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Abstract

Ultracold quantum gases in optical lattices provide a versatile platform for quantum
simulations of solid state models. Preparing higher Bloch bands of optical lattices
enlarges immensely the possibilities for realizations of unconventional superfluids
emerging from the interplay of orbital degrees of freedom and lattice geometries.
This thesis reports on the experimental realization of Bose-Einstein condensation in
the second and fourth Bloch band of the optical 2D-honeycomb lattice with 87Rb.
Reaching higher bands is an intrinsic out-of-equilibrium process that requires the
transfer of a significant amount of energy. For that purpose different transfer meth-
ods have been tested. A Landau-Zener transfer has been realized by a rapid quench
of the energy offset between the two sublattices of the honeycomb lattice.

The condensation dynamics in higher bands is intriguing due to the different
geometries of the excited bands. The preparation of a many-body wave packet is
especially interesting at the maximum of a band, where the initial dynamical evo-
lution is dominated by interactions between the atoms. Consequently, the observed
time scales for the condensation and subsequent loss of coherence depend crucially
on the collision rates. At the optimal parameters, the loss of coherence is followed
by band relaxation to the ground state on a longer time scale. The parameter space
in the second and in the fourth Bloch band is explored for optimal condensation.
The experimental results contribute to the engineering of unconventional superflu-
ids with interaction-induced topological ordering.
Furthermore, three major upgrades were realized in the course of this PhD project.
First, a Λ-enhanced gray molasses cooling was implemented reaching a temperature
of 5.3(4)µK and shortening the experimental cycle by 10 s. Second, a new intensity
control for the optical honeycomb lattice with a bandwidth of ∼ 150 kHz was real-
ized to investigate higher Bloch bands. Third, an active magnetic field compensation
for quantum gas experiments was implemented. Using an anisotropic magnetoresis-
tive sensor (AMR) in combination with an analogue control loop stabilized the mag-
netic field to ∼100 µG from DC up to frequencies of 3 kHz. Ramsey spectroscopy
demonstrated a reduction of magnetic field fluctuations down to σ = 130 µG. This
technique will prove valuable for future experiments such as the realization of spin-
orbit coupling involving the atomic internal degree of freedom.
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Zusammenfassung

Ultrakalte Quantengase in optischen Gittern bieten eine vielseitige Plattform für
Quantensimulationen von Festkörpermodellen. Die Präparation von höheren Bloch-
bändern in optischen Gittern vergrößert beträchtlich die Möglichkeiten zur Realisie-
rung von unkonventionellen suprafluiden Zuständen, die durch das Zusammen-
spiel von orbitalen Freiheitsgraden und der Gittergeometrien entstehen.

Diese Arbeit widmet sich der experimentellen Realisierung von Bose-Einstein
Kondensation im zweiten und vierten Blochband des optischen 2D-Honigwabengit-
ters mit 87Rb. Das Erreichen von höheren Bändern ist ein intrinsischer Nichtgleichge-
wichtsprozess, der einen signifikanten Energietransfer benötigt. Für diesen Transfer
wurden verschiedene Methoden getestet. Ein Landau-Zener Transfer wurde durch
eine schnelle Veränderung der Energiedifferenz zwischen den beiden Subgittern des
Honigwabengitters realisiert.

Die Kondensationsdynamik in höheren Blochbändern ist aufgrund der unter-
schiedlichen Bandgeometrien faszinierend. Besonders interessant ist die Präparati-
on eines Vielteilchenwellenpaketes am Maximum eines Bandes, wo die anfängliche
dynamische Entwicklung durch die Wechselwirkung zwischen den Atomen domi-
niert wird. Folglich sind die beobachteten Zeitskalen für die Kondensation als auch
für den nachfolgenden Verlust der Kohärenz entschieden von den Kollisionsraten
abhängig. Auf den Verlust der Kohärenz folgt die Bandrelaxation in den Grundzu-
stand, die bei den optimalen Parametern über einen längeren Zeitraum stattfindet.
Der Parameterraum im zweiten und vierten Band wird auf optimale Kondensation
durch die Kontrolle der Bandstruktur untersucht. Die experimentellen Ergebnisse
tragen zur Erforschung von unkonventionellen suprafluiden Zuständen mit wech-
selwirkungsinduzierten topologischen Ordnungen bei.

Darüber hinaus wurden im Rahmen dieses Dissertationsprojektes drei wichtige
Verbesserungen am Experiment realisiert. Erstens wurde eine Λ-verstärkte Graue-
Melassen-Kühlung implementiert, mit der eine Temperatur von 5.3(4)µK und ei-
ne Verkürzung des experimentellen Zyklus um 10 s erreicht wurde. Zweitens wur-
de eine neue Intensitätsregelung für das optische Gitter mit einer Bandbreite von
∼ 150 kHz zur Untersuchung von höheren Blochbändern realisiert. Drittens wurde
eine aktive Magnetfeldkompensation für Quantengasexperimente implementiert.
Die Verwendung eines anisotropen magnetoresistiven Sensors (AMR) in Kombina-
tion mit einer analogen Regelung konnte das Magnetfeld auf ∼100 µG von DC bis
zu Frequenzen von 3 kHz stabilisieren. Mit Ramsey Spektroskopie konnte eine Re-
duktion der Magnetfeldfluktuationen auf bis zu σ = 130 µG gezeigt werden. Diese
Technik ist für zukünftige Experimente, wie die Realisierung von Spin-Orbit Kopp-
lung unter Einbeziehung des atomaren internen Freiheitsgrades, wertvoll.
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Chapter 1

Introduction

Ultracold quantum gases offer versatile flexibility and controllability providing an
attractive system for the simulation of quantum models. Since the first experimen-
tal realization of Bose-Einstein condensates (BEC) in 1995 [1–3], the field of ultra-
cold quantum gases experienced a tremendous growth. Examples for seminal ex-
periments include collective excitations [4, 5], interference of two condensates [6],
long-range phase coherence [7] and vortices [8–10]. Equally important is the first re-
alization of Fermi degeneracy [11] and the investigation of the BEC to BCS (Barden-
Cooper-Schrieffer) crossover [12–14].

While optical lattices created by a standing light wave of interfering laser beams
were already realized with cold atoms [15–17], the realization of ultracold quantum
gases allowed for entering of the quantum many-body regime. Loading adiabati-
cally a BEC into the ground state of an optical lattice constitutes an implementation
of the Bose-Hubbard model [18], leading to the observation of the quantum phase
transition from a superfluid to Mott-insulating state [19]. Since then a great number
of experiments have exploited the variety of optical lattices as for example in terms
of dimensionality, geometry, intensity, frequency or phase [20–23].

Preparing quantum gases in higher bands of optical lattices constitutes a unique
method to bypass the no-node theorem of Feynman and to access the orbital de-
gree of freedom [24]. This allows for the realization of unconventional superfluids
with exotic properties [25, 26] such as quantum stripe ordering [27] or interaction-
induced topological states [28]. States like these are challenging to prepare due to
their metastable nature. Early experiments observed a coherent population transfer
to higher bands for instance via lattice acceleration [29] or stimulated Raman tran-
sitions [30]. So far, the preparation of long-lived superfluid states has only been
successful in the 2D bipartite square lattice by realizing a sudden quench of the unit
cell [31–33]. Particularly intriguing is the formation of a superfluid at nonzero quasi-
momenta in the second band [31] whose lifetime is determined by the rate of elastic
collisions [34]. This remarkable state is characterized by a chiral superfluid order
[35]. Its longevity originates from destructive quantum interference of two principal
decay channels [36].

Despite this success, the preparation of metastable states in higher bands has so
far remained largely unexplored in other lattice geometries. The central scope of this
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thesis is to bridge this gap for the bipartite hexagonal lattice, which constitutes an
ideal candidate for unconventional superfluids with exotic properties as for instance
the recently published Potts-nematic phase [37].

The transfer mechanism to higher bands relies on a rapid quench of the energy
offset between the two sublattices of the bipartite hexagonal lattice. The energy off-
set can be controlled by a rotation of a magnetic field [38]. In seminal experiments
the continuous tuning of the energy gap at the Dirac cones between the first and
second band has been demonstrated [39]. Within this PhD project a time-dependent
tuning of the energy offset has been implemented to populate higher Bloch bands
by a Landau-Zener type transfer.

We have observed the formation of superfluid states in higher bands of the hexag-
onal lattice. One fascinating feature is the emergence of coherence in the second
band where condensation occurs at non-zero quasimomenta. It is interesting to com-
pare this with the condensate formation in the fourth band where the superfluid is
realized at zero quasimomentum. Additionally, we have explored the lifetime of
such superfluid states over a large parameter space of lattice configurations (i.e. lat-
tice depth and energy offset) and have identified the key ingredients for the forma-
tion of superfluids in higher bands. These results pave the way towards tailoring
states with rectified orbital angular momentum.
This thesis is structured in the following way:

• Chapter 2 presents the experimental apparatus together with major upgrades
implemented in the course of this PhD project. This chapter describes the im-
plementation of Λ-enhanced gray molasses cooling for 87Rb and the character-
ization of an active magnetic field compensation by Ramsey spectroscopy.

• Chapter 3 introduces the optical potentials i.e. the dipole trap and the versatile
optical lattice setup with a focus on the bipartite hexagonal lattice. The energy
offset between the two sublattices of the hexagonal lattice and the measured
harmonic confinement are pointed out, which are central for the preparation
of higher bands. Further, the detection methods, time-of-flight and band map-
ping, are discussed. A high bandwidth intensity control together with an in-
vestigation of phase noise at the laser setup is presented.

• Chapter 4 presents different transfer methods to higher Bloch bands. One im-
plemented transfer method relies on a Landau-Zener type process by a rapid
tuning of the energy offset between the two sublattices. Its experimental im-
plementation by rotating the quantization axis is explained. The measured
transfer efficiency exploring the parameter space for different lattice depths
and energy offsets between the sublattices is discussed in detail.

• Chapter 5 reports on the realization of Bose-Einstein condensates in the sec-
ond and in the fourth Bloch band and analyzes the condensation dynamics at
the optimal parameters. The parameter space controlling the band structure
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is explored in the second and in the fourth Bloch band for optimal conden-
sation. The experimental results are compared to the bipartite square lattice
and the key ingredients for condensation like lattice dimensionality and crit-
ical temperature are discussed. Finally, the precise tuning of the positions of
the minima in the second band is investigated by the relative intensity between
the lattice beams.

The experimental work presented in this thesis has been performed by the au-
thor in collaboration with his fellow PhD students Alexander Ilin and Julius Seeger,
with the master’s students Mario Großmann and Phillip Groß and with the sup-
port of several Bachelor students and student assistants. This PhD project has been
conducted under supervision of Juliette Simonet and Klaus Sengstock, the principal
investigators of the experiment. Works on a theoretical description of the conden-
sation in higher Bloch bands of the hexagonal lattice are continuing in collaboration
with Georgios Koutentakis, Simos Mistakidis and Peter Schmelcher.
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Chapter 2

Experimental setup for a spinor
BEC

In this chapter we present the experimental apparatus together with major experi-
mental upgrades, which were implemented in the course of this PhD project. Note-
worthy here is the implementation of a Λ-enhanced gray molasses for 87Rb on the
D2-transition with a temperature of 5.3(4)µK. This resulted in a significantly shorter
experimental cycle time, which we could reduce to 23 s. Further, we summarize how
to switch the between the internal states F = 1 and F = 2 and between the different
Zeeman sublevels, as these techniques are central in this thesis. Finally, we present
the implementation of an active magnetic field compensation. It has been accurately
characterized using Ramsey spectroscopy, which is a precise method to probe mag-
netic fields with quantum gases. The work presented in this chapter has been con-
ducted with main contributions by the author. The collaborators are named in the
introductory sections of the different projects.

2.1 Preparation of a spinor condensate

2.1.1 Experimental apparatus

The work in this thesis has been carried out at a quantum gas machine for 87Rb. The
first Bose-Einstein condensates have been realized by H. Schmaljohann [40] and M.
Erhard [41]. Thereafter further experimental upgrades and many experiments have
been pursued during the PhD theses of J. Kronjäger, C. Becker, P. Soltan-Panahi, J.
Struck, M. Weinberg and C. Ölschläger [42–47].

The main setup consists of two glass cells, which are vertically connected via a
differential pumping stage. The upper glass cell contains four dispensers. However,
after about 15 years of operation the original dispensers had to be replaced at the
beginning of this PhD project. Therefore, we flooded the apparatus with Argon,
lifted off the upper glass cell and replaced the dispensers by two new Rubidium1

and two Potassium dispensers2. We reached the original operational background
pressures within 8 weeks. With ion-getter pumps the background pressure in the

1SAES: RB/NF/4.8/17 FT10+10
2SAES: K/NF/3.1/17 FT10+10, intended for the production of 39K-BECs.
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FIGURE 2.1: Front and side view of the experimental setup. From the 2D-MOT in the
upper glass cell atoms are transferred through the differential pumping stage to the lower
glass cell to a 3D-MOT. Further cooling steps are performed to obtain a Bose-Einstein
condensate in the crossed dipole trap. In a typical experiment the BEC is then loaded into
the optical honeycomb lattice, which consists of three overlapping Gaussian laser beams.
Via absorption imaging after time-of-flight we can detect the atoms orthogonally to the
lattice plane (Andor camera) or in-plane (PCO camera).

upper glass cell is kept at about 1 × 10−9mbar and in the lower glass cell below
1× 10−11mbar to maintain an ultrahigh vacuum.

During operation a current of 5 A flows through one 87Rb-dispenser, which emits
atoms in the upper glass cell. From this background vapor a cigar-shaped two di-
mensional magneto-optical trap (2D-MOT) is loaded. With a near-resonant pushing
beam 87Rb-atoms are transferred through the differential pumping stage to the lower
glass cell where they are captured in a 3D-MOT. After a typical loading time of 12 s
we reach an atom number of about 3.8 × 108 and a temperature of about 420 µK.
Subsequently, we employ a bright molasses phase with a final temperature of 25 µK.
Towards the end of this PhD project this phase has been replaced with gray mo-
lasses (section 2.2) bringing the advantage of a significant shorter cycle time and
more robustness against MOT-fluctuations. After the molasses phase, the atomic
cloud in the state |F = 1, mF = −1〉 is loaded into a magnetic 4-dee/cloverleaf trap
[41, 48]. Here, forced radio-frequency evaporation over 15 s is performed to further
cool the atomic gas. In the last cooling step towards quantum degeneracy, the atoms
are transferred to a crossed elliptical dipole trap (XDT) in, which forced evaporative
cooling takes place for 6 s. Depending on initial particle numbers and final XDT in-
tensities with typical trap frequencies of ωx,y,z = 2π × (20, 50, 20)Hz, we can tune
the atom number between 80k and 400k. As these values are crucially important for
some of the presented experiments, the main characteristics of the dipole trap are
further discussed in chapter 3. As the research conducted at the project focuses on
optical lattices, versatile lattice geometries in 1D, 2D or 3D are available. Detection



2.2. Implementation of gray molasses for 87Rb 7

FIGURE 2.2: Spin state preparation. (a) A quantization field lifts the Zeeman degeneracy
of hyperfine splitting of the 52S1/2 level. From the initial state |1,−1〉 we usually use
a Landau-Zener sweep to |1,−1; 0〉 (red) or |2,−2〉 (blue). The blue dotted transitions
are also possible. (b) For probing the different sublevels we take absorption images after
Stern-Gerlach separation and time-of-flight of the BEC.

is performed with absorption imaging after time-of-flight (TOF) along two different
imaging axes. A sketch of the experiment is presented in figure 2.1.

2.1.2 Spin state preparation

At the end of the experimental cycle we obtain a spin-polarized BEC in the state
|F = 1, mF = −1〉 in the crossed dipole trap. For many experiments presented in
this thesis changing this initial spin state has been a crucial requirement. Here, we
have used mainly two methods, which were already implemented at the experiment
[40–42]: microwave and radio frequency driven transitions.

The microwave transition is used to transfer the BEC between the hyperfine lev-
els F = 1 and F = 2. The degeneracy of the mF-sublevels is lifted by a quantization
field. If the separation is large enough, which is the case for the used field strengths
throughout this thesis of 1.1 G and 2.2 G, the different mF-sublevels can be addressed
specifically (∆mF = ±1). Typically, we perform a Landau-Zener sweep for the tran-
sition from |F = 1, mF = −1〉 to |F = 2, mF = −2〉. A microwave source generates
a 2 ms pulse at the hyperfine splitting νHFS ∼ 6.8 GHz to which a modulation by a
versatile frequency generator is added. In contrast to π-pulses for state preparation,
Landau-Zener sweeps assure a high fidelity as they are less sensitive to magnetic
field fluctuations [49].

For transitions between the mF-sublevels we apply the same technique but in the
radio frequency regime as the level separations are on the order of ∆νZ = 700 kHz/G.
The spin-state preparation is illustrated in figure 2.2.

2.2 Implementation of gray molasses for 87Rb

Laser cooling is the first step essential to obtain quantum degeneracy. While it was
first believed that the Doppler limit TD = h̄Γ/2kB ' 146 µK (for 87Rb) provided
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a fundamental limit, it was soon discovered that far lower temperatures could be
reached [50]. This results from the interplay of atomic levels and the polarization
of the light field, which is called Sisyphus cooling [51]. Atoms repeatedly climb
up a potential hill loosing kinetic energy. At the top of the hill they have a higher
probability to be optically pumped and reach a lower lying state where the process
begins again.

Making use of Sisyphus cooling at our experiment we have implemented a bright
molasses phase where we reach temperatures as low as 25 µK. This is still almost
by a factor 70 larger than the recoil temperature Tr = h̄k2/2mkB ' 362 nK due to
heating from spontaneous emission. Nevertheless, the temperature and the reached
corresponding phase-space density allow for substantially reducing the duration of
the BEC cycle. Still, spontaneous emission can be further reduced with different
cooling schemes, which have already been proposed in the 90’s. They make use of
dark states being decoupled from light [52–55]. But as often also bright states are in-
volved the term gray molasses is used. Especially in the last decade advances were
pushed forward as light elements like 6Li require efficient cooling schemes. Inspired
by the substantial advantages of gray molasses in the Λ-scheme with elements like
4He [56], 6Li [57, 58] , 7Li [59] or 39K [60, 61], 40K [58, 62], 41K [63], we have imple-
mented gray molasses to reach lower temperatures and higher phase-space densities
(PSD), to eventually achieve a short cycle time of the experiment for data-intensive
measurements.

Typically, gray molasses with alkali atoms have been implemented on the D1

transition as the hyperfine energy splitting of the D2 transition (e.g. 6Li) is on the
same order as the linewidth. Therefore, closed transitions are not possible. However,
for 87Rb this is not the case. A recent publication from Rosi et. al. [64] showed that
the implementation of Λ-enhanced gray molasses on the D2-transition of 87Rb is
possible with an increase by a factor of 10 in phase-space density. As we already use
the D2-transition for laser cooling, gray molasses cooling can be implemented in our
experimental setup without requiring an additional laser. The experimental work
presented in this section has been performed by R. Conrad, P. Groß and A. Ilin and
the author of this thesis. Further information can be found in the Bachelor’s thesis
of R. Conrad [65].

A model system capturing qualitatively many features is the Λ-system consisting
of two ground states g1, g2 and an excited state e (cf. figure 2.3). Two phase-coherent
lasers can couple the two ground states g1 and g2 via the excited state e. From the
Bloch equations an analytic expression for the steady state solution can be derived
[66, 67]. Here we give the population of the excited state ρee

ρee =
4(∆1 − ∆2)2Ω2

1Ω2
2Γ

Z
(2.1)

where
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FIGURE 2.3: (a) Model system of the Λ-scheme. It consists of the two ground states g1
and g2 and the excited state e. The transition from g1 (g2) to e is characterized by the
Rabi coupling Ω1 (Ω2) with a detuning ∆1 (∆2) from e. Γ1 and Γ2 denote the spontaneous
decay to the ground states. (b) The population of the excited state varies as a function of
the detuning ∆1. Two cases are plotted: equal Rabi frequency Ω1 = Ω2 = 1, ∆2 = 2 (red
curve) and Ω1 = 0.1, Ω2 = 1, ∆2 = 2 (blue curve). At a Raman detuning δR = ∆1−∆2 = 0
the absorption amplitudes from g1 to e and g2 to e interfere destructively. The population
of the excited state is zero.

Z = 8(∆1 − ∆2)
2Ω2

1Ω2
2Γ + 4(∆1 − ∆2)

2Γ2(Ω2
1Γ2 + Ω2

2Γ1)

+ 16(∆1 − ∆2)
2(∆2

1Ω2
2Γ1 + ∆2

2Ω2
1Γ2)− 8∆1(∆1 − ∆2)Ω4

2Γ1

+ 8∆2(∆1 − ∆2)Ω4
1Γ2 + (Ω2

1 + Ω2
2)

2(Ω2
1Γ2 + Ω2

2Γ)

(2.2)

with the Rabi frequency Ω1, Ω2, the detuning from e being ∆1, ∆2.
If the Raman condition is fulfilled δR = ∆1 - ∆2 = 0, the amplitudes of the

transition from g1 to e and from g2 to e interfere destructively. Then the atom is
decoupled from light. A so-called dark state is created, which can be expressed as a
linear superposition of g1 and g2. The corresponding population of the excited state
in eq. (2.1) is displayed in figure 2.3.

