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Abstract

The Standard Model (SM) of particle physics can be divided into the strong sector and the elec-

troweak (EW) sector. The strong interactions governed by Quantum Chromodynamics (QCD)

have an out-sized influence on high energy predictions relative to the EW interactions. Thanks

to the enormous effort in the precision analysis of QCD, we are now reaching a turning point

in which EW uncertainty is of the same or higher order. Our goal is to further develop the

progress of describing the EW sector’s role, particularly with regards to heavy fields in the SM

and beyond.

In this thesis, we begin by deriving the static potential of a heavy field in theories exhibiting

spontaneous symmetry breaking. We then use our findings to calculate the potential of a heavy

quark-antiquark pair in the Standard Model at EW one-loop order. We do so in both the

Wilson loop and scattering amplitude approaches and discuss the limitations of the Wilson loop

approach. As the field content of the SM is extensive, similar studies in a large set of models

are now achievable by varying the appropriate couplings and group theory factors. We then

present the leading EW corrections to the short-distance heavy quark mass definitions. We

achieve this with the heavy meson static potential as well as its binding and residual kinetic

energy. These energies form the building blocks of most short-distance mass definitions. We

explain how attaining the EW contributions to these energies leads to additional corrections to

the masses. We determine that the leading EW corrections are of the same strength as their

next-to-leading pure QCD counterparts. Next, we consider the leading electroweak corrections

to the heavy quark effective theory and non-relativistic QCD Lagrangian. These corrections

appear in the Wilson coefficients of the heavy quark operators at one-loop order. Due to Parity

violation in the SM, operators up to this order include new parity-violating terms. We derive

these analogously to the parity-preserving QCD result at one-loop order. Pushing the previous

analysis to two-loop order and generalising, we compute the massive gauge and scalar corrections

to form factors in both the Sudakov and threshold regimes up to and including two-loop orders.

The corrections are calculated for processes involving two external fermions and scalars in the

spontaneously broken SU(N)-Higgs model, examining a set of composite operators. We further

discuss how form factors in our toy model can be mapped to the Standard Model and beyond.

Lastly, we determine the master integrals for vertex and propagator diagrams appearing in

effective field theories containing heavy fields. The integrals involve at least one heavy line, and

the standard lines include an arbitrary mass scale. We employ modern methods to tackle these

two-loop integrals, including differential equations and dimensional recurrence relations.





Zusammenfassung

Das Standardmodell (SM) der Teilchenphysik und seine Vorhersagen lassen sich in den starken

und elektroschwachen (EW) Sektor unterteilen. Wie der Name schon sagt, haben starke Wech-

selwirkungen, die von der Quantenchromodynamik (QCD) gesteuert werden, einen übergroßen

Einfluss auf die Dynamik und folglich auf Präzisionsstudien. Dank des enormen Aufwands

bei Präzisionsanalysen in der QCD erreichen wir jetzt einen Wendepunkt, an dem die EW-

Unsicherheit gleich oder höhr ist. Unser Ziel ist es, Teil des Fortschritts an dieser neuen Grenze

bei der Beschreibung der Rolle des EW-Sektors zu sein, insbesondere in Bezug auf schwere Felder

im SM und darüber hinaus.

In dieser Arbeit leiten wir zunächst das statische Potential eines schweren Feldes in Theorien

ab, die spontane Symmetriebrechung aufweisen. Wir verwenden unsere Ergebnisse dann, um

das Potenzial eines schweren Quark-Antiquark-Paares im SM in der EW Ein-Schleifen-Ordnung

zu berechnen. Wir tun dies sowohl im Wilson-Loop- als auch im Streuamplitudenansatz und

diskutieren die Einschränkungen des Wilson-Loop-Ansatzes. Da der Feldinhalt des SM um-

fangreich ist, können jetzt analoge Ergebnisse zu unseren in einer großen Anzahl von Mod-

ellen erzielt werden, indem die entsprechenden Kopplungen und gruppentheoretischen Faktoren

variiert werden. Anschließend präsentieren wir die führenden EW Korrekturen für die Kurz-

Abstands-Definitionen schwerer Quarkmassen. Dies erhalten wir mit dem starken statischen

Mesonenpotential sowie seiner Bindungs- und restlichen kinetischen Energie. Diese Energien

bilden die Bausteine der meisten Massendefinitionen für kurze Abstände. Wir erklären, wie die

Berechnung der EW Beiträge zu diesen Energien zu analogen Korrekturen der Massen führt.

Wir stellen fest, dass die führenden EW Korrekturen dieselbe Stärke haben wie ihre näch-

stführenden Gegenstücke in der reinen QCD. Als nächstes betrachten wir die führenden EW

Korrekturen zu den Lagrangedichten der heavy quark effective theory und der nichtrelativistis-

chen QCD. Diese Korrekturen treten in den Wilson-Koeffizienten der Operatoren für schwere

Quarks in der Ein-Schleifen-Ordnung auf. Aufgrund der Parität-Verletzung im SM enthalten

die Operatoren zu dieser Ordnung parität-verletztende Terme. Wir leiten diese analog zum

parität-erhaltenden QCD-Ergebnis in der Ein-Schleifen-Ordnung ab. Indem wir die vorherige

Analyse auf die Zwei-Schleifen-Ordnung ausdehnen und verallgemeinern, berechnen wir die von

massiven Eich- und Skalarbosonen herrührenden Korrekturen zu den Formfaktoren sowohl im

Sudakov- als auch im Schwellenregime bis einschließlich zur Zwei-Schleifen-Ordnung. Die Kor-

rekturen werden für Prozesse berechnet, an denen zwei externe Fermionen und Skalare im spon-

tan gebrochenen SU(N)-Higgs-Modell beteiligt sind, wobei eine Reihe von zusammengesetzten

Operatoren untersucht wird. Wir diskutieren weiter, wie Formfaktoren in unserem Spielzeug-

modell auf das SM und darüber hinaus abgebildet werden können. Zuletzt bestimmen wir

die Master-Integrale für Vertex- und Propagator-Diagramme, die in effektiven Feldtheorien mit

schweren Feldern auftreten. Die Integrale umfassen mindestens eine schwere Linie, und die

Standardlinien enthalten eine beliebige Massenskala. Wir verwenden moderne Methoden, ein-

schließlich Differentialgleichungen und Dimensional Recurrence-Relationen, um diese Integrale

bis zur Zwei-Schleifen-Ordnung auszuwerten.
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Chapter 1

Introduction

The immense success of the Standard Model (SM) of particle physics and its ability to withstand

experimental scrutiny have puzzled theorists for decades. We know, however, that the SM is

incomplete as it does not incorporate all known fundamental phenomena. The last piece of the

Standard Model was confirmed in the discovery of the Higgs boson by the international scientific

collaboration at the Large Hadron Collider (LHC) [1,2]. Although the Higgs field was predicted

nearly 50 years prior [3,4], the immense precision requirements from both theory and experiment

are what ultimately lead to its confirmation as part of nature. Thus, the current state of particle

physics is mainly focused on precision studies of the Standard Model. In the quest to attain

higher precision, we must refine our understanding of quantum field theory (QFT) and account

for the tiniest corrections wherein anomalies may lie, revealing potential answers to remaining

mysteries.

One can argue that the most glaring evidence of the incompleteness of the SM is the re-

cent experimental observation of neutrino oscillations [5–7]. This implies that each neutrino

is equipped with a unique non-zero mass, which is in direct contradiction with the SM predic-

tion of massless neutrinos. The evidence of neutrino oscillations was generated from studies

on the smallest (quantum) scales. In contrast, SM incompleteness also occurs on the largest

(classical) scales. Astronomical and cosmological observations no longer agree with astrophysi-

cal predictions [8], derived using general relativity (GR) [9]. More specifically, if one considers

particles that are allowed by the Standard Model, there is a sizeable apparent mass difference

between theory and experiment. This implies that new matter, known as dark matter (DM),

exists [10, 11]. These observations shake the foundations of either the SM or GR or both. If

the discrepancy arises from the SM, then new field(s) must be introduced and accounted for by

detection. Otherwise, general relativity must be modified in some consistent fashion to explain

the discrepancy.

Sticking to the gravitational track, herein lies the most well-known puzzle of fundamental

theory: the SM does not include gravity, which starts to play a role in fundamental interactions

at the so-called Planck scale, MP ∼ 1016 TeV. The fundamental incompatibility lies in the fact

that the SM is a perturbative QFT, whereas GR is inherently non-perturbative. Attempting to

quantise gravity in GR as a field perturbatively yields unphysical predictions near MP [12–14].

Many proposed solutions have been introduced to describe gravity fundamentally [15–18], but

testing their predictions which would occur near MP is far from reach currently. For comparison,
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the recent Higgs discovery was achieved by a proton-proton collisions at the LHC with centre-

of-mass (COM) energies,
√
s = 7 TeV, to discover the Higgs particle of mass MH ∼ 0.1 TeV [19].

This is by no means an exhaustive list and there are many more arguments for physics beyond the

Standard Model (BSM), such as dark energy or the cosmological constant problem, the hierarchy

problem, and grand unification [20–22].

One is then left wondering how to tackle such discrepancies and investigate their fundamental

nature. In principle, there are two ways to search for discrepancies, either directly or indirectly.

Direct searches for BSM physics involve scanning cross-sections and searching for novel field

resonances not permitted by the SM alone. The issue is that the energy of the process limits

this and experiments cannot reach arbitrarily high energy scales. In contrast, indirect searches

rely on precision alone and allow one to scan significantly higher energies than an experiment

can reach. This advantage can be stated heuristically, if the energy scale of new physics is

ΛBSM and the electroweak (EW) scale is ΛEW ∼ MH then the observable uncertainty needs to

be of O(MH/ΛBSM). For instance, given a high precision study that reduces the uncertainty of

a collider observable to a single per cent, one can probe effects occurring at one-hundred fold

ΛEW which is ΛBSM ∼ TeV. In this case, indirect effects of BSM physics again are seen by any

discrepancies which implies virtual contributions from BSM physics.

More recently, the incredible utility of indirect searches through precision studies has been

exemplified in the possible detection of unknown physics. The comparison of high precision

SM determinations of the anomalous magnetic moment (AMM) and lepton-flavour universality

are showing discrepancies with measurements at various experiments [23–26]. If further studies

prove one or more of these discrepancies to be true, this would be an incredible success as it

would not only call for extensions to the SM but said extensions could also explain discrepancies

previously pointed to [27–31]. We end this motivation by adding that BSM searches are not

the sole reason for precision studies. For instance, the critical question of the stability of the

EW vacuum depends on reducing the uncertainty of the top quark and Higgs masses [32–34].

Thus, we have an abundance of reasons to minimise uncertainties in our theoretical predictions

to match current and future-planned high precision experiments.

In performing precision studies with the SM, it is convenient to separate its two sectors,

namely the strong and the EW sector. The strong sector is described by quantum chromody-

namics (QCD) and the remaining SM interactions are all governed by the EW sector. It is well

understood that the pure QCD radiative corrections are dominant at high energies and there-

fore have leading uncertainty. Thus, it has been the quest of many to reduce said uncertainty

by going beyond leading order (LO) in perturbation theory when determining QCD-dependent

quantities and observables. This goal takes us to the realm of higher-order radiative correc-

tions and the art of calculating multi-loop processes at next-to leading order (NLO) and beyond.

Thanks to a plethora of modern analytical and numerical methods [35–37], we are now able to

study processes and determine quantities at a very high perturbative order, for instance, the beta

function of QCD is now known to five-loop order [38]. Given this exceptional progress in the

QCD sector, it is becoming abundantly clear that observable uncertainties from the EW sector

are becoming significant enough to consider in comparison. Based on the ratio of strong and EW

couplings, the rule of thumb is that EW corrections are sub-leading by an order of magnitude

relative to pure QCD corrections. For this reason, to bring the SM observable uncertainty down
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to the level attained with QCD alone, we must begin to consider EW corrections beyond LO

and even NLO.

In this thesis, we pursue the end of incorporating EW effects to well-understood quantities,

processes and effective field theories (EFTs) in QCD. We begin by considering heavy fields such

as the top quark in the SM. Our analysis centres on determining the EW corrections to the

potential of a heavy meson (or so-called static potential) in the large mass and small quark

velocity limit. The most well-known static potential is that of quantum electrodynamics (QED),

which is simply the Coulomb potential to all orders [39]. On the other hand, due to the presence

of colour, QCD is the non-Abelian analogue of QED. Thus, the QCD static potential does depend

on higher-order calculations and is known to three-loop order [40,41]. The potential is valuable

as it allows one to study the fundamental properties of a given theory in the non-relativistic

(NR) limit. We then investigate analogous corrections for a heavy meson’s binding energy (BE)

and residual kinetic energy (KE) [42, 43]. Armed with these energetic quantities, we consider

applications, mainly how they affect the short-distance heavy quark mass definitions and NR

effective theories.

A precise determination of quark masses has been of particular interest due to their fun-

damental nature as SM Lagrangian parameters and constraining flavour beyond the Standard

Model [22,44]. The focus on heavy quarks (top, bottom and charm) is due to their large masses

which means they can have a large influence on observables. Thus, uncertainty reduction in

this case is of particular importance. For instance, the top quark mass is required to very high

precision in the combined EW fits [45, 46]. These fits were employed to attain indirect in-

formation on the Higgs mass and currently serve as SM consistency checks. Moreover, on the

conceptual front, the traditional definition of particle mass as the pole of the field propagator

is no longer applicable in the case of heavy quarks. This definition is lacking due to spurious

non-perturbative infrared (IR) divergences arising at higher-loop orders [47].

Thus, new, so-called short-distance masses must be defined in a way that distinguishes

between ultraviolet (UV) and IR physics. In this thesis, we are primarily interested in the

largest parameter in the SM, the mass of the top quark. Determining the top mass precisely

is crucial for consistency checks of the SM [48–50], and is the dominant uncertainty in studies

of EW vacuum stability [33, 51, 52]. We are also interested in the bottom quark, which has the

second largest mass and lies in the same generation as the top quark. High power factors of

said mass appear in many important processes, such as B-meson and Higgs boson decays, which

are highly coveted for indirect BSM searches [53–55]. Thus, precise theoretical mass predictions

are of immense value and even defining a well-behaved perturbative quark mass is problematic.

Many successful proposals have been considered and studied to very high precision in pure

QCD [56–60]. We thus focus on EW corrections in this thesis for a portion of widely-employed

heavy quark mass schemes.

The second point of focus in this thesis lies on the front of EFTs, which have proven highly

effective for precision studies. The EFT framework exploits the persisting fact that exciting

and unique physics occurs at all distances, times and energy scales. If one wants to probe a

particular scale of interest, EFTs allow the so-called integrating out of irrelevant scales. I.e.

relegate degrees of freedom present beyond the scale of interest to multiplicative Wilson or so-

called matching coefficients in the EFT Lagrangian [61, 62]. In general, an EFT can be either

constructed from the top-down or the bottom-up.
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In a bottom-up EFT, the UV theory is either known but lacks a low energy description or is

entirely unknown. Using an EFT, in this case, is convenient as no commitment to a particular

model is necessary, and one can work off what is established. For instance, the Standard Model

effective field theory (SMEFT) is one such model-independent EFT consisting of the SM itself

along with higher-dimensional operators [63]. On the other hand, a top-down EFT is helpful

when the UV or so-called full theory is known, but we are solely interested in the low-energy or

IR regime. The main advantage in employing such an EFT is that its calculations of processes at

lower-energies are rendered much simpler. Thus, one can immediately perceive the utility of the

top-down approach for precision studies as the goal is to attain higher orders in the perturbative

expansion. The issue with working with the full theory is that the number of amplitudes to

determine increases exponentially at each order, which can easily become an impossible task

computationally. The EFT framework grants one the luxury of reducing the field content to

only what is relevant at the low-energy scale and therefore eliminating many degrees of freedom

that are present in the full theory, simplifying calculations significantly [64–67].

In this thesis, we are more concerned with the top-down approach and, in particular, the NR

regime. We begin by considering the leading EW radiative corrections to heavy quark effective

theory (HQET) [64, 68–72], and non-relativistic quantum chromodynamics (NRQCD) [73, 74].

These corrections appear at one-loop order in the matching coefficients of the HQET/NRQCD

Lagrangian. We then further generalise our EFT analysis to two-loop orders in both the NR

and Sudakov energetic regimes. The Sudakov regime is appropriate when the COM energy

of a process is large compared to the theory’s predicted masses [75, 76]. For instance, when

considering LHC partonic processes, the COM energy is
√
s ∼ 14 TeV, which is an order of

magnitude above the largest SM masses. In this way, our analysis applies to both current LHC

processes in the Sudakov regime and future high precision collider processes in the NR regime.

To perform our two-loop study, we work with the SU(N)-Higgs model instead of the full

SM, as it is more versatile and can be mapped both to the SM and BSM theories. We then

employ a sequence of EFTs at each scale for different mass hierarchies and determine the Wilson

coefficients to two-loop orders. In the EFT sector of the matching calculation, we come across

two-loop diagrams which require modern multi-loop techniques to determine. These diagrams

are UV model-independent and appear in all EFTs containing both heavy fields and a mass

scale. Therefore it would be useful to evaluate all diagrams of these types, and we do so with

the help of modern techniques. Upon analysis, we find that the methods that work best to

solve such integrals are a combination of the differential equations approach and dimensional

recurrence relations [77, 78]. These two methods have seen enormous success in the current

multi-loop era [79–83], and we further demonstrate their utility here in the realm of EFT. We

now turn to a brief survey of the research, which outlines the content of each chapter.
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Outline

This thesis is structured as follows. In Chapter 2 we introduce the SM of particle physics,

describing its properties and symmetries as well as the parameters and field content of the SM

Lagrangian. We then outline the concept of renormalisation and the running of couplings. From

there, we argue the need for short-distance mass definitions when studying heavy quarks. We

close by digging deeper at hints for BSM physics. Chapter 3 describes the framework of EFTs,

delving into the effective theories we employ in this thesis. In particular, we describe HQET

along with its extensions to heavy particles of differing spin, NRQCD and soft-collinear effective

theory (SCET). After these introductory chapters, we proceed to the main results. In Chapter 4,

we introduce the static potential, re-deriving it for QED and QCD up to NLO. From there, we

determine how the EW corrections play a role at NLO and consider applications. In Chapter 5

we derive the heavy meson binding and residual kinetic energy then determine the leading EW

corrections to said energies. With these energies, we evaluate and analyse the leading EW

corrections to commonly used short-distance mass schemes. At this juncture, our analysis shifts

focus entirely to EFTs. In Chapter 6 we reproduce the HQET/NRQCD Lagrangian for heavy

quarks. In doing so, we determine the matching coefficients from the full SM to one-loop EW

order. Moreover, we find the EFT Lagrangian must be extended to include additional operators,

which we determine and match to the full theory. Generalising our EW analysis in Chapter 7,

we perform matching and running with a sequence of EFTs up to two-loop orders with a range of

composite operators. We consider both heavy fermions and scalars, various mass hierarchy scales

and two distinct energetic regimes. Lastly, Chapter 8 is devoted to evaluating massive two-loop

diagrams with heavy fields, some of which are needed in Chapter 7. The calculation is achieved

with modern multi-loop techniques, which we introduce and employ in our analysis. We then

conclude and discuss possible future directions in Chapter 9. The Appendices include theoretical

frameworks employed, technical details and further insights on the calculations performed in this

thesis.
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Chapter 2

The Standard Model and Beyond

This chapter sets the stage for research presented throughout this thesis. In Section 2.1 we

introduce the Standard Model of particle physics, describing the concept of gauge symmetries

and presenting the field content in the form of its Lagrangian. We outline the concept of

renormalisation and the running of couplings in Section 2.2 and focus on mass definitions and

the case for short-distance masses in Section 2.3. We end this chapter by discussing hints of new

physics in Section 2.4.

2.1 The Standard Model of Particle Physics

The SM is a fundamental quantum theory that describes the interactions of elementary fields

obeying relativistic mechanics under local gauge groups. As any QFT, once defined, the SM

must undergo a quantisation procedure, detailed in Ref. [84]. Since this section entails a brief

introduction, we will hone in on the SM Lagrangian, decoding its various sectors. The key feature

of the SM is that it is a chiral gauge theory that completely describes the directly observed

fundamental phenomena of strong and EW interactions, spontaneous symmetry breaking (SSB),

quark confinement, flavour physics, etcetera. The SM gauge group can be split in two parts,

SU(Nc) describing the strong interactions of QCD [85–88], and SU(2)L × U(1)Y encoding the

EW interactions [89–91].

The field content of the SM is divisible into two classes, the fermions of half-integer spin and

the bosons of integer spin. The fermions, also known as matter fields, are equipped with spin-1/2;

the scalar and vector bosons are spin-0 and spin-1, respectively. SM fermions come in two types,

quarks and leptons, each a family of six particles (known as flavours) and their corresponding

anti-particles (distinguished by opposite electric charge). The flavours are further grouped into

quark couplets of up-type and down-type known as generations. In order of increasing mass, the

three up-type quarks are up, charm and top, labelled by (u, c, t); and the three down-type quarks

are down, strange and bottom, labelled by (d, s, b). Unlike leptons, quarks are colour charged

under the SU(Nc) gauge group in the fundamental representation and are equipped with Nc = 3

separate colour charges. Moreover, quarks are electrically charged under U(1)Q where up-type

and down-type quarks have electric charge, Q = 2/3 and Q = −1/3, respectively. Thus, the sole

differentiating factor between quark generations is, in fact, their masses.

In the case of leptons, they are distinguishable by their electric charge. Analogous to the up-

type and down-type description of quarks, we have charged and neutral leptons or neutrinos. All
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Field SU(3)C SU(2)L Y Q I3
(

u

d

)

L

,

(

c

s

)

L

,

(

t

b

)

L

3 2 1/6
2/3

−1/3
1/2

−1/2
uR, cR, tR 3 1 2/3 2/3 -

dR, sR, bR 3 1 −1/3 −1/3 -
(

e

νe

)

L

,

(

µ

νµ

)

L

,

(

τ

ντ

)

L

1 2 −1/2 −1
0

−1/2
1/2

eR, µR, τR 1 1 −1 −1 -

Table 2.1: Fermionic fields and their representions under local gauge groups of the SM. The
triplet, doublet and singlet representations of a given group are labelled by 3, 2 and 1. I3
corresponds to the third isospin component and Y = Q−I3 is the hypercharge in our convention.

charged leptons have Q = −1 while neutrinos are uncharged and do not interact under the gauge

group of electromagnetism (EM). Again, in order of increasing mass, the three charged leptons

are the electron, muon and tau, labelled by (e, µ, τ). The three neutrinos, named according to

their respective generations, are the electron-, muon- and tau-neutrinos, labelled by (νe, νµ, ντ ).

Although it has been recently confirmed in several experiments that neutrinos oscillate, implying

they have mass [5,6,92], the SM lacks a description of this feature. As we neglect neutrino masses

in this thesis, we leave the treatment of massive neutrinos to Ref. [93]. Therefore, the only

massive leptons are the charged ones, and as in the case of quarks, mass is the sole distinguishing

factor between lepton generations. We present the SM fermions and their representations under

local gauge groups in Table 2.1.

2.1.1 Gauge Symmetry

Before exploring the various sectors of the SM Lagrangian, we need to unpack the concept

of gauge symmetry [94]. Given a Lagrangian, a global symmetry group describes a class of

transformations that leave the Lagrangian invariant. Global symmetries are non-local, meaning

they are independent of coordinates of space and time in the Lagrangian formulation of a theory.

One may also consider local symmetries where the group transformation is coordinate dependent.

In turn, one can enforce invariance under said local gauge transformation. This procedure is

known as achieving local gauge invariance under a symmetry group, and in doing so, one passes

to a reduced phase space with fewer canonical degrees of freedom.

To illustrate this feature let us consider the example of a fermion labelled by a Dirac spinor,

ψα, with four complex components labelled by a spinor index, α = 1, . . . , 4, and mass, m. The

free Lagrangian is then given by the Dirac Lagrangian,

L0 = ψ̄α(i/∂ −m)ψα, (2.1)

where ψ̄ = ψ†γ0 and given an arbitrary four-vector v, /v = γµv
µ and γµ are Dirac matrices. Let

us now perform a infinitesimal local symmetry group transformation,

ψα → eiθ(x)ψα = ψα + iθa(x)T aαβψ
β , (2.2)
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with infinitesimal coordinate dependent parameters θ(x) and T a are constant transformations

matrices, known as group generators, in the fundamental representation of the group. Note that

if θ(x) is constant then the Dirac Lagrangian is invariant under the symmetry transformation,

meaning it is a global symmetry. By promoting θ(x) to being coordinate dependent, we are

now considering a local symmetry. In this case the Dirac Lagrangian is no longer invariant and

transforms as,

L0 → L0 + i(∂µθ
a(x))ψ̄αγµT aα,βψ

β . (2.3)

We can thus employ Noether’s theorem, which states that the new term appearing under the

local transformation,

Jaµ = i(∂µθ
a(x))ψ̄αγµT aα,βψ

β (2.4)

is a conserved current with ∂µJaµ = 0. As our goal is to enforce local gauge invariance on our

free Lagrangian, the introduction of a new field, Aaµ(x) is necessary, that is defined by its ability

to cancel Jaµ once the local gauge transformation is applied.

Before describing Aaµ(x), we need to introduce the adjoint representation. In physics, it

is often the case that symmetry groups being considered are so-called Lie groups [95]. These

groups are defined by the matrices, T a, obeying a so-called Lie Algebra,

[

T a, T b
]

= ifabcT c, (2.5)

with constants, fabc, known as structure constants. The structure constants define another

useful representation of a Lie group, the so-called Adjoint representation, with generators,

(T a)bc = −ifabc, (2.6)

of dimension equivalent to its symmetry group. With this additional construction at hand, we

may now proceed with defining the new field.

As our goal is to cancel the Noether current in Eq. (2.3), Aaµ(x) must carry the same group

index, meaning it will not be invariant under group transformation. However, the new field is not

in the fundamental representation; instead, it is chosen to transform in the adjoint representation,

Aaµ → Aaµ + ∂µθ
a + iθb(T b)acAcµ = Aaµ − ∂µθa − θbf bacAcµ. (2.7)

The field, Acµ(x), chosen as such is known as a gauge field of the group [84]. The gauge field

is solely dependent on the group symmetry being considered and we can now define further

quantities of interest associated to such fields. The first is the so-called covariant derivative,

Dµ = ∂µ + iAaµT
a
αβ , (2.8)

then combining Eqs. (2.2) and (2.7),

Dµψα → Dµψα + i(∂µθ
a)T aαβψ

β −AaµT aαβ(∂µθb)(T b)βσψσ − i∂µθaT aαβψβ

− iθbf bacT aαβAcµT aαβψβi (2.9)

= Dµψ
α + iθaT aαβDµψ

β , (2.10)
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and therefore, Dµψ
α transforms identically to ψα. Whence, replacing the partial derivative

in the free Lagrangian with a covariant derivative results in a new Lagrangian which exhibits

invariance under local symmetry transformations,

L = ψ̄
(

i /D −m
)

ψ, (2.11)

with spinor indices suppressed. We re-iterate the difference here is the inclusion of a gauge field

and by inspection of K, the gauge field interact with the Dirac fermions, thus, we no longer have

a free Lagrangian but an interacting one. By the lack of a gauge field kinetic term in Eq. (2.11),

however, we can see that L is incomplete. This brings us to the second quantity of interest we

introduce, the field strength tensor,

Fµν = F aµνT
a = i [Dµ, Dν ] = ∂µAν − ∂νAµ − i [Aµ, Aν ] (2.12)

= F aµνT
a = ∂µA

a
ν − ∂νAaµ + fabcAbνA

c
ν , (2.13)

the components of which transform locally under the symmetry group as,

F aµν → F aµν − fabcθbF cµν . (2.14)

Therefore, we now are in possession of a kinetic term for the gauge field by contraction of the

field strength tensor and may write down the complete, parity conserving [96], Lagrangian for

mass dimension D ≤ 4,

L = −1

4
F aµνF

a,µν + ψ̄
(

i /D −m
)

ψ. (2.15)

The first term in Eq. (2.15) is also invariant under local symmetry group transformations. Notice

the lack of a mass term for the gauge field, of the form m2
AA

a
µA

a,µ, although it is valid in D ≤ 4,

we can immediately see that it is not invariant under a local symmetry transformation. Thus

the gauge field must be massless.

Throughout this illustration, we considered Lie groups in general. However, implicitly we

restricted ourselves to SU(N) with a = 1, . . . , N2 − 1, defined as the group of unitary matrices,

U(N), with unit determinant. The reason is that the Dirac Lagrangian’s global symmetry is

SU(N). In general, when working in the SM, the main symmetry groups that are imposed are

SU(N) for N = 1, 2, 3 and SO(1, 3) for space-time, known as Poincaré symmetry [97].

We may now end with the case of a finite group symmetry transformation, to ensure our

Lagrangian is not solely invariant in the infinitesimal case. The Dirac spinor transformation can

be written with spinor indices suppressed as,

ψ → Uψ = exp [iθaT a]ψi, (2.16)

such that U ∈ SU(N). Moreover, the transformations of the gauge field and field strength tensor

are given by,

AaµT
a → UAaµT

aU † − i(∂µU)U †, (2.17)

F aµνT
a → UF aµνT

aU † (2.18)

and therefore, upon simplification the covariant derivative of ψ transforms as,

Dµψ → UDµψ. (2.19)

Whence the complete Lagrangian given in Eq. (2.15) can be transformed piece-wise, and by

inspection, it remains invariant under the finite symmetry transformation. We may now proceed

to the SM, gauging its group symmetries and determining its associated gauge fields.

10



2.1.2 The Standard Model Lagrangian

The SM is equipped with global SU(3)c×SU(2)L×U(1)Y symmetry. The SU(2)L×U(1)Y group

defines the chiral nature of the SM, in which different field transform under the fundamental

representations of either SU(2)L or U(1)Y . Fields that transform under SU(2)L and U(1)Y
are known as left- and right-handed fields, respectively. Only fermions exhibit chirality, and the

labelling convention is given by,

ψR/L = PR/L =
1

2
(1± γ5)ψ, γ5 = iγ0γ1γ2γ3, (2.20)

which transform accordingly under SU(2)L × U(1)Y but identically under SU(3)C . We again

refer to Table 2.1 for SM fermions to see how they transform under each group. The procedure

of localising a global symmetry and gauging the local symmetry as introduced in Section 2.1.1

will now be employed in the case of the SM. The outcome will be the introduction of SM gauge

fields and couplings; we will also interpret the interaction terms that arise in the Lagrangian.

Strong Sector

Let us begin with the quark sector of the SM and construct QCD, which is a consequence of

gauging local SU(3)C symmetry. Quarks are fermions that transform under the fundamental

representation of SU(3)C , and all six can be grouped under a label, qf , where f denotes the six

possible flavours. Thus, we can write the non-trivial transformation of a quark in SU(3)C as,

qf → Uqf = exp [iθaT a]qf , (2.21)

with generators, T a = λa/2 in the SU(3)C adjoint representation, such that a = 1, . . . , 8 and

λa are given by the Gell-Mann matrices. Upon gauging the symmetry in the quark Dirac

Lagrangian, analogous to the illustration in Section 2.1.1, the gluon or gauge field, Gaµ, of

SU(3)C appears. The eight gluons of the SM are so-called vector bosons and are the mediators

of all QCD interactions. The transformation of gluons is under the adjoint representation of

SU(3)C and is given by Eq. (2.17),

GaµT
a → UGaµT

aU † +
i

gs
(∂µU)U †. (2.22)

Note the inclusion of gs, as one is free to multiply by a constant, dimensionless parameter known

as the strong coupling constant. A coupling constant is always included in field theories as it

allows one to tune the strength of an interaction. The gluon field strength tensor, Gaµν , on the

other hand, transforms according to Eq. (2.18),

Gaµν = ∂µG
a
ν − ∂νGaµ + gsG

b
µG

c
νf

abc, (2.23)

with structure constants, fabc ∈ R, of SU(3)C , which are totally anti-symmetric. We may now

express the QCD sector of the SM Lagrangian and expand out the terms to take note of the

interactions present,

LQCD = − 1

4
GaµνG

a,µν + q̄f
(

i /D −mf

)

qf (2.24)

= − 1

4
(∂µG

a
ν − ∂νGaµ)(∂µGa,ν − ∂νGa,µ) + gsf

abc(∂µG
a
ν)(G

b,µGc,ν)

− g2s
4
fabcfadeGbµG

c
νG

d,µGe,ν + q̄f
(

i/∂ − gs /GaT a
)

qf −mf q̄fqf . (2.25)
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As SU(3)C is a matrix Lie group which is non-Abelian, self-interactions between gluons occur.

We see both triplet and quartic terms of gluons alone which would not arise in a an Abelian U(1)

theory such as QED. Moreover, we need not derive the quantum electrodynamics Lagrangian,

LQED, as it is analogous to the QCD Lagrangian modulo colour indices and self-interactions

among the U(1) gauge fields, also known as photons.

Electroweak Sector

What remains to be gauged is the EW sector classified by its global SU(2)L×U(1)Y symmetry.

The EW sector involves all fermions in the SM and not simply quarks, i.e. all fermions transform

non-trivially under SU(2)L × U(1)Y . Whence, we may group fermions as ones that transform

in the fundamental representation of SU(2)L and U(1)Y , known as isospin-doublets, ΨL, which

includes all SM fermions. Furthermore, we can group those that transform as a singlet in SU(2)L
and U(1)Y in ΨR, including up- and down-type quarks as well as charged leptons. The left- and

right-handed representations then transform under SU(2)L × U(1)Y as,

ΨL → ULUYΨL = exp [i(θiτ i + ρYL1)]ΨL (2.26)

ΨR → UYΨR = exp [iρYR]ΨR, (2.27)

with Y corresponding to the weak hypercharge and SU(2)L group generators represented by

τ i = σi/2 such that σi are the Pauli matrices with i = 1, 2, 3. As this is a finite transformation,

we take parameters θi and ρ to be finite. Localising this symmetry and rendering the EW

Lagrangian invariant under such transformations introduces novel gauge fields, W i
µ and Bµ

which transform in the adjoint representations of SU(2)L and U(1)Y , respectively. We may

write these transformations as,

W i
µτ

i → ULW
i
µτ

iU † +
i

g
(∂µUL)U

†
L, (2.28)

Bµ → Bµ −
1

g′
∂µρ (2.29)

in which we have introduced new parameters, g and g′, which correspond to the couplings from

gauging SU(2)L and U(1)Y . Moreover, the kinetic terms of the Lagrangian require field strength

tensors to construct, and these transform as,

W i
µν → ∂µW

i
ν − ∂νW i

µ − gǫijkW j
µW

k
µ , (2.30)

Bµν → ∂µBν − ∂νBµ, (2.31)

such that ǫijk is the totally anti-symmetric Levi-Chevita tensor and the structure constant of

SU(2)L. Now that the gauge fields are defined and their properties understood, we may construct

the covariant derivatives for the left- and right-handed spinors we defined,

DµψL =
(

∂µ + igW i
µτ

i + ig′Y Bµ
)

ΨL, (2.32)

DµψR =
(

∂µ + ig′Y Bµ
)

ΨR. (2.33)

Given these ingredients and the constraints of mass dimension, D ≤ 4, the Lagrangian of the

EW sector is accordingly,

LEW = −1

4
W i
µνW

i,µν − 1

4
BµνB

µν + iq̄kL /Dq
k
L + il̄kL /Dl

k
L + iūkR /Du

k
R + id̄kR /Dd

k
R + iēkR /De

k
R, (2.34)
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where the new index k = 1, 2, 3 denotes the generation and is summed over. Expanding each

term, as in the QCD case, one can investigate the gauged SU(2)L × U(1)Y interactions. What

is immediately apparent and novel relative to QCD, is the lack of fermionic mass terms. If

one attempts to include one gauge invariance will cease to hold and thus the SM fermions are

massless unless there is another mechanism in play.

2.1.3 Spontaneous Symmetry Breaking

In the previous section, we came to an impasse, massless matter fields are not physical, and

thus a different sector is required, which grants fermions mass. The solution arises from SSB

in the SM, first introduced by Weinberg and Salam [89–91]. In the Weinberg-Salam model, a

complex scalar doublet, ϕ(x), is included, which transforms non-trivially under the fundamental

representation of SU(2)L×U(1)Y with weak hypercharge, Y = 1/2. The process of SSB occurs

in many areas of physics, from cosmology to condensed matter theory [98–100]. Heuristically,

SSB occurs when the Lagrangian of interest is invariant under a symmetry group transformation

but contains a vacuum state that is not invariant.

To illustrate this phenomenon, let us consider the following Lagrangian,

Lϕ = −1

4
W i
µνW

µν,i − 1

4
BµνB

µν + (Dµϕ) (D
µϕ)† − V (|ϕ|2) (2.35)

with potential, V (|ϕ|2), and covariant derivative given by,

V (|ϕ|2) = µ2|ϕ|2+λ|ϕ|4 (2.36)

Dµϕ = (∂µ + igW i
µτ

i + ig′Bµ)ϕ. (2.37)

The newly introduced parameters, µ2 < 0 and λ > 0, are additional coupling constant to be

tuned and thus the potential has minima at

|ϕ0|2= v2 = −µ
2

2λ
, (2.38)

which is commonly termed the vacuum expectation value (VEV). As our newly introduced scalar,

ϕ(x), is a complex scalar doublet, it may be written in terms of four real fields as,

ϕ(x) =

(

ϕ1 + iϕ2

ϕ3 + ϕ4

)

= exp

[

i√
2v
φiτ i

]





0

v+h√
2



 . (2.39)

The fields, φi(x) ∈ R, with i = 1, 2, 3 are known as Goldstone bosons [101, 102], and they

are massless, while the field, h(x) ∈ R, is massive with M2
H = −µ2, as is apparent upon

re-insertion into Eq. (2.35). The massive field h(x) is called the Higgs boson and has been

generated dynamically by the non-zero VEV.

To make the proceeding parts of the derivation simpler, one can set φi = 0 as these are

redundant degrees of freedom. So we have fixed three out of four parameters in θi and ρ under

SU(2)L × U(1)Y transformations. This choice is called unitary gauge in the literature, and the

procedure of exploiting redundancies, in general, is known as gauge fixing [103]. In this gauge

fixing scheme, three mass terms in Eq. (2.35) are generated,

Lϕ ⊃ (Dµϕ)(D
µϕ)† = g2

v2

8

[

(W 1
µ)

2 + (W 2
µ)

2 + (
g′

g
Bµ −W 3

µ)
2

]

. (2.40)
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Thus, the gauge bosons acquire the redundant degrees of freedom from fixing the Goldstone

bosons and express them as mass terms. If we further define,

W±
µ =

1

2
(W 1

µ ± iW 2
µ), (2.41)

Zµ = cos θwW
3
µ − sin θwBµ, (2.42)

Aµ = sin θwW
3
µ + cos θwBµ, (2.43)

which is standard notation for the SM, with Weinberg angle, θw, defined as tan θw = g′/g. The

gauge field Aµ corresponds to the photon of QED, whereas W±
µ and Zµ are the massive charged

and neutral W and Z bosons that mediate the weak interaction. It then becomes immediately

clear from Eq. (2.40) that we are left with one massless and three massive vector gauge bosons

with masses given by,

MW =
1

2
gv, MZ =

1

2 cos θw
gv =

MW

cos θw
, MA = 0. (2.44)

The following two points can be gleamed from these masses by inspection, the first is that

photons are massless and the second is that the neutral Z boson must be heavier than the

W± bosons. To explicitly see the charge exhibited by the W± bosons, one can define the EM

coupling as,

e = g sin θw = g′ cos θw, (2.45)

and expand the W i
µνW

i,µν in Lφ and indeed W± bosons exhibit EM charge of ±1 by inspection.

Of course, although the above Lagrangian adds value, we have not dealt with the issue of

massless fermions yet. The SSB mechanism is not complete, including complex scalar fields in

the Lagrangian and thus, the Higgs field as described means that new interaction terms are

permitted in D ≤ 4. These terms form a new sector known as the Yukawa sector. If we hone in

on quark masses for illustration, the terms are as follows,

LYuk ⊃ −Y u
kj q̄

k
Lϕ̃u

j
R − Y d

kj q̄
k
Lϕd

j
R + h.c. (2.46)

The Yukawa matrices, Y u,d, are different for up- and down-type quarks and k, j = 1, 2, 3 are

generation labelling indices. Moreover, the field ϕ̃ = iσ2φ
∗ where σ2 is the second Pauli ma-

trix and the Yukawa matrices may not necessarily be diagonal in generation. Note the careful

construction of the Yukawa terms and their implicit invariance under local SM group transfor-

mations. SSB in the EW sector is also known as electroweak symmetry breaking (EWSB), and

once this is incorporated into LYuk, we see the coveted generation of fermion mass terms,

LYuk ⊃ −
v√
2
(Y u
kj q̄

k
Lϕ̃u

j
R + Y d

kj q̄
k
Lϕd

j
R) + h.c. (2.47)

One can now diagonalise the Yukawa matrices by diagonalising,

Y u = SuLMuS
u†
R , Y d = SdLMdS

d†
R , (2.48)

with unitary matrices, Su,dL/R, and Mu,d diagonal in generation. We can then re-define the quark

fields consistently in the so-called mass eigenstate basis [104],

u′L/R = Su†L/RuL/R, d′L/R = Sd†L/RdL/R, (2.49)
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which by definition diagonalises our fermion mass terms in LYuk. Performing this change of basis

from the original flavour eigenstate basis alters the gauge interactions non-trivially and we will

investigate this now. Quarks in the flavour basis have the following gauge field interactions,

LEW ⊃ (ūLd̄L)
k
[(g

2
/W

3
σ3 + g′Yq /B

)

+
g

2
/W

1
σ1 +

g

2
/W

2
σ2
]

(

uL

dL

)k

(2.50)

+ g′ūkRYu /Bu
k
R + g′d̄kRYd /Bd

k
R (2.51)

=
e

sin θw
ZµJZµ + eAµJEMµ +

g√
2

(

ūkL /W
+
dkL + d̄kL /W

−
ukL

)

, (2.52)

with neutral currents given by,

JZµ =
1

cos θw
(J3
µ − sin2 θwJ

EW
µ ), (2.53)

J3
µ = ψ̄LγµT

3ψL, (2.54)

JZµ = Qk
(

ψ̄LγµψL + ψ̄RγµψR
)

, (2.55)

such that ψk = uk, dk, T 3 = τ3 and the EM charge is given by the relation, Q = T 3 + Y .

Conveniently, the flavour basis is diagonal in its gauge-quark interactions, this feature is no

longer present in the mass basis. Upon analysis, the neutral-currents remain diagonal but not

the charged-currents. In this basis one has to introduce a unitary matrix, V = (SuL)
†SdL, known

as the Cabibbo-Koboyashi-Maskawa (CKM) matrix [105,106], in the Lagangian,

LEW ⊃
g√
2

(

ū′kL /W
+
V kj

CKMd
′j
L + d̄′kL /W

−
(V kj

CKM)†u′jL

)

. (2.56)

The CKM matrix can be further parametrised as it contains four degrees of freedom [107],

V =









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









=









c12c13 s12c13 s13e
−iδ

−s12c23 Vcs Vcb

Vtd Vts Vtb









. (2.57)

Angles give the four degrees of freedom, θ12, θ13 and θ23 as well as a phase, δ. The phase, δ,

when non-zero, causes the violation of Charge-Parity (CP) symmetry, which is an important

and well-studied aspect of the SM [108].

Analogously with regards to leptons, the Yukawa sector contains lepton interactions similar

to Eq. (2.47),

LYuk ⊃ −Y a
jk l̄

j
Lϕe

k
R + h.c, (2.58)

between left-handed neutrinos and charged leptons. The lack of a second term as in Eq. (2.47) is

due to right-handed neutrinos not having been previously observed and thus excluded from the

SM. However, we now know that neutrinos have mass, and thus, right-handed neutrinos must

be incorporated in some fashion [109].

We may now combine all the contributions discussed above into one final SM Lagrangian (in

unitary gauge). Prior to SSB, the SM Lagrangian is thus given by,

LSM = − 1

4
GaµνG

a,µν − 1

4
W i
µνW

i,µν − 1

4
BµνB

µν + |Dµϕ|2−V (|ϕ|2)
+ i(q̄L /DqL + ūR /DuR + d̄R /DdR + l̄L /DlL + ēR /DeR)

−
(

Y uq̄Lϕ̃uR + Y dq̄LϕdR + Y e l̄LϕeR + h.c
)

, (2.59)
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with suppressed color, isospin and generation indices and the covariant derivatives are defined

to act as follows,

DµqL = (∂µ + ig′Y Bµ + igτ iW i
µ + igsT

aGaµ)qL, (2.60)

DµuR = (∂µ + ig′Y Bµ + igsT
aGaµ)uR, (2.61)

DµdR = (∂µ + ig′Y Bµ + igsT
aGaµ)dR, (2.62)

DµlL = (∂µ + ig′Y Bµ + igτ iW i
µ)lL, (2.63)

DµeR = (∂µ + ig′Y Bµ)eR. (2.64)

We end this overview by noting that the SM has many properties only briefly considered here,

for instance, quantisation and gauge-fixing (GF). For a complete review we point to Ref. [84].

2.2 Renormalisation

When dealing with perturbative QFTs such as the SM, one calculates processes that are related

to observables. The perturbative expansion of a given process is achieved in powers of the small

coupling constants introduced in Section 2.1. Higher-order quantum corrections, also known as

radiative corrections, are required for high precision studies. The Lagrangian formulation con-

tains interactions and propagating terms which can be translated diagrammatically to Feynman

diagrams. We aptly name these higher-loop processes as radiative corrections are distinguished

from LO or tree-level processes by containing loops in their diagrammatic representation. A

curious fact about going beyond LO is that amplitudes from loop diagrams contain divergences

from the UV regions of the momentum integrals being taken. The purpose of renormalisation is

to eliminate said UV divergences by absorption into so-called bare parameters of the QFT La-

grangian. Every parameter, including coupling constants, masses and field content, is needed to

absorb divergences and the physical Lagrangian used for predictions exhibits no UV divergences.

Aside from absorbing infinities, a renormalisation of fields, mass and couplings would still

be necessary even if the loop integrals were finite [94]. The reason is that renormalisation

replaces the postulated bare parameters with those experimentally observed in a mathematically

consistent way. We now arrive at the notion of renormalisable theories: a theory is renormalisable

if all its UV divergences are suppressible by a finite number of parameter re-definitions. We

can reformulate this statement in terms of individual terms which describe interactions in a

Lagrangian. Given an interaction term, one can inspect the mass dimension, D, of its associated

coupling constant. In checking this, if D > 0 the interaction is deemed relevant if D = 0 the

interaction is marginal and if D < 0 the interaction is deemed irrelevant. A theory is considered

non-renormalisable by definition if it permits irrelevant interactions. Renormalisability is one of

the crucial tests in model construction and has played a significant role in the development of

QFTs [110]. The SM itself was constructed to be renormalisable as this issue was first noticed

in the development of QED years prior [111,112].

Conversely, the cancellation of UV divergences does not necessarily depend on whether a

theory is renormalisable in the traditional sense of finite parameter cancellation. In principle, a

non-renormalisable theory, which by definition requires infinitely many parameters to absorb its

UV divergences, can still be predictive [110]. However, predictiveness only holds if one is solely in-

terested in physics below the energy of mass scales of irrelevant couplings in a non-renormalisable
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theory. I.e. given a theory with irrelevant coupling with a mass scale, Λ, one can still make

predictions at energies, E ≪ Λ, where the number of non-negligible, non-renormalisable inter-

actions is finite. In this way, one can fix all parameters of a non-renormalisable theory with a

finite number of measurements, although the theory will not be exact and precision is limited.

We will re-interpret this notion of theories valid at specific energy scales as EFTs in Chapter 3.

Now that we have introduced the notion of renormalisation, We will discuss how it is achieved

conventionally. In general, one begins by regularising the infinities with what is known in the

literature as a regularisation scheme. The process is defined by introducing a regulator for the

UV divergences, which renders their form explicit. Upon regularisation, one can then ensure

that the infinities are removed by renormalisation. In our work, we employ the scheme known as

dimensional regularisation, in which one replaces the dimension of space-time with d = 4 − 2ǫ,

such that ǫ → 0. In this scheme, UV divergences appear as poles in 1/ǫ and are thus made

explicit when calculating amplitudes.

Moreover, in dimensional regularisation, one includes an additional factor of arbitrary mass

scale, µ−ǫ. This scale ensures that the renormalised couplings remain dimensionless. The newly

introduced scale, µ, is known as the renormalisation scale, and one is free to re-scale it for

convenience. After regularising, the renormalisation scheme is set by how one chooses to absorb

the explicit divergences which appear. For instance, one can employ the minimal subtraction

(MS) scheme in which one absorbs only the divergent parts leaving the finite parts untouched.

In our work, we employ the modified minimal subtraction (MS) scheme, which is identical to the

MS scheme modulo an additional re-scaling, µ2 → µ2eγ/4π, such that γ is Euler’s constant.

2.2.1 Renormalisation

To illustrate the process of renormalisation, let us consider the renormalisable theory of QED

in which the issue of UV divergences first emerged in the context of QFT. Let us examine the

bare QED Lagrangian in which we identify bare parameters with nil superscript,

LQED = ψ̄0
(

i /D
0 −m0

e

)

ψ0 − 1

4
F 0
µνF

0,µν (2.65)

with bare covariant derivative, D0 = ∂µ− ie0A0
µ, and field strength tensor, F 0

µν = ∂µA
0
ν − ∂νA0

µ.

As previously stated, all bare masses, couplings and fields are non-physical as they are not those

measured by experiment. The reason being that measured parameters implicitly incorporate all

higher order quantum corrections. Thus, to link theory predictions to observation one needs to

renormalise each of these parameters individually. We define the following QED renormalisation

constants upon dimensional regularisation, which relate the physical to the bare parameters,

ψ =
1

√

Zψ
ψ0, Aµ =

1√
ZA

A0
µ, e =

1

Ze
µ−ǫe0, me =

1

Zm
m0
e. (2.66)

With the above replacements one can then write the Lagrangian explicitly in terms of renor-

malised parameters,

LQED = iψ̄
(

/∂ − ieµ−ǫ /A
)

ψ −meψ̄ψ −
1

4
FµνF

µν

− 1

4
(ZA − 1)FµνF

µν + i(Zψ − 1)ψ̄ /∂ψ

+ e(
√

ZAZψZe − 1)µ−ǫψ̄ /Aψ −me(ZψZm − 1)ψ̄ψ, (2.67)
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with the so-called renormalisation-induced counterterms appearing in the second and third lines.

