms on spectra.
‡ In fact, for these calculations on resonance the excitation probability approaches ne = 1/2 for times

large compared to the decoherence time 1/Γc.



32 CHAPTER 3. CLOCK SPECTROSCOPY OF POLARISED GASES

(a) (b)

Figure 3.4: Rabi oscillations under the effect of spontaneous decay and decoherence.
All calculations are done on resonance and no drifts are assumed. (a) Rabi oscillations
for various spontaneous decay rates, without decoherence. The solid line shows a
Rabi oscillation without spontaneous decay, the dashed line has a spontaneous decay
of Γs = Ω0/10 and the dash-dotted line has a spontaneous decay of Γs = Ω0/2. (b)
Rabi oscillations for various additional decoherence rates, without spontaneous decay.
The solid line has no decoherence, the dashed line has an additional decoherence of
Γc = Ω0/10 and the dash-dotted line has an additional decoherence of Γc = Ω0/2.

cay (solid line). There are two important features for both decay mechanisms. For
increasing decays Γs and Γc, the central peak height decreases, even though π-pulses
are considered. Furthermore, the sinc lobes become less distinct as decay strengths
increase. Without any decay, the spectrum is exactly zero at δ/Ω0 = ±

√
3∗, but for

finite decay rates this becomes non-zero. This effect is especially pronounced for addi-
tional decoherences Γc, whereas for spontaneous decay this effect becomes noticeable
at large decay rates.

The influence of different effects of Rabi oscillations and spectra have now been
studied. These basic examples will serve as a reference to evaluate which effects (off-
resonance, non π-pulses, frequency drifts and decay) significantly affect our experi-
ments, described in the following.

∗ In general for π-pulses, spectra without decay are zero for δ/Ω0 = ±
√

4k2 − 1 where k ∈ N.
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(a) (b)

Figure 3.5: Excitation spectra under the effect of spontaneous decay and decoherence.
All calculations are done for π-pulses and no drifts are assumed. (a) Spectra for var-
ious spontaneous decay rates, without decoherence. The solid line shows a spectrum
without spontaneous decay, the dashed line has a spontaneous decay of Γs = Ω0/10
and the dash-dotted line shows a spontaneous decay of Γs = Ω0/2. (b) Spectra for
various additional decoherence rates, without spontaneous decay. The solid line has no
decoherence, the dashed line shows an additional decoherence of Γc = Ω0/10 and the
dash-dotted line shows an additional decoherence of Γc = Ω0/2.

3.2 Measuring Rabi Oscillations & Spectra
In order to experimentally study clock excitation of spin-polarised gases, a Fermi gas
of either 171Yb or 173Yb is created and optical pumping is applied to transfer all atoms
to a single mF state (see Sec. 2.3.1). The Pauli exclusion principle prevents the identical
particles from occupying the same lattice site, thus yielding an simple system to study
single-body effects.

When performing clock spectroscopy or driving Rabi oscillations on a sample of
many atoms in a deep lattice, ne will be referred to as the excitation fraction or excita-
tion ratio instead of probability. The excitation fraction is given by

ne = Ne/(Ne + Ng), (3.5)

where Ne and Ng are the number of atoms in the excited and ground state, respectively.
In a deep lattice, tunnelling times are large compared to clock interrogation times and
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Figure 3.6: Schematic of a spectroscopy sequence (not to scale), showing the laser
beam powers P as a function of time t. The grey lines show the 1064 nm dipole trap
beams (IR1 & IR2), the red line shows the ‘magic’ lattice (ML) beams, the yellow line
shows the clock pulse, the blue line shows the imaging pulses (im) and the black line
shows the repumper pulse. The different time steps are indicated below the x-axis (see
text).

other timescales, and therefore each lattice site can be regarded as an isolated single-
atom system. Furthermore, the resonance frequency is equal over the whole sample,
since atoms in the |g〉 and |e〉 state are subject to the same potential regardless of depth
because of the ‘magicness’ of the lattice (see Sec. 2.4.1). Measuring the fraction of
atoms in the excited state therefore corresponds to measuring the excitation probability.

Before one can drive controlled Rabi oscillations with reasonable excitation frac-
tions, the resonance frequency must be known, and this can be found by performing
spectroscopy. Therefore, measurements of spectra are first considered, before moving
on to Rabi oscillations, and closing the chapter with the excitation fraction as a function
of both detuning and pulse time.

3.2.1 Spectroscopy Measurements

Figure 3.6 shows a schematic of the experimental sequence used to perform clock
spectroscopy. After creating a degenerate Fermi gas as described in Sec. 2.2.4 with a
single spin component (see Sec. 2.3.1), the ‘magic’ lattice is ramped up exponentially
(see Sec. 2.4.1) to load the atoms into the lowest band of the lattice, typically using a
total ramp time of 200 ms.
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After a short time the 1064 nm dipole traps are ramped down in 3 ms and switched
off (IR off). The atoms are now trapped solely by the ‘magic’ lattice to prevent light
shifts during clock excitation, and after a hold time of about 10 ms, all atoms are il-
luminated in the lattice with a rectangular clock pulse. Subsequently, band mapping
(BM) is performed by exponentially ramping down the lattice in 500 µs to map the lat-
tice momenta onto free momenta [167]. After a time-of-flight (ToF) of typically 16 ms
the |g〉 ground state atoms are imaged on the 1S0 →

1P1 transition (see Sec. 2.6). Since
the |e〉 excited clock state atoms are dark to this transition, a 1 ms repumper pulse is
applied on the 3P0 →

3D1 transition to transfer the atoms to the ground state via the
intermediate short-lived 3P1 state (see Sec. 2.6 and Ref. [129]). After the repumper
pulse, the former excited-state atoms are imaged, yielding the number of excited- and
ground-state atoms Ne and Ng, respectively. By varying the clock-laser frequency, the
detuning is changed and a spectroscopy measurement is performed.

This scheme provides a starting point for a variety of further research. As dis-
cussed in the following chapters, different parts of the scheme are varied to measure
different physical quantities. One can, for instance, load a spin-mixture and observe
inter-orbital spin-exchanging interactions (see Chap. 4), load interacting Fermi-Fermi
mixtures into the lattice and measure elastic and inelastic interaction (see Chap. 5), or
observe inhibition of losses in excited-state spin mixtures (see Chap. 6).

High-Resolution Clock Spectroscopy

Following the scheme described in Sec. 3.2.1, high-resolution clock spectroscopy is
performed in a deep lattice with depths s1D = 60Er and s2D = 25Er. A linear-drift
compensation of −0.104 Hz/s was applied to counteract linear frequency drifts of the
clock cavity (see Sec. 2.5). A magnetic field of 1.5 G in the y-direction was used to set
the quantisation axis.

Figure 3.7 shows typical clock spectroscopy of spin-polarised gases, where the
clock beam intensity Ic and pulse time tp are changed for each spectrum. First, con-
sider Fig. 3.7b, where the clock beam intensity is set to about 1.6 mW/cm2 and a spec-
troscopy measurement is done with a pulse time of 15 ms. The expected sinc2 shape
of the excitation peak is clearly observed, with the first sinc lobes at around ±90 Hz.
However, the maximum excitation does not reach ne = 1, which one expects for a
π-pulse without additional effects (see Fig. 3.1b).

The spectrum is fitted using Eq. 3.1 where Ω0 and the resonance frequency ω0 are
free parameters and a small offset is added to improve the fit. The fit describes the data
well and yields a Rabi frequency of Ω0 = 2π×21.4(3) Hz, and the resolution of the
peak, or full-width-half-maximum (FWHM), is 57 Hz. Here the resonance position ω0
was used to centre the detuning around zero.
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(a) (b)

(c) (d)

Figure 3.7: High-resolution spectroscopy of spin-polarised samples in a deep lattice
(s1D = 60Er, s2D = 25Er) for various clock beam intensities Ic and pulse times tp.
The points indicate the measured excitation fraction and the solid line indicates a fit
(see text). (a) shows a spectrum using Ic = 1.6 W/cm2 and tp = 7 ms, where the fit
yields Ω0 = 2π×57(3) Hz and a FWHM of 119 Hz. (b) shows a spectrum using Ic =

1.6 mW/cm2 and tp = 15 ms, where the fit yields Ω0 = 2π×21.4(3) Hz and a FWHM
of 56 Hz. (c) shows a spectrum using Ic = 0.7 mW/cm2 and tp = 20 ms, where the fit
yields Ω0 = 2π×18.5(6) Hz and a FWHM of 42 Hz. (d) shows a spectrum using Ic <
0.3 mW/cm2 and tp = 34 ms, where the fit yields Ω0 = 2π×8.5(7) Hz and a FWHM of
25 Hz.

To understand the non-unity peak height, the effects discussed in Sec. 3.1 are con-
sidered. These are spontaneous decay and decoherence, and deviations from the de-
sired π-pulse area. In experiments, however, an additional effect enters: the spin prepa-
ration. Imperfections in optical pumping (see Sec. 2.3) can cause a small fraction of
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the atoms to remain in unwanted mF states. These are imaged and therefore show up
in the denominator of ne = Ne/(Ne + Ng), yet cannot be excited because the differential
Zeeman splitting between the |e〉 and |g〉 states causes a shift in resonance position of
about ∆mF×170 Hz at the magnetic field used here. Therefore, the maximum excita-
tion fraction is reduced by the fraction of other mF states. To account for this, a factor
is added in front of ne and the fit is repeated. The factor, characterising the fraction of
atoms in the desired mF state, was not significantly different from one and importantly
did not improve the fit, therefore suggesting that residual unwanted spin states are not
the predominant explanation for the non-unity peak height.

The two decay mechanisms considered also cannot explain the peak height. As
measured before (see Sec. 2.4.1), one-body losses in the deep lattice are characterised
by a decay rate of about 0.3 Hz, which is more than 50 times smaller than Ω0, indicating
that this has a negligibly small effect. Furthermore, decoherence due to collisions is
expected to play no role in this experiment, since atoms are prevented from tunnelling
by the Pauli principle. Decoherence washes out the characteristic sinc2 shape of the
spectrum (see Fig. 3.5b), so the fact that excitation ratios close to zero are observed at
the nodes of the sinc2 function suggests that this effect plays a minor role. Therefore,
the decay mechanisms cannot explain the reduced peak height. This also justifies the
fit using Eq. 3.1, which does not include any decay.

The non-unity peak height can be explained in another way. For the Rabi frequency
of Ω0 = 2π×21.4(3) Hz here found, the π-pulse duration is 23 ms. However, in the
experiment a pulse duration of 15 ms was used. As seen in Fig. 3.1b, a pulse duration
smaller than π/Ω0 indeed has a non-unity peak height.

The measurement is performed several times with different clock beam intensities
and pulse times, as shown in Figs. 3.7a through 3.7d. For decreasing intensity and in-
creasing pulse time, the linewidth of the main peak decreases, as expected. Figure 3.7d
shows the spectrum for an intensity of less than 0.3 mW/cm2 and a clock pulse time of
34 ms. The maximum excitation reaches ne ≈ 0.7, again lower than expected for a π-
pulse without other effects. The excitation fraction is fitted in the same way as before,
and yields Ω0 = 2π×8.5(7) Hz and a FWHM of 25 Hz.

Similar to before, the peak height does not reach one, and this is analogously ex-
plained by noting that the π-pulse duration for this Rabi frequency would be 59 ms, as
opposed to the used 34 ms.

However, here the fit does not describe the data as well as for the higher intensity.
The spin preparation did not change between these measurements, so cannot explain
this effect. Spontaneous decay is still more than 20 times smaller than Ω0, and deco-
herence still seems negligible, since the excitation fractions are close to zero between
the peak and sinc lobes. Rather, the large fluctuations of ne on the peak between detun-
ings of -20 and 20 Hz suggest a different effect, namely non-linear drifts. For this high



38 CHAPTER 3. CLOCK SPECTROSCOPY OF POLARISED GASES

resolution, the non-linear drifts only need to be a few Hz between two data points to
give rise to large fluctuations. Non-linear drifts of a few Hz are realistic for our setup,
which has been described in more detail in Refs. [129, 130]. This result is nonetheless
significant, as the resolution of 25 Hz is the smallest that has ever been observed in a
spectroscopy measurement with our system.

By comparing the resonance positions f0 to the time between the two measurements
(one hour), a residual linear drift of ∆δdrift = 0.028 Hz/s is found. This is about Ω2

0/(4×
104) for the second measurement (and even smaller for the first). Comparing this to
Fig. 3.3b, where drifts 104 times larger are plotted, this suggests that residual linear
drifts do not significantly affect the spectra measured here.

Lastly, the measurements described here were done in a deep lattice, where the
theory describes the excitation features well. Though at large s1D the energy bands of
the lattice are flat compared to the clock linewidth, for low 1D lattice depths this does
not hold and the clock can excite momentum-selectively. This can be used to create
synthetic dimensions and spin-orbit coupling [49]. Measurements similar to Ref. [49]
were done with 171Yb and described in Refs. [144, 171], but omitted here for brevity.

3.2.2 Rabi Oscillation Measurements

After having found the transition frequency, Rabi oscillations are performed. These
are performed in much the same way as spectroscopy measurements as described in
Sec. 3.2.1. The only difference is that the detuning is now fixed (ideally to resonance)
and the clock pulse duration is varied.

This measurement starts with a Fermi gas of 173Yb in the mF = 5/2 state. A
magnetic field of 8.8 G in the y-direction sets the quantisation axis as atoms are loaded
into a lattice of depth s1D = 45Er and s2D = 17Er.

Figure 3.8a shows the measured Rabi oscillations. These do not reach unity, though
do not decay either, which can be caused by a non-zero detuning (see Fig. 3.1a) or by
imperfect spin preparation, as discussed previously. Because these two effects cannot
be distinguished in a Rabi oscillation measurement, a spectroscopy measurement was
done directly afterwards, which is shown in Fig. 3.8b. Since here only the resonance
position in comparison to the set frequency during the Rabi oscillation measurement
matters, the data is fitted with the phenomenological function p1 sinc2(p2( f − f0)),
where p1, p2 and f0 are free parameters. The resonance frequency f0 is compared
with the set frequency of the Rabi oscillation measurement and yields a difference of
92(6) Hz, which is used as the detuning during the Rabi oscillation measurement.

The Rabi oscillation is fitted with Eq. 3.1 and multiplied by a factor n5/2 to ac-
count for the quality of the spin preparation, while keeping the detuning fixed to δ =
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(a) (b)

Figure 3.8: Rabi oscillations between the |g〉 and |e〉 state of a spin-polarised gas in
a deep lattice (s1D = 45Er, s2D = 17Er). (a) Rabi oscillations where the points
show the measured data and the solid line shows a fit (see text). The fit yields
Ω0 = 2π×319(1) Hz and n5/2 = 0.92(2) for δ = 2π×92 Hz (as obtained in the fol-
lowing spectrum). (b) Spectrum to measure the detuning at which the Rabi oscillations
were done. A clock pulse duration of 1.55 ms was used. The points show the measured
data, the solid line shows a fit (see text) and the dashed line shows the detuning at
which the Rabi oscillation in (a) was measured, 92(6) Hz away from resonance.

2π×92 Hz. The fit, shown in Fig. 3.8a, yields Ω0 = 2π×319(1) Hz and n5/2 = 0.92(2)∗,
which is typical for our spin preparation of spin-polarised gases. The relative detuning
δ ≈ 0.3Ω0 causes a maximum excitation of 0.93, which is similar to the effect of imper-
fect spin preparation. Therefore, both effects together explain why the Rabi oscillations
do not reach unity in this measurement.

Further note that the fit describes the data well, especially for tp . 4 ms. Devia-
tions between the fit and the measured data slightly increase for larger times. For this
data quality and these times, one cannot distinguish whether this is caused by a small
residual linear drift, or by small decoherences, possibly due to the finite linewidth of
the laser. However, the effect of spontaneous decay is ruled out, since the time scales
in this measurement are about three orders of magnitude smaller than the lifetime of |e〉
atoms in a deep lattice (see Sec. 2.4.1). The spectrum confirms that decoherence does
not play a large role in this measurement, since the excitation fraction comes to within
a few percent of zero between the sinc lobes and the resonance peak. We further note

∗ An OSG measurement done directly after the Rabi oscillations and spectrum found that at least 89%
of the atoms are in the mF = 5/2 state, in good agreement with the fitted n5/2. For general information on
OSG, see Sec. 2.3.2, and for the analysis of OSG images, see Ref. [143].
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that the clock pulse time of 1.55 ms that was used for the spectrum is within 1% of the
ideal π-pulse time for the bare Rabi frequency found.

Lastly, these measurements were repeated for different mF states of 173Yb and
yielded different bare Rabi frequencies since the different Clebsch-Gordan coefficients
of the 1S0(mF)→ 3P0(mF′ ) transitions lead to different coupling strengths. The data is
presented in Ref. [143].

3.2.3 Measuring the Excitation Ratio

Finally, a measurement is done where the excitation fraction is observed as a function
of both the clock pulse duration and the detuning, much like Fig. 3.2. A magnetic field
of 2.7 G in the y-direction sets the quantisation axis and 173Yb in the mF = 5/2 state
is loaded into a ‘magic’ lattice of depth s1D = 45Er and s2D = 17Er as described in
Sec. 3.2.1. Here both the detuning δ and the pulse time tp are varied, while keeping the
bare Rabi frequency Ω0 fixed. Figure 3.9a shows the measurement, where the colour
shows the measured excitation fraction ne,m, where the subscript ‘m’ indicates this is a
measured quantity (as opposed to the fitted quantity later, denoted by ‘f’).

On resonance the excitation fraction goes through two maxima and two minima as
a function of pulse time, as expected from Eq. 3.1. Further away from resonance, the
excitation fraction oscillates faster as a function of pulse time, which is expected as the
effective Rabi frequency increases, as discussed in Sec. 3.1.

Furthermore, around −900 Hz for t & 3.5 ms the excitation ratio is larger than ex-
pected. This is attributed to a small remaining fraction of mF = −1/2 state atoms. The
differential Zeeman shift of 173Yb is ∆mF×113 Hz/G [24, 172], so for the magnetic
field of 2.7 G here used, mF = −1/2 state atoms show up at approximately −900 Hz
below the mF = 5/2 resonance. Note that the mF = −1/2 oscillations are not visible on
these time scales, because the Clebsch-Gordan coefficient of this transition are smaller,
resulting in smaller Rabi frequencies. We have performed a measurement with three
different mF states of 173Yb where we observed these different Rabi frequencies, as
described in Ref. [143].

As discussed for the Rabi oscillations in Sec. 3.2.2, a small remaining fraction
of atoms in different mF states reduces the maximum excitation on the mF = 5/2
resonance, which is one of the reasons why the excitation fraction is never exactly
one∗. In addition, on this chosen detuning resolution we never precisely measure on

∗ To solve this, further blast pulses on the 1S0 →
3P1 transition after the DFG creation can remove

unwanted mF states, though this causes additional heating. These blast pulses are similar to the optical
pumping pulses, except that at the lower trapping depths, atoms are removed from the system and do not
decay back into the ground state.
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(a)

(b)

(c)

Figure 3.9: (a) Measurement of the excitation ratio ne,m of a spin-polarised sample of
173Yb while varying the clock detuning δ and pulse time tp. The data for tp ≤ 1.06 ms is
taken twice and averaged, the data tp > 1.06 ms is taken once. (b) Fit of the excitation
ratio measurement in (a), where the fitted excitation fraction ne,f is plotted. The fit
yields Ω0 = 2π×328.0(8) Hz and the resonance position is used to centre all figures
around δ = 0. (c) Residuals of the fit ne,m − ne,f.
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the resonance frequency. These effects, however, are only on the order of a few percent
and do not prevent us from making a good fit to describe the data.

This two-dimensional fit is done using Eq. 3.1, where only the bare Rabi frequency
Ω0 and the resonance position f0 are kept as free parameters. The fit is plotted in
Fig. 3.9b and yields Ω0 = 2π×328.0(8) Hz, indicating this is an accurate, albeit labo-
rious, way of measuring the bare Rabi frequency. The fit also yields the resonance
position, which is used to centre all three figures around δ = 0. The checker-board-like
pattern away from resonance is reproduced by the fit, which is also seen in the mea-
surement, suggesting that this surprising effect is solely due to the chosen resolution of
the pulse time and detuning.

The fit describes the measured data well as can be seen from comparing Fig. 3.9a
and 3.9b. For a more accurate comparison, the residuals are calculated, which are
the measured excitation ratio ne,m minus the fitted excitation ratio ne,f for each (δ, tp),
shown in Fig. 3.9c. Again, the extra excitation around δ ≈ −900 Hz is observed, as
discussed previously. Additionally, the peak heights are slightly smaller than expected
(light blue), which we attribute to a small remaining fraction of different mF states.
However, these are small effects and the two-level model describes our data well.

3.3 Conclusion
To conclude, the measurements of spin-polarised quantum gases can be explained well
by a two-level description. The basic principles of Rabi oscillation measurements and
spectra were explained, and the influence of linear frequency drifts and spontaneous
decay and additional decoherence was studied. Since each effect has its characteristic
features, this will prove useful in interpreting further Rabi oscillations and spectra.

