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Introduction

This thesis started out as a research project on infinite matroids. The current
research in infinite matroids is based on the definition of an infinite matroid pre-
sented in [13], of which a preprint was available before the actual publication in
2013. Since then, several topics in infinite matroids have been researched. This
includes extending two basic notions from finite matroids to infinite ones, namely
(finite) connectivity and representability.

Of particular interest to this thesis are matroids arising from graph-like spaces
and Ψ-matroids. Finite graphs naturally induce matroids, the most obvious among
these are the cycle matroid and the bond matroid, which are dual to each other.
There is an interpretation of the graph as a topological space such that the circuits
correspond to homeomorphic images of the unit circle. In this interpretation, every
edge of the graph is associated with a subset of the topological space such that for
every homeomorphic image of the unit circle there is a well-defined set of edges of
the graph which are “contained” in the homeomorphic image. In this sense, the
circuits of the cycle matroid of a finite graph G are the edge sets of homeomorphic
images of the unit circle in the interpretation of G as a topological space.

Given an infinite graph, there are several possible generalisations of the cycle
matroid, among them the finite cycle matroid, the topological cycle matroid and (if
it exists) the algebraic cycle matroid. As in the finite case, for each of these matroids
there is a topological space with subspaces associated with edges of the underlying
graph such that the circuits of the matroid are the edge sets of homeomorphic
images of the unit circle. These topological spaces share quite a few properties.
So one possible generalisation of the finite cycle matroids are matroids for which
there is a suitable topological space with subspaces associated with edges such that
the circuits of the matroid are the edge sets of the homeomorphic images of the
unit circle. This approach is taken in [8], where a definition of suitable topological
spaces, called graph-like spaces, is given and a definition of when a matroid is
induced by a graph-like space. In that paper, it is shown that a matroid is induced
by a graph-like space if and only if every finite minor of the matroid is the cycle
matroid of a graph and every intersection of a circuit with a co-circuit is finite.

Another construction of matroids are Ψ-matroids. The basic construction con-
sists of a tree, a matroid at every node of the tree, a finite set of edges of the
matroids at every edge of the tree, and a set of ends of the tree. The matroids are
then thought to be glued together along the edge sets associated with the edges of
the tree, and the set of ends puts a structure on in which ways the circuits may
contain edges of infinitely many of the original matroids. In [6] and [7] it is shown
that if the set of ends is not too weird, and either the gluing corresponds to an
infinite two-sum of matroids or all matroids are representable over the same field
and have some extra property (being finite is enough) then the result of the gluing
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2 INTRODUCTION

is indeed a matroid. In [6] it is shown that for locally finite graphs there is a tree
of matroids whose ends correspond to the ends of the locally finite graph such that
gluing along the tree of matroids with respect to a set of ends corresponds to a
construction from the locally finite graph with respect to the same set of ends, and
that the topological cycle matroid and the finite cycle matroid are special cases of
this construction with respect to the set of all ends and the set of no ends.

Other areas in which research has been made include matroid union and ma-
troid intersection, the structure of infinite matroids with respect to separations
of low order (this is connected to the second part of this thesis), more connecti-
ons to matroids arising from graphs (including gammoids) and of course Menger’s
theorem.

This thesis has two parts, which are described in detail in their respective
introductions. The first part mainly consists of a generalisation of a statement,
that was shown in [28] to hold for cofinitary matroids, to two other classes of
matroids. The second part is about the theory of flowers as developed in [17]
and [5] and is mainly concerned with the generalisation of this theory to infinite
matroids. The theory in [17] holds in a more general context than matroids, and
similarly many of the statements proved in the second part of this thesis turn out
to hold in more general context than infinite matroids.



CHAPTER 1

Basics

1.1. Sets, maps and intervals

Disjoint union is indicated by the symbol ⊍. The set N contains 0. For a set
E, its power set is denoted by P(E). Unless stated explicitly otherwise, partitions
do not contain empty partition classes. Given a set X, a subset Y of X is called a
non-trivial subset of X if ∅ 6= Y 6= X. For three sets I, x and y, the set I ∪ {x}
is denoted by I + x and the set I\{y} is denoted by I − y. Intervals of the form
{c : a ≤ c < b} are denoted by [a, b[ and the intervals ]a, b] and ]a, b[ analogously. A
maximal element of a pre-order (X,≤) is an element x ∈ X such that for all y in
Y with x ≤ y also y ≤ x holds.

Lemma 1.1. [19] Let G be a graph and ω an end of G such that there are arbitrarily
large finite families of pairwise disjoint rays contained in ω. Then there is an infinite
family of pairwise disjoint rays contained in ω.

1.1.1. Chains and limit-closed maps.

Definition 1.2. A map µ : X → N is called limit-closed if for every k ∈ N and
every chain Y of X with µ(y) ≤ k for all y in Y there is a supremum x of Y in X
and that supremum satisfies µ(x) ≤ k.

Lemma 1.3. Let X be a partially ordered set with a limit-closed map λ : X → N.
Also let k ∈ N and let D be a directed subset of X such that λ(d) ≤ k for all d
in D. Then D has a supremum x in X, and that supremum satisfies λ(x) ≤ k.

Proof. The proof is by transfinite induction on the cardinality of D. If D is
finite, then it has a biggest element x and the lemma holds, so assume otherwise.
Count D as (dµ)µ<ν , where ν is the cardinality of D.

If D is countable, then let d′0 be d0 and recursively define d′i+1 to be an element
of D such that d′i ≤ d′i+1 and di+1 ≤ d′i+1. Then (d′i)i<ω is a chain and its elements
satisfy λ(d′i) ≤ k. As λ is limit-closed, the chain has a supremum x in X which
satisfies λ(x) ≤ k.

If D is uncountable, then let f : D ×D → D be a map such that f(a, b) ≥ a
and f(a, b) ≥ b for all elements a and b of D. For every µ < ν let Dµ be the closure
of {dκ : κ ≤ µ} under f . Then every Dµ with finite µ is finite or countable and
every Dµ with infinite µ has cardinality at most µ. Thus every Dµ with µ < ν
is a directed set of cardinality less than ν, so by the induction hypothesis there
is a supremum d′µ of Dµ that satisfies λ(d′µ) ≤ k. Also µ ≤ µ′ < ν implies that
Dµ ⊆ Dµ′ and hence d′µ ≤ d′µ′ . So (d′µ)µ<ν is a chain, and its supremum x in X,

which satisfies λ(x) ≤ k, is the supremum of D. �
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4 1. BASICS

Corollary 1.4. Let E be a set and λ : P(E) → N a limit-closed map. If there is
k ∈ N such that λ(S) ≤ k for all finite S ⊆ E, then also λ(S) ≤ k for all subsets S
of E. �

1.2. Cyclic orders

This section starts with a short collection of basics about cyclic orders and
their connection to linear orders. In this section, quite often distinct linear or cyclic
orders on the same ground set are considered. Because of this, and in contrast to
the rest of the thesis, in this section cyclic orders and linear orders are not implicit
but introduced formally correct as relations on the ground set. The notation of
≤ is kept for a linear order, but the linear order in question is added as an index
where necessary, for example in s ≤L t for a linear order L. Similarly, for intervals
of cyclic orders (introduced later), the cyclic order in question may be indicated by
an index.

In the second part of this thesis, cyclically ordered sets are index sets for flo-
wers. In particular in Chapter 5, for reasons explained there, the index sets have a
particular form: they are the cycle completion of another cyclic order. Intuitively,
the following happens: Let I be some cyclically ordered set. If one envisions I as
boxes arranged in a circle according to the cyclic order (see also Fig. 1), then it is
possible to cut up the circle at two places without cutting through boxes, thereby
dividing the set of boxes into two intervals. If I is finite, then every one of these
“cut points” is between two boxes. So I and the set of possible cut points form
together another cyclically ordered set. If I is infinite, then not every cut point is
between two boxes, but still I and the set of possible cut points form together a
cyclically ordered set, the cycle completion of I.

In Chapter 5 there is a partial order on the set of k-pseudoflowers for which
a comparison of distinct index sets is needed. To do this formally, also homomor-
phisms of cyclic orders and their interactions with cycle completions are analysed
in this section. Both the cycle completion and this section’s statements about the
interaction of homomorphisms of cyclic orders and cycle completion are formally
complex and take up most of this section, but should intuitively be clear. This the-
sis’ way of formalising the cycle completion via cuts is just one possibility among
many.

Definition 1.5. [35, Definition 1.1] Given two linear orders A and B on disjoint
ground sets, the linear order A⊕ B is the linear order defined on the union of the
ground sets of A and B by letting x ≤ y if x ≤A y or x ≤B y or x ∈ A and y ∈ B.

Definition 1.6. [35] A set of triples Z in S × S × S is a cyclic order of the set S
if it has the following four properties:

• (cyclic) ∀a, b, c ∈ S : (a, b, c) ∈ Z ⇒ (b, c, a) ∈ Z
• (antisymmetric) ∀a, b, c ∈ S : (a, b, c) ∈ Z ⇒ (c, b, a) /∈ Z
• (linear) ∀a, b, c ∈ S pairwise distinct : (a, b, c) /∈ Z ⇒ (c, b, a) ∈ Z
• (transitive) ∀a, b, c, d ∈ S : (a, b, c) ∈ Z ∧ (a, c, d) ∈ Z ⇒ (a, b, d) ∈ Z.

Note that what is called a cyclic order here is sometimes (also in [35]) called
a linear cyclic order or a complete cyclic order, with a cyclic order not necessarily
being linear. The distinction is not made here as all cyclic orders under considera-
tion are linear.
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Figure 1. A set (whose elements are indicated by boxes) which
is cyclically ordered (indicated by the arrangement of the boxes on
a circle) and two “cutting points” dividing the cyclically ordered
set into two intervals.

For two elements a and b of S, the set of elements c ∈ S satisfying (a, c, b) ∈ Z
is denoted by ]a, b[. The sets ]a, b[+a, ]a, b[+b and ]a, b[+a+ b are denoted by [a, b[,
]a, b] and [a, b] respectively. As every cyclic order Z uniquely determines its ground
set S, it is not necessary to distinguish between intervals of (S,Z) and intervals of
Z, and similarly for linear orders.

An interval of the cyclic order is a subset I of S such that for all s and t in S
either [s, t] ⊆ I or [t, s] ⊆ I.

Remark 1.7. [34, Lemma 1.4] The definition of a cyclic order implies that if Z is
a cyclic order on a set S and (s, s′, t) is an element of Z then s, s′ and t are pairwise
distinct.

Definition 1.8. [35, Lemma 1.11,Definition 2.1, Theorem 2.3] Given a linear order
L on a set S, the cyclic order Z induced by L consists of those triples (s, s′, t) of
elements of S such that in L one of the equations s < s′ < t, s′ < t < s and
t < s < s′ holds. Given a cyclic order Z on a set S, a cut of Z is a linear order L
on S such that Z is the cyclic order induced by L.

Lemma 1.9. [34, Theorem 3.1] For every cyclic order Z on set S and every s in
S there is a cut of Z whose smallest element is s.

Remark 1.10. By Lemma 1.9, every non-trivial interval of a cyclic order Z is also
an interval of a cut L of Z. Also, such an interval inherits a linear order from every
cut of which it is an interval, and that linear order does not depend on the chosen
cut.

Observation 1.11. Let Z be a cyclic order on a set S, L a cut of Z and s, s′ and
t elements of S such that (s, s′, t) ∈ Z. If s ≤ t in L, then s < s′ < t in L. �

Definition 1.12. Let Z be a cyclic order on a set S and Z ′ a cyclic order on a set
S′. In analogy to homomorphisms of linear orders, a homomorphism from Z to Z ′

is a map f : S → S′ such that (s, s′, t) ∈ Z for all elements s, s′ and t of S with
(f(s), f(s′), f(t)) ∈ Z ′. A strong homomorphism from Z to Z ′ is a homomorphism
from Z to Z ′ such that f−1(s′) is an interval of Z for all s′ ∈ S′. A homomorphism
of cyclic orders is a map for which there are cyclic orders Z and Z ′ such that the
map is a homomorphism from Z to Z ′, and similarly for strong homomorphisms.
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The cyclic order {(t, s, r) : (r, s, t) ∈ Z} on S is the mirror of Z.

If the image of a homomorphism of cyclic orders contains at least three elements,
then it is already a strong homomorphism. But every map between cyclically
ordered sets whose image has at most two elements is a homomorphism of cyclic
orders, and not all such maps should be considered as homomorphisms in this thesis.

The inverse of any bijective homomorphism of cyclic orders is also a homo-
morphism of cyclic orders, so a bijective homomorphism of cyclic orders is already
an isomorphism of cyclic orders. Also, every injective homomorphism of cyclic
orders is a strong homomorphism of cyclic orders, so when deriving a definition
of isomorphism of cyclic orders, it does not matter whether that is derived from
homomorphisms or strong homomorphisms.

Strong homomorphisms of cyclic orders have the property that pre-images of
intervals are again intervals. Maps with that property are nearly strong homomor-
phisms again:

Lemma 1.13. Let Z be a cyclic order on a set S and Z ′ a cyclic order on a set
S′. Let f : S → S′ be a map such that for all intervals I of Z ′ the set f−1(I)
is an interval of Z. Then f is a strong homomorphism from Z to Z ′ or a strong
homomorphism from Z to Z ′′, where Z ′′ = {(s, s′, t) : (t, s′, s) ∈ Z ′}.

Proof. If for all elements r, s and t of S the implication

(f(r), f(s), f(t)) ∈ Z ′ ⇒ (t, s, r) ∈ Z

holds, then f is a strong homomorphism from Z ′′ to Z ′. So assume that there
are elements r, s and t of S such that (f(r), f(s), f(t)) ∈ Z ′ and (r, s, t) ∈ Z.
First consider the case that there is u ∈ S such that (f(r), f(u), f(t)) ∈ Z ′. Then
f−1([f(t), f(r)]) is an interval of S which contains t and r but not s, so [t, r] is
a subset of f−1([f(t), f(r)]). As also u /∈ f−1([f(t), f(r)]), u /∈ [t, r] and thus
(r, u, t) ∈ Z.

Now let r′, s′ and t′ be elements of S such that (f(r′), f(s′), f(t′)) ∈ Z ′. In order
to show that (r′, s′, t′) ∈ Z, first consider the case that the number n of elements in
{f(r′), f(s′), f(t′)} which are not contained in {f(r), f(s), f(t)} is zero. Assume,
by renaming if necessary, that f(r′) = f(r), f(s′) = f(s) and f(t′) = f(t). Then by
three applications of the previous paragraph, (r, s′, t) ∈ Z and thus (s′, t′, r) ∈ Z
and hence (r′, s′, t′) ∈ Z.

Next consider the case that n = 1. Assume, again by renaming if necessary,
that (f(r), f(r′), f(s)) ∈ Z ′ (see also the left cyclic order of Fig. 2). By the first
paragraph of this proof, (r′, s, t) ∈ Z and (r′, t, r) ∈ Z and hence also (r′, s, r) ∈ Z.
Then there are three cases: Either f(s′) = f(s) and f(t′) = f(t) or f(s′) = f(t)
and f(t′) = f(r) or f(s′) = f(s) and f(t′) = f(r). In all three cases, by the case
n = 0 also (r′, s′, t′) ∈ Z.

Next consider the case that n = 2, and that one of the intervals ]f(r), f(s)[,
]f(s), f(t)[, and ]f(t), f(r)[ contains both elements of {f(r′), f(s′), f(t′)} which are
not contained in {f(r), f(s), f(t)}. Assume, by renaming if necessary, that both
f(r′) and f(s′) are contained in ]f(r), f(s)[. In that case (f(r′), f(s′), f(t′)) ∈
Z ′ implies that f(r′) ∈]f(r), f(s′)[ (see also the middle cyclic order in Fig. 2).
Also, by the case n = 1, (r′, s, t), (s′, s, t) and (t, r, r′) are all contained in Z.
As f−1([f(t), f(r′)]) contains t and r′ but neither s or s′, (r′, s, t) ∈ Z implies
[t, r′] ⊆ f−1([f(t), f(r′)]). Thus s′ is not contained in [t, r′] and hence (r′, s′, t) ∈ Z.
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f(r)

f(r′)

f(s)

f(t)

f(r)

f(s)

f(t)

f(r′)

f(s′)

f(r′)

f(s′)

f(t′)f(u)

Figure 2. Three of the cases in the proof of Lemma 1.13

Because (s′, s, t) and (t, r, r′) are contained in Z, also (r′, s′, s) and (r′, s′, r) are
contained in Z. By the case n = 0, also (r′, s′, t′) ∈ Z.

Next consider the case that n = 2 and none of the intervals ]f(r), f(s)[,
]f(s), f(t)[ or ]f(t), f(s)[ contains two elements of {f(r′), f(s′), f(t′)}. Assume, by
renaming if necessary, that f(t′) ∈ {f(r), f(s), f(t)} and that there is u ∈ {r, s, t}
such that (f(r′), f(u), f(s′)) ∈ Z ′ (see also the right cyclic order of Fig. 2). In this
case (t′, r′, u) and (u, s′, t′) are both contained in Z ′ by the case n = 1 and thus
(r′, s′, t′) is also contained in Z ′.

The only case left is the case n = 3. Assume, by renaming if necessary, that
(f(r′), f(s), f(s′)) ∈ Z ′. Then (s, s′, t′) and (s, t′, r′) are contained in Z by the case
n = 2 and thus (r′, s′, t′) ∈ Z. �

Definition 1.14 (Remark 2.3). [34] Given a cyclic order Z of a set S and a subset
S′ of S, the set of triples in Z which only contain elements of S′ is a cyclic order
on S′, the induced cyclic order on S′.

Theorem 1.15. [35, Theorem 3.6] Let Z be a cyclic order on set S and let K and L
be distinct cuts of Z. Then there are non-empty disjoint subsets A and B of S such
that A ∪B = S, K|A = L|A, K|B = L|B, K = K|A⊕K|B and L = K|B ⊕K|A.

The following construction of a linear order D(L) starting from a linear order
L is very similar to both the Dedekind completion of L and the pseudo-line L(L) as
in [8, Definition 4.1]. Similarly to the Dedekind completion, D(L) consists of initial
segments of L and of the elements of L itself. But here an element l of L is not
identified with an initial segment of L. The construction of D(L) can be obtained
from the pseudo-line L(L) by replacing all the intervals (0, 1)× {l} by just l. The
topology of the pseudo-line is not needed in the context of this thesis.

Example 1.16. (See also [8]) Let L be a linear order on a set S and let V (L) be the
set of initial segments of L, i.e. subsets S′ of S which satisfy that if s is an element
of S′ and t is an element of S with t < s then also t ∈ S′. The subset relation is a
natural linear order on V (L). Define a linear order on the disjoint union of S and
V (L) by letting x ≤ y if either both x and y are contained in S and x ≤ y in L or
both are contained in V (L) and x ≤ y in V (L) or x ∈ y or y ∈ S\x. Denote the
resulting linear order on S ∪ V (L) by D(L). The smallest element of D(L) is the
empty set and the biggest element of D(L) is S. Denote S ∪ (V (L)\{S}) by V ′(L),
the restriction of D(L) to V ′(L) by D′(L) and the cyclic order induced by D′(L)
by Z(L). For every element s of S, the set {t ∈ S : t < s} is the predecessor and
the set {t ∈ S : t ≤ s} is the successor of s in D(L).



8 1. BASICS

Every subset of D(L) has a supremum and an infimum in D(L), which can be
seen as follows: Given a subset V ′ of V (L), the set

⋃
V ′ is an initial segment of

S and is the supremum of V ′ both in D(L)|V (L) and in D(L). Similarly the set⋂
V ′ is the infimum of V ′ in D(L)|V (L) and D(L). So in order to show that every

subset of S ∪V (L) has a supremum and an infimum in D(L), it suffices to consider
subsets S′ of S, and by symmetry it suffices to show that S′ has a supremum in
D(L). The set {s ∈ S|∃t ∈ S′ : s ≤ t}, denoted by S′′, is an initial segment of S
which is an upper bound of S′. Also, no proper subset of S′′ is an upper bound of
S′. So if S′ has an upper bound in D(L) which is less than S′′, then that upper
bound is contained in S. In particular, as D(L) contains between any two elements
of S at least one element of V (L), there is at most one upper bound of S′ which is
less than S′′. Thus S′ has a supremum in D(L).

Lemma 1.17. Let L and K be cuts of a cyclic order Z on a set S such that
K = (L|(S\S′))⊕ (L|S′) for an initial segment S′ of L. Then the map

V ′(L)→ V ′(K), x 7→


x x ∈ S
x ∪ (S\S′) x ∈ V ′(L)\S, x ( S′

x\S′ x ∈ V ′(L)\S, S′ ⊆ x

is the unique bijective strong homomorphism from Z(L) to Z(K) which preserves S.

Proof. The map F1 : V ′(L) → V ′(L|S′) ∪ V ′(L|(S\S′)) which maps ele-
ments of S to themselves, initial segments which are properly contained in S′

to themselves and initial segments I containing S′ to I\I ′ is an isomorphism of
the linear orders D′(L) and D′(L|S′) ⊕ D′(L|(S\S′)). Similarly the map F2 :
V ′(K) → V ′(L|S′) ∪ V ′(L|(S\S′)) which maps every elements of S to themsel-
ves, initial segments properly contained in S\S′ to themselves and initial segments
I containing S\S′ to I ∩ S′ is an isomorphism of the linear orders D′(K) and
D′(L|(S\S′))⊕ (L|S′). Thus the map given in the lemma, which equals F−1

2 ◦ F1,
is a bijective strong homomorphism from Z(L) to Z(K).

Let F and G be two bijective strong homomorphisms from Z(L) to Z(K) which
preserve S. Assume for a contradiction that there is v ∈ V ′(L) such that F (v) is
less than G(v) in D′(K). As F and G both are bijective and preserve S, F (v)
and G(v) are both contained in V ′(K)\S. Thus there are elements s ∈ G(v)\F (v)
and t ∈ S\G(v). Then (F (t), F (v), F (s)) equals (t, F (v), s) and is thus contained
in Z(K). Because F is a strong homomorphism from Z(L) to Z(K), this implies
that (t, v, s) ∈ Z(L). But similarly (s,G(v), t) ∈ Z(K) and thus (s, v, t) ∈ Z(L), a
contradiction. �

Corollary 1.18. Let Z be a cyclic order on set S and let L and K be cuts of Z.
Then there is a unique bijective strong homomorphism from Z(L) to Z(K) which
preserves S.

Proof. Let S′ ⊆ S such that K = (L|(S\S′)) ⊕ (L|S′) and such that S′ is
an initial segment of L. Such a set exists by Theorem 1.15. Then the statement
follows from Lemma 1.17. �

Lemma 1.19. Let Z by a cyclic order on a non-empty set S and let V be the set
of cuts of Z. For every cut L ∈ V denote the map V ′(L) → S ∪ V which maps
every element of S to itself and every initial segment S′ to (L|(S\S′))⊕ (L|S′) by
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ηL. Also denote {(ηL(a), ηL(b), ηL(c)) : (a, b, c) ∈ Z(L)} by TL. Then TL is a cyclic
order on S ∪ V which does not depend on the choice of L.

Proof. By Theorem 1.15 the maps ηL are surjective, so they are bijections
between V ′(L) and S ∪ V. Thus every TL arises from Z(L) by renaming the ele-
ments of V ′(L) and thus is a cyclic order on S ∪ V, and ηL is a bijective strong
homomorphism from Z(L) to TL. Let L and K be elements of V and let S′ be an
initial segment of L such that K = (L|(S\S′)) ⊕ (L|S′) (such a segment exists by
Theorem 1.15). Denote the unique bijective strong homomorphism from Z(L) to
Z(K) preserving S, which exists by Lemma 1.17, by F . Then ηK ◦ F (s) = ηL(s)
for all s ∈ S. Also, for all initial segments I of L which are properly contained in
S′,

ηK ◦ F (I) = ηK(I ∪ (S\S′)) = (K|(S′\I))⊕ (K|(I ∪ (S\S′)))
= (L|(S′\I))⊕ (L|(S\S′))⊕ (L|I)

= (L|(S\I))⊕ (L|I) = ηL(I),

and similarly for all initial segments I of L which contain S′

ηK ◦ F (I) = ηK(I\S′) = (K|(S\(I\S′)))⊕ (K|(I\S′))
= (L|(S\I)))⊕ (L|S′)⊕ (L|(I\S′))
= (L|(S\I))⊕ (L|I) = ηL(I).

So ηK ◦ F = ηL and thus ηK ◦ F ◦ η−1
L is the identity. But ηK ◦ F ◦ η−1

L is also
a composition of bijective strong homomorphisms of cyclic orders and thus the
identity is a bijective strong homomorphism from TL to TK , so TL = TK . �

Definition 1.20. For a cyclic order Z on set S, denote the union of S with all cuts
of Z by S(Z). If S is non-empty, then the cycle completion of Z, denoted by Z(Z),
is the cyclic order on S(Z) given in Lemma 1.19. If S is empty, then S(Z) only
contains the empty cut, and thus Z(Z) is the empty cyclic order. A subset X of
S(Z)\S is closed if for all elements x and y of S(Z)\S either X ∩ [x, y] = ∅ or the
supremum and the infimum of X ∩ [x, y] in the linear order of [x, y] are contained
in X.

Lemma 1.21. Let Z be a cyclic order on set S. Then for every non-trivial interval
I of S there are unique elements v and w of S(Z)\S such that I = [v, w] ∩ S.

Proof. Let L be a cut of Z such that I is an interval of L and such that some
element of S is bigger than all elements of I in L. By construction of D(L) there are
unique elements v and w of V ′(L)\S such that I = [v, w]∩S in D(L). Then v and w
are also the unique elements of V ′(L)\S such that I = [v, w]∩S in Z(L), and thus
ηL(v) and ηL(w) are the unique elements of S(Z) such that I = [ηL(v), ηL(w)] ∩ S
in Z(Z). �

In Chapter 5 cycle completions will play an important role as the index sets
of flowers. Given two cyclic orders Z and Z ′ on sets S and S′, concatenation from
a flower on index set Z(Z) to a flower on index set Z(Z ′) is defined in terms of
a surjective strong homomorphism F : S(Z) → S(Z ′) such that F (S) ⊆ S′. The
following lemmas establish a few facts about such strong homomorphisms.

Lemma 1.22. Let Z and Z ′ be cyclic orders on sets S and S′. Let F : S(Z) →
S(Z ′) be a surjective strong homomorphism of cyclic orders such that F (S) ⊆ S′.
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Then there is for every v′ ∈ S(Z ′)\S′ exactly one v ∈ S(Z) with F (v) = v′, and
there is for every s′ ∈ S′ some s ∈ S with F (s) = s′.

Proof. Every interval of Z(Z) with at least two elements contains at least
one element of S. As F−1(v′) does not contain elements of S, it has at most one
element. Because F is surjective, F−1(v′) contains exactly one element v. Let t′

and q′ be the predecessor and successor of s′ in Z(Z ′). Then [t′, q′] taken in Z(Z ′)
consists of t′, q′ and s′. Let t and q be the unique elements of S(Z) such that
F (t) = t′ and F (q) = q′, and let s be an element of [t, q] taken in Z(Z) which is
contained in S. As F is a strong homomorphism of cyclic orders and F (s), q′ and
t′ are pairwise disjoint, F (s) ∈ [t′, q′] in Z(Z ′). Thus F (s) = s′. �

So F naturally induces two other strong homomorphisms of cyclic orders: The
restriction of F to S is a surjective strong homomorphism from Z to Z ′ and g :
S(Z ′)\S′ → S(Z)\S which maps every element to its unique pre-image under F
is an injective strong homomorphism of cyclic orders. In the other direction, all
surjective strong homomorphisms f from Z to Z ′ are derived from a surjective
strong homomorphism from Z(Z)→ Z(Z ′) with F (S) ⊆ S′.

Lemma 1.23. Let Z and Z ′ be cyclic orders on set S and S′ respectively, and
let F : S(Z) → S(Z ′) be a surjective strong homomorphism from Z(Z) to Z(Z ′)
with F (S) ⊆ S′. Then for all elements v and w of S(Z) such that F (v) and
F (w) are distinct elements of S(Z ′)\S′ the equations F−1(]F (v), F (w)[) =]v, w[
and F−1([F (v), F (w)]) = [v, w] hold.

Proof. By Lemma 1.22, v is the only element of S(Z) which is mapped to
F (v) by F and similarly for w. So for all x ∈ S(Z)− v−w, (v, x, w) ∈ Z(Z) if and
only if (F (v), F (x), F (w)) ∈ Z(Z ′) and thus the two equations hold. �

Lemma 1.24. Let Z and Z ′ be cyclic orders on sets S and S′ and let f be a
surjective strong homomorphism from Z to Z ′. If S′ has at least two elements,
then there is a unique surjective strong homomorphism F from Z(Z) to Z(Z ′) such
that the restriction of F to S equals f .

Proof. Let L′ be some cut of Z ′ and let L be the cut of Z where x <L y
if f(x) <L′ f(y) or if f(x) = f(y) and x < y in the interval f−1(f(x)). For
v ∈ V ′(L)\S let Av = {f(s) : s <L v} and Bv = {f(s) : s >L v}. Then Av ∩ Bv
contains at most one element, and if it contains an element then denote that element
by sv. Define F : V ′(L)→ V ′(L′) to map x to itself if x ∈ S, to sv if that is defined
and to Av otherwise. Then F is a surjective map from V ′(L) to V ′(L′) whose
restriction to S is f and which satisfies ∀x, y ∈ dS : F (x) < F (y) ⇒ x < y.
Furthermore F−1(v′) contains exactly one element for all v′ ∈ V ′(L)\S′. So F
induces a surjective strong homomorphism F ′ from Z(Z) to Z(Z ′) whose restriction
to S is f .

Let G be a surjective strong homomorphism from Z(Z) to Z(Z ′) whose re-
striction to S is f . By Lemma 1.21 there are unique elements v′ and w′ of S(Z ′)\S′
such that {s′} = [v′, w′] ∩ S′ and by Lemma 1.22 there are unique elements v and
w of S(Z) such that G(v) = v′ and G(w) = w′. Then by Lemma 1.23

f−1(s′) = G−1(s′) ∩ S = G−1(]G(v), G(w)[) ∩ S =]v, w[∩S = [v, w] ∩ S.

So v and w are the unique elements of S(Z)\S such that [v, w] ∩ S = f−1(s′), and
thus G−1(s′) is determined by f . Thus if G differs from F ′, then there is v ∈ S(Z)
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such that F ′(v) and G(v) are distinct elements of S(Z ′)\S′. But then there are
elements s′ and t′ of S′ with (s′, F ′(v), t′) ∈ Z(Z ′) and (t′, G(v), s′) ∈ Z(Z ′) and
elements s and t of S with f(s) = s′ and f(t) = t′. As F ′ and G are strong
homomorphisms from Z(Z) to Z(Z ′), this implies (s, v, t) ∈ Z(Z) and (t, v, s) ∈
Z(Z), a contradiction. So G does not differ from F ′. �

In Lemma 1.24, the requirement that S′ have at least two elements is only
needed for the uniqueness of F , F also does exists if S′ has only one element.
And if S′ does not have any elements, then also S = ∅ and hence S(Z) and S(Z ′)
have only one element each. In this case, the unique map between them is again a
surjective strong homomorphism of cyclic orders.

The following example shows that not every injective strong homomorphism
f : S(Z ′)\S′ → S(Z)\S is derived from some suitable F : S(Z)→ S(Z ′):

Example 1.25. Let S be the non-negative integers, L the usual linear order and
Z the cyclic order induced by L. Then every element v of V ′(L)\S has a successor
ν(v) in the restriction of D′(L) to V ′(L)\S. Then ν : V ′(L)\S → V ′(L)\S is an
injective strong homomorphism of cyclic orders. But there is no surjective strong
homomorphism F from Z(Z) to itself which satisfies F (S) ⊆ S and F ◦ f = id, as
the smallest element of L cannot be mapped anywhere suitable.

Lemma 1.27 shows that some subsets of S(Z)\S are isomorphic to the re-
striction of Z(Z ′′) to S(Z ′′)\S′′ for a suitable cyclic order Z ′′ on set S′′.

Lemma 1.26. Let Z and Z ′ be cyclic orders on sets S and S′ respectively and let
F be a surjective strong homomorphism from Z(Z) to Z(Z ′) with F (S) ⊆ S′. Then
every v ∈ S(Z)\S satisfies F (v) ∈ S′ if and only if there are elements s and t of
F−1(F (v)) ∩ S such that v ∈ [s, t].

Proof. The “if” direction is clear. In order to show the “only if” direction,
let v be an element of S(Z)\S such that F (v) ∈ S′. In the case that S′ has only
one element, by Lemma 1.22 there is a unique element w ∈ S(Z) with F (w) /∈ S′,
and necessarily w /∈ S. So there are elements s and t of S such that v ∈ [s, t] and
w ∈ [t, s]. Then w /∈ [s, t] and thus [s, t] ⊆ F−1(F (v)). So assume that S′ has at
least two elements. Let u′ and w′ be the predecessor and successor of F (v) in S(Z ′).
Again by Lemma 1.22 there are unique elements u and w of S(Z) with F (u) = u′

and F (w) = w′. As neither u nor w is contained in S there are elements s and t of
S such that s ∈ [u, v] and t ∈ [v, w], so v ∈ [s, t] ⊆ [u,w]. Furthermore

F−1(F (v)) = F−1(]F (u), F (w)[) =]u,w[

where the last equation holds by Lemma 1.23. �

Lemma 1.27. Let Z be a cyclic order on set S and x and y distinct elements
of S(Z). Let C be a non-empty subset of [x, y]\S such that for all C ′ ⊆ C the
supremum and infimum of C ′ in [x, y] are contained in C. Then there is a cyclic
order Z ′ on set S′ and a surjective strong homomorphism F from Z(Z) to Z(Z ′)
such that C = F−1(S(Z ′)\S′).

Proof. If C has only one element, then the lemma holds, so assume otherwise.
Define an equivalence relation on S where s ∼ t if there is an interval of S(Z)
containing both s and t but no element of C. Let S′ be the set of equivalence
classes, f the projection from S to S′ and Z ′ the cyclic order on S′ which contains
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all triples (f(s), f(s′), f(t)) where (s, s′, t) ∈ Z and f(s), f(s′) and f(t) are pairwise
disjoint. Then f is a surjective strong homomorphism from Z to Z ′ and thus by
Lemma 1.24 there is a surjective strong homomorphism F from Z(Z) to Z(Z ′)
whose restriction to S is f . Thus by Lemma 1.22, for every element v of S(Z ′)\S′
the set F−1(v) contains exactly one element g(v). Then g : S(Z ′)\S′ → S(Z) is an
injective strong homomorphism from Z(Z ′)|(S(Z ′)\S′) to Z(Z).

Assume for a contradiction that there is v ∈ C such that F (v) ∈ S. Then there
are by Lemma 1.26 elements s and t of S such that v ∈ [s, t] ⊆ F−1(F (v)). Thus
f(s) = f(t), so [t, s] is an interval of Z(Z) which avoids C. But then the image of
f has only one element, contradicting the fact that C has at least two elements.
Thus C is a subset of the image of g.

Let v be an element of the image of g. As C contains at least two elements,
there is s ∈ S with predecessor y′ and successor x′ in Z(Z) such that both [x′, v]
and [v, y′] contain an element of C. As for every subset of C its supremum and
infimum in [x, y] are contained in C, also the supremum p of [x′, v]∩C in [x′, v] and
the infimum q of [v, y′]∩C in [v, y′] are contained in C. Assume for a contradiction
that neither p nor q equals v. Then there are elements s and t of S such that
s ∈ [p, v] and t ∈ [v, q]. Then [s, t]∩C = ∅, so [s, t]∩S ⊆ f−1(s)). Then F−1(f(s))
is an interval of Z(Z) which contains s and t but not v, so it contains [t, s]. But
then all elements of S are mapped to f(s) by f , contradicting the fact that C and S′

have both at least two elements. So v equals p or q and is thus contained in C. �

1.3. (Infinite) matroids

Terminology for infinite matroids is mostly taken from [13]. In [14] the finite
connectivity is explored and the definitions of finitarisation, nearly finitary and k-
nearly finitary can be found in [3]. Alternatively, these definitions and statements
(and many more in this and the next section) can be found in [10].

Definition 1.28. [13] Given a ground set E, a set C of subsets of E is the set of
circuits of an infinite matroid M if it satisfies

(C1) The empty set is not contained in C.
(C2) Elements of C are not proper subsets of each other.
(C3) For all C ∈ C, all z ∈ C and all families (Cx)x∈X such that z /∈ X and

Cx ∩ (X + z) = {x} for all x in X there is C ′ ∈ C containing z such that
C ′ ⊆ (C ∪

⋃
x∈X Cx)\X.

(CM) The set I := {I ⊆ E : I does not contain elements of C} satisfies that for
all I ∈ I and all F ⊆ E with I ⊆ F the set {J ∈ I : I ⊆ J ⊆ F} has a
maximal element.

A subset of E is called dependent if it contains a circuit and independent otherwise.
For a subset X of E, a maximal element of the set of independent sets contained
in X is a base of X, and bases of E are bases of M . If there is a finite bound on
the size of bases of X, then the biggest size of a base of X is the rank of X, and
otherwise the rank of X is ∞.

The dual of M , denoted M∗, is the matroid whose set of bases is the set
{E\X : X is a base of M}. Given a subset X of E, the restriction of M to X,
denoted by M�X, is the matroid on ground set X whose independent sets are the
independent sets of M that are contained in X. The deletion of X, denoted by
M\X, is defined as M�(E\X). The contraction of X, denoted M/X, is defined as
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(M∗\X)∗, and the contraction of M to X, denoted by M.X, is M/(E\X). Cobases
and cocircuits of M are bases and circuits of the dual of M , respectively.

Lemma 1.29. [13, Lemma 3.5] Let M be a matroid on ground set E. The following
statements are equivalent for all sets I ⊆ X ⊆ E:

• I is a base of M/X.
• There exists a base I ′ of M\X such that I ∪ I ′ is a base of M .
• I ∪ I ′′ is a base of M for all bases I ′′ of M\X.

Lemma 1.30. [13, Lemma 3.7] Let B and B′ be bases of some matroid M . If
B\B′ is finite, then |B\B′| = |B′\B|.

Lemma 1.31. [1, Corollary 2.5] Let M be a matroid on ground set E = C⊍{e}⊍D.
Then either there is a circuit C ′ with e ∈ C ⊆ C + e or a cocircuit D′ with
e ∈ D ⊆ D + e but not both.

Definition 1.32. [12] In a matroid M , a union of circuits is a scrawl. A scrawl of
M∗ is a coscrawl of M .

Lemma 1.33. [12, Lemma 2.6] Let M be a matroid and S ⊆ E(M). Then the
following are equivalent:

• S is a scrawl of M .
• |S ∩D| 6= 1 for all cocircuits D of M .
• |S ∩D| 6= 1 for all coscrawls D of M .

Corollary 1.34. [12, Corollary 2.7] Let M be a matroid with ground set E =
C ⊍X ⊍D, and let S ⊆ X. Then S is a scrawl of M/C\D if and only if there is a
scrawl S′ of M such that S ⊆ S′ ⊆ S ∪X.

If a matroid M is tame, i.e. the intersection of any circuit with any cocircuit is
finite, then a stronger version of (C3) holds. The version and its proof are due to
Bowler and Carmesin [11].

Lemma 1.35 (tame circuit elimination). [11] Let M be a tame matroid. Let C be
a circuit, z ∈ C and X ⊂ C a linearly ordered set not containing z. Let (Cx)x∈X
be a set of circuits not containing z such that x ∈ Cx ∩ X ⊆ dxe for all x ∈ X.
Then there is a circuit C ′ such that z ∈ C ′ ⊆ (C ∪

⋃
x∈X Cx)\X.

Proof. Denote the set (C ∪
⋃
x∈X Cx)\X by Y . Assume for a contradiction

that there is no circuit C ′ such that z ∈ C ′ ⊆ Y . Then by Lemma 1.31 there is a
cocircuit D of M with D ∩ Y = {z}. As M is tame, the intersection of D with X,
which is contained in D ∩ C, is finite and thus has a least element x. Then Cx is
a subset of Y ∪ dxe. As D ∩ Y = {z} and D ∩ dxe = {x}, the intersection of D
with Cx is a subset of {x, z}. Because z is not contained in Cx but x is contained
in both D and Cx, the intersection of D and Cx consists of the one element x, a
contradiction to Lemma 1.31. �

Definition 1.36. [14, Section 4] Let M be a matroid and X a subset of the ground
set of M . If there is a finite set F such that (B ∪ B′)\F is a base of M for some
bases B of M�X and B′ of M\X, then the minimal size of such a set F is the
connectivity of X. If no such finite F exists, then the connectivity of X is ∞.

Lemma 1.37. [14, Lemma 14] Let M be a matroid and X a subset of E(M) of
finite connectivity. For every base B of M�X, every base B′ of M\X and every set
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F ⊆ B ∪B′ such that (B ∪B′)\F is a base of M , the size of F is the connectivity
of X.

Note that by the previous lemma, if B is a base of M�X and B′ is a base of
M.X such that B′ ⊆ B, then the size of B\B′ equals λ(X).

Lemma 1.38. [14, Section 5] For every matroid M , the connectivity function is
submodular and identical to the connectivity function of M∗. Furthermore, for
every increasing sequence Xi of subsets of E(M), if there is k ∈ N such that all
Xi have connectivity at most k, then the union of all Xi also has connectivity at
most k.

Lemma 1.39. Let M be a matroid and C and D disjoint subsets of the ground
set. Then λM (C ∪D) = λM/C(D) + λM\D(C).

Proof. Let B1 be a base of M\(C ∪D), B2 a base of M/C\D and B3 a base
of M/(C∪D) such that B3 ⊆ B2 ⊆ B1. Denote the ground set of M without C∪D
by A. Then

λM (C ∪D) = λM (A) = |B1\B3| = |B1\B2|+ |B2\B3|
= λM\D(A) + λM/C(A) = λM\D(C) + λM/C(D). �

Definition 1.40. [36] Let M be a finite matroid. For a subset X of the ground
set of M , the nullity of X is the difference between the size of X and its rank. For
two disjoint sets X and Y of the ground set of Y , the local connectivity uM (X,Y )
of X and Y is r(X) + r(Y )− r(X ∪ Y ).

The definition of nullity can easily be extended to infinite matroids as follows:
Let M be an infinite matroid, X a subset of the ground set of M and B a base
of M�X. Define the nullity of X to be the size of X\B if that is finite and ∞
otherwise. As X\B is a base of (M�X)∗, the nullity of X is the rank of (M�X)∗

and thus does not depend on the choice of B by Lemma 1.30.
In a finite matroid M , the local connectivity of two sets X and Y equals

λM�(X∪Y )(X,Y ). As the connectivity of infinite matroids coincides with the usual
connectivity on matroids that happen to be finite, the straightforward generalisation
of local connectivity to infinite matroids is simply uM (X,Y ) = λM�(X∪Y )(X).

Lemma 1.41. Let M be a matroid and X ⊆ E(M) a set of finite connectivity.
Then there are disjoint subsets C and D of X such that for F := X\(C ∪D) and
N := M/C\D the equations M/X = N/F , M\X = N\F and |F | = λM (X) hold.

Proof. Let B be a base of M�X and C a base of M.X such that C ⊆ B.
Denote X\B by D. Then, by the definition of connectivity, X\(C ∪ D) has size
λM (X). Every element d of D is spanned by B in M and thus a loop of M/B.
Hence D is a union of connected components of M/B, so

M/X = M/B\D = M/C\D/F.
Dually, D is a base of M∗.X and X\C is a base of M∗�X, so

M\X = (M∗/X)∗ = (M∗/D\C/F )∗ = M/C\D\F. �

Lemma 1.42. In the situation of Lemma 1.41, let Y and Z be disjoint subsets of
E(M)\X. Then the following equations hold:

• λM (Y ) = λN (Y ).
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• uM (Y,Z) = uN (Y, Z).
• uM (Z,X ∪ Y ) = uN (Z,F ∪ Y ).

Proof. For every subset S of E(M)\X, the equalitiesM�S = N�S andM.S =
N.S hold. In particular M�(Y ∪ Z) = N�(Y ∪ Z), so

uM (Y,Z) = λM�(Y ∪Z)(Y ) = λN�(Y ∪Z)(Y ) = uN (Y, Z).

Also the equations

(M�(X ∪ Y ∪ Z))�Z = M�Z = N�Z = (N�(F ∪ Y ∪ Z))�Z

and

(M�(X ∪ Y ∪ Z)).Z = (M/X/Y )�Z = (N/F/Y )�Z = (N�(F ∪ Y ∪ Z)).Z

hold and thus

uM (Z,X ∪ Y ) = uN (Z,F ∪ Y ).

In particular

λM (Y ) = uM (Y,E(M)\Y ) = uN (Y,E(N)\Y ) = λN (Y ). �

Lemma 1.43. Let M be a matroid and X ⊆ E(M) a set of finite connectivity in
M . Then there is a union C of finitely many circuits such that

M/X = M/(X ∩ C)\(X\C).

Proof. Let B be a base of M�X and B′ a base of M.X such that B′ ⊆ B.
Denote B\B′ by I. By definition of connectivity, I is finite. For every e ∈ B\B′,
the fundamental circuit of e in B′ in M can be extended to a circuit Ce of M by
only adding edges not contained in X. Let C be the union of the circuits Ce, then
C is a finite union of circuits. Denote M/(C ∩B′) by N . Then I is independent in
N and spanned by E(M)\X in N , so λN (I) = |I|. Thus by Lemma 1.39

0 ≤ λN/I(X\C) = λN ((X\C) ∪ I)− λN\(X\C)(I)

= λN (E(M)\X)− |I| ≤ λM (E(M)\X)− |I| = 0

and thus λN/I(X\C) = 0. As N/I = M/(C ∩ X), the set X\C is a union of
components of M/(C ∩X) so M/(C ∩X)\(X\C) = M/X. �

Lemma 1.44. Let X be a subset of the ground set of a matroid M . Let B be a
base of M�X and B′ a base of M.X such that B\B′ is finite. Then the connectivity
of X is |B\B′| − |B′\B|.

Proof. Let A be a base of M.X which is contained in B. Then A\B′ is a
subset of B\B′ and hence finite, so |B′\A| − |A\B′| is defined and 0. Thus

|B\B′| = |B\B′|+ |B′\A| − |A\B′|
= |B\A|+ |B′\B|+ |A\B′| − |A\B′|
= |B\A|+ |B′\B|

where the second equality holds because

(B\B′) ⊍ (B′\A) = (B\A) ⊍ (B′\B) ⊍ (A\B′).
As B\B′ is finite, also B′\B has to be finite and thus

λ(X) = |B\A| = |B\B′| − |B′\B| . �
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Definition 1.45. [3] Let M be a matroid. It is called finitary if all its circuits
are finite. The set of finite circuits is the set of circuits of a finitary matroid Mfin.
Every base of M is contained in a base of Mfin, and M is called nearly finitary if
for all bases B of M contained in a base Bfin of Mfin the set Bfin\B is finite. It
is k-nearly finitary for some k ∈ N if even |Bfin\B| ≤ k for all such bases B and
Bfin.

The following observation will be used frequently in the first part of this thesis.

Observation 1.46. Let M be a matroid. For every k ∈ N the following statements
are equivalent:

• M is not k-nearly finitary.
• M contains a scrawl of nullity at least k + 1 that is independent in Mfin.
• M contains a family (Cx)x∈X of infinite circuits such that

⋃
x∈X Cx is

independent in Mfin, |X| ≥ k + 1 and x ∈ Cy ⇔ x = y.

Similar statements can be made for M not being nearly finitary.

Lemma 1.47. Let M be a matroid and let C be a scrawl of finite nullity which is
independent in Mfin. Then there is for every finite set K a cobase of C which is
disjoint from K.

Proof. Let B be a cobase of C such that the intersection of B with K has
minimal size. Assume for a contradiction that there is some edge e ∈ B ∩K. Then
the unique circuit C ′ contained in (C\B) + e is infinite and thus contains an edge
f which is not contained in K. So B − e + f is a cobase of C which contains less
elements of K, a contradiction. �

Theorem 1.48. [28] Let M be a cofinitary matroid. If M is nearly finitary then
it is also k-nearly finitary for some k ∈ N.

Lemma 1.49. Any matroid in which a component of its finitarisation has infinite
connectivity is not nearly finitary.

