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1. Introduction

In this thesis we will consider graph theoretical problems from extremal and probabilistic
combinatorics. Before going into detail of the backgrounds of the specific topics in
Section 1.2 and Section 1.3, we give an overview, pointing out the common traits of
both sections as well as the vicinity of the results in their respective fields.

1.1 Overview

In this thesis, we will consider simple, undirected, finite graphs. Usually we will denote
them with G � pV,Eq, and the number of vertices n � |V | can be regarded as large or
growing towards infinity.

Generally we use standard notation and refer the readers to one of the standard
books [5, 7, 13]. We would like to point out, that by a path / walk of length `, we are
referring to a path / walk containing exactly ` edges, rather than one containing `
vertices. By the distance of two vertices we are referring to the length of the shortest
path between them.

Although it is sometimes remarked that graph theoretical concepts appear as early
as 1736 in a paper of Euler [20], the field has broadened into a large active field of
research in the 20th century, with many of its defining theorems being formulated and
proved in the latter half of it. Lately it has seen a sharp rise in applications in other
mathematical fields as well as in computer science. With the study of larger and more
complex graphs, the need to describe the rough structure of such graphs arises. In
a sense we will focus on certain structural properties, which we can guarantee for a
large class of graphs each in Chapter 2 and Chapter 3. A crucial role in our structural
analysis will be played by (graph-)homomorphisms.

1.2 Homomorphism thresholds

Often in extremal graph theory we want to force global behaviour with local conditions.
Examples for such local conditions are degree conditions and forbidding the appearance
of small subgraphs, where small usually translates to constant size, i.e. independent
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of n. The global behaviour we want to force may be some kind of structural property
(see, e.g., [3, 4, 55] for examples), and one such structural property is the chromatic
number of a graph.

Chromatic number

We recall the definition of the chromatic number of a graph. First we define a proper r-
colouring c of a graph G � pV,Eq as a map c : V Ñ rrs such that cpvq � cpuq whenever
we have vu P E. The chromatic number of G, or χpGq, then is the smallest number r,
such that there is a proper r-colouring of G.

An obvious sufficient condition for a graph G to have large chromatic number is
when G contains a large clique as a subgraph. The inverse is not true, as the following
celebrated result of Erdős [16] shows.

Theorem 1.2.1 (Erdős 1959). Let g, r be arbitrary numbers. There exists a graph G
with girth at least g and chromatic number at least r.

This theorem does not only show that the chromatic number of a graph may be large,
even if it does not contain any clique of more than 2 vertices, but that there are graphs
with large chromatic number that locally look like trees. Since the chromatic number
of trees is 2, the large chromatic number must be a global phenomenon rather than a
local one. A natural generalisation of the chromatic number are graph homomorphisms
into fixed graphs H, since the chromatic number χpGq of a graph G is just the smallest
number r, such that there is a graph homomorphism ϕ : V pGq ÝÑ Kr.

Here, once again the complete graphs seem to be connected to the chromatic number,
but in a not so obvious way. Indeed, it turns out that determining the chromatic number
of a graph is computationally complex, in the sense that it is NP -complete, and even
determining if a graph has a proper r-colouring for a fixed r ¥ 3 is already NP -complete.

According to [6] “one of the deepest unsolved problems in graph theory” is Hadwigers
conjecture [24] that states that every graph with chromatic number at least r contains
a Kr as a minor. It is proven for r ¤ 6, but already the proofs for r � 5 and r � 6
used the probably most famous theorem of graph theory, the 4-colouring theorem,
that was evading attempts to being proved for quite some time itself. Furthermore,
determining if G contains a graph H as a minor turns out to be another NP -complete
problem, so even if Hadwiger’s conjecture was true for general r, it would still be hard
to determine the chromatic number of a given graph, or bound it from above using
Hadwiger’s conjecture.

Trying to bound the chromatic number of a graph G from below by something else
than directly looking for the largest clique contained as a subgraph in G, we might turn
to local conditions that force the appearance of a clique inside a graph, and therefore
force a large chromatic number indirectly.
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The following famous theorem of Turán [54] states that a very large average degree
of a graph G forces the appearance of a large clique in G

Theorem 1.2.2 (Turán 1941). Let G � pV,Eq be an Kr�1 free n-vertex graph, then

|E| ¤ r � 1
r

n2

2 .

Such a threshold ( r�1
r

in case of a Kr�1) for the share of all possible edges that can
be present without forcing the appearance of a certain subgraph H is known as the
Turán density πpHq for any fixed graph H. This notation can naturally be extended to
families of graphs simply by replacing the graph H with a family F of graphs.

A rather unusual way to interpret this theorem is to remark that a very large average
degree in G forces G to have a large chromatic number. Since the average degree is a
condition that is sometimes difficult to use in proofs, one may consider the question,
which minimum degree δpGq forces a graph G to have a chromatic number of at least
c? An obvious answer would be to use Turán’s theorem directly to determine some
value for δpGq, however Theorem 1.2.1 tells us that there are graphs that locally look
tree-like and therefore naturally have an upper bound on the maximum degree, while
still having large chromatic number. Combining these two theorems, it seems interesting
to study graphs with large girth and large minimum degree. We start our discussion
with triangle-free graphs for simplicity.

There, Erdős, Simonovits, and Hajnal [19, page 325] proved that for every ε ¡ 0 there
exists a sequence of triangle-free graphs pGnqnPN with minimum degree at least p1

3 � εq
with unbounded chromatic number, i.e., χpGnq ÝÑ 8 as n ÝÑ 8. Maybe surprisingly,
they did not find such sequences where the minimum degree was at least p1

3 � εq,
implying that the combination of these two parameters may bound χpGq from above
instead of bounding it from below. Indeed they conjectured that such a sequence does
not exist with minimum degree at least p1

3 � εq. This conjecture was later proved by
Thomassen [52], establishing the first known chromatic threshold.

Chromatic threshold

To describe all graphs of interest to us precisely and yet in a general way, we will
introduce the following shorthand notation. Let F be some family of graphs, and let α
be an arbitrary number in r0, 1s, for the class of F -free graphs G with minimum degree
at least α|V pGq| we will simply write GF pαq, i.e.,

GF pαq �
 
G : δpGq ¥ α|V pGq| and F � G for all F P F

(
,

where for convenience we will drop the brackets for one element sets F � tF u, so we
write GF pαq instead of GtF upαq.
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For α � 1, obviously GF pαq does contain just finitely many graphs of bounded
size, namely at most minFPF |V pF q| � 1, since otherwise the graph Fmin realising this
minimum would appear in a graph from GF pαq with size |Fmin|. This number might
increase as α gets smaller, however the limit on the size of the graphs does not change,
as long as α is bigger than the Turán density πpF q. When α gets even smaller, in
most cases we will see a sharp increase of the size of GF pαq, and we are interested in
structural properties of members of G P GF pαq as α moves from πpF q to 0, where
structural properties are captured by the existence of (graph) homomorphism G

homÝÝÝÑ H

for some “small” graph H, i.e. the size of H is dependent on α and F , but not on G.
With no further restrictions on H, for a fixed size of H we get the most homo-

morphisms from other graphs into H by taking H � K|H|. Considering the second
interpretation of the definition of the chromatic number given in Section 1.2 it is easy
to see, why this approach was studied under the name chromatic threshold, and the
following definition will specify this threshold.

Definition 1.2.3. For a family of graphs F we define its chromatic threshold

δχpF q � inf
 
α P r0, 1s : there is K � KpF , αq

such that χpGq ¤ K for every G P GF pαq
(

If F � tF u consists of a single graph only, then we again simply write δχpF q.

For the smallest reasonable graph to analyse in terms of the number of vertices
we get F � tK3u, and rephrasing the above mentioned result of Erdős, Simonovits,
and Hajnal [19, page 325], they proved that δχpK3q ¥ 1

3 by showing that for every
ε ¡ 0 there exists a sequence of graphs pGnqnPN with members from GK3p1

3 � εq with
unbounded chromatic number, i.e., χpGnq ÝÑ 8 as n ÝÑ 8. They conjectured, that
such a sequence does not exist with members from GK3p1

3 � εq, which would imply
δχpK3q ¤ 1

3 and therefore
δχpK3q � 1

3 . (1.2.1)

As was noted above, this conjecture was later proved by Thomassen [52], establishing
the first known chromatic threshold.

In their paper, Erdős and Simonovits [19] moreover asked for the chromatic threshold
for C5. In another paper Thomassen [53] answered this question by establishing

δχpC2k�1q � 0, (1.2.2)

for k ¥ 3.
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Interpreting K3 as a clique rather than a cycle, (1.2.1) generalises to

δχpKkq � 2k � 5
2k � 3 , (1.2.3)

for k ¥ 3 (see [22, 36]).
Some more progress concerning the understanding of the chromatic threshold was

made by Łuczak and Thomassé [38], and Lyle [39], until finally Allen, Böttcher, Griffiths,
Kohayakawa, and Morris [1] determined the chromatic threshold δχpF q for every finite
family of graphs F .

Homomorphism threshold

Recalling the definition of the chromatic threshold, we had no restrictions onH except for
its size, which might lead to homomorphic images H of our graphs G that are somehow
undesirable. Restricting H further might lead to a different threshold behaviour, and a
natural restriction on H seems to be to require H to be F -free, ensuring that F -free
graphs stay that way after using the homomorphisms into a smaller graph. This leads
to the following definition.

Definition 1.2.4. For a family of graphs F we define its homomorphism threshold

δhompF q � inf
 
α P r0, 1s : there is an F -free graph H � HpF , αq

such that G homÝÝÝÑ H for every G P GF pαqu.

If F � tF u consists of a single graph only, then we again simply write δhompF q.

It follows directly from the definition that

πpF q ¥ δhompF q ¥ δχpF q

and that δhompF q � 0 for all families F containing a bipartite graph, because πpF q � 0
in this case. The first one to study the homomorphism threshold was Łuczak [35], who
showed that

δhompK3q � δχpK3q � 1{3,

proving the same threshold as in (1.2.1). For larger cliques, similar to (1.2.3) we have

δhompKkq � δχpKkq � 2k � 5
2k � 3 , (1.2.4)

for k ¥ 3, which was proved by Goddard and Lyle [22] and Nikiforov [36] (see also [42]).
By interpreting K3 as an odd cycle, rather than a clique, one might extend the

result of Łuczak by looking at (families of) odd cycles for F . In that direction, Letzter
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and Snyder [34] recently showed that

δhompC5q ¤ 1
5 and δhomptC3, C5uq � 1

5 .

Further generalising this results to families of odd cycles of arbitrary girth we present
the following result.

Theorem 1.2.5. For every integer k ¥ 3 we have

(i ) δhompC2k�1q ¤ 1
2k�1 and

(ii ) δhompC2k�1q � 1
2k�1 , where the family C2k�1 � tC3, C5, . . . , C2k�1u consists of all

odd cycles of length at most 2k � 1.

This is our first main result of Chapter 2, and will be addressed in the first 3 sections
of this chapter. In some of the proofs we might insist on G being maximally C2k�1-free.
This however does not restrict our choices of G in these kind of theorems, since every
C2k�1-free graph can be made maximally C2k�1-free without lowering the minimum
degree by adding edges, and a homomorphism of a graph is also a homomorphism of
all its subgraphs. Determining the homomorphisms for maximally C2k�1-free graphs
therefore indeed suffices to determine the homomorphisms of all C2k�1-free graphs.

Note that for k � 2 part (ii ) of Theorem 1.2.5 would include part (i ) and this
is Łuczak’s theorem [35]. For k � 3 Theorem 1.2.5 was obtained by Letzter and
Snyder [34]. We remark that our approach substantially differs from the work of Łuczak
and of Letzter and Snyder. For example, Łuczak’s proof relied on Szemerédi’s Regularity
Lemma, which is not required here.

In fact, in the paper of Letzter and Snyder they proved an even stronger statement,
namely that all C5-free graphs G with δpGq ¡ αδhompC5q|V pGq| � 1

5 |V pGq| are homomor-
phic to an Andrásfai graph Ak,r, which is introduced in Section 2.1, while the graphs H
from our proof from Section 2.3 are computationally much more complex. It would be
nice to have a firmer grasp on the graphs H, just like in the proof of Letzter and Snyder
for general k, however for k � 2 the analogous statement (that all C3-free graphs G
with δpGq ¡ αδhompC3q|V pGq| � 1

3 |V pGq| are homomorphic to an Andrásfai graph) turns
out to be not true. Since all (generalised) Andrásfai graphs have chromatic number 3,
but as Häggkvist pointed out [25], the Grötzsch graph (see Figure 1.2.1) is a triangle
free graph with chromatic number 4 where suitable unbalanced blow-ups keep these
properties while having a minimum degree of 10

29 ¡ 1
3 .

And for k ¥ 4 the analogous statement turns out to be not true again, as we show
in Section 2.6, specifically by Lemma 2.6.2, Observation 2.6.8, and Observation 2.6.9,
using some graph from Tk defined there.

Taking these counterexamples into account, we present the following theorem, which
is our second main result from Chapter 2.
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Figure 1.2.1: A blow-up of the Grötzsch graph which is triangle-free, 10-regular on 29
vertices and has chromatic number 4.

Theorem 1.2.6. Let k � 3 and let G be a maximal C2k�1-free graph on n vertices with
δpGq ¡ 1

2k�1n.
If G does not contain a graph of Tk as a subgraph, then G is homomorphic to Ak,r

for some r.

While this theorem is slightly weaker than the one proven by Letzter and Snyder
in [34], our proofs are mainly done for general k and point out a clear path how
to generalise Theorem 1.2.6 for arbitrary large k and we will come back to this in
Chapter 4.

1.3 Spanning subgraphs

In Section 1.2 we have seen Turán’s theorem, that a large average degree dpGq forces the
appearance of a small subgraph in G. An interesting question is, if something similar is
possible with large, or even spanning graphs that should appear as a subgraph, without
the condition that G should essentially be a complete graph. Since a large average
degree can always be achieved having a few vertices with really small degree, which
might obstruct the appearance of a spanning subgraph very locally, one should rather
consider δpGq to be large for these kind of studies.

Graphs with large minimum degree

The most prominent theorem of this type, concerning Hamiltonian cycles, surely is the
following theorem of Dirac [14].

Theorem 1.3.1 (Dirac 1952). Let G � pV,Eq be an n-vertex graph with n ¥ 3.
If δpGq ¥ n{2, then G contains a Hamiltonian cycle.
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This gives an optimal bound to maybe the simplest version of sufficient conditions
for the existence of Hamiltonian cycles in a graph and has sparked a wide field of
research.

Although Diracs theorem seems hard to improve upon, since the bound is tight
while offering a - in a sense maximal - local condition to get a global structure, there
have indeed been plenty of different proofs to get related results with a similar approach.
From weakening the assumption in the theorem, making it slightly less local in the
process [43] to extending the definition of Hamiltonian cycles to hypergraphs [46, 56] or
infinite graphs [27] there are plentiful results.

However, in this thesis we want to concentrate on another direction of research,
extending the definition of Hamiltonian cycles in simple finite graphs to something
called powers of Hamiltonian cycles (see Figure 1.3.1). For this we first need some
definitions. Let k P N be a natural number, then the k-th power of a graph G, or
shorthand Gk is a graph on the same vertex set as G, where two vertices are neighbours
if they have distance at most k in G. For example for k � 2, for every 3 vertices a, b,
and c such that ab, bc P EpGq, we would have ac P EpG2q as well.

Figure 1.3.1: The graphs C20, pC20q2, and pC20q3.

For simplicity, we refer to a k-th power of a path with at least k vertices as a k-path.
Moreover, we refer to the ordered k-tuples of the first and last k vertices of a k-path
as ends of the k-path and an páx, áy ; kq-path is a k-path with ends áx and áy . Note that
every k � 1 consecutive vertices of a k-path span a clique and if a graph G � pV,Eq
contains the k-th power of a Hamiltonian cycle, it also contains t |V |

k�1u pairwise vertex
disjoint copies of Kk�1 and G contains a Kk�1-factor if |V | is divisible by k � 1.

Dirac’s well known theorem [14] guarantees the existence of a Hamiltonian cycle,
just by having a sufficiently big minimum degree. Two disjoint cliques of size n{2 show
that this minimum degree condition is best possible as well. Forcing the existence of
spanning subgraphs and finding the optimal minimum degree condition to do so became
a rich field of research in extremal graph theory (see, e.g., [9] and the references therein).
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In 1963 Corrádi and Hajnal solved the minimum degree problem for Kk�1-factors
for k � 2 [12], and in 1970 Hajnal and Szemerédi [26] solved this problem for every k ¥ 3.
Pósa (see [17]) and Seymour [49] asked for a common generalisation of those results on
factors and Dirac’s theorem. They conjectured that the best possible minimum degree
conditions for Kk�1-factors and k-th powers of Hamiltonian cycles are the same. (At
least when the number of vertices is divisible by k � 1.) In 1998 Komlós, Sárközy, and
Szemerédi [31] proved this conjecture for large graphs by giving the following theorem.

Theorem 1.3.2 (Komlós, Sarközy, Szemerédi 1998). For every positive integer k there
exists n0 such that if G is a graph on n ¥ n0 vertices with minimum degree δpGq ¥ k

k�1n,
then G contains the k-th power of a Hamiltonian cycle.

The complete and nearly balanced pk � 1q-partite graphs show that this bound on
δpGq is optimal.

Uniformly dense and inseparable graphs

Whenever a counterexample seems to be the only one of its kind, in extremal graph
theory one may ask if the desired theorem still holds true for relaxed assumptions
when excluding this particular example. We have seen similar behaviour in Section 1.2
already, this time however, we want to achieve excluding the appearance of certain
graphs indirectly. The following robust restriction that imposes a uniformly positive
edge density for subgraphs induced on linear sized subsets of vertices will rule out the
appearance of the counterexamples. It also has the benefit of being true for random
graphs, giving this a wide range of applications, as well as being relatively easy to use
in proofs.

Definition 1.3.3. We say that a graph G � pV,Eq is p%, dq-dense for % ¡ 0 and d P r0, 1s
if

epUq ¥ d
|U |2

2 � %|V |2

for every subset U � V , where epUq denotes the number of edges of G contained in U .

Staden and Treglown [50] indeed showed the following theorem using p%, dq-denseness.

Theorem 1.3.4. For every positive integer k, and d, µ ¡ 0 there exists % ¡ 0, and
an integer n0 such that if G is a p%, dq-dense graph on n ¥ n0 vertices with minimum
degree δpGq ¥ p1

2 � µqn, then G contains the k-th power of a Hamiltonian cycle.

(For Kk�1-factors see also [45].) Maybe surprisingly the minimum degree condition
becomes independent of k. Moreover, this bound on δpGq is optimal in this setting, as
once again, with smaller δpGq, counterexamples are arising. For δpGq   n{2 consider
the graph consisting of two disjoint cliques on close to n{2 vertices. This graph is not
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connected and therefore not Hamiltonian at all, furthermore it is p%, dq-dense (for any
d   1{4) and has a big minimum degree of almost n{2.

Once again trying to rule out this specific example by requiring G to have an
additional property Glock and Joos (see [50, Concluding Remarks]) considered the
following bipartite version of Definition 1.3.3.

epX, Y q � �� px, yq P X � Y : xy P EpGq(�� ¥ d|X||Y | � %|V |2 (1.3.1)

for all subsets X, Y � V .
They proceed to prove that requiring G to be uniformly dense and satisfy (1.3.1),

as well as having a minimum degree of at least µn for arbitrary µ ¡ 0 guarantees G
to contain the k-th power of a Hamiltonian cycle. Once again we note that the only
variables depending on k are % and n0, where we must have that n � |V pGq| ¥ n0.

We show that the following definition, which is slightly weaker than the one used by
Glock and Joos is sufficient to be paired with uniform density of graphs to force a k-th
power of a Hamiltonian cycle.

Definition 1.3.5. We say that a graph G � pV,Eq is µ-inseparable for some µ ¡ 0 if

epX, V rXq ¥ µ|X||V rX|

for every subset X � V .

Note that there is no error term in our definition, forcing µ-inseparable graphs to
have a large minimum degree by invoking this assumption to subsets X consisting of
one vertex. We will show that µ-inseparable graphs are “well connected” (see, e.g.,
Lemma 3.2.2).

Our first main result of Chapter 3 is then the following theorem, combining Defini-
tions 1.3.3 and 1.3.5 to force the appearance of k-th powers of Hamiltonian cycles for
every fixed integer k ¥ 1.

Theorem 1.3.6. For every d, µ P p0, 1s, and k P N there exist % ¡ 0 and n0 such that
every p%, dq-dense and µ-inseparable graph G on n ¥ n0 vertices contains the k-th power
of a Hamiltonian cycle.

Since it is rather easy to see that every graph G with minimum degree δpGq ¥
p1{2 � µq|V pGq| is µ-inseparable, Theorem 1.3.6 is a strengthening of the result of
Staden and Treglown for powers of Hamiltonian cycles [50].

Furthermore it is also a strengthening of the result by Glock and Joos [50, Concluding
Remarks]. To see this, consider the graph G consisting of two cliques of size p1{2�µ{2qn
which intersect in µn vertices. It has n vertices in total and satisfies Definition 1.3.3
as well as Definition 1.3.5, therefore by Theorem 1.3.6 it contains the k-th power of a
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Hamiltonian cycle. But since it fails to satisfy property (1.3.1) for arbitrary subsets X
and Y , the result of Glock and Joos is not applicable to this graph.

Staden and Treglown and also Glock and Joos did not just consider the embeddings
of powers of Hamiltonian cycles, but of a more general class of graphs. We recall that
the bandwidth bwpHq of an n-vertex graph H is the maximum distance of two adjacent
vertices minimised over all possible orderings of the vertex set of H, i.e.,

bwpHq � min
σ

max
xyPEpHq

��σpxq � σpyq��,
where the minimum is taken over all possible bijections σ : V pHq ÝÑ rns. We may refer
to an ordering σ of V pHq achieving this minimum bwpHq as a bandwidth ordering of H.

Staden and Treglown and also Glock and Joos proved that with the requirements
they had on their graphs, it is not only possible to embed powers of Hamiltonian
cycles, but more generally graphs with small bandwidth which satisfy a few additional
conditions.

Using our Theorem 1.3.6, we will establish the following version of the bandwidth
theorem from [9] for inseparable and uniformly dense graphs, which is our second main
result from Chapter 3.

Theorem 1.3.7. For every d, µ P p0, 1s, and ∆ P N there exist %, β ¡ 0 and n0

such that every p%, dq-dense and µ-inseparable graph G on n ¥ n0 vertices contains
every n-vertex graph H satisfying ∆pHq ¤ ∆ and bwpHq ¤ βn.

Finally, another direction which one could investigate further is the question if there
is a common generalisation of Theorem 1.3.2 and Theorem 1.3.6. Indeed it is rather
easy to see that such a large minimum degree condition forces a graph to be inseparable,
so the question is, if it also forces a graph to be uniformly dense. While this turns out
not to be true, there is a slightly weaker version of Definition 1.3.3, which is forced by
graphs with very large minimum degree. Maesaka and Schacht [40] proved that this
weaker version of Definition 1.3.3 for k � 1 suffices to guarantee Hamilton cycles to
appear in a graph. We will come back to this in Section 3.5, together with some further
research in this direction.
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2. Homomorphism Thresholds
of odd cycles

To prepare for the proof of Theorem 1.2.5, first we will introduce Andrásfai graphs
in Section 2.1, which will be used for the lower bound of part (ii ) of Theorem 1.2.5.
To be able to give the proof of the upper bound for both parts of Theorem 1.2.5 in
Section 2.3, we will make sure that some subgraphs may not appear in the graphs we
consider in Theorem 1.2.5, these statements and proofs will be collected in Section 2.2.

To prepare for the proof of Theorem 1.2.6, we will start off with introducing a
property of subgraphs, namely being well-behaved, and prove that some subgraphs we
will consider have this property in Section 2.4. This property will be of great help in
making other statements and proofs relatively compact. Analogously to the preparation
for the proof of Theorem 1.2.5, we will then prove that some (induced) subgraphs may
not appear in the graphs we consider in Theorem 1.2.6 and collect these statements and
proofs in Section 2.5. After introducing odd tetrahedra in Section 2.6, which motivate
our formulation of Theorem 1.2.6 in the first place, we will then give the proof of
Theorem 1.2.6 in Section 2.7.

2.1 Generalised Andrásfai graphs

In this section we establish the lower bound of part (ii ) of Theorem 1.2.5, which will
be given by a sequence of so-called Andrásfai graphs. For k � 2 those graphs already
appeared in the work of Erdős [15] and were also considered by Andrásfai [2, 3].

Definition 2.1.1. For every integer k ¥ 2 we define the class Ak of Andrásfai graphs
consisting of all graphs G � pV,Eq, where V is a finite subset of the unit circle R{Z and
two vertices are adjacent if and only if their distance in R{Z is bigger than k�1

2k�1 , i.e., the
neighbourhood of any vertex v P V � R{Z is given by the set V X �

v � �
k�1
2k�1 ,

k
2k�1

��
,

where
v � �

k�1
2k�1 ,

k
2k�1

� �  
v � x : x P � k�1

2k�1 ,
k

2k�1

�( � R{Z.
Moreover, for integers k ¥ 2 and r ¥ 1 the Andrásfai graph Ak,r is isomorphic to a

graph from Ak having the corners of a regular pp2k � 1qpr � 1q � 2q-gon as its vertices
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(see Figur 2.1.1 for an illustration).

Figure 2.1.1: The Andrásfai graphs A5,2, A5,3 and A5,4 in the Hamiltonian ordering
from Equation (2.1.2).

We remark that one can show that every graph G P Ak is homomorphic to Ak,r for
some sufficiently large r. The following properties of Andrásfai graphs are well-known
and we include the proof for completeness.

Proposition 2.1.2. For all integers k ¥ 2 and r ¥ 1 the following properties hold

(a ) Ak,r is r-regular,

(b ) Ak,r is C2k�1-free,

(c ) if r ¥ 2 then any two vertices of Ak,r are contained in a cycle of length 2k � 1,
and

(d ) if Ak,r homÝÝÝÑ H for some graph H with |V pHq|   |V pAk,rq|, then H contains an
odd cycle of length at most 2k � 1.

In particular, it follows from (a ), |V pAk,rq| � p2k � 1qpr � 1q � 2, (b ), and (d )
that δhompC2k�1q ¥ 1

2k�1 , as r can be chosen arbitrarily big.

Proof. For given integers k ¥ 2 and r ¥ 1 set

n � |V pAk,rq| � p2k � 1qpr � 1q � 2

and let v0, . . . , vn�1 be the vertices of Ak,r in cyclic order, i.e., we assume vi � i{n P R{Z
for every i � 0, . . . , n� 1. By definition of Ak,r the neighbourhood of v0 is contained in
the open interval

�
k�1
2k�1 ,

k
2k�1

� � R{Z. Consequently,
Npv0q � tvi : i � pk � 1qpr � 1q � 1, . . . , kpr � 1q � 1u (2.1.1)

and part (a ) follows by symmetry.
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For part (b ) we observe that for any closed walk u1 . . . u`u1 of length ` in Ak,r we
have pu` � u1q �

°`�1
i�1pui � ui�1q � 0 and owing to the definition of Ak,r each term of

that sum lies in
�
k�1
2k�1 ,

k
2k�1

� � R{Z. However, for every integer j � 2, . . . , k we have

pj � 1q ¤ p2j � 1q k � 1
2k � 1   p2j � 1q k

2k � 1 ¤ j.

Consequently, pu` � u1q �
°`�1
i�1pui � ui�1q P pj � 1, jq. Since 0 R pj � 1, jq, no walk in

Ak,r of length 2j � 1 for j ¤ k can be closed and part (b ) follows.
For part (c ) we show below that starting in u0 � v0 and always choosing the closest

clockwise neighbour in Ak,r, i.e., setting

uj � uj�1 � pk � 1qpr � 1q � 1
n

� j
pk � 1qpr � 1q � 1

n
P R{Z, (2.1.2)

defines a Hamiltonian cycle C � u0 . . . un�1u0 with the property that

u1, up2k�1q�1, u2p2k�1q�1, . . . , upr�1qp2k�1q�1 � un�1

are the r neighbours of u0 � v0 in Ak,r. In other words, every p2k � 1q-st vertex on the
subpath u1 . . . un�1 of the Hamiltonian cycle C is a neighbour of u0. Considering the
C2k�1’s created by the chords between u0 and its neighbours up2k�1q�1, . . . , upr�2qp2k�1q�1

shows that u0 � v0 lies on a cycle of length 2k� 1 with every other vertex of Ak,`, which
by symmetry verifies part (c ).

It is left to show that the C defined above, has the desired properties, i.e. is
Hamiltonian with the stated distribution of Npv0q. It follows from the definition of C
that un�1u0 and uiui�1 are edges of Ak,r for every i � 0, . . . , n� 2 and, hence, C is a
closed walk of length n. However, since

n � p2k � 1qpr � 1q � 2 � 2
�pk � 1qpr � 1q � 1

�� pr � 1q

and pk � 1qpr � 1q � 1 are relatively prime, it follows that C is indeed a Hamiltonian
cycle. Moreover, we observe for s � 0, . . . , r � 1 that

usp2k�1q�1
(2.1.2)� psp2k � 1q � 1qpk � 1qpr � 1q � 1

n

� psp2k � 1q � 1q pk � 1qpr � 1q � 1
p2k � 1qpr � 1q � 2

� pk � 1qpr � 1q � 1� s

p2k � 1qpr � 1q � 2 � spk � 1q

� pk � 1qpr � 1q � 1� s

n
� vpk�1qpr�1q�1�s

(2.1.1)P Npv0q,

which shows the stated distribution of Npv0q on C.
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Finally, assertion (d ) is a direct consequence of part (c ). Suppose ϕ : Ak,r ÝÑ H is a
graph homomorphism with |V pHq|   n. Then there are two vertices x, y P V pAk,rq such
that ϕpxq � ϕpyq. In particular xy R EpAk,rq and in view of (c ) the vertex ϕpxq � ϕpyq
must be contained in a closed odd walk of length at most 2k� 1 in H and, consequently,
H contains an odd cycle of length at most 2k � 1.

2.2 Forbidden subgraphs in C2k�1-free graphs

In this section we collect a few observations on local properties of graphs with high
minimum degree and without an odd cycle of given length.

The main result of this section is the proof of Proposition 2.2.5, which gives some
structural information on such graphs by excluding long odd cycles and pairs of odd
cycles connected by a path of length 4.

We remark that in the following lemmas and in Proposition 2.2.5 the additional
εn term in the minimum degree condition could be replaced by some polynomial in k.
However, since we do not strive for the optimal condition in these auxiliary results, we
chose to state them with the same assumption as in Theorem 1.2.5. Recall that by the
length of a path or more generally the length of a walk, we refer to the number of edges,
where each edge is counted with its multiplicity. In particular, we denote by Pr the
path on r � 1 vertices.

Lemma 2.2.1. Let k ¥ 2, ε ¡ 0, and let G � pV,Eq be a C2k�1-free graph satisfy-
ing |V | � n ¥ 4k{ε and δpGq ¥ � 1

2k�1 � ε
�
n.

(i ) For every vertex v P V we have dpMq :� 2epMq{|M |   2k for all M � Npvq.

(ii ) For every two vertices v, u P V , if there is an odd v-u-path of length at most 2k�3
in G, then u and v have less than 5k2 common neighbours in G.

In the proof of Lemma 2.2.1 we will use the following consequence of the Erdős-Gallai
theorem on paths [18], also stated Theorem 1 of [23].

Theorem 2.2.2. (Erdős & Gallai 1959)

(i ) Let G be an n-vertex graph. If epGq ¥ 1
2kn, then G contains a path with k vertices.

(ii ) Let G � pA,B,Eq be a bipartite graph with |A| ¥ |B| ¥ k. If epA,Bq ¡
p|A| � |B|qk, then G contains an even path of length k.

