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Symbols, Notation and Conventions

This list contains a selection of symbols, abbreviations and conventions used in this thesis,

including an indication of where they first appear, if they are explicitly defined.

X

a2
|
.

asymptotically of the same order
asymptotic equivalent or distributed as
floor function, ceiling function

equal in distribution

— converges to, usually as n — oo if not indicated otherwise

5, £>, LN weak convergence, convergence in probability, convergence in
outer probability, usually as n — oo

|- |l some norm on a metric space E or R?

|- 1,2 Ly-norm w.r.t. some probability measure P

|- [|7v norm of total variation for measures

I (ze)eezllo (Srez 12V, plig

V, A maximum, minimum

<; Loewner order

fr f max(f,0), —min(f,0), absolute positive and negative part of
a function f

lim,, oo limit for n — oo

o, O small and big Landau symbol

op, Op small and big stochastic Landau symbol

0A topological boundary of the set A

AC complement of a set A

% f(z1, ..y xq) j-th partial derivative of the function f defined on R?

RES QRS RS-transformed of a process R or a measure @, p

Uy sups<|ji<¢ |Uj| for s <t and some process (Uy)sez, p.

r € R4 r = (21,...,2q) withz; e R, 1 <j<d

r<yecR? componentwise x; < y; for 1 <j <d

r<ycR: x<y r<yandz #y

rVyeR? componentwise (z1 V yi, ..., Zq V yq) (A analog)

O Dirac measure with pointmass 1 in z
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Fx

Fy

14

L(X), PX
LIX|Y)
Ni(p, %)

P, EH
P*, E*[]
Par(«)

Var(X), Cov(X,Y)

T
n,k

N(e,G,d,)

A

(679

Mk

v (H)
PA

ﬁn,A

ﬁn,A

Pl 4 Db o
Sny Tny Iy
Tn,A

W,

0

distribution function (cdf) of random variable X

quantile function /inverse cdf of random variable X
indicator function of the set A

both notations for the distribution of X

conditional distribution of X given Y

k-dimensional normal distribution with mean g and covari-
ance ¥ (k =1 is usually omitted)

probability measure, expectation

outer probability, outer expectation

Pareto distribution with parameter «

variance of a random variable X, covariance of X and Y

some family of Borel sets

Borel-o-algebra for the set M

some family of real valued functions on I,

{(@0)iez € (RY? | imyy o 2] = 0}, pJ70)

{z€ ®RY? |0 < |2]|% < oo}, p[1]

space of real-valued uniform bounded functions on the set M,
P23

{1,2,3, ...} set of natural numbers

{0,1,2,3,...} set of natural numbers including 0

real numbers, [0,00) and R U {—o0, 00}

set of integers

[-mixing coefficient of (I';)1<i<m,,, p

e-covering number of G w.r.t. the semi-metric d,,, p

e-bracketing number of G w.r.t. the norm || - ||, p!

tail index of regular variation

Hill-type estimator for «, p{142
max(Xj, ..., Xy) for j <k and Xj, ..., X} real valued, p
cluster index for the cluster functional H, p.

P(O; € A)

projection based estimator for p4 with known «, pJ142

projection based estimator for p4 with estimated «, p|142

forward and backward estimator for pu, p{139
sliding block, big block, small block lengths

i1 9A(Xot—sns ooy Xntts, ), statistic in Chapter , p
candidate extremal index, p.

extremal index, p.

—
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IX

Ao A A
0:, 00,07

sliding blocks, disjoint blocks and runs estimator for 6, pp
sq.

0.(5) stop loss index, p

Aglyn(S), églm(S’) sliding and disjoint blocks estimator for 64(S), p

Agl,n(S) runs estimator for 0y/(.5), p.

O = (O4)ez spectral tail process, p

Uy, thresholds for extreme values

Un, Pn probability of one extreme observation and of at least one
extreme observation in a big block

Wit (Xi4h/Un)n<s, block of observations in Chapter (defined
slightly differently as (X, ++5)o<n<s,—1 in Chapter |3|and parts
of Chapter

X = (Xi)tez (strict) stationary Ri-valued time series

Y = (Yo)iez tail process, p.

AR-model autoregressive model

a.s. almost surely

fidi finite dimensional marginal distribution

GARCH-model generalized autoregressive conditional heteroscedasticity
model

iid independent and identically distributed

POT peak-over-threshold

RMSE root mean squared error

SRE stochastic recurrence equation

SR-model stochastic recurrence equation model

SV-model stochastic volatility model

TCF time change formula

w.l.o.g. without loss of generality
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Table B.11

,l’t) = T = (xh)hez €



Introduction 1

Chapter 1
Introduction

Extreme value theory, as a discipline of mathematical statistics, deals with the modeling
and statistical treatment of rare and extreme risks. Unlike for frequently occurring events,
there are not enough empirical observations for rare and extreme events such that standard
statistical methods often underestimate the probabilities of such events. Nevertheless,
extreme events in particular have serious consequences for humans, the environment and
the economy. For this reason, modeling these probabilities of extreme events as accurately
as possible is extremely important for risk management and this is where extreme value
theory comes into play. Examples of such extreme events are natural disasters such
as floods, heavy rainfall, heat waves, air concentrations of pollutants and other natural
catastrophes. In flood protection, dikes should be built high enough to hold back almost all
floods. However, there are usually only few water levels of floods and many data of normal
water levels. These non-extreme observations have to be extrapolated in a suitable way
to estimate the probabilities of flooding as accurately as possible. Extreme value theory
provides tools for this, e.g. one can use extreme value distributions in order to estimate
a value-at-risk for future floods. Extreme events are also important in the economy, such
as crashes on the stock market or in reinsurance. On the financial market there is much
data available for normal price fluctuations, but an investor should also consider extreme
losses for an adequate risk coverage. Probabilities for this can also be determined from
data with tools of the extreme value theory. Further and more detailed descriptions of
the illustrating examples for fields of application of extreme value theory can be found
e.g. in Beirlant et al. (2004), Coles (2001), De Haan and Ferreira| (2006) or Embrechts
et al.| (2013)). Further examples from engineering can be found in [Castillo (2012) and from
finance in [Finkenstadt and Rootzén| (2003). More examples for the concrete statistical
application of extreme value theory in the context of insurance, finance and hydrology
can be found in |[Reiss and Thomas (1997).

For one-dimensional and independent data, extreme value statistics is already well devel-
oped, for an overview see De Haan and Ferreiral (2006). For dependent data the further

development of extreme value statistics is part of the ongoing research. The dependencies
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of extreme events are of great importance for the overall risk assessment. For example,
a heavy rainfall on one day can cause short-term flooding, but if it rains heavily for sev-
eral days in a row, it can drench the ground and, in the case of mountainous unstable
ground, lead to mudslides. Another example is found on the financial market, where the
extreme loss of one value in the portfolio can possibly be compensated by other items, but
a longer period of extreme losses or a simultaneous extreme loss in several positions can
quickly lead to bankruptcy. Therefore, to understand the overall extreme behavior of a
time series, it is important to statistically investigate the dependencies of extreme events.
It is often observed in empirical data that extreme events occur over time in clusters and
not alone. This dissertation deals with temporal dependencies in extreme data and their
statistical treatment.

The modern foundation of extreme value theory for time series was introduced by |Basrak
and Segers| (2009)) and has been widely used in the literature since then, see the overview
in |[Kulik and Soulier| (2020). Usually a (strict) stationary Révalued time series (X;):ez
is considered, which is regularly varying with an index « (see Definition . An
observation of this time series is considered as extreme if the norm of this observation
exceeds a certain threshold u,, i.e. [|X;| > u, for some norm | - || on R? (this is the
peak-over-threshold (POT) setting). The spectral tail process (0;);ez is then defined by

the weak convergence
(X X/ 1Kol | 1Kol > 1) > £(6,..,6))

asn — oo for s <t € Z and u,, — oo. Thus, it describes asymptotically the extreme
behavior of the time series (X;);ez, given that at the fixed time 0 an extreme event occurred
and (X})ez is standardized such that ||©g|| = 1 a.s. Hence, by this definition, the spectral
tail process can be used to describe the extreme dependency of the time series (X;)iez,
independently of the heaviness of the tail of the distribution of || Xo||. In other words,
the spectral tail process contains all information about the extreme dependence structure
of the underlying time series (X;);cz. The process (0;)cz is not stationary, nevertheless
it fulfills a certain structural property called the time change formula (Definition ,
which follows from the stationarity of (X;);ez.

If one wants to pursue statistical inference for the extreme dependency of (X});ez, it is use-
ful to estimate the distribution of (©;);cz or the probability of some events depending on
the spectral tail process, respectively. From this, one could approximate the probabilities
of extreme events of (X;)icz by using the definition of (0;);cz.

The estimation of the distribution of (©;);cz with Markovian structure was already con-
sidered in Drees et al| (2015). There, a naive empirical estimator, named the forward
estimator, and the so-called backward estimator are considered. This backward estima-
tor is derived from the empirical estimator by using a partial aspect of the time change

formula. In simulation studies it has been shown that for certain sets A this estimator
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performs better than the empirical estimator when estimating P(©; € A). This estima-
tion approach was generalized by Davis et al. (2018) for general real-valued time series

(O¢)tez with the same result.

New estimators for the distribution of the spectral tail process

To provide new and improved estimators for the distribution of (©;)cz is one goal of this
thesis. The backward estimator uses only a fraction of the structure described by the time
change formula. Janfien (2019)) introduced with the RS-transformation (Definition
an equivalent formulation of this structural property. This RS-transformation makes
it possible to derive a new estimator for the distribution of (©;);cz by using the entire
structural property of the time change formula. In this thesis, we introduce this estimator
as so-called projection based estimator and for the estimation of P(O; € A) for a fixed

t > 0 we define it by

1 - o | X |
n ]1 X Un Sn
S Yo lgxisuy O

I>un} 1=1 e s [ Xl

ﬁn,A =

Xithti
X (]l{h<sn—i}]lA(“X:+ZH> + ]l{h>sn—i}]lA(0))>

for observations X;_g, , ..., Xpts,, some s, € N and the index « of the regular variation of
the time series (X;);ez. A theoretical advantage of this estimator is, that, if we estimate for
a family of sets A, the estimated distribution of (©;)cz fulfills the structural property of
the time change formula and, thus, surely itself is the distribution of a spectral tail process.
Neither the forward nor the backward estimator known from the literature possess this
property. In some sense, the application of the RS-transformation is a projection on the
set of admissible distributions for the spectral tail process. Projection methods for the
construction of estimators are also used in the literature, see e.g. [Fils-Villetard et al.
(2008)), however they use a different kind of projection. The method to construct this
estimator P, 4 can easily be generalized to define other estimators for probabilities of
events depending on the spectral tail process. This method introduces a new approach
to construct general estimators for the extremal dependence of stationary time series.
Simulation results presented below also show that our new estimator often has a smaller
RMSE and, thus, can perform better on a finite sample than the estimators from the
literature. In particular, the variance of this new estimator is smaller than the variance
of the aforementioned two competing estimators, whereas the bias can be slightly larger
when estimating P(©; < z) for a small |z|. Overall, the projection-based estimator is a
new and useful alternative to estimating the distribution of (©;);cz. The use of the whole
structure of the time change formula improves the estimation results.

In this thesis, the motivation of this estimator p, 4 is discussed and the asymptotic behav-

ior of the appropriately normalized estimator is analyzed. For this, two main problems
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have to be considered. First, the index of the regular variation « is generally unknown and
has to be estimated itself. To this end, o has to be replaced by a suitable estimator. This
makes the proof for asymptotic normality technically more complex and requires some
additional conditions. The second more fundamental problem in the asymptotic analysis
of the projection based estimator is that this estimator is a so-called sliding blocks esti-
mator, for whose asymptotic treatment there exist no general suitable limit theorem in

the literature. More concretely, this means that the numerator of p,, 4 has the form

Z gA(Xn,t—sn> ceey Xn,t+sn)
t=1

for the blocks of observations (X, :—s,,..., Xntts,) and a suitable function g4, where
Xyt = X¢/u,. In particular, two successive blocks have a considerable overlap of 2s,
X-observations, which causes dependencies between the individual summands in the es-

timator and complicates the asymptotic treatment.

Sliding blocks estimators and their asymptotic behavior

The consideration and discussion of this second problem in a much more general frame-
work will be a substantial contribution of this thesis: In extreme value statistics, one often
considers estimators, which are defined as the average or sums of block statistics g(W,, )

for suitable functions g. Here
ant = (Xn7t73n7 ey Xn7t+5n)

is a block of observation for a growing sequence s,, and in the peak-over-threshold (POT)
setting X, ; is a X;-measurable random variable, e.g. X,,; = Xt/un]l{”Xt”Mn} for a sta-
tionary time series (X;);cz. Typical examples are estimators of the extremal index (cf.
Section [£.2), the empirical extremogram (Davis and Mikosch| [2009%) or the cluster size
distribution (Hsing, [1991). A more recent example are estimators for the ordinal pattern
in extremes (Oesting and Schnurr} [2020)). Such block statistics can either be defined as
averages over g(W,,) with 1 < ¢t < n, in which case we have so-called sliding blocks
(overlapping blocks), as in our projection based estimator p, 4. Or it could be an average
over g(Wi(2s,41)+1) with 0 <t < [n/(2s, +1)] — 1. In the latter case, the individual
blocks have no overlap and they are so-called disjoint blocks. The sliding blocks method
uses more data, but this data has also stronger dependencies than disjoint blocks.

For the asymptotic analysis of general disjoint blocks statistics in the POT setting the
powerful results of Drees and Rootzén| (2010) can be used, as it is done for example in
Drees et al. (2015), Davis et al| (2018)) or Drees and Knezevic (2020). However, the
setting of Drees and Rootzén (2010) is too restrictive for the treatment of sliding blocks
estimators, and there is no other directly suitable and known result in the literature.

Some specific sliding blocks statistics are analyzed in the literature e.g. in [Biicher and
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Segers (2018a), Biuicher and Jennessen (20200), Zou et al.| (2021)) or recently (Cissokho
and Kulik (2021) and |Oesting and Schnurr (2020)), but their results are really specific for
their problems and there is no general result for sliding blocks statistics. In general the
asymptotic analysis of sliding blocks statistics is much more complex than the analysis of
disjoint blocks. For example Northrop| (2015) proposed a sliding blocks estimator for the
extremal index but did not consider any asymptotic results due to the complex methods
needed.

In this thesis we introduce a first general setting which allows for a systematic asymptotic
analysis of blocks statistics in the POT setting. Based on the setting in Drees and Rootzén
(2010), an even more abstract setting for the derivation of a uniform central limit theorem
for general suitably standardized blocks statistics is derived. In this framework the setting
ofDrees and Rootzén| (2010) for the treatment of disjoint blocks statistics can be embedded
as well as a more special setting which can be used to deal with sliding blocks statistics.
The result is a uniform central limit theorem for standardized blocks statistics. More

precisely, this is a uniform central limit theorem for the empirical process

1 n
) 20T ~ Elgad)), 9 €6,

for some suitable function class G and normalization b,(g) and p, = P(3g € G : g(Wp1) #

Zn(g) -

0) — 0. In particular, the abstract setting developed in this thesis provides a common
basis for deriving asymptotic statements for disjoint blocks statistics and sliding blocks
statistics under unified conditions. This limit theorem is the main tool to solve the second
problem of the asymptotic treatment of the projection based estimator p, 4 mentioned
above and to achieve an asymptotic normality result for this new type of estimator.

In the literature it has been suggested that sliding blocks are often more efficient, see
Beirlant et al.| (2004), p. 390, for a statement on the extremal index. In fact this has only
been proven in a few concrete examples and a general result in the POT setting is not
known. [Robert et al.| (2009) have proven for a particular estimator for the extremal index
that the sliding blocks version of their estimator always has a strictly smaller variance
than the disjoint blocks version. In the so-called block maxima setting only the value of
the maximum observation per block is included in the statistic, this is different from the
POT setting, where all observations whose norm exceeds a certain limit w,, are used for
the estimator. Because of the alternative definition of observations which are considered
to be extreme, there is a different asymptotic behavior for estimators in the block maxima
setting, especially more observations are included in the estimation. A general comparison
of the performance in the POT and block maxima setting can be found e.g. in the overview
article of Biuicher and Zhou (2018)). A comparison of different assumptions in both settings
can be found e.g. in Bucher et al.| (2019) for second order conditions. In the block maxima
setting |Zou et al| (2021)) has proven under quite general conditions that sliding blocks

statistics are at least as efficient as disjoint blocks statistics. Zou et al.| (2021)) has shown
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this more concretely for estimators for copulas. Biicher and Segers (20184d)) also observed
for the maximum likelihood estimator of the parameters of a Fréchet distribution in the
block maxima setting that the sliding blocks estimator is more efficient.

By applying the general abstract limit theorem developed in Chapter [3] below, comparable
conditions and weak convergences can be derived for disjoint blocks statistics and related
sliding blocks statistics. For these statistics, variances can be compared, with the result
that also in the POT setting the asymptotic variance of a quite general sliding blocks
statistic is never greater than the asymptotic variance of the disjoint blocks counterpart.
This implies that, in contrast to common practice, sliding blocks statistics should be
considered primarily. The projection estimator p,, 4 results directly from the motivation
as a sliding blocks statistic, but due to the general results it makes no sense to analyze a

disjoint blocks counterpart.

Estimators for cluster indexes

Besides the spectral tail process (O;)cz, there are also a number of other quantities and
indexes which can be used to describe certain properties of the extremal dependency of
a stationary time series (X;);ez. A whole family of such indexes are the so-called cluster
indexes which are systematically defined in Definition see also Kulik and Soulier
(2020), Chapters 6 and 10. Each cluster index describes a certain property of the extreme
dependence structure. For cluster indexes, disjoint and sliding blocks estimators can be
motivated, which can be analyzed asymptotically in the above mentioned general setting.
The family of cluster indexes also includes well-known indexes defined independently of
this generalizing concept, such as the extremal index or the deviation index (Mikosch
and Wintenberger, 2013). The extremal index § was introduced by |Leadbetter| (1983))
and is the inverse of the mean cluster length, where a cluster is defined asymptotically as
consecutive extreme observations. Thus, the extremal index is a measure for how many
extreme observations occur together on average. A disjoint blocks estimator for 6 was
introduced by Hsing| (1991)). For blocks estimators all extreme observations in a block are
interpreted as a cluster. Another interpretation of a cluster is that all extreme observations
that are not separated by a certain number of non-extreme observations form a cluster.
This interpretation leads to so-called runs estimators as motivated by |Hsing (1993). For
both estimators, the asymptotic normality under different conditions has been proven by
Weissman and Novak| (1998)). In this thesis we prove the asymptotic normality again
under slightly different and especially comparable conditions. For the application of the
abstract setting for the runs estimator note that each runs estimator can be interpreted
as a special sliding blocks estimator. As a result we get that both estimators have the
same asymptotic variance, a fact that was unknown so far. This shows that the uniform
abstract setting developed in this thesis allows a gain in information. Furthermore, in

this work the asymptotic normality of the sliding blocks estimator for the extremal index
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is proven for the first time, whereby the asymptotic variance is again the same as for the
other two estimators.

More generally, sliding and disjoint blocks estimators as well as runs estimators for any
cluster index can be analyzed with the limit theorems of the abstract setting or with the
limit theorem for sliding blocks statistics. In this thesis, this is also done for the example of
the family of stop loss indexes. The stop loss index describes the distribution of the overall
extreme losses given one loss at time point 0. It is shown that for these cluster indexes
the sliding and disjoint blocks estimators have the same asymptotic distribution. This is
in agreement with the result of |Cissokho and Kulik| (2021)), who recently showed this for a
large class of cluster indexes, but using slightly different conditions. Among others, they
use a so-called ANSJB condition which controls the occurrence of small jumps in the time
series. In our analysis we also consider the runs estimator for the stop loss index, which
is not considered in (Cissokho and Kulik| (2021). The resulting asymptotic variance of the

runs estimator cannot be compared directly with that of the blocks estimators.

Structure of the thesis

This dissertation is structured as follows: In Chapter 2] the fundamentals of extreme
value theory for time series are introduced, among others regular variation, the spectral
tail process and the time change formula. Subsequently, in Chapter |3|the abstract setting
for the derivation of uniform central limit theorems for disjoint and sliding blocks statistics
is introduced. This chapter is also an essential preparation for the asymptotic analysis
of P, 4 later on. The limit theorem for sliding blocks statistics is proved in this chapter
and a general comparison of disjoint vs. sliding blocks statistics in the abstract POT
setting is presented. In order to provide application examples for the abstract setting
and the sliding blocks limit theorem, the asymptotic normality of estimators for cluster
indexes is discussed in Chapter [l In particular, the extremal index and the stop-loss
index are analyzed, with new insights about the estimators for the extremal index. Here,
the advantage of a unified framework for the asymptotic analysis is presented. The new
concept of the projection based estimator p, 4 for the distribution of the spectral tail
process is motivated in the Chapter [f] In this chapter, the asymptotic normality of
this estimator is established, first with known « and then with a more sophisticated
technical proof for estimated a. The chapter also contains the example of stochastic
recurrence equations, for which all assumed conditions are fulfilled. Finally, the finite
sample performance of the new estimator for the distribution of the spectral tail process
is considered in a simulation study. Chapter [6] finalizes this thesis with a brief outlook on

open research questions. All proofs are deferred to the end of each chapter.
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Chapter 2
Extreme value theory for time series

In the examples given in the beginning of the introduction, there are not only independent
observations. Rather, the observed data may show dependencies over time. In order to
describe extremes of such dependent data in a mathematically precise way, extreme value
theory for time series was developed. The modern approach to the extreme value theoret-
ical consideration of R%valued stationary time series has been introduced by Basrak and
Segers (2009). As for independent data, the standard assumption for time series is the
regular variation of all finite dimensional distributions. Under this condition Basrak and
Segers| (2009) showed the existence of a so-called spectral tail process (O;)ez. This pro-
cess describes the extreme behavior of the time series (X;);ez, assuming that an extreme
event occurred at the initial time 0. Therefore, (©;);cz can also be used for modeling the
extreme ranges of the underlying time series. In preparation for the rest of this work,
we will briefly introduce the basic concepts of regular varying random variables, regular

varying time series and recall some basic properties.

2.1 Regular varying time series

We start this chapter with the concept of regular variation in the univariate case.

Definition 2.1.1 (Regular variation). (i) A measurable function f : (x¢,00) = R, g €

R, is called (univariate) regularly varying if there exists some p € R such that

Jlim 0 = Yz > 0.

The function f is called slowly varying if p = 0.
(i) A measurable function f : (zo,x1) = R, xo, 21 € R, is called regularly varying in x

(x1 resp.) if there exists some p € R such that

y f(l’o—l-xt)_xp (1. [z —at)

— P
lim Fwot ) lim Fa =) =z resp.) Ve > 0,
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(7ii) A real valued random variable X with distribution function F is called (univariate)
regularly varying with index p, if the survival function 1 — F' is reqularly varying, i.e.
P(X > xt 1— F(xt
}E&M ZtILI?ol_pS(,g)) = V=0

A regularly varying function f has the tail behavior of a power function, i.e. there exist
p € R and a slowly varying function [ such that f(z) = z’l(x) for all x € (zg,00)
(Bingham et al.| (1989), Theorem 1.4.1). In particular, f(z) — 0 for x — oo if p < 0 and
f(z) = oo for x — oo if p > 0.

There is a broad theory about properties of regularly varying functions or random vari-
ables, some of it will be used in this thesis. For an overview, we refer to e.g. [Bingham
et al.| (1989)) and |De Haan and Ferreira (2006]). Here, we just mention the Potter bounds
(Bingham et al.| (1989)), Theorem 1.5.6):

Theorem 2.1.2. If f: (x9,00) — R is reqularly varying with index p, then for all e > 0
there exists some x. > xg such that for allt > x. and x with xt > x.

f(xt)

(1 —e)z’min(z®,27°) < ——= < (1 4 ¢)a” max(z®, 27 °).

f(t)

More central for this thesis is the concept of multivariate regular variation for random
vectors X = (X1, ..., Xy) € R%

Definition 2.1.3 (Multivariate regular variation). An R-valued random wvector X is

called (multivariate) regularly varying if there exists a non-degenerate measure j on
(RA{0}, BRN{0})) with u(A) < oo for all A € B(RN\{0}) bounded away from 0 and

. P(Xetd)
S ED R

for all A € B(RN\{0}) bounded away from 0 with u(0A) = 0.

Here, 0B denotes the topological boundary of the set B. The measure y is non degenerate
if u({z}) > 0 for all x € R\{0}, i.e. if it is not concentrated in a single point. The
norm || - || is arbitrary: if such a limit measure p exists for one norm, then there exists a
limit measure for each norm and the measures are equal up to a multiplicative constant.
The limit measure p is homogeneous with index —a for some a > 0, i.e. u(tA) =t"*u(A)
for all A € B(R¥\{0}) bounded away from 0 and ¢ > 0 (Resnick, 1987).

Definition 2.1.4 (Index of regular variation). If X is regularly varying with the —a-
homogeneous limit measure p, then the parameter o > 0 is called the index of regular

vartation of X.
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By choosing A = {z € R? | ||z| > r} for r > 0, the multivariate regular variation of X
directly implies the univariate regular variation of || X || with index —a.

With the help of a polar transformation, a spectral decomposition can be specified for
the limit measure of the regular variation. Define S¢~1 := {z € R?: ||z|| = 1} as the unit
sphere with respect to the norm || -||. Then, one can show that X is multivariate regularly

varying if and only if there exists a probability measure ® on (S, B(S?!)) such that

L PUX] > rt, XX € A)
=% P(XT > 1)

=r “®(A)

for all r > 0 and A € B(S%™!) with ®(0A) = 0. In particular, ®(A) = u({xr € R? | ||z| >
Lz/||z|| € A}) and @ is called spectral measure of X. Moreover, v,((r,00)) := r~“ defines
a measure on (R, B(R)). Thus, this spectral representation implies that the stochastic
behavior of the heaviness of the tail and the dependency in the extremes can be considered
independently. Indeed, the heaviness of the tail is described by « and the dependence is
modeled by .

An overview about further properties of regularly varying functions and random variables
can be found e.g. in the basic references Bingham et al.|(1989) and De Haan and Ferreira
(2006). Further properties and methods to model heavy tails can also be found in [Resnick
(2007)). Here, we will continue with the extension of the concept of regular variation for

strictly stationary time series.

Definition 2.1.5 (Regular varying time series). A R¥-valued time series (X;)iez is reg-
ularly varying with index o if all finite dimensional marginal distributions (fidis)
(Xsy .0y Xy), 8, t € Z, s < t are multivariate reqularly varying with index o. The value «

is called the index of reqular variation of (Xi)iez.

In particular, regular variation of the time series (X;);cz implies regular variation of X
and thereby univariate regular variation of ||X,|| with index —a.

In this work we will consider only (strictly) stationary time series (X;)icz. As mentioned
above, the extreme behavior of a time series can be described in some sense by the spectral

tail process. This process is defined in the following definition.

Definition 2.1.6 (Tail process and spectral tail process). Let (X;)iez be a stationary

Re-valued time series. If there exists a mon degenerate time series (Y;)iez with

X, X w
(55 2 1%l > ) o £V ), (2.1.1)

Unp

forall s,t € Z, s < t, then (Yy)iez is called the tail process of (X,)iez. If there exists a

time series (©y)iez with

Xs Xt ) ‘ w
c 1 Xol| > un> — 5 L(O,,...,0,),
<<”X0H HX()H 0 Up—>00 t
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for all s,t € Z, s < t, then (Oy)icz is called the spectral tail process (or in short
spectral process) of (X;)icz. The process (Oy)ien, is called forward spectral tail process

and (©_t)ien, 5 called backward spectral tail process.

By this definition it is obvious that the tail process and the spectral tail process describe
asymptotically the extreme behavior of the underlying time series (X;);ez. Therefore,
these processes are important tools for the extreme value analysis for time series. The
spectral tail process contains the information about the dependence of the extremes while
(Y)tez also includes information about the heaviness of the tails. There is a close con-
nection between (Y;);ez and (©;)cz which will be investigated after the next theorem.
Before that, we state a criterion for the existence of the tail process. Basrak and Segers
(2009) have proved that (Y;)iez exists if and only if the time series (X;):cz is regularly

varying.

Theorem 2.1.7. Let (X;)iez be a stationary Ri-valued time series and let o € (0,00).

The following statements are equivalent:
(i) (Xi)iez is reqularly varying with index c.

(ii) There exists an R%-valued process (Y;)iez with P(|Yo| > y) = vy~ fory > 1 (i.e.
Yol is Par(a) distributed) such that for allt € N

X X w
c ((0 t) ‘HXOH > un> (Y, YY),
Un Up, Uy —+00
(iii) There exists an R%-valued process (Y;)iez with P(||Yo|| > y) = y=* for y > 1 such
that for all s,t € Z with s <t
X, X w
L((Z s ) 1%l > ) s £ Y0,

Up, Uy, Up—00
Furthermore, Basrak and Segers| (2009) have shown that the regular variation of (X;)ez
is also equivalent to the existence of the spectral tail process. Moreover, tail process
and spectral tail process are closely related via (Y;)iez Sl Y (0©4)tez for an independent
Par(«)-distributed random variable Y. Here, Par(«) stands for the Pareto distribution

with parameter «, i.e. P(Y >y) =y * for y € [1, 00).

Theorem 2.1.8. Let (X;)ez be a stationary Re-valued time series and let the function
x +— P(||Xo|| > x) be reqularly varying with index —a for some a € (0,00). The following

statements are equivalent

(i) (Xi)iez is reqularly varying with index o.

(ii) There exists an R%-valued process (©y)iez such that for allt € N

XO Xt ) ‘ ) w
L S ey Xoll > up, | —— L(Oy, ..., 0;).
((wxm 1o ) 1ol e
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(iii) There exists an R¥-valued process (©y)iez, such that for all s,t € 7 with s <t

X X; )’ ) N
;C g eeey X >un —>£®S7"'7® .
<<||X0|| Xy ) 1ol o L )

If (ii) or (iii) is satisfied, then the tail process (Yi)iez, of (Xi)iez is given by (Yy)ier <
(YOy) ez for allt € Z, where the random variable Y is Par(a) distributed and independent
of (O¢)iez-

By this theorem, it holds that

(Yi)tez = (||Y0||@t)teZ and (@t)tez = (Yt/HYOH)teZ'

Due to this decomposition the random variable ||Yy| and the parameter a describe the
heaviness of the tail while the spectral tail process (0;);cz describes the serial dependence
of the extremes of the time series (X;);cz. Note that ||©g]| = 1 a.s., i.e. ©p models only
the extremal dependence but ||©;| # 1 for ¢ # 1 is possible, i.e. ©; might includes some
information about the heaviness of the tail of X; given that X is extreme. In some sense,
the decomposition of Y; in ||Yy]| and ©; is comparable to the spectral decomposition for
the multivariate regular variation above, but for ¢ # 0 it is not the same.

The tail process and spectral tail process are defined by the weak limit of all standard-
ized finite stretches (X, ..., X;), for s < t € Z. Under an additional assumption, one
can show that the tail process is also the weak limit of a standardized growing seg-
ment (X_,, ,...,X,, ) for some suitable increasing sequence 7, — oo. The condition
needed for this is the well known anti-clustering condition (AC) introduced by |Davis
and Hsing (1995), but we state this condition with a sequence of thresholds u,, satisfying
nP(]| Xo|| > un) — oo, while originally nP (|| Xo|| > w,) — 7 > 0 was used, i.e. we use a
smaller sequence u,. The anti-clustering condition (or, more precisely, finite mean clus-
ter size condition, since it allows clusters of extremes, but the mean of the size of these

clusters may only be finite) is given by

(AC)
lim limsupP< max || X[ > unc‘ | Xol| > unc> =0 (2.1.2)

m—oo  p_soo m<|[t|<rp

for all ¢ € (0,00), for a fixed sequence w,, with nv, := nP(||Xo| > u,) = 0o and

some sequence 1, — oo with r,v,, — 0.

The convergence considered in the following lemma is understood as weak convergence

on the sequence space [, X [, equipped with the supremum norm, where

lo = { (@)ez € RY] 3 )™ < o0},

teZ

For arbitrary n € N the spaces (R?)?**! is embedded in I, by the mapping (R%)?"! 5
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(20)jt)<n — (2)tez € lo with 2z, = 0 for |[t| > n. Note that (AC) ensures that the
realizations of the spectral tail process a.s. belongs to [, (see next section or Remark 2.3
of |Janflen| (2019)).

Lemma 2.1.9. Suppose (Xy)iez is a regularly varying time series which satisfies (AC),
(rn)neny € N with r,, — 00, rv, — 0 and fix j € Z. If either (AC) holds for r, replaced
byrl =r,+7 orif vglﬁff,rn — 0, then

£ ()™ (X0uiras (une) ™ (X ui<r,

1Xol| > wne) = £ ((Vidsez, (Yerjeez)

Here B;)Lfrn denotes the S-mixing coefficient of (X;);ez. For j = 0 the second assumption
of (AC) for 77, is trivially fulfilled. The proof of this lemma is given below in Section [2.3

2.2 Time change formula and RS-transformation

So far, we introduced the basic concept of regular variation and defined the spectral tail
process as a weak limit. The distribution of the spectral tail process shall be estimated
in Chapter [5

Next, we consider some properties of the spectral tail process. In general the stationarity
of (X})iez does not imply the stationarity of (0©;);cz. This is due to the special role of
the time point 0. Observe that HXO/HXOHH = 1 holds and, therefore, ||©¢]| = 1 a.s.
but, in general, ||©;] is not constant 1, i.e. (©;)cz cannot be stationary. However,
the stationarity of (X;);cz implies a different structural property of (©;);cz, which is
formalized by the so called time change formula (TCF). This property was discovered by
Basrak and Segers| (2009)).

Theorem 2.2.1. Let (X;)iez be a stationary, reqularly varying time series and let (Y3)iez

and (©y)iez be the corresponding tail process and spectral tail process, respectively. Then,

(i) [|Yo|| is independent of (©y)iez-

(ii) For all i,s,t € Z with s < 0 < t and for all continuous and bounded functions
g (RY=sH 5 R with g(ys, ..., y:) = 0 if yo = 0 it holds that

e}

Elg(Ysi, ..., Yiy)] = /

0 E [Q(T@s, ..-,T@t)]l{TH@iH>1}:| Oé,r*afld,r'

(iii) For all i,s,t € Z with s < 0 < t and for all continuous and bounded functions
f (RS 5 R with f(ys, ..., y:) = 0 if yo = 0 it holds that

Ew@&wﬂ@mn:EpQghww&%)@mﬁ (2.21)

If (iii) in the theorem is satisfied, then (2.2.1) holds for all measurable and bounded
functions f : (R?)=*t1 — R with f(ys,...,y) = 0 if yo = 0, since each measurable
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function can be approximated by continuous functions. The property in part (iii) is very

central and is called the time change formula.

Definition 2.2.2 (TCF). An R%-valued time series (©;)cz, possesses the property TCF
(Time Change Formula), if P(||©¢|| = 1) =1 and the time change formula (2.2.1)) is
fulfilled, i.e. there exists some a > 0 such that

O, CH

E[f(Os i, o, Ory)] :E[f< ,...,)]1 o ||@Z-||0<] (2.2.2)
t [6:" e ) e

holds for all s <0 < t, i € Z and for all bounded and measurable functions f : (RT)=s+1 —

R with f(fs,...,0;) =0 if 5 = 0.

By the theorems above, every spectral tail process possesses the property (TCF). Since
the finite dimensional marginal distributions define the distribution of a stochastic process

uniquely, (2.2.2) can be generalized to

Bl (Or)iez)] = E{f((nggn)m) jee].

for all i € Z and for all bounded and B((R%)%)-B(R)-measurable functions f : (R%)%Z — R
with f((0;)iez) = 0if 6y = 0.

The time change formula is not only a property of a spectral tail process. Rather, |Jan3en
(2019), Theorem 4.2, and [Planini¢ and Soulier| (2018), Theorem 5.1, have shown, that
each process satisfying the property (TCF) is already the spectral tail process of some
max-stable time series. Thus, the property (TCF) characterizes the class of all admissible
spectral tail processes.

Until recently, no general interpretation of the time change formula from Definition [2.2.2
was known in the literature. A first possible interpretation was given by |Janfen| (2019)
for one (quite general) case. She introduced an equivalent representation of the structural
properties implied by the time change formula under the following summability condition

(SC) that is often satisfied as we will shortly see.

(SC) The R-valued time series (0;);cz satisfies for some a > 0 that

0<) [I64]]* <0 a.s. (2.2.3)

teZ

This condition depends on «, which is the index of regular variation whenever a spectral
tail process is considered. The first inequality in is always satisfied for a spectral
tail process, since ||©p|| = 1 a.s. If the summability condition is fulfilled, we will use the
following notation:

1/«
Il i= ezl == (S l12°) 22.4)

teZ
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for all (2;)iez € (RY)Z and o > 0. Note that || - || is a norm on (R%)Z for a > 1 but only
a quasinorm for a < 1.

Furthermore, denote [|©*| := sup,cy [|O¢|| and T := T*((Oy)tez) = inf{t € Z : ||6y] =
|©%||}. |[JanBen| (2019) proved the following equivalent conditions for (SC).

Lemma 2.2.3. Assume that the R -valued time series (©;);cz satisfies the property (TCF)

with some a > 0. Then the following statements are equivalent
(1) Y1z |0:]|* < 00 a.s. (i.e. condition (SC) is fulfilled.)
(i7) ||©:]] — 0 a.s. for |t| — oo

(isi) P(T* € Z) =1

Condition (SC) is not very restrictive. Basrak and Segers (2009), Proposition 4.2, have
shown that this condition is satisfied for a spectral tail process if the underlying time series
satisfies Condition (AC). This condition in turn is fulfilled e.g. for stochastic volatility
models, ARMA models, max-moving average processes (Mikosch and Zhao, 2014) and
GARCH models (Basrak et al., 2002). Recently, Kulik et al. (2019) showed that the anti-
clustering condition is also met for the broad class of stationary geometrically ergodic
Markov chains.

Under Condition (SC), Janflen| (2019) proved the equivalence of the property (TCF) and

the invariance under the so-called RS-transformation of the time series.

Definition 2.2.4 (RS-transformation). Consider a time series (O)icz which satisfies the
condition (SC). The RS-transformation (01%).c; of (0;)icz is defined by

(Of%)er, £ (9”1( @)) (2.2.5)
1Okl / ez’

where K(©) = K((O4)iez) is a Z-valued random variable with conditional density

1Okl _ 1Okl®
ez [O:* lOl8 "

P(K(©) =k | (O1)icz) =

for all k € 7.

This definition and taking iterated expectations directly leads to

P(©0es < 5) - 5] 3 100" (Guher

kEZ

for all cylinder sets B in (R%)%. Alternatively, one could use these probabilities to fully
characterize the distribution of the RS-transformation (©7%),cz. The RS-transform is

only defined in terms of its distribution.
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Theorem 2.2.5. Let (©;)iez be an R¥*-valued time series which satisfies condition (SC).
Then, (©y)icz has the property (TCF) if and only if

(OF5)1cz £ (O)) e

This invariance under the RS-transformation allows for some interpretation of the time
change formula: the time change formula corresponds to a random shift and rescaling of
the time series, which does not affect the distribution. The random shift is proportional
to the magnitude of the time series at the respective lag.

Since the property (TCF) characterizes the class of admissible spectral tail processes,
Theorem now specifies this class under the additional assumption (SC), namely as
all processes with distributions invariant under the RS-transformation.

The RS-transformation together with the previous theorem will be the basis for the de-
duction of the new projection based estimator p, 4 for the distribution of a spectral tail
process in Chapter [5] With this, we end this short chapter about the basics for this thesis,
in the next section only one proof is added. For more detailed information we refer to
the references cited in this chapter. In the next chapter, we start with the development

of new abstract limit theorems for estimators of rare events.

2.3 Proofs for Section 2.1

In this section, only the proof of the technical Lemma [2.1.9]is given. All other proofs for
lemmas and theorems in this chapter can be found in the cited references. The idea of the
proof of Lemma is similar to the idea of the proof of Theorem 2.2 of [Basrak et al.

(2018)), in particular it uses the same truncation arguments.

Proof of Lemma[2.1.9. With the Portemanteau Theorem (Billingsley (1968)), Theorem
2.1) it suffices to show

E [9((un0) ™ (X)iirs (€)™ Kotz ) | 1Xoll > tne] = B lg (V)iez, Yershiez)]
(2.3.1)

for all non-negative, bounded and uniformly continuous functions g on I, x [,.

For = € l,, we define the truncation at the level £ by ¢ = (214, |>¢})tez. Then, it
obviously holds that ||z — z¢[|oc < €. In addition to g, we define the function g by
ge(x,y) == g(x¢, ye). Since g is uniformly continuous, for all € > 0 there exists a § > 0
such that ||(z,y) — (2/,¥)|lc < 0 implies |g(x,y) — g(2',y')| < e. Hence, ||gs — 9|0 < €
and it suffices to show for ge and all £ € (0, 1).

Fix m € N. For a sufficiently large n € N such that r, > m, one has

2 [ge ((100) ™ (K0t (0) ™ Kt tra) |1 Xl > ]
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= B [g¢ ((un0) ™ (Xitms (€)™ (Xewgitizm) | I1Xoll > tnc]

1
 P(IXoll > unc)

——zﬂ[gg(<uncy4<)g>ugn“<uncy*<ﬁg+jMHSm)1undemnd}\

E [ge ((tn€) ™ (X)<ras (n€) ™ (Xeaj)p<r, ) L1xol>unc) |

lolooP (| _max X0 > unct, [ Xoll > unc)

m<|t|<rn+j

<
= P(Xal > we)
= lgleP( | max %] > wact | [ Xoll > wnc).

m<|t|<rp+j

We obtain lim,,_,. lim supnﬁooP<maxm§t|§% | X > uncf‘ | Xol| > unc§> = 0 either
since (AC) holds for r/, = r, + j or since for v, ¢ = P(||Xo|| > u,cf) we have

p( max [ X > et X >uncf)

m<|t|<r],
< p( max [ X[ > ueg| | Xo] > unc£> Y P(HXtH > et |1 Xo ]| > uncg)
mftl<rn ra<tl<rnti
.
< P( max (Xl > wnct | 1Xol > tnct ) + 2jtnee + B,
m<|[t|<rn Uneg "

which converges to 0 as n — oo and then m — oo due to (2.1.2)) and the mixing assump-

tion. Thus, we conclude with 7/, = r, + j

lim lim sup P( max || X > uncf‘ | Xol| > unc>

M—00 100 m<|t|<r],

o P([| Xol| > unct)
< pu—
< lim hgl_?ol.}pp(mgﬁi{r; | X > un(f’ | Xol| > unc*f) P([Xo] > unc) 0

where the last fraction converges to £~%, due to the regular variation of (X;);cz. Therefore,

i tsnsup | [ge ((1n) ™ (X0izrs (00€) ™ (Krtir,) | 1Xall > tnc]

m—00 poo

— B [g¢ ((n0) " (Xiuiems (n0) ™ (Xess)pzm) | 1X0]l > unc] | = 0.

Moreover, ||Y;]| — 0 a.s. for |[i] — oo, due to (AC) (Basrak and Segers (2009), Propo-
sition 4.2), which according to Lemma implies Y ez [|Ya]|® < oo a.s. Therefore, it
follows that Y can only have a finite number of coordinates with a norm larger than &.
Thus, ge((Y2)1t1<ms (Yits)i<m) = 9e((Ye)ezs (Yit)iez) for a random (depending on Y') and
sufficiently large m € N. All in all, with the definition of the tail process, we conclude

lim E [gg ((Unc)_l(Xt)Mgrna (unc)_l(Xt+j)|t|§7“n) | [ Xoll > Unc}

n—oo

= lim limsup E [gf ((unc)_l(Xt)|t|§m, (unc)_l(XHj)mgm) | | Xoll > unc}

m—r0o0 n—

= lim F [gg ((Yt)mgm, (Ytﬂ')\ﬂﬁmﬂ

m—o0
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= Ege (Yo)rez, (Yij)iez)] -
This completes the proof. m
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Chapter 3

Functional limit theorem in an

abstract setting

Throughout this chapter, we consider statistics for the dependence structure of extremes of
stationary time series in a fairly abstract way. In the peak-over-threshold (POT) approach
for extreme value statistics, such statistics can usually be defined block-wise. To be more
specific, assume that, starting from a stationary R%valued time series (X¢t)1<t<n, random
variables X,,;, 1 <t < n, n € N, are defined, that in some sense capture its extreme
value behavior. The most common example is X, ; = (X;/up)l(y, 00) (|| X¢]|) for some
threshold wu,, and some norm || - || on R%, but for certain applications X,, ; may also depend
on observations in the neighborhood of extreme observations. One typically considers
statistics g(W, ;) of blocks

Wn,j = (Xn,j7 e 7Xn,j+sn71) (301)

of (possibly increasing) length s,,, starting with the j-th random variable. Estimators and
statistics of interest can then be defined in terms of averages of such block statistics.
Examples for such block statistics are the block-wise estimators for the extremal index
and cluster indexes in Chapter 4] and the empirical extremogram analyzed by Davis and
Mikosch| (20090). Further examples are the forward and backward estimators of the
distribution of the spectral tail process of a regularly varying time series examined by
Drees et al| (2015) and [Davis et al| (2018)), see also Chapter [5, and the estimator of the
cluster size distribution proposed by Hsing| (1991).

In these references, the estimators are defined as averages of disjoint blocks statistics
9Whis,41), 0 <i < |n/s,| —1. However, one could also define the estimators via sliding
blocks statistics g(W,,;), 1 <i < n —s, + 1, of overlapping sliding blocks, see e.g. the
sliding blocks estimator in Section [£.2.1] The main difference is that sliding blocks use
much more data but these blocks have a larger dependence, so it is unclear which method
is more advantageous.

Another example for a block-wise defined estimator is the projection based estimator
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Dn,a defined in Chapter . In the previous examples, one could choose whether sliding
or disjoint blocks should be used and, in the references, the estimators were defined in a
natural way with disjoint blocks. In contrast, the projection based estimator p, 4 includes
sliding blocks which automatically emerge due to the given motivation. In this example,
it would be an extra step to define the disjoint blocks estimator. Later on, in Chapter
we want to analyze the asymptotics of the projection based estimator based on sliding
blocks.

Drees and Rootzén| (2010) provided a general framework to analyze the asymptotic be-
havior of statistics which are based on averages of functionals of disjoint blocks from an
absolutely regular time series. The sufficient conditions for the convergence of the em-
pirical process of cluster functionals established there proved to be a powerful tool for
establishing asymptotic normality of a range of estimators; see, e.g. Drees (2015), Davis
et al| (2018), and Drees and Knezevic (2020). However, the setting considered by |Drees
and Rootzén (2010) is too restrictive to accommodate empirical processes based on sliding
blocks and this setting could not be used for the asymptotic analysis in Chapter [5]
Therefore, the aim of this chapter is to establish a more general limit theorem for empirical
processes based on sliding blocks statistics. In fact, we will treat an even more general and
abstract setting for block-wise measurable statistics. In the setting of this limit theorem,
the consideration of sliding blocks is possible as well as the consideration of disjoint blocks
statistics. The setting introduced in this chapter gives a unifying framework which, in
particular, allows a comparison between the asymptotic results of sliding blocks statistics
and their disjoint blocks counterparts.

First, we will introduce the general setting. In Section the convergence of finite
dimensional marginal distributions (fidis) is considered and in Section conditions for
the process convergence will be established. Section is devoted to the limit theorem
for the special case of the sliding blocks statistics. Since the general framework introduced
here provides a unifying setting for the analysis of disjoint and sliding blocks estimators,
a comparison of both can be given in Section [3.3] All proofs are deferred to Section [3.4]
The main results from this chapter have already been published in advance in Section 2

and Appendiz A of |Drees and Neblung (2021)).

3.1 General abstract setting

The general setting introduced here builds basically on the ideas of |Drees and Rootzén
(2010). The purpose is a general limit theorem for empirical processes, which can be used
for statistical extreme value theoretical problems. In particular, statistics based on sliding
blocks should be covered.

We start with the introduction of some objects and variables needed to define our general
empirical process for which we want to develop a limit theorem. We consider a triangular

array (X, ;)i1<i<nnen of row-wise stationary random variables with values in a polish and
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normed vector space (E, || - ||). We denote the null element (the zero vector w.r.t. the
vector addition) of E by 0.

Example. The classical example, which is often used in applications, is £ C R? and
d € N. In this case, a typical choice is X,,; = X;/u, or X,,; = (Xi/un)lyx,|>u.y for
a threshold wu, and an R?-valued stationary time series (X;);en. However, the theory
developed here also applies to more general X,, ;.

For applications with sliding blocks, it makes sense to use whole blocks of the form
Xw‘ = (X, Xnjits,—1) instead of single observations X,, ;, where s,, € N denotes the
length of the sliding blocks. In this case, we can consider X’m instead of X, ;, where XW-

takes values in the space

E::{(xk)keNEEN|E|KENWitth:>K:xk.:0}.

Here, we understand X'm- = (X'nﬂ-’k)keN with )N(nyi,k = 0 for k > s, as an element of
EN. Because of the flexibility in the interpretation of the space E and since there is no
real extra effort, in this chapter we will consider a general polish space E which is not

necessarily a subset of the simple case RY. o

The independence of the random variables (X, ;)1<i<n is not required here. However, a
f-mixing condition is imposed, such that we can use approximating methods with iid

random variables.

Definition 3.1.1 (f-mixing). For a family of E-valued random variables (I'y;)1<i<m,,

the f-mixing coefficient is defined as

ve= sup E| sup |P(B|B,})-P(B)|, (3.1.1)
1<l<mn,—k—1 BGBZ:ZTLH

where BEZJ =o0((Thy)i<i<j) and k € N, kE < m,,.
(Thni)i<i<n s called B-mixing (or absolutely regular) if By, — 0 for a sequence

k, — oo of natural numbers.

Note that the inner supremum in is measurable since F is a polish space.

For the following, fix sequences r, = o(n) and s, = o(r,) of natural numbers. The
general empirical process considered below is indexed by an arbitrary family of real-valued
functionals G. The aim is a limit theorem for the empirical process (Z,(g))4eg defined by

1 &

Zn(g) = N ; (Vai(9) = E[Vai(9)]) geg. (3.1.2)

Here V,,;, 1 <1i < m,,n € N, are some real-valued random processes, likewise indexed by
G, my:=|(n—s,+1)/r,] and

pni=P(3g€G:V,1(9) #0) = 0. (3.1.3)
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This last convergence is motivated by the extreme value theory and represents that we
consider rare events, i.e. values different from 0 are unlikely.
Throughout this chapter, we assume that the set {3g € G : V,1(g) # 0} is measurable.

This holds under the following condition, which helps to avoid measurability problems.
(D0) The processes (V,,1(g9))geg, n € N, are separable.

Condition (DO0) is in particular fulfilled if G is finite. If condition (D0) holds, then {3g €
G : Vi1(g) # 0} can be represented as a countable union of measurable sets and the set is
therefore measurable itself. The condition (DO0) is needed to ensure that p, is well defined.
Condition (D0) also ensures that ), is well defined.

In this general setting, we will not specify V,,;. The only requirements on the process
(V1.i(9))1<i<n are that it should be stationary for all n € N and for all ¢ € G and that the
random variables V,,; should be measurable with respect to (X (i—1)ru 415 Xnirntsn)-
Because of this measurablity, we will sometimes call any V,,; a block. To simplify the
notation, we write V,, for an arbitrary block and due to stationarity, V,, 2 Vy,i holds for
all 1 <14 < m,,. The assumption of measurability of V,, ; with respect to a block of the X;’s
comes from the fact that we have mainly statistics in mind which deal with estimation
problems based on the data (X, ;)1<i<n-

Example. For estimators defined as the average of disjoint blocks statistics, a canonical
example for the choice of V,,; is V,; = m;1/? >ty 9( X (i—1yr,+5) for some function g
with g(X,;) # 0 if and only if X,,; # 0. In this case, p, = O(r,P(X,1 #0)), m, =
O(n/ryn), s, = 1 and the normalization of the sum in the process Z, is given by /p,m,, =
O(y/nP(X,1#0)). This choice leads to the generalized tail array sums considered in
Section 3 of Drees and Rootzén| (2010).

The choice V,,;(g) = dn(g)! Z;T;/Osn_l GWi (i—1)rntjsn+1) (assuming that 7, is a multiple
of s,,) for suitable normalizing sequences d,(g) can also be used for the analysis of general
sums of disjoint blocks statistics, see below for details.

The choice V,,;(g) = bn(g) ™" 20y 9(Wh (i-1)r,+;) for a suitable normalizing sequence b,,(g)
leads to the sums of sliding blocks statistics which will be considered in Section 3.2l ¢

The sequence (7,)nen is N-valued and models the length of the blocks of (X, ;) with
respect to which the V,, ; are measurable. We usually assume r,, — oo and 7, = o(n). The
size s, indicates the length of the overlap of the blocks of X-observations with respect
to which the V,, are measurable. We assume s,, = o(r,), such that the overlap of these
X-blocks reaches only into the consecutive block and is asymptotical negligible.

In applications, V,, will often be given via V,, = V! /b, for another process V! and some
standardizing R*-valued sequence (b,)nen. Usually some standardization b,, is necessary
for the conditions below to be satisfiable in applications (see also the previous example).
Determining an appropriate normalization b, such that the conditions are satisfied and

the limit of the process convergence is non-trivial (i.e. not constant 0 or co) will be an
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Figure 3.1: Illustration of Vn,i

important tasks for applications. It does not matter, whether the necessary normalization
b, appears explicitly in the theorems or is defined implicitly in V,,. To ease the notation,
we omit the b, in this section, it is only mentioned to draw attention to the need for
appropriate normalization in V,,. However, it is not possible to omit the b, in Section
and we will use the normalization there. We will restate the conditions including the
normalizing constants there, such that one can see where and how the normalization has
an impact on the conditions.

For the proofs in this section a big block, small block approach will be used. For the
convergence of the finite-dimensional marginal distributions (fidis) of (3.1.2)), the intro-
duction of approximating random variables VM is necessary to bypass the dependence
of the V,,; resulting from the overlaps of length s, between the blocks. This stationary
sequence of random processes Vm approximates V,,; and is asymptotically independent

for 1 <14 < m,, more details on the approximation will be given later.

Example. An illustration of the idea of Vm is given in Figure . In this figure, the
axis represents the underlying process (X, ;)1<i<, and it is indicated to which random
variables V,; and f/m refer. This figure shows one way how one could think of the Vm,
but it is not entirely precise, since Vn,l could be (X, 1, ..., Xy s, +5, )-measurable. However,
this figure shows how f/m- could be constructed as shortened blocks with gaps between
the X-blocks w.r.t. which the Vm- are measurable. This is the way how Vn,i is chosen for

the sliding blocks in Section (3.2}

—-1/2

The random variables V,, ; = m,,

approximated by f/n,i =m;? Z;g}l” (X (i—1)r,+;) for a suitable sequence [, = o(r,). ©

2y (X (i-1)r,+5) from the previous example can be

In the following section we will establish conditions for the weak convergence of the
fidis of (Z,(g))geg. Thereafter, conditions for the asymptotic tightness and asymptotic
equicontinuity of the process are derived. The fidi convergence together with asymptotic
equicontinuity or asymptotic tightness implies the weak convergence of (Z,(g))seg in
[*(G). Here, [*°(G) denotes the space of the real-valued bounded functions on G. Up to

this point and also in the following, many different sequences are used. An overview of
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numerous sequences used in this chapter, their interpretation, their typical behavior and
their first occurrence is given in Table [3.1]

3.1.1 Convergence of fidis

In this section, assumptions for the convergence of the fidis of (Z,(g)),eg defined in
(3.1.2) are given. Fundamental are the following stationarity conditions, the dependency
conditions in form of # -mixing conditions and the assumptions on the sizes of the emerging

blocks. All these conditions were roughly sketched and motivated in the previous section.

(A1) (X,.i)1<i<n is stationary for all n € N and the sequences s,,r, € N satisfy s, =

o(r,) and r, = o(n).

(V) Foralln € N, 1 < i < m, = |[(n— s, +1)/r,], Vo; and V,; are real-valued
processes indexed by G that are measurable w.r.t. (X, i—1)r,+1; -, Xnirp4s,—1) and

(Visis Vn,i)lgigmn is stationary.
(MV) mnﬂ)«io — 0
(MX) mnﬁij(k—l)rn—sn — 0 for some k € N, k > 2.

The convergence of the overlap s, — oo is explicitly not required. This is possible but
technically not necessary for the limit theorems below. The identity s, = 1, for all n € N,
is also allowed, e.g. for the applications with disjoint blocks. Note that s,, = o(r,) implies
r, — 00 since s, > 1. The constraints on r, are the usual conditions for block building
for limit theorems which ensure that the blocks are not too large and the condition on s,
just states that the X-blocks may overlap, but asymptotically the overlap is negligible.

The mixing condition (MV) ensures the asymptotic independence of the approximating
random variables f/m The mixing condition (MX}) is needed for the dependence between
the X, ;, and, therefore, also between the V, ;, to be sufficiently weak. It enables us to
replace X, ; by independent copies. One has 67)5;) < 63&3 for p > p and therefore, condition
(MX}) is the weaker the larger k can be chosen. In many applications, such as in the
examples from |Drees and Rootzén| (2010), it can be chosen as k = 2 for simplicity.
Depending on the shape of the mixing coefficient, the choice of k£ may also have impact
on the rate with which (8, )nen tends to 0 for increasing n. Therefore, the variable k
introduces some additional flexibility and may cover more cases than a fixed k. This

Condition (MX}y) also implies S-mixing of V,,; as obtained by the next lemma.
Lemma 3.1.2. Condition (MXy) implies my3) ,_; — 0.

This S-mixing property of V,,; would be sufficient for Theorems [3.1.7 and [3.1.9 below and

is less restrictive than (MXy).

The proof of the fidis convergence of (Z,,(g)),eg uses a technique which works similar to

the big block, small block-method. Since V,, is interpreted as a block but, other than in
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the given examples, must not be directly recognizable as a block, it is not immediately
clear what the small block should look like. This role will be taken by the difference
A =Voi— Vi,
which is why the approximating sz’ are needed. To simplify the notation, A, stands
for any A, ;, ie. A, = A, ; holds. The random variable VM introduced above should
approximate V,,; sufficiently accurately, i.e. the approximating error should be asymp-
toticly negligible; the concrete meaning of this is determined by condition (A) below.
More details on this approximation are given in the proof to Lemma [3.4.1] Condition
(MV) formalizes that the Vj,; are almost independent. This is needed, in order for a
central limit theorem for independent random variables to be applicable.
The usage of the approximating random variables f/n,i facilitates a true generalization
opposed to a setting where the mixing condition in (MV) is directly asked to be satisfied
by V,,. Here, V,,; may have a stronger dependency.

Example. For V,,; = m; 2" (X, i-1)r,+;), as considered in the previous example,

one can choose ‘N/M- = m;l/Q Z;T’;]l” g(Xn,(i_l),an) for some sequence [,, — oo with [, =
o(r,) and s, = 1. Here, Vm is even (X (i—1)rn+15 s Xnjirn—1, )-measurable. In this case,
mn@fln_% — 0 implies mnBZ o — 0, the proof of this is similar to the proof of Lemma
. Since I, = o(ry), MafBy,. _,, — 0 is implied by m,6;, _, — 0. So, the condition
(Mf/) is not needed if a corresponding S-mixing condition on (X, ;)1<i<n, 7 € N, is
imposed. In particular, the dependency conditions can be set at the level of X,,; if a

stricter measurability assumption holds. o

For the convergence of the fidis, a Lindeberg condition (L) and the convergence of the
covariance function (C) are necessary, in order for a known central limit theorem to be
applicable. More precisely, (L) and (C) imply convergence for the sum of independent
copies of V,,(g).

. Dn
(Aa) (i) E [(An(g) - E[An(g)])Q]l{|An(9)—E[An(9)]|<\/ﬁ}} =0 () Vgeg

my

(i) P(120(9) — BBl > Vi) =0 () Yo e

n

(iii) There exists 7 > 0 such that

My

B[(80(9) = B0 a0 s, <rvr)] =0 (VP_) Vg eg.

(L) E|(Valo) = EVa@DL {0 aisevir}] = (f;) Vg e G,e>0

(C) There exists a function ¢ : G — R such that

7]7;"00@ (Va(9), Va(R)) — c(g,h),  Yg,heg.
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It is also possible to use the following condition (L*) instead of (L). The Lyapunov con-
dition (L*) implies the Lindeberg condition (L) and can be used as a slightly stronger

condition which is easier to verify.

(L*) 36 > 0 : Wpﬁn’;mE [(Va(9))**] = 0 Vg e g.

Condition (A) is implied by a simpler condition.

Lemma 3.1.3. Suppose (A1), (V) and (D0) are met. Then, Condition (A) is fulfilled if

B[] =o(2)  wgeq, (3.1.4)

n

or if Var (A,(g)) = o(pn/my), respectively.

For part (i) and (ii) of (A), this lemma can be verified by direct calculations. For part
(iii), a more sophisticated argument is needed. In fact, for our applications we will always
check rather than (A).

All these conditions introduced and discussed so far will be used to establish fidis conver-

gence of the empirical process (Z,(9))geg-

Theorem 3.1.4. Suppose the conditions (A1), (V), (MV ), (MXy) for somek € N, k > 2,
(D0), (A), (L) and (C) are satisfied. Then the fidis of the empirical process (Z,(g))qeg

converge weakly to the fidis of a Gaussian process with covariance function c.

The statement remains true if (A) is replaced by (3.1.4)).

3.1.2 Process convergence

Convergence of the whole process (Z,(g)),e¢ can be concluded if in addition to fidis
convergence the process is asymptotically tight or asymptotically equicontinuous.

First, we consider conditions that ensure the asymptotic tightness of the empirical pro-
cess. Later on in this section, we also discuss asymptotic equicontinuity. As usual in
empirical process theory outer probabilities and outer expectation are denoted by P* and

E*, respectively.

Definition 3.1.5 (Asymptotic Tightness). The sequence (Z,)nen is asymptotically
tight if for all € > 0 there exists a compact set K C [°(G) such that

limsup P*(Z, ¢ K°) < ¢ V6 > 0.

n—oo

Here K° := {f € 1°(9)| infrek die(g)(f, k) < 5} denotes the set of all elements of [°(G)
with a distance less than or equal to 6 to K with respect to the metric djg)y on [®(G).

The following conditions are needed to show the asymptotic tightness of (Z,(g))geg-
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(B) E[|Va(9)!] < oo for all g € G, n > 1 and the paths of the process (V,,(g))4eg are
bounded, i.e.
Vo(G) :=sup |V,(g)| < o0 a.s.

g€eg

My

an* Vn(g)]l{vn(g)x\/ﬁ} — 0 Ve >0

(L1)

(D1) There exists a semi-metric p on G such that G is totally bounded (i.e. for all € > 0
the set G can be covered by finitely many balls with radius € w.r.t. p) and

limlimsup  sup M [(Vn(g) - Vn(h))2] =0 (3.1.5)

010 n—oo 9,h€G,p(g,h)<é Pn

(D2)

5
lim lim sup/ \/log Nyy(e,G,Ly)de =0,
0

00 n—oo
where Nj(e, G, L) denotes the e-bracketing number of G w.r.t. L3, i.e. the smallest
number N such that there exists a partition (G, ;)i<k<n. of G for each n € N

satisfying

Dnpel sup (Vi(g) — Vi(h)?| <%, V1<k<A..
Pn PRSI

Condition (B) and (L1) essentially bound the size of the set G. Roughly speaking, con-
dition (D1) ensures the continuity of the paths of the limit process w.r.t. p. Condition
(D2) is most restrictive and limits the complexity of G in terms of the bracketing number,
which is an entropy measure, see e.g. [Van der Vaart and Wellner| (1996, Section 2.11 for
details.

If for all € > 0 the partition of G in (D2) does not depend on n, then the condition
in (D1) can be omitted. More precisely: if for all ¢ > 0 there exist a partition (G}),<<x.

of G which does not depend on n and which satisfies

m"E{ sup (Va(g) — Vn(h)ﬂ <2 Vi<k<N.,
DPn g,heg;,

then (D1) and (D2) can be replaced by the following simpler condition: There exists a
semi-metric p on G such that G is totally bounded and

é =
/ log N, de < o0
0

for some § > 0 (cf. Theorem 2.11.9 in [Van der Vaart and Wellner| (1996))).
Instead of (L1), the more restrictive condition (L.2), which essentially restricts the size of
Vo (G), can be used.



3.1. General abstract setting 28

(L2)

T g | (V@)

2
Pn 1{%(9)%@}} —0 Ve > 0.

An advantage of condition (L2) is that it also implies (L). (L1) is a weaker condition
than (L2) and is sufficient to proof tightness in Theorem below. For the proof of
the equicontinuity in Theorem considered below we will need the stronger condition

(L2) anyway, which is why we introduce this condition here.
Lemma 3.1.6. Condition (L2) implies (L) and (L1).
These conditions allow us to conclude asymptotic tightness of (Z,,(g))geg-

Theorem 3.1.7. Suppose the conditions (A1), (V), (MXy) for some k € N, k > 2, (D0),
(B), (L1), (D1) and (D2) are satisfied. Then, the process (Z,(g))qeg is asymptotically
tight.

Alternatively to the asymptotic tightness of the process, one can consider asymptotic

equicontinuity to achieve process convergence.

Definition 3.1.8 (Asymptotic Equicontinuity). The process (Z,(g))4eg is asymptoti-

cally equicontinuous with respect to a semi-metric p if

Ve>0,n>0§|(5>0:limsupP*< sup |Zn(g)—Zn(h)|>€> <.

n—r00 g9,h€G,p(g,h)<d
We use the following condition to establish asymptotic equicontinuity of (Z,(9g))geg-

(D3) Denote by N(e,G,d,) the e-covering number of G w.r.t. the random semi-metric

Mn 1/2
%@mz(lzmmm—mmw)

n =1

with V*

n,.’

1 < i < m,, being independent copies of V, 1, i.e. N(e,G,d,) is the

smallest number of balls with d,,-radius € which is needed to cover G. We assume

5
lim lim sup P~ (/ \/log(N(g, G,d,))de > 7') =0, V1 > 0.
610 0

n—o0

The condition (D3) ensures that the parameter set G is not too complex by restricting
the covering number, which is an entropy measure. A, possibly, simpler criterion to verify
condition (D3) can be given using the Vapnik-Cervonenkis (VC) theory. The condition
(D3) is satisfied if G is a so-called VC-class or a VC-hull class (cf. [Van der Vaart and
Wellner| (1996), Section 2.6, or Drees and Rootzén| (2010), Remark 2.11).

Technically, the following measurability condition is also required in the proof of the next

theorem.
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(D4) For all 6 > 0,n € N, (e;)1<i<[m,/k] € {—1,0, 1} /¥ and a € {1,2} the random

variable
[mn /K]

sup Z ej(vrzj(g) - V;j(h))a

9.:h€G,p(g,h)<  j=1

is measurable, where V*., 1 < ¢ < m, are independent copies of V,, and k is

determined such that condition (MXy) holds.
However, this measurability condition (D4) is implied by the simpler condition (DO0) in-
troduced above. This is due to the fact that separability implies the measurability of the

supremum in (D4). Therefore, we do not need to assume the condition (D4) separately.

Theorem 3.1.9. Suppose the conditions (A1), (V), (MXy) for some k € N, k > 2, (D0),
(B), (L2), (D1) and (D3) are satisfied. Then the process (Z,(9))geg is asymptotically

equIcontInUoOUS.

The previous theorems on convergence of fidis and on asymptotic equicontinuity or asymp-

totic tightness can be summarized to one theorem about the process convergence of

(Zn(g))geg'
Theorem 3.1.10. If one of the two sets of conditions

(i) (A1), (MXy,), (MV), (DO), (A), (C), (B), (L2), (D1) and (D3),

(ii) (A1), (MX,), (MV), (DO), (A), (L), (C), (B), (L1), (D1) and (D2)
are satisfied, then the empirical process (Z,(g))geg converges weakly to a Gaussian process

(Z(g))geg with covariance function c.

The statement remains true, if one replaces condition (A) by condition ([3.1.4)).

A special case of the theory considered in this chapter is the more specific situation in
Drees and Rootzén| (2010) with cluster functionals. With the special choice V,,;(f) =
(pn/(nvn))l/zf(Xm(i,l)mH, <..Xnir, ), for a measurable cluster functional f, where v, =
P(X,1 # 0), we are exactly in the situation from Drees and Rootzén! (2010). All examples
listed there are therefore examples for the application of the theory derived here.

In contrast to the typical PoT-settings in the literature, in the setting considered here,
extreme value theoretical situations can also be taken into account, in which also small
(not extreme) observations are included in the statistics. An application of this feature is
given by the projection based estimator in Chapter 5} Often it is required that there are
only a few extreme observations that are not equal to 0 and only extreme observations
can have an impact on the statistics considered. In our setting, only p, — 0 is required,
i.e. most blocks are equal to 0, but in the non-zero blocks many non extreme observations
can be considered and can have an impact on statistics. Also in this respect the theory
of this chapter offers an important generalization.

So far, we introduced fairly general and abstract limit theorems for the empirical process
in . In the next section, we analyze the more specific (but still quite general) case

of sums of sliding blocks statistics.
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3.2 Sliding blocks limit theorem

Sums of sliding blocks statistics are a special form of the random variables V;, as introduced
before. They can be used for the analysis of statistics based on overlapping blocks as
introduced in the beginning of this chapter. We will call the following V,,; a sliding-
blocks-sum or, more shortly, sliding-blocks:

1 & 1

Z g(Xn,(ifl)rnJrja e Xn,(ifl)rnJerrsn) Z g(Wn,(ifl)rnJrj)a (3.2.1)

Voilg) = ba(9) = N bu(9) j=1

where b,(g) > 0 is a normalization constant for each g € G with b,(g) — oo for n — oo.
For simplicity of notation, recall W,,; = (X, j, ..., Xy j+s,—1) from (3.0.1). Here again,
r, denotes a sequence that grows faster than s, but slower than n. Furthermore, r, is
chosen such that it is unlikely to have any extreme value in a sequence of r,, consecutive
observations of X, ;.

In this setting, one has
Pn = P(Elg €g: Vn(g) 7A O) < P(Elg € g7Z € {17"‘7rn} : g(Wn,z) # 0)

In usual statistical applications one has g > 0 for all g € G. Then, the inequality is sharp.
In this section, the normalization is given by b,(g). In order to see where the standard-
ization has an impact on the processes and conditions of the previous section one has to
replace V},;(g) by bn(g)™! 2 9(Wh (i—1yrn+5)- The use of normalizations b,(g) depend-
ing on g € G allows that limit results can be achieved for different normalizations, which
increases the flexibility of the results w.r.t. G. An example of an application where this
is necessary is the sliding blocks estimator for the extremal index in Section [4.2] where
numerator and denominator are sliding blocks statistics with different normalizations but
a joint convergence is needed.