The renormalisation constants, Zi, are fixed by the finiteness requirement of Green’s functions,

which are time-ordered products of our renormalised fields. However, simply requiring freedom

from divergence means that the renormalisation constants are not unique. Instead, they are

scheme dependent quantities, meaning one can employ any subtraction scheme as long as con-

sistency is maintained. For instance, one can use the MS-scheme defined previously [94, 113],

but others exist and are more convenient for different applications, for instance the momentum

subtraction scheme useful for lattice studies [114]. As the MS-scheme is most often used, we will

employ it in our illustration, whence, re-scaling µ2 → µ2eγ/(4π) and choosing,

Zi = 1 +
∞
∑

k=1

1

ǫk
Zi,k(e), (2.68)

such that Zi,k(e) are solely dependent on the EM coupling, e, and independent of ǫ. Thus, we

may now see how to define the Zi,k in QED in the MS-scheme such that the divergences are

no longer present. The first appearance of a divergence always occurs at one-loop or next-to-

leading order (NLO) in a perturbative expansion. For instance, if we consider ZA for the photon

field and attempt to attain it at NLO, ZA is defined by the finiteness condition of the photon

propagator,

+finite =. (2.69)

The first diagram gives the one-loop vacuum polarisation correction, and its corresponding

counterterm (from the Lagrangian in Eq. (2.67)) is shown in the second diagram. Requiring

that the sum of the two diagrams is finite in the ǫ → 0 limit up to O(αe) where αe = e2/(4π)

gives,

ZA = 1− 4

3ǫ

αe
4π

+O(α2
e). (2.70)

Similarly, we obtain Zψ and Zm in one fell swoop by fixing the NLO electron propagator cor-

rections and counterterms according to finiteness,

+finite = . (2.71)

Again, the first diagram is simply vacuum polarisation and the second is its corresponding

counterterm in Eq. (2.67). Performing the loop integral and enforcing finiteness then gives,

Zψ = 1− 1

ǫ

αe
4π

+O(α2
e), Zm = 1− 3

ǫ

αe
4π

+O(α2
e). (2.72)

Lastly, for the coupling constant renormalisation, by inspection of Eq. (2.67), one needs to

enforce finiteness on the one-loop correction to the vector current,
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+finite =
(2.73)

and upon similar calculation, one finds,

Ze = 1 +
2

3ǫ

αe
4π

+O(α2
e). (2.74)

Moreover, we find a relation that holds between renormalisation constants up to O(αe), Ze =

1/
√
ZA. This is often the case and determining such relations beforehand is helpful in performing

calculations [115].

2.2.2 Running of Couplings

We may now introduce the notion of running of couplings [116]. Given the renormalised coupling

up to NLO,

e0 = eµǫ
(

1 +
2

3ǫ

e2

16π2
+O(e3)

)

, (2.75)

we can use the fact that µ, the renormalisation scale we introduce in dimensional regularisation,

is not physical. Thus, the bare couplings must be independent of µ,

de0

d lnµ
= eµǫZe

(

ǫ+
1

e

de

d lnµ
+

1

Ze

dZe
d lnµ

)

= 0, (2.76)

and assuming non-zero coupling, this relation holds only if,

1

e

de

d lnµ
= −ǫ− 1

Ze

dZe
d lnµ

. (2.77)

We are thus left with this renormalisation group equation (RGE) which defines the QED beta

function of our coupling renormalised in the MS-scheme,

β(e) =
de

d lnµ
= − e2

12π2
+O(e3), (2.78)

in the limit ǫ → 0. Thus the beta function is a finite function which provides a complete

description of the renormalisation scale dependence of the coupling in a particular renormalisa-

tion scheme. When calculating QED processes, the higher n-loop corrections are of the form,

αne ln
k s/µ2, with k ≤ n and

√
s is the COM energy of the process of interest. Thus, to minimise

large logarithms in theory predictions, the appropriate choice for renormalisation scale is µ2 ∼ s.
We now re-write our RGE in Eq. (2.78) with respect to αe as is done conventionally,

β(αe) =
dα

d lnµ
= −2αe

(

ǫ+
αe
4π
β0 +O(α2

e)
)

, (2.79)

such that β0 = −4/3 and solving the RGE to NLO gives the so called running coupling,

αe(µ) =
2π

β0
ln−1 (µ/ΛQED) (2.80)
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Figure 2.1: The SM running couplings with respect to renormalisation scale. The SM gauge
couplings are g, g′ and gs. The top and bottom quark Yukawa couplings are represented by yt
and yb. The Higgs potential quartic coupling is given by λ. All couplings are computed in the
MS-scheme up to NNLO [34].

where the coupling is no-longer a constant but renormalisation scale dependant. The newly

introduced scale, ΛQED, is given by the experimentally observed value of the QED coupling. We

now pause to note an interesting property of Eq. (2.80), recall that αe is necessarily a positive

real number, and β0 is negative, thus the coupling grows as energy increases. Moreover, as

µ → ΛQED, Eq. (2.80) exhibits a pole and this divergence is known as the Landau pole of the

theory.

In this illustration, we focused on QED as an example; however, the SM, in turn, contains

renormalisation scale-dependent couplings. As written in Section 2.1, the SM gauge couplings

are g′, g and gs, also from the Yukawa sector, we have the Yukawa couplings, yI , with I labelling

massive fermions and the couplings of the Higgs potential. The largest Yukawa couplings are

yt, yb and yτ in order of decreasing mass. Each SM coupling has an associated beta function,

and these have been determined in the SM to three-loop orders [117]. We present these scale-

dependent couplings in Fig. 2.1 and comment on their properties. The first feature of SM running

couplings to point out is the quartic coupling, λ, of the Higgs potential turning negative near

109 GeV. This behaviour is only exhibited by this coupling and points to the meta-stability

of the EW vacuum. The precision of this stability is predominantly dependent on the Higgs

and top quark mass precision determinations as shown in Fig. 2.2 from calculations to two-loop

order [33, 34, 118, 119]. As for the gauge couplings, g′ from gauging the U(1)Y symmetry group

is non-negative and grows with energy, diverging as in QED at a Landau pole. The Landau pole

appears past the Planck scale MP ∼ 1019 GeV, and thus, the pole is not sufficiently well-defined

as of yet unknown quantum gravitational effects will begin to take hold at this scale. The

SU(2)L gauged weak coupling, g, has the interesting feature of overtaking the strong coupling

near 1016 GeV and, unlike the hypercharge coupling, does not exhibit a Landau pole.

The remaining gauge coupling to consider is the strong coupling, gs, which conversely to

QED and hypercharge exhibits a Landau pole at small energies, ΛQCD ∼ 10−1 GeV. ΛQCD is
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Figure 2.2: The SM vacuum phase space with respect to the top quark and Higgs masses. The
plane is subdivided into regions of stability, metastability and instability. The three boundary
ellipses correspond to standard deviation variations in the strong coupling indicating the dom-
inant uncertainty in the top mass. Colour gradings correspond to the size of theoretical error
from terms beyond NNLO [34].

also known as the quark confinement scale as it is related to the non-perturbative regime of

QCD and the phenomenon of confinement. Near ΛQCD, physical quark states exist in colour

singlet combinations known as hadrons, such that no free quarks arise. For instance, the most

commonly observed hadronic states are mesons (quark-antiquark pairs) and baryons (bound

states of three quarks), but more exotic states such as pentaquarks may appear as well. On the

opposite end of the energy spectrum, at high energies, the strong coupling goes to zero, and this

phenomenon, which is unique to the QCD sector, is known as asymptotic freedom [85]. This

feature is immediately apparent from the overall positive sign of the β0 coefficient of the QCD

beta function,

βQCD
0 =

1

3
(33− 2nf ) , (2.81)

which can be compared to the QED case in Eq. (2.79). It is clear that Eq. (2.81) is positive

for nf < 17 and in the SM nf = 6 which results in asymptotic freedom. This feature of QCD

has been confirmed by observation and is now a consistency condition that must be satisfied

for BSM theories that couple to QCD. Any reason behind the sign difference in QCD relative

to QED harkens back to QCD being symmetric under a non-Abelian group. This results in the

phenomenon of self-interactions among the gauge fields, which in turn impact strong coupling

renormalisation as these are determined from vertex diagrams [85].

2.3 Quark Mass

In this thesis, we will mainly be interested in heavy fields, particularly the SM’s heavy quarks.

One of the most crucial parameters required in the study of heavy quarks is attaining a precise

mass determination. The reason being that heavy quark mass is a fundamental parameter of
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the SM. Moreover, it constrains BSM models with additional flavour physics [22, 44, 120, 121].

Quark masses are non-trivial to define due to the phenomenon of quark confinement, which is

not exhibited by any other fields in the SM. Confinement complicates matters, as free quarks do

not exist in nature, and thus, their mass can not be measured as individual entities. We briefly

introduce the issues with defining a quark mass in this section; a complete review is present in

Ref. [122].

We will focus on the top mass, mt, as it is often employed in SM consistency checks [48–50].

Moreover, it is the dominant source of uncertainty when weighing the stability of the EW

vacuum [33,51,52]. Secondarily, we are also concerned with the bottom quark, which is the next

heaviest and lies in the same generation as the top quark. The bottom mass, mb, is an important

factor in the phenomenology of B-meson and Higgs decay as their decay widths contain large

powers of mb [53–55]. The study of B decays highly constrains elements of the CKM matrix,

thereby supplying precision tests of the flavour sector in the SM [120,123,124].

2.3.1 Heavy-Quark Limit

Let us begin by considering the heavy quark limit, in which the quark mass, mQ ≫ ΛQCD. In

this limit, processes that occur at a scale,

ΛQCD

mQ
→ 0, (2.82)

are separable from confinement physics which is an IR phenomenon occurring at distance scales

of O(1/ΛQCD). If this limit is physical, we have a large advantage as we may disentangle UV

and IR physics cleanly. In the case of the top quark, ΛQCD/mt ∼ 10−3, which would mean minor

corrections beyond LO of < 1% from this limit. On the other hand, in the case of the bottom

quark, ΛQCD/mb ∼ 10−1 and thus the naive expectation is ∼ 10% corrections. Such corrections

are significant and thus O(ΛQCD/mb) corrections and higher require accounting for.

The advantage of scale separation occurring in the heavy quark limit is that quark processes

are only sensitive to short-distance physics, which can be perturbatively determined. On the

other hand, long-distance physics is non-perturbative and appropriate for hadronic properties,

which is the purview of lattice QCD [125, 126]. The former case is of interest to us, and thus

quantities determined by short-distance physics help probe the heavy quark masses. For instance,

in the case of the bottom quark, the B-meson semi-leptonic decay width has been widely studied

and shown to be a sensitive probe of mb [127].

Complications in the heavy quark limit can arise; in particular, quantum corrections occur-

ring at higher-loop order are indiscriminate in their probing of short- and long-distance scales.

These radiative corrections result in alterations to the heavy quark limit by introducing terms

that are suppressed by running coupling powers, and thus, the limit can not be taken naively.

Moreover, these virtual corrections introduce energy scales aside from coupling from the SM,

for instance, matter and gauge field masses. These, along with heavy quark three-momentum

∼ mQv and kinetic energy ∼ mQv
2 enter the dynamics. Lastly, when dealing with the bottom

quark, the inclusion of finite-mass effects becomes necessary and require careful consideration

at each loop order [128,129].

These complications and various scales seem to make the precision study of heavy quarks

intractable. However, with the help of EFT, which we introduce in Chapter 3, the problem has

proven manageable. We now proceed to the task at hand of defining mass for heavy quarks.
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(a) (b)

Figure 2.3: (a) MS top quark mass computed from the PS mass with one- to four-loop accuracy
with respect to the renormalisation scale of the MS-threshold mass relation. (b) MS top quark
mass computed from the PS, 1S, RS and RS′ mass with third and fourth loop accuracy with
respect to renormalistion scale in the MS-threshold mass relation [133].

2.3.2 Mass Definitions

As is the case for all parameters in the SM Lagrangian, quark masses are renormalised quantities.

Moreover, one is free to renormalise in any well-defined fashion as long as all predictions are UV

finite. This freedom turns out to be of great utility when dealing with quark masses in particular.

The reason being that although any renormalisation scheme is permitted, different ones need

to be applied for different purposes when dealing with quarks as predictions can become non-

attainable otherwise. Various quark mass renormalisation schemes have been proposed and

studied [58, 60, 94, 130–132], some of which are illustrated for mt in Fig. 2.3 from one- to four-

loop order [133, 134]. Each has its associated regimes of utility as well as properties that make

them unique. We will discuss the ones employed in this thesis briefly as they are re-introduced

later on in the appropriate sections.

2.3.2.1 The Pole Mass and Renormalons

The most natural definition of quark mass is arrived at from the quark propagator and is known

as the pole mass, mpole [135]. This is how we generally define mass in QFT and it is explicitly

given by the pole solution of the quark propagator. The full quark propagator to all loop-orders

can be written as,

iS(p,mQ) =
i

/p−mQ − Σ(p,mQ)
(2.83)

for a quark with mass, mQ, momentum p and self-energy, Σ(p,mQ). The pole mass is then

defined by the solution to,

(/p−mQ − Σ(p,mQ))|p2=m2
pole

= 0. (2.84)

Thus, all that is necessary to determine the pole mass up to a specific order in small couplings is

the radiative corrections to self-energy diagrams. The pole mass has the advantage of being both

gauge invariant [135, 136] and IR finite [137]. Moreover, for heavy quarks, one can relate the

pole mass to hadron masses such as the meson mass in a perturbative expansion in 1/mQ [59].
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Although the pole mass is well-defined and simply determined, its perturbative relation to

physical observables is known to contain ambiguities [130]. For example, consider the semi-

leptonic, b→ u decay width to the bottom quark pole mass, denoted mb. At two-loop orders in

QCD this relation is given by [138,139],

Γ(b→ Xulν̄l) =
G2
F |Vub|2m5

b

192π3

(

1− 2.41
αs
π

+ (3.39− 3.22β0)
(αs
π

)2
+O(α3

s,m
−1
b )

)

(2.85)

=
G2
F |Vub|2m5

b

192π3
(1− 0.17− 0.11 + . . .) (2.86)

where GF is the Fermi constant, αs = αs(mb) = 0.22 and,

β0 = 11− 2

3
nf , (2.87)

is the first coefficient of the QCD beta function such that nf = 4 is the number of light quark

flavours. By inspection of Eq. (2.86), the two-loop terms are large and thus the perturbative

series is poorly behaved although αs/π ≪ 1.

This poor perturbative behaviour is endemic in the pole mass to all perturbative orders [130].

More specifically, any perturbative series relating quantities to the pole mass exhibit ambiguities

of O(ΛQCD/mpole). These ambiguities are expected to occur as solely asymptotic convergence

is achievable with perturbation theory [39]. Furthermore, mpole can only be defined through its

relation to observable quantities, which pass on the ambiguity to the pole mass definition. This

ambiguity has been studied extensively and is also known as the IR renormalon. The IR nature

of the renormalon is due to it arising from the IR (or low-momentum) region of loop integrals at

which the QCD running coupling grows large. For a more detailed review of this phenomenon,

see Ref. [47].

2.3.2.2 The MS Mass

The renormalon ambiguity of the pole mass arises due to its sensitivity to IR physics; this

results in the notion of a short-distance mass definition. To define such a mass, one needs a

way to separate short- from long-distance physics. Conveniently, any mass parameter which

is renormalised at some scale, µ, is by definition insensitive to IR scales. Moreover, regulat-

ing perturbative calculations is most often done with dimensional regularisation, as defined in

Section 2.2. Thus, the combination of dimensional regularisation and the requirement of renor-

malisation scale dependence leads to the MS-mass, labelled m̄q(µ), as being a valid quark mass

candidate.

As previously introduced the MS-mass in the SM is defined by dimensionally regulating

the SM Lagrangian and subtracting divergences in the MS-scheme. Moreover, as discussed in

Section 2.2.1, one chooses µ ∼ Q where Q is the characteristic energy scale of the physical process

being studied. The RGE can be used to then relate a mass renormalised at a particular scale

to one renormalised at another, performing a resummation of logarithms at all orders [140,141].

One may then relate the MS-mass to the pole mass at any order. Again, sticking with our

example from the previous section of bottom quarks in QCD [142–144],

mb

m̄b
= 1+

4

3

ᾱs
π

+(1.56β0− 3.74)
( ᾱs
π

)2

+(1.47β20 +0.3β1 +0.4β0− 30)
( ᾱs
π

)3

+O(α4
s), (2.88)
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given to three-loop orders. The second coefficient of the QCD beta function is given by,

β1 = 102− 38

3
nf , (2.89)

and ᾱs ≡ αs(m̄b), meaning the MS-mass is taken to be renormalised at µ = m̄b(µ) and thus,

m̄b ≡ m̄b(m̄b). With this relation we can re-express the semi-leptonic decay width of the previous

section to two-loop orders [138],

Γ(b→ Xulν̄) = Γ0m̄
5
b(1 + 4.25

αs(mb)

π
+ 4.58β0

αs(mb)

π

2

+O(α3
s)) (2.90)

= Γ0m̄
5
b(1 + 0.30 + 0.19 +O(α3

s)). (2.91)

We can see a marked improvement in the asymptotic series, and it has been shown that the

O(ΛQCD) renormalon ambiguity indeed vanishes [139]. Thus, MS-pole relation seems to quell

our perturbative issues, and the relation is known to four loop orders in pure QCD for the

heavy quarks [133, 134]. Furthermore, as we are interested in EW corrections mainly, the MS-

pole relation has been determined for top and bottom quarks to two-loop precision in the full

SM [145–151].

2.3.2.3 The Threshold Masses

At this point in our overview, it seems the MS-mass is sufficient for all precision tests in the

SM. However, as pointed out firstly in Ref. [152], the MS-mass is not well behaved as well at

scales below µ = mQ, where mQ denotes the pole mass. This poor behaviour is best explained

from an EFT perspective. The MS-mass is defined in the full theory treating the quark as fully

dynamical from a UV scale down to mQ. Once one reaches µ = mQ, however, the appropriate

theory which describes the dynamics and kinematics changes from the SM to HQET [153]. Thus,

from an EFT perspective, it makes no physical sense for µ to be lowered beyond mQ in the full

theory. Furthermore, mQ is not a running parameter in HQET and renormalising m̄q(µ) below

mQ introduces non-physical large logarithms, which negatively affects perturbative convergence.

Thus, we need an entirely new set of mass definitions, the so-called threshold masses, which

are well behaved for observables below threshold in the low energy regime. These mass definitions

are useful for heavy quark studies in the non-relativistic (NR) limit. Moreover, a threshold

mass must be defined such that it avoids IR renormalons while also exhibiting well-behaved

perturbative relations in the NR regime. Many threshold masses have been proposed and studied

in a variety of NR process [56–60]. A few threshold-MS mass relations for the top quark have

been determined to four-loop order in pure QCD [133], as depicted in Fig. 2.3. We will now

introduce the threshold masses studied in the remainder of this thesis.

Kinetic Mass: The first threshold mass we will consider is known as the kinetic mass,

mkin
Q (µf ), in the literature and was first introduce in Refs. [56, 154, 155]. The kinetic mass

incorporates a new IR factorisation scale, µf , to subtract long-distance physics and avoid the

renormalon ambiguity in its definition. The mass is defined by the heavy meson BE, Λ̄µf , and

residual KE, µ2π(µf ),

mQ = mkin
Q (µf ) + Λ̄(µf )−

µ2π(µf )

2mkin
Q (µf )

+O(1/m2
Q) (2.92)
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where mQ denote quark pole mass. The energies are attainable perturbatively from the forward

scattering amplitude of a heavy quark non-flavour changing external current in the small quark

velocity (SV) limit [156]. By definition, in the factorisation limit µf → 0, mkin
Q (µf ) is simply the

pole mass while for ΛQCD < µf < mQ, the kinetic mass eliminates the IR renormalon ambiguity

and is well-behaved in the heavy quark limit. The MS-kinetic mass relation has been determined

to three loops in pure QCD [157], for the bottom quark the relation is given by,

mkin
b (µf )

m̄b
= 1 +

4

3

ᾱs
π

[

]1− 4

3

µf
m̄b
−

µ2f
2m̄2

b

]

+
( ᾱs
π

)2
[

K − 8

3
+
µf
m̄b

(

8β0
9
X1 +

8π2

9
− 52

9

)

+
µ2f
m̄2
b

(

β0
3
X2 +

π2

3
− 23

18

)

]

+O(α3
s, µ

3
f/m

3
b), (2.93)

up to NNLO [158], such that,

K =
β0
2

(

π2

6
+

71

48

)

+
665

144
+
π2

18

(

2 ln 2− 19

2

)

− 1

6
ζ3,

X1 = ln
2µf
m̄b
− 8

3
, X2 = ln

2µf
m̄b
− 13

6
. (2.94)

The term ζn is the Riemann zeta function, and β0 is the first QCD beta function coefficient.

Potential Subtracted Mass: Another important threshold mass used in heavy quark pre-

cision studies is known as potential subtracted (PS) mass [57]. As in the kinetic mass, the PS

mass is dependent on energetic quantities determined from the dynamics of heavy physics. To

define the PS mass, let us begin by considering the dynamics of a quark-antiquark (quarkonium)

system, which is governed by the Schrödinger equation,

(

− ∇
2

mQ
− E + V (r)

)

G(r, 0, E) = δ(3)(r). (2.95)

The binding energy of the system is given by E =
√
s − 2mQ, and V (r) is the Coulomb-like

potential between the pair of heavy quarks, also known as the static potential [39, 159]. Thus,

Eq. (2.95) incorporates the total static energy of a pair of heavy quarks in its description at some

fixed distance, r, given by,

Estat(r) = 2mQ + V (r). (2.96)

The total static energy is physical and always well-defined, meaning it can not exhibit non-

physical renormalon ambiguities. The lack of ambiguities has been demonstrated in the context

of QCD as the higher-order behaviour of V (r) cancels that of the pole mass, implying the total

static energy in Eq. (2.96) is well-defined.

We can explictly draw out this cancelation by expressing the pole mass in terms of the PS

mass, which is defined as,

mPS
Q (µf ) = mQ − δm(µf ) (2.97)

such that,

δm =

∫

|q|<µf
/d
3
qṼ (q), (2.98)
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and Ṽ (q) is the momentum space potential [159]. Note the inclusion again of an explicit fac-

torisation scale to avoid the small |q| region in which the renormalon resides. Thus, to obtain

this mass one needs to extract the Coulomb-like terms from quarkonium scattering in the heavy

quark limit of the SM [160,161]. In the case of pure QCD the PS mass has been determined to

four loop orders [134], as is shown in Fig. 2.3. We present the PS-pole bottom mass relation for

illustration, to one-loop order [57],

mPS
b (µf )

mb
= 1− CF

αs(µ)

π

µf
mb

(

1 +
αs(µ)

4π

[

a1 − 2β0

(

ln
µf
µ
− 1

)])

+O(α3
s,m

−2
b ),

a1 =
31

3
− 20

9
Tfnf , (2.99)

neglecting finite mass affects. The colour factors in QCD are given by CA = 3, CF = 4/3 and

Tf = 1/2, also nf = 4 in the case of the bottom quark while nf = 5 when considering the top

quark in QCD. One can then relate the PS mass directly to the MS-mass using the MS-pole

mass relation. Again in the case of the PS mass, for µf < mQ the pole mass and PS mass differ

by O(EQ) where EQ ∼ mQv
2 which is useful for power counting.

1S Mass: Recall that the previous threshold mass definitions we introduced are dependent on

an explicit IR factorisation scale, µf . This additional IR scale controls spurious non-perturbative

behaviour arising from the IR regime in the pole mass definition. Although such scales are

necessary for those definitions, they are free parameters and finding the best choice to minimise

poor behaviour is not always trivial. There are, however, threshold mass definitions that require

no factorisation scales to be introduced; the first discovered and most often employed definition

is the so-called 1S mass [59, 132].

The 1S mass is defined simply as one-half the energy of the 1S qq̄ state calculated perturba-

tively. The perturbative point is crucial as this excludes non-perturbative effects automatically

and it then lies firmly in the realms of short-distance mass definitions. The difficulty in the 1S

mass, as has been shown in QCD, is that the renormalon cancellation is subtle and achieved with

appropriate re-ordering of terms in perturbation theory. In the case of pure QCD the 1S mass

is known to four loop orders [134], as depicted in Fig. 2.3. The 1S-pole bottom mass relation to

one-loop order is [162],

m1S
b (µf )

mb
= 1− (αs(µ)CF )

2

8

(

1 +
αs(µ)

π

[

β0(l + 1) +
a1
2

]

)

+O(α3
s,m

−2
b ), (2.100)

with l ≡ ln (µ/(CFmbαs)), and other parameters are as previously defined. In chapters 4 and 5

of this thesis we will be focusing on determining the leading EW corrections to the kinetic, PS

and 1S masses, which appear at one-loop order in each case. We end by noting that we have

by no means introduced all threshold mass definitions, for instance, there is the renormalon

subtracted (RS) mass which is also illustrated in Fig. 2.3. For a review of more definitions not

considered in this thesis we recommend Refs. [122].

2.4 Beyond The Standard Model Motivation

The SM has been incredibly successful in its description of fundamental interactions, and until

now, there exists no direct detection of particles that lie beyond. Moreover, the SM exhibits a
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very delicate structure that discounts many BSM theory proposals, as they have to be consistent

with the plethora of confirmed data thus far. Direct detection aside, however, there is plenty

of indirect evidence that the SM cannot describe, impelling the theory community to consider

models beyond. This section will consider a few pieces of BSM evidence along with compelling

models that describe their origin.

Before we begin, let us list for reference and perspective what exists beyond a reasonable

doubt and is unexplained thus far: neutrino mixing and masses [163], matter-antimatter asym-

metry [164], non-baryonic cold dark matter [165], acausal density perturbations consistent with

a period of inflation in the early universe [166]. Moreover, there are many deep unexplained

features of nature, for instance: Planckian scale physics, hierarchies of scale between the known

constants of nature, the number of fermion families, the number of space-time dimensions,

etcetera. As the primary focus of this thesis is heavy fields and EFTs, we will avoid cosmology

in the examples considered next.

2.4.1 Flavour Puzzle

Recall that the SM Lagrangian in Eq. (2.59) includes 18 parameters in total: 6 quark masses,

three lepton masses (SM has massless neutrinos), three angles plus a phase of the CKM matrix,

three gauge coupling constants, two Higgs potential couplings. Aside from the gauge and Higgs

potential couplings, the remaining 13 parameters lie in what is known as the flavour sector of the

SM. The flavour sector exhibits many puzzles ripe for consideration, for instance, the hierarchy

of scales between the fermion masses.

As measured, there is an enormous scale separation in mass among the SM fermions, whether

taking them as a single group or separating into quarks and leptons, the hierarchy persists [167,

168]. Moreover, with regard to quarks and their CKM matrix an elusive pattern is present,

which is more apparent in the Wolfenstein basis [169],

V ∼









1− λ2/2 λ λ3

λ 1− λ2/2 λ2

λ3 λ2 1









, (2.101)

up to O(λ4) with λ = sin θ12 ∼ 0.2. Thus, in the flavour sector these hierarchies and patterns

are not yet determined.

The answer to this mystery could lie in a flavour symmetry breaking mechanism, i.e. hierar-

chies in the SM arise from particles with flavour symmetry that experience symmetry breaking

at some higher grand unified theory (GUT) scale. For instance, the minimal supersymmetric

Standard Model (MSSM) is often cited as providing such a mechanism. In the MSSM, each

SM fermion field has a bosonic super-partner and vice-versa, accompanied by their masses and

couplings [170]. Alternatively, the apparent patterns may be based on a U(1) Froggatt-Nielsen

(FN) symmetry [171], combined with a discrete A4 symmetry [172], which is apparent in SM

extensions containing hypothetical fields known as leptoquarks [163]. Leptoquarks are particles

that couple to both quarks and leptons and may be involved in lepton flavour violation and

non-universality.

On the other hand, one can explain the smallness of the Yukawa couplings and CKM angles

through RGE evolution in the IR. Unfortunately, Yukawa couplings exhibit little logarithmic
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energy dependence, and thus RGE flow is insufficient to explain the hierarchy of scales even for

strong coupling. Lastly, conformal field theory (CFT) offers a neat solution [173]. A CFT is

defined as a local QFT invariant under conformal, or angle preserving, mappings. By extending

the SM gauge group with a conformal sector, containing scale-invariant gauge couplings, the

flavour hierarchy is then generated by strong conformal dynamics [174,175].

The only way to confirm any of these model solutions in the flavour sector, aside from direct

detection of new particles, is through anomalies in data. We are at an exciting time for flavour

physics as several new such anomalies appear in various experiments. For instance, several

measurements over the years of B-decay are hinting at deviations from the predictions of the SM

alone. Such B-decay anomalies are now being accompanied by discrepancies in measurements

of the muon’s anomalous magnetic moment (AMM).

B-decay Anomalies: A large number of data discrepancies are appearing in analyses of var-

ious independent groups with regards to flavour changing current (FCC) transitions. Such

anomalies have been detected in both neutral, b → sl+l−, and charged, b → cl−ν̄l transitions.

We group and describe the confirmed results over the years into four distinct types:

• The branching ratio suppression in b→ sµ+µ− transitions [176,177]. In these studies, the

dominant uncertainties are hadronic in nature [178,179].

• Angular observable deviation from the SM in B → K∗sµ+µ− transitions [180]. In this

case, the dominant uncertainties are also hadronic but less significant [181].

• Lepton universality deviation from the SM in b → sl+l−, B → Kl+l− and B → K∗l+l−,

between electrons and muons (e-µ universality) [23]. On the theory side, the uncertainty

is sufficiently small [182], but the experimental sensitivity is not sufficient as of yet.

• Lepton universality deviation in b → sl−ν̄l transitions, between all SM leptons [177, 183].

In this case, e-µ universality holds to high precision [120, 184]. Similar to the previous

point, dominant uncertainties are experimental [185].

On the experimental front, the B-decay observables to test lepton-flavour universality violation

in b → c are given by branching ratios. These ratios have been measured over time by various

collaborations including LHCb [23, 177, 183], Belle [23, 184], and BaBar [183]. The discrepancy

with the SM from combined measurements stand at ∼ 3σ [182, 185]; however, the latest and

most precise Belle measurement of,

RD∗ =

∫

dq2dBR(B → D∗τντ )/dq2
∫

dq2dBR(B → D∗eνe)/dq2
, (2.102)

has only shown a 1.2σ discrepancy. Therefore it may be that statistical fluctuations will eventu-

ally explain away these anomalies. Assuming, however, that these anomalies turn to discoveries

and BSM physics is needed, there are various proposals [186].
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p1
p2

q

Figure 2.4: Diagrams of charged lepton AMM with initial momenta, pi, and transfer momentum,
q = p2 − p1. Shaded circle represents higher-loop virtual SM corrections.

AMM Anomalies: Quantum corrections to the AMM of a particle are important to determine

as they are observables that can be measured to very high precision. Currently, the AMM of the

electron is the most precisely determined observable in particle physics to date. The charged

lepton AMM is given by the diagram illustrated in Fig. 2.4 which evaluates to,

ASM
l = −ieū(p2)

[

F1(
q2

m2
l

)γµ +
iσµν

2ml
qνF2(

q2

m2
l

)

]

u(p1), (2.103)

with Fi known as form factors and are given to LO by F1 = 1 and F2 = 0. At NLO and beyond

additional terms ∝ αe become apparent in F2, which have the same structure as a magnetic

moment. Thus, if at tree-level, F2 = 0, then the magnetic moment is gl = 2, as predicted by

the Dirac equation. At NLO, the first quantum corrections start to appear, and for q2 → 0, the

leading term in the momentum expansion is,

F2(0) =
αe(µ)

2π
⇒ gl = 2 + 2F2(0) = 2 +

αe(µ)

π
. (2.104)

and the AMM is then conventionally defined as,

al =
gl − 2

2
, (2.105)

which corresponds to all deviations for gl = 2 at LO for all leptons, l = e, µ, τ . It turns out

that the theory predictions must incorporate all EW and hadronic contributions to attain the

precision achieved thus far [187]. The latter of contributes the highest theoretical uncertainty

and therefore requires further thorough study to match the low EW uncertainty [188–191].

Measurements have recently found curious anomalies concerning SM theory predictions for

the muon AMM in particular. After adding uncertainties from theory and experiment in quadra-

ture, there is a significant deviation of 4.1σ from the latest theory predictions [188, 189]. Curi-

ously, however, at the same time, an extensive lattice QCD collaboration which performed a very

precise computation of the hadronic vacuum polarisation (the sector with the most prominent

theory uncertainty) agrees with experiment, and their results are consistent with the SM [190].

Of course, this is only one theory prediction, and it is in contradiction with a large body of

knowledge, including EW data [191,192], and previous lattice calculations [193]. Hence, further

investigation is required on all fronts.
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Assuming this anomaly persists and is indeed a discovery, various BSM models exhibit ex-

plicit breaking of lepton universality. For instance, models which introduce additional fields such

as light scalars [194–196], or partners from supersymmetry (SUSY) extensions [197–199].

2.4.2 Strong CP Problem

Another mystery of the SM lies in the QCD sector of the SM, which includes only quarks and

gluons. As described in Section 2.1, QCD arises from the local SU(3)C symmetry group being

gauged. Furthermore, QCD is CP-symmetric, in contrast to the EW sector, which includes

gauge fields coupled to chiral currents that violate Parity. In QCD, gluons only couple to vector

currents and CP-symmetry in QCD has been confirmed by experiment beyond a reasonable

doubt. Furthermore, if CP-violation does occur, it would be suppressed by a factor of 109 [200].

We thus arrive at the strong CP problem, which can be seen by the addition of the following

term into the colour sector of the SM,

LSM ⊃ θ
g2s

16π2
GaµνG̃

a,µν , (2.106)

with θ a constant parameter and dual tensor, G̃a,µν = 1
2ǫ
µνσρGaσρ. This additional term is

permitted by the gauge symmetry and must be included in the SM, as there is no conservation

law forbidding it.

The reason why Eq. (2.106) is not included in the original SM is that it can be written

as a total derivative, and thus it does not contribute perturbatively. However, it is, in fact,

non-zero non-perturbatively and therefore required in non-perturbative studies such as lattice

QCD [201,202]. More importantly, it imposes a big issue; the term is CP-violating, resulting in

new contributions to the calculated neutron electric dipole moment (NEDM) [203]. Nevertheless,

CP-symmetry holds, as has been measured consistently. More precisely, measured bounds in

NEDM have placed the constraint of θ < 10−11 [204], which are very small relative to other SM

couplings. The smallness of θ and the underlying reason is known as the strong CP problem.

The most well-known solution to this problem is known as Peccei-Quinn (PQ) theory [205].

The authors suggested introducing a new anomalous global U(1) symmetry, now called U(1)PQ,

which exhibits SSB. After PQ symmetry breaking (PQSB) at some high PQ scale, the constant

θ parameter gets exchanged for a dynamical field, θ̄(x). If one minimises the vacuum energy,

the field, θ̄(x), naturally tends to zero, acting as a potential. This solution to the strong CP

problem was later found to necessarily introduce an additional pseudo-scalar field known as the

axion [206,207]. The axion can be seen as a pseudo-Goldstone boson associated with the PQSB

and the net effect in the Lagrangian is,

Laxion =
a(x)

fa

g2s
16π2

GaµνG̃
a,µν , (2.107)

where θ̄(x) is replaced by the dimensionless, a(x)/fa, such that fa is a PQSB order parameter and

a(x) is the axion field. The θ parameter in Eq. (2.106) has been effectively replaced with θ+a/fa
and it has a CP-preserving potential minimum at the point, θ + a/fa = 0. Then conveniently,

the CP-violating angle is dynamically tuned to zero without further need for fine-tuning.

The PQ proposal solves the strong CP problem. It has the bonus of providing an excellent

candidate for DM in the axion, which makes up ∼ 20% of the energy density of the universe in
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our cosmological era [165]. On the experimental side, axion direct detection in colliders is not

feasible as the axion interaction is extremely weak. However, because the interaction is weak and

much lower than typical star temperatures, axions must be emitted from stars [208]. Therefore

the PQ order parameter, fa, is bounded below stringently so as not to alter stellar evolution

significantly. The most stringent such bound has been observed from supernova (SN)1987A and

is given by fa > 4 × 108 GeV [209]. This bound is doubly important as it is axion model-

independent, as long as the axion model solves the strong CP problem. Various experimental

searches are being performed currently:

• Solar axions are emitted with energy ∼ keV from axion-photon conversion in the presence

of the Sun’s large magnetic field. The CAST collaboration has used axion helioscopes [210],

to cover the parameter space for QCD axions with order parameter in the range, fa ∼
107−8 GeV. IAXO is a collaboration for a future project which may push this range to

109 GeV [211,212].

• DM axions in the galactic halos can be detected with haloscopes with a microwave cavity.

Experiments detecting axion radio frequencies that correspond to the cold axion Compton

wavelengths are being conducted. The ADMX collaboration has already excluded DM

axions in a small mass range for fa ∼ 1011 GeV [213]. Once these studies are completed,

they are expected to map the largest parameter space yet, which are consistent with DM

axions [214].

• Powerful lasers can be used to detect axions through the axion-photon-photon currents.

These experiments let light through a wall under a magnetic field, some of which would

pass through as axions. The ALPS collaboration has employed this method and already

placed strict bounds, albeit much less strict than the CAST collaboration [215].

• As axions are incredibly light; their existence would mediate long-range macroscopic forces.

As the axion is CP-odd, this results in a suppression of its interactions with macroscopic

objects. Studies on monopole-dipole interactions have exploited this property and placed

bounds on the axion-nucleon/electron couplings. Unfortunately, these current bounds are

not near theoretical predictions [216].

In conclusion, the tightest bounds on the PQ order parameter and mass are attained from

astrophysical arguments and observables. Future axion helioscope experiments could attain the

requisite precision to detect QCD axions. Cavity experiments will also be able to detect DM

axions for appropriate fa values if they are the dominant components of DM. Moreover, there

have been many experimental proposals to detect GUT-scale axions with fa > 1015 GeV [217].
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Chapter 3

Effective Field Theories

An effective field theory (EFT) can be interpreted as a framework that one can employ to perform

scale separation in a consistent way [218]. The need for such a framework arises in precision

studies when attempting to identify deviations from the SM in observables. As a tool, EFTs

are particularly useful as they cleanly glean unnecessary ambiguities and identify deviations in

a global and model-independent fashion. The main requirement to define an EFT from a full

theory is the existence of various widely separated scales. Moreover, EFTs are mathematically

consistent by the decoupling theorem [219]. The theorem states that large degrees of freedom of

a theory decouple at energies well below their mass, i.e. they are suppressed by inverse powers

of their large mass scale.

From a more calculation-based perspective, an EFT is a tool that manifests scale separation

explicitly. I.e. given some large energy scale, Λ, an EFT is defined by systematically expanding

in powers of p/Λ at energies, p≪ Λ. The separation of scales is then further made explicit at the

level of observables. Thus, given an EFT, calculations are simplified greatly, and contributions

from different energetic regimes are kept track of systematically. The first step is defining an

EFT; this can be done algorithmically,

1. Identify the low-energy scale of interest, p, and the degrees of freedom with masses or

virtualities less than or near p2.

2. Determine a complete set of Lagrangian operators, Oi, consistent with the symmetries of

the low-energy theory. The order in the (p/Λ)-expansion must be chosen as well, depending

on uncertainty tolerance.

3. Matching is the final step to producing a well-defined EFT, given a general EFT La-

grangian, Leff =
∑

iCiOi, the coefficients, Ci are known as matching (or Wilson) coeffi-

cients [61]. The determination of Ci is achieved by comparing Green’s functions in the

underlying theory to ones in the EFT, ensuring their equality in the (p/Λ)-expansion at

each loop-order.

Once the EFT is defined, low-energy observables can be calculated with the EFT Lagrangian.

Essentially, we may now reduce processes to ones with only the relevant degrees of freedom

present. The effects of the remaining degrees of freedom are only present as factors in the

matching coefficients. In EFT terminology, this is known as integrating out irrelevant degrees

of freedom.
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The EFT framework is helpful whether the underlying theory, known as the full theory in

EFT terminology, is either known or yet to be determined. Thus, there are two EFT approaches

to consider, the first being the top-down approach, in which the full (UV) theory is known, and

we are solely interested in low-energy (IR) effects. Conversely, we have the bottom-up approach

in which the full theory is unknown, or its low-energy description has not yet been formulated.

Top-Down Approach: In general, determining a low-energy EFT from a known UV theory

is called a top-down EFT [61]. The advantage of using a top-down EFT to study low-energy

observables is that the calculations become significantly simpler to perform. One of the main

complicating factors in QFT calculations is when various scales are present in the model, any

reduction in the number of which makes higher-order calculations simpler or even feasible in

the first place [220]. In this approach, one can integrate out heavy fields of the full theory

diagrammatically. Integrating out is achieved by first considering the amplitudes of a particular

process in the full theory and perform an expansion in p/Λ. The same process is considered in the

EFT, and the matching coefficient is defined by enforcing equality between the two amplitudes.

The procedure described can be further applied sequentially if there are various well separated

scales in the full theory. Given a hierarchy of scales, Λ1 > Λ2 > . . . > ΛN , one can start at

the largest scale, Λ1, and evolve parameters to Λ2 with RGE evolution. Upon integrating out

the heavy field at Λ1 via diagrammatic methods, one can further evolve the EFT with its RGE

to the next threshold, Λ3, and integrate out further heavy degrees of freedom above Λ3. This

procedure can be re-iterated down to the lowest scale, ΛN of the underlying theory. The EFT

at the smallest scale is multiplicatively matched to all the EFTs at higher scales.

As an elementary illustration of the top-down approach, we take the textbook example of a

multi-pole expansion in classical electrodynamics. Consider the dynamics of a rigid body with

charge distribution, ρ(x), localised at small distance, x ∼ 1/Λ. If the EM field is slowly varying

over large distances, x ∼ 1/p, we can describe the dynamics very accurately in terms of a small

number of multi-pole moments. Higher-order terms in the multi-pole expansion are analogous to

higher powers in p/Λ in the EFT formalism just described, and the moment factors are simply

matching coefficients. In a more general sense, the quest of fundamental physics has revolved

around transforming bottom-up EFTs to top-down EFTs as higher energy scales, and shorter

distances are probed.

Bottom-Up Approach: A bottom-up EFT is one where the UV theory is unknown, or a

low-energy description is not possible in the top-down approach. An example of the latter is

QCD, in which low-energy interactions are non-perturbative. In this case, chiral perturbation

theory is employed as an EFT for hadrons [220]. On the other hand, applying EFTs in cases

where the UV theory is unknown is highly convenient as one is not tied to a specific model,

and therefore assumptions are minimised. All that is assumed is what has been observed at the

experimental scale of interest. In constructing a bottom-up EFT, it is instructive to glean insight

from the previously defined top-down approach. We are then fully informed on what is needed

to construct a bottom-up EFT: the symmetries and field content at the scale of interest and

consistent power counting for our expansion in some large scale. In a bottom-up EFT, the high

energy physics is encoded in a systematically expanded series of operators which solely contain
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low-energy fields. We re-iterate that if the EFT is defined with these requirements alone, it is

entirely model-independent up to the Wilson coefficients, which can be specified.

The field content of a bottom-up EFT is easily identified by the specific degrees of freedom

propagating at the scale of interest. The second requirement of symmetry selection requires

one of two assumptions: either the low energy symmetry continues to hold in the UV (usually

the case for gauge symmetries), or a new physics sector is assumed to exist which breaks the

symmetry. In the latter case, higher-order operators can violate low-energy symmetry at some

scale, for instance, CP-symmetry violation as in the strong CP problem, discussed in Section 2.4.

Power counting selection automatically indicates the expected size of the Wilson coefficient of

a particular operator in the bottom-up EFT. There are two types of power countings one can

specify, which depend on whether the EFTs are decoupling or non-decoupling.

In a decoupling EFT, the leading EFT Lagrangian is completely renormalisable, and thus,

UV physics is suppressed by 1/Λ. We usually take Λ as some large energy scale identified with

the lowest-lying scale of new physics. Higher-order operators have larger mass dimension and are

therefore suppressed further by higher powers of 1/Λ; as in four dimensions, the product of the

EFT operator and its coefficient must consistently have mass dimension four. On the other hand,

in non-decoupling EFTs, the leading EFT Lagrangian contains mass dimension operators greater

than four and is thus non-renormalisable already at LO. Thus, an expansion in mass dimension

can not be achieved consistently. Instead, one must rely on the renormalisation procedure to

instruct the expansion; counterterms not part of the LO Lagrangian will be included at NLO.

Thus, the Lagrangian becomes renormalisable at each order in the loop expansion. In non-

decoupling EFTs, the large cut-off scale, Λ, must be identified with a low-energy scale, 4πv.

This expansion places one-loop contributions of the LO Lagrangian at NLO tree-level terms,

as v2/Λ2 = 1/(16π2). Thus, one can define consistent power counting in both decoupling and

non-decoupling EFTs.

3.1 Standard Model Effective Field Theory

We will begin by briefly reviewing one example of a bottom-up EFT, for completeness, known

as the Standard Model effective field theory (SMEFT) [63]. The idea behind SMEFT is to build

a model-independent EFT based on the SM and current experimental observables. With such

an EFT, one can search for anomalies that point to extensions of the SM without testing every

proposed UV theory individually. Employing an EFT specifically for these studies is further

justified by the lack of direct detection of new particles from experimental collaborations such

as the LHC [167,168,221]. This lack of detection implies a large mass gap to the UV theory, which

is ideal for employing an EFT approach as it is an essential ingredient of any EFT. Therefore,

one can use the SM Lagrangian with parameters from current experimental observables as the

leading-order Lagrangian of SMEFT. Our only assumption in constructing SMEFT is that the

new physics is decoupling, as defined in the previous section.

Given the assumption of new physics decoupling and power counting given by mass dimen-

sions of a higher-order operator, we can write the SMEFT Lagrangian as,

LSMEFT = Ld=4
SM +

∞
∑

d=5

∑

i

(
1

Λ
)d−4C

(d)
i O

(d)
i . (3.1)
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The sum over the index i is based on all possible Lorentz and gauge-invariant operators at

each order in 1/Λ. Note that any approximate symmetries (AS) respected by the SM can be

violated by the higher-order operators. AS-violating operators can then be further suppressed

by their coefficients depending on the assumptions enforced. Initially, the set of conceivable

operators of a given mass dimension may be huge, which is the case beyond dimension five [222].

However, Fierz transformations, integration-by-parts (IBP) identities, and EOMs can all reduce

this set to a minimal set of manageable size [223], known as an operator basis. The choice of

basis is not unique, and some are more convenient for specific applications than others. For

instance, a basis can be chosen, which reduces the number of operators with derivatives, as such

operators complicate calculations [224]. Going to arbitrarily high dimensional order is complex

as the number of operators per order increases dramatically; luckily, they are generally heavily

suppressed by higher powers in 1/Λ.

For example, consider dimension five operators, the next dimension above the SM in SMEFT.

It turns out that at dimension five, as first noted by Weinberg [225], only a single operator

structure is permitted [226, 227]. This operator is known as the Weinberg operator and is given

by,

Oνν = (ϕ̃†lr)
TC(ϕ̃†ls) + h.c, (3.2)

and in the SMEFT Lagrangian, the matching coefficient of this operator, c̃rsνν is a 3× 3 matrix

with twelve elements that parametrise the three lepton generations [228]. Interestingly, after

SSB, Oνν generates masses for the left-handed neutrinos, mrs
ν = c̃rsννv

2/(2Λ), providing a reason

for the lightness of neutrinos relative to other SM particles. A UV theory that produces this

operator is given if one extends the SM by including heavy right-handed neutrinos. In this case,

a Yukawa interaction is permitted as well as a Majorana mass term. If the Majorana term

is large, right-handed neutrinos can then be integrated out in the low energy top-down EFT,

which at first order contains the operator Oνν of SMEFT [229]. This mechanism is known in the

literature as the see-saw mechanism and provides an elegant solution to the neutrino problem,

and the heavy neutrino is a DM candidate [230].

Dimension six operators are suppressed by two powers of 1/Λ for large UV physics scale Λ

and thus, one would expect heavy suppression. Curiously, however, they are expected to be less

suppressed than the dimension five operators as there are operators at dimension six which do

not violate approximate symmetries. Moreover, many BSM models, after being passed through

the top-down EFT algorithm, contain dimension six operators [231]. The difficulty lies in the

number of possible operators at higher dimensions [228]. For instance, in the Warsaw basis of

dimension six [227], for three fermion generations that conserve baryon and lepton number, there

exist 2499 independent parameters. Nonetheless, dimension six operators have been a crucial

tool for LHC searches for BSM physics, and the LHC-HCC working group has performed a large

amount of EFT analysis with dimension six operators [232].

3.2 Heavy Quark Effective Theory

The first example of a top-down EFT employed in this thesis is heavy quark effective theory

(HQET) [64,68,71,72,156,233]. HQET was originally conceived as a tool to separate the short-

and long-distance physics related to heavy quark mass and QCD dynamics, respectively. As an

EFT, HQET is a decoupling theory and its Lagrangian is given by the heavy mass, mQ, limit of
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a quark of interest. Corrections to this limit are suppressed by powers of 1/mQ and the theory

is renormalisable at each order in 1/mQ. The EFT Lagrangian can be written,

Leff = Lheavy + Llight, (3.3)

where Llight is the standard QCD Lagrangian for gluons and nf light quarks,

Llight =
∑

i

q̄i(i /D −mi)qi −
1

4
GaµνG

a,µν , (3.4)

and Lheavy corresponds to the EFT Lagrangian for the heavy quark of interest. There are two

overarching frameworks which define Lheavy, these are HQET, which we discuss in this section

and NRQCD which is considered in Section 3.3.