Proof of Lemma 2.2.1. Assertion (i ) is a direct consequence of Theorem 2.2.2 (i ).
Indeed, it implies that dpMq ¥ 2k yields a copy of P2k�3 in M � Npvq, which together
with v would form a cycle C2k�1 in G.
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For the proof of (ii ) assume for a contradiction that |Npvq X Npuq| ¥ 5k2, and
there is an odd v-u-path P of length at most 2k � 3. Let A1 � pNpvq XNpuqqr V pP q,
clearly, |A1| ¥ 4k2 so let A � A1 be a subset of A1 with exactly 4k2 vertices and
B � NpAqr pAY V pP qq. Since every vertex in A has at most 2k � 2   2k neighbours
in P we have

epA,Bq ¥ |A| � δpGq � 2epAq � |A| � 2k (i )¡ |A|
�

1
2k � 1n� εn� 4k



¥ 4k2

2k � 1n ¡ 2k � n.

Consequently, |B| ¡ 2k and Theorem 2.2.2 (ii ) yields a P2k�2 in GrA,Bs and, hence,
for every ` P rk� 2s there exists a P2` in GrA,Bs with end vertices in A. Together with
the path P this yields a cycle C2k�1 in G, which is a contradiction to the assumption
that G is C2k�1-free.

Lemma 2.2.1 yields the following corollary, which asserts that the first and the
second neighbourhoods of a short odd cycle cover the “right” proportion of vertices.

Lemma 2.2.3. Let k ¥ 2, ε ¡ 0, and let G � pV,Eq be a C2k�1-free graph satisfy-
ing |V | � n ¥ 20k3{ε and δpGq ¥ � 1

2k�1 � ε
�
n. If C � c1 . . . c`c1 is an odd cycle of

length `   2k� 1 in G, then for every i P r`s there are subsets Mi � Npciqr V pCq, ver-
tices mi PMi, and subsets Li � NpmiqrV pCq such that the sets M1, . . . ,M`, L1, . . . , L`

are mutually disjoint and each of those sets contains at least 1
2k�1n vertices.

Proof. Let C � c1 . . . c`c1 be an odd cycle of length ` in G � pV,Eq, where `   2k � 1.
Since there is a path of odd length at most ` � 2   2k � 3 between any two vertices
of C, Lemma 2.2.1 (ii ) tells us, that |Npciq X Npcjq|   5k2 for all distinct i, j P r`s.
Consequently, we may discard up to at most p`� 1q � 5k2 � `   10k3 vertices from the
neighbourhoods Npciq and obtain mutually disjoint sets Mi � Npciqr V pCq of size at
least

δpGq � 10k3 ¥ 1
2k � 1n� εn� 10k3 ¡ 1

2k � 1n.

For every i P r`s fix an arbitrary vertex mi P Mi. Since there is a path of odd length
at most ` � 2   2k � 3 between any two vertices of C, there is a path of odd length
at most p`� 2q � 2 � ` ¤ 2k � 3 between any two vertices mi and mj. Again we infer
from Lemma 2.2.1 (ii ) that |Npmiq XNpmjq|   5k2 for all distinct i, j P r`s and in the
same way as before, we obtain mutually disjoint sets L1i � Npmiq r V pCq of size at
least δpGq � 10k3.

Furthermore, since there also is a path of even length at most `�1   2k�3 between
any two (not necessarily distinct) vertices of C, there is a path of odd length at most
p`� 1q� 1 � ` ¤ 2k� 3 between any pair of vertices ci and mj . Again Lemma 2.2.1 (ii )
implies that |NpciqXNpmjq|   5k2 for all i, j P r`s and discarding at most ` �5k2   10k3

vertices from each L1i yields sets Li � Npmiq such that M1, . . . ,M`, L1, . . . , L` are
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mutually disjoint and disjoint from V pCq. Moreover, the assumption n ¥ 20k3{ε implies

|Li| ¥ |L1i| � 10k3 ¥ δpGq � 20k3 ¥ 1
2k � 1n� εn� 20k3 ¥ 1

2k � 1n,

which concludes the proof of the lemma.

In the proof of part (i ) of Theorem 1.2.5 it will be useful to exclude the graphs
described in Definition 2.2.4 as subgraphs of a C2k�1-free graph of sufficiently high
minimum degree.

Definition 2.2.4. We denote by D` the graph on 2`� 3 vertices that consist of two
disjoint cycles of length ` and a path of length 4 joining these two cycles, which is
internally disjoint to both cycles.

The following proposition excludes the appearance of some short odd cycles and
D`’s in the graphs G considered in Theorem 1.2.5.

Proposition 2.2.5. Let k ¥ 2, ε ¡ 0, and G � pV,Eq be a C2k�1-free graph satisfy-
ing |V | � n ¥ 20k3{ε and δpGq ¥ � 1

2k�1 � ε
�
n. Then

(i ) G is C`-free for every odd ` with k ¤ ` ¤ 2k � 1.

(ii ) G is D`-free for every odd ` with maxt3, 2k � 7u ¤ ` ¤ 2k � 1.

Proof. Assertion (i ) is a direct consequence of Lemma 2.2.3, as the mutually disjoint
sets M1, . . . ,M`, L1, . . . , L` would not fit into V pGq.

For the proof of assertion (ii ) we assume for a contradiction that G � pV,Eq contains
a subgraph D` for some odd ` with maxt3, 2k � 7u ¤ ` ¤ 2k � 1. Since the graph D`

contain a cycle of length `, we immediately infer from part (i ), that we may assume
`   k. Consequently, k ¡ ` ¥ 2k�7 implies k ¤ 6 and owing to k ¡ ` ¥ maxt3, 2k�7u
we see that the only remaining cases we have to consider are pk, `q P tp4, 3q, p5, 3q, p6, 5qu.
We discuss each of the cases below.

Case: k � 6 and ` � 5.

Let C � c1 . . . c5c1 and C 1 � c11 . . . c
1
5c

1
1 be the two cycles of length 5 appearing in

D5 � G and suppose the path P of length 4 connects c1 and c11. We observe that
c15 is connected to every vertex of C by an odd path of length at most 9, as seen in
Figure 2.2.1. In fact, Q � c15P connects c15 and c1 by a path of length 5 and every other
vertex of C can be reached by an even path of length at most 4 from c1.

Furthermore, c15 is connected to every vertex in NpCq by an odd path of length
at most 9. For the vertices in NpCq r Npc1q we again follow the path Q and since
c2, c3, c4, and c5 can be reached by an odd path of length at most 3 from c1, as seen in
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Figure 2.2.1, every vertex in NpCqrNpc1q can be reached by an odd path of length
at most 5� 3� 1 � 9. For the vertices in Npc1q we utilise the path of length 4 from
c15 to c11 in C 1. Continuing then along P to c1 shows that there are paths of length 9
connecting c15 with every vertex in Npc1q.

As 9 � 2k� 3, we infer from Lemma 2.2.1 (ii ) that c15 has at most 10 � p5k2� |Q|q  
10k3 neighbours in the sets M1, . . . ,M5, L1, . . . , L5 given by Lemma 2.2.3 applied to C.
However, since ��M1 Y� . . .Y� M5 Y� L1 Y� . . .Y� L5

�� ¥ 10
11n

this implies degpc15q ¤ n
11 � 10k3   n

11 � εn by the assumption that n ¡ 20k3{ε, which
contradicts the minimum degree assumption on G in this case.

c2 c12

c3 c13

c4 c14

c5 c15

c1 c11

Figure 2.2.1: An odd path of length 7 from c15 to c4 in red and an even path of length 8
from c15 to c4 in blue as used in the proof of case k � 6 and ` � 5.

Case: k � 5 and ` � 3.

Let C � c1c2c3c1 and C 1 � c11c
1
2c

1
3c

1
1 be the two triangles of D3 � G and suppose the

path of length 4 connects c1 and c11. Moreover, Lemma 2.2.3 applied with C yields
vertices m1,m2,m3 and vertex sets M1,M2,M3 and L1, L2, L3. It is easy to check that
c12 and c13 can reach each ci and mi for every i P r3s by an odd path of length at most
7 � 2k � 3, as seen in Figure 2.2.2 on the left. In view of Lemma 2.2.1 (ii ), and since
|Npc12q|, |Npc13q| ¥ δpGq ¥ n{9 it follows that

��M1 YM2 YM3 Y L1 Y L2 Y L3 YNpc12q YNpc13q
�� ¥ 8

9n.

Consequently, we infer from |Npc11q| ¥ δpGq ¥ n{9� εn ¡ n{9� 40k2 that the vertex
c11 must have at least 5k2 common neighbours with one of the eight vertices c1, c2, c3,
m1, m2, m3, c12, c13. Since c11 can be connected by an odd path of length at most 7 to
all of these eight vertices but c1, we infer that c1 and c11 have 5k2 common neighbours
and we can fix such a neighbour disjoint from m1, m2, m3, C and C 1. In other words,
we found a graph D1

3 consisting of C, C 1, and a path of length 2 between c1 and c11.
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Consequently, c12 and c13 are connected to each ci and each mi for every i P r3s by an
odd path of length at most 5. Hence, we can fix a neighbour m1

2 of c12, which can be
connected to each ci and each mi for i P r3s and to c12 and c13 by an odd path of length
at most 7, as seen in Figure 2.2.2 on the right. In other words, any two of the 9 vertices
from c1, c2, c3,m1,m2,m3, c

1
2, c

1
3 and m1

2 are connected by an odd path of length at most
7 and thus have fewer than 5k2 common neighbours by Lemma 2.2.1 (ii ). However,
since εn ¡ 40k2 the minimum degree assumption implies that at least one of the former
8 vertices must have at least 5k2 common neighbours with m1

2.

c11
m1

2

Figure 2.2.2: On the left the graph D3 of the case k � 5 and ` � 3 where the vertex c11
does not have enough neighbours, and on the right the graph D1

3 where the vertex m1
2

does not have enough neighbours.

Case: k � 4 and ` � 3.

Again we consider the two triangles C � c1c2c3c1 and C 1 � c11c
1
2c

1
3c

1
1 of D3 � G and

assume c1 and c11 are connected by a path c1p1p2p3c
1
1 of length 4. We consider the vertices

m1, m2, m3 and sets M1,M2,M3, L1, L2, L3 and M 1
1,M

1
2,M

1
3 given by Lemma 2.2.3

applied with C and with C 1.
Note that there can only be one edge between a vertex of C and a vertex of C 1,

namely c1c
1
1, otherwise there is a C7 in D3. Therefore, if there are vertices ci and c1j

with i, j P r3s such that they have at least two common neighbours, G contains a graph
D1

3 consisting of C, C 1 and a path of length 2 between ci and c1j . By symmetry, we may
assume i � j � 1. However, in this case we see that c12 is connected to c1, c2, c3 and
m1,m2,m3 by an odd path of length at most 5, as seen in Figure 2.2.3 on the right.
Since ��M1 YM2 YM3 Y L1 Y L2 Y L3

�� ¥ 6
7n,

the minimum degree assumption yields at least pεn� 4q{6 ¥ 5k2 common neighbours
of c12 and one of the vertices of tc1, c2, c3,m1,m2,m3u, which is a contradiction to
Lemma 2.2.1 (ii ).

Assuming that no two vertices of C and C 1 have more than one common neighbour,
we notice that p1 can be connected to all three vertices of C and to all three vertices
of C 1 by an odd path of length at most 5 � 2k � 3, as seen in Figure 2.2.3 on the left.
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This implies that

��M1 YM2 YM3 YM 1
1 YM 1

2 YM 1
3
�� ¥ 6

7n� 9.

Consequently, the minimum degree assumption yields at least pεn � 9 � 9q{6 ¥ 5k2

common neighbours of p1 and one of the vertices of C1 or C 1
1, which is a contradiction

to Lemma 2.2.1 (ii ).

p1

c12

Figure 2.2.3: On the left the graph D3 of the case k � 4 and ` � 3 where the vertex p1
does not have enough neighbours, and on the right the graph D1

3 where the vertex c12
does not have enough neighbours.

2.3 Proof of the main theorem

Proof of Theorem 1.2.5. We first prove assertion (i ) of Theorem 1.2.5. Given a suf-
ficiently large C2k�1-free n-vertex graph G � pV,Eq with δpGq ¥ p 1

2k�1 � εqn for
k ¥ 3 and ε ¡ 0, it suffices to show that there exists a C2k�1-free graph H with
|V pHq| ¤ K � Kpk, εq and G

homÝÝÝÑ H. The required graph HpC2k�1, αq for Defini-
tion 1.2.4 can then be taken to be the disjoint union of all non-isomorphic C2k�1-free
graphs on K vertices.

In particular, the constant K must be independent of n. Without loss of generality
we may assume that 2{ε is an integer. In order to define K, consider the function
f : R ÝÑ R with x ÞÝÑ x2x and set

m � max
"R

2 lnp3{εq
ε2

V
, 8k2

*
and K � f � f � � � � � flooooooomooooooon

2k-times

�p2{ε� 1qpm4kq�, (2.3.1)

i.e., K is given by a 2pk � 1q-times iterated exponential function in polyp1{ε, kq.
Considering a random m-element subsets X � V , it follows from the concentration

of the hypergeometric distribution (see e.g. [28, inequality (2.6) and Theorem 2.10]) for
any fixed vertex v P V

P
�|Npvq XX| ¤ p 1

2k�1 � εqm� t
� ¤ exp

�� t2

2m

�
,

for every t ¡ 0. Since our choice of m in (2.3.1) yields m{2k ¡ 4k it follows with
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t � εm, that there exists a set X of size m, such that all but at most εn{3 vertices of
G have at least 4k neighbours in X. We fix such a set X � tx1, . . . , xmu and set

Y �  
v P V : |Npvq XX| ¥ 4k

(
.

For every y P Y fix a set Xpyq of exactly 4k neighbours of y in X in an arbitrary
way. We partition Y into

�
m
4k

�
sets, where two vertices y, y1 P Y belong to the same

partition class if Xpyq � Xpy1q. Removing all the classes with fewer than 8k{ε vertices
from this partition yields a partition Q of a subset of Y of size

���¤Q
��� ¥ |Y | �

�
m

4k



8k
ε
¥
�
n� ε

3n
	
�
�
m

4k



8k
ε
¡ n� ε

2n, (2.3.2)

where the last inequality holds for sufficiently large n. For convenience we may index
the partition classes of Q by a suitable set I � rM s with M ¤ �

m
4k

�
, i.e., Q � pQiqiPI .

Next we define a partition R of the whole vertex set V , based on the neighbourhoods
with respect to the partition classes of Q. More precisely we assign to each vertex v P V
a vector µpvq � pµipvqqiPI , where µipvq equals the proportion of vertices in Qi that are
neighbours of v “rounded down” to the next integer multiple of ε{2, i.e.

µipvq �
Z |Npvq XQi|

|Qi| � 2
ε

^
� ε2 . (2.3.3)

In particular, since every class from Q has at least 8k{ε vertices, we have

��Npvq XQi

�� ¥ 4k (2.3.4)

for every v P V with µipvq ¡ 0.
We now define the partition R. The classes of R are given by the equivalence classes

of the relation µipvq � µipv1q for every i P I. Owing to the discretisation of µipvq the
partition R has at most

p2{ε� 1q|I| ¤ p2{ε� 1qpm4kq

parts. Furthermore, we note

¸
iPI

µipvq|Qi| ¥ dpvq �
���V r

¤
Q
����¸

iPI

ε

2 |Qi|

(2.3.2)¡
�

1
2k � 1 � ε



n� ε

2n�
ε

2n

¥
�

1
2k � 1



n (2.3.5)

for every v P V . For later reference we make the following observation.
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Claim 2.3.1. For every i P I no two distinct vertices v, v1 P V with µipvq, µipv1q ¡ 0
are joined by an odd v-v1-path of length at most 2k � 5 in G.

Proof. Suppose for a contradiction, that for some i P I and v � v1 we have µipvq, µipv1q ¡
0 and there is an odd v-v1-path P of length at most 2k � 5 in G. Let qi be a neighbour
of v in Qi and let q1i be a neighbour of v1 in Qi, such that qi � q1i and both not contained
in P (see (2.3.4)). Consequently, there is a qi-q1i-path P 1 � G of odd length 2k � 1� 2`
for some ` P rk � 2s.

Since all vertices of Qi have 4k common neighbours in X, there is a set X 1 consisting
of ` of these neighbours from X r V pP 1q. Similarly, there is a set Q1

i � Qi of ` � 1
vertices in Qir pV pP 1q YX 1q. Clearly, X 1YQ1

iYtqi, q1iu spans a qi-q1i-path P 2 of length
2`, which together with P 1 yields a copy of C2k�1 in G. This, however, contradicts the
assumption that G is C2k�1-free.

Starting with the partition R0 � R we inductively refine this partition 2k times
and obtain partitions R0 ¥ R1 ¥ � � � ¥ R2k. Given Ri we define Ri�1 by subdividing
every partition class such that vertices remain in the same class if and only if they
have neighbours in the same classes of Ri. More precisely, two vertices v, v1 from some
partition class of Ri stay in the same class in Ri�1 if and only if for every class Ri

j from
Ri we have

Npvq XRi
j � ∅ ðñ Npv1q XRi

j � ∅.

Owing to this inductive process and our choice of K in (2.3.1) the partition R2k

consists of at most K classes. Since k ¥ 3, Claim 2.3.1 implies that the classes of
R0 are independent sets in G and, therefore, also the classes of R2k are independent.
Hence, we may define the reduced graph H of R2k, where each class R2k is a vertex of
H and two vertices are adjacent, if the corresponding partition classes induce at least
one crossing edge in G. Obviously, we have

G
homÝÝÝÑ H and |V pHq| ¤ K (2.3.6)

and it is left to show that H is also C2k�1-free (see Claim 2.3.4). For the proof of this
property we first collect a few observations concerning the interplay of odd paths in H
and walks in G (see Claims 2.3.2 and 2.3.3).

Denote by Ripvq the unique class of the partition Ri which contains the vertex
v P V . Similarly, for j ¥ i let RipRq be the unique class of the partition Ri which is a
superset of R P Rj.

Claim 2.3.2. If there is a walk WH � h1h2 . . . hs in H for some integer s ¤ 2k, then
there are vertices wi P R2k�i�1phiq � R0phiq for every i P rss such that W � w1w2 . . . ws

is a walk in G. Moreover, w1 can be chosen arbitrarily in h1 � R2kph1q.
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Proof. We shall locate the walk W in an inductive manner and note that for s � 1 it is
trivial.

For s ¥ 2 let a walk W 1 � w1w2 . . . ws�1 satisfying wi P R2k�i�1phiq for every
i P rs � 1s be given. The walk WH in H guarantees an edge between R2kphs�1q and
R2kphsq and, hence, there is an edge between R2k�ps�1q�1phs�1q and R2k�ps�1q�1phsq.
Consequently, the construction of the refinements shows that ws�1 P R2k�ps�1q�1phs�1q
must have a neighbour ws P R2k�s�1phsq and the walk W � W 1ws � w1 . . . ws�1ws has
the desired properties.

Even if we assume in Claim 2.3.2 that WH is a path in H and, in particular, hi � hj

for all distinct i, j P rss, it may happen that R0phiq � R0phjq and, hence, we cannot
guarantee wi � wj. In other words, even if we apply Claim 2.3.2 to a path in H, the
promised walk W might not be a path. However, combined with Proposition 2.2.5 we
can get the following improvement.

Claim 2.3.3. If there is an odd path PH � h1 . . . hs�1 of length s ¤ 2k � 1 in H, then
there are vertices v1 P R0ph1q and vs�1 P R0phs�1q such that there is an odd path of
length at most s between them.

Proof. Consider a walk W � w1w2 . . . ws�1 in G with wi P R0phiq given by Claim 2.3.2.
If this walk does not contain an odd w1-ws�1-path already, then W must contain an odd
cycle. Below we shall show that this leads to a contradiction and, hence, W contains
an odd w1-ws�1-path.

Consider an odd cycle C � c1 . . . c`c1 contained in W � G, such that

c1 � wi1 , c2 � wi2 , . . . , c` � wi` , and c1 � wi`�1 � wi1

for some set of indices satisfying 1 ¤ i1   i2   � � �   i`   i`�1 ¤ s � 1. To find such
a cycle, consider the walk W , delete an even w1-ws�1-path. Now the remaining edges
of W are a family of closed walks, take an odd closed walk W 1 � w1

1w
1
2 . . . w

1
s1�1 �

wj1wj2 . . . wjs1�1
, where w1

1 � w1
s1�1. If W 1 is not a cycle, there is a smaller closed walk

W 2 � W 1, such that the edges of W 1 without the edges of W 2 are also a closed walk,
both retaining the order of the vertices fromW 1 and therefore fromW . One of tW 1,W 2u
needs to be odd. Iterating this process eventually gives rise to the odd cycle C.

In view of Proposition 2.2.5 (i ) we must have 3 ¤ `   k. Consequently, ` ¤ 2k � 5
and since ` is odd, it follows from Claim 2.3.1 that there is no path of length ` between
any two vertices from R0pc1q � R0phi1q � R0phi`�1q. Moreover, Claim 2.3.1 tells us
that the ` classes R0pc1q � R0phi1q � R0phi`�1q, . . . ,R0pc`q � R0phi`q from R0 are
distinct, since otherwise the cycle C would contain an odd path of length at most 2k� 7
between two vertices of some class in R0.
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Since PH is a path in H, we have hi1 � hi`�1 and the cycle C avoids at least one of
the sets hi1 or hi`�1 . Without loss of generality we may assume C avoids hi1 and we fix
an arbitrary vertex c11 P hi1 .

We are going to locate a second cycle of length ` in G that starts and ends in c11.
By construction this cycle is going to visit the same partition classes of R0 as C. For
that we shall repeat the argument from Claim 2.3.2 starting with hi1 . . . hi`hi`�1 even
though this is not necessarily a subpath of PH . However, since hi1 . . . hi`hi`�1 appear in
that order in PH , we can repeat the reasoning of Claim 2.3.2 starting with the vertex
c11 P hi1 . Continuing in an inductive manner, for j P r`s we have to consider the two
cases ij�1 � ij � 1 and ij�1 ¡ ij � 1.

In the first case, we can indeed proceed as in the proof of Claim 2.3.2, since this
means that hijhij�1 is an edge of PH . The second case, by construction of C, only
occurs, when wij � wij�1�1 and

R2k�ij�1phijq � R2k�pij�1�1q�1phij�1�1q.

Owing to the fact that wij�1�1wij�1 is an edge ofW and that wij�1�1 P R2k�ij�1phijq and
wij�1�1 P R2k�pij�1�1q�1phij�1�1q, we infer from the construction of the refinements that
wij � wij�1�1 also has a neighbour in R2k�ij�1�1phij�1q, which concludes the induction
step.

Therefore, we obtain another walk C 1 � c11 . . . c
1
`c
1
`�1 where c1j P R0phijq � R0pcjq.

Recalling that the ` classes R0phi1q, . . . ,R0phi`q are pairwise distinct, this implies that C 1

is either a path or a cycle of odd length ` ¤ 2k�5. Moreover, since R0phi1q � R0phi`�1q
we infer from Claim 2.3.1 that C 1 cannot be a path and, hence, it must be an odd cycle
of length ` ¤ 2k � 5. By construction c11 avoids C, and hence C 1 and C are disjoint, as
otherwise we would have an odd path of length ` connecting c1 and c11 in R0pc1q, which
would contradict Claim 2.3.1 again.

Consequently, C and C 1 form a copy of D` since c1 and c11 are connected by a path
of length 4 whose three internal vertices avoid C and C 1 (and the middle vertex is from
X). Owing to Proposition 2.2.5 (ii ) we have ` ¤ 2k � 9, but in D` there exists an
odd path of length `� 4 ¤ 2k � 5 between ci and c1i for every i � 2, . . . , `, which again
contradicts Claim 2.3.1.

After these preparations we are now ready to conclude the proof of part (i ) of
Theorem 1.2.5.

Claim 2.3.4. The graph H is C2k�1-free.

Proof. Assume for a contradiction that there is a cycle CH � h1 . . . h2k�1h1 of length
2k � 1 in H. We recall that the vertices of H are partition classes of R2k and for a
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simpler notation we set for any vertex hx of CH

µiphxq :� µipvq,

where v is an arbitrary vertex from R0phxq and the definition of R � R0 shows that
the definition of µiphxq is indeed independent of the choice of v P R0phxq.

By (2.3.5) we have
2k�1̧

x�1

¸
iPI

µiphxq|Qi| ¡ n ¥
¸
iPI

|Qi|

and, hence, there is some i P I such that

2k�1̧

x�1
µiphxq ¡ 1. (2.3.7)

In particular, there are at least two distinct vertices hx and hy of CH such that µiphxq ¡ 0
and µiphyq ¡ 0. On the other hand, among three vertices of CH two are connected by
an odd path of length at most 2k � 5 in CH , since the negation is only true for vertices
with distance 2 on CH . Therefore it follows from Claim 2.3.3 and Claim 2.3.1, that no
other vertex hz with z P r2k � 1sr tx, yu satisfies µiphzq ¡ 0. Consequently, we have
µiphxq�µiphyq ¡ 1, which means that any two vertices v P R0phxq and u P R0phyq have
a common neighbour in Qi. In fact, since 2{ε is assumed to be an integer, v and u have
at least 2|Qi|{ε ¡ 4k joint neighbours. Moreover, again Claim 2.3.3 and Claim 2.3.1
imply that hx and hy are connected by a path of length 2k � 3 in CH and that there is
a path P of length 2k � 3 in G connecting some v P R0phxq and u P R0phyq. Using one
of the joint neighbours in Qi outside P yields a copy of C2k�1 in G. This contradicts
the C2k�1-freeness of G and concludes the proof of Claim 2.3.4.

Claim 2.3.4 together with (2.3.6) establishes the proof of part (i ) of Theorem 1.2.5
and it remains to consider part (ii ), when G is assumed to be C2k�1-free.

In view of Proposition 2.1.2 it suffices to verify the upper bound of assertion (ii )
of Theorem 1.2.5. Compared to the proof of part (i ) of Theorem 1.2.5, we have the
additional assumption that G is not only C2k�1-free, but also contains no cycle C` for
any odd `   2k � 1. Consequently, the graph H defined in the paragraph before (2.3.6)
in the proof of part (i ) satisfies (2.3.6) in this case as well and owing to Claim 2.3.4
it is C2k�1-free. Hence, we only have to show that the C`-freeness of G for every odd
` ¤ 2k� 3 can be carried over to H in this situation, which is rendered by the following
claim.

Claim 2.3.5. If G is C2k�1-free, then H is also C2k�1-free.

Proof. Recall, that we assume k ¥ 3. Suppose for a contradiction that H contains a
cycle CH � h1 . . . h`h1 for some odd integer ` with 3 ¤ ` ¤ 2k � 1. In fact, it follows
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from Claim 2.3.4 that ` ¤ 2k � 3. Moreover, applying Claim 2.3.2 to CH yields a walk
W of length ` in G which starts and ends in R0ph1q. Since G contains no odd cycle of
length at most `, the walk W contains an odd path of length at most ` connecting two
vertices in R0ph1q. Therefore, Claim 2.3.1 implies that ` � 2k � 3 and by symmetry we
infer that for every x P r2k � 3s there exists an odd path of length 2k � 3 between two
vertices vx, ux P R0phxq.

As in the proof of Claim 2.3.4 we infer from (2.3.5) that

2k�3̧

x�1

¸
iPI

µiphxq|Qi| ¡ 2k � 3
2k � 1n ¡

1
2
¸
iPI

|Qi|,

where we used k ¥ 3 for the last inequality. Consequently, there is some index i P I such
that

°2k�3
x�1 µiphxq ¡ 1{2. Since for every distinct x, y P r2k�3s there exists an odd path

of length at most 2k � 5 connecting a vertex from R0phxq with a vertex from R0phyq
there is only one vertex of CH such that µiphxq ¡ 0 and, hence, for that x P r2k � 3s
we have µiphxq ¡ 1{2. In particular, every two distinct vertices v, u P R0phxq have a
common neighbour in Qi and, since 2{ε is assumed to be an integer, v and u have at
least 2|Qi|{ε ¡ 4k joint neighbours. Applying this observation to vx and ux leads to an
odd cycle of length 2k � 1 in G, which is a contradiction and concludes the proof of
Claim 2.3.5.

This concludes the proof of Theorem 1.2.5.

2.4 Well behaved graphs

Following Letzter and Snyder [34], we will give the following definition. Recall that
NG,Upvq for a vertex v P G and a vertex set U is defined as NGpvq XU , and if G is clear
from the context we might simply write NUpvq or NHpvq for a subgraph H of G with
V pHq � U instead. If H is a graph that is not necessarily a subgraph of G, instead
of NG,V pHqpvq we will write NHpvq to emphasise H. Of course this notation does just
make sense if V pGq X V pHq � ∅, but for the remaining sections of this chapter we will
have V pHq � V pGq whenever we use this notation, so it should not be that confusing.

Definition 2.4.1. A subgraph H of a graph G is called well-behaved (in G) if for every
vertex v in G, there is a vertex u in H, such that NHpvq � NHpuq.

This definition will help us to briefly state the occurrence of graphs where we know
exactly how neighbourhoods of vertices look like, which will often be useful in an
in-depth analysis. Sometimes we will use the notion of well-behaved vertices or vertices
that act well-behaved, which is used as shorthand term for a vertex which with its
neighbourhood in a graph H does not contradict H being well-behaved. We might
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also drop G or H if it is clear from the context. Moreover, we will also have a slightly
weaker definition, which we will use analogously for not quite well-behaved graphs.

Definition 2.4.2. Let H � pVH , EHq be a subgraph of G � pV,Eq and H 1 � pVH , EH 1q
be a supergraph of H on the same vertex set, not necessarily a subgraph of G. We
call H semi well-behaved (in G) with respect to H 1, if for every vertex v in G, there is
a vertex u in H 1, such that NHpvq � NH 1puq.

Note, that any well-behaved graph H is also semi well-behaved with respect to itself.
We will now collect and prove some statements concerning (semi) well-behaved

graphs, which we will primarily use throughout Section 2.5.
We start with the Andrásfai graphs, defined in Section 2.1.

Lemma 2.4.3. Let k ¥ 2 and let G be a C2k�1-free graph, furthermore let the Andrásfai
graph Ak,r be a subgraph of G, then it is well-behaved in G for any r ¥ 1.

Proof. For r � 1, the graph Ak,r consists of a single edge, so the lemma is trivial.
For r � 2, the graph Ak,r is just a C2k�1. Assuming a vertex v has two neighbours

on any odd cycle gives rise to two new cycles containing v, one of which is even and
one of which is odd. If the even cycle contains more than 4 edges, the odd cycle will be
shorter than 2k � 1, contradicting our assumption on G. Therefore the even cycle has
length exactly four, so a C2k�1 is indeed well-behaved.

For r ¡ 2, consider the Hamiltonian cycle C used in the proof of Proposition 2.1.2 (c ).
By symmetry let v be a neighbour of u0, owing to the structure of C and the fact that
C2k�1 are well-behaved, the possible neighbours of v in C are a subset of

N � tu1�ip2k�1q�h : 0 ¤ i ¤ r � 1, h P t�1, 1uu (see Figure 2.4.1.)

Note, that 1� 0p2k � 1q � 1 � 0 � 1� pr � 1qp2k � 1q � 1.
It is easy to see that v is either well-behaved, or contradicts some C2k�1 of C being

well-behaved, if there is an i, such that both u1�ip2k�1q�1 and u1�ip2k�1q�1 are in Npvq. It
is equally easy to see that v is well-behaved, if NCrtu0upvq � tu1�ip2k�1q�1 : 0 ¤ i ¤ r�1u,
or NCrtu0upvq � tu1�ip2k�1q�1 : 0 ¤ i ¤ r � 1u.

So assuming v is not well-behaved, we have tu1�ip2k�1q�1, u1�jp2k�1q�1u � Npvq.
If j   i, the 4-path u1�jp2k�1q�1u1�ip2k�1q�2u1�ip2k�1q�1u1�ip2k�1qu1�p2k�1q�1 is part

of a C2k�1 in C, so v would be contradicting C2k�1 being well-behaved.
If j ¡ i, take a maximal i with this property. If v does not contradict some

C2k�1 � C being well-behaved, there will only be one swap from h � �1 to h � 1, so
there is an i such that u1�ip2k�1q�1 P Npvq, but no u1�i1p2k�1q�1 P Npvq, for i   i1   r�1.
It is easy to see that either NCpvq � NCp1� ip2k�1qq, or v contradicts some C2k�1 � C

being well-behaved. Therefore any v not contradicting the case r � 2 is well-behaved in
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C, and since v was an arbitrary vertex having neighbours in C, C itself (which is Ak,r)
is well-behaved.

v

Figure 2.4.1: The possible additional neighbours of v in the Andrásfai graph, according
to the case r � 4 are marked black. To highlight the important edges, the other edges
not lying on the outer circle have been left out of the picture.

