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Abstract

The strong non-linear light emission induced by a high-intensity laser in solid systems
has become a research topic of immense interest over the last few years. Under such
a strong laser, electrons from the material will generate photons with energy being in-
teger multiple of that of the input laser photon. This specific light emission process
is addressed as high-order harmonic generation (HHG) and has been widely studied in
systems of atomic or molecular gas. With the great understanding of the mechanisms of
the photon emission process, several powerful applications based on the gas-phase HHG
are developed, enabling the generation of isolated short pulses [1], atomic or molecular
orbital tomography [2], and real-time observation of electron dynamics [3]. Recently
HHG has also been observed in solid systems using a semiconductor as a target. Con-
sidering many useful applications utilizing HHG from gas systems have been developed
and widely utilized in various scientific fields, adaptation of the applications based on
gas-phase HHG to the realm of solid-phase HHG has been pursued by many researchers.
Whether the adaptation could be carried out highly depends on what physicists know
about solid-phase HHG. As a result, a deep understanding of the dynamics and de-
velopment of theoretical models are highly demanded in the community of solid-phase
HHG.

In this thesis we investigate solid-phase HHG under the influence of electron scat-
tering or an additional static field in an attempt to achieve a better understanding of
the underline dynamics. For the studies of electron scattering, we integrate Umklapp
scattering into the generalized three-step model [4, 5] and compare the results from this
modified model with those from ab initio quantum simulations. This leads to our publi-
cation [6] showing that in HHG power spectra each of the multi-plateau, which originates
from the band climbing [7], is dominated by the light emission from electron-hole pairs
experiencing a specific number of scattering; An electron-hole pair with zero, one, and
two scattering before emitting a photon mainly contributes to the first, second, and third
plateaus of an HHG power spectrum, respectively. In addition, we also consider another
simple modification to the generalized three-step model for treating general scattering
effects in solids based on a mean-free-path approach. We find that such a simple mod-
ification could reproduce the wavelength independence of cutoff energy for solid-phase
HHG, suggesting such behavior is directly related to scattering processes in solids. As for
the studies on the effect of an additional static field, we add a static electric field on top
of a driving laser for HHG based on a simple two-band parabolic quantum model. The
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resulting HHG power spectra yield an overall lower emission intensity and static-field-
dependent cutoff energy. When increasing the static field from zero, the cutoff energy
will increase, reach a maximum, and then decrease to the band gap when the static field
becomes as strong as the oscillating driving laser. This static-field-dependence of the
cutoff energy could be described by the two competing mechanisms induced by a static
field: reduced probability for overall electron-hole recombination and increased chances
for recombination for some high-energy electron-hole pairs when the static field happens
to align with the driving laser pushing the pairs together.

In addition to the studies on dynamics of solid-phase HHG, we also present a pre-
liminary investigation of the core electron absorption for bulk aluminum under X-ray
by time-dependent density functional theory (TDDFT). The aim was to verify whether
the underline theoretical model could capture the well-known absorption saturation in
aluminum [8] so as to estimate the applicability of the simulation framework for solid-
phase HHG driven by X-ray pulses. From our simulations, the absorption saturation
is indeed reproduced qualitatively. This suggests the first step of solid-phase HHG in
the three-step model, namely the excitation of electrons, could be captured by ab initio
simulations based on TDDFT.
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Abstraktum

Die starke nichtlineare Lichtemission eines hochintensiven Lasers in Festkörpersystemen
ist in den letzten Jahren zu einem Forschungsthema von immensem Interesse gewor-
den. Unter einem so starken Laser erzeugen Elektronen aus dem Material Photonen
mit einer Energie, die ein ganzzahliges Vielfaches der des eingegebenen Laserphotons
ist. Dieser spezifische Lichtemissionsprozess wird als harmonische Erzeugung hoher
Ordnung (HHG) bezeichnet und wurde in Systemen aus atomaren oder molekularen
Gasen umfassend untersucht. Mit dem großen Verständnis der Mechanismen des Pho-
tonenemissionsprozesses werden mehrere leistungsstarke Anwendungen basierend auf
dem HHG in der Gasphase entwickelt, die die Erzeugung isolierter kurzer Pulse [1],
Atom- oder Molekülorbitaltomographie [2] und Echtzeitbeobachtung der Elektronen-
dynamik [3]. Kürzlich wurde HHG auch in festen Systemen mit einem Halbleiter als
Target beobachtet. In Anbetracht vieler nützlicher Anwendungen, die HHG aus Gassys-
temen verwenden, wurden entwickelt und auf verschiedenen wissenschaftlichen Gebieten
weit verbreitet verwendet, eine Anpassung der Anwendungen basierend auf Gasphasen-
HHG an den Bereich von Festphasen-HHG wurde von vielen Forschern verfolgt. Ob
die Anpassung durchgeführt werden könnte, hängt stark davon ab, was Physiker über
Festphasen-HHG wissen. Aus diesem Grund sind in der Gemeinschaft der Festphasen-
HHG ein tiefes Verständnis der Dynamik und Entwicklung theoretischer Modelle sehr
gefragt.

In dieser Arbeit werden wir Festphasen-HHG unter dem Einfluss von Elektronen-
streuung oder einem zusätzlichen statischen Feld untersuchen, um ein besseres Verständnis
der Unterstreichungsdynamik zu erreichen. Für die Untersuchungen der Elektronen-
streuung integrieren wir die Umklapp-Streuung in das verallgemeinerte dreistufige Mod-
ell [4, 5] und vergleichen die Ergebnisse dieses modifizierten Modells mit denen eines
ab initio Quantensimulationen. Dies führt zu unserer Publikation [6], die zeigt, dass
in HHG-Leistungsspektren jedes der Multiplateaus, die aus dem Bandanstieg stam-
men, [7] , wird von der Lichtemission von Elektron-Loch-Paaren dominiert, die eine
bestimmte Anzahl von Streuungen erfahren; Ein Elektron-Loch-Paar mit einer Streu-
ung von Null, Eins und Zwei vor der Emission eines Photons trägt hauptsächlich zum
ersten, zweiten und dritten Plateau eines HHG-Leistungsspektrums bei. Darüber hin-
aus betrachten wir eine weitere einfache Modifikation des verallgemeinerten dreistufi-
gen Modells zur Behandlung allgemeiner Streueffekte in Festkörpern auf der Grundlage
eines Mean-Free-Path-Ansatzes. Wir stellen fest, dass eine solch einfache Modifikation
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die Wellenlängenunabhängigkeit der Abschaltenergie für Festphasen-HHG reproduzieren
könnte, was darauf hindeutet, dass ein solches Verhalten direkt mit der Streuung in
Festkörpern zusammenhängt. Für die Studien zur Wirkung eines zusätzlichen statis-
chen Feldes fügen wir ein statisches elektrisches Feld über einem treibenden Laser für
HHG hinzu, basierend auf einem einfachen parabolischen Zwei-Band-Quantenmodell.
Die resultierenden HHG-Leistungsspektren ergeben eine insgesamt geringere Emission-
sintensität und statikfeldabhängige Abschaltenergie. Wenn ein statisches Feld von Null
erhöht wird, steigt die Abschaltenergie an, erreicht ein Maximum und nimmt dann bis zur
Bandlücke ab, wenn das statische Feld so stark wird wie der oszillierende Antriebslaser.
Diese statische Feldabhängigkeit der Abschaltenergie könnte durch die beiden konkurri-
erenden Mechanismen beschrieben werden, die durch ein statisches Feld induziert wer-
den: verringerte Wahrscheinlichkeit für die gesamte Elektron-Loch-Rekombination und
erhöhte Chancen für die Rekombination für einige hochenergetische Elektron-Loch-Paare
im statischen Feld richtet sich zufällig mit dem treibenden Laser aus und drückt die Paare
zusammen.