For the following more specific limit results for the sliding blocks sums, we require p,, — 0
and /pnbn(g) — oo for all g € G. The previous condition implies b,(g) — oo, since
pn — 0. The normalization of the empirical process Z,(g) is \/pPnbn(g) and should be
proportional to the square root of the expected number of observations X, ; for which an
i€{j,....7 +r,— 1} exists such that g(W, ;) # 0, i.e. the number of observations which
have an impact on V,,;(g). In order to expect a convergence to a Gaussian process, the
common assumption seems necessary that the normalization converges to oo.

A family of functions G with g : BN — R for all g € G is considered. We use the usual
embedding of E", n € N, in EN by the map E"™ 3 (7;)1<i<n + (7;)ieny € EN with z; = 0

for ¢+ > n. Instead of p,, the normalizations

Qg = P(g(Wn1) #0) and qg, == P(3g € G : g(W1) # 0) (3.2.2)

are also used and, as for p,, we require gg, — 0. For g > 0 one has gg,, < p,, such that
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gg.n — 0 already follows from p,, — 0.

For most statistical applications, functions g > 0 that satisfy g(0) = 0 are of interest
where 0 represents the null element 0 := (0,...,0) € E™ for all n € N. This means that
g maps to 0 whenever no observation different from 0 appears in the block of length
S,. This condition on the function g is weaker than the conditions of cluster functionals,
since all observations, including those with value 0 after the last or before the first extreme
observation, can have an effect if there is only one extreme observation in the block. An
application where this is needed is the projection based estimator in Chapter

In this section, we use the approximating random variables

1 Tn—In

g Wn, i—1)rn+3/)
bn(g) Jzz:l ( (i-1) +J)

Vn,l’(f]) =

where [,, = o(r,) and [, — oo. In particular, f/m 18 (Xo,(im1)rmt1s s X, (im1)rn—ln+5n )-
measurable. The sequence [, describes the length of the small block A, = V,, — V,,, which
is used in the big block, small block arguments in the abstract theory. Here, s, < [,
is additionally required, such that the cut block of length [,, ensures that the gap of
observations between two blocks (X1, ..., Xy r4s0—1,) and (X;, 41, ..., Xop,4s,-1,) €xists
and is not entirely covered by the overlap of length s,.

In the previous paragraphs we have imposed some conditions on sequences and their
convergence rates which are collected along with other assumptions in the following con-

ditions.
(A) (Xn.i)i<i<n is stationary for all n € N.

(A2) The sequences l,,, 7, s, € N, p,, and b,(g) > 0, g € G, satisfy s, < I,, = o(r,),
rn =o0(n), p, = 0and r, = o(minfgeg bn(g)>.

For the above defined Vm and V,,; we can summarize the mixing condition (Mf/) and
(MX}) by one mixing condition (cf. Lemma (3.1.2)):

(MX) (n/r,)BX — 0.

Nyln—Sn

To recap all the sequences that appear and in order to give a compact overview, numerous
sequences are summarized in Table [3.1]

Formally, the condition s, < [, is enough to prove the following results. However, the
smaller [, — s, the stronger is the S-mixing condition (MX). Therefore, it seems appro-

priate to choose s, such that [, — s,, — oo to weaken the mixing condition.

Example. Consider the typical case X,; = (X;/un)lyx,|>u.} for a stationary time
series (X¢)iez and some sequence of thresholds w,, — co. Then, only the extreme values
of X, i.e. those with || X;|| > u,, have an influence on the value of g(W,,1). In this case
the f-mixing condition (MX) is satisfied if (n/r,,) Nifln_sn — 0 where 3 are the S-mixing

coefficients of the time series (X;)icz. However, the weaker condition (MX), where the
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Table 3.1: Overview of sequences occurring in Chapter @

i)1<i<n, suffices, i.e. only the mixing behavior of

)

f-mixing coefficients corresponds to (X,

the extreme part of the distribution of the time series is relevant, not the mixing properties

of the whole (non-extreme) time series. Condition (MX) is always implied by the stronger

corresponding mixing property of the underlying time series (X;);ez.
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This choice of X, ; is used in the applications dealing with the estimation of cluster indexes
in Chapter [4] o

In this sliding blocks setting, we can specify

1 &

N> ; (Vai(9) — E[Vai(9)])

1 MmnTn

~ Vbaba(e) &

with m, = |(n — s, + 1)/r,] and

Zn(Q) =

1 Tn d In

Yoo g(Way) = Zg

An(g) = Valg) — ‘N/n(g) - bn(9) .,

Furthermore, we define

n— sn—i-l

Zn(g) = \/ﬁb =

— Elg(W;)), geg. (3.2.3)

We will see below that under suitable conditions the last n—s,,+1—m,r, < r, summands
in definition are asymptotically negligible.

The more spemﬁc setting allows us to derive simplified conditions for the convergence
of the empirical process Z,,. Such a constellation is considered in the following theorem.
Beforehand we rewrite condition (A), (L), (C) and (D1), (D2) for the more specific setting
here, in particular, including the normalization constants b,(g) and the more concrete
form of V,, and A,,. (Here, only the conditions are displayed where something changes
compared to the previous section. Note that, with slight abuse of notation, we name
these conditions as before even if they are less general. If, in the following sections, these

conditions are cited, they refer to the conditions from the previous section. In the context

of sliding blocks V,, ;(g) defined in (3.2.1)) is used.)

(A) (i) It holds for all g € G that

Z 7' - W ) 1 l :|
= {1520 0Wo )~ BloWo DI yrtn(o) |
. (p (9) )
My

(9(W,s) = ElgWa))| > Vinbnle)) =o(-)  woeo.
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(iii) There exists 7 > 0 such that

E[(g(g(w"’j) - E[g<W"’1)])) {15, oo [g(wn,n])swmnw)}]
- o<\/p_”b”@) Vg €G.

(L) It holds for all g € G and all € > 0 that

E{(i(g(Wm) - E[g(Wml)D)Qﬂ{iZ?L(g

= (Ww-)—E[g(m,mnxmbn(g)}}

_ O<pnbn(g)2>.

My

(C) There exists a covariance function ¢ : G — R such that
Cov( g(Wh.i h(W, )—>cg,h Vg, h € G.
oy (900 2 (9:1)

(D1) There exists a semi-metric p on G such that G is totally bounded and

limlimsup sup m"El(Z (thg)g(wn,j) - bnzmh(wn,j))ﬂ —0

n—co  g.heG,p(g,h)<s Pn =
holds.

(D2) It holds that

hmhmsup/ \/logNH (e,G, LY)de

n—oo
where Njj(e, G, L) is the bracketing number, i.e. the smallest number N, such that

for each n € N there exists a partition (G;, ;)i1<k<n. of G such that

mep| (3 (50N

7j=1

< g2 V1 <k<N..

In the first theorem of this section, we consider the special situation of uniformly bounded
functionals g, i.e. there exists a function gmax := sup,cg |g|, which is bounded. We will
refer to this theorem as sliding blocks limit theorem for bounded g, one central result of
this chapter. The basic idea of this theorem and the subsequent corollary is comparable
with Drees and Rootzén| (2010), Corollary 3.6. However, this theorem holds in a much

more general setting.

Theorem 3.2.1.  (a) Let gmax = supyeg|g| be bounded and measurable. Suppose (A),
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(A2), (MX) and (DO0) are satisfied. In addition, assume

E[(i 1{g<wn,j>¢0}>2] = O(W> Vgeg. (3.2.4)

j=1 Mn,

Then, the conditions (3.1.4), (B) and (L2) are satisfied. Moreover, it holds that

sup | Zn(9) — Zn(g)| 2 0. (3.2.5)

geg

If, in addition, condition (C) is fulfilled, then the fidis of each of the empirical pro-

cesses (Z,(9))geg and (Z,(9))geg converge weakly to the fidis of a Gaussian process

(Z(g))geg with covariance function c.
(b) If, in addition to all assumptions in part (a), one of the sets of conditions

(i) (D1) and (D3) or
(it) (D1) and (D2)

is fulfilled, then each of the empirical processes (Z,(g))geg and (Z,(g))geg converges

weakly to a Gaussian process with covariance function c.

If for all ¢ > 0 a partition of G in condition (D2) is used which does not depend on n,
then the condition in (D1) can be omitted (cf. [Van der Vaart and Wellner| (1996)),
Theorem 2.11.9, and the discussion directly after the definition of condition (D2)). Then,
to verify the condition set (7i) in the previous theorem, it suffices to show (D2) with a
partition independent of n and the total boundedness of G.

If rhggn = O(p,) is valid, then p, can be replaced by r,¢g, in any condition of the
previous theorem. In this case, the new condition (3.2.4)) can be verified at the level of
the functions g alone, without taking (V,,(g)),eg into account.

The idea of the proof of Theorem is based on the sum structure of V,,(¢g) and on the
fact that A, is a shorter sum of the same form as V,,;. The choice of b,(g) for each g € G
is central for condition (|3.2.4)).

In the previous theorem, we required the conditions (B), (L1), (D1), (D2) and (D3) for
the whole set G. Consider the special case of only finitely many different normalizations
by, ..., bk, i.e. by(g) € {by,...,bx} for all g € G. We denote the subsets of G which contains
all functions ¢ with the same normalization by G; :={g € G : b,(9) =b;} fori =1, ..., K.
By the usual arguments for tightness and equicontinuity it is enough to establish the
conditions (B), (L1), (D1), (D2) and (D3) for each G;, i = 1, ..., K, separately. Then, the
asymptotic tightness or asymptotic equicontinuity holds for G as the finite union of these
families G;, 1 =1, ..., K.

Example. To give an idea how ¢ and the corresponding normalization b,(g) could look

like, we give a short example in anticipation of Section There, we consider the
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bounded functions

gl(xla .. al‘sn> = ﬂ{maxlgigsn Ii>1}7 g2(x17 L al‘sn> = 1{x1>1}

to analyze the sliding blocks estimator of the extremal index. Here appropriate normal-
izing sequences are b,(g1) = \/Mns, and b, (g2) = \/my,. Note that already in this rather
simple example, the normalizing sequences converge at a different rate for different func-
tions. Indeed, it is somewhat archetypical that the event {g(W, 1) # 0} either depends
on all observations of the block W, ; (as for g = ¢;), or it only depends on a single fixed
observation X, ; (as for ¢ = ¢»); usually, the normalizing factor b,(g) is larger by the

factor s,, in the former case. o

So far, we have only discussed the case of bounded functions g, which is sometimes too re-
strictive. This assumption can be dropped if the moment condition is strengthened.
For simplicity’s sake, in the case of unbounded functions and for the process convergence
(not for the fidi convergence), we assume that all functionals are normalized in the same
way. The conclusion of the next theorem about unbounded g, is basically the same as
of Theorem [3.2.1] Hence, we will refer to this theorem as sliding blocks limit theorem for

unbounded functions.

Theorem 3.2.2. (a) Suppose (A), (A2), (MX), (D0) and (C) are met and gmax s not
necessarily bounded. In addition, let mul,P(V,(lg]) # 0) = o(r,b2(g)pn) for all
g€ g and

EK; \g(Wn,i)QM] _ 0(1’”;’5@), VgeGq, (3.2.6)

n

for some § > 0. Then the conditions (3.1.4), (B) and (L) are satisfied. Moreover,
the fidis of (Zn(g))gec and of (Z,(g))geg converge to the fidis of the Gaussian process

(Z(9))geg defined in Theorem|3.2.1|

(b) If, in addition, b,(g) = b, > 0 is the same for all g € G and n € N and for some
positive sequence (b, )nen, (3.2.6) holds for g = gmax and the conditions (i) or (ii) of

Theorem are fulfilled, then the processes (Z,(9))geg and (Zn(g))geg converge
weakly to (Z(g))geg uniformly.

Note that usually P(V,,(|g|) # 0) = O(p,); in particular, this holds true if g has constant
sign. Then the condition m,l,P(V,(|g|]) # 0) = o(r,b*(g)p,) is fulfilled for the typical
behavior of the sequences outlined in Table As mentioned above, usually it suffices to
consider just two different normalizing sequences, say b, and b, . In this case, one may
apply Theorem separately to (Z,(g))seg, for ¢ € {1,2} with G; := {g € G|b,(g) =
bni, ¥Yn € N} to conclude that both processes are asymptotically tight. This in turn
implies the asymptotic tightness of (Z,,(g))4eg and thus, in view of part (a), its convergence
to (Z(g))geg- Hence, in fact the extra condition on b,, in part (b) does not further restrict

the setting in the vast majority of applications.
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The condition is not always easy to check for 4 > 0 and could be weakened to
0 = 0. In this case, one has to assume condition (L) additionally and one can omit the
weak technical condition my,l,P(V,(|g]) # 0) = o(r,b%(g)p,). This leads to a slightly
modified version of Theorem [3.2.2]

Theorem 3.2.3. (a) Suppose (A), (A2), (MX), (D0) and (C) are met and gmax is not

necessarily bounded. In addition, assume condition (L) is satisfied and

[(Z\g )2] O(%;jg)), veca. o

Then, the conditions (3.1.4) and (B) are satisfied and the fidis of (Z,(9))geg and
of (Zu(9))geg converge to the fidis of the Gaussian process (Z(g))geg defined in
Theorem [3.2.1.

(b) If, in addition, gmax = SUp,cg |g| is measurable, by,(g) = b, > 0 is the same for
all g € G and n € N, (3.2.7) holds for g = gmax and the conditions (i) or (ii) of

part (b) in Theorem are fulfilled, then the processes (Z,(9))geg and (Zn(g))qeq
converge weakly to (Z(g))geg uniformly.

Conditions and (C) (or, in the general setting, (A), (L) and (C)) are not always
easy to check. In fact, (A) (or alternatively (3.1.4))) in particular causes difficulties in
the application. Therefore, we will state three lemmas, which can be used to verify these
conditions under some stronger assumptions in the sliding blocks setting. For sliding
blocks sums, the following criterion is often useful to verify condition and thereby
(A):

(S) For all g € G and n € N one has

ZP W) # 0, g(W, mk)%m:o(w).

n

Lemma 3.2.4. Suppose gmax is bounded. If condition (S) is satisfied, then (3.2.4]) holds.
In particular, (3.1.4) is satisfied.

The statement of Lemma [3.2.4] can be reformulated with a condition based on conditional
probabilities. For this, the additional assumption r,q,, = O (p,) is necessary. From the

definition of p,, and ¢g,, it directly follows that

—P<EIgEQ V nz 7&0>

< P(Elg €g,iedl, ...,rn} : g( m) + 0) = O(rnqgn)-

If ¢ > 0, the inequality becomes an equality. The assumption 7,9, = O(p,) therefore

seems quite natural and reasonable.
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(S*) Forallge G, ne Nand k € {1,...,r,} there exists

egn(k) = P(g(Wyx) # 0| g(Wna) #0)
such that 327, e, (k) = O (bn(g9)*/my).

Lemma 3.2.5. Suppose gmax is bounded. If condition (S*) is satisfied and rn,qy, = O (pn)
for all g € G, then (3.2.4) holds. In particular, (3.1.4)) is satisfied.

Example. This result somehow generalizes the proof of condition (C) in Drees et al.

(2015)). In the cited paper it is p, = 7 n, bn(g) = /My, for all g € G and g(W,, 1) # 0 is
equivalent to X,,; # 0. With these conditions, (S*) matches the condition in Drees et al.
(2015). o

Under some more restrictive conditions, but still quite general, one can show, that the

modified condition (S*) also implies condition (C).

Lemma 3.2.6. Suppose gmax s bounded and lim,,_,(rnqyn)/pn exists for all g € G and
let condition (S*) be satisfied. Assume lim,, oo > 1" €gn(k) = 200, limy, o0 €40 (k) < 00

and b,(g) = /m, for all g € G.

(a) If Elg(Wyr)h(Wy1)|h(Wp1) # 0] converges for all g,h € G and all k € N, then

condition (C) is satisfied with covariance function given by

( lim q’“”r”) 3 lim E[g(Wo)h(Wa) | (W) # 0].

Dn 7/ kez

(b) If (Xe)eez is reqularly varying, X,; = (Xi/ua)L{xi>unt, P(g(Wna) # 0) is of the
same order as P(||X1] > uy,), and g(W, 1) # 0 implies ||X1|| > wu,, then the limit

can be specified in terms of the tail process Y = (Yi)iez as

. dh,nTn (HXI ’ > un )
| : E Elg((Yy)ez)h((Y; .
(nl_{go o ( ( nl) # O P t teZ (( t+k)t€Z)]

The condition that P(g(W,.1) # 0) is of the same order as P(||X1]| > w,) and that
g(Wp1) # 0 implies || X;]| > w, is a real restriction. However, this lemma covers func-
tions g including 1y x,|>u,}. In particular, so-called runs estimators and sliding blocks
estimators with such indicators are still covered. Some examples for the application of
this lemma are given by the runs estimators introduced in Chapter [4] and the estima-
tors in Chapter 5] The advantage of the previous lemma is that one does not have to
treat the covariance of sums of length r,, of sliding blocks, but one can consider only the
convergence of expected values of single, shifted sliding blocks. With this, we close the

discussion of the conditions for the sliding blocks limit theorems.
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3.3 Sliding versus disjoint blocks

The previous section was devoted to general limit theorems for sliding blocks statistics.
In this section, we want to compare the asymptotic variance of a sliding blocks statistic
for a single functional ¢ with that of the corresponding disjoint blocks statistic.

As mentioned in the beginning of Chapter [3| in extreme value statistics, one may average
either statistics g(Ws,41), 0 <@ < |n/s,] — 1, of disjoint blocks or statistics g(W,,.;),
1 <1< n—s,+1, of overlapping sliding blocks. The main difference is that sliding
blocks use much more data, but these blocks are also much more dependent, so it is
unclear which method is more advantageous. It has been suggested in the literature
that the latter approach may often be more efficient, see, e.g., Beirlant et al. (2004),
p. 390, for such a statement about blocks estimators of the extremal index. However,
the asymptotic performance of both approaches has been compared only for a couple of
estimators, while general results showing the superiority of the sliding blocks estimators
are not yet known in the peak-over-threshold (POT) setting. Robert et al. (2009) have
shown such an advantage first in the literature. They proved that for some specific type
of estimators of the extremal index (a different estimator than considered in Chapter |4))
the version using sliding blocks has a strictly smaller asymptotic variance than the one
based on disjoint blocks, while the bias is asymptotically the same. In a block maxima
setting, Zou et al. (2021) proved that, under quite general conditions, an estimator of
the extreme value copula of multivariate stationary time series is more efficient if it is
based on sliding rather than disjoint blocks. The same observation in the block maxima
approach has been made in Bucher and Segers| (2018a), Bucher and Segers (2018b) for
the maximum likelihood estimator of the parameters of a Fréchet distribution based on
maxima of sliding or disjoint blocks of a stationary time series with marginal distribution
in the maximum domain of attraction of this Fréchet distribution. Also, Biicher and
Jennessen (20200) observed in the block maxima setting for their blocks estimators for
the limiting cluster size distribution that the sliding blocks estimator outperforms the
disjoint blocks version.

Apart from the mentioned examples, so far; the consideration of sliding blocks is not very
common in the literature. This could be due to the fact that there is not much theory
for the asymptotic analysis of sliding blocks. E.g. |Northrop| (2015) did not consider any
asymptotics for his sliding blocks estimator due to the complex theory. However, now the
theory in Section gives a new tool to derive such asymptotics in the POT setting.
We will derive a general result for the comparison of the performance of sliding and disjoint
blocks statistics in the POT setting. The results are the counterpart to a result of [Zou
et al.| (2021), who recently established a general result including conditions when sliding
blocks are better than disjoint blocks in the block maxima setting.

For this purpose we consider the estimation of a quantity £ which depends on the time

series (X¢)iez. We will compare the asymptotic variance of the disjoint blocks estimator
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with the asymptotic variance of the corresponding sliding blocks estimator. The require-
ment for this is that both estimators have asymptotic normal distributions, or at least
belong to the same scale family of distributions and are unbiased. We will focus on the
case of asymptotic normal distributions. For the disjoint blocks estimator such a limit
distribution can be derived with the abstract setting from Section [3.1l For the sliding
blocks estimator such a limit distribution can be derived with the theory in Section |3.2|
The use of the theory from Chapter [3| allows the derivation of comparable conditions for
the asymptotic normality of both estimators.

Note that, here, we use a different parametrization of the normalization constants, partly
because the probability p, used in the normalization above refers to the whole process
and seems inappropriate in the present context, partly to facilitate the comparison of the
asymptotic variances, a more detailed explanation is given below.

We start with the consideration of the disjoint blocks statistic

[n/sn]

Z g n,(i— l)sn+17-~-7Xn,isn—1)- (331)

=1

T(9)

nvnan

Here we define v,, := P(X, 0 # 0) — 0. Recall, that a typical choice for X,,; would be
Xn,i = (Xi/un)Lygx,|>u.y for a sequence u,, with v,, = P(||X1] > u,) — 0, but the X, ;
are more general here.

The sequence a,, is an additional normalization sequence which ensures that the expected
value E[T%(g)] converges in R. This sequence a,, increases the flexibility of the result
presented here. In some application, e.g. for the extremal index in Section [£.2] we have
a, = 1 for all n € N, but a,, — oo is also possible.

The corresponding sliding blocks statistic is

n—snp+1

T(g) i= —— gy Xpids, —1)- 3.3.2
n(g> NV Sl ZZI g n,i n,i+8Sn 1) ( )
Again, we will use the notation W,,; = (X, ..., Xnits,—1) from (3.0.1)). Both statistics
shall be estimators for the same value £ € R, which depends on the distribution of the

time series (X;)iez.
The normalization of T(g) is larger than the normalization of T¢(g) by the factor s,,. This
is necessary such that one can expect convergence of the expectation. If the expectation

of the sliding blocks statistic converges to some value ¢ € R, i.e.

B30 = ——BloWu)) 2 (333)
then also
BT (g)] = ——Elgw, ) "0 _ L gy, gy ol
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Moreover, the difference between both expectations is asymptotically negligible if

B[180) - T0)] | = —— 1B lg(W,)

SnUnln

Sn{”J st o m) (3.3.4)

n

n Ls,

is of smaller order than (nv,)~'/? (cf. (3.3.5)), (3.3.6)), which, in particular, holds under
the basic condition s,v, — 0. Thus, if the bias for one of the statistics is negligible, then
T?(g) will be a more efficient (i.e. has a smaller asymptotic mean squared error) estimator
than T%(g) if its asymptotic variance is smaller.

If the normalization of the sliding blocks statistics was of another order than s, times
the normalization of the disjoint blocks statistic, then the expectation of one estimator
would no longer converge to £ and both statistics would estimate different things. Since
we want to compare the corresponding statistics for the same estimation problem, this
normalization is the only possibility.

For the comparison, we need the asymptotic variances of both statistics. These asymptotic
variances are given by the variances of the corresponding asymptotic normal distributions.

For the sliding blocks statistics, the weak convergence

VAt (Ti(g) — E[T(9) (3.3.5)
1 n—Ssn

= NS ; (g(Wi) — Elg(Wn1)]) = N(0,c)

can be proved with Theorem [3.2.1] part (a). In the setting of Section we have m,, =
L(n = s +1)/ra], pu = P(Zi21 9(Wii) # 0), and we choose by (g) = by, = (nvn/pa) ' 2ans,
with v, = P(X,,1 # 0). The precise conditions are stated in the next corollary.

Corollary 3.3.1. Suppose the following conditions are fulfilled:
(1) (Xn.i)i<i<n s stationary for all n € N.

(ii) The sequences l,, 1, S, € N, a, and p, satisfy s, <1, = o(ry), r, = o(n), p, — 0,

Tn = 0(\/71_%571%) and (n/rn)ﬁifln—sn -0

(iii) g is measurable and bounded.

Tn 2
(iv) EKZ%(MWO}) ] = O(rnvnalsy).
j=1

(v) ) as defined in (3.3.8) below exists in [0, 00).
Then, convergence (3.3.5)) holds.

To prove this corollary, simply insert the setting here into the conditions of Theorem [3.2.1],
part (a), no additional calculations are required. One may drop the assumption that g is
bounded if condition (iv) is adapted in the same way as in Theorem [3.2.2]
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For the disjoint blocks statistic,

Vi, (Tig) = E[T{(g)]) (3.3.6)
1 [n/sn ] @
E—— ll/n i—1)s -k Id/n — Oa
T 2 00Wagnin) = Bl ) = A0, )
holds under suitable conditions thanks to Theorem [3.1.4] In the corresponding setting
of this theorem we use V,,;(g) = (pn/(nv,a2))/? Zr"/s" I W (= Dsnt(i—1yrat1), 1 <1 <

j=1
rn/Sn

my, where p, = P(X20" g(Wh (j-1)s,41) # 0), assuming that r, is a multiple of s,.
Moreover, we choose a sequence [,, n € N, of multiples of s, and we define Vm(g) =
(pn/(nvya2))/? Z(r”_l" )/ sn IW (j=1)sn+(i—1)rn+1) as the approximating sums.

The precise conditions under which holds in the setting of Section are given
in the next corollary, again the proof is only a direct application of the theory in Section

B.IT

Corollary 3.3.2. Suppose that, in addition to (i) and (iii) of Corollary the follow-

ing conditions are satisfied:

(ii*) For the sequences l,, 1y, s, € N we have that l,, = o(ry), r, = o(n), l, and r, are
multiples of sn, pn — 0, 7, = 0(,/m)n) and (n/rn) fln s, — 0.

In/sn

(iv*) E[( > 1{g<wn,j>¢0})2] = O(Tn“"ai)'

J=1

(v*) D as defined in (3.3.7) below exists in [0, 00).

~

3

S

M3

* . —
(UZ ) E[ (g(Wn,(]—1)87L+1> Eg(WTL,l>) {|2Tn/sn(g W ,(j—l)sn+l)7Eg(Wn,1))|>€ ’rvnan}

J

;L

o(rpvna?) for all e > 0.
Then, convergence (3.3.6) holds.

Condition (iv*) could be weakened to condition (A). Alternatively, one could prove the
asymptotic normality of T%(g) using Theorem 2.3 of |[Drees and Rootzén| (2010) with 7,
replaced by s, but the following representation of the asymptotic variance ¢! simplifies
the comparison with ¢(*).

Recall that the sequence r,, is only needed in the proofs which use the big blocks, small
blocks technique, i.e. it has no operational meaning, but it must be chosen such that the
conditions of Theorem and Theorem [3.1.4] respectively, are met. According to the
next lemma, we may assume w.l.o.g. that r, is a multiple of s,, where the multiplicity
depends on n. Note that r,/s, must tend to oo if Theorem shall be applied. The
assumption p, =< r,v, is not strong, it holds true in all examples considered in this thesis

and all examples known to the author.
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Lemma 3.3.3. Suppose p,, < r,v, and the conditions of Theorem Theorem
and Theorem |3.1.4| with V,,:(g9) = (pn/(nv,a ))1/22”"/5"J I W (=1)sp+(i—1)rnt1) @re met

by some sequence r,. Then, these conditions are also fulfilled for r’ = |7,/Sn]Sn.

If the convergences ([3.3.5]) and (3.3.6)) hold by the Corollaries[3.3.1|and [3.3.2] respectively,

then the asymptotic covariances can be calculated as

1 T'n/sn
d
old) — = lim o Var ( > 9(Whisns1 ) , (3.3.7)

¥ = lim ———Var <Zg ) : (3.3.8)

n—00 Un82 a?

In this section, we changed the parametrization of the normalization. Namely, we use
/MU spay, instead of |/pnb,(g) for the sliding blocks in and /nu,a, instead of
\/PnMnay for the disjoint blocks in (3.3.6). This has mainly two reasons: First, the
normalization applied here increases the comparability of the normalization for 77(g) and
T4(g). With this notation the difference in the normalizations is obvious. Second, T%(g)
and T%(g) are only pseudo-estimators, since they depend on v, which in turn depends on
(Xi)iez- Later on, we will replace this v, by an estimator. With the parametrization of
the previous section, we would have to estimate p,, (or ¢,,) which depends on g. This
would make it difficult to compare the result for different g and it would make the analysis
of the variances much more sophisticated.

Note that for the disjoint blocks it would also be possible, and somehow more natural,
to apply the theory of Section with V,,.i(9) = (pa/(nvna2)) Y 2g(W, (i—1)s,+1). But
in this case, we had p, = O(s,v,) and m, = |n/s,|. For the comparability of the
convergence results for the sliding and disjoint blocks statistics, we have chosen the above
representation for the disjoint blocks, such that p, and m, have the same meaning for
both statistics. Moreover, this demonstrates that an unified framework is used, with
comparable handling for disjoint and sliding blocks.

The following lemma shows that the asymptotic variance of the sliding blocks statistic is

never greater than that of the disjoint blocks counterpart.

Lemma 3.3.4. If conditions (A), (3.3.7) and (3.3.8)) hold and r, /s, € N for alln € N,
then ¢ < (),

The conditions of the lemma are not enough to establish the convergences for the disjoint
and sliding blocks statistics in and ((3.3.5)), i.e. under the conditions of the lemma
c®) and @ are not necessarlly the asymptotic variances. If, in addition to the conditions
of the lemma, the conditions of Corollary and Corollary hold, then ¢® and @
are the asymptotic variances of the disjoint and sliding blocks estimator. The condition
that ¢@ and c®) exist is exactly the condition (C) in the previous section.

The statistics in and include the factor v, !. This is an important normal-

ization, since we consider only extreme events with v,, — 0. Without this normalization,
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the estimator would converge to 0 in probability. The statistics considered above are not
actual estimators, since the probability v,, that a single observation X, ; does not vanish
is typically unknown. This v,, must be estimated as well, e.g. by the empirical version
>ie1 Lix, .#0y/n. In what follows, we thus analyze versions of our statistics where v, is

replaced with this empirical version. This results in the disjoint blocks estimator

agl Z}Z{Snj g(Xn,(ifl)sn#»b ERED) Xn,isn)

T(g) == & 3.3.9
( ) Z?:lsn+l ]]-{Xn’ﬁéO} ( )
and the sliding blocks estimator
—1 x~n—sp+1
s ntn i= " an»aan Sp—
ﬂﬂw::<sa> i 9K, itsn=1) (3.3.10)

St Uk, 0

for the estimation of £&. Note that we chose the denominators to be the same for both
statistics.

In order to prove convergence of these estimators, one needs the joint convergence of the
numerator and denominator. This can again be concluded from Theorem or part (a)
of Theorem respectively, now applied with G = {g, h} and h(x, ..., z,) = Lz, 20}-

For the disjoint blocks estimator, we obtain

((\/n_%an)‘lZL"/S"J( IWa i-1)st1) = E[Q(Wn,lm) (3.3.11)

(nvn) 200 (L, 0) — P(Xn #0))

gD D) old)
— <ZN> NN2 (O, (C(dﬂ}) C(v)

under suitable conditions. Sufficient conditions are those of Corollary|3.3.2] provided ¢(@)

and c) exists. For the sliding blocks estimator,

(W—wﬂan)—l S (g(Wa) — E[g(Wn,m)) (3.3.12)

(n,) "2 ot (E{XnﬁéO} — P(Xn1 # 0))
. Zs RER

holds under the conditions of Corollary provided that ¢ and ¢*") exist. Note
that the same result holds if the sum in the second component goes up to n instead of

n—s,+1 (cf. (3.2.5)).

Here, the asymptotic covariances are given by

rn/Sn

Cov( Z g(W, (G- 1)sn+1 Zl{lanﬁéO})

=1
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The asymptotic normality of the estimators (3.3.9) and (3.3.10|) follows from the following
Lemma, if (3.3.11)) and (3.3.12)) and an appropriate bias condition holds.

Lemma 3.3.5. Suppose nv,, — oo and that the weak convergence

z} E[Z}] w (2} Var(ZY)  Cov(Z',Z%)
o, n| n wy ~ N 0, )
v ((ZZ) (E[Zﬁ])) (Z2> ? ( (C’ov(Zl, 7% Var(Z?)
holds for some processes (Z}. Z%) , n € N and a limit process (Z',Z?). Let E[Z2?] — b
hold for a constant b € R\{0} and assume that the bias condition

Vi, (E[Z,) = €B(Z3]) = 0

holds for some constant & € R. Then,

N<o E(Var( Y+ EVar(Z*) — 26Cov(Z, Z2)>>.

Thus, if, in addition to the conditions of Corollary[3.3.2 ¢(*) and ¢(4*) exists and the bias

condition

E[Q(Wn,l)]/snvnan — &= O((mfn)_l/2>

is satisfied, then Lemma|3.3.5/implies the asymptotic normal distribution of the estimation
error for the disjoint blocks estimator ((3.3.9):

Vivn (T(g) = €) 5 N(0, &%)

with &@ = (@ 4 ¢2c0) — 9¢cldv),
Analogously, under the same bias condition, Lemma [3.3.5|implies the asymptotic normal-
ity of the sliding blocks estimator (3.3.9) if the conditions of Corollary are fulfilled

and ¢ and ¢ exist:

Vv, (Ti(g) =€) = N(0,&9)

with &) := o) 4 2c) — 2¢clsv),
To this end, we let Z2 = (nv,) ' S Lyx, .20y With E[Z2] = (n — s,)v,/(nv,) — 1
and Z! = (ns,vna,) "t S0 g(W,,) with E[ZY] = (n — s,)(nsp0,0,) E[g(W,,1)] in the

sliding blocks case, for the disjoint blocks case analogously.
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The following theorem states that, under rather mild conditions, again the asymptotic
variance of the sliding blocks estimator (3.3.10)) is not greater than the variance of the
disjoint blocks estimator (3.3.9), at least if g has a uniform sign. This is the central result

about the comparison of sliding and disjoint blocks estimators.

Theorem 3.3.6. Suppose the conditions of Lemma are satisfied, holds, the
function g is bounded and does not change its sign, s, = o(rpa,) and s,v, — 0. In
addition, assume there ezists a sequence k, = o(rpa,) of natural numbers such that the
B-mizing coefficients of (Xni)i<i<n satisfy 31" X = 0(ryvnay). Then &) < &),

n,i

If the above mentioned conditions under which the asymptotic normality of T¢(g) and
Tj(g) are fulfilled, then &@ and & are the asymptotic variances. The condition that
) e3v) and ) exist is the condition (C) in the previous section.

The S-mixing condition in the theorem is satisfied e.g. if the S-mixing coefficients decrease
exponentially fast, i.e. geometrically with 3, < tn* for some constants € (0,1) and
t > 0. In this case, provided logn = o(r,a,), the sequence k,, = |clog(n) | with sufficiently
large constant ¢ > 0 fulfills the conditions of Theorem [3.3.6 This is e.g. the case for
some solutions to stochastic recurrence equations (cf. Doukhan| (1994), Corollary 2.4.1),
see also the f-mixing arguments in Section [5.5.2

This theorem shows that a sliding blocks estimator of the form above, where the unknown
v, is estimated by >i; Lix, ,20y/n, is always at least as efficient as the corresponding
disjoint blocks estimator. This result in this general setting seems to be shown here for the
first time. One implication of this is that, for application with disjoint blocks estimators,
usually, the corresponding sliding blocks estimator should be preferred.

In fact, the difference & — &) for the true estimators T%(g) and T?(g) is the same as for
the pseudo estimators T9(g) and T5(g), i.e &@ — &) = (@ — (),

Corollary 3.3.7. Suppose the conditions of Theorem are fulfilled. Then, &9 —&) =
@) _ 9 >
c c\*) > 0.

The previous corollary shows that there is generally only one possible cause for the smaller
variance of the sliding blocks estimator, namely that the variance of the numerator ¢(*)
is smaller than ¢®. The covariance between numerator and denominator ¢**) and c(@v)
are identical for sliding and disjoint blocks estimators. An intuitive explanation for the
smaller variance could be that, for disjoint blocks, the variance ¥ consists only of the
variance of a single block g(W,.1). In the case of sliding blocks, the variance ¢{*) of the
numerator is essentially the mean of the covariances of all overlapping blocks, i.e. the
covariances of g(W,1) with ¢g(W,.x), k = 1,...,s,. Since the overlap gets smaller with
increasing k, it seems plausible that the covariance gets smaller with increasing £ and,
therefore, the mean value of these covariances is smaller than the variance of the disjoint
blocks. This intuition seems to be the reason for the smaller sliding bocks variance in
Robert et al.| (2009) and Bucher and Segers (2018a).
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So far we have considered a single function g. Indeed, one can even prove a multivariate
version of Lemma In the following corollary we want to generalize Lemma to
a finite family of functions G. For this, we consider the Loewner order for the asymptotic
covariance matrices, denoted by <;. The Loewner order is a semi order defined on the
vector space of the symmetric real-valued n x n matrices. It is defined by A <, B if and
only if (B — A)x > 0 for all z € R™, i.e. (B — A) is positive semi-definite.

Fix some finite set G of functions g of the type considered before in this section, i.e. we

assume |G| < oo. If all functions in G fulfill the conditions of Corollary |3.3.1{ and [3.3.2]

respectively, then

(Viva(T(9) = EITY(9)) (3.3.13)

L /sl
= D (W io1yens1) — E[Q(Wn,l)])> “ Nig|(0,CD).
(\/n_vnan i=1 -

and

(vVrun(T3(9) = E[T3(9)])) geg (3.3.14)

B (wz—l ng@ww - E[g<wn,1>1>)g€g N (0,C)

with C@ = (¢ (g, h))gneg, C® = (c¥)(g, h))gneg, provided that

()
(g, h) = gggownaQ

Lrn/sn ] Lrn/sn ]
Cov Z g n15n+1 Z h nzsn—H )
(g, h) ;= lim ———Cov (Zg i) Zh >

n—o0 . vn52 a?
for all g,h € G exists. Under the given conditions, the convergence is an immediate
consequence of Theorem or Theorem [3.2.1} respectively. The conditions of the next
corollary are similar to the conditions of Lemma [3.3.4] only adapted for |G| > 1.

Corollary 3.3.8. Assume that condition (A) holds, the limiting covariance matrices C'@
and C®) exists, r,/s, €N for alln € N and |G| < co. Then,

) <r @D

The conditions of the corollary do not imply the convergence for the disjoint and sliding
blocks statistics in (3.3.13]) and (3.3.14]). For this, one would have to assume additionally
the conditions of Corollary and respectively. In this case, the sliding blocks

statistic is at least as efficient as the disjoint blocks analogue in terms of the asymptotic

covariance matrix in the Loewner order.

Note that the assertion of the corollary is equivalent to the statement that for all linear
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combinations h of functions in G the asymptotic variance of 7%(h) is not greater than the
corresponding asymptotic variance of T94(h).

This corollary cannot easily be generalized for the estimators with estimated v, as in
Theorem [3.3.6] In the proof of the theorem, a fundamental argument is based on the
constant sign of the function g. For the Loewner order, the covariance inequality in the
previous proof must be valid for all w € RI¥9/, thus also for some w; < 0 and some w; > 0.
Then, g, > 0 (or g, < 0, see proofs) can no longer be ensured. Therefore, the corollary
is not directly transferable for Theorem [3.3.6|

This concludes our general consideration of disjoint and sliding blocks statistics, and it
also concludes our discussion of the abstract limit theorems. In the following chapters,
we will apply the theory developed here to prove asymptotic statements for estimators of
the extremal dependence of (X;)cz. In the next Chapter |4l we will consider sliding and
disjoint blocks and runs estimators for cluster indexes as an exemplary application of the
theory developed so far. In particular, we will see that, in these examples, the variances

of sliding and disjoint blocks estimators are the same.

3.4 Proofs

In this section, all proofs of theorems, lemmas and corollaries of this chapter are given.

3.4.1 Proofs for Section 3.1.1]

First, we prove Lemma [3.1.2] about the S-mixing condition.

Proof of Lemma[3.1.7. For this proof we use the following alternative representation of
the 3- mixing coefficients: Denote with B, , the product measure on Bﬂ ® BX;?F’,; 41 with
PY, (A x B) = P(A)P(B) for A€ B} and B € B} "} ,,. Then,

k= Sup sup  |P(D) = B, (D)
1sl<mn—k=1 peB\laB) T |

(see |Volkonskii and Rozanov (1959), p. 179 or Doukhan| (1994)), Section 1.1). Likewise
we define P, , as product measure on Bff: e BnX’ [T
Due to the (X, (i—1)rnt1s s Xnyirn+sn—1)-Mmeasurability of V,; for all 1 < i < m,, we

obtain BXZJ c BXIrmtenl forall 1 < i < j < my,. In particular, B,‘ﬁ c BYmten=l and

n,(z—l)rn-l—l n’l
BX;T,; e Bff, in +s._p for n large enough such that s, —k < kr, + 1. This inclusions lead

to Pli(ﬁsn—l,n,k’BZ{@BZ’%H = P, ;- Using this representation of ), leads to

1% %
mnﬁn,k = Mn sSup sup ’P(D) - Pl,n,k(D)| (341)
Islsmn—k=1 peB @B, " |
X
S mp, sup sup |P(D) - Plrn—l—sn—l,n,k(D)l

1<i< —k—1 X,lrp+sn—1 X, mnrn+sn—1
=3Tn DeB, " ®Bn,(sz)zn+71l
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X
<m, sup sup \P(D) — B, (D)
<l<n— _ _ X, X,n
1<I<n—(krn—sn) 1D€Bn,1®8n,z+<km4n)+1
X
= mn n,krn—Sn - 0 D

Next, we prove Theorem [3.1.4] In a first step, we show that for the proof of convergence
of the fidis of (Z,(g))4eg it suffices to consider independent copies of V, ;.

Lemma 3.4.1. Suppose the conditions (A1), (V), (MV ), (MXy,) for some k € N, k > 2,
(D0) and (A) are satisfied. Let

1 &=

2 (V0 - BVL), g€l

Zn(9) =

where V', are independent copies of V,;, 1 < i < my,. Then the fidis of (Z,(9))geg
converge weakly if and only if the fidis of (Z)(g))geg converge weakly and if so, the limits

coincide.

Proof of Lemma[3.4.1. Let A} ; be independent copies of A, ;, so that A7 :(g) < AL(g).
The condition (A) (i) and (ii) correspond to the conditions of Theorem 1 in Section I1X.1
of Petrov| (1975), if X,x = p,'/2A ,(g) is inserted there and if the stationarity of V,; and
Vi is taken into account (which holds due to condition (V)). This law of large numbers
returns, provided part (i) and (ii) of (A) hold,

N > (&04l0) = ELAL()]) ~ 7 —or(1). Vg€, (3.42)
with
Tn -= \/]%E[(An@) - E[A"(g)])]l{IAn(g)—E[An(g)ng\/ﬁ} (3.4.3)

for some 7 > 0. Due to condition (A) (iii), we have 7,, — 0, which leads to

1 &=
Ar (g) — E[AY (g9)]) = op(1), Vgeqg. 3.4.4
m;( (9) = E[A; (9)]) = op(1) (3.4.4)
Analogously, the statement follows for the partial sums that contain only every k-th

summand, where k is the number for which condition (MXy) is satisfied., i.e.

1 Mn ki

N Z (A5500) = B[ALj(9)]) =0p(1), Vg€, (3.4.5)

for i = 0,...,k — 1. Here my i = |mn/k| + Likpm k)4 e—i)<mn) = L(Mn +9)/k] < my,.
Because of m,,/k = O(m,,), (A) (i) and (ii) are the correct conditions for this application
of the law of large numbers from [Petrov| (1975)).

Since f/m- and V,,; are (Xp (i—1)rnt1, - Xnjirnt+sn—1)-measurable, A, ; is also measurable

with respect to (X, (i—1)ru+15 ) Xnjirn+sn—1)- Lhe blocks A, ;,_; are separated by (k —
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1)r, — s, X-observations for different j. Hence, by (MX}) and an inequality by |[Eberlein
(1984), the total variation distance between the joint distribution of A, jx—;, 1 < j <

M ki, and that of AY

nik—ir L < J <My ki, converges to 0:

HP(A:L,jk—i)lﬁ]'Smn,k,i _ pPrgr-ii<i<m, 4 ;

v (3.4.6)

A X
< m",kﬂ'ﬁn,kfl < mn,k,iﬁn,(kfl)rnfsn — 0.

In the first step, the inequality for S-mixing coefficients from [Eberlein| (1984) was applied
and in the last step, the condition (MX}) was used. The second inequality follows from
the measurability of A, ; with respect to (X (-1} 41, ---» Xnjirnts,) forall 1 <i <m,,. In
particular, from this measurability it follows that Bﬁ ;j C Bfé’;f;fn forall1 <i<j <m,,

and, thereby with the same arguments as in (3.4.1)),

A X
n,k S n,krn—sn

— 0.

Define the set

. . 1 My, ki
Buica = { ihisssmon, € B2 | 2o S = Bldwlo))| > <)

Then,

P(| S e slo) — Bl o)) > ¢)

VPn i
— pBngr-ii<i<m, i ; (B

n7i,679)
(A¥ . i<j< X (AF . )i<j< X (Anjk—i)i<j< X
S P n,jk—i/LSISMp kg (Bn7i,a7g) + ||P n,jk—i/1S95Mmp ki P n,gk—1)1<j<my, 4

v — 0,

where the first summand converges to 0 due to (3.4.5) and the second due to ([3.4.6)).
Therefore, it applies to all =0, ...,k — 1 that

1 Mn ki

N ; (Anje-i(9) — E[Anje-i(9)]) = op(1), Vgeg.

Summing over all i € {0, ...,k — 1}, it follows that

1 &=

\/Ej; (An(9) = BlAn;(9)) = op(1),  Vgeg. (3.4.7)

With (3.4.7)), the weak convergence of the fidis of (Z,,(g)),eg follows if and only if the fidis

of (Z,(g))4eg converge weakly, with

1 &

> (An(9) — ElAn;(9))

Zn(9) == Zn(g) — N
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1 &= - -
N ; (Viil9) = ElVail9)])
In the case of convergence, the limit distributions are the same. Analogously, with (3.4.4)),
the fidis convergence of (Z*(g))se¢ follows if and only if the fidis of (Z(g))geg converge,

where Z*(g) is defined analogously to Z,(g) with independent copies.
Another application of the inequality from |[Eberlein| (1984) to f/m yields

| PVishsismn — pUnihiicmn||p, < m,BY, — 0,

where f/; ; are independent copies of \N/n,j. Here, condition (MV) was applied and the
blocks f/,f ; are separated by zero X-observations for different j.

Since the total variation distance converges to 0, it follows that the fidis of (Z,,(g)),eg

converge weakly if and only if those of (Z(g))seg converge weakly and, in that case, the
limit distributions coincide. Overall, the fidis of (Z,(g))seg converge if and only if the
fidis of (Z}(g))g4eg converge. O

Before we give the proof of Theorem the following proof shows that condition (A)
can be replaced by the simpler but stronger condition (3.1.4]). This is needed for the last
assertion of Theorem [B.T.4l

Proof of Lemma[3.1.3 Tt directly holds

E1(An(g) - E[An(g)])21{|An(g)—E[An(g)]|§m}:| < Var <An(9)>

< E[(ane)] =o(2)

and, with Chebyshev’s inequality, this yields

mp

p(‘An@) — E[An(9)]] > \/p—n> < Var (An(g)) < E[<An<g))2] _ 0 (pn/mn) _ O( 1 >
Pn Pn Pn

Thus, part (i) and (ii) of (A) are direct consequences of (3.1.4). Now, we turn to part

(iii) of (A). For this, we show that under we have 7, — 0 where 7, is defined in

B43).

Note that we already established (A) (i) and (ii) and therefore holds by the same

arguments as in the previous proof. This implies the convergence

1 mn

N (Ari(9) — BIAL,(9)]) = lim 7., Vgeg,
n =1

in probability, if the limit exists. The expectation of the left hand side equals 0. Thus,
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lim,, , 7, = 0 follows, if the left hand side is uniformly integrable for n € N, i.e. if

: [ * *
i sup £ { o ; Aal9) = B ())| 1 e S A;,Ag)—E[Az,i(gnbM}] =0

This is true, if the uniform moment bound (and Lyapunov-type condition)

e (\/;T mZ (&%.4(9) = BN (9)]) )} < o0

holds. This, in turn, is implied by stationarity, the independence of Ay ; and (3.1.4):

sup I K\/;_n 2 (Ar.(9) — E[A;(9)]) >2]

= sup (23 B[ (A74(0) ~ B0 (0)) 3 (&0,00) = BI85, (0) ]
+ 1B (A0 g) - E’[A:,(g)])?])

= sup (;2 Z B|(85sto) = BINL@N)] S B [(45.00) - B (o))
+UmR[(A0) - E )] )

= igg <plnmn(mn —1)-0+ ZjVar(AZ(g)))

< sup TZLE [(An(9))?] < 0.

Thus, with the uniform integrability and the convergence to a constant in probability

above, the convergence of the expectation follows:

1 = P 1 I

A* (g) = E[A (9)]) B lim E[ A* (g) — E[A? ]:o,

N D (A7.:(9) — E[A;,(9)]) = lim =2 (A7.:(9) = EIA;(9)])

ie. lim, 7, = 0.

Since the left hand side of condition (A) (iii) is just 7,,/pn/my, this proves (A) (iii) and
thereby the assertion. O

Proof of Theorem[3.1.4, According to Lemma[3.4.1] the fidis of (Z,(g))4eg converge if and
only if the fidis of (Z}(g))seg converge. The convergence for (Z(g))geg follows from the
multivariate central limit theorem for triangular schemes of row-wise independent random
vectors by Lindeberg-Feller. The conditions (L) and (C) assure that the conditions of the
Lindeberg-Feller theorem are satisfied.

The last assertion of the theorem is a direct consequence of Lemma , since
implies (A) and, thereby, Lemma remains true with (A) replaced by (3.1.4). (In

the proof of Lemma condition (A) (iii) was only used to show 7, — 0 which is
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established under (3.1.4)) in the proof of Lemma [3.1.3]) O

3.4.2 Proofs for Section 3.1.2l

The first proof in this section shows that (L2) implies (L) and (L1).
Proof of Lemma[3.1.6. Observe that ]l{vn(g)> P} < ]l{vn(g)> pns}vn(g)2/(g2pn). Using
this, by the Cauchy-Schwarz inequality and Chebyshev’s inequality, it follows
, 1/2
B [Vn(g)]l{vn(g)x/ﬂe}} = (E {Vn(g) ]l{Vn(g)>\/ﬂe}:| B {]l{vn(g» pns}})

_ ( (E* {Vn(g)2]1{vn(g)> pne}})2> 12
- €%Pn

()" o).

P2 My,

where the penultimate step holds because of (L2). Hence, (L1) is met.
Applying (L2) also yields

Prn

E {(vn@))?]l{vn(g)|> Wﬂ — 0 () (3.4.8)

My

for all e > 0 and g € G. Thus,

EK@;—?)? = ;E[Vn(g)Qﬂ{vn(gbms}] tet= O(Wlbn) +e

for all ¢ > 0 and, therefore, E[V,(g)] = o(y/Pn). Together with (3.4.8), this implies (L),
since F[V,(g)] has no impact in the indicator for large n and E[V,,(9)]* < E[V,.(g)?]. More

formally, we may conclude for sufficiently large n that

E [(Vn(g) - EVn(g))21{|vn<g>Evn<g>|>e¢m}
<28 ((V(@) + (BVa(0)) v, opoegrral]
< 28| (Va(9) P Livopseyimrn| + 0p) P(IVal9) > =v/nf2)
<A4E* {(Vn(g))Q]l{vn@»sm/?}]
=)
i.e. (L) holds. O

The following proofs for Theorem [3.1.7] and [3.1.9] are inspired by the corresponding The-
orems 2.8 and 2.10, respectively, in |Drees and Rootzén (2010). The notation and setting,

however, are much more general here.
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Proof of Theorem[3.1.7]. Let k be the number for which condition (MXy) is satisfied.
Again, we denote my, ;; = | (m, + ¢)/k|. If the processes (Z)),en with

) 1 Mn ki
ZW(g) = Vikiei(9) — E[Viri—i(g 3.4.9
(9) \/p_nj;<’k](> [Vakj—i(9)]) (3.4.9)
is asymptotically tight for all ¢ € {0,...,k — 1}, then the process Z, = le Z,(Li) is

itself asymptotically tight as a sum of finitely many asymptotically tight processes. The
processes Z") are the partial sums of Z, including each k-th summand, starting with
summand 7. Since the blocks (Vj, jk—i)1<j<m,,, are measurable w.r.t. some X-blocks,
which have a distance of (k—1)r, —s, observations, the inequality for S-mixing coefficients
from [Eberlein| (1984) implies

Vo < . Vi jh—i)i<i .
HP( n,]kfz)lﬁﬂﬁ’mn,k,z _ P( n,jk 1)1§’L§’mn,k,z HTV S mn,kyi/B'r)Lf(k—l)T‘n—Sn — 07 (3410)
where (V" )i<j<m, .. are independent copies of (V;, jx—i)i<j<m, - Because

limsupP*(Z\ ¢ K°)

n—oo

< lim sup P*<Zr(j)* ¢ K‘S) + ”P(vyijkfi)lfjgmnyk’i _ P(Vn,jk—i)lgigmnyk,i -

n—oo

for each set K, and the second summand converges to 0, the process ZV)(g) is asymptot-

ically tight if and only if

Mn ki

Z( )*

( n,kj— z _E[ 'r;k,k]—z(g)])

7j=1

is asymptotically tight. Note that Z()*(g) is the sum of independent blocks V* mik—i- Lhe

IS

conditions (B), (L1), (D1) and (D2) directly imply the conditions of Theorem 2.11.9
in [Van der Vaart and Wellner, (1996). The application of this theorem provides the
asymptotic tightness of Z(V*(g) and, therefore, of Z{)(g). This holds for alli =0, ...,k —1

and, thus, the assertion is proven. O
The ideas of the next proof are similar to the concept of the previous proof.

Proof of Theorem[3.1.9. Let k be the number for which (MX}) is satisfied. Because

k—1

P s (Zilg) - Zb > e) P s (Z0(9) - 200 > )

9,h€G,p(g,h)<$ i=0 9-h€G,p(g,h) <5

k—1
< ZP*( sup \Zﬁj)(g) _ Zr(zi)(h” > 5)
=0 9,h€G,p(g,h) <6 k

with Z(0(g) from (3.4.9) for 0 < i < k — 1, the process (Z,(g)),e¢ is asymptotically

equicontinuous if the processes (Z{(g)),eg for 0 < i < k — 1 are asymptotically equicon-
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tinuous. The asymptotic equicontinuity of (Z{)(g))seg will be shown in the following.

The process (Z{V(g)),eg is a partial sum of the process (Z,(g)),eg, where only each k-th
summand occurs. This ensures that the distance between the blocks, with respect to
which the individual summands can be measured, becomes larger. Due to the S-mixing
condition, these summands can now be approximated by sums of independent processes,
to which the result from [Van der Vaart and Wellner| (1996)) can be applied. This idea is

formally implemented in the following:

Let V;,jk_i be independent copies of (V;, jx—;) for 1 < j < my, ;. Then, the equation
(3.4.10) applies here as well. For the independent copies (V' ;x_;)1<j<m, ., only partial

sums of the empirical process (Z;(g))4eg are considered and all the conditions of Theorem
2.11.1 in |Van der Vaart and Wellner| (1996) follow from the conditions (D0) (which implies
(D4)), (B), (L2), (D1) and (D3). (In fact, the conditions just arise from the application
of this Theorem 2.11.1.) The condition (D3) implies the entropy condition required here,
since my, x; = O(m,,) and the metric considered for this situation is less than or equal to
the metric in (D3). Thus, all conditions of the cited theorem for (V. :)i<j<m, ., are
satisfied. Thus, the asymptotic equicontinuity of (Z{)*(g)),eg follows with

1 M ki

= N 32231 ( kj—i(9) — El n*kj—z(g)])

Hence, the asymptotic equicontinuity of (Z{(g))seg follows from

P sup |Z0(g) - 20 (0] > <)

g:h€G:p(g,h)<é

< p*( sup | Z9*(g) — Z90*(h)| > 8) + ”P(V:,jkfi)lfjﬁmn,k,i _ pWagk-iii<mg, i ;

n TV
g,h:p(g,h)<é
and (3.4.10)). This shows the assertion. m

Finally, the proof of process convergence is a simple corollary of the previous theorems.

Proof of Theorem |3.1.10). The weak convergence of an empirical process follows from the
weak convergence of the fidis and asymptotic tightness or asymptotic equicontinuity.
Thus, the statement of this theorem follows directly from Theorems [3.1.4] and
B-1.9 It should be noted that condition (L) is implied by (L2) due to Lemma O

3.4.3 Proofs for Section [3.2

This section starts with the proofs of the sliding blocks limit theorems for bounded and
unbounded functions g¢y.x, Theorem and Theorem [3.2.2] respectively.

Proof of Theorem[3.2.1. We start with the proof of part (a). Since gpax is bounded, for
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each n € N, it holds

1 & 1
Vn g = Sup g Wn i—1)rn S T'n||9max 007 < OQ.
( ) G b ( ); ( ,(3—1) +J) || || fgegb ( )

Here we used inf g b,(g) > 0, which holds by assumption (A2). Therefore, (B) is satisfied.
Since 1, = 0o(y/Pn infyeg bn(g)), eventually V,(G) < sup,eq [|gmaxlloo”n/0n(g) < y/Pne fol-
lows for € > 0 and a sufficiently large n. In particular this implies 1 (V@) e} = 0 for a
sufficiently large n. Thus, condition (L.2) follows, since the indicator on the left hand side
equals 0 for a sufficiently large n. Recall that (L2) implies (L) and (L1) by Lemma [3.1.6]

By direct calculation,

T 2 Lrn/ln]
L [( 2; ]l{g(Wn,jﬁéU}) Z:l (2; ]1{9(Wn (—1D)ln+i) #0}) ]
i= j i

T n 2
= LJE[(Z]I{Q(WM#O}) 1
n =1

Using the row-wise stationarity of (X, ;)i<i<n, condition (3.2.4) and [,, = o(r,) we may
conclude (3.1.4)):

B[(80)) < 51 [(ﬁiugmwumj{¢W%»¢@)f

g) 7=1

1 In 2
) ||gmax|| [(Zﬂ{g(Wn,j)¢0}) ]

bu(9)? =
(

l Z Ly an>¢0}>2D

- O( W) - o(p"). (3.4.11)

Furthermore, (3.2.5) holds due to assumption (A2):

E* lsup(Zn(g) - Zn(g))zl

geg

o [ oy (\/szé; (9(Way) — E(g(Wn,m)ﬂ

< B |sup S (g(Wo) + Ellg(W, nﬂ]

1

2
]_ n—sn+1
- 3 E 9max Wn,' + K Jmax Wn,'
R P (j%%HO (W)l + Bl Jnﬂl
1

2 2
72 || Gmax — 0.
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In the last step it was applied that 7, = o(/pn infgeg bn(g)).

Since (k—1)r, > [, for k > 2, it follows Bﬁ‘:(k_l)rn_s” < 57)&”—5” and thus (MX}) is implied
by (MX). By Lemma , this, in turn, implies n/%@‘{,(;@_l) — 0. Due to the form of V,;
and the (X, (i—1)r 415 - Xn,(im1)rn—in+s, )-Measurability, (MV') follows from (MX) with the
same arguments as in the proof of Lemma m cf. -

The statement about the fidis convergence follows from Theorem The statement in
part (b) about the process convergence follows from Theorem Note that the (D)-
conditions for asymptotic tightness or asymptotic equicontinuity are explicitly assumed in

this theorem and all other conditions are shown above. The matching limit of (Z,,(g))4eg

and (Z,(g)),eg is a consequence of (3.2.5)). O

Proof of Theorem[3.2.3. We start with part (a) and want to apply Theorem 3.1.4] To this
end, we have to show that the conditions (L) and hold under the new conditions,
while the remaining assumptions of Theorem can be verified as before in the proof
of Theorem [3.2.1]

By the Holder inequality, the generalized Markov inequality and , for all g € G, we

obtain

E* [(Vn(g)Qﬂ{vn > Pnf}}
= 5 | (5 00%0) 1sp oo

n

1 Tn
< E*
~ b (9) K :

b2 (g ) >( (|50, (W, >>2+5})”““‘”

E {l{l >t 9(Wa o) [>y/Prba(9)e }

)2+5] 2/(2+5) ]1_2/(2+5)

1
~B2(g) O( m (VPrbn(9)e) 2
_ 1 0 <pnb (g > /(2+6) (pan( ))1—2/(24-5)( 1 >1_2/(2+5)
b7(9) My, My, (\/Prbn(g)e)?t0
_ 1 0 <pnb (g )
b7 (9) my, (\/p_nbn( )8
1
(

B paba(9)\ ( Pn )
= 0 =o|—].
b%(9) My, My,
The penultimate equality holds because of /p,b,(g) — oo by assumption (A2). With the

same arguments as in the proof of Lemma [3.1.6] it follows that condition (L) is satisfied.

Furthermore,

Lrn/an

> 5 2| (Z bW |

E[(;anmw

- /] (S lot1) |
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and, thus, by (3:2:0),

B8 (0) £ 58] (S lam) |
< Eai) (Z W)
~ b2(g) Llrn/an r (Z: |g(W"’i)|> ]1{21:1 o1} ]l{o<2121 |g<wn,i>s1}]
= b2(g) Llrn/lnj E (; |g(Wm)|> * ]l{ > lg(w m)I;éO}]

- (T’nblg(g) <pnfifg) + P(Vallgl) # 0)>> = 0(%) (3.4.12)

where in the last step we have used m,,l,, P(V,,(|g|) # 0) = o(r,b2(g)pn). Hence, Condition
(3.1.4) holds. From here, the same reasoning as in the proof of Theorem can be used
to show the weak convergence of (Z,,(¢g)),e¢ to a Gaussian process with covariance function
c.

Similarly,

1 n—sn

mj%ﬁl“w"’”)

<Pl X b

[(Z(0) - Zuta)] = var(

J=rnmn-+1
A1 PMValgl) #0)
‘O<mn+ Pub2(9) )ﬁo’

because p,b%(g) — oo by assumption (A2), so that the fidi-convergence of (Z,(g))geg
follows, too.

Next, we prove part (b), the process convergence. Note that for this part of the assertion
we assume b,(g) = b,. We want to apply Theorem and all conditions apart from
(B), (L2) and can be shown as in the proof of Theorem [3.2.1]

With similar calculations as above, using V,,(G) = b, YI"1 gmax(Why), the Hélder in-
equality, the generalized Markov inequality and , we obtain

£ [(Vn(g))Qﬂ{v ©@)> pna}:|
E[ ngax ni )ﬂ{zz | g (W, n,i>>mbn6}]

01 72/(240)
7E l ngax(Wn,z)> ] E [H{Z:ﬁl gmax(Wn,i)>mbn5}

b2 /(2+0) [ [+ [(Z:nl gmaX(Wn i))2+6} 1-2/(2+9)
— O < > ( (\/—nbn€)2+5 )

]12/(2+5)

My,
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io pab?\ 2 /(2+6) . pab? 1-2/(2+6) 1 1-2/(24)
b2 my, my, (/Prbne)?+?
1o (paby 1 1 (paby ( Pn >
= —O = —0 =0|— .
b2 My, (/Prbn)° b2\ m, my,
Thus, conditions (B) and (L2) are satisfied. The same calculations as those leading to
(3.4.12)) with gmax instead of ¢ yield (3.1.4). Now, the convergence of the fidis of (Z,,(g))geg

follows from Theorem [B.1.10l
With similar arguments as in (3.4.12)), it follows

n—snp+1

e lewmaﬂ—Ewm@m)

n—sn+1 2
(\/p_b z:l gmax TL] + E[gmax(Wn,j>]> ‘|
n J

2
a1 (pabh pabR\Y 1]
_ngghm*‘@ )_O<+w>%0

because of b, — oo by assumption (A2) (since r, — o0, p, — 0 and 7, = o(\/Pnbn)).
Thus, (3.2.5) holds and the process convergence of (Z,(g))seg follows, which completes
the proof. O

B [sup(Zulo) - 2,0)7] = B sup|

9geg 9€g

T

| /\

The proof of the modified sliding blocks limit theorem (Theorem [3.2.3) is basically the

same as the previous proof of Theorem |3.2.2, Therefore, we show only the differences.

Proof of Theorem[3.2.3. We start with part (a). We want to apply Theorem[3.1.4] To this
end, we only have to verify condition (3.1.4)), because (L) is assumed and the remaining
conditions follow as in the proof of Theorem . Condition (B) is obviously fulfilled by
and since we consider only fidis for this part.

It is clear that

£| (S lswa)l) zW"J (S laWr-apesl)
(Soomar)]=5, )

- /| (S lot1) |

and, thus, by (3:2.7),
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where we used [, = o(r,,). Hence, condition holds, which, in turn, implies (A) (cf.
Lemma . From here, the same reasoning as in the proof of Theorem can be
used to show the weak convergence of (Z,(g)),eg to a Gaussian process with covariance
function c.

Similarly,

1 n—=sn

E[(2.0) - 20| = Var( o S a0n)

< mB|(5 )]

J:rnmn"l‘l
1
= O() — 0,
mn

so that the fidi-convergence of (Z,,(g))4eg follows, too.

Next we prove part (b), the process convergence. Note that for this part of the assertion
we have b,,(g) = b,. We want to apply Theorem and all conditions apart from (B),
(L) and can be shown as in the proof of Theorem [3.2.1] Note that (L) holds by
assumption and (B) is obviously satisfied by and the measurability assumption.
The same calculations as those leading to (3.4.13|) with g instead of g yield .
Now, the convergence of the fidis of (Z,(g))geg follows from Theorem [3.1.10}

With similar arguments as before, it follows

_ 1
E* | sup(Z,(q) — Z, 2} <
geg( (9) (9)) b2

El(jilgmax(wn,j)ﬂ - o(1> 0.

my

Thus, the process convergence of (Z,(g)) geg follows, which completes the proof. H
It remains to prove the three lemmas about the verification of conditions (3.2.4)) and (C).

Proof of Lemma[3.2.4] Since gmax is bounded, condition (3.1.4)) follows from condition
(3:2.4) according to Theorem [3.2.1] This condition is verified below. One has

Tn Tn

Tn 2
E [( Zl ]l{ngn,j);ét)}) 1 = >3 B[ Lo 0 Ligw, 201
=

i=1j=1

<20, 3 (1= T2 P (gW0) # 0,9(W,) £0

k=1 T'n
:2rnO(p (9) >:O< (9) )
n My,
This is true for all g € G and, thus, concludes the proof. O

Proof of Lemma[3.2.5, Since ¢max is bounded, according to Theorem [3.2.1 condition
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(3.1.4) is implied by (3.2.4)). This condition is verified below. By stationarity

Tn 2 Tn Tn
E [( > 11{g<wn,j>¢0}) ] =33 E [Ty, 20y g0}

j=1 i=1j=1
rn k—1
<2, Y (1= 5= )P g(Waa) £ 0,9(Woe) 7 0)
k=1 n
a1 E—1
= 2y 3 (1= " )P g(Was) £ 0| 9(Wan) £0).
k=1 n
Moreover,

m<1_k_1)P@m%w#0!mW%ﬁ%0)

SMP(Q( Wak) # 0 g(Wap) #0) = <b <g)>'

Therefore, it follows

12[<;§;n{gowkd)¢o})2] __rnq%n()<b7£?)2) __()(1"1%49)2>_

n

This is true for all g € G and, thus, concludes the proof. n

Proof of Lemma[3.2.6. Let g,h € G. Using the stationarity of (X;);ez and b,(g) = /mn

leads to

m n
—Cov(V,(g),V,(h)) = —Cov g(Wh h(W, )
. (Val9), Va(R)) PRI 2. fg:

1 Tm Tn Tn
=4Z§]ﬂmmmf] [ g(W, pﬂmem]

Pn LT Dn L35 j=1

1 = Tndgn )
= Yo (= KD Elg(Wao)h(Wok)] — TG || gmax || oo

" k=—rp+1 n

= B S (1= ) Elg(Wa) (W) | (Wag) 0]+ (1)

Dn k=—rp+1
Moreover,

Elg(Woo) (W) | B(Wog) # 0] < [hlloclgllowP (R(Wog) # 0| h(Woo) #0)
< [[hllolgllscenn (kD).

where for k < 0 stationarity is applied. By the assumptions and with Pratt’s Lemma

(Pratt, 1960), we achieve convergence of this expression for the covariance to

(Jim 27) S tim Elg(Wao)h(Wae) | 9(Wao) # 0]
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where the first limit exists due to the assumptions.
If (X)iez is regularly varying, X,; = Xi/unLyx,|>u}s P(g(Whno) # 0) is of the same
order as P(||Xo| > un), and g(W,.0) # 0 implies || Xo|| > u,, then

P([Xoll > un)
P(Q(Wn,o) 7é 0)

ElgWano)h(Wak) | g(Who) # 0] = Elg(Wao)h(Wak) | [ Xoll > un]

Therefore, the limit can be stated more explicitly in terms of the tail process Y = (Y})ez

as

. quarn P(|| X0l > up) k
(,}ggg pn P(g(Woo) # o>) %E[gmw ")

where B denotes the shift operator, i.e. B*¥Y = (Yiik)iez and the limit exists due to the

assumptions. O

3.4.4 Proofs for Section [3.3

The first proof shows that r,/s, € N can be assumed w.l.o.g.

Proof of Lemma[3.3.3. Suppose that, for a given sequence (s, )nen, the sequence (r,,)nen is
given such that the assumptions of Theorem are satisfied. Let r} = [7,/$n|Sn ~ Tn,
so that I, = o(r%), i = o(n) and m} := [(n — s, + 1)/r}] ~ m,. The proof of Theorem

(cf. (3.4.11])) shows that for

1 I
@ > 9(Wa;), and pi:=P(3geG:V:(g9) #0),
j=1

V:,l(g) = b

one has

Bl(Vato) ~ Vsl = 8| (515 3 o)) | =0 22),

j=ritl

Ik — Pl < spop.

Hence, due to p, =< ryv,, we have p} ~ p, and the conditions of Theorem [3.2.1] are
still fulfilled if one replaces r, with 7. The same arguments can be used in the case
of unbounded functions with Theorem [3.2.2] and in the case of disjoint block sums in
Theorem [3.1.4] This concludes the proof. O

The proof of Lemma about the variance inequalities for the pseudo estimators make
use of methods which were used similarly by Zou et al. (2021), Lemma A.10.

Proof of Lemma[3.3.4] In the following, we examine the pre-asymptotic variances. Note
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that, due to r,,/s,, € N, it holds |7, /s,] = rn/s,. For (¥, it holds that

1 [ra/5n]
D rnvna% Var( Z I(Wiis, 41 )
rn/sn rn/sn 1 N 2
- 1 r"g":_l (m — ’k|8n>E[9(W ksn )9 (Who)] — "n Elg(Wo)]?
TnUn@2 | _ et \Sn S e " s2vpa? "
1 2
= it 2 Mmoo (32 = ) B loWalo7) - 5 g0
LR K . 2
- SnUn 0y, k—zr:Jrl]l{k med sn:O}( a 7“n>E [9(Wak)g(Whao)] — Sivna%E[g<Wn’0>] .

