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Disclaimer

Throughout the thesis, I use different pronounces to describe the results. When I

use ªweº or ªourº (as in ªwe obtained the resultº), it is to acknowledge that this

result was obtained in collaboration with other authors. Correspondingly, whenever I

use ªIº in the context of accomplished experiments, it is to highlight, I am the only

person bearing the full responsibility for any mistakes in the statements, acquiring

the data, or the data evaluation. In some cases, in a descriptive context, where no

new insights are presented, I use ªweº, assuming it to be ªthe reader and meº.
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Abstract

Squeezed and entangled states have proven to be valuable resources in optical quantum

sensing and pushing forward measurement sensitivities. However, their potential is not

yet fully explored.

In the first part of my thesis, I show the experimental quantum enhancement of

a squeezed light operated Mach-Zehnder interferometer. I measured a non-classical

sensitivity improvement of more than a factor of ten, corresponding to (10.5±0.1) dB,

which is the equivalent of a 11.2-fold increase in coherent light power.

Further, my thesis proposes a novel concept on direct absorption (loss) measurements

within the Mach-Zehnder topology. The technique uses quantum correlated bipartite

squeezed light beams to measure the transmission through a sample placed in one arm

of the Mach-Zehnder interferometer. My proof-of-principle experiment demonstrates,

that the loss is independent of the used photodiodes’ quantum efficiency. Beyond that,

the concept may become a powerful tool for optical measurements in biosensing with

integrated quantum photonic devices. Light-sensitive samples are particularly vulnerable

to high powers under illumination by bright light, and such measurements will benefit

from the extremely low intensity of squeezed light.

In the second part of my thesis, I demonstrate how to surmount quantum uncertainty

in sensing dynamical systems. For the first time, a phase space trajectory with sub-

Heisenberg indeterminacy with respect to an entangled quantum reference is realized.

The time evolution is unconditionally monitored with a precision ten times higher

than any quantum mechanical system without correlations. I measured the phase and

amplitude quadrature simultaneously with a remaining indeterminacy of ∆X(t)∆Y (t) ≈
0.1 Åh/2. The result supports quantum technologies for entanglement-enhanced sensors

and substantiates an enhanced physical description of quantum uncertainty relations.

From this perspective, I revisit Heisenberg’s uncertainty relation and conclude that it

sets a lower bound to the indeterminacy of two conjugate observables with respect to a

reference system that has been coupled to the environment.
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Kurzfassung

Gequetschte und verschränkte Lichtzustände haben sich auf dem Gebiet der optischen

Sensorik als wichtige Resourcen erwiesen. Dennoch ist ihr Potential nicht vollständig

erforscht.

Im ersten Teil meiner Arbeit, zeige ich experimentell die Quantenverbesserung durch

ein mit gequetschtem Licht betriebenes Mach-Zehnder Interferometer. Ich habe eine

nicht-klassische Verbesserung von (10.5±0.1) dB erreicht, welches einer 11.2-fachen

Erhöhung der Lichtleistung entspricht.

Im weiteren wird in meiner Arbeit ein neuartiges Konzept zur Absorptionsmessung

(bzw. Verlustmessung) im Rahmen der Mach-Zehnder Topologie vorgeschlagen. Das

Prinzip basiert auf der Korrelation zwischen den gequetschten Lichtzuständen in den

beiden Armen des Interferometers. Diese wird ausgenutzt, um die Transmission durch

eine Probe in einem der beiden Armen zu messen. Zum Beweis der zugrundeliegenden

Idee habe ich ein Experiment durchgeführt, bei dem gezeigt wird, dass die Absorption

unabhängig von der Quanteneffizienz der verwendeten Photodioden ist. Darüber hinaus

kann dieses Konzept als ein wirkungsvolles Instrument im Bereich der Biosensorik in

optischen Messungen mit integrierten photonischen Bauelementen eingesetzt werden.

Insbesondere betrifft das solche Messungen, bei denen Proben, die äuûerst empfind-

lich auf starke Beleuchtung mit hoher Lichtleistung reagieren, von der sehr niedrigen

Intensität des gequetschten Lichtes profitieren.

Im zweiten Teil meiner Arbeit zeige ich, wie die Quantenunschärfe bei der Erfassung

von dynamischen Systemen überwunden werden kann. Zum ersten mal wurde eine

Trajektorie mit einer sub-Heisenberg Unbestimmtheit, in Bezug zu einer verschränk-

ten Quantenreferenz, realisiert. Die zeitliche Entwicklung wurde ohne vorherige In-

formationen direkt beobachtet, die zudem eine zehnmal höhere Präzision erreichte im

Vergleich zu einem quantenmechanischen System ohne Korrelationen. Ich habe die

Phasen- und Amplituden-Quadraturen mit einer verbleibenden Unbestimmtheit von

∆X(t)∆Y (t) ≈ 0.1 Åh/2 gleichzeitig gemessen. Dieses Ergebnis eröffnet nicht nur neue

Wege zur Anwendung von Quantentechnologien mit verschränkungsbasierten Sensoren,

sondern bestärkt eine erweiterte physikalische Beschreibung von quantenmechanischen

Unschärferelationen. Aus dieser Perspektive heraus reflektiere ich die Heisenbergsche

Unschärferelation und schlieûe daraus, dass sie eine untere Grenze der Unbestimmtheit

zweier konjugierter Observablen in Bezug zu einem Referenzsystem setzt, dass an die

Umgebung gekoppelt ist.
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1. Introduction

The existence of the Heisenberg uncertainty relation (HUR) is one of the most dis-

tinctive features of quantum mechanics that mark a sharp line to classical physics.

The idea of a characteristic uncertainty between the accuracy of the position mea-

surement of a particle and its momentum was introduced by Heisenberg in an article

1927, in which he concludes: "the more precisely the position is determined, the

less precisely the momentum is known, and vise versa" [1]. In his line of argumen-

tation, he illustrates the approach along with the detection of an electron observed

with an optical microscope. In accordance with the Abbe diffraction limit [2], the

electron’s interaction with the illuminating light of a sufficiently short wavelength λ

will define the accuracy of the position observed by the microscope, that is δq ∼ λ .

In addition, the electron will undergo an unavoidable Compton recoil, which in-

volves a disturbance in the momentum of magnitude δ p ∼ h/λ . From this more

heuristic derivation, Heisenberg formulated a limit of measurement imprecision,

what was later phrased as the uncertainty principle and is dictated by the product of

imprecisions to be ideally of the order of Planck’s constant

δqδ p ∼ h. (1.1)

Here δq and δ p are merely remarked as ‘approximately the average error’ of the

position q and the momentum p of the electron. As announced in the seminal paper,

Heisenberg intended to provide an intuitive picture of the new matrix mechanics,

which postulated that the canonical position and momentum variables are represented

by infinite self-adjoint matrices Q and P, and considered it in particular as clear

evidence of the fundamental commutation rule QP - PQ = iÅh of the new quantum

formalism [3, 4]. However, a precise mathematical definition of the quantities was

not given.
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1. Introduction

A few months later, after Heisenberg presented the vague concept of an indetermi-

nacy relation, the general idea was mathematically confirmed by Kennard [5] and

independently by Weyl [6], who proofed the theorem for any normalized state vector

|Ψ⟩. In the elaborated formulation, the quantities δq and δ p are substituted by the

precise defined standard deviation ∆q and ∆p of the position and momentum that

possesses the inequality:

∆q∆p ≥ Åh/2. (1.2)

This is the modern version of the uncertainty relation, and most familiar standard

expression introduced in textbooks today or taught in beginner courses on quantum

mechanics. A generalization for any pair of observables was derived by Robertson

[7] and Schrödinger [8], while their more general expression reduces to the inequality

1.2 as mentioned above for canonical conjugate pairs.

When designing precision experiments that are dominated by quantum uncer-

tainties, scientist go into a moment of quiet pondering about what the Heisenberg

uncertainty relation allows to do and what not. Particularly concerning the exper-

imental requirements, it is a common consensus to distinguish between different

uncertainty relations (although they have the same origin), to adequately capture a

set of ‘dos’ and ‘don’ts’ that defines the technical preconditions we have to fulfill

for applications in quantum metrology. Also, it is motivated by the fact that an

increasing number of experiments reach sensitivities of the detection process that is

limited by fundamental quantum noise which confines the performance of current

measurement apparatus.

The modern version of Heisenberg’s uncertainty relation is undisputed and refers

to the intrinsic uncertainty as an inherent part of any quantum state that is independent

of performing a measurement on it or not; this is sometimes denoted as preparation

uncertainty. Usually, measurements are performed on an ensemble of individual

but identical systems prepared in the same initial state. If no interaction with a

thermal bath occurs before detection, repeated measurement of position, energy, or

angular momentum results in different quantum system eigenvalues characterized by

probability density functions. In practice, if we obtain a deviation of the position ∆q

2



close to zero, the deviation of the conjugate variable, the momentum ∆p, has to be a

very large value. Mathematically, this results from the Fourier transformation that

connects the spaces of conjugate observables, such as the position and momentum

space, in combination with quantization [9]. If one quantity is precisely determined,

the other is undetermined and vice versa.

Nevertheless, there are existing effects related to Heisenberg’s original formu-

lation we have to be aware of. In the recent decades the original formulation is

revisited in terms of measurement and the disturbance it must create in connection to

continuous monitoring of a single quantum system [10]. Therefore, when we attempt

to observe the phase space trajectory of the electron, this effectively comprises a joint

measurement of position and momentum. As a consequence, a trade-off between the

inaccuracies of both quantities is necessary, satisfying a Measurement-Disturbance-

Relation and giving rise to its best balance at the Standard Quantum Limit [11].

Therefore it is widely accepted that the detection apparatus causes unpredictable

perturbations on the system being measured and influences later measurements that

exclude assigning arbitrary precise information to a pair of canonical conjugate

quantities simultaneously for all times t.

In the first instance, it may therefore come at a surprise that quantum uncertainties

in sensing of phase space displacements can in principle be fully avoided. A. Einstein,

B. Podolsky, and N. Rosen (EPR) were puzzled by this in 1935 and conjectured

on the assumption of ’local realism’ that the quantum theory does not provide a

complete description of the actual reality [12]. The Bell inequalities clarify the

discussion on the EPR argument with correlated systems [13]. They predict that

any ’local hidden variables theory’ must result in a special type of inequality for the

measurement outcomes. The existence of such theories was excluded by Aspect et al.

in 1982 by demonstrating a violation of these inequalities [14].

Indeed, it is a well-known fact that the commutator of the difference and the

sum of non-commuting observables of two quantum systems A and B is zero, from

which follows that such a sum and difference (or vice versa) are simultaneously

determined precisely without a limitation by a Heisenberg uncertainty relation, as

pointed out by E. Schrödinger [15]. Employing the lack of indeterminism of phase

space sensing, however, requires entanglement between two subsystems A and B.
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1. Introduction

This was theoretically reformulated in the framework of quantum estimation theory

by G. D‘Ariano et al. [16].

From this perspective I will remark on two important subtle aspects:

1. It is not necessary that both quantities ∆q and ∆p are equally balanced. Thus

there is no limit to which we can resolve the position of the electron (or any

physical system) at any specific instance of time, since ∆q → 0 and ∆p → ∞.

2. Such quantities of the electron can be simultaneously determined arbitrary

precisely with respect to another quantum system at any time t, which indeed

allows us to observe phase space trajectories without being disturbed by the

measurement apparatus.

Squeezing and EPR-Entanglement of field quadratures

To examine (simultaneous) measurements of canonical conjugate variables in quan-

tum optics we consider the momentum and position-like quadratures of the quantized

electromagnetic light field. They are the dimensionless field amplitudes at phases

90◦ apart from each other, usually defined as the amplitude quadrature amplitude X̂

and the phase quadrature amplitude Ŷ .

The eigenvalue spectra are represented by a Gaussian distributions. The ground

state, coherent states and (pure) squeezed states minimize the product of the standard

deviation and achieve equality of equation 1.2.

A well-established method to reduce the uncertainty of a single quantity is to

utilize non-classical states to ‘squeeze’ the imprecision, e.g. in the amplitude quadra-

ture below its zero-point-fluctuation, which implies an increase in the orthogonal

phase quadrature. This leads to an arbitrarily precisely defined amplitude at a certain

time, while the phase is entirely undefined at the same moment. Hence, in this way

we are able to prepare the initial state with a well-defined value for all times t in

one quadrature. The first experiments producing squeezed light were performed in

1985 by Slusher et. al. [17] using four wave mixing in sodium atoms in an optical

cavity and only a few months later by degenerated parametric down-conversion

in a second order non-linear crystal [18]. Ever since the technical progress in

‘cavity-enhanced optical-parametric amplification (OPA)’ induces modern direct

4
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Figure 1.1.: Quasi-monochromatic oscillations of an electrical field and its

phase space representation. Left: electric field Ê(t) = [E + X̂ ]cosωt + Ŷ sinωt

as function of time. Classically, the field amplitude E can be precisely determined

at each instant of time (solid curve). The Heisenberg uncertainty relation, however,

limits the measurement precision of amplitude and phase and shows uncertainty

(blurred blue area). Right: uncertainty in the phase space in rotating frame at

frequency ω . The white arrow indicates the classical amplitude E; the dashed white

circle encloses the zero-point-fluctuations of the quadrature X̂ and Ŷ .

observation of squeeze factors of more than 10 dB in many experiments [19±22].

Squeezed states of light are a powerful resource in application for laser interferome-

ters and contribute significantly to the field of gravitational wave astronomy [23±27].

This is impressively demonstrated after upgrading the gravitational wave detectors

(GWD) AdvancedLIGO and AdvancedVIRGO and starting the third observation

run (O3). Since April 2019 both detectors observe gravitational wave signals with

an improved sensitivity due to squeezed light. The quantum enhancement increase

the observatories’ detection rates by as much as 50 %, allowing to detect a new

gravitational wave event nearly every week [28, 29]. Apart from its most prominent

application in GWD we are coming to more compact experiments also endemic

with quantum noise. As reported in [30], squeezed light can be used to improve the

sensitivity in photo-sensitive measurements of biological probes using coherent light

to track micro particles. In those cases, increasing the light power to enhance the

signal-to-noise ratio is not possible since the investigated samples would be partially

or completely destroyed. Likewise, probing the spatiodynamics of molecular bonds

with stimulated Raman-spectroscopy relies on low laser intensities [31]. Furthermore,
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1. Introduction

developments in the field of quantum information requires strong non-classical cor-

relations between two or more parties, that can be attained with quadrature entangled

states revealing strong EPR-entanglement [32]. Many experiments take advantage of

generating entanglement by superimposing two orthogonal squeezed vacuum states.

In particular, secure communication by distributing quantum keys (QKD)[33, 34],

its application in quantum memories [35, 36] or entanglement distillation [37, 38].

Although all of the previous experiments perform measurements utilizing quantum

correlations, the role of Heisenberg’s uncertainty relation remains a subject of

discussions to date. The scope of this thesis is focusing on restrictions in quantum

measurements demanded by quantum formalism. The motivation is to provide an

intuitive physical picture on quantum uncertainty in sensing and to demonstrate

this on the basis of non-classical approaches, like quadrature EPR-entangled states,

which provide an improvement upon the precision of current classical measurement

techniques in metrology.

Structure of this thesis

The thesis is divided into the following parts:

Chapter 2 is a theoretical description of the quantization of light and Gaussian wave

optics.

Chapter 3 describes the experimental techniques for sensing, which are used through-

out this thesis.

Chapter 4 presents the experimental results of a 10 dB non-classical improvement

of the phase sensitivity in a Mach-Zehnder interferometer using a vacuum squeezed

state.

Chapter 5 demonstrates a novel concept on direct absorption measurements, ex-

ploiting the correlation of bipartite squeezed vacuum states in the two arms of a

Mach-Zehnder interferometer.
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Chapter 6 proves the principle that the dynamics of phase space trajectories can be

monitored without quantum uncertainty. Moreover it provides a graphical illustra-

tion of the field quadratures to promote an elaborated statement of the Heisenberg

uncertainty relation.

Chapter 7 gives a conclusion and summary about the aforementioned experimental

results of the thesis.
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2. Quantum States of Light

Usually performing highly sensitive measurements on a quantum system in quantum

sensing experiments with continuous-variable optical fields requires squeezed and

entangled states of light. Their properties can only be explained on the basis of a

purely quantum mechanical description. As a consequence, the optical fields show

quantum uncertainties and thus quantum noise. These are described by Gaussian

statistics. The corresponding operators of those physical systems are called the

‘amplitude quadrature amplitude X̂’ and the ‘phase quadrature amplitude Ŷ ’. Al-

though these are associated to the system’s wave property, the detection process of

the measured observables features the quantized interaction of photons and electron

particles. Since the optical frequency ω is typically on the order of 1014 Hz, it

is not possible to measure the eigenvalues of the quantities directly. Instead, any

measurement of X̂ or Ŷ is related to a modulation mode at angular frequency Ω of

the optical field around the central frequency ω0; thus ω = ω0 ±Ω. The classical

analogy is that the optical field carry amplitude and phase modulation with angular

modulation frequency Ω measured over the frequency band ∆Ω.

The following chapter introduces briefly the concept of quadrature fields, which

actually suffice to define the properties of the physical system that is characterized.

As it remains the primary focus as a subject of this thesis, squeezing and entanglement

of quadrature fields are introduced. This chapter is mainly based on the book [39] and

the review article [24]. Initially, the principle of modulation theory in the two-photon

formalism for the quantized field as developed by C. Caves and B. Schumaker [40,

41] will be introduced.

9



2. Quantum States of Light

2.1. Quantization of the electric field

The quantization of the classical electro-magnetic field can be rewritten by replacing

the electric and magnetic field components by its operator representation, e.g. Ê (⃗r, t)

and B̂(⃗r, t). In further treatment, the magnetic field is neglected. This is justified

by our experiments’ focus on the electric field properties, which are measured

in the photo-electric detection process. For ease of notation the explicit spatial

dependence will be omitted and we concentrate on a fixed point in space. The

quantum mechanical electric field operator can be decomposed as the sum of positive

and negative Fourier frequencies and takes the form

Ê(t) = Ê+(t)+ Ê−(t) (2.1)

=

√

2π Åh

Ac

∫

∞

0

√
ω
(

âωe−iωt + â²
ωeiωt

) dω

2π
,

where the (+) indicates the positive and (-) indicates the negative frequency part of the

mode. Here A is the effective cross section area of the beam, c is the speed of light

in vacuum and Åh the reduced Planck constant. Also introduced are the annihilation

operator âω and the creation operator â
²
ω . Notice that these operators are given in

the Heisenberg picture, determined by the explicit time dependence factored out by

the eiωt term. These operators obey the commutation relations

[âω , âω ′ ] = 0, and [âω , â²
ω ′ ] = 2πδ (ω −ω ′) , (2.2)

where the operator acts on the number state |nω⟩ to create or annihilate a photon:

âω |nω⟩=
√

nω |nω −1⟩ , (2.3a)

â²
ω |nω⟩=

√

nω + 1 |nω + 1⟩ . (2.3b)

The annihilation and creation operators are non-Hermitian, implying that they have

complex eigenvalues. These operators represent no physical variables, hence they

are not observable.

10



2.1. Quantization of the electric field

2.1.1. Two-photon quadrature operators

In general squeezed states rely on correlation between pairs of photons. In the two-

photon formalism a way to describe these correlations between the modes in each pair

is to formulate the field operators in terms of a modulation. Conventionally a phase or

an amplitude modulation is described in the sideband picture. A carrier field with the

fundamental frequency ω0 that carries a modulation with frequency Ω is expressed

by correlated excitation of the sideband fields at frequencies ω0 ±Ωi (where the

subscript i denotes the i-th modulation frequency). Replacing the frequency ω =

ω0 ±Ω with carrier frequency ω0 and modulation sidebands at frequencies Ω we

introduce the new operators

â+ = λ+âω0+Ω, â− = λ−âω0−Ω , (2.4)

which describe the annihilation of photons at the sideband frequencies ±Ω.

The parameter λ± =
√

(ω0 ±Ω)/ω0 re-scales the different energies of the car-

rier at Fourier frequency ω0 and sideband photons at Fourier frequencies ω0 ±Ω.

Nevertheless in the following the factor λ± is neglected, since ω0 ≫ Ω: usually

optical frequencies are of the order of several hundreds of THz, while a modulation

occurs in the MHz regime. Thus λ± is approximately equal to unity. Additionally,

we consider a noise characteristic that possesses symmetric modulation sidebands. It

is practical to introduce the symmetric two-photon quadratures [40]

X̂Ω = â++ â
²
−, ŶΩ = −i(â+− â

²
−) , (2.5)

which create a photon at the upper sideband and annihilate a photon at the lower

sideband at the same time. For the corresponding quadrature X̂ we get:

X̂Ω |nω⟩= (â++ â
²
−) |nω⟩

=
√

nω0+Ω |nω0+Ω −1⟩+
√

nω0−Ω + 1 |nω0−Ω + 1⟩ , (2.6)

hence the origin of the term ’two-photon’. Concerning the non-vanishing commuta-

tion relation between the quadratures reads:

11



2. Quantum States of Light

Figure 2.1.: Double sided spectrum of quantum noise sideband fields. The picture

depicts the sideband phasors in the rotating frame reference of a carrier field (red

arrow at ω0). The expanded frequency axis shows exemplary the vacuum noise

sidebands at frequencies of (±Ω1,±Ω2) in the frequency band ±∆Ω/2. The (±)

determined the direction of rotation with respect to the carrier field. Additionally, the

sideband at ±Ω2 carries a coherent displacement corresponding to a classical phase

modulation. In principle there exists an infinite number vacuum noise sidebands

within the bandwidth, each oscillating with random phase and amplitude.