Proof. Let M be a matroid and K a component of Mfin such that λM (K) =
∞. Let B1 be a base of Mfin. As K is a component of Mfin, the sets B1\K and
B1 ∩K are bases of M\K and M�K respectively. Thus there are subsets B2 and
B3 of B which are bases of M such that B2\K is a base of M\K and B3 ∩K is a
base of M�K. As λM (K) =∞, the set B3\B2 is infinite. As B3\B2 is contained in
B1\B2, the latter set is infinite aswell. So B1 and B2 witness that M is not nearly
finitary. �

Tree decompositions (T, τ) of matroids are introduced in [32] and the separa-
tions induced by the edges of T are defined in [24].

Definition 1.50. A tree-decomposition of a matroid M on ground set E is a tree
T together with a map τ : E → V (T ) such that to every leaf some element of the
ground set is mapped. Deleting a directed edge from T yields two subtrees. If X
is the set of edges mapped to nodes of the subtree containing the tail of the edge,
and similarly Y is the set of edges mapped to nodes of the subtree containing the
head of the edge, then (X,Y ) is the ordered bipartition1 induced by the oriented
edge, and {X,Y } is the unoriented bipartition induced by the unoriented version

1This actually is a separation. Oriented and unoriented separations are introduced in
Section 1.5.
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of the same edge. Similarly, if v ∈ V (T ) is a node of T such that τ−1(v) = ∅, then
the trees T − v induce a partition (with possibly empty partition classes) of E.

1.3.1. Psi-matroids. The formal definition of a Ψ-matroid M with finite
matroids at the nodes is quite complex. Intuitively, what is important for Chapter 2
is the following: There is a tree set (definition see Definition 1.73) of separations
of M which cuts up the matroid into finite parts, and if (Pi, Qi)i∈N is a chain of
the tree set then either for every circuit C there is i ∈ N with C ⊆ Pi or for every
cocircuit D there is i ∈ N with D ⊆ Pi.

Definition 1.51. [7, Section 5] Let k be a field and E a set. For a subspace V of
kE denote the set of all supports of elements of V by S(V ). Two subspaces V and
W of kE are orthogonal if for all v ∈ V and all w ∈ W the intersection of the two
supports is finite and

∑
e∈E v(e)w(e) = ∅. A presentation Π on E is a pair (V,W )

of orthogonal subspaces of kE such that S(V ) and S(W ) satisfy the following: For
every partition E = P ⊍ Q ⊍ {e} either there is S ∈ S(V ) with e ∈ S ⊆ P + e or
there is S ∈ S(W ) with e ∈ S ⊆ Q + e. Π presents M if the circuits of M are
the minimal non-empty elements of S(V ) and the cocircuits of M are the minimal
non-empty elements of S(W ).

Definition 1.52. [7, Definition 6.1] A tree of presentations T consists of a tree
T , together with functions V ,W assigning to each node t of T a presentation
Π(t) = (V (t),W (t)) on the ground set E(t), such that for any two nodes t and t′

of T , E(t) ∩ E(t′) is finite and if E(t) ∩ E(t′) is non-empty then tt′ is an edge of
T . For any edge tt′ the set E(tt′) is defined to be E(t) ∩E(t′), and the ground set

E(T ) of T is
(⋃

t∈V (T )E(t)
)
\
(⋃

tt′∈E(T )E(tt′)
)

.

Definition 1.53. [7, Definition 6.2] Let T = (T, V ,W ) be a tree of presentations
and Ψ a set of ends of T . A pair (S, v) is a Ψ-pre-vector if

• S is a subtree of T whose ends are contained in Ψ
• v maps every node t of S to some element of V (t)
• If st is an edge of S then v(s) and v(t) agree on E(st) and are non-zero

on E(st)
• If st is an edge from a node of S to a node of T not in S then v(s) maps

all elements of E(st) to 0

Then every Ψ-pre-vector (S, v) defines an underlying vector in kE(T ) which maps e
to v(t)(e) if there is a node t of S such that e ∈ E(t) and maps e to 0 otherwise. The
vectorspace of all linear combinations of underlying vectors is denoted by VΨ(T ).
Similarly, a ΨC-pre-covector is a pair (S,w) where

• S is a subtree of T whose ends are not contained in Ψ
• w maps every node t of S to some element of W (t)
• If st is an edge of S then w(s) and −w(t) agree on E(st) and are not

identically zero on E(st)
• If st is an edge from a node of S to a node of T not in S then w(s) maps

all elements of E(st) to 0

Every pre-covector (S,w) defines an underlying covector as above, and the vector-
space of all linear combinations of underlying covectors is denoted by WΨ(T ). Then
(VΨ(T ),WΨ(T )) is a presentation ΠΨ(T ), and if it presents a matroid M then M
is a Ψ-matroid.
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In the situation of the last definition: If E(t) is finite for every node t of T ,
then M is a Ψ-matroid with finite parts.

Remark 1.54. Remark 6.3 from [7] implies that any minor of a Ψ-matroid is again
a Ψ-matroid. It also implies that if a matroid is presented by ΠΨ(T ) for some tree
of presentations T in which every E(t) is finite, then all minors of M also have this
property.

In a tree of presentations T with underlying tree T , every element of the ground
set is assigned to a unique node of T , so every edge of T induces a bipartition of
the ground set. Call these bipartitions the (unoriented) tree-induced separations2

of T . If T induces a matroid M , then the tree-induced separations of M are those
of T .

Lemma 1.55. If a tree of presentations induces a matroid M , then λ(P ) is finite
for all tree-induced separations {P,Q}.

Proof. Let M be a matroid which is induced by a tree of presentations T with
underlying tree T . Let {P,Q} be a tree-induced separation of M which arises from
an edge st of T . Let B be a base of M�P and B′ a base of M.P . Then for each f in
B\B′ the fundamental circuit of f in B′ with respect to M.P can be extended to a
circuit Cf of M by adding edges of Q. There is a linear combination

∑
1≤i≤mf

λivfi
of underlying vectors of pre-vectors (Sfi, vfi) such that Cf is the support of the
linear combination. Define wf to be the projection of

∑
1≤i≤mf

λfivfi(s) to E(st).

In order to show that (wf )f∈B\B′ is linearly independent, let
∑
f∈F µfwf =

0 be a linear combination where F ⊆ B\B′ is finite. Delete those edges s′t′

where the projection of
∑
f∈F

∑
1≤i≤mf

µfvfi(s
′) to E(s′t′) is zero from the fo-

rest
⋃
f∈F,1≤i≤mf

Sfi and let S be the resulting component containing s. Then S

does not contain the edge st. Now
(
S,
∑
f∈F,1≤i≤mf

µfλfivfi
)

is a pre-vector and

the support of its underlying vector v is contained in B. As the support of v is a
scrawl of M and B is independent, v = 0. In particular for every g ∈ F

v(g) =
∑
f∈F

µfvf (g) = µgvg(g)

and thus µg = 0 because vg(g) 6= 0. So (wf )f∈B\B′ is linearly independent. Because
the vectors wf are vectors in a vector space of dimension E(st), the set B\B′ has
at most |E(st)| many elements and thus is finite. �

1.4. Graph-like spaces

Definitions about graph-like spaces are mainly taken from [8].

Definition 1.56. [8, Definitions 3.1, 3.3] A graph-like space G is a topological space
(also denoted G) together with a vertex set V = V (G), an edge set E = E(G) and
for each e ∈ E a continuous map ιGe : [0, 1]→ G (the superscript may be omitted if
G is clear from the context) such that:

• the underlying set of G is V t [(0, 1)× E];
• ιe(x) = (x, e) for any x ∈]0, 1[ and e ∈ E;
• ιe and ιe(1) are vertices (called the endvertices of e);
• ιe�]0, 1[ is an open map; and

2Oriented and unoriented separations are introduced in Section 1.5.
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• for any two distinct v, v′ ∈ V there are disjoint open subsets U,U ′ of G
partitioning V (G) and with v ∈ U and v′ ∈ U ′.

The inner points of the edge e are the elements of ]0, 1[×{e}.

Definition 1.57. [8, Section 3] Let G be a graph-like space and R ⊆ E(G). The
restriction of G to R, denoted G�R, is the graph-like space whose point set is the
set of vertices of G together with inner points of edges in R, and whose topology is
the subspace topology. The vertex set of G�R is the same as the vertex set of G,
the set of edges is R and for an edge e in R the map ιe is the same as for G. The
deletion of R, denoted G\R, is the restriction of G to E\R.

Definition 1.58. [8] For an edge set F , the topological closure of the set ]0, 1[×F
is denoted by F and called the standard subspace of F in G.

Definition 1.59. [8, Definition 3.3] For two disjoint open sets U and W such that
U ∩ V and W ∩ V partition V , the set of edges with one end vertex in U and one
in W is a topological cut of G.

Definition 1.60 (Contraction). [8, Section 3] Let G be a graph-like space and
C ⊆ E(G). Let ∼ be the equivalence relation on V (G) where u ∼ v if every
topological cut arising from open sets containing exactly one of u and v each meets
C. The contraction of C, denoted G/C, is a graph-like space whose point set is the
set of equivalence classes of ∼ together with the set of inner points of edges not in
C. For an edge e /∈ C, its new end vertices are the equivalence classes of its end
vertices in G. There is a map of graph-like spaces fC from G to G/C which maps
every vertex to its equivalence class, every inner point of an edge not in C to itself
and every inner point of an edge in C to the equivalence class of its end vertices.
Via this map, the point set of G/C is a quotient of the point set of G, and the
topology of G/C is the quotient topology. The contraction of G onto C, denoted
G.C, is G/(E(G)\C).

Definition 1.61. [8, Definition 4.1] A pseudo-line is a graph-like space whose edge
set P is totally ordered, whose vertex set is the set of initial segments of P and
whose topology has {S(p, r)+ : p ∈ P, r ∈ (0, 1)} ∪ {S(p, r)− : p ∈ P, r ∈ (0, 1)} as
a subbasis, where S(p, r) consists of the vertices not containing p, inner points of
edges which are smaller than p and (0, r)× p and S(p, r)− is defined accordingly.

Definition 1.62. [8, section 3] A map of graph-like spaces is a continuous map φ
from the point set of some graph-like space G to the point set of a graph-like G′ such
that there are maps φV : V (G)→ V (G′) and φE : E(G)→ E(G′)×{+,−}∪V (G′)
with the property that φ(x))φV (x) if x ∈ V (G), φ(x) = φE(e) if x = (e, r) and
φE(e) is a vertex, φ(x) = (f, r) if x = (e, r) and φE(e) = (f,+), and φ(x) = (f, 1−r)
if x = (e, r) and φE(e) = (f,−).

As is usual with arcs, in [8] there are two objects called pseudo-arcs: injective
maps of graph-like spaces from a pseudo-line to a graph-like space and images
thereof. In this thesis only the second type of pseudo-arcs is relevant: subspaces of
G for which there is an injective map of graph-like spaces which has a pseudo-line as
domain and the subspace as image. Every pseudo-arc P inherits a linear order <P
from its pseudo-line and has a smallest vertex in(P ) and a biggest vertex ter(P ).
In [8] in(L) and ter(L) are called start-vertex and end-vertex, however, in order
to avoid confusion, here they are called initial vertex and terminal vertex or first
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vertex and last vertex and the term endvertices is used to refer to both the initial
and terminal vertex of a pseudo-arc. A pseudo-circle arises from a pseudo-line by
identifying the smallest and biggest vertex. Graph-like spaces have two structures
at the same time: on one hand they are topological spaces, on the other hand they
are a collection of edges and vertices, just as a graph. Thus also every pseudo-arc
and every pseudo-circle is a set of edges and vertices.

As a graph-like space is a topological space, it has (topological) components
and arc-connected components. Additionally, in analogy to the arc-connected com-
ponents, pseudo-arc connected components can be defined.

Lemma 1.63. [8, Corollary 4.7] If F is the edge set of a pseudo-arc A, then A = F
where A is considered as a point set in G.

Lemma 1.64. [8, Corollary from Lemma 4.13] Let X be a closed subset of the
point set of a pseudo-arc A. Then in the order induced by A, X has a smallest and
a biggest element.

Lemma 1.65. [8, Lemma 4.12] Let G be a graph-like space and A and B two
pseudo-arcs of G such that ter(A) = in(B). Then there is a pseudo-arc C which is
a subset of A ∪ B (as point set and thus also as collection of edges and vertices of
G) such that in(C) = in(A) and ter(C) = ter(B).

The following terminology is defined for pseudo-arcs in analogy to paths in
graphs: For a vertex v, a v-fan in G is a family of pseudo-arcs which start in v
and are otherwise disjoint, and a v-in-fan is a family of pseudo-arcs whose terminal
vertex is v and which are disjoint otherwise. A non-trivial pseudo-arc is a pseudo-
arc with more than one vertex. Two pseudo-arcs are internally disjoint if their sets
of edges are disjoint and if the intersection of their vertex sets contains only vertices
which are end vertices of both pseudo-arcs.

Lemma 1.66. Let G be a graph-like space inducing a matroid M and V ′ a finite
vertex set. Let F be the edge set of a union of pseudo-arc components of G − V ′.
Then F has finite connectivity.

Proof. Assume for a contradiction that λ(F ) > |V ′|. Then there is a set
X ⊆ F of size at least |V ′| and a family of pseudo-circles (Cx)x∈X such that⋃
x∈X Cx ∩ F is independent, x ∈ Cx for all x ∈ X and x /∈ Cx′ for all x 6= x′ ∈ X.

Define an auxiliary multigraph H on vertex set V ′ as follows: For every x ∈ X there
is a shortest pseudo-arc in Cx with end vertices in V ′, connect these two endvertices
in H with an edge. Then H has at least as many edges as vertices, so it contains
a circle. This circle can be translated into a subset of

⋃
x∈X Cx ∩ F containing a

pseudo-circle, contradicting the fact that
⋃
x∈X Cx ∩ F is independent. �

Lemma 1.67. Let G be a graph-like space inducing a matroid M and X an edge
set of finite connectivity. Then there is an edge set C ⊆ X such that M/X =
M/C\(X\C) and such that C is compact.

Proof. By Lemma 1.43 there is a union C ′ of finitely many circuits such that
M/(C ′ ∩ X)\(X\C ′) = M/X. Let C = C ′ ∩ X. For every pseudo-circle C ′′ the
set C ′′ is compact. As C ′ is a finite union of circuits, the topological closure of
]0, 1] × C ′ is a finite union of pseudo-circles and thus compact. So C, which is a
closed subset of a compact set, is compact as well. �
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Lemma 1.68. Let G be a graph-like space inducing a matroid and X an edge set
such that X is compact. Then every vertex which gets identified with another vertex
under the projection G→ G/X is contained in X.

Proof. Let v be a vertex which is not contained in X. For every vertex w in
X there are disjoint open subsets Uw and Ww of G partitioning V (G) such that
v ∈ Uw and w ∈Ww. As X is compact, also V (G)∩X is compact, and the sets Ww

form an open cover of V (G)∩X. Thus there is a finite set VX of vertices in X such
that

⋃
w∈VX

Ww contains V (G) ∩X. Denote
⋂
w∈VX

Uw by U and
⋃
w∈VX

Ww by

W . Then U and W are disjoint open sets partitioning V (G) such that v ∈ U and
X ∩ V (G) ⊆W . In particular every edge in X has both its end vertices in W , and
the topological cut induced by V and W contains no edges of X. So the topological
cut induced by V and W witnesses that v is not identified with any vertex in X
under the contraction of X.

Let u be a vertex not contained in X. Let U ′ and W ′ be disjoint open sets
partitioning V (G) such that v ∈ U ′ and u ∈ W ′. Let U ′′ = U ∩ U ′ and W ′′ =
W ∪ W ′. Then U ′′ and W ′′ are disjoint open sets partitioning V (G) such that
v ∈ U ′′ and X + u ⊆W ′′. In particular the topological cut induced by U ′′ and W ′′

does not contain edges of X, so it witnesses that v and u are not identified under
the contraction of X. �

The idea for the following lemma is taken from [28, Lemma 3.4], which in turn
does similar things to the proof of Proposition 1.4 of [3].

Lemma 1.69. Let G be a graph-like space which induces a matroid M and let
v1, . . . , vn be finitely many vertices of G. Also let C be a scrawl with cobase I such
that no edge in I has some vi as an end vertex and such that all pseudo-circles
whose edge set is contained in C contain also contain some vj. Then there is a set
(Pj)1≤j≤n of vj-in-fans such that

• No Pj contains a trivial pseudo-arc;
• The edge set of every pseudo-arc contained in one of the Pj is contained

in C\I; and
• The sum of the cardinalities of the Pj is at least |I|+ 1.

Proof. For each i ∈ I let Ci be a pseudo-circle whose edge set is a circuit
contained in (C\I) + i. Then Ci contains two pseudo-arcs P 1

i and P 2
i whose first

vertex is an end vertex of i, whose last vertex is some vj and which do not contain
further vertices vl. Because no edge i has a vj as an end vertex, all those pseudo-
arcs are non-trivial. Let two pseudo-arcs P xi and P yj be related if they share a
vertex which is not some vj , and extend this relation to an equivalence relation.
Let H be an auxiliary multi-graph on the set of equivalence classes with edge set
I where the end vertices of i ∈ I are the equivalence classes of P 1

i and P 2
i . If H

contains a finite circle, then there is a pseudo-circle whose edges are contained in
C and which does not contain any of the vertices vj . Thus H is a forest and the
number of equivalence classes is at least |I| + 1. Let P be a set of representatives
of the equivalence classes. If two distinct elements of P meet in some vertex, then
that vertex is some vj . So P can be organised into vj-in-fans as required for this
lemma. �
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1.5. Separation systems

Definition 1.70. [20] A separation system (
−→
S ,≤, ∗) is a set

−→
S together with a

partial order ≤ and an involution ∗ which is order-reversing, i.e. −→s ≤ −→t ⇔ −→s ∗ ≥
−→
t ∗ for all elements −→s and

−→
t of

−→
S . For an element −→s of

−→
S , −→s ∗ is also denoted

as ←−s and called the inverse of −→s . The orientations of −→s are −→s and ←−s .
A universe (

−→
S ,≤, ∗,∨,∧) is a separation system in which all elements −→s and

−→
t of

−→
S have a supremum −→s ∨−→t and an infimum −→s ∧−→t . A universe is submodular

if it comes with an order function |·|, i.e. a symmetric submodular function with
values in the non-negative integers together with ∞. For any non-negative integer
k, the set of all separations in U of order less than k forms, together with the partial
order and involution inherited from U , a separation system Sk.

Note that this thesis’ definition of a submodular universe differs from the defini-
tion in [20] in that the order function is not only allowed to have integer values but
additionally can take the value infinity. It is important that arbitrary positive reals
are not allowed: this property ensures that if for some k ∈ N two separations whose
infimum and supremum exist have order less than k, then their infimum having
order at least k − 1 implies their supremum having order less than k as well. The
latter fact is used frequently, e.g. in Lemma 4.33. As opposed to [20], this thesis’
emphasis lies with infinite separation systems, and some come with a natural order
function which does take the value ∞, for example the connectivity function from
Example 1.76 or the connectivity function of an infinite matroid. Depending on
the context, the value ∞ can be avoided by taking the subuniverse of separations
of finite order.

Example 1.71. Assume that U is a subuniverse of a universe U ′ and that the order
function of U is denoted by σ. Then σ can be extended to an order function σ′ of
U ′ by letting σ′(−→s ) = σ(−→s ) if −→s is contained in U and σ′(−→s ) = ∞ otherwise. In
particular, σ′ is submodular and symmetric. If additionally σ is limit-closed and
chains of separations in U of bounded order have the same supremum in U ′ as they
have in U , then σ′ is limit-closed, too.

On the other hand, the set of separations in U which have finite order is closed
under joins and suprema and thus is the set of separations of a subuniverse U ′ of
U . If the order function of U is limit-closed, then so is the induced order function
of U ′, which additionally does not contain ∞ in its image.

Definition 1.72. [20] Let
−→
S be a separation system. An element −→s of

−→
S is

degenerate if −→s = ←−s . A separation −→s is trivial if there is a separation
−→
t in

−→
S

such that −→s <
−→
t and −→s <

←−
t . A separation −→s is small if −→s ≤ ←−s . The inverse

of a small separation is co-small and the inverse of a trivial separation is co-trivial.
A separation system is essential if it none of its elements are degenerate or trivial;
and it is regular if none of its elements are small.

Note that a separation system
−→
S which is a subsystem of some other separation

system
−→
S ′ may be essential while containing elements which are trivial in

−→
S ′:

whether a separation is trivial or not depends on the existence of a witness of the
triviality, and after the deletion of all such witnesses the separation is not trivial
any more. On the other hand, being small or degenerate does not depend on the
existence of a witness, and thus if an element is small (or degenerate) in some
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separation system, then it also is small (or degenerate) in all subsystems which still
contain that element.

Definition 1.73. [20] Two elements of a separation system
−→
S are nested if they

have orientations −→s and
−→
t such that −→s ≤ −→t , and they cross if they are not nested.

A separation −→s points towards a separation
−→
t if −→s ≤ −→t or −→s ≤ ←−t . A separation

system is nested if its elements are pairwise nested, and a tree set if it is additionally
essential. A set of separations is a star if its elements are non-degenerate and all

distinct elements −→s and
−→
t satisfy −→s ≤ ←−t .

In [20], officially it is only defined when a separations points towards an unorien-
ted separation (not introduced here). But the concepts of oriented and unoriented
separations are closely related, and, as is also the case with other definitions invol-
ving separations, pointing towards an oriented separation and pointing towards an
unoriented separation does not really make a difference.

Example 1.74. [21, Chapter 3] Let T be a tree. Let
−→
E be the set of orientations

of edges of T . Define a partial order on
−→
E where an edge from a vertex x to a

vertex y is strictly less than an edge from a vertex u to a vertex v if {x, y} 6= {u, v}
and the unique path in T from y to u avoids both x and v. Then

−→
E , together with

this partial order and the involution which maps every edge to its other orientation,
is a tree set,the edge tree set of T .

Definition 1.75. [9] A homomorphism of two separation systems (
−→
S ,≤, ∗) and

(
−→
S ′,≤′, ∗′) is a map φ :

−→
S →

−→
S ′ such that for all elements −→s and

−→
t of
−→
S , φ(−→s ∗) =

φ(−→s )∗ and −→s ≤ −→t ⇒ φ(−→s ) ≤ φ(
−→
t ). A isomorphism of separation systems

(
−→
S ,≤, ∗) and (

−→
S ′,≤′, ∗′) is a bijective homomorphism of separation systems whose

inverse is also a homomorphism of separation systems.

A homomorphims of universes (
−→
S ,≤, ∗,∨,∧) and (

−→
S ′,≤′, ∗′,∨′,∧′) is a map

φ :
−→
S →

−→
S ′ such that for all elements −→s and

−→
t of

−→
S , φ(−→s ∗) = φ(−→s )∗ and φ(−→s ∨

−→
t ) = φ(−→s )∨φ(

−→
t )3. An isomorphism of universes is a bijective homomorphism of

universes4.

In this thesis, only separation systems of the form Sk for some universe U are
considered. Suprema and infima are always taken in the surrounding universe: So
they are always defined, but not always contained in the separation system.

There are two main examples of submodular universes:

Example 1.76 (Definitions from [20] and notation from [9]). Let V be a set. A
separation of V is a pair (A,B) such that A ∪ B = V , and its separator is A ∩ B.
The relation ≤ where (A,B) ≤ (C,D) if and only if A ⊆ C and D ⊆ B is a partial
order in which any two separations (A,B) and (C,D) have supremum (A∪C,B∩D)
and infimum (A∩C,B ∪D). If the involution mapping (A,B) to (B,A) is denoted
by ∗, then the set of separations of V together with ∗ and ≤ and the join and meet
induced by ≤ is a universe of separations U(V ). The only degenerate separation of
U(V ) is (V, V ) and all small separations of U(V ) are of the form (A, V ).

The universe U(V ) comes with a natural submodular function with values in
N +∞: Let the order of a separation be the size of its separator if that is finite

3this automatically implies that φ(−→s ∧ −→t ) = φ(−→s ) ∧ φ(
−→
t ) and −→s ≤ −→t ⇒ φ(−→s ) ≤ φ(

−→
t )

4this already implies that the inverse is also a homomorphism of universes
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A −→s B

Figure 3. A separation −→s = (A,B) in UB(V ) is depicted by the
little arrow from A to B on the line separating A from B.

and ∞ otherwise. In this thesis, whenever submodular subuniverses of U(V ) are
considered then the order function is tacitly assumed to also be inherited from the
natural order function of U(V ).

In particular, the set of oriented separations of a graph is a subuniverse of U(V )
where V is the set of vertices of G.

There are several possible ways to extend the notion of separation from a graph
to a graph-like space. The one used in this thesis is the following, which also ensures
that if G is a graph-like space on vertex set V then the set of oriented separations
of G is a subset of U(V ).

Definition 1.77. A separation of a graph-like space on vertex set V is an element
(A,B) of U(V ) such that every pseudo-arc which contains vertices of both A and
B also contains a vertex of A ∩B.

Lemma 1.78. Let V be a set, (A, V ) a small separation in U(V ) and (C,D) a
separation of finite order. If (C,D) and (C,D) ∨ (A, V ) have the same order, then
they are equal.

Proof. The separation (A, V )∨(C,D) equals (A∪C,D) and thus has separator
(A ∪ C) ∩D. That (A ∪ C) ∩D and C ∩D have the same size implies that they
are equal. So

A\C = (D\C) ∩A = (D ∩A)\C ⊆ (D ∩ (A ∪ C))\C = (C ∩D)\C = ∅

and hence (A, V ) ∨ (C,D) = (C,D). �

Example 1.79 ([20] and [9]). Let V be a set. Let UB(V ) be the subuniverse of
U(V ) which consists of all the separations (A,B) with A∩B = ∅. There is only one
small separation of UB(V ), namely (∅, V ), and no degenerate separation. Just on
its own, UB(V ) does not have a natural order function, but if V is e.g. the ground
set of a matroid, then the connectivity function of that matroid is an example of
an order function on UB(V ). The universe UB(V ) is isomorphic to the lattice of
subsets of V via (A,B) 7→ A. Via this isomorphism, all subsets of V are separations
of UB(V ).

Definition 1.80. [24] Let (S, ∗,≤) be a separation system. A subset O of S such
that O ∩ −→s ,←−s has exactly one element for all −→s ∈ S is an orientation of S. It is

consistent if it does not contain two elements ←−s and
−→
t which are not orientations

of each other and −→s <
−→
t . A profile is a consistent orientation P with the property

that for any two elements −→s and
−→
t the separation (−→s ∨ −→t )∗ is not contained in

P (possibly because it does not exist in S). The latter property is also called the
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profile property. A profile is regular if it does not contain a co-small separation.
Given a submodular universe U , a k-profile P of U is a profile of the separation
system Sk. Two profiles that contain distinct orientations of a separation −→s are
distinguished by that separation, and a set S′ of separations distinguishes a set P
of profiles if any two distinct profiles in P are distinguished by some separation
in S′.

Theorem 1.81. [21, Section 3, in particular Theorem 3.3 (i)] Every finite regular
tree set E is isomorphic via an isomorphism φ to the edge tree set of some tree
whose vertices are the consistent orientations of E. Given a consistent orientation
O of E, an orientation of an edge of the tree is contained in φ(O) if and only if it
points towards the vertex O.

Note that [21] contains the stronger statement that, given a finite regular tree
set τ , there is a tree whose edge tree set is τ . This clashes with the convention that
the edge set of a graph G on vertex set V consists of two-element subsets of V . Of
course that problem can be easily circumvented by an appropriate definition of the
edge set, but that is not necessary in this context.

Definition 1.82. [29] Let U be a submodular universe and k and l elements of
N such that l ≤ k. For a k-profile P , the truncation of P to an l-profile is the
intersection of P with the separation system Sl. If k 6= 0, then the truncation
of P , without further mention of a second integer l, is the truncation of P to a
k − 1-profile.

Definition 1.83. Let k ∈ N and let U be a submodular universe whose order
function is limit-closed. A k-profile P of U is called limit-closed if for every chain
of elements of P the supremum of that chain in U , which exists and has order less
than k, is also contained in P .

Definition 1.84. [22] A set of separations is called strongly consistent if it does
not contain elements −→r and −→s with ←−r < −→s . Thus, an orientation is strongly
consistent if and only if for every −→s ∈ O and every separation −→r with −→r ≤ −→s also
−→r ∈ O.

Lemma 1.85. [22, Lemma 7] An orientation of a separation system is strongly
consistent if and only if it is consistent and contains all small separations.

1.6. Finite flowers

1.6.1. In (poly-)matroids. This subsection contains definitions and facts
about k-flowers from [5]. The setting of that paper is that of a polymatroid on a
finite set E: an increasing submodular map f : P(E)→ N such that f(∅) = 0. The
set f induces a connectivity function λf (X) = f(X) + f(E\X)− f(E) on subsets
X of E and a local connectivity function u f (X,Y ) = f(X) + f(Y )− f(X ∪ Y ) on
disjoint subsets X and Y of E.

Definition 1.86. [5] Let f be a polymatroid on ground set E and k ∈ N. A k-
flower of M is a partition (P1, . . . , Pn) where all partition sets Pi have connectivity
k−1 and the union of two adjacent partition sets also has connectivity k−1, where
Pn is adjacent to P1. For I ′ ⊆ {1, . . . , n} denote the union of all partition sets with
index in I ′ by PI′ . A k-flower is a k-daisy if the non-trivial subsets I ′ of {1, . . . , n}
with λ(PI′) = k − 1 are exactly those which are intervals of {1, . . . , n}. A k-flower
is a k-anemone if λ(PI′) = k− 1 holds for all non-trivial subsets I ′ of {1, . . . , n}.
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Lemma 1.87. [5] Every k-flower is a k-daisy or a k-anemone.

Lemma 1.88. [5, part of Theorem 1.3 and Lemma 3.6] Let k be an integer, k ≥ 1,
and let (P1, . . . , Pn) be a k-flower with at least five petals. Denote u(P1, P2) by
c and u(P1, P3) by d. Then the local connectivity of any two adjacent petals is
the same as c and the local connectivity of any two non-adjacent petals is d. Also
(P1, . . . , Pn) is a k-anemone if and only if c = d. Furthermore, the local connectivity
of a non-trivial interval I ′ of I and a non-trivial subset I ′′ of I\I ′ is

uM (PI′ , PI′′) =


d if no element of I ′′ is adjacent to an element of I ′

2c− d if two elements of I ′′ are adjacent to elements of I ′

c otherwise

1.6.2. In connectivity systems with a tangle. This subsection is about
the k-flowers from [17]. The setting in [17] includes a connectivity system: a finite
set E and a symmetric submodular integer-valued function defined on the power
set of E. In that paper, k-flowers are defined with respect to a k-tangle T . Note
that the definition defines k-flowers to have petals of connectivity k, whereas in [5]
k-flowers have petals of connectivity k − 1. This is due to the fact that the papers
define the connectivity function of a matroid in slightly different terms: In [5], the
connectivity function λ of a matroid is defined as in this thesis, while in [17] the
connectivity of a set X is defined to be λ(X) + 1. So if some partition of a matroid
is a k-flower in the sense of [5] and an l-flower with respect to an l-tangle T in the
sense of [17], then k = l.

Definition 1.89. [17] Let (E, λ) be a connectivity system, k an element of N and
T a k-tangle. A k-flower in T is a partition (P1, . . . , Pn), whose elements are the
petals of the flower, such that every petal and every union of two adjacent petals has
connectivity k and such that no petal is contained in an element of T . A k-flower
is a k-daisy if the non-trivial sets I ′ with λ(PI′) = k are exactly those which are an
interval of I, and a k-anemone if all non-trivial unions of petals have connectivity
k.

Lemma 1.90. [17] Every k-flower is a k-daisy or a k-anemone.
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Introduction to nearly finitary matroids

Because of their similarity to finite matroids, finitary matroids are a class of
infinite matroids which are particularly easy to deal with. For example, some results
on finite matroids can be extended to finitary matroids simply by compactness.
For every infinite matroid M , its set of finite circuits is the set of circuits of a
finitary matroid Mfin, its finitarisation. Clearly every independent set of M is also
independent in the finitarisation, so every base of M can be extended to a base of
Mfin. A matroid can be very close to its finitarisation, in other words nearly finitary,
in that every base can be extended to a base of the finitarisation by only adding
finitely many elements of the ground set. There may even be an integer k ∈ N such
that every base can be extended to a base of the finitarisation by adding at most
k many elements of the ground set. Matroids with the latter property are called
k-nearly finitary.

It is shown in [2] that for two nearly finitary matroids on the same ground set
the matroid union exists and is nearly finitary. In order to be able to apply this
result, in [3] it is shown that if M is the algebraic cycle matroid of a graph G or the
topological-cycle matroid of a locally finite 2-connected graph G then M is nearly
finitary if and only if G does not have an infinite set of vertex-disjoint rays. Here,
Halin’s theorem (see e.g. [18]) that every graph containing, for every k ∈ N, a set
of k many pairwise disjoint rays also contains an infinite set of pairwise disjoint
rays can be applied. Thus in these two cases, M happens to be nearly finitary if
and only if there is some k ∈ N such that M is k-nearly finitary. The statement
that an algebraic cycle matroid is nearly finitary if and only if it is k-nearly finitary
for some k ∈ N is equivalent to Halin’s theorem, and is thus (and also because rays
are hard to define in matroids) a generalisation of Halin’s theorem. The authors of
[3] then ask whether all nearly finitary matroids are also k-nearly finitary for some
k ∈ N.

Conjecture. [2] Given a nearly finitary matroid M , is there some k ∈ N such that
M is also k-nearly finitary?

This question is about a phenomenon which frequently arises when dealing with
infinite structures: Does the presence of arbitrarily large finite families of something
also imply the presence of an infinite family?

So far, no counterexample to the conjecture is known. In [3] the conjecture was
shown for algebraic cycle matroids and for nearly finitary topological cycle matroids
of locally finite graphs. In [28] the conjecture was shown for cofinitary matroids.
This thesis shows the conjecture for two new classes of matroids. The first class is
that of Ψ-matroids with finite parts in the sense of [6].

Theorem (Lemma 2.14). Every nearly finitary Ψ-matroid with finite parts is k-
nearly finitary for some k ∈ N.

29



30 INTRODUCTION TO NEARLY FINITARY MATROIDS

The second class is a subclass of the class of matroids arising from a graph-like
space in the sense of [8].

Theorem (Theorem 3.24). Let G = (V,E) be a graph-like space inducing a matroid
M such that there is a finite vertex set which meets all infinite pseudo-circles. If
M is nearly finitary then it is k-nearly finitary for some k ∈ N.

At a first glance, it is not quite clear why this theorem should apply to a
wide range of matroids. But there is a much more technical condition on graph-
like spaces, such that problem of proving the conjecture for matroids arising from
such graph-like spaces can be reduced to the problem of proving the conjecture for
graph-like spaces in which some finite vertex set meets all infinite pseudo-circles.
This technical condition is a generalisation of the following property of graph-like
spaces, reminiscent of a separability condition.

Theorem (Corollary 3.25). Let G = (V,E) be a graph-like space inducing a ma-
troid M in which for all distinct vertices v, w ∈ V there is a finite vertex set
V ′ ⊆ V −v−w such that v and w are contained in different topological components
of G−V ′−Evw, where Evw is the set of edges from v to w. If M is nearly finitary,
then there is k ∈ N such that M is k-nearly finitary.

Both proofs depend on a thorough analysis of the effect the deletion or con-
traction of a set of finite connectivity has on a matroid being (k-)nearly finitary,
to be found in Section 2.1, and a reduction to the case that for every set of finite
connectivity either the deletion of this set or the restriction to this set is finitary,
to be found in Section 2.2. The proof for matroids arising from certain graph-like
spaces also relies on a simplification of pseudo-arcs in Section 3.1. This simplifi-
cation is applied in circumstances where it is necessary to trace how a pseudo-arc
passes though the different components of the finitarisation of a matroid, and the
exact behaviour inside such a component is irrelevant. The word simplification here
refers to the fact that, as far as possible, the behaviour inside a component of the
finitarisation is ignored.



CHAPTER 2

Nearly finitary Ψ-matroids

2.1. Deletion or contraction of sets of finite connectivity

This section presents several results on how the property of a matroid being
(k-)nearly finitary interacts with the deletion or contraction of sets of finite con-
nectivity. These results can be phrased a lot more concisely with the following
definition:

Definition 2.1. For a matroid M let F(M) be the collection of all F ⊆ E such
that there are bases B of M and Bfin of Mfin with B ⊆ Bfin and F ⊆ Bfin\B.

Lemma 2.2. Let M be a matroid, F ∈ F(M) and (X,Y ) a separation of M
of connectivity k ∈ N. Then there is a set G ⊆ F of size at most k such that
(F ∩X)\G ∈ F(M/Y ).

Proof. Let B and Bfin be bases of M and Mfin respectively such that B ⊆ Bfin

and F ⊆ Bfin\B. Let BY ∈ B(M�Y ), B′Y ∈ B(M.Y ) such that B′Y ⊆ BY and define
N = M/B′Y \(Y \BY ), Y ′ = BY \B′Y . Then M\Y = N\Y ′ and M/Y = N/Y ′. Let
G′ ⊆ B\Y such that G′ is spanned by B\(Y ∪G′) in (M/Y )fin and let G ⊆ Bfin\Y
be a set containing G′ which is spanned by Bfin\(Y ∪ G) in (M/Y )fin. As Bfin\Y
does not contain finite circuits in M\Y = N\Y ′ but Y ′ only contains k edges, G
also contains at most k edges. So there are a maximal such set G′ and a maximal
such set G containing this G′. Additionally, G can be chosen such that G∩B = G′.
Then G contains at most k edges. Furthermore Bfin\(Y ∪ G) is a base of Bfin\Y
in (M/Y )fin, so there is a base B′fin of (M/Y )fin containing Bfin\(Y ∪G). Because
B\(Y ∪G) = B\(Y ∪G′) is spanning in M/Y , there is a base B′ of M/Y which is
contained in B\(Y ∪G). Then

B′ ⊆ B\(Y ∪G) ⊆ Bfin\(Y ∪G) ⊆ B′fin

and every edge of Bfin\(Y ∪B ∪G) is contained in B′fin\B′. �

Corollary 2.3.
• Let M be a matroid and (X,Y ) a separation of finite connectivity of M .

If both M/X and M/Y are k-nearly finitary for some k ∈ N, then also
M is k-nearly finitary for some (possibly different) k ∈ N.
• Let M be a matroid and (X,Y ) a separation of M of finite connectivity.

If both M/X and M/Y are nearly finitary, then M itself is also nearly
finitary. �

Lemma 2.4. Let M be a matroid, F ∈ F(M) and (X,Y ) a separation of M
of connectivity k ∈ N. Then there is a set G ⊆ F of size at most k such that
(F ∩X)\G ∈ F(M\Y ).

31
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Proof. Let B and Bfin be bases of M and Mfin respectively such that B ⊆ Bfin

and F ⊆ Bfin\B. Let B′fin be a base of (M�X)fin containing Bfin ∩X. Then B′fin

is spanning in M�X, so there is a base B′ of M�X such that B ∩X ⊆ B′ ⊆ B′fin.
Because of

κM\(X\B′)(B
′) = κM\(X\B′)(Y ) ≤ κM (Y ) = k,

the set B′\(B ∩X) = B′\B contains at most k elements. Let G = (B′\B) ∩ Bfin,
then G has also at most k elements and (F ∩X)\G ⊆ B′fin\B′. �

Corollary 2.5.

• Let M be a matroid and (X,Y ) a separation of M of finite connectivity.
If both M\X and M\Y are k-nearly finitary for some k ∈ N, then also
M is k-nearly finitary for some (possibly different) k ∈ N.
• Let M be a matroid and (X,Y ) a separation of M of finite connectivity.

If both M\X and M\Y are nearly finitary, then M itself is also nearly
finitary. �

Lemma 2.6. Let M be a matroid and (X,Y ) be a separation of M . Then for all
sets FX ∈ F(M\Y ) and FY ∈ F(M/X) their union FX∪FY is contained in F(M).

Proof. Let BX ∈ B(M\Y ), B′X ∈ B((M\Y )fin), BY ∈ B(M/X) and B′Y ∈
B((M/X)fin) be bases such that BX ⊆ B′X , BY ⊆ B′Y , FX ⊆ B′X\BX and FY ⊆
B′Y \BY . Then BX ∪BY is a base of M . Assume for a contradiction that B′X ∪B′Y
contains a finite circuit C. Then C cannot be a subset of B′X , hence C ∩ B′Y is
non-empty. But C ∩B′Y is a finite scrawl in (M/X)fin which is a subset of B′Y , so
it is empty. Hence there is no such circuit C and there is a base Bfin of Mfin which
contains B′X ∪B′Y . Thus BX ∪BY and Bfin witness that FX ∪ FY ∈ F(M). �

Corollary 2.7. Let N be a minor of M . Then F(N) ⊆ F(M). In particular if N
is not nearly finitary then M is not nearly finitary and if N is not k-nearly finitary
for any k ∈ N, then M is not k-nearly finitary for any k ∈ N. �

Corollary 2.8. Let X1, . . . , Xn be sets of finite connectivity such that each M�Xi

is k-nearly finitary for some k ∈ N. Then the restriction of M to the union of the
Xi is also k-nearly finitary for some k ∈ N.

Proof. The proof is by induction on n, and the case n = 0 is clear, so assume
n > 0. Denote the union of all Xi with i < n by X. Then by submodularity
of the connectivity function both X and Xn\X have finite connectivity. Also by
Corollary 2.7 the restriction of M to Xn\X is k-nearly finitary for some k ∈ N,
so by Corollary 2.5 the restriction of M to X ∪ Xn is k-nearly finitary for some
k ∈ N. �

Lemma 2.9. Let M be a matroid and (X,Y ) a separation of M of connectivity
k ∈ N. Then for all F ∈ F(M\Y ) there is a set G of size at most k such that
F\G ∈ F(M/Y ). Similarly for all F ∈ F(M/Y ) there is a set G of size at most k
such that F\G ∈ F(M\Y ).

Proof. Let F ∈ F(M\Y ). Then by Corollary 2.7 F is an element of F(M)
and by Lemma 2.2 there is a set G of size at most k such that F\G ∈ F(M/Y ).
Similarly let F ′ ∈ F(M/Y ). Then by Corollary 2.7 F is an element of F(M) and
by Lemma 2.4 there is a set G′ of size at most k such that F ′\G′ ∈ F(M\Y ). �
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Corollary 2.10. Let M be a matroid and (X,Y ) a separation of M of finite con-
nectivity. Then there is k ∈ N such that M/X is k-nearly finitary if and only if
there is k ∈ N such that M\X is k-nearly finitary. Furthermore M/X is nearly
finitary if and only if M\X is nearly finitary. �

Lemma 2.11. Let M be a matroid, C an infinite circuit of M and (X,Y ) a
separation of M of finite connectivity. If C ∩ X is infinite, then it contains an
infinite circuit of M/Y .

Proof. Let B be a base of C ∩ X in M\Y . Then B = C ∩ X or, if C is a
subset of X, there is an edge e such that B = C ∩X − e. In particular B contains
all but finitely many edges of C ∩X. Let B′ be a base of C ∩X in M/Y which is
contained in B. Then

κM\(X\C)(X ∩ C) = κM\(X\C)(Y ) ≤ κM (Y ),

so B′ contains all but finitely many edges of C ∩X. Furthermore C ∩X is a scrawl
of M/Y , so C ∩X ⊆

⋃
e∈B\B′ C

B′

e . As B\B′ is finite and C ∩X is infinite, one of

the fundamental circuits CB
′

e has to be infinite as well. �

2.2. Reduction to matroids with extra property

This section reduces the problem of which nearly finitary matroids are also k-
nearly finitary for some k ∈ N to nearly finitary matroids with the following extra
property:

(∗) For all separations (P,Q) with κ(P ) <∞ either M\P or M\Q is finitary.

Lemma 2.12. Let M be a matroid. If there is a sequence (Pi, Qi)i∈N of separations
of finite connectivity and infinite circuits Ci of M/Pi\Qi+1 such that Pi ⊆ Pi+1 then
M is not nearly finitary.

Proof. For each non-negative integer i ∈ N pick an edge fi ∈ Ci and a base
Bi of M/Pi\Qi+1 containing Ci− fi. Then every set B0 ∪B1 ∪ · · · ∪Bi−1 is a base
of M/P0\Qi, so Ci can be extended to a circuit C ′i of M/P0\Qi+1 by adding edges
from B0 ∪ · · · ∪ Bi−1. Assume for a contradiction that B′ :=

⋃
i∈N C

′
i contains a

finite circuit C. Then C is a finite set contained in
⋃
i∈N(Bi + fi), so there is a

smallest index j ∈ N such that C ⊆
⋃j
i=0(Bi + fi). For this index j, C\Pj is a

non-empty finite scrawl of M/Pj\Qj+1. But C\Pj is also a subset of Bj + fj , so
C\Pj has to be the fundamental circuit of fj in M/Pj\Qj+1, a contradiction to the
fact that Cj is that fundamental circuit and is infinite. So there is no such finite
circuit C, hence there is a base Bfin of Mfin which contains B′. Let F = {fi|i ∈ N}.
Then F is spanned by B′\F in M , thus there is a base B of M which is contained
in Bfin and does not contain an edge of F . Then B ⊆ Bfin and Bfin\B contains F
and is thus infinite. So B and Bfin witness that M is not nearly finitary. �

Corollary 2.13. Let M be a matroid which is not k-nearly finitary for any k ∈ N.
Then M is not nearly finitary or there is a set X of finite connectivity such that
M/X is not k-nearly finitary for any k ∈ N and satisfies (∗).

Proof. Let P0 = ∅ and Q0 = E(M). As long as this is possible, define
recursively separations (Pi, Qi) of finite connectivity such that Pi−1 ⊆ Pi, M/Pi is
not k-nearly finitary for any k ∈ N and M/Pi−1\Qi contains an infinite circuit. If
this process does not stop after finitely many steps, then by Lemma 2.12 M is not
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nearly finitary and the lemma holds. So assume that there is an index i such that
(Pi+1, Qi+1) cannot be defined. Let N = M/Pi. Then N is not k-nearly finitary
for any k ∈ N. Let (P,Q) be a separation of N .

First consider the case that N/P = M/Pi/P is not k-nearly finitary for any
k ∈ N. The separation (P ∪ Pi, Q) of M has finite connectivity, so because it was
not a possible choice for (Pi+1, Qi+1) the matroid N\Q = M/Pi\Q is finitary. Now
consider the case that there is k ∈ N such that N/P is k-nearly finitary for some
k ∈ N. Then by Corollary 2.3 N/Q is not k-nearly finitary for any k ∈ N, so
symmetrically to the previous case N\P is finitary. �

2.3. Proof for Ψ-matroids

Lemma 2.14. Every nearly finitary Ψ-matroid with finite parts is k-nearly finitary
for some k ∈ N.

Proof. Let M be a Ψ-matroid with finite parts which is not k-nearly finitary
for any k ∈ N. By Corollary 2.7 it is enough to show that M has a minor which is
not nearly finitary. Let T be a tree of presentations with finite parts which induces
M . By Corollary 2.13 and Remark 1.54 it suffices to consider the case that for every
separation (P,Q) of finite connectivity there is one side such that M restricted to
that side is finitary. By Corollary 2.5 M restricted to the other side is not k-nearly
finitary for any k ∈ N. So every edge of T can be directed uniquely toward the side
on which M is not k-nearly finitary for any k ∈ N.

By repeated applications of Corollary 2.5, as E(t) is finite for every node t of
T , no node of T has only ingoing edges. Also, if P ′ ⊆ P and M�P is finitary, then
also M�P ′ is finitary, so no two oriented edges point away from each other. Hence
there is an end ω of T towards which all oriented edges point. As M is not k-nearly
finitary for any k ∈ N, there is an infinite circuit C of M . For all tree-induced
separations (P,Q) such that M�P is finitary C is not a subset of P . So ω ∈ Ψ.