Two cases can be distinguished. When the detuning ∆1 is varied, while ∆2 = 2 Γ
and the Rabi frequencies Ω1 and Ω2 are equal, the excited state is populated for
∆1 → 0. When ∆1 approaches ∆2, the two ground states are coupled and for the
Raman condition the excited state is completely depopulated. Thus, matching the
Raman condition plays a crucial role in the cooling mechanism. For a given detuning
∆1,2 one can select different velocity classes of the atoms. However, experimentally
the Rabi frequencies are often strongly different, here Ω1 � Ω2. This results in
a strongly asymmetric profile where at the Raman condition a Fano type profile
arises. This has been proven by Lounis et. al. [67] and is in good agreement with the
experimental data. Further explanations can be found in Bardou et. al [68]. In Grier
et. al [69] a more complete calculation of the cooling force is given.

A more thorough description of gray molasses relies on the combination of two
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FIGURE 2.4: Principle of gray molasses. An atom in the dark state experiencing no light
shift couples via motional coupling to a bright state with a blue detuned spatial light shift.
After climbing up the potential hill an atom is optically pumped to the dark state loosing
kinetic energy.

effects: velocity-selective-coherent-population-transfer (VSCPT) and Sisyphus cool-
ing. During VSCPT atoms perform a random walk in velocity space and can eventu-
ally end up in the dark state, which is decoupled from light. The time an atom stays
in the dark state is proportional to the inverse of its momentum squared. Com-
bining this effect with Sisyphus cooling, Cohen Tannoudjii proposed the following
picture: atoms in the dark state are repeatedly transferred via motional coupling to
the bright state where they climb up the potential hills. Near the top of the hill they
have a higher probability of being pumped to a dark state as illustrated in figure 2.4.
A complete description of gray molasses with alkali atoms is challenging due to the
complicated polarization pattern in the experiment, the hyperfine structure and the
numerous Zeeman sublevels involved.

2.2.1 Experimental implementation

The magneto-optical trap (MOT) precedes the gray molasses phase in the experi-
mental cycle. The MOT phase consists of three stages of 3 s, 4 s and 5 s duration
whose main difference is the decreasing intensity of the cooling light and the push-
ing beam. At the end of the MOT-phase we typically reach an atom number of
(3.72± 0.14)× 108 and a temperature of (418.0± 30.8)µK. After switching-off the
magnetic fields (1 ms), we have previously run a bright molasses phase where we
reached a temperature of (25.2± 0.3)µK and a phase-space density of (18.29± 1.35)×
10−6. This has been replaced by a gray molasses phase whose implementation is in-
spired by the recent publication by Rosi et al. [64].

For the cooler we use a diode laser, which is frequency shifted with double-pass
acousto-optical modulators (AOM) to the desired frequency as shown in figure 2.5.
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FIGURE 2.5: Energy level scheme of the D2 transition of 87Rb. We have implemented the
Λ-scheme between the hyperfine levels F = 1 and F = 2 via coupling to the excited state
F′ = 1. The cooler (repumper) is blue-detuned ∆21 (∆RP) to the excited state. The Raman
condition is given by δR = ∆RP − ∆21. For experimental reasons we use the excited state
F′ = 1 instead of F′ = 2 as reported in [64], but we observe no significant differences in
the performance. Level splitting is adapted from [70].

The repumper is generated with an electro-optical modulator (EOM)3. It modulates
small-amplitude sidebands onto the laser beam near the hyperfine splitting F = 1
and F = 2 at 6.83 GHz. This implementation guarantees the phase-coherence be-
tween the two laser beams, which is essential for the Λ scheme and for reaching
very low temperatures.

For characterization we used absorption imaging after time-of-flight. As the
magnification of the objective in place is too large for imaging gray molasses, we
setup temporarily an objective with a magnification of 0.42. The atomic clouds were
fitted with Gaussians to extract their size and temperature via

σ(t) =

√
σ2

0 +
kBT
mRb

t2 (2.3)

with the initial size σ0, the Boltzmann constant kB, the temperature T, the mass of
87Rb mRb and the time-of-flight t. The phase-space density is given by

ρPSD = n · λ3
dB = n · h3

(2πmRbkBT)3/2 (2.4)

where n denotes the atomic density, h the Planck constant and λdB the thermal de
Broglie wavelength.

3Qubig: PM-Rb87 6.8M2. With a signal generator (SMR20 by Rhode and Schwarz) and a 10 W
Amplifier (KU PA 640720 -10A by Kuhne Electronic) we can apply up to 38 dBm input power to the
EOM.
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2.2.2 Optimization of experimental parameters

We have optimized the gray molasses phase with respect to the following experi-
mental parameters.

Duration of gray molasses

For the optimal duration of the gray molasses a compromise between the lowest final
temperature and maximum atom number needed to be found. We have varied the
duration from 1 ms to 15 ms and found that already after 3 ms temperatures below
10 µK could be reached. As the cooling force is velocity dependent, longer durations
led to slightly lower atom numbers, thus lower PSDs. However, experimentally a
duration of 6 ms for gray molasses proved to be optimal for a transfer to the magnetic
trap.

Laser intensity

The cooler intensity IC and the repumper intensity IR are simultaneously varied by
the microwave power applied to the EOM. The cooler intensity follows the abso-
lute square of the zeroth order Bessel function |J0|2 while the repumper sideband
intensity follows the first order Bessel function |J1|2. The total laser power is kept
constant Itot = IC + 2IR. Here we used Itot = 0.75 IS with the saturation intensity
IS = 2.5 mW/cm2. At a fixed molasses duration of 5 ms, a detuning of ∆21 = 2.6 Γ
(where the linewidth is given by Γ = 2π · 6.065 MHz) and δR = 0 we have varied
the power applied to the EOM between 24 dBm and 36 dBm, which corresponds
to IR/IC = 0.05 to 0.75. We found a rather weak dependence, which saturated
once a threshold of ≈ 32 dBm was exceeded and thus settled for an input power
of IR/IC = 0.3 (33 dBm).

Additionally, we have varied the total laser power. Above a certain threshold
only minor influences could be observed. We settled for the maximum available
laser power.

Detuning to F′ = 1

The variation of the detunings ∆21 and ∆R, which are blue detuned to the level
F′ = 1 exhibits a strong influence on the temperature, atom number and PSD. Near-
resonance the temperature is high but it drops and reaches a plateau for ∆21 > 2 Γ.
On the other hand the capture efficiency begins to drop slightly for ∆21 > 2 Γ. This
results in a optimal detuning of ∆21 h 4 Γ for the largest PSD.

Raman detuning δR

The Raman detuning is a very sensitive parameter for the efficiency of the gray mo-
lasses. At a detuning ∆21 = 4 Γ we varied ∆RP, which corresponds to a variation of
the Raman detuning δR. We chose a span of ±1 MHz as shown in figure 2.6. At a
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FIGURE 2.6: Characterization of the gray molasses. (a) Influence of the Raman detuning
on temperature and atom number. The minimum temperature 5.3(4)µK is reached at
δR = −0.01 Γ. We observe the characteristic steep increase in temperature for positive
detunings. However, for smaller negative detunings the temperature remains below 8 µK
and does not increase as in [64]. (b) From the measured temperature and atom number, the
phase space density (PSD) is calculated. It is normalized to the PSD of the bright molasses
and reaches an increase of 10 at δR = −0.01 Γ as obtained in [64].

Raman detuning of −0.01 Γ we reached an increase of the PSD by approximately a
factor of 10, which is the same as reached by Rosi et. al. [64]. For positive Raman de-
tunings we observe a sudden increase in the temperature resembling the Fano type
profile, which is the common feature for gray molasses. For detunings δR > 0.04 Γ
atomic clouds with different velocities can be observed. We suspect that they ful-
fill the Raman condition (k1 + k2)v = δR, thus their velocities should increase with
increasing Raman detuning. This effect has also been reported in [71].

Optimal parameters

We have implemented the gray molasses in the experimental cycle with the follow-
ing parameters.

duration detuning cooling intensity repumper intensity Raman detuning
t (ms) ∆21(Γ) IC (IS) IR (IS) δR(Γ)

3 4 0.67-0.55 0.05-0.10 -0.01

Repumping to F = 1

After the gray molasses phase atoms can be either in F = 1 or F = 2 whose fraction
can be tuned to some extent by varying the detuning ∆RP. In order to maximize the
transfer efficiency for the loading of the magnetic trap via forced evaporation, the
atom number should be in the low-field seeking state |F = 1, mF = −1〉. Therefore,
we optically pump the atoms after the gray molasses phase by switching-off the
EOM and only keeping the cooler switched on for an additional 20 µs. We achieve
complete transfer without any detectable atoms in F = 2.
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phase temperature atom number cloud radius phase space density
T (µK) N (108) σ0 (mm) ρ (10−6)

MOT 418± 30.8 3.72± 0.14 0.96± 0.09 0.62± 0.17
BM 25.2± 0.3 3.83± 0.08 1.30± 0.03 18.29± 1.35
GM 5.3± 0.4 3.26± 0.23 1.15± 0.15 189.90± 1.54

TABLE 2.1: Characteric quantities of the laser cooling phases at the experimental setup.

2.2.3 Benefits for the overall experimental cycle

We have benchmarked the different laser cooling phases as displayed in table 2.1.
By replacing bright molasses with gray molasses the increase in PSD allowed us to
shorten two cooling phases. First, the starting frequency of the rf-evaporation in
the magnetic trap could be lowered from 20.5 MHz to 7 MHz allowing us to reduce
the exponential ramp by 5 s. Second, the MOT phase could be shortened to 6 s as the
transfer efficiency has increased from GM to the magnetic trap. Further optimization
in the experimental cycle lead to a record cycle time of 23 s providing great benefit
for data-intensive measurements. However, operating the experiment constantly
at cycle times like these requires modernizing devices like the arbitrary waveform
generators for the lattice ramp with faster programming interfaces. Therefore, for
daily operation cycle times of about 30 s are common.

2.3 Active magnetic field compensation

For many experiments, the ambient magnetic field must be controlled to a very
high degree of accuracy and precision. This includes compensation of static stray
fields, for instance the earth magnetic field (typically ∼500 mG), but also (and of-
ten more importantly) uncontrolled, time-dependent fields fluctuating with typical
amplitudes of several mG and frequencies of up to 1 kHz. These fluctuations af-
fect phase coherence [72] and are obstructive for many experiments. These include,
for instance, quantum information processing with atoms and ions, quantum gases
experiments involving multiple Zeeman states [73, 74], and high-precision atom in-
terferometers and atomic clocks where the magnetic field fluctuations directly affect
the accuracy and sensitivity [75].

A first solution is passive shielding by an enclosure with several layers of high
permeability materials around the experimental region [76–78]. This is often the
method of choice for a single-purpose instrument working near “zero field”, e.g.
high-performance Cesium atomic clocks [79]. Yet, shielding passively the entire ex-
periment is impractical for most setups, which are relatively large and complex in
shape. Also, mechanical stress at junctions and access holes for optical and electronic
purposes reduce significantly the effectiveness of passive shielding.

A second, often more convenient solution is the active stabilization of the mag-
netic field using a feedback loop. This requires a magnetic field sensor that can be
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placed within or near the control volume, and a feedback circuit connected to a set
of compensation coils. The advantage of active over passive shielding is that an
existing experimental setup can be easily upgraded. Active magnetic field compen-
sations have been sucessfully implemented previously using various sensor tech-
nologies including fluxgate magnetometers [80], SQUIDs [81], atomic magnetome-
ters [82, 83] and specially constructed sensors [84]. For ultracold atom experiments, a
compensation with a bandwidth of around 3 kHz was achieved using a two-sensor
approach of a fluxgate magnetometer for DC- and a magnetic pickup coil for AC-
field measurement [80].

In this section, we present a simple active compensation system, which relies on
an anisotropic magnetoresitive (AMR) sensor with a high bandwidth. This sensor
enables us to use a single sensor in order to achieve good DC and AC sensitivity. It
is based on commercial components and can be replicated at low cost. As we intend
to stabilize a directional finite magnetic field, we have implemented the system in
one dimension, though it can be extended to three dimensions.

The performance of the compensation system can be characterized reliably with
optical magnetometry [85]. Here, we use a Bose-Einstein condensate (BEC) as a
magnetometer where Ramsey spectroscopy [86] gives access to the magnitude of
the magnetic field. Additionally, we measure the influence of field fluctuations on
Rabi oscillations, thereby demonstrating a substantial increase of the coherence time
while using the active compensation.

This project has been planned as a collaboration with M. Brannan and F. Gerbier
who both gave fruitful input on the electronic design. Together with C. Ölschläger
and J. Simonet the author continued this work and implemented the use of the BEC
as a magnetometer at the experiment [87]. At the beginning of this PhD project
the author kept working full-time on the project in collaboration with J. Seeger as
a master’s student [88]. The results presented in this section stem from this time
and were prepared for publication mainly in collaboration with J. Seeger, A. Ilin,
C. Ölschläger, J. Simonet and K. Sengstock.

2.3.1 Electronic design

We stabilize the magnetic field along a single axis using a feedback loop illustrated in
figure 2.7 (a). This system is integrated within the existing Bose-Einstein condensa-
tion apparatus, which is described in more details in section 2.1. The magnetic field
sensor4 is placed outside the vacuum chamber of the main experiment, 85 mm from
the position of the atomic cloud. The amplified sensor signal is fed into a home-made
PI controller, which regulates a bipolar current source5. The latter drives a pair of
Helmholtz coils (diameter 212 mm; 0.33 G/A; 250 µH) to generate the compensating
magnetic field.

4Honeywell, AMR sensor, single axis, HMC1001
5HighFinesse, bipolar current source BCS 5/12
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FIGURE 2.7: Setup and characteristics of the active compensation. (a) Schematic illustra-
tion of the single-axis negative feedback loop system. (b) Spectral density of the magnetic
field noise in a typical laboratory environment. The line frequency and its higher har-
monics are the main contributions to the noise. The 1/ f noise floor is governed by the
sensor and the instrumentation amplifier. (c) Measured attenuation for the compensa-
tion setup with the in-loop sensor. The bandwidth corresponds to approximately 3 kHz
(dashed black line). At 50 Hz an attenuation of 36 dB is achieved.



2.3. Active magnetic field compensation 17

The central component in this compensation system is the magnetic field sensor
in combination with the corresponding amplification stage. The working principle
of the chosen single-axis AMR sensor is based on four anisotropic magnetoresistive
elements arranged in a Wheatstone bridge. We have favored an AMR sensor over a
fluxgate implementation due to its higher bandwidth, which eliminates the need to
use a two-sensor approach. Additionally, fluxgate sensors emit AC magnetic field
noise at a frequency in the kHz regime, which could disturb the quantum gas ex-
periments. Also, the occurrence of even moderate magnetic fields (see discussion
below) during the experimental cycle could modify its zero-point due to hysteresis
effects on the ferrite core of the fluxgate.

The main specifications of the AMR sensor are a typical sensitivity of 32 mV/G
and a bandwidth of 5 MHz. To take advantage of the high bandwidth, we use an in-
strumentation amplifier6 with a gain of 103 attaining a maximal sensitivity of 32 V/G
for the combined system. Additionally, the amplifier’s reference input voltage is
controlled via a digital potentiometer7 in order to adjust the signal offset.

Typical magnetic field fluctuations in our laboratory exhibit a sinusoidal wave-
form with a 3 mG peak-to-peak amplitude and a period of 20 ms. The dominant
frequency contributions in this signal are the electric power line frequency at 50 Hz
and its higher harmonics. The corresponding noise spectral density recorded in the
laboratory is displayed in figure 2.7 (b). Here, the 1/f noise for low frequencies stems
from the sensor and the instrumentation amplifier.

Figure 2.7 (c) shows the Bode diagram characterizing the response of our com-
pensation system. We measured a linear decrease of 20 dB/dec and a bandwidth of
3 kHz where the gain reaches 0 dB. For usual laboratory conditions, this bandwidth
is sufficient as only low frequency noise is present. The peak at 24 kHz originates
from the LC-resonance of the Helmholtz coils and a built-in capacity within the cur-
rent supply.

A feature of ultracold atoms experiments is the occurrence of relatively strong
magnetic fields (larger than 5 G) during the experimental cycle. A typical cycle con-
sists of two periods. In the first period, the quantum gases are produced using rela-
tively large magnetic fields, for instance in the magnetic trap. In the second period
a well-stabilized, low-magnitude magnetic field is required during the experiment.
However, the application of magnetic fields during the first period can misalign the
magnetic domains in the resistive elements of the AMR sensor and severely degrade
the sensitivity. Fortunately, the domain alignment can be restored by an integrated
reset function of the sensor. We have estimated its repeatability for our system to
65 µG (based on the datasheet [89]).

6Analog devices, AD524
7Analog Devices, AD5292
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2.3.2 Magnetic field characterization with quantum gases

To characterize the performance of the magnetic field compensation, Bose-Einstein
condensates can act as high precision magnetometers [90, 91]. This is particularly
beneficial as the BEC is located exactly where the stabilized magnetic field is re-
quired. The experiment of [91] demonstrated a resolution on the order of 10 nG.

Our approach relies on Ramsey spectroscopy [86] allowing us to probe the mag-
netic field in a single measurement with a precision of ∼ 10 µG. By recording con-
secutive single measurements over the course of days we are able to determine the
long term stability with and without active compensation. In addition, we monitor
the coherence of Rabi oscillations driven by a radio-frequency (RF) resonant with
a magnetic-field-sensitive transition. We demonstrate that the active compensation
significantly improves the coherence when Rabi oscillation frequencies are on the
order of the magnetic field noise.

2.3.3 Experimental protocol

We start the experimental procedure by preparing a spin-polarized 87Rb-BEC in the
state |F= 1, mF =−1〉 in a crossed optical dipole trap at a wavelength of 1064 nm
with trapping frequencies of ωx,y,z≈ 2π× (20, 20, 50)Hz. We employ several pairs
of Helmholtz coils for controlling the magnetic fields. For each spatial direction, we
apply time-independent fields to cancel static fields at the location of the atoms, to
approximately (0±1)mG (static compensation).

We apply a bias magnetic field along the x direction, with strength B0 = 110 mG
stabilized by a pair of coils within the feedback loop (active compensation). The
bias field lifts the |F= 1〉 hyperfine manifold into three resolved Zeeman sublevels
mF = 0,±1. We perform experiments with atoms which are initially in the sublevel
mF = −1 and experience a Zeeman shift EZ = µBB/2, with µB the Bohr magneton
and with

B =
√
(B0 + ∆Bx)2 + ∆B2

y + ∆B2
z ≈ B0 + ∆Bx +

∆B2
y + ∆B2

z

2B0
, (2.5)

the modulus of the magnetic field felt by the atoms. Here we introduced the desired
bias field value B0 and the fluctuating magnetic field ∆B to be compensated, and
assumed |∆B| ∼ 1 mG � B0. The contribution of the transverse components of
∆B are thus small corrections (∼ 100 µG), and the component of ∆B parallel to the
applied field is therefore the most significant one. As a result, we only stabilize
actively the field only in the x-direction and ignore the transverse components ∆By

and ∆Bz.
Prior to any spectroscopic experiments the magnetic field sensor is reset to re-

store its zero point, which is altered by the strong fields we use to produce the BEC.
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FIGURE 2.8: Magnetic field measurement with Ramsey spectroscopy. (a) Experimen-
tal sequence for Ramsey spectroscopy. Two phase-controlled RF pulses of 70 µs dura-
tion are separated by a wait time of τ = 50 µs. The Larmor frequency of the pulses is
µBB0/2 ≈ 77.0 kHz, and the detuning δ = ωr f − µBB0/2 ≈ 1.5 kHz. The Rabi frequency
is Ω= 2π · 3562 Hz. (b) Theoretical prediction of the population of different Zeeman states
versus deviation of the magnetic field strength ∆B from the set value. The inset shows an
exemplary absorption image to illustrate the data evaluation procedure. The populations
of the three mF-components in F = 1 are mapped onto a magnetic field deviation ∆B
(dashed red line). (c) Magnetic field deviation with (top panel, blue) and without active
compensation (middle panel, purple) measured over 20 h. Additionally, the temperature
logged at the experiment is shown (bottom panel, black). The statistical analysis of the
data in figure 2.9 is performed for a temperature T = 21.2 ◦C (highlighted color). The inset
depicts a linear fit yielding a temperature dependence of 1.5(1)mG/K of the magnetic
field sensor. Error bars quantify the standard deviation of each temperature bin.

The active compensation is immediately switched on and the Ramsey or Rabi exper-
iment is performed. Finally, the populations of the three Zeeman states are deter-
mined. The three components are spatially separated by a Stern-Gerlach magnetic
field gradient during a time-of-flight of 33 ms and then imaged via absorption imag-
ing. The measured populations allow us to infer the absolute magnetic field B with
Ramsey spectroscopy as explained in the following section.

2.3.4 Long-term stability - Ramsey spectroscopy

Ramsey spectroscopy constitutes an ideal technique to characterize the long-term
stability of the compensation as the magnetic field can be deduced from a single
Ramsey experiment. As depicted in figure 2.8 (a), such a sequence consists of two
phase-coherent RF pulses separated by a wait time τ. The two pulses respectively
prepare and remix coherent superpositions of two Zeeman states. The populations
at the end of the pulse sequence oscillate as a function of the detuning from the
resonance δ = µBB/h̄ − ωrf, resulting in a pattern known as Ramsey fringes. We
focus on the central fringe near δ = 0. A deviation of the magnetic field ∆B= |B−
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B0| from B0 = 110 mG changes the detuning and thus modifies the final populations
of the different Zeeman states.