[X̂Ω,Ŷ ²
Ω′ ] = [X̂²

Ω′ ,ŶΩ] = 2i×2πδ (Ω−Ω
′) , (2.7)

Similar to equation 2.1, we define the positive and negative frequency part of the

electric field in terms of the quadratures X̂Ω and ŶΩ by

Ê± =
1

2
(X̂Ω ± iŶΩ)e

∓iω0t , (2.8)

where X̂Ω ± iŶΩ is the complex amplitude of the electric field, which is defined with

respect to the carrier frequency ω0.

12



2.1. Quantization of the electric field

With these operators let us now quantify the electric field in terms of the quadra-

tures, thus it becomes

Ê(t) = X̂Ω cos(ω0t)+ ŶΩ sin(ω0t), (2.9)

where X̂Ω and ŶΩ describe modulations of the light field in two orthogonal quadra-

tures ‘cos’ and ‘sin’. They often referred to as quadrature phase operators. With

respect to their Fourier components the quadratures can be rewritten as:

X̂Ω(t) =

√

2π Åhω0

Ac

∫

∞

0

(

X̂Ωe−iΩt + X̂
²
Ω

eiΩt
) dΩ

2π
, (2.10a)

ŶΩ(t) =

√

2π Åhω0

Ac

∫

∞

0

(

ŶΩe−iΩt + Ŷ
²
Ω

eiΩt
) dΩ

2π
. (2.10b)

The phase quadratures are typically observed with a balanced homodyne detection

using interference with a bright (classical) local oscillator field (cf. section 3.2.3).

When the local oscillator E = ELO cos(ω0t) serves as a reference, from superposition

with the electric field of 2.9 we obtain [42]

Ê(t) = (ELO + X̂Ω)cos(ω0t)+ ŶΩ sin(ω0t), (2.11)

and therefore X̂Ω describe the classical analogues of the depth of the lights amplitude

modulation, whereas ŶΩ describes the depth of the lights phase modulation. The

fundamental operators that induced the modulations are the amplitude quadrature

amplitude operator X̂Ω and the amplitude quadrature phase operator ŶΩ at a angular

modulation frequency Ω. In real quantum optical experiments the interrogated

physical system is determined by the limited time resolution ∆τ of the photodetectors

[24]. Thus the measured quadratures are usually defined over the integration time

∆τ = 1/∆Ω:

13



2. Quantum States of Light

X̂Ω,∆Ω(t) =
∆Ω

2

∫ t+1/∆Ω

t−1/∆Ω

X̂Ω(τ)dτ , (2.12a)

ŶΩ,∆Ω(t) =
∆Ω

2

∫ t+1/∆Ω

t−1/∆Ω

ŶΩ(τ)dτ . (2.12b)

Thus the resolution bandwidth defines the light mode that is detected. It describes

the electrics field modulation in the respective frequency band Ω±∆Ω/2.

Figure 2.2.: Phase space representation and time dependent coherent modu-

lation field. Left: Phase space representation of a coherent modulation state at

frequency Ω for a specific resolution bandwidth ∆Ω. The displacement (red arrow)

corresponds to a classical modulation with an amplitude of α = α0M/2, where M

is the modulation depth. Also pictured are the quantum uncertainties as a result of

the superposition of uncorrelated quantum sidebands of the ground state uncertainty

(blue shaded area). The white circle enclosed the standard deviation of 2∆X̂Ω and

2∆ŶΩ. By rotating the modulation in phase space, a pure amplitude modulation is

converted into a phase modulation, and vice versa. The projection on a fixed axis is

proportional to the electric field strength as shown on the right side. The light field

that carries the modulation field is not shown.
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2.1. Quantization of the electric field

In general, quantum uncertainty and thereby the quadratures are time-independent.

The explicit time dependence points out the time evolution of a varying signal. For

the detection of the quadratures by balanced homodyne detection, it is convenient to

introduce the generic quadrature phase X̂ϑ
Ω,∆Ω

(t) defined as

X̂ϑ
Ω,∆Ω

(t) = X̂Ω,∆Ω(t)cos(ϑ )+ ŶΩ,∆Ω(t) sin(ϑ )

= â+e−iϑ + â
²
−eiϑ , (2.13)

where any linear combination can be measured between an arbitrary angle ϑ ∈
[0,2π ] by applying a rotation, as depicted in figure 2.2. Especially it clearly shows

that X̂ϑ=0
Ω,∆Ω

(t) corresponds to the amplitude quadrature X̂Ω,∆Ω(t) and that Ŷ ϑ=π/2
Ω,∆Ω

corresponds to the phase quadrature ŶΩ,∆Ω(t). For simplifying the notation, the

sideband information (Ω,∆Ω) will be omitted if no specific modulation state is

intended. Also, when the operators are almost not changing with time, the explicit

time dependence is skipped, and the quadratures simply are denoted as X̂ and Ŷ .

2.1.2. Vacuum state

Generally the vacuum state is described by the absence of any photons on average,

e.g. n̂ω = 0, and is defined as

âω |n̂ω = 0⟩= 0. (2.14)

It is the ground state of the quantized harmonic oscillator and therefore the state of

the lowest possible energy. Considering a specific mode of light at optical frequency

ω the Hamiltonian of the mode is given by

Ĥω = Åhω

(

âω â²
ω +

1

2

)

≡ Åhω

(

n̂ω +
1

2

)

, (2.15)

which describes the energy of this mode. Furthermore the equation 2.15 describes the

energy of a harmonic oscillator. The expectation value of the annihilation operator

in the ground state of the single mode as well for the corresponding (two-photon)

15



2. Quantum States of Light

quadrature operators are

⟨0| âω |0⟩= ⟨âω⟩= ⟨â²
ω⟩= 0, (2.16)

⟨X̂⟩= ⟨Ŷ ⟩= 0, (2.17)

while the uncertainty contributes to the overall energy, which I verify for the quadra-

tures below. To obtain the energy of a particular sideband frequency Ω the transition

to the rotating frame of the fundamental frequency ω0 is required. The corresponding

Hamiltonian of the modulation mode is found by applying the unitary transformation

Û = exp(iω0â²ât) resulting in the Hamiltonian ĤΩ = Û²Ĥω0Û − iÅhÛ∂Û²/∂ t. The

energy of the modulation mode reads

ĤΩ = ÅhΩ

(

âΩâ
²
Ω
+

1

2

)

≡ ÅhΩ

(

n̂Ω +
1

2

)

≡ ÅhΩ
(

X̂2 + Ŷ 2
)

, (2.18)

that also allows to define the energy in terms of the quadratures at the sideband

frequency Ω. Although the vacuum state contains no quanta, the energy does not

vanish, since

⟨0| Ĥ |0⟩= 1

2
ÅhΩ = ÅhΩ ⟨X̂2 + Ŷ 2⟩ . (2.19)

To show the equivalence in equation 2.19, an appropriate normalization of the

quadrature satisfies the commutation relation [X̂ ,Ŷ ] = i/2. Then the ground state

energy of the amplitude quadrature is

⟨0| X̂2 |0⟩= 1

4
⟨0| (â++ â

²
−)

2 |0⟩

=
1

4
(⟨0| â+ |1⟩⟨0| â²

− |1⟩) = 1

4
(2.20)

and similar for ⟨0|Ŷ 2 |0⟩= 1/4. This result coincidence exactly with the variance

of the corresponding quadrature, since ⟨∆2X̂⟩= ⟨X̂2⟩−⟨X⟩2 = ⟨X̂2⟩= 1/4 = ⟨Ŷ 2⟩
(cf. equation 2.49).

Note, that the quadrature operators are obtained by normalization to dimensionless

variables. In general, there exists no common normalization, and throughout this

thesis the normalization is used that corresponds to the commutation relation of
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2.1. Quantization of the electric field

equation 2.5, which results in a variance of the vacuum state of unity.

Usually, to access the quantum properties of the quadrature fields in typical

quantum-optics experiments, laser light is used. Thus to ensure the correct descrip-

tion of the physical properties, the class of coherent states will be introduced in the

next section.

2.1.3. Coherent state

Because laser light does not contain a precisely defined photon number, it is necessary

to introduce coherent states. They are eigenstates of the annihilation operator and

obtain the eigenvalue equation:

â |α⟩= α |α⟩ . (2.21)

A coherent excitation at frequencies ω can be obtained by applying the displacement

operator

D̂(α) = eα â²−α∗â , (2.22)

where α is a complex number that describe the coherent excitation, on the vacuum

state

|α⟩ ≡ D̂(α) |0⟩

= exp

[

∫

∞

−∞

(

αω â²
ω −α∗

ω âω

) dω

2π

]

, (2.23)

that displaces the vacuum state to a particular point α in phase space. This is known

as coherent state [43]. To get coherent excitation’s in the two-photon formalism of

sideband modulation at frequencies ±Ω can be obtained by applying a combination

of displacement operators

|α+,α−⟩= D̂+(α+)D̂−(α−) |0⟩ . (2.24)

The displacement operator is unitary with property

D̂²(α)âD̂(α) = â+α , D̂²(α)â²D̂(α) = â² +α∗ , (2.25)

17



2. Quantum States of Light

that allows to evaluate the quadratures phases in terms of its quantum fluctuations.

The coherent displacement α is closely linked to the expectation values of the

quadrature phase operators,

⟨X̂⟩= α +α∗ = 2Re(α) , (2.26)

⟨Ŷ ⟩= i(α −α∗) = 2Im(α) , (2.27)

which is equivalent to α = 1
2(⟨X̂⟩+ i⟨Ŷ ⟩) with ⟨X⟩= ⟨α| X̂ |α⟩ and ⟨Y ⟩= ⟨α|Ŷ |α⟩.

In phase space, as depicted in figure 2.2 of the quadrature fields, the coherent

modulation amplitude α = |α|eiϑ is represented by a phasor with length α =
√

⟨X̂⟩2
+ ⟨Ŷ ⟩2

=α0 M/2 at an angle ϑ and the modulation depth M. Such a coherent

excited modulation is illustrated in figure 2.1 together with the equally distributed

uncertainty in both quadratures which have to obey

∆
2X̂ = ∆

2Ŷ = 1 (2.28)

normalized to unity.

The probability distribution, which describes the indefinite number of quanta

contained in the coherent states is given by the Poissonian distribution

P(n) = | ⟨n|α⟩ |2 = |α|2ne−α2

n!
, (2.29)

where the mean photon number is proportional to the electric field power as measured

by a photodetector, and is given by expectation value of the number operator

n̄ = ⟨α| â²â |α⟩= |α|2 . (2.30)

An important property of the Poissonian distribution is that the variance ∆2n̂ = n̄.

Thus by comparing the fluctuations of the photon number with its mean value, results

in the fractional uncertainty
∆n̂

n̄
=

1√
n̄

. (2.31)

With increasing number of photons leads to decreasing relative uncertainty. As we
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2.1. Quantization of the electric field

will see in chapter 4, the scaling is an important issue for the sensitivity in high

precision phase measurements, e.g. in interferometers.

2.1.4. Squeezed state

If the modulation sidebands in equation 2.2 show non-classical correlation, the

uncertainties at the sidebands ω0±Ω are not independent anymore. Such correlation

produces squeezed states of light and are expressed by the correlated excitation

process described by the squeeze operator

Ŝ(ζ ) = exp

[

∫

∞

−∞

1

2

(

ζ ∗â+â−−ζ â
²
+â

²
−
) dΩ

2π

]

, (2.32)

where ζ = r exp(iΘ) is the squeeze parameter, which describes the strength of

squeezing upon the vacuum state. The phase angle Θ determines the direction of the

squeezed quadrature. Therefore to generate a squeezed vacuum state the squeeze

operator is applied on the vacuum state:

|ζ ⟩= Ŝ(ζ ) |0⟩ . (2.33)

In accordance to the quadratures, the effect of the squeeze operator mixes the

annihilation and creation operator of lower and upper sideband photons, which

evolution is defined by:

Ŝ²(ζ )âŜ(ζ ) = â+ cosh(r)+ â
²
−eiΘ sinh(r) , (2.34a)

Ŝ²(ζ )â²Ŝ(ζ ) = â
²
+ cosh(r)+ â−eiΘ sinh(r) . (2.34b)

To manage the quadrature phases under this specific transformation, simultaneously,

it is useful to combine them into a state vector

x̂xx =

(

X̂

Ŷ

)

. (2.35)
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2. Quantum States of Light

Figure 2.3.: Double-sided and single-sided phasor pictures of modulation fields.

Left: Illustration of the quantum correlated noise sidebands at optical frequency of

ω0 ±Ω in the double-sided picture. The sign determines the direction of rotation

with respect to the rotating frame of the local oscillator (carrier field) at frequency

ω0. The quantum correlation are marked with the white crosses and circles. The

figure (a) shows an amplitude squeezed state with a fixed relative phase of Θ = 0

between the upper and lower sideband. In contrast in (c) the sidebands are phase

shifted by Θ = π to each other, resulting in a phase squeezed state. Right: Shows

the corresponding single-sided spectrum to visualizes the squeezed fields arising due

to the quantum correlation. (b) amplitude squeezed (d) phase squeezed.
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2.1. Quantization of the electric field

Applying the squeezed operator to the state vector x̂xx generates a matrix transformation

according to [41]

Ŝ²(ζ )x̂xxŜ(ζ ) = SSS(ζ )x̂xx , (2.36)

with

SSS(ζ ) =

(

e−ζ 0

0 e+ζ

)

. (2.37)

when choosing the relative phase Θ = 0 between the upper and lower sidebands.

The effect of the squeeze operator on the vacuum state is illustrated in figure 2.3.

The squeeze operator transforms the quadrature vector state as

x̂xxa
sqz = SSS(ζ = r)x̂xx =

(

e−r 0

0 e+r

)(

X̂

Ŷ

)

=

(

X̂e−r

Ŷ e+r

)

, (2.38)

which results in an amplitude squeezed vacuum state, while the orthogonal phase

quadrature is anti-squeezed at the same moment. The quantum fluctuation of the

squeezed quadratures become

⟨ζ |∆2x̂xxa
sqz |ζ ⟩=

(

e−2r

e+2r

)

, (2.39)

where the uncertainty of the amplitude squeezed vacuum state is reduced by the

factor e−r below the vacuum uncertainty of the ground state, while the orthogonal

phase quadrature is simultaneously enlarged by the same factor. A squeezed state in

an arbitrary direction can be realized by applying a rotation RRR(Θ). A phase squeezed

state is realized by a rotation of π:

x̂xxp
sqz = RRR(−π)SSS(r)RRR(π)x̂xx =

(

X̂e+r

Ŷ e−r

)

, (2.40)

with

RRR(Θ) =

(

cos(Θ) sin(Θ)

−sin(Θ) cos(Θ)

)

, (2.41)

where the identity RRR²(Θ) = RRR(−Θ) is satisfied.
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2. Quantum States of Light

2.2. Gaussian states and quasi-probabilities

Squeezing is best visualized by means of Wigner function, which is the quantum

analogue of the phase space probability density. Since the above introduced coherent

and squeezed states have Gaussian quantum statistic, the first and second statistical

moments are sufficient for their full description. The first moments describe the dis-

placement of the mean value µµµ , while the second moment is given by the covariance

matrix γ . They read

µi = ⟨V̂i⟩ , (2.42)

γi j = cov(V̂i,V̂j) , (2.43)

where the covariance matrix is defined as cov(V̂i,V̂j) =
1
2 ⟨V̂ 1V̂ 2 + V̂2V̂ 2⟩−⟨V̂ 1⟩⟨V̂ 2⟩.

It represents the correlation measure for two random variables. From this follows for

two operators V̂ 1 and V̂ 2 the covariance matrix:

γ =

(

Var(V̂ 1) cov(V̂ 1,V̂ 2)

cov(V̂ 1,V̂ 2) Var(V̂ 2)

)

, (2.44)

The Wigner function of a Gaussian state is defined as

W (xxx) =
1

2π
√

detγ
exp

[

−1

2
(xxx−µµµ)γ−1(xxx−µµµ)T

]

, (2.45)

which is normalized to unity

∫

∞

−∞

dxxxW (xxx) = 1. (2.46)

The marginal distributions can be calculated by integrating the Wigner function over

the respective quadrature, providing the probability density of eigenvalues of the

other observable, and vice versa. The corresponding projections are

∫

∞

−∞

W (xxx)dY = P(X) ,
∫

∞

−∞

W (xxx)dX = P(Y ). (2.47)

The distribution are depicted in figure 2.4.
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Figure 2.4.: Wigner function and its marginal distributions of the vacuum

state (a) and a squeezed state (b). The quasi probability density of the Wigner

function (center) can be reconstructed from Gaussian projections onto the amplitude

quadrature X̂ (blue lines) and of the phase quadrature Ŷ (purple lines) axes. Their

probability densities P(X) and P(Y ) are also displayed on the vertical axes. (a)

The Wigner representation of a vacuum state with µµµ = (0,0)T and variances of

∆2X̂ = ∆2Ŷ = 1. (b) The Wigner representation of a phase squeezed vacuum state

with ∆2Ŷ = 0.1, corresponding to a squeeze parameter of r = 1.15. The statistics

for the phase quadrature clearly shows a smaller variance in comparison to the

probability distribution of the vacuum state. Likewise, the amplitude quadrature

shows a broader distribution of the same factor.

2.2.1. Husimi-Q function

Another important phase space representation of a probability density for quantum

states is the Q function. In an ideal measurement, it is necessary to perform a

sequential measurement on one copy of a system, to obtain X̂ and on a second copy

to obtain the Ŷ values, which lead to the Wigner function. However, measurement

of both quadratures simultaneously involves an equal splitting of the system, which

emerges directly in the phase space representation of the Q function. This probability

distribution can be understood as the convolution of the Wigner function W (xxx) with
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2. Quantum States of Light

the ground state uncertainty distribution. We obtain the following distribution:

Q(xxx) =
1

π

∫

∞

−∞

W (xxx′′′)exp
[

−(xxx− xxx′′′)2
]

dxxx′′′. (2.48)

Therefore we see, its a smoothing of the Wigner function applying a Gaussian filter.

The measured phase space probability is a non-negative smoothed Wigner function.

Exactly this phase space probability Q function is measured with the two homodyne

detectors in chapter 6.

2.3. Quantum uncertainty and entanglement

Shortly after Heisenberg introduced the characteristic uncertainty of the precision of

simultaneous position and momentum measurement performed on a quantum particle,

the mathematical description was given by E.H. Kennard [5], H. Weyl [6] and, H.P.

Robertson [7]. A generalized uncertainty-relation of a pair of conjugate operators

was given on the grounds of quantum theory by E. Schrödinger [8]. The aim is

to relate the variances of two hermitian operators Q and P with their commutator.

Define the operator ∆O ≡O−⟨O⟩. Then the variance of an arbitrary operator is

⟨∆2O⟩= ⟨O2⟩−⟨O⟩2 . (2.49)

For two Hermitian operators Q and P the product ∆Q∆P can be symmetrical splitted

into a commutator part and an anti-commutator part [8, 44]

∆Q∆P =
1

2
[∆Q,∆P]+

1

2
{∆Q,∆P}, (2.50)

where the anti-commutator is defined as {Q,P}= QP+PQ. To relate the variance

to the commutator, we have to consider the expectation value of ∆Q∆P. Since the

anti-commutator is a Hermitian operator it has a real expectation value. In contrast

any anti-Hermitian operator (the conjugate is the negative of the operator) has an

imaginary expectation value. Thus the right side of the equation 2.50 is in general

a complex number and is expressed as the real and imaginary part, like u+ iv. It

24



2.3. Quantum uncertainty and entanglement

follows immediately that the magnitude of the squared of its expectation value is

⟨|∆2Q∆
2P|⟩= 1

4
| ⟨[Q,P]⟩ |2 + 1

4
| ⟨{∆Q,∆P}⟩ |2 , (2.51)

where the identity

[∆Q,∆P] =QP−Q⟨P⟩−⟨Q⟩P+ ⟨Q⟩⟨P⟩
−PQ+P⟨Q⟩+ ⟨P⟩Q−⟨P⟩⟨Q⟩= [Q,P] , (2.52)

is used. This allows us now to apply the Schwarz inequality to two kets |Ψa⟩ and

|Ψb⟩, for which hold ⟨Ψa|Ψa⟩⟨Ψb|Ψb⟩ ≥ |⟨Ψa|Ψb⟩ |2. Setting |Ψa⟩ = ∆Q |Ψ⟩ and

|Ψb⟩= ∆P |Ψ⟩ for any |Ψ⟩ results in

⟨∆2Q⟩⟨∆2P⟩ ≥ ⟨|∆2Q∆
2P|⟩= 1

4
| ⟨[Q,P]⟩ |2 + 1

4
| ⟨{∆Q,∆P}⟩ |2 . (2.53)

The last term on the right side in 2.53 takes the correlation between the quantities Q

and P into account; it describes the covariance {∆Q,∆P} ≡ cov(Q,P). Assuming

that the two random quantities are statistical independent one from another, is a

necessary (but not sufficient) condition providing a vanishing covariance. The

generalized inequality 2.53 takes the simpler form

⟨∆2Q⟩⟨∆2P⟩ ≥ 1

4
| ⟨[Q,P]⟩ |2 , (2.54)

and coincidence with the Robertson-Uncertainty-Relation. Accordingly, equation

2.54 sets fundamentally a lower bound to the precision of any pair of Hermitian

operators that is related to their commutator [Q,P]. Considering the commutator

2.7 of the quadrature operators X̂ and Ŷ , the product of their variances satisfies an

uncertainty relation of the following form:

∆
2X̂∆

2Ŷ ≥ 1. (2.55)

The vacuum state, coherent states and squeezed states minimize the right side of the

inequality 2.54 and are known as minimum uncertainty states.
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2. Quantum States of Light

2.3.1. Einstein-Podolsky-Rosen entanglement

The conclusive interpretation of this relation states that the observables of non-

commuting operator pairs are not precisely defined simultaneously. With contradic-

tion to the HUR, the seminal article by A. Einstein, B. Podolsky and N. Rosen (EPR)

from 1935 described a quantum correlated system, consisting of two partial systems,

which seemingly lead to a paradox situation. They pointed out a startling quantum

phenomenon: entanglement.