Recursively define a sequence of tree-induced separations as follows. Pick some
tree-induced separation (P0, Q0) such that M\Q0 is finitary. If (Pi, Qi) has already
been defined and such a separation exists, let (Pi+1, Qi+1) be a tree-induced sepa-
ration such that Pi ⊆ Pi+1, the restriction of M to Pi+1 is finitary and M\Pi/Qi+1

contains an infinite circuit. If (Pi+1, Qi+1) does not exist then the recursion stops.
First consider the case that the recursion never stops. For each i ∈ N let −→ei be

the edge of the tree whose deletion yields (Pi, Qi). Because M\Pi is not finitary,
−→ei points towards ω. For every i ∈ N let fi ∈ Ci be an edge and Bi a base of
M\Pi/Qi+1 containing Ci − fi. Then B :=

⋃
i∈NBi is independent in M and

because ω ∈ Ψ, B is also a base of M\P0. Let F = {fi|i ∈ N}. Assume for a
contradiction that B ∪ F contains a finite circuit C. Let j ∈ N be the smallest
index such that C ∩Pj is non-empty. Then j > 0 and C does not meet Pj−1. Thus
C ∩ Pj is a finite non-empty scrawl of M\Pj−1/Qj . But C ∩ Pj is also a subset of
Bj + fj and the fundamental circuit of fj in Bj with respect to M\Pj−1/Qj equals
Cj and is thus infinite. So there is no such finite circuit C. Let Bfin be a base of
Mfin which contains B ∪ F . Then B is a subset of Bfin and Bfin\B contains F and
is thus infinite. So B and Bfin are bases which witness that M is not nearly finitary.

So the only case which is left to consider is that the recursion stops at some
i ∈ N. Similarly to the proof of Corollary 2.13 there is a tree-induced separation
(P,Q) of M such that all tree-induced separations (P ′, Q′) of M with P ⊆ P ′
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satisfy that M\P/Q′ contracted to one side is finitary. It now suffices to show that
M\P is not nearly finitary, assume without loss of generality that M = M\P .

Let R be a ray of T converging to ω. Let −→e1 be its first edge in forward direction,
−→e2 its second edge and so on. Let (Pi, Qi) be the separation which is induced by
deleting −→ei . Then by Lemma 2.11, C ∩ Pi is finite for all infinite circuits C of M
and indices i ∈ N. For each i ∈ N the matroid M\Pi is not k-nearly finitary for
any k ∈ N, so it is in particular not i-nearly finitary and there are infinite circuits
Ci0, . . . , C

i
i of M\Pi such that Ci0 ∪ · · · ∪Cii does not contain finite circuits and has

nullity at least i+ 1. Let X :=
⋃
i∈N C

i
0 ∪ · · · ∪Cii and M ′ = M�X. Then M ′ is not

k-nearly finitary for any k ∈ N. Furthermore for every i ∈ N the set

X ∩ Pj =

(⋃
i∈N

Ci0 ∪ · · · ∪ Cii
)
∩ Pj

=

(j−1⋃
i=0

Ci0 ∪ · · · ∪ Cii
)
∩ Pj

=

j−1⋃
i=0

(
Ci0 ∩ Pj

)
∪ · · · ∪

(
Cii ∩ Pj

)
is a finite union of finite sets and thus finite. Let D be a cocircuit of M ′. Then
there is a cocircuit D′ of M such that D′ ∩ X = D. As ω ∈ Ψ there is an edge
−→e of T pointing towards the part of T containing ω such that for the separation
(P ′, Q′) induced by −→e the cocircuit D′ is contained in P ′. So there also is an edge
ej of R such that D′ ⊆ Pj . Hence D ⊆ Pj ∩X, but this is a finite set hence D is
finite. As D was an arbitrary cocircuit of M ′, M ′ is a cofinitary matroid which is
not k-nearly finitary for any k ∈ N, so by Theorem 1.48 it is not nearly finitary. By
Corollary 2.7 M is not nearly finitary. �





CHAPTER 3

Nearly finitary graphic matroids

3.1. Simplification of pseudo-arcs

For this section, let G be a graph-like space which induces a matroid M such
that some set Vf of vertices not incident with any edges of G meets all infinite
pseudo-circles. Also consider all pseudo-arcs to be linearly ordered sets consisting
of edges and vertices. As a consequence, it makes sense to consider intervals of
pseudo-arcs and paths.

The goal of this section is to show that two pseudo-arcs not passing through
vertices of Vf can be shortened to non-trivial pseudo-arcs so as to either traverse
through completely different components of Mfin or to traverse in the same way
between the components of Mfin. For that, given a pseudo-arc not containing
vertices of Vf as inner points, the information which vertices and edges within a
component of Mfin the pseudo-arcs contains and in which order can be forgotten.
Relevant is only to which components the edges belong and which vertices are passed
between the components. This information can be extracted via the following
construction:

Definition 3.1. LetA be a pseudo-arc containing no vertices of Vf as inner vertices.
Denote the set of components of Mfin by Comp. Define a map σ : A→ V ⊍Comp
via

σ(x) =


K x ∈ K ∈ Comp

K x ∈ V ∧K ∈ Comp ∧ ∃e, f ∈ K ∩A : e <A x <A f

x otherwise.

Then the image of σ is the simplification of A, denoted by σ(A), and carries a linear
order induced by A.

It may not be obvious from the definition, but σ(A) and its linear order are
well defined, as the next few lemmas show.

Lemma 3.2. Let K be a component of Mfin and e, f two edges of A in K. Then
all edges between e and f in A are also contained in K.

Proof. By symmetry it suffices to consider the case e <A f . Because K is a
component of Mfin, there is a finite path P whose first edge is f and whose last edge
is e. If all edges of A are edges of P , then the lemma holds. Otherwise, following
A from e to f and then going back to e via P includes a pseudo-circle C. Because
the vertices in Vf are not incident with edges, no vertex of Vf is a vertex of P , and
in particular the end vertices of e and f are not contained in Vf . So by the choice
of A the pseudo-arc ]e, f [A does not contain any vertices of Vf . Thus neither does
C, so C has to be finite and all its edges belong to K. �

Corollary 3.3. The map σ : A→ V ⊍Comp is well-defined.

37
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Corollary 3.4. The order of A induces a linear order of σ(A).

Proof. Corollary 3.3 shows that σ−1(K) is an interval of A for every K in
Comp, and for every vertex v the set σ−1(v) has at most one element by definition
of σ. �

The following Lemma shows that every component contained in a simplification
has “end vertices” in that simplification. Pseudo-arcs share this property with sim-
plifications of pseudo-arcs, which might be justification to think of simplifications
in V ⊍Comp as playing a similar role to pseudo-arcs in G, with the components
taking the role of edges. The biggest difference here is that the end vertices of an
edge in a pseudo-arc are determined by the edge, which is not true for components
in simplifications.

Lemma 3.5. Let A be a pseudo-arc. For every component K contained in σ(A)
there are vertices u and w such that u is the predecessor and w is the successor of
K in σ(A).

Proof. Let I be the set of elements of A which are mapped to K. By Corol-
lary 3.4 I is an interval of the linear order of A, so its point set is also an interval
of the point set of A. The point set of I has an infimum u in the point set of A.
Whenever an inner point of an edge is contained in the point set of I, that edge is
contained in I and thus all its inner points are contained in the point set of I. So
u is not an inner point of an edge and thus is a vertex.

For every component K ′ in σ(A), the set σ−1(K ′) is equal to I or disjoint from
I and thus does not contain u as an inner vertex. Hence σ(u) is not a component
of Mfin, so u = σ(u) ∈ σ(A). �

The next two lemmas show that for any two pseudo-arcs avoiding Vf their
simplifications are equal between any two common elements. These results are
then applied to interior parts of pseudo-arcs meeting Vf only in their end vertices
in order to establish the behaviour of such pseudo-arcs near vertices of Vf .

Lemma 3.6. Let A and B be two pseudo-arcs not meeting Vf with the same starting
vertex x and the same end vertex y. Then σ(A) = σ(B) as linearly ordered sets.

Proof. The first step is to show that σ(A)∩Comp ⊆ σ(B)∩Comp. Assume
not, then there is a component F in σ(A)\σ(B). Let e ∈ F be an edge which is
contained in A and denote its end vertices by u,w such that u <A e <A w. Then
the walk uAxByAw contains a pseudo-arc P from u to w which does not contain
the edge e. So P can be closed to a circuit by e. Because P does not meet Vf , the
circuit has to be finite. So all its edges are in the same component of Mfin, thus
all the edges of P are in F which is not contained in σ(B). But this implies that
all edges of P are edges of A, as is e, so A contains a circuit in contradiction to its
being a pseudo-arc. So by symmetry also σ(A) ∩Comp = σ(B) ∩Comp.

The second step is to show that all vertices contained in σ(A) are contained in
B. Assume not, so there is a vertex u contained in σ(A)\B. Because B considered
as a point set is closed there is an open interval I of the point set of A containing
u. Let e and f be edges meeting I and a and b end vertices of e and f such that
a <A e <A u <A f <A b. Then the walk aAxByAb contains a pseudo-arc P from
a to b. Because I is disjoint from the point set of B, P meets aAb only in a and b,
so P can be closed to a circuit by bAa. This circuit does not meet Vf and is thus
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finite. Because aAb contains e and f , these edges belong to the same component
of Mfin, which contradicts u ∈ σ(A).

The third step is to show that all vertices in σ(A) are also contained in σ(B).
Assume not, so there is u ∈ σ(A)\σ(B). As u ∈ B by the previous step, this implies
that there are K ∈ Comp and edges e, f ∈ B ∩K such that e <B u <B f . Thus
σ(xBu) and σ(uBy) both contain K. But by the first step σ(xBu) ∩ Comp =
σ(xAu) ∩ Comp, so also the simplification of xAu contains K and similarly the
simplification of uAy contains K, which together show that u cannot appear in the
simplification of A. By symmetry σ(A) = σ(B) as sets.

The last step is to show that the linear order of σ(A) and σ(B) are the same.
Let u be a vertex and K a component of σ(A). Then the simplifications of uAy
and uBy are the same sets, so u <σ(A) K if and only if u <σ(B) K. Now let K
and K ′ both be components of σ(A) such that K <σ(A) K

′. Then there is a vertex
u ∈ σ(A) such that K <σ(A) u <σ(A) K

′. This implies K <σ(B) u <σ(B) K
′, thus

K <σ(B) K
′. Similarly, if u and w are vertices of σ(A) such that u is less than v,

then there is a component K between u and v in A which witnesses that u is also
less than v in σ(B). �

Lemma 3.7. Let A and B be two pseudo-arcs not meeting Vf . If there are X,Y ∈
σ(A) ∩ σ(B) such that X <σ(A) Y and X <σ(B) Y then [X,Y ]σ(A) = [X,Y ]σ(B).

Proof. If X = Y then this is true trivially, so assume otherwise. If X and Y
are both vertices of G, then this is true by Lemma 3.6 applied to XAY and XBY .
So to prove the lemma, it suffices to find vertices which can substitute X and Y if
necessary. If X is a vertex, let xA = X = xB and Px the trivial path consisting of
that vertex. Otherwise let e be an edge of A which is contained in X and let xA
be the end vertex of e with xA <A e. Then there is a finite path Px with edges
in X from xA to an end vertex xB of an edge of B. Similarly, if Y is a vertex let
yA = Y = yB and let Py be the trivial path consisting of that vertex. Otherwise
let f be an edge of A contained in Y and yA the end vertex of f with f <A yA.
Then there is a finite path Py with edges in Y from yA to an end vertex yB of an
edge of B. In all four cases xAPxxBByBPyyA contains a pseudo-arc B′ from xA to
yA. By Lemma 3.6 σ(xAAyA) = σ(B′), so

[X,Y ]σ(A) ⊆ σ(xAAyA) = σ(B′) ⊆ [X,Y ]σ(B) + xA + yA

and hence [X,Y ]σ(A) ⊆ [X,Y ]σ(B). By symmetry, equality holds. �

Lemma 3.8. Let A and B be two pseudo-arcs which have the same vertex v ∈ Vf
as end vertex and otherwise do not meet Vf . Also assume that σ(A)∩ σ(B) = {v}.
Then A ∩B contains at most two elements, one of which is v.

Proof. Assume that A ∩ B contains at least two elements u and w which
are not v. As σ(A) ∩ σ(B) = {v}, u and w are vertices. Assume without loss
of generality that u <A w. By Lemma 3.6 σ(uBw) equals σ(uAw). Because
uAw contains at least one edge, σ(uAw) contains at least one component K. This
component is then also contained in σ(uBw), so it is contained in σ(B). Thus K
is contained in σ(A) ∩ σ(B) but is not equal to v, which is a contradiction. �

Lemma 3.9. Let A and B be two pseudo-arcs meeting Vf only in their end vertices,
if at all. Assume that the biggest vertex v of B is contained in Vf and that all edges
of B are contained in the same component K of Mfin. If A∩ (B − v) has no upper
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bound in B − v, then A contains a non-trivial pseudo-arc A′ such that σ(A′) also
contains v and no other components than K.

Proof. Assume that A ∩ B has no upper bound in B − v. For any edge of
A ∩ B, both vertices incident with it are also contained in A ∩ B. So, as v is not
incident with any edge, B ∩ A ∩ V also has no upper bound in B − v, and v is
contained in the closure of V ∩ B − v. Let x and y be two distinct vertices of
A ∩ (B − v) such that x <A y. Then Lemma 3.6 implies that σ(xAy) contains K
as its only component and in particular that σ(A) contains K. So by Lemma 3.5
K has a predecessor p and a successor s in σ(A). All edges of xAy are contained in
K and thus in pAs, so xAy is a subset of pAs. Hence all vertices in A ∩B − v are
contained in pAs, so also v ∈ pAs. Because A only meets Vf in its end vertices, v
equals p or s and pAs can be chosen as A′. �

Lemma 3.10. Let A and B be two non-trivial pseudo-arcs which share their last
vertex v ∈ Vf and are otherwise disjoint from Vf . Then one of the following holds:

• There are vertices uA ∈ A∩V −v and uB ∈ B∩V −v such that σ(uAA)∩
σ(uBB) = {v}

• There are vertices uA ∈ A∩V −v and uB ∈ B∩V −v such that σ(uAA) =
σ(uBB) as ordered sets

• v has a predecessor in σ(A) and one in σ(B) and those two predecessors
are the same component of Mfin.

Proof. First consider the case that in one of σ(A), σ(B) there is a predecessor
K of v. Assume, by renaming A and B if necessary, that this happens in σ(A).
Then K is a component of Mfin, so there is a predecessor uK of K in σ(A), and
σ(uKAv) consists only of the three elements uK , K and v. Also because v is not
incident with an edge, the ordered set uKAv − v has no biggest element.

In this paragraph, consider the case that the set {w ∈ uKAv ∩ V − v : w ∈ B}
has no upper bound in uKAv. Then this set is infinite and for each two elements
u and w of it Lemma 3.6 shows that the segment of B between u and w only uses
edges from K. In particular K ∈ σ(B) and K has a predecessor uB and a successor
wB in σ(B), and all vertices of {w ∈ uKAv ∩ V − v : w ∈ B} are contained in
uBBwB . Because v is not incident with an edge but it is the last vertex of uXAv,
it is contained in the closure of uKAv ∩ (V − v). As uBBwB is closed as a point
set, it has to contain v, so v = wB . So K is also the predecessor of v in B and the
third option from the lemma holds.

So consider the case that the set {w ∈ uKAv ∩ V − v : w ∈ B} has an upper
bound in uXAv. Let uA be a vertex of uKAv such that the only vertex of uAAv
which is contained in B is v. If K /∈ σ(B), then σ(B)∩σ(uAAv) = {v} and the first
option of the lemma holds, so assume otherwise. Likewise if K is the predecessor
of v in B, then the third option of the lemma holds, so assume otherwise. Thus
the successor wB of K in B is not v, and σ(wBBv) and σ(uAAv) share only v, so
in this case the first option of the lemma holds.

Now the case that v has a predecessor in one of the simplifications is done. So
assume that there is no such predecessor. If σ(A) ∩ σ(B) − v is empty, then the
σ(A)∩σ(B) = {v} and the first option of the lemma holds. So assume that there is
some element X of σ(A)∩σ(B)−v. Let S be the set of elements Z ∈ σ(A)∩σ(B)−v
such that X ≤σ(A) Z and X ≤σ(B) Z. Again there are two cases: If S has an
upper bound in σ(A) − v, then let u be a vertex of σ(A) − v which is bigger
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than all elements of S. Also let w be a vertex bigger than X in σ(B) − v. Then
σ(uAv) ∩ σ(wBv) = {v} and the first option of the lemma holds. If the set S does
not have an upper bound in σ(A) − v, then for all Z ∈ S Lemma 3.7 shows that
[X,Z]σ(A) = [X,Z]σ(B). Because S does not have an upper bound in σ(A)−v, this
implies that [X, v]σ(A)−v is an interval of σ(B) and has thus a vertex w which is its
biggest element or successor in σ(B). The fact that v is in the topology a limit of the
set of vertices of [X, v]σ(A) − v implies that v = w and thus [X, v]σ(A) = [X, v]σ(B).
Let t be a vertex of [X, v]σ(A) − v, then σ(tAv) = σ(tBv) and the second option of
the lemma holds. �

This section closes with the observation that pseudo-arcs meeting Vf only in
their end vertices, if at all, and only using edges from one component of Mfin are
very similar to usual paths.

Observation 3.11. Let A be a pseudo-arc which meets Vf only in its end vertices,
if at all. If σ(A) contains exactly one component K of Mfin, then deleting no, two
or one end vertex of A turns it into a path, double ray, ray or inverse of a ray
respectively.

Proof. Denote the end vertices of A by v and w. Every non-trivial path P
such that A∩P consists of the end vertices x and y of P can be closed by a pseudo-
arc contained in A to a pseudo-circle C. Because neither vertices of P nor inner
vertices of A are contained in Vf , also C does not meet Vf . So C is finite and thus
also xAy is finite.

Now let x and y be two vertices which are incident with distinct edges of A.
Because these two edges are both contained in K, there is a finite path P from x to
y. This path is a finite union of paths Pi which meet A exactly in their end vertices
xi and yi, and paths Qj which are subpaths of A. Then xAy equals the union of
the Qj and the paths xiAyi and is thus finite. So for all distinct edges e, f ∈ A the
set [e, f ]A is finite. �

3.2. Finding a few important vertices

As already mentioned in the introduction, the condition that a graph-like space
has a finite set of vertices meeting all infinite pseudo-circles can be obtained from
two more natural-looking conditions. The content of this section is to establish
those conditions and to deduce that it suffices to consider graph-like spaces in
which some finite vertex set meets all infinite pseudo-circles. The conditions are as
follows:

(S1) For all distinct vertices v, w ∈ V there is a finite vertex set V ′ ⊆ V −v−w
such that v and w are contained in different topological components of
G− V ′ − Evw, where Evw is the set of edges from v to w.

(S2) For all vertices v 6= w ∈ V there are edge sets Fv, Fw ⊆ E of finite
connectivity such that v /∈ Fw, w /∈ Fv and M\(Fv ∪ Fw) is k-nearly
finitary for some k ∈ N.

First of all, (S1) is the most natural-looking condition on graph-like spaces as
it resembles finite separability. This is a stronger condition than (S2):

Lemma 3.12. Every graph-like space which induces a matroid and satisfies (S1)
also satisfies (S2).
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Proof. Let G be a graph-like space which induces a matroid M and satisfies
(S1). Let v and w be two different vertices of G. Then there is a finite set V ′ ⊆
V − v − w of vertices such that v and w are contained in different components
of G − V ′ − Evw. Let Fv be the set of edges of the topological component of
G− V ′ −Evw containing v and let Fw = E\(Fv ∪Evw). Then v /∈ Fw and w /∈ Fv.
Also M\(Fv ∪ Fw) is the matroid on edge set Evw in which all edges are parallel.
So M\(Fv, Fw) has only circuits of size 2 and is hence finitary. The sets Fv and Fw
have finite connectivity by Lemma 1.66. �

By Corollary 2.7 the second condition is clearly preserved under deletion of any
edge sets. The following lemma shows that it can be preserved under contraction
of a set of finite connectivity in the matroid:

Lemma 3.13. Let G be a graph-like space which induces a matroid M and satisfies
(S2). Then there is for every edge set X of finite connectivity a graph-like space G′

which induces M/X and also satisfies (S2).

Proof. By Lemma 1.67 there is a set C ⊆ X such that M/X = M/C\(X\C)
and such that C is compact. Denote G/C\(X\C) by G′. For the rest of the proof,
standard subspaces are taken in G′ unless stated otherwise. Let v and w be vertices
of G such that π(v) and π(w) are distinct. The proof will show in three cases that
(S2) holds for π(v) and π(w) in M/X. In each of the three cases, it will be shown
that the stronger conditions of the following claim are met.

Claim. Let F and F ′ be edge sets of finite connectivity in M such that M\(F ∪
F ′) is k-nearly finitary for some k ∈ N. Also let {Yv, Yw} be a partition of
C ∩ V (G) + v + w into closed vertex sets such that

• v ∈ Yv and π−1(π(Yv)) = Yv and Yv ∩ F ′ = ∅; and
• w ∈ Yw and π−1(π(Yw)) = Yw and Yw ∩ F = ∅.

Then (S2) holds in M/X for π(v) and π(w).

Proof of claim. Let E = F\X and E′ = F ′\X. By symmetry it suffices
to show that E has finite connectivity in M/X, that π(w) is not contained in the
standard subspace of E in G′ and that M/X\(E ∪E′) is k-nearly finitary for some
k ∈ N. As E has finite connectivity in M , it also has finite connectivity in M/X.

By Lemma 1.68, any vertices u of G such that π(u) ∈ π(F ) are either contained
in F or in C\Yw. In the latter case u ∈ Yv. Thus π−1(π(F ∪ Yv)) equals F ∪ Yv, so
π(F ∪ Yv) is a closed set which is disjoint from π(Yw). So the standard subspace of
E in G′ is contained in π(F ∪ Yv) and thus disjoint from π(Yw). In particular the
standard subspace of E in G′ does not contain π(w).

Denote the set (F ∪ F ′) ∩ X by Z. Because Z has finite connectivity in M ,
it also has finite connectivity in M\((F ∪ F ′)\X). So by Corollary 2.10, the fact
that M\(F ∪ F ′) is k-nearly finitary for some k ∈ N implies that also M\((F ∪
F ′)\X)/Z is k-nearly finitary for some k ∈ N. Now M/X\(E ∪ E′) is a minor of
M\((F ∪F ′)\X)/Z, so by Corollary 2.7 also M/X\(E ∪E′) is k-nearly finitary for
some k ∈ N. ♦

As (S2) holds for v and w in G, there are candidates for F and F ′ in the
previous claim. Also if v /∈ C, then {v} and C + w are possible candidates for Yv
and Yw, but the candidates do not yet interact the way they need to in order to
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apply the previous claim. Thus other candidates for F and F ′ are needed which
interact better with the sets Yv and Yw, which are supplied by the following claim:

Claim. Let Y be a closed subset of V (G) ∩ C and v a vertex which is not
contained in Y . Then there are sets F and F ′ of finite connectivity in M
such that v is not contained in F ′, the intersection of F and Y is empty and
M\(F ∪ F ′) is k-nearly finitary for some k ∈ N.

Proof of claim. As Y is a closed subset of a compact set, it is compact. For
every u ∈ Y let Fu and F ′u be edge sets of finite connectivity such that v /∈ F ′u
and u /∈ Fu and M\(Fu ∪ F ′u) is not k-nearly finitary for any k ∈ N. Then the
complements of the sets Fu form an open cover of Y , so there is a finite set Yf ⊆ Y
such that the complements of the sets Fu with u ∈ Yf cover Y . Let F =

⋂
u∈Yf

Fu
and F ′ =

⋃
u∈Yf

F ′u. By submodularity of the connectivity function both F and F ′

have finite connectivity. Also E(M)\(F ∪F ′) is a subset of
⋃
u∈Yf

E(M)\(Fu∪F ′u),

and by Corollary 2.8 the restriction of M to the latter set is k-nearly finitary for
some k ∈ N. So by Corollary 2.7 the restriction of M to E(M)\(F ∪F ′) is k-nearly
finitary for some k ∈ N. Furthermore v /∈ F ′ and F is disjoint from Y . ♦

Now to the three cases. The first case is that one of v and w is contained in C
and the other is not Assume that v /∈ C. Then for Yw = V (G) ∩ C there are edge
sets F and F ′ of finite connectivity in M such that v /∈ F ′, the intersection of F
and Yw is empty and M\(F ∪F ′) is k-nearly finitary for some k ∈ N. Let Yv = {v},
then by Lemma 1.68 the first claim of this proof can be applied and (S2) holds for
π(v) and π(w) in G′.

The next case is the case where neither v nor w is contained in C. Then there
are for v and Y = C ∩ V (G) edge sets F and F ′ of finite connectivity in M such
that M\(F ∪ F ′) is k-nearly finitary for some k ∈ N, the intersection of F and
C ∩ V (G) is empty and v /∈ F ′. Also (S2) holds for M , so there are edge sets H
and H ′ of finite connectivity in M such that M\(H ∪ H ′) is k-nearly finitary for
some k ∈ N, and v /∈ H ′ and w /∈ H. Let E = F ∩ H and E′ = F ′ ∪ H ′. Then
M\(E∪E′) is a minor of M\((F ∪F ′)∩(H∪H ′)) and the latter matroid is k-nearly
finitary for some k ∈ N by Corollary 2.8, so by Corollary 2.7 also M\(E ∪ E′) is
k-nearly finitary for some k ∈ N. Furthermore v is neither contained in F ′ nor in
H ′, so v /∈ E′. Also F is disjoint from C ∩ V (G) and H does not contain w, so E
is disjoint from C ∩ V (G) +w. So the first claim of this proof can be applied to E,
E′, Yv = {v} and Yw = C ∩ V (G) + w, and (S2) holds for π(v) and π(w) in G′.

The last case is the case that both v and w are contained in C. As π(v) 6= π(w)
there are disjoint open sets U and W partitioning V (G) such that v ∈ U and w ∈W
and such that no edge of C has one end vertex in U and one in W . Then there is
no vertex of G′ whose pre-image under π contains both vertices of U and of W . Let
Yv = U ∩C ∩ V (G) and Yw = W ∩C ∩ V (G). Then Yv equals (C ∩ V (G))\W and
is thus closed. Also π−1(π(Yv)) contains by Lemma 1.68 only vertices in Yv ∪ C,
but it does not contain elements of Yw. So π−1(π(Yv)) = Yv. Similarly Yw is a
closed set such that π−1(π(Yw)) = Yw. For every vertex u ∈ Yv apply the second
claim of this proof to u and Yw to obtain edge sets Fu and F ′u of finite connectivity
in M such that M\(F ∪ F ′) is k-nearly finitary for some k ∈ N and such that
u /∈ F ′u and Fu ∩ Yw = ∅. Then the complements of the sets F ′u form an open
cover of Yv. As Yv is a closed subset of a compact set, it is itself compact, so
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there is a finite set Z ⊆ Yv such that the complements of the sets F ′u with u ∈ Z
cover Yv. Let F =

⋃
u∈Z Fu and F ′ =

⋂
u∈Z F

′
u. Then M\(F ∪ F ′) is a minor

of M\
⋂
u∈Z(Fu ∪ F ′u) and the latter matroid is k-nearly finitary by Corollary 2.8,

so by Corollary 2.7 also M\(F ∪ F ′) is k-nearly finitary for some k ∈ N. Also
Yv ∩ F ′ = ∅ and F ∩ Yw = ∅. So the second claim of this proof can be applied and
(S2) holds for π(v) and π(w). �

As the reduction in Section 2.2 to matroids satisfying (∗) happens by con-
traction of a set of finite connectivity, this reduction can be applied without losing
(S2). So in order to reduce the case of graphic matroids satisfying (S2) to graphic
matroids in which a finite vertex set meets every infinite pseudo-circle, (∗) can be
assumed additionally.

Lemma 3.14. If M satisfies (∗) and arises from a graph-like space with property
(S2), then M is k-nearly finitary for some k ∈ N or there is a vertex v meeting all
infinite pseudo-circles.

Proof. Assume that M satisfies (∗) and arises from a graph-like space with
property (S2) but is not k-nearly finitary for any k ∈ N. Let S be the set of all
those subsets Q of E(M) of finite connectivity such that M\Q is finitary. Define
Vf =

⋂
Q∈S Q. For every edge e the set E − e is an element of S and E − e does

not contain inner points of e. So Vf contains only vertices.
Assume for a contradiction that there is an infinite pseudo-circle C whose image

in G does not meet Vf . Then the complements of the sets Q with Q ∈ S form an
open cover of the point set of im(C). Because the point set of im(C) is compact,
there is a finite set Q1, . . . , Qn of elements of S such that the complements of the
sets Q1, . . . , Qn cover the point set of im(C). Then the point set of im(C) does
not meet Q1 ∩ · · · ∩ Qn, hence in particular it does not meet Q1 ∩ · · · ∩Qn. As
Q1 ∩ · · · ∩ Qn =: Q has finite connectivity, several applications of Corollary 2.5
show that M�Q is not k-nearly finitary for any k ∈ N, which implies that M\Q is
finitary. This is a contradiction to the fact that the edge set of im(C) is disjoint
from Q.

As M is not finitary, Vf is non-empty. Let v be an element of Vf and w a vertex
which can be separated from v, as witnessed by Fv and Fw. Because v is contained
in Vf but not in Fw, the set Fw is not contained in S. So M\Fw is not finitary.
But then M\Fw is not k-nearly finitary for any k ∈ N and thus by Corollary 2.5
M�Fv is also not k-nearly finitary for any k ∈ N, implying that M\Fv is finitary
and (Fv, E\Fiv) ∈ S. Hence w /∈ Vf . So Vf contains only one vertex. �

Corollary 3.15. Let G be a graph-like space satisfying (S2) and inducing a matroid
M which is not k-nearly finitary for any k ∈ N. Then M is not nearly finitary or
there is a graph-like space G′ inducing a minor N of M such that N is not k-nearly
finitary for any k ∈ N and such that some vertex set of G′ meets every infinite
pseudo-circle of G′.

Proof. By Corollary 2.13 either M is not nearly finitary or there is a set X
of finite connectivity such that M/X is not k-nearly finitary for any k ∈ N and
satisfies (∗). In the first case the corollary holds, so assume the second case. Then
by Lemma 3.13 there is a graph-like space G′ which induces M/X and satisfies
(S2). Thus by Lemma 3.14 G′ has a vertex meeting every infinite pseudo-circle of
G′. �
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Remark 3.16. In the proof of Lemma 3.14, a vertex set Vf is constructed that
meets every infinite pseudo-circle of the graph from which M arises. It is then
shown that if two vertices v and w are separated in the sense of (S2), that is that
there are edge sets Fv and Fw of finite connectivity such that v /∈ Fw, w /∈ Fv and
M\(Fv ∪Fw) is k-nearly finitary for some k ∈ N, then at least one of the vertices v
and w is not contained in Vf . So if the assumption (S2) that any two vertices can be
separated is weakened to the assumption that every vertex is separated from all but
finitely many other vertices, then the proof shows that there is a finite vertex set Vf
meeting all infinite pseudo-circles. The corollary of Lemma 3.14 can be weakened
similarly. And the other sections of this chapter work with the weaker condition
that there is a finite set of vertices meeting all pseudo-circles.

Remark 3.17. Let M be a matroid arising from a graph-like space G such that
some finite vertex set Vf meets all infinite cycles. If M ′ is a restriction of M , then
M ′ arises from a graph-like space G′ which is a subspace of G, so Vf ∩ V (G) meets
all infinite cycles in G.

3.3. Proof for graph-like spaces

This section contains the proof of Theorem 3.24, which was mentioned in the
introduction. The proof of the theorem starts with a matroid M which is induced
by a graph-like space in which some finite vertex set meets all infinite pseudo-
circles and which is not k-nearly finitary for any k ∈ N. The main proof idea
is the following: Every scrawl independent in Mfin with large nullity induces a
large family of pseudo-arcs which meet Vf exactly in their end vertices and are
internally disjoint. These pseudo-arcs come in several types: they may have a last
edge, which is then incident with a vertex of Vf and contained in some component
of Mfin, or they may not have a last edge but still have a last component in the
simplification, or have neither. The proof then has several case distinctions where
in one case there are arbitrarily large such families of pseudo-arcs of the same type
and M can be shown to not be nearly finitary and in the other case (a minor of)
M has (essentially) no pseudo-arcs of the type under consideration. As the proof
is quite long, several of the cases in which M is shown to not be nearly finitary
are proven in separate lemmas which form the rest of this section. In all these
lemmas, G is a graph-like space inducing a matroid M which is not k-
nearly finitary for any k ∈ N. Also Vf is a finite vertex set meeting every
infinite pseudo-circle.

Lemma 3.18. Assume that M is connected and that there are infinitely many
components K of Mfin which contain an edge which is incident with a vertex of Vf .
Then M is not nearly finitary.

Proof. By the pigeonhole principle there is a vertex v ∈ Vf which is incident
with edges of infinitely many components of Mfin. Count a subset of these compo-
nents by K0,K1, . . . and in each Ki pick an edge ei which is incident with v. Recur-
sively define a family (Ci)i∈N of pseudo-circles such that

⋃
i∈N Ci does not contain

a finite pseudo-circle and each Ci contains ei+1 but no ej with j > i+ 1 as follows:
Because M is connected, there is a pseudo-circle C0 containing e0 and e1, and be-
cause e0 and e1 are in different components of Mfin, C0 is infinite. Now assume that
C0, . . . , Cn−1 have already been defined such that each Ci with i ≤ n−1 is a pseudo-
circle containing e0 and ei+1. As M is connected, there is a pseudo-circle C ′n which
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contains e0 and en+1. No Cj with j < n contains en+1 and C0 ∪ · · · ∪ Cn−1 is clo-

sed, so C ′n contains a pseudo-arc A which contains en+1 and meets C0 ∪ · · · ∪ Cn−1

only in its end vertices. One of these end vertices is v, because that is an end vertex
of en+1. Denote the other end vertex of A by w. There is j < n such that w ∈ Cj .
Then Cj contains a pseudo-arc from v to w, complete A by this pseudo-arc to obtain
a circuit Cn. Every circuit contained in C0 ∪ · · · ∪ Cn contains two edges which
have v as an end vertex. These two edges are ei and ej for distinct indices i and j
and thus not contained in a common finite circuit. Any finite circuit contained in⋃
i∈N Ci is contained in C0 ∪ · · · ∪ Cn for some index n, so there is no such circuit.

Also the set {e1, e2, . . .} witnesses that
⋃
i∈N Ci has infinite nullity. So M is not

nearly finitary. �

Lemma 3.19. Let v ∈ Vf be a vertex such that only finitely many components of
Mfin contain an edge incident with v. Then there is a restriction of M which is
also not k-nearly finitary for any k ∈ N and in which there are no edges incident
with v.

Proof. Let two edges incident with v be equivalent if they are contained in
the same component of Mfin and denote the equivalence classes by K1, . . . ,Kn.
From each Kj pick an edge ej . Let (Ci)i∈I be a finite family of circuits such that⋃
i∈I Ci is independent in Mfin and has nullity |I|. Because every circuit Ci can

meet at most twice as many edges from K1 ∪ · · · ∪Kn as there are vertices in Vf ,
the set F :=

⋃
i∈I Ci ∩

⋃n
j=1Kj\{e1, . . . , en} is finite, too.

Now (Ci)i∈I will be modified in several steps until the only edges of K1∪· · ·∪Kn

which are contained in
⋃
i∈I Ci are edges ei. As long as F is non-empty, let e be

an edge in it. Then e ∈ Kj for some index j, and e 6= ej . So there is a finite circuit
C containing e and ej . Let K be the component of Mfin�

⋃
i∈I Ci ∪ C containing e.

Then K has finite nullity in Mfin because
⋃
i∈I Ci is independent in Mfin, hence K

is a finite join of finite circuits and thus finite. Because
⋃
i∈I Ci has finite nullity

in M , there is by Lemma 1.47 a cobase {f1, . . . , fn} of it which does not contain
edges of K. So the set {f1, . . . , fn} + e is coindependent in M�

⋃
i∈I Ci ∪ C and

there is a base B of M�
⋃
i∈I Ci ∪ C which is disjoint from {f1, . . . , fn} + e. Then

every edge fi has a fundamental circuit C ′i in B. Because every finite circuit of⋃
i∈I Ci ∪ C contains edges of the finite circuit C, every such circuit is a subset

of K. But as no edge fi is contained in K, this implies that every finite circuit
contained in

⋃
i∈I C

′
i is a subset of B, so there is no such finite circuit and the

family (Ci)i∈I is independent concerning finite circuits. So M\(K0 ∪ · · · ∪Kn) is
not k-nearly finitary for any k ∈ N. �

Lemma 3.20. Assume that there are no edges incident with vertices in Vf . Also
assume that there is k ∈ N such that every scrawl C that is independent in Mfin

either has nullity at most k or contains at least two vertices of Vf in C. Then M
is not nearly finitary.

Proof. Let C be a scrawl which is independent in Mfin and which has a finite
cobase I. For every v ∈ Vf let Iv be the set of those edges i ∈ I such that the
fundamental circuit Ci of i in (C\I) + i contains no vertices of Vf other than v in
its topological closure. Then the union Cv of the fundamental circuits Ci for i ∈ Iv
is a finite union and thus its topological closure also contains no vertices of Vf other
than v. Hence for every v ∈ Vf the set Iv contains at most k many elements. Let
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I ′ be the remained of I after deletion of the sets Iv. Then |I ′| ≥ |I| − k ∗ |Vf |. Also
for every edge i ∈ I ′ the fundamental circuit Ci contains at least two vertices of Vf
in its topological closure, so the pseudo-circle with edge set Ci contains a pseudo-
arc Ri which contains i, whose inner vertices are not contained in Vf and whose
end vertices are contained in Vf . The set (Ri)i∈I′ is a family of internally disjoint
pseudo-arcs which meet Vf precisely in their end vertices and such that

⋃
i∈I′ Ri

contains no finite circuits. As M is not k-nearly finitary for any k ∈ N, there are
arbitrarily large finite such families. Because Vf is finite, there distinct vertices v
and w in Vf such that there are arbitrarily large finite families of internally disjoint
pseudo-arcs with first vertex v and last vertex w such that the union of their edge
sets does not contain a finite vertex.

In order to show that there is an infinite family of internally disjoint pseudo-arcs
with first vertex v and last vertex w such that the union of their edge sets does not
contain a finite circuit, it suffices to show that every finite such family (Rj)j∈J can
be extended by some pseudo-arc. For that let (Rl)l∈L be a finite family of internally
disjoint pseudo-arcs with first vertex v and last vertex w such that the union of the
edge sets does not contain a finite circuit and such that |L| > (k + 1)|J | + 1. Let
j ∈ J . Let Lj be the set of indices L in L such that Rl shares an internal vertex with
Rj . Connect the pseudo-arcs Rl with l ∈ Lj by finitely many sub-pseudo-paths of
Rj such that the result does not contain w, does not contain pseudo-circles which
do not contain v, but contains for every l ∈ Lj a pseudo-circle which contains a
non-trivial sub-pseudo-path of Rl with last vertex v. Then the edge set of this
result is independent in Mfin and contains a scrawl whose nullity is at least |Lj |−1.
This scrawl does not contain w in its topological closure, so its nullity is bounded
by k. Hence |Lj | ≤ k + 1. So every Rj with j ∈ J contains inner vertices of at
most k+ 1 many Rl with l ∈ L. Thus there are two indices l1 and l2 in L such that
no Rj with j ∈ J contains inner vertices of Rl1 or Rl2 . As the union of Rl1 and
Rl2 does not contain a finite pseudo-circle, one of them is infinite, so this infinite
pseudo-arc can be added to (Rj)j∈J . �

For v ∈ Vf say a component K of Mfin captures v if there is a non-trivial
pseudo-arc which contains v and whose edges are all contained in K. Note that in
the context where simplifications of pseudo-arcs exist, a component K captures v
if and only if there is a pseudo-arc with last vertex v in whose simplification K is
the predecessor of v.

Lemma 3.21. Assume that M is connected and that no edge has a vertex of Vf
as end vertex. If for some v ∈ Vf there are infinitely many components of Mfin

capturing v then M is not nearly finitary.

Proof. Let v ∈ Vf such that there are infinitely many components of Mfin

capturing v. For every pseudo-circle C denote by K(C) the set of components K of
Mfin such that C contains a non-trivial pseudo-arc with last vertex v whose edges
are contained in K. Recursively define pseudo-circles C0, C1, . . . such that every
K(Ci) contains two elements, one of which is not contained in any K(Cj) with j < i
and such that for every i ∈ N every pseudo-circle contained in the union of the
Cj with j ≤ i contains v. Note that the last condition implies that every circuit
contained in the union of the edge sets of the Cj with j ≤ i is infinite.

Assume that C0, . . . , Ci−1 have already been defined but Ci is not yet defined.
For every j < i, the set K(Cj) can contain at most two components, so let K and
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K ′ be distinct components of Mfin capturing v which are not contained in K(Cj)
for any j < i. Let P and P ′ be non-trivial pseudo-arcs with last vertex v whose
edge sets are contained in K and K ′, respectively.

Let j < i. As K(Cj) has two elements K and K ′, Cj contains two non-trivial
pseudo-arcs Q and Q′ with last vertex v whose edge sets are contained in Kj and
K ′j , respectively. Then Cj is the union of Q, Q′ and a pseudo-arc Q′′ which does not
contain v. As Q′′ does not contain v, by shortening them if necessary P and P ′ can
be assumed to not contain vertices of Q′′. Also, by shortening them if necessary,
without loss of generality none of the pseudo-arcs P , P ′, Q and Q′ contains a
vertex of Vf − v. As the components K, K ′, Kj and K ′j are pairwise distinct, by
Lemma 3.9 the pseudo-arcs P , P ′, Q and Q′ can be shortened further such that
they are internally disjoint. Thus P and P ′ can be assumed to not contain inner
vertices which are also contained in Cj . Repeating this argument for all j < i, P
and P ′ can be assumed to not contain inner vertices which are also contained in
some Cj with j < i.

As M is connected, there is a pseudo-circle containing an edge of P and an edge
of P ′. This pseudo-circle contains a pseudo-arc which contains an edge of P and
an edge of P ′ but not v. Thus there also is a pseudo-arc R not containing v whose
first vertex is a vertex of P , whose last vertex is a vertex of P ′, and whose interval
vertices are neither contained in P nor in P ′. If R is disjoint from all pseudo-circles
Cj with j < i, then P ∪ P ′ ∪ R contains a unique pseudo-circle Ci. This pseudo-
circle meets the other pseudo-circles Cj with j < i exactly in v. Also in this case
K(Ci) = {K,K ′}. So assume that R is not disjoint from the pseudo-circles Cj with
j < i, and let u be the first vertex of R which is also contained in some Cj with
j < i. Then the pseudo-arc which starts in u, then contains a pseudo-arc contained
in R ending in a vertex of P and then continuing along P until v can be extended
to a pseudo-circle Ci by adding a pseudo-arc contained in Cj . Then P ∈ K(Ci)
contains K. Also every circuit in the union of the edge sets of the Cj with j ≤ i
contains v. Thus in both cases Ci has been defined as required.

Let C be the union of the edge sets of the pseudo-circles Ci with i ∈ N. Then
C is a scrawl with infinite nullity which does not contain finite circuits. Thus M is
not nearly finitary. �

Lemma 3.22. Assume that no edge is incident with a vertex of Vf . Also assume
that there is a component K of Mfin for which there are arbitrarily large finite
v-in-fans of pseudo-arcs whose edges are contained in K. Then M is not nearly
finitary.

Proof. Let G′ be the graph whose set of vertices is the set of vertices of
G which are incident with edges of K and whose edge set is K. Because K is
connected in Mfin, also G′ is connected. By Observation 3.11 every pseudo-arc
which only uses edges of K is a path, double ray, ray or inverse thereof of G′.
Say a ray of G′ converges to a vertex w ∈ Vf if there is a pseudo-arc whose edge
set is the set of edges of the ray and whose vertex set is the set of vertices of the
ray together with w. So by Observation 3.11 there are arbitrarily large families of
pairwise disjoint rays which converge to v.

First consider the case that there are infinitely many ends of G′ containing a
ray which converges to a vertex of Vf . Then there is w ∈ Vf such that infinitely
many ends of G′ contain a ray converging to w, and thus there is an infinite family
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of pairwise disjoint rays which all converge to w. These can be connected to a tree
T . Then the edge set of T is a scrawl of M which does not contain finite circuits.
A double ray which is the union of two rays converging to w can be turned into
a pseudo-circle by adding w. Deleting a finite number of edges from T cannot
separate all rays of T converging to w, so the edge set of T has infinite nullity. So
M is not nearly finitary.

So assume that only finitely many ends of G′ contain a ray converging to a
vertex of Vf . Thus one end ω of these finitely many ends of G′ contains arbitrarily
large finite families of pairwise disjoint rays converging to v. The end ω can be
separated from the finitely many other ends containing rays converging to a vertex
of Vf by finitely many vertices w1, . . . , wn. Let G′′ be the component of G′ −
{w1, . . . , wn} containing ω. Then all pseudo-circles whose edges are contained in
G′′ are by Observation 3.11 finite unions of double rays together with a subset of
Vf , and every tail of one of these double rays is contained in ω.

The following two claims show that all rays of G′′ in ω which are disjoint from
some other ray in G′′ of ω converge to v. In particular from now on all rays are
rays of G′′.

Claim. Let R1, R2 and R3 be three rays in ω such that R1 and R3 converge
to v and R3 is disjoint from R2 and shares only its first vertex with R1. Then
R2 converges to v.

Proof of claim. First consider the case that R1 and R2 intersect infinitely
often. Let (Cx)x∈X be the set consisting of the edge sets of the circles of the form
axbPcQ where a and b are the end vertices of the edge x which is an edge of R1 but
not of R2, c is a vertex, P is a (possibly trivial) subpath of R1 meeting R2 only in
c and Q is a subpath of R2 such that cQa traverses R2 in forward direction. Apply
infinite circuit elimination where C is the union of the edge sets of R1 and R3, z is
an edge of R3 and (Cx)x∈X is as above. The resulting circuit is the edge set of a
double ray which contains R3 and a tail of R2. This shows that R2 converges to v.

So now consider the case that R1 and R2 intersect only finitely often, so assume,
by shortening R2 if necessary, that R1 and R2 are disjoint. Because R1 and R2

belong to the same end of G′, there are infinitely many pairwise disjoint paths from
R2 to R1. Shortening them yields either infinitely many pairwise disjoint paths
from R2 to R1 not meeting R3 or infinitely many pairwise disjoint paths from R2

to R3 not meeting R1. In both cases infinite circuit elimination yields a circuit
which is the edge set of a double ray which contains a tail of R2. This implies that
R2 converges to v. ♦

Claim. Let R1 be a ray in ω which is disjoint from another ray in ω. Then R1

converges to v.

Proof of claim. As G′′ is connected, there is a ray R2 in ω whose first vertex
is a vertex of R1 and which is otherwise disjoint from R1. Assume, by shortening
R1 if necessary, without loss of generality that the first vertex of R2 is also the first
vertex of R1. As there is a double ray which can be turned into a pseudo-circle
by adding v, there are two rays R3 and R4 converging to v which share their first
vertex and are otherwise disjoint. Because ω is the only end of G′′ containing rays
converging to v, both R3 and R4 are contained in ω. Consider the case that one of
R1 and R2 meets one of R3 and R4 only finitely many times, say R1 meets R3 only
finitely many times. Let R′1 be a tail of R1 which is disjoint from R3. Then the
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previous claim can be applied to R4, a tail of R1 and R3 to show that R1 converges
to v. As G′′ is connected, there is a ray R′1 containing a tail of R1 which shares
it first vertex with R3 and is otherwise disjoint from R3. Then the previous claim
can be applied to a tail of R3, a tail of R2 and R′1 to show that also R2 converges
to v.

So assume that R1 meets both R3 and R4 infinitely many times and so does R2.
Let E1 = E(R1)∪E(R2) and E2 = E(R3)∪E(R4). As all four rays are contained in
ω, there are infinitely many paths which are pairwise disjoint, start in a vertex of R1

or R2, end in a vertex of R3 or R4 and do not have inner vertices which are contained
in one of the four rays. Thus by adjusting initial segments of R1 and R2 if necessary,
without loss of generality there is an edge z ∈ E1 ∩E2. The set of edges in E2\E1

is countable, count it by {e1, e2, . . .}. Let X be the empty set. For each index i ∈ N
do the following. If there is a circuit Ci ⊆ E1 ∪ E2 containing ei and not meeting
{z, e1, . . . , ei−1} then add ei to X and let Cei = Ci. Otherwise do nothing and go
on to the next index. Put on X the order ei ≤ ej :⇔ j ≤ i. Applying Lemma 1.35
to E2, z and (Cx)x∈X yields a circuit C such that z ∈ C ⊆ (E1 ∪ E2)\X. In order
to prove the claim, it suffices to show that C = E1.