This chapter forms the foundation of the following two chapters and the lessons
learned will be used to interpret the upcoming measurements. In the following chapter
this two-level description is applied to a two-body problem of 171Yb which exhibits
spin-exchanging interactions.



Chapter 4

Clock Spectroscopy of
Spin-Exchanging Interactions

In the previous chapter, clock excitation of non-interacting spin-polarised gases was
discussed within a two-level description. Here, this description is applied to interacting
two-spin mixtures, giving rise to interorbital spin-exchanging interactions [2, 20–23,
155, 163, 173]. Due to the Pauli principle, the anti-symmetry of the two-atom wave
function is either realised by the orbital part of the wave function or by the spin part
of the wave function, characterised by two different s-wave scattering lengths aeg± at
ultracold temperatures, as described in detail in the following.

Measurements of interorbital spin-exchanging interactions with fermions in optical
lattices started with 87Sr [20] and 173Yb [21, 22]. For both 87Sr and 173Yb the result-
ing spin-exchange interaction Vex ∝ (aeg+ − aeg− ) turned out to be ferromagnetic, i.e.
Vex > 0. Recent measurements of interorbital interactions on 171Yb in the Kyoto group
[23], the Munich group [155] and our group [2] showed an anti-ferromagnetic spin-
exchange interaction. This makes 171Yb a promising candidate for the quantum simula-
tion of the anti-ferromagnetic Kondo-lattice model (KLM) [25, 31–34]. In this chapter,
measurements on a two-spin gas of 171Yb are presented. By measuring Rabi oscilla-
tions and high-resolution spectroscopy, we determine the s-wave scattering lengths and
find a qualitative agreement with other recent measurements [23, 155].

This chapter is built up as follows. First, the theory of interorbital interactions in
two-spin Fermi gases is described in terms of our observables. After that, the mea-
surements of Rabi oscillations on these two-body systems are shown, followed by a
spectroscopy measurement, yielding the s-wave scattering lengths. The chapter closes

43
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with a conclusion and discussion on the relevance of these measurements.
The work in this chapter was supervised by K. Sengstock & C. Becker. The theory

plots were made by the author. A first version of the measurement was performed and
analysed by M. Diem, B. Abeln and the author. The final measurements presented
in this chapter were taken by B. Abeln, M. Diem, N. Pintul and the author, and were
analysed by B. Abeln and the author. The measurements presented in this chapter have
been published in Ref. [2].

4.1 Interorbital Interactions in Fermi Gases
As described in Ch. 2, elastic on-site interactions of two fermions at low temperatures
are characterised by a single s-wave scattering length agg. This changes for interorbital
interactions since two scattering lengths are needed to describe the elastic on-site inter-
actions, as described in the following. These two different scattering lengths give rise
to a spin-exchange between atoms in the two orbitals.

Let us consider two ground-state atoms in a deep potential well. Due to the Pauli
exclusion principle, the ground state atoms must have different spins. For 171Yb, the
two mF states are the two spins, such that spin up |↑〉 and down |↓〉 denote mF = +1/2
and mF = −1/2, respectively. Since s-wave scattering interactions are symmetric, the
states have a symmetric spatial wave function. The orbital part of the ground-ground
state wave function can only be symmetric. Therefore, the anti-symmetry of the total
wave function is provided by the spin wave function, such that the total state is given by
|gg〉 ⊗ (|↑↓〉 − |↓↑〉) /

√
2 (from here on, the spin part of this wave function will usually

be omitted for brevity).
Now consider the single-photon 1S0 →

3P0 transition with π0-polarised light as in
Ch. 3, at zero magnetic field. There are two possible resulting states that satisfy the
fermionic anti-symmetrisation requirement: |eg+〉 with a symmetric orbital wave func-
tion and anti-symmetric spin wave function, and |eg−〉 with an anti-symmetric orbital
wave function and symmetric spin wave function. In other words [2]

|eg±〉 =
1
√

2

(
|eg〉 ± |ge〉

)
⊗

1
√

2
(|↑↓〉 ∓ |↓↑〉) , (4.1)

which form the so-called interaction basis. These two states have Hubbard on-site
energies Ueg± ∝ aeg± (see Sec. 4.1.1), such that the interaction Hamiltonian Ĥ can be
rewritten as [127]

Ĥ(B = 0) =

Ueg+ 0

0 Ueg−

 . (4.2)
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At non-zero magnetic field, the Zeeman interaction mixes the |eg+〉 and |eg−〉 states.
The two eigenstates |egZ,1,2〉 of the Zeeman interaction are [127]

|egZ,1〉 =
1
√

2

(
|e ↑, g ↓〉 − |g ↓, e ↑〉

)
(4.3)

|egZ,2〉 =
1
√

2

(
|g ↑, e ↓〉 − |e ↓, g ↑〉

)
. (4.4)

Note here that in this basis, each atom has a well-defined spin state, different from the
eigenstates at zero magnetic field in Eq. 4.1. The Zeeman interaction therefore does
not commute with the zero magnetic field Hamiltonian in Eq. 4.2 and mixes the |eg+〉

and |eg−〉 states at B , 0. The Zeeman basis can be rewritten in terms of the interaction
basis by noting that |egZ,1,2〉 =

(
|eg−〉 ± |eg+〉

)
/
√

2∗. Using this, the Zeeman interaction
is included to obtain the Hamiltonian for all magnetic fields [127]

Ĥ(B) =

Ueg+ αB

αB Ueg−

 , (4.5)

where αB is the Zeeman energy and α is the differential Zeeman shift. This Hamilto-
nian has eigenenergies E+ and E− [2]

E± = V0 ± Vex

√
1 +

(
αB
Vex

)2

, (4.6)

where V0 = (Ueg+ + Ueg− )/2 is the direct energy and Vex = (Ueg+ − Ueg− )/2 is the spin-
exchange energy. The eigenstates of the Hamiltonian are given by the |+〉 and |−〉 states
[2]

|+〉 = c1(B) |eg+〉 + c2(B) |eg−〉 (4.7)
|−〉 = −c2(B) |eg+〉 + c1(B) |eg−〉, (4.8)

∗ Comparing the interaction and Zeeman basis, we can now understand why the resulting interaction is
called spin-exchanging. If one prepares a system in, for instance, the Zeeman basis at large |αB/Vex | � 1
and quenches the magnetic field to small |αB/Vex | � 1, the Zeeman basis is projected on the interaction
basis. Due to the energy difference of the states, an oscillation in magnetisation starts with a frequency
related to |Vex |. This is exactly what the Florence group has done, where they observed oscillations in the
magnetisation of ground state 173Yb after a quench of the magnetic field [22].
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(a) (b)

Figure 4.1: Energy of the |+〉 and |−〉 states and mixing coefficients. (a) shows the di-
mensionless energy as a function of dimensionless magnetic field, assuming a negative
Vex. For a positive Vex the role of the E+ and E− branches is reversed. The solid and
dashed lines indicate the energy of the |+〉 and |−〉 states, respectively. (b) shows the
mixing coefficients c1,2 as a function of dimensionless magnetic field. The dashed and
solid lines indicate the c1 and c2 coefficients, respectively.

where c1 and c2 are the mixing coefficients [2]

c1(B) =
|Vex| +

√
V2

ex + (αB)2√
2V2

ex + 2(αB)2 + 2|Vex|
√

V2
ex + (αB)2

(4.9)

c2(B) =
|αB|√

2V2
ex + 2(αB)2 + 2|Vex|

√
V2

ex + (αB)2

. (4.10)

Figure. 4.1a shows the energies in terms of the dimensionless magnetic field. At
B = 0, the |+〉 and |−〉 states are separated by an energy of Vex. For increasing mag-
netic field, the |+〉 and |−〉 states become indistinguishable from the Zeeman states (see
Eqs. 4.3 and 4.4), and the energy correspondingly becomes linear in B as the Zeeman
interaction becomes the dominant energy scale of the Hamiltonian. In Fig. 4.1a, Vex
was assumed to be negative. For a positive Vex the role of the E+ and E− branches is
reversed. Further note that E± are centred around the direct interaction V0.

Light which is π0-polarised only couples the |gg〉 state with the |eg−〉 state, be-
cause the Clebsch-Gordan coefficients of the |gg〉 → |eg+〉 transition cancel each other
out, preventing this transition [127]. Since the Zeeman interaction admixes both |eg±〉
states, the coupling of |+〉 and |−〉 to the initial |gg〉 state depends on the mixing coef-
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ficients c2 and c1, respectively, which are shown in Fig. 4.1b∗. In other words, the |+〉
and |−〉 states can only be exited in so far as they include the |eg−〉 state. The coupling
is given by [127]

Ĥ =
√

2c2(B)
~Ω0

2
|+〉〈gg| +

√
2c1(B)

~Ω0

2
|−〉〈gg| (4.11)

=
~Ω+

2
|+〉〈gg| +

~Ω−
2
|−〉〈gg|, (4.12)

where the Rabi frequencies of the |±〉 states Ω± are rewritten as [2]

Ω±(B) =
√

2 c2,1(B) Ω0, (4.13)

where Ω0 is the bare Rabi frequency of the one-body transition.
Two limiting cases are insightful to consider. At B = 0, the Rabi frequency Ω+

connecting |gg〉 to |+〉 is zero, since here |+〉 = |eg+〉, which is not coupled to |gg〉 for
π0-polarised light. At the same time, the Rabi frequency of the |−〉 state is

√
2Ω0. For

|αB| � |Vex| both mixing coefficients approach 1/
√

2 and the coupling becomes equal
to the one-body coupling Ω± → Ω0. This can be understood as follows. In the Zeeman
regime, the |+〉 and |−〉 states approach the Zeeman basis (see Eqs. 4.3 and 4.4), where
both atoms have a well-defined spin and only one of the two atoms is excited with the
normal one-body coupling.

Lastly, note that c1 and c2 do not depend on the sign of the spin-exchange inter-
action, as opposed to the energies E±. Measuring the Rabi frequencies thus enables
identifying the |+〉 and |−〉 states.

4.1.1 Elastic Two-Body Interactions
In the previous section, the energies and the eigenstates of the system were explained.
The quantities of interest are the Hubbard on-site interactions Ueg+ and Ueg− . In general,
the elastic on-site interaction of atoms 1 and 2 is related to the scattering length a12 as
[2]

U12(s1D, s2D) =
4π~2

2µ
a12

∫
dr |w0(r, s1D, s2D)|4, (4.14)

where µ is the reduced mass of the interacting pair, w0 is the single-particle Wannier
function, r is the position vector and s1D and s2D are the 1D and 2D lattice depths. Here
the assumptions are that both atoms are subject to the same Wannier function, and that
the interaction shift is small in comparison to the spacing to the second lattice band

∗ Note that at zero magnetic field c1 = 1 and c2 = 0, such that there |±〉 = |eg±〉.
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Figure 4.2: Energy scheme of (left) the clock excitation of single atoms in comparison
to (right) clock excitation of two atoms, excited to the interorbital states |+〉 and |−〉 (not
to scale). Atoms are depicted as blue disks and single-photon transitions are depicted
by the yellow arrows. The solid horizontal lines show the energies of each state, which
are denoted by the kets. The dashed horizontal lines show the energy of the single-atom
ground and excited states, from bottom to top.

(the blue sideband). Applied to interorbital interactions in 171Yb, these assumptions
are justified since |e〉 and |g〉 atoms are subject to the same potential at the ‘magic’
wavelength, and since the interaction shifts are about ten times smaller than those of
the blue sideband (see Sec. 4.2.2). Measuring the lattice depths and interaction energies
thus yields the scattering lengths aeg± and this will be done in the following.

4.2 Measuring Interorbital Interactions of 171Yb

In clock-spectroscopy experiments, one can only measure energy differences. In the
case of spin-exchanging interorbital interactions, the energy of the |+〉 and |−〉 states
are measured with respect to the |gg〉 state. The |gg〉 state has an s-wave scattering
length of agg = −3(4)a0 [86]. Compared to a single |g〉 atom in the lattice, the |gg〉
state thus has an energy of Ugg. Similarly, the |±〉 states have an energy of E±(B) with
respect to the single |e〉 atom energy. Hence, in a spectroscopy measurement the |±〉
states are measured at energy shifts ∆E± = E± − Ugg with respect to the single-body
1S0 →

3P0 resonance, where ∆ denotes the quantity is measured with respect to the
ground-ground state interaction. The relevant energy levels∗ are depicted in Fig. 4.2.

In order to measure the scattering lengths, we perform spectroscopy measurements
on a two-spin 171Yb gas in a lattice with some fraction of the atoms on doubly-occupied
sites. For high-precision spectroscopic measurements, one needs to set the clock pulse
time close to a π-pulse, so that the excitation fraction is maximum. However, as seen

∗ Atoms in the |±〉 states can also be excited to the |ee〉 ⊗ (|↑↓〉 − |↓↑〉) /
√

2 state since the π0-polarised
clock light couples |eg−〉 to |ee〉, which was done by Ref. [155]. The |ee〉 state is ommited from the figure
and our measurements.
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the Rabi couplings of the |+〉 and |−〉 states depend on the magnetic field and the un-
known spin-exchange energy (see Fig. 4.1b and Eq. 4.13). To overcome this, we do the
following.

1. We perform a spectroscopy measurement at several magnetic fields using the π-
pulse time of the single-atom transition Ω0. In this way we find the resonance
positions of the single-atom transitions and of the |+〉 and |−〉 states, since using a
non-π-pulse for spectroscopy changes the width and height, but not the resonance
position (see Sec. 3.1).

2. Using the resonance positions at the used magnetic fields, we perform Rabi os-
cillations to find the π-pulse times of the |+〉 and |−〉 states, as described in the
following.

3. Using the appropriate pulse time per peak, we repeat the spectroscopy measure-
ment at six magnetic fields and identify the peaks, as presented in Sec. 4.2.2.

4.2.1 Measuring Rabi Oscillations of 171Yb
Using the resonance positions of the |+〉 and |−〉 states found in a spectroscopic mea-
surement using the single-atom pulse time, we measure the Rabi oscillations on the
interorbital interaction resonances. In this way, we determine the correct pulse time
and identify the spectroscopic peaks. To do this, a gas of about 3× 104 atoms is loaded
into a lattice of depths s1D = 50(2)Er and s2D = 25.0(3)Er and Rabi oscillations are
performed as described in Sec. 3.2.1. We repeat the Rabi oscillation measurement for
magnetic fields of 1.8 G, 3.5 G, 8.8 G and 17.5 G.

Figure 4.3 shows the Rabi oscillations for the two interaction resonances at different
magnetic fields, where (a) through (d) are taken at one resonance and (e) through (g) at
the other resonance. The former has a larger oscillation frequency, which we therefore
identify as the |−〉 state (compare Eq. 4.13 and Fig. 4.1b). The states are indicated in
the upper left corner.

The Rabi oscillations in Fig. 4.3 are fitted to verify the magnetic-field dependence
of the Rabi frequencies (compare Eq. 4.13). However, Eq. 3.1 cannot be used due to the
significant decay observed. The excitation fraction does not reach zero for tp > 0 and
the second peak is lower than the first, which linear frequency drifts (see Sec. 3.1.1) or
off-resonant probe frequencies (see Sec. 3.1) cannot explain. Therefore, a description
with the optical Bloch equations is needed (see Sec. 3.1.2), which can explain these
dampings (compare Fig. 3.4). To this end, a fit was made using the numeric solutions of
the optical Bloch equations, using δ, Ω0 and Γc as free parameters. Spontaneous decay
of the excited state is neglected because of the short timescales of the Rabi oscillations
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(e) (f)
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Figure 4.3: Rabi oscillations of the |+〉 and |−〉 states of 171Yb. The data is two to
three times averaged per pulse time and the error bars denote one standard deviation.
The solid line shows a fit using the optical Bloch equations (see text) and the shaded
area shows its 95% confidence interval. (a) - (d) show Rabi oscillations at the |−〉 state
transition and (e) - (g) show Rabi oscillations at the |+〉 state transition for different
magnetic fields. (h) shows Rabi oscillations of the |↑〉 single-atom state at B = 17.5 G.
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in comparison to the lifetimes of several seconds of the |±〉 states in a 35Er lattice
measured by Ref. [155]. Since the maximum excitation ratio is limited by the ratio of
doubly-occupied sites in the lattice, the maximum excitation ratio of the fit is limited
to ne = 0.115(4), which was found in the spectroscopy measurement as described in
Sec. 4.2.2∗. The data of Fig. 4.3e and 4.3f show a larger scatter, which we attribute
to fluctuations in the atom number and non-linear drifts. In all other measurements
presented in Fig. 4.3, the fits describe the data well.

Further, Rabi oscillations of the |↑〉 single atom peak were measured to accurately
determine Ω0 and enable comparison with Ω±. A 171Yb spin-mixture was used at B =

17.5 G to ensure no peaks overlap with the single-atom 1S0(mF = 1/2) →3P0(mF′ =

1/2) resonance. The resulting Rabi oscillations are shown in Fig. 4.3h. The fit is made
using Eq. 3.1 and a maximum excitation of 0.297(6) as obtained from the spectroscopy
measurement (see Sec. 4.2.2). This fit yields a bare Rabi frequency of Ω0 = 345(3) Hz
and a detuning of δ < Ω0/10. Note that, analogously to the single-atom Rabi oscilla-
tions in Sec. 3.2.2, the fit function without decays describes the data well.

Figure 4.4 shows the bare Rabi frequencies for the two interacting states per mag-
netic field Ω±(B). The solid lines show the expected Ω± based on Eq. 4.13, the value of
∆Vex as measured in the following spectroscopy measurement (see Sec. 4.2.2 and 4.2.3)
and the Rabi frequency of the single-atom transition. The measured Rabi frequencies
of the |+〉 and |−〉 states agree well with the expectation and the general functionallity
is reproduced.

From Fig. 4.3 we further determined the additional decoherence rate Γc (see
Sec. 3.1.2) per state and per magnetic field. The decoherence rates found in this way
seem to be independent of magnetic field, and for the |+〉 and |−〉 states we find aver-
age values of Γc+ = 2π×34(5) Hz and Γc− = 2π×32(8) Hz, respectively. This suggests
that the decoherence is independent of the state, within the experimental accuracy. The
decay rates correspond to coherence lifetimes of about 30 ms. The source of this de-
coherence is currently not established, but it is expected to be caused by interactions
which do not change the excitation fraction. This statement is supported by the obser-
vation that single-atom Rabi oscillations (see Fig. 4.3h) are not affected by decoherence
on experimentally relevant time scales.

∗ The fraction of atoms on doubly-occupied sites is of course twice as large, since only one atom of the
pair is excited on this interorbital interaction measurement.
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Figure 4.4: Measured Rabi frequencies Ω± of the |±〉 states as a function of magnetic
field. The data points show the Rabi frequencies and the error bars show the error of the
fits. The solid lines are the expected curves using Eq. 4.13, the single-atom Rabi fre-
quency Ω0 = 2π×345(3) Hz, and ∆Vex as measured in the spectroscopy measurement
(see Sec. 4.2.2), and the shaded area shows the 95% confidence interval of the expected
curve. The figure is adapted from the published version [2]. c© 2021 American Physical
Society.

4.2.2 Spectroscopy Measurement of 171Yb

Having found the Rabi frequencies, we perform spectroscopy at six magnetic fields to
measure the interaction shifts ∆E±. To this end, a spin-balanced 171Yb gas of 1.5× 104

to 3.5 × 104 atoms is loaded into a ‘magic’ lattice of depth s1D = 50(2)Er, s2D =

25.0(3)Er. From the peak resonances found in the first spectroscopy measurement,
we choose detuning intervals with 15 data points per peak. Using a constant clock
beam intensity like in Sec. 4.2.1, we set the illumination time to be a π-pulse for each
specific peak, using either the single-atom Rabi frequency or the Rabi frequencies of
the |+〉 and |−〉 states as obtained in the previous section∗. This enables us to get the
best-achievable peak heights with our setup, increasing the signal-to-noise.