For the variance ¢®, we obtain

Var(Zg ) (),

TnUnSQ a?

where both convergences hold by assumption. For this last variance on the left hand side,

we also obtain
Var(z qg(W, )
i i g(W. )} - ;TzE[Q(Wn,O)r

2,2 M
i=1j5=1 T'nUnSpay

rnvns2 a?

rnvms? a? {

Lo K . 2
= 1—— )E[g(W, Wok)] — Eg(W, )]*.
a2 ) 9(W,0) (W) = 5 P [g Wi

The difference between the pre-asymptotic variances of the disjoint and sliding blocks

statistics is

1 rpn—1 k .
SnUnCZQ k_z+1 ]l{k mod sn=0}< - LJ)E [Q(Wn,k)g(Wn,o)] — . Una2 [Q(Wn,o)]Q
- Tf ( —W)E[(W )g(Wok)] + —2 B [g(Wi0))?
vps2a? P ™ IGWno0)g(Whk By Ig(Whao
1 1 1 k|
= — — ) Wm(k)E [g(Whyo)g(W, 7
@i Sn¥n (k——zrzﬁ-l < T )7 (k) E{g(Wao)g( k)])

where, for k € Z,
1—81, k mod s, =0,
—in, k mod s, # 0.



3.4. Proofs 64

Since a,,%(s,v,)"' > 0, it is enough to show

imint 5 (1= )5 B g0, 00,00 > 0.

n—00
k=—rn+1 T'n

From now on, we follow an idea by [Zou et al. (2021)), proof of Lemma A.10. Define

U, as a random variable uniformly distributed on {0, .., s,, — 1} which is independent of

(Xn.i)1<i<n. Define

B
- 3

snzl Lk mod s, = U,,
(bn,k =

, else,

B

for k € Z. If (h mod s,,) = 0, then

1(sp—1)?2 s,—11 s,—1 1
Elpmppn] =~ =D o211 szl 1
Sn Sn S’VL S’I’L Sn Sn
whereas, for (h mod s,) # 0,
2 Sp — 1 -1 Sp — 21 1

E n,k¥n = = .
[Gnensn] Sn \/5n \/§+ Sn S Sn

Thus, E[¢nk¢Pnk+n] = Tn(h) by construction. From this, it follows

E[¢n,j¢n7ig(Wn,i)g(Wn7j)] = E[asn,jqbn,i]E[Q(Wn,i)g(ij)]
= Ynlli = GDEg(Wi0)g(Wh,ji-j1)]

for all 4,7 € {1,...,r,}. Here we applied the independence of U,, and (X,,;)1<i<, and the
previous calculations.

Analogous arguments as above yield

0< 7“1nE [( i_”:l ¢n,jg(wn,j>>2] = 7,1n iiE [an,iqﬁn,jg(W”yi)g(anj)]
_ 1227@ = JDElg(Wi0)g(Woi-s)]
= 5 (1= B0 Bl e

Thus, liminf,_, Z};":__lmﬂ(l — |E/rn) (k) E [g(Wh0)g(War)lg(Who) # 0] > 0. All in

all, we have shown

, 1
D — ¥ = lim 5
n=00 1,0, 8,02

> 0.

E K f:l ¢n,j9(Wn,j)> 2
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Therefore, ¢¥ > ¢*) which concludes the proof. n

To derive the asymptotic normality of fractions, Lemma [3.3.5] can be employed, which is

proven next by a continuous mapping argument.

Proof of Lemma |3.53.5. Direct calculations yield

z\ ) = yim (2, E[2) + BL2)] — (2}~ B123) ~¢5(2)
" Z - BIZ) + B
JTZL — EIZ)]) — Fe(Z2 — BIZ) + (B2 — eElZ2)
it (22 — E[22)) + EIZ2]
(2} — E|ZY) - Jv€(Z2 — E|Z2)) + o(1)
E[Z3) + op(1)

w

—

(Z' —€727).

S| =

In the second to last step we used /nv, ' — 0 and the bias condition. In the last step
E[Z2] — b was used. Thus, \/nv, (Z}/Z% — £) is asymptotically normal. The asymptotic
variance of the fraction is given by

Var(Z' — £2°) = 1(Va7"( Z') + &Var(2?) — 26Cov(Z", 2%)) 0

b2
Applying the previous two results, we can now prove Theorem [3.3.6]

Proof of Theorem|3.5.6L W.l.o.g. we assume g > 0, which implies £ > 0. For g < 0 the
calculations remains the same, just change the sign.

Since &@ = @) 4 £2c0) — 2¢cd0) and &9 = ) 4 €260 — 2665 we have D — &) =
D — () —2¢ (@A) —c(5v)) | We already know from Lemmaﬂthat c®) < ¢, Therefore,
it suffices to show that ¢(%v) < ¢(s:)

Using the row-wise stationarity of the triangular scheme, the asymptotic covariance ()

can be calculated as the limit of

COU(ZQ n,j Z]I{Xn z¢0}>

T'nUnSnCn, pt
T [Zg nj Zﬂ{xnﬁm}] rnU:SnanE jilg(Wn,j) B [Z} ]1{Xn,z-¢0}1
- ; Elg(7.) ; L, 00| - W By (W) - Pt

S 321 E[ W) T"i“ ]l{xn,ﬁéo}] - W. (3.4.14)

i=2—j
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Likewise, ¢(*?) is the limit of

1 Tn/sn
OOU( Z IWa,(k-1)s41) Z]l{xmyéo})
T'nUnQn
'rn/Sn Tn/sn .
)s 1 E Lex.
Tnvnan |: Z g (k=Lsntl Z {an¢0}:| T'nUnln |: Z g :| |:z§:1 {Xn,ﬁéo}]
Tn/sn f(kfl)sn
TnE[g(Wm)]
Z E{ Z H{Xn,ﬁéo}] -
Tn'Una/n k=1 i=1— (k—1)sn Snln
7‘”7L(jil)/SHan
TNE[Q(Wn,l)]
n TnUnSna ZE[ Z ]l{X7L,i7£0}:| - T (3415)
momenm =1 z—l—L(j—l)/ansn nln

In the last step, we added some summands in the first sum, such that in this sum each
summand from the penultimate line occurs s, times in the last line. This is why the
normalization now contains an extra s,,.

It remains to show that the limes superior of the following difference between the right
hand sides of (3.4.15)) and (3.4.14) is not positive. To this end, note that

ra—=[(G=1)/snlsn rn—j+1
Z E [ < Z ]I{Xn,ﬁéo} - Z —]]-{X7L,'L'¢O}>‘|

"nUnSnln j=1 i=1=[(=1)/snsn i=2-j

1 rn Tn—[(j=1)/sn]sn
<——% > Elg(Wan)lix, 0]

rnvnsnang’ =2 i=rp—j+2
n (L(rn—1)/sn]+1)sn

= Z Z E{g(Wn,l)]l{Xn,ifo}]

T'nUnSnln =2 j=rn—i+2

IN

ZE[ Wi ]l{Xm;éO}} (3.4.16)

TnUnln =5

In the first step, we used that the sums in the difference are the same for j = 1, and
for the other j both sums have the same length 7, and the second sum starts with a
smaller first index than the first sum. Since all summands are positive, an upper bound
for the difference is the sum over the summands of the first sums which do not occur in

the second sum.
Note that E[g(W,,1)] = O(sna,vy,) by (3.3.3]). Using

Elg(Wa)Lix, 20| < Elg(Wa)IP(Xos # 0) + 2]l gllsoB5 s,
O(snan )+2||g||006nz sp—1

for ¢ > s, + k, (cf. Doukhan| (1994), Section 1.2, Lemma 3 and Section 1.1, Prop. 1) and



3.4. Proofs 67

E{g(anl)]l{Xn,#o}} < ||gllccvn for i < s, + ky, we conclude that (3.4.16|) is bounded by

8n+kn e}
lgllse + Osuvn) + 2Nl = 5x

T'nQnp TnUnGn — kn

which tends to 0 under the given conditions, i.e. ¢ — ¢(*) < 0. Thus, we have

cv) > V) For the variances of the disjoint and sliding blocks estimator, it follows
&) = e 4 €2 =260 < D 4 2l — 260 = &l

which is the assertion. For the last equation, note that the sign of ¢ is the same as the

sign of g, since holds. m

Similarly to the proof of the previous theorem, one can establish a lower bound on the

difference between the pre-asymptotic covariances of ¢(*%) and (@),

Proof of Corollary[3.3.7]. From the previous proof of Theorem [3.3.6] we already know
cldv) — cv) < 0. Here, we will show ¢(?) — ¢(>*) = (0 which implies the assertion.

The limes superior of the following difference between the right hand sides of and
(3.4.15)) is not positive. To this end, note that

rn—jt1 rn—L(i=1)/sn)sn
ZE[ ( Y Tgx, 0 — > ]1{Xn,i¢0}>]

TnUnSn(lnj 7 i=2—j i=1—[(5—1)/sn]sn

1 e —LG=D/sulsn
E|g(Wo)1ix, .40
i=2—j

([=é/sn]+1)sn
- Z > ElgWa)lix, 0]

T"U"S”a"z 2—rp j=2—1

© TnUnSnln j=2

1 0
> Elg(Wai)lix, 20 (3.4.17)

n j—3 ",

In the first step, we used that the sums in the difference are the same for 57 = 1, both
sums have the same length r, and the second sum starts with a larger or equal index than
the first sum. Since all summands are positive, an upper bound for the difference is the
sum of the first summands of the first sums which do not occur in the second sum.

Using

Elg(Wa)Lix, 20| < Elg(Wa)IP(Xos # 0) + 2llglleoB s
O(Snanv )"’2”9”005 Jil—sn—1

for i < —s, —k, (cf. Doukhan| (1994)), Section 1.2, Lemma 3 and Section 1.1, Prop. 1) and
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E{g(Wn,l)]l{Xn,#o}} < ||gllcovn for i > —s, — k,, we conclude that (3.4.17)) is bounded by

Sp + kn

lgllse + Osuvn) + 2Nl = 5x

T'nQnp TnUnGn — kn

which tends to 0 under the given conditions, i.e. (5% — ¢(dv) <0,
Thus, together with the proof of Theorem [3.3.6| it follows that ¢**) = ¢(*) which implies
eld) — () = @ _ () >, ]

For the proof of Corollary [3.3.8 about the Loewner order, we first introduce some notation:
Since |G| < 0o, we can enumerate the functions in G by G = {g1,....,9,g/}. We define
ZZ L wig; with w = (wy,...,wg|) € RI9I and we define the set of all these g, as

g ={g,:weR9 g,eG,ji=1,..|G|}.

Proof of Corollary[3.3.8. The inequality C*) <, C¥ is equivalent to
gl 191 gl 191
SN wiw; e (gi,95) < 30D wiwic (g, 95)

i=1j=1 1=17=1

for all (wy),eg € RI9\. Tt holds that

9l 19| L 1919
Zzwzwj gzaQJ) = lim 9 9 ZZMZMJCO’(J(Z_% nk Zgj n,k )
i=1 =1 OO Uy Sp g 12 1j=1
| rm 19 ra 19]
= Jim C( >3 (W), 323 oW,

k=1i=1 k=1 j=1

Therefore, the limit c¢{®) exists. Likewise, for ¢ we have

1G] 16| 1

SN wzwj )(gs, gj) = lim

n—00 2
ot TrnUnQ2

rn/Sn

Var( Z gw nksn+1)) = Cgl)

and c\@ exists.
Since all conditions of Lemma[3.3.4) are satisﬁed for the single function g, by the linearity
of the covariance, the lemma yields ¢{®) < (@ All in all, we have

19| 19] 9] 19]

Zzwzwj glag]) Zzww] gl?.g])

i=17j=1 =1 j5=1

which completes the proof. O
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Chapter 4
Cluster index estimation

In Chapter |3] an abstract limit theorem and a more concrete limit theorem for sliding
blocks statistics were developed. This chapter is dedicated to a class of indexes which
can describe aspects of the extremal dependence structure of a stationary time series
(Xt)tez. The proofs in this chapter are mainly applications of the limit theorems from
the previous chapter. Thus, this chapter gives relevant examples for the application of

the theory developed so far.

4.1 Cluster indexes

We will consider cluster indexes for stationary time series (X;);cz in general and the ex-
tremal index and stop-loss index specifically. Cluster indexes are values which describe
some specific parts of the extremal behavior of a stationary time series. Often extreme
events do not occur alone, but there are temporal dependencies and they occur in a collec-
tion, in so-called clusters. Cluster indexes can be used to describe facets of this clustering
behavior. Thus, cluster indexes can be important variables for the understanding of the
extremal behavior of a stationary time series. They were rigorously defined and motivated
in Kulik and Soulier| (2020)), Section 6 and 10, one way to define these indexes is given in
the next definition.

Denote ly = {(x;)iez € (RYZ : || — 0 for |[t| — oo} as the space of R? valued double
sided sequences converging to 0 as |[t| — oo. In this section, we consider elements and
convergences in ly, equipped with the supremum norm || ||. If some element (xy, .., x¢) €

(RE)t=s+L occurs, we will interpret it as an element (xp,)nez € lp with x;, = 0 for h ¢

{s,..,t}.

Definition 4.1.1 (Cluster index). Let (X;)icz be an Ri-valued reqular varying time series
with index o and tail process (Yi)iez. Set v, = P(|| Xo|| > wn). Let r, € N and u,, be
sequences such that nv, — oo and r,v, — 0.

For a bounded or non-negative functional H on ly, a general cluster index v*(H) is
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defined as

v*(H) := lim ! E {H(Xl,,Xr”)]

OO Ty Up Un Un

if the limit exists. We call H the cluster functional.

Depending on the cluster functional H, these cluster indexes can describe some specific
behavior of the extremes of the stationary time series (X;)icz. One special example for
a cluster index is the extremal index €, which will be discussed in detail in Section 4.2|
Some more well known cluster indexes are the deviation index (Mikosch and Wintenberger,
2013} |2014) and the cluster size distribution, where the index 7; is the probability that a
cluster of extremes contains j extreme values. (Hsing, [1991; Drees and Rootzén, 2010).
Before we define estimators for v*(H), an important question is when and for which H
the cluster index exists at all. We will consider the general cluster index only for non-
negative, real-valued and stationary time series (X;)icz which are regularly varying with
index «. In this case the tail process (Y;)icz exists (Theorem and we will assume
that the tail process satisfies the summability condition (SC), i.e. ||[Y]|S < oo a.s. By
Lemma this ensures that (Y})cz is a.s. an element of [, C .

Denote M;; = max;<i<; || Xkl and U, = sup ., ||Ui]| for all —oo <'s <t < oo and a
stochastic process (Uy)iez.

The first proposition states conditions for the existence of the limit in Definition [4.1.1
and it also states an alternative representation. In preparation we define

V= PY”

—o00,—1

<1) = P(Y;

1,00

<1)

as the candidate extremal index (Basrak and Segers| (2009)), Section 4). The process @
is defined by Q = Z/Y*_
conditioned on Y* | < 1,ie. L((Zi)iez) = L((Ye)iez | Yo 1 < 1) (Basrak and Segers
(2009), Remark 4.6). The condition in the definition of Z means that the first value with

norm larger than 1 occurs at time point 0, since ||Yp]| > 1 a.s. This processes Z and @

where Z = (Z;)icz has the same distribution as (Y})iez

are well known in the literature, see e.g. Planini¢ and Soulier| (2018), Definition 3.5, or
more abstract in [Dombry et al.| (2018).

Note that 9 equals the extremal index 6 under the conditions (A1) and (AP) below, see
Section for details. For the existence of v*(H), recall the well known anti-clustering
condition (AC) from page [12]

Proposition 4.1.2. Let (X;)iez be a stationary and regular varying time series with tail
process (Yy)iez. Let nv, — oo and rv, — 0. If (AC) holds, then for all bounded shift
invariant functions H (i.e. H((yt)tez) = H((Yi11)tez)) with support separated from 0 the

limit

v*(H) = lim ! E[H(Xl,...,XT"H
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exists. Moreover,

— 9 /0 " E[H(rQ)ar—dr. (4.1.1)
The proof of the convergence can be found in Kulik and Soulier| (2020)), Theorem 6.2.5,
the representation is stated in equation (6.2.3) of that book. The alternative
representation could also be used to define the cluster index and it shows the
connection to the tail measure, see |Planini¢ and Soulier| (2018)).
Kulik and Soulier| (2020) (Section 6, page 156) also show, that if H > 0 is a shift-invariant

functional with H(y) = 0 if ||y]/e § e for some ¢ > 0 (i.e. the support of H is separated
from 0), then the representation (4 can be used to show

Vi(H) =B [HEY )y <y| = E [HEY )Ly <y (4.1.2)

Now, where we have quite general conditions under which general cluster indexes exist,
the statistical question arises how and how well one could estimate them. Therefore, we
want to motivate three estimators for a general cluster index and analyze the asymptotic
behavior. The first two estimators are classical disjoint and sliding blocks estimators,
which fit in the setting of the previous chapter. Both estimators are block based extreme
value statistics which are motivated by the interpretation that all large values in such a
block form a cluster of extremes. Another interpretation of clusters of extremes is that all
large values which are not separated in time by a certain number of smaller values form
a cluster of extremes. This leads to our third estimator, a so-called runs estimators. The
best-known example of a runs estimator is defined for the extremal index, cf. Section[4.2.2]
Such runs estimators can be considered as a special type of sliding blocks estimators and
can thus be analyzed with the techniques developed in Section [3.2] This interpretation
broadens the possible field of application of the sliding blocks limit theorem developed
in Section [3.2l Moreover, the theory developed there offers a first general framework to
derive asymptotic results for general runs estimators.

We start with the motivation of the disjoint and sliding blocks (pseudo) estimators, which
can be obtained as empirical counterparts of the expected value in the definition of v*(H).

Based on observations X1, ..., X,,, they are given by

O | /2] Xie l)sn—l-l Xis,
no4=1 n n

n—snp+1 X
PO = e 3 H (S et

Spnvp i

for some block length s, = o(n). The expectations of the estimators are given by

E[o*(H)%] = V’JlE [H (Xl X)] ,

Spd nuy, Uy, Uy,

Bl () = oSt ] E{H(XlX)}

n SpUn, U, Uy,
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for the disjoint and sliding blocks case, respectively. Those expectations both converge
to v*(H) under suitable conditions as stated in Proposition [4.1.2] Since v, is usually

unknown itself, this has to be replaced by a reasonable estimator, for example by

1 n—snp+1

bo=00 2 T

One could replace the upper end of the sum by n, however for simplicity of the proofs we
will use this estimator for v,. We will see that both versions are asymptotic equivalent,

meaning that the difference converges to 0 in probability, i.e.

1 n—snp+1 d 1 Sn—1 Un
Z Tyx, ||>un}—*z]1{ux > un) Z Ly >un} = ( )

n n

under our conditions used used below, in particular since s,, = o(,/nvy,).
As third estimator we will propose the runs estimator for cluster indexes. This can be

motivated using the following proposition.

Proposition 4.1.3. Let (X;)iez be a stationary and regular varying time series with tail
process (Yy)iez. Let u, — oo be a scaling sequence and r, be an intermediary sequence
(T, — 00, = o(n) ). If (AC) holds, then for all x > 0 the weak convergence

s een
TUy, TUy,

X, X
£ < n n

|Xoll > 2, ) = £(Vrez)

holds in .

This proposition is a simple corollary of Lemma [2.1.9] where a more general statement
is given. An alternative proof can be found in |[Kulik and Soulier| (2020), Theorem 6.1.1.
With this proposition and we motivate the runs estimator. Note that due to the
restriction on H for the application of , this runs estimator is only well motivated
for bounded functions H with H(y) = 0 if [|y|lec < € for some ¢ > 0. To ease the
following notation, we now consider ¢ = 1. The runs (pseudo-)estimator of v*(H) based

on observations Xi, ..., X,, can be defined by

n—sn X
o (H), = H (&= ”S") L1 15y LMy jee <y (4.1.4
v ( )n (n — QSR)UR j SZ+1 ( Uy, Uy, {||X]||> n} {MJ+1,j+$n§ n} ( )

This estimator is called runs estimator, because each nonzero summand j with || X;|| > u,
has at least s,, subsequent summands which are 0, i.e. the summands different from 0 are
separated by runs of length s,,. This separation is used such that each cluster of extremes
has impact only on the value of one summand of the estimator. This is the version with

a run after an extreme observation. Likewise one can define a runs estimator with runs
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before the extreme observations:

’ 1 g X‘*Sn X+5n
n = m H( 2 PIRREY . > ]l{HXjH>Un}]l{Mj*5n»J'*1§u"}'

Un i Up U

The expected values of this estimators are

X s, X,

E[p*(H),| = —E [H( e >1{||Xo|>un}]l{M1,sn<un}} :

1 X_, X,
E[p*(H),| = —F [H (u » )11{Xo>un}]1{M8n,_1<un}] :

Under the conditions of Proposition [4.1.3] these expectations converge to the cluster
indexes for bounded cluster functionals H with H(y) = 0 if ||y]|« < 1

E[0"(H);] = E[H(Y gy, <] = v"(H)

where the last equation holds because of with e = 1. Note that we replaced r,, by s,
in Proposition For s, = o(r,) the conditions of the proposition are met, in particular
(AC) also holds for s, < r,. Similar E[0*(H)"] — E {H<Y)]1{ono,71§1}} = v*(H). Hence,
the runs (pseudo-)estimators are asymptotically unbiased. Again, since v, is usually
unknown it has to be replaced by 9,.

For the sliding blocks estimator and the runs estimator the asymptotic distributions can
be derived under the corresponding conditions from Theorem [3.2.1] This result also al-
lows the derivation of the joint convergences of a larger family of cluster indexes. The
asymptotics of the disjoint blocks estimator can be derived with the more abstract The-
orem The application of the theory from Chapter [3| to achieve asymptotic results
for all three estimators underlines one big advantage of the abstract setting: it suffices to
consider this one setting to analyze the three considered estimators for one index and to
get actual comparable conditions. Therefore, the motto of this chapter could be: three
types of estimator, one method of proof - unifying the settings.

Since the cluster functionals H are quite general, the conditions of Theorem [3.2.1] would
remain unchanged for a limit theorem for general cluster index estimators. The only
difference to the conditions in Section would be that the function g((Xj1¢/un)p<s,)

is replaced by the more specific, but still quite general function

X'_sn X+5n
H( s )]l{nxj||>un}]1{Mj+1,j+Sn<un}

U’n n

for runs estimators (for sliding blocks estimators similar). Further simplifications are not
possible without additional assumptions on H or the time series, but one could replace
some conditions by stronger ones. However, for some special family of cluster indexes
with a concrete function H one could derive a more specific limit theorem under simpler

conditions. In the following sections we show by the example of the extremal index and
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stop-loss indexes how one can derive this more specific limit theorems with simpler sets
of conditions.

Recently, |Cissokho and Kulik| (2021)) considered disjoint and sliding blocks estimators for
cluster indexes and developed an alternative limit theorem for general estimators and
some special examples. They used estimators based on order statistics and derived a
limit theorem for them. For this they used some other kind of conditions than we used in
Chapter [3| In particular, they applied a stronger S-mixing condition, another condition
to control extremal dependence and some ANSJB condition which controls the occurrence
of small jumps in the time series. In their setting they proved asymptotic normality of the
sliding and disjoint blocks estimator. Moreover, they proved that the asymptotic variance
is equal for both estimators under their assumptions.

If the asymptotic normality of o*(H )3 and 2*(H) is derived with the theory of Chapter ,
then Theorem [3.3.6] shows that the asymptotic variance for the disjoint blocks estimator
is greater or equal to the asymptotic variance of the sliding blocks counterpart. Thus,
Cissokho and Kulik| (2021)) got a stronger result under more specific conditions than we
used in the much more general setting of Section [3.3

In the following sections we derive specific conditions for asymptotic normality of the
disjoint and sliding blocks estimators of the extremal index (Section and the stop-
loss index (Section [4.3)). Under these conditions we also derive the same asymptotic
variance for the disjoint and sliding blocks estimator. In addition to the mentioned paper
we also consider the runs estimator, which in the case of the extremal index has also the

same variance as the other two estimators.

4.2 Extremal index

The main results from this section have already been published in advance in Section 3 of
Drees and Neblung (2021).

In this section, we consider only R*-valued time series (X)icz, in particular d = 1.
Using the cluster functional H((2¢)tcz) = 1 max,cs 2 >1} One obtains the extremal index as
special cluster index, if one considers only non-negative time series. The extremal index is
analyzed in the literature since Leadbetter| (1983), including disjoint blocks estimators and
runs estimators. In order to built a bridge to the literature, we introduce the extremal
index as a new variable and not only as a special case of the generalizing concept of
cluster indexes. In particular, the extremal index can be defined without the assumption

of regular variation of (X;);cz as used for the general cluster index above.

Definition 4.2.1 (Extremal index (Leadbetter, 1983)). Let (X;)icz be a R-valued station-

ary time series. (X;)iez possesses the extremal index 0 € [0, 1] if for some thresholds
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un (1) with nP(Xo > u, (7)) = 7 > 0 for some 7 > 0

lim P <max X; < un(7)> =

1<i<n
holds.

This definition implies that for large n it is P(max;<ij<n, Xi < 4, (7)) ~ F™(u, (7)), where
F' is the distribution function of Xj. If (X});ez is an iid. sequence, then § = 1. For
0 < 6 < 1 there have to be some dependences in the time series, in case of dependences
0 = 1 is still possible. In general, # is defined for values in [0, 1], but in what follows
we assume 6 > 0 and exclude the degenerate case § = 0. In this degenerate § = 0 case
maxj<;<, X; would not exceed the threshold w,(7) for n large enough with probability 1,
which would imply that asymptotically extreme events occur only with lower order than
implied by the thresholds u,(7), i.e. another normalization would be needed.

There are several other characterizations of the extremal index. Under suitable addi-
tional conditions, the extremal index is the reciprocal of the expected length of a cluster,
where a cluster is a block of X;’s which exceeds a high thresholds, see and Smith
and Weissman| (1994). Due to this interpretation, the extremal index is an important
parameter for measuring the degree of extremal dependence of (X;);cz. Therefore, the
estimation of # can be an important step for the analysis of the extremal dependence
of a time series. There is much literature that deals with this estimation problem, see
e.g. Smith and Weissman (1994), |Ferro and Segers| (2003)), Stveges| (2007), Robert et al.
(2009), Berghaus and Biicher (2018)), Biicher and Jennessen| (2020a) among others.
Besides a popular disjoint blocks estimator for 6, we discuss the corresponding sliding
blocks estimator and we will consider a well known runs estimator.

Let (X¢)tez be a real-valued stationary time series and recall M;; = max(X;, ..., X;). If

the extremal index exists then, under weak additional conditions,

P<M1an > Un)
ko P(X1 > )

0, (4.2.1)

for sequences k, — oo and u, such that k,P(X; > u,) — 0. In particular, this holds
if Bﬁfln/(knvn) — 0 for some I, = o(k,) (with X,; = X;/unlix,5u,) for the S-mixing
coefficients, cf. Leadbetter (1983), Theorem 3.4). One other possible and weaker condition
is the D(u,) condition introduced by Leadbetter (1983), this condition is in particular
satisfied under the S-mixing condition mentioned before.

This representation together with Proposition shows, that the cluster func-
tional H((2¢)iez) = L{max,cs |z.|>1} actually defines the extremal index as cluster index.

The first estimator we consider is the disjoint blocks estimator

[n/sn]
Ad L E’L:l 1{M(i—1)sn+1,isn>un}

n n—sn+1
Ziiln ]l{Xi>un}
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This estimator was first proposed by |Hsing (1991) and is an empirical counterpart of
using disjoint blocks to estimate the numerator for k, = s,,. Here, s, is the length
of the considered disjoints blocks.

Hsing (1991) already stated an asymptotic result for §% under some tailor-made conditions.
We will show the asymptotics under different assumptions and in the same setting as for
the runs and sliding blocks estimator.

The sliding blocks estimator is given by

-1y n—sp+l1
és . Sn Zl:l Il'{Mi,i+sn71>un}

n - n—sn+1
Zi:ln ]l{Xi>un}

This estimator is motivated like the disjoint blocks estimator by (4.2.1)), the difference
is that one uses sliding blocks for the empirical counterpart of the numerator. Due to
the larger number of summands in the numerator, the normalization must be adapted,

I appears. This factor assures convergence to a non-trivial (non

therefore, the factor s,
0) limit of the covariance (cf. the proofs below). The sliding blocks have an overlap
which results in a higher dependency between the summands in the numerator, which
must be considered in the asymptotic analysis. With Section [3.2] the asymptotics can
still be treated. With H((2¢)icz) = 1{maxses z,>1} this estimators corresponds to the block
estimators in for cluster indexes.

A (slightly modified) sliding blocks estimator for the extreme index was also given in
Beirlant et al.| (2004), Section 10.3.4. It was stated there, that this sliding version should
be more efficient than the disjoint blocks estimator. The asymptotics given below is the
first systematic investigation of the behavior of this sliding blocks estimator. In particular,
we will see that the sliding blocks estimator has the same asymptotic variance as é,‘f, which
contradicts the suggestion of Beirlant et al.| (2004)).

The so-called runs estimator of € is based on the following characterization of the extremal
index:

P(M27kn < Uy, | Xl > Un) — 9, (422)

which was first proven by |O’Brien| (1987) under suitable conditions. With Theorem 1
from [Segers| (2003)) it follows that and are equivalent conditions under some
suitable conditions. One of these suitable conditions is the anti-clustering condition (AC)
with r,, replaced by k,. The equivalence of and ensures that the asymptotic
distribution of all three estimators can be established under comparable conditions.

The runs estimator is defined as

Zn—sn-l—l ]1
ér L i=1 {Xi>un,Mit1,itsp—1<un}
n n—snp+1 1 )
D i {X;i>un}

where s, — 1 is the length of the run. This estimator is the empirical counterpart of
(4.2.2) with k, = s, and was first suggested by Hsing (1993)). The idea of this estimator
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is the same as for the runs estimator for cluster indexes defined in , now in the
special case of the extremal index. However, unlike in Section we do not need regular
variation here.

Its asymptotic normality was first established in [Weissman and Novak (1998) who also
proved the asymptotic normality of éﬁ under somewhat simpler conditions than Hsing
(1991) including # < 1 and ¢-mixing. For a very specific model, Weissman and Novak
(1998) showed that the asymptotic variances of both estimators are the same, but they did
not realize that this indeed holds true under quite general structural assumptions, as we
will show below. Our analysis here uses a different approach and therefore also sets other
conditions. Recently, Cai| (2019) derived an asymptotic result for the runs estimator with
random thresholds. She too, uses different dependency conditions which are not directly
comparable with the conditions for asymptotic normality of the blocks estimators.

The asymptotic results in this section will be the first asymptotic results, which allow
a direct comparison of the asymptotic variance of both blocks estimators and the runs
estimator. It turns out that under mild conditions all three estimators of the extremal
index have the same asymptotic variance. While the asymptotic normality of the disjoint
blocks estimator and the runs estimator has already been proved by |Weissman and No-
vak| (1998), the equality of their asymptotic variances has been overlooked, because the
variances were expressed differently. In addition, we establish the asymptotic normality
of the sliding blocks analogously to the disjoint blocks estimator for the first time. This
example demonstrates that, by analyzing different estimators of the same parameter in a
unifying framework as developed in Chapter 3] one may gain new insights.

In the following we will state individual conditions for all three estimators, which are
similar but not identical for the different estimators. However, one can formulate a set
of not too strict uniform conditions under which the asymptotic normality of all three

estimators holds.

(01) (Xi)iez is a Rt-valued stationary time series. For v, := P(X; > u,) — 0, one
has nv, — oo and s, — co. In addition, there exists a sequence (1, ),en such that
Sp = 0(1p), ravn, — 0, 1, = o(y/nv,) and (n/rn)ﬁfsn,1 — 0.

(62) The limit

n—o0 rnvn

1 Tn 2
c:= lim E[(Z]l{Xj>un}> ]
j=1

exists in [0, co).

(6P) For all n € N and k € N there exists e, (k) such that
en(k) > P(Xy > uy | Xo > uy)

and limy, oo >3 en(k) = 352 lim,, o0 €, (k) < 00.
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By Pratt’s lemma (Pratt| (1960)), condition (§P) enables us to exchange sums and limits
in the calculation of covariances, it was also used e.g. by Drees et al.| (2015).

Under (A1) and (6P), both and hold for all k, < r, such that k, — oc.
This follows from Theorem 1 and Corollary 2 of |Segers (2003) in combination with the
aforementioned result on convergence . In particular, under the above assumption
Segers| (2003) showed

P(Ml,kn > un)

P(MQ,kngun‘Xl>un)NkP(X1>u)7

i.e. (4.2.2) holds if and only if (4.2.1)) holds.

Note that if (61) and (P) hold for some sequence r,,, then the former is obviously fulfilled
by 7% := |rn/sn]Sn, too, and (6P) remains true with 7% instead of r, because of
- Sn, o X no_x T3
> P(Xp > un | Xo>un) < —(vp + By ) < rpvn + — B, — — 0.
k=rz+1 Un o Tn " NUR
Moreover, the arguments given in the proof of Lemma [3.3.3] show that the limit ¢ in (62)
does not change if we replace r, with r’. Thus, w.l.o.g. we may assume that r,/s, is a
natural number (tending to oo) for all n € N. This is used to ease the notation.
The limit ¢ is the asymptotic variance of the estimator v,, for v, in the denominator of
each estimator. If (fP) holds and the positive part (X;" )z of the time series is regularly

varying, then ¢ can be represented in terms of its tail process (Y;)iez, i.e. (02) holds with

1 Tn 2 rn—1 k’
¢ = lim E[(Zﬂ{Xpun}) 1 = lim Y (1 - H)P(Xk > up | Xo > uy)
j=1

N0 TRl nree k=—rn+1 n
o k
- > lim ( - H)P(Xk >y | Xo > ) = 30 P(Y; > 1), (4.2.3)
oo Tn keZ

In the third step we applied Pratt’s Lemma and in the penultimate step we used the

definition of the tail process. Alternatively, one may use the representation

rp—1 k
c=1+ lim Z (1—)(P(Xk > uy, | Xo > u,) + P(Xo >un|X_k>un)>

n— 00
k=1 n

=1+2> P(Y,>1).
k=1
In addition to the previous assumptions, we have to assume that the convergence (4.2.1)
for k, = s, and the convergence (4.2.2)), respectively, is sufficiently fast to ensure that
the bias of the block based estimators or runs estimators, respectively, is asymptotically
negligible:
P(Ml,sn > Un>

SnUn

(By) \/n_vn( - 9) )
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(B,) vnu,(P(Mss, <up | Xy > u,)—60) —0.

Since (4.2.1) and (4.2.2) hold under (61) and (AP), these bias conditions impose only
conditions on the rate of theses convergences. These bias conditions ensure that the bias

converges faster to 0 than the stochastic error.

In the following Sections [4.2.1] and 4.2.2| we will show that under our unified conditions

all three estimator have the same limit distribution.

Theorem 4.2.2. If the conditions (01), (02) and (OP) are satisfied, then
Vo (0% — ) 2 N(0,0(0c — 1)),

provided (By) holds when § stands for ‘d’ or ‘s’, and (B,) holds when  stands for or ‘r’

This theorem directly follows from Theorems [4.2.4] [£.2.7 and [£.2.10, which will be estab-
lished for each of the three estimators separately below. Note that (1) implies the more
specific conditions (01S) (Lemma [4.2.5) and (1R) below.

In practice, usually the threshold u,, is replaced with some data driven choice 1, like an

intermediate order statistic of the observed time series. By the techniques developed in
Drees and Knezevic (2020)), one may prove that these versions of the estimators of the
extremal index asymptotically behave the same, provided i, /u, £ 1 and the time series
(X, )iez is regularly varying. To this end, the results about the convergence of the fidis
are not sufficient anymore, but the full process convergence is needed. The precise results

for the sliding blocks estimator is discussed in Section 4.2.3]

4.2.1 Extremal index - disjoint and sliding blocks estimators

We start with the asymptotic analysis of the disjoint blocks estimator, and first discuss
how one can embed this setting in the framework of Chapter [3] For all three estimators,
first the numerator and denominator are examined individually and the bivariate asymp-
totic normality will be established using the theory of Chapter [3, Then the asymptotics
of the estimator as a whole are derived using Lemma [3.3.5 In this concrete application
only four different functions are considered, so that from the abstract setting only the
results about the fidi convergence are needed.

For the application of Theorem for the disjoint blocks estimator one possible choice

for the treatment of the numerator would be V¢, := m, '*1 1y, in the setting

Dsn+1,isn >Un}
of Section . However, we will choose V,,; differently to incre)ase the comparability to
the asymptotic results for the sliding blocks estimator and the runs estimator. For this
we introduce artificial big blocks of length r,, which summarize some blocks of length s,,.
Therefore, let

1 Tn/Sn

Vrii = NG > LM i1yt =) smt 1=ty rtsn >in

J=1
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1 rn/sn—1
d ._
i VM ; LM (1)1 oot 1= Do >tn
1 &
c .
ni T Z]]'{X(i—l)rn+j>un}’ (424)

N

1 Tn—Sn

Vi = i ; Lix gy j>unts
for i € {1,...,m,} and with m,, = [(n — s, +1)/r,]. Here, V¢, is defined to deal with
the numerator of 6 and Vy; is defined to treat the denominator. By the stationarity
of (X)iez the stationarity of (Vgi,f/gi)lgigmn follows. Let p, = P(My,, > u,) and
v, = P(X1 > uy).

For the asymptotic result for the disjoint blocks estimator we directly use the unified
conditions (01), (62) and (#P). The next proposition states the bivariate asymptotic nor-

mality of the numerator and denominator of éff This proposition follows directly from

Theorem B.1.4

Proposition 4.2.3. Suppose that the conditions (01), (02) and (0P) are satisfied. Then

the weak convergence

d ~1/25mn (17d d d

ZA 2 s (Ve — E[VE]) AT o (! 176\

Z; S (Ve - BIVE)) z¢ 1/ c/6
holds.

Here, N5 denotes the two-dimensional normal distribution. Recall that we consider only
the extremal index for § > 0. Note, that we standardized the numerator with ,/p, and
not with /r,0,. This is due to the same normalization for both processes and for Z¢
the used normalization is natural for the calculations. But this standardization has an
impact on the variance of Z¢, since p, /(r,v,) — 6 under given conditions.

In the proof of this proposition, among others, one has to check condition (L) for the
denominator V;7;,. This condition is comparable with condition (b) in Theorem 4.5 of
Hsing (1991)). However, this condition is implied by (A1), so that we do not have to
assume it. This is an example, where our conditions are a bit stronger compared to the
conditions of asymptotic results in the literature, but therefore they are the same for all
three estimators.

For the asymptotics of the estimation error of the disjoint blocks estimator we will in

addition assume the bias condition (Bp).

Theorem 4.2.4. Suppose the conditions (01), (02) and (P) are satisfied and (By) holds.
Then

A

a9 — 0) % N(0,6(0c — 1)).

The resulting covariance is comparable with the covariance calculated by Hsing (1991)).
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For § = 1 asymptotic normality for #¢ — @ = 0% — 1 < 0 is not possible because of
éz < 1. Our result includes this case § = 1, but the asymptotic variance has to be 0,
i.e. ¢ = 1. For instance, if (X;);cz is regularly varying with tail process (Y;)icz, then
¢ = ez P(Yi > 1), see ([£.2.3). For 6 = 1 one has Y}, = 0 a.s. for k # 0, so in the
case of regular variation it follows ¢ = 1 as proposed, since Yy > 1 a.s. Thus, there is no
contradiction for the case § = 1.

Next we turn to the sliding blocks counterpart éfL

For the analysis we rewrite the estimator as

—1 n—snp+1 —1 n—snp+1
0 — S 2uiml MM ips,—1>un) _ (annsn) 2imt WM, >un)
n n—sn+1 - —1 —n—sp+1
doiei " ]l{Xi>un} N ]l{X¢>un}

Here, as before, the numerator and denominator are treated separately and the joint
asymptotic normality is established. The behavior of the denominator has already been
discussed in the previous part for the disjoint blocks estimator.

The analysis of the sliding blocks estimator can be done with Theorem and with
the process Z,, defined in (3.2.3). Here one has Xn,i = X;/u, and we use the following

bounded functions:

9(1'17 cee 7$S) = ]l{maxlgigs zi>1}

h(z,...,x) == L 51}

Obviously, 0 < g, h < 1. For the sliding blocks estimator the normalization sequences are
chosen as b,,(g) = by(h) = (nv,/p)"?s, with p§ = P(X72 Liar, o ysunp > 0).

Again, we assume X as [-mixing and the usual restrictions on the order of the sequences
Sny ln, . However, in contrast to condition (1) we assume weaker S-mixing conditions
but in addition another condition which restricts the extremal dependence of the time

series (Xy)iez-

(01S) (X})iez is a RT-valued stationary time series. For v, := P(X; > u,) — 0, one has
nv, — oo and s, — 0o. In addition, there exist sequences (I,,)nen and (7, )nen such
that 2s, <1, = o(ry), rpv, — 0, r, = o(y/nv,) and (n/r,)Bx — 0.

N,ln—3n

Moreover, it is

1 &
— Z P(Ml,sn—H > Uy, | X > un) — 0. (425)
Sn =5,

Lemma 4.2.5. (i) Condition (01) implies (01S).

(i7) (4.2.5) is implied by (rn/sn)P(Ms, rpts, > Un]| X1 > u,) — 0, provided (6P) holds.

The condition (1,,/sn)P(Ms, rp4s, > Un|X1 > u,) — 0in part (ii) of the lemma is stronger
than (AP), since it imposes an additional rate on the convergence of the probability.
Instead of (4.2.5)) one could use this condition for (01S). Alternatively to condition (4.2.5)
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one could also use a condition on maximal correlation coefficients (to bound 7 in (4.4.7)),
cf. the proofs) as e.g. Robert et al.| (2009) uses them. However, we use which is
implied by (1) such that we have uniform conditions for all three estimators.

Under the previous conditions one can derive joint asymptotic normality of numerator
and denominator of #% by Theorem m, part (a).

Proposition 4.2.6. Suppose the conditions (01S), (02) and (OP) hold. Then,

Z’f L (\/ nvn5n>_1 Z?;18n+1 (]I{Mi7i+3n_1>un} - P(Ml,sn > un))
zZy N Vi <]]'{Xi>Un} - P(X, > Un))

= () )
Z(h) 1 ¢

With this proposition and the bias condition (B,) we can show the asymptotics for 62
with methods as in Lemma [3.3.5]

Theorem 4.2.7. Suppose the conditions (01S), (02) and (0P) are satisfied. In addition
assume that (By) holds. Then

Vo (05— 0) 2 N(0,6(c — 1)).

By part (i) of Lemma this theorem implies Theorem for the sliding blocks

estimator.

4.2.2 Extremal index - runs estimator

Next we continue with the runs estimator. The principle for the runs estimator é}; was
first motivated by [Leadbetter et al. (1989). The concrete estimator was given by |Hsing
(1993) and discussed in e.g. |Smith and Weissman (1994) and Embrechts et al. (2013)).
A first asymptotic analysis was given by [Weissman and Novak| (1998). We will establish
the asymptotic distribution of the estimator in the same setting as the asymptotics of the
disjoint and sliding blocks estimators. We will examine the numerator and the denomi-
nator of éfl each with the sliding blocks result in Theorem and with the process Z,
defined in (3.2.3]). The denominator alone was already analyzed for éfL

The indicator in the numerator of HA;; can be interpreted as a function of the sliding blocks
(Xi, ...y Xivs,—1) with block length s,. The runs estimator is a sliding blocks estimator

with the special block function

f(xla ~-'7x5) = ]l{:r:1>l,max2§i§5 z; <1}

for the numerator and for the denominator

h(ml, e ,l‘s) = ]l{x1>1}
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as in Section 4.2.1] In the notation of the abstract setting we consider X,,; = X;/u, such
that f(Xn1, ..., Xns,) = Lix, 1 >1 maxsejcs, X, <1}, and the function f does not depend on
n. Again, we have m, := |(n — s, + 1)/r,] and p, = P(My,, > u,). As normalization
we choose by, (f) = b,(h) = (nv,/pn)"/2.

As before we assume that X is S-mixing, but we use a slightly weaker mixing condition

than in (A1). In addition the usual conditions on the rates of s, [, and 7, are needed:

(/1R) (Xy)iez is a RT-valued stationary time series. For v, := P(X; > u,) — 0, one
has nv, — oo and s, — oo. In addition, there exists sequences (I,,)nen, (Tn)nen
such that 2s, < I, = o(r,), rpv, — 0, r, = o(y/nv,) and (n/r,)px — 0 and

Nylp—58n
(sn/vn)ﬁﬁfsyrl — 0.

Note that s, is still the block length, but in contrast to (1) we have an additional
sequence [, > 2s, which is used for the weaker [-mixing assumption. The [-mixing
assumption (s,/vy)By, _; — 0 in (91R) is implied by the stronger S-mixing assumption
(n/r)Br,,_1 — 0in (01). Indeed,

2
S T'nSn N T n
. 'r)z(sn—l - — B:L(sn—l S . 'r)z(sn—l 07
Un, ’ nv, ’ nv, Ty ’

since 1, = o(\/nvy,). Therefore, (A1) implies (A1R).

The estimator é; is motivated by the convergence so that our condition should
ensure that this convergence holds. Recall that this is equivalent to (4.2.1)) which in
particular holds under (#1R) and (6P).

The result of the asymptotic normality of the numerator and denominator is given in the

following proposition.

Proposition 4.2.8. Suppose the conditions (01R), (02) and (0P) are satisfied. Then the

weak convergence

Zn(f) L (nvn)_l/Q Z;'lz_lsn—H(]I{Xi>un,M2,snSun} - P(Xl > U, MQ,sn < un))
(nvn) V20 (1 x sy — PO > )

> () ()
Z(h) 1 ¢

As stated in the next lemma, we can modify the mixing conditions of the previous propo-

holds.
sitiomn.
Lemma 4.2.9. For Proposition[{.2.§ one could use the condition
$nP(Ms, 25, > un | X1 > u,) — 0 (4.2.6)

instead of ($n/vn)Brs, 1 — 0.
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By (6P) one has P(M,, ,, > u, | X1 > u,) — 0. Thus, (4.2.6]) is an additional assumption
on the rate of convergence. If s2v, — 0, then (s,/v,)5,,, _; — 0 implies ([4.2.6)), since

S
$nP(My, 25, > Uy | X1 > up) = —P(Ms, 25, > Upn, X1 > Uuy)

n

< SMP(M,, 5, > un)P(X1 > up) + 85, ) = 220 (s,02) + i—”ﬁiSn_l 0.

-1
Un, n,5n Un,

The [-condition is a restriction for the whole distribution of the time series (X;);cz (since
we defined X,,; = X;/u,1{x,5u,}), whereas restricts only the dependence in the
extreme parts of the time series. This is an advantage of the alternative condition, how-
ever, (n/vn)B,,, 1 — 0, without additional assumption s2v,, — 0, is directly implied by
the uniform condition (#1), which is why we use this condition here. In particular, (61)
implies (A1R).

With the previous proposition and the bias condition (B,) we can establish the asymptotic

normality of QAZ

Theorem 4.2.10. Suppose the conditions (01R), (02) and (0P) are satisfied and (B,)
holds. Then

Vo (07— 0) 2 N(0,0(ch — 1)).

Without additional assumptions there is no way to express the emerging constants ¢ more
explicitly. This expression is the same as for the disjoint blocks estimator and the sliding
blocks estimator and has another form than the asymptotic variance in Weissman and
Novak| (1998), Theorem 3.

Concluding remarks on the three estimators for the extremal index

The non-trivial limit of the standardized estimator 67 shows that the normalization with
(nv,)~! of the numerator was chosen correctly. This is an example where a sliding blocks
statistic (in the special case of runs) can have the same normalization as disjoint blocks
statistic (which is not the direct counterpart). 62 requires the normalization (nv,s,)!
for a non-trivial limit (but the convergence rate still is /nv,). This example shows
that sliding blocks do not always require the same standardization and that the general
normalization b, (g) in Section [3.2|is an important feature.

Theorem m proves that éff, QAZ and é,fl are equally efficient in terms of asymptotic
variances. However, for the asymptotic result we used some bias condition. Without such
bias condition Smith and Weissman| (1994)) showed under some special conditions, that in
terms of the asymptotic bias QA; should be clearly preferred. Since éﬁ and éi posses the
same expected value, both estimators have the same bias. Thus, following the arguments
of [Smith and Weissman| (1994) one would prefer the runs estimator.

Our result for the asymptotic variance does not confirm the hypothesis stated by |Beirlant

et al. (2004)) that the sliding blocks estimator is more efficient. We can only confirm that
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HAfL is not worse than éfl in terms of the asymptotic variance. The result of our asymptotic
variances fits to the result in Section [3.3] In fact we even have equality of the asymptotic
variances of the disjoint and corresponding sliding blocks estimator.

Since all three estimators have the same asymptotic variance, one question is, whether a
convex combination of two of these estimators A9# + (1—\)#% with A € (0,1) and #;,, €
{s,d,n}, could lead to a mixed estimator with smaller asymptotic variance. This would be
possible, if the correlation between this estimators is smaller than 1, or here equivalently if
the asymptotic covariance between the estimators is smaller than the asymptotic variance
of one estimator. The asymptotic covariance for the standardized estimation error of the

sliding blocks estimator and the runs estimator is given by

Cov(Z(g) — 0Z(h), Z(f) — 0Z(h))

= Cov(Z(g), Z(h)) + 6%c — § — 0 = e(ec 24 CO”(Z(?’ Z(h))).

Here we used the known covariance from Proposition and [£.2.8] Hence, the co-
variance is smaller than the variance 6(6c — 1) if and only if Cov(Z(g), Z(h)) < 6. This
asymptotic covariance can be calculated like the asymptotic variances as

lim
n—oo rnvnsn

Cov ( 21 ]l{Xi>un,Mi+1,i+sn,1gun}, 21 ]l{Mi,Hsnpun}) =0.
i= i—
This limit can be calculated with exactly the same arguments as for the covariances of
the runs and sliding blocks estimators in Lemma [£.4.1] and Lemma [£.4.2] Thus, it is
Cou(Z(g), Z(h)) = 0 and, therefore, the correlation between 07 and 6% equals 1.

With similar arguments one could also calculate the covariance between é;{ and éfL or
é}; and always achieve the covariance 6(6c — 1). Thus, the correlation between all three
estimators is 1. Therefore, a convex combination of these estimators would not reduce
the asymptotic variance.

Intuitively, this is also the expected result, since all three estimators do essentially the
same thing: they count the number of clusters and divide it by the number of extreme
observations. Although the way the estimators detect a cluster is defined differently for

the runs estimator, the clusters are asymptotically the same for all three estimators (see

above the equivalence of (4.2.1]) and (4.2.2))). Therefore, the asymptotic correlation should

intuitively be 1, as it is.

4.2.3 Extremal index - sliding blocks estimator with random
threshold

In the previous sections, three extremal index estimators were considered, all based on
observations exceeding a deterministic threshold u,,. In practice, when estimating extreme

value parameters this threshold wu, is often replaced by a random threshold ,, which
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depends on the observed time series, e.g. as order statistics. This practice does not fit to
the mathematical limit results that were derived. Therefore, it is interesting to consider
modified estimators where u,, is replaced by an estimator ,. For the asymptotic analysis
of the estimator with random thresholds we can apply the theory of Chapter [3 but we
need to apply the more complex theory about process convergence. Thus, the proofs of
this section, which use methods already introduced by Drees and Knezevic (2020), are an
example for the application of the process convergence.

The disjoint blocks estimator éfi was already introduced and considered by Hsing (1991)
as an estimator with order statistics as thresholds. In the paper, however, no asymptotic
behavior was considered due to the technical challenge and complex empirical process
theory required. In this section, we consider exemplary the sliding blocks estimator éi
with a random threshold. For éjf and é; one could derive analog results following the
same arguments as described here for the sliding blocks estimator.

The modified sliding blocks estimator with random thresholds is defined as

és - (\/nvnsn)*l Z?:—ISTL—H ]]'{Mi,i+sn71>ﬂn}'
o (vAvn) P ST L xsa)

We will consider a random threshold ,, which is a consistent estimator for u,, in the sense
that

Under some conditions, Drees and Knezevic (2020)), Lemma 2.2, showed, that the k,-th
largest order statistics X,, g, 1., of the sample (X7, ..., X,,) satisfies X,, g, 11.n/u, — 1 in
probability if k, = [nv,|. Thus, such order statistics fulfill our consistency condition and
one can replace 4, by the k,-th largest order statistics.

The asymptotic analysis of this estimator is more or less the same as in Theorem [4.2.7],
i.e. we will consider numerator and denominator separately, represent them as empirical
processes and derive their asymptotics as the asymptotics of a sliding blocks statistic.
The basic idea of the asymptotic analysis of éfmn is to amend the empirical process
(Zu(g), Zn(R)) used in the proof of Theorem by an additional parameter d € [1 —
g,1+ ] (for some € > 0) that later on is replaced with D,,. This extension makes the
use of process convergence necessary, the fidis convergence is no longer sufficient. The
parameter d is multiplied by the deterministic threshold w,. By inserting D, for d the
estimator with random thresholds is obtained.

This new parameter d requires some strengthened conditions. The condition (01) will be
used as before (note that we use (61) instead of (61S)). The other conditions are similar
to the conditions for the deterministic threshold, just the threshold wu, is replaced by

(1 — €)uy, for some € > 0.
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(fPR) There exist € > 0 and, for all n € N and k € N there exist e, (k) such that
en(k) > P(Xi > (1 —2)u, | Xo > (1 —€)uy,)

and lim, oo Y3 en(k) = 352 lim,, o0 €, (k) < 00.

(B,R) For all sequences d,, — 1,

In addition, we assume that the positive part (X; )iz = (Xil{x,>0y)tez of the time
series is regularly varying with index «. In particular, this implies the existence of the
tail process (V)iez for (X;)iez (Theorem [2.1.7). This assumption greatly simplifies the
calculations for some conditions, in particular for the covariances and the condition (D1).

We thus assume

(R) (X;")iez is regularly varying with tail process (Y;):ez, spectral process (0;)cz and

index a.

Observe that if (fPR) and (R) are satisfied then the following generalization of (/PR)
holds as well: one has for all ¢,d € [1 —¢,1 + €]

1
P(Xo > duy)
P(Xo > (1— e)uy)
P(Xo> (1 —¢&)u,)P(Xo > (14 2)uy,)
P(Xy > (1—¢)uy)
P(Xo > (1+¢e)uy)
< 2(1 - 6) “en(k) = én(k) (4.2.7)

14¢

P(Xy > cu, | Xo > du,) = P(Xg > cuy,, Xo > duy,)

< P(Xp > (1 — €)un, Xo > (1 —)uy) -

< P(Xy > (1= e)uy | Xo> (1—e)uy) -

with limy, 00 Y5 (k) = 202, limy, o0 €, (k) < 0o. This holds for n large enough, since
P(Xo > (1 —¢)u,)/P(Xo> (1+e)u,) <2((1 —¢)/(1+¢€)) ™ for n large enough, due to
the Potter bounds.

Due to (AP) and (R) the constant ¢ from (62) can be expressed with the tail process as
¢ =Y ez P(Yr > 1), see also (4.2.3) (under regular variation one can also replace r,, there
by sp.).

To apply Theorem |3.2.1| we consider the sliding blocks functionals g4 with

gd(l'la ---,l"s) = ]l{maxlgigsri>d}

hd(l’l, "'7'TS) - ]1{$1>d}

for d € [1 —e,1 4+ ¢] for some € > 0, where g; is used for the numerator and h, for
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the denominator of éfwn Thus, the functional class which we analyze in the following is
g = {gd,hd cd e [1—6,1+€]}.

Define
1 n—snp+1
Zn = ananz Sn— - F an77Xn'L Sn— ’
(9a) NS ; (9a(Xn, itsn—1) — E[ga(Xn, itsa—1)])
1 n—sn+1
Zn(hd) = Z (h'd(Xn,ia EERT) Xn,i—i—sn—l) - E[h’d(Xn,ia EERE) Xni-i—sn—l)])-

VIUn 5

Recall that X,,; = X, /u, and we use the notation M;; = max(X;, ..., X;) for —oo < i <
j < oco. As normalization we choose b,(gq) = (nv,/p3)"/?%s, and b,(hy) = (nv,/ps)/?
with pf, = P(My,,,1s,-1 > (1 — €)uy,).

Similar to the deterministic thresholds in Section4.2.1], we prove the asymptotic normality
of (Z,(f))eg in a first step.

Proposition 4.2.11. Suppose the conditions (01), (0PR) and (R) are satisfied. Then the

weak convergence

(Zu(f))reg = (Z([))seg
holds, where Z is a centered Gaussian process with existing covariance function. In partic-
ular, Var(Z(g1)) =0, Var(Z(hy)) = ¢ and Cov(Z(g1), Z(h1)) = 1 with ¢ = Y jcy P(Yy >
1).

The sliding blocks estimator éfwn is based on the exceedances over the random threshold
U, = Dpu,. The following result shows that é,i,ﬁn has the same limit distribution as the

estimators with deterministic thresholds.
Theorem 4.2.12. Suppose the conditions (01), (0PR), (ByR), and (R) are satisfied and
D,, — 1 in probability. Then

Vv (05,5, — 0) < N(0,6(c6 — 1)).

At this point we end the consideration of estimators for the extremal index. In the
next section we consider another cluster index, the so-called stop-loss index. Again the

asymptotic behavior will be established by an application of the theory from Chapter

4.3 Stop-loss index

As second example for a cluster index we consider the stop-loss index. This index is
defined as cluster index with the cluster functional Hg(y) := 1 (3., (y;—1)+>sy for some
A

S > 0. For a non-negative, stationary and regularly varying time series (X;);cz the index
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is given by

P (> (X5 —u,)™ > Su,
04(S) := lim (X — ) )
n—oo SnP(XO > un)

= P(Z(Yj -1)T> S8 < 1).

Jj=0

(4.3.1)

The convergence holds under the condition of Proposition and by (£.1.2). (Note that
summation over j € N and j € Z in the last probability is the same due to the second
argument. )

The stop-loss index can be interpreted as the probability that the total extreme losses
are at least S, given that today the first extreme loss occurred. This parameter could
be used e.g. for risk management to control total losses from extreme risks. By such an
application not necessarily only one stop loss index is relevant, but the entire stop loss
function (65(5))s>s,, for some Sy > 0. We will call (04(S5))s>s, the stop-loss distribution.
In the following we will estimate this function point-wise by the runs estimator and the
disjoint and sliding blocks estimators. For the analysis we will use the theory from Chapter
Bl Recently, this index was also considered as example in|Cissokho and Kulik| (2021)) under

different conditions and without the runs estimator.

4.3.1 Stop-loss index - runs estimator

Here we start with the runs estimator. The (pseudo)-runs estimator motivated above

(more precisely the second version) for the stop-loss index is given by

- 1 n—sn
wn(S) = oo jg}ﬂ Listen 5 ) LG unt L0 1)
1 Nn—sn
- (n — 2s,)v, j§+1 ]I{Zf:;”(Xi*un)+>5un}]l{XP“"}]l{MJ—SmJ'—lS“n}'

Note that an analogous analysis to the one that now follows can also be performed for
the first version of the above runs estimator for cluster indexes.

Check that Hg is bounded, shift-invariant and Hg(y) = 0 if ||y|lcc < 1, which is why the
motivation of the general runs estimator can be used for this specific cluster index. By
stationarity and Proposition [£.1.3] the expected value of this estimator is

E[~T (9)] = P(i(Xi — )t > Sup, Mg, 1 < uy,

sl,n
1=0

Xy > Un>

— P(Z(Y; -t >8 Y < 1),

Jj=0

i.e. the estimator is asymptotically unbiased.

Note that this pseudo estimator still depends on v, = P(Xy > u,), which is in general
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unknown. One has to replace v, e.g. by the empirical version 0, = > | T{x,>u.) /n.
The estimator then has basically the same denominator as the estimators for the extremal

index: éﬁ, é; and QAfL The full runs estimator for the stop loss index is

S 1 1
. j=sntt Lisniton (xcu s su LGS und LMo i <un)

an(9) =

sl,n

Zn—sn 1
Jj=sn+1 {Xj>un}

Here the run Tya_, _ <u, Xo>u,} OcCcurs before the required extreme observation occurs.
The minimum number of s,, non-extreme observations in a run serve to separate clusters of
extreme events and to use only one observation from each cluster. For the runs estimator
0 for the extremal index the last s, observations of a cluster of extremes is used for the
statistic, while in contrast the estimator considered here uses the first s,, observations of a
cluster of extremes. Nevertheless, the treatment in the sliding blocks setting is completely
analogous.

For the analysis of (67;,,(5))s>0 we will use the theory of Section ﬁ To this end, we

consider the functions

gg(.iE,S, ey .735) = ]I{Z::O(xi_1)+>s}]l{xo>1}]l{maxfsgigﬂ z; <1}

for some S > 0. For the denominator of the estimator we consider the function

h(l',s, cey $s) = ]1{10>1}.

Note that this is not exactly the setting of Section , since here we consider g(x_, ..., x)
instead of g(z1, ..., xs), i.e. we use shifted blocks here. This is mainly due to a convenient
representation here. Formally, we have to use the observations X, , = X,,; , and s), =
2s,+1 for the framework of Section (see also the beginning of the proof of Proposition
. We define X,,; = X;/u, as before. As normalization we choose b,(gs) = b,(h) =
(nv,/pn)'/? with p, = P(M,,, > u,).

The following conditions are needed, such that the asymptotic normality of the estimator
(égl,n(S))Sw can be established by Theorem [3.2.1]

(S1) Let (X;)iez be a Rt-valued stationary, regularly varying time series with index
a. For v, := P(Xy > u,) — 0, one has nv, — oo and s, — oo. In addition,
there exists a sequence (ry)nen such that s, = o(ry), ryv, — 0, 1, = o(y/nv,) and
(n/rn)ﬁffjsyl_l — 0.

(SP) For all n € N and k € N there exists e, (k) such that
en(k) > P(Xyk > uy, | X1 > up)

and limy, oo Y3 en(k) = 252 lim,, o0 €, (k) < 00.
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(SB,) There exists an Sy > 0 such that

1
lim sup +/no, U—E[gS(X_sn,....,Xsn)]—QSZ(S) =0.

n—oo SE[S0,00)

The first condition is the usual condition on the rates of the sequences s,,l,, 7, u, and
on the dependence structure of (X;);ez. Condition (SP) is the same Pratt’s condition as
(AP) in Section [4.2] which restricts the extremal dependence structure, we restated it here
for completeness. Condition (SB,) is a bias condition. For the expectation one has
1 1 $n
Blgs(X s X)) = P00 = ) > S, Xo >, max | X <

n Un = —5p<i<—1

_ SOX ) ‘
—P<Z(Xz Up) " > Suy, maxlegun‘X0>un>

: —sp<t1<—
=0 n=r=

S P(fj(yj 1)t 8 Y, < 1)
j=0
by Proposition if condition (AC) is satisfied. Thus, this condition (SB,) is only a
restriction for the rate of the convergence, or to be more precise a restriction for u,,, since
nv, is not allowed to increase too fast. More precisely, this condition ensures that the
bias converges to 0 faster than the stochastic error.
With these conditions we can state the following asymptotic statement for the runs esti-
mator of the stop loss index. Recall ¢ = 3o, P(Yy > 1) from (4.2.3), which will be again

the asymptotic variance of 0.

Theorem 4.3.1. Suppose the conditions (S1), (SP), (SB.) and (AC) are satisfied. Then

the weak convergence

= (Zs) se[So,00)

vV NUy (égl,n(‘s) - 951(8)>S€[So700)

holds, where Zg is a centered Gaussian process with covariance

Cov(Zs, Zy) =0g(max(s,t)) + 0s(s)0s(t)c

[e.o] (e 9]

()Y P( (V-1 >tV <1Y> 1)
k=0 ;=0

—0,(t) ZP<Z(Yj s s Y <Y 1),
k=0 \j=0

with ¢ defined in (4.2.3)).

Instead of considering [Sp, 00) one could also consider (Sp,00). The statement remains

the same, only the index set changes.
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4.3.2 Stop-loss index - blocks estimators

After the runs estimator, we now want to consider the disjoint blocks estimator and the
sliding blocks counterpart, starting with the disjoint blocks version. The disjoint blocks
estimator for this specific cluster index is given by

ri

jsn
i G 1)sn+1(X'7u")+>S“"}

i xSy

Hd

esl,n(s> -
This estimator is directly motivated as empirical counterpart of the limit in (4.3.1)) and
it is defined as the general cluster index estimator in (4.1.3|) for the special function Hg.

The corresponding sliding blocks estimator is given by

—1 n— sn+1
A 2= {Z]ff” (X —un)+>5un}

2 TL(S) = n—s
b OUIRLARE SR

Note that the role of s, here slightly differs from the role of s, for the runs estimator.
Here s, is the length of each considered block, while for the runs estimator the effective
block length was 2s,,+1. In particular, we are directly in the setting of Chapter |3 without
redefinition of X,,; = X;/u, and the block lengths.

This disjoint blocks estimator cannot be treated in the setting of Section but directly
in the setting of Section [3.1.1 For the application of Theorem |3.1.10| one possible choice
for V,,; would be V4,(S) = m, '/ ]l{zm oo r (Kin)*>Sun)
P(M, s, > u,). However, similar as for the disjoint blocks estimator of the extremal index
in Section we consider

with m,, = [n/s,| and p, =

1 rn/Sn
Vi (g — o 4.32
nd( ) \/m_n l; {Z(J (Jl) 1):nk+(k 1>Sn+1(Xi_u")+>S“"} ( )
rn/sn—1

(=1 rn+(k—1)sp+1

Crd
Vii(S) \/_n Z Lissu-vrmshen (Xi—un)*>Sun}

for j € {1,...,mn}, my = [(n — s, +1)/r,] and V7, and VC defined in (4.2.4) for the
disjoint blocks estimator of 6. In this case one has p, = P(My,, > u,). This choice will
increase the comparability with the result of the sliding blocks estimator.

Due to the choice of Vd ;(S), the same set of conditions as for the runs estimator is
sufficient to prove the asymptotic normality of Gsl 2(5). Just the bias condition has to be

replaced by the following bias condition:

(SB,) There exists an Sy > 0 such that

lim sup nuv,
n—00 5€[S0,00)

P<i(X¢ —up) " > Sun> - 08l<3)‘ = 0.

SpUn i=1
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By Proposition the convergence

1 n
P<Z(Xi — )t > Sun> —04(S)—0
SpUn \ i

holds. Note that we replaced r,, by s,, in Proposition m For s, from (S1) the conditions
of the proposition are met, in particular (AC) holds also for s,, < r,. Thus, the condition
(SBy) is a condition on the rate and uniformity of the convergence. With this condition

we can establish asymptotic normality of égm(S ).

Theorem 4.3.2. Suppose the conditions (S1), (SP), (SBy) and (AC) holds. Then the

weak convergence

Vi, (6%,(8) - 98’(5))%[50700) = (Zs)selSo,00)

holds, where (Zg)se[sy,00) 95 a centered Gaussian process with covariance function

Cov(Zs, Zy) =0g(max(s,t)) + 04(s)04(t)c
- 95,(3>P(Z(y; St t> - esl(t)P(Z(yj s 5>.

JEZ JEZ

Finally, the last estimator for a cluster index we will analyze is the sliding blocks es-

s
sl,n

with this estimator in the setting of Section [3.2] For this application we still have
Xn,i = Xi/u, and we consider the functions h(z1,...,2n) = Liz,>1) and fs(z1, ..., ) =
]1{27;1(%—1)+>5}' Obviously it is 0 < h,fs < 1 for all S > Sy. We consider the
normalization b,(fs) = (nv,/p5)?s, for all S > Sy and b,(h) = (nv,/pd)"/? with
pS = P(My,, > u, or My, 410 4s,—1 > (1 4+ So)un) = rpv,0(1 +0(1)) by .

Under the same conditions as for the disjoint blocks estimator, the uniform asymptotic

timator 6%, (S) for the stop loss index. Analog to the runs estimator we will deal

normality of the stop-loss index estimator for all S € [Sy, 00) is shown in the next theorem.

Theorem 4.3.3. Suppose that the conditions (S1), (SP), (SBy) and (AC) hold. Then the

weak convergence

ﬂ> (ZS>S€[S(),00)

/g, (ézl,n(5> - 93l(s)>56[50700)

holds, where (Zg)se[sy,00) 95 a centered Gaussian process with covariance function

Cov(Zs, Zy) =0g(max(s,t)) + 04(s)04(t)c
- esl(sﬂa(z(yj s t) - esl(t)P<Z(yj 1)t s s).

JEZL JEZ

The asymptotic variance for the disjoint and sliding blocks estimators are the same. As

for the extremal index, asymptotically both estimators are equally efficient, in accordance
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with the theory of Section [3.3] In general it is not obvious which variance is smaller, that

r
slyn

using Problem 5.29 from Kulik and Soulier| (2020), show that the asymptotic variance of

of the runs estimator 67, (S) or that of the blocks estimators. However, some calculations,

r
sl,n

by Anja Janfen.) Thus, again all three estimators have the same limiting covariances.

the runs estimator f (S) and that of the block estimators are the same. (This was shown
For the sliding and disjoint blocks estimators for some fixed S (and not for the whole
process) the asymptotic normality could also be shown under some different conditions
as stated in |Cissokho and Kulik (2021)). The resulting variance calculated there coincides
with the variance obtained here. Indeed, they also show for a larger class, that the sliding
blocks and disjoint blocks estimator for cluster indexes have the same asymptotic variance.
This brings us to the end of our consideration of the cluster indexes and the analysis of
sliding blocks and runs estimators for them. In the next Chapter [5| we will turn to the
next big topic of this thesis: the estimation of the whole extreme dependence structure of
a time series in form of the distribution of the spectral tail process. There again we will

see examples for the application of the limit theory from Chapter [3]

4.4 Proofs

In this section, all proofs for theorems, lemmas and propositions in this chapter are given.