Assume for a contradiction that (E1 ∪ E2)\X contains a circuit C ′ (finite or
edge set of a double ray) which is not E1. Then C ′ contains an edge ei ∈ E2\E1,
and there is a shortest path P with end vertices in R1 or R2 containing ei. Let j be
the smallest index of such that ej is an edge of P . Then no edge in {z, e1, . . . , ej−1}
is an edge of P . If the end vertices of P are not separated by z in E2 then the edge
set of P can be closed to a finite circuit by adding edges of E2. Otherwise there
are, because R1 meets R3 and R4 infinitely often, infinitely many pairwise disjoint
paths whose first vertex is a vertex of R3, whose last vertex is a vertex of P4 and
which do not contain vertices of R3 and R4 as inner vertices. Let R5 and R6 be the
rays obtained from the union of R3 and R4 by deleting z. Of the infinitely many
paths, only finitely many contain an edge of {z, e1, . . . , ej−1}, only finitely many
meet R5 or R6 before that ray meets P , and only finitely many do not have both
an end vertex in R5 and an end vertex in R6. So one of these paths P ′ does not
contain an edge of {z, e1, . . . , ej−1} and has one end vertex in R5 which is later in
R5 than the end vertex of P in R5 and has one end vertex in R6 which is later in
R6 than the end vertex of P in R6. Then the edge sets of P and P ′ form together
with finitely many edges of R3 and R4 a circuit. In both cases there is a circuit
which should have been chosen as Cej such that ej ∈ X, a contradiction.

So (E1 ∪E2)\X contains exactly one circuit, and that is E1. Hence the tails of
the double ray with edge set E1 converge to v, so R1 converges to v. ♦

As there are arbitrarily large finite pairwise disjoint families of rays in ω, there
is by Lemma 1.1 also an infinite such family. By the previous claim, all rays in this
infinite family converge to v. As G′′ is connected, these rays can be connected to
a tree, and the edge set of the tree contains a scrawl of infinite nullity. Thus M is
not nearly finitary. �

Lemma 3.23. Assume that there is v ∈ Vf such that the simplification of every
pseudo-arc containing v is infinite and such that there are arbitrarily large v-fans
of pseudo-arcs which are intervals of pseudo-circles. Then M is not nearly finitary.

Proof. The following basic result about the interaction of two pseudo-arcs
which both end in v will be used in the rest of the proof without further mention.
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Let A and B be two non-trivial pseudo-arcs which have v as last vertex. Assume,
by shortening them if necessary, that A and B do not meet Vf − v. By applying
Lemma 3.10, shortening A and B further if necessary implies that their simplificati-
ons are either equal or disjoint up to v. In the first case, because the simplifications
of A and B are infinite there are infinitely many vertices in σ(A) ∩ σ(B) and all
these vertices are also contained in A ∩ B. In the second case Lemma 3.8 states
that A and B meet in at most one other element than v, and shortening them again
if necessary yields A ∩B = {v}. The two cases are mutually exclusive.

Recursively define families (Ci)0≤i≤n with the following properties: Every Ci
is a pseudo-circle, the union of the edge sets of the Ci is independent in Mfin and
the union of the pseudo-circles contains a v-fan of at least n+ 1 many pseudo-arcs
whose simplifications are pairwise disjoint except at v. The first pseudo-circle C0

can simply be chosen as a circuit containing a pseudo-arc of one of the v-fans.
Because v is not incident with any edge, C0 is infinite. Assume that C0, . . . , Cn−1

are already constructed. Each Ci gives rise to two non-trivial pseudo-arcs Pi and Qi
which have v as last vertex and are otherwise disjoint. Let P be the set consisting
of the Pi and Qi. Assume, by shortening them where necessary, that the elements
of P do not contain vertices of Vf other than v and that pairwise they are either
disjoint except at v or have equal simplifications. Let P ′ be a maximal subset of
elements of P which are pairwise disjoint except for v.

Let Q be a v-in-fan of non-trivial pseudo-arcs which are intervals of circuits
such that Q contains at least one more element than P ′. Assume, by shortening
them if necessary, that the elements of Q∪P ′ are disjoint except for v or have the
same simplification. Then no element of P ′ can have the same simplification as two
elements of Q, as those two elements of Q then would have the same simplification,
contradicting the fact that the only vertex they share is v. Thus every pseudo-arc
in P ′ is internally disjoint from every pseudo-arc in Q except for one pseudo-arc. So
Q contains a pseudo-arc Q which together with the elements of P ′ forms a v-in-fan.
By construction of P ′, the pseudo-arc Q can be shortened such that the only vertex
which it shares with any Ci is v. Let C ′n be a pseudo-circle which contains Q. Then
C ′n contains a pseudo-arc Q′ which contains Q, whose first vertex is a vertex of
some Ci, whose last vertex is v and whose inner vertices are not vertices of any Ci
with i < n. Also Q′ can be extended to a pseudo-circle Cn by adding a pseudo-arc
contained in some Ci.

When all Ci are defined, their edge sets form together a scrawl witnessing that
M is not nearly finitary. �

Theorem 3.24. Let G = (V,E) be a graph-like space inducing a matroid M such
that there is a finite vertex set which meets all infinite pseudo-circles. If M is nearly
finitary then it is k-nearly finitary for some k ∈ N.

Proof. Let Vf be a finite vertex set of G meeting all infinite pseudo-circles.
Assume that M is not k-nearly finitary for any k ∈ N. It suffices to show that M has
a minor which is not nearly finitary, as then by Corollary 2.7 also M is not nearly
finitary. By Lemma 1.49 either M is not nearly finitary and the theorem holds for
M or there is a component K of M such that the restriction to that component is
not k-nearly finitary for any k ∈ N. In the second case the restriction of G to K,
in which Vf also meets every infinite pseudo-circle, induces the restriction of M to
K. So assume without loss of generality that M equals M�K and thus that M is
connected.
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If there are infinitely many components of Mfin which contain an edge with an
end vertex in Vf , then by Lemma 3.18 M is not nearly finitary and the theorem
holds. So assume that there are only finitely many such components, so by applying
Lemma 3.19 to each v ∈ Vf there is a restriction of M which is not k-nearly finitary
for any k in N. Again this restriction is induced by a restriction of G in which Vf
meets all infinite pseudo-circles, so assume without loss of generality that no edge
is incident with any vertex in Vf .

Once again, by restricting M to one of its components if necessary, assume that
M is connected while still not being k-nearly finitary for any k ∈ N. Even after
the restriction, Vf meets all infinite pseudo-circles and no vertex of Vf is incident
with an edge. Recall that a component K of Mfin captures a vertex v ∈ Vf if there
is a non-trivial pseudo-arc with last vertex v whose edges are contained in v. By
Lemma 3.21 if some vertex v of Vf is captured by infinitely many components of
Mfin then M is not nearly finitary and the theorem holds, so assume that the set
D of components of Mfin which capture a vertex of Vf is finite.

Consider the case that the restriction of M to some D ∈ D is not k-nearly
finitary for any k ∈ N. Thus in M�D there are scrawls independent in (M�D)fin

with arbitrarily large finite nullity. By Lemma 1.69 applied to these scrawls, any
cobase of the scrawl and Vf , there is some v ∈ Vf such that there are arbitrarily
large finite v-in-fans whose edge sets are contained in D. Thus by Lemma 3.22 M
is not nearly finitary and the theorem holds.

So assume that for every D ∈ D the restriction of M to D is k-nearly finitary
for some k ∈ N. If some element of D has infinite connectivity in M , then by
Lemma 1.49 M is not nearly finitary and the theorem holds. So assume that
every element of D has finite connectivity in M . Thus by submodularity of the
connectivity function, also all unions of subsets of D have finite connectivity. Let
N be the matroid arising from M by deletion of

⋃
D. As M is not k-nearly finitary

for any k ∈ N, by repeated application of Corollary 2.5 also N is not k-nearly
finitary for any k ∈ N. Additionally, N is induced by the graph-like space G\

⋃
D

in which every pseudo-circle meets Vf , no edge is incident with a vertex of Vf ,
and no component of Nfin captures a vertex of Vf . As N is a minor of M and it
suffices to show that N is not nearly finitary, assume that M = N . In particular
the simplification of every non-trivial pseudo-arc whose last vertex is contained in
Vf is infinite.

As M is not k-nearly finitary for any k ∈ N, there are scrawls independent in
Mfin of arbitrarily large finite nullity. If for every v ∈ Vf there is a finite bound
on the nullity of a scrawl independent in Mfin whose topological closure meets Vf
only in v, then the maximum of these bounds is an upper bound on the nullity of a
scrawl independent in Mfin whose topological closure contains only one element of
Vf . In this case by Lemma 3.20 M is not nearly finitary and the lemma holds for
M . So assume otherwise. Thus there is v ∈ Vf such that there is no finite bound
on the nullity of a scrawl independent in Mfin whose topological closure contains
no vertices of Vf other than v. By Lemma 1.69 there are arbitrarily large finite
v-in-fans. Thus by Lemma 3.23 M is not nearly finitary. �

Corollary 3.25. Let G = (V,E) be a graph-like space inducing a matroid M in
which for all distinct vertices v, w ∈ V there is a finite vertex set V ′ ⊆ V − v − w
such that v and w are contained in different topological components of G−V ′−Evw,
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where Evw is the set of edges from v to w. If M is nearly finitary, then there is
k ∈ N such that M is k-nearly finitary.

Proof. Assume that M is not k-nearly finitary for any k ∈ N. Then by
Corollary 2.13 there is a minor G′ of G such that the matroid induced by G′ is not
k-nearly finitary for any k ∈ N and satisfies (∗). So by Lemma 3.12 G′ satisfies (S2)
and thus by Corollary 3.15 there is a finite vertex set Vf meeting all pseudo-circles.
Now Theorem 3.24 can be applied to show that the matroid induced by G′ is not
nearly finitary, so also M is not nearly finitary. �





Part 2

Flowers and trees





Introduction to flowers and trees

In [17], given some connectivity function λ on a finite ground set E, k ∈ N
and a k-tangle T , Clark and Whittle describe the structure of the separations
of connectivity k that belong to the highly connected region encoded by T . For
their structure theorem, they define an equivalence relation on the set of subsets
of connectivity k that depends on T . The equivalence relation is a refinement of
the equivalence relation “contained in the same tangles with truncation T ”. As
the subsets of the ground set can be seen as elements of the separation system of
bipartitions of the ground set as in Example 1.76, in the language of this thesis
Clark and Whittle are indeed talking about separations. Their goal is to find a
tree decomposition such that every edge induces a separation of connectivity k
and such that for every equivalence class some representative is induced by an
edge. The separations induced by an edge are said to be displayed by the tree
decomposition. As the displayed separations are necessarily nested and distinct
equivalence classes need not contain nested representatives, it is in general not
possible to induce representatives of all equivalence classes. In order to remedy
that, Clark and Whittle introduce the concept of k-flowers. These are partitions
of the ground set, together with a cyclic order, such that (among other properties)
certain unions of partition classes are separations of connectivity k, these are the
separations displayed by the k-flower. Most separations displayed by a k-flower
cross. Clark and Whittle describe a tree decomposition with k-flowers assigned
to some nodes such that (with two exceptions) every equivalence class contains
a separation that is displayed either by the tree decomposition or by one of the
k-flowers at the nodes.

Let T ′ be a k + 1-tangle. Then T ′ orients the separations displayed by the
tree decomposition and thus corresponds to a node. As the equivalence relation
studied by Clark and Whittle is a refinement of “contained in the same tangles with
truncation T ”, distinct tangles with truncation T correspond to distinct nodes of
the tree and are thereby distinguished by the tree. Tree structures like this are
called trees of tangles. As intuitively tangles are the highly connected regions of a
graph or matroid, finding trees of tangles in general means displaying the structure
of a graph or matroid in a tree-like way. There are already several papers (for
example [16], [23], [24] and [27]) on ways to find trees of tangles in several settings,
often establishing trees of tangles with additional properties like canonicity. Some
of these papers also consider the infinite cases. It is known for example that for
every locally finite graph G and every k ∈ N there is a canonical tree-decomposition
distinguishing all robust k-profiles (see [16, Theorem 7.3]). The transition to k-
profiles instead of k-tangles is natural and is done in this thesis, too: In graphs
as well as in matroids every k-tangle is a robust k-profile, and the definition of
k-profiles translates better to the more general setting of separation systems.
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In [4], Aigner-Horev, Diestel and Postle show that every (possibly infinite)
connected matroid with at least three elements has a tree-decomposition of uniform
adhesion 2 such that every torso is 3-connected or a circuit or a cocircuit. In this
thesis’ terminology, in particular taking into account the slightly different definition
of connectivity, that means that every separation induced by an edge of the tree-
decomposition has connectivity 1. And replacing, in a torso that is a circuit or a
cocircuit, every torso edge by the corresponding subset of the ground set E of the
whole matroid yields a partition of E in which every union of partition classes is ∅ or
E or has connectivity 1. Together, this means that every separation of connectivity
1 is either displayed by the tree decomposition or by one of the partitions. So the
structure theory of trees with flowers has, in the case k = 1 (k = 2 with the other
definition of connectivity), already been extended to infinite matroids.

The goal of this part is to translate the work of [17] to the infinite setting.
The original goal was to translate the work to infinite matroids, but it turns out
that most of the results mainly use the fact that the connectivity function of ma-
troids has a property referred to as limit-closed in this thesis. So the results are
considered in the more general context of universes of bipartitions which are clo-
sed under unions of chains and whose connectivity function is limit-closed like the
connectivity function of matroids is, see Chapter 6. In addition to that setting,
in Chapter 5 a setting of vertex separations with a similar condition on limits of
chains of separations is investigated, among others this covers the cases of vertex
separations of graphs and graph-like spaces, and Chapter 4 investigates another
setting of bipartitions, to be explained later. These choices of particular separation
systems are natural, as separation systems of vertex separations and separation sy-
stems of bipartitions are still the main examples of separation systems, and because
tangles and trees of tangles were invented for graphs before they were translated
to matroids.

Strategy. The approach taken in this thesis differs in some respects from that
of [17]. A minor but important technicality is that in this thesis, in contrast to [17],
the definition of the connectivity function of a matroid does not have the additional
+1. Thus (as in [5]) the k-flowers display separations of connectivity k− 1 instead
of k. And, as already stated, k-profiles instead of k-tangles will be considered. Also,
for some k − 1-profile Q, it is not the set of all profiles whose truncation is Q is
considered but only a subset P. This allows for proving theorems in the special
case that all profiles in P are closed under taking unions of chains of separations.
As finite profiles do not contain infinite chains of separations, such a distinction
between different types of k-profiles does not arise in the finite setting. The last,
and most important, difference is to take as equivalence relation “contained in the
same profiles in P”.

Section 4.3 translates the equivalence classes of separations into a subsystem of
a universe of bipartitions that is closed under taking unions. The earlier sections of
the same chapter show that the bipartitions in such a subsystem can be arranged
into a tree-like structure with flower-like objects at some nodes, very much like the
tree decomposition with flowers in [17]. For finite subsets this tree-like structure
is indeed a tree decomposition. Working with the coarser equivalence class avoids
some of the technical difficulties of [17] where there is an equivalence class that is
not closed under taking unions of separations. This simplifies and sometimes makes
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possible statements and proofs, but of course the cost is that the structure of these
equivalence classes is a coarser representation of the structure of all separations.

By the results of Chapter 4, the equivalence classes have a tree-like structure.
But the tree decompositions obtained in [17] do not display equivalence classes of
separations but separations themselves. To translate the structure of the equiva-
lence classes into a tree decomposition with k-flowers displaying separations, it is
in particular necessary to be able to turn one flower-like structure into a k-flower
of the original separation system. To do so is the main goal of Chapters 5 and 6
for two special cases of separation systems. Here, the first question to solve is what
the definition of a k-flower should be. Clark and Whittle show that with their defi-
nition, there are only two types of k-flowers: k-anemones, for which all non-trivial
unions of partition classes have connectivity k, and k-daisies, for which the unions
of petals with connectivity k are exactly the unions of non-trivial intervals. The
definition of k-flowers and the proof that they are all k-anemones or k-daisies rely
highly on the fact that in every cyclic order with at least three elements, every
element has two neighbours. As the tree of equivalence classes may have infinite
flower-like structures, and it thus is necessary to have a definition that allows for
infinite k-flowers, even in the case of bipartitions it is not possible to just take the
definition of k-flowers by Clark and Whittle as is.

After having found a good definition of k-flowers, the next step is to try and
find, for a flower-like structure of the equivalence classes, a k-flower that displays
representatives of all the equivalence classes of the flower-like structure. That is es-
sentially the same as looking for k-flowers displaying representatives from as many
equivalence classes as possible. Phrased differently, if 4 is the pre-order in which
a k-flower is less than a second one if all equivalence classes represented by a sepa-
ration displayed by the first k-flower are also represented by a separation displayed
by the second k-flower, then the goal is to find maximal elements of that pre-order.
A natural approach here would be to use Zorn’s Lemma, for which it would be
necessary to show that every chain has an upper bound. The upper bound is usu-
ally obtained by a limit process from the elements of the chain. Unfortunately, in
the setting of both Chapter 5 and Chapter 6, in general two 4-comparable finite
k-flowers cannot be easily combined into one. The problem becomes only more
difficult for 4-chains of k-flowers. The solution to this problem taken in this thesis
is to take the detour via another partial order ≤, where essentially a k-flower is less
than a second one if all separations (instead of equivalence classes) displayed by
the first k-flower are also displayed by the second one. This partial order is better
suited to constructing upper bounds, and its maximal elements essentially are 4-
maximal. But, at least with the definitions of k-flowers under consideration in this
thesis, ≤-chains of k-flowers still need not have a k-flower as an upper bound, which
is why in Chapters 5 and 6 even more general definitions of k-pseudoflowers are
introduced. These definitions will be discussed in detail in the respective sections.

Details and results. It is shown in Section 4.3 that, given a submodular
universe U and a set P of robust k-profiles with the same truncation, the equivalence
classes are a subsystem of a separation system of bipartitions. In order to do so
it is shown that the map Φ that maps every separation to the set of k-profiles not
containing it is a homomorphism of separation systems. It is also shown that for
any two non-nested elements of the image of φ their join is also contained in the
image of φ.
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Up to deletion of the empty set and the whole ground set if necessary, the
image of φ is a separation system that is a subsystem of the set of bipartitions of
P, contains neither ∅ nor P, and has the extra property that for every two non-
nested elements their join is also contained in the separation system. The first two
sections of Chapter 4 analyse such separation systems B. Thus out of the three
settings in which tree-structures with flowers are investigated (the other two being
the vertex separations in Chapter 5 and the bipartitions with limit-closed connecti-
vity function in Chapter 6), this can be seen as the most general setting: From
every suitable set of k-profiles in any separation system, such a separation system
of bipartitions arises. On the other hand, in the theory of k-flowers (and even more
so in the related theory of tangle-tree-theorems), much of the work lies in showing
that certain suprema of separations are permissible in some way (are contained in
the separation system or have the correct connectivity). From this point of view,
the assumption that the join of any two non-nested separations is also contained
in the separation system under consideration is a very strong one, as it guarantees
that any joins (and thus also meets) that might ever become interesting are per-
missible. Also, among separation systems, separation systems of bipartitions are
particularly easy to deal with, not least because they are distributive. Together, at
least for finite ground sets, these observations explain why the setting of Chapter 4
can be seen as the setting with the strongest assumptions, that is, the least general
setting. This is supported by the fact that, as described earlier, all the separations
are displayed by one tree decomposition with flowers. For infinite separation sys-
tems, even stronger results on the structure of B than presented in Section 4.2 could
immediately obtained if B had the additional property that for every infinite chain
of separations in B, their union was also contained in B or the whole ground set.
If B arises from an underlying separation system together with a set of k-profiles
as described in Section 4.3, then this extra property can be guaranteed by addi-
tional assumptions of limit-closedness on either the underlying separation system
(for example the assumptions of limit-closedness satisfied by the special separation
systems under investigation in Chapters 5 and 6) or on the set of k-profiles.

Even without the additional limit-closedness property, the separation systems
of bipartitions in Chapter 4 have a lot of structure, which is obtained in the first
two sections of Chapter 4 as follows. Denote the ground set of the separation
system of bipartitions by E and the separation system under consideration by B.
For the finest equivalence relation on B such that any two non-nested separations
are contained in the same equivalence class, denote the set of equivalence classes
with more than one element by V. For V ∈ V, denote the coarsest partition of E
such that all elements of V are unions of partition classes by ∂(V ). If V is finite,
then it is either anemone-like in that every non-trivial union of elements of ∂(V )
is contained in V , or it is daisy-like in that there is a cyclic order on ∂(V ) (unique
up to mirroring) such that the elements of V are exactly the non-trivial unions of
intervals of ∂(V ). If V is infinite, then finite subsets of it are considered that are
suitable in that they behave like finite elements of V , and either all suitable finite
subsets are anemone-like or all suitable finite subsets are daisy-like. If the suitable
finite subsets are daisy-like, then the cyclic orders of those subsets can be combined
into a cyclic order of ∂(V ) such that all elements of V are unions of intervals of
∂(V ).
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If V ∈ V is finite, then the elements of ∂(V ) are contained in the set E of
separations in B that are nested with all other elements of B. As a consequence, if
B is finite, then E is a tree set that distinguishes all elements of V from each other.
Thus if B is finite then its elements are displayed by a tree decomposition of E, and
if some node has a flower-like structure attached then that structure arises from an
element of V corresponding to that node. This structure theorem is, modulo some
translation work, the same as [26, Theorem 4] but was obtained independently.
The profiles of B correspond naturally to the nodes of the tree decomposition, and
no node can correspond to more than one profile or element of V. It is then shown
in Section 4.3.1 that if B arises from some underlying separation system, then every
profile of B induces a profile of the separation system.

Chapter 6 starts with the definitions of k-flowers and k-pseudoflowers in the set-
ting of separation systems of bipartitions with a limit-closed connectivity function.
It turns out that the two most obvious candidates for infinite anemones are the
same. A detailed analysis of how the connectivity of some separations in a k-pseu-
doanemone determines the connectivity of other separations in the same k-pseudo-
anemone shows that also the two most obvious candidates for the definition of a
k-pseudoanemone (one with a cylcic order and the other without) are essentially
the same. By continuing that analysis it can be shown that for an anemone Φ with
at least k + 1 many petals, all k-pseudoanemones extending Φ can be combined to
a single ≤-maximal k-pseudoanemone. Every other k-pseudoflower also extends to
a ≤-maximal one, though here uniqueness is not necessarily given.

In Section 6.5 the partial order 4 is under consideration. One problem to solve
here is the following: In finite k-pseudoflowers, every k-profile has to contain the
inverse of one of the partition classes (in this chapter, k-pseudoflowers are partitions
with a cyclic order), and is thus considered to be pointing to this partition class.
That is not necessarily the case in infinite k-pseudoflowers. But every k-profile
that, for a given k-pseudoflower, does not point towards a partition class of that
k-pseudoflower is not limit-closed in the sense that it contains a chain of separations
whose supremum is not contained in the k-profile. And for a k-profile P that is not
limit-closed, all l-profiles with l ≥ k that extend P can be combined into a unique
profile P ′ of all separations of finite connectivity. Hence if the set of k-profiles to
be distinguished contains at least two k-profiles, then their common truncation P0

is limit-closed. The obvious corollary is that if a k-pseudoflower contains so many
separations of connectivity less than k − 1 that some of them can be organised
into an infinite k − 1-pseudoflower, then P0 points towards a partition class of the
k− 1-pseudoflower. With a little more effort, it even follows that a k-pseudoflower
whose unions of intervals fail to distinguish two profiles with truncation P0 must
be an extension of an infinite anemone and can be extended to a k-pseudoanem-
one of which a union of partition classes does distinguish the two profiles. This
implies that most ≤-maximal k-pseudodaisies are also 4-maximal and is one of
the reasons why for k-pseudoanemones the partial order 4A is considered, where
Φ 4A Ψ if all profiles distinguished by unions of partition classes of Φ (instead of
unions of intervals) are also distinguished by unions of partition classes of Ψ. The
other reason is that if only unions of intervals are considered, then there are ≤-
maximal anemones distinguishing infinitely many k-profiles that are not maximal
in the partial order of distinguishing profiles. But with 4A, most ≤-maximal k-
pseudoanemones are 4A-maximal. In the special case that the separation system of
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bipartitions arises from a matroid, there are no infinite k-daisies and no interesting
infinite chains of k-daisies, as is shown in Chapter 8.

Chapter 6 ends with a section relating the k-pseudoflowers back to the abstract
setting of Section 4.3. For a k-pseudoflower Φ, every separation of Φ is contained
in an equivalence class of separations. If Φ distinguishes at least four profiles,
then it displays separations whose equivalence classes are not nested, and thus are
elements of some V in V. This V is uniquely determined by Φ (still assuming that
Φ distinguishes four profiles) and is anemone-like if and only if Φ is an extension
of an anemone. Of course the nestedness of distinct elements of V translates back
to nestedness of k-pseudoflowers belonging to them.

In Chapter 5, separation systems of vertex separations are considered that
satisfy a condition of limit-closedness, for example the separations of finite con-
nectivity of a graph-like space. Seen from the perspective of graphs, for a definition
of k-pseudoflower in this context it does not suffice to put edges in partition classes,
but now vertices have to be placed between the partition classes. That leads to a
more complex definition of k-pseudoflower than in Chapter 6, but one that still has
so-called petals taking the role of the partition classes of the k-pseudoflowers. In
this definition, every k-pseudoflower is either inherently daisy-like, and thus called
a k-pseudodaisy, or inherently anemone-like and called a k-pseudoanemone. Also
the partial order ≤ has to be defined in a more complicated way. Two k-pseudo-
flowers are defined to be comparable via ≤ if there is a specific type of map from
one k-pseudoflower to the other, and it is true but non-obvious that in most cases
this map is unique. Also, in this setting (as opposed to Chapter 6) it is possible
that a k-profile does not point towards a petal of a finite k-pseudoflower, so it is
shown that in the relevant cases every k-profile points towards a petal.

From then on, the chapter mostly deals with k-pseudodaisies. It is shown that
if all the profiles under consideration are limit-closed, then most ≤-maximal k-pseu-
dodaisies are 4-maximal, where again Φ 4 Ψ if all profiles distinguished by Φ are
also distinguished by Ψ. Section 5.3 contains the proof that there are ≤-maximal
k-pseudodaisies.

Recall that, given some finite separation system S and a set of k-profiles P
with the same truncation, the equivalence classes of separations are displayed by a
tree decomposition with flowers. Chapter 7 explores what of the tree decomposition
with flowers can be recovered if one does not have full information of the separation
system. The first section of that chapter discusses the case that there is no (easily
accessible) list of all separations of connectivity k− 1, and only a few of them, −→s 1,−→s 2, . . . are given. In this case, an algorithm is described that iteratively computes
as much of the structure of the equivalence classes as possible from the first l of
the separations. For this routine to work it is necessary to be able to determine
whether two equivalence classes are nested. The second section of the chapter is
entirely speculative and contains a few ideas on what might work when it is not
possible to determine whether two equivalence classes are nested.



CHAPTER 4

Bipartitions with the corner property

Of the various examples of separation systems in which flowers are explored in
this thesis, one seems to be particularly easy to deal with because it has so much
extra structure: A subsystem of the universe of bipartitions of some ground set
where all corners of crossing elements of the separation system are again contained
in the separation system. Such separation systems are the topic of this chapter, and
Section 4.3 will explain why such separation systems are still sufficiently general
to be of interest and that there is a close connection to the topic of tangle-tree-
theorems.

4.1. Finite universes

For this section fix a ground set E and a set B of bipartitions1 of E such that
B is a separation system with the following property:

If −→s and
−→
t are crossing elements of B , then −→s ∨ −→t is also contained in B.

This section is about finite sets B, but some lemmas are formulated such that
they also hold for infinite sets B, which are considered in Section 4.2.

The goal of this section is to organise the elements of B into maximal flowers
and a tree set which interacts nicely with the set of flowers. Clearly any two crossing
elements of B should belong to the same maximal flower, and belonging to the same
maximal flower should be an equivalence relation. So consider the finest partition
of B in which elements of different partition classes do not cross. The separations
of B which are nested with B are exactly those whose partition class only contains
this one separation. The set of these separations, denoted by E , is a tree set and
will indeed be the tree set associated with B. Denote the set of partition classes
with more than one element by V. As described in the introduction to this part of
the thesis, the elements of V behave quite similarly to sets of separations displayed
by a flower. If they happen to be finite, then by Lemmas 4.13 and 4.14 they can
be organised into structures which are very similar to sets of separations displayed
by flowers as in e.g. [17], [5] or Chapter 6, but for infinite elements of V that is not
necessarily the case. Therefore, given an element V of V, suitable finite subsets of
V , called pre-flowers, will be considered as finite approximations of V , and there
will be no extra definition of what a flower is in this setting.

Definition 4.1. A pre-flower is a finite subset F of B with at least two elements

such that for all elements −→s and
−→
t of F there are −→u0, . . . ,

−→un ∈ F with a = −→u0,
b = −→un such that −→ui and −−→ui+1 are not nested for 0 ≤ i ≤ n− 1.

The following notation will be used for both elements of V and pre-flowers:

1In contrast to the definition of the universe of bipartitions, the set B cannot contain the
empty set nor the whole ground set.
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Definition 4.2. Given a set S of bipartitions of E let ∼S be the equivalence
relation on E where e ∼S f if and only if no element of S distinguishes e and
f . Denote the set of equivalence classes of ∼S by ∂(S), the set of elements of B
which are unions of elements ∂(S) by S, and the set of elements of S which are not

orientations of elements in ∂(S) by S̊.

Every pre-flower is a subset of some element of V, and if V is finite, then it
is itself a pre-flower. Also every pre-flower F contains two crossing separations,
so ∂(F) has at least four elements. Furthermore, the bipartitions to which the
elements of ∂F correspond form a star; and the separations of B towards which
all elements of the star point are exactly the separations contained in F . Also
F ⊆ F̊ ⊆ F , and every element of F̊ contains at least two elements of ∂(F) and
is disjoint from at least two elements of ∂(F). As every corner of elements of F
corresponds again to a union of elements of ∂(F), also F is closed under unions of
crossing elements.

The following two lemmas establish basic facts about the interaction of elements
of some V ∈ V and elements of B\V .

Lemma 4.3. Let V be an element of V and let −→s be an element of B\V . Then
some orientation of −→s points towards all elements of V .

Proof. Let P be the set of elements of V towards which −→s points and let Q
be the set of elements of V towards which ←−s points. As −→s is nested with every
element of V , P ∪ Q = V . Assume for a contradiction that there is an element−→
t ∈ P ∩ Q. Then both orientations of −→s point towards

−→
t , so either −→s is an

orientation of
−→
t or

−→
t is not regular. But

−→
t is regular because it is an element of

B. Furthermore every element of V crosses some element of V , so V is closed under

taking inverses and in particular −→s is not an orientation of
−→
t . So P ∩Q = ∅. By

the definition of V, this implies that one of P and Q is empty. �

Lemma 4.4. Let V be an element of V and let −→s be a separation in B\V . Then
there is a unique element −→a of ∂(V ) such that ←−a points towards −→s .

Proof. Existence: By Lemma 4.3 there is some orientation
−→
t of −→s which

points towards all elements of V . Then no two elements of
−→
t are on different sides

of separations in V , thus all elements of
−→
t are contained in the same element −→a

of ∂(V ). So ←−a points towards
−→
t and hence also towards −→s .

Uniqueness: Assume for a contradiction that for some other element
−→
b of ∂(V )

also
←−
b points towards −→s . As −→a ≤

←−
b , −→a points towards −→s as well, and similarly−→

b points towards −→s , too. That both orientations of −→a point towards −→s implies
that either −→a is an orientation of −→s or −→s is small or cosmall. As −→s is an element
of B, it is neither small nor cosmall, so −→a is an orientation of −→s . Similarly because

both orientations of
−→
b point towards −→s ,

−→
b is an orientation of −→s . Hence

−→
b is an

orientation of −→a , which is not possible for distinct elements of ∂(V ). �

Now comes a more detailed analysis of pre-flowers. For that, fix a pre-flower F
for the following lemmas and corollaries, up to and including Lemma 4.14.

For any two elements −→s and
−→
t of F there is a witnessing sequence −→u0, . . . ,

−→un
of elements of F such that −→s = −→u0 and −→un =

−→
t . The following lemma implies by

induction that such a sequence can be kept short if one allows the −→ui to be elements
of F̊ :
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Lemma 4.5. Let −→p , −→q , −→r and −→s be elements of B such that −→p crosses −→q , −→q
crosses −→r and −→r crosses −→s . Then −→p crosses −→s or there is

−→
t ∈ B which crosses

both −→p and −→s .

Proof. If −→p and −→s are equal or inverses of each other, then −→q crosses both
−→p and −→s . So assume that −→p and −→s are nested but neither equal nor inverses of
each other. If −→q crosses −→s or is an orientation of −→s then the lemma holds, so

assume that some orientation
−→
q′ of −→q points towards −→s . Similarly assume there is

an orientation
−→
r′ of −→r which points towards −→p . As −→p does not cross −→s ,

−→
q′ ∨

−→
r′

crosses both −→p and −→s . �

Thus any two nested elements of F cross a common separation in F̊ . To extend
this statement to all separations in F̊ , it suffices to show that all separations in F̊
cross some separation in F .

Lemma 4.6. Every element of F̊ crosses some element of F .

Proof. Let −→s be an element of F which does not cross any element of F .
Then for every element of F there is some orientation of −→s which points towards
that element. Also, for two crossing elements of F there is one orientation of −→s
pointing towards both those separations. By choice of F there is some orientation−→
t of −→s which points towards all elements of F . Then the elements of E contained

in
−→
t are not distinguished by elements of F , so

−→
t contains only one element of

∂(F), with which it coincides. Thus −→s is not contained in F̊ . �

Corollary 4.7. Let −→s and
−→
t be nested separations in F̊ . Then there is an element

of F̊ which crosses both −→s and
−→
t . �

In order to show that every −→s in ∂(F) is also contained in F , it is useful to

have a minimal element of F̊ at hand towards which −→s points. Such a minimal
element can easily be chosen with the following extra property:

Lemma 4.8. Let
−→
t be an element of F̊ and let −→a be an element of ∂(F) such

that −→a ≤ −→t . Then there is a minimal element −→s of F̊ which has the additional

property that −→a ≤ −→s ≤ −→t .

Proof. Let −→s be minimal among all elements of F̊ which satisfy −→a ≤ −→s ≤ −→t .
Assume for a contradiction that −→s is not minimal in F̊ . By Lemma 4.6 there is
an element of F which crosses −→s , and one of its orientations −→q is bigger than −→a .
Then −→q ∧ −→s is not contained in F̊ and thus an element of ∂(F), which then has

to be −→a . Hence −→s ∧←−q is the set −→s \−→a . Because −→s is not minimal in F̊ , it is the
union of at least three elements of ∂(F). So −→s ∧ ←−q is the union of at least two

elements of ∂(F) and thus contained in F̊ .

By Corollary 4.7 there is a separation in F̊ which crosses both −→s ∧←−q and −→s .

This separation has an orientation −→u such that −→a ≤ −→u . Then −→a ≤ −→u ∧ −→s ≤ −→t .
As −→u crosses −→s ∧ ←−q , there is an element of ∂(V) which is contained in both −→u
and in −→s ∧ ←−q and which is thus not −→a . Hence −→u ∧ −→s is an element of F̊ with
−→a ≤ −→u ∧ −→s ≤ −→t , contradicting the choice of −→s . �

Corollary 4.9. Let −→a be an element of ∂(F). Then at least two minimal elements

of F̊ contain −→a . �
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Corollary 4.10. ∂(F) is a subset of F .

Proof. Let −→a ∈ ∂(F) and let −→s be a minimal element of F̊ containing −→a .

Then −→s crosses some separation in F by Lemma 4.6 and some orientation
−→
f of

that separation contains −→a . Then −→s ∧
−→
f is an element of F which is not an element

of F̊ and contains −→a , so it is equal to −→a . �

Just as all definitions of flower in this thesis, every pre-flower corresponds to
a daisy or an anemone. Those two types are distinguished by the behaviour of
minimal sets: A pre-flower F is a pre-anemone if some element of ∂(F) is contained

in at least three minimal elements of F̊ and a pre-daisy otherwise. The following two
lemmas establish facts about minimal elements of F̊ which are then used to show
that pre-anemones and pre-daisies indeed have structures reminiscent of anemones
and daisies:

Lemma 4.11. Let −→s be a minimal element of F̊ . Then −→s is the union of exactly
two elements of ∂(F).

Proof. Let −→s be a minimal element of F̊ . Then −→s contains at least two
elements −→a and

−→
b of ∂(F). Let

−→
f be an element of F which distinguishes elements

of −→a from elements of
−→
b . Then ←−s does not point towards

−→
f by minimality of −→s ,

and −→a and
−→
b witness that −→s does not point towards

−→
f . So −→s and

−→
f cross. Now

−→s ∧
−→
f and −→s ∧

←−
f are both contained in F but not in F̊ , hence they contain only

one element of ∂(F) each. Thus −→s = −→a ∪
−→
b . �

Lemma 4.12. The only partition of ∂(F) in which every minimal element of F̊ is
contained in some partition class is the partition with only one element.

Proof. Assume for a contradiction that there is a partition of ∂(F) in which

every minimal element of F̊ is contained in some partition class and which has two
distinct partition classes. Consider a finest such partition. Because every partition
class contains at least two elements by Corollary 4.9 and Lemma 4.11,

⋃
P is an

element of F̊ for every partition class P . Let −→s be a an element of F̊ minimal
with respect to the property that it crosses

⋃
P and

⋃
Q for two distinct partition

classes P and Q (−→s exists by Corollary 4.7). Let −→a be an element of P which is

less than −→s and let
−→
b be an element of P which is less than ←−s such that −→a ∪

−→
b

is an element of F̊ . Then −→s \−→a , which is a corner of −→s and −→a ∪
−→
b , is contained

in F̊ and thus by minimality of −→s does not cross
⋃
R for any partition class other

than Q. In particular −→a is the only element of P which is contained in −→s . By

Lemma 4.8 there is a minimal element
−→
t of F̊ such that −→a ≤ −→t ≤ −→s . Because

−→a is the only element of P which
−→
t contains, the other element of ∂(F) which

−→
t

contains has to be from a different partition class, a contradiction. �

Lemma 4.13. If F is a pre-anemone, then F is the set of all unions of elements
of ∂(F) that are neither ∅ nor E.

Proof. Recall that ∂(F) has at least four elements. If ∂(F) has exactly four

elements, then there is one element −→a in ∂(F) such that for every other element
−→
b

of ∂(F) the set −→a ∪
−→
b is an element of F̊ . As B is closed under taking inverses, so

is F̊ , and thus all six possible unions of two elements of ∂(F) are contained in F̊ .
Thus if ∂(F) contains exactly four elements, the lemma holds, so assume otherwise.
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Let −→a be an element of ∂(F) which is contained in three minimal elements of

F̊ . Let
−→
b , −→c and

−→
d be elements of ∂(F) such that −→a ∪

−→
b , −→a ∪−→c and −→a ∪

−→
d are

all minimal elements of F̊ . Then −→a ∪
−→
b ∪−→c is a corner of the crossing separations

−→a ∪
−→
b and −→a ∪ −→c , so −→a ∪

−→
b ∪ −→c ∈ F̊ . Also

−→
b ∪ −→c is a corner of the crossing

separations −→a ∪
−→
b ∪−→c and −→a ∪

−→
d and thus

−→
b ∪−→c is an element of F̊ . Similarly

−→c ∪
−→
d and

−→
b ∪
−→
d are elements of F̊ , implying that each of

−→
b , −→c and

−→
d also is

contained in three minimal elements of F̊ and that the union of any two of them
is an element of F̊ . Thus by Lemma 4.12 every element of ∂(F) is contained in

at least three minimal elements of F̊ and the union of any two elements of ∂(F)

is an element of F̊ . Let P be any non-trivial subset of ∂(F). If P or ∂(F)\P has
only one element, then the union of all elements of P is an element of ∂(F) or the
inverse of an element of ∂(F) and thus contained in F by Corollary 4.10. If both
P and ∂(F)\P have at least two elements, then the union of all elements of P is

an element of F as corners of crossing elements of F̊ are contained in F . �

Lemma 4.14. If F is a pre-daisy, then there is a cyclic order on ∂(F) such that
the elements of F are exactly the unions of non-trivial intervals of ∂(F). This
cyclic order is unique up to mirroring.

Proof. Let C be a cyclic order on ∂(F) such that for every element of ∂(F) its
two neighbours in C are the two elements with which it is contained in a minimal

element of
−→
G . Such a cyclic order exists by Lemma 4.12. As every union of two

crossing elements of F is again contained in F , every union of elements of ∂(F)
which form a proper interval of C is an element of F . Assume for a contradiction
that there is an element −→s of F̊ which is not the union of a proper interval of C.
Choose −→s such that it is the union of a minimal number of intervals of C. Let −→a
and
−→
b be elements of ∂(F) contained in −→s such that the interval I of C from −→a to

−→
b only contains −→a ,

−→
b and at least one element of ∂(F) which is not contained in

−→s . Because −→s is not an interval of C, there is an element of ∂(F) which is neither

contained in −→s not in I. Thus −→s and I cross and the corner −→a ∪
−→
b is an element

of F̊ . But then −→a ∪
−→
b is a minimal element of F̊ , contradicting the fact that −→a is

contained in exactly two different minimal elements of F̊ . �

Corollary 4.15. Let F be a pre-flower. Then one of the following happens:

• The elements of F are exactly the unions of elements of ∂(F) that are
neither ∅ nor E.

• There is a cyclic order on ∂(F), unique up to mirroring, such that the
elements of F are exactly the unions of non-trivial intervals of ∂(F).

Definition 4.16. For a pre-flower F such that not all non-trivial union of partition
classes are contained in F , the cyclic orders of F are the cyclic orders on ∂(F) such
that the subsets of ∂(F) whose unions are contained in F are exactly the non-trivial
intervals.

Thus the general analysis of pre-flowers is concluded. Now follows, for finite B,
the construction of a tree displaying as much of the structure of B as possible. The
edges of that tree are going to be the elements of E . The elements of V relate to
the separations in E as follows:
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Lemma 4.17. Let V be a finite equivalence class in V. Then V = V̊ and all
elements of ∂(V ) are contained in E.

Proof. As V is a pre-flower, V ⊆ V̊ . Let−→s be an element of V̊ . By Lemma 4.6

there is an element
−→
t of V which crosses −→s , so −→s ∈ V by the definition of V.

Let −→a be an element of ∂(V ), which by Corollary 4.10 is contained in B. In
order to show that −→a does not cross any element −→s of B, consider two cases. If
−→s ∈ V , then −→s ∈ V̊ or −→s ∈ ∂(V ), and in both cases −→s and −→a are nested. If
−→s /∈ V , then by Lemma 4.3 some orientation of −→s points towards all elements of
V and is thus less than some element of ∂(V ). Also in this case −→s and −→a are
nested. �

Note that by Theorem 1.81, if E is finite then there is a tree T whose edge tree
set is isomorphic to E and whose vertices are the consistent orientations of E . For
every V ∈ V and every −→s ∈ E there is by Lemma 4.3 an orientation of E which
points towards all elements of V . So the set of elements of E which point towards
the elements of V is an orientation OV of E , and it is a consistent orientation.
Thus every element of V naturally corresponds to a vertex of T . Similarly for every
element e of the ground set E, the set of elements in E which do not contain e is a
consistent orientation Oe of E . These orientations are all distinct:

Lemma 4.18. Assume B is finite and let X and Y be distinct elements of V ∪E.
Then either the consistent orientations OX and OY of E are distinct or X and Y
are both elements of E and there is no element of B which contains only one of X
and Y .

Proof. First consider the case that one of X and Y , X say, is contained in E
and the other is not. Then X is contained in a petal −→s in ∂(Y ). As by Lemma 4.17
every petal of every element in V is contained in E , also −→s ∈ E and thus −→s ∈ OY
while ←−s ∈ OX .

Next consider the case that both X and Y are contained in E. If there is no
element of B which contains only one of X and Y , then there is nothing to show. So
assume that there is an element −→s of B which contains X but not Y . If −→s ∈ E , then
−→s ∈ O : Y and←−s ∈ OX . If −→s ∈ V for some V ∈ V, then X and Y are contained in
distinct petals −→sX and −→sY of V and as petals are contained in E , OX 6= OY follows.

Last consider the case that both X and Y are contained in V. As X and Y
are distinct, there is some element of B in X\Y . By Lemma 4.3 some orientation
−→s of that element of B points towards the elements of Y . By Lemma 4.4 there is
an petal −→p in ∂(Y ) such that −→s ≤ ←−p . Then also some orientation of −→p points
towards all elements of X, and −→s ≤ ←−p implies that←−p points towards the elements
of X. Because all petals are elements of E , −→p ∈ OY while ←−p ∈ OX . �

Now that the consistent orientations OV have been introduced, Lemma 4.17
can be strengthened as follows:

Corollary 4.19 (of Lemma 4.17). Let V be a finite element of V. Then V = V̊
and ∂(V ) is the set of maximal elements of OV .

Proof. By Lemma 4.17, the elements of ∂(V ) are elements of E and therefore
contained in OV . By Lemma 4.4 for every element −→s of OV , the inverse of some
element −→p of ∂(V ) points towards −→s . As OV is consistent, either −→s is an orienta-
tion of −→p , in which case they are equal, or −→s < −→p . Thus every maximal element
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of OV is contained in ∂(V ). As the elements of ∂(V ) are pairwise incomparable,
all of them must be maximal elements of OV . �

So if B is finite, then the following structure theorem holds.

Theorem 4.20. Let E be a set and B a finite subsystem of the separation system
of bipartitions on ground set E such that neither orientation of {∅, E} is contained
in B and such that the union of any two non-nested elements of B is also contained
in B. Then there is a tree decomposition of E in which some nodes of the tree T
are labelled with either A or D such that the following statements hold.

• Every separation induced by an oriented edge of T is an element of B.
• If a node v of T is labelled with A, then no element of E is assigned to

this node, and thus v induces a partition of E. All non-trivial unions of
partition classes of this partition are contained in B.

• If a node v is labelled with D, then no element of E is assigned to this
node, and thus v induces a partition of E. There is a cyclic order of
the partition that is unique up to mirroring such that among the unions of
partition classes, the ones contained in B are exactly those that are unions
of non-trivial intervals.

• All elements of B are of one of the three types above.

Proof. Let T be a tree whose edge tree set is isomorphic to E . Mapping
every element e of E to the node of T corresponding to Oe turns T into a tree
decomposition such that the separations induced by the oriented edges are exactly
the elements of E . For V ∈ V label the node of T corresponding to OV with A if all
non-trivial unions of elements of ∂(V ) are contained in V and with D otherwise.
Then the edges of T pointing to that node induce ∂(V ) by Corollary 4.19, so no
element of E is mapped to this node. The second part of the third item and the
fourth item then follow from Corollary 4.15. �

Remark 4.21. The structure of a tree with flowers whose existence is stated in
Theorem 4.20 is very close to the tree with flowers whose existence is shown in [17],
but the theorem here does not follow from the results in that paper because in this
section there is no order function and no equivalence relation.

Theorem 4.20 can be translated to [26, Theorem 4], even if it has been obtained
independently. The translation is as follows: By forgetting about the orientations
and deleting bipartitions in which one partition class has only one element, B can
be turned into a split system as defined in [26]. That split system induces a so-
called decomposition frame that has the intersection property. The nodes labelled
D correspond to semi-brittle elements of the decomposition stated in [26, Theorem
4], and the nodes labelled A correspond to the brittle elements.

Also the profiles of B can be related to the tree. For every profile P of P, the
intersection of P with E is a consistent orientation OP of E , and thus corresponds
to a vertex of the tree. That vertex cannot simultaneously belong to an element
of V.