HQET was originally devised as a framework to systematically perform calculations in the

heavy quark limit, simplifying both the perturbative and power corrections [68, 156]. To con-

struct HQET, one begins by splitting the heavy quark momentum into a sum of two parts: a

large part which scales like the heavy quark mass, mQ, and a small part, k, generally referred

to as the residual momentum,

pµQ = mQv
µ + kµ, |k|∼ ΛQCD. (3.5)

In the splitting, we introduce a four-velocity vµ of the heavy quark and mass scale, mQ. The

mass scale, mQ, is not limited and to be interpreted as being of the same order as the meson mass

subtracted by a term of O(ΛQCD). In general, one takes mQ to be the heavy quark pole mass,

but other choices are more well-behaved in the large mass limit [234], as previously discussed in

Section 2.3.

By inspection of Eq. (3.5), in the limit, mQ →∞, light degrees of freedom interactions only

affect the residual kµ and not vµ, which is therefore conserved. As is the case with conserved

quantities QFTs, one can naturally use them to label states. Thus, in the literature, heavy quark

states are labelled by their four-velocity [64]. The HQET Lagrangian is now attainable after

momentum and state substitution and applying EOMs in the limit mQ →∞,

Lheavy =
∞
∑

n=0

Ln, (3.6)

where Ln is of expansion order 1/mn
Q, and the zeroth order term is given by the often quoted

L0 = h̄viD · vhv. (3.7)

Here hv is a heavy quark field labelled by its four-velocity, v, and a frame is generally chosen such

that v2 = 1. One can see that Eq. (3.7) is independent of mass scale and exhibits spin-flavour

independence as well. Hence, at leading order in the EFT, the interactions of a heavy quark

with light degrees of freedom is spin-flavour symmetric. These two symmetries provide elegant

simplifications for calculations in HQET, for instance, in the study of decay and spectroscopy

processes involving heavy fields [68,71,156].

Of course, one must go beyond leading EFT order for precision calculations, for instance the

next-to-leading term is given by,

L1 =
c2(µ)

2mQ
h̄v(iD)2hv +

cF(µ)

4mQ
h̄vσ

µνGµνhv, (3.8)
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with anti-commutators, σµν = − i
4 [γ

µ, γν ] and Gµν = 1
igs

[Dµ, Dν ]. The matching coefficients

are given by, c2(µ) = 1, to all loop orders and cF(µ) has been determined to two-loop orders

in QCD [235]. The HQET Lagrangian is currently studied to 1/m4
Q [218, 236, 237], and the

associated matching coefficients are being determined to N3LO in QCD [238,239]. In Chapter 6

we present the HQET Lagrangian to 1/m3
Q order and determine the leading radiative EW

corrections to the matching coefficients.

We end by noting that this framework is not limited to heavy spin-1/2 fermions; one can

define such an EFT for heavy fermionic and bosonic fields of arbitrary spin [240–243]. This

has been particularly useful in constructing top-down EFTs from BSM physics [241, 243], and

bottom-up EFTs for black hole physics [242,244]. For a review of the history, development and

applications of HQET, we recommend Ref. [218].

3.3 Non-relativistic QCD

Let us now consider what may be interpreted as a re-formulation of the HQET framework in

non-relativistic QCD (NRQCD) [73,74]. NRQCD was first conceived to deal with bound states of

heavy quarkonia, or quark-antiquark systems in the NR limit. As both HQET and NRQCD are

based on the expansion, mQ →∞, the operators appearing in the two EFTs are identical [218].

The physics, however, of an NR bound state differs significantly from the physics of a lone

heavy quark and its interactions with light degrees of freedom. From an EFT perspective, this

difference lies in the power counting, i.e. the power counting of operators in NRQCD is what

differentiates it from HQET.

In HQET, assuming light degrees of freedom are massless, there exist two scales of interest:

the confinement scale, ΛQCD, and the heavy quark mass, mQ. Whence, all HQET operators are

distinguished by their order in a ΛQCD/mQ expansion. On the other hand, power counting in

NRQCD is more complex as two more scales need to be taken into account: the heavy quark

momentum and kinetic energy, pQ = mQv and EQ = 1
2mQv

2, respectively. Moreover, the four-

velocity, v, in NRQCD has a different meaning; it is no longer the heavy quark velocity but

the relative velocity of the two heavy quarks. Thus, with these other scales, one can no longer

expand consistently in 1/mQ. This issue can be seen if one considers, for instance, EQ/mQ,

which is the same order as p2Q/m
2
Q. The appropriate expansion parameter is instead the heavy

quark velocity, v, and the appropriate scaling rules have been determined in Ref. [245].

The inspiration for a formulation of NRQCD came from the analogous EM version in

NRQED, first proposed in Ref. [73]. With NRQED as a template, the first form of the heavy

portion of the NRQCD Lagrangian was produced [74],

Lheavy =
∞
∑

n=0

Ln, (3.9)

such that the leading Lagrangian by NRQCD power counting is given by,

L0 = φ†(iDt +
D2

2mQ
)φ. (3.10)

Here the field, ψ(x) is a two-component Pauli spinor and there exists an analogous term χ(x),

not explicitly written for the anti-quark field. We see further, by comparison of Eqs. (3.7)
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and (3.10), that the kinetic next-to-leading term of the HQET Lagrangian has shifted to being

leading in NRQCD. The next-to-leading EFT Lagrangian are those terms suppressed by O(v2)
and are represented by terms of the form,

L1 =
c1

8m3
Q

ψ†(D2)2ψ + gs
c2

8m2
Q

ψ†(D ·E −E ·D)ψ + gs
c3

2mQ
ψ†(σ ·B)ψ + . . . , (3.11)

with E = − i
gs
[Dt,D], σ is a vector of Pauli spinors and Bi = i

2gs
ǫijk[Dj ,Dk]. As we will be re-

introducing this Lagrangian in Chapter 6 and considering it in detail we refrain from expressing

it fully in this section.

We conclude by re-expressing the importance of the kinetic term being a leading contribution

to the NRQCD Lagrangian. This correct treatment of the kinetic terms has resulted in important

findings for describing NR Coulomb exchange. When considering bound states near threshold,

the power counting, v ∼ αs, is appropriate; correspondingly, Coulomb exchange terms∝ (αs/v)
m

require all-order summation. Therefore, NRQCD is a helpful tool for studying NR dynamics

and calculating relativistic corrections as it incorporates these in its higher order EFT operators.

Moreover, there are various valid formulations of NRQCD that are useful for different purposes,

for instance ones where the scales m, mv and mv2 are explicitly separated [141,246–251].

3.4 Soft-Collinear Effective Theory

The last EFT which is employed in this thesis is the soft-collinear EFT (SCET) [252]. The

framework of SCET arose from a willingness to describe low invariant mass jet interactions in

which the jets are highly boosted with respect to one another. This high energy, conventionally

parametrised by Q, which boosts the particles, defines the SCET expansion. At leading order in

the EFT expansion, a field redefinition is employed to decouple the soft and collinear degrees of

freedom in the operator expansion. Soft and collinear fields can still interact with one another,

and these are represented in the EFT currents by light-like Wilson lines [253]. The benefit of

studying factorisation theorems within the SCET framework is precisely the manifest decoupling

of soft and collinear pieces at the Lagrangian level [254–256]. Working with the full theory instead

complicates the process immensely, and with SCET, power corrections in inverse boost energy

can be studied systematically.

As in NRQCD there are a few formulations of SCET, we will employ the more modern so-

called label SCET formulation in this thesis [257]. As with all top-down EFTs their construction

is dependent on the underlying theory. To illustrate the EFT we will consider SCET for highly

energetic quarks with energy, Q, interacting with collinear and soft gluons [255, 256, 258–263].

The reference frame to work from is that of the heavy fields, as in HQET, in which light degrees

of freedom move along the light-cone (LC) direction nµ. Hence, the dynamics of the light field

can be decribed by LC coordinates p = (p+, p−, p⊥), such that p+ = n · p and p− = n̄ · p.
For convenience, one takes the direction of motion to be along the z-direction, in this case,

nµ = (1, 0, 0,−1) and n̄µ = (1, 0, 0, 1). For large energy, p− ∼ Q, and the remaining components

are small. Defining a small parameter, λ ∼ p⊥/p−, the momentum can be separated into,

pµ = n̄ · pn
µ

2
+ n · pn̄

µ

2
+ pµ⊥ = O(λ0) +O(λ2) +O(λ1). (3.12)
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Collinear and soft gluons have LC-momenta that scale as kc ∼ Q(λ2, 1, λ) and ks ∼ Qλ2(1, 1, 1),
respectively [256,262].

As shown in Ref. [257], at a scale, µ ∼ Q, one can match QCD onto an EFT with collinear

heavy and light quarks as well as collinear and soft gluons. Collinear quarks and their interactions

with collinear and soft gluons are defined by the QCD Lagrangian expanded in small parameter,

λ. To illustrate the expansion, consider the massless QCD Lagrangian,

LmQ=0
QCD = ψ̄i /Dψ − 1

4
GaµνG

a,µν , (3.13)

we may proceed by eliminating large momenta from the EFT fields. This process is reminiscent

of HQET as introduced in Section 3.2, however in this case it is more complex as there are three

scales to take into account. Splitting the momenta into large and small parts,

p = p̃+ k, p̃ ≡ 1

2
(n̄ · p)n+ p⊥, (3.14)

we see the large part, p̃, becomes the EFT label as in HQET while the residual part, kµ, is

dynamical. The large momenta, p̃, are eliminated by defining a new field, φn,p, labelled by p,

through,

ψ(x) =
∑

p̃

e−ip̃·xψn,p, (3.15)

with implicit recognition that only n̄ · p and p⊥ are true labels. For a particle moving along

n-direction ψn,p has two large and two small components, ξn,p and ξn̄,p, respectively. The

components are attainable with projectors,

ξn,p =
/n/̄n

4
ψn,p, ξn̄,p =

/̄n/̄n

4
ψn,p (3.16)

which satisfy identities,

/n/̄n

4
ξn,p = ξn,p,

/̄n/n

4
ξn̄,p = ξn̄,p, /nξn,p = 0, /̄nξn̄,p = 0. (3.17)

Upon this field replacement, the quark portion of Eq. (3.13) becomes,

L =
∑

p̃,p̃′

[

ξ̄n,p′
/̄n

2
(in ·D) ξn,p + ξ̄n̄,p′

/n

2
(in̄ ·D + n̄ · p) ξn̄,p

+ξ̄n,p′
(

/p⊥ + i /D⊥
)

ξn̄,p + ξ̄n̄,p′
(

/p⊥ + i /D⊥
)

ξn,p

]

. (3.18)

As derivatives on fermionic fields lead to suppression of order λ2, we may eliminate ξn̄,p with its

EOM,

(n̄ · p+ n̄ · iD)ξn̄,p = (/p⊥ + i /D⊥)
/n

2
ξn,p. (3.19)

Combining Eqs. (3.18) and (3.19) gives a Lagrangian of only ξn,p,

L =
∑

p̃,p̃′

e−i(p̃−p̃
′)·xξ̄n,p′

[

in ·D + (/p⊥ + i /D⊥)
1

n̄ · p+ in̄ ·D (/p⊥ + i /D⊥)

]

/̄n

2
ξn,p, (3.20)

in which the summation includes all copies of p̃ and p̃′ labelled fields.
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What remains to be expanded are the gluons inside the covariant derivatives, Dµ, i.e. we need

to split Aµ → Aµc +Aµs into soft and collinear parts. Aµc and Aµs fluctuations scale as λ2 and λ4,

respectively and when collinear gluons are acted on by derivatives, this results in λ0, 1 contribu-

tions. One can make the power counting explicit through collinear gluons fields being labelled by

large momentum components, q̃. This is done the same way as with fermionic fields, by extract-

ing a phase factor containing large q̃ through field redefinition, Ac(x)→ e−iq̃·xAn,q(x). Inserting

this into Eq. (3.20) and expanding in power of small scale λ, gives the O(λ0) Lagrangian [259],

L = ξ̄n,p

[

in ·D +
p2⊥
n̄ · p

]

/̄n

2
ξn,p

+ ξ̄n,p+q

[

gn ·An,q + g /A
⊥
n,q

/p⊥
n̄ · p +

/p⊥ + g/q⊥
n̄ · (p+ q)

/A
⊥
n,q −

/p⊥ + g/q⊥
n̄ · (p+ q)

n̄ ·An,q
/p⊥
n̄ · p

]

/̄n

2
ξn,p

+ . . .+O(λ). (3.21)

Here the label summation over p̃, q̃ is implicit, and the ellipsis corresponds to terms containing

two or more collinear gluon fields. By inspection, the first term in Eq. (3.21) gives the collinear

quark propagator. The soft gluon interaction arises from the covariant term, and collinear

gluon interactions are label-changing, unlike soft gluons. Thus, we now have a leading SCET

Lagrangian of the general type, which can be applied to particular processes of interest. We end

this section by noting that as this is an extensive subject, the brief motivation we provide here

is far from sufficient; instead, we point to Refs. [252] for a complete overview of the subject.

Moreover, in Chapter 7 we re-introduce SCET and its necessary parts for our specific calculation.
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Chapter 4

Heavy Quark Potential

In this Chapter we consider the static potential in theories exhibiting spontaneous symmetry

breaking. We do so in both the Wilson loop and scattering amplitude approaches and discuss

the limitations of the Wilson loop approach. We use our findings to calculate the static po-

tential of the SM at electroweak one-loop order. As the field content of the SM is extensive,

analogous results to ours in a large set of models are now achievable by varying the appropriate

couplings and group theory factors. This Chapter is based on Ref. [264], reflecting the author’s

contribution.

4.1 Motivation

The static potential is a crucial quantity for QFTs, as it represents the interaction energy of

a pair of heavy particles. The potential allows one to study the fundamental properties of a

given theory in the NR limit. The most well-known static potentials are the Coulomb potential

in QED and its non-Abelian analogue of QCD. The QCD static potential for a pair of heavy

quarks is known to N3LO order [41,265] and valuable in the study of NR bound states, such as

heavy quarkonia. It is of importance in many areas, such as quark mass definitions [57–60,135]

and quark pair production at threshold [235,266]. The static potential has also been studied for

heavy particles predicted in the context of BSM theories, such as the MSSM and N = 4 super

Yang–Mills (SYM) theory [267–269].

We begin by focusing on the QCD static potential, which is of leading importance to heavy-

quark theory due to the dominance of the strong coupling in the SM. The original idea of

describing a bound state of heavy coloured objects, in analogy to the hugely successful Hydrogen

atom, was proposed by Susskind in his 1970 Les Houches lecture [270]. In order to demonstrate

asymptotic freedom in Yang–Mills (YM) theory, he computed the one-loop pole terms using a

Wilson loop formula for the potential and, in the process, re-derived the first coefficient of the

renormalization group beta function. More recently, the two- and three-loop corrections were

found and turned out to be numerically significant triggering several investigations in further

contexts [40,41,265,271,272].

It is expected that the potential consists of two terms: a Coulomb-like short-distance term,

which is perturbatively calculable; and a long-distance term responsible for the phenomenon of

quark confinement [273]. Thus, a perturbative analysis will not provide the full potential and
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may not hold the key to gaining a deeper understanding of confinement. However, the short-

distance part may still be employed as a starting point for constructing potential models, which

have been vastly successful in the description of heavy quarkonia [159]. Moreover, it provides

an excellent description for very heavy systems, such as the tt̄ system, to high accuracy. The

potential in perturbative calculations is comparable with results from numerical calculations in

lattice gauge theory.

The Wilson loop approach, first employed by Susskind, continues to be used to this day

due to its computational simplicity. In this approach, the static potential in coordinate space,

V (r), is defined in terms of a Wilson loop, W (r, T ), with small but finite spatial extension, r,

and infinite temporal extension, T → ∞ [271]. In this limit, W (r, T ) ∼ exp[−iTV (r)], and

the potential in momentum space, V (q), is simply its Fourier transform. However, there has

always been discussion about whether the Wilson loop formula is well defined due to possible IR

divergences at higher orders [274]. On the other hand, the scattering amplitude approach yields

identical results, involves a computation of the on-shell quark-antiquark scattering amplitude,

and directly yields the momentum space static potential in the NR, q → 0, limit.

In this paper, we consider extending the static potential to theories that exhibit SSB; in

particular, we take on the case of the SM. The only case of a static potential in the context

of a theory with SSB was in the seminal result by Maldacena for heavy W bosons in N = 4

SYM [267]. Working off of his result, we attempted an analogous procedure to obtain a SM

potential; however, limitations became apparent, which we discuss in detail. Whence, instead, we

employed the scattering amplitude approach, which provided us with the full SM static potential

to one-loop order. Furthermore, due to the richness of the SM field content, it becomes simple

to compute static potentials in other theories by a replacement of the appropriate couplings and

group theory factors.

We then demonstrate applications of our result to beyond-QCD corrections in heavy-quark

EFTs and threshold mass schemes [57, 59, 60], in particular, the popular PS [57] and 1S [59]

mass definitions. We found that, as is to be expected from previous results on EW corrections

to short-distance heavy-quark mass definitions [51,145,148,149,151], the EW regime contributes

to the static potential at the same order as NNLO pure QCD contributions. Therefore, it stands

to reason that they must be incorporated into high-precision heavy-quark-antiquark threshold

calculations [235,266].

4.2 Wilson Loop Approach

Let us consider a system with an arbitrary field, ψ(x), defined by an action, S0[ψ] =
∫

ddxL(ψ),
in the presence of external sources, J(x). One can express the ground state energy of this system

in quantum field theory as [159]

− lim
T→∞

1

T
ln

∫

D{ψ} exp
{

−
∫

ddx [L(ψ) + J(x)ψ(x)]
}

∫

D{ψ} exp
[

−
∫

ddxL(ψ)
] , (4.1)

where the sources are switched off outside the time interval [−T/2, T/2]. This formula in per-

turbation theory has been proven exactly for the case of a linear local coupling between the field
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T

rΓ

Figure 4.1: Rectangular Wilson loop to be integrated over.

and the external source [275]. We generalise this by assuming that, in all cases, the vacuum-to-

vacuum transition amplitude is given by

〈0+|0−〉J =

∫

D{ψ} exp {−S0[ψ] + Sint[ψ, J ]}
∫

D{ψ} exp {−S0[ψ]}
, (4.2)

where Sint[ψ, J ] is the source-dependent part of the action. Then, inserting a complete set of

energy eigenstates, we may write

〈0+|0−〉J = 〈0| e−HT |0〉 =
∑

n

〈0| e−HT |n〉 〈n|0〉 =
∑

n

|〈0|n〉|2 e−EnT , (4.3)

where the smallest-energy eigenvalue, E0, corresponds to the ground state, which dominates the

sum in the limit T →∞. Whence taking the logarithm and dividing by (−T ) provides one with

the ground state energy, in Eq. (4.1), as is well known [273].

We may now be more specific in our discussion and take a gauge field theory, QED for

instance, where the energy we calculate corresponds to a system of photons interacting with two

pointlike static electric charges (with identical magnitudes, but opposite signs),

− lim
T→∞

1

T
ln

∫

D{ψ} exp
{

−
∫

ddx
[

−1
4F

2
µν +

1
2η (∂µAµ)

2 + Jµ(x)A
µ(x)

]}

∫

D{ψ} exp
{

−
∫

ddx
[

−1
4F

2
µν +

1
2η (∂µAµ)

2
]} , (4.4)

where

Jµ(x) = gδµ0[δ(x)− δ(x− r)]θ

(

T 2

4
− x20

)

. (4.5)

We may then rewrite the numerator of Eq. (4.4) as the expectation value
〈

T exp

{

g

∫

dt[A0(t, r)−A0(t,0)]

}〉

, (4.6)

where T stands for time ordering. This Green’s function is manifestly gauge invariant, which

one can see by considering the gauge invariant operator P exp
(

g
∮

Γ dx
µAµ

)

, where P denotes

path ordering and Γ is the rectangular loop of spatial and time extent, r and T , respectively, as

illustrated in Fig. 4.1. In the limit T →∞, the spatial components, A(T/2, ξ) and A(−T/2, ξ),
reduce to pure gauge terms, as the field strength tensor Fµν = 0 at infinity and thus is gauge

equivalent to A = 0. Therefore, the operator T exp
{

g
∫

dt[A0(t, r)−A0(t,0)]
}

is gauge invari-

ant and so is the ground state energy (or static potential), which is equal to

V (r) = − lim
T→∞

1

T
ln

〈

T exp
{

g
∫

dt[A0(t, r)−A0(t,0)]
}〉

〈1〉 . (4.7)
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Figure 4.2: Feynman rules for (anti-)source propagator and (anti-)source-gluon vertices.

This approach has been employed in QED, where only the LO term contributes to all orders [39],

and the non-Abelian case of QCD has been studied through the three-loop order [41, 265]. We

begin by re-evaluating the QCD case and then extend this approach to theories with SSB, as in

the case of the SM and beyond.

4.2.1 QED and QCD

Let us begin by considering the static potential in QCD [271], which corresponds to the inter-

action energy of an infinitely massive QQ pair separated by a fixed distance, r, interacting by

exchanging virtual gluons. Using the definition

V (r) = − lim
T→∞

1

T
ln 〈W[Γ]〉 (4.8a)

= − lim
T→∞

1

T
ln

〈

trP exp

(

ig

∮

Γ
d4xJµAµ

)〉

, (4.8b)

where W[Γ] denotes the Wilson loop, P path ordering, tr the normalised color trace, tr(...) ≡
tr(...)/tr(1), and Aµ(x) = T aijA

a
µ(x) the gauge potential. Γ is the rectangular Wilson loop as

shown in Fig. 4.1, and

〈O(A)〉 ≡
∫

DA exp (−S)O(A)
∫

DA exp (−S) . (4.9)

The desired properties of the static color charge are dictated by

Jµ(x) = vµ[δ(x)− δ(x− r)]θ

(

T 2

4
− x20

)

, (4.10)

where vµ ≡ δµ0. After Fourier transforming to momentum space, we get the Feynman rules for

our static potential [271]. The QCD Feynman rules remain unaltered besides those illustrated

in Fig. 4.2.

To illustrate the computation of the Wilson loop, we consider the tree amplitude illustrated

in Fig. 4.3, where |p|= |p′| and E =
√

m2 + p2. From this tree diagram, one obtains the

following amplitude

iM = i
4παs
|k − k′|2T

a
c′1c1

T ac′2c2
≡ i4παs

q2

(

δc1c2δc′1c′2 −
1

Nc
δc1c′1δc2c′2

)

, (4.11)
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(0, |p′ − p|)

(E,−p) (E,−p′)

Figure 4.3: Tree-level diagram for the QCD static potential.

where q = k − k′, and c1(2) and c′1(2) denote colors of initial and final states, respectively. The

color singlet case, with c1 = c2 and c′1(2) summed over, gives Vs(q) = −CFαs/q2, while the color

octet case, with c1 = c′1, c2 = c′2 and no summation, gives Vo(q) = αs/(2CAq
2), where CA = Nc

and CF = (N2
c − 1)/(2Nc) are color factors.

At one-loop in QCD, we have the amplitudes illustrated in Fig. 4.4. Upon reduction, in

Feynman gauge, only amplitudes (a)–(d) are non-zero, since the remaining ones are scaleless.

We recalculate the one-loop result in the MS scheme and find the well-known quantity [159]. A

suggestive way of writing the final result in momentum space is

V (q2) = −CF
4παV (q

2)

q2
, (4.12a)

αV (q
2) = αs(µ

2)
∞
∑

n=0

ãn

(

µ2

q2

)(

αs(µ
2)

4π

)n

= αs(q
2)

∞
∑

n=0

an

(

αs(q
2)

4π

)n

, (4.12b)

where a0 = ã0 = 1,

a1 =
31

9
CA −

20

9
TFnf , ã1 = a1 − β0Lq, (4.13)

with LA ≡ ln (A2/µ2), TF = 1/2, nf being the number of light quark flavors, and β0 = 11CA/3−
4TFnf/3 being the first coefficient of the QCD beta function. Here, αs denotes the strong-

coupling constant in the MS scheme and αV represents the effective coupling constant which

incorporates all radiative corrections into its definition. This provides a new scheme, the V

scheme [276, 277], which defines the strong-coupling constant in terms of a potential. With the

QCD result at hand, one expects to be able to extend this approach to the SM and other theories

exhibiting SSB.

4.2.2 N = 4 SYM

The only case of a static potential calculated for a spontaneously broken theory with a Higgs-

like field is in (3 + 1)-dimensional N = 4 SYM, which has been done with the Wilson loop

approach [267]. The static potential in this theory is given by

V (r) = − lim
T→∞

1

T
ln

〈

trP exp i

(∮

Γ
dsẋµAµ +Φiθi|ẋ|

)〉

, (4.14)

where Aµ = AaµT
a is the gauge field, Φi (i = 1, . . . , 6) are the six scalar fields in this theory,

xµ(s) parameterizes the rectangular Wilson loop Γ to be integrated over, as previously shown

in Fig. 4.1, and θi(s) is a six-vector to be defined below.
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Figure 4.4: Feynman diagrams that contribute to the QCD static potential at one-loop. The
arrowed circle represents light-quark and ghost loops.

We now summarise the derivation of this potential. Let us consider SSB according to

U(N + 1) → U(N)× U(1) giving some expectation value, 〈Φ〉 = v, to a Higgs-like field. Then

the massive W bosons have a mass proportional to |v| and transform in the fundamental rep-

resentation of U(N). In the limit |v|→ ∞, they so provide the very massive “quarks” necessary

to compute Wilson loops in the U(N) theory. The physics of interest is related to energy scales

much lower than |v|, where the U(N) theory is effectively decoupled from the U(1) theory.

Let us then consider the equation of motion for the massive W boson. Extracting the leading

time dependence as W = e−i|v|tW̃ , we obtain an equation of motion from the Lagrangian for

W̃ , which to leading order in large |v| reads

(∂0 − iA0 − iθiΦi)W̃ = 0, (4.15)

where we have defined θi ≡ vi/|v|. Notice that A0 and Φi are matrices in the adjoint represen-

tation of U(N). This implies that, if we consider this massive W boson describing a closed loop,

Γ, its interaction with the U(N) gauge field leads to the insertion of the Wilson loop operator

W(Γ) = trP exp i

(∮

Γ
dsẋµAµ +Φiθi|ẋ|

)

. (4.16)

This operator is determined by the contour Γ, parametrised by xµ(s), as well as a function, θi(s),

which is a unit six-vector, with |θ|= 1. From this Wilson loop, one obtains the static potential

by taking the expectation value and T →∞ limit,

V (r) = − lim
T→∞

1

T
ln 〈W[Γ]〉. (4.17)

This potential has been evaluated in detail, and limits have been mapped to classical D-string

solutions [267]. More recently, this very potential has been computed in the weak-coupling limit

to NLO using EFT methods inspired by potential NRQCD (pNRQCD) [278].

Following this case, we may apply the same procedure to the equation of motion of heavy

quarks in the SM obtained from the SM Lagrangian. The leading time dependence is ex-

hibited analogously for the heavy quarks, Q = e−imQtQ̃, where mQ = yv, with y being the
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quark Yukawa coupling and v the Higgs VEV. We can then consider the analogous limit,

v ∼ mQ,MW ,MZ ,MH ≫ |q|, where |q| is the momentum exchange between the static sources.

4.2.3 SM

Since the Wilson loop approach is technically simpler, we apply it to heavy quarks in the SM,

inspired by the N = 4 SYM derivation. For the sake of illustration, we omit couplings to the

W , Z, and Goldstone bosons, as we will see later that they cannot be taken into account in this

approach. The quark field, ψ(x), then has the equation of motion

[

i /D −mQ − yH(x)
]

ψ(x) = 0, (4.18)

where /D = γµ[∂
µ − iÃµ(x)] with Ãµ = gsA

µ,a
g T aij − eAµe represents the covariant derivative

involving the couplings to the massless gauge fields, H(x) corresponds to a gauge singlet scalar

field that models Higgs exchange in the SM, y is the quark Yukawa coupling, and mQ = yv with

v being the Higgs VEV [84]. Expanding Eq. (4.18) component-wise gives

{

iγ0∂0 − iγ · ∂ + γ0Ã0(x)− γ · Ã(x)− y[H(x) + v]
}

ψ(x) = 0. (4.19)

We can reduce this further by solving the Schrödinger equation for the heavy-quark field, pro-

viding us with the leading time dependence,

ψ = e−imQtψ̃. (4.20)

Plugging this back into Eq. (4.19) gives

[

(γ0 − 1)yv − iγ · ∂ + γ0Ã0(x)− γ · Ã(x)− yH(x)
]

ψ̃(x) = 0. (4.21)

Taking the limit v → ∞ of this expression, we attain the bi-spinor constraint (1 − γ0)ψ̃ = 0,

which forces the first component to be zero, ψ̃ = (0, χ). Therefore, all terms acted on by the

matrices γ and γ5 do not contribute, restricting the naive inclusion of W , Z, and Goldstone

couplings, as they are chiral and flavor changing. We are then left with the equation of motion

(

∂t − iÃ0 + iyH
)

χ(x) = 0. (4.22)

Thus, if we consider the heavy quark describing a closed loop, Γ, its interaction with the Higgs

and gauge fields leads to the insertion of the Wilson loop operator

W(Γ) = trP exp i

[∮

Γ
dτ
(

ẋµÃµ(x)− yH(x)|ẋ|
)

]

, (4.23)

and the static potential is then given by Eq. (4.17) in the large-v limit. The interaction with

the static sources, ψ and χ, is given by the static Lagrangian,

Lstat = ψ†(i∂0 − Ã0 + yH)ψ + χ†
c(i∂0 + Ã0 + yH)χc (4.24)

We may also consider the large-y limit. In this case, the simplification of the bi-spinor to one

large component ceases to occur. Instead, spatio-temporal mixing in spinor components happens

resulting in the loss of gauge invariance.
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Otherwise, in the large-v limit, we have a potential allowing for interactions between the

static source and the bosons g, γ, and H. Evaluating this potential in momentum space to

one-loop order in the MS scheme gives the following extension of the pure QCD result:

V (q) = V QCD(q)− 4πα

q2
QiQj

(

1− α

4π

4Ns

3

(

5

3
− Lq

))

, (4.25)

where Ns = (Nc[Q
2
unu +Q2

dnd] + nl) such that Nc is the number of colours, Qi,j represents the

heavy quark charges, Qu,d and nu,d are the charges and numbers of light up-type and down-

type quark flavors, respectively, and nl is the number of charged-lepton flavors. Note there is

no contribution from the Yukawa coupling at NLO as they either cancel or are eliminated by

wave-function renormalisation (WFR), which is known in literature [153]. Although corrections

can occur at NNLO as is the case for theories with scalars [271,279].

We note that taking the large-vacuum-expectation-value limit, as is done here, can also

be applied to BSM theories with Higgs-like fields and higher symmetry breaking scales. On

the other hand, if we choose to include all interactions of the SM consistently in the static

limit, |q|≪ mQ,MW ,MZ ,MH , then the more computationally intensive scattering amplitude

approach seems to be the safest path. We look at this next.

4.3 Scattering Amplitude Approach

Although we derived the QCD static potential in the Wilson loop approach, it is worthwhile

cross-checking this with the original, scattering amplitude approach [280]. In this way, one can

compute the potential directly in momentum space from the on-shell (OS) quark-antiquark

scattering amplitude in the static limit. Although this is a textbook result in QED [281], we

recalculate this here in QCD to verify that it matches the Wilson loop result.

The idea of the calculation is to study the QCD scattering amplitude of the process

Q(p) + Q̄′(p′)→ Q(p− q) + Q̄′(p′ + q), (4.26)

where qµ = (0, q), in the limit of NR scattering, mQ ≫ |q|. There are various ways to parametrise

the four-momenta. We choose to minimise the algebra by employing light-cone coordinates. We

take the initial particles to be moving along the z axis and introduce two light-cone vectors,

nµ± = (1, 0, 0,∓1). Then any momentum is expressible as

kµ =
1

2

(

nµ−k+ + nµ+k−
)

+ kµT , (4.27)

where kµT represents the remaining transverse components. This choice of coordinates leads to

useful identities,

n+ · n− = 2, n2± = 0, n± · kT = 0, k± = k · n± = k0 ± k3, (4.28)

and the scalar product can be rewritten as

k · q = 1

2
(k+ · q− + k− · q+)− kT · qT , k2 = k+ · k− − k2

T . (4.29)

In our case, we have four-vectors, p and p′, which satisfy

p+ · p− = m2
Q, p′± = p∓, p± =

√

m2
Q + p2 ± |p|. (4.30)
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Assuming that we know the transverse part of the momentum transfer, qT , we may fix q+ and

q− in such a way that outgoing-particle momenta are on shell,

{

(p− q)2 = m2
Q

(p′ + q)2 = m2
Q

⇒
{

(p+ − q+) · (p− − q−)− q2T = m2
Q

(p− + q+) · (p+ + q−)− q2T = m2
Q

(4.31)

Solving this system of equations and substituting the explicit expressions for p±, we obtain

q+ = −q− = P − P̄, (4.32)

where

P = |p|, P̄ =
√

p2 − q2T , (4.33)

so that q2T = P2 − P̄2. This implies that we may express everything in terms of P and P̄ . As

these parameters are independent of mQ, we infer that P , P̄ ≪ mQ, which allows for the leading

power dependence of the amplitude to be safely taken in the limit mQ → ∞. To proceed, we

need to express all scalar products in terms of our new parameters,

q2 = q+ · q− − q2T = 2P(P̄ − P),
p · q =

1

2
(p+ · q− + p− · q+) = P(P̄ − P),

p′ · q =
1

2
(p− · q− + p+ · q+) = −P(P̄ − P),

p · p′ =
1

2
(p2+ + p2−) = m2

Q + 2P2.

With this set of coordinate redefinitions, we may now proceed and calculate the static potential

in QCD.

4.3.1 QCD

In the pure QCD case, the one-loop bare amplitude is proportional to the Born amplitude and

both ultraviolet (UV) and IR finite. The expression for the scattering amplitude in perturbation

theory through NLO in the Fourier-transformed potential, U(q), reads [281],

f(k,k′) = − m∗
2πh̄2

[

U(k − k′) +
2m∗
h̄2

∫

d3l

(2π)3
U(k′ − l)U(l− k)

k2 − l2 + i0
+O(U3)

]

, (4.34)

where k = p, k′ = p − q, and m∗ = mQ/2 is the effective mass of the scattering particles. For

the Coulomb potential, the integral is IR divergent, but we can calculate this in dimensional

regularization. The terms we obtain from this procedure should match the corresponding terms

in the Wilson loop approach. The UV divergences are removed by the renormalization of the

coupling and the mass in the MS scheme, while the IR divergence in the NR limit is known to

come exclusively from the long-range Coulomb interaction and is removed by on-shell WFR.

The QCD scattering amplitudes contributing at NLO are represented in Fig. 4.5. We calcu-

late them and take the NR limit. More specifically, we expand the Dirac spinor chains in terms

of Pauli matrices and Pauli spinors, taking the q2 → 0 limit. Next, we pick out the terms that

are of O(1/q2) and contain only Pauli spinors, dropping terms with insertions of Pauli matrices,
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i.e., spin-dependent terms, as these contribute at O(q2/m2
Q). This leads us to to the following

renormalized color singlet potential in the MS scheme:

V (q) = −4παs
q2

{

1 +
αs
4π

[

(

2πiCF
mQ

P − β0
)

Lq +
31

9
CA −

20

9
nf

]}

, (4.35)

where the imaginary term proportional to (−2πi) is the so-called Coulomb contribution, which

is known to appear [280]. The real part is exactly the QCD static potential at one-loop order,

which is identical to the result one obtains with the Wilson loop approach, as required.

4.3.2 SM

We may now extend this approach from QED and QCD to the SM, expanding the scattering

amplitudes illustrated in Fig. 4.5 in the NR limit and taking the real part of the expression to

be the static potential. As in the QCD case, we investigate the following process at one-loop:

Q1(p) + Q̄2(p
′)→ Q1(p− q) + Q̄2(p

′ + q), (4.36)

where qµ = (0, q) is the momentum transfer. The limit of NR scattering in the SM is given

by |q|≪ m1,m2,MW ,MZ ,MH , where the subindices 1 and 2 are to provide the possibility of

working with different particles, having different masses. Therefore, we have three cases to

consider,

V SM
ij = V QCD + V QED + δV SM

(i,j), (4.37)

where δV SM
(i,j) is the one-loop correction from contributions outside pure QCD, the leading of

which may be written as,

δV SM
(i,j) ≡

ααs
q2

c(i,j) +
α2

q2

(

d(i,j) + e(i,j)Lq

)

. (4.38)

We note that flavor changing is permitted in the SM, so we take the internal quark masses

to be non-zero to maintain consistency. To present our large expression for δV SM
(i,j) concisely,

we consider the limit m1 ≫ MW ,MZ ,MH ≫ m2 ≫ |q|, which is valid for top and bottom

quarks, i.e., m1 = mt and m2 = mb. Other limits, including the more physical limit m1 ∼
MW ,MZ ,MH ≫ m2 ≫ |q|, can be considered from the full expressions presented in an arXiv

ancillary file of Ref. [264]. In the regime examined, we have the following leading terms:

δV SM
(1,1) =

ααs
q2

CF
s2

[(

r21,w −
1

4
−

21r2h,z
16c2

)

Lz,h +

(

7s2

36
+ r21,w +

16s2

9
− 7

36c2
−

21r̃2h,z
16c2

)

L1,z

+
r̃2h,z
2c2w
− 1

4
− 1

2c2
+ 3π

r1,wrh,w
2

+
1

4
Lh,w

]

+
α2

q2

[

4Ns

3
Q2

1

(

5

3
− Lq

)

− 8

27
+

2

9s2

+
1

96s4
+ 2π

r1,wrh,w
3s2

− 37

144c2s2
+

2r2h,z
9c2s2

+
25

864c4
+

28

9
Lw −

(

5

18s2
+
r21,w
6s2

)

Lh,w

+

(

5

288c2s2
+

5

144r̃2h,zc
2s2

+
5r21,w
18s2

− 1

192s4
− 1

96r̃2h,zs
4
−

7r2h,z
12c2s2

− 25

1728c4

− 25

864r̃2h,zc
4

)

Lz,h −
5

18s2
+

(

64

81
− 13

162s2
+

5r21,w
18s2

− 7

81c2s2
−

7r2h,z
12c2s2

)

L1,z

]

,

(4.39)
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δV SM
(1,2) =

ααs
q2

CF
s2

[

(

1

9
+

10s2

9
+

5

36c2

)

Lh,z +

(

5

36c2
−

5r2h,z
4c2

+
10s2

9
+
r21,w
2
− 5

36

)

L1,h

−
5r2h,z
16c2

L2,w +
1

4
Lh,w −

5r2h,z
16c2

Lw −
1

4
+
r2h,z
2c2
− 1

2c2
− 3π

r1,zrh,z
4s

+ 3π
r1,wrh,w

4s3

]

+
α2

q2

[

4Ns

3
Q1Q2

(

5

3
− Lq

)

+
4

27
− 7

36s2
− 1

96s4
+ π

r1,wrh,w
6r̃2h,zs

5
+ π

r1,zr
3
h,z

6r̃2h,zs
3

+
19

144c2s2
−

r2h,z
9c2s2

− 5

864c4
− π

r1,wrh,wr
2
h,z

6r̃2h,zs
3

+

(

5

864c4r̃2h,z
+

5

1728c4
− 1

r̃2h,zc
2s2

+
53

2592c2s2
+

1

96r̃2h,zs
4
+

1

192s4
+

2

81s2
+

20

81

)

Lz,h +

(

5r̃2h,z
768c4

+
53r2h,z

1152c2s2

+
3

128c2s2
+

3r2h,z
256s4

− 3

256s4

)

L2,w +

(

5r̃2h,z
768c4

+
53r2h,z

1152c2s2
+

3

128c2s2
+

3r̃2h,z
256s4

−14

9

)

Lw +

(

r21,2r
2
1,z

12c2
−
r21,w
8s2

+
13

72s2

)

Lh,w +

(

r21,2r
2
1,z

12c2
−

17r21,w
72s2

+
101

648s2

−20

81
+

5r2h,z
18c2s2

− 5

162c2s2

)

L1,h

]

, (4.40)

δV SM
(2,2) =

ααs
q2

CF
s2

[(

7

4
−

17r2h,z
16c2

)

Lz,h +

(

4s2

9
+

55

36
− 85

144c2
−

17r̃2h,z
16c2

)

L2,z +
r̃2h,z
2c2w
− 3

4

−L1,h +
3

4
Lh,w

]

+
α2

q2

[

4Ns

3
Q2

2

(

5

3
− Lq

)

+
1

12s2
+

1

96s4
− 1

144c2s2
+

r̃2h,z
18c2s2

+
1

864c4
+

2

27
+

7

9
Lw −

1

9s2
L1,h +

(

4

81
−

17r̃2h,z
144c2s2

− 85

1296c2s2
+

7

81s2

)

L2,z

+

(

1

9s2
− 1

192s4
− 1

96r̃2h,z
− 11

96c2s2
+

1

144r̃2h,zc
2s2
−

17r̃2h,z
144c2s2

− 1

864r̃2h,zc
4

− 1

1728c4

)

Lz,h

]

, (4.41)

where LA ≡ log(A2/µ2), LA,B ≡ LA − LB, ri,j ≡ mi/mj , r̃i,j ≡
√

r2i,j − 1, c ≡ cos θw =

MW /MZ , s ≡ sin θw, θw is the weak mixing angle, and the notation introduced for Eq. (4.25)

has been used. Of course, we have δV SM
(1,2) = δV SM

(2,1). The results presented in Eqs. (4.39)–(4.41)

represent color singlet contributions. Their color octet counterparts emerge via the simple

replacement CF → −1/(2CA). Thus, we have now fully expressed the SM static potential to

one-loop order.

4.4 Applications

The static potential represents a fundamental concept in its own right, not only giving rise to

potential models, which have been astonishingly successful in the description of heavy quarkonia,

but also provides a deeper understanding of confinement. From a more phenomenological stand-

point, however, the primary interest resides in heavy-quark pair production at threshold [235,
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;

(a) (b) (c)

(d) (e) (f) (g)

Figure 4.5: Feynman diagrams that contribute to the static potential at one-loop order. The
dotted lines represent possible bosonic propagators, the shaded circles light-fermion and ghost
loops insertions, and the hollow circles boson loop insersions.

251,266]. The static potential enters heavy-quark EFTs, for instance pNRQCD [251,282], where

both the color singlet and octet potentials appear as Wilson coefficients of the theory. Moreover,

there has been significant interest in designing high-precision quark mass definitions appropriate

for processes occurring at production threshold, the most popular of which are the PS [57] and

1S [59] masses. In the following, we summarise these two applications and comment on the

effects of incorporating the SM static potential, or EW corrections to the QCD static potential,

in these results.

4.4.1 Potential NRQCD

The pNRQCD EFT is an often employed extension of NRQCD. The difference between these

two theories is that pNRQCD takes further advantage of the hierarchy of scales that appear

in a particular process. The hierarchy under consideration is taken to be mQ ≫ |p|∼ mQv ≫
E ∼ mQv

2, where pNRQCD takes into account the ultrasoft (US) scale, E ∼ mQv
2, which is

neglected in NRQCD [282]. To take into account the US scale, one alters the Lagrangian of

NRQCD by including the following terms:

LpNRQCD = LUS
NRQCD + Lpot, (4.42)

where LUS
NRQCD is identical to LNRQCD with all gluons taken to be in the US regime. The second

term, Lpot, is of particular interest to us. It arises from the Schrödinger equation as

Lpot = −
∫

d3x1d
3x2ψ

†(t,x1)χ(t,x2)V (r)χ†(t,x2)ψ(t,x1), (4.43)

where pj = −i∇j and Sj = σj/2 with j = 1, 2 act on the fermion and antifermion, respectively.

Moreover, the fermion and antifermion spin indices are contracted with the indices of V (r), which

are not explicitly displayed. The potential in this expression, V (r), is precisely the QCD static

potential. There are implicitly two terms in this Lagrangian, depending on if the wave functions
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are color singlet or octet with corresponding singlet and octet potentials, respectively. By

inspection, the potential Vs,o(r) contains both the expansion parameter and Wilson coefficients

of this EFT. Conversely, this EFT can be seen as defining the static potential, i.e., any term

matching to the EFT is the static potential. Whence, when employing this EFT, one should

include the EW corrections to the QCD static potential at NLO as they are comparable to

NNLO QCD corrections.

4.4.2 Threshold Masses

It is well known that, contrary to intuition, the notion of quark pole mass is, in fact, inadequate

for accurate calculations of heavy-quark cross sections near threshold. The loss of accuracy is

due to the existence of IR renormalons, which have been studied in various contexts [47]. The

PS and 1S masses are by far the most frequently used threshold mass definitions that evade the

renormalon problem by employing the static potential. The PS mass is slightly more involved

phenomenologically, as it introduces a new factorisation scale, µF , in its definition. Before

introducing these mass definitions, we must first examine the Fourier transform of our static

potential.

4.4.2.1 Fourier Transform

We are now able to compute the SM analogue of the well-known Coulomb potential, i.e., the SM

static potential in position space. From this, we may obtain the corrections to the PS mass and

compare them with the pure QCD result. In order to simplify our expressions, it is convenient

to introduce the notation [40]

F(r, µ, u) = µ2u
∫

/d
3
q

eiq·r

(q2)1+u
, (4.44)

for the Fourier transform of a general power of 1/q2. We then employ a Schwinger parameter,

1

(q2)1+u
=

1

Γ(1 + u)

∫ ∞

0
dxxue−xq

2
, (4.45)

where Γ(x) is Euler’s gamma function. There are various representations of F . The ones which

are useful to us are

F(|r|, µ, u) = (µ|r|)2u
4π2|r|

Γ(1/2 + u)Γ(1/2− u)
Γ(1 + 2u)

(4.46)

=
(µ|r|eγE )2u

4π|r| exp

{ ∞
∑

n=2

ζ(n)un

n
[2n − 1− (−1)n]

}

, (4.47)

where the first and second formulas are applicable if −1 < u < 1/2 and |u|< 1/2, respectively.

By inspection of the static potential, we need the Fourier transform of lnm (µ2/q2), which is

easily attainable from F , since

lnm
µ2

q2
=

[

∂m

∂um
µ2

q2

]

u=0

, (4.48)

and, therefore,
∫

/d
3
q
eiq·r

q2
lnm

µ2

q2
=

[

∂m

∂um
F(r, µ, u)

]

u=0

. (4.49)
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Whence the color singlet potential (in the MS scheme) in position space is

V SM
(i,j)(r) = −αs|r|CF

{

1 +
αs
4π

[

2β0 ln(µr
′) + a1

]

}

− α

|r|
{

QiQj +
αs
4π
c(i,j) +

α

4π

[

d(i,j) + 2e(i,j) ln(µr
′)
]

}

, (4.50)

where Qi are the electric charges of the incoming and outgoing heavy quarks. In our calculation,

we take Q1 = 2/3, Q2 = −1/3, and r′ = |r|eγE . The result as it stands is possibly plagued

by large logarithms. To remedy this problem, it is useful to select a renormalisation scale,

µ, that reduces the higher-order corrections. Choices of µ most frequently employed in the

literature include µ = 1/|r| or µ = 1/r′. Other choices of µ are tuned so that the first-order

pure QCD coefficient is removed entirely or so that all nf dependencies are removed from the

coefficients [283]. With the Fourier-transformed potential at hand, we may now consider the PS

mass.

4.4.2.2 PS Mass

It is well-known that the coordinate space static potential is more sensitive to long distances than

its counterpart in momentum space and that its leading power correction is linear in ΛQCD|r| [57].

The implication is that the expansion of the QCD coordinate space static potential in αs(e
−γE |r|)

diverges as
∑

n

rnα
n+1
s (e−γE |r|) ∼

∑

n

(−2β0)nn!nbαs
(

e−γE

|r|

)

, (4.51)

which is much faster than the expansion of the static potential in momentum space. This

divergent behavior has been studied in previous works [284, 285]. It is clear that the rapid

divergence originates only from the Fourier transform to coordinate space and is not present in

momentum space. Knowing this, one can subtract the leading long-distance contribution and

the LO divergent behaviour completely by restricting the Fourier integral with the cut |q|> µf ,

where µf is a new factorisation scale, which is viewed as an IR regulator. The result is called

the subtracted potential, V (r, µf ). The subtraction terms can be evaluated order by order in the

coupling once V (q) is given to that order. More precisely,

V (r, µf ) = V (r) + 2δm(µf ), (4.52)

where

δm(µf ) = −
1

2

∫

|q|<µf
/d
3
qV (q). (4.53)

To subtract the leading long-distance contribution of order ΛQCD, it is reasonable to replace the

factor eiq·r in the Fourier transform by unity, and this is used as the definition of the subtraction

term in the PS mass definition,

mPS(µf ) ≡ mpole − δm(µf ). (4.54)

Of course, with this procedure, one has only swept the large loop corrections from δm(µf )

to mPS(µf ). However, when mpole is expressed in terms of a short-distance mass parameter,

such as the MS mass through a perturbative series, this series will also contain large loop

corrections [286]. Conveniently, these perturbative corrections cancel with large perturbative
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corrections to the pole mass in δm(µf ). In this way, one may determine the MS mass from

threshold cross sections with better accuracy than the pole mass, the use of which implicitly

contains the non-subtracted potential. Let us now compute δm(µf ) from the definition in

Eq. (4.53). We so obtain

δmSM
(i) (µf ) = CF

αs
π
µf

{

1 +
αs
4π

[

a1 + 2β0

(

ln
µ

µf
+ 1

)]}

+
α

π
µf

{

Q2
i +

αs
4π
c(i,i) +

α

4π

[

d(i,i) + 2e(i,i)

(

ln
µ

µf
+ 1

)]}

, (4.55)

where, as in Section 4.3.2, the cases i = 1, 2 apply to the top and bottom quarks, respectively.