Since the position and the momentum operators have a non zero-commutator,

it implies that one cannot simultaneously attach a precisely defined value to both

canonical conjugate quantities of a individual system with respect to the environment.

In accordance with EPRs criterion of ‘physical reality’ they conclude that only one

of these operators ascribe as part of reality at any time. The apparent contradic-

tion emerges when they considered a particle that is entangled with a another one.

They showed that such a system possesses quantum correlations between the two

quantities, that have a simultaneously precisely defined position and momentum

with respect to each other. Without any disturbance, this allows to predict either the

position or the momentum of the first particle with certainty by a measurement on

the second particle. This would suggest that the first particle had simultaneously

precisely defined position and momentum before the measurement, contrary to the

initial assumption. Therefore EPR wrongly conjectured that quantum mechanics is

incomplete. In fact, their contradiction discloses only in their strong requirement on

the premise of local realism, which demand that a measurement at location B does

not influence the system at spatially separated location A.

2.3.2. Bi-partite squeezed states

To recreate the discussed entangled EPR-states of the previous section in quantum

optics, we consider a bi-partite squeezed state that is composed of two spatially

separated subsystems A and B. Experimentally this can be realized by overlapping

two squeezed states on an symmetric (50:50) beam splitter with a relative phase shift

of π/2 to each other. The states are corresponding to an amplitude squeezed and a

phase squeezed state with squeeze parameter r and q, respectively. The observables
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2.3. Quantum uncertainty and entanglement

that are entangled according to the EPR-paradox are X̂A ± X̂B and ŶA ∓ ŶB. Those

quantities are well determined (in the sense of ’defined’) with respect to each other.

The generation of a bipartite squeezed EPR-entangles state is illustrated in figure

2.5.

A criterion to quantify the strength of entanglement in the regime of continu-

ous variables with quadrature phase measurements was introduced by Reid [45].

Observing the EPR-Reid criterion

E2 = ∆
2X̂

cond
∆

2Ŷ
cond

≤ 1, (2.56)

with the minimum conditional variance ∆2Ôcond|min = ∆2(ÔA−gÔB) of the observ-

able Ô implies the EPR-Paradox. The real-valued scaling parameter g is accordingly

adjusted to minimize the conditional variance of A’s quantity X̂A(ŶA) based on the

result of X̂B(ŶB) for a measurement at system B. We consider a bipartite Gaussian

entangled state consisting of two partial systems A and B represented by their quadra-

tures X̂A,B and ŶA,B. For this state the optimum value g = cov(X̂A, X̂B)/∆2X̂B. Then

the predicted minimum variances become

∆
2X̂cond|min = ∆

2X̂A −
cov(X̂A, X̂B)2

∆2X̂B

, (2.57a)

∆
2Ŷ cond|min = ∆

2ŶA −
cov(ŶA,ŶB)2

∆2ŶB

. (2.57b)

The conditional variances solely depend on the covariance matrix γ as defined in 2.2.

This also includes the cross-correlations terms ∆2(X̂A− X̂B) and ∆2(ŶA + ŶB), which

are important as I show below. Therefore the variances are related to the uncertainties

with which system A’s quantities X̂A and ŶA can be predicted conditioned, respectively,

on the measurement results of system B’s quantities X̂B and ŶB.

To prepare the bipartite squeezed state, the following state vector x̂xx = (X̂1,Ŷ1, X̂2,Ŷ2)T

is considered. The state A is in an amplitude squeezed state, while state B is in phase

squeezed state. The resulting covariance matrix of the two input states in then given
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2. Quantum States of Light

Figure 2.5.: Preparation of bipartite squeezed EPR-entangled state. The picture

shows the phase space representation of the Wigner-function indicated by the blue

shaded regions. Shown is a single modulation frequency Ω with a bandwidth ∆Ω.

The two parties A and B at the output ports of the beam splitter are entangled and

being locally in a thermal state. Also pictured are the uncertainties correlations

and anti-correlations, here marked by the white circles and crosses. Performing a

measurement on either X̂A or ŶB lead to a prediction of System B’s corresponding

quantities with an uncertainty smaller than the ground state uncertainty.

by

γ =













e+2q 0 0 0

0 e−2q 0 0

0 0 e+2r 0

0 0 0 e−2r













. (2.58)

By interfering the two input states on the balanced beam splitter transforms according

to x̂xx ′′′ = Û x̂xxÛ² = BBBx̂xx, with

BBB =
1√
2













1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1













. (2.59)
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The resulting output state vector is given by

x̂xx ′′′ =
1√
2













X̂Ae+q − X̂Be+r

ŶAe−q − ŶBe−r

X̂Ae+q + X̂Be+r

ŶAe−q + ŶBe−r













. (2.60)

Similarly, the covariance matrix transforms according to γ ′ = BBBγBBBT , thus

γ ′ =
1

2













e+2q + e−2r 0 e+2q − e−2r 0

0 e−2q + e+2r 0 e−2q − e+2r

e+2q − e−2r 0 e+2q + e−2r 0

0 e−2q − e+2r 0 e−2q + e+2r













, (2.61)

where the variance of each output is described by a thermal state

∆
2X̂A = ∆

2X̂B =
e−2q + e+2r

2
> 1, (2.62)

∆
2ŶB = ∆

2ŶB =
e+2q + e−2r

2
> 1. (2.63)

However, if the correlations of the quadrature operators are considered, e.g. the

difference X̂− = X̂A − X̂B of the amplitude quadratures and the sum Ŷ+ = ŶA + ŶB,

the quadratures show the initial squeezed variances,

∆
2X̂cond = ∆

2X̂− = e−2r (2.64)

∆
2Ŷ cond = ∆

2Ŷ+ = e−2q, (2.65)

and their variance product is finally given by

∆
2X̂cond∆

2Ŷ cond = e−2re−2q
< 1. (2.66)

The generation of bipartite squeezed state demonstrates the EPR-Reid inequality for

all positive squeeze values r and q, which coincidence with the entangled state of
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2. Quantum States of Light

two systems as considered by EPR. Even if only one input state is vacuum squeezed

(e.g. q > 0, r = 0) the inequality is maintained.

In chapter 6 such a bipartite squeezed state is used to investigate whether it is

possible to precisely determine a trajectory with respect to another system in the

case both systems are not coupled to the environment.

2.4. Decoherence: influence of optical loss

Non-classical properties like entanglement and squeezing are quantified by their

purity. Decoherence due to the coupling to the environment reduces the states’

purity and therefore the strength of non-classically. In a realistic quantum optical

experiment the main effect of decoherence is affected by optical loss when photons

get lost. When light is propagating along the optical path, it experiences absorption

in optical materials, imperfect detection efficiency or non-optimal fringe contrast

between two modes at a beam splitter. The influence of losses on a squeezed

Figure 2.6.: Decoherence due to optical loss. The optical loss ε is visualized by

its effect on an amplitude squeezed state in phase space. The virtual beam splitter

admixture a fraction of vacuum state (from left) to the squeezed state (from bottom),

as a result the output is a squeezed state with reduced squeeze parameter r.

light field can be mathematically modeled by a virtual beam splitter operation,

which contributes a fraction
√

1− ε of the vacuum state to a squeezed state as it is
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2.4. Decoherence: influence of optical loss

visualized in figure 2.6. Here ε denotes the power reflectivity of the beam splitter,

which directly corresponds to the amount of loss. The unitary transfer matrix of the

beam splitter is described by

BBBSSSloss =

(√
1− ε

√
ε

−
√

ε
√

1− ε

)

, (2.67)

whereby the evolution under this matrix is mixing the squeezed state and vacuum

state.

Figure 2.7.: Influence of optical loss on squeezed states with r = (1.39, 1.15,

0.90). The initial squeezed variances ∆2X̂sqz(∆2X̂asqz) are normalized to the vacuum

variance ∆2X̂vac = 1 and correspond to a noise power of -6 dB, -10 dB, and -16 dB,

respectively. The variances of the squeezed quadrature are pictured in purples, while

the respective anti-squeezed quadratures are pictured in blues. According to equation

2.68 the squeezed quadrature is more strongly effected by optical loss then the anti-

squeezed quadrature. Therefore the overall loss in the experiment is a crucial factor

for detecting high squeeze values. To reach a 10 dB non-classical noise reduction,

less then 10 % loss is required (gray shaded region), which is independent on the

initial squeezing.
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2. Quantum States of Light

The variance of the squeezed state affected by the loss ε is therefore

∆
2X̂ϑ = (1− ε)∆2X̂ sqz + ε∆

2X̂vac. (2.68)

Revisiting that the generation of a squeezed state relies on the correlation between the

upper and lower sideband of photon pair, loss can also be understood in the following

way: If one of the photon pair gets lost, e.g. due to absorption, the correlation to the

second photon is destroyed and is replaced by an uncorrelated vacuum photon.

Ultimately the loss determined the detectable squeeze value. Figure 2.7 displays

the resulting squeezed noise variance normalized to the variance vacuum noise as

function of loss ε . The squeezed quadrature (purple) is more fragile to the optical loss

than the anti-squeezed quadrature (blue). The robustness of the latter is explained

by its much larger noise variance compared to the vacuum uncertainty, while the

squeezed variance is relative small.

Normally one attempts to prevent this unwanted effect by reducing the optical loss.

Therefore figure 2.7 demonstrates the essential requirement for low-loss experiments

when employing quantum correlated systems. To detect 10 dB squeezed light,

maximal loss of 10 % is barely acceptable. Nevertheless there are a few applications

which indeed benefit from the high sensitivity of squeezed states to optical loss. One

example is presented in chapter 4, where this feature is exploited to estimate the

absorption of a sample.
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methods

Quantum experiments in sensing utilizing squeezed states of light are used to investi-

gate the quantum enhancement of the noise characteristic compared to its classical

counterpart. The common ground is predominately the production process known as

degenerated parametric down-conversion in second order non-linear crystals [18].

It is usually followed by characterization in balanced homodyne detection of the

generated states. The goal of this chapter is to present the pool of common tools

developed in previous works (see e.g. [46, 47]). I roughly describe the typical

experimental techniques required for the generation of squeezed light and give an

overview about the setup implemented during this thesis.

3.1. Squeezed light generation by parametric

down-conversion in an optical cavity

For the squeezing operator introduced in section 2.32, a correlated two-photon pair

interaction is required. The continuous vacuum squeezed states of light in this thesis

are generated by the process of degenerated parametric down-conversion (PDC)

in optical parametric amplifiers (OPAs) [48±50]. The correlated photon pairs are

created at the fundamental wavelength of 1550 nm in a non-linear medium. For this

purpose light at the second harmonic wavelength (775 nm) is sent into a birefringent

periodically poled potassium titanyl phosphate (PPKTP) crystal.

P(E(t)) = ε0 (χ
(1)E(t)+ χ (2)E2(t)+ χ (3)E3(t)+ ...), (3.1)
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3. Foundations of experimental methods

where χ (i) is the i-th order dielectric susceptibility and ε0 is the dielectric permittivity

of vacuum. Typical values for the electric susceptibilities are χ (1) ≈ 1, χ (2) ≈
10−12 m

V
, χ (3) ≈ 10−24 m2

V 2 , and hence for low field intensities only the linear and

quadratic term accounts for the effect of OPA. Therefore in the further discussion it

is suffice to consider non-linearities up to the 2nd-order.

Because of the quadratic term of the electric field, a fundamental field E(t) =
E0 cos(ω0 t) oscillating at a frequency of ω0 interferes with a harmonic field of twice

the frequency

E2(t) =
E2

0

2
(1 + cos(2ω0t)). (3.2)

In order to fulfill energy conservation, the process has to involve the interaction of

three photons. Two photons of the frequencies ω+ = ω0 +Ω and ω− = ω0 −Ω

interact with one photon at the sum frequency 2ω0. Degeneracy is achieved for Ω = 0.

These down-conversion process comply with the requirement for the creation of

correlated photon pairs, described as sidebands of ±Ω with respect to the carrier

field at frequency ω0 (see section 2.1.1).

A graphical illustration of the process of degenerate type I parametric down-

conversion (PDC) to produce squeezed states of light in a non-linear crystal shows

figure 3.1 [51]. The process itself is solely located to a short segment of the crystal,

when it is pumped with a bright laser light of optical frequency 2ω0. Also vacuum

states at frequency ω0, which are spatially overlapping with the fundamental field,

enter the crystal. The figure 3.1 pictures the electric field of the incoming light

E in that induces a non-linear response of the dielectric polarization P(E) that is

proportional to the radiated total electric field output Eout. The pump field at 2ω0

periodically drives the vacuum field at ω0 between (phase-dependent) amplification

and deamplification along the characteristic polarization curve. This process transfers

the input vacuum state into a squeezed vacuum state Esqz,ω0 at the output. The

decomposition of the output field Eout also reveals classical fields at frequencies

of 2ω0 and 4ω0 leaving the non-linear medium. The amplitude at the frequency

component 2ω0 correspond to the pump field’s first-order polarization P (1)(E2ω0),

while the amplitude at the frequency component at 4ω0 corresponds to the second-
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3.1. Squeezed light generation by parametric down-conversion in an optical

cavity

Figure 3.1.: Squeezed vacuum state generation in non-linear crystals. (Upper

left corner) The crystals polarization P(E) = ε0 (χ (1)E + χ (2)E2) describes the

oscillations of electrons in a non-linear material excited by an electro-magnetic field

E . This plot illustrates how the input quantum field (from below) is converted into an

output quantum field (towards the right). The input field is composed of a classical

pump field E2ω0 at frequency 2ω0 and vacuum fluctuations of a field Eω± at frequency

ω±. The superposition E in of these two fields is transferred into a time dependent

dielectric polarization. The latter is directly proportional to the electric component

of the output field Eout. The quantum uncertainty of the output fields show a phase

dependent (parametric) amplification at frequency 2ω0. The figure is adapted from

[24, 51].

order polarization P (2)(E2ω0).

The OPA process occurs only in a small region of the crystal; the non-linear

effect has to accumulate over the whole crystal length. Note that figure 3.1 displays

the OPA process in such a small segment of the crystal. When all infinitesimal

contributions of each segment constructively interfere, a noticeable conversion from
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3. Foundations of experimental methods

Figure 3.2.: Hemilithic cavity setup for squeezed light generation. The high

reflective coated curved endface of the nonlinear crystal forms a hemilithic cavity

with the coupling mirror Mc. This mirror is attached to a piezo-electric transducer

to stabilize the cavity resonance to the fundamental field. The second harmonic

pump field at a wavelength of 775 nm enters the cavity through the coupling mirror.

The interaction of the polarizability with the electric field of the pump field inside

the crystal generates the squeezed light at the fundamental wavelength of 1550 nm.

Both fields are separated at a dichroic beam splitter (DBS), which is placed before

the squeezed light source. The quasi phase matching condition between the fields

is achieved by a periodically poling of the potassium titanyl phosphate (PPKTP).

The conversion process is optimized by an active temperature stabilization of the

crystal. This is achieved by surrounding the crystal with a copper block and thermally

conducted with a thermo-electric cooler (TEC). Monitoring the temperature with a

NTC-sensor and in combination with a temperature controller, a feed-back loop is

implemented for the crystal phase-matching temperature (not shown).

the fundamental to the harmonic field is realized. This is achieved in the case of

phase matching.

To ensure interaction of the fundamental and the second harmonic light field, they

have to be co-propagating inside the crystal with the same speed. Only then the

fields have a constant phase relation and are overlapping over the whole length of

the crystal. Because the used material shows dispersion, the refractive index n for

different frequencies are not equal n(ω1) ̸= n(ω2). If both fields are perfectly phase

matched at the input of the crystal, the phases drift apart while propagating through

the crystal. The created field at a point z1 interferes destructively with a field created

at another point z2 inside the crystal. When c is the speed of light in vacuum, the
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cavity

conversion process is inverted after a coherence length

lcoh =
c

4ω1(n(ω1)−n(ω2))
, (3.3)

from which follows that the light power is back converted to the fundamental field.

The phase matching condition is achieved, if all involved wave vectors k⃗i vanish,

thus:

|⃗kω+ + k⃗ω− − k⃗2ω |= 0. (3.4)

The subscripts (ω±) denotes the down-converted sideband photons from the para-

metric down-conversion process.

Figure 3.3.: Quasi phase matching condition for periodically poled birefringent

crystals. The intensity I2ω of the second harmonic field depends on the position z

in the crystal. The curve (a) shows a perfect phase matching temperature. Ideally

the intensity continuously increases over the whole crystal length. If instead no

phase matching is present (b), the phases of the fundamental and second harmonic

field drift apart while propagating along the crystal. After the coherence length

lcoh the conversion process is inverted. The light power of the second harmonic is

back converted to the fundamental field. The technique of quasi phase matching (c)

counteracts this effect by using a periodically poled crystal. The poling is indicated

by the arrows, which show the susceptibility relative to each other. Since the width

of the poling matches the coherence length lcoh, the phase mismatches decreases and

the conversion start to rise again (adapted from [52]).
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3. Foundations of experimental methods

Since the second order susceptibility is many orders of magnitudes smaller then

first order, the intensity of the light is increased by a cavity. Thus the process of

parametric amplification is enhanced. A schematic of the ordinary cavity design for

squeezed light generation is shown in figure 3.2. The hemilithic cavity consisting of

the high reflective coated and curved end face of the crystal and the coupling mirror

Mc. In contrast the front face of the crystal is plane and anti-reflective (AR) coated

for both wavelength to reduce the intra-cavity losses. The second harmonic field

at 775 nm (pump light field) is fully transmitted through the dichroic beam splitter

(DBS), which is high reflective for 1550 nm at the same time, and entering the cavity

through the coupling mirror. The exiting squeezed light is reflected on the DBS and

available for subsequent experiments.

There are commonly used techniques to achieve phase matching in birefringent

materials (Type I (II) phase matching) with different polarization of the fundamental

and the harmonic light. Here the temperature dependence of the refractive index for

the two wavelengths is exploited. In contrast, both the squeezed light source and the

second harmonic generation in this thesis use the type-0 conversion. The involved

fields are polarized in the same direction. In this case quasi-phase matching with a

periodically poled medium enables the possibility of phase matching. The figure 3.3

shows the effect of quasi phase matching in a periodically poled birefringent crystal.

It is composed of alternating sections with inverted susceptibility to each other. This

is indicated by the arrows. The width matches the coherence length lcoh. Instead

of the back conversion after the length lcoh, the phase mismatch is compensated

due to the poling. The intensity of the fundamental field is continuously increased

while propagating through the crystal over the whole length. Since the medium

expands with temperature, the sections depending also on temperature. At the ‘phase

matching temperature’ each length of the sections is equal to the coherence length,

which provide the best conversion efficiency.

3.2. Preparation of squeezed light

The following section shows the schematic of the experimental laser preparation

to create (entangled) squeezed states of light, which is set up during this thesis.
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The overview displays the common foundation for the experiments performed and

presented in chapter 4, 5 and 6. Essential different experimental requirements are

presented in the respective chapter. This also includes technical details for the

stabilization schemes.

3.2.1. Laser light preparation

The setup in figure 3.4 is segmented into several preparation stages, where different

colored boxes highlight each step.

Laser preparation (light gray box): The first stage of the setup contains the main

laser light source, which is a fiber laser at the telecommunication wavelength of

1550 nm and which provides about 700 mW of laser power. The combination of

the quarter and the half wave plates eliminates any residual elliptical polarization

of the fiber output laser light and is adjusted to the linear polarization of the in-

put polarization beam splitter of a Faraday isolator (FI). It protects the laser from

back-reflected light, which would otherwise causes disturbances, e.g. in form of

frequency instabilities (in fact before any cavity a FI is placed). This is followed by a

triangular cavity (premode cleaner) used as a spatial filter and a passive low pass filter

suppressing the initial amplitude and phase noise of the laser above the resonance

line width of the cavity. The resulting beam is in a well-defined TEM00-mode. After

that the laser light is distributed to the next stages via two polarization beam splitters

(PBS1 and PBS2).

Second harmonic generation (blue box): Most of the light (about 600 mW) is sent

via PBS2 to the second harmonic generation (SHG) that provides the pump light for

the squeezed light source. The setup is similar to the squeezer design (see figure

3.2) but used as an optical parametric amplifier above the threshold, which generates

bright laser light at 775 nm. The beam splitter BS2 distributes the (mode filtered)

pump light to operate two squeezed light sources with a maximum pump power of

180 mW each.
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Balanced homodyne detection (green box): About 30 mW is used for the local

oscillator (LO) at the balanced homodyne detectors, to measure the light from the

squeezed light source. In fact, the light propagates through many optical elements

that cause distortion of the mode’s shape. To achieve an optimal mode overlap at the

50:50 beamsplitter, we also use an additional mode cleaner before the LO reaches

the detector. Optionally, the symmetric beam splitter BS1 sends half of the light to a

second balanced homodyne detector.

