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Abstract

Despite strong indications for physics beyond the Standard Model (BSM), no definite

direct detection of new physics has been made at the Large Hadron Collider (LHC)

yet. Therefore, high-precision particle physics becomes ever more important in order

to probe the Standard Model (SM) parameters for any deviation from theoretical

predictions.

This requires increasing experimental precision and theoretical accuracy. On the

experimental side – besides improving hardware, luminosities, etc. – lepton colliders

such as the planned International Linear Collider (ILC) provide very clean colorless

initial states within a triggerless detection mode and eliminate uncertainties from

non-perturbative hadronic parton distribution functions.

Theoretical accuracy can be improved by computing higher-order corrections in the

perturbation series beyond leading order (LO). Monte Carlo (MC) event generators

automate these computations by the implementation of subtraction schemes to treat

infrared divergences that occur at next-to-leading order (NLO) and beyond.

The multi-purpose MC event generator WHIZARD has a wide feature set specific

to lepton colliders and is well-established in the community. In this thesis, we present

our work on generalizing its NLO quantum chromodynamics (QCD) capabilities for

arbitrary processes at fixed order using the Frixione-Kunszt-Signer (FKS) subtraction

scheme. This work is based on a prior FKS-subtraction implementation which was

limited to a narrow range of processes.

First, we give a thorough review of FKS subtraction, followed by a detailed description

of its implementation in WHIZARD. We then validate our fixed-NLO (fNLO) QCD

implementation by carrying out many self-consistency checks and by performing an

intensive comparison of WHIZARD results with two other event generators at the

level of total cross sections and differential distributions.

As far as we know, we compute the first result for the total cross section of 6-jet

production at fNLO QCD at a lepton collider with σe
+e−→jjjjjj

NLO = 4.46(4) fb.
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Zusammenfassung

Mit ausbleibenden Entdeckungen von Physik jenseits des Standard Modells am Large

Hadron Collider (LHC) wird die Bestimmung von Parametern des Standard Modells mit

steigender Präzision immer wichtiger, um Abweichungen von den Vorhersagen – und

damit neue Physik – nachzuweisen.

Aus Sicht der Experimentalphysik bieten Leptonenbeschleuniger (z.B. der geplante

International Linear Collider (ILC)) ideale Verhältnisse für Hochpräzisionsmessungen

aufgrund des geringeren Untergrundes durch Quantenchromodynamik (QCD) und die

nicht notwendigen hadronischen Partondichtefunktionen, die nicht störungstheoretisch

berechnet werden können.

Höhere theoretische Genauigkeit bietet das Berechnen von Termen in der Störungsreihe

jenseits der führenden Ordnung (LO) in den Kopplungskonstanten. Dessen Automa-

tisierung in Monte Carlo (MC) Eventgeneratoren ermöglichen Subtraktionsschemata,

die Infrarot-Divergenzen in nächst-höherer Ordnung (NLO) getrennt subtrahieren.

Der Eventgenerator WHIZARD ist etabliert für Studien an Leptonenbeschleunigern,

da er hierfür eine breite Palette an spezialisierten Funktionen liefert. Eine erste

Implementation des Frixione-Kunszt-Signer (FKS) Subtraktionsschemas in WHIZARD

ermöglichte NLO QCD Berechnungen in fester Ordnung der Störungstheorie für wenige

Prozesse, deren Erweiterung für beliebige Prozesse wir in dieser Arbeit präsentieren.

Wir fassen die Theorie zur FKS Subtraktion zusammen und detailieren dessen Imple-

mentation in WHIZARD. Diese validieren wir umfangreich, indem wir zunächst eine

Reihe von Selbsttests ausfhren, um die technische Integrität unserer Implementation in

WHIZARD sicherzustellen. Daraufhin führen wir für eine große Auswahl an Prozessen

an Leptonen- und Hadronenbeschleunigern auf fester-NLO (fNLO) Genauigkeit in

QCD einen ausführlichen und tiefgehenden Vergleich mit zwei weiteren Eventgenera-

toren durch. Damit validieren wir die Fähigkeit WHIZARDs, für beliebige Prozesse

vollautomatisch fNLO QCD Korrekturen zu totalen Wirkungsquerschnitten sowie

differentiellen Verteilungen zu berechnen.

Soweit uns bekannt ist, berechnen wir das erste Resultat für den totalen Wirkungs-

querschnitt von 6-Jetproduktion auf fNLO QCD Genauigkeit an einem Leptonenbe-

schleuniger mit σe
+e−→jjjjjj

NLO = 4.46(4) fb.
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1. Introduction

The last decade of particle physics saw a great success with the discovery of a particle

that has long been predicted by the Standard Model (SM) of particle physics – the Higgs

boson. Its existence follows from the mechanism that gives elementary particles their

masses, namely electroweak (EW) symmetry breaking [1–6]. In 2012, a Higgs-like state

with a mass of 125 GeV was discovered by the ATLAS [7] and CMS [8] experiments at

the Large Hadron Collider (LHC) [9], concluding a decades-long search.

In addition to the Higgs boson, many new hadrons have been discovered in the data

that was collected in the first two runs of the LHC at a center-of-mass (CM) energy of

7 to 8 TeV (2009–2013) and 13 TeV (2015–2018). For example, the LHCb experiment

reported observed resonances consistent with pentaquark states [10]. However, all of

these observations are in agreement with the SM and while the LHC continues to

improve exclusion limits for searches beyond the Standard Model (BSM), expectations

for significant discoveries of new physics have not yet been met. This is contrary to

observational evidence for physics that cannot be described by the SM alone, like

the most popular example of dark matter and dark energy. We know that ordinary

baryonic matter and energy only contribute a small fraction to the total energy density

of the universe. This knowledge comes, for example, from the observations of the

rotation curves of galaxies [11, 12], estimates of masses for galaxy clusters in relation

to their visible matter [13], gravitational lensing [14, 15], and the precise measurement

of the cosmic microwave background [16].

In the case of dark matter, a multitude of different theoretical explanations exist,

many of which involve one or more new particles (see [17] for a detailed review). The

general consensus is that they must only interact weakly (if at all) with SM physics.

In order to explain the observations listed above, however, all theories must allow for

gravitational interaction.

Another promising hint for new physics is given by the recent high precision mea-

surement by the Muon g − 2 experiment at Fermilab of the positive muon anomalous

magnetic moment which is found to deviate from the SM prediction by a significance

of 4.2σ [18]. These results could indicate SM extensions with new couplings to leptons.

It remains to be seen if future runs of the experiment increase the significance.

With the lack of direct evidence for BSM physics at the LHC at increasing energies

and luminosities, more effort in the high energy physics (HEP) community is being

1



1. Introduction

directed towards high-precision studies. These studies try to significantly reduce

uncertainties in crucial SM parameters, such as couplings, particle masses, mixing

angles, and CP violation parameters. In return, more precise results can then indirectly

lead to new discoveries as they increase the accuracy of the models used in the analyses.

Therefore, deviations between SM predictions and data that may have been buried

by larger uncertainties before might become significant enough to be regarded as a

discovery.1

Increasing precision is a two-sided story, however. On the one hand, improved or

new experimental methods, increased sensitivity and capabilities of detector hardware,

as well as advances in computing power, have brought and continue to bring down

systematic uncertainties significantly. Statistical errors can be reduced by increasing

the luminosity of a particle collider, e.g. as planned for both the High-Luminosity

and High-Energy LHC [19, 20]. Furthermore, future lepton colliders – such as the

International Linear Collider (ILC) [21], the Compact Linear Collider (CLIC) [22], or

the lepton-collider option of the Future Circular Collider (FCC) [23, 24] – provide an

excellent environment for high-precision studies. In comparison to hadron colliders,

their initial state is clean of any quantum chromodynamics (QCD) radiation which

dramatically reduces the overall background and thus uncertainties. Additionally, while

at hadron colliders the colliding partons carry a random fraction of the original beam

energy, the energy of the hard interaction can be much more fine-tuned at lepton

colliders. Initial-state quantum electrodynamics (QED) effects such as beamstrahlung

and initial-state radiation (ISR) of photons still have to be accounted for, however.

On the other hand, in order to match the smaller experimental uncertainties, theo-

retical calculations must reach a higher precision to provide an improved comparison

between predictions for both signal and background processes and the experimen-

tal observations. In quantum field theory (QFT), the matrix element for the hard

interaction – i.e. the underlying scattering process at the highest energy scale – is

approximatively described by a perturbative series in the coupling constant of the

corresponding theory. We call this an fixed-order (FO) expansion. By computing terms

of increasing powers in the coupling constant, the total cross section σ of the process

in question receives higher-order corrections. For example, in QCD we have [25]

σ = σ0 + αSσ1 + α2
Sσ2 + α3

Sσ3 + · · · , (1.0.1)

with the strong coupling constant αS and the leading order (LO) (or more precisely

1 The generally excepted threshold for a discovery is a significance of 5σ.
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Born) cross section σ0.2 Each subsequent term σk with an explicit order in the coupling

constant contributes as the (next-to)k-leading order (NkLO) correction to the LO cross

section and thus improves the precision of the total cross section. For each additional

power of αS, Feynman diagrams have to be added that correspond to the real radiation

of an additional particle that contributes to the number of particles in the final state,

as well as diagrams that describe the virtual loop corrections due to the radiation and

reabsorption of an additional off-shell particle.

During the calculation of higher-order corrections, divergences start to appear at

different scales of the energy spectrum. Beginning with the evaluation of virtual loop

corrections, for every additional power in the coupling constant we find Feynman

graphs with closed loops that give rise to integrals over all values of unconstrained

loop momenta. At high energy scales these integrals induce so-called ultraviolet (UV)

divergences. Because of the fact that we require all QFTs that describe the SM to be

renormalizable, the corresponding UV singularities can be treated by an absorption

into a finite number of parameters and fields entering the Lagrangian of the theory,

e.g. the coupling constants. This introduces a dependence of the coupling constants on

an arbitrary energy scale µR – the so-called renormalization scale. When all orders

in the perturbation series are included, physical observables do not depend on µR,

as it is canceled out in the calculation. For computations up to a fixed order in the

coupling constant, observables remain dependent on µR. Variations around a chosen

renormalization scale are commonly used to estimate the theoretical uncertainties

which arise by not calculating the missing higher-order contributions.

With the UV divergences taken care of, we still have to deal with divergences that

arise at the very low scales of the energy spectrum, as well as divergences due to

the momenta of a radiated particle and its emitter becoming collinear. It is common

to combine both the soft (i.e. low-energy) and collinear divergences under the term

infrared (IR) divergences.3 These divergences are present in both the calculations of

loop and real-emission diagrams and can best be visualized in QCD for an emission of

a gluon from a quark by looking at the denominator of the quark propagator. It can

be written in terms of the four-momenta q and g of the quark and gluon, respectively,

after the splitting as [27]

1

(q + g)2 −m2
q

=
1

2q0g0 (1− βq cos Θqg)
, βq ≡

|q|
q0

=

√
1− m2

q

(q0)2 , (1.0.2)

2 There are subtle to significant differences between the LO cross section and the Born contribution
in a higher-order calculation. The latter will generally be computed for particle widths at the
corresponding order, as well as for different scales compared to the LO computation [26].

3 Sometimes IR may only refer to the soft divergences, with explicit mentions of the collinear
divergences. We include both in the term IR.
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1. Introduction

with the mass mq and three-vector q of the quark, and the angle Θqg between the

quark and the gluon. For the radiation of a very soft gluon with an energy g0 → 0,

the propagator becomes singular, showcasing the soft divergence.4 Regardless of the

gluon (or the quark) becoming soft, we also encounter a divergent behavior if Θqg

becomes small, i.e. if the gluon becomes collinear to the quark. This is only true for

the radiation off massless particles, however, as otherwise the mass in the factor βq
regularizes the collinear singularity.

In order to regularize the integrals over the IR singularities, it is common to use

the technique of dimensional regularization, where the d = 4 dimensions of Minkowski

space (one energy and three spatial dimensions) are analytically continued to d = 4−2ε

dimensions, with ε < 0. Evaluation of the phase-space integrals then results in

expressions for the real-emission and virtual amplitudes dependent on 1/ε and 1/ε2

poles that cancel each other when both results are added to give the total higher-order

correction. Subsequently, the limit ε→ 0 can then be taken, resulting in a finite result

in d = 4 dimensions. This observation of the cancellation of IR divergences has led

to the Kinoshita-Lee-Nauenberg (KLN) theorem [28, 29]. It is a generalization of the

much earlier Bloch-Nordsieck theorem [30] for QED and states that in a theory with

massless fields (or in its massless limit) any IR divergences cancel for each order of

the perturbation series, given that the calculation is done for sufficiently inclusive

and IR-save observables, i.e. without sensitivity to momenta that are highly soft or

collinear.

Theoretical predictions are crucial for the guidance in planning collider experiments,

as well as for signal and background predictions in analyses of data obtained from these

experiments. In principle, these predictions are necessary for any conceivable process

that can be produced in the experiments. However, already at LO for increasing final-

state multiplicities, this quickly becomes a task that is almost impossible to complete

by analytical computations alone, as increasing numbers of complicated integrals in

high-dimensional phase spaces have to be performed. Particle physics therefore has a

long and successful history of employing a multitude of different computer programs in

order to solve this task.

Monte Carlo (MC) event generators are especially suited for the evaluation of phase-

space integrals of high dimensionality and event simulation (see [31] for a review). Many

of them allow for a high level of automation and flexibility in calculating total cross

sections and simulating events for almost arbitrary processes in the SM and beyond. All

of these programs are at minimum capable to provide these calculations and simulations

4 As already noted in [26], although this is commonly used as an example for a soft divergence, it is
not sufficient for the proof of its existence as the phase-space volume could cancel the energy g0

of the gluon. In section 2.2, when discussing soft counterterms, we will encounter a much more
definite way of showing soft divergences.
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at the partonic level of the hard process within the bounds of perturbation theory at

fixed-LO (fLO). To accurately describe the full event detected in an experiment, however,

further physical phenomena have to be taken into account, such as the successive

radiation of soft and collinear partons by those stemming from the hard process, down

to the energy scale at which hadrons start to form. This is called a parton shower,

with the process of confining the QCD partons into hadrons being called hadronization.

While many multi-purpose MC event generators – such as MG5 aMC@NLO [32, 33],

Sherpa [34], or WHIZARD [35] – have their own implementations of these aspects

of event simulation, MC programs with a stronger focus on parton showers, as well

as hadronization and subsequent decay exist. Prominent examples are Pythia [36,

37] and Herwig [38, 39], which can take the parton level event samples produced by

other MC event generators as input and process them accordingly.

At orders beyond LO, the difficulty lies in the fact that MC integration cannot

be done in non-integer dimensions, meaning that we cannot rely on the dimensional

regularization method used in the analytic computations. Therefore, at next-to-leading

order (NLO), methods have been developed based on the KLN theorem to regularize

the real and virtual contributions separately in order for them to be integrated in d = 4

dimensions. The prevailing methods used today are so-called subtraction schemes,

most notably the Catani-Seymour (CS) [40] and Frixione-Kunszt-Signer (FKS) [41, 42]

subtraction schemes. Additionally, the development of methods to compute one-loop

integrals based on the reduction of tensor integrals to scalar master integrals [43–47] led

to the advent of efficient one-loop providers (OLPs) like the matrix-element generators

GoSam [48], MadLoop [49], NJet [50, 51], OpenLoops [52, 53], and RECOLA

[54–57]. Together with these tools and the subtraction schemes, many MC event

generators nowadays are able to provide semi- and fully-automated NLO computations.

These programs include HELAC [58], MG5 aMC@NLO, POWHEG BOX [59], Sherpa,

VBFNLO [60], and WHIZARD.

Studies of NLO corrections and their computation and implementation in MC

simulations are far from being exhausted and many processes remain to be calculated

at NLO, especially those with high multiplicities in their final state. Furthermore,

with future lepton colliders on the horizon, NLO EW and mixed corrections will

become increasingly important. These have so far been of lesser importance due to the

dominance of QCD contributions at higher orders at the LHC.

Beyond NLO, fully automatic calculations remain unsolved. At next-to-next-to-

leading order (NNLO), there are promising recent developments within e.g. EERAD3

[61], Matrix [62], MCFM [63] and NNLOjet [64]. So far, these are restricted to a

small class of processes. At N3LO, solutions are even sparser. A notable example is

the cross section for Higgs boson production via gluon fusion at the LHC [65].

The overall structure of this thesis is divided into two parts. Part I starts with
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1. Introduction

chapter 2, where we begin by giving a short general introduction to the ideas behind

common subtraction schemes. This is followed by a thorough review of the FKS sub-

traction scheme. We summarize the various different aspects of the scheme introduced

in many different sources [41, 42, 59, 66–69] into a single consistent overview, needed

to understand the full fixed-NLO (fNLO) implementation in WHIZARD for QCD.

In order to accomplish this, we first establish a generalized notation, before delving

into the details of phase-space partitioning and the construction of real and virtual

subtraction terms. We want to be flexible and to perform NLO QCD simulations for

both lepton and hadron colliders. Therefore, we do not only cover the subtraction

of final-state divergences, but also detail the construction of initial-state subtraction

terms and the treatment of additional collinear divergences introduced by the presence

of parton distribution functions (PDFs).

In general, the FKS subtraction scheme is not limited to QCD corrections, but can

also be implemented for EW and mixed corrections as well. To correctly describe EW

effects, however, the subtraction terms have to be adapted accordingly [70]. Effects

from photon PDFs at hadron colliders and electron PDFs at lepton colliders (see e.g. [71,

72]) have to be taken into consideration as well. While we implemented these necessary

parts in WHIZARD, they are still in development and are undergoing validation.

Consequently, we focus only on QCD corrections and refrain from presenting the theory

for EW FKS subtraction and its implementation in WHIZARD in this work.

In chapter 3, after a short general overview of WHIZARD, we give a detailed

description of the aspects of WHIZARD that are relevant in the context of FKS

subtraction. Building upon the work presented in two earlier PhD theses [26, 73]

that introduced a first and basic implementation of FKS subtraction in WHIZARD –

limited to lepton-collider processes that only allow for final-state radiation (FSR) of

an additional gluon – we outline the various changes that were necessary for a fully

generalized support of arbitrary fNLO QCD processes. These changes include several

improvements e.g. in the internal structure of FKS subtraction terms in WHIZARD,

the phase-space setup and combinatorics required for FKS subtraction, the handling of

symmetry factors, as well as a general implementation for the correct application of

structure functions such as PDFs to FKS subtraction terms that can be easily adapted

for the EW case. Additionally, the handling of differential distributions at fNLO within

the WHIZARD framework had to be generalized. A detailed description of fNLO

events and their representation in WHIZARD concludes part I.

In part II, we give an extensive validation of the fNLO QCD capabilities of WHI-

ZARD in chapter 4. We first report on self-consistency checks to ensure the program

is working as intended on a technical level in section 4.1. In section 4.2, we then

perform an extensive comparison study on fNLO QCD total cross sections computed

by WHIZARD for a vast list of both lepton and hadron-collider processes where we
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use MG5 aMC@NLO as a reference.

Given the success of our exhaustive comparison of the implementation, we apply

the fNLO QCD capabilities of WHIZARD to multi-jet production at lepton colliders.

These processes have always been of great interest, partly due to the fact that jets

can be defined in an IR-safe way [74], allowing to compute jet-based observables for

each order of αS in the perturbation series (see eq. (1.0.1)). Since lepton collisions are

free from initial-state QCD effects, these processes provide an excellent opportunity to

conduct high-precision studies on e.g. hadronization models or SM parameters like the

value of αS. Especially on the latter, many studies have been performed in the past

in the context of the Large Electron-Positron Collider (LEP), often with the help of

event-shape observables, such as thrust [75, 76] and the Parisi C- and D-parameters

[77–79]. These event shapes are sensitive to the radiation of additional partons and

hence also to increasing orders of αn−2
S in n-jet processes. For 2- and 3-jet final states

analyses exist with up to N2LO accuracy (see [80] for an overview), with NLO accuracy

for 4-jet [81–83]. For 5-jet final states NLO computations have been done for LEP

(e.g. [84]).

At a future lepton collider, like ILC or CLIC, multi-jet production will provide even

more data at higher energies and luminosities for these high-precision studies. Moreover,

n-jet processes are important as QCD corrections to the process e+e− → ff̄ , as well as

backgrounds in multi-boson production, both also relevant in BSM studies. Therefore,

it is of paramount importance for contemporary MC event generators that will be

used for future studies to be thoroughly checked against each other. Any deviations

between them have to be traced down, and properly understood and documented if

due to differences at the level of their respective physics implementation. We thus give

an in-depth comparison study of differential distributions between MG5 aMC@NLO,

Sherpa, and WHIZARD at fNLO QCD in section 4.3 for jet observables and event

shapes for multiplicities of up to 5-jets in 1 TeV e+e−-collisions. In order to provide an

example for the capabilities of our FKS implementation for ISR, we also give a short

comparison between differential distributions generated by WHIZARD and the other

two event generators for the process pp→ Zj at a CM energy of 13 TeV.

In chapter 5, we showcase the potential of studying multi-jet processes with multiplici-

ties beyond 5-jet at fNLO QCD with WHIZARD, enabled by our FKS implementation

and the excellent capability of WHIZARD to handle phase spaces of high-multiplicity

final states. As far as we know, we calculate the first full fNLO QCD result of the 6-jet

total cross section at a lepton collider.

We conclude the thesis in chapter 6 with a summary of the results that have been

achieved and end with a discussion on future extensions of our FKS implementation

for mixed-EW and NNLO corrections.

7





Part I.

NLO Computations in a

Multi-Purpose Monte Carlo

Event-Generator Framework

9





2. Frixione-Kunszt-Signer

Subtraction Scheme at NLO

QCD

The total cross section at NLO for an arbitrary hard 2→ n scattering process, where

we neglect initial-state effects like PDFs, can be written as

σNLO =

∫
dΦnB(Φn) +

∫
dΦn+1R(Φn+1) +

∫
dΦnVb(Φn) , (2.0.1)

where we denote the squared amplitude of the Born matrix element by B and the

squared real amplitude by R, dependent on the n-body and (n+ 1)-body phase space

Φn and Φn+1, respectively. The virtual contribution Vb is made up by the interference

of the Born and one-loop matrix elements. We call it the bare virtual contribution due

to the fact that while we assume UV divergences to be taken care of by the means of

renormalization, IR divergences still remain [67].

In chapter 1, we pointed out that the integration in eq. (2.0.1) over the n-body

and (n+ 1)-body phase space for the virtual and real contribution, respectively, is

IR-divergent. Since MC integration can only be performed in integer dimensions, the

method of dimensional regularization with d = 4− 2ε dimensions cannot be used in a

numerical computation. However, we can apply suitable subtraction (or counter-)terms

C(α)(Φn+1) for each singular configuration α of Φn+1 that cancel the poles individually

for the real contribution such that the limit

lim
ε→0

∫
dΦn+1

[
R(Φn+1)−

∑

α

C(α)(Φn+1)

]
(2.0.2)

is finite. According to the KLN theorem (see chapter 1), we can assume that the

singular structure of the ε poles is identical for the real and virtual contributions,

except for opposing signs. Therefore, the limit

lim
ε→0

∫
dΦn

[
Vb(Φn) +

∑

α

∫
dΦ

(α)
radC(α)(Φn+1)

]
(2.0.3)
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2. Frixione-Kunszt-Signer Subtraction Scheme at NLO QCD

has to be finite as well when the integration over the phase space of the radiated

particle is carried out in d = 4−2ε for C(α). Indeed, we can formulate this in a universal

way, meaning that the functional form of the counterterms C(α) in eq. (2.0.2) and their

integration in eq. (2.0.3) have to be calculated analytically only once, after which they

can be applied to arbitrary processes.

The integral over the radiation phase space Φ
(α)
rad in eq. (2.0.3) implies that we have

a mapping between the n-body and (n+ 1)-body phase space that factorizes Φn+1 in

each α. However, this mapping and the construction of the counterterms is dependent

on the representation of the singular configuration α. Therefore, the C(α) are not

unique, resulting in different subtraction schemes that have been developed over the

last decades.

One class of schemes are the dipole subtraction methods, with the most prominent

being CS subtraction [40, 85], implemented e.g. in Sherpa [86]. In these dipole

schemes, the singular structure is in general represented by three indices, where

each index stands for a particle – the emitter, the emitted, and the spectator. The

latter is identical to the color partner in the eikonal approximation in the soft limit.

Therefore, the dipole subtraction is formulated with an emphasis on soft radiation and

features 3 → 2 mappings from Φn+1 to the n-body phase space. Additionally, this

involves summing over the three indices of the particles that represent each singular

configuration, leading to a high number of counterterms. However, it allows for a

highly generic parametrization of the (n+ 1)-body phase space. Besides CS, other

variations of dipole subtraction schemes exist, like Nagy-Soper subtraction [87, 88] or

Antenna subtraction [89–91]. The former is based on splitting functions in an improved

parton shower [92–94] and reduces the number of subtraction terms [95]. Antenna

subtraction shows promising developments towards NNLO automation (see [96], with

many following). Both schemes have yet to be implemented for arbitrary processes in

a multi-purpose MC event generator, however.

Besides the dipole approach, another scheme is FKS subtraction [41, 42, 66, 68],

implemented e.g. in MG5 aMC@NLO [33], POWHEG BOX [59, 67], and WHIZARD

[26, 97, 98]. In this scheme, the focus lies on collinear splittings, leading to singular

configurations being represented by a pair of particles – the emitter and the emitted.

Therefore, the number of indices that is summed over is reduced to two and we have

a 2→ 1 mapping from an underlying n-body phase space to Φn+1. Consequently, as

stated in [42], in general the number of counterterms is smaller than in CS subtraction

and scales slower with increasing final-state multiplicity, benefiting numerical stability.

As further listed in [42], FKS subtraction has many additional advantages, including

better parallelization possibilities and the ease of supporting fully-polarized processes

for future lepton colliders like the ILC. Another point given there is that because of its

structure being akin to that of collinear radiation, it is straightforward to implement a

12



matching to parton-shower methods that are not based on color dipoles as e.g. provided

by MC@NLO or POWHEG.

We do not cover the resonance-aware extension of FKS subtraction [69] in this

thesis. Its implementation in WHIZARD has been detailed in [26] and applied to

fully-differential top-pair production at a lepton collider in [99]. This formulation

of FKS subtraction improves the behavior of the calculation for processes in which

intermediate particle with very small decay widths are present. The contributing decay

of these particles experiences real emissions that shift the virtuality of the real-emission

propagator away from its value at Born level. This discrepancy leads to the mismatch

in the cancellation of divergences and is treated in the resonance-aware FKS subtraction

by additional terms and a modified phase-space parametrization.

We start presenting the theory behind FKS subtraction as established by [41, 42, 59,

66–69] by first discussing some general phase-space considerations in section 2.1, where

we also work out the generalized notation based on [26, 42, 67] to be used throughout

this thesis. In section 2.2 we then detail the construction of the real-subtraction terms

for both FSR and ISR in QCD. Their integration over the radiation phase space

and addition to the bare squared virtual amplitude Vb as in eq. (2.0.3) is laid out in

section 2.3.

Before we continue, however, we comment on mixed NLO corrections in the section

below.

Mixed Corrections at NLO

In this thesis we will focus on NLO QCD corrections. This does not cover the

whole picture and needs some clarification, however, as generally in a gauge invariant

computation, a process receives contributions from terms proportional to different

orders of both QCD and EW couplings. Therefore, in general, we also need to expand

the perturbation series in more than one coupling, leading to mixed corrections at

higher orders. This procedure is explained in detail e.g. in [33]. We will simply present

the example given therein of the partonic process uu→ uu, where only QCD and QED

contributions are considered (i.e. no Z-boson is exchanged). The square of the sum

of Born matrix elements gives terms proportional to the square of either the strong

coupling αS or the QED coupling α, as well as a mixed term proportional to αSα. This

is illustrated by the upper row of circles in fig. 2.1.

At NLO, each term of the squared Born amplitude receives both QCD and QED

corrections due to the expansion in both αS and α. In fig. 2.1 this is denoted by an

arrow pointing to the left (QCD) and an arrow pointing to the right (QED). The

resulting contributions are represented in the lower row of circles by their coupling

orders. It is important to note that there the terms proportional to α2
Sα and αSα

2 each
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α2
S αSα α2

α3
S α2

Sα αSα
2 α3

Figure 2.1. Illustration of the mixing of NLO QCD and QED corrections to the
partonic process uu→ uu. The upper row shows the LO contributions proportional
to combinations of different orders of the QCD and QED couplings αS and α,
respectively. The lower row represents their corresponding NLO corrections, with left
arrows representing QCD corrections and right arrows those for QCD. The graphic is
inspired by [33].

are the combined result of two types of corrections, each stemming from another Born

contribution. This means that the divergences in these higher-order terms are only

fully canceled when taking into account both QCD and QED corrections. Therefore,

in principle, all types of corrections have to be taken into account for a physically

meaningful computation of the full process at NLO. It is possible, however, to arrive at

a physically sound result by only calculating the pure QCD (QED) corrections to the

Born contribution with the highest order in αS (α) since they do not receive mixed

corrections. This is illustrated in fig. 2.1 by the leftmost (rightmost) circle in the lower

row. In this thesis, we refer to the pure correction whenever we mention NLO QCD

corrections.

2.1. Phase-space Generalities and Notation

In this thesis, we focus on NLO corrections at FO in the perturbation series. Conse-

quently, we often use the terms NLO and fNLO interchangeably and only explicitly

denote the FO prefix where we deem necessary.

We will denote the square of a four-momentum p of a particle with invariant mass

m as

p2 =
(
p0
)
− |p|2 = m2 , (2.1.1)

where we write the energy component of p as p0 and its three-momentum as p.
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2.1. Phase-space Generalities and Notation

Deferring the handling of PDFs to section 2.2.2, we consider an arbitrary hard 2→ n

scattering process and write the corresponding set of Born four-momenta as

Φn ≡ {p⊕, p	, p3, ..., pn+2} , (2.1.2)

where the index ⊕ = 1 and 	 = 2 serve the purpose of denoting the direction of the

incoming particles as parallel and anti-parallel to the beam axis direction ⊕, respectively.

This will be especially handy once we consider PDFs. The set of four-momenta for a

real emission of a gluon or the splitting of a gluon into a pair of partons is represented

by

Φn+1 ≡ {k⊕, k	, k3, ..., kn+3} . (2.1.3)

Both sets must satisfy momentum conservation, respectively given by

p⊕ + p	 =
n+2∑

i=3

pi , and k⊕ + k	 =
n+3∑

i=3

ki . (2.1.4)

Furthermore, we define

s ≡ (p⊕ + p	)2 (2.1.5)

and write the n-body phase space element as

dΦn (p⊕ + p	; p3, ..., pn+2) = (2π)4 δ4

(
p⊕ + p	 −

n+2∑

i=3

pi

)
n+2∏

i=3

d3pi

(2π)3 2p0
i

. (2.1.6)

Phase-space singularities in the computation of n-body (or Born-like) cross sections

are assumed to be taken care of through the adequate choice of kinematic cuts applied

to the final-state particles. We adapt the notation from [42] and write this condition as

Jn
(B)
L . (2.1.7)

For QCD, this condition can generally be met by demanding that all the strongly-

interacting light particles n
(B)
L of the Born-like final state are resolvable individually

as a jet by an arbitrary IR-safe jet algorithm. Any remaining QED singularities are

understood to be dealt with in eq. (2.1.7) as well.

The real phase space, however, retains IR singularities which have to be treated

with a subtraction formalism in an MC calculation as stated in the introduction of

chapter 2. For each of these singular phase-space regions we can define a mapping M(α)

as explained in [67] such that

Φ̃
(α)
n+1 ≡ M(α) (Φn+1) =

{
k̃

(α)
⊕ , k̃

(α)
	 , k̃

(α)
3 , · · · , k̃(α)

n+3

}
(2.1.8)
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is a set of four-vectors containing a singular configuration. We require each mapping

M(α) to be the identity at its particular singular phase-space configuration and to be

smooth in its vicinity. We will call this resulting part of phase space the α-region.

While the tilde notation serves a purpose of disambiguation in this instance, we will

later drop the notation of eq. (2.1.8) and simply label momenta belonging to a (n+ 1)

kinematics as k, since the context should always be clear.

In the FKS formalism, the singularities in a given α-region are associated to a pair

of particle indices (i, j) in the real flavor structure fr with kinematics that leads to

collinear and/or soft divergences. To be more precise, a real flavor structure

fr ≡ {I1, I2, · · · } (2.1.9)

is the set of particle flavors Ii corresponding to their respective momenta in a kinematic

set Φ̃
(α)
n+1. Analogously, fB is the Born flavor structure. We will also refer to fr and fB

as the real and Born (sub)process, respectively.

Writing the particle indices as partons for the sake of general demonstration, the

following types of QCD FKS pairs exist [26]:

1. (q, g) and (q̄, g), describing a gluon with vanishing energy emitted by an (anti-)

quark, inducing a soft singularity, and/or a spatial momentum (anti-)parallel to

the emitting parton, resulting in a collinear singularity if mq/q̄ = 0.

2. (q, q̄), describing a g → qq̄ splitting which induces a collinear singularity if both

mq/q̄ = 0. As we will later see explicitly, these splittings do not have a soft

singularity.

3. (g, g), describing a g → gg splitting, giving rise to both soft and collinear

divergences.

Generally, for the first two kinds of FKS pairs also the mirrored configurations (g, q),

(g, q̄), and (q̄, q) exist. These, however, have the same matrix elements as their mirrored

counterpart and would contribute twice. Leaving these pairs out of the calculation

eliminates the need for a symmetry factor and lets us define parton Ij to always be

massless and thereby ensuring that each FKS pair induces a divergence. The radiation

of a massive particle does not lead to a singularity since in this case it is regularized

by the mass of the emitted particle, with the same being true for a massive emitter in

a collinear splitting. Only in the case of (g, g) associated with FSR we keep the trivial

mirror pair and apply a symmetry factor, described in section 2.1.2.

In order to more accurately define the FKS pairs, we adopt the labeling convention
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2.1. Phase-space Generalities and Notation

for particles from [42] with the modifications from [26] and write

nI as the number of initial-state particles,

nF as the index of the first strongly-interacting particle, where

nF =





1 for hadron-hadron collisions,

2 for lepton-hadron collisions,

3 for lepton-lepton collisions,

(2.1.10)

n
(B,R)
L as the number of strongly-interacting light final-state particles (Born, Real),

nH as the number of strongly-interacting heavy final-state particles,

n∅ as the number of final-state particles not interacting strongly,

nS as the total number of all strongly interacting particles.

We then impose an ordering on the particle flavors Ii in flavor structures, both real

and Born-like, as follows:

initial state :
{
Ii
∣∣ 1 ≤ i ≤ nI

}
,

final-state light partons :
{
Ii
∣∣nI + 1 ≤ i ≤ nI + n

(B,R)
L

}
,

final-state heavy partons :
{
Ii
∣∣nI + 1 + n

(B,R)
L ≤ i ≤ nI + n

(B,R)
L + nH

}
,

non-QCD particles :
{
Ii
∣∣nI + 1 + n

(B,R)
L + nH ≤ i ≤ nI + n

(B,R)
L + nH + n∅

}
.

With this labeling in place, we can now define the set of all FKS pairs associated with

inducing a divergence in the squared matrix element R (fr) belonging to a real flavor

structure fr as [26, 42]

α ∈ PFKS(fr) =
{

(i, j)
∣∣nF ≤ i ≤ n

(R)
L + nH + nI , nI + 1 ≤ j ≤ n

(R)
L + nI , i 6= j,

R(fr)J
n
(B)
L →∞ if k0

j → 0 and/or ki ‖ kj,

non-redundancy conditions
}
.

(2.1.11)

While this definition allows Ii to be part of the initial state, it restricts Ij to the

final-state. Therefore, we call Ij the emitted, or FKS parton. The non-redundancy

conditions avoid the double counting of symmetric FKS pairs, with only FKS pairs

with two gluons that are associated with FSR being kept symmetrical, as stated earlier.
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2. Frixione-Kunszt-Signer Subtraction Scheme at NLO QCD

They are defined as

Ii 6= g, Ij = g, (i, j) ∈ PFKS ⇒ (j, i) /∈ PFKS if nI + 1 ≤ i , (2.1.12)

Ii 6= g, Ij 6= g, (i, j) ∈ PFKS ⇒ (j, i) /∈ PFKS if nI + 1 ≤ i < j . (2.1.13)

We will use the notations α and (i, j) (or ij in case of a subscript) interchangeably, since

they are unambiguously tied together. Depending on the context and the intended

emphasis on either the α-region or its associated FKS pair, however, it is convenient

to choose between the different notations.

Coming back to eq. (2.1.8), we can now associate with each singular set Φ̃
(α)
n+1 a

Born-like set Φ̄
(α)
n , also called the underlying Born kinematics. It is defined in the

barred notation of [67] as

Φ̄(α)
n ≡

{
k̄

(α)
⊕ , k̄

(α)
	 , k̄

(α)
3 , · · · , k̄(α)

n+2

}
. (2.1.14)

This set of four-momenta can easily be constructed from Φ̃
(α)
n+1 by simply deleting the

parton with zero momentum if α is associated with a soft divergence or – in case

of a final-state collinear singularity – by replacing the pair of collinear momenta by

their sum. For initial-state collinear configurations the momentum of the emitter is

replaced with its momentum after emitting the collinear parton, whose momentum is

then deleted from the list of external momenta. We then relabel the momenta in Φ̄
(α)
n

according to the ordering introduced before. By constructing Φ̄
(α)
n in this way we also

assure momentum conservation.

For each α-region, we can now parametrize the (n+ 1)-body kinematics as [67]

Φn+1
(α)⇐⇒
{

Φ̄(α)
n ,Φ

(α)
rad

}
(2.1.15)

via the underlying Born configuration and a set Φ
(α)
rad of variables describing the

additional three degrees of freedom of the FKS parton. The bidirectional arrow

indicates that the mapping in eq. (2.1.8) is invertible. Additionally, we note that for

example for different α-regions, the configurations

Φ̄(α)
n = Φ̄(α′)

n = Φ̄(α′′)
n = · · · , Φ

(α)
rad 6= Φ

(α′)
rad 6= Φ

(α′′)
rad 6= · · · (2.1.16)

are allowed as long as all α-regions have the same underlying Born flavor structure.

Therefore, the same underlying Born configuration can be associated with different

real configurations, whereas the other way around a single real configuration can only

18



2.1. Phase-space Generalities and Notation

have one underlying Born configuration.1

Equation (2.1.15) allows us to factorize the (n+ 1)-body phase-space element as

dΦ
(α)
n+1 = dΦ̄(α)

n dΦ
(α)
rad . (2.1.17)

Further, the radiation phase-space element dΦ
(α)
rad can be written as

dΦ
(α)
rad = J (α)(ξj, yij, φj)dξjdyijdφj , (i, j) ∈ PFKS , (2.1.18)

in terms of a Jacobian J (α), with its explicit form given in appendix A.3. In general,

J (α) is dependent both on Φ̄
(α)
n and the typical choice for the set of FKS variables

{ξ, y, φ} that parametrize Φ
(α)
rad. Considering only massless emitting particles, in the

center-of-mass (CM) frame of the incoming partons these variables are [41, 67]

• the rescaled energy of the emitted particle Ij, given by

ξj =
2k0

j√
s
∈ [0, ξmax] , (2.1.19)

where in the case of FSR the upper bound of ξmax is limited by the energy k̄0
i

the emitting particle Ii has in the underlying Born kinematics such that

ξmax =
2k̄0

i√
s
≤ 1 , (2.1.20)

• the cosine between the spatial vectors of the emitted particle Ij and a reference

direction, defined by either the incoming parton parallel to the ⊕ direction of

the beam axis (for ISR) or its splitting partner Ii (for FSR), denoted by

[−1, 1] 3 yij ≡
ki · kj
|ki| |kj|

= cos θij for FSR, (2.1.21)

and [−1, 1] 3 yj ≡
k⊕ · kj
|k⊕| |kj|

= cos θ⊕j for ISR, (2.1.22)

• and the azimuthal angle of the emitted particle around the same reference

direction written as

φj ∈ [0, 2π] . (2.1.23)

We suppress the indices of the FKS variables for the ease of notation in general cases

or where the context is clear. While the definition of φ always remains the same, the

1This is in contrast to CS subtraction where there can be more than one Born configuration for a
single real one.
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2. Frixione-Kunszt-Signer Subtraction Scheme at NLO QCD

expressions for ξmax and y can become more complex, e.g. for massive emitters or ISR,

as described in appendices A.1.1 and A.2, respectively. In terms of the FKS variables,

a soft singularity corresponds to ξ → 0, whereas y → ±1 induces a collinear singularity.

The negative sign of y corresponds to the case of ISR where the radiated particle is

emitted by and collinear to the incoming particle in 	 direction, therefore becoming

anti-collinear to the beam direction ⊕.

2.1.1. Real Phase-space Generation

The actual construction of the (n+ 1)-body phase space, together with the explicit

forms of the Jacobians J (α), will be deferred to appendix A. Although the correct

generation of real-emission kinematics is imperative for assuring sufficient cancellation

of divergences by the subtraction counterterms, its details are not relevant for the

discussions that follow.

In general, the idea of constructing the real-emission phase space in a MC event

generator is rather straightforward. Since the arrow in eq. (2.1.15) indicates that the

correspondence is one to one and the mapping in eq. (2.1.8) is invertible, we can devise

an inverse construction of Φn+1, given a set of barred kinematics Φ̄
(α)
n and a set of

FKS variables Φ
(α)
rad. Considering the fact that Φ̄

(α)
n is for all practical means just a

regular n-body phase space for the flavor structure of the particular underlying Born

associated with one or more real flavor structures, any MC event generator should be

able to provide this part already. The additional steps are then to generate an extra

set of random numbers for the FKS variables and use them, together with the n-body

kinematics, to calculate the kinematics for the (n+ 1)-body phase space, as outlined

in appendix A.

2.1.2. Partitioning the Real Phase Space

The Partition Functions S

From what we have seen in section 2.1, in the FKS subtraction scheme the (n+ 1)-body

phase space can be effectively partitioned into regions containing at most one soft and

one collinear singularity associated with an FKS pair (i, j) ∈ PFKS. We can use this to

split up the squared amplitude R(fr) of the real matrix element, belonging to a flavor

structure fr of a real-emission (sub)process, into a sum of terms [41, 42, 67],

R(fr) =
∑

(i,j)∈PFKS

Sij(fr)R(fr) with Sij(fr)R(fr) ≡ Rij(fr) , (2.1.24)
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2.1. Phase-space Generalities and Notation

so that Rij(fr) will diverge only if the FKS parton Ij becomes soft and/or collinear to

Ii while remaining finite everywhere else. For ease of notation we will understand the

dependence on fr as implied and only write it explicitly when needed.