4.4.1 Proofs for Section 4.2.1]

We start with the proofs for the disjoint blocks estimator éff Recall, that we have X,,; =

X /u,, and that under the conditions (61) and (#P) equation (4.2.1]) holds for all k,, — oo,
ky, < r,. This in particular yields

P = rnUn(0 +0(1)), P(M g, > u,) = $,0,(0 + 0(1)). (4.4.1)

Proof of Proposition[4.2.3. We will apply the abstract theory from Theorem [3.1.4 The
condition (Al) is directly given by (1). By the definition of V¢, f/gi, V. and f/ncz the
condition (V) is directly implied by the stationarity of (X¢):ez. Condition (DO) is obvious
since we consider only finitely many functions. (MV) and (MXy) follow readily from the
f-mixing assumption in (#1). The latter conditions follow since r, — s, > s, — 2 for
sufficiently large n implies 8, _, < BX, ;.
Thus, it suffices to verify the conditions (or (A)), (L) and (C), in order to conclude
the assertion from Theorem . Note that and (L) can be checked separately
for quﬂ- and V7. We start with Vf’i. Check that

d d _ yrd 1 d
AL =V = Vo = Liny,, -t >uny =

n n n _\/m_n

1
1 wn Y-
\/m_n {Ml,sn> rL}
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Now (4.2.1) and s,, = o(r,,) imply

P(Ml,sn > Un)
P(Ml,rn > Un)

My, 1
EB(A)Y = B LT

P(M s, > up) rnP(X1 > uy) Sn Ny

1
- .0=0.
snP(X1 > uy,) P(My,, > u,) T 0

Here, the convergence of the first two terms follows from (4.2.1)) for &k, = s,, and k,, = r,,.
Thus, (3.1.4) holds for V,%,.

Condition (L) for V,¢; follows immediately from

T'n

SpA/NUy,

because of (4.4.1)) and (A1). Thus, V¢ < e,/p, for sufficiently large n. This implies that

the indicator in the expectation in (L) equals 0 for n large enough, i.e the left hand side

Vit o s, = O e Vit ) = o(v).

is 0 for n large enough and in particular condition (L) is satisfied.

Now we check the condition and (L) for the denominator V,¢,. Since V7, is a sliding
blocks statistic with X,,; = X;/u,, bounded function 0 < h(z1,...,25) = Liz>13 <1
and b,(h) = \/my,, the proof of Theorem m shows that and (L) hold if r, =
0(\/Pnbn) = o(\/ThUnmy) = o(y/nv,) and condition (3.2.4) is satisfied, i.e.

B|(E tosom) | = 0 = 0t

Furthermore, 7, = o(\/nv,) is an immediate consequence of assumptions (61). Moreover,
by stationarity, (62) and r,v,/p, = O(1) it holds that

1 Tn 2 1 Tn Tn
El<ZH{Xj>un}> ‘| = E{Zzl{Xpun}]l{X»un}]
Pn j=1 Pn L5535
T'nUn 2 "nl
=——+— > (rn = k)P(Xi > un, Xo > )
Do Pn ooy
T'nUn rn—1 k
Pn =1 T'n

Pn

< Intn (1 +2S:Z_: en(k)) — 0(1).

Thus, (3.1.4) and (L) hold for V.

It remains to show convergence (C) of the covariance matrix. To this end, first note that

by stationarity one has uniformly for all 1 < /¢ <r, — s,

Tn
Z P(Mf—‘rl,f—i—sn > Un)Xj > un)
j=l+sn+1
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Tn
< Y P(Mig, > up, Xj > u,)
Jj=sn+1
Sn Tn
<> D P(X > un, Xj > up)
i=1 j=sp+1
o k —k
= S,Up Z min (1, , i
k=1

)P(Xk > uy, | Xo > uy)

n Sn

= 0(SpUp)- (4.4.2)

In the last step we have used Pratt’s lemma (Pratt, 1960)) according to which, under
condition (6P), the limit of the last sum can be calculated as the infinite sum of the limit

of each summand, which all equal 0, because k/s, — 0. Likewise,

XZ:P(MK_H,@_,_S” > Un,Xj > un)

Jj=1

< Zoj P(My s, > tn, X; > up)

j=—rn+1
Sn 0
SZ Z P(Xi>un,Xj>un)
=1 j=—rmt1
- k n n - k:
= S,V Z min (1, —, 7G+S>P(Xk > uy, | Xo > uy)
k=1 n Sn

ntsn k ry,+8,—k
+ 8, Up Z min (1, —, )P(Xk > uy, | Xo > up)
k=rn+1 Sn Sn

< 0(8pvn) + SpUp (snvn + S—nﬁffr > = o(spvn) (4.4.3)
Up "

uniformly for 1 < ¢ < r,, here we also used the mixing condition from (01) and s, /v, =

o(n/r,). By stationarity and (4.4.1)),

m m, 1 r
—Var(Vh) = —"—"Var(1l u
Var(Vl) =t et Var (L))
2m, 1
+ o Z Cov (1{M(i71)sn+1,isn>un}’ ]l{M(jfl)sn+l,jsn>un})

P Mn g <ici<r, fon

— " P(M,,, > un)(1 — P(My s, > uy))
Sn n
2
+ — Z Cov (l{M(Fl)an,isn >un}s ]]'{M(jfl)antl,jsn >Un}>

Dn 1<i<j<rn/sn

2
=(1+o0(1)) +— > P(M(i—l)sn-i-l,isn > Uy M(G-1)s, 41,550 > Un)

" 1<i<j<rn/sn

_ 3 Z P(M(i_1)5n+1,isn > un>P<M(j—1)Sn+LjS" > un)

Pry<ici<ra/sa

2
=(1+o(1)+— > P(M(ifl)anrl,isn > U, M(j-1)sn+1,5sn > Un)

" 1<i<j<rn/sn
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L0 (pln (:)2(snvn)2>.

In view of (4.4.2)), the second term can be bounded as follows:

2
— Z P<M(i—1)sn+1,isn > Uy M(G_1)sp+1,js0 > Un)

Dn 1<i<j<rn/sn

9 rn/Sn—1 rn/sn

= — Z Z P(M(ifl)anrl,isn > Uy M(G-1)s, 41,550 > Un)
P i 5
rn/sn 17rn/sn jsn

SO Y Y P(Mansin, >t X > tn, M, < )

Pn 5 J=i+1k=(j—1)sp+1

9 rn/Sn—1 rn/sn jsn

<= Y Y Y P(Masesnie, > e Xk > uy)

Pn 21 J=i+1 k=(j—1)sn+1

rn/sn—l

Z Z P( (i—1)sn+1,isn >un,Xk >un>

Pn =1 k=isp+1

o<r"v"> = o(1). (4.4.4)

n

Since (r,/8n)%(8000)%/pn = O(rpv,) — 0 by and (A1), we conclude

%Var(Vj) — 1.
Pn

Next check that, by (4.4.1) and (62),

n 1 i
m—Var(anl) = —Var ( Z ]l{Xj>un}>

Pn n

jl
U 1 n 2
= Lix.>u —E{ Tix.oe }
P [(Z {Xm}” o le (X;>un}
U 1
- nn' 1 u nn2
] (Sr)] - e

_ (1 +o1)) (e +o(1)) + Olryvn)

-2 (4.4.5)

Finally, again by (LL1), (I12) and (LL3).

7;:100@ (Vi vey)

Tn/sn Tn
( Z Z < |:]]-{M(i1)Sn+1,isn>u'n,Xj>’un}:| - El:]]'{M(il)sn+1,isn>un}:| E{]l{Xj>un}]> >

=1 j=1

1 Tn/sn Tn "
= ( SN P(Mi—1ysnstisn > Uny Xj > ) — T—P(Ml,sn > un)rnvn>

Pn \ =1 =1 Sn



4.4. Proofs 98

1 rn/Sn (i—1)sn
= Z <3nvn + Z P<M(i71)sn+1,isn > unan > un)

Pn = j=1
+ Z P(M(i—l)sn—i-l,isn > unqu > un)) + O(Tnvn>
Jj=isn+1

1 Tn/sn

—_ (snvn + o(snvn)) + O(rpvp)
pn i=1

_ Tn¥n +O<W’"> +0(1) = 1/6,
Pn n
Thus, condition (C) is satisfied and the assertion follows from Theorem [3.1.4] O

The proof of Theorem is based on Lemma, [3.3.5]

Proof of Theorem[{.2.4, We have E[Vi,] = r,v,/\/m, and E[Vf,l] = TP/ (Sn\/Mn).-
One could apply Lemma [3.3.5| with

1 1 o
2711 = Vndz and Zz n,."
w/nvn\/p_n; ' w/nvn\/p_n;
We will follow the proof of Lemma[3.3.5]step by step, instead of applying it directly: Note
that due to (.4.1)) and (01) it is p2/2m1/2(r,v,) "' = (6/(nv,))?(1 4+ 0o(1)) = o(1).

Direct calculations similar to the proof of Lemma [3.3.5| show that

A0 = 0) = i (S ’”—6)

VB2~ 625) + m(E[V{] — 0E[Vy])
= Vo mnEVE] + /P2
wonpn 2L =025 4 \Jm purava (P{Mis, >}/ (500,) — )

M (rvn)? L+ /pn/my(rpv,)~12Z¢
— 02 + O(y/mwy) (P{Mi o, > un}/(s200) = 0)
14 Op(l)

=o(1 —|—0(1))Z

—V0(z4—07°),

where in the last step we have used Proposition and the bias condition (By).
Therefore, the asymptotic centered normal distribution of w/nvn(é,‘i — 6) follows. The

variance can be calculated as

Var(VO(2* - 02°)) = 0 (Var(2) + 0*Var(Z°) — 20Cov(2*, 2°))

y (1 622 - 29;> — (6 — 1),

Thus, we have /nv,(02 — 0) 2 V(2% — 02°) ~ N(0,0(0c — 1)). O

The next proof deals with condition (A1S) for the sliding blocks estimator éfl
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Proof of Lemma[{.2.5. We start with (i). The condition in (61S) is implied by the
stronger mixing condition (n/r,)3x, |, — 01in (01), if r,, = o(w/nvn). Indeed, this can

T,8n

be concluded by direct calculations:

1
—ZPMlsn+l>un|X1>un)

S”l Sn

1

S P(Mysy 1 > un) P(X1 > ) + — B

n,sn—1
Snvnl Sn SpUn "

2
T 2oon  x

— o((snvn)vn> + — B 1
SnUn NURSH T

= 0(8nvn) + o(1):‘ X 0. (4.4.6)

n

X

.1 — 0 implies f; — 0. Thus, (4.2.5) follows from

(n/rn)By,_1 — 0. Since all other conditions of (§1S) are directly given in (A1), this

Because of 2s, < [, s

proves the assertion.
Next we turn to part (ii). (rn/sn)P(Ms, rpts, > Un]X1 > u,) — 0 implies (4.2.5)), since
it directly holds

1
— Z P(M; g, 41> uy | X1 > uy) < —P(MsanJrsn >y, | X1 > uy). H

Sn = Sn

Now we turn to the proofs for the asymptotic normality of the sliding blocks estimator éfL
Here one has v, = P(X; > u,) and now p;, = P(3i" Liag, sy > 0) = P(My o gs,—1 >
Un) = rav0(1 + 0(1)) by ([(.2.1). A crucial part for the proof of Proposition is the
verification of the convergence of covariances in condition (C) of Theorem [3.2.1] This
convergence of the variance for the function g and the covariance for A and ¢ is shown in

the following lemma.

Lemma 4.4.1. Suppose condition (01S) and (OP) are satisfied. Then,

(i) lim Var(Z]l{M“ﬁn 1>un}> 9,

n—)oor S

(i) lim

n—oo Snvn

COU(Z]I{MZ itsn—1>Un}s Z]l{X >un}> L.

=1 7=1
Proof of Lemma[.4.1. We start with the proof of (i). By the stationarity of (X;);ez and
P(M; 5, > u,) = O(s,vy,)

Va/r < Z ]l{Mi,i+snl>Un}>
=1

TnS2Up
1 Tn Tn 7,.2
- 2 E[Z Z H{Mjaj‘f’sn1>’u"ﬂ}]l{Miﬂ‘+Sn1>u”}:| 2 P(M, > un)
TnSpUn i=1j=1 T'nS,Un
Tn n k
= ———P(My,, > up) +2—5— <1 — )P(Ml,sn > Upy My pys,—1 > Up)
TnS2Up TnS2Un (=5 T
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+O<ris§vi>
TnS2Up
:O(1>+ 2 i(l—k>P(M1 > Upy My s, —1 > ) + O(r,0,)
Sn, s2un (= T o ks " nem
=2 L i(l—k>P(M1 > Uy, My jrs,—1 > Up)
2o 2 - Sn s M ftsn—1 n

1 n k
+ 2 Z (1 — )P(Ml,sn > Uy, Mk,k+sn71 > un) + O(l)

svnksH n

=:2(I +11I)+o(1). (4.4.7)

We treat the terms I and I separately, starting with term I. In the next calculation

we decompose the maximum which exceeds a threshold according to the last excedent.
Then,

1 & k
I= Z <]- - >P(M1,sn > Un7M/€,k+sn—l > un)

2
$7Un 19 Tn

1 &
= Z (1 - > ZP Mk Jk+sn—1 > un7Xl > Unp, Ml+l Sn S un)

SQUnk 2 'n/ 15
:SQ Z(l_r>zp Mkk+sn 1>un7Ml+1sn§un’Xl>un)
n k=2
_ 22(1—>ZPMZ+1S7L<un|Xl>un)
sz~ T
1
Z(l—)zp My, 11k vsn—1 > Uny Miy1s, < un | Xi > uy)
"

In the last step we used

P(Mk k+sn—1 > unaMlJrl Sn < Up, ‘ Xl > un)

P(Ml—i-l,sn S U, | Xl > un) k S l7

P(Msn+l,k+sn—1 > Up, Ml—i—l,sn < Uy | Xl > un) k> 1.

Now again we deal with both sums separately, starting with the first one. We begin with
some index shift, rearranging the sums and the use of the stationarity. In the following

calculation we will use an intermediate sequence t,, which fulfills ¢, — oo and t,, = o(s,).

k
]1232 Z(l—)ZP M1, < un | X > up)

n k=2 Tn/ =

k
2822(1_>ZPM25"+1 l<un|X1>un)

n k=2 T'n/ 12k
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1 Sn 1 kf
=522 (1 - >P(M2,sn+1—l <t | X1 > up)
Sn 1=2 k=2 T'n
1 &n I(1+1) 1
= _ l— —1>PMS g <u, | Xi>u,
S%Z%( o +7"n (Mag,v1-1 < up | X1 > up)
1 snin (+1) 1
= (l — ( ) + — - 1>P(M2,sn+1—l < u, | X > un)
Sh =2 2Tn T'n
1 on I(1+1 1
S <z _ <2 )L 1>P(M278n+1_l Cun | Xi>un)  (44.9)
Sn l=sp—tp+1 Tn /r.n
1 Sn—tn
- 3 Z lP(Man—I—l—l < Unp, ‘ Xl > un)
Sn =2
1ot I+ 1 1
-5 2 ( <2 )_ 1 + 1)P(M2,sn+1—z <, | X1 > u,) +o(l)  (4.4.10)
Sn =2 rn rn
1 Sn—tn
2 D IP(Myg, i1 < up | X1 > uy) 4 0(1).
no =2

For this calculation check that the sum in (#.4.9)) is bounded by s, %t,s, -1 =t,/s, — 0
and the sum in (4.4.10) is bounded by s, 2(s, —t,)sn(s, +1)/(21,) - 1 = O(s,, /) = o(1).

The last remaining sum has the upper bound

1 Sn—1tn
2 ; IP(Ma, 411 < up | X1 > uy)
Sn—1tn
< 52 ZZ; IP(My, 41 <ty | X1 > uy,)
Sn = tn)(Sp —tn +1) — 2
B ( ! 962 : P(Myy, 41 < up | X1 > uy)
1
— =0
2 9

since P(May, +1 < uy, | X1 > u,) — 60 holds by (4.2.2)), which, in turn, holds due to [Segers
(2003), Theorem 1 and Corollary 2, under condition (1S) and (6P). Likewise, the same

sum I; can be bounded from below by

1 Sn—1tn
2 Z IP(Mas,+1-1 < up | X1 > uy)
no1=2
1 Sn—tn
Z 2 > IP(Msg,1 < up | Xy > uy)
no1=2
(S0 —tn)(Sn —tn +1) — 2

- 942 P(M2,5n+1 S Unp, | Xl > un)

N | —
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Therefore,

1 & kY & 1
Il = 372];2 <1 — /r’n) ;P(Ml"rlﬁn S Unp, | X[ > Un) — 59

Now we will continue with the second sum I, in (4.4.8)). Here one has

I, =

IN

IN

<

<

1 Sn k’ k—1
2 Z (1 - ) Z P(Msn+1,k+sn—1 > Unp,, Ml+1,sn S Unp, | Xl > un)
Sn k=2 T'n/ 121

1 sn k—1
) Z Z P(Manrl,kJrsnfl > Up, ‘ Xl > un)

Sn k=2 1=1

1 Sn k—1
872 Z Z P(Msn+1—l+1,k—l+l+sn—1 > Up | Xl > un)

n k=2 1=1

1 Sn k—1
DY Z Z P(Msn+2—l,2sn > Up, | Xl > un)
n k=2 1=1
1 sp—1 sp
Z Z P(Msn+2—l,2sn > Up, ‘ Xl > un)
=1 k=Il+1

1 Sn—tn
— > (sn = D)P (Mg, 42125, > up | X1 > uy)

=1

1 sp—1

+ = Y (sn—=DP(Ms, 43126, > un | X1 > uy)
Sh l=sp—tn+1

(Sn(sn - t'n,))p< Sntn 1

2 2
Sh Sh

Mtn+2,25n > Up, ‘ Xl > un) +

tn

n

The last convergence holds, since P(My, 1295, > un | X1 > u,) < Zii”tﬁz P(Xy >
un | X1 > u,) — 0 is implied by (6P). Thus, for the first sum in (4.4.7) we obtain the
convergence 2] — 2-0/2 = . Next we consider the second sum /7 in (4.4.7). Again

we decompose the event of a maximum exceeding the threshold according to the last

observation which exceeds the threshold.

1] =

IN

1 I k
Z (1 — )P(MLS” > Up, Mk,kJrsn,l > un)

s2vy, Ml T

1 kY &

Y Z (1 - > ZP(Mk,k—l—sn—l > Unp, Ml—l—Lsn S U, | Xl > un)
Sh k=sn+1 Tn/ 123

1 Tn Sn

) Z ZP(Mk,k+sn71 > Up ’ Xl > un)

S k=spt11=1

1 Tn Sn

- SN P(My—igt ppsp—1—141 > Uy | X1 > wy)

Sh k=sn411=1

1 Tn k
sz Z Z P<Ml,sn+l—1 > Up | X1 > un)

n k=sp+11l=k—s,+1
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1 Tn (l+5n)/\7'n

= Z Z P(Ml sptl > Unp | X1 > ’LLn)

=
1 Spn—1
< % l; (80 + 1) P(Mys, 11> up | X1 > uy)
1 &
+ 3 Z (8 + 1)P(My 5,41 > un | X1 > up)
n l=sp
tn—1
) > (sn+ 1)P(Mygs,0 > un | X1 > uy)
n =1
- tn n 1
< ( )2(8 + >P(Mtn,2$n > uy, | X1 > uy)
52
S?’L+11 Tn tn_]_ Sn+1
™ ZPMlsn+l>Un|X1>un)+( )g )
Sn Sn S5 52
1 1) &
=W SN b | Xy > )+ o(1) 5 0. (4.4.11)
Sn

l=sn,

In the penultimate step we used P(My, 25, > u, | X1 > u,) — 0, which holds as before,
and t,, = o(s,), t, — 00. The last convergence in (4.4.11]) holds due to the assumption in
(A1S). All in all, we have shown

1

T'nS2Up

Tn 9
Var(z ]l{ML”SnQun}) — 25 =0

=1

which is the assertion (i).
Now we turn to the joint covariance of numerator and denominator as stated in (ii). Here

stationarity yields

1 o n
Cov < Z ]]'{Mi,i+sn71>un}7 Z ]l{Xi>un}>
T'nSnUn i— P

1 Tn Thn
- L { Z Z ]1{X1>“n}]l{Mi,i+sn—1>Un}] -

rnrn P (M s, > u,)P(X1 > uy,)

T'nUnSn i=1j=1 TnUnSn
S P(Ms, > un)
= Z Z P dyitsn—1 > Un, X > un) - T'nUn
TnSnUn ;3 55 UnSn

rn 1—1

1
= — s, P(X1 >u P(M, 21> U, X > u
T SnUn, neon ( 1 n) T SnUn 221]21 Byi+Sn—1 mny n)

Z Z P i,i4Sn—1 > un7X > un) + O<Tnvn)

TnSnUn =1 j=i+sn

rn t—1

— ZZP iyi+sp—1 > umX > U/n)

Tnsnvn i 13 1

Z P 4,0+Sp— 1>un7X >un)+0(1>

T'nSnUn i=1 j=i+sp

—14c°,
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where ¢ is defined by

rn 1—1

ZP 2,04+85n—1 > Un,X > un)

’Lljl

¢ = lim

n—oo rnsnvn

+ lim

n—oo rnsnvn

P(M;jts,-1 > tUp, Xj > uy,) > 0. (4.4.12)
=1 j=i+sp+1

The limit exists due to the following discussion. Equations (4.4.2)) and ( - ) hold by
stationarity and condition (#P). This yields
i—1

ZP<Mi,i+Sn—1 > Un,Xj > Un) = O(Sn’Un>,

j=1

Tn
> P(Mijss,—1 > tn, Xj > ) = 0(s,0y,)
j=itentl

for all i = 1,...,7,. (As usual we interpret Zz’-:a =0 for a > b.) Therefore,

rn 1—1

SN P(Mijss,—1 > tn, Xj > uy)

TnSnUn 23 11
1 ’n

T'nSn

Z P(Mi,i-i-sn—l > Un,Xj > Un)
Un i=1 j=i+sn+1

2
= —71,0(8,v,) =0(1) = 0

Tnnn

and thus ¢® = 0. This completes the proof. O]

Proof of Proposition[4.2.6, We are going to apply part (a) of Theorem . Conditions
(A), (A2) and (MX) are an immediate consequence of (61S). (Note that this remains
true if one uses (A1) instead of (61S), then with [, = 2s,, — 1.) To this end, note that
bu(g) = (nv,/p2)%s,, by(h) = (nv,/p3)/? and the conditions on convergence rates
follow directly from the rates in (#1S) and , which hold under the given conditions.
Condition (DO0) is obvious since we consider only finitely many functions.

Since 0 < g,h < 1 we can apply Theorem [3.2.1] (3.2.4) for h follows directly from (62),
see the proof of Proposition [4.2.3|for the calculation. To check it for g, we employ Lemma,
3.2.4L First note that p’b,(g)?/n = s2v,. By stationarity of the time series

ZPMls >unaMkk+sn 1>un)

s%nk !
Tn Sn k+spn—1
ZZ Z P(X; > up, Xj > uy)
SpUn =1 i1 =k
1 Sn Tn+tSn—1
< Z P(X,L >Un,Xj >un)

SnUn ;21 j=1
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Sn Sn rn+sn—1
< ! > (ZP(X,- > U, X; > up)+ Y P(X; > u,, X; > un)>
SnUn ;1 j=1 j=sn+1
2 sl k
< 1+2}7 Z <1 — )P(Xk > Uy, Xo > un)
n k=1 n
1 Tn+Sp—2
+— > P(Xk > un, Xo > up).
Un =1
sn—1 Tn+sn—2
<14+2) P(Xp>uy | Xo>un)+ >, P(Xk>un| Xo> u,)
k=1 k=1
Tn+Sn—2
<143 Y P(Xp>u, | Xo> up).
k=1

For the second step observe that for the sum over k each summand P(X; > u,, X; > u,)

can occur at most s, times, since k shifts the index j and the sum over j has length s,,.

Moreover,
Tn+Sn—2
5 n
> P(Xp>u, | Xo>u,) < l(”i + 55%) = O<snvn + Br)fm> — 0.
k=rn+1 Un n

Therefore, condition (S) follows from (AP) and the previous calculations. Then, condition

(3.2.4) for g follows from Lemma (3.2.4]

It remains to prove convergence (C) of the standardized covariance matrix. For the vari-
ance pertaining to g and the covariance, this is done in Lemma [4.4.1} For this note, that
Mo/ (P30n(9)?) ~ n/(ranvesy) = 1/(rpspv,) and my,/(p5ba(9)ba(R)) ~ n/(ranv,s,) =
1/ (rnspvn).

The covariance convergence

My

1 1 o
Var(V,(h)) = +0()Var<z ]l{Xj>un}> —c
Dn TnUn =

for the function h has been shown in (4.4.5)).

Thus, all conditions are verified and part (a) of Theorem [3.2.1] provides the asserted

asymptotic normality. O

The next proof of Theorem combines the results of Proposition and Lemma
to show the asymptotically normality of 9;1

Proof of Theorem [{.2.7. With

1 n—snp+1 ) 1 n—sp+1
Z Lins g1 >un} and 2, = — Z Lixi>uny
nv, o

i=1

zh =

NUR Sy,

one has E[Z2] = (nv,) *(n — s, + 1)v, = (n—s,+1)/n — 1 and E[Z}] = (nv,s,) " (n —
Spn+ 1)P(Mys, > un) = ((n—sp+1)/n)P(Mys, > un)/(Snvn)-
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Due to the bias condition (B,) and (n — s, + 1)/n — 1 it follows

— 0.

P(Mis, > un) 0) n—s,+1
n

AL (E[Z)] - 6B[22]) = /i (

SnUn

Thus, by Proposition [£.2.6] all conditions of Lemma are met, and therefore

A S I T e )
Vi (05, ~ ) = Vi (> usmnztn] )

Zn Sn+1 ]].
i=1 {Xi>un}

m}n<§; _ 9) (Z(g) — 07(h)).

The asymptotic variance of the estimator is given by

Var(Z(g) —0Z(h)) = Var(Z(g)) + 0°Var(Z(h)) — 20Cov(Z(g), Z(h))
=0+ ch> —20 =0(ch —1). O

4.4.2 Proofs for Section [4.2.2]

In preparation for the proof of Proposition [£.2.8] the following lemma shows the conver-

gence of the covariance needed for condition (C) from Chapter

Lemma 4.4.2. If the conditions (01R), (02) and (P) are met, then

(i) lim Var(Z]l{X>un Mistite,— 1<un}> 0,

n—)oor U

(ZZ) hm 7ACOU<Z]1{X >un}s Z]l{X >Un,Mj11,54 55— 1<un}> =1

i=1 j=1
Proof of Lemmal[{.4.7 For the variance of the numerator in (i) it follows by stationarity
that

Va/r ( Z ]l{X >un,M, i+1,i+sn— 1<un}>

T'nUn i—
1 Tno Th
= E [ Z Z IL{Xj>un7Mj+1,j+Sn71Sun}H{Xi>un7Mi+1,i+sn71SUn}
TnUn  LiZi 21
7,2
n
- P(X1>unaM25 <un)
T'nUn
Tn
= P(X1 > up, My, < up)
7nnvn
Tn—3Sn
> Z P(X > tn, Mg, 11 < Uy Xj > Uy, Mg ,45-1 < Up)
T'nUn i=1 j=i+snp
2
+ Z Z P(X; > tny Miy1s,i-1 < Uny X5 > Uy Mg s, 45-1 < Up)
Tnvnz =rnp—sn+1 j=i+1

T'n—8n t+Sn—1
Z Z P(X; > tp, Mity stic1 < Upy Xj > Upy Myt 5,45-1 < Up)

Tnvn i=1 j=i+1
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r2y?
— 2 P(Myy, < up | Xy > up)?
rnvn
= P(MQS <y | Xy > uy) —rpv, P(Mas, <uy, | Xp> Uy, )?

Tn—5Sn

Z Z (Xs > Uy, Mg 5, 4im1 < Uy Xj > Uy Mg, 45-1 < Up)
T'nUn i=1 j=i+sn
=6(1+ 0(1)) +o(1)

Tn—358n

> Z P(Xi > tn, Mig16, i1 < U, Xj > Uy, Mg, 451 < Up)

T'nUn =1 j=i+sn

(4.4.13)

since P(Mss, < u, | X1 > u,) — 6 by (4.2.2) and r,v, — 0. In the second to last step
we applied that obviously, for each 1 < |i — j| < s,, it is

P(X; > tn, My iys,—1 < Uy X5 > Uny, Mg jgs,—1 < Uyn) = 0.

The last sum in (4.4.13)) can be bounded with

Tn—Sn

Z Z (Xi > Uy Mg g qic1 < Uy Xj > Uy Mg 6,451 < Up)
T'nUn =1 j=i+sn

2 Tn—Sn

Srv > ZPX>un,X > Up)
nEn. =1 j=i+sy
2 n
< > P(Xk > tn, Xo > up)
T'nUn k=s,—1
=2 3 P(Xp>u, | Xo > up) = 0. (4.4.14)

k=sn—1

This last term tends to 0 due to condition (AP). Indeed, lim, o0 >3 P(Xk > uy | Xo >
Up) = gy limy oo P(Xk > uy, | Xo > u,) < 00 and, therefore, lim,, oo > 7" "2 P(X) >
Up | Xo > uy) = X502 limy, oo P(Xg > u, | Xo > w,), which implies for the difference of
this limits lim, o >3, ) P(Xg > u, | Xo > u,) = 0.

Thus, we conclude from that

VaT < Z ]l{X >un, M, i+1,i4sn— 1<Un}> 9

T'nUn i—1

Next we turn to (ii). By stationarity

COU(Z ]I{X SUn, Mig1iqsp—1<Un}) Z ]1{X >un})

T'nUn

i=1
1 In In i nUn
= E|:Z Z ]l{Xj>un}]]'{Xi>unvMi+1,i+sn1<un}:| + P<X1 > Up, My \Sn < Un)
nUn  Li57 520 T'nUn

1
= 77’”P<X1 > un7M2,Sn S Un>

T'nUn
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n rn—1 k
+ — Z (1 _ r)P(XO > Uy, X > Uy, Mk+1,k+8n71 < Un)
nvn =1 n
. rpn—1 k
Z (1 - >P(X0 > Up, Xp > Un, MLSn_l < Un) + 0(1)
TnUn .3 Tn

= P(My,, <u, | Xy > u,)
rn—1

+ Z <1 - ) Xk: > un7Mk+1,k+5n—1 < Uy | Xo > un)

rnl

+ Z (1 — ) (Xo > Up, My 5,—1 < uy | Xi > uy,) +0(1)

=: P(My,, <u, | X1 >u,)+1+I11+0(1).

Equation (4 shows P(Mss, < u, | X1 > u,) — 6. Next we want to find the limit of

I and II. We start with II:

T‘nfl k'
UEDY <1 - )P(XO > Uy My s, 1 <ty | Xy > up)

k=1 T'n

=1 k P(Xk>u)
— 1— 2 ) P(Xp > tny, Mig, 1 <ty | Xo > tp)——nr "2
;1( Tn) (X > tn, Myo, 1 < tn | Xo U)P(X0>Un)
rn—1

SZen(kz).

k=2

Thus, with condition (6P) and Pratt’s Lemma
rn—1 k’
nh_)rgo kz::l (1 — rn)P(XO > Upy Myg, -1 < up | X > uy)

oo . ]{: o
:;JL%(1_>P(X0>UYL,M13 1 <y, | Xk > up) :Z

n

The penultimate equation holds, since obviously P(Xg > w,, Mi5,-1 < Uy | Xg > u,) =0

forall1 <k <s,—1. Thus, II — 0.

For the remaining term I we obtain

rp—1 k
I = Z <1 — )P(Xk > un,MHLHSn_l S Up, | X() > Un)

k=1 T'n
28n
=3 (1= ) PO >, Mgt < | Xo > 00)
k=1 n
rp—1 k'
+ Z <1 - >P(Xk > Up, Mk-l—l k+sn—1 < Up, | XO > un)

T'n

T'n
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rn—1 k’
+ Z (1 - )P(Xk > Up, Mk+1,k+sn71 S Up, | XO > un)

k=2sn,+1 I'n
2sn
=Y P(Xy > tn, Miy12s, < upn | Xo > uy)
k=1
2sp k
- Z 7P(Xk > Uy, ]\4k—|-1,2sn S Up, | XO > un)
k=1"n

25p k
+ Z (1 - T>P(Xk > Un, Mk+17k+sn—1 S Un, Mk—i—sn,an > Unp | XO > un)
k=1 n

rp—1 k’
+ Z (1 - )P(Xk > Up, Mk+1,k+sn—1 S Up, | XO > un)

k=2s,+1 T'n

= 11+]2+[3+I4.
In the second step we used for each k = 2, .., s,

{Xk > Uy, Mk+1,k+sn71 S un} = {Xk > Uy, Mk+1,k+sn71 S Unp, Mk+sn,23n < un}

U{Xk > Up, Mk—l—l,k—i—sn—l S Up, Mk+sn,2sn > un}

These last four sums will be considered individually. One has

2sn,

I = Z P(Xk > Up, Mk—i—l,an < up | Xo > un)
k=1

:P(MLan>un|X0>un):1—P(M2’23nSun’X0>un)—>1—8.

In the first step we used that the sum is the decomposition of the event { M, > u,} by
the last X which exceeds the threshold. The convergence holds due to (4.2.2)). For the

second sum we obtain

2s
2k
|Io| = Z T*P(Xk > Upy, Myy1,25, < Un | Xo > up)
k=1'm

2s,, Zon 25, Zn
< —ZP(Xk > Uy, | Xo > uy,) < —Zen(k) — 0,
r

Tn k=1 n =1

since s, = o(r,,) and lim,,_,. 337" e, (k) < 0o by condition (AP). The third sum converges

to 0, since (s,/v,)B82

n,5n

_; — 0and

2s
n k
13 = Z <1 — )P(Xk > Uy, Mk-{—l,k-{-sn—l < Uy, Mk—&—sn,an > Uy | X() > un) (4415)
k=1 n
1 28n

- Z P(Xk > Up, Mk+sn,23n > Un, XO > un)

Un =1

IN

1 2sn,

- > (P(Xg > tn, Xo > tn) P(Myts,, 25, > Un) + ﬁgfsn_l)
n k=1

IN
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25n,
25,
Z (Xg > upn | Xo > wn) P(Myys, 25, > Un) + o 7)1(:3”71

n

T

2sy,
en(R)P(My,, > up) + —285, | =0,
v

n

IA
Mg T

e
Il
—

where the first term converges to 0 because the sum is bounded and P(M;,, > u,) =
O(spvy) — 0.

The fourth and last sum converges to 0, since

rn—1

k
Iy = Z <1 - )P(Xk > Up, Mk+1,k+sn—1 < u, | Xo > Un)
k=2s,+1 Tn

Tn

< Y PXip>un | Xo>u,) < ) en(k) —0.

The convergence holds due to lim, o Y™ ; €, (k) < oo which is implied by condition (6P).
Putting things together, we have shown I — 1 — 6 and thereby

OOU(Z ]l{X >Un i+1,i+sn— 1<un} Z ]]'{X >un}>

= P(Msy, <up | X1 >u,)+1+I1T+0(1) - 0+1-0+0=1. O

T'nUn

Using this preparation we can apply Theorem to establish the joint convergence of
numerator and denominator of QAIL. Note that the two functions f and h are bounded with
0 < f,h <1, which is why Theorem [3.2.1] is applicable.

Proof of Proposition[4.2.8. Since we consider only two functionals, we only need to prove
fidi convergences. To this end, mainly the conditions and (C) must be checked.
The conditions (A), (A2) and (MX) are direct consequences from condition (#1R). To see
this, note that b,(f) = b,(h) = (nv,/pn)"?, pn = Tmva0(1 —0(1)) by and therefore
MpDp — 00, by(f)?pn — 00, P — 0, qgn = P(Xy > u,) — 0 and 7, = o(\/Pubn(f))
directly by (#1R). The mixing condition (MX) is directly given in (#1R). Condition (D0)
is obvious since we consider only finitely many functions.

Condition for the function h was already shown in the proof of Proposition |4.2.6]
Since f(z) # 0 implies h(z) # 0, the condition for f follows from the same

condition for h and

li Tix,>u
- nl—>nc}or nUn [(Z x> n}>

The condition (C) for the function ~ has been verified in the proof of Proposition [.2.6]

where

Tn 2
lim E (Zﬂ{f(xn,i ..... Xn,i+sn_1)¢0}>

n—o0 T'nUn [ i1

VW<Z]1{X>“"}> T'nUn [(ZR{X >u"}>] T'nUn [ZH{X >u"}] e

T'nUn
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was shown. The remaining convergence of the covariances in condition (C) is established
in Lemma Thus, the joint convergence of Z,(f) and Z,(h) follows from part (a) of
Theorem [3.2.1], which proves the assertion. O

The next short proof establishes an alternative condition for the mixing property.

Proof of Lemma[{-2.9. The condition (s,/vy)0G;,, _1 — 0 is only used to bound the sum
(4.4.15) and nowhere else in the proofs of Section m This could also be done by

28n k
Z <1 - T)P<Xk > un7Mk+1,k+sn—1 S Up,, Mk’-l—sn,?sn > Up | Xl > un)
k=1 n

< 25, P(Ms, 25, > upn | X1 > u,) — 0.

This proves the assertion. O

The method of the proof of Theorem [4.2.10]is the same as for the proof of the asymptotic
behavior of #¢ and #% and combines the results of Proposition and Lemma m

Proof of Theorem[{.2.10. With

1 n—snp+1 n—snp+1
1
Z,=— Z Tix,>un, Mo s, <un} and Z Tix,>un
=1 =1

nu, m)n

one has E[Z2] = (nv,)'(n — s, + Vv, = (n — s, + 1)/n — 1 and E[Z}] = (nv,) ' (n —
Sp+ 1)P(Mas, < tp, X1 >up) = (n—s,+1)/nP(Mays, <u,| X1 > u,).
With this definitions of Z} and Z2 it follows
1 2 n—s,+1
Vivn(E[Z)] = 0E[Z2]) = /ity (P(Ma, <ty | X1 > uy) = 0) ——"—= =0

n

due to the bias condition (B,) and (n — s, +1)/n — 1. Thus, all conditions of Lemma
3.3.5] are satisfied, the required joint convergence is given by Proposition [£.2.8] Therefore,

Lemma implies
n—snp+1

= 1 U <u
(0~ 6) = i (EELGzetenz) )

S L s

o (; - 9) Z(f) — 02(h).

Thus, the centered asymptotic normality of the estimator GA:L is shown. The asymptotic

variance of the estimator is given by

Var(Z8: — 02"y = Var(Z%) + 0*°Var(ZY) — 20Cov(Z%, ZV)
=0+c0*—20(1)=0(1+ch—2)=0(ch—1). O
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4.4.3 Proofs for Section [4.2.3

The lemmas of this section and also the proof of Proposition 4.2.11] are preparations for
the central proof of Theorem at the end of this section.

In this section, we have

Py = P(Miy4s5,-1 > (1 —e)u,) = (1 — ) " *P(Mj 4, 45,-1 > up)(1 4+ 0(1))
=(1—¢)r,v,0(1 +0(1))

by (4.4.1)) and regular variation.

The following technical lemma is used in the proof about the convergence of the covari-
ances in Lemma [£.4.4 Note that the idea of the proof of the next lemma is similar to
Lemma in combination with Lemma [2.1.9) where a more general assumption (PP)
is used to verify (AC) and to prove weak convergence of a growing segment of a regular
varying time series to the tail process. For this more general statement the assumption
(PP) is necessary, which needs to hold for all ¢ € (0, 1), while (/PR) needs to hold only for
one threshold (1 — €)u,. Recall the notation U}, = max,<j< |[|Uj| for —oo < s <t < o0

and a stochastic process (U;);ez.

Lemma 4.4.3. Suppose the conditions (§PR) and (R) are satisfied. Then, for all se-
quences t,, ty, t5 — 00, ty, by, t <1, and all ¢,d,d* € [1 —e, 1+ €],

P(M_y, 5, > dun, My gy < d*uy | Xo > cun) = P(Y o > d/e, Y7 < d'/c), (4.4.16)
P(M_,, ;, > duy | Xo > cu,) = P(Y7, o > d/c). (4.4.17)

—00,00

Proof. First note that under (#PR) and (R), the tail process will finally not exceed (1 —
e)/(1+¢), ie., limy, P(sup|t|>l i > (1—-¢)/(1+ 5)) = 0. To see this, check that by
the Definition of the tail process for all 1 <[ <m

. 1—¢ i
P(Ylm > 1+a> — lim P(Mipn > (1 - €)uy | Xo > (1+2)u, )

<limsup» P(X; > (1 —e)u, | Xo > (1 +e)uy)

n—oo .
Jj=l

00 1— —«
< QZnh_{IC}o en(j)< 8) < 00.
=l

In the last step we applied (4.2.7)).
By monotone convergence, we conclude lim;_, P(Ylj‘oo >(1—-¢)/(1+ g)) = 0. The proof

of limy_, o0 P(Y_*OO’_Z >(1—¢)/(1+ 5)) = 0 works the same way:.
Hence, for any fixed n > 0, there exists m, € N such that for all m > m,,

P(Y: oo > dfe, Y < dfc) = P(Y7,,,, > d/c, Yy, < d'[c)| <n/3.
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Moreover,

‘P<M—tn,£n > dup, My < d*uy, | Xo > cun)

- P(M_m,m > dty, My < d*uy, | Xo > cun)

max(n %) P(Xo > (1 —¢)uy,)
< P(Xi > (1= e)un | Xo > (1= )un) - — 7 .

k:%;rl (X > ( Jun | Xo > ( P(Xy > cu,)
P(X > (1—¢)uy)

+ ZPX0>cun\Xk>(1 €)uy) -

Pl P(Xo > cuy,)

_ o max(tn,tn,th)

(10T e

k=m+1

<

w3

for sufficiently large m and n. The penultimate step holds due to (4.2.7) and due to the
regular variation which implies P(Xo > (1 — ¢)u,)/P(Xo > cu,) < (3/2)(1 —¢)/c)™@ <
(3/2)((1 —¢)/(1+¢€))~« for n large enough. The last step holds due to (§PR). Therefore,

one has eventually

’P(M_tm;n > dug, My, < d'uy | Xo > cu,) = P(Yo o > dfe, Yo, < d')/c)

< [P(M_pm > dup, My, < d*uy | Xo > cup) = P(Y?,,,, > d/c, Y7, < d'/c)| + 52))77

<n

by the definition of the tail process (2.1.1)). Since n > 0 is arbitrary, this proves (4.4.16)).

The second assertion follows with exactly the same arguments, just consider the event

(Voo > d/c} instead of {Y* > d/e, Yy <d*/c}.

]

Using this lemma, we show in the next step the convergence of the standardized covariance
of (Z,(+)).eg- The proof of the next lemma is similar to the proof of Lemma [4.4.1] but

more complicated since the regular variation and the different thresholds cu,, du, have to

be taken into account.

Lemma 4.4.4. If the conditions (01), (0PR) and (R) are met, then the following three

limits exists for all c,d € [1 —e, 1+ ¢]:
()

nlg&;C’OU ( Z ]l{X >cun}s Z ]l{X >dun}>

=1 J=1

i (Y’“ )d +ZP(Yk d) ¢ + (max(c,d))
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(i)

' 1 Tn T i} c .
nh—>nolo T SnUn, Cov ( Z 1{Mi,i+sn—1>cun}7 Z ]I{Xj>dUn}> = P(Yoo,oo > d)d

i=1 j=1

(ii)

Cov ( Z LMy i 1>cun}s Z ]l{Mj,j+Sn1>dun}>

i=1 7j=1

lim
n—oo rn SnUn

1 d
_ 2(13(3/1*00 <LY' > )w + P(Yl*oo <1LY'_ . > ;)da>.
K b C b b

Proof of Lemma[{.4.4. To prove assertion (i), note that by regular variation P(X, >
duy,) = d *v,(1 4 o(1)) for all d > 0. Hence, by stationarity,

1 [ -
Cov ( Z ]I{Xi>cun}7 Z ]l{Xj>d“n}>

T'nUn i—1 j=1

1 Tn Tn

>N P(X; > cun, X; > duy,) + O(r,v,)

T'nUn ;21 521

] P(X
= Z (1 — k)P(Xk > cu, | Xo > dun)M
k=1 T'n Un
Tl k P(X n
+ Z (1 — r)P(Xk > duy, | Xo > cun)<ov>cu)
k=1 n n

1
+ U—P(XO > max(c, d)uy,) + O(r,vy,)

s P(Yk > C)d”‘ +3 P<Yk > d>c°‘ + (max(e,d)) ",
k=1 d k=1 ¢

In the last step we have used regular variation and Pratt’s lemma that can be applied
due to Condition (6PR).

Next, note that the following generalizations of (4.4.2) and (4.4.3) hold for all ¢,d €
[1—¢,14¢]:

Tn
Z P<M€+17é+sn > Cly, Xj > dun)
Jj=l+sn+1

< > P(Muyigre, > (1= )un, X; > (1= €)un ) = 0(8,0,) (4.4.18)
j=l+sn+1

and

J4
P(Mis1e4s, > Cn, X; > duy) = 0(s,0,) (4.4.19)

=1

J

uniformly for 1 < ¢ <r, —s,. The proof is the same as for (4.4.2)) and (4.4.3).
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It follows for the left hand side in (ii) that

1 Tn Tn
Cov ( Z ]I{Mi,i+.sn—1>cun}7 Z ]I{Xj>dun}>
TnSnUn P =

Tn Tn

SN P(Mijvs,—1 > cn, X; > duy,) + O(r,v,)

rnsnvn =i

rp min(i+sp—1,7y)

P(M;ys,-1 > cup, X; > du, 1
TnSnUn; Z (Mijiton1 > ctn: X; tn) +0(1)

1 0 k P(Xy > du,
= — Z (1 — H>P(Mk:,k+sn—1 > Cly, | Xo > dun)M + 0(1)
Sn k=—sn+1 I'n Un

Moreover, for any sequence t,, — oo with ¢, = o(s,), we obtain

1 _tn
— Z P(Mpkys,—1 > cuy | Xo > duy,)
Sn k=—sp+tn+1
S, — 2t, . c
< 7P(M—Sn,sn > Cup ’ Xo > du”) - P(YOOOO d>7
Sn

where (4.4.17)) was applied in the last step. Likewise, for sufficiently large n

1 <
— Z P(Mj jys,—1 > cuy, | Xo > duy,)
51 k=—spttn+1
Sp — 2t, . c
> ————P(M_4, 4, > cu, | Xo > du,) — P(Yoooo d)‘
Sn
Thus,

1 0 k P(Xy > du,
— > <1 - H)P(Mk7k+sn_1 > cuy, | Xo > dun)M +o(1)
Sn k=—sn,+1 T'n Un

1 X

= — Z P(Mk,k+sn71 > CUp, ’ XO > dun>M +0 ( ) + 0(1)
51 k=—spttnt1 Un

Cc
PlY” —)d .
+ P(Yiew> )

This proves (ii). Finally, we turn to (iii). The arguments are similar to the arguments

used in the proof of Lemma [£.4.1] By stationarity,

Tn Tn
Cov < Z ]l{Mz‘,iJrSn—l >cunts Z ]l{Mi,z‘+sn1>dUn}>
i=1

=1

Tn Tn

= Z Z P iyitsn—1 > Cln, Mj:jJrSn*l > dun) + O((rnsnvn)Q)
i=1j5=1
Tn Tn

= ZZP iitsn—1 > Clp, M

JiJtsn—1 > dun)
=1 j=1
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Tn Tn

+ ZZP pitsn—1 > dup, My g, 1 > cuy) + 0o(r,s2v,). (4.4.20)

=1 j=1

For all ¢,d € [1 —¢,1 + €] one can decompose the first term as follows:

Tn Tn

ZZP iitsn—1 = Cln, ijjJrSnfl > dun>

=1 j=1

Tn—38n t+sp—1

Z Z P iidtsn—1 = Cun,Mj’j+sn_1 > dun)

+ Z ZP iitsn—1 > Cln, MJ'JJrSn*l > dun)
i=rn—3sn+1 j=1

rn—38n Tn—Sn

+ Z Z P 4,045 —1 > cun>Mj,j+snfl > dun)
=1 j=t+sn

Tn—38n

+ Z Z P<Mi,i+sn—1 > Clp, Mj,j-i—sn—l > dun)

=1 jJ=rp—sn+1

= I+I1T+1IT+1V.

It can be directly seen that term I7 is of order s2s,v, = o(r,s’v,). Term III can be
bounded by

Tn—38n Tn—Sn ]+Sn_1

Z Z Z P(M;iys,-1 > cuy, X, > duy,)

i=1 j=it+s, k=j

Tn—38n
Z Z P(M; 16,1 > Clip, Xg > duy,) = o(r,520,,)
i=1 k=i+tsp

due to (4.4.18). Moreover, by (61),

rn—3Sn

w< 'y Z (P(Miisa,-1 > cun) - P(Mj 40,1 > dun) + B, 1)

=1 j=rp—sn+1

= O(Tnsn((snvn) + Bn Sn— 1)) = O<Tnsivn)

because r,/(nv,s,) — 0 and therefore (r,s,/(rns’v,))Bx = (1/(5n0n))Brs, -1 = 0.

n,sp—1

Thus, I, I1I, and IV are of smaller order than the normalization 7,,52v,,.
Next, we show that

I 1+ o
5 5 Z P(M s, > ctn, My jtrs,-1 > duy,)
TnS2Up s2v, o

1
N QP(Y* <Ly, d>c—a. (4.4.21)
C
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Distinguish the maximum according to the last exceedance in {1,...,s,} to conclude

Sn

Z-P(Ml,sn > Clp, Mk,k+sn—1 > dun)

k=1
Sn Sn
= Z ZP(XZ > ClUp, Mi—i—l,sn < Clp, Mk,k+sn—1 > dun)
k=1i=1
Sn Sn
=Y Y P(X; > cup, Mip15, < Cln, My jois,—1 > duy,)
k=1i=k
Sn k—1
+0 ( Z Z P(X; > cup, M jots,—1 > dun)>
k=1 i=1
Sn Sn
=YY P(Xo > cup, Mis,—; < Cln, My—j jivs,—1 > duy) + o(s2vy,)
k=1i=k

Sn 0
=Y > P(Xo> cun, Mig,4jr < Cln, Mjjis,—1 > duy) + o(s2vy)
k=1 j=k—sp
0 5n+]
— Z Z P(Xo > cun, My, 45—k < Clp, Mjjis,—1 > duy,) + o(s2vy,),

j=1—s, k=1

where in the third step we have employed (4.4.19). For any sequence t,, — 00, t,, = 0o(s,),

this last sum can eventually be bounded from below by

—tn Sn"r]
Z Z P(Xo > cup, My g, 4i—k < CUn, Mjjrs,—1 > duy) + O(t,s,0,)
j:_5n+tn k=1
_tn
> > (sp+j— 1)P(Xo > cn, Mis, < ctny, M_y,4,—1 > duy) + o(s2v,)
Jj=—sn+tn

20n P(Xo > cu,, d
:sn2v (Xo > cu )P(}/l*oo§17y—*oooo>>+o(872‘bvn)
Up, ’ ’ c

due to (4.4.16|). Similarly, the sum has the upper bound

0 5n+j_tn
Z Z P(Xo > cup, My g, 4k < CUp, Mjjis,—1 > duy,) + O(t,s,0)
J=tn—snt+l k=1
< Z (8n 4+ J — ta)P(Xo > ctin, My, < cun, M_,, ., > duy,) + o(s2v,)
2

n d
- S“lzvcap(xq*oo <1,V > > +o(s2uy).
b b C

Hence, convergence (|4.4.21f) follows, which gives the asymptotic behavior of the first term
in (4.4.20). Interchanging the role of ¢ and d yields the analogous result for the second

term, which concludes the proof of (iii). O
With this preparation we can conclude Proposition from Theorem [3.2.1]

Proof of Proposition[{.2.11. Since 0 < g4, hq < 1 we can apply part (b) of Theorem [3.2.1]
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The conditions (A), (A2) and (MX) follow directly from (61) and (R). Indeed, P(X, >
cu,) = c *P(Xo > u,)(1+0(1)) and P(M 5, > cu,) = c *P(M; 5, > u,)(1+0(1)) hold
by (R) for ¢ € [1 —£,1+ ¢]. Condition (D0) holds by the separability of the process.
Condition for g1_., and hence for all g4, d € [1—¢,1+¢], follows from (#PR) in the
same way as in the proof of Proposition [1.2.6 Condition for hg, d € [1 —e,1+ €]
can be verified in the same way as in Proposition by using . The convergence
of the covariance function is shown in Lemma [4.4.4] Thus, condition (C) is satisfied. In
particular, for ¢ = d = 1 one achieves the same covariances as in Proposition 4.2.6, since
P(Yy > 1) = 1. (And the covariances for d = 1 are the only ones we need for further
calculations.)

It remains to check the conditions for convergence of the process, i.e. (D1) and (D3).
The functions (ga)dei—e,14<] are linearly ordered, since gq > ga for d < d'. Moreover,
the sets {maxi<jcoo #; > du,} are totally ordered w.r.t. inclusion. Hence, (g4)ac(1-c,1+)
forms a VC(2)-class (compare [Van der Vaart and Wellner| (1996), Example 2.6.1) and by
a remark direct after the definition of (D3) this is enough to fulfill (D3) (cf. Drees and
Rootzén| (2010), Remark 2.11). The same argument holds for (hq)acpi—e,1+. Therefore,
condition (D3) is satisfied. For sake of completeness we repeat the argument here for
(gd)de[lfs,lJrs]:

The envelope function of (g4)aci—,1+< is given by gi_.. Define the metric d,, as in condi-

tion (D3) by

Ll i 2\ 1/2
dn(g7h) = ( Z (Zg(Wn,(j—l)rn+i) - h<Wn,(j—1)rn+i>> ) )

2
nuns, 5 \io

where W, ; = (Xni)i<i<tron—1 » Xni = Xiftn and (Wy (j_1)yrti)1<i<r, 1 < J§ < [n/ry]
are iid copies of the random variables (W, ¢)1<¢<r,. Define @, as the (random) discrete
probability measure which has uniform distributed mass in the points (Wnyi)(j,l),«ﬁlgigm
such that d,(f,g) = +/[(f — 9)?2dQ,, i.e. d, is the Ly(Q,) semi metric.

It is important to note, that [sup,g g*dQ, < 1 for some discrete measure Q,,. This
last feature is needed to apply the VC-Theory (cf. [Van der Vaart and Wellner| (1996)),
Theorem 2.6.7). For the Ly-norm || - ||g, 2 w.r.t. @, one has

; 1 /el i 2
lo1-2lde = s X (S geWagpnss)) >0

2
nuns, 5 \iod

whenever there exists an 1 < j < |n/r,|r, with min(W, ;) > 1. If min(W,;) <1
for all 1 < j < [n/r,]r,, then d,(g,h) = 0 for all g,h € G and the covering num-
ber is N(e, (9a)dc(1-c1+¢),dn) = 1. In this case the entropy condition is fulfilled. For
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l91-cl1,, 2 > 0 and with |Van der Vaart and Wellner| (1996), Theorem 2.6.7, it holds

, /1 2(2—1)
Nl <llgu 2 (9a)acir-eav,du) < 2K(160)* ()

and thus

1og(N (&, (ga)de(1-e,1+e): dn)) < log(2K (16€)?[|g1-c[[3), 2) — 21og(e)
< log(2K(16¢)?) + log(a,) — 2log(e)

for any increasing sequence a,, — 0o. The last inequality holds with probability tending
to 1, since

1 /]

Tn ~ 2
e lDD (Zgl—e(Wn,<j—1)m+i)> >an)

P (o<l > a0) = P
n  j=1 =1

Mp Tn 2
— 2
- P ( Z ( Z {M(] )rn+i,(5— 1)rn+z+sn—l>(1 E) }) > nvnsnan>

7j=1
1 My Tn 2
S nvnS%anELz:l <Z]1{M(l D+, (=D +jtsn—1>(1— E)Un}) 1
1 1 2
B %TnUnS%E[<; 1{Mj’j+s"‘1>(1_5)u"}> ]

1
= —0(1+o0(1)) = 0.
an
In the fourth line we applied Lemma 4.4.1| (and 72 P(M 5, > (1 —€)u,)? = o(r,s2vy,)) for
(1 — &)u, instead of u,, which shows E’[(Zj:1 Lind, e 1> (1=eyun})?]/ (Tanvnst) — 6.
Therefore, since log(2K (16¢)?) + log(a,) — 2log(e) > 1 for e < 1 and K > 1 (K can be
enlarged, if needed), it directly follows that

[ eV (gadactr-envey du)d= < [ \fios(2K(166)2) +Tog(ar) — 2log(e)de
§/ log(2K (16€)?) + log(a,) — 2log(e)de
0

= 0, log(2K (16€)?) + 6, log(a,) — 26, 1og(d,) — 25, — 0

for any sequence d,, | 0 and with a,, chosen so that a, = o(1/d,). The last convergence
holds, since 9, log(é,,) — 0. The boundary holds with probability tending to 1. Hence,

AR E T r——)

for all sequences 6,, | 0 and, therefore, (D3) for (g4)ae(1—,1+¢) is fulfilled.
The functionals (hq)aec(i—e14e) are linearly ordered, since hy > hg for d < d'.  So,

(hd)de(1-e,14<) forms a VC-class and as for g4 this is enough to fulfill (D3), since hq <1
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too. From this it follows, that G is a VC-class (Van der Vaart and Wellner| (1996), Section
2.6). Therefore, condition (D3) is satisfied.
It remains to establish condition (D1). Note, that it is enough to verify this condition for
the sets of functions (ga)de(1—c1+¢) and (ha)de(1—c1+¢) separately. For both sets we define
a semi-metric p, and p,. If (D1) is satisfied for both sets, one can define the semi-metric
pg on G by
pgla,b) if a,b € (ga)ac—z1+¢),
pg(a,b) = { pu(a,b) ifa,be (ha)de(1—e,1+e)5

1 else.

Then (D1) is fulfilled, since for 6 < 1 one can consider p, and p; separately. In the
remaining parts we will establish (D1) for the set of functions (gq)ac(1—e,1+). For hg the
assertions will follow along the same lines.

Define py(d, d') := |[d=* — d'~*|. Obviously, (g4)ac(1—c,1+¢) is totally bounded with respect
to py(d,d’). To ease the notation we assume w.l.o.g. d < d'. Lemma [4.4.4] (iii) yields for
Wn,t = (Xn,i)t§i§t+sn—l

: E l in: gd<Wn,i) . in: gd’(Wn,i)‘|

2
TnSan |5

1 Tn Tn
= CO’U(ZQd(Wn’i), ng’(Wn,i)> + O(Tnvn)
=1 =1

rnS2uy,

- ;(P(ijoo SLY > d/d)d "+ P(Yi, <1Y7, > d/d) d’“)

—: D(d,d). (4.4.22)

The convergence holds due to the regular variation of the time series (X;");cz. Because

1
PV €1V > ) = P(Y0 £ g Yo > o — )

1,00

-/ ((max C’ 1)) - @Y POtoe O oex)(ds, dt)

for all ¢ > 0, the limit in (4.4.22)) is a continuous function of (d,d’) € [1 —&,1 + &
Moreover, the left-hand side of (4.4.22)) is monotone in d and d’. Hence, convergence

(4.4.22) holds uniformly on [1 — ¢, 1 + &%
Since Y* > 1 a.s., we may conclude from (4.4.22)), uniformly for 1 —e < d < d' < 1+¢

—00,00

that

5| (a7 - (%, |

T'nS;,Un i—1

1 2

o ()

T'nS2Up
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—2F l i ga(Whi) i gd’(”@j)})

— D(d,d) + D(d',d') — 2D(d, d)

=P(Vi S1)(d+d™) = P(Yy < 1,Y" > d/d)d™®
PV S LY o> d/d)d™™

P(Yy, <1)d™ P(Yl’foo <LY' o> d/d)d™

P(Yr <1Y' < d/d)d™

< P(Yo < a)i = (1= (@/a)*)d* = plaa. o).

Hence,
1 ™ ?
(S| <o
n—00  d.d'e[l—e,l4€],0(gd,94 )< T'nS,Un i=1

i.e. Condition (D1) is satisfied. Thus, all conditions for the process convergence are

fulfilled and Theorem part (b), provides the assertion. O

Now, Proposition [£.2.11], Slutsky’s Lemma and a more involved continuous mapping ar-

gument are used to prove Theorem |4.2.12]

Proof of Theorem[{.2.13 For d € (1 —e,1+ ¢) define

(\/ nvnsn)_l Zn sntl gd(Xn,i7 weey Xn,i—i—sn—l)
\/ _1 Zn sn+1 (Xn,ia sy Xn,iJrsnfl)

Hg,d =
With this notation we have éfwn =05 p, if Dy, € [1—&, 1+¢], which holds with probability
tending to 1, since D, — 1, i.e. P(D,, € [l —¢,1+¢]) — 1. In addition define

0, (d) = P(M, s, > duy)
T s, P(X > duy)

By Proposition we know

(Zn<gd)a Zn(hd))de[l—s,l—i—e} = (Z(gd); Z(hd))de[1—e,1+a}-

The convergence D,, — 1 in probability and Slutsky’s Lemma yield

((Za(9a): Zu(ha)ae-c1ve1; D) = ((Z(90), Z(ha))aeni—c41: 1)- (4.4.23)

Skorohod’s theorem provides the existence of versions of these processes which converge
almost surely.
Next we show that the sample paths of the limit processes Z(gq)ac[i—c,1+< are almost

surely continuous. In the proof of Proposition 4.2.11] we have shown the asymptotic
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equicontinuity of Z,(ga)dej1—c,1+< by establishing the condition (D1) and (D3) and using
Theorem [3.2.1] part (b). From this it follows that Z(gq)dei—e,14 is tight (Kosorok! (2008),
Theorem 2.1). Applying Addendum 1.5.8 of [Van der Vaart and Wellner (1996) gives the
a.s. continuous sample paths with respect to the metric p,, which was introduced in the
proof of Proposition . Analogously (Z(ha))acp—c1+ has almost surely continuous
sample paths.

Moreover,

pg(Dn, 1) = [D,* = 1] =0,

since D,, — 1 in probability, i.e. D, — 1 in probability with respect to the metric p,,

analogously for p,.
Therefore, in view of the almost sure version of (4.4.23]),

| Zn(9p,) — Z(91)| < |Zn(9p,) — Z(9p,)| +1Z(9p,) — Z(91)] (4.4.24)
< | Zn(9a) = Z(9a)| + 12 (9p,) — Z(g1)| = 0

almost surely. The convergence of the first term holds due to (4.4.23)) the convergence of

the second term holds due to the almost sure continuous sample paths. Likewise

| Zn(hp,) — Z(h1)] — 0 (4.4.25)
almost surely. Then, for any sequence d,, — 1,

\/n_vn( fz,dn - en(dn))
B Vn 20 (ga,) + (= s, + 1)/ (n,5,) P(My 5, > dyu,)
Vi, ( \/n_vn_IZn(hdn) + (n—s,+1)/(nv,) P(Xo > dypuy,)
_ Zn(gdn> - en(dn)Zn(hdn)
00 Zn(ha,) + (0 — sn + 1)/ (nvn) P(Xo > diti,)
Zn(gdn) - en(dn)Zn(hdn)
1+op(1) '

~0n(a,))

The last equation holds, since the denominator tends to 1 by (4.4.23)), d,, — 1 and regular
variation. The last two arguments imply ((n — s, + 1)/(nv,))P(Xo > d,u,) — 1.

Since 6,,(D,,) — 6 by the bias condition (ByR), using D,, — 1, (4.4.24)) and (4.4.25) we

conclude
Y nvn(efz,Dn — 0n(Dy)) = Z(g1) — 0Z(hy)

almost surely. Due to the bias condition (B,R) it also holds that

\/W(en(Dn) - 9) — 0
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and therefore

V(05 5 = 0) = /nog (05, — 0,(Dy)) + 0p(1) 2 Z(g1) — 0Z(ha).
Hence, Z(g1) — 0Z(h) is a centered normal distributed random variable with variance
Var(Z(g)) + 0*Var(Z(hy)) — 20Cov(Z(g1), Z(h1)) = 0(fc — 1),

the same variance as obtained in Theorem [4.2.7] OJ

4.4.4 Proofs for Section 4.3.1]

Before we prove Theorem we first state a lemma which shows the convergence of

covariances.
Lemma 4.4.5. If the conditions (S1), (SP) and (AC) hold, then

(1) for all s,t € [Sp,0) one has

Tn
nh_g)lor o Cov ( Z gs(X NJ—Sns o+ Xn,j+5n)7 I; gt(ka—sna e Xn,k’-i-sn))

= Oy (max(s,t)),

(it) for all S € [Sy,00) one has

r}LHgOT UnCOU<ZgS n,j— sna-~-7Xn,j+sn)7kz::1]l{Xk>un}>
S5 p(Em v orazino)
=0

Proof of Lemma[{.4.5. We start with part (i). Inserting the definition of g and X,,; =
X;/u, yields

COU(ZH{Z]ﬂ" X U'n)+>SU/n}]l{X >u”}]l{MJ snyi—1SUn})

TV =

Z ]l{zfj;" (Xi—un)+>tun}]]'{xj >un}]l{Man,j1<un}>
=1 T

1
- E[Z Z ]l{z’”ks”(x )T >sun }]l{Xk>un}]l{Mk—sn,k_1§un}
j=1k=1 ‘

]l{Zj:” (Xi—un)+>tun}]l{Xj>un}]l{Mjfsﬂ,j71 <un}]

riP(Z(XZ- — )T > sup, Xo > un, M, 1 < un)

1=0
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Sn
X P( (Xi —un)t > tuy, Xo > up, M, 1 < un)
i=0

Sn

1
= rnP(Z(XZ» — up) T > max(s, t)un, Xo > Uy, M_,, 1 < un>
T Un

=0
rn k—1 k+sn
+
ST P () > st X >t My 1
Unk‘ 15=1 1=k
J+sn

Z (Xz — 'Lbn)Jr > tun, Xj > Up, Mjfsn,jfl < un)

i=j

k+sn
Z Z P( Z - Un>+ > SUTZ?Xk > Un, Mk—sn,k—l S Unp,

T""kl] k1 i—k

]+3n
Z (Xz - un)+ > tum Xj > Up, Mj—sn,j—l S Un)
i=j
+ O(ryvy)
= I+ 11+ 11] — Oy(max(s,t)).

For the last step we need to argue that the convergences holds. One has

Sn

I= P(Z(Xi —u,) T > max(s, t)u,, M_g, 1 < u, | Xo > un> — Og(max(s,t))
i=0
by Proposition (which can be applied since (AC) holds). Thus, we only need to

show that the emerging sums I/ and I/ converge to 0. One has

IT+ 111

1 rn k—1
DSOS P(Xy > tny My—gy o1 < U, Xj > i, My, o1 < up)

TnUn k21 j=1

1 Tn Tn
D> P(Xk > tn, My—g, i1 < un X > tn, My, o1 < )
rnvnk 1 j=kt1
2 Tn—358n
- Z Z P(Xk > un’Mk Sn,k—1 < u’fHX > unij—Sm]‘—l < un)a
T'nUn k=1 j=k+1+s,

where for the last step we interchanged the role of j and k in the second sum. Therefore,

II + 111 — 0 follows from the calculations in (4.4.13)) and (4.4.14)).

Next, we show the convergence of the covariance between gg and h in part (ii):

rnunOm}(Zﬂ ST (> S} LXK >un L i) kzl]l{ka})
1

 Taln {Zﬂ{z“sw ) > Suny X L1 1<“n}kz:1]l{xk>un}]

]+Sn
rnP< Z (Xi — )™ > Stp, Xj > Uy, Mj_s, j—1 < un)rnvn

T'nUn i=j
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1
B Tnvn [ {Zgn Xi—un)t>Sun }]1{X0>Un}]l{M sn,—1<uUn}
1 &
* T'nUn ];(rn B k>E []l{ZjZo(Xi_“n)+>S“n}]l{X0>un}]l{M—Sn,—1§un}]l{Xk>un}]
1
+ TnUn kz::l(rn a k) [ {zgn+k Xi—un)t>Suy, }ﬂ{Xk>“n}1{Mk smk— 1§un}]l{Xo>un}:|
+o(1)

= P(Z(Xi — un)+ > Sup, M_g, 1 < Un| Xo > un>

=0

Tn k Sn
+ Z (1 - >P(Z(X, — )t > Sup, M, 1 < up, Xp > un|Xo > un)
k=1 T'n

=0

Tn ]{Z sn+k
+ > (1 - >P< S (X —un)t > Sug, X > n, My, 51 < un | Xo > un) (4.4.26)
k=1 Tn

i=k
+o(1)
)+ Z P (Z -1 > 8 Y <1LY > 1)
=0
Z <Z - >S8 Y <Y > 1) .
=0

For the convergence we used condition (SP) which allows us to apply Pratt’s Lemma to
interchange the limes and the summation. Note that the probabilities in line (4.4.20)
equal 0 for all £ < s,, which is why this summands do not appear in the limit. The
convergences of the other summands follows from Proposition [4.1.3] This concludes the

proof. O

With this preparation we can prove Theorem Note that the structure of the proof
is the same as for Theorem [4.2.10, Here, we establish the joint convergence of numerator

and denominator directly in this proof and do not state it as an extra proposition.

Proof of Theorem[{.3.1 In a first step we want to prove

(mwzln(a E[é:l,nw)])sdso,m)) u ((ZE)SG[So,oo)) (4.4.27)

\/__1 Zz sn-‘rl (]]'{X7,>U’ﬂ} - U”) A

where ((Z%)se[sy,00) £°) is a centered Gaussian process with covariance Var(Z¢) = c,
Cov(Z:,Z}) = Og(max(s,t)) and for Cov(Z%, Z¢) specified in Lemma [4.4.5 part (ii).
Here, we have ¢ = lim,,_,oo F/ [(Zg"l ]l{Xj>un}>2] [ (rnvn) = Yper P(Yi > 1), since (X;)iez
is a regularly varying time series, see .

For the proof of the asymptotic normality we apply part (b) of Theorem First
note that gs and h are bounded by 0 < gg,h < 1. The conditions (A), (A2) and (MX)

are direct consequences of (S1) for s/, = 2s, + 1 and [,, = 4s,, + 1. Moreover, note that

n = P(Mi;, > u), bu(gs) = ba(h) = (nv,/pa)'/? and p, = r,v,0(1 + o(1)) by ([£.4.1)
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under assumption (S1) and (SP). Therefore, all conditions in (A) and (A2) are directly
given by (S1). The mixing condition in (MX) follows from (S1) and S\ < B

Nylp—28p,—1 =

with with I, chosen above. Condition (D0) is a direct consequence of the separability of
the index set [Sp, 00).

The proof of Proposition shows for the function h with h(xy, ...z,) = Lio>1y-
Thus, this condition is satisfied for the function h with h(z_,, ...,x5) = L5513 by the

same arguments. Since Ly (x Xy )20} < Lixysu,y for all S > 0 it follows

M, —8Sn )

Tn 2
(Z]l{Xj>un}> ] = O(rvn).
j=1

The last equation follows since is satisfied for h and by the definition of b, (h).
Thus, holds for all S > 0.