Figure 4.5 shows the resulting spectra, where several peaks are observed. In Fig. 4.5b
through 4.5f, the two highest peaks are the single atom resonances, which overlap at

∗ The Fourier-limited widths of the single-atom and interaction peaks are therefore different and the
interaction peak widths further vary per spectrum.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Spectra of the interorbital interaction measurement in 171Yb for six different
magnetic fields. The data points are the measured excitation fractions and are three
times averaged. The error bars represent the propagated errors in the atom number
estimation. The solid lines show a multi-sinc2 fit (see text) and the shaded areas show
the 95% confidence interval. (a) through (f) show the spectra at magnetic fields of
0.9 G, 1.8 G, 3.5 G, 8.8 G, 13.1 G and 17.5 G, respectively. For the identification of
the peaks, see text and Fig. 4.6. The figure is adapted from the published version [2].
c© 2021 American Physical Society.
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B = 0.9 G in Fig. 4.5a. Due to the negative differential Zeeman shift α = −399.1 mFHz/G
[155], the left and right peaks are identified as |↑〉 and |↓〉, respectively. The fact that
the amplitude of the two single-atom peaks is essentially the same, confirms that the
initial sample is spin-balanced to within a few percent. The two peaks with the lowest
amplitude are the interorbital interaction resonances, which were identified in the Rabi
oscillation measurement. Considering these two low-amplitude peaks, the peaks on the
left and right are identified as the |+〉 and |−〉 states, respectively. Similar to the singles
peaks, the height of the interorbital interaction peaks is almost constant, suggesting that
we reliably excite all interacting atoms. The cause of the remaining small deviations
in heights is unknown, but could be due to fluctuations in the atom number or temper-
ature. Considering all the peak heights, we conclude that the lattice is mostly filled
with single atoms, with approximately 25% of the atoms on doubly occupied sites (see

Figure 4.6: Frequency of the peaks as function of magnetic field. The data points
show the peak positions as obtained from fits to the spectra in Fig. 4.5 and are identi-
fied on the right. The error bars are smaller than the marker size. The dashed lines
show the energies of the | ↑〉 and | ↓〉 states based on the Zeeman energy αB with
α = −399.1 mFHz/G [155]. The solid lines show the energies of the |±〉 states based
on Eq. 4.6 and the ∆V0 and ∆Veg we found (see text). The figure is adapted from the
published version [2]. c© 2021 American Physical Society.
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Sec. 4.2.3).
Next, the spectra are fitted with four sinc2 functions (three for B = 0.9 G since

the two single atom peaks overlap). In this way, the resonance positions are obtained
accurately for all peaks. The middle of the single atom peaks is used to centre the
detuning. Hence, δ = 0 indicates the degenerate B = 0 resonance of the single atoms.
Furthermore, the splitting of the |↑〉 and |↓〉 states is used to calibrate the magnetic field,
using the accurate determination of the differential Zeeman splitting by Ref. [155].

Figure 4.6 shows the peak frequencies as obtained from the sinc2 fits as a function
of the magnetic field. The single atom peaks show the expected linear dependence on B
(dashed lines), whereas the interorbital interaction peaks show the expected square-root
dependence on B (solid lines, compare Fig. 4.1a). The curves are obtained by analysing
the peak positions and obtaining the quantities of interest, yielding aeg+ = 201(5)a0 and
aeg− = 306(6)a0 and ∆Vex/h = −0.60(2) kHz, as explained in the following.

4.2.3 Determination of aeg±

In principle, the |+〉 and |−〉 peak data as presented in Fig. 4.6 can simply be fitted
using Eq. 4.6 to find the scattering lengths. However, several problems surface in this
approach. First, the zero-point detuning, in other words the centre of the |↑〉 and |↓〉
peaks, has some uncertainty, which differs per magnetic field, which must be included
in fitting the energies ∆E± ∗. Second, all peak positions are correlated, since all come
from a single multi-sinc2 fit. If one fits the |+〉 peaks with the ∆E+ function and the
|−〉 peaks with the ∆E− function, the resulting ∆V0 and ∆Vex are correlated. It is not
trivial to include these correlations in the subsequent error calculation. To avoid these
issues, another method is used. For this, let us take a step back and reconsider what
was measured.

In our experiments, we measure frequencies of the clock laser. We call the different
resonant clock laser frequencies fi where i ∈ [1, 4], which consecutively represent the
|+〉, |−〉, |↑〉 and |↓〉 states. Using Eq. 4.6 and the Zeeman energy, these frequencies can
be related to the energies as

h f1(B) = ∆E+(B) + A = ∆V0 −

√
(∆Vex)2 + (αB)2 + A (4.15)

h f2(B) = ∆E−(B) + A = ∆V0 +

√
(∆Vex)2 + (αB)2 + A (4.16)

h f3(B) = E↑(B) + A = −|α|B + A (4.17)
h f4(B) = E↓(B) + A = |α|B + A, (4.18)

∗ Recall that all energies are measured with respect to the ground-ground state energy, which is denoted
by ∆. See also Sec. 4.2.
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where h is Planck’s constant and A is some unknown offset energy. Here we have
extracted the sign out of the Zeeman energy of the |↑〉 and |↓〉 states∗, and we used the
fact that ∆Vex is negative (compare Eq. 4.6).

Now, to avoid the problems mentioned previously, these equations are rewritten
such that each quantity of interest is given in terms of the measured quantities fi, and
the error propagation is performed including the correlations between all fi. In this
way, the offset frequency per magnetic field is found using A/h = ( f3 + f4)/2. Similarly,
the magnetic field calibration is found by considering ( f4 − f3)/2. The spin-exchange
energy ∆Vex and direct interaction energy ∆V0 can then be found using

∆Vex/h = −

√
( f1 − f2)2 − ( f4 − f3)2/2 (4.19)

∆V0/h = ( f1 + f2 − f3 − f4) /2. (4.20)

As seen, all fi are dependent on the magnetic field. In this treatment, the dependence
on B cancels out, and yields the quantities ∆Vex and ∆V0 independent of magnetic field.
Hence a simple weighted mean over all magnetic fields is used to find the best estimates
of the quantities of interest.

Figure 4.7 shows the spin-exchange and direct-interaction energies found with this
method. As expected, ∆Vex fluctuates around a mean value and does not depend on the
magnetic field. Notably, the error bars of ∆Vex increase for increasing magnetic field.
This is not because the peak positions are less accurate at higher magnetic fields, but
because of the form of ∆Vex in terms of all fi. At large magnetic fields αB/∆Vex � 1
we note that ∆E± is barely affected by the spin-exchange interaction and in the limit
becomes ∆E±(B → ∞) = ∆V0 ∓ |αB| (see Eq. 4.6). This also explains why the error
bars of ∆V0 do not increase for increasing magnetic field. The origin of the residual
deviations is unknown, but might be explained by non-linear drifts in the clock laser
cavity.

The best estimates of the spin-exchange and direct interactions are found simply
using a weighted mean, yielding ∆Vex/h = −0.60(2) kHz and ∆V0/h = 2.896(11) kHz,
which are specific for our geometry and lattice depths. Using Eq. 4.14 with the lattice
depths s1D = 50(2)Er and s2D = 25.0(3)Er, and agg = −3(4)a0 [86], this yields the
scattering length of the direct interaction aeg0 = 253(5)a0.

Similar to ∆Vex and ∆V0, the ∆Ueg± are found in terms of the measured quantities

∆Ueg±/h =

(
f1 + f2 − f3 − f4 ∓

√
( f1 − f2)2 − ( f4 − f3)2

)
/2. (4.21)

Figure 4.8a shows ∆Ueg± as a function of magnetic field. Some fluctuations are ob-
served, but the weighted means generally describe the data well. The averages over the
∗ Note that in this representation, as before, α still includes the mF dependency.
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(a) (b)

Figure 4.7: Measured interaction frequencies of the 171Yb spin-exchange interaction.
The data points show the interaction frequencies and the error bars show the propa-
gated errors. The solid lines show the weighted mean of the fit and the shaded areas
show the 95% confidence intervals. For the determination strategy, see text. (a) shows
spin-exchange interaction as a function of magnetic field and (b) shows the direct in-
teraction as a function of magnetic field. The fits yields ∆Vex/h = −0.60(2) kHz and
∆V0/h = 2.896(11) kHz, respectively.

magnetic fields yield ∆Ueg+/h = 2.30(3) kHz and ∆Ueg−/h = 3.50(3) kHz. In the same
way as for the direct interaction, the scattering lengths are found using Eq. 4.14 with
the lattice depths s1D = 50(2)Er and s2D = 25.0(3)Er, and agg = −3(4)a0 [86]. We thus
find aeg+ = 201(5)a0 and aeg− = 306(6)a0.

Lastly, by analysing the interaction-peak amplitudes n± of the |±〉 states we find
the fraction of atoms on doubly-occupied sites (doublons). Since only one of both
interacting atoms is excited, the doublon fraction is twice as large as the peak ampli-
tude. Furthermore, the initial |gg〉 state is independent of the final state, so the doublon
fraction is 2n+ = 2n− = n+ + n−. Figure 4.8b shows interaction-peak amplitudes per
magnetic field, denoted by n+ and n−. Except for B = 0.9 G, we observe a fairly con-
stant double occupancy. We find an average doublon fraction of n+ + n− = 0.230(8),
which was used in Sec. 4.2.1 to set the maximum excitation fraction.

However, note that this is a lower limit of the doublon fraction, since decoherence
causes the peak height to decrease (see Sec. 3.1.2 and Fig. 3.5b). Furthermore, one can
now understand why the |+〉 peak is typically smaller than the |−〉 peak for B < 10 G.
As described in Sec. 4.2.1 the decoherence rate is approximately the same for all mag-
netic fields and both states. However, the Rabi frequency changes as a function of B
(see Fig. 4.4). For smaller magnetic fields, the Rabi frequency of the |+〉 state is com-



58 CHAPTER 4. SPIN-EXCHANGING INTERACTIONS OF 171YB

(a) (b)

Figure 4.8: Measured interaction shifts of the |eg±〉 states and fraction of doubly-
occupied sites. The points show the measured data with the error bars the propagated
standard errors. The solid lines show the weighted mean and the shaded area shows the
95% confidence interval. For the determination strategy, see text. (a) shows ∆Ueg±/h as
a function of magnetic field and (b) shows the fraction of doubly-occupied sites for the
|±〉 states and its sum (see legend). We find an average double occupancy of 0.230(8).

paretively small, and since Γc± is independent of B (see Sec. 4.2.1), the relative deco-
herence Γc/Ω+ is comparatively large. Therefore, decoherence decreases n+ especially
for smaller magnetic fields. In other words, at small B the |+〉 state requires relatively
long π-pulse times and therefore decoherence reduces the maximum excitation more
than it does for shorter π-pulse times.

4.3 Conclusion & Outlook
To conclude, we have spectroscopically measured the energy shifts of the interorbital
interaction as a function of magnetic field. We have identified the peaks by measur-
ing the Rabi frequencies per interaction peak and reproduced the expected functional
dependence. From the spectroscopy measurement we found the scattering lengths of
the interorbital interaction aeg+ = 201(5)a0 and aeg− = 306(6)a0 and the scattering
length of the direct interaction aeg0 = 253(5)a0. The spin-exchange frequency for our
experimental parameters was ∆Vex/h = −0.60(2) kHz.

The interorbital interactions of 171Yb have also recently been measured by the Ky-
oto group who found aeg+ = 225(13)a0 and aeg− = 355(6)a0 [23], and the Munich group
who found aeg+ = 240(4)a0 and aeg− = 389(4)a0 [155]. The aeg+ we have measured
agrees with the measurement of the Kyoto group, yet not with the measurement of the
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Munich group, whereas our aeg− is significantly different from both. One difference
between our experiment and the Kyoto and Munich groups, is that we use a triangular
lattice in the 2D direction, whereas those groups use cubic lattices. However, since our
calculation of the Wannier functions takes this geometry into account, this should not
lead to any deviations. We nevertheless point out that the difference of aeg− between
the Kyoto and Munich group is approximately the same as the difference between the
Kyoto group measurement and ours.

However, our measurements do, like the other measurements [23, 155], show the
anti-ferromagnetic nature of the spin-exchange interaction in 171Yb, since Vex < 0.
This is in stark contrast with the interorbital interactions in 87Sr and 173Yb, which are
ferromagnetic. The group in Boulder measured aeg+ = 169(8)a0 and aeg− = 68(22)a0
for 87Sr [20]. For 173Yb the Munich group found aeg+ ≈ 4 × 103a0 and aeg− = 220(2)a0
[21], whereas the Florence group found aeg+ = 3.3(3) × 103a0 [22] and later aeg+ =

1894(18)a0 [157]. Further note that the remarkably large value of aeg+ for 173Yb re-
sults in a large direct interaction, which suggests the presence of a very weakly bound
molecular state close to the continuum, as will be discussed in the next chapter.

The anti-ferromagnetic nature of the spin-exchange interaction in 171Yb makes it a
particularly interesting candidate for the quantum simulation of the anti-ferromagnetic
KLM [25, 31–34]. Several theoretical proposals were done over the last decade. The
simulation of the 1D KLM is expected to serve as a benchmark, since the phase diagram
is well-understood [31], whereas in 2D and 3D the simulation has the potential to
answer some of the outstanding questions [32].

The key feature of the KLM is the presence of a localised spin and a mobile spin,
in combination with a spin-exchanging on-site interaction. As the mobile spin tunnels
in the lattice, it can exchange its spin with the localised spin, leading to rich physics
such as heavy Fermi liquid behaviour. Essential in the experimental realisation is the
implementation of a state-dependent lattice (SDL) to enable trapping the 1S0 and 3P0
states at different lattice depths. The Munich group has studied dynamics of ground
and excited state 173Yb atoms in an SDL at 670 nm and found a tunable confinement-
induced resonance, which they attributed to a coupling between an interorbital scat-
tering channel and centre-of-mass excited bound states [163]. Furthermore, the Kyoto
group performed loss measurements with 171Yb in a SDL at a wavelength of 650.7 nm,
where spin-exchanging interactions were observed [173].

In our experiment a 1D SDL at 660 nm is implemented, trapping the excited state
approximately 5.5 times stronger than the ground state. The excited-state atom is cho-
sen as the localised particle to prevent strong excited-excited state atom losses. Over
the course of this work, the SDL has been characterised and dynamic measurements
similar to those of the Kyoto group [173] were done, as described in detail in Ref. [143].
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Chapter 5

Clock Spectroscopy of
Fermi-Fermi Mixtures

In this chapter, measurements on the s-wave interactions in interorbital 171Yb-173Yb
Fermi-Fermi mixtures are presented. Here, either 171Yb is excited to the 3P0 state
while leaving 173Yb in the ground state, or vice versa, denoted by 171

e Yb -173
g Yb and

171
g Yb -173

e Yb, respectively. Using high-resolution clock spectroscopy, we measure the
scattering lengths and directly show the SU(2)⊗SU(6) symmetry of both interactions.
Both scattering lengths are attractive and comparable, as presented in Sec. 5.1.1.

We further measure losses in these interorbital Fermi-Fermi mixtures, yielding the
inelastic parts of the s-wave scattering lengths, as shown in Sec. 5.1.2. Surprisingly,
we find a large difference between the losses of both interorbital combinations. To-
gether with the elastic part of the interactions, using a quantum defect theory descrip-
tion [174], we find the short-range reaction probability and estimate the p-wave scat-
tering lengths in Sec. 5.1.3.

Along with our 171Yb measurements (see Ch. 4) and other measurements of in-
terorbital interactions in Yb [21–23, 28, 29, 155, 157, 175, 176], we expect these
measurements can be used as a benchmark for future 1S0-3P0 Yb molecular potential
models, of which a simple speculative mass-scaling model is shown in Sec. 5.2. In
Sec. 5.3, measurements on three-component Fermi-Fermi mixtures are shown.

The high symmetry can make these Fermi-Fermi mixtures beneficial to observe
exotic d-wave superfluidity [93]. Additionally, the interorbital 171Yb-173Yb mixtures
could prove to be promising candidates for the quantum simulation of so-called two-
flavour superfluid symmetry-locking phases [94, 95].

61
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The work in this chapter was supervised by K. Sengstock & C. Becker. A first
version of the measurements was done by B. Abeln, M. Diem, N. Pintul and the au-
thor. The final measurements presented in this chapter and its analysis were done by
B. Abeln and the author. The speculative mass-scaling model and quantum defect the-
ory analysis were done by the author. The data presented in Sec. 5.1.1 and 5.1.2 was
published in Ref. [2].

5.1 Interactions of Spin-Polarised 171Yb - 173Yb
Two parameters fully describe atomic interactions at ultralow temperatures, the elastic
and inelastic s-wave scattering lengths. Together these form the complex scattering
length ã = a − ib [174, 177], where a and b > 0 denote the elastic and inelastic parts
respectively. The inelastic part of the interaction is often given as a loss coefficient β in
units of cm3s−1.

For interactions between the 1S0-ground and 3P0-excited state of two-isotope mix-
tures, spectroscopy on the clock transition measures the elastic part of the interaction
[110, 111]. Since the hyperfine splitting between the 1S0 →

3P0 transition in 171Yb and
173Yb differ by about 1.2 GHz (see Fig. 2.1), these can easily be excited separately.
Losses of these interacting states measure the inelastic part. To ensure only interorbital
interisotope interactions play a role, atoms in both isotopes are spin-polarised, thus
preventing intraisotope spin-exchanging interactions. Rabi oscillation and magnetic-
field-dependence measurements are done to confirm this is not a spin-exchanging in-
teraction.

5.1.1 Elastic SU(2)⊗SU(6)-Symmetric Interactions
Since the atoms making up the interorbital isotope mixtures are distinguishable, the
physics describing interactions is different from the spin-exchanging interactions in
interorbital intraisotope systems. In the following, the state of the atomic pair is repre-
sented by |o171,mF,171; o173,mF,173〉, where oi ∈ [e,g] denotes the orbital state of isotope
‘i’. In these spin-polarised isotope mixtures, the elastic part of the s-wave interac-
tion is described by a single scattering length a, which is determined in spectroscopic
measurements via the interaction shift (see Eq. 4.14). The interaction shift is given by
∆Uo171 o173 = Uo171 o173 − Ugg. The energies of the clock transition for single atoms and
isotope mixtures are depicted in Fig. 5.1, here exemplary for 171

e Yb -173
g Yb. The spec-

troscopy is performed using π0-polarised light such that the mF state is unchanged.
In general every spin combination is subject to a different molecular potential, and

hence a different interaction shift. For the 171
e/g Yb -173

g/e Yb isotope mixtures here studied,
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Ugg

Ueg

E �Eclock ��clock��Ueg 

Figure 5.1: Energy scheme of (left) the single-body clock transition in comparison
to (right) the interisotope interorbital interaction of a 171

e Yb -173
g Yb mixture, similar to

Fig. 4.2. Both Ugg and Ueg are attractive. Dark and light blue disks represent 171Yb
and 173Yb atoms, respectively.

this leads to twelve unique scattering lengths for all [mF,171,mF,173] combinations. For
ground-ground state 171Yb -173Yb, however, SU(2)⊗SU(6) was observed [36], char-
acterised by a single scattering length. In the following it is shown that the same
SU(2)⊗SU(6) description holds for interorbital mixtures. This ensures that measur-
ing two instead of twelve spin combinations suffices to probe the symmetry of the
interaction.

Because s-wave interactions are rotationally symmetric, the Hamiltonian describ-
ing the system commutes with the total angular momentum of the pair F̂2

tot, defined as
the sum of the 171Yb and 173Yb total angular momentum F̂tot = F̂171 + F̂173 [2]. The
total magnetisation is then given by Mtot = mF,171 + mF,173, which in combination with
Ftot, the eigenvalue of F̂tot, are good quantum numbers. In terms of the basis |Ftot,Mtot〉,
the eigenstates of F̂2

tot, the Hamiltonian Ĥint is given by [2]

Ĥint =
4π~
2µ

δ(r171 − r173)
Fmax∑

Ftot=Fmin

Ftot∑
Mtot=−Ftot

aFtot |Ftot,Mtot〉〈Ftot,Mtot|, (5.1)

where δ(r171 − r173) is the Dirac δ-function as a function of positions r171 and r173,
and aFtot is the Ftot-dependent scattering length. Since the angular momenta of both
the ground and excited states are 1/2 for 171Yb and 5/2 for 173Yb, the total angular
momentum of the pair is Ftot ∈ [2, 3]. Therefore, measuring the scattering lengths a2
and a3 suffices to test the symmetry and quantify the elastic interactions.

In experiments, however, we prepare atoms in a single mF state (see Sec. 2.3.1).
Using a basis transformation, the magnetisation basis |mF,171; mF,173〉 can be written in
terms of the |Ftot,Mtot〉 basis via [2]

|mF,171; mF,173〉 =
∑
Mtot

cFtot,Mtot
mF,171;mF,173

|Ftot,Mtot〉, (5.2)

where cFtot,Mtot
mF,171;mF,173 are the Clebsch-Gordan coefficients and where the summation goes
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over all combinations of mF,171 and mF,173 such that Mtot = mF,171 + mF,173. In this way,
most two spin combinations∗ can be used to determine a2 and a3.

Spectroscopic Measurement of Elastic Interactions

To measure the elastic scattering lengths of two spin combinations of both 171
e/g Yb -

173
g/e Yb mixtures, we start with a ground state mixture of spin-polarised 171Yb and 173Yb
(see Sec. 2.2.5 and Sec. 2.3.1) with about 10 to 40 thousand atoms per isotope at tem-
peratures of about 0.25 to 0.55 TF. This mixture is adiabatically loaded into a deep
optical lattice and spectroscopy is performed, as described in Sec. 3.2.1. Either 171Yb
or 173Yb is excited to measure the 171

e Yb -173
g Yb or 171

g Yb -173
e Yb interaction shifts, re-

spectively. The quantisation axis is set by a magnetic field of 8.8 G in the y-direction,
though the interactions are independent of magnetic field, as shown later in this section.