There is some freedom in choosing the explicit form of the S-functions. However,

some important constraints have to be met, the most obvious being

∑

(i,j)∈PFKS

Sij = 1 . (2.1.25)

Additionally, we require Sij to vanish in all singular regions of phase space that are

associated with FKS pairs different from (i, j) [42]:

lim
kk‖kl

Sij = 0 ∀ {k, l} 6= {i, j} | (k, l) ∈ PFKS , (2.1.26)

lim
k0k→0
Sij = 0 ∀k | Ik = g and ∃l | ((l, k) ∈ PFKS ∨ (k, l) ∈ PFKS) . (2.1.27)

We recall that collinear divergences are regulated when at least one splitting partner

is massive. In these cases the S-functions behave as they do in any other regular

phase-space region by taking a value between 0 and 1. In a collinear region associated

with an FKS pair having two massless members, however, we demand [42, 67]

lim
ki‖kj
Sij = hij(zij) with 0 ≤ zij ≤ 1 and zij =

k0
j

k0
i + k0

j

. (2.1.28)

The functions hij only differ from unity if both Sij and Sji are considered, which we

only do in the case of FSR when both members of an FKS pair are gluons, as defined

in eq. (2.1.11). Therefore, we have [26, 67]

hij(zij) =




h(zij) ≥ 0 if (Ii, Ij) = (g, g) , i > nI

1 else
(2.1.29)

and require [42, 67]

lim
zij→0

h(zij) = 1 , lim
zij→1

h(zij) = 0 , h(zij) + h(1− zij) = 1 . (2.1.30)

A typical choice for h(zij) is [67]

h(zij) =
(1− zij)a

zaij + (1− zij)a
, 0 < a ∈ R . (2.1.31)

Together with the conditions in eq. (2.1.30), this choice prevents the double-counting
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2. Frixione-Kunszt-Signer Subtraction Scheme at NLO QCD

of Sij and Sji. The exponent a can be chosen freely, as the numeric results should not

be influenced by a. In the region of phase space where the emitted parton Ij induces a

soft singularity we require [42, 67]

lim
k0j→0
Sij = cij ∀j | Ij = g , (2.1.32)

where cij ∈ R such that

0 < cij ≤ 1 and
∑

i
(i,j)∈PFKS

cij = 1 . (2.1.33)

Choice of S-functions

The constraints on the S-functions as given in eqs. (2.1.25) to (2.1.33) still leave the

freedom to choose a specific form for them. It was shown in [100] in the context of

NLO QCD single-top hadroproduction with MC@NLO that smooth S-functions improve

the stability of the numeric integration when compared to the original representation

in terms of products of Heaviside step functions [41, 66]. The prevalent choice of

S-functions in modern FKS literature [42, 67] is

Sij =
1

Ddij
hij(zij) , (i, j) ∈ PFKS , (2.1.34)

D ≡
∑

(k,l)∈PFKS

1

dkl
hkl(zkl) , (2.1.35)

with hij(zij) as defined before. The phase-space weights dij are required to fulfill the

conditions

dij = 0 if and only if k0
i = 0 or k0

j = 0 or ki ‖ kj (2.1.36)

and can in general be chosen as [59, 67]

dij =

[
2ki · kj

k0
i k

0
j(

k0
i + k0

j

)2

]p
mj→0

=
mi→0

2p
(

k0
i k

0
j

k0
i + k0

j

)2p

(1∓ y)p , (2.1.37)

with an arbitrary exponent 0 < p ∈ R, which we will set to one for convenience. The

plus in front of the y in the last bracket covers the case for ISR, where additionally

y = −1 induces a divergence when the emitted parton becomes collinear to the incoming

parton in 	-direction. In this case, dij must vanish as well.

In some cases we can, and even have to, simplify dij. It is required in the limit in

which the FKS pair (i, j) induces a soft singularity. By rewriting the denominator of
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eq. (2.1.34) using the behavior of hij defined in eqs. (2.1.29) and (2.1.30) such that2

Ddij = 1 +
∑

k|(k,j)∈PFKS
k 6=i

dij
dkj

+
∑

(k,l)∈PFKS
l 6=j

dij
dkl

, (2.1.38)

we can see that in the soft limit, where both dij and dkj vanish, the ratio between the

phase-space weights in the second term of eq. (2.1.38) becomes ill-defined. However,

we can see that in the soft limit the ratio becomes independent of the radiated energy

k0
j by writing kj = k0

j k̂j and using eq. (2.1.37), which gives

lim
k0j→0

dij
dkj

= lim
k0j→0

2
(
ki · k̂j

)
k0
i

(
k0
j

)2 (
k0
k + k0

j

)2

2
(
kk · k̂j

)
k0
k

(
k0
j

)2 (
k0
i + k0

j

)2
=

2
(
ki · k̂j

)
k0
k

2
(
kk · k̂j

)
k0
i

. (2.1.39)

Therefore, we have to use the simplified phase-space weights in the soft limit, given by

dsoft
ij =

2ki · k̂j
k0
i

. (2.1.40)

We note that because of the definition of FKS pairs in eq. (2.1.11) the emitted FKS

parton is always massless, making k̂j a unit vector with the direction of the emitted

particle and k̂0
j = 1. Also, in the soft limit the real momentum ki becomes equal to its

underlying Born momentum k̄i.

For the case of ISR, we choose to simplify the dij functions by evaluating the second

equality of eq. (2.1.37) in the limit k0
i � k0

j , where the energy sum in the denominator

effectively cancels the k0
i in the numerator. This is a valid choice for the initial-state

dij functions, since we have chosen not to symmetrize any FKS pairs associated to ISR

divergences. Hence, we do not have to worry about k0
1/2 → 0, while still meeting the

conditions for dij and Sij. Demanding any incoming QCD partons to be massless, we

can then write

d1j = 2
(
k0
j

)2
(1− yj) , (2.1.41)

d2j = 2
(
k0
j

)2
(1 + yj) , (2.1.42)

d0j =
(
k0
j

)2 (
1− y2

j

)
, d−1

0j = d−1
1j + d−1

2j . (2.1.43)

2If hij 6= 1, i.e. both members of an FKS pair being gluons, we use eq. (2.1.30) to obtain:

1

dij
hij(zij) +

1

dji
hji(zji) =

1

dij
(hij(zij) + hij(1− zij)) =

1

dij
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2. Frixione-Kunszt-Signer Subtraction Scheme at NLO QCD

Here, the notation of an emitter with index i = 0 is adapted from [59]. This notation

simply combines α-regions associated with collinear divergences stemming from both

the ⊕ and 	 directions that do not change the underlying Born kinematics (and

flavors). According to the definition of PFKS in eq. (2.1.11) and the non-redundancy

conditions eqs. (2.1.12) and (2.1.13), this case can only occur for the initial-state real

emission of a gluon. Again, in the ISR soft limit one can easily show that by replacing

dkj in eq. (2.1.39) with the ones from eqs. (2.1.41) to (2.1.43), respectively, we obtain

dsoft
1j = 2 (1− yj) , (2.1.44)

dsoft
2j = 2 (1 + yj) , (2.1.45)

dsoft
0j = 1− y2

j . (2.1.46)

2.2. Contributions to the Real Cross Section

With the notation and the phase-space generalities discussed, we draw our attention

to the construction of the real-subtraction terms. In general, the total NLO real cross

section for a real 2→ n+ 1 (sub)process fr can be written as the sum of integrals over

the partitioned phase space and the corresponding partitioned squared real amplitude

such that

σreal
NLO(fr) =

Jn
(B)
L

N (fr)

∫
dΦn+1R(fr) =

Jn
(B)
L

N (fr)

∑

α∈PFKS

∫
dΦ̄(α)

n dΦ
(α)
radRα(fr) . (2.2.1)

Here, we explicitly wrote out the condition Jn
(B)
L as stated in eq. (2.1.7) and the

symmetry factor N (fr) that accounts for the presence of identical particles in the final

state of the real (sub)process fr. We can recall from eq. (1.0.2) that the divergences in

eq. (2.2.1) stem from propagators proportional to [ξ (1− y)]−1 (for FSR) in terms of

the FKS variables. Applying dimensional regularization makes the divergences explicit

and thus we can write the corresponding phase space in d = 4− 2ε dimensions for each

term of the sum as [41, 67]

dΦ̄(α)
n dΦ

(α)
rad = (2π)d δd

(
k⊕ + k	 −

n+3∑

l=3

kl

)

n+3∏

l=3
l 6=j

dd−1kl

(2π)d−1 2k0
l




× s1−ε

(4π)d−1
ξ1−2ε
j

(
1− y2

)−ε
dξjdydΩd−2

︸ ︷︷ ︸
dΦ

(α)
rad

, (2.2.2)
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where we denote the quantities of the emitted particle with index j as usual. The

azimuthal integral over the whole range of φ in d = 4− 2ε dimensions gives [101]

∫
dΩd−2 =

2π1−ε

Γ(1− ε) . (2.2.3)

In the following, we will first consider final-state singularities to establish the technical-

ities needed in constructing the real counterterms. We will return to the more involved

treatment of ISR in section 2.2.2.

2.2.1. Final-state Subtraction Terms

Final-state collinear divergences can only be induced by yij → 1. Hence, we can define

a regularized squared amplitude R̃ij such that [41, 67]

Rα =
1

ξ2
j

1

1− yij
R̃ij(ξj, yij) , R̃ij(ξj, yij) ≡ ξ2

j (1− yij)Rα , (i, j) ∈ PFKS . (2.2.4)

For one FKS pair the integration over the radiation phase space in eq. (2.2.1) is then

proportional to

∫
dΦ

(α)
radRα(fr) ∼

∫ ξmax

0

dξjξ
−1−2ε
j

∫ 1

−1

dyij
(1− yij)−1−ε

(1 + yij)
ε

∫
dΩd−2R̃ij(ξj, yij) . (2.2.5)

We will deal with the divergences that occur for ε = 0 with the help of modified plus

distributions, explained in the following excursion.

Modified Plus Distributions

Suppose we have an integral I of the form

I ≡
∫ ξmax

0

dξξ−1−2εf(ξ, y) , (2.2.6)

with f(ξ, y) being a finite function in the integration volume. The integral then

has an obvious singularity for ξ = 0 if ε = 0, which we isolate in a separate term

by writing

I =

∫ ξmax

0

dξ
f(ξ, y)− f(0, y)Θ(ξc − ξ)

ξ1+2ε
+ f(0, y)

∫ ξmax

0

dξξ−1−2εΘ(ξc − ξ) ,
(2.2.7)

where 0 < ξc ≤ ξmax is an arbitrary parameter on which the final result should

not depend. Writing ξ−2ε = e−2ε log ξ as a Taylor series and integrating the second
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term of eq. (2.2.7), we get

I =

∫ ξmax

0

dξ
f(ξ, y)− f(0, y)Θ(ξc − ξ)

ξ

[ ∞∑

n=0

(−2ε)n

n!
logn ξ

]
− ξ−2ε

c

2ε
f(0, y)

(2.2.8)

=

∫ ξmax

0

dξ

{
−ξ
−2ε
c

2ε
δ(ξ) +

∞∑

n=0

(−2ε)n

n!

(
logn ξ

ξ

)

c

}
f(ξ, y) , (2.2.9)

where we have defined the modified plus distributions denoted with the subscript

c in the last step. Analogously, we can repeat the steps above for the expression

(1∓ y)−1−ε in eq. (2.2.5) and thus get

ξ−1−2ε = −ξ
−2ε
c

2ε
δ(ξ) +

(
1

ξ

)

c

− 2ε

(
log ξ

ξ

)

c

+O(ε2) , (2.2.10)

(1∓ y)−1−ε = −
(
δI/O

)−ε

ε
δ(1∓ y) +

(
1

1∓ y

)

δI/O

+O(ε) , (2.2.11)

where 0 < δI/O ≤ 2 are arbitrary parameters on which the final result should

not depend. The two indices I and O will be used to indicate that we can have

different values for initial and final state. For a quick overview we state the

definition of the action of the distributions used within this thesis explicitly:

∫ ξmax

0

dξ

(
1

ξ

)

c

f(ξ, y) =

∫ ξmax

0

dξ
f(ξ, y)− f(0, y)Θ(ξc − ξ)

ξ
, (2.2.12)

∫ ξmax

0

dξ

(
log ξ

ξ

)

c

f(ξ, y) =

∫ ξmax

0

dξ
f(ξ, y)− f(0, y)Θ(ξc − ξ)

ξ
log ξ ,

(2.2.13)
∫ 1

−1

dy

(
1

1∓ y

)

δI/O

f(ξ, y) =

∫ 1

−1

dy
f(ξ, y)− f(ξ,±1)Θ(±y − 1 + δI/O)

1∓ y .

(2.2.14)

The more common definition of the unmodified plus distributions is such that

(
logn ξ

ξ

)

+

=

(
logn ξ

ξ

)

c

for ξc = ξmax = 1 , (2.2.15)

(
1

1∓ y

)

+

=

(
1

1∓ y

)

δI/O

for δI/O = 2 . (2.2.16)
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Returning to eq. (2.2.5), we can now use eqs. (2.2.10) and (2.2.11) in order to write

∫
dΦ

(α)
radRα(fr) =

s1−ε

(4π)d−1

{∫
dΩd−2 ξ

−2ε
c (2δO)−ε

2ε2
R̃ij(0, 1) +O(ε) (2.2.17)

−
∫
dΩd−2

∫ 1

−1

dyij (1 + yij)
−ε ξ

−2ε
c

2ε

[(
1

1− y

)

δO

+O(ε)

]
R̃ij(0, yij)

−
∫
dΩd−2

∫ ξmax

0

dξj
(2δO)−ε

ε

[(
1

ξj

)

c

− 2ε

(
log ξj
ξj

)

c

]
R̃ij(ξj, 1)

}

+

∫
dφj

∫ ξmax

0

dξj

∫ 1

−1

dyij

(
1

ξj

)

c

(
1

1− yij

)

δO

J (α)

ξj
R̃ij(ξj, yij)

≡ Isδ,α + Is+,α + I+δ,α + I++,α , (2.2.18)

where we get a factor 2−ε in the first and third row due to δ(1−yij) acting on (1 + yij)
−ε.

In the last line we defined a shorthand notation3 for the integrals, where the subscripts

s and δ stand for soft and collinear divergent contributions, while a + denotes their

regularization via the modified plus distributions, respectively.

Equation (2.2.17) leaves us with a very tameable set of terms, with the first three

being explicit in their divergences. In detail, the first term (Isδ,α) is soft-collinear

divergent, while the second (Is+,α) and third (I+δ,α) are soft and collinear divergent,

respectively. According to the KLN theorem, however, these divergences will cancel

against their respective terms in the squared one-loop matrix elements after the

integration, thus giving rise to the counterterms for the virtual contribution.

The first two terms originate from the delta distribution in ξ, allowing us to calculate

them by using the eikonal approximation for soft emissions in d = 4− 2ε dimensions.

The calculation of the integrated collinear term I+δ,α makes use of the fact that we

can substitute the invariant amplitude with its collinear limit, eliminating the need

to know R̃ij in d dimensions. We will return to the integrated subtraction terms in

section 2.3.

The last term (I++,α) of eq. (2.2.17) has no ε-poles left and the modified plus

distributions act on the regularized squared amplitude R̃ij as defined in eq. (2.2.4).

Therefore, no singularities remain and we can safely return to four dimensions by

setting ε = 0. Consequently, the angular measure dΩd−2 transforms into dφj. In

addition, here we explicitly write out the Jacobian J (α)(ξj, yij, φj), which in general

depends on the FKS variables and Φ̄
(α)
n and is given in detail in appendix A.3. We note

that the Jacobian includes the ξ from eq. (2.2.2) used in the derivation of eq. (2.2.17),

which we therefore have to cancel out again.

3 While we borrow the style of the notation from [26, 69], we define the integrals I without the
integration over the n-body phase space.
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2. Frixione-Kunszt-Signer Subtraction Scheme at NLO QCD

By applying the definitions of the modified plus distributions from eqs. (2.2.12)

and (2.2.14) and defining

R̂ij(ξj, yij) ≡
J (α)(ξj, yij, φj)

ξj
R̃ij(ξj, yij) (2.2.19)

we can write the last term of eq. (2.2.17) as [42]

I++,α =

∫ 2π

0

dφj

∫ ξmax

0

dξj
ξj

∫ 1

−1

dyij
1− yij

[
R̂ij(ξj, yij)− R̂ij(0, yij)Θ(ξc − ξ)

−R̂ij(ξj, 1)Θ(y − 1 + δO) + R̂ij(0, 1)Θ(ξc − ξ)Θ(y − 1 + δO)
]
,

(2.2.20)

meaning that the integrals become finite by subtracting the soft limit R̂ij(0, yij), the

collinear limit R̂ij(ξj, 1), and the soft-collinear limit R̂ij(0, 1) from the full divergent

squared real amplitude contained in R̂ij(ξj, yij). In the following, we will work out the

explicit expressions for the subtraction terms.

Collinear Counterterms

First, we consider the collinear limit. In fig. 2.2 we show an example of a g → qq̄

splitting where we showcase the momentum relations for an FKS-pair (i, j) ∈ PFKS.

Defining the energy fraction

z ≡ k0
j

k̄0
i

, and thus 1− z =
k0
i

k̄0
i

, (2.2.21)

k̄i kj

ki = k̄i − kj

Mn

q̄

q

Figure 2.2. Example of a QCD final-state g → qq̄ splitting of a final-state gluon
showcasing momentum relations.

28



2.2. Contributions to the Real Cross Section

and requiring the emitting parton Ii to be on-shell after the splitting, i.e. k2
i = 0, we

can parametrize the collinearity of Ii with respect to Ij by writing4

k2
i =

(
k̄µi − kµj

)2
=

[
(1− z)

kµj
z

+ kµ⊥ +Xηµ
]2

= 0 . (2.2.22)

This means that the momentum ki is parametrized by three terms. First, we have the

momentum kj of the emitted parton, rescaled by the energy fraction k0
i /k

0
j . We add

a component k⊥ transverse to the common direction of the collinear FKS pair (i, j),

satisfying the condition k⊥kj = 0. Furthermore, we add a term X multiplied by an

auxiliary light-like vector η, which satisfies the conditions k⊥η = 0 and η2 = 0. This

last term restores on-shellness of the emitted parton.

By applying the mentioned conditions, we can solve eq. (2.2.22) and write the

momentum of the emitter before the splitting as [59]

k̄µi =
kµj
z

+ kµ⊥ − ηµ
zk2
⊥

2 (1− z) kj · η
. (2.2.23)

Therefore, in the collinear limit k⊥ → 0, we also have

lim
k⊥→0

k̄2
i ∼ lim

k⊥→0

zk2
⊥

1− z = 0 . (2.2.24)

The squared real matrix element in the collinear limit for a splitting of a final-state

parton Īi from the underlying Born configuration5 into a pair of collinear partons IiIj
can then be approximated by [103]

RĪi→IiIjij ' 8παS
k̄2
i

P̂ λ
Īi→IiIj(z, k⊥; ε = 0)B(i)

λ . (2.2.25)

Here, P̂ λ
Īi→IiIj are the polarized form of the unregularized Altarelli-Parisi splitting

functions [103] in four dimensions (i.e. ε = 0), listed in eqs. (C.1.3) to (C.1.6), where

the index λ stands for either two spinor or vector indices. In case of the emitting

particle being a gluon, the spin-correlated squared Born matrix element B(i)
µν is obtained

by leaving the spin indices of the emitting gluon uncontracted, i.e. [59]

B(i)
µν = N̂B

∑

{m},si,s′i

Mn({m} , si)M†
n({m} , s′i) (εsi)

∗
µ

(
εs′i
)
ν
, (2.2.26)

4 This is akin to a Sudakov parametrization [102], but follows the slightly different parametrization
given in [59] App. B.

5 We note that the barred notation does not denote an antiquark, even though I can take the form
of the general sign for a quark q or antiquark q̄ (thus spawning the ridiculous notation q̄ and ¯̄q,
which we avoid.)
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2. Frixione-Kunszt-Signer Subtraction Scheme at NLO QCD

with the Born matrix element Mn({m} , si), where we denote as si the spin of the

emitting gluon and sum over all spins and colors {m} of the remaining in- and outgoing

legs in the Born configuration, leaving the indices of the emitting gluon uncontracted.

The normalization factor N̂B takes into account the average over initial-state colors

and spins. However, we do not include the symmetry factor for identical particles in

the Born final state, since for the real-subtraction terms this actually has to be the

symmetry factor for the (n+ 1)-body final state, as given in eq. (2.2.1).

The gluon polarization vectors (εsi)µ follow the HELAS [104] convention and are

normalized such that ∑

µ,ν

gµν (εsi)
∗
µ

(
εs′i
)
ν

= −δsis′i , (2.2.27)

leading to the relation [59] ∑

µ,ν

gµνB(i)
µν = −B , (2.2.28)

where B is the squared Born amplitude. Therefore, if B is known, B(i)
µν has in general

9 independent matrix elements due to its symmetry. For fermion emitters, the spin

structure given by P̂
sis
′
i

Īi→IiIj is simply δsis
′
i , which trivially returns B when acting on

B(i)

sis′i
.

In summary, we have the following unregularized real collinear counterterms for the

different final-state splitting possibilities Īi → IiIj given as6 [59]

Rq→qg
ij (ξj, 1) = Rq̄→q̄g

ij (ξj, 1) =
8παSCF

k̄2
i

1 + (1− z)2

z
B
(
Φ̄ij
n

)
, (2.2.29)

Rg→qq̄
ij (ξj, 1) =

8παSTF
k̄2
i

[
−gµν − 4z (1− z)

kµ⊥k
ν
⊥

k2
⊥

]
B(i)
µν

(
Φ̄ij
n

)
, (2.2.30)

Rg→gg
ij (ξj, 1) =

8παSCA
k̄2
i

[
−2

(
z

1− z +
1− z
z

)
gµν + 4z (1− z)

kµ⊥k
ν
⊥

k2
⊥

]
B(i)
µν

(
Φ̄ij
n

)
,

(2.2.31)

where the spin correlations kµ⊥k
ν
⊥Bµν in eqs. (2.2.30) and (2.2.31) give rise to terms

where the squared Born matrix element does not simply factorize. We also note that

because of our definition of k⊥ (see eq. (2.2.22)), it is generally possible to write it

as (0,k⊥), where k⊥ is perpendicular to the common direction of the FKS pair, and

thus any term in the sum over the indices µ, ν with either index refering to the energy

component vanishes. The definitions of the Casimir constants CF and CA, as well as

TF , will be given in eqs. (2.2.45) to (2.2.47).

6 Due to a slightly different ansatz in the derivation of eq. (2.2.23), which is inspired by POWHEG [59],
the signs in front of the second terms in eqs. (2.2.30) and (2.2.31) differ from the ones found in
[103] and in other literature, e.g. [40, 105].
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2.2. Contributions to the Real Cross Section

The regularized real collinear counterterms R̃ij(ξj, 1) (see eq. (2.2.4)) simply follow

from eqs. (2.2.29) to (2.2.31) and have the form

R̃q→qg
ij (ξj, 1) = R̃q̄→q̄g

ij (ξj, 1) = Sij
16παSCF
(1− z) s

[
1 + (1− z)2]B

(
Φ̄ij
n

)
, (2.2.32)

R̃g→qq̄
ij (ξj, 1) = Sij

16παSTF
(1− z) s

[
−zgµν − 4z2 (1− z)

kµ⊥k
ν
⊥

k2
⊥

]
B(i)
µν

(
Φ̄ij
n

)
, (2.2.33)

R̃g→gg
ij (ξj, 1) = Sij

16παSCA
(1− z) s

[
−2

(
z2

1− z + (1− z)

)
gµν + 4z2 (1− z)

kµ⊥k
ν
⊥

k2
⊥

]
B(i)
µν

(
Φ̄ij
n

)
,

(2.2.34)

where we used the relations

k̄2
i = 2ki · kj = 2k0

i k
0
j (1− yij) = 2z (1− z) (k̄0

i )
2 (1− yij) , (2.2.35)

and (
ξ

z

)2

=

(
2k0

j√
s

k̄0
i

k0
j

)2

=
4(k̄0

i )
2

s
. (2.2.36)

The multiplication with Sij is highly symbolic for eqs. (2.2.32) and (2.2.33), as they

are equal to 1 in both cases because of eq. (2.1.29). However, for a g → gg splitting we

have Sij = h(zij), as defined in eq. (2.1.31).

Soft and Soft-Collinear Counterterms

Examining eqs. (2.2.29) and (2.2.31), we can also deduce the soft behavior for the

different splittings as either z → 0 or z → 1, corresponding to either emitted or

emitting parton becoming soft, respectively. Consequently, only q → qg/q̄ → q̄g and

g → gg splittings, i.e. the radiation of a soft gluon, show soft singularities.

In the soft limit the terms introducing spin correlations vanish, meaning that the

radiation of a soft gluon does not affect the spin of its emitter. More generally, for

large enough emission angles the soft gluon cannot resolve the spin structure of the

underlying process due to its long wavelength in relation to the rest of the particles in

the hard scattering process.7 While the soft radiation of a gluon also only changes the

momentum of the emitter negligibly, it does change the color structure of the system

since the gluon carries color charge. Because of the large wavelength of the soft gluon,

it can spread the color flow over large distances, which also leads to non-local color

correlations [107]. In contrast to the emission of a soft photon in QED, the square of

the matrix element therefore does not generally factorize in the soft limit.

However, in the soft-collinear limit, i.e. y → 1 together with either z → 0 or z → 1,

7 This phenomenon is known in the context of color coherence, see e.g. [106]
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2. Frixione-Kunszt-Signer Subtraction Scheme at NLO QCD

the angle between the emitted gluon and its emitter becomes small enough for the gluon

to be able to resolve the internal structure of the hard process. Thus, non-local color

correlations are not an issue in this case and the squared Born matrix element fully

factorizes. For the regularized soft-collinear counterterms R̃ij(0, 1) from eq. (2.2.20)

we then use eqs. (2.2.32) and (2.2.34) since they are both finite in the soft limit where

z → 0. Because we have defined PFKS in eq. (2.1.11) in such a way that only the

emitted parton can become soft, and keeping eq. (2.1.31) in mind, we do not concern

ourselves with the limit z → 1 in which the emitter becomes soft.

k̄i, β kj , a

ki, α

Mn

g

q

(a)

k̄i, c kj , a

ki, b

Mn

g

g

(b)

Figure 2.3. Example of QCD FSR of a gluon by an external quark (a) or gluon (b),
respectively, with additional greek letters α, β for quark color indices and roman
letters a, b, c for the gluon color indices.

Outside of the soft-collinear limit, the computation for the soft limit needs a different

ansatz for the reasons stated above. In order to derive the soft counterterm R̃ij(0, yij)

from eq. (2.2.20), we start by stating the matrix element for the gluon radiation off an

external quark with mass m, as depicted in fig. 2.3(a). It is [27]

Mn+1
ij;k (Φn+1) = gsT̂

a
αβε
∗
sj ,µ

(kj)ū(ki)γ
µ /ki + /kj +m

(ki + kj)
2 −m2

Mn(Φ̄ij
n ) (2.2.37)

= gsT̂
a
αβε
∗
sj ,µ

(kj)ū(ki)
− ( /ki −m) γµ + 2kµi + γµ /kj

2ki · kj
Mn(Φ̄ij

n ) , (2.2.38)

with the appropriate color charge operator T̂ aαβ. Furthermore, we denote /k = γµkµ
in the usual slash notation and used the anticommutator relation {γµ, γν} = 2gµν to

write the second line. Additionally, we use an index k for the (n+ 1)-body matrix

element for reasons that will become obvious in eq. (2.2.40). The first term in the

numerator then gives the Dirac equation ū(ki) ( /ki −m) = 0 and thus vanishes. In the

soft gluon limit, i.e. k0
j → 0, we write kj = k0

j k̂j (see eq. (2.1.39)) and disregard any

terms only proportional to k0
j while keeping those proportional to k0

i . In addition, since
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2.2. Contributions to the Real Cross Section

the radiation of a soft gluon does not change the momentum of the emitter, we can

express ki in the underlying Born kinematics as k̄i. Neglecting recoil effects in this

manner is commonly known as the eikonal approximation (see e.g. [106, 108]) in which

we can write the matrix element for the radiation of a soft gluon as

Mn+1
ij;k (Φn+1) ' gsT̂

a
αβε
∗
sj ,µ

(kj)
1

k0
j

k̄µi

k̄i · k̂j
Mn(Φ̄ij

n ) , (2.2.39)

where we absorbed the spinor ū(k̄i) into the matrix element. The singular factor

1/k0
j will cancel against a factor ξ in the regularized squared amplitude R̃ij, which we

address later. Because the gluon cannot resolve the spin structure of the underlying

process due to its relatively long wavelength, the form of the eikonal approximation is

universal, i.e. the same for a quark, antiquark, or gluon emitter.

As stated earlier, another effect of the large wavelength of the soft gluon is the fact

that it can spread the color flow over large distances, which also leads to non-local

color correlations. We thus have to sum over all momenta and color operators of the

external hard partons such that8

Mn+1
ij (Φn+1) ' gsε

∗
sj ,µ

(kj)
1

k0
j

(
n+2∑

k=1

T̂ ack,c′k
k̄µk

k̄k · k̂j

)
Mn(Φ̄ij

n ) . (2.2.40)

Here, we introduced the general notation T̂ ack,c′k
for the color charge operators, with

their action on color space for an emitted gluon with color a dependent on the nature

of its emitter Ik. Decomposing the Born matrix element in color space gives

Mn(Φ̄ij
n ) =

〈
Mn(Φ̄ij

n ) c1, · · · , cn
〉
, (2.2.41)

with the abstract color space basis { c1, · · · , cn〉}. For a final-state emitter the exact

actions on color space are then given by

T̂ aαβ c1, · · · , αq, · · · , cn〉 = +taαβ c1, · · · , βq, · · · , cn, a〉 , (2.2.42)

T̂ aαβ c1, · · · , αq̄, · · · , cn〉 = −taβα c1, · · · , βq̄, · · · , cn, a〉 , (2.2.43)

T̂ abc c1, · · · , bg, · · · , cn〉 = −ifabc c1, · · · , cg, · · · ; cn, a〉 . (2.2.44)

With taαβ we denote the color matrices in the fundamental representation of SU(3). For

an initial-state quark or antiquark the action would be exactly opposite to eqs. (2.2.42)

and (2.2.43). The operator T̂ abc is in the adjoint representation of SU(3), with the

corresponding structure constants fabc.

8 In fact, we can just sum over all external legs, since the particular term for an external particle
that is not strongly interacting is just equal to zero.
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2. Frixione-Kunszt-Signer Subtraction Scheme at NLO QCD

Generally, in SU(N) we have the relations

tr
[
tatb
]

= TF δ
ab ,

1

2
= TF (2.2.45)

1

N
tr
∑

a,b

tatb =
1

N
δabTF δab =

N2 − 1

2N
= CF (2.2.46)

∑

c,d

facdf bcd = CAδ
ab , N = CA . (2.2.47)

We now simply square eq. (2.2.40) and sum over all final-state spins and colors. The

regularized squared amplitude from eq. (2.2.4) in the soft limit ξj = 0 is then [42, 59]

R̃ij(0, yij) = δgIj (1− yij)Ssoft
ij

16παS
s

n+2∑

k,l=1

k̄k · k̄l
(k̄k · k̂j)(k̄l · k̂j)

Bkl(Φ̄ij
n ) , (i, j) ∈ PFKS .

(2.2.48)

We note that we multiply with the soft S-functions, where we use the definitions of the

dij in the soft limit from section 2.1.2, and that we used δgIj to make explicit that only

gluon radiation needs a soft subtraction term. Also, we used the fact that ξj = 2k0
j/
√
s

and thus (
ξ

k0
j

)2

=
4

s
(2.2.49)

completely cancels the 1/(k0
j )

2 singularity in the limit k0
j → 0. Furthermore, we recall

the gluon polarization vector normalization as stated in eq. (2.2.27). In Feynman gauge

the gluon polarization sum then is

∑

sj

εsj ,µ(kj)ε
∗
sj ,ν

(kj) = −gµν . (2.2.50)

The resulting minus sign for the squared amplitude is then absorbed into the definition

of the color-correlated squared Born amplitude Bkl, which is given as

Bkl(Φ̄ij
n ) = −N̂B

∑

spins
colors

〈
Mn(Φ̄ij

n ) c1, · · · , ck, · · · , cl, · · · , cn, a
〉

〈
c1, · · · , c′k, · · · , c′l, · · · , cn, a Mn(Φ̄ij

n )
〉
T ack,c′kT

a
cl,c
′
l
,

(2.2.51)

where we summarized the color matrices and structure constants from eqs. (2.2.42)

to (2.2.44) symbolically as T ac,c′ . We sum over all repeating color indices and remaining

spins. The normalization factor N̂B takes into account the average over initial-state

color and spins. We note that we again do not include the symmetry factor for identical
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particles in the Born final state, since for the real-subtraction terms this actually has

to be the symmetry factor for the (n+ 1)-body final state, as given in eq. (2.2.1).

Furthermore, color conservation and the relations in eqs. (2.2.46) and (2.2.47) for the

Casimir constants C(Īl) for the emitting flavor Īl gives [59]

n+2∑

k,k 6=l
Bkl = C(Īl)B . (2.2.52)

With this relation, together with the assumption that B is known and the fact that

Bkl is symmetric – which leaves us with

nindep. =
nS (nS − 1)

2
(2.2.53)

independent squared matrix elements – we can rewrite eq. (2.2.48) such that [59]

R̃ij(0, yij) = δgIj (1− yij)Ssoft
ij

16παS
s

[
n+2∑

k>l

2k̄k · k̄l
(k̄k · k̂j)(k̄l · k̂j)

Bkl(Φ̄ij
n ) (2.2.54)

−B(Φ̄ij
n )

n+2∑

k=1

k̄2
k

(k̄k · k̂j)2
C(Īk)

]
, (i, j) ∈ PFKS .

2.2.2. Hadron Collisions and Initial-state Subtraction Terms

So far we have only looked at FSR in the partonic process. Of course, for leptonic

initial states this is perfectly sufficient when considering NLO QCD corrections. A

correct physical description for hadron collisions, however, is generally only possible

by also taking into account the effects of PDFs and ISR. In general, the factorization

theorem [109–111] states that for the collision of two hadrons H± with momenta K±

the hadronic differential cross section dσH factorizes into a hard cross section dσ,

containing all the small distance, high energy interactions, and the parametrization of

the low energy contribution below an arbitrary scale µF given by the PDF f
H±

I± such

that

dσH(K⊕, K	) =
∑

a,b

∫
dx⊕dx	f

H⊕
a (x⊕, µF )f

H	
b (x	, µF )dσab(k⊕, k	) , (2.2.55)

where we introduced the shorthand notation for the parton flavors

a ≡ I⊕ and ā ≡ Ī⊕ , b ≡ I	 and b̄ ≡ Ī	 , (2.2.56)
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for the sake of readability.9 The notation dσab then denotes the differential cross section

for hard processes with an initial-state ab, where we imply a sum over all possible

final states, if not stated otherwise. Furthermore, the momenta k± of the partons I±
entering the hard interaction are related to the hadronic momenta by

k± = x±K± , with x⊕K⊕ + x	K	 =
n+3∑

l=3

kl , (2.2.57)

where x± is the momentum fraction of the incoming partons.

At NLO, however, without modifications to the PDFs the real and virtual IR diver-

gences do not cancel completely and we are left with initial-state collinear divergences.

Thus, renormalized PDFs are introduced at the next order of αS which take the form

[112, 113]

f̃
H⊕
ā (x̄⊕, µF ) ≡

∫ 1

0

∫ 1

0

dx⊕dzf
H⊕
a (x⊕)Γa←ā(z, µF )δ(x̄⊕ − zx⊕) (2.2.58)

=

∫ 1

x̄⊕

dz

z
fH⊕a

( x̄⊕
z

)
Γa←ā(z, µF ) . (2.2.59)

with the 	-direction being completely analogous. Here, x̄⊕ is the momentum fraction

that remains for the parton ā entering the hard interaction after a parton a splits into

ā and an additional emitted parton Ij, where x⊕ is the momentum fraction of parton

a before radiation. This is illustrated in fig. 2.4. The relation between the fractions is

then given by [67] (see appendix A.2 for more details)

x̄± = z±x± , z± ≡
√

1− ξ
√

2− ξ (1± y)

2− ξ (1∓ y)
, (2.2.60)

where we always drop the index ± of z, as it can be understood by context. For either

case of an initial-state collinear singularity, y = 1 and y = −1, we then have

lim
y→±1

z = 1− ξ . (2.2.61)

Furthermore, we note that the PDF f
H⊕
ā in eq. (2.2.59) depends on the nature of

parton ā and can therefore have a different flavor content than the unrenormalized

PDF fH⊕a .

Coming back to eq. (2.2.59), the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

evolution kernel Γa←ā, as well as the equation itself, is to be understood as a backwards

evolution of the PDF from the energy scale x̄ up to that of the hadron, taking into

9 Again, the barred notation here does not denote an antiparticle.
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K⊕

x⊕K⊕ = k⊕

a

j

zk⊕ = k̄⊕

ā

H⊕

Mn

Figure 2.4. Example for a hadron H⊕ with momentum K⊕ in ⊕-direction radiating a
gluon with momentum k⊕, which then splits into a quark-antiquark pair, of which
the quark enters the hard interaction with momentum k̄⊕.

account the radiation at scale x. At NLO, the kernel is given by [112, 113]

Γa←ā(z, µF ) ≡ δaāδ(1− z)− αS
2π

(
1

ε̄
Pā→aIj(z, 0)−Kā→aIj(z)

)
+O(α2

S) , (2.2.62)

with the regularized Altarelli-Parisi kernels Pā→aIj (z, 0) in four dimensions for a splitting

of parton ā into parton a and an emitted parton Ij , viewed as an evolution backwards

in time. The exact definition of Pā→aIj (z, 0) will be given in eq. (2.3.43) in the context

of section 2.3.3. We note that in the MS renormalization scheme the term Kā→aIj is

exactly zero and thus we will neglect it in the following. Furthermore, we introduced

the MS-scheme pole
1

ε̄
≡ 1

ε

(4π)ε

Γ (1− ε)

(
µ2
R

µ2
F

)ε
+O(ε) , (2.2.63)

where the gamma function Γ(1− ε) should not be confused with the evolution kernel

Γa←ā. In the scope of this work, we will not consider cases where the renormalization

scale µR and factorization scale µF differ, thus

µ = µR = µF .

The second term in eq. (2.2.62) acts as a subtraction term for the remnant collinear

divergences due to the bare PDF in eq. (2.2.55) at NLO and is collinear divergent

itself. In fact, due to the universality of eqs. (2.2.55) and (2.2.62), we can interpret the

evolution kernel Γa←ā as a parton density. We then call the partonic differential cross

section dσab from the right-hand side of eq. (2.2.55) the unsubtracted differential cross

section, and

dσ̂ab ≡ Γa←ā Γb←b̄ dσcd (2.2.64)

the subtracted partonic differential cross section. With the perturbative expansion at
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NLO written out for both for LO (0) and NLO (1) as

dσab = dσ
(0)
ab + dσ

(1)
ab , dσ̂ab = dσ̂

(0)
ab + dσ̂

(1)
ab , (2.2.65)

the relation between them at NLO then is [41]

dσ̂
(0)
ab (k̄⊕, k̄	) = dσ

(0)
ab (k̄⊕, k̄	) (2.2.66)

dσ̂
(1)
ab (k⊕, k	) = dσ

(1)
ab (k⊕, k	) +

αS
2π

∑

ā

∫
dz

1

ε̄
Pā→aIj(z, 0)dσ

(0)
āb (zk⊕, k	)

︸ ︷︷ ︸
dσ

(cnt,⊕)
ab

+
αS
2π

∑

b̄

∫
dz

1

ε̄
Pb̄→bIj(z, 0)dσ

(0)

ab̄
(k⊕, zk	)

︸ ︷︷ ︸
dσ

(cnt,	)
ab

, (2.2.67)

where we sum over all possible splittings leading to a real initial-state flavor structure

given by dσ̂
(1)
ab , and consequently all corresponding underlying Born flavor combinations.

The PDF counterterms dσ
(cnt,±)
ab (for massless initial-state particles) have collinear

singularities and exactly cancel those left by the partial cancellation of divergences

between the real and virtual contributions mentioned earlier.

In terms of numerical calculations and FKS, we then need adequate terms to treat

the divergences in both the dσ
(cnt,±)
ab and, analogous to the FSR case, the partonic

cross section dσ
(1)
ab . Fortunately, the needed terms naturally emerge when analogously

using the prescriptions described in section 2.2.1. For this, we will rewrite eq. (2.2.4)

to account for both singularities at y = ±1 such that [67]

Rα =
1

ξ2
j

1

1− y2
j

R̃ij(ξj, yj) , R̃ij(ξj, yj) ≡
[
ξ2
j

(
1− y2

j

)
Rα

]
. (2.2.68)

As stated before, the singularities in the PDF counterterms in eq. (2.2.67) are purely

collinear in nature. Therefore, the expansion in ξ introduced in eq. (2.2.10) still applies,

while we neglect the first term of the expansion as it does not give new contributions.

With the definition of eq. (2.2.68), the integrand of eq. (2.2.5) becomes

R(in)
α (fr) ≡ Pc(ξj)

(
1− y2

j

)−1−ε R̃ij(ξj, yj) , (2.2.69)

with

Pc(ξj) ≡
(

1

ξj

)

c

− 2ε

(
log ξj
ξj

)

c

. (2.2.70)
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Using eq. (2.2.11), we regularize the remaining collinear divergences by writing [41]

(
1− y2

j

)−1−ε
=− (2δI)

−ε

2ε

[
δ(1− yj) + δ(1 + yj)

]

+
1

2

[(
1

1− yj

)

δI

+

(
1

1 + yj

)

δI

]
+O(ε) ,

(2.2.71)

and can thus represent eq. (2.2.69) as the sum

R(in)
α (fr) = R(in,⊕)

α +R(in,	)
α +R(in,fin)

α +O(ε) (2.2.72)

where

R(in,fin)
α (fr) ≡ Pc(ξj)

1

2

[(
1

1− yj

)

δI

+

(
1

1 + yj

)

δI

]
R̃ij(ξj, yj) , (2.2.73)

R(in,±)
α (fr) ≡ −

(2δI)
−ε

2ε
δ (1∓ yj)Pc(ξj)R̃ij(ξj, yj) . (2.2.74)

The term R(in,±)
α only exists in the collinear limit and contains an ε-pole that can be

associated with a soft singularity. It cancels corresponding terms in the bare virtual

contribution, and its counterterms after integrating out the radiation phase space. We

will thus deal with it in the context of section 2.3.

In constrast, the term R(in,fin)
α is finite and the analogon to eq. (2.2.20) for ISR. Here,

we get additional collinear and soft-collinear terms for yj = −1, however, which is

unique to the initial-state case. In the following, we give an overview of all the changes

in the subtraction terms compared to the FSR case.

Collinear Counterterms

For the initial-state collinear counterterms we have some differences to the final-state

case due to the different momentum structure and additional splittings. The possible

splittings and an example for the momenta are given in fig. 2.5.