In the next lemma we are looking at an Ak,3 where some edges are missing, stating
that it still is well-behaved with respect to the original Ak,3. For the purpose of a more
streamlined proof, we will introduce some notation beforehand. By a diagonal in an
even cycle C2`, we are referring to an edge joining two vertices with distance ` on the
cycle. The distance of two diagonals on an even cycle is the shortest distance between
any two end vertices of the diagonals, just using edges of the underlying cycle. A
Möbius ladder M4k � m0m1 . . .m4k�1 is a C4k with all diagonals added, or equivalently
any Ak,3 where ui � mi for the ordering from the proof of Proposition 2.1.2 (c ).

Lemma 2.4.4. Let k ¥ 3 and let G be a C2k�1-free n-vertex graph with δpGq ¡ 1
2k�1n,

then any C4k � c0c1 . . . c4k�1c0 in G with two added diagonals with distance at least 2 is
semi well-behaved with respect to an M4k where ci ÝÑ mi.

Proof. Throughout this proof, we will make extensive use of the fact that a C2k�1 is
well-behaved, so sometimes we will omit this fact and simply state things as being
obvious. Let C be the C4k, all indices along it are regarded to be in cyclic order, so
c4k � c0 etc.

Let d0 � c0c2k be the first diagonal, and let di � cici�2k be the second. By symmetry
let 2 ¤ i ¤ 2k � 2.

First we are analysing the possible neighbourhoods of vertices which have at least 3
neighbours in C.

Let v be such a vertex with c0 P Npvq. Obviously NCpvq � tc�2, c0, c2, c2k�1, c2k�1u,
and c�2 P Npvq ñ c2k	1 R Npvq. Observe that since 2 ¤ i ¤ 2k � 2, we also have c2 P
Npvq ñ c�2 R Npvq. But than NCpvq P ttc�2, c2k�1, c0u, tc2k�1, c0, c2k�1u, tc0, c2k�1, c2uu
concluding the case that v has an end vertex of one of the diagonals as a neighbour.
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Let v be a vertex with at least 3 neighbours in C, such that c�1, c1 P Npvq. Obviously
NCpvq � tc�3, c�1, c2k, c1, c3u, and c2k P Npvq ñ c�3, c3 R NpV q (see Figure 2.4.2 on the
left).

v v

Figure 2.4.2: On the left, the possible additional neighbours of v in C are marked black.
On the right, a special case is depicted.

Assuming c3 P Npvq implies i � 2 and therefore c�3 R Npvq (see Figure 2.4.2 on
the right). This case however, does not comply with C being semi well-behaved with
respect to M4k, and it is here precisely we will make use of the minimal degree condition
of G to assure that this case does not appear. For this part of the proof, we will need
the left over cases of vertices having at least 3 neighbours in C, which we will therefore
proof right now, and we will come back to this case later.

Let v be a vertex with at least 3 neighbours in C, such that none of these neighbours
is part of d0 or di. Since C together with d0 consists of two C2k�1, v must have two of
its neighbours in one of these C2k�1, so let these neighbours be cj�1 and cj�1, such that
2 ¤ j ¤ 2k� 2. In the light of the above open case, we might assume i R tj� 1, j, j� 1u,
and by symmetry we might assume i ¡ j � 1.

The diagonals d0 and di are dividing C into 4 segments, and since cj�1 and cj�1 lie
in one of them, it is easy to see that the third neighbour ch of v in C must lie on the
segment, that is not adjacent to the one where cj�1 and cj�1 lie (see Figure 2.4.3).

v v

Figure 2.4.3: On the left, the two cycles must be even. On the right, the two cycles are
either even or both odd, but the same colour cycles on the left and right have different
parity since their symmetric difference is an odd cycle.
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Consider the two cycles C1 � vcj�1Ccici�2kCchv and C2 � vcj�1Cc0c2kCchv (see
Figure 2.4.3 on the left). Since the sum of their edges is 4k�2p2k�iq�2�2�4   4k�2
and even, they both have the same parity, and since G is C2k�1-free they both must be
even.

Now consider the two cycles C3 � vcj�1Cchv and C4 � vcj�1Cchv (see Figure 2.4.3
on the right). Since the sum of their edges is 4k � 2� 4 � 4k � 2 and therefore even,
they both have the same parity, and since G is C2k�1-free they both must be even, or
both be a C2k�1.

Since the symmetric difference between C1 and C3 is a C2k�1 and therefore odd,
and C1 is an even cycle, C3 must be odd and therefore an C2k�1. A simple calculation
yields h � j � 2k, so v behaves semi well-behaved with respect to M4k.

Coming back to the Case i � 2 and NCpvq � tc�1, c1, c3u, there might be other
vertices v1 with 3 neighbours in C, but they either have the neighbourhood NCpv1q �
tc2k�1, c2k�1, c2k�3u, or behave semi well-behaved like some mi. If there really is a
vertex v1, with the above mentioned neighbourhood in C however, there can only be
other vertices with 3 neighbours in C who behave like one of the vertices from the
set A1 � tv, v1,m0,m1,m2,m2k,m2k�1,m2k�2u, since otherwise either c�1, c1 and c3, or
c2k�1, c2k�1 and c2k�3 would lie on a common C2k�1, contradicting Lemma 2.4.3 (see
Figure 2.4.4 on the left). But since all the vertices in A1 are a neighbour of either c0 or
c2k, the set V pCqr tc0, c2ku consisting of 4k � 2 � 2p2k � 1q vertices has the property
that no vertex has more than 2 neighbours inside, contradicting δpGq ¡ 1

2k�1n by a
simple double counting argument.

vv1 v

v2

Figure 2.4.4: On the left, if there is a vertex v1, the white vertices are a set of 4k � 2
vertices, such that no vertex has more than 2 neighbours in this set, contradicting the
minimum degree of G. On the right, another case of an additional vertex v1 is depicted.
This case is brought to a contradiction analogously.

Assuming there is no such vertex v1, there might be a vertex v2 behaving like m3

or m�1 having 3 neighbours in C in addition to the vertices behaving like these from
A1 r tv1u. If there is no such vertex v2, we easily get the same contradiction as in the
case that the vertex v1 was present, so assume by symmetry that there is indeed a
vertex v2 behaving like m3 (see Figure 2.4.4 on the right).
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In this case it is relatively easy to see, that just vertices behaving like one of the
vertices from A2 � pA1 r tv1uq Y tm3,m�1u can have 3 neighbours in C. Notice, that
all of them have at least one neighbour in tc0, c1, c2u.

We would like to get the same contradiction as above, but since this time we would
have to remove 3 vertices from C, the numbers do not add up. To solve this problem,
we will add v to C r tc0, c1, c2u, and claim that this vertex set, consisting of 4k � 2
vertices also has the property that no vertex has more than 2 neighbours inside, leading
to the same contradiction with δpGq and therefore finishing the proof of this case.

It is left to verify that no vertex has more than 2 neighbours in the vertex set
B � pC r tc0, c1, c2uq Y tvu. Indeed, we did verify this claim beforehand for all vertices
which are not neighbours of v, so consider a neighbour u of v. Since replacing c0 with
v gives rise to an C2k�1 in C with di and replacing ci with v gives rise to an C2k�1 in
C with d0, the possible neighbours of u are merely tv, c�2, c0, c2, c4, c2k�1u. Because
c0, c2 R B, we just have to make sure, that u does not have more than 2 neighbours in
tv, c�2, c4, c2k�1u. Obviously u cannot be a neighbour of c2k�1 and either c�2 or c4 at
the same time, therefore the only possible case left is that tv, c�2, c4u � Npuq. However,
considering the C2k�1 formed by vc3c4v

2c2k�3Cc�1v, this case leads to a contradiction
as well, concluding the case of vertices with at least 3 neighbours in C.

Since all vertices with at most one neighbour in C naturally act well-behaved, the
only case left for consideration are the vertices with exactly 2 neighbours in C. Let v
be such a vertex.

It is easy to see, that v acts well-behaved, if Npvq X d0 � ∅ or Npvq X di � ∅, and
it follows directly from the fact that C2k�1 is well-behaved, that v acts well-behaved, if
both neighbours of v lie on a common C2k�1 in C Y d0 Y di.

Therefore we might assume that both neighbours of v lie in non-adjacent segments
of C, once again considering the 4-split produced by d0 and di, let these neighbours be
cj and ch (see Figure 2.4.5).

Consider the two cycles C1 � vcjCcici�2kCchv and C2 � vcjCc0c2kCchv (see Fig-
ure 2.4.5 on the left). Since the sum of their edges is 4k � 2p2k � iq � 2� 4 ¤ 4k � 2
and even, they both have the same parity, and since G is C2k�1-free in the case that
both are odd, they must both be a C2k�1, implying that the distance between d0 and di
is exactly two.

This however implies, that there is no additional diagonal present in C except for
maybe d1 � c1c2k�1. Furthermore, there is no vertex having at least 3 neighbours in C
apart from these acting like one of the end vertices of the diagonals d0, d1 or d2 or like
mj or mh. Excluding the latter two cases, we get a contradiction with δpGq ¡ 1

2k�1n

like in the above case with the vertices v and v1. Therefore, by symmetry we might
assume there is a vertex acting like mj.

Let m be that vertex. Switching cj with m gives rise to a new diagonal in a C4k,
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v v

Figure 2.4.5: On the left, the two cycles must be even, or each is a C2k�1, in this case
however, we may interfere that the distance between the diagonals is small. On the
right, the two cycles are either even or both odd, in which case one of them is a C2k�1,
concluding this case. Since the same colour cycles on the left and right have different
parity since their symmetric difference is an odd cycle, at least one pair of odd cycles
occurs.

closing two C2k�1. One of them will contain ch, let C 1 be that C2k�1, and by symmetry
let cj�1 P C 1. Now consider the cycle C2 � mc2k�jCchvcjcj�1m. Since j � h ¥ 4 and
even, C2 is odd with at most 2k � 1 edges. To avoid a contradiction with G being
C2k�1-free, the only case left is j � h � 4, implying cj � c�1 and ch � c3 or vice versa.
In this case however, m is behaving as v2 from the case with 3 neighbours which do not
act well-behaved, and v does behave in the same way as the v of that case was, leading
to the exact same contradiction with δpGq ¡ 1

2k�1n.
Now consider the two different cycles C3 � vcjCchv and C4 � vcjCchv (see Fig-

ure 2.4.5 on the right). Since the sum of their edges is 4k � 4 � 4k � 4 and therefore
even, they both have the same parity, and since G is C2k�1-free they both must be even,
or one of them is a C2k�1.

Since the symmetric difference between C1 and C3 (or C1 and C4) is a C2k�1 and
therefore odd, and C1 is an even cycle by the case outlined above, C3 and C4 must
be odd and therefore one of them must be an C2k�1. A simple calculation yields
h � j � 2k � 1, so v behaves semi well-behaved with respect to M4k.

This finally concludes the proof of Lemma 2.4.4.

This next lemma is a strengthening of Lemma 2.4.4, but since Lemma 2.4.4 is often
strong enough we split up the proof, which is essentially some more special case analysis,
to give the not that interested reader a good point to continue reading just if this
stronger statement is really needed.
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Lemma 2.4.5. Let k ¥ 3 and let G be a C2k�1-free n-vertex graph with δpGq ¡ 1
2k�1n,

then any C4k � c0c1 . . . c4k�1v0 with two added diagonals in G is semi well-behaved with
respect to one of the following:

1. An M4k where ci ÝÑ mi, or

2. anM4k where ci ÝÑ mi for 2k ¤ i ¤ 4k�1, and ci ÝÑ m2k�1�i for 0 ¤ i ¤ 2k�1.

In the latter case the two diagonals must be c0c2k and c4k�1c2k�1.

Proof. Assume there is a third added diagonal in the C4k, resulting in two of them
having distance at least 2, or the two added diagonals having distance of at least 2,
then Lemma 2.4.5 part 1 follows directly from Lemma 2.4.4.

So it is left to verify this lemma for the case that the two added diagonals have
distance 1. Let C be the C4k and by symmetry let d0 � c0c2k be the first and
d�1 � c4k�1c2k�1 be the second diagonal.

Note, that the graph c2kc2k�1 . . . c4k�1c2k�1c2k�2 . . . c0c2k is a C4k, and c0c4k�1 and
c2kc2k�1 are diagonals with distance 1 in this C4k (see Figure 2.4.6).

Figure 2.4.6: The two possible M4k a C4k with two diagonals can be semi well-behaved
to.

Let v be a vertex with at least 3 neighbours in C, such that none of these neighbours
is part of d0 or d�1. Since C together with d0 consists of two C2k�1, v must have two of
its neighbours in one of these C2k�1, so let these neighbours be cj�1 and cj�1, such that
2 ¤ j ¤ 2k � 3.

The diagonals d0 and d�1 are dividing C into 4 segments, and since cj�1 and cj�1

lie in one of them, it is easy to see that the third neighbour ch of v in C must lie on the
segment, that is not adjacent to the one where cj�1 and cj�1 lie (see Figure 2.4.3).

Consider the two cycles C1 � vcj�1Cc2k�1c4k�1Cchv and C2 � vcj�1Cc0c2kCchv

(see Figure 2.4.3 on the left). Since the sum of their edges is 4k� 2� 2� 2� 4 � 4k� 2
and therefore even, they both have the same parity, and since G is C2k�1-free they both
must be even, or they both must be a C2k�1. In the latter case, a simple calculation
shows that v is well-behaved with respect to the M4k from part 2 of this lemma.
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Now consider the two cycles C3 � vcj�1Cchv and C4 � vcj�1Cchv (see Figure 2.4.3
on the right). Since the sum of their edges is 4k � 2� 4 � 4k � 2 and therefore even,
they both have the same parity, and since G is C2k�1-free they both must be even, or
both be a C2k�1. In the latter case, a simple calculation shows that v is well-behaved
with respect to the M4k from part 1 of this lemma.

Since the symmetric difference between C1 and C3 is a C2k�1 and therefore odd,
exactly one of the two cases holds.

Let v be a vertex with at least 3 neighbours in C, such that c0 P Npvq.
Since C together with d0 consists of two C2k�1, we can easily interfere that NCpvq �

tc0, c2, c�2, c2k�1, c2k�1u (see Figure 2.4.7 on the left).

v

v

m

Figure 2.4.7: On the left are the possible neighbours of a vertex v with c0 P Npvq. On
the right are the possible neighbours of a vertex v which has a neighbour cj, such that
there is a vertex m acting like a mj.

Furthermore, using that a C2k�1 is well-behaved, we see that indeed

NCpvq P ttc2k�1, c0, c2k�1u, tc�2, c0, c2k�1u, tc2k�1, c0, c2u, tc�2, c0, c2uu.

In the former 3 cases, v is well-behaved with respect to the M4k from part 1 of this
lemma, and in the latter case, v is well-behaved with respect to the M4k from part 2 of
this lemma.

Summarising the proof of this lemma so far, every vertex with at least 3 neighbours
in C has exactly 3 neighbours in C which act well-behaved either according to part 1
or part 2 of the lemma.

Assuming there is no vertex with 3 neighbours in C where not at least one of
the neighbours is in tc0, c2ku quickly gives rise to a contradiction with δpGq ¡ 1

2k�1n.
Therefore and by symmetry (of part 1 or part 2) we might assume there is a vertex m
acting like a mj from part 1 of this lemma, where 1 ¤ j ¤ 2k � 2.

Replacing cj in C with m gives rise to a new graph C 1, which is well-behaved with
respect to a M4k and the obvious mapping of vertices.
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But since C 1 is, with the exception of one vertex, exactly C we can interfere that
C is well-behaved with respect to the M4k from part 1, with the exception of vertices
which are neighbours of cj.

Assume there exists such a vertex v. Because v is part of a C2k�3 with m, cj�2k and
cj�1, as well as part of a C2k�3 with m, cj�2k and cj�1, we know that

NCpvq � tcj�4, cj�2, cj, cj�2, cj�4, cj�2k�1, cj�2k�1u.

(See Figure 2.4.7 on the right.)
However, because v is well-behaved in C 1, it is easy to see that

NCpvq P ttcj, cj�2, cj�4u, tcj, cj�2, cj�4uu

if v is not well-behaved in C.
Assuming by symmetry that NCpvq � tcj, cj�2, cj�4u now implies j P t1, 2u, since

otherwise there would be a not well-behaved C2k�1. Relabelling m as v2 and we can
now once again derive a contradiction to δpGq ¡ 1

2k�1n by the same analysis as done in
the proof of Lemma 2.4.4 where v has 3 not well-behaved neighbours in C and a vertex
v2 emerges.

Before we state the last lemma in this section, we will need some additional termi-
nology, which will be introduced here.

By a 2-diagonal in an even cycle C2`, we are referring to a P2 joining two vertices with
distance ` on the cycle. The distance of 2-diagonals is defined analogously to the distance
of diagonals. Let L4k be the graph on 4k vertices, consisting of a C4k�2 together with two
adjacent 2-diagonals in this C4k�2. For a L4k consisting of the C4k�2 � c0c1 . . . c4k�3c0

and the two 2-diagonals D0 � c0d0c2k�1 and D�1 � c4k�3d�1c2k�2 let L�4k be the
supergraph, arising from this L4k by adding all the edges of the form cic4k�3�i for
1 ¤ i ¤ 2k � 3 as well as the edge d0d�1 (see Figure 2.4.8).

Figure 2.4.8: The graphs L4k and L�4k for k � 5.

Lemma 2.4.6. Let k ¥ 3 and let G be a C2k�1-free n-vertex graph with δpGq ¡ 1
2k�1n,

then any L4k is semi well-behaved with respect to the L�4k arising from it.
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Proof. Let L be an L4k consisting of the C4k�2 � c0c1 . . . c4k�3c0 and the two 2-diagonals
D0 � c0d0c2k�1 and D�1 � c4k�3d�1c2k�2.

Consider the cycle C � d0c0c1 . . . c2k�2d�1c4k�3c4k�4 . . . c2k�1d0 of length 4k with
two diagonals c0c4k�3 and c2k�1c2k�2 with distance 2.

Applying Lemma 2.4.4 to C yields Lemma 2.4.6.

For the following two corollaries we will just give a sketch of the proof for each of
them. In the proof no surprises happen and it is just a tedious case analysis. Nonetheless
they are used a few times such that stating them explicitly seems reasonable.

Corollary 2.4.7. Let k ¥ 2, let G be a C2k�1-free graph, and let C be a C4k with
exactly one diagonal. Then, either there is a vertex v with 3 neighbours in C such
that exchanging a vertex from C with v yields a C4k with two diagonals or C is semi
well-behaved with respect to a blow up of a C2k�1.

Proof (Sketch). As usually it is rather easy to prove the claim for vertices witch have
a neighbour in one of the end vertices of the diagonal. Assuming a vertex v would
contradict the claimed corollary, it has to have a neighbour on both “sides” of the
diagonal. Fixing a neighbour on one of the sides and considering the two sets of cycles
containing v with and without using the diagonal there are only five possible distances
(3 by using symmetries) the second neighbour can have from the first. Using that a
C2k�1 is well-behaved in G and by a standard case analysis it follows straight forwardly
that v either behaves like a diagonal, or acts well-behaved with respect to a blow-up of
a C2k�1 as claimed.

Corollary 2.4.8. Let k ¥ 2, let G be a C2k�1-free graph, and let C be a C4k�2 with
one 2-diagonal. Then, either there is a second 2-diagonal in C, or C is semi well-behaved
with respect to a blow up of a C2k�1.

Proof (Sketch). This proof is analogous to the one from Corollary 2.4.7.

2.5 Forbidden subgraphs in C2k�1-free graphs

In this section we are going to use the collected lemmas from Section 2.4 as well as some
other tools we will introduce throughout the section to prove that some small graphs
may not appear as (induced) subgraphs in any sufficiently dense C2k�1-free graph.

Our main goal is to proof Lemma 2.5.9, which we will rely on in Section 2.7,
furthermore Lemma 2.5.2 will occasionally be used in Section 2.6.

We will start with a tool that will drastically decrease the cases to be considered in
each of the following lemmas, but before we state this tool we need a small lemma.
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Lemma 2.5.1. Let G � pVG, EGq be a (maximal) C2k�1 free graph on n ¡ 1 vertices
with δpGq � αn, let H � pVH , EHq be a balanced blow-up of G on f � n vertices, then
the following hold.

(i ) H is (maximal) C2k�1-free, and

(ii ) δpHq � αpf � nq � f � δpGq.

Proof. Proving part (ii ) is rather simple. Let v be a vertex that realizes the minimum
degree in G, since each of its neighbours will be mapped to a set of f independent
vertices, its degree will also multiply by a factor of f . Since every other vertex in G has
at least as much neighbours as v, their degree will also be at least as big in H, therefore
one of the image vertices for v (“still”) realizes the new minimum degree.

It is left to prove part (i ). Assume there is an odd cycle C of length ` ¤ 2k � 1 in
H. Since every vertex from G was mapped to an independent set of vertices, we will
get a walk W without any loops by mapping C to G such that every edge between the
image of two vertices v and u gets mapped to the edge vu. Since C was an odd cycle,
W is a closed odd walk. It is not hard to see that any closed odd walk contains an odd
cycle, indeed if W is not already an odd cycle it will contain a vertex twice, splitting
the edges from the first to the second occurrence of this vertex from W to create W1

and defining W2 � W rW1 creates two new closed walks, exactly one of them is odd.
Repeating this process, induction eventually will ensure the occurrence of an odd cycle.
But than, G contains an short odd cycle, contradicting G being C2k�1-free, therefore H
must be C2k�1-free as well.

Now assume that G is maximal C2k�1-free. Consider an edge e � vu R EH . Since
n ¡ 1 and G is maximal C2k�1-free, there is no isolated vertex in G, therefore if v and u
are copies of the same vertex in H, we can not add e to H because it would close a C3.
However, considering an edge that joins two vertices in H that are not copies of the
same vertices in G will also create a short odd cycle, namely “the same” as the addition
of the edge joining the pre images of v and u in G would close. Since we can not add
an edge to H without closing a short odd cycle, H is maximal C2k�1-free as well.

We will use the above lemma as so called Schnitzers principle [48]: When proving
a statement of the form “Let G be a (maximal) C2k�1-free graph on n vertices with
δpGq ¥ αn, then G does not contain a (n induced) subgraph H of the form . . . ” and
in the proof we infer the existence of some vertices M � V pGq with some properties
leading to a contradiction, we might assume all the vertices of M to be disjoint from
each other and from all the vertices of H to reduce the cases to be considered.

To validate Schnitzers Principle, assume that G does indeed contain a (n induced)
subgraph H of a certain form, and there are indeed some vertices M � V pGq with
certain properties, but they are either not disjoint from H or from each other, so
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the contradiction constructed in the proof does not apply. Furthermore assume that
|V pHq| � h and we inferred the existence of m vertices with certain properties. Now
by Lemma 2.5.1 we know, that there is a ph �mq-balanced blow-up G1 of G, that is
(maximal) C2k�1-free as well and has the same relative minimum degree. We can now
locate a copy H 1 of H in G1 and follow our proof in G1 furthermore each time we infer
the existence of a vertex with some properties which might not be disjoint from H 1 or
the other vertices we inferred so far, we might select a different copy of the vertices it is
potentially identical to. Since there are h�m copies of each vertex, we never run out
of vertex copies during our proof, enabling us to construct a contradiction with either
G1 being (maximal) C2k�1-free or δpG1q � ph�mqδpGq. But now Lemma 2.5.1 tells us,
that the only reason this could happen is either that G is not (maximal) C2k�1-free,
δpGq � αn or G does not contain a (n induced) subgraph H of a certain form. Since the
first two are false by our assumptions on G, the third must hold, proving our desired
statement.

In the following lemma, we would like to strengthen Lemma 2.4.6 analogously to
how Lemma 2.4.5 gets strengthened to Lemma 2.4.4 by a bigger distance between the
two diagonals. As is turns out however, for our given δ of 1

2k�1n, this strengthening
implies that the graphs do not appear in G at all.

Lemma 2.5.2. Let k ¥ 3 and let G be a C2k�1-free n-vertex graph with δpGq ¡ 1
2k�1n,

then G does not contain a C4k�2 with 2 different 2-diagonals with distance at least 2.

Proof. Assume that G � pV,Eq contains a subgraph L consisting of a cycle C �
c0c1 . . . c4k�3c0 and two 2-diagonals D0 � c0d0c2k�1 and Dj � cjdjcj�2k�1 with 2 ¤ j ¤
2k � 3. As usually, we will consider indices of ci to be cyclic in C.

We will first consider the case that 3 ¤ j ¤ 2k � 4. This additional assumption will
allow us to make the following claim, leading to an easy contradiction with δpGq ¡ 1

2k�1n.

Claim 2.5.3. No vertex v P V has more than 2 neighbours in C.

Proof. Assume v is a neighbour of one of the vertices from tc0, c2k�1, cj, cj�2k�1u, by
symmetry assume c0 P Npvq, then since C2k�1 is well-behaved in G by Lemma 2.4.3
NCpvq � tc0, c2k�1, c2, c4k�4u. But since c2 and c4k�4 both lie in one C2k�1 induced by
C and Dj, it is easy to see v can have at most one neighbour in tc2k�1, c2, c4k�4u.

Assume v has no neighbour in tc0, c2k�1, cj, cj�2k�1u, but at least 3 on C. By
symmetry two of the neighbours must be ch�1, ch�1 with 2 ¤ h ¤ 2k � 3 and one
neighbour must be c` with 2k ¤ ` ¤ 4k � 3.

If j � h we have NCpvq � tcj�1, cj�1, cj�3, cj�3u. But since ` R tj� 3, j� 3u because
of 3 ¤ j ¤ 2k � 4, v can only have two neighbours on C.

If j � h, ` must lie in the segment of C that is not adjacent to the one where
ch�1 and ch�1 lie. By symmetry let 0   h � 1, h � 1,  j. Consider the cycles
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C1 � vch�1Cc0d0c2k�1Cc`v and C2 � vch�1Ccjdjcj�2k�1Cc`v. Since the sum of their
edges is 4k � 2 � 2p2k � 1 � jq � 2 � 4 � 4 ¤ 4k   4k � 2 and even, they both must
have the same parity and therefore be even.

Now consider the cycles C3 � vch�1Cc`v and C4 � vch�1Cc`v. Since the sum of
their edges is 4k � 2� 2� 4 � 4k   4k � 2 and even, they both must have the same
parity and therefore be even.

But the symmetric difference of C1 and C3 is a C2k�1, contradicting the fact that
both are even. Therefore v can have at most 2 neighbours in C.

Since no vertex has more than 2 neighbours in C, but C consist of 4k � 2 vertices,
a simple double counting argument yields a contradiction to δpGq ¡ 1

2k�1n.
Now we will consider the case j P t2, 2k � 3u, and by symmetry we assume j � 2.
Since Claim 2.5.3 leads to a contradiction and the proof of Claim 2.5.3 also works

for j � 2 with the exception of the case j � h, we might assume there is a vertex v
with c1, c3 P Npvq. It is not hard to see that the only other neighbour, v can have in
C without having 3 neighbours in a C2k�1 is c4k�3, and indeed any vertex u with 3
neighbours in C has either NCpuq � tc4k�3, c1, c3u or NCpuq � tc2k�2, c2k, c2k�2u.

Note, that there cannot be a vertex that gives rise to a 2-diagonal in C apart from
the already present 2-diagonals or one joining c1 and c2k, if there is a vertex with 3
neighbours in C, as this diagonal and this vertex would give rise to a C2k�1.

Therefore any vertex with exactly one neighbour in td0, dju has at most 2 neighbours
in C, at least one of which is in tc1, c2ku. Additionally, no vertex that is a neighbour of
both, d0 and dj has any neighbours in C r tc1, c2ku.

Now consider the subset V pCqr tc1, c2ku Y td0, dju of vertices of G. It consists of
4k � 2 vertices, and no vertex can have more than 2 neighbours in it, contradicting
δpGq ¡ 1

2k�1n.

The following lemma appears in [34] already for k � 3 and although our proof here
is streamlined via the use of Lemma 2.5.2 the basic idea stays the same.

Lemma 2.5.4. Let k ¥ 3 and let G be a maximal C2k�1-free graph on n vertices
with δpGq ¡ 1

2k�1n, then G does not contain an induced copy of C6.

Proof. Assume for a contradiction, that G contains a C6, namely C � c0c1 . . . c5c0 as
an induced subgraph.

Since G is maximal C2k�1-free, the absence of the edges c0c3 lets us infer the presence
of an even path Px between c0 and c3, containing at most 2k � 2 edges. Considering
the closed odd walk c0Pxc3c2c1c0 consisting of |Px| � 3 edges, Px must contain exactly
2k � 2 edges. Analogously there are paths Py and Pz, joining c2 and c5 as well as c4

and c1 respectively, which also consist of exactly 2k � 2 edges. By Schnitzers Principle,
we can assume these Pi to be disjoint from C as well as from each other.
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Let L be the graph, induced by V pCq Y V pPxq Y V pPyq Y V pPzq (see Figure 2.5.1
on the left). We will analyse, how vertices with neighbours in L behave in detail and
thereby prove the following claim.

c0

c1

c2

c3

c4

c5

Px

Pz

Py

x1

x2k�3

y1

y2k�3

z1

z2k�3

c0

c1

c2

c3

c4

c5

Figure 2.5.1: On the left, the graph L for k � 5 with the Pi. On the right, the graph
L�. Each vertex with neighbours in L either acts well-behaved with respect to L�, or
has 3 neighbours in the C6.

Claim 2.5.5. No vertex has more than 3 neighbours in L.

Proof. First, for easier notation, let the vertices on Px be named xi such that Px �
c0x1x2 . . . x2k�3c3. Similarly let Py � c2y1y2 . . . y2k�3c5 and let Pz � c4z1z2 . . . z2k�3c1.

Obviously, there can be no vertex with more than 3 neighbours in C.
Let v be a vertex with exactly 3 neighbours in C. These neighbours must be

tc0, c2, c4u or tc1, c3, c5u. In both cases, v cannot have any neighbour in any Pi, since
this would be a third neighbour in an C2k�1.

Let v be a vertex with exactly 2 neighbours in C. By symmetry let c0, c2 P Npvq,
then v can not have any additional neighbour on Px or Py. Also, on Pz v can only
have c4 and y2k�3 as additional neighbours, but c4 P Npvq would contradict that v has
exactly 2 neighbours on C. In total, v cannot have more than 3 neighbours in L.

Let v be a vertex with exactly 1 neighbour in C. By symmetry let this neighbour
be c0. Then NLpvq � tc0, c2, c4, x2, y2k�3, z2k�3u, but since v has exactly 1 neighbour on
C we have NLpvq � tc0, x2, y2k�3, z2k�3u.

Consider the cycle Cx � c2Pxc5c4Pzc1c2 consisting of 4� 2p2k� 3q � 4k� 2 vertices.
The vertex c0 with the edges c0c1 and c0c5 is a 2-diagonal in Cx, and the vertex c3

analogously defines another 2-diagonal in Cx. Assuming there is a vertex v with
NLpvq � tc0, x2, y2k�3, z2k�3u, this vertex would form a third 2-diagonal in Cx, two of
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which therefore would have distance at least 2, contradicting Lemma 2.5.2. Because of
this, no vertex v with exactly 1 neighbour in C can have more than 3 neighbours in L.

Finally, let v be a vertex with no neighbours in C. If v has more than 3 neighbours
in L, two of them must lie at one Pi, by symmetry let it be Px. Since Px is part of
a C2k�1, these two neighbours must be of the form xi�1 and xi�1. Now consider the
cycle Cz � c0Pxc3c2Pyc5c0 of length 4k� 2 with the two 2-diagonals spawned by c4 and
c1, as well as the cycle Cy � c0Pxc3c4Pzc1c0 of length 4k � 2 with the two 2-diagonals
spawned by c2 and c5, since by Lemma 2.4.6 both of these cycles are semi well-behaved,
we have that Npvq � txi�1, xi�1, y2k�2�i, z2k�2�iu.

Indeed, adding all the edges from the “reference graph” L�4k to our graph L for each
of the cycles Cx, Cy and Cz, as shown in Figure 2.5.1 on the rights, yields a graph L�,
such that L is semi well-behaved with respect to L� except for vertices which have 3
neighbours in C.