Figure 5.2 shows typical spectra of 171
e Yb -173

g Yb mixtures, where mF,171 = −1/2,
and mF,171 = 5/2 and 3/2 in (a) and (b), respectively. Each colour denotes a different
1D lattice depth, whereas the 2D lattice depth was s2D = 16.971(15)Er. The spectra
were taken using a pulse time of tp = 1.6 ms, yielding a Fourier-limited peak with a
full-width half-maximum (FWHM) of about 500 Hz. The peaks at δ = 0 are due to the
single-atom 171Yb intraband transition, which is independent of the lattice depth. The
single-atom peaks are fitted using Eq. 3.1 times a constant which accounts for their
non-unity occupation in the lattice. The clock frequency of the single-atom peaks is
monitored over all runs and fitted with a linear function to apply an a posteriori linear
drift compensation†. Around 4 kHz the interaction peaks shows up, which are fitted
with Lorentzians. These describe the interaction peaks significantly better than sinc2

functions, which we attribute to decoherence (see also Sec. 3.1.2 and Sec. 5.1.1). Fur-
thermore, the non-uniformity of the lattice can produce an asymmetric interaction peak,
but this effect was estimated and determined to be negligible (see App. A). The inter-
action shift increases for increasing s1D, as is expected from Eq. 4.14. The third peak,
above 18 kHz is the single-atom 171Yb blue-sideband transition, where a single atom
from the lowest lattice band is excited into the second lattice band. These interband
peak are fitted with Lorentzians, which describe the peaks well at these lattice depths‡.

∗ Spin combinations |mF,171; mF,173〉 and | − mF,171;−mF,173〉 do not suffice to determine a2 and a3, due
to the symmetry of the Clebsch-Gordan coefficients.
† Though a drift compensation of about −0.11 Hz/s was applied during the measurements, small linear

drifts remain, typically of about 20 mHz/s. These are cancelled out by an a posteriori linear drift compen-
sation per ten spectra. The residuals, which give an estimate of the non-linear drifts, are typically smaller
than 15 Hz from spectrum to spectrum, which is small compared to the measured interaction shifts and peak
widths. For further details, see Ref. [143].
‡ At smaller lattice depths, below about 10Er, the shape of the interband peak is asymmetric and a more

detailed analysis is needed. Measurements were done to study this regime, which are presented in Ref. [143].
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(a)

(b)

Figure 5.2: Clock spectroscopy of 171
e Yb -173

g Yb mixtures. Data points represent the
measured excitation fractions and error bars are the uncertainty in the determination
(typically smaller than the marker size). Solid lines indicate fits to the data (see text).
Different colours and markers indicate different s1D (see legend). Note that the x-axis
is shortened between 6 and 16 kHz. (a) shows the measurement of the |e,−1/2; g, 5/2〉
mixture and (b) shows the spectra of the |e,−1/2; g, 3/2〉mixture. The figure is adapted
from the published version [2]. c© 2021 American Physical Society.

This enables us to measure the 1D lattice depth during the measurement, improving
the accuracy of the scattering length. As explained in detail in Ref. [143], a lattice
band calculation is performed to obtain s1D from the energy shift. Because the clock
beam propagates perpendicular to the 2D lattice, we cannot excite single atoms on the
blue sideband of the 2D lattice and hence rely on the lattice-modulation spectroscopy
performed directly before or after the measurements (see Sec. 2.4).

From these spectroscopic measurements, the interaction shifts ∆Ueg, the energy
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difference between the single and interaction peaks, of both spin combinations are
obtained as a function of s1D. These measurements are repeated for several 1D lattice
depths for both spin combinations and plotted in Fig. 5.3. Using Eq. 4.14, we find the
scattering length by averaging over all

∆amF,171;mF,173 = ∆Ueg(s1D)/(4π~2/2µ)
∫

dr |w0(r, s1D, s2D)|4 (5.3)

per spin combination∗. We obtain ∆a−1/2,+5/2 = 498(1)a0 and ∆a−1/2,+3/2 = 495.7(1.3)a0.
Note that by considering the scattering length ∆aeg = aeg − agg we do not need to ac-
count for the large relative uncertainty of the ground-ground state interaction agg =

−5.8(6) × 102 a0 [86]. The solid and dashed line in Fig. 5.3 show the interaction shift
using the best estimate of ∆a−1/2,+5/2 and ∆a−1/2,+3/2, respectively, and the calculated
Wannier integral at the used lattice depths. These lines describe the data well, further
confirming that a two-atom interaction peak was measured.

To obtain ∆a2 and ∆a3, the basis transformation of Eq. 5.2 is applied to find [2]

| − 1/2, 5/2〉 =

√
1
6
|3, 2〉 −

√
5
6
|2, 2〉 (5.4)

| − 1/2, 3/2〉 =

√
1
3
|3, 1〉 −

√
2
3
|2, 1〉, (5.5)

and hence ∆a2 = 2∆a−1/2,5/2 − ∆a−1/2,3/2 = 501.2(2.5)a0 and ∆a3 = −4∆a−1/2,5/2
+ 5∆a−1/2,3/2 = 485(8)a0. Comparing the two, we conclude that ∆a2 and ∆a3 do
not differ significantly from each other and that we observe SU(2)⊗SU(6) symme-
try within our experimental uncertainties. We calculate the average scattering length
∆āeg = 497.4(8)a0 from the measured scattering lengths amF,171;mF,173 , thus describing
the elastic part of the 171

e Yb -173
g Yb interaction regardless of spin combination. Us-

ing the ground-ground state interaction agg = −5.8(6) × 102 a0 [86] we thus find
āeg = −8(6) × 101 a0, where we note that the large relative uncertainty is predomi-
nantly caused by the uncertainty in agg.

We repeat these measurements on the 171
g Yb -173

e Yb mixture with two spin combina-
tions. Figure 5.4 shows a typical measurement, where using the same initial mixtures
as before, 173Yb is excited while 171Yb remains in the ground state. Here the 2D lattice
depth was s2D = 16.13(17)Er and the pulse time was tp = 1.55 ms, yielding a Fourier-
limited peak with a width of about 516 Hz. Similar to before, the peaks at δ = 0 are

∗ We preferred this method since in this way the uncertainty in the Wannier integral due to the 1D and 2D
lattices is included. Directly fitting Eq. 4.14 while leaving a as a free parameter neglects the uncertainties in
s1D and s2D.
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Figure 5.3: Interaction shifts of the 171
e Yb -173

g Yb mixture as a function of 1D lattice
depth. Data points are obtained from fits to spectra, such as in Fig. 5.2, and error
bars indicate the uncertainties in the determination of ∆Ueg and s1D. The solid and
dashed lines show fits to the data (see text) of the |e,−1/2; g, 5/2〉 and |e,−1/2; g, 3/2〉
mixtures, respectively. The figure is adapted from the published version [2]. c© 2021
American Physical Society.

due to single excited 173Yb atoms, the peaks around 4 kHz are due to the interisotope
interaction and the peaks above 16 kHz are due to the single-atom interband transition.
Compared to the 171

e Yb -173
g Yb measurement in Fig. 5.2, the single-atom intra- and in-

terband peaks are significantly lower, suggesting that the atomic sample had fewer
singly-occupied sites. We have observed the peak heights depend on the atom num-
bers of both isotopes and the temperatures. However, the interaction shifts ∆U are not
effected by differences in total atom number.

Figure 5.5 shows the interaction shifts ∆Uge as a function of the 1D lattice depth,
both obtained from the spectroscopic measurements, such as depicted in Fig. 5.4 and
repeated several times. In the same way as before, we find the scattering lengths
∆a−1/2,+5/2 = 481.3(1.8)a0 and ∆a+1/2,+5/2 = 482.9(1.3)a0. From these two, we find
∆a2 and ∆a3 using the basis transformation [2]

| +1/2, 5/2〉 = |3, 3〉 (5.6)

| −1/2, 5/2〉 =

√
1
6
|3, 2〉 −

√
5
6
|2, 2〉, (5.7)
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(a)

(b)

Figure 5.4: Clock spectroscopy of 171
g Yb -173

e Yb mixtures, analogous to Fig. 5.2. (a)
shows the measurement of the |g,−1/2; e, 5/2〉mixture and (b) shows the spectra of the
|g, 1/2; e, 5/2〉 mixture. Note that the x-axis is shortened between 6 and 15 kHz. The
figure is adapted from the published version [2]. c© 2021 American Physical Society.

and hence ∆a2 = 6/5∆a−1/2,5/2 − 1/5∆a+1/2,5/2 = 481(2)a0 and ∆a3 = ∆a+1/2,5/2 =

482.9(1.3)a0. Comparing the two, we conclude that ∆a2 and ∆a3 do not differ sig-
nificantly from each other and that we again observe SU(2)⊗SU(6) symmetry within
our experimental uncertainties. Then, the average scattering length ∆āge = 482(1)a0
is obtained from the measured scattering lengths amF,171;mF,173 , thus describing the elastic
part of the 171

g Yb -173
e Yb interaction regardless of spin combination. As before, using

agg = −5.8(6) × 102 a0 [86] we thus find āge = −1.0(6) × 102 a0.

Table 5.1 gives an overview of the elastic scattering lengths measured for both in-
terorbital interisotope interactions. We have observed SU(2)⊗SU(6) symmetry for both
interactions. The relative deviations between ∆a of both measured spin combinations
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Figure 5.5: Interaction shifts of the 171
g Yb -173

e Yb mixture as a function of 1D lattice
depth, analogous to Fig. 5.3. The solid and dashed line show fits to the data (see text)
of the |g,−1/2; e, 5/2〉 and |g, 1/2; e, 5/2〉 mixtures, respectively. The figure is adapted
from the published version [2]. c© 2021 American Physical Society.

are less than 1%. Theoretical predictions have shown that the SU(N) symmetry of
ground-excited state interactions are expected to be broken below 0.1% [25]. Future
more accurate studies of this interaction could be interesting to test this prediction.

It turns out the average scattering lengths ∆āeg and ∆āge are similar, yet differ sig-
nificantly. We attribute this similarity to the high degree of symmetry between 171

e Yb -
173

g Yb and 171
g Yb -173

e Yb pairs, since the electronic structure of both isotopes is only
different by hyperfine effects. Though a mass-scaling model has been applied success-
fully to describe intra- and interisotope interactions in ground-ground state Yb2 [86],
a prospective similar model for excited-ground state interactions requires additional
terms to explain the difference between 171

e Yb -173
g Yb and 171

g Yb -173
e Yb, which have

the same reduced mass. We therefore think this measurement could be an interesting
benchmark for beyond-mass scaling contributions to molecular potentials, though for
a quantitative treatment of agg must be performed with an accuracy of less than about
5a0 to reduce the error on the absolute scattering lengths āeg and āge. Finally, note that
the absolute scattering lengths āeg = −8(6)× 101 a0 and āge = −1.0(6)× 102 a0 suggest
that the interaction is attractive in nature.
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Table 5.1: Summary of the elastic scattering lengths measured in this work [2]. The
quantity ā is the averaged spin state independent scattering length. All values are given
in units of a0 ≈ 5.29 × 10−11 m [156].

Quantity 171
e Yb -173

g Yb 171
g Yb -173

e Yb

∆a−1/2,+5/2 498(1) 481.3(1.8)

∆a−1/2,+3/2 495.7(1.3) -

∆a+1/2,+5/2 - 482.9(1.3)

∆a2 501.2(2.5) 481(2)

∆a3 485(8) 482.9(1.3)

∆ā 497.4(8) 482(1)

Rabi Oscillations

Different from the spin-exchanging interactions discussed in Ch. 4, the interisotope in-
teractions are expected to have the same Rabi couplings as single atoms. To verify this,
we measure Rabi oscillations at the single-atom and interaction resonance frequencies
for both interisotope mixtures. The measurements are treated in detail in Ref. [143],
and a brief overview is given here.

A spin-polarised mixture of about 25(5) thousand 171Yb atoms and a similar num-
ber of 173Yb atoms is loaded into a lattice of depth s1D = 28.7(2)Er, s2D = 16.8(1)Er.
The magnetic field is set to B = 8.8 G and 171Yb is excited. Figure 5.6 shows typical
Rabi oscillations on the single-atom and interaction resonances. Similarly to Sec. 4.2.1,
the data was fitted with the numerical solutions of the optical Bloch equations. Here
Γs was neglected, the detunings were obtained from spectroscopy measurements on the
respective peaks∗ and a factor was introduced to account for the non-unity occupations.
The measurements were repeated three times, and yield average bare Rabi frequencies
of Ω0 = 2π×352(4) Hz for the single-atom resonance and Ω0 = 2π×356.4(7) Hz for the
interaction resonance, corroborating that both couplings are the same. We furthermore
find a decoherence rate of the interacting pairs of Γc = 2π×24(3) Hz, smaller than the

∗ The spectroscopy was done directly after each Rabi oscillation measurement and we found that |δ| <
Ω0/3 for the single-atom peak and |δint | < Ω0/5 for the interaction peak.
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(a) (b)

Figure 5.6: Typical Rabi oscillations of (a) single atoms and (b) interacting pairs in the
171

e Yb -173
g Yb mixture. Data points show the measured excitation fractions with error

bars the experimental uncertainty. Solid lines show the fitted optical Bloch equations
(see text) and the shaded area shows the 95% confidence interval of the fit.

decoherence of spin-exchanging interactions in 171Yb.
The measurement was repeated analogously for the 171

g Yb -173
e Yb interactions, yield-

ing Ω0 = 2π×356.1(6) Hz for the single-atom resonance and Ω0 = 2π×351(5) Hz for
the interaction resonance, again corroborating that both couplings are the same. Here,
however, the average decoherence rate of the pairs is Γc = 2π×1.0(1) × 102 Hz, con-
siderably larger than the decoherence in both the other interorbital mixture and spin-
exchanging interactions in 171Yb. The difference is currently not understood, though
for more details see Ref. [143].

Verification of the Magnetic Field Independence

As explained in Sec. 5.1.1, the theoretical description of the interisotope interorbital
interactions is markedly different from the spin-exchanging interorbital interactions as
presented in Ch. 4. One major difference is the magnetic field dependence, which
is not present in the interisotope interorbital interactions. Here, this independence is
verified for the 171

e Yb -173
g Yb interaction, though the same is expected to hold for the

171
g Yb -173

e Yb interaction.
Clock spectroscopy is performed as in Sec. 5.1.1, but for varying magnetic fields

and at constant lattice depths of s1D = 47.0(5)Er and s2D = 26.1(2)Er. About 19(4)
thousand 171Yb atoms are loaded into the lattice with approximately the same num-
ber of 173Yb atoms, and pulse times of 1.8 ms were used, leading to a Fourier-limited
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(a) (b)

Figure 5.7: (a) Clock spectroscopy of 171
e Yb -173

g Yb mixtures while varying the mag-
netic field, analogous to Fig. 5.2. Different colours indicate different magnetic fields,
denoted on the right. Note that ne is offset in the y-direction and that the detuning is
with respect to the single atom transition. (b) Measured interaction shifts as a function
of magnetic field, as obtained from fits to the spectroscopic data in (a). The data points
represent the interaction shift between the single-atom and interaction peaks, and the
error bars indicate the fit uncertainty. The solid line indicates the average interaction
shift and the shaded area the 95% confidence interval.

FWHM line width of about 440 Hz. The resulting spectra are shown in Fig. 5.7a. The
peak at zero detuning is identified as the single-atom transition, whereas the peak at
δ/2π ≈ 5.7 kHz is identified as the interisotope interaction peak. As before, the single-
atom and interaction peaks are fitted with a sinc2 and Lorentzian, respectively. Note
that in Fig. 5.7a the Zeeman shift has dropped out, since the detuning δ is calculated
with respect to the single-atom transition.

Using the peak positions, the interaction shifts are determined, and shown in Fig. 5.7b
as a function of the magnetic field. Each measured shift is within two standard devia-
tions of the average. Therefore, we conclude that within our experimental uncertainties
the interaction shift is independent of magnetic field for B . 13.3 G. The interaction
shift for each magnetic field is furthermore well within 1% of the average shift, which
hence functions as an upper limit of how insensitive the interaction is to variations in the
magnetic field. We attribute the residual deviations to non-linear drifts and small fluc-
tuations in the lattice depths. In the spectroscopy measurement presented in Sec. 5.1.1,
we have observed that after a posteriori linear drift compensation the non-linear drifts
are typically within 15 Hz over a few hours. Furthermore, the lattice depths were de-
termined with an accuracy of about 1% (compare s1D and s2D above), which can be
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Figure 5.8: Schematic of a loss measurement sequence (not to scale), showing the laser
beam powers P as a function of time t, analogous to Fig. 3.6. The hold time th after the
clock pulse is varied.

caused by shot-to-shot fluctuations in the lattice beam powers. The spread in lattice
depths results in a spread in the Wannier integrals of approximately 0.5%. These two
effects are therefore expected to be the current limiting factors in our experiment.

Lastly, note that the interisotope interaction is not expected to exhibit an interor-
bital Feshbach resonance, unlike the interorbital spin-exchange interaction in 171Yb
[155] and 173Yb [28]. The spin-exchange interaction is described by two molecular
potentials, and the interorbital Feshbach resonance appears because a bound state of
one of the potentials comes into resonance with the open channel of the other poten-
tial for a certain Zeeman energy shift. This is markedly different from the interisotope
interactions here measured, since a single molecular potential describes the interaction.

5.1.2 Inelastic Interactions

To fully characterise the s-wave interactions of interorbital 171Yb - 173Yb mixtures, loss
measurements were done to determine the inelastic scattering length. Similarly to the
spectroscopy described in Sec. 5.1.1, spin-polarised ground-ground state mixtures are
loaded into the ‘magic’ lattice at a magnetic field of 8.8 G and excited on either the
171Yb or 173Yb clock transition using the previously-found interorbital resonances. In
this way, the sample consists of single 171Yb and 173Yb atoms, and interacting interor-
bital pairs. Subsequently, the atoms are held in the deep lattice for a variable hold time
th, as depicted in Fig. 5.8, which is referred to as a loss measurement in the following.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.9: Typical loss measurements of |e,−1/2; g, 3/2〉 and |e,−1/2; g, 5/2〉 pairs.
The left column shows loss measurements for different 1D lattice depths and spin con-
figurations, denoted in the graph. Data points show the single-shot atom number and
error bars show the uncertainty in its determinations. Solid lines show the fitted ex-
ponential (see text) and the shaded area shows its 95% confidence interval. The right
column shows spectroscopy of the interaction peak, similar to Fig. 5.2 and 5.4. Here,
ne is plotted as a function of the detuning δint with respect to the interaction peak. The
dashed line shows the frequency at which the corresponding loss measurement was
done. The figure is adapted from the published version [2]. c© 2021 American Physical
Society.
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Figure 5.9 shows typical loss measurements of the 171
e Yb -173

g Yb mixture, where the
number of excited-state 171Yb atoms is shown. The excited state atom number shows
an exponential decay, for the following reasons. Excited state atoms on lattice sites
with another isotope are subject to two loss processes. First, inelastic collisions with
the other isotope cause losses. Second, |e〉 atoms can be lost via one-body decays due
to scattering of the lattice light, collisions with background atoms in the vacuum and
spontaneous decay. Since both processes are stochastic, they show up as exponential
decays∗. The total decay rate of the excited state atom number Γtot is thus given by
Γtot = Γin + Γ0, where Γin denotes the inelastic decay rate and Γ0 denotes the one-body
decay rate. Hence, the excited state atom number is fitted with Ne,0 exp(−Γtotth), where
Ne,0 is the initial atom number at th = 0. The fits are shown in Fig. 5.9a, 5.9c, 5.9e and
5.9g, and describe the data well.

To ensure we measure at a frequency close to the desired resonance frequency
and to ensure drifts are negligible, we measure the interorbital interisotope interaction
peak directly after each loss measurement. The corresponding spectra are shown in
Fig. 5.9b, 5.9d, 5.9f and 5.9h. The data is fitted with a Lorentzian as described in
Sec. 5.1.1, and the resonance frequency at which the loss measurement was performed
is indicated by the vertical dashed line.

To obtain the inelastic loss rate Γin, we additionally perform a loss measurement
on the single-atom resonance just before the interaction loss measurement. In this
way, only single atoms are excited and the one-body loss rate Γ0 is obtained, which is
typically on the order of 0.4 Hz. Using the thus found Γ0 and Γtot, the inelastic loss
rates of the 171

e Yb -173
g Yb interaction are found.

These three measurements, measuring Γtot, Γ0 and the interaction spectrum, were
performed several times and repeated for five different 1D lattice depths. The same
was done for two spin configurations |e,−1/2; g, 3/2〉 and |e,−1/2; g, 5/2〉. The data
was post-selected to ensure each loss measurement was done close to the interaction
resonance. Figure 5.10 shows the inelastic decay rates as a function of 1D lattice depth
for both spin configurations of the 171

e Yb -173
g Yb mixture.