Figure 2.8 (b) shows the populations in the three mF-components as a function
of ∆B. These Ramsey fringes are calculated numerically by solving the time de-
pendent Schrödinger equation for a three-level system (thus neglecting any effect of
interatomic interactions). We apply a static frequency detuning δ = 1.5 kHz of the
driving RF field, so ∆B= 0 corresponds to the maximal slope of the Ramsey fringe,
thereby maximizing the sensitivity. Inverting the calculated fringe pattern from the
three-level model, we are then able to determine from the measured relative popu-
lation the magnitude and sign of B− B0 in a time-resolved fashion.

As a central result, we demonstrate a clear reduction of magnetic field fluctua-
tions by the active compensation. Figure 2.8 (c) depicts the recorded field fluctua-
tions obtained with Ramsey spectroscopy. Here, ∆B is probed every 40 s over a total
time span of 20 h with and without the active compensation, each scheme being ap-
plied alternately in every second experimental realization.

Without the active compensation (top panel, blue) peak-to-peak fluctuations of
about 2 mG prevail. They are clearly reduced when the active compensation is
enabled (middle panel, purple). Nevertheless, the active compensation exhibits
distinct oscillations with a period of 6 h. They occur due to temperature fluctua-
tions (bottom panel, black), which have been measured during the Ramsey exper-
iments. With a peak-to-peak amplitude of about ∼0.4 ◦C they bias the magnetic
field sensor directly. By correlating ∆B to the measured temperature we quantify the
temperature dependence for our system to 1.5(1)mG/K, consistent with the specifi-
cations from the manufacturer. In principle, this could be improved significantly by
implementing a current source to supply the magnetic field sensor (e.g. [92] and ref-
erences therein), or by directly controlling the sensor temperature using a dedicated
feedback system.

In order to characterize the optimal performance of our system, the measured
data is selected for a temperature of 21.2 ◦C (highlighted in darker colors). The
selected data of ∆B is statistically analyzed and represented by normalized his-
tograms in figure 2.9. The two statistical distributions, each containing approxi-
mately 500 measurements, are fitted with Gaussians yielding a standard deviation of
σoff = 860 µG without and of σon = 240 µG with the active compensation. The results
demonstrate that the active compensation reduces the magnetic field fluctuations by
a factor of 3.6.

Large fluctuations without the active compensation can be attributed mainly to
magnetic fields oscillating with the line frequency. As depicted in the inset of fig-
ure 2.9, a time-resolved measurement of the present field with an independent AMR
sensor shows a peak-to-peak amplitude of ∼3 mG, consistent with the width of the
statistical distribution. Along these lines, we found that the use of a power line
trigger, synchronizing the Ramsey sequence with the phase of the 50 Hz oscillations
for each measurement, additionally improves the magnetic field stability for short
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FIGURE 2.9: Statistical analysis of the Ramsey spectroscopy measurement. The histograms
of the magnetic field deviation ∆B are shown with and without the active compensation.
The normalized distributions are constructed from the temperature selected data from the
Ramsey experiment and are fitted with a Gaussian distribution to estimate the standard
deviation σoff/on. Note that the reference voltage of the control loop can always be set such
that the mean of the active compensation is centered around zero. The inset displays the
magnetic field measured for 20 ms with the AMR sensor during the experimental cycle
without active compensation.
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FIGURE 2.10: Rabi oscillations. (a) The data without the active compensation is shown
while in (b) the data is shown with the active compensation enabled. The upper panels dis-
play averaged absorption images where the population of the three Zeeman components
is monitored in time. The lower panels show the extracted longitudinal magnetization,
defined as the population difference between |mF =+1〉 and |mF =−1〉. The error bars
show the standard deviations of the single measurements (approximately five per data
point). The solid lines represent numerical simulations with parameters taken from the
results of the Ramsey spectroscopy. The data has been temperature selected as described
in section 2.3.4.

timescales (∼1 ms). As a consequence, the standard deviations without and with ac-
tive compensation are further reduced to σoff = 305 µG and σon = 130 µG when using
the power line trigger.

2.3.5 Probing coherence - Rabi oscillations

Rabi oscillations between the three Zeeman components in |F= 1〉 with frequencies
on the order of the line frequency are strongly affected by magnetic field fluctua-
tions. Varying shot-to-shot fields as well as non-vanishing AC fields during the RF
coupling induce effective detunings and lead to an overall dephasing when aver-
aged over many experimental realizations. Therefore, we compare the coherence of
the Rabi oscillations with and without the active compensation. Using the power
line trigger is essential for this comparison. As the dephasing due to fluctuating
fields at the power line frequency would be too large to observe any Rabi oscilla-
tions.
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The experimental results shown in figure 2.10 clearly demonstrate the increased
coherence time when the active stabilization is turned on. Without the active com-
pensation (see figure 2.10 (a)) the absorption images show only three oscillation peri-
ods of up to 5 ms followed by an almost equal occupation of all three Zeeman states.
In contrast, with the active compensation (see figure 2.10 (b)) distinct oscillations are
present over a time span of 20 ms proving the clear reduction of dephasing.

For a quantitative analysis, we extract the magnetization, defined as the popula-
tion difference between |mF =+1〉 and |mF =−1〉, and compare it including the field
fluctuations at the experiment to numerical simulations performed by [88]. We nu-
merically solve the time dependent Schrödinger equation of the coupled three-level
system with fluctuating DC and AC fields including the results obtained from the
Ramsey experiments as well as from the independent AMR sensor. The shot-to-shot
fluctuations of the DC field are deduced from Ramsey spectroscopy where the power
line trigger is used and are given by the widths σoff = 305 µG and σon = 130 µG. The
phase and the amplitude of the AC field during the Rabi oscillations are inferred
from the AMR sensor measurement (inset in figure 2.9) and a Ramsey experiment
where the delay after the power line trigger is scanned. To model the AC field as
measured in figure 2.7 (b), we superimpose a 50 Hz sine wave with its 3rd and 5th
harmonics, i.e. ∆Bx = ∑n=1,3,5 an cos(nωpwt + φn) with ωpw = 2π × 50 Hz.

The dominant amplitude without (respectively with) active compensation yields
a1 ≈ 1 mG (200 µG), whereas the phases are given by φ1 = 0.75π (φ1 =−0.25π). We
also obtain the Rabi frequency of Ω= 2π · 464 Hz by fitting the first half period of
the Rabi oscillations where the magnetic field has a minor influence.

The excellent agreement between the measurements and the simulations sug-
gests that the observed behavior can be attributed to the field fluctuations deter-
mined in section 2.3.4 and that the active compensation increases the coherence time
by at least a factor of 4.

2.4 Conclusion and outlook

In this chapter we have introduced the experimental apparatus together with major
experimental upgrades, which were implemented during this PhD project. Espe-
cially important is the implementation of a Λ-enhanced gray molasses for 87Rb on
the D2-transition with a temperature of 5.3(4)µK. This resulted in a significantly
shorter experimental cycle time, which we could reduce by about 10 s to 23 s.

We have demonstrated an active magnetic field compensation, which is robust
against strong magnetic fields and can be implemented at many quantum gas exper-
iments. Although the active compensation has been realized in one dimension, the
compensation can in principle be extended to three dimensions. We have studied
in detail how the active stabilization improves the magnetic field stability by using
the 87Rb-BEC itself as a magnetometer with Ramsey spectroscopy. We achieve a
standard deviation of the magnetic field fluctuations of σon = 240 µG. This is further
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improved to σon = 130 µG by using a trigger to synchronize the experiment with the
50 Hz frequency of the power line. Additionally, we have demonstrated that the ac-
tive compensation substantially increases the coherence time of the Rabi oscillations
by a factor of 4.

The remaining limitations of the magnetic field stability are threefold: first, un-
compensated transverse magnetic fields; second, the sensor noise (after amplifica-
tion) and the residual lack of reproducibility of the set/reset sequence (see sec-
tion 2.3.1); third, the fact that the sensor does not measure the field exactly at the
atom location but at a slightly different position, which means that even in an ideal
feedback system the fluctuations seen by the atoms would be only reduced, and not
perfectly canceled. All these factors, with a magnitude of roughly 50− 100 µG, con-
tribute to the residual ∆B when the compensation is enabled. This indicates that the
performances of the feedback system are close to the ones achievable with the AMR
sensor.

The implemented active compensation allows for improving magnetic field sen-
sitive studies especially for spinor or dipolar gases. For the experiment in higher
bands it can be especially advantageous for preparing with π-pulses the internal
state where magnetic field fluctuations are disturbing. Moreover, the increased co-
herence time is essential for novel Floquet engineering schemes involving inter-
nal degrees of freedom, especially for the realization of non-abelian artificial gauge
fields such as spin-orbit coupling.
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Chapter 3

The optical honeycomb lattice

The optical lattice setup constitutes the heart of the experiment. It allows using dif-
ferent configurations of 1D, 2D or 3D lattices. The setup has been implemented and
described in the PhD thesis of C. Becker [43]. More experiments and details on the
characteristics of the lattice can be found in the PhD theses by P-Soltan-Panahi, J.
Struck, M. Weinberg and C. Ölschläger [44–47]. This chapter presents the optical
potentials with a focus on the dipole trap and and the bipartite hexagonal lattice,
which is central for the results presented in this thesis. We give a brief introduction
to its main characteristics as the lattice potential, band structure and harmonic con-
finement. The detection methods, time-of-flight and band mapping, are discussed.
Further, a new high-bandwidth intensity control for the lattice beams together with
an investigation of phase-noise is presented. The experimental data presented in
this chapter has been measured with main contributions by the author and A. Ilin.
For the development and setup of the intensity control the author has collaborated
with J. Seeger. The analysis of the data presented in this chapter has been conducted
by the author.

3.1 Optical potentials

3.1.1 Atom-light interaction

When describing the coupling of light to atoms a fundamental distinction is made
between two types of interaction: dissipative forces exerted by absorption and emis-
sion of photons and dipole forces [53]. While the former are being used for laser
cooling techniques the latter are also applied for trapping and realizing potentials
such as optical lattices [93].

The mechanism of the dipole force stems from the interaction of the light field
with a light induced electric dipole moment of the atom. This coupling of the quan-
tized light field and the atomic eigenenergies leads to new common eigenstates,
which are called dressed states [94]. Within perturbation theory the first order of
the energy shift on a state i can be written as

∆Ei = ∑
j

|〈j|ĤAL|i〉|2
h̄(ωij −ωL)

(3.1)
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with the reduced Planck constant h̄, the atomic resonance ωij and the frequency of
the laser light ωL, the Hamiltonian for the atom-light interaction ĤAL = −µ̂Ê with
the dipole operator µ̂ and the electric field operator Ê.

For our experimental realization the D1 and D2 lines of 87Rb couple the ground
state 52S1/2 to the states 52P1/2 and 52P3/2. Evaluating the above expression for the
dipole potential of an atomic state |F, mF〉 then yields

Vdip(r) = −
πc2

2
I(r)(D1 + 2D2 − gFmFP(r)(D1 −D2)) (3.2)

where c is the speed of light, gF = ∓1/2 the Landé-factor of the hyperfine states
F = 1, 2 and mF the corresponding magnetic substate. I(r) denotes the intensity of
the light field, the following abbreviation Di the contribution of the D1 and D2 lines
with its frequency ωDi and its natural linewidth ΓDi

Di =
ΓDi

ω3
Di

(
1

ωDi −ωL
+

1
ωDi + ωL

)
. (3.3)

The polarization of the light field is defined by

P(r) = Iσ+(r)− Iσ−(r)
I(r)

(3.4)

and can take on values of P(r) = 0,±1 for π and σ± polarized light. Especially
the local polarization plays an important role for the honeycomb lattice (section 3.2)
with the near-resonant laser wavelength λL = 830 nm as this lifts the degeneracy
between the A- and B-sites. In contrast, for the dipole trap with λDT = 1064 nm the
spin-dependency can be neglected. Thus, it is practical to split equation (3.2) into a
spin-independent and a spin-dependent part

Vdip(r) = VSI(r) + Vpol(r) (3.5)

= VSI(r) + gFmFµBBeff(r) (3.6)

with the Bohr magneton µB so that an effective magnetic field can be defined as

Beff(r) = −ηVSI(r)P(r)/µB. (3.7)

The parameter η =
D1 −D2

D1 + 2D2
describes the influence of the laser wavelength onto

the spin-dependent potential. For the lattice wavelength it yields η ≈ 0.13 whereas
for large detunings compared to the D1 and D2 transitions (D1 − D2 ≈ 0) it is
negligible. For calculations of the dipole potentials it is useful to express the spin-
independent potential with a conversion factor u(λ) for the polarizability as VSI(r) =
−u(λ)I(r). For the two wavelengths in the experiment the conversion factor yields
u(λDT) = 2.11× 10−36 m2s and u(λL) = 9.38× 10−36 m2s.
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3.1.2 Crossed dipole trap

The dipole trap provides a reliable way to produce cold and dense Bose-Einstein
condensates capturing all Zeeman substates. As the dipole trap laser with λDT =

1064 nm is far red-detuned, the atoms experience a conservative force towards the
maximum laser intensity. Experimentally this is realized by superimposing two
Gaussian laser beams onto the atoms. The intensity profile of a single elliptical Gaus-
sian beam propagating along z, with beam power P and wavelength λL is given by

I(x, y, z) =
2P

πwx(z)wy(z)
exp

(
− 2x2

wx(z)2 −
2y2

wy(z)2

)
. (3.8)

Here the beam radius is wx,y(z) = w0x,y

√
1 + (z/zR)2 with the waist wx,y(0) = w0x,y

at the focus of the beam and the Rayleigh length zR = πw2
0/λL. For two orthogonal

Gaussian laser beams the intensity profile in vicinity of the focus for |r| � zR then
reads

I(r) =
2P

πw0h w0v

exp
(
−2y2

w2
0v

)[
exp

(
−2x2

w2
0h

)
+ exp

(
− 2z2

w2
0v

)]
. (3.9)

For weak potentials the influence of gravity needs to be considered by

Vtot(r) = Vdip(r) + mgy. (3.10)

It leads to a shift of the minimum of the potential, which is called gravitational sag.
As depicted in figure 3.1 (b) already small changes in the final power of the dipole
trap beams lead to a shift of the trap position. This is especially critical for the align-
ment of the three lattice beams whose waists must be superimposed with the dipole
trap minimum. Therefore, we have assured a high repeatability of the final trap
depth. We have updated the version of the experimental control and have switched
from an external waveform generator to the AdWin system allowing for faster pro-
gramming.

To compensate for gravity the vertical beam waists w0,v ≈ 82 µm were chosen
to be much smaller than the horizontal beam waists w0,h ≈ 245 µm resulting in an
elliptical trapping geometry. As the harmonic confinement plays a crucial role for
the condensation in higher bands, we have measured the trap frequencies by in-
ducing oscillations of the BEC shining a near-resonant lattice laser beam slightly
off-centered onto the atomic cloud for 500 µs. The absorption images after different
holding times have been evaluated using principal component analysis (PCA). In
figure 3.1 (c) the mean image of the measurement series and the first three princi-
pal components (PC) are shown. PC 1 and PC 2 correspond to the horizontal and
vertical dipole mode. PC 3 shows a breathing mode as an example of a higher order
excitation. The weight of PC 1 and PC 2 is plotted in dependence of time in figure 3.1
(d) to extract the horizontal and vertical trap frequency. A fit of the oscillations with
a sine and an exponential decay yields a frequency of 20.2(5)Hz for the horizontal
and 45.3(7)Hz for the vertical trapping frequency. Due to the versatile applications
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FIGURE 3.1: Properties of the elliptical crossed dipole trap. (a) Horizontal (yellow) and
vertical (blue) trap frequencies in dependence of the power for each beam. The shallow-
est trap is reached at 750 mW per laser beam. (b) The minimum of the trap is shifted by
gravity, the so-called gravitational sag (c) Mean image and principal components of a mea-
surement to determine the trap frequencies. PC 1 and PC 2 correspond to the horizontal
and vertical dipole mode. PC 3 shows a breathing mode. (d) PC 1 and and PC 2 are fitted
with an exponentially damped sine yielding ωh = 2π× 20.2(5)Hz for the horizontal trap
frequency and ωv = 2π × 45.3(7)Hz for the vertical trap frequency.
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of PCA it has been implemented by the author as a standard evaluation method,
e.g. to verify the correct alignment of the dipole trap or the lattice. In quantum gas
experiments PCA has also previously been applied to analyze collective excitations
by Dubessy et al. [95].

3.1.3 Optical lattices

Optical lattices are periodic light potentials, which are formed by the inference of
Gaussian laser beams. They offer great flexibility for experiments with ultracold
quantum gases as e.g. tuning of intensity, frequency, phase or polarization. Depend-
ing on the number of lattice beams and their alignment versatile geometries and
dimensionalities are possible.

Our experiment uses different configurations of 1D, 2D or 3D lattices. The lattice
setup consists of three traveling waves at 830 nm. They interfere in the x-y plane
under angles of 120°. Using only two of the three lattice beams creates a 1D lattice
with a lattice constant of a1D = 479 nm. All three laser beams together realize differ-
ent 2D lattices geometries by adjustment of the polarization: a triangular lattice for
out of plane polarization, a polarization lattice for the polarization being ∼ 35° or a
bipartite hexagonal lattice with a tunable energy offset between the A- and B-sites
for a polarization pointing in the lattice plane. The A- and B-sites are separated by
aHex/

√
3 = 320 nm. Additionally, orthogonal to the lattice plane a retro-reflected

1D-lattice at a wavelength of 1064 nm with a lattice constant a⊥ = λ/2 = 532 nm
can be superimposed to create a 3D lattice. The lattice setup has been implemented
within PhD project of C. Becker [43]. More experiments and details on the charac-
teristics of the lattice can be found in the PhD theses by P-Soltan-Panahi, J. Struck,
M. Weinberg and C. Ölschläger [44–47]. Additionally, a thorough description of the
bipartite spin-dependent honeycomb lattice is given by Lühmann et al. [38].

3.2 Honeycomb lattice

The 2D bipartite spin-dependent honeycomb lattice (see figure 3.2) constitutes the
central element of the experiment. In this section we discuss the characteristics of
the lattice, which are especially relevant for condensation in higher bands. (i) Rele-
vant is the lattice potential, where the dynamical tuning of the potential offset ∆VAB

between the two sublattices controlled by a magnetic field allows us to populate
higher bands. (ii) We present general characteristics of the band structure. (iii) The
radial confinement at the lattice sites and the harmonic confinement along the tubes
in z-direction of the lattice becomes important in deep lattices, where condensation
in higher bands occurs.
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FIGURE 3.2: Lattice setup of the bipartite honeycomb lattice. The three laser beams inter-
sect pairwise under an angle of 120◦ and are linearly polarized in the x-y lattice plane. A
homogeneous quantization field B can be rotated continuously by an angle α to change the
energy offset between the A- and B-sites. The energy offset is at its maximum for α = 0◦

and 180◦ and vanishes for α = 90◦.

FIGURE 3.3: (a) Bravais lattice with the lattice vectors a1 and a2 as defined in this section.
The inner hexagon resembles the Wigner-Seitz cell. (b) Reciprocal lattice with the recip-
rocal lattice vectors b1, b2 and b3. The inner hexagon marks the first Brillouin zone. (c)
Potential of the honeycomb lattice at V2D = 8 Erec for mF = 0. The inset shows the po-
larization pattern, which alternates from σ+ to σ− and lifts the degeneracy of the A- and
B-sites.
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3.2.1 Lattice potential

To obtain the potential VLat(r) experienced by the atoms as described in section 3.1.1,
the intensity needs to be calculated

I(r) =
1
2

ε0c
∫
|ELat(r, t)|2dt, (3.11)

where ELat is the sum of the electric fields of the three lattice beams ELat(r, t) =

∑3
i=1 Ei(r, t). Here, the often used plane waves approximation is not sufficient when

the harmonic confinement cannot be neglected. Thus, we employ the electric field
of a Gaussian beam

E(r, t) = E0 εi e−r2/w2
0 e−i(kiz−ωLt+Φi). (3.12)

We define the polarization ε of the electric field orientated in the x-y-lattice plane,
the beam waist w0 and the wave vectors of the laser beams

k1 = kL ·

0
1
0

 , k2 =
kL

2
·


√

3
−1
0

 , k3 =
kL

2
·

−
√

3
−1
0

 (3.13)

with kL = 2π
λL

. For clarity we follow the definition and notation in the PhD thesis of
M. Weinberg [46]. With the relation bi = εijk(kj − kk) the reciprocal lattice vectors
can be obtained

b1 = b ·

1
0
0

 , b2 =
b
2
·

 −1
−
√

3
0

 , b3 =
b
2
·

−1√
3

0

 , (3.14)

where b =
√

3kL and with the relation ai · bi = 2πδij the Bravais lattice vectors can
be defined

a1 = a ·

 0
−1
0

 , a2 =
a
2
·


√

3
−1
0

 , a3 =
a
2
·


√

3
1
0

 , (3.15)

with the lattice constant a = 2λL/3. Choosing two of the respective vectors spans the
Bravais and reciprocal lattice as depicted (see figure 3.3 (a), (b)). The lattice potential
VLat(r) can be calculated numerically by using eq. (3.5) and is illustrated in figure
3.3 (c). Neglecting the Gaussian beam character an analytic expression with a spin-
independent and spin-dependent part can be given

VLat(r) = −V2D(VSI(r) + Vpol(r)) (3.16)
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where

VSI(r) = 6− 2
3

∑
i=1

cos(bir− ∆φjk) (3.17)

Vpol(r) =
√

3(−1)FmFη cos(α)
3

∑
i=1

sin(bir− ∆φjk) (3.18)

and V2D = 1/4u(λL)I0 with I0 = 2P0
πw2

L

1
8Erec

. Note that the lattice depth V2D is normal-
ized to the channel structure of the A- and B-sites to 1/8 of the overall lattice depth
V0. The angle α defines the orientation of the quantization field BQ for a rotation
around the x-axis as depicted in figure 3.2. As the polarization of the lattice is de-
fined with respect to BQ, the energy offset between the A-B sites ∆VAB can be tuned.
Using eq. (3.18) it yields

∆VAB = 9ηmFV2D cos(α). (3.19)

Thus, ∆VAB is maximal for BQ pointing out of the lattice plane (α = 0◦ and 180◦)
and minimal with degenerate A-B-sites for BQ pointing parallel to the lattice plane
(α = 90◦). In section 4.3.1 the influence of BQ on the band structure is further elab-
orated. Note that the spin-dependent potential can also be defined with an effective
magnetic quantum number m = (−1)FmF cos(α) [38], which is useful for expressing
the potential independently from the internal state.