But considering Cx again, a vertex v with Npvq � txi�1, xi�1, y2k�2�i, z2k�2�iu would
yield a third 2-diagonal in Cx, once again contradicting Lemma 2.5.2. Since every vertex
with 4 neighbours in Lr C does construct such an additional 2-diagonal for one of the
three cycles Cx, Cy or Cz, there cannot be such a vertex.

Observing that L contains exactly 3 � p2k � 1q vertices, together with Claim 2.5.5
once again leads to a contradiction with δpGq ¡ 1

2k�1n by a standard double counting
argument.

The following lemma is the only one we are not yet able to proof for general k, and
although some ideas about handling cycles of length relatively close to 4k are there, the
small cycles for large k seem to be a bit more difficult to exclude with a general proof.
In a sense it is just a technical lemma breaking the seemingly circular dependence from
Lemma 2.5.8 and Lemma 2.5.9, so if one would be able to proof these two lemmas for
general k without using it, this would also be fine, even though this seems unlikely due
to the structural resemblance of Lemma 2.5.6 and Lemma 2.5.9.

Lemma 2.5.6. Let k � 3 and let G be a maximal C2k�1-free graph on n vertices with
δpGq ¡ 1

2k�1n, then G does not contain a well-behaved C2` with 2` ¥ 6 as an induced
subgraph.

For the sake of readability and compactness we will introduce some notation that
will be used in the proofs of the following lemmas from this chapter. Let H be a
subgraph of G, V 2 � V 1 � V pHq, where V 2 usually will be very small, and h P V pHq,
we will then express h P Npvq ñ NV 1pvq � V 2 Y thu as

� V 1

h V 2.
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Furthermore we will extend this notation naturally for sets of vertices instead of a
single vertex h and more than one vertex set V 1.

Proof. First we remark that an induced well-behaved C2` with 2` ¥ 4k � 2 in G would
lead to a contradiction with δpGq by a standard double counting argument. Therefore
we only have to concern ourselves with the proof of the cases where 6 ¤ 2` ¤ 4k � 4.

For k � 3 we have 4k � 4 � 8, and so considering Lemma 2.5.4 it suffices to show
that G does not contain a well-behaved C8 as an induced subgraph.

Assume this is not the case and let C � c0c1 . . . c7 be an induced and well-behaved
C8 in G. As usually we will consider the indices on the ci to be circular.

Claim 2.5.7. For any 4 vertices ci, ci�1, ci�4, and ci�5 there is a vertex v, such that
exchanging one of these 4 vertices with v gives rise to an induced and well-behaved C8

where there is a P3 between ci and ci�4 or between ci�1 and ci�5, if such a path does not
already exist in C.

Proof. By symmetry, let c0, c1, c4, c5 P C be vertices that contradict the claim. In
particular there is no P3 between c0 and c4 or between c1 and c5. Since G is maximal
C2k�1-free, there is a path Px of length 4 between c0 and c5 and a path Py of length 4
between c1 and c4. Let Px � c0x1x2x3c5 and Py � c1y1y2y3c4 (see Figure 2.5.2 on the
left for an illustration.).

c0

c1

c2

c3

c4

c5

c6

c7

c0

c1

c2

c3

c4

c5

c6

c7

Figure 2.5.2: On the left a C8 with two adjacent P4. On the right a C8 with two non
adjacent P3.

Now consider the set U � V pCq Y tx2, y2u of size 8� 2 � 2p2k � 1q, we claim that
no vertex can have 3 neighbours inside, leading to a contradiction with δpGq by double
counting.

First we note that the vertices of U are all disjoint, since every unification of x2 or
y2 with another vertex of U would lead to a short odd cycle.
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Secondly we note that we have the following statements.

� C U r C

x2 c0, c2, c3, c5 y2

y2 c1, c4, c6, c7 x2

And since C is well-behaved and induced in G, any vertex in G with at least 3
neighbours in U has to be a neighbour of either x2 or y2. But a vertex that has both x2

and y2 as neighbours can have no other neighbours on C, and a vertex with exactly
one of x2 and y2 as a neighbour, as well as 2 well-behaved neighbours on C leads to
Claim 2.5.7 being true.

By using Claim 2.5.7 up to 3 times on C and the resulting cycles, after relabelling
the new vertices with the names of the vertices they replaced, we can ensure a P3

between ci and ci�4 as well as one between ci�2 and ci�6 for some i. Note that in each
replacement step we get another induced and well-behaved C8 again. By symmetry let
these paths be Ps between c0 and c4 as well as Pt between c2 and c6 (see Figure 2.5.2
on the right for an illustration).

Now however c0Psc4c3c2Ptc6c7c0 is a C4k�2 and c1 and c5 give rise to two 2-diagonals
that are not adjacent, contradicting Lemma 2.5.2.

The following lemma, where the proof is quite lengthy is probably provable without
using Lemma 2.5.6 or Lemma 2.5.9, however the length of it will probably explode,
and since it is just a tool to prove Lemma 2.5.8 anyway there seems no motivation to
do so. It will allow us to handle the appearance of a not well-behaved vertex in an
induced even cycle creating no shorter induced even cycle of length ¡ 4 in the proof of
Lemma 2.5.9.

Lemma 2.5.8. Let k � 3 and let G be a maximal C2k�1-free graph on n vertices with
δpGq ¡ 1

2k�1n, then G does not contain a C8 with exactly 2 chords that meet in a vertex
as an induced subgraph.

Proof. Note that the upper bound restriction on k originates from Lemma 2.5.6 and
does not appear elsewhere in the proof.

Assume that G contains a C8 with exactly two chords that meet in a vertex as an
induced subgraph. For convenience in notation we will refer to the C8 as C � c0c1 . . . c7c0

and let the chords be c6c1 and c6c3.
From all these graphs G contains as an induced subgraph, let H be the one that

maximizes ` in the sense that there is a P` from c2 to a vertex t`, a P2k�2�` from t` to
c5 as well as a P2k�2�` from t` to c7. These three paths form a P2k�2 from c2 to c5 as
well as a P2k�2 from c2 to c7. Let the former path be Py � c2y1y2 . . . y2k�3c5 and the
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latter path be P 1
y � c2y

1
1y

1
2 . . . y

1
2k�3c7 and whenever yi � y1i, so i ¤ `, we will call this

vertex ti instead of yi or y1i (see Figure 2.5.3 for an illustration).

c0

c1

c2

c3

c4

c5

c6

c7

t`

Figure 2.5.3: The graph C together with the auxiliary paths Py and P 1
y for k � 4 and

` � 3.

Note that G is maximal C2k�1-free and there are no edges between c2 and c5 or c2

and c7. Therefore ` might be 0, implying that t` � c2, but the two paths Py and P 1
y do

exists.
We will now contradict 0 ¤ ` ¤ 2k � 3, implying that G does not containing a

C8 with exactly 2 chords that meet in a vertex as an induced subgraph, which is
the statement of this lemma. Depending on the value of ` we will arrive at different
contradictions, we will therefore split this proof in 3 cases and we start with the broadest
case.

Case: 1 ¤ ` ¤ 2k � 4

Let 1 ¤ ` ¤ 2k � 4 be given. First we will ensure, that l ¤ 2k � 5.
Because of the cycles c2Pyc5c6c1c2 and c2P

1
yc7c6c1c2 of length C2k�1 the vertex t` can

not be a neighbour of c6. Additionally, neither the edge y2k�3c7 nor the edge y12k�3c5

can be present due to the maximality of `. But if ` � 2k � 4 would be the case, then
the cycle t`y2k�3c5c6c7y

1
2k�3t` would contradict Lemma 2.5.4.

Therefore ` ¤ 2k � 5, and since ` ¡ 0, there can not be a 2-diagonal joining other
vertices than c2 and c6 in the C4k�2 formed by Py, P 1

y, and c6.
Consider the even cycle C 1 � t`Pyc5c6c7P

1
yt`. Since it is a subset of the vertices of

the above mentioned C4k�2, Corollary 2.4.8 ensures that just certain neighbourhoods in
C 1 can occur. Apart from neighbours of t` or c6, factoring in the maximality of `, a
vertex v which does not act well-behaved in C 1 must have a neighbourhood of the form
NC1pvq � tyi, y1iu.
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A neighbour of t`, because of the two C2k�1 containing t`, can only not act well-
behaved, if it is also a neighbour to both y`�2 and y1`�2, contradicting the maximality
of `.

Now consider the smallest index i such that there is a vertex v with tyi, y1iu � NC1pvq
that does not act well-behaved in C 1.

Obviously i ¥ ` � 2, so consider the even induced cycle C2 � t`Pyyivy
1
iP

1
yt`. Note

that by the choice of v, neighbours of v have no other neighbours in C2 except yi�2

and y1i�2, and if they are a neighbour to both of them, then i � `� 2 and C2 is a C6

contradicting Lemma 2.5.4. Otherwise C2 is well-behaved by construction and therefore
contradicts Lemma 2.5.6

Now if there is no vertex v that does not act well-behaved in C 1, C 1 itself is induced
and well-behaved, contradicting Lemma 2.5.6 again.

Case: ` � 0

Assume ` � 0.
Recall that t0 � c2 and consider the Cycle C 1 from the last case, by construction

it is an induced even cycle. Since it contains 2p2k � 3q � 4 � 4k � 2 vertices however,
there must be a vertex with 3 neighbours in C 1, otherwise we get a contradiction t δpGq
by a double counting argument.

By construction (maximality of `) and Corollary 2.4.8, no vertex can have two
neighbours in either Py or P 1

y and also at least one neighbour in the other one. Therefore,
there must be a vertex v with 3 neighbours in C 1, with at most one neighbour in each
Py and P 1

y. Since V pC 1q � V pPyq Y V pP 1
yq Y tc6u, this vertex is a neighbour of c6 and

has exactly one neighbour in each Py and P 1
y. By using Corollary 2.4.8 once again, we

know that NC1pvq � tc6, y2k�3, y
1
2k�3u.

This however implies that the cycle C2 � vy2k�3Pyy1c2y
1
1P

1
yy

1
2k�3v is even, induced,

and in regards to being well-behaved acts exactly like the cycle C 1 from the previous
case. For the remainder of the proof an analogous procedure as in the case above will
lead to a similar contradiction, concluding this case as well.

Case: ` � 2k � 3

For this final case we will refer to Py � c2t1t2 . . . t2k�3c5 as Pt, and also introduce some
more auxiliary paths. The proof will deviate from the ones for the previous cases,
indeed it will look more like the proof of Lemma 2.5.4.

First, assume that there is a P2k�3 joining c0 and c4. Let this path be Ps �
c0s1s2 . . . s2k�4c4, see Figure 2.5.4 on the left. Then the cycle c0Psc4c5t2k�3Ptc2c1c0

contains p2k� 4q� p2k� 3q� 5 � 4k� 2 vertices, therefore the three 2-diagonals c4c3c2,
c5c6c1, and t2k�3c7c0 contradict Lemma 2.5.2.
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c0

c1

c2

c3

c4

c5

c6

c7

t1
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c0

c1

c2

c3

c4

c5

c6

c7

t1

x1

z1

Figure 2.5.4: The graph C together with the auxiliary path Pt and the edge t2k�3c7 for
k � 4 and l � 3. On the left with the additional auxiliary path Ps. On the right with
the additional auxiliary paths Px and Pz.

Since G is maximal C2k�1-free, and there is an induced P3 between both c0 and c3

as well as c1 and c4, there are paths of length 2k� 2 between these pairs of vertices. Let
Px � c0x1x2 . . . x2k�3c3 and Pz � c4z1z2 . . . z2k�3 be these paths. Note that Pz “starts”
at c4 for having a more symmetric notation.

Now let H � GrV pCq Y V pPtq Y V pPxq Y V pPzqs (see Figure 2.5.4 on the right for
an illustration).

Note that the statements from Lemma 2.5.2 as well as Corollary 2.4.8 hold, even
if some of the vertices from the statements are unified, since “false” neighbourhoods
would create short odd cycles in this case.

To get the statements from Table 2.1, in addition to using that G is C2k�1-free and
considering the statements of Lemma 2.5.2 as well as the statement from Corollary 2.4.8,
we will also use the maximality of ` and finally the fact that there is no Ps from c0 to
c4 as described above.

Note, that each pair of P2k�2 paths together with some vertices from C forms a
C4k�2 with one or two 2-diagonals, and that a common neighbour of xi and z2k�5�i or
x2k�5�i and zi would give rise to a Ps.

Now with simple set intersections we get Table 2.2 from Table 2.1.
Analysing the statements from Table 2.2 we notice, that there are very few possibil-

ities for a vertex to have at least 2 neighbours in C or the inner vertices of one of the
P2k�2 and have more than 3 neighbours in H.

First we note that no vertex can be a neighbour to xi and ti or a neighbour to zi
and ti at the same time due to Table 2.1. Furthermore from Lemma 2.5.2 we infer that
no vertex can be a neighbour to xi and zi at the same time if i � 2k � 3. Together
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� C Pt r C Px r C Pz r C

c0 c2, c4, c6 t2k�3 x2 z2k�3, z2k�5
c1 c3, c5, c7 t1 x1 z2k�4
c2 c0, c4, c6 t2 x2k�3 z2k�3
c3 c1, c5, c7 t1 x2k�4 z1
c4 c0, c2, c6 t2k�3 x2k�3, x2k�5 z2
c5 c1, c3, c7 t2k�4 x1, x2k�4 z1
c6 c0, c2, c4 t2k�3 x2k�3 z2k�3
c7 c1, c3, c5 t2k�4 x1 z1, z2k�4

ti C ti�2, ti�2 x2k�1�i, x2k�3�i z2k�1�i, z2k�3�i
xi C t2k�1�i, t2k�3�i xi�2, xi�2 z2k�1�i, z2k�3�i, zi
zi C t2k�1�i, t2k�3�i x2k�1�i, x2k�3�i, xi zi�2, zi�2

Table 2.1: Here are all the possible neighbours a neighbour of one of the vertices of H
can have in H.

with i ¥ 1 this eliminates all the possibilities for a vertex with 4 neighbours in H that
has at least 2 neighbours in the inner vertices of one of the P2k�2. This also ensures
that there is in fact no vertex with more than 4 neighbours in H that has at least 2
neighbours in either C or in the inner vertices of one of the P2k�2.

Concerning the vertices with 4 neighbours in H that have at least 2 neighbours in
C, we claim that each of them has at least one neighbour in tc2, c7u.

The only counterexample to this claim in Table 2.2 is a vertex v with NHpvq �
tc3, c5, x2k�4, z1u. If such a vertex would exist however, exchanging c4 for v would give
rise to a path Ps and therefore the already constructed contradiction to Lemma 2.5.2.

If there would be no vertex with at least 4 neighbours in V pHqr tc2, c7u, we can
use Schnitzers Principle to may assume all the inner vertices form Pt, Px, and Pz to be
disjoint from C and from each other and then get a contradiction to δpGq by a double
counting argument, since |V pHqr tc2, c7u| � 8� 3p2k � 3q � 2 � 3p2k � 1q.

A vertex with 4 neighbours in V pHq r tc2, c7u, factoring in our reasoning after
Table 2.2, must have one neighbour in C r tc2, c7u, and one neighbour in the inner
vertices of each P2k�2 each. Table 2.3 shows that such a vertex can not exists, concluding
the proof of this case.

The following lemma is our main goal for this section. It gives a firm grasp on
the feeling that G should somehow be (the blow-up of) a union of odd cycles such
that basically all vertices have neighbours in all C2k�1. In this case, even cycles would
just appear by traversing images of a single vertex in a blow-up multiple times or
by the symmetric difference of some C2k�1, which both would not be induced. Even
if this described feeling turns out not to be true as we shall see in Section 2.6, if
Conjecture 4.2.2 does hold, it is true for graphs not containing the specific counter
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� Pt r C Px r C Pz r C

c0, c2 ∅ ∅ z2k�3
c1, c3 t1 ∅ ∅
c2, c4 ∅ x2k�3 ∅
c3, c5 ∅ x2k�4 z1
c4, c6 t2k�3 x2k�3 ∅
c5, c7 t2k�4 x1 z1
c6, c0 t2k�3 ∅ z2k�3
c7, c1 ∅ x1 z2k�4
c2, c6 ∅ x2k�3 z2k�3

c0, c2, c6 ∅ ∅ z2k�3
c2, c4, c6 ∅ x2k�3 ∅
c1, c3, c5 ∅ ∅ ∅
c1, c3, c7 ∅ ∅ ∅
c0, c2, c4, c6 ∅ ∅ ∅
c1, c3, c5, c7 ∅ ∅ ∅
ti�1, ti�1 ∅ x2k�2�i z2k�2�i
xi�1, xi�1 t2k�2�i ∅ z2k�2�i
zi�1, zi�1 t2k�2�i x2k�2�i ∅

Table 2.2: Here are all the possible neighbours a neighbour of at least two of the vertices
of C or a neighbour of at least two inner vertices of one of the P2k�2 can have in H.
Note that no vertex v can have NCpvq � tc0, c2u or NCpvq � tc2, c4u (as highlighted in
red), even if one would expect so, since this would give rise to an induced C6. Also,
note that a vertex v can have NCpvq � tc2, c6u (as highlighted in blue) without giving
rise to an induced C6.

examples from Section 2.6.

Lemma 2.5.9. Let k � 3 and let G be a maximal C2k�1-free graph on n vertices with
δpGq ¡ 1

2k�1n, then G does not contain a C2` with 6 ¤ 2` ¤ 4k � 2 as an induced
subgraph.

Proof. This lemma states almost the same as Lemma 2.5.6, but we drop the requirement
of C2` to be well-behaved. Note that the upper bound restriction on k originates from
Lemma 2.5.6 and does not appear elsewhere in the proof.

We will prove this lemma by induction. For 2` � 6, this lemma is Lemma 2.5.4.
For 8 ¤ 2` ¤ 4k � 4 assume that C � c0c1 . . . c2`�1 is a C2`. If it is well-behaved,

we have a contradiction to Lemma 2.5.6, therefore there is a vertex v which does not
act well-behaved in C. However, since |C| ¤ 4k � 4 is even, the graph GrV pCq Y tvus
may not contain any odd cycle. If v has less than ` neighbours in C, we will find
two neighbours ci and cj of v with distance at least 4 on C, such that v has no other
neighbours on one of the two paths on C from ci to cj. But then v together with this
path forms an induced cycle of length at least 6 and at most 2`� 2, contradiction our
induction assumption.
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� Pt r C Px r C Pz r C

c0 t2k�3 x2 z2k�3, z2k�5
c1 t1 x1 z2k�4
c3 t1 x2k�4 z1
c4 t2k�3 x2k�3, x2k�5 z2
c5 t2k�4 x1, x2k�4 z1
c6 t2k�3 x2k�3 z2k�3

� Px r C Pz r C

c0, t2k�3 x2 ∅
c1, t1 ∅ z2k�4
c3, t1 x2k�4 ∅
c4, t2k�3 ∅ z2
c5, t2k�4 x1 z1
c6, t2k�3 ∅ ∅

Table 2.3: There is no vertex with 1 neighbour in C r tc2, c7u and one neighbour in
the inner vertices of each of the P2k�2 each, since x1 and z1 do not have a common
neighbour.

If v does have exactly ` neighbours on C, say c0, c2, . . . , c2`�2 then the cycle
vc0c1 . . . c6v contradicts Lemma 2.5.8.

For 2` � 4k�2 assume that C is a C2`. We know by the minimum degree assumption
on G that there must be a vertex v with at least 3 neighbours in C. Using this vertex
as a choice for a not well-behaved vertex in the case 8 ¤ 2` ¤ 4k � 4 leads to the same
contradiction.

2.6 Odd tetrahedra

We begin this section by a definition that appeared slightly different in a paper of
Messuti and Schacht [41], and before that in a paper by Gerards [21] and describes a
subdivision of K4, such that the faces stay odd cycles. Note that our definition differs
slightly from the one Messuti and Schacht used since the additional graphs that were
considered to be odd tetrahedra there were indeed homomorphic to an Andrásfai graph,
making the statement of our lemmas in this section more complicated without providing
any benefit. Our central lemma in this section is Lemma 2.6.5 that states that any
graph G with the usual prerequisites that contains an odd tetrahedra does also contain
a well-behaved one with some additional properties. We will then use this specific odd
tetrahedra to prove Corollary 2.6.7.

Definition 2.6.1 (p2k � 1q-tetrahedra). Given k ¥ 2 we denote by Tk the set of
graphs T consisting of

(i ) one cycle CT with three branch vertices aT , bT , and cT P V pCT q,

(ii ) a center vertex zT , and

(iii ) internally vertex disjoint (from CT as well as each other) paths (called spokes)
Paz, Pbz, Pcz connecting the branch vertices with the center vertex.

Furthermore, we require that each cycle in T containing zT and exactly two of the
branch vertices must have length 2k � 1, and the spokes have length at least 2. See
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Figure 2.6.1 for an illustration.

zT

aT

bTcT

Paz

Pbz

Pcz
zT

aT

bTcT

CabCac

Cbc

PabPac

Pbc

Figure 2.6.1: The p2k � 1q-tetrahedra as defined in Definition 2.6.1. On the right some
more terms we will be using.

In this first lemma concerning odd tetrahedra we motivate that there might be
graphs with suitable odd girth and minimum degree where not all vertices have a
neighbour in all C2k�1 and are therefore not homomorphic to Andrásfai graphs. With
Observation 2.6.8 and Observation 2.6.9 we will then proof that these graphs can
actually realise a sufficiently large minimum degree.

Lemma 2.6.2. For all integers k ¥ 2 and r ¥ 1 there is no p2k � 1q-tetrahedra T P Tk

that is homomorphic to the Andrásfai graph Ak,r.

Proof. Let T P Tk be given. Suppose for a contradiction that T homÝÝÝÑ Ak,r and let
ϕ be such a homomorphism. Since T contains an odd cycle we have r ¥ 2 and
let CA � u0 . . . up2k�1qpr�1q�1u0 be the Hamiltonian cycle of Ak,r such that Npu0q �
tuip2k�1q�1 : i � 0, . . . , r � 1u (c.f. proof of Proposition 2.1.2 (c )).

Claim 2.6.3. Let v, v1 be two vertices of a 2k�1 cycle C in T with distance d ¥ 2 in C.
If ϕpvq � u0, than ϕpv1q P tuip2k�1q�d, uip2k�1q�p2k�1�dqu for some integer 0 ¤ i ¤ r � 2.

Proof. In C there are two paths between v and v1. Let d and d1 be their lengths. There
cannot be a path of length d�2s or d1�2s with s ¥ 1 between ϕpvq and ϕpv1q, since this
path together with the embedding of the v-v1-path of other parity from C would form a
closed odd walk of length less than 2k�1, contradicting Proposition 2.1.2 (b ). Similarly,
ϕpv1q is not in the neighbourhood of ϕpvq � u0 in Ak,r, since 2 ¤ d ¤ k   d1 ¤ 2k � 1.

Consequently, ϕpv1q will lie on a segment S between uip2k�1q�1 and upi�1qp2k�1q�1 on
the Hamiltonian cycle CA for some integer 0 ¤ i ¤ r� 2. The segment S, together with
u0 � ϕpvq forms a C2k�1, and since there are only two vertices with distance d from
u0 � ϕpvq on this C2k�1, an embedding of v1 onto any other vertex gives rise to a v-v1-path
of length d� 2s or d1 � 2s with s ¥ 1. Therefore, ϕpv1q P tuip2k�1q�d, uip2k�1q�p2k�1�dqu
as claimed.
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Claim 2.6.4. Let v, v1, v2 be distinct vertices of a 2k � 1 cycle C in T . Let P 1 be the
path from v to v1 avoiding v2 on C and let P 2 be the path from v to v2 avoiding v1 on C.
Suppose d1, d2 ¥ 2 are the lengths of P 1 and P 2. If ϕpvq � u0, then ϕpv1q � uip2k�1q�d1

and ϕpv2q � ujp2k�1q�p2k�1�d2q, or ϕpv1q � uip2k�1q�p2k�1�d1q and ϕpv2q � ujp2k�1q�d2, for
some integers 0 ¤ i, j ¤ r � 1.

Proof. By Claim 2.6.3 it suffices to show, that ϕpv1q � uip2k�1q�d1 implies ϕpv2q �
ujp2k�1q�d2 and ϕpv1q � uip2k�1q�p2k�1�d1q implies ϕpv2q � ujp2k�1q�p2k�1�d2q, for all
0 ¤ i, j ¤ r � 1.

In the first case, we may assume that i ¤ j. Since ujp2k�1q�2 is a neighbour of
uip2k�1q�1, we may consider the path P starting with the path in CA from uip2k�1q�d1

to uip2k�1q�1 together with the edge from uip2k�1q�1ujp2k�1q�2 and then following CA to
ujp2k�1q�d2 . The path P consists of pd1� 1q � 1� pd2� 2q � d1� d2� 2 edges. Together
with the embedding of the path between v1 and v2 from C avoiding v, this yields a
closed odd walk of length at most 2k� 1 in Ak,r, contradicting Proposition 2.1.2 (b ). A
similar argument for the second case concludes the proof of the claim.

Note that ip2k � 1q � d � ip2k � 1q � p2k � 1� dq for all integers d, i ¥ 0. Since zT
lies in three C2k�1, each also containing two of the vertices aT , bT , cT , if ϕpzT q � u0,
then it follows from Claim 2.6.4, that not all three branch vertices can be embedded
onto Ak,r. Consequently, there is no homomorphism from T to Ak,r and Lemma 2.6.2
is proved.

For the following lemma and its proof, we introduce more notation on p2k � 1q-
tetrahedra.

We will call the three C2k�1 containing zT and exactly two of the branch vertices by
these two branch vertices, i.e. Cab, Cac, and Cbc. Furthermore we will call the subpath
on CT connecting two branch vertices and not containing the third by these two branch
vertices as well, i.e. Pab, Pac, and Pbc, see Figure 2.6.1 for an illustration.

Note that since CT is the symmetric difference of Cab, Cac, and Cbc, it is an odd
cycle. Assuming our host graph G to be C2k�1-free, CT has length 2k� 1� 2j. An easy
calculation yields that the sum of the edges contained in the spokes is 2k � 1� j, and
therefore |Pab| � |Pcz| � j, |Pac| � |Pbz| � j, and |Pbc| � |Paz| � j. For easier notation,
we will refer to the length of the spokes with `a, `b, and `c.

Furthermore we will call the interior vertices of the spokes by their respective branch
vertex, so Paz � zTa1a2 . . . a`a�1aT and for easier notation zT � a0 and aT � a`a .
Analogous definitions hold for Pbz and Pcz. Starting from aT � u0 we will label the
vertices of CT clockwise (such that bT   cT in this ordering), and here we will use the
indices modulo |CT | as usually.
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The following lemma will give us a rather detailed look on the vertex minimal graph
of Tk that is a subgraph of G, allowing us a very detailed analysis of graphs that
contains a graph of Tk as a subgraph in return.

Lemma 2.6.5. Let k ¥ 3 and let G be a maximally C2k�1-free graph on n vertices with
δpGq ¡ 1

2k�1n, furthermore let T be the vertex minimal graph of Tk that is a subgraph
of G, then |V pT q| P t4k, 4k � 1u, all spokes have length at least 3 and T is well-behaved.

Proof. In this proof we will once again extensively use the fact that C2k�1 is well-behaved
in G and therefore not explicitly mention Lemma 2.4.3 each time we use this fact.

Let T be a vertex minimal p2k � 1q-tetrahedra in G. We begin with a detailed
analysis of the possible neighbourhoods a vertex can have inside T , which we summarise
in the following claim.

Claim 2.6.6. Every vertex v that does not act well-behaved in T has |NT pvq| � 2
neighbours in ta`a�1, b`b�1, c`c�1u.

Proof. Assume for a contradiction that v is a vertex which does not act well-behaved
in T .

Case: v is a neighbour to one of the 4 special vertices

If v is a neighbour of zT , then NT pvq � tzT , a2, b2, c2u. But since `a, `b, `c ¥ 2, v can
have at most one neighbour in ta2, b2, c2u, therefore v acts well-behaved.

If v is a neighbour of one of the branch vertices, by symmetry let aT P Npvq, then
NT pvq � taT , a`a�2, u�2, u2, ui�1, ui�1u for `c � j � 2 ¤ i ¤ `c � `a � 2j � 2.

If aT , ui P Npvq for `c � j � 1 ¤ i ¤ `c � `a � 2j � 1, either the cycle C1 �
vaTPabbTPbcuiv or the cycle C2 � vaTPaccTPbcuiv is odd, since their symmetric difference
is CT . Let C1 be odd, than C 1

1 � vaTPazzTPczcTPbcuiv is odd as well, and since they
both must contain at least 2k � 1 edges, we have |Pbz| � 2, and v together with Cab
and Cbc forms a C4k�2 with two 2-diagonals with distance at least 2, contradicting
Lemma 2.5.2. Therefore NT pvq � taT , a`�2, u�2, u2u.

Obviously a`�2 P Npvq implies u�2, u2 R Npvq making v act well-behaved, leaving
NT pvq � taT , u�2, u2u to be considered.

If NT pvq � taT , u�2u or NT pvq � taT , u2u, v does act well-behaved, so assume
NT pvq � taT , u�2, u2u. Now however, replacing aT with v, the cycle Cab with the cycle
zTPazaTvu2PabbTPbzzT , and the cycle Cac with the cycle zTPazaTvu�2PaccTPczzT yields
another p2k � 1q-tetrahedra with the additional vertex v but without the vertices u1

and u�1, contradicting the minimality of T . Therefore, v acts well-behaved.
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Case: v has two neighbours in a spoke

If v has two neighbours inside one of the spokes, say Paz, it can only have additional
neighbours on the opposite segment of CT . So let tai�1, ai�1, uhu � Npvq with 2 ¤ i ¤
`a�2 and `c� j�1 ¤ h ¤ `c� `a�2j�1. But than, replacing ai by v yields a diagonal
cutting either the symmetrical difference of Cab and Cbc or the symmetrical difference
of Cac and Cbc into two odd cycles, where at least one of the odd cycles in shorter than
2k � 1, because `a, `b, `c ¥ 2. Therefore Npvq � tai�1, ai�1u and v acts well-behaved.

Case: v has two neighbours in one of the segments of CT

If v has two neighbours inside one of the segments of CT , say Pbc, it can have additional
neighbours in Pac, Pab, or Paz. However, if tui�1, ui�1, ahu � Npvq with 1 ¤ h ¤ `a � 1
and `c� j� 2 ¤ i ¤ `c� `a� 2j� 2, replacing ui with v leads to the same contradiction
as in the last case.

If tui�1, ui�1, uhu � Npvq with 1 ¤ h ¤ `a�j�1 and `c�j�2 ¤ i ¤ `c�`a�2j�2,
replacing ui with v yields a chord in CT from u1i � v to uh. Since this edge is
segmenting the symmetric difference of Cab and Cbc into two even cycles (otherwise
there is a short odd cycle), we have |bTPbcu1i| � |bTPabuh|, by symmetry we may assume
|bTPbcu1i| ¡ |bTPabuh|.

Now however, replacing bT with uh, and Cbc with zTPczcTPbcu1iuhPabbTPbzzT yields
another p2k � 1q-tetrahedra without the vertices between u1i and bT , which exist since
|bTPbcu1i| ¡ |bTPabuh| ¥ 1, contradicting the minimality of T .

The case that v has a neighbour in Pac works analogous to the case where v has a
neighbour in Pab. Therefore, v is well-behaved.

Case: v has neighbours in multiple spokes

If v has a neighbour in 2 spokes, say Paz and Pbz, they lie in a common C2k�1, and
their distance using Pab is bigger than 2, therefore these neighbours are a1 and b1. If
v has a neighbour in Pcz as well, this neighbours must be c1 and v acts well-behaved.
If v has a neighbour in Pac r taT u, this neighbour must be u�1, and `a � 2, therefore
a1 � a`a�1 P Npvq. If v has a neighbour in Pbc r tbT u, this neighbour must be u`c�j�1,
and `b � 2, therefore b1 � b`b�1 P Npvq.