Lemma 4.22. Assume that B is finite and let P be a profile of B. Then P ∩ E is
not of the form OV for any V ∈ V.

Proof. Assume for a contradiction that there is V ∈ V such that P ∩E = OV .
Let −→s be a maximal element of P ∩ V . By Corollary 4.19 ∂(V ) is a subset of P .
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And by Corollary 4.15 there is an element −→p of ∂(V ) such that −→p ∨−→x is contained
in V but not equal to −→x . By the profile property −→x ∨ −→p is contained in P , hence
it is not contained in V . Thus −→x ∨ −→p is the inverse of an element of ∂(V ), a
contradiction to ∂(V ) ⊆ P . �

The following lemma shows that every vertex of T with degree at least four
that does not correspond to OV for any V ∈ V is of the form P ∩ E for a unique
profile P of B. The lemma will also be used in Section 4.3 in order to show that
there are circumstances under which such a vertex corresponds to an element of
V ∪ E.

Lemma 4.23. Assume B is finite and let O be a consistent orientation of E such
that O 6= OV for all V ∈ V. Then there is a unique consistent orientation of B
which contains O, and if O = Oe for some e ∈ E or the degree of O in T is at least
4, then the consistent orientation is in fact a profile.

Proof. For V ∈ V there is −→sV ∈ O\OV , and every element of V̊ has a unique
orientation which points towards −→sV . This orientation does not depend on the
choice of −→sV . The union O′ of O and, for all V in V, the set of elements of V̊ which
point towards −→sV , is the unique consistent orientation of B which contains O.

In order to show that O′ is a profile it suffices to show that for any three
elements −→p , −→q and −→r of O′ the union is not the whole ground set. Let −→s 1, . . . ,

−→s n
be the maximal elements of O′. These are also the maximal elements of O. Then
−→p ∨ −→q ∨ −→r ≤ −→s i ∨ −→s j ∨ −→s l for some, not necessarily distinct, indices i, j and l.
If O = Oe for some e ∈ E, then no −→s m contains e and hence −→s i ∨ −→s j ∨ −→s l 6= E.
If the degree of O in T is at least 4, then −→s i ∨−→s j ∨−→s l is less than or equal to the
inverse of another maximal element of O′. As O′ is a subset of B and hence only
contains non-trivial separations, −→s i∨−→s j ∨−→s l 6= E. In both cases −→p ∨−→q ∨−→r 6= E
and thus O′ is a profile. �

So the profiles can be related to the tree-decomposition of B as follows.

Lemma 4.24. In the situation of Theorem 4.20: For every profile P label the node
of the tree decomposition that corresponds to P ∩E with P . Then no node is labelled
with two profiles, and if E 6= ∅ then the nodes labelled with profiles are exactly the
nodes not labelled with A or D that either have degree at least 4 or to which some
element of the ground set is mapped.

Proof. By Lemma 4.22, no node can be labelled with one of A or D and with
a profile of B simultaneously. Thus if a node v is labelled with a profile P , then, as
every element of B can be found somewhere in the tree, the set of maximal elements
of P is a subset of E . Therefore, P is determined by P ∩ E and hence no node can
be labelled with two distinct profiles of B.

Let v be a node labelled with a profile P . If v has degree 3, then let −→p , −→q and
−→r be the separations induced by the three edges whose head is v. As P is a profile
and P contains all three separations, −→p ∧ −→q cannot be equal to ←−s . This must be
witnessed by an element e of the ground set, and then e must be mapped to v in
the tree decomposition. Similarly if v has degree 2, then the separations induced
by the edges with head v cannot be inverses of each other, and if v has degree 1
then the separation induced by the edge with head v cannot be cotrivial, so also in
these cases there must be an element e of the ground set such that e is mapped to
v in the tree decomposition.
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In the other direction, let v be a node that has degree at least four or to which
an element e of the ground set is mapped. Then by Lemma 4.23 there is a profile
P such that P ∩ E corresponds to v, and thus v is labelled by P . �

4.2. Infinite universes

If B is infinite, then E might be infinite. In that case, E is still a tree-set, but it is
not isomorphic to the edge tree set of a finite tree and not necessarily isomorphic to
the edge tree set of some infinite tree. Furthermore V might have infinite elements.
For such an infinite element V , the elements of ∂(V ) are not necessarily elements
of E , and Lemmas 4.13 and 4.14 only hold in weaker forms. This section introduces
additional structure on the set of pre-flowers of an element of V, in order to prove
weaker analogues of those two lemmas. For that, throughout this section let V be
a fixed element of V.

Let Φ(V ) be the set of pre-flowers which are subsets of V . The subset relation
naturally induces a partial order on Φ(V ). Given two comparable pre-flowers F ⊆ G
of Φ(V ), the partition ∂(G) is a refinement of the partition ∂(F), denote the map

which is the inclusion from ∂(G) to ∂(F) by πFG or just π. Thus F ⊆ G and F̊ ⊆ G̊.
In particular, F is a pre-anemone if and only if G is one:

Lemma 4.25. Let F and G be pre-flowers in Φ(V ) such that F ⊆ G. Then F is a
pre-anemone if and only if G is a pre-anemone.

Proof. First consider the case that F is a pre-anemone, and let −→p , −→q , −→r
and −→s be elements of ∂(F) such that the union of −→p with any of the other three
elements of ∂(F) is an element of F . Then there is no cyclic order on ∂(G) which
turns all of π−1(−→p ∪ −→q ), π−1(−→p ∪ −→r ) and π−1(−→p ∪ −→s ) into intervals of ∂(G). So
by Lemma 4.14 G is not a pre-daisy, thus it is a pre-anemone.

Now consider the case that G is a pre-anemone, and let −→p , −→q , −→r and −→s be
distinct elements of ∂(F). Then

⋃
π−1(−→p ∪−→q ),

⋃
π−1(−→p ∪−→r ) and

⋃
π−1(−→p ∪−→s )

are all elements of G by Lemma 4.13, so
⋃

(−→p ∪ −→q ),
⋃

(−→p ∪ −→r ) and
⋃

(−→p ∪ −→s )
are also elements of F . As there is no cyclic order on ∂(F) which turns these
three sets into intervals of ∂(F), F is not a pre-daisy by Lemma 4.14 and thus is a
pre-anemone. �

The union of two pre-flowers with non-empty intersection is a pre-flower, as
well. As furthermore every two separations of V are contained in some common
pre-flower in Φ(V ), the latter is a directed set. Thus either all pre-flowers in Φ(V )
are pre-anemones, or they are all pre-daisies. If the pre-flowers are pre-daisies, then
their cyclic orders can be chosen such that the maps πFG are homomorphisms of
cyclic orders as follows.

Lemma 4.26. Let F , G and H be elements of Φ(V ) such that F ⊆ G ⊆ H. Then
for every cyclic order of F there is a unique cyclic order of G such that πFG is a
homomorphism of cyclic orders. Also, if TF , TG and TH are cyclic orders of their
respective pre-flowers, and two of the maps πFG, πGH and πFH are homomorphisms
of cyclic orders, then all three are homomorphisms of cyclic orders.

Proof. Every cyclic order of G induces a unique cyclic order of F such that
πFG is a homomorphism of cyclic orders. As there are two cyclic orders of G, which
induce different cyclic orders of F , and there are two cyclic orders of F , the two
cyclic orders of F are necessarily induced by the two cyclic orders of G.
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For the second statement, if πFG is a homomorphism of cyclic orders from TG to
TF and πGH is a homomorphism of cyclic orders from TH to TG , then πFH is their
concatenation and thus a homomorphism of cyclic orders from TH to TF . If πFG is
a homomorphism of cyclic orders from TG to TF but πGH is not a homomorphism
of cyclic orders from TH to TG , then πGH is a homomorphism of cyclic orders from
the mirror of TH to TG . So in this case, πFH is a homomorphism of cyclic orders
from the mirror of TH to TF and thus is not a homomorphism of cyclic orders from
TH to TF . Similarly, if πFG is not a homomorphism of cyclic orders from TG to
TF but πGH is a homomorphism of cyclic orders from TH to TG , then πFH is not a
homomorphism of cyclic orders from TH to TF . �

Putting the cyclic orders of the pre-daisies together, in analogy to Lemma 4.14
there is a cyclic order, unique up to mirroring, in which the elements of V are
unions of intervals:

Lemma 4.27. If the elements of Φ(V ) are pre-daisies, then there is a cyclic order
on ∂(V ) such that all elements of V are unions of intervals of ∂(V ), and that cyclic
order is unique up to mirroring.

Proof. Let TV be a cyclic order on ∂(V ) such that all elements of V are unions
of intervals. Then for every pre-flower F ∈ Φ(V ) there is a unique cyclic order TF
on ∂(F) such that the inclusion ∂(V )→ ∂(F) is a homomorphism of cyclic orders.
As every element of F is the union of an interval of TF , by Lemma 4.14 TF is a
cyclic order of F . So TV induces a family (TF )F∈Φ(V ) where every TF is a cyclic
order of F and such that the inclusions ∂(G) → ∂(F) for pseudo-flowers F ⊆ G
are homomorphisms of cyclic orders. For this proof, call such a family a consistent
family of cyclic orders.

In the other direction, every consistent family of cyclic orders (TF )F∈Φ(V ) in-

duces a set of triples TV of ∂(V ) containing all those triples (−→p ,−→q ,−→r ) for which
there is F ∈ Φ(V ) such that (πF (−→p ), πF (−→q ), πF (−→r )) ∈ TF . Then TV is cyclic as
every TF is cyclic, and it is linear because every element of V is contained in some
pre-flower. In order to show that TV is antisymmetric and transitive it suffices
to show that for any two triples (−→p ,−→q ,−→r ) and (−→p ′,−→q ′,−→r ′) in TV there is some
G ∈ Φ(V ) such that both (πF (−→p ), πF (−→q ), πF (−→r )) and (πF (−→p ′), πF (−→q ′), πF (−→r ′))
are contained in TF . But that is true as the union of any two pre-flowers in Φ is a
subset of another pre-flower in Φ and the maps πFG are homomorphisms of cyclic
orders.

Let F be any element of Φ(V ). Then every consistent family of cyclic orders
can be constructed from, and is thus determined by, its cyclic order of F . In order
to see that, let TF be a cyclic order of F . For every G ∈ Φ(V ) with F ⊆ G there is
by Lemma 4.26 a unique cyclic order TG of G such that the map π : ∂(G) → ∂(F)
is a homomorphism of cyclic orders. By Lemma 4.26, for pre-flowers G and H
in Φ(V ) such that F ⊆ G ⊆ H, the map πGH then is a homomorphism of cyclic
orders. For a pre-flower G ∈ Φ(V ) that does not contain F , let H ∈ Φ(V ) be a
pre-flower that contains both F and G and let TG be the cyclic order on G such
that πGH is a homomorphism of cyclic orders. Also by Lemma 4.26 this definition
does not depend on the choice of H. Furthermore, all maps πGH where G and H
are pre-flowers of V are homomorphisms of cyclic orders.

So in summary, the cyclic orders of ∂(V ) such that every element of V is the
union of an interval correspond to the cyclic orders of F . As there are exactly two
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of the latter, and the mirror of a suitable cyclic order of ∂(V ) is again suitable,
there is a suitable cyclic order of ∂(V ) and that is unique up to mirroring. �

If the pre-flowers in Φ(V ) are pre-anemones, then the following weaker version
of Lemma 4.13 holds:

Lemma 4.28. If the pre-flowers contained in Φ(V ) are pre-anemones, then for
any two elements −→r and −→s of V , the intersection is contained in V ∪ {∅} and the
union is contained in V ∪ {E}.

Proof. By symmetry it suffices to show that the union of −→r and
−→
S is contai-

ned in V ∪ {E}. By the definition of V, there is a pre-flower F ⊆ V that contains
both −→r and −→s . Thus by Lemma 4.13 both −→r and −→s are unions of petals of F . So
also the union of −→r and −→s a union of petals of F . If the union is not E, then by
the same lemma the union is contained in F , and as F ⊆ V the lemma follows. �

So by choosing a suitable cyclic order, all elements of V are unions of intervals
of ∂(V ), but in general it is not true that all unions of intervals of ∂(V ) are also
contained in V or even in V . Still, the intervals whose union is contained in V
have an additional structure as follows. Recall the cycle completion of V from the
section on cyclic orders, and denote the set S(∂(V ))\∂(V ) by Z. Then the non-
trivial intervals of ∂(V ) correspond to the sets [v, w] ∩ ∂(V ) where v and w are
distinct elements of Z. Let Z ⊆ Z be the set of all vertices v ∈ Z for which there
is an element w ∈ Z such that the union of [v, w] ∩ ∂(V ) is contained in V .

Lemma 4.29. For all distinct elements v and w of Z, the union of [v, w] ∩ ∂(V )
is contained in V .

Proof. For elements x and y of Z denote the union of [x, y]∩∂(V ) by E(x, y).
Let x and y be elements of Z such that E(v, x) and E(w, y) are contained in V . If
x = w or v = y, then E(v, w) ∈ V and the lemma holds, so assume otherwise. If
E(v, x) and E(w, y) do not cross, then by Corollary 4.7 there is an element −→r ∈ V
which crosses both E(v, x) and E(w, y). In that case, one of the corners of E(w, y)
and −→r crosses E(v, x) and is of the form E(w, z) or E(z, w) for some z ∈ Z. As
that corner crosses E(v, x), it is not only contained in V but also in V . Thus by
replacing y with z if necessary, the separations E(v, x) and E(w, y) can be assumed
to be crossing. If x ∈]v, w[, then y ∈]v, x[ and E(v, w) = E(v, x) ∪ E(y, w). If
x ∈]w, v[, then y ∈]x, v[ and E(v, w) = E(v, x) ∩ E(y, w). In both cases E(v, w) is
contained in V . �

If z ∈ Z\Z, then the set {E(v, w) : v, w ∈ Z∧z ∈ [w, v]} is a profile of V which,
as the following lemma shows, induces a profile of B. This profile will be used in
Section 4.3 in order to show that in some cases Z\Z is comparably small.

Lemma 4.30. Let V ∈ V and let P be a profile of V . If P contains no element −→s
with ←−s ∈ ∂(V ), then P together with the set of all separations in B\V which point
towards V is a profile of B.

Proof. Let P ′ be the union of P and all separations in B\V which point
towards V . As B is a regular separation system and P contains all elements of
∂(V ) ∩ B, P ′ is an orientation of B. In order to show that P ′ is consistent, let −→s
and
−→
t be elements of B with −→s ≤ −→t ∈ P ′. If both −→s and

−→
t are contained in V ,

then −→s ∈ P ′ by consistency of P . If
−→
t is an element of V but −→s is not, then −→s



74 4. BIPARTITIONS WITH THE CORNER PROPERTY

points towards V and is thus contained in P ′. If neither −→s nor
−→
t is contained in

V , then
−→
t points towards V and so does −→s .

In order to show the profile property, let −→s and
−→
t be elements of P ′ such that

−→s ∨−→t ∈ B. If both −→s and
−→
t are contained in V , then −→s ∨−→t ∈ P ′ by the profile

property of P . Next consider the case that neither −→s or
−→
t are contained in V . By

Lemma 4.4 there are petals −→p and −→q of V such that −→s ≤ −→p and
−→
t ≤ −→q . Assume

for a contradiction that −→p 6= −→q . Let −→r be an element of V such that −→p ≤ −→r ≤ ←−q .

Then −→s ∨−→t crosses −→r and this thus contained in V . But then −→s = (−→s ∨−→t )∧−→r ,
so −→s is contained in V , a contradiction to the choice of −→s . So −→p = −→q and thus
−→s ∨ −→t ≤ −→p , thus −→s ∨ −→t points towards V and is thus contained in P ′.

Last consider the case that one of −→s and
−→
t is contained in V and the other

is not contained in V , say −→s ∈ V and
−→
t /∈ V . In particular −→s points towards

−→
t ,

so −→s ≤ −→t or −→s ≤ ←−t . In the first case −→s ∨ −→t is certainly contained in P ′, so

consider the other case. Let −→r be a separation in V crossing
−→
t such that −→s ≤ ←−r .

As −→s is not contained in V , it is not equal to
−→
t ∨ −→r and thus −→s ∨ −→t crosses −→r .

In particular the separation −→q defined as (−→s ∨ −→t ) ∧ ←−r is an element of B and

strictly bigger than −→s . As −→q crosses
−→
t and is thus contained in V , also −→q ∧←−t is

an element of V . But the latter separation equals −→s , a contradiction to the choice
of −→s . So this case cannot happen. �

4.3. As abstractions of underlying separation systems

Let U be a submodular universe, k ∈ N and S the set of separations of U of
order less than k. Let P be a non-empty set of regular k-profiles which all have the
same truncation Q. Declaring two separations in S to be equivalent if and only if
they are contained in the same elements of P induces a natural equivalence relation
on S. This section shows that the set of equivalence classes has the structure of
a separation system of bipartitions that is closed under finite unions. Most of the
statements in this section may not have been formulated like this and with this
terminology before, but describe nevertheless phenomena known and used often in
tree-of-tangles theory. In particular, the nested set obtained in [24, Theorem 3.6]
applied to S and P is very close to the set of equivalence classes that do not cross
other equivalence classes, as will be explained in Example 4.37.

The first lemma of this section shows that the involution, partial order and join
of S induce natural maps on the set of equivalence classes which turn the latter into
a separation system naturally isomorphic to a separation system of bipartitions of P.
Intuitively, that separation system of bipartitions condenses from S the information
of how it distinguishes the elements of P.

Definition 4.31. Let φ : S → UB(P) map every separation −→p to the set of
elements of P which contain ←−p .

Lemma 4.32. The map φ respects ∗, ≤ and ∨.

Proof. For all −→s ∈ S the complement of φ(−→p ) in E equals φ(←−p ). If −→p and −→q
are elements of S such that −→p ≤ −→q then, as the elements of P are regular consistent
orientations, all elements of P which contain ←−p also contain ←−q , so φ(−→p ) ≤ φ(−→q ).
If −→p and −→q are elements of S such that −→p ∨ −→q is also contained in S, then
φ(−→p ) ∨ φ(−→q ) ≤ φ(−→p ∨ −→q ) as φ respects the partial order. Let P be a profile in P
which is contained in φ(−→p ∨−→q ). Then P contains (−→p ∨−→q )∗ and thus by the profile
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property P also contains ←−p or ←−q . Thus P is also contained in φ(−→p ) ∨ φ(−→q ). So
φ(−→p ∨ −→q ) is contained in φ(−→p ) ∨ φ(−→q ) and thus the two sets are equal. �

Part of Lemma 4.32 is a statement about elements of S whose join is contained
in S as well. Lemma 4.33 shows that in many cases that join does exist, a fact that
will later on also reveal more structure of the image of φ. Both the following and
the previous lemma of course imply similar statements for the meet operation.

Lemma 4.33. Let −→p and −→q be elements of S such that φ(−→p ) ∧ φ(−→q ) /∈ {∅,P}.
Then −→p ∨ −→q ∈ S.

Proof. As φ(−→p ) ∧ φ(−→q ) 6= ∅, there is a profile in P which contains both ←−p
and←−q . If −→p ∧−→q is contained in S, then the profile containing both←−p and←−q also
contains ←−p ∨←−q . In this case −→p ∧ −→q distinguishes two profiles in P and thus has
order k − 1. So in each case −→p ∧−→q has order at least k − 1 and by submodularity
−→p ∨ −→q has order at most k − 1 and is thus contained in S. �

If two elements of S satisfy φ(−→p ) ≤ φ(−→q ) then −→p ≤ −→q does not necessarily
hold. But Lemma 4.34 shows for nested elements of the image of φ that there do
exist pre-images that are nested.

Lemma 4.34. Let −→s and
−→
t be elements of the image of φ such that −→s ≤ −→t .

Then there are elements −→p and −→q of S such that φ(−→p ) = −→s , φ(−→q ) =
−→
t and

−→p ≤ −→q .

Proof. If −→s =
−→
t , then it suffices to pick −→p = −→q , so assume otherwise. Let

−→p and −→q be elements of S such that φ(−→p ) = −→s and φ(−→q ) =
−→
t . Also if −→s = ∅

and
−→
t = P, then at least one of −→p ∧−→q and −→p ∨−→q is contained in S. In the first

case, replace −→p by −→p ∧ −→q and in the second case replace −→q with −→p ∨ −→q and the

lemma holds. So assume also that −→s 6= ∅ or
−→
t 6= P.

So one of −→s ∧−→t and −→s ∨−→t is not contained in {∅,P}. Thus by Lemma 4.33,
one of −→p ∧ −→q and −→p ∨ −→q is contained in S, and replacing one of −→p and −→q with
the existing corner as above shows that the lemma holds. �

Denote the image of φ after deleting ∅ and P by B. Note that the empty set is
contained in the image of φ if and only if S contains a separation which is contained
in all profiles in P, and similarly for P. Also B is a regular separation system which
is a sub-system of the universe of bipartitions of P. Furthermore, by Lemma 4.33
in B many joins are defined:

Corollary 4.35 (of Lemma 4.33). Let −→s and
−→
t be elements of B with −→s ∧−→t 6= ∅

and −→s ∨ −→t 6= P. Then both −→s ∧ −→t and −→s ∨ −→t are elements of B.

Proof. Let −→s = φ(−→p ) and
−→
t = φ(−→q ). By Lemma 4.33 both −→p ∧ −→q and

−→p ∨ −→q are contained in S, and so by Lemma 4.32 both −→s ∧ −→t and −→s ∨ −→t are
contained in B. �

Hence B is closed under unions of crossing elements, so the theory of Sections 4.1
and 4.2 can be applied. Also, if S is finite, then most equivalence classes have a
biggest and a smallest element.

Corollary 4.36 (of Lemma 4.33). If S is finite, then for every −→s ∈ B the set
φ−1(−→s ) has a biggest and smallest element.
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Example 4.37 (Tree of tangles). Let U be a finite submodular universe, k ∈ N
and P a set of regular l-profiles with l ≤ k which is closed under taking truncations.
A common strategy for the proof of tree-of-tangles theorems is to find, recursively
from l = 1 to l = k, for every l − 1-profile Q in P a tree (set) which distinguishes
all the profiles in P whose truncation is Q, and to combine all the tree sets into a
large one. To a certain extent, this strategy can be mimicked within the current
theory: Given an l-profile Q ∈ P with l ≤ k − 1, let PQ be the set of profiles in P
whose truncation to an l-profile is Q. Then φQ, BQ and EQ can be defined as in
this section, where PQ takes the role of the set of l+ 1-profiles whose truncation is
Q. Call the tree (unique up to isomorphism) whose edge tree set is isomorphic to
EQ the abstract tree of Q. If Q is not the empty set, then k − 1 6= 0 and thus the
truncation Q′ of Q to a k − 2-profile exists. In that case, the orientation OQ of E
which Q induces is a vertex of the abstract tree of Q′. Thus the set of abstract trees
has itself a tree-structure. For an example see Fig. 1. Also for every tree set EQ
there is by Lemma 4.33 a tree set TQ contained in S which is mapped isomorphically
to EQ by φQ.

It is not always possible to combine the tree sets TQ into one tree set, as elements
of distinct tree sets TQ need not be nested. Less abstract, the following can happen:
There are integers k ≤ l and two k + 1-profiles P1 and P2 which are distinguished
by exactly two separations −→r and ←−r of S that have order k. Also, there are two
l + 1-profiles Q1 and Q2 which are distinguished by exactly two separations −→s
and ←−s of S that have order l, and such that −→s crosses −→r . As k ≤ l, one of the
orientations of −→r is contained in both Q1 and Q2, say −→r ∈ Q1 ∩Q2. Under these
assumptions, −→r ∨ −→s has order at least l + 1, as otherwise it would distinguish Q1

from Q2. Thus −→r ∧ −→s has order less than k and it does not distinguish P1 from
P2, thus it must be contained in P1 ∩ P2. Likewise, −→r ∧ ←−s has order less than
k and is contained in P1 ∩ P2. Thus one of P1 and P2 contains not only −→r ∧ −→s
and −→r ∧←−s but also ←−r . [15] contains in Section 6 a graph with k-blocks (special
cases of k + 1-profiles) and k + 1-blocks behaving exactly as described here, and
introduces the notion of robustness.

In [24] that same notion of robustness is formulated in terms better suited
to the context of this thesis: A k-profile P of a universe is robust if for all −→r ∈
P and all separations −→s , if both ←−r ∧ −→s and ←−r ∧ ←−s have order less than the
order of −→r , then they are not both contained in P . Profiles being robust has the
following implication: A separation distinguishes two profiles P1 and P2 efficiently
if it distinguishes them but no separation of lesser order than −→s distinguishes P1

and P2. Separations contained in any TQ efficiently distinguish some profiles in P,
and typically separations in trees of tangles also efficiently distinguish two profiles of
the set of profiles under consideration. Robustness of the profiles in P now ensures
that, given two crossing separations of different orders which each distinguish two
profiles efficiently, there is a corner of the two profiles that distinguishes all those
profiles efficiently that are distinguished efficiently by the one separation of the
original ones that has the bigger order. This property is used in the proof of [24,
Theorem 3.6] to show that, under a slightly weaker notion of robustness, every
robust set of profiles in a submodular separation system has a tree of tangles. In
the same way, if all elements of P are robust then it can be shown that the tree
sets TQ can be chosen in such a way that the union of all TQ is a nested set.



4.3. AS ABSTRACTIONS OF UNDERLYING SEPARATION SYSTEMS 77

Figure 1. A graph with three components and its collection of
abstract trees for the set of all k-profiles with k ≤ 3. The black
vertices correspond to profiles, the blue vertex corresponds to an
anemone, the green vertex corresponds to a daisy and the red ver-
tex corresponds to nothing.

Theorem 3.3 of [24] makes a statement about the existence of canonical trees
of tangles. The proof constructs a tree set τ such that the restriction of φ to τ
has E as its image and is nearly injective or injective. The proof can be translated
into a construction of τ from E as follows: Let T be a tree whose edge tree set is
isomorphic to E . Let v be a vertex of T such that the maximal distance from v to
a leaf is minimized. If v is unique, then let O ⊆ E be the set of separations whose
inverse is contained in the consistent orientation v. If v is not unique, then there
are only two possible choices v and v′ which are joined by an edge of T , let O be
the set of separations whose inverse is contained in v ∪ v′. By Corollary 4.36 there
is for every −→r ∈ O a biggest element of φ−1(−→r ). The tree set consisting of all these
biggest elements equals τ . Thus if v is unique, then there is a canonical tree set
contained in S which is mapped to E isomorphically by φ.

4.3.1. Properties of the set of profiles which induce additional pro-
perties of the abstract setting. The following sections contain further proper-
ties of the abstract setting which can be obtained by making more assumptions on
U and its order function. This subsection contains a few results which are obtained
by making further assumptions on P. Recall the following consistent orientations
of E which were defined in Section 4.1: Let OP = {−→s ∈ E : P /∈ −→s } for all P ∈ P
and OV = {−→s ∈ E : −→s points towards the elements of V } for all V ∈ V.
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Lemma 4.38. Let P ′ be a profile of B. Then

{−→s ∈ S : φ(−→s ) ∈ P ′ ∪ {∅}}

is a profile of S whose truncation to a k − 1-profile is Q.

Proof. Denote {−→s ∈ S : φ(−→s ) ∈ P ′ ∪ {∅}} by Q′. In order to prove con-

sistency, let −→s and
−→
t be elements of S such that −→s ≤ −→t and

−→
t ∈ Q′. Then

φ(−→s ) ≤ φ(
−→
t ) and φ(

−→
t ) ∈ P ′, so by consistency of P ′ also φ(−→s ) ∈ P ′, implying

−→s ∈ Q′.
In order to show the profile property, let −→s and

−→
t be elements of Q′ such that

−→s ∨−→t ∈ S. Then φ(−→s ) and φ(
−→
t ) are both contained in P ′, so also φ(−→s ) ∨ φ(

−→
t )

is an element of P ′. But the latter bipartition equals φ(−→s ∨ −→t ), so also −→s ∨ −→t ∈
Q′. �

Corollary 4.39. Assume that B is finite and P is the set of all k-profiles with
truncation Q. Let T be a tree whose edge tree set is isomorphic to E and whose
vertices are consistent orientations of E. Then every vertex of T with degree at least
4 is of the form OX for some X ∈ V ∪ P.

Proof. Let v be a vertex of T which has degree at least 4 and which is not
of the form OV for some V ∈ V. Then by Lemma 4.23 there is a profile P of B
such that P ∩ E = v. The set {−→s ∈ S : φ(−→s ) ∈ P ∪ {∅}} is a profile P ′ of S with
truncation Q, so it is contained in P. Also OP ′ = v. �

For the next corollary, recall that for a cyclic order C the ground set of the
cycle completion is denoted by S(C). Furthermore for an element V of V which
contains pre-daisies the set S(∂(V ))\∂(V ) is denoted by Z. Also Z ⊆ Z contains
all elements v for which there is w ∈ Z such that the union of [v, w] ∩ ∂(V ) is
contained in V .

Corollary 4.40. Assume that P is the set of all k-profiles with truncation Q and
let V ∈ V such that all pre-flowers contained in V are pre-daisies. Then every
v ∈ Z\Z has exactly one neighbour in S(∂(V )).

Proof. Assume for a contradiction that v has neighbours−→p and−→q in S(∂(V )).
As −→p and −→q are distinct elements of ∂(V ), there is an element −→s of V such that
−→p ⊆ −→s but −→q ∩−→s = ∅. By choice of the cyclic order on ∂(V ) there is w ∈ Z such
that −→s =

⋃
([v, w] ∩ ∂(V )) or −→s =

⋃
([w, v] ∩ ∂(V )), which is a contradiction to

v /∈ Z. In order to show that v has some neighbour, consider the set of all elements
of V of the form

⋃
([u,w] ∩ ∂(V )) where v /∈ [u,w]. This subset of V is a profile

of V which can by Lemma 4.30 be extended to a profile of B. Let P be the set of
elements of S which are mapped to the profile of B by φ. Also P is a profile, this
time of S, by Lemma 4.38, and P is contained in some petal −→p of V . Then −→p has
to be adjacent to v in S(∂(V )). �

One reason why the structural results on B are so much weaker in the infinite
case is the fact that so far there are no extra assumptions on the closure of B under
infinite operations. A possible extra assumption is for B to be closed under infinite
unions of chains, of course unless that union is the whole ground set of B. This extra
assumption can be obtained by asking that all profiles in P have this property:
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Lemma 4.41. Assume that for all P ∈ P, all chains (−→s j)j∈J of elements of P have
a supremum in U and that supremum is contained in P . Then every chain (−→s j)j∈J
of elements of B has the property that

⋃
j∈J
−→sj either equals P or is contained in B.

Proof. By Zorn’s Lemma there is a ⊆-maximal chain (−→r j)j∈J′ such that φ
restricted to this chain is injective and has its image contained in {−→sj j∈J}. Denote
the supremum of {−→rj : j ∈ J ′} by −→r and the union of all −→sj with j ∈ J by −→s .
As the profiles are all closed under taking suprema of chains, every profile which
is not contained in −→s contains all −→rj and thus also −→r . So φ(−→r ) ≤ −→s . Assume
for a contradiction that φ(−→r ) < −→s , so there is j ∈ J such that −→sj � φ(−→r ). Then

φ(
−→
r′j ) < −→sj for all j′ ∈ J ′, so similarly to φ(−→r ) ≤ −→s also φ(−→r ) ≤ −→sj . But then

by Lemma 4.33 there is some −→p ∈ S such that φ(−→p ) = −→sj and −→r ≤ −→p , and P
can be added to the chain (−→rj )j∈J′ , contradicting the maximality of that chain. So
φ(−→r ) = −→s , so −→s is contained in the image of φ. Hence the only reason for −→s not
to be contained in B is if −→s = P. �

The results in this chapter progress from the separation system to the sepa-
ration system of equivalence classes: From the entirety of the separation system
together with P, the separation system of the equivalence classes is extracted and
then that separation system can be analysed further, leading (at least in the finite
case) to a tree structure with flowers. In Chapter 7 another approach will be taken,
in the setting where the underlying separation system is a finite subsystem of a
universe of bipartitions: Given only some separations of the underlying separation
systems of order k − 1, how much of the tree structure can be recovered?





CHAPTER 5

Vertex separations with limits

Definition 5.1. A limit-closed universe of vertex separations U on ground set V
is a limit-closed sub-universe of U(V ) such that if k ∈ N and (Ai, Bi)i∈I is a chain
in U of separations of order at most k then the supremum of the chain is of the
form (A ∪X,B) where A =

⋃
i∈I Ai and B =

⋂
i∈I Bi.

Note that a sub-universe of U(V ) whose induced order function is still limit-
closed need not be a limit-closed universe of vertex separations.

In [25], an oriented separation of a graph on vertex set V is said to be a
separation (A,B) ∈ U(V ) such that every path meeting both A and B also meets
A∩B. The set of oriented separations of the graph is clearly a limit-closed universe.
Recall that a separation of graph-like space on vertex set V is an element (A,B) of
U(V ) such that every pseudo-arc meeting both A and B also meets A ∩ B. For a
given graph-like space, these separations clearly form a universe, due to some very
basic properties of paths. Less obviously, the order function of the universe is lim-
it-closed, which can be shown for example by applying Menger’s theorem. In [30],
Hendrik Heine generalised the concept of directed paths to so-called dipath spaces,
in such a way that the directed pseudo-arcs of a graph-like space on ground set V
turn into dipaths of a dipath space on the same ground set. In particular, defining
a separation of a dipath space to be an element (A,B) of U(V ) such that every
dipath starting in A and ending in B also meets A∩B ensures that the separations
of a graph-like space on ground set V are exactly the separations of the induced
dipath space. Hence the following statement also applies to graph-like spaces:

Theorem 5.2. [30, Version of Theorem 4.5 explained in the paragraph after the
proof] Let G be a dipath space, A,B ⊆ V (G) and k ∈ N. Then either there exists a
set of size less than k meeting every path from A to B or a set of k disjoint paths
from A to B.

The same author also showed a version of the following corollary for dipath
spaces, the proof works in both cases:

Corollary 5.3. [31] Let k ∈ N, let G be a graph-like space and let (Ai, Bi)i∈I be a
chain of separations of order ≤ k. Let A =

⋃
i∈I Ai and B =

⋂
i∈I Bi. Then there

exists X ⊆ V (P) such that (A ∪X,B) is a separation of order at most k.

Proof. If there are k + 1 many disjoint pseudo-arcs containing vertices both
of A and B, then there is i ∈ I such that these disjoint pseudo-arcs all contain
vertices of both Ai and Bi, a contradiction. Thus any set of disjoint pseudo-arcs
containing vertices of both A and B has at most k elements. Let G′ be the graph-
like space obtained from G by deleting the elements of A∩B and all incident edges.
As every element of A ∩ B is a trivial pseudo-arc which meets both A and B, in
G′ every set of disjoint pseudo-arcs containing vertices of both A\B and B\A has

81
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at most k − |A ∩ B| many elements, hence by Theorem 5.2 there is a set X of at
most k−|A∩B| many vertices that meets every pseudo-arc which contains vertices
of both A\B and B\A. So ((A\B) ∪X,B) is a separation of G′ of order at most
k − |A ∩B| and (A ∪X,B) is a separation of G of order at most k. �

In the situation of Corollary 5.3, for any two separations of the form (A∪X,B)
and (A ∪ Y,B), the meet (A ∪ (X ∩ Y ), B) is also a separation of the graph-like
space. Thus there is a smallest such X, and this X satisfies that (A ∪X,B) is the
supremum of the chain (Ai, Bi)i∈I in the universe of separations of the graph-like
space. In the special case of the separations of a graph, the set X is always empty.
In graph-like spaces, that is not necessarily the case:

Example 5.4. Let P be the partial order arising from N by the addition of a
biggest element. Consider the pseudoline L(P ), which is a graph-like space. For
every n ∈ N let vn be the vertex of L(P ) which is the supremum of the edge n
and let S(n) be the separation (An, Bn) where An consists of the vertices w of
L(P ) with w ≤ vn and Bn consists of the vertices w of L(P ) with w ≥ vn. Then
(Sn)n∈N is a chain of separations in the universe of separations of L(P ). Let u1

be the biggest vertex of L(P ) and U2 the second biggest vertex of L(P ). Then the
supremum of (Sn)n∈N is of the form (A,B) where A contains all vertices of L(P )
but u1, and B consists of u1 and u2. In particular u2 is contained in A but not
contained in any An with n ∈ N.

For this chapter, fix some limit-closed universe of vertex separations
U and some k ∈ N. Additionally, if k 6= 0 then fix some k − 1-profile P
and let P be a set of k-profiles which all have truncation P if P exists.
Just as in Section 4.3 let two separations in Sk be equivalent if and only if they are
contained in the same elements of P. See Remark 5.9 for a remark on the choice of
a set of profiles instead of tangles. For a cyclically ordered set I, denote its cycle
completion by C(I). The elements of C(I)\I are also called the cutpoints of C(I).

5.1. Definition of k-pseudoflowers and k-flowers

For separation systems of bipartitions, it is feasible to let flowers be partitions
of the ground set such that certain unions of partition classes are elements of the
separation system. For U , this approach is not feasible any more, as separations
are not any more in direct correspondence to subsets of the ground set. At least
for finite flowers, this problem can be overcome by allowing the “partition classes”
to overlap. Then the separation associated to a subset of partition classes can have
elements on both sides. Such structures behave very much like flowers in matroids:

Lemma 5.5. Let (Pi)i∈I be a finite family of subsets of some ground set V and
k ∈ N. For all I ′ ⊆ I denote

⋃
i∈I′ Pi′ by V (I ′) and (V (I ′), V (I\I ′)) by S(I ′).

Assume that

• I is cyclically ordered and has at least three elements
• S(i) is a separation of U of order k − 1 for all i ∈ I
• S({i, j}) is a separation of U of order k− 1 for all adjacent indices i and
j in I.

Then every v ∈ V is contained in all Pi, in exactly two Pi with adjacent indices, or
in exactly one Pi. Furthermore, the number of elements which two Pi with adjacent
indices share does not depend on the Pi.
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BA

C

PjPi

Vij

Figure 1. To the left: Three sets A, B and C. The shaded area
is A ∩ (B ∪ C). To the right: Three sets Pi, Pj and Vij . The
three shaded areas contain, in the circumstances of the proof of
Lemma 5.5, the same amount of vertices.

Proof. First consider three sets A, B and C with pairwise finite intersection
such that |A ∩ (B ∪ C)| = |B ∩ (C ∪A)| = |C ∩ (A ∪B)|. The set A ∩ (B ∪ C)
is indicated in Fig. 1, the other two sets are symmetrical. Then the following
equations hold:

A ∩ (B ∪ C) = (A ∩ (B\C)) ⊍ (A ∩ (C\B)) ⊍ (A ∩B ∩ C)

= ((A ∩B)\C) ⊍ ((A ∩ C)\B) ⊍ (A ∩B ∩ C)

B ∩ (C ∪A) = ((A ∩B)\C) ⊍ ((B ∩ C)\A) ⊍ (A ∩B ∩ C)

C ∩ (A ∪B) = ((A ∩ C)\B) ⊍ ((B ∩ C)\A) ⊍ (A ∩B ∩ C).

As a result, |(A ∩B)\C| = |(A ∩ C)\B| = |(B ∩ C)\A|.
Let j be some index of I and let i and l be its neighbours in I. Denote

V (I\{i, j}) by Vij and V (I\{j, l}) by Vjl. The sets Pi, Pj and Vij are depicted in
Fig. 1. Applying the previous paragraph to the sets Vij , Pi and Pj yields∣∣(Pi ∩ Pj)\Vij∣∣ =

∣∣(Pj ∩ Vij)\Pi∣∣ .
Applying the previous paragraph to the sets Vjl, Pj and Pl yields∣∣(Pj ∩ Pl)\Vjl∣∣ =

∣∣(Pj ∩ Vjl)\Pl∣∣ .
Furthermore (Pj ∩ Pl)\Vjl ⊆ (Pj ∩ Pl)\Pi ⊆ (Pj ∩ Vij)\Pi and (Pi ∩ Pj)\Vij ⊆
(Pi ∩ Pj)\Pl ⊆ (Pj ∩ Vjl)\Pl, so these sets all have the same size. In particular Pj
shares as many vertices with only Pi as it shares with only Pl.

Also,

Pj ∩ V (I\{j}) =
(
(Pj ∩ Vij)\Pi

)
⊍

(
(Pj ∩ Pi)\Vij

)
⊍

(
Pj ∩ Pi ∩ Vij

)
=
(
(Pj ∩ Pl)\Vjl

)
⊍

(
(Pj ∩ Pi)\Vij

)
⊍

(
Pj ∩ Pi ∩ Vij

)
so every v ∈ V which is contained in Pj and at least one other element of the family
(Pi)i∈I is either contained in exactly two elements of the family (namely Pj and
one of Pi and Pl) or it is contained in at least three elements of the family, one of
those elements being Pi. As this, by symmetry, holds for all indices in I, the lemma
holds. �
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By Lemma 5.5, for all I ′ ⊆ I the order of S(I ′) can be expressed in terms of the
number of arcs of I ′, the number a of vertices contained in all Pi and the number
d of vertices which two adjacent Pi share with each other but with no other Pi. So
it is immediate that the separations S(I ′) of order k − 1 are either all intervals or
all such separations. A little more complicated is the question of which separations
S(I ′) are contained in U :

Lemma 5.6. Let I ′ be a non-trivial subset of I. Then S(I ′) is an element of U .

Proof. The proof is by induction on the size of I ′. The cases where I ′ has
only one element or has exactly two elements and those are adjacent are done by
the requirements on (Pi)i∈I . So consider the case that I ′ contains two non-adjacent
elements i and j. Then V (I ′ − i) ∪ V (I ′ − j) = V (I ′) and

V ((I\I ′) + i) ∩ V ((I\I ′) + j) = V (I\I ′) ∪ (Pi ∩ Pj) = V (I\I ′)
as all vertices in Pi ∩ Pj are contained in all vertex sets. Hence S(I ′) = S(I ′ − i)∨
S(I ′ − j). By induction S(I ′ − i) and S(I ′ − j) are elements of U , so also S(I ′) is
an element of U . �

Just defining families of vertex sets as in Lemma 5.5 to be flowers does not
extend well to the infinite case. In the following example there is a set of separations
such that every subset is displayed by some common partition in the sense above,
but for which it is not possible to place all vertices of V into suitable sets Pi.

Example 5.7. Let C be the pseudocycle obtained from the pseudoline on edge set
Z with the usual order. Denote the one vertex which is not incident with an edge by
ṽ. For all distinct vertices v and w of C there are two separations which have {v, w}
as separator. Denote the set of all such separations by S. For any finite subset of
S there is for k = 3 a partition with cyclic order as in Lemma 5.5 such that all
separation of that finite subset are of the form S(I ′). But there is no partition with
cyclic order as in Lemma 5.5 such that all separations in S are of the form S(I ′), as
can be seen as follows: Let (Pi)i∈I be a partition with cyclic order as in Lemma 5.5
such that some separation in S with ṽ in its separator is of the form S(I ′). In
particular k = 3 and there are at least two sets Pi which contain ṽ. Let i′ ∈ I such
that ṽ ∈ Pi′ . Then S(i′) contains ṽ in its separator and thus there are infinitely
many separations in S towards which S(i′) points and infinitely many separations
in S towards which S(i′)∗ points. But S(i′) points towards all but finitely many
separations of the form S(I ′), so there are infinitely many separations in S which
are not of the form S(I ′).

But it is clear where the spare vertices belong. So the following, slightly more
complicated definition arises, which is also very close to the definition of k-pseudo-
flowers from Chapter 6:

Definition 5.8. Let I be a set of size at least 2 with a cyclic ordering. Let C(I) be
the cycle completion of I and (Pz)z∈C(I) a family of vertex sets. Define X =

⋂
i∈I Pi

and for all distinct v, w ∈ C(I)\I let V (v, w) =
⋃
z∈[v,w] Pz. Then (Pz)z∈C(I) is a

k-pseudoflower if

• For every v ∈ C(I)\I the set Pv has size (k − 1 − |X|)/2 and is disjoint
from X;

• For all distinct v, w ∈ C(I)\I the pair S(v, w) = (V (v, w), V (w, v)) is a
separation of order at most k − 1 and V (v, w) ∩ V (w, v) = Pv ∪ Pw ∪X;
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I ′

S(v, w)
= S(I ′)

v

w

Figure 2. This figure shows a k-pseudoflower: The big cycle de-
picts the index set I, the grey arc with the arrow tip indicates that
in this case the cyclic order of I is depicted clockwise. Also I ′ is
a non-trivial interval of I of the form [v, w] ∩ I for two elements v
and w of C(I)\I. The interval separation S(I ′) is shown, too.

• For every i ∈ I the set V (p(i), s(i)) equals Pi and

(∗F) Pp(i) = Ps(i) ⇒ Pi * Ps(i) ∪X

where p(i) and s(i) are the predecessor and successor of i in C(I) respecti-
vely.

A k-pseudoflower is finite if the index set is finite. A k-flower is a k-pseudoflower
in which all separations S(v, w) are regular separations with order exactly k− 1.

For v 6= w ∈ C(I)\I the set V (v, w) is the interval set of [v, w] and the separa-
tion S(w, v) is the interval separation of [v, w]. For a non-trivial interval I ′ ⊆ I let v
and w be the unique elements of C(I)\I such that I ′ = [v, w]∩I. Then the interval
set V (I ′) of I ′ is V (v, w) and the interval separation S(I ′) of I ′ is S(v, w). Also
define V (∅) = ∅ and V (I) = V (G). For each index i ∈ I the petal of i is its interval
set V (i) and the petal separation of i is its interval separation S(i). The sets Pv
with v ∈ C(I)\I are the gluing sets of the k-pseudoflower. A separation (A,B) is
displayed by a k-pseudoflower if it is an interval separation of that k-pseudoflower.
An equivalence class E of separations is displayed by a k-pseudoflower if an element
of it is displayed by the k-pseudoflower. A k-pseudoflower distinguishes two profiles
if it displays a separation distinguishing those two profiles. Any k-pseudoflower Φ
induces an equivalence relation on P where two profiles are equivalent if they are
not distinguished by Φ. The term that a k-pseudoflower distinguishes at least n
profiles means that the equivalence relation on P induced by the k-pseudoflower has
at least n many equivalence classes. A separation that distinguishes two profiles in
P is called proper. Two separations cross properly if for all of the four possibilities
to choose one orientation of the first separation and one orientation of the second
separation there is an element of P containing those two orientations.

Remark 5.9. It would have been possible to define k-tangles for limit-closed uni-
verses of vertex separations (or even more specifically for graph-like spaces) and
then work with a set of k-tangles instead of P. For graph-like spaces this definition
could have been generalised from the notion of a k-tangle of a graph, and for the
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[a, b]

[c, d]

a

b

c

d

Figure 3. A cyclic order with two intervals. This figure depicts
some of the notation used in Lemma 5.11 and Corollary 5.12.

limit-closed universes of vertex separations the definition of a k-tangle for an arbi-
trary separation system could have been used. With any of these generalisations,
a k-tangle T is certainly a k-profile and has the property that if u, v and w are
distinct cutpoints of the index set of a k-pseudoflower Φ such that v ∈ [u,w], then(

S(u, v) ∈ T ∧ S(v, w) ∈ T
)
⇒ S(u,w) ∈ T.

The circumstance that k-profiles do not necessarily satisfy this condition is the
reason why not every k-profile is located somewhere in every k-pseudoflower. This is
also the reason why several theorems in this chapter require a k-pseudoflower which
is an extension of a k-flower with at least four petals in addition to distinguishing at
least three profiles, in contrast to just requiring the k-pseudoflower to distinguish
at least four (or possibly only three) profiles.

5.2. Basic properties of k-pseudoflowers

Definition 5.10. A k-pseudoflower is called a k-pseudoanemone if the sets Pv for
v ∈ C(I)\I are all empty and a k-pseudodaisy otherwise. Call the vertices in X its
anemone vertices and the size of the Pv its daisy number.

Note that in an anemone all sets Pi with i ∈ I are disjoint.

Lemma 5.11. Let Φ be a k-pseudoflower on index set I. Let a, b, c and d be
elements of C(I)\I such that a, b and c are pairwise distinct and b ∈ [a, c]. Also
assume that if d ∈ {a, b, c}, then d = a, and if d /∈ {a, b, c} then d ∈ [c, a]. Then
V (a, b)∩V (c, d) = (Pa∩Pd)∪(Pb∩Pc)∪X and V (a, c)∩V (b, d) = V (b, c)∪(Pa∩Pd).