3.2.2 Band structure of the honeycomb lattice

When neglecting interactions the energy spectrum of a quantum gas in an optical
lattice can be reduced to solving the stationary Schrödinger equation for a single-
particle wave function

Ĥψn
q(r) = En

qψn
q(r) (3.20)

where the Hamiltonian for the lattice is given by

Ĥ =
h̄2

2m
∆2 + Vlat(r), (3.21)

n denotes the band index and q the quasimomentum. The lattice is periodic with the
period of the lattice vectors Vlat(r + ai) = Vlat(r). This problem has been solved by F.
Bloch for electrons in solid states [96, 97]. The solutions of ψn

q are the so called Bloch
functions of the form

ψn
q(r) = eiqrun

q(r) (3.22)

having the same periodicity as the lattice potential in space. Also regarding quasi-
momentum the wave function un

q+G(r) = un
q(r) and the eigenenergies En

q+G = En
q

are periodic upon the reciprocal lattice vector G. This allows us to define the lattice
potential and the Bloch function as Fourier series

Vlat(r) = ∑
G

VqeiGr, (3.23)
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FIGURE 3.4: Band structure of the honeycomb lattice in the single particle approximation
for a lattice depth of V2D = 1 Erec for |2,−2〉 and a quantization-axis pointing in the lattice
plane canceling the AB-offset (α = 90◦ =̂ ∆VAB = 0 ). (a) Shows the first five bands in
the honeycomb lattice. For a shallow lattice as shown here, the bandwidth is on the order
of 1 Erec, which becomes smaller in deep lattices. (b) Band structure of the first six bands
along the high-symmetry path of M, Γ, K and M-points. Clearly visible are the closed
Dirac cones between the first and second band and between the fourth and fifth band at
the K- and K’-points.

ψn
q(r) =

1√
N

∑
G

Cn
q,GeiGr (3.24)

where the latter is normalized to the number of unit cells N of the considered sys-
tem. Substituting this ansatz into eq. (3.20) reformulates the Schrödinger equation
in reciprocal space and results in an eigenvalue problem

∑
j
(

h̄2

2m
(q−Gi)

2δij + VGj−Gi)C
n,j
q = En

qCn,i
q . (3.25)

In principle a solution for many quasimomenta seems demanding, but in practice
the determination of about 10 coefficients is sufficient. An efficient numerical cal-
culation of the band structure of the hexagonal lattice has been implemented by
Alexander Ilin and will be described in detail in his thesis. All band structure calcu-
lations presented in this thesis are based on this implementation.

An exemplary band structure of the hexagonal lattice for a non-interacting parti-
cle is depicted in figure 3.4. In this example, the lattice depth V2D = 1 Erec is shallow
and the quantization axis points in the lattice plane (α = 90◦), thus the energy offset
between the A- and B-sites vanishes (∆VAB = 0). Here, the dispersion relation fea-
tures a linear relation, the so-called Dirac cones, at the K- and K’-points between the
first and second Bloch band and between the fourth and fifth Bloch band. Note that
the K- and K’-points are energetically degenerate and inhibit a topological singular-
ity with a Berry flux of π.
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The control of ∆AB is central for the Landau-Zener transfer to higher bands and
allows for lifting the degeneracy of the A- and B-sites [38, 39]. The Dirac cones can
be opened and the band gap between the different bands can be tuned continuously
(see appendix A.1 for an overview of the band structure). Furthermore, the geometry
of the Bloch bands defines the macroscopically occupied quasimomenta of the BEC.
For the relevant bands in this thesis these are the Γ-points for the first and fourth
band and the K- and K’-points in the second band.

3.2.3 Confinement of the lattice tubes

The lattice potential can be imagined as an array of tubes localized at the lattice sites.
Thereby, the shape of the tubes is characterized by the radial and the longitudinal
tube extension. Both quantities depend on the lattice depth V2D and the energy offset
∆VAB, respectively the angle α of the quantization axis. In the following the radial
and the longitudinal confinement of the hexagonal lattice are presented.

The radial confinement for the central tubes of the hexagonal lattice is given by
the following analytic expression

ω⊥A,B(V2D, α) =
3π

λL

√
V2D

mRb

(
2∓ 3(−1)FmFη(λL) cos(α)

)
. (3.26)

The confinement scales with
√

V2D and depends on α. In figure 3.5 (a) the radial
confinement is plotted for the realizable parameter range of the hexagonal lattice.
With the current setup it reaches up to∼50 kHz for

√
V2D = 20 Erec.A rapid tilt of the

quantization axis changes significantly the radial confinement, e.g. from 33.3 kHz for
α = 0◦ to 26.7 kHz for α = 106◦ at fixed

√
V2D = 8 Erec.

In contrast, in direction of the tubes, the longitudinal confinement is orders of
magnitude lower (at 8 Erec about 75 Hz), thus ωz � ω⊥A,B . The numerical calcula-
tions show only a weak influence of α as depicted in figure 3.5 (b) for α =0°, 90° and
180°. Neglecting the dependency of the energy offset an analytic expression for the
longitudinal confinement of the hexagonal lattice yields

ωz = 2

√
6V2DErec

w2
LmRb

. (3.27)

The overall harmonic confinement including the confinement of the dipole trap is
given by

ωtotz =
√

ω2
DTz

+ ωLattz
2. (3.28)

The longitudinal confinement is straightforward to measure by exciting dipole
oscillations along the z-direction. Therefore, we have ramped up the hexagonal lat-
tice in 100 ms and excited center of mass oscillations for the ensemble of lattice tubes
by applying a magnetic field gradient for 1 ms. From absorption images the center-
of-mass position of the atomic cloud is extracted and fitted with an exponentially
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FIGURE 3.5: Radial and longitudinal confinement in the honeycomb lattice. (a) Radial
confinement of a central lattice site as a function of lattice depth V2D and quantization axis
angle α. Vertical dotted lines mark V2D = 8 Erec and 16 Erec, which are relevant in chapter
5. (b) Longitudinal confinement along the z-direction as a function of lattice depth V2D
and quantization axis angles α. The confinement for α =0°, 90° and 180° is obtained
by numerical calculations for the central lattice tube (solid lines). This is compared to a
measurement of dipole oscillations for α =0° and 90° (blue and green circles) excited along
the tube direction (z-direction) by a magnetic field gradient. The inset depicts exemplarily
the center of mass position of the atomic cloud for different holding times at V2D = 4 Erec.
The fit with an exponentially damped sine yields a frequency of 55.7(3)Hz. The errors of
the fits are typically smaller than the data points.

damped sine as illustrated in the inset of figure 3.5 (b). These measurements are re-
peated for different V2D and α. The obtained oscillation frequencies are depicted in
figure 3.5 (b) and show a good agreement with the numerically calculated longitu-
dinal confinement for the central tube. Note that the case α = 180◦ is equivalent to
α = 0◦ as always the deeper AB-lattice site is populated.

To conclude, the confinement of the lattice tubes changes over a large range in
dependency of α and V2D. A rapid modification of these parameters with a fast
lattice ramp or a tilt of the quantization axis might thus excite dipole or breathing
modes in the lattice as for example observed by Moritz et al. [98].

3.3 Detection methods

A BEC is typically detected after free ballistic expansion under gravity (∼38 ms at
this experiment) by shining a collimated resonant light beam onto the atoms. The
resulting absorption profile is imaged by an objective (here with a magnification
∼ 3) and a CCD camera. Similar detection methods can also be applied to opti-
cal lattices where one differentiates between two methods: time-of-flight (TOF) and
band mapping (BM). The former reveals the quasimomentum distribution while the
latter gives access to the momentum distribution [21]. At the experiment we have
two imaging directions available: one in the lattice plane (x-y-plane) and one in the
tube plane (y-z plane) of the 2D-hexagonal lattice (cf. section 1.1).
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FIGURE 3.6: Time-of-flight (TOF). Absorption images of a BEC in the 2D-hexagonal optical
lattice after a sudden release from the optical potentials and free-ballistic expansion of
35 ms. (a) TOF image of a shallow lattice V2D = 3 Erec. The higher order Bragg peaks are
clearly visible, indicating phase coherence and thus a large superfluid fraction. (b) TOF
image of a deep lattice V2D = 8 Erec after 2 ms holding time. Bragg peaks are not visible
indicating the absence of a global phase coherence in the system. The FWHM of Gaussian
fits to the profiles yield 1.9 in units of the reciprocal lattice vector b1.

3.3.1 Time-of-flight

A time-of-flight measurement requires a sudden release from the confining poten-
tials i.e. the dipole trap and the lattice followed by a subsequent ballistic expansion.
After the release the matter-waves located at the different lattice sites expand and
interfere. The expansion of the matter-waves results in a characteristic regular in-
terference pattern when the spatial phase coherence is large compared to the lattice
constant. Ideally assuming an infinitely long time-of-flight the inference pattern cor-
responds to the in-situ momentum distribution.

An exemplary TOF image is depicted in figure 3.6 (a) of the shallow 2D-hexagonal
optical lattice V2D = 3 Erec. Here, the interference peaks, also called Bragg peaks or
coherence peaks are located at quasimomenta, which are linear combinations of the
reciprocal lattice vectors. However, momentum space is only entered in the far-field,
which here is not reached for a finite time-of-flight expansion of∼38 ms. This aspect
and finite size effects such as the harmonic trap, resolution and interactions can sig-
nificantly alter the measured distribution [99] e.g. broadening of the Bragg peaks.
These effects can be accounted for in ab-initio Quantum Monte Carlo simulations,
which can be used to obtain the temperature in the lattice [100]. Experiments di-
rectly measuring in the far-field are very rare as for example the metastable Helium
experiment in Orsay [101].

The Bragg peaks begin to blur in deeper lattices. They vanish completely for
shorter coherence lengths (see figure 3.6 (b)). These effects are typically captured by
the visibility which is defined as

V =
nTOF(kmax)− nTOF(kmin)

nTOF(kmax) + nTOF(kmin)
(3.29)

where nTOF is the density distribution around the maximally occupied momenta
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and the minimally occupied momenta located at the same radius from the center
of the image. This formulation cancels the envelope of the Wannier function [99].
An example for evaluation of the visibility is discussed in appendix C.2. Further
observables can be obtained by bimodal fits to the Bragg peaks in order to estimate
the superfluid fraction or by evaluating the optical density.

3.3.2 Band mapping

Band mapping is the adiabatic ramping down of the lattice potential followed by
ballistic expansion. With this method the band population and the quasimomentum
q can be mapped to the respective Brillouin zones. Figure 3.7 (a) illustrates the tech-
nique. The first and second Bloch band are depicted in the reduced zone scheme
with occupied quasimomenta at Γ- and at K-points. The adiabatic ramping down
of the lattice potential maps the quasimomentum q onto the harmonic confinement
of the dipole trap, which approximately corresponds to the free particle momentum
p. The different momentum intervals can be associated with the nth Brillouin zone
of the lattice. The quasimomenta are preserved when the ramp time of the lattice
potential is slow compared to the band gap ∆/h̄. This condition becomes increas-
ingly difficult to fulfill in very shallow lattices e.g. at the edge of the Brillouin zone
at the K- and K’-points, where the band gap is small or even closed (depending on
∆VAB). Furthermore, the ramp down should be fast compared to the redistribution
of q within the band and fast with respect to dipole oscillations (< 5 ms). The ramp
down time thus depends on the starting lattice depth i.e. in deep lattices typically an
exponential ramp fulfills the adiabatic condition. In figure 3.7 (b) a realization of a
linear and exponential ramp of 2 ms are compared. The band gaps between the first
and second Bloch band ∆ΓΓ and ∆ΓK first decrease linearly, while they increase for
very shallow lattices. Experimentally the exponential ramp showed a better map-
ping to the different Brillouin zones depicted in figure 3.7 (c). An exemplary band
mapping image is shown in figure 3.7 (d). The atoms were loaded in a deep lattice
of V2D = 8 Erec, where we observe a broadening of the distribution at the Γ-point
and a significant spread of the population in the Brillouin zone. The FWHM is half
the length of a reciprocal lattice vector. Band mapping images with population in
higher bands are presented in chapter 4 and 5.

3.4 Upgrade of the intensity and phase control

For both detection methods the new intensity control proved valuable. Its high band
width ensures that not only in shallow but also in deep lattices a fast exponential
ramp for band mapping can be performed. Here, the most critical point is the transi-
tion from holding the lattice depth to the steep exponential ramp of 2 ms. The slopes
for all three lattice beams must be equal in shape and begin simultaneously in or-
der to image a symmetrical Brillouin zone. In this regard also for TOF imaging the
simultaneous switch off of all trapping potentials (∼ 1 µs) is crucially important.



40 Chapter 3. The optical honeycomb lattice

FIGURE 3.7: Band mapping. (a) Adiabatic ramping down of the lattice potential maps
the quasimomentum q onto the free particle momentum p in the nth Brillouin zone of
the lattice. The first and second Bloch band are depicted in the reduced zone scheme with
occupied quasimomenta at Γ and at K-points, which are preserved during ramping down.
(b) Band gap ∆ of the 2D-hexagonal lattice for a linear (left) and exponential ramp down
(right) of the lattice depth V2D in 2 ms. ∆ is depicted between the first and second Bloch
band from Γ → Γ (violet) and Γ → K (red) for α = 106◦ and |2,−2〉. (c) The first five
Brillouin zones of the honeycomb lattice with the characteristic symmetry points: Γ, M,
K and K’. (d) Absorption image after band mapping for a lattice depth V2D = 8 Erec and
holding time of 2 ms with horizontal and vertical profiles. The FWHM of Gaussian fits to
the profiles yield 0.5 in units of the reciprocal lattice vector b1.

3.4.1 Optical setup of the honeycomb lattice

The light source of the lattice setup is a titanium-sapphire laser (Ti:Sa) which is
pumped with an 18 W diode laser at 524 nm. The Ti:Sa is a tunable ring laser at
830 nm with an output power of 4.3 W. The laser itself contains a sophisticated lock
technique to ensure single mode operation at a bandwidth smaller than 80 kHz. It
contains thick and thin etalons and a reference cavity which if adjusted properly as-
sure a stable wavelength. The downside of the etalon lock technique are small inten-
sity modulations in our case at 91 kHz and its higher harmonics. The development
of a high bandwidth intensity control has the potential to reduce these modulations.

The Ti:Sa beam is split into three laser beams (see figure 3.8 for the lattice setup).
Each one passes through two acousto-optical modulators (AOM). One is dedicated
for shaking the lattice by frequency modulation (e.g. [102]) and one for the intensity
control. After the AOMs, the beam is coupled into a single mode fiber of about
30 m length. At its end a circular Gaussian beam with a focus at 60 cm to 80 cm and
waist of 115 µm is created. Before it is propagated to the experiment, a small fraction
is used for a photodiode for the intensity control. We reach maximum intensities
on the order of 300 mW directly in front of the science chamber. In practice this
corresponds to lattice depths in the range of V2D = 20 Erec though for an ideal lattice
setup higher lattice depths should be achieved with the available laser power.



3.4. Upgrade of the intensity and phase control 41

Laser
TiSa

830nm

two more 
la�ice beams

AOM
AOM

BEC

VVA
& 

Rf-switch

Bias-T

Amplifier

dAOM

A�enuator

Amplifier
Amplifier

PI-controller

Ramp generator

La�ice modulation

Mixer
RL

I

Rf-Source
@160 MHz

Photodiode
Phase lock

Intensity control 

Adjustable
amplifierInput stage

FIGURE 3.8: Schematic of the intensity control and phase lock of the lattice laser system.
After the TiSa the beam is split into three parts for the lattice beams. Each arm contains
two AOMs, one for the intensity control and one for the phase lock. The newly developed
intensity control works with a voltage variable attenuator (VVA) instead of a mixer for
compatibility with high-bandwidth PI-controllers. The phase lock stabilizes the phase up
to the end of the fibertip. It has been tested with a digital AOM driver (dAOM).

3.4.2 Intensity control

A typical experimental sequence for the lattice intensity control first begins with an
exponential ramp of about 100 ms to a certain intensity level, followed by a vari-
able hold time for an experiment in the lattice and at the end a sudden switch-off
to perform time-of-flight imaging or a fast exponential ramp down of ∼ 1 ms to
perform band mapping. In addition, lattice calibration via amplitude modulation
requires an modulation of up to ∼ 50 kHz. Last but not least, the intensity noise of
the light should be reduced significantly. At the beginning of this PhD project the
intensity control built originally at the experiment was not able to provide all these
features accurately enough for measurements in deep lattices with high laser power.
Therefore, the author set in cooperation with J. Seeger to develop three independent
intensity controls.

The electronic part of the intensity control has been designed as follows. The
main part constitutes the PI(D)-controller for which we choose a commercial solu-
tion1. This in turn required electronic development on our side in order to integrate
all requirements for an intensity control:

• a high-bandwidth input stage in front of the PI-controller. It contains an in-
put port for the photodiode2 with a high precision potentiometer adjusting the

1Newport LB1005 Servo Controller
2Thorlabs PDA155
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gain up to a factor of 10. This feature is especially valuable for the lattice cal-
ibration. In addition, it contains monitor ports for each voltage signal and a
reference voltage stage, where the lattice modulation is added.

• a voltage-variable attenuator (VVA) board. It contains a VVA3 replacing the
mixer4 used in our group. The main reason is that to our knowledge no com-
mercially available PI-controller could drive the current-driven mixer. In ad-
dition, the VVA features a high bandwidth, though in the implemented sur-
rounding circuits of the VVA a significant phase lag is accumulated, which
limits the bandwidth of the intensity control to several hundred kilohertz. The
board also contains an rf-switch5 (< 1 µs) for an immediate and simultaneous
switch off of all three laser beams, which is important to obtain a symmetric
ordering of the Bragg peaks. The output rf-signal of the VVA unit is amplified6

by 45 dB before being send to the AOM in the lattice setup.

• a reference voltage programming unit. To drive three independent lattice ramps
which are phase locked to each other we implemented a commercial arbitrary
waveform generator7. It is programmed over a GPIB-port via a Rasperry-PI set
up as a server for receiving commands of the LabView experimental control.

The most important characteristics of the intensity control are summarized in fig-
ure 3.9 (a)-(c). To summarize an intensity control with a bandwidth of∼ 150 kHz has
been setup, which fulfills all the requirements stated above. The low frequency noise
is clearly reduced as well as the intensity modulations of the lattice laser at 91 kHz
which are damped by 20 dB. We have ensured that the lifetimes are similar to the
previously used intensity control. Room for optimization is left for the implementa-
tion of a feed forward control in order to perform Kapitza-Dirac [103] and in order
to use a sequence of short light pulses for loading the lattice [104]. Recently also a
new design of a PID controller has been started in our group with an integrated the
input stage with support from the author.

3.4.3 Phase noise

As the condensate lifetime in higher bands is short compared to other experiments
[33], we considered phase noise as a possible limiting factor for the lifetime. In a
first step we replaced the rf-sources8 of the AOMs, which increased the duration of
the visibility in the lowest band. In a second step we characterized the phase noise
present at the lattice setup. We measured the relative phase noise in a Mach-Zehnder
interferometer and compared it to the lattice setup. The setup of the Mach-Zehnder

3Analog HMC346AMS8GE
4Mini-circuits ZAD-3
5Mini-circuits RSW-2-25PA+
6Mini-circuits ZHL-5W-2G+
7TTI TGA12104
8Rhode & Schwarz: SMA and SMB
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FIGURE 3.9: Characteristics of the intensity control and phase noise. (a) Photodiode volt-
age versus the control voltage at the VVA. The behavior can be linearized in a future devel-
opment of the circuit. (b) Bode diagram of the control loop without the PI-controller. The
strong resonance at 500 kHz imposes an upper limit on the bandwidth. (c) Noise density
of the intensity control. The low frequency noise is clearly reduced as well as the intensity
modulations of the lattice laser at 91 kHz which are damped by 20 dB. (d) Phase noise of
different test setups for comparison with the lattice setup. The phase noise in the fibers of
the lattice beams is significantly higher than in a separate Mach-Zehnder inferometer.
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interferometer contains two arms. In one arm the frequency is shifted by 80 MHz
with an AOM. The light of the two arms is superimposed via a beam splitter onto
a fast low-noise high-pass photodiode9. Its signal is amplified10 and connected to
an spectrum analyzer11 to measure the relative phase noise between the different
arms. In figure 3.9 (d) the results are depicted. For reference an electronic rf-device
has been measured (blue curve). The Mach-Zehnder interferometer only shows a
slightly higher phase noise (red curve).