Any momentum configuration in which a massless final-state parton becomes collinear

to one of the massless incoming partons can be expressed by the underlying Born

momenta plus the additional degree of freedom in the energy of the radiated collinear
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g

q̄

Mn

(a) gq̄ ← q

q

g

Mn

(b) qg ← q

ki kj

k̄i = ki − kj

q

q

Mn

(c) qq ← g

g

g

Mn

(d) gg ← g

Figure 2.5. All possible QCD initial-state splittings IiIj ← Īi of an emitter Īi from
the underlying Born configuration into an FKS pair IiIj are shown. The direction of
the arrow in the splitting notation stresses the fact that the splitting for ISR is seen
as a backwards evolution.

parton Ij, parametrized by z, as [67]

Φ
(α)
n,⊕ ≡

{
x⊕, x	, z, k̄3, · · · , k̄n+2

}
, zx⊕K⊕ + x	K	 =

n+2∑

l=3

k̄l , (2.2.75)

Φ
(α)
n,	 ≡

{
x⊕, x	, z, k̄3, · · · , k̄n+2

}
, x⊕K⊕ + zx	K	 =

n+2∑

l=3

k̄l . (2.2.76)

Therefore, this parametrization effectively represents an (n+ 1)-body kinematics with

reduced degrees of freedom for the radiated parton. The underlying Born configuration

then is

Φ̄(α)
n ≡

{
x̄⊕, x̄	, k̄3, · · · , k̄n+2

}
, (2.2.77)

where x̄± is defined as in eq. (2.2.60). The phase-space element for the initial-state

collinear radiation is then given by

dΦ
(α)
n,⊕ ≡ dx⊕ dx	 dz dΦ̄(α)

n

(
zk⊕ + k	; k̄3, · · · , k̄n+2

)
, (2.2.78)

dΦ
(α)
n,	 ≡ dx⊕ dx	 dz dΦ̄(α)

n

(
k⊕ + zk	; k̄3, · · · , k̄n+2

)
. (2.2.79)

Hence, the relation between the degenerate (n+ 1)-body phase space and the underlying

Born phase space is

dΦ
(α)
n,± = dΦ̄(α)

n

dz

z
, (2.2.80)

where the Jacobian for the transformation x̄± → x± gives the factor 1/z.
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Additionally, we note that the flavor content of the PDF for the incoming radiating

leg is that of the parton before emission, as given in eq. (2.2.59). As stated there

as well, in the pure collinear limit (i.e. z < 1) this PDF is rescaled in terms of the

momentum fraction.

Similar to the derivation of eq. (2.2.23), we can derive the momentum k̄i of the

initial-state parton Īi that enters the hard process after the radiation of an additional

parton. Here we have to keep in mind, however, that the virtuality of Īi is negative,

i.e. k̄2
i < 0. With fig. 2.5 as a reference, we thus start from

k̄i = kµi − kµj = zkµi + kµ⊥ +Xηµ , (2.2.81)

where we used the analogous definitions of k⊥ and η to those in eq. (2.2.23) such

that k⊥ki = 0, k⊥η = 0, as well as η2 = 0. Solving k2
j = 0 for X and inserting it in

eq. (2.2.81) we then obtain

k̄µi = zkµi + kµ⊥ + ηµ
k2
⊥

2 (1− z) ki · η
. (2.2.82)

The resulting unregularized real collinear counterterms for the different initial-state

splitting possibilities IiIj ← Īi, as defined in fig. 2.5, are then given by [59]

Rgq̄←q
ij (ξj, 1) = Rgq←q̄

ij (ξj, 1) =
8παSTF
−k̄2

i

(
z2 + (1− z)2)B

(
Φ̄(α)
n

)
, (2.2.83)

Rqg←q
ij (ξj, 1) = Rq̄g←q̄

ij (ξj, 1) =
8παSCF
−k̄2

i

(1 + z2)

1− z B
(
Φ̄(α)
n

)
, (2.2.84)

Rqq←g
ij (ξj, 1) =

8παSCF
−k̄2

i

[
−zgµν +

4 (1− z)

z

kµ⊥k
ν
⊥

k2
⊥

]
B(i)
µν

(
Φ̄(α)
n

)
, (2.2.85)

Rgg←g
ij (ξj, 1) =

8παSCA
−k̄2

i

[
−2

(
z

1− z + z (1− z)

)
gµν +

4 (1− z)

z

kµ⊥k
ν
⊥

k2
⊥

]
B(i)
µν

(
Φ̄(α)
n

)
,

(2.2.86)

where the minus signs in the denominator of the prefactors have to be included due to

the aforementioned fact that in the initial-state case the virtuality k̄2
i of the emitter is

negative. The regularized real collinear counterterms R̃ij(ξj, 1) (see eq. (2.2.4)) follow

from eqs. (2.2.84) to (2.2.86) and have the form

R̃gq̄←q
ij (ξj, 1) = R̃gq←q̄

ij (ξj, 1) =
8παSTF

(k0
i )

2 (1− z)
(
z2 + (1− z)2)B

(
Φ̄(α)
n

)
, (2.2.87)

R̃qg←q
ij (ξj, 1) = R̃q̄g←q̄

ij (ξj, 1) =
8παSCF

(k0
i )

2

(
1 + z2

)
B
(
Φ̄(α)
n

)
, (2.2.88)
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R̃qq←g
ij (ξj, 1) =

8παSCF

(k0
i )

2

[
−z (1− z) gµν + 4

(1− z)2

z

kµ⊥k
ν
⊥

k2
⊥

]
B(i)
µν

(
Φ̄(α)
n

)
, (2.2.89)

R̃gg←g
ij (ξj, 1) =

8παSCA

(k0
i )

2

[
−2
(
z + z (1− z)2) gµν + 4

(1− z)2

z

kµ⊥k
ν
⊥

k2
⊥

]
B(i)
µν

(
Φ̄(α)
n

)
,

(2.2.90)

where we used the relations limki‖kj ξj = 1− z and

k̄2
i = (ki − kj)2 = −2ki · kj = −2k0

i k
0
j (1∓ yj) = −2

(
k0
i

)2
(1− z) (1∓ yj) , (2.2.91)

cancelling one order of ξj, as well as a factor (1∓ yj) of
(
1− y2

j

)
in the regularized

squared amplitude, with the remaining one simply becoming a factor of 2. Also, we do

not have to multiply R̃ij(ξj, 1) with the S-functions, since they are always equal to

one in the initial-state collinear case, as given by eqs. (2.1.28) and (2.1.29).

Soft and Soft-Collinear Counterterms

Looking at the unregularized collinear counterterms in eqs. (2.2.83) to (2.2.86), it

becomes obvious that in the initial-state case only qg ← q (or q̄g ← q̄) and gg ← g

splittings can induce a soft singularity, while the remaining splittings either vanish

or remain finite for ξ → 0. Because of the universality of the eikonal approximation

in the purely soft limit, the subtraction terms given in eq. (2.2.54) hold true for ISR,

after replacing

(1− yij)→
(
1− y2

j

)
, (2.2.92)

and using the initial-state dsoft
ij from eqs. (2.1.44) to (2.1.46) in the calculation of the S-

functions. For the same reasons as stated for the final-state soft-collinear counterterms

in section 2.2.1, in the initial-state soft-collinear case we can use the regularized

eqs. (2.2.87) to (2.2.90) with z = 1 (i.e. ξj = 0).

Finally, the radiation of a soft or soft-collinear parton does neither change the flavor

of the incoming parton nor its momentum fraction. Therefore, for the splittings in

figs. 2.5(b) and 2.5(d) we have

x̄± = x± , (2.2.93)

and the flavor content of the PDF for the radiating leg does not change for the emission

of a gluon.
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2.3. Integrated Counterterms and the Virtual

Cross Section

We introduced the counterterms for the (n+ 1)-body kinematics in section 2.2. What

remains are the details of the computation of the integrated counterterms, which are

given in eq. (2.2.17) and which regularize the virtual contribution as in eq. (2.0.3).

According to the KLN theorem, in dimensional regularization all ε-poles due to IR

divergences cancel in the sum of all contributions to the total cross section. Therefore,

assuming all UV divergences have been renormalized, the IR divergent part of the

squared bare one-loop amplitude Vb can in general be written as the divergent result

for the real contribution in 4− 2ε dimensions with opposite signs in front of the ε-poles.

We defer the inclusion of massive QCD partons to appendix D.1 and write Vb in the

massless case for a Born flavor structure fB as [114–116]

Vb(Φn, fB) = D(ε)
αS
2π


−

n
(B)
L +2∑

l=nF

(
1

ε2
C(Īl) +

1

ε
γ(Īl)

)
B +

1

2ε

n
(B)
L +2∑

k,l=nF
k 6=l

log
2k̄k · k̄l
Q2

Bkl + Vfin




Φn

fB

= D(ε)
αS
2π



n
(B)
L +2∑

k,l=nF
k 6=l

(
− 1

ε2
+

1

2ε
log

2k̄k · k̄l
Q2

)
Bkl −

n
(B)
L +2∑

l=nF

1

ε
γ(Īl)B + Vfin




Φn

fB

,

(2.3.1)

with nF and n
(B)
L defined as in eq. (2.1.10). In the second line we used eq. (2.2.52) to

make the ε2-pole proportional to the color-correlated squared Born amplitude Bkl. By

the super- and subscripts of the square brackets we denote the fact that all quantities

inside these brackets are written in terms of the n-body phase space Φn for a Born

flavor structure fB. The term Vfin stands for the finite one-loop O(ε0)-contributions,

obtained by the evaluation of loop integrals. In the context of MC event generators it

is usually computed by dedicated external programs and the only relevant connection

to the FKS subtraction scheme is via the choice of the regularization scheme, where we

chose the conventional dimensional regularization (CDR) scheme, and the definition of

the normalization factor D(ε). For the latter we chose the common definition

D(ε) ≡ (4π)ε

Γ(1− ε)

(
µ2

Q2

)ε
, (2.3.2)

with the renormalization scale µR, where we set µR = µF = µ. We denote by Q the

Ellis-Sexton scale, which is an arbitrary mass scale introduced in [114] in order to
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simplify the result, as Q can be chosen such that logarithms with arguments of Q2/s

or µ2/Q2 vanish.

As we have pointed out before, while all ε-poles cancel in the sum of all analytically

integrated NLO contributions, we need separate finite components for the integration

in a MC program. Fortunately, the virtual-subtracted10 squared amplitude for a Born

flavor structure fB, given by [67]

V(Φn, fB) = Vb(Φn, fB) +


 ∑

α∈{α|fB}

(
Isδ,α + Is+,α + I+δ,α

)



Φ̄
(α)
n =Φn

fB

+

[
G(in,⊕)
ab,div + G(in,	)

ab,div

]Φ̄
(α)
n =Φn

fB

, α ∈ PFKS ,

(2.3.3)

has no ε-poles left and is therefore finite. Here, the integrals I are the ones from

eq. (2.2.17), with each of them remaining dependent on the underlying Born kinematics

Φ̄
(α)
n after integrating out the radiation phase space. Obviously, we must only sum

over integrals belonging to α-regions (see eq. (2.1.11)) whose underlying Born flavor

structure matches fB. In addition, we keep the underlying Born kinematics Φ̄
(α)
n fixed

and equal to the n-body kinematics of V , denoted by the superscript Φ̄
(α)
n = Φn. This

is also true for the terms G(in,±)
ab,div , which will be derived in section 2.3.3 and the result

stated in eq. (2.3.50). They contain the divergent contributions from the initial-state

contribution in eq. (2.2.74), which at NLO QCD only contribute for colored initial

states. In the following, we will detail the computation of the integrals I.

2.3.1. Integrated Soft Counterterms

We start with the integrated soft counterterms, Isδ,α and Is+,α, and write eq. (2.2.10)

as

ξ−1−2ε = −ξ
−2ε
c

2ε
δ (ξ) + Pc(ξ) , Pc(ξ) ≡

(
1

ξ

)

c

− 2ε

(
log ξ

ξ

)

c

, (2.3.4)

with the same definition for Pc as in eq. (2.2.70), repeated here for better readability.

The soft divergent part of eq. (2.2.17) in d = 4− 2ε dimensions is then given by

Is,α ≡ Isδ,α + Is+,α = − s1−ε

(4π)d−1

ξ−2ε
c

2ε

∫
dΩd−1

j dξjδ(ξj)ξ
2
jRα(ξj, yij) , (i, j) ∈ PFKS ,

(2.3.5)

10 By “subtracted” we refer to the cancellation of the ε-poles, not the particular signs of the
counterterms.
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with the indices i and j of the FKS pair belonging to α ∈ PFKS (see eq. (2.1.11)). We

suppress them whenever the context is clear. In eq. (2.3.5), we included the y-dependent

part of the phase-space measure in the angular part such that

dΩd−1 =
(
1− y2

)−ε
dydΩd−2 . (2.3.6)

We take this opportunity to recall that the FKS variables are defined in the CM frame

of the incoming partons (see eqs. (2.1.19) and (2.1.21) to (2.1.23)). Consequently, the

angular measure is so as well. Due to the delta distribution in ξj, we can take the soft

limit of Rα, which in 4− 2ε dimensions is given similarly to eq. (2.2.48) by

Rα(0, y) = δgIj4παSµ
2ε

n+2∑

k,l=1

kk · kl
(kk · kj)(kl · kj)

Bkl(Φ̄(α)
n ) , (2.3.7)

with the renormalization scale µ and its power 2ε stemming from dimensional reg-

ularization. By inserting the above equation into eq. (2.3.5) the term Is,α becomes

proportional to an ε-dependent prefactor times the integral of the eikonal factors such

that [41, 42, 59]

Is,α = −ξ
−2ε
c

2ε

22ε

(2π)1−2ε

(
s

µ2

)−ε
αS
2π

n+2∑

k,l=1

Bkl(Φ̄(α)
n )

∫
dΩd−1

j [kk, kl]j , (2.3.8)

where we define

[kk, kl]j ≡
sξ2
j

4

kk · kl
(kk · kj)(kl · kj)

, (2.3.9)

with the factor ξ2
j cancelling the energy dependence of the momenta kj, making

eq. (2.3.8) fully independent of ξj. It is common to continue by changing to polar

coordinates in order to write the angular phase-space measure as

dΩd−1 = Ω1−2ε (sin θ sinφ)−2ε d cos θdφ , (2.3.10)

with the solid angle Ω in 1− 2ε dimensions given by [101]

Ω1−2ε = 2
(4π)−ε Γ(1− ε)

Γ(1− 2ε)
. (2.3.11)

With the use of the normalization factor D(ε) given in eq. (2.3.2) and the Taylor

expansions

Γ(1− ε)Γ(1− ε)
Γ(1− 2ε)

= 1− π2

6
ε2 +O(ε3) , (2.3.12)
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(
Q2

ξ2
cs

)ε
= 1 + ε log

Q2

ξ2
cs

+
ε2

2
log2 Q

2

ξ2
cs

+O(ε3) , (2.3.13)

we can rewrite eq. (2.3.8) as

Is,α =− 1

2ε
D(ε)

[
1 + ε log

Q2

ξ2
cs

+

(
1

2
log2 Q

2

ξ2
cs
− π2

6

)
ε2 +O(ε3)

]

× αS
2π

n+2∑

k,l=1

(
Bkl(Φ̄(α)

n )

∫
d cos θ

dφ

π
(sin θ sinφ)−2ε [kk, kl]j

)
.

(2.3.14)

The above integral can then be written in terms proportional to powers of ε as [59]

∫
d cos θ

dφ

π
(sin θ sinφ)−2ε [kk, kl]j =

1

ε
I−1(kk, kl) + I0(kk, kl) + εI1(kk, kl) . (2.3.15)

Furthermore, the integrand [kk, kl]j can be decomposed into a collinear finite and

collinear divergent term. The latter term is of the form 1/(1− cos θ), which gives a

factor of −1/ε after integration. The integration of the collinear finite part, however,

is rather involved and, besides other terms, gives rise to dilogarithms11

Li2(v) ≡ −
∫ v

0

log (1− u)

u
du , v ∈ C . (2.3.17)

Eventually, the result for the integrated soft counterterm Is,α can be written as [41, 42]

Is,α =
αS
2π

n
(B)
L +2∑

k=nF

n
(B)
L +2∑

l=k

Bkl(Φ̄(α)
n )

(
Ê (mk,ml)
kl + E (mk,ml)

kl

)
, (2.3.18)

where the sum over k and l makes use of the symmetry of Bkl. We contained all ε-poles

due to soft and soft-collinear divergences, as well as all other ε dependencies, in the

quantity Ê (mk,ml)
kl . This leaves E (mk,ml)

kl finite. Both quantities depend heavily on the

masses mk/l of the particles Īk/l, and have been computed at several occasions with

slightly different methods. The massless case can be found in [41], as well as [59]. The

latter also deals with the massive-massless and massive cases – as does [100], with the

11 One very useful identity in this context is given by

Li2(v) + Li2

(
1

v

)
= −π

2

6
− 1

2
log2 (−v) . (2.3.16)

46



2.3. Integrated Counterterms and the Virtual Cross Section

analytical results published in [42], from where we cite the massless case for k 6= l as

Ê (0,0)
kl =D(ε)

[
1

ε2
− 1

ε
log

2k̄k · k̄l
Q2

+
1

ε
log

4k̄0
kk̄

0
l

ξ2
cs

]
, (2.3.19)

E (0,0)
kl =

1

2
log2 ξ

2
cs

Q2
+ log

ξ2
cs

Q2
log

k̄k · k̄l
2k̄0

kk̄
0
l

− Li2

(
k̄k · k̄l
2k̄0

kk̄
0
l

)

+
1

2
log2 k̄k · k̄l

2k̄0
kk̄

0
l

− log

(
1− k̄k · k̄l

2k̄0
kk̄

0
l

)
log

k̄k · k̄l
2k̄0

kk̄
0
l

. (2.3.20)

We note that in the soft limit the barred momenta of the set Φ̄n are equal to their

counterpart in Φn+1. The massless self-eikonals are trivially given by

Ê (0,0)
kk = E (0,0)

kk = 0 . (2.3.21)

The massive-massless and massive results are given in appendix D.2. It is clear to see

that the first two terms of Ê (0,0)
kl cancel the corresponding ε-poles in eq. (2.3.1).12 We

will see in section 2.3.3 that part of the last term cancels the corresponding ε-poles in the

terms G(in,±)
ab,div of eq. (2.3.3), after using eq. (2.2.52) to rewrite the color-correlated squared

Born amplitude in terms of C(Īl)B and by having k0
± =
√
s/2 for ISR. The other part

cancels poles occurring in the calculation of the integrated collinear counterterms I+δ,

which will be the subject of the following section.

2.3.2. Integrated Final-state Collinear Counterterms

For the calculation of the integrated final-state collinear counterterms, we follow the

approach given in [69]. First, we consider the integral13

∫
dΦ̄(α)

n I+δ,α = −
∫
dΦ

(α)
n+1

Pc(ξj)

ξ−1−2ε
j

(2δO)−ε

ε
δ (1− yij) (1− yij)Rα(ξj, yij) , (2.3.22)

where we have expanded the right-hand side by ξ−1−2ε
j and in the first step integrate

both sides over the n-body phase space only, i.e. we keep the integral over dΦ
(α)
rad at

first. The reason for both actions will become clear in the following, as they enable

us to rewrite the integrand in favorable ways. For an FKS pair (i, j) ∈ PFKS (see

eq. (2.1.11)), we can then factor out the phase space for emitter Ii and radiated particle

12 We note that in eq. (2.3.1) we did not make use of the symmetry of Bkl, contrary to eq. (2.3.18),
thus giving a difference of a factor 2 in corresponding terms.

13 We note that we defined I+δ,α without the integration over Φ̄n, contrary to [69].
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Ij such that

∫
dΦ̄(α)

n I+δ,α =−
∫
dx⊕dx	 (2π)d δd

(
k⊕ + k	 −

n+3∑

l=3

kl

)

n+3∏

l=3
l 6=i,j

dd−1kl

(2π)d−1 2k0
l




× (k0
i )

1−2ε

2 (2π)d−1
dk0

i dΩd−1
i dk̄0

i δ(k̄
0
i − k0

i − k0
j ) (2.3.23)

×
(
k0
j

)1−2ε

2 (2π)d−1
dk0

jdyijdΩd−2
j

Pc(ξj)

ξ−1−2ε
j

(2δO)−ε

ε
δ (1− yij) (1− yij)Rα(ξj, yij) ,

where in the second line we wrote the phase space for the emitter Ii represented by

angular and radial variables, and introduced the energy of the combined momentum

k̄i = ki+kj . Since the above integral only exists in the collinear limit defined by δ(1−yij),
the momenta have a common direction parametrized by Ωi. The corresponding energies

then are linked by a delta distribution, which we use for the integration over k0
i . We

then obtain the usual replacements (see eq. (2.2.21))

k0
i = zk̄0

i , and k0
j = (1− z) k̄0

i . (2.3.24)

Together with changing the integration over k0
j to an integration over z and using the

result for the integration over dΩd−2
j with eq. (2.2.3), we obtain

∫
dΦ̄(α)

n I+δ,α =−
∫
dx⊕dx	 (2π)d δd

(
k⊕ + k	 −

n+3∑

l=3

kl

)

n+3∏

l=3
l 6=i,j

dd−1kl

(2π)d−1 2k0
l




×
(
k̄0
i

)1−2ε

2 (2π)d−1
dk̄0

i dΩd−1
i

× (2δO)−ε

ε

(4π)ε

Γ(1− ε)

(
k̄0
i

)2−2ε

8π2

Pc(ξj)

ξ−1−2ε
j

× dzz1−2ε (1− z)1−2ε lim
yij→1

[(1− yij)Rα(ξj, yij)] .

(2.3.25)

The second line then simply is the phase space (in polar coordinates) for the emitter

in the underlying Born configuration and, when combined with the first line, it gives

the phase space of the underlying Born kinematics Φ̄
(α)
n . We express ξj in terms of z

such that

ξj = ξmax (1− z) , with ξmax =
2k̄0

i√
s
, (2.3.26)
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which allows us to write Pc in terms of z as well, giving us

Pc(ξj) = ξ−1−2ε
j +

ξ−2ε
c

2ε
δ(ξj)

= ξ−1−2ε
max

[
(1− z)−1−2ε +

(
ξmax

ξc

)2ε
δ(1− z)

2ε

]
.

(2.3.27)

Furthermore, we already know the collinear limit for the regularized squared real

amplitude (1− z)Rα for FSR from eq. (2.2.25), which in 4− 2ε dimensions is given by

lim
yij→1

[(1− yij)Rα(ξj, yij)] =
8παSµ

2ε

2(k̄0
i )

2z (1− z)
〈P̂Īi→IiIj〉(z, ε)B(Φ̄(α)

n ) , (2.3.28)

where we used eq. (2.2.35) to get rid of the factor (1− yij). As before, the renormal-

ization scale µ and its power of 2ε come frome dimensional regularization. Because

of the angular integration, which requires the azimuthal average over the d− 2 trans-

verse components, we can apply the spin-averaged Altarelli-Parisi splitting functions

〈P̂Īi→IiIj〉 given in eqs. (C.2.2) to (C.2.5). Without the integration over the underlying

Born phase space, we have

I+δ,α =− (2δO)−ε

ε

(4π)ε

Γ(1− ε)

(
µ

k̄0
i

)2ε
αS
2π

∫ 1

0

dzz−2ε (1− z)

×
[

(1− z)−1−2ε +

(
ξmax

ξc

)2ε
δ(1− z)

2ε

]
〈P̂Īi→IiIj〉(z, ε)B(Φ̄(α)

n ) (2.3.29)

=− 1

ε
D(ε)

(
2Q2

sδO

)ε
ξ−2ε

max

αS
2π

∫ 1

0

dzz−2ε (1− z)

×
[

(1− z)−1−2ε +

(
ξmax

ξc

)2ε
δ(1− z)

2ε

]
〈P̂Īi→IiIj〉(z, ε)B(Φ̄(α)

n ) . (2.3.30)

We collected the normalization factor D(ε) defined in eq. (2.3.2) in the second equality

and rewrote (
Q2

2δO(k̄0
i )

2

)ε
=

(
2Q2

sδO

)ε
ξ−2ε

max , (2.3.31)

using the definition of ξmax in eq. (2.3.26). The two remaining integrals in eq. (2.3.30)

are of the form

I(0) ≡
∫ 1

0

dzz−2ε (1− z)−2ε 〈P̂Īi→IiIj〉(z, ε) , (2.3.32)

I(−1) ≡
∫ 1

0

dzz−2ε

(
ξmax

ξc

)2ε
δ(1− z)

2ε
(1− z) 〈P̂Īi→IiIj〉(z, ε) . (2.3.33)
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The process of evaluating the integrals I(0) and I(−1) for each kind of splitting function

is rather straightforward and has been done e.g. in [69, eqs. (3.48) to (3.50)]. When

calculating the integrals, one useful trick is to use the symmetry z → 1 − z of the

integral in the case of a g → gg-splitting. Thus, for this case in particular, the result

of eq. (2.3.33) is

I(−1)
gg =

CA
ε

(
ξmax

ξc

)2ε

. (2.3.34)

Eventually, with all integrals calculated, we can write the sum over all α-regions with

an associated underlying Born flavor structure fB for eq. (2.3.30) as

∑

α∈{α|fB}
I+δ,α(Φ̄(α)

n , fB) =

nI+n
(B)
L∑

i=nI+1

D(ε)

(
2Q2

sδO

)ε
ξ−2ε

max

αS
2π
B(Φ̄(α)

n , fB)

×
[

1

ε2

(
1−

(
ξmax

ξc

)2ε
)
C(Īi) +

γ(Īi)
ε

+ γ′(Īi)
]

= D(ε)
αS
2π
B(Φ̄(α)

n , fB)

nI+n
(B)
L∑

i=nI+1

(
1− ε log

(
sδO
2Q2

))
(2.3.35)

×
[
ξ−2ε

max − ξ−2ε
c

ε2
C(Īi) +

γ(Īi)
ε

ξ−2ε
max + γ′(Īi)ξ−2ε

max

]
,

with nI and n
(B)
L again defined as in eq. (2.1.10). Here, we expanded (2Q2/sδO)ε in ε,

and have denoted the Casimir constants C(Īi) as usual. The coefficients of the ε−1-

and ε0-poles are part of the result of the integration of eq. (2.3.32) and, depending on

whether particle Īi is a gluon or (anti-)quark, are given as

γ(g) =
11

6
CA −

2

3
TFnf , γ′(g) =

(
67

9
− 2π2

3

)
CA −

23

9
TFnf ,

γ(q) =
3

2
CF , γ′(q) =

(
13

2
− 2π2

3

)
CF ,

(2.3.36)

with nf defined as the number of quark flavors the gluon can split into. Expanding

both ξ−2ε
max and ξ−2ε

c in eq. (2.3.35), and collecting the remaining ε-poles, gives us the
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result

∑

α∈{α|fB}
I+δ,α(Φ̄(α)

n , fB) =D(ε)
αS
2π

nI+n
(B)
L∑

i=nI+1

1

ε

[
γ(Īi)− 2C(Īi) log

(
ξmax

ξc

)]
B(Φ̄(α)

n , fB)

+
αS
2π

nI+n
(B)
L∑

i=nI+1

Q+δ,iB(Φ̄(α)
n , fB) ,

(2.3.37)

where we defined

Q+δ,i ≡γ′(Īi)− log

(
sδO
2Q2

)[
γ(Īi)− 2C(Īi) log

(
ξmax,i

ξc

)]

+ 2C(Īi)
(
log2 ξmax,i − log2 ξc

)
− 2γ(Īi) log ξmax,i ,

(2.3.38)

and made the dependence of ξmax on the momentum of parton Īi explicit by writing

the additional index i. The first term in eq. (2.3.37) containing an ε-pole cancels the

corresponding final-state terms in eq. (2.3.1) that are not canceled by the initial-state

terms G(in,±)
ab,div in eq. (2.3.3) of the following section 2.3.3. The second term containing

an ε-pole cancels part of the last term in eq. (2.3.19), with the terms G(in,±)
ab,div again

cancelling the remaining part.

2.3.3. Integrated Initial-state Collinear Counterterms and

the DGLAP Remnant

We return to the task of integrating the remaining divergent contributions stemming

from collinear ISR discussed in section 2.2.2. In this section, we follow the approach

given in [41]. The starting point is the integration of the quantity R(in,±)
α , given by

eq. (2.2.74), over the radiation phase space in d = 4− 2ε dimensions such that

∫
dΦ

(α)
radR(in,±)

α = − s1−ε

(4π)d−1

(2δI)
−ε

2ε

∫
dΩd−2dξjdyjδ(1±yj)Pc(ξj)

(
1− y2

j

)
ξ2
jRα(ξj, yj) ,

(2.3.39)

with the definition of Pc given in eq. (2.2.70). The delta distribution in yj once again

allows us to take the collinear limit of the regularized squared real amplitude, given in
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the case of ISR as

lim
yj→±1

[
ξ2
j

(
1− y2

j

)
Rα(ξj, yj)

]
= lim

yj→±1

[
ξ2
j

(
1− y2

j

) 8παSµ
2ε

−k̄2
i

〈P̂Īi→IiIj〉(1− ξj, ε)B(Φ̄(α)
n )

]

= ξj
8παSµ

2ε

(k0
i )

2
〈P̂Īi→IiIj〉(1− ξj, ε)B(Φ̄(α)

n ) ,

(2.3.40)

where we use the spin-averaged Altarelli-Parisi splitting functions 〈P̂Īi→IiIj〉, given in

eqs. (C.2.2) to (C.2.5), because of the angular integration as explained in the context of

eq. (2.3.28). Furthermore, we used eq. (2.2.91) to cancel a factor (1∓ yj) of
(
1− y2

j

)
,

with the remaining one becoming a factor of 2, as well as one order of ξj , since we have

limy→±1 z = 1 − ξ for ISR (see section 2.2.2). Integrating over the angular measure

dΩd−2, with the result given in eq. (2.2.3), and using the fact that for incoming initial-

state momenta we have k0
i =
√
s/2, we can insert eq. (2.3.40) into eq. (2.3.39) and

get

∫
dΦ

(α)
radR(in,±)

α = −αS
2π

(
1

ε̄
− log

(
sδI
2µ2

))∫
dξjξjPc(ξj)〈P̂Īi→IiIj〉(1− ξj, ε)B(Φ̄(α)

n ) ,

(2.3.41)

with ε̄ defined in eq. (2.2.63). Here, we once again expanded the prefactor (2µ2/(sδi))
ε,

leaving the term proportional to the resulting logarithm without an ε-pole, in which

case we can set ε = 0. Switching to the shorthand notation for initial-state partons

from eq. (2.2.56), we state that in [41] it has been shown that for a fixed real flavor

structure fr with an initial-state ab the expression14

dσ̂
(in,±)
ab (fr) = dσ

(in,±)
ab (fr) + dσ

(cnt,±)
ab (fr) (2.3.42)

is finite for purely collinear (i.e. z < 1) limits. Limiting the PDF counterterms dσ
(cnt,±)
ab

to a single fixed real flavor structure eliminates the sum in their definition given in

eq. (2.2.67). According to [41], we can write the Altarelli-Parisi kernel Pā→aIj(z, 0) in

terms of the spin-averaged splitting functions 〈P̂ā→aIj〉. For the ⊕-direction it then is

Pā→aIj(z, 0) =
(1− z) 〈P̂ā→aIj〉(z, 0)

(1− z)+

+ γ(ā)δaāδ(1− z) , (2.3.43)

with γ(ā) given in eq. (2.3.36). In eq. (2.3.43), we also used the identity

14 In [41], the second summand has a factor 1/4 which avoids double counting due to the sum over all
possible final-state flavors. We do not need this factor here, as we do not perform the flavor sum.
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δ(1± yj)
(

1

1− z

)

+

= δ(1± yj)
[(

1

ξj

)

c

+ δ(ξj) log ξc

]
, (2.3.44)

where the delta distribution in yj emphasizes that it is only valid for the collinear limit,

as well as the relation

2C(ā)δaāδ(1− z) = δ(1− z) (1− z) 〈P̂ā→aIj〉(z, 0) , (2.3.45)

with the Casimir constants C(ā). For a specific α-region, we can then write the inte-

gration over the radiation phase space in dσ
(cnt,⊕)
ab (fr) (without the n-body integration

measure) with a change of z → 1− ξj as

∫
dξjGcnt,⊕

ab,Ij (Φ
(α)
n,⊕) =

αS
2π

∫
dξj

1

ε̄

[(
1

ξj

)

c

ξj〈P̂ā→aIj〉(1− ξj, 0)

+ δaāδ(ξj) (γ(ā) + 2C(ā) log ξc)

]
Bāb(Φ̄(α)

n ) .

(2.3.46)

Here, we explicitly wrote the initial-state flavors as subscripts for the squared Born

amplitude for clarification. The 	-direction is of course completely analogous for the

splitting b̄→ bIj. By expanding

〈P̂ā→aIj〉(1−ξj, ε) = 〈P̂ā→aIj〉(1−ξj, 0)+ε
∂〈P̂ā→aIj〉(1− ξj, ε)

∂ε

∣∣∣∣∣
ε=0

+O(α2
S) , (2.3.47)

and adding eqs. (2.3.41) and (2.3.46), as suggested by eq. (2.3.42), we get the expressions

G(in,⊕)
ab,Ij (Φ

(α)
n,⊕) =

αS
2π

{
(1− z) 〈P̂ā→aIj〉(z, 0)

[(
1

1− z

)

c

log
sδI
2µ2

+ 2

(
log (1− z)

1− z

)

c

]

− (1− z)
∂〈P̂ā→aIj〉(z, ε)

∂ε

∣∣∣∣∣
ε=0

(
1

1− z

)

c

}
Bāb(Φ̄(α)

n ) + G(in,⊕)
ab,div (Φ̄(α)

n ) ,

(2.3.48)

G(in,	)
ab,Ij (Φ

(α)
n,	) =

αS
2π

{
(1− z) 〈P̂b̄→bIj〉(z, 0)

[(
1

1− z

)

c

log
sδI
2µ2

+ 2

(
log (1− z)

1− z

)

c

]

− (1− z)
∂〈P̂b̄→bIj〉(z, ε)

∂ε

∣∣∣∣∣
ε=0

(
1

1− z

)

c

}
Bab̄(Φ̄(α)

n ) + G(in,	)
ab,div (Φ̄(α)

n ) .

(2.3.49)
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where we defined

G(in,±)
ab,div (Φ̄(α)

n ) ≡ αS
2π

[
D(ε)

1

ε
− log

µ2

Q2

](
γ(Ī±) + 2C(Ī±) log ξc

)
Bab(Φ̄(α)

n ) . (2.3.50)

Here, we simply added and subtracted a term proportional to (µ2/Q2)ε in order to

write the normalization factor D(ε) as defined in eq. (2.3.2). The term G(in,±)
ab,div still

has an explicit ε-pole, which can be associated with a soft divergence. As stated at

the end of sections 2.3.1 and 2.3.2, however, it is canceled by corresponding terms in

the virtual-subtracted squared amplitude given in eq. (2.3.3). The rest of G(in,±)
ab,Ij is

finite and can thus be integrated as an additional NLO contribution. Therefore, it is

sometimes referred to as the DGLAP remnant. Another way to refer to the remnant,

present in the literature [42], is to call it the degenerate (n+ 1)-body kinematics. Why

this is a fitting description can be understood if we look at the kinematics and the

resulting phase space for this contribution, which is already discussed in section 2.2.2.

2.3.4. The Complete Virtual-subtracted Squared Amplitude

We have shown that all divergences made explicit by ε-poles in d = 4−2ε dimensions in

the squared bare one-loop amplitude Vb, given in eq. (2.3.1), cancel against correspond-

ing poles in the integrated counterterms. The virtual-subtracted squared amplitude V ,

given in eq. (2.3.3), can now be written in a very similar form to Vb such that

V(Φn, fB) =
αS
2π

n
(B)
L +2∑

k=nF

n
(B)
L +2∑

l=k

E (mk,ml)
kl Bkl(Φn, fB)+

αS
2π

n
(B)
L +2∑

k=nI+1

QkB(Φn, fB)+Vfin(Φn, fB) ,

(2.3.51)

with the notation of the lower and upper bounds in the sum over the indices k and l of

the n-body kinematics Φn as detailed in eq. (2.1.10). Here, we use Φn instead of Φ̄n

for reasons stated in the context of eq. (2.3.3). The factor Qk is defined as

Qk ≡ Q+δ,k + log
µ2

Q2

[
γ(Ī⊕) + γ(Ī	) + 2

(
C(Ī⊕) + C(Ī	)

)
log ξc

]
, (2.3.52)

with Q+δ,k given by eq. (2.3.38). The remaining contribution to Qk is due to the

finite part of the terms G(in,±)
ab,div , which contain the divergent contributions from the

initial-state contribution, given by eq. (2.3.50).

Additionally, in eq. (2.3.51), the finite part Emk,mlkl of the eikonal integrals are given

in eq. (2.3.20) for the massless case, with the massless-massive and massive results

given in appendix D.2. For the latter cases, we have to adjust the sum to include the

number of heavy QCD particles nH as well. Last, but not least, we have the finite
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one-loop O(ε0)-contributions Vfin from Vb, which do not have to be subtracted.

The integrated virtual-subtracted cross section for a Born flavor structure fB can

then finally be written as

σvirt
NLO(fB) =

Jn
(B)
L

N (fB)

∫
dΦnV(Φn, fB) , (2.3.53)

with the condition Jn
(B)
L explained around eq. (2.1.7). The symmetry factor N (fB)

accounts for the presence of identical final-state particles.

55





3. The Monte Carlo Event

Generator WHIZARD at NLO

QCD

The multi-purpose MC event generator WHIZARD [35, 98, 117–120] offers a broad

range of features desirable for phenomenological HEP studies, such as the computation

of cross sections, differential distributions, and fully exclusive event samples of HEP

processes. These features are supported for scattering processes at particle colliders

with leptonic, hadronic, and mixed leptonic-hadronic initial states. Additionally,

particle-decay processes are supported as well.

WHIZARD has roots deep in the studies of lepton colliders of both past and future,

as it was originally developed in the context of technical design studies [121, 122]

for the planned, but eventually discarded, 800 GeV lepton collider TESLA. There,

the need arose to handle more complicated processes such as vector-boson scattering

with mixed fermionic and bosonic final states with up to six particles. The intended

purpose of WHIZARD was to address this need and the deprecated acronym of

the name “W, Higgs, Z, And Respective Decays” still reminds of this origin. Since

then, WHIZARD has been established as an important tool for a vast amount of

lepton-collider studies, as well as design reports [22, 123–125], and has undergone

significant expansions in its features.

So far, the program had two major revisions. The first was from WHIZARD 1 to

WHIZARD 2. This included an extensive rewriting of the whole program, which led

to its current modern, object-orientated, and modular structure, combining several

purpose-build packages and interfaces into one coherent and fully automated process.

It is written almost entirely in modern Fortran – i.e. based on the Fortran 2008

standard – making use of its ubiquitous advantages in numerical computations. The

second revision to its current version WHIZARD 3.0.0 has been released just before

the completion of this thesis. It marks the first official support of fully automated

NLO QCD computations in the WHIZARD series, based upon work associated with

this thesis and the prior limited implementation by two former PhD studies [26, 73].

WHIZARD comes with its own matrix-element generator O’Mega [126], which
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3. The Monte Carlo Event Generator WHIZARD at NLO QCD

computes matrix elements via a recursive algorithm using helicity amplitudes and it

treats QCD in the color-flow formalism [127]. It is written in O’Caml and generates

tree-level matrix-element code in Fortran at run time, either as compiled libraries

or as byte-code instructions interpretable by the O’Mega virtual machine [128], for

multi-leg processes in the SM and beyond. This provides a high level of flexibility, since

WHIZARD does not need a curated library of precomputed processes as a result.

Given its modularity, WHIZARD supports interfaces to other matrix-element

generators as well, both at one-loop and tree-level. This is an important feature

especially at NLO, since for the time being O’Mega can neither provide one-loop, nor

spin- and color-correlated Born matrix elements, which are needed in the collinear and

soft approximations of real matrix elements (see eqs. (2.2.26) and (2.2.51)). Thus, this

task is outsourced to third-party OLPs, namely OpenLoops 2 [52, 53] (and its third

party tools [44–47]), GoSam [48], and RECOLA [54–57]. The first two are interfaced

via the Binoth Les Houches Accord (BLHA) interface [129, 130], whereas RECOLA

provides its own dedicated interface and respective implementation.

However, as of WHIZARD 3.0.0, only the interface to the matrix-element generator

and OLP OpenLoops is fully complete for NLO in the context of FKS. This will

change in the near future with the planned capability of O’Mega to provide spin-

and color-correlated Born matrix elements. Consequently, O’Mega will then be able

to provide all parts needed for the NLO computation, except for the virtual one-loop

amplitude, which can already be obtained via the RECOLA and GoSam interfaces.

Phase-space integration in WHIZARD is done in a multi-channel twofold-adaptive1

approach via an amplified implementation of the Vegas [131, 132] algorithm, pro-

vided by the Vamp [133] module. A modernized and improved version is given with

Vamp2 [134, 135], which provides a modern message passing interface (MPI) based

parallelization, where a thread-safe random number generator (RNG) is employed.

Another very distinctive feature of WHIZARD is its ability to describe and provide

various elements of lepton-collider physics. It is able to properly simulate polarized

beams, crossing angles, and photon-induced background processes. Electron PDFs are

supported, with soft photons resummed to all orders of the QED coupling α, while

hard-collinear photon resummation is supported up to third order. ISR photon-pT
spectra generation and lepton-collider beam-spectra sampling are provided within the

WHIZARD framework by the lepton-collider beam-spectrum generator Circe1 [136]

and its modernized and improved version Circe2.

While the feature suite of WHIZARD is optimized primarily for lepton-collider

physics, it supports hadronic beams as well. For this purpose, a small set of built-in

PDF sets are provided, with the option to interface LHAPDF 6 [137] to access a

1 Meaning adaptive both in the grid and the event weights. See sections 3.1.2 and 3.1.5 for more
details.
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broad variety of additional PDF sets.

Effects of FSR, like parton showers or hadronization, can be handled in various ways.

WHIZARD comes with its own analytic shower [138], as well as with the Pythia6

[36] library included in the WHIZARD package for showering and hadronization.

Furthermore, Pythia8 [37] is directly supported via an interface [139].

In addition, any external simulation or analysis tool can be interfaced, provided it

supports any of the numerous event formats that WHIZARD can output to. These are

LCIO [140], HepMC2&3 [141, 142], LHEF [143–145], and several others, including

different ASCII file formats. Furthermore, WHIZARD itself can be used as a library

via the recently implemented Application Programming Interface (API), which – beside

others – includes a Python interface.