Similar to the elastic interaction in Eq. 4.14, for inelastic interactions the decay
rates are related to the universal decay coefficient βmF,171;mF,173 via [2]

Γin(s1D) = βmF,171;mF,173

∫
dr|w0(s1D, s2D, r)|4 (5.8)

=
4π~
2µ

bmF,171;mF,173

∫
dr|w0(s1D, s2D, r)|4 (5.9)

∗ For this reason we here consider the excited state atom number. The excitation fraction ne is subject
to more complicated dynamics since an unknown number of the excited atoms decays back into the ground
state.
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(a) (b)

Figure 5.10: Decay rates of the 171
e Yb -173

g Yb mixture as a function of 1D lattice depth
of two spin configurations (see graph). The data points represent Γin as obtained from
loss measurements and are typically three times averaged, and error bars indicate the
propagated uncertainties. The solid lines show the expected Γin(s1D) based on the ob-
tained βmF,171;mF,173 and the shaded areas show its 95% confidence interval. The figure is
adapted from the published version [2]. c© 2021 American Physical Society.

where the decay coefficient was rewritten in terms of the inelastic scattering length
bmF,171;mF,173 . Using Eqs. 5.8 and 5.9 for the 171

e Yb -173
g Yb mixtures, we find the decay

coefficient per spin configuration β−1/2,+5/2 = 1.69(7) × 10−12 cm3s−1 and β−1/2,+3/2 =

1.79(5) × 10−12 cm3s−1, or equivalently b−1/2,+5/2 = 6.9(3)a0 and b−1/2,+3/2 = 7.3(2)a0
∗,

summarised in Table 5.2. Based on the decay coefficients, the expected Γin(s1D) is cal-
culated and shown as solid lines in Fig. 5.10, where the shaded area denotes its 95%
confidence interval. Save for one outlier the expected Γin(s1D) describes the data well.

The loss measurements are repeated for the 171
g Yb -173

e Yb interaction, shown in
Fig. 5.11. In complete analogy to the 171

e Yb -173
g Yb mixture, the losses of interact-

ing pairs and single atoms and the interaction peak resonance are measured. Here all
measurements were done at s2D = 17.0(4)Er. The measurement is repeated several
times for several 1D lattice depths and for two spin configurations |g, 1/2; e, 5/2〉 and
|g,−1/2; e, 5/2〉. The loss data is described well by the exponential fit.

∗ Here the decay coefficients were obtained analogously to the elastic scattering lengths, by taking the
average of β = Γin(s1D)/

∫
dr|w0(s1D, s2D, r)|4 over all 1D lattice depths, and similarly for the inelastic

scattering lengths.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.11: Typical loss measurements of |g, 1/2; e, 5/2〉 and |g,−1/2; e, 5/2〉 pairs,
analogous to Fig. 5.9. The figure is adapted from the published version [2]. c© 2021
American Physical Society.
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Table 5.2: Summary of all inelastic interaction parameters measured in this work [2].
The subscripts i and j in βi, j and bi, j represent the mF state of the 171Yb and 173Yb
isotopes, respectively.

Quantity 171
e Yb -173

g Yb 171
g Yb -173

e Yb

β−1/2,+5/2 1.69(7) × 10−12 cm3s−1 4.6(1.7) × 10−15 cm3s−1

b−1/2,+5/2 6.9(3)a0 0.019(7)a0

β−1/2,+3/2 1.79(5) × 10−12 cm3s−1 -

b−1/2,+3/2 7.3(2)a0 -

β+1/2,+5/2 - 3(1) × 10−15 cm3s−1

b+1/2,+5/2 - 0.013(4)a0

Figure 5.12 shows the inelastic decay rates as obtained from the measured Γtot and
Γ0. Analogous to the 171

e Yb -173
g Yb losses studied previously, the decay coefficients

and inelastic scattering lengths are obtained as β−1/2,+5/2 = 4.6(1.7)× 10−15 cm3s−1 and
β+1/2,+5/2 = 3(1) × 10−15 cm3s−1, or equivalently b−1/2,+5/2 = 0.019(7)a0 and b+1/2,+5/2 =

0.013(4)a0. The error bars of Γin are relatively large compared to those in 171
e Yb -173

g Yb,
because the decay rates of this interorbital interaction are on the same order of mag-
nitude as the one-body decay rates, therefore contributing significantly to the error
in Γin. For some measurements, we even find negative inelastic decay rates, in other
words Γ0 > Γtot, which is not expected. Since the inelastic loss rate and one-body loss
rates are so similar here, small drifts in the total atom number or clock frequency∗ can
explain this. However, zero is still within two standard deviations for each negative
Γin(s1D), so the deviations could simply be statistical in nature. The resulting decay
coefficients are nevertheless significantly different from zero.

Table 5.2 shows the measured decay coefficients and inelastic scattering lengths of
interorbital interisotope mixtures. Remarkably, the losses of the 171

g Yb -173
e Yb interac-

tion are about 400 times smaller than those of the 171
e Yb -173

g Yb interaction, whereas

∗ Unlike the spectroscopy measurement, no a posteriori linear-drift compensation was done here, because
the single atom transition was not measured. In principle, it can be done using the interaction peaks, but
these peak positions are influenced by both clock drifts and fluctuations in the lattice depths. To avoid this
ambiguity, the a posteriori drift compensation was not done here.
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(a) (b)

Figure 5.12: Decay rates of the 171
g Yb -173

e Yb mixture as a function of 1D lattice depth,
analogous to Fig. 5.10. Here the data points are single measurements or averaged twice.
(a) shows the decay rates of the |g,−1/2; e, 5/2〉 mixture and (b) shows the decay rates
of the |g, 1/2; e, 5/2〉 mixture. The figure is adapted from the published version [2].
c© 2021 American Physical Society.

the elastic scattering lengths are similar (see Table 5.1). Currently, this difference is
not understood. Future measurements are needed to exclude the effect of the lattice
laser beams. In our experiment, the 1D and 2D lattice are detuned by 160 kHz to en-
sure these do not interfere. This, however, might lead to single-photon laser-assisted
losses or a photo-associative coupling to a higher-lying molecular state, similar to the
photo-association (PA) measurements done by Ref. [86]. If the difference is not due
to experimental details, the smaller losses in 171

g Yb -173
e Yb make it the more promising

candidate for future quantum simulation measurements.

The inelastic losses of the two spin configurations measured for both interorbital
mixtures are not significantly different from each other. However, unlike the elastic
interactions, it is not expected that the loss processes can be described solely by the two
quantum numbers Ftot and Mtot

∗. Therefore, we do not claim SU(2)⊗SU(6) symmetry
for the inelastic interactions. Measurements with all twelve spin configurations are
needed to draw further-reaching conclusions.

Lastly, we point out that the four decay coefficients here found are similar to other
excited-ground state decay coefficients in ytterbium, such as 171Yb [155] and 173Yb
[22].

∗ We acknowledge P. Schmelcher for helpful discussions on this topic.
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5.1.3 Determination of the p-wave Scattering Lengths

With the determination of the elastic and inelastic interactions, the s-wave scattering is
now fully characterised by the complex scattering length ã = a−ib. Using the quantum-
defect-theory (QDT) model by Ref. [174], ã can be used to find several other properties
of the interaction. Their single-channel model assumes two particles interact via a Van
der Waals (vdW) potential of the form V(r) ∝ −C6/r6, where C6 is a constant [174]. A
complex molecular potential describes the long-range interactions, associated with the
elastic interaction, and the short-range losses, associated with the inelastic interaction.
This potential is characterised by a dimensionless scattering length s and loss parameter
y. Here, s = abg/avdW, where abg is the background s-wave scattering length of the
potential and avdW = 2π(2µC6/~

2)1/4/Γ(1/4)2 is the vdW scattering length, where Γ( f )
is the gamma function of f [174]. The loss parameter is defined such that for y = 0
there are no losses, and for y = 1 every scattering event leads to complete losses, hence
limiting 0 ≤ y ≤ 1 [174].

For small momenta k|ã| � 1 and kavdW � 1, the complex s-wave scattering length
can be rewritten in terms of the two QDT parameters as [174]

ã(k)
avdW

= s + y
1 + (1 − s)2

i + y(1 − s)
. (5.10)

For excited-ground state Yb molecular potentials, the theoretically calculated C6 =

2561(95) Eha6
0 [178], where Eh is the Hartree energy, leads to a Van der Waals scat-

tering length of avdW = 80.8(7)a0. Using this, the QDT parameters are found, yield-
ing s = −1.0(7) and y = 0.02(1) for the |e,−1/2; g, 5/2〉 state and s = −1.2(7) and
y = 4.0(2.7) × 10−5 for the |g,−1/2; e, 5/2〉 state. The corresponding parameters of the
other measured spin configurations do not differ significantly, but are given in Table 5.3
at the end of this chapter for completeness.

The loss parameter y can be written in terms of the short-range reaction probability
Pre as [177]

Pre =
4y2

(1 + y)2 , (5.11)

which is the probability an atom has an inelastic or reactive collision. Using the
previously-found y, we find Pre = 0.07(4) and Pre = 1.6(1.1)×10−4 for the |e,−1/2; g, 5/2〉
and |g,−1/2; e, 5/2〉 states, respectively.

The s and y parameter are furthermore related to the complex p-wave scattering
length ãl=1 as [174]

ãl=1(k)
avdW,1

= −2(avdWk)2 y + i(s − 1)
ys + i(s − 2)

, (5.12)
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where avdW,1 = avdWΓ(1/4)6/(144π2Γ(3/4)2) [174]. Similarly to the s-wave scattering
length, ãl=1 = al=1− ibl=1, where al=1 and bl=1 are the elastic and inelastic part of the in-
teraction, respectively, and where the subscript l = 1 denotes the partial-wave quantum
number of the p-wave interaction [174]. For the |e,−1/2; g, 5/2〉 and |g,−1/2; e, 5/2〉
states we find for the elastic p-wave scattering lengths al=1/(avdWk)2 = −115(14)a0
and al=1/(avdWk)2 = −119(12)a0, respectively. The inelastic part of the interactions are
bl=1/(avdWk)2 = 1.6(8)a0 and bl=1/(avdWk)2 = 3.9(2.3) × 10−3a0, respectively.

The uncertainties of these estimated parameters are relatively large, which is due
to the large uncertainty of agg. This is currently the limiting factor in the estimation of
the p-wave scattering length, so future measurements attempting to reduce the uncer-
tainty should focus on measuring agg with a higher accuracy. Nevertheless, from these
estimations we conclude that, similar to the s-wave scattering, p-wave interactions of
interorbital 171Yb-173Yb are attractive at small momenta. Furthermore, the large dif-
ference in inelastic scattering lengths of the s-wave interaction is also present in the
p-wave interaction.

5.2 Towards a Molecular Potential of e-g Yb2

Together with earlier work [21, 23, 28, 86, 155, 157, 175, 176], the measurement of
the interorbital interisotope scattering lengths presented here pave the way towards a
better understanding of 3P0−

1S0 state molecular potentials. In the following, a simple
mass scaling model is presented, similar to the one presented for ground-ground state
Yb interactions presented in Ref. [86].

From the spin-exchange scattering lengths aeg± measured in 173Yb [21, 28, 157], the
direct scattering length aeg0 was found∗. The same is done for 171Yb using Refs. [23,
155] and our work (see Ref. [2] and Sec. 4.2.3). Furthermore, the excited-ground
state interaction in 174Yb was measured [175, 176]. In this way, several interorbital
interactions at four different reduced masses are now known. Figure 5.13 shows the
scattering lengths as a function of the reduced mass of these interacting pairs.

The simple mass scaling model uses the treatment by Ref. [86]. The elastic s-wave
scattering length in the zero-energy limit is given by [86]

a = avdW(µ)
[
1 − tan

(
Φ(µ) −

π

8

)]
, (5.13)

where, as before, the vdW length is given by avdW(µ) = 2π(2µC6/~
2)1/4/Γ(1/4)2. The

∗ Though the Florence group has measured the spin-exchanging interactions of 173Yb twice [22, 157],
only their more accurate measurement [157] is used here.
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Figure 5.13: Speculative mass scaling model. The data points are the direct interactions
as measured by Refs. [21, 23, 28, 86, 155, 157, 175, 176] and our work [2], and the
error bars denote the experimental uncertainties. The solid line shows a fit to the data
(see text).

semi-classical phase Φ is given by [86]

Φ(µ) =

√
2µ
~

∫ ∞

r0

dr
√
−V(r), (5.14)

where V(r) ≈ −C6/r6 is the vdW potential (see also Sec. 5.1.3) and r0 is the classi-
cal turning point of the potential [86]. Lastly, the number of bound states Nb of the
potential is given by [86]

Nb = int
(
Φ

π
−

5
8

)
+ 1, (5.15)

where the function int( f ) takes the integer part of f .
In principle the Schrödinger equation with the vdW potential should be solved nu-

merically, as is done in Ref. [86]. Here, a simpler approach is taken, using Eq. 5.13
to fit the direct interactions, where the integral A =

∫ ∞
r0

dr
√
−V(r) is the only free pa-

rameter. Further, the theoretically calculated C6 = 2561 Eha6
0 [178] is used. The fit is

shown in Fig. 5.13 and yields A = 6.1043(4) × 10−20
√

Jm. This results in a number
of bound states Nb = 139 at 2µ = 172, which is almost twice as large as the 71 bound
states of the ground-ground state potential [86]. This could be explained by the larger
expected depth of the interorbital potentials [179]. The divergence of the fit just be-
low 2µ = 173, indicates the presence of a weakly bound state close to the continuum.
Furthermore, assuming V(r) = −C6/r6 this suggest the classical turning point of the
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potential is r0 = 13.5a0. However, these results should be treated with caution, since
the fit has many similar local minima for a different number of bound states. Since the
integral parameter A can be varied by about 2 × 10−21

√
Jm while still yielding satis-

factory fits with different Nb, we estimate that the uncertainty is at least 5%. A more
detailed description, which also takes into account the energies of the least bound states
[28, 86, 155, 157], is required to give a better description of the measured scattering
lengths, which is beyond the scope of this work.

5.3 Three-Component Fermi-Fermi Mixtures
In addition to the spin-polarised Fermi-Fermi mixtures studied before, measurements
were done on interorbital Fermi-Fermi mixtures with multiple spin components. In
such multi-spin Fermi-Fermi mixtures the competition of different interactions can lead
to the emergence of interesting quantum phases [25, 87], or multi-body interactions
[180].

To this end, a mixture of spin-balanced 171Yb and spin-polarised 173Yb in the
ground state was loaded into a ‘magic ’lattice with s1D = 40Er and s2D = 25Er at
a magnetic field of B = 8.8 G. A clock π pulse of length 2.3 ms was used, except for
the |+〉 and |−〉 spin-exchange peaks of 171Yb for which the pulse length was adapted
to enable maximum excitation (similar to Sec. 4.2.1). Figure 5.14 shows the resulting
spectrum. The two highest peaks at about ±2.3 kHz are due to single excited 171Yb
atoms in the mF = ∓1/2 states. Based on the measurements presented in Sec. 4.2.2, the
resonances of the interorbital spin-exchanging interactions were known, allowing for
the identification of the peaks at about 1 kHz and 5.8 kHz as the |+〉 and |−〉 state peaks,
respectively. The remaining two peaks were identified as the interorbital interisotope
interaction peaks based on the interaction shifts measured in Sec. 5.1.1.

Considering the peak heights teaches us something about the occupations in the
lattice prior to the clock excitation. The total peak height of the single-atom transitions
indicates that about 53% of all 171Yb atoms are on singly-occupied sites. The four
interacting states all have a maximum excitation of about 3%. Hence, at least 6% of the
initial lattice sites consisted of ground-ground state 171Yb (see also Sec. 4.2.3). Another
6% of the initial lattice sites consisted of a single 171Yb atom in the mF = +1/2 or
mF = −1/2 state with a single 173Yb atom. However, the total peak height is not unity.
This can in part be explained by decoherence of the interaction peaks, and potential
imperfections in setting the clock time. Due to the finite decoherence during the clock
excitation, the real occupations of the interacting states are a few percent higher.

Triply-occupied sites, in the following referred to as triplons, consisting of two
171Yb atoms and one 173Yb atom, cannot explain the non-unity excitation, as is ex-
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Figure 5.14: Clock spectroscopy of 171Yb in a mixture of spin-balanced 171Yb and spin-
polarised 173Yb. The detuning is with respect to the degenerate single-atom resonance.
The data points are three times averaged. The solid line shows a fit with four sinc2 and
two Lorentzian functions as a guide to the eye, where the shaded area denotes its 95%
confidence interval. The states corresponding peaks is denoted in the kets. The figure
is adapted from the published version [2]. c© 2021 American Physical Society.

plained in the following. In the initial system, a triplon is in the state |gg〉 ⊗ |g173〉,
where |gg〉 is the spin-anti-symmetric 171Yb ground-ground state as defined in Sec. 4.1.
Neglecting multi-body effects, the energy of the state is Uggg = 2U inter

gg + U intra
gg ∝

−1.16(8)×103a0, where the ‘inter’ and ‘intra’ superscripts denote the 171Yb−173Yb in-
terisotope and 171Yb intraisotope interactions, respectively. Clock excitation of a 171Yb
atom brings the triplon into the |±〉⊗|g173〉 state, which has an energy of U±g = E±(B)+

U inter
gg +U inter

eg . The expected energy shift is hence ∆U±g = E±(B)+∆U inter
eg −U intra

gg , which
is 6.2 kHz and 11 kHz for the |+〉 ⊗ |g173〉 and |−〉 ⊗ |g173〉 states, respectively, for the
magnetic field and lattice depths used here. Though the |−〉 ⊗ |g173〉 state is outside
of the scanned range, we do not observe any excitation at 6.2 kHz. This is surprising,
since the triplon ground-state interactions are large and attractive and hence naively a
large triplon fraction is expected.

To understand the occupation numbers present in the lattice, a grand-canonical-
ensemble model was studied, which has been applied successfully by Ref. [181] to
understand double occupancy (doublons) in repulsively-interacting 40K quantum gases
in an optical lattice. The model was provided courtesy of H. Moritz, studied and mod-
ified by N. Pintul and supervised by the author. The results of balanced two-species
systems are described in detail in Ref. [142]. Though the model provides internally
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Figure 5.15: Clock spectroscopy of 173Yb in a mixture of spin-balanced 171Yb and spin-
polarised 173Yb. The lattice depths was set to s1D = 30Er and s2D = 17Er. The three
peaks, from left to right, are due to single-atom excitations, interorbital interisotope
interactions and the single-atom blue sideband.

consistent predictions, the expected doublon fractions are consistently different from
experiments. For ground-ground state 171Yb with attractive interactions of −3a0 [86],
doublon fractions of over 0.9 are expected [142], whereas experimentally about 0.23
was measured (see Sec. 4.2.3). Based on this model, a sample with large attractive
interactions, such as for 171

g Yb -173
g Yb, is expected to have doublon fractions indistin-

guishable from unity, whereas we observe single-atom fractions of more than 0.4 (see
Sec. 5.1.1). The model was therefore rejected for our experiments and was not ex-
tended to three-component samples. The fact that the measured doublon fractions of
about 6% in the three-component Fermi-Fermi mixtures are so small, yet the same for
vastly different ground-state interactions, suggests that energy considerations are not
enough to explain the occupation fractions. The dominant processes leading to these
unexpected occupations are currently not understood.

Three-body interactions, so far neglected, cause interactions shifts different from
the summed two-body interaction shifts [180]. Judging by the three-body interactions
in 87Sr [180], the shift is not expected to bring the triplons out of the scanned range. To
rule out the possibility of the triplon peak overlapping with the |−〉 resonance at 5.8 kHz,
we repeat the three-component measurement with the same initial state. Here, however,
the spin-polarised 173Yb atoms are excited, to prevent the excitation of interorbital
spin-exchange states. Figure 5.15 shows the resulting spectrum of a spin-balanced
171Yb spin-polarised 173Yb mixture, exciting the latter isotope. The spectrum displays
three peaks, the single-atom peak at δ = 0, the interisotope interorbital interaction
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peak∗ at 4 kHz, and the single-atom blue sideband at 20 kHz. Neglecting three-body
interactions, the excited triplon state is given by |gg〉 ⊗ |e173〉 and the interaction peak
is expected at ∆Ugge = 2∆U inter

ge ≈ 8 kHz. However, the triplon peak is not observed.
The unknown processes that limit double occupation possibly further suppress

triple occupation. Furthermore, three-body recombination [180, 182] prior to lattice
loading can lead to suppression of initial triply-occupied sites. Additional experimen-
tal work is needed for a better understanding.