For completeness, we avoid taking limits and employ the complete result to get a numerical

estimate of the one-loop SM PS mass. One usually picks µf = 3 GeV, a typical scale for heavy

quarks, and µ = MZ to avoid large logarithms in the coefficients c(i,j) and d(i,j). Moreover, we

choose m1 = mt(MZ), m2 = mb(MZ), nu = nd = 2, nl = 3, and adopt the residual parameters

from Ref. [168]. We thus obtain

δmSM
(t) (µf ) = CF

αs
π
µf

(

1 + 79.5
αs
4π

)

+
α

π
µf

(

0.44 + 89.9
αs
4π

+ 30.9
α

4π

)

, (4.56)

δmSM
(b) (µf ) = CF

αs
π
µf

(

1 + 79.5
αs
4π

)

+
α

π
µf

(

0.11 + 16.4
αs
4π
− 2.42

α

4π

)

. (4.57)

We conclude that, albeit the additional SM contributions are significantly smaller than the

pure QCD and QED ones at NLO, they are comparable to the QCD corrections at NNLO and

beyond. Thus, they have an appreciable impact on high-precision determinations of the PS mass

and must, therefore, be taken into account.

4.4.2.3 1S Mass

The PS mass along with other threshold mass definitions, such as the the kinetic mass [56,287],

are defined by introducing a new explicit IR factorisation scale, µf , to remove the IR ambiguity

of the pole mass. By contrast, the 1S mass [59], m1S , achieves a similar goal without introducing

a new factorisation scale. The 1S mass is defined as one half of the perturbative energy of the

1S heavy qq̄ bound state,

m1S(µ) =
1

2
(mqq̄

1S)pert ≡ mpole(1− δm(µ)). (4.58)

The ground state energy calculated from the Schrödinger equation of elementary quantum me-

chanics is exactly (mqq̄
1S)pert. At leading order in the expansion in the relative velocity of the

(anti)quark in the qq̄ rest frame (threshold region), the dynamics of the qq̄ pair is governed by

the Hamiltonian [288]

H = −∇
2

mQ
+ V (r) + U(q, r), (4.59)

where mQ is the quark pole mass, V (r) is the static potential, the analogue of the Coulomb

potential, and U(q, r) encodes higher-order corrections in the small-velocity expansion and is

the SM analogue of the Breit potential [280]. The leading contributions at threshold come from

the static potential, so that we may omit U(q, r) from our calculation. Solving for the S-wave

Green’s function, we have

G(E) = 〈0| Ĝ(E) |0〉 = 〈0| 1

H − E − iδ |0〉 , (4.60)
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where 〈0| denotes a position eigenstate with eigenvalue |r|= 0, and the Green’s function has

single poles at the exact S-wave energy levels, E = En,

G(E)
E→En=

|ψn(0)|2
En − E − iδ

. (4.61)

From this expression, one gets (mqq̄
1S)pert = E1, and expanding E1/2 in small SM couplings gives

the 1S mass, which is the SM analogue of the well-known Bohr potential of quantum mechanics.

We may then find the leading EW corrections at one-loop to the 1S mass with our SM potential,

as only the QCD corrections are known, and they have been found to N3LO [289]. At one-loop

through third order in the SM couplings, α and αs, we have

δmSM
(i) (µ) =

(αQ2
i + αsCF )

16π

[

α2Bi + α(αsc(i,i) + 2πQ2
i ) + αsCF (αsAi + 2π)

]

, (4.62)

with

Ai = 2β0(li + 1) + a1, Bi = 2e(i,i)(li + 1) + d(i,i), (4.63)

where mi is the pole mass of heavy quark i and li ≡ ln[µ/(CFαs(µ)mi)]. We further note that

the IR renormalon cancellation is more subtle in the 1S mass definition, as the latter is a well-

behaved parameter only if the orders of terms in perturbation theory are re-interpreted [59].

To see how the leading EW corrections at one-loop alter the 1S mass, we obtain a numerical

estimate in a similar fashion as for the PS mass and compare the O(ααs, α2) terms to the O(α2
s)

ones. Choosing the same input parameters and renormalisation scale as in the PS mass case,

we obtain the following results:

δmSM
(t) = 0.22α2

s + 1.51α3
s + 0.02α2 + 0.71α3 + 0.15αsα− 2.89α2

sα+ 2.93αsα
2, (4.64)

δmSM
(b) = 0.22α2

s + 3.61α3
s + 0.002α2 + 0.04α3 + 0.04αsα+ 0.74α2

sα+ 0.48αsα
2. (4.65)

It is apparent that the additional SM contributions are significantly smaller than the pure

QCD and QED ones at NLO, esspecially in the case of the bottom quark. However, they are

comparable in size to the QCD corrections at NLO and beyond, so that it is necessary to include

them in high-precision determinations of the 1S mass, similarly to the case of the PS mass in

Section 4.4.2.2.

4.4.3 Further Applications

We now briefly address possible applications of our results to popular BSM scenarios. The

number of viable dark-matter candidates is rapidly being constrained by precise collider and

cosmological experiments. For example, self-interacting theories have been practically ruled out

recently by galactic observations [290]. We may thus focus on computing the static potential

of the most viable DM candidates, the lightest Kaluza-Klein particle (LKP) and right-handed

neutrinos. As is well understood, SUSY [291] and extra-dimensional theories [292] are two strong

proponents to an array of issues that cannot be explained by the SM. Dark matter is known to

exist. While it is missing in the SM, both SUSY and Kaluza-Klein (KK) theories posit viable

dark matter candidates, the properties of which can be understood better in the NR regime due

to their large predicted masses.
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Figure 4.6: Resonant annihilation process of LKP dark matter, B(1), through s-channel H(2)

exchange.

A recent static-potential calculation for higgsino-wino DM found the SU(2)×U(1) EW static

potential between a fermionic triplet in the broken phase of the SM at one-loop order [269]. The

NLO terms provided the leading NR correction to the large resonances (or Sommerfeld effect)

in the annihilation cross-section of wino or wino-like dark-matter particles, χ0. The authors

found sizeable modifications from the LO prediction of the χ0χ0 annihilation cross section and

determined the shifts of the resonance locations due to the loop correction to the wino potential.

Although these results seem promising for future detections, such resonances would also occur

in KK theory for the LKP coupling [293] to the second excitation of the Higgs as shown in

Fig. 4.6. This will inevitably also be true for right-handed (or sterile) neutrinos due to their

possible large mass [294–296], and thus their potential for producing heavy tt̄ pairs through

s-channel Higgs-boson exchange in the SM. Neutrinos are the only matter particles in the SM

that have been observed with solely left-handed chirality to date. If right-handed neutrinos

exist, they could be responsible for several phenomena that have no explanation within the SM,

including neutrino oscillations, the baryon asymmetry of the universe, dark matter, and dark

radiation [297]. These particles provide us with a test bed case of our ability to deal with static

potentials in theories with SSB, as these massive neutrinos solely couple to gravity and the SM

Higgs field.

4.5 Technical Details

Our calculations of the one-loop correction to the SM static potential were performed using

standard tools. The Feynman diagrams of the type as in Fig. 4.5 were reduced to calculating

a set of master integrals, which were found analytically, since all one-loop master integrals are

known. For the scattering amplitude approach, we achieved this with the help of the algebraic

manipulation program Mathematica accompanied by the program package FeynCalc [298] to

compute the necessary amplitudes and to deal with the algebra. We employed further subpack-

ages of FeynCalc, such as FeynHelpers [299], which reduces and provides explicit expressions

for one-loop scalar integrals by connecting the reduction package fire [300] with the analytic

scalar-integral package Package-X [301]. Lastly, we employed the FeynOnium [302] subpackage,

which comes equipped with functions for dealing with amplitudes in the NR limit. For the

Wilson loop approach, we employed the program package QGRAF [303] to generate the Feynman

diagrams and the programming language FORM [304] to deal with the algebra. We also used the

Mathematica package LiteRed [305] to reduce our integrals and again Package-X [301] for the

analytic one-loop scalar integrals.
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4.6 Summary

In this Chapter, we proposed a novel way of studying static potentials in theories that exhibit

SSB. We discussed the limitations of the Wilson loop approach for the SM and the need to

derive the static potentials directly from the scattering amplitudes. We also pointed out how

these techniques could be extended to BSM theories, mentioning examples that would satisfy

the criteria to be treated in the Wilson loop fashion. We then presented the static potential for

the full SM and considered the regimes of applicability. In particular, we showed how our EW

corrections to the static potential modify two frequently-employed short-distance definitions of

heavy-quark mass, the PS and 1S ones. Moreover, we rounded off each discussion by comparing

the size of the terms arising from generalizing the static potential from QCD to the SM with

the familiar QCD results. In doing so, we found the contributions from the EW regime to be

significant and comparable to pure QCD contributions of NNLO. Therefore, we recommend that

the SM potential be employed in future high-precision heavy-quark studies. The theoretical

framework elaborated here can now be usefully applied to investigate the static potential of

further models, in particular BSM theories with higher symmetry breaking scales, to better

understand the NR regime and explore implications for measurable observables. Our full results

are contained in the ancillary file submitted along with Ref. [264] on the arXiv.
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Chapter 5

Threshold Mass Definitions

This chapter deals more explicitly with the leading EW corrections to the short-distance heavy

quark mass definitions. We achieve this with the static potential determined in the previous

chapter, along with similar expressions for a heavy meson’s binding and residual kinetic energy.

These energies form the building blocks of the majority of short-distance mass definitions. We

explain how attaining the EW contributions to these energies leads to analogous corrections to

the masses. We find that the leading EW corrections are of the same strength as their next-to-

leading pure QCD counterparts and, therefore, must be included for a precise determination of

heavy quark mass. This chapter is based on Ref. [306], reflecting the author’s contribution.

5.1 Motivation

A precise determination of quark masses is coveted due to them being fundamental SM La-

grangian parameters. In particular, the attainment of heavy quark (top, bottom and charm)

masses provides a gamut of phenomenological insights. We are primarily interested in the top

quark mass, mt, which a precise determination of not only serves as consistency checks for the

SM [48–50] but also is the dominant uncertainty when weighing the stability of the electroweak

vacuum [33, 51, 52]. We are also concerned with the bottom quark, the next heaviest quark in

the same generation. This parameter plays a role in B-meson and Higgs boson decays as they

contain high power factors of mb, the bottom quark mass [53–55]. These instances and many

more call for precise theoretical predictions for these heaviest quark masses to relate to the

advent of precise experimental observations. Defining a well-behaved perturbative quark mass

presents unique challenges not found when considering theories such as QED and the electron

mass. Many successful proposals have been considered and studied to very high precision in pure

QCD. However, quarks also interact with the EW sector of the SM and thus, in this chapter,

we will focus on determining the leading EW corrections to heavy quark mass schemes.

The SM is a perturbative quantum field theory, and in such theories, mass parameters

are defined as the location of the single-particle pole in the two-point function. In the quark

case, the pole or on-shell (OS) mass, mQ, is given by requiring that the inverse of the heavy

quark propagator with a momentum, pQ, is a pole at the point p2Q = m2
Q in momentum-

space. Thus, the renormalisation scheme is fixed in this way, which is necessary for quantum

corrections in perturbation theory. Although this definition is natural, it suffers when applied to

quarks in QCD. At high energies, the pole mass includes large logarithms, which cause spurious
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divergences. Moreover, due to the phenomenon of quark confinement, the non-perturbative

regime of QCD does not have the requisite pole in the propagator. This leads to a confinement

scale ambiguity in the OS definition for quark massmQ ∼ ΛQCD, which is known as the O(ΛQCD)

renormalon problem [130, 286]. One, therefore, needs an alternative, a so-called running mass,

mQ(µ), where one absorbs said misbehaving non-perturbative contributions and is finite after

renormalisation. Schemes that do not exhibit these IR divergences make up a family of short-

distance mass definitions dependent on an additional scale, µf , which acts as a regulator for the

spurious IR behaviour.

5.2 MS-scheme Electroweak Corrections

The primary short-distance mass candidate is the minimal subtracted (MS) mass, m(µ), which

is defined by regulating the field theory in dimensional regularisation and subtracting the UV di-

vergences in the MS renormalisation scheme. The t’Hooft mass from dimensional regularisation,

µ, is generally chosen to be of the order of the characteristic energy scale of the process, Q, as

perturbative calculations lead to large factors of lnn (µ/Q). One can then use RGE flow from a

quark mass at one scale to that at another scale. In general, one can always write short-distance

mass definitions in terms of the familiar OS mass by relating the bare mass, m0. Explicitly, the

MS-OS relation is given by comparing the two quantities,

m0 = ZOS
m m, m0 = ZMS

m m, (5.1)

which are finite by construction and related to the quark OS self-energy [142, 144, 145]. Thus,

the ratio of the two quantities in Eq. (5.1), gives the MS-OS relation, which is a perturbative

series in the QCD and EW couplings αs(µ) and α(µ), respectively. The required renormalisation

constants, ZMS
m and ZOS

m , have been determined to four-loops in pure QCD [133, 135, 143, 307,

307–310], and two-loop orders in the full SM [51,145,147–149].

We are primarily interested in leading EW effects as these have been scarcely considered,

although in general, they contribute in the same order as their next-to-leading QCD counterparts.

As described in Ref. [115], to determine the pole mass, m, of a fermion in the SM, we start with

the propagator for a fermion of mass bare mass, m0, and momentum, p,

S−1(/p) = /p−m0 − Σ(/p), (5.2)

where the self-energy function, Σ(/p), is given by the sum of all one-particle-irreducible Feynman

diagrams that contribute to the two-point function. A further subtlety in EW theory is the parity

violation of the left- and right-handed quark fields, which causes them to propagate differently.

Moreover, CP violation is avoided by taking the unit CKM matrix.

One can then decompose the self-energy as [311],

Σ(/p) = PL/pAL(p
2) + PR/pAR(p

2) +m0B(p2), (5.3)

such that PL/R = (1∓γ5)/2 are the left- and right-handed projectors, respectively, AL/R and B

are dimensionless scalar functions of p2 dependent on SM parameters. The poles of S(/p) have

left- and right-handed components that coincide and are given by the solution to the equation

at p2 = m2,

p2[1−AL(p2)][1−AR(p2)]−m2
0[1 +B(p2)]2 = 0, (5.4)
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which is solvable perturbatively as an expansion,

m = m0(1 +X1 +X2 + . . .), (5.5)

where the Xk are given in Ref. [148] and the index k refers to the order in the couplings. One

can then simply convert from the OS scheme to the MS scheme by keeping terms proportional

to ∆ = 1/ǫ− γE + ln 4π, where γE is the Euler-Mascharoni constant.

Whence, we determine the ratio, eliminating m0 from Eq. (5.1), providing us with the MS-OS

relation,

m = m(1− δ), δ = δ
QCD

+ δ
QED

+ δ
W
, (5.6)

and in the case of leptons, the QCD contribution would not arise. To one-loop order we have

[145],

δ
QCD

i (µ) = CF
αs
4π

(4− 3Li) . (5.7)

wih quark labelling, i, and LA ≡ ln (A2/µ2) and δ
QED

f is obtained from Eq. (5.7) by substituting

Q2
fα for CFαs. In the large mt limit, one can concisely express the EW contributions for top

and bottom quarks as,

δ
W

t =
GFm

2
t

8π2
√
2

[

2πrh,t −
Nc

2
− 4 +

(

Nc +
3

2

)

Lt

]

, (5.8a)

δ
W

b =
GF

8π2
√
2

{

m2
t

[

5

4
−
(

3

2
−Nc

)

Lt −
Nc

2

]

− M2
H

4

}

, (5.8b)

where GF is the Fermi constant, which is G
(0)
F = πα/(

√
2M2

W s
2) at tree-level. The remaining

parameters are, ri,j ≡ mi/mj , c = cos θw = MW /MZ , s = sin θw such that θw is the weak

mixing angle, MH and MW,Z are the masses of the and weak and Higgs bosons, respectively.

The expressions for the two-loop EW contributions at O(ααs, α2) are given in Ref. [148].

We now have a valid short-distance mass definition that side-steps the IR ambiguities. Note

that the MS mass is defined in the full theory where the heavy quark of interest is fully dynamical.

This treatment and definition are valid for running the mass between some large scale, µ = Q,

down to the quark mass or so-called threshold scale [152], µ = m. However, from an effective

theory perspective [153], once one runs below to the low energy regime, µ < m, the appropriate

EFT is HQET [64,72], in which the pole mass is no longer dynamical.

As is described in Ref. [56, 154], if one insists on renormalising m(µ) in the µ < m regime,

non-physical large logarithms start to appear, which no longer improve the convergence of the

higher-order quantum corrections. One requires new mass definitions, which both avoid the

IR renormalon while being well-behaved near-threshold and below. We note that in this low-

energy regime, the physics being described is that of NR heavy quarks in which one can employ

effective theories to study physical phenomena such as HQET and NRQCD [72–74]. These

effective theories and out-shoots have been thoroughly considered in pure QCD. Still, as we are

primarily interested in EW effects, we refer the reader to Ref. [161] for recent consideration of

the EW effects in said theories.

When dealing with NR heavy quarks, as introduced in Chapter 2.3, a range of successful

mass definitions have been proposed and studied in the context of QCD. They are collectively

referred to as the threshold masses [152], and fulfil both requirements: independence from the IR
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renormalon and a well-behaved perturbative series below threshold energies. We will be exploring

some of the more practical and popular masses; in particular, we will be explicitly considering

the following definitions: the potential subtracted (PS) mass [57], the 1S mass [59,132], and the

kinetic mass [56]. The PS and 1S mass depend on the perturbative potential, V (r), of a heavy

NR quark-antiquark pair (meson) system at fixed separation r. The kinetic mass depends on said

heavy meson’s perturbative binding and residual kinetic energies, Λ̄ and µ2π, respectively. Thus,

our job is to begin by determining these energy parameters and procuring their leading EW

corrections, as they are already known to three- and four-loop order in pure QCD [133,134,157].

5.3 Static Potential

As we thoroughly discuss evaluating the heavy quark potential in Chapter 4, we will only outline

technical details in this section. The focus will be on elucidating the calculation further and

focusing on the specific cases of top and bottom quarks in the SM. The heavy quark or static

potential, as it is called, is a well-known parameter in QED. Moreover, it has been shown not to

exhibit higher-order quantum corrections and instead is elegantly given by the standard Coulomb

potential for two static point charges in electromagnetism [39]. However, in QCD, as it is a non-

Abelian theory, quantum corrections do indeed arise, and these have been determined in the

literature to three-loop orders [159, 265, 271, 274]. At one-loop in QCD the momentum-space

potential with parameters renormalised in the MS scheme is given by [271],

V (q2) = −CF
4παV (q

2)

q2
, (5.9a)

αV (q
2) = αs(µ

2)

∞
∑

n=0

ãn

(

q2

µ2

)(

αs(µ
2)

4π

)n

(5.9b)

where q is the transfer momentum between the scattered particles and,

ã1 = a1 − β0Lq, a1 =
31

9
CA −

20

9
Tfnf (5.10)

where a0 = ã0 = 1. The colour factors, CF = (N2
c − 1)/(2Nc), CA = Nc and Tf = 1/2

arise from the colour gauge group, SU(Nc), where Nc is the number of colours and in QCD

Nc = 3. The number of light quarks which factor the light quark loops is given by nf and β0 =

11CA/3−4TFnf/3 is the first coefficient of the QCD beta function. The strong-coupling constant

renormalised in the MS scheme is denoted by αs and the effective coupling, αV , includes all higher

order corrections in its definition. This coupling leads to a new coupling renormalisation scheme,

the so-called V scheme [277], which defines the strong-coupling constant in terms of a potential.

The static potential is practically attained by considering the static limit of the vacuum tran-

sition amplitude, the so-called Wilson loop approach [159]. The limit is defined in coordinate-

space by fixing the two heavy quark and antiquark to be stationary point sources a fixed distance

apart. Employing this limit leads to source and anti-source vertices and propagators corre-

sponding to the heavy quarks and antiquarks. Although the Wilson loop approach is technically

simpler, we determined, in Chapter 4 that it is lacking when dealing with chiral gauge theories

such as the SM. We found that one must employ the original scattering amplitude approach to

attain the potential [160]. In this way, one computes the potential directly from the relativistic

OS quark-antiquark scattering amplitude and taking the static or large quark mass and small
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velocity limit. Although this is a textbook calculation in QED [281], we employed this approach

in QCD to verify that it matches the Wilson loop result [271]. The upshot of the calculation is

to determine the scattering amplitude of the process,

Q1(p) + Q̄2(p
′)→ Q′

1(p− q) + Q̄′
2(p

′ + q), (5.11)

which to all orders results in an amplitude,

M = (ū′1γ
µu1)Dµν(q)(v̄2γ

νv′2) (5.12)

where qµ = (0, q) is the transfer momentum and i = 1, 2 labels the masses. For instance, The

QCD scattering amplitudes contributing up to NLO are represented in Fig. 4.4. After performing

dimensional regularisation, the one-loop UV and IR divergences are removed by parameter

renormalization in the MS scheme and on-shell WFR. Next, one takes the NR scattering limit,

in which one expands in |q|≪ mi and performs the NR expansion of four-component bi-spinors

from the solution free-field NR Dirac equation for a particle with momentum pµ and mass mi,

ui(p) 7→
√
2mi

[

ξi
σ·p
2mi

ξi

]

, vi(p) 7→
√
2mi

[ σ·p
2mi

ξi

ξi

]

. (5.13)

where σ are the Pauli matrices and ξi are two-component spinors. After the amplitude is

evaluated and renormalised, one may then expand the Dirac spinor chains that arise in terms

of Pauli matrices and two-component spinors. Taking the q2 → 0 limit leaves one with the

following amplitude,

M = −2m1m2

(

ξ†1ξ
†
2U(q,p,p′)ξ1ξ2

)

(5.14)

where the potential is of the form,

U(q,p,p′) = V (q) +O(q0) +O(q2, spin-dep.), (5.15)

such that V (q) is precisely the Coulomb-like term of O(1/q2) and thus picking this out from the

full expression gives the momentum-space static potential. At leading order, we may drop contact

terms, O(q0), and contributions from insertions of Pauli matrices, i.e., spin-dependent terms, as

these contribute at O(q2). Extending this approach to the full SM is analogous, expanding the

scattering amplitudes illustrated in Fig. 4.5 with all possible QCD and EW interactions. After

renormalising all parameters in the MS scheme and applying WFR in the OS scheme, one then

commits to the NR limit, mi ≫ |q|, where labels i grant the possibility of working with quarks

of different masses. Whence, one has three cases to consider,

V SM
ij = V QCD + V QED + δV SM

(i,j), (5.16)

as δV SM
(i,j) is the one-loop EW contribution, the leading of which is of O(ααs, α2). The full

expressions for δV SM
(i,j) are given in an arXiv ancillary file of Ref. [264], and to one-loop order

have the general form,

δV SM
(i,j) =

ααs
q2

c(i,j) +
α2

q2

(

d(i,j) + e(i,j)Lq

)

. (5.17)
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We present the limit mt ≫MEW,mb ≫ |q|, for top and bottom quarks. Further limits, including

the more physical limit mt ∼ MEW ≫ mb ≫ |q|, can be considered from the full expressions.

The useful quantities for threshold masses are δV SM
(i,i) and have the following leading terms,

δV SM
(t,t) =

ααs
q2

CF
s2

[(

r2t,w −
1

4
−

21r2h,z
16c2

)

Lz,h +

(

7s2

36
+ r2t,w +

16s2

9
− 7

36c2
−

21r̃2h,z
16c2

)

Lt,z

+
r̃2h,z
2c2w
− 1

4
− 1

2c2
+ 3π

rt,wrh,w
2

+
1

4
Lh,w

]

+
α2

q2

[

4Ns

3
Q2
t

(

5

3
− Lq

)

− 8

27
+

2

9s2

+
1

96s4
+ 2π

rt,wrh,w
3s2

− 37

144c2s2
+

2r2h,z
9c2s2

+
25

864c4
+

28

9
Lw −

(

5

18s2
+
r2t,w
6s2

)

Lh,w

+

(

5

288c2s2
+

5

144r̃2h,zc
2s2

+
5r2t,w
18s2

− 5

18s2
− 1

192s4
− 1

96r̃2h,zs
4
−

7r2h,z
12c2s2

− 25

1728c4
− 25

864r̃2h,zc
4

)

Lz,h +

(

64

81
− 13

162s2
+

5r2t,w
18s2

− 7

81c2s2
−

7r2h,z
12c2s2

)

Lt,z

]

,

(5.18)

δV SM
(b,b) =

ααs
q2

CF
s2

[(

7

4
−

17r2h,z
16c2

)

Lz,h +

(

4s2

9
+

55

36
− 85

144c2
−

17r̃2h,z
16c2

)

Lb,z +
r̃2h,z
2c2w
− 3

4

−Lt,h +
3

4
Lh,w

]

+
α2

q2

[

4Ns

3
Q2
b

(

5

3
− Lq

)

+
1

12s2
+

1

96s4
− 1

144c2s2
+

r̃2h,z
18c2s2

+
1

864c4
+

2

27
+

7

9
Lw −

1

9s2
Lt,h +

(

4

81
−

17r̃2h,z
144c2s2

− 85

1296c2s2
+

7

81s2

)

Lb,z

+

(

1

9s2
− 1

192s4
− 1

96r̃2h,z
− 11

96c2s2
+

1

144r̃2h,zc
2s2
−

17r̃2h,z
144c2s2

− 1

864r̃2h,zc
4

− 1

1728c4

)

Lz,h

]

, (5.19)

such that Nl = (Nc[Q
2
unu + Q2

dnd] + ng) correspond to light fermion loop factors, where nu
and nd are the number of up- and down-like light quarks, respectively, and analagously for

the electro-magnetic charges, Qu and Qd. Nc is the number of light quark colours and ng
are the number of lepton generations. The logarithms are represented as previously shown

in Eq. (5.1) and LA,B ≡ LA − LB. We note that Eqs. (5.18) and (5.19) represent color singlet

contributions to the potential. Their color octet counterparts emerge via the simple replacement

CF → −1/(2CA).

5.4 Binding and residual kinetic energy

With the potential at hand, what remains to determine are the heavy meson BE and residual

KE parameters, Λ̄(µf ) and µ2π(µf ). The energies are attainable perturbatively from the forward

scattering amplitude of an arbitrary non-flavour changing external current, J , and heavy quark,

Q, as shown in Fig. 5.1. The amplitude can be written in momentum-space as,

T (q) =
i

2m

∫

d4xe−iq·x 〈Q| T J(x)J†(0) |Q〉 , (5.20)
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Figure 5.1: One-loop Feynman diagrams for scattering of an external current (wavy line) and a
heavy quark (solid line). The dotted lines represent boson propagators.

where T is the usual time-ordering and q is an external momentum. The heavy quark is on-shell

with momentum, pµ = (0,m), and thus, p2 = m2 and s = (p + q)2. From this amplitude one

can then obtain the perturbative BE and KE from the following integrals,

Λ̄(µf ) =
2

v2

∫ µf
0 dωW (ω,v)ω
∫ µ
0 dωW (ω,v)

∣

∣

∣

∣

v→0,m→∞
(5.21)

µ2π(µf ) =
3

v2

∫ µf
0 dωW (ω,v)ω2

∫ µ
0 dωW (ω,v)

∣

∣

∣

∣

v→0,m→∞
, (5.22)

where q = v/m, the structure function W (q) = 2Im[T (q)] and the large m-limit is always taken

firstly as otherwise terms that contribute will be dropped. We then re-express our amplitude in

terms of the excitation energy of the system [286],

ω ≡ q0 − qmin
0 = q0 −

mv2

2
+O(v4), (5.23)

and velocity, v. The threshold value at s = m2 is given at,

qmin
0 ≡

√

q2 +m2 −m =
mv2

2
+O(v4), (5.24)

where for smaller values of s, the structure function and energy parameters of interest vanish.

Practically when determining the amplitude, it is convenient to first express the NR parameters,

ω and v, in terms of Lorentz invariant quantities,

y ≡ m2 − s = −mω(2 + v2) +O(v4, ω2) ≤ 0 (5.25)

, q2 ≡ m2 − s = −mv2(m− ω) +O(v4, ω2) ≤ 0 (5.26)

in doing so one simplifies the computation and upon extracting the imaginary part to determine

the structure function, one can then do the expansion in terms of original NR parameters to

perform the integrals in Eq. (5.22). We also note that the structure function is IR finite and that

at the one-loop order, which we are considering, the renormalisation of SM parameters as well

as WFR for the external quarks are not necessary as they do not contribute to the imaginary

part of the forward scattering amplitude [157,286].
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5.5 Potential subtracted and 1S mass

With the above quantities at hand we may tackle the PS mass which arises from the NR limit

of heavy quark-antiquark systems. As introduced in Chapters 3 and 4, the PS is determined in

general by the Schrödinger equation,
(

−∇
2

m
+ V (r)− E

)

G(r, 0, E) = δ(3)(r), (5.27)

such that V (r) is the NR or static potential and E =
√
s− 2m is the binding energy. Thus, one

can write the total static energy of two heavy quarks separated by a fixed distance, r, as [57,59]

Estat(r) = 2m+ V (r). (5.28)

As Eq. (5.28) is a well-defined physical quantity, it has been shown not to suffer from IR di-

vergences in higher-order quantum corrections. Moreover, the IR ambiguities in the pole mass

definition have been shown to cancel with the IR ambiguities of the static potential. This conve-

nient cancellation is the impetus for defining the PS mass and is made explicit when considering

the coordinate-space potential,

V (r) =

∫

/d
3
qeiq·rV (q). (5.29)

It is known that the coordinate-space potential is sensitive to IR physics while the momentum-

space potential is not [57]. This sensitivity is due to the contribution in the Fourier transform

integral from regions of small |q|, which results in the leading renormalon behaviour of V (r).

One can then define a subtracted potential,

V (r, µf ) = V (r) + 2δPS(µf ), (5.30)

for a newly introduced IR-cut off scale, µf and isolate the renormalon contribution through a

mass definition,

mPS(µf ) = m− δPS(µf ), (5.31)

such that the PS mass counter-term is given by,

δPS(µf ) = −
1

2

∫

|q|<µf
/d
3
qV (q). (5.32)

Thus, employing the PS mass and subtracted potential in Eq. (5.27) results in quark mass

without leading non-perturbative ambiguities.

Of course, with this procedure, one has only swept the large loop corrections from δm(µf )

to mPS(µf ). However, when mpole is expressed in terms of a short-distance mass parameter,

such as the MS mass through a perturbative series, this series will also contain large loop

corrections [56]. Conveniently, these perturbative corrections cancel with large perturbative

corrections to the pole mass in δPS. In this way, one may determine the MS mass from threshold

cross sections with better accuracy than the pole mass, the use of which implicitly contains the

non-subtracted potential. Let us now compute δm(µf ) from the definition in Eq. (4.53). We

then obtain

δPS
i (µf ) = CF

αs
π
µf

(

1 +
αs
4π

[

a1 + 2β0

(

ln
µ

µf
+ 1

)])

+

α

π
µf

(

Q2
i +

αs
4π
c(i,i) +

α

4π

[

d(i,i) + 2e(i,i)

(

ln
µ

µf
+ 1

)])

, (5.33)
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The PS mass and kinetic mass, are defined by introducing a new explicit IR factorization scale,

µf , to remove the leading IR ambiguity of the pole mass. By contrast, the 1S mass [59], m1S,

achieves a similar goal without introducing a new factorization scale. The 1S mass is defined as

one-half of the perturbative energy of the 1S heavy qq̄ bound state,

m1S(µ) =
1

2
(m1S

qq̄ )pert ≡ m(1− δ1S(µ)). (5.34)

The ground state energy calculated from the Schrödinger equation of quantum mechanics is

exactly (m1S
qq̄ )pert. At leading order in the expansion in the relative velocity of the (anti)quark in

the qq̄ rest frame (threshold region), the dynamics of the qq̄ pair is governed by the Hamiltonian

[288],

H = −∇
2

mQ
+ V (r) + U(q, r), (5.35)

where mQ is the quark pole mass, V (r) is the static potential, the analogue of the Coulomb

potential, and U(q, r) encodes higher-order corrections in the small-velocity expansion and is

the SM analogue of the Breit potential [160]. The leading contributions at threshold come from

the static potential, so that we may omit U(q, r) from our calculation. Solving for the S-wave

Green’s function, we have

G(E) = 〈0| Ĝ(E) |0〉 = 〈0| 1

H − E − iδ |0〉 , (5.36)

where 〈0| denotes a position eigenstate with eigenvalue |r|= 0, and the Green’s function has

single poles at the exact S-wave energy levels, E = En,

G(E)
E→En=

|ψn(0)|2
En − E − iδ

. (5.37)

From this expression, one gets (m1S
qq̄ )pert = E1, and expanding E1/2 in small SM couplings gives

the 1S mass, which is the SM analogue of the well-known Bohr potential of quantum mechanics.

We may then find the leading EW corrections at one-loop to the 1S mass with our SM potential,

as only the QCD corrections are known, and they have been found to N3LO [289]. At one-loop

through third order in the SM couplings, α and αs, we have

δ1Si =
(αQ2

i + αsCF )

16π

{

α2Bi + α(αsc(i,i) + 2πQ2
i )

+αsCF (αsAi + 2π)} ,
Ai =2β0(li + 1) + a1,

Bi =2e(i,i)(li + 1) + d(i,i), (5.38)

where mi is the pole mass of heavy quark i and li ≡ ln[µ/(CFαs(µ)mi)]. We further note

that the IR renormalon cancellation is more subtle in the 1S mass definition, as the latter is a

well-behaved parameter only if the orders of terms in perturbation theory are re-interpreted [59].
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5.6 Kinetic Mass

On the other hand, the kinetic mass is defined directly by the heavy quark BE and residual KE,

as shown by its relation to the pole mass,

mkin(µf ) = m
(

1− δkin(µf )
)

(5.39)

δkin(µf ) =
Λ̄(µf )

m
+
µ2π(µf )

2mkinm
(5.40)

The leading EW corrections may then be determined at one-loop with the BE and residual

KE by evaluating Eq. (5.22). The QCD corrections are known, and they have been found to

N3LO [157]. At one-loop we have the following relation with both QCD and EW contributions

in the large quark mass limit,

δkint (µ̃) =µ̃

{

4

3

CFαs
π

+
α

π

(

4

3
Q2
t −

1

16

r2t,w
s2
− 1

4

1

s2

)}

, (5.41)

δkinb (µ̃) =µ̃

{

4

3

CFαs
π

+
α

π

(

4

3
Q2
b −

1

24

r2b,w
s2
− 1

6

1

s2
− 1

24

r2t,w
s2

)}

(5.42)

such that µ̃ ≡ µf
m + 3

8

µ2
f

m2 , mi is the pole mass of heavy quark i and the scale µf labels the usual

IR Wilsonian cut-off. Using the MS-OS relations in Eq. (5.6), we may express the kinetic mass

in terms of the MS mass to one-loop order,

mkin
i (m̄i) = m̄i

(

1 + δi(m̄i)− δkini (m̄i)
)

. (5.43)

The relation is given by Eq. (5.43) with the direct replacement of the pole mass with m̄ dropping

higher-order terms in small coupling expansion contributing past NLO.

5.7 Numerical Estimates

We are now able to provide numerical estimates to our heavy quark short-distance mass relations

at the standard scale µ =MZ from Ref. [167]. In the case of the PS and kinetic masses we select

the IR cut-off scale to be, µf = 3 GeV, a typical scale for heavy quarks. Moreover, we take

nf = 4, nu = nd = 2 and nl = 3 and run the strong and EW couplings to the Z-boson mass

scale. We then obtain the contributions up to one-loop order for the mass definitions studied

here,

δt = 0.015αs + 2.01α, δb = 0.015αs + 0.65α. (5.44a)

δkint = 0.010αs − 0.018α, δkinb = 0.427αs − 0.701α, (5.44b)

δPSt = αs(1.27 + 8.06αs + 6.83α) + α(0.42 + 2.34α), (5.44c)

δPSb = αs(1.27 + 8.06αs + 1.25α) + α(0.11− 0.18α), (5.44d)

δ1St = 0.22α2
s + 1.51α3

s + 0.02α2 + 0.71α3 + 0.15αsα− 2.89α2
sα+ 2.93αsα

2, (5.44e)

δ1Sb = 0.22α2
s + 3.61α3

s + 0.002α2 + 0.04α3 + 0.04αsα+ 0.74α2
sα+ 0.48αsα

2. (5.44f)

Therefore, we can conclude that although the novel EW contributions are significantly smaller
than the pure QCD contributions at NLO, they are comparable to QCD corrections at NNLO and
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beyond. Whence, for high-precision determination of short-distance mass definitions, the EW
corrections must be taken into account. At this point, we briefly mention that the definitions we
studied, although often employed, do not represent an exhaustive list. For instance, there are the
RS [131] and RGI [312] masses as well as the more recently proposed MRS mass [60]. Moreover,
there are ways to refine studies when converting between short-distance mass definitions [313]. In
this scheme, one takes the IR factorisation scale, µf , to be a continuous parameter and studying
the RG flow in µf of the masses, one can avoid large logarithms of cut-off scales, ln (µ′f/µf ).

5.8 Technical Details

Our calculations of the one-loop corrections to the heavy quark masses were performed using
standard tools. The Feynman amplitudes were reduced to a few master integrals, which were
found analytically since all one-loop master integrals are known. We achieved this with the
help of the algebraic manipulation program Mathematica accompanied by the program pack-
age FeynCalc [298] to compute the necessary amplitudes and to deal with the algebra. We
employed further sub-packages of FeynCalc, such as FeynHelpers [299], which reduces and
provides explicit expressions for one-loop scalar integrals by connecting the reduction package
fire [300] with the analytic scalar-integral package Package-X [301]. Lastly, we employed the
FeynOnium [302] subpackage, which comes equipped with functions for dealing with amplitudes
in the NR limit.

5.9 Summary

In this chapter, we determined the EW corrections to heavy-quark energy parameters up to
NLO. By mapping these parameters accordingly, we illustrated how they modify a range of
often-employed short-distance mass definitions. Moreover, we provided numerical estimates for
comparing the EW corrections at NLO versus pure QCD contributions in the same order. The
contributions from the EW regime were significant and comparable to pure QCD contributions at
NNLO. The groundwork laid here may be incorporated and expanded on in future high precision
studies. For instance, to match the N3LO precision in QCD, it is necessary to determine the
NNLO EW corrections in the mass definitions studied here and others mentioned. Moreover,
the theoretical framework we introduce can help study the NR regime of theories beyond the
SM.
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Chapter 6

Matching the Standard Model to

HQET and NRQCD

In this Chapter we determine the leading electroweak corrections to the HQET/NRQCD La-
grangian. These corrections appear in the Wilson coefficients of the two- and four-quark oper-
ators and are considered here up to O(1/m3) at EW one-loop order. The two-quark operators
up to this order will include new parity-violating terms, which we derived analogously to the
parity-preserving QCD result at one-loop order. This Chapter is based on Ref. [161], reflecting
the author’s contribution.

6.1 Motivation

This Chapter is mainly concerned with extending the framework of HQET and NRQCD from
pure QCD to the full SM. As we only briefly motivated these two EFTs in Chapter 3, we will
re-introduce them here and delve deeper into their properties. Originally, HQET and NRQCD
were developed to take advantage of the fact that the masses of the heavy quarks are much
larger than the remaining dynamical scales being considered.

More specifically, HQET has mainly been employed to study systems with a single heavy
quark [71, 72, 314]. In these studies, when considering heavy-light systems, the authors reduce
the problem down to one with two dynamical scales; the heavy quark mass, mQ, and the rest
which is chosen to be the quark confinement scale, ΛQCD, the scale of all processes in pure
QCD - i.e. independent of quark mass. One then constructs the HQET Lagrangian as a power
series in the inverse heavy quark pole mass. One can then estimate the size of each term by
assigning the scale ΛQCD to every parameter present other than the heavy quark mass. One
is then left with operators exhibiting two distinct structures; terms containing light degrees of
freedom describing gluons and light quarks; or terms that are bi-linear in the heavy quark fields.

On the other hand, we have NRQCD which is mostly employed to study systems with
a heavy quark and antiquark, QQ̄, bound state [73, 74]. In NRQCD one usually takes into
account two additional dynamical scales, the relative momentum, q ∼ mv ∼ ΛQCD, such that v
is the relative velocity of the QQ̄ combination, and binding energy, E ∼ mv2, of the QQ̄ bound
state. These extra scales add increased complexity to the power counting rules. Thus the size
of each term in the NRQCD Lagrangian is no longer unique but dependent on the system under
consideration. One can, however, still provide reasonable estimates of each term with velocity
counting rules [74, 315]. The difference between HQET and NRQCD is immediately clear by
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considering the first two bi-linear terms in the effective Lagrangian,

L = Q̄

(

iD0 +
D2

2m

)

Q. (6.1)

To compare the two theories, one can note that the first term and second term are O(ΛQCD)
and O(Λ2

QCD/m), respectively, in HQET while both terms are of order mv2 ∼ O(Λ2
QCD/m) in

NRQCD. Thus one can immediately note that the heavy quark propagator in HQET is i/(k0+iǫ)
while in NRQCD the propagator is i/(k0 − k2/2m + iǫ). The NRQCD Lagrangian mimics the
HQET Lagrangian in that it consists of terms in a power series expansion in heavy quark mass.
It contains two and four fermion operators, i.e. terms bi-linear in the heavy (anti)quark fields
and terms bi-linear in both heavy quark and antiquark fields, respectively.

Our work is focused on calculating the primary building block of an effective theory, the EFT
Lagrangian and its matching to the full theory Lagrangian. The matching process is achievable
by ensuring that the full and effective theory S-matrix elements are equal. Both the NRQCD
and HQET matching conditions are computed in the same way, and the Lagrangians are thus
identical [218]. The parameters that are modified by the matching procedure are called the
matching (or Wilson) coefficients, which factor each operator in the EFT. The matching in
NRQCD is then achieved order by order in the strong coupling, αs, and inverse heavy quark
mass [316].

This study will focus on extending the NRQCD Lagrangian and considering the leading EW
corrections to one-loop order with terms up to and including O(ααs/m3, α2/m2), for the two
and four fermion operators of NRQCD. Although the Wilson coefficients are known in the EFT
up to O(α2

s/m
4), the EW corrections have not yet been considered. They must be incorporated

since at leading order they start altering the matching coefficients at the same order as the
higher-order QCD terms. Whence, we study the effect at leading order of incorporating the EW
contributions and noticing how the matching coefficients are improved.

Moreover, the Lagrangian itself must be extended to include parity-violating operators for
the matching procedure to hold with the SM. The utility of our efforts lies in the prolific use
of heavy quark effective theories for high precision observable predictions at threshold energies
which would be the primary purpose of a future collider [317]. For instance, with regards to
the top quark mass determination, which is crucial for understanding the stability of the EW
vacuum [33]. Many so-called threshold quark mass definitions [57, 131, 133] have arisen from
the HQ EFT frameworks and we know that the EW sector plays a crucial role in determining
the MS mass of the top quark [146, 147] thus it stands to reason that the same is true for the
threshold mass definitions.

6.2 The Lagrangian

The continuum NRQCD Lagrangian up to the same order we are considering have previously
been computed [218, 316] using dimensional regularisation for the IR and UV divergences tak-
ing the external states to be on shell. To express the NRQCD effective Lagrangian, one must
consider heavy fermions and antifermions coupled to non-Abelian gauge fields, enforcing Her-
micity, parity, time-reversal and rotational invariance [236]. One can further perform heavy
field re-definitions to eliminate time derivatives acting on the heavy fermions at higher orders
in 1/m, this is known as the canonical form of the heavy particle Lagrangian [318]. Note that
when employing the NRQCD Lagrangian which we define below, NRQCD has a UV cut-off,
νNR = {νp, νs}, where mv ≪ νNR ≪ m, which corresponds to integrating out the hard modes
of QCD to obtain NRQCD [319]. More specifically, νp is the UV cut-off of the relative three
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momentum between the heavy quark and antiquark while νs is the UV cut-off of the three-
momentum of the gluons and light quarks. The NRQCD Lagrangian including light fermions
reads (up to field redefinitions) is [73, 233,251],

L = (Lψ + Lχ + Lψχ) + Lg + Ll, (6.2)

such that ψ and χ are the Pauli spinors that annihilate a fermion and create an anti-fermion,
respectively. We are mainly interested in the bracketed parts of the Lagrangian as these terms
will attain the leading EW corrections to their matching coefficients. More explicitly, the La-
grangian for heavy quarks of masses m1,2 ≫ ΛQCD and velocity, v, in a frame where v = (1,0)
has bi-linear terms (up to the order we are considering) [73,218,320],

Lψ,χ = ψ†
{

ic0Dt + c2
D2

2m
+ c4

D4

8m3
+ cFgs

σ ·B
2m

+ cDgs
[D ·E]

8m2
+ icSgs

σ · (D ×E −E ×D)

8m2

+cW1gs
{D2,σ ·B}

8m3
− 2cW2gs

Diσ ·BDi

8m3
+ cqgs

σ ·DB ·D +D ·Bσ ·D
8m3

+icMgs
D · [D ×B] + [D ×B] ·D

8m3

}

ψ + (h.c, ψ ↔ χ) +O(1/m4, g2s/m
3), (6.3)

and four quark operators given by [321],

Lψχ =
dss

m1m2
ψ†
1ψ1χ

†
2χ2 +

dsv
m1m2

ψ†
1σψ1χ

†
2σχ2

+
dvs
m1m2

ψ†
1T

aψ1χ
†
2T

aχ2 +
dvv
m1m2

ψ†
1T

aσψ1χ
†
2T

aσχ2, (6.4)

The terms in this Lagrangian require some unpacking; the covariant derivative is Dµ = ∂µ +
igsA

µ
aT a ≡ (D0,−D) defined in the usual way, iDt = i∂t− gsA0 and iD = i∂+ gsA, with com-

binations thereof, Bi = i
2gs
ǫijk[Dj ,Dk] and E = − i

gs
[Dt,D]. Moreover, covariant derivatives

in square brackets act only on the fields within the brackets. The subscripts F,S and D on the
Wilson coefficients stand for Fermi, spin-orbit and Darwin, respectively. We use the common
summation convention, XiY i ≡∑3

i=1X
iY i, and define [X,Y ] ≡ XY −Y X, {X,Y } ≡ XY +Y X

to denote commutators and anti-commutators, respectively. The QCD analogues of the electric
and magnetic fields are defined as usual by E = −[∂tA] − [∂A0] and B = [∂ ×A]. The most
general term we obtained in Eqs. (6.3) and (6.4) are constructed from all possible rotationally
invariant, Hermitian combinations of iDt, D, E, iB, iσ, with parity requiring even numbers of
factors of D and E.

On the other hand, the four quark operators in the Lagrangian represented by 6.4 have sub-
indices, {1, 2}, which distinguishes for the case of distinct heavy quarks with unequal masses.
Moreover, one can re-write these terms by applying a Fiertz transformation,

Lψχ =
dcss

m1m2
ψ†
1χ2χ

†
2ψ1 +

dcsv
m1m2

ψ†
1σχ2χ

†
2σψ1

+
dcvs
m1m2

ψ†
1T

aχ2χ
†
2T

aψ1 +
dcvs
m1m2

ψ†
1T

aσχ2χ
†
2T

aσψ1, (6.5)
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where one can transform between the two bases with the relations,

dss = −
dcss
2Nc

− 3dcsv
2Nc

− N2
c − 1

4N2
c

dcvs − 3
N2
c − 1

4N2
c

dcvv, (6.6)

dsv = −
dcss
2Nc

+
dcsv
2Nc

− N2
c − 1

4N2
c

dcvs +
N2
c − 1

4N2
c

dcvv, (6.7)

dvs = − dcss − 3dcsv +
dcvs
2Nc

+
3dcvv
2Nc

, (6.8)

dvv = − dcss + dcsv +
dccs
2Nc

− dcvv
2Nc

. (6.9)

Both versions of Lψχ are employed, the Lagrangian in (6.5) is more convenient for matching,
when one is studying the equal mass case with annihilation processes. On the other hand, (6.4)
is preferable when considering a bound state calculation. We employ (6.4) for matching in the
unequal mass case.

6.3 Form Factors and Matching

Any loop diagram in an integrable QFT can be written as a function, F ({p}, {m}, µ, ǫ), such
that {p} are the external momenta, {m}, the external and internal masses, µ the scale parameter
in dimensional regularisation where the calculation is done in d = 4 − 2ǫ dimensions. Let us
then consider, for instance, the radiative corrections to the quark-gluon three point vertex. This
vertex can be expressed fully in terms of two form factors in QCD, F1,2(q

2), defined by the
irreducible three point function,

ΓQCD
3 = −igsT aū(p′)

[

F1(q
2)γµ + iF2(q

2)
σµνqν
2m

]

Aaµ(q)u(p), (6.10)

where q = p′ − p, m is the mass of the heavy quark, σµν = − i
4 [γ

µ, γν ]. We only have two form
factors as {γµ, σµνqν} are the only Lorentz structures that appear in QCD due to the non-chiral
nature of the theory. On the other hand, if one considers Γ3 in the full SM, two additional chiral
Lorentz structures emerge, and their corresponding form factors have the following form,

ΓSM
3 = ΓQCD

3 − igsT aū(p′)
[

F3(q
2)γµγ5 + F4(q

2)
qµγ5
2m

]

Aaµ(q)u(p) (6.11)

Employing dimensional regularisation on the diagrams one finds that the form factors F1,3(q
2)

are UV and IR divergent [218]. We can always expand our two form factors, Fi(q
2/m2, µ/m, ǫ),

as a power series in q2/m2 at fixed ǫ, then take the limit ǫ → 0 to obtain an expression of the
form,

Fi = Fi(0)

(

A0

ǫUV

+
B0

ǫIR
+ (A0 +B0) ln

µ

m
+D0

)

+

q2∂q2Fi(0)

(

A1

ǫUV

+
B1

ǫIR
+ (A1 +B1) ln

µ

m
+D1

)

, (6.12)

Conventionally, we label ǫ with the subscripts, ǫUV and ǫIR to indicate whether the divergence
is ultraviolet or infrared, respectively. UV divergences are cancelled by renormalisation counter-
terms while IR divergences cancel when a physical observable is considered. The coefficients of
the effective Lagrangian are determinable from the difference between the form factors in the
full theory versus the effective theory of interest. More specifically, the non-analytic terms in the
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form factors cancel in the difference while the analytic ones determine the Wilson coefficients
of the Lagrangian. By inspection of the terms in the effective Lagrangian in Eq. (6.3), all
terms contain at least one power of Aµ, the gauge field. Thus all form factors at one-loop
are attainable by computing the three-point on-shell scattering amplitude, which have been
previously calculated [322].