Proof. Clearly V (a, b) ∩ V (c, d) ⊆ V (a, c) ∩ V (c, a) = Pa ∪ Pc ∪X. Similarly
V (a, b)∩ V (c, d) is a subset of Pa ∪Pb ∪X, Pd ∪Pb ∪X and Pd ∪Pc ∪X. Together
these subsetrelations imply

V (a, b) ∩ V (c, d) ⊆ (Pa ∪ Pb ∪X) ∩ (Pa ∪ Pc ∪X) ∩ (Pd ∪ Pb ∪X) ∩ (Pd ∪ Pc ∪X)

= (Pa ∩ Pd) ∪ (Pb ∩ Pc) ∪X.
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As also (Pa∩Pd)∪ (Pb∩Pc)∪X ⊆ V (a, b)∩V (c, d), these two sets are equal. Thus

V (a, c) ∩ V (b, d) = V (b, c) ∪ (V (a, b) ∩ V (c, d))

= V (b, c) ∪ (Pa ∩ Pd) ∪ (Pb ∩ Pc) ∪X
= V (b, c) ∪ (Pa ∩ Pd). �

Corollary 5.12. If Pa ∩ Pd = ∅ then S(b, c) = S(a, c) ∧ S(b, d).

Lemma 5.13. Let (Pi)i∈C(I) be a k-flower on index set I. Then Pv ∩ Pw = ∅ for
all v, w ∈ C(I)\I.

Proof. Let v and w be distinct elements of C(I)\I. Let i and i′ be elements of
I such that v ∈ [i, i′] and w ∈ [i′, i]. In C(I), denote the predecessor and successor
of i by p and s respectively and the predecessor and successor of i′ by p′ and s′

respectively. Then by Lemma 5.11

Pv ∩ Pw ⊆ V (s, p′) ∩ V (s′, p) = X ∪ (Pp′ ∩ Ps′) ∪ (Pp ∩ Ps) = X

where the last equality holds because all petal separations are separations of order
k − 1. As Pv and Pw are disjoint from X, Pv ∩ Pw = ∅. �

Lemma 5.14. For all x ∈
⋃
v∈C(I)\I Pv the set {w ∈ C(I)\I : x ∈ Pw} is an

interval of C(I)\I.

Proof. Assume otherwise. Then there are pairwise distinct t, u, v, w ∈ C(I)\I
such that t ∈ [v, w], u ∈ [w, v], x ∈ Pt ∩ Pu and x /∈ Pv ∪ Pw. But then x ∈
V (v, w) ∩ V (w, v), which contradicts the fact that x /∈ Pv ∪ Pw ∪X. �

Definition 5.15. A k-pseudoflower Φ′ extends another k-pseudoflower Φ, written
Φ ≤ Φ′, if the sets X and X ′ coincide and there is a map F : C(I ′) → C(I) re-
specting the cyclic ordering such that F (I ′) = I and V (v, w) = V (F−1(v), F−1(w))
for all v, w ∈ C(I)\I. If Φ′ extends Φ, then Φ is a concatenation of Φ′.

The construction of the completion of an index set implies that for distinct
index sets I and I ′ the sets C(I)\I and C(I ′)\I ′ will almost certainly be disjoint.
Thus even if Φ ≤ Φ′ are k-pseudoflowers which are otherwise very similar, e.g.
because I is a subset of I ′ with only one element less than I ′ and F is the identity
on I—in which case also the sets of interval separations are nearly the same— the
sets C(I)\I and C(I ′)\I ′ completely different as sets. But in that case, C(I)\I
and C(I ′)\I ′ are in close correspondence to each other via F , and so it is natural
to simply identify corresponding elements as follows: The definition of ≤ implies
that if Φ and Φ′ are k-pseudoflowers and F is a map witnessing that Φ ≤ Φ′ then
identifying every element of C(I)\I with its unique pre-image under F keeps interval
sets V (v, w) and interval separations S(v, w) well-defined. If Φ is an extension of a
k-flower with at least three petals, then the identification does not even depend on
the choice of F (because there is only one such choice) and keeps the definition of
gluing sets well-defined, as the following lemma shows:

Lemma 5.16. Let Φ ≤ Φ′ be k-pseudoflowers. If Φ is an extension of a k-flower
with three petals then the witness F that Φ ≤ Φ′ is unique and satisfies Pv = PF−1(v)

for all v ∈ C(I)\I.

Proof. In order to show that F is unique, let F : C(I ′) → C(I) and F ′ :
C(I ′) → C(I) be witnesses that Φ ≤ Φ′. Then F and F ′ are surjective. Let i be
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an element of I ′ and assume for a contradiction that F (i) 6= F ′(i). Because Φ is an
extension of a k-flower with three petals, there are three elements of C(I)\I such
that their petals are pairwise disjoint. Thus by changing the roles of F and F ′ if
necessary it is possible to assume that [F (i), F ′(i)]∩C(I)\I contains two elements
v and w such that Pv and Pw are disjoint. Let t ∈ [F ′(i), F (i)] ∩ C(I)\I and let
x be an element of Pi\X. If x is not contained in Pv, then because it is contained
in both sides of the separation S(v, t) it is also contained in Pt. Otherwise x is
contained in Pv and thus not contained in Pw, again implying that x ∈ Pt. But
now Pi\X ⊆ Pt, which is a contradiction to |Pi\X| > |Pt| which is implied by
Eq. (∗F). Thus F and F ′ are surjective strong homomorphisms from C(I ′) to C(I)
which agree on I ′ and map I ′ to I, so by Lemma 1.24 F = F ′.

The second step is to show that Pv = PF−1(v) for all v ∈ C(I)\I. This is clear
for a k-pseudoanemone, so assume that Φ is a k-pseudodaisy. For that consider
first the case that there are elements w and u of C(I)\I such that Pv, Pw and Pu
are pairwise disjoint and such that v ∈ [u,w]. Then Lemma 5.11 implies

Pv ∪X = V (u, v) ∩ V (v, w)

= V (F−1(u), F−1(v)) ∩ V (F−1(v), F−1(w))

= X ∪ PF−1(v) ∪ (PF−1(u) ∩ PF−1(w))

so because Pv and PF−1(v) have the same size and are both disjoint from X, they
are equal.

Next consider the case that there are elements s, t and u of C(I)\I such that
Ps, Pt and Pu are pairwise disjoint and such that t ∈ [s, u] and v ∈]s, t[. Then,
again by applying Lemma 5.11,

Pv = (V (s, v) ∩ V (v, t))\X
= (V (F−1(s), F−1(v)) ∩ V (F−1(v), F−1(t))\X
= PF−1(v) ∪ (PF−1(s) ∩ PF−1(t))

= PF−1(v) ∪ (Ps ∩ Pt) = PF−1(v). �

So if Φ′ is an extension of Φ, then the elements of C(I)\I can be seen as
elements of C(I ′)\I ′. But the other way around is also possible: If Φ′ is a k-pseu-
doflower on index set I ′, then for some sets D ⊆ C(I ′)\I ′ there is a k-pseudoflower
Φ such that D essentially is C(I)\I:

Example 5.17 (extension via cutpoints). Let Φ be a k-pseudoflower and D a
subset of C(I)\I such that there is a surjective strong homomorphism F from C(I)
to some C(I ′) such that F (I) ⊆ I ′ and F−1(C(I ′)\I ′) = D. By Lemma 1.27, in
particular finite sets and subsets of C(I)\I which miss only one cutpoint which
has two neighbours in C(I) have that property. For all i ∈ I ′ with predecessor p
and successor s in C(I ′) define Pi = V (F−1(p), F−1(s)) and for all v ∈ C(I ′)\I ′
define Pv = PF−1(v). Then (Pz)z∈C(I′) is a k-pseudoflower and F witnesses that
(Pz)z∈C(I′) ≤ Φ. Denote (Pz)z∈C(I′) by Φ(D).

Example 5.18 (extension via splitting a petal). Let Φ and Φ′ be k-pseudoflowers
such that F : C(I ′) → C(I) witnesses that Φ ≤ Φ′. Also assume that there is
exactly one element i of I such that F−1(i) has more than one element, and that F
maps exactly two elements of I ′ to i. Then Φ′ arises from Φ by splitting the petal
i. Denote the elements of F−1(i) by i1 and i2 such that i1 is the predecessor of i2
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in I ′. Then there is exactly one element m ∈]i1, i2[ and all interval separations of
Φ′ which are not interval separations of Φ are of the form S(m, v) or S(v,m) for
some v ∈ C(I)\(I +m).

Given a k-profile P and a k-pseudoflower Φ on index set I, P orients all separa-
tions displayed by Φ. Drawing all these orientations as arrows, in most cases these
arrows all point towards the same place in C(I). The following definition makes
this precise:

Definition 5.19. Let Φ be a k-pseudoflower on index set I. A k-profile P is located
at (v,+) in Φ for some cutpoint v ∈ C(I)\I if S(w, v) ∈ P for all w in C(I)\(I+v).
Similarly P is located at (v,−) if S(v, w) ∈ P for all w in C(I)\(I + v).

Remark 5.20. If two profiles are located in Φ but not at the same location or
locations, then Φ distinguishes the two profiles.

Let Φ be a k-pseudoflower on index set I and P a profile. If P is located
somewhere, then there are two cases: The first is the case that P is located at two
distinct pairs (a, b) and (c, d). In this case {(a, b), (c, d)} = {(v,+), (w,−)} for two
elements v and w of C(I)\I such that w is the successor of v. If i is the unique
element of I in ]v, w[, then S(i)∗ is an element of P . In this case, say that P is
located at a petal.

The second case is that P is located at exactly one pair (a, b). In this case P
contains all petal separations. Also, if b = + then a does not have a successor in
C(I)\I and if b = − then a does not have a predecessor in C(I)\I. In particular I
is infinite. In this case, say that P is located at a non-petal.

There is a second way to define locations: As elements of C(C(I)\I)\(C(I)\I).
In this case, P is located at some location u if and only if S(w, v) ∈ P for all
distinct elements v and w of C(I)\I such that u ∈ [w, v]. Let ι be the map which
maps every location of the form (v,+) to the successor of v in C(C(I)\I) and every
location of the form (v,−) to the predecessor of v in C(C(I)\I). Then P is located
at (v, a) if and only if it is located at ι(v, a). In particular, ι is surjective and two
locations (v, a) and (w, b) are mapped to the same element of C(C(I)\I)\(C(I)\I)
if and only if any profile located at those locations is located at the same petal.
The second way of defining locations is probably nicer in that locations are unique,
but it is also less nice in that it involves the cycle completion of a cycle completion,
which is not the most intuitive of concepts (and does not have nice notation).

Lemma 5.21. In every finite k-flower with at least four petals, every k-profile is
located at some pair.

Proof. Let Φ be a finite k-flower with at least four petals and P a k-profile.
Let S be the set of interval separations S(I ′) where both I ′ and I\I ′ have at least
two elements. As Φ has at least four petals, S is non-empty, and as Φ is finite there

is a maximal element −→s of S ∩ P . Let
−→
t be an interval separation of Φ which

crosses −→s and is contained in P . Then −→s ∨ −→t is an interval separation of Φ by
Corollary 5.12 and it is contained in P by the profile property. So by maximality

of −→s , −→s ∨−→t is not contained in S and thus the inverse of a petal separation S(i).
So P is located at (v,+) where v is the predecessor of i in C(I). �

Lemma 5.22. In every k-pseudoflower which is an extension of a k-flower with
four petals, every profile is located at some pair.
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S(s, t)
∈ P
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Figure 4. S(s, t) is an interval separation of a k-pseudoflower and
is contained in a profile P . See also Lemma 5.22.

(C,D)

S(p, v)
S(v, s)

S(i)∗

i

v

p

s

Figure 5. A separation (C,D) which properly crosses a petal se-
paration S(i) and is anchored at a cutpoint v.

Proof. Let Φ be a k-pseudoflower which is an extension of a k-flower with
four petals, Φ({s, t, x, y}) say, and let P be a k-profile. Assume that t ∈ [s, x] and
y ∈ [x, s]. By Lemma 5.21 P is located at some pair in Φ({s, t, x, y}), and as Φ
is finite P contains the inverse of some petal separation of Φ, S(s, t) say. In the
interval [s, t] let v be the supremum of {w ∈ [s, t[\I : S(t, w) ∈ P}. There are three
cases: v = t, S(v, x) ∈ P and S(x, v) ∈ P . In the first case, v = t, P is located at
(v,−).

Consider the second case: v 6= t and S(v, x) ∈ P . Then S(v, w) = S(v, x) ∨
S(t, w) for all w ∈ [s, v[ by Lemma 5.13 and Corollary 5.12 and thus S(v, w) ∈ P .
Hence P is located at (v,−).

In the last case, v 6= t and S(x, v) ∈ P . Again S(t, v) = S(t, s) ∨ S(x, s) and
thus S(t, v) ∈ P . If t is the successor of v in C(I)\I, then S(v, t) ∈ P implies that
P is located at (v,+). Otherwise let w ∈]v, t[\I. By the definition of v, P does
not contain S(t, w), so S(t, w) = S(t, s) ∨ S(y, w) implies that S(y, w) is not an
element of P . Thus P contains S(w, y), and S(w, v) = S(w, y) ∨ S(x, v) implies
that S(w, v) ∈ P . As this is true for all w ∈]v, t[\I, P is located at (v,+). �
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S(p, v)
∈ P2

S(v, s)
∈ P3

S(i)∗

i
p s

v

Figure 6. A k-pseudoflower with petal i and cutpoints p, s and v
of the index set together with three separations. This figure depicts
some of the notation of Lemma 5.24.

The profiles of P induce a pre-order 4 on the set of k-pseudoflowers as follows:
Recall that a k-pseudoflower Φ distinguishes two profiles in P if the profiles are
distinguished by a separation that is displayed by Φ. Let Φ 4 Ψ if any profiles in
P distinguished by Φ are also distinguished by Ψ. The rest of this section leads to
the fact that if a k-pseudoflower Φ has a petal that properly crosses a separation,
then there is a k-pseudoflower Ψ such that not only Φ ≤ Ψ but also Φ 4 Ψ. As a
result, if P only contains limit-closed profiles then any ≤-maximal k-pseudodaisy
satisfying some mild assumptions is also 4-maximal.

Definition 5.23 (see Fig. 5). Let Φ be a k-pseudoflower and i a petal of Φ with
predecessor p and successor s in C(I). A separation (A,B) of order k− 1 properly
crossing S(i) is anchored at v ∈ C(I)\I if some orientation (C,D) of it satisfies
(C,D)∨S(i) = S(v, s) and (D,C)∨S(i) = S(p, v). If (A,B) = (C,D), then (A,B)
is positively anchored, otherwise negatively anchored.

Lemma 5.24. Let Φ be a k-pseudoflower which distinguishes at least three profiles
and is an extension of a k-flower with at least four petals. Let (C,D) be a separation
of order k − 1 which properly crosses some petal separation S(i) of Φ. Then there
is a separation (C ′, D′) properly crossing S(i) such that

• (C,D) ∧ S(i) = (C ′, D′) ∧ S(i) and (D,C) ∧ S(i) = (D′, C ′) ∧ S(i).
• (C ′, D′) is anchored at some v ∈ C(I)\I.

Proof. Let P1 be a profile which contains both (C,D) and S(i)∗. If Φ dis-
tinguishes two profiles which contain both (C,D) and S(i) then let P2 be a profile
which contains both (D,C) and S(i). In this case some profile P3 which contains
both (C,D) and S(i) is distinguished from P2 by Φ. Otherwise let P3 be a profile
which contains both (C,D) and S(I). As Φ distinguishes at least three profiles,
it distinguishes some profile P2 from both P1 and P3. Because P2 is distinguished
from P1, it contains S(i). Because P2 is also distinguished from P3, it does not
contain (C,D), so it contains (D,C). In both cases, P2 contains S(i) and (D,C),
while P3 contains S(i) and (C,D). Furthermore Φ distinguishes P2 and P3.

Denote the predecessor of i in C(I) by p and the successor by s. By Lemma 5.22
both P2 and P3 are located somewhere in Φ. As Φ distinguishes P2 and P3, these
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are different locations, and so there is a cutpoint v ∈ C(I)\I such that S(p, v) is
contained in exactly one of the profiles P2 and P3. The other profile then contains
S(v, s). If P2 contains S(p, v), then let (C ′, D′) = ((C,D) ∨ S(v, p)) ∧ S(v, s),
otherwise let (C ′, D′) = ((C,D) ∨ S(s, v)) ∧ S(p, v). From here on assume that P2

contains S(p, v), the other case is symmetric.
As P3 contains all three separations (C,D), S(v, p) and S(v, s), while P2 con-

tains none of these separations, (C ′, D′) is a separation of order k − 1 which is
contained in P3 and not in P2. Let P4 be a profile which contains S(i)∗ and (D,C).
Then P1 contains (C ′, D′) and P4 contains (D′, C ′), so together the four profiles
show that (C ′, D′) properly crosses S(i). Also

(C ′, D′) ∧ S(i) = ((C,D) ∨ S(v, p)) ∧ S(v, s) ∧ S(i)

= ((C,D) ∨ S(v, p)) ∧ S(i)

= ((C,D) ∧ S(i)) ∨ (S(v, p) ∧ S(i)).

Because both (C,D) and (C ′, D′) properly cross S(i), the separations (C,D)∧S(i)
and (C ′, D′)∧S(i) both have order k−1. As S(v, p)∧S(i) is trivial, (C,D)∧S(i) and
(C ′, D′)∧S(i) are equal by Lemma 1.78. Similarly (D,C)∧S(i) = (D′, C ′)∧S(i).

The fact that S(v, p) ≤ (C ′, D′) ≤ S(v, s) implies that

S(v, s) ≥ (C ′, D′) ∨ S(i)

≥ S(v, p) ∨ S(i)

= (V (v, p) ∪ V (p, s), V (p, v) ∩ V (s, p))

= (V (v, s), V (s, v) ∪ Pp)

where the last equality holds by Lemma 5.11. As (C ′, D′) properly crosses S(i),
the separation (C ′, D′) ∨ S(i) has order k − 1 and thus S(v, s) = (C ′, D′) ∨ S(i).
Similarly S(p, v) = (D′, C ′) ∨ S(i). �

Lemma 5.25. Let Ψ be a k-pseudoflower and i a petal of Ψ with predecessor p
and successor s. If a separation (C,D) of order k − 1 properly crossing S(i) is
positively anchored at v ∈ C(I)\I, then C ∩ Ps = ∅, D ∩ Pp = ∅, X ⊆ C ∩D and
(C ∩D)\V (p, s) = Pv.

Proof. Since Ps is contained in the separator of S(i), but does not meet
V (v, p) it cannot meet C. Similarly (D,C) ∧ S({i}) = S(s, v) implies that Pp does
not meet D. The third statement is immediate from the fact that X occurs in the
separators of both S(s, v) and S(v, p).

For the last equation, note that (C,D) ∧ S(i)∗ = S(v, p) implies both C ∩
V (s, p) = V (v, p) and D∪V (p, s) = V (p, v). Taking the intersection gives (C ∩D∩
V (s, p))∪ (C ∩V (s, p)∩V (p, s)) = V (v, p)∩V (p, v). Deleting V (p, s) on both sides
and simplifying gives the result. �

Lemma 5.26. Let Φ be a finite k-pseudoflower distinguishing at least three pro-
files which is an extension of a k-flower with at least four petals. Let (C,D) be a
separation of order k − 1 which properly crosses some petal separation S(i) of Φ
and is positively anchored at v ∈ C(I)\I. Then some k-flower Φ′ arises from Φ by
splitting i (notation as in Example 5.18), witnessed by F , such that

• Pm = (C ∩D)\V (I − i).
• V (i1) = C ∩ V (i) and V (i2) = D ∩ V (i).



5.2. BASIC PROPERTIES OF K-PSEUDOFLOWERS 93

i

i1 i2
p

m
s

v

Figure 7. A cyclic order with two adjacent elements i1 and i2,
and some cutpoints of the cycle completion of I, as they appear in
Lemma 5.26

• (C,D) is an interval separation of Φ′.

Proof. Denote the predecessor and successor of i in C(I) by p and s, respecti-
vely. Let Φ′ be obtained from Φ by replacing i ∈ I with i1, m and i2 in this order
and setting Pm = (C ∩D)\V (s, p), Pi1 = C ∩ Pi and Pi2 = D ∩ Pi.

Φ′ clearly satisfies the third condition of a k-pseudoflower. By Lemma 5.25 the
separator C∩D consists of the disjoint sets Pm, X and Pv, so |Pm| = k−|Pv|−|X| =
(k−|X|)/2. To show that Φ′ is a k-pseudoflower, it thus remains to show the second
condition. Let x, y ∈ C(I) be arbitrary. Because Φ is a k-pseudoflower it suffices
to consider the case that y = m. Since Pi1 and Pi2 meet only in Pm ∪X, indeed
V (x,m) ∩ V (m,x) = Px ∪ Pm ∪X.

So to show that Φ is a k-pseudoflower it suffices to show that ((V (x,m), V (m,x))
is a separation. Without loss of generality v occurs after x in [s, p], the other
case is analogous. Note that S(p, x) ∨ (C,D) = (V (x, p) ∪ V (v,m), V (p, x) ∩
V (m, v)) = (V (x,m), V (m,x)), where the last step uses Lemma 5.11. It follows
that ((V (x,m), V (m,x)) is a separation, since it occurs as a corner between two
separations.

Thus Φ′ is a k-pseudoflower. By construction, (C,D) appears as the interval
separation S(m, v). �

Lemma 5.27. Let Φ be a k-pseudoflower which is a k-pseudodaisy, distinguishes
at least three profiles, and is an extension of a k-flower with four petals. If Φ is
≤-maximal and P only contains limit-closed profiles, then Φ is also 4-maximal.

Proof. See Fig. 8 for a depiction of some of the notation. Let Φ be a k-pseu-
doflower which distinguishes at least three profiles and is an extension of a k-flower
with at least four petals. Also assume that Φ is not 4-maximal among all k-pseu-
doflowers, as witnessed by Φ′. Let P1 and P2 be two limit-closed profiles which are
distinguished by Φ′ but not by Φ.

By Lemma 5.22 P1 and P2 are located at some pair (v, x). Assume for the rest
of this proof that the profiles are located at (v,−), the other case is symmetric.
Because Φ distinguishes at least three profiles there is an interval separation S(v, w)
of Φ whose inverse is contained in two profiles P3 and P4 which are distinguished
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Figure 8. A k-pseudoflower with two of its interval separations,
and an interval of its ground set. This figure depicts some of the
notation used in the proof of Lemma 5.27.

by Φ. As Φ distinguishes P3 and P4, there is some interval separation of Φ which
distinguishes P3 and P4. By several applications of the profile property there is
t ∈]v, w[ such that S(v, t) distinguishes P3 and P4. Assume, by swapping the
names of P3 and P4 if necessary, that S(t, v) ∈ P3. Again by the profile property
also S(t, w) distinguishes P3 and P4 with S(w, t) ∈ P4.

The k-pseudoflower Φ′ distinguishes P1, P2, P3 and P4 pairwise, so there is
an interval separation (C,D) of Φ′ which is contained in P3 but not P4 and which
distinguishes P1 and P2. By swapping the names of P1 and P2 if necessary, assume
that (C,D) is contained in P1 and P3 and that its inverse is contained in P2 and
P4.

If v has a predecessor v′ in C(I)\I, then (C,D) properly crosses S(v, v′) and
by Lemmas 5.24 and 5.26 there is an extension Φ′′ of Φ which distinguishes P1 and
P2. Assume for a contradiction that v has no predecessor in C(I)\I. Let W be the
interval ]w, v[. For all x ∈ W let Sx be the separation ((C,D) ∨ S(t, x)) ∧ S(t, v).
All three separations (C,D), S(t, x) and S(t, v) are contained in P3, not contained
in P4, and have order at most k−1, so Sx also has order at most k−1. Because the
universe is a limit-closed universe of vertex separations, there is a unique supremum
(A,B) of (Sx)x∈W . As the union of all sets V (v, x) with x ∈W is the whole ground
set V , there is some y ∈W such that V (v, y) contains A∩B. But P1 is limit-closed
so (A,B) is still contained in P1 and thus properly crosses S(v, y). Hence applying
Lemma 5.25 to the concatenation of Φ on cutpoints v, t and y shows that A ∩ B
contains a vertex not in V (v, y). Again because (A,B) properly crosses V (v, y),
A ∩B also contains a vertex not in V (y, v), a contradiction to the choice of y. �

5.3. Limits of chains of k-daisies

Let (Φj)j∈J be a ≤-chain of k-pseudoflowers which are k-pseudodaisies, exten-
sions of k-flowers with at least four petals and distinguish at least three profiles.
This section consists of the proof that there is a k-pseudoflower which is an upper
bound of the chain (Φj)j∈J . If the chain contains a maximal Φj , then Φj already
is an upper bound of the chain, so assume otherwise
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5.3.1. Taking the inverse limit. By Lemma 5.16, for all indices l ≤ j in
J there is a unique map Flj witnessing that Φl ≤ Φj . Because they are unique,
Flj ◦ Fjm = Flm for all indices l ≤ j ≤ m in J . So there is an inverse limit with
projections (πj)j∈J . Because all Flj respect the cyclic order, the inverse limit also
has a cyclic order which is respected by the projections. Define I to contain all
elements i of the inverse limit such that πj(i) is contained in Ij for all j ∈ J . Let
VF be the set of elements of the inverse limit which are not contained in I. For
i ∈ I define Pi to be

⋂
j∈J Pπj(i).

Similarly to identifying cutpoints of the index set of two k-pseudoflowers, one
extending the other, also cutpoints of the C(Ij) can be identified with each other
and elements of VF as follows: Let v ∈ VF and j ∈ J such that πj(v) is a cutpoint of
C(Ij). Then for all l ∈ J which are bigger than j there is by Lemma 5.16 a unique
element wl of C(Ij) such that Flj(wl) = πj(v), and furthermore wl ∈ C(Ij)\Ij .
Hence v is the only element of I ∪ VF mapped to πj(v) by πj , πl(v) is a cutpoint
for all sufficiently large l ∈ J and Pπl(v) does not depend on l ∈ J as long as πl(v)
is a cutpoint of C(Il). Identify v with all πl(v) which are a cutpoint, implicitly
defining Pv. As V (v, w) does not depend on j ∈ J as long as it is defined, this
identification did not make the term V (v, w) ambiguous. And intervals are taken
in I ∪ VF unless otherwise stated. Let Ψ be the family of vertex sets (Pz)∈I∪VF

.
If I ∪ VF is not isomorphic to C(I), then Ψ is not a k-pseudoflower. Apart from
possibly not having a suitable index set, Ψ is quite close to being a k-pseudoflower:

Lemma 5.28. V (v, w) =
⋃
z∈[v,w] Pz for all distinct v and w in C(I)\I, where the

interval is taken in I ∪ VF .

Proof. ”⊆” Let u ∈ V (v, w). If also u ∈ V (w, v) then u ∈ Pv ∪ Pw ∪ X,
which is a subset of

⋃
z∈[v,w] Pz as [v, w] contains an element of I. So assume that

u /∈ V (w, v). If there is z ∈ VF such that u ∈ Pz, then u /∈ V (w, v) implies that
z /∈ [w, v] and thus z ∈ [v, w]. If there is no z ∈ VF such that u ∈ Pz, then for all
j ∈ J there is a unique ij ∈ Cj such that u ∈ Pij . In this case all ij are contained
in Ij and Fjl(ij) = il for all l ≤ j ∈ J . So there is i ∈ I such that Πj(i) = ij for all
j ∈ J , and u ∈ Pi. Again u /∈ V (v, w) implies i ∈ [v, w].

”⊇” Let j ∈ J be sufficiently large such that Cj contains v, w and z if z ∈ VF .
Then Φj witnesses that Pz ⊆ V (v, w). Furthermore all Pz are disjoint from X. �

Corollary 5.29. For all distinct element v and w of VF the pair( ⋃
z∈[v,w]

Pz,
⋃

z∈[w,v]

Pz

)
,

where intervals are taken in I ∪ VF , is a separation of order at most k − 1 with
separator Pv ∪ Pw ∪X.

5.3.2. Completing the index set. In general VF 6= C(I)\I and thus Ψ is not
a k-pseudoflower. Denote the set of cutpoints of C(I) which are not in VF by VN .
By Lemma 1.24, the projections πj extend uniquely to projections Πj : C(I)→ Cj .
For all distinct v, w ∈ C(I)\I define V ′(v, w) to be Pv ∪ Pw ∪

⋃
t∈[v,w]\VN

Pt. In

order for V ′(v, w) to be defined for elements of VN , it is still necessary to define Pv
for elements v of VN .

Lemma 5.30. Every v ∈ VN has a unique neighbour in C(I), and that neighbour
is an element of I.
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Figure 9. Some of the notation fixed until here, in the case that
v is the predecessor of i.

Proof. As v /∈ VF , σj(v) is an element of Ij for all j ∈ J . Thus (σj(v))j∈J
is an element i of I, and it is a neighbour of v. Assume for a contradiction that
v has another neighbour i′ in C(I)\I. Then also i′ ∈ I. As i′ is a neighbour of v,
for every j ∈ J either σj(i

′) = σj(v) or σj(i
′) is a neighbour of σj(v) in Cj . Both

σj(i
′) and σj(v) = σj(i) are contained in Ij , so they cannot be neighbours in Cj ,

implying that σ(i) = σ(i′) for all j ∈ J . Because (σj)j∈J restricts to (πj)j∈J on I,
this implies that i = i′, so v indeed has only one neighbour in C(I). �

Let v ∈ VN and i its unique neighbour in C(I) which exists by Lemma 5.30.
For every j ∈ J let uj be the predecessor and wj the successor of πj(i) in Cj . Let
z ∈ VF be a cutpoint such that for all sufficiently large j ∈ J , both S(z, wj) and
S(z, uj) distinguish two profiles in P. If v is the predecessor of i in C(I), then let
(Y,Z) be the supremum of the set {S(z, w) : w ∈]z, v[∩VF }. If v is the successor
of i in C(I), then let (Y,Z) be the supremum of the set {S(w, z) : w ∈]v, z[∩VF }.
In both cases (Y, Z) exists and has order at most k because the order function is
limit-closed. By definition, Pz is disjoint from all Puj and Pwj where j ∈ J is
sufficiently large, and thus Pz is disjoint from all V (uj , wj).

Define Pv := ((Y ∩ Z)\(Pz ∪X). Let j ∈ J be a sufficiently large index such
that Pz ∩ V (uj , wj) = ∅. Then both V (wj , z) and V (z, uj) contain Pz, so also
both Y and Z contain Pz, implying that Pv has at most as many elements as Pz.
Furthermore (Y,Z) distinguishes two profiles in P and thus Pv has exactly as many
elements as Pz.

Lemma 5.31. Pv ⊆ V (uj , wj) for all j ∈ J .

Proof. It suffices to show the claim for all j ∈ J such that z ∈ Cj . Let
y be a vertex contained in (Y ∪ S) ∩ Z but not in V (uj , wj). In the case that
v is the predecessor of i, S(z, uj) ≤ (Y ∪ S,Z) ≤ S(z, wj). So in this case y ∈
Y ∪ S ⊆ V (z, wj), which implies y ∈ V (z, uj) because u /∈ V (uj , wj). Furthermore
y ∈ Z ⊆ V (uj , z) and thus y is contained in the separator of S(z, uj), which is
X ∪ Pz ∪ Puj . As y is not contained in Puj , it is contained in X ∪ Pz, implying
y /∈ Pv. The case that v is the successor of i is symmetric. �

Corollary 5.32. For every y ∈ Pv either y ∈ Puj
∪ Pwj

for all sufficiently large
j ∈ J or y ∈ Pi.
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πj(i)

i

(Y 1, Z1)(Z2, Y 2)

S(z2, z1)

z2 z1

uj v
wj

Figure 10. Some notation of Lemma 5.33 in the case that v is
the predecessor of i.

Lemma 5.33. The set Pv does not depend on the choice of z.

Proof. Let z1 and z2 be two possible choices for z. Assume z1 ∈ [v, z2] if v
is the predecessor of i and z2 ∈ [v, z1] otherwise. Denote the sets defined by zl by
a superscript index l. Denote Y 2 ∪ V (z1, z2) by A and

(
Z2 ∩ V (z2, z1)

)
\(Pz2\Pz1)

by B. Then A ⊇ V (z2, uj) ∪ V (z1, z2) = V (z1, uj) for all j ∈ J with uj ∈ [z2, v].
Furthermore

(Z2 ∩ V (z2, z1))\(Pz2\Pz1) ⊆ (V (uj , z2) ∩ V (z2, z1))\(Pz2\Pz1)

= (V (uj , z1) ∪ Pz2)\(Pz2\Pz1)

= V (uj , z1)

where the second to last equality is true by Lemma 5.11. So (A,B) ≥ S(z1, uj)
for all j ∈ J with uj ∈ [z2, v] and thus (A,B) ≥ (Y 1, Z1). As a result Y 1 ⊆
Y 2 ∪ V (z1, z2).

Because Pv1 is contained in V (z2, z1) and disjoint from both Pzl , it is also
disjoint from V (z1, z2). So Pv1 is contained in Y 2. Also (Y 1, Z1) ≥ (Y 2, Z2). So
Pv1 ⊆ Z1 ⊆ Z2 and thus Pv1 ⊆ Y 2∩Z2. Furthermore Pv1 ⊆ V (uj , wj) for all j ∈ J
implies that Pv1 is disjoint from Pz2 by choice of z2, hence Pv1 ⊆ Pv2 . Because
both Pvl have the same size, Pv1 = Pv2 . �

Lemma 5.34. Some orientation of (V ′(z, v), V ′(v, z)) is (Y,Z).

Proof. This is the proof that (V ′(z, v), V ′(v, z)) = (Y,Z) if i is the successor of
v. The proof that (V ′(z, v), V ′(v, z)) = (Z, Y ) if v is the successor of i is symmetric.

The set
⋃
t∈[z,v]\VN

Pt equals
⋃
t∈[z,v]\VN

V (z, t) which is a subset of Y and Pv
also a subset of Y , hence V ′(z, v) ⊆ Y . Also Y \V ′(z, v) ⊆ Y \V (z, uj) ⊆ V (uj , z)
for all j ∈ J , so Y \V ′(z, v) ⊆ Z and hence Y \V ′(z, v) ⊆ Y ∩ Z = Pz ∪ Pv ∪X. As
the latter is a subset of V ′(z, v), Y = V ′(z, v).

For all sufficiently large j ∈ J ,
⋃
t∈[v,z]\VN

Pt is a subset of V (uj , z) and thus

V ′(v, z)\Pv ⊆ Z. Also Pv ⊆ Z and thus V ′(v, z) ⊆ Z. Let y ∈ Z\X and let
w ∈ I ∪ VF be some element such that y ∈ Pw. If w ∈ [v, z], then also y ∈ V ′(v, z).
Otherwise w ∈ [z, v], so w ∈ [z, uj ] for some j ∈ J and thus y ∈ V (z, uj) ⊆ Y .
In this case y ∈ Y ∩ Z = Pv ∪ Pz ∪ X ⊆ V ′(v, z). Also X ⊆ V ′(v, z), thus
Z ⊆ V ′(v, z). �
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Corollary 5.35. (V ′(z, v), V ′(v, z)) is a separation with separator Pv ∪ Pz ∪X.

Lemma 5.36. If v is the predecessor of i and a vertex y of G is contained in Puj

for all sufficiently large j ∈ J , then y ∈ Pv.

Proof. By construction of Y and Z the vertex y is contains in Y ∩ Z, so it
suffices to show that y /∈ X ∪ Pz. Because all Pvj are disjoint from X also y /∈
X. Furthermore Pz is disjoint from all sufficiently large V (uj , wj), but V (uj , wj)
contains y for all sufficiently large j ∈ J . �

5.3.3. The interval separations are indeed k-separations.

Lemma 5.37. V ′(v, w) =
⋃
t∈[v,w] Pt for all distinct v, w ∈ VF ∪ VN .

Proof. ”⊆” is clear by definition of V ′(v, w). Let t be an element of [v, w]
and y ∈ Pt. If y ∈ Pz for some z ∈ [v, w]\VN or t ∈ {v, w} then y ∈ V ′(v, w) follows
immediately, so assume otherwise. In particular t ∈ VN , so t has a neighbour i ∈ I,
and y /∈ Pi and i ∈ [v, w].

Consider the case that t is the predecessor of i, the other case is symmetric.
Then uj ∈ [v, w] for all sufficiently large j ∈ J , implying that y /∈ Puj

for all
sufficiently large j ∈ J by the assumption that u /∈ Pz for z ∈ [v, w]\VN . Because
y /∈ Pi also u /∈ Pπj(i) for all sufficiently large j ∈ J . So by Corollary 5.32 y ∈ Pwj

for all sufficiently large j ∈ J . Again by assumption wj /∈ [v, w] for all sufficiently
large j and thus that w is the successor of i. By Lemma 5.36 also y ∈ Pw and hence
y ∈ V ′(v, w). �

Lemma 5.38. See also Fig. 3. Let a, b, c and d be elements of VF ∪ VN such that

• b ∈ [a, c] and d ∈ [c, a]
• (V ′(a, c), V ′(c, a)) is a separation with separator X ∪ Pa ∪ Pc
• (V ′(b, d), V ′(d, b)) is a separation with separator Pb ∪ Pd ∪X.
• Pa ∩ Pd = ∅

Then (V ′(b, c), V ′(c, b)) is a separation with separator Pb ∪ Pc ∪X.

Proof. As Pa ⊆ V ′(c, b), Lemma 5.37 implies

V (G) ⊆ X ∪ Pa ∪ Pc ∪
⋃

t∈I∪VF

Pt ⊆ V ′(b, c) ∪ V ′(c, b).

Let u be a vertex of V ′(c, b)\(Pb ∪ Pc ∪ X). Because Pa ∩ Pd is empty, either
u ∈ V ′(c, a)\(Pa ∪Pc ∪X) or u ∈ V ′(d, b)\(Pb ∪Pd ∪X). In the first case, because
(V ′(a, c), V ′(c, a)) is a separation with separator Pa ∪ Pc ∪ X, u is an element of
V ′(c, a)\V ′(a, c). Similarly, if u ∈ V ′(d, b)\(Pb ∪Pd ∪X) then u ∈ V ′(d, b)\V ′(b, d).
Hence every neighbour of u is contained in V ′(c, a) or in V ′(d, b), so every neig-
hbour of u is contained in V ′(c, b) by Lemma 5.37 and thus (V ′(b, c), V ′(c, b)) is a
separation. Furthermore, the fact that either u /∈ V ′(a, c) or u /∈ V ′(b, d) implies
that u is not contained in the intersection and thus not in V ′(b, c)\(Pb∪Pc). Hence
V ′(b, c) ∩ V ′(c, b) = Pb ∪ Pc ∪ X and thus the separator of (V ′(b, c), V ′(c, b)) is
Pb ∪ Pc ∪X. �

Lemma 5.39. For all distinct v, w ∈ VF ∪ VN the pair (
⋃
t∈[v,w] Pt,

⋃
t∈[w,v] Pt) is

a separation with separator X ∪ Pv ∪ Pw.
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Proof. By Lemma 5.37 it suffices to show that (V ′(v, w), V ′(w, v)) is a sepa-
ration with the correct separator for all distinct elements v and w of VF ∪ VN . If
both v and w are contained in VF then this is true by Corollary 5.29. Consider
first the case that exactly one is contained in VF , assume by switching the names
if necessary that w ∈ VF . Call a separation relevant if it distinguishes two profi-
les in P. If S(w, p(πj(v))) and S(s(πj(v)), w) are both relevant for all sufficiently
large j ∈ J , then w is a suitable candidate for z in the definition of Pv and thus
(V ′(w, v), V ′(v, w)) is a separation with separator Pv ∪ Pw ∪X by Corollary 5.35.
So it suffices to consider the case that there are arbitrarily large j ∈ J for which
S(w, p(πj(v))) is not relevant, the case where S(s(πj(v)), w) is not relevant is sym-
metric.

Let z ∈ VF with which Pv might have been defined. Then by choice of z
there is t ∈ VF such that S(t, z) is relevant and such that t ∈ [v, z] if w ∈ [z, v]
and t ∈ [z, v] if w ∈ [v, z]. Also, (V ′(z, v), V ′(v, z)) is a separation with separator
Pz ∪ Pv ∪ X by Corollary 5.35 and as t ∈ VF , (V ′(w, t), V ′(t, w)) is a separation
with separator Pw ∪Pt ∪X. Furthermore S(t, z) = (V ′(t, z), V ′(z, t)), and because
S(t, z) is relevant and thus has order k − 1 this implies Pt ∩ Pz = ∅. If t ∈ [v, z]
then apply Lemma 5.38 for a = z, b = w, c = v and d = t. Otherwise apply the
lemma for a = t, b = v, c = w and d = z. In both cases (V ′(w, v), V ′(v, w)) is a
separation with separator Pv ∪ Pw ∪X.

Now assume that both v and w are contained in VN . Because every Φj distin-
guishes at least three profiles, assume, by swapping the names of v and w if neces-
sary, that there are t and u in VF such that t ∈ [v, w] and u ∈ [t, w] and S(t, u) is
relevant. As u and t are contained in VF , (V ′(v, u), V ′(u, v)) and (V ′(t, w), V ′(w, t))
are separations of order k−1 with separator Pv ∪Pu∪X and Pt∪Pw ∪X respecti-
vely. Furthermore Pt ∩Pu = ∅ because S(t, u) is relevant, thus Lemma 5.38 can be
applied to a = u, b = w, c = v and t = d also in this case V ′(v, w), V ′(w, v)) is a
separation with separator X ∪ Pv ∪ Pw. �

5.3.4. Deleting redundant petals. Φ is now nearly a k-pseudoflower, the
only property missing is Eq. (∗F). That property can be obtained by deleting trou-
blesome elements from I. Let IN be the set of elements of I for which Pi\X =
Ps(i) = Pp(i). For every i ∈ IN there is a neighbour N(i) of i in C(I) which is
contained in VN .

Lemma 5.40. Every i ∈ IN has exactly one neighbour v in C(I) which is not
contained in N(IN ).

Proof. Let i be an element of IN and v its neighbour in C(I) which is not
N(i). If v ∈ VF , then v /∈ N(IN ) because N(IN ) ⊆ VN . Otherwise v ∈ VN so v has
exactly one neighbour in C(I), and that neighbour is i. So if v = N(i′) for some
i′ ∈ IN , then i′ = i. But that contradicts the choice of v. �

Lemma 5.41. The identity on I\IN extends to an isomorphism of cyclic orders

F̃ : C(I)\(IN ∪N(IN ))→ C(I\IN ).

Proof. It suffices to show that every non-trivial interval I ′ of I\IN is of the
form [v, w]C ∩ (I\IN ) for some elements v, w ∈ C(I)\(I ∪ N(IN )). Let I ′′ be the
set of all elements of I which are either contained in I ′ or contained in [i, i′]I for
two indices i, i′ ∈ I ′ such that [i, i′]I′ ⊆ I ′. Then I ′′ is a non-trivial interval of
I, so it is of the form [v, w]C ∩ I for two elements v and w of C(I)\I. If v is not
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contained in N(IN ), then define v′ to be v. Otherwise v = N(i) for the unique
element i ∈ I which is a neighbour of v in C(I). In this case let v′ be the other
neighbour of i in C(I), which is not contained in N(IN ). Define w′ similarly. Now
I ′ = [v′, w′] ∩ (I\IN ). �

Identify C(I\IN ) with C(I)\(IN ∪ N(IN )) via F̃ . Let Φ′ denote the family(
PF̃−1(z)

)
z∈C(I\IN )

.

Lemma 5.42. For all distinct elements v and w of (C(I)\I)\N(IN )⋃
z∈[v,w]C

Pz =
⋃

z∈[v,w]C(I\IN )

Pz.

Proof. The inclusion ”⊇” is clear. In order to show the other direction, let
u ∈ [v, w]C . If u ∈ C(I)\(IN ∪ N(IN )) then u is identified with an element of

C(I\IN ) via F̃ . If u ∈ IN , then u has a unique neighbour u′ in C(I) such that

F̃ (u′) exists, and then Pu = X ∪Pu′ . If u is of the form N(i) for some i ∈ IN , then
i has a unique neighbour u′ in C(I) such that F (u′) exists, and Pu = Pu′ . So in all
cases Pu ⊆

⋃
z∈[v,w]C(I\IN )

Pz. �

Lemma 5.43. Φ′ is a k-pseudoflower such that Φj ≤ Φ′ for all j ∈ J .

Proof. For all distinct elements v and w of C(I\IN )\(I\IN )⋃
z∈[v,w]C(I\IN )

Pz =
⋃

z∈[v,w]C

Pz by Lemma 5.42

= V ′(v, w) by Lemma 5.37

so by Lemma 5.39 the separation S(v, w) taken in Φ′ is a separation with separator
Pv ∪Pw ∪X and also X = V (G)\

⋃
z∈C(I\IN ) Pz. Furthermore if v and w are both

contained in VF , then by Lemma 5.28 the separation S(v, w) taken in Φ′ equals
the separation S(v, w) taken in any Φj in which it is defined. Thus the projections
Πj : C(I)→ C(Ij) witness that Φj ≤ Φ′ for all j ∈ J .

In order to show that Φ′ satisfies Eq. (∗F), let i be an index of I\IN such
that its predecessor p(i) and its successor s(i) in C(I\IN ) satisfy Ps(i) = Pp(i).
Because all Φj distinguish at least three profiles and are less than Φ′, there are
v, w ∈ VF such that Pv ∩ Pw = ∅ and {v, w} ∩ {p(i), s(i)} = ∅. For all x ∈ Ps(i) by
Lemma 5.14 either x ∈ Pz for all z ∈ [p(i), s(i)] ∩ (C(I)\I) or x ∈ Pz for all z ∈
[s(i), p(i)]∩ (C(I)\I). But as v and w are both contained in [s(i), p(i)]∩ (C(I)\I),
for all x in Ps(i) ∀z ∈ [p(i), s(i)] ∩ (C(I)\I) : x ∈ Pz. As a result Pz = Ps(i) for
all z ∈ [p(i), s(i)] ∩ (C(I)\I). So for the neighbours t and u of i in C(I) the set
Ps(i) equals both Pt and Pu. Because i /∈ IN , this implies that Pi * Pt, and thus
Pi * Ps(i). So Φ′ satisfies Eq. (∗F) and is hence a k-pseudoflower. �

So in this section it was shown that if (Φj)j∈J is a ≤-chain of k-pseudoflow-
ers which are k-pseudodaisies, extensions of k-flowers with at least four petals and
distinguish at least three profiles, then there is a k-pseudodaisy which is an upper
bound of the chain (Φj)j∈J . In particular, if Ψ is a k-pseudodaisy which distin-
guishes at least three profiles in P and is an extension of a k-flower with at least
four petals, then in the set of k-pseudoflowers Φ′ with Ψ ≤ Φ′ every ≤-chain has
an upper bound. Thus the following theorem follows by Zorn’s Lemma.



5.3. LIMITS OF CHAINS OF K-DAISIES 101

Theorem 5.44. Let Φ be a k-pseudodaisy which distinguishes at least three profiles
in P and is an extension of a k-flower with at least four petals. Then there is a
≤-maximal k-pseudoflower Ψ such that Φ ≤ Ψ.





CHAPTER 6

Bipartitions with connectivity function and limits

For this chapter, fix a ground set E, a limit-closed order function λ on the
universe UB(E) of bipartitions of E and some k ∈ N. This chapter focuses on Sk,
and the fact that for every chain (−→si )i∈I of separations of bounded order, viewed as
subsets of E, the supremum is

⋃
i∈I
−→si is important throughout this chapter. Note

that this is in contrast to Chapter 5, where a subuniverse of U(V ) is considered in
which suprema of chains of separations are explicitly allowed to deviate a bit from
the supremum of the same chain in U(V ).