5.4 Conclusion & Outlook
To summarise, we have characterised interorbital s-wave interactions in 171Yb-173Yb
Fermi-Fermi mixtures, summarised in Tables 5.1 and 5.2. The elastic interactions were
found to be small and attractive at āeg = −8(6) × 101 a0 and āge = −1.0(6) × 102 a0.
The SU(2)⊗SU(6) symmetry of the elastic interactions was directly observed, well
within 1% accuracy. Further, Rabi oscillations were measured on both interorbital
mixtures, which confirmed that the coupling of interacting interisotope pairs is the
same as it is for single atoms. The elastic interactions were shown to be independent of
the magnetic field within 1%, as is expected. Furthermore, we have measured losses of
two spin configurations to determine the inelastic part of the interactions. Remarkably,
we found that the decay coefficient of 171

g Yb -173
e Yb is about 400 times smaller than

that of 171
e Yb -173

g Yb. Using the elastic and inelastic part of the s-wave interactions and
the quantum defect theory model of Ref. [174], the p-wave scattering parameters were
estimated, as summarised in Table 5.3. A speculative molecular potential model was
fitted and shown in Sec. 5.2. Lastly, measurements of three-component mixtures were
done, but no triply-occupied sites were found.

Future measurements could aim at observing the breaking of the SU(2)⊗SU(6)
symmetry, which is expected to occur on the scale below 10−3 [25]. If symmetry
breaking is observed, it is interesting to measure all twelve possible spin configurations.
This can be done in the current setup, using lower-intensity and longer clock pulses to
reduce the spectroscopic line widths and increase the accuracy.

To completely characterise the inelastic interactions in these interisotope mixtures,
losses of all twelve possible spin configurations should be measured. Furthermore,
it should be ruled out that the large differences in decay coefficients between both
interorbital mixtures are caused by experimental factors. The lattice laser might cause
decays, which can be studied while varying the detuning between the 1D and 2D lattice.

∗ Since both mF states of 171Yb are present in the system, in reality this peak corresponds to the sum
of the |g,−1/2; e, 5/2〉 and |g,+1/2; e, 5/2〉 peaks, which overlap due to the SU(2)⊗SU(6) symmetry of the
interaction.
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If the large difference in inelastic interactions persists, we expect these measurements
provide an interesting benchmark for future theoretical models incorporating reactive
processes.

The measurements presented here are expected to contribute to the understand-
ing of 1S0−

3P0 Yb molecules. A mass-scaling model has been applied successfully
for ground-ground state Yb interactions [86], and a similar model might be found for
excited-ground state Yb, along with previous measurements in different isotopes [21–
23, 28, 29, 155, 157, 175, 176]. However, the measurements presented here can be es-
pecially interesting because of the difference in āeg and āge at the same reduced mass.
Therefore, this measurement can be a useful benchmark for higher-order corrections
to existing excited-ground-state molecular-potential models [178, 179]. To reduce the
uncertainty in the absolute value of the interisotope interorbital interactions, however,
agg should be measured more accurately. Additionally, by changing the clock beam
to dual-frequency operation, the interisotope excited-excited state interactions can be
measured.

To learn more about the quantum phases in three-component Fermi-Fermi mix-
tures, the occupation ratios have to be understood first. Once a better understanding
is obtained, experiments can be done studying the competition of the different interac-
tions, which can lead to interesting quantum phases [25, 87] or multi-body interactions
[180].

Furthermore, the Efimov spectrum was calculated for three-body bound states of
two ground-state 171Yb and one ground-state 173Yb atom [183]. Once the triple oc-
cupation in the lattice is increased, the interorbital interisotope mixtures can be an
interesting platform as a comparison to ground-state three-body bound states.

Finally, the high symmetry SU(2)⊗SU(N > 2) is expected to exhibit exotic d-
wave superfluidity [93]. Additionally, the interorbital 171Yb-173Yb mixture could be
a favourable platform to observe two-flavour superfluid symmetry-locking (TFSSL)
phases [94, 95], because it is deeper in the TFSSL phase than the proposed 171

g Yb -
173

g Yb mixtures. For these ground-ground-state mixtures, a critical temperature of
0.1TF is estimated [95], yet the constraints deeper in the TFSSL phase are likely to
be less stringent. Due to its small inelastic interactions, the 171

g Yb -173
e Yb mixture is

likely to be superior over 171
e Yb -173

g Yb.
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Table 5.3: Summary of the quantum defect theory parameters and resulting p-wave
scattering lengths.

Quantity 171
e Yb -173

g Yb 171
g Yb -173

e Yb

s−1/2,+5/2 −1.0(7) −1.2(7)

y−1/2,+5/2 0.02(1) 4.0(2.7) × 10−5

Pre 0.07(4) 1.6(1.1) × 10−4

al=1/(avdWk)2 −115(14)a0 −119(12)a0

bl=1/(avdWk)2 1.6(8)a0 3.9(2.3) × 10−3a0

s−1/2,+3/2 −1.0(7) -

y−1/2,+3/2 0.02(1) -

Pre 0.07(4) -

al=1/(avdWk)2 −115(14)a0 -

bl=1/(avdWk)2 1.7(8)a0 -

s+1/2,+5/2 - −1.2(7)

y+1/2,+5/2 - 2.8(1.8) × 10−5

Pre - 1.1(7) × 10−4

al=1/(avdWk)2 - −118(13)a0

bl=1/(avdWk)2 - 2.7(1.5) × 10−3a0



Chapter 6

Dynamics in the Dissipative
Fermi-Hubbard Model

Dissipation generally causes quantum systems to lose the coherent properties that make
them interesting, and is hence often considered as the main obstacle to investigating
and using quantum systems. Since quantum experiments are inevitably coupled to the
environment, the study of dissipative phenomena has come to the forefront of physics.
Whereas often experiments attempt to study quantum effects on timescales which are
short compared to decoherence times, proposals were made utilising dissipation for
quantum state engineering [96–100]. Predictions have underlined the usefulness of
dissipation in entropy transfer [101] and correlations measurements [102]. Studying
dissipation within ultracold quantum gases is of particular interest because of the high
degree of tunability of quantum gases, for instance controlling the coupling to an ex-
ternal bath [103, 104]. One-body dissipation has been studied in numerous systems,
for instance by irradiating a 87Rb BEC with an electron beam [105, 106], near-resonant
photon scattering [107, 108], or imaging-induced losses [109]. Two-body losses were
studied using inelastic collisions in bosonic 87Rb Feshbach-molecules in 1D tubes,
where an inhibition of losses was observed and attributed to the build-up of correla-
tions [110–112]. Polar fermionic KRb molecules showed a similar loss suppression
[114, 115]. Furthermore, photo-association on the 1S0 →

3P1 transition was used to
tune the inelastic loss rate of 174Yb atoms and observe the effect of driven-dissipation
on the Mott-to-superfluid crossover [116].

More recently, tunable dissipation has been studied experimentally within a syn-
thetic lattice of momentum states [117], and the dissipative Bose-Hubbard model was

89



90 CHAPTER 6. DYNAMICS IN THE DISSIPATIVE FHM

studied using the 3P2 state of 174Yb [113]. Recent proposals have among others sug-
gested using dissipation to study dynamical parity-time symmetry breaking [119] and
the effect of dissipation on topological Bose-Mott insulators [120]. Furthermore, rate
equations were found for the dissipative Bose-Hubbard model in a beyond-mean-field
treatment [121], and a study on the weakly-dissipative Fermi-Hubbard model high-
lighted the connection between the spin conservation and the dynamics [123].

The main motivation of this work is the proposal by Ref. [99], where it was pre-
dicted that fermionic 1D systems with SU(2)-symmetric s-wave interactions form highly-
entangled Dicke states after some transient time. A Dicke state [124] is a many-body
state where the spin part of the wavefunction is fully symmetric, whereas the spatial
part of the wavefunction is anti-symmetric. The symmetric spin wavefunction has a
minimal uncertainty ∆S z which acts as a type of spin-squeezing, and hence has optimal
spectrographic properties allowing one to break the standard quantum limit and reach
the Heisenberg limit [99]. As we will show in the following, our work is compatible
with the dynamic formation of a highly-entangled Dicke state.

Additionally, Ref. [118] pointed out that these dissipative SU(2)-symmetric 1D
systems exhibit a dynamical sign-reversal of magnetic correlations. This is because the
many-body states prone to losses are the lowest energy states while the spin-symmetric
state has the highest energy of the initially uncorrelated system [118]. Since the lat-
ter state is unaffected by the losses, the highest energy state is stabilised over time,
generating a maximum energy state similar to negative-temperature states in closed
systems [118, 184, 185]. Furthermore, in a more recent work the dissipative Bose- and
Fermi-Hubbard models were solved analytically [122].

The work in this chapter was supervised by K. Sengstock & C. Becker. The data
was taken by B. Hundt, A. Kochanke and T. Ponath. A first version of the analysis was
done by B. Hundt [128], and the analysis in this chapter and of the publication [1] was
performed by the author. Numerical simulations were carried out by L. Freystatzky
under supervision of L. Mathey. The final interpretation was done by the author in col-
laboration with L. Freystatzky, B. Abeln, M. Diem, B. Santra, L. Mathey, K. Sengstock
and C. Becker. The work presented in this chapter was published in Ref. [1].

6.1 State Preparation
For reasons that will become apparent later, the desired initial state is a Mott insulator
[186] of 3P0 excited state 173Yb atoms. To transfer ground-state atoms to the excited
state, a so-called rapid adiabatic passage is used, which is more experimentally robust
than π-pulse excitation, as explained in the following.

Furthermore, to study the effect of many-body spin correlations, optical pumping
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Table 6.1: Relative spin-state populations NmF/
∑

mF
NmF for six-spin, two-spin or spin-

polarised samples of 173Yb.[1]

mF

Spin Mixture -5/2 -3/2 -1/2 +1/2 +3/2 +5/2

Six 0.18(1) 0.208(4) 0.185(5) 0.161(2) 0.137(3) 0.130(8)

Two 0.46(3) 0.45(3) 0.07(2) < 0.01 0.02(1) < 0.01

Spin-polarised 0.93(7) 0.06(6) < 0.01 < 0.01 < 0.01 < 0.01

is used to create atomic samples with one, two or six mF states. Here, the realisation
of optical pumping is slightly different from the updated implementation described in
Sec. 2.3.1. Formerly, instead of the 3D-MOT beams a dedicated laser beam was used,
prior to evaporation with the green dipole trap [128, 129]. Table 6.1 shows the relative
spin-state populations NmF/

∑
mF

NmF for different spin configurations, as obtained from
an analysis using an optical Stern-Gerlach method as described in Sec. 2.3.2.

6.1.1 Rapid Adiabatic Passage
A rapid adiabatic passage (RAP) [158, 187] is an alternative way of transferring ground
state atoms to the excited state. Instead of exciting the atoms on resonance with a π
pulse, one starts far-detuned and sweeps over the resonance. In the (g, e) basis, the
time-dependent Hamiltonian ĤRAP describing this two-level system is given by [187]

ĤRAP(t) =
~

2

 δ(t) Ω0(t)

Ω0(t) −δ(t)

 , (6.1)

where the detuning and Rabi frequency were assumed to be real. The laser coupling
mixes the pure |g〉 and |e〉 states, resulting in the eigenstates Φ± [187]

|Φ+〉 = sinΘ(t)|g〉 + cosΘ(t)|e〉 (6.2)
|Φ−〉 = cosΘ(t)|g〉 − sinΘ(t)|e〉, (6.3)

where Θ(t) = 1
2 arctan[Ω0(t)/δ(t)] is the mixing angle modulo π. These eigenstates are

referred to as the dressed states, and have energies E± [187]

E± = ±
~

2

√
δ(t)2 + Ω0(t)2. (6.4)
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(a) (b)

Figure 6.1: (a) Energies in units of coupling energy during a rapid adiabatic passage as
a function of dimensionless detuning. The lines indicate different states (see legend).
The energy splitting between the |Φ+〉 and |Φ−〉 states is ~Ω0(t). (b) State occupations
|〈o|Φ−〉|2 of the orbital o ∈ [g, e] during a RAP as a function of dimensionless detun-
ing. The solid and dashed lines indicate the excited and ground state occupation (see
legend).

Figure 6.1a shows the energies as a function of dimensionless detuning. The dashed
and dash-dotted lines indicate the energies of the ground and excited states, respec-
tively. The solid lines indicate the energies of the dressed states, and the coupling gives
rise to an avoided crossing, resulting in an energy splitting between the |Φ+〉 and |Φ−〉
states of ~Ω0 on resonance.

Figure 6.1b shows the probability of measuring the Φ− dressed state in the ground
or excited state as a function of dimensionless detuning. The working principle of RAP
can now be understood as follows. Consider a single ground state atom illuminated by
a clock laser beam with a frequency far below resonance δ � −Ω0, where |Φ−〉 ≈ |g〉.
Sweeping the laser frequency to detunings much larger than resonance δ � Ω0 leads
to a complete transfer to the excited state, as there |Φ−〉 ≈ |e〉.

When only transfer to the excited state is required, this method is advantageous
over π-pulse excitation because it is insensitive to small experimental variations in the
resonance, such as varying resonance frequencies over the sample or small changes in
Ω0 due to fluctuations in the the laser frequency and power. For the same reason, RAP
is not useful for high-resolution spectroscopy.

However, to completely transfer ground-state atoms to the excited state, the adia-
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batic condition [187]

1
2

∣∣∣∣∣dΩ0(t)
dt

δ(t) −Ω0
dδ(t)

dt

∣∣∣∣∣ � (
δ(t)2 + Ω2

0

)3/2
(6.5)

must be fulfilled. Assuming a constant Rabi coupling, in other words, a constant clock
beam intensity, and a linear frequency sweep this reduces to a sweep time ts of [129]

ts �
|δ(t)Ω0|(

δ(t)2 + Ω2
0

)3/2 , (6.6)

where the right-hand side has a maximum of about 0.38/Ω0 at δ ≈ ±0.72Ω0, which
can be used to find an appropriate sweep time. The condition applied to our system is
verified in detail in Refs. [128, 129] and the settings were adapted to fulfil the condition.

To characterise the efficiency of the RAP, measurements were performed on a spin-
polarised gas of 173Yb atoms. The atoms were loaded into a deep lattice of s1D = 50Er
and s1D = 42Er. The RAP is initiated by switching on the clock beam with a bare Rabi
frequency Ω0/2π ≈ 3.8 kHz and initial detuning δ/2π = −50 kHz with respect to the

(a) (b)

Figure 6.2: Atom numbers during a 20 ms RAP as a function of detuning. The different
colours and markers indicate the orbital states (see legend). (a) shows a RAP of a spin-
polarized sample. The data is five times averaged and the error bars show the standard
deviations. (b) shows a RAP of three six-spin mixtures with different initial ground-
state atom numbers (indicated by the colours). The data is four times averaged and
the error bars show the standard deviations. The figure is adapted from the published
version [1]. c© IOP Publishing. Reproduced with permission. All rights reserved.
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clock transition. The clock frequency is then swept to δ/2π = 50 kHz in 20 ms. To
characterise the transfer efficiency, the sweep is interrupted at different detunings and
the atom numbers in both states are measured, shown in Fig. 6.2a. A close-to-unity
transfer of atoms in the ground state to the excited state is observed.

Figure 6.2b shows an analogous characterisation of the RAP efficiency of six-spin
component samples, here for three different initial atom numbers. Though in all cases
some atoms are lost during the transfer, this effect is largest for large initial atom num-
bers. We attribute this to the build up of a small band-insulating core, which increases
for increasing atom number. Because the RAP also excites both atoms on double-
occupied sites, a fraction of the atoms is transferred to the |ee〉 state, which is subject
to strong losses on a timescale of 2π/Γee ≈ 0.6 ms. Since this is much shorter than the
sweep time, the band-insulating core is depleted before the end of the RAP.

6.2 The Dissipative Fermi-Hubbard Model
To study a system with a dissipative coupling to some bath, a master equation is typ-
ically used [99, 102, 111, 118, 188, 189]. Using this approach, it was shown that
SU(2)-symmetric s-wave-interacting fermions with two-body losses∗ decay to a finite
remaining atom number, forming a Dicke state, since these states are dark to two-body
losses [99]. Here, however, a simplified model [111, 114, 115] is used get an under-
standing of the dynamics of our observable, the number of excited-state atoms Ne.

Three energy scales characterise the 1D dissipative Fermi-Hubbard model, the tun-
nelling J, the elastic on-site interaction Uee and the on-site loss ~Γee. The elastic in-
teraction Uee obeys Eq. 4.14 and scales with aee = 306(11)a0 [21, 86], while Γee is
related to βee = 2.2(6) × 10−11 cm3s−1 [21] via Eq. 5.8. The energy scheme in a two-
well picture is shown in Fig. 6.3a. If an atom tunnels to a neighbouring site with an
atom with a different spin state, the energy increases by Uee. These doubly-occupied
sites (doublons) are subject to two-body losses with a rate of Γee. In the case of strong
elastic and inelastic interactions J � Uee, ~Γee, the tunnelling can be integrated out,
yielding an effective loss rate Γeff [1, 111, 114, 115]

Γeff = 4
J2

~Uee

(
Uee/~Γee

1 + 4(Uee/~Γee)2

)
, (6.7)

resulting in an effective model as depicted in Fig. 6.3b. The effective loss rate as a
function of the decay strength ~Γee/Uee is shown in Fig. 6.3c, where tse = ~Uee/J2 is
∗ The interactions are also required to be purely s-wave in nature, which is easily satisfied in the ultracold

regime used here. The prediction is expected to hold already at non-degenerate temperatures below 1 µK
[99].
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(a)

(b)

(c)

Figure 6.3: (a) Energy scheme of the two-well dissipative Fermi-Hubbard model. The
relevant energies are given by the tunnelling J, the elastic interaction energy Uee and
the inelastic interaction energy ~Γee. (b) Schematic of the effective two-level system
assuming J � Uee, ~Γee. The two states are coupled with a rate of Γeff. (c) Dimension-
less effective loss rate as a function of decay strength ~Γee/Uee. The point indicates
the decay strength ~Γee/Uee ≈ 0.29 of 173Yb. The figure is adapted from the published
version [1]. c© IOP Publishing. Reproduced with permission. All rights reserved.

the superexchange time. The superexchange time is the time for the virtual process that
neighbouring atoms with different spins undergo, whereby the spin of the neighbouring
atoms is exchanged. There are two regions for which Γeff is small. For Uee � ~Γee,
losses are inhibited by Mott-insulator-like suppression of doublons. For Uee � ~Γee,
losses are suppressed by quantum-Zeno-like physics, where the strong losses act as a
continuous measurement of double occupancy. In Ref. [116], the decay strength was
tuned and the characteristic shape of Γeff was reproduced by variable photo-associative
losses of 174Yb bosons in a 3D lattice. However, in our experimental implementation
with excited 173Yb atoms, the decay strength is fixed at ~Γee/Uee ≈ 0.29(8) [21, 86].
For 171Yb it is 0.19(8) [155], whereas for 87Sr it is 0.26(16) [20], hence all approxi-
mately probing the same Γeff.

In this simplified model, the excited-state atom number Ne is governed by the dif-
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ferential equation [1, 111]

dNe(t)
dt

= −PN
κ

Ne,0
Ne(t)2, (6.8)

where Ne,0 is the initial atom number and PN = (N − 1)/N is the probability that
an atom has a nearest-neighbour atom with a different spin, assuming N different mF

states and unitary filling, derived in Refs. [1, 129]. The loss coefficient κ is given by [1,
114]

κ = 4 q Γeff g(2) η0, (6.9)

where q = 2 is the number of nearest neighbours for the 1D lattice, η0 is the initial
filling of the lattice, which is unity for a Mott insulator, and g(2) is the nearest-neighbour
correlation function, which for N = 2 spin states takes the form [1, 102]

g(2) =
1

Ne,tot − 1

∑
〈i j〉

〈
n̂in̂ j − 4Ŝi · Ŝ j/~

2
〉

〈n̂i〉〈n̂ j〉
, (6.10)

where Ne,tot is the total atom number in the 1D lattice tube, n̂i is the number operator
and Ŝi is the spin operator for an atom on site i. The summation goes over all nearest
neighbours 〈i j〉. A generalised nearest-neighbour correlation function for any N ≥ 2
was defined as [1]

g(2) =
1

Ne,tot − 1

∑
〈i j〉

∑
σ,σ′

〈
n̂iσn̂ jσ′ + n̂iσ′ n̂ jσ − ĉ†iσ′ ĉ

†

jσĉiσĉ jσ′ − ĉ†iσĉ†jσ′ ĉiσ′ ĉ jσ

〉
〈n̂i〉〈n̂ j〉

, (6.11)

where ĉiσ and ĉ†iσ′ are the fermionic annihilation and creation operators for site i, re-
spectively, and where σ ∈ [−mF ,−mF + 1, . . . ,mF] denotes the spin state. In this
simplified model, the observable Ne(t) is thus related to the effective loss rate and the
nearest-neighbour correlation function.