WHIZARD has always had a strong focus on BSM physics and has been used for

many studies in this field [146–157]. Internally, each process is linked to a certain physics

model, either provided by the multitude of predefined models shipped directly with

WHIZARD, or provided via automated interfaces to the external tools FeynRules

[158, 159] or Sarah [160]. Recently, these interfaces have been superseded with the

support of the universal FeynRules output (UFO) format [161], enabling the user to

compute processes in almost any arbitrary, Lagrangian-based BSM theory at LO.2

A very powerful tool to steer the whole of WHIZARD is given by its domain-

specific language Sindarin (Scripting integration, data analysis, results display, and

interfaces). It supports settings such as process and beam definitions, parameter

specifications and model selections. Contrary to most other programs using some

form of parameter and/or run cards with static input, Sindarin enables the user

to dynamically set cuts, scales, and scans. This is possible not only for integration

and event generation, but also for the integrated analysis suite, where histograms and

plots can be defined. In order to provide this flexibility, Sindarin features common

structures of programming languages such as conditional constructs and loops. For jet

clustering, the interface to FastJet [162] is directly steerable from within Sindarin

as well. We provide an example Sindarin input file in appendix F.1.

In the following, we provide an overview of the aspects of WHIZARD that are

relevant in the context of automated NLO computations and highlight the parts that

had to be changed or improved in order to support arbitrary processes at fNLO QCD.

2 BSM models that do not change aspects of QCD could in principle be supported at NLO QCD via
the FKS implementation in WHIZARD. However, this remains to be validated.
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3.1. WHIZARD in the Context of NLO

Calculations

Earlier applications of WHIZARD in the context of NLO calculations have been

chargino production at the ILC [163, 164], in which case soft-photon resummation and

fixed-order QED and EW corrections have been studied. Furthermore, the process

pp→ bb̄bb̄ at NLO QCD [165, 166] has been studied with WHIZARD using the CS

subtraction scheme [40]. These efforts, however, have been process specific and did not

lead to a fully automated implementation. For NLO QCD, a first proof of concept of

such an automation in WHIZARD based on FKS subtraction has been given in [97],

where its functionality has been shown for off-shell top quark production at a lepton

collider. These initial efforts were followed by more thorough studies of top physics at

NLO QCD at lepton colliders, both in the continuum [167] and in the threshold region

[99].

This initial implementation of the FKS subtraction scheme has paved the way

towards fully automated NLO QCD computations for lepton and hadron colliders in

WHIZARD. So far, it has been validated for a number of lepton-collider processes

limited to FSR of a gluon [26]. More complicated processes with arbitrary external

partons were not possible within the early implementation. Furthermore, besides some

first ad hoc tests for a Drell-Yan process with a single quark flavor, no hadron-collider

processes were supported.

With the work introduced as part of this thesis, WHIZARD is capable of computing

completely general external states for lepton- and hadron-collider NLO QCD processes

at FO. In order to accomplish this, it was necessary to rework several key aspects of

the (NLO) infrastructure of WHIZARD.

The implementation details include notable changes in how WHIZARD keeps track

of the variety of different squared amplitudes needed for an NLO calculation and how

they are mapped to the correct flavor structures, which is outlined in more detail in

section 3.1.1. There, we also give an overview of the general internal structure of

WHIZARD and how it organizes and combines the necessary pieces of a computation

in the context of NLO.

A brief introduction to the topic of MC phase-space integration is given in sec-

tion 3.1.2, where we also present the phase-space parametrization realized in WHI-

ZARD in the context of NLO.

For the generalization of NLO QCD computations, necessary changes were introduced

in the setup of the singular-region data for the correct application of the S-functions

(see section 2.1.2) in order to ensure the correct partitioning of the phase space. A

more detailed explanation of how this is realized is given in section 3.1.3.
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Furthermore, the correct symmetry factors have to be applied for identical particles in

the final state. This is detailed in section 3.1.4. There, we also explain our generalized

approach of applying the correct (rescaled) structure functions to the real counterterms

and the DGLAP remnant. In order to fully support general NLO QCD hadron-collider

processes, the implementation of the DGLAP remnant had to be rewritten almost

completely, where we spare the reader the very technical details.

Finally, as a vital step towards parton shower matching, fixed-order differential

distributions had to be partly reimplemented and validated for completely general

differential distributions in arbitrary processes. In section 3.1.5, we give an overview of

event generation at NLO in general, together with the details of the implementation of

event generation in WHIZARD at fNLO QCD.

3.1.1. The General Structure of FKS Terms

The internal structure of WHIZARD that organizes and combines the necessary

pieces of an NLO computation is rather straightforward and inspired by the terms

and squared matrix elements present in the FKS subtraction scheme, discussed in

chapter 2. Also, many of the concepts presented in the following are built upon existing

LO infrastructure within WHIZARD that is adapted for NLO calculations. For

example, at LO WHIZARD can directly compute results for the user-defined sum

of different processes, such as e+e− → ZH and e+e− → ZZ, which require different

phase-space setups internally. Thus, calculations in WHIZARD are structured into

different components and terms for the different processes. Further into this section,

we explain how this structure is adapted for NLO calculations, where we have different

kinematics for the n-body and (n+ 1)-body phase space. First, however, we begin

with the organization of matrix elements and subsequently work our way up in the

structural hierarchy.

Data Types of State Matrices, Interactions, and Evaluators

While the number of matrix elements for less complex processes – e.g. processes

that have a small number of contributing Feynman graphs or low multiplicities – are

quite manageable, the number of terms in the amplitude can become quite large for

more complex processes. This is especially the case for matrix elements generated by

O’Mega, as they are exclusive in the flavors fi, the color flow indices ci [127], and

the helicities hi of the process, with i denoting the position of the particle associated

with these quantum numbers in a flavor structure (see eq. (2.1.9)). Each set {fi, ci, hi}
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3. The Monte Carlo Event Generator WHIZARD at NLO QCD

is represented in WHIZARD as a quantum numbers t type.3 In total, for matrix

elements fully exclusive in all of the mentioned quantum numbers, the dimension of

storage required would be nf · nc · nh. It becomes obvious that we need a clear, easy to

traverse, and dynamically modifiable data structure – ideally with established, fast

algorithms for operations such as searches, and insertion or deletion of data.

In WHIZARD, this is realised through the implementation of a so-called trie, an

ordered tree data structure with nodes, each given a set of quantum numbers {fi, ci, hi}.
Therefore, moving along connected nodes leads to a sequence of quantum-number sets,

defined by the position of the last encountered node. Each full sequence of quantum

number sets at the end of a node sequence represents a single flavor structure of

the associated process and is assigned a matrix element ME(i) with integer index i.

We call the implementation of such a trie in WHIZARD a state matrix in direct

correspondence to its physical meaning.

In a subtraction scheme like FKS, however, we often require more than one (squared)

matrix element per flavor structure. Explicitly, we additionally need

• for the real counterterms

– 6 entries per emitter Ii for the independent, non-trivial spin-correlated

squared Born matrix elements B(i)
µν (see eq. (2.2.26)),4

– nS (nS − 1) /2 entries for the independent color-correlated squared Born

matrix elements Bkl (see eq. (2.2.51), with nS defined in eq. (2.1.10)),

• for the integrated counterterms (see eq. (2.3.51))

– an entry for the finite one-loop contribution Vfin,

– nS (nS − 1) /2 entries for the independent color-correlated squared Born

matrix elements Bkl,

• and an entry for each incoming particle to account for different squared matrix

elements resulting from rescaling its momentum fraction due to collinear ISR,

accounted for in the real counterterms and the DGLAP remnant (see sections 2.2.2

and 2.3.3).

In order to account for these entries in the state matrix, we simply introduce an

additional pseudo quantum number σi ∈ [0, nadd], ranging from 0 (tree-level) to the

total number nadd of additionally required entries. The original state matrix with

its quantum numbers is then continued by nadd copies of its structure, each with a

3 In object-orientated programming, we generally speak of a class in order to refer to user-defined
data structures with associated methods. In Fortran this is called a user-defined derived-type, or
type for short, whereas a Fortran class describes a type and any of its possible extensions.

4 We choose k⊥ = (0,k⊥) in eqs. (2.2.23) and (2.2.81), leading to vanishing terms in B(i)µν .
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different σi. An example for a state matrix including the discussed attributes so far is

shown in fig. 3.1.

interaction t

f(11), h(−1), σ0

f(−11), h(−1), σ0

f(−4), c(−1), h(−1), σ0

f(4), c(+1), h(−1), σ0 ⇒ ME(1)

f(4), c(+1), h(+1), σ0 ⇒ ME(2)

f(−4), c(−1), h(+1), σ0

f(4), c(+1), h(−1), σ0 ⇒ ME(3)

f(4), c(+1), h(+1), σ0 ⇒ ME(4)

f(−2), c(−1), h(−1), σ0

f(2), c(+1), h(−1), σ0 ⇒ ME(5)

f(2), c(+1), h(+1), σ0 ⇒ ME(6)f(−11), h(+1), σ0

f(−4), c(−1), h(−1), σ0

f(4), c(+1), h(−1), σ0 ⇒ ME(n+1)

f(4), c(+1), h(+1), σ0 ⇒ ME(n+2)

f(−4), c(−1), h(+1), σ0

f(4), c(+1), h(−1), σ0 ⇒ ME(n+3)

f(4), c(+1), h(+1), σ0 ⇒ ME(n+4)

f(11), h(+1), σ0

f(11), h(−1), σ1

Figure 3.1. Representation of a state matrix trie for the process e+e− → jj, for the
purpose of demonstration given fully exclusive in the quantum numbers {fi, ci, hi}
and the pseudo quantum number σi, as explained in the text. We only show the
first necessary nodes that are required to infer the rest of the state matrix structure,
implied by the dashed lines. The number n in ME(i) simply represents the total
numbers of final state configurations for the first initial state configuration at the
top. The first node, the root of the trie, is associated with an empty set of quantum
numbers. Here, we labelled it to emphasize the relation between the state matrix t

type and the interaction t type it is a member of.

As mentioned before, O’Mega provides matrix elements exclusive in color and

helicity. However, at NLO we currently employ external matrix-element generators

(e.g. OpenLoops) which mostly provide squared amplitudes inclusive – i.e. summed

over – (final state) color and helicity. In order to account for this fact, WHIZARD

employs so-called quantum number masks that selectively act on the quantum numbers

of the state-matrix nodes to contract the state matrix in the way defined by the mask.

For example, if we want to include beam polarization, a mask can be configured to

only contract final-state helicities, leaving the initial-state helicity structure explicit.

Depending on the process definition and multiplicity, state matrices can get rather

large. However, in the context of the FKS implementation, we rarely make use of the
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full quantum-numbers information for each particle in a flavor structure. Throughout

the FKS-specific code, we often use simpler arrays of Particle Data Group (PDG)

[168] code sequences. These are stored in arrays with an integer index i flv for a

certain flavor structure, and, when needed, with an additional integer index i hel to

differentiate between equal flavor structures with different helicity configurations.

In order to correctly interconnect the (squared) matrix elements in the state matrix

and the simpler flavor array, we needed to implement a mapping between the flavor-

structure indices and the corresponding matrix-element integer index i, especially since

in general the ordering of the flavor array is different than that of its representation in

the state matrix. In addition, to get the correct kind of matrix element – i.e. tree-level,

spin- or color-correlated – we also have to map the pseudo quantum number σi. This

is now all handled via the qn index mapping t type.

In WHIZARD, both a state matrix and its respective qn index mapping t are a

member of the interaction t type. The interaction contains additional data, such as

phase-space and particle information, and the aforementioned quantum number masks.

Two different interactions can be connected in different ways by the evaluator t type,

which inherits from interaction t in the sense of object-oriented programming.

How exactly the two interactions are convolved is handled by so-called pairing arrays,

which are members of the evaluators. Each pairing array defines the convolution rules

between two interactions by acting on the indices of their state matrices. The correct

helicity- and color-averaged sum of the resulting amplitudes is handled then as well.

A prime example for the use of an evaluator is in the case of processes that require

structure functions, such as PDFs for hadronic beams or QED ISR structure functions

for leptonic beams. In WHIZARD, any kind of structure function or beam spectrum

is represented as a type of interaction, where the corresponding state matrix only covers

the initial state. For example, in the case of leptonic beams the need to concatenate a

beamstrahlung spectrum with structure functions exists. They can be conveniently

chained together with the evaluator type, which results in an effective structure function

interaction that can then be convolved with the hard interaction. The evaluators for

this last step are members of the connected state t type and explicitly are

• the trace evaluator, that sums over all (non-pseudo) quantum numbers,

• the transition-matrix evaluator, that sums over all unobservable quantum num-

bers,

• and one evaluator for the transition matrix without interferences and exclusive

in color flow.

The trace is mostly needed in the computation of integrated cross sections, the

transition matrix is relevant for event generation, and the color flows are important in
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the subsequent matching to a parton shower.

Term- and Process-Instance Data Types

WHIZARD allows the user to define an LO process as the sum of processes. Internally,

this is handled by creating one process that is divided into components in order to

handle differences of the processes in the sum – e.g. different phase-space setups due

to differing masses of the particles participating in the process, different multiplicities,

etc. The underlying structure is adopted for NLO computations where we separate

the calculation of the cross section into different components of the FKS subtraction

scheme as introduced in chapter 2. In summary, these components are

• the Born component, with n-body kinematics,

• the real component, with (n+ 1)-body kinematics for the non-subtracted contri-

bution and effective n-body kinematics for the subtraction terms (see section 2.2),

• the virtual component, with n-body kinematics, containing the finite one-loop

contribution and the integrated counterterms (c.f section 2.3),

• the DGLAP remnant, with degenerate (n+ 1)-body kinematics (see section 2.3.3),

• specialized optional NLO components, e.g. the real-finite or soft mismatch (see

text below).

Additional components, together with their own kinematics, are supported by WHI-

ZARD as well. For example, these can be the component for the computation of the

finite tree-level real amplitude used for POWHEG damping [59] or the soft mismatch,

the latter of which being an additional component in the resonance-aware expansion

of the FKS subtraction scheme [69]. The implementations for both components in

WHIZARD are documented in [26, 73].

As stated in the list above, different NLO components require different kinematics,

process and particle information, evaluators, etc. We can even have different sets of

kinematics inside a single component as is the case for the real component.5 Also, each

component requires its own provision and evaluation of (subtracted) amplitudes, as

described in chapter 2.

In order to store this information and to give each component the corresponding

content, as well as to calculate the correct amplitude, WHIZARD initializes so-called

5 To be technically correct, this is handled by an additional “pseudo-component” for the subtraction
terms that is needed for the internal WHIZARD infrastructure, but is marked as inactive as it
does not carry out its own integration. This is because we have to integrate the sum of the terms
in eq. (2.2.20) over the full real phase space.
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term instance t types, one for each independent kinematic configuration (as classified

according to FKS). This means that we have one term instance for each component

in the list above, except for the real component. It has (nem + 1) instances, since we

have as many independent real-emission kinematic configurations as the number nem of

unique emitters (see section 3.1.3) plus one Born configuration for the full subtraction

term.

Term instances can be set active or inactive and are consequently included or excluded

in the program evaluation, respectively, allowing for more flexibility in the computation

as we will discuss at the end of section 3.1.2. Each term instance holds the interaction

type for the hard process, as well as the necessary evaluators for the evaluation of the

convolution of structure functions with the hard interaction.

Components and their respective term instances are part of the process instance t

type. As the name suggests, this type represents the full process and contains all

necessary top-level information to compute the full amplitude, and to then pass it on

to the corresponding multi-channel integrator (MCI) (e.g. Vamp1/2).

The process-component manager, of type pcm t, handles all the different components

inside the process instance, its MCIs, etc. Its NLO extension includes further data

needed for the FKS implementation such as the singular-region data, discussed in more

detail in section 3.1.3. The pcm t type also handles the assignment of the different

matrix-element generators using a dedicated structure which we refer to as the matrix-

element core. In principle, the matrix-element generators might differ between the

different term instances. For example, we could obtain the spin- and color-correlated

squared amplitudes, as well as the finite one-loop contributions, from OpenLoops,

while employing O’Mega for the remaining amplitudes. Thus, every term instance

has a pointer to a certain core it might share with another term instance.

The evaluation of (squared) matrix elements by a matrix-element generator can be

very time-consuming, especially for one-loop contributions. For those matrix-element

generators that support the BLHA interface such as OpenLoops, we optimized calls

from the term instance to the core in such a way that we only request squared matrix

elements for non-equivalent subprocesses. For example, in the case of the process

e+e− → qq̄ with massless quarks, the subprocesses e+e− → uū and e+e− → cc̄ are

equal with respect to their squared amplitude, while e+e− → dd̄ gives a different result.

The selection which subprocesses are equivalent with respect to their squared amplitude

is possible since the information is provided by the matrix-element generator via the

BLHA interface. For processes that have a large number of equivalent subprocesses

(such as e+e− → jjjjjj, see chapter 5) we can more than halve the computation time.

After evaluating each active term instance, its matrix and color-flows evaluators

are filled with the corresponding computed exclusive amplitudes. The inclusive sum,

however, is handed over by the process instance to the MCI.
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3.1.2. Phase-space Parametrization and Integration

In particle physics, we are typically faced with multidimensional integrals that have

not only complicated integrands in the form of squared amplitudes, but also exhibit

regions of phase space governed by kinematic effects such as resonances, or radiation

peaks, leading to a complex structure within the phase space.

In general, following [134], we can write the squared amplitude as a function

f : Π → R, mapping the compact phase-space manifold Π of d dimensions to a

real-valued scalar. The phase-space integral then is defined as

IΠ[f ] ≡
∫

Π

dµ(p)f(p) , (3.1.1)

where we denote by p not only four-momenta, but also every other possible integration

variables that might occur, e.g. due to structure functions such as PDFs. Furthermore,

we assume Π and the integration measure dµ to account for momentum conservation

and on-shell conditions, as well as optional constraints like user-defined cuts. In an

MC computation, for the generation of p we use a set x of random numbers xi ∈ U
represented by the subset U ⊂ (0, 1)d of the unit hypercube in d dimensions. The

phase space is then parametrized by a bijective mapping ϕ : U → Π such that

p = ϕ(x) , dµ(p) = ϕ′(x)dµ(x) = ϕ′(x)ρϕ(x)ddx , (3.1.2)

with the Jacobian ϕ′ = det (dϕ/dx). The density ϕ′(x)ρϕ(x) thus relates the measure

ddx on Rd, expressed in its canonical basis, to the phase-space measure dµ [134].

Since the Feynman diagrams of a process can be directly related to the underlying

kinematic structure, for each scattering (sub)process WHIZARD defines the phase-

space parametrizations recursively in a tree structure, similar to Feynman graphs.

Here, however, we treat the process as if there was an initial particle that subsequently

decays via nodes that can either split into two daughter particles or do not have any

further branches, thus representing possible flows of momenta in a process. Resonances

and other kinematically challenging regions are being kept track of within these trees.

Each branch corresponds to three integration variables, namely the invariant mass

m of the branch, its azimuthal angle φ, and the cosine of its polar angle θ. Every

branch has its own mapping for its associated set of integration variables, and a fully

assigned tree then defines a point in phase space and represents an integration channel.

The module in WHIZARD implementing these trees is adequately named the wood

phase-space module. In order to improve performance, trees with comparable phase-

space mappings are grouped into groves, allowing WHIZARD to connect channels

with similar characteristics when integrating over them.
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For a hard scattering process, the dimension d of the phase-space manifold Π then is

determined via the tree structure: Since we can only have splittings into either none

or two branches, for n final-state momenta we have (n− 1) internal branches, each

associated with a random number for each of its three associated integration variables.

Because the initial first branch is special in that it has a fixed mass m =
√
s associated

with it, we have a dimension of

d = 3 (n− 1)− 1 = 3n− 4 . (3.1.3)

At NLO, however, we have different components with varying kinematics and therefore

different phase-space dimensions (see section 3.1.1). While the Born and virtual

components have n-body kinematics, the additional FKS radiation variables ξ, y, and

φ (see eqs. (2.1.19) and (2.1.21) to (2.1.23)) of the real component each represent

an additional integration variable and therefore require additional random numbers.

Furthermore, the treatment of ISR and structure functions gives rise to terms that

have one additional integration variable in the form of the energy fraction z of the

emitted parton. For example, this is the case for the DGLAP component described in

section 2.3.3. The dimensions for the different components then are [26]

d = 3n− 4 +





0 Born, Virtual,

3 Real,

1 DGLAP.

(3.1.4)

The obvious way to handle the extra integration variables, e.g. for the real component,

would be to simply extend the tree structure and incorporate the additionally required

mappings in the corresponding branch of the emitter. This ansatz, however, is not

very well suited for the FKS phase-space mapping (see appendix A), which boosts

the recoiling momenta, therefore influencing the whole tree and not only the branch

the real emission is associated with. Furthermore, it would come with a significant

performance overhead, as the number of trees (or phase-space channels) already present

at Born level would be multiplied by the number of unique emitters.

To avoid these problems, WHIZARD applies the FKS phase-space mapping as an

extension on top of the wood phase space, resulting in a direct mapping Φn → Φn+1 from

the n-body phase space to the (n+ 1)-body phase space for each unique emitter [26]. As

we mentioned earlier in section 3.1.1, each unique emitter has its own associated term

instance, containing the interaction representing the real-emission process, which will

store the corresponding four-momenta obtained in this way for the (n+ 1)-kinematics.
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Integration

Coming back to the general integral IΠ in eq. (3.1.1), according to the law of large

numbers, for a large enough number of N random draws of points xi ∈ U , with a

uniform probability density on the unit hypercube U the integral IΠ can be estimated

by the finite sum of its integrand such that [169]

〈f〉N =
1

N

N∑

i=1

fϕ(xi)→
∫

U

fϕ(x)ddx , (3.1.5)

with

fϕ(x) ≡ f(ϕ(x))ϕ′(x)ρϕ(x) . (3.1.6)

The corresponding estimate for the variance, given by

VN ≡
N

N − 1

(
〈f 2〉N − 〈f〉2N

)
, (3.1.7)

then is equal to the square of the statistical error. During integration, WHIZARD’s

integrator Vamp uses a multi-channel implementation of the self-adaptive Vegas

algorithm, documented in detail in [134]. In principle, it applies a grid to the hypercube

for each phase-space channel with bins along each integration dimension. Using a

slightly modified version for importance sampling6 of eq. (3.1.5), for several iterative

steps of N evaluations, or calls, it adapts both the bin widths and the weight factors of

the channel in order to reduce the variance, and thus the statistical error. This relative

error can be estimated by √
VN
IΠ

=
a√
N
. (3.1.8)

Each successful adaptation reduces the accuracy parameter a, which in turn reduces

the relative error of the MC integration.

Separate and Combined Integration

There are two different modes for the NLO integration in WHIZARD: separate and

combined mode. Each comes with its share of advantages and disadvantages.

The separate mode sets up an MCI for each component and computes each one

separately by disabling all term instances not belonging to the current component

that is to be computed. One of the advantages of this mode is that the user can

specify different numbers of integration calls and iteration steps in the adaptation of

the phase-space grid and event weights, and the subsequent integration runs. This can

6 For integration, Vamp also offers a stratified sampling method [134].
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lead to a much more efficient calculation. For example, on the one hand the phase

space of the real emission has a higher dimension as components that have Born-like

kinematics. Therefore, it needs a higher number of calls and iteration steps to reach a

comparable precision. On the other hand, the virtual component might not always

need as much calls and iterations, but a single call can be much slower because of the

complexity the evaluation of the one-loop matrix element poses.

The separate mode also allows the user to run an instance of WHIZARD for each

component, allowing them to run in parallel. This was especially relevant before the

release of Vamp2 and its MPI based parallelization, however, for very complex processes

one might still want to integrate the components separately since the speed-up gained

by MPI begins to saturate at the order of 100 nodes.7

When using the separate integration mode, any subsequent event generation (see

section 3.1.5) must be performed by different instances of WHIZARD for each

component, as the correct normalization of the event sample cannot be guaranteed

otherwise, especially if it is chosen to be dependent on the cross section.

In the combined integration mode, all term instances relevant for the full compu-

tation of the defined process are always active and share the same RNG seed for the

(underlying) Born phase space. Therefore, they also share the same n-body kinematics

at each point in phase space. This is in contrast to the separate mode, where the

RNG seed is generally not the same between the components. Another difference is

that, since the process instance sums over all active terms, the computed amplitudes

of all terms are added up before being passed to the MCI. Because of this we can

lose a varying amount of efficiency in the combined integration approach, since all

components undergo the same number of calls and iterations, effectively meaning

that the component with the slowest convergence per calls and iterations dictates the

required amount of them for the whole integration.

However, the combined mode is relevant in the event generation. For example, POWHEG

matching (see section 3.1.5) requires that all components have their contribution already

evaluated for an identical phase space point of the underlying Born. This is particularly

important for the Born and real contributions, as the POWHEG algorithm uses the ratio

of both contributions to determine if the first emission in a parton shower has to

be selected from the computations by the FKS subtraction or if it is handled via

resummation.

A usability feature that comes with the combined integration is that for a subsequent

event generation only one instance of WHIZARD is used (for reasons detailed in

section 3.1.5) and the resulting event sample then is consistently normalized in this

case.

7 This is the case as of the time of this thesis. For a more explicit quantification and discussion, see
[134].
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3.1.3. Phase-space Setup and Singular Regions

The combinatorics of constructing the correct FKS pairs of a real flavor structure

fr with an underlying Born flavor structure fB is of pure technical nature. We thus

refrain from the technical details and only give a conceptual overview of the basic

algorithm determining the divergence-inducing pairs, their associated flavor structures,

and additional data. The final results are stored in the region data t type within

WHIZARD. To give an example, we show its most important data structure in

table 3.1 for the process e+e− → jjj at NLO QCD. Consulting the details of table 3.1

should help the reader to understand the details of the technical description in the

following text.

alr fr ifr em mul PFKS fB ifB
1 [11,-11,-2,2,-2, 2] 1 5 4 (3,4),(3,6),(4,5),(5,6) [11,-11,-2,2,21] 1

2 [11,-11,-2,2,21,21] 2 3 2 (3,5),(3,6),(4,5),(4,6),(5,6) [11,-11,-2,2,21] 1

3 [11,-11,-2,2,21,21] 2 4 2 (3,5),(3,6),(4,5),(4,6),(5,6) [11,-11,-2,2,21] 1

4 [11,-11,-2,2,21,21] 2 5 1 (3,5),(3,6),(4,5),(4,6),(5,6) [11,-11,-2,2,21] 1

5 [11,-11,-2,2,-1, 1] 3 5 1 (3,4),(5,6) [11,-11,-2,2,21] 1

6 [11,-11,-1,1,-2, 2] 4 5 1 (3,4),(5,6) [11,-11,-1,1,21] 2

7 [11,-11,-1,1,-1, 1] 5 5 4 (3,4),(3,6),(4,5),(5,6) [11,-11,-1,1,21] 2

8 [11,-11,-1,1,21,21] 6 3 2 (3,5),(3,6),(4,5),(4,6),(5,6) [11,-11,-1,1,21] 2

9 [11,-11,-1,1,21,21] 6 4 2 (3,5),(3,6),(4,5),(4,6),(5,6) [11,-11,-1,1,21] 2

10 [11,-11,-1,1,21,21] 6 5 1 (3,5),(3,6),(4,5),(4,6),(5,6) [11,-11,-1,1,21] 2

Table 3.1. The singular-region data stored in the region data t type of WHIZARD
for the process e+e− → jjj at NLO QCD with jet-flavor content u, ū, d, d̄, g. The
meaning of the columns and the interpretation of the table as a whole is described
in section 3.1.3. Particles in the flavor structures fr/B are represented by PDG IDs
[168].

Given that we already have a list of Born flavor structures fB in the form of PDG

[168] code arrays, it is straightforward to generate all real flavor structures fr that are

possible within the selected physics model.8 For each of the generated fr, we check

every pair of two QCD partons whether they could have originated from a splitting of

another parton. If there is a valid splitting, we will store the pair of indices marking

the place of the particles inside an fr as an FKS pair (i, j). We then either replace the

two partons in the real flavor structure fr with a valid parent (in the case of g → qq̄)

or delete the radiated gluon (in the case of g → gg and q → qg/q̄ → q̄g). If we have a

process with ISR, we might also have initial state splittings where a gluon-(anti)quark

pair is replaced with the antiparticle of the (anti)quark (gq̄ ← q, see fig. 2.5). The

resulting n-body flavor structure and all of its possible final-state permutations will be

checked against all Born flavor structures fB.

8 At the moment, however, out-of-the-box NLO QCD calculations with WHIZARD only work for
the SM.
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Once a match is found, the FKS pair will be associated to the original real flavor

structure fr, together with further information, such as the type of splitting and

whether it can induce a soft and/or collinear divergence.

We map the index ifr of the original flavor structure fr to the corresponding index

ifB representing the underlying Born flavor structure fB. The mapping ifr → ifB is

surjective such that a single fixed fr can only ever have one underlying fB, while several

fr might share the same underlying fB. Thus, if we find another valid FKS pair in

the same real flavor structure fr that would lead to a different underlying Born flavor

structure fB, we store this as a new fr with a different index ifr .

Real flavor structures fr that differ only by permutations of final-state particles

and have the same index ifB of an underlying Born flavor structure fB associated are

regarded as identical and their FKS pairs are collected in a list. Note that since an

FKS pair (i, j) consists of the positional indices inside its fr, a permutation of fr also

changes the value of i and j accordingly. If by final-state permutation one FKS pair

can be transformed into another, which would lead to the same ifB before permutation,

they are regarded as identical as well. However, both of them are kept in the list of

FKS pairs for that real flavor structure fr. This is important, since we compute the

S-functions (see section 2.1.2) via this list later on.

Indeed, as can be seen in the context of the trijet example in table 3.1, we also

have to exchange FKS pairs between real flavor structures fr that are associated with

different underlying Born indices ifB , but are otherwise identical except for final-state

permutations. When requesting a matrix element from a matrix-element generator for

a (real) flavor structure, the generator will consider all possible processes leading to

any final-state permutation, since it has no knowledge of the associated underlying

Born flavor structure fB. Thus, we ensure by including the FKS pairs from all possible

final-state permutations of the equivalent flavor structures fr linked to different flavor

structures fB that the S-functions will apply the correct factors in the singular limit,

as well as in non-singular phase-space regions. In the initial implementation of FKS

subtraction in WHIZARD, these additional pairs were not considered, which was one

of the reasons that only processes with FSR of an additional gluon gave correct results.

Finally, we permute each real flavor structure fr such that the extra particle (or

different particles as e.g for g → qq̄/gg) with respect to the underlying Born flavor

structure fB is(are) at the last positions and the rest of the permuted real flavor structure

matches its underlying fB. This way, an FKS pair (i, j) will have the emitting particle

as index i and the radiated one as index j, as we only allow configurations where i < j

as defined in eq. (2.1.11). We note that for the cases where the FKS pair originated

from the splitting of a third particle, present only in the underlying fB, we will regard

the lower index i of the pair (i, j) as the “emitter”.

Each unique FKS pair then defines a singular α-region index alr that gets assigned
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a multiplicity mul. This multiplicity represents the number of FKS pairs that belong

to the real flavor structure fr associated with a particular alr and that are equivalent

to the FKS pair defining the alr. Of these equivalent pairs, the one with the highest

emitter index i defines the emitter index em of the alr. Each unique em defines

an (n+ 1)-body phase space, i.e. alrs with the same em will have the same set of

kinematics.

We store the data gathered in the described way in the region data t type, shown

in table 3.1 for the process e+e− → jjj at NLO QCD. For this example, we restrict

the flavor content of the jets to u, d, g and their antiparticles, since this will produce

all relevant cases for FSR in the FKS subtraction scheme for this process. We draw

special attention to alr=5,6, where we can see the aforementioned case of having to

exchange FKS pairs between two real flavor structures fr that are identical except

for final-state permutations, but have different underlying Born flavor structures fB
assigned due to the splitting associated with their respective FKS pair. More explicitly,

in alr=5, we can see that the FKS pair (5,6) – associated with the emitter em=5 of

this alr – represents the splitting of the gluon in the underlying fB [11,-11,-2,2,21]

into the d̄d-pair in the fr [11,-11,-2,2,-1,1] associated with this alr. The FKS

pair (3,4), corresponding to a splitting that leads to the ūu-pair, would give an

underlying fB [11,-11,-1,1,21] and is the permuted pair (5,6) from alr=6. As

stated before, this combination results in the correct application of the S-functions to

the real non-subtracted squared amplitude.

For processes with colored initial states, on the one hand we have to consider

additional ISR splitting types (see section 2.2.2), and on the other hand the complexity

of the region data can become huge, especially if the final state mostly consists of QCD

partons. An example for the process pp→ Zj, with the proton and jet flavor content

restricted to u, ū, g for simplicity, is shown in table E.1. We already combine alrs where

an emitted gluon could have originated from both the initial-state particles via the

emitter index em=0. However, the number of alrs can still be improved, as many alrs

produce the same amplitudes. As a future project, we implemented the experimental

boolean option ?nlo reuse amplitudes fks in WHIZARD to internally summarize

these equivalent alrs to only compute them once. Further validation, benchmarks,

and improvements are still needed for this option, but first checks look promising.

3.1.4. Combinatorial Pitfalls: Symmetry Factors and

Structure Functions – Two Pieces of the Same Pie

We emphasize two aspects of real counterterms: symmetry factors for identical particles

in the final state and the correct application of structure functions such as PDFs.

Although they are completely unrelated, the reason to mention them together comes
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from the fact that for the calculation of the squared Born matrix elements in the

real counterterms we refer to the underlying Born flavor structures. We do this both

when requesting the squared Born matrix elements from a matrix-element generator

such as OpenLoops, and when convolving the subtraction-term interaction with the

structure-function interaction. The real-subtraction terms, however, describe a real

flavor and momentum configuration with an unresolved parton using the squared Born

matrix elements as an approximation.

Therefore, we needed to take care that WHIZARD applies the correct symmetry

factor for identical final-state particles N (fr) of the real flavor structure fr (see

eq. (2.2.1)) to the real-subtraction terms, since the externally provided (spin- and

color-correlated) squared Born matrix elements can already contain the Born symmetry

factor N (fB).

Additionally, we store the Born matrix elements convolved with the structure

functions corresponding to the Born configuration. In the case that we need rescaled

structure functions with the flavor content of the real initial-state partons, e.g. in the

case for non-soft ISR that changes the flavor of the incoming parton (see section 2.2.2

and figs. 2.5(a) and 2.5(c)), we then have to divide by the Born structure function

and apply the (rescaled) one corresponding to the real flavor content. This resulting

factor is calculated by the term instance and is stored in the sf factors array for a

quick access by the real-subtraction and the DGLAP remnant, which needs a similar

treatment regarding the structure functions (see section 2.3.3).

We implemented this procedure in a way that is agnostic to the kind of structure

function that is used. Therefore, it can easily be reused for the EW expansion of

our FKS implementation, where electron PDFs used for calculations with massless

initial-state electrons have to be treated in the same way as described above.

3.1.5. Event Generation at NLO

The term event usually refers to the full cascade of particle interactions and decays,

starting with the hard scattering of two opposing beam constituents. The resulting

particles from this hard interaction, together with particles from possible ISR, then

radiate and decay further in what is called a parton shower, until they reach a certain

energy scale below which they start to hadronize. The resulting hadrons can then decay

further, until a stable state is reached. Other aspects of beam interactions can add

to, or at least accompany, an event. These include multiple interactions, where more

than one pair of constituents of the same two beam particles undergo an interaction,

usually also referred to as the underlying events.

The full event information, however, is rarely obtained in a real-world experiment,

as several parts are eluded due to limitations in the experimental hardware, setup, and

74



3.1. WHIZARD in the Context of NLO Calculations

software. For example, detectors have to leave space for the beam axis in order to

not interfere with the beam itself, leaving parts of the sphere around the interaction

vertex uncovered. Additionally, different particles have different detection methods,

which require their own space around the beam axis. Some particles such as neutrinos

can only be inferred by their missing energy or momenta with respect to the rest

of the detected particles in an event. Therefore, the challenge of the analysis of the

experiment is to reconstruct the initial hard interaction by inferring the paths and

types of particles in an event from their partially detected tracks and deposited energy

inside of the various detectors around the beam axis. Additional uncertainties such as

the exact behavior of each detector component complicate this task even further.

In a simulation via an MC event generator, however, we control each aspect of an

event, and thus know exactly the momenta and other properties of every particle at

every stage of the simulated event. In contrast to the experiment, which reconstructs

the hard process by the decay products, an event simulation starts with the hard

interaction of a process in a certain physics model. This is also called an FO calculation,

as the hard interaction is described up to a certain order of the relevant coupling

constants in perturbation theory (see eq. (1.0.1)). We will use the notation of fLO

and fNLO whenever necessary to emphasize when we explicitly exclude the subsequent

parton shower and hadronization. We also exclude the resummation of large logarithms

with this notation.

Albeit they cannot fully describe experimental data without further showering and

hadronization, FO differential distributions of IR-safe observables pose a physically

well-defined description of perturbation theory up to the chosen order in the couplings.

To obtain these distributions, MC event generators generate a number of sets of four-

momenta, associated with particle flavors, spins, charges, and color flow, possible for

the hard interaction in question. A single set of four-momenta and its associated data

is then sometimes also referred to as an FO event. In contrast to an event in the

experimental sense, it should rather be understood as a technical tool to obtain FO

differential distributions.

In terms of the nomenclature established in this section and the one established in

section 3.1.2, an FO event can also be interpreted as the evaluation of the function

fϕ(xi) in eq. (3.1.6) for a single random number xi ∈ U from the subset U of the unit

hypercube. The resulting real-valued scalar is referred to as its weight

ωi = fϕ(xi) , ωi ∈ R , ωi > 0 at LO. (3.1.9)

This weighting of events introduces a bias to their distribution, which is in contrast

to what can be seen in a real-world experiment, where the probability distribution of

events is according to the differential cross section. In an experiment, we thus observe
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unweighted events, meaning that each event has a weight of ωi = 1. In order to compare

simulation with experiment, the generated weighted events have to be unweighted.

At LO this is straightforward, as we estimate the maximum weight ωmax during the

adaption of the integration. Given a random number u from a uniform distribution on

the interval (0, 1), we can then generate events with weight ωi and reject those with

ωi ≤ uωmax . (3.1.10)

Consequently, the remaining events all have weights equal to one, as their distribution

then follows the probability distribution dictated by the squared matrix elements.

Obviously, due to the rejection of events in eq. (3.1.10), generating unweighted events

is not as efficient as the generation of weighted events.

At NLO, however, both the real counterterms and the virtual-subtracted squared

amplitude can be negative. Therefore, the weights are not guaranteed to be positive

definite, making a naive reweighting of FO events as described impossible beyond

LO. This problem is addressed in the POWHEG matching scheme [170], for example,

which was developed to realize the matching of fNLO events to a parton shower.

For relatively well behaved regions of phase space, the POWHEG scheme can generate

positive-weighted events that then are properly unweighted to resemble a physical

distribution. Subsequently, those events can then be matched to a parton shower

simulation by keeping the FO accuracy for the first emission, while the large logarithms

in the following parton shower are resummed by modified Sudakov form factors. After

showering, hadronization, decay, and detector simulation, a direct comparison between

the generated and experimentally measured events is then possible.

While studies using WHIZARD at NLO with POWHEG matching exist [171, 172], a

full implementation and validation of the fNLO QCD capabilities of WHIZARD

has only been established in the course of this thesis. Since the algorithms for

parton-showers, hadronization, etc. have already been realized in many external tools

that can be interfaced by WHIZARD, e.g. Pythia, we focussed our efforts on the

correct generation of FO differential distributions to build the basis upon which the

implementation of POWHEG matching in WHIZARD can be generalized in future

studies.

Fixed-order Events for Differential Distributions at NLO with WHIZARD

We explained that FO events do not fully represent actual experimental events, but

rather serve as an intermediate (technical) step between the generation of the hard

interaction and the subsequent parton shower. Furthermore, their exact representation

at NLO strongly depends on the subtraction scheme employed by the MC event
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generator and the technical details of its implementation. In addition, the demanded

form of fNLO event input can differ between matching schemes and parton shower

programs. Therefore, the representation of FO events by an MC event generator at

NLO retains a certain ambiguity.

However, representations of FO events fulfill restrictions, like energy and momentum

conservation. Furthermore, FO differential distributions of IR-safe observables com-

puted from FO events are expected to give comparable results between different MC

event generators and also with analytic calculations, because these distributions pose a

physically well-defined description of perturbation theory up to the chosen order in the

couplings.

In WHIZARD, the representation of fNLO events builds upon the structure of

term instances presented in section 3.1.1. Depending on the selected integration

method, events are either generated separately for each component or combined.

For components with effectively only n-body kinematics, e.g. the Born, virtual, and

DGLAP remnant, this is a straightforward task. In this case, we generate either separate

independent events with n final-state momenta and associated weights dependent on

the corresponding squared matrix element and kinematics, or evaluate the weight for

each n-body component for the same event and associate it with the sum of the weights

of the components.

For the real component, however, we have to represent the different real-emission

kinematics given by the corresponding term instance for each possible unique emitter

of an underlying Born flavor structure. Therefore, we have nem different real-emission

events, each with their own set of momenta, particle flavors, etc., and associated

weight, dependent on the real, non-subtracted squared matrix element. All of them,

however, share the same underlying Born kinematics, which defines their collective

counterevent with a weight made up by the corresponding subtraction terms (see

section 2.2). These (nem + 1) events – referred to as subevents – form an event group

with the same event ID and are highly correlated. In the combined integration mode,

the counterevent shares the same n-body kinematics as the Born, virtual, and DGLAP

remnant component. Hence, they are combined into one single Born-like event with a

weight made up from the sum of all n-body weights. This Born-like event then takes

the place of the n-body counterevent in the corresponding event group.

As mentioned, we have a high correlation between subevents in an fNLO event group.

In an analysis, such an event group has to be treated with care in order to ensure

the correct statistical treatment when filling the weights of its subevents into binned

data types such as histograms. The sum of the squared weights in one bin is used as a

measure to estimate the statistical uncertainty of that bin. However, the more collinear

and/or soft a real-emission event is, the larger the absolute value of its weight and the

weight of its counterevent becomes. Consequently, the sum of their squared weights
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would unrealistically enlarge the error estimate. Therefore, we have to add all weights

of an event group that would end up in the same bin before squaring their weights and

effectively count them as only one event. In this way, it is ensured that large absolute

weight values due to collinear and/or soft divergences cancel out, since in these limits

the real-emission event effectively has the same kinematics as the counterevent with

an additional unresolved parton. Therefore, both events have a very high chance to

end up in the same bin.

This does come with a caveat, however, as events and their counterevents could have

kinematics very close to the edge between two bins. Numerical differences can then

lead to the real-emission event landing in one bin and its counterevent in the other.

The consequence of this would not only be an unrealistic enlargement of the statistical

errors of both bins, but also a significant distortion of the total sum of weights of each

bin. To alleviate the effects of such a misbinning, some form of weight “smearing” can

be used, either already during event generation (e.g. in Sherpa [34]) or while filling

bins during the analysis (e.g. in Rivet 3 [173]). Because there is no consensus yet

on how to correctly implement such a smearing in WHIZARD, we have refrained

from implementing it and raise the question if the handling of these misbinning effects

should be left to the analysis tools.