Zusätzlich zu den Untersuchungen zur Dynamik von Festphasen-HHG präsentieren
wir hier auch eine vorläufige Untersuchung der Kernelektronenabsorption für Aluminium
in großen Mengen unter Röntgenstrahlung mittels time-dependent density functional
theory (TDDFT). Ziel ist es hier zu überprüfen, ob das unterstrichene theoretische Mod-
ell die bekannte Absorptionssättigung in Aluminium erfassen kann [8], um die Anwend-
barkeit des Simulationsgerüsts für durch Röntgenpulse angetriebenes Festphasen-HHG
abzuschätzen. Aus unseren Simulationen geht hervor, dass die Absorptionssättigung
tatsächlich reproduziert wird. Dies legt nahe, dass der erste Schritt von Festphasen-
HHG im dreistufigen Modell, nämlich die Anregung von Elektronen, durch auf TDDFT
basierende ab initio -Simulationen erfasst werden könnte.
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upper and lower cutoffs are designated by the red and the blue lines. The
band gap energy Eg = 9 eV is also shown for reference as black-dashed
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 A schematic view for the mechanism of saturable absorption under a soft
X-ray in aluminum. The conduction band is represented by a parabola
and the core energy level for 2p orbitals is described by a flat line. Also,
an incoming X-ray photon is depicted by the yellow lightning. The energy
bands (a) before and (b) after excitation of core electrons are shown in the
upper section. In (a) the positive core ion is electronically shielded by core
electrons. In (b), the electronic shielding of the core ion is attenuated since
some core electrons are excited, and the energy bands are now bounded
more tightly, which is indicated by the energy shift of the bands. The
interaction between photon and a core electron (c) before and (d) after
the bands are shifted is also described in the lower section. (c) Before
the energy shift, core electrons can absorb the soft X-ray photon and be
excited to the Fermi surface. (d) After the energy shift, the photon energy
of the soft X-ray is not large enough to make the excitation possible. . . 65

xi



LIST OF FIGURES

5.2 Comparison of the transmission as a function of laser fluence between our
theoretical calculation (blue curve) and the experimental data (purple
curve) taken from the study [8]. Note that, since only the laser intensity
is altered in the pulse and the laser fluence is proportional to the intensity,
the axis of fluence can be seen as the axis of intensity. . . . . . . . . . . . 68

5.3 The absorption spectrum of aluminum near the LII,III absorption edge
from theoretical calculation (red curve) and experimental data (blue curve)
taken from the previous study [58]. The vector potential of the soft X-
ray used in this chapter is also shown as a sharp yellow peak to illus-
trate its position in the absorption spectrum. The full-width at half-
maximum (FWHM) of the laser is around 0.27 eV. Additionally, we also
mark the energy difference of 19 eV between the absorption edge and the
laser in the case of our simulation and the experiment. We select a soft
X-ray with photon energy of 85.5 eV instead of 92 eV used in the exper-
iment because it has the same distance from the edge in the absorption
spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 The decrease in energy as a function of fluence for the core level (blue
curve) and a conduction band (red curve) compared to their original en-
ergy in the ground state. The arrow indicates the fluence around 5 J/cm2

where the core level has huge energy shift. Note that at this large energy
shift in the core level the energy shift in the conduction band is negligible.
This makes the photon energy of the soft X-ray off-resonance and thereby
saturable absorption occurs. . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Transmission as a function of laser fluence from theoretical calculation for
the case with focal-spot average (red curve) and the case without focal-
spot average (blue curve). Transmission from the experimental data is
also shown as the purple curve for comparison. . . . . . . . . . . . . . . . 72

5.6 Transmission as a function of laser fluence from theoretical calculation for
the case with surface oxidation (red curve) and the case without surface
oxidation (blue curve). Transmission from the experimental data is also
shown as the purple curve for comparison. . . . . . . . . . . . . . . . . . 73

xii



List of Abbreviations

HHG high-order harmonic generation

TDDFT time-dependent density-functional theory

FWHM full-width at half-maximum

FEL free-electron laser

xiii



List of Publications

Chang-Ming Wang, Nicolas Tancogne-Dejean, Massimo Altarelli, Angel Rubio,
and Shunsuke A. Sato,
Role of electron scattering on the high-order harmonic generation
from solids, [6],
Physical Review Research, 2, 033333 (2020)

xiv

https://link.aps.org/doi/10.1103/PhysRevResearch.2.033333


Chapter 1

Introduction

Light enables us to see material world. Through light humans perceive and understand
the world around us. At home, we see scenes via a window from the light transmitted
through the material glass. In gatherings, we identify our friends by the light reflected
from their faces. On a train, we read the information on a cell phone by the light radiated
from the electronic screen. It is through light-matter interaction that we humans come
to know the world. This concept is no exception in the realm of science, either. The very
fundamental of scientific research is typically composed of four key steps: (1) observation
of a phenomenon, (2) making a hypothesis to describe the observation, (3) verifying and
reformulating the hypothesis to build up a theory, and (4) making predictions based on
the theory. The very first step of all science, namely to see a phenomenon, is typically
carried out by light-matter interaction. That is, scientists use light as a probe to see
specific phenomena of interest. As a result, it is very important to understand the
light-matter interaction so as to identify what are actually seen in the observation. And
thereby one could establish solid ground truth for the following scientific investigation
to carry on. This is the reason why optical and electron spectroscopy are among the
most experimentally and theoretically studied topics, and many questions in the fields
are still waiting to be answered.

For a long time, physicists had set up a framework to describe light-matter interaction
based on perturbation theory. In linear optics, the response of a dielectric material to
light is simply formulated by electric permittivity. That is, the polarization of the
material induced by the light is merely proportional to the electric field of the light by a
scaling constant. To go beyond that, physicists also consider non-linear optics where the
induced polarization is further expanded to some higher-order function of the electric
field of the light. In either linear and non-linear optics, the light-matter interaction is
always treated in the sense of a small perturbation: the influence of the light on the
materials is assumed to be tiny. To be more precise, it is taken as given the electric field
or intensity of the light is small compared to the electric field binding the electrons in
the materials. Generally speaking, this is indeed true in many cases then and the light-
matter interaction is well understood and described by linear and non-linear optics.
Nevertheless, such a successful perturbative approach eventually has to be revised and
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1.1. HIGH-ORDER HARMONIC GENERATION

reconsidered when the first laser was created in 1960 [9, 10]. Unlike typical light, a laser
is characterized by its narrow bandwidth and strong intensity, which renders in many
cases the perturbative approach to light-matter interaction in linear and non-linear optics
inapplicable. At the same time, with lasers being widely harnessed into experiments after
its creation, many novel phenomena are observed and proposals for new applications are
advocated. Because of these new observations and promising utilities, a new theory to
describe the light-matter interaction is in great need in many scientific fields. One of the
very interesting new subjects enabled by the creation of lasers in strong-field physics is
the high-order harmonic generation (HHG).

1.1 High-order Harmonic Generation

HHG is a photon up-conversion process at extreme occurring in a material when a
sufficiently strong laser is applied. It is characterized by that the photon energy of the
generated light is integer multiples, namely harmonics, of that of the input laser shining
on the specimen. When such generated light is received by a detector and the intensity
of different energy, or harmonics, is measured, it typically yields a power spectrum
featuring strong peaks in the low-energy region and many weaker peaks with roughly
equal intensity in the high-energy region, followed by a sharp drop in intensity at certain
threshold energy (see Fig. 1.1 (a)). The region with weak peaks of similar intensity in
the power spectrum is generally called the plateau of the spectrum and the end of this
plateau the cutoff. The energy marking the cutoff is denoted as the cutoff energy and
is a crucial property of a power spectrum of harmonic generations. People use the term
HHG simply to indicate the high-energy photon emissions in the plateau region since
they are of high interest in most of the cases. Such HHG was first observed in 1987 using
rare gases as target specimens [11].