Figure 6.4 shows a schematic of various possible N = 2 atomic configurations in
the lattice to provide an intuition for g(2). Three configurations exhibit g(2) = 0, shown
in Fig. 6.4a. A sample without nearest neighbours trivially has vanishing nearest-
neighbour correlation function. A ferromagnetic many-body state, where all atoms
have the same spin, also has g(2) = 0 as the density and spin part of the numerator of
Eq. 6.10 cancel out. A Dicke state, the final state of the dissipative Fermi-Hubbard
model as predicted by Ref. [99], also exhibits g(2) = 0, which is derived in App. B.
However, a state without spin-correlations, as depicted in Fig. 6.4b, has g(2) = 1. A
Néel state, where the spin is alternately up or down, has g(2) = 2. A quantum antifer-
romagnetic state (not shown in the figure), which has a fully anti-symmetric spin wave
function, also has g(2) = 2.
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(a) (b)

Figure 6.4: Exemplary atom configurations of a two-spin mixture in a lattice. The
solid lines show the optical lattice potential. Atoms are represented by the discs, where
the spin state is denoted by the colour and arrow. The yellow circle around the discs
denote the atoms are in the excited state. (a) Configurations with g(2) = 0. (top) a
state without nearest neighbours, (centre) a ferromagnetic state, (bottom) a sketch of a
highly-entangled Dicke state. (b) Configurations (top) of a state without spin correla-
tions such that g(2) = 1 and (bottom) of a Néel state with g(2) = 2. The figure is adapted
from the published version [1]. c© IOP Publishing. Reproduced with permission. All
rights reserved.

The Dicke state [99, 124] is a highly-entangled many-body state with a fully sym-
metric spin wave function. This results in a maximal total spin S max = N/2 and mini-
mal uncertainty ∆S z, as depicted in Fig. 6.5 on a generalised Bloch sphere. The mini-
mal uncertainty can be understood as a type of spin-squeezing, which results in optimal
metrological properties [99, 190, 191]. Due to the fermionic anti-symmetry require-
ment of the many-body state, it also has a fully anti-symmetric spatial wavefunction,
and is therefore a dark state with respect to two-body s-wave losses [99].

The formation of these highly-entangled Dicke states via dissipation can now be
understood in the following way. Any many-body state can be written as a superposi-
tion of a Dicke state and other states. One of the main results of Ref. [99] is that in 1D,
only Dicke states have this anti-symmetric spatial wave function, and hence all other
states decay on a finite timescale. This provides an alternative, more comprehensive,
picture to the build-up of nearest neighbour correlations. For an uncorrelated state, it
was shown that the final atom number N∞ depends only on the initial atom number N0,
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Figure 6.5: Schematic representation of a Dicke state on a generalised Bloch sphere.
The blue ring depicts the Dicke state and is characterised by a radius of S = S max and
a minimal uncertainty ∆S z. [1] c© IOP Publishing. Reproduced with permission. All
rights reserved.

via [99]

N∞(N0) =

√
πΓ

(
N0
2 + 1

)
Γ
(

N0
2 + 1

2

) − 1, (6.12)

where Γ( f ) is the gamma function of f . To get some understanding for this equation,
Ref. [99] considers the case of two initial atoms, for which the expected remaining
fraction N∞/N0 = 1/2. For two uncorrelated atoms, the initial state is given by the
equal superposition of the spin-singlet state |s〉 and spin-triplet state |t〉, here for exam-
ple∗ written as |↑↓〉 = 1/

√
2|s〉+ 1/

√
2|t〉 = 1/2(|↑↓〉 − |↓↑〉) + 1/2(|↑↓〉+ |↓↑〉). Since the

full fermionic wavefunction must be anti-symmetric, the spin-singlet state has a sym-
metric spatial wavefunction, whereas the spatial wavefunction of the spin-triplet state
is anti-symmetric. Due to the anti-symmetry of the spatial wavefunction of the |t〉 state,
it is dark to two-body losses [99]. Hence, only the spin-singlet state decays, and the
triplet state remains for long times. This triplet state is the two-atom Dicke state, which
exhibits maximum spin S tot = 1 and minimal ∆S z. Within a localised-spin picture, this

∗ In this example, the atom of the left (right) lattice site has spin up (down), but it holds for any phase
between the singlet and triplet state, as long as the weighting is equal. The equal weighting requirement is
another way of stating the initial state is uncorrelated.



6.3. EXPERIMENTAL REALISATION WITH EXCITED 173YB 99

can be seen as a build-up of correlations

|↑↓〉
t�1/Γee
=⇒

1
2

(|↑↓〉 + |↓↑〉)

Alternatively, within a many-body-state picture, this can be seen as the loss of states
without a symmetric spin wavefunction

1
√

2
|s〉 +

1
√

2
|t〉

t�1/Γee
=⇒

1
√

2
|t〉.

In either case, for this two-particle example the remaining amplitude of the wavefunc-
tion is 1/2. For larger atom numbers, the remaining fraction can be calculated using
Eq. 6.12.

Furthermore, Ref. [118] has shown that the sign of magnetic correlations changes
over time, for an uncorrelated initial state of both fermionic and bosonic systems with
SU(2) symmetry. The states subject to two-body losses have a lower energy than the
state with a symmetric spin wave function, thus stabilising high-energy states, which
is similar to negative temperature states in closed systems [118, 184, 185]∗. Simulta-
neously, the loss of low-energy anti-symmetric spin states leads to a sign reversal of
the magnetic correlations. Though double occupancy is suppressed by Uee, the vir-
tual superexchange processes drive two-body losses [118]. This is markedly different
from systems without two-body losses, where the superexchange process leads to the
formation of anti-symmetric spin states for long times t � tse.

6.3 Experimental Realisation with Excited 173Yb
To study the dissipative Fermi-Hubbard model, we start with an ultracold gas of about
15 thousand 173Yb atoms at T ≈ 0.25TF with one, two or six nuclear spin states, as
described in Sec. 6.1. The atoms are then loaded into a deep ‘magic’ lattice of depths
s1D = 50Er and s2D = 42Er. This creates a Mott insulator with a small band-insulating
core for N ≥ 2, as explained in Sec. 6.1.1. Using a RAP, the atoms are transferred
to the 3P0 excited state, which is subject to two-body losses with a decay strength of
~Γee/Uee = 0.29(8) [21, 86] and SU(6) symmetry. Directly after the RAP, the 1D
lattice is ramped down in 300 µs to a variable final lattice depth s1D ∈ [5, 6, 8]Er. Since
the 2D lattice remains constant, this creates a system of quasi-1D lattice tubes, where
tunnelling in the 2D plane is strongly supressed on experimental timescales. A B = 3 G

∗ Remember that the ground state of the Fermi-Hubbard model is a quantum antiferromagnetic state. All
other possible states have higher energies.
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Figure 6.6: Schematic of a dissipation measurement sequence (not to scale), showing
the laser beam powers P as a function of time t, analogous to Fig. 3.6. The yellow
line indicates the clock beam power during the RAP, after which the 1D lattice beam
is ramped down. The solid and dashed red lines indicate the 1D- and 2D-lattice laser-
beam powers, respectively.

magnetic field in the y-direction provides a quantisation axis during the experiment,
setting the S z direction of the spin. After band mapping and time of flight, we measure
the number of atoms in the ground and excited state. These measurements are referred
to as dissipation measurements in the following, which are primarily distinguished
from loss measurements (see Sec. 5.1.2) by the RAP excitation and ramping down of
the 1D lattice afterwards to enable tunnelling. A schematic of the laser beam powers
during a dissipation measurement is shown in Fig. 6.6.

6.3.1 Dissipation of Spin-Polarised Gases

Figure 6.7 shows dissipation measurements of excited spin-polarised atoms, where
the Pauli-exclusion principle prevents double occupation and hence two-body losses.
The remaining one-body losses are caused by collisions with background atoms in the
vacuum, light scattering from the optical lattice, and radiative decay into the ground
state. Like the one-body losses in Sec. 5.1.2, the atom number is fitted with Ne(th) =

Ne,0 exp(−Γ0th), where the initial atom number Ne,0 and the one-body decay rate Γ0 are
free parameters. The fits yield 1/e lifetimes of about 2.1(8) s, which is similar to the
lifetime of spin-polarised atoms in a deep lattice (see Sec. 2.4.1).

Considering the spin-polarised losses in Figs. 6.7b and 6.7c, a small fast initial loss
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(a) (b) (c)

Figure 6.7: Dissipation measurement of excited spin-polarised 173Yb atoms. Data
points represent measured atom numbers and are five times averaged, with error bars
representing the standard deviation. Solid lines represent an exponential fit (see text)
and the shaded area shows its 95% confidence interval. The final 1D lattice depth was
set to (a) 5Er, (b) 6Er and (c) 8Er.

is observed. We attribute this to the small remaining fraction of about 7% of the atoms
in other spin states (see Table 6.1). These other spin states together with an equal
number of atoms in the desired spin state undergo quick dissipative losses, leading to a
loss of about 10% of the atoms at short times.

The two- and six-spin mixtures, discussed in the following, are subject to both one-
and two-body losses. To enable the study of purely two-body losses, the atom number
of these spin mixtures is normalised to the one-body losses using a factor exp(Γ0th) per
lattice depth ∗.

6.3.2 Dissipation of Two-Spin Mixtures

Figure 6.8 shows dissipation measurements of two-spin mixtures for various final lat-
tice depths. Here, the excited state atom number is normalised to the one-body loss
rate, such that only two-body losses remain, and normalised to the initial atom number
at th = 0. Furthermore, the time is rescaled to the superexchange time tse = ~U/J2,
which is a characteristic time scale of the system. After a short time th ≈ tse, the losses
cease within experimental uncertainties, in qualitative agreement with the predicted
dynamics [99].

To understand and quantify the two-spin loss dynamics within the simplified model,
we consider Eq. 6.8. For a constant loss coefficient κ, the solution is given by Ne(t) =

∗ A more accurate treatment would use the solution of the rate equation dNe/dt = −Γ0Ne − PNκN2
e /Ne,0

to fit the spin mixture data. However, this normalisation treatment is justified since the timescale of the two-
body losses turns out to be about two orders of magnitude shorter than that of the one-body losses, making
the difference between both methods negligible.
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Figure 6.8: Dissipation measurement of a two-spin mixture of excited 173Yb atoms,
similar to Fig. 6.7. The relative atom number Ne(t)/Ne,0 is plotted as a function of di-
mensionless hold time th/tse. The different markers and colours denote data taken at
different final lattice depths (see legend). The solid line shows the best fit with expo-
nentially decaying κ (see text) and the shaded area shows its 95% confidence interval,
yielding κ0 = 4.6(3)/tse and τ = 0.41(3)tse. The figure is adapted from the published
version [1]. c© IOP Publishing. Reproduced with permission. All rights reserved.

Ne,0/(1 + PNκt). Since this tends to zero for large times, this cannot describe our
observations. The inhibition of two-body losses can only be explained by a vanishing
κ. Since there are significant two-body losses for times th < tse, the loss coefficient must
be some decreasing function, which can only be explained by a decreasing g(2), since
the others terms in κ = 4qΓeffg(2)η0 remain constant throughout the measurement. The
nearest-neighbour correlations function, however, can change over time since losses
affect various correlated states differently. The functionality of the dynamic κ(t) is
not known a priori. We rule out power-law dynamics of the loss coefficient dκ/dt ∝
−κn, since for any power n > 1 the atom number decays to zero for increasing times.
However, for an exponentially decaying κ(t) = κ0 exp(−t/τ), where κ0 is the initial loss
coefficient at t = 0 and τ is the correlation build-up time, the excited-state atom number
dynamics becomes [1]

Ne(t) =
Ne,0

1 + PN κ0 τ − PN κ0 τ e−t/τ , (6.13)
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which for long times approaches the final atom number N∞ [1]

N∞ = Ne(t → ∞) =
Ne,0

1 + PN κ0 τ
. (6.14)

The two-spin mixture data is fitted with Eq. 6.13 and shown as the solid line in Fig. 6.8,
which describes the data well∗. Hence we conclude that κ(t) and thus g(2)(t) decay
exponentially. The fit yields κ0 = 4.6(3)/tse and τ = 0.41(3)tse.

Though the exponentially-decaying κ(t) is a phenomenological description, a recent
work [123] found an analytic expression for the particle number dynamics of weakly-
dissipative Fermi-Hubbard systems in 1D. Equation 6.13 is approximately the same as
the short-time dynamics of the analytic expression and only shows minor deviations
for longer time scales.

For a more complete understanding, both nearest-neighbour and higher-order cor-
relations must be studied directly. Since we cannot access correlations directly, we
argue why we think the final state is a Dicke state. As noted in Sec. 6.2, several many-
body states exhibit g(2) = 0. We rule out a state without nearest neighbours, because
this state is not stable with respect to tunnelling. We further rule out a ferromagnetic
state, since the initial state is spin-balanced such that S z,tot ≈ 0 and the two-body losses
preserve the total spin†. Many-body states with domain walls between ferromagnetic
domains are unstable to tunnelling. Therefore, we attribute the vanishing g(2) of the
final state to the formation of a highly-entangled Dicke state, as predicted by Ref. [99].

Further note the stark difference between the loss dynamics of interorbital inter-
isotope mixtures in Sec. 5.1.2 and these intraisotope spin mixtures. The interisotope
mixtures decay to zero exponentially, since the particles are distinguishable and no
correlated many-body states build up over time.

As mentioned, using the normalisation with the superexchange time tse, the atom
number dynamics with different s1D overlap within experimental uncertainties, sug-
gesting the dynamics is independent of lattice depths. A numerical simulation of a two-
spin system on six sites confirmed that a varying onsite interaction Uee only changes
the dissipation timescale, but not the qualitative behaviour [1]. Furthermore, the dark
states of the simulated system were confirmed to be Dicke states. Therefore, even
though the original predictions [99] were made in 1D tubes without an onsite interac-
tion Uee, we conclude that the prediction applies to our lattice system. However, the
dissipation timescale of the numeric simulation was almost one order of magnitude

∗ We also fitted the solution for a constant loss coefficient, but such a fit cannot describe the data well
(see Ref. [1]).
† The SU(2) symmetry of the system prevents spin-exchanging interactions. Furthermore, the Pauli

exclusion principle ensures that every lossy doubly-occupied site contains two different spins.
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larger than what we measured in the experiment, which is an open question. Never-
theless, the simulation enables accessing the spin-correlations, and an approximately
exponentially decaying g(2) was confirmed [1].

One of the main results of the prediction [99] is that fermions exhibiting inelastic
s-wave interactions without initial correlations satisfies the bound in Eq. 6.12 for long
times. In our experiment, the sample is made up of quasi-1D tubes with an a priori
unknown number of atoms per tube, complicating the verification of the final atom
number compared to the predicted bound. Assuming the atom distribution in the lat-
tice is the same as that of the Fermi gas prior to lattice loading, the number of atoms
per tube was calculated, similar to the method used by Ref. [192]. For our typical
initial atom numbers of 13 thousand, the central tube contains 30 atoms and all other
tubes hold fewer. Using the distribution of atoms per tubes as a weighting, we find
an expected remaining ratio of N∞/Ne,0 ≈ 0.27. This is significantly smaller than the
average measured ratio of Ne(th � tse)/Ne,0 = 0.51(3), based on the last five data points
of the dissipation measurements. We rule out the effect of localised states [193], since
for s1D = 5Er these are expected to appear for tubes larger than 70 sites, whereas for
s1D = 8Er these appear above 32 sites. However, given the large repulsive interor-
bital interactions in 173Yb [21], residual ground-state atoms are expected to effectively
separate the tubes into smaller tubes∗. About 7% of all atoms are in the ground state
for short timescales, as obtained from double imaging (see Sec. 2.6) during the dissi-
pation measurements. Assuming a random distribution of these blocking ground-state
atoms over the lattice, the expected final fraction becomes N∞/Ne,0 ≈ 0.35. Though
this explains a part of the discrepancy, this cannot explain everything. We attribute
the remaining deviation to initial correlations prior to the measurement. As seen in
Sec. 6.1.1 and Fig. 6.2b, applying a RAP to a spin mixture leads to losses prior to the
dissipation measurement, which we attribute to the short decay times 2π/Γee ≈ 0.6 ms
of excited doublons in a deep lattice. Since a part of the symmetric spin-wave function
is projected out by the RAP in this way, the initial correlations decrease 0 < g(2)

0 < 1,
leading to a remaining fraction that is larger than expected for an uncorrelated state
with g(2)

0 = 1. The theoretical simulations done [1] showed that a higher initial Dicke
state weight can indeed explain a larger remaining fraction.

Finally, note that one-body losses continue after the inferred formation of the Dicke
state, which is why the atom number in Fig. 6.8 remains constant after normalising
with the one-body decay rate†. Even though these one-body losses persist, they are not

∗ The interorbital interactions have been measured several times [21, 22, 28, 157], but the most accurate
to date are given by aeg− = 220(2)a0 [21] and aeg+ = 1894(18)a0 [157]. Using these, the direct interaction,
the interaction of interorbital pairs with the same spin, is thus given by aeg0 = 1057(9)a0.
† In other words, the unnormalised two-spin excited-state atoms decay at the same rate as atoms in spin-

polarised samples.
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expected to destroy the Dicke state on intermediate times, though for long enough times
all atoms will have decayed via these one-body losses. Therefore, in future experiments
using the formation of the Dicke state it is advisable to use lattice depths where the
timescale of one-body losses is much longer than the timescale of the formation of the
Dicke state, similar to the situation here.

6.3.3 Dissipation of Six-Spin Mixtures
To utilise the unique possibilities of SU(6)-symmetric 173Yb, the dissipation measure-
ment was repeated with all spin components. Since the predictions [99, 118] were
made for SU(2)-symmetric systems, it is currently unknown if it can be generalised to
SU(N > 2) symmetry. However, the sign-reversal of the magnetic correlations [118]
is expected to hold for SU(N ≥ 2)[194].

Figure 6.9 shows dissipation measurements of six-spin samples for three final 1D-
lattice depths, analogous to Fig. 6.8. The dynamics qualitatively looks the same as
the two-spin dynamics. After a short time th ≈ tse the two-body losses cease within
experimental uncertainties, suggesting the formation of a highly-correlated state which
is dark to two-body losses. To explain the inhibition of two-body losses, we rule out
the formation of a ferromagnetic state, because the remaining fraction of about 40%
of the initial atoms is larger than any single mF-state occupation (compare Table 6.1).
Furthermore, as pointed out for two-spin mixtures, two-body losses conserve the initial
total spin, which is approximately zero∗. We further rule out a final state without
nearest neighbours on the same grounds as for two-spin mixtures. In principle, losses
of three or more atoms per site are thinkable for these six-spin mixtures, though these
will be even more suppressed than double occupation already is. Though the data does
not allow us to prove the formation of an SU(6)-symmetric Dicke state, we think the
similarity of the two- and six-spin dynamics suggests as much.

Similarly to the two-spin mixtures, we fit Eq. 6.13 with P6 = 5/6, yielding κ0 =

3.2(2)/tse and τ = 0.51(4)tse. The initial decay coefficient of six-spin components is
smaller than κ0 of two-spin components. This might be because the temperature of six-
spin Fermi gases is typically a few percent lower than it is for two-spin Fermi gases,
because optical pumping leads to finite heating (see Sec. 2.3.1). A lower temperature is
expected to lead to more double occupancy among ground state atoms, causing larger
losses during the RAP and thus a smaller initial g(2)

0 . The initial atom number of six-
spin mixtures is about 11.5 thousand atoms compared to 13 thousand atoms of two-
spin mixtures, corroborating this idea. The correlation-build-up timescale τ is larger
∗ Though this hold generally for two-spin mixtures, for six-spin mixtures the argument only holds on

average over many two-body losses. Since almost five thousand atoms are lost over the dissipation measure-
ment, this is a good approximation.
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Figure 6.9: Dissipation measurement of a six-spin mixture of excited 173Yb atoms,
analogous to Fig. 6.8. The fit yields κ0 = 3.2(2)/tse and τ = 0.51(4)tse. The figure is
adapted from the published version [1]. c© IOP Publishing. Reproduced with permis-
sion. All rights reserved.

for six-spins than it is for two, though the uncertainties are such that the deviation
might merely be statistical. Nevertheless, further theoretical studies are required to get
a better understanding of these non-trivial differences.

Lastly, the remaining fraction of both two- and six-spin samples is compared. Fig-
ure 6.10 shows the remaining fraction for both spin configurations and for each s1D, as
obtained from the last five data points and initial atom number per dissipation measure-
ment. Though the remaining fraction is independent of lattice depth within experimen-
tal uncertainties, it is significantly lower for six-spin samples. The average remaining
fractions are 0.51(3) and 0.41(2) for two- and six-spin mixtures, respectively. Though
we do not know about theoretical predictions forN > 2 mixtures, we consider it likely
that an uncorrelated six-spin mixture has a lower Dicke state weight and thus a smaller
remaining fraction than two-spin mixtures. However, more theoretical and experimen-
tal work is needed to obtain a better understanding of these differences.
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Figure 6.10: Remaining atom fraction Ne(th � tse)/Ne,0 as a function of final lattice
depth. Data points depict the remaining fraction as obtained from the last five data
points of the respective dissipation measurements and the initial atom number. Error
bars represent the propagated uncertainties. The solid lines show the average remaining
fractions and the shaded area its 95% confidence interval. The markers and colours
represent different spin mixtures (see legend).