Figure 3.4.: Schematic diagram of the squeezed light preparation. The experi-

mental setup shows the laser light preparation to produce and detect squeezed states

of light. It consists of different steps, which are highlighted by different colored

boxes (see main text). The first stage contains the preparation and distribution of

the main laser source. Most of the light (600 mW) is sent to the second harmonic

generation that provides the pump light fields for two squeezed light sources. About

30 mW is used for the local oscillator at the balanced homodyne detectors. A tiny

fraction is tapped off at PBS1 and sent to acoustic optical modulators (AOMs) to

implement phase lock loops for the phase stabilization of the pump field, and readout

phase of the homodyne detectors (not shown here, see 3.2.2 and 3.2.3).
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Squeezed light source (dark grey box): A tiny fraction of sub-milliwatt laser light

is tapped off at PBS1 for the single sidebands and control beams. Those are employed

for further phase lock loops (PLL), realizing stabilization schemes for the squeezed

light source(s) and the readout phase ϑ of the homodyne detector as presented in the

next sections. For the experiments presented in chapter 4 and 5 a single squeezed

light source is sufficient, while for the experiment in chapter 6 two are necessary.

The cavities lengths are stabilized to the resonance for the 1550 nm light using

Pound-Drever-Hall locking scheme [53]. This is realized with a feedback loop,

detecting the phase modulated light with the respective photodiode PDPMC, PDSHG,

PDLO, and PDSQZ. An exception is the mode cleaner for the pump light, which

is stabilized to 775 nm light using PD775. The generated squeezed light is guided

to the downstream experiment, which is subsequently analyzed with the balanced

homodyne detector.

3.2.2. Squeezed light source

With the setup depicted in figure 3.5 an electro-optical phase stabilization is estab-

lished for the squeezed light source(s). A control beam carried a phase modulation at

a sideband frequency of 33.9 MHz (35.5 MHz for the second squeezed light source),

which is coupled into the cavity through the high-reflective coupling mirror Mc. The

reflectivity is 90 % for 1550 nm and 20 % for 775 nm. The back reflected light is

separated from the incoming light by a combination of a Faraday isolator and a polar-

izing beam splitter. The light is detected with the resonant photodiode PD33.9 (35.5).

Demodulating the photodiodes signal at the same frequency (33.9 MHz or 35.5 MHz)

provides an error signal, whose zero crossing corresponds to the cavities’ resonance

for the pump field. By demodulating the signal in the orthogonal quadrature (indi-

cated by the ’sin’ and ’cos’ next to the demodulation symbol) an error signal for the

phase of the pump field with respect to the control beam is generated. The phase of

the pump is actuated by the phase shifter PSpump and set to a phase angle, where the

control beam is deamplified. Additionally two tap-offs of a few µW are shifted with

an acoustic-optic modulator (AOM) by 78 MHz and 82 MHz, respectively.
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Figure 3.5.: Electro-optical phase stabilization of a squeezed light source. The

cavity length is stabilized to resonance for the 1550 nm field using a Pound-Drever-

Hall locking scheme. A control beam carrying a phase modulation from an electro-

optical modulator (EOM) at a side band frequency of 33.9 MHz (or 35.5 MHz for

second source). Those are coupled into the cavity and the back reflected light is

separated from the incoming light with a Faraday isolator (FI) and detected with

the resonant photodiode PD33.9. Thus a Pound-Drever-Hall locking scheme is

implemented to stabilize the length of the squeezed light source cavity to resonance

of the 1550 nm light. Additionally, by demodulating the photodiodes signal 90

degrees out of phase with respect to the cavity lock, the pump lights phase could

also be stabilized with the same photodiode. The single sideband is generated by an

acousto-optical modulator (AOM), which is superimposed with the control light and

phase locked to it. Thereby a phase reference for the squeeze angle is established. A

similar figure is published in [20].
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These single sidebands (SSB) are superimposed with one of the respective control

beams of the squeezed-light source at 50:50 beam splitter in front of the cavity.

The interference is measured at the second output with the resonant photodetector

PD78 (82) and demodulated at the corresponding sideband frequency. Using the phase

shifter PSSSB the generated sinusoidal error signal established a phase lock between

the SSB and the control beam. Because the pump phase is the reference for the

squeeze angle and is also phase locked to the control field, a fixed phase relation

between the SSB and the squeezed quadrature is established.

3.2.3. Balanced homodyne detection

Due to electronic limitations in photo-electric detection, it is challenging to resolve

optical light fields, oscillating at frequencies of several hundreds of terahertz. Instead,

we can measure variations around the averaged optical field oscillation on longer

time-scales. However, in order to access the noise properties of the quadratures

fields X̂ and Ŷ , introduced in chapter 2, a rather simple interference setup is used;

the technique of balanced homodyne detection, as it is depicted in figure 3.6.

To analyze the quadratures of the signal field at a frequency ω0 ±Ω with this

method, it is superimposed on a symmetric (50:50) beam splitter with a strong

coherent field at the carrier frequency ω0 with the same mode parameters. This is

the so called local oscillator (LO). After the fields interfere, the two output ports’

intensities î1 and î2 are simultaneously monitored with two PIN photodetectors. The

photo currents are subsequently electronically subtracted. Hence, this is proportional

to the respective quadrature measurement of the signal field. To see that mathemat-

ically, we need to remember that any field operator Ô can be decomposed into its

coherent classical part with the amplitude O = ⟨Ô⟩ and its quantum fluctuation part

δ Ô. Therefore the signal field is given by âs = αs + δ âs and the the LO is given by

âLO = (αLO + δ âLO)e
iϑ . By separating the relative phase ϑ between the LO and

the signal field due to the additional factor eiϑ explicitly assigned to the LO, the

complex amplitudes α and αLO now are made real.

The interference of the input states at the beam splitter transforms according to

equation 2.59, so that the outputs states are
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Figure 3.6.: Balanced Homodyne Detection scheme. The quadrature of the signal

field âs is measured by superimposing it with a strong local oscillator âLO with

equal mode parameters on a 50:50 beam splitter. Subsequently, the current of the

detected output fields â1 and â2 from two PIN photodiodes are subtracted. In the

approximation of a strong local oscillator the subtracted current is proportional to the

noise characteristic of the signal field, whereas the choice of quadrature is selected

by the relative phase angle ϑ ∈ [0,π/2].

â1 =
1√
2

(

âLOeiϑ + âs

)

, (3.5)

â2 =
1√
2

(

âLOeiϑ − âs

)

. (3.6)

The induced photo current î1 and î2 of the photo diodes are proportional to the number

of photons contained in the light field, thus the intensities can be approximated by

î1 ∝ â1â
²
1 =

1

2

(

âLOeiϑ + âs

)(

âLOe−iϑ + âs

)

≈ 1

2

[

α2
s +α2

LO + 2αsαLO cos(ϑ )

+αs

(

δ X̂a
1 + δ X̂b

−ϑ

)

+αLO

(

δ X̂b
1 + δ X̂a

ϑ

)

]

, (3.7)

and
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î2 ∝ â2â
²
2 =

1

2

(

âLOeiϑ − âs

)(

âLOe−iϑ − âs

)

≈ 1

2

[

α2
s +α2

LO −2αsαLO cos(ϑ )

+αs

(

δ X̂a
1 −δ X̂b

−ϑ

)

+αLO

(

δ X̂b
1 −δ X̂a

ϑ

)

]

. (3.8)

Here we used the definition of the quadratures in 2.5 and the generic quadrature in

2.13. Additionally, we considered a linearization of the detected fields in the form

that all higher order terms are neglected, like the quadratic fluctuation terms δ âsδ â
²
s .

This is justified because the fluctuation terms are small compared to the intense local

oscillator light field. In the last step the subtracted photo current is

î− ∝ â1â
²
1 − â2â

²
2 = 2αsαLO cos(ϑ )+αsδ X̂ϑ ,b +αLOδ X̂−ϑ ,a, (3.9)

that relates the detection to the quadrature of the signal. Since the first term of the

above equation describes the interference between the DC parts of both fields, they

do not contribute to the noise. The variance of î− is given by

∆
2 î− ∝ αs∆

2δ X̂ϑ ,LO +αLO∆
2δ X̂−ϑ ,s, (3.10)

which shows the significant aspects of balanced homodyne detection. Each fluc-

tuation term of its corresponding field is amplified by the other field’s coherent

excitation, respectively. By adjusting the relative phase ϑ between the signal and

LO field, one can observe X̂ or Ŷ individual in a single measurement or any linear

combination X̂ϑ = X̂ cos(ϑ )+ Ŷ sin(ϑ ). To set the homodyne detector to any angle

ϑ , the phase is precisely controlled using the SSB, accompanying the squeezed light,

and beating with the LO (cf. figure 6.5).

Since the interesting property is the signals noise characteristic, we should choose

a regime where the LO is much stronger than the amplitude of the signal, such that

|αLO|≫ |αs|. Then the noise contribution of the first term is negligible. In the case of

detecting squeezed vacuum fields with |αs|= 0 this condition is fulfilled. However,

in reality, in some of our experiments, we have control beams co-propagating with
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the squeezed field. Therefore the noise contribution of the LO field can influence the

detected noise again.

To analyze the signal obtained from the subtracted photo current, we can use either

a time-resolving device, e.g. a data acquisition card or analyze the spectral power

density with a spectrum analyzer.
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4. Demonstration of a 10 dB quantum-

noise squeezed interferometer

The purpose of laser interferometers is to continuously monitor small relative phase

changes of an optical path with respect to a reference path. In practice, it splits a

beam of a coherent light wave into two partial beams on a balanced beam splitter.

They propagate along different paths afterward and eventually let them superimpose

again. At this point superposition causes the phenomenon of interference, which

produces intensity variations of the output light.

For the performance of any interferometric measurement, the spatial overlap of

the interfering beams, which determines the contrast (visibility) of the interferometer,

as well as noise arising from power fluctuations of the input light are important

factors. Likewise, back scattered light inside the interferometer and mirror surface

displacements in terms of thermal loads are essential to detect the interferometers

signal with a minimum amount of loss. However, to analyze the fundamental preci-

sion of monitoring the phase difference between the paths arising in interferometric

measurements in a purely classical way is not possible. In particular within its

description, where both the light and detection process is treated purely classical,

the intensity of light is precisely determined. The measurement of the intensity

reaches arbitrary precision that also allows to measure arbitrary small phase shifts

in an interferometric experiment. In reality we have to consider a semi-classical

theory in which the light interferes as classical waves, but the detection process are

quantized [24]. Instead of measuring continuous intensity of light, the number of en-

ergy quanta (photons) is being measured in photo-electric detection. The absorption

process reveal a stochastic character due to the random number n of photons arriving

at the photodiode in each measurement interval per unit time. This is described
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by the standard Poissonian counting statistic (cf. chapter 2). The uncertainty of

the distribution is the photon counting noise of mutually independent photons and

usually referred to as shot noise. With particular focus on the signal-to-noise ratio

SNR= N/
√

N =
√

N, it becomes clear that the ratio increases with the square root

of the total number N of photons captured. Although the shot noise increases in

absolute terms, its relative fraction is less at higher signal levels. Consequently, it is

substantially more relevant for less signal captured.

Modern versions of interferometers range from length measurements in spec-

troscopic interferometric experiments [54, 55] to the most prominent examples

including the gravitational wave detectors (GWD). The latter are Michelson-type

laser interferometers operating close to the dark fringe. The differential change of the

phase quadrature between the two arms is transferred into an amplitude quadrature

change of the interferometer’s output light. Consequently the power change at the

output is detected by a single photodiode.

In GWDs the signal-to-shot noise ratio has been reduced by increasing light power,

while at the same time technical noise sources were reduced to very low levels. Nev-

ertheless it is still required to further reduce the shot noise. But achieving higher

sensitivities by increasing the light power is already challenging due to optical heat-

ing processes, stray light and radiation pressure noise [56]. One way to surpass the

shot noise limit can be achieved by using quantum correlations, as first proposed by

C.M. Caves in 1981 [23]. Injecting a squeezed vacuum state through the shot noise

dominated interferometer’s output port increases the sensitivity without increasing

the laser power.

The application of squeezed light in gravitational-wave detectors is already used

and intensively studied in GEO600 since 2011 [25, 26], and was more recently also

implemented in advancedLIGO [28] and VIRGO [29]. This resulted in gravitational-

wave observations with higher sensitivities since April 2019. All current GWDs are

operated with high-power and quasi-monochromatic continuous wave laser light at a

wavelength of 1064 nm. For the next generation of future cryogenic GWD, e.g. the

Einstein-telescope, it will be necessary to go to longer wavelengths, where 1550 nm

laser light [57±59] is a seminal candidate. High squeezing values of 13 dB in the

regime of MHz frequencies at 1550 nm, and about 10 dB in the audio band have
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been realized in [21]. Especially the technique of squeezed light injection is essen-

tial for the design of the low frequency interferometer of the Einstein-Telescope

(1 Hz-250 Hz). To reduce the thermo-optical noise of the interferometer’s optical

components to an acceptable level in this low frequency band, it will operate at cryo-

genic temperatures. Even low residual absorption of the dielectric mirror coatings

deposits a significant amount of thermal energy in the mirrors. Due to the seismic

isolation (suspension of the mirrors) it is difficult to dissipate the heat. This imposes

a limit to the maximum circulating optical power, which is planned to be 18 kW in

the arm cavities. Because of its excellent mechanical and thermal properties, silicon

has been proposed as one candidate for the test mass materials. When silicon is used

in the interferometer, the operational wavelengths has to be at 1550 nm as used here.

In this part of my thesis I experimentally show the quantum enhancement by ap-

plying squeezed light to a Mach-Zehnder interferometer (MZI) and demonstrates that

high squeezing values are indeed realistic in interferometric measurements operating

at wavelengths at 1550 nm.

4.1. Quantum-enhanced Mach-Zehnder

interferometer

In the first instance, we will explore the fundamental limit in high-precision inter-

ferometric phase-sensing measurements in the theoretical framework of the semi-

classical model. We will restrict ourselves to the conventional MZI’s two particularly

relevant situations with coherent light and the quantum enhancement due to applying

squeezed light. Afterwards the theoretical prediction will be experimentally verified.

The discussion here is based on [60] and [61], and starts with the conventional

MZI using coherent light. Figure 4.1 illustrates the MZI configuration, where an

intense coherent field enters one input and is separated into two parts after passing

a balanced beam splitter (BS). At the second input, the ground-state uncertainty of

the overlapping mode enters and the phases φ a and φ b (corresponding to rotation in

phase space) are assigned to both parts. By superimposing both parts on a second
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Figure 4.1.: Principle of phase-sensing measurement based on a Mach-Zehnder

interferometer. The MZI transforms the two input states âin and b̂in into the output

states âout and b̂out, where the photon numbers ⟨na⟩ and ⟨nb⟩ per time window

(time-frequency mode) are measured with two single photodiodes, respectively. The

difference of the photocurrents is proportional to the interferometer signal (without

noise). In the standard configuration, the input mode âin is an intense coherent field

D(α), while vacuum D(0) (no squeezing S(r) = 1) is entering the second input port

of the balanced beam splitter BS. Inside the MZI each mode experience a phase shift

according to a rotation R(φ a) and R (φ b).

beam splitter, the average photon numbers ⟨na⟩= ⟨âoutâout
²⟩ and ⟨nb⟩= ⟨b̂outb̂out

²⟩
of the outgoing fields at the interferometers output are measured with two single

photodiodes. The smallest detectable phase difference between the two arms is

proportional to the difference of the measured average photon numbers. In general,

the input and output relation of the annihilation operator is described by the combined

action of the beam splitter and the phase shifts transformation, like:

(

âout

b̂out

)

=
1

2

(

1 i

i 1

)(

eiφa 0

0 eiφb

)(

1 −i

−i 1

)(

âin

b̂in

)

= ei(φa+φb)/2

(

cos(φ/2) −sin(φ/2)

sin(φ/2) cos(φ/2)

)(

âin

b̂in

)

, (4.1)

where φ = φ a −φ b is the differential phase shift between the two arms (here a phase

shift of −π/2 or π/2 on each beam splitter is considered). The common phase
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4.1. Quantum-enhanced Mach-Zehnder interferometer

has no relevance for further discussion here and will be therefore omitted. In the

recent literature the standard configuration of the MZI is related to the group of

SU(2) and is therefore called a SU(2)-interferometer [60±62]. Consequently, the

action of the beam splitter and phase shifters on arbitrary states can be visualized

by rotations in an abstract three dimensional vector space, spanned by the hermitian

Jordan-Schwinger operators

Ĵx =
1

2
(â²b̂+ b̂²â), (4.2a)

Ĵy =
i

2
(b̂²â− â²b̂), (4.2b)

Ĵz =
1

2
(â²â+ b̂²b̂), (4.2c)

in direct analogy to the mathematical concept of spin algebra in atomic physics. This

representation allows describing spin squeezed states, which are also a powerful

quantum resource to enhance atom interferometers’ precision [63±65]. However, our

focus relies on the description in optical interferometry.

The operators satisfy the commutation relation in terms of two bosonic operators

[Ĵi, Ĵ j] = iεi jkĴk. In the Ĵi representations the effect of an MZI on the two input states

transforms according to the unitary matrix U = exp(-i α Ĵ), where Ĵ = {Ĵx, Ĵy, Ĵz,}

and α describes the angle of axis rotation, respectively. We obtain
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Ĵy, out
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1 0 0

0 0 1

0 −1 0

















cos(φ ) −sin(φ ) 0
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cos(φ ) 0 sin(φ )
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−sin(φ ) 0 cos(φ )

















Ĵx, in

Ĵy, in

Ĵz, in









, (4.3)

from which follows that in particular the balanced beam splitter performs a π/2-

rotation around the x- axis, while the phase shift correspond to a rotation around the

z- axis by an angle φ . Overall the sequence of all operations is a rotation of Ĵ around

the y- axis by an angle φ .
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In this formalism the difference of photon numbers detected by the two single

photodiodes is related to a measurement of Ĵz = (n̂a − n̂b)/2, which allows us

to estimate the uncertainty of the phase precision. In order to access the phase

sensitivity, it is necessary to calculate the mean value of Ĵz in dependence of the

input states, that is

⟨Ĵz, out⟩= cos(φ ) ⟨Ĵz, in⟩− sin(φ ) ⟨Ĵz, in⟩ , (4.4)

with variance

∆
2Ĵz, out = sin2(φ ) ⟨Ĵ2

z, in⟩+ cos2(φ ) ⟨Ĵ2
z, in⟩ (4.5)

− sin(φ )cos(φ )(⟨Ĵx, in Ĵz, in + Ĵz, in Ĵx, in⟩−2⟨Ĵx, in⟩⟨Ĵz, in⟩) .

The last term describes the correlation between the input states of the interferometer

which are assumed to be uncorrelated and therefore equal to zero. The phase

uncertainty ∆φ can be quantified by error propagation theory via the formula

∆φ =
∆Ĵz
∣

∣

∣

∣

d⟨Ĵz⟩
dφ

∣

∣

∣

∣

. (4.6)

This simple approach provides a good approximation for the performance of interfer-

ometers and thus can be consider to analyze the effect of different input states on the

phase fluctuation in general.

4.1.1. Coherent light interferometer

In the conventional configuration of the interferometer, a coherent field with complex

amplitude α is injected in one input port of the beam splitter, while the second input

is unused and only vacuum fluctuations are entering the interferometer. Using the

equations 4.4 and 4.5 to calculate the relevant quantities

⟨Ĵz, in⟩=
1

2
|α|2 and ⟨Ĵx, in⟩= 0, (4.7)
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with variances

∆
2Ĵz, in = ∆

2Ĵx, in =
1

4
|α|2 , (4.8)

we obtain the information about the phase uncertainty from equation 4.6

∆φ =
1
2 |α|

1
2 |α|2|sin(φ )|

=
1

√

⟨N⟩|sin(φ )|
, (4.9)

where the complex amplitude is replaced by the average photon number ⟨N⟩ =
|α|2 of the coherent input field. For phases φ = π/2 and φ = 3π/2 equation 4.9

represents the shot noise limit of the phase uncertainty in high precision phase-

sensing. It depends on the average number of quanta in the input mode, which is

following a Poissonian probability distribution. The precision ∆φ is the smallest

phase difference that is resolvable with a signal-to-noise ratio of 1 when using ⟨N⟩
mutually independent photons per measuring time interval. Therefore it is essential

for an ideal precise measurements of the phase to use as much quanta as possible

as a consequence of the shot noise scaling 1/
√

⟨N⟩. For this reason GWDs use as

much laser power in the arms as possible [24].

4.1.2. Coherent light interferometer with squeezed light

One strategy to surpass the shot noise limit in equation 4.9 and to enhance the

phase sensitivity is to use quantum correlated photons. In practice this is realized by

injecting squeezed light into the unused port of the interferometer [23]. To see that,

we require the same quantities as shown in equation 4.7 and 4.8 before. Also we

have to take into account that a squeezed vacuum state (r > 0) has always a non-zero

photon number. Overlapping a squeezed vacuum state with a coherent displacement

further adds photons on average. Thus we have the average photon number [60]

⟨N̂⟩= |α|2 + sinh2(r) , (4.10)

where the relevant quantities now read

⟨Jz, in⟩=
1

2

(

|α|2 − sinh2(r)
)

and ⟨Jx, in⟩= 0, (4.11)
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Figure 4.2.: Squeezed light enhanced Mach-Zehnder interferometer. Shown is

the concept of a quantum enhanced MZI and phase space pictures with quantum

uncertainty at the in- and output ports of the interferometer. Superimposing a

(amplitude) squeezed vacuum state at the beam splitter (BS) with an intense coherent

state generates quantum correlations between the two output ports. The quantum

noise in the two arms are entangled with each other and therefore cancel out. Thus,

after recombination at the second beam splitter and detecting the path difference

with a signal reveals an improved signal-to-noise ratio of the interferometer. Both

output ports are detected with a photodiode, respectively. The actual interferometers

signal (yellow arrows) is provided by the difference photo-voltage with an amplitude

squeezed noise characteristic as the phase space picture with X̂− and Ŷ− shows.

with the respective variances

∆
2Jz, in =

1

4

(

|α|2 + 1

2
sinh2(2r)

)

,

∆
2Jx, in =

1

4

(

|α|2 cosh(2r)−Re
(

α2
)

sinh2(r)+ sinh2(r)
)

.