HHG involves light-matter interaction beyond the description of linear or perturba-
tive non-linear optics due to the strong nonlinearity induced by the large intensity of the
laser, and thereby several different approaches are proposed to describe how electrons
in the target, typically gas molecules in a chamber at the time, respond to the strong
laser. One of the most successful models describing the dynamics of the HHG using gas
targets is the so-called three-step model [12, 13]. In this semi-classical model the whole
process of the HHG is explained by three distinctive steps: (1) An electron is ionized
by the strong laser and escapes from its mother molecule. (2) The strong laser pushes
the electron away from the ionized molecule and supplies it with energy. (3) When the
electron is pushed back to the ionized mother molecule due to the oscillatory force of the
laser, it recombines with the molecule and releases the extra kinetic energy gained during
the second step by emitting a high-energy photon. These three steps are illustrated in
Fig. 1.1 (b) as the process I, II, and II. This insightful semi-classical model provides an
extremely simple physical picture for the HHG in gas while at the same time making
several successful predictions on some important properties of a HHG power spectrum
for atomic and molecular systems. For example, the cutoff energy of the spectrum could
be estimated by the three-step model and its parabolic dependence on the electric field
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Figure 1.1: (a) A typical power spectrum for gas-phase HHG and (b) a schematic
illustration of the three-step model. In (a), the spectrum shows several strong peaks
in the low-energy region. In the high-energy region there are many weaker peaks with
similar intensity, forming a plateau-like structure. The emission intensity drops quickly
after a threshold defined as cutoff energy. In (b), the first, second, and third steps
are marked by the process I, II, and III, respectively. The dark-blue circle describes a
bounded electron and the light-blue one describes an energetic electron. The red curves
represent the potential energy from the ion core and the laser. The orange sinusoidal
curve is an analogy of a emitted photon.
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amplitude of the driving laser could also be retrieved from the model.
The understanding of the dynamics of the HHG brings forward several powerful

applications based on these emitted high-energy photons. One of the most important
applications for the HHG is the creation of ultra-short pulses [14, 15, 16]. Physicists
have been utilizing the HHG photons from the plateau region to generate pulses with
subfemtosecond duration [1, 17], which is a typical time scale for the motion of electrons.
This means one could use the ultra-short pulse synthesized from the HHG to observe
electron motion in time and enhance our understanding of the corresponding processes.
In practice, by utilizing ultra-short pulses researchers could perform real-time observa-
tion on electron transitions between atomic orbitals and electron tunneling through an
atomic potential barrier with subfemtosecond temporal resolution [3, 18]. In addition,
similar techniques are also applied to reconstruct the highest-occupied molecular orbitals
to understand the chemical properties of the molecules, and observe the attosecond dy-
namics of these orbitals, enabling the inspection of chemical reactions [2]. In short, the
HHG from gas systems has become a new source of light and a deep understanding of
its dynamics has enabled us to create ultra-short pulses from the HHG, which acts as
a new light probe for matters and phenomena. With the gas-phase HHG the idea of
”seeing the matter through light” has advanced to a whole new level - into the world of
electrons. Physicists now can utilize light beyond the description of linear or non-linear
optics to see the material world in the natural length and time scale of an electron.

The development of HHG is not limited to gas systems but advances to the world of
condensed matters. In 2011 HHG from solid systems was discovered and this solid-phase
HHG is observed to possess some similar properties like the gas-phase HHG [19, 20, 21].
For the radiation power spectrum, the solid-phase HHG also starts with high-intensity
radiation peaks in the low-order region, follows a plateau region where peaks have lower
and overall similar intensity, and then ends up at the cutoff energy. Likewise, the in-
tensity of the solid-phase HHG cannot be described by perturbative non-linear optics.
Considering the similarities, physicists have also been attempting to adapt techniques
and applications for HHG from gas systems to solid systems. A successful extension
would expand the field of strong-field physics and attosecond science into solid systems
[22]. For instance, if the same technique for real-time observation of electronic tran-
sitions could be applied in solid systems, one would be able to obtain the dynamical
involvement of each electronic bands and improve the understanding of the quantum
interference between each excitation channel. In addition, the real-time observation of
the HHG process in a solid system may also allow us to understand the role of other
complicate mechanisms like scattering, which is actually one of the mechanisms we have
studied in this thesis, in the making of solid-phase HHG. On the other hand, despite
their similarity in radiation spectra for gas- and solid-phase HHG, there are indeed sev-
eral key differences between the two systems. In gas systems, the cutoff energy of a
power spectrum has a quadratic dependence on the electric field amplitude of the laser
while in solid systems it has linear dependence. Not only that, the cutoff energy in
solid systems appears to be independent of the wavelength of the laser instead of inverse
quadratic dependence in gas systems. Besides, unlike single plateau in a gas-phase HHG
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spectrum, some theoretical simulations for solid-phase HHG show several plateau [23,
24, 25, 7], and a second plateau is observed in experiments using solids formed from rare
gases [26]. Moreover, in most gas-phase HHG only electrons in the highest-occupied shell
take part in the dynamics of photon emissions, while in solid-phase HHG the electrons
lying in top-few valence bands could affect the radiation indirectly through quantum
interference, leading to unconventional behavior like cancellation of radiation for certain
polarization direction of the driving field [27]. All of these interesting properties and
great prospects for applications call for the microscopic understanding of underlying
dynamics and establishing a new model or theory for HHG from solid systems.

Several theoretical approaches have been proposed to describe and reproduce solid-
phase HHG. Direct ab initio simulations using modeled crystal potentials reasonably
capture the general structure of the HHG power spectra from solid systems [5, 23, 24].
Also, by performing ab initio simulations based on semiconductor Bloch equations [28,
29], one could obtain HHG power spectra directly comparable to experiments [30]. Be-
sides reproducing numerical results with experiments, many simple semi-classical models
are also proposed to describe the key essence of the dynamics. One of the very important
models for solid-phase HHG is the three-step model generalized from gas systems. This
generalized three-step model substitutes the parabolic energy dispersion in gas systems
with complex band structures in solid systems [4, 5]. In this model, the solid-phase
HHG is characterized by the following three steps: (1) An electron is excited from the
top of the top valence band to the bottom of the lowest conduction band, creating an
electron-hole pair. (2) The created electron and hole are pushed by the external laser
force and move in the conduction band and the valence band, respectively. (3) When the
electron and the hole meet each other in real space, they recombine and emit a photon
with energy equal to the energy difference between the conduction band and the valence
band where they locate at that moment. A direct comparison of this generalized three-
step model for solid-phase HHG and the original three-step model for gas-phase HHG
is shown in Fig. 1.2. Although this generalized three-step model is limited to certain
band structure of solid systems and intensity of the input laser, it does provide a simple
description for the dynamics of HHG and connects the idea of HHG from gas and solid
systems by a mere difference in the energy dispersion excited charged particles follow
[31].

Despite the simple picture of solid-phase HHG by the generalized three-step model,
the model still bears some non-intuitive assumptions that need to be revisited, quantified,
and understood in details when one takes a closer look. Note that, within this semi-
classical model the created electrons and holes are assumed to be effectively-free particles
in the sense of effective mass. That is, they possess time-dependent effective mass and
are only subjected to the force of the external laser. Such an assumption is suitable
in the case of gas-phase HHG as the separation between an ionized electron and its
parent ion is extremely large. So, the attractive force from the ion acting on a ionized
electron could be neglected. However, in solids created electrons and holes are expected
to still reside in the crystal and surrounded by a sea of positively-charged ions. In this
situation, interaction with ions, like scattering between the charged particles and ions,
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Figure 1.2: A schematic illustration for the HHG in gas (left) and solid (right) systems.
The three steps for the two kind of HHG are marked by the procedure I, II, and II with
different colors (red for gas and blue for solid). The energy diagram in the middle merges
two kinds of energy dispersion of the gas and solid systems into one band structure. For
the gas system, the energy of an atomic orbital is denoted by a horizontal line and
that of the continuum is described by the parabola. For the solid system, the energy
of the conduction band and the valence band are described by the parabola and inverse
parabola, respectively.
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Figure 1.3: Possible scattering of charged particles with ions. The trajectories of an
electron(red curve) and a hole(blue curve) may pass ions (gray circles) several times and
therefore scattering of the electron and hole with the lattice is generally expected. The
trajectories shown in the figure ignore scattering and the electron and hole successfully
recombine to emit a photon (orange sinusoidal curve). However, if the scattering is
considered, the blue and red trajectory will change when making contact with the ions,
the recombination of this electron-hole pair and the corresponding emission of a photon
would become very unlikely. This indicates HHG could be altered by scattering between
charged particles and the lattice.

could be expected in general (see Fig. 1.3). As trajectories of electrons and holes in
the second step will very likely be modified, the chances of recombination between them
could become questionable. As a consequence, the corresponding photon emission and
HHG might also be altered by the scattering. In addition, one would anticipate not
just one but many scattering events when an electron or a hole is propagating in the
lattice, because the charged particle generally travels several cells before recombination,
indicating chances of multiple collisions with the lattice. Moreover, in real solid systems
scattering is not only limited to the scattering between electrons and ions but also those
between electrons and defects or phonons. Following the same argument that a trajectory
could be modified by scattering, negligence of them impedes a proper description of the
dynamics. As a result, it is important to understand the effect of and the role played by
scattering for HHG in solid systems.