Case: v has a neighbour in exactly one spoke

If v has a neighbour in exactly one spoke, say ai in Paz, then NT pvq � tai, u1, u�1, uhu
with `c � j � 1 ¤ h ¤ `c � `a � 2j � 1. If uh R Npvq, then either |Npvq| � 1 and v

acts well-behaved, or NT pvq � ta`a�1, u1, u�1u and v acts well-behaved. So assume
uh P Npvq, then either C1 � vaiPazzTPczcTPbcuhv or C2 � vaiPazzTPbzbTPbcuhv is
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odd. Assume by symmetry that C1 is odd, then the symmetric difference of C1 and
C 1

1 � vaiPazaTPabbTPbcuhv is equal to the symmetric difference of Cab and Cbc, therefore
both are odd and since they must have length at least 2k � 1 all 4 of these cycles
are a C2k�1 and |Pbz| � 2. Since now v and its neighbours are a second 2-diagonal in
a C4k�2, and to avoid a contradiction with Lemma 2.5.2, we must have ai � a1 and
uh � u`c�`a�2j�1. Because u1 P Npvq would be v’s third neighbour in a C2k�1, the
only possibility for v to have 3 neighbours in T is if NT pvq � ta1, u�1, u`c�`a�2j�1u,
but for a1 and u�1 to have a common neighbour, |Paz| � 2 must hold, and therefore
a1 � a`a�1 P Npvq.

Case: v has multiple neighbours in CT but none in T r CT

As we have discussed the case of v having two neighbours inside a segment of CT
already, assume that v has a neighbour in at least 2 different segments of TC , say
ui P Pabr taT , bT u and uh P Pbcr tbT , cT u. If the cycle C1 � vuiPabbTPbcuhv is odd, the
only option in which v is not giving rise to a short odd cycle is if v forms a 2-diagonal in
the symmetric difference of Cab and Cbc and |Pbz| � 2, but this contradicts Lemma 2.5.2
again.

Therefore, C1 is even. Let x � |uiPabbT | and y � |uhPbcbT |, since C1 is even, x and
y have the same parity. If they are not equal, say by symmetry y ¥ x � 2, we can
replace the longer segment to find a T with fewer vertices similar to the case where v
has 2 neighbours in one segment of CT . If x � y ¡ 1� j, the symmetrical difference of
CT and C1 contains less than 2k � 1� 2j � 2p1� jq � 2 � 2k � 1 edges, contradicting
G being C2k�1-free. Therefore x � y ¤ 1� j.

Since having 3 neighbours on CT would require to segment CT into 3 even segments,
v can have at most 2 neighbours on CT .

In the light of the above claim, it is easy to see that we must have j ¤ 1, indeed,
assuming j ¡ 1 the set V pT qr ta1, a`a�1, b`b�1, c`c�1u would consist of at least 4k � 2
vertices, but no vertex can have more than 2 neighbours in this set, contradicting
δpGq ¡ 1

2k�1n with a standard double counting argument.
Furthermore, if j � 1, and one of the spokes, say Paz, has length 2 the set V pT qr

ta1, a`a�1, b`b�1, c`c�1u � V pT q r ta1, b`b�1, c`c�1u leads to the same contradiction as
above. Note, that any not well-behaved vertex with neighbours in at least one spoke
forces at least one spoke to be of length 2, so they can not appear for j � 1, also a
vertex with neighbours in multiple segments of CT would give rise to an induced C6,
contradicting Lemma 2.5.4. Therefore T is well-behaved, if j � 1.

Finally for j � 0, the vertices with neighbours in multiple segments of CT act
well-behaved. If any spoke, say Paz has length 2, the opposite segment of CT has the
same length, so the set S � V pT q r ta1, u`c�1u would once again consist of 4k � 2
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vertices, such that every well-behaved vertex has just two neighbours in it. It remains
to check, that no vertex that is not well-behaved has more than 2 neighbours in S to
arrive at the usual contradicting.

Note, that for j � 0 at most 2 of the spokes may have length 2, since otherwise we
would have C2k�1 � C6. Since all vertices act well-behaved if all spokes have at least
length 3, we might assume that Paz has length 2 and define S as above.

Considering vertices with exactly one neighbour in a spoke, if they have 3 neighbours
in T , there are at least 2 spokes of length 2, such that they have both vertices in the
opposite segments of CT from the short spokes in their neighbourhood, therefore they
do not have more than 2 neighbours in S.

Considering vertices with neighbours in exactly two spokes, if they have 4 neighbours
in T , both the spokes they have neighbours on must have length 2, and the other two
neighbours are the one on the opposite segment of CT from the short spokes, therefore
they do not have more than 2 neighbours in S. If they have 3 neighbours in T , one of
the spokes they have a neighbour on must have length 2, if this is Paz, we are done, so
assume |Pbz| � 2 as well and let v be a vertex with NT pvq � tb1, c1, u`c�1u. Note that
u�1 P Npvq would imply that |Pcz| � 2 as well which we already excluded.

Now however, v does form a 2-diagonal in the symmetric difference of Cab and Cbc
with distance one from the 2-diagonal Pbz. By Lemma 2.4.6 there can only be very
specific vertices with 3 neighbours in this C4k�2, but because of δpGq ¡ 1

2k�1n there
must be such vertices, and by the case analysis done in the proof of Claim 2.6.6 there
are only 2 cases left to consider, namely the ones where the 2 neighbours in the C4k�2

with distance 2 are neither both in CT nor both outside of it.
If there is a vertex u with 3 neighbours in this C4k�2 such that ta1, u1u � Npuq,

than since k ¥ 3 and by Lemma 2.4.6, the third neighbour must lie on Pcz r tzT , c1u,
leading to u having 2 neighbours with distance more than 2 in Cac and therefore a
contradiction.

If there is a vertex u with 3 neighbours in this C4k�2 such that tc`c�1, u`c�`a�1u �
Npuq, than since k ¥ 3 and by Lemma 2.4.6, the third neighbour must lie on Pab, leading
to u having a neighbour on Pcz, the opposite segment of CT and a third neighbour,
which implies that |Pcz| � 2 and therefore a contradiction.

The following corollary of Lemma 2.6.5, gives a rather precise upper bound as to
how large δ can be for an odd tetrahedra to appear in G.

Corollary 2.6.7. Let k ¥ 3 and let G be a maximally C2k�1-free graph on n vertices
with δpGq ¡ 1

2k�2n, than G does not contain any T P Tk.

Proof. Let k ¥ 3 and let G be a maximally C2k�1-free graph on n vertices with
δpGq ¡ 1

2k�2n, furthermore let T P Tk be a subgraph of G. Since G contains a p2k� 1q-
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tetrahedra, it must also contain one on a minimal amount of vertices. Let T � be such a
p2k � 1q-tetrahedra.

From Lemma 2.6.5 we know, that T � is well-behaved, and following the notation
from the proof of Lemma 2.6.5 we know that no vertex has more than 2 neighbours
in V pT �q r ta1, a`a�1, b`b�1, c`c�1u, observing that |V pT �q r ta1, a`a�1, b`b�1, c`c�1u| ¥
4k � 4 � 2p2k � 2q together with a standard double counting argument however would
contradict δpGq ¡ 1

2k�2n.

In the following observation, we proof that for even k, there are indeed odd tetrahedra
that may appear in C2k�1-free graphs G with δpGq ¡ 1

2k�1n, however we do not quite
reach the upper bound on the appearance of odd tetrahedra of 1

2k�2n from Corollary 2.6.7.
We do currently not know, which should be the exact threshold here.

Observation 2.6.8. For k ¥ 4 even there are C2k�1-free graphs on n vertices with
minimum degree δpGq � 3

6k�4n ¡ 1
2k�1n, that contain a T P Tk for arbitrary large n.

Proof. Let k ¥ 4 and even be given. Consider the p2k � 1q-tetrahedra constructed by
replacing 2 not adjacent edges in aK4 with a path of length 2k�5 and all the other edges
of the K4 by a P3. Now let Teven be the graph obtained from this p2k � 1q-tetrahedra
by blowing up with a factor of 2 � f (for arbitrarily large f) all the vertices with degree
3 as well as all the vertices with distance 3 � 4 � ` or 4 � 4 � ` for some ` ¥ 0 to the
closest vertex with degree 3, and blowing up all the other vertices with a factor of 1 � f
(see Figure 2.6.2).

Figure 2.6.2: Depicted on the left is Teven for k � 4. By replacing the edges indicated
by || in a Teven with the path on the right for some k, one obtains the Teven for the next
even k.

It is easy to see that Teven is C2k�1 free, 3-regular, and contains 6k � 4 vertices (for
the last one inductive thinking is helpful, see Figure 2.6.2).

By Lemma 2.5.1, balanced blow-ups of Teven therefore prove this observation.
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In the following observation there is no gap between the bound proven and the one
provided by Corollary 2.6.7, making this bound optimal for odd k at least. Other than
that it is quite similar to Observation 2.6.8 with a slightly different blow-up.

Observation 2.6.9. For k ¥ 5 odd there is a sequence of C2k�1-free graphs on n

vertices where the minimum degree converges to 1
2k�2n ¡ 1

2k�1n as n tends to infinity
that each contain a T P Tk.

Proof. Let k ¥ 5 and odd be given. Let Todd be the p2k � 1q-tetrahedra constructed by
replacing 2 not adjacent edges in a K4 with a path of length 2k � 5 and all the other
edges of the K4 by a P3 (see Figure 2.6.3).

Figure 2.6.3: Depicted on the left is Todd for k � 5. By replacing the edges indicated by
|| in a Todd with the path on the right for some k, one obtains the Todd for the next odd
k. The black vertices are the ones which will be blown up indefinetely in the proof of
Observation 2.6.9.

Let S be the set of vertices, containing all the vertices with degree 3 as well as all
the vertices with distance 3� 4 � ` or 4� 4 � ` for some ` ¥ 0 to the closest vertex with
degree 3 in Todd (see the black vertices in Figure 2.6.3).

It is easy to see that Todd is C2k�1 free, every vertex has exactly one neighbour in
S, and S contains 2k � 2 vertices (for the last one inductive thinking is helpful, see
Figure 2.6.3).

Blowing up the vertices in S with a blow-up factor of f and the other vertices with
a factor of 1, the minimum degree of these blow-ups will converge to f , and the size of
the whole graph will converge to |S| � fp2k� 2q as f tends to infinity. By construction,
these blow-ups will also stay C2k�1-free, and therefore prove this observation.
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2.7 Proof of the more detailed version of the main
theorem for k � 3

In this final section of the chapter, we will proof Theorem 1.2.6. Both lemmas and the
theorem in this chapter closely resemble the ones from [34], however there are some
differences which we will point out. Also, note that while our statements are all made
for k ¤ 3 in this chapter, this is solely due to Lemma 2.5.6 and if Conjecture 4.2.2
(which states that Lemma 2.5.6 holds for arbitrarily large k) turns out to be true, this
upper bound on k might be lifted on this chapter without any other change.

For the first lemma of this section, our proof is quite differnt from the one provided
in [34], as the cases for larger k would grow indefinitely, which makes them too many to
handle manually. It will be rather helpful in showing that any “incomplete” Andrásfai
graph showing up in G, after closer consideration must be complete after all.

Lemma 2.7.1. Let 3 ¤ k ¤ 3 and let G be a maximal C2k�1-free graph on n vertices
with δpGq ¡ 1

2k�1n.
Furthermore let C � c0c1 . . . c4k�1c0 be a C4k with at least two added diagonals,

then GrV pCqs is isomorphic to one of the following two.

1. An M4k where ci ÝÑ mi, or

2. anM4k where ci ÝÑ mi for 2k ¤ i ¤ 4k�1, and ci ÝÑ m2k�1�i for 0 ¤ i ¤ 2k�1.

Where in the latter case the two diagonals must be c0c2k and c4k�1c2k�1.

Proof. Note that the upper bound restriction on k originates from Lemma 2.5.6 and
does not appear elsewhere in the proof.

Assume that GrV pCqs does contain two diagonals with distance at least 2, then
by Lemma 2.4.4 C is semi well-behaved with respect to an M4k as in item 1 of the
lemma. If there is at least one diagonal missing, we pick a vertex of C without the
corresponding diagonal and move along C on both directions until we hit a vertex with
a diagonal on both ends, using these diagonals and afterwards changing direction on
C these walks will meet at the vertex with distance 2k from the starting vertex. This
walk will then define an induced even cycle of length at most 4k � 2, contradicting
Lemma 2.5.9.

Assume that GrV pCqs does contain exactly two diagonals which are adjacent, by
symmetry let these diagonals be c0c2k and c4k�1c2k�1.

Since U � V pCqr tc0, c2ku is a set of 4k � 2 vertices, there must be a vertex v with
at least 3 neighbours inside U . By Lemma 2.4.5 we know that NCpvq is a superset of
NCpciq for some vertex vi with 2 ¤ i ¤ 4k� 2, i � 2k� 1, 2k, 2k� 1. Exchanging this ci
for v to create a new C4k with 3 diagonals contradicts the first part of this proof since
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k ¥ 3 and therefore 4k{2 ¥ 6 which implies that there is a diagonal missing in this new
C4k.

The following lemma, which appeared in [34] without the restriction on odd tetra-
hedra is the reason the original conjecture of Letzter and Snyder, that all C2k�1-free
graphs G with δpGq ¡ αδhompC2k�1q|V pGq| � 1

2k�1 |V pGq| are homomorphic to an András-
fai graph Ak,r, does not hold for general k. Our proof centres around the appearance
of such an odd tetrahedra, and is therefore quite different from the one provided by
Letzter and Snyder.

Lemma 2.7.2. Let 3 ¤ k ¤ 3 and let G be a maximal C2k�1-free graph on n vertices
with δpGq ¡ 1

2k�1n.
If G does not contain an odd Tetrahedra from Tk as a subgraph, then every vertex

in G has a neighbour in every C2k�1 in G.

Proof. Note that the upper bound restriction on k originates from Lemma 2.5.6 and
does not appear elsewhere in the proof.

Assume there is a vertex v1 P V and a cycle C � c0c1 . . . c2kc0 in G, such that v1

does not have any neighbours on C.
Since G is maximal C2k�1-free, G must be connected, otherwise an edge that is

a bridge could be added without creating an additional cycle. Therefore, there is a
shortest path from v1 to V pCq, and on this path there is a first vertex v that does not
have any neighbour on C. By construction v has a common neighbour u with a vertex
of C, and by symmetry we may assume this vertex of C to be c0.

As v does not have any neighbours on C, it does not have any neighbours in
tc1, c3, c�1, c�3u either. Owing to the maximality of G there must be even paths P1,
P3, P�1, and P�3 connecting these vertices with v (see Figure 2.7.1 on the left for an
illustration).

We will construct an odd tetrahedra from these paths along C and tv, uu. In the
first step we will prove the existence of the necessary edges and in the second step we
will prove that they are disjoint where they need to.

Assume there is a path P from v to c3 (to c�3) of length 2k � 4, then the walk
C� � vuc0c1c2c3Pv (the walk C� � vuc0c�1c�2c�3Pv) has length 2k�1, contains vuc0,
and intersects with C in at least two incident edges. We will then use it as a building
block of our odd tetrahedra.

If there is no such path then P3 must have length 2k� 2 since the above constructed
odd walk, by replacing P with P3, would otherwise have a length of at most 2k � 1
leading to the existence of a short odd cycle in G.

Apparently both P1 and P�1 must have length 2k � 2 exactly. Furthermore P3 and
P1 must be induced paths, since otherwise we would find a short odd cycle or a path of
length 2k � 4 from v to c3. Considering the closed even walk vP1c1c2c3P3v of length
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Figure 2.7.1: On the left the non-edges from v to a C2k�1 that yield relatively short
even paths. On the right the from v and C constructed odd tetrahedra.

4k � 2 there must be either less than 4k � 2 vertices or more induced edges, otherwise
it would contradict Lemma 2.5.9. Since subtracting a closed odd walk from a closed
even walk yields another closed odd walk and 4k � 2   2p2k � 1q all closed subwalks
must be even.

For a more precise notation, let P1 � vx1x2 . . . x2k�3c1 and let P3 � vz1z2 . . . z2k�3c1.
We will find a vertex c12 that has both c1 and c3 as a neighbour and an odd path P of
length 2k � 3 to v.

Consider the walk W � x2k�4x2k�3c1c2c3z2k�3z2k�4 of length 6. If it is an induced
path consisting of 7 vertices, it will be part of an induced even cycle of length at least 6
and at most 4k � 2, contradicting Lemma 2.5.9, since no vertex from P1 rW can have
neighbours in W r P3 and the other way around without creating a short odd cycle.

The only way for W to contain less than 7 vertices is by either identifying x2k�3

and z2k�3, or identifying x2k�4 and z2k�4. In the former case, this new vertex would be
a neighbour of both c1 and c3 and have an odd path of length 2k � 3 to v, so we found
a vertex c12. In the latter case, W would be a C6 and should therefore not be induced,
leading to additional edges being present in W .

If there are additional edges inW , the only ones that can be present without creating
a short odd cycle are the ones from tx2k�4c2, z2k�4c2, x2k�3c3, z2k�3c1u. In the former
two cases c2 satisfies all the properties we want c12 to satisfy. In the latter two cases
x2k�3 or z2k�3 satisfies all the properties we want c12 to satisfy.

After we ensured the existence of a vertex c12, the walk C 1 � c12c3c4 . . . c2kc0c1c
1
2 has

length 2k � 1. Furthermore, the walk C� � vPc12c1c0uv has length 2k � 1, contains
vuc0, and intersects with C 1 in at least two incident edges.

By symmetry, if C� was not defined beforehand, we find a vertex c1�2 and possibly
after modifying C 1 to C2 we can define a walk C� � vPc1�2c�1c0uv that has length 2k�1,
contains vuc0, and intersects with C2 in at least two incident edges (see Figure 2.7.1 on
the right for an illustration).

If the 3 walks C2, C� and C� indeed intersect in these 2 or 3 consecutive edges with
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each other and nowhere else, they obviously form an odd tetrahedra with the spokes
being the intersections.

First we notice, that these closed odd walks of length 2k � 1 must be cycles, since
otherwise they would contain a shorter odd cycle, contradicting the odd girth of G.
Next we ensure, that these cycles do indeed form an odd tetrahedra together.

Claim 2.7.3. If two C2k�1 are intersecting in at least 1 edge, they are identical, or
there is a subset of their vertices, such that this subset induces two C2k�1 and their
intersection is a path.

Proof. Let A � a0a1 . . . a2ka0 and B � b0b1 . . . b2kb0 be the given two C2k�1 and assume
that a0 � b0 as well as a1 � b1 is the intersecting edge.

Assume ai � bj for indices i and j such that at least one of them is neither 0 nor
1. Obviously i, j ¡ 1 and if i � j either the closed walk W � a1a2 . . . aibj�1bj�2 . . . a1

is odd, in which case either W or pA Y Bq r W would contain a short odd cycle,
contradicting the odd girth of G. Or W is even, but then the paths from a1 to ai
would have the same parity but different length since i � j, however assuming that
|a1a2 . . . ai| ¡ |b1b2 . . . bj| leads to the short odd cycle a0b1b2 . . . bjai�1ai�2 . . . a2ka0, and
|a1a2 . . . ai|   |b1b2 . . . bj| to an analogous contradiction.

Therefore i � j, which implies |a1a2 . . . ai| � |b1b2 . . . bj| and we may discard
tb2, b3, . . . , bj�1u. Iterating this process for new intersections leads to the cycles being
identical or fulfilling the claimed property.

If the starting cycles were not identical but by greedily discarding vertices the
resulting cycles are, with a more careful discarding order it is easy to ensure that the
resulting cycles are not identical as well, just go back to the last step where vertices
were discarded and add them back into the picture.

With this claim we know that the constructed cycles indeed intersect in paths, and
by construction these paths have a length of at least 2 and all 3 intersect in c0, which
will be our central vertex. The only reason we might not use the intersection paths
as spokes and the end vertices of these paths as branch vertices, and C2 Y C� Y C�

without c0 and the inner vertices of the spokes as cycle CT , is that the 3 paths may be
intersecting in more than just c0.

But since by construction u R C and apparently c1 R C� as well as c�1 R C�, using
the proof of Claim 2.7.3 we will expand the given intersections of the cycles “away from
c0” such that we will have 3 distinct cycles which each intersect in a path afterwards.

Assuming the third cycle would intersect with the intersecting path of the other two,
by symmetry let C2 intersect in C� X C�, by construction it would need to intersect
with the whole of C�rC� as well as the whole of C�rC�. But since C2 is a cycle and
therefore does not contain a vertex of degree greater than 2, |C2 X C� X C�| � 2 and
C2 would be the union of C� and C� without the inner vertices of their intersecting
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path. This however would imply that C2 is an even cycle, contradicting C2 being a
C2k�1.

Just like Letzter and Snyder did, we will not prove Theorem 1.2.6 directly, but
instead prove the following theorem which clearly implies Theorem 1.2.6.

This proof is basically the same as the one appearing in [34], just extended to general
k, but there is no surprise, and everything works out just as in the k � 3 case. We
merely include this proof for completeness and the nice pictures at the very end. Note
that the k used in [34] is called r in this proof.

Theorem 2.7.4. Let 3 ¤ k ¤ 3 and let G be a maximal C2k�1-free graph on n vertices
with δpGq ¡ 1

2k�1n.
If G does neither contain an odd Tetrahedra from Tk nor an Ak,r�1 as a subgraph,

then G is homomorphic to Ak,r.

Proof. Note that the upper bound restriction on k originates from Lemma 2.5.6 and
does not appear elsewhere in the proof.

We will use induction to prove this theorem. For r � 1, G not containing a Ak,r�1

implies that G is bipartite and therefore homomorphic to Ak,1 � K2. To see this,
assume that G does not contain a Ak,r�1 � C2k�1 as a subgraph, but is not bipartite.
Obviously, G must contain an odd cycle, let C be the shortest odd cycle in G. Since
G is C2k�1-free this cycle C has length at least 2k � 3. Consider two vertices v and
v1 with distance 3 on C, they cannot be neighbours, since otherwise there would be
a shorter odd cycle contained in G, but owing to G being maximal C2k�1-free, there
must be an even path P of length at most 2k � 2 between these to vertices for them
not to be neighbours. Now however the odd cycle vPv1Cv has length at most 2k � 1
contradicting C being the shortest odd cycle in G.

Recall that any Andrásfai graph Ak,r is well-behaved in G by Lemma 2.4.3 and
r-regular by Proposition 2.1.2 (a ). For the latter cases the following claim will be
useful.

Claim 2.7.5. Every vertex of G has either r or r � 1 neighbours in any Ak,r that is a
subgraph of G. Furthermore for every vertex v that has r�1 neighbours in an Ak,r there
is a vertex ui P Ak,r such that NAk,rpvq � NAk,rpuiqr ui�1, where the uj are ordered like
in the proof of Proposition 2.1.2 (c ).

Proof. Let A � u0u1 . . . up2k�1qpr�1q�2u0 be an Ak,r with the vertex order from the proof
of Proposition 2.1.2 (c ).

For r P t1, 2u the claim is trivial since every Ak,r is well-behaved in G by Lemma 2.4.3
and Lemma 2.7.2 holds.

For r ¥ 3 let v be a vertex of G. Because of Lemma 2.4.3 if v has fewer than r � 1
neighbours in A, there will be 2k � 1 vertices with consecutive indices such that v is a
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neighbour to none of them. But from the proof of Proposition 2.1.2 (c ) we know that
these vertices of A induce a C2k�1, contradicting Lemma 2.7.2.

If v has exactly r � 1 neighbours in A we will once again find 2k � 1 consecutive
vertices such that v is a neighbour to none of them unless NAk,rpvq � NAk,rpuiqr ui�1

or NAk,rpvq � NAk,rpuiq r ui�1. However in the latter case, we might interpret the
neighbours of v to be of the form NAk,rpui�p2k�1qqr upi�2k�1q�1 by symmetry.

Because of Lemma 2.4.3 no vertex of G can have more than r neighbours in A, and
this finishes this proof.

We proceed with our induction on r, so let r ¥ 2 be given. First we ensure that
G does contain a copy of Ak,r. Assume that Ak,r is not a subgraph of G, then, by
induction hypothesis, G is homomorphic to Ak,r�1, but since Ak,r�1 is a subgraph of
Ak,r this implies that G is homomorphic to Ak,r as well and we are done.

Let A� be a vertex maximal blow-up of Ak,r that is a subgraph of G. For easier
notation, let A� � A � u0u1 . . . up2k�1qpr�1q�1u0 be an Ak,r with the vertex order from
the proof of Proposition 2.1.2 (c ), such that ui P Ui, where Ui, 0 ¤ i ¤ p2k�1qpr�1q�1
are the independent blow-up sets of A�.

If V pA�q � V pGq we are done, so assume there is a vertex v P V pGq r V pA�q.
Claim 2.7.5 now ensures, that v has neighbours in r or r � 1 classes Ui in A�, since
otherwise by a suitable choice of vertices from each class there would be an Ak,r

containing less than r � 1 or more than r neighbours of v.
We will first consider the case that v has neighbours in r classes Ui, and make the

following claim.

Claim 2.7.6. If v has neighbours in r classes Ui, it is joined to all the vertices of all
these classes.

Proof. By symmetry we may assume that v has r neighbours in A and these r neighbours
coincide with the neighbours of u0 in A. If there is a non-neighbour in any of the classes
apart from U�1 or U1 this non-neighbour gives rise to an Ak,r contradicting Claim 2.7.5
together with v. By symmetry assume there is a vertex u11 P U1 that is a non-neighbour
of v (see Figure 2.7.2 on the left for an illustration).

Since G is maximal C2k�1-free, the absence of the edge u11v implies the existence
of an even path of length at most 2k � 2 between v and u11, but considering the path
vu1u0u

1
1 this path P � u11p1p2 . . . p2k�3v must have length exactly 2k � 2.

The cycle C � u0u
1
1Pvu1u2 . . . up2k�1qpr�1q�1u0 consists of exactly p2k � 1qpr � 1q �

2� p2k � 1q vertices, and we will show that it is isomorphic to an Ak,r�1, contradicting
the assumption that G does not contain a copy of Ak,r�1.

It is easy to see that all the edges that should be present in an Ak,r�1 on C that are
not incident to one of the vertices from P are inherited from A being an Ak,r. Indeed,
recalling the proof of Proposition 2.1.2 (c ) and traversing C “backwards” from u0 all
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v

u0

u11

u1
u0

u11v
u1

Figure 2.7.2: On the left the graph A4,3 with additional vertices v and u11 and a dashed
non-edge. On the right the constructed subgraph of A4,4 with the added vertices marked
in black. In both pictures most of the chords were not drawn for clarity. The coloured
coatings mark possible A4,3 subgraphs including the new vertices.

the distances of neighbours are still the same until the path P is reached. If during the
consideration of neighbours along C one crosses P , the fact that it consists of 2k � 1
vertices implies that there was simply one neighbour left out that should have been
present.

Considering the cycle C0 � u11Pvu1Cu2k�1u
1
1 (blue cycle on the right of Figure 2.7.2)

notice that is has 4k vertices and the 3 diagonals u11u2, vu2k, and u1u2k�1 are present.
By Lemma 2.7.1 all the other diagonals must be present as well. To ensure that these
additional edges are the ones that should be present in an Ak,r�1, consider adding these
diagonals one at a time, starting with the one adjacent to the diagonal D � u11u2. Since
D is part of the Ak,r�1, its end vertices have distance 2k � jp2k � 1q for some j   r � 1
on C, namely j � 0, and by shifting one vertex along C on both ends, this distance
stays the same. therefore, all the diagonals are between vertices with the right distance
on C to each other and must be part of an Ak,r�1.

Let 1 ¤ i ¤ r � 2. Now considering the cycle Ci � u11Pvu1�ip2k�1qCu2k�1�ip2k�1qu
1
1,

recall that u0, u1, v, and u11 each have r neighbours in A, the 3 diagonals u11u2�ip2k�1q,
vu2k�ip2k�1q, and u1�ip2k�1qu2k�1�ip2k�1q are present. Once again, Lemma 2.7.1 ensures
the existence of all the other diagonals, and by adding them one at a time it is clear,
that they belong in an Ak,r�1 (see the red cycle in Figure 2.7.2 for an illustration of the
case i � r � 2).

Since in each of the r� 1 steps we added 2k� 3 diagonals, one for each vertex of the
2k � 3 inner vertices of P , each of these is now incident to 2� pr � 1q � r � 1 distinct
edges that all are part of an Ak,r�1, so there is no more missing edge, and C is indeed
isomorphic to an Ak,r�1. This however contradicts the assumption of G not containing
a copy of an Ak,r�1.

Following Claim 2.7.6 however, we could add the vertex v to A� enlarging the size
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of a vertex maximal blow-up, a contradiction. Therefore, any vertex v P V pGqr V pA�q
must have neighbours in exactly r � 1 classes Ui of A�. Owing to Claim 2.7.5 we might
assume that there is a set Wj of vertices that have neighbours in the same classes Ui as
uj with the exception of Uj�1 and that these sets Wj for 0 ¤ j ¤ p2k � 1qpr � 1q � 1
partition V pGqr V pA�q. We will now formulate our last Claim of this chapter.

Claim 2.7.7. If usut is a non-edge, Ws YWt is an independent set.

Proof. Assume there is an edge contradicting this claim. By symmetry we might assume
one of the end vertices to be w0 P W0. Let the other end vertex be wz P Wz. First we
note, that z � 0, since every vertex in Uj is a neighbour of uj�1 and therefore Uj is an
independent set for any 0 ¤ j ¤ p2k � 1qpr � 1q � 1.

For a simpler notation let C � u0u1 . . . up2k�1qpr�1q�1u0 be the Hamiltonian cycle of
A from the proof of Proposition 2.1.2 (c ).

For z � x � yp2k � 1q, with 2 ¤ x ¤ 2k � 3 and 0 ¤ y ¤ r � 2 consider the cycle
C� � w0u1u2�yp2k�1qCuz�1wzw0. It is induced and has length at least 1�1�1�1�1 � 5
and at most 1� 1� px� 1q � 1� 1 � x� 3 ¤ 2k (see red cycles in Figure 2.7.3 on the
left and on the right), contradicting either G being C2k�1-free or Lemma 2.5.9 since
2k   4k � 2 for k ¥ 3.

u0

w0

w2

w2k�1

u0

w0

w3

w2k�2

Figure 2.7.3: The graph A with representatives from each set Wj. On the left an odd
induced cycle for small (red) x and large (blue) x. On the right an even induced cycle
for small (red) x and large (blue) x.

For z � x�yp2k�1q, with 2k�2 ¤ x ¤ 2k�1 and 0 ¤ y ¤ r�2 consider the cycle
C� � w0u1Cux�2kwzw0. It is induced and has length at least 1� 2� 1� 1 � 5 and at
most 1 � 3 � 1 � 1 � 6 (see blue cycles in Figure 2.7.3 on the left and on the right),
contradicting either G being C2k�1-free or Lemma 2.5.9 since 6   4k � 2 for k ¥ 3.

Therefore z must be of the form 1� yp2k � 1q with 0 ¤ y ¤ r � 1, but then u0uz is
an edge and w0wz can not contradict this claim.
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Let U 1
i � UiYWi for 0 ¤ i ¤ p2k�1qpr�1q�1. Note that these sets are independent

by construction and partition V pGq due to Claim 2.7.5, Claim 2.7.6, and the definition
of A�. Claim 2.7.7 ensures that there is no edge between U 1

i and U 1
j whenever uiuj is a

non-edge, the maximality of G then implies that all the edges between U 1
i and U 1

j are
present whenever uiuj is an edge, implying that G is a blow-up of Ak,r. This obviously
makes G homomorphic to Ak,r and therefore finishes the proof of Theorem 2.7.4.
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3. Spanning subgraphs in
uniformly dense and
inseparable graphs

The proof of Theorem 1.3.6 utilises the absorption method of Rödl, Ruciński, and
Szemerédi [47]. We discuss this approach and give the details of the proof in Section 3.3.
For the proof we use some observations on uniformly dense and inseparable graphs,
which we collect in Section 3.1 and Section 3.2.

Theorem 1.3.7 follows from Theorem 1.3.6 combined with Szemerédi’s Regularity
Lemma [51] and the accompanying Blow-up Lemma [30]. Similar reductions appeared
in the proofs of the bandwidth theorems in [9, 50], and we give the proof in Section 3.4.

In Section 3.5 we will then conclude this chapter with some research regarding the
common generalisation of Theorem 1.3.2 and Theorem 1.3.6.