(4.12)

By choosing the phase of the coherent light, such that α = Re
(

α2
)

is maximized,

the variance ∆Jx, in gets minimized at the same moment. This is equivalent to the

case where the phase of the coherent light is pointed in the direction in which the

squeezed vacuum state possesses its lowest variance. According to this ideal scenario

the expression of equation 4.6 provides the lower bound for the phase precision:
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∆φ =

√

cot2(φ )
(

|α|2 + 1
2 sinh2(2r)

)

+ |α|2e−2r + sinh2(r)

||α|2 − sinh2(r)|
, (4.13)

where by an appropriate selection of the phase φ = nπ/2, the first term under the

square root vanishes and thus again indicates the optimal operation point of the

interferometer for the phase estimation.

To compare the conventional interferometer with the quantum enhanced inter-

ferometer with squeezed light, the total average number of photons ⟨N⟩ entering

the interferometer should be set to a fixed value. The majority of photons are ded-

icated to the coherent light. In the regime of ⟨N⟩ ≫ 1 the equation 4.13 complies

approximately:

∆φ =

√

|α|2e−2r + sinh2(r)

||α|2 − sinh2(r)|
=

√

e−2r + sinh2(r)
|α|2

|α|− sinh2(r)
|α|2

≈ 1
√

⟨N⟩er
, (4.14)

where indeed the result shows that injecting squeezed light into a Mach-Zehnder

interferometer returns an improved phase sensitivity compared to the shot noise

scaling, as depicted in figure 4.3.

4.2. Demonstration of a quantum enhanced

Mach-Zehnder interferometer

To demonstrate the improvement of the Mach-Zehnder interferometer due to squeezed

states of light, the following experimental setup was implemented as illustrated in

figure 4.4.

The structure of the interferometer itself consists of two balanced beam splitters

and two highly reflective mirrors. Both arms had the same length of 37.5 cm.

One input of the balanced beam splitter is used to inject coherent light into the

interferometer with a light power of about P = 10.5 mW, while a squeezed vacuum

state enters through the second input. The generated squeezed light at a wavelength
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Figure 4.3.: Comparison of the phase precision scaling between the conven-

tional and squeezed light enhanced interferometer. The phase uncertainty of

the conventional interferometer scales with ∆φ ∝ 1/
√

⟨N⟩. By applying squeezed

states of light, a better scaling of ∆φ ∝ 1/(⟨N⟩er) is achieved. The inset shows

the counting statistics for a fixed average number of ⟨N⟩= 10000 per measurement

time interval. The squeezed light (10dB) enhanced interferometer shows a standard

deviation
√

10-smaller than ±
√

N.

of 1550 nm was provided by one of the squeezed light sources outlined in chapter 3.

Figure 4.4 shows the schematic of the quantum enhanced Mach-Zehnder interfero-

meter. Both arms contain a phase shifter (a highly reflective mirror attached to a piezo-

electric transducer). In the upper arm, PSφ MZI enables the possibility to control the

relative phase φ MZI of the interferometer arms with a feedback loop. An error signal

for the relative phase was generated by scanning the phase φ MZI. The interferometer

was locked to mid-fringe using the DC-output of the balanced detection. The mid-

fringe corresponds to a phase φ MZI = π/2 at which the interferometer is most

sensitive for phase changes (see equation 4.9). Typically we use EOMs to produce

modulation frequencies in the MHz regime of a light field. Due to its rather high

optical loss this is not appropriate when squeezed light is used. Instead the phase
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Figure 4.4.: Schematics of the quantum enhanced MZI. Squeezed light is injected

into one port of the balanced beam splitter BS1. To stabilize the phase φ SQZ of the

squeezed vacuum to the amplitude quadrature, a feedback loop with a single sideband

at 82 MHz was implemented. The coherent light with a power of P = 10.5 mW is

injected into the second input. A signal is generated at a Fourier frequency of

f = 4.879 MHz with a piezo-actuated highly reflective mirror PSS. By scanning

the interferometers relative phase φ MZI with the phase shifter PSφ MZI a lock was

implemented. Therefore an error-signal is generated from the DC-output of the

balanced detection, to lock the interferometer to mid-fringe (φ = π/2). To analyze

the signal at the output, both states in the arms are superimposed on a second

balanced beam splitter (BS2) and impinged on a PIN-photodiode. Their subtracted

photo current was measured at the spectrum analyzer, providing directly the variance

of the signal. The auxiliary PDBS1 and PDBS2 are used to balance both beam splitters

to a splitting ratio of 50:50.

shifter PSS placed in the lower arm generates a signal (phase modulation) at a

frequency of f = 4.879 MHz to generate an artificial signal. To excite photons into

these high frequency mode is much more difficult, as compared to using an EOM.

A piezo-actuator has resonances up to hundreds of kHz and by which one cannot

expect to let it carry out excessive movements at higher frequencies. Furthermore,
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Figure 4.5.: 10 dB - squeezed light enhanced MZI. Shown are the noise power

spectra measured at the interferometer output with balanced detection. The traces

correspond to the spectra of quadrature amplitude normalized to the shot noise level

using 10 mW input power. The shot noise (orange trace) is normalized to unity

and serves as the reference level (0 dB). The measured variances correspond to the

amplitude quadrature with squeezed variance (blue trace) of ∆2XSQZ = -10.5 dB and

anti-squeezing (grey trace) of ∆2XASQZ = 21.1 dB, respectively. The slight slope

of all traces are due to the decreasing transfer function of the homodyne detector.

All traces were recorded with a resolution bandwidth of ∆Ω/2π = 5 kHz, a video

bandwidth of 100 Hz, and were averaged seventy-five times.

a piezo-actuator’s electrical behavior can be described as a capacitive load, whose

power consumption is proportional to the applied frequency. Therefore a trade-off

between a sufficiently strong signal and the applied voltage to the piezo-actuator was

necessary.

The fringe visibility of the interferometer was measured to Cmin = 0.992±0.001.

To reach such high values, one arm was blocked, while the mode in the other arm was

guided to a diagnostic mode cleaner via a flipping mirror placed at one output and

matched to it and vice versa. The auxiliary photodiodes PDBS1 and PDBS2 are used
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to balance both beam splitters to a splitting ratio of 50:50. That is necessary to get

the strongest correlation between the arms of the interferometer and to cancel out the

quantum noise. Otherwise, an unbalancing introduces decoherence, which reduces

the strength of entanglement and therefore the sensitivity improvement. Figure 4.5

shows the non-classical noise reduction with squeezed light in the frequency range

from 4.78 MHz to 4.98 MHz without a signal generated in the interferometer. The

spectrum presented here is the variance of the amplitude quadrature measured with

balanced detection at the interferometers outputs as shown in figure 4.4. The obtained

anti-squeezed variance is ∆2XASQZ = 21.1 dB and the squeezed variance is ∆2XSQZ

= -10.5 dB. From three such individual measurements the total average detection

efficiency is calculated to be η = 0.922±0.002. After applying a sinusoidal voltage

to PSS with a frequency of f = 4.879 MHz some photons in the lower arm were excited

and the light field carried a pure phase modulation at this frequency. This modulation

is converted into a pure amplitude modulation (with the same frequency) at the

second beam splitter BS2. Therefore the spectrum analyzer measures the amplitude

quadrature at the interferometers output, in which the signal appears. Figure 4.6

shows the performance of the quantum enhanced MZI. This is demonstrated using

different modulation strengths, resulting from changing the peak-to-peak voltage

applied to PSS to 50 mV, 100 mV, 200 mV, and 400 mV, respectively. The directly

observed non-classical sensitivity improvement in all panels is about (10.5 ± 0.1) dB.

The improvement of the signal-to-noise ratio is equivalent of a 11.2-fold increase

in coherent light power, which is a factor of
√

11.2 = 3.35. The result of a strong

phase modulation shows the panel (a) in figure 4.6. The signal is visible in both

cases; the shot noise limited interferometer (orange trace) as well as with squeezed

light injection (blue trace).

Because the spectrum analyzer measures the sum of the noise and signal variance,

the noise contribution of the squeezed state to the total variance is much less then

of shot noise. Therefore the signal height is also lower. By decreasing the strength

of the phase modulation (panels (b) - (d)), the signal decreases as well. In panel (d)

the advantage of squeezed light injection is clearly demonstrated. For the shot noise

limited interferometer (orange trace) no modulation signal is visible at an excitation

voltage of 50 mV.
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Figure 4.6.: Performance of the quantum enhance MZI. The orange traces show

the measured variance spectrum of the signal modulation at a Fourier frequency of f

= 4.879 MHz without squeezed light input. With squeezed light, the blue traces show

a noise reduction by about 10.5 dB compared to vacuum noise, revealing an improved

signal-to-noise ratio by a factor of
√

11.2 = 3.35. The phase sensitivity improves

by the equivalent of a 11.2-fold increase in coherent light power. The panels (a) to

(d) shows an applied peak-to-peak voltage to the piezo-actuator of 400 mV, 200 mV,

100 mV, 50 mV respectively. All traces were recorded with a resolution bandwidth

of 5 kHz, a video bandwidth of 100 Hz, and averaged seventy-five times. The dark

noise clearance was about 23 dB below the shot noise.
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If we use instead quantum correlations, e.g. squeezed states of light, a signal is

clearly visible in the spectrum. For the same light power the signal-to-noise ratio is

significantly improved. In conclusion, I have demonstrated experimentally, that it is

feasible to achieve strong non-classical correlations in a Mach-Zehnder interfero-

meter at wavelengths of 1550 nm to eliminate quantum shot noise. I showed that

the squeezed light enhanced interferometer is superior to the conventional operation

with coherent light only. Thereby, I achieved a (10.5 ± 0.1) dB reduction of shot

noise of an artificial signal at a Fourier frequency of 4.879 MHz. As the equation 4.9

shows, the shot noise contributes with the inverse of the optical power. Accordingly,

injecting strong squeezed light is the only possibility to reach a higher sensitivity of

the interferometer without increasing the light power.
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measurement based on quantum

correlated light

Optical absorption measurements are an important tool for characterization of the

properties of optical materials. In practice, the light power for certain applications

is limited. In particular it is highly relevant in biological systems, where biological

samples are often highly photosensitive [66]. Here, optical damage is a limiting

factor and it is necessary to either reduce the photon flux or reduce the exposure time

(or both at the same time). An example are living cells, which are observed with light

that could damage or even cause cell death. By illuminating light-sensitive probes

with bright light, optical damage can be caused by optical heating and photochemical

effects. It is possible to overcome these constraints by employing quantum correlated

states, such as entangled photons, to enhance the precision with less exposure [67±

69].

Optical absorption measurements are usually performed by direct measurement

of sample’s transmission. In this case photodiodes need to be calibrated. For that,

several properties of the photodetectors have to be taken into account: linearity,

stability, spectral responsivity and detection efficiency.

In this chapter I present a novel approach for low-intensity absorption measure-

ments in a Mach-Zehnder interferometer. While overcoming the influence of the

photodiodes’ efficiency and the need for absolute calibration in absorption measure-

ments, this new method may also be a powerful tool for measuring light-sensitive

samples. It is based on the theoretical consideration by Mikhail Korobko, which

is here experimentally realized in a proof-of-principle experiment. We adapted the
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setup presented already in the previous chapter 4.

5.1. Absorption measurement using single party

squeezed light

The simplest approach to detect absorption (loss) of an unknown sample is illustrated

in figure 5.1. In general this is a relative measurement, i.e. a two-step measurement:

One with and one without the sample, to determine the relative absorption. The

absorptive material is represented by the beam splitter BSA, which is illuminated

by the incident light â1. The transmitted light b̂1 passing the sample is measured

with a photodiode PDA, which converts the intensity into photocurrent and is subse-

quently analyzed to determine the absorption A. In a realistic detection scheme, any

measurement is corrupted by various sources of loss due imperfections of the setup.

(a)
(b)

Figure 5.1.: Detection scheme of direct absorption measurement (a) shows an

ideal absorption measurement A of the light field b̂1. The transmitted light is passing

the sample, which is represented by BSA. The only loss is due to the sample’s

absorption, which is measured by detecting light with the photodiode PDA. In (b) the

detection process is not perfect, because of the imperfect detection efficiency ηdet < 1

of the photodiode itself. This can be seen as an additional loss to the measured field

b̂′1 visualized by the virtual beam splitter BS1. Usually, drifts emerge in the setup

due to laser power fluctuation or optomechanical instabilities when the sample is

measured; Hence, the absorption A can only be evaluated if the detection efficiency

of all photodiodes is precisely known. Thus each photodiode needs to be calibrated.
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5.1. Absorption measurement using single party squeezed light

In the case of figure 5.1 (b) additional loss ℓ is introduced by the quantum efficiency

ηdet < 1 of the photodiode. To estimate the absolute absorption A of a sample

as precise as possible, however, it is necessary to know the quantum efficiency

beforehand and to calibrate all measurements that is required for comparison in

sensing and monitoring. In principle the precise calibration of the photodiodes

efficiency could be realized based on continuous-wave squeezed light. To describe a

direct measurement of the quadrature field b̂′1 including a detection efficiency ηdet

we consider the transfer matrix

(

b̂′1
b̂′2

)

=

( √
ηdet

√
1−ηdet

−√
1−ηdet

√
ηdet

)(

â′1
â′2

)

, (5.1)

where ηdet = 1 − ℓ with a certain power reflectivity ℓ, equivalent to some loss

coupling in vacuum fluctuations through the beam splitter BS1 as pictured in the grey

box of figure 5.1(b). The two input quadrature fields â′1 and â′2 are converted into

the output quadrature states b̂′1 and b̂′2. As we are interested in the absorption of the

sample, we measure the transmission of the resulting field b̂′1 and get a superposition

according to the transfer matrix

b̂′1 =
√

ηdet â′1 +
√

1−ηdet â′2. (5.2)

Detecting this field, we get the photodiodes intensity related to a power noise

spectrum Sb′b′ = ⟨b̂′b̂′²⟩

Sb′b′ = ⟨(√ηdet â′1 +
√

1−ηdet â′2)(
√

ηdet â
′²
1 +

√

1−ηdet â
′²
2 )⟩

= ⟨ηdetâ
′
1â

′²
1 +

√

ηdet(1−ηdet)(â
′
1â

′²
2 + â′2â

′²
1 )+ (1−ηdet)â

′
2â

′²
2 ⟩ . (5.3)

Assuming â′1 is a squeezed state with ⟨â′1â
′²
1 ⟩ = e−2r and â′2 is in its ground state

with ⟨â′2â
′²
2 ⟩= 1, the mixing terms are averaging to zero ⟨â′1â

′²
2 ⟩= ⟨â′2â

′²
1 ⟩= 0 and

the measured spectrum is given by

Sb′b′ = ηdete
−2r +(1−ηdet). (5.4)
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5. Low-intensity absorption measurement based on quantum correlated light

Equation 5.4 shows that using the quantum correlation of a single squeezed state of

light is valuable to characterize the detection efficiency ηdet. The effect of loss is

equal to additional contribution of vacuum field to the squeezed quadrature. Thus, by

decreasing the detection efficiency (increasing loss) for a given squeeze parameter r,

the spectrum gets closer to the shot noise level. Therefore it can be used for absolute

calibration of the quantum efficiencies of photodiodes where a calibrated standard for

the incident light power is not necessary [22]. Here the used technique required the

measurements of the squeeze and the corresponding anti-squeeze levels. Additionally,

the precise determination of all the losses induced by imperfect optical components

is required beforehand. This includes the optical loss from dielectric coatings, the

OPA escape efficiency and also the homodyne visibility. Those values have to be

known very precisely, which is not always practical when precise measurements are

required on demand. To avoid the need for absolute calibration we suggest in the

following section a novel approach with bipartite squeezed light.

5.2. Absorption measurement with bipartite

squeezed light

The basic idea of the bipartite squeezed light absorption measurement is to measure

one part of a squeezed state relative to another where the loss occurs. In a setup that

satisfies the condition of the self-referenced measurement of squeezing no calibration

of the photodiode is necessary. We consider a Mach-Zehnder interferometer as

depicted in figure 5.2 with one squeezed vacuum state entering one input port and

an absorber A in one arm, introducing some loss. It will be useful for the analysis

to restrict the formulation to the specific case of interest. Therefore we will omit

unbalancing of the beam splitter and loss in the arms from imperfections of optical

parts or misalignment that basically reduces the contrast of the interferometer.

5.2.1. Theoretical consideration

From the action of different parts in the interferometer, we get a set of linear equations

separated into the phase and amplitude quadrature, respectively. We denote the
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5.2. Absorption measurement with bipartite squeezed light

respective superscripts of the states with p for phase or a for amplitude. For the

corresponding fields inside the MZI we find for the phase and amplitude quadrature

operators:

ĉ
p
1 =

1√
2
(âp

2 − â
p
1) ĉa

1 =
1√
2
(âa

2 − âa
1)

ĉ
p
2 = ĉ

p
1 cos(φ )− ĉa

1 sin(φ ) ĉa
2 = ĉ

p
1 sin(φ )+ ĉa

1 cos(φ )

ĉ
p
3 =

1√
2
(âp

2 + â
p
1) ĉa

3 =
1√
2
(âa

2 + âa
1)

ĉ
p
4 =

√
ηs ĉ

p
3 +

√

1−ηs v̂s ĉa
4 =

√
ηs ĉa

3 +
√

1−ηs v̂s ,

where φ is the relative phase between the two arms, ηs corresponds to the absorption

of the sample and v̂s is related to the in coupled vacuum due to the loss. For the

output fields of the MZI we find

Figure 5.2.: Concept of absorption measurements with bipartite squeezed light.

The demonstration uses a Mach-Zehnder interferometer configuration to measure

the absorption A in one arm relative to the other arm. To measure the superposition

at the second beam splitter (BS), one output is used to detect the outgoing field with

a balanced homodyne detector (BHD). Additionally, an extra channel with loss ℓ is

introduced that represent the imperfect photodiodes detection efficiency ηdet. The

block diagram visualizes the denominations used in the derivation of the measured

photodiodes intensities. SSS(r): squeezing; DDD(0): vacuum; RRR(φ ): rotation; BS: beam

splitter.
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5. Low-intensity absorption measurement based on quantum correlated light

b̂
p
1 =

1

2
(ĉp

2 + ĉ
p
4) =

1

2

[

(ĉp
1 cos(φ )− ĉa

1 sin(φ ))+ (
√

ηs ĉ
p
3 +

√

1−ηs v̂s)
]

, (5.5)

b̂a
1 =

1

2
(ĉa

2 + ĉa
4) =

1

2

[

(ĉp
1 sin(φ )+ ĉa

1 cos(φ ))+ (
√

ηs ĉa
3 +
√

1−ηs v̂s)
]

. (5.6)

Now introducing additional loss ℓ at the output, we obtain the field b̂3. Inserting the

operators ĉ
p
1 , ĉa

1, ĉ
p
3 and ĉa

3 we get

b̂
p
3 =

√
ηdet b̂

p
2 +

√

1−ηdet v̂1

=

√
ηdet√

2

[

cos(φ )

(

1√
2
(âp

2 − â
p
1)

)

+ sin(φ )

(

1√
2
(âa

2 − âa
1)

)

+
ηs

2
(âp

2 + â
p
1)+

√

1−ηs v̂s

]

+
√

1−ηdet v̂1

=

√
ηdet

2

[

â
p
2(cos(φ )+

√
ηs)− â

p
1(cos(φ )−√

ηs)

− âa
2 sin(φ )+ âa

1 sin(φ )+
√

2(1−ηs) v̂s

]

+
√

1−ηdet v̂1 ,

(5.7)

and for the amplitude quadrature correspondingly:

b̂a
3 =

√
ηdet b̂a

2 +
√

1−ηdet v̂1

=

√
ηdet√

2

[

sin(φ )

(

1√
2
(âp

2 − â
p
1)

)

+ cos(φ )

(

1√
2
(âa

2 − âa
1)

)

+
ηs

2
(âa

2 + âa
1)+

√

1−ηs v̂s

]

+
√

1−ηdet v̂1

=

√
ηdet

2

[

âa
2(cos(φ )+

√
ηs)− âa

1(cos(φ )−√
ηs)

− â
p
2 sin(φ )+ â

p
1 sin(φ )+

√

2(1−ηs) v̂s

]

+
√

1−ηdet v̂1 .

(5.8)
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Again we assume that ⟨âp
2 â

p²
2 ⟩ = ⟨âa

2â
a²
2 ⟩ = ⟨v̂1v̂

²
1⟩ = ⟨v̂sv̂

²
s ⟩ = 1. Furthermore the

phase quadrature is in a squeezed state ⟨âp
1 â

p²
1 ⟩= e−2r and the amplitude quadrature

is in a anti-squeezed state ⟨âa
1â

a²
1 ⟩= e2r. Thus the measured spectra Sbb = ⟨b̂b̂²⟩ of

the respective quadrature field are:

S
p
bb =

1

4
e−2r

[

ηdet(
√

ηs − cos(φ ))2 − e2r(−4+ηdet +ηdetηs −2
√

ηsηdet cos(φ ))

+ e4rηdet sin2(φ )
]

, (5.9)

Sa
bb =

1

4
e−2r

[

e4rηdet(
√

ηs − cos(φ ))2 − e2r(−4+ηdet +ηdetηs −2
√

ηsηdet cos(φ ))

+ηdet sin2(φ )
]

. (5.10)

The spectra depend on the detection efficiency ηdet, ηs, the squeeze parameter r

and the relative phase φ between the two arms of the Mach-Zehnder interferometer.