For the application of Theorem it remains to check (C), (D1) and (D3). The con-
vergence of the variance for the function h has been verified in Proposition

1

T'nUn

Var (Z ]l{Xj>un}) — C.
j=1

The remaining parts of (C) are a direct consequence of Lemma [£.4.5 Since h is a single
function, it is enough to verify the conditions (D1) and (D3) for {gg : S € [Sp, 00)}.

For condition (D3) we note, that we consider the functions (gs)se(sy,00) for which gg < ggr
for S > S’ follows directly by the definition and, thus, the subgraphs are ordered linearly.
Therefore, the subgraphs of (gs)se(0,00) form a VC(2)-class. According to a remark after
the definition of (D3), this is enough that (D3) is fulfilled (cf. Drees and Rootzén, (2010),
Remark 2.11). For the detailed arguments see also the verification of the condition (D3)
in the proof of Proposition 4.2.11] For details about the VC theory see [Van der Vaart
and Wellner| (1996)), Section 2.6.

Next we turn to (D1) and define the semi-metric p on G = {g, : s € (0,00)} by

o0

plgeg) = P( LG = 1) € (8,7, < 1)

=0

for s < t. Regarding this semi-metric G is obviously totally bounded. Furthermore, for
s <t the following applies for W, ; = (X 1) jtj<s, (With X, = X3 /uy):

1 Tn 2
[ (St - s
raUn [\

1 Tn 2
- rnynE[< Z ]l{Xj>u"’Mj75”’j71§u"} <]I{ZZ+;"(X¢—un)+>sun} - ]I{ZZI;TL (Xi—un)+>tun}> ) ]

J=1

1 Tn 2
- B l( Z ]l{Xj>un7Mj—sn7j—1Sun}]l{sun<zz:;n (Xiun)+<tun}) 1

T'nUn j=1
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= . P<XO > umes ,—1 < Up, SUy, < Z - un)+ < tun)
T Un, =
2, "ol k n
+ Z <1 — )P M_, 1 < uy, su, < Z —up)t < tuy,

T'nUn k=1 Tn 1=0

k+sn
Xo > Up, Xi > Upy Mi—s, -1 < Up, SU, < Z (Xi —un)t <tu, | . (4.4.28)

i=k

From this we first consider the first M summands for a M € N:

1 M k Sn
— Z <1 — )P M_g, 1 < up,su, < 2:(Xz —up)t < tuy,

T'n i=0

k+sn
XO > un7Xk > U, Mkfsn,kfl S Up, SUp < Z (X'L - un>+ S tun)

i=k
<(M+1)P (sun < Z =)t <tu,, Mg, 1 <u, | Xo > un>
— (M +1)P (Z(Y} -~ e(st], Y, < 1) = (M +1)p(gs, gt)- (4.4.29)
=0

By Proposition [4.1.3| the convergence holds only for points s,¢ where the map s —
P( ;’OO(Y — 1)+ <s,Y* ;< 1) is continuous.
Since Y; < |Y0/|©; and HYDH and © are independent, one has

o

051 < S o sty P P@)
Fix some 0 = (0;) ez The expression >72,(yf; — 1)* is strictly monotonously increasing
iny >y if Z;‘io(yoej —1)* > 0. Therefore, for s > 0 there exist at most one y; > 1 such
that >72,(ys0; — 1)* = s. Hence, and since ||Yp|| is Pareto(a) distributed, we obtain

(0% 1)71
1 plvoll (g :/ : L oty — 0.
/ {Z;‘;o(yej—1)+:8,y§(9iw71)*1} ( y) 1 {y=ys} Y Y

Thus P( oY1)t =5Y" | < 1) = [0P®(df) = 0, which in particular implies
that the map s — P( oY1) <8 Y < 1) is continuous for all s > 0.

The expression P( oY =1 e (s8], Y < 1) is monotone in s and t. Therefore,
the convergence above holds uniformly in s,¢, since all emerging functions in-
cluding the limit function are monotone in s, ¢ and uniformly bounded by 1 and the limit

function is a measure defining function of a substochastic measure.

The limit in (4.4.29) is less than or equal to (M + 1)d if p(gs,9¢:) < d. The remaining
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summands in (4.4.28]) can be bounded by

1 n k Sn
— > (1 — )P (Msml < U, sy < D (X — un)t < tuy,

Un p=M+1 I'n i=0

k+sn
XO > u'ka > U, Mk—sn,k—l S Up, SUp < Z (Xz - un)+ < tun)
i=k
Tn

By condition (SP), one has limy/ 00 3% 3741 €n(k) = 0. So, by choosing M large enough

and afterwards ¢ small enough, the considered expectation is arbitrary small, i.e.

E

- 1
lim lim sup sup

60 n—oo gs,gteg,p(g37gt)<5 T'nUn Jj=1

<§:(9t(WnJ) - gs<Wn,j>>>1 =0

and condition (D1) is satisfied. Thus, all conditions of Theorem are satisfied, such
that this theorem implies the joint convergence (4.4.27]).

In the next step we prove the asymptotic normality of or

sl,n

(S). Along the same lines as

in the proof of Lemma [3.3.5| we obtain

Vi (82,(8) = 0(9))

[50700)

~gl,n(S)

= Ny n—=Ssn
(((n - 25n)vn)_1 Zz‘:sn—H ]]‘{Xi>un}
= (Z5 — 03(S) Z) seis0,00) = (Z5) 5€[80,00)-

- 0u(5))

S€[So,00)

Note that this is not exactly the setting of Lemma since we consider a whole
process. The proof of the statement used here works completely analog as Lemma [3.3.5]
just replace Z! by an process (Z!(s))ses and & by £(s) for an index set S and adapt the

bias condition to

Sup /10, | (7, (5)] = £(s) B[ 23] = 0.

seS

(For this see also the proof of Theorem m) Here, we used Z!(S) = ~§l,n(S ) and Z2 =
(n—2s,)vn) 1 2000 Lix, 50,3 The joint convergence needed for Lemma is given
by (4.4.27) and the adapted bias condition is given by (SB,.). This proves the assertion.

The stated covariance can be calculated with Lemma by (using the notation of
E12)

Cov(Za, Zi) = Cov(Z] — 0u(s) 2%, Z} — 0a(t) 2°)

= Oq(max(s,t)) + 0s(s)0q(t)c

—0q(s) > P(Z(Yj - >tY o 1 <1V, > 1)
k=0

J=0
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t)ZP(Z(Yj—1)+>s,Y_m,_1§1,Yk>1>. O
= j=0

4.4.5 Proofs for Section 4.3.2

We can prove the asymptotic normality of 951 2 (S) with methods similar to the methods
used for the disjoint blocks estimator 6’2 for the extremal index. In preparation for the
proof of Theorem , we first prove the convergence of the covariances Vrffi(s) and V7,
defined in (4.3.2)).

Lemma 4.4.6. Suppose (S1), (SP) and (SP) are met. Then it holds for all s,t € [Sp, 00)

(i) Tim 2 Cou (Ve (s), VE,(5) = ~0a(max(s, ),

N6 p Y n, 6
1
(i) Jim " Cou (Vi (), Vi) = 5P = 17 > s).
DPn JEZ

Proof of Lemma[{.4.6. For the covariance of Vndﬂ.(s) and Vﬁi(t) one obtains by stationarity

?:cov (Vid(s), Vi)

Tn/Sn Tn/sn
70 < ]1 sn , ]l on )
Pn . Z {Zf 1+(k*1)5n(Xi_un)+>su”} 1; {25:1+(k71)sn(Xi_un)+>tun}
1r,
_ pfngCOU ( o0 (Xi—un)t>sun}s ]I{Zle(Xi_un)JrNUn})
1
_ . 1 .
"—pn 1<k<jz<r B COU( {Zf 14 (k—1)sp (Xi—up)t>sun}’ = { §—1+(j_1)sn(Xi—“n)+>tun}>
1
_ C . .
+ D 1<k<jz<:r B ov < {Ef 14 (k— 1)Sn (Xi—un)t>tun}’ {ZZ e 1)Sn (X, _Un)+>5un}>
—: [+ [T+ 1I1.

For the term [ it holds that

1r,
= ZTn;COU ( 0202 (Xi—un)t>sun}s 1{221(Xi—“n)+>tun})
TpUn 1 Sn
_ IO L p(SNXG =)t > ¢ n)
o (;( Up,) max(s, t)u
1 . Sn Sn
— TP(Z(XZ- — )t > sun>P<Z(Xi — )t > tun>
Pn Sn i=1 i=1
1 rnsnvz 1
= gesl(max(s,t))(l +o(1)) + O( ) — gesl(max(s,t)).
Pn

Here we applied (4.3.1]) and (4.4.1)), which holds under the given conditions (S1) and (SP).
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For the second term I1 we obtain in view of (4.4.4) that

1 ksnp jsn
II=— Z P( Z (X — upn)™ > sy, Z (X — )™ > tun)
Prochci<rn/on  Ni=14(k—1)sn i=14(—1)sn
1 ksn Jsn
- > P< Yoo Xi—u)t > sun>P( oo (Xi—u)t > tun>
Prychci<rm/on  Ni=14(k—1)sn i=14(—1)sn
1
< — Z P (M(k—l)sn-i-l,k‘sn > Uy M(G-1)s,+1,5s, > Un) + O(rpvn) = o(1).

Dn 1<k<j<rn/sn

By the same arguments, just switching the role of ¢t and s one obtains /11 = o(1). This
proves assertion (i).

The covariance between V,%,(s) and V¢, can be calculated as follows:

1 n/Sn T ksn
- (P( S (X —un)T > su,, X > un>
=1

i=(k—1)sp+1

T I

i=(k—1)sn+1

rn/sn ksn ks,
— Z Z P( Z (Xi —up) > su,, X; > un>

pn k=1 j=(k—1)sn+1 i=(k—1)sp+1

1 Tn/sn 1)5n ksn
Z ( ( Z (Xi —up)™ > su,, X; > un>
J

pn k=1 =1 i=(k—1)sp+1

ksn

+ i P( Z (Xi—un)+>sun,Xj>un>>+O< it SW)

j=ksn+1 i=(k—1)sp-+1 PnSn

Tn/sn ksn ksn
Iy o5 P( S (X —w) > sun X, > un> +o(1)

pn k=1 j=(k—D)snt1 i=(k—1)sn+1

rn/sn Sn Sn
= Z ZP(Z i — )" >Sun,Xj>Un>+O(1)

pn k=1 j=1 “i=1
Tnvn

— zp(z — )" > s, X, > ) + o(1)
DPn Snvnj 1 i=1

In the third to last step we applied (4.4.2)) and (4.4.3). Since each probability is at most

1, for the remaining sum it holds

ZP(Z —un)+>sun]Xk>un>

Sn =1 i=1

Sn—tn sn—k
_ 5 > P( > (X —un)t > su, | Xo > un) + O(trl) (4.4.30)

Sn g—t, i=1—k Sn
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Here, we used some sequence t,, — oo with ¢, = o(s,). This last sum can be bounded by

Sn—tn Sn—k
L > P( > (X —un)t > su, | Xo >un>

Sn k=, i=1—k

n_ztn =
< SP< Z (X — )™ > su, | Xo >un> —>P<Z(Yj—1)Jr >s).

Sn i=1—sn jez

Furthermore, it can be bounded from below by

Spn—1n sn—k
1 Z P( Z (X — u,)™ > su, | Xo >un>
S g=t, i=1—k
S, — 2t tn
> ”SnP< > (Xi—un)t > su, | Xo > un> — P(Z(Y} -1 > 3).
n i=1—t, JEL

The convergences hold due to Proposition [4.1.3] which can be applied since (AC) is
assumed to hold. Since upper and lower bound coincide and (r,v,)/p, — 1/0, this proves

the assertion. N

The proof of Theorem works along the same lines as the proof of Theorem [4.2.4]

but here we also have to deal with process convergence.

Proof of Theorem [{.5.3. First, we will show the weak convergence

(Z(Nsetnno ) _ (a0 (Vi = BV g0\ ((Z8)setsono
Z; pa 2y (Ve — EVi) ze )
(4.4.31)

where ((Z%)se(so,00), Z¢) is a centered Gaussian process with covariance Cov(Z%, Z{) =
Os(max(s,t))/0, Var(Z¢) = ¢/0 (c is given in (4.2.3), note that under regular variation
the limit there is the same if r, is replaced by s,) and for the constants Cov(Z¢, Z¢) =
P (Sjez(Y; = 1)F > S) /6.

We will apply the abstract limit Theorem . The condition (Al) is directly given
by (S1). By the definition of V,¢,(D), V,ffi(D), Vi and f/ncz the condition (V) is directly
implied by the stationarity of (X;);ez. Conditions (MV) and (MXy) follow from the f3-
mixing condition in (S1). The latter condition follows since r,, — s, > s, —1 for sufficiently
large n. Condition (DO0) is a direct consequence of the separability of the index set [Sp, 00).
The conditions (A) (or (3.1.4)) and (L) can be checked separately for V¢;(S) and V¢,
For V7, these conditions have been verified in the proof of Proposition m For V,¢,(S)

one has

1 1
\/m_n]].{Zle(XZ,un)+>Sun} S ﬁ]}-{M17Sn>un} .

n

AL(S) = Va(S) - Vd(S) £
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Therefore, and (L) are implied by the verification of the same conditions in the
proof of Proposition [£.2.3]

For the process convergence the conditions (D1) and (D3) have to be satisfied. The condi-
tion (D3) is fulfilled since the functions (fs)se[sy,00) With fs(z1, ..., 2y) = Ly (1)+>5)
are linearly ordered by f; < f; for s > t. Therefore, the functions form a V' C(2)-class
which is enough such that (D3) holds (cf. proof of Proposition [£.2.11)). The single func-
tion needed for Vi, does not matter, (D3) remains fulfilled if one adds just one sin-
gle function to the set of functions. Condition (D1) can be established in the same
way as in the proof of Theorem for the runs estimator. The arguments are ex-
actly the same, just a modified function is used and one has to use the semi-metric
p(Hg, Hy) :== P ( oY —1)7" e (s, t]) For this argument one applies Proposition {4.1.3]
which is why (AC) is needed.

The convergence of the variances for V7, was already established in Proposition ,
the remaining covariances of condition (C) converge due to Lemma [4.4.6] Therefore, all
conditions of Theorem are satisfied and the weak convergence holds.
Next, we establish the weak convergence as stated in the assertion. Similar to the proof
of Lemma it follows

Vi (03,,(8) = 0.(5))

V(S
= /nv, (Zl_rlnn n’lg ) — QSZ(S)>
i=1 Vn,i S€[Sp,0)

_ (m(zgw) — 0.4(5)Z¢) + ma(E[V) — esl(S)E[v,g])>
n mnEVE] + /P Z¢ SeiS000

B NUnPn ZS(S) - 985<S)Z7cl
mn(rnvn)2 1+ W(rnvn)ilzﬁ
LV fparaon (P (S (X~ un)* > Sun) [(sutn) = 6u(S))
—17c¢
1+ m(rnvn) Zn S€[Sp,00)

= VO(ZE — 04(S)Z) se(50.00) = (Z5) 5¢]S0.00)

S€[s0,00)

where in the last step we have used (4.4.31)), the bias condition (SBy) and (4.4.1)). The
limit random variable is a centered Gaussian process. The asserted covariance can be

calculated by

Cov(Zs, Zy) = 0Cov(Z% — 04(s) 2%, Z¢ — 04(t) Z°)
= 0Cov(Z%, Z%) + 04(s5)04(t)c — 004(s)Cov(Z2, Z°) — 004(t)Cov(Z¢, Z°)
= Ogy(max(s,t)) + 04(s)0s(t)c

- 931(5)P<Z(Yj 1)t s t> - Gsl(t)P(Z(Y} 1)t > s>. O

= JEZ
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As before, for the proof of Theorem {4 about the asymptotic normality of the sliding
blocks estimator the calculation of the covariance is outsourced.

Lemma 4.4.7. Suppose (S1), (SP) and (AC) hold. Then it holds for all s,t € [Sy, 00)

(i) nh—glor ons? Cov(Zfs Xoh)j<h<jtsn—1) th Xon,h) k<h<htsn— 1)) = 0a(s V1),

(ZZ) nlggo v COU(Zfs nh ]<h<]+sn—1 Z]I{X >un}> P(Z(Y; - 1)+ > 5)~

i=1 JEZ

Proof of Lemma[{.4.7 For the covariance of fs and f; for s,t € [Sp, 00) we obtain

Tn/UnS2 COU(Z]I Z]+Sn I(X —un) +>Su p Z]l Z]+Sn 1 (X, un)+>tun}>

1
TnUn82 [ {Z (Xs—un)t>sun} {Z X*un)+>tun}}

T’nUnS%L = (1 - ) |: {an Xi—un)t>sun }]l{zf+kszl(xi—un)+>tun}:|

Tn’UnS% =1 (1 - ) |: {an X Un)+>tu }]]-{Zfﬁ’;zl X; un)+>5un}:|

2
Tn

T Un 52E[ {2230 (Kimun)*>sun }} [ 2200 (Xi—un) +>tUn}}

= 82% ( —up)t > max(s,t)un) +o(1)
1 Sn ]{? Sn N k+sn N
+ - > (1 — )P(Z:(XZ —up)t > s, > (X —un)t > tun>
SpUn =1 T'n i=1 i=k+1
1 Sn k Sn N k+sn N
+ = Z <1 — )P(Z(XZ — Up) " > tuy, Z (X —up)™ > sun>
SnUn .21 T'n i=1 i=k+1

+ ! i <1 — k)P(i(XZ —up)t > suy,, kin (Xi — )t > tUn)

2
SnUn g=s,+1 T'n i=1 i=k+1

1 Tn k Sn k+sn
+ Z <1 — )P( (X — )™ > tuy, Z (Xi — )™ > sun>
n i=1

S$%Un k=s,+1 T'n i i=k-+1
= I+II+1I1+1V+V +o(1).

We will analyze the summands separately. Note that under our conditions the conditions

of Lemma are satisfied, since due to (4.4.6) and the [-mixing assumption the last
condition in (€1S) is satisfied. Because of

Sn, k+sn
P(Z(XZ- —up)t > tu,, Z (Xi — )™ > sun> < P (Mys, > Upy Myt grs, > Un)
i=1 i=k+1
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for all k € Z, and with (4.4.11)) we obtain IV — 0 and likewise V' — 0. For I we have

Sn

11 P(Z(Xi —up)t > max(s,t)un) = O(l) — 0.

Sn SpUn i=1 Sn

Moreover, for parts of I1 and 111 we have

1 Sn k Sn k+sn
> P(Z(Xi —un)T > g, Y (X — )t > Sun>

2
SaUn g=1 Tn N2y ikt 1
1 Sn 5% Sn
< Z —P(M, >un) =0 —5—s,v,) =0(—) = 0.
s2v, (= T T'nS20p T
It remains to calculate
k+sn
L p(z ) > st S (X —un)t > tun)
U"k 1 Vi=l i—ht1
Sn Sn k+sn
XY P(Y ) > s 3 (i) > X > My < )
SpUn j= 1j=1  Ni=1 i=kt1
Sn—J k+sn—j
= DOD I (D SC AL S R L
Snk: 1j=k+1 i=1—j i=k+1—j
Mi_j 1 <wu,|Xo > Un)
Sn—J k)+8n7j
S I (D SE AR S e R
nk 1j=1 1=1—j i=k+1—j
Mi_j 1 < up|Xo > Un)

=1L+ 1.

This second sum converges to 0, since for some sequence t,, with ¢, — oo, t, = o(s,) one

has
1 3n Jttn—1
].[2 S 2 Z Z Mtn,an > Up | XO > un) + - Z Z 1
Sny LRSI Sn j=1 kej

Syt
< "P(Mtnzsn > | Xo > un) + =5~ = 0.
Sn Sn

In the last step we used that P(M;, o5, > u, | Xo > u,) — 0 by (SP). The remaining

sum [ [; possesses the upper bound

Sn—tn Sn—tn 28y, —tn
2 Z > P< D (X — )T > sup, > (X —u)T > tuy,

n k=1 j=k+1+t, i=0 i=0

X() > Un) + O(tn8n>

2
Sh

My, 1 <u,
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- Z 82P< Z (Xi —un)™ > sup, Z (Xi — up) ™ > tuy,
tnSn
M_y, —1 < up|Xo > un) + O( 5 )
S’I’L
2 — 2t —_ n 1 2 Sn—tn 28n—tn
= Sn nSn 2371(8 + )/ P( Z (Xz o un)+ > SUy, Z (XZ _un)+ > tun,
Sh i=0 i=0
tnSn
Mi_y, -1 < up|Xo > un) + O( = >
1 - + s + * 1
- 2P<Z(K~ D et EY L < 1) = SOa(max(s, ).
i=0 i=0

The convergence holds by Proposition since the considered indicator is a.s. contin-
uous by Y; 4 Y00,, where Yj is independent of ©; and Par(«)-distributed.

On the other hand 11, possesses by similar calculation the lower bound

Sn Sn—tn tn tn
;2: Z:J%XX&—%W>mmZ}&—%ﬁ>m%

n k=1 j=k-+1+t, i=0 i=0
tnS
Xo > ) +0[12)

M5, -1 < uy,

e
2 _ ot s, —su(s,+1)/2 /& t
= Sn S 25 (8 + )/ P<Z(Xz _ un)+ > SumZ(Xi . un>+ > tu,,
*n i=0 i=0

Mg, -1 < uy,

tnSn
S

n

1 > > 1
- 2P<Z<n DT s (DS EY < 1) = SOalmax(s, ).
=0 =0
The convergence to the tail process holds due to Proposition[4.1.3] Putting things together
we obtain

1
I =1L +0o(1) — iesl(max(s,t)).

Likewise 11 — 04(max(s,t))/2, since the calculations above holds for all s,t € [Sp, 00).

Thus, we have for the covariance of f, and f;
1 1
IT+1T+I1IT+1V+V — 5931(11133((5, t)) + 5931(max(1§, s)) = O4(max(s,t))

which proves part (i). Next we turn to part (ii), the covariance between f; and h. By

stationarity and the similar arguments as used before we obtain

1

T'nUnSn

Cov ( Z:l ]I{Zf:;"ﬂ(Xi—un)+>sun}> z; ]1{X2>un}>
J= i—

1 Sn—1
= P( > (X —un)t > suy, Xo > un>

UnSn i=0
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1 rn—1 k' Sn
I (1 - )P(Z(Xi — )t > s, X > un>

UnSn 1 I'n i=1

= e sntk—1
+ > (1 — )P( S (X —un)t > su,, Xo > un> +o(1)

T'n

UnSn k=1 i=k
=o(1) + 1 fﬁ’iﬂij)+>MLX'>u +O(%%%>
o UnSn k=1 i=1 Z " m ' TnSntn
1 el k = +
+ ) (1 B )P D (Xi = un) " > sup, Xy > un
Undn =g, +1 "'n i=1
1 rp—1 k sn+k—1
S (1= ) (U ) > X > ) o)
UnSn k=1 Tn i=k
— P (Z(Yj -1" > 8) + ().
JEL

The convergence of the first summand was already proven in (4.4.30) and we define

1 rn—1 1{7 Sn
S (s) = lim < > (1 — )P(Z(Xl —up)t > sup, X > un>

Undn =5, +1 n i=1
1 rp—1 k’ sn+k—1
+ > (1—)]3( > (Xl-—un)+>sun,X0>un>>.
UnSn = n i—k

Obviously ¢3(s) < ¢® with ¢® defined in (4.4.12). Thus, since the conditions of the Lemma
are fulfilled, this implies ¢3(s) = 0, which completes the proof. [

Finally, as last proof of this section we prove Theorem [4.3.3]

Proof of Theorem[{.3.3 In the first step we will prove the weak convergence

(\/ nvnsn)_l(zg‘l:_fn—’—l 1{23:;"71(Xi—un)+>5un} - P(Zfil (Xz - un)+ > Sun))SE[So,oo)
A St (L - )

w ZS oo
o (( Bt >) | (4.4.32)

where ((Z%)se[so,00), £2€) is a centered Gaussian process with covariance Cov(Z3, Z;) =
05 (max(s, 1)), Var(Z¢) = c (cf. (¢.2.3)) and Cov(Z§, Z°) = P (Zjez(yj -1t > s).

We will show this convergence with Theorem [3.2.1] part (b). Note that the conditions (A),
(A2) and (MX) are directly implied by (S1) (see also the proof of Proposition [4.3.1]). To
this end, note that b,(gs) = (nv, /)25y, bu(h) = (nv,/p5)"? and p8 = r,v,0(1 +0(1)).
Then the conditions readily stand in (S1). Condition (DO0) is a direct consequence of the
separability of the index set [Sy, 00).

For condition (3.2.4) note that fg(Xy1,..., Xns,) # 0 implies iy, >4, # 0 and for
the latter function the condition is satisfied as shown in the proof of Proposition [£.2.6]
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Moreover, we have h(X,1,..., Xps,) = L{x;>u,} and for this function condition (3.2.4)
has been verified in the proof of Proposition [4.2.3] Thus, condition (3.2.4) is satisfied.

For the variance with function h one obtains

VO/T’ (Z ]}‘{Xi>un}> =
i=1

1

T'nUn

1 Tn 2
8|S 1) | +olt) e
=1

TTLTZ

by the definition of ¢. As shown in (4.2.3), one has ¢ = Y3z P(Yy > 1). The other
two covariance convergences are established in Lemma m, which is why Condition (C)
holds.

Condition (D1) can be established with exactly the same arguments as in the proof of
Theorem [4.3.1 we omit the details here. Since {fs : S € [Sp,00)} is linearly ordered,
this functions form a VC(2)-class and thereby condition (D3) is satisfied. (A detailed
argumentation for this is given in the proof of Proposition . Theorem now
implies the weak convergence (4.4.32)).

Next we turn to the asymptotic normality of 0
of Lemma [3.3.5 we obtain

S

51n(S). Along the same lines as in the proof

Vo (0,(5) = 04(S))

S€[s0,00)

n—sn+1 )
J=1 ]l{zz;r;n_l(xi—un)+>SUn}

>
= /nv ( —
! Zj:ln—H ]l{Xj>un}

% (Zg* - 05l<S)ZC)SE[so,oo) = (ZS)SE[SO,OO)-

~0u(5))

S€[s0,00)

The convergence is implied by (4.4.32) and the bias condition (SBy). This shows the

assertion. The stated covariance can be calculated by
Cov(Zs, Zy) = Cov(Z: — O04(s)Z2°, Z; — 04() Z°)
= Oy (max(s,t)) + 0y(s)0x(t)c
—981(3)P<Z(Yj—1)+ >t> —Hsl(t)P<Z(Yj—1)+ >s). 0

JEZ JEZ
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Chapter 5

Projection based estimator for the

spectral tail process

As mentioned in the introduction and due to Definition [2.1.6] the spectral tail process
(©¢)¢ez carries all information about the extremal dependence of the underlying process
(Xt)tez. The aim of this chapter is to derive estimators for quantities about the extreme
behavior of (X;);ez, and, therefore, we want to estimate quantities depending on the
distribution of the spectral tail process (0;)icz. We will exemplary motivate and derive
an estimator for P(6; € A) for some Borel sets A in R? and some i € Z in Section

In Sections [5.2] and [5.3] the asymptotic normality of this estimator with known a and
estimated index of regular variation, respectively, is shown using the limit theory devel-
oped in Section [3.2] A generalization for multiple time points is provided in Section [5.4]
Section contains an example for the asymptotic variance of the estimator and one
example where all conditions of this chapters are verified. Finally, in Section [5.6 a simu-

lation study for the new estimator is presented. All proofs of this chapter are deferred to

Section B.7
The results of Sections and [5.9 and parts of the simulations in Section
as well as the corresponding proofs have already been published in advance in cooperation

with my PhD-supervisors Holger Drees and Anja Janfen in|Drees et al. (2021).

5.1 Motivation and construction

Throughout this section we consider observations X;_; ,..., X, of a stationary R9-
valued time series (X;)iez, where we start with index 1 — s, and end with n + s, to
simplify the notation. Moreover, we assume that the time series is regularly varying such
that the tail process satisfies the summability condition (SC) (cf. inequality (2.2.3)).

The definition of the spectral tail process leads to a straightforward empirical estimator
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for P(©; € A) given by

1 n
Z Lyxi>uayLa (Xewi/ 1 Xel) s (5.1.1)

ﬁf AT
" e Lyixsun ==

where u,, denotes a suitably high threshold converging to oo as n — oo. This simple
empirical estimator for P(©; € A) is called forward estimator. It was introduced in |Davis
et al.| (2018) and is consistent, basically due to stationarity of (X;);ez. The asymptotic
normality of this estimator was proven in Theorem 3.1 of the same reference. This es-
timator does not make use of any properties of the spectral tail process, apart from the
definition.

For univariate time series and the special sets A = (—oo0, —x) or A = (z,00), x > 0, the
time change formula applied with the function f(x¢) = 1;,cay was used to design an

alternative estimator for P(©; € A) given by

. 1 = N
Proa = = 1 D Ll |1 X/ Xl L (X / | X i) - (5.1.2)
i1 Ly >uny 120

Usually the index of regular variation « is unknown. One could replace a by an appropri-
ate estimator &, e.g. as defined in below. In this case, we denote the estimator
by ]%fl 4. The estimator ﬁ;‘z’ 4 (or z%fl 4, Tespectively) is called backward estimator and was
introduced in a Markovian setting for @ = 1 by Drees et al.| (2015) and in a general
univariate setting for arbitrary ¢ by Davis et al.| (2018). By applying the time change
formula for one single lag ¢, this estimator only makes use of small part of this structural
property of the distribution of (©;);cz, since the time change formula holds for all i € Z
(cf. Definition 2.2.2)). Simulation studies have shown that the backward estimator can
have a smaller root mean square error (RMSE) than the forward estimator for different
classes of models and in particular for larger values of z, see Davis et al.| (2018)) and |Drees
et al. (2015)).

Our aim is to construct an estimator for the distribution P(®9tez of the spectral tail
process (O;);cz or P(©; € A) for some Borel sets A, respectively, which is not only an
empirical version of the distribution, but also makes use of the whole special structure of
such a distribution formalized by the time change formula.

Under the summability condition (SC), a time series © = (0;)cz satisfies the TCF if and
only if the distribution P® of the time series is invariant under the RS transformation (cf.
Theorem . Exactly this RS transformation shall be used in the estimation approach
considered here. Therefore, the condition (SC) is always assumed in this section, below it
follows from stronger conditions (namely (PP)). With this RS-transformation the whole
structure of the time change formula is used, which should improve the estimation.

In order to apply the RS-transformation here, we first redefine it as the transformation

of probability measures. Under the condition (SC), the distribution P® of a spectral tail
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process is a probability measure on
lo = {z € R) 0 < 2] < oo},

where a > 0 and [|2]|% = 3,z || 2]|* as defined in (2.2.4)). In particular (6,)ez € I, a.s. if
(SC) holds. In this chapter, we consider some functions defined on [, equipped with the
supremum norm. For arbitrary n € N the space R?"*! is embedded in I, by the mapping
(RH2 3 () gy<n — (21)tez € lo with z, = 0 for [t] > n. Note that ensures that
the realizations of the spectral tail process a.s. belong to [, (see above or Remark 2.3 of
JanBen| (2019)).

The RS-transformation was introduced in Definition 2.2.4] as a transformation of the
random variable (©;);ez, where only equality in distribution was required. However, the
RS-transformation can also be applied directly to the distribution without changing the
meaning. To this end, we define the RS-transformation Q7 of a probability measure Q

on l, by

n=g B () Jow

kez (e

for all A € B(l,), where the argument in the integral is 0 if ||z||, = 0.

The following lemma shows that RS-transformed measures are invariant under the RS-
transformation. The application of the RS-transformation is thus a projection of proba-
bility measures on [, on the subset of RS-invariant probability measures, which is the set
of admissible distributions for a spectral tail process. As shown in the next lemma, this

is a projection in the algebraic sense p o p = p for some map p.
Lemma 5.1.1. For all probability measures Q on l, it holds (QF%)S = QF5.

The distribution of a spectral tail process satisfies the TCF, which under condition (SC)
is equivalent to the fact that the distribution is invariant under the RS-transformation.
Conversely, each measure in the set of RS-invariant probability measures on [, which
satisfies the condition (SC) is the distribution of a spectral tail process. This is because
each process satisfying the TCF is the spectral tail process of some max stable time series,
see |JanBen| (2019), Theorem 3.2, or Planini¢ and Soulier| (2018]), Theorem 5.1. Thus, an
estimated distribution which is invariant under the RS-transformation is automatically
the distribution of some spectral tail process. Now, a reasonable and desirable goal is
that the estimated measure is invariant under the RS-transformation, so that it satisfies
the crucial property of a distribution of some spectral tail process.

The estimation idea is to take an empirical version of the probability measure P(®)z and
apply the RS-transformation to it. According to the previous lemma, this ensures that
the estimated measure is invariant under the RS-transformation and thereby a random
variable with this estimated distribution satisfies the TCF. With this projection we make
use of the whole structure given by the TCF and ensure that the estimated object has all

essential properties of the distribution of a spectral tail process.



5.1. Motivation and construction 141

The idea to project some initial estimator on a subset of admissible quantities was already
used in the literature. A projection estimator is defined most commonly as best approx-
imation of an initial estimator w.r.t. some norm, see e.g. [Fils-Villetard et al. (2008) or
Mammen et al. (2001). However, we define the projection based estimator by ensuring
that the transformation induces only a random shift in time and scale.

The empirical counterpart of P®ii<sn given the observations X;_, ,..., X4, , results
from Definition and can be defined as

o 1

2?21 ]l{HXt”>U } ;5 Xt+s/||XtH IL{Is|<sn}) ]l{”Xt”>Un}7

where s,, n € N, is an intermediary sequence (i.e s, — oo and s, = o(n)) and the
Dirac-measure with point mass 1 in z € [, is denoted by ¢§,. The standardization in
the denominator ensures that the estimator itself is a probability measure. This is more
general representation for the forward estimator as considered in in . Note that we
trimmed (©;);ez to finite length 2s,,+1, since we only have finitely many observations. The
constant s,, determines the length of the time interval for which © is estimated. The condi-
tion s, = o(n) is important, since one cannot expect a good estimator for POt <nt2sn+1
based on observations Xj s, ..., X,1s,, since e.g. for the distribution of ©,,,95 11 the
estimation would only be based on a single pair of observations (X;_s,, Xn1s,)-

For all ¢ € {1,...,n} the numerator in the Dirac-measure in P:? is set to 0 outside of
{t — sp,....,t +s,}. At first glance this is a somewhat arbitrary choice, however there are
two reasons for this definition: First, we only estimate the distribution P(®9)-sn<t<en ie.
the remaining observations are not important for this estimation problem. Second, this
choice ensures that the summands for ¢ = 1 and ¢ = 2s,, + 2 do not depend on any shared
observations. This is important for the technical analysis with sliding blocks methods
which will be used below.

Application of the RS-transformation to P:? yields for all Borel sets A in [,

Z/ ”ZkH ((ﬁ:ﬁ)s@)]ﬁ@”(d'z)

A K[

X h
1 TR j<any 1° 1 T Mls+hl<on}
Zimr | L) Tnez e Al (5
”(thu {\k|<sn}) e 1T Lini<antl / sez
ke
i1 Lgix > un)

n (1 [ Xeanll* g (Xt+s+h1{|s+h\§5n})
Zt:l( UXl>n) 2 fhi<s, > ko IXerall A Xt rall sez

e Lyixsuny

This results in the estimator for the distribution P®)ri<sn as

PA@)RS o 1

n

Y L
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Sn X «
X Z (]1{xt||>un} ) [s:4] 0/x ) : (5.1.3)

h=—sp, k*—sn ||Xt+k|| ( HXtJth IL{|h+s|<5n}> ez

We will call this estimator a projection based estimator, due to its derivation. By con-
struction, this measure fulfills all essential structural properties of a spectral tail process
and is itself the distribution of some spectral tail process.

One important feature of this projection based estimator is that non-extreme observations,
i.e. observations X; with || X¢|| < u,, have an impact on the estimation. This makes the
asymptotic analysis a bit more challenging. The idea that non-extreme observations
should have an impact on estimators for extreme parts of a time series already occurred
in the literature, e.g. in Sun and Samorodnitsky| (2019)). In the construction here, the
non-extreme observations occur naturally by the RS-projection in the derivation.

From the estimator for the whole distribution, an estimator for special probabilities for
a marginal distribution of the spectral tail process can be derived. For this purpose, the
estimated measure P:?R or the appearing Dirac measures, respectively, are evaluated at

the corresponding set. This way we obtain the following projection based estimator p,, 4
for P(0; € A), for a Borel set A € B(R?) and for some i € Z:

~ RS
ﬁmA L= Pr(? (@z € A)

1 on | Xgn ||
R T Z]l{nxtum} >
= t

[Sun} 123 e Dy |, 9 |

X (]1A ( Kot )11{,161{”71.} + ﬂA(O)ﬂ{heHcQ, (5.1.4)
XKool

where H,,; :== {(—$,— 1)V (=5n), .-, (80 —1) A s, } and Hgi = {—8n,...,80} \ Hni. The
set H,% equals {s, —i+1,...,s,} for i >0, {—s,,...,—s, —i— 1} for i <0, and is the
empty set for ¢ = 0. Here, |i| < s, is a necessary restriction because the estimator P:?RS
estimates only the distribution of (©¢)<s,-

For this estimator p, 4 and the analysis of its asymptotics, we assume the index « of the
regular variation to be known. The asymptotic normality of this estimator will be shown
in Section and the uniform asymptotic normality for different sets A in Section [5.2.2]
In general « is unknown, so it must be replaced by a suitable estimator. One possible

estimator is the Hill type estimator

4 2=t L{xil|>un)
Yty Jog (| Xl /wn) Ly x> uny

(5.1.5)

and we denote the projection based estimator with estimated a by

- 1 ol | Xitnl|®
Pra = Sy Z]l{nxtum} >
w1 Lgx,

I>un} 1=1 e s [ Xk

Qn
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X (nA(Xt+h+" )Meﬂn,i} + 11A(0)11{h€Hc_}). (5.1.6)
[ Xetnl

The asymptotic normality of this estimator is established in Section|5.3. The replacement

of a with &, makes the asymptotic analysis much more challenging and has an impact

on the asymptotic distribution of the suitably standardized estimation error.

The projection based estimator P;‘?RS in for the distribution P(®9)ri<s allows not

only the derivation of estimators for P(0; € A) for some single i € Z. It also allows

the construction of estimators for probabilities of events affected by multiple time points

i1, ..., ing € Z, M € N. Such a generalization is considered in Section [5.4]

The finite sample performance of this estimator is considered in a simulation study pre-

sented in Section We will show that the projection based estimator not only has the

advantage that the estimated distribution is itself the distribution of some spectral tail

process, but we will also demonstrate that this estimator performs reasonably well in the

simulations.

5.2 Asymptotic behavior

The aim of the next two sections is the development of the uniform asymptotic normality
of (Pn.a) aea and (Pn.a) aca for some family A € B(R?), where B(R?) denotes the Borel sets
of R?. We will start with the asymptotic normality of the estimator (P, 4)aec4 With known
a. For this, we start with the proof of the finite dimensional marginal distributions (fidis)
convergence for the empirical process associated to the suitable standardized estimator

Dn,a before we continue with the process convergence.

5.2.1 Asymptotic behavior of the fidis of the estimator

Most common extreme value statistics depend only on extreme observations of a time
series. However, due to the construction of the estimator p, 4, even non-extreme ob-
servations, i.e. observations X; with || X;|| < u,, are included in the estimator if an
observation in the neighborhood is extreme. One has to take care of this feature for the
asymptotic analysis and non extreme observations may not simply be set to 0. Moreover,
the numerator of the estimator p, 4 is a sliding blocks sum. Both properties make the
asymptotic analysis challenging and special tools must be used. Here we will apply the
theory developed in Section [3.2] The setting of the existing literature is not suitable for
this asymptotic analysis.

For the analysis of the asymptotics, a few conditions will be stated in the course of this
section which will carry the leading letter (P) for orientation.

Since we want to estimate the spectral tail process, we assume regular variation of the
time series (X;);ez. For the application of the sliding blocks limit theorem (Theorem

3.2.1)), some basic assumptions on occurring sequences and on the mixing behavior of the
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time series (X;);ez are necessary. For the rest of this section we fix some sequence s, € N
and u, > 0, n € N and thereby v, := P(||Xo|| > u,). The assumptions on the sequences

are summarized by condition (P0):

(PR) (X})ez is a regularly varying time series with index «, tail process Y = (Y;)iez

and spectral tail process © = (Oy)cz.

(PO) (i) There exist sequences ry,,1,,s, € N, n € N, such that s, < [, = o(r,),
Sp = 00, T, = 0o(y/nvy,), nu, — 00, Ty, — 0.

X
Nyln

(ii) The time series (X;);ez satisfies the S-mixing condition (n/r,) — 0.

In particular, one has r,, = o(n). Here, the S-mixing coefficient is defined in with
the triangular scheme (X;/u,)1<t<, for all n € N.
Note that the S-mixing condition is satisfied for all sequences I}, with [,, <1/, = o(r,) if
l,, satisfies the assumptions in (P0). Hence, w.l.o.g. we may assume that, for any fixed
k €N, Bni,—ks, = o(rn/n) holds. To this end, note that if (P0) is satisfied for [,,, then
it is satisfied for I}, := [,, + ks, for which B,y _rs, = Bny, = o(rn/n) holds, i.e. we can
always switch to the sequence l/,. The S-mixing condition ensures that in the definition
of the numerator of p,, 4 the summands whose indexes differ by at least [,, — s,, are almost
independent.
Denote for this whole chapter

Xt = Xi/up

and simplify the notation by defining the blocks

Wn,t = ((Xn,t+h)\h\§sn)'

Define for some Borel set A the function g4 : {, — [0,1] by

[[yn | Yn+i
9a((yn)nez) = Lol>1) 2 ( . )

hez > kez ||yk|| ||?JhH

which obviously satisfies 0 < g4 < 1. In particular, one has gra((yn)rez) = Lyijyo>13-

Using this function we define the statistic
Toa =Y ga((Xnsn)ni<s,) ZQA (5.2.1)
=1

for all A in some family of sets A and for A = R%. Thus, inserting this function in the
definition of p,, 4 in (5.1.4]) yields

Z?:l gA(Wn,t) _ Tn,A
Z?:l JRrd (Wn,t) Tn,Rd

ﬁn,A -

Recall the usual embedding of (y;)1<s € (R?)?*! in [, by defining 3, := 0 for |t| > s.
|tI<
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Hence, to determine the asymptotics of the estimator p,, 4, we will first need the asymp-
totics of T;, 4 for A € A. Since the denominator of p, 4 equals T} g« we will always
assume R? € A. Using the asymptotic behavior for the suitable standardized statistic
T, 4 one can derive the asymptotic behavior of the suitable standardized estimators p,, 4
by a continuous mapping argument.
The asymptotic normality of the standardized statistic 7}, 4 will be derived with the
theory from Section [3.2] in particular Theorem [3.2.1] The empirical process associated to
the statistic 7, 4 for which this theorem can make a statement is called (Z,,(A))aea and
defined by
1
Zn(A) = ——= (T4 — E[T,,4])

/NU,

= (S aat¥a) = Blaao).

To establish the convergence of the fidis of (Z,(A))aca to a centered Gaussian process,
three additional conditions will be used. The first condition (PP) is comparable to con-
dition (#P) in Section and is of the same type as condition (C) from |Drees et al.
(2015). It ensures that extreme observations are sufficiently independent for large lags
and controls the cluster size of extreme events, i.e. how many extreme observations occur
subsequently in time. In particular, we will show that it implies a bound on the second
moment of the cluster size. This condition only refers to extremal dependency, in contrast
to the S-mixing assumption in (P0), which is weaker (and not sufficient for our results),
but restricts the whole time series. Condition (PT) also controls the cluster size, it en-
ables us to truncate clusters to finite lengths in our asymptotic analysis. The condition
(PC) is a continuity condition that ensures that functions considered later on are PY-a.s.
continuous. This condition guarantees that p4 := P(0; € A) can be calculated as a limit

using the definition of the spectral tail process.

(PP) For all n € N, for all k € {1,...,r,} and for all ¢ € (0, 1] there exist
ene(k) = P ([|Xkl] > unc [ | Xoll > unc),

such that lim, e D57 €ne(k) = 202 limy, o0 €n.c(k) < 00. Denote e, (k) = e,,.1(k)

as shorthand.

(PT) lim limsup E S m<thi<sn | Xnti 1oL gx,1

m=00  p—o00 E|h|gsn ||Xh+j||a
and all j € Z.

|<€un} ’ | Xo|| > un} = 0 for some £ > 0

(PC) P(©, € 0A) =0 for all A € A.

If condition (PT) is satisfied for some & > 0, it obviously holds also for all 0 < & < &,
since the use of € instead of ¢ only reduces the indicator in the expectation. Therefore, if

(PT) holds, one can assume w.l.o.g. that it holds for some £ € (0, 1).
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These conditions in particular ensure that our statistic (nwv,) 'T, 4 is asymptotically

unbiased. This is a first desirable feature of the statistic.

Proposition 5.2.1. Suppose (PR), (P0), (PT) and (PC) hold. Then

1
WE [Thal = ElgaWho) | | Xoll > un] — P(©; € A). (5.2.2)
Before we prove the asymptotic normality of the fidis of (Z,(A))ac4, we state some useful
lemmas concerning these conditions. The first lemma states that Condition (PP) implies

the anti-clustering condition (AC), see ([2.1.2)), which will be used in the subsequent proofs.

Lemma 5.2.2. Suppose conditions (PR) and (PP) are satisfied. Then the anti-clustering
condition (AC) is satisfied for all ¢ € (0,00).

Basrak and Segers (2009), Proposition 4.2, have shown that the anti-clustering condition
(AC) (or (2.1.2))) in particular implies the summability condition (SC). There, another
sequence u,, was used, but the proof remains unchanged (this holds also true for the proofs
of [Segers| (2005)), Section 2, which are used there). Thus, the general assumption (SC),
needed to define the RS-transformation, holds if (PR), (P0) (i) and (PP) are satisfied.

While Condition (PC) is originally stated in a way that seems quite natural for estimating
the distribution of ©;, a reformulation in terms of the tail process will be more useful in

the proofs.

Lemma 5.2.3. Suppose (©y)ez is a spectral tail process with corresponding tail process
(Yy)tez. Then, condition (PC) is satisfied if and only if

Vigi
P <3t€Z: ”;j” € 9A, Y| > 0) =0 VAc A
t

A crucial part for the application of Theorem [3.2.1] which will be used in the proofs of
the asymptotic normality, is the verification of condition (C) - the convergence of the
standardized covariance. To start the analysis of the asymptotic behavior of (Z,,(A)) aca,
this limit behavior of the covariance function is considered in the next lemma. In partic-
ular, the limit value of the covariances can be expressed by the tail process (Y;)iez or the

spectral tail process (0;);cz and a.

Lemma 5.2.4. Suppose the conditions (PR), (P0), (PP), (PT) and (PC) are satisfied.
Then,

C’ov(ZgA nt ZQB >—>C(A B)

TTLTL

for all A, B € A, with

(A, B) : ZE[IL{YII>1}<Z’|||¥|||L (ﬁ@:n))(é”i”a (IIQII)>1

JEZ heZ
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=S lue an (2 (i) (e ()|

JEZ heZ

This limit is finite.
Remark. The covariance in Lemma has two further representations:
o) 5( S () (5 e ()
heZ h l€Z
”ZEP{”W”(Z i () (2 i ()

-eluea(z fof (i)
o sfenr (1 () (2 1 (25)

(5.2.3)

The proof of these representations are given in Section In these representations of
c(A, B), the respective sums outside the expectation are only over N, but the sum inside
the expectations still depends on Z. However, this representation could be advantageous

if the inner sum equals 1 a.s. For example it holds

c(RLRY) =3 E[(161* A D) =1+23 B[(6;]1* A1)] < o0
JEL jEN
In this case, the second representation is often easier to calculate, since the forward tail
process is often easier to calculate than the backward tail process.
The representation ((5.2.3)) is less compact compared to the representation of ¢(A, B) in
Lemma [5.2.4] Most remarkable is, that direct calculations do not obviously lead to this
alternative representation, but the proof of shows the alternative representation

with only a simple change in one argument. o

With these preparations, we next establish the fidis convergence of (Z,,(A)) 4c 4 to the fidis
of some centered Gaussian process. With this proposition we establish the asymptotic

behavior of the suitable standardized statistic 7}, 4, A € A, which was defined in (5.2.1)).

Proposition 5.2.5. Suppose the conditions (PR), (P0), (PP), (PT) and (PC) are sat-
isfied and R € A. Then the fidis of the empirical process (Z,(A))aca converge weakly to

the fidis of a centered Gaussian process (Z(A))aca with covariance function c defined in
Lemma|5.2./).

So far, we have shown the fidi convergence of the standardized statistic 73, 4. This result
suffices to analyze the estimator p,, 4 for finitely many sets A from A. In the next theorem

we state the asymptotic normality of finite families of the standardized estimator p,, 4.
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The proof is basically a continuous mapping argument, using the representation p, 4 =

T4/ T, ra. We define the empirical process (ZP)(A)) aea associated with p, 4 by

ZP(A) = /10, (Pu.a — E [94Wao) | [1Xoll > un]).

Theorem 5.2.6. Suppose the conditions (PR), (P0), (PP), (PT) and (PC) are satisfied.
Denote py == P(©; € A) for A € A. Then, the fidis of ZP) converge weakly to the fidis
of ZP*(A) := Z(A) — paZ(RY), where (Z(A))aca denotes the Gaussian process defined in
Proposition . For A, B € A the covariance of ZP is given by

(A, B)
- ZE[ pout (s~ 3 et (i) (s~ Yo ()|
(5.2.4)
If in addition
Ega(Who) | [|Xo|l > un] — P(©; € A) = 0((m}n)71/2) (5.2.5)

holds for all A € A, then

(Z2(A)) aci = V/10n (Pua — P(©s € A)) e i = (Z7°(A)) aca
weakly for all finite subsets A C A.

Note that due to Proposition condition ((5.2.5)) is only a condition on the rate of

convergence of the bias.

Remark. The calculated covariance has a second representation similar to the second
representatlon of ¢(A, B) as stated in a remark after Lemma . Using the representa-
tion of ¢(A, B), the same calculations as in the proof of Theorem [5.2.6 “ yield the

following representation of ¢?*(A, B):

FAB) = Elﬂ{@ (X H\%”L Q%M T paps

IEZ

|@h||a Onti |@l||a O

+22El||@!|a/\1( E'H@”a s(1)) (pa guena <||@z||>>]‘

jeN

&

Thus, we have proven that the estimator p, 4 centered with P(©; € A) converges to a
Gaussian distribution with rate /nv,, for finite many sets A € A. The convergence rate
\/nv, is the typical rate for extreme value statistics, it is the square root of the expected

number of extreme observations included in the statistics. In particular, this result implies
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that the new projection based estimator is consistent for P(©, € A).

However, to estimate P(©; € A) for a larger family of sets A, we need uniform conver-
gence over a larger (infinite) index set A. In particular, if one wants to estimate the
whole distribution of ©;, such a larger index set is necessary. The process convergence is

considered in the next section.

5.2.2 Uniform convergence of the standardized estimator

In the following, the uniform asymptotic behavior of (P, 4)aca over some family of Borel
sets A C B(R?) in R? shall be determined. To this end, we want to consider the
uniform process convergence of the empirical processes (Z,(A))aca associated to T}, 4
and (ZP°(A))aca associated to p, 4, respectively. Again, we start with the analysis for
(Zn(A)) aca and conclude the uniform process convergence of (ZP°(A))ac4 using the same
continuous mapping arguments as before.

For uniform process convergence, we have to show fidis convergence and either asymptotic
tightness or asymptotic equicontinuity of (Z,,(A))aca. The fidis convergence was already
established in the previous section. We will consider asymptotic tightness and, basically,
the uniform convergence holds, if the family A is not too complex, i.e. we have to restrict
the family A.

Here, we assume that A can be indexed by a unit cube of arbitrary dimension ¢ € N in a
suitable way. These assumptions are summarized in the following conditions (PA) (i)-(vii).
They will enable us to apply suitable brackets for the bracketing entropy (cf. condition
(D2)). Note that we use the vector notation ¢t = (t1,....t5) < (t1,...,tq) =t € R? as
componentwise inequality, i.e. t; <t; forall 1 <j <dandt= (t1,...,14) < (t1,....t1) =1
if and only if t; < ¢; for all j € {1,...,1} and tx < t; for some k € {1,...,1}, ie. ¢ <t if
and only if t <t and t # t.

(PA) For some ¢ € N, there exists a map [0,1]? — A, ¢ — A; such that

(i) A = {At € [0,1]7}, Aq,.1) = RY and Ay, = 0 if t; = 0 for some
I<j<g
(ii) for all 1 < j,k < ¢, and all s;,¢; € [0,1], (I € {1,...,q} \ {j}) the mapping

te = Aty \ Aga,n, is non-decreasing on [0, 1] w.r.t. inclusion;

tj—1,85,tj+1,-5tq)

(iii) the processes (Zfil gAt(Wn’i)>t€[0 1)a

(iv) P(©; € 0A;) =0 for all t € [0,1 + ¢]? for some ¢ > 0 where A; = Usep,r) As
and Ay := Ay for t &€ [0,1]%

(v) P(©i € Nsea Asm \ Ayw) = 0 for all ¢ € [0,1) and 1 < k < ¢ where
t®) = (1,...,1,t,1,...,1) with ¢ in the k-th coordinate;

(vi) P([|Xoll >0, Xi/[| Xoll € Nseqt1] Asim\Ayw) = 0forallt € [0,1) and 1 < k < g;
(vii) there exists w € [0, 1] such that 0 € A, \ Uscy As-

are separable;
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In particular, condition (PA) (ii) implies that the map ¢ +— A; is non-decreasing w.r.t.

inclusion in each coordinate. This will be an important argument below.

Example. The archetypical example for which condition (PA) is satisfied, provided
the marginal distributions of ©; are continuous, is A = {(—o0,t] | t € R} U {0, R?}.
To see this, define Ay, ;) == XL (=00, w(t;)] N R? for some continuous, increasing
mapping w : [0,1] — [—o0,00] with w(0) = —oo and w(l) = oco. Then, (i), (ii), (iii)
and (vii) are obviously satisfied. Moreover, Nye( 1 Asw \ Ay = 0 for all 1 < k < ¢
and t € [0,1], which is why (v) and (vi) are trivially fulfilled. Part (iv) corresponds
to P(31 < j < q:0;; =t;) =0 for all t € R, which follows, if ©; has continuous
marginal distributions. In fact, by this choice of A, condition (PA) (iv) is equivalent to
the assumption that the marginal distribution of ©; are continuous. The same holds if A
is a continuum with respect to the Lebesgue measure A, i.e. if A(A4A;\As) — 0 for s 1 ¢.

Indeed, condition (PA) covers almost all natural finite-dimensional families of sets if the
distributions of ©; and X; /|| Xo|| are sufficiently smooth. o

Using the condition (PA), in the next proposition we show the process convergence of
(Zn(A)) sea.

Proposition 5.2.7. Suppose the conditions (PR), (P0), (PP), (PT), (PC) and (PA) are
satisfied. Then the process (Z,(A))aca converges weakly to a centered Gaussian process

(Z(A)) aca with covariance function ¢ as given in Lemma|5.2.4}

The proof of this proposition establishes asymptotic tightness using some bracketing con-
ditions. Alternatively to this approach, one could establish the process convergence of
(Zn(A)) aca in the space of bounded functions indexed by A (equipped with the supre-
mum norm) relatively easily by using Vapnik-Chervonenkis (VC) theory if the family of
sets A under consideration is linearly ordered w.r.t. inclusion. In this case one can weaken
condition (PA) considerably and the proof of process convergence simplifies. For d = 1
one can determine the whole distribution of ©; by some linearly ordered index set. How-
ever, this assumption on A is too restrictive if multivariate data is observed, i.e. if d > 1,
which is why we introduced the more complex but also more general condition (PA). Still,
in Corollary the special case of linearly ordered sets is considered.

In case that A is linearly ordered, one has ¢ = 1 in condition (PA) and part (ii) is trivially
fulfilled and the statement of the previous theorem remains true, if one omits parts (vi)
and (vii) of (PA). In fact, with ¢ = 1 condition (PA) (ii) is equivalent to the assumption
of linearly ordered A.

Example. For d =1, A = {(—o0,z| | € R} is one example of a linearly ordered family.
In this special case (P(O; € A))aeca determines the whole distribution of ©;.

Another example for linearly ordered sets in RY is A = {B,(y)|r € Rt}, where we
define the ball with radius r around y with respect to the norm || - || as B.(y) =
{x eERY: ||z —y| < r}. However, for d > 1 the assumption that A is linearly ordered is
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quite restrictive. o

Corollary 5.2.8. Suppose the conditions (PR), (P0), (PP), (PT) and (PC) are satisfied.
Suppose A is linearly ordered and includes O and R?. In addition, assume conditions (PA)
(ii1),(iv) and (v). Then the process (Z,(A))aeca converges weakly to centered Gaussian
process (Z(A)) aca with covariance function ¢ as given in Lemma m

So far, we have completed the investigation of the asymptotic behavior of the statistics
(Th,4) aca- Now we derive the uniform asymptotic normality of p, 4, i.e. the process
convergence of (ZF°(A)) 4e4. Only one additional assumption is needed in order to control
the bias of Py, a:

(PBr)
1

—1/2
ilég nTJnE T4l — P(©; € A)‘ = o((m}n) / )
Due to Proposition [5.2.1} the difference on the left hand side of (PBr) converges to 0 as
n — oo and (nv,)"'T, 4 is asymptotically unbiased for P(©; € A). The condition (PBr)
imposes only a condition on the rate and uniformness of this convergence. In other words:
nv, has to increase sufficiently slowly, i.e. by this condition v,, is not allowed to decrease
too slowly, i.e. u, has to increase fast enough.

The next theorem states the asymptotic behavior of the projection based estimator p, 4.

The covariance of the limit distribution depends on the spectral tail process and on the

index of the regular variation a.
Theorem 5.2.9. Suppose the conditions (PR), (P0), (PP), (PT), (PC), (PA) and (PBr)
are satisfied. Then, with ps == P(0©; € A), A € A, the weak convergence

(Zf;b(A))AEA = (V1 (Pn,a — PA)) sca = (Zpb(A)>AeA

holds for the centered Gaussian process ZP* defined by ZP°(A) := Z(A) — paZ(R?), where
(Z(A)) aca ts the limit process from Pmposz’tion the covariance structure of ZP is
given in (5.2.4]).

Again we have proved the uniform asymptotic normality of p,, 4 with the typical (extreme
value) convergence rate /nuy,.

One drawback of this central limit theorem for practical applications with unknown spec-
tral tail process is that the covariance is a complex expression including infinite sums and
depending on the unknown spectral tail process. This makes the practical construction of
confidence intervals challenging. One way out would be the estimation of the asymptotic
variance with bootstrap techniques. Two techniques were proposed by Davis et al.| (2018)
for a similar problem, a stationary bootstrap as in [Davis et al. (2012)) and a multiplier

block bootstrap as in Drees (2015). However, these methods are not directly applicable
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and have to be adapted for the sliding blocks setting used here. In this thesis we will not
go further into this problem - it remains an open research question.

In practice, when calculating p,, 4, one often has to use data driven thresholds #,, instead
of a deterministic threshold u,. This does not fit to the limit theory developed in the
previous theorem. However, with similar methods as in Section one can prove that
the limit distribution of such a modified estimator with suitable random thresholds #,, is
the same as in the previous theorem. This is shown in detail in the Supplemental material,
Section 15, of Drees et al.| (2021)).

At this point, we have completed the asymptotic analysis of the projection based estima-
tor p, 4 with known a. Before we continue with the estimator ﬁn 4 with unknown and
estimated a, we want to consider one special case where the asymptotic variance equals
0.

Covariances for a deterministic shape

We consider the special case of a deterministic shape of the spectral tail process (O;);ez.
The meaning of the shape can be explained as follows: denote by (O;):cz the time-shifted
and rescaled process (0;);cz such that the maximal norm 1 occurs the first time at time
point 0, i.e. 1 = ||©}]] > ||O;|| for all t € Z and ||OF|| < 1 for ¢ < 0. With the random
variable T* := inf{t € Z : ||©,|| = sup;c ||©:||} we have

O+ 14
O =
O

for all ¢ € Z. This process (©7);cz describes the shape of (0;)ic7 (and, therefore, is called
the shape of (©;)icz), in the sense that modulo some random time-shift and rescaling
it has the same form as (©;)icz. This means, that given 7 and (O], ;) are known
for one t € 7Z, then the whole process (O7);cz is determined by (©,);cz and vice versa,
i.e. if the random shift and rescaling is known, then one process determines the other
process. From Definition of the RS-transformation and by the definition of (©}):cz
it directly follows, that (0©;):cz and (O;);ez have the same RS-transformation (since the
normalization and shift in ©F cancel out).

The expression > ,cz([|On]1%/1O11)15(On1i/||Onl]) in ¢ in (5.2.4) obviously only de-
pends on the shape (0})cz, i.e.

>_IeulI*/1012) L5 (Onsi/1Onll) = >_(IOF/107[10)15(05.4./[O:1)-

heZ heZ

Due to the RS-transformation and Theorem [2.2.5] we obtain

[9u . (Oniy] ) i
El% [EIR BB(H@hm = E[15(6:)] = P(6; € B) = ps.
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A deterministic shape means, that (©7):cz is deterministic. In particular if (©})iez is
deterministic, then ¥ ,cz(|On]1%/11O1)15(Onri/||Onl]) = pp a.s. for all B C R? and

therefore
cpb(A, B)=0

for all sets A, B € A. For deterministic shapes (0;);cz of the spectral tail process the
projection based estimator p, 4 has the asymptotic variance 0. In this case the new
estimator considered here has a smaller asymptotic variance and is more efficient than
the known forward and backward estimators ﬁfi 4 and ﬁfl 4 from the literature.

One example for such a deterministic shape is the spectral tail process of an AR(1) time
series (Xy)iez, with X311 = aX; + €, a € (0,1) and iid innovations ¢; with regularly
varying distribution with index a > 0, e.g. |g| ~ Par(«). In this case the spectral
tail process is given by OF = a'0f, t > 0 and ©Ff = 0, t < 0, which obviously has a
deterministic shape (cf. [Janssen and Segers| (2014)), Example 6.1).

Further consideration of the asymptotic variance and a comparison with the asymptotic
variances of ﬁfh 4 and ]527 4 will follow in Section m Next, we consider the asymptotic

behavior of ﬁn 4 with estimated «.

5.3 Estimator with unknown index of regular varia-
tion

So far we considered the projection based estimator p,, 4 assuming that we know the index
a of regular variation. Usually this index « is unknown and has to be estimated itself.

One possible choice for the estimator is the Hill-type estimator in ((5.1.5))

A i Lyxi>un
Yoty Jog (| Xl /wn) Ly x> un}

as introduced before. Recall the definition of ﬁn 4 in (5.1.6))

A 1 - = (| X ]|
Pn,A = ™ 1 X Un, Sn a
ST Yo Igxisuny D S Xl

[>un} t=1 h=—sn

Xithyi > )
x (1 1 A+ 1400)1 cqyl.
( ! (”XtJth tettniy + 1aO) bineng )

With this estimator &, we will analyze the asymptotic behavior of the projection based
estimator f)n A We will conclude the asymptotic behavior of ﬁn 4 from that of p, 4
and &, using a Taylor argument. For this purpose the asymptotic behavior of &, as
well as the joint asymptotic behavior of the denominator of &, and 7, 4 are impor-

tant ingredients. For the analysis of the denominator of &, we define the function
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¢ : lo = R by ¢((zn)nez) = log(||zo ) L{jao>13 = log™ (||zo]|) and a corresponding statistic
Tho = >ty ¢(W,) analogously to T,, 4. Moreover, we define the corresponding empirical

process Z,(¢) by

1
Zn = Tho — ElTs]).
(0) = = Ts = BT,
Then, we have &, = T, ga/T, 4, similar to the representation of p, 4 = T5, a/T}, ga-

To analyze the joint asymptotic behavior of T}, , and the statistic 7}, 4, some additional
conditions are required. First, we amend the cluster size condition (PP) to condition
(PP1) which is necessary since ¢ occurring in the definition of &, is unbounded. For the
same reason, a further moment condition is needed to ensure the asymptotic normality
of &,. This moment condition is given in (PM) (i). Moreover, we require the bias of the
Hill type estimator &, to be negligible, this is formalized in (PB,). This bias condition
imposes a rate for the convergence of the bias, which ensures that the bias converges faster

to 0 than the stochastic error (compare this with the previous bias condition (PBy) for
Th.a).

(PP1) For all n € N and for all 1 < k < r, there exists

max (logJr (HXOH>, 1)
Un,

X
X max <logJr (H dl
u

e (k) >F

Y

>a]1{xk||>un}> ‘ [ Xoll > un

n

such that e/ (k) = lim, o €, (k) exists for all £ € N and lim,, . >, e, (k) =
S, el (k) < oo holds.

| Xoll

Unp

)1l > ] = 2| = o((n) ).

(PM) There exists a § > 0 such that the following moment bounds hold for n — occ:

(PB.) ‘E[log(

1/(1+5)
) n X X 1446
<1>Z(E[(log+(W)log+(W)) |rxo|r>un) —o(1);
k=1 n n
i) limsupE[Zhgm|10g(||@h||)|”‘5|l@hll‘“]
m—o0 >iki<m 1Okl ’
log™ (|| Xl /)| X ||
(i) lim limsup E mefhison 198 (IXnl/n)|[X ] 1 X0 > un| = 0.
M=% n—oo Z\k\gsn | X[

Here we denote the positive part of any function f by f* := max(f,0) = fl{s~0y and the
negative part by f~ = max(—f,0) = —fl o
Drees et al.| (2015), Lemma 4.4, showed that under conditions (PR), (P0), (PP1), (PB,)

and (PM) (i) the estimator &, is asymptotically normal:

Vg (G — @) = Z,,
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where Z, is a centered normal distributed random variable with variance specified below
in the proofs.

The moment conditions in (PM) (ii) - (iii) are required to ensure the asymptotic normality
of ﬁn . Both conditions are used for a truncation technique which will be applied in the
proofs below to cut off some infinite sums. Condition (PM) (ii) is needed because of the
unboundedness of the logarithm, while (PM) (iii) would be an additional assumption even
if the denominator of &, would be the sum over some bounded function. Condition (PM)
(iii) basically restricts the summed norm of non-extreme observations in the surrounding
of some extreme event and it allows for an interchange of the limit for m — oo and
n — oo.

The uniform asymptotic normality of the projection based estimator ﬁn A is stated in the

next theorem.

Theorem 5.3.1. Suppose the conditions (PR), (P0), (PP), (PT), (PC), (PA), (PBr),
(PP1), (PB,) and (PM) are satisfied and, in addition, log(n)* = o (nv,). Then the joint

convergence

((Zn(A)) aea; Zn(9)) 2> ((Z(A)) aca, Z(9))

n—oo

holds weakly for a centered Gaussian process ((Z(A))aea, Z(¢)) with covariances given by
Cov(Z(A),Z(B)) =c(A,B), A, B € A, given in Lemma and Cov(Z(A), Z(¢)) and
Var(Z(¢)) given below in Lemma[5.7.7 part (i) and (ii), respectively.

Moreover, the weak convergence

N w b,
(V Wn (p”’A - pA))AeA = (Zp <A))A6A
holds for the centered Gaussian process ZP>* defined by
ZP(A) i= Z(A) — (pa — ada) Z(R?) — daa®Z(9)
for all A € A, with ps := P(0; € A) and

da = —E[ X log(|0uDIx*0]:714(01)].

kEZ

Remark. The covariance of the limit process (ZP"%(A))ac4 in Theorem can be
calculated more explicitly. The single covariances Cov(Z(A), Z(B)), Cov(Z(A), Z(¢))
and Var(Z(¢)), A, B € A, of the components in Z?»®(A) are given in Lemma and
Lemma [5.7.71 This leads to the covariance of Z7b:

Cov(ZP**(A), ZP**(B)) (5.3.1)
= Cov(Z(A) = (pa — ada) Z(R?) — a*daZ(¢),
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Z(B) — (pp — adp) Z(R?) — a*dpZ(9))
= Cov(Z(A), Z(B)) — (ps — adp)Cov(Z(A), Z(R?))
— a?dCov(Z(A), Z($)) — (pa — ads)Cov(Z(B), Z(RY))
+ (pa — ady)(pp — adp)Cov(Z(RY), Z(R?))
+ (pa — ada)a?dgCov(Z(RY), Z(¢))
—a?d,Cov(Z(B), Z(¢)) + (ps — adg)a?daCov(Z(RY), Z ()
+ atdadgVar(Z(9)).

o

Condition (PM) (ii) is equivalent to the same condition with the tail process instead of
(O¢)tez (see next lemma). This is also the way how it is used in the proofs. However, it
seems natural to state the conditions for an estimation problem of P(©; € A) in terms of
the spectral tail process.

The condition (PM) (ii) is just as needed in the proof and cannot be weakened signif-
icantly. The verification of condition (PM) (ii) could be challenging and sometimes it
could be much easier to check a stronger condition without fractions. One such stronger
moment condition is given by (PM1), for which the denominator is basically eliminated
by bounding it from below with 1. We will verify this condition instead of (PM) (ii) in

Section [5.5] for solutions to stochastic recurrence equations.

(PM1) There exists an 6 > 0 such that the following moment bounds hold for n — oco:

(i) _Z El(log_ <W)>M(”i’;“>a 1Xo|l > un| = O(1).

Lemma 5.3.2. (i) Condition (PM) (ii) is equivalent to

> n<m | Tog ([[Ya I 1Y5 ]|
> jk<m |1 Ya[*

limsup £ [ < 00. (5.3.2)

m— 00

(ii) Conditions (PM1) (i) and (ii) imply Condition (PM) (ii).

Condition (PM1) (ii) is in particular satisfied if

o | Xnl[\
> El() 141, <}

[ Xoll > u,
h=—snp Un

=0(1)

for some 7y € (0,a). This holds true, since the function x — log™ (z)z? is bounded on
[0,1] for all ¢ > 0.

Note that condition (PM1) (i) includes a supremum over h € {—s,, ..., s, }, while (PM)
(i) sums only over positive h € {1,...,r,}, which is why (PM1) (i) is a different type of
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assumption. It is often harder to check such moment bound conditions for the backward
process (i.e. for h < 0) than for the forward process as in (PM) (i). The condition (PM1)
(i) with a supremum over h € {1, ..., s,} would be implied by (PM) (i).