3.1 Properties of uniformly dense graphs

In this section we shall explore some properties of uniformly dense graphs that are
crucial for the proof of Theorem 1.3.6. In the latter half of this section, we will then
state some properties of uniformly dense graphs that will come into play in Section 3.4.

We start with the following well known fact that uniformly dense graphs contain
many cliques of given size.

Lemma 3.1.1. For every k P N, d P r0, 1s, and % ¡ 0, every p%, dq-dense n-vertex
graph contains at least

�
dpk2q � pk � 1qk%�nk ordered copies of Kk.

Proof. Let G � pV,Eq be a p%, dq-dense graph and |V | � n. For k � 1, the assertion is
trivial. For k � 2, we are counting the number of edges twice. Since G is p%, dq-dense,
we have 2|E| ¥ 2pd{2� %qn2 and the lemma follows.

We continue by induction. Let k ¥ 2 and assume that for every %1, d1, it is true that
every p%1, d1q-dense graph H contains at least

�
d1pk2q � pk� 1qk%1�|V pHq|k ordered copies

of Kk. For counting the ordered copies of Kk�1 in G, consider the subset V � � V of
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the vertices v P V with |Npvq| ¥ 1. Let hompKk�1, Gq denote the number of ordered
copies of Kk�1 in G. Consequently, we have that

hompKk�1, Gq �
¸
vPV �

hompKk, GrNpvqsq.

Since G is p%, dq-dense, for every v P V � and X � Npvq we have

epXq ¥ d

2 |X|
2 � %n2 � d

2 |X|
2 � %v|Npvq|2,

for %v � %n2{|Npvq|2. Thus GrNpvqs is p%v, dq-dense and we can apply the induction
hypothesis to get

hompKk�1, Gq ¥
¸
vPV �

�
dpk2q � pk � 1qk%v

�|Npvq|k
� dpk2q

¸
vPV �

|Npvq|k � pk � 1qk
¸
vPV �

%v|Npvq|k

¥ dpk2q|V �|
�pd� 2%qn2

|V �|

k

� pk � 1qk
¸
vPV �

%n2

|Npvq|2 |Npvq|
k,

where the last estimate employed Jensen’s inequality and
°
vPV � Npvq � 2|E| ¥ pd�

2%qn2. Hence, from k ¥ 2 we derive

hompKk�1, Gq ¥ dpk2qpd� 2%qknk�1 � pk � 1qk%nk�1

¥ dpk2qpdk � 2k%qnk�1 � pk � 1qk%nk�1

¥ �
dpk�1

2 q � kpk � 1q%�nk�1,

which concludes the proof of the lemma.

As a corollary, we obtain the following result, which ensures the existence of fairly
long k-paths in uniformly dense graphs. These k-paths will be the building blocks for
an almost perfect k-path cover in the proof of Theorem 1.3.6. In that proof, we will
connect these k-paths to an almost spanning k-path. For the connection, it will be
convenient to insist that the ends of the k-paths are contained in many Kk�1’s. For that
we say a clique Kk is ζ-connectable in G if it is contained in at least ζ|V pGq| cliques of
order k � 1.

Corollary 3.1.2 (Path Lemma). For every d P p0, 1s and positive integer k, there
exist %, ζ ¡ 0, and n0 such that if G is a p%, dq-dense graph on n ¥ n0 vertices, then G
contains a k-path P with ζn vertices, where every consecutive Kk in P is ζ-connectable.
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Proof. Given d P p0, 1s and a positive integer k we define the constants

% � dpk�1
2 q

2kpk � 1q and ζ � dpk�1
2 q

3pk � 1q . (3.1.1)

Let G � pV,Eq be a p%, dq-dense graph with |V | � n sufficiently large. Applying
Lemma 3.1.1 and considering the choice of constants in (3.1.1) show that the number
of ordered copies of Kk�1 in G is at least

�
dpk�1

2 q � kpk � 1q%�nk�1 � dpk�1
2 q

2 nk�1. (3.1.2)

Define the auxiliary pk � 1q-uniform hypergraph H0 with V pH0q � V and

EpH0q �
 
e P V pk�1q : e spans a Kk�1 in G

(
.

Successively remove the hyperedges of H0 which contain a k-tuple that is in at most
ζn hyperedges and let H be the resulting subhypergraph. Note that the number of
erased edges is at most

�
n

k



� ζn (3.1.1)  dpk�1

2 q
2pk � 1q!n

k�1 (3.1.2)¤ |EpH0q|.

Every k-tuple of vertices of G which is contained in some edge of H is now ζ-connectable
in G.

Consider tight paths in H, which are subhypergraphs P with V pP q � tx1, . . . , x`u
and e P EpP q if and only if e � txi, xi�1, . . . , xi�ku for every i � 1, . . . , ` � k. In
particular, consecutive hyperedges in such a path intersect in k vertices. Observe
that any tight path in H induces a k-path in G with every consecutive Kk being
ζ-connectable.

Take the longest tight path P0 in H. Let K be the set of the last k vertices in P0.
If e P EpHq is of the form e � K Y tuu for some u P V , then u is already contained
in P0, otherwise the tight path could be enlarged. Since every k-tuple contained in
some hyperedge of H is in at least ζn hyperedges, we know that P0 has at least ζn
vertices.

Here we start the part of the section that is needed for Section 3.4, and the readers
that are mainly interested in the proof of Theorem 1.3.6 might proceed to Section 3.2
and come back here later.

First we state that a balanced blow-up of a graph inherits its property to be
p%, dq-dense with slightly worse d that is, however, independent of the blow-up factor.

71



Lemma 3.1.3. Let G � pVG, EGq be a p%, dq-dense n-vertex graph, and H � pVH , EHq
be a balanced blow-up of G. Then there is an integer n0 such that H is p%, d{2q-dense,
if n ¥ n0.

Proof. Let f be the blow-up factor of H. Suppose there is a set XH � VH contradicting
the p%, d{2q-denseness of H.

Since XH may contain up to f copies of each vertex of G, we will assign to each
vertex vi P VG an integer fi representing, how many copies of vi are present in XH .
Obviously 0 ¤ fi ¤ f for all i P rns.

Now we are going to display a set XG � VG which contradicts the p%, dq-denseness
of G. Let X � VG be a randomly chosen set of vertices, where Ppvi P Xq � fi{f .

Clearly, we have
Ep|X|q �

¸
i

fi
f
� |XH |

f
.

And since XH contradicts the p%, d{2q-denseness of H, we also have

Ep|EpXq|q �
¸

1¤i j¤n

fi
f

fj
f
1vivjPEG

� 1
f 2 |EpXHq|

  1
f 2

�
d

4 |XH |2 � %|VH |2
�

� d

4

�
|XH |
f

�2

� %n2.

Now Markov’s inequality tell us, that

P

�
|EpXq| ¥ 3

2Ep|EpXq|q
�
¤ 2

3 .

And Chernoff’s inequality tells us, that

Pp|X| ¤ p1� δqEp|X|qq ¤ exp

�
�δ2Ep|X|q

2

�
  1

3 .

Where in the last step we used that n and therefore Ep|X|q is large. In particular, with
positive probability there is a set X which contradicts the p%, dq-denseness of G.

Note that if n is large but Ep|X|q is small, XH is small relative to n and f and
therefore the error term %pf � nq2 would directly imply that there are enough edges in
EpXHq, contradiction our assumption on XH .

We will use the Regularity Lemma (Lemma 3.4.1), which we will explicitly state
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in Section 3.4, to formulate the following lemma, that basically guarantees that the
reduced graph of a regular partition of a uniformly dense graph is still uniformly dense,
but with other constants.

Lemma 3.1.4. Let G � pVG, EGq be a p%, dq-dense graph on n vertices. Furthermore
let V � V0 Y� V1 Y� . . .Y� Vt be a ε-regular partition and R � Rpε, δq be the reduced graph
of G from the Regularity Lemma (Lemma 3.4.1) with δ ¤ d{13 and %, 1{t0 ! ε, d.

Then R is pε, d{2q-dense.

The symbol ! here should state that %, 1{t are smaller than any reasonable function
f of ε or d In the case of this lemma, fpxq � x{156 would suffice.

Proof. Assume, there is a set U � tvi1 , . . . , visu � VR that spans less than pd{2q|U |2{2�
εt2 edges in R. Note that t ¥ |U | ¥ apε{dq2t, and therefore 1{|U | ¤ a

d{p4εt2q ! d.
Consider the set UG � Vi1 Y� . . . Y� Vis of vertices in G. Since G is p%, dq-dense, it will
span at least d|UG|2{2� %n2 edges. For a simper notation, let n1 � n� |V0|.

By the definition of R, and since U spans so little edges, we know, that there are at
most
�d

2
|U |2

2 � εt2
	�n1

t

	2
� |U |

�n1
t

	2
� εt2

�n1
t

	2
�
�
|U |2 �

�d
2
|U |2

2 � εt2
	
� εt2

	�n1
t

	2
δ

�
�d

2
|U |2

2

	�n1
t

	2
� |U |

�n1
t

	2
�
�
|U |2 � d

2
|U |2

2

	�n1
t

	2
δ

 
�d

2
|U |2

2 � |U | � δ|U |2
	�n1

t

	2

�
�d

4 �
1
|U | � δ

	
|U |2

�n1
t

	2

�
�d

4 �
1
|U | � δ

	
|UG|2

¤ d

3 |UG|
2

¤ d
|UG|2

2 � %n2

edges in GrUGs, contradicting the assumption that G is p%, dq-dense. In the penultimate
equation we used that δ ¤ d{13 and 1{|U | ! d, and in the last equation we used that
% ! ε and |UG|2 ¥ pε{dqn2.

3.2 Properties of inseparable graphs

In this section we shall explore some properties of inseparable graphs that are crucial for
the proof of Theorem 1.3.6. In the latter half of this section, we will then, analogously
to Section 3.1 state some properties of inseparable graphs that will come into play in
Section 3.4.
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First we note that removing a small set of vertices has only little effect on the
inseparability.

Lemma 3.2.1. For every µ P p0, 1s and β P r0, 1{2q, the following holds. If G � pV,Eq
is µ-inseparable and U � V with |U | ¤ βµn, then GrV r U s is p1� 2βqµ-inseparable.

Proof. Suppose by contradiction that GrV rU s � pV 1, E 1q is not p1� 2βqµ-inseparable.
Thus, there existsX � V 1 with |X| ¤ n{2 such that epX, V 1rXq   p1�2βqµ|X||V 1rX|.
Consider the partition of V into the sets X and pV 1 rXq Y U � V rX. We have that

epX, V rXq   p1� 2βqµ|X||V 1 rX| � |U ||X|
� p1� 2βqµ|X|p|V | � |U | � |X|q � |U ||X|
� µ|X||V rX| � 2βµ|X||V rX| � p1� p1� 2βqµq|U ||X|. (3.2.1)

Since |V rX| ¥ n{2, βµn ¥ |U |, and β   1{2 we have

2βµ|X||V rX| ¥ βµn|X| ¥ |U ||X| ¥ p1� p1� 2βqµq|U ||X|.

Together with (3.2.1), we derive that epX, V rXq   µ|X||V rX|, which contradicts
the assumption that G is µ-inseparable.

The key property of inseparable graphs is that between any pair of vertices there
exist many paths of bounded length.

Lemma 3.2.2. For every µ P p0, 1s, there exist c ¡ 0 and integers L, n0 such that
every µ-inseparable graph G � pV,Eq on |V | � n ¥ n0 vertices satisfies the following.

For every two distinct vertices x, y P V , there is some integer ` with 0 ¤ ` ¤ L such
that the number of px, yq-walks with ` inner vertices in G is at least cn`.

Proof. Given µ we define

L �
Z

8
µ

^
, δi �

�
µ2

3


i�1
2


pi�1
2 q
, and c � µ2

48δ
2
t4{µu. (3.2.2)

Let G be a sufficiently large µ-inseparable graph on n vertices and x, y be two
distinct vertices of G. Consider for each i ¥ 0 the set of vertices v that can be reached
from x by “many” walks in G with i inner vertices. For that we define

Xi �
 
v P V : there are δini px, vq-walks with i inner vertices

(
and X i �

¤
0¤j¤i

Xj.

Analogously, consider the vertices v that can be reached from y by δini walks in G with
i inner vertices and define the sets Yi and Y i in the same way.
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Observe that X0 � X0 � Npxq and since G is µ-inseparable, |Npxq| ¥ µpn � 1q.
Moreover, X i � X i�1 and we shall show that as long as |X i| is not too large, then
|X i�1| is substantially larger than |X i|. More precisely, we show for every i ¥ 0 that

|X i| ¤ 2
3n ùñ |X i�1 rX i| ¥ µ

6n. (3.2.3)

Before verifying (3.2.3), we conclude the proof of Lemma 3.2.2. In fact, (3.2.3) implies
that there is some i0   t4{µu such that |X i0 | ¡ 2n{3. Applying the same argument for
Y i, we get some j0   t4{µu such that |Y j0 | ¡ 2n{3 and, hence, |X i0 X Y j0 | ¥ n{3.

Each vertex v P X i0 X Y j0 can be used to create many py, xq-walks with possibly
different number of inner vertices. However, by the Pigeonhole Principle there are
integers a, b with 0 ¤ a ¤ i0 and 0 ¤ b ¤ j0 such that

|Xa X Yb| ¥ |X i0 X Y j0 |
pi0 � 1qpj0 � 1q ¥

µ2n

48 . (3.2.4)

For each v P Xa X Yb there exist δana px, vq-walks and δbnb pv, yq-walks with a and
b inner vertices, respectively. Concatenating these walks leads to at least

δaδbn
a�b � |Xa X Yb|

px, yq-walks, with ` � a � b � 1 inner vertices. The choice of constants in (3.2.2)
and (3.2.4) conclude the proof.

It is left to verify (3.2.3). Suppose |X i| ¤ 2n{3 and consider the complement
Z � V rX i. Owing to the µ-inseparability of G we have

epX i, Zq ¥ µ|X i||Z|. (3.2.5)

Note that each vertex v with at least δj�1n{δj neighbours in Xj belongs to Xj�1.
Since Z is disjoint from X i, we have

epX i�1, Zq   |Z| �
i�1̧

j�0

δj�1

δj
n. (3.2.6)

Moreover, supposing by contradiction that (3.2.3) fails, we also have

epXi, Zq   |Z| � δi�1

δi
n� µ

6 |Xi|n. (3.2.7)

Combining (3.2.6) and (3.2.7) we arrive at

epX i, Zq   |Z| �
i�1̧

j�0

δj�1

δj
n� |Z| � δi�1

δi
n� µ

6n|Xi| � |Z| �
i̧

j�0

δj�1

δj
n� µ

6n|Xi|. (3.2.8)
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Owing to the choice of δj in (3.2.2) we have

i̧

j�0

δj�1

δj
� µ2

3

i̧

j�0

�
1
2


j�1

¤ µ2

3 .

Furthermore, since |X i| ¥ |X0| � |Npxq| ¥ µpn � 1q and |Z| � |V r X i| ¥ n{3, we
derive for sufficiently large n from (3.2.8) that

epX i, Zq   µ2

3 |Z|n�
µ

6 |Xi|n ¤ µ

2 |Z||X
i| � µ

2 |Xi||Z| ¤ µ|X i||Z|,

which contradicts (3.2.5).

Here we start the part of the section that is needed for Section 3.4, and the readers
that are mainly interested in the proof of Theorem 1.3.6 might proceed to Section 3.3
and come back here later.

First we state that a balanced blow-up of a graph inherits its property to be
µ-inseparable with slightly worse µ that is, however, independent of the blow-up factor.

Lemma 3.2.3. Let G � pVG, EGq be a µ-inseparable n-vertex graph, and H � pVH , EHq
be a balanced blow-up of G. Then there is an integer n0 such that H is pµ{2q-inseparable,
if n ¥ n0.

Proof. Let f be the blow-up factor of H. Suppose there is a set XH � VH , such that
the separation pXH , VH rXHq is contradicting the pµ{2q-inseparability of H. We will
proceed analogously to the proof of Lemma 3.1.3.

Since XH may contain up to f copies of each vertex of G, we will assign to each
vertex vi P VG an integer fi representing, how many copies of vi are present in XH .
Obviously 0 ¤ fi ¤ f for all i P rns.

Now we are going to display a set XG � VG which contradicts the µ-inseparability
of G. Let X � VG be a randomly chosen set of vertices, where Ppvi P Xq � fi{f .

Clearly, we have
Ep|X|q �

¸
i

fi
f
� |XH |

f
.
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And since XH contradicts the pµ{2q-inseparability of H, we also have

Ep|EpX, VG rXq|q �
¸

1¤i j¤n

fi
f

�
1� fj

f

�
1vivjPEG

� 1
f 2 |EpXH , VH rXHq|

  1
f 2

�
µ

2 |XH ||VH rXH |
�

� µ

2
|XH |
f

|VH rXH |
f

� µ

2
|XH |
f

�
|VG| � |XH |

f

�
.

Now Markov’s inequality tell us, that

P

�
|EpX, VG rXq| ¥ 3

2Ep|EpX, VG rXq|q
�
¤ 2

3 .

And Chernoff’s inequality tells us, that

Pp|X| ¤ p1� δqEp|X|qq ¤ exp

�
�δ2Ep|X|q

2

�
  1

6 ,

and

Pp|X| ¥ p1� δqEp|X|qq ¤ exp

�
�δ2Ep|X|q

3

�
  1

6 ,

Where in the last step of the latter two inequalities we used that n and therefore Ep|X|q
is large. So in particular, with positive probability there is a set X which contradicts
the µ-inseparability of G.

Note that if n is large but Ep|X|q is small, XH is small relative to n and f and
therefore the minimum degree of fµpn� 1q in H would directly imply that there are
enough edges in EpXH , VH rXHq, contradiction our assumption on XH .

Once again, we will use the Regularity Lemma (Lemma 3.4.1) which we will explicitly
state in Section 3.4 to formulate the following lemma, that basically guarantees that
the reduced graph of a regular partition of an inseparable graph is still inseparable,
with slightly worse constants.
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Lemma 3.2.4. Let G � pVG, EGq be a µ-inseparable graph on n vertices. Furthermore
let V � V0 Y� V1 Y� . . .Y� Vt be a ε-regular partition and R � Rpε, δq be the reduced graph
of G from the Regularity Lemma (Lemma 3.4.1) with δ ¤ µ{4 and ε ¤ µ2{1000.

Then there is a set S � rts of size at most
?
εt, such that R1 � Rrtvi|i P prtsr Squs

is pµ{2q-inseparable.

Proof. First we will move all the partition classes Vi to V0 which are part of more than?
εt irregular pairs. At the start we have |V0| ¤ εn ¤ ?

εn. Since there are at most
εt2 irregular pairs, we can only have

?
εt classes, which are in

?
εt irregular pairs each,

enlarging V0 by at most
?
εt � n{t � ?

εn. Therefore the enlarged V0, say V 1
0 , will have

size at most 2
?
εn. Let S be the set of indices of Vi that were moved to V0.

Assume, there is a set A � tvi1 , . . . , vixu � VR such that there are less than
µ{2|A||VR r A| crossing edges between A and VR r A in R. By symmetry we may
assume |A| ¤ t� |A|.

Consider the set AG � Vi1 Y� . . . Y� Vix of vertices in G. For a simper notation, let
n1 � n� |V0|.

By the definition of R, and since there are so little crossing edges in pA, VR r Aq,
we know that there are at most

µ

2 |A|pt� |A|qp
n1

t
q2 � |A|?εtpn

1

t
q2 � |A|n

1

t
|V0|1 � |A|pt� |A|qδpn

1

t
q2

¤ rµ2 �
?
ε� δs|A|pt� |A|qpn

1

t
q2 � |A|?ε|A|pn

1

t
q2 � |A|n

1

t
2
?
εn

� rµ2 �
?
ε� δs|AG|pn1 � |AG|q � |AG|2

?
ε� |AG|2

?
εn

¤ rµ2 �
?
ε� δ �?ε� 4

?
εs|AG|pn� |AG|q

  µ|AG|pn� |AG|q

edges crossing pAG, V rAGq, contradicting the µ-inseparability of G. In the penultimate
equation we used that |A| ¤ t� |A| and n� |AG| ¥ n{2, and in the last equation we
used that δ ¤ µ{4 and ε ¤ µ2{1000.

3.3 Embedding powers of Hamiltonian cycles

The proof of Theorem 1.3.6 is based on the absorption method and follows the strategy
from [47]. Roughly speaking, this method splits the problem of finding a k-th power of
a Hamiltonian cycle into the following three parts:
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1. finding an almost perfect cover with only “few” k-paths,

2. ensuring the abundant existence of so-called absorbers, and

3. connecting those absorbers and paths to an almost spanning k-th power of a cycle.

The first part is achieved by Corollary 3.1.2 and only makes use of the p%, dq-denseness
of G. For the second part of the absorption method again the p%, dq-denseness of G
suffices. However, for the connection of these absorbers the µ-inseparability is required.
The appropriate Connecting Lemma, which is also utilised for connecting the paths of
the almost perfect cover from the first part, is given in Section 3.3. In Section 3.3 we
establish the Absorbing Path Lemma and in Section 3.3 we combine these results and
deduce Theorem 1.3.6.

Connecting Lemma

The Connecting Lemma asserts that any two connectable Kk’s in a uniformly dense and
inseparable graph G are connected by “many” k-paths of bounded length. As shown in
Lemma 3.2.2, for k � 1 this is a direct consequence of the inseparability. For k ¥ 2 we
combine Lemma 3.2.2 with Lemma 3.1.1 by a standard supersaturation argument to
obtain the desired k-paths.

Lemma 3.3.1 (Connecting Lemma). For every d, µ P p0, 1s, ζ ¡ 0, and every integer
k ¥ 1, there exist %, ξ ¡ 0 and integers M , n0 P N such that every p%, dq-dense and
µ-inseparable graph G � pV,Eq on |V | � n ¥ n0 vertices satisfies the following.

For every pair áx, áy P V k of disjoint ζ-connectable Kk in G, there is some integer
m ¤M such that the number of páx, áy ; kq-paths with m inner vertices in G is least ξnm.

Proof. Given d, µ, ζ and k, we shall fix constants %, ξ, M and n0. For that we first
apply Lemma 3.2.2 for µ and obtain L and c. Next we define auxiliary constants ξi for
integers i ¥ 0 inductively through

ξ0 � ζ2c

L� 1 and ξi�1 � dpk2q
2k!

�
ξi
2


k�1

. (3.3.1)

Finally, we set

ξ � ξL�2

2 , % � dpk2qξ2

8k2 , and M � pL� 2qk, (3.3.2)

and let n be sufficiently large.
Let G be a p%, dq-dense and µ-inseparable graph on n vertices and let áx � px1, . . . , xkq

and áy � py1, . . . , ykq be two disjoint ζ-connectable Kk in G.

79



We consider the following type of graphs that will be useful to obtain the desired
páx, áy ; kq-paths. For integers k ¥ 1, ` ¥ 0 and 0 ¤ a ¤ `, a graph R is a pk, `, aq-rope
(see Figure 3.3.1 for an illustration) if it can be obtained from a path on `� 2 vertices
by blowing up the first, the last, and the first a inner vertices into Kk. More precisely,
the vertex set of R is

V pRq � Z0 Y � � � Y Z`�1

such that

|Z0| � |Z`�1| � k � |Z1| � � � � � |Za| and |Za�1| � � � � � |Z`| � 1.

The edges of R are such that Z0, Z1, . . . , Za, and Z`�1 each induce a Kk and between any
consecutive pair pZi, Zi�1q, for i � 0, . . . , `, all |Zi||Zi�1| edges are present. Note that
we do not insist that the sets Zi are pairwise disjoint. If the vertices in Z0 are those of
áx and the vertices in Z`�1 are those of áy , then the rope is said to be a páx, áy ; k, `, aq-rope
and the sets pZ1, . . . , Zaq are called the inner parts of the rope.

Figure 3.3.1: A p3, 9, 4q-rope.

We shall prove the following assertion for fixed cliques áx and áy .

Claim 3.3.2. There exists ` ¤ L�2 such that for every a � 0, . . . , ` there are ξanak�p`�aq

páx, áy ; k, `, aq-ropes in G.
Note that, for a � 0, Claim 3.3.2 ensures many walks between Npáxq and Npáyq,

which indeed are provided by Lemma 3.2.2. For a � `, it is easy to see that a
páx, áy ; k, `, `q-rope (without any vertex repetition) contains a páx, áy ; kq-path with m � `k

inner vertices. The number of páx, áy ; k, `, `q-ropes with vertex repetitions is bounded by
m2nm�1. Excluding these ropes from those obtained by Claim 3.3.2 for a � ` yields
at least ξ`nm �m2nm�1 ¥ ξ`n

m{2 ¥ ξnm many páx, áy ; kq-paths, for sufficiently large n.
Thus, for a � `, the claim leads to the conclusion of Lemma 3.3.1 and it is left to verify
the claim.

Proof of Claim 3.3.2. First we fix the integer `. Consider the neighbourhoods Npáxq
and Npáyq. Since áx and áy are ζ-connectable, we have |Npáxq|, |Npáyq| ¥ ζn. Since G is µ-
inseparable, for each pair of distinct vertices px, yq P Npáxq�Npáyq, by Lemma 3.2.2, there
are at least cn`px,yq many px, yq-walks with `px, yq inner vertices and 0 ¤ `px, yq ¤ L.
Hence, by the Pigeonhole Principle, there is some ` with 2 ¤ ` ¤ L� 2 such that there
are at least ζ2cn`{pL� 1q � ξ0n

` pxk, y1q-walks with exactly ` inner vertices and such
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that the first and last inner vertex is from Npáxq and Npáyq, respectively. This yields
the claim for a � 0.

We proceed in an inductive manner. Let a ¥ 0 and assume by induction that G
contains at least ξanak�p`�aq many páx, áy ; k, `, aq-ropes. For many of such ropes we now
blow up the 1-element part Za�1. Consider collections Z � pZ1, . . . , Za, Za�2, . . . , Z`q
and sets UZ such that u P UZ if and only if

pZ1, . . . , Za, tuu, Za�2, . . . , Z`q

are the inner parts of a páx, áy ; k, `, aq-rope. By a standard averaging argument, it is easy
to see that there exist ξanak�p`�aq�1{2 collections Z such that the set UZ has size at
least ξan{2.

Note that each Kk contained in UZ yields a páx, áy ; k, `, a � 1q-rope. Lemma 3.1.1
applied to every set UZ of size at least ξan{2 leads to

1
k!

�
dpk2q � pk � 1qk %n2

|UZ |2


|UZ |k

(3.3.2)¥ dpk2q
2k!

�
ξa
2


k

nk

unordered copies of Kk in a given UZ of size at least ξan{2. Hence, there are at least

ξa
2 n

ak�p`�aq�1 � d
pk2q

2k!

�
ξa
2


k

nk
(3.3.1)� ξa�1n

pa�1qk�p`�pa�1qq

páx, áy ; k, `, a� 1q-ropes in G, which concludes the proof of Claim 3.3.2.

Absorbing Path Lemma

For a given vertex v a clique K2k contained in Npvq can be used as an absorber for v,
in the sense that obviously the K2k induces a k-path on 2k vertices. Moreover, placing
v in the middle of this K2k yields a k-path containing v that starts and ends with the
same Kk’s. Since inseparable and uniformly dense graphs G � pV,Eq have a minimum
degree linear in the number of vertices, by Lemma 3.1.1 the uniform density yields
many cliques K2k in the neighbourhood of any given vertex v. Moreover, for many of
these K2k all the Kk’s contained in it are connectable and, hence, together with the
Connecting Lemma we can build an absorbing path defined below.

Definition 3.3.3. For a graph G � pV,Eq on n vertices, an integer k ¥ 1, and α ¥ 0,
we say that a páx, áy ; kq-path P in G is α-absorbing if for every set X � V r V pP q of
size |X| ¤ αn, there is a páx, áy ; kq-path Q in G with vertex set V pQq � V pP q YX.
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Lemma 3.3.4 (Absorbing Path Lemma). For every d, µ P p0, 1s, and integer k ¥ 1,
there exist %, ζ, α ¡ 0, with ζ ¤ µ{2, and n0 such that every p%, dq-dense and µ-
inseparable graph G on n ¥ n0 vertices contains an α-absorbing páx, áy ; kq-path PA of
size |V pPAq| ¤ ζn{2, and áx, áy being ζ-connectable.

Proof. Given d, µ, and k, we set

ζ � dp2k�1
2 qµ2k�1

22k�3 . (3.3.3)

Applying Lemma 3.1.1 for d, µ{2, and ζ{2 yields constants %1, ξ, M , and n10 and we fix

α � ζ2

24p10k2 �Mq and % � min
#
%1

4 ,
dp2k�1

2 qµ2

8p2k � 1q2
+
, (3.3.4)

and let a sufficiently large p%, dq-dense and µ-inseparable graph G � pV,Eq on n vertices
be given.

For every vertex v P V , call an ordered K2k contained in Npvq with ordered vertex
set px1, . . . , x2kq an v-absorber, if both áxv � px1, . . . , xkq and áyv � pxk�1, . . . , x2kq are
ζ-connectable (ordered) Kk’s in G.

Note that px1, . . . , x2kq and px1, . . . , xk, v, xk�1, . . . , x2kq are both páxv, áyv; kq-paths
with ζ-connectable ends. We denote by Av � V 2k the set of all v-absorbers and we let

A �
¤
vPV

Av

be the set of all absorbers in G.
The α-absorbing páx, áy ; kq-path PA is constructed by considering a collection A � A

independently at random. We shall show that a.a.s. for every vertex v the collection A
will contain “many” v-absorbers from Av. After erasing intersecting absorbers, we shall
connect the remaining ones to a path PA by repeated applications of Lemma 3.1.1.

First we prove the existence of “many” v-absorbers for every v P V in G. Since G is
µ-inseparable, we have |Npvq| ¥ µpn� 1q ¥ µn{2 for sufficiently large n. Consequently,
the induced subgraph GrNpvqs is p4%{µ2, dq-dense and Lemma 3.1.1 shows that the
number of ordered K2k�1 in GrNpvqs is at least

�
dp2k�1

2 q � p2kqp2k � 1q4%
µ2

	
|Npvq|2k�1 (3.3.4)¥ dp2k�1

2 q
2 �

�µ
2

	2k�1
� n2k�1 (3.3.3)� 2ζn2k�1.

Since there are at most n2k different K2k and each K2k is contained in at most n different
K2k�1, by a simple averaging argument, there exist at least ζn2k different K2k each
contained in ζn different K2k�1 in GrNpvqs. Consequently, |Av| ¥ ζn2k for every v P V .

82



Set
p � ζ

6p10k2 �Mqn2k�1 . (3.3.5)

and consider a random collection A � A, in which every ordered K2k P A is included
independently with probability p. Let Xv be the random variable |AXAv|. Then,

EXv ¥ ζn2kp
(3.3.5)� ζ2n

6p10k2 �Mq .

Since Xv is binomially distributed, by the union bound and Chernoff’s inequality
(see, e.g., [28, Theorem 2.1]), we have

P
�
Dv : Xv ¤ ζ2n

12p10k2 �Mq
	
¤ n �max

vPV
P

�
Xv ¤ ζ2n

12p10k2 �Mq



¤ n � exp
�
� ζ2n

48p10k2 �Mq


  1

3 , (3.3.6)

for sufficiently large n.
Consider now the pairs of absorbers in A that share some vertex. Let Y be the

random variable that counts the number of such intersecting pairs. There are at most
5k2n4k�1 possible intersecting pairs in A and, hence, EY   5k2n4k�1p2. Markov’s
inequality yields

P
�
Y ¥ ζ2n

24p10k2 �Mq
	 (3.3.5)¤ PpY ¥ 15k2n4k�1p2q ¤ EY

15k2n4k�1p2  
1
3 . (3.3.7)

For the size of A we note that E|A|   n2kp and another application of Markov’s
inequality shows

P
�
|A| ¥ ζn

2p10k2 �Mq
	

(3.3.5)� Pp|A| ¥ 3n2kpq ¤ E|A|
3n2kp

  1
3 . (3.3.8)

Thus, by (3.3.6), (3.3.7), and (3.3.8), there exists a collection A0 � A satisfying

(i) |A0 XAv| ¥ ζ2n{p12p10k2 �Mq for every v P V ,

(ii) there are at most ζ2n{p24p10k2 �Mqq pairs of intersecting absorbers in A0,

(iii) the size |A0| is at most ζn{p2p10k2 �Mqq.