The top of figure 5.3 shows the relative position of the bipartite squeezed states

at the second beam splitter. The interference of the correlated squeezed vacuum

states at different phase angles φ results in the noise spectra of amplitude and phase

quadrature as plotted from equation 5.9 and 5.10 without losses and considering

a perfect detection efficiency. The correlation between the squeezed states is in-

dicated by the crosses. If the length of both arms are equal (φ = 0) the measured

(anti-) squeezing is maximal. Changing the length of one arm reduces the (anti-)

squeeze factor. At phase φ = π/2 the contribution of the rotated squeezed state,

such that in both spectra anti-squeezing occurs. The correlation at a phase φ = π

results in a partially squeezed vacuum state in both quadratures. Since the detection

is based on the measurement of one squeezed vacuum state relative to another, the

correlation can be exploited to estimate the absorption A that appears in one arm of

the interferometer.

From these spectra of the phase and quadrature we can derive a function which is

independent of the detection efficiency ηdet. Therefore we have to calculate first the

difference between the spectrum at phase φ and a shifted phase φ + ζ , thus:

Sdiff(φ ) = Sbb(φ )−Sbb(φ + ζ ) . (5.11)
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5. Low-intensity absorption measurement based on quantum correlated light
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Figure 5.3.: Spectra of phase and amplitude quadrature. From top to bottom: The

upper figure shows the correlation of the bipartite (phase) squeezed vacuum states at

several instances of the relative phase φ between the two arms of the Mach-Zehnder

interferometer. The correlation is indicated by the crosses. The resulting interference

at the second beam splitter depends on the orientation of squeezed states to each

other while scanning the phase. For comparison the solid black line represents

the reference (vacuum noise). The middle plot shows the noise spectrum of the

amplitude quadrature calculated with equation 5.9. The lower plot shows the noise

spectrum of the phase quadrature calculated from equation 5.10. For both plots I

considered no loss and a perfect detection efficiency.
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5.2. Absorption measurement with bipartite squeezed light

Choosing ζ = π/2 for both, the squeezed and the anti-squeezed spectrum, we obtain

the following spectra:

S
p
diff(φ ) =−ηdet

1

4
e−2r(e2r −1)

[

(1+ e2r)cos(2φ )−2
√

ηs(cos(φ )+ sin(φ ))
]

,

(5.12)

Sa
diff(φ ) =−ηdet(cos(φ )+ sin(φ )) sinh(r)

[

cosh(r)(
√

ηs − cos(φ ))+ sin(φ )

+
√

ηs sinh(r)
]

. (5.13)

Both spectra have the photodiodes inefficiency ηdet as a common factor, which could

be eliminated by taking the ratio Sratio
ζa,ζp

with the shifted phases ζa = ζp = π/2:

Sratio
π/2,π/2 =

S
p
diff(φ )

Sa
diff(φ )

=
N

D
−1, (5.14)

with

N = 2(e2r −1)
√

ηs ,

D = e2r(2
√

ηs − cos(φ )+ sin(φ ))+ sin(φ )− cos(φ ) ,

which is still dependent on the squeeze parameter r and the absorption of interest

included in ηs, but not on the photodiodes detection efficiency ηdet. In this approach

we compare the interference of the two squeezed states at the second balanced

beam splitter before reaching the homodyne detector. All the loss that happens

afterwards, e.g. the quantum efficiency of the photodiodes at the homodyne detector

is common to the result of the interference and can be factored out. To demonstrate

the detection efficiency’s independence in this new method, we applied additional

loss before the measurement device. As a result, this artificially reduced the detection

efficiency of the detector, which is confirmed in the following.

5.2.2. Experimental demonstration

The schematics of our experiment is presented in figure 5.4. The interferometer

was operated with continuous-wave laser beam at a wavelength of 1550 nm. The
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5. Low-intensity absorption measurement based on quantum correlated light

balanced beam splitter BS1 (50:50) splits the (phase) squeezed vacuum state into

two partial squeezed states. One part serve as reference, while the other part probe

the loss of 1% appearing at the 99:1 beam splitter BSA. This will be denoted in

the following as the ‘signal’ arm of the interferometer. It represents the material

to be studied, e.g. a photosensitive biological sample. To extract the loss value,

the superposition of both partial beams at different phases φ were measured at one

output of BS2 with balanced homodyne detection. To change the relative phase

continuously we used a phaseshifter (PSφ ) and applied a ramp with a frequency of

f = 700 mHz. Because of that we could not use directly the fixed phase relation of

the SSB and the squeezed quadrature to lock the homodyne angle. This is different

to the chapters 4 and 6 and it was necessary to implement an additional phase lock

between an auxiliary local oscillator field and the SSB, which was independent of

the Mach-Zehnder phase φ . We used the 1% transmission of the beam splitter BSA

and superimposed it with an auxiliary field of about 1 mW light power. The detected

light at the photodiode PD82 was demodulated at a frequency of 82 MHz, and the

sinusoidal error signal was fed back to the piezo-actuated mirror phase shifter (PSaux)

in the path of the auxiliary field. A phase lock between the SSB and the auxiliary

field was established. Since the phase of the SSB (and thereby to the squeeze angle)

has a fixed phase relation to the squeezed field, this lock immediately established a

fixed phase relation between the auxiliary field and the squeezed quadrature. The

electro-optical modulator (EOM) generated sidebands at a frequency of 78 MHz in

the same path, but before PSaux. The 1% transmission of sidebands were sent to the

homodyne detector and the signal was demodulated at 78 MHz to get an error signal

for the squeezed light phase look as depicted in figure 5.4. Thus the implemented

locking scheme allowed us to stably control the relative phase between the local

oscillator LO of the homodyne detector either at zero (amplitude quadrature) or

ninety degrees (phase quadrature). Furthermore it allowed us to lock the quadrature

independent of the relative phase φ between the two arms of the Mach-Zehnder

interferometer.
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5.2. Absorption measurement with bipartite squeezed light

Figure 5.4.: Schematics of the experimental setup. Shown are the optical paths

of laser light. The balanced beam splitter BS1 (50:50) splits the (phase) squeezed

vacuum state into two partial squeezed states. The transmitted part serves as a

reference, while the reflected part probe the loss of 1% from the 99:1 beam splitter

BSA. To extract the loss value, the superposition of both partial beams at different

phases φ are measured at one output of BS2 with balanced homodyne detection.

The relative phase was continuously changed with phaseshifter (PSφ ) by applying a

frequency of f = 700 mHz. An auxiliary field of 1 mW was overlapped at the BSA

with the single sideband at a frequency of 82 MHz. The generated error signal was

fed back to PSaux, creating a fixed phase relation to the squeezed vacuum state. The

electro-optical modulator (EOM) generates sidebands at a frequency of 78 MHz

in the same path. The 1% transmission of sidebands overlapped at the homodyne

detectors 50:50 beam splitter with the local oscillator (LO) for stable locking the

BHD to squeezed or anti-squeezed vacuum for all phases φ ∈ [0,2π ]. A combination

of a half-wave plates and a polarization beam splitter (PBS) introduces additional

loss ℓ, to demonstrate that the absorption is independent on the detection efficiency

ηdet of the BHD.
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Figure 5.5.: Measured phase quadrature of the (phase) squeezed vacuum state

with balanced homodyne detection. The measurement shows the noise power

spectrum at a Fourier frequency of Ω/2π = 5 MHz measured at one output port of

the MZI. Ten different loss values ℓ = (2 %, 5 %, 10 %, 15 %, 20 %, 30 %, 40 %, 50 %,

60 %, 70 %) were used. For each loss value the phase φ of the MZI was periodically

scanned. Depending on certain phases, the squeezed vacuum rotates in phase space

relative to the other and interfere such that the noise is above the shot noise level,

resulting in anti-squeezed state. The constant line at -62.5 dBm corresponds to the

shot noise level. All traces were recorded with a resolution bandwidth of ∆Ω/2π =

300 kHz, a video bandwidth of 300 Hz and were averaged twenty times.
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Figure 5.6.: Measured amplitude quadrature of the (phase) squeezed vacuum

state with balanced homodyne detection. The measurement shows the noise power

at a Fourier frequency of Ω/2π = 5 MHz measured at one output port of the MZI.

Ten different loss values ℓ = (2 %, 5 %, 10 %, 15 %, 20 %, 30 %, 40 %, 50 %, 60 %,

70 %) were used. The constant line at -62.5 dBm corresponds to the shot noise level.

For each loss value the phase φ of the MZI was periodically scanned. Depending on

the relative phase, the minimum noise power does not fall below the shot noise level.

All traces were recorded with a resolution bandwidth of ∆Ω/2π = 300 kHz, a video

bandwidth of 300 Hz and were averaged twenty times.

Independence on detection efficiency

To demonstrate the advantage of our approach, we placed a combination of half-

wave plates (λ /2) and a polarization beam splitter (PBS) in front of the balanced

homodyne detector to introduced additional loss ℓ between 2% and 70%. The loss
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5. Low-intensity absorption measurement based on quantum correlated light

value was measured by detecting light with the photodiode PDloss. For each loss

value, we measured the spectrum of the amplitude (or phase) quadrature with a

spectral analyzer while scanning the phase φ . The result is shown in figure 5.5

and figure 5.6, respectively, and are consistent with the calculated spectrum of

equation 5.9 and 5.10. The figure 5.5 shows the obtained spectra of the phase

quadrature measurement. Although the homodyne detector measures the squeezed

noise variance, at certain phases the noise goes above vacuum noise level (‘shot

noise’). This is due to the relative rotation of the squeezed vacuum in phase space in

the reference arm with respect to the ‘signal’ arm. At phases φ = π/2 and φ = 3π/4

the interfering states at the beam splitter result in an outgoing state that exceeds

the shot noise level. Its maximum value of approximately -44 dBm results in an

anti-squeezed state.
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Figure 5.7.: Detection dependence on the photodiodes quantum efficiency in

usual absorption measurements schemes. The figure displays the ratio Sratio =

Sa/Sp comparable to a single party squeeze measurement without taking advantage

of the phase φ as an additional degree of freedom. The plotted curves correspond to

four different measured detection loss values ℓ = (2 %, 5 %, 15 %, 40 %). Therefore

the measurement device shows a significant dependence on the induced loss, resulting

in different peak heights of the ratio.
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5.2. Absorption measurement with bipartite squeezed light

Similarly we measured the amplitude quadrature for the same loss values. The

resulting output spectra shows the figure 5.6 and, as expected, the traces varied

between the maximum anti-squeezed noise level and the shot noise level. For all

loss values the difference between the squeezed noise power spectra at 5 MHz of

S
p
diff and the anti-squeezed spectra Sa

diff are calculated in accordance to equation

5.12 and 5.13. To illustrate the benefit of our measurement scheme, I first plot

the ratio Sratio = Sa/Sp of the squeezed and anti-squeezed quadrature in the figure

5.7. This can be interpreted as the equivalent experimental setup of the absorption

measurement discussed in section 5.1 utilizing a conventional setup.
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Figure 5.8.: Demonstration of the independence on the photodiodes quantum

efficiency with bipartite squeezed light. The ratio Sratio
π/2,π/2 calculated for the same

four different measured detection loss values ℓ = (2 %, 5 %, 15 %, 40 %) as in figure

5.7 of the relative measurement for the squeezed light using equation 5.14. All

traces coincidence over the plotting range and therefore entail the independence on

detection loss, but depending solely on the light absorptive material. The data at

phases φ = nπ were removed, since the curves show at these points large noise due

to experimental instabilities in the setup of the Mach-Zehnder phase. The absorption

can be deduced from the traces. The theoretical prediction shows the dashed black

curve for a initial squeeze parameter r = 1.48 and an absorption of A= 1%.
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5. Low-intensity absorption measurement based on quantum correlated light

The plotted curves correspond to a detection loss ℓ= (2%,5%,15%,40%) introduced

at the PBS before the squeezed light reaches the balance homodyne detector. A

significantly difference of the curves is visible at a phase φ = 2π , which is the

case of equal arm length of the MZI. This operation point complies with the full

squeeze or anti-squeeze factor. The emulated detection efficiencies show different

peak heights. With increasing detection loss the peak decreases, and vice versa. If

we use our novel approach instead and take advantage of relative measurements, we

can completely avoid the effect of detection efficiency. The result is presented in

figure 5.8. Therefore the noise spectra of the ratio Sratio
π/2,π/2 shows no dependence on

the induced loss at the output port of the interferometer. All traces are overlapping

over the full range and therefore entail the independence on the detection loss. At

phases of φ = π and φ = 2π the curves are noisy. The data are excluded at those

points to show the important feature. Additionally, the theoretical prediction for the

1 % absorption sample with an initial squeeze factor of r = 1.48 is plotted. Although

the measurement are corrupted by large noise, the excepted theoretical plot is in

good agreement with the experimental data.

5.3. Conclusion

In this proof-of-principle experiment we demonstrated that absolute photodiode

calibration in direct absorption measurement can be fully avoided when using a

relative measurement scheme with bipartite squeezed light. Our approach uses state

of the art squeezed light sources that provided about 9 dB of squeezing, in combi-

nation with a Mach-Zehnder interferometer. We performed a sensing measurement

on the transmission of a 99:1 beam splitter in the signal arm with 10 different loss

values added at the output port (ranging from 2 % to 70 %) corresponding to different

detection efficiencies, respectively. As no need for calibration is necessary, also

misalignment in the setup (for example the visibility of homodyne detector) is in

principle irrelevant as long as the Mach-Zehnder interferometer itself remains stable.

Therefore our approach has potential for quantum interferometric measurements

of photosensitive samples in changing environments, where the alignment is prone to

its detrimental effects, e.g. in bio sensing, with integrated quantum photonic devices
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sensor area (signal arm)

reference arm

squeezed state

input

output

Figure 5.9.: On-Chip integrated Mach-Zehnder interferometer. The squeezed

light is injected into the MZI and split into a signal arm with the sensor area and

a reference arm. The light propagating through the two arms, interfere in a single

output. Figure adapted from [70].

(see figure 5.9). Those are combining the stability of integrated optics for high

visibility, low loss and interference of quantum correlation to reach high precision.

Such devices can be fabricated cost-effectively and especially their compactness and

the simple operation makes them attractive as reliable diagnostic sensors.

We demonstrated the proof-of-principle operation of the concept. Further research

is needed to understand the influence of various imperfections in the setup (imbalance

of the beam splitter, additional loss in the reference and signal arm), as well as finding

the optimal reference combinations of spectra.
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6. Surmounting Heisenberg’s

indeterminacy in sensing

It is widely accepted that Heisenberg’s uncertainty relation sets a fundamental limit

to the precision of measurements of fields, motions and forces. This often leads

to the miss-interpretation that displacement measurement can not assign arbitrary

precise information to a pair of canonical conjugate quantities simultaneously and

even suggests that quantum trajectories always have quantum indeterminacy. As

pointed out by Einstein, Podolsky and Rosen (EPR) [12], according to quantum

theory, there are pairs of quantum systems whose properties with respect to each

other can be determined arbitrarily precisely. A wide range of well-engineered

quantum experiments took advantage of such EPR-entangled states, which allows for

predictions of measurement results with a phase space uncertainty product smaller

than that of the measured system’s ground state. It is the resource for quantum

teleportation [71±73] as well as for high-precision quantum measurements [74, 75].

None of the previous experiments targeted the question whether a system can be

measured to have a time-dependent evolution in phase space (a ‘trajectory’) that is

precisely ‘determined’ (in the sense of ‘defined’) with respect to another quantum

system. In this chapter, I investigate whether this is possible in the case of two

systems that are not coupled to the environment.

6.1. Quantum-enhanced sensing and monitoring

In general, quantum sensing pursue the purpose of measuring the properties of an

quantum object. In the previous chapters 4 and 5 we were solely interested in a single

quantity of our investigated System. Therefore we improved the sensitivity of our
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detector for the respective quantity. For many applications in metrology such an

approach is sufficient [27, 76±78]. In contrast our intention will be in the following

to obtain information about orthogonal observables at the same time that are related

to our system. To perform such measurements I consider the scenario depicted in

figure 6.1 and bring our system S in contact with two independent detectors 1 and

2. They produces measurement outcomes according to probability distributions.

Furthermore, let both detectors do not mutually influence each other. The informa-

tion we collect from an acquired dataset of each sub-ensemble is combined in a

two-dimensional probability distribution P(A,B) spanned by the eigenvalues of the

operators Â and B̂. From these measurement we are able to extract the expectation

values of the observables, which are related to physical properties. The precision

of the uncertainty is evaluated from the standard deviation of the A-variable and

B-variable of the system. Usually repetitive measurements are performed on an

ensemble, where each ensemble member is prepared in the same initial state. This is

essential to make statements about the width of the distribution.

Figure 6.1.: Joint measurement on system S. The standard deviation of the A-

variable and B-variable of the investigated system S are obtained from the probability

distribution P(A,B) after a series of measurements. In order to reconstruct the

distribution P(A,B) it is essential to repeat the measurements for a reasonable large

ensemble, that is prepared in the same initial state. Only then we can estimate the

expectation values concerning physical properties.

In practice, the only way to influence an experiment is by appropriate state

preparations and choose measurements. Furthermore, the only observations we can
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make are the particular outcomes of these measurements and their respective statistics.

Thereby, it will be necessary to take care of the measurement setup’s individual

design that always implies a relative measurement to another system, classical

or quantum. From this perspective, the following line of argumentation for sub-

Heisenberg indeterminacy is based on probability distributions of the measurement

outcomes that refers to a relative measurement between two systems. I will start the

discussion by considering the limitations of a ‘classical device’ that serve as a global

measurement reference.

6.1.1. Limitations of semi-classical reference measurements

In their rather terse article from 1965, Arthurs and Kelly [79] theoretically investi-

gated whether the precision limit [24]

∆X̂∆Ŷ ≥ 1, (6.1)

for the phase and amplitude quadrature of a Gaussian wave packet can be actually

achieved in a simultaneous measurement. The lower bound in equation 6.1 can exper-

imentally be achieved, if an ensemble of a pure state is available and measurements

of X̂ and Ŷ are ‘ideal’, i.e. sequentially performed on respective sub-ensembles.

From the marginal distributions we can obtain the maximal information of the wave

packet represented by the Wigner function introduced in chapter 2. Then the product

of the distributions widths ∆X̂ and ∆Ŷ satisfies the Heisenberg uncertainty relation

of equation 6.1.

In order to observe both quadratures simultaneously at times t, Arthurs and

Kelly devised the following measurement procedure: Each member of an ensemble

of identically prepared Gaussian states, is divided symmetrically into two sub-

ensembles on a balanced beam splitter. The amplitude quadrature is measured on

one half and the phase quadrature on the other half with two balanced homodyne

detectors. Combining the two data sets we directly obtain the well-known phase

space probability distribution Q(X ,Y ) of the Gaussian wave packet, which parses all

possible values of X and Y . The Q-function is essentially introduced by K. Husimi

in 1940 [80].

83



6. Surmounting Heisenberg’s indeterminacy in sensing

The gain of knowledge comes with some disadvantage. Due to the splitting, an

unit of vacuum uncertainty enters the detection and the simultaneous measurements

need to cope with doubled minimal quantum uncertainties. The splitting reduces the

signal-to-noise ratio in comparison with ideal measurements. Instead of the sharper

inequality 6.1 we get the inequality

∆X̂∆Ŷ ≥ 2. (6.2)

The width of the marginal distributions standard deviations increases by the factor√
2. The above inequality represents the fundamental precision limit when amplitude

and phase quadrature of Gaussian wave packets are measured simultaneously on a

single system with respect to reference values of a classical measurement device.

Similar inequalities limit the simultaneous measurement of position and momentum

of a particle.

This remarkable result shows the physical importance of sensing the time evolu-

tion of both quantities simultaneously of continuously changing signals. In order

to show this I will consider the case of phase space trajectories of phase and ampli-

tude modulations of quasi-monochromatic carrier light. In accordance with Arthurs

and Kelly analyzes, the optimal experimental setup for a simultaneous measure-

ment of quadratures is visualized in figure 6.2. A phase space displacement D̂(α)

can be experimentally achieved by overlapping a state â with a strong coherent

field âs on a high reflectivity beam splitter. The resulting outgoing state is ex-

cited by a pure classical phase and amplitude modulation signal with an amplitude

α(t) = α(sin(φ t)+ cos(φ t)), where the phase φ is unknown. Moreover, α(t) is

the ‘scientific signal’ of interest of the interrogated system, whose time evolution is

tracked.

The corresponding input state vector of the investigated system in figure 6.2 is

(

X̂(t)

Ŷ (t)

)

=

(

â1 +α sin(φ t)

â2 +α cos(φ t)

)

, (6.3)

where the probe state â and the classical modulation signal are separated in the

amplitude and phase quadrature parts. Subsequently the system is balanced splitted
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Figure 6.2.: Simultaneous measurement of amplitude and phase quadrature.