In addition to the issue of scattering in solids mentioned above, we would also like to
investigate how a solid-phase HHG power spectrum changes under an additional static
field. For gas-phase HHG, physicists have been proposing to append a static electric field
on the top of a main strong driving laser to enhance certain properties of the resulting
spectrum. For example, theoretical simulations show a larger plateau region induced
by a weak static field can be utilized to generate ultra-short pulses shorter than that
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from a laser driver without a static field [32]. Also, it is shown the harmonic yield near
cutoff energy could be significantly increased through a better phase-matching induced
by an additional weak static field [33]. Theoretically, the effect of an extra static field
on gas-phase HHG has been studied by a modified saddle-point analysis and its direct
consequences are the emergence of multiple plateaus and increased cutoff energy [34,
35]. Other studies suggest that the addition of a static field could lead to HHG with
elliptical dichroism(namely intensity dependence on helicities of an input laser) and
elliptical polarization from a linearly polarized input laser [36]. Considering all these
possible applications and studies, it is worthy of investigating the effect of a static field
in solid-phase HHG and gaining a basic understanding of the system for adaptation of
these results from gas-phase HHG to solid-phase HHG in the future.

1.2 The Roles of Scattering and Static Field in HHG

In this thesis, we investigate in detail the two aspects of solid-phase HHG: the role
of scattering and the effect of an additional static field on a HHG power spectrum by
comparing results from quantum simulations and semi-classical models.

For the understanding of scattering processes, we construct a generalized semi-
classical model that contains the scattering effect and compare its results with those
from complete quantum-mechanical simulations. The model, which we addressed as
the generalized three-step model with Umklapp scattering, is based on the generalized
three-step model and the incorporation for the specific scattering, Umklapp scattering,
is carried out by considering different paths an electron-hole pair would take when it
undergoes Umklapp scattering. In practice, a classical trajectory in the sense of the gen-
eralized three-step model is branched into two trajectories whenever the electron-hole
pair crosses a scattering point, which is defined as the point in reciprocal space where
the energy difference of neighboring bands is tiny or zero. At the scattering points, an
electron-hole pair could go up or down from its current band as by definition the current
band and the neighboring band almost touch each other. Therefore in this model, we
branch the current trajectory into two to incorporate the effect of Umklapp scattering
occurring at this point. All of these trajectories are calculated in both reciprocal and
real space, and photon emission is recorded once the electron and the hole meet each
other in real space. In Fig. 1.4, we compare the major difference of our model with
the original generalized three-step model which neglects the scattering effect. Note that
only the second step is shown in the figure as this is the only step where the difference
occurs.

As a summary of the process for the generalized three-step model with Umklapp
scattering, the solid-phase HHG with scattering is consists of the following three distinc-
tive steps: (1) Excitation of an electron from the top of a valence band to the bottom of
a conduction band, creating an electron-hole pair. (2) The electron-hole pair is moved
in the bands by the external laser, and its trajectory is branched into two different tra-
jectories whenever it passes a branching point. (3) When the paired electron and hole
meet each other in real space, they recombine and emit a photon with energy being the
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Figure 1.4: A comparison for the second step of the generalized three-step model and
generalized three-step model with Umklapp scattering (our model) in crystal-momentum
space. The energy bands are depicted as black curves. The red- and blue-dotted arrows
describe the non-scattered and scattered paths, respectively. The left-hand side of the
figure shows how the generalized three-step model treats an electron moving through a
scattering point (the point where the bands cross) in the crystal-momentum space: the
electron moves through a scattering point as if the neighboring band does not exist and
ignores any chance to move to the neighboring band. On the other hand, the right-hand
side of the figure shows that the trajectory where the electron remains in the same band
(non-scattered path) and the trajectory where the electron moves to the neighboring
band (scattered path) are both taken into account in our model.

9



1.2. THE ROLES OF SCATTERING AND STATIC FIELD IN HHG

difference of their corresponding band energy. From the quantum simulations, multi-
ple plateaus are observed, which is in accordance with a previous study [7]. Using our
generalized three-step model with Umklapp scattering, we found that the cutoff energy
of each plateau is characterized with a specific number of scattering. The cutoff energy
of the first plateau can be predicted by the trajectories experience no scattering. The
cutoff energy of the second plateau is predicted by trajectories with one scattering, and
the cutoff energy of the third plateau is predicted by trajectories with two scattering.
This observation indicates that a photon emission in a higher plateau mainly originates
from an electron-hole pair experiences more scattering. Such a phenomenon can be de-
scribed by the idea of ”band climbing” [7], which suggests the scattering could open up a
new channels for electron-hole pairs to reach higher bands and thereby emit high-energy
photons.

A model with a similar idea of trajectory branching has also been proposed in a
previous study [7]. One of the major differences between the previous studies and our
current work is the condition for recombination of electrons and holes. In the previous
work, paired electrons and holes are assumed to recombine at any time irrespective of
their separation in real space. However, in our model, an electron-hole pair is allowed
to recombine only when the separation between them in real space is zero, namely when
they meet. The two approaches could be considered as two extreme cases on the idea
about how local the wavepacket of an electron or a hole is. If an electron and a hole
have wavepackets of infinitely large spreading in real space, then they can recombine
no matter how large their separation is. This equivalently leads to the recombination
of electrons and holes at any time. On the other hand, if an electron and a hole have
wavepackets of infinitely small spreading in real space, namely they are point particles,
recombination is only possible as they locate at the same place. As a result, our work
could be seen as a complementary study to provide a more complete view for Umklapp
scattering in solid-phase HHG.

In addition to Umklapp scattering, we also apply a simple modification based on the
concept of the mean-free path to the generalized three-step model so as to have a quick
investigation for general scattering effects in solids like impurity scattering , phonon scat-
tering, or any other form of scattering. There are two major assumptions in this simple
approach. First, the possibility for an electron-hole pair to be scattered depends on the
absolute distance it has traveled. The physical reason behind is that, in general, the
longer the pair has traveled in solids, the more likely it will meet an impurity, a phonon,
or any others and get scattered. Second, if an electron-hole pair is scattered, we just
assume it would not have any chance for recombination due to its strongly-altered path
by the scattering event. Combining these two simple assumptions one could therefore
neglect the contribution of an electron-hole pair to solid-phase HHG with a long travel
distance. For the practical implementation of this simple modification, photon emissions
from an electron-hole pair predicted from the generalized three-step model are just ne-
glected after the electron-hole pair traveled an absolute distance longer than a specified
threshold. Despite how simple this model is, we can actually reproduce wavelength-
independence of cutoff energy for solid-phase HHG. This result again emphasizes the
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importance of scattering effects in the dynamics of HHG in solid systems.
For the investigation of the effect of a static field on solid-phase HHG, we perform

quantum simulations based on a simple parabolic two-band model [37] and gain insights
by comparing the results with those from the generalized three-step model. The quantum
system is much simplified here such that we could focus on the effect induced by the
addition of a static field. From the quantum simulations, the power spectra of HHG show
a tendency of decreased intensity but increased cutoff energy. Also, two plateaus are
observed as a result of the broken symmetry induced by the static field, and the cutoff
energy of the two plateaus depends differently on the strength of the static electric field.
The cutoff energy of the higher plateau increases with a stronger static field, reaches a
maximum, and then decreases to the bandgap energy when the static field is as strong
as the driving laser. On the other hand, the cutoff energy of the lower plateau just
decreases gradually to the bandgap energy with the increasing static field.