6.1. Definition of k-pseudoflowers and k-flowers

Given the definitions of k-flowers in [5] for finite polymatroids and [17] for
finite connectivity systems with a k-tangle (both are cited in Section 1.6), the
following is a good provisional definition of finite k-flowers for (possibly infinite)
connectivity systems: A finite k-flower is an ordered partition (P1, . . . , Pn) of the
the ground set such that every partition class and the union of any two adjacent
partition classes (where P1 is adjacent to Pn) has connectivity exactly k − 1. Of
course, asking that all these sets have connectivity k instead of k − 1 would work
just as well. As explained in the introduction, it is necessary to find a definition
of k-flowers which display infinitely many separations, and if such k-flowers still
are defined to have petals then they necessarily have infinitely many petals. At
least in the case that the infinite flower is more daisy-like than anemone-like, these
petals have to be arranged in a cyclic order. As opposed to finite cyclic orders,
infinite cyclic orders need not be isomorphic just because they have the same size,
and furthermore elements do not necessarily have adjacent elements. To resolve
this, the definition of a k-flower for infinite connectivity systems has a partition
with a cyclically ordered index set (whereas the finite k-flowers are partitions on
index set {1, . . . , n}) and instead of asking for the union of adjacent petals to have
connectivity exactly k − 1, any union of a non-trivial interval of petals must have
connectivity exactly k−1. The definition is a special case of the following definition
of a k-pseudoflower.

Definition 6.1. A k-pseudoflower is a partition (Pi)i∈I with a cyclically ordered
index set I such that the union of any interval of petals has order at most k − 1.
The sets Pi are the petals of the k-pseudoflower (Pi)i∈I . Given a subset I ′ of I,
the set

⋃
i∈I′ Pi is denoted by V (I ′) and the separation S(I ′) of I ′ is the separation

(V (I ′), V (I\I ′)). The separations S(I ′) where ∅ ( I ′ ( I are the separations
displayed by the k-pseudoflower.

A concatenation of a k-pseudoflower (Pi)i∈I is k-pseudoflower (Qi)i∈I′ such
that for every i ∈ I there is an index f(i) ∈ I ′ with Pi ⊆ Qf(i) and such that the
map f : I → I ′ is a strong homomorphism of cyclic orders. If k-pseudoflower Φ is

103
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a concatenation of a k-pseudoflower Ψ, then this is denoted as Φ ≤ Ψ, and Ψ is
called an extension of Φ.

A k-pseudoflower is a k-flower if it has at least four petals1 and the union of
any non-trivial interval of petals has order exactly k− 1. It is a finite k-flower if it
is a k-flower with finitely many petals.

As already mentioned in the introduction, it would be good for ≤-chains of k-
flowers to have upper bounds in the order ≤. The standard procedure to construct
these upper bounds is to take the common refinement of all the partitions of the k-
flowers in the chain and combine the cyclic orders into a cyclic order of the common
refinement. The resulting partition with cyclic order need not be a k-flower, as there
might be separations displayed by the partition that are not displayed by any k-
flower in the chain and thus cannot be guaranteed to have order k. But every
separation displayed by the resulting partition is a limit of separations that are
displayed by k-flowers in the chain and, as the connectivity function is limit-closed,
thus has order at most k− 1. That is why k-pseudoflowers are defined, and indeed
in Lemma 6.14 it is shown that ≤-chains of k-pseudoflowers have upper bounds.

The definition of a finite k-flower is the same as the provisional definition gi-
ven earlier in this section. As this definition is so close to the already existing
definitions of k-flowers, it is not surprising that finite k-flowers are either k-daisies
or k-anemones. Indeed, the following analogon of [5, Theorem 1.1] holds and the
proof, which only uses the facts that every petal has order k − 1, every union of
two adjacent petals has order k−1 and that the order function is submodular, also
applies for this chapter’s definition of a k-flower.

Lemma 6.2. In a finite k-flower, either all non-trivial unions of petals have order
k−1 or the non-trivial unions of petals of order k−1 are exactly those whose index
set is an interval of I.

Proof. This lemma can be shown by using the proof of [5, Theorem 1.1],
which works even though the setting of that theorem is slightly different. �

Note that an infinite partition with cyclic order is a k-flower if and only if
all its finite concatenations are finite k-flowers. The finite concatenations can also
be used to determine infinite k-daisies and k-anemones as follows. Every finite
concatenation of a k-flower is either a daisy, or an anemone. For every two finite
concatenations Ψ and Ψ′ of a k-flower Φ, there is a third concatenation Φ′ of Φ
that extends both Ψ and Ψ′, and so Ψ is a k-daisy if and only if Ψ′ is a k-daisy.
Thus the following definition arises.

Definition 6.3. A k-flower is a k-anemone if all non-trivial unions of petals of finite
concatenations have order k−1. A k-flower is a k-daisy if every finite concatenation
of it has the property that the non-trivial unions of petals which have order k − 1
are exactly those where the indices of the petals form an interval of I.

Given that there are two types of finite k-flowers, and that the definition of infi-
nite k-flowers is closely related to the characterisation of finite k-daisies, one might
think that maybe there should be a definition of infinite k-anemones that is closer
to the characterisation of finite k-anemones. The most obvious choice here would

1see the last paragraph before the next section for a remark about the lower bound on the
number of petals
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Figure 1. Some intervals and petals of a k-flower as in the proof
of Lemma 6.4. The union of petals depicted in light blue is the
set R.

be to let a k-anemone be a partition such that every non-trivial union of partition
classes has order k − 1. It turns out that that is not a different possible definition
of infinite k-anemone, but a property of the current definition of k-anemones.

Lemma 6.4. Every non-trivial union of petals of a k-anemone has order k − 1.

Proof. Let Φ be a k-anemone on index set I. As λ is limit-closed, the order
of all unions of petals is at most k − 1. Assume for a contradiction there is a non-
trivial subset I ′ of I such that the order of V (I ′) is less than k − 1. Let i ∈ I ′ and
let Q be the set of sets V (I ′′) where i ∈ I ′′ ⊆ I ′ and λ(V (I ′′)) < k − 1. Again as
λ is limit-closed, by Zorn’s Lemma there is a minimal element R of Q. As R has
order less than k − 1, it is not a union of petals of a finite concatenation of Φ. In
particular there are indices i2, i3 and j in I such that V (i2) and V (i3) are contained
in R, V (j) is not contained in R and i ∈]i2, i3[, j ∈]i3, i2[ (these are represented
in Fig. 1). Let I1 be the interval [i, j[ and I2 the interval ]j, i]. Then R ∧ V (I1)
is a proper subset of R and contains Pi, so by minimality of R in Q the order of
R ∧ V (I1) is at least k − 1. Thus

λ(R ∨ V (I1)) ≤ λ(R) + λ(V (I1))− λ(R ∧ V (I1)) ≤ λ(R)

and similarly λ(R ∨ V (I2)) ≤ λ(R). As a result

k − 1 = λ(V (I − j)) = λ(R ∨ V (I1) ∨ V (I2))

≤ λ(R ∨ V (I1)) + λ(R ∨ V (I2))− λ((R ∨ V (I1)) ∧ (R ∨ V (I2)))

≤ λ(R) + λ(R)− λ(R ∧ (V (I1) ∨ V (I2)))

= 2λ(R)− λ(R) = λ(R) < k − 1

which is a contradiction. �

Similarly, one might want to give distinct definitions of k-pseudoanemones and
k-pseudodaisies and give a definition of k-pseudoanemones that is closer to the cha-
racterisation of finite k-anemones. In particular, there are the following possibilities
of k-pseudoflowers that are anemone-like:



106 6. BIPARTITIONS WITH CONNECTIVITY FUNCTION AND LIMITS

Definition 6.5. A k-pseudoanemone is a k-pseudoflower that can be concatenated
into a k-anemone. A strong k-pseudoanemone is a k-pseudoflower for which all
unions of partition classes have order at most k−1. For two strong k-pseudoanem-
ones Φ and Ψ denote Φ ≤A Ψ if the partition of Φ is coarser than the partition
of Ψ.

For a strong k-pseudoanemone, replacing the cyclic order of the partition with
any other cyclic order yields again a strong k-pseudoanemone. Furthermore, given
two strong k-pseudoanemones Φ and Ψ, the relation Φ ≤A Ψ holds if and only if
there is a k-pseudoflower Ψ′ with the same partition as Ψ such that Φ ≤ Ψ′. In this
sense for strong k-pseudoanemones the cyclic order does not really have a meaning,
and therefore strong k-pseudoanemones should be compared by ≤A in addition to
≤. Considering two strong k-pseudoanemones with the same partition to be the
same strong k-pseudoanemone turns ≤A into a partial order.

One of the main results of the next section is that every k-pseudoanemone that
can be concatenated into a k-anemone with k + 1 many petals is a strong k-pseu-
doanemone (see Corollary 6.12) and thus that, as infinite k-flowers are the focus,
these two definitions are essentially the same. As a strong k-pseudoanemone cannot
be concatenated into a k-daisy, a k-pseudoflower that can be concatenated into an
anemone with sufficiently many petals is clearly anemone-like.

In [5] and [17] k-flowers are allowed to have less than four petals. That allows
for k-flowers which are not unambiguously classified as daisies or anemones. As
the focus of this part of the thesis is to translate the existing theory of k-flowers to
infinite k-flowers, it seems reasonable to simplify the presentation of this chapter
by restricting the definition of a k-flower to partitions with at least four petals.

6.2. The order of different unions of petals in k-pseudoanemones

As by definition every k-pseudoanemone can be concatenated into a k-anemone,
the following lemma implies a statement about the order of unions of petals of the
k-pseudoanemone which nearly form a union of petals of the k-anemone.

Lemma 6.6. Let Φ be a k-anemone and Q a petal of Φ. Let R be a non-empty
union of petals of Φ such that R ∩Q = ∅ and R ∪Q 6= E. Then for any subset S
of Q, the connectivity of S ∪R does not depend on the choice of R.

Proof. Let S be a subset of Q and let R1 and R2 be candidates for R. In
order to show λ(R1 ∪ S) = λ(R2 ∪ S) it suffices to consider the case that R1 is a
subset of R2. By Lemma 6.4 every non-trivial union of petals of Φ has order k− 1,
so

λ(R2 ∪ S) ≤ λ(R1 ∪ S) + λ(R2)− λ(R1) = λ(R1 ∪ S) = λ(E\(R1 ∪ S))

= λ((E\(R1 ∪Q)) ∪ (Q\S))

≤ λ(E\(R1 ∪Q)) + λ((E\(R2 ∪Q)) ∪ (Q\S))− λ(E\(R2 ∪Q))

= λ((E\(R2 ∪Q)) ∪ (Q\S)) = λ(R2 ∪ S).

So λ(R1 ∪ S) = λ(R2 ∪ S). �

So within a petal of an anemone, another connectivity function is induced.

Lemma 6.7. Let Φ be a k-anemone with distinct petals Q and R. Then the map
µ : P(Q)→ N defined by µ(S) = λ(S ∪ R) is submodular, symmetric, limit-closed,
bounded from below by k − 1, and does not depend on the choice of R.
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Figure 2. Notation from the proof of Lemma 6.8.

Proof. As λ is submodular and limit-closed, µ is also submodular and limit-
closed. By Lemma 6.6 µ does not depend on the choice of R and, for all S ⊆ Q,

µ(S) = λ(S ∪R) = λ((E\(R ∪Q)) ∪ S) = λ(R ∪ (Q\S)) = µ(Q\S)

so µ is symmetric. Also

2µ(S) = µ(S) + µ(Q\S) = λ(R ∪ S) + λ(R ∪ (Q\S))

≥ λ(R) + λ(R ∪Q) = 2k − 2,

so µ(S) ≥ k − 1. �

When S is not any subset of a petal of an anemone, but a petal of a k-pseudo-
anemone extending the anemone, then µ(S) = k − 1, as the next lemma shows.

Lemma 6.8. Let Φ′ be a k-pseudoanemone which has a concatenation into a k-
anemone Φ. Then the union of any petal S of Φ′ and any petal R of Φ not containing
S has order k − 1.

Proof. Denote the petal of Φ which contains S by Q. By Lemma 6.6 it suffices
to consider the case that R is adjacent to Q. Denote the neighbour of Q in Φ which
is not R by P . Deleting S from Q yields two, possibly empty, unions of intervals
of petals of Φ′; denote them by A and B such that A is adjacent to R and B is
adjacent to P . Then

λ(R ∪ S) ≤ λ(R ∪A ∪ S) + λ(R ∪ S ∪B)− λ(R ∪A ∪ S ∪B)

≤ λ(R ∪ S ∪B) = λ(S ∪B ∪ P ) ≤ k − 1

where the equality holds by Lemma 6.6. Thus λ(R∪S) = k−1 by Lemma 6.7. �

In order to deduce from Lemma 6.8 that every k-pseudoanemone extending an
anemone with sufficiently many petals is a strong k-pseudoanemone, the following
two elementary properties of submodular functions are needed.

Lemma 6.9. Let E be a finite set and λ : P(E)→ Z a submodular function such
that λ(∅) ≥ 0. Let k ∈ N and let A be minimal with the property that λ(A) ≥ k.
Then A has at most k elements.

Proof. This proof shows by induction on the size of A\A′ that for all proper
subsets A′ of A the inequality λ(A′) ≤ k − |A\A′| holds. This is true if A\A′ has
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only one element, because λ(A′) < k implies λ(A′) ≤ k − 1. So assume that A\A′
has at least two elements and let e be an element of A\A′. Then

λ(A′) = λ((A′ + e) ∩ (A− e))
≤ λ(A′ + e) + λ(A− e)− λ(A)

≤ k − |A\(A′ + e)|+ k − 1− k
= k − |A\A′| .

Thus 0 ≤ λ(∅) ≤ k − |A\∅| and thus A has size at most k. �

Lemma 6.10. Let E be a finite set and λ : P(E)→ Z submodular. Let X and Y
be subsets of E such that X ⊆ Y and λ(X) < λ(Y ). Then there is e ∈ Y \X such
that λ(X) < λ(X + e).

Proof. Define a function µ : P(Y \X) → Z via µ(A) = λ(A ∪ X) − λ(X).
Then µ is submodular and satisfies µ(∅) = 0. Furthermore µ(Y \X) ≥ 1, so there is
a minimal set X ′ ⊆ Y \X such that µ(X ′) ≥ 1. By Lemma 6.9 the set X ′ has size 1,
so it contains exactly one element e. Hence λ(X+e) = µ(e)+λ(X) ≥ λ(X)+1. �

Lemma 6.11. Let Φ′ be a k-pseudoflower which has a concatenation Φ into a
k-anemone. Every union of petals of Φ′ which either contains a petal of Φ or is
disjoint from a petal of Φ has order at most k − 1.

Proof. By symmetry of λ it suffices to consider unions of petals of Φ′ which
contain a petal of Φ.

Let R be a petal of Φ. Denote the set of indices i of Φ′ with Pi * R by I ′ and
let µ′ be the map defined on P(I ′) via µ′(T ) = λ(V (T ) ∪ R). Then µ′(∅) = k − 1
and µ′(i) = k − 1 for all i ∈ I ′ by Lemma 6.8, so µ′(T ) ≤ k − 1 for all finite
subsets T of I ′ by Lemma 6.10. As λ is limit-closed, also µ′ is limit-closed and thus
µ′(T ) ≤ k − 1 for all subsets T of I ′ by Corollary 1.4. �

Corollary 6.12. Let Φ′ be a k-pseudoflower which can be concatenated into a k-
anemone Φ with at least k+ 1 many petals. Then Φ′ is a strong k-pseudoanemone.

Proof. All unions of at most k many petals of Φ′ are disjoint from a petal of
Φ and thus have order at most k− 1 by Lemma 6.11. Thus by Lemma 6.9 all finite
unions of petals of Φ′ have order at most k − 1, so by Corollary 1.4 all unions of
petals of Φ′ have order at most k − 1. �

Remark 6.13. In particular, every k-pseudoflower which can be concatenated
into a k-anemone with at least k + 1 many petals cannot be concatenated into a
k-daisy.

6.3. Finding maximal k-pseudoflowers and maximal strong
k-pseudoflowers

As already mentioned earlier, for a ≤-chain of k-pseudoflowers an upper bound
can be found by taking the common partition and defining a suitable cyclic order.

Lemma 6.14. Every ≤-chain of k-pseudoflowers with cyclic orders has an upper
bound.
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Proof. Let (Φj)j∈J be a ≤-chain of k-pseudoflowers. For every e ∈ E let Pe
be the intersection of all petals of the Φj which contain e. The sets Pe are the petals
of Ψ. In order to define a cyclic order on them, let Pe, Pf and Pg be distinct petals
of Ψ and let j be an index of J such that e, f and g are contained in distinct petals
P ′e, P

′
f , and P ′g of Φj . Then the cyclic order of P ′e, P

′
f and P ′g does not depend on

the choice of j, so it is well-defined to put Pe, Pf and Pg in the same order as P ′e,
P ′f and P ′g and this induces a cyclic order on the set of petals of Ψ. Also clearly
every Φj is a concatenation of Ψ. �

Corollary 6.15. For every k-pseudoflower Φ there is a ≤-maximal k-pseudoflower
Ψ such that Φ ≤ Ψ. �

Just as there are ≤-maximal k-pseudoflowers, there also are ≤A-maximal strong
k-pseudoanemones. That fact does not follow immediately from Corollary 6.15, as
Φ ≤ Ψ for a strong k-pseudoanemone Φ does not necessarily imply that Ψ is a strong
k-pseudoanemone as well. Thus the proof will take a detour via certain subsets of
the power set of E, of which there are maximal ones by Zorn’s Lemma, and then
show that the resulting set can be transformed back into a strong k-pseudoanemone.
The transformation back is done separately in Lemma 6.16.

Lemma 6.16. Let A be a subset of P(E) containing ∅ such that for all elements
A and B of A the sets E\A and A∩B are contained in A and λ(A) ≤ k− 1. Then
there is a partition of E such that every union of partition classes has order at most
k − 1 and every element of A is a union of partition classes.

Proof. Note that A is closed under finite unions and finite intersections of its
elements. For a finite subset F of E define SF = {A ∈ A : A ∩ F = ∅}. Then by
Lemma 1.3 the set SF has a supremum SF in P(E) whose order is at most k − 1,
and here supremum means SF =

⋃
SF . If F = {e}, then denote S{e} by Se and

let Q = {E\Se : e ∈ E}. As F ⊆ SF for all finite subsets F of E, in order to show
that Q is a partition of E it suffices to show that for elements e and f of E either
Se = Sf or E = Se ∪ Sf . If e ∈ A⇔ f ∈ A holds for all A in A, then S{e} = S{f}
and hence Se = Sf . Otherwise there is a set A in A that contains f but not e. In
this case, A ⊆ Se and E\A ⊆ Sf , so E = A ∪ (E\A) ⊆ Se ∪ Sf .

In order to show that every union of elements of Q has order at most k − 1, it
suffices by Lemma 1.3 to show that every finite union of elements in Q has order
at most k − 1. By the definition of Q that is the same as to show for every finite
subset F of E that

⋃
e∈F (E\Se) has order at most k − 1. For this let X and Y

be sets whose disjoint union is F . Then SF ⊆ SX ∩ SY , so SF ⊆ SX ∩ SY . Also
for e ∈ SX ∩ SY there are elements A1 and A2 of A such that e ∈ A1 ∈ SX and
e ∈ A2 ∈ SY . Then A1 ∩ A2 ∈ A and e ∈ A1 ∩ A2 ∈ SF , so e ∈ SF . Thus
SF = SX ∩ SY . By induction this implies SF =

⋂
e∈F Se. So

λ(
⋃
e∈F

(E\Se)) = λ(E\
⋂
e∈F

Se) = λ(E\SF ) ≤ k − 1. �

Lemma 6.17. For every strong k-pseudoanemone Φ there is a ≤A-maximal strong
k-pseudoanemone Ψ such that Φ ≤A Ψ.

Proof. The set of separations displayed by Φ only has elements of order at
most k− 1 and is closed under taking finite unions, finite intersections and comple-
ments. By Zorn’s Lemma there is a maximal set A of subsets of E which has these
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properties and contains all separations displayed by Φ. By its maximality A con-
tains both ∅ and E. Then by Lemma 6.16 there is a partition of E such that every
union of partition classes has order at most k−1 and every element of A is a union
of partition classes. Choosing an arbitrary cyclic order turns the partition into a
strong k-pseudoanemone, and by maximality of A that strong k-pseudoanemone is
≤A-maximal. �

6.4. Combining distinct extensions of an anemone

Extensions of a k-anemone can in general be quite different. But is has already
been shown in Section 6.2 that k-pseudoanemones that can be concatenated into
a k-anemone with at least k + 1 many petals have additional properties. This
section shows another property of k-anemones with at least k + 1 many petals:
All their extensions can be combined into one strong k-pseudoanemone. The next
two lemmas show that for extensions that subdivide only one selected petal of the
k-anemone.

Lemma 6.18. Let Φ be a k-anemone and Q a petal of Φ. There is a partition of
Q such that the subsets S of Q with µ(S) = k−1 are exactly the unions of partition
classes.

Proof. By Lemma 6.7, µ(S) ≥ k − 1 for all subsets S of Q. Thus if S1 and
S2 are subsets of Q with µ(S1) = µ(S2) = k − 1, then by submodularity of µ also
µ(S1 ∪ S2) = µ(S1 ∩ S2) = k − 1.

Lemma 6.16 can be applied to the limit-closed function µ and the set A of all
S ⊆ Q with µ(S) = k − 1. As µ is limited from below by k − 1, all unions of
partition classes of the obtained partition Q have order exactly k − 1, so A is the
set of unions of partition classes. �

Lemma 6.19. Let Φ be an anemone, Q a petal and Q a partition of Q. Denote
the common refinement of Q∪{E\Q} and the set of petals of Φ by Q′. Then Q′ is
the set of petals of a k-pseudoflower if and only if Q′ is the set of petals of a strong
k-pseudoanemone if and only if every element S of Q satisfies µ(S) = k − 1.

Proof. If Q′ is the set of petals of a k-pseudoflower, then by Lemma 6.11 it is
the set of petals of a strong k-pseudoanemone. If Q′ is the set of petals of a strong
k-pseudoanemone, then by Lemma 6.8 also µ(S) = k − 1 for all elements S of Q.
Now consider the case that µ(S) = k−1 for all elements S of Q. Pick a cyclic order
of Q′ which can be concatenated to Φ. In order to show that Q′ together with
this cyclic order is a k-pseudoflower, it suffices by Lemma 6.7 and the symmetry
of λ to show that λ(S) = k − 1 for all unions S of elements of Q. By Lemma 6.18
µ(S) = k − 1. Let R1 and R2 be distinct petals of Φ which are distinct from Q.
Then by Lemma 6.7

λ(S) ≤ λ(S ∪R1) + λ(S ∪R2)− λ(S ∪R1 ∪R2) = µ(S) = k − 1. �

Corollary 6.20. Let Φ be a k-anemone and Q a petal of Φ. Let S be the set
of partitions of k-pseudoflowers Ψ such that Φ ≤A Ψ and all petals of Φ except
possibly Q are also petals of Ψ. Then all elements of S are partitions of strong
k-pseudoanemones and S has a ≤A-biggest element.

Proof. By Lemma 6.18 and Lemma 6.19. �

These refinements of the individual petals can be combined.
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Lemma 6.21. Let Φ be a k-anemone with at least k + 1 many petals and denote
its partition by Q. For each petal P of Φ let QP be a partition of P such that the
common refinement of QP ∪{E\P} and Q is a strong k-pseudoanemone. Then the
common refinement of all partitions QP ∪ {E\P} is a strong k-pseudoanemone.

Proof. By Corollary 6.12 it suffices to show that there is a cyclic order which
turns the common refinement of all partitions QP ∪ {E\P} into a k-pseudoflower
which is an extension of Φ. For that, it suffices to show that for all distinct petals
P and P ′ of Φ the common refinement of QP ∪ {E\P}, QP ′ ∪ {E\P ′} and Q is a
strong k-pseudoanemone. In order to show the latter, let S be a union of elements
of QP , S′ a union of elements of QP ′ and Q a non-empty union of petals of A which
contains neither P nor P ′. Then

λ(Q ∪ S ∪ S′) ≤ λ(Q ∪ S) + λ(Q ∪ S′)− λ(Q) ≤ k − 1

where λ(Q) = k − 1 by Lemma 6.4 and

λ(S ∪ S′) ≤ λ(P ∪ S′) + λ(P ′ ∪ S)− λ(P ∪ P ′) ≤ k − 1. �

Theorem 6.22. For every k-anemone Φ with at least k + 1 many petals there is
a strong k-pseudoanemone Ψ such that Φ ≤A Ψ and Φ ≤ Ψ′ ⇒ Ψ′ ≤A Ψ for all
k-pseudoflowers Ψ′.

Proof. For every petal Q there is by Corollary 6.20 a finest partition into
which a k-pseudoflower can split that petal and by Lemma 6.21 all these parti-
tions can be combined into a strong k-pseudoanemone Ψ which has the required
properties. �

6.5. Distinguishing profiles

Let P be a set of k-profiles which have the same truncation P0 to a k−1-profile.
Just as in Chapter 5, define two separations of order k − 1 to cross properly if all
four corners distinguish elements of P. This goal of this section is to show that
there are k-pseudoflowers distinguishing as many elements of P as possible, that is
to find maximal elements of the following pre-order. Recall that for a pre-order 4,
a maximal element Φ is one where Φ 4 Ψ implies Ψ 4 Φ.

Definition 6.23. For k-pseudoflowers Φ and Ψ let Φ 4 Ψ if every two profiles in
P that are distinguished by the union of an interval of Φ is also distinguished by
the union of an interval of Ψ.

Assume that there is a ≤-maximal k-pseudoflower Φ that is not 4-maximal. Φ
can be assumed to distinguish a minimal number of profiles: If it does not, then it
either is 4-maximal or there is a k-pseudoflower Φ′ distinguishing more profiles such
that Φ 4 Φ′. Given a finite number, repeating this step sufficiently often guarantees
that Φ distinguishes that number many profiles. As Φ is not 4-maximal, there is a
k-pseudoflower Ψ such that Φ 4 Ψ, and such that there are two profiles P1 and P2

in P that are distinguished by Ψ but not by Φ. If both P1 and P2 point to a petal
of Φ in the sense that they contain the inverse of the petal, then they point to the
same petal of Φ and it can be shown, just as in the finite case and in Chapter 5,
that Φ can be extended to a k-pseudoflower distinguishing P1 and P2.

Lemma 6.24. Let Φ be a k-pseudoflower distinguishing at least three profiles. Also
let −→s be a separation which properly crosses some petal S(i) of Φ. Then there is
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an extension of Φ which arises from Φ by splitting i and has S(i)∧−→s and S(i)∧←−s
as petals.

Proof. The definition of a separation being anchored somewhere as in Defini-
tion 5.23 also makes sense in the context of this lemma. The proof of Lemma 5.24,

which shows that there is a separation
−→
t which properly crosses S(i), is anchored

in Φ and satisfies
−→
t ∧ S(i) = −→s ∧ S(i) and

←−
t ∧ S(i) = ←−s ∧ S(i), also works in

the context of bipartitions. The only difference is that neither Lemma 1.78 nor
Lemma 5.11 are needed as there is only one small separation, which is the empty
set, and the intersection of unions of petals is also a union of petals in bipartiti-
ons. So −→s can be assumed to be anchored in Φ, and by taking the inverse of −→s if
necessary it can be assumed to be positively anchored in Φ. Let I ′ be an interval
such that (−→s ∨ S(i))∗ = V (I ′) such that i /∈ I ′ and I ′ + i is also an interval. As −→s
properly crosses S(i), the separations S(I ′) and S(I ′ + i) distinguish two profiles
which have P0 as their truncation, so they both have order k − 1.

The second part of the proof is very similar to the proof of Lemma 5.26 but
much simpler. Let Φ′ be the cyclically ordered partition obtained from the set of
petals of Φ by replacing V (i) by S(i) ∧ −→s and S(i) ∧←−s such that S(i) ∧ −→s is the
predecessor of S(i) ∧ ←−s . Denote the index of the petal S(i) ∧ ←−s in Φ′ by j. In
order to show that Φ′ is a k-pseudoflower, let J be an interval containing j such
that V (J) does not contain all of V (i).

If J = I ′ + j, then V (J) equals ←−s and thus has order k − 1. If J properly
contains I ′ + j, then J\I can be uniquely written as the union of a non-empty
interval J ′ and the index j of S(i) ∧ ←−s . As S(I ′)∗ = −→s ∨ S(i) and −→s properly
crosses S(i), the separation S(I ′) distinguishes two k-profiles which truncate to P0

and thus has order k − 1. As S(I ′) = S(J − j) ∧ S(I ′ + j), by submodularity S(J)
has order at most k − 1.

If J does not contain I ′ + j, then J − j is contained in I ′. Similarly to the
case where J properly contains I ′ + j, V (I ′ + i) has order k − 1 and V (I ′ + i) =
V (I ′ + j) ∪ V (J − j + i), so by submodularity V (J) has order at most k − 1. �

As opposed to the vertex separations of Chapter 5, in this chapter, for every
finite k-pseudoflower and every profile in P the profile has to point towards a petal
of the k-pseudoflower. But it can still happen that in an infinite k-pseudoflower,
some element of P does not point towards a petal. In theory, even worse, if a
k-pseudoflower contains an infinite k− 1-pseudoflower as a concatenation, then the
common truncation of the elements in P need not point towards a petal of the
k − 1-pseudoflower.

Fortunately, this particular problem does not occur. Just as for vertex sepa-
rations, every k-profile can be located somewhere in the cyclic order of the set of
petals (locations of profiles in k-flowers are defined and work just the same as in
Chapter 5, with the additional property that every profile is located somewhere in
every k-pseudoflower). So a k-profile that does not point to a petal of some k-pseu-
doflower contains a chain of separations whose supremum is the whole ground set
and thus not contained in the profile, thus the k-profile is not limit-closed. And,
remarkably, a k-profile that is not limit-closed is induced by a unique profile of all
finite-order separation and cannot be the truncation of two distinct k + 1-profiles,
as will be shown now. In particular, if P contains at least two k-profiles, then their
truncation is limit-closed.
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−→s

−→
tα

−→
t

Figure 3. Some notation of the proof of Lemma 6.26. The rec-
tangle is all of E, the set −→q is depicted with stripes and the set −→r
is depicted in light grey.

Lemma 6.25. Let P be a k-profile and (
−→
tα)α<κ an increasing chain of separations

in P such that its supremum
−→
t is not contained in P . Then for every separation

−→s of finite order there is a cofinal set F ⊆ κ such that λ((−→s ∧ −→t ) ∨ −→tα) ≤ k − 1

and λ((←−s ∧ −→t ) ∨ −→tα) ≤ k − 1 for all α ∈ F .

Proof. As λ(−→s ∧−→tα) is bounded by λ(−→s ) +k− 1, there is a cofinal set G ⊆ κ
such that λ(−→s ∧ −→tα) does not depend on α ∈ G. Then for all α, β ∈ G

λ((−→s ∧ −→tα) ∨ −→tβ ) ≤ λ(−→s ∧ −→tα) + λ(
−→
tβ )− λ(−→s ∧ −→tα ∧

−→
tβ ) = λ(

−→
tβ ) ≤ k − 1.

Thus for every α ∈ G the separation (−→s ∧−→t )∨−→tα is the supremum of the separations

(−→s ∧−→tβ )∨−→tα where β ∈ G, so the order of (−→s ∧−→t )∨−→tα is at most k− 1. Similarly

there is a cofinal subset F of G such that λ((←−s ∧−→t )∨−→tα) ≤ k−1 for all α ∈ F . �

Lemma 6.26. Let P be a k-profile and let (
−→
tα)α<κ be an increasing chain of

separations in P such that its supremum
−→
t is not contained in P . Then the set

{−→s ∈ U : λ(−→s ) ∈ N ∧ ∃α < κ : (−→s ∧ −→t ) ∨ −→tα ∈ P}
is a profile of the set of finite order separations and induces every l-profile which
induces P .

Proof. Let Q = {−→s ∈ U : λ(−→s ) ∈ N ∧ ∃α < κ : (−→s ∧ −→t ) ∨ −→tα ∈ P}. In
order to show that Q contains some orientation of every separation of U of finite
order, let −→s ∈ U with λ(−→s ) ∈ N. By Lemma 6.25 there is α < κ such that both
−→q := (−→s ∧−→t )∨−→tα and −→r := (←−s ∧−→t )∨−→tα (see Fig. 3) have order at most k−1. By
submodularity one of −→q ∨←−r and −→q ∧←−r has order at most k− 1, assume without
loss of generality that it is −→q ∨←−r . If −→q ∨←−r ∈ P , then by consistency also −→q ∈ P
which implies −→s ∈ Q. So assume otherwise, thus (−→q ∨←−r )∗ ∈ P . Because the join

of (−→q ∨←−r )∗ and
−→
tα is again −→r , by the profile property −→r ∈ P and thus ←−s ∈ Q.

The separation which is the whole ground set is not contained in Q. So, in
order to show that Q is a profile, it suffices to show that for every two elements
−→r and −→s of Q their join is also contained in Q: Then Q cannot contain both −→s
and ←−s for any −→s of finite order, and furthermore Q is consistent and a profile. In
order to show that the join of any two elements −→r and −→s is again contained in
Q, apply Lemma 6.25 several times to obtain a cofinal set F ⊆ κ for −→s , a cofinal
subset G ⊆ F for −→r and a cofinal set H ⊆ G for −→s ∨ −→r . Let α < κ such that
(−→r ∧−→t )∨−→tα ∈ P . Then for all β ∈ H with β > α, the separation (−→r ∧−→t )∨−→tβ has

order at most k−1 and is the join of (−→r ∧−→t )∨−→tα and
−→
tβ . So by the profile property
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(−→r ∧ −→t ) ∨ −→tβ ∈ P . Similarly for all sufficiently large β in H, (−→s ∧ −→t ) ∨ −→tβ ∈ P .

As ((−→r ∨−→s )∧−→t )∨−→tβ is for all β < κ the join of (−→r ∧−→t )∨−→tβ and (−→s ∧−→t )∨−→tβ ,
it is for all sufficiently large β ∈ H contained in P by the profile property. Thus
−→r ∨ −→s is contained in Q. �

Corollary 6.27. The common truncation of any two distinct k-profiles to a k− 1-
profile is limit-closed. �

This fact can now be used to show that if in a k-pseudoflower two distinct
elements of P are not distinguished and do not point towards a petal, then the
k-pseudoflower has to be a k-pseudoanemone.

Lemma 6.28. Let Φ be a k-pseudoflower and let P1 and P2 be two k-profiles
with truncation P0 which are located at the same non-petal of Φ. Then Φ can be
concatenated into an infinite k-anemone and some union of partition classes of the
≤A-maximal partition2 extending Φ distinguishes P1 and P2.

Proof. Let I be the index set of Φ and v ∈ C(I)\I the location of the two
profiles. Also assume that S(w, v) ∈ P1 for all w ∈ C(I)\(I + v), the other case is
symmetric. Denote the common truncation of P1 and P2 by P0. By Corollary 6.27
P0 is limit-closed.

As an intermediate step of finding the infinite k-anemone, let x ∈ C(I)\(I+v).
Show that there is y ∈]x, v[\I such that λ(S(x,w)) = k − 1 for all w ∈ [y, v[\I as
follows: Let Cx = {w ∈]x, v[\I : λ(S(x,w)) < k − 1}. If Cx is empty, then y can
be chosen arbitrarily from ]x, v[\I. So assume that Cx is non-empty and denote its
supremum in [x, v] by v′. Then every separation of the form S(x,w) with w ∈ Cx
is contained in P0 and the supremum of all those separations is S(x, v′). As P0 is
limit-closed, S(x, v′) is contained in P0 and thus in P1. Because S(x, v) /∈ P1, this
implies that v 6= v′. Thus y can be chosen arbitrarily from ]v′, v[\I.

Let x0 be an element of C(I)\(I+v). Define recursively a (possibly transfinite)
sequence (xα)α<ν as follows: For a limit α, if the supremum v′ of (xβ)β<α in [x, v] is
v, then terminate the construction. Otherwise let xα = v′. For a successor ordinal
α+1 there is by the previous paragraph some xα+1 ∈]xα, v[ such that λ(S(xα, w)) =
k− 1 for all w ∈ [xα+1, v[. As a result, xβ ∈]xα, v[ and λ(S(xα, xβ)) = k− 1 for all
α < β < ν and the supremum in [x0, v] of all xα is v. Assume for a contradiction
that S(v, xα) has order less than k− 1 for some 0 < α < ν. Then for all ordinals β
with α < β < ν

λ(S(v, xβ)) ≤ λ(S(v, xα)) + λ(S(x0, xβ))− λ(S(x0, xα)) = λ(S(v, xα)) < k − 1.

Thus all S(v, xβ) with α < β < ν are contained in P0. But the supremum of all
these separations is the separation identified with the whole ground set and thus
not contained in P0, contradicting the fact that P0 is limit-closed.

Let −→s be a separation of order at most k which distinguishes P1 and P2.
Applying Lemma 6.25 to the chain (S(v, xα))0<α<ν yields a cofinal F ⊆ ν such
that λ(S(v, xα) ∨ −→s ) ≤ k − 1 and λ(S(v, xα) ∨←−s ) ≤ k − 1 for all α ∈ F . As the
sets S(v, xα)∨−→s and S(v, xα)∨←−s distinguish P1 and P2, they have order exactly
k − 1. Let µ < ν be a limit-ordinal such that the supremum of F ∩ µ is µ. Then
−→s ∨S(v, xµ) is the supremum of the separations (−→s ∨S(v, xα))α∈µ∩F and thus has
order at most k − 1. Similarly the order of ←−s ∨ S(v, xµ) is at most k − 1.

2Recall that by Theorem 6.22 this is a strong k-pseudoanemone that is unique up to the
choice of the cyclic order
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Let G be the union of F−0 and all limit ordinals µ < ν for which the supremum
of F ∩µ is µ. Then G is closed in ν and thus by Lemma 1.27 there is an index set I ′

such that there is an isomorphism f : C(I ′)\I ′ → {xα : α ∈ G}. So by Lemma 1.27
there is a concatenation Φ({xα : α ∈ G}+v) of Φ. That concatenation is an infinite
k-flower.

Let α1 be the smallest element of G, α2 the smallest element but one of G and
so on. Denote xαj

by yj for all j ≥ 1. Let l be the maximum of k and 3. For every
α ∈ G with αl < α

λ(S(yl−1, yl) ∨ (S(yl, xα) ∧ −→s ))

≤ λ(S(v, yl) ∨ (S(yl, xα) ∧ −→s )) + λ(S(yl−1, xα))− λ(S(v, xα))

= λ(S(v, yl) ∨ (S(yl, xα) ∧ −→s )) + k − 1− (k − 1)

≤ λ(S(v, yl) ∨ (S(yl−1, v) ∧ −→s )) + λ(S(v, yl) ∨ S(yl−1, xα))

− λ(S(v, yl) ∨ S(yl−1, xα) ∨ −→s )

= λ(S(v, yl) ∨ −→s ) + λ(S(v, xα))− λ(S(v, xα) ∨ −→s ) = k − 1.

Denote S(yl, v)∧−→s by −→p and S(yl, v)∧←−s by −→q . By the previous paragraph,
S(yl−1, yl)∨−→p , which is the supremum of all the sets S(yl−1, yl)∨ (S(yl, xα)∧−→s )
with α ∈ G and αl < α, has order at most k − 1. Symmetrically S(yl−1, yl) ∨ −→q
has order at most k − 1. Then

λ(S(yl−2, yl−1) ∨ −→p ) ≤ λ(S(yl−2, yl) ∨ −→p ) + λ(S(v, yl−1) ∨ −→p )− λ(S(v, yl) ∨ −→p )

= λ(S(yl−2, yl) ∨ −→p ) + λ(S(yl−1, yl) ∨ −→q )− λ(S(v, yl) ∨ −→s )

≤ λ(S(yl−2, yl)) + λ(S(yl−1, yl) ∨ −→p )− λ(S(yl−1, yl))

+ (k − 1)− λ(S(v, yl) ∨ −→s )

= λ(S(yl−1, yl) ∨ −→p ) ≤ k − 1

and symmetrically λ(S(yl−2, yl−1) ∨ −→q ) ≤ k − 1. Thus by submodularity also
λ(S(yl−2, yl−1)∨S(yl, v)) ≤ k−1 and hence Φ(v, y1, . . . , yl) is a k-anemone with at
least k + 1 many petals. As a result, also Φ({xα : α ∈ G}+ v) is a k-anemone. By
Lemma 6.7, λ(S(yl−1, yl)∨−→p ) = λ(S(yl−1, yl)∨−→q ) = k−1 and thus by Lemma 6.19
there is an extension of Φ(v, y1, . . . , yl) which is a strong k-pseudoanemone, contains
−→p as a petal and thus distinguishes P1 and P2. This latest strong k-pseudoanem-
one, Φ({xα : α ∈ G} + v) and Φ are all extensions of Φ(v, y1, . . . , yl) and thus
the finest extension Ψ of Φ(v, y1, . . . , yl) which exists by Theorem 6.22 is also the
≤A-maximal partition extending Φ and distinguishes P1 and P2. �

So most ≤-maximal k-pseudoflowers that extend a daisy are also 4-maximal.

Lemma 6.29. Let Φ be a ≤-maximal k-pseudoflower which has a concatenation
into a k-daisy and distinguishes at least three profiles. Then Φ is 4-maximal.

Proof. Assume for a contradiction that there is a k-pseudoflower Φ′ such that
Φ 4 Φ′ and such that Φ′ distinguishes two profiles P1 and P2 from P which are
not distinguished by Φ. As all profiles are located somehwere in Φ and Φ does not
distinguish P1 and P2, these two profiles are located at the same place in Φ. By
Lemma 6.28 that location has to belong to a petal i. As Φ distinguishes sufficiently
many profiles, there is a separation S(v, w) of Φ′ which not only distinguishes P1

from P2, but also distinguishes two profiles P3 and P4 which are distinguished in
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Φ from P1 as well as from each other. Then S(v, w) properly crosses S(i), which is
by Lemma 6.24 a contradiction to the fact that Φ is ≤-maximal. �

Unfortunately, it is not true that a ≤-maximal k-pseudoanemone (with suffi-
ciently many petals and distinguishing sufficiently many k-profiles) is also neces-
sarily 4-maximal. This is illustrated by the next example, Example 6.32. In this
example there is a k-anemone whose partition is finer that all the partitions of
k-pseudoflowers. But there are many possible choices for the cyclic order on the
set of petals, and which profiles are distinguished depends on the cyclic order.

The example makes use of the notion of ultrafilters, to be found for example
in [33].

Definition 6.30. An ultrafilter of a set X is a non-empty set F of subsets of X
with the following properties:

• The empty set is not contained in F .
• The intersection of any two elements of F is again contained in F .
• Given subsets Y and Z of X such that Y ⊆ Z ⊆ X and Y ∈ F , then also
Z ∈ F .

• If a subset Y of X has a non-empty intersection with all elements of F ,
then it is contained in F .

An ultrafilter is free if it does not contain finite sets.

Lemma 6.31. Let X be a set and Y an infinite subset of X. Then there is a free
ultrafilter of X which contains Y .

Proof. This well-known result from topology can for example be shown by
applying [33, Theorem 8.17] to the set of subsets Z of X for which Y \Z is finite. �

Example 6.32. Let E be an infinite set and k an integer bigger than 1. Define an
order function λ on the set of subsets of E via

λ(X) =

{
0 X = ∅ or X = E

k − 1 otherwise.

Let P be the set of k-profiles of E and λ. Then P is the set of ultrafilters of E and
every cyclic order turns E into a ≤-maximal k-anemone in which every petal has
exactly one element.

Claim. For E, λ and P there is no 4-maximal k-anemone.

Proof of claim. It suffices to show that if C is a cyclic order of E, then the
k-anemone Φ whose petals contain only one element and whose petals are cyclically
ordered according to C is not 4-maximal.

Let L be a linear order such that closing it to a cyclic order yields C. As E is
infinite, there is a sequence e1, e2, . . . of elements of E such that in the linear order
L either ei < ei+1 for all indices i or ei > ei+1 for all indices i. Assume that there
is such a sequence such that ei < ei+1 for all indices i, the other case is symmetric.
Denote the set of elements of E which are of the form ei with an odd index i by R.
Define a new linear order L′ on E where e < f if one of the following happens:

• both e and f are contained in R and e < f in L;
• only e is contained in R; or
• neither e nor f is contained in R and e < f in L.
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Let C ′ be the cyclic order obtained from closing L′ to a cyclic order, and denote
the ≤-maximal k-anemone arising from C ′ by Ψ. Then Ψ distinguishes all elements
of P which are distinguished by Φ, so Φ 4 Ψ. But there are free ultrafilters P1 and
P2 such that P1 contains R and P2 contains the set of all ei with even index. Then
Ψ distinguishes P1 from P2, but Φ does not. Hence Φ is not 4-maximal. ♦

So in this setting there are many ≤-maximal k-anemones, each of them distin-
guishing infinitely many profiles, but no 4-maximal k-pseudoflowers.

Because of the previous example, strong k-pseudoanemones are compared by
the following pre-order, instead of by 4.

Definition 6.33. Define a relation 4A on the set of strong k-pseudoanemones
where Φ 4A Ψ if all profiles in P which can be distinguished by a union of petals
of Φ can be distinguished by a union of petals of Ψ.

So essentially, 4 and 4A mean a k-pseudoflower is less than another if all
profiles distinguished by a separation displayed by the first k-pseudoflower are also
distinguished by a separation displayed by the second k-pseudoflower. The two pre-
orders just disagree on which separations count as displayed by a k-pseudoflower.
The separate definition of 4A is also in line with the separate definition of ≤A for
strong k-pseudoanemones and the observation made earlier that for strong k-pseu-
doanemones the cyclic order of the partition is unimportant. Now ≤A-maximal
strong k-pseudoanemones can be shown to be 4A-maximal.

Lemma 6.34. Let Φ be a ≤A-maximal strong k-pseudoanemone which has a con-
catenation into a k-anemone and distinguishes at least three profiles. Then Φ is
4A-maximal.

Proof. Assume for a contradiction that Φ is not 4A-maximal. So there is a
strong k-pseudoanemone Ψ such that Φ 4A Ψ but not Ψ 4A Φ. Let P1 and P2 be
two profiles which are distinguished by a union of petals of Ψ but not by a union
of petals of Φ. As no union of petals of Φ distinguishes P1 from P2, they are in
particular located at the same location in Φ. If that location is a non-petal, then
by Lemma 6.28 there is a strong k-pseudoanemone Φ′ which can be concatenated
into an infinite k-anemone such that Φ ≤A Φ′ and such that some union of petals of
Φ distinguishes P1 and P2. Thus Φ′ is a strong k-pseudoanemone and some cyclic
order on it gives an extension of Φ. So there is an extension of Φ of which some union
of petals distinguishes P1 and P2, contradicting the fact that Φ is ≤A-maximal and
that none of its unions of petals distinguishes P1 from P2.

If the location of P1 and P2 is a petal i of Φ, let P3 and P4 be profiles which are
distinguished from each other and from P1 in Φ. Let −→s be a separation displayed
by Ψ which distinguishes P1 from P2 and P3 from P4. Then −→s properly crosses
S(i), so by Lemma 6.24 there is an extension of Φ which has S(i)∧−→s and S(i)∧←−s
as petals and thus distinguishes P1 from P2. This is a contradiction to the fact that
Φ is ≤A-maximal. �

6.6. Relation to abstract flowers

This section uses the results and notation from Chapter 4. Just as in Chapter 5,
a separation is relevant if it distinguishes two elements of the set P, that is, if its
image under φ is not contained in {∅,P}.
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Lemma 6.35. Let Φ be a k-pseudoflower which distinguishes at least four profiles.
Then there is a unique flower V (Φ) ∈ V such that for every separation −→s displayed

by Φ the set φ(−→s ) is contained in V (Φ) ∪ {∅,P}.

Proof. Let S be the set of separations displayed by Φ which are contained in
two profiles which are distinguished by Φ and whose inverses are also contained in
two profiles which are distinguished by Φ. As Φ distinguishes at least four profiles,
the set S contains at least two elements which properly cross, and as Φ is a k-
pseudoflower the set S is closed under crossing. Thus there is a flower V (Φ) in V
such that φ(−→s ) ∈ V (Φ) for all separations −→s in S. Let −→s be a relevant separation
displayed by Φ such that no two profiles of P which contain −→s are distinguished
by −→s . As Φ distinguishes at least four profiles, there are elements −→s1 and −→s2 in Φ
such that −→s = −→s1 ∨ −→s2 and thus φ(−→s ), which equals φ(−→s1) ∪ φ(−→s2), is contained

in V (Φ). Similarly φ(−→s ) ∈ V (Φ) for all relevant separations −→s displayed by Φ
such that no two profiles in P which contain ←−s are distinguished by Φ. Thus
φ(−→s ) ∈ V (Ψ) ∪ {∅,P} for all separations −→s displayed by Φ. �

Lemma 6.36. Every k-pseudoflower Φ which distinguishes at least four profiles has
a concatenation into an anemone if and only if V (Φ) is a k-anemone. Similarly,
Φ has a concatenation into a k-daisy if and only if V (Φ) is a daisy.