When plotting fNLO events it is also common to encounter bins with a sum of

weights below zero. Similar to the effects of misbinning, where IR divergent subevents

can fall into different adjacent bins, negative bin weights are an artifact of fNLO events

rather than a physical phenomenon. It can happen when predominantly Born-like

subevents fall into a single bin, as both real counterevents and virtual-subtracted events

can have negative weights.

An example for such a scenario would be the differential distribution of the energy

of the hardest (massless) jet in the dijet process e+e− → jj. On the one hand,

counterevents have Born-like kinematics by construction and the jet energy would thus

be exactly half that of the CM energy
√
s. On the other hand, outside of the exact

soft limit, the real-emission subevents can feature a hardest jets with an energy below√
s/2. Due of the fact that the sum of Born-like subevent weights at fNLO can have

negative values, the sum of weights in a bin can thus become negative as well.

These negative weights are cancelled in the integration over all bins, however, and

beyond fNLO adequate matching methods such as POWHEG take care of negative weights.

At fNLO we can circumvent negative bin weights simply by choosing a suitable binning

that allows for enough positive weights to counteract the negative ones.
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3.2. Concluding Remarks

With the technical concepts presented in section 3.1, all essential parts needed in the

understanding of how WHIZARD performs a complete fNLO QCD computation of

both total cross sections and differential distributions are given. There are of course

many more technical aspects of WHIZARD – such as the Sindarin implementation,

the main program loop, the LHAPDF and OLP interfaces, etc – that are important

for a full fNLO computation. However, they either have already been present for LO

calculations or are not essential for the general understanding of the NLO capabilities

of WHIZARD. Nevertheless, during the course of the work this thesis is based upon,

also significant parts of these technical aspects had to be modified to account for the

parts necessary for the full fNLO QCD implementation.9

With the technical implementation in WHIZARD laid out, the next step is to

validate its results of fNLO QCD computations, to compare it against other MC event

generators, and then to apply it to phenomenological studies. This will be the topic of

part II.

9 The public Git repository for WHIZARD at [174] exhibits a full history of the changes we made.

79





Part II.

Numerical Studies for Fixed-NLO

QCD Jet Physics

81





4. Validation of WHIZARD at

Fixed-NLO QCD

Based upon the theoretical background of the FKS subtraction scheme, as reviewed

in chapter 2, we completed the NLO QCD implementation in WHIZARD at FO.

With the relevant technical details of how this has been accomplished documented in

section 3.1, we now turn our attention to the validation of this implementation.

Due to the nature of WHIZARD being a multi-purpose MC event generator, the

task of validating every possible aspect of the program for every possible process is

practically impossible. Therefore, it is common practice to validate a representative and

substantial subset of processes in order to increase the confidence in the implementation

to a point where one can reliably assume the validity of results that have not been part

of the validation themselves.

There are also many different ways to check that the program indeed works in the

intended way and produces correct results. In the case of our FKS implementation, the

most basic tests check that partial results of the subtraction scheme agree in certain

limits or regions of phase space. A few examples for these self-consistency tests are

given in section 4.1.

Comparisons against analytical results are another way to validate results, but are

limited to a number of processes for which analytical calculations exist, as they quickly

become unfeasible for phase spaces with higher dimensionality. However, especially for

early MC computations this provided a reliable way to verify results.

Of course, beyond FO, MC simulations have to be validated against actual exper-

imental data. At NLO QCD, most major multi-purpose MC event generators have

undergone extensive validation in this regard over the past decades, with a multitude

of data available from e.g. LEP or LHC runs. Unfortunately, our NLO implementation

in WHIZARD so far only supports FO calculations. While it would in principle be

possible to some degree to unfold the experimental data onto the hard process, this

would be impractical and introduce additional possibilities for errors. However, since

there exist extensively-validated multi-purpose MC event generators that are capable of

FO calculations, we can validate our results against theirs for a multitude of processes.

In section 4.2 we compare fNLO QCD cross sections computed by WHIZARD

against results from the multi-purpose MC event generator MG5 aMC@NLO [33]
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for a vast selection of lepton and hadron-collider processes. This is followed by an

exhaustive comparison of differential distributions for exclusive numbers of jets in multi-

jet production at a future 1 TeV lepton collider in section 4.3. There, we additionally

compare against the multi-purpose MC event generator Sherpa [34, 175]. We also

briefly consider differential distributions for hadron-collider processes by means of the

process pp→ Zj in section 4.3.5.

It is important to note that while the comparisons of results of WHIZARD to

those of MG5 aMC@NLO and Sherpa in section 4.2 and section 4.3 primarily serve

the purpose of validating our FKS implementation in WHIZARD, they also provide

a much more general cross-check of the physics and technical concepts implemented

in each program considered in this comparison. As they become more and more

complex over time, with significantly different approaches to physical and technical

problems, it becomes increasingly important to check, understand, and keep track of

these differences across MC event generators. This is important, as these programs are

frequently used in state-of-the-art studies, both in theory and at experiments, where

conclusions and discoveries can very well depend on the correct physics description

in any part of an MC program. As an example, a recent study [176] that compared

several well-known MC event generators in the context of vector-boson scattering at

the LHC illustrated the need to understand differences across these tools in order to

make meaningful theoretical predictions.

4.1. Self-consistency Tests

Before comparing full results for fNLO total cross sections and differential distributions

to other MC event generators, we can conduct self-consistency tests to check if the

FKS implementation performs in a technically expected way. In the following we will

present the three classes of self-consistency tests that we predominantly used to check

the technical implementation of the FKS subtraction scheme in WHIZARD. While

there are certainly many other possible ways to check that the implementation works

as expected, we found the most telling ones to be these presented here.

4.1.1. Limit Checks

The first test from which we can deduce information about the correctness of our

FKS implementation is a check of the cancellation of the real non-subtracted squared

amplitude R̂α(ξ, y) and the corresponding counterterm (see eq. (2.2.5)), both evaluated

for a kinematic configuration approaching either a soft, collinear, or soft-collinear limit.

In these limits, the additional parton is unresolvable and thus the real subtracted

contribution has to approach zero. If this were not the case and the difference in
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these limits between R̂α(ξ, y) and the corresponding counterterm becomes larger than

numerical fluctuations, the integration would not converge. We give an example for a

good convergence in listing F.2, where we show the integration of the real component

for the process e+e+ → jjj.

In WHIZARD, the limit test as described can be conducted for the real component

via the command-line debug flag --debug subtraction and the Sindarin commands

• ?test coll limit (setting ξ = 0.5, y = 1− 10−7),

• ?test anti coll limit (setting ξ = 0.5, y = − (1− 10−7)),

• and ?test soft limit (setting ξ = 10−5, y = 0.5),

which can be set to true or false individually. By setting the soft test case to true

together with either the collinear or anti-collinear test case, we can test the soft-collinear

limit where ξ = 10−5 and y = ± (1− 10−7). Because of possible numerical instabilities

in the exact limits, we do not set ξ = 0 or y = ±1 for the real non-subtracted squared

amplitude. WHIZARD then computes R̂α(ξ, y) and the respective counterterm

R̂cnt
α (ξ, y) for the selected limit and compares them via

∣∣∣R̂α(ξ, y)− R̂cnt
α (ξ, y)

∣∣∣

max
(∣∣∣R̂α(ξ, y)

∣∣∣ ,
∣∣∣R̂cnt

α (ξ, y)
∣∣∣
) !
< 0.01 . (4.1.1)

This acceptance level is motivated only by empirical observation and experience from

the numerics of a wide variety of NLO QCD processes and their IR limits. Also,

the relative number of calls passing these acceptance levels can vary significantly, as

processes with e.g. more complex phase-space configurations might need an absolute

value of y closer to one or a value of ξ closer to zero to pass. For most processes,

however, we observed that if roughly 80− 100% of calls for a specific singular α-region

alr (see section 3.1.3) in each limit fulfill these acceptance levels with the chosen values

for ξ and y, the integration shows an excellent convergence.

4.1.2. Closure Tests

While the limit checks cover the divergent regions of phase space and thus can be

indicative of the quality of convergence in the integration, they cannot give clues on

any possible misbehavior of the FKS implementation outside of these extreme regions

of phase space. For example, as we have discussed in section 3.1.3, an FKS pair that

does not belong to the emitter of an α-region alr will give a trivial contribution to the

calculation of the S-function in a singular region of phase space, while everywhere else

it gives a non-zero contribution. If we had missed implementing this pair, the limit
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checks would still work fine, as would the convergence of the integration. The final

result, however, would not be correct.

In order to catch these kinds of errors, at least for the real component, we can

conduct what we call closure tests. Basically, what this means is that the integrated

cross section for a real emission process should be equal to the cross section we would

get if we would treat this process as Born-level, given that we impose the same cuts

and jet selections such that the Born integral is finite.

For an explicit example let us look at the real-emission process as a correction to

the process e+e− → jjj at fNLO QCD and the Born process of e+e− → jjjj, where

we excluded top quarks from the jets j. Also note that at FO, the jets are obtained

simply from parton momenta onto which we apply an IR-safe jet algorithm. Both

processes are of the order O(α2α2
S) in the QED and strong coupling constants, α and

αS, respectively. We refer to section 4.2.1 for the exact setup of these processes, as the

details are not relevant at this point. We note, however, that we have the same setup

for both processes and require four distinctive – i.e. resolved – jets in both cases. In this

way, we compute the real emission of e+e− → jjj only in the phase-space continuum,

while cutting all singular configurations where a parton becomes sufficiently soft and/or

collinear enough to another parton that they are clustered into one jet object. For a

CM energy of 1 TeV, the results are

σreal
e+e−→jjj = 104.440(26) fb,

σBorn
e+e−→jjjj = 104.456(23) fb,

(4.1.2)

and agree perfectly within their statistical errors. As another example, in the same

manner we also compare the cross section for the real emission of pp→ Zj with the

Born cross section of pp→ Zjj. In this way, we also probe the ISR part of the FKS

implementation. Again, the results agree perfectly within their statistical errors as

shown for a CM energy of 13 TeV here:

σreal
pp→Zj = 2.3611(28) · 106 fb,

σBorn
pp→Zjj = 2.3623(20) · 106 fb.

(4.1.3)

4.1.3. Check for Independence of Free Parameters

In the FKS subtraction scheme, several free parameters enter the cross section of the

hard interaction. These originate from various ambiguities introduced in the derivation

of the analytical FKS terms. As one example, because of the ambiguity in the partition

of unity (see eq. (2.1.25)), the S-functions depend on an arbitrary exponent p in

eq. (2.1.37). Another example is that the definitions of the modified plus distributions

in eqs. (2.2.12) to (2.2.14) include the arbitrary parameters ξcut, as well as δI and δO,
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that enter the different terms in eq. (2.2.17). These parameters effectively act as a

phase-space slicing between the singular and non-singular regions of the real-emission

phase space. While the choice of the values of these free parameters can influence the

value for specific terms of the FKS subtraction scheme, the total cross section should

be independent of this choice. Thus, we are provided with a perfect opportunity to

test the FKS implementation by varying these parameters.

As an example, for the process e+e− → jjjj we test the variation of δO, which

effectively produces a shift between final-state contributions from the real collinear and

soft-collinear counterterms (see eq. (2.2.20)), and the integrated collinear counterterms

(see section 2.3.2). For the same process setup that will be detailed in section 4.2.1, we

compute the real and virtual contributions for several choices of δO, shown in table 4.1.

As expected, we can observe that within the statistical errors of the MC computation

their sum remains independent of the choice of δO.

δO σreal[fb] σvirt[fb] σreal+virt[fb]

2.00 57.24(16) −113.11(12) −55.87(20)
1.50 32.19(17) −88.30(10) −56.11(20)
0.70 −32.84(18) −22.95(5) −55.79(18)
0.25 −121.09(18) 65.32(6) −55.77(19)
0.05 −259.36(22) 203.37(18) −55.99(29)

Table 4.1. Cross sections for the real and virtual contributions to the process
e+e− → jjjj at NLO QCD for variations of δO. The sum of their contributions is
shown as well. See section 4.1.3 for details.

4.2. Comparison of Fixed-order Cross Sections

The obvious next step in a thorough validation of the WHIZARD fNLO QCD

capabilities is to cross-check computed cross sections with the results from other

MC event generators. Conveniently, there exists an extensive compilation of fNLO

QCD total cross section results, conducted by the MadGraph developers for the

validation of their implementation of FKS in the MG5 aMC@NLO program [33] and

documented in [33, tables 1 to 11]. In there, scattering processes with both leptonic

and hadronic initial states were considered.

In the following, we will first detail the process and parameter setup for the FO

cross section comparison between WHIZARD and MG5 aMC@NLO in section 4.2.1,

and subsequently present and discuss the results in section 4.2.2. It has to be noted

that we could have used e.g. Sherpa as a third MC event generator to give an

additional cross-check between different subtraction schemes, as Sherpa uses the CS
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subtraction scheme. However, the results in [33] were calculated for a dynamical scale.

Because Sherpa implements a different running of αS, as discussed in more detail

in section 4.3.1, any comparison including Sherpa would have required additional

scale variations for each process to assess the agreement between the programs. This

proved to be prohibitive within the time scope of this thesis due to the large number

of processes considered in this comparison of cross sections.

For a technical validation of fNLO QCD processes, a restriction to a physically

limited setup is very beneficial. Hence, building upon the setup in [33], we limit

ourselves to the hard fNLO QCD process without applications of EW contributions,

parton showers or hadronization.

4.2.1. Process and Parameter Setup

In order to properly compare the WHIZARD results with MG5 aMC@NLO, we

translated all of the process setup as described in [33] into Sindarin code, taking into

account further details given in the MadGraph run and parameter cards [177] used in

that paper. In the following, we will discuss the details of the process and parameter

setup.

Most of the physical parameter setup can directly be read from [177] and transferred to

a Sindarin file. Lepton-collider processes are computed for a CM energy of
√
s = 1 TeV,

whereas results for hadron-collider processes are presented for
√
s = 13 TeV. If not

stated otherwise, quarks are considered massless, with the exception of the top quark.

Thus, we default to the five-flavor scheme as described in [178, 179] and references

therein. Resonant-top contributions in hadron-collider processes with at least two W

bosons are avoided by calculating them in the four-flavor scheme. The top mass, and

the Higgs and EW gauge boson masses are set as

mH = 125 GeV, mt = 173.2 GeV,

mW = 80.419002 GeV, mZ = 91.188 GeV.
(4.2.1)

Leptons are considered massless, with the exception of the tau mass being set to

mτ = 1.777 GeV. (4.2.2)

Although both MG5 aMC@NLO and WHIZARD have implementations to handle

intermediate resonances via the complex mass scheme, top quarks, as well as the EW

bosons W and Z are considered to be stable and their widths are consequently set to

zero for this comparison.
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The EW scheme is chosen such that mW , mZ , and

GF = 1.16639 · 10−5 (4.2.3)

are the input parameters. Furthermore, we assume a diagonal CKM matrix.

For the central scale µ = µR = µF , we compute the scalar sum HT of the transverse

masses such that

µ =
1

2
HT , HT ≡

∑

i

√
p2

T,i +m2
i , (4.2.4)

where the index i runs over all particles in the final state – including those that are

not strongly interacting. For the FO cross section comparison between MC event

generators in this work, we do not consider scale variations. Any errors given are

purely the statistical MC errors reported by each program.

Both fLO and fNLO hadron collision results have been computed with the central

PDF of the set

• MSTWnlo2008 with errors at 68% confidence level (CL) [180],

with the value of the strong coupling αS(mZ) being set by the PDF. For lepton collisions

we set

αS(mZ) = 0.118 . (4.2.5)

The internal running of αS in WHIZARD is calculated up to O(α2
S), which to our

knowledge equals the internal settings of MG5 aMC@NLO.

As already stated in detail in the beginning of chapter 2, care has to be taken in

regard to the selection of EW and strong coupling orders. Otherwise, a consistent

NLO QCD calculation is not guaranteed, as gauge invariance might be violated. When

running MG5 aMC@NLO at fNLO QCD, the program automatically only selects

the Feynman diagrams with the highest order possible in the strong coupling constant

αS for a process in question, thus guaranteeing that the real emission leading to an

additional factor in the strong coupling is a pure QCD correction (see fig. 2.1).

In WHIZARD, we have to explicitly set the coupling orders for the Born process

via Sindarin commands. At the time of writing this thesis, this is only possible

for external matrix-element generators, but not for O’Mega. Also, as stated in the

introduction of chapter 3, the fNLO QCD implementation in WHIZARD so far is

only fully complete for OpenLoops 2 as the matrix-element generator, to which we

will default for all components in WHIZARD throughout this work (see section 3.1.1).

For the finite one-loop contributions, MG5 aMC@NLO comes with its own one-loop

provider MadLoop [49].
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The anti-kT jet-clustering algorithm [181] is imposed on all massless final state

partons, where the jets j are selected by the restrictions

R = 0.5 , pT(j) > 30 GeV, |η(j)| < 4 , (4.2.6)

with the jet-radius (or jet-resolution) parameter R. If the number of jets fulfilling these

conditions are less than the number of jets in the Born process, we reject the event.

For the 13 TeV hadron-collider processes with pure multi-jet final states we impose

stricter cuts, with as many jets as are present at Born level fulfilling pT(j) > 80 GeV,

out of which at least one jet has to have pT(j) > 100 GeV.

It is important to note that for the real component we cut real-emission and Born-like

phase-space points separately, which is the default behavior of both MG5 aMC@NLO

and WHIZARD. This is necessary, as there exist cases where the real emission does

not pass the jet selection, while the n-body kinematics of the underlying Born passes.

If we would cut the Born-like phase-space point as well, the cancellation between the

integrated subtraction terms and the real counterterms would not resemble an addition

of zero anymore, leading to results that are incorrectly dependent on the underlying

subtraction mechanism.

The results in [33, tables 1 to 11] also contain processes with bottom quarks and

photons in the final state. The former have been computed with a specific selection on

the number of b-jets, while the latter have been done with Frixione isolation [182, 183]

in order to isolate the photons from jets present in the final state. Although these two

selection criteria have been implemented in WHIZARD recently, they have not been

validated yet. However, they are not an NLO-specific feature and thus are not related

to the validity of our FKS implementation.

Also, no (complete) OpenLoops libraries for the processes pp→ W+W−W+W−(4f),

pp→ ZZZZ, and pp→ tt̄W±Z were available. These processes have been excluded

from the comparison as well.

Finally, in [33] fNLO QCD cross sections for hadron-collider processes with both

Higgs boson and single-top quark production are presented as well. Those have been

left out in our comparison so far – with the exception of pp → HZ – simply due to

time constraints and the fact that we do not anticipate any unexpected results caused

by our FKS implementation.

4.2.2. Comparison and Discussion of Results

The results for the FO cross sections, computed as described in section 4.2.1, are

presented in this section. Unless we explicitly state otherwise, the LO results for

MG5 aMC@NLO are taken directly from [33]. For the NLO results, however, the
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version of MG5 aMC@NLO used to compute the results in [33] (and every subsequent

version up to 2.6.2) had a bug present for processes having identical QCD particles

in the final state at Born level [184], leading to significant deviations from the actual

result. We thus recalculated every MG5 aMC@NLO NLO cross section with version

2.7.3.1 The only exception had to be made for the process pp→ W±jjj, which could

not be recalculated because of unresolved technical difficulties with MG5 aMC@NLO

at the time of this thesis and we resorted to the result from the paper for this process.

Roughly following the ordering of processes in [33], we grouped together processes

with similar characteristics in the presentation of the results. In table 4.2 we state the

results for lepton-collider processes with pure QCD final states, consisting of heavy

top quarks and light jets. Table 4.3 presents results for lepton-collider processes with

a top quark pair and one heavy scalar or up to two vector bosons in the final state,

accompanied by up to two light jets or an additional boson. Hadron-collider results are

next, with up to two massive vector bosons in the final state, and up to two additional

light jets, given in table 4.4. Final states with three heavy vector bosons and up to one

light jet, as well as combinations of four final-state heavy vector bosons, are collected

in table 4.5. Finally, in table 4.6 we conclude the hadron-collider processes with pure

QCD final states, and top quark pairs with up to one light jet or an additional heavy

vector boson. The pp→ HZ result is given there as well.

The results for MG5 aMC@NLO and WHIZARD are presented with the K-factor,

defined as

K ≡ σNLO

σLO

, (4.2.7)

as well as the significance σsig
NLO of the deviation between two results, given by

σsig
NLO ≡

∣∣σMG
NLO − σWH

NLO

∣∣
√

(∆σMG
NLO)

2
+ (∆σWH

NLO)
2
, (4.2.8)

with the total fNLO QCD cross sections σ
MG/WH
NLO and their statistical errors ∆σ

MG/WH
NLO

of MG5 aMC@NLO and WHIZARD, respectively. It is common to denote the

significance as rσsig
NLO, with r being the relative factor to the case where σsig

NLO = 1.

Values above 3σsig
NLO can in general be interpreted as a hint for a deviation, with the

commonly accepted threshold for a statistically significant deviation being 5σsig
NLO.

In the following, we will discuss the results in more detail. Considering lepton-

collider processes in table 4.2 first, we can exclusively test the FSR part of our FKS

implementation. The processes with pure light-jet final states provide an excellent

1 Some results have been obtained with versions between 2.6.2 and 2.7.3, as the program has
received several updates during the time of this thesis. However, we do not see any deviations
between those versions themselves.
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test case for massless FKS subtraction. Starting with the dijet process, we have a

very simple phase space and the only possible QCD radiation is the emission of a soft

and/or collinear gluon. These splittings do not introduce spin correlations and color

correlations are minimal. Adding one jet at Born level introduces g → qq̄/gg splittings

at NLO and thus spin correlations.

Increasing the number of QCD jets also leads to more complicated color correlations.

Furthermore, e+e− → jjj (or trijet) is the first process where the treatment of FKS

pairs becomes non-trivial, as explained in section 3.1.3 regarding alr=5,6 in table 3.1.

Any wrong treatment of identical particles in the real-emission final state would become

noticeable here as well, due to the g → gg splitting. While increasing the number of

jets in the Born process does not introduce new aspects of FKS, the complexity of

the aforementioned features rises significantly. Therefore, we would expect even the

smallest discrepancy from the correct implementation to be reflected in an obvious

disagreement between MG5 aMC@NLO and WHIZARD. The fact that we do not

observe any such deviation even for high jet multiplicities already gives high confidence

in our implementation.

The correct treatment of massive QCD partons is tested with the inclusion of top-

quark pairs in the final state. Without any additional light jets, we do not have spin

correlations. In addition, the mass of the top quark regularizes any collinear divergences.

Therefore, the only divergences originate from the emission of a soft gluon. Moreover,

these processes test the correct implementation of the massive-massive eikonal integrals

in the virtual-subtracted squared amplitude (see section 2.3.1 and appendix D.2).

The implementation of mixed final states with both massive and massless QCD

partons is tested by the addition of up to three light jets to processes with top quark

pairs. These processes provide validation of out implementation of the massive-massless

eikonal integrals.

More complex phase-space configurations arise when the emitter-emitted system

recoils against additional heavy final-state bosons in processes as shown in table 4.3.

Although these processes have rather simple FKS combinatorics regarding the singular

regions, they can have complicated loop diagrams. Therefore, the observed excellent

agreement with MG5 aMC@NLO can additionally be seen as a validation of the

correct interplay between WHIZARD and OpenLoops.

QCD corrections involving ISR are scrutinized by calculating total cross sections

for hadron-collider processes, with the results given in tables 4.4 to 4.6. Pure ISR

is produced by considering colorless final states at Born level, e.g. processes with

a mixture of up to four heavy scalar and/or vector bosons in the final state, with

the simplest being pp → Z. Higher boson multiplicity again does not add a higher

complexity in FKS combinatorics, but rather tests the integrity of our phase-space

implementation and the handling of complex (loop) diagrams (via the OLP interface).
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4.2. Comparison of Fixed-order Cross Sections

The correct treatment of different quark flavors in the initial state is validated by

processes with at least one final-state W± boson.

We observe an excellent agreement between the MG5 aMC@NLO and WHIZARD

results, with the only outlier being a deviation with a significance of 3.56σsig
NLO for the

process pp → W+W−ZZ(4f) as presented in table 4.5. The question why we see a

disagreement here (and only here) is not fully answered yet and is part of an ongoing

discussion. We recomputed both results several times with varying seeds to exclude

statistical fluctuations. This, however, did not reduce σsig
NLO. It is possible that for

this process in particular the different phase-space techniques of both MC programs

disagree enough to introduce a slight deviation that is reflected in the total cross

section. Other possibilities include differences in the EW scheme or a problem with

the OpenLoops library for this particular process. Last, but not least, there always

exists the possibility of an error in this specific process setup we simply did not catch.

In relation to the vast amount of processes where we agree with MG5 aMC@NLO,

however, this outlier remains an anomaly that is significant enough to warrant a second

look, but is insignificant enough to not invalidate our FKS implementation as a whole.

The addition of up to two light jets to the pure bosonic final states in tables 4.4

and 4.5 leads to processes that provide a perfect test case for the interplay of initial-

and final-state QCD corrections. Again, the heavy bosons simply act as recoilers to the

emitter-emitted system, giving rise to more complex kinematics and loop diagrams.

The highest amount of complexity regarding the combinatorics in the FKS subtraction

scheme, however, can be found in processes like pp → jj and pp → jjj, listed in

table 4.6. There, the number of singular regions easily reaches four digits. The fact

that we do not see any significant deviation from the MG5 aMC@NLO results here as

well is a strong confirmation of our correct implementation of massless FKS subtraction

throughout all components in WHIZARD.

Finally, massive and massive-massless QCD final states in the context of hadron

collisions are validated via processes containing top-quark pairs in the final state as

shown in table 4.6, with the addition of massive bosons and/or light jets. We observe

a perfect agreement with MG5 aMC@NLO.

In summary, for almost any process in this comparison, we observe an excellent

agreement between MG5 aMC@NLO and WHIZARD both at LO and NLO. Only

a very few processes deviate by slightly more than 2σsig
NLO. Statistically, this is expected

for the number of processes considered in this comparison. We conclude that our

implementation of FKS subtraction correctly computes total cross sections at fNLO

QCD.
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4.3. Comparison of Fixed-order Differential

Distributions

Having validated our results for the total cross sections, we turn our attention to

the validation of fNLO QCD event generation with WHIZARD, as described in

section 3.1.5. As stated therein, FO events are sets of four-momenta, associated with a

weight, and cannot fully describe experimental data without further showering and

hadronization. Nevertheless, FO differential distributions pose a physically meaningful

description of perturbative QCD up to the chosen order in αS. The differential

distributions of an IR-safe observable computed from the sets of FO events generated

by different MC event generators should therefore agree within the (combined) statistical

and theoretical uncertainties.

In this section we will compare the results for FO differential distributions of events

generated by WHIZARD with those generated by MG5 aMC@NLO (in version

2.7.3), which was introduced in section 4.2. In addition, we also compare against the

results of the multi-purpose MC event generator Sherpa [34, 175] (in version 2.2.10),

which uses the CS subtraction scheme [40] for its NLO implementation. This provides

additional cross-scheme validation.

Our focus in this section and beyond will be on processes with n-jet final states at a

future lepton collider such as the ILC. There, these processes will play an important

role not only as QCD corrections to the process e+e− → ff̄ , but also as a relevant

background to e.g. multi-boson processes with hadronic final states. Moreover, these

multi-jet processes provide an excellent opportunity to conduct high-precision studies

on e.g. hadronization models or SM parameters like the value of αS. Deviations from

these parameters can provide signals in searches for BSM physics.

While there have been many studies on multi-jet processes in electron-positron

annihilation at NLO QCD (e.g. [81–84]), and up to NNLO for up to three light jets

(e.g. [185, 186]), even more recent studies at NLO (e.g. [187]) often focus on LEP CM

energies or the lower end of proposed energy ranges at future lepton colliders. With

discussed CM energies of the first stage of the ILC of 250 GeV to 500 GeV [188], the

technical design report [21] also includes future upgrade paths up to 1 TeV. Thus, a

comparison between MC event generators at this energy for exclusive n-jet observables

remains relevant for scientific discussion.

Additionally, since the FKS implementation in WHIZARD also supports hadronic

initial states, we chose the process pp → Zj with an on-shell Z boson in order to

validate and highlight the fNLO QCD event generation capabilities of WHIZARD for

hadron colliders.

We will first give an overview over the process and parameter setup for the event
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generation in section 4.3.1, followed by the details for the setup of the analyses in

section 4.3.2, where we also explain the definitions of the event-shape observables

we considered. The results for n-jet processes in lepton collisions are then split

into differential distributions of observables defined on clustered jets presented in

section 4.3.3 and differential distributions of event-shape observables presented in

section 4.3.4. The results for the hadron-collider process pp→ Zj are briefly discussed

in section 4.3.5.

4.3.1. Process and Parameter Setup for Event Generation

For the event generation with all three programs we mostly used the same settings and

parameters as already described in section 4.2.1. There are, however, a few differences

and additional settings, which will be explained in the following.

Beginning with the central scale µ = µR = µF , we chose a fixed scale

µ = mZ (4.3.1)

simply because of the fact that the implementation of the running of the strong

coupling is different between Sherpa, MG5 aMC@NLO, and WHIZARD. The

former program uses the Landau pole Λ as a reference, thus leading to logarithms

of log (µ2
R/Λ

2), while the latter two rely on the physical mass mZ of the Z-boson,

which leads to logarithms of log (µ2
R/m

2
Z). For processes with high orders of αS, as

well as a running of αS beyond one-loop order in the β-function, the influence of the

different approaches can be seen as a significant deviation between total cross sections

already at Born-level, when only taking into account statistical uncertainties. Certainly,

when also considering theoretical uncertainties in the form of scale variations, the

significance of this difference will vanish. Since we are mostly interested in a direct

comparison of the capabilities of our implementation of FKS, however, we decided to

minimize uncertainties stemming from different implementations of the running of αS
by choosing a fixed scale.2 Nevertheless, we additionally generated event samples with

WHIZARD for typical scale variations of 2µ and µ/2 in order to put the statistical

errors into perspective.

The next change in our setup is that instead of the anti-kt algorithm we chose the

generalized kt jet-clustering algorithm for e+e− collisions [162] for all lepton-collider

processes considered in this section. It is inspired by the original kt algorithms [189],

with extensions akin to those in [181] for the generalized pp algorithm. In contrast to

many other kt jet algorithms, the generalized e+e− kt algorithm incorporates spherical

2 WHIZARD actually does offer the possibility to use either the Landau Pole or the mass of the
Z-boson as a reference in the running of αS . However, MG5 aMC@NLO and Sherpa differ in
their implementation and do not offer both options.
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instead of cylindrical coordinates. The reason for the use of spherical coordinates is

that at a lepton collider the full kinematics of an event can be reconstructed, whereas

at a hadron collider cylindrical coordinates are preferred due to the fact that only

transverse kinematics can be fully reconstructed there.

In the following, we adopt the definitions and explanations from [162] for the

generalized e+e− kt algorithm, where – for the reasons outlined above – the distance

measures of the generalized e+e− kt algorithm are defined as

dkl = min
(
E2p
k , E

2p
l

)1− cos θkl
1− cosR

, (4.3.2)

dkB = E2p
kB , (4.3.3)

with R being the real-valued jet-radius parameter and p an arbitrary real number. As

for all kt jet algorithms, the minimum dmin = min (dkl, dkB) of all distance measures

dkl between each pair of final-state particles k and l, and all distance measures dkB
between each particle k and the beam axis, is recursively determined. For each new

dmin that is found to be a dkl, particles k and l are merged into a new particle (also

called pseudojet), which receives the sum of their four-momenta as its momentum.3 If

dmin = dkB we call k an inclusive jet. The algorithm continues until only inclusive jets

remain in the event.

With the restriction R ≤ π, the behavior of the algorithm is analogous to the

hadron-collider algorithms in the way that an inclusive jet is produced by a particle

or pseudojet with index k if its angle θkX to all other objects X meets the criteria

θkX > R.4 We chose

R = 0.5 , p = −1 , (4.3.4)

which is analogous to the anti-kt jet algorithm and to the setting for R we used in

section 4.2. The above choice of R and p for the generalized e+e− kt algorithm leads to

an IR-safe lepton-collider jet algorithm, with energy-hard jets that form well-separated

cone-like objects, having 2R as the opening angle. Thus, its behavior is effectively

similar to cone algorithms, where particles within a specific angular region of conical

shape are defined as a jet.

At the time of writing this thesis, only WHIZARD supports the generalized e+e−

kt algorithm natively. For both MG5 aMC@NLO and Sherpa, the jet definition

had to be changed in the code of their respective FastJet interfaces.

Another notable difference in the setup included the change from using the separate

3 This is the so-called E-scheme recombination, with other schemes existing as well.
4 For R > π, the denominator of eq. (4.3.2) is replaced by 3 + cosR. This requires the notion of
exclusive jets, as for π < R < 3π all final-state particles will be merged into a single inclusive jet.
For more information see [162].
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integration of components in WHIZARD, as used for the validation of the total

cross sections in section 4.2, to using the combined integration. Firstly, this serves

as another validation of a different feature, and secondly it vastly simplifies the event

generation with WHIZARD, as the events for the separate components do not have

to be simulated via individual runs of the program (see section 3.1.5) and do not have

to be merged afterwards in the analysis.

We translated the whole process setup into the Sherpa run card syntax. Like

WHIZARD, Sherpa allows the user to fix the order of the EW coupling to the lowest

order possible (see fig. 2.1 and section 4.2.1). An example for a Sherpa run card

is given in appendix F.2 for the process e+e− → jjj. For the finite virtual one-loop

contributions, we used the OpenLoops interface provided by Sherpa.

With the described setup, we generated weighted FO events at NLO QCD for the

processes listed in table 4.7 with all three MC event generators. There, we also state

the number of generated fNLO event groups (see section 3.1.5). Due to the differences

both in the applied subtraction scheme and in the technical implementations, the

actual number of total (sub)events can vary significantly across the programs. We also

note that, in contrast to Sherpa and WHIZARD, in MG5 aMC@NLO the number

of FO event groups cannot be requested directly and is indirectly influenced by the

requested integration accuracy. For this reason, the number of event groups simulated

by MG5 aMC@NLO can in general differ from Sherpa and WHIZARD. For jet

multiplicities of four and five jets, however, they turned out to be identical.

In order to put the results into perspective and to give a better understanding of the

effects of NLO corrections, we generated weighted FO events at LO with WHIZARD

as well, where the number of generated events is chosen to be the same as the generated

event groups at NLO.

Process MG5 aMC@NLO Sherpa WHIZARD

e+e− → jj ∼ 0.2 · 108 1 · 108 1 · 108

e+e− → jjj ∼ 1.22 · 108 1 · 108 1 · 108

e+e− → jjjj 5 · 108 5 · 108 5 · 108

e+e− → jjjjj 5 · 108 5 · 108 5 · 108

pp→ Zj ∼ 0.93 · 108 1 · 108 1 · 108

Table 4.7. The Number of FO event groups generated at NLO QCD per process and
MC event generator are shown. See section 4.3.1 for details. For WHIZARD, as
many LO events have been generated as for NLO.
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Cross-check via Total Cross Sections

We already validated the capability of WHIZARD to compute fNLO QCD cross

sections reliably in section 4.2 against MG5 aMC@NLO. Therefore, we can now

cross-check our event generation setup among the programs before actually simulating

events by comparing the computed total cross sections in table 4.8. We see a perfect

agreement within the statistical errors.

WHIZARD MG5 aMC@NLO Sherpa

Process σNLO[fb] σNLO[fb] σsig
NLO σNLO[fb] σsig

NLO

e+e− → jj 646.67(7) 646.69(4) 0.25 646.621(27) 0.18
e+e− → jjj 274.1(7) 274.3(5) 0.23 274.2(5) 0.12
e+e− → jjjj 75.36(28) 75.32(15) 0.13 75.33(10) 0.10
e+e− → jjjjj 15.31(7) 15.33(3) 0.26 15.27(5) 0.47

pp→ Zj 1.0180(21) · 107 1.0186(9) · 107 0.26 1.0171(10) · 107 0.39

Table 4.8. The total fNLO QCD cross sections for the processes considered in section 4.3
for each MC event generator used in the comparison of differential distributions are
shown. Results have been calculated for fixed scales µ = mZ (see section 4.3.1 for
detailed setup) and are shown with statistical errors. Additionally, the significance
σsig

NLO (see eq. (4.2.8)) of the deviation between the WHIZARD result and that of
MG5 aMC@NLO and Sherpa, respectively, is shown.

4.3.2. Setup of the Analyses

All three programs, MG5 aMC@NLO, Sherpa, and WHIZARD, come with their

own analysis tools. However, using the same analysis framework with exactly the same

analysis for each MC event generator eliminates sources of errors and streamlines the

workflow. For this reason, in order to analyze the generated FO event samples, we used

the Rivet toolkit [190]. It provides a well established and validated framework to

easily write highly flexible and customizable analyses in the form of cleanly-structured

C++ plugins. For this purpose, it comes with a vast library of readily available

functions to compute differential distributions of common observables used in both

lepton and hadron-collider communities. User-defined features and observables can

be simply implemented thanks to the modular nature of the plugin approach. Rivet

also provides an interface to FastJet [162] to apply different jet-clustering algorithms.

Event samples are read in the HepMC [141, 142] format, with the analysis output

being written as Yoda [191] files to be plotted via scripts provided by Rivet.

While WHIZARD provides the option to write event samples in the HepMC

format and Sherpa even comes with a direct Rivet interface, MG5 aMC@NLO

103



4. Validation of WHIZARD at Fixed-NLO QCD

unfortunately does not have the option to write FO events as HepMC files. It can

use the LHEF format, however, which is easily converted to the HepMC format via

the convert example.exe script provided by HepMC. From HepMC 3.2.3 onward,

this also correctly takes into account correlated event groups present in fNLO event

records.

As mentioned in section 3.1.5, these fNLO event groups have to be handled with

care when filling their subevents’ weights into binned data types such as histograms, in

order to ensure the correct statistical treatment. For our analyses, we used Rivet 2,

which does not have a native treatment for fNLO event groups. However, thanks to

the modular plugin approach, it is very straightforward to implement a rudimentary

solution in the way described at the end of section 3.1.5.

Indeed, in the Rivet Contrib suite [192] there already exists a plugin in the form of

the NLOHisto1D class. By using this class, for each event group a temporary histogram

is filled such that real and counterevent weights in the collinear and/or soft limit in

almost all cases are filled into the same bin with their weights added. The temporary

bins filled this way, each with their own sum of weights, are then added to the respective

bins of the final histogram, with each non-trivial temporary bin counting effectively as

a single event and the square of the sum of weights of the temporary bin is added to the

sum of squared weights of the final bin. This approach does not alleviate misbinning

effects as described in the end of section 3.1.5.5 However, the quality of the produced

histograms is not reduced by these effects, especially since misbinning does not occur

very often.

It is important to note that while Rivet 3 has a native support for correlated event

groups, at the time of writing this thesis there is an ongoing discussion about the

details regarding the treatment of statistical errors by Rivet 3 in the analysis of

fNLO event groups generated by WHIZARD. It might be possible that the method

described above with the NLOHisto1D class and Rivet 2 actually underestimates the

statistical errors of single bins to some degree, since the total weight of the event group

is split among the subevents of that group.

However, the subevents can end up in different bins, reducing the effective sample size,

which should in turn increase the statistical error in their respective bins. In Rivet 3,

in order to account for this effect, each subevent is counted as a fraction of the total

number of subevents in an event group and this fraction is then used as a weighting

factor in the calculation of the sum of squared weights (see [173, appendix A]). This,

however, might be in conflict with how event weights in WHIZARD are normalized

at fNLO, which is one of the reasons for why we decided on using the more “naive”

treatment by the NLOHisto1D class together with Rivet 2 until a conclusion is reached

5 Rivet 3 does implement a weight “smearing” to treat misbinning effects (see Appendix A in [173]).
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in this regard.

For now, the statistical errors presented in this work have to be considered with this

fact in mind. The overall conclusions drawn in the comparison between the different

MC event generators is not affected by this, however, since the effects are negligible

when also considering theoretical uncertainties in the form of scale variations, as can

be seen in the results presented later in this section.

An example of an analysis used for the process e+e− → jjj is given in appendix F.3,

with the analyses for the other considered processes being analogous. The general

structure is always the same:

• use FastJet to construct inclusive jets, with the same jet definition as for the

integration/simulation,

• use the same cuts and selection criteria as for the integration/simulation,

• use a jet-pT ordering from pT-hardest to -lowest jet for observables defined on

jets (see text below for reasoning),

• scale the final histograms by a factor of the total cross section over the total sum

of weights, σNLO/SoW.

Regarding the ordering of the jets by their transverse momentum mentioned above, we

note that for lepton-collider events that are truly at rest the natural choice would be

to order them by their energies, as this carries more information. However, events can

only be truly at rest at the absence of any beamstrahlung and without ISR of photons.

While we have neglected such effects in our comparison study and thus produced events

without any longitudinal boost, in the real-world experiments these effects can only be

neglected near LEP energies at the Z-pole, for example.6 For a future lepton collider

with CM energies well above the Z-pole, however, beamstrahlung and ISR effects will

play a significant role. They can cause radiative returns to the Z-pole, in which case

an ordering by jet-pT can be beneficial, especially since this would preserve invariance

under a longitudinal boost along the z-axis. Thus, at future experiments one will

have to determine on a case-by-case basis – by evaluating theory and jet response

uncertainties – which jet ordering will give the most information about the events that

are studied [194].

In the following, we will give an overview and a short explanation of the observables

considered in the comparison of differential distributions between MG5 aMC@NLO,

Sherpa, and WHIZARD. Besides well-known observables of final state objects, such

as the transverse momentum pT, the energy E, the pseudorapidity η, and the invariant

mass MX of the system X made up by a subset of final-state objects, we also compared

6 Similar conditions existed at the Stanford Linear Collider [193].
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differential distributions of event-shape observables. As their name suggests, these

observables are a means to quantify the topology of an event in terms of its jets in

hadronic final states. However, when defining event-shape observables, we do not

involve jet algorithms to associate particles with a jet, but rather consider all final-state

particles of an event directly in order to determine a scalar value classifying the jet

topology of the event.

Typically, event-shape observables are defined in the center-of-mass system and

constructed in such a way that they vanish for a final state consisting of two particles

(or two extremely narrow jets) that are perfectly back-to-back. While distributions

of event-shape observables with peaks very close to zero will usually still indicate a

dominance of dijet events, a peak at increasingly higher event-shape values can be

interpreted as an increase in additional jets for most event-shape observables. Therefore,

these observables are sensitive to the strong coupling constant αS, and thus provide a

possibility to determine the value of αS via fits.

Further use cases are the measurement of the QCD color factors CA and CF
(e.g. [195]), and the tuning of MC event generation aspects such as parton show-

ers. Also, event shapes have played an important role both in developing and testing

of analytic hadronization models (e.g. [196–198]). Last, but not least, event shapes

can help in distinguishing between different processes and thus are important tools not

only in precision studies, but can also help to separate signals from background noise

in searches for BSM physics. There is a caveat for higher jet multiplicities, however,

as for most event-shape observables, an increase in the number of jets in an event

often shows an asymptotic behavior towards the maximum value of the observable in

question. This can limit the distinguishing powers at high multiplicities for exclusive

numbers of jets.