The behavior of the higher cutoff could be understood as a result of two competing
mechanisms induced by a static field. In principle, the force of an additional static
field would tend to separate electrons and holes so their probability of recombination
will decrease, implying lower emission intensity. This is intuitive as no recombination
is possible when an infinitely large static field is supplied. On the contrary, an extra
static field could lead to higher cutoff energy because it enables the recombination of
high-energy electron-hole pairs which are not able to recombine in the case without a
static field. When an electron-hole pair has a longer trajectory, it generally carries high
energy and therefore can emit high-energy photon if the said electron and hole could
meet each and recombine. In the case when there is no static field, the force from
the oscillating laser may not be strong enough to bring the electron and the hole back
together. However, in the case of a static field, the chance for the electron and the
hole to recombine will become higher if the force of the static field happens to be in
the direction to bring them back together. The recombination channel for these high-
energy electron-hole pairs opened up by the static field creates high-energy photons and
thereby the cutoff energy is increased. When we consider the two mechanisms together,
the second mechanism extends the cutoff energy but eventually is suppressed by the
first mechanism that decreases the overall emission intensity. The results from our
calculations could provide a basic understanding of the behavior of solid-phase HHG in
the presence of an extra static field.

1.3 Light Absorption of Core Electrons

In attosecond science, physicists have been applying X-ray driver to invoke HHG in gas
systems and synthesizing ultra-short pulses [38]. With the development of solid-phase
HHG, the same idea is also introduced into solid systems. Due to the high energy of
X-ray photons, it is the core electron that is involved in the process of HHG. Theoretical
simulations for the core-electrons in solid systems could be quite challenging because of
the complexity of the physical process and demanding computation power. To access the
applicability of theoretical simulations for such core-electron excitations under a strong
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field, we perform a preliminary study on the absorption of X-ray by core electrons in
bulk aluminum using theoretical simulations based on time-dependent density-functional
theory (TDDFT) [39]. The aim here is to see whether the model system could capture
the electron excitation process, which is crucial for the appropriate description of HHG,
by observing how the well-known phenomenon of absorption saturation is reproduced in
the model [8]. From our TDDFT simulations it is shown that the absorption coefficient
could be calculated and absorption saturation of bulk aluminum under soft X-ray can
indeed be reproduced. The results after focal-spot average can even be compared directly
with data from experiments. As a result, it is verified that ab initio simulations based on
TDDFT could qualitatively capture the process of photon absorption for core electrons
in bulk aluminum. This preliminary study is the first step to the attempt for establishing
a simulation framework for HHG from core electrons in solid systems.

1.4 Purposes and Conclusions of this Thesis

In summary, the purposes of the research carried out in this thesis are:

� To understand how scattering in the solid system affects the dynamics of solid-
phase HHG and its consequences in HHG power spectra.

� To investigate the impact of a static field upon solid-phase HHG.

� To achieve a preliminary understanding about the validity of theoretical simula-
tions based on TDDFT for X-ray absorption of core electrons in a solid system.

Through our studies, we have reached the following fundamental conclusions:

� Umklapp scattering plays an important role for HHG in solids. Our semi-classical
model integrated with Umklapp scattering successfully reproduces the multi-plateau
structure in HHG power spectra from quantum simulations, conforming to the pre-
viously proposed concept of band climbing and new photon emission channels.

� The wavelength independence of cutoff energy in solid-phase HHG could be re-
produced by the semi-classical model neglecting electron-hole pairs with a large
absolute travel distance.

� A static field could leads to splitting of cutoff energy into two for HHG in solids.
One of the split cutoff energy grows with the increased strength of the static field
while the other diminishes to the bandgap energy. This behavior can be understood
by the broken symmetry introduced by and opposite response to the static field.

� The core-electron absorption could indeed be numerically reproduced by TDDFT
and the saturable absorption of X-ray photon in bulk aluminum could be captured.
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1.5 Structure of the Thesis

This thesis is organized as follows: Chapter 2 introduces the theoretical framework for
ab initio quantum simulations and the simple parabolic two-band model for the studies
of scattering effect and a static field, respectively. The semi-classical model for solid-
phase HHG, namely generalized three-step model, is described in details together with
its numerical implementation in Chapter 3. Within the same chapter, the integration
of Umklapp scattering into the generalized three-step model is also elaborated. The
results for the role of scattering and the effect of a static field are shown in Chapter 4.
The investigation of core-electron absorption is presented in Chapter 5. Finally, the
conclusion of this thesis is given in Chapter 6.
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Chapter 2

Theoretical Models for the
Quantum Systems

The investigation on the effects of electron scattering and an extra static field in this
thesis are made by performing quantum simulations and verify the physical consequences
of the simulated HHG by semi-classical models. The quantum models are specifically
chosen such that they are simple enough for us to focus on the effects under studies. On
the other hand, they are at the same time complex enough to reasonably capture some
behaviors of the HHG observed in experiments. Here, we will introduce the models for
quantum simulations and describe how HHG power spectra are calculated.

Two different quantum models are implemented for studying the effects of electron
scattering and an extra static field. For the former case, we consider a one-dimensional
non-interacting many-electron system formulated in the velocity gauge. First, the time-
independent Schrödinger’s equation with a given crystal model potential is solved to
obtain its ground state. The state is then propagated over time under the influence of
the external laser field to obtain its current density as a function of time. The HHG
power spectrum is then calculated from the current density by performing Fourier trans-
formation. As for the case investigating an extra static field, a simple parabolic two-band
model is implemented [37]. This model is based on a three-dimensional non-interacting
many-electron system in the velocity gauge and simplified by assuming parabolic valence
and conduction bands and applying uniform matrix-element approximation. The system
assumes an occupied valence band as the initial state and is propagated to calculate the
current density at different time, which is then again Fourier transformed to obtain the
corresponding HHG power spectrum. This much-simplified quantum model not only
greatly reduces the computation cost but also ensures clear time-frequency analysis of
the HHG signal, allowing for direct observation and investigation of the effect of an extra
static field on spectra.

There are two main sections in this chapter and they are dedicated to the two models
mentioned above: In the first section, the Hamiltonian of the quantum model, time
propagation of a state, and the calculation of the current density and thereby the HHG
power spectrum are introduced. Additionally, we also explicitly show the numerical
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implementation for each of the key steps in this model. In the second section, we
introduce the parabolic two-band model and discuss the significance of the simplifications
and how they are applied. The time propagation of a state and calculation of a HHG
spectrum are also described shortly.

2.1 Quantum Model

Here we present the quantum model for the study on the effect of Umklapp scattering to
the HHG in solids. The model considered here is a one-dimensional, non-interacting, and
many-electron system formulated in velocity gauge. We only consider a one-dimensional
system here because in this study only linearly-polarized laser pulse is applied, which
generally suggests that the major HHG signals also lies in one axis. However, the
derivation in this section will still be presented in a general three-dimensional case so as
to reuse the results here and simplify the derivation in the next section introducing the
parabolic two-band model. In addition, we also assume electrons are independent with
each others in the model. This independent-particle approximation was examined by
the previous study based on TDDFT, in which almost the same HHG power spectra are
reproduced with the independent-particle approximation, where the time-dependence of
Kohn-Sham potential is ignored, describing the system as non-interacting particles in
a mean-field potential [40]. The reduction of dimension and the neglect of interaction
greatly reduce the cost of simulations.

We also assume the laser field applied has no spatial variation, namely it is a homo-
geneous field, because the typical wavelength of the laser for generating HHG in solid
systems is much larger than the length scale of a lattice cell. This assumption is com-
monly known as dipole approximation, and it enables us to reduce our simulation space
to just one cell of the lattice, which again minimizes the computation cost.