6.4 Conclusion & Outlook

To summarise, we have performed measurements on two- and six-spin mixtures of
173Yb in a 1D lattice, studying the dissipative Fermi-Hubbard model. For two-spin mix-
tures, we measured an inhibition of two-body losses on timescales of approximately
one superexchange time, independent on the exact atom number or 1D lattice depth.
We attribute the ceasing of losses to the formation of a highly-entangled Dicke state,
as predicted for this dissipative SU(2)-symmetric 1D system [99]. Dicke states are ex-
pected to be useful tools for high-precision spectroscopy because they allow beating
the standard quantum limit and reaching the Heisenberg limit [99]. Using a simpli-
fied model, we found that the correlations build up exponentially on a timescale of
τ = 0.41(3)tse for two-spin mixtures, regardless of 1D lattice depth. The dynamics are
also in qualitative agreement with the predicted atom number dynamics in a system
which undergoes a sign reversal of magnetic correlations [118].

Six-spin fermionic systems showed very similar dynamics. Though it is unknown if
the Dicke state formation also holds for SU(N > 2)-symmetric systems, our measure-
ments could be an interesting benchmark to test future theoretical work. Continued
theoretical models are also required to understand the non-trivial difference between
the dynamics of the SU(2) and SU(6)-symmetric systems.
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Additionally, future experimental work could focus on tomographic [190, 191] or
spectrographic [99] measurement to verify the nature of the final many-body state.
Studying the dynamics in double wells is expected to greatly simplify the interpreta-
tion, because the final atom would not depend on the initial Fermi gas density. Further-
more, the dissipative dynamics can be studied in 171Yb or 87Sr, which have approxi-
mately the same dissipation strength as 173Yb. In future work, however, it is advisable
to blast any remaining |g〉 atoms on the 1S0 →

1P1 transition prior to the beginning of
the measurement to ensure no ground-state atoms block the tunnelling of |e〉 atoms.

Alternatively, the magnetic field can be increased to separate the mF-state reso-
nances and to use a π0-polarised clock pulse to selectively transfer one spin state into
the ground state. The π0-polarised pulse conserves the mF state, hence maintaining
the symmetry of the spin wave function. The resulting state could thus be an interor-
bital Dicke state where both the spin and orbital part of the wavefunction are sym-
metric. Then, clock spectroscopy can be done to show that there are no interorbital
spin-exchange peaks, since doubly-occupied sites are suppressed. By doing this for
various hold times th, the disappearance of interorbital spin-exchange peaks could be a
sign of the formation of a highly-entangled Dicke state.

Since uncorrelated states are expected to satisfy a certain boundary (see Ref. [99]
and Eq. 6.12), the atom number can also be a promising candidate to probe initial cor-
relations which are otherwise hard to access. The ground state of the Fermi-Hubbard
model is a quantum antiferromagnetic many-body state, which completely decays since
it is not a dark state of the dissipative Hamiltonian∗. Hence, the remaining fraction
yields the initial weight of the quantum antiferromagnetic state, thus enabling a type of
thermometry. For this, however, initial losses due to doublons must be ruled out.

The sign-reversal of the magnetic correlations is predicted to be observable in quan-
tum gas microscopes [118]. Although our experiment does not have a sufficient reso-
lution, other experiments [195, 196] can have the possibility to do this.

Finally, although the Dicke-state prediction was made for reactive SU(2)-symmetric
1D systems, it does not hold for higher dimensions with separable coordinates [99].
Since triangular lattices in 2D are not separable, this could create an interesting further
platform to study the dynamical formation of Dicke states. This could be particularly
interesting, since two-spin mixtures in a triangular lattice are prone to frustration [197].
With up to six spins for 173Yb, the two-spin dynamics can be compared to three-spin
measurements which are not affected by frustration. Another comparison can be made
by studying two-spin mixtures in a triangular and hexagonal lattice, the latter of which
does not cause frustration in two-spin systems [198].
∗ Note that this does not hold for the Néel state (see Sec. 6.2). Though the nearest-neighbour correlation

function is g(2) = 2, its spin wave function is not fully anti-symmetric (consider, for instance, exchange of
two next-nearest neighbouring atoms), and hence the Néel state has a finite Dicke state weight.
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Appendix A

Spectroscopy in a Realistic
Lattice

Optical lattices are typically realised in experiments using interfering Gaussian beams
[8]. The centre of the lattice consequently has the highest light intensity and thus po-
tential depths, whereas away from the centre, the potential depth is lower. Many atoms
loaded into a lattice are therefore subject to different lattice depths. In this appendix,
the size of this effect is studied and shown to be insignificant for our purposes. The
analysis and graphs were done by the author.

For single atoms excited on the 1S0 →
3P0 line in a lattice at the ‘magic’ wavelength,

the transition probability is independent of the lattice depth. For two-body interactions,
however, a more accurate treatment is required, since the interaction shifts depend
on the lattice depths. As discussed in Sec. 4.1.1, a two-body interaction shift ∆U
scales with the scattering length ∆a and the integral over the Wannier function, in the
following denoted by

W0(s1D, s2D) =

∫
dr |w0(r, s1D, s2D)|4, (A.1)

where it was assumed that both interacting particles are described by the same Wannier
function and that the interaction energy is much smaller than the interband energy. In
this way, the interaction shift is related to s1D and s2D.

Let us assume a lattice with 17 by 17 by 21 sites. As explained in Sec. 2.4.1, the
optical lattice is made using four laser beams. The retro-reflected 1D laser beam has a
waist of 94 µm and the three 2D lattice beams have a waist of 84 µm [128]. For these
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calculations, a deep lattice was assumed, which is made using the maximum beam
powers of about 800 mW for the 1D lattice beam and 300 mW per 2D lattice beam.
The intensity distribution of a Gaussian beam in the z direction is given by [199]

I(r, z) = Imax

(
w(0)
w(z)

)2

e−2r2/w(z)2
, (A.2)

where Imax denotes the maximum intensity in terms of beam power P as Imax = 2P/πw(0)2,
w(z) gives the spot size at z, such that at z = 0 the spot size is the waist w(0), and r is
the radial distance. The spot size is given by [199]

w(z) = w(0)

√
1 +

(
z

zR

)2

, (A.3)

where the Rayleigh range is given by zR = πw(0)2/λ [199]. Here the origin was chosen
at the position of the beam waists.

Using Eq. A.2, the relative intensities I/Imax are calculated on a grid with distances
set by the lattice distances, which are λ/2 for the 1D lattice and 2λ/3 for the 2D lat-
tice[166]. In the 1D lattice direction, 21 sites were considered, and 17 by 17 sites were
considered in the 2D lattice plane, which results in about 6 × 103 sites for interact-
ing pairs, a typical number in most spectroscopy measurements. Figure A.1a shows a
histogram of the occurrence of the relative intensities. The Gaussian beams result in
an asymmetric intensity profile over the whole grid. This is because there is an up-
per boundary in the relative intensity, which is exactly unity on the central site in the
waists. The minimum of the relative intensity is 0.965 and the median lies at 0.988.

Simultaneously, the occurrence of different relative 1D and 2D lattice depths was
calculated, assuming s1D = 35Er and s2D = 25Er, and using Eq. A.1 the resulting
Wannier integrals were calculated. Figure A.1b shows the occurrence of the relative
Wannier integrals W0/W0,max, where W0,max is the Wannier integral at the maximum
lattice depth W0,max = W0(35Er, 25Er). The minimum of the relative Wannier integrals
over the sample is 0.994 and the median is 0.998. The spread in the relative Wannier
integrals is smaller than that of the relative intensities and the median is close to unity,
because the slope of W0(s1D, s2D) is smaller than unity for all lattice depths. Further
note that the shape of the histogram is different from the relative intensity occurrence
because W0 depends on s1D and s2D non-linearly.

To study the effect of the realistic lattice beams on spectroscopic measurements,
the interaction shift ∆U is calculated. For this a shift of 8Ω0 is assumed, similar to the
shift measured in the interisotope spectroscopy (see Ch. 5). Next, the occurrences of
the relative Wannier integrals are used as a weighting to calculate the realistic inter-
action shifts. Figure A.2a shows a comparison of the expected spectrscopic signal for
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(a) (b)

Figure A.1: (a) Occurrence of relative laser intensities I/Imax. (b) Occurrence of rela-
tive Wannier integrals W0/W0,max. All calculations were made for a lattice of 17 by 17
by 21 sites (see text).

a uniform lattice ne,0 with the signal for a realistic lattice ne,r, under the assumptions
stated. The two signals can barely be distinguished, and hence the difference is shown
in Fig. A.2b. The difference between the realistic and uniform-depth signal is typically
within 1.5% for all detunings. Due to the spread in Wannier integrals, the peak of the
realistic signal decreases to about (1 − 1.2 × 10−4) and shifts to approximately 7.98Ω0.
The asymmetric shape of the relative Wannier integrals cannot be distinguished on this
scale.

Though for smaller Ω0, larger atom numbers and a deeper lattices the effect of the
non-uniformity of the lattice will increase, for the realistic values chosen here the ef-
fects are completely negligible. Furthermore, the lattice-modulation spectroscopy (see
Sec. 2.4.1) used to determine the lattice depths rather finds effective average lattice
depths, not the maximum lattice depths in the very centre of the lattice. Therefore,
the difference between the realistic signal and the analysis of the spectroscopic mea-
surements in Ch. 4 and 5 is even smaller than the difference between the realistic and
uniform cases. Because of these reasons, we can justifiably neglect the non-uniformity
of the lattice.
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(a) (b)

Figure A.2: The spectroscopic signal in a realistic lattice compared to a lattice with
uniform depth, assuming a π-pulse. A shift of ∆U = 8Ω0 was assumed (denoted by
the vertical dotted line). All calculations were made for a lattice of 17 by 17 by 21
sites (see text). (a) Expected spectroscopic signal of a uniform-depth lattice ne,0 (solid
line) and of a realistic lattice ne,r (dashed line). (b) Difference between the realistic
spectroscopic signal and the uniform-depth signal.



Appendix B

g(2) of a Dicke State

Since one cannot access the eigenstates of the many-body problem in the dissipative
Fermi-Hubbard model, we need to find the observables for different eigenstates. Since
different eigenstates yield different observables, we can infer which eigenstates consi-
tute our system. In Ch. 6 we found the nearest-neighbour correlation function g(2) for
several possible many-body states. In the following, we will show that g(2) is zero for
two-spin Dicke states. The derivation was done by the author and published in Ref. [1].

The Dicke state which is expected to form in a 1D gas with SU(2)-symmetric two-
body losses is given by [99]

Ψ = AΦ(r1, . . . , rN)
∑
σ

|σ〉 , (B.1)

where A is a normalisation factor, Φ(r1, . . . , rN) is the fully anti-symmetric spatial
wave function, such that Φ(. . . , ri, . . . , r j, . . . ) = −Φ(. . . , r j, . . . , ri, . . . ) for any i , j.
Furthermore,

∑
σ |σ〉 =

∑
σ1
· · ·

∑
σN
|σ1〉 ⊗ · · · ⊗ |σN〉 is the fully-symmetric spin wave

function. For brevity, we will use the notation |Φ〉 for Φ(r1, . . . , rN).
Recall that g(2) is given by Eq. 6.10

g(2) =
1

N − 1

∑
〈i j〉

〈
n̂in̂ j − 4Ŝi · Ŝ j/~

2
〉

〈n̂i〉
〈
n̂ j

〉 . (B.2)

We now consider the numerator of g(2) for a Dicke state

|A|2

〈Φ|∑
σ

〈σ| n̂in̂ j |Φ〉
∑
σ′

∣∣∣σ′〉 − 4
~2 〈Φ|

∑
σ

〈σ| Ŝi · Ŝ j |Φ〉
∑
σ′

∣∣∣σ′〉 , (B.3)
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which can be rewritten as

|A|2

∑
σ

∑
σ′

〈
σ|σ′

〉
〈Φ| n̂in̂ j |Φ〉 −

4
~2 〈Φ|Φ〉︸︷︷︸

=1

∑
σ

∑
σ′

〈σ| Ŝi · Ŝ j

∣∣∣σ′〉
 . (B.4)

Next, note that 〈Φ| n̂in̂ j |Φ〉 is either unity if both nearest-neighbouring sites are occu-
pied, or zero if one or both sites are empty, in which case the contribution to g(2) is
zero. Further, we introduce C ≡

∑
σ,σi,σ j

∑
σ′,σ′i ,σ

′
j

〈
σ , σi, σ j|σ

′ , σ′i , σ
′
j

〉
, which is

the sum over all spin states except the nearest-neighbour spins i and j. The notation∣∣∣σi, j

〉
≡

∑
σi

∑
σ j
|σi〉⊗

∣∣∣σ j

〉
is introduced, which can be written as |↑↑〉+|↑↓〉+|↓↑〉+|↓↓〉.

Then, Eq. B.4 can be rewritten as

|A|2C
(〈
σi, j|σ

′
i, j

〉
−

4
~2

〈
σi, j

∣∣∣ Ŝi · Ŝ j

∣∣∣σ′i, j〉) . (B.5)

Considering the term between brackets, we find

4 − 4
~2

〈σi, j

∣∣∣ 1
2

(
Ŝ +,iŜ −, j + Ŝ −,iŜ +, j

) ∣∣∣∣σ′i, j〉 +
〈
σi, j

∣∣∣ Ŝ z,iŜ z, j

∣∣∣σ′i, j〉︸                 ︷︷                 ︸
=0

 (B.6)

= 4 − 2
~2

〈
σi, j

∣∣∣ (Ŝ +,iŜ −, j + Ŝ −,iŜ +, j

) ∣∣∣∣σ′i, j〉 (B.7)

= 4 − 2
~2

〈↑↓| Ŝ +,iŜ −, j |↓↑〉︸              ︷︷              ︸
=~2

+ 〈↓↑| Ŝ −,iŜ +, j |↑↓〉︸              ︷︷              ︸
=~2

 (B.8)

= 0. (B.9)

Further note that the denominator of Eq. B.2 is non-zero. Therefore, we have shown
that each pair of nearest neighbours of a many-body Dicke state has a nearest neighbour
correlation function of zero, resulting in a total g(2) = 0 for the whole system.
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[90] Martin W. Zwierlein, André Schirotzek, Christian H. Schunck, and Wolfgang
Ketterle. “Fermionic Superfluidity with Imbalanced Spin Populations”. In: Sci-
ence 311.5760 (2006), pp. 492–496. issn: 0036-8075. doi: 10.1126/science.
1122318 (cit. on p. 2).

[91] C. H. Schunck, Y. Shin, A. Schirotzek, M. W. Zwierlein, and W. Ketterle. “Pair-
ing Without Superfluidity: The Ground State of an Imbalanced Fermi Mixture”.
In: Science 316.5826 (2007), pp. 867–870. issn: 0036-8075. doi: 10.1126/
science.1140749 (cit. on p. 2).

[92] S.-K. Yip. “Theory of a fermionic superfluid with SU(2)×SU(6) symmetry”. In:
Phys. Rev. A 83 (6 2011), p. 063607. doi: 10.1103/PhysRevA.83.063607
(cit. on p. 2).

[93] Chen-Yen Lai, Chuntai Shi, and S.-W. Tsai. “Correlated phases of population
imbalanced Fermi-Fermi mixtures on an optical lattice”. In: Phys. Rev. B 87 (7
2013), p. 075134. doi: 10.1103/PhysRevB.87.075134 (cit. on pp. 2, 61, 87).

[94] Luca Lepori, Andrea Trombettoni, and Walter Vinci. “Simulation of two-flavor
symmetry-locking phases in ultracold fermionic mixtures”. In: EPL 109 (2015),
p. 50002. doi: 10.1209/0295-5075/109/50002 (cit. on pp. 2, 61, 87).

[95] Joao C. Pinto Barros, Luca Lepori, and Andrea Trombettoni. “Phase diagram
and non-Abelian symmetry locking for fermionic mixtures with unequal inter-
actions”. In: Phys. Rev. A 96 (1 2017), p. 013603. doi: 10.1103/PhysRevA.
96.013603 (cit. on pp. 2, 61, 87).

[96] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller. “Quan-
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[111] J. J. Garcı́a-Ripoll, S. Dürr, N. Syassen, D. M. Bauer, M. Lettner, G. Rempe,
and J. I. Cirac. “Dissipation-induced hard-core boson gas in an optical lattice”.
In: New Journal of Physics 11 (2009). issn: 13672630. doi: 10.1088/1367-
2630/11/1/013053 (cit. on pp. 3, 62, 89, 94, 96).
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Becker, and K. Sengstock. “Multiband Spectroscopy of Ultracold Fermions:
Observation of Reduced Tunneling in Attractive Bose-Fermi Mixtures”. In:
Phys. Rev. Lett. 107 (13 2011), p. 135303. doi: 10.1103/PhysRevLett.107.
135303 (cit. on pp. 19, 35).

[168] Long-Sheng Ma, Peter Jungner, Jun Ye, and John L. Hall. “Delivering the same
optical frequency at two places: accurate cancellation of phase noise introduced
by an optical fiber or other time-varying path”. In: Opt. Lett. 19.21 (1994),
pp. 1777–1779. doi: 10.1364/OL.19.001777 (cit. on p. 21).

[169] D. A. Steck. Quantum and Atom Optics. available online at http://steck.us/teaching
(revision 0.13.4, 24 September 2020) (cit. on pp. 26, 31).

[170] Ch. Lisdat, J. S. R. Vellore Winfred, T. Middelmann, F. Riehle, and U. Sterr.
“Collisional Losses, Decoherence, and Frequency Shifts in Optical Lattice Clocks
with Bosons”. In: Phys. Rev. Lett. 103 (9 2009), p. 090801. doi: 10.1103/
PhysRevLett.103.090801 (cit. on p. 31).

[171] Lars Hilbig. “Künstliche Eichfelder und Synthetische Dimensionen”. Master
thesis. Hamburg: Universität Hamburg, 2019 (cit. on p. 38).

[172] Francesco Scazza. “Probing SU(N)-symmetric orbital interactions with ytter-
bium Fermi gases in optical lattices”. PhD thesis. München: LMU München,
2015 (cit. on p. 40).

[173] Koki Ono, Yoshiki Amano, Toshiya Higomoto, Yugo Saito, and Yoshiro Taka-
hashi. “Observation of spin-exchange dynamics between itinerant and local-
ized 171Yb atoms”. In: Phys. Rev. A 103 (4 2021), p. L041303. doi: 10.1103/
PhysRevA.103.L041303 (cit. on pp. 43, 59).

https://doi.org/10.1103/PhysRevLett.100.103002
https://doi.org/10.1088/1367-2630/12/6/065025
https://doi.org/10.1103/PhysRevLett.107.135303
https://doi.org/10.1103/PhysRevLett.107.135303
https://doi.org/10.1364/OL.19.001777
https://doi.org/10.1103/PhysRevLett.103.090801
https://doi.org/10.1103/PhysRevLett.103.090801
https://doi.org/10.1103/PhysRevA.103.L041303
https://doi.org/10.1103/PhysRevA.103.L041303


136 BIBLIOGRAPHY

[174] Zbigniew Idziaszek and Paul S. Julienne. “Universal Rate Constants for Re-
active Collisions of Ultracold Molecules”. In: Phys. Rev. Lett. 104 (11 2010),
p. 113202. doi: 10.1103/PhysRevLett.104.113202 (cit. on pp. 61, 62, 80,
81, 86).

[175] R Bouganne, M Bosch Aguilera, A Dareau, E Soave, J Beugnon, and F Gerbier.
“Clock spectroscopy of interacting bosons in deep optical lattices”. In: New
Journal of Physics 19.11 (2017), p. 113006. doi: 10 .1088 / 1367 - 2630 /
aa8c45 (cit. on pp. 61, 81, 82, 87).

[176] L Franchi, L F Livi, G Cappellini, G Binella, M Inguscio, J Catani, and L Fal-
lani. “State-dependent interactions in ultracold 174Yb probed by optical clock
spectroscopy”. In: New Journal of Physics 19.10 (2017), p. 103037. doi: 10.
1088/1367-2630/aa8fb4 (cit. on pp. 61, 81, 82, 87).

[177] Goulven Quéméner and Paul S. Julienne. “Ultracold Molecules under Con-
trol!” In: Chemical Reviews 112.9 (2012). PMID: 22921011, pp. 4949–5011.
doi: 10.1021/cr300092g. eprint: https://doi.org/10.1021/cr300092g
(cit. on pp. 62, 80).

[178] S. G. Porsev, M. S. Safronova, A. Derevianko, and Charles W. Clark. “Long-
range interaction coefficients for ytterbium dimers”. In: Phys. Rev. A 89 (1
2014), p. 012711. doi: 10.1103/PhysRevA.89.012711 (cit. on pp. 80, 82,
87).

[179] Paweł Tecmer, Katharina Boguslawski, Mateusz Borkowski, Piotr S. Żuchowski,
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schon einmal in einem früheren Promotionsverfahren angenommen oder als ungenügend
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