The measurement of the relative phase noise of the lattice beams is significantly
higher, which is measured as follows. The light travels trough an approximately
30 m long fiber. At the end of the fiber tip 4 % are reflected back and superimposed
at the photodiode (compare figure 3.8 for a sketch of the setup). Especially for lower
frequencies below ∼ 400 Hz the phase noise in the fibers is about 20 dB higher than
in the small Mach-Zehnder setup consisting only of few mirrors. Furthermore, the
phase noise between two of the long lattice fibers is still on a considerable level
(violet curve). These measurements suggest that a reduction of the phase noise is
desirable.

To do so, we have tested a phase lock system developed in our group. It is based
on a digital AOM driver with real time units. For a short general introduction see the
PhD theses of A. Kerkmann [105] and D. Vogel [106]. The electronic tests of the phase
lock implemented in our setup have been successful. However, in the experimental
cycle two main issues need to be solved. For very small lattice depths the photodiode
signal is too small to determine the phase of the laser beams. This requires switching
on the phase lock at intermediate lattice depths, which causes a sudden phase shift
with oscillations around the setpoint. The mixer used for measuring the phase can
determine the phase up to π and not 2π. Due to the complexity of a phase lock,
which is required for at least two lattice beams, it is best to avoid it and optimize the
passive phase stability of each lattice beam as good as possible.

3.5 Conclusion and outlook

In this chapter, important characteristics of the central optical potentials, the dipole
trap and the optical honeycomb lattice, have been introduced. The tunability of the
AB-energy offset is emphasized, which is central for the transfer to higher Bloch
bands. In addition, the radial and the longitudinal confinement of the lattice sites
have been calculated as they are relevant in deep lattices. The longitudinal har-
monic confinement in the 2D-honeycomb lattice has also been measured resolv-
ing the influence of the AB-potential offset. In order to characterize superfluids in
higher bands the detection methods, time-of-flight and band mapping, have been
discussed.

9Hamamatsu G8370-03 with a Bias-tee ZFI3T-6GW
10Mini-circuits ZFL-500
11Rhode & Schwarz: FSV7
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Furthermore, a new intensity control for the three lattice beams with a band-
width of ∼ 150 kHz has been presented. It consists of voltage-variable attenua-
tors (VVA) in combination with analogue PIDs. The implemented precision gain
has paved the way for engineering the band structure via intensity adjustments of
the lattice beams. Detection with time-of-flight and band mapping measurements
has been improved by the rapid switching and ramping capabilities.

Finally the phase noise of the three lattice beams has been characterized as it
can be one of the limitations for the lifetime of superfluids in higher bands. On
the one hand the measurements indicate that a reduction is desirable, which could
be already achieved by relocating the lattice setup to shorten the optical fiber (3 m
instead of 30 m). An active phase stabilization requires further development effort.
On the other hand similar three beam lattice setups report no significant disturbance
by phase noise [107, 108]. To clarify direct measurements with a quantum gas are
planned. First, a measurement of the atom loss from the ground band in dependence
of the lattice depth and the holding time gives access to heating rates following the
approach for a low-noise optical lattice [109]. Second, translations of the lattice po-
tential are induced by phase noise. They can be measured with single-site resolution
by implementing the recently published quantum gas magnifier in our setup [110].
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Chapter 4

Transfer to higher Bloch bands

Preparing condensates in higher Bloch bands promises vast possibilities to realize
exotic states. This requires a reliable preparation of the system. As bosons in optical
lattices are typically prepared in the ground state, the challenge is to implement an
optimal transfer method. In this chapter we present the basic working principle of
the transfer and discuss a selection of methods, which strongly differ in transfer effi-
ciency and experimental practicability to prepare metastable condensates in higher
bands. Our method of choice is the rotation of the quantization axis corresponding to
a rapid quench of the AB-offset of the hexagonal lattice. We discuss its experimental
implementation, the experimental sequence and the measured transfer efficiency to
higher Bloch bands. In addition, we perform a coherent transfer to the second Bloch
band forming a superposition state between the first and the second band. For the
condensation dynamics and the lifetime of metastable states in higher Bloch bands
we refer the reader to chapter 5. The experimental data presented in this chapter has
been measured with main contributions by the author in collaboration with A. Ilin
and J. Seeger. The data evaluation presented in this chapter has been conducted by
the author.

4.1 Working principle

Typically BECs are prepared in a harmonic trap from which they are loaded into
the ground state of an optical lattice assuming adiabacity. In the superfluid phase
the momentum spread of the condensate is small and its phase is uniform across
the occupied lattice sites. The ground state in the first Bloch band of the hexagonal
lattice has a minimum at the Γ-point from which various transfer paths to higher
Bloch bands are possible. The state in the higher Bloch bands is different from the
ground state in terms of tunneling, interaction and the form of the Bloch state itself.
The final characteristics of the prepared state can widely be modified by lattice depth
and energy offset. Before discussing this it is of course first desirable to optimize the
transfer such that the population in the excited Bloch band is maximized.

A precondition is that the overlap of the initial state with the final state is nonzero.
This on the one hand reduces the available parameter space and on the other hand
sets an upper limit for the maximum possible transfer efficiency. Further, the transfer
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FIGURE 4.1: Transfer paths to higher Bloch bands in an optical lattice. The band structure
is sketched up to the fourth Bloch band of the hexagonal lattice at a lattice depth V2D =
1 Erec with an AB-offset ∆VAB = 1 Erec. Initially the condensate is prepared at the Γ-point
at quasimomentum q = 0. Via a resonant transition (a) the minimum of the fourth band
can be populated. In order to populate the minimum of the second band (K-points, q 6= 0)
different transfer paths (b), (c) or (d) are possible involving both an energy and momentum
transfer.

efficiency depends on the chosen experimental transfer method either transferring
energy or energy and momentum. Some possible methods are amplitude modula-
tion, lattice acceleration or Raman transitions.

Therefore, different transfer paths to higher Bloch bands are illustrated in figure
4.1. The simplest transfer is a resonant transition without any momentum transfer.
In figure 4.1 this corresponds to path (a). The transfer occurs to the minimum of the
fourth band located as well at the Γ-point. In contrast in path (b) the transfer occurs
to the second Bloch band where the atomic ensemble is transferred to the maximum
located at the Γ-point. Thus, an intriguing physical question is how the process of
relaxation to the energetic minimum of the second band at the K-points occurs and
what the consequences are for the lifetime compared to transition (a).

In (c) first the momentum and then the energy are transferred, which can be
realized by a combination of transfer methods. In (d) both occurs simultaneously.
For example, this transfer can be realized by Raman transitions, where the energy
dissipation from path (b) is circumvented. Thus, it is interesting to compare different
transfer methods. In chapter 5 implementations of path (a) and (b) are compared also
with respect to the lifetime of the prepared states. In the following we focus on the
transfer efficiency of several implemented transfer methods.
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4.2 Transfer methods

4.2.1 Resonant transitions

Already early with the emergence of optical lattices various methods have been used
experimentally to populate higher bands [111]. Since then further methods have
been developed not always with the aim to populate higher bands but instead of-
ten being a tool to perform lattice spectroscopy or analyze prepared states. In the
following we discuss a selection of resonant transfer methods we have investigated
experimentally.

Amplitude modulation

Amplitude modulation relies on sinusoidal periodic intensity modulation [112] con-
serving the quasimomentum. It can be used as a spectroscopy method for lattice cal-
ibration in 1D, 2D and 3D optical lattices. Two different regimes are distinguished.
Parametric heating relies on small modulation amplitudes on the order of 2 % of the
lattice depth and long modulation times of ∼80 ms. In contrast, strong modulations
of ∼ 20 % of the lattice depth and short durations < 5 ms permit a transfer to higher
Bands limiting the temperature increase. Experimentally we have implemented the
latter case in order to populate higher bands for the 2D-hexagonal lattice.

In figure 4.2 two exemplary absorption images after band mapping are depicted.
Part (a) shows the transfer of a small fraction (∼ 10 %) to the second band in a shal-
low lattice V2D = 1Erec . The population of the second band is localized at the Γ-point
at the maximum of the second band (transfer from Γ → Γ). After the short modu-
lation of 1 ms three features are observed. First, the population in the second band
decays rapidly < 1 ms to the ground band. Second, during the decay oscillations on
the Bragg-peaks are present indicating a superposition state between the first and
second Bloch band as described in section 4.3.5. Third, during the decay the atomic
distribution remains at the Γ-point and does not move towards the K-points. An
energy redistribution within the second band does not occur on this time scale (cf.
chapter 5).

For comparison figure 4.2 (b) illustrates a different regime at V2D = 3Erecwith a
transfer to the fifth band. In contrast to figure 4.2 (a) the atomic density is homo-
geneously distributed over the respective Brillouin zones. Especially in the ground
band this indicates strong heating processes. Here, different parameter regimes are
required.

In conclusion, it is possible to populate higher Bloch bands with amplitude mod-
ulation but the method requires a careful parameter choice. As the transfer efficiency
to higher bands is small, different transfer methods are suited better.
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FIGURE 4.2: Transfer to higher Bloch bands in the 2D-hexagonal lattice via amplitude
modulation. (a) Band mapping image at V2D = 1Erec with a modulation of 1 ms. The
first and second Brillouin zones are indicated in grey. A small fraction is transferred to
the Γ-points in the second Bloch band in the shallow lattice. (b) Band mapping image of
the 2D-hexagonal lattice at V2D = 3Erec with a modulation of 1 ms, where the 5th band is
populated via amplitude modulation.

RF- and MW-transitions

Two further implemented methods are radiofrequency (RF) and microwave tran-
sitions (MW), which both make use of the internal atomic degree of freedom and
impart a negligible momentum transfer. The RF-transitions allow for the switching
of the mF-sublevels, while the MW-transitions allow for switching of the F = 1, 2
hyperfine manifold (see section 2.1.2). A transfer to higher bands is possible due to
the spin-dependency of the hexagonal lattice (compare section 3.2.1). Here, the RF-
or MW-frequency is chosen such that the transfer occurs to a higher band in a dif-
ferent atomic state. The additional tuning of the energy offset ∆VAB allows for the
realization of versatile band configurations.

For deep enough lattices meaning well separated Bloch bands the transitions can
be treated as a two level Rabi problem whose transition probability is strongly gov-
erned by the spatial overlap of the initial and final Bloch band. Seminal experiments
have been performed in the honeycomb lattice with a superimposed 1D-lattice by
M. Weinberg et al. [39, 46]. A fraction of 0.6 could be transferred to the second band.

During this PhD-project we have implemented RF-transitions to higher bands
in the 2D-honeycomb lattice. We have used this method for preparing condensates
at nonzero quasimomentum in the second band. This transfer method can be used
for a direct comparison to the typically used transfer method, the rotation of the
quantization axis. A direct comparison of the resulting condensation dynamics is
presented in section C.1.

However, all the presented methods require a precise lattice calibration in order
to resonantly transfer to higher bands. In deep lattices also interaction shifts should
be considered. Thus, the in the following presented methods are more suited when
large parameter spaces are explored.
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4.2.2 Landau-Zener type transitions

The Landau-Zener model describes a quantum mechanical transition at an avoided
crossing. In the simplest case it is analytically solvable for two level systems (Lan-
dau, Zener, Stückelberg 1932) but can be also extended to multilevel systems or to
several subsequent transitions with a phase accumulated in between realizing Stück-
elberg interferometry. The two level system is described by a time dependent Hamil-
tonian. If for t→ −∞ the system is prepared in one adiabatic state then it has a finite
probability to populate the other adiabatic state for t→ ∞. The probability for such
a diabatic transition is given by

PLD = exp(−π/γ) (4.1)

with γ =
4h̄β

∆2 where β is the rate of change of energy levels in time and ∆ denotes
the coupling between the states. In the following we discuss two methods to realize
this kind of transfer.

In the last decade the experimental advances in preparing condensates in higher
bands have mainly been driven by the Hemmerich group in a bipartite square lattice
[31–33, 35, 36, 113]. The lattice setup features an inferometer like setup, which allows
for controlling the phase between the two lattice arms. This allows for changing the
AB-energy offset on an extremely short time scale of ∼100 µs resulting in a Landau-
Zener transfer. With this technique a good transfer efficiency (∼ 60 % to 90 %) can
be realized but it is not directly transferable to our three beam running-wave lattice
setup of the hexagonal lattice. However, the rotation of the quantization-axis or the
a rotation of the polarization of the lattice beams implement physically similarly a
tuneable AB-energy offset. Its working principle for the hexagonal lattice is depicted
in figure 4.3.

Also possible is the acceleration of lattices in order to exert a force onto the BEC.
If the forcing is strong enough a transfer to higher bands is possible in a Landau-
Zener type process. In seminal experiments this has been investigated in a 1D opti-
cal lattice [114–116]. Browaeys et al. realized transitions up to the third band [29].
Worthwhile mentioning is also Stückelberg interferometry [117]. In brief, it consists
of two partical Landau-Zener transitions. A part of the BEC remains in the first band
while another part takes the other interferometer path in the second band. After a
second Landau-Zener transition, a Stückelberg interference pattern can be observed
allowing to determine the band gap, which can then be used to calibrate precisely
the lattice depth. In a third set of exemplary experiments, here in a hexagonal lat-
tice, the lattice acceleration was chosen extremely large essentially rendering the two
lowest bands degenerate. These strong dynamics can be described in the context of
Wilson lines [118].

Inspired by these publications we have also begun first measurements accelerat-
ing the lattice in order to transfer atoms to the second band. Problematic here is that
the original aim of preparing long lived metastable condensates in the second band
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FIGURE 4.3: Principle of the Landau-Zener transfer to higher Bloch bands exemplarily
sketched for the bipartite hexagonal lattice at 3 Erec. The first (blue) and second (red) Bloch
band are depicted with their respective bandwidth from the Γ (continues line) to K-points
(dashed line). ∆ denotes the minimal bandgap between the minimum of the first band
(Γ-point) and the maximum of the second band (Γ-point). The dashed arrow illustrates a
diabatic transfer from Γ → Γ. For vanishing ∆VAB the bandgap at the K-points is closed
allowing direct transfer to the second band.

is in conflict with the large momentum, which has been transferred to the atoms.
However, other interesting effects could be observed, which will be discussed in the
PhD thesis of A. Ilin.

4.3 Landau-Zener transfer in the spin-dependent bipartite hon-
eycomb lattice

4.3.1 Rotation of the quantization axis

The rotation of the quantization axis provides the possibility to tune the energy offset
∆VAB in a time-dependent manner, thus realizing the time-dependent Hamiltonian
for the Landau-Zener transfer to higher Bloch bands. As depicted in figure 4.4 (a) the
system is prepared in the initial state strongly localized on the deeper A-sublattice
sites. According to the Landau-Zener model a fraction of the population is trans-
ferred to the second Bloch band via a rapid rotation of the quantization axis of more
than α = 90◦ in order to pass over the avoided crossing (see figure 4.4 (c)). Different
final states can be engineered depending on the angle α. For instance, the sketched
final state here in between the two band crossings (grey circle) shows an s-wave like
shape and is as the initial state localized on the A-site (see figure 4.4 (b)). For deep
lattices and when further increasing α subsequent Landau-Zener tunneling to higher
bands can occur. The probability for such a diabatic transition can be estimated with
eq. (4.1). Thus, the faster the energy offset ∆VAB respectively α is tuned, the higher
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FIGURE 4.4: Transfer to higher Bloch bands. (a), (b) Sketch of the lattice potential with the
deep A-sites (blue) and lower B-sites (orange). A cut along the two sites shows a double
well with the first (blue) and second Bloch band (red) for the initial state for α = 0° and
for an exemplary final state α = 106°. (c) Sketch of the Landau-Zener transfer for a lattice
depth of 8 Erec and |2,−2〉 from the initial state to the final state in the second band. Inset:
influence of the quantization axis angle α on the AB-energy offset normalized to the lattice
depth V2D.

is the transition probability. This circumstance can be further exploited by choosing
the energy offset as large as possible: ∆VAB is twice as large when using mF = ±2
instead of mF = ±1 as shown in the inset of figure 4.4.

4.3.2 Experimental implementation

Initially a quantization axis BQ = 2.2 G is generated by a pair of Helmholtz coils
(0.66 G/A) and points in z-direction, which is orthogonal to the lattice plane (cf.
section 2.1). Further available pairs of coils in x- and y-direction allow for rotations
with arbitrary orientations [47]. We implemented a rotation around the y-axis for
which the coil currents follow the form of

Iz(t) = Iz(t = 0) cos(ωt), Ix(t) ∝ sin(ωt) (4.2)

as depicted in figure 4.5 (a). The current through both coils is driven by precise
bipolar power supplies1. The precision on the adjustment of α can be estimated to

1High-Finesse BCS 5/12. It contains internal capacitors which connected with a coil function as
an RLC. Too short switching times can drive the circuit into resonance. At the experiment the power
supplies are voltage driven by an arbitrary waveform generator (TTI 1244), which is programmed by
a RaspberryPi-Server connected to the experimental control.
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FIGURE 4.5: Rotation of the quantization axis. (a) Currents through the two pairs of
Helmholtz coils for a rotation quantization field to α = 106° (blue z-direction, violet x-
direction). (b) Influence of α onto the band gap between the first and seventh band at
V2D = 2.9 Erec (blue line). The band gap is also plotted for V2D = 3.0 Erec (blue dotted) and
slightly lower V2D = 2.8 Erec (blue dashed). Via parametric heating the influence of α is
measured. The parametric resonances are depicted for a very shallow dipole trap (green)
and for a 5% deeper trap shifting some of the resonances (violet). (c) Spin-flips from the
initial state |1,−1〉 to the other two mF-components during a transfer to the second band.
Absorption image after band mapping and Stern-Gerlach separation (BQ = 0.33 G and
τrot = 30 µs).

α ± 2° from the coil characteristics [47] and from assuming a large magnetic field
deviation of 100 mG.

We have verified experimentally the influence of α on the band structure with
two methods: (i) via parametric heating and (ii) via the Gutzwiller-mean field ap-
proximation. (i) The band gap between the first and seventh band in dependence
of α is measured via parametric heating. We chose this transition due to its strong
resonances at a lattice depth of 2.9 Erec . The measured resonances (green triangles)
resolve the dependency on α as depicted in figure 4.5 (b). However, in vicinity of
α = 90◦ the measured resonances are shifted upwards by approximately 200 Hz
compared to the single-particle calculation (blue line). This discrepancy increases
with a higher dipole trap depth (∼5 %) suggesting interaction effects like mean-field
shifts as possible explanations. This effect should be investigated in future studies
as we also observe a dependence of the transfer efficiency on the dipole trap depth.
(ii) The visibility of first-order Bragg peaks in dependence of V2D and ∆VAB has been
compared with a Gutzwiller mean-field approximation. For further information we
refer the reader to the master’s thesis of M. Neundorf [119].

Rotation speed

In terms of maximum transfer efficiency it is desirable to perform the rotation of
the quantization field as fast as possible. However, the rotation frequency ωrot has
a twofold limit: (1) the inductance of the used coils and (2) the preservation of a
spin-polarized BEC.

(1) The switching time of the coils can be estimated by assuming an RL-circuit
τ = R/L = 110 µH/0.5 Ω = 220 µs. This time is close to the realized switching time
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at the experiment. However note that the bipolar power supplies contain internal
capacitors, which effectively form an RLC-circuit. On the one hand this can further
reduce the switching time. On the other hand the resonance frequency of the circuit
can be excited ([87]). In order to avoid overshooting of the current and thus pointing
instabilities of the magnetic field BQ we have typically operated with rotation times
> 200 µs.

(2) Despite the technical limitations the rotation frequency ωrot cannot be in-
creased arbitrarily. To ensure that the spin-polarized state adiabatically follows the
rotation of the quantization axis, the Lamor precission ΩL = gFµBB

h̄ = 2π 700 kHz/G ·
|B| should be much larger than the rotation frequency ωrot. Complete rotations
of BQ = 2.2 G around 360° in 500 µs guarantee a spin-polarized BEC, which we
have verified with imaging after TOF and Stern-Gerlach separation. Faster rota-
tion times maintaining the spin-polarization are possible (< 500 µs) when reducing
the strength of BQ in combination with smaller rotation angles. In contrast figure
4.5 (c) illustrates an example of a very rapid rotation, where spin-flips to other mF-
components occur.

Experimental artifacts due to the rotation of BQ remain. For example center-of-
mass movements of the BEC are most likely induced by magnetic field gradients. A
fast oscillation as large as the radius of the BEC is observed within the first 2 ms after
the rotation.

4.3.3 Experimental sequence

The initial state of the system significantly influences the transfer efficiency and con-
densate fraction of the superfluids in higher bands. In general our measurements
suggest that it is especially sensitive to quantities like atom number, temperature
or interaction. In the following we give a short description of the experimental
sequence and focus especially on two important preparation steps, which are the
generation of the BEC in the dipole trap and the subsequent lattice ramp.

We start the experimental procedure by preparing a spin-polarized 87Rb-BEC
in the state |F= 2, mF =−2〉 in the optical dipole trap with trapping frequencies of
ωx,y,z≈ 2π× (19, 45, 19)Hz and atom numbers of∼ 1.3× 106. Subsequently the first
band of the optical honeycomb lattice is loaded via an exponential intensity ramp of
100 ms. After a short waiting time of typically 2 ms the energy offset between the two
sublattices is tuned via rapid rotation of the quantization axis in 0.5 ms. To observe
the emergence of coherence in higher bands we let the system evolve. However, for
measuring the transfer efficiency we simply wait for 0.5 ms and probe the state via
band mapping (see section 3.3.2).