2.1.1 Hamiltonian and the Ground State

In a crystal, consider an N -electron system with Hamiltonian H [N ]. The electron-
electron Coulomb interaction is neglected so H [N ] is simply a summation of N one-
electron Hamiltonian:

H [N ] = ΣN
j=1H[j] (2.1)

with H[j] being the Hamiltonian of the jth electron in the N -electron Hilbert space

H[j] = I ⊗ · · ·⊗H ⊗ · · · ⊗ I , j ∈ [1, N ]. (2.2)

↑ jth term

Here, H is the one-electron Hamiltonian in the velocity gauge

H =
(P − qA)2

2M
+ U (2.3)
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where q andM are the charge (sign included) and the mass of an electron and P = −iℏ∇
is the momentum operator. The vector potential of the external homogeneous laser field
is designated as A = A(t) and the crystal potential is represented by U = U(r). The
crystal potential has a translational symmetry with a primitive lattice vector L, namely
U(r +L) = U(r).

From the fact that the Hamiltonian of this N -electron system is merely a summation
of N one-particle Hamiltonian (namely, electrons are not coupled) and the observable
we are interested in is just a single-particle operator, we can describe the whole system
with just one single Slater determinant. That is, the electrons in the system could be
dealt with one by one instead of all together at the same time. In other words, this
N -electron system can be effectively reduced to N one-electron systems. Therefore, we
will consider a one-electron system with Hamiltonian H from here on.

The calculation of energy eigenvalue problem for the ground state can be simplified by
applying Bloch’s theorem. According to the theorem, an energy eigenstate ψ(r) = ⟨r|ψ⟩
in a crystal could be described by the form

ψ(r) = ψk(r) = uk(r)e
ik·r (2.4)

with uk(r) being the Bloch function with a translational symmetry of L and k being
the crystal momentum. Now let ⟨r|ψnk⟩ = ⟨r|nk⟩ = ψnk(r) = unk(r)e

ik·r be an energy
eigenstate with the band index n and the crystal momentum k and its corresponding
energy be Enk. By applying |nk⟩ and ⟨r| on the right and left of Eq. 2.3, we have:

⟨r|H|nk⟩ = eik·r

M

[−ℏ2

2
∇2 − iℏ(ℏk − qA) · ∇+

|ℏk|2

2
+

|qA|2

2
− ℏqk ·A

]
unk(r) + eik·rU(r)unk(r)

= Enke
ik·runk(r)

or, after canceling the same terms for the two equations on the right:

Enkunk(r) =
[−ℏ2

2M
∇2 − iℏ

M
(ℏk − qA) · ∇+

|ℏk|2

2M
+

|qA|2

2M
− ℏq
M

k ·A+ U(r)
]
unk(r)

=
[(−iℏ∇+ ℏk − qA)2

2M
+ U

]
unk(r)

= H [k]unk(r). (2.5)

This eigenvalue problem without external laser, namely A(t) = 0, is then solved nu-
merically for each k to form the ground state of the system. In this model, we will
consider an N -electron ground state with fully occupied valence bands and completely
empty conduction bands. This ground state also serves as the initial state of the many-
electron system. The corresponding single-electron state at crystal momentum k lying
in a valence band ν at the beginning of the time t = 0 will be designated by

ϕνk(r; t = 0) = ⟨r|ϕνk(t = 0)⟩ = ⟨r|ψνk⟩. (2.6)

This state will be propagated over time for the calculation of HHG power spectra.
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2.1. QUANTUM MODEL

2.1.2 Time Propagation and HHG Power Spectrum

In this model, the time evolution of the single-electron state |ϕ(t)⟩ is governed by
Schrödinger’s equation:

iℏ
∂

∂t
ϕνk(r; t) = ⟨r|H|ϕνk(t)⟩ (2.7)

or, after applying Bloch’s theorem with ϕνk(r; t) = uk(r; t)e
ik·r, we have

iℏ
∂

∂t
uk(r; t) =

(−iℏ∇+ ℏk − qA(t))2

2M
uk(r; t) + U(r)uk(r; t). (2.8)

Note that, at the beginning of the time the Bloch function is just the one of a valence
band specified by ν, namely uk(r; t = 0) = uνk(r). Eq. 2.8 will be the actual dynamical
equation implemented in our numerical simulations.

Once we have the state at any given time, the current density J(t) could then be
calculated by

J(t) =
∑
ν

1

ΩB

∫
ΩB

Jνk(t)dk (2.9)

Jνk(t) =
q

M
⟨ϕνk(t)|P − qA(t)|ϕνk(t)⟩

=
q

M

1

ΩC

∫
VC

dru∗νk(r; t)(−iℏ∇+ ℏk − qA)uνk(r; t)

where ΩB and ΩC are the volume of the first Brillouin zone and the volume of a primitive
cell. And the

∫
ΩB

dk and
∫
ΩC

dr indicate integration over the first Brillouin zone and
one primitive cell, respectively. Note that Jνk(t) is the contribution from one electron
to the total current density J(t) of the N -electron system. Here we would like to
address that ν and k in the above equations merely indicate what the band index and
crystal momentum a state ϕνk(t) have at the initial time and they do not suggest the
corresponding state is always in the valence band denoted by ν over time.

As the electric field of the light emission is proportional to the acceleration of charged
particles, we could extract the HHG power spectrum through the Fourier transformation
of the current. Therefore, the emission power spectrum P (ω) can be calculated by

P (ω) = ω2|FT {J(t)W (t)}(ω)|2 (2.10)

with FT being Fourier transformation and W (t) a window function. The application
of a window function onto current density before Fourier transformation allows for a
smoother spectrum. Here we will simply use the envelop of the laser field as the window
function. An example for the HHG power spectrum is given in Fig 2.1, together with the
electric field of the corresponding driving laser and the current density the laser creates.
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2.1. QUANTUM MODEL

Figure 2.1: Some examples of numerical calculations for HHG in a solid system based
on the one-dimensional quantum model introduced in this section. The electric field of
an applied laser as a function of time is described in (a). The current density generated
from the system as a response to the applied laser field shown in (a) is also described in
(b) as a function of time. The HHG power spectrum calculated from the current density
in (b) is shown in (c).

2.1.3 Time-Frequency Analysis

To study the dynamics of the HHG, we will perform time-frequency analysis to extract
the emission time and energy of the generated photons. This analysis involves super-
imposing the predictions from a semi-classical model onto the results from a quantum
simulation. Therefore, one can trace the origin of the emission and understand how they
are affected by scattering. The details of the semi-classical models will be described in
the next chapter. For the quantum signals, we perform the short-time Fourier transfor-
mation, specifically the Gabor transform, to the current density to obtain its emission
strength as a function of emission time τ and emission energy (or equivalently photon
frequency ω):

G(τ, ω) =
∣∣FT {J(t)e

−(t−τ)2

2σ2 }(ω)
∣∣2 (2.11)

with σ being the standard deviation of the Gaussian. Note that this Gabor transfor-
mation is nothing but Fourier transform of the current density sampled by Gaussian
function near a specified time τ , and therefore one can interpret the result G(τ, ω) as
the emission spectrum from the system around time τ . How closely this spectrum is
related to the emission time τ is determined by the standard deviation σ. Small σ sug-
gests the Gaussian window vanishes very quickly with time t moving away from τ and

19



2.1. QUANTUM MODEL

thereby current density at time far away from τ will take little part in the final spectrum
G(τ, ω).

Note that the value of this σ should be smaller than the time scale of an emission
event, otherwise such events can not be resolved in the time domain and the information
for the time of recombination is lost. As an emission event, which consists of the motion
of an electron moving away from and coming back to a core ion, is mainly controlled
by the driving laser, we can roughly estimate the time scale of an emission event to
be one optical cycle of the laser. Therefore, σ is always smaller than one optical cycle.
However, σ should not be too small so as to avoid large uncertainty in frequency domain
(or equivalently, energy domain). In practice, one would typically tune σ to make sure
the signal in the energy range of interest has good resolution in both time and frequency.

The short-time Fourier transformation allows us to extract the emission time τ and
emission energy ℏω of HHG from the quantum system. On the other hand, we can
also calculate the timing and energy from a semi-classical model. When the two sig-
nals are plotted together and match each other to a reasonable degree, one could then
attribute the origin of a photon emission to a specific classical trajectory in the semi-
classical model. This procedure is commonly addressed as time-frequency analysis. If
an HHG event is successfully characterized to a trajectory in the procedure, this anal-
ysis could provide crucial information for the HHG like time of excitation, motion of
the corresponding electron-hole pair, and interaction between the pair and the external
laser. Therefore, time-frequency analysis could allow for a deeper understanding of the
quantum signal and dynamics of HHG.