To observe the phase and amplitude quadrature of a coherent displacement α(t)

(‘scientific signal’) simultaneously at times ti, it is necessary splitting the input

state X̂ϑ (t) equally into two parts at the beam splitter BS1. Each sub-ensemble

is subsequently measured with two independent measurement devices; balanced

homodyne detector 1 and 2. The splitting reduces the signal-to-noise ratio compared

to an ideal measurement (see main text). It can be described as opening a new port

through which another unit of vacuum noise v̂ enters the detection stage.

on the beam splitter BS1. Both outputs are measured with two homodyne detectors,

respectively. The detected generic quadratures at each homodyne detector are

(

X̂
ϑ1
1 (t)

X̂
ϑ2
2 (t)

)

=
1√
2

(

(X̂(t)+ ν̂)cos(ϑ1)+ (Ŷ (t)+ ν̂) sin(ϑ1)

(X̂(t)− ν̂)cos(ϑ2)+ (Ŷ (t)− ν̂) sin(ϑ2)

)

. (6.4)

Here vacuum v̂ is coupled in through the 50:50 beam splitter BS1. The respective

quadrature is determined by the readout angle ϑ1,2 of the homodyne detectors.

Let now on one joint output continuously measures the amplitude quadrature of the

system (ϑ1 = 0◦), while on the second output, the phase quadrature (ϑ2 = ϑ1 +90◦)
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is continuously measured. Therefore, we measure the quadrature components of the

signal:
(

X̂1(t)

Ŷ2(t)

)

=
1√
2

(

X̂(t)+ ν̂

Ŷ (t)− ν̂

)

. (6.5)

The photodiodes’ intensities are given by the expectation value of the detected

quadrature fields, which are

⟨X̂1X̂
²
1 ⟩ (t) =

1

2
(∆2â1 +∆

2ν̂1 + |α sin(φ t)|2), (6.6)

and

⟨Ŷ2Ŷ
²
2 ⟩ (t) =

1

2
(∆2â2 +∆

2ν̂2 + |α cos(φ t)|2). (6.7)

The detected fields hold a signal part and noise part in it. The combined signal-to-

noise ratio (SNR) is defined as:

SNR =
|α2|(sin2(φ t)+ cos2(φ t))

(∆2â2 +∆2ν̂2 +∆2â1 +∆2ν̂1)
≥ |α2|

4
, (6.8)

for vacuum noise normalized to unity. Surprisingly, the SNR of the simultaneous

measurement is four times larger than expected from the commutation relation of

equation 2.7 for the phase and amplitude quadrature. The physical origin of this

disadvantage is the following: each detector only determine half of the signal, while

the other part is not measured. Adding both signals together, resulting just in a unity

of signal power of |α2|(sin2(φ t) + cos2(φ t)) = |α2|, but whereas all four noise

inputs fully contribute to the SNR.

So far, in this approach we do not consider a squeezed state. I will briefly show,

why squeezed light would serve no purpose in this measurement scheme. If we

choose an amplitude squeezed vacuum state with squeeze parameter r for the initial

probe state â, the quantum noise contribution to the detection is

∆
2â1 +∆

2â2 = e−2r + e+2r = 2cosh(2r) . (6.9)

Therefore the best SNR is achieved for r = 0. Even though squeezed light enhances

the SNR for a single variable, it does not for two conjugate variables simultaneously.
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A single squeezed state is restricted to measurements with a known phase φ of the

signal in advance. This was demonstrated and exploited in chapter 4, where the

signal solely appeared in the amplitude quadrature.

6.1.2. Limitations of entanglement-enhanced measurements

To surpass the limit of inequality 6.2, the detector must be designed in a way such

that the intrinsic uncertainty is not visible and only the observables are monitored.

In contrast to the measurement of the interrogated system’s displacement as

described above, it is now considered that the phase space displacement is measured

with respect to another quantum system (providing the reference for the measurement

device). The corresponding quadrature components are X̂i and Ŷj and fulfill the

typically commutation relation

[X̂i,Ŷj] = 2iδi j. (6.10)

Furthermore, the global system encompasses two systems that are associated to

a pair of canonical conjugate variables (X̂1,Ŷ1) and (X̂2,Ŷ2). Nevertheless, in the

description of such a mechanical systems (classical or quantum), the variables can

always be replaced by new conjugate variables (X̂A,ŶA) and (X̂B,ŶB), respectively, by

an usual orthogonal transformation. This transformation corresponds to a rotation

around an angle Θ in the two-dimensional phase space of (X̂1, X̂1) and (Ŷ1,Ŷ2). The

new position and momentum coordinates are then given by [81]:

X̂1 = X̂A cos(Θ)− X̂B sin(Θ) Ŷ1 = ŶA cos(Θ)− ŶB sin(Θ)

X̂2 = X̂A sin(Θ)+ X̂B cos(Θ) Ŷ2 = ŶA sin(Θ)+ ŶB cos(Θ)

Note that this does not change the properties of the systems, and therefore main-

tain the original variables. While the non-zero commutator [X̂A,ŶA] = [X̂B,ŶB] = 2i

leads to inequalities 6.1 and 6.2 that restrict the precision of classical measurements,

the same commutator mathematically leads to the zero-commutator

[X̂A ± X̂B,ŶA ∓ ŶB] = 0. It is a well-known fact that the commutator of a differ-

ence and sum of non-commuting observables of two quantum systems is zero, from
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which follows that those quantities are simultaneously precisely determined to each

other. Since, moreover, it results from above expressions in terms of (X̂1,Ŷ1) and

(X̂2,Ŷ2) we get

X̂A = X̂1 cos(Θ)+ X̂2 sin(Θ) , (6.11)

ŶB = −Ŷ1 sin(Θ)+ Ŷ2 cos(Θ) . (6.12)

If we now construct a detector, that combines the measurements at angles Θ = 0◦ and

Θ = 90◦ we can measure either the quantities X̂A = X̂1 and ŶB = Ŷ2 or the quantities

X̂A = X̂2 and ŶB =−Ŷ1 simultaneously with arbitrary precision. Employing a suitable

reference system thus allow for the measurement of a phase space trajectory with

sub-Heisenberg indeterminacy. In particular, it results in

∆(X̂ ± X̂0)∆(Ŷ ∓ Ŷ0) ≥ 0 (6.13)

from which follows that X̂ and Ŷ of a system are simultaneously precisely determined

with respect to the corresponding quantities X̂0 and Ŷ0 of a reference system. To create

the condition required for a noiseless quadrature measurement we have to consider

the case presented in figure 6.3. It is based on quadrature entanglement generated

by two vacuum squeezed states. This is consistent with the description of the

famous Gedanken-experiment by EPR, which I discussed in section 2.3.1. To enable

measurements with respect to an entangled reference, two squeezed vacuum states are

overlapped at a beam splitter creating an EPR-entangled state. One input is prepared

in an amplitude squeezed vacuum state (X̂1,Ŷ1), and the second input is prepared in a

phase squeezed vacuum state (X̂2,Ŷ2). While the interrogated systems’ expectation

value gets time-dependent displaced by α(t) = ⟨X̂ sin(φ )+ Ŷ cos(φ )(t)⟩, the second

system serves as a reference for our measurement device (denoted with subscript

’0’). Its expectation value is zero for all phases φ and times t; thus ⟨X̂0⟩= ⟨Ŷ0⟩= 0.

To measure the phase space trajectory of the interrogated system in both quadrature
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Figure 6.3.: Concept of entanglement based simultaneous measurement of

displacement in orthogonal quadratures. From left to right: a beam splitter

(BS) converts two squeezed vacuum states into a bipartite EPR-entangled state.

One part serve as a quantum reference with zero displacement ⟨X̂0⟩ = ⟨Ŷ0⟩ = 0,

while the other part is excited by an time-dependent phase space displacement

α(t) = ⟨X̂⟩ (t)+ i⟨Ŷ ⟩ (t). To measure the dynamics X̂(t) and Ŷ (t) simultaneous

at subsequent times ti of the interrogated system, both parts of the entangled state

are superimposed on a second beam splitter. Subsequently on one joint output a

balanced homodyne detector BHD1 measures continuously the amplitude quadrature

(X̂ − X̂0)(t)/
√

2, while BHD2 measures the phase quadrature (Ŷ + Ŷ0)(t)/
√

2.

Since their commutator vanish ([X̂ − X̂0,Ŷ + Ŷ0] = 0), the phase space trajectory can

be simultaneously precisely determined at any time t without quantum uncertainty.
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simultaneously, the system is splitted in two independent subsystems at another

beam splitter. The output states are given by

X̂1(t) =
1√
2
(X̂ + X̂0)(t) Ŷ1(t) =

1√
2
(Ŷ + Ŷ0)(t)

X̂2(t) =
1√
2
(X̂ − X̂0)(t) Ŷ2(t) =

1√
2
(Ŷ − Ŷ0)(t),

whereas on one joint output a balanced homodyne detector BHD1 continuously mea-

sures the amplitude quadrature (X̂ − X̂0)(t)/
√

2. On the second output, a second

BHD2 continuously measures the phase quadrature (Ŷ +Ŷ0)(t)/
√

2. The time series

produced at both detectors correspond to eigenvalues of X(t) and Y (t), which can be

interpreted as simultaneous measurements of the system’s conjugate displacement

time-evolution with respect to the corresponding values of the (entangled) reference.

Since ⟨X̂0⟩= ⟨Ŷ0⟩= 0, the data serves for monitoring the trajectory (⟨X̂⟩ ;⟨Ŷ ⟩)(t).

However, to alleviate the lack of indeterminism of phase space sensing requires

entanglement between two parties A (system) and B (reference). If the strength

of entanglement between the parties is maximal, the entangled state satisfies the

following correlations X̂A = X̂B and ŶA = −ŶB. In that case the dynamics of the

displacement values correspond to those of X̂(t) and Ŷ (t), which are given by

(

X̂(t)

Ŷ (t)

)

=
1√
2

(

X̂A +α sin(φ t)− X̂B

ŶA +α cos(φ t)+ ŶB

)

=
1√
2

(

α sin(φ t)

α cos(φ t)

)

, (6.14)

without quantum noise. Thus, no noise contributes to the detection and only the

displacement signal appears in the measured quadratures. Therefore, we attain

∆X̂(t)∆Ŷ (t) = 0, (6.15)

and achieve in principle an unlimited precision of our measurement device. Of

course the idealized case reveals nothing about the improvement of the SNR with
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finite amount of squeezing. To analyze this we need to transform the input (squeezed)

vacuum states (X̂1,2,Ŷ1,2) into the entangled states X̂A,B and ŶA,B using the Bogoliubov

transformation

X̂A = X̂1 cosh(r1)+ X̂2 sinh(r2) ,

ŶA = Ŷ1 cosh(r1)− Ŷ2 sinh(r2) ,

X̂B = X̂1 cosh(r2)+ X̂2 sinh(r1) ,

ŶB = Ŷ1 cosh(r2)− Ŷ2 sinh(r1) ,

from which follows similar to equation 6.14 the detected quadratures

X̂(t) =
1√
2
(X̂A +α sin(φ t)− X̂B)

=
e−r1

√
2
(X̂1 + X̂2)+

1√
2

α sin(φ t), (6.16)

Ŷ (t) =
1√
2
(ŶA +α cos(φ t)+ ŶB)

=
e−r2

√
2
(Ŷ1 − Ŷ2)+

1√
2

α cos(φ t). (6.17)

As before we need to calculate the photodiodes’ intensities and find

⟨X̂ X̂²⟩ (t) = e−2r1

2
(∆2X̂1 +∆

2X̂2)+
1

2
α sin(φ t), (6.18)

⟨ŶŶ ²⟩ (t) = e−2r2

2
(∆2Ŷ1 +∆

2Ŷ2)+
1

2
α cos(φ t). (6.19)

Similar to equation 6.8 the noise power of the signal to the intrinsic noise in the

combined SNR is:

SNR =
|α2|(sin2(φ t)+ cos2(φ t))

e−2r1(∆2X̂1 +∆2X̂2)+ e−2r2(∆2Ŷ1 +∆2Ŷ2)
(6.20)

=
|α2|

2(e−2r1 + e−2r2)
, (6.21)
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where ∆2X̂1 = ∆2X̂2 = ∆2Ŷ1 = ∆2Ŷ2 = 1. Starting with finite squeezing of 10 dB for

the two input states, the SNR is improved by 4 dB compared to shot noise level. From

this perspective the limit of simultaneous readout for the product of the standard

deviation is given by

∆X̂(t)∆Ŷ (t) = 4e−2(r1+r2), (6.22)

depending solely on the squeezed input parameter r1 and r2. Nevertheless for the sum

of the squeeze parameters r1 + r2 > 0.689 we surpass the best achievable sensitivity

for a classical reference measurement device of inequality 6.2.

6.2. Demonstration of phase space trajectories with

10 dB-reduced quantum uncertainty

The following section reports the first experimental demonstration that even the dy-

namics of quantum systems, i.e. phase space trajectories, can be precisely measured

when employing another quantum system as reference.

In direct analogy to figure 6.3 the experimental setup presented here utilize quadra-

ture EPR-entangled states of light to perform high sensitivity measurements on phase

and amplitude modulations of quasi- monochromatic carrier light that appears in

one arm of a Mach-Zehnder interferometer, which dynamics are continuously and

unconditional monitored in both quadratures at the same time.

10 dB bipartite Gaussian entanglement

The strong stationary continuous-variable entangled light is produced as presented

in chapter 2 and therefore an electro-optical phase control of the squeezed fields are

implemented. The foundations of these experimental technique is mainly developed

in [20] and a detailed description of the entanglement source is given in [82]. To

create quadrature entanglement the two vacuum squeezed states are superimposed

with a variable phase ϕent at a 50:50 beam splitter (BS1), as illustrated in figure

6.4. To achieve maximum entanglement, a bipartite single-sideband control loop is

employed, locking the relative phase to (ϕent = π/2) between the input states.
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uncertainty

Figure 6.4.: Bipartite single-sideband control scheme for quadrature entangle-

ment. To control the relative phase ϕent between the input squeezed vacuum states

at a 50:50 beam splitter (BS1), a fraction of 1 % is tapped off from one output state

and superimposed on another 50:50 beam splitter (BS4) with a strong auxiliary local

oscillator with about 8 mW of laser power. This increases the detected beat signal by

the two resonant photodiodes at 78 MHz (PD78) and 82 MHz (PD82), respectively.

Demodulating PD78’s signal at 78 MHz established a permanent phase reference

ϕaux for the entanglement phase lock. The latter was demodulated at 82 MHz and fed

back to the phase shifter PSϕent in the path of the 82 MHz single sideband. Maximum

entanglement is achieved for a phase relation of ϕent = π/2 between the input states.

A similar figure was published in [20].

Since the squeezed states accompanied by the frequency shifted light with respective

frequencies of 78 MHz and 82 MHz and light powers of a few µW, those are used to

implement a phase lock loop. For this purpose a fraction of 1 % is tapped off from

one output state. To ensure a strong error signal the tapped off beam is superimposed

on another BS4 with an auxiliary local oscillator of about 8 mW laser power. Two

resonant photodiodes at 78 MHz (PD78) and 82 MHz (PD82) detected the beat signal

in each output port, respectively. Demodulating PD78’s signal at 78 MHz established

a permanent phase reference ϕaux for the desired phase lock at the entanglement
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beam splitter BS1. The latter is demodulated at 82 MHz providing the error signal

that is fed back to the phase shifter (PSϕent) in the path of the 82 MHz single sideband.

This is to prevent for unwanted mutual influence between the phase lock and the

auxiliary local oscillator.

Figure 6.5.: Dual balanced homodyne detection of Mach-Zehnder interfer-

ometer outputs. Both outputs of beam splitter BS1 were detected with balanced

homodyne detectors 1 and 2. The co-propagating single sidebands (78 MHz and

82 MHz) maintain as reference for locking to squeezed uncertainty and were de-

modulated at the respective frequencies. The generated error signals for the readout

angles ϑ of the homodyne detectors, were fed back to the phase shifters PSϕLO1
and

PSϕLO2
in the local oscillator paths, respectively. Applying voltage to phase shifter

PSϕMZI the relative path could be fine adjusted. To inject a coherent modulation

(displacement) it was guided through BSS into the MZI. The diagnostic modecleaner

(DMC) served as a spatial mode reference onto all laser beams propagating in dif-

ferent path were matched. This guaranteed a high interference contrast at the beam

splitters.

94



6.2. Demonstration of phase space trajectories with 10 dB-reduced quantum

uncertainty

After locking the relative phase between the two input vacuum states to ϕ = π/2,

the existing entangled state between the outputs constitute the arms of a balanced

MZI. Figure 6.5 presents the dual balanced homodyne detection to measure the two

outputs simultaneously, after converting back the entangled state to two squeezed

states. at the second 50:50 beam splitter (BS3) of MZI. The co-propagating single

sidebands (78 MHz and 82 MHz) maintain as reference for locking to squeezed

uncertainty. Beating with the local oscillator (LO) at the 50:50 beam splitter and

demodulating the electronic signal at the respective frequencies, generates an error

signals for the readout angles ϑ of the balance homodyne detectors 1 and 2. Those

are fed back to the phase shifter PSϕLO1
and PSϕLO2

in the local oscillator paths,

respectively. Therefore we could either measure the phase or amplitude quadrature

at the outputs. To achieve equality of the arm length in the MZI, an additional phase

shifter (PSϕMZI) is placed in one arm. By applying voltage to the piezo-actuator, fine

tuning of the relative paths are possible. Essentially high interference contrast at

each beam splitter is achieved by using a diagnostic mode cleaner that serves as

a spacial mode reference. All beams propagating to the homodyne detectors are

matched to this cavity, provided a spatial overlapped along the paths. Nevertheless,

due to necessarily imperfect interference contrasts at the two beam splitters, the final

squeeze factors could only be lower than the initial squeeze factors of the input states

(subscripts 1 and 2 in figure 6.6). Figure 6.6 shows the schematics of the table-top

experiment. Two continuous-wave fields A and B that carried entangled quantum

noise of the modulations at frequency of Ω/2π ±∆Ω/2π = 5 MHz ± 20 kHz are

produced from squeezed vacuum states. To demonstrate monitoring of dynamical

phase space trajectories with sub-Heisenberg indeterminacy, the interrogated system

is overlapped with a time-dependent displacement α(t) = ⟨X̂⟩ (t) + i⟨Ŷ ⟩ (t). To

achieve that, the respective beam is superimposed with another one that carried

a coherently excited modulation at 5MHz at the highly reflectivity mirror BS2 (R

= 99.99 %). The high reflectivity minimized decoherence, i.e. optical loss to the

entanglement. The actual displacement α(t) corresponded to the small transmitted

fraction of the coherent beam.
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Figure 6.6.: Schematics of the experimental setup. The phase space pictures

show the quantum uncertainties of the laser beams’ modulations at Ω/2π = 5MHz

at several instances. From bottom left to top right: balanced beam splitter BS1

converted two squeezed vacuum states into a bipartite EPR entangled state. One

part served as a quantum reference (subscript 0). The other part was displaced

by (⟨X̂⟩ ;⟨Ŷ ⟩)(t) (illustrated by the arrow) by overlapping modulated light trans-

mitted through BS2. The two projections of the arrow were simultaneous mon-

itored with respect to the entangled reference system by superposition at BS3

and by detecting the outputs with balanced homodyne detectors. BHD1 pro-

vided eigenvalues of (X̂ − X̂0)(ti)/
√

2, while BHD2 provided eigenvalues of

(Ŷ + X̂0)(ti)/
√

2, with ⟨X̂0⟩ = ⟨Y ⟩0 = 0. EOM: Electro-Optical Modulator, AFG:

Arbitrary Function Generator, DAQ: Data AcQuisition, LO: Local Oscillator.
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uncertainty

Changing the peak voltage to the electro-optical modulator (EOM, as shown in

figure 6.6), changed the absolute value of the displacement |α|. Changing the DC

voltage to the piezo-actuated phase-shifter (U1) changed the differential excitation in

⟨X̂⟩ (t) and ⟨Ŷ ⟩ (t). Therefore the type of modulation is continuously varied in time

by varying the relative phase angle φ at which the fields were combined at BS2.

Data Acquisition

For recording the data the electronic signals of the homodyne detectors are splitted

and sent to a spectrum analyzer and to a two-channel data acquisition card (DAQ).

Primarily, the spectrum analyzers serve as monitoring, to verify that the read out

phase is stable during the measuring time. The voltages from the BHD’s are recorded

with a sampling frequency of 200 MHz for each channel of the DAQ. To avoid

aliasing effects an analog lowpass-filter with a cut-off frequency of f−3dB = 50 MHz

is applied before each channel. Post processing is done with a self-written python

script (see Appendix A.1), which is used to digitally demodulate the data of the signal

frequency at 5 MHz and subsequent FIR-lowpass-filtering with a cut off frequency of

10 kHz. To avoid correlation in the data set after lowpass-filtering, every 1500th-data

point is used.

The measurement sequence to track the phase space trajectory of displacement is

divided into the following parts:

1. Precondition: preparing the entangled state as described above (cf. figure

6.4) and lock both homodyne detectors to squeezed uncertainty, whereby one

continuously measures the phase quadrature Ŷ (ti) and the other the amplitude

quadrature X̂(ti).