Dipole trap depth

The final dipole depth after evaporative cooling determines the temperature and
atom number of the BEC. For lower depths with weaker harmonic confinement the
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temperature and atom number decrease at the expense of a lower detection signal
but longer coherence times in higher bands. Thus, experimentally a compromise is
chosen and the trap is adjusted only very slightly above the threshold imposed by
gravity (∆ ∼ 5 mW). This tuning knob allows for adjusting the atom number be-
tween 8× 104 to 4× 105 atoms but changes at the same time coupled quantities like
temperature. Measuring directly the temperature of a BEC is complicated as there is
no discernible thermal fraction rendering impossible a bimodal fit with a Thomas-
Fermi profile and Gaussian thermal background. Yet, the temperature can be esti-
mated from the measured trapping frequencies. In the literature (see e.g. Pitaevskii,
Stringari [120]) the critical temperature for an ideal Bose gas in a harmonic trap is
given as

kBT0
c = h̄ωho

(
N

ζ(3)

)1/3

= 0.94h̄ωho N1/3 (4.3)

with ωho = (ωxωyωz)1/3. Without a discernible thermal fraction, the actual tempera-
ture is far below Tc. Assuming a remaining thermal fraction of 0.03, the temperature
will be T < 0.3 T0

c , which yields temperature values of Tc = 76 nK and T = 23 nK
for trapping frequencies of ωx,y,z = 2π × (19, 45, 19)Hz and for 3× 105 atoms. The
radius of the BEC yields rTFx,y,z = (19, 8, 19)µm using the Thomas-Fermi approxi-
mation and the chemical potential µ = 450 Hz.

Lattice ramp

Often taken for granted but not at all trivial is the circumstance that the loading of
the lattice should occur adiabatically. It has been controversially debated in the liter-
ature both theoretically also with a focus on 3D lattices including the Mott transition
[121–125] and experimentally [100, 126–128]. To verify experimentally the absence
of heating caused by the lattice ramp is a tedious work. In order to avoid excitations
and interband transitions a slow ramp time with respect to the band gap should be
chosen. This in practice means that the ramp speed can increase with increasing
lattice depth, which is often realized experimentally with an exponential ramp. The
absence of interband transitions can be verified via band mapping. A different as-
pect is adiabacity with respect to the many-body state. It is violated especially for
deep optical lattices where the tunneling time h̄/J for one atom is usually larger than
the complete lattice ramp. Here, different more complex ramp shapes improve the
adiabacity of ramps in the 3D-lattice [124]. A further point to mention is the increas-
ing harmonic confinement of the Gaussian lattice beams in deep lattices (see section
3.2.3). As F. Gerbier [122] points out it can increase the overall temperature, thus
lead to heating, analogous to compression of harmonic traps.

At our experiment we have replaced the s-shaped lattice ramp. In deep lattices
long hold times at the upper plateau of the s-ramp lead to significant heating for
the deep hexagonal lattice ( V2D > 8 Erec) rendering impossible the emergence of
coherence for the second band. The chosen exponential ramp of 100 ms duration
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FIGURE 4.6: Overlap of the initial and final state after a rotation of the quantization axis.
The overlap with the first, second and fourth Bloch band as a function of the normalized
AB-Offset ∆VAB/V2D and the lattice depth V2D is plotted. The overlap with the third band
is zero and therefore not shown.

circumvents this problem. Note that a shorter duration of the exponential ramp
times did excite transitions to higher bands.

4.3.4 Transfer efficiency with respect to AB-offset and lattice depth

Knowing the transfer efficiency of the used method is central for its characterization
as this influences the lifetime of the prepared state. The transfer method of choice,
the rotation of the quantization axis, is especially well suited to explore the trans-
fer efficiency in a large parameter space. In the following the measurement of the
transfer to higher bands is compared to the overlap of Bloch states and the transfer
probability in the Landau-Zener model.

A theoretical upper limit for the transfer is given by the overlap of the initial and
the final Bloch states defined as ∫

ψn
f (r)ψ

1
i (r)d

3r. (4.4)

The initial state for the first band is defined at k = Γ by V2D and α = 0◦ =̂∆VAB/V2D ≈
−2.1. The spatial overlap with the final state also at k = Γ is depicted in in figure 4.6
for the first, second and fourth band in dependence of V2D and ∆VAB/V2D. When
a certain threshold of V2D and the band crossings to the the second or fourth band
are crossed, the overlap yields 100 % in a large parameter region. Thus, the transfer
efficiency to higher bands should be high regarding only the spatial overlap of the
Bloch states. A transfer to the third band is not expected as the overlap is zero.

In order to include the limited rotation speed of the quantization axis the transfer
can be compared to the Landau-Zener model. We assume a diabatic transfer to the
second using eq. (4.1). Here the transition probability depends on the minimal band
gap at the band crossing from the Γ-point of the first band to the Γ-point of the sec-
ond band and the rate of change of the bandgap between the initial and final state.
First, figure 4.7 (a) shows the transition probability in dependence of V2D and the
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FIGURE 4.7: Calculated Landau-Zener transfer to the second Bloch band in the hexago-
nal lattice. (a) Diabatic transfer for varying rotation times and lattice depths V2D at fixed
∆VAB/V2D = 0.63 corresponding to α = 106◦. (b) Diabatic transfer as a function of lat-
tice depth V2D and energy offset ∆VAB for a fixed rotation time of 0.5 ms. Higher band
crossings are not considered here.

rotation time τrot for fixed ∆VAB/V2D = 0.63 (α = 106◦). For shallow lattice depths
significant transfer can only be reached for very fast rotations of ∼ 200 µs. Thus,
we can expect that with the experimentally implemented τrot = 500 µs significant
transfer occurs above V2D > 5 Erec. Second, figure 4.7 (b) shows the transfer proba-
bility for the implemented τrot in dependence of V2D and ∆VAB/V2D. In this case the
dependence on ∆VAB/V2D is negligible as the dominant factor only is the band gap
between the first and second band being small above V2D > 5 Erec at the avoided
crossing ∆VAB/V2D = 0.

For comparison the transfer efficiency is measured by the following sequence in
section 4.3.3. The parameters have been scanned from ∆V2D ≈∼ 1 Erec to ∼ 15 Erec

and from ∆VAB ≈ −0.5 to 2.2 corresponding to angles α between 80° to 180°. Af-
ter band mapping of 2 ms followed by 36 ms TOF, resonant absorption images were
taken. For the respective Brillouin zones we placed masks onto the band mapping
images as illustrated in figure 4.8. Despite the short holding time of 0.5 ms after
the rotation atoms already accumulate in a region around K-points of the second
band or around Γ-points of the fourth band. They overlap with either the third or
second Brillouin zone. Therefore the masks on the absorption images are extended
compared to the definition of Brillouin zones. We then evaluate the relative atom
number and obtain transfer efficiencies for the first four Bloch bands as depicted in
figure 4.8. Evidently the transfer to the second band is limited by the band crossings
to the band itself and to the fourth band. In agreement with the Landau-Zener calcu-
lation transfer occurs for V2D ' 5 Erec. A transfer efficiency of about 65% is reached.
Similar observations hold for the fourth band, which is populated via two subse-
quent Landau-Zener transfers. The maxium achieved transfer rate yields ≈ 35 %.
The transfer to the third band is expected to be zero. On the one hand the overlap
is zero. On the other hand also an intuitive explanation exists. The Γ-point of the
third band is degenerate with the fourth band, thus the Landau-Zener transition will
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FIGURE 4.8: Measured transfer efficiency. Upper row: Masks on exemplary band mapping
images for counting the relative atom number in the different Brillouin zones. The red
Brillouin zones for the second and fourth band (red) have been corrected for experimental
artifacts. A Also visible are the first and third Brillouin zone. Middle and lower row: Relative
transfer efficiency to the first four bands obtained from the Brillouin zone masks. About
65 % of the atoms are transferred to the second band while about 35 % are transferred to
the fourth band. The third band is less populated.
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directly occur to the fourth band. Yet, we still observe a relative small occupation of
about ≈ 15 %.

Both the Landau-Zener transfer and the overlap calculations already give a good
impression for the experimental transfer efficiency although for quantitative predic-
tions precise evolution for the complete Hamiltonian should be considered. Espe-
cially for deeper lattices the spread of the populated quasimomenta becomes signif-
icant and the interaction increases. Further, we have observed a significant effect on
the transfer efficiency from the dipole trap depth (atom number, temperature). This
has been similarly resolved by amplitude modulation in section 4.3.2.

4.3.5 Coherent transfer

The rotation of the quantization axis permits Landau-Zener tunneling of a coherent
matter wave to the second Bloch band. In order to demonstrate this we prepare a
superfluid state in the first Bloch band at shallow lattice depths of V2D = 1.6 Erec and
2.95 Erec , here in |1,−1〉. The transfer occurs via a rapid rotation of 250 µs duration
to α = 180◦. As mainly quasimomenta q = 0 are populated, the transfer should
occur from Γ→ Γ revealing a two-level superposition state of the form

|ψ(t)〉 = c1|1〉+ c2e−i∆Et/h̄|2〉 (4.5)

where a different phase between the two Bloch bands |1〉 and |2〉 is acquired. The
experimental signature can be distinguished clearly from the pure ground state in
momentum space via TOF imaging. Oscillations appear in the Bragg peaks due to
the phase evolution. They are clearly visible when separating the first order Bragg
peaks into two groups as depicted in figure 4.9 (b) by the red and blue circular masks.
With the same frequency oscillations are also present on the zero-order Bragg peak
shifted by π/2. The oscillations have been fitted with an exponentially damped sine
yielding 7033(18)Hz for V2D = 1.6 Erec and 8551(30)Hz for V2D = 2.9 Erec. These fre-
quencies deviate from the expected calculated single-particle band difference being
6770 Hz and 8750 Hz. A small positive deviation from the experimentally measured
frequency can be expected due to interaction shifts but the different signs of the de-
viations for the respective lattice depths are dubious. A possible explanation is that
at the time of the measurement etalon effect yielding lattice calibrations imprecise
over time. Nevertheless, this demonstrates the preparation of a coherent superpo-
sition state which however is short-lived. The damping of the oscillations occurs
mainly due to band relaxations to the ground band.

Note that such a superposition state has also been observed using a microwave
sweep from |2,−2〉 to |1,−1〉 for the transfer to the first and second band [44].
Here, also further information can be found regarding interaction effects with spin-
mixtures.
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FIGURE 4.9: Coherent transfer to the second Bloch band. (a) Potential cuts of the well-
structure in the honeycomb lattice with the Bloch states in the first (red) and second (yel-
low) Bloch band before and after the rotation of the quantization axis by 180◦. The density
distribution for the respective bands is either localized mostly only on the A- or B-sites. (b)
Superposition at the Γ-points of the first and second Bloch band. The triangular contrast
(red and blue circular masks on the TOF image), which oscillates in the first order Bragg
peaks in the TOF-images is evaluated. The frequency of the oscillations is fitted with an
exponentially damped sine yielding 7033(18)Hz for V2D = 1.6 Erec and 8551(30)Hz for
V2D = 2.9 Erec.

4.4 Conclusion and outlook

In this chapter, different transfer methods to higher Bloch bands are compared. Im-
plemented transfer methods include amplitude modulation, RF-transitions and the
rotation of the quantization axis. The latter can be pictured as a Landau-Zener tran-
sition and is the method of choice to explore a large parameter space. The transfer ef-
ficiency to higher Bloch bands in dependence of the lattice depth and the AB-energy
offset is measured. It is constant over larger region yielding ∼ 65 % for the second
band and ∼ 35 % for the fourth band. Thus, after the transfer a significant frac-
tion remains in the first band, which can influence the prepared states in the higher
bands. As an example, we report on a coherent transfer to the second Bloch band,
which results into a superposition state at the Γ-points between the first and second
Bloch band.

The transfer method, the rotation of the quantization axis, is limited by the ro-
tation speed and induces movements onto the BEC. Therefore, in the following we
outline two more possible paths to higher bands.

Lattice loading using a pulsed sequence

A new shortcut method to load bosonic species into an optical lattice has been pro-
posed and realized in 2018 by Zhou et al. [104]. The typically long time ∼100 ms of
ramping up the lattice intensity is replaced by a specially designed pulsed sequence
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with only a few microseconds of duration. This sequence cannot only be used to load
BECs into the first band but also into any other higher lying bands. Preparations at
non-zero quasimomenta are possible. Already other experiments have implemented
successfully on this technique in order to load into higher bands of optical lattices
[129, 130]. A further advantage of this method is the remarkably reduced switch-on
time of the optical lattices. Heating by sponteous emission for very near resonant
lattices is thus negligible during the lattice ramp. Thus, it should be possible to re-
alize even higher lattice depths, which are not possible to address with our present
laser setup. This method also provides further potential for sophisticated probing
methods, e.g. a Ramsey inferometer for atoms in optical lattices [131]. However, to
the author’s knowledge an investigation of the lifetime in higher bands has not been
published with this method. Still, it is possible to implement this loading method
with the newly implemented lattice control presented in this thesis and investigate
its preparation fidelity.

Raman transitions

Raman transitions do not only change the energy but also impart a momentum. For
a transfer to the second band this means that direct transfers to specific momenta
are possible, e.g.from Γ → K in the honeycomb lattice or from Γ → X in the square
lattice. In a deep cubic 3D lattice experiment with 87Rb this was done by Müller et al.
[30]. The two lowest Bloch bands (vibrational levels) were coupled coherently with
a stimulated two-photon Raman process. However, in their experiments either one
or two of the lattice directions were frozen out thus creating a strongly asymmetric
lattice in order to suppress tunneling in these directions. Also, the coherence in the
higher Bloch band has been small and very limited in lifetime <1 ms.

Nevertheless, this method is promising since it enables the population of higher
bands in the 2D-honeycomb lattice at chosen quasimomenta. In addition, it allows
for probing the system via Bragg spectroscopy. Here, preparatory work by design-
ing a new hybrid trap allowing for more optical access and conceptional considera-
tions on the implementation on Bragg spectroscopy has been done by our master’s
student Phillip Groß [132].
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Chapter 5

Condensation in the second and
fourth Bloch band

The main motivation to investigate condensation dynamics in higher Bloch bands
has been the prospect to realize unconventional superfluids with exotic phases. For
this, most effort during this PhD project has been dedicated to maximizing the life-
time of the prepared excited states. This includes e.g. numerous technical optimiza-
tions (see section 3.4) but also the analysis of the condensation process in the second
and fourth Bloch band in the 2D-honeycomb lattice. In this chapter, we first focus
on the experimentally optimal parameters for condensation and prove that conden-
sation is indeed realized experimentally. Further, the following four stages of the
condensation dynamics can be distinguished: (1) the transfer to the higher band,
(2) the emergence of coherence, (3) its subsequent decay and (4) the relaxation to
the ground state. We analyze theses stages in the lattice plane, their timescales as
well as differences between the second and the fourth Bloch band. The parameter
space is explored regarding the control of the band structure. Additionally, we com-
pare our findings directly with experiments in the bipartite square lattice conducted
by the group of A. Hemmerich [36]. Finally, we summarize the key ingredients for
condensation.

The experimental data presented in this chapter has been measured with main
contributions by the author in collaboration with A. Ilin, J. Seeger and P. Groß. The
data evaluation presented in this chapter has been conducted by the author. A
theoretical description of the condensation process continues in collaboration with
G. Koutentakis, S. Mistakidis and P. Schmelcher.

5.1 Condensation dynamics

In this section we discuss the characteristic features of the condensation dynamics
in the second and fourth Bloch band. Therefore, we explored the parameter space
controlling the band structure by varying lattice depth V2D and energy offset ∆VAB,
which depends on the angle α of the quantization axis. We have identified an is-
land of stability providing a maximum lifetime in the excited bands. The optimal
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parameters yield

2nd band V2D ≈ 7.5 Erec and ∆VAB ≈ 5 Erec, α = 106◦

4th band V2D ≈ 15 Erec and ∆VAB ≈ 12 Erec, α = 122◦.

For these two parameter sets we present measurements and show that we realize
superfluids in higher bands.

5.1.1 Evidence for condensation

The emergence of phase coherence is observed shortly after the transfer to the higher
Bloch band. For simplicity we first describe the process in the fourth band and then
in the second band.

Condensation in the fourth band

The experimental sequence begins by loading the BEC into the first band of the
deep hexagonal lattice. At V2D = 15 Erec the ground band has a small bandwidth
of ∼ 0.1 Hz. For this initial state no spatial phase coherence is observed in the lat-
tice. Subsequently the transfer to the higher Bloch band is performed by a rapid
rotation (0.5 ms) of the quantization axis tuning the AB-energy offset ∆VAB. This
time-dependent control over the band structure allows us to realize Landau-Zener
transitions. The transfer to the fourth Bloch band requires two subsequent diabatic
passages. Finally, the transferred population thermalizes in the higher band whose
properties can be tuned by the potential offset ∆VAB and lattice depth V2D. An illus-
tration of the band structure during the transfer is depicted in figure 5.1 (a).

The population transferred to the fourth band suddenly experiences a larger
bandwidth (∼ 250 Hz). As the bandwidth is proportional to the tunneling, this re-
sults into the emergence of spatial coherence in the system. Due to the band struc-
ture of the fourth band we expect the macroscopic occupation of the minima at the
Γ-point. The population reaches a maximum after 4 ms of holding time for the opti-
mal parameters. At these parameters we analyze exemplary TOF and band mapping
images (figure 5.1 (b), (c)) to prove the existence of a superfluid in the fourth bands
and to quantify the superfluid fraction.

In the TOF image in figure 5.1 (b) the optical density yields 1.2. Bragg peaks are
visible up to the second order and indicate spatial coherence in the system [19, 133].
The coherence can be quantified by evaluating the visibility (section 3.3 and 5.1.2).
We obtain peak values of ∼ 0.55. However, a direct connection to the condensate
fraction, which would quantify the system, is not available. In principle this can
be done with ab initio quantum Monte Carlo simulations where a direct compari-
son to TOF images determines the temperature [100] or by employing single-atom
detection in momentum-space [101]. Yet, a more practicable implementation is the
recently published ’quantum magnifier’ using matter-wave magnification [110].
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FIGURE 5.1: Evidence for condensation in the fourth band. (a) Transfer to the fourth band
in momentum space. Two subsequent Landau-Zener transitions are driven to reach the
fourth Bloch band (violet). In contrast to the first band crossing, the band gap between the
second and fourth Bloch band is closed at the Γ-point. The minimum of the fourth band
is located as for the first band at the Γ-point. Note, as the overlap with the third band is
zero, it is omitted in the illustration. (b) TOF image with a superfluid in the fourth band
and a bimodal 2D-fit of the zero-order peak (grey circular mask). The parabola fit of the
condensate (green) and the Gaussian fit to the thermal fraction (blue) fit nicely yielding a
condensate fraction of 12(3) %. (c) Band mapping image with the profile of the complete
image (red) and the rectangular grey box (blue).

Bearing the limitations of TOF in mind [99] we can still estimate the condensate
fraction by employing bimodal 2D-fits to the TOF images. This works especially well
for the fourth band. First the realized condensate fraction is medium high yielding
a clear bimodal distribution. Second the zero-order peak has a certain width, which
can be fitted reliably. For the fit shown below the TOF image in figure 5.1 (b) we
obtain an overall condensate fraction of 12(3)%, which corresponds to ∼ 35 % of
the population in the fourth band taking the transfer rate into account. This fit to
determine the condensate fraction can be also extended to different holding times.
The condensate fraction resembles that of the visibility. This will be shown in the
thesis of A. Ilin.

Condensation in the second band

A similar emergence of phase coherence is observed in the second Bloch band, yet
the minima of the second band are located at the K- and K’ points. This is funda-
mentally different from the first and fourth band, where the minima are located at
the Γ-point. Thus, assuming initially a many-body wave packet occupying predom-
inantly the Γ point, the maximum of the second band, an intriguing condensation
process for the formation of phase coherence in the minima in the second band takes
place. The transfer and condensation process of such a wave packet is illustrated in
figure 5.2 (a).

The population at the K- and K’-points in the second band reaches a maximum
after 7 ms holding time after the transfer. This is clearly visible in the TOF image
in figure 5.2 (b). Bragg peaks are visible up to the second order and the visibility
reaches peak values of ∼ 0.4. An estimation of the condensate fraction by using
bimodal fits is not as conclusive as presented for the fourth band. They are limited
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FIGURE 5.2: Evidence for condensation in the second band. (a) Transfer to the second
band in momentum space. The condensate is prepared initially at the Γ-point in the first
Bloch band (grey). A Landau-Zener transition to the second band is driven via a rapid
tuning of the energy-offset ∆VAB controlling the bandgap between first and second Bloch
band (blue). At vanishing ∆VAB the bandgap at the K-points is closed whereas it remains
finite at the Γ-points. In the second Bloch band the red wave packets illustrate the conden-
sation process in the band minima at the K and K’-points. (b) TOF image with a super-
fluid in the second band and the corresponding profile (blue) with bimodal 2D-Gaussian
fits (red). The condensate (yellow) and thermal distributions (violet) at the the K- and K’-
points and a global incoherent background attributed to the remaining atoms in the first
band were fitted with Gaussians. (c) Band mapping image with the profile of the complete
image (red) and of the rectangular grey box (blue).

by the small width of the Bragg-peaks and the small distance between the K- and
K’-points. Furthermore, many fit parameters are required. The number of available
parameters is reduced by subtracting the incoherent background and distinguishing
only between K and K’-points. Yet, the fits prove less reliable than desired but still
allow us to estimate the condensate fraction in figure 5.2 (b) to∼ 15 % corresponding
to about 25 % of the population in the second band. Also the detection via band
mapping reveals a population of the K- and K’-points as depicted in figure 5.2 (c).
From this image the condensate fraction is estimated to ∼ 15 % by placing masks
around the K-region as described in section 5.2.3.