This concludes the consideration of asymptotic normality of p, 4 and ﬁn 4 and the dis-
cussion of the conditions. In particular, under these conditions estimators are consistent
with the true probabilities. In the next part we generalize the method of the projection

based estimator for multiple time points.

5.4 Estimator for multiple time points

In Equation the projection based estimator p, 4 for P(©; € A) for some fixed
i € 7 and some Borel set A C R? was introduced. In the previous sections this estimator
was analyzed for a single time point ¢ € Z. However, the motivation in Section
allows for the construction of a projection based estimator for the whole distribution of
(©¢)pt/<s,- This estimator for the measure is stated in . In particular, this projection
based estimator can be used to define an estimator for multiple time points similar to the
estimator of P(©; € A) considered before. Denote a finite number of time points by
iy <y < ...<iy €7, M €N, with |ij| <s, for j =1,..., M.

The projection based estimator for the probability P((0;,,...,0;,,) € A), with some Borel
set A C (RY)M is given by inserting the specific set {z € l,|(zi;, .-, zi,,) € A} in (5.1.3)).
This leads to

~ RS
P =P ({2 € lal(zi, . 20,,) € A})
1

i Lyixsuny

n (sn—ip)Asn HX Ha X ‘ X )
Z( {1Xel1>un} 2 S I Xl N Xl [ X |

t=1 h=(—sn—1i1)V—5n

[ Xen ]|
+ 14(0, ..., 0)
he{—sn,. an ir—1} Zk—fsn | X ||
U{sn—i1+1,...,5n}

J‘/Iz_:l (S"_zij:)/\Sn ||Xt+h||0‘ ]1 <Xt+h+i1 Xt+h+7'J 0 O)
o2 S Xl el Tl
_ (—=sn—ij)V—sn a
+le S Xl (0,0, i X)))
T bty Vs ks [ Xtk [ Xl [ Xenl]
where (O, oy 0, Xipnpiyn /| X, ...,Xt+h+iM/HXt+hH) is a short notation for the vector

(21, 201) € (RY)™ with 2z = Xyynpi, /|| Xeanl for k> 5+ 1 and 2, = 0 for k < j. The
vector (Xt+h+i1/||Xt+h||,...,Xt+h+ij/HXt+hH,0,...,0) is interpreted analogously. Define
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the function g4 by

Htha ]IA(yh—i-h yh+iM)

9A.M ((yn)nez) = Lyjyo>13 Z vl URREE [ynll

heZ > kez Hkaa

and T%A =301 9am(Why) with W, = (Xi/uy)—s, <t<s,. Then

M
~M Tn,A
pTL,A - TM .

1, (RA)M

The principal idea of this estimator is the same as of the estimator for a single time point in
, the notation is only a bit more complicated due to the multiple time points and the
summands which include some zeros in the indicators. However, with the same techniques
as in the previous sections one can prove the asymptotic normality of this estimator.
Similarly as for a single time point, the summands for A ¢ {(—s, —i1) V —Su, ..., (Sn —
ing) A Sp}, which are the last three lines in the definition of ﬁnj‘/{ 4, are asymptotically
negligible for fixed time points iy, ...,7); and increasing s, — oco. Asymptotically, only
the first two lines of the estimator p)’, are relevant.

As before, in practice « is often unknown and has to be estimated itself. We denote the
corresponding projection based estimator for multiple time points with estimated a by
ﬁﬂ/[ A~ This estimator is defined as p,’,, just replace a by the Hill type estimator &, from
(5.1.5)).

For the statement of asymptotic normality some modified conditions are necessary, which
take into account the multiple time points. The obvious change is that we now consider
Borel sets A C (RY)M.

(PCM) P((©;,...,0;,,) € 0A) =0 for all A € A.
(PAM) For some ¢ € N, there exists a map [0,1]¢ — A C B((RY)M), ¢t — A;, such that

(i) A = {Alt € [0,1]7}, Aq..1) = RHM and Ag,,.4,) = 0 if t; = 0 for some
I<j=<g
(ii) for all 1 < j,k < ¢, and all s;,¢; € [0,1], (I € {1,...,q} \ {j}) the mapping

te = Agy,t) \ A .ty is non-decreasing w.r.t. inclusion on [0, 1};

tyeesli— 1,855t 4150

(iii) The processes (Zf;l ga, 1\4(1/1/}171-))%[0 1 are separable;

(iv) P((©iy,...,0;,,) € 0A;) = 0 for all t € [0,1 + ¢]? for some ¢ > 0 where
Ay = Usepo As and Ay = Ay for ¢ ¢ [0, 1]%

(v) P((©iy, -, Oiy,) € Nseqra) Astr \ Agwy) = 0 for all £ € [0,1) and 1 <k < g;

(vi) P((X, /1 Xoll, -, Xip /1 Xoll) € Nseeay Aswr \ Ay) = 0 for all ¢ € [0,1) and
1<k<gq

(vii) there exists w € [0, 1] such that 0 € A, \ Usey As-
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(PB;M)
L B[] - P(©4, 61, € A)’ — o ((nwa)"2).

nuy,

sup
AeA

Again, the bias assumption is only an assumption on the rate and uniformness of the
convergence, which ensures that the bias converges faster than the stochastic error.

If all sets A € A are Cartesian products of the form A = A; x ... x Ay, condition (PCM)
is implied by P(©;, € 04;) =0 forall j =1,..., M.

All other conditions used to establish asymptotic normality of ﬁm A do not depend on
the time point 7 or the sets A € A and, therefore, remain unchanged. With these new
conditions we can state asymptotic normality of the projection based estimator ]324 4 and

ﬁﬁ/[ 4 for multiple time points with known and estimated «, respectively.

Theorem 5.4.1. Suppose the conditions (PR), (P0), (PP), (PT), (PCM), (PAM) and
(PBrM) are satisfied. Then the weak convergence

(Vron (' = P84, 05,) € 4))) = (27"M(4)) |
€A cA

holds for a centered Gaussian process ZP*M
If, in addition, (PP1), (PB,) and (PM) are met, then the weak convergence

(Viwn (B2l = P(Os, - 01 € D)), = (27%4(4)) |,

holds for a centered Gaussian process ZP»Me.

The covariance of ZP*M can be calculated analogously to the covariance of Z? in (5.2.4)).
For A, B € A it is given by

© || Opti Onii
Cov(ZP*M(A), 2P (B El (19;]|* A1) <p _ 1On ( o +M>>
A Z ad 7 Z el E\en " e
H@lHa <@l+i1 61+iM>)‘|
< (pa= e (e Torl

with pa == P((©y,, ...,0;,,) € A). The covariance of ZP*M: can be calculated analogously
as for ZP»« in (5.3.1]).

As a special case, the previous theorem about ﬁj}f 4 also shows the asymptotic normality
of the estimator for (P(©; € A))i<r for any fixed Borel set A ¢ R? and T € N. To
this end, consider the time points i = =T+ 35 —1, j = 1,..., M := 2T + 1, and the
estimators (pA) 4c 1 for A := {(RY) T+ x A x (RY)T-V |¢| < T}. Then the rest follows
from Theorem Note that A is a finite set such that the condition (PAM) for process
convergence is not needed. (One easily checks in the proofs that (PAM) is only needed if
A contains infinitely many sets.)

This rather simple construction of the estimator for multiple time points is an advantage

of the motivation of the projection-based estimator compared to previous methods. For
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the backward estimator in |Davis et al.| (2018]), which uses the structure of the TCF for one
shift 4, the shift 7 is chosen as the lag for which P(©; < x) should be estimated. This is an
ad-hoc procedure, a priori it is not clear if this is optimal or if it might be more efficient
to use another shift for the application of the TCF to construct the backward estimator,
e.g. a shift smaller than |i|. The applied shift is an implicit parameter in the construction
of the backward estimator. If we consider multiple points in time, it is not clear which
shift should be chosen for the construction of a backward estimator; the smallest, the
largest or something in between or even outside the range of considered lags. Here, the
shift is an additional parameter. For the projection based estimator ﬁfy 4, this problem
does not exist, but the parameter s, appears. However, for the backward estimator the
shift has an influence on the asymptotic variance, s, has no influence on the asymptotic
variance of the projection based estimator. All in all, the concept of the projection-based
estimator is much easier to generalize to multiple time points than the ad-hoc method of
the backward estimator.

This short section demonstrates that the RS-projection method can be used not only
to estimate P(©; € A) for a single time point ¢ € Z, but rather could be easily used
to construct estimators for other probabilities as P((O;,,...,0;,,) € A) for finitely many
multiple time points. The consideration of infinitely many time points and a large family
A would be more involved.

So far we introduced the projection based estimator and proved asymptotic normality of
this estimator under certain conditions. In the next section, we consider an example for

which these conditions could be satisfied for a reasonable class of time series.

5.5 Examples

In this section, we present two examples. The first one deals with the asymptotic covari-
ances and how they could be calculated in a discrete case. With this example we show
that neither our new projection based estimator ﬁn 4 (or P, a in case of known ) nor
the backward estimator ]35’% 4 nor the forward estimator ﬁfh 4 have the uniformly smallest
asymptotic variance. In the second example we consider stationary solutions to stochastic
recurrence equations and we verify the conditions from the previous sections. In partic-
ular, this example demonstrates that all the conditions can be satisfied for a reasonable

class of stochastic processes.

5.5.1 Comparison of asymptotic covariances

We want to compare the efficiency of our new projection based estimator ﬁn A in terms
of asymptotic variance with two known estimators for P(0; € A) from the literature, the
above introduced forward estimator ﬁfl 4 (cf. (5-1.1)) and the backward estimator ﬁf’l A
(cf. (5.1.2)). We denote the backward estimator with estimated a by ﬁ% 4- Due to the
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complex formulas, a comparison of the asymptotic variances in general is not possible.
However, we consider a specific example for the comparison of the covariances, which will
show that neither ﬁl A hor ﬁfL’ 4 hor ﬁfl’ 4 have the uniformly smallest variance.

We consider a relatively simple model, where the shape of the spectral tail process (07 );ez
is a mixture of two deterministic shapes, i.e. (0]);ez can take two different values with
positive probability. For the definition of the shape, see the example on page [152]

Define a real valued time series (Uy)ez by

P(Up=a"',Uy = =1,U; = 0Vt ¢ {0,1}) =p,
P(U[):b,Ul:1,Ut20vt¢{0,1}):1—p

for some (a,b) € (1,00)% and p € [0, 1], the index of regular variation as o = 1 and
(©y)iez = (Uf*)iez as the RS-transformation of (U;)icz (or define the distribution of
(©4)iez as the RS-transformation of (U;)ez, i.e. P®Viez = (PWiez)RS  yegpectively).
Then, (O;)cz is invariant under the RS-transformation (cf. Lemma and therefore
a spectral tail process (cf. Theorem . By the definition of the RS-transformation

(cf. (2.2.5))) one has

P((®0iez € D) = E|1p((@iez)| = E[1o((Uf*)c2)]

Ukl ((Ut+k) )]
—F 1
_%%HU\H ENNTA

- llto] Ui U4 Ut
- () ) * (e
1Uoll + [1U1] 1Uoll /1ez/ — [|Uoll + |UL] 1O/ ez

for all Borel sets D in RY. For the specific choice D = {(y)iez|y-1 = a 1,90 = — 1,9, =
0Vt ¢ {—1,0}}, a direct evaluation of the above discrete expectation yields

P(61=a60=-16,=0% ¢ {~1,0}) = (1-p)-(0+0) +p- (0+ ! )

1+at
_ a —_
“Pa T
Analogously,
1
P(©y=1,0, =—a,0;, =0Vt ¢ {0,1}) =P =P
1
P(©.1=0,00=1,06,=0vt ¢ {-1,0}) = (1 —p)m =:Pps,
b
_ — p1 _ — .

In this example, we want to estimate P(©; € A) for lags i € {—1,0,1} and some sets
A = (z,00) such that P(©; = x) = 0. More precisely, we consider the half lines (e, c0)
and (1 — €,00) for some ¢ > 0 such that e < a™* Ab'and 1 —¢ > a ' Vbt We
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consider the probabilities py := P(©y > ¢) = 1 —py, pp := P(©; > ¢) = py and
po = P(O©_1 > 1 —¢) = p3 and the resulting estimators. In slight abuse of notation, we
set A= B = (g,00) and C' = (1 — ¢,00), where the use of A indicates that i = 0, the use
of B indicates ¢ = 1 and the use of C indicates i = —1.

The asymptotic variance of ﬁn A can be calculated using the representation , which

can be slightly simplified for variances to

Var(ZP*(A)) =Var(Z(A)) — 2(pa — ads)Cov(Z(A), Z(R))
—2a%daCov(Z(A), Z(4)) + (pa — ada)*Var(Z(R))
+2(pa — adp)a?d,Cov(Z(R), Z(¢)) + a*d4Var(Z(¢)),

~

with ((Z(A))aca, Z(¢)) and da given in Theorem [5.3.1} note that we are in the real
valued case d = 1. Applying Lemma and Lemma [5.7.7], the single terms in this
representation can be directly calculated for our example as discrete expectations, since
(O¢)tez vanishes for lag |t| > 1 and the distribution is discrete with just four points of

mass:

var(za)) = £| (el a0 (X e () (Z et (7o)

JEZ heZ

:p1(1—|—Cll)(lia)2—|—2p2(1+a)2—|—2p3+p4(1+ll)),
Var(Z(B —2p3(1ib +p4(1 2)(1_?_17)27

) +
poten - an( i) oo+ )ik
+

Var(Z(R)) = pi (1 + i) 2p2 + 2ps + pa(1 + 2)

Cov(Z(A), Z(R)) = pi (1 + 1)141 + 22 i —+2ps a1+ Z)

Cou(Z(B), Z(R)) = 1-be (1+ 11))1117

Cou(Z(C), Z(R)) = 2ps— i . +p4(1 + 2)1@

Con(z(0),2(#) = B[ 51" A 1)os0,1v 1)+~ a5

_ pl(i + 1)@1 + pal2 + log(a)) < i 4 py(2 -+ log(8)) + pa 1+ i)

+1
Con(2(B), 2(8)) = ps(2 + log(0)) ;< +pa(1+ 3) 57
Con(Z(C), 2(6)) = pollog(®) + 2=~ +m (147 ) g

Cov(Z(R), Z(¢)) = pl(i + 1) + pa(log(a) + 2) + ps(log(b) + 2) + p4(1 + 2)7
Var(2(2)) = a™ 3 B[(1 A [041°)(|loa([€])| + 207

kEZ
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= 1 (tog(a) +2) +2) + pa(4 -+ Tog(a)) + pslog(8) +4) + s (2 + 7 (log(t) +2)),

b
da = —E| X 1og(1,1)16°/16; - 1.4(8))

JET

= —P2 )

B log(a)a log(b)b log(b)) B log(a)a

B (pl R T G T S 1+a
log(b)

Py

log(b)b

140’

dp =

de = —ps

where dy = —polog(a)a/(1 + a) holds, since py = b - p3. From this, one can directly
calculate the asymptotic variance of ﬁm 4 for all three sets A, B, C.

For the calculation of the covariance of the backward estimator ﬁfl 4 with estimated «,
we denote Z(¢5,) from Theorem 3.1 of Davis et al.| (2018) by Z(A). Then, using the
results of Theorem 3.1 and Proposition 6.1 from Davis et al.| (2018), we can calculate the

variance ¢”*(A) of the backward estimator ﬁ,’z 4 by
P(A) = Var(Z(A) — paZ(R) + (a*Z(¢) — aZ(R))e,)
=Var(Z(A)) + (ea +pa)*Var(Z(R)) + A Var(Z(®))
+ 2e4Cou(Z(A), Z(®)) — 2e4(ea + pa)Cov(Z(®), Z(R))
—2(ea +pa)Cov(Z(A), Z(R))

with e4 := E[log(]|0;)1e,ca;] and where (Z, Z(4), Z(R)) is a centered Gaussian process
with covariance given below and by Lemma [5.7.7 For our sets A, B and C' one has

ea = Ellog([[©0])T4(©0)] = (p1 +p2+ps +ps) - 0 =0,
1
ep = Ellog([|0:1[)15(01)] = (p1 + p2 +ps) - 0 + pslog (g) = —palog(b),
e = Ellog([|0-1[)1c(0-1)] = pslog(b).
Since e4 = 0, we do not need to calculate Cov(Z(A), Z(4)). All the remaining single

covariances in the representation of the variance of ﬁ% 4 can be calculated by equation
(6.3) of Davis et al.| (2018) as follows:

>_(19;]1* A1) ( |||(‘9é;r||o|za13(||@(?ii\| )> (”@iH“lB(HSiHm

Var(Z(B)) = El

JEZL
= p3b27
) 1
Var(Z(A)) = ps+2ps +pa(1 + 5),

Var(Z(0) = p(3)"
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Cov(Z(A), Z(R)) = E[

> (1o A 1>(ll@i\!“h(”§0i|y>>]

JEZ .
= 2py + 2p3 —l—p4<1 + 5>’

Cov(Z(B), Z(R)) = 2psb,

Cov(Z(C), Z(R)) = (1 4 1)1

b7
Con(2(8), 2(6) = E| 16,1 A os(le v 1) + o) 1e-1s (15 )]
= p3(log(b) + 2)b,
Cov(Z(C) =pa( 1+ >

From this, one can directly calculate the asymptotic variance ¢»®(A) of p pn A

The asymptotic variance ¢/(A) of the forward estimator pm 4 can be obtained by Davis
et al| (2018), Theorem 3.1. (There, the variance was calculated for sets A = (—o0, ] with
z € R and under suitable conditions,which are all satisfied under our conditions (PR),
(P0), (PP) and (PC). However, the principle is the same for the sets considered here.)

Hence, we can state the variance as

/()= S 80161 4 1) (pa — 1 225 ) — 10

JET

For our concrete sets A, B, C' this can be specified as

c(4) = pl(clb(pA — 1)pa +P?4) +pa((pa = 1)° + palpa — 1)) + 2ps(pa — 1)°
+p4((pA —1)°+ 11)(])14 - 1)2),
! (B) = pl(ip% +pp) +p2(ph +p3) + p3((pB — Dps + pB),

1
—(pc — 1)po>-

1
d(C) =p (a + 1)1% + 2popt + p3(pe(pe — 1) + (po — 1)%) + py (p?; +

Figure shows the variances of ﬁn A, ﬁf% 4 and ﬁj‘l 4 for our sets A, B, and C with
corresponding lags ¢ € {—1,0,1} and the fixed parameters a = 10, b = 2 as a function
of the parameter p € [0,1]. One can observe that there is no uniform smallest variance
for all possible choices of the parameter. In fact, this figure shows that each of the three
estimators can have the largest or smallest asymptotic variance in this model, depending
on the model parameter p (and also a,b) and the probability we want to estimate (i.e.
depending on i and x). For the middle plot, observe that the backward estimator is equal
to the forward estimator for lag 0. Thus, there is no winner who has uniformly smallest
variance and, thereby, non of the three estimators is uniformly most efficient.

If one considers the estimators in the same model with « assumed known as considered
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Figure 5.1: Asymptotic variances of ﬁmA, ]5£A and 1%27,4 with unknown o

Variances of 5n7A (blue solid line), ﬁf;A (red dashed-dotted line) and ]%fl’A (black dashed
line) with parameters a = 10, b = 2 plotted as a function in p € [0,1] for lag i = —1 and
the set C = (1 —e,00) (left), i =0, A= (e,00) (middle) and i =1, B = (¢,00) (right).
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Figure 5.2: Asymptotic variances of Pn A, ﬁiA and ]52714 with known «

Variances of pna (blue solid line), ﬁfL’A (red dashed-dotted line) and pb, , (black dashed
line) with parameters a = 10, b = 2 plotted as a function in p € [0,1] for lag i = —1 and
the set C' = (1 —e,00) (left), i =0, A= (g,00) (middle) and i =1, B = (g,00) (right).

in Section [5.2] then the results remain qualitively unchanged. For the short comparison
between the variance ?*(A) of Py, 4, the variance ¢/ of ﬁg 4 and the variance ¢ of fl, ,
with known «, note that the forward estimator is unaffected, since it does not depend on
a. Thus, ¢/ remains unchanged as in the case of the estimated o as discussed before. For
the calculation of the variances of p, 4 and ﬁl,’h 4 one has simply to replace d4 and e4 by
0 (and likewise set dp, ep, dc and e to 0) in the formulas above. This is in accordance
with Theorem and Theorem 3.1 of Davis et al.| (2018]).

Figure shows the variances of the estimators p,, 4, ﬁflj 4 and ﬁfu 4 with known « for the
selected parameters a = 10 and b = 2 as functions of p € [0, 1] and for our sets (x,00) and
lag i € {—1,0,1}. Again, there is no estimator with uniformly smallest variance for all
possible choices of the parameter. In fact, depending on the parameter p each of the three
estimators p, 4, ]37’; 4 and ﬁf’% 4 can have the smallest or the largest asymptotic variance.
One can observe in Figure[5.2 that for p — 0 or p — 1, the asymptotic variance of the esti-

mator p,, 4 converges to 0. This is because p,, 4 has an advantage over the other estimators
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when the shape of (0])cz has little variation and the shape (U;)i ez is deterministic for
p € {0,1}, see also the example on page m However, the asymptotic variance of ﬁm A
needs not vanish due to the remaining variability of the Hill estimator (cf. Figure .
Even in this simple case of just 4 possible states for the spectral tail process, one can
choose for each estimator the parameters such that it has the smallest asymptotic variance.
This example shows, that in general it cannot be stated whether the new projection based
estimator ]5” A is better or worse than ﬁf; 4 Or ﬁfL 4 in terms of a uniform smallest asymptotic
variance, or even whether one of these three estimators is always better than at least one
of the others.

For more complicated models than those considered, it is in general difficult to calculate
and compare the asymptotic variances of ﬁn A with that of ﬁ,’; 4 Or ]5’7’% 4. However, note
that a comparison of the asymptotic variances ﬁi; 4 Or ]3%7 4 is possible e.g. for Markovian
processes. For such processes ﬁq”% 4 has always a smaller asymptotic variance than ]55 As
see Drees et al.| (2015]), Remark 4.2.

In Section we will study the finite sample performance of the three estimators (with
estimated «), to find out whether one estimator is advantageous even if this can not be

seen in the asymptotic variances.

5.5.2 Stochastic recurrence equations

In this section, we want to consider an example for which we verify the conditions of
the previous theorems about the asymptotic normality of the estimation errors from p, 4
and f)n 4. In particular, this example will show that the conditions can be satisfied by
a reasonable class of time series models. We focus on stationary solutions to stochastic

recurrence equations
Xt - Ctthl + Dt, Vt < Z, (551)

where C; are random d x d-matrices with non-negative entries and D; are [0, 0o)?-valued
random vectors such that (Cy, D;) € [0,00)%*¢ x [0,00)¢, t € Z, are iid.

Such stochastic recurrence equations are often considered in the literature in various
settings, they can be used e.g. to analyze GARCH time series (cf. [Basrak et al.| (2002)),
which are popular models for financial time series. Some other possible applications for
processes which solve a stochastic recurrence equation can be found e.g. in|Vervaat| (1979).
We consider the euclidean norm, i.e. the Ly-norm || - || as vector norm on R%. In addition,
we consider the operator norm ||-||as of ||-|| as matrix norm on R?*¢. The operator norm is
defined by || Al|ar = supy, = [|Az|| and is submultiplicative (i.e. ||A- Bllas < [|Allar]| Bl ar
for A, B € R¥9) as well as compatible with || - || (i.e. ||Az| < ||A|a]|z| for A € RI*?,
z € RY).
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Existence of stationary, regularly varying solutions

Under the following conditions there exists a unique stationary solution to (5.5.1) and

this solution is regularly varying with index «:

(SRE1) (i) The top Lyapunov exponent 7 := inf,en{1/nE[log(||C - - - Ci||ar)]} < 0 is

negative;
(i) there exists an s > 0 such that A(s) := limy, o (E[||Cy -+ - C1||5,) Y™ € (1, 00);

(iii) E[||C1|13 logt (|IC1Iar)] < oo, E[||D1]]*] < oo with o > 0 denoting the unique

solution to h(a) = 1;
(iv) P(D1=0) <1, P(((C1)jk)1<k<a #O0V1 < j <d) =1,

(v) the additive subgroup generated by the logarithms of the spectral radii of

arbitrary finite products of matrices in the support of P! is dense in R.

Condition (SRE1) (iii) implies Ellog™ (||C1]/ar)] < oo and E[log™ (|| Dy ||)] < oo, the latter
holds since log* (x) < ¢,2? for ¢ > 0 and some suitable constant ¢, > 0. Thus, if (SRE1)
(i) and (iii) hold, then has a unique stationary solution (X;)cz (cf. Basrak et al.
(2002)), Theorem 2.1). The top Lyapunov exponent v for a sequence of random d x d-
matrices (C),)nen also has the representation v = lim,, o, 1/nlog(||C, - -- Ci||x) a.s.
Under condition (SRE1) (i) and (iii) the solution to admits the representation

o] t
X;=Di+)Y, [l C;Dj,

k=1j=t—k+1

which in particular implies that X; € [0,00)¢ a.s. for all ¢ € Z, since the components of

C; and D, are non-negative. Denote

k
L =Ci-Crq---C;  and Ry = Z 1L 41 1 D;.
=1

Then, (R, ;) and X, are independent and it is Xy = Ry, + I1; X, for all & € N.
Under (SRE1) (i) and (ii) there exists an unique o > 0 with h(a) = 1 as required for
condition (iii) (cf. Buraczewski et al.|(2016)), Lemma 4.4.2). The subgroup defined in (v)
is specified in condition (A) of Buraczewski et al. (2016), page 171. Buraczewski et al.
(2016), Theorem 4.4.5, shows that by (SRE1) has a unique stationary solution
(Xi)iez and X is multivariate regularly varying with index «. Moreover, iteration of
and the regular variation of Xy gives regular variation of (X;)ez (cf. Buraczewski
et al.| (2016)), Corollary 4.4.6). In particular, our condition (PR) is satisfied.
Note that the conditions (iv) and (v) are readily implied if the distribution of (Cy, D;)
is absolutely continuous. However, for sake of generality we assume the more technical

conditions rather than the absolute continuity.
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According to [Janssen and Segers (2014), Theorem 2.1 and Example 6.1, the distribution

of the forward spectral tail process (0;);en of (X;)iez admits the representation
t ~
0, =6, [[ C; (5.5.2)
j=1

for all ¢ > 0, where C’j, 7 € N, are iid random variables with the same distribution
as (7 and O is independent of (é]) jen. The distribution of the backward spectral tail
chain (©_;);ey is determined by this distribution of the forward spectral tail process, see
Theorem 2.1.8

We want to verify the conditions for Theorems [5.2.6} [5.2.9| and |5.3.1{ with A = {[0, 2] =
0,21] X ... X [0,24] | @ = (z1,...,24) € [0,00)%} U {0,]0,00)¢}, which is distribution

determining for ©;, ¢ > 0.

General Markov theory as preparation

For the verification of these conditions we will apply some arguments from general Markov
theory. For this we need that the unique solution (X;);ez to (5.5.1) is an aperiodic and

irreducible Markov process, which holds under the following assumptions:

(SRE2) (i) The interior of the support of P*X° is non-empty;

(i) there exists a o-finite non-null measure v on R? and an open set F C R? with
P(Xy € E) > 0 such that P9*+P1 has an absolutely continuous component

with respect to v for all x € F.

If (SRE1) and (SRE2) are satisfied, then (X});ez is an aperiodic, positive Harris recurrent
PXo_irreducible Feller process. This holds by Theorems 2.1, 2.2 and Corollary 2.3 of
Alsmeyer| (2003)), since the conditions of these theorems are satisfied by Example 2.6 and
Remark C of that reference. See also Proposition 4.2.1 of |[Buraczewski et al.| (2016]) and
note for this proposition that the condition P(Ciz + D; = x) < 1 for all x € R? is
not needed since we consider only non-negative random variables (cf. Buraczewski et al.
(2016)), p.170).

Condition (SRE2) (ii) is in particular satisfied if (C4, D;) is absolutely continuous, see
Lemma 4.2.2 of Buraczewski et al. (2016). The same lemma states alternative conditions
to verify (SRE2) (ii).

We are going to apply general results for Markovian time series established by |[Kulik et al.
(2019). To this end, we verify the Assumption 2.1 of that paper with a fixed ¢ € (0, «),
Y := X, g(z) = ||z||, V(z) = ||z||? + 1 and ¢y = ¢. Due to the discussion above, (X;):ez
is a stationary, regularly varying Markov process and (i) and (ii) of Assumption 2.1 are
directly satisfied. Part (v) of that assumption is obviously fulfilled for our g and V' with

some c > 1.
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For the further theoretical Markov arguments, the existence of some specific small set
is important. |Mikosch and Wintenberger, (2014) mentioned on page 161 that the set
{x € RY: ||z||? < M} is small for some M > 0. This can be reasoned as follows: Due to
(SRE2) (i) and since (X;)iez is an irreducible Feller process, Meyn and Tweedie| (1992)),
Theorem 3.4, implies that all compact sets are petite. Therefore, {x € R? : ||z||? < M}
is petite as compact set and by Theorem 9.4.10 of Douc et al. (2018)) it is small for all
M > 0. By Proposition 9.2.13 of Douc et al| (2018) (applied with Vy(z) = Vi(z) = ||z]|9)
there exists a My € N such that {z € R?: ||z]|9 < My} is accessible. When P(x, ) denotes
the Markov kernel associated to the Markov process (X;);ez, we denote with P™(x, -) the
Markov kernel of the m-skeleton (m-step Markov process). By Theorem 9.3.11 of Douc
et al.| (2018)) the set {x € R : ||z]|9 < My} is small and accessible by P™(x,-). Corollary
14.1.6. of |Douc et al.| (2018) states equivalent conditions for sets being petite, part (ii) of
that corollary is exactly assumption (iv) we want to verify and part (i) of that corollary
is the formulation of the petite set which exists due to discussion above. Hence, part (iv)
of Assumption 2.1 of Kulik et al. (2019) is fulfilled (with m = 1 or arbitrary m € N).
Mikosch and Wintenberger (2014)), Section 5.2, showed that due to h(a) = 1, the drift
condition (DC,) of this paper is satisfied for the d-dimensional solution of , using
the function V(z) = ||z||9, for some ¢ € (0,a). We will check this drift condition as
follows: Recall X}, =11 ;X + Ry, for all £ > 0. By h(a) = 1 and the Jensen inequality it
directly holds that h(q) < 1 for all g € (0, «) (alternatively, h is a strictly convex function
with h(a) = h(0) = 1, this implies h(q) < 1 for all ¢ € (0, «)), so that

ko= B[] < 1 (5.5.3)

for m sufficiently large. Check that (a + b)? < ((1 4+ 1)a) 1 p<ner + (1 4+ 0)b/1) L gp>pay
for all a,b,n > 0. Using this, we may conclude

Ell[ X" | Xo = y] = El[[TmXo + Rul|* | Xo = 9]

E|[Mymy + R[]

< E[(IMTyml[arlly [l =+ 12 ]1)?]

< (L) Bl m Myl + (14 m)/m) Bl R %]

= (L) w2yl + (L +n)/m) Ell| R[]

=: Bllyll* +b (5.5.4)

with 3 = (1 +7)%% < 1 for sufficiently small n > 0 and b = ((1 + 7)/1)9E[|| Rn||%] < oc.
The last inequality holds due to E[||D:]|7] < oo and E[||C1]|%,] < oo, which holds by
(SRE1) (iii) and ¢ € (0, ). According to the discussion above, {z € R? : ||z]|¢ < M} is
small and accessible for P™(x,-) and by Theorem 14.1.4 of Douc et al. (2018)) an analog
to with b replaced by 01 (,cra.|z)o<nr,) and B possibly replaced by some constant
p € (0,1) holds. Thus, part (a) of (DC,,,) of Mikosch and Wintenberger (2014) holds
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(see also the remark before Lemma 2.1 in that paper). Furthermore, similarly we have

El[X)1%1 X0 = y] < (L+ ) ElCLllR Nyl + (1 +n)/m)* EL Dy]|]-

Thus, the condition (DC,,,) of [Mikosch and Wintenberger, (2014)) is satisfied and by
Lemma 2.1 of this paper the drift condition (DC,) holds, i.e.

E[IX1 )1 X0 = y] < Bllyll* + V'
for all y € R? and some 3 € (0,1) and & > 0. Thus,
EV(X1) | Xo=yl = ElIX1)"+ 1| Xo=9] < Byl + D) +b=5V(y) +b (555)

for some b > 0, which is why the drift condition in part (iii) of Assumption 2.1 of Kulik
et al.| (2019) holds.

It remains to check part (vi) of Assumption 2.1 of Kulik et al.| (2019)). Regular variation
implies the weak convergence £(Xo/u, | [|Xo|| > u,) = L(Yy) and with the continuous
mapping theorem L((|| Xol|/un)? | || X0l > un) = L((||Ys])9) follows. Due to the regular
variation of the time series (X;);ez, using the Potter bounds (see Theorem[2.1.2)) we obtain
P(([|Xoll/un)? > )/ P(| X0l > un) < (14 ¢e)z=(@79/4 for x > 1, ¢ > 0 and sufficiently
large n. Thus, by stationarity, for h € Z and sufficiently large n it holds that

12Xl LT 1R\
K ” ) [ Xoll > u } < %EK ) ]1{Xh||>un}]l{||xo||>un}] +1

U,

LT 1%l
<EK > 1 “ } 1
=0 w, ) Ueluny|

X q
Unp,

_/ <(||Xo||) x’”X0||>Un)dx—|—1

< / (1+ &)@ 4y 42 < 00 (5.5.6)
1

+1

for ¢ < a —e. In particular, sup, ey E [([| Xall/un)? ||| Xo|| > u,) < oo for all ¢ € (0,a),
Le. (| Xnll/un) g xo)>unt/ P Xo|l > un), n € N, is uniform integrable. (This could also
be shown with Karamata’s theorem.) The weak convergence together with the uniform

integrability imply the convergence of the expected values
Xl
EK u > %ol >“n] — E||Ya]). (5.5.7)

This implies that for all h € Z there exist an ng such that for all n > ng it holds

X q
EKH hH) ]l{||X0||>un}:| < 2E[[[Y3 1P Xoll > un).

Unp
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This bound for h = 0 and again the Potter bounds imply

E[([| X[l + D) 1gxopssunt] = EUXol| g xol>suny) + P Xol| > sup)
< 25 B[||[Yo |11 P (| Xoll > sun) + P([| Xol > sun) < C((sun)? 4+ 1)s™ vy,

for s > 0, some constant C' > 0 large enough, sufficiently large n and some n € R (n > 0
for s > 1 and n < 0 for s < 1). Thus,

lim sup —— B[([| Xo[|* + 1)L g xq>su,3] < limsup C(s? 4 u,*)s™"" = O™ < o0,
n—oo  UnUp n—00

which yields part (vi) and, thus, Assumption 2.1 of Kulik et al.| (2019) holds. This will

be used below.

f-mixing and verification of (P0)

According to Mikosch and Wintenberger| (2014)), page 161, the drift condition
together with irreducibility implies that (X;)ez is geometrically S-mixing, they refer to
Meyn and Tweedie (1993), p. 371, see also Kulik et al. (2019). We derive this below
with some more details, always assuming the conditions (SRE1) and (SRE2). According
to Corollary 14.1.6 in Douc et al| (2018)), the drift condition is equivalent to
E[V(X1)|Xo = y] < BV (y) +bl¢ for some petite set C. Note that the required petite sets
{z: ||z||?” < M}, M < 0, and the accessible petite set {z : ||z]|? < My} were established
above. The drift condition corresponds to drift condition (V4) of [Meyn and Tweedie
(1993). Theorem 15.2.6 of Meyn and Tweedie| (1993)) yields that {x : ||z]|9 < My} is V-
geometrically regular and by 1 < V it is also geometrically regular. Since {z : ||z||? < M}
is also accessible, Theorem 14.2.6 Douc et al.| (2018) implies that the Markov kernel
associated to the considered Markov process is geometrically regular. By Corollary 15.1.4
Douc et al. (2018) this implies that the Markov kernel is geometrically ergodic, which, in
turn, implies by Theorem 15.1.5 Douc et al| (2018) that ||P"(z,-) — P*°||ry < V(z)p"
for some p < 1. Hence, Corollary F.3.4 of Douc et al. (2018) implies the S-mixing with
geometrical rate.

The geometric S-mixing means that there exist constants p € (0,1) and 7 > 0 such that
Bar < TpF. If one chooses the sequences v, (or u,) and s, so that v, = o(1/log(n)),
log®(n)/n = o(v,) and s, = o(min(v; ", (nv,)"/?)) (in particular s, = o(log(n))), then
condition (PO0) is satisfied. Omne could e.g. choose [, > max(s,,log(n)/|log(p)|) and
I, = o(r,) with 7, = o(min(v,', (nv,)"/?)). Then, the time series satisfies (n/r,)5,, <
n/rppt» < n/r, exp(log(p)log(n)/|log(p)|) = n/ryn~t = 1/r, — 0 and all the other
conditions for the rates of the sequences can be easily checked. Thus, (X;)cz satisfies
condition (P0) and (PR). Note that it suffices to assume conditions of this form for s,

and v, because the existence of suitable r,, [, follows immediately.



5.5. Examples 172

Verification of (PP)

Condition (PP) can be shown similarly as for the univariate case in [Drees et al.| (2015)),
Example A.3: Recall IL; ;, = Cy - Cy—y - - - C}, Ry := Z?Zl I 11 ,D; and Xy, = Ry + 11 1 Xo.
Denote v, = P(|| Xo|| > una). This implies for all a € (0, 1]

1
P > wna | [ Xol] > 00) < —P(IXol] > e, | Bl + [T Xol| > wna)
1 Up @ Un G
<- (P@Mﬂ>wmwwb>2)+POWM>unHHmKM>iZ»

1 Una Up, G
=% <P@KM>meMD>2>+P@XM>WLthmww>zz»

n,a

Up @ 1 0
—Pp tn@ / < 1 >P”X°” dt
(R ey (L P

n,a

Observe that the operator norm is sub-multiplicative and, thus, with x defined in (5.5.3])

Lk/m]
E[Tall]) < (BUTmll3]) ™ B I g 1] (5.5.8)
k ET||I11, ;4
< (/)" e FNll) e,
0<j<m KJ

for all k£ € N, in particular £ < 1. Applying this and the generalized Markov inequality,

we obtain

2t . 2t \1
P(IMalar > 50) < Bl () < R ()
Thus, using ([5.5.7)) in the last step we obtain

L e 1 oo 2% \¢
/ (MLMW:>2 )PPy < L [ e, (2L pi an

Un,a

2|| X,
Upa

< 2R e B[ Yo]|)

| Xo|| > una

for all & € N and sufficiently large n € N. Moreover, || Ry| < || X|| since we consider only

non-negative random elements and the L,-Norm on R%:
1/2

1/2 1/2

I = (S1Rr) < (SR (haxan) = (Sk) = 1l

Hence, P(|Ry| > una/2) < P(||Xk|| > una/2) < 2'7%v,, for all k and sufficiently large

n, due to the regular variation. All in all, we obtain

P(| Xkl > una | [| Xo|| > una) < c(vnq + /%k) =: epq(k) (5.5.9)
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for a suitable constant ¢ > 0. The regular variation of X implies

Pl Xoll > una)

—0-a*=0
P([| Xoll > un)

T'nUn,a = TnUn
for all a € (0,1] and, therefore, lim,,_,« €, 4(k) = ck* and
>~ enalk) = craP (| Xo|| > una +cz,@
k=1

1
—)CZFL —c< —1):ani_>noloen,a(k)<oo
k=1

for all a € (0,1]. Thus, condition (PP) holds.

Verification of (PC)

For A = [0,z] one has P(©; € 0A) = P(©, € 0A")=P(3j e {l,...,d} : ©,; =x;) =0
for all z € [0, 00)? and, therefore, conditions (PC) and (PA) (iv) hold if ©; has continuous
marginal distributions. The representation (|5 combined with the absolute continuity
of the marginal distributions of C; would 1mply the absolute continuity of the distribution
of ©;, for i > 0, given that Oy and C] are independent. Henceforth, we will assume that
all marginal distributions of ©; are absolutely continuous. More generally, our results
also apply if the marginal distributions of ©; are not absolutely continuous, provided that
we consider only subsets of the family 4. More precisely, in this case we restrict ourself
to subsets of the family A where all sets [0,y], ¥ = (y;)1<j<a € [0,00)¢, for which y;
belongs to a neighborhood of some jump point of the j-th marginal distribution for some
1 < j < d are omitted. Then, by the above reasoning (PC) and (PA) (iv) are satisfied. If
we allow only finitely many jump points in each coordinate, then one can check the other
conditions in (PA) for all subsets of A including sets (—oo,y|, where all y lie between
the same jump points, separately. In this case (PA) and (PC) are verifiable even if the

marginal distributions of ©; are not continuous.

Verification of (PT)

For the verification of (PT), we will need some stronger conditions on v,, and s,:

(SRE3) v, = o((logn)~?*9)) for some ¢ > 0, (log?n)/n = o(v,) and
Sp = 0<min(vrjl/(3+o, (nvn)1/2)).

The first and last condition in (SRE3) ensures s, = o(log(n)) and that a suitable r,, with
r1+¢y,, — 0 as needed below for (PM) (i) can be chosen.

For s, > |j| the denominator in the conditional expectation in (PT) is larger or equal to
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u?. Moreover, z* < z? for x € (0,1), ¢ < v and & < 1 for the £ in condition (PT). Hence,

[ Xoll > un

Elzmqmqn [ X4 L gix 1 <un)
<o 1 Xnill®

| X5 9
< > E[( E 1{|xh+j||<un}> ‘||X0||>Un-

m<|h|<sp Un

Thus, to verify (PT), it suffices to show

X, q
limsup lim > EKH;J”H]I{”X,LH@M) ‘||X0H > un} =0

oo "7 m<|h|<sp
for some ¢ € (0, ) and all j € Z.
Choose q € (a/(1 + (/2),a) for some ¢ > 0 and some 7 € (1/¢, (1 + (/2)/a). Define

n=|h|7" < 1 for all h € Z. In particular, this implies that (£} )nez is summable, since

qm > 1. Then, by stationarity

| X5 |
> EK ’ ) 11X, l<un)

m<|h|<sp

< X

m—j<|h|<sn+j

1 Xkl
= > (E[( ) ey un<lixnli<un}

Mm—j<|h|<sn+j Un

[ Xn[1\
+E[(u> Lol <enunt | 1 Xoll > un]

< > (PUXall > enun | [IXoll > un) + &)

m—j<|h|<sn+j

IXoll >

X

Unp

q
) Lgxpli<uny | 1Xoll > un}

IXoll >

S P([[Xoll > enun)
<2 Y PUXull > enun | |1 Xoll > enun) N +aq>. (5.5.10)
h=rm—j+1 < P(|| Xoll > un) "

Choose some ¢* € (a, (1 + ¢/2)/7). Due to the regular variation of Xy the sequence u,,
is of larger order than v,/ = P(Xy > u,)™"/%. Thus, for all m —j +1 < h < s, + J,
Entln > (8, +7) Tu, is of larger order than s 7w /4" = (s,v}/("9))=7. This term tends to
oo by condition (SRE3) because ¢*7 < 1+ (/2 < 3+ ( by the choice of 7 and, therefore,
s/ (@7 < 5 1/ (FC/2) < 5 l/B+O 5 (. Thus, there exists for all £ > 0 some ny € N
such that for all n > ng one has gpu,, >t for allm — j+1 < h < s, + j. Then, for some
e > 0 the Potter bounds imply

P([[Xoll > enun)

< (14 5.5.11
PXo][ > ) = T (5:5.11)

for all m — j+1 < h < s, + j. Moreover, E[(2|| Xo|/z)* | | Xo|| > z] — 29E[||Ys]|9] as
z — oo by (5.5.7). Hence, E[(2||Xol|/z)" | || Xo|l > z] < 297 E[||Y5]|7] for all z > z
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and some sufficiently large zy. Therefore, since e, u,, — o0, there exists an ngy so
that for all n > ngand m — 74+ 1 < h < s, + 5 we have epu,, > €5, u, > x9 and
E I Xoll/(run))? | | Xoll > enun] < 29T E[||Y5]|9]. Thus, with the same arguments lead-
ing to and with we obtain

P([ X0l > unen | [[Xoll > unen)

Un€ _ 2|| Xo]\¢
< P(1all > "2 4 et (Y x>
2 Eplln

< 2", + M2 E]|[Y5]|Y) < 21 0ne, T+ R 20T B Y]

= C(Ung}:q* + /%h)

for some ¢ > 0 and sufficiently large n uniformly for all m — j +1 < h < s, + j (ie.
there exists an ng such that for all n > ng and m — 7+ 1 < h < s, + j this bound holds).
Combining this last bound with ([5.5.11]) yields

S P([[Xoll > enun) )
P (| X, > enun | || X0l > epun, e}
S (P> e 100> e T
sntj * *
< > (c(s,:q v, + E) (L +e)e, T + 5%)
h=rm—j+1
Sn+Jj Sn+J Sn+Jj
=(1+e)kc > Ao, +(Q+e)e > FRTT+ Y BT
h=m—j+1 h=r—j+1 h=r—j+1
Sn+J
=0(s2 )+ Y ((L+e)erh” ™+ h™7) = O(1). (5.5.12)
h=r—j+1

In view of (SRE3) the first term converges to 0 since ¢*0 is chosen sufficiently such that
¢ < 1+ (/2, since then s 7*1y, = o(1). The sum can be bounded by ((1 + ¢)c V
1) Zf;m_jﬂ(/%‘h‘hq*T + h™7) < oo, which is finite since g7 > 1 and & < 1. This last
bound tends to 0 as m — oo. Thus, (PT) holds.

So far we have verified all assumptions of Theorem [5.2.6] except for the bias condition,

which is always fulfilled if u,, is chosen sufficiently large.

Verification of (PA)

For the process convergence established in Theorem we have to check Condition
(PA). Parts (i) and (ii) are obvious. One can e.g. use the indexing map [0,1]¢ — A,
tes Ay i=1[0,1] x ... x [0,14] NRY, with

~ 1/(1—t]>—1—€, O§tj<1,

00, ti=1
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for some ¢ > 0 and with the convention [0, —6] = () for § > 0. One has A; = [0, 00)? which
is enough, since we consider only non-negative random variables. It obviously holds that
Ay =0 if t; = 0 for some j = 1,...,d, i.e. (PA) (i) holds. This map is obviously non-
decreasing and, therefore, condition (PA) (ii) holds. Moreover, (PA) (iii) holds because
the processes are continuous from the right in each coordinate. Forallt € Rand 1 <k <d

one has
N A \ A =[0,00)"1x [ [0,5]\ x [0,00)4F =0,
s€(t,1] s€(t,1]

which is why (PA) (v) and (vi) are trivially satisfied. (PA) (vii) is not needed since 0 € A
for all ) # A € A. Still, it trivially holds with 0 € A, \ Usc As and w; = 1—1/(1+¢) =
e/(1+¢),1 <j<d. Finally, (PA) (iv) was shown above and, therefore, (PA) is verified.
Thus, we have verified all conditions for Theorem [5.2.9 apart from the bias condition
(PBr) which always holds for sufficiently large w,. For ﬁn 4 with unknown « and for
Theorem it remains to check conditions (PP1) and (PM), as the bias condition
(PB,,) always holds with sufficiently large u,,.

Verification of (PP1)

The equation (2.9) in condition (C) of Drees and Knezevic (2020) is the univariate version
of condition (PP1) and (PM) (i) corresponds to (2.11) in condition (C) of the cited paper,
just replace € by 0 there. Both conditions are verified for one-dimensional solutions to
stochastic recurrence equations in Appendix B of Drees and Knezevic| (2020). Their proof
uses general techniques for Markov processes which will also be used for the d-dimensional
solutions of stochastic recurrence equations considered here.

Since Assumption 2.1 of Kulik et al.| (2019) is satisfied (see above), the following straight-
forward generalization of Lemma 4.3 of the same paper holds: for all functions ¢ : R* — R
that vanish on a neighborhood of 0 such that | (z)| < ¢(||z||#/? + 1) for some ¢ > 0 and
all z € R? one has

lim hmsupi Z E[|v(Xo/un)Y( Xy /uy)|] =0, (5.5.13)

L—oo n—oo U”k I+1

provided 7,v,, — 0. Note that Lemma 4.3 Kulik et al.|(2019) proves this only for a specific
function .. However, following exactly the proof of this lemma, including the proof of
Lemma 4.1 and 4.2 of that paper, yields the same assertion for the more general function
¢ which satisfies |¢(z)| < c(]|z]|7? + 1) for some ¢ > 0 and ¢ (z) = 0 for ||z|| < € for some
e > 0. To this end, just replace ||z||? by V(z) = ||||? 4+ 1 in the proofs there.

Define () := max(log™ |||, L0 ([lz]])). It obviously holds ¢(x) = 0 for ||z|| < 1 and
| max(log ||z, Lo ([|2]))] < ellzl|”?* L1 00)(|2]]) < e(||]|#* + 1) for some ¢ > 0 and all
z € RY, since for all ¢ > 0 one has log(y) < ¢,y¢ for some suitable ¢, > 0. Thus,
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holds for this function 1, i.e.

X
llm lim sup Z E[max(log (||u0||>7]l{X0>Un}>

L—oo n—oo k—=L+1

X,
X max (logJr (HUkH)7]1{||Xk>un}) ‘ HXOH > u,| = 0. (5.5.14)

Define ¢! (k) = E[(Xo/un)Y(Xk/un) | | Xol| > un). The uniform integrability of
(1| Xoll /1n) (|| Xkl /n) g x0 | >un} /Vn, 7 € N, for all ¢ € (0,«/2) and k € N, which follows
by the Cauchy-Schwartz inequality and the same arguments as , implies the uni-
form integrability of the random variables ¢(Xq/u,)(Xk/uy)/vn, n € N. Together with
the weak convergence defining the tail process this implies

eo(k) := lim €, (k) = lim E[(Xo/un) (X /un) | [ Xoll > un] = E[tb(Yo)t(Y3)] < o0

n—oo n—oo

for all £ € N. Moreover, the representation of the forward tail process Yy, = ||Yo|/Ooll; «
and (5.5.8)) shows that the e/_(k) are summable:

> elo(k) < E[IYo)l7) Y- BTkl < enB[¥ol|7] Y- R* < oo,
k=1 k=1 k=1

where we used ¥(z) < c||z]|7?11 o) (||z])) in the first inequality.

Moreover, ([5.5.14]) implies

,}ggo; e, (k) = lim Z E)(Xo/un)(Xy/un) | | Xoll > wn]

+ lim Z E[p(Xo/un) (X /un) | | Xo|| > )

nﬁm
k=L+1

L
=> e (k)+o(l) < oo
k=1
as L — oo. Therefore, lim,, o > 1 €, (k) = > 52 € (k) < oo and (PP1) holds.

Verification of (PM) (i)

For part (i) of condition (PM) note that due to Proposition 14.1.8 in Douc et al. (2018))
there exist a 3 € (0,1) and b > 1 such that E[|| X ||7+1 | Xo = y] < B5(||ly||?+1)+b/(1—-7)
for all y € R? and ¢ € (0,a) and, therefore, E[||X.||? | Xo = y] < B||ly||? + b, with
b=1b/(1 — )+ 3. Then, part (i) of (PM) can be shown by following the verification
of (2.11) in Appendix B of Drees and Knezevic (2020) while replacing ¢ with 0 and X

with || X||. For convenience, we carry this out here: Using the aforementioned inequality
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yields for all p,p > 0 such that p+p < «

[ Xkl NP (1 X0l
(L0 (50,

< ol PP E [||Xk|Ip||XoH’5]1{HXoH>w}]

|Xoll > v,

n

= .t [T u WP EXP | Xo = ylllyl? P*(dy)

n
Un

<ot [Tyl + Byl P (dy)

n

= ﬁ’cE{ an‘ ) )HXoH > un} +bu‘PEKHu0||) MX | > un}
< 26" B[||Yo[[P*?] + 2bu,” E[||Yo||?] (5.5.15)

for sufficiently large n by (5.5.7). Also note, that log™(z) < c,29 for some ¢, > 0.

Therefore, ((5.5.15) with p € (a(1+49)/(1 +(),a), 6 < ¢, and p € (0, — p) shows that
the sum on the left-hand side of Condition (PM) (i) can be bounded by a multiple of

Tn

_ N\ 1/(149)
> (BB 7] + u B )

k=1

Z (BYEEN B[P PO (B Y 7)) VI = O(1).

The last bound holds provided 7'*¢v, = O(1), because u, is of larger order than v~/
for all n > 0 due to regular variation. Note that due to (SRE3) one can choose an r, such

that r1™¢v, — 0 for some ¢ > 0.

Verification of (PM) (ii)

By Lemma [5.3.2] (PM) part (ii) is implied by (PM1) part (i) and (ii), which we will
verify here for the solutions to (5.5.1). For (PM1) (ii) note that for all &€ > 0 there
exists a sufficiently large constant ¢. > 0 so that |log(z)[*72*1,<1y < c.a® ¢, since
c.x*7¢ + log(z)x® = 27 ¢(c. + log(z)'™2°) > 0 for all z € (0,1). Thus, to verify
(PM1) (ii), it suffices to show

R

q
]1{||Xh||<un}> [1Xo]l > un} =0(1)

> Al

|h|<sn

for some ¢ € (0,a). Note that the summand for h = 0 is always 0. This boundedness

already follows from ([5.5.10) and (5.5.12)) with j = m = 0 in the verification of (PT).
Next, we consider (PM1) (i). We have 9(z) := max ((log+(||:13||))”’7,]l[l,oo)(||a:||)) <
collz]|%/? for all > 0 and some ¢, > 0. Thus, by stationarity

X 1+n
El sup (logJr (Huh“>> ‘ | Xol| > uy,
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<'lp

Un

up G/ un) B fun)| < 230 B[/ fu)] <1

L<|h|<sn Un h=r+41

for sufficiently large L. The last inequality holds due to , which in turn holds
since ¢ vanishes for ||z|| < 1 and t can be bounded by a multiple of ||z[%2. The uniform
integrability of (||Xn||/tn)?Lgxo>unt/Vn, n € N, for all ¢ € (0,a) was shown in (5.5.6)).
Thus, it follows E|(log™ (|| X /un))" | [ Xol| > ua| = E[(log™(|Y4]))"]. In particular,
the expectation E[(10g+(||Xh||/un))’7 | | X0l > un} is bounded for all fixed h € N. Hence,

X 1+n
E[ sup (logJr (H h“))
0<|h|<sn, Unp,

L X 1+n
<1 +22E[<10g+ (”h”»
h=0 Un

for sufficiently large and fixed L, which proves (PM1) (i).

[ Xoll > un

[ Xoll > un| = O(1),

Verification of (PM) (iii)

Finally, (PM) (iii) can be established by the same arguments as (PM1) (ii). Since the
denominator is at least 1 due to the conditioning event, and log(z)~ 2% < é,29 for ¢ < «

and some ¢, > 0, it suffices to show

=0.

. . X q
lim lim sup Z E [<||uh||> Lgixpli<uny |1 Xoll > un

m—0o0

Similar to bound for (5.5.10]) in the case j = 0, the sum can be bounded by

B(n,m) = 2((1 Fe)e S R Ty, 4 (1+e)e S AR+ S h‘”),
h=m h=m h=m
where the bound is given in (5.5.12)) and we have lim,,, , limsup,,_,, B(n, m) = 0. Hence,
(PM) (iii) holds.
Thus, all conditions were checked. This shows that the developed theory can be applied
for d-dimensional solutions to stochastic recurrence equations, under some reasonable

conditions. We summarize the result of the previous discussion in the following theorem.

Theorem 5.5.1. Let (Cy, Dy), t € Z, be iid [0,00)¢ x [0, 00)4-valued random variables.
Suppose (SRE1) is satisfied, then has a unique stationary and reqularly varying
solution (Xi)iez. If (SRE2) and (SRE3) are satisfied and ©; has continuous marginal
distributions, then (PR), (P0), (PP), (PT), (PC), (PA), (PP1) and (PM) hold.

In particular, the statements of Theorems[5.2.9 and[5.5.1) are true for solutions to (5.5.1]),
provided u, is chosen sufficiently large such that the bias conditions (PBr) and (PB,) are

satisfied and log*(n) = o(nv,).
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5.6 Simulation study

In the previous sections the new estimator ]%n 4 for the estimation of P(©; € A) was
introduced and the asymptotic normality of the estimator was shown. In a short example,
we saw that compared with the forward and backward estimators ﬁi; 4 and ﬁg 4 there is
no uniformly better estimator in terms of a smaller asymptotic variance.

In this section, we will analyze the finite sample performance of the new projection based
estimator ﬁm 4. For this purpose, we present a Monte Carlo simulation study in which
we simulate pseudo random data for different models with heavy tails and consider the
bias, the standard deviation and the root mean squared error (RMSE) of the estimator.
As competitors for ﬁn 4 we consider the forward estimator ﬁf; 4 defined in and the
backward estimators ﬁfL 4 defined in . Note that only a comparison of ﬁn A with
ﬁfl 4 and not 1327 4 is fair, since only the former two use estimates for a. We only consider
the projection based estimator with estimated «, since « is generally unknown in a real
data set and, therefore, ﬁn A is the only practically available estimator.

For sake of simplicity, we restrict the simulation study to the case of real valued time
series models. We consider the sets A = {A, = (—o00,z| | * € R} and some i € N,
the corresponding probabilities P(©; € A,) describe the cumulative distribution function
(cdf) of ©;.

Recall that the forward estimator is defined in by

1 n

N

Pnoa, = > L unt L oo (Xesi/ | X))
S L sy o (P e

The backward estimator from Davis et al. (2018) for the sets A, is given by

pa = = Mxt”w Sim ()™ Lo Lo () i 20,
B ( ‘> ]l{HXt |>“n}]1( 00,7 (HX)t( Z”) if z <O.

D e 11{|\Xt”>“n}

Here, &, is an estimator for the tail index and is chosen as in for ﬁn 4. Note that
this definition of the backward estimator ﬁfl 4, differs from the definition in ((5.1.2). This
way, 0 is not included in the sets of the indicators, which should improve the performance
of the estimator, since the estimator performs worst for x near 0. Similarly, one could
define the projection based estimator differently for x > 0 and x < 0 such that 0 is not in
the indicator. However, this has no effect on our simulations, which is why the projection
based estimator is calculated as defined in . The forward and backward estimator
have already been compared in Davis et al. (2018) and |Drees et al.| (2015). Here, the

focus lies on Py, 4,
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GARCHt and SR model

We will study the performance of the projection based estimator f)m 4, and compare the
results with the performance of ﬁ£ 4, and ]%fl 4, in four well-known models. We start with

two models where the spectral process (©;);cz, has continuous marginal distribution.

GARCHt The first model is a GARCH(1,1) time series, i.e. X; = o5 with o7 =
ap + a1 X2 | + ago? | and we consider independent innovations &; with Student’s
t,~distribution standardized to unit variance. We choose the parameters ay = 0.1,
a; = 0.14, as = 0.84 and v = 4. These are possible choices for financial time
series. These parameters ensures that the time series is regularly varying with
index o = 2.6; see [Mikosch and Starical (2000), Section 2.2, and Davis et al.| (2018),

Section 4.

SR The second model is given by the one-dimensional solution of a stochastic recurrence
equation Xy = CyX;_1 + Dy, t € Z, with iid R%-valued random variables (Cj, Dy).
Here, we choose C; and D, to be independent with C; ~ N(1/3,8/9) and D; ~
N(=10,1). This ensures that a stationary regularly varying solution exists and
E[C? =1, ie. a=2 (Kesten| |1973). See also Drees et al| (2015)), Section 5.2 and
6, for a detailed description of the model. (Note that this SR model does not exactly
fit in the setting of Section [5.5.2] but it enables a comparison with the results of
Drees et al.| (2015).)

The bias and RMSE of the estimators are calculated with respect to the true asymptotic
probabilities P(©; < x). For this, we have to specify the distribution of the forward

spectral tail process (O;)>1:

GARCHt: For t > 1 one has

St
d &t .
@t = T= H(alsf_i + a2)1/2,
|€o] i1
where £, h > 1, are iid random variables with the same distribution as €, (i.e. Stu-
dent’s t,, distribution, standardized to unit variance) and &y is a thereof independent
random variable with density f.(z)|z|*/E[|e1]%], where f. is the density of €; and «

is the index of the regular variation, see Proposition 6.2 of [Ehlert et al.| (2015).

SR: For t > 1 one has
t
d ~
@t = @0 H Ch7
h=1
where Cy, h > 1, are iid random variables with the same distribution as C; and

(Ch)n>1 is independent of O, cf. [Janssen and Segers| (2014), Example 6.1. Moreover,
P(©y=1)=P(Oy=—1) =1/2, cf. Goldie| (1991)), Theorem 4.1.
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The true probabilities P(©; < z) for € [-2,2] in steps of 0.01 in the GARCHt and SR
model are derived numerically via a Monte Carlo simulation of 107 random variables with
the aforementioned distributions.

For each model, we generate time series (X;)i<i<, of length n = 2000 and we perform
M = 1000 Monte Carlo repetitions. We calculate the estimators for P(©; < z) for
x € [—2,2] in steps of 0.01 and for lags i € {1,...,10}. We set u,, to the 0.95 quantile level
of the absolute values of one sample and choose the block length s, = 30.

The choice of u,, as [0.95-n| order statistics is not directly in accordance with the theory
from the previous sections, where we assumed wu,, as deterministic threshold. However,
it is common practice to use such data depending thresholds and for the forward and

backward estimator this has no impact on the asymptotic results (cf. Drees and Knezevic
(2020))).

Performance of ﬁn 4, in the GARCHt model

We start our simulation study with the consideration of the performance of the three
estimators in the models introduced above. Figures [5.3| up to [5.5/ show the performance
of the projection based estimator ﬁn 4, and the competitors ﬁ,’; 4, and ﬁg 4, in the two
models introduced above. All figures show the mean estimated value and the true values
P(©; < x) (left), as means over the M = 1000 Monte Carlo repetitions and the standard
deviation (middle) of the three estimators as a function of x € [—2,2]. Furthermore, for
better comparability of the RMSE, the RMSE ratios are shown in the right plots, i.e. the
RMSE of ﬁn 4, divided by the RMSE of g%fl A, OF 135 a,» respectively. If this ratio is smaller
than 1, then ﬁn A, is more efficient than the competing estimator, otherwise ﬁn 4, 1S worse
in terms of the RMSE.

Figure shows the estimators in the GARCHt model for lags ¢ € {1,5,10}. For es-
timating « in this model we observed a bias of 0.014 and standard deviation of 0.461.
The bias is small for large |z| and all three estimators, but for small values of |z| the
bias of ﬁn A, and ﬁfl 4, 1s larger, due to the typical artificial point mass in {0}, which is
due to the construction. This explains why for |z| < 0.2, in comparison to ﬁf; A4, our
estimator underperforms, while for |x| > 0.2 the RMSE is significantly lowered by the
new estimator. For larger lag ¢ there is a trend, that the bias for small |z| increases which
is in accordance with more artificial point mass in {0} for larger i.

The standard deviation is also largest for = close to 0. This fits with the results of Davis
et al.| (2018) for the forward and backward estimator. The standard deviation of ﬁn A, 18
smallest for almost all cases, only near 0 it is larger than the standard deviation of ]5,]; A,
for small lag i. The advantage in the standard deviation of ﬁn 4, 1s more pronounced for
larger lags ¢, for lag ¢« = 10 the variance of ﬁn 4, 1s even smallest for all values of x. In
the RMSE one can see that this trend for the variance for larger lags is stronger than

the trend for the bias with larger lag. The RMSE of ﬁn 4, is constantly smaller than the
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Figure 5.3: GARCHt model

Mean (left), standard deviation (middle) and relative RMSE w.r.t. ppa, of pn.a, (blue

solid line), ]%Z,Az (black dashed line) and ﬁfL’Az (red dashed-dotted line) for lagi =1 (top),
i =5 (middle) and i = 10 (bottom). The true cdf is indicated by the dotted line.

RMSE of g%fl 4., for i = 1 in the neighborhood of 0 it is half as large. For larger ¢ the
general advantage of ﬁn A, 1s even more pronounced. Except for an environment of 0, the
RMSE of py, 4, is also smaller than that of ﬁi 4,- For large i and |z the relative efficiency
of the forward estimator w.r.t. ﬁn 4, is less than 1/2. For larger lag ¢ = 10 the advantage
of ﬁn A, against ]%2 4, is even stronger, the RMSE ratio is constantly smaller than 0.7 and
the RMSE of p, 4, is smaller than the RMSE of p;, . for all [z| > 0.2.

These are the results in the GARCHt model with the parameters given above, a different

choice of parameters, or, e.g., the use of normally distributed innovations leads to the

same qualitatively results.
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Figure 5.4: SR model

Mean (left), standard deviation (middle) and relative RMSE w.r.t. ppa, of pn.a, (blue
solid line), ]%Z,Az (black dashed line) and ﬁfL’Az (red dashed-dotted line) for lagi =1 (top),
i =5 (middle) and i = 10 (bottom). The true cdf is indicated by the dotted line.

Performance of ﬁn 4, in the SR model

In Figure |5.4] the results of the simulation for the SR model and the lags i € {1, 5,10} are
shown. The plots are more asymmetrical than for the GARCHt model. For estimating «,
we observed a bias of 0.2 and a standard deviation of 0.385. In the SR model, the bias is
significantly larger for almost all values of x, but the bias of all three estimators is similar.
For larger lag i the bias is even larger. For all three estimators the observed strong bias
is due to the distribution of D,, which is irrelevant for the distribution of (0;);cz but
adds a negative drift in the pre-asymptotic behavior of (X;);ez. Thus, the bias becomes

the dominant part of the RMSE. The standard deviation of ﬁn 4, is smaller than that of
f

ﬁfl 4, and comparable to that of py,

a, for small x|, while it becomes smaller compared to
ﬁ,’; 4, and comparable for ﬁf’l 4, for large |z|. Again, using a larger lag i further reduces

the standard deviation of ﬁn 4, in comparison to the other estimators and the standard
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Figure 5.5: SR model w.r.t. pre-asymptotic probabilities

Mean (left), standard deviation (middle) and relative RMSE w.r.t. pp.a, of pn.a, (blue
solid line), ﬁfl,Az (black dashed line) and ﬁi,Az (red dashed-dotted line) as estimator of the
pre-asymptotic cdf of X;/|Xo| given |Xo| > F%/(0.95) in the SR model for lagi=1. The
true cdf is indicated by the dotted line.

deviation of ﬁn 4, is the smallest throughout for ¢« = 10. The asymmetric bias is dominant
in the RMSE, the variance advantage of ﬁn 4, is not always reflected, in particular for
i € {5,10} and = < 0 the projection based estimator ﬁn,Aﬁ has the largest RMSE due to
the larger bias compared to ﬁfl, A,
In the SR model the bias is large for all three estimators because the distribution of
Dy affects the pre-asymptotic probabilities P(X;/||Xol| < = | [[Xol > Fjx (1)) for fixed
[ but not the limiting quantity P(©; < x). Here, F|y(l) denotes the quantile func-
tion of || Xo|| at level I. Note that the backward estimator and the projection based
estimator are constructed based on principles which only hold in the limit. However,
the estimators themselves are motivated as empirical counterparts to the pre-asymptotic
probabilities and the mean only converges asymptotically to P(0; < z). Therefore, we
want to compare the performance of all three estimators w.r.t. the pre-asymptotic prob-
abilities, analogous to the analysis in [Davis et al.| (2018) for ﬁn 4,- The quantiles £y, (1)
and the pre-asymptotic probabilities needed for this analysis are calculated numerically
via 107 Monte Carlo repetitions for time series of length 10%. Figure shows the re-
sults when the bias and the RMSE are calculated w.r.t. the pre-asymptotic probabilities
P(X;/|Xo| <z [[Xo| > F%(0.95)), instead of the true values P(6; < x), for lagi = 1. Of
course, this only affects the true cdf and RMSE, the mean estimated values and standard
deviations remain unchanged. Now the bias of all estimators is corrected and becomes
much smaller, compared to Figure 5.4, The change to the pre-asymptotic probabilities
has little effect on the RMSE ratio of ﬁn 4, W.r.t. ﬁ,’t 4, but it improves the RMSE ratio
w.I.t. ﬁf% A, > Which is then only (slightly) larger than 1 for |z| < 0.2. We can observe that
ﬁn’ 4, performs very well here when estimating pre-asymptotic probabilities, even though
it was not constructed for this task in particular. However, this consideration of pre-
asymptotic probabilities somewhat distorts the picture, so in the following we will again

restrict ourselves to the bias regarding the asymptotic probabilities.
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Figure 5.6: Ign,Ax as function in s,, GARCHt model

Bias (left), standard deviation (middle) and RMSE (right) of pn.a, as function in s, for
lagi =1 (solid line), i =5 (dashed-dotted line) and i = 10 (dashed line) with x = 0 (top)
and x = 1/2 (bottom) in the GARCHt model.

Tuning parameter: block size s,

Next, we consider the sensitivity of ﬁn 4, W.r.t. the two tuning parameters s, and w,,.
The calculation of ﬁn 4, requires the choice of the tuning parameter s, > i. So far we
used s, = 30 and we will justify that in a moment. A priori it is unclear how large s,
should be chosen. The theory suggests that s, is small enough compared with n, but
with growing n the sequence s, should also tend to infinity, i.e. s, should be sufficiently
large. If s, is chosen too small, the observed clusters entering the estimator ﬁn A, are cut
off prematurely and the projection based estimator places a larger artificial point mass in
{0}, an artifact due to the construction and the cut-off observations in each summand.
This would typically add a bias for A, = (—oo,z] with = close to 0. On the other
hand, if we choose s, too large, then almost independent clusters of large observations
are compounded which can add bias and increase the variance.

Figure shows the bias, standard deviation and RMSE of ]z%n 4, in the GARCHt model
as function of s, € [i,100] for the lags i € {1,5,10} and = € {0,1/2}. Especially for
larger lags one can observe a larger bias for x = 0 and small values of s,,, which results
in a much larger RMSE. Thus, s, should not be chosen to small. On the other hand,
choosing s,, > 20 has no big influence on the bias and variance, and, therefore, the RMSE
is relatively stable against changes of s,,. For x = 1/2 and very small s,, (s, =2 fori =1

and s, = 18 for ¢ = 10) the RMSE has a minimum and is afterwards almost constant but
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Figure 5.7: ﬁn,Ax as function in s,, SR model

Bias (left), standard deviation (middle) and RMSE (right) of pn.a, as function in s, for
lagi =1 (solid line), i =5 (dashed-dotted line) and i = 10 (dashed line) with x =0 (top)
and x = 1/2 (bottom) in the SR model.

increasing. Thus, a change of s,, does not have high impact on the quality of the estimate,
but s, should not be chosen too large for larger |z|.