In Fig. 2.2, we demonstrate a simple example of the time-frequency analysis. The
short-time Fourier transformation of the current density from a quantum simulation
G(τ, ω) is plotted as the color map in the background of the figure, and the classical
predictions are marked by black circles. The classical predictions from a semi-classical
model will be introduced and connected to the time-frequency analysis here in the next
chapter. One can see that, in the energy domain of 7 to 14 eV and time domain of 35
to 65, the structure of the major time-frequency signals of G(τ, ω) (colored in red) are
reasonably reproduced by the classical results. We can than connect this major emission
with the specific trajectory and investigate its dynamics.

2.1.4 Numerical Implementation

Here we will describe the numerical implementation on solving the energy eigenvalue
problem in Eq. 2.5 for the ground state and propagating the wavefunction of an electron
over time according to Eq. 2.8 for the current density. As we are actually dealing with a
one-dimensional system, the corresponding Hamiltonian, dynamical equation, and other
quantities shown here will be reduced to their one-dimensional versions, e.g., k → k,
r → r, A(t) → A(t), L → L etc.

Evenly-distributed grids are employed to discretize both real-space (r-space) and
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2.1. QUANTUM MODEL

Figure 2.2: An example for the time-frequency analysis. The spectrum of the current
density from the short-time Fourier transformation is shown as the color map in the
background, and the emission timing and energy from a semi-classical model is marked
by black circles.

crystal-momentum space (k-space). For r-space, we have:

rj = ∆r × (j − 0.5)− L

2
, j ∈ {1, 2, · · · , Nr} (2.12)

where Nr is the number of grid points and ∆r = L
Nr

is the grid spacing. Note that the
choice of shift here guarantee inversion symmetry for the grids. For k-space, the grid
points are also defined in the similar way as:

kj = ∆k × (j − 0.5)− π

L
, j ∈ {1, 2, · · · , Nk} (2.13)

where Nk and ∆k = 2π
LNk

are the number of grid points and the grid spacing, respectively.
The numerical calculation of derivatives is carried out simply by finite difference

method to the 4th-order (using 5 grid points). The first and second derivatives of the
Bloch function unk(r) with respect to r at r = rj can be calculated by (let uj = unk(rj)
for simplicity):

∂unk(r)

∂r

∣∣∣
r=rj

≈
∑

l=−2,··· ,2

D
[1]
l uj+l

∆r
, (D

[1]
0 , D

[1]
±1, D

[1]
±2) = (0,±2

3
,∓ 1

12
) (2.14)

∂2unk(r)

∂r2

∣∣∣
r=rj

≈
∑

l=−2,··· ,2

D
[2]
l uj+l

∆r2
, (D

[1]
0 , D

[1]
±1, D

[1]
±2) = (

5

2
,
4

3
,− 1

12
). (2.15)

21



2.1. QUANTUM MODEL

Keep in mind that the space is periodic so the index j = N+1 and j = N+2 correspond
to j = 1 and j = 2 and j = 0 and j = −1 correspond to j = N and j = N − 1.

With the numerical form of the derivatives, the one-dimensional version of Eq. 2.5
can be written in the form Enkuα =

∑
β hαβuβ as shown by the following:

Enkuα = H [k]uα

=
−ℏ2

2M

∑
γ

D
[2]
γ

∆r2
uα+γ −

iℏ
M

(ℏk − qA)
∑
γ

D
[1]
γ

∆r
uα+γ +

[ |ℏk|2
2M

+
|qA|2

2M
− ℏq
M
kA+ U(rα)

]
uα

=
∑
β

{−ℏ2

2M

∑
γ

D
[2]
γ

∆r2
δβ,α+γ −

iℏ
M

(ℏk − qA)
∑
γ

D
[1]
γ

∆r
δβ,α+γ

+ δαβ
[ |ℏk|2
2M

+
|qA|2

2M
− ℏq
M
kA+ U(rα)

]}
uβ

=
∑
β

hαβuβ (2.16)

with γ an integer running from −2 to 2. After setting A = 0, the eigenvalues and
eigenfunctions of the matrix h will then be solve with conventional numerical solver.

In the time domain, the time axis is discretized evenly with a time step ∆t from
t = 0 to a specified time. A Bloch state at the next time grid is calculate through the
application of time propagator on the corresponding state at present time grid according

to the one-dimensional version of Eq. 2.8. Therefore, we have uk(t+∆t) = e
H[k](t)

iℏ ∆tuk(t).
For the time propagator, Taylor expansion to the 4th order is implemented so the Bloch
state at next time is numerically calculated by:

uk(t+∆t) ≈
[
1 +

∑
j=1,··· ,4

1

j!
(
(H [k](t))∆t

iℏ
)j
]
uk(t). (2.17)

The actual operation for applying multiple H [k] on the Bloch state can be done by
utilizing the right-hand side of Eq. 2.16 repeatedly.

Finally, the evaluation of the current density J(t) at any given time grid is numerically
carried out by the discretized form of one-dimensional version of Eq. 2.9:

J(t) =
1

ΩB

∑
ν,α

Jνkα∆k (2.18)

Jνkα =
q

MΩC

∑
β

[
(ℏk − qA(t))|uνkα(rβ; t)|2∆r − iℏ

∑
γ=−2,··· ,+2

u∗νkα(rβ; t)D
[1]
γ uνkα(rβ+γ ; t)

]
.

To have reliable numerical results, simulations are verified by gradually using smaller
∆r, ∆k, and ∆t and observe the converging behavior for the current density and the
corresponding HHG spectrum.
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2.2 The Parabolic Two-Band Model

The addition of a static electric field to the laser invokes various changes in electron dy-
namic, altering the corresponding HHG in a very complex and intertwined way. There-
fore, we would like to really simplify the quantum model so as to focus on the mechanism
of interest and understand the impact of the static field. The specific mechanism we
would like to investigate here is how the change of the trajectory of an electron by the
extra static field makes its way to the corresponding HHG power spectrum. To achieve
this, we consider a non-interacting, many-electron model like the one introduced in the
previous section but reduce the number of bands to just one conduction band and one
valence band. Additionally, we avoid solving the energy structure of the system and
just explicitly assign parabolic bands to the model. After these major reductions, vari-
ous minor approximations are made to further reduce the complexity of the system and
facilitate simulations of the model.

2.2.1 The Dynamical Equation and Approximations

Here we first introduce the Houston’s state [41] as they will be utilized as a basis set to
expand the dynamical equation in Eq. 2.8 for a Bloch wavefunction. The Houston state
ηnk(r; t) could be define as the instantaneous energy eigenstates at time t with a phase
accumulated over its trajectory K(t) in crystal-momentum space [41]:

ηnk(r; t) = e
∫ t
0

EnK (t′)
iℏ dt′unK(t)(r) (2.19)

where unK(t)(r) is the instantaneous energy eigenstate at time t with EnK(t) being the
corresponding energy:

EnK(t)unK(t)(r) = H [K(t)]unK(t)(r). (2.20)

The trajectory in crystal-momentum space K(t) here can be calculated by the acceler-
ation theorem:

K(t) = k − q

ℏ
A(t) (2.21)

where k is the initial crystal momentum of the state. Notice that, by performing time
derivative on Eq. 2.21, one could obtain the Newton-like equation:

dℏK(t)

dt
= qE(t) = F laser(t) (2.22)

with Flaser being the force of the laser exerted on an electron. The laser applied within
this model will be composed of an oscillating field and a static field. The oscillating
part is a typical linearly-polarized laser. The electric fields from both components are
assumed to lie in the z direction.
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Now we can expand the Bloch function of an electron using a basis formed from the
Houston’s states:

uk(r; t) =
∑
n

Cnk(t)ηnk(r; t) (2.23)

with Cnk(t) being the expansion coefficients and n the index of a band involved. Feeding
this expansion into the dynamical equation in Eq. 2.8 for the general model shown in
the previous section, we would have on the left-hand side Eq. 2.8:

iℏ
∂

∂t
uk(r; t) = iℏ

∂

∂t

∑
n

Cnk(t)ηnk(r; t)