While there is a whole palette of different event-shape observables, we limited our

comparison to a few, more common ones, explained in the following.

Thrust, Thrust Major, and Thrust Minor

The thrust event-shape observable T is defined as [75, 76]

T ≡ max
n

(∑
i |pi · n|∑
i |pi|

)
, (4.3.5)

where we sum over all final state particles, each having a three-momentum of pi. The

direction of the unit vector n that maximizes T then defines the thrust axis nT . With

this definition, thrust describes how “pencil-like” or spherical an event is, as a dijet

event that is perfectly back-to-back (resembling a pencil) would result in a thrust

value of T = 1. In contrast, for an increasing number of particles, the more they
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are spatially evenly distributed, the closer the thrust becomes to T = 1/2, which

would resemble a perfectly-spherically symmetric distribution of particles. Because

this behavior is opposite to the common construction of event-shape observables to

vanish in the perfectly back-to-back dijet case, the thrust observable is usually applied

as 1− T .

We can use eq. (4.3.5) to define the thrust major TM with the thrust major axis

nTM that maximizes TM in the plane perpendicular to nT by imposing the constraint

nTM · nT = 0. Similarly, we can define the thrust minor axis nTm by imposing it

being perpendicular to both nT and nTM , meaning nT × nTM = nTm . The associated

thrust minor Tm is then simply obtained by the expression in parentheses in eq. (4.3.5)

with n = nTm . Resulting from the three different thrust definitions is an ordering of

T ≥ TM ≥ Tm.

Both thrust major and minor vanish for a back-to-back dijet event. However, TM

already becomes non-zero for deviations from a pencil-like event shape, whereas Tm

becomes non-zero only for 4-jet final states and beyond with typical values of Tm ≤ 1/2.

By typical values we mean the values where the bulk of the distribution lies and we

quote them from [199]. For the thrust major, these values are TM ≤ 1/3 for 3-jet final

states and TM ≤ 1/
√

2 the more spherical an event becomes.

Using both the definitions of thrust major and minor, we can then define the

oblateness O of an event by simply taking [200]

O ≡ TM − Tm . (4.3.6)

It vanishes both for back-to-back dijet and spherical n-jet events because in these cases

the momentum distribution becomes isotropic in the plane defined by the thrust major

and minor axes, leading to a decreasing difference between TM and Tm. Typical values

for oblateness between these two extrema are O ≤ 1/3.

Hemisphere Masses and Broadenings

The definition of the thrust axis nT allows us to define a plane perpendicular to it,

dividing the event into two hemispheres S+ and S−, with the invariant masses MS+

and MS− of all particles in each hemisphere, respectively. The high hemisphere mass

Mhigh is then defined as [201, 202]

Mhigh ≡ max (MS+ ,MS−) , (4.3.7)

and the low hemisphere mass as the minimum. It is common to scale the hemisphere

masses by the center-of-mass energy
√
s or the visible energy Evis of an event. In our

comparison we chose the definition of the scaled high hemisphere squared mass M2
high,s
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available in Rivet as

M2
high,s ≡

M2
high

E2
vis

=
1

E2
vis

max



∣∣∣∣∣
∑

pi·nT>0

pi

∣∣∣∣∣

2

,

∣∣∣∣∣
∑

pi·nT<0

pi

∣∣∣∣∣

2

 , (4.3.8)

with final-state momenta pi. For massless partons, a perfectly back-to-back dijet event

would again have M2
high,s = 0, and a perfectly spherical event would equate to a value

of M2
high,s = 1/2 for E2

vis = s, whereas e.g. a trijet event would lead to typical values of

M2
high,s ≤ 1/3.

While the event-shape observables presented so far have been mostly longitudinal in

nature, we can also define a measure for the transverse extension of an event in each

hemisphere. These so-called hemisphere (or jet) broadenings B± are defined as [203]

BS± ≡
( ∑

±pi·nT>0

|pi × nT |
)(

2
∑

i

|pi|
)−1

. (4.3.9)

The total hemisphere broadening Btot and wide hemisphere broadening Bw are subse-

quently defined as

Btot ≡ BS+ +BS− , Bw ≡ max
(
BS+ , BS−

)
. (4.3.10)

Both observables again evaluate to zero for a perfectly back-to-back dijet event. Devi-

ating from this event shape and adding another jet increases both equally to typical

values of up to 1/(2
√

3). While higher jet multiplicities do not change this upper limit

for Bw, typical values for the total jet broadening can increase to Btot ≤ 1/(2
√

2) for

events with high jet multiplicities and spherically-evenly distributed momenta.

Parisi Event-shape Variables

The Parisi event-shape tensor θαβ is a linearized version of the sphericity tensor [204]

and thus is an IR-safe observable. It is defined as [77, 78]

θαβ ≡
(∑

i

pαi p
β
i

|pi|

)(∑

i

|pi|
)−1

, α, β ∈ {1, 2, 3} , (4.3.11)

with a normalization that is chosen such that the three eigenvalues λi sum up to unity,

λ1 + λ2 + λ3 = 1. Reducing the tensor θ to a diagonal one then gives the characteristic

equation [79]

λ3 − λ2 +
1

3
Cλ− 1

27
D = 0 , (4.3.12)
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from which λi can be obtained. The Parisi event-shape variables C and D consequently

turn out to be

C = 3 (λ1λ2 + λ1λ3 + λ2λ3) , D = 27λ1λ2λ3 . (4.3.13)

These variables both vanish for a back-to-back dijet event. In case the event is planar

in shape, D still vanishes, while [79]

C = 3λ1 (1− λ1) . (4.3.14)

The variable D only becomes non-zero for events deviating from a planar shape.

Therefore, C can be seen as a measure of the planarity of an event, while D is a

measure for the spherical distribution of the event.

Resummation of Large Logarithms

Observables that are not inclusive over the full phase space – e.g. due to cuts or

jet selection criteria – will exhibit logarithmic enhancements at every order in the

perturbation series. The reason for this is that in this case the cancellation of IR

divergences between the real and virtual contribution is not exact anymore. This leads

to logarithms of large fractions of different (momentum) scales. For example, for an

IR-safe event-shape observable y that vanishes for a pencil-like event (i.e. in the dijet

limit), the perturbation series of its distribution at NkLO turns out to be [205]

1

σ

dσk
dy
∼ αkS

1

y
log2k−1 1

y
, for y � 1 . (4.3.15)

As a consequence, in order for the perturbation series to converge, it is not sufficient

to have αS � 1 anymore and we require αS log2 y � 1 [112]. Unfortunately, the bulk

of the distribution usually lies at small values of y. In order to increase the predictive

power of perturbative computations, these large logarithms have to be resummed at

all orders of the perturbation series. The obtained resummed expression then has to

be matched to the FO results.

In this work, we focused on the pure fNLO corrections in QCD. Therefore, in the

results we present throughout this thesis, logarithmic enhancements will affect the

K-factor (see eq. (4.2.7)) in addition to kinematic effects due to the real emission. In

the discussion of our results, however, we will focus on the kinematic effects.

A Note on Scale Variations and Negative Bin Weights

As mentioned in the discussion on fNLO events in WHIZARD (see section 3.1.5),

differential distributions of fNLO observables can have bins with a negative sum of
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weights, which can be circumvented by choosing bin widths such that subevents with

positive weights outweigh the negative ones. Finding the correct bin width without

concealing interesting parts of the distribution is very tedious, however, and thus we

limited our efforts in this regard to the results for the central scale µ throughout the

thesis. As a consequence, scale variations of the central result with WHIZARD might

occasionally show large excursions to negative values in regions where e.g. Born-like

subevents predominate, simply because the negative weight values for these subevents

become larger with a different scale. This effect is rather rare, though, and when it

happens the statistical error alone will be sufficient to assess the agreement between

MG5 aMC@NLO, Sherpa, and WHIZARD.

4.3.3. Differential Distributions of Jet Observables in

e+e− → n Jets

In order to validate NLO effects of FSR, we first examine NLO differential distributions

of pure n-jet final states in e+e− collisions. In this section we will focus on observables

defined on jets clustered by the generalized e+e− kt algorithm, namely jet momenta

pT,ji , jet energy Eji , absolute7 jet pseudorapidity |ηji |, and the invariant mass Mj1j2

of the system of the two pT-hardest jets. The results for the various event-shape

observables with a direct comparison between jet multiplicities for each observable are

then given in section 4.3.4 to better visualize their behavior.

To avoid repeating the same observation for the majority of histograms that are

shown and discussed in the following, we can preemptively conclude that differential

distributions at fNLO QCD obtained by analyzing events generated with WHIZARD

show a very good agreement with results from MG5 aMC@NLO and Sherpa. This

is not only true within the generally larger theoretical uncertainties estimated by scale

variations, but mostly also with respect to the much smaller statistical MC errors.

Furthermore, deviations between the central values are at the order of a few percent

at most. Albeit sparsely needed, a more detailed discussion for differences between

MG5 aMC@NLO, Sherpa, and WHIZARD will be given whenever necessary.

Differential Distributions for e+e− → jj

In order to compare effects of FSR of a gluon from final-state quarks in lepton collisions,

we start with the simple dijet process. The transverse momentum pT,j1/2 of the pT-

hardest and second-hardest jet j1 and j2, respectively, are shown in fig. 4.1. In both

cases we see a rising curve for higher jet-pT, the kind of continuum we would expect

7 We checked that the pseudorapidity distribution is symmetric, which allows us to increase statistics
by using the absolute value.
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Figure 4.1. Differential distributions of jet transverse momenta pT,ji for the process
e+e− → jj at fNLO QCD of the first- (a), second- (b), and third-hardest (c) jet.
Statistical MC errors are shown for all three event generators, with the addition
of the scale variation band for WHIZARD. The fLO distribution obtained with
WHIZARD is shown as well. The ratio is shown with respect to the WHIZARD
result at NLO, while the K-factor shows the NLO correction with respect to the
WHIZARD LO result. In (d), the impact of varying ξmin in WHIZARD on the pT,j3

distribution is compared to the MG5 aMC@NLO result. There, the (tiny) error
band for MG5 aMC@NLO represents statistical MC errors, not scale variations. In
this case the ratio is taken with respect to the MG5 aMC@NLO results.
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Figure 4.2. Differential distributions of jet pseudorapidities |ηji | for the process
e+e− → jj at fNLO QCD of the first- (a), second- (b), and third-hardest (c) jet.
Statistical MC errors are shown for all three event generators, with the addition
of the scale variation band for WHIZARD. The fLO distribution obtained with
WHIZARD is shown as well. The ratio is shown with respect to the WHIZARD
result at NLO, while the K-factor shows the NLO correction with respect to the
WHIZARD LO result. In (d), the impact of varying ξmin in WHIZARD on the |ηj3 |
distribution is compared to the MG5 aMC@NLO result. There, the error band for
MG5 aMC@NLO represents statistical MC errors, not scale variations. In this case
the ratio is taken with respect to the MG5 aMC@NLO results.
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for FO dijet events at a lepton collider. Due to the NLO real corrections of an

emitted gluon, compared to the LO results the peak of the distribution is significantly

suppressed, with more jets shifted to lower pT. By the nature of our chosen pT-ordering,

this effect is more prominent for the second-hardest jet. At the low end of the pT

spectrum, however, the NLO pT,j1 distribution is significantly lower than at LO because

soft radiation makes up the majority of low-pT jets in this phase-space region.

We include the pT,j3 distribution of the third-hardest jet j3 in fig. 4.1 as well. It is

strictly speaking only of LO accuracy due to the fact that this plot only represents the

case of real radiation with a 3-jet final state, while counterevents are constructed for

unresolved real partons and thus have a 2-jet final state. Hence, the pT,j3 distribution

effectively is that of the third-hardest jet of the LO process e+e− → jjj if no cuts

were imposed on j3. Consequently, all events contributing to this distribution are of

O(α2αS), which is directly reflected in the trivial scale-variation band.

Because of the fact that we did not impose any cuts on the third jet, the pT,j3

distribution can also be regarded as “unphysical” due to the unregulated IR divergence

for small pT, which can be seen in the first bin of fig. 4.1(c).8 Nevertheless, showing this

plot here allows us to highlight how differences in the subtraction scheme implementation

of the different event generators can manifest. As shown in fig. 4.1(c), there is a

slight deviation between the three event generators in the lowest-pT, IR-divergent

bin. This is not due to statistical fluctuations, as one might suspect, but rather due

to small arbitrary cuts on the FKS variable ξ (or any equivalent implementation for

CS subtraction in Sherpa) in order to prevent numerical instabilities in the soft

limit ξ → 0. In WHIZARD, for example, we employ a default cut of ξmin = 10−7.

Comparing different values of ξmin to the MG5 aMC@NLO results in fig. 4.1(d), we

find a good agreement for ξmin = 10−6.

We refrain from changing the default of ξmin in WHIZARD, however, since the

importance sampling of ξ differs significantly between MG5 aMC@NLO and WHI-

ZARD for small deviations from ξ = 0 already. In addition, for any reasonable NLO

observable, as well as the total cross section, the difference in ξmin should not lead to

any significant deviations. The results of our comparison studies throughout this thesis

support this statement.

The absolute-pseudorapidity |ηji | distributions are shown in fig. 4.2, where we observe

a shift towards lower values of |ηji| for the two hardest jets at NLO when compared

to LO. In fig. 4.2(c), the |ηj3|-distribution of the third-hardest jet in case of a real

radiation event is given. Just like in the case of the pT,j3-distribution, this plot has LO

accuracy. Contrary to the pT,j3-distribution, scale variations do not seem to be trivial.

This, however, is simply because of higher statistical uncertainties per bin in the scale

8 This divergent behavior is still regulated by a minimal default cut on the energy of the emitted
parton as explained in the following text.
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variations themselves.

Similarly to the pT,j3-distribution earlier, this plot only serves to highlight the

differences in the choice of a numerically motivated cutoff ξmin for the lower bound

of the energy of the radiated parton. Here, this difference manifests itself in almost

insignificant deviations between the MG5 aMC@NLO and WHIZARD results across

lower |ηj3|-regions when only considering statistical errors. However, the significance of

the deviation is expected to vanish when also taking scale variations into account.

Nevertheless, varying values of ξmin can lead to significant differences in the |ηj3|
distribution (when only considering statistical errors). This is shown in the direct

comparison between MG5 aMC@NLO and different values for ξmin for WHIZARD

in fig. 4.2(d), where we see a good agreement within statistical errors for ξmin = 10−6,

similar to the pT,j3-distribution. This fact, together with the argument that the

arbitrary choice of ξmin should not influence the total cross section or any IR-safe NLO

observables (as long as ξmin is chosen small enough), strengthens our confidence in our

FKS implementation even further, given that we achieve excellent agreement between

all three MC event generators for distributions of fNLO accuracy.

Figures 4.3(a) and 4.3(b) show the energy distribution of the pT-hardest and second-

hardest jet. In contrast to LO, where both jets are back-to-back and simply have

Ej1/2 =
√
s/2 (at lepton colliders without QED ISR), at NLO we can see the expected

shape with a quickly decreasing height of the curve for lower energies due to the real

radiation of the gluon. However, because of the fact that all Born-like subevents will

fall into the highest-energy bin, the slope is associated with jet energies in real-radiation

events. This is again represented in the trivial scale variations in these bins, as there

the order of the strong coupling constant is exclusively O(α2αS). For the energy

distributions we refrain from showing the distribution of the third jet, as it shows very

similar behavior to its pT counterpart and does not give any new insight.

The invariant-mass Mj1j2 distribution of the system consisting of the two pT-hardest

jets is shown in fig. 4.3(c). The expected, steep slope of the distribution towards lower

values of Mj1j2 is purely due to real gluon radiation, a fact that is again evident in the

trivial scale variation across the slope. It has to be noted that the lower edge of the

scale variation in the highest bin appears unexpectedly low. This is due to the sum of

weights of the µ = mZ/2 scale variation becoming negative in this bin, as explained in

the remarks on scale variations at the end of section 4.3.2 regarding negative-valued

bins at fNLO. Similar occurrences can be seen for several other differential distributions

throughout this thesis.
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Figure 4.3. Differential distributions of jet energies Eji for the process e+e− → jj
at fNLO QCD of the first- (a), and second-hardest (b) jets, along with (c) the
invariant mass Mj1j2 of the system of the two hardest jets. Statistical MC errors are
shown for all three event generators, with the addition of the scale variation band for
WHIZARD. The fLO distribution obtained with WHIZARD is shown as well. The
ratio is shown with respect to the WHIZARD result at NLO, while the K-factor
shows the NLO correction with respect to the WHIZARD LO result.
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Differential Distributions for e+e− → jjj

Increasing final-state jet multiplicity to three well-separated jets with the possibility of

an additional jet due to real radiation also increases the complexity at NLO, as already

described in more detail in the discussion of the fNLO cross sections in section 4.2.2,

and in section 3.1.3 regarding the FKS α-regions alr=5,6 in table 3.1. In short,

spin correlations due to final-state g → qq̄/gg splittings are introduced, and care

has to be taken regarding symmetry factors for identical final-state particles and the

correct assignment of FKS pairs for α-regions with equal real, but different Born flavor

structures. The process e+e− → jjj at fNLO thus provides a good opportunity to

further test our FKS implementation in the context of fNLO event generation.

In fig. 4.4, the differential distributions of the transverse momenta pT,ji of the three

pT-hardest jets are shown. We can see a clear suppression of high-pT jets in both the

distributions for the pT-hardest and second hardest jets due to the radiation of an

additional jet already at LO. The pT,j3 distribution of the third-hardest jet j3 shows a

typical form for a final-state radiated parton, exhibiting a slope from a peak at the pT

cut of 30 GeV towards higher values of pT, with a quick drop-off at pT,j3 & 170 GeV as

this region becomes increasingly constrained by kinematics.

At NLO, the emitted real parton takes away additional transverse momentum,

leading to further suppression of varying degrees across the full pT spectrum of the

three hardest jets, most prominent in higher-pT regions due to IR-divergent real

radiation having dominantly low pT. This naturally shifts the position of the peaks

of the j1 and j2 distributions even further to lower pT than in the LO case, with the

pT of the second-hardest jet peaking as low as approximately 250 GeV. Additionally,

again we can see an increasing suppression towards lower values of pT because of soft

radiation making up the majority of low-pT jets in this phase-space region.

The differential distributions of the jet energies Eji are shown in fig. 4.5 for the

three pT-hardest jets. Both the Ej1 and Ej2 distributions show the expected slope from

higher to lower energies, whereas the Ej3 distribution shows the typical behavior for a

radiation from final-state particles, with a slope from lower to higher energies.

The distributions for the two hardest jets both show a suppression in the highest bin

because of the energy carried away by the third jet and the real radiation, as both have

predominantly low energies. Especially in the case of real emissions in the soft limit,

most counterevents, which have 3-parton final states by construction, will decrease

the overall sum of weights in the highest bins of the Ej1/2 distributions. In general,

compared to LO, the radiation of an additional parton shifts the energy distribution of

j1 and j2 significantly to lower energies, while the distribution of the third-hardest jet

j3 experiences lower values across the whole energy spectrum.

In fig. 4.5(d), the invariant mass Mj1j2 of the system of the two hardest jets is shown.
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Figure 4.4. Differential distributions of jet transverse momenta pT,ji for the process
e+e− → jjj at fNLO QCD of the first- (a), second- (b), and third-hardest (c) jet.
Statistical MC errors are shown for all three event generators, with the addition of the
scale variation band for WHIZARD. The fLO distribution obtained with WHIZARD
is shown as well. The ratio is shown with respect to the WHIZARD result at NLO,
while the K-factor shows the NLO correction with respect to the WHIZARD LO
result.
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Figure 4.5. Differential distributions of jet energies Eji for the process e+e− → jjj at
fNLO QCD of the first- (a), second- (b), and third-hardest (c) jets, along with (d)
the invariant mass Mj1j2 of the system of the two hardest jets. Statistical MC errors
are shown for all three event generators, with the addition of the scale variation band
for WHIZARD. The fLO distribution obtained with WHIZARD is shown as well.
The ratio is shown with respect to the WHIZARD result at NLO, while the K-factor
shows the NLO correction with respect to the WHIZARD LO result.
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Figure 4.6. Differential distributions of jet pseudorapidities |ηji | for the process
e+e− → jjj at fNLO QCD of the first- (a), second- (b), and third-hardest (c) jets
are shown. Statistical MC errors are shown for all three event generators, with the
addition of the scale variation band for WHIZARD. The fLO distribution obtained
with WHIZARD is shown as well. The ratio is shown with respect to the WHIZARD
result at NLO, while the K-factor shows the NLO correction with respect to the
WHIZARD LO result.
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It predictably shows similar behavior to the Ej1/2 distributions, with a suppression of

the peak and an overall shift to lower values of Mj1j2 when comparing the distribution

at NLO to the LO case.

In fig. 4.6, the differential distributions of the absolute pseudorapidities |ηji | for

the three hardest jets are given. Both the first- and second-hardest jets show a very

similar distribution shape, with contributions close to zero above |ηji | > 1.7. For the

third-hardest jet, the tail of the distribution is stretched out to slightly higher values

of |ηji |, which is expected, as lower jet-pT can lead to smaller polar angles. Compared

to the LO results, we observe an overall suppression across the whole |ηji | spectrum.

In general, we can see a significantly higher negative NLO correction for higher values

of |ηji |.

Differential Distributions for e+e− → jjjj

By increasing the final-state jet multiplicity further to four well-separated jets at Born

level, with the possibility of an additional one due to real radiation, we do not introduce

new aspects of the FKS subtraction scheme. However, the complexity of the final state

increases, leading e.g. to a higher number of α-regions, as well as more complicated spin

and color correlations. This puts an excellent stress test on our FKS implementation

and internal combinatorics, since effects of small errors might get amplified the higher

the final-state multiplicity becomes.

The transverse momenta pT,ji of the four pT-hardest jets are shown in fig. 4.7. When

comparing the overall shapes of the two hardest jets to the trijet case in fig. 4.4,

already at LO we clearly see a shift of the peaks to lower pT, simply because of the

additional radiation of the fourth jet. This obviously also changes the distribution

of the third-hardest jet, which experiences a suppression at LO at low jet-pT due to

the fourth-hardest jet j4 predominantly occupying this phase-space region. Because of

the IR-divergent real radiation, we see a general suppression in the higher-pT regions

throughout all four pT distributions in fig. 4.7 at NLO, as expected.

In the first bin of each pT histogram of the three hardest jets, the MG5 aMC@NLO

results slightly deviate from WHIZARD in terms of the statistical errors, which is

likely to be a statistical outlier by MG5 aMC@NLO. This assumption is supported

by the excellent agreement between Sherpa and WHIZARD in these bins, especially

when we recall that Sherpa uses the CS subtraction scheme instead of FKS and

consequently follows a completely different ansatz for the construction of the phase

space.

The energy distributions are shown in fig. 4.8. Obviously, they experience very

similar effects as already described for the jet-pT distributions, both for the comparison

between three and four jets at LO and between LO and NLO. Here, we also see slight

120



4.3. Comparison of Fixed-order Differential Distributions

WHIZARD scale var.

WHIZARD@NLO

WHIZARD@LO

MG5 aMC@NLO

Sherpa@NLO
10−5

10−4

e+e− → jjjj ,
√
s = 1 TeV

d
σ
/
d
p
T
,j

1
[p
b
/
G
eV

]

0.92
0.94
0.96
0.98

1
1.02
1.04
1.06
1.08

R
a
ti
o

WHIZARD scale var.

WHIZARD@NLO

WHIZARD@LO

MG5 aMC@NLO

Sherpa@NLO

10−5

10−4

e+e− → jjjj ,
√
s = 1 TeV

d
σ
/
d
p
T
,j

2
[p
b
/
G
eV

]

0.92
0.94
0.96
0.98

1
1.02
1.04
1.06
1.08

R
a
ti
o

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

pT,j1
[GeV]

K
-f
a
ct
o
r

(a)

50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

pT,j2
[GeV]

K
-f
a
ct
o
r

(b)

WHIZARD scale var.

WHIZARD@NLO

WHIZARD@LO

MG5 aMC@NLO

Sherpa@NLO

10−5

10−4

10−3

e+e− → jjjj ,
√
s = 1 TeV

d
σ
/
d
p
T
,j

3
[p
b
/
G
eV

]

0.92
0.94
0.96
0.98

1
1.02
1.04
1.06
1.08

R
a
ti
o

WHIZARD scale var.

WHIZARD@NLO

WHIZARD@LO

MG5 aMC@NLO

Sherpa@NLO

10−5

10−4

10−3

e+e− → jjjj ,
√
s = 1 TeV

d
σ
/
d
p
T
,j

4
[p
b
/
G
eV

]

0.92
0.94
0.96
0.98

1
1.02
1.04
1.06
1.08

R
a
ti
o

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

pT,j3
[GeV]

K
-f
a
ct
o
r

(c)

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

pT,j4
[GeV]

K
-f
a
ct
o
r

(d)

Figure 4.7. Differential distributions of jet transverse momenta pT,ji for the process
e+e− → jjjj at fNLO QCD of the first- (a), second- (b), third- (c), and fourth-
hardest (d) jet. Statistical MC errors are shown for all three event generators, with
the addition of the scale variation band for WHIZARD. The fLO distribution obtained
with WHIZARD is shown as well. The ratio is shown with respect to the WHIZARD
result at NLO, while the K-factor shows the NLO correction with respect to the
WHIZARD LO result.
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Figure 4.8. Differential distributions of jet energies Eji for the process e+e− → jjjj
at fNLO QCD of the first- (a), second- (b), third- (c), and fourth-hardest (d) jet.
Statistical MC errors are shown for all three event generators, with the addition of the
scale variation band for WHIZARD. The fLO distribution obtained with WHIZARD
is shown as well. The ratio is shown with respect to the WHIZARD result at NLO,
while the K-factor shows the NLO correction with respect to the WHIZARD LO
result.
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deviations between the three MC event generators in a few selected bins. These are

again nothing more than statistical fluctuations with a significance of 2σsig
NLO to 3σsig

NLO

in terms of the statistical errors and do not invalidate our results with WHIZARD.

This statement is supported by the fact that in any bin at least one other MC program

agrees with WHIZARD well within the statistical and/or theoretical uncertainties.
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Figure 4.9. Differential distribution of the invariant mass Mj1j2 of the system of the
two hardest jets for the process e+e− → jjjj at fNLO QCD. Statistical MC errors
are shown for all three event generators, with the addition of the scale variation band
for WHIZARD. The fLO distribution obtained with WHIZARD is shown as well.
The ratio is shown with respect to the WHIZARD result at NLO, while the K-factor
shows the NLO correction with respect to the WHIZARD LO result.

The differential distribution of the invariant mass Mj1j2 of the system of the two

hardest jets is shown in fig. 4.9. Unsurprisingly, it shows a very similar behavior to

the pT and E distributions of the two hardest jets, namely that its peak is shifted to

lower values of Mj1j2 , both for the comparison between three and four jets at LO and

between LO and NLO, and that it shows a stronger suppression for higher values of

Mj1j2 due to the real radiation at NLO.

In fig. 4.10, the differential distributions of the absolute pseudorapidities |ηji | for

the four hardest jets are given. Similar to the |ηji | distributions for the processes

e+e− → jj and e+e− → jjj, we see the typical peak at |ηji | close to zero, with a slope

towards higher values. This slope is stretched out to slightly higher values of |ηji | the

lower ji is ranked according to its pT, as lower jet-pT can mean smaller polar angles.

Again, due to the real radiation being effectively isotropic in terms of the polar angle,
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Figure 4.10. Differential distributions of jet pseudorapidities |ηji | for the process
e+e− → jjjj at fNLO QCD of the first- (a), second- (b), third- (c), and fourth-
hardest (d) jet. Statistical MC errors are shown for all three event generators, with
the addition of the scale variation band for WHIZARD. The fLO distribution obtained
with WHIZARD is shown as well. The ratio is shown with respect to the WHIZARD
result at NLO, while the K-factor shows the NLO correction with respect to the
WHIZARD LO result.
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we observe a mostly uniform suppression across all |ηji | values for j1 and j2, while j3

and j4 experience a decreasing K-factor towards higher |ηji |.

Differential Distributions for e+e− → jjjjj

The maximum jet multiplicity for which we are discussing differential distributions is

limited by the constraint for a reasonable amount of computing time and precision.

Within the time scope of this thesis, these constraints allowed for the generation of

FO events for up to five well-separated jets at Born level with the possibility of an

additional jet due to real radiation. Yet again, no new aspects of FKS subtraction

is introduced with further increasing the jet multiplicity. This also means that, in

principle, much higher jet multiplicities are supported by WHIZARD as well, given

enough computational capacities. However, as in the jump from three to four jets at

Born level, the jump from four to five jets leads to a considerable increase in the number

of α-regions. In turn, this introduces even more variation and increases complexity of

combinatorics in terms of our FKS subtraction implementation in WHIZARD.

The differential distributions of the transverse momenta pT,ji of the five pT-hardest

jets are shown in figs. 4.11 and 4.14(a). The trend we have seen so far for increasing

jet multiplicity continues here as well, in the sense that the jets show an increasing

suppression of higher-pT regions the lower the pT ranking of the jet becomes due to

additional final-state emission already at LO. This obviously also shifts the peak of the

distributions further to the left, with the distribution of the fifth-hardest jet simply

exhibiting a slope down from the pT cut at 30 GeV. At NLO, due to the IR-divergent

nature of the real radiation, we see a significantly increasing suppression with higher

pT throughout all jet-pT histograms.

While Sherpa in general closely agrees with WHIZARD within both the statistical

and theoretical uncertainties estimated by scale variations, for many observables that

are presented here and in section 4.3.4 MG5 aMC@NLO seems to deviate in some bins

from WHIZARD with σsig
NLO > 5 when considering only statistical errors while staying

well within the scale variation band of WHIZARD. For example, in fig. 4.11(d) the

second-highest bin shows a significance of the deviation between MG5 aMC@NLO and

WHIZARD of 7.4σsig
NLO. Unfortunately, due to very long run times of the simulation

with MG5 aMC@NLO and to an untimely operating system update, we could not

conclusively determine whether this is purely a technical error, an inconsistency in our

setup of the event generation with MG5 aMC@NLO and the subsequent analysis, or

an actual difference between WHIZARD and MG5 aMC@NLO, e.g. in the phase-

space treatment for processes with higher multiplicities. However, with the majority

of the deviations of MG5 aMC@NLO from WHIZARD still well within the scale

uncertainties, as well as with the lack of any significant disagreement between Sherpa
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Figure 4.11. Differential distributions of jet transverse momenta pT,ji for the process
e+e− → jjjjj at fNLO QCD of the first- (a), second- (b), third- (c), and fourth-
hardest (d) jet. Statistical MC errors are shown for all three event generators, with the
addition of the scale variation band for WHIZARD. The fLO distribution obtained
with WHIZARD is shown as well. The ratio is shown with respect to the WHIZARD
result at NLO, while the K-factor shows the NLO correction with respect to the
WHIZARD LO result.
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Figure 4.12. Differential distributions of jet energies Eji for the process e+e− → jjjjj
at fNLO QCD of the first- (a), second- (b), third- (c), and fourth-hardest (d) jet.
Statistical MC errors are shown for all three event generators, with the addition of the
scale variation band for WHIZARD. The fLO distribution obtained with WHIZARD
is shown as well. The ratio is shown with respect to the WHIZARD result at NLO,
while the K-factor shows the NLO correction with respect to the WHIZARD LO
result.
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Figure 4.13. Differential distributions of jet pseudorapidities |ηji | for the process
e+e− → jjjjj at fNLO QCD of the first- (a), second- (b), third- (c), and fourth-
hardest (d) jet. Statistical MC errors are shown for all three event generators, with the
addition of the scale variation band for WHIZARD. The fLO distribution obtained
with WHIZARD is shown as well. The ratio is shown with respect to the WHIZARD
result at NLO, while the K-factor shows the NLO correction with respect to the
WHIZARD LO result.
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Figure 4.14. Differential distributions of observables (a)-(c) defined on the fifth-hardest
jet of the process e+e− → jjjjj at fNLO QCD, along with (d) the invariant mass
Mj1j2 of the system of the two hardest jets. Statistical MC errors are shown for all
three event generators, with the addition of the scale variation band for WHIZARD.
The fLO distribution obtained with WHIZARD is shown as well. The ratio is shown
with respect to the WHIZARD result at NLO, while the K-factor shows the NLO
correction with respect to the WHIZARD LO result.
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and WHIZARD, this poses no real concern regarding the validity of our results.

Figures 4.12 and 4.14(b) show the differential distributions of the jet energies Eji .

They obviously behave very similar to the pT,ji distributions regarding the change from

four to five jets at Born level, as well as in terms of the NLO correction due the real

emission.

In figs. 4.13 and 4.14(c), the differential distributions of the jet pseudorapidities |ηji|
are shown. Again, the behavior is very similar to the trend already seen for lower

jet multiplicities. The lower the ranking of the jet-pT, the longer the tail of the |ηji|
distribution, as lower pT can lead to smaller polar angles with respect to the beam

axis. At NLO, we observe the same behavior as before, namely that the K-factor is

roughly constant in each bin for the two hardest jets, with higher negative corrections

in the higher |ηji | regions the lower the jet-pT ranking becomes.

Finally, fig. 4.14(d) presents the differential distributions for the invariant mass Mj1j2

of the system consisting of the two pT-hardest jets. Compared to the 4-jet final state,

the high-pT and high-energy regions are more suppressed due to the additional jet,

leading to a shift of the Mj1j2 peak further to the left. At NLO this is even more

pronounced, as the real radiation takes away additional energy and momentum. Since

the real radiation is predominantly soft in both pT and E, the highest corrections occur

in the high-Mj1j2 regions.

4.3.4. Event-shape Distributions for e+e− → n Jets

In order to further validate NLO effects of final-state radiation from pure n-jet final

states in e+e− collisions, we will now focus on the differential distributions of the event-

shape observables defined in section 4.3.2. To some extent, comparing event-shape

distributions between MC event generators is “purer” than comparing observables

defined on jets obtained by a jet algorithm, as differences or errors in the respective

interfaces to FastJet could lead to deviations between the differential distributions

generated by the programs.

Albeit the fact that we do not observe any truly-significant deviations between

MG5 aMC@NLO, Sherpa, and WHIZARD in section 4.3.3, it is still important

to validate our results for event-shape observables since they can be important tools

both for precision studies and BSM searches, as detailed in section 4.3.2. The behavior

of event-shape observables is best visualized by directly comparing histograms for

different jet multiplicities, which is why in the following we present results grouped by

means of observable and not by the jet multiplicity of the process as in section 4.3.3.

Again, to avoid repeating the same observation for the majority of histograms that

are shown and discussed in the following, we restate the same preemptive conclusion we

draw at the beginning of section 4.3.3: In general, we see a very good agreement between
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MG5 aMC@NLO, Sherpa, and WHIZARD, with deviations predominantly below

the order of a few percent from the central value of WHIZARD and well within the

theoretical uncertainties estimated by scale variations. In addition, the majority of

these deviations are within a significance of 1σsig
NLO to 2σsig

NLO in each bin when only

considering statistical errors. If necessary, we will discuss any outliers individually.

The differential distributions for the thrust 1− T are shown in fig. 4.15 for all jet

multiplicities nj = 2, · · · , 5. Exactly as expected, in the LO dijet case we see a single

spike at zero, as all events have two perfectly back-to-back jets in the CM system.

At NLO, the peak at zero becomes significantly suppressed and we see a decreasing

slope towards higher values of 1 − T due to real-radiation events with values up to

roughly 1− T = 0.35. This is perfectly in line with the expectation of typical values of

1− T ≤ 1/3 for trijet events.

The shape of the thrust distribution in the dijet case at NLO is closely repeated

in the LO trijet case, with a hard cut-off at similar values. Because of our IR-safe

jet-selection criteria (in this case at least three well-separated jets), a pencil-like event

shape becomes impossible, excluding values very close and equal to zero. At NLO,

again, lower thrust values are suppressed by the real emission and the tail of the

distribution reaches out to values above the maximum observed for LO, as the events

become more spherical in shape due to the additional radiation. This trend continues

for higher jet multiplicities.

However, while the peak of the distributions experience visible shifts to higher 1− T
values as the events become more and more spherical with higher nj, the maximum

value does not increase much between the plots for the two highest nj. This is in line

with our expectation, as the upper bound is 1− T = 1/2. Moreover, the shift of the

peak towards higher values becomes less pronounced for nj + 1 the higher nj already

is. The same can be observed for the amplitude of the K-factor when going from four

to five jets at Born level. To some degree, this overall behavior decreases the ability

of the thrust to differentiate between events with different, but high jet multiplicities.

This can be seen for some other event shapes throughout this section to some extent

as well.

Closely related to thrust is the thrust major TM. Its distribution for each jet

multiplicity is shown in fig. 4.16. Since TM is defined by the thrust major axis nTM
that maximizes eq. (4.3.5) in the plane perpendicular to the thrust axis nT , it is zero

for perfectly back-to-back events and becomes larger the more the shape of an event

extends into the plane perpendicular to its thrust axis. This is exactly what we observe

in the TM distributions. For dijet events at LO we have a single spike at zero, which is

significantly suppressed at NLO due to real emissions diverting the event shape away

from a pencil-like shape at LO, leading to the formation of a tail towards higher values

of TM. The distributions for nj > 2 again cannot reach values very close or equal to
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Figure 4.15. Differential distributions of the thrust 1−T for different jet multiplicities
at fNLO QCD. Statistical MC errors are shown for all three event generators, with the
addition of the scale variation band for WHIZARD. The fLO distribution obtained
with WHIZARD is shown as well. The ratio is shown with respect to the WHIZARD
result at NLO, while the K-factor shows the NLO correction with respect to the
WHIZARD LO result. We note that in (d) the thrust range extends beyond its
upper bound of 1− T = 1/2. This is due to an unfortunate binning.
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Figure 4.16. Differential distributions of the thrust major TM for different jet multi-
plicities at fNLO QCD. Statistical MC errors are shown for all three event generators,
with the addition of the scale variation band for WHIZARD. The fLO distribution
obtained with WHIZARD is shown as well. The ratio is shown with respect to the
WHIZARD result at NLO, while the K-factor shows the NLO correction with respect
to the WHIZARD LO result.
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Figure 4.17. Differential distributions of the oblateness O for different jet multiplicities
at fNLO QCD. Statistical MC errors are shown for all three event generators, with the
addition of the scale variation band for WHIZARD. The fLO distribution obtained
with WHIZARD is shown as well. The ratio is shown with respect to the WHIZARD
result at NLO, while the K-factor shows the NLO correction with respect to the
WHIZARD LO result.
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Figure 4.18. Differential distributions of the scaled high hemisphere squared mass
M2

high,s for different jet multiplicities at fNLO QCD. Statistical MC errors are shown
for all three event generators, with the addition of the scale variation band for
WHIZARD. The fLO distribution obtained with WHIZARD is shown as well. The
ratio is shown with respect to the WHIZARD result at NLO, while the K-factor
shows the NLO correction with respect to the WHIZARD LO result.
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zero, simply because these regions are excluded by our jet selection criteria. While

there is a significant shift to higher TM values when comparing NLO to LO in the trijet

case, NLO corrections for higher nj are generally negative in all bins. Overall, however,

we again observe that the peak of the distribution shifts to higher values for higher nj ,

indicating an expansion of the overall event shape in the plane perpendicular to the

thrust axis as the event becomes more and more spherical.

The differential distributions for the oblateness O for different jet multiplicities is

given in fig. 4.17. It is the difference between thrust major TM and minor Tm, and

because of the fact that Tm becomes different from zero only for jet multiplicities

nj ≥ 4, the oblateness distribution is equal to 1− T in the dijet case, both at LO and

NLO. In the trijet case, we can observe a significant shift of the distribution to lower

values of O when comparing NLO to LO, with a strong negative correction the higher

the value of O becomes. This can be observed for higher nj as well and is expected,

as typical values for Tm become closer to TM the more spherical an event becomes.

Thus, typical values for oblateness are maximized for small jet multiplicities higher

than nj = 2, while for large enough nj we expect the peak of the distribution to close

in on zero again.

Turning our attention to the hemisphere masses and broadenings, we plotted the

scaled high hemisphere squared mass M2
high,s in fig. 4.18 for the different jet multiplicities.

Again, starting with the dijet case, we observe the expected behavior of an increasing

suppression of regions close to zero as we move to higher jet multiplicities, both when

comparing iterations of nj at LO and when considering NLO corrections for each

nj. Also, both the extension of the tail and the peak of the distributions move to

higher values of M2
high,s with higher nj, with typical values still staying well below

M2
high,s = 0.5, a value which would indicate a perfectly even distribution of masses

in both hemispheres S±. In the trijet case in fig. 4.18(b), the ratio of Sherpa over

WHIZARD shows two bins around M2
high,s ≈ 1.9 with large errors and relatively high

amplitudes in opposite directions. This is a prime example of the effects of misbinning,

discussed in section 3.1.5.

The differential distributions for the wide hemisphere broadening Bw are shown

in fig. 4.19 for the different jet multiplicities. Overall, the typical behavior for event

shapes seen throughout this section can be observed again, with lower values of Bw

becoming increasingly suppressed for higher jet multiplicities. Also, while the tail of the

distribution quickly reaches an maximum around Bw ≈ 0.35, as the possible increase

in maximal broadness is highest for the jump from a dijet to a trijet configuration, the

peak of the distribution is shifting visibly to the right as more spherical configurations

become kinematically more probable with higher multiplicities.

The total hemisphere broadening Btot, given in fig. 4.20, shows an overall very similar

behavior. However, while the NLO correction for Bw is dominantly negative, we see a

136



4.3. Comparison of Fixed-order Differential Distributions

shift from negative to positive corrections for higher values of Btot when taking into

account the sum of broadenings from both hemispheres.

In fig. 4.21, the differential distributions for the Parisi event-shape variable C are

given for all jet multiplicities. As C can be understood as a measure for the planarity

of an event, it is not surprising to see the strong difference in the distributions for

LO and NLO in the dijet case, as the addition of a real emission leads to the typical

decreasing slope away from the single spike at zero at LO. However, C shows a strong

potential for differentiating jet multiplicities above nj = 3 as well. When looking at

the trijet case, a significant extension of the tail towards higher C values can be seen

at NLO when compared to LO, with an overall shift of the distribution and its peak to

the right. This shift of the peak of the distribution to the right, which can be seen

in most other event-shape observables to varying degrees of intensity, continues to be

very pronounced even in the 5-jet case. The behavior of the K-factor is similar to that

of the total hemisphere broadening, with high negative corrections for low values of

C, followed by comparably less negative corrections over a large middle range, with

strong positive corrections (or relatively low negative ones in the case of 5-jet) in the

higher regions.