From each pair of intersecting absorbers, delete one of them in an arbitrary way and let
A1 � tK̂1, . . . , K̂mu � A0 be the set of absorbers in A0 obtained this way. It follows
from properties (i) and (ii) that

��A1 XAv

�� ¥ ζ2n

24p10k2 �Mq � αn
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for every v P V , i.e., A1 contains at least αn many v-absorber for every vertex v P V .
In the final step we connect the absorbers in A1 to a k-path PA. We construct PA

inductively by repeated applications of Lemma 3.3.1. Suppose we already obtained a
path P i that contains K̂1, . . . , K̂i and

|V pP iq| ¤ i � 2k � pi� 1qM,

below we establish the existence of P i�1 that in addition contains K̂i�1 and satisfies

|V pP i�1q| ¤ pi� 1q � 2k � i �M.

For that, set

Zi � V pP iq Y
m¤

j�i�1
V pK̂jq

and observe that for every i ¤ m,

|Zi| ¤ i � 2k � pi� 1qM � pm� iq � 2k   m � p2k �Mq
piiiq¤ ζn

2p10k2 �Mqp2k �Mq ¤ ζn

2
(3.3.3)¤ µn

4 . (3.3.9)

Let áx be the last k vertices of K̂i and let áy be the first k vertices of K̂i�1. In view of
the choice of constants in (3.3.4), the observation (3.3.9), and Lemma 3.2.1, the induced
subgraph G1 � GrpV r Ziq Y V páxq Y V páyqs is p%1, dq-dense and pµ{2q-inseparable, and
áx and áy are ζ{2-connectable in G1. Consequently, there is an páx, áy ; kq-path in G1 with
at most M inner vertices outside Zi. Together with P i this yields P i�1 with the desired
properties.

Since Pm contains at least αn distinct v-absorbers for every v P V , it is an α-
absorbing path. Moreover, the first k vertices in Pm are from K̂1 and the last k vertices
are from K̂m, which by definition are ζ-connectable cliques in G, which shows that
PA � Pm has the desired properties.

Proof of the main theorem

Having established the Connecting Lemma (Lemma 3.3.1), the Absorbing Path Lemma
(Lemma 3.3.4), and the Path Lemma (Corollary 3.1.2), we are ready to deduce Theo-
rem 1.3.6.

Proof of Theorem 1.3.6. The proof of Theorem 1.3.6 is based on the absorption method
and we start by fixing all involved constants. Given d, µ, and k, applying Lemma 3.3.4
(Absorbing Path Lemma) yields constants %A, ζA, αA, and an application of Corol-
lary 3.1.2 (Path Lemma) yields %P and ζP. For an application of Lemma 3.3.1 (Con-
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necting Lemma), set
ζC � min

!ζA

2 ,
αAζP

2

)
, (3.3.10)

and apply the Connecting Lemma with µ{2, d, ζC, and k to attain constants %C, ξC,
and MC. Finally, set

% � min
!
%A,

α2
A%P

4 ,
%C

4

)
, (3.3.11)

and let n be sufficiently large. In particular, we may assume that

2
αAζP

M2
C  

ξC

4

�αA

8

	MC
n. (3.3.12)

Let G � pV,Eq be a p%, dq-dense and µ-inseparable graph on n vertices. By the
absorbing Path Lemma, there is an αA-absorbing páxA, áyA; kq-path PA contained in G
with |V pPAq| ¤ ζAn{2 and áxA, áyA being ζA-connectable in G. This path will be set
aside and with it, another special set of vertices which we call the reservoir. On the
remaining graph, we shall find an almost perfect covering of its vertices by i0 disjoint
páxi, áy i; kq-paths with áxi, áy i being ζC-connectable.

The reservoir R � V will be used to connect the absorbing path and the paths in the
almost perfect covering to attain an almost spanning cycle. For that it is convenient to
choose the set R in such a way that for any connectable áx and áy there are still “many”
páx, áy ; kq-paths having all their inner vertices in R. In order to define the reservoir,
consider the induced subgraph

G1 � GrpV r V pPAqq Y V páxAq Y V páyAqs.

Since the number of deleted vertices is |V pPAq| � 2k ¤ ζAn{2 ¤ µn{4, Lemma 3.2.1
shows that G1 is µ{2-inseparable and, since µn{4   n{2, it follows from the p%, dq-
denseness of G that G1 is also p4%, dq-dense. Moreover, if áx is a clique in G1 that is
ζA-connectable in G, then it is ζA{2-connectable in G1. By our choice of constants
in (3.3.10) and (3.3.11), it follows from the Connecting Lemma that if áx and áy are
two disjoint ζC-connectable cliques in G1, then there are at least ξCpn{2qm distinct
páx, áy ; kq-paths with m inner vertices in G1, for some m � mpáx, áyq ¤MC.

We wish the reservoir to be disjoint from PA, thus consider the induced subgraph
G� V pPAq � G1 � pV páxAq Y V páyAqq. The number of páx, áy ; kq-paths in G1 intersecting
áxA or áyA is at most 2k �m � pn{2qm�1, implying that for n sufficiently large, there are
at least

ξC

�n
2

	m
� 2k �m �

�n
2

	m�1
¥ ξC

2

�n
2

	mpáx,áyq

, (3.3.13)

páx, áy ; kq-paths with inner vertices in G � V pPAq. Note that this is true for any two
disjoint ζC-connectable cliques in G1, which in particular allows áxA or áyA to be one of
them.
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For the reservoir R we choose vertices from V rV pPAq independently with probability

p � αA

4 . (3.3.14)

The desired properties for the reservoir are

(i) |R| ¤ αAn{2 and

(ii) for any two disjoint ζC-connectable cliques áx and áy in G1, there are at least

ξC

4

�αA

4

	m�n
2

	m
,

páx, áy ; kq-paths with all their m � mpáx, áyq inner vertices in R.

For property (i) we observe that Markov’s inequality implies

P
�
|R| ¥ αAn

2

	
¤ 2E|R|

αAn
� n� |V pPAq|

2n   1
2 .

For property (ii), let áx and áy be two disjoint ζC-connectable cliques in G1 and define
X to be the random variable that counts the number of páx, áy ; kq-paths with all their
m � mpáx, áyq inner vertices in R. Note that the inclusion or exclusion of a vertex in R
affects X by at most m � nm�1 and that

EX
(3.3.13)¥ ξC

2

�n
2

	m�αA

4

	m
.

Consequently, the Azuma-Hoeffding inequality (see, e.g., [28, Corollary 2.27]) asserts
that

P
�
X ¤ ξC

4

�αA

4

	m�n
2

	m	
¤ exp

�
� pξC{4q2pαA{4q2mpn{2q2m

2n �m2n2m�2

	
¤ exp

�
� ξ2

C
32 �

α2MC
A

82MCM2
C
� n

	
. (3.3.15)

Since there are at most n2k pairs páx, áyq, the union bound and (3.3.15) show that the
probability of R not having property (ii) is less than 1{2 for sufficiently large n. Hence,
there is some set R satisfying both (i) and (ii).

Set aside PA and R and cover the vertices of G�pV pPAqYV pRqq by disjoint k-paths
until at most αAn{2 vertices are left uncovered. We obtain these k-paths by repeated
applications of the Path Lemma. Assume we already have tP1, . . . , Piu, where for
j � 1, . . . , i the k-path Pj is a páxj, áy j; kq-path with áxj, áy j being ζC-connectable in G1

and
|V pPjq| ¥ αAζP

2 n. (3.3.16)
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Let L � V � V pPAq � V pRq ��i
j�1 V pPjq be the set of vertices not yet covered and

suppose that |L| ¥ αAn{2. Hence, the subgraph GrLs is p4%{α2
A, dq-dense. By the choice

in (3.3.11) and the Path Lemma, there is a páxi�1,
áy i�1; kq-path Pi�1 in GrLs with

|V pPi�1q| ¥ ζP|L| ¥ αAζP

2 n,

and áxi�1, áy i�1 being ζP-connectable in GrLs. By the choice in (3.3.10), we have

ζP|L| ¥ ζCn ¥ ζC|V pG1q|,

and hence, áxi�1, áy i�1 are ζC-connectable in G1. Therefore, we may enlarge the partial
k-path covering until the set of leftover vertices has size at most

|L|   αA

2 n. (3.3.17)

Let tP1, . . . , Pi0u be such a family of k-paths. Note that (3.3.16) yields

i0   n

αAζP{2 � n �
2

αAζP
. (3.3.18)

The next step is to connect the k-paths in tPA, P0, P1, . . . , Pi0u using the reserved
vertices in R to obtain the k-th power of an almost spanning cycle. Assume we already
obtained for some 0 ¤ j ¤ i0 a páxA, áy j; kq-path Qj containing the paths PA, P1, . . . , Pj

and such that

|V pQjqr pV pPAq Y � � � Y V pPjqq| � |V pQjq XR| ¤ j �MC. (3.3.19)

If j   i0, we will connect Qj to Pj�1 and obtain the páxA, áy j�1; kq-path Qj�1 that in
addition contains Pj�1 and satisfies |V pQj�1q XR| ¤ pj � 1q �MC. For j � i0, we have
that Qi0 is a páxA, áy i0 ; kq-path including all tPA, P1, . . . , Pi0u and we will connect áy i0 to
áxi0�1 � áxA, obtaining the k-th power of a cycle.

By property (ii) of the reservoir, since áy j and áxj�1 are ζC-connectable cliques in G1,
there are at least

ξC

4

�αA

4

	m�n
2

	m
,

páy j, áxj�1; kq-paths with all its m � mpáy j, áxj�1q inner vertices in R. We need to ensure
that one of these k-paths is disjoint from Qj. By (3.3.19), the number of k-paths with
m inner vertices that intersect Qj is at most

j �MC �m � nm�1 (3.3.18)  2
αAζP

�M2
C � nm�1 (3.3.12)¤ ξC

4

�αA

8

	MC
nm.

Hence, there is a páy j, áxj�1; kq-path with all its m ¤ MC inner vertices in R that is
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disjoint from Qi. If j   i0, this páy j, áxj�1; kq-path can be used to build Qj�1, which
satisfies that

|V pQj�1q XR| ¤ j �MC �MC � pj � 1q �MC.

If j � i0, use this páy i0 , áxi0�1; kq-path to close the k-th power of an almost spanning
cycle H 1.

The vertices from G which are not in H 1 are those from L, which were not covered
by the almost perfect k-path covering, plus the vertices in R that were not used to
connect the paths in tPA, P1, . . . , Pi0u. Hence,

|V r V pH 1q| ¤ |L| � |R| (3.3.17)¤ αA

2 n� αA

2 n.

Since PA is a segment of H 1 and PA is αA-absorbing, we may replace PA by a páxA, áyA; kq-
path with vertex set V pPAq Y pV r V pH 1qq and obtain the desired k-th power of a
Hamiltonian cycle in G.

3.4 Embedding graphs with small bandwidth

In this section we give the proof of Theorem 1.3.7, which is based on the regularity
method for graphs and on Theorem 1.3.6.

We recall that a bipartite graph G � pAY� B,Eq is called pε, dq-regular, if
��|EpA1, B1q| � d|A1||B1|�� ¤ ε|A||B|

for all subsets A1 � A, and B1 � B. Whenever we have that d � |EpA,Bq|{p|A||B|q is
the edge density of pA,Bq, we simply say that pA,Bq is ε-regular.

There are quite a few examples of results obtained by the regularity method, which
are based on reductions to simpler or seemingly weaker results that are applied to
the reduced graph of the regular partition obtained by an application of Szemerédi’s
Regularity Lemma [51] (see, e.g., [32, Sections 2, 4-6] and [29]). In particular, the proofs
of the bandwidth theorems in [9, 50] were based on reductions to the corresponding
theorems for powers of Hamiltonian cycles. We will follow the same route and start the
discussion by recalling this approach. For the discussion below we assume the reader to
be familiar with the regularity method for graphs and the Blow-up Lemma from [30].

Furthermore, since there are many versions, we refer to the following version of
Szemerédi’s Regularity Lemma [51].
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Lemma 3.4.1. For every ε ¡ 0 and t0 P N there is some T0 � T0pε, t0q such that every
graph G � pV,Eq with |V | � n ¥ T0 admits a vertex partition V0 Y� V1 Y� . . . Y� Vt � V

satisfying the following properties:

1. |V0| ¤ εn and |V1| � � � � � |Vt|,

2. t0 ¤ t ¤ T0, and

3. all but at most εt2 pairs pVi, Vjq with 1 ¤ i   j ¤ t are ε-regular.

Let R � Rpε, δq � pVR, ERq be the auxiliary graph defined by VR � tvi : i P rtsu
and ER � tvivj : pVi, Vjq is ε-regular with density at least δu. We call this graph R the
reduced graph of G.

Preparations for the proof

For the proof of Theorem 1.3.7 we will need some tools that we will collect beforehand.
We start with a slightly altered version of Theorem 1.3.6.

Theorem 3.4.2. For every d, µ P p0, 1s, and k P N there exist %, α, γ P p0, 1q
and n0 P N such that the following holds. Suppose G � pV,Eq is a p%, dq-dense
and µ-inseparable graph on n ¥ n0 vertices and subsets U1, . . . , Um � V each of size at
least µn{2 for some m ¤ 2γn are given.

Then G contains the k-th power of a Hamiltonian cycle C with the additional
property that for every i P rms there are at least αn cliques K2k contained in CrUis.

Proof. There is only one difference between Theorem 3.4.2 and Theorem 1.3.6. It
concerns the additionally given vertex subsets U1, . . . , Um � V � V pGq of size µ|V |{2
for which we require that the guaranteed k-th power of a Hamiltonian cycle shares
α|V | many K2k with each of these sets. This additional restriction can be achieved by
adjusting the proof of the Absorbing Path Lemma (Lemma 3.3.4), and we will give
these adjustments here. Recall the proof of Lemma 3.3.4.

Given d, µ, and k, we set

ζ � dp2k�1
2 qµ2k�1

22k�3 . (3.4.1)

Applying Lemma 3.1.1 for d, µ{2, and ζ{2 yields constants %1, ξ, M , and n10 and we fix

α � ζ2

48p10k2 �Mq , γ � α{2 and % � min
#
%1

4 ,
dp2k�1

2 qµ2

8p2k � 1q2
+
, (3.4.2)

and let a sufficiently large p%, dq-dense and µ-inseparable graph G � pV,Eq on n vertices
be given. Note that the only things we changed from the original version of Lemma 3.3.4
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are α, which decreased by a factor of 1{2 and will also be the α from Theorem 3.4.2,
and we included γ � α{2.

After defining the constants, we showed that the number of orderedK2k�1 in GrNpvqs
is at least 2ζn2k�1, resulting in at least ζn2k different ζ-connectible K2k inside GrNpvqs
for every v P V . For that we used that G is p%, dq-dense, and that GrNpvqs ¥ µn{2 for
sufficiently large n. Since we have |Ui| ¥ µn{2 for all i P rms by definition, the same
argument yields that there are at least ζn2k different ζ-connectible K2k inside every Ui.

Later we defined Xv � |AXAv|, and in (3.3.6) we showed that

P
�
Dv : Xv ¤ ζ2n

12p10k2 �Mq
	
¤ n �max

vPV
P

�
Xv ¤ ζ2n

12p10k2 �Mq



¤ n � exp
�
� ζ2n

48p10k2 �Mq


  1

3 ,

for sufficiently large n. But the 1{3 was very generously chosen, and the equation stays
true for 1{6 instead.

Defining Yi � |AX Ui|, we might do an analogous calculation to get that

P
�
Di : Yi ¤ ζ2n

12p10k2 �Mq
	
¤ m �max

iPrms
P

�
Yi ¤ ζ2n

12p10k2 �Mq



¤ m � exp
�
� ζ2n

48p10k2 �Mq


  1

6 ,

for sufficiently large n, where in the last equation we used that

m ¤ 2γn (3.4.2)� 2
ζ2n

96p10k2�Mq .

Therefore, our collection A0 will ensure that

(i) |A0 XAv| ¥ ζ2n{p12p10k2 �Mq for every v P V ,

(ii) |A0 X Ui| ¥ ζ2n{p12p10k2 �Mq for every i P rms,

(iii) there are at most ζ2n{p24p10k2 �Mqq pairs of intersecting absorbers in A0,

(iv) the size |A0| is at most ζn{p2p10k2 �Mqq.

And after switching to A1 we will still have

��A1 XAv

�� ¥ ζ2n

24p10k2 �Mq � 2αn

for every v P V , as well as

��A1 X Ui
�� ¥ ζ2n

24p10k2 �Mq � 2αn
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for every i P rms.
After designating this path as α-absorbing path and using it in the main proof to

get a k-th power of a Hamiltonian cycle, at least αn disjoint absorbers in each Ui will
still be unchanged. By definition each of these absorbers contains a K2k, concluding
the proof of Theorem 3.4.2.

For convenience in the proof of Theorem 1.3.7 we will be using the following
strengthening of the Regularity Lemma (Lemma 3.4.1).

Lemma 3.4.3. For all constants d, µ, δ, ε P p0, 1s, and t0,∆ P N such that δ ¤
minpµ{4, d{13q, and ε ¤ µ2{1000 ! 1{∆ there are constants T0, %, and n0, such that
for all n ¥ n0 all n-vertex graphs G � pV,Eq which are p%, dq-dense and µ-inseparable
admit a partition V � V0 Y� V1 Y� . . . Y� Vt of the vertices of G such that the following
holds.

(i ) |V0| ¤ 2
?
εn, and |V1| � |V2| � � � � � |Vt|.

(ii ) t0 ¤ t ¤ T0, and 2p∆� 1q|t.

(iii ) All but at most εt2 pairs pVi, Vjq for 1 ¤ i   j ¤ t are ε-regular.

Furthermore, the reduced graph R � Rpε, δq of this partition satisfies the following.

(I) R is p2ε, d{2q-dense.

(II) R is pµ{2q-inseparable.

Proof. To set up the constants, we first let

s0 ¥ 2pt0 � 2p∆� 1qq

be big enough to comply with 1{s0 ! ε, d from Lemma 3.1.4 and let T0 � T0pε, s0q
be given by the Regularity Lemma (Lemma 3.4.1). We also let % be small enough to
comply with % ! ε, d from Lemma 3.1.4, and finally let n0 be large enough.

Now let G � pV,Eq be a given p%, dq-dense and µ-inseparable graph. By Lemma 3.4.1
we get a ε-regular partition V � U0Y� U1Y� . . .Y� Us with s0 ¤ s ¤ T0 ofG. By Lemma 3.1.4
the reduced graph Q � Qpε, δq of this partition is pε, d{2q-dense.

Now, following the proof of Lemma 3.2.4 we will find a set S � rss of size at most?
εs such that moving all sets Ui with i P S, to U0 will leave us with a partition

V � V0 Y� V1 Y� . . .Y� Vt1 where the reduced graph is pµ{2q-inseparable. Now moving up
to 2p∆� 1q suitable of these partition classes to V0, we get another pµ{2q-inseparable
partition V � V0 Y� V1 Y� . . .Y� Vt such that 2p∆� 1q|t, let R � Rpε, δq be the reduced
graph of this partition.
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The additionally moved partition classes will again be classes that are part of many
non regular pairs of partition classes, so the proof of Lemma 3.2.4 will still work without
them. Furthermore, obviously we have t ¤ T0 because we started with T0 partition
classes, but we can also guarantee t0 ¤ t, since by removing up to

?
εs of the original

partition, by our assumptions on the constants, we still had at least half of them left,
so t1 ¥ t0 � 2p∆� 1q. Indeed by our choice on s0 we can ensure that t ¥ s{2, since ∆
and therefore 2p∆� 1q is constant, and we will use this fact later.

Now having moved up to
?
εs� 2p∆� 1q classes to U0 to get V0, the size of V0 is at

most
|U0| �

?
εn� 2p∆� 1q ¤ εn�?εn� 2p∆� 1q ¤ 2

?
εn.

Since in the proof of Lemma 3.2.4 we moved the classes which were part of many
irregular pairs to U0, and for our suitable additional classes we moved to U0 afterwards
we choose ones that are part of many irregular pairs again, we will have at most εt2

pairs ViVj for 1 ¤ i   j ¤ t that are not ε-regular, even if t   s.
Obviously our reduced graph R is pµ{2q-inseparable by Lemma 3.2.4, but it remains

to check, if R is indeed p2ε, d{2q-dense as claimed. By Lemma 3.1.4 we know that our
first reduced graph Q is pε, d{2q-dense, and since all the sets we consider in V pRq are
also sets in V pQq, we only need to be concerned about the error term εs2 ¡ εt2, but
since t2 ¡ s2{2, R is still p2ε, d{2q-dense.

In the proof of Theorem 1.3.7 the following lemma will prove to be quite useful.

Lemma 3.4.4. Let pA,Bq be an pε, dq-regular pair of density dpA,Bq at least d such
that |A| � |B|.

For any given f , let A1 Y� . . .Y� Af � A and B1 Y� . . .Y� Bf � B be partitions of A
and B such that |A|

2f ¤ |Ai|, |Bi| ¤ 2|A|
f

for every i P rf s, then the pair pAi, Bjq is p4f 2ε, dq-regular for every i, j P rf s. In
particular the density dpAi, Bjq of any pair of the partition classes is at least d� 4f 2ε.

Proof. Let A1 � Ai and B1 � Bj be given. By the definition of pε, dq-regularity we have

��|EpA1, B1q| � d|A1||B1|�� ¤ ε|A||B| ¤ εp2f |Ai|qp2f |Bj|q � p4f 2εq|Ai||Bj|,

proving the first assertion.
The second assertion is another direct consequence of the definition of pε, dq-regularity.

Observing that ε|A||B| ¤ p4f 2εq|Ai||Bj| again and dividing the defining equation for
A1 � Ai and B1 � Bj by |Ai||Bj| yields

��dpAi, Bjq � dpA,Bq�� ¤ 4f 2ε,
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ensuing that the second assertion holds as well.

The last tool we need for the proof of Theorem 1.3.7 is the following theorem,
which is a direct consequence of [10, Theorem 14]. This theorem uses the notion of
super-regular partitions. A bipartite graph G � pAY� B,Eq is called pε, δq-super-regular,
if it is pε, δq-regular, and we have |Npv,Bq| ¥ δ|B| for all v P A and |Npv, Aq| ¥ δ|A|
for all v P B. We then extend this notion to partition classes pViqiPrts and a graph
R � prts, Eq by saying pViqiPrts is pε, δq-(super-)regular on R, if when ij P EpRq, the
pair pVi, Vjq is pε, δq-(super-)regular.

Theorem 3.4.5. For all ∆ P N, and δ P p0, 1s there exist ε P p0, 1s such that for every s
there is n0 such that the following is true for every n1, . . . , ns with n0 ¤ n � °

ni and
ni ¤ 2nj for all i, j P rss. Assume we are given a graph R with V pRq � rss, ∆pRq ¤ 8∆,
and graphs G, H on V pGq � V1Y� . . .Y� Vs, V pHq � W1Y� . . .Y� Ws and ∆pHq ¤ ∆ with

1. |Vi| � |Wi| � ni for every i P rss,

2. pViqiPrss is pε, δq-super-regular on R,

3. for every edge uv P EpHq, where u P Wi and v P Wj we have ij P EpRq.

Then H � G.

The proof of Theorem 1.3.7

The proof of Theorem 1.3.7 is based on the Regularity Lemma and the Blow-up Lemma
and we start by fixing all involved constants.

Proof of Theorem 1.3.7. Given d, µ, and ∆, set

δ � minpµ{32, d{13q.

Applying Theorem 3.4.5 with ∆ and δ{4 yields εB and n0,B. For an application of
Theorem 3.4.2 set

k � 2p∆� 1q, (3.4.3)

and apply Theorem 3.4.2 with d{4, µ{4, and k to attain constants %H , αH , γH , and
n0,H . For an application of Lemma 3.4.3 set

f �
Q 1
γH

U
and ξ � min

� ε2
B

1440 ,
δ

160

	
, (3.4.4)

as well as εR � min
� εB

16f 2 ,
%H
2 ,

δ2

p24fp∆� 1qq2 ,
ξ2α2

H

12p∆� 1q
	
, (3.4.5)
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and apply Lemma 3.4.3 with d, µ, 2δ, εR,∆, and t0 � 0 to attain constants T0,R, %R, and
n0,R. Finally, set

% � min
�
%R,

d

8f 2T 2
0

	
, β � ∆

fT0
, (3.4.6)

and let n be sufficiently large.
Finally, let a p%, dq-dense and µ-inseparable graph G � pVG, EGq on n ¥ n0 vertices,

as well as an n-vertex graph H � pVH , EHq satisfying ∆pHq ¤ ∆ and bwpHq ¤ βn be
given.

Let V pHq � th1, h2, . . . , hnu be the vertices of H in a bandwidth ordering. We try
to find an embedding of H into G by first defining an order vi of the vertices of G such
that their order will closely resemble the order of the vertices hi in H.

Apply Lemma 3.4.3 with d, µ, 2δ, εR,∆ to G to get a partition V � V0Y� V1Y� . . .Y� Vt
of the vertices of G such that the following holds.

(i ) |V0| ¤ 2?εRn, and |V1| � |V2| � � � � � |Vt|.

(ii ) t0 ¤ t ¤ T0, and p∆� 1q|t.

(iii ) All but at most εRt2 pairs pVi, Vjq for 1 ¤ i   j ¤ t are εR-regular.

Furthermore, the reduced graph R � RpεR, 2δq of this partition satisfies the following.

(I) R is p2εR, d{2q-dense.

(II) R is pµ{2q-inseparable.

Preparing for an application of Theorem 3.4.2 on R, we will define sets

U 1
v �

 
i P t : |NGpvq X Vi| ¥ 2δ|Vi|

(
and remark that by construction we have at most 2t different such sets.

It follows by a standard averaging argument, that |U 1
v| ¥ µt{8 for all v P V , since G

is µ-inseparable and |V0| ¤ µn{2.
However, since this would still possibly yield too many different sets Uv for The-

orem 3.4.2 to handle, we will refine each class Vi for i P rts of our partition into sets
Vi,1 Y� . . .Y� Vi,f . The following claim will ensure that this refined partition keeps all our
desired properties. In particular, the number of different sets Uv stays 2t, while the
number of clusters goes up by a factor of f .
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Claim 3.4.6. There is a partition Vi � Vi,1 Y� . . .Y� Vi,f of each Vi into f subsets, such
that the following holds.

1. p1� ξq|Vi|{f ¤ |Vi,`| ¤ p1� ξq|Vi|{f for each ` P rf s.

2. The reduced graph S � Sp4f 2εR, δq of the refined partition of V r V0 contains an
f -blow-up of R � RpεR, 2δq as a subgraph.

3. There are sets

Uv �
 pi, `q P rts � rf s : |NGpvq X Vi,`| ¥ δ|Vi,`|

(
,

of size at least µtf{8 each. Such that for every two vertices v, and w we have
Uv � Uw if U 1

v � U 1
w.

Proof. For a more convenient notation let n1 � n� |V0| ¥ n{2. For a given set Vi we
will randomly define the partition Vi,1 Y� . . .Y� Vi,f of Vi such that for any vertex v P Vi
we have Ppv P Vi,`q � 1{f for all ` P rf s.

Apparently for all i P rts and ` P rf s we have

Ep|Vi,`|q � 1
f
|Vi| � n1

f � t .

Chernoff’s inequality then tells us, that

P
�
|Vi,`| ¤ p1�ξq |Vi|

f

	
¤ exp

�
� ξ

2 n1
f �t

2

	
and P

�
|Vi,`| ¥ p1�ξq |Vi|

f

	
¤ exp

�
� ξ

2 n1
f �t

3

	
.

Since we only have f � t ! n1 classes Vi,`, this implies that property 1 holds with
probability more than 1

2 by the union bound for sufficiently large n.
Let Xv,i,` be the random variable counting the number of neighbours of v in Vi,`.

Given that EpXv,i,`q ¥ 2δn1{pftq for every i P U 1
v and ` P rts, another application of

Chernoff’s inequality yields

P
�
Xv,i,` ¤ p1� ξq2δn

1

ft

	
¤ exp

�
� 2ξ2δ n

1

f �t

2

	
,

for all v P V , i P U 1
v, and ` P rf s. Since we have at most f � t � n random variables Xv,i,`,

by the union bound, the probability of our randomly defined refinement of the Vi giving
rise to a “to small” Xv,i,` with i P U 1

v is less than 1
2 for sufficiently large n.

Note that ξ ¤ 1{4. Consequently by defining Uv � tpi, `q : i P U 1
v and ` P rtsu we get

that there is refinement of the Vi such that item 1 and item 3 hold.
Item 2 then easily follows from Lemma 3.4.4, since ξ ¤ 1{2 and 2δ� 4f 2εR ¥ δ.
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Let s � |V pSq| � t � f and ε1R � f 2εR for a more convenient notation. Recall that
|Uv| ¥ µtf{8 � µs{8 for all v P V .

By Lemma 3.1.4 and Lemma 3.2.4 the reduced graph S � Sp4ε1R, δq is p2εR, d{4q-
dense and pµ{4q-inseparable, and by our choice of constants in (3.4.3), in (3.4.4),
in (3.4.5), and in (3.4.6) Theorem 3.4.2 gives us a graph C � S that is a k-th
power of a Hamiltonian cycle, with the additional requirement that there are at
least αs cliques K4p∆�1q in each CrUvs. In particular, since p∆ � 1q|s, C contains a
p∆� 1, s

∆�1 � 2, s
∆�1 � 2q-rope (see Figure 3.3.1 for an illustration) on s vertices as a

spanning subgraph. Let R∆�1 be this spanning subgraph of C.

Claim 3.4.7. There is a partition V � V �
1 Y� . . .Y� V �

s of the vertex set of G such that
the following holds.

1. |V �
i | ¤ 2|V �

j | for all i, j P rss.

2. |V �
i | ¥ |V �

i�1| ¥ � � � ¥ |V �
i�∆| ¥ |V �

i | � 1 for i � 1� pj � 1qp∆� 1q and j P r s
∆�1s.

3. pV �
i qiPrss is pεB, δ{4q-super-regular on R∆�1.

Proof. Consider the sets tVi,` : i P rts, ` P rf su that partition V r V0, and are all
roughly of the same size. We will distribute the vertices of V0 to these sets and slightly
manipulate these sets to get our desired partition of V .

Let pi1, `1q, pi2, `2q, . . . , pis, `sq be the indices of the Vi,` in the order of C, starting
at a Vi,` of the “start K∆�1” of R∆�1 and traversing C alongside R∆�1. Relabel each
Vij ,`j as V 1

j . Apparently pV 1
i qiPrss is p4ε1R, δq-regular on R∆�1.

Since ∆pR∆�1q ¤ 3p∆ � 1q, according to a proposition of Böttcher, Schacht, and
Taraz [9, Proposition 13] (the proof can be found in [33, Proposition 8]) there are
subsets V 2

i � V 1
i of size at least p1� 4ε1Rp3p∆� 1qqq|V 1

i |, such that pV 2
i qiPrss is p8ε1R, δ{2q-

super-regular on R∆�1. Removing these excessive vertices from V 1
i for i P rss enlarges

V0 to up to 3?εRn, because ε1R ¤ f 2 1
p24fp∆�1qq2q .

Redistributing the vertices of V0 to the V 2
i , we have to distribute up to 3

a
ε1Rn

vertices. Since by construction for each v P V0 we have a set Uv of indices of classes
V 1
i where these vertices have at least δ|V 1

i | neighbours, and since we reduced each V 1
i

by a factor of at most p1 � 4ε1Rp3p∆ � 1qqq, these vertices still have at least δ{2|V 1
i |

neighbours in these V 1
i .