In summary, these results show that a significant condensate fraction is observed
at the optimal parameters either at nonzero quasimomenta in the second band or
at zero-quasimomentum in the fourth band. Note that even though the transferred
fraction to the fourth band is about 20 % smaller than to the second band, the fit-
ted condensate fraction, the optical density and the visibility are larger indicating
a higher degree of coherence. A possible explanation for this is the difference in
the condensation process due to the different geometry of the excited bands. This
subject is further elaborated in the following sections.

5.1.2 The four stages of the condensation dynamics

In the following the condensation dynamics is analyzed in dependence of the hold-
ing time after the transfer to the lattice. In general the behavior and time scales of
the condensation dynamics are similar in both bands. They exhibit four characteris-
tic steps. Before the discussion of the dynamics first the experimental sequence and
analysis of the TOF and band mapping images are presented.
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The experimental sequence has already been described in detail in section 4.3.3.
We recall that we initially prepare a spin-polarized 87Rb-BEC in |2,−2〉 in a dipole
trap with a harmonic confinement of ωx,y,z≈ 2π× (19, 45, 19)Hz at a temperature
T ≈ 23 nK and atom numbers of about 1.7× 105 atoms. Subsequently the 2D-
honeycomb lattice is exponentially ramped up to a lattice depth V2D in 100 ms. After
a short holding time of 2 ms in the lattice the quantization axis is rotated in 0.5 ms to
a final angle α. In the following we present measurements, which were performed
with optimal parameters for the maximum lifetime (see table 5.1). Interestingly the
engineered band structure for the respective higher band is very similar in terms of
bandwidth and band gap to the lower lying band.

transfer probing V2D α ∆VAB band gap ∆ bandwidth Λ atom #
to band (Erec) (◦) (Erec) (Erec ) (Erec ) ×103

2
TOF

7.4 106 4.7 3.63 0.096
176(18)

BM 195(17)

4
TOF 14.7

122
17.8 4.03 0.074 130(23)

BM 14.9 18.1 4.17 0.071 212(30)

TABLE 5.1: Experimental parameters of the presented measurements in state |2,−2〉. The
band gap given for the fourth band denotes the band gap between the fourth band and
second band.

To analyze the condensation dynamics we took typically four absorption images
per time step after TOF and band mapping, which give access to the phase coherence
and the band population. As a measure for coherence we evaluated the visibility in
the TOF images. The visibility is defined by circular masks placed at and in between
the K-points for the second band and at the Γ-points for the fourth band (cf. inset of
figure 5.3 (c)). The obtained visibility depends on the circle size. For the here pre-
sented data we choose a radius of 10 pixels. Smaller circle radii increase the visibility
but movements of the Bragg peaks are more pronounced as analyzed in appendix
C.2. We obtain the band population by counting the atom number in band mapping
images in the respective masks for each Brillouin zone. The masks used in the inset
of figure 5.3 (b) are slightly extended from the strict definition in order to account
for experimentally induced movements and deformations in the quasimomentum
during band mapping.

Figure 5.3 depicts the direct comparison of the separate measurements for the
second and the fourth Bloch band. We categorize the description into four stages.

Stage 1: transfer to the higher Bloch band

Initially, the atomic ensembles are transferred with a transfer efficiency of ∼ 55% to
the 2nd band and with ∼ 30% to the 4th band. The TOF images show an atomic
distribution with a broad distribution in momentum space.
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FIGURE 5.3: Visibility and band population for the second and fourth Bloch band at op-
timal parameters. (a) Selection of band mapping images for the second band (blue) and
fourth band (violet) scaled to the optical density. (b) Relative band population for the two
series of measurements. The inset shows the masks for the respective color coded bands
(circles - measurement 2nd band, triangles - measurement 4th band, grey - population in
the 1st band for each series). (c) Visibility for the second and fourth band with its defini-
tion in the inset. (d) Selection of TOF images for the second and fourth band scaled to the
optical density.
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Especially in the second band we observe oscillating features after TOF, which
are reminiscent of the coherent superposition state at the Γ-points in the first and
second band (see section 4.3.5). The oscillating features are strongly blurred due to
the incoherence and show a strong damping. They occur within the first ≈ 0.5 ms
and vanish as soon as the population of the K- and K’-points grows.

Stage 2: emergence of coherence

Driven by collisions atoms begin to redistribute rapidly within their respective band.
They accumulate at the respective band minima (K-points - 2nd band, Γ-points - 4th
band). In the TOF images Bragg peaks appear already after ∼ 1 ms. They indi-
cate the level of coherence growing with increasing holding time. Its maximum is
reached at 7 ms for the 2nd band and at 4 ms for the 4th band. At this point second-
order Bragg peaks are clearly visible.

Stage 3: decay of coherence

The atomic ensemble redistributes homogeneously within its band. In contrast to the
emergence of coherence (step two), the atomic distribution is more homogeneous.
For comparison, see for example BM images at 2 ms where quasimomenta q towards
the K and M-points are populated stronger than in the TOF image at 45 ms (figure
5.3 (a)). This suggests that the temperature of the atomic ensemble has increased. In
the TOF images the higher order Bragg peaks become less prominent indicating a
loss of coherence. This is also captured by the visibility. Fitted with an exponential
decay, the decay time yields τ2 = 18(1)ms for the second band and τ4 = 12(6)ms
for the fourth band. In general, the coherence decays while the band populations
stays constant.

Stage 4: decay of band population

When the coherence has disappeared, eventually a significant decay of the the band
population in the excited bands begins. Thus, the time-scales of the decay of coher-
ence and the relaxation to the first band are separated. In the second band relaxation
begins after 50 ms, in the fourth band it begins after 20 ms. The decay from the fourth
band occurs to the second band and continues then to the first band. The general be-
havior of the decay is further analyzed in section 5.2.1.

5.2 Exploring the parameter space

So far, the analysis has been concentrated on the island of stability, the condensa-
tion at the optimal parameters. For the second and fourth band phase coherence in
the excited band has been maximized. Generally, this is influenced by the tunneling
time to develop coherence and by the decay time of the coherence and the relax-
ation to lower bands. These parameters depend strongly on the band structure. In
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this section we first analyze the band decay. Second we give an overview of the pa-
rameter space supporting superfluids. Third we compare our measurements in the
bipartite hexagonal lattice directly to the bipartite square lattice of the Hemmerich
group based on a recent publication by Nuske et al. [36].

5.2.1 Band decay

In order to evaluate the band decay, we measured the relative band population after
the transfer to either the second or fourth band for different lattice depths V2D and
angles α. The holding time after the transfer increased from 1 ms to 200 ms. The ex-
cited band population was fitted with an exponential decay a exp(−1/τbandt) + c to
obtain a decay time τband. Data points at short holding times, where the population
is constant over time (cf. figure 5.3) are omitted.

In the following a data set for the fourth band is presented, where an area around
the optimal parameters (V2D = 14 Erec and α = 122◦) is covered by 3x3 measure-
ments varying the lattice depth V2D and the potential offset ∆VAB = α. The mea-
surements cover a major part of the region between the band crossings in the fourth
band and are marked in figure 5.4 (a) and (b). Figure 5.4 (a) depicts the calculated
band gap from the fourth to second band ∆42 and figure 5.4 (b) depicts the band-
width of the fourth band Γ4. The decay time τband4 is plotted in dependence of ∆42 in
figure 5.4 (c). We observe the smallest decay for τband4 = 37(2)ms at ∆42 = 13 kHz.
The decay increases strongly for smaller and larger ∆42, which corresponds only to
small changes of α. Further, figure 5.4 (d) shows the decay time as a function of Γ4.
The data suggest that a smaller Γ4, thus lower tunneling leads to a slower decay.

This situation is expected to be similar for the second band. At the optimal pa-
rameters, we obtain a longer decay time of τband2 = 57(2)ms than for the fourth
band. Interestingly, the band gap to the lower band yields also ∆21 ≈ 13 kHz at the
optimal parameters. The same also holds for the bandwidth. However, the currently
available data set of the second band is too small to present a similar analysis as was
conducted for the fourth band.

We conclude that both band gap and bandwith play a crucial role for the band
decay. It would be interesting to compare these results to a theoretical model. A
recently joint experimental and theoretical study has been recently published closely
related results for the second band of the bipartite square lattice by Nuske et al. [36].
Here, instead of varying V2D and ∆VAB only ∆VAB is varied, but the authors also find
an optimum setting for ∆VAB, where band relaxation is reduced. They find that the
decay is driven by hopping to the lowest band in case of a smaller ∆VAB, while for
larger ∆VAB the decay is driven by interaction decay. This is also plausible for the
hexagonal lattice.
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FIGURE 5.4: Band decay from the fourth band. (a) Band gap between the 4th and 2nd band
as a function lattice depth V2D and angle α. Colored circles mark the measured data. (b)
Bandwidth of the 4th band as a function lattice depth V2D and angle α. Colored circles
mark the measured points. (c) Decay time versus the band gap between the 4th and 2nd

band. A Gaussian fit serves as a guide to the eye. (d) Decay time versus bandwidth of the
4th band. A Gaussian fit serves as a guide to the eye.
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5.2.2 Overview on the visibility

The central scope is to prepare metastable superfluid states in higher bands. Thus,
the parameter space should be also explored regarding the coherence i.e. the mea-
surable visibility.

Therefore a similar measurement as for the band decay is performed. To manip-
ulate the band structure we use the experimentally accessible lattice depth V2D and
the AB-potential offset ∆VAB controlled by α. In order to map the available param-
eter space for condensation we scan the lattice depth V2D = 4− 12 Erec and rotate
the quantization axis in 0.5 ms to a final angle of α = 90◦ − 180◦. This range covers
approximately a bandwidth from 1000 Hz to 100 Hz and band gap ∆ of 5700 Hz to
40 000 Hz. The band crossing to the second and fourth Bloch bands are included. For
completeness a full map of the band gap and the bandwidth of the first, second and
fourth band is given in appendix A. After the rapid rotation we let the system evolve
for 7 ms and probe it after 38 ms of TOF. The visibility is evaluated at the K-points
and at the Γ-points separately. In this way the visibility is obtained for the second
band and for the first and fourth band respectively. Its sum, the resulting visibility
map is displayed in figure 5.5.

We distinguish three regions with higher visibility.

Region I: At and in vicinity to α = 90 ◦, which is equal to ∆VAB = 0, the visibility
reaches its highest values with 0.8. Here, the first band is populated. Even
though V2D is deep, the degenerate AB-sites and the higher bandwidth in the
first band increase largely the tunneling, thus the coherence.

Region II: Rotating slightly further (α > 100◦) the second band is populated. An
increased visibility is observed from the minimal band width of the second
band (violet) up to the band crossing to the fourth band (gray line). A broad
maximum is located in between the band crossings at V2D ≈ 7.5 Erec and α =

106◦ showing the optimal parameters for coherence in the second band.

Region III: The fourth band is populated beyond the band crossing to the fourth
band (gray line). Like in region II the visibility is increased approximately at
the band minimum up to the band crossing to the fifth band (gray dashed
line). The optimal parameter for highest visibility at V2D = 14 Erec has not
been recorded in the measurement, thus the optimal parameters of the fourth
band are not completely resolved.

High visibility can also occur for shorter holding times than for the 7 ms used in
this measurement. This is the case for low lattice depths (< 4 Erec ), where the band
relaxation is too fast to observe a signal after 7 ms of holding time. For instance, the
coherent transfer described in section 4.3.5 was realized in this regime.

Furthermore, the optimal parameters for condensation in both excited bands are
very similar with respect to the band structure. We depict characteristic lines of the
band structure in figure 5.5: the minima of the bandwidths (violet), the band gap ∆ =
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FIGURE 5.5: Exploration of the parameter space for visibility in higher bands. The figure
depicts is the sum of the two visibilities defined separately at the K- and Γ-points at 7 ms
holding time. Three regions with high visibility can be identified. For orientation charac-
teristic lines for the second band (continous lines) and for the fourth band (dashed lines)
are displayed: band of the bandwidth (violet), band crossing to the next highest band
(grey), band gap of 13 kHz to the first (second) band (green), minimum of bandwidth over
band gap (black).

13 kHz (green) to the first, respectively second band and the minimum of the ratio
band width Γ over bandgap ∆ (black). This allows the following conclusions: (1)
the minimal bandwidth does not explain the optimal parameters for condensation;
(2) The 13 kHz-band gap and the minimum of the ratio Γ/∆ agree well with the
shape of the regions with enhanced visibility. Especially the good agreement of the
latter is intriguing. This relation is motivated by a recently published calculation of
recondensation dynamics in higher bands [134]. Here, the decay rate is proportional
to (J/∆)2. Further, systematic measurements are required to analyze this.

5.2.3 Comparison to the bipartite square lattice

In the last decade the experimental advances in preparing condensates in higher
bands in a bipartite square lattice have been driven by the Hemmerich group [31–
33, 35, 113]. Thus, a direct comparison of our experimental results especially with
the recent publication by Nuske et al. [36] is desirable.

The authors present a joint experimental and theoretical study on the formation
and decay of a coherent metastable state in the second band of the bipartite square



74 Chapter 5. Condensation in the second and fourth Bloch band

lattice also using 87Rb in |F = 2, mF = ±2〉. Three different stages are identified: the
condensation to the coherent metastable state, the decay to a thermalized state and
the subsequent decay to the ground state. Further, the decay time to the ground state
is measured at a fixed lattice depth of 7.2 Erec as a function of the final AB-potential
offset and compared to numerical calculations. It exists an optimal offset for slowing
down the decay. For smaller potential offsets hopping decay dominates i.e. atoms
in the second band tunnel to the first band. For larger potential offsets interaction
decay dominates i.e. two atom in the second band collide and are transferred to the
first band.

To analyze the data, the condensed, thermal and total atom number in the second
band have been counted in band mapping images. We have adapted the evaluation
method to our lattice and have applied it to the data presented in section 5.1.2. As
depicted in figure 5.6 (a) we place Brillouin zone masks onto the image to count the
atom numbers in the respective bands. We place eight candy-shaped masks and ring
segments around the K-points. We assume atoms in the ring segments to be thermal
and calculate their density per pixel. With the thermal density we can then subtract
the thermal fraction from the condensed fraction in the K-region.

The results, the relative atom number as a function of holding time, are displayed
in figure 5.6 (b) and show clearly similar behavior when evaluated with the visibil-
ity. In addition, the condensed fraction normalized to the second band yields∼ 0.17,
which is in agreement to the fits in section 5.1.1. Note that at the peak of the coher-
ence at 7 ms 30 % of all atoms are in the K-region, which corresponds to 50 % of the
atoms in the second band.

However, as depicted in figure 5.6 (c), our condensate fraction is rather low com-
pared to data from [36]. The condensate fraction in the square lattice yields ∼ 25 %
for the hotter measurement at ∼ 110 nK and reaches even ∼ 50 % for ∼ 50 nK. Fur-
thermore, when comparing the total atom number in the second band to figure 5.6
(d) the atom number and the decay in the second band of the hexagonal lattice coin-
cide with the hotter measurement in the bipartite square lattice.

The discrepancy of the condensate fraction as well as the good agreement of the
decay to the hotter measurement are rather surprising as the temperature in the
dipole trap yields 25 nK. This has been the main reason to suspect heating mecha-
nisms in our hexagonal lattice setup. Therefore, we have investigated technical noise
sources e.g. intensity and phase noise (see section 3.4). Still, higher heating rates can
also originate from intrinsically different experimental parameters. This concerns
the transfer method itself, differences in the band structure causing higher energy
dissipation and differences in the lattice potential causing higher interactions.

Concerning the energy dissipation, the recoil energy in the hexagonal lattice is
by a factor of 1.6 larger. Taking this into account, the bandwidth and band gap
are about a factor of 3 larger (∼ 300 Hz versus ∼ 100 Hz, and ∼ 13 000 Hz versus
∼ 5000 Hz). Thus, the hexagonal lattice has a clear disadvantage in terms of energy,
which is dissipated during condensation from the Γ to K-points or when decay from
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FIGURE 5.6: Comparison of the honeycomb lattice with the bipartite square lattice. (a)
Definition of masks to obtain an estimate for the condensate fraction in band mapping
images. (b) Condensate fraction and atoms in the K-region normalized to either the second
Brillouin zone or the total atom number. (c) Condensate fraction in the hexagonal lattice
(circles) compared to two different data sets at 50 nK and 110 nK in the square lattice lattice
from [36]. (d) Absolute atom number in the second Brillouin zone again in comparison
with the two mentioned data sets. For clarity of the presentation error bars are omitted in
all data series.
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the excited to the ground state occurs.
In addition, the interaction in the hexagonal lattice is increased due to the tight

confinement of the lattice tubes (see section 5.3.1). For instance, the radial frequency
of the initial state yields ω⊥ = 33.3 kHz compared to ω⊥ = 18.5 kHz in the square
lattice. Assuming 1D-tubes, this results in an increased interaction of a factor of 1.8
(g1D = 2ah̄ω⊥). This increases the collision rate both within and likely also between
the bands. Note that the differences in the lattice potential might also result in a
different critical temperature for condensation. Given similar starting parameters
due to the same species a lower Tc in the hexagonal lattice might explain the lower
condensate fraction.

Finally, we emphasize that in the bipartite lattice the metastable state is protected
by destructive interference [36]. It is unclear if a similar state also exists in the hexag-
onal lattice.

5.3 Key ingredients for condensation

In the following section we summarize the central experimental results and discuss
the limitations of the experimental realization. For the argumentation we occasion-
ally refer to calculations from our collaborators Georgios Koutentakis and Simos
Mistakidis, which we aim to publish in a joint publication focusing on the conden-
sation dynamics in the second band.

5.3.1 Lattice dimensionality

The lattice dimensionality is important regarding two aspects: (1) the initial state
can be imagined as a 2D-array of weakly coupled tubes and (2) the lattice tubes can
serve as a reservoir for energy dissipation [34, 36]. In the following we focus first on
the initial state at the optimal parameters for condensation.

Probing the initial state after TOF and band mapping shows a broad momentum
distribution without any visibility as depicted in figure 5.7. Since the ground bands
have a bandwidth of less than 0.3 Hz tunneling is low during the holding time of the
experiment (typically 2 ms) and bosonic enhancement of the tunneling between the
tubes.

Ultracold gases in deep optical 2D-lattices are first of all characterized by highly
anisotropic tubes ωz � ω⊥. The tubes can be classified into different regimes by a
dimensionless parameter

γ =
mg1D

h̄2n1D
(5.1)

defining the ratio of interaction energy and kinetic energy of the ground state for
zero temperature1 [136]. Here, m denotes the atomic mass, g1D the 1D interaction
potential and n1D the 1D density. In the case of γ � 1 with high densities in

1For the description of finite temperature interacting 1D-systems γ and an additionally reduced
temperature are need to fully characterize the system [135].
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FIGURE 5.7: Initial state. (a) Geometry of the tubes in the hexagonal lattice denoted by
the radial oscillator length and the Thomas-Fermi radius in the longitudinal direction. (b)
TOF and (c) band mapping images after having ramped up the lattice to V2D = 8 Erec and
holding for 2 ms. Also depicted are the respective horizontal and vertical profiles. Fitting
with a Gaussian the FWHM in units of the reciprocal lattice vector b1 yields for (b) 1.9 and
for (c) 0.5.

harmonically confined systems the mean field description can be applied. In the
strongly interacting regime called the Tonks-Girardeau regime for γ� 1 bosons in-
hibit fermionic like properties (experimentally realized [137, 138]). For our system
we estimate the parameter γ ≈ 0.2, which is slightly lower but in vicinity to exper-
iments investigating 1D-systems [98, 139]. Extensive information on the physics of
1D-interacting bosonic systems can be found in the review by Cazalilla et al. [140].

Concentrating further on our system, a single tube can be described within the
one-dimensional mean-field theory. Strictly speaking the 3D mean-field theory is
not valid. We fulfill the condition where the radial motion of the particles freeze
out: Naa⊥/a2

z � 1 where N denotes the atom number in the central tube, a the s-
wave scattering length, a⊥ the radial and az the longitudinal oscillator length (az =√

h̄/mωz. In table 5.2 we summarize the characteristic parameters for the initial
state before the transfer to higher Bloch bands based on the text book by Pitaevski
and Stringari [120].

In order to describe the initial state, it is important to discuss the temperature in
such harmonically trapped 1D-systems. Here, reaching temperatures lower than the
degeneracy temperature Td ≈ Nh̄ωz ≈ 720 nK is only sufficient for so-called quasi-
condensates where phase fluctuations along the axial direction prevail but density
fluctuations do not occur. For true condensation, T should be lower than the crit-
ical temperature for phase fluctuations Tφ = h̄ωz/µ ≈ 15 nK. Our estimation of
the BEC temperature in the dipole trap yields 23 nK, thus minor phase fluctuations
could occur making a quasi-condensate likely. However, large phase fluctuations
seem unlikely due to the short holding time of only 2 ms in the deep lattice before
the transfer. Furthermore, the broadening of the quasimomentum distribution with
increasing holding time requires further investigation. This question will be further
analyzed in the PhD thesis of A. Ilin.