Proof. Let Φ′ be a k-flower with exactly four petals P1, P2, P3, and P4

(such that the cyclic order is induced by the linear order on {1, 2, 3, 4}) which is
a concatenation of Φ and distinguishes four profiles. Then V ′ defined as {φ(P1 ∪
P2), φ(P2∪P3), φ(P3∪P4), φ(P4∪P1)} is a pre-flower which is contained in V (Φ). It
suffices to show that Φ′ is a k-anemone if and only if V ′ is a pre-anemone. If Φ′ is a
k-anemone, then the set P1 ∪P3 has order k− 1 and thus φ(P1 ∪P3) witnesses that
V ′ is a pre-anemone. So assume that V ′ is a pre-anemone and let −→s be an element
of S such that φ(−→s ) = φ(P1)∪φ(P3). By repeated application of Lemma 4.33 there

is a separation
−→
t in S which is equivalent to −→s and satisfies P1 ⊆

−→
t , P3 ⊆

−→
t ,

P2 ⊆
←−
t and P4 ⊆

←−
t . But then

−→
t = P1 ∪ P3 and thus Φ′ is a k-anemone. �

Lemma 6.37. Let Φ be a k-pseudoflower which distinguishes at least four profiles
and let −→s be a relevant separation of order k− 1 such that φ(−→s ) points towards all
elements of V (Φ) and such that φ(−→s ) has at least two elements3. Then there is a
petal −→p of Φ such that φ(−→s ) ≤ φ(−→p ).

Proof. Assume without loss of generality that if Φ is a strong k-pseudoanemo-
ne, then it is a ≤A-maximal strong k-pseudoanemone and in particular ≤-maximal.
Let P1 and P2 be two elements of P which are contained in −→s . As φ(−→s ) points

towards all elements of V (Φ), it also points towards all φ(
−→
t ) where

−→
t is a union

of petals of Φ which is also contained in S. In particular no union of petals of Φ
distinguishes P1 and P2. Thus by Lemma 6.28 the profiles P1 and P2 are located at
the same petal −→p of Φ. As P1 ∈ φ(−→s ) ∩ φ(−→p ), the fact that φ(−→s ) points towards
φ(−→p ) implies that φ(−→s ) ≤ φ(−→p ). �

Corollary 6.38. Let Φ and Φ′ be k-pseudoflowers which distinguish at least four
profiles each and such that V (Φ) 6= V (Φ′). Then Φ and Φ′ have petals Pi and P ′j
respectively such that φ(Pi)

∗ ≤ φ(P ′j).

3Recall that φ(−→s ) is a subset of P and that, if it has at least two elements, then there are
at least two profiles in P which contain ←−s .
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Proof. Let S(I ′) be a separation displayed by Ψ such that φ(S(I ′)) ∈ V (Ψ).
As V (Φ) and V (Ψ) are distinct and thus disjoint, φ(S(I ′)) /∈ V (Φ). So there
is by Lemma 4.3 an orientation of φ(S(I ′)) which points towards all elements of
V (Φ). Assume, by replacing S(I ′) with its inverse if necessary, that φ(S(I ′)) points
towards the elements of V (Φ). By Lemma 6.37 there is a petal Pi of Φ such that
φ(S(I ′)) ≤ φ(Pi). As φ(Pi)

∗ points towards φ(S(I ′)) and thus towards all elements
of V (Ψ), there is again by Lemma 6.37 a petal P ′j of Ψ such that φ(Pi)

∗ ≤ φ(P ′j). �





CHAPTER 7

Algorithmic aspects of Chapter 4 in the context of
separation systems of bipartitions

This section works with profiles of the universe of bipartitions of some finite
ground set E, together with an order function λ. The goal to keep in mind is
to compute, given a k − 1-profile P0, a tree set which distinguishes as many k-
profiles with truncation P0 as possible. Computing, given a tangle T0, a tree set
distinguishing all tangles whose truncation is T0, is a common step in computing
trees of tangles.

Lemma 3.1 of [29] describes an algorithm which computes, given a connectivity
function κ on ground set E, k ∈ N, a κ-tangle T0 of order at most k and subsets
X1, . . . , Xn of the ground set with order at most k, whether there is a κ-tangle of
order k+1 which has T0 as truncation and contains the inverses of all the Xi. Note
that κ is just a suitable order function in the context of this thesis, and thus T is a
κ-tangle of order k for some k ∈ N if and only if {←−s : −→s ∈ T} is a k-profile in the
sense of this thesis for which some big side only has one element. The algorithm is
used in [29] to determine all κ-tangles which have T0 as a truncation.

The algorithm can easily be adapted to compute, given subsets X1, . . . , Xn of
E of order at most k−1, whether there is a k-profile which contains P0 and all sets
X1, . . . , Xn. Thus, if P is the set of all profiles whose truncation is P0, it is possible

for two separations −→s and
−→
t of order k − 1 to check whether there is a k-profile

with truncation P0 which contains both −→s and
−→
t , whether there is a k-profile with

truncation P0 which contains both −→s and
←−
t and so on. If all four profiles exist,

then −→s and
−→
t cross properly and otherwise they do not cross properly. In the

latter case, which orientations are contained in a common profile and which don’t

also shows whether −→s and
−→
t are relevant and how φ(−→s ) and φ(

−→
t ) are nested.

Note that for this approach to determine nestedness, it is not necessary to know
the elements of P explicitly. The algorithm is polynomial if k is considered as a
constant, but it is exponential in k.

Part of what is so time-consuming, both in the algorithm itself and in the
computation of the set of κ-tangles of order k whose truncation is T0, is the need
to find all separations −→s of order k − 1 such that every k-profile containing T0 as
well as all Xi also needs to contain −→s . In order to shorten the computation, one
approach might be to not insist on distinguishing all k-profiles, but to be given some
separations −→s 1, . . . ,

−→s n of order k− 1, and then determining a tree decomposition
distinguishing all k-profiles which are distinguished by some−→si by using only corners
of the separations −→si . One possible such approach is described in Section 7.1 by
using the theory developed in Chapter 4, using an oracle (possibly to be replaced
with the above algorithm) which determines whether the images under φ of two
separations of order k − 1 are nested and if yes, how. A routine which determines

121



122 7. ALGORITHMIC ASPECTS FOR BIPARTITIONS

whether the images under φ of two separations are nested is in particular a routine
which decides whether two separations are contained in a common profile with the
correct truncation. As such a routine is known but not yet a fast one, as described
above, Section 7.2 contains a few statements about what might work when trying
to work without such a routine. Those are ideas which have not been pursued in
detail yet, that topic needs further research.

7.1. Assuming a routine to determine nestedness

This section describes an algorithm to obtain, given a set {−→s1 , . . . ,
−→sn} of rele-

vant separations in S, a tree set with flowers at some nodes which are as close to
the tree with flowers described in Section 4.1 as possible. Recall that φ maps every
separation to the set of profiles not containing it, and that the image of φ without
∅ and P is denoted by B. The algorithm uses an oracle which checks whether two

separations −→s and
−→
t of order k − 1 properly cross or if their images under φ are

nested in some way.
The algorithm keeps track of a tree set and a set of flowers fitting together in

the following way:

Definition 7.1. A tree set with flowers (T,Φ) consists of a tree set T of separations
of order k − 1 and a set of k-flowers Φ such that

• φ is injective on T .
• For every F ∈ Φ there is a consistent orientation O of T with set of

maximal elements σ such that every element of σ is contained in some
petal of F and every petal of F is equivalent to an element of σ.

• For any two distinct elements F and F ′ of Φ there is
−→
t ∈ T such that

−→
t

points towards all separations displayed by F and
←−
t points towards all

separations displayed by F ′.
A separation of order k − 1 is displayed by the tree set with flowers if it is either
contained in T or a non-trivial union of petals of an element of Φ1.

Remark 7.2. In more general separation systems
−→
S , it might not be possible to

keep track of flowers in S as is done here. In that case it should still be possible to
keep track of a set Φ of abstract flowers such that for every element in Φ the set of
petals is equal to the set of maximal elements of a consistent orientation of φ(T ).
Even if P is not known explicitly, elements of B can be determined by stating a

separation −→s ∈
−→
S which is mapped to that particular element of B by φ.

The algorithm has at every step a tree set with flowers (Ti,Φi) such that Ti
consists of relevant corners of the separations {−→s1 , . . . ,

−→si} and their inverses, and
every −→sj with j ≤ i is equivalent to a separation displayed by (Ti,Φi). Furthermore,
if i ≥ 2 then every separation displayed by (Ti−1,Φi−1) is equivalent to a separation
displayed by (Ti,Φi) and no separation in Ti\Ti−1 is equivalent to a separation
displayed by (Ti−1,Φi−1). The rest of the section is devoted to a description of how
to obtain Ti+1 and Φi+1 from Ti and Φi.

1If some element F of Φ is a daisy and −→s is a union of petals of Φ, then that union of petals
has order k − 1 and is thus a union of an interval of petals. So for daisies the separations which

are non-trivial unions of petals are exactly the separations displayed by the daisy.
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If −→si is equivalent to a separation displayed by (Ti,Φi), then let Ti+1 and Φi+1

be Ti and Φi. So assume from here on that −→si is not equivalent to a separation
displayed by (Ti,Φi).

Do the following recursively with all elements
−→
t of Ti: If φ(−→si ) ≥ φ(

−→
t ), then

replace −→si with −→si ∨
−→
t . If φ(−→si ) ≤ φ(

−→
t ), then replace −→si with −→si ∧

−→
t . Both

separations have order k − 1 and are equivalent to the former version of −→si by
Lemmas 4.32 and 4.33. Also as Ti is nested, the new version of −→si is nested with
all elements of Ti with which the old version of −→si was nested. So after finishing

this process for all
−→
t in Ti,

−→si is nested with all elements of Ti which it does not
properly cross.

Let Xi be the set of separations in Ti which −→si properly crosses. If Xi is empty,
then let Ti+1 be Ti +−→si +←−si and Φi+1 = Φi. In this case the only non-obvious fact
to show about Ti+1 and Φi+1 is that for all F ∈ Φ there is a suitable consistent
orientation of Ti+1. In order to show that, let O be the consistent orientation of Ti
with set of maximal elements σ such that every element of σ is contained in some
petal of F and every petal of F is equivalent to an element of σ. As −→si neither
crosses nor is not equivalent to a separation displayed by F , there is a petal −→p of
F such that φ(−→si ) < φ(−→p ) or φ(−→si )∗ < φ(−→p ). Assume that φ(−→si ) < φ(−→p ), the
other case is symmetric. Let −→s be an element2 of σ such that φ(−→s ) = φ(−→p ). Then
φ(−→si ) < φ(−→s ), and as −→si and −→s are nested this implies −→si < −→s . Thus O +−→si is a
consistent orientation of Ti+1 whose set of maximal elements is σ.

Next consider the case that Xi contains at least one element. Let Yi be the set
of flowers in Φi which have a petal properly crossing −→s i. Let R be the union of
Xi+

−→s i and all separations which are displayed by an element of Φi which is neither
a petal nor the inverse of a petal. If −→s properly crosses a petal of a k-flower, then
it also properly crosses a separation which is displayed by the k-flower but neither
a petal nor the inverse of a petal of that k-flower. Thus φ(R) is connected under

crossing. Let
−→
t be an element of Xi and define a k-flower with four petals as

follows: Let P1 = −→si ∧
−→
t , P2 = −→si ∧

←−
t , P3 = ←−si ∧

←−
t and P4 = ←−si ∧

−→
t . By

repeated application of Lemma 6.24 to separations in R there is a k-flower F which

displays −→si and
−→
t such that no element of R properly crosses a petal of F . Because

applications of Lemma 6.24 only create relevant petals, F only has relevant petals.

Every element
−→
t of Ti\Xi is nested with both −→si and

−→
t and has thus a petal

Pi such that
−→
t ≤ Pi or

←−
t ≤ Pi. This property is maintained by applications of

Lemma 6.24 as every element of Ti\Xi is nested with all elements of R. Because
φ(R) is connected under crossing, every separation in R is equivalent to a separation
displayed by F . Define Φi+1 to be Φi\Yi +F . Let Ti+1 be the union of Ti\Xi and
all petals and inverses of petals of F which are not equivalent to an element of Ti.

In order to show that Ti+1 is nested, let −→s and
−→
t be elements of Ti+1. If the

separations are both contained in Ti or both petals or inverses of F then they are

nested. So assume that −→s is contained in Ti and
−→
t is a petal or the inverse of a

petal of F . Let −→q be a petal of F such that −→s ≤ −→q or←−s ≤ −→q . By taking inverses

of −→s and/or
−→
t if necessary it suffices to consider the case that −→s ≤ −→q and that

−→
t is a petal of F . If

−→
t = −→q , then −→s ≤ −→t and if

−→
t 6= −→q then −→s ≤ −→q ≤ ←−t , so

in both cases −→s and
−→
t are nested.

2It is true but not needed here that there is exactly one such element.
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In order to show that φ is injective on Ti+1, let −→s and
−→
t be distinct elements

of Ti+1. If −→s and
−→
t are both contained in Ti, then φ maps them to different

elements of B as φ is injective on Ti. If one of −→s and
−→
t is contained in Ti and the

other is not, then φ maps them to different elements of B as Ti+1\Ti only contains
separations which are not equivalent to separations contained in Ti. So assume that

both −→s and
−→
t are contained in Ti+1\Ti. Then they have orientations which are

petals of F , so as every petal of F is relevant φ maps −→s and
−→
t to distinct elements

of B.
By definition of Ti+1, every petal of F is equivalent to an element of Ti+1, and

as φ is injective on Ti+1 that element is unique. Denote the set of elements of Ti+1

which are equivalent to petals of F by σ. In order to show that every element of σ

is contained in a petal of F , let −→s be an element of σ and
−→
t the petal of F which is

equivalent to σ. If −→s ∈ Ti+1\Ti, then −→s =
−→
t and in particular −→s ≤ −→t . Otherwise

−→s ∈ Ti\Xi and thus there is a petal −→p of F such that −→s ≤ −→p or ←−s ≤ −→p . Then

φ(−→s ) = φ(
−→
t ) implies that

−→
t = −→p and that −→s ≤ −→p , so also in this case −→s ≤ −→t .

In order to show that σ is the set of maximal elements of a consistent orientation
O of Ti+1 it suffices to show that for all separations

−→
t in Ti+1 there is an element

−→s of σ such that
−→
t ≤ −→s or

←−
t ≤ −→s . This property is clear if

−→
t ∈ Ti+1\Ti, so

assume otherwise. Then
−→
t ∈ Ti\Xi and thus there is a petal −→p of F such that

−→
t ≤ −→p or

←−
t ≤ −→p . Let −→s be the element of σ which is equivalent to −→p . Then

φ(
−→
t ) < φ(−→s ) or φ(

←−
t ) < φ(−→s ) because φ is injective on Ti+1, so the fact that Ti+1

is nested implies
−→
t < −→s or

←−
t < −→s .

If it exists, let F ′ be a flower in Φi\Yi. Let OF ′ be the consistent orientation
of Ti which is associated with F ′ and let σ′ be the set of maximal elements of the
orientation. As −→si does not properly cross any petal of F ′ and the elements of σ′

are equivalent to petals of F ′, σ′ is a subset of Ti+1. Assume for a contradiction
that σ′ is a subset of the consistent orientation O of Ti+1 which is associated with
F . Then every element of σ′ is contained in a petal of F and thus points towards
−→si . But then for all petals −→p of F ′ the set φ(−→p ) points towards φ(−→si ). So −→si is
equivalent to a union of petals of F ′, contradicting the fact that −→si is not equivalent
to a separation displayed by (Ti,Φi). Hence there is a separation −→s ∈ σ′ such that
−→s ∈ OF ′ but ←−s ∈ O. In particular ←−s is contained in a petal

−→
s′ of F ′ and thus

points towards all separations displayed by F ′ and similarly −→s points towards all
separations displayed by F . In order to show that σ′ is the set of maximal elements

of a consistent orientation of Ti+1, let
−→
t be an element of Ti+1\Ti. Then

−→
t is a

petal of F . If
−→
t =

−→
s′ , then

←−
t ≤ −→s and otherwise

−→
t ≤

←−
s′ ≤ −→s , so in both cases−→

t is less than some element of σ′.
Furthermore every separation in Ti\Ti+1 is contained in Xi and thus equivalent

to a union of petals of F , so (Ti+1,Φi+1) has all the desired properties.

Remark 7.3. Let (T,Φ) be a tree set with flowers. Given a k-flower F ∈ Φ, the
consistent orientation OF of T with set of maximal elements σ such that every
petal of F is equivalent to an element of σ and every element of σ is contained in a
petal of F is unique. Also the function which maps every element of σ to the petal
of F in which it is contained is a bijection. Furthermore, just as in Section 4.3, if
a profile P in P induces a consistent orientation O on T , then O differs from all
orientations OF where F ∈ Φ.
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7.2. Assuming a membership oracle for the common truncation

The previous section describes an algorithm creating a tree set with flowers
for a set of profiles with a common truncation P0 in the context where there is an
oracle determining for two separations of order k − 1 whether they properly cross
and if not, how their images under φ are nested. This section presents ideas, not
finished research but speculation on what might be a suitable approach, how to
proceed in a setting where the above oracle is not available but instead an oracle
to test whether separations of order at most k − 2 are contained in P0. Under
these circumstances, it is not feasible any more to frequently check whether two

separations −→s and
−→
t properly cross. But it is still possible to check the necessary

condition that all four corners of −→s and
−→
t have the correct order, namely k − 1.

If some corner has a different order than k− 1, then by submodularity of the order

function there is a corner, −→s ∨−→t say, which has order less than k− 1. Then either
−→s ∨ −→t is contained in P0, and thus φ(←−s ) = φ(

←−
t ) = ∅, or (−→s ∨ −→t )∗ is contained

in P0, and thus φ(←−s ) ≤ φ(
−→
t ).

There is still research to do but there is an idea to design an algorithm for
these circumstances as follows: Very similarly to the algorithm of Section 7.1, in
each step there should be a current tree set Ti of elements of S and a current set
Φi of k-flowers. For every k-flower F there should be a consistent orientation of Ti
with set of maximal elements σF such that every petal of F contains exactly one
element of σF and every element of σF is contained in a petal of F . Furthermore,
any two k-flowers in the set of k-flowers should have different such orientations.

Now, the algorithm should try to follow the algorithm of Section 7.1 but in

places where that other algorithm checks whether φ(−→s ) and φ(
−→
t ) are nested and

how, this algorithm should check whether some corner has too small order and

otherwise assume that −→s and
−→
t are properly crossing. Of course, as Ti may

contain irrelevant elements or distinct elements which are not yet known to be
equivalent and k-flowers in Φi might contain k-flowers with irrelevant petals, while
inserting −→si into (Ti,Φi), something might go wrong. But something going wrong
means in that case that there is a corner which has too low order. If a separation in
Ti or a union of petals of some k-flower in Φi happens to be shown to be contained
in all profiles in P, then all other separations displayed by (Ti,Φi) which are less
than that separation are also contained in all profiles in P and thus it is possible
to delete all these separations from (Ti,Φi).





CHAPTER 8

Matroids

Most statements about flowers in matroids are already true in separation sys-
tems of bipartitions whose order function is limit-closed and can thus be found in
Chapter 6. One fact which does need extra properties of matroids is the fact that
there are no infinite daisies. That statement is proved in this chapter.

Remark 8.1. Let M be an infinite matroid and {P1, . . . , Pn} a finite k-flower of
M . Then by applying Lemma 1.42 several times, once to each petal, a finite minor
N of M is obtained in which {P1 ∩E(N), . . . , Pn ∩E(N)} is a finite k-flower such
that uN (Pi ∩ E(N), Pj ∩ E(N)) = uM (Pi, Pj) for all distinct indices i and j. As
a finite k-flower in a finite matroid is a k-flower in the sense of [5], Lemma 1.88 can
be applied to the k-flower of N . Thus Lemma 1.88 holds for {P1, . . . , Pn}. In other
words, Lemma 1.88 can be applied to finite flowers in infinite matroids.

Lemma 8.2. Let Φ be a finite k-flower of M with at least five petals and para-
meters uM (P1, P2) = c and uM (P1, P3) = d. Denote uM∗(P1, P2) by c∗ and
uM∗(P1, P3) by d∗. Then c+ c∗ = k − 1 and c∗ − d∗ = c− d.

Proof. Let i and j be distinct indices. Then

uM∗(Pi, Pj) = λM∗�(Pi∪Pj)(Pj) = λM.(Pi∪Pj)(Pj)

= λM (E\Pi)− λM\Pj
(E\(Pi ∪ Pj))

= k − 1−uM (Pi, E\(Pi ∪ Pj))

where the third equality holds by Lemma 1.39. So

c∗ = uM∗(P1, P2) = k − 1−uM (P1, E\(P1 ∪ P2)) = k − 1− c
where the last equation holds by Lemma 1.88. Furthermore,

d∗ = uM∗(P1, P3) = k − 1−uM (P1, E\(P1 ∪ P3))

= k − 1− (2c− d) = k − 1− c− (c− d) = c∗ − (c− d),

where the third equality also holds by Lemma 1.88. �

Lemma 8.3. Let (P1, . . . , Pn) be a k-flower with at least five petals and denote
uM (P1, P2) by c and uM (P1, P3) by d. Then (Pn∪P2, P3, . . . , Pn−1) is a 2c−d+1-
flower of M\P1 in which adjacent petals have local connectivity c and non-adjacent
petals have local connectivity d.

Proof. Deleting P1 does not change the local connectivity of sets which are
disjoint from P1. So it suffices to show that (Pn∪P2, P3, P4, . . . , Pn−1) is a 2c−d+1-
flower in M\P1. In order to show that let I ′ be a non-empty interval of the set
{3, 4, . . . , n− 1}. Then by Lemma 1.88

λM\P1
(PI′) = uM (PI′ , E\(P1 ∪ PI′)) = 2c− d. �

127
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Corollary 8.4. The partition (Pn ∪ P2, P3, . . . , Pn−1) is a k − d-flower of M/P1

in which adjacent petals have local connectivity c− d and non-adjacent petals have
local connectivity 0.

Proof. By Lemma 8.2 the partition (P1, . . . , Pn) is a k-flower of M∗ with local
connectivities k−1− c for adjacent petals and (k−1− c)− (c−d) for non-adjacent
petals. So by Lemma 8.3 (Pn ∪ P2, P3, . . . , Pn−1) is a k − d-flower of M∗\P1 with
local connectivities k − 1− c for adjacent petals and (k − 1− c)− (c− d) for non-
adjacent petals. Applying Lemma 8.2 again yields that (Pn ∪ P2, P3, . . . , Pn−1) is
a k− d-flower of M/P1 with local connectivities c− d for adjacent petals and 0 for
non-adjacent petals. �

Lemma 8.5. For every k ∈ N: There are no infinite k-daisies.

Proof. Assume for a contradiction that there is an infinite k-daisy. Then there
also is a k-daisy of the form (Pi)i∈N. Denote the local connectivity of adjacent petals
by c and the local connectivity of non-adjacent petals by d. For all n ≥ 5, apply
Lemma 8.3 to the k-flowers (P0, . . . , Pn, P[n,∞[). So the partitions

(P0 ∪ P2, P3, , . . . , Pn, P[n,∞[)

are 2c− d+ 1-flowers of M\P1 with local connectivities c for adjacent petals and d
for non-adjacent petals. Thus the partition (P0 ∪ P2, P3, . . .) is a 2c − d + 1-daisy
for M\P1 with the same local connectivities. Similarly, by applying Corollary 8.4
to finite flowers, (P0 ∪ P2 ∪ P4, P5, . . .) is a 2(c − d) + 1-flower of M\P1/P3 with
local connectivities c − d for adjacent petals and 0 for non-adjacent petals. Thus
there is a matroid N with an infinite daisy of the form (Qi)i∈N and c ∈ N such that
the connectivity of intervals is 2c and the local connectivity between adjacent and
non-adjacent petals is c and 0 respectively. By Lemma 8.2, (Qi)i∈N is also a 2c+ 1-
flower in N∗ with local connectivities c for adjacent petals and 0 for non-adjacent
petals.

For each i ∈ N let Bi be a base of N�Qi and B′i a base of N.Qi such that
B′i ⊆ Bi. As the local connectivity of Qi and Qi+2 is 0, Bi ∪ Bi+2 is a base
of N�(Qi ∪ Qi+2). Thus Bi ∪ B′i+1 ∪ Bi+2 is independent in N�Q[i,i+2]. Dually,
B′i ∪Bi+1 ∪B′i+2 is spanning in N.Q[i,i+2]. Let X be a base of N�Q[i,i+2] such that
Bi ∪B′i+1 ∪Bi+2 ⊆ X ⊆ Bi ∪Bi+1 ∪Bi+2. Let Y be a base of N.Q[i,i+2] such that
B′i ∪B′i+1 ∪B′i+2 ⊆ Y ⊆ B′i ∪Bi+1 ∪B′i+2. Now X\Y is finite, so by Lemma 1.44

λN (Q[i,i+2]) = |X\Y | − |Y \X|
= |Bi\B′i|+

∣∣Bi+2\B′i+2

∣∣+ |(X\Y ) ∩Qi+1| − |Y \X|
≥ 4c+ 0− 2c.

As the connectivity of Q[i,i+2] in N is 2c, the inequality has to be an equality, so
X = Bi ∪B′i+1 ∪Bi+2 and Y = B′i ∪Bi+1 ∪B′i+2. In particular, Bi ∪B′i+1 ∪Bi+2

is a base of N�Q[i,i+2] and B′i ∪Bi+1 ∪B′i+2 is a base of N.Q[i,i+2].
Denote the set

⋃
i evenBi ∪

⋃
i oddB

′
i by B. Then B spans all sets of the form

Q[i,i+2] where i is even, so B is spanning in N . Assume for a contradiction that B
contains a circuit C. Then for every odd i ∈ N, the set C ∩ Q[i,i+2] is a scrawl of
N.Q[i,i+2]. Also C ∩ Q[i,i+2] is contained in B′i ∪ Bi+1 ∪ B′i+2 which was already
shown to be a base of N.Q[i,i+2]. So C ∩Q[i,i+2] is empty for all odd i ∈ N. Thus
C is a subset of Q0, so C ⊆ B0, which is a contradiction to the fact that B0 is
independent in N . So B is a base of N . For every i ∈ N, the set E\B′i is a base of
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N∗�Qi and the set E\Bi is a base of N∗.Qi. Thus, just as B is a base of N , the set⋃
i evenE\B′i ∪

⋃
i oddE\Bi is a base of N∗, and thus B′ :=

⋃
i evenB

′
i ∪
⋃
i oddBi

is a base of N .
As B′0∪B1 is independent in N�(Q0∪Q1) and B0∪B1 is spanning in N�(Q0∪

Q1), there is a base R of N�(Q0 ∪Q1) such that B′0 ∪ B1 ⊆ R ⊆ B0 ∪ B1. As the
partition (Q0 ∪Q1, Q2, Q3, . . .) with the induced cyclic order is also a 2c+ 1-daisy
of N with local connectivities c for adjacent petals and 0 for non-adjacent petals,
also

R ∪
⋃

i even, i 6=0

B′i ∪
⋃

i odd, i 6=1

Bi

is a base of N . As this base contains B′ as a subset, and a base cannot be properly
contained in another one, R = B′0 ∪ B1. So B′0 ∪ B1 is a base of N�(Q0 ∪ Q1),
implying that B′0 is a base of N\Q[2,∞[/Q1. As B′0 is also a base of N/Q[2,∞[/Q1,
the connectivity of Q0 in N/Q1 is 0. But by Lemma 1.39

λN/Q1
(Q0) = λN (Q0 ∪Q1)− λN\Q0

(Q1)

= λN (Q0 ∪Q1)−uN (Q1, Q[2,∞[)

= 2c− c = c.

So c = 0, contradicting the fact that (Q0, Q1, . . .) is a 2c+ 1-daisy of N . �

Corollary 8.6. Let Φ be a k-daisy which distinguishes at least two profiles with
the same truncation to k− 1-profiles. Then the set of k-flowers extending Φ has no
infinite increasing chain.

Proof. Assume for a contradiction that there is an infinite increasing chain
(Φj)j∈J of k-flowers extending Φ. As a concatenation of k-anemone cannot be
a k-daisy, all Φj are k-daisies. Given a k-pseudoflower (Qi)i∈N, with cyclic or-
der induced by the linear order of N, denote for i ≥ 5 the concatenation to
(Q1, Q2, . . . , Qi−1, Q0 ∪Qi ∪Qi+1 ∪ · · · ) by Ψi. Then there is a partition (Qi)i∈N
such that all Ψi are concatenations of some Φj and such that Φ equals some Ψi.
As the order function is limit-closed, (Qi)i∈N is a k-pseudoflower. Consider the
k-pseudoflower Ψ which arises from (Qi)i∈N by concatenating Q0 and Q1 into one
petal. As (Q2, Q3, Q4, Q0∪Q1∪Q5∪· · · ) is a concatenation of some Φj and thus is
a k-daisy, Ψ is not a k-anemone. By Lemma 8.5 Ψ is also not a k-daisy, so it is not
a k-flower. As all the Ψi are k-flowers, there is some i ≥ 1 such that Q0 ∪ · · · ∪Qi
has order less than k − 1. Then for all i′ ≥ i

λ(Q0 ∪ · · · ∪Qi′) ≤ λ(Q0 ∪ · · · ∪Qi) + λ(Qi ∪ · · · ∪Qi′)− λ(Qi) < k − 1

and for all i′ < i

λ(Q0 ∪ · · · ∪Qi′) ≤ λ(Q0 ∪ · · · ∪Qi) + λ(Q0 ∪ · · · ∪Qi′ ∪Qi+2 ∪ · · · )
− λ(Q0 ∪ · · · ∪Qi ∪Qi+2 ∪ · · · )

= λ(Q0 ∪ · · · ∪Qi) < k − 1.

As Φ distinguishes two profiles P1 and P2 with the same truncation to k−1-profiles
and is a concatenation of some Ψi, all Ψi with sufficiently large index i distinguish
P1 and P2. Then also there is some i′ such that Q0 ∪Q1 ∪ · · · ∪Qi distinguishes P1

and P2. That is a contradiction to Q0 ∪ · · · ∪Qi having order less than k − 1. �
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[34] Vı́tězslav Novák. Cyclically ordered sets. Czechoslovak Math. J., 32(107)(3):460–473, 1982.
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A. Short summary of results

This thesis has two parts. The topic of the first part is the question whether
nearly finitary matroids need be k-nearly finitary for some k ∈ N. Section 2.2
contains a reduction of the original problem to matroids M with the property
that for all edge sets P of finite connectivity one of M\P and M�P is finitary
(Corollary 2.13). It then follows that every nearly finitary Ψ-matroid with finite
parts is k-nearly finitary for some k ∈ N (Lemma 2.14).

Furthermore every nearly finitary matroid M that arises from a graph-like space
in which some finite vertex set Vf meets all infinite pseudo-cycles is k-nearly finitary
for some k ∈ N (Theorem 3.24). In order to show that the class of such matroids
is not too small to be relevant, graph-like spaces are investigated in which any
two distinct vertices are, after deletion of all edges between those two vertices and
after deletion of a finite vertex set, contained in distinct topological components of
the graph-like space. Every matroid M that is induced by graph-like space with
this property and is not k-nearly finitary for any k ∈ N is not nearly finitary or
has a minor that is not k-nearly finitary for any k ∈ N and that is induced by a
graph-like space in which a vertex meets every infinite pseudo-cycle (Lemma 3.12
and Corollary 3.15).

The aim of the second part is to transfer the structure theory of [17], and
in particular of flowers, to infinite separation systems. For this, in Section 4.3 a
separation system S, a number k ∈ N and a set of k-profiles that have all the same
truncation is fixed. The map that maps every separation−→s in S to the set of profiles
in P that do not contain −→s is a homomorphism of separation systems from S to the
separation system of bipartitions on ground set P (Lemma 4.32). The image of that
map is a separation system that is a subsystem of the universe of bipartitions on
ground set P, and it is closed under pairwise unions and intersections of non-nested
elements (Corollary 4.35).

Such separation systems B are under investigation in Sections 4.1 and 4.2. The
separations in B are organised into the set E of separations that are nested with
all other separations in B, and the finest partition V of the remaining separations
in B such that any two non-nested separations are in the same partition class. For
an element V of V, the coarsest partition class of the ground set such that every
element of V is a union of partition classes is denoted by ∂(V ), and the set of
unions of partition classes that are also contained in B is denoted by V . If V is
finite, then either V is the set of all unions of partition classes, apart from the empty
set and the whole ground set (anemone-like), or there is a cyclic order (unique up
to mirroring) of the partition classes such that, apart from the empty set and the
whole ground set, the elements of V are exactly the unions of intervals (daisy-
like)(Corollary 4.15). If V is infinite, then there are finite subsets of V that behave
very much like finite elements of V and for which in particular the characterisation
of F still applies. For a fixed V ∈ V, those finite subsets are either all anemone-like
or all daisy-like (Lemma 4.25). If V is infinite and all suitable finite subsets are
daisy-like, then there is a cyclic order (unique up to mirroring) of ∂(V ) such that
all elements of V are unions of intervals of partition classes (Lemma 4.27). If B is
finite, then a structure theorem of a tree with flowers, very much like the original
structure theorem from [17] can be recovered (Theorem 4.20).

The next setting, which is analysed in Chapter 5, is that of subsystems of
universes of vertex separations that are limit-closed in the following sense: For
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k ∈ N and for a chain (Ai, Bi)i∈I of separations of order at most k, the supremum
of the chain in the subsystem exists and has order at most k and is of the form
(
⋃
i∈I Ai ∪ X,

⋂
i∈I Bi). In this setting, a definition of k-pseudoflower is given

and discussed such that every k-pseudoflower is inherently either anemone-like or
daisy-like. There is a relation on the set of k-pseudoflowers such that Φ ≤ Ψ if all
separations displayed by Φ are also displayed by Ψ. For most k-pseudoflowers Φ,
there is a ≤-maximal k-pseudoflower Ψ such that Φ ≤ Ψ (Theorem 5.44). If k ∈ N
and P is a set of k-profiles that all have the same truncation and are limit-closed,
then most daisy-like ≤-maximal k-pseudoflowers are also maximal in the pre-order
“distinguishing more profiles in P” (Lemma 5.27).

In Chapter 6, the separation system under consideration is a subsystem of a
universe with bipartitions together with a limit-closed order function, and again a
set P of k-profiles with the same truncation is fixed. In this context, a k-pseudo-
flower is a partition together with a cyclic order of the partition classes such that
every union of an interval of partition classes has order at most k − 1. And the
order ≤ on the set of k-pseudoflowers is the one where Φ ≤ Ψ if the partition of
Ψ is finer than that of Φ and the map between the partitions that is the inclusion
is a homomorphism of cyclic orders. Then every k-pseudoflower can be extended
to a ≤-maximal one (Corollary 6.15). Also, for most ≤-maximal k-pseudoflow-
ers it is true that if there are two k-profiles with the same truncation that are
not distinguished, then the k-pseudoflower can be concatenated into an infinite
k-anemone (Lemmas 6.24 and 6.28). Therefore most ≤-maximal k-pseudoflowers
that do not extend a k-anemone are also maximal in the pre-order where Φ 4 Ψ
if all profiles in P that are distinguished by the union of some interval of Φ are
also distinguished by the union of some interval of Ψ (Lemma 6.29). For every
k-anemone Φ with at least k many partition classes, all k-pseudoflowers Ψ with
Φ ≤ Ψ have the property that all their unions of partition classes have order at
most k − 1 (Corollary 6.12), k-pseudoflowers with this property are called strong
k-pseudoanemones. Also, for every k-anemone Φ with at least k many partition
classes, the set of all partitions of k-pseudoflowers Ψ with Φ ≤ Ψ has a finest element
(Theorem 6.22). And most ≤-maximal strong k-pseudoanemones are also maximal
in the pre-order 4A where Φ 4A Ψ if all k-profiles that are distinguished by some
union of partition classes of Φ are also distinguished by some union of partition
classes of Ψ (Lemma 6.34). In Chapter 8 it is shown that if the order function is
the order function of a matroid, then there are no infinite k-daisies (Lemma 8.5).

Finally, Chapter 7 contains an algorithm to determine, from a small set of
separations of a finite separation system of bipartitions, as much as possible from
the tree with flowers given in the structure theorem Theorem 4.20.
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B. Kurze Zusammenfassung der Ergebnisse

Diese Dissertation besteht aus zwei Teilen. Der erste Teil behandelt die Frage
ob es zu jedem Matroiden M , der fast finitär ist, auch eine natürliche Zahl k gibt
sodass M fast finitär mit Parameter k ist. In Abschnitt 2.2 wird gezeigt, dass es
reicht, Matroide mit der Eigenschaft zu betrachten, dass für jede Kantenmenge
P mit endlichem Zusammenhang einer der Matroide M\P und M�P finitär ist
(Korollar 2.13). Daraus folgt, dass jeder fast finitäre Ψ-Matroid mit endlichen
Teilen auch fast finitär mit mit einem Parameter k ist (Lemma 2.14).

Auch jeder fast finitäre Matroid M , der von einem graphenartigen Raum indu-
ziert wird in dem eine endliche Eckenmenge jeden unendlichen Pseudokreis trifft,
ist fast finitär mit einem Parameter k ist (Satz 3.24). Um zu zeigen, dass die
Klasse der Matroide mit diesen Eigenschaften gro genug ist um bedeutsam zu sein,
werden graphenartige Räume mit der Zusatzeigenschaft betrachtet, dass je zwei
unterschiedliche Ecken nach dem Löschen aller Kanten zwischen ihnen und dem
Löschen einer geeigneten endlichen Eckenmenge in unterschiedlichen topologischen
Komponenten des graphenartigen Raumes enthalten sind. Jeder Matroid, der von
einem graphenartigen Raum mit dieser Eigenschaft induziert wird und für keine
natürliche Zahl k fast finitär mit Parameter k ist, ist entweder nicht fast finitär
oder hat einen Minor, der auch f̈fur keine natürliche Zahl k fast finitär mit Para-
meter k ist und von einem graphenartigen Raum induziert wird, in dem eine Ecke
in allen unendlichen Pseudokreisen enthalten ist (Lemmas 3.12 und Korollar 3.15).

Der zweite Teil der Arbeit zielt darauf ab, den Struktursatz von [17], und
insbesondere die Blumen, auf unendliche Teilungssysteme zu übertragen. Dazu
werden in Abschnitt 4.3 ein Teilungssystem S und eine Menge P von k-Profilen,
die alle zu demselben k − 1-Profil eingeschränkt werden können, betrachtet. Die
Funktion, die jede Teilung auf die Menge derjenigen Elemente von P abbildet,
welche die Teilung nicht enhalten, ist dann ein Teilungssystem-Homomorphismus,
dessen Bild im Teilungssystem von Bipartitionen der Menge P enthalten ist (Lemma
4.32). Das Bild ist ein Teilsystem, in dem zu je zwei nicht geschachtelten Elementen
auch deren Schnitt und Vereinigung enthalten ist (Korollar 4.35).

Solche Teilungssysteme B werden in den Abschnitten 4.1 und 4.2 untersucht.
Die Menge aller Teilungen in B, die mit allen anderen Teilungen in B geschach-
telt sind, wird mit E bezeichnet, und V ist die feinste Partition von B\E in der je
zwei nicht geschachtelte Teilungen in derselben Partitionsklasse enthalten sind. Zu
einem Element V ∈ V wird mit ∂(V ) die gröbste Partition der Grundmenge bezei-
chnet, in der jedes Element von V eine Vereinigung von Partitionsklassen ist. Die
Menge von Elementen von B, die Vereinigungen von Partitionsklassen in ∂(V ) sind,
wird mit V bezeichnet. Falls V endlich ist, so ist V entweder gleich der Menge aller
Vereinigungen von Partitionsklassen von ∂(V ) mit Ausnahme von ∅ und der Grund-
menge (anemonenartig), oder es gibt eine zyklische Ordnung (die eindeutig bis auf
Spiegelung ist) sodass die Elemente von V gerade die Vereinigungen von Interval-
len sind, die weder ∅ noch ∂(V ) sind (gänseblümchenartig) (Korollar 4.15). Falls
V dagegen unendlich ist, dann gibt es endliche Teilmengen von V , die sich genauso
wie endliche Elemente von V verhalten, und für die daher die Charakterisierung
für endliche V gilt. Für ein festes unendliches V ∈ V sind diese endlichen Teil-
mengen entweder alle anemonenartig oder alle gänseblümchenartig (Lemma 4.25).
Falls die Teilmengen alle gänseblümchenartig sind, dann gibt es auch auf ∂(V ) eine
zyklische Ordnung, die eindeutig bis auf Spiegelung ist, sodass alle Elemente von
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V Vereinigungen von Intervallen sind (Lemma 4.27). Wenn B endlich ist, dann gilt
ein Struktursatz, der eng verwandt ist mit dem Struktursatz von [17] (Satz 4.20).

Kapitel 5 handelt von dem Spezialfall, in dem das Teilungssystem ein Tei-
lungssytem aus Eckentrennern ist, das auf folgende Weise abgeschlossen ist unter
Grenzwertbildung: Für jedes k ∈ N hat jede Kette (Ai, Bi)i∈I von Teilungen, die
höchstens Ordnung k haben, ein Supremum, welches Ordnung höchstens k hat und
von der Form (

⋃
i∈I Ai ∪ X,

⋂
i∈I Bi) ist. Es wird eine für diese Situation pas-

sende Definition von k-Pseudoblumen gegeben, in der jede k-Pseudoblume schon
eindeutig anemonenartig oder gänseblümchenartig ist. Auf der Menge dieser k-
Pseudoblumen gibt es eine Ordnung, in der Φ ≤ Ψ gilt falls jede Teilung, die von Φ
dargestellt wird, auch von Ψ dargestellt wird. Die meisten k-Pseudoblumen lassen
sich zu einer ≤-maximalen k-Pseudoblume Ψ erweitern (Satz 5.44). Falls P, für eine
natürliche Zahl k, eine Menge von k-Profilen ist sodass alle k-Profile aus P dieselbe
Einschränkung auf ein k − 1-Profil haben und abgeschlossen unter Grenzwertbil-
dung sind, dann sind die meisten ≤-maximalen k-Pseudoblumen auch maximal in
der Präordnung “mehr Profile aus P unterscheiden” (Lemma 5.27).

In Kapitel 6 werden Teilungssyteme betrachtet, die in einem Teilungssytem von
Bipartitionen enthalten sind und eine Zusammenhangsfunktion haben, die abges-
chlossen ist unter Grenzwertbildung von Teilungen derselben Ordnung. Außerdem
wird wieder eine Menge P von k-Profilen festgehalten. Unter diesen Umständen
wird eine k-Pseudoblume als eine Partition der Grundmenge mit einer zyklischen
Ordnung definiert, sodass jede Vereinigung eines Intervalls von Partitionsklassen
höchstens Zusammenhang k − 1 hat. Außerdem wird eine Ordnung ≤ auf den k-
Pseudoblumen definiert, für die Φ ≤ Ψ gilt falls die Partition von Ψ eine Verfeine-
rung der Partition von Φ ist und die Inklusionsabbildung zwischen den Partitionen
ein Homomorphismus zyklischer Ordnungen ist. Dann kann jede k-Pseudoblume
zu einer ≤-maximalen k-Pseudoblume erweitert werden (Korollar 6.15). Außer-
dem sind die meisten ≤-maximalen k-Pseudoblumen, in denen zwei Elemente von
P nicht unterschieden werden, Erweiterungen einer unendlichen k-Anemone (Lem-
mas 6.24 und 6.28). Daher sind fast alle ≤-maximalen k-Pseudoblumen, die keine
Erweiterung einer k-Anemone sind, auch maximal in der Präordnung 4 in der
Φ 4 Ψ wenn all Elemente von P, die von Φ unterschieden werden, auch von Ψ
unterschieden werden (Lemma 6.29). Für jede k-Anemone Φ mit mindestens k Par-
titionsklassen und jede k-Pseudoblume Ψ mit Φ ≤ Ψ gilt, dass der Zusammenhang
jeder Vereinigung von Partitionsklassen von Ψ höchstens k − 1 ist (Korollar 6.12).
k-Pseudoblumen mit dieser Eigenschaft werden starke k-Pseudoanemonen genannt.
Außerdem hat die Menge aller Partitionen, die durch Wahl einer geeigneten zyklis-
chen Ordnung zu einer starken k-Pseudoanemone Ψ mit Φ ≤ Ψ werden, ein feinstes
Element (Satz 6.22). Die meisten ≤-maximalen starken k-Pseudoanemonen sind
auch 4A-maximal in der Präordnung für starke k-Pseudoanemonen, in der Φ 4 Ψ
falls alle Elemente von P, die von einer Vereinigung von Partitionsklassen von Φ
unterschieden werden, auch von einer Vereinigung von Partitionsklassen von Ψ un-
terschieden werden (Lemma 6.34). Für den Spezialfall, dass die Zusammenhangs-
funktion von einem Matroiden stammt, wird in Chapter 8 gezeigt, dass es keine
unendlichen k-Gänseblümchen gibt (Lemma 8.5).

Schließlich wird in Kapitel 7 ein Algorithmus beschrieben, der für wenige Tei-
lungen, die aus einem Teilungssytem von Bipartitionen gegeben sind, einen möglichst
großen Anteil der in Satz 4.20 beschriebenen Baumstruktur bestimmt.
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D. Abgrenzung gemeinsam erarbeiteten Inhalts

Anteile des zweiten Teils dieser Dissertation sind in Zusammenarbeit mit Hen-
drik Heine entstanden. Insbesondere entspricht Kapitel 5 in weiten Teilen einem
bislang noch fertiggestellten gemeinsamen Artikel. Dabei ist die derzeitige Version
von Abschnitt 5.1 überwiegend von mir geschrieben worden, wobei wir natürlich
die schließlich verwendete Definition von k-Pseudoblumen gemeinsam erarbeitet
haben. Das nächste Kapitel wurde überwiegend von Hendrik erstellt, wobei ich
Lemma 5.16 bis Lemma 5.22 geschrieben habe. In Abschnitt 5.3 hatte Hendrik
die Idee, inverse limits zu benutzen, und ich habe die Details ausgearbeitet. Die
Erläuterungen vor dem ersten Abschnitt lassen sich keinem von uns zuordnen und
sind zu gleichen Teilen von uns beiden erstellt worden.

Ansonsten stammt die Idee in Abschnitt 4.3, die Äquivalenzklassen (zwei Tei-
lungen sind äquivalent, wenn sie in denselben Profilen enthalten sind) mit einer
Ordnung auszustatten und so in ein Teilungssystem zu verwandeln, aus einer ge-
meinsamen ebenfalls nicht fertig gestellten Arbeit mit Hendrik. Der Teil der nicht
fertig gestellten Arbeit, aus dem diese Idee stammt, wurde von Hendrik geschrieben.
Die hier vorliegende Umformulierung mit der Funktion φ habe ich geschrieben. Die
Erkenntnis, dass das Einschränken der Profile auf abgeschlossene Profile dazu führt,
dass in der neu definierten Ordnung auf den Äquivalenzklassen Suprema von Ketten
gebildet werden können, stammt aus derselben Arbeit und von Hendrik.
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E. Liste der aus dieser Arbeit hervorgegangenen Artikel

Es gibt keine fertig gestellten Artikel, die aus dieser Arbeit hervorgegangen
sind. Von den Artikeln, die in Vorbereitung sind, sind die folgenden beiden am
weitesten fortgeschritten:

• Flowers in graph-like spaces, Ann-Kathrin Elm und Hendrik Heine, in
Vorbereitung, entspricht in etwa Kapitel 5

• Nearly finitary graph-like matroids and Psi-matroids, Ann-Kathrin Elm,
in Vorbereitung, entspricht in etwa dem ersten Teil
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