To find the relationship between the full theory form factors and the Wilson coefficients for a
low-momentum heavy quark scattering off a background vector potential, we expand Eq. (6.11)
in the NR limit and multiply by a factor of

√

m/E for both the incoming and outgoing quark.
If we take p and p′ to be the three-momentum of the incoming and outgoing quark, respectively,
then q = p′ − p is the transfer momentum of the background vector potential. We are then left
with the following effective interaction operator,

−igsT au†NR(p
′)[Aa0j

0 −Aa · j]uNR(p), (6.13)

which can then be compared to the scattering amplitude in the effective theory Lagrangian to
relate the Wilson coefficients to the form factors. We re-computed the NR expansion of Eq. (6.13)
in QCD and confirmed the previous result [218, 320], i.e. we found for the time component of
the current,

j0 = F1(q
2)

{

1− 1

8m2
q2 +

i

4m2
σ · (p′ × p)

}

+ F2(q
2)

{

− 1

4m2
q2 +

1

2m2
σ · (p′ × p)

}

(6.14)

and the spatial component of the current,

j = F1(q
2)

{

1

2m
(p+ p′) +

i

2m
σ × q − i

8m3
(p2 + p′2)σ × q − 1

16m3
(p′2 − p2)q

− i

16m3
(p2 − p′2)σ × (p+ p′)− 1

8m3
(p′2 + p2)(p′ + p)

}

+ F2(q
2)

{

i

2m
σ × q − i

16m3
q2σ × q − 1

16m3
q2(p+ p′)− 1

16m3
(p′2 − p2)q

− i

8m3
(p′2 − p2)σ × (p′ + p) +

i

8m3
σ(p′ + p)(p′ × p)

}

. (6.15)

This can then be compared to the relevant subset of the Hamiltonian of Eq. (6.3),

Hψ,χ ⊃ ψ†
{

gsA
0 − c2

gs
2m

A · (p′ + p)− icF
gs
2m

A · (σ × q)− cD
gs

16m3
q ·A

+icS
gs
4m2

σ · (p′ × p)A0 + icS
gs

16m3
(p′2 − p2)A · σ × (p′ + p)

+i(cW1 − cW2)
gs
8m3

(p′2 + p2)A · (σ × q) + icW2

gs
8m3

q2A · (σ × q)

−icq
gs
8m3

σ · (p′ + p)A · (p′ × p)− cM
gs
8m3

(p′2 − p2)A · q

+cM
gs
8m3

q2A · (p′ + p)
}

ψ + (h.c, ψ ↔ χ) (6.16)

≡ gsψ†{A0j0 −A · j}ψ + (h.c, ψ ↔ χ) (6.17)

and matching the Lorentz structures provides one with the following relations between the

77



Wilson coefficients and form factors,

c0 = c2 = c4 = F1, (6.18)

cF = F1 + F2, (6.19)

cD = F1 + 2F2 + 8F ′
1, (6.20)

cS = F1 + 2F2, (6.21)

cW1 = F1 +
1

2
F2 + 4F ′

1 + 4F ′
2, (6.22)

cW2 =
1

2
F2 + 4F ′

1 + 4F ′
2, (6.23)

cq = F2, (6.24)

cM =
1

2
F2 + 4F ′

1, (6.25)

such that,

Fi = Fi(0), F ′
i =

dFi
d(q2/m2)

∣

∣

∣

∣

q2=0

. (6.26)

These relations between the form factors and Wilson coefficients remain unchanged by the
allowance of further interactions from the standard model. This can be seen by taking the NR
limit of Eq. (6.11), the 4-current j 7→ j + j′ where j′ includes the new form factors and their
expanded Lorentz structures, for the time component of the current one obtains,

j′0 = F3(q
2)

{

1

2m
σ · (p′ + p)− 1

8m3
(σ · p′p′2 + σ · pp2)− 1

16m3
σ · (p′+p)(p′2 + p2)

}

+ F4(q
2)

{

− 1

4m3
σ · q(p′2 − p2)

}

(6.27)

and the spatial component of the current,

j′ = F3(q
2)

{

σ − 1

4m2
σ(p′2 + p2) +

1

8m2
σq2 +

1

4m2
(σ · pp′ + σ · p′p)− i

4m2
p′ × p

}

+ F4(q
2)

{

− 1

4m2
qσ · q

}

. (6.28)

By comparison, one can see that F3,4 are factors of entirely different Lorentz structures. In fact,
one can count nine independent structures and thus one requires nine new linearly independent
terms in the effective Lagrangian that result in the same Lorentz structures upon inspection of the
Hamiltonian. Due to the fact that the SM is chiral and exhibits less symmetry than QCD there
is more freedom in selecting the possible terms to include in the effective Lagrangian, we thus
select a set that provides us with the correct Lorentz structures without claiming uniqueness,

LCh =ψ†(p′)
{

b0iσ ·D − ib1
gs
2m

σ · Ẽ + ib2
gs
8m2

(D ·B +B ·D)

+b3
gs
8m2

σ · (D ×B +B ×D) + ib4
1

2m2
{σ · ∂,D2}+ ib5

1

4m2
[D2σ ·D]

+b6
gs
2m2

[Dt,σ ·E] + ib7
gs

16m3
{D2,σ · Ẽ}+ ib8

gs
8m3

Diσ · ẼDi

+ib9
gs
8m3

(σ ·DẼ ·D +D · Ẽσ ·D)
}

ψ(p) + (h.c, ψ ↔ χ) +O(1/m4, g2s/m
3), (6.29)
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with the operator, Ẽ = − i
gs
{Dt,D}. Upon employing the free field Schrodinger equation (up

to O(1/m)), the following replacement holds,

i
∂ψ

∂t
+
∇2ψ

2m
= 0, ψ(t,x) = eip·x ⇒ {∂tψ = −ip0ψ,∂ψ = ipψ}, (6.30)

and analogously for the vector field, A(xµ). Therefore, after Legendre transforming the La-
grangian in Eq. (6.29) to its Hamiltonian one can then match the relevant terms by inspection
of Lorentz structures. This can then be compared to the chiral Hamiltonian and the Lorentz
structures matched to provide the following relations between the new Wilson coefficients and
form factors,

b0 = b1 = b2 = b4 = b9 = −F3, (6.31)

b3 = F3 + 2F4, (6.32)

b5 = 4F ′
3 + F4, (6.33)

b6 = − F4, (6.34)

b7 = 8F ′
3, (6.35)

b8 = F3 − 8F ′
3. (6.36)

Note that we have written HQET Lagrangians in the special frame, v = (1,0), and the notation
of [320] was employed. However, one can re-write Eq. (6.3) to the same order in 1/m in an
arbitrary frame as follows,

Lv = Q̄v

{

c0iD · v − c2
D2

⊥
2m

+ c4
D4

⊥
8m3

− gscF
σµνG

µν

4m
− gscD

vµ[Dν
⊥Gµν ]

8m2

+igscS
vλσµν{Dµ

⊥, G
νλ}

8m2
+ gscW1

{D2
⊥, σµνG

µν}
16m3

− gscW2

Dλ
⊥σµνG

µνD⊥λ
8m3

+gscq
σµν(Dλ

⊥GλµD⊥ν +D⊥νGλµDλ
⊥ −Dλ

⊥GµνD⊥λ)

8m3

−igscM
D⊥µ[D⊥νGµν ] + [D⊥νGµν ]D⊥µ

8m3

}

Qv, (6.37)

such that,
Dµ

⊥ = Dµ − vµv ·D, (6.38)

and σµν = − i
4 [γ

µ, γν ] and Gµν = 1
igs

[Dµ, Dν ]. We can also write the chiral Lagrangian in
Eq. (6.29) in the same covariant form,

LCh
v = Q̄v

{

−2b0γ5vµσµνDν + ib1
1

m
γ5{vµDµ, v

νσνλD
λ} − b2

gs
4m2

γ5vµσ
µν [Dλ, Gνλ]

−b3
gs

16m2
γ5{σµν , γλ}{Dµ, Gνλ}+ b4

1

m2
γ5{vµσµν∂ν , D2

⊥}

+b5
1

2m2
γ5[v

µσµνD
νD2

⊥] + ib6
gs
2m2

γ5[v
µDµ, σνλG

νλ]

+ib7
1

8m3
γ5{D2

⊥, {vµDµ, v
νσνλD

λ}}+ ib8
1

4m3
γ5D

α
⊥{vµDµ, v

νσνλD
λ}D⊥α

+ib9
1

4m3
γ5(v

µσµνD
ν{vλDλ, D

α
⊥}D⊥α +D⊥α{vλDλ, D

α
⊥}vµσµνDν)

}

Qv, (6.39)

in which the chirality is made explicit by the appearance of γ5 factoring each term.
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γ, Z,W H, φ

Figure 6.1: Self-energy diagrams contributing to the one-loop WFRC.

6.4 Two Quark Matching

The self energy contributions which contribute to the wave function renormalisation (WFR),
represented in Fig. 6.1, can be split into left/right and scalar components, respectively,

Σ(p) =ΣL +ΣR − ΣS/2 (6.40)

= PLωL + PRωR − ΣS/2, (6.41)

such that PR/L = 1
2(1 ± γ5) are the usual left/right chiral projection operators, from this ex-

pression one can obtain the on-shell WFR correction,

δZ = δZL + δZR, (6.42)

such that,
δZL/R = −

{

ΣL/R +m2(Σ′
L +Σ′

R − 2Σ′
S)
}

|q2=m2 , (6.43)

and therefore,

δZ = −
{

[ωL + ωR + 2m2(ω′
L + ω′

R +Σ′
S)]− γ5[ωR − ωL + 2m2(ω′

R − ω′
L)]
}

|q2=m2 (6.44)

= δZ1 + γ5δZ3. (6.45)

The total on-shell form factors at one-loop can then be calculated from the amplitudes present
in Fig. 6.2. We present the result in the large external on-shell quark mass, m ≡ m1, limit
and small new internal mass appearing from flavour changing, m2, along with small transfer
momentum, q,

F1 = 1− δZ1 + F
(a)
1 + F

(b)
1 = 1 +

αs
π

q2

m2
1

[(

−1

8
+

1

6
L1

)

CF +

(

− 1

16
+

5

48
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)

CA

]

+
α

π

q2

m2
1

[

2

27
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1
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(
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+
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432
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)

+
1
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− 5
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+

3
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1

192
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+
1
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1

16
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1

48
r21,wL2,h +

1

24
L2,1 +

1

48
L2,z −

iπ

48

(

1 +
1

3
r21,w

))]

, (6.46)

F2 = F
(a)
2 + F

(b)
2 =

αs

π

[

1

2
CF +

(

1

2
− 1

4
L1

)

CF

]

+
αs

π

q2

m2
1

[

1

12
CF +

(

1

12
− 1

4
L1

)

CA

]

+
α

π

[(

35

144
− 1

16
L1,z

)

1

c2
+

(

7

16
+

1

16
r21,w −

1

8
πr1,wrh,w −

3

16
r2h,wL1,h −

1

16
L1,z

)

1

s2

]

+
α

π

q2

m2
1

[

1

c2
13

432
+

1

s2

(

1

48

(

1− iπr21,w
)

+
1

96
r21,w −
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1

48
r21,wL1,2

+
1

16
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, (6.47)
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(a) (b)

Figure 6.2: Diagrams that contribute to three-point matching coefficients in the SM. The Abelian
and non-Abelian contributions are given by diagrams (a) and (b), respectively.

F3 = − δZ3 + F
(a)
3 + F

(b)
3 =

α

π

[(

5

16
− 5

48
L1,z

)

1
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+

(

− 7

16
+

1

16
r21,w +

1
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+
1

16
L1,z −

iπ

8

)

1

s2

]

+
α

π

q2

m2
1
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− 35
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+

5

96
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)

1
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+

(

9
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+

1
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1

48
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− 1

48
L2,1 −

1
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iπ
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)

1

s2

]

, (6.48)

F4 = F
(a)
4 + F

(b)
4 =

α

π
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+

5

24
L1,z

)

1
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+
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+

1
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1
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1

6
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− 1

24
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iπ
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)

1

s2

]

+
α

π

q2

m2
1
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− 7

96
+

5

144
L1,z

)

1

c2
+

(

17

96
− 1

60
r21,wr

2
1,2

+
19

480
r21,w +

1

60
r2w,2 +

1

60
r21,2 −

7
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r21,wL1,2 −

1

48
L1,z −

1
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iπ
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+

7iπ

240
r21,w

)

1

s2

]

, (6.49)

where LA ≡ lnA2/µ2, LA,B ≡ LA − LB and ri,j = mi/mj , we fix the Yukawa coupling to the
EW coupling, α, and quark masses in the standard way [115]. We also define the mixing angles,
c = cos θw = MW /MZ and s = sin θw. Moreover, we leave out IR divergences, ǫIR, to reduce
the size of the expressions and they are conventionally not included in the matching coefficients.
Although the form factors in the limit presented above provide an adequate approximation for
m1 ≫ MW,Z ,MH ≫ m2, q

2, in the SM the correct limit is m1 ∼ MW,Z ,MH ≫ m2, q
2 and

thus we recommend the latter for precision calculations. We leave a limit comparison to future
numerical studies and the full expression with no approximations is included with an arXiv
ancillary file of Ref. [161].

6.5 Four Quark Matching

To achieve the matching we follow the procedure originally outlined in [316] reproducing there
results and extending them. One begins by expanding the dimensionally regulated matrix ele-
ments about zero residual momentum. This expansion is done to zeroth order since there are
no derivative terms in the four fermion portion of our effective Lagrangian, by inspection of
Eq. (6.4) and Eq. (6.5) - i.e. we solely require the matrix elements for the four heavy quarks at
rest. Diagrammatically, this means the amputated legs in a given diagram can be multiplied by
a projector, P+ and P−, to the particle and anti-particle sub-spaces, respectively. The kinematic
factor which relates the relativistic and non-relativistic expansions,

√

m/E may also be set to
unity without loss of generality.
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The calculation of such matrix elements in QCD and HQET has been achieved in previous
studies [316, 323, 324]. In the S-matrix elements of such heavy-heavy systems, one can see a
unique IR behaviour appearing, which gives rise to the Coulomb pole and hence to the standard
NR weakly coupled bound states. This behaviour in the IR appears expectantly in both the
effective and full theory. Expanding the dimensionally regulated matrix elements of QCD about
the residual momentum, one would expect an IR singularity - reflecting the Coulomb pole -
to emerge. This odd power-like IR divergence is set to zero in dimensional regularisation; the
EFT has identical IR behaviour which is consistently put to zero by dimensional regularisation.
Crucially, we are taking into account all the non-analytic behaviour in the heavy quark masses
coming from high momenta such as in QCD logarithms, for instance.

The MS scheme is employed throughout for both UV and IR divergences. As was done
previously, we avoid on-shell WFR and stick to MS [316]. The scheme is followed to avoid
identifying the UV divergences in the on-shell (OS) scheme which correspond to a WFR constant
and subtracting them accordingly, this is less straightforward than employing MS throughout.
The price to be paid for this choice is that the heavy quark fields cease to be adequately
normalised - hence one requires the proper WFR factor, Z, to be included when calculating the
on-shell matrix elements, for instance, in QCD one has,

ZQCD = 1 + CF
αs
π

(

3

4
Lm − 1

)

+O(α2
s), ZNRQCD = 1. (6.50)

To be clear, Z only contribute at one-loop order in the equal mass case, the amplitudes of
which are illustrated in Fig. 6.4. Lastly, we note that in our calculation, the Wilson coeffi-
cients in Eqs. (6.4) and (6.5) are invariant under local field re-definitions as discussed in detail
previously [218].

6.5.1 Unequal Mass Case

In the unequal fermion mass case, annihilation diagrams do not contribute, and thus we are
left with the box diagrams present in Fig. 6.3. The aforementioned Coulomb singularity and
the mechanism by which it vanishes is identifiable. The upshot is that a suitable dimensionful
parameter - the relative momentum of the heavy quarks - is not present in the calculation. Thus
dimensional regularisation has no way to reproduce the Coulomb pole which was pointed out
and discussed in detail in Refs. [316,323].

We re-calculate the following known QCD matching coefficients in the large m1,2 limit and
confirm the result of [316],

dss = − CF

(

CA

2
− CF

)

α2
s

m2
1 −m2

2

{

m2
1

(

L2 +
1

3

)

−m2
2

(

L1 +
1

3

)}

, (6.51)

dsv = CF

(

CA

2
− CF

)

α2
s

m2
1 −m2

2

m1m2L1,2, (6.52)

dvs =

(

3

4
CA − 2CF

)

α2
s

m2
1 −m2

2

{

m2
1

(

L2 +
1

3

)

−m2
2

(

L1 +
1

3

)}

+
CAα

2
s

4(m2
1 −m2

2)m1m2

{

m4
1

(

L2 +
10

3

)

−m4
2

(

L1 +
10

3

)}

, (6.53)

dvv =
2CFα

2
s

m2
1 −m2

2

m1m2L1,2 +
CAα

2
s

4(m2
1 −m2

2)

{

m2
1

(

L2 +
10

3

)

−m2
2 (L1 + 3)− 3m1m2L1,2

}

. (6.54)

Note that imaginary parts appear in Wilson coefficients, this occurs often and are qualitatively
related to the inelastic cross sections which are unattainable with NR theory alone. Moreover, the
decay width of heavy quarkonium states into light hardons are also implicated in the imaginary
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Figure 6.3: Relevant diagrams for the matching of the four-fermion operators at one-loop order
and O(1/m2) in the unequal mass case. The incoming and outcoming particles are on-shell and
exactly at rest.

parts, which has been previously calculated [73], which agrees with our results. The O(ααs)
real EW corrections, which we define as d′ij , to these coefficients will be presented in the limit,
m1 ≫ m2,MEW, where MEW labels bosonic masses in the EW sector. We choose this limit for
compactness mainly but the full result up to O(α2) in the analogous limit to the QCD result is
included as an arXiv ancillary file of Ref. [161]. We note that at O(ααs), d′ss = d′sv = 0, and
what remains to display are the following coefficients,

d′vs = ααs

{

1

24

(

1 + 3L2 + 12iπ − 4r1,2iπ − 3r1,wr2,w

[
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[
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1
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, (6.55)

d′vv = ααs

{

1
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55 + 15L2 + 6r2h,w
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+ 36r22,wL1,2

)

1

s2
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(

5

24
L2 +

55

72

)

1

c2

}

, (6.56)

where the EW parameters present in this expression mimic the definitions present in Section 6.4.

6.5.2 Equal Mass Case

When considering the equal particle case more amplitudes are involved since annihilation pro-
cesses are now allowed and must be taken into account (see Fig. 6.4). The inclusion of annihi-
lation processes, most significantly, includes, at leading order, the tree level contributions. We
confirm the previously calculated matching coefficients in pure QCD,

dcss = α2
sCF

(

CA

2
− CF

)

(2− 2l2 + iπ), (6.57)

dcsv = 0, (6.58)

dcvs =
α2
s

2

(

−3

2
CA + 4CF

)

(2− 2l2 + iπ), (6.59)

dcvv = (−παs)

{

1 +
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[
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6

(
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− 8

9
+

1

3
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]

+CA

[

−11

12
L1 +

109

36

]

− 4CF

}

, (6.60)

where l2 ≡ ln (2). The O(α, ααs) EW corrections to these coefficients, defined as dc
′

ij , will be
presented in the following limit, m1 ≫MEW ≫ m2. This limit is again chosen for compactness
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+perm.

+perm.+perm.

Figure 6.4: Relevant diagrams to the matching for four-fermion operators at one-loop order and
O(1/m2) in the equal mass case. The incoming and outgoing particles are on-shell and exactly
at rest.

but the full result up to O(α2) is included as an arXiv ancillary file of Ref. [161],
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(
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(6.64)

6.6 Discussion

To underline our discussion the full set of EW corrections to the two and four quark matching
coefficients is presented in Tables 6.1 and 6.2, respectively. We avoid taking any limits and plug
in the latest SM parameters to compare with the known QCD result. The reason we choose
the full expression up to the order we are considering is to maximise accuracy and we focus
on comparing the real parts of the Wilson coefficients. For our comparison we choose for our
renormalisation scale, µ = MZ , m1 = mt(MZ), m2 = mb(MZ) and the coupling, αs = αs(MZ)
and the parameters were taken from the latest PDG review [167]. We will begin by considering
the bi and ci Wilson coefficients factoring the two quark operators. By inspection of Table 6.1,
at the renormalisation scale we are inspecting, it is clear that the EW corrections alter the
Wilson coefficients significantly. Moreover, the size of these corrections varies widely depending
on the coefficient under consideration and this provides further credence to the lack of reliability
of naive order of magnitude estimates. As for the new parity-violating operators, they come
equipped with non-negligible matching coefficients of similar order of magnitude to the ones
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Coeff. c0,2,4 cF cD cS cW1 cW2 cq cM

QCD 1 1.04 1.192 1.08 0.996 -0.004 0.04 0.076

EW corr. 0 0.0006 -0.1012 0.0012 -0.0639 -0.0629 0.0006 -0.0509

Coeff. b0,1,2 b3 b4 b5 b6 b7 b8 b9

EW corr. -0.002 0.024 -0.002 -0.04 0.02 -0.04 0.042 -0.002

Table 6.1: Three-point matching coefficients with µ =MZ and SM parameters taken from PDG.

Coeff. dss dsv dvs dvv dcss dcsv dcvs dcvv

QCD 0.02 0.0004 -2.269 -0.038 0.0018 0 0.003 -0.366

EW corr. 0.093 -0.077 -0.2734 2.145 -0.134 0.002 -0.014 -0.034

Table 6.2: Four-point matching coefficients with the equal and unequal mass cases distinguished
by the superscript, c, with µ =MZ and SM parameters taken from PDG.

factoring the parity-preserving operators. On the other hand, the matching coefficients of the
four quark operators vary even more strongly in both the QCD and EW sectors. If we now
consider Table 6.2, we may focus on the largest Wilson coefficients in QCD which are dvs and
dcvv in the unequal and equal mass cases, respectively. The EW corrections to these coefficients
are an order of magnitude smaller which align well with naive estimates, i.e. O(ααs). However,
the largest EW contributions which arise in dvv and dcss are of the same order as the largest
QCD coefficients and further justify the necessity of including them in precision calculations.
We end by noting that these results were achieved with the help of Mathematica accompanied
by the package, FeynCalc [298], to compute the necessary amplitudes and deal with the algebra.
We employed further sub-packages of FeynCalc such as FeynHelpers [299] which reduces and
provides explicit expressions for one-loop scalar integrals by connecting the reduction package,
fire [300], with the analytic scalar integrals program, Package-X [301]. Lastly, we employed
the FeynOnium sub-package, for dealing with calculations in the NR limit [302].

6.7 Summary

The matching coefficients of the NRQCD Lagrangian have been computed at one-loop up to
and including terms of order O(1/m3

Q) with QCD as the full theory, confirming previous results.
The Lagrangian was then extended to include the leading QCD+EW and EW corrections at
one-loop, of which various limits were presented and discussed. New parity-violating operators
were found to be necessary for the two quark terms in the effective Lagrangian, and we showed
them to be frame independent. The new terms arose due to the SM being parity-violating
and new Lorentz structures emerged that are not present in the NR limit of QCD; thus, the
matching coefficients accompanying said terms exhibited EW corrections purely. When studying
the four quark operators, we considered both the equal and unequal external heavy quark mass
cases. We rounded off by comparing all the matching coefficients for a particular renormalisation
scale with and without EW corrections and found the contributions from the EW regime to be
relevant. Therefore, we recommend their inclusion in future heavy quark precision studies. Our
full results are contained in the ancillary file submitted along with Ref. [161] on the arXiv.
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Chapter 7

Two-loop Electroweak Form Factor

Corrections

In this chapter we compute the massive gauge and scalar corrections to form factors up to and
including two-loop orders. The corrections are calculated for processes involving two external
fermions and scalars in the spontaneously broken SU(N)-Higgs model, examining a range of
composite operators. The formalism we deploy is applied in both the Sudakov and threshold
energetic regimes. We further discuss how our form factors can be mapped from our model to
the Standard Model and beyond. This Chapter is based on Ref. [325], reflecting the author’s
contribution.

7.1 Motivation

The often addressed form factor is a crucial building block in the perturbative analysis of scat-
tering processes occurring at the LHC and future colliders [326, 327]. It is also the simplest
amplitude which can be used to study the IR structure of the Standard Model and beyond.
For reference, the QCD form factors of massless quarks have been evaluated through to the
three-loop level [328] and even recently towards four loop orders [329–338]. On the other hand
for massive quarks in QCD three-loop results are available thus far [339–341]. In our study, we
consider massive gauge and Higgs corrections to the form factor for scalar, fermion and mixed
external particles on a range of operators, checking and extending the results of [76] to two-loop
orders. Furthermore, unlike previous work which focus solely on the Sudakov regime relevant
for LHC studies, we also consider the threshold regime appropriate for future high precision
colliders [218, 341, 342]. When the COM energy of a process is large compared to predicted
masses in our theory, this is known as the Sudakov energetic regime. For instance, with regards
to the SM, LHC partonic processes lie in this regime as the COM energy is

√
s ∼ 14 TeV,

which is an order of magnitude above the largest SM masses. Radiative corrections of both
exclusive and inclusive scattering processes include terms with up to two powers of large loga-
rithms, ln (s/M2

W/Z), known as electroweak Sudakov logarithms [343]. Such logarithms cause a
break-down of fixed-order perturbation theory and thus, resummation is necessary at all orders.
Thus far, the literature on EW Sudakov effects in most cases focuses on employing IR evolution
equations to deal with computations [75,344–351].

One can see the so-called Sudakov logarithm as an IR logarithm in EW theory, as it diverges
in the small EW mass limit. Naturally, this calls for the use of EFT, in which the IR logarithms of
the full theory are convertible to UV logarithms in the EFT, and then summable using standard
RG techniques. In this regime, the appropriate effective theories are SCET and heavy particle
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effective theory (HPET) for both fermions and scalars [259, 260], which have been previously
used to study high energy EW Sudakov corrections [76, 352], and to perform resummation.
This paper studies high energy EW Sudakov corrections in the EFT formalism, expanding on
previous work [76,352,353]. With regards to studies in the high energy (Sudakov) regime, many
observables have been found to a high level of accuracy. For instance, inclusive top quark pair
production cross-section uncertainties, now are at around 3− 5% for a fixed top quark mass of
mt = 172.5 GeV [354]. Moreover, although precision measurements are crucial for testing SM
predictions, BSM physics can hide as anomalies within the uncertainties. Thus, to discover or
rule out signs of BSM physics, further precision is necessary than what can be provided by the
LHC, and indeed, a future high precision collider which operates at threshold energies along
with theoretical studies can achieve that [355, 356]. In the threshold regime, the processes we
consider have a COM energy,

√
s, near equal to the sum of the on-shell masses of the particles

produced. Radiative corrections to scattering processes at threshold depend on the large on-shell
external particle masses, as well as EW masses which are significant and, again, must be taken
into account. We note further that in the threshold case, we take the gauge and Higgs masses
to be IR as in the Sudakov case. Although there is extensive literature on QCD corrections
at threshold, there is much more that needs to be achieved when considering EW and even
BSM physics. The effective theory we employ at threshold is HPET along with standard RG
techniques to perform logarithmic resummation.

In this work, we generalise previous results in a gauge-invariant fashion to massive scalars and
fermions, incorporating the Higgs sector. Moreover, we study the threshold regime, as in previous
works only the Sudakov regime was considered. We take the EFT analysis to two-loop orders to
match the highest precision IR evolution results keeping the EW gauge boson and Higgs masses
non-degenerate [75, 348]. We choose to study form factors instead of specific collider processes
since they form the building blocks for a vast array of processes. In particular, they can be
employed to study di-jet, t̄t, squark pair, and DM production in various models [353, 357–359].
Previous and future results on processes are attainable from our results by external particle pair
summation. Group-theoretic factor replacements are necessary as well since the model we study,
SU(N)-Higgs theory with SSB, is selected for generality. Moreover, the various set of composite
operators, we look into allows future studies to be derived from our results. To illustrate such
derivations, we apply our formalism to EW corrections in the SM for the case of light quarks,
leptons and the top quark as external particles.

7.2 Full and Effective Theory Formalism

7.2.1 SU(N)-Higgs Theory and the Standard Model

Our calculation is set in a spontaneously broken SU(2) gauge model, however we keep our re-
sults quite general, i.e. not substituting numerical colour factors and sticking with composite
operators so that our results are more conveniently mapped to more specific models for pheon-
menological studies. In particular, with regards to the SM, the mapping of our model to the
SM has been studied in detail previously [75, 76, 353]. Our model lacks solely in representing
mass eigen-state γ-Z mixing, this occurs in the SM when the left-handed fermion SU(2) isospin
group mixes with the U(1) hypercharge gauge group.

In our model the EW fields, W± and Z, are replaced with equal mass neutral SU(2) gauge
bosons, W a : a = {1, 2, 3}. We label the SU(N) generators by T a : a = {1, . . . , N2 − 1}
in the fundamental representation. The Lie algebra provides structure constants fabc with
Casimir operators for the adjoint and fundamental representations given by, CA = N and
CF = (N2 − 1)/2N , respectively. Moreover, we take the convention, tr(T aT b) = TF δ

ab, and
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even in the specific case of N = 2 for SU(2), we remain with the general symbols rather than
the specific values, which makes our results easily convertible for specific models. For instance,
in the SM which includes the U(1) hypercharge gauge group. For SU(2), the generators are
T a = σa/2 : a = {1, 2, 3} with Pauli matrices, σa, and fabc = ǫabc. With the above specifications
we may now state the SU(2)-Higgs Lagrangian in the t’Hooft-Feynman gauge,

L = Lψ + Lχ + LYM + LGF + Lgh + LHiggs + LYuk. (7.1)

The Lagrangian is split into a few parts; Lψ and Lχ which describe the fermions and scalars
(external particles), respectively; LYM and LGF corresponds to the massive Yang–Mills (YM)
and gauge–fixing (GF) terms, respectively; Lgh describes the Faddeev-Poppov (FP) ghost fields;
LHiggs corresponds to the free Higgs Lagrangian which induces SSB and lastly, LYuk entails the
Yukawa interaction terms which provide mass to the external fermions and scalars.

Fermions/Scalars Let ψi(x) and χi(x) correspond to Fermions and scalar fields with sub-
scripts labelling fields as we consider different incoming outgoing external states for generality.
The Dirac and scalar Lagrangians then have the following form,

Lψ = ψ̄ii /Dψi, Lχ = Dµχ
†
iD

µχi, (7.2)

where Dµ = ∂µ − igW a
µT

a, W a(x) is the gauge field as previously defined and g corresponds to
the SU(N)W gauge coupling.

YM and Gauge-Fixing The Yang-Mills and gauge-fixing Lagrangians have the usual form,

LYM = −1

4
F aµνF

µν,a, LGF = − 1

2ξW
F 2
W , (7.3)

such that F aµν = ∂µW
a
ν − ∂νW a

µ + gfabcW b
µW

c
ν and FW = (∂µW a

µ − ξWMWφ
a)T a where φa is

the Goldstone boson field and ξW the linear t’Hooft gauge fixing parameter.

FP-ghosts In order to compensate for the effects of the unphysical components of the gauge
fields in LGF, one introduces the Lagrangian,

Lgh = −i(∂µc̄a)Dab
µ c

b − ξWM2
W c̄

aca, (7.4)

with FP-ghosts, ca(x), c̄a(x), and Dab
µ = ∂µδ

ab + gfabcW c
µ.

Higgs and Yukawa The Higgs sector is defined by a complex scalar field, Φ(x), coupled to
the gauge fields in the minimal Higgs Lagrangian,

LH = (DµΦ)
†DµΦ− V (|Φ|2), (7.5)

with a potential, V (|Φ|2) = λ
2 (|Φ|2−v2/2)2. The Higgs potential is defined such that it gives

rise to spontaneous symmetry breaking. Meaning the parameters, λ and v, are chosen in such
a way that the potential minimum occurs for a non-vanishing Higgs field. More specifically, the
scalar field ground state is non-zero,

|〈Φ〉|2= v2

2
6= 0. (7.6)
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In perturbation theory one has to expand around the ground state and the Higgs field is written
as

Φ =
1√
2
((H + v) + iφaT a) , (7.7)

where H and φa have zero vacuum expectation value and are real. The physical Higgs field is
labelled H and the Goldstone bosons which encode non-physical degrees of freedom are labelled
φa. Inserting Eq. (7.7) back into the full Lagrangian, L, provides mass to the Higgs field and
W-boson,

MH =

√

λ

2
v and MW =

gv

2
, (7.8)

respectively. As for fermion and scalar masses, these arise from the Yukawa-like interactions,

LYuk = −yf,iψ̄iΦψi − ys,iχ†
iΦχi + h.c., (7.9)

where yf,i and ys,i are the Yukawa couplings for the fermions and scalars, respectively. After
spontaneous symmetry breaking, i.e. inserting Eq. (7.7) back into Eq. (7.9), results in mass
terms for said fermions and scalars,

LYuk = −
√
2(yf,iψ̄iψi + ys,iχ

†
iχi)(H + v), (7.10)

therefore we can re-write,

mψ =
√
2vyf ⇒ yf =

g

2
√
2

mψ

MW
≡ g

2
√
2
Yf , (7.11a)

m2
χ =
√
2vys ⇒ ys =

g

2
√
2

m2
χ

MW
≡ g

2
√
2
Ys, (7.11b)

and in this notation the Lagrangian becomes,

LYuk = −mψi
ψ̄iψi −m2

χi
χ†
iχi −

g

2
Yf,iHψ̄iψi −

g

2
Ys,iHχ

†
iχi, (7.12)

where hψ,χ is conventionally used in Feynman rules, as given in Appendix A, which we attain
by expanding each term in the full Lagrangian.

7.2.2 Heavy Particle Effective Theory

In the case of fermions we deploy HQET, which we describe briefly in this section but refer
to other works for more detail [64, 153, 360]. HQET is useful when considering a bound state
of a heavy quark with mass m ≫ ΛQCD, and light quarks with mass smaller than the colour
confinement scale, ΛQCD. The heavy quark interacts with the light degrees of freedom at an
energy scale of order ΛQCD. Whence, one can perform a system momentum decomposition,

pµ = mvµ + kµ, (7.13)

such that the velocity of the heavy quark, v, is usually normalised with v2 = 1, and the residual
momentum, k, is small and labels light quark interactions. The first part of Eq. (7.13) is
approximately conserved in processes and represents the energy of the heavy quark. The second
part parameterises the remaining momentum due light and heavy-light quark interaction, such
that,

|k|∼ O(ΛQCD) and m≫ ΛQCD. (7.14)

Therefore, we have a scale hierarchy which is a requirement for an EFT and upon which HQET
was founded.
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We now derive the HQET Lagrangian for a quark coupled to our SU(N) gauge and Higgs
fields, the full theory Lagrangian is given by,

L = ψ̄(i /D −m)ψ − g

2
YfHψ̄ψ, (7.15)

such that Dµ = ∂µ− igWµ and Yf is the Yukawa coupling as previously defined. By introducing
the projection operators [84],

P± =
1± /v
2

, (7.16)

and two eigen-functions of these operators,

hf = eimv·xP+ψ, (7.17a)

Hf = eimv·xP−ψ, (7.17b)

we then perform a spinor decomposition,

ψ =
1 + /v

2
ψ +

1− /v
2

ψ = e−imv·x(hf +Hf ), (7.18)

where the field and anti-field are given by Hf and hf , respectively. These fields satisfy the
relations, /vhf = hf and /vHf = −Hf and heavy field external states are explained in Ref. [153].
Now, substituting Eq. (7.18) into Eq. (7.16), employing identities and using the anti-field, Hf ,
equation of motion to integrate it out, the HQET Lagrangian is arrived at,

LHQET = h̄f iv ·Dhf −
g

2
YfHh̄fhf +O(1/m), (7.19)

where we neglect terms of O(1/m) in our derivation as they are heavily suppressed. The heavy
quark propagator is thus,

S(k) =
1

k · v + iδ

1 + /v

2
, (7.20)

with residual momentum, k, and the vertex couplings are given in Appendix A.
To derive the heavy-field limit of a real scalar, or spin-0, field, it is very similar to the

fermionic, or spin-1/2, derivation. One takes the full theory Lagrangian to be that of a complex
scalar field, χ, with mass, m, coupled once again to to our SU(N) gauge and Higgs fields,

L = Dµχ
†Dµχ−m2χ†χ− g

2
YsHχ

†χ (7.21)

Motivated by earlier studies [361–363], we then decompose the scalar field in the following way,

χ =
e−imv·x√

2
(hs +Hs) , (7.22)

where again, Hs is the anti-field containing the heavy modes, which needs to be integrated out.
More specifically,

hs =
eimv·x√
2m

(iv · ∂ +m)χ (7.23a)

Hs =
eimv·x√
2m

(−iv · ∂ +m)χ, (7.23b)

and plugging Eq. (7.23) into Eq. (7.22) gives,

iv · ∂Hs = (2m+ iv · ∂)hs. (7.24)
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Hence, substituting Eq. (7.22) and Eq. (7.24) into the Lagrangian given by Eq. (7.21), and using
the equation of motion, one obtains the heavy scalar effective theory (HSET) Lagrangian in our
model,

LHSET = h†siv ·Dhs −
g

2
YsHh

†
shs +O(1/m). (7.25)

We again neglect terms of O(1/m) in our derivation as they are heavily suppressed. The heavy
scalar propagator is thus,

S(k) =
1

k · v + iδ
, (7.26)

where k is again the residual momentum and the vertex coupling is also given in Appendix A.
Moreover, the HSET Feynman rules are directly attainable from the full theory rules through
Eq. (7.13) and division by 2m.

7.2.3 Soft-collinear effective theory

The appropriate effective theory for high-energy particles is SCET, which is defined by some
energy of O(Q), where Q is a large characteristic scale of the process under consideration. SCET
preserves the modes of the full theory with small invariant mass in comparison with Q2. To
describe fields in SCET, null vectors, n and n̄, are necessary where n = (1,n) and n̄ = (1,−n).
The three-vector, n, is chosen to be a unit vector, thus, n̄ · n = 2.

When calculating the Sudakov form factor, we choose the Breit frame where n and n̄ to be
along the p2 and p1 directions, respectively. The momentum transfer is labelled by, q = p2− p1,
and has zero time-component. We work with light-cone components, which for a four-vector,
p, are defined by p+ ≡ n · p and p− ≡ n̄ · p. In our problem, p−1 = p1⊥ = p+2 = p2⊥ = 0, and
Q2 = p+1 p

−
2 , which is reflected in our Feynman rules, see Appendix A. When a field is moving

approximately along n, it is describable by an n-collinear field, ξn,p(x), in SCET where p labels
momentum, with components n̄ · p and p⊥ [259,260]. Kinematically, the field, ξn,p(x), describes
a particle with p2 ≪ Q2. We can now define power counting in SCET,

p− ∼ Q, p+ ∼ Q2λ, p⊥ ∼ Qλ, (7.27)

with small expansion parameter, λ, useful for power counting. The SCET field, ξn,p(x), has
momentum p + k, where as in HPET, k is the residual momentum, except in this effective
theory, k is of order Qλ2.

On the other hand, the gauge fields in SCET are, Wn,p(x), Wn̄,p(x) and W (x) which corre-
spond to n-collinear, n̄-collinear and ultrasoft (US) fields. The US fields in SCET are the same
as those present in other well-known effective theories [141, 364]. The n-collinear fields scale in
momentum as,

p− ∼ Q, p+ ∼ Q2λ, p⊥ ∼ Qλ, (7.28)

whereas the scaling of n̄-collinear fields is given by,

p+ ∼ Q, p− ∼ Q2λ, p⊥ ∼ Qλ. (7.29)

The US fields scale simply as p+ ∼ p− ∼ p⊥ ∼ Qλ2. The SCET fermion Lagrangian at leading
order is given by [259],

Lξξ = ξ̄n,p
n̄

4

(

in ·D +
p2⊥

2n̄ · p

)

ξn,p
n̄

4
(7.30)

such that iDµ = i∂µ + gWµ is the US covariant derivative. The associated fermionic SCET
propagator is then given by,

S(p) =
/n

2

n̄ · p
p2

. (7.31)
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At this stage we define the projection operators for fermions in SCET,

Pn =
nn̄

4
, Pn̄ =

n̄n

4
, Pn̄ + Pn = 1, (7.32)

where Pnξn,p = ξn,p, Pn̄ξ,p = 0 and the converse holds for ξn̄,p. We further note that the large
scale Q is not integrated out completely in SCET. The scale is implicit in the field labels and
Q may appear in the anomalous dimension, however Q2, which appears in the full theory, may
not.

We also require SCET analogues for scalar fields. Let Φn,p be the scalar analogue of ξn,p,
which describes a scalar particle moving approximately along n. One normalises the SCET field,
Φn,p, in the same way as the full theory field, φ, producing scalar particles with unit amplitude.
The scalar field kinetic energy term in the Lagrangian then becomes,

Dµφ
†Dµφ→ Φ†

n,p

(

(n̄ · p)(in ·D) + p2⊥
)

Φn,p (7.33)

in SCET. It is also convenient to re-define the scalar field as follows,

φn,p =
√
n̄ · pΦn,p (7.34)

in terms of which the kinetic term becomes,

Lφφ = φ†n,p

(

in ·D +
p2⊥

(n̄ · p)

)

φn,p (7.35)

with identical normalisation as Eq. (7.30). The re-scaled scalar propagator is given by,

1

p2
→ n̄ · p

p2
. (7.36)

Hence, φn,p as defined, creates n-collinear scalar fields with amplitude,
√
n̄ · p.

7.3 The Form Factor

In this work we consider the Euclidean form factor given by the on-shell scattering amplitude,
FE(Q

2) = 〈p2| O |p1〉. The external particles have momentum, p2i = m2
i , and are scattered by a

set of operators O, with transfer momentum, Q2 = −(p2−p1)2 > 0. The time-like form factor is
given by analytically continuing, F (s) = FE(−s− i0+), implying lnQ2/µ2 → ln s/µ2 − iπ. We
are interested in FE(Q

2) for scattering of fermions, O(j) = {ψ̄γµψ, ψ̄ψ, ψ̄σµνψ} : j = {1, 2, 3},
scattering of scalars, O(j) = {χ†χ, i(Dµχ†χ − χ†Dµχ)} : j = {4, 5}, and mixed scattering
with, O(j) = {ψ̄χ, χ†ψ} : j = {6, 7}. We consider gauge singlets operators as in previous
studies [76, 352]. Thus, the external particles have the same gauge quantum numbers, but
differing mass. We then compute the form factor, FE(Q

2), in the EFT approach with a set of
theories, each appropriate at a particular scale.

To illustrate the matching, consider the Sudakov regime. At scales higher than Q2, the model
is the original (or full) Higgs-gauge theory. As one shifts to scales below O(Q2), one transitions
to the EFT (SCET) with O(Q2) degrees of freedom integrated out. The IR behaviour of the
full and EFT are identical but the UV behaviour differs. One must further introduce a so-
called multiplicative matching coefficient to the EFT operator to ensure that the full and EFT
operators produce identical OS matrix elements. More precisely, when matching the full theory
onto SCET at the scale, µ ∼ Q, one attains,

〈p2| O(µ) |p1〉 = exp [C(µ)] 〈p2| Õ(µ) |p1〉 , (7.37)

93



where the matching coefficient, exp [C(µ)], at µ ∼ Q appears explicitly and can be computed
perturbatively. The coefficient is indpendent of IR physics and presented in exponential form for
later convenience. The operator, Õ(µ) is the effective theory version of the operator in the full
theory, O(µ). More generally, a full theory operator, O, may need to be matched to a more than
one operator, Õi, with identical quantum numbers in the EFT [365, 366]. Note that C(µ) will
contain logarithms, lnµ2/Q2, and do not produce large contributions when µ ∼ Q. Although
we choose µ = Q, any value of O(Q) may be chosen as well, and all physical observables do
not depend on the renormalisation scale, µ. The convention we follow is to pick the coefficient,
c(µ), of O in the full theory, to be unity at µ = Q. Our choice then provides the normalisation
for FE(Q

2), and c(Q) = exp [C(Q)] is the SCET operator coefficient at µ = Q. Moreover, to do
RGE for c(µ) between scales we use the usual relation,

µ
dc(µ)

dµ
= γ(µ)c(µ), (7.38)

with anomalous dimension, γ(µ), of the EFT operator, Õ. We then repeat these steps of match-
ing and RGE as we shift between well-separated energy scales, integrating out the appropriate
degrees of freedom along the way. The EFT approach is superior to IR evolution as it divides
a multi-scale calculation into multiple single-scale pieces which are simpler to work with. One
can then trivially identify so-called universal quantities which exhibit scale independence.

For reference, our notation mirrors previous work [76, 352], and is as follows, we use a(µ) ≡
α(µ)/(4π), and for applications to the SM, ai(µ) ≡ αi(µ)/(4π) such that i = {s, 2, 1} represents
the couplings for QCD, SU(2) and U(1) interactions. Hypercharge is taken to be normalised such
that Q = T3 + Y . We further employ the abbreviated notation, LA ≡ lnA2/µ2, for logarithms
present.

7.4 Renormalisation

7.4.1 Field Renormalisation

The OS renormalization of the external scalar/fermion fields in our form factor expansions
is done when the vertex contributions are multiplicatively renormalised. The renormalisation
factor, Z, is known as the scalar/fermion wave function renormalization (WFR) constant. The
OS self-energy corrections, Σ, at p2 = m2 define the WFR constant as we will describe. The
external fields we study are, {ψ, χ, hf , hs, ξn,p, φn,p}, and letting {I, J} denote these fields such
that VIJ and ZIJ =

√
ZIZJ correspond to the vertex and wave-function contributions, we have

the perturbative expansion,

VIJ = 1 + aV
(1)
IJ + a2V

(2)
IJ +O(a3), (7.39)

ZI = 1 + aδZ
(1)
I + a2δZ

(2)
I +O(a3). (7.40)

Therefore, the WFR is given by,

ZIJ = 1 +
a

2

(

δZ
(1)
I + δZ

(1)
J

)

+
a2

2

(

δZ
(2)
I + δZ

(2)
J +

1

2
δZ

(1)
I δZ

(1)
J −

1

4
(δZ

(1)
I )2 − 1

4
(δZ

(1)
J )2

)

.

Whence, the total form factor, FIJ = VIJZIJ , up to order α2, can be written as follows,

FIJ =1 + a

{

V
(1)
IJ +

1

2

(

δZ
(1)
I + δZ

(1)
J

)

}

+ a2
{

V
(2)
IJ +

1

2

(

δZ
(2)
I + δZ

(2)
J

)

+
1

2

(

δZ
(1)
I + δZ

(1)
J

)

V
(1)
IJ +

1

4
δZ

(1)
I δZ

(1)
J −

1

8
(δZ

(1)
I )2 − 1

8
(δZ

(1)
J )2

}

. (7.41)
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(a) (b) (c)

(g)

(d) (e)

(f)

(h)

(i) (j)

Figure 7.1: Two-loop self-energy graphs, arrowed lines represent all incoming-outgoing particles,
dashed lines correspond to bosonic propagators. (a), (b) are seagull terms and only occur with
scalar propagators, (h)-(j) and (c)-(g) represent Abelian and non-Abelian corrections, respec-
tively.

With the above notation we may now discuss how to obtain the WFR constant, ZI , for the
spin-{0, 1/2} fields we study. In all cases, the WFR contributions are garnered from self-energy
amplitudes, Σ̃I [84, 115].

Before determining WFR contributions for our fields of interest, we note that collinear SCET
and full theory field WFR contributions are identical [76,259]. Whence, we only need to outline
how to obtain the wave-function contributions to the form factors for the full theory and HPET
fields.

Scalar field: For massive scalars of momentum, p, and mass, m, the self-energy amplitudes,
as shown in Fig. 7.1 are of the form,

Σ̃χ = −iΣχ(p2)1. (7.42)

From this we may extract the WFR contributions in the following way,

δZχ =
i

4
tr(∂p2Σ̃χ|p2=m2). (7.43)

The massless case is identical except one takes p2 = 0 instead.

Fermion field: In the case of fermions of momentum, p, and mass, m, the self-energy ampli-
tudes are of the form,

Σ̃ψ = −i
(

ΣVψ (p
2)/p+ΣSψ(p

2)m
)

1, (7.44)

where the super-scripts, V and S, denote vector and scalar contributions, respectively. From
this we may extract the WFR contributions,

δZψ =
{

ΣVψ (m
2) + 2m2∂p2

(

ΣVψ (p
2) + ΣSψ(p

2)
)

|p2=m2

}

. (7.45)

The massless case simplifies as p2 = 0 instead and the terms proportional to m2 vanish.