We now turn to discussing the second aspect of the lattice dimensionality i.e.
the lattice tubes can serve as a reservoir for dissipation of energy [34, 36]. To gain
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2nd band 4th band

lattice depth V2D (Erec) 8 14
initial angle α 0◦ 0◦

radial frequency f⊥ (kHz) 33.3 47.1
axial frequency fz, values measured (Hz) 75(1) 105(1)
radial oscil. length a⊥ (nm) 59 50
axial oscil. length az (µm) 1.25 1.05

atoms in central tube ≈ 200 ≈ 200
condition 1D mean field Naa⊥/a2

z � 1 0.038 0.045
TF-radius rTF,z (µm) 12.7 11.3
Td, in 1D (nK) 720 1010
Tφ (nK) 15 17

TABLE 5.2: Parameters of the initial state for |2,−2〉.

insights on the influence of the tube direction we benefit from the possibilities of-
fered by our experiment. First, we applied additionally the orthogonal 1D-lattice to
the 2D-hexagonal lattice. At the optimal parameters this hinders the emergence of
coherence in the second band. Delaying the switch-on of the 1D-lattice to the max-
imum coherence rapidly destroys the coherence even for very shallow 1D-lattices.
Thus, the 2D-lattice with its tubes seems to be a prerequisite for the emergence of
coherence in higher bands for in deep lattices e.g. on the order of V2D ≈ 8 Erec.

Second, we have used the additional imaging axis to image the tube direction
during the condensation process. We observed a strong increase of the width show-
ing that the energy increases along the tubes. Here, a systematic study is required
comparing the width in the lattice and tube plane of the first band and second band
(see PhD thesis A. Ilin).

5.3.2 Critical temperature

Keeping the temperature below the critical temperature Tc is essential for conden-
sation in higher bands. Tc has been calculated from our theory collaborators being
on the order of 35 nK to 80 nK for realistic lattice parameters. This is close to the es-
timated temperature of the BEC (T ≈ 25 nK) revealing a small temperature margin
below Tc. Further, being close to Tc limits the condensate fraction. We evaluated
the maximum condensate fraction in the experiment to be between 15 % and 25 %,
which is similar to the theoretical expectation but lower than in the bipartite square
lattice. This can stem from the aforementioned different lattice parameters (see sec-
tion 5.2.3), a higher initial temperature in the deep lattice, intrinsically different de-
cay or heating processes discussed further below.

Furthermore, a considerable population remains in the first band after the trans-
fer. Here, theory currently suggests that the first band can act as a bath, which might
support cooling. An experimental verification by emptying the first band would
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be helpful. Note that the condensed fraction is also sensitive to the absolute atom
number in the system. A smaller atom number of ∼1.0× 105 seems to be favorable.

5.3.3 Increasing lifetime

Identifying possible heating mechanisms is vital in order to increase the lifetime of
superfluid states in higher bands. The condensed fraction and the lifetime are much
smaller than the superfluids realized in the bipartite cubic lattice (section 5.2.3).

First, heating can occur in the initial state of the lattice. The initial state shows a
broadening in momentum space with increasing holding time (e.g. factor 1.4 within
the first 100 ms), which could indicate that the ground state of the final lattice config-
uration is not reached experimentally. Additionally, for longer holding times excita-
tions to higher bands and an increased atom loss are observed. These observations
explain why the transfer to the second band works best for very short holding times
in the lattice and why they could be limitations for the lifetime in the excited bands.
Another possible heating origin is the harmonic confinement of the lattice, which
is ramped up within 100 ms. This could be minimized by using different ramps,
by using larger lattice beam waists, which are currently relatively small (115 µm) or
by compensating the harmonic confinement with additional light potentials. This
would also increase the lengths of the tubes lowering the barrier to escape for high
kinetic atoms. Phase noise cannot be completely ruled out as a heating mechanism.
However, note that three other experiments with three running-waves lattice beams
state explicitly that phase noise does not disturb the experiments ( cf. section 3.4.3)
[107, 108, 110]. Spontaneous scattering as a heating source is unlikely (Γsc ≈ 33 s−1).

Second, the transfer method can cause heating. The rapid rotation of the quan-
tization axis induces a sudden single oscillation of the BEC on the scale of the BEC
width. This effect will decrease with lower magnetic fields but the spin-polarization
must still be maintained (see section 4.3.2). To estimate experimental artifacts in-
duced by the rotation we have used spin-flips as a transfer method (appendix C.1).
Indeed the rotation induces kinks in the visibility. Another aspect is the remaining
atomic fraction in the lower band after the transfer. Even though our theory collabo-
ration can show that the first band can serve as a bath, also heating due to the lowest
band is possible.

Third the population of higher bands can also contribute to heating. Our theory
collaborators have identified two important processes. Two-body collisions within
the second band and two-body collisions where one of the atoms decays to the
ground band. Due to the large bandgap (13 kHz) very few decay processes could
lead to an evaporation of the condensate and heat the system above Tc.

Taken together, each of the stages in the preparation scheme should be opti-
mized: (1) the preparation of the initial state, (2) the transfer method and, (3) the
population of higher bands. While minimizing heating in stage (1) and (2) requires
rather technical improvements, improvements in stage (3) probably require a differ-
ent atomic species or tunable interactions.
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5.3.4 Control of the band structure by intensity imbalance

A condensate in the second band in a perfectly adjusted and calibrated lattice is
expected to emerge at the K- and K’-points after TOF. However, the locations of the
minima in the second band can be easily modified by an intensity imbalance of the
different lattice beams. On the one hand this is advantageous for the engineering of
unconventional band structures in higher bands. On the other hand this requires a
precise intensity balancing of the lattice beams for preparing the condensates at the
K- and K’-points.

For a condensate in the second band in a perfectly adjusted and calibrated lat-
tice we expect to observe the population at the K- and K’-points after TOF. Yet, after
performing a pairwise 1D-calibration of all three lattice beams an asymmetric distri-
bution is observed. Thus, the minima of the second band are apparently not located
at the K- and K’-points. Most likely this is due to imperfections in the adjustment
of the polarization and lattice beam angles, which also modify the band structure.
These imperfections can be compensated by adjusting the lattice intensity such that
the minima in the second band are located at the K-points. Figure 5.8 shows the in-
fluence of intensity imbalance. Four of the six minima merge at the M-points of the
Brillouin zone for an increased intensity in a single beam. For a decrease of intensity
they move apart. The beam, which produces the deformation can be inferred from
the symmetry axis.

At the experiment this has been typically ensured by lattice calibration. Know-
ing the lattice depth V2D is crucial for the presented measurements . Yet, it is not
possible to directly measure the beam power in the science chamber to determine
the lattice depth. Instead, a versatile toolbox of precise lattice calibration methods
exists. This includes Kapitza-Dirac, Stückelberg-interferometry or amplitude mod-
ulation, which have been implemented at our experiment and will be described in
detail in the PhD thesis of A. Ilin. Historically, we have done lattice calibration at our
experiment via parametric heating [44]. Commonly, it was performed separately for
the three pairwise 1D-lattices. Hence, each of the three beams can be calibrated to
the same lattice depth and contributes equally to the overall lattice depth V2D. How-
ever, this is a time-consuming procedure, especially if conducted regularly. More
importantly, it is not precise enough for the condensation in the second band. Thus,
we modified the procedure in order to calibrate directly the 2D-lattice by adjusting
the position of the minima at K and K’.

To finish the calibration procedure, the lattice depth is calibrated directly in the
2D-lattice via parametric heating to the 7th Bloch band offering the advantage of a
high coupling efficiency [44].
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FIGURE 5.8: Control of the band structure by intensity imbalance. The three laser beams
are numbered as in the experiment. The relative intensity deviation from a symmetric
ordering of the K-points is denoted for each respective laser beam by the numbers above
each absorption image. For higher intensities two minima at the K-points merge at the
M-points. For lower intensities they move apart. This is effect is also clearly visible in the
band structure of the second band in the right column.



82 Chapter 5. Condensation in the second and fourth Bloch band

5.4 Conclusion and outlook

To conclude, condensation in higher bands, especially for the evolution of a wave
packet initially prepared at a band maximum is intriguing. Driven by interactions
recondensation can occur rapidly within very few milliseconds at the band minima
forming a metastable superfluid in higher bands.

We have realized condensation in the second and fourth Bloch band of the optical
honeycomb lattice. The engineered band structures for the second and fourth band
are similar regarding the band gap and the bandwidth despite the different band
geometry i.e. the location of the band maxima and minima.

We analyze the condensation dynamics by evaluating coherence and band pop-
ulation and identify four characteristic stages. (1) After the transfer to the excited
band a broad population of quasimomenta is observed. (2) Driven by collisions the
population redistributes within a few milliseconds to the band minima. Meanwhile
coherence emerges and reaches a maximum in less than 10 ms due to the increased
tunneling in the excited band. The maximum condensate fraction is estimated to
be between 15 % and 25 % for the second band and to be 35 % for the fourth band.
For the second band the condensate fraction is about three times smaller than in
the bipartite square lattice, which can originate from either intrinsic differences be-
tween the two lattices or from heating mechanisms stemming from the preparation
and leading to a too large initial temperature. (3) In the following the coherence
decays. This might be explained with a collisional decay to the ground band. Few
decay processes already dissipate a large amount of energy and eventually lead to
an evaporation of the condensate. (4) Subsequently, band relaxation to the ground
band occurs on a longer timescale (e.g. for the second band τcoh2 = 18(1)ms versus
τband2 > 57(2)ms and for the fourth band τcoh4 = 7(1)ms versus τband4 > 37(2)ms).

Furthermore, we have explored a large parameter space to identify relevant scal-
ings for condensation and have verified experimentally the importance of the lattice
tubes as an energy reservoir. The emergence of coherence has been hindered effec-
tively by superimposing an additional 1D-lattice.

Finally, an interesting question is the nature of the engineered quantum many-
body state, which will be addressed in detail in the PhD thesis of A. Ilin. Super-
position states of K and K’ or fragmented states are both imaginable. Here, in near
future a new probing method with single-site resolution, the quantum gas magni-
fier, will reveal further insights. In the following two further research perspectives
are presented.

Engineering sp2-like Bloch states

So far, the realized initial Bloch state in the first band and the final Bloch state in the
second band show a similar s-wave character. In figure 5.9 the densities of the Bloch
functions show an occupation on the A-sites of the lattice. However, the Bloch states
are modified by increasing α, which corresponds to a modification of the energy
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FIGURE 5.9: Density of the Bloch functions in the spin-dependent honeycomb lattice for
momentum k = Γ or K. The lattice depth V2D is kept fixed, while the angle α is varied. (a)
Initial state in the first band (α = 0◦). (b) Bloch state at the optimal parameters α = 106◦.
(c) Bloch state at α = 145◦. Here, a sp2-like density pattern is depicted. The white arrows
denotes a phase winding of 2π around the lattice sites.

offset ∆VAB. If the increase occurs slowly, the state should adiabatically follow the
second band (cf. figure 4.4). Then, the Bloch state occupies the B-site of the lattice
and the density pattern shows a sp2-like shaped form (figure 5.9 (c)). The density has
a node at the lattice site but increases along the lattice bonds and the phase pattern
shows a winding of 2π around the sites. As only the B-lattice sites are occupied, the
state is characterized by a rectified orbital angular momentum providing an ideal
example for an unconventional superfluid.

Bosonic superfluids in higher bands with tunable interactions

Throughout this thesis we have seen indications that interactions influence strongly
the condensation process and lifetime in higher Bloch bands. Thus, modifying the
scattering length via Feshbach resonances opens new possibilities to create longer
living states. For the fermionic spin mixtures of 40K such an increase in lifetime could
be observed for particle-like excitations to the second band in a 1D-optical lattice
[141]. As addressing the Feshbach resonance of 87Rb is experimentally unfavorable
we have already begun first steps to implement the bosonic species of potassium
39K. This includes the integration of potassium dispensers (see section 2.1) and the
setup of a compact laser system for 87Rb (see A. Khan [142]) making room for an
additional 39K laser setup. The light shifts induced by the existing spin-dependent
hexagonal lattice at 830 nm are indeed too small for significant AB-potential offsets.
The development of a new lattice setup will be a central task.
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Appendix A

Band structure of the explored
parameter region

FIGURE A.1: Bandwidth and band gap with respect to the lattice depth V2D and quanti-
zation axis angle α. The band gap and bandwidth are given in units of Hertz. Here, the
bandwidth is defined between the K- and Γ-points and it is cut off at 1 kHz. Circles mark
some of the measurements in this thesis.
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Appendix B

A model-free description with PCA

Principal component analysis (PCA) constitutes a standard method in multivariate
statistical analysis and offers two immense advantages for the evaluation of absorp-
tion images. First it takes all information of the input images into account and thus
can reveal information that would remain hidden otherwise. Second it is model-free,
which means defining masks imposing already a physical idea is not necessary. An
excellent review on PCA has been written by Jolliffe and Cadima [143]. In quantum
gas experiments PCA has been used e.g. for an interferometry experiment [144] or
for measuring collective excitations [95]. At our experiment it has been applied for
investigating symmetry breaking in artificial gauge field [46]. In the course of this
PhD project the author has used PCA regularly on different data sets. In the follow-
ing we perform PCA to describe the condensation process in the second band by
reevaluating the band mapping images from section 5.1.2.

B.1 Principal component analysis

Our data sets consist of about 300 absorption images (measurements) n with about
four images per time step. Each image has a size of 215x215 ≈ 4× 104 pixels (num-
ber of variables) p and is expressed as a row vector. The aim is now to find a new
set of uncorrelated variables, the principal components, which contain most of the
the variation of the original variables [145]. Here, we only outline the procedure and
refer the reader to the references given above.

First, the n images of the series are expressed as row vectors ri = (r1, r2, ..., rp)

with the row index i = 1, 2, ...n. The mean image r̄ of the data set is subtracted from
each image ri and the resulting centered images are expressed in a so-called centered
data matrix X∗ of the size n× p and with typically n� p. The matrix product

X∗T · X∗ = S(n− 1) (B.1)

denotes the covariance matrix S for the centered data. S contains the variance of the
pixels on the diagonal and the correlations in between the pixels in the off-diagonal
elements. Then, the idea is to find a set of new basis vectors (basis images), which
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are uncorrelated. Different algorithms exist for PCA. The scheme relies on diago-
nalization of the covariance matrix S. Its eigenvectors represent the principal com-
ponents (PC), which when applying the PCA method are ordered with decreasing
variance. Finally, each image of the series can be reconstructed by

ri = r̄ +
p

∑
j=1

Yjiuj, (B.2)

which is the sum of the mean image r̄ and the linear combination of the weight
(score) Yji and the eigenvectors uj of the matrix S. Typically, it is sufficient to take
only the first few principal components into account as they capture most of the
variance in the data set. In the following we present the principal components and
plot their weight (score) as a function of holding time.

B.2 Condensation dynamics in band mapping images

In general PCA finds the same behavior as is observed with the mask evaluations of
the band mapping images. In figure B.1 (a) we show the first three principal com-
ponents, which represent together a variation of 80 % in the data set. Comparing
all three orthogonal basis images we recognize the shape of the Brillouin zones and
the regions of higher atomic density i.e. at the K- and K’-points. PC 1 illustrates the
population at the K-points for negative pixel values (blue) and a broad distribution
in the first and in the second Brillouin zone for positive pixel values (red). The scores
of each PC as a function of time in figure B.1 (b) show that PC 1 represents best the
emergence and decay of condensation and also the band decay. In addition, PC 2
shows the heating in the second band followed by band decay to the first band and
represents the separation of timescales for the decay of coherence and band popula-
tion. Also note the increasing population in higher bands (band index > 3), which
could indicate heating processes. PC 3 illustrates dynamics likely stemming from
dipole oscillations and at the same time shows a redistribution from a predominate
K- and K’-point population (red) to a broad momentum occupation in the second
band.
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FIGURE B.1: Principal component analysis of band mapping images depicting the con-
densation dynamics in the second band (see section 5.1.2). (a) The first three principal
components (PCs) of the data set. (b) Score of the principal components plotted as a func-
tion of holding time after the transfer to the second band.
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Further measurements

C.1 Condensation in second band in |F = 1, mF = −1〉 and
comparison of two different transfer methods

In this section we present complementary measurements to the condensation dy-
namics in chapter 5. In the same manner as in |2,−2〉 a coherent state in the second
band can also be prepared in |1,−1〉. Generally, we observe a slightly higher optical
density in higher bands in |2,−2〉 than |1,−1〉 (∼ 10 %), which is the reason for using
predominately |2,−2〉 during this PhD project. Nevertheless it is useful to discuss
the differences between the two realizations.

• The interaction in |1,−1〉 is slightly higher than in |2,−2〉, which is relevant for
heating processes (compare the s-wave scattering lengths a0 = 110 aB versus
a0 = 89.4 aB).

• Assuming 1D-tubes in the initial state (α = 0 ◦), the interaction can be esti-
mated by g1D (see section 5.3.1). Even though radial confinement f⊥ = 30.9 kHz
is lower by 10 % in |1,−1〉, the increased scattering length cannot be compen-
sated in g1D. Thus, also in the initial state the interaction is increased.

• Although the experimental parameters for optimal condensation are different
(α = 125 ◦ for |1,−1〉 instead of α = 106 ◦ for |2,−2〉), the relevant physi-
cal quantities are similar. Both potentials are linked by the effective magnetic
quantum number m = (−1)F+1mF cos α, which is the same for both states (cf.
[38]). The band structure in term of band gap and bandwidth are the same.

• Note that due to the available lattice laser power with |F = 1, mF = −1〉 at
λ = 830 nm the optimal condensation parameters for the fourth band cannot
be reached as V2D remains too low. This disadvantage and the observation to
reach slightly higher optical densities with |2,−2〉 are the reasons for using
typically |2,−2〉 during this PhD project.

In general condensation dynamics for |1,−1〉 and |2,−2〉 are very similar. Both
feature the same timescales and shape of the visibility and optical density for the op-
timal parameters. In figure C.1 we present a precise measurement for |1,−1〉 where
each data point has been averaged 14 times (blue curve). Thus, the shape of the
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FIGURE C.1: Visibility and the maximum optical density after transfer to the second band
at optimal parameters in |F = 1, mF = −1〉. (a) Exemplary TOF-images scaled to the maxi-
mum optical density of the blue data points. (b) Visibility for different holding times com-
paring three different measurements. First, a measurement at optimal parameters where
each data point has been averaged 14 times (blue curve). Second, a measurement where
the transfer has been done with an rf-pulse (red curve) and third, a reference measurement
in equal conditions (brown curve). The rf-pulse and reference measurement both use the
same initial AB-offset for comparability. (c) Maximum of the optical density of the three
different measurements in dependence of holding time.
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visibility with the plateau-like structure at 14 ms and 23 ms is reliably resolved. In
section 4.3.2 we state as a possible reason the induced motion by the magnetic field
rotation. Indeed this hypothesis is supported by the fact that these plateau-like fea-
tures are not present in the measurement where the transfer to the second band has
been performed by an rf-pulse (red curve). For direct comparison we also present
a reference measurement (brown curve) in equal conditions e.g. atom number and
experimental adjustments. Here the rotation of the quantization axis as a transfer
method inhibits also small plateau-like features (brown curve).

For completeness we show here in the following table the experimental parame-
ters of the three measurements. In conclusion the plateaus in the shape of the visibil-

precision Rf-pulse reference
measurement measurement measurement

depth V2D (Erec) 8.1 8.4 8.4
initial angle α 0◦ 54◦ 54◦

final angle α 125◦ rf-pulse equal 126◦ 126◦

TABLE C.1: Central parameters of the three measurements presented in figure C.1. Note
that the initial angle at the rf-pulse measurement is necessary to realize the same AB-offset
being equivalent to a rotation to α = 106◦.

ity can likely be attributed to artifacts from the rotation of the quantization axis. The
overall time scale of the condensation and the decay of the coherence remain sim-
ilar with both transfer methods. The rotation method reaches a marginally higher
visibility but future studies will need to show if this also yields for a more carefully
prepared rf-pulse. Movements of e.g. the center-of-mass are clearly reduced in com-
parison to the rotation which can exert forces by magnetic field gradients.

C.2 Choice of masks for evaluation of visibility

Visibility is a widely used quantity to analyze TOF images for quantifying the co-
herence in optical lattices (see section 3.3. The visibility introduced by Gerbier et al
[133] has been weakly dependent on the mask sizes (3x3 pixels). For the comparison
of different measurements it is crucial to be aware of the variations.

In the following we analyze the influence of different mask sizes on the visibility
for the data series presented in section 5.1.2. In addition, we compare the visibility
for the different Bragg peaks orders in TOF images. Figure C.2 depicts the results.
The visibility of the zeroth order depends still significantly on the mask sizes. The
maximum visibility for 10 pixel radii yields about 0.4 while it reaches 0.7 for radii of
3 pixels. For higher orders this discrepancy shrinks as the incoherent background of
the first band attributes less to the contrast. Normalizing the different visibilities to
their respective maximum shows that it is independent of the circular masks sizes
which proved advantageous for comparisons to theory.
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FIGURE C.2: Influence of the circular masks on the visibility. (a) Different radii in pixels
of the circular visibility masks. In the far right image masks are placed around the higher
order Bragg peaks. (b) Comparison of the visibility for different masks sizes for the zeroth,
first and second order of the Bragg peaks. (c) Left: visibility for different circle radii of the
zeroth order normalized to its respective maximum. Right: Visibility of the different order
normalized to its maximum.
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