Basically the same behavior can be observed in the SR model, as shown in Figure 5.7
Note that the small bias for x = 0 and small s, results from a negative bias in the pre-
asymptotic model and the artificial point mass in {0} of ﬁn 4, for really small s,. In
general the RMSE is again relatively stable w.r.t. the choice of s,, > 20.

Overall, we conclude from both Figures and that the performance of the estimator
is relatively stable once s, is chosen not too small, i.e. s, > 25. Unless an excessively
large value is used for s,, the performance of the estimator is not very sensitive to this
tuning parameter.

In practice, one cannot try which s, fits best, since only one observed time series is
available. Therefore, for practical applications, in order to find a suitable value for s,
for an unknown model, we suggest to produce a graph similar to the Hill plot, which
shows the estimated value as function of different s,. Figure |5.§| shows such a plot for
the GARCHt model for several choices of z and lags i. A suitable choice of s,, should be
chosen not too large but in a region where the estimator becomes stable, which is between
30 and 40 for most values i in Figure [5.8]

We plotted s,, only up to 100. Beyond that the graphs continue constantly until about
n/3. After that the variance and, thus, the RMSE increases dramatically. Since s, has

no great influence on the performance of the projection estimator ﬁn, A,, we used s, = 30
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Figure 5.8: Hill-Plot for ﬁn,Az; GARCHt model

ﬁn,Ax as function of s, for a single realization of the GARCHt model for lag i = 1 (solid
line), i =5 (dashed-dotted line) and i = 10 (dashed line) with x = —1 (left) and ©x =1/2
(right).

for all simulations, which yields a good overall performance across different models, lags
and values for x. However one should note, that in in some cases it could be advisable
to choose different s,, for different = and i. The choice s, = 30 is a compromise over all

different lags and values for  and works quite well here.

Tuning parameter: threshold u,

As always in the peak-over-threshold setting we have to choose the second tuning param-
eter, the threshold u,. So far we have fixed it as [0.95 - n|-th empirical order statistic
of the absolute values of the observations (X;)1<;<,. We say that this threshold is of
level 0.95. In the next plots we want to address the problem of choosing this tuning
parameter and threshold u,,, which is used for the estimators ﬁn Ay ]35 4, and ﬁg 4, as
well as for the estimation of . An obvious question is whether the level of the threshold
affects the qualitative performance of the estimators, or how sensitive the estimators is
w.r.t. u,. Another question is whether the level should be chosen differently for f)m A, and
ﬁi; A, since the latter uses far fewer observations and could therefore benefit from using
a smaller threshold.

Varying the level between 0.9 and 0.99 does typically not affect the qualitative results,
in particular the RMSE ranking of ﬁn A, W.r.t. ]gﬁ’l 4, and ﬁfL 4,» respectively. This is
illustrated in Figure for two cases. The figure shows the estimators as a function of
different levels of u,, for the GARCHt model with ¢ = 10, z = 1 and for 7 = 1, x = 0.1.
We observe that the performance of ﬁﬁ’ 4, and ﬁn 4, is relatively stable for a broad range
of values for u,, but that the variance sharply increases for values of u,, larger than the
0.99 quantile. The backward estimator is more affected by the choice of the threshold and
ﬁn, A, 1s superior to ﬁfL 4, in terms of RMSE for all u,, and both parameter constellations
considered here. In addition, one can see for ¢ = 10, x = 1 that the RMSE of ﬁn A,
is smaller than the other two RMSE regardless of the level of u, and also the global
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Figure 5.9: FEstimators as function of quantile level for u,-selection, GARCHt model

Mean (left), standard deviation (middle) and relative RMSE w.r.t. ﬁn,Ax ,as function of

quantile levels Fix|(uy), of Pra, (blue solid line), ﬁ%,Aw (black dashed line) and ﬁfle (red
dashed-dotted line) in the GARCHt model for lag i = 10 and x = 1 (top) and i = 1,
x = 0.1 (bottom). The true value is indicated by the dotted line.

minimum of the RMSE of ﬁn 4, is smaller than the global minimum of the other two
RMSEs. Similar results can be observed for i = 1 and x = 0.1, where ﬁn 4, has a larger
RMSE than f)f; 4, and smaller RMSE than ;32 A, regardless of the level of u,. The only
exception is observed for level larger 0.99, see Figure 5.9, This shows, that the choice
of the level (or different levels for different estimators) essentially has no influence on
the ranking of ﬁn A, W.I.t. f)z A, OT ﬁi A, respectively. This is not so clear, if one only
compares ﬁfl 4, and ﬁfl 4,» as can be seen in the top row of Figure . Basically the
same results can be observed in the SR model, see Figure [5.10f Unless the threshold is
chosen very high, the performance of all three estimators is quite stable, the least stable
estimator is the backward estimator.

All in all, the new proposed projection based estimator ﬁn 4, is fairly insensitive w.r.t.
changes of the threshold u, or the block length s,. This is a useful property of the
estimator, since it means, that it can be practically used without too much additional

information.

Models with discontinuities: SV and AR model

So far, we considered models where (0©,);cz has continuous marginal distributions. To
complete the analysis, we now consider the performance of ﬁn 4, in models where P9 has

point mass for some i > 0. To this end, we introduce two additional models.
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Figure 5.10: Estimators as function of quantile level for u,-selection, SR model

Mean (left), standard deviation (middle) and relative RMSE w.r.t. ﬁn,Ax as function of

quantile levels Fix|(un) of ﬁmAz (blue solid line), 52,&- (black dashed line) and ﬁfiAm (red
dashed-dotted line) in the GARCHt model for lag i = 10 and x = 1 (top) and i = 1,
x = 0.1 (bottom). The true value is indicated by the dotted line.

SV We look at the stochastic volatility model defined by X; = o, with log(oy) =
ay log(oy—1) + Z; where Z, are iid standard normally distributed random variables
and ¢, are iid random variables with Student’s ¢,-distribution. In this model we
choose the parameters a; = 0.9 and v = 2.6. Then (X;);cz is a stationary regularly

varying time series with index o = 2.6, see Davis et al. (2018]), Section 4.

AR The last model is an AR(1) time series X; = aX; 1 + & with a € (0,1) and the
innovations ¢; are independent and symmetric around 0. Here we choose (|g;| 4+ 1)
as Par(a)-distributed and we choose the parameters a = 0.95 and o = 2. Then,

the index of regular variation is o = 2.
In these models the distribution of the spectral tail process can be specified as follows.

SV: Since the volatility oy has light tails, the extremal behavior of (X;);cz is dominated
by the iid heavy-tailed innovations &;. Thus, in this model we have P(©; = 0) = 1
for all ¢ > 0, see |Davis and Mikosch| (20094a).

AR: This is a special case of a general stochastic recurrence equation as in the SR model.
Inserting Cy; = a in the formula for the spectral tail process in the SR model yields
©; = a'Og, t > 0, with P(©g = 1) = P(©g = —1) = 1/2. In particular, ©; can only
take two different values for all ¢ > 0.
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Figure 5.11: fjnyAac as function in s,, SV model

Bias (left), standard deviation (middle) and RMSE (right) of pn.a, as function in s, for
lagi =1 (solid line), i =5 (dashed-dotted line) and i = 10 (dashed line) with x = 0 (top)
and x = 1/2 (bottom) in the SR model.

For the SV and AR model the true asymptotic probabilities P(©; < z) can be calculated
directly from the above representation of ©;, in particular the spectral tail process has
discrete mass in some points. Note that therefore condition (PC) is not satisfiable for
these discontinuity points. Thus, the conditions could be satisfied only for the family of
sets (—oo, 2] if a neighborhood of 0 is omitted from the range of z-values. Nevertheless,
in this simulation study we present the results for the full range = € [—2,2].

First we consider once more the choice of s,. Figure shows the estimator and RMSE
as function in s,,, now for the SV model, similar to Figure 5.6 and Figure 5.7, Again, the
estimator and RMSE are almost constant for s,, > 25, i.e. s, does not have much effect
on the performance, as long as it is chosen large enough. Hence, we choose s, = 30 as

before as a uniform parameter for all values of z and lags .

Performance of ﬁn 4, in the SV model

Simulation results for the SV model are presented in Figure for the lags i € {1,5,10}.
In the SV model, the only point of mass is 0, i.e. we have P(©; < z) = 1jg«)(z). The
jump point of the distribution function leads to a large bias for all three considered
estimators for x close to 0. For the standard deviation, the picture is the same as for
the GARCHt model. For large |z| the standard deviation of ﬁn 4, is smaller than that of

ﬁf; 4, for small |z| it is considerably smaller than that of ﬁz A, For lag ¢ = 1 there is a
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Figure 5.12: SV model

Mean (left), standard deviation (middle) and relative RMSE w.r.t. ppa, of pn.a, (blue
solid line), ]%Z,Az (black dashed line) and ﬁfL’Az (red dashed-dotted line) for lagi =1 (top),
i =5 (middle) and i =10 (bottom). The true cdf is indicated by the dotted line.

weak advantage of ﬁn 4, in terms of the RMSE. For larger lag ¢, the results change as in
the previous models, the standard deviation becomes even smaller relative to the other
estimators, but the bias gets worse, which is why ﬁfh 4, becomes better than ﬁn A,- The
backward estimator still has the largest RMSE. However, the efficiency advantage of the
estimators against each other is at most 10% outside a neighborhood from x = 0, which

is less than in the other models.

Performance of ﬁn 4, in the AR model

Finally, we consider the AR model in Figure [5.13] The distribution of ©; has two points
of mass in —a’ and a’, and the bias is much larger in the surrounding of and between
these points. The shape of the standard deviation is similar for all three estimators but

it is slightly smaller for ﬁn 4, and larger for ﬁz 4, for |z| < a’. The RMSE of 5n A,
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Figure 5.13: AR model
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dotted line.

is smaller than the RMSE of ﬁ’l 4, almost everywhere. The estimators ﬁm 4, and ﬁfl A,

are comparably efficient with deviations of at most 15%, depending on x both can be

advantageous.

Figure visualizes the standard deviation of the estimator p, 4, with known o as
considered in Section as a magenta dotted line. According to the example on page
[152]the asymptotic variance of this estimator is 0. This is not yet visible in this simulation.
Rather, the standard deviation and the RMSE are almost equal to that of ﬁn 4, and only

minimally smaller.
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Conclusion

Overall, ﬁn 4, tends to have the smallest variance of the three estimators, especially for
higher lags ¢ and larger values of |z|. If pre-asymptotic probabilities differ significantly
from the limit values, or alternatively for small values of |z|, a bias can lead to ﬁn A,
having larger RMSE’s than alternative estimators. Still, ﬁn 4, provides a robust way of
estimating limiting quantities and is superior or competitive to ]37]; 4, and ﬁz 4, In terms
of RMSE for different models and a large range of sets A. While ﬁ% 4, Was specifically
designed to perform well for larger |x|, the exact threshold for which it outperforms ﬁfh A,
is a priori unknown and the projection based estimator ]5n A, brovides a robust alternative
that can be used for all . The tuning parameters s,, and u,, have no huge impact on the
performance of ﬁn A,-

Apart from the numerical advantage of ﬁn 4, demonstrated here, there is the theoretical
advantage that the new estimator actually gives a distribution of a spectral tail process.
All in all, ﬁn 4 performs reasonably well on finite samples and, therefore, it is a good
alternative to the existing estimators for P(0; € A) for d = 1, which is motivated and
defined for d > 1 and can even be extended to multiple time points easily.

This concludes this chapter on the new projection based estimator for the spectral tail
process. In the final chapter a short outlook on open research questions concludes this

thesis.

5.7 Proofs

Finally, we compile the proofs of the lemmas, propositions and theorems from this chapter.

5.7.1 Proofs for Section [5.1]
In this section, we only have to prove Lemma [5.1.1]

Proof of Lemma[5.1.1 Direct calculations for an arbitrary set A € B(l,) result in

RS RS HZkH ((2’5+k) ) RS( 4,
@ =% [ e A

keZ |2l
-y [z HZz+kH°‘/HZl||Z]1A <<2s+k+z/|lzl||) ) Q(d2)
P R 1| A | BT lzkrill /N2l ) ez
(6% (6%
sl ey () Yo
rezicz Izla llzllg 12kl / ser
. «@ . «@ .
e e A |1 (1 12l / ez

/(). Jon

iz 2 H”‘
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= Q" (A).

In the fourth step we have substituted ¢ = {4k and in the penultimate step > ez || zi—k||* =
||| was applied. All the interchanges of sums and integrals made here can be justified

by monotone convergence. This proves the assertion. O]

5.7.2 Proofs for Section [5.2.1]
First, we prove that T), 4 is asymptotically unbiased.
Proof of Proposition |5.2.1. By stationarity

BT = B[S 0a0Wi)| = Elga(Wan) | 150] > ]

nv, n

The function g4 : I, — [0,1] is absolutely bounded by 1. Define the approximating
functions ¢ : I, — [0, 1] by

(m) L (jwol>13 aq [ Whti
00 (wnnez) = ==l S~ ]1A( ) (5.7.1)
P mnez) = 550 LT 2 o

for all m € N. This gﬁ(“) is bounded by 1. As a finite sum and composition of continuous
functions, gfqm) is continuous PY-a.s. if P(3j € Z : Y;4./||Y;|| € 0C,||Y;|| > 0) = 0 for
C € {A B} and P(||Y;]| = 1) = 0 for all j € Z. While the former equality is ensured
by (PC) and Lemma [5.2.3] the latter follows from Y; = ©;||Yy||, where ©; and ||| are
independent and ||Yy]|| has a Pareto(«)-distribution.

Thus, the weak convergence defining the tail process implies

lim [ (Who) | [ Xoll > un] = E [g§"” (Va)nez)]

n—oo

Since gi™(w) — ga(w) as m — oo for all w € Iy, and |¢7”| < 1, m € N, dominated

convergence implies lim,,, o, E [g&m)((Yh)hez)} = E[g4((Ya)nez)]-
In the next calculations we use an idea similar to the following argument: for ay, b, > 0

one has
S Y - Y a Y h
|R|<sn [k|<sn |h|<m |k|<m
:Zathk—Zathk—l—Zathk—Zathk
hl<sn  KI<sn  |hI<sa  [kI<m  |Bl<sn  [K<m  |h<m  |k|<m
=Y an Y bt D an Y b (5.7.2)
[R|<sn m<|k|<sn m<|h|<sn |k|<m

Then, w.l.o.g. for n sufficiently large such that m—+|i| < s,, (this is only needed to simplify

the notation with the indicators in the sums over |h| < m a little bit, the calculations
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remains true if m + [i| > s, but then one has to consider the indicator h € H,,; for these

sums),

’E [gilm)(wn,O) - QA(Wn,O)‘HXoH > un}

Xn @ Xn 1
‘E [ Xl a]lA( ,h+>
o e X le A\ X
||th|| ( (th+z> ) ’
— : 1 1 1 14(0 Xoll > u,
2 S, 15 M b ) + Lo 1al0) 1%oll > w
1 n,h+1
_|g Xl Ea () S Xl
Ll v on s o (Em Xl ) 2
n,h+1 o
% Xl ta () S (Xl
[h|<m || n,h || [h|<m
a n,h+1i a
b3 Xl a () S (X
[h|<m H n,h H |h|<m
DN DA L Sl T
[h|<sn |k[<m

th 7
<(toemata(Tg) + n{heHgi}nAm))) 1ol >

. [zhl<m 1%l La (F25 ) Soncipizon Xl

B > hi<m 1 Xl Xjni<s, 1 Xnnll

S cpion [ Xnall® (Riner,yLa(7525) + Lpeng, 14(0)) I
. 0 > Up,
Z|h|§sn ||Xn7h||a
Zm<|h|<s HXn hHa Zm<\h|<s HXn hHa
<FE =7 d | Xol| > un| + E =N ’ | Xol| > un
Xihj<sn 1 Xnnll® ‘ Cini<sn 1 Xnnll® ‘
Zm<|h|<s HXhHa
—2F Son 1Xo]| > ) - (5.7.3)
[ Yini<sn 1 Xnll* ‘

We state the next argument with some additional parameter 7 € 7Z, since we want to
apply this argument later on in the more general form: Applying condition (PP) for some
0 < ¢ < 1 for which (PT) holds, we conclude

X1 i||>cu
5 [Zm<|h|<8n X0 1015, e 1 X0l > un

inj<sn 1 Xnj]1
P([[Xol > cun) - ,
< P Xniill > cuy, | | X0l > cu, < 4c® enc(h +
Pl > cun | 1Xoll > cua) P S et d)

m<|h|<sp m<|h|<sp

for sufficiently large n due to regular variation of || Xg||. Therefore,

B lzm<|h<sn | Xhg]]

Xoll > u
Sz, X[ 1% >
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Xyl N>cu
—E [Em<|h|<sn H h+JH {1 Xnyjll>cun} HXOH > u,

Z|h\§sn HXthjHa

Xpiil*1 <o
L E [Zm<hgsn [l Shesliseun) | x5 o,
> ihi<sn 1 Xnaill
m s Xnjl|*1 il <cun

< Ae® Z Gn,c(h"f‘j) +E [Z <|h|<sn “ h+]|| {”‘X;l+]”§ } ||X0|| >, (5'7.4)

m<|h|<sp Zlh‘gsn ||Xh+.7||

for all j € Z and sufficiently large n € N. Thus, conditions (PP) and (PT) imply

S Limsup |E[gE (W) = 9a(Wao) || Xoll > ua]| = 0. (5.7.5)

Therefore,

g@Emawmnuxw>uA=1MLMnmﬁ?<mwuwﬂ>u4

mM—00 N—00

= lim E[gA ((Yh)hez)] = Elga((Yn)nez)]

m— 00

Finally,

Ega((Yo)iez)] = [1{Y0||>1} 2 |||};L||||: (ﬁ@:ﬁ)

hEeZ
_ O] <®h+i )
5[ X o (]

heZ

= E[14(0f9)] = PO € A) = P(6,; € A),
where the last step holds due to the invariance of the spectral tail process under the
RS-transformation. This concludes the proof. m

The two following proofs establish the lemmas regarding the conditions (PP) and (PC).

Proof of Lemma[5.2.3. We start with the case ¢ > 1. Then,

P(||Xol > un)
Pl > unclll Xoll > tne) < PXjull > e [1Xoll > ) 55— 5
P(||Xo] > u,)

S P(|| X > Uy X > Up
X | 11 Xl >p(HX0H > Upc)

< 2c¢%,(|k])

for all £ € Z and a sufficiently large n € N. The last inequality holds by the regular
variation of X and (PP). For k < 0 we also applied the stationarity of X.
Therefore, by condition (PP) we obtain

lim hmsupP( max || X > unc

m—o0 p_, <|t|<rn

HXM>un>

< lim limsup Y P(||Xe]| > unc | | Xo| > unc)

— m—00
oo m<|t|<rp



5.7. Proofs 198

< lim 4¢* ) lim en(k) = 0.

m—r0o0

Now, consider ¢ < 1. Here the assertion is a direct consequence of (PP):

lim llmsupP< max || X¢|| > unc

m—oo <|t\<

< lim_ hmsup > P(|IXe]] > unc | || Xoll > unc)

m<|t|[<rp

|1l > une )

m— 00 n—o0

< lim 2 Z lim e, (k) =0.

This shows that (AC) holds. O

Proof of Lemma |5.2.5. Using ©; 4 O©F5 which holds since © is a spectral tail process (cf.
Theorem [2.2.5)), we obtain

P(©, c04) = PO c o) = [ ¥ 10" 116A(9h“)P@(d9)
nez 10113 19

Hence, if P(©; € 0A) =0, it is

o, (90 ()
>0 1 1 >0
(Z /el o el P& taesonton | g, |

:P<EIhEZ: s 68A,||@t||>0>:P<EIt€Z: ax eaA,||Y;||>0>.
[On]] [[Y2]]

In the last step we used [|©y]| < ||Yi||/|[Yo|l for all ¢ € Z and ||Yp|| > 1 a.s. since ||Yy| is
Par(«) distributed.
Conversely, starting with P(3t € Z : Y, /||Y:]| € 0A, ||Y:]] > 0) = 0, it follows

Onti
P(©; € 94) < /Z]l{nehnw}]laA (H’5+|,> P (df)

heZ

= / > Liyg>03Toa <|| ||> P (dy) = 0.

heZ

This proves the assertion. O

Next we turn to the main proofs of Section [5.2.1] For these proofs we will apply the theory
of Section [3.2], but for simpler presentation of the results developed here, we diverge from
the notation in that chapter. In order to directly fit in the setting of Section one has
to consider the transformed random variables X{m = Xpts,, 1 <t <n':=n+2s, and
rename the block lengths s/, := 2s,, + 1 and [/, := 25/ — 1. Furthermore, we need some

family of functions, which is given here by G = {ga|A € A}.
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In line with the notation in Section 3.2, we denote m, = |n/r,| for the sequence r,,
n € N. We have v, = P(|| Xo|| > w,) and

—P(Zgw nHéo) PAL<t <, |X] > u).

In the setting of Theorem [3.2.1{ we choose b,(g) = /nv,/p, uniformly for all g € G.
As already discussed on page [78] under conditions (PR), (P0) (which contains (61)) and
(PP) (which is stronger than (6P)), ({.2.1)) holds, i.e.

P PEAL <t < || X > up)
T'nUn B THP(HXO” > Un)

— 0 >0,

in particular, p, is of the same order as r,v,. (By , and thus due to Lemma m
under (PP), this was also shown by Basrak and Segers (2009), Proposition 4.2.) Thus, the
choice b,(ga) = \/nv,/p, for all g4 € G is of the order \/m,,. Hence, the normalization
in Condition (C) in Section is asymptotically equivalent to (r,v,)”" as considered in
Lemma [5.2.4] (i.e. the normalization Condition (C) divided by (r,v,)~! converges to 1).

Proof of Lemma[5.2.] We calculate the covariance straightforwardly. It holds

C’ov(ZgA it ZQB )
[iigA )98 (W, } [ZQA }E{ggB(Wn,t)} =1+1I.

t=1 s=1

In the following, both summands I and /I will be considered separately. We start with
I. By the stationarity and since ga4(W, ) = 0 if || Xo|| < u,, we have

{ii% nt)95(Wa )] (5.7.6)

t=1s=1
Tn

= Y (rn = 1DE [gaAWn0)98(W, ;)]

J=—Tn
J
=ron 35 (1= ) B loa W0 0W,) 1100 > )]
J=—Tn T'n
Rl Xjrhti
= TpUp Z (1_) l]l{lllel>un}< Z 1% ﬁH ||04]lf“<||)]({r +||>
Jj==rn he€H, ; k——sn +k j+h
+ HijLhHa ]1,4(0))
B T Xl

By (e X )
X 1 + Tx(0 Xoll > up|.
(2 s oG+ S s e =) 1%l

lGHn’i k=—sn lEHC
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Define the function f = fap;: lo X lo = [0,1] by
F((ye)eez, (z)eez) = Lgyol>13 1)1z 51
| znll® Zhyi e Yii
(Bl ) e
(;;Z Ykez 1zl 7\l 2all % Ykez Iyl " N lwll

with the convention 0/0 := 0. This function is obviously bounded with 0 < f < 1. By
the usual embedding of (X, +)<s, in lo through X,,; = 0 for |t| > s, we have

F=ran 35 (1= D) B[00, W) 10l > ],

Jj=—Tn

Define the approximating function f™ : 1, x I, — [0, 1] by
P (Woezs (201ez) = L1y Lol >1)
[[2n ] <Zh+z‘> el (ym')
X ]lA ]lB
(m% S I 2 o) ) | 22, Sen e 2 U

for all m € Z. Check that f™(y, z) = 5" (y)gy"” (2) and f(y, 2) = gn(y)ga(2) with g}
defined in (5.7.1)). Note also, that f(™ is as a finite sum and combination of continuous

functions P((Ywnez.(Vatilnez)_a 5. continuous, if the occurring indicator functions are PY-

a.s. continuous, i.e. if

Yithti .
0=P ({30 (A BLAREL: T €00 Vil > o} Ui ez v = 1})
j+h

Y .
< ) P(HjeZ: s e@O,HYjH>0>+P(HJGZ:HY}||:1).
o vl

Outside of these sets f™ is a continuous function. The indicators are PY-a.s. continuous,
if P(35 € Z: Y;4/|lY;] € 0C,||Y;]| > 0) = 0 for C € {A, B} and P(||Y;]| =1) =0 for
all j € Z. The former applies on the basis of condition (PC) and Lemma [5.2.3] The
latter follows from the fact that ||Y}]| & 19,]|Yo]], where ||©,|| and ||Y5|| are independent
and ||Yy| has a Par(a) distribution. Thus, f™ is P{(Y#rez,(htidrez)_a s continuous.

Therefore, by the weak convergence defining the tail process

E [f(m)((Xt/Un)ltlgsna (Xitj/un)i<sn) | 1 Xoll > u"] —+ B [f(m)((yt)tez’ Oft“)tezﬂ '

Since lim,, 00 £ (y,2) = f(y, 2) for all y, z € I, and | f™] < 1, dominated convergence

implies lim, o0 £/ [f(m)((yt)teza (K&H)tez)] = E[f((Y2)iez, (}/t+j)t€Z)]' Moreover, using
lgal <1 yields

B [£0) (Wi, wng) = F (W0, Wa )| Xoll > un] |
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= [E[g}" (Wa0)g” (Was) = 05" (Wi 0)g5(Wi )
+ 94" (Wa0)g5(Was) = 94 (Wa0)g5(Wa )| | Xoll > un|
< B[lg5" (Wao) (95" (W) — g5(Wa )|
+ (95" (W) = 94 (Wa0))gs(Wa )|l Xoll > un]
< E (95" (W) = g5(Wa Dl + 195" (Wao) = ga(Wao)|| [ Xoll > wn] |

Xps
S 2F [Em<|h|<8n H h+JO‘J ‘HXOH > u,
Z\h\gsn HXthj“

Zm<\h\§sn HXhHa
Dihl<sn 1 Xn]®

[1Xol| >

Y

+2El

where the last inequality holds by (5.7.3). Thus, by (5.7.4) conditions (PP) and (PT)
imply
lim limsup |E | f { )(ano,Wn,j) — fWho, W) | | X0l > Un} | =0.

m—=0o0 n o0

Combine this with the previous results for f™ to conclude

lim B/ (W0, W) [ 1Xo]) > )
= lim lim E[f(m (Wi, Wag) | | Xoll > ]

m—00 N—00

- %ﬂ%o E[f( )<(Yh)h€Zv (Yh+j)h€Z)] = E[f((yh)h€Z7 (Yh+j)hez)]

Yinl® Y hti V|| Vi
]1{||5’1H>1} Z || ]+h|| a]lA< j+h+ ) Z || l” a]lB< I+ >
i Lkez 1Ykl 1Yl iz Zkez |1 Yl 1 Ya]]

for all j € Z. Condition (PP), and for j < 0 stationarity, imply

=F

(1 _ M>E [f((Xt/un)Mgsn, (Xej/un)ipi<s,) | [ Xoll > un}

T'n
< B Ly sunt | IXoll > wn] = POX g1l > wn | X0l > un) < enl]])

for all j € Z. Therefore, with condition (PP), by Pratt’s Lemma (Pratt} 1960)

5 (1= ) B [0 s s i) 11Xl >

j:_"’n /rn
Wil (Y iy, ()
— E i1 Yj|>1 14 1p
2B Lt (Z Srea 1l Vol ) ) \ 2z Srea I \

Thus, for I from we obtain

Tn Tn

L [zng o)1V

T'nUn T'nUn =1 s—1

|Yjnll <Yj+h+i> s <Yz+z‘>
SN E gy oy 1y 1
2 (511>} (,%; Skez [Yiarll® ey IEZZ Skez | Yall® 1Yl

JET
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Next, we consider the second summand /7. Here one has

Tn Tn X h « X heti
ElZQA(Yt)] =E D Tgxigse | D H ”)ﬂ 2la ( S )
t=1 t=1 heH, ; k——sn H t+kH H t+hH

X a
+ || t+h|| a]lA(O)
nere, Zim—s, 1 Xese]
<E [Z ]1{|Xt||>un}] = 7B [L{xol>un}] = Tavn.
t=1

Thus, for 11 it follows

1

TnUn  TnUp

E Lri; gA(Wn,t)‘| E ern; gB(Wn,t)‘| = O(r,v,) — 0. (5.7.7)

Here r,v,, — 0 applies per assumption. To sum up, the above calculations for I and I1

together now result in

. Cov (igA nit) igB ) (5.7.8)
= 3 (1= )8 [fams (s Kz |16l > ] + 001

Jj=—"Tn
| Yjnl| <Yj+h+i> Y]] <Yl+z‘>
— El1 Y;||>1 ]].A ]]-B
2 “'>}(%%Zh@HYﬂHP Wl ) ) \ 2 S i 2 i

JET

ey (Y TR
“Y B Loy [ 3 =M, 1y
> {“>%£&@mw il ) ) \ & Ses vl 2 v
=c¢(A, B).

Next, we will rewrite the limit ¢(A, B). To this end, the relation Y; & O,]|Yo|| is used,
where ||Yp|| has a Par(a)-distribution, i.e. P(||Yo|| > z) = 27*Al, and ||Yp|| is independent
of (O4)ez. With this it follows for j € Z

||Yh|| (Yh—i-i) ||Y||a <Yl+z‘>
1
{YW”(%QDWQ 1] %%DW& il

STl <@h+i> 19|« <®l+i>

Lije.((ve 1
”@”Y>”(%§ng 2 \feul )\ 2 Ters 4 Ui
_ o0 ||9h||a Opti
_/]Rd/l Ley>po;11-13 (Z HQHCy 1651

1001y | ( G 1Yol o
(% ol (IIHZH))P (dy) P®(db)

E

=F
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a 1On )" ( Onss 10 [ O o
A (Z ol " (mn)) (Z fellg " (nelu))P )

o ||@h|| Ohti ||@l||a O
E |([16]1* A1) (h}EjZ ol L <||@h”>) (% ol ! (H&H))]' (5.7.9)

This results in
19l 4 <@h+i> 1], <@l+i>
(19,1 A1) ,
(o1 (Z ol 7 el ) )\ el e

which proves the claim. O

=Y E

JEL

It follows the proof for the alternative representation of ¢(A, B).

Proof of equation (5.2.3]). In the beginning of the proof of Lemma [5.2.4] by stationarity,
one could split up the sum in equation ((5.7.6)) into two sums summing over 1 < j <r,

and one summand for 7 = 0 instead of considering a single sum —r, < j < r,:

[ii% n,t)95(Wn )} =L [ga(Wn0)g8(Wno)]

t=1 s=1
2 Z CGDE [ga(Wao)gs (W),
Following the proof of Lemma using the same arguments it follows that
YAl (Vi Yl (Y,
s = B[( 5 P () (5 B ()

2 wvpe M\ N\ & vt U

IYill" (Vi e (Y

+23 B| Lo (i) o(5))|
3B tien (2 e ta (w2 e e

jeN heZ

Note that (©;);cz satisfies the time change formula (TCF), which is why (©75),c; <

(©¢)tez. Hence, for the first summand in this representation one has
#| (2 e (1) (e (i)
- S () (S Fom ()
@gmtﬁﬁﬂg%wmﬁ%mmme@
- (? s (] leﬁi)) P )

e (Z s <|Tlej|i|>) Fe)
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0> 19”4 <@l+i>

ez ol e
All remaining summands in the previous representatlon can be transformed as in ,
which leads to the last representation in :

¢(A, B) = [ )z ‘y||?al||\’: Q?é?u))]

leZ

r23 e[l a0 (3 1B () (S 8 ()| =

jeN heZ

As mentioned before, for the proof of Proposition [5.2.5| we apply Theorem and verify
that the necessary conditions are implied by (PR), (P0), (PP) and (PC).

Proof of Proposition[5.2.9. To prove this proposition we apply part (a) of the sliding
blocks limit Theorem [3.2.1] First, notice that we have to rename the observations X; =
Xis,, 1 <t <n =n+2s, such that we are in exactly the setting of Theorem with
sh=2s,+ 1,1, =25/ — 1. Moreover, recall that condition (PP) implies (Lemma
and that therefore p,, is of the same order as r,v,.

The conditions (A), (A2) and (MX) of Theorem are direct consequences of assump-
tion (P0). Moreover, condition (DO0) is directly fulfilled for finite families of sets A € A,
which suffices here.

Since 0 < g4 < 1 for all g € G we can apply Theorem , for which condition
has to be verified. By the definition of g4 it follows 1y, )20 < Lyjx;|>u,) for all
j=1,....,r, and for all g € G. Therefore,

Tn 2
E l( > ]1{g<wn,j>¢0}>
j=1

Tn 2
E (Z ﬂ{X]->un}) ]

j=1

Hence, (3.2.4)) is satisfied if

E[(in{nxﬂw}ﬂ - o(p"b"w) = 0(™) = Orvn). (5.7.10)

mp mp

To verify this, we apply Lemma with the modified function G((yn)nez) = Lyjjyo|>1}-
By Lemma this last equation is fulfilled, if condition (S) is satisfied for the function
g. We can choose ej,(k) := e,(k) for all £ > 1, for e,(k) given in condition (PP).
Thus, condition (S) directly follows from (PP). For this, note that we consider b,(g) =
(nvn /pn)? and therefore p,b,(g)? = nv,. Hence, condition holds for all g € G.

The condition (C) has been proved in Lemma [5.2.4 Now the assertion follows from
Theorem B.2.11 O

Finally, we turn to the last proof of this section, namely the verification of the asymptotic

normality of Py, 4.
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Proof of Theorem [5.2.6, By construction pn 4 = T5,,4/T,, ge and the asymptotic behavior
of T}, 4 is known from Propositionm Furthermore, we have E[T}, 4] = nE [ga(W,0)] =
N B [ga(Who) | || Xol| > wn]. The asymptotic behavior of p,, 4 should be derived from this

by a continuous mapping argument. Direct calculations yield

V1n (pna — EgaWao) | [[ Xol| > un])
—F(

— \/”_UnZ (A) + E[Tha] — Ega(Wio) | [ Xo]l > tn] /10nZn(R?) — E[T;,.4]
" 4) + nu,

[94(Who) | [ Xoll > un]

(R
_ Zn(A) = Elga(Wao) | [ Xoll > tn] Zn(RY)
(nvn)_1/2Zn<Rd> +1

Here we have used E[T), ga] = nv,, which follows from (5.2.2)). The equality holds uni-
formly over any finite family of sets A C A. From Proposition we know that
Zn(A)) aeq — (Z(A)) 4 gz Weakly, and by assumption it holds (nv,) '/ — 0. Hence, all

in all we achieve the weak convergence

(V1 (Pn,a — E[ga(Who) | | Xoll > un]))AeA
. (Z(A) —P(©; € A)Z<Rd)>
Ae A

0+1

= (2(4) - P(6; € HZRY), = (2"(A)) i

AeA

where we used E [ga(W,0) | [|Xol > un] = P(©; € A), which holds due to Proposition
5.2.1] This proves the asserted weak convergence of fidis. If in addition the bias condition
Elga(Woo) | | Xoll > un] — P(©; € A) = of(nv,)"*/?) holds, then the asserted weak

convergence holds obvious by the previous result and

VU (Pna — P(0; € A)) =/nvn (Pra — £ [ga(Whp) | [| Xoll > ua))
+ /1, (B [ga(Wao) | | Xol| > ua] — P(©; € A)). O

5.7.3 Proofs for Section [5.2.2

In this section, we prove the process convergence of (Z,(A))aca.

Proof of Proposition[5.2.7, We are going to apply Theorem part (b) with condition
set (ii). Condition (DO) follows immediately from the separability assumed in (PA) (iii).
All the other conditions used for the fidis convergence (namely (A), (A2), (MX), equation
and (C)) have already been verified in the proof of Proposition [5.2.5

Thus, by Theorem [3.2.1] part (b) with condition set (ii) it suffices to show conditions (D1)
and (D2) for some semi-metric on G = {ga | A € A} such that G it totally bounded.
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We start by showing the totally boundedness of G w.r.t. the (g, g5) := p(A, B), where

(Ythi) B ﬂB<Yh+i>H

il Al

This is a semi-metric, since p(A4,A) = 0, p(4,B) > 0 and p(A, B) = p(B, A) for all
A, B € A. Moreover, for A, B,C € A we have

the semi-metric p on AU {0} is given by

Yi ||

|
ZElﬂ{Yn»} > Vi

JEZ heZ

‘Yh” (Ythz‘) (Yh+z‘> |
E [ 1gyviis1 —1c
O = LB hamien 2 gy L | il
Yh” (Yh—l-i) (Yh—&-i)‘
< Loy >1 — 1B
2%( w10 2 e M Vil
Yh” (Yh+i> (Yh—i-z')‘
+E |1y, >1 —1¢
P AN Wi

= p(A, B) + p(A, C)

Thus, p fulfills all properties of a semi-metric. In the next step, we prove that A is totally
bounded with respect to p, which is part of condition (D1). From the definition of p
it follows that p(A, B) = p(A\B,0) for B C A and p(U,en Bn,0) = Y pen p(Bn, 0) for
disjoint sets B, C R%, n € N. In addition, one has p(R%, () = ¢(R¢ R?) < oo, as shown
in Lemma (.2.4]

Fix § > 0 and for the beginning k € {1, ...,¢}. Recall that, for t € [0,1 4 ¢, t*) € [0,1]
denotes the vector with k-th coordinate equal to t A 1 and all other coordinates equal to
1.

Due to condition (PA) (ii) the mapping Hy : t — p(A,m,0) is non-decreasing. With
exactly the same arguments as in the proof of Lemma condition (PA) (v) implies

P(IheZ: Yins/ IVl € ) Ao\ A ) =0

se(t,1]

for all t € [0,1). By the monotone convergence theorem, this implies

lim Hy(s) = lim p(Asi, 0) = p(Ag, ) +1im p(Agw \ Ay, 0)

st
= (> D) + ( ﬂ S(k)\At<k),®>

€(t1
[V || Yiti
+'j£:'E;[1{Y'H>1} jg: ||}/Ha SE@J]AEQﬂ\AAk)<||Y%¢|>

JEZ

= Hy(t), (5.7.11)

i.e. Hy is right-continuous and thus it is the measure generating function of some measure
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on [0, 1], which is finite because of p(A4;,0) = p(R%, ) = ¢(R?, R?) < co. Thus, there exist
Ji < oo such that we can define a partition 7, := {[s;w'_l, ski) |1 <j< Jk} U{{1}} of
0,1], with sz = 0 and sy, = 1 such that Hg(sg;—) — Hi(sgj-1) < d forall 1 <j < J;.
(with Hy(s—) := limys Hi(t)). Roughly speaking, the idea of this construction and choice
of the sy is to split up the mass of p(R?, () onto a finite number of disjoint sets given by
Ur<siin Ay \A, ® with mass smaller than § w.r.t. p. One way to define this partition is

to define the 1nterval boundaries iteratively by

Sk,j = inf {t € (Sk,j—la 1] | p(At(k), ASI(JTJ)'A) > 5}

Observe that although it is possible that the measure pertaining to Hj has mass greater
than 6 at some of the s;;, such jumps of Hj do not play any role in the following
calculations, in particular no continuity is required. If Hj; has some point mass greater
than d, then this has to be at some point sy ;.

For the fixed § > 0 we then define the finite cover of [0, 1]¢ by the sets

TO = {x{_ T | T € Tx, V1 <k < q}.

Since Ty is a partition of [0, 1], this 7 directly defines a partition of [0, 1]7. This partition
contains [[{_; Jx < oo sets, in particular there are only finite many sets in this cover of
[0, 1]2.

For any set T' = x{_,Ti, € T define Ky := {1 <k < q| Ty # {1}}, i.e. as the set of all
indexes k with Ty # {1}. Moreover, we define the smallest set and the upper bound for
all sets in one family {A;|t € T'} of the above defined partition by

AT - ﬂ Ag —A(mmT1 ..... min Ty) €A and (5712)
seT

Ar = J A, e A:={A; |te[0,1+7}.
seT

Note that A7\ Ap C Upek, (UseTk 0\ Afminty) (k)) Hence, by the construction of 7,
forallt €T,

p(AeAr) = p(A\ Ar,0) < p(Ar\ Ar.0) (5.7.13)
< Z p( U AS(k) \A(minTk)UC)a@)
kGKT SETk
= Y Hy(supTj—) — Hi(minT}) < ¢é,
keKr
by applying p(Unen Bn, ) = X pen p(Bn, 0) for disjoint sets B,, C R? n € N.
Therefore, all sets of the form {4t € T}, T € T, have a radius of at most ¢-§ w.r.t. p.
Thus, A is totally bounded with respect to p and this implies that G is totally bounded
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with respect to p.
Now, we turn to the continuity condition (3.1.5) of (D1). Define the semi-metric p as
before and define V,,(ga) = X7~ g(Wi;). Observe that

My,

Pnbn(94)bn(95)

T 2
m
- “le; nt) — n
n, <t 9gaWa) — gp(W ,t)> ]

(o) 22 (S

Z ga(Whe) f:l gB(Wn,j)]

E [(Va(g4) = Va(gn))?]

3
3

Il
—

<
3

_ M

nu,

+—E

’I’L

— Z—E

n

2
1Yill™ ¢ <Yz+i>
— E |1 Y;
> B Tgyisn (Z e

JEZ Y=Y/
il (Vi)
+ Y E |1yt ( l“‘)
Z U }(Z A
e < ) Vil <Y>
— 2 E | 1ayviis1
=0l ””(Z; izt i) )\ & e e Uil
2
vl ( (Y) (Y))
Z t ””(lezz IY1la Yl vl
}7+i }?+i
<> E{1gy>1 ( )—]IB <
Z { ””le%nyn Vil Vi
= p(fi,lg)

The Convergence holds pointwise for all A, B € A due to Lemma [5.2.4], in particular due

to and (5.7.8). Note also that m,r,v,/(nv,) — 1. By condition (PA) (iv) and the
same arguments as in Lemma | this convergence holds also for A, B € A= {A; |t ¢

[0,1+ ]9},
For T,S € T and A7 € A and Ag € A it follows for sufficiently large n € N that

1

T'nUn

E|(Valoa) = Valoa) | < plAr 45) + . (5.7.14)

This inequality holds uniformly for all T,S € T, since 7 contains only finite many
sets.

Now consider A, A, € A with p(A;, A,) < §. Since by construction 7 is a partition of
[0, 1]%, there exist unique S,T" € T such that s € S and ¢ € T. By definition it holds
Ar C Ay C Ap and Ag C A, C Ag. Hence, by the choice of A;, A,, the construction of
the partition, the convergence leading to and by the inequality ([5.7.13) we may
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conclude for sufficiently large n € N

T B [(Valga) = Valga.)?]

n

= ::LU:LLE [max ((Vn(gAT) B Vn(gAS>>2’ (Vn(gAT) o VTL(gAs))Z)}
< o B [Waloa,) = Valga )P + 2 B [0Vilga,) = Valoa)’

< p(Ar, Ag) + p(Ap, Ag) + ¢

< p(Ar, Ag) + p(Ar, As) + p(As, Ag) + p(Ar, A) + p(Ar, A + p(As, Ag) + &
< 2(p(Ar, A7) + p(As, As) + p(Ar, A,)) + ¢

< (4¢g+2)d +e.

This bound holds uniformly for all s,¢ € [0,1]? with p(A;, As) < d. From this uniform
bound it follows m,,/(nv,)E [(V(g4) — Va(gs))?] < (4q + 2)6 + &, for all A, B € A with
p(A, B) < § and for some ¢,, > 0 independent of A, B and with ¢,, — 0 as n — co. Hence,
SUD 4 pe ap(a,B)<s M/ (Mn) E [(Va(ga) — Va(gn))?] < 0 + &, follows for a sufficiently large
n € N. Thus,

. My
lim sup sup —F [(Vn(gA) - Vn(gB))g] <9
n—00 A BeA:p(A,B)<s NUn

and

m
lim lim su su —F\(V, -V, 2=0
640 n—>00p A,BE.A:p(I?Ll,B)<5 nu, |:( (gA) (gB)) }
and condition (D1) is satisfied.
Finally we turn to condition (D2). As shorthand define

1
N,, = E

T'nUn

Tn 2
(Z ﬂ{xj|>un}) :
=1

It obviously holds N,, < r,/v, < oo for all n € N.

Denote by w = (wg)1<k<q € [0,1]? an index with 0 € A, but 0 ¢ A, for all s < w.
This index w exists due to condition (PA) (vii). Condition (PA) (ii) implies that t — A,
is non-decreasing in each coordinate (to this end, choose s; = 0 in the non-decreasing
functions in condition (PA) (ii)) and therefore 0 € A for all s = (s1, ..., s,) with s > w.
Moreover, this is an equivalence, i.e condition (PA) (ii) implies 0 ¢ A, for all s # w,
ie. s < w; for some ¢ € {1,...,q}. To this end, note that 0 € A, and 0 ¢ Az,
with s A w is understood componentwise, i.e. (s A w); := min(s;,w;). Likewise s V w =
(max(s;, w;))1<i<q is defined as the componentwise maximum. If 0 € A;, then it would be
0 € A\ Asnw but 0 ¢ Agv\Ay. This contradicts condition (PA) (ii) since this condition

implies As\Aspw C Asvw\Ayw. This can be seen by increasing successively s; to w; for all
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Jj =1,...,q with s; < w; under consideration of the non-decreasing functions in condition
(PA) (ii). Thus, 0 ¢ A,. All in all, condition (PA) (ii) implies 0 € Ay if and only if s > w.
This will be important for the construction of the brackets below.

In a first step for the construction of brackets now fix n € N and let € € (0,1) be arbitrary.
With exactly the same arguments as above for the functions Hj, we may conclude from
condition (PA) (ii) and (vi) that for all 1 < k < ¢ the function Fy : [0,1] — R,

hEHn i k—_sn

2
| X nl| KXithti
t— 1 w 14
. (Z {IIXell>un} Z 1 X0 n || Ay | X i

is right-continuous and, therefore, the measure-generating function of a measure on [0, 1]
with finite mass Fj(1) < N,, < 0.

Hence, one can choose t; € [0,1], 0 < j < Ji < [N,¢*/e| + 1, such that ¢, := 0,
tegr = 1, wp € {tey]1 < < T}, trgor < try and Fi(te;—) — Fr(trj1) < e/q* for all
1 < j < J;. Roughly speaking, the idea is to choose an increasing sequence of J; points
such that they split up the mass of the measure pertaining to Fj, into finite many disjoint
sets [tr.;, tkj—1) With mass less than £/¢*. Again, one can chose this points ¢ ; for instance
iteratively by

try = inf {t € (trjo1,1] | Fe(t) — Fr(tujo1) > €/q*}.

These points define a partition 7," := {[tx;_1,%x;)|1 < 7 < Ji}U{{1}} of [0, 1] and hence
T ={x{_Tx | Ty € T, V1 < k < q} is a partition of [0, 1]9. Note that the construction
of this partition 7* works completely analogously to the construction of 7 above, the only
difference now is that the size of the sets in the partition is now bounded with respect to
the pre-asymptotic function Fj instead of the asymptotic versions Hj. This also explains
why we need condition (PA) (vi) instead of (PA) (v) here. From this partition we define
brackets by
A" ={A, |teT}

for all T € T*, so that A>" = {A7" | T € T*} forms a partition of A. By the previous
discussion, 0 € A, if and only if s > w. Thus, according to the construction of the
partition and the definition of A, for each set S € A®" it is either 0 € A for all A € S
or 0 ¢ A forall A€ S. In particular, this implies 14(0) = 15(0) for all A,B € S and
therefore sup, pes 14\p(0) = 0. This is why the indicator 14(0) which occurs in the
definition of g4 (W, ) does not occur in the following calculations.

In the subsequent calculations we will apply (a—b)? = a?—2ab+b* < a®—20*+b* < a®—b?,
which hold for all @ > b. Due to the construction of the partition it holds for A" with
T = x{_ T € T* and A7, := User, Ao that

2
1 o
E| sup (Z(QA(Wn,t) - gB(Wn,t))> ]
T'nUp A,BE.A;’” t=1
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2 |(S0a )}

IN

T'nUn

(QAT (Wnt) - gAT(Wn,t>)> }

S < |Xt+h||a Xt—i—h—',—i
Lxe>uy D X \Leemabana, |,

t=1 h=—sn kf_sn

2
Flnenc ylana, (0))) }

2
1 < | Xeqnll® ( KXithti >
= —F Lix, >0 15
( PV T P A T | o

t=1 heH,, ;

IN
S|

2
[ Xen Xivhti
1 u 1,
Z {IXell>un} Z e ?k\A(mmTk)w | Xpen|

keKp t=1 heH, ; k——sn

[ 2
| Kr| | Xotn]|® (Xt-l—h—i-i)
<2 S g 1,50, 1
<o k;{; Z (x> }hEZH;” Xl Mo ro® \ [ X
‘KT‘ HXtJtha ( <Xt+h+i>
= E Tyqx Un 1,+
T'nUn keZI;T Z = }hezH: o 1 X e || A \ || Xl

1 Xivhti ?
Ao mo® \ [ Xl
<|Kr| >

2
| Xegnl (Xt+h+z >
1 X Un 1
heRy TrUn (Z Xl >un} Z k:_fsn HXH-kHa A ”Xt-i-h”

hEan
| Xean X i

— Kr Lyx,[>u, t+h 1, ( t+h+i>

keZKT "o, (Z {I1xell> }hg k__sn [ X ]| Ammmo® \ ([ X))
= |KT| Z (Fk(suka—) — Fk<m11’lTk)>

kEKT
< |KT| Z — < g,

k’GKT

where the third last step holds by construction and the penultimate step holds since
| K| < ¢ by definition. Note that for k € {1,...¢} \ K7 one has A} \ A;w = 0, which is
why the corresponding summands do not occur in the above calculation.

Thus, each set A%" in the partition is indeed a /e-bracket for A with respect to the L%
metric as considered in condition (D2).

The partition A=" contains [J{_,(J; + 1) sets. This is an upper bound for the bracketing
number Njj(v/g, A, Ly) which is defined in condition (D2) for all n € N and € > 0. Thus,
we obtain Nij(v/E, A, §) < Ty (Ji+1) < ([Nag?/e]+2)7 < (Nag?/c+3)1. This implies
fore <1

2 2 2 2

log(Nyj (2, A, L3)) < qlog (N5 +3) = qlog (Nn‘;(l + 3N5q2)) < qlog (V. 54)

= qlog(N,) — qlog(e) + 2q log(q2) + qlog(4) =: qlog(N,) — 2qlog(e) + ¢,
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since we have N,, > 1 by definition. Due to the verification of (5.7.10|) in the proof of
Proposition we have N,, = O(1) for n — oo, in particular we have log(N,,) < ¢ for
some suitable constant co > 0 and for all sufficiently large n.

Therefore, it follows for sufficiently large n and 7 < 1

/ \/log (Npy(e, A, Ly))de </ \/qlog ) — 2qlog(e) + c1de
< / qlog(N,) — 2qlog(e) + c1de = 17 + 7qlog(N,,) — 2¢ [elog(e) — €],
0

=17 + 7qlog(N,,) — 2q7log(7) 4+ 297 < 7(¢1 + qez + 2q) — 2g7 log(7).

This tends to 0 as 7 — 0. Thus, condition (D2) is satisfied with the n-dependent partitions
A=™ defined above.

All in all, the conditions of Theorem [3.2.1] part (b) are fulfilled which yields the asserted
process convergence of (Z,,(A))aca to centered Gaussian process (Z(A))aea with covari-

ance function c¢ as given in Lemma O
The next proof considers the special case of linearly ordered sets in A.

Proof of Corollary[5.2.8. First note, that (PA) (ii) is trivially fulfilled due to the linear
order of A. Part (i) of (PA) can be fulfilled if ), R € A, otherwise one can add this two
sets. The proof of the assertion is essentially the same as the proof of Proposition [5.2.7]
We want to apply Theorem [3.2.1] but now we want to verify the conditions for asymptotic
equicontinuity in condition set (i) in part (b) of the theorem, i.e. condition (D1) and (D3)
(instead of part (ii) with condition (D2)). Condition (D1) was established in the proof of
Proposition [5.2.7

Next we consider condition (D3). Since A is linearly ordered, the functions in G are
linearly ordered. Therefore, G = {ga|A € A} is a VC(2)-class. This is enough to show
the entropy condition (D3) (cf. remark directly after condition (D3) or Remark 2.11 in
Drees and Rootzén| (2010) or [Van der Vaart and Wellner| (1996)), Section 2.6). Thus, the
assertion follows from Theorem B.2.1]

Note that the conditions (PA) (vi) and (vii) were only used in the proof of (D2) and are

hence not needed in the case ¢ = 1 considered here. O

As before, for the proof of Theorem the asymptotics of (7}, 4)ac4 is the main ingre-
dient and we can derive our asymptotics for (P, a)aea from Proposition m

Proof of Theorem[5.2.9. We have pp a4 = T}, a/T,, g« and we have already established the

asymptotic behavior of T}, 4. Direct calculations yields

. T,
/1y (Pra — pa) = \/nvn< T A pA>

n,R4

— V10 Zn(A) + E[Ty, 4] — par/nvn Z,(RY) — panv,
" /10, Zn (RE) + no,
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Zn(A) — pAZn(Rd) + /v, ((nvn)_lE[Tn,A] —pa)
(nv,)~Y2Z,(R%) + 1 ’

Here we applied E[T,, ga] = nE[1{jx,|>u,}] = nv,. From Proposition we know that
(Zn(A))aea — (Z(A)) aea, and by assumption it holds (nwv,)~'/? — 0. Hence, together

with (PBr) we achieve the weak process convergence

(\/ nuy (pn,A - pA>)A€A % 0+1

= (2(4) - paz(R?))

<Z(A) —paZ(RY) + 0>A6A

rea = (PP () aca

The covariance structure of the limit process (ZP°(A)) e follows by direct calculations:
With the covariance function ¢ given in Lemma [5.2.4] and using the symmetry of c¢ it
follows for A,B € A

(A, B) = Cov(ZP(A), Z"*(B))
= Cov(Z(A) = paZ(R?), Z(B) — ppZ(R?))
= ¢(A, B) + pappc(R? RY) — ppe(A,RY) — pac(B,RY)

- el (35 Rl () (3 ol ()

JEZ hEZ
tpaps S E[(10,]° A 1)]
JEZ
||@l” ®l+i
—p E[ (e am( ( ))
2 2 B AD{ 2 g tal g
AL,
oS E(l0; am( < ))
AZ 01" AV 2 o2\ ey
O] Ohti SAS O
S sfier - (D)o S (&)] <
2 [’ il A D pe = 2, g te (g, 1)) (P~ 2 e Ml g

5.7.4 Proof of Theorem [5.3.1]

Similarly to the proof of Theorem , we can prove the asymptotic normality of ]%n A
Again, we first prove asymptotic normality of the appearing statistics 7}, 4 and T}, , using
Theorem [3.2.1] and than apply a continuous mapping argument to derive asymptotic
normality of the fraction. However, since the estimator &, appears in an exponent, the
analysis here is more sophisticated involving some Taylor expansion arguments. The most
complicated part of the proof will be the treatment of these single terms of the Taylor
expansion.

Some parts of the proof of Theorem [5.3.1] are arranged in a series of lemmas, which are

discussed subsequent to the main proof.
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Proof of Theorem [5.3.1]. One directly obtains

(M (ﬁnvf‘ — PO e A)))AeA
= (\/n_vn(ﬁnA - P(@i € A)))AGA + (\/n_vn (ﬁn,A - ﬁ”’A))Ae.A' (5-7-15)

The first summand converges weakly to (Z?°(A))4ca due to Theorem [5.2.9) Thus, we
have to check the convergence of the second summand and that the convergence of both
summands holds jointly.

First, note that &, = T, ga/T}, 4 with T, 4 defined in and the function ¢ is given
by ¢((xn)nez) = log™(||zo|]). With similar arguments as in Proposition we will
show the weak convergence of ((Z,(A))aca, Zn(¢)) to a centered Gaussian process. For
(Zn(A))aca this is the statement of Proposition [5.2.7, in particular the conditions for
fidis convergence were already checked there. The conditions for asymptotic tightness
are still fulfilled if only the single function ¢ is added, so asymptotic tightness holds
for {ga : A € A} U{¢}. Thus, to prove the process convergence ((Z,(A))aea, Zn(@)) it
suffices to prove fidis convergence of Z,,(¢) and the convergence of the covariance of Z,(¢)
and Z,(A), since apart from (C) the conditions for fidis convergence can be checked for
each function of the index set individually.

For ¢ as an unbounded function the fidis conditions can be verified with Theorem |3.2.3
for unbounded function. Here we use b,(¢) = \/nv,/p, = bn(ga). For this theorem we
have to check (3.2.7), condition (L) and the convergence of standardized covariance, the
remaining conditions were already established in Proposition [5.2.7] To ease the formulas

recall the notation X,,; = X;/u,. By condition (PP1) and stationarity we obtain

(Z¢ )] | (S !\Xmll))]

= ZZ E [log™ (| X 411) log ™" (|| X )]

tljlnn

Tn —
<23 =8 g (1,0l log (1 Xl 11Xl > ]
=0

n

T'nUn

<23 E [log* (| Xuol) og" (1 Xl | Xl > ua]
k=0

< 25 [log (X0l | 1ol > ] +2 37, (K) = O(1), (5710
Thus, condition is met. Here, £ {logJ“(HXmoH)2 | | X0l > un} = O(1) holds since
E {logjL(HXn,OH)2 | | Xo||l > un} — Elog™(||Yo|])?], which holds due to the definition of the
tail process (Y;)iez and the uniform integrability of the family log™ (|| X,0l|)?/vn, n € N.
The latter holds since log™(||z]]) < ¢p||#|PL{z)>1y for some ¢, > 0 and p € (0,a/2)
and || X, 0lI** L xo>un}/Vn,n € N, is uniform integrable due to the Potter bounds (the
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argument is given more detailed in ([5.5.6))).
Using ((5.7.16|) and Markov’s inequality yields

(Zlogwxmumm) n [(:anlogwnxn,ﬁr))z]=O(";§)

for all ¢ > 0. Applying Hoélder’s inequality, stationarity and condition (PM) (i), we
conclude for § > 0

Tn 2
E| (S 10" 1%l 1
l ; og ™ || Xl {ijllog*' Xn,j||>5\/m}]

- Z Z E[10g+ HXntH 10g+ HXnSH]l{ ™ 10g+ ||X ‘>E\/W}‘|
t=1s=1 ™ n

<303 E[(log" X - log* [, (Zlog Xl > ey, )
t=1s=1

'n 1/(146)
< 2, ) E|(log" | Xnol - log™ || Xnll)+]

k=0
6/(149)

X P(E:logfr | X051 > &mv,l)
=1

'n 1/(1+96)
= 2r,0)/ 03" E[(log™ || X ll - log ™ | X sl) ' | 11X > ]

k=0
o))
>< J—
n
§/(1+6) §/(1+9)
_ O( pl/(+9) ( - ) > — O(rnvn (TZ;) ) = o(r,vp).

Note that E{(logJr 1 X020 | |1 X0 > un} = O(1) by regular variation of || X,] as
before. Thus, condition (L2) is satisfied for ¢, which implies condition (L) (cf. Lemma
3.1.6). Hence, all condition of Theorem [3.2.3] part (a) for fidis convergence, are fulfilled,
except for the covariance convergence.

The convergence of the covariance between Z,(¢) and Z,(A), for any A € A, and of the
standardized variance of Z,(¢) is proven in Lemma [5.7.7 Thus, all conditions for the
joint convergence of ((Z,(A))aca, Zn(¢)) are fulfilled, such that

((Z(A)) aea, Zn(8)) = ((Z(A)) aca, Z(9)).

By similar arguments as in Theorem [5.2.9 and Lemma [3.3.5]and due to the bias conditions

(PBr) and (PB,) we conclude the joint convergence

Vi (s = PO € A)) s dn =) % ((27() %) (G717

with Z, := aZ(RY) — a?Z(¢) and ZP*(A) = Z(A) — paZ(R?). This is the main argument
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needed to show joint weak convergence of both terms on the right hand side of .
To deal with the second term on the right hand side in we further decompose
this term. Recall the shorthands H,,; = {(—=$, — 1) V —sp, ..., (s, — i) A s, } and H,% =
{=Sn, s Sn )\ Hn -

Define the function p, 4 : (0,00) — R by

1 on HXntJtha
Pn.al\Q) ‘==, 1 Un
(a) R Z IXl>un} D

I>un} =1 he, s 1 Xk
Xt+h+i
< (tocmata (J25) + Lo y100)

Then, p, a(®) = pna and p, a(&y,) = ﬁn 4. A Taylor expansion of this function at the

point « yields

PrA — Dua
(G — Z]l{”XtH>u} i <10g | X tn D X ntnl|®
g 1]1{||Xtu>un} P T o [ Xori]l®
HXntJth Zk——snlog(HXnt+k||)HXn,t+k||0‘
( k=—sn ||Xnt+k|| ) )

Xithti
" (ﬂ{h%}“ (n)gin) ! “{heHc-}“(O))
2 Sn

(@n — Q) Z]l{HX >t Z (lOg “XntJth)HXn t+hH
n >Un
2 Yyxesuy 15 0 Ko [ X

1Og(”Xnt+h||)||Xnt+h|| Zk_—sn log(||Xn7t+k||)||Xn,t+k||5‘
(s, [ Xtk ®)?
Xl Zk__snlog (Xt D[ X |
(s, [ Xtk ®)?
o I Xnanl|*(2 k;—snlog(HXnt—i-kH)’|Xn,t+k|‘a)2>
(Cr s, [[ Xkl *)?

Xt+h+i
(Lot (T225) + L reng 120
— I(A) + [I(A), (5.7.18)

with & = Aa + (1 — \)&,, for some X € (0, 1).
In Lemma we show that IT(A) is asymptotically uniform negligible, i.e.

sup /Aol T1(A)] = op(1)

AeA

as n — o0o. To deal with term I(A), define

A7) = — S FM W), dan = — 0 Fa(Wiy) (5.7.19)
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with Wn,t = (th)‘ﬂgsn and

m

m lo a
.f,El )((yt)heZ) = ]I{Hy0||>1} Z ( g,(nHyhmHyhll (5.7.20)
h=—m Dhe—m Hka

Myl 2R Log (lywl ) 1yl Ynti
m a2 ]lA
(ke [lyrl|®) |yl

for all m € N and f4 := f}fO) with the convention 3-,<o = YXpez- In addition, recall
the definition of d4 from Theorem and define dU™ := E[f{ (Vi)nez)].
With the usual embedding of (X, )y<s, in lo by defining X,,, = 0 for [t| > s, one has

o, (10g (| Xoeinl) | X
W) = Liix,>u, An, 7

h=—sn, k=—sn

Xl R, 10g(||Xn,t+kH)||Xn,t+k!|°‘>
(2 s, 1 Xkl )?

Xitheti
X <ﬂ{h€Hn,i}]]'A <||)t(—:+:”> + ]l{her’i}]lAm)) .

This definitions leads to

nu,

Vol (A) = /nu, (G, — ) =5
21 Lz
T4 4 (G —

= /o, (G, — ) =
21 Lxsun)

= [(A) + 1B (A).

dA,n

nu,

@)= (day —d2)
Yie1 Lyx > un} .

The representation of I(A), the convergences of /nv,lI(A) combined with (5.7.15) and
(5.7.18)) yield

(VAvn (boa— P(©: € 4))) (5.7.21)
= (V1 (Pna — P(©; € A))) e u + <\/n_vn(@n

+ (1m(4)) | +op(1)

nu,

(m)
2t x> un} AcA

for all m € N.

The convergence Sup 4¢ 4 |df4m73 —d™| = op(1), ie. dff,z — d7" in probability uniformly
for all A € A, is established in Lemma [5.7.3] The weak convergence in Proposition
for the set R? readily implies nv,,/(37_; Ljx,|>u.}) — 1 in probability. Note that
these two convergences also imply dfmnvn [ Lyxsuny) — d;m) in probability and
uniformly for all A € A and for all m € N, provided sup . 4 |df4m)| < 00, which is shown
in Lemma m This convergence, the joint convergence and Slutsky’s Lemma
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(Kosorok| (2008]), Theorem 7.15 (i)) imply the weak convergence

nv,

), =
21 Lxe>und

((M (Buon — PO, € 4))) 4oy /(6 — <d5;f2>AeA)

2 ((Z72(A)) acss Zoor (A5) ac ).

The map H : £°(A) x R x £*(A) = R, ((z(A)aca), y, (2(A) aca)) = (2(A) +2(A) -y) aca

is continuous with respect to the supremum norm:

[(2(A) + 2(A)y) aca — (2" (A) + 2'(A)y) acallso
< l(@(A) = 2'(A)) acalloo + sup |2(A)y — 2(A)y'| + sup 12(A)y — 2 (A)y]

< sup(z(A) — 2(A)) + sup [2(A)lly — /| + 2sup [2(A)[]y]| <€
AcA AcA AcA

if supye 4 max(|z(A) — 2'(A)], |y — /|, |2(A) — 2/(A)|) < 6 and for a suitable ¢, i.e. H
is continuous in all points with sup 4. 4]2(A4)| < oo. Choose z(A) = dilm) and note that
sup 4c 4 [d5”| < 0o by Lemma .

Thus, the map H is continuous at the point ((ZP°(A))ea, Za, (d(Am))AeA). Thus, the
joint convergence resulting from Slutsky’s Lemma and the continuous mapping theorem

applied with H imply

nu,

(V10 (Pna — P(©; € A))) yeu + <\/n_vn(d _

o (ZP(A) + d5V Z0) aea

(m)
) — 44 n) (5.7.22)
2= Lxesuay 7/ aca

for all m € N.

In Lemma/5.7.4|part (i), it is shown that lim,,_, limsup,,_, E[|df4n2—d,47n|] = 0 uniformly

for all A € A, in particular d(ATfL,z—d A,n converges to 0 in probability uniformly for all A € A.
Since by the same arguments as before |/nv, (& — a)nv, /(X7 Lix,|>un}) — Za Weakly

as n — 0o, Slutsky’s Lemma implies that

nuy,

1R (A) = /v (6 — (dam —di) B0 (5.7.23)

)
t=1 H{[| Xel[>un}

uniformly for all A € A a.s. as n — oo and then m — co. Moreover, Lemma, part
(ii) shows that di,m) — da as m — oo uniformly for all A € A. Thus,

(ZP(A) + d™ Z(A)) aea — (ZP(A) + duZ(A)) aca (5.7.24)

a.s. as m — oo. Combining (5.7.21)), (5.7.22)), (5.7.23) and ((5.7.24)), standard arguments
yield

(\/W (ﬁn,A - P(6; € A)))AGA L (ZP(A) + daZa) aca = (ZP*(A)) aca.
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The applied standard arguments are similar to e.g. Proposition 6.3.9 in Brockwell and
Davis (1991)). Since Z,, := aZ(R?)—a?Z(¢) and ZP*(A) = Z(A)—paZ(R?), this concludes
the proof. O

Auxiliary Lemmas for the proof of Theorem [5.3.1

In the following a series of lemmas is presented, which state useful assertions which are
applied in the previous main proof of Theorem In Lemma the convergence of

the expected value lim,, o (v,) ' F { fém)(Wn,o)] is shown. This lemma is a preparation

for Lemma |5.7.2 which establishes the pointwise convergence d(A”f,z — d(Am) for all A e A,
m € N. Lemma [5.7.2] in turn, is the preparation of Lemma which basically shows
the uniform convergence sup 4¢ 4 \dilm,z — d(Am)] — 0 in probability as n — oo. In Lemma
we establish that the approximation error of using fgm) instead of f4 in the main
proof is asymptotically negligible.

Lemma addresses two optimization problems which occur in the proof of Lemma

5.7.6, Lemma then shows sup 4. 4 |[II1(A)| = op((nv,)~'/?). Finally Lemma

shows the convergence of the covariances needed to establish condition (C) in the previous

main proof.

Lemma 5.7.1. Suppose the conditions (PR), (P0) and (PC) are satisfied. Then,

. 1 i m . 1 m m
lim £ [ fo(l W, t)} = lim —F {ff(l )(Wn,0>j| —dV eR

n—o0 'r'n'Un =1 n—o0 /Un

forall A€ A and m € N, with di™ = E[f{™ ((Ya)nez)] and f defined in (5.7.20).

Proof. Due to the definition of the tail process (Y;);ez one has
£ (" (Xpm | 1X0]l > un) = £ ((Yem) -

The continuous mapping theorem implies

L (5 (Xefun)gzs, ) |1 Xoll > un) (5.7.25)
2 L (M (Viez))

_ E( (s _ P S o DI (Y))
= A
=

2pki<m 1Yl (i <m [1Yell%)? bl

if ff(lm) is a.s. continuous with respect to the distribution of (Y;)icz. As a finite sum
and composition of continuous functions, the function ff(lm) is PY-a.s. continuous if the
map (Yi)iez = L1a(Ynsi/||Yn]]) is a.s. continuous for all |h| < m, which is the case if
P (Yiii/||Ynl € 0A, ||Ya]| > 0) = 0 for all |h| < m, A € A. This holds by assumption
(PC) and Lemma ie. fi is PY-as. continuous.
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Due to the weak convergence there exist random variables with the same distribu-
tion as fim)(Wn,g), given || Xo|| > un, n € N, which converge almost surely and therefore
also in probability. Convergence in probability together with uniform integrability implies
Ly convergence which in turn implies the convergence of the expected value. The con-
vergence of the expectation is a property of the distribution and therefore the expected
value of the originally considered random variables holds. Thus, the weak convergence

together with uniform integrability of v, * flgm)(Wn,g), n € N, would imply

1 m m
B[S 500W0] = S EUS 07, = B 0Woo) 15> )

T'nUn

Hence, it remains to prove the uniform integrability of v, ! fgm)(Wn,o), n €N, ie.

Jim sup B [| 157 (W0 Lasoe) (14 Wo) ) | 1ol > ] = 0.