The Parisi event-shape variable D, given in fig. 4.22 for the jet multiplicities

nj = 3, 4, 5, can be understood as a measure of the sphericity of an event. It is

only different from zero for events with more than three jets. Therefore, the distribu-

tion for the dijet case is not shown here, as it would be trivial. Instead, the typical

behavior for increasing jet multiplicities we have seen for other event-shape observables

now starts with a single spike at zero in the trijet case at LO. At NLO, we observe a

slope over the full range of D from low to high values. Moving to higher nj, we then

again observe the shift of the peak to the right and an increasing suppression of lower

values of D. However, even for the 5-jet process at NLO, most of the events exhibit a

very low value for D, indicating a sphericity that is not very pronounced yet.

For nj = 5, we observe a deviation of MG5 aMC@NLO from WHIZARD well out-

side the scale uncertainty for D & 0.15. When considering statistical uncertainties, sev-

eral bins show seemingly significant deviations between MG5 aMC@NLO and WHI-

ZARD of σsig
NLO > 5. However, we would expect both programs to still agree well within

the theoretical uncertainties if scale variations were considered with MG5 aMC@NLO

as well. Unfortunately, the required run time by MG5 aMC@NLO for this endeavor

proved to be prohibitive within the time scope of this thesis. In the future, it should

be clarified if this behaviour is due to the same possible reasons stated already in

section 4.3.3 in the context of nj = 5.
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Figure 4.19. Differential distributions of the wide hemisphere broadening Bw for
different jet multiplicities at fNLO QCD. Statistical MC errors are shown for all three
event generators, with the addition of the scale variation band for WHIZARD. The
fLO distribution obtained with WHIZARD is shown as well. The ratio is shown
with respect to the WHIZARD result at NLO, while the K-factor shows the NLO
correction with respect to the WHIZARD LO result.
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Figure 4.20. Differential distributions of the total hemisphere broadening Btot for
different jet multiplicities at fNLO QCD. Statistical MC errors are shown for all three
event generators, with the addition of the scale variation band for WHIZARD. The
fLO distribution obtained with WHIZARD is shown as well. The ratio is shown
with respect to the WHIZARD result at NLO, while the K-factor shows the NLO
correction with respect to the WHIZARD LO result.
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Figure 4.21. Differential distributions of the Parisi event-shape variable C for different
jet multiplicities at fNLO QCD. Statistical MC errors are shown for all three event
generators, with the addition of the scale variation band for WHIZARD. The fLO
distribution obtained with WHIZARD is shown as well. The ratio is shown with
respect to the WHIZARD result at NLO, while theK-factor shows the NLO correction
with respect to the WHIZARD LO result.
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Figure 4.22. Differential distributions of the Parisi event-shape variable D for different
jet multiplicities at fNLO QCD. Statistical MC errors are shown for all three event
generators, with the addition of the scale variation band for WHIZARD. The fLO
distribution obtained with WHIZARD is shown as well. The ratio is shown with
respect to the WHIZARD result at NLO, while theK-factor shows the NLO correction
with respect to the WHIZARD LO result.
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4. Validation of WHIZARD at Fixed-NLO QCD

4.3.5. Differential Distributions for pp→ Zj

While we focussed our efforts for the validation of event generation at fNLO QCD

mostly on leptonic initial states and thus FSR, we will shortly discuss results for

the hadron-collider process pp → Zj in the following. Here, the system of emitting

and emitted parton recoils against the massive Z boson, giving rise to more complex

kinematics. This process features both the full range of possible final-state splittings

shown in figs. 2.2 and 2.3 due to the jet in the final state at Born level, as well as the

initial-state splittings shown in fig. 2.5.

The differential distributions for the transverse momentum pT,Z and pT,j1 of the Z

boson and the pT-hardest jet j1, respectively, as well as their absolute9 pseudorapidities

|ηZ | and |ηj1| are given in fig. 4.23. All three MC event generators agree well within

the theoretical uncertainties estimated by scale variations. Even when only considering

statistical uncertainties, the programs agree in almost every bin and any deviations

are at the level of a few percent at most.

Looking at the pT distribution of the Z boson in figs. 4.23(a) and 4.23(b), at LO

we can see a rising contribution towards lower pT with a hard cut-off below 30 GeV.10

The reason for the latter is of course the cut on the jet transverse momentum of

pT,j1 > 30 GeV, which indirectly restricts the minimum pT of the Z boson kinematically.

At NLO, this restriction is lifted by the presence of an additional jet from the real

emission, which can increase or lower the sum of jet-pT. The Z boson distribution

at NLO can thus exhibit pT much lower than 30 GeV. We also observe positive NLO

corrections across the tail of the distribution towards higher pT.

The transverse momentum distribution of the hardest jet at LO, which originates

from an initial-state splitting, shows a decreasing slope towards higher jet-pT, with a

peak at the cut-off of pT,j1 = 30 GeV. This is expected, as the radiation of soft jets

is favored. At NLO, we observe positive corrections over the whole pT range, with a

significantly increasing K-factor towards higher values of pT.

When examining the pseudorapidity distributions in figs. 4.23(c) and 4.23(d), for

the Z boson we see a clear peak slightly above |ηZ | = 2, meaning most of the Z bosons

are produced with a central momentum direction (i.e. at a rather small angle to the

beam axis). A reason for this boost along the z-axis is the initial-state emission of a

parton already at Born level, which changes the momentum of the emitting parton,

leading to differences in the momentum of the two quarks that form the Z boson.

This disparity is enhanced further if the jet at Born level was produced by ISR of a

gluon. In this case, the quark can either be a valence or a sea quark and the anti-quark

9 We checked that the pseudorapidity distribution is symmetric, which allows us to increase statistics
by using the absolute value.

10 Due to the binning being done according to a Breit-Wigner distribution applied to the full range
of values at NLO, the lowest bin edge at LO in fig. 4.23(a) is less than 30 GeV.
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Figure 4.23. Differential distributions of transverse momenta pT and pseudorapidities
|η| for the Z boson and hardest jet j1 for the process pp → Zj at fNLO QCD.
Statistical MC errors are shown for all three event generators, with the addition of the
scale variation band for WHIZARD. The fLO distribution obtained with WHIZARD
is shown as well. The ratio is shown with respect to the WHIZARD result at NLO,
while the K-factor shows the NLO correction with respect to the WHIZARD LO
result.
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4. Validation of WHIZARD at Fixed-NLO QCD

has to be a sea quark. Valence quarks – as described by the PDFs shown in fig. 4.24 as

an example – have a significantly higher chance to possess a higher momentum fraction

than the sea quarks and thus the Z boson is more likely to be boosted along the z-axis.

In the case where one of the quarks in the qq̄ → Z fusion is the result of a gq̄ ← q (or

gq ← q̄) splitting (see fig. 2.5(a)), the initial gluon is more likely to carry a significantly

different momentum fraction than the quark not stemming from the splitting, resulting

in an even higher boost.
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Figure 4.24. The MSTWnlo2008 PDFs dependent on the momentum fraction x of
the respective parton and the factorization scale µ2

F = Q2. Uncertainty bands are
shown for a 68% CL. The graphic is taken from [180].

In contrast to the case of qq̄ → Z fusion, a jet emitted from one of the incoming

partons can be a soft gluon which is radiated at much higher angles to the beam axis,

and thus the |ηj1 | distribution has a peak close to zero. At NLO, both |η| distributions

show an almost constant K-factor across a wide region, with a strong increase for high

values of |η|.
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4.4. Summary and Concluding Remarks

In this chapter, we thoroughly validated our fully generalized implementation of the

FKS subtraction scheme in WHIZARD for arbitrary processes at fNLO QCD. We

presented examples of our methods used to assure self-consistency of the implementation

within the WHIZARD framework in section 4.1. This was followed by an extensive

study of the fNLO QCD capabilities of WHIZARD in comparison to two different

multi-purpose MC event generators – one of which employs the CS subtraction scheme.

From our results, we conclude that the implementation to enable fully automated

integration and event generation at fNLO QCD with WHIZARD is complete and

validated. The main project of this thesis is thereby successfully finished, which enables

many new possibilities for phenomenological studies.

We will give an example for such a study in the following chapter, where we apply the

fNLO QCD capabilities of WHIZARD to multi-jet production at a lepton collider.
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5. Jet Production at a Lepton

Collider at Fixed-NLO QCD

With the large number of processes validated in our cross-section comparison study

in section 4.2, we can confidently calculate arbitrary fNLO QCD cross sections with

WHIZARD. For now, to demonstrate the possibilities of our NLO implementation, we

will focus on processes with pure multi-jet final states at a future high-energy lepton

collider. There, as mentioned before, precise calculations of these processes will be

very important, since they not only play a part as QCD corrections to the process

e+e− → ff̄ , but also as a relevant background to e.g. multi-boson processes with

hadronic final states. In the five-flavor scheme, this includes Higgs production with

subsequent decay. Furthermore, jet multiplicities of nj ≥ 6 are relevant background

processes to top-pair production with fully-hadronic decay. Moreover, by studying

event-shape observables for multi-jet processes (as introduced in section 4.3) QCD

parameters such as the strong coupling constant αS can be probed at high precision.

Any deviation from the SM predictions would give a signal for new physics in these

studies.

State-of-the-art MC programs can nowadays calculate e+e− → nj-jet processes with

jet multiplicities of up to nj = 5 at fNLO QCD. For multiplicities beyond five jets, to

the best of our knowledge, the only published results [206] have been calculated in the

leading color approximation for up to nj = 7.

Therefore, by using the excellent capability of WHIZARD to handle phase spaces

of high-multiplicity final states, we extended the series of calculations of lepton-

collider processes with pure colored final states consisting of nj = 2, · · · , 5 light jets

(see table 4.2) to nj = 6 jets. We use the same process and parameter setup as

in section 4.2.1 to maintain comparability. The required OpenLoops library for

the process e+e− → jjjjjj at NLO QCD has been generated by the OpenLoops

developers on request. Our result is shown in table 5.1, together with the results for

the lower jet multiplicities obtained in section 4.2.2 for convenience. As it can be seen,

the result for nj = 6 follows the trend of an increasing K-factor for jet multiplicities

beyond nj = 3. This is shown graphically in fig. 5.1 as well. The explanation for

this behavior is the fact that an increase in the jet multiplicity reduces the average

jet-momentum scales, leading to increasingly larger logarithms of ratios between the
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5. Jet Production at a Lepton Collider at Fixed-NLO QCD

CM energy and the jet-momentum scales, similar to example in eq. (4.3.15).

Using the setup from section 4.2.1 means that the result is presented for a lepton

collider with a CM energy of 1 TeV. As already mentioned in the context of section 4.3,

while this is higher than the realistically discussed energies of the first stage of the ILC

of 250 GeV to 500 GeV [188], the technical design report [21] includes future upgrade

paths up to 1 TeV. Our result thus remains relevant in the near- to mid-term future of

experimental high-energy particle physics. Furthermore, it is straightforward to repeat

the calculation for any reasonable CM energy.

Process σLO [fb] σNLO [fb] K

e+e− → jj 622.737(8) 639.39(5) 1.03
e+e− → jjj 340.6(5) 317.8(5) 0.93
e+e− → jjjj 105.0(3) 104.2(4) 0.99
e+e− → jjjjj 22.33(5) 24.57(7) 1.10
e+e− → jjjjjj 3.583(17) 4.46(4) 1.24

Table 5.1. Summary of fLO and fNLO QCD cross sections calculated with WHIZARD
for processes with up to six light final-state jets at a lepton collider with a CM energy
of 1 TeV.
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Figure 5.1. K-factor in dependence of the jet multiplicity nj , as given in table 5.1.
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Challenges and Outlook

With the first demonstration of the potential of the fNLO QCD capabilities at high

final-state multiplicities of WHIZARD given in this chapter, many future studies for

high-multiplicity processes at higher precision are now possible within the WHIZARD

framework, providing important predictions beyond LO for future lepton colliders.

However, some challenges remain. In the context of e+e− → jjjjjj at fNLO QCD,

future optimizations within WHIZARD regarding speed and memory consumption

will be necessary. While the integration time of the Born component is fast and the

time required for the real component is at the order of a few days, the computation of

the 6-jet virtual-subtracted cross section has a run time at the order of several weeks to

months, even with the use of the MPI-based parallelization that WHIZARD is capable

of. Paired with the requirement of approximately 20 GB to 30 GB of memory per

MPI instance for the OpenLoops library,1 well-equipped computing clusters become

essential for future studies of processes with high jet multiplicities.

Additionally, further optimizations to reduce a high level of redundancy in the

event generation of WHIZARD are needed in order to reduce the run time for high-

multiplicity processes, which usually also require a substantially higher amount of

generated events for a statistically reasonable precision. So far, the cumulation of these

yet unrealized optimizations unfortunately prevented us from computing differential

distributions at fNLO beyond jet multiplicities of nj = 5. However, while the total

cross section for nj = 6 is at the order of a magnitude smaller than the one for nj = 5

(see table 5.1), differential distributions for up to six light jets and beyond will certainly

become increasingly important in future high-precision studies.

1 This will likely be reduced in the near future by OpenLoops thanks to a new tensor reduction
method [207].
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6. Summary, Conclusions, and

Outlook

High-precision physics in the context of high-energy particle-collider studies plays a

crucial role, with its importance ever increasing. State-of-the-art multi-purpose MC

event generators allow fully-automated computations of scattering processes up to

NLO accuracy, with promising computations beyond NLO becoming available for

specific processes. However, a lot of work remains at NLO in perturbation theory,

especially for higher multiplicities and in the context of future lepton colliders, where

predictions for differential distributions at NLO remain sparse. For NLO EW and

mixed corrections, fully automated implementations in MC event generators are still

under active development.

With this thesis, we now provide fully automated fNLO QCD computations inside

the multi-purpose MC framework WHIZARD which is well known and established

in the lepton-collider community due to its multiple tools and capabilities needed to

accurately simulate the various aspects of lepton collisions. In a direct comparison

(i.e. without considering lepton-collider specific effects) to other multi-purpose MC

event generators at fNLO QCD, WHIZARD shows excellent agreement and promising

new opportunities for high-multiplicity calculations.

In part I of this thesis, we first gave a thorough review of the FKS subtraction scheme

in chapter 2 for QCD in order to convey how we achieved the fNLO QCD capabilities

in WHIZARD. There, we worked out the general notation used throughout this thesis.

With its help we combined the various sources on FKS subtraction to give a detailed

description of the construction of the universal real counterterms as introduced in

eq. (2.0.2). We then laid out how they are integrated analytically over the real-emission

phase space in order to cancel the divergences of the bare squared virtual amplitude

Vb in eq. (2.0.3) as according to the KLN theorem.

Although WHIZARD has a strong focus on physics at lepton colliders, as a multi-

purpose MC event generator we aim to provide a full description of SM physics at all

relevant colliders. Therefore, we did not only present the FKS subtraction for FSR,

but also detailed the construction of counterterms in the case of ISR due to colored

initial states at a hadron collider. This also entailed additional collinear counterterms

from the DGLAP evolution of the hadronic PDFs, necessary for the cancellation of
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initial-state divergences in Vb.
Following a brief general overview of WHIZARD, we gave a detailed presentation

of the technical implementation of FKS subtraction in the program in chapter 3. While

the basic structure for NLO computations with WHIZARD has been established in

two earlier PhD theses [26, 73], it was restricted to processes only allowing for FSR of

one additional gluon. We had to redesign and improve many parts of the code in order

for WHIZARD to be able to compute arbitrary processes at fNLO QCD.

One notable change includes a new mapping between the flavor structure integer

indices, i flv and i hel, and the corresponding (squared) matrix-element integer

index i in the state matrix t type introduced in section 3.1.1 and shown in fig. 3.1.

Further into section 3.1.1, we introduced a way of optimizing the number of calls

to the matrix-element generator by only requesting (squared) matrix elements for

non-equivalent subprocesses. This can substantially reduce run times, especially for

processes with a large number of equivalent subprocesses. So far this is only possible

for matrix-element generators that provide the information which subprocesses are

equivalent via the BLHA interface such as the OLP OpenLoops.

Even more importantly, we had to overhaul the way singular regions are handled in

the context of FKS subtraction in WHIZARD. This then led to the correct treatment

of real flavor structures that are identical except for final-state permutations, but

originate from different underlying Born flavor structures, as detailed in section 3.1.3.

We further corrected symmetry factors in the real counterterms for final states with

identical particles. As outlined in section 3.1.4, while these terms contain the squared

Born amplitude, they require the symmetry factors of the corresponding real flavor

structure. In the same manner, they require the convolution with the rescaled PDFs

for the corresponding real-emission initial-state flavors and kinematics.

We successfully generalized the fNLO QCD capabilities of WHIZARD for the

simulation of differential distributions as well. This included many changes in technical

details regarding the generation and handling of fNLO events in WHIZARD. In

section 3.1.5, we gave an overview of how to interpret fNLO events in the greater

picture of the full event simulation at a real-world experiment. While they do provide

physical predictions for differential distributions at FO of the perturbation series, their

representation can strongly depend on the details of the technical implementation in

an MC event generator due to their nature of being an intermediate step for the full

event simulation. For this work, we had to determine exactly how to define FO events

in the context of our implementation of FKS subtraction in WHIZARD. This was

outlined in section 3.1.5 as well, together with a general description of how to treat

statistical error estimates and artificial effects such as misbinning in the context of FO

events.

We very briefly touched the subject of matching fNLO predictions to a parton shower.
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One method that preserves fNLO accuracy for the first emission is POWHEG matching

[67]. While this method has been implemented in WHIZARD for a small class of

processes – i.e. lepton collisions with low-multiplicity final states with explicit (massive)

quark flavors and no gluons [26, 73, 208] – the generalization of this method for arbitrary

processes is an ongoing effort. We expect matched and subsequently-showered results

to be presented with WHIZARD for arbitrary processes at NLO QCD in the near

future, as the prerequisite of a generalized fNLO QCD framework is now fulfilled.

In part II, we first presented methods in section 4.1 to test the self-consistency of

our FKS implementation and proofed that it behaves as expected on a technical level.

As a next step, we conducted an fNLO QCD comparison study of total cross sections

between results computed by MG5 aMC@NLO and WHIZARD, where we used

[33] as a reference for our setup. We showed that WHIZARD agrees perfectly with

MG5 aMC@NLO for a vast list of lepton and hadron-collider processes. Even for

multi-jet processes with high multiplicities and a high complexity in FKS combinatorics,

like e+e− → jjjjj or pp→ jjj, we did not observe any deviation between the results

with a significance exceeding 2σsig
NLO.1 The deviations from MG5 aMC@NLO results

for processes with one or more gluons in the final state seen in [26] have been resolved,

thanks to our improved FKS implementation outlined in section 3.1.

Furthermore, both lepton and hadron-collider processes with combinations of light

jets and massive gauge bosons in the final state rarely show a deviation exceeding

2σsig
NLO, while staying below 3σsig

NLO. The only noteworthy deviation we encountered

was for the process pp→ W+W−ZZ(4f) with 3.56σsig
NLO. We discussed several possi-

ble explanations for this deviation, including possible differences in the phase-space

treatments between the two programs, a possible error in the OpenLoops library, or

simply an overlooked error in the process setup for one of the programs. While this

deviation warrants further investigations, the significance is still rather low and it is

a single outlier in a vast list of processes without any significant deviations between

MG5 aMC@NLO and WHIZARD.

To fully compare the list in [33], processes with final-state Higgs bosons or single top

quarks, as well as processes requiring photon isolation or b-jet tagging, will have to be

computed with WHIZARD. While we do expect the former two classes of processes to

be free of surprises, the latter two require additional validation of the photon isolation

and b-jet tagging that have only recently been implemented in WHIZARD. However,

these methods are not exclusive to NLO calculations.

In section 4.3, we conducted a thorough comparison study between MG5 aMC@NLO,

Sherpa, and WHIZARD for differential distributions of various observables at fNLO

QCD in multi-jet production at a future lepton collider with a CM energy of 1 TeV.

1 See eq. (4.2.8) for the definition of σsig
NLO
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For a jet multiplicity of up to nj = 5 at Born level, we studied the agreement for

different observables of jet properties – i.e. their transverse momenta, energies, absolute

pseudorapidities, and invariant masses – and for multiple different types of event-shape

observables – i.e. thrust and thrust major, oblateness, hemisphere broadenings and

masses, and Parisi variables.

We found an excellent agreement between all three MC event generators for jet

multiplicities of up to nj = 4. For nj = 5, MG5 aMC@NLO shows multiple bin-wise

statistical deviations of 5σsig
NLO and above in relation to Sherpa and WHIZARD

for several observables. Because of the rather long run time of roughly a month for

5-jet production at fNLO with MG5 aMC@NLO, we were not able to determine

the origin of this discrepancy in time for this thesis. We made the point, however,

that the deviations would likely become insignificant when scale variations of both

MG5 aMC@NLO and WHIZARD would be considered. Additionally, the fact that

Sherpa – which employs the CS subtraction scheme – agrees well with WHIZARD

even for nj = 5 gives us further reason to remain confident in the fNLO QCD capabilities

of WHIZARD.

In order to present the capabilities of WHIZARD to produce differential distribu-

tions for hadron-collider processes at fNLO QCD, we showed distributions for transverse

momenta and absolute pseudorapidities for the process pp→ Zj in section 4.3.5. We

saw an excellent agreement between MG5 aMC@NLO, Sherpa, and WHIZARD.

From our comparison study of multi-purpose MC event generators, we conclude that

automated fNLO QCD computations with WHIZARD are correct and validated, and

are now ready for phenomenological studies. Our implementation allows to combine

the fNLO QCD capabilities with the various advantages of the WHIZARD framework,

such as the support of lepton-collider beam polarization and spectra, QED ISR, as well

as its excellent phase-space setup and speed in integration and event generation.

Finally, with a high confidence in our FKS implementation due to the results stated

above, we applied the outstanding capability of WHIZARD to describe phase spaces

for high-multiplicity final states to 6-jet production at fNLO QCD at a future 1 TeV

lepton collider. As far as we know, we computed the first result for the total cross

section in such a setting. The result of σNLO = 4.46(4) fb fits well into the expected

range of values we would infer from computations of increasing jet multiplicities in

table 5.1. The relatively high K-factor of 1.24 implies that FO perturbation theory

might not be sufficient for increasing jet multiplicities as large logarithms start to

enhance the fNLO correction. These logarithms could be resummed by matching the

fNLO predictions to a parton shower – e.g. achieved by the POWHEG method – in order

to give more accurate predictions for experiments.

This thesis has focussed on fNLO QCD corrections. In the context of high-precision

studies, especially at a future lepton collider, including additional effects from higher-
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order EW and mixed corrections in theoretical predictions will become increasingly

important. We implemented a first iteration of fNLO EW corrections within our FKS

framework. However, we refrained from presenting it in this thesis, as it is still work in

progress and initial validation efforts have shown promising results only very recently.

We are hopeful that first results at fNLO EW will be published with WHIZARD

in the near future. The implementation of mixed corrections should be possible by

doubling the component structure of WHIZARD presented in section 3.1.1 such that

both QCD and EW corrections can be combined accordingly.

As stated in [26, 73], NNLO computations should in principle be possible by this

component structure as well. While the dipole-based antenna subtraction scheme has

gotten a lot of attention in the recent years, an FKS-inspired NNLO approach as

realized in the STRIPPER subtraction scheme [209, 210] would be preferred for the

implementation in WHIZARD as proposed in [26, 73]. A very recent example of an

application of this scheme to diphoton production with an additional jet at the LHC

is given in [211]. In order to accommodate the additional terms for the double-real,

double-virtual, and real-virtual contributions, corresponding components could simply

be allocated in addition to the ones needed at NLO [26, 73]. Real-virtual and tree-level

squared amplitudes can be provided already by some matrix-element generators like

OpenLoops, while the two-loop computations remain to be fully automated. It is

very probable that this task will be resolved by the time NNLO computations will be

implemented in WHIZARD, as it has become a very active field of research in the

recent years.
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A. Real-radiation Phase-space

Construction

In chapter 2, for an arbitrary hard 2→ n scattering process, we introduced the FKS

subtraction scheme with a general description for the parametrization of the real-

emission phase space and its associated set of kinematics Φn+1. There, in eq. (2.1.15)

we introduced the injective mapping between Φn+1, and the barred kinematics Φ̄
(α)
n of

the underlying Born configuration of a singular region α and its associated set of FKS

variables Φ
(α)
rad = {ξ, y, φ} that parametrize the kinematics of the emitted FKS parton.

While the details of the phase-space construction for the real radiation did not

matter for the correct derivation of the FKS subtraction terms, the implementation of

the FKS subtraction scheme in a multi-purpose MC event generator of course requires

an explicit generation of real-emission kinematics. The construction of the Φ̄
(α)
n and

Φ
(α)
rad kinematics from the Φn+1 kinematics has been derived in [67] and are reviewed in

detail in [212]. The inverse construction, i.e. the construction of the full set Φn+1 from

a given set of barred kinematics Φ̄
(α)
n and a given set of FKS variables Φ

(α)
rad, has been

computed in [67] as well.

For the FKS implementation in WHIZARD, the inverse construction is the preferred

and most convenient one, as then the barred kinematics Φ̄
(α)
n simply equate to that of

the Born phase space and are readily available from the existing routines to generate

the n-body phase space at LO. The details of the inverse construction in the context

of WHIZARD is documented in [26, 212].

For completeness, in the following we review the construction of the real-radiation

kinematics as described in [67] for FSR in appendix A.1, as well as for ISR in ap-

pendix A.2. In appendix A.3 the jacobians J (α) for the real-radiation phase-space

transformation are given. Throughout this appendix we use the notation established

in section 2.1.

A.1. Final-state Real-radiation Phase Space

First, we will focus on FSR from a massless emitter and defer the treatment of massive

emitters to appendix A.1.1. We will detail the inverse construction of the (n+ 1)-body

kinematics as given in [67]. In the case of FSR, the initial-state four-momenta are
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A. Real-radiation Phase-space Construction

unaffected by the real emission, thus

k⊕ = k̄⊕ , k	 = k̄	 , (A.1.1)

which consequently leads to the same CM frame for the sets of final-state four-momenta

F̄ ≡
{
k̄3, · · · , k̄n+2

}
, F ≡ {k3, · · · , kn+3} , (A.1.2)

associated to the n-body and (n+ 1)-body phase space, respectively. Therefore, for

the FSR phase-space construction, we work in this CM frame. Obviously, momentum

conservation has to be satisfied such that

q ≡ k̄⊕ + k̄	 =
n+2∑

i=3

k̄i = k⊕ + k	 =
n+3∑

i=3

ki , (A.1.3)

where we defined q, which is given in the CM frame as1

q = 0 , q2 =
(
q0
)2 ≡ s . (A.1.4)

We also assume, without loss of generality, that we have a single singular region that is

associated with the FKS pair (n+ 2, n+ 3) (see eq. (2.1.11)), i.e. the emitted parton

In+3 becoming soft and/or collinear to the emitting parton In+2. We thus suppress

the index α. The construction of F is then based on the separation of the final-state

real-emission kinematics into two systems such that

F = C ∪ E , C ≡ {k3, · · · , kn+1} , E ≡ {kn+2, kn+3} , (A.1.5)

where E are the kinematics of the emitter-emitted system and C that of the recoiling

system. We also introduce the sum of four-momenta of E as

k ≡ kn+2 + kn+3 . (A.1.6)

The mapping between F̄ and F is constructed in such a way that the invariant mass

Mrec of the recoiling system C is preserved, meaning that

k̄2
rec =

(
n+1∑

i=3

k̄i

)2

!
=

(
n+1∑

i=3

ki

)2

= k2
rec = M2

rec , (A.1.7)

1 This is the default definition. In more general formulations of FKS, q0 is defined as the energy
of a subset of all particles in the final state. For example, the resonance-aware FKS subtraction
scheme [69] defines q0 as the resonance energy of the associated resonance history.
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A.1. Final-state Real-radiation Phase Space

with the definition

krec ≡ q − k , krec = −k . (A.1.8)

Equation (A.1.7) implies that the four-momenta of C and their respective barred

counterparts of the set

C̄ ≡
{
k̄3, · · · , k̄n+1

}
, (A.1.9)

are connected via a boost Λ along the krec direction such that

(q − Λkrec)
2 = 0 , (A.1.10)

i.e. the difference q − Λkrec is light-like. We then have

k̄i = Λki , i = 3, . . . , n+ 1 , k̄n+2 = q − Λkrec , (A.1.11)

where momentum conservation for the sum of all barred momenta as in eq. (A.1.3) is

obviously satisfied. From eqs. (A.1.3), (A.1.7) and (A.1.11) it follows that

M2
rec =

(
q − k̄n+2

)2
. (A.1.12)

With these basic considerations, the inverse construction of C and E from the barred

four-momenta F̄ then is rather straightforward and depends on the set of FKS variables

(see eqs. (2.1.19) and (2.1.21) to (2.1.23))

Φrad = {ξ, y, φ} (A.1.13)

that parametrize the kinematics of the emitted parton in the CM frame. Within this

parametrization, the energy of the emitted massless parton In+3 is given as

k0
n+3 = |kn+3| =

q0

2
ξ , (A.1.14)

where we also stated the trivially given magnitude |kn+3| of the three-momentum of

In+3. Whats left for the construction of kn+3 is to figure out its polar and azimuthal

angles. In order to do so, we first have to compute the magnitudes |kn+2| and |k|. For

a massless emitter we have

y ≡ cos θ =
kn+2 · kn+3

|kn+2||kn+3|
, (A.1.15)

which gives

|k|2 = |kn+2|2 + |kn+3|2 + 2|kn+2||kn+3|y . (A.1.16)
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A. Real-radiation Phase-space Construction

Energy conservation gives us

q0 = k0
n+2 + k0

n+3 + k0
rec = |kn+2|+ |kn+3|+

√
|k|2 +M2

rec , (A.1.17)

where we used the fact that because of momentum conservation we have |krec| = |k|,
and that both emitter and emitted parton are massless, giving

k0
n+2/3 =

∣∣kn+2/3

∣∣ . (A.1.18)

Here, we introduced the notation

In+2/3 (A.1.19)

as a shortcut to simultaneously describe emitter and emitted parton. We note that

the order of the integer before and after the slash matters. Squaring eq. (A.1.17) and

inserting eq. (A.1.16) leads to

|kn+2| = k0
n+2 =

q2 −M2
rec − 2q0k0

n+3

2
(
q0 − k0

n+3 (1− y)
) . (A.1.20)

We thus have determined both emitter and emitted four-momenta kn+2/3, except for

their polar and azimuthal angles. However, we can now position their three-momenta

parallel to the barred emitter momentum k̄n+2 such that

k′′n+2/3 ≡
∣∣kn+2/3

∣∣ k̄n+2∣∣k̄n+2

∣∣ , (A.1.21)

and apply a rotation R(ψn+2/3,d) around the unit vector d ⊥ k̄n+2 to both three-

momenta k′′n+2/3 such that

k′n+2/3 = R(ψn+2/3,d)k′′n+2/3 , cosψn+2/3 ≡
kn+2/3 · k∣∣kn+2/3

∣∣|k| , (A.1.22)

with

d ≡ 1√(
k̄1
n+2

)2
+
(
k̄2
n+2

)2

(
k̄2
n+2,−k̄1

n+2, 0
)T

. (A.1.23)

Without knowing the direction of k, we can use momentum conservation

(
k− kn+2/3

)2
= k2

n+3/2 (A.1.24)

to obtain

cosψn+2/3 =

∣∣kn+2/3

∣∣2 + |k|2 −
∣∣kn+3/2

∣∣2

2
∣∣kn+2/3

∣∣|k| . (A.1.25)
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A.1. Final-state Real-radiation Phase Space

The only missing step to fully construct the emitter-emitted system E then is to

rotate the primed three-momenta by the azimuthal angle φ ∈ Φrad, which yields the

three-momenta of E as

kn+2/3 = R

(
φ,

k̄n+2∣∣k̄n+2

∣∣

)
k′n+2/3 . (A.1.26)

In order to restore total momentum conservation, we still have to boost the recoil

system C via the inverse Lorentz transformation Λ−1(β) (see eq. (A.1.11)) along the

−krec direction, dependent on the boost velocity β. The boost velocity can be easily

derived by considering eq. (A.1.10), which directly leads to the condition

q0 − γk0
rec − γβ|krec| !

= γβk0
rec + γ|krec| . (A.1.27)

Solving for q0 and using the square (q0)
2

= q2 gives

q2 =
1 + β

1− β
(
k0

rec + |krec|
)2
, (A.1.28)

which in turn, by solving for β, leads to

β =
q2 − (k0

rec + |krec|)2

q2 + (k0
rec + |krec|)2 . (A.1.29)

We note that because of the fact that q0 = k0 + k0
rec, and that the invariant mass of E

is k2 ≥ 0, giving k0 ≥ |k| = |krec|, the boost velocity β is positive and smaller than

one. This ensures that the boost Λ(β) always exists. The recoil system C is thus fully

constructed by

ki = Λ−1(β)k̄i , i = 3, · · · , n+ 1 . (A.1.30)

The inverse mapping of the real kinematics from the barred set of momenta Φ̄n and

the FKS variables Φrad thus is always unique and exists, provided that

ξ <
q2 −M2

rec

q2
, (A.1.31)

as |kn+2| > 0. With eq. (A.1.12), and k̄2
n+2 = 0 for a massless emitter, eq. (A.1.31)

yields the maximum radiation energy

ξmax =
2
∣∣k̄n+2

∣∣
q0

. (A.1.32)
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A.1.1. Construction for Massive Emitters

The construction of the Φn+1 = {k⊕, k	, k3, · · · , kn+3} kinematics in the case of a

massive final-state emitter In+2 with mass m is derived in [68], with a detailed review

in [212]. It is in many parts analogous to the construction in the massless case,

detailed above in appendix A.1. However, due to the massive emitter, we have a

different construction for the three-vector magnitude |kn+2| and energy k0
n+2 of the

four-momentum of the emitter in the (n+ 1)-kinematics, as well as for the magnitude

|k| of the sum of momenta of the emitter-emitted system E . These quantities determine

the rotation given in eq. (A.1.22), affecting the construction of E . We will give a

short review of their derivation as given in [68] for a massive final-state emitter in the

following.

From eqs. (A.1.3), (A.1.4) and (A.1.7) and

k̄2
n+2 =

(
q − k̄rec

)2
= m2 , k̄2

rec =
(
q − k̄n+2

)2
= M2

rec , (A.1.33)

we can write

k̄0
n+2 =

q2 +m2 −M2
rec

2q0
, k̄0

rec =
q2 −m2 +M2

rec

2q0
. (A.1.34)

While for the massless emitted parton In+3 the energy and magnitude is simply given

by eq. (A.1.14), the construction of these quantities for the four-momentum kn+2 of

the massive emitter relies on the established fact in [68] that k0
n+2, k0

n+3, and k0
rec exist

in a convex Dalitz domain. This allows to introduce the parametrization

k0
n+2 = k̄0

n+2 − zk0
n+3 . (A.1.35)

There then exists a maximum value of k0
n+3 = |kn+3| for any value of z. This maximum

is such that it can be associated with a point on the boundary of the Dalitz region

that is determined by at least one sign combination of the condition

|kn+3| ± |kn+2| ± |krec| = 0 . (A.1.36)

By squaring two times such that

(|kn+3| ± |kn+2|)2 = |kn+3|2 + |kn+2|2 ± 2|kn+3||kn+2| = |krec|2 , (A.1.37)

and subsequently

(
|kn+3|2 + |kn+2|2 − |krec|2

)2
= 4|kn+3|2|kn+2|2 , (A.1.38)
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we can then make use of eqs. (A.1.34) and (A.1.35), as well as

|kn+2|2 =
(
k0
n+2

)2 −m2 , |krec|2 =
(
q0 − k0

n+2 − k0
n+3

)2 −M2
rec , (A.1.39)

to write

4|kn+3|2
(
2|kn+3|q0z (1− z) + q2z2 − 2q0k̄0

recz +M2
rec

)
= 0 . (A.1.40)

Solving this quadratic equation for |kn+3| = k0
n+3 gives k0

n+3 = 0 and its maximum

value such that

0 ≤ k0
n+3 ≤

2q0k̄0
recz − q2z2 −M2

rec

2q0z (1− z)
. (A.1.41)

The minimum and maximum values of z are those for which the rightmost expression

in eq. (A.1.41) vanishes, which turn out to be

z1/2 =
k̄0

rec ±
√(

k̄0
rec

)2 −M2
rec

q0
, (A.1.42)

which we can use to parametrize z1 < z < z2 as

z = z2 −
1 + y

2
(z2 − z1) . (A.1.43)

Thus, for the case of a massive emitter, we exchange y with z in Φrad. Together with

eqs. (A.1.35) and (A.1.39), and |k| = |krec| (see eqs. (A.1.6) and (A.1.8)), as well as

|kn+3| = k0
n+3 =

q0

2
ξ , (A.1.44)

we have all the quantities needed to perform the construction of E for a massive emitter.

It is then simply a matter of inserting these quantities in eqs. (A.1.21) to (A.1.26).

Furthermore, by inserting the maximum of k0
n+3 from eq. (A.1.41) into eq. (A.1.44),

we derive the maximum value of ξ as

ξmax =
2

q0

2q0k̄0
recz − q2z2 −M2

rec

2q0z (1− z)
. (A.1.45)

For the recoiling momenta C, we then perform an inverse Lorentz boost Λ−1(β) along

the direction of −krec = k as in eq. (A.1.30), where the boost velocity is given as [26]

β =
1− α2

1 + α2
, α ≡ k0

rec + |krec|
k0

rec − |krec|
. (A.1.46)
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A.2. Initial-state Real-radiation Phase Space

Initial-state QCD radiation in general has to be treated in the context of PDFs that

determine the partonic momenta of the colliding beams (see section 2.2.2). This

complicates the construction of the kinematics for ISR. However, in general, we can

assume the beam partons to be sufficiently fast enough to not have their momentum

direction altered by radiation. Thus, while ISR affects their energy, their momentum

direction can be assumed to be left parallel to the beam direction. As before, we

follow the construction of the kinematics as given in [68]. We assume, without loss

of generality, that we have a single singular region, where the emitted parton is In+3,

i.e. its four-momentum is positioned last in the set

Φn+1 = {k⊕, k	, k3, · · · , kn+3} (A.2.1)

of the (n+ 1)-body kinematics. We thus suppress the index α. In terms of the FKS

variables Φrad = {ξ, y, φ} (see eqs. (2.1.19) and (2.1.21) to (2.1.23)), the four-momentum

kn+3 of In+3, emitted from an initial-state parton I±, is then given by

kn+3 =

√
s

2
ξ
(

1,
√

1− y2 sinφ,
√

1− y2 cosφ, y
)
, (A.2.2)

where y = cos θ⊕j as in eq. (2.1.22). Equation (A.2.2) and the following calculations

are set in the CM frame of the partonic initial-state system of the (n+ 1)-body process,

where

q ≡
(√

s,0
)

= k⊕ + k	 =
n+3∑

i=3

ki , k± = x±K± , (A.2.3)

with the initial-state momenta written in terms of the beam momenta K± and the

partonic momentum fractions x±. We introduce the total momentum k̄tot of the

final state of the underlying Born process, and choose the mapping between the real

kinematics and the barred momenta, as well as the FKS variables, in such a way that

k̄2
tot =

(
n+2∑

i=3

k̄i

)2

!
=

(
n+2∑

i=3

ki

)2

= k2
tot , (A.2.4)

k̄tot ≡
n+2∑

i=3

k̄i , ktot ≡
n+2∑

i=3

ki = k⊕ + k	 − kn+3 , (A.2.5)

meaning that the invariant mass of k̄tot and its equivalent ktot in the (n+ 1)-body final

state is preserved under Lorentz transformations that connect these two four-momenta.

With the additional condition that the rapidity of k̄tot and ktot has to be the same, we

construct a series of Lorentz boosts, where the first is a boost ΛL longitudinal with
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respect to the incoming beams such that the rapidity of both ΛLk̄tot and ΛLktot vanishes.

The boost angle of ΛL is given by minus the rapidity of k̄tot, with the components of

the boost velocity βL given as [26]

βiL =
k̄itot

k̄0
tot

=
k̄i⊕ + k̄i	
k̄0
⊕ + k̄0

	
. (A.2.6)

A second transverse boost ΛT assures that ΛTΛLktot has no transverse component and

is constructed such that

ΛTΛLktot = ΛLk̄tot =
n+2∑

i=3

ΛLk̄i , (A.2.7)

with the boost velocity βT given as [26]

βT =

(
1 +

s (1− ξ)
k2
T,n+3

)− 1
2

, (A.2.8)

where kT,n+3 is the transverse momentum of the emitted parton with respect to the

beam direction (z-axis). From eq. (A.2.7) we then immediately obtain the inverse

construction of the rest of the (n+ 1)-body final-state four-momenta from the barred

momenta as

ki = Λ−1
L Λ−1

T ΛLk̄i , i = 3, · · · , n+ 2 , (A.2.9)

with the four-momentum of the emitted parton already given in eq. (A.2.2). For

the construction of the (n+ 1)-body initial-state momenta we then define the barred

parton-momentum fractions x̄± such that

x̄⊕K⊕ + x̄	K	 = k̄tot (A.2.10)

where we can use x̄± to compute x± and thus k± = x±K± since [67]

x± =
x̄±√
1− x

√
2− ξ (1∓ y)

2− ξ (1± y)
. (A.2.11)

This relation follows directly from the fact that the invariant mass and rapidity is kept

equal for ktot and k̄tot, with its derivation being detailed in [212]. By considering the

constraint that x± ≤ 1, we can work out an upper bound ξmax on ξ in the case of ISR

by first squaring eq. (A.2.11) and subsequently adding 0 = y − y to the numerator and
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denominator of the second fraction such that

x2
± =

x̄2
±

1− ξ
(1± y) + (1− ξ) (1∓ y)

(1∓ y) + (1− ξ) (1± y)
≤ 1 . (A.2.12)

Transferring this into a quadratic equation in (1− ξ) leads to

(1− ξ)2 + (1− ξ) (1∓ y)
(
1− x̄2

±
)

1± y − x̄2
± ≥ 0 . (A.2.13)

With the obvious condition 1− ξ ≥ 0 we get the two solutions

1− ξ =
2 (1± y) x̄2

±

(1∓ y)
(
1− x̄2

±
)

+
√(

1 + x̄2
±
)2

(1∓ y)2 + 16yx̄2
±

. (A.2.14)

The upper bound ξmax is then given by the larger of the two solutions, corresponding

to the lower value of ξ such that

ξmax = 1−max





2 (1 + y) x̄2
⊕

(1− y) (1− x̄2
⊕) +

√
(1 + x̄2

⊕)
2

(1− y)2 + 16yx̄2
⊕

,

2 (1− y) x̄2
	

(1 + y) (1− x̄2
	) +

√
(1 + x̄2

	)
2

(1 + y)2 + 16yx̄2
	



 .