Heavy fields: Lastly, for heavy scalars and fermions, h, of momentum, p, and velocity, v, the
self-energy amplitudes are of the form,

Σ̃h = −i
{

ΣFh (v · p) + ΣRh (MB)
}

1, (7.46)
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Field m M δZ(1) δZ(2)

ψ 0 0

(

CF

2 +
Y 2
f

16

)

{

2
ǫIR
− 2

ǫUV

}

F
(0,0)
ψ

ψ 0 M CF

2

(

2
−ǫUV

+ 1 + 2LMW

)

+
Y 2
f

16

(

− 2
ǫUV
− 1 + 2LMH

)

F
(0,M)
ψ

ψ m 0 CF

2

(

− 2
ǫUV
− 4

ǫIR
− 4 + 3Lm

)

+
Y 2
f

16

(

− 2
ǫUV

+ 8
ǫIR

+ 14− 6Lm

)

F
(m,0)
ψ

ψ m M CF

2

(

− 2
ǫUV
− 8 + 2LMW

− P
)

+
Y 2
f

16

(

− 2
ǫUV

+ 14 + 2LMH
− P ′

)

F
(m,M)
ψ

χ 0 0 CF

2

{

4
ǫUV
− 4

ǫIR

}

F
(0,0)
χ

χ 0 M − Y 2
s

8M2
H

+ CF

2

(

4
ǫUV

+ 3− 4LMW

)

F
(m,0)
χ

χ m 0 CF

2

(

4
ǫUV
− 4

ǫIR

)

+ Y 2
s

4m2

(

1
2ǫIR

+ 1− Lm
)

F
(0,M)
χ

χ m M − Y 2
s

4M2
H

S
′

+ CF

2

(

4
ǫUV
− 4LMW

+ S
)

F
(m,M)
χ

hf,s - 0 CF

2

(

4
ǫUV
− 4

ǫIR

)

+ Y 2
s

4

(

− 2
ǫUV

+ 2
ǫIR

)

F
(0)
h

hf,s - M CF

2

(

4
ǫUV
− 4LMW

)

+ Y 2
s

4

(

− 2
ǫUV

+ 2LMH

)

F
(M)
h

Table 7.1: On-shell wave-function renormalisation contributions. Exchanged boson masses are
M = MW,H where LM = lnM2/µ2, and the external particle (scalar or fermion) mass is m.

The two-loop wave-function corrections, F
(i,j)
I , and the parametric integral functions, P, P

′

and
S, S

′

, shown in Appendix B.8.

for bosons of mass, M , coupling to the heavy fields, as in our case. We thus obtain a heavy field
residual mass term, δm, along with the usual wave function contribution,

δZh = i∂v·pΣ̃h|v·p=0 (7.47)

δmI = −iΣ̃h(v · p = 0). (7.48)

The residual shift in the heavy particle mass, δm, occur as a result of divergent loop integrals
with odd-powered loop momenta, l, and δm is not analytic in M2. Residual shifts of his kind are
known to occur in mass corrections to particles with l ·v propagators [367,368]. Integrals such as
these are finite but not analytic upon dimensional regularisation. In the HPET Lagrangian there
is both m0 and δm which are not independent of each other. Thus, one can pick m0 → m0+∆m,
δm→ δm−∆m, and for convenience, define m0 such that δm is not longer present. This choice
is known as the pole mass [286], and as in previous work we stick with this convention.

7.4.2 Mass and Coupling Renormalisation

Our loop calculations up to two-loop order are done with the bare (unrenormalised) Lagrangian
and thus Feynman rules. We thus have to multiplicatively renormalise the bare mass and
couplings with their respective constants. Although this does not alter the bare two-loop results
at O(α2), the one-loop bare parameters must be replaced by the renormalised ones as terms
will appear which contribute at two-loop order. In our work we employ the MS scheme for the
coupling renormalisation and the OS scheme for mass renormalisation. With the OS scheme,
one defines the (physical) renormalised mass squared as the real part of the propagator’s pole.

In the case of coupling renormalisation the replacement can be applied naively as shown
below. However, in the case of mass renormalisation, say given a mass M , with replacement (we
denote the bare quantities with index, 0),

M2
0 =M2 + δM2 +O(α2), (7.49)

96



in which δM2 corresponds to the mass contribution, the masses to be renormalisaed often appear
in terms of the form (µ2/M2)ǫ or in powers of logarithms. Thus the substitutions at one-loop
are,

(

M2

µ2

)ǫ

→
(

M2

µ2

)ǫ(

1 + ǫ
δM2

M2

)

+O(α2), (7.50)

LnM = LnM + nLn−1
M

δM2

M2
+O(α2), (7.51)

which, when applied provides corrections of O(α2). For the particles we are considering below,
the renormalized quantities and renormalization constants are defined as follows,

α0 = (1 + δZα)α (7.52a)

M2
W,0 =M2

W + δM2
W (7.52b)

M2
H,0 =M2

H + δM2
H (7.52c)

m2
χ,0 = m2

χ + δm2
χ (7.52d)

mψ,0 = mψ + δmψ, (7.52e)

where the subscripts ψ and χ indicate that the masses belong to fermion and scalar fields,
respectively, that appear externally in the form factor.

7.4.2.1 Coupling Renormalisation

In the MS scheme, the bare coupling α0 is renormalised to the physical coupling α with the
following relation,

α0 = (1 + δZα)α = α

(

1− α

4π

β0
ǫUV

)

+O(α3), (7.53)

such that β0 is the leading (one-loop) renormalisation group beta function coefficient. We note
that β0 has the following form,

β0 =
11

3
CA −

4

3
Tfnf −

1

6
, (7.54)

where the terms proportional to CA and nf correspond to the non-Abelian and fermionic contri-
butions, respectively, while the last term corresponds to a Higgs contribution. Thus by applying
the substitution in Eq. (7.53) to our one-loop form factors, we get terms which contribute at
O(α2).

7.4.2.2 Gauge Mass Renormalisation

As this is the first case of mass renormalisation we consider we will discuss this in detail, at
the amplitude level. The bare mass, MW,0, is related to the renormalized mass, MW , by the
self-energy corrections of the gauge boson, given by,

Π̃µν,ab(p) = iδabgµνp2Π(p2)1+ terms ∝ pµpν . (7.55)

After extracting Π(p2) from the amplitudes with the help of the projection operator, Pµν =
gµν − pµpν

p2
, the renormalised mass is given by setting δM2

W = −M2
WΠ(M2

W ), and we may check

various contributions at one-loop, up to O(ǫ), where ǫ are UV divergences. The results up to
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O(ǫ2), needed for mass renormalisation contributing at two-loop orders is provided in an arXiv
ancillary file of Ref. [325]. We begin with the self-energy contributions from the fermion loop,

Π(M2
W )nf

= −4a

9
Tfnf

{

5 + 3iπ +
3

ǫ
− 3LMW

}

+O(ǫ), (7.56)

where as we stated before, a(µ) = α(µ)/4π. Next, we have contributions from the non-Abelian
gauge boson and ghost field loops,

Π(M2
W )WW,cc =

a

9
CA

{

82− 12
√
2π +

51

ǫ
− 51LMW

}

+O(ǫ), (7.57)

from the loop with gauge and Higgs boson,

Π(M2
W )WH = a

{

−2− 1

ǫ
+ LMW

+
sr

MW
lnw + r2 ln r

}

+O(ǫ), (7.58)

where we define r = MH/MW , s =
√

M2
H − 4M2

W and w = 2MW

MH+s , and finally a contribution

from the loops with Higgs and Goldstone bosons,

Π(M2
W )φφ =

a

72
CA

{

34− 3
√
3 +

15

ǫ
− 15LMW

}

+O(ǫ), (7.59)

Π(M2
W )Hφ = a

{

1

18

(

5 +
3

ǫ
− 3LMW

)

+
r2

2

(

ln r +
3

2
+

1

2ǫ
− 1

3
LMH

)

− r
4

12
− r4

2
ln r +

r5s

12MW
lnw − r3s

3MW
lnw +

r6

12
ln r

}

+O(ǫ). (7.60)

Thus combining all terms provides one with the gauge boson mass correction in the replacement
rules. Moreover, we omit tadpole diagram contributions in the self-energy amplitude as they are
momentum-independent and cancel with the associated vertex and WFR tadpole contributions,
which are excluded as well.

7.4.2.3 Higgs Mass Renormalisation

As we were explicit in the previous section and broke down each contribution we will be brief now
as the above still applies and we simply state the correction. The bare Higgs mass, MH0 , and
the renormalized mass, MH , are related by the Higgs self-energy corrections, Σ̃(p2) = iΣ(p2)1.
Extracting Σ(p2) gives the renormalized mass by setting δM2

H = Σ(M2
H), which has the following

form after combining all contributions,

δM2
H = aCACF

MW

64r

{

−2MW r(r
4 − 16r2 + 36) +MW r(r

4 − 16r2 + 48)

(

LMW
− 1

ǫ

)

−s(r4 − 16r2 + 56) ln

(

r(s−MH)

2MW
+ 1

)}

− ar4 9M
2
W

32

{

2− π√
3
+

1

ǫ
− LMW

− ln r}+O(ǫ), (7.61)

up toO(ǫ), where ǫ are UV divergences. The results up toO(ǫ2), needed for mass renormalisation
contributing at two-loop orders is provided an arXiv ancillary file of Ref. [325]. Whence the
above provide us with the Higgs mass correction at two-loop order. Moreover, we note that the
self-energy diagrams with tadpoles have been omitted for the same reason previously described.
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7.4.2.4 Fermion and Scalar Mass Renormalisation

Lastly we discuss the mass renormalisation of the massive external fermion and scalar fields we
consider. These masses appear and the corrections contribute at two-loop order in the threshold
regime. Due to expression size we show the example of the case where the Higgs and gauge
masses are taken to be IR and vanishing. We begin with the scalar contributions; the relation
between the bare scalar mass, mχ0 , and the renormalised mass, mχ, is determined by the scalar
self-energy corrections, Σ̃(p2) = iΣ(p2)1. Extracting Σ(p2) gives the renormalised mass by
setting δm2

χ = Σ(m2
χ), which has the following form after combining all contributions,

δm2
χ = aeγEǫ

(

µ2

m2
χ

)ǫ{

CFm
2
χ

(2ǫ− 3)Γ(ǫ− 1)

2ǫ− 1
+ Y 2

s

Γ(ǫ)

4− 8ǫ

}

, (7.62)

where ǫ are UV divergences. Note that the first and second term have the same dimensions by
definition of Ys in Eq. (7.11).

Next, the bare fermion mass, mψ0 , and the renormalised mass, mψ, are related by fermion
field self-energy corrections,

Σ̃(p2) = i
(

ΣV (p2)/p+ΣS(p2)mψ

)

1, (7.63)

where the superscripts, S and V , label the scalar and vector contributions. Extracting ΣS,V (p2)

gives the renormalized mass by setting δmψ = mψ

(

ΣV (m2
ψ) + ΣS(m2

ψ)
)

, which has the following

form after combining all contributions,

δmψ = aeγEǫ

(

µ2

m2
ψ

)ǫ{

CF
(2ǫ− 3)Γ(ǫ)

2ǫ− 1
−
Y 2
f

8

(

Γ(ǫ− 1) +
4Γ(ǫ)

1− 2ǫ

)

}

, (7.64)

where again ǫ are UV divergences. In this case dimensions hold since Yf is dimensionless as
shown in Eq. (7.11). Note that the expansions up to O(ǫ)3 are needed for mass renormalisation.
Now we have all the one-loop terms that arise in our problem which, when replacement rules
are applied, contribute at the two-loop level.

7.4.3 Operator Renormalisation

Composite operators like ours require both WFR and subsequent subtractions [153]. This holds
for both full and effective theory operators, to illustrate, let us take, for instance, the bare
heavy-light fermion operator from HPET,

O(0) = ψ̄(0)Γh
(0)
f =

√

ZfZhψ̄Γhf , (7.65)

with Γ being a Dirac matrix of interest. The renormalised composite operator is then,

O = Z−1
O O(0) =

√

ZfZh

ZO
ψ̄Γhf

= ψ̄Γhf + counter term, (7.66)

such that the additional operator, ZO, is found by calculating an operator-inserted Green’s
function. Therefore, ZO can be found from the one particle irreducible Green’s function of ψ̄,
hf and O, where the counter term in Eq. (7.66) contributes,

(

√

ZfZh

ZO
− 1

)

Γ, (7.67)
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to this time-ordered product. Thus, the counter term given by Eq. (7.66), must eliminate the
UV divergences present in the vertex contribution. Hence, Eq. (7.66) must be finite as ǫUV → 0.
Plugging in the wave function contributions,

√

ZfZh then gives ZO by the finiteness requirement.
The anomalous dimension of the composite operator,

γO =
µ

ZO

(

dZO
dµ

)

, (7.68)

is then obtained from the renormalisation constant,

ZO = 1 + δZO = 1− 1

ǫUV

γO (7.69)

Note in this case the independence of the renormalisation of O from our gamma matrix, Γ,
in the composite operator. This is due to heavy and light fermion spin and chiral symmetry,
respectively. In fact, this independence holds for all our effective operators in the threshold
regime as they include operators with heavy/light fermions/scalars [153]. On the other hand,
in the full theory as well as SCET the gamma matrix plays a role and ZO varies for different
operators. In particular, in the full theory for both scalars and fermions, the scalar and tensor
currents require renormalisation while the vector currents, at all orders, do not, meaning δZO is
zero [84].

7.5 Radiative Corrections in Sudakov Limit

We may now determine the form factor, lnFE(Q
2), in the large Q2, or Sudakov, limit. We per-

form calculations up to two-loop order, extending previous studies and refraining from including
computational details which have been presented in other works [75,76].

7.5.1 Massless External Particles

Let us consider the case of massless external particles in a fair amount of detail to begin with.
The limit we consider is thus, Q2 ≫ M2 ≫ m2, where M and m denote the bosonic and
external masses, respectively. Schematically, in this case, the matching and running steps can
be illustrated as follows,

O µ∼Q←−−−→
m,M=0

eCÕ1
γ1−−−−→ eCÕ1

µ∼M←−−→
m=0

eC+DÕ2,

where C and D are multiplicative matching coefficients, γ1 the effective theory anomalous di-
mension and Õ1,2 the effective theory operators at each scale. At scale, µ > Q, we use the full
theory, and at scale, µ < Q, we match down to SCET with the Wilson coefficient, c(µ). The
RGE of c(µ) is given by,

µ
dc(µ)

dµ
= γF (a(µ))c(µ), (7.70)

where γF (µ) is the anomalous dimension for a full theory composite operator, O. The full theory
is matched onto SCET at a scale µ ∼ Q.

On the other hand, the EFT has off-shell modes of O(Q) integrated out. The matching
coefficient thus depends on LQ, and these logarithms are not large if µ ∼ Q. The full theory
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p1

p2

(a)

p2

p1

(b)

p2

p1

(c)

Figure 7.2: One-loop vertex corrections, bulls-eye represents composite operator, arrowed lines
represent all incoming-outgoing particles we consider, dashed lines correspond to bosonic prop-

agators. (b), (c) only exists with the operator, O = iφ†
↔
Dµφ, and EFT equivalents, Õ.

operator, O matches to the SCET operator, Õ. More specifically,

ψ̄Γψ → eC(ξ̄n,p2Wn)Γ(W
†
n̄ξn̄,p1), (7.71a)

χ†χ→ eC(Φ†
n,p2Wn)(W

†
n̄Φn̄,p1), (7.71b)

iχ†↔Dµχ→ eC(Φ†
n,p2Wn)[iD1 + iD2]µ(W

†
n̄Φn̄,p1), (7.71c)

ψ̄χ→ eC(ξ̄n,p2Wn)(W
†
n̄Φn̄,p1), (7.71d)

where iD1 = P+g (n ·An̄,q) n̄2 , iD2 = P†+g (n̄ ·An,−q) n2 , P are label operators in SCET andWn

is a Wilson line with n-collinear gauge fields [259]. Of course C(µ) is indeed Cj(µ) : j = {1, . . . , 7}
as it differs for each operator. We have also written the multiplicative matching coefficient as
exp [C(µ)] rather than C(µ) for convenience. Upon computing the OS full theory matrix element
with all IR scales set to zero, the matching coefficient is found by extracting the finite part
[218,369,370].

To illustrate the computation, let us consider the one-loop result. The full and EFT diagrams
to be determined are those in Fig. 7.2, except in SCET the external lines are both taken to be
collinear and graphs (b) and (c) are no longer identical. After combining the vertex graphs
with the wave-function and tree-level graphs, one obtains the value of the full and effective
theory matrix elements, 〈p2| O |p1〉 and 〈p2| Õ |p1〉, respectively. The IR scales to be set to zero
are the internal and external particle masses, resulting in scaleless integrals for the EFT and
wave-function contributions. One then combines the vertex and wave-function contributions
as prescribed in Eq. (7.41) to obtain the one and two-loop order results. Moreover, as the
masses are zero there are no two-loop contributions from mass renormalisation, only coupling
renormalisation contributes.

The EFT matrix element has no radiative corrections as scaleless integrals are null in di-
mensional regularization. Thus, both full and effective theory operators are then normalised to
have the same values at tree-level [218],

exp [C(µ)] =
〈p2| O |p1〉
〈p2| O |p1〉 tree

. (7.72)

When computing the one-loop graphs for O, exp [C(µ)] is given by the on-shell full theory matrix
element, normalised by its tree-level value. The particle masses are all much smaller than Q2,
resulting in contributions, M2/Q2 (where M corresponds to the gauge and Higgs masses), which
are negligible.

At one-loop order, one can determine C(µ) for the other operators in a similar fashion, and
these are presented in Table 7.2, where in the loop expansion, C(µ) = aC(1)(µ) + a2C(1)(µ) +
O(a3). Large logarithms are not apparent if µ ∼ Q, in this work we choose µ = Q and the RGE
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O γ
(1)
F C(1) C(2)

ψ̄ψ −3CF +
Y 2
f

8
CF

6

{

−6L2
Q + π2 − 12

}

+
Y 2
f

4 {LQ − 2} V
(Q)
1 +∆C1

ψ̄γµψ −Y 2
f

4
CF

6

{

π2 − 6LQ (LQ − 3)LQ − 48
}

− Y 2
f

8 {LQ − 1} V
(Q)
2 +∆C2

ψ̄σµνψ CF −
Y 2
f

8
CF

6

{

−6LQ (LQ − 4)LQ + π2 − 48
}

+
Y 2
f

4 V
(Q)
3 +∆C3

χ†χ −3CF CF

6

{

−6LQ (LQ − 1)LQ + π2 − 12
}

V
(Q)
4 +∆C4

iχ†↔Dµχ 0 CF

6

{

−6LQ (LQ − 4)LQ + π2 − 48
}

V
(Q)
5 +∆C5

ψ̄χ, χ†ψ −3
2CF −

Y 2
f

16
CF

6

{

−6LQ (LQ − 3)LQ + π2 − 36
}

V
(Q)
6 +∆C6

Table 7.2: Matching corrections, C(µ), to the Sudakov form factor at µ ∼ Q. V
(Q)
i are two-loop

vertex corrections. ∆C(µ) is the coupling corrections to matching at µ ∼ Q. Both are given in
Appendix B.1. γF is the one-loop full theory anomalous dimension.

of c(µ) in the EFT is described by, γ1, the anomalous dimension of Õ in SCET. The full thoery
anomalous dimension, γF , of Õ is also given in Table 7.2, we avoid presenting the two-loop result
as this has been previously found for a number of operators [371].

On the other hand, γ1 in SCET is used to evolve c(µ) from µ = Q → M . As previously
defined, the UV counter terms for the SCET graphs are precisely the anomalous dimension, and
can depend on Q, the largest scale. UV divergences are independent of IR properties and γ1 is
linear in lnµ2/Q2 to all order [370,372], so one can always write,

γ1(µ) = A(α(µ)) ln
µ2

Q2
+B(α(µ)). (7.73)

The anomalous dimension can be written in a loop expansion, γ1 = aγ
(1)
1 +a2γ

(2)
2 +O(a3), and is

presented for each operator in Table 7.2. By inspection, γ1 varies solely based on the operator’s
external fields, meaning it is equal for the three fermion and two scalar operators, respectively,
and the average of the two field’s result for the mixed operator. The reason being that the EFT
anomalous dimension is dependent on the full theory IR divergences, which do not appear in
the vertex factors.

The next matching step occurs at the lower scale, µ ∼ M , where the massive bosons are
integrated out. The matching is done from SCET with massive bosons (µ > M), to SCET
without massive bosons (µ < M). In our model, this is a free theory, so there is no need
for propagating bosonic modes below M . The matching coefficient at µ ∼ M is given by
d(µ) = exp [D(µ)] in Table 7.3 and is found from the SCET vertex and wave-function corrections.
More specifically, one matches in the following way,

eC(ξ̄n,p2Wn)Γ(W
†
n̄ξn̄,p1)→ eC+D ξ̄n,p2Γξn̄,p1 , (7.74a)

eC(Φ†
n,p2Wn)(W

†
n̄Φn̄,p1)→ eC+DΦ†

n,p2Φn̄,p1 , (7.74b)

eC(Φ†
n,p2Wn)[iD1 + iD2]µ(W

†
n̄Φn̄,p1)→ eC+DΦ†

n,p2i(P† + P)µΦn̄,p1 , (7.74c)

eC(ξ̄n,p2Wn)(W
†
n̄Φn̄,p1)→ eC+D ξ̄n,p2Φn̄,p1 . (7.74d)

As for the results, although we calculate up to two-loops fully for c(µ), we have not yet de-
termined the bare two-loop vertex contribution of d(µ) due to the complexity of massive SCET
integrals. As for mass and coupling renormalisation, we present these O(a2) contributions for
both c(µ) and d(µ) in Appendices B.1 and B.2. Moreover, the collinear particle propagator cor-
rections are the same as in the full theory and the US corrections vanish [259]. Thus, the WFR
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O γ
(1)
1 /CF D(1)/CF ∆D(2)

ψ̄Γψ 4LQ − 6 −L2
MW

+ 2LMW
LQ − 3LMW

+ 9
2 − 5

6π
2 ∆D1

χ†χ, iχ†↔Dµχ 4LQ − 8 −L2
MW

+ 2LMW
LQ − 4LMW

+ 7
2 − 5

6π
2 ∆D2

ψ̄χ, χ†ψ 4LQ − 7 −L2
MW

+ 2LMW
LQ − 7

2LMW
+ 4− 5

6π
2 ∆D2

Table 7.3: SCET form factor contributions at µ ∼ M , with one-loop matching, D(1)(µ), and
two-loop mass and coupling renormalisation correction, ∆D(2)(µ). The latter is given in Ap-
pendix B.2. γ1 is the one-loop SCET anomalous dimension.

corrections are the same as in the full theory and we have these up to two-loops. For a more
detailed description on the specific one-loop SCET integrals, we point to previous work [76,252].
What remains to calculate is the bare two-loop SCET vertex contributions to have a complete
account at this order, we will leave this to future work.

The above matching steps are identical at each order, and the two-loop vertex and wave-
function graphs we calculated are shown in Figs. 7.3 and 7.1. Furthermore, we note that both
in the massive and massless external particle cases of SCET, there is no Higgs contributions in
the vertex corrections. This is because the fermion Yukawa vertex vanishes, as by construction,

ξ̄n,pξn,p = ξ̄n,p
/̄n/n

4

/n/̄n

4
ξn,p = 0, (7.75)

since /n/n = n2 = 0. Moreover, couplings of three scalars have dimension of mass, and scalar
operators have Higgs exchange corrections with sub-leading factors of Ys/Q which we drop.
This is easily seen when using the re-scaled, φn,p, with a propagator of identical form to those
of fermions. The Yukawa coupling is then given by,

YsHχ
†χ→ YsHΦ†

n,pΦn,p =
Ys
n̄ · pHφ

†
n,pφn,p, (7.76)

which is O(1/Q) as n̄ ·p is of order O(Q) which suppresses any graph at each tri-scalar coupling.
Thus, scalar full theory graphs only contribute at µ ∼ Q in the matching, as well as scalar
effective theory contributions to the wave-function renormalisation.

7.5.2 Massive External Particles

In this section, we consider the Sudakov regime for massive external particles, extending previous
results. We are primarily interested in the limits, Q ≫ m1,2 ≫ M , although we will discuss
other cases that can be studied as well, in particular one that can be applied for LHC studies
of the top quark.

There are two cases to consider, Q ≫ m2 ≫ m1 ≫ M and Q ≫ m2 ∼ m1 ≫ M , we begin
with the former. Again, the Sudakov form factor can be determined with an EFT at each well-
separated scale [373]. One begins as in the massless external particle case by matching the full
theory onto SCET with a single massive particle at the scale, µ ∼ Q. The same operators are
matched to as in Eq. (7.71), except now in SCET, ξn,p2 , is taken to have mass, m2. Again, IR
scales in the matching are those much smaller than Q and as usual are not present in exp [C(µ)],
as shown in Table 7.2. Next, one runs the operator from the scale Q to m2, which can be done
with γ1, given in 7.2, as the anomalous dimension is also IR scale-independent. The matching
steps that follow lie at scales µ = m2, µ = m1 and µ = M . Schematically, the matching and
running steps can be illustrated as follows,

eCÕ1
µ∼m2←−−−−→
m1,M=0

eC+RÕ2
γ2−−→ eC+RÕ2

µ∼m1←−−→
M=0

eC+R+T Õ3
γ3−−→ eC+R+T Õ3

µ∼M←−−→
M 6=0

eC+R+T+U Õ4,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 7.3: Two-loop vertex correction graphs, (a)-(d) are Abelian corrections; (f)-(i) are non-

Abelian, (j)-(m) only exists with the operator, O = iφ†
↔
Dµφ and EFT equivalents, (m)-(o) are

seagull terms and occur only for scalar fields.

O R(1)/CF γ
(1)
2 /CF T (1)/CF

ψ̄2Γψ1
1
2L

2
m2
− 1

2Lm2 +
π2

12 + 2 4LQ − 2Lm2 − 5 1
2L

2
m1
− 1

2Lm1 +
π2

12 + 2

χ†
2χ1, iχ

†
2

↔
Dµχ1

1
2L

2
m2
− Lm2 +

π2

12 + 2 4LQ − 2Lm2 − 6 1
2L

2
m1
− Lm1 +

π2

12 + 2

ψ̄2χ1
1
2L

2
m2
− 1

2Lm2 +
π2

12 + 2 4LQ − 2Lm2 − 6 1
2L

2
m1
− Lm1 +

π2

12 + 2

χ†
2ψ1

1
2L

2
m2
− Lm2 +

π2

12 + 2 4LQ − 2Lm2 − 5 1
2L

2
m1
− 1

2Lm1 +
π2

12 + 2

Table 7.4: Matching and running results for Q≫ m2 ≫ m1 ≫M . R is the matching at µ ∼ m2

and T the matching at µ ∼ m1. The anomalous dimensions for running from m2 to m1 are γ2.
R and T are only dependent on the spin of the light particle.

where the exponents are multiplicative matching coefficients, γi the effective theory anomalous
dimensions and Õi the effective theory operators at each scale.

Firstly, at µ = m2, one matches SCET to an EFT with the massive particle described by
a heavy field [153], hf,s, with a velocity, v2, such that v22 = 1. Whereas, the other particle
remaining massless continues to be described by the SCET field, ξn̄,p1 . The fermionic operators,

for instance, are then given by h̄f,2ΓW
†
n̄ξn̄,p1 , and similarly for other operators [374]. The

matching correction at µ = m2 can be calculated from the vertex diagrams in Figs. 7.2 and 7.3,
for the corresponding external particles in the effective theories above and below m2. More
specifically, in the fermion example, the difference between graphs where ξn,p2 and hf,2, for the
particle with mass, m2. Note that in the theory below m2 there are no graphs which contain
collinear Wilson lines associated with hf,s and thus such corrections do not appear. Above m2,
the graphs in this theory are evaluated with bosonic masses set to zero, as m2 ≫M , and on-shell
at p22 = m2

2. Below m2 the graphs in the EFT are evaluated at M = 0 as well, at the on-shell
point, k2 · v2 = 0 where k2 is the heavy particle’s residual momentum. As for the wave-function
graphs, the ξn̄,p1 and HQET graphs both vanish on-shell. Hence, the vertex correction and
the on-shell wave-function graph for ξn,p2 provide the matching [76], and results are shown in
Tables 7.4 and 7.1, respectively.

We proceed then with the next matching step with the coefficient, exp [T (µ)], at the scale,
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O γ
(1)
3 /CF U (1)(µ) U (2)(µ)

ψ̄Γψ 4 (wh(w)− 1) 2CF (wh(w)− 1)LMW
− Y 2

f

4 (h(w)− 1)LMH
U

(2)
1

χ†χ, iχ†↔Dµχ 4 (wh(w)− 1) 2CF (wh(w)− 1)LMW
− Y 2

s

4 (h(w)− 1)LMH
U

(2)
2

χ†ψ, ψ̄χ 4 (wh(w)− 1) 2CF (wh(w)− 1)LMW
−
(

YfYs
4 h(w)− 1

8(Y
2
f + Y 2

s )
)

LMH
U

(2)
3

Table 7.5: One- and two-loop matching contributions, U (1,2), at µ ∼ M . The latter is given
in Appendix B.3. The anomalous dimensions for running m1 to M are given by γ3 and are
operator independent.

µ ∼ m1. At this scale, the theory above m1 is SCET with heavy field for particle with mass,
m2, and the theory below m1, the n̄-collinear SCET field, ξn̄,p1 becomes a heavy field, hf,s,
with velocity, v1, such that v21 = 1 and v1 · v2 = w. The fermionic operators, for example, are

then given by h̄f,2Γhf,1 instead of h̄f,2ΓW
†
n̄ξn̄,p1 . In the theory below m1 vertex corrections due

to collinear Wilson lines do not occur, as there are no collinear Wilson lines, W , associated
with heavy fields. The matching is determined by the vertex and wave-function graphs in the
theories above minus the theories below m1, setting all scales less than m1 to zero. Note that
in the theory below m1 only scaleless integrals appear which are trivial and thus, the sole non-
zero contributions come from vertex contributions above m1 and the n̄-collinear WFR diagram.
Conveniently, the matching at m2 is determined by identical graphs, so T is given by R with
m2 → m1, and is presented in Table 7.4.

The anomalous dimension, γ3, remains to be computed for the running between m1 and M ,
as well as the matching coefficient, exp [U(µ)], at µ ∼ M . These are determined by on-shell
HPET graphs, with non-zero bosonic masses, M , as they are no longer IR scales. The one-loop
contributions are presented in the last column of Table 7.5, and by inspection we see they are
operator-independent and only differ in appropriate Yukawa coupling. The function,

h(w) =
ln (w +

√
w2 − 1)√

w2 − 1
, (7.77)

is well-known and appears as a factor in the HQET anomalous dimension [153]. Note further
that in the Sudakov regime, the Higgs contribution in expU is sub-leading as, Q2 ∼ m1m2w,
and in this limit,

h(w) ∼ lnw

w
, (7.78)

thus the gauge contribution dominates in the Sudakov regime. Later we will see that in the
threshold regime, the Higgs and gauge contributions turn out to be on equal footing. We also
present the two-loop contribution to the matching contribution, exp [U(µ)], in Appendix B.3. As
for remaining two-loop contributions, we present the mass and coupling renormalisation, which
contribute at two-loop order for each matching coefficient in an arXiv ancillary file of Ref. [325].

We have a similar situation in the case Q ≫ m2 ∼ m1 ≫ M , which is why we left this
for last. Evolving down to m1 ∼ m2 is the same as for the case where mi = 0. The matching
is simply given by the sum of R and T at m2 and m1, respectively [76]. Below m1 ∼ m2

the matching and running is identical to the previous case with anomalous dimension, γ3, and
matching coefficient, exp [U(µ)]. Lastly, if m2 = m1, then the case is identical to m2 ∼ m1,
except one sets m2 = m1 in all matching and running contributions.

Further Cases: We note finally, as considered in previous work [76], that there are other
cases one can compare for complete generality, in particular, one case resonates with regard to
heavy SM particles in the high energy regime. The Sudakov limit being, Q ≫ m1 ∼ m2 ∼ M ,
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which involves one running step with γ1 and two matching steps. At µ ∼ Q the matching
coefficient is represented by the usual, exp [C(µ)]. On the other hand, at one-loop the matching
at µ ∼ m1,2 ∼ M mimics the massless case. However, the matching condition, exp [D(µ)], is
determined with massive collinear propagators, which modifies the matching in the following
way,

D(mi,M) = D(0, 0) + (f2(z2)− f̃2(z2)/2) + (f1(z1)− f̃1(z1)/2), (7.79)

where zi = mi/MW , f1,2 corresponds to the massive collinear contributions,

fi(zi) ≡ In(mi)− In(0), (7.80)

where In is the collinear vertex contribution and,

f̃i(zi) ≡ δZi(mi,M)− δZi(0,M), (7.81)

is the difference between the wave-function contribution with all mass scales non-zero and the
external mass scales set to zero from Table 7.1. Both the vertex and wave-function contributions
depend solely on whether the corresponding particle is a fermion or a scalar. More specifically,
fi(zi) maps to fF (zi) and fS(zi) in the case of fermions and scalars, respectively, and are given
by,

fF (z) = 2 +

(

1

z2
− 2

)

ln z2 +
2z̃

z2
tanh−1 z̃ +

1

2
ln2 (z2)− 2(tanh−1 z̃)2, (7.82a)

fS(z) = 1−
(

1− 1

2z2

)

ln z2 +
z̃

z2
tanh−1 z̃ +

1

2
ln2 (z2)− 2(tanh−1 z̃)2, (7.82b)

where z̃ =
√
1− 4z2, as was also found in [76]. The one-loop renormalisation corrections to

D(mi,M) that contribute at two-loop order are given analagously to the previous cases. As for

bare contributions at two-loop order, the WFR are given by F
(m,M)
ψ,χ in Appendix B.7, and the

bare vertex contributions are still to be determined. Thus, now that we have considered cases
of interest in the Sudakov limit, we can shift to studying counterparts in the threshold limit.

7.6 Radiative Corrections in Threshold Limit

In this section, we calculate the form factor lnFE(m
2), in the opposite limit, i.e. small Q2 and

large m2, or threshold regime. Evidently, at threshold, the external particle masses are then
taken to be the largest scale, and we consider the following three cases: m2 ≫ m1 ≫ M ≫ Q,
m1 ∼ m2 ≫M ≫ Q and m1 ∼ m2 ∼M ≫ Q. We provide the form factor up to and including
two-loop order, which is computed using a sequence of effective field theories.

We begin by noting that at scales higher than m2, the theory is the original gauge-Higgs
theory, or so-called full theory. Moving to scales below m2, we transition to HPET where degrees
of freedom of off-shellness on the order m2 are integrated out. More specifically, let us commence
with the case, m1 ∼ m2 ≫M ≫ Q, where m1,2 and M denote the external particle and bosonic
masses, respectively. Schematically, we then have the following matching and running steps,
illustrated as follows,

O µ∼m1,2←−−−→
Q,M=0

eBÕ1
γ3−−−−→ eBÕ1

µ∼M←−−→
Q=0

eB+U Õ2,

where B and U are multiplicative matching coefficients, γ3, is the effective theory anomalous
dimension, and Õ1,2 the effective theory operators at each scale. At the scale µ > m1,2, we
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employ the full theory graphs and below, at µ < m1,2, we match down to HPET with the
matching coefficient, b(µ), and RGE given by,

µ
db(µ)

dµ
= γF (a(µ))b(µ), (7.83)

where γF is the anomalous dimension of the operator, O, in the full theory and is independent
of energetic regime as given in Table 7.2.

The full theory is then matched onto HPET at µ ∼ m1,2. The matching coefficient then
depends on logarithms, Lm1,2 , which are not divergent if µ ∼ m1,2. The matching is done
between full and effective theory operators as follows,

ψ̄2Γψ1 → eBh̄f,2Γhf,1, (7.84a)

χ†
2χ1 → eBh†s,2hs,1, (7.84b)

iχ†
2

↔
Dµχ1 → eBh†s,2[v1 + v2]µhs,1, (7.84c)

ψ̄2χ1 → eBh̄f,2hs,1, χ†
2ψ1 → eBh†s,2hs,1. (7.84d)

We can then calculate the matching coefficient, exp [B(µ)], as the full theory vertex and wave-
function corrections with IR scales, M and Q, set to zero. The results of which at one- and
two-loop order are given in Appendix B.4. Note that for the two-loop results, since m1 ∼ m2

and we want to evaluate the master integrals (MIs) analytically, this can only be achieved with
MIs at a single scale, whence, we expand the bare two-loop contributions about the difference,
∆m = m1 −m2, to NLO. This is an accurate representation as the scale we are considering is
where m1 ∼ m2 and although we chose to expand to first order as is conventionally done one can
expand to any order and perform the single-scale two-loop MIs as they are independent of the
expansion order. As for the remaining two-loop contributions, we present the mass and coupling
renormalisation contributions at two-loop order in Appendix B.4.

What remains is the anomalous dimension, γ3, between m1,2 and M , and the matching
coefficient, exp [U(µ)], at µ ∼M . Again, these contributions are found by computing graphs in
Figs. 7.3 and 7.1, evaluated on-shell, with bosonic masses, M , included and external lines taken
to be heavy with incoming and outgoing velocities, v1 and v2, reespectively. The difference here
being that in the threshold limit,

w ∼ m2
1 +m2

2

2m1m2
∼ O(1), (7.85)

since we take m1 ∼ m2, and thus, h(w) ∼ O(1), by inspection of Eq. (7.77). Whence, the
sub-leading Higgs contribution which was sub-leading in the Sudakov regime becomes of the
same order as the gauge contribution in the threshold regime.

Finally, we consider the slightly more involved, m2 ≫ m1 ≫ M ≫ Q case, where m1,2 and
M denote the external particle and bosonic masses, respectively. Schematically, we then have
following matching and running steps, illustrated as follows,

O µ∼m2←−−−−−→
Q,M,m1=0

eB̃Õ1
γ̃3−−−−→ eB̃

µ∼m1←−−−→
Q,M=0

eB̃+GÕ2
γ3−−−−→ eB̃+GÕ2

µ∼M←−−→
Q=0

eB̃+G+U Õ3,

where B̃, G and U are multiplicative matching coefficients, γ3 and γ̃3, are the effective theory
anomalous dimensions, and Õ1,2,3 the effective theory operators at each scale. At the scale
µ > m2, we employ the full theory graphs and below, at µ < m2, we match down to an effective
theory with a single heavy field of mass, m2. Thus, the effective theory operator is given by
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O B̃(1)(µ) γ̃
(1)
3 (µ) B̃(2)(µ)

ψ̄2ψ1 − 1
48

(

3Lm2

(

8CFLm2 + 8CF + 5Y 2
f

)

+ 4
(

24 + π2
)

CF + 9Y 2
f

)

−5CF +
Y 2
f

8 B̃
(2)
1

ψ̄2γ
µψ1

1
48

(

−3Lm2

(

8CFLm2 − 40CF + 11Y 2
f

)

− 4
(

60 + π2
)

CF + 27Y 2
f

)

−2CF −
Y 2
f

4 B̃
(2)
2

ψ̄2σ
µνψ1

1
48

(

−3Lm2

(

8CFLm2 − 56CF + 9Y 2
f

)

− 4
(

48 + π2
)

CF + 15Y 2
f

)

−CF −
Y 2
f

8 B̃
(2)
3

χ†
2χ1 − 1

12CF
(

6(Lm2 − 2)Lm2 + π2 − 12
)

+ 1
96m2

2
Y 2
s

(

−12Lm2 + 6L2
m2

+ π2 + 12
)

CF B̃
(2)
4

iχ†
2

↔
Dµχ1 − 1

12CF
(

6(Lm2 − 8)Lm2 + π2 + 51
)

+ Y 2
s

96m2
2

(

6(Lm2 − 4)Lm2 + π2 + 12
)

4CF B̃
(2)
5

χ†
2ψ1 − 1

12CF
(

6(Lm2 − 2)Lm2 + π2 − 24
)

− Y 2
s

8m2
2
(Lm2 − 1) +

YfYs
48m2

(

6L2
m2

+ π2 − 12
)

CF B̃
(2)
6

ψ̄2χ1 − 1
12CF

(

6(Lm2 − 5)Lm2 + π2 + 48
)

− YfYs
4m2
− 9

16Y
2
f (Lm2 − 1) CF B̃

(2)
7

Table 7.6: Matching and running, B̃(µ) and γ̃3(µ), to the threshold form factor for m2 ≫ m1 ≫
M ≫ Q at µ ∼ m2. The two-loop contributions are given in Appendix B.5.

O G(1)(µ) G(2)(µ)

ψ̄2Γψ1
1
16

(

Lm1

(

16CF − 7Y 2
f

)

− 16CF + 5Y 2
f

)

G
(2)
1

χ†
2χ1

1
24CF

(

6L2
m1

+ π2 + 48
)

− Y 2
s

8m2
1
(Lm1 − 1) G

(2)
2

iχ†
2

↔
Dµχ1

1
12CF

{

6(Lm1 − 2)Lm1 + π2 + 48
}

− Y 2
s

8m2
1
(Lm1 − 1) G

(2)
3

χ†
2ψ1

1
16 {Lm1 (16CF + Yf (2Ys − 9Yf ))− 16CF + Yf (9Yf − 4Ys)} G

(2)
4

ψ̄2χ1
1

24m2
1

{

6m2
1CFL

2
m1

+
(

48 + π2
)

m2
1CF − 3Y 2

s (Lm1 − 1)
}

G
(2)
5

Table 7.7: Matching corrections, G(µ), to the threshold form factor for m2 ≫ m1 ≫M ≫ Q at
µ ∼ m1. The two-loop contributions are given in Appendix B.6.

the full theory operators with particle 2 represented by a heavy field, hf,s, for instance in the
fermionic case we have, h̄f,2Γψ1, and similarly for the other operators.

We can then calculate the matching coefficient, exp [B̃(µ)], as the full theory vertex and wave-
function corrections with IR scales, m1, M and Q, set to zero. The results of the vertex and
wave-function contributions, exp B̃(µ), as well as the anomalous dimension, γ̃3, between m2 and
m1 are given in Table 7.6 and Appendix B.5. Moreover, the coupling and mass renormalisation
corrections that contribute at two-loop order are also given, in Appendix B.5. What remains
then is to evaluate the matching at µ ∼ m1 as the final matching and running, exp [U(µ)] and
γ3, at M is identical to the previous case. The theory above, µ > m1, is the effective theory with
particle 2 taken to be a heavy field and the theory below, µ < m1, is heavy particle effective
theory where both particles 1 and 2 are taken to be heavy and the IR scale being the bosonic
masses are set to zero. The theory below m1 is scaleless and thus does not contribute to the
matching but the theory above m1 is one of two scales, m1 and w′ = p1 · v2. However, w′ is
integrated out at leading order in the threshold limit as,

w′ = p1 · v2 =
m2

1 +m2
2 −Q2

2m2
∼ m2

2
, (7.86)

and thus, we obtained the matching and wave-function contributions, exp [G(µ)], with logarithms
of a single scale, m1, and these are presented up to two-loops in Table 7.7 and Appendix B.6.
As for the coupling and mass renormalisation corrections that also contribute at two-loop order,
we present these results in Appendix B.6.

Lastly, we account for the case, m1 ∼ m2 ∼ M ≫ Q, which applies to heavy fermions and
scalars in the SM. Schematically, the matching is given by

O µ∼m1,2∼M←−−−−−−→
Q,M=0

eD̃Õ1,
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where D̃ is the multiplicative matching contribution and Õ1 the effective theory operators at
µ ∼ m1,2 ∼M . Above µ, we employ the full theory graphs and below, we match down to HPET
with the matching coefficient dependent on logarithms, Lm1,2 and LM . These logarithms are
not large if µ ∼ m1,2,M . The full and effective theory operators are as given in Eq. (7.84). We
can then calculate the matching coefficient,

D̃(µ) = aD̃(µ)(1) + a2(D̃(2)(µ) + ∆D̃(2)(µ)), (7.87)

as the full theory vertex and wave-function corrections with IR scale, Q, set to zero. Due to the
size of the expression, the result is attached in an arXiv ancillary file of Ref. [325]. Note again
in this case, that for the two-loop results, since m1 ∼ m2 ∼ M for analytical scalar integral
evaluation, we expand the bare two-loop contributions about the difference of ∆m = m1 −m2,
∆M = MH −MW and ∆m,M = MW −m1 to NLO. This is an accurate representation as the
scale we are considering is where m1 ∼ m2 ∼M .

With the above results, due to their generality one can map them to operators in models
that are similar to the SU(N)-Higgs model we discuss here, including those with spontaneous
symmetry breaking at a certain scale.

7.7 Application to the Standard Model

So far we have studied the SU(N)-Higgs model which can be used to compute results for the SM
as discussed in Ref. [76]. We illustrate the mapping of our radiative corrections from our to other
models of a similar type, which may exhibit SSB. When considering the SM, one must select the
correct coupling constants with care, since, it is a chiral gauge theory, and our model is vector-
like. Results for greater than two external particles are then attainable through appropriate
combinations of form factors. We now focus on charged fermion production by quark and lepton
currents, Q̄iγµPLQi and L̄γµPLL, respectively, where Qi is the quark doublet with generation
index, i = u, c, t, with only the top quark mass, mt, taken to be a non-zero fermion mass.

7.7.1 Light Quarks

Let us begin by considering the representation of light quarks in the SM [84]. The first generation
of the quark doublet is given by,

Qu =

[

u

d′

]

=

[

u

Vudd+ Vuss+ Vubb

]

, (7.88)

At the scale, Q ≫ mq, in the full EW theory, we assume the operator coefficient is unity. In
performing the matching at µ ∼ Q all masses and in turn Yukawa factors are IR and thus taken
to be zero. Thus, the EFT operator may be written as,

Q̄uγµPLQu → c(Q)
[

ξ̄(Qu)
n,p2 Wn

]

γµPL

[

W †
n̄ξ

(Qu)
n̄,p1

]

, (7.89)

with the quark doublet of Eq. (7.88) labelled by ξ(Qu) in SCET. Thus, the matching condition,
c(µ) at the scale µ = Q with LQ = 0 is,

ln c(Q) = aEW (Q) ln c(1)(Q) + aEW (Q)2 ln c(2)(Q) +O(a3EW ), (7.90)

where,

aEW (µ) =

(

αs(µ)

4π

4

3
+
α2(µ)

4π

3

4
+
α1(µ)

4π

1

36

)

. (7.91)
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The couplings now include the appropriate SM gauge factors, CF , which are 4/3 for an SU(3)
triplet, 3/4 for an SU(2) doublet, and 1/36 for Y = 1/6. Renormalising the EW couplings at
µ =MZ gives the following [115],

α1(MZ) =
αem(MZ)

cos2 θW
,

α2(MZ) =
αem(MZ)

sin2 θW
. (7.92)

The SM beta functions can be used to run these couplings from MZ to µ ∼ Q. The theory
below Q is SCET with SU(3)× SU(2)× U(1) symmetry. In this regime, the SCET current in
Eq. (7.89) is multiplicatively renormalised with the anomalous dimension,

ln γ(µ) = aEW (µ)γ
(1)
1 (µ) + aEW (µ)2γ

(2)
1 (µ) +O(a3EW ). (7.93)

One can employ γ(µ) to run c(µ) down to the mass of exchanged bosons. The integrating
out may be done sequentially, i.e. first the Z-boson and then the W -boson at their respective
mass scales. This is not a good choice to use for the SM, as MW /MZ is not negligible, and
terms with powers of MW /MZ are more dominant than terms with powers of α lnMW /MZ .
It is preferable to integrate out both bosons at a common scale, say µ = MZ , in doing so the
matching is done from SU(3)×SU(2)×U(1) onto SU(3)×U(1)EM, a theory with only massless
gauge bosons. Moreover, the Higgs corrections for light particles are sub-leading as the Yukawa
coupling is proportional to the light mass and thus, are suppressed. At µ =MZ , integrating out
the massive gauge bosons leads to the following matching,

[

ξ̄(Qu)
n,p2 Wn

]

γµPL

[

W †
n̄ξ

(Qu)
n̄,p1

]

→d(u)
[

ξ̄(u)n,p2Wn

]

γµPL

[

W †
n̄ξ

(u)
n̄,p1

]

+

d(d
′)
[

ξ̄(d
′)

n,p2Wn

]

γµPL

[

W †
n̄ξ

(d′)
n̄,p1

]

. (7.94)

Note that the u and d′ parts have differing matching corrections due EW symmetry being
broken. The matching corrections are as follows,

ln d(u)(MZ) =a1 ln d
(1)(MW ) + a21 ln d

(2)(MW ) +O(a31)
+ a2 ln d

(1)(MZ) + a22 ln d
(2)(MZ) +O(a32) (7.95)

where the terms proportional to a1 and a2 correspond the Z and W contributions, respectively,
and,

a1 =
αem

4π sin2 θW cos2 θW

(

1

2
− 2

3
sin2 θW

)2

(7.96)

a2 =
αem

4π sin2 θW cos2 θW

(

1

2

)2

. (7.97)

We multiplicatively renormalise operators of Eq. (7.88) below MZ , using anomalous dimensions,

γ(u)(µ) = ã1(µ)γ
(1)
1 (µ) + ã1(µ)

2γ
(2)
1 (µ) +O(ã31), (7.98)

γ(d
′)(µ) = ã2(µ)γ

(1)
1 (µ) + ã2(µ)

2γ
(2)
1 (µ) +O(ã32) (7.99)

such that

ã1(µ) =

{

αs(µ)

4π

4

3
+
αem(µ)

4π

4

9

}

and ã2(µ) =

{

αs(µ)

4π

4

3
+
αem(µ)

4π

1

9

}

, (7.100)
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All-combined, the low-scale operator is then,
[

ξ̄(Qu)
n,p2 Wn

]

γµPL

[

W †
n̄ξ

(Qu)
n̄,p1

]

→c(u)
[

ξ̄(u)n,p2Wn

]

γµPL

[

W †
n̄ξ

(u)
n̄,p1

]

+

c(d
′)
[

ξ̄(d
′)

n,p2Wn

]

γµPL

[

W †
n̄ξ

(d′)
n̄,p1

]

, (7.101)

with

ln cu,d
′

(µ) = ln c(Q) +

∫ MZ

Q

dµ

µ
γ(µ) + ln d(u,d

′)(MZ) +

∫ µ

MZ

dµ

µ
γ(u,d

′)(µ). (7.102)

The EFT operator in Eq. (7.101) is usable now for studying specific LHC processes with
SCET [375]. For instance, if one considers jet production it is important to choose the renor-
malisation scale to be at or near the LHC jet invariant mass.