2. set the amount of samples that can be acquired during the full ramp only on

the positive slope, which is simply: samplestot = sampling frequency [Hz]/

(ramping frequency/2) [Hz]

3. the data acquisition starts when the DAQ-card receive the external TTL-trigger

from the arbitrary function generator (AFG), which is phase locked to the

ramp voltage applied to the phase shifter (PSs) rotating the signal around φ (t)
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6. Surmounting Heisenberg’s indeterminacy in sensing

(a)

(b)

Figure 6.7.: Data acquisition of measurement sequence. (a) The measured voltage

at times ti from the detector’s BHD1 and BHD2 were buffered, splitted and send

to a spectral analyzer (SPEC 1, SPEC 2) and to the two-channel data acquisition

card (DAQ). To avoid aliasing effects (sampling rate 200 MHz) a suitable analog

anti-aliasing filter (AA-Filter) with a cut-off frequency of f−3dB = 50 MHz was

added before each input channel. Synchronizing between generating and sampling

the signal was achieved by using the functions generator clock (clk) as reference for

the data acquisition card. To extract the actual signal the demodulation was done

digital in post processing. (b) Sequence of measurement starts, when the DAQ-card

receive the external TTL-trigger from AFG.

in phase space.ramp voltage applied to the phase shifter (PSs) rotating the

signal around φ (t) in phase space.ramp voltage applied to φ (t) in phase space.
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uncertainty

ramp voltage applied to the phase shifter (PSs) rotating the signal around φ (t)

in phase space.

4. recording the samples was done after a certain delay time (defined by pre-

trigger samples) at t0, to ensure linear behavior of the piezo-actuator of PSs.

5. repeat the measurement sequence after each trigger event, until a certain

amount of samples is recorded and thus gives an average of the trajectory.

6.2.1. Experimental results

The results of the experiment are presented in the following. The orthogonality of the

readout quadratures is validated during the measurement process with two spectrum

analyzers as shown in figure 6.7. To evaluate the strength of the entanglement

between the two parties of the bipartite entangled system (Two-mode squeezed state),

is possible by comparing simultaneous measurement results of the two output states

at the balanced homodyne detectors. They reveal strong correlations which surpass

the limit by the EPR-Reid criterion 2.56.

The Figure 6.8 shows the variance of X(ti)-data and Y (ti)-data, which are si-

multaneously taken with respect to the entangled reference. The limit correspond

to twice the systems ground state uncertainty. By how much this limit is beaten,

is immediately a measure of the entanglement strength and demonstrates a viola-

tion of the inequality 6.2. Here the uncertainty product is ∆(X̂(ti))∆(X̂(ti)) ≈ 0.2,

which is a factor 10 better compared to any classical measurement device without

entanglement.

The case of a sub-Heisenberg stationary displacement (not time-dependent) show

the green data points in figure 6.9. The data are sampled with the data acquisi-

tion card at subsequent times ti. Every simultaneous measurement of the phase

and amplitude quadrature is performed on a single time window; subsequent si-

multaneous measurements are performed on subsequent time windows. Plotted

are individual measuring points (X(ti);Y (ti)) taken every 5 ns with respect to the

quantum reference system. The blue dots are individual data points from simultane-

ous measurements of (X −X0)(ti) and (Y +Y0)(ti), when the entanglement source
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6. Surmounting Heisenberg’s indeterminacy in sensing

Figure 6.8.: Sub-Heisenberg indeterminacy of a stationary state in time domain.

Variances of X(ti)-data (left) and Y (ti)-data (right), which was simultaneously taken

with respect to the entangled reference. Shown is the example of stationary zero

displacement, i.e. ⟨X̂(t)⟩ = ⟨Ŷ (t)⟩ = 0. Solid lines correspond to the variance of

2600 measuring points each, without entanglement (top lines) and with entanglement

(bottom lines). The latter corresponds to 10dB two-mode squeezing. The two types

of modulations can be measured simultaneously with an uncertainty product of

∆(X̂(ti))∆(X̂(ti)) ≈ 0.2 violating inequality 6.2 by a factor of 10. Here, Ω/2π

= 5 MHz and ∆Ω/2π = 20 kHz. Dots represent variances calculated over 260

consecutive measuring points.

was switched off and the modulations ⟨X̂⟩ and ⟨Ŷ ⟩ set to zero. These data points

accumulated around the phase space origin and is used to derive the factor by which

the inequalities 6.1 and 6.2 are surpassed. The corresponding probability density is

the Q function, which marginal statistical distribution P(X(ti)) and P(Y (ti)) of the

respective quadratures are shown together with the stationary displacement using

an entangled reference in the outer panels. From these distributions the standard

deviations are determined. The orange circle encloses the standard deviation of the

displacement around (⟨X̂⟩ ;⟨Ŷ ⟩) = (0.6/
√

2;-2.4
√

2).
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Figure 6.9.: Sub-Heisenberg indeterminacy of a stationary displacement. Using

the setup in figure 6.6, I performed a time continuous measurement on an ensemble

of identically prepared Gaussian wave packets. The outer panels show two statistical

results from simultaneous X̂ and Ŷ measurements, respectively. The central picture

is the corresponding Q-function. The broader distributions are measurements with

respect to a classical reference and fulfill HUR. The narrow distributions are mea-

surements results using an entangled reference. In this case no HUR applies. The

variances of X̂ and Ŷ were both a factor of 10 below the lowest possible classical

variances. The expectation values are ⟨X̂⟩ = 0.6/
√

2 and ⟨Ŷ ⟩ = −2.4/
√

2 with a

standard deviation enclosed by the orange circle. Measurements were performed at a

frequency of Ω/2π = 5 MHz with ∆Ω/2π = 20 kHz on continuous-wave light.

Figure 6.10 shows two phase space trajectories ((⟨X̂⟩ ;⟨Ŷ ⟩)(t) (solid lines) mea-

sured with a precision surpassing inequalities 6.1 and 6.2 . Added are individual

data points from simultaneous measurements of(X −X0)(ti) and (Y +Y0)(ti), when

the interrogated system is entangled with the reference system. The standard devi-

ations in (X −X0)(ti) and (Y +Y0)(ti) around the actual phase space trajectories

((⟨X̂⟩ ;⟨Ŷ ⟩)(t) (solid line) are reduced by more than
√

10 in comparison to the
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(a) (b)
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Figure 6.10.: Measured trajectories with sub-Heisenberg indeterminacy. The

example phase space trajectories of about 5ms length measured with sub-Heisenberg

indeterminacy (solid line surrounded by green dots) in comparison to measurements

on ground states (centered, blue dots). The dots represent single measurements

((X −X0)(ti); (Y +Y0)(ti)) performed at subsequent times ti , with ti+1 − ti = 7.5 µs.

To increase the number of points I superposed 8 identical measurements, respectively.

The spreads of the data points in the two phase space directions represent the

relevant standard deviations of quantum noise in estimating the trajectories. The

sub-Heisenberg uncertainty area is revealed by comparing the small circles to larger

ones in the centers, which represent the lower bound in inequality 6.2. The latter is

surpassed by a factor of about ten. The trajectory in (a) represents a changing type

of modulation at constant modulation depth. The one in (b) additionally shows a

continuously decreasing modulation depth.

standard deviation around the phase space origin when the entanglement source is

switched off. This factor is highlighted by the different radii of the small circles.

The phase space trajectories shown in figure 6.10 are thus tracked with an uncer-

tainty product that violated inequality 6.2 by slightly more than a factor of 10 and

inequality 6.1 by slightly more than a factor of 5. As expected, the factor by which

Heisenberg’s uncertainty limit is surpassed directly corresponded to the strength of
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the entanglement. Increasing the entanglement strength requires further reduction of

optical loss, including further increase of photo-electric detection efficiency. The

figure 6.10 (a) shows a trajectory with constant modulation depth, but the kind of

modulation continuously changed. The system had a pure amplitude modulation

when ⟨Ŷ ⟩ (t) = 0 and a pure phase quadrature modulation when ⟨X̂⟩ (t) = 0. The

amplitude of the AC voltage at the EOM (U2) is constant and just the DC voltage

at the piezo actuator (U1) continuously changed. The trajectory started at about

(⟨X̂⟩ ;⟨Ŷ ⟩) = (-3/
√

2;5.8
√

2), completed almost two full cycles and stopped at about

(⟨X̂⟩ ;⟨Ŷ ⟩) = (-4/
√

2;-5.5
√

2). The figure 6.10 (b) shows another example trajectory,

whose modulation depth also changed, resulting in a phase and amplitude depen-

dent trajectory. My setup would provide the same relative reduction in quantum

measurement uncertainty for arbitrary trajectories including random walks.

6.3. Discussion and conclusion

In conclusion, my experiment proved the principle that time-dependent phase space

trajectories (⟨X⟩ ;⟨Y ⟩)(t) can be monitored with a precision strongly surpassing

Heisenberg’s uncertainty relation. The lower bound of inequality 6.1 is surpassed

by a factor of five. The measured uncertainty area is even ten-times below the

more relevant bound of inequality 6.2 that limits phase space monitoring with

respect to a classical reference. The factors of five and ten are given by the strength

of the entanglement between interrogated system and the reference system. The

factors achieved are of practical significance and support the emergent field of

quantum sensing. This experiment quantitatively confirms that in principle a phase

space trajectory can be precisely monitored on the basis of a single simultaneous

measurement of conjugate observables on one copy at a time. Thus I conclude

that the often quoted interpretation of Heisenberg’s uncertainty relation ‘two non-

commuting observables of a quantum system cannot be measured simultaneously

with arbitrary precision’ is incorrect. In light of the experiment, the statement

becomes correct, if completed by ‘...with respect to a reference system that has been

coupled to the environment’. In this case the reference system cannot be quantum

correlated. Furthermore the experiment confirms the inherent determinism of the
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6. Surmounting Heisenberg’s indeterminacy in sensing

Schrödinger equation [83], since the results show that trajectories of freely evolving

physical systems are precisely determined if they are decoupled from the environment.

From this perspective Heisenberg’s uncertainty relation arises because a classical

measurement device can at best use a reference of close to zero temperature. In this

view, quantum uncertainties are associated with the measurement references but not

with the system being measured.
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7. Conclusion and prospect

To this day, the development of modern quantum technologies in optical measure-

ments relies on quantum correlated states of light. Therefore, well engineered light

sources that are precisely controllable enable a broad range of new applications in

sensing and monitoring of various signals. On the other hand, a deep understanding

of the fundamental principles of quantum physics background is necessary to take

full advantage of those new technologies. While as a whole, the focus of my thesis

is on the investigation of quantum uncertainty in measurements, it encompasses one

part of true technological application with squeezed light in quantum sensing and

the other part of the fundamental role of the Heisenberg uncertainty relation.

To study these aspects, I have set up two squeezed light sources consisting of

resonator-enhanced degenerate type-0 optical-parametric amplification in periodi-

cally poled potassium titanyl phosphate at a wavelength of 1550 nm. In principle,

each device had the capability to produce squeezed light with a noise reduction in

the squeezed quadrature of more than 10 dB compared to the vacuum noise at the

sideband frequency of around 5 MHz.

In this work, I present the experimental realization on the application of squeezed

states of light in interferometric measurements. To my best knowledge, I have

achieved the strongest non-classical sensitivity improvement in a Mach-Zehnder

interferometer with continuous-wave squeezed light. When the (amplitude) squeezed

vacuum was injected into the interferometer’s signal port, the directly observed noise

power reduction in the output of the Mach-Zehnder interferometer was (−10.5±
0.1) dB compared to a vacuum input. In this case, the artificial signal was detected

with an improved signal-to-noise ratio by a factor of 3.35, equivalent to an 11.2-fold

increase of coherent light power. The corresponding anti-squeezed quadrature shows

a noise power of (21.2± 0.1) dB above the vacuum noise, by which a total loss
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7. Conclusion and prospect

of (7.8± 0.2)% can be inferred. This result contributes to mitigate the quantum

noise of laser light in next generation of gravitational wave detectors. For example

the planned Einstein-telescope will most likely operate at a wavelength of 1550 nm

as used here. In principle, even higher squeezing values can be reached, when a

doubly resonant squeezed-light source and sophisticated phase-matching temperature

control are used instead, as in [21] for example.

Further, an analysis of a new concept to estimate absorption of photosensitive

samples in the Mach-Zehnder interferometer is presented. In this proof-of-principle

we have shown that the loss of a 99:1 beam splitter is independent of the detection

efficiency ηdet of the used photodiodes. This new approach may lead to applications

for on-chip based measurements of photosensitive biological samples. Moreover,

absolute calibration of the photodiodes is not necessary. We derived a simplified

model of the measured noise power spectra in the amplitude and phase quadrature

describing the interference of the correlated bipartite squeezed light for different

relative phases of the Mach-Zehnder interferometer. In a future experiment it will

be useful to probe for different absorption values inserted into one arm of the

interferometer and compare these results with the theoretical prediction. On the

theoretical side a complete (theoretical) model of this new technique would be

desirable, which also includes other imperfections, e.g. additional loss in the arms

and the unbalance of the beamsplitters.

Measurements of conjugate quantities with classical devices reveal a limit on the

achievable precision for a simultaneous single measurement based on Heisenberg’s

uncertainty relation. I have achieved the first demonstration of a continuous and

unconditional monitoring of dynamical phase space trajectories measured with sub-

Heisenberg indeterminacy. The implemented continuous-variable EPR-entangled

state from the two squeezed light sources enables the possibility to observe the

canonical conjugate amplitude and phase field quadratures simultaneously with a

precision higher than feasible for any quantum mechanical system without quantum

correlations. Since the time-evolution of the interrogated system was measured

with respect to an entangled quantum reference, I was able to track the trajectory

(⟨X̂⟩ ;⟨Ŷ ⟩)(t) with a precision more than a factor of 5 better compared to an ideal

measurement (cf. inequality 6.1). More importantly, the precision was ten-times
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below the relevant bound that limits phase space monitoring with respect to a classical

reference (cf. inequality 6.2). The factor by which Heisenberg’s uncertainty limit

is surpassed directly correspond to the strength of entanglement. This property

indeed allows for arbitrarily precise measurement values simultaneously performed

on conjugate quantities. Thus, I conclude that the often quoted interpretation of

Heisenberg’s uncertainty relation ‘two non-commuting observables of a quantum

system cannot be measured simultaneously with arbitrary precision’ is incorrect. The

statement becomes correct, if completed by ‘...with respect to a reference system

that has been coupled to the environment’. If the interrogated system is maximally

entangled with the reference system, and thereby perfectly decoupled from the

environment, the precision in every pair of simultaneous measurements at any time t

is unlimited. This provides a perfectly determined phase space trajectory as in

classical physics. From this perspective quantum uncertainties are associated with

measurement references, but not with the measured system.

In practice, limitations occur due to decoherence in terms of photon loss, which

reduces the strength of the entanglement. From that, I show a lower bound for

the precision in the uncertainty relation ∆X̂(t)∆Ŷ (t) ≥ e2(r1+r2), where r1 and r2

correspond to strength of the squeeze factors of the input states.

Moreover, the scientific results are of practical significance and thus support

the emergent field of quantum sensing based on entanglement. At the frontier of

the foundations of quantum mechanics, these experiments have demonstrated the

prospects of quantum correlations for new technological capabilities. On the other

hand it shows impressively that specific properties of quantum systems, that were

entitled by A. Einstein as ‘spooky interaction at the distance’ hundred years ago, are

well controllable and understood today.
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A. Appendix

A.1. Data analysis and post processing for

sub-Heisenberg trajectories

To acquire the data of chapter 6, I used a fast dual channel data acquisition card

PX14400A from Signatec, wich could acquire up to 400 MS/s on each channel with

a resolution of 14-bit. The card saved the recorded data directly into a binary file,

which was buffered by the onboard RAM and transferred via the PCIe interface to

the host PC. To process the data in the post processing it was necessary to convert the

raw data from the stored binary to the corresponding voltage value. The following

python code shows the post processing of the acquired data sets.

1 import os

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from nqlab import io

5 import scipy

6 import scipy.signal

7 from nqlab.analysis.fft import *

8 import array

9 import pandas as pd

10

11

12 def binary_to_integer(files, divider = 4):

13
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14 output=[ ]

15 ### get size of the file in Bytes

16 Nbytes = os.path.getsize(files)

17

18 with open(files, 'rb') as source:

19

20 for Mbyte in range(int(Nbytes/1048576)):

21 ### Read 1 Megabyte from the file at a time

22 ### and process that

23 buffer = source.read(1048576)

24 for index in range(int(1048576/2)):

25 measPoint = int.from_bytes(

26 buffer[2*index:2*index+2],

27 byteorder = 'little',signed=False

28 )//divider

29 #divide by 4 (b100) to get only

30 #the upper 14bits. Last 2bits always zero

31 output.append(measPoint)

32 return output

33

34 def convert_int_to_voltage(output, Umax = 220):

35 if type(output) is list:

36 output = np.array(output)

37

38 return (output-8192)*(Umax/2**14)

39

40

41 data = {} #creates a dictionary

42

43 ### path to data

44 path='\lab_026\measurements\19.03.2019\Time domain'

45 os.chdir(path)
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46

47 ### acquired data from data acquisition card PX1440

48 files = ['trajectory.rd16','vacuum.rd16']

49

50 for f in files:

51 file = binary_to_integer(f)

52 data[f.split('.')[0]] = convert_int_to_voltage(file)

53

54 dataset = pd.DataFrame(data)

55

56 channel_1 = dataset.iloc[0::2].reset_index(drop=True)

57 channel_2 = dataset.iloc[1::2].reset_index(drop=True)

58

59 ### setting parameters for digitial demodulation

60 fs=200e6 #sampling rate DAQ

61 phi=0 #phase Local oscillator

62 A=10. #amplitude Local oscillator

63 f=5e6 # demodulating frequency

64 t=np.arange(len(channel_1))/fs #time

65

66 ### defining the Local oscillator for demodulating

67 LO = A*np.sin(2*np.pi*f*t + phi)

68

69 demodulated_signal_1 = channel_1.mul(LO,axis=0)

70 demodulated_signal_2 = channel_2.mul(LO,axis=0)

71

72 ### avoiding correlations in dataset

73 lowpass = (scipy.signal.firwin(10000,10e3,window="blackman",

74 nyq= fs/2), 1.0)

75

76 data_new_1 = scipy.signal.lfilter(lowpass[0],lowpass[1],

77 demodulated_signal_1, axis=0)[0::1500]
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78 data_new_2 = scipy.signal.lfilter(lowpass[0],lowpass[1],

79 demodulated_signal_2, axis=0)[0::1500]

In figure A.1, I plotted the data processed with the python code shown above,

corresponding to the result obtained in section 6.2.1. The phase quadrature is

obtained from ‘data_new_2’ and the amplitude quadrature from ‘data_new_1’.
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Figure A.1.: Time-evolution of sample trajectory. Plotted are the time-evolution

of the phase quadrature (a) and the amplitude quadrature (b) acquired with the data

acquisition card for a single passage of 5 ms duration. In (c) the covered phase space

trajectory after each segment (vertical dashed line in (a) and (b)) in steps of 1 ms is

displayed.
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Synchronization of data acquisition card

The figure A.2 shows the demodulated signal at different demodulation frequencies

around the generated signal’s frequency f = 5 MHz. When the data acquisition card

was not synchronized with the function generator, the phase between the generated

signal and the acquired data drifted apart and showing an elongated trace. This was

later avoided by using the function generators reference clock as external clock for

the data acquisition card.

0 Hz

+6 Hz +12 Hz

+18 Hz +24 Hz

+9 Hz

-6 Hz

+21 Hz

-9 Hz

Figure A.2.: Different demodulation frequencies around the signal’s frequency

f = 5 MHz. The demodulation frequency was changed in a range between fdem = f -

9 Hz and fdem = f + 24 Hz, while the data acquistion card was not synchronized with

the function generator. In each plot the horizontal axis correspond to the amplitude

quadrature and the vertical axis to the phase quadrature.
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A.2. Frequency domain of sub-Heisenberg

stationary signal

The frequency domain plots in figure A.3 show the stationary signal, whose time

domain is presented in figure 6.9. The signal was simultaneously measured with a

spectrum analyzer. In both quadratures the signal appears at a frequency of 5 MHz

with a noise power reduction of more than 10 dB (green) compared to the vacuum

noise level (blue).

Figure A.3.: Sub-Heisenberg indeterminacy of a stationary state in frequency

domain. The blue traces show vacuum fluctuations, when the signal port of the

homodyne detectors were blocked. The green traces show the normalized si-

multaneously squeezed quadrature noise power spectra of the signal’s variance

∆2Y = (−10.1±0.1) dB and ∆2X = (−10.3±0.1) dB at a modulation frequency

of Ω/2π = 5 MHz. The slight slope of the traces is due to the decreasing transfer

function of the homodyne detectors. All traces were recorded with a resolution

bandwidth of ∆Ω/2π = 10 kHz, a video bandwidth of 30 Hz.

114



A.3. Theoretical calculation of detection loss dependency in absorption

measurement

A.3. Theoretical calculation of detection loss

dependency in absorption measurement

For completeness, this short section shows the corresponding calculated ratio Sratio

from the theoretical spectra obtained by the equation 5.9 and 5.10. The ratio is given

by

Sratio =
Sa(φ )

Sb(φ )
=

A

B
, (A.1)

with

A =e4rηdet(
√

ηs − cos(φ ))2

− e2r(−4+ηdet +ηdetηs −2
√

ηsηdet cos(φ ))+ηdet sin2(φ ) ,

B =ηdet(
√

ηs − cos(φ ))2

− e2r(−4+ηdet +ηdetηs −2
√

ηsηdet cos(φ ))+ e4rηdet sin2(φ ) .

Equation A.1 is dependent on the detection efficiency ηdet , which is plotted in figure

A.4. The theoretical prediction is also in good agreement with experimental data (cf.

figure 5.7), and shows that the simple assumption made are sufficient to describe

experimental results.

ra
ti

o
  
S
a
(ϕ

) 
 /

 S
p
(ϕ

) 

0

100

200

300

400

500
2% loss

5% loss

15% loss

40% loss

π/2 π 2π3π/2 5π/2 

 phase ϕ
0− π/2 
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