(A.2.15)

A.3. The Jacobian for the Real-radiation

Phase-space Transformation

The Jacobian J (α), arising from the variable transformation when expressing the

radiation phase space in terms of Φ
(α)
rad and needed to compute the radiation phase-

space measure dΦ
(α)
rad (see eq. (2.1.18)) in a singular phase-space region α, is derived

in [67] for ISR and FSR with massless emitters. For massive final-state emitters, it is

derived in [68]. In [212], the derivation of J (α) is reviewed in additional detail. In the

following, we will simply state their final form, together with the associated phase-space

measure dΦ
(α)
rad, for the different cases. We assume a general FKS pair (i, j) ∈ PFKS

(see eq. (2.1.11)).
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• FSR, mi = 0, i > nI | (i, j) ∈ PFKS:

In the case of FSR with a massless emitter Ii, we have [67]

dΦ
(α)
rad = J (α)dξjdyijdφj , J (α) =

q2ξj

(4π)3

k2
i

k̄0
i

(
k0
i −

k2

2q0

)−1

,

k = 2k0
i k

0
j (1− yij) .

(A.3.1)

In the soft limit, we have ξj → 0, k0
j → 0, and thus k → 0. Consequently, the

soft limit of eq. (A.1.20) is

lim
ξj→0

k0
i =

q2 −Mrec

2q0
= k̄0

i , (A.3.2)

with the last equality being because of eq. (A.1.12). We thus have

lim
ξj→0
J (α) =

q2ξj

(4π)3 . (A.3.3)

In the collinear limit, we have yij → 1, which gives the collinear limit of

eq. (A.1.20) as

lim
yij→1

=
q2 −M2

rec

2q0
− k0

j = k̄0
i −

q0

2
ξj , (A.3.4)

and thus

lim
yij→1

J (α) = 1− q0

2

ξj
k̄0
i

. (A.3.5)

• FSR, mi 6= 0, i > nI | (i, j) ∈ PFKS:

In the case of FSR with a massless emitter Ii, we have substituted yij with

z, as seen in appendix A.1.1. We then have [68]

dΦ
(α)
rad = J (α)dξjdzdφj , J (α) =

q2

(2π)3

k0
j

4
√
k̄2
i

. (A.3.6)

• ISR, mi = 0, i ≤ nI | (i, j) ∈ PFKS:

For ISR, we have to account for the change of variables in eq. (A.2.11), where it

is easy to see that we have

dx⊕dx	 =
dx̄⊕dx̄	
1− ξj

. (A.3.7)
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The Jacobian J (α) then is simply given by [67]

J (α) =
q2

(4π)3

ξj
1− ξj

. (A.3.8)
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B. Rescaling the Upper Integration

Bound of ξ

Let us review the integration over ξ in eq. (2.2.20). There, we conveniently ignored that

in general the upper bound ξmax(y) ≤ 1 of the integration can be dependent on y, like

in the case of massive final-state emitters (see eq. (A.1.45)) or ISR (see eq. (A.2.15)).

This dependence makes the integration over ξ in eq. (2.2.20) more involved. However,

by transforming ξ in the integration as [59]

ξ = ξmax(y)ξ̃ , (B.0.1)

we get the integral over ξ̃ ∈ [0, 1] instead. To properly understand the effect of this

rescaling, we have to reevaluate the integral of eq. (2.2.6) for ξ̃. We assume ξc = 1 for

the sake of simplicity (i.e. we use the unmodified plus distributions) and then have

I =

∫ 1

0

dξ̃ξmax(y)
(
ξ̃ξmax(y)

)−1−2ε

f(ξ, y) (B.0.2)

=

∫ 1

0

dξ̃ξmax(y)
f(ξ, y)− f(0, y)
(
ξ̃ξmax(y)

)1+2ε + f(0, y)

∫ 1

0

dξ̃ξ̃−1−2εξ−2ε
max(y) (B.0.3)

=

∫ 1

0

dξ̃



(

1

ξ̃

)

+

− 2ε




log
(
ξ̃ξmax(y)

)

ξ̃




+

+O(ε2)


 f(ξ, y) (B.0.4)

+ f(0, y)

(
− 1

2ε
+ log ξmax(y)− ε log2 ξmax(y) +O(ε2)

)
,

where we expanded ξ−2ε
max = e−2ε log ξmax in the last line. By rearranging terms we can

write

I =

∫ 1

0

dξ̃

[(
1

ξ̃

)

+

+ log ξmax(y)δ(ξ̃)

]
f(ξ, y)

− 2ε

∫ 1

0

dξ̃






log
(
ξ̃ξmax(y)

)

ξ̃




+

+
1

2
log2 ξmax(y)δ(ξ̃)


 f(ξ, y)

+

∫ 1

0

dξ̃

(
− 1

2ε
δ(ξ̃) +O(ε2)

)
f(ξ, y) .

(B.0.5)
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B. Rescaling the Upper Integration Bound of ξ

The content of the square brackets can thus be interpreted as the rescaled counterparts

of the modified plus distributions in eq. (2.2.10) for ξc = 1. This directly leads to

additional terms in in the last two lines of eq. (2.2.17), i.e. in the integrals I+δ,α and

I++,α. For I+δ,α, we already rescale the integration in eq. (2.3.26) in terms of z in

the integration performed in section 2.3.2 and take care of the resulting terms. What

remains are finite contributions to the integral I++,α of the subtracted real contribution.

Setting δI/O = 2 in order to simplify the equation, in the case of FSR eq. (2.2.20)

becomes

I++,α =

∫ 2π

0

dφj

∫ 1

−1

dyij
1− yij

{[
log ξmax(yij)R̂ij(0, yij)− log ξmax(1)R̂ij(0, 1)

]

+

∫ 1

0

dξ̃j

ξ̃j

[
R̂ij(ξ̃jξmax(yij), yij)− R̂ij(0, yij)− R̂ij(ξ̃jξmax(1), 1) + R̂ij(0, 1)

]}
.

(B.0.6)

Besides the integration over ξ̃ instead of ξ in the second row, the main difference to

eq. (2.2.20) is the addition of

RFSR(yij) ≡ log ξmax(yij)R̂ij(0, yij)− log ξmax(1)R̂ij(0, 1) (B.0.7)

in the first row, which we call the soft remnant for FSR. In the case of ISR, an

additional term appears in the soft remnant due to collinear divergences for yj = −1

in addition to y = 1 (see eq. (2.2.73)). By using ξmax(yj) for the case of ISR as given

in eq. (A.2.15), we find ξmax(±1) = 1 − x± in the collinear limits, with the parton

momentum fractions x± as defined in eq. (A.2.11). The soft remnant in the case of

ISR is then given by

RISR(yj) ≡ log ξmax(yj)R̂ij(0, yj)− log (1− x⊕)R̂ij(0, 1)− log (1− x	)R̂ij(0,−1) .

(B.0.8)
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C. Altarelli-Parisi Splitting

Functions

C.1. Polarized Splitting Functions

The unregularized Altarelli-Parisi splitting functions P̂Īi→IiIj(z, k⊥; ε) in d = 4 − 2ε

dimensions (see [103]) can be brought into their polarized form P̂ λ
Īi→IiIj (z, k⊥; ε). Here,

λ denotes the pair of spin indices of the parent parton Īi, which are either si, s
′
i if Īi is

a fermion or the Lorentz indices µ, ν if it is a gluon and we define [40]

P̂
sis
′
i

Īi→IiIj(z, k⊥; ε) ≡
〈
si P̂Īi→IiIj(z, k⊥; ε) s′i

〉
, (C.1.1)

P̂ µν

Īi→IiIj(z, k⊥; ε) ≡
〈
µ P̂Īi→IiIj(z, k⊥; ε) ν

〉
. (C.1.2)

With the parametrization for the four-momentum k̄i of the emitter as in eq. (2.2.23),

we then have [40, 59, 103]

P̂
sis
′
i

q→qg(z, k⊥; ε) = P̂
sis
′
i

q̄→q̄g(z, k⊥; ε) = δsis
′
iCF

[
1 + (1− z)2

z
− εz

]
, (C.1.3)

P̂
sis
′
i

q→gq(z, k⊥; ε) = P̂
sis
′
i

q̄→gq̄(z, k⊥; ε) = δsis
′
iCF

[
1 + z2

1− z − ε (1− z)

]
, (C.1.4)

P̂ µν
g→qq̄(z, k⊥; ε) = TF (1− ε)

[
−gµν − 4z (1− z)

kµ⊥k
ν
⊥

k2
⊥

]
, (C.1.5)

P̂ µν
g→gg(z, k⊥; ε) = CA

[
−2

(
z

1− z +
1− z
z

)
gµν + 4z (1− ε) (1− z)

kµ⊥k
ν
⊥

k2
⊥

]
. (C.1.6)

We note that eqs. (C.1.3) and (C.1.4) are symmetric under the change z → 1 − z.
Moreover, we note that because of the fact that we used a slightly different ansatz

following [59] for the parametrization in eq. (2.2.23), eqs. (C.1.5) and (C.1.6) have

a different sign for the second term in the square brackets, when compared to other

literature as e.g. [40, 105].

C.2. Spin-averaged Splitting Functions

In sections 2.3.2 and 2.3.3, we have used the spin-averaged splitting functions 〈P̂Īi→IiIj〉.
This is because of the angular integration in d = 4− 2ε dimensions over the angular
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C. Altarelli-Parisi Splitting Functions

phase-space element dΩd−2 in the collinear integrals in eqs. (2.3.22) and (2.3.39). While

the splitting functions for the quark in eqs. (C.1.3) and (C.1.4) are obviously diagonal

in the spin indices due to the fact that the quark-gluon coupling conserves helicity, the

splitting functions of the gluon in eqs. (C.1.5) and (C.1.6) become diagonal after the

phase-space integration. The integration requires the azimuthal average over the d− 2

transverse components, given by [213]

−
〈
kµ⊥k

ν
⊥

k2
⊥

〉

φ

=
1

d− 2

(
−gµν +

k̄µi η
ν + ηµk̄νi
k̄ · η

)
. (C.2.1)

Here, η is defined as in eq. (2.2.23), i.e. η · k⊥ = 0. Thus, by multiplying eq. (C.2.1)

with eqs. (C.1.5) and (C.1.6), we are left with the spin-averaged splitting functions [40,

103]

〈P̂q→qg〉(z, ε) = 〈P̂q̄→q̄g〉(z, ε) = CF

[
1 + (1− z)2

z
− εz

]
, (C.2.2)

〈P̂q→gq〉(z, ε) = 〈P̂q̄→gq̄〉(z, ε) = CF

[
1 + z2

1− z − ε (1− z)

]
, (C.2.3)

〈P̂g→qq̄〉(z, ε) = TF

[
1− 2z (1− z)

1− ε

]
, (C.2.4)

〈P̂g→gg〉(z, ε) = 2CA

[
z

1− z +
1− z
z

+ z (1− z)

]
. (C.2.5)
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D. Supplements to the

Virtual-subtracted

Contributions

D.1. The Squared Massive Bare One-loop

Amplitude

In eq. (2.3.1) we have given the squared bare one-loop amplitude Vb for the pure

massless case. Here, we will give the explicit form of the more general expression

Vb(Φn, fB) = D(ε)
αS
2π

[
Vm
]Φn

fB
, (D.1.1)

where the subscript of Vm denotes the inclusion of massive particles. Like in eq. (2.3.1),

we denote by the superscript Φn and the subscript fB for the outer brackets the fact

that all quantities inside of the outer brackets are computed in the n-body phase space

for a Born flavor structure fB. The terms Vm in the square bracket are given in [42] as

Vm =−



n
(B)
L +2∑

k=nF

(
1

ε2
C(Īk) +

1

ε
γ(Īk)

)
+

1

ε

n
(B)
L +nH+2∑

k=n
(B)
L +3

C(Īk)


B

+
1

ε

n
(B)
L +2∑

k=nF

n
(B)
L +nH+2∑

k=k+1

log
2k̄k · k̄l
Q2

Bkl

+
1

2ε

n
(B)
L +nH+1∑

k=n
(B)
L +3

n
(B)
L +nH+2∑

k=k+1

1

vkl
log

1 + vkl
1− vkl

Bkl

− 1

2ε

n
(B)
L +nH+2∑

k=n
(B)
L +3

log
m2
k

Q2

n
(B)
L +2∑

l=nF

Bkl + Vfin ,

(D.1.2)

with ni, n
(B)
L , and nH as defined in eq. (2.1.10). The quantities C(Ī) and γ(Ī) are

defined in eqs. (2.2.46) and (2.2.47) and eq. (2.3.36), respectively. The term Vfin stands

for the finite one-loop O(ε0)-contributions, obtained by the evaluation of loop integrals.

We define vkl in eq. (D.2.9).
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D. Supplements to the Virtual-subtracted Contributions

D.2. Massive Eikonal Integrals

In the following, we give an overview of the quantities Ê (mk,ml)
kl and E (mk,ml)

kl that arise

in the integration of the eikonal factors, given in eq. (2.3.9). They thus contribute to

the result for the integrated soft subtraction term in eq. (2.3.18) and their massless

forms (i.e. mk = ml = 0) have already been given in eqs. (2.3.19) and (2.3.20). The

massive-massless and massive cases are dealt with in [68] and [100], with the analytic

results of the latter published in [42], from which we cite in the following. As usual,

D(ε) is the normalization factor given in eq. (2.3.2), where we also introduced Q as

the Ellis-Sexton scale. We note that in the soft limit the barred momenta of the set

Φ̄n are equal to their counterpart in Φn+1.

• mk = 0, ml 6= 0

Ê (0,ml)
kl = D(ε)

[
1

2ε2
− 1

ε

(
log

2k̄k · k̄l
Q2

+
1

2
log

4m2
l

(
k̄0
k

)2

ξ2
csQ

2

)]
, (D.2.1)

E (0,ml)
kl = log ξc

(
log

sξc

Q2
+ 2 log

k̄k · k̄l
mlk̄0

k

)
− π2

12
+

1

4
log2 s

Q2

− 1

4
log2 1 + βl

1− βl
+

1

2
log2 k̄k · k̄l

(1− βl) k̄0
kk̄

0
l

+ log
s

Q2
log

k̄k · k̄l
mlk̄0

k

− Li2

(
1− (1 + βl) k̄

0
kk̄

0
l

k̄k · k̄l

)
+ Li2

(
1− k̄k · k̄l

(1− βl) k̄0
kk̄

0
l

)
. (D.2.2)

with

βl =

√
1− m2

l(
k̄0
l

)2 (D.2.3)

• ml 6= 0, k = l

Ê (ml,ml)
ll = D(ε)

(
−1

ε

)
, (D.2.4)

E (ml,ml)
ll = log

sξ2
c

Q2
− 1

βl
log

1 + βl
1− βl

, (D.2.5)

• mk 6= 0, ml 6= 0, k 6= l

Ê (mk,ml)
kl = D(ε)

(
− 1

2ε

1

vkl
log

1 + vkl
1− vkl

)
, (D.2.6)

E (mk,ml)
kl =

1

2vkl
log

1 + vkl
1− vkl

log
sξ2

c

Q2

+
(1 + vkl)

(
k̄k · k̄l

)2

2m2
k

(
J(αklk̄

0
k, αklk̄

0
kβk)− J(k̄0

l , k̄
0
l βl)

)
, (D.2.7)

174



D.2. Massive Eikonal Integrals

where we define the function J as

J(x, y) ≡ 1

2λν

[
log2 x− y

x+ y
+ 4Li2

(
1− x+ y

ν

)
+ 4Li2

(
1− x− y

ν

)]
, (D.2.8)

with the other parameters defined as

vkl ≡
√

1−
(
mkml

k̄k · k̄l

)2

, (D.2.9)

αkl ≡
1 + vkl
m2
k

k̄k · k̄l , (D.2.10)

λ ≡ αklk̄
0
k − k̄0

l , (D.2.11)

ν ≡ α2
klm

2
k −m2

l

2λ
. (D.2.12)
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E. Singular-Region Data for

pp→ Zj

We introduced the way WHIZARD handles the data for singular regions in sec-

tion 3.1.3. In table E.1, we provide a further example of the region data stored in

the region data t type of WHIZARD for the process pp → Zj at NLO QCD to

demonstrate the ISR case. We restrict the proton- and jet-flavor content to u, ū, g

for simplicity, as for processes with colored initial and final states the number of

singular α-regions alr becomes quite large. One feature that could not be shown in

table 3.1 is the way we summarize regions where a gluon could become collinear to

both initial-state partons, in which case we use the emitter index em = 0.

alr fr ifr em mul PFKS fB ifB
1 [-2,-2,23,-2,-2] 1 2 2 (1,4),(1,5),(2,4),(2,5) [-2,21,23,-2] 2

2 [-2,-2,23,-2,-2] 1 1 2 (1,4),(1,5),(2,4),(2,5) [21,-2,23,-2] 5

3 [-2, 2,23,-2, 2] 2 4 1 (1,4),(2,5),(4,5) [-2, 2,23,21] 1

4 [-2, 2,23,-2, 2] 2 2 1 (1,4),(2,5),(4,5) [-2,21,23,-2] 2

5 [-2, 2,23, 2,-2] 3 1 1 (1,5),(2,4),(4,5) [21, 2,23, 2] 6

6 [-2, 2,23,21,21] 4 4 1 (0,4),(0,5),(4,5) [-2, 2,23,21] 1

7 [-2, 2,23,21,21] 4 0 2 (0,4),(0,5),(4,5) [-2, 2,23,21] 1

8 [-2,21,23,21,-2] 5 2 1 (0,4),(2,5),(4,5) [-2, 2,23,21] 1

9 [-2,21,23,-2,21] 6 4 1 (0,5),(2,4),(4,5) [-2,21,23,-2] 2

10 [-2,21,23,-2,21] 6 0 1 (0,5),(2,4),(4,5) [-2,21,23,-2] 2

11 [ 2,-2,23,-2, 2] 7 4 1 (1,5),(2,4),(4,5) [ 2,-2,23,21] 3

12 [ 2,-2,23, 2,-2] 8 2 1 (1,4),(2,5),(4,5) [ 2,21,23, 2] 4

13 [ 2,-2,23,-2, 2] 7 1 1 (1,5),(2,4),(4,5) [21,-2,23,-2] 5

14 [ 2,-2,23,21,21] 9 4 1 (0,4),(0,5),(4,5) [ 2,-2,23,21] 3

15 [ 2,-2,23,21,21] 9 0 2 (0,4),(0,5),(4,5) [ 2,-2,23,21] 3

16 [ 2, 2,23, 2, 2] 10 2 2 (1,4),(1,5),(2,4),(2,5) [ 2,21,23, 2] 4

17 [ 2, 2,23, 2, 2] 10 1 2 (1,4),(1,5),(2,4),(2,5) [21, 2,23, 2] 6

18 [ 2,21,23,21, 2] 11 2 1 (0,4),(2,5),(4,5) [ 2,-2,23,21] 3

19 [ 2,21,23, 2,21] 12 4 1 (0,5),(2,4),(4,5) [ 2,21,23, 2] 4

20 [ 2,21,23, 2,21] 12 0 1 (0,5),(2,4),(4,5) [ 2,21,23, 2] 4

21 [21,-2,23,21,-2] 13 1 1 (0,4),(1,5),(4,5) [ 2,-2,23,21] 3

22 [21,-2,23,-2,21] 14 4 1 (0,5),(1,4),(4,5) [21,-2,23,-2] 5

23 [21,-2,23,-2,21] 14 0 1 (0,5),(1,4),(4,5) [21,-2,23,-2] 5

24 [21, 2,23,21, 2] 15 1 1 (0,4),(1,5),(4,5) [-2, 2,23,21] 1

25 [21, 2,23, 2,21] 16 4 1 (0,5),(1,4),(4,5) [21, 2,23, 2] 6

26 [21, 2,23, 2,21] 16 0 1 (0,5),(1,4),(4,5) [21, 2,23, 2] 6

27 [21,21,23,-2, 2] 17 1 1 (1,4),(1,5),(2,4),(2,5) [-2,21,23,-2] 2

28 [21,21,23, 2,-2] 18 1 1 (1,4),(1,5),(2,4),(2,5) [ 2,21,23, 2] 4

29 [21,21,23,-2, 2] 17 2 1 (1,4),(1,5),(2,4),(2,5) [21,-2,23,-2] 5

30 [21,21,23, 2,-2] 18 2 1 (1,4),(1,5),(2,4),(2,5) [21, 2,23, 2] 6

Table E.1. The singular-region data stored in the region data t type of WHIZARD
for the process pp→ Zj at NLO QCD with proton- and jet-flavor content u, ū, g. The
meaning of the columns and the interpretation of the table as a whole is described
in section 3.1.3. Particles in the flavor structures fr/B are represented by PDG IDs
[168].
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F. Examples of Process Setups and

Analyses

In the following, we will use the process e+e− → jjj to give give examples for the

setup files and analyses used in the MC event-generator comparison in chapter 4

and for the calculation of the e+e− → jjjjjj fNLO QCD cross section in chapter 5.

The results obtained within these chapters will be reproducible with the help of the

following examples for WHIZARD 3.0.0, Sherpa 2.2.10, and Rivet 2.7.2. For

MG5 aMC@NLO 2.7.3, the run and parameter cards can be found at [177].

F.1. WHIZARD Setup for e+e− → jjj

F.1.1. Setup for Cross-section Comparisons

An example of a Sindarin file for the process e+e− → jjj, with identical settings as

for the fNLO QCD cross section comparison, is shown in listing F.1. The exact meaning

of each setting can be found in [117, appendix A]. Most of them are self-explanatory,

however, with comments in listing F.1 explaining the general meaning for each group

of settings. The cuts and scale choice are explained in section 4.2.1, together with

the list of other settings related to physics. For a comparable reproduction of the

results in section 4.2.2, all settings except for the MCI and O’Mega setup must

be identical. A comparable reproduction of the results here means within typical

numerical fluctuations with a significance as defined in eq. (4.2.8) of roughly σsig
NLO . 2.

For different seeds, MCI choices, etc., this insignificant level of fluctuations can be

expected. The Vamp equivalences were implemented for NLO after the results in

this thesis had been produced and had thus been disabled explicitly in the Sindarin file.

Sindarin Settings for e+e− → jjj Integration

# General settings:

# EW settings

model = SM ("GF_MW_MZ")

$blha_ew_scheme = "alpha_qed"

GF = 1.16639E-5
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# Masses and widths

wZ = 0.0

wtop = 0.0

wW = 0.0

wH = 0.0

mZ = 91.188

mW = 80.419002

mH = 125.0

ms = 0

mc = 0

mb = 0

mtop = 173.2

me = 0

mmu = 0

mtau = 1.777

# Set OpenLoops as matrix-element generator

# and use complex mass scheme

$method = "openloops"

?openloops_use_cms = true

# VAMP2 (MCI) and O’Mega settings needed for MPI

$integration_method = "vamp2"

$rng_method = "rng_stream"

?use_vamp_equivalences = false

?omega_openmp = false

openmp_num_threads = 1

# Settings for running of QCD coupling

?alphas_is_fixed = false

?alphas_from_mz = true

?alphas_from_lambda_qcd = false

alphas_nf = 5

alphas_order = 2

alphas = 0.118

# Order of EW and QCD couplings

alpha_power = 2

alphas_power = 1

# Jet definition

alias jet = u:U:d:D:s:S:c:C:b:B:gl

jet_algorithm = antikt_algorithm

jet_r = 0.5
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F.1. WHIZARD Setup for e+e− → jjj

# Gluon must not split into top pair

$exclude_gauge_splittings = "t"

# Start of process specific setup:

# CM energy

sqrts = 1 TeV

cuts = let subevt @clustered_jets = cluster [jet] in

let subevt @pt_selected = select if Pt > 30 GeV [@clustered_jets] in

let subevt @eta_selected = select if abs(Eta) < 4 [@pt_selected] in

count [@eta_selected] >= 3

scale = let int njet = count [jet] in

if njet == 3 then

( eval Pt [extract index 1 [jet]]

+ eval Pt [extract index 2 [jet]]

+ eval Pt [extract index 3 [jet]]) / 2

elsif njet == 4 then

( eval Pt [extract index 1 [jet]]

+ eval Pt [extract index 2 [jet]]

+ eval Pt [extract index 3 [jet]]

+ eval Pt [extract index 4 [jet]]) / 2

else

sqrts

endif

process jjj = e1, E1 => jet, jet, jet { nlo_calculation = full }

# Increase calls per iteration for real component

mult_call_real = 10

# Stop adaptation of grid after reaching rel. error goal

relative_error_goal = 0.009

# Start integration of defined process

integrate (jjj) { iterations = 15:100000:"gw", 5:100000}

Listing F.1 Example for a Sindarin file for the process e+e− → jjj as used in

the calculation of the fNLO cross section comparison in section 4.2.

F.1.2. Convergence of Integration

With the setup as in listing F.1, the output of WHIZARD from the integration of

the real component will be comparable to listing F.2, where we reduced the number

of iterations in the grid adaptation from 15 to 10 for readability. As can be seen by
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the iterative reduction of the relative error Err[%] and accuracy Acc towards a stable

value the integration shows a convergent behaviour.

e+e− → jjj Real Component Integration

| Starting integration for process ’jjj’ part ’real’

| Integrate: iterations = 10:1000000:"gw", 5:1000000

| Integrator: 1 chains, 2 channels, 8 dimensions

| Integrator: 1000000 initial calls, 20 max. bins, stratified = T

| Integrator: VAMP2

|=============================================================================|

| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |

|=============================================================================|

| VAMP2: Initialize new grids and write to file ’jjj.m2.vg2’.

| VAMP2: set chain: use chained weights.

1 917504 4.0477851E+01 3.33E+00 8.24 78.91* 0.01

2 917504 3.7674289E+01 7.78E-01 2.07 19.79* 0.18

3 917504 3.7997520E+01 5.69E-01 1.50 14.35* 0.21

4 917504 3.8023221E+01 6.58E-01 1.73 16.57 0.10

5 917504 3.8612661E+01 6.71E-01 1.74 16.65 0.12

6 917504 3.8380252E+01 6.01E-01 1.56 14.99* 0.22

7 917504 3.8503573E+01 5.73E-01 1.49 14.25* 0.24

8 917504 3.7414811E+01 5.24E-01 1.40 13.41* 0.41

9 917504 3.8471833E+01 5.08E-01 1.32 12.64* 0.46

10 917504 3.9402205E+01 5.25E-01 1.33 12.76 0.26

|-----------------------------------------------------------------------------|

10 9175040 3.8321606E+01 1.95E-01 0.51 15.40 0.26 1.03 10

|-----------------------------------------------------------------------------|

11 917504 3.8181039E+01 5.85E-01 1.53 14.68 0.16

12 917504 3.9128814E+01 5.22E-01 1.33 12.77* 0.47

13 917504 3.8743167E+01 5.05E-01 1.30 12.48* 0.58

14 917504 3.8052397E+01 5.20E-01 1.37 13.10 0.50

15 917504 3.8346431E+01 5.81E-01 1.51 14.51 0.15

|-----------------------------------------------------------------------------|

15 4587520 3.8513061E+01 2.41E-01 0.63 13.42 0.15 0.70 5

|=============================================================================|

Listing F.2 Output from the integration of the real component for the process

e+e− → jjj.
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F.1.3. Setup for Comparison of Differential Distributions

In order to reproduce the results from the comparison of differential distributions in

section 4.3, we need to change a few settings regarding the process setup as described

in section 4.3.1 and add the settings for event generation. These changes and additions

to listing F.1 are shown in listing F.3.

Different/Additional Setup for e+e− → jjj Event Generation

# Differing process setup for fNLO event generation:

jet_algorithm = ee_genkt_algorithm

jet_p = -1

scale = mZ

?combined_nlo_integration = true

integrate (jjj) { iterations = 15:300000:"gw", 5:300000}

# Event generation setup:

?fixed_order_nlo_events = true

?unweighted = false

# fNLO (sub)events can have negative weights

?negative_weights = true

n_events=100000000

sample_format = hepmc

?hepmc_output_cross_section = true

$sample_normalization = "sigma"

# Do not write event groups where all subevents failed the cuts

?keep_failed_events = false

# Start event generation

simulate (jjj)

Listing F.3 Different and additional Sindarin settings required in comparison

to listing F.1 for the event generation as described in section 4.3.1.
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F.2. Sherpa Run Card

An example of a Sherpa run card for the process e+e− → jjj, with identical settings

as for the fNLO QCD comparison of differential distributions, is shown in listing F.4.

The exact meaning of each setting can be found in the Sherpa manual [214], with most

of the settings being self-explanatory. In order to reproduce the results in section 4.3,

the FastJet interface of Sherpa has to be modified such that the option antikt of

the FastjetFinder selector selects the generalized e+e− kt jet algorithm instead as

mentioned in section 4.3.1.

Sherpa run card for e+e− → jjj

(run){

% general settings

EVENTS 1000000;

ANALYSIS Rivet;

% tags and settings for ME generators and integration

LOOPGEN:=OpenLoops;

ME_SIGNAL_GENERATOR Comix LOOPGEN;

EVENT_GENERATION_MODE Weighted;

VEGAS On;

ERROR 0.005;

% model parameters

MODEL SM;

EW_SCHEME 3;

GF 1.16639E-5;

ALPHAS(MZ) 0.118;

ORDER_ALPHAS 1;

MASSIVE[1] 0;

MASSIVE[2] 0;

MASSIVE[3] 0;

MASSIVE[4] 0;

MASSIVE[5] 0;

MASSIVE[6] 1;

MASS[1] 0.0;

MASS[2] 0.0;

MASS[3] 0.0;

MASS[4] 0.0;

MASS[5] 0.0;

MASS[6] 173.2;

MASSIVE[11] 0;

MASSIVE[13] 0;
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MASSIVE[15] 1;

MASS[11] 0.0;

MASS[13] 0.0;

MASS[15] 1.777;

MASSIVE[23] 1;

MASSIVE[24] 1;

MASSIVE[25] 1;

MASS[23] 91.188;

MASS[24] 80.419002;

MASS[25] 125.0;

WIDTH[6] 0;

WIDTH[15] 0;

WIDTH[25] 0;

WIDTH[24] 0;

WIDTH[23] 0;

STABLE[6] 1;

STABLE[15] 1;

STABLE[25] 1;

STABLE[24] 1;

STABLE[23] 1;

% No shower, hadronization, etc.

WIDTHSCHEME CMS;

FRAGMENTATION Off;

MI_HANDLER None;

SHOWER_GENERATOR None;

DECAYMODEL Off;

YFS_MODE 0;

ME_QED Off;

ME_QED_CLUSTERING Off;

% collider setup

BEAM_1 11; BEAM_ENERGY_1 500;

BEAM_2 -11; BEAM_ENERGY_2 500;

BEAM_REMNANTS Off;

% Fixed scale

SCALES VAR{sqr(91.188)};

}(run);

(isr){

% No QED ISR

PDF_LIBRARY None;

}(isr);
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(selector){

% Jet selection and cuts

% Sherpa interface has to be modified for antikt -> ee_genkt

FastjetFinder antikt 3 30. 0. 0.5 0.75 4.;

}(selector);

(processes){

Process 11 -11 -> 93 93 93;

NLO_QCD_Mode Fixed_Order;

Order (*,2);

Loop_Generator LOOPGEN;

ME_Generator Comix;

RS_ME_Generator Comix;

INTEGRATION_ERROR 0.009;

End process;

}(processes);

(analysis){

% Interface to Rivet analysis

BEGIN_RIVET {

-a threejetpTR2;

USE_HEPMC_SHORT 1;

IGNOREBEAMS 1;

} END_RIVET;

}(analysis);

Listing F.4 Example for a Sherpa run card for the process e+e− → jjj as used

for the event generation and analysis as described in section 4.3.1.
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F.3. Rivet Analysis

An example of a Rivet analysis for the process e+e− → jjj, with identical settings

as for the fNLO QCD comparison of differential distributions in section 4.3, is shown

in listing F.5. This analysis is written for Rivet 2.7.2, for the reasons stated in

section 4.3.2, but can be converted to Rivet 3 in a few steps. For example, for Rivet 2

correlated fNLO event groups (see section 3.1.5) are treated by the externally provided

NLOHisto1D class, whereas in Rivet 3 these event groups are natively treated by the

standard histogram classes (see section 4.3.2).

Rivet Analysis for e+e− → jjj

// -*- C++ -*-

#include "Rivet/Analysis.hh"

#include "Rivet/Projections/FinalState.hh"

#include "Rivet/Projections/FastJets.hh"

#include "Rivet/Projections/Thrust.hh"

#include "Rivet/Projections/ParisiTensor.hh"

#include "Rivet/Projections/Hemispheres.hh"

namespace Rivet {

class threejetpTR2 : public Analysis {

#include "NLOHisto1D.cc"

public:

// Constructor

DEFAULT_RIVET_ANALYSIS_CTOR(threejetpTR2);

void init() {

// Initialize projections

const FinalState fs;

declare(fs, "FS");

FastJets jetfs(fs, FastJets::GENKTEE, 0.5);

declare(jetfs, "Jets");

const Thrust thrust(fs);

declare(thrust, "Thrust");

declare(ParisiTensor(fs), "Parisi");

declare(Hemispheres(thrust), "Hemispheres");

// Book histograms

_h_pT[0] = bookNLOHisto1D("pT1", bwspace(15., 30., 500.0, 460.,

150.));

_h_pT[1] = bookNLOHisto1D("pT2", bwspace(15., 30., 490.0, 250.,

150.));

_h_pT[2] = bookNLOHisto1D("pT3", bwspace(15., 30., 333., 29., 80.));

_h_eta[0] = bookNLOHisto1D("eta1", bwspace(10., 0., 3.50, 0., 0.5));

_h_eta[1] = bookNLOHisto1D("eta2", bwspace(10., 0., 3.50, 0., 0.5));
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_h_eta[2] = bookNLOHisto1D("eta3", bwspace(10., 0., 3.50, 0., 0.7));

_h_E[0] = bookNLOHisto1D("E1", bwspace(15, 32., 506., 486., 100.));

_h_E[1] = bookNLOHisto1D("E2", bwspace(15, 30., 504., 440., 150.));

_h_E[2] = bookNLOHisto1D("E3", bwspace(15, 30., 503., 30., 100.));

_h_invMass[0] = bookNLOHisto1D("invMass", bwspace(15., 31., 970.,

910., 200.));

_h_thrust[0] = bookNLOHisto1D("thrust", 15, 0.003, 0.43);

_h_thrust[1] = bookNLOHisto1D("thrustMajor", bwspace(15, 0.024, 0.71,

0.2, 0.2));

_h_thrust[2] = bookNLOHisto1D("oblateness", bwspace(15, 0., 0.71,

0.05, 0.2));

_h_parisi[0] = bookNLOHisto1D("parisi_C", 15, 0.01, 1.);

_h_parisi[1] = bookNLOHisto1D("parisi_D", 14, -0.0049, 1.);

_h_hemispheres[0] = bookNLOHisto1D("heavyJetmass", bwspace(15.,

0.003, 0.42, 0.1, 0.1));

_h_hemispheres[1] = bookNLOHisto1D("totalJetbroad", bwspace(15.,

0.01, 0.41, 0.125, 0.3));

_h_hemispheres[2] = bookNLOHisto1D("wideJetbroad", bwspace(15., 0.01,

0.33, 0.125, 0.3));

}

// Perform the per-event analysis

void analyze(const Event& event) {

// Retrieve clustered jets, sorted by pT

const Jets& jets = apply<FastJets>(event, "Jets").jetsByPt();

// Define pT and eta cut

const Cut& cuts = Cuts::pT > 30.*GeV && Cuts::abseta < 4.;

// Apply cuts to clustered jets

const Jets& jets_cut = filter_select(jets, cuts);

// Select events with two or more jets fulfilling the cuts

if (jets_cut.size() > 2 && event.weight() != 0) {

// Apply event shape projections

const Thrust& thrust = apply<Thrust>(event, "Thrust");

const ParisiTensor& parisi = applyProjection<ParisiTensor>(event,

"Parisi");

const Hemispheres& hemisphere = applyProjection<Hemispheres>(event,

"Hemispheres");

// Fill histograms

_h_thrust[0]->fill(1 - thrust.thrust(), event);

_h_thrust[1]->fill(thrust.thrustMajor(), event);

_h_thrust[2]->fill(thrust.oblateness(), event);

_h_parisi[0]->fill(parisi.C(), event);

_h_parisi[1]->fill(parisi.D(), event);

_h_hemispheres[0]->fill(hemisphere.scaledM2high(), event);

_h_hemispheres[1]->fill(hemisphere.Bsum(), event);

_h_hemispheres[2]->fill(hemisphere.Bmax(), event);
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_h_invMass[0]->fill((jets[0].momentum() +

jets[1].momentum()).mass(), event);

_h_pT[0]->fill(jets[0].pT()/GeV, event);

_h_pT[1]->fill(jets[1].pT()/GeV, event);

_h_pT[2]->fill(jets[2].pT()/GeV, event);

_h_eta[0]->fill(jets[0].abseta()/GeV, event);

_h_eta[1]->fill(jets[1].abseta()/GeV, event);

_h_eta[2]->fill(jets[2].abseta()/GeV, event);

_h_E[0]->fill(jets[0].E()/GeV, event);

_h_E[1]->fill(jets[1].E()/GeV, event);

_h_E[2]->fill(jets[2].E()/GeV, event);

}

// Veto (sub)event if its weight is zero or if it failed the cuts

else if (event.weight() == 0){

vetoEvent;

}

else {

vetoEvent;

}

}

// Scale histograms by factor of cross section over sum of weights

void finalize() {

double scaleFac = crossSection()/sumOfWeights();

for (const NLOHisto1DPtr &_h : _h_pT) {

_h->finalize();

scale(_h, scaleFac);

}

for (const NLOHisto1DPtr &_h : _h_E) {

_h->finalize();

scale(_h, scaleFac);

}

for (const NLOHisto1DPtr &_h : _h_eta) {

_h->finalize();

scale(_h, scaleFac);

}

for (const NLOHisto1DPtr &_h : _h_invMass) {

_h->finalize();

scale(_h, scaleFac);

}

for (const NLOHisto1DPtr &_h : _h_thrust) {

_h->finalize();

scale(_h, scaleFac);

}

for (const NLOHisto1DPtr &_h : _h_parisi) {

_h->finalize();
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scale(_h, scaleFac);

}

for (const NLOHisto1DPtr &_h : _h_hemispheres) {

_h->finalize();

scale(_h, scaleFac);

}

}

// Declare histogram pointers

NLOHisto1DPtr _h_pT[3];

NLOHisto1DPtr _h_E[3];

NLOHisto1DPtr _h_eta[3];

NLOHisto1DPtr _h_thrust[3];

NLOHisto1DPtr _h_parisi[2];

NLOHisto1DPtr _h_hemispheres[3];

NLOHisto1DPtr _h_invMass[1];

};

DECLARE_RIVET_PLUGIN(threejetpTR2);

}

Listing F.5 Rivet analysis for the process e+e− → jjj used to obtain the

results in section 4.3.

190



Bibliography

[1] F. Englert and R. Brout. Broken Symmetry and the Mass of Gauge Vector

Mesons. Phys. Rev. Lett., 13 (1964). Ed. by J. C. Taylor, pp. 321–323. doi:

10.1103/PhysRevLett.13.321.

[2] P. W. Higgs. Broken symmetries, massless particles and gauge fields. Phys.

Lett., 12 (1964), pp. 132–133. doi: 10.1016/0031-9163(64)91136-9.

[3] P. W. Higgs. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev.

Lett., 13 (1964). Ed. by J. C. Taylor, pp. 508–509. doi: 10.1103/PhysRevLett.

13.508.

[4] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. Global Conservation Laws

and Massless Particles. Phys. Rev. Lett., 13 (1964). Ed. by J. C. Taylor,

pp. 585–587. doi: 10.1103/PhysRevLett.13.585.

[5] P. W. Higgs. Spontaneous Symmetry Breakdown without Massless Bosons. Phys.

Rev., 145 (1966), pp. 1156–1163. doi: 10.1103/PhysRev.145.1156.

[6] T. W. B. Kibble. Symmetry Breaking in Non-Abelian Gauge Theories. Phys.

Rev., 155 (1967). Ed. by J. C. Taylor, pp. 1554–1561. doi: 10.1103/PhysRev.

155.1554.

[7] G. Aad et al. Observation of a new particle in the search for the Standard

Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716

(2012), pp. 1–29. doi: 10.1016/j.physletb.2012.08.020. arXiv: 1207.7214

[hep-ex].

[8] S. Chatrchyan et al. Observation of a New Boson at a Mass of 125 GeV with

the CMS Experiment at the LHC. Phys. Lett. B, 716 (2012), pp. 30–61. doi:

10.1016/j.physletb.2012.08.021. arXiv: 1207.7235 [hep-ex].

[9] LHC Machine. JINST, 3 (2008). Ed. by L. Evans and P. Bryant, S08001. doi:

10.1088/1748-0221/3/08/S08001.

[10] R. Aaij et al. Observation of J/ψp Resonances Consistent with Pentaquark

States in Λ0
b → J/ψK−p Decays. Phys. Rev. Lett., 115 (2015), p. 072001. doi:

10.1103/PhysRevLett.115.072001. arXiv: 1507.03414 [hep-ex].

191

http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1103/PhysRev.155.1554
http://dx.doi.org/10.1103/PhysRev.155.1554
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1103/PhysRevLett.115.072001
http://arxiv.org/abs/1507.03414


Bibliography

[11] V. C. Rubin and W. K. Ford Jr. Rotation of the Andromeda Nebula from a

Spectroscopic Survey of Emission Regions. Astrophys. J., 159 (1970), pp. 379–

403. doi: 10.1086/150317.

[12] K. G. Begeman, A. H. Broeils, and R. H. Sanders. Extended rotation curves

of spiral galaxies: Dark haloes and modified dynamics. Mon. Not. Roy. Astron.

Soc., 249 (1991), p. 523.

[13] D. Clowe, M. Bradac, A. H. Gonzalez, et al. A direct empirical proof of the

existence of dark matter. Astrophys. J. Lett., 648 (2006), pp. L109–L113. doi:

10.1086/508162. arXiv: astro-ph/0608407.

[14] J. A. Tyson, G. P. Kochanski, and I. P. Dell’Antonio. Detailed mass map of

CL0024+1654 from strong lensing. Astrophys. J. Lett., 498 (1998), p. L107.

doi: 10.1086/311314. arXiv: astro-ph/9801193.

[15] A. Refregier. Weak gravitational lensing by large scale structure. Ann. Rev.

Astron. Astrophys., 41 (2003), pp. 645–668. doi: 10.1146/annurev.astro.41.

111302.102207. arXiv: astro-ph/0307212.

[16] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron.

Astrophys., 641 (2020), A6. doi: 10.1051/0004-6361/201833910. arXiv:

1807.06209 [astro-ph.CO].

[17] S. Profumo, L. Giani, and O. F. Piattella. An Introduction to Particle Dark

Matter. Universe, 5.10 (2019), p. 213. doi: 10.3390/universe5100213. arXiv:

1910.05610 [hep-ph].

[18] B. Abi et al. Measurement of the Positive Muon Anomalous Magnetic Moment

to 0.46 ppm. Phys. Rev. Lett., 126.14 (2021), p. 141801. doi: 10.1103/

PhysRevLett.126.141801. arXiv: 2104.03281 [hep-ex].

[19] High-Luminosity Large Hadron Collider (HL-LHC): Technical design report.
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