7.7.2 Leptons

We now perform the analgous study for the lepton current, L̄γµPLL, where L is the lepton
doublet,

L =

(

ν

l

)

, (7.103)

and is identical to that for the quark doublet, aside from a few replacements. At the low scale,
µ, the operator in the full theory is,

L̄γµPLL→c(ν)
[

ξ̄(ν)n,p2Wn

]

γµPL

[

W †
n̄ξ

(ν)
n̄,p1

]

+

c(l)
[

ξ̄(l)n,p2Wn

]

γµPL

[

W †
n̄ξ

(l)
n̄,p1

]

, (7.104)

with Eq. (7.102) and replacements u → ν, d′ → l, along with different gauge theory factors
which implies the following coupling replacements,

aEW (µ)→ a′EW (µ) =

(

α2(µ)

4π

3

4
+
α1(µ)

4π

1

4

)

, (7.105)

a1 → a′1 =
αem

4π sin2 θW cos2 θW

(

1

2

)2

, (7.106)

a2 → a′2 =
αem

4π sin2 θW cos2 θW

(

−1

2
+ sin2 θW

)2

, (7.107)

ã1(µ)→ ã′1(µ) = 0, (7.108)

ã2(µ)→ ã′2(µ) =
αem(µ)

4π
, (7.109)

which provides us with the leptonic equivalent of the previous result.

7.7.3 Top Quarks

We now study the specific process of tt̄-production by a vector current Q̄tγµPLQt, where Qt is
the left-handed quark doublet in the SM. We may write the quark doublet as follows,

Qt =

(

t

b′

)

=

[

t

Vtdd+ Vtss+ Vtbb

]

, (7.110)

We will neglect all quark masses other than mt. This example demonstrates how our model
handles non-zero fermion mass as well as Higgs exchange. We will examine both the Sudakov
and threshold regimes in this case as they are both available to us in this example.
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Figure 7.4: Vertex contributions to matching coefficient, cR(µ), at one and two-loop order. Higgs
exchanges cause Q̄tγµPLQt to mix with t̄RγµPRt and the index, α, is the fundamental SU(2)
and index and is summed over.

7.7.3.1 Sudakov Regime

In the Sudakov regime, the SCET operator at µ ∼ Q, can be written,

Q̄tγµPLQt →cL(Q)
[

ξ̄(Qt)
n,p2Wn

]

γµPL

[

W †
n̄ξ

(Qt)
n̄,p1

]

+

cR(Q)
[

ξ̄(t)n,p2Wn

]

γµPR

[

W †
n̄ξ

(t)
n̄,p1

]

, (7.111)

where ξ(Qt) and ξ(t) represent the left-handed and right-handed t-quark doublet, Eq. (7.110),
and singlet, tR, respectively, in SCET with gauge indices suppressed. The reason tR appears
in this case is that Higgs exchange diagrams are chiral in the SM, and have been computed in
our model value which is a vector-like theory, thus when mapping to the SM we must plaster
on the fact that the Yukawa coupling switches the chirality of the fermion. Practically, the
Higgs exchange causes QL and tR operator mixing. The matching at µ = Q is then given by
cL/R(Q), where one splits the left and right handed contributions of c(Q) which now has non-zero
Yukawa coupings. Hence, cR(Q) includes all terms which are due to Higgs exchange diagrams
of type illustrated in Fig. 7.4; and the remaining graphs contribute to cL(Q). Note further that
one must include appropriate factors of two for terms in cL/R arising from summing over each
closed SU(2) index loop, i.e. because both the Higgs and Qt are doublets in SU(2). As for the
wave-function correction, the tL and tR field renormalisation contributions which include Higgs
exchange must also include appropriate factors of two from loops with SU(2) index summation.

The theory below Q is SCET with SU(3)×SU(2)×U(1) symmetry. In this regime the two
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operators in Eq. (7.111) are multiplicatively renormalised with anomalous dimensions (again
splitting chiral contributions in the same way as for matching),

dcL(µ)

dµ
= γL(µ)cL and

dcR(µ)

dµ
= γR(µ)cR. (7.112)

At this scale, the Higgs vertex graph, which causes cL/cR mixing, is 1/Q2 suppressed. We may
use γ to run cL and cR down to a scale of order mt. At µ ∼ mt there are several different
methods one can use. Since {mt,MW,Z ,MH} are relatively close, it is best to integrate all of
them out at µ ∼ mt. Thus, we go from SU(3)×SU(2)×U(1) to SU(3)×U(1)EM gauge theory,
with broken SU(2)×U(1) symmetry and no massive degrees of freedom. At µ = mt we replace
the top quark SCET by the heavy quark field tv, whereas the b′ quark in the SCET field ξ(Qt)

remains a SCET field, ξ(b
′). Matching is then given by,

[

ξ̄(Qt)
n,p2Wn

]

γµPL

[

W †
n̄ξ

(Qt)
n̄,p1

]

→ 1

2
a1t̄v2tv1a2

[

ξ̄(b
′)

n,p2Wn

]

γµPL

[

W †
n̄ξ

(b′)
n̄,p1

]

(7.113)

[

ξ̄(t)n,p2Wn

]

γµPR

[

W †
n̄ξ

(t)
n̄,p1

]

→ 1

2
a3t̄v2tv1 , (7.114)

using the results from Section 7.5.2 to obtain the coefficients, ai. Moreover, we renormalise
couplings at µ = mt, including contributions from W/Z, g, γ and H,h0,+, where h0,+ are the
SM goldstone bosons. Lastly, below µ = mt, the anomalous dimension of t̄v2tv1 is given by,

γ3 = aγ
(1)
3 + a2γ

(2)
3 +O(a3), a =

(

4

3

αs
4π

+
4

9

αem
4π

)

(7.115)

from the fourth column of Table 7.4, with the given group theory factor replacements. These
t̄t results may be used in decay studies as has been done in pure QCD [374]. We have here the
additional EW contributions including Higgs up to two-loop order.

7.7.3.2 Threshold Regime

In the threshold regime at µ ∼ mt, mt is the largest scale in the problem. As the scales,
{mt,MW,Z ,MH}, are not far apart, integrating them all out together as in the Sudakov regime
is the way forward. As before, one can first integrate out the top quark as mt ∼ 172 GeV and
mt > mH > MW,Z ≫ mb, which leads to an effective theory that breaks SU(2)×U(1) invariance
as the b′ quark remains along with dynamical W/Z bosons. From which one integrates out the
Higgs first [376], asMH ∼ 125 GeV, and then theW/Z bosons at a common scale, MZ ∼ 81 GeV.
Otherwise if one wants to avoid breaking SU(2)× U(1) invariance, as the scales are not widely
separated it is most natural to integrate H, W/Z and t at a common scale, say µ ∼ MZ . We
consider the latter here. Moreover, we note that for treatment at the scale µ ∼ mb one needs a
further matching and running step and the heavy-light current we consider applies in this case.

Integrating out at the common scale µ ∼ MZ , below MZ the top quark fields are replaced
by their heavy quark counterparts tv and the bottom quark in the doublet remains a full theory
field. The operator matching is then,

Q̄tγµPLQt →
1

2
aL1 t̄v2tv1 + aL2 b̄

′γµPLb
′ and t̄RγµPRtR →

1

2
aR3 t̄v2tv1 , (7.116)

where the matching coefficients, a
L/R
i , are obtained using the matching coefficient, d̃(µ), from

Section 7.6 with the appropriate graphs and group theory factors. Thus, we go from SU(3) ×
SU(2)× U(1) theory to SU(3)× U(1)EM, with broken SU(2)× U(1) symmetry and only light
degrees of freedom. As in the Sudakov case, the renormalisation of the SM couplings is done at
µ = mZ .
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7.8 Technical Calculation

We produce the Feynman diagrams with QGRAF [303], process the output with FORM [304], obtain-
ing amplitudes as a linear combination of scalar integrals. We then proceed in the standard way
by reducing scalar integrals to a smaller set of so-called MIs using integration-by-parts identities
(IBPs) [377], with the help of LiteRed [378] and home-grown tools. Our two-loop MIs in some
cases are dependent on two mass scales taken to be not widely separated, either the external
particle masses or the exchange boson masses, respectively. One can perform these integrals
numerically but to obtain analytic results we expand such amplitudes in the mass difference
to NLO in said difference, leading to single scale integrals. Once the integrals are maximally
reduced, what remains is to evaluate the MIs. As these procedures are well-known, we refrain
from delving into too much detail.

We focus here on the calculation of MIs of the two-loop vertex and wave-function contri-
butions. The full theory integrals have been computed analytically and we present the MIs
appearing in our calculation here [341]. We evaluate effective theory MIs which are not known
analytically using the differential equations method [78, 82]. As evaluating HPET integrals of
this type is involved, the calculation will instead be presented in Chapter 8.

We classify the MIs in relation to their topology. We begin by distinguishing between the
vertex topologies for external full theory fields displayed in Figs. 7.5 (a)-(c). The MIs for each
topology are expressible with an integral family which can be written as,

J
(s)

{ν(m)
1 ···ν(m)

7 }
=
[

(4π)2−ǫeγEǫ
]2
∫

/d
D
l1/d

D
l2

1

Dν1
1 (m) · · ·Dν7

7 (m)
, (7.117)

where li : i = 1, 2 are the loop momenta, s is the scale in the EFT formalism at which the MIs
play a role, and,

D1(m) = l21 −m2, D2(m) = l22 −m2, D3(m) = (l1 + l2)
2 −m2,

D4(m) = (l1 − p1)2 −m2, D5(m) = (l2 − q)2 −m2, (7.118)

D6(m) = (l1 + q)2 −m2, D7(m) = (l1 + l2 − q − p1)2 −m2. (7.119)

Here the on-shell external momenta are labelled by pi : i = 1, 2, such that (p2i = m2
i ) and

q = p2 − p1 is the usual transfer momentum. We therefore label the MIs by their associated
denominator exponents, ν1 . . . ν7. Note the single mass scale in our denominators, this arises
from the fact that for integrals involving two mass scales or more, we expand our results in the
difference of mass scales up to NLO. For instance, for graphs that include propagators of both
W and Higgs bosons, we expand about ∆M = MW −MH , assuming them to be not widely
separated. This is done so we can work analytically as any number of scales can be handled
numerically. Moreover, our choice to expand to NLO is for presentability as there is no issue in
expanding the amplitudes to higher orders in ∆M computationally.

In the Sudakov regime the bare two-loop vertex matching contributions, V
(Q)
i , at the scale

µ ∼ Q, has all mass scales set to zero as they are taken to be IR, and thus m = 0 in cases below,
in which case we have MIs with topology given by Fig. 7.5 (a). Post-reduction one is left with
the following MIs to the appropriate order in ǫ,

J
(Q)
1010100 = Q2

(

Q2

µ2

)−2ǫ(
5971ǫ3

64
+

865ǫ2

32
+

115ǫ

16
+

1

4ǫ
− 115ǫ3ζ2

16
− 13ǫ2ζ2

8
− ǫζ2

4
− 52ǫ3ζ3

3

−8ǫ2ζ3
3
− 57ǫ3ζ4

16
+

13

8
+O(ǫ4)

)

, (7.120a)

J
(Q)
1100110 =

(

Q2

µ2

)−2ǫ(

−192ǫ3 − 80ǫ2 − 32ǫ− 4

ǫ
− 1

ǫ2
+ 32ǫ3ζ2 + 12ǫ2ζ2 + 4ǫζ2 −

14

3
ǫ3ζ2ζ3
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Figure 7.5: Two-loop form factor topologies. Massive fields are represented by solid lines, double
lines represent heavy particles, massless propagators are shown as dashed lines. Arrows represent
direction of momentum. (ai) represent topologies of MIs at µ ∼ Q (Sudakov), (bi) represent
topologies of MIs at µ ∼ m1,2 (threshold), (ci) represent topologies of MIs at µ ∼ m2 (threshold),
(di) represent topologies of MIs at µ ∼ m1 (threshold) and (ei) represent topologies of MIs at
µ ∼M (Sudakov/threshold).
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5

Figure 7.6: Full theory self-energy topology. Arrows represent momentum direction. The MIs
associated to other topologies are subsets of the MIs required for this topology.

+ζ2 + 56ǫ3ζ3 +
56ǫ2ζ3

3
+

14ǫζ3
3

+ 21ǫ3ζ4 +
21ǫ2ζ4

4
+

62ǫ3ζ5
5
− 12 +O(ǫ4)

)

,

(7.120b)

J
(Q)
1100101 =

(

Q2

µ2

)−2ǫ(

−665ǫ3

2
− 211ǫ2

2
− 65ǫ

2
− 5

2ǫ
− 1

2ǫ2
+

65ǫ3ζ2
2

+
19ǫ2ζ2

2
+

5ǫζ2
2

−16

3
ǫ3ζ2ζ3 +

ζ2
2

+
304ǫ3ζ3

3
+

80ǫ2ζ3
3

+
16ǫζ3
3

+
285ǫ3ζ4

8
+

57ǫ2ζ4
8

+
136ǫ3ζ5

5

−19

2
+O(ǫ4)

)

, (7.120c)

J
(Q)
1111101 =

1

Q2

(

Q2

µ2

)−2ǫ(
π2

ǫ2
− 1

ǫ4
+

83ζ3
3ǫ

+
59π4

120
+O(ǫ)

)

, (7.120d)

where ζs denotes the Riemann ζ-function,

ζs =
∞
∑

k=1

1

ks
, s ≥ 2 : s ∈ N, (7.121)

and these integrals have been verified from previous work [379]. On the other hand, in the
threshold regime, the full theory MIs have topologies represented by Figs. 7.5 (b, c). Due to the
threshold limit, Q→ 0, the MIs are further reduced down to two-loop self-energy topologies, as
shown in Fig. 7.6, and analytic expressions are known [380]. The MIs can therefore be expressed
in terms of a single integral family with five propagators given by,

J
(s)

{ν(m)
1 ···ν(m)

5 }
=
[

(4π)2−ǫeγEǫ
]2
∫

/d
D
l1/d

D
l2

1

Dν1
1 (m) · · ·Dν5

5 (m)
, (7.122)

where li : i = 1, 2 are the loop momenta, s is the scale in the EFT formalism at which the MIs
play a role, and,

D1(m) = l21 −m2, D2(m) = l22 −m2, D3(m) = (l1 − p)2 −m2,

D4(m) = (l2 − p)2 −m2, D5(m) = (l1 − l2)2 −m2. (7.123)

To begin with, the bare vertex matching contributions at the scale µ ∼ m1,2 ∼ M ≫ Q, for

matching from the full theory to heavy-heavy operators is represented by V
(m,M)
i . Post-reduction

116



one is left with the following MIs,

J
(m,M)
1m1m000 = m4

(

m2

µ2

)−2ǫ(

−4ǫ− 2

ǫ
− 1

ǫ2
− 2ǫζ2 − ζ2 +

2ǫζ3
3
− 3 +O(ǫ2)

)

, (7.124a)

J
(m,M)
1m1m001m

= m2

(

m2

µ2

)−2ǫ(

−45ǫ

2
− 9

2ǫ
− 3

2ǫ2
− 27

2
ǫl3S2 + 3ǫS1ζ2 +

81ǫS2
2

+
27S2
2
− 9ǫS3

−9ǫζ2
2
− 3ζ2

2
+ ǫζ3 −

21

2
+O(ǫ2)

)

, (7.124b)

J
(m,M)
1m1m01m0 = m2

(

m2

µ2

)−2ǫ(

−15ǫ− 3

ǫ
− 1

ǫ2
+

1

2
ǫl23S1 − 3ǫl3S1 − l3S1 − 9ǫl3S2 + 7ǫS1

+
S1
ǫ

+ 4ǫS1ζ2 + 3S1 + 27ǫS2 + 9S2 − 6ǫS3 − 3ǫζ2 − ζ2 +
2ǫζ3
3
− 7 +O(ǫ2)

)

,

(7.124c)

J
(m,M)
1m01m1m1m

=

(

m2

µ2

)−2ǫ(

−65ǫ

2
− 5

2ǫ
− 1

2ǫ2
+

1

2
ǫl23S1 − 4ǫl3S1 − l3S1 −

63ǫl3S2
4

−4ǫl3ζ2 + 12ǫS1 +
S1
ǫ
− 9ǫS1S2 +

11ǫS1ζ2
2

+ 4S1 + 63ǫS2 +
63S2
4
− 21ǫS3

2

+
7ǫζ2
2

+
29ǫζ3
6
− 19

2
+O(ǫ2)

)

, (7.124d)

J
(m,M)
01m1m01m

= m2

(

m2

µ2

)−2ǫ(

−65ǫ

16
− 17

4ǫ
− 3

2ǫ2
− 49ǫζ2

4
− 3ζ2

2
+ ǫζ3 −

59

8
+O(ǫ2)

)

,

(7.124e)

J
(m,M)
11m01m1) =

(

m2

µ2

)−2ǫ(

−65ǫ

2
− 5

2ǫ
− 1

2ǫ2
+

1

2
ǫl23S1 − 4ǫl3S1 − l3S1 −

63ǫl3S2
4

+ 12ǫS1

+
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, (7.124g)
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where ln = ln (n), S1 =
π√
3
, S2 =

4
9
√
3
Ls2(π/3), and S3 = −Ls3(2π/3)/

√
3, such that Lsj can be
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written in integral form as,

Lsj(θ) = −
∫ θ

0
dθ′ lnj−1 |2 sin (θ′/2)| : 0 < θ < 2π. (7.125)

Next, we consider the bare vertex matching contributions at the scale µ ∼ m2 ≫ m1,M , for

matching from the full theory to heavy-light operators labelled by V
(m2)
i . The MIs in this are,

J
(m2)
11001m

= m2
2

(

m2
2

µ2

)−2ǫ(

−15ǫ

2
− 3

2ǫ
− 1

2ǫ2
− 9ǫζ2

2
− 3ζ2

2
+

4ǫζ3
3
− 7

2
+O(ǫ2)

)

, (7.126a)
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Lastly, we consider the vertex contributions, V
(m)
i , at the scale µ ∼ m1,2 ≫ M , for matching

from the full theory to HPET. In this case, we have the following MIs,

J
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+

55ǫ

16
− 5

4ǫ
− 1

2ǫ2
− 55ǫ2ζ2

8
− 25ǫζ2

4
− 5ζ2

2
− 55ǫ2ζ3

6

−11ǫζ3
3
− 303ǫ2ζ4

8
− 11

8
+O(ǫ3)

)
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As for the full theory and SCET bare two-loop wave-function contributions, present in Ap-
pendix B.7, it is well-known that they map to MIs illustrated by Fig. 7.6, and thus we refrain
from going into detail.

With regards to the effective theory MIs, the HPET vertex and wave-function contributions
have MIs with topologies represented by Figs. 7.5 (d, e) and 7.7. We begin with considering
the heavy-light currents in Fig. 7.5 (d), the MIs of which can be expressed in terms of a single
integral family with seven propagators given by,

R(s)
ν1...ν7 =

[

(4π)2−ǫeγEǫ
]2
∫

/d
D
l1/d

D
l2

1

Dν1
1 . . . Dν7

7

, (7.128)

where v2 is the heavy particle velocity, p1 and m1 are the full theory field momentum and mass,
p1 · v2 ≡ w′, and thus,

D1(m) = (l1 + p1)
2 −m2, D2(m) = (l2 + p1)

2 −m2, D3 = (l1 − l2)2, D4 = l22,

D5 = l1 · v2, D6 = l2 · v2, D7 = (l1 − l2) · v2 + w′. (7.129)

Similarly, for the heavy-heavy vertex contributions, all sub-topologies can be mapped to the
largest unique two that are shown in Fig. 7.5 (e). We can again express all MIs in terms of nine
propagators given by,

K(s)
ν1...ν9 =

[

(4π)2−ǫeγEǫ
]2
∫

/d
D
l1/d

D
l2

1

Dν1
1 . . . Dν9

9

, (7.130)

where v1,2 are the heavy particle velocities, v1 ·v2 ≡ w, M is the mass of exchanged bosons, and

D1 = l2 · v1, D2 = l1 · v1, D3 = (l1 − l2)2 −M2, D4 = l21 −M2,

D5(M) = l1 · v2, D6(M) = l2 · v2, D7(M) = l22 −M2, D8 = l22, D9 = l21 (7.131)

Finally, we examine the wave-function contributions of which all topologies are mapped to those
shown in Fig. 7.7. In this case we can express all MIs in terms of six propagators given by,

L(s)
ν1...ν8 =

[

(4π)2−ǫeγEǫ
]2
∫

/d
D
l1/d

D
l2

1

Dν1
1 . . . Dν8

8

, (7.132)
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Figure 7.7: Heavy field self-energy topologies. The MIs associated to other topologies are subsets
of the MIs required for topologies illustrated.

where p and v are the heavy particle residual momentum and velocity, M is the mass of exchanged
bosons, and

D1 = (p− l1) · v, D2 = (p+ l2) · v, D3(M) = l22 −M2, D4(M) = (l1 + l2)
2 −M2,

D5(M) = l21 −M2, D6 = (p+ l2 − l1) · v, D7 = l22, D8 = (l1 − l2)2. (7.133)

The evaluation of integrals of this type, i.e. massive two-loop integrals with heavy line insertions,
is non-trivial and requires modern methods. In Chapter 8 we discuss the methods we employed
to evaluate the MIs appearing in our calculations and generalisations thereof.
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7.9 Summary

Both the massive and massless form factors are indispensable building blocks to a broad set
of observables in both high and low energy regimes. Precisely studying these factors is crucial
for shedding light on mysteries that remain in the Standard Model and beyond, such as the
physical structure of the top quark, aspects of mass generation and the nature of dark matter.
Our various composite operators, choice of model for applicability, as well as consideration of
two critical energetic regimes is emblematic of the breadth of the problem at hand. Our two-
loop results are not complete, as we have not calculated the bare two-loop vertex corrections for
massive SCET graphs. Continuing to map this space at two-loops and beyond is essential for our
predicting power to be able to match the high precision potential of a future electron-positron
collider and the LHC in its upcoming high luminosity operating phase.

Currently, the effective theory formalism is central when it comes to tackling such complex
problems by breaking them down scale by scale. By application to the SM, we have begun
extending the work on EW corrections to high energy processes beyond NLO, as stated in the
latest review [50]. Moreover, we are mapping other parts of the energetic landscape, aside from
the Sudakov regime, which itself opens the door for further investigation. Beyond the SM,
the generality of the model and operators studied means that our results can be applied to
BSM models by replacement of the proper coupling and group theory factors, which would be
interesting to examine further. For instance, one can apply our results to various models of dark
matter [358, 359], where weak corrections are significant for indirect detection. Our full results
are contained in the ancillary file submitted along with Ref. [325] on the arXiv.
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Chapter 8

Massive Two-Loop Heavy Particle

Diagrams

In this Chapter, we evaluate vertex and self-energy diagrams that appear in EFTs containing
heavy fields. The integrals involve at least one heavy line, and the standard lines include an
arbitrary mass scale. The evaluation is done analytically with modern techniques. We employ the
methods of differential equations and dimensional recurrence relations to evaluate said integrals
up to two-loop orders. This Chapter is based on Ref. [381], reflecting the author’s contribution.

8.1 Motivation

Heavy Particle Effective Theories have a wide range of applicability, and their use cases have
expanded dramatically in recent years. They are apparent when a field of arbitrary spin in a given
theory is taken to have a large mass compared to other propagating massive degrees of freedom.
HPETs were originally conceived in the context of QED and QCD, such as in HQET, NR QCD
and QED and variations therein [64,251,282]. More recently, they have also been applied in the
EW regime [75, 76, 161, 325, 348, 352, 353], as well as in BSM physics such as in the context of
heavy dark matter [269,358], Z’ bosons [382,383] and black hole interactions [242,384,385].

When dealing with such theories beyond leading perturbative order, one is faced with loop
diagrams containing eikonal lines. In this work, we determine these at two-loop order by employ-
ing a set of modern techniques, in particular, differential equations and dimensional recurrence
relations (DRR), which have been successful in similar contexts [265, 386]. We further include
a non-zero mass-scale in the standard lines for theoretical models with massive propagating de-
grees of freedom. The mass scale bounds the IR regime for the two- and three-point diagrams
studied here. Even in theories with exclusively massless propagating degrees of freedom such as
QED/QCD and gravity, the IR structure needs to be correctly understood [341,385].

The diagrams considered here are especially useful in the evaluation of form factors of a given
model. The form factor is most well-known for its uses in perturbative analyses of scattering
processes occurring at the LHC and future colliders [326, 327]. Form factors are of primary
consideration instead of specific processes as they form the fundamental building blocks for a
vast array of processes. For instance, they have been employed to study di-jet, t̄t, squark pair,
and DM production in various studies [353,357–359]. It is also the simplest amplitude that can
be used to study the IR behaviour of a theory. For further reference in the context of the SM,
the QCD form factors of quarks have been evaluated to three-loop order [328,330,339–341], and
the EW corrections using both EFT and IR evolution equations are currently being studied to
two-loop order [75,325,344–350].
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On the other hand, there has also been significant progress in the realm of Feynman diagram
evaluation. When previously, certain classes of multi-loop diagrams were intractable, they have
now become determinable with the help of revolutionary techniques. Most notably, diagrams
with masses are now attainable with the differential equations method [78,81–83]. The basis of
which is set upon differentiating the master integrals of interest, forming a system of differential
equations and reducing said system to so-called ǫ-form [78,387–389]. Given that such a reduction
is achievable [388], the MIs are expressible in terms of multiple polylogarithms (MPLs) [390,
391]. The outlier systems which can not be reduced to ǫ-form are not representable as MPLs.
Fortunately, even in this domain there is good progress in understanding functions beyond
multiple polylogarithms such as elliptical polylogarithms (EPLs) [392–398], or entirely novel
functions [399–402]. In our case, the diagrams we encounter are reducible to ǫ-form and thus,
can be written in terms of MPLs. However, when we take external lines off-shell, the integrals
are only reducible to (A+Bǫ)-form, as we will see. This is the closest extension of ǫ-form, and
one must resort to EPLs to solve such MIs. In this work, we provide results for the massive
heavy-heavy, heavy-light and propagator diagrams at two-loop order. The results are explicitly
give up to O(ǫ2) working in d = 4 − 2ǫ dimensions, which is the appropriate order for SM-like
theories [76, 325, 352, 353]. However, this order is arbitrary as the results are attainable to any
order in ǫ, given the exact boundary integrals provided here.

Outlining this Chapter, we begin by discussing the formalism we employ and follow by illus-
trating the problem. In the main sections, we tackle the on-shell diagrams under consideration
by reducing the differential equations to ǫ-form. The last section illustrates the off-shell self-
energy case and its reduction to (A+Bǫ)-form. A description of the methods we employ in our
work is given in Appendices C.1 and C.2.

8.2 Formalism and Technicalities

The massive HPET vertex and self-energy have MIs with topologies represented by Figs. 8.1
(a, b) and 8.2, respectively. We begin with considering the heavy-light currents in Figs. 8.1 (a),
the master integrals of which can be expressed in terms of a single integral family with seven
propagators given by,

R(s)
ν1...ν10 =

[

(4π)2−ǫeγEǫ
]2
∫

/d
d
l1/d

d
l2

1

Dν1
1 . . . Dν10

10

, (8.1)

where v is the heavy field velocity, p is the full theory field momentum and p2 = m2, and thus,

D1(m) = (l1 − p)2 −m2, D2(m) = (l2 − p)2 −m2, D3 = (l1 − l2)2, D4 = l22,

D5 = l1 · v, D6 = l2 · v, D7 = (l1 − l2) · v, D8(m) = (l1 − l2)2 −m2,

D9(m) = l22 −m2, D10(m) = (l2 + p)2. (8.2)

Upon momentum re-scaling with respect to m it is clear that these integrals are dependent on
w ≡ p · v/m. Thus, one can define the differential system of equations on derivatives of the MIs
with respect to w. However, upon investigation it turns out that a further change of variables is
necessary to reduce the system to the requisite ǫ-form. The appropriate kinematic variable was
found to be,

β =

√

1− w
1 + w

, w =
1− β2
1 + β2

. (8.3)

With this change of variables, all MIs are expressible in terms of MPLs. The boundary conditions
are freely determined by giving a specific allowable value to w. Similarly, for the heavy-heavy
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Figure 8.1: Prototype topologies of two-loop vertex diagrams. Solid lines represent massive
particles, double lines represent heavy particles, dashed lines correspond to massless propagators.
Arrows represent direction of momenta. (ai) and (bi) correspond to heavy-light and heavy-heavy
topologies. We also include the case of light self-energy insertions as is apparent in (b3).
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vertex contributions, all sub-topologies can be mapped to the largest unique two that are shown
in Fig. 8.1 (b). We can express all MIs in terms of ten propagators given by,

K(s)
ν1...ν10 =

[

(4π)2−ǫeγEǫ
]2
∫

/d
d
l1/d

d
l2

1

Dν1
1 . . . Dν10

10

, (8.4)

where v1,2 are the heavy particle velocities, M is the mass of exchanged bosons, and

D1 = l2 · v1, D2 = l1 · v1, D3 = (l1 − l2)2 −M2, D4 = l22 −M2, D5(M) = l1 · v2,
D6(M) = l2 · v2, D7(M) = l21 −M2, D8 = (l2 − l1) · v2, D9 = (l1 − l2)2, D10 = l21.

(8.5)

Again, re-scaling the momenta with respect to M in this case gives integrals dependent on
w ≡ v1 · v2. The appropriate kinematic variable to take derivatives with respect to was found
to be β as previously defined.

Lastly, the self-energy diagrams which contribute to heavy field renormalisation and residual
mass term are examined [153]. The prototype topologies are shown in Fig. 8.2. In this case, we
can express all MIs in terms of the eight propagators,

L(s)
ν1...ν8 =

[

(4π)2−ǫeγEǫ
]2
∫

/d
d
l1/d

d
l2

1

Dν1
1 . . . Dν8

8

, (8.6)

where p and v are the heavy particle residual momentum and velocity, M is the mass of exchanged
fields,

D1 = (p− l1) · v, D2 = (p+ l2) · v, D3(M) = l22 −M2, D4(M) = (l1 + l2)
2 −M2,

D5(M) = l21 −M2, D6 = (p+ l2 − l1) · v, D7 = l22, D8 = (l1 − l2)2. (8.7)

We note the relations between the heavy field self-energy, Σ(p), the bare field counter-term, δZh,
and the residual heavy field mass, δmh, are given by,

δZh = i∂v·pΣ̃|v·p=0 (8.8)

δmh = −iΣ̃|v·p=0. (8.9)

Whence, to determine these quantities one only requires the MIs on-shell at v · p = 0, thus
eliminating the momentum, p, from the propagators. This results in MIs that are simple enough
to evaluate with standard techniques. Maintaining v ·p 6= 0 is interesting as it applies to off-shell
studies. In this case we define w ≡ p · v/M and β remains the appropriate kinematic variable
as previously defined. As we will see however, it is solely reducible to (A + Bǫ)-form and thus
requires treatment with elliptics which is more involved.

As mentioned in the previous section, in all cases, the goal is to derive a differential system
for the MIs and solve iteratively in a small dimension parameter, ǫ. To take the derivative with
respect to the product p · q for two arbitrary vectors p and q, it can be done in the following two
equivalent ways,

∂

∂(p · q) =
(p · q)p− p2q
(p · q)2 − p2q2 ·

∂

∂p
=

(p · q)q − q2p
(p · q)2 − p2q2 ·

∂

∂q
(8.10)

In our study, we take derivatives with respect to the parameter w, as defined in each case. Upon
re-reducing the differentiated results with IBP identities, one obtains a linear combination of
MIs, leading to a set of coupled differential equations. More precisely, the derivative of a given
MI will inevitably lie in the same sector or sub-sector, meaning they contain the same set of
non-zero νi, or a smaller set, compared to the original MI. Thus, one can combine all MIs and
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Figure 8.2: Heavy field self-energy topologies. The MIs associated to other topologies are subsets
of the MIs required for topologies illustrated.

their derivatives into a linear system of differential equations. This system, in turn, will contain
coupled sub-systems that may be reduced to ǫ-form. From there, we solve the system iteratively
at each order in a Laurent expansion about small ǫ.

To achieve this technically, we obtain the Feynman diagrams with QGRAF [303], process the
output with FORM [304]. We then proceed in the standard way by reducing integrals to a smaller
set of so-called master integrals (MIs) using integration-by-parts identities (IBPs) [377], with the
help of LiteRed [378] and home-grown tools. To reduce the system of differential equations to ǫ-
form we employ LIBRA [403] and the boundary integrals that require Mellin-Barnes treatment are
determined with the help of packages MB [404] and MBsums [405]. We also employ HypExp2 [406]
for hypergeometric functions and the PSLQ algorithm [407] for analytic expansions in ǫ.

8.3 Heavy-Heavy Vertex

To recap, the heavy-heavy N -loop master integrals with massive propagators at d = 4− 2ǫ have
the following form,

I =
[

(4π)2−ǫeγEǫ
]N
∫

/d
d
l1 . . . /d

d
lN

1

Dν1
1 . . . D

νn−m

n−m
· 1

D̃
νn−m+1

n−m+1 . . . D̃
νn
n

, (8.11)

where n is the cardinality of the minimal set of denominators, Di and D̃i, which we separate
into,

Di = li · vi, D̃i = l2i −M2, (8.12)

for some particular combination of loop momenta, li, and vi = v1,2 such that one preferentially
works in a frame with v2i = 1. To be able to deploy the differential equation approach to
solve such master integrals one must first take a derivative of the integral with respect to some
parameter. The most natural parameter in this case is w = v1 · v2.

8.3.1 One-loop Case

At one-loop, all on-shell amplitudes reduce to expressions with a single MI,

I(1) =
[

(4π)2−ǫeγEǫ
]

M−2ǫ

∫

/d
d
l

1

(l · v1)(l · v2)
· 1

l2 − 1
, (8.13)

then we may solve this as an ODE by parameterising and taking the derivative with respect to
w = v1 · v2,

d

dw
I(1)(w) = − w

w2 − 1
I(1)(w) +

1

w2 − 1
Ĩ . (8.14)
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where the simpler integral,

Ĩ =
[

(4π)2−ǫeγEǫ
]

M−2ǫ

∫

/d
d
l

1

l2 − 1
· 1

(l · v1,2)2
. (8.15)

We then reduce and evaluate,

Ĩ =
[

(4π)2−ǫeγEǫ
]

M−2ǫ(2− d)
∫

/d
d
l

1

l2 − 1
(8.16)

= 2eγEǫΓ(ǫ)M−2ǫ (8.17)

One can then solve Eq. (8.14) by variation of parameters and the boundary condition, I(1)(0) = 0,
to obtain,

I(1) = w
log(w +

√
w2 − 1)√

w2 − 1
Ĩ = wr(w)Ĩ , (8.18)

which mimics the well-known result from Feynman parametrisation and its modification for
HQET-like propagators [153].

8.3.2 Two-loop Case

In the two-loop case we have a column vector, A(w), of n = 26 master integrals tabulated in
Table 8.1, based on our notation in Eq. (8.4). Upon differentiation of A(w) with respect to w
and reduction by IBP identities, we have a differential system,

∂wA(w) = M(w, ǫ)A(w). (8.19)

with a 26×26 matrix, M(w, ǫ) which is neither Fuschian nor in ǫ-form. We may now proceed with
the algorithm outlined in Section C.1. Changing variables to β, we determine a transformation
matrix, T, to attempt to reduce the differential system to one in ǫ-form. Evaluating T is done
step-wise transforming the blocks of T, or coupled sub-system they represent, to ǫ-form. The
largest such sub-system in this case is a 3× 3 block which we illustrate,

M3 =









− 2w2−ǫ
2(w−1)w(w+1)

3
4(w−1)w(w+1)

(2w−1)(2w+1)
4(w−1)w(w+1)ǫ

ǫ2

(w−1)w(w+1) − 2w2−3ǫ
2(w−1)w(w+1) − 1

2(w−1)w(w+1)
2ǫ2(2w2ǫ−2w2−2ǫ−1)

(w−1)w(w+1)(2w−1)(2w+1)

3ǫ(2w2ǫ+2w2−2ǫ−1)
(w−1)w(w+1)(2w−1)(2w+1) − 4w4−4w2ǫ−3w2−2ǫ−1

(w−1)w(w+1)(2w−1)(2w+1)









.

(8.20)
Changing variables to β and following Lee’s algorithm we find a transformation matrix,

T3 =









− β
w−1 0 0

0 βǫ
2(w−1) 0

− 2βǫ2

w−1 − 3βǫ2

2(w−1)(2w−1)(2w+1)
wǫ2

(2w−1)(2w+1)









, (8.21)

which reduces M3 to ǫ-form,

S3 = ǫ









2w
(w−1)(w+1) 0 β

4(w−1)

0 6w
(w−1)(w+1)(4w2−1)

β
(w−1)(4w2−1)

16β
w−1

12β
4w3−4w2−w+1

− 8w
4w2−1









. (8.22)
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MI ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10

A1 0 0 1 1 0 0 0 0 0 0

A2 0 0 1 1 0 1 0 0 0 0

A3 0 0 1 1 1 0 0 0 0 0

A4 0 0 1 1 1 1 0 0 0 0

A5 0 1 1 1 0 1 0 0 0 0

A6 0 2 1 1 0 1 0 0 0 0

A7 0 1 2 1 0 1 0 0 0 0

A8 0 1 1 1 1 0 0 0 0 0

A9 0 1 1 1 0 1 0 0 0 0

A10 0 1 1 1 0 1 0 0 0 0

A11 0 1 1 1 1 1 0 0 0 0

A12 1 1 1 1 1 1 0 0 0 0

A13 0 0 1 1 0 0 1 0 0 0

A14 0 0 1 1 0 0 1 1 0 0

A15 0 0 1 1 0 1 0 1 0 0

A16 0 0 1 1 0 1 1 1 0 0

A17 1 0 1 1 0 0 1 1 0 0

A18 2 0 1 1 0 0 1 1 0 0

A19 1 0 1 1 0 0 2 1 0 0

A20 3 0 1 1 0 0 1 1 0 0

A21 1 0 1 1 0 1 1 0 0 0

A22 1 0 1 1 0 1 0 1 0 0

A23 1 0 1 1 0 1 1 1 0 0

A24 0 0 0 1 0 0 0 0 1 1

A25 0 0 0 1 0 1 0 0 1 1

A26 1 0 0 1 0 1 0 0 1 1

Table 8.1: Column vector of heavy-heavy MIs with propagator exponent indices νi.
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After repeating these steps for each block, we can consolidate each transformation matrix into a
final transformation matrix. This matrix allows us to perform the complete reduction to ǫ-form
as

∂wÃ(w) = ǫS(w)Ã(w). (8.23)

with Fuschian matrix S, this system of equations is given explicitly in Appendix C.3. By analysis,
A1...4, A13...16 andA24,25 are w-independent and thus correspond to a portion of simpler boundary
MIs. The boundary MIs require evaluation by different methods. In this work, we employ DRR
to solve the boundary integrals we encounter, which provides exact results for these integrals.
The DRR method is formally introduced in Appendix C.2. We present results for boundary
integrals explicitly in Appendix C.4. One is not limited to DRR; however, for illustration of
other methods, one can use, we solve a non-trivial example here. Consider,

A14 = C

∫

/d
d
l1

∫

/d
d
l2

1

(l21 − 1)(l22 − 1)((l1 − l2)2 − 1)

1

l2 · v
, (8.24)

where C = −
[

(4π)2−ǫeγEǫ
]2
M2D−7, and we perform a shift and re-scaling in loop momenta

for convenience, giving an overall negative sign. The first step involves eliminating the eikonal
propagator by means of a Feynman trick developed in HQET [153],

1

ArBs
= 2s

Γ(r)Γ(s)

Γ(r + s)

∫ ∞

0
dλ

λs−1

(A+ 2Bλ)r+s
. (8.25)

Apply this to two of the four propgators in Eq. (8.24) and completing the square l1,2 → l1,2−λv/2
gives,

A14 = C

∫ ∞

0
dλ

∫

/d
d
l1

∫

/d
d
l2

2

((l1 − vλ/2)2 − 1)((l2 − vλ/2)2 − 1)((l1 − l2)2 − 1− λ2)2 .
(8.26)

From here, one can proceed with standard Feynman parametrisation and application of the
Cheng-Wu theorem [408], simplifying the result further. Performing the integral over λ is then
straightforward, and one is left with an integral over two Feynman parameters in d = 4 − 2ǫ
dimensions,

A14 = C

∫ 1

0
dx1

∫ ∞

0
dx2
√
π(x2 + 1)1/2−2ǫΓ(2ǫ− 1/2)(x1(1− x1) + x2)

ǫ−3/2. (8.27)

From here, it is clear that one should proceed with the Mellin-Barnes (MB) representation as
the result will be reduced to simple Beta function integrals and a single MB integral. The MB
representation is given by the well-known transformation [409],

1

(A+B)λ
=

1

Γ(λ)

1

2πi

∫ i∞

−i∞
dz

Bz

Aλ+z
Γ(λ+ z)Γ(−z). (8.28)

After transforming and performing the remaining Beta-integrals one is left with performing a
sum over residues, in z, of,

A14 = C
1

2πi

√
π

∫ i∞

−i∞
dz

Γ(−z)Γ(z + 1)2Γ
(

ǫ− z − 1
2

)

Γ
(

−ǫ+ z + 3
2

)

Γ(ǫ+ z)

Γ
(

3
2 − ǫ

)

Γ(2z + 2)
. (8.29)

which can be expanded to give,

A14 =M1−4ǫ 2

3
π

(

−3

ǫ
− 2
√
3π − 12 + 6l2 +O(ǫ)

)

, (8.30)
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MI ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10

a1 0 0 1 1 0 0 0 0 0 0

a2 0 0 1 1 0 0 0 0 0 0

a3 1 0 1 1 0 0 0 0 0 0

a4 1 1 1 1 0 0 0 0 0 0

a5 0 0 1 1 0 0 1 0 0 0

a6 0 0 1 1 0 0 1 1 0 0

a7 0 0 0 1 0 0 0 0 1 1

a8 1 0 0 1 0 0 0 0 1 1

Table 8.2: Heavy-heavy boundary MIs at w = 1 with propagator exponent indices νi.

to finite order, where ln = ln(n). Although Feynman parametrisation, MB and other techniques
work well for a subset of boundary integrals it is not always possible to obtain exact results. On
the other hand, with DRR, exact results are always attainable which can then be expanded to
any order in ǫ, which is why we choose to employ DRR instead.

Given the boundary integrals, we can immediately determine MIs order-by-order in ǫ in terms
of MPLs, up to an integration constant. To determine the MIs fully, we need to satisfy boundary
conditions, as this is a first-order differential system; one only needs to enforce regularity at one
of the poles. We choose w = 1 or v1 = v2 which leaves us with the column vector, a, of
boundary integrals present in Table 8.2. These are to be determined independently of the
differential equation method. Conveniently, this is a subset of the integrals that differentiate to
nil given previously, and thus no further calculation is necessary. Thus we have all the ingredients
necessary to determine our result in terms of MPLs, and we perform the integrals iteratively at
each order in ǫ, enforcing boundary conditions up to O(ǫ2). The full results in terms of MPLs
are presented in an arXiv ancillary file of Ref. [381].

8.4 Heavy-Light Vertex

The heavy-light N -loop master integrals with massive propagators at d = 4 − 2ǫ have the
following form,

I =
[

(4π)2−ǫeγEǫ
]N
∫

/d
d
l1 . . . /d

d
lN

1

Dν1
1 . . . D

νn−m

n−m
· 1

D̃
νn−m+1

n−m+1 . . . D̃
νn
n

, (8.31)

where n is the cardinality of the minimal set of denominators, Di can have the following forms,

Di(w) = li · vi, D̃i(m) = l2i −m2, D̃i = l2i , (8.32)

for some particular combination of loop momenta, li, and momentum, p, such that w = p · v/m
where v2 = 1 and p2 = m2. To use differential equation to solve the MI’s we begin by taking a
derivative of the integral with respect to w.
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8.4.1 One-loop Case

We will go through the derivation explicitly at one-loop as a reference for the main two-loop
result. At one-loop order, all on-shell amplitudes reduce to expressions with two MIs,

I(1) =
[

(4π)2−ǫeγEǫ
]

m1−2ǫ

∫

/d
d
l

1

(l · v − w) ·
1

l2 − 1
, (8.33)

I(2) =
[

(4π)2−ǫeγEǫ
]

m2−2ǫ

∫

/d
d
l

1

l2 − 2
= −eγEǫΓ(ǫ− 1)m2−2ǫ, (8.34)

then we may solve this by parameterising, taking the derivative and reducing, to obtain,

d

dw
I(1)(w) =

[

(4π)2−ǫeγEǫ
]

m1−2ǫ

∫

/d
d
l

[

d

dw

1

(l · v2 − w)

]

· 1

l2 − 1
(8.35)

= −m1−2ǫ

(

(D − 3)

1− w2
wI(1) +

(D − 2)

1− w2
I(2)
)

, (8.36)

One can then solve Eq. (8.14) by variation of parameters and the boundary condition, I(1)(0) = 0,
to obtain,

I(1) = 2ieγEǫwΓ(ǫ)m1−2ǫ, (8.37)

which is equivalent to the known heavy-light one-loop result [153].

8.4.2 Two-loop Case

At two-loop order we have a column vector, B(w), of n = 33 master integrals tabulated in
Table 8.3, based on our notation for R(s) in Eq. (8.1). Differentiating B(w) with respect to w
and performing the IBP reduction, the linear system obtained is in the form,

∂wB(w) = M(w, ǫ)B(w). (8.38)

with a 33× 33 matrix, M(w, ǫ). We can again proceed with reduction in this case to ǫ-form by
changing variables to β and determining the transformation matrix T. In this case, the coupled
sub-systems to transform step-wise are no greater than two, for instance,

M2 =





− 2w2ǫ+w2−4ǫ
(w−1)w(w+1) − 4

w

− ǫ(4ǫ+1)
(w−1)w(w+1) − w2+4ǫ+1

(w−1)w(w+1)



 . (8.39)

Changing variables to β and following Lee’s algorithm we find a transformation matrix,

T2 =

(

1
β 0

(β−1)ǫ
2β 1

)

, (8.40)

which reduces M2 to ǫ-form,

S2 = ǫ





2w
(w−1)(w+1) − 2β

w−1

− 4β
w−1 − 4w

w2−1



 . (8.41)

Repeating these steps for each block, we can consolidate each transformation matrix into a final
transformation matrix. This allows us to perform the complete reduction to ǫ-form as

∂wÃ(w) = ǫS(w)Ã(w). (8.42)
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MI ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10

B1 1 1 0 0 0 0 0 0 0 0

B2 1 0 1 1 0 0 0 0 0 0

B3 1 0 0 1 0 0 1 0 0 0

B4 2 0 0 1 0 0 1 0 0 0

B5 1 1 0 0 0 0 1 0 0 0

B6 1 1 0 0 1 0 0 0 0 0

B7 1 0 1 1 0 0 1 0 0 0

B8 1 0 1 1 1 0 0 0 0 0

B9 1 1 0 1 0 0 1 0 0 0

B10 1 2 0 1 0 0 1 0 0 0

B11 1 1 0 0 1 0 1 0 0 0

B12 1 0 1 1 1 0 1 0 0 0

B13 1 1 1 1 1 0 0 0 0 0

B14 2 1 1 1 1 0 0 0 0 0

B15 1 1 0 0 1 1 0 0 0 0

B16 1 0 0 0 0 0 0 1 1 0

B17 0 0 0 0 1 0 0 1 0 1

B18 0 0 0 0 2 0 0 1 0 1

B19 1 0 0 0 1 0 0 1 0 0

B20 0 0 0 0 1 0 0 1 1 1

B21 0 0 0 0 2 0 0 1 1 1

B22 1 0 0 1 0 1 0 1 0 0

B23 1 0 0 0 1 0 0 1 1 0

B24 1 0 0 0 2 0 0 1 1 0

B25 1 0 1 1 1 0 0 0 0 0

B26 1 1 0 0 0 1 1 0 0 0

B27 1 1 1 1 1 0 0 0 0 0

B28 1 1 1 1 2 0 0 0 0 0

B29 1 0 1 1 1 0 1 0 0 0

B30 1 1 0 0 0 1 1 0 0 0

B31 1 0 1 1 0 1 1 0 0 0

B32 1 1 0 0 0 1 1 0 0 0

B33 1 0 1 1 1 1 0 0 0 0

Table 8.3: Column vector of heavy-light MIs with propagator exponent indices νi.
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MI ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10

b1 1 0 1 1 0 0 0 0 0 0

b2 1 0 0 1 0 0 1 0 0 0

b3 1 1 0 0 0 0 0 0 0 0

b4 1 1 0 0 0 0 1 0 0 0

b5 1 0 0 0 0 0 0 1 1 0

Table 8.4: Heavy-light boundary MIs at w = 1 with propagator exponent indices νi.

with the reduced system given explicitly in Appendix C.3. By analysis, in this case, B1,2, B5

and B16 are w-independent correspond to a portion of boundary MIs which we determine with
DRR as in the previous case. We present exact results for boundary integrals explicitly in
Appendix C.4. Moreover, as in the previous case, to determine the MIs fully, we need to satisfy
boundary conditions. We select the w = 1 pole or p · v = m which leaves us with the column
vector, b, of boundary integrals present in Table 8.4. These are also evaluated with DRR and
present in Appendix C.4. Thus we have all the ingredients necessary to determine our result in
terms of MPLs, and we perform the integrals iteratively at each order in ǫ enforcing boundary
conditions up to O(ǫ2). The full results in terms of MPLs are presented in an arXiv ancillary
file of Ref. [381].

8.5 Heavy Propagator

The heavy-heavy N -loop two-point master integrals with massive propagators at d = 4−2ǫ have
the following form,

I =
[

(4π)2−ǫeγEǫ
]N
∫

/d
d
l1 . . . /d

d
lN

1

Dν1
1 . . . D

νn−m

n−m
· 1

D̃
νn−m+1

n−m+1 . . . D̃
νn
n

, (8.43)

where n is the cardinality of the minimal set of denominators, Di can have the following forms,

Di(ω) = li · vi, D̃i(m1) = l2i − 1, D̃i = l2i , (8.44)

for some particular combination of loop momenta, li, and ω = p · v/M which we take the
derivatives with respect to, such that v2 = 1.