For j P r s
∆�1s let Kj � tV 1

i : i � 1� pj � 1qp∆� 1q, . . . , 1�∆� pj � 1qp∆� 1qu be
the distinguished K∆�1 that form a ∆� 1-factor in R∆�1 alongside its vertex ordering.
By the construction of R∆�1, each tV 1

i : i P Uvu meets R∆�1 in at least αHs distinct
segments of 4p∆� 1q vertices, consequently each set tV 1

i : i P Uvu meets R∆�1 in at least
αHs sets Kj, together with its successor Kj�1 and predecessor Kj�1 (if they exist).
Embedding v into any V 2

i in the middle K∆�1, creating V 3
i , will therefore not meddle

with the minimum degree that is required of the super-regular pairs by much.
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Recall that we had

p1� ξqn
s
¤ |V 1

i | ¤ p1� ξqn
s
for each i P rss,

and after moving some vertices to V0 we have that

p1� 2ξqn
s
¤ p1� ξqp1� 4ε1Rp3p∆� 1qqqn

s
¤ |V 2

i | ¤ p1� ξqn
s
for each i P rss,

and pV 2
i qiPrss is p8ε1R, δ{2q-super-regular on R∆�1.

Creating pV 3
i qiPrss by redistributing the vertices of V0 in a balanced way, since we

have αHs choices to redistribute every vertex, we do not add more than |V0|{pαHsq
vertices to any K∆�1, and consequently to any V 2

i . Therefore we have

p1� 2ξqn
s
¤ |V 3

i | ¤ p1� ξqn
s
� 3

a
ε1Rn

αHs
¤ p1� 2ξqn

s
for each i P rss.

To get to pV 4
i qiPrss we will move some vertices, that we will specify in the penultimate

paragraph of this proof, inside each Kj to balance the included partition sets in such a
way that they differ in size by at most 1. Since for each i P rss the symmetric difference
of V 2

i and V 4
i is at most

�
p1� 2ξqn

s
� p1� 2ξqn

s

�
� 3

a
ε1Rn

αHs
¤ 5ξn

s
¤ 10ξ|V 2

i |

Quoting another proposition of Böttcher, Schacht, and Taraz [9, Proposition 14], and
since pV 2

i qiPrss is p8ε1R, δ{2q-super-regular on R∆�1, we have that pV 4
i qiPrss is pεB, δ{4q-

super-regular on R∆�1, as long as the minimum degree condition of δ{4 is uphold by
every vertex.

Considering that |V 2
i XV 4

i | ¥ |V 2
i |{2 for every i P rss and that we are only δ{4-dense

on R∆�1 in pV 4
i qiPrss, the minimum degree condition is still uphold for every vertex

that started in V 2
i and ended up in V 4

i . While redistributing the vertices from V0, we
did it in such a way, that they had enough neighbours in all the necessary V 2

j and by
dropping in density requirement they still have enough neighbours in V 4

j .
While moving vertices in the step from pV 3

i qiPrss to pV 4
i qiPrss they are required to

have a large neighbourhood in the same vertex classes as before with one exception.
Some vertices that were moved might not have enough neighbours in the V 3

i they
came from, but this can be avoided by choosing suitable vertices to move. Owing to G
being p%, dq-dense, and by a standard averaging argument, there are more than 10ξ|V 3

i |
vertices inside each V 3

i having at least δ{2|V 3
i | neighbours inside V 3

i .
Obviously pV 4

i qiPrss does satisfy the properties the claim guarantees for a partition
of V , so this concludes the proof of Claim 3.4.7.
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The partition of G provided by Claim 3.4.7 is the one we want to use in our
application of Theorem 3.4.5. Since the sizes of the partition classes do not differ by
too much, ∆pR∆�1q ¤ 3p∆� 1q ¤ 8∆ and ∆pHq ¤ ∆ are given, therefore we just need
to find a partition W �

1 Y� . . .Y� W �
s � V pHq of H in same size blocks as the partition of

G such that for every edge uv P EpHq, where u P W �
i and v P W �

j we have ij P EpRq.
Finding this partition of H however is not that hard. Recall that V pHq �

th1, h2, . . . , hnu are the vertices of H in the bandwidth ordering of H, and let rj �°
iPIj

|V �
i | with Ij � 1� pj � 1qp∆� 1q, . . . , 1�∆� pj � 1qp∆� 1qu be the size of the

j-th “p∆ � 1q-superset of V �
i ” for j � 1, . . . , s{p∆ � 1q. Now inductively define Wj

for j � 1, . . . , s{p∆ � 1q by letting Wj be the first rj vertices of H in the bandwidth
ordering of H that are not already part of some Wi with i   j.

Using that ∆pHq ¤ ∆ and therefore also ∆pHrV pWiqsq ¤ ∆, the Hajnal-Szemerédi
theorem [26] yields for every Wi an equitable p∆� 1q-colouring, and we will be choosing
these colour classes W �

1�pi�1qp∆�1q Y� W �
2�pi�1qp∆�1q Y� . . .Y� W �

∆�1�pi�1qp∆�1q � Wi as our
refinement of the partition pWiqiPrs{p∆�1qs. By labelling the colour classes in such a way
that we avoid matching a W �

i to a V �
j where the sizes differ by 1 is sufficient to get the

partition classes pW �
i qiPrss such that |W �

i | � |V �
i | for every i P rss because of Claim 3.4.7

part 2 and our choice on the size of the Wi.
The partition classes pW �

i qiPrss moreover satisfy Theorem 3.4.5 3, since bwpHq ¤ βn,
and

βn ¤ p∆� 1q n2s
implying that a vertex v P Wj might only have neighbours in Wi for i P tj � 1, j, j � 1u
but not in its own sub partition class, since these are independent. In R∆�1 however,
all of the sub partition classes of Wj span a complete graph together with all of the
sub partition classes of Wj�1, and similarly all of the sub partition classes of Wj span a
complete graph together with all of the sub partition classes of Wj�1.

Therefore Theorem 3.4.5 now tells us, that H � G, which concludes the proof of
Theorem 1.3.7.

3.5 Robust Hamiltonian graphs

In this section we are making some first steps in the direction of finding a common
generalisation of the approximate version of Theorem 1.3.2 and Theorem 1.3.6. We will
restrict ourself to k � 1 for this purpose. We note that, as mentioned in Section 1.3,
uniform density cannot be forced by a reasonable minimum degree condition. In
particular, for k � 1, an approximate version of Theorem 1.3.1 would require a
considered graph G to have δpGq ¥ p1

2 � εq|V pGq|, which would not force the graph to
be uniformly dense at all. One can show however, that it does force G to abide the
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following definition.

Definition 3.5.1. For d, %, η P p0, 1s we say that a graph G � pV,Eq on |V | � n

vertices is p%, d, ηq-robust matchable, if for all U � V we have one of the following.

epUq ¥ d
|U |2

2 � %n2,

or
|U | ¤ n

2 � ηn and
�� v P V r U : |Npvq X U | ¥ d|U |(�� ¥ |U | � 2ηn.

And as it turns out, this is sufficient to guarantee the appearance of Hamiltonian
cycles, as the following theorem by Maesaka and Schacht [40] ensures.

Theorem 3.5.2. For every d, µ, η P p0, 1s there exist % ¡ 0 and n0 P N such that
every graph that is µ-inseparable and p%, d, ηq-robust matchable on n ¥ n0 vertices is
Hamiltonian.

As graphs which are uniformly dense are uniformly robust matchable as well, this
theorem indeed is a common generalisation of Theorem 1.3.2 and Theorem 1.3.6 for
k � 1.

In both, Theorem 1.3.6 and Theorem 3.5.2 the Hamiltonian cycles seem to appear
in a “robust” way, in a sense that changing small parts of G does not destroy its
Hamiltonicity. In an attempt to capture this robustness in a formal way, we give the
following definition.

Definition 3.5.3. For δ ¡ 0 we say a graph G � pV,Eq on |V | � n vertices is δ-robust
Hamiltonian, if every subgraph H � pV,E 1q, which satisfies

(i ) eHpX, V rXq ¥ eGpX, V rXq � δn2

(ii ) dHpvq ¥ dGpvq{2� δn

for every subset X � V and vertex v P V is Hamiltonian.

The factor 1{2 in Definition 3.5.3 (ii ) stems from the graph given in Figure 3.5.1,
that would without this factor be considered to be robust Hamiltonian as well. The
Hamiltonicity of this graphs depends on just 2 vertices however, which does not seem to
be very robust, and more generally, we want to exclude few vertices of very high degree
to force a graph to contain a Hamilton cycle even if the rest of the graph does not
support this cycle on its own. For the definition to capture some reasonable considered
robust Hamilton graphs then, we restrict the amount of edges that may be deleted
globally in Definition 3.5.3 (i ).

As it turns out, this notion of being robust Hamiltonian, in a sense, even is equivalent
to being inseparable and uniformly robust matchable. With the help of Theorem 3.5.2
we are able to present the following theorem.

99



Kn�1 Kn�1

Figure 3.5.1: The shown 2n-vertex graph, consisting of two Kn�1 together with two
vertices with complete neighbourhood is Hamiltonian, but not δ-robust Hamiltonian
for any δ ¡ 0.

Theorem 3.5.4.

(a ) For every d, µ, η P p0, 1s there exist %, δ ¡ 0 and n0 P N such that every graph
that is µ-inseparable and p%, d, ηq-robust matchable on n ¥ n0 vertices is δ-robust
Hamiltonian.

(b ) For every δ P p0, 1{2s there exist d, µ, η, % ¡ 0 and n0 P N such that every δ-
robust Hamiltonian graph on n ¥ n0 vertices is µ-inseparable and p%, d, ηq-robust
matchable.

Proof of Theorem 3.5.4 (a ). For this direction we will use the following claim, stating
that we can move from a µ-inseparable and p%, d, ηq-robust matchable graph G to a
subgraph H as in Definition 3.5.3 without losing any of the properties, maybe with
slightly worse constants.

Claim 3.5.5. For every d, µ, η P p0, 1s there exist d1, µ1, η1, %1, %, δ ¡ 0 and n0 P N
such that every subgraph H that complies with Definition 3.5.3 of a graph G that
is µ-inseparable and p%, d, ηq-robust matchable on n ¥ n0 vertices is µ1-inseparable
and p%1, d1, η1q-robust matchable.

Let d, µ, η P p0, 1s be given. We will choose the constants from Claim 3.5.5 such that
the subgraphs H � G from Definition 3.5.3 are still µ-inseparable and p%, d, ηq-robust
matchable (for slightly worse constants). Applying Theorem 3.5.2 to these subgraphs
then implies this direction of Theorem 3.5.2.

It is left to verify Claim 3.5.5.

Proof of Claim 3.5.5. Let d, µ, η P p0, 1s be given. We define the constants

µ1 � µ

5 as well as d1 � d

2 and η1 � 2η.

We will also need the constants

% ¡ 0 and δ � min
! µ

25 ,
µ2

16 ,
%

5 , 2η
a
d%
)

as well as %1 � 2%.
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Now let G be a sufficiently large µ-inseparable and p%, d, ηq-robust matchable graph.
First we are going to ensure that any graph H we might consider is µ1-inseparable.

Consider a set X and the partition pX, V rXq, by symmetry we may assume |X| ¤ n{2,
furthermore we will assume |X| ¥ µn{4. Apparently

eGpX, V rXq ¥ µpµn4 qpn� µ
n

4 q ¥
3µ2n2

16

and by deleting at most δn2 ¤ µ2n2{16 crossing edges we will have a lot more than a
fifth of the original crossing edges remaining, so at least for sets X with |X| ¥ µn{4
our potential graphs H appear to be µ1-inseparable.

Now assume |X|   µn{4. Since the minimum degree of G is at least µpn � 1q ¥
99n{100 for sufficiently large n, after removing half of its neighbours and subtracting
another δn while accounting for possible neighbours inside X, every vertex of X still
has at least

99
200µn� δn� |X| ¡ 49

100µn�
4

100µn�
25
100µn �

1
5µn

neighbours in V rX. Therefore all potential graphs H are µ1-inseparable as claimed.
Next we are going to ensure that any graph H we might consider is p%1, d1, η1q-robust

matchable.
Assume that U � V is a set of vertices satisfying

eGpUq ¥ d
|U |2

2 � %n2,

but not
eHpUq ¥ d1

|U |2
2 � %1n2 � d

|U |2
4 � 2%n2.

This implies that d|U |2{4� 2%n2 ¡ 0 and therefore that eGpUq ¡ %n2. Since we have
d1 � d{2 and even allow for a larger error term with %1 � 2%, we must have discarded
at least half the edges in U to get from G to H. It is a well known fact [44] that in a
graph with m edges there is a partition with at least m{2 crossing edges, using this fact
we find a partition in U where we have discarded at least %n2{2{2 crossing edges to get
from G to H. This however contradicts δ ¤ %{5, since this partition can be extended to
a partition of V where we have deleted at least the same amount of edges to get from
G to H.

Assume that U � V is a set of vertices satisfying

�� v P V r U : |NGpvq X U | ¥ d|U |(�� ¥ |U | � 2ηn,
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but not �� v P V r U : |NHpvq X U | ¥ d1|U |(�� ¥ |U | � 2η1n.

Let U 1 � pV rUq be the set of vertices with at least d|U | neighbours in U from G. Since
η1 � 2η and d1 � d{2, at least 2ηn vertices from U 1 must not have enough neighbours in
U in H and therefore lost at least |U |d{2 edges each. In total this are at least dηn|U |
edges that were deleted from the partition pU, V r Uq.

Observer that when |U |  a
2%1{d1n, the set U complies with Definition 3.5.3 trivially,

therefore we may assume |U | ¥a
2%1{d1n. But then we deleted at least dηnpa2%1{d1nq �?

8η
?
d%n2 crossing edges from a partition, contradicting δ ¤ 2η

?
d%.

This concludes the proof of this direction from Theorem 3.5.4 (a ).

Proof of Theorem 3.5.4 (b ). Let G � pV,Eq be a δ-robust Hamiltonian graph. We
define the constants

µ � δ as well as d � δ2 and η � δ and % ¡ 0

First, we are going to show that G is µ-inseparable.
Assume G is not µ-inseparable. Hence, there must be a partition V � X Y� Y of the

vertex set, such that epX, Y q � µ̂|X||Y |   µ|X||Y |.
Assume by symmetry, that |X| ¥ |Y |. Additionally we might assume there is no

partition V � AY� B such that epA,Bq
|A||B|

  epX,Y q
|X||Y |

.

a b

X Y

Figure 3.5.2: The partition pX, Y q of G with minimal density. Deleting the crossing
edges will separate a from b, making G non-Hamiltonian.

Let a P X and b P Y be vertices. We would like to define H as G without
the crossing edges from the partition pX, Y q. This will separate a and b in H (see
Figure 3.5.2) therefore, H cannot be Hamiltonian. On the other hand, we deleted at
most µ̂|X||Y |   δn2 edges in total, therefore, we did not delete more than δn2 edges
from any cut in G. Additionally, the following Claim 3.5.6 guarantees that we comply
with Definition 3.5.3 (ii ).

Claim 3.5.6.

• dXpbq ¤ dY pbq � µ̂n

• dY paq ¤ dXpaq � µ̂n
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Therefore, this H is a legitimate choice for a Hamiltonian subgraph of G by Defini-
tion 3.5.3, but not Hamiltonian. A contradiction. It is left to verify Claim 3.5.6.

Proof. Assume, dXpbq ¡ dY pbq � µ̂n. With the following minor calculations, one can
see, that the partition V � pX Y tbuq Y� pY r tbuq would contradict our assumption on
the partition pX, Y q to have the smallest density of crossing edges.

epX, Y q
|X||Y | ¤

epX Y tbu, Y r tbuq
p|X| � 1qp|Y | � 1q

ô epX, Y q�|X||Y | � |X| � |Y | � 1
� ¤ �

epX, Y q � dXpbq � dY pbq
�|X||Y |

ô �
dXpbq � dY pbq

�|X||Y | ¤ epX, Y q�|X| � |Y | � 1
�

� µ̂|X||Y |�|X| � |Y | � 1
�

ô dXpbq ¤ dY pbq � µ̂
�|X| � |Y | � 1

�
¤ dY pbq � µ̂n

In the case of |X| � |Y | we can prove dY paq ¤ dXpaq� µ̂n with the same calculation
as above. Otherwise we have |X| ¡ |Y |, and assuming dY paq ¡ dXpaq the partition
V � pX r tauq Y� pY Y tauq would contradict our assumption on the partition pX, Y q
to have the smallest density of crossing edges, since it would have no smaller volume
but fewer crossing edges.

In the second step, we are going to show, that G is p%, d, ηq-robust matchable as
well. Consider a subset U � V of the vertices of G. The following claim will help us in
the proof.

Claim 3.5.7. If epUq   d |U |
2

2 � %n2, then
�� u P U : |Npuq X U | ¥ δn

(�� ¤ ηn.

Proof. Since η � δ and d � δ2, assuming
�� u P U : |NpuqXU | ¥ δn

(�� ¡ ηn would imply
that there are at least

pηnqpδnq12 � δ2n
2

2 � d
n2

2 ¥ d
|U |2

2
edges inside of U , contradicting our assumption on epUq.
To proceed in the proof, we note that the minimum degree of G is at least 2δn.

Otherwise G would not satisfy Definition 3.5.3 (ii ).
Consider a subset U � V such that |U | ¡ n

2 � ηn.
If U does not comply with Definition 3.5.1, Claim 3.5.7 ensures that there are at

most ηn vertices in U which have a degree of at least δn in U . Lets call this subset U2

and define U 1 � U r U2 (see Figure 3.5.3).
Deleting all the edges inside U 1 leaves an independent set of more than n{2 vertices,

therefore this graph cannot be Hamiltonian. Furthermore, this graph is indeed a
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U

U 1

U2

V r U

Figure 3.5.3: A big subset U � V of the vertices, where high degree vertices are in U2

and low degree vertices in U 1. Since |U 1| ¡ n{2, deleting the edges inside U 1 gives rise
to a matching problem, making G non-Hamiltonian.

legitimate choice for the graph H in Definition 3.5.3, since we deleted no more than δn
edges from a single vertex, ensuring Definition 3.5.3 (i ) trivially and Definition 3.5.3 (ii )
since the minimum degree of G is at least 2δn.

U

U 1

U2

V r U

W 1

W 2

Figure 3.5.4: A small subset U � V of the vertices, where high degree vertices are in
U2 and low degree vertices in U 1. Since the set W 2 of vertices with high degree inside
U is small, deleting the edges inside U 1 and between U 1 and W 1 gives rise to a matching
problem, making G non-Hamiltonian.

Consider a subset U � V such that |U | ¤ n
2 � ηn.

We may assume, that
�� v P V rU : |NpvqXU | ¥ d|U |(��   |U |� 2ηn, (and therefore

|U | ¡ 2ηn) since otherwise we would comply with Definition 3.5.1 anyway. Lets call this
subset of V r U by the name of W 2 and define W 1 � pV r UqrW 2 (see Figure 3.5.4).
Similarly we many assume epUq   d |U |

2

2 � %n2. Claim 3.5.7 ensures that there are at
most ηn vertices in U witch have a degree of at least δn in U . Lets call this subset U2

and define U 1 � U r U2 (see Figure 3.5.4).
Once again deleting all the edges inside U 1, as well as all the edges between U 1 and

W 1 leaves us with a big independent set U 1, which has all its neighbours in U2 YW 2.
Since |U2 YW 2| � |U2| � |W 2|   ηn� |U | � 2ηn � |U | � ηn ¤ |U 1|, this graph cannot
contain a Hamilton cycle. Furthermore, this graph is indeed a legitimate choice for the
graph H in Definition 3.5.3, since we deleted no more than δn ¡ d|U | edges from a
single vertex, ensuring Definition 3.5.3 (i ) trivially and Definition 3.5.3 (ii ) since the
minimum degree of G is at least 2δn.
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4. Concluding remarks

We discuss some outlook and further research regarding our three main theorems.

Homomorphism thresholds for graphs

While we provide an upper bound for δhompC2k�1q, at this point it is not clear if it is
best possible. Proving a matching lower bound or just showing δhompC2k�1q ¡ 0, would
require to establish the existence of a sequence of graphs pGnqnPN with members from
GC2k�1pαq for some α ¡ 0 having no homomorphic C2k�1-free image H of bounded size.
However, without imposing H to be C2k�1-free itself, no such sequence exists for k ¥ 3,
as was shown by Thomassen [53], as the chromatic threshold of odd cycles other than
the triangle is 0, which makes the problem somewhat delicate and for the first open
case we raise the following question.

Question 4.1.1. Is it true that δhompC5q ¡ 0?

The affirmative answer to Question 4.1.1 would, in particular, show that there is
a graph F with δhompF q ¡ δχpF q. To our knowledge such a strict inequality is only
known for families of graphs F , like for F � C2k�1 for k ¥ 3.

The lack of lower bounds for families consisting of a single graph, may suggest the
following natural variation of the homomorphic threshold

δ1hompF q � inf
 
α P r0, 1s : there is an F -free graph H � HpF , αq

such that G homÝÝÝÑ H for every G P GF pαq
(
,

where F consists of all surjective homomorphic images of F . For odd cycles we have
δ1hompC2k�1q � δhompC2k�1q and in view of Theorem 1.2.5 it seems possible that δ1hompF q
is easier to determine.

In Proposition 2.2.5 (i ) we observed that C2k�1-free graphs G of high minimum
degree are in addition also C2j�1-free for some sufficiently large j   k depending on
the imposed minimum degree. A more careful analysis of the argument may yield the
correct dependency between j and the minimum degree of G and, moreover, yield a
stability version of such a result. However, for a shorter presentation we used the same
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minimum degree assumption as given by Theorem 1.2.5, which sufficed for our purposes.
It would also be interesting to see, if the excluded cycles of shorter odd length can be
also excluded for the homomorphic image H in the proof of Theorem 1.2.5.

Structure of small homomorphic images

Recall that for k � 2 the Grötzsch graph proved that not all C2k�1-free graphs with
minmum degree larger than 1{3 are homomorphic to an Andrásfai graph.

Letzter and Snyder then conjectured that any C2k�1-free graph G with δpGq ¡
1

2k�1 |V pGq| for k ¥ 3 is homomorphic to some Andrásfai graph, which, as it turns out,
is not true as well. Indeed our Lemma 2.6.2, Observation 2.6.8, and Observation 2.6.9
from Section 2.6 show that odd tetrahedra are counterexamples to this conjecture for
every k ¥ 4. This makes the case of k � 3 somewhat special, but for k � 2 a slightly
weaker result (see [11]) basically states that triangle free graphs with a high minimum
degree are homomorphic to an Andrásfai graph or a generalised form of the Grötzsch
graph (see [37, Section 4] for a nice visualisation).

Hoping for a similar theorem to be true for k ¥ 4, and in particular, our coun-
terexamples from Section 2.6 to be essentially the only counterexamples, we raise the
following conjecture.

Conjecture 4.2.1. Let k ¥ 4 and let G be a pC2k�1 Y Tkq-free graph on n vertices
with δpGq ¡ 1

2k�1n. Then G is homomorphic to Ak,r for some r.

If this conjecture would be true, similar considerations as in the paper of Letzter
and Snyder would lead to natural levels of homomorphism images depending on r as
shown in Table 4.1.

Note that Theorem 1.2.6 is just Conjecture 4.2.1 for k � 3. Furthermore it is easy
to see that for k � 3 maximal C2k�1-free graph on n vertices with δpGq ¡ 1

2k�1n do not
contain odd tetrahedra as subgraphs by Lemma 2.6.5, implying the Theorem of Letzter
and Snyder from Theorem 1.2.6.

So, while we essentially give an alternative proof for the theorem of Letzter and
Snyder, our approach had Conjecture 4.2.1 in mind, and in fact, the only step of the
proof, where an upper bond on k is needed, is Lemma 2.5.6. Taking this into account,
we may formulate another conjecture, that, if true, does imply Conjecture 4.2.1 by our
proof of Theorem 1.2.6.

Conjecture 4.2.2. Let k ¥ 3 and let G be a maximal C2k�1-free graph on n vertices
with δpGq ¡ 1

2k�1n, then G does not contain a well-behaved C2` with 2` ¥ 6 as an
induced subgraph.

We remark, that it is not necessary to prove the statement of Conjecture 4.2.2 for
2` ¥ 4k � 2 by hand as it is rather trivial for these values of `. Considering this, for
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C3-free C5-free C7-free . . . C2k�1-free

δpGq ¡ 2
2k�1n . . . K2

δpGq ¡ 3
4kn . . . C2k�1

δpGq ¡ 4
6k�1n . . . M4k

... ... ... ... . . . ... ...
δpGq ¡ 1�r

2�rp2k�1qn A2,r, V A3,r A4,r . . . . . . Ak,r

δpGq ¡ 1
2k�1n A2, V A3 A4 . . . . . . Ak

Table 4.1: The homomorphic images of pC2k�1 YTkq-free graphs if Conjecture 4.2.1 is
true. The rows indicate the assumed minimum degree, the columns indicate the size
of k. In the cells than are the graphs that may be used as homomorphic image H for
the homomorphism threshold. The V in the second (or first) column stands for Vega
graphs, and the entire columns stems from [11].

small cases of k Conjecture 4.2.2 might be provable by a computer aided proof, and we
might come back to this in the future.

For bigger cases of k we seem to be able to exclude certain big even cycles, but the
small ones are still troublesome.

We remark that with Corollary 2.6.7, Conjecture 4.2.1 would imply that Letzter
and Snyder’s conjecture holds for slightly bigger minimum degree.

Finally, it would be nice if a similar statement as for k � 2 would be true for k ¡ 3
as well, namely that every graph containing an odd tetrahedra is homomorphic to a
combination of an odd tetrahedra blow-up and an Andrásfai graph blow-up. Currently
however, we do not have sufficient evidence to make this a conjecture.

Enforcing spanning subgraphs

In Section 3.1 and Section 3.2 we collected some properties of uniformly dense and
inseparable graphs. In the lemmas concerning blow-ups, namely Lemma 3.1.3 and
Lemma 3.2.3, we lost a factor of 2 in our constants due to the use of probabilistic
arguments. While one can certainly reduce the loss in the constants by more elaborate
computations, it would be interesting to know, if such a loss in the constants can be
prevented altogether.

It would furthermore be interesting to know how resilient the property of being
robust matchable is. A starting point may be to see how resilient it is under blow-ups
or regularizing, like we have seen for uniformly denseness in Section 3.1, and then see
how far this concept would support further theorems.

Going back to uniformly dense and inseparabe graphs, as we are using the Blow-up
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Lemma [30] as a central part in our proof of Theorem 1.3.7, it seems plausible to use
the versions of the Blow-up Lemma developed in [8] to extend Theorem 1.3.7 in the
spirit of [10, Theorem 3] to so called a-arrangeable graphs (see [10, Definition 2] for
example).

Another interesting, and to our knowledge open, question would be the following.

Question 4.3.1. Is there a common generalisation of Theorem 1.3.2 and Theorem 1.3.6,
for arbitrary k?

For such a theorem, the new version of Definition 1.3.3, namely Definition 3.5.1,
seems applicable, but Definition 1.3.5 must probably be adjusted in a generalised way
as well, since it is not enough to guarantee the existence of páx, áy ; kq-walks for arbitrary
k.
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English summary

In this thesis we investigate structures in dense graphs. In the first part we analyse
certain aspects of the interplay of minimum degree conditions and structural properties
of large graphs with forbidden subgraphs, which is a central topic in extremal graph
theory. More precisely, for a given family of graphs F we define the chromatic threshold
as the infimum over all α P r0, 1s such that every n-vertex F -free graph G with minimum
degree at least αn has a homomorphic image H of bounded order, in other words, we
insist that G has bounded chromatic number. In 2013 the chromatic threshold was
determined by Allen et al. [1] for all finite families of graphs.

Insisting that the homomorphic image H of G is F -free as well, we get the definition
of the homomorphism threshold, that is less well understood, and Theorem 1.2.5 solves
this question for the family of odd cycles up to a given length 2k � 1. Moreover in
Theorem 1.2.6 we analyse the graph H in more detail to get a deeper understanding
for the structure of G.

In the second part we consider sufficient conditions for the existence of k-th powers
of Hamiltonian cycles. Confirming a conjectures of Pósa (see [17]) and Seymour [49],
more then 20 years ago Komlós, Sarközy, and Szemerédi [30] obtained optimal minimum
degree conditions for this problem by showing that every n-vertex graph with minimum
degree at least µn for µ � k

k�1 contains the k-th power of a Hamiltonian cycle. For
smaller values of µ the given graph G must satisfy additional assumptions, and in this
direction Staden and Treglown [50] showed that µ � 1

2 � ε is sufficient when we insist
that every linear size induced subgraph has density d ¡ 0. This bound on µ is optimal
under the given circumstances again. In Theorem 1.3.6 we show that µ can be chosen
arbitrarily small as long as µ ¡ 0 if, in addition to linear size induced subgraph having
density d ¡ 0 we also insist that every cut has density at least µ.

In fact Staden and Treglown [50] showed that the graphs they consider do not
just contain k-th powers of Hamiltonian cycles, but a broader class of graphs, namely
graphs with bounded degree and sublinear bandwidth. The bandwidth of a graph is
defined as the maximum distance of two vertices in a linear ordering of the vertices of a
graph, where we take the minimum over all possible vertex orderings of the graph. In
Theorem 1.3.7 we show that we can keep this property for our relaxed assumptions.
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German summary (Deutsche Zusammenfassung)

In dieser Doktorarbeit befassen wir uns mit Strukturen in dichten Graphen. Im
ersten Teil analysieren wir Zusammenhänge zwischen Minimalgradbedingungen und
strukturellen Eigenschaften großer Graphen, die gewisse Teilgraphen nicht enthalten.
Dies ist eines der zentralen Forschungsgebiete der extremalen Graphentheorie. Wir gehen
näher auf den sogenannten chromatic threshold ein, dieser ist wie folgt definiert. Für eine
Familie F von Graphen sei der chromatic threshold das Infimum aller α P r0, 1s, sodass
jeder F -freie graph G auf n Ecken mit Minimalgrad mindestens αn ein homomorphes
Bild H begrenzter Größe hat. Anders ausgedrückt wollen wir die chromatische Zahl
von G durch eine Konstante KpF , αq beschränken. 2013 wurde der genaue chromatic
threshold für alle endlichen Familien F von Allen et al. [1] bestimmt.

Bestehen wir jedoch darauf, dass auch das homomorphe Bild H von G selbst wieder
F -frei sein soll, so führt dies zur Definition des homomorphic threshold. Dieser ist
bisher noch kaum verstanden, und Theorem 1.2.5 bestimmt diesen für die Familie
C2k�1 der ungeraden Kreise bis zu einer länge von 2k � 1. In Theorem 1.2.6 gehen wir
noch genauer auf das homomorphe Bild H ein um ein ausdifferenzierteres Bild von der
Struktur von G zu erhalten.

Im zweiten Teil untersuchen wir hinreichende Bedingungen für die Existenz k-ter
Potenzen von Hamiltonkreisen in Graphen. Vor über 20 Jahren bestätigten Komlós,
Sarközy und Szemerédi [30] eine Vermutung von Pósa [17] und Seymour [49] indem sie
zeigten, dass jeder Graph auf n Ecken mit einem Minimalgrad von mindestens µn für
µ � k

k�1 die k-te Potenz eines Hamiltonkreises enthält. Diese Schranke für µ ist optimal.
Staden und Treglown [50] konnten jedoch zeigen, dass man µ auf 1

2 � ε reduzieren
kann, wenn man zusätzlich fordert, dass G in induzierten Teilgraphen linearer Größe
eine Dichte von wenigstens d ¡ 0 aufweißt. Diese Schranke für µ ist optimal für das
erzwingen k-ter Potenzen von Hamiltonkreisen unter der gegebenen Nebenbedingung.
In Theorem 1.3.6 zeigen wir, dass mit dem einführen einer zweiten Nebenbedingung,
nämlich dass jeder Schnitt mindestens die Dichte µ aufweist, µ auf einen beliebig kleinen
positiven Wert abgesenkt werden kann.

Tatsächlich zeigten Staden und Treglown [50] in ihrem Artikel eine stärkere Aussage,
und zwar das G nicht nur die k-te Potenz eines Hamiltonkreises enthält, sondern jeden
Graphen H mit beschränktem Maximalgrad und sublinearer Bandweite. Die Bandweite
eines Graphen ist dabei definiert als der maximale Abstand der Endecken einer Kante
in einer linearen Ordnung der Ecken, wobei wir dies über alle linearen Ordnungen des
Graphen minimieren. In Theorem 1.3.7 zeigen wir, dass wir diese Eigenschaft für G
auch mit unseren schwächeren Nebenbedingungen erzwingen können.
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