= iℏ
∑
n

∂Cnk(t)

∂t
ηnk(r; t) + iℏ

∑
n

Cnk(t)
∂ηnk(r; t)

∂t

= iℏ
∑
n

∂Cnk(t)

∂t
ηnk(r; t) +

∑
n

Cnk(t)iℏ
∂

∂t

[
e
∫ t
0

EnK (t′)
iℏ dt′unK(t)(r)

]
= iℏ

∑
n

∂Cnk(t)

∂t
ηnk(r; t) +

∑
n

Cnk(t)
[
EnK(t)ηnk(r; t) + e

∫ t
0

EnK (t′)
iℏ dt′iℏ

∂unK(t)(r)

∂t

]
= iℏ

∑
n

∂Cnk(t)

∂t
ηnk(r; t) +

∑
n

Cnk(t)EnK(t)ηnk(r; t)+

∑
n

Cnk(t)iFlaser(t)e
∫ t
0

EnK (t′)
iℏ dt′ ∂unK(t)(r)

∂K(t)
. (2.24)

Note that we have utilized the relation iℏ∂unK(t)

∂t = iℏ∂unK(t)

∂K(t)
dK(t)
dt = i

∂unK(t)

∂K(t) Flaser(t) in
the last line. As for the the right-hand side of Eq. 2.8, we have:

H [K(t)]uk(r; t) =
∑
n

Cnk(t)H
[K(t)]ηnk(r; t)

=
∑
n

Cnk(t)e
∫ t
0

EnK (t′)
iℏ dt′H [K(t)]unK(t)(r)

=
∑
n

Cnk(t)e
∫ t
0

EnK (t′)
iℏ dt′En[K(t)]unK(t)(r)

=
∑
n

Cnk(t)En[K(t)]ηnk(r; t). (2.25)

The equivalence of the two sides of then yields (note that
∑

nCnk(t)En[K(t)]ηnk(r; t) on
both sides cancel out each other):

iℏ
∑
n

∂Cnk(t)

∂t
ηnk(r; t) = −

∑
n

Cnk(t)iFlaser(t)e
∫ t
0

EnK (t′)
iℏ dt′ ∂unK(t)(r)

∂K(t)
(2.26)

24



2.2. THE PARABOLIC TWO-BAND MODEL

For simplicity, we would let
∫ t
0

EnK(t′)
iℏ dt′ = θn(t). Multiplying ηmk(r; t) on both sides of

Eq. 2.26 and integrate over one cell in real space, one would have:

iℏ
∑
n

∂Cnk(t)

∂t
e(θn(t)−θm(t)) 1

ΩC

∫
Ω
u∗mK(t)(r)unK(t)(r)dr

= −iFlaser

∑
n

Cnk(t)e
(θn(t)−θm(t)) 1

ΩC

∫
ΩC

u∗mK(t)(r)
∂unK(t)(r)

∂K(t)
dr (2.27)

or, after using the orthonormality of unK(t)(r):

iℏ
∂Cmk(t)

∂t
= −iFlaser

∑
n

Cnk(t)e
(θn(t)−θm(t))χ[K(t)]

mn (2.28)

χ[K(t)]
mn =

1

ΩC

∫
ΩC

u∗mK(t)(r)
∂unK(t)(r)

∂K(t)
dr.

Note that Eq. 2.28 describes the Schrödinger’s equation in the basis formed by Hous-
ton’s states. We will apply several approximation based on this equation to reduce the
complexity of the system.

The major simplification is to consider only two bands in the expansion of the Bloch
function in Eq. 2.23. One of them is the conduction band n = c and the other is the
valence band n = ν. Another simplification is that we would directly assign band energy
to the system instead of solving the energy eigenvalue problem starting from a model
potential in the previous section. The energy bands are simply modeled in the parabolic
form:

Eνk = −|ℏk|2

2Mν
(2.29)

Eck = Eg +
|ℏk|2

2Mc
(2.30)

with Eg being the band gap andMν andMc being the effective mass in the valence band
and conduction band, respectively.

In addition, for the elements of χ(t) in Eq. 2.28, we set the diagonal components

χ
[K(t)]
cc and χ

[K(t)]
νν to zero for simplicity. For the off-diagonal terms χ

[K(t)]
νc (and its

complex conjugate), it could be written as

χ[K(t)]
νc =

−ℏ
M

1

EνK(t) − EcK(t)

1

ΩC

∫
ΩC

u∗νK(t)(r)(−iℏ∇)ucK(t)(r)dr (2.31)

by evoking the relation:∫
ΩC

u∗mK(t)(r)
∂

∂K(t)
unK(t)(r)dr =

−ℏ
EmK(t) − EnK(t)

∫
ΩC

u∗mK(t)(r)
−iℏ∇
M

unK(t)(r)dr.

(2.32)
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See Appendix A for the proof of this relation. Now we assume the dependence of the
integral on crystal momentum K(t) is negligible, namely the uniform-matrix element
approximation, to further ease the calculation:

1

ΩC

∫
ΩC

u∗cK(t)(r)(−iℏ∇)uνK(t)(r)dr ≈ pcν , (2.33)

The projection of pcν = p∗
νc along the laser direction pcν is approximated according to

Kane’s two-band model [42]:

pcν =
M

2

√
Eg

Mr
(2.34)

where Mr = (M−1
c +M−1

ν )−1 is the reduced effective mass. With all these approxima-
tions, now we have the original dynamical equation of the system in Eq. 2.28 reduced
to:

iℏ
∂Cνk(t)

∂t
= Cck(t)e

(θc(t)−θν(t)) −iℏF laser(t) · pνc

Mr[EcK(t) − EνK(t)]
. (2.35)

This is the dynamical equation for our parabolic two-band model.
The initial state of the many-electron system is a state with a fully occupied valence

band and a completely empty conduction band, namely Cνk = 1 and Cck = 0 for each
k at initial time. The state will be propagated by the dynamical equation in Eq. 2.35,
and the current density in the direction of the laser, Jz(t) will be calculated at each time
step. This current density is the summation of the corresponding intra-band current
density JIntra

z (t) and the inter-band current density JInter
z (t):

Jz(t) = JIntra
z (t) + JInter

z (t) (2.36)

JIntra
z (t) =

q

ΩB

∫
ΩB

[vνz |Cνk|2 + vcz|Cck|2]dk (2.37)

JInter
z (t) =

qpcν
ΩB

∫
ΩB

2Re
{
C∗
ckCνk

}
dk (2.38)

where vνz = kz
Mν

and vcz =
kz
Mc

are group velocity of the valence band and the conduction
band, respectively. Note that the idea of decomposing the current density into intra- and
inter-band components is only defined within the Houston’s states so one could naturally
have different intra- or inter-band components if different basis functions for expansion
are utilized.

To obtain the HHG spectrum of the system, we perform Fourier transformation on
Jz(t) only and neglect components in other directions. As electrons are not subjected
to the external laser force in these direction, it could be expected the current density
perpendicular to the laser polarization would be negligible.

For the simulations of the system, we run the program PANDA which is dedicated for
investigating non-linear electron dynamics using the two-band-model [43]. In addition,
the output data is considered converged if the results in current density and HHG power
spectrum remain essentially the same when the number of grid points in k-space and
time are gradually increased.
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Chapter 3

Semi-Classical Models and
Umklapp Scattering

Semi-classical models play an indispensable role in understanding the mechanisms of
the HHG in solid or gas systems as they provide simple and clear physical pictures for
the corresponding dynamics. From time to time, the power spectrum of the HHG from
experiments or theoretical quantum simulations could yield very complex pattern and
thereby are quite difficult to understand its formation. On the other hand, a semi-
classical model for the HHG is generally formulated based on classical mechanics with
additions of quantum excitation and recombination. The simplicity of a semi-classical
model enables us to understand the dynamics of the HHG and provides a clear physi-
cal picture while at the same time reproduces the experiments or theoretical quantum
simulations to some reasonable