8.5.1 One-loop Case

We will go through the derivation explicitly at one-loop as a reference for the main two-loop
result. At one-loop all on-shell amplitudes reduce to expressions with two MIs,

I(1) =
[

(4π)2−ǫeγEǫ
]

M1−2ǫ

∫

/d
D
l

1

(l · v − ω) ·
1

l2 − 1
(8.45)

I(2) =
[

(4π)2−ǫeγEǫ
]

∫

/d
D
l

1

l2 − 1
= −eγEǫΓ(ǫ− 1)M2−2ǫ, (8.46)

taking the derivative and performing IBP reduction, we obtain,

d

dω
I(1)(ω) =

[

(4π)2−ǫeγEǫ
]

∫

/d
D
l

[

d

dω

1

(l · v − ω)

]

· 1

l2 − 12
(8.47)

= −(D − 3)ω

ω2 − 1
I(1) − (D − 2)

1− ω2
I(2), (8.48)
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MI ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8

C1 0 0 0 1 1 0 0 0

C2 0 0 1 1 1 0 0 0

C3 0 0 1 0 1 1 0 0

C4 0 1 0 1 1 0 0 0

C5 0 2 0 1 1 0 0 0

C6 0 1 1 1 1 0 0 0

C7 1 1 1 1 0 0 0 0

C8 1 1 1 0 1 0 0 0

C9 1 1 1 1 1 0 0 0

C10 0 0 0 0 1 0 1 1

C11 1 0 0 0 0 0 1 1

C12 1 0 0 0 1 0 1 1

Table 8.5: Column vector of heavy self-energy MIs with propagator exponent indices νi.

One can then solve Eq. (8.14) by variation of parameters and boundary condition, I(1)(0) = 0,
to obtain,

I(1) = 2ieγEǫωΓ(ǫ)M1−2ǫ, (8.49)

which again equals the result obtained from the usual Feynman parametrisation [153].

8.5.2 Two-loop Case

We will start by considering the off-shell case for generality with parameter, w, non-zero. The
column vector of MIs C(w), consists of n = 12 integrals. We tabulate these in Table 8.5, based
on our notation for L(s) in Eq. (8.6). Differentiating C(w) with respect to w and performing
IBP reduction, we have a differential system,

∂wC(w) = M(w, ǫ)C(w). (8.50)

with a 12×12 matrix, M(w, ǫ). Proceeding with Lee’s algorithm to attempt reduction to ǫ-form.
We then determine a transformation matrix T. To evaluate T, one starts by transforming the
blocks and coupled sub-system they represent to ǫ-form. By analysis we find a non-trivial block
that can only be reduced to (A+Bǫ)-form,

M2 =





0 −1
(2ǫ−1)(4ǫ−3)
(w−2)(w+2) −(3w2−4)(2ǫ−1)

(w−2)w(w+2)



 . (8.51)

and transforming M2 minimally gives,

S2 = ǫ





7w2−29w+24
w(w2−4)

− 16((w−2)w+3)ǫ
w(w2−4)

(−28w2+64w−112)ǫ
w(w2−4)

+ 14w2−65w+56
w(w2−4)

(6w2−16w+24)ǫ
w(w2−4)

+ −3w2+13w−12
w(w2−4)

(10w2−32w+56)ǫ
w(w2−4)

+ −6w2+29w−28
w(w2−4)



 . (8.52)

Thus, this block requires individual treatment with EPLs to solve. The remaining blocks,
however, do, reduce to ǫ-form, as can be seen in the reduced system given in Appendix C.3.
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MI ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8

c1 0 0 1 1 0 0 0 0

c2 0 0 1 1 1 0 0 0

c3 0 1 1 1 0 0 0 0

c4 0 1 0 1 1 0 0 0

c5 0 1 1 1 1 0 0 0

c6 1 1 1 1 0 0 0 0

c7 1 1 1 0 1 0 0 0

c8 1 1 1 1 1 0 0 0

c9 0 0 0 0 1 0 1 1

c10 1 0 0 0 1 0 1 1

Table 8.6: Self-energy boundary MIs at w = 0 with propagator exponent indices given by νi
with p · v = 0.

By analysis, we find that C1,2 and C10 are w-independent boundary MIs, which we solve with
standard methods and are present in Appendix C.4. Unlike the previous cases, our boundary
condition is to enforce regularity at w = 0 or p · v =M , which leaves us with the column vector,
c, of boundary integrals present in Table 8.6. Although there are more integrals to determine
at w = 0, this point is what is needed for field renormalisation contributions in practice, as
described in Section 8.2. These are to be determined independently of the differential equation
method and instead with DRR. We present the exact results for these integrals in Appendix C.4.
Thus we have all the ingredients necessary to determine our result in terms of MPLs and EPLs,
and we perform the integrals iteratively at each order in ǫ, enforcing boundary conditions up to
O(ǫ2). The full results in terms of MPLs and EPLs are presented in an arXiv ancillary file of
Ref. [381].

8.6 Summary

We have employed the differential equations method and dimensional recurrence relations to
treat diagrams with heavy field insertions up to three-points and two-loop order. Our analysis
focused on vertex or form factor diagrams as these are fundamental for a broad class of processes
and can be combined for use in studies beyond three-point order. Our results are applicable
for a broader range of theories and provide an IR structure for models studied by including
a mass scale. The treatment of the heavy-heavy and heavy-light vertex diagrams was shown
to be straightforward, and we provide the results in terms of MPLs. The on-shell self-energy
contributions give the heavy field and residual mass renormalisation. We evaluated these dia-
grams as they were boundary MIs for the general off-shell propagator. Determining said off-shell
self-energies with differential equations leads to a sub-system of equations that required treat-
ment with EPLs, and we describe this as well, providing results for the off- and on-shell cases.
Based on this study, we have provided further proof positive of the power and simplicity of the
differential equation method and advocate for its use when more exotic propagators are present.
Our full results are contained in the ancillary file submitted along with Ref. [264] on the arXiv.
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Chapter 9

Conclusion and Outlook

In this thesis, we incorporated electroweak corrections to fundamental parameters and EFTs
arising from QCD. We focused our analysis on heavy quarks, such as top quarks in the SM,
shedding light on the role of the EW sector. Our findings demonstrate that the leading EW
corrections are comparable in size to current high precision QCD estimates and we therefore
must take these into account. We further endeavoured to maintain generality at each stage by
considering BSM theories and studying both heavy and light fields in model-independent ways.

Our analysis of heavy fields and the EW sector began in Chapter 5, in which we considered
the heavy quark static potential. As the full SM is chiral and exhibits SSB, we proposed a
consistent way of studying static potentials in theories with SSB. In contrast to the traditional
Wilson loop approach, the method we pursued is better suited for SM-like theories and implicitly
provides higher-order scalar and spin-dependent contributions. The main result we presented in
this approach is the leading one-loop EW corrections to the heavy quark potential. We found the
contributions from the EW regime to be significant and comparable to pure QCD contributions
at NNLO. Moreover, we discussed how the theoretical framework introduced helps to study the
NR regime of theories beyond the SM.

We examined analogous corrections to short-distance mass definitions with the EW cor-
rections to the heavy quark potential at hand. The building blocks of these mass definitions
are energy parameters, including the heavy quark static potential, binding energy, and residual
kinetic energy. For this reason, we began Chapter 6 by elaborating on the static potential calcu-
lation and applied it to the case of top and bottom quarks. We then presented our calculation
for the leading one-loop EW corrections to the heavy quark residual KE and BE. From there,
we determined the leading EW corrections to often-employed threshold mass definitions for the
top and bottom quarks in the SM. The numerical estimates we provided for the EW corrections
indicate that they are comparable to pure QCD contributions at NNLO. Moreover, these mass
definitions are useful when working with heavy quark EFTs, which we considered next.

Remaining in the vein of heavy quarks but shifting gears to an EFT perspective, we focused
on HQET and NRQCD. In Chapter 7 we confirmed previous matching results in pure QCD
and then studied the EW corrections to the HQET/NRQCD Lagrangian. We found the EW
corrections to the matching coefficients and determined that the Lagrangian required extension.
The extension was due to the SM being parity-violating, unlike pure QCD. Thus, new Lorentz
structures emerged that appear as independent operators in the EFT Lagrangian with associated
matching. We performed the matching at one-loop order for both form factors and four-quark
operators. As in the threshold mass study, we produced numerical estimates for the one-loop
matching coefficients, demonstrating the need to incorporate EW contributions in future studies.

In Chapter 8 we generalised the previous EFT analysis to the case of both massive and
massless form factors. Our interest in form factors lies in their nature of primary building blocks
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to a broad set of observables in both high and low energy regimes. This chapter aimed to attain a
complete two-loop EFT description for each operator, mass hierarchy and energetic regime in the
model we employed. We achieved a significant portion of this endeavour in both the Sudakov
and threshold energetic regime for both matching and running. We further showed how the
results in our model could be mapped to the SM up to and including two-loop orders. This was
achieved by replacing coupling and group theory factors. We also discussed how replacements
of a similar type can be used to study models beyond the SM.

Our two-loop EFT analysis opened many avenues of inquiry, one of which was the appearance
of heavy field diagrams with mass scales. Analytically evaluating such integrals required treat-
ment with modern multi-loop techniques. In Chapter 8 we evaluated all diagrams with heavy
field insertions up to three points and two-loop order. We achieved this analysis with differential
equations and dimensional recurrence relations, which we have shown to be the appropriate
framework for dealing with non-standard multi-loop integrals. Our results are applicable to a
broader range of theories and provide IR structure for models studied with the inclusion of a
mass scale. The treatment of the on-shell diagrams was shown to be straightforward, and we
provided the results in terms of MPLs. We further considered the off-shell case for completeness
which required more delicate treatment with elliptic functions.

To conclude this thesis, the research we presented has opened new avenues of exploration
into the effects of incorporating the EW sector in high precision studies. We have demonstrated
that the leading EW contributions are comparable to the next-to-leading QCD corrections on
a range of fronts, from fundamental SM parameters and energies to EFTs. As high precision
QCD is currently providing predictions far beyond leading order, our findings indicate that
the sub-leading EW sector needs accounting for at this stage. In particular, when considering
specific processes of interest, approaching different energetic regimes, and delving into higher-
loop orders. We hope that the framework we develop and the results we express in this thesis
will help incorporate the EW sector in future studies, ultimately increasing the odds of detecting
new physics at the LHC and beyond.
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Appendix A

SU(N)-Higgs Theory Feynman Rules

We illustrate here the Feynman rules we employ for our calculations in the various theories.
They may be determined from the Lagrangian described in section 7.2.1. The gauge boson fields
of mass M = MW are W a

µ (with Lorentz vector index µ). The corresponding Fadeev-Popov
ghost fields are labelled ca (and antighost c̄a ) and Goldstone bosons are labelled φa. In the
Feynman-t’Hooft gauge used by us, one sets Mφ = MW . The fields, ψ and χ denote fermions
and complex scalars, respectively. The SU(N) coupling is given by g and the field labelling,
{1, 2} differentiates between the particles on the grounds of mass, if two of the same kind exist
in a vertex. Vertices which apply beyond two-loops are omitted here but should be included if
one wants to venture beyond.

A.1 Fermion and Scalar Couplings

W a
µ

ψ ψ

igγµT
a

ψψ

H

−ig2Yf

ig(p1 + p2)
µT a

−ig2Ys

χ χ

χ χ

W a
µ

H

p2p1

χ χ

2ig2gµνT
aT b

W a
µ W b

ν
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A.2 Gauge Field Self and Ghost Couplings

W a
µ

W b
ν

W c
ρ

p3

p1 p2

gfabc{gµν(p1 − p2)ρ
+ gνρ(p2 − p3)µ
+ gρµ(p3 − p1)ν}

W a
µ

c̄b

cc

−gfabcpµ

p

A.3 Gauge Field Higgs and Goldstone Couplings

W a
µ

H

φb

p1

p2

g
2δ
ab(p1 − p2)

φb

φc

−g
2f

abc(p1 − p2)W a
µ

H

W a
µ

W b
ν

igMW gµνδ
ab

H

H

H

φa

φb

H

−ig 3
2M

2
H/MW

−ig 1
4M

2
H/MW δ

ab

p2

p1
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A.4 Effective theory couplings

W a
µ

W a
µ

W a
µ

W a
µ

H

H

H

H

hf hf hf hf

hs hs hs hs

ξ(n,p) ξ(n,p) ξ(n,p) ξ(n,p)

φ(n,p) φ(n,p) φ(n,p) φ(n,p)

igvµT
a

igvµT
a

−ig2Yf

−ig2Ys

ig
/̄n
2 nµT

a

ignµT
a

−ig2Yf

−ig2Ys

In the effective theory vertices, solid (dashed) lines correspond to fermions (scalars) and widely
(thinly) spaced lines correspond to heavy (co-linear) particles. As for the co-linear vertices we
do not distinguish between soft/Wilson line couplings as they are identical up to the order we
are considering.
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Appendix B

Form Factors Contributions

In this Chapter we present the form factor contributions compact enough to present in this
thesis, for each scale hierarchy and operator considered in Chapter 8. The numbering of the
contributions corresponds to their ordering in their respective tables in Chapter 8. We note

further that the explicit contributions from two-loop vertex corrections, V
(2)
i , are too large to

present here. We thus include the full expressions with description in the arXiv ancillary file of
Ref. [325].

B.1 Matching at µ ∼ Q:

The coupling corrections to matching from the full theory at µ ∼ Q, contributing at two-loop
order are given by,

∆C1 =
CF
36

(

−2L3
Q +

(

π2 − 12
)

LQ − 28ζ3 + 24
)

(CA (3CA + 22)− 8nfTf − 4)

+
Y 2
f

288
{6LQ (LQ (−2CACF lnLQ + CA (6CF + 22)− 8nfTf − 1)

+CA
((

π2 − 36
)

CF − 88
)

+ 32nfTf + 4
)

− 168ζ3CACF + 48CA (9CF + 22)

−2π2CA (3CF + 11) +
(

π2 − 48
)

(8nfTf + 1)
}

, (B.1)

∆C2 =
CF
72

(

2LQ
(

(9− 2LQ)LQ + π2 − 48
)

− 56ζ3 − 3π2 + 192
)

(CA (3CA + 22)

−8nfTf − 4) +
Y 2
f

576

{

6L2
Q (2CA (6CF − 11) + 8nfTf + 1)

+12LQ
(

CA
((

π2 − 42
)

CF + 22
)

− 8nfTf − 1
)

− 24CACFL
3
Q

−12
(

28ζ3 − 90 + π2
)

CACF + 22
(

π2 − 12
)

CA −
(

π2 − 12
)

(8nfTf + 1)
}

, (B.2)

∆C3 =
CF
36

(

LQ
(

−2 (LQ − 6)LQ + π2 − 48
)

− 28ζ3 − 2π2 + 84
)

(CA (3CA + 22)

−8nfTf − 4) +
Y 2
f

48

{

LQ
(

−2CACF (LQ − 6)LQ + CA
((

π2 − 36
)

CF + 44
)

−2 (8nfTf + 1))− 28ζ3CACF − 2CA
((

π2 − 24
)

CF + 66
)

+ 48nfTf + 6
}

, (B.3)

∆C4 =
CF
72

(

2LQ
(

(3− 2LQ)LQ + π2 − 12
)

− 56ζ3 − π2 + 48
) (

−6C2
A + 22CA

−8nfTf + 5) , (B.4)

∆C5 =
CF
36

(

LQ
(

−2 (LQ − 6)LQ + π2 − 48
)

− 28ζ3 − 2π2 + 96
) (

−6C2
A + 22CA
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−8nfTf + 5) , (B.5)

∆C6 =
CF
576

(

−2LQ
(

(9− 2LQ)LQ + π2 − 36
)

+ 56ζ3 + 3π2 − 144
) (

CA
(

−12CA + 3Y 2
f

−176) + 64nfTf + 20) . (B.6)

B.2 SCET Matching at µ ∼M :

The SCET form factor contributions at two-loop order from mass and coupling renormalisation
are given by,

∆D1 = −
CF

72M6
W

{

M6
W

((

99
√
3π − 690

)

CA + 32(5 + 3iπ)nfTf + 124
)

+3M4
W

(

LMW

(

M2
W (141CA − 32nfTf − 20) + 10M2

H

)

− 8M2
HLMH

)

−54M4
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2
H + 6M2

WM
4
H − 6MHs

(

12M4
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ln(w)
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8M4
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4
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H
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ln (MW /MH)
}

(2LMW
− 2LQ + 3) , (B.7)
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(
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B.3 HPET Matching at µ ∼M :

The two-loop HPET matching contribution at µ ∼M , are given by,

U
(2)
1 = (V

(M)
1 + F

(M)
h +∆U1) +

2

3
wC2

F

(

12(LMW
− 1)LMW
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1

24
Y 4
f
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6
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2
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+
1

48
(Y 3
f Ys + Y 3

s Yf )
(

12(LMH
− 1)LMH
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)

− 1

6
CFYfYsh(w)
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h(w). (B.12)

The terms, V
(M)
i and FI are the bare two-loop vertex and wave-function corrections and ∆Ui

are the associated mass and coupling renormalisation contributions.

B.4 Matching at µ ∼ m1,2:

Matching corrections at one- and two-loop order to the threshold form factor at µ ∼ m1,2 are
represented by,

B
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(
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The notation m± = m2 ± m1. V
(m1,2)
i and FI are bare two-loop vertex and wave-function

corrections. ∆Bi are the two-loop order contribution from mass and coupling renormalisation.

B.5 Matching at µ ∼ m2:

Matching corrections to the threshold form factor at µ ∼ m2 are given by,
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B.6 Matching at µ ∼ m1:

Matching corrections to the threshold form factor at µ ∼ m1 are given by,
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i and FI are two-loop vertex and wave-function corrections. The mass and coupling renor-

malisation contributions contributing at two-loop order are given by,
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(
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1

64
Y 2
f

{

6Lm1 (88CF + 6β0 − 3β0Lm1)−
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(
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(
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(
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The contributions from bare two-loop vertex contributions, V
(m1)
i , are too large to present here.

We thus include the full expressions with description in the arXiv ancillary file of Ref. [325].

The contributions from two-loop vertex corrections, V
(M)
i , are too large to present here. We

thus include the full expressions with description in the arXiv ancillary file of Ref. [325]. The
contributions from all corrections both one- and two-loop are too large to present here. We thus
include the full expressions with description in the arXiv ancillary file of Ref. [325].

B.7 Two-Loop Field Renormalisation

The bare two-loop wave-function contributions are presented here for reference. As with all
other contributions, these too are available in the arXiv ancillary file of Ref. [325].

B.7.1 Fermion and Scalar Field at m = 0 and M = 0:
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+
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−
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+
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B.7.2 Fermion and Scalar Field at m = 0 and M 6= 0 (∆M ≡MH −MW ):
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B.7.3 Fermion and Scalar Field at m 6= 0 and M = 0:
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B.7.4 Fermion and Scalar Field at m 6= 0 and M 6= 0 (∆M ≡ MH − MW ,
∆m,M ≡MW −m):
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F (m,M)
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B.8 Parametric Integrals:

P (z) = −
∫ 1

0
dx

{

2(1− x) ln
(

1− x+ z2x2

1− x

)

+
4z2x(1− x2)
1− x+ z2x2

}

=
3

z2
+

{

3

2z4
− 3

}

ln z2 +
(3− 6z2 − 12z4)

z4
√
1− 4z2

tanh−1 (
√

1− 4z2) (B.57)
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P
′

(z) = −
∫ 1

0
dx

{

(1− x) ln
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)
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}
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{
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2

}
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√
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√
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S(z) =

∫ 1

0
dx

{

(3x2 − 6x+ 4) ln

(

1− x+ z2x2

1− x

)

− z2x(1− x2)
(1− x)(2− x)2

}

= − 1

z2
+

{

3

2z2
− 1

2z4

}

ln z2 +
(z2 − 1)

√
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z4
tanh−1 (

√

1− 4z2) (B.59)

S
′

(z) = −
∫ 1

0
dx

{

z2x3

1− x+ z2x2

}

= − 1

z2
+

{

1

2z2
− 1

2z4

}

ln z2 +
3z2 − 1

z4
√
1− 4z2

tanh−1 (
√

1− 4z2) (B.60)

The integrals may be analytically continued in the regime, 4z2 ≥ 1, using
√
1− 4z2 7→ i

√
4z2 − 1

and therefore tanh−1(
√
1− 4z2) 7→ i tanh−1(

√
4z2 − 1), and plugging this back into the integrals

one can verify that the integral remains real.

B.9 Remaining Matching Contributions:

All remaining matching coefficient contributions are too large to present here, which includes:
The bare two-loop vertex contributions in all cases, the heavy bare two-loop field renormalisation
contributions, both the one- and two-loop contributions of D̃(µ), the coupling and mass renor-
malisation contributions labelled by ∆B(µ) and ∆U(µ). We thus present their full expressions
with description in the arXiv ancillary file of Ref. [325].
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Appendix C

Heavy Master Integrals

C.1 Differential Equations Algorithm

We briefly introduce the algorithm for reducing a coupled differential system to ǫ-form in the
context of multi-loop integrals, for further detail see [389]. Given a family of n master integrals
in a column, J(x), arising from the same types of diagrams and dependent on a single parameter
x, a differential system may be defined,

∂xJ(x) = M(ǫ, x)J(x). (C.1)

The matrix M(ǫ, x) is obtained after IBP reduction of the differentiated MIs, where d = 4− 2ǫ.
Given this linear system one can then proceed with Lee’s algorithm [389], which reduces the
system to one which can be solved iteratively order-by-order in ǫ. Firstly, a reduction to so-
called Fuschian form is necessary for M(ǫ, x) in which only simple poles in x arise. If the system
exhibits regular singularities this can always be achieved [410]. Specifically, one can always
define a transformation matrix, T(ǫ, x), such that

J = T(ǫ, x)J̃ and M̃ = T̃
−1

M̃T̃− T̃
−1∂xT̃, (C.2)

resulting in a transformed differential system,

∂xJ̃(x) = M̃(ǫ, x)J̃(x). (C.3)

One then needs to determine T such that it factors out the ǫ-dependence,

∂xJ̃(x) = ǫS̃(x)J̃(x). (C.4)

This can be achieved in many cases [387] and in general one requires that S̃ be Fuschian,

S̃(x) =
∑

k

Ak
x− xk

, (C.5)

with Ak being constant, k finite and only simple poles in x present. This form of differential
system then simply lends itself to a an iterative solution in terms of MPLs which has a nested
sum representation,

Lia1,...,an(x1, . . . , xn) =
∑

i1>...>in>0

xi11
ia11
· · · x

in
n

iann
. (C.6)

A special case of which are the so-called Harmonic Polylogarithms (HPLs) [304],

Ha1,...,an(x) = Lia1,...,an(x, 1, . . . , 1), (C.7)
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with,

H0,...,0(x) =
1

n!
lnn(x). (C.8)

In general however, there will be MIs in J(x) that are independent of x and thus differentiate
to zero. These MIs along with x-dependent MIs at a pole in x must be determined as they
define the boundary conditions and enforce regularity at all values of x. Otherwise one solely
has the integrals up to an integration constant. Thus boundary integrals, which are simpler
to determine, must be found with other means, for instance Feynman parametrisation, Mellin-
Barnes representations [409], or dimensional recurrence relations [77,79,80], which we discuss in
Appendix C.2.

C.2 Dimensional Recurrence Relations

As was originally formulated by Tarasov in Ref. [77], one can evaluate multi-loop integrals
through dimensional recurrence relations and analyticity properties in D, their space-time di-
mensionality. We employ the dimensional recurrence algorithm (DRA) first suggested by Lee
in Refs. [79, 80] to evaluate our boundary integrals in Chapter 8. This approach is useful as we
wish to provide boundary integrals to all orders in ǫ, for general applications. Given boundary
integrals to all orders, the differential equations algorithm discussed in Section C.1 can then be
employed to determine the remaining integrals to any desired order in ǫ.

The DRA method to determine multi-loop integrals can be broken down into five steps. For
a more detailed review we recommend Ref. [80]. Before going through each step one must make
sure that all multi-loop integrals which are sub-topologies of the one of interest are known as
these will be necessary. Once these are determined one can proceed, given an MI, J (D), to be
determined the DRA method proceeds in the following systematic way:

1. Examine the pole structure of J (D) and make certain that there exists a so-called basic
stripe of integer width two between a set of poles. This is necessary as the integral needs to
be finite in such a stripe. If the integral does not contain a basic stripe, make the integral
suitable by increasing powers of certain propagators and relating the new integral to the
original through IBP identities.

2. Given an appropriate MI for DRA treatment, J (D), one can now proceed to constructing
its DRR which can in general be written as,

J (D−2) = C(D)J (D) +R(D). (C.9)

The first term on the right-hand side contains a rational factor, C(D), and the second
terms is known as the inhomogenous part of the relation, R(D), and is made of MIs in
sub-topologies of J(D).

3. Given the recurrence relation in Eq. (C.9), one can write down a general solution as,

J (D) = Σ−1(D)ω(z) + J
(D)
I . (C.10)

The terms in this solution are to be determined individually where, Σ−1(D) is the homoge-

nous solution also known as the summing factor and J
(D)
I is a particular solution to the

inhomogenous part. The goal at this stage is to obtain the general solution by first finding
a suitable homogenous solution, Σ−1(D), within the basic stripe and with this determining

a particular solution, J
(D)
I , for the inhomogenous part. The function, ω(z), is a periodic

function in dimensionality with z = eiπD.
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4. What remains at this stage is fixing the singularities of the periodic function, ω(z), which
is done by studying the analytic properties of the MIs in Eq. (C.9) and the summing factor,
Σ(D), in the general solution.

5. If there are any remaining constants that are not yet fixed in Eq. (C.10) the last step is
to fix these. This can also be done by studying analytic properties further, or evaluating
the MI in a space-time dimension, D, which is especially simple.

The main procedure which requires careful consideration in the DRA method is given in the
fourth step. To fix the singularities in ω(z) one needs to analyse the pole structure of Σ(D)J (D)

in the basic stripe of the complex plane of D. One can attain this data, i.e. the position and
order of the poles of Σ(D)J (D), either by inspection if trivial, or semi-analytically with the
help of an algorithm automated in FIESTA [411]. What one finds in general is that the pole
ordering is dependent on the summing factor, Σ(D) and the basic stripe chosen given the MI
being evaluated. Whence, step five may not be necessary in the case of such requirements being
appropriately chosen. In this thesis we evaluate all our boundary MIs with the DRA method
for completeness and check the results to high numerical precision with FIESTA.

C.3 Differential Systems in ǫ-form

In this section we present the reduced Fuschian systems of differential equations present in
Chapter 8. The vertex diagrams are given in ǫ-form and the off-shell self-energy diagrams are
given in (A + Bǫ)-form. The original system described by M and the transformation matrix
required for reduction, T, are provided for all cases in an arXiv ancillary file of Ref. [381].

Heavy-Heavy:

Ã′
5 = ǫ

(

− Ã1β

9(w − 1)
+

2Ã5w

w2 − 1
− Ã7β

2(w − 1)

)

, (C.11)

Ã′
6 = ǫ

(

− 12Ã2β

7(w − 1)
+

15Ã3β

4(w − 1)w
− 2Ã6

(

w2 − 2
)

w (w2 − 1)

)

, (C.12)

Ã′
7 = ǫ

(

−4Ã1

9w
− 16Ã5β

w − 1
− 4Ã7

w

)

, (C.13)

Ã′
8 =

Ã1βǫ

3(w − 1)
, (C.14)

Ã′
9 =

Ã1βǫ

w − 1
, (C.15)

Ã′
10 = ǫ

(

3Ã2β

7(w − 1)
+

Ã6w

2 (w2 − 1)

)

, (C.16)

Ã′
11 = −

7Ã6ǫ

6 (w2 − 1)
, (C.17)

Ã′
12 = ǫ

(

−18Ã5β

w − 1
− 3Ã8β

w − 1
− Ã9β

w − 1

)

, (C.18)

Ã′
17 = ǫ

(

− Ã1β

16(w − 1)
+

9Ã15β

32(w − 1)
+

2Ã17w

w2 − 1
+

Ã20β

4(w − 1)
− 9Ã7β

16(w − 1)

)

, (C.19)
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Ã′
18 = ǫ

(

− 9Ã14β

2w2 − w − 1
+

2Ã18(w + 2)

2w3 + w2 − 2w − 1
+

3Ã2β

2w2 − w − 1
− 15Ã3β

4 (2w2 − w − 1)

+
7Ã6

2(2w + 1)

)

, (C.20)

Ã′
19 = ǫ

(

− Ã1β
(

16w2 − 7
)

4 (4w3 − 4w2 − w + 1)
+

2Ã13β

w − 1
+

9Ã15β(4w + 1)

8 (4w3 − 4w2 − w + 1)

+
6Ã19w

4w4 − 5w2 + 1
+

Ã20β

4w3 − 4w2 − w + 1
+

27Ã7β

4 (4w3 − 4w2 − w + 1)

)

, (C.21)

Ã′
20 = ǫ

(

−Ã1

(

10w2 − 1
)

(4w2 − 1)w
− 9Ã15(w + 1)

4w2 − 1
+

16Ã17β

w − 1
+

12Ã19β

4w3 − 4w2 − w + 1

− 8Ã20w

4w2 − 1
− 108Ã5β

w − 1
− 9Ã7

(

10w2 − 1
)

(4w2 − 1)w

)

(C.22)

Ã′
21 = ǫ

(

Ã13β

w − 1
− Ã1β

3(w − 1)

)

(C.23)

Ã′
22 = ǫ

Ã2βǫ

w − 1
(C.24)

Ã′
23 =

Ã18ǫ

2 (w2 − 1)
(C.25)

Ã′
26 = ǫ

Ã24βǫ

w − 1
(C.26)

Heavy-Light:

B̃′
3 = ǫ

(

32βB̃4

5(w − 1)
− 6B̃3w

w2 − 1

)

, (C.27)

B̃′
4 = ǫ

(

32βB̃4

5(w − 1)
− 6B̃3w

w2 − 1

)

, (C.28)

B̃′
6 = ǫ

(

4βB̃1

3(w − 1)
− 2B̃6w

w2 − 1

)

, (C.29)

B̃′
7 = ǫ

(

− 2βB̃2

w − 1
− 49βB̃4

2(w − 1)
+

2B̃7w

w2 − 1

)

, (C.30)

B̃′
8 = ǫ

(

16βB̃2

7(w − 1)
− 4B̃8w

w2 − 1

)

, (C.31)

B̃′
9 = ǫ

(

− βB̃1

252(w − 1)
+

7βB̃10

2(w − 1)
+

5βB̃4

42(w − 1)
+

5βB̃5

288(w − 1)
+

2B̃9w

w2 − 1

)

, (C.32)

B̃′
10 = ǫ

(

B̃1w

441 (w2 − 1)
− 4B̃10w

w2 − 1
− 75βB̃3

392(w − 1)
− 55B̃4w

147 (w2 − 1)
− 5B̃5(8w + 3)

2016 (w2 − 1)

+
16βB̃9

7(w − 1)

)

, (C.33)
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B̃′
11 = ǫ

(

− 4B̃1w

9 (w2 − 1)
− 4B̃11w

w2 − 1
− 35B̃5

12 (w2 − 1)
+

4βB̃6

3(w − 1)

)

, (C.34)

B̃′
12 = ǫ

(

−4B̃12w

w2 − 1
+

60B̃2w

77 (w2 − 1)
+

105B̃4w

11 (w2 − 1)
+

180βB̃7

77(w − 1)

)

, (C.35)

B̃′
13 = ǫ

(

− βB̃1

8(w − 1)
+

2B̃13w

w2 − 1
− 2βB̃14

w − 1
+

15βB̃2

28(w − 1)
− 105βB̃4

16(w − 1)

)

, (C.36)

B̃′
14 = ǫ

(

−4βB̃13

w − 1
− 4B̃14w

w2 − 1
− 525βB̃3

128(w − 1)
+

3βB̃6

8(w − 1)
− 15βB̃8

8(w − 1)

)

, (C.37)

B̃′
15 = ǫ

(

8B̃1w

9 (w2 − 1)
− 4B̃15w

w2 − 1
− 8βB̃6

3(w − 1)

)

, (C.38)

B̃′
17 = −

4βB̃18ǫ

w − 1
, (C.39)

B̃′
18 = ǫ

(

−2βB̃17

w − 1
− 6B̃18w

w2 − 1

)

, (C.40)

B̃′
19 = ǫ

(

4βB̃1

3(w − 1)
− 2B̃19w

w2 − 1

)

, (C.41)

B̃′
20 = ǫ

(

βB̃1

42(w − 1)
− 5βB̃17

32(w − 1)
+

2B̃20w

w2 − 1
− 7βB̃21

12(w − 1)
− 5βB̃5

84(w − 1)

)

, (C.42)

B̃′
21 = ǫ

(

4B̃1w

49 (w2 − 1)
− 15βB̃18

14(w − 1)
− 96βB̃20

7(w − 1)
− 4B̃21w

w2 − 1
− 5B̃5(32w − 21)

392 (w2 − 1)

)

, (C.43)

B̃′
22 = ǫ

(

− 49βB̃17

16(w − 1)
+

2βB̃2

w − 1
+

2B̃22w

w2 − 1

)

, (C.44)

B̃′
23 = ǫ

(

− 19βB̃1

240(w − 1)
+

βB̃16

4(w − 1)
+

2B̃23w

w2 − 1
+

3βB̃24

10(w − 1)
+

7βB̃5

64(w − 1)

)

, (C.45)

B̃′
24 = ǫ

(

19B̃1

12w
− 5B̃16

w
− 2βB̃19

3(w − 1)
+

40βB̃23

w − 1
− 2B̃24

(

3w2 − 2
)

w (w2 − 1)
− 35B̃5(3w − 2)

48(w − 1)w

)

, (C.46)

B̃′
25 = ǫ

(

− 16βB̃2

7(w − 1)
− 4B̃25w

w2 − 1

)

, (C.47)

B̃′
26 = ǫ

(

4B̃1w

9 (w2 − 1)
− 4βB̃19

3(w − 1)
− 4B̃26w

w2 − 1
+

35B̃5

12 (w2 − 1)

)

, (C.48)

B̃′
27 = ǫ

(

βB̃1

8(w − 1)
− 105βB̃17

128(w − 1)
− 15βB̃2

28(w − 1)
+

2B̃27w

w2 − 1
+
βB̃28

w − 1

)

, (C.49)

B̃′
28 = ǫ

(

− 105βB̃18

32(w − 1)
+

3βB̃19

4(w − 1)
+

15βB̃25

4(w − 1)
+

8βB̃27

w − 1
− 4B̃28w

w2 − 1

)

, (C.50)

B̃′
29 = ǫ

(

− 60B̃2w

77 (w2 − 1)
− 4B̃29w

w2 − 1
− 105B̃4w

11 (w2 − 1)
− 180βB̃7

77(w − 1)

)

, (C.51)
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B̃′
30 = ǫ

(

4B̃1w

9 (w2 − 1)
− 4B̃30w

w2 − 1
− 35B̃5

12 (w2 − 1)
− 4βB̃6

3(w − 1)

)

, (C.52)

B̃′
31 = ǫ

(

105B̃17w

88 (w2 − 1)
− 60B̃2w

77 (w2 − 1)
+

180βB̃22

77(w − 1)
− 4B̃31w

w2 − 1

)

, (C.53)

B̃′
32 = ǫ

(

− 4B̃1w

9 (w2 − 1)
+

4βB̃19

3(w − 1)
− 4B̃32w

w2 − 1
+

35B̃5

12 (w2 − 1)

)

, (C.54)

B̃′
33 = ǫ

(

− 105B̃17w

88 (w2 − 1)
+

60B̃2w

77 (w2 − 1)
− 180βB̃22

77(w − 1)
− 4B̃33w

w2 − 1

)

, (C.55)

Heavy Propagator:

C̃ ′
3 = ǫ

(

− 4βC̃1

3(w − 1)
− 2C̃3w

(w − 1)(w + 1)

)

, (C.56)

C̃ ′
4 = ǫ

(

− 8C̃1(7w − 8)

(w − 2)w(w + 2)
− 16C̃4w

(w − 2)(w + 2)
+

32C̃4

(w − 2)(w + 2)
− 48C̃4

(w − 2)w(w + 2)

− 28C̃5w

(w − 2)(w + 2)
+

64C̃5

(w − 2)(w + 2)
− 112C̃5

(w − 2)w(w + 2)

)

+
4C̃1(7w − 8)

(w − 2)w(w + 2)

+
7C̃4w

(w − 2)(w + 2)
− 29C̃4

(w − 2)(w + 2)
+

24C̃4

(w − 2)w(w + 2)
+

14C̃5w

(w − 2)(w + 2)

− 65C̃5

(w − 2)(w + 2)
+

56C̃5

(w − 2)w(w + 2)
, (C.57)

C̃ ′
5 = ǫ

(

8C̃1(3w − 4)

(w − 2)w(w + 2)
+

6C̃4w

(w − 2)(w + 2)
− 16C̃4

(w − 2)(w + 2)
+

24C̃4

(w − 2)w(w + 2)

+
10C̃5w

(w − 2)(w + 2)
− 32C̃5

(w − 2)(w + 2)
+

56C̃5

(w − 2)w(w + 2)

)

− 4C̃1(3w − 4)

(w − 2)w(w + 2)

− 3C̃4w

(w − 2)(w + 2)
+

13C̃4

(w − 2)(w + 2)
− 12C̃4

(w − 2)w(w + 2)
− 6C̃5w

(w − 2)(w + 2)

+
29C̃5

(w − 2)(w + 2)
− 28C̃5

(w − 2)w(w + 2)
, (C.58)

C̃ ′
6 = ǫ

(

− 4βC̃1w
2

(w − 2)(w − 1)(w + 2)
− 8βC̃1

(w − 2)(w − 1)(w + 2)
− 4βC̃2

w − 1

− 12βC̃4w

(w − 2)(w − 1)(w + 2)
− 24βC̃5w

(w − 2)(w − 1)(w + 2)
− 2C̃6w

(w − 1)(w + 1)

)

+
12βC̃1

(w − 2)(w − 1)(w + 2)
+

3βC̃4w

(w − 2)(w − 1)(w + 2)
− 9βC̃4

(w − 2)(w − 1)(w + 2)

+
6βC̃5w

(w − 2)(w − 1)(w + 2)
− 21βC̃5

(w − 2)(w − 1)(w + 2)
, (C.59)

C̃ ′
7 = ǫ

(

− 8βC̃1

(

w2 + 2
)

(w − 2)(w − 1)(w + 2)w
− 3βC̃4w

(w − 2)(w − 1)(w + 2)
− 24βC̃4

(w − 2)(w − 1)(w + 2)
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+
12βC̃4

(w − 2)(w − 1)(w + 2)w
− 7βC̃5w

(w − 2)(w − 1)(w + 2)
− 48βC̃5

(w − 2)(w − 1)(w + 2)

+
28βC̃5

(w − 2)(w − 1)(w + 2)w
− 2C̃7w

(w − 1)(w + 1)

)

+
4βC̃1

(

w2 + 2
)

(w − 2)(w − 1)w(w + 2)

− 3βC̃4w

(w − 2)(w − 1)(w + 2)
+

6βC̃4

(w − 2)(w − 1)(w + 2)
− 6βC̃4

(w − 2)(w − 1)w(w + 2)

− 7βC̃5w

(w − 2)(w − 1)(w + 2)
+

12βC̃5

(w − 2)(w − 1)(w + 2)
− 14βC̃5

(w − 2)(w − 1)w(w + 2)
, (C.60)

C̃ ′
8 = ǫ

(

8C̃1w

9(w − 1)(w + 1)
+

8βC̃3

3(w − 1)
− 4C̃8w

(w − 1)(w + 1)

)

, (C.61)

C̃ ′
9 = ǫ

(

12C̃1w

4w2 − 3
+

12βC̃3

(w − 1) (4w2 − 3)
− 6C̃4w

4w2 − 3
− 14C̃5w

4w2 − 3
− 4βC̃6

(w − 1) (4w2 − 3)

− 2βC̃7w

(w − 1) (4w2 − 3)
− 18C̃8w

4w2 − 3
− 8C̃9w

4w2 − 3

)

, (C.62)

C̃ ′
11 = −

4C̃11ǫ

w
, (C.63)

C̃ ′
12 = ǫ

(

− 4βC̃10

3(w − 1)
− 35βC̃11

6(w − 1)
− 2C̃12w

(w − 1)(w + 1)

)

. (C.64)

C.4 Heavy Boundary Integrals

In this section we present exact results for all the boundary integrals in Chapter 8. In our
notation, ν = d/2 with d = 4− 2ǫ and we take mass scale to unity as is conventionally done for
conciseness.

Heavy-Heavy:

A1 = a1 = Γ(1− ν)2, (C.65)

A2 = a2 = π
(

−22ν−1
)

Γ(2− 2ν), (C.66)

A3 = a3 = −
π4ν−1Γ

(

5
2 − 2ν

)

Γ
(

3
2 − ν

)

Γ(2− ν) , (C.67)

A4 = a4 =
π3 sec2(πν)

2Γ
(

ν − 1
2

)2 , (C.68)

A13 = a5 =
π5/24ν−1

2F̃1

(

1, 52 − ν; 3− ν; 34
)

csc(2πν)Γ
(

5
2 − ν

)

Γ(2ν − 2)
− 16π33ν−3 csc(2πν)

Γ(2ν − 2)
, (C.69)

A14 = a6 =
π322ν−7(4ν − 5) sec2(πν)Γ

(

7
2 − 2ν

)

3F̃2

(

1, 74 − ν, 94 − ν; 52 − ν, 3− ν; 34
)

Γ
(

ν − 1
2

)2

− 3π322ν−9 sec2(πν)Γ
(

11
2 − 2ν

)

3F̃2

(

2, 114 − ν, 134 − ν; 72 − ν, 4− ν; 34
)

Γ
(

ν − 1
2

)2

+
π4ν−1

2F1

(

1, 2− ν; 52 − ν; 34
)

Γ(3− 2ν)

2ν − 3
+
π323−2ν3ν−

3
2 sec2(πν)

Γ
(

ν − 1
2

)2 , (C.70)
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A15 =
3π3 sec2(πν)

2Γ
(

ν − 1
2

)2 , (C.71)

A16 =
4π23ν−

3
2 csc(2πν)

Γ(2ν − 1)
− 3π 2F1

(

1, 2− ν; 52 − ν; 34
)

csc(2πν)Γ(2− ν)2
Γ(4− 2ν)Γ(2ν − 1)

, (C.72)

A24 = a7 = −2π csc(πν)Γ(2− 2ν), (C.73)

A25 = a8 =
π323−2ν csc(πν) sec(2πν)

Γ
(

ν − 1
2

)2 . (C.74)

Heavy-Light:

B1 = b3 = Γ(1− ν)2, (C.75)

B2 = b1 =
π csc(πν)Γ(3− 2ν)Γ(ν − 1)Γ(4ν − 5)

Γ(2ν − 2)Γ(3ν − 3)
, (C.76)

B5 = b4 =
π216ν−1 csc(πν) csc(4πν)Γ

(

3ν − 7
2

)

Γ
(

ν − 1
2

)

Γ(4ν − 4)
, (C.77)

B16 = b5 = −11π3/233ν−
17
2 4ν+1(ν − 2)3Γ(4− 3ν)Γ(3− 2ν) 4F̃3

(

2, 3− ν, 3− ν, 3− ν; 10
3

−ν, 7
2
− ν, 11

3
− ν; 16

27

)

+ π3/233ν−
11
2 4ν−1(19− 11ν)Γ(4− 3ν)Γ(3− 2ν) 4F̃3 (1, 2

−ν, 2− ν, 2− ν; 7
3
− ν, 5

2
− ν, 8

3
− ν; 16

27

)

− 3π64ν−1 tan(πν)Γ(ν − 1)Γ(ν)2

(2 cos(2πν) + 1)Γ(2ν − 1)Γ(3ν − 2)
,

(C.78)

b2 = −
π224ν−3 sin

(

1
6(π − 6πν)

) (

cot(πν) +
√
3
)

csc(4πν)Γ
(

3ν − 7
2

)

Γ
(

ν − 1
2

)

Γ(4ν − 4)
. (C.79)

Heavy Propagator:

C1 = c1 = Γ(1− ν)2, (C.80)

C2 = c2 = −
π4ν−1Γ

(

5
2 − 2ν

)

Γ
(

3
2 − ν

)

Γ(2− ν) , (C.81)

C10 = c9 = −2π csc(πν)Γ(2− 2ν), (C.82)

c3 = π
(

−22ν−1
)

Γ(2− 2ν), (C.83)

c4 =
π5/24ν−1

2F̃1

(

1, 52 − ν; 3− ν; 34
)

csc(2πν)Γ
(

5
2 − ν

)

Γ(2ν − 2)
− 16π33ν−3 csc(2πν)

Γ(2ν − 2)
, (C.84)

c5 =
π322ν−7(4ν − 5) sec2(πν)Γ

(

7
2 − 2ν

)

3F̃2

(

1, 74 − ν, 94 − ν; 52 − ν, 3− ν; 34
)

Γ
(

ν − 1
2

)2

− 3π322ν−9 sec2(πν)Γ
(

11
2 − 2ν

)

3F̃2

(

2, 114 − ν, 134 − ν; 72 − ν, 4− ν; 34
)

Γ
(

ν − 1
2

)2

+
π4ν−1

2F1

(

1, 2− ν; 52 − ν; 34
)

Γ(3− 2ν)

2ν − 3
+
π323−2ν3ν−

3
2 sec2(πν)

Γ
(

ν − 1
2

)2 , (C.85)

c6 =
π3 sec2(πν)

2Γ
(

ν − 1
2

)2 , (C.86)
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c7 =
3π3 sec2(πν)

2Γ
(

ν − 1
2

)2 , (C.87)

c8 =
2π2 2F1

(

1, 52 − ν; 3− ν; 34
)

csc(2πν)Γ
(

5
2 − ν

)2

Γ(5− 2ν)Γ(2ν − 2)
− 8π33ν−3 csc(2πν)

Γ(2ν − 2)
, (C.88)

c10 =
π342−ν

(sin(3πν)− sin(πν))Γ
(

ν − 1
2

)2 . (C.89)

(C.90)

We can see the introduction of new functions in some of the boundary integrals of this section.
These are the hypergeometric functions [412], and generalisations thereof. The hypergeometric
function is defined for complex |z|< 1 as a power series expansion,

2F1(a, b; c; z) =
∞
∑

n=0

(a)n(b)n
(c)n

zn

n!
, (C.91)

with (q)n denoting the Pochhammer symbol defined by,

(q)n =

{

1 n = 0

q(q + 1) · · · (q + n− 1) n > 0
(C.92)

For |z|≥ 1 the hypergeometric function can be analytically continued, avoiding branch points
at unity and infinity. We also have the appearance of the regularised generalised hypergeometric
function which is defined by,

pF̃q(a1, . . . , ap; b1, . . . , bq; z) =
∞
∑

n=0

Πpj=1(aj)n

Πqj=1Γ(n+ bj)

zn

n!
, (C.93)

which is the maximal extension of the hypergeometric function and thus defines all forms that
appear in our work. Such functions are common in multi-loop integrals and thus, there exist a
variety of methods and associated tools to deal with them. In our case, for the remaining MIs
we solve by differential equations we need to expand the hypergeometric functions present in the
boundary integrals in ν = 2− ǫ for ǫ→ 0. This can be done with automatically with HypExp2,
which is what we employed in our study [406].
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Acronyms

MS Modified Minimal Subtracted. 17,

NmLO Next-to-mLeading Order.

AMM Anomalous Magnetic Moment. 2,

AS Approximate Symmetry. 36,

BE Binding Energy. 3,

BSM Beyond the Standard Model. 2,

CFT Conformal Field Theory. 29,

CKM Cabibbo-Kobayashi-Maskawa. 15,

COM Centre of Mass. 2,

CP Charge-Parity. 15,

DM Dark Matter. 1,

DRA Dimensional Recurrence Algorithm. 168,

DRR Dimensional Recurrence Relations. 123,

EFT Effective Field Theory. 3,

EM Electromagnetism. 8,

EOM Equation of Motion. 36,

EPL Elliptical Polylogarithms. 124,

EW Electroweak. 2,

EWSB Electroweak Symmetry Breaking. 14,

FCC Future Circular Collider. 29,

FN Froggatt-Nielsen. 28,

FP Faddeev-Popov. 89,
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GF Gauge-fixing. 16,

GR General Relativity. 1,

GUT Grand Unified Theory. 28,

HPET Heavy Particle Effective Theory. 88,

HPL Harmonic Polylogarithms. 167,

HQET Heavy Quark Effective Theory. 4,

HSET Heavy Scalar Effective Theory. 92,

IBP Integration-By-Parts. 36,

IR Infrared. 3,

KE Kinetic Energy. 3,

KK Kaluza-Klein. 58,

LC Light-Cone. 39,

LHC Large Hadron Collider. 1,

LKP Lightest Kaluza-Klein Particle. 58,

LO Leading Order. 2,

MB Mellin-Barnes. 130,

MI Master Integral. 107,

MPL Multiple Polylogarithms. 124,

MRS Minimal Renormalon Subtracted. 71,

MS Minimal Subtracted. 17,

MSSM Minimal Supersymmetric Standard Model. 28,

NEDM Neutron Electric Dipole Moment. 31,

NLO Next-to Leading Order. 2,

NNLO Next-to-next-to Leading Order. 20,

NR Non-Relativistic. 3,

NRQCD Non-Relativistic Quantum Chromodynamics. 4,

OS On-Shell. 50,

pNRQCD Potential Non-Relativistic Quantum Chromodynamics. 48,
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PQ Peccei-Quinn. 31,

PQSB Peccei-Quinn Symmetry Breaking. 31,

PS Potential-Subtracted. 26,

QCD Quantum Chromodynamics. 2,

QED Quantum Electrodynamics. 3,

QFT Quantum Field Theory. 1,

RG Renormalisation Group.

RGE Renormalisation Group Equations. 19,

RGI Renormalisation Group Improved. 71,

RS Renormalon Subtracted. 27,

SCET Soft-Collinear Effective Theory. 39,

SM Standard Model. 1,

SMEFT Standard Model Effective Field Theory. 35,

SSB Spontaneous Symmetry Breaking. 7,

SUSY Supersymmetry. 31,

SV Small-Velocity. 26,

SYM Supersymmetric Yang-Mills. 43,

US Ultrasoft. 92,

UV Ultraviolet. 3,

VEV Vacuum Expectation Value. 13,

WFR Wave-Function Renormalisation. 50,

YM Yang-Mills. 43,
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