M— o0 neN

This is implied by the Lyapunov condition

sup B || (Wao) |47 1Ko > n] < o0

for some n > 0. Due to the Minkowski inequality this condition is satisfied, if

 Log (1| X n D1 X001
SupE ’]l Xoll>un — -
{IIXoll> }h_z_:m Zk:—mHXn,kH
X 14+n
<ﬂ{hean} A (HXhH) +l{heHC }]lA( )) [| Xol >un] <00 (5.7.26)
and
| X nll* 20— log (|| Xk D] X ]|
supE ‘]l Xol>un
iy 3 ot

1+n

Xnti
X <l{h€Hn,i}]lA (H)?:H) + ]l{hGHC }]lA( )) HX()” > Un] < 00. (5727)

An application of the Holder inequality for sums yields for the term under the expectation
n (5.7.20)

1+n

" Log (|| X )] X Xt
’ : 1 A1 1 1
Zm S Xoale e ta\ g ) Hneng  1aC©)

m [e% 1+
<( §~ 181Xl X ) ’
N Zzn:—m HXn,kHa

h=—m
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_ ( 3 |10g<||Xn7hll>|||Xn,h||a/(”")”X"’h||na/(l+n)>Hn
2 ST [ X
. NV G\ () 1
(S Hog (XD Xnl) ™ (S 1)
< SR | X
o og (|1 X n D1 X0 ]|
S N os(1 X D (5.7.28)

i [ Xl

Moreover, for the term under the expectation in ([5.7.27)) similar arguments as leading to

(5.7-28) yield

o [ Xl R log(HXnk\l)lanM!"‘( <Xh+i> a
’ o ’ (L hen, iy 1a g, e ]lA(O))
D S A et () pens)
<< 3 [ X nll™ 35y (10 ([ Xk [ X ) !
B h=—-m (Zzlzfm HXn,k||a)2
m a\ 1
_ (Zk:_m\1og<uxn,ku>mxn,ku ) !
2 [ Xl
< 2 | 108 (| X DI X
- SR [ Xl
Therefore, to establish (5.7.26) and (5.7.27)) it suffices to show
m 1 Xn 1+n Xn a
sup E [Zh_—m| Oi(” ,h||)| || ,hH ||XO|| > u,| < oo (5729)
neN i [ Xnkll®

for some 0 < n < 1. Moreover, a decomposition of each summand in the numerator
according {||Xz| > un} = {||Xurll > 1} and {||Xpn]| < un} = {||Xnnl < 1} leads to the

upper bounds

S 08Xl 71X Ly _ S (1087 (X)) 1 X
S Xk S X"

o S X
< log™ (|| X, m log™ (|| X,,
< QT (X)) e <, 2, (o8 (16)

=—m

and

i > b o (1 X D11 X0 1 T <)
{IIXol|>un} Sy ||X k”a

< Lxosuny 2o 1108 Xnn DI X n | Lgxp>un

h=—m

m _ 1+7’] N
= Ugxoisuy 2o (log™ (IXnall) " [ Xnall

h=—m
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Thus,

[ Xoll > un

E FZ":_m | log(IIXn,h||)|1+”||Xn,h||a’
2 [ Xl

<E

HX()H > un] .

i 1+ s _ 1+ o
> (log™(1xual) "+ S (log” (1Xual)) 1 Xl
h=—m

h=—m
According to (5.5.6), where only regular variation was used, we obtain for h € Z and

sufficiently large n

B (Xl [166]) > ] < [ (14 )o@z 42 < o
1

for any ¢ € (0,). Moreover, log™ (z)'*7 < ¢,z¢ for all ¢ € (0,«) and some suitable

constant ¢, > 0. Therefore, it follows for the finite sum

> 8 [0 (1Xall)” X0l > wa] < 35 B [IXa

h=—m h=—m

I1Xol] > | = O(1)

(cf. [Kulik and Soulier (2020), Section 2.3.3, for a similar result). Moreover, |log(z)|! ™"z

is a bounded function for z < 1, i.e log™ (z)'™z* < ¢ for some ¢ > 0 which is why

m

_ 1+ a
> (log™ (I1Xaal) " 1 X0l

h=—m

E I1Xoll > wn| < (2m + 1)c = O(1).

Combining these last two bounds yields (5.7.29). All in all, we have uniform integrability

of v ! X”)(Wn,o), n € N. Therefore, the weak convergence discussed previously implies

the convergence of the expected value. O]

Lemma 5.7.2. Suppose the conditions (PR), (P0) and (PC) are satisfied, then
) — d§

as n — oo in probability for all A € A and m € N, for random variables d(ATQ defined in
(5.7.19) and for the constants d(A’”) from Lemma m

Proof. We rearrange the sum in d(ﬂ by grouping r,, consecutive summands together and

then split the sum into two sums each including every second block of length r,,:

. 1 2 Mng ry m 1 n -
dmM(A) =—> Y Zfé )(Wn,(Z(j—1)+l—1)rn+t) +— Y f/(‘ )(Wm), (5.7.30)
NUn 127 j=1 t=1 LG e ———

where m,, = |n/r,] and my,; = [myn/2] + Ui, /2)241<may ~ 1/ (2r5).



5.7. Proofs 223

Define FX’ZL)(Z,]‘) = (r,v,) " '3, A (Wny(g(j,l)ﬂ,l)rnﬂ). We first prove that

E[(F{™(1,1)) = (rnvn) KZfA Wi ﬂ —0 (:L) (5.7.31)

(E o)

™ (1080110 X1
(E:ﬂ{X”>”* O S s

h=—m
X[ R log(lan,t+k\|)IIXn,t+k\|°“>
(ke ([ Xl *)?

Xensi i
x@”wmﬂAQulh>+““@%f“m0>]

| log (I[Xn.en DI Xn.enl*
(Zﬂ{lthbun} 2 ( ST KXol

h=—m

a N m o 2
X ]| S5 [ 108Xk DI X ))
(R [ X [[)?

One has

E

=F

+

= |og (|| X en ) | X ,tn ]|
<4E (Zﬂ{||xt|>un} > ST

2
[ og (I Xn.e4n D Xnenl*
< 8E (Zﬂ{uxwun} Lo Nl ez

s | Log (|| X tn )| X s n ]|
+8E Z]l{uxtnm} Z v Ta LX<
h=—m Zk*—m || n,t +k||

= 8([[ + [[[).

For the second term ;7 it holds

Irp-my ( — log~ ||Xn1t+h||)||th+h||a)2
= 1 wn,
n(rpv,)? n(r Up)? Z {I1Xe 11> }h;m > [ X w1
gl (S 2m 1t :
. —
st [(Eom vt

r2ov 1
—o ™" ) _o () ~ ol
<n(rnvn)2> nuy, o(1)
for some ¢ > 0. In the second step we applied that the denominator is at least 1 by

the indicator 1yjx,|>v,} and that |log(z)|z is a bounded function for z € [0,1], i.e
log(xz)~x* < ¢ for some ¢ > 0. The third step holds because of (5.7.10]). Using stationarity
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as well as the Cauchy-Schwarz inequality both for expectations and sums, one obtains for
the first term I;

b 2 log " (1K en DI X a1
=YY E | (L Y Bt ool )
t=1s=1 h=—m k=—m n,t+k

< 10g+(||Xn stn DI X snll®
X(]l Xl >un po 2 : )
i }h;m Zk:—m ||Xn,s+k||a

ot (| X gn )| X el ) 2
]]‘ Xt Un m : 7 )
<{” 1> }E_m S Xkl

" Jog (| X enlD) 1 XN 2] )
n,s+h n,s+h
(]1{Xs||>un} > ) ])

pmm ke [ Xn skl

7 ogt (|| X D1 Xnnl[*) 2
]].X Un m 7 : )
( {1Xoll> }hggn SR [ Xl

o~ log ™ (|| X0 DX a1 2
= ratnE ( T ST x> ) '||Xo||>un
h;m S [ X kel {IXnl>un}

<

t=1 s=1

siM(E

x E

)
=r B

i 1/2

mn « 1/2 m (e}
(e, Gog ™ (| Xl X nll*) ™ (S X kll)
S [ Xl

[ 2he i (og ™ (X, 1)) [ X [
2 [ X el

U 2
<r2ve 3 E|(log* (1 Xaal)” [1X] > o]

h=—m

2
e 131>

2
=y,

[ Xoll > un

Due to the regular variation of the time series (X;);cz, we obtain using (/5.5.6])
E|(1 X0l | 1Xo]| > un] = O(1)

for any ¢ € (0, ). Moreover, log" (x)? < ¢, for all ¢ € (0, ) and some suitable constant

cq > 0. Therefore, it follows for the finite sum

<o Y [(log" (1Xunl)” [ 1%0] > ]

h=—-m

<r2vacy o B[ Xaull?| [ Xoll > un] = O(20,) = o(nry0?),

h=—m

where we also applied 7, = o(y/nv,). Combining this with the bound for I;; we conclude

rn rn
Ir +

n(r,v,)? n(rpvy)

T’I’L m
ngmﬂLmﬂ: Irr = o(1)

and ([5.7.31)) holds.
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For the last sum in (5.7.30)) one has

Lo | <

nun t=mnrn+1

n

1 (m)
< - o 1A (W) | Wt

n t=n—rp+1 n T”U” t=1

By Chebyschef’s inequality and (5.7.31)) he have

(5 i sl i ]

nrnvnt ] €

= D2t =0 () 0

g2n?

for all € > 0. Hence, the last sum in converges to 0 in probability.

Observe that FX?L)(Z,]') is measurable W.r.t. (X(2(j—1)41—1)rm+1—sns -3 X(2(—1)+)rn-+sn)- FOT
fixed I € {1,2} and different j € {1,...,m,;} the random variables FX?L)(Z, j) are measur-
able functions of the X; which are separated in time by r,, — 2s,, — 1 observations. Denote
with FAn (l,7), j =1,...,my,, independent copies of FXZ)(Z,j). Then, due to Eberlein’s
inequality (Eberlein) 1984), we obtain

(m)
”P W izt — pEL @) I=hett ||y < mn,lﬁfz(,rn—mﬂ —0

for I = 1,2. The convergence n/r,[3X

25,1 — 0 holds due to the mixing condition in

(P0), since r, — 2s,, — 1 > [,, — s,, holds for n large enough by s, <1, = o(r,).
Thus, r,/n Zm”l (l j) converges in R if and only if r,/n Zm”l F (m (1,7) converges
and in case of convergence the limits coincide. By construction Fi" An (l ]) J=1,.,myy,

[ = 1,2 are iid. Moreover, since by definition of FA’n (1,7)
Mn 1

Zrnz l] +op(1),

the convergence df&n d"™ holds if and only if r,, /n> i F m*)(l 7) — d3 /2 in prob-
ability for [ € {1, 2}.
By Chebyshev’s inequality, (5.7.31)) and for all € > 0

nmnl d(m)
Pl S ren - )

o 'S me) g W (me) T A di’| e
<P ;ZFA,n (lvj)_E|: ZFAn (ZJH ‘ [ Z ]—2’>2
= =1

mx . £

3
= .

n

TTZ mn,l mx* . '
<P (n > (L 5) - E{

7j=1 =1

<
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e ([ % rea) -5 >5)

4 2 Mg ) dEAm) e
< "'n _ hd
< (§j )+P(‘E{nmnl}? (1,1)] ! ‘>2

47’ (m) T'nMn, (m) d%m)‘ €
< J _ s
< (ER L)+ P ( U B (W) — 4| > 5

Here, we also applied Lemma [5.7.1, which is why the second probability is of order o(1),

since my,; ~ n/(2r,) and thereby

T'nMnp

LELF (W 0)] = d5Y /2.

,n

"n (m) ] _
E|™m, FiMa, )| =
[n M Fan (1,1) Ny,
Thus, r,,/n > F m*)(l 7) = d%™ /2 in probability. Therefore, d )y 2(dM 2) = d§
in probability for each A € A. O

Lemma 5.7.3. Suppose (PR), (P0), (PC) and (PA) are satisfied. Then, sup 4¢ 4 |df4m)\ <
oo and

sup [dy') — di"| = op(1)
AeA

for all m € N, where d n is defined in (5.7.19)) and d(Am) s given in Lemma|5.7. 1.

Proof. Fix m € N. We already know from Lemma|5.7.2that the convergence dfgz — d

holds in probability and pointwise for all A € A. Denote

10g+(“wh”)“wh”a1 (wh+i )
A 7

[[wn]

far((wn)nez) = Lgupl>1y D

|h|<m Z|k|<m ”wkHa

log™ (||w wp||¢ Whti
Faar((wWn)nez) = Ljuo>13 D (Jren Dl ]1A< it );

iom Dlkl<m Wkl [[wa|
Ih<

[wn]|* Zjri<m 10g+(HwkH)HwkH‘“]l (thri )

fA,UI((wh)heZ) = Ljjwol>1} Z

hZm (Zjijzm [[wx]|*)? [l
[wnll* 3k <m log™ (lwrlDllwsl* - whei

fav((Wn)nez) = Ljuo|>1 = 14 .
€ {llwoll> }Ihlzéjm (Ciki<m lwe]|)? [ wa |

Note that these functions depends on m € N, however to ease the notation we suppress

this m. The families of random variables v, ' f43(W,0), n € N, are uniformly integrable

due to (6.7.26)) and (5.7.27)) in the proof of Lemma m Therefore, with the same

arguments as for d(ﬂ in the proof of Lemma |5.7.2 it follows

&y, = TZfArt — hm —FE [fas(Wno)] = E [fas(Yo)iez)] = dy < o0

Un t21
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in probability for all A € A and § € {[,11,111,IV} and the limit on the right hand
side exists. Indeed, by the same arguments this even holds for 4 € AU A with A =
{A7|t € [0,1+ 1)7}. Moreover, by definition f{™ = fa; — fasr — fasrr + fasv and
Ay = dy — i — diT 4+ @Y. Tn particular, d4, < oo for t € {I,1I,111,IV} and this

implies

sup [d)) < Y supldy| <Y |dhl < oo,
Aed $e{I,I1,111,1V} ACA 4e{I,I1,111,1V}

which shows the first assertion sup ¢ 4 |d(Am) | < o0.

By the decomposition of d,, ; and dy we obtain

P (sup yd(ﬂ —di| > 8) < > P <sup |y, — | > Z) : (5.7.32)
AeA te{I 11111V}  \AEA

Thus, in order to show that d(A”z — d'™ in probability uniformly for all A € A it
is enough to show that d%yn — dﬁ‘ in probability uniformly for all A € A and for all
t e {I,1I,111,IV}, ie. supyeq ‘dil,n — d’| = op(1). Using some bracketing arguments,
we will show this in the next step.

Fix some ¢ > 0 and for the beginning £ € {1,...,q}. By assumption (PA) (ii) the
map [0,1] 3 ¢ — A is non-decreasing. Therefore, [0,1] 3 ¢ — E[fa , #((Yi)iez)]
is non-decreasing since the summands in f44 all have a constant positive sign. Thus,
Elfa 4 4((Yo)eez)], t € [0,1] is linearly ordered. With condition (PA) (v) and the same
arguments as leading to , this map is also right-continuous. The measure generated
by this non-decreasing and right-continuous function is finite since dﬁ%d < 00. We have
| fragllL,pvy = dggd < o0, where || - ||, (pv) denotes the L;-norm corresponding to the
probability measure p¥ = Pttez,

Therefore, with the same arguments as in the proof of Proposition [5.2.7] there exist a
finite J, € Nand 0 =: ¢ < tx1 < ... <ty = 1 such that

E [fUm,w. A0 4 (Yo)eez) — fAt;f;_lvﬁ(M)teZ)] - ”st«,w. ANCEAN fAtgj;_lvﬂ”LﬂPY) <€
(5.7.33)
for all 1 < 7 < Ji. As in the proof of Proposition one could choose t;, ; iteratively

by
lg,j = inf {S S (tk,j—l, 1] B

P s(ez) = fa gy s((Vhen)| > .

»
Then, define the partition T, = {[tx —1,tk;)|1 < J < Jp} U {{1}} of [0,1]. The basic
idea of this construction is, that the indexes t; ; split up the mass of E|fga4((Y;)iez)| =
| fra gl £, Py into finite many e-brackets which cover (f44)ac4. This construction is done
forall 1 <k <gq.
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Using this construction we can define brackets for (fa4)aca as
[T17 "'aTq] = {fAsl AAAAA sq7ﬁ|8k € TkV1 S k S q}

for all t, € T, 1 < k < g. By construction of the indexes these are ¢ - e-brackets

w.r.t. Ly(PY)-distance. Recall the notation Ay, Ay from (5.7.12). Then we have for all
s,tel = Xzlek

[ fass — facslloopyy = E[faos(Ya)nez) — fa,4(Yi)nez))]
< E | Faps((Vinez) = Fapa(Ynez))|

<ZE{ antOnez) = fa sl (Vihen)] < ae,

7ET

where the second step holds due to condition (PA) (ii) and the last inequality directly

follows from ([5.7.33)).

Moreover, these brackets cover (faj)aeca since T is a partition of [0,1], 1 < k < g.
These are [[}_,(Jx + 1) < oo many ge-brackets for (faz)aeca for arbitrary ¢ > 0 and
8 € {[,I1,111,1V}. Thus, (fas)aca is covered by finitely many ge-brackets w.r.t. the
L1 (PY)-norm. Therefore,

Niy(e, (fagaca, La(P1)) < o0

for all € > 0. Here N[ denotes the bracketing number of (f44)4ca (see also condition

(D2) in Section [3.1.2)).

Since d%m converges pointwise for all A € AU A, it follows with the same proof as for
Theorem 2.4.1 in |[Van der Vaart and Wellner| (1996]) that supAeA |dAn d"| = op(1) for all
t € {I,11,111,1V}. Thus, with ( it follows d ) Ly @™ uniformly for all A € A.
This concludes the proof. O

The following lemma basically deals with the rest term (™% in the main proof.

Lemma 5.7.4. (i) Suppose (PR), (P0), (PP), (PT), (PP1), (PM) (ii) and (iii) are
satisfied. Then,
lim lim sup sup E[|dAn danl|l =

Mm—00 npnsoo AcA

(ii) Suppose (PR), (P0) and (PM) (ii) are satisfied. Then,

lim sup|d —du| = 0.

Proof. First note that due to stationarity

EI) = daal) = — B (S W) = Fa(Wai))

t=1
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< S B (W) = 4] = EIS (W) = Sa W) | 1Xol] > )

n t=1

For n sufficiently large, such that m+|i| < s,, (this is only needed to simplify the notation
with the indicators a little bit), one has

E15 W) = FaWao)| | 1Xo]l > ]
OBl XD Xasl”y (Ko
. S Xalle A\ Xl

10g(||Xn h”)HXn hHa ( Xithti
_ , Ay 1A< )+]1 verrey1a(0) HHXOH > un]
<o ki< [ Xn k]l © [ Xesnl (et

E[ S nigon 1 X | i 108 Xt )1 XL (755 )
+E|
(i< 1 Xk ]1%)?
' Sinizon [ Xl Spga, 10801 XDl X
(S 1 Xnil2)?

Xitni
< (L La (T2 ) + Lpeng  14(0)) || 100 > w,

<FE

= Tl —+ TQ.

Expanding the fractions to the same denominator, adding a 0 in the middle, using (/5.7.2))

and the triangular inequality, taking the absolute value of each summand and bounding
the indicators by 1 yields

1
T = E[
ngm ”Xn,kHa Z|k|§sn “Xn,kHa

a n,h+1i o
< (3 ton(Xl) XL () 3 X

|R|<m |k|<sn

a n,h+i
= 3 tog(P X DX LA () S

|h|<m [ Xnal |k|<m
a n,h+i
3 Tog(IXal) | Xoal m(HX *H) S X
|h|<m n,h |k|<m

- Z log(“Xn,h“)HXn,hHa Z ”Xn,kHa

|h|<sn |k|<m

Xithti
(L La(T25) + B 14() )] |10 >

1
Z|k|§m HXn,kH Z\k\gsn ||Xnk||
a Whti a
< (3 1081 XualDI Xl Ea(25) 50 X

[h|<m [ m<|k|<sn

= 2 log(IIXnnDIXnnll™ D2 1 Xnkll®

m<|h|<sp |k|<m
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Xitnti
< (Lo La(T25) + R 1 14() )] |10 >

(e} Xn, i «
E[zlhgm 081X X | (22 ) S 1Ko
S >

S ki<m 1 Xkl Xipi<sn [ Xnkll®
[ Log (/| X n D I X n 1% i< [ X g [l
minics  2lk<m [ Xnsll® <o, 1 Xnkl®

Xl >

+5|

Xithi
X <]l{heHn,i}]lA(”Xj+:”> + IL{heHgi}ﬂA(O)) ‘ | Xoll > un

lo Xn Xn @ m s Xn “
<E inj<m | log(l ,h\|)|”a all 3 <|k|§2H &l ’||X0||>un
2tk <m 1 Kkl Zipi<sn 1 Xkl
me<ihi<sn 1081 X n D1 X0
+E[ <o ADRZA ) Xoll >
Dlki<sn 1 Xnkll ‘
=T+ 1.

The term 77 ; can be bounded by the Holder inequality and in the second step we again
use the Holder inequality for sums (similar as in (5.7.28)):

1/(1+6)
Z|h<m|10g(||th||)|||th||“>M
W< E ( = : : | Xoll > un
D k<m [ Xn g ||
ay (148)/8 §/(1+9)
Smeimizsn [Xng )
« E ! 1Xol| > un
Z\k\gsn HXnkH
. lo Xn 146 Xn a 1/(1+6)
gE[Z'hK | log (|| Xnnll)] a|| all 1%l >
Z\k\gm HXnkH
Xl 5/(1+)
| Zzstise Sl )
Yki<sn | Xn il

By the definition of the tail process and the uniform integrability shown in , the
first expectation converges to F [Z\h\gm [ Log (YAl IV (k1 <m ||Yk||°‘)*1} )
all m € N. These expectations are uniformly bounded for all m € N by Condition (PM)
(ii) and Lemma [5.3.2 part (i). Thus, the first expectation is bounded for m — occ.

The second expectation is bounded by for sufficiently large n, which converges to
0 as n — oo and then m — oo because of condition (PP) and (PT). Thus, we obtain

for

lim,,, o limsup,,_, . 711 = 0.
To deal with T} » note that

log™ (|| X, Xonl|l®
E[Zm<|h|§5n g™ (1K D[ Xnnl 1%l > u,

2k <sn 1K k]|

SE[ sup  1og* (| Xl 1Kol > wn

M<‘h|§3n
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< Y E{max(og" (| Xual): g, s1) max(og” (| Xnol), 1) | | Xoll > wn]

m<|h|<sp

<2 )

m<h<spn

!/
n

by condition (PP1) and lim, o limsup,, ., ><n<s, €,(R) = 0. For the negative part of

the logarithm note that by condition (PM) (iii)

Em<ihl<sn 1087 (1 Xnn D[ Xnnl*
lim limsup £
M0 oo > tki<on 1 Xn k]

=0.

1ol > u

Thus, lim,,, . limsup,, ,,, 71,2 = 0 and, thereby, lim,, ., limsup,,_,., 17 = 0.

Next, we want to show the same for T,. Expanding the fractions to the same numerator,
using twice, in particular (3n<s, @n)* = (Zpnj<m @r)* < 2 h1<sn Ch me k| <sn Gy
applying the triangular inequality, taking the absolute value of each summand and bound-

ing the indicators by 1 yields

T

1
= EU )2 )2
(k1< 1 X nl1%)2 (k1 <m 1 Xk 1)

@ [e% Xn,h i @ 2
(1l T 0%l Xal L4 () (2 1Xunl?)
|[h|<m |k|<m n.h |h|<sn
« a n,h+1
= S 1l 3 ton( Xl L) (3 1al?)’
|R|<m |k|<m mh |h|<m
a o n,h+1i
5 1l 3 ton(X Gl La () (3 1)’
[R|<m |k|<m | nh | [h|<m
— > I1Xuall® Y2 Tog (I Xk DI Xkl
|R|<sn |k|<sn
Xithti )2
% (Lqner, )1 + Lere 3 1a(0) ) (20 1Xunll®)")| 1 Xoll > un
| Xeqnll " |h|<m

1
_E ‘
[ (Cirt<sn 1 Xnkll*)? i <im 1 Xkl )

« a Xn,h 7
(X 1l 3 tom (Xl XL ()

|h|<m kl<m
2 2
(X 1%uall?) = (2 1%ual?)’)
[h|<sn |h|<m
o o Xn,h )
(3 1%l 3 toa(1Xs Xl La ()
|h|<m |k|<m n.h

= D 1Xanll™ 32 log (I Xkl Xkl

|h|<sn [k[<sn

Xt h+i a)?
< (e a(T250) + L 140) ) ( 2 1%u?)’)

[h|<m

ol > u
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1
<K < Xonl® log (|| Xy, Xkl
(Z|k|§sn HXn,kHa)Z(ZUdgm HXn,kHa)2 2<: H ,hH z<: ’ g(” ,kH)’H ,kH
|h|<m |k[<m
T Xl X Xl X a1l
|h|<sn m<|k|<sn m<|h|<spn |k|<m
«@ a Xn,h-l—i
30 1%l X T X)X ()
|h|<m |k|<m H Tl,h”
o «a X h+i
= X 1l Y 108Xkl X (Lt a () + Lremg 14(0) )|
|h|<sn k| <sn H t+h|| n’l
2
(X 1al?)”) [ 1ol > u
|h|<m
< Dt DI i, Wl
B 2 iki<m 1 Xnkll® Zir<sn 1 Xkl
—i—E[ Z ||Xn7h||azm<|k|§sn|log(||Xn,k||)|||Xn7kHa
H<en (Zppr<on [ Xnil[)?
Xt+h+i
X (]l{hGan}]lA<X> +]1{heH$l}]1A(0)> ’ HXOH > Uy
Kol 7
Xonlle o1 X nr DXkl
P B
m<|h|<sn (Z|k|§sn HkaH )

Xithti
< (e La(T205) + B 1 14(0) [ 100 >

lo Xn Xn ¢ m s Xn “
<25 > jkj<m | log(| ,kH)H\a Kl <|h|§,;H 2l 'HXOH _—
Dtk <om 1Kkl Zjei<sn 1 Xkl
m<ikl<sn | 108U X g [ X 1]
+E[ <o AZRE ) >,
Z|k|§sn HXnkHa
X o S 1Tog (1K D10 £l
+El2m<|h§sn | X 1% 22 kg <im | g§|’2 EIDHX k] ’HXOH>U%
(Ziri<sn 1 Xnkll®)
].O Xn Xn @ m S XTL @
SSE[ZWSWJ g(ll ,k||)|||a kX <|h|§,;|| all ’||X0H>un
Z\k\gm HXn,kH Zlklgsn ||Xn7k||
Cmeikl<sn | 108U Xk D X011
+E[ son KONl | x| >
Dik<sn 1 XKnkll®
— 371, + Tho.

Thus, lim,, o limsup,,_, ., 75 = 0 and, therefore,

Tim_Timsup E[| £ (Wao) = £4(Wao)| | | Xoll > un] < lim lim sup(47 1 + 271.2) = 0.

X0 n—oco

This concludes the proof of part (i).
For part (ii), first note that by using Yj & IYo|l©0 with ©¢ and ||Yy|| ~ Par(a) indepen-
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dent, we obtain

E[fA(gyh)heZ)]
> <1og<r\‘1@|u>c|jnua . Hwzkeﬁ;f%lmu>uw> L (Eﬂ)
> <log<u@h‘||r mw@hua _ 18 Sees 17%1‘\’<;kurw>||@kua> L ( O )
> <1og<r\<igr‘|>;|@h|ra " H)H’%LHH; . ||@huazkeZHl@oﬁé!@kH>||@kHa

L moarEger), (o)
i) <1og<r|ﬁg)|r‘|>g[|@h||a ) ||@h||azkezngﬁégek|r>||@k||a> L (f&ﬁ)
e e ()
-2 | e (= e ) (i)
o[ T log|<’gi§|r>u@kuah(@i) L

In the penultimate step we used the RS-transformation for (6;):cz and the invariance of
the distribution of (©;);cz under the RS-transformation.

Thus, it remains to show

ngrng —da|l = hm |E[ ((Yh>heZ) Ja((Ya)nez)]|
< lim B[ ((Yinez) — Fa((Ya)nez)]] = 0.

m—ro0

By exactly the same arguments as leading to E[fﬁl (Who) = faWoo)l | [| Xoll > un) <
(4T 1 + 211 2) in part (i) of this proof, one also achieves

B[S (Yi)nez) — Fa((Yinez)l]
it 108 (Y DYl S HYhual
S jer<m 1Yl Shez Vil
S jkom | log<|ryk||>||mna]
AT

<A4FE

+2E[

= 4T +2T) .
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Using the Lemma of Fatou for T yields

Dikjsm [ 1og (YD Yall*] — Dmeqri<n | 10g YR Y|
FE = F| lim
>kez Vel M—00 Skez 1 Yxll*
1 Y, Y|l
<ty ] Bt Los DGV
M—00 ez Vel
| Y: Yill¢
< up 5[ B s IDIGI)
M—s00 iej<nr Y[

by Jensen’s inequality and Condition (PM) (ii) for all m € N. Thus, by monotone
convergence it directly follows lim,, ... 7y = 0. By the Holder inequality 7 can be

bounded similar as before by

a11l/(1+6 0d 5
S i< | Tog(IIYA D)1 ¥ 1 / )E[zmnyn 1 /(146)

Y < E
b > iki<m Y[l V][4

Again, by dominated convergence (the fractions are bounded by 1) the second expectation
converges to 0 as m — oo. The first expectation is bounded by condition (PM) (ii) and
Lemma[5.3.2] (i), and hence lim,, o 7Y = 0. All in all, this proves

lim B|[f§" (Yi)nez) — fa((Yinez)[] < lim 4T + 2T} =0,

m—0oQ
which concludes the proof. O]

The previous lemmas were concerned with terms occurring in /(A) in the main proof of

Theorem [5.3.1} The next two lemmas deal with I7(A).
Lemma 5.7.5. Let m €N, a = (ay, ..., an) € [0,1]™ and set 01log(0) = 01log®(0) := 0.
(i) The function M :[0,1]™ — R with

Y log®(ax)ay,

M(a) :

is bounded by sup,epo 1m M(a) = O <log2(m)> as m — oo.
(ii) The function My : [0,1]™ — R with

M (a> _ ZZL:1 | log(ak)|ak
! 1 —|— Z?:l Qg

is bounded by sup,¢(o 1j» Mi(a) = O(log(m)) as m — oo.

Proof. 1t is easy to see that the function R — R, 2 + log®(z)z has a local maximum

in (0,1) at z = e~? and is decreasing on [e72,1]. Therefore, if a, > e~ for some h €

2

{1,...,m}, then replacing a;, by e * increases the numerator of M (a) and decreases the
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denominator of M (a) and thus increases M (a). Hence, any point of maximum of M must
belong to [0, e 2]™.
The partial derivatives of M are given by

iM(a) _ log*(ay) +2log(ap) X, log®(ar)ar
dap, L+ 2050 ak (14 2% ax)?

for all h = 1,...,m. It directly holds 8/(0a,)M(a) — oc as ay } 0, since log(ay)? —

m

oo. Hence, any point of maximum of M must belong to (0,e 2]™. Since the point of
maximum is in the interior of [0, 1]™ the partial derivatives of M must vanish at the point

of maximum, i.e. the point of maximum solves the system of equations

9 M@ =0, Vhe{l,..m). (5.7.34)
8ah

This leads to 9/(dap)M = 0/(0ay)M for all h € {1,...,m}, which yields

X log?(ar)ax

X log®(ax)ax

= log*(a1) + 2log(ax)

log®(an) + 2log(ay)
which is equivalent to
log®(ay) + 2log(ay) = log*(ay) + 2log(ay),
which in turn is equivalent to
(log(an) + 1)* = (log(ay) + 1)%

This equation has the solutions a, = a; or aj, = exp(—log(a;) — 2) = e ?/a;. In order
to fulfill the restriction a;, < 1, the second solution is only a solution for our problem if
a; > e 2. The equation aj, = e~2?/a; is equivalent to a; = e~2/ay, i.e. also a;, > e~ 2 is a
necessary condition for a; < 1 for all h = 1,...,m. This contradicts the above result that
the point of maximum satisfies a;, a, < e~2. Thus, for the maximum of M the system of
equations leads to a; = ay, for all h € {1,...,m}, i.e. all coordinates of the point

of maximum must be the same. Inserting this in (5.7.34]) leads to the simplified problem

log®(a1) + 21og(as) _ mlog®(ar)ar
1+ maq (1 4+ may)?

& (log?(ay) + 2log(ar))(1 4+ may) — mlog*(a;)a; =0

=0

& log?(ay) + 2log(ar) + mlog?(ar)a; + 2log(ay)ma; — mlog?(ar)a; = 0
& |log(ar)| = 2(1 + may). (5.7.35)

By the mean value theorem and by monotonicity, this equation has a unique solution

a*. To check that this solution indeed maximizes M = mlog®(a;)a; /(1 + ma;) one could
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observe that M — 0 as a; — 0 or a; — 1. Thus, a] must be the point of maximum.

Due to the form of (5.7.35)), the solution a} of ([5.7.35)) is of smaller order than m’~! and

of larger order than m=°~' as m — oo for all § > 0. To check this simply insert m°!

and m~°~!in ((5.7.35]) and consider the order of right and left hand side of the equation
as m — oo, note that log(m) = o(m?) and m=° = o(log(m)). In particular it follows

|log(a})| ~ log(m) and thus
o~ L1og(m)
Y2 om

as m — oo. Therefore, we can bound M by

mlog®(a})at  m4(l+mat)a}
sup M(a) < M(aj,....,a7) = = = 4dmai(1 + maj
aE[O,Il)]m (a) < M(aj 1) 1+ maj 1+ ma; 1 1)

~ 2log(m)(1 + ;log(m)) ~ Tog2(m)

as m — 00.
Next we turn to part (ii). The arguments are along the same lines as for part (i). The
partial derivatives of M; are given by

) M) = —log(an) —1 >, |log(ax)|ak

B0y 1 = T T T

for all h = 1,...,m. Here again one has 0/(0day)M;(a) — oo as ap, — 0 and |log(z)|x — 0
as x — 1. Moreover, z — x|log(z)| has a local maximum at x = e~!. Therefore, the
point of maximum of M; belongs to (0,e~!]™. This point of maximum solves the system
of equations 9/(dap)M;(a) = 0 for all b € {1,...,m}. Note that for a5, < 1 one has
|log(ap)| = —log(ap). Equating the equation for aj, and a; yields

— log(a) — 1 = —log(ar) — 1,

i.e. ap = ay for all h =1, ..., m. Inserting this in the equation for h = 1 yields

mlog(ay)a;
—1 - ST
og(a1) 1+ may
& —log(ay) — 1 —mlog(ay)a; — may + mlog(ai)a; =0

& |log(ar)| = —log(ar) = 1 + may. (5.7.36)

This equation has a unique solution a} € (0, 1), which follows from the mean value theorem
and monotonicity. To check that this solution is indeed a point of maximum, note that
M (aq,...,a1) = m|log(ai)|a; /(1 + may) converges to 0 as a; — 0 or a; — 1. Due to the
form of , the solution of is of smaller order than m®~' and of larger order

—0—1

than m as m — oo for all 6 > 0. In particular, |log(a})| ~ log(m) and a} behaves
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like |
og(m
ot~ g(m)
m
as m — oo. Hence, an upper bound of M; is
1 * * 1 * *
sup My(a) < My (a], .,af) = ZLBDIGG _ mUbmad)a _ e gy
ac0,1]™ 1 + m(IT 1 —+ mCLT
as m — oQ. ]

Lemma 5.7.6. Suppose that the conditions (PR), (P0), (PP), (PC), (PP1), (PB,), and
(PM) (i) are satisfied and log(n)* = o(nv,) holds. Then, the term II1(A) defined in
(5.7.18]) is uniform negligible, i.e.

sup /nuv,II1(A) = op(1).

AeA
Proof. Note that 27 'nv, (4, — «)* — 27122 weakly by (5.7.17) and the continuous map-
ping theorem. Furthermore, nv,/(37_; 1{jx,|>u.}) — 1 in probability due to the weak
convergence in Proposition for the set R?. Therefore, it remains to check that the

term

2 1 “
\/W Zt 1 {1 Xe || >un} |II( )|

nvn(nvn(an @)?)
Sn log?( ||Xnt+h||)||Xnt+h||

= (o, )3/2 Z]l{uxtnm} h;ﬂ( S o 1 Xl
o8 1 X)Xl 52—, 108 Xl Ko

(O, | X rn]|%)?
Xl Zk_—sn10g2(||Xnt-‘rk‘H)Hth"rkH&

(27 k= s, HXntJrk“ )?
X5, log<HXn,t+kH)!IXn,t+k!!“‘>2>
(R, [ Xkl #)?

Xtvhti

-2

+2

converges to 0 in probability uniformly for all A € A.
The absolute value of (5.7.37)) can be bound from above by taking the absolute value of
each summand and bounding the sum of the indicators with 1. Involving this, it now

results in the upper bound

o [ log? HXthH)HXthH“
1 X Un (
3/22 x> }h_an o X

1 10g(||Xnt+h||)||Xnt+hH Zk_—snlog(HXn,t-‘rkH)||Xn,t+/€||d
(s, [ X er]|%)?
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1 X | iy 1og? (| X re )| Xt |
+ Sn
(> — | X, e811%)?
| Xm0, log(||Xn7t+k||)||Xn7t+k||°‘)2>
(s, 1 X ernl|®)?

S 10g2(“Xn ten )| X ]|
= 3/2 Z Lyxsung2 D2 %
e re sy [ X |

+2

i (|08 Xl X
+ — 1 Xel|>un 4 =—5n = 2T1 +4TQ (5738)
<nvn>3/2§ 1l>0n) T ™)

Thus, it suffices to show, that this expression converges to 0. Since this is an upper
bound independent of A, this would imply the uniform convergence to 0 of . To
show the convergence to 0 of (5.7.38]) we split both sums in two summands, which we
consider individually. More specific, we will distinguish between the cases whether || X ||

exceeds u, or not, i.e. we consider the sums individually on the sets {|| X¢44| > u,} and

{1 Xeenll < un}-
Define the set B, := {maxlgtgn | Xl > n”“}. Using the regular variation of || X to
bound the survival function yields for all € € (0,1/2) and sufficiently large n

P(B,) <nP <||Xn7o|| > nQ/a) < nP <||X0|| > nz/a) —H5 (n(n2/a)—a(1—s)>
-0 (n—1+2€) — o(1).

On the set BY it holds
2
0 < log (| Xnell) Lyxiizuny < — log(n)
for all 1 <t < n. Thus, on BY (which hold with probability tending to 1) it holds

Sn

log” ||Xm+h||)||Xm+h|| L)X, nll>un}
Z (IXel>un) D

h=—sn k——sn HXTL tJrk”

n 4 2 h_*sn HX” t+hH
Z {||Xtu>un}§10g (n) F | D, GRPR |

— log ) Z ]l{HXt||>un} = Z ]l{||XtH>un}O(\/nUn> = Op((nvn)3/2) (5.7.39)
t=1 t=1

W

since log*(n) = o(,/nv,) by assumption and (nv,) ' S0 Lyx,suy = Op(1) due to
Proposition with R?. Similarly,

1 (Ch s, |10g(\|Xn ek DX ek 1O Lg% )
Z {IXel>un} ( HX H )
t=1 ]C—*Sn TLt+k’

G 21 X,
3 1 oy ZIOEOV/ TR [Konir])?
- n O I X k]| %)?
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4 n n

=zl ) Zl L f>uay = Zl Lgxe 5wt 0(y/n0,) = 0p((nv,)*?). (5.7.40)
t= p

Thus, (5.7.38)) with the additional indicator 1y)x,, ,|>u,} in the numerator inserted is of

order op(1).

In the next step, we consider the same terms as before with the additional indicator

Lgix,,kl<un}- Again we start with the first summand T} of (5.7.38). One has

Sn

log? ||Xnt+h||)||Xnt+hH L nll<un}
Zﬂ{uxtum} > Xoodl®
h—*Sn k—fsn n t+k

< Z Lixo > un)
t=1

Sn

Z log? Xt DN X e n 10T g x, s <}
h=—sn,h#0 L+ EZn:fsn,k;éO HXn,tHcHa

This holds, since for £ = 0 the summand in the denominator is greater or equal to 1, due
to 1yx,|>u.}> and the summand for & = 0 in the second sum is 0. If & > 0 the problem

to bound this term is related to the maximization of the function M : [0, 1] — R with

Sy log?(ax)ay,

M(ay,...,am) =

under the restriction 0 < ay < 1 for all £k =1, ...,m and for some m € N. Note that a > 0
and & > 0 because of the definition of &, i.e. it holds a > 0.

An application of the upper bound of M established in Lemma m, part (i), with
a = || Xk yields

Sn

n 10g” (| X, D Xt 1S L <}
Yolgxgsuy D o

t=1 h=—spn,h#0 1+ Zznz—sn,k;éo ”Xn,t+kH&

= Zn: T i Log” (| X a1 X 411" L1l <)
- t||>Un n &
A L+ 3500 ko 1 X el

Z 14x, 50,3 O(log?(25,))

= Z x5,y O(log (n Z Lix s un0(v/vn) = op((nv,)*?).

3

This last bound together with ((5.7.39) implies

1 n on 10g2(||Xnt+h||)||Xnt+h||&]l{||X I>un}
T = ——75 2 luyxi>un < 7 s
(mn)w; {1 > }Lg o Xl
1 & & 10g (| X een DXt | Lg%, o <un)
+ 75 D LX) >un S 7 -
(nvn)3/2; (x> }L:Z:Sn s [ X en ]|
1
_ 7013((”2}”)3/2) — Op(l)- (5741)

(nvy,)3/?
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Now, we will establish an upper bound of the same order for 7. Using the upper bound
established in Lemma [5.7.5) part (ii), with ax = || X, 4x]|* yields

> L)

t=1

( P s | 108 (1 X4k D1 X g1 ﬂ{xt+k||<un}>
U | D VT

IN

L4500 o o 1 XK il

Z L{xu>un) =5 (Ek_sn o | 108 ([| X ke[| NN X x| ]I{Xt+k<un}>
>Un
=l . o L+ Zk:—sn,l@éo ||Xn,t+k||

= Z ]l{HXt |>un}0(10g(28n = Z ]l{||Xt||>un}O(\/nUn) = Op((TLUn)3/2).
t=1

n Sn, & 2
. st | 108U X ek DN X 10 L, 44 <)
D x> un)
t=1

3

By combining this last bound with (5.7.40)) we conclude

2 (e !log(HXnt+h!!)\HXthH@ll{ux wl<un})?
T, < Loix,>un o t -
(TMJ 3/2 Z {IXel[>un} ( kf—sn ||Xn t+k|| )
N 2 Z]I{IIX - }(th_sn|10g(||Xnt+h||)|||Xnt+h|| Ly, ol zun))?
(nv,, )32 = U (e, [ Xmrn]|®)?
1
= G gor((men)?) = op(1). (5.7.42)

The convergences ((5.7.41)) and (5.7.42)) show that (5.7.38]) converges to 0 in probability,
and, therefore, (5.7.37)) converges to 0 in probability uniformly for all A € A. This
concludes the proof. O

In the last lemma of this section the covariances between (Z(A))aca and Z(¢) as well
as the variance of Z(¢) are calculated. This lemma proves parts of condition (C) for the
application of Theorem in the proof of Theorem [5.3.1] Note that m,,/(p,b,(g4)?) =
My ) (Pubn(0)?) = my/(nv,) < 1/(rpv,), which is why the covariance in the following

lemma is standardized with (r,v,)~".

Lemma 5.7.7. Suppose the conditions (PR), (P0), (PP), (PT), (PC) and, (PP1) are
satisfied. Then,

() oVar( 3000 ) = a5 B [(L A 0") ({1 + 207

Un kEZ

(ii) for allAe A

C’ov(Zd) . ZgA )

||@h|| @h+z’ (1o ofl
ZE[Z o 14 () 1A e os(l0x v 1) + >].

keZ heZ

T'nUn
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Proof. The proof uses analogous arguments as used in the proof of Lemma [5.2.4, We
start with the proof of (i).

In the third step we will apply E|log* (| Xnol)) | [ Xoll > un] = O(1) which holds due
to regular variation and (see also Kulik and Soulier| (2020), Section 2.3.3). By

stationarity we obtain

Var <Z¢ )

T'nUn

1

T'nUn

E

7”n Un

Tz"ww]

j=1

Z¢ qub }

_1 Z ( —W)E[¢<Wn,o>¢<wn,k>]

Un k=—rn +1 T'n

rp—1

( [log™ (I1Xaoll) | 1]l > u2])”
Ly

> (1 1Y B o (1% o™ (12Xl 110l > 1] + Ofrvs)
k=—rn+1
>3 g (1= )8 g (1ol og™ (1Kl 161 > ],

keZ

where we applied Pratt’s Lemma in the last step, which allows the interchange of limes

and sum. This lemma can be applied due to condition (PP1) and

k
(1= 1) [og* (1ol 1o (1) 1100 > 1]

< B [max(log" (| X)) , 1) max(log™ (| Xl s L sun) | 1Kol > ]
< e, (|K])-

The definition of the tail process together with the continuous mapping theorem imply

the weak convergence

£ (1og (M0 10g (V50 0 > ) = 008 il tos i)

n

for all k£ € Z. From the Cauchy Schwartz inequality and ([5.5.6) we conclude
Bl X k11 Xm0l | [ Xol| > un] = O(1)
for all k € Z and ¢ € (0,«/2). Since log* (z)'*° < ¢, 27 for some ¢, > 0, this implies
+ + 146
sup 2 [ (10" (1%l o™ (1Xs1D) ™ 10l > ] < o
ne

This uniform moment bound in turn implies uniform integrability of random variables
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with the distribution of log™ (|| X,.0]|)log™ (|[Xaxll) given || Xo| > un, n € N. Thus, the

weak convergence stated before implies
E [log" ([ Xn0l)) log™ (1 Xnxll) | [ Xo]l > un| = E [log* (¥5) log™ (V3)]
for all k € Z. This shows

L
> tim (12 )E flog” (1 Xnol) log* (Xl | 1Xo]l > ]
keZ n

=3 & flog (1%l log" (141)]

Moreover,

B [log™ (1Y) log™ (11Yi )]
= E [log* (|[Yol) log* (1©x | Yol

://1 log(y) log([|0e1y) L > o, - 2" (dy) PO (d6)
N / /w”@ o loey) log (|10 |y) ey~ dy P° (dB)

= [ [~ 2" (alog(0elly) + alog(y) (@ log(l@ully) + 1) +2)] | PO(dd)
= E[a (1 A0k (alog(|Ok] v 1) + alog(1 V [k 1) (alog(1 A l|Ok]]) + 1) +2)]
= a ' E[(1 A0k (log(lOx]] v 1) + log(1 V [[©] ")
+alog(1V [0 alog(l A [Ok]) +207")]
= a ' E[(1LA 0k (og((10k] V1) - (1V [0k 7)) +2a7")]

— a B[ A [Oul") (og(10xI)] +207)]

where we applied Y, = O||Yo| with ©f and ||Yo|lindependent and ||Yy|| is Par(a)-
distributed, i.e. P(||Ys|| > y) =y~ A 1. This proves the assertion (i).

For part (ii) first note that E [ga(W,0)] < v, and E {log+(||Xn70||) | | Xo|| > un} =0(1).
By stationarity

L Cov (i ¢(Wn,j)7§:9A(Wn,t>)

T'nUn

j=1 t=1
1 Tn Tn 1 Tn Tn
-—F ZgA<Wn,t>Z¢<wn,j>] — LB |3 ew.,) E[ng<wm>]
nUn t=1 j=1 nvn j=1 t=1
B 1 rpn—1 |]€|
=0 k_ZT:H (1 - rn)E [OWo ) ga(Wip)]

nv¥n
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rn—1 k‘
= > (1 — |7~|>E log™® (1 Xkl)) 9a(Wao) | [ Xoll > wn] + O(ravn)
k=—rp+1 n
. k
— > Jim (1 - L')E [log+ Xkl g4a(Wino) | 11 X0l > un} ’
keZ n

provided the limit exists, where again the last step holds due to Pratt’s Lemma. This

lemma can be applied because of condition (PP1) and

k
(1= 1) o (1al) 94Woo) | 1ol > ]
< B [max(log" (| Xnoll), ) max(og* (1Xsu ), Lg1xiouer) | 1Xoll > ]
< el (Ik)

for all k € Z, since ga(Whno) < 1yjxo|>u.} and for k& < 0 stationarity was applied. Now,
again we use approximating arguments as in the proof of Proposition . Define gf;”)
as in and recall that this function is continuous. The weak convergence defining
the tail process together with the continuous mapping theorem imply the weak

convergence
£ (log™ (1 X ;1) 65" (W) [ 1 Xoll > un)

[l Vit
— L | log™ (IV; ) L1 T4
( J {IYkl>1} Z Zlklgm HYkHa HYhH

|h|<m

for all j,k € Z. The PY-a.s. continuity of the function applied follows from the continuity

of log* () and ¢%™.
Since log™ (x) < ¢ 27 for ¢ € (0, ) and some constant ¢, > 0, the regular variation of the

time series and (5.5.6) imply

sup £
neN

m I+n
(65" (W) tog* (1Xal)) " [1X0]) > ]

1+
< sup 2| (1og* (|1 Xus) 1o > un] < . (5.7.43)

This uniform moment bound in turn implies the uniform integrability of random variables
with the distribution of ggm)(Wn,j) log® (|| Xnkll) given | Xo|| > un, n € N. Thus, the weak

convergence stated before implies
E g7 (W) log™ (| X k) | 1 Xoll > wn]

Y|« Yiii
|| h|| ]1A< h+ >log+(HYk||)

— F
iz 2lk<m 1Yl Y7l

for all m € N. Moreover, due to the uniform integrability condition, it also follows
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Eflog® (||Yx]])] < oo for all k € Z, and, therefore, dominated convergence implies

; HYhHa (Ythi) n
lim £ Ta log™ (| Y1)
m=oe | e k< 1 YE[[® V]|
||Yh|| (Y )
log™(|1Yx[)
hEG:Z 1Y% Al

In addition,

1|94 Wao) o (1 X,el) = 95 Wao) og (1Xoel) | 15Xl > |
< B[19(Wao) = 95" Wao) log" (| Xnal) | [ Xoll >
(m) 1+40)/8 2/+0)
< B[19a(Wao) = 95" Wao) 7 | |1 Xo] > ]
+ 146 /0%
< B log* (Xl | 1Xoll > u
s m) 16/(1+6)
E|2%194(Wao) = 9 Wao)| | 1 Xoll > un
+ 1+6 1/0+0)
< B log* (Xl | 1Xoll > w,

While the second expectation is bounded due to (5.7.43)), the first expectation converges
to 0 as n — oo and then m — oo by (5.7.5). Thus,

lim hm 15Up E

194(Wa0) 105" (1 Xul) = 957 (W) log™ (1 Xl 1Kol > ]| =0
and therefore

E

9(Wa) g (1 sl | 1Xoll > wa| = tim_ B|g§” (W0 log™ (1 Xall) | 1] > 1]

= Jim B g (Vinez) log* (V21| = E[ga (¥ nex) log™ (1331

n—,oo  Mm—oo

for all k£ € Z. All in all,

5 Jim, (1= 1) g (10aD) 0 0Wo) 1600 >

o

Moreover, using the Par(«)-distribution of ||Yp|| and Y}, < ©y||Yo|| with [|Yp]| independent
of O, we obtain

||Yh||
2 yjat

heZ

Yt
| Ya|]

=> E

kEZ

) log+(\|YkH)11{||Yo||>1}] -

I¥al*
¥iig

Yiti
| Ya||

B>

heZ

) 10g+(I|YkH)]1{||Yo>1}]
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o) O
g5 leue, (H(;+H>log+(HChMH56H)

e 1Ol
= e () oot ayretas)
I i 0] 160l
o ||8h|| ethi -1, —« 1 0 P@ 9
== 2 gie o) o v (elog(llfklly) +1) (df)
e | g 4 Tl T
e Ohsi . .
gy Loy (’”)uAmm>mm@mvn+aw,
ez 1O1l2 O]
which proves assertion (ii). O

5.7.5 Proofs for Sections 5.3 and [5.4]

Apart from Theorem [5.3.1] which was proven in the previous section, in Section [5.3] we
have only to prove Lemma about the strengthened Condition (PM1).

Proof of Lemma[5.3.4. We start with assertion (i): since Y} £ 0,]|Ys| and (a + b))+ <
2149 (149 4 p1+9) for a,b, 6 > 0, we directly conclude

Elz|h|ﬁm|lOgHYh”|1+6HYh”a] _ EthISm“Og 1O +10g||Y(J|H1+6H@h||a]

Z|k|<m ||Yk‘”a Z|k|§m ||®k||a

< 21+5< [Zh<m|10g||@h|||1+5||@h||a] +E[ngm|1035||Y0||\1+5||9h||0‘])
> lkj<m ||Ok[| Dlk<m ||Ok[|

Sint<m |10g O8]l ]1O4 |
_21+6<El e + B[ log || Yo||['*?] ) < .
S 1OK]° [11og [[Yo[II**]

Here, the first expectation in the last line is finite due to (PM) (ii). The second expectation
is finite due to regular variation of the time series, since (log" z)'™ = o(z*¢) for some
e > 0, ie (logtx)* < ca* ™ for some ¢ > 0, and ||Yp| > 1 a.s. (for the proof of
finiteness of the expectation recall the definition of the tail process and see also the proof
for uniform integrability in (5.5.6), alternatively see also Kulik and Soulier| (2020)), Section
2.3.3). Thus, Condition (PM) (ii) implies (5.3.2)).

Conversely, assuming yields

E Fmgm | log H@hlll”‘sll@hﬂal

>ikj<m 1Ok
_ E[ZhgmUOgHYhH - 1Og||Y0|||1+§||Yh||a]
D ikj<m |1 Y& [~
< 21+5< l2h|<m|10g HYh|||1+5HYhH“] 4 E[ngm | log HYbH|1+5HYh||aD
- Siki<m Y&l > ik<m [ Ya]*

S iz 08 VAP
STM([ - + BJ1og [%]117] ) < oo.
D ik<m |1 Ya]* [ }
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Thus, condition (PM) (ii) is equivalent to (5.3.2). Next we turn to assertion (ii).

If the family of random variables

1 | Jog (|| Xl /un) || X |
x> >

Y 7m E N
" hi<tomnm) k< nnm) Xk

is uniform integrable for some d > 0, then the weak convergence defining the tail process

and dominated convergence imply

146 ||y ||
hmsupE[ > | log (YA lDI™ Il Yl }

m—00 |h|<m E|k|§m HY/CHa

[ > | Tog (|| Xl /un) || X ]|
h<onm) 2l <(snnm) 1 Xkl

limsup lim £
m—oo MO0

%ol > o

Tog (1,11 /1, ) 119 X, |
§supsupE{ S | Jog (|| Xl /un )] Xl

meN neN |h|<(snAm) Z|k|§(sn/\m) ||XkHa

1| > un] < o0,

i.e. (PM) (ii) is satisfied. The uniform integrability is implied by the uniform moment
bound

sup sup £ | Xol| > un| < 00

meN neN

l<2|h|<(sn/\m) | log(HXn,hH)\1+5!\Xn,h!\a>”"
E|k|§(sn/\m) HXn,k”a

for some 1 > 0. Applying the Holder inequality for sums yields, similar to the arguments

in (5.7.29),

a\ 1 / «
<Zh§(sn/\m) | Tog (|| X D0 Xo.nl) ) ! < ini<snam) 10GUXnn )| X |
S k<(snam) || Xkl - k1< (snrm) 1 Xnkll®

)

with ' = (14 0)(1 +7n) — 1 > 0. Therefore, it suffices to show

sup sup £ | Xol| > u| < 00 (5.7.44)

meN neN

[Zlhlﬁ(snAm) [ Log ([ Xnn D[ X n
D1kl (sunm) 1 Xnkl[

for some 1’ > 0. Note that similar to the calculations in the proof of Lemma following
equation ([5.7.29)) one has

[ Xoll > un

p Bt LA 1l
Z|k|§(sn/\m) ||Xn,k’ ||a

1+n’ Sn _ 140 N
sup  (log" (1 ,l)) "+ X (log™ (1 Xunl)) " 11Xl

—SnShSSn h=—snp,

<FE

[ Xoll > un]

and hence Conditions (PM1) (i) and (ii) (with ' = d) imply the Lyapunov-type condition
(5.7.44). Thus, condition (PM) (ii) holds. This concludes the proof. O

Next, we turn to the only proof for Section [5.4) namely the asymptotic normality of the
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projection based estimator for multiple time points. This proof is quite short, since the
proof is basically the same as for Theorem [5.2.9] and Theorem [5.3.1] and here we only

emphasis the few differences.

Proof of Theorem [5.4.1. One has p)f, = T gani/ Tngga ,, 8nd the proof for the first

assertion regarding the asymptotic normality of ]3% 4 is the same as the proof of Theorem

5.2.9L And also the proof of the asymptotic normality of ]5% 4 works along the same line
as the lengthy proof of Theorem [5.3.1], including the proofs of Lemma [5.2.4] Proposition
[5.2.5], Proposition and Lemmas [5.7.15.7.71 The only difference is that one uses the
[0, 1]-valued function g4 s instead of ga. In the proofs just mentioned, one only has to
replace the indicators 1 a(Xiinti/|| Xt + Bl|) by La(Xevnrir /| Xexnlls s Xevnping /1| Xeanll)-

Where conditions depending on the time point ¢ and set A where used, one now has to

use the modified condition as stated in the assertion.
For the process convergence note that the arguments for the bracketing remain the same
as in the proof of Proposition |5.2.7} since we use the same assumptions there, in particular
the family of sets A has the same structure as before.
We omit the details since all arguments are the same, but the notation becomes much

more messy. O
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Chapter 6

Outlook

In this final chapter, we consider shortly two possible further research areas which could
follow-up this thesis. One additional open field for future research are bootstrap tech-
niques to estimate the asymptotic variance of ﬁn A, as mentioned on page m This

problem has already been addressed there and will not be further elaborated here.

Sliding blocks in POT and block maxima setting

One aspect for future research might be the efficiency advantage of sliding blocks esti-
mators. For our peak-over-threshold approach, we have shown in Theorem that
sliding blocks estimators always have an asymptotic variance less than or equal to the
asymptotic variance of the corresponding disjoint blocks estimator. For the examples
of the extremal index and the stop-loss index in Section [4] the two variances are equal.
The same holds for more general cluster indexes under suitable conditions, as shown by
Cissokho and Kulik| (2021)). [Robert et al. (2009) proved that the sliding blocks version
of their estimator strictly outperforms the disjoint version, however, they used a smaller
threshold w,, with r, P(Xy > u,) — 7 > 0. For the block maxima approach, Zou et al.
(2021) also show that the sliding blocks estimator is at least as efficient as its disjoint
counterpart. In that paper and also in Bucher and Segers (20184d)) and |Buicher and Jen-
nessen| (20205), examples where the asymptotic variance of the sliding blocks estimator is
actually strictly smaller than the variance of the disjoint estimator are considered. This
raises the question for the reason for these differences between the POT and the block
maxima approach, in particular, whether this is only a random phenomenon or whether
there is a deeper structural difference between these approaches. This difference could be
related to the question which observations are considered as extreme and, therefore, how
large u,, is chosen, since for the POT setting one usually uses r,, P(Xy > u,) — 0 while in
the block maxima framework one has r, P(Xy > u,) ~ 1. Thus, here is an open question
regarding the structural difference between the POT and the block maxima setting, which
could explain the different behavior of sliding blocks statistics compared to disjoint blocks

statistics. A similar open question was recently also formulated by |Cissokho and Kulik
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(2021)), Section 5.3.

Projection based estimator for the extremal index

Another issue for future research could be the method of the projection based estimation
for extremal dependency. In , a projection based estimator was defined for the
whole distribution of the spectral tail process (©;)}<s,. In the course of Chapter , only
exemplary estimators for P(©; € A) for i € Z and Borel-sets A C R? were discussed in
greater detail. However, the approach for the projection-based estimator can also be used
for other probabilities, parameters or indexes that depend on the spectral tail process
(©¢)tez. Exemplary, we consider this for the extremal index 6 introduced in Definition
4.2.1] (Even though there are already a lot of estimators for this index.)

Under the conditions (A1) and (6P), holds due to the discussion above. Thus, for
a regularly varying time series (X;)cz, by the definition of the tail process (Y;);cz and by
Lemma

0 :JLI&P(ML% <y, | Xo>u,) = P(squt < 1>

t>1

holds with M := max(Xj, ..., Xy) and s, P(Xo > u,) = 0, s, — 0o. Direct calculations
using Y; £ ©,|Yq||, the Par(a)-distribution of ||Yp|| and independence of || Yy || and (©;)ez
yields

0= P(SUPYt < 1> = E{]l{supt>1®tyo||<1}]

t>1

00 Yoll (supy>q ©¢) ! a1l
E{/l L supyss @0 <y-13 P (dy)] =F /1 ay dy

1 -1 —Q
= E{[_y—a];illfta O1) vl} — E[ — ((sup @t> V 1) + 1]

:1—E[<(stglla@t)/\1>a} :1—E{(stl>11i)®f‘>/\1]. (6.0.1)

An empirical version of this representation of the extremal index based on observations

X1, .oy Xpys, leads to the estimator

1— — Tyyx, 1>, (( max ‘7) /\1).
>t L{ixef>un) ; Helzun \ i, X ]

If one uses the RS-transformation on this estimator or, equivalently, if one calculates the
expectation in (6.0.1) by using the estimated measure from ({5.1.3)) instead of the true

distribution of (©;)scz, one is lead to the following projection based estimator for the
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extremal index:

Grs — 1 — & n]l{||XtH>un} < SnHXtJtha . ( max Xt+h+j>a/\1
= e Luxsuny 1, s, [ Xkl 721 || X

—8n

|ht+j]|<sn

Since « is typically unknown, one has to replace o by an estimator &, e.g. as given in
(5.1.5)).

The extremal index 6 can be estimated by éffs and the asymptotic normality can possibly
be derived with the results of Section 3.2 due to its form of a sliding blocks estimator.
The regular variation used here is an additional assumption compared to Section 1.2
This estimator éffs is motivated by a general principle and is not as specifically designed
for the estimation of the extremal index as the estimators in Section [£.2] However, the
construction makes use of the fundamental properties of the spectral tail process, which
possibly improves the estimation. Therefore, it would be interesting to investigate how
well this projection based estimator éf”s performs compared to known estimators from
the literature. However, is just one representation of @, other representations may
lead to different projection based estimators for this index.

This is only an example how projection based estimators can be constructed for indexes
that depend on the spectral tail process. The RS projection method provides a new tool
for the construction of estimators for indexes characterizing extreme events, in particular

extreme dependences. This tool can also be used for other interesting parameters.
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Appendix A

Formalities

A.1 Abstract

For the understanding of the behavior of the extremes of a stationary time series (X;);ez,
the analysis of the extremal dependence in time is of high importance. For quantities
describing this temporal dependence of extreme events, block estimators are often used.
Block estimators are defined as the average of values g(W,, ;) for some function g and
Wit = (Xitn/Un)o<n<s,—1. Here, u, is a deterministic threshold above which we describe
observations X; as extreme and s, is the block length. An estimator for the extreme
temporal dependence can be defined as an average over g(W,,;), 1 <t <n—s,+ 1, in
which case they are called sliding blocks estimators. Alternatively, it can be defined as an
average over g(Wp (1-1)s,+1), 1 <t < |[n/s,], in which case we obtain so-called disjoint
blocks estimators.

The asymptotic analysis for disjoint blocks estimators can be performed using the central
limit theorems of Drees and Rootzén! (2010). For the analysis of sliding blocks estimators,
a comparable tool is missing so far. In this thesis, a generalized functional limit theorem
for suitable empirical processes is derived. As a special case, for the first time this allows
a systematic asymptotic analysis of sliding blocks estimators. Specifically, the asymptotic
normality of the standardized sliding blocks estimator is proved under weak conditions.
In general, both the sliding and the disjoint blocks estimator can be used for the same
estimation problem. It has been conjectured in the literature that the sliding blocks
estimator is more efficient and this has been shown concretely in some examples. In this
thesis, we prove that the sliding blocks estimator in the POT setting never has a larger
asymptotic variance than the disjoint blocks estimator.

Among the indexes describing specific aspects of the extremal dependence of time series
are the so-called cluster indexes. In this thesis, we consider two cluster indexes: the well
known extremal index and the newer stop-loss index. For both indexes, the asymptotic
distributions of the estimation errors are derived on the basis of the general theory men-

tioned above and, for the family of stop-loss indexes, even process convergence is shown.
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In each case, we consider a sliding blocks estimator, the associated disjoint blocks esti-
mator and a runs estimator. With the unified framework used in this thesis, it is shown
that all three estimators for the extremal index have the same asymptotic distribution
- a fact that was not yet known in the literature. The asymptotic result for the sliding
blocks estimator is shown for the first time in this work.

Under the assumption of regular variation, the spectral tail process (0;);cz describes the
entire extremal dependence structure of a stationary time series. Thus, for the initial
problem of describing the temporal dependence of extremes, the estimation of its distri-
bution is of particular interest. In this thesis, a new type of estimator is proposed, which
is based on an invariance principle of the distribution of the spectral tail process. This
invariance principle can be used for the construction of estimators by means of a projec-
tion method. For the corresponding estimator of P(0; € A) with a Borel set A and a
lag ¢ € Z, the asymptotic normality is derived using the general results for sliding blocks
estimators mentioned above. Asymptotic normality is proved for both a known and an
estimated index of regular variation. The conditions required for these asymptotic results
are all shown to be satisfied by the general example of solutions to stochastic recurrence
equations. Simulation results show that this new projection based estimator mostly has
smaller variance than estimators known from the literature. Moreover, this estimator also
has the most stable performance in terms of the RMSE. Overall, the new estimator has

some desirable properties that its predecessors from the literature do not possess.
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A.2 Zusammenfassung

Fiir das Versténdnis des Verhaltens extremer Beobachtungen einer stationdren Zeitreihe
(X})iez ist insbesondere die Analyse der extremalen Abhéngigkeiten in der Zeit von ho-
her Bedeutung. Fiir Kennzahlen, die diese temporale Abhéngigkeit extremer Ereignisse
beschreiben, werden oft Block-Schéitzer benutzt. Diese sind definiert als Durchschnitt
der Werte g(W,,,) fir eine Funktion ¢ und W,,; = (Xytn/un)o<n<s,—1. Dabel ist u,
eine deterministische Schranke, ab deren Uberschreiten wir Beobachtungen X, als extrem
beschrieben und s,, die Blocklange. Eine Teststatistik fiir die extremale Zeitabhéngigkeit
kann nun als Durchschnitt tber g(W,,), 1 <t < n — s, + 1, definiert werden, dann
liegen sogenannte sliding-Block-Schétzer vor. Alternativ kann sie als Durschnitt iiber
IWht-1)snt1), 1 <t < [n/s,] gebildet werden, dann liegen sogenannte disjoint-Block-
Schétzer vor.

Die asymptotische Analyse von disjoint-Block-Schéitzern kann mithilfe der zentralen Gren-
zwertsitze von Drees and Rootzén (2010) durchgefihrt werden. Fiir die Analyse von
sliding-Block-Schétzern fehlte bisher ein vergleichbares Werkzeug. In dieser Arbeit wird
ein verallgemeinerter funktionaler Grenzwertsatz fiir geeignete empirische Prozesse be-
wiesen. Als Spezialfall ermoglicht dieser erstmals eine systematische asymptotische Anal-
yse von sliding-Block-Schatzern. Konkret wird unter schwachen Bedingungen die asymp-
totische Normalitat des standardisierten sliding-Block-Schétzers hergeleitet.

In der Regel kann man sowohl den sliding- als auch den disjoint-Block-Schétzer fiir das
selbe Schatzproblem verwenden. In der Literatur wurde vermutet, dass der sliding-Block-
Schéatzer effizienter ist, fiir einige Beispiele wurde dies konkret gezeigt. In dieser Ar-
beit wird beweisen, dass der sliding-Block-Schéatzer im POT-Setting niemals eine grofiere
asymptotische Varianz als der disjoint-Block-Schatzer hat.

Zu den Kennzahlen, welche spezifische Aspekte der extremalen Abhédngigkeit von Zeitrei-
hen beschreiben, gehdren die sogenannten Cluster Indexe. In dieser Arbeit betrachten
wir zwei Cluster Indexe: Den aus der Literatur wohlbekannten Extremal Index und den
neueren Stop-loss Index. Fir beide Indexe werden die asymptotischen Verteilungen der
Schatzfehler auf Basis der zuvor erwahnten allgemeinen Theorie hergeleitet, wobei fiir den
Stop-loss Index sogar Prozesskonvergenz gezeigt wird. Dabei betrachten wir jeweils einen
sliding-Block-Schétzer, den zugehorigen disjoint-Block-Schétzer und einen Runs-Schétzer.
Mit dem in dieser Arbeit verwendeten vereinheitlichten Rahmen wird gezeigt, dass alle
drei Schatzer fiir den Extremal Index die gleiche asymptotische Verteilung haben - ein
Umstand der in der Literatur noch nicht bekannt war. Das asymptotische Resultat fiir
den sliding-Block-Schéatzer wird in dieser Arbeit zum ersten Mal gezeigt.

Unter der Annahme der reguldren Variation beschreibt der Tail-Spektralprozess (0;)ez
die gesamte extremale Abhéngigkeitsstruktur einer stationdren Zeitreihe. Fir das Aus-
gangsproblem der Beschreibung der temporalen Abhéangigkeit von Extremwerten ist also

insbesondere die Schétzung dieser Verteilung von Interesse. In dieser Arbeit wird ein
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neuer Typ von Schétzern vorgeschlagen, welche auf einem Invarianzprinzip der Verteilung
des Tail-Spektralprozesses basieren. Dieses Invarianzprinzip kann mittels einer Projek-
tionsmethode fiir die Konstruktion von Schéatzern verwendet werden. Fiir den Schatzer
von P(©; € A) fir eine Borel-Menge A und ein Lag i € Z wird in dieser Arbeit die
asymptotische Normalitat mit den zuvor genannten allgemeinen Resultaten fiir sliding-
Block-Schatzer hergeleitet. Die asymptotische Normalitat wird sowohl fiir einen bekan-
nten als auch fiir einen geschiatzten Index der reguldaren Variation bewiesen. Fiir die
asymptotischen Resultate werden eine Reihe an Bedingungen benotigt, diese werden alle
fir das allgemeine Beispiel der Losungen von stochastischen Rekurrenzgleichungen ver-
ifiziert. Simulationsergebnisse deuten darauf hin, dass dieser neue projektionsbasierte
Schétzer im Vergleich zu aus der Literatur bekannten Schétzern zumeist eine kleinere Var-
ianz aufweist. Dariiber hinaus hat dieser Schétzer auch im Sinne des RMSE die stabilere
Performance. Insgesamt hat der neue Schétzer einige wiinschenswerte Eigenschaften, die

seine Vorganger aus der Literatur nicht besitzen.
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A.3 Publications related to this dissertation

Extracts of the results of this dissertation have already been published in papers in col-

laboration with my supervisors Anja Janflen and Holger Drees.

e Drees and Neblung (2021)) includes the abstract limit theorem and the sliding blocks
limit theorem developed in Sections [3.1] and as well as the comparison of disjoint
and sliding blocks in Section [3.3] The results about the extremal index in Section
are also presented in shortened form in that paper.

e Drees et al| (2021)) contains the projection based estimator motivated in Chapter
Bl the corresponding asymptotic results from Sections [5.2) and [5.3] and parts of the
simulation study from Section[5.6] The examples from Section [5.5|are also presented

in shortened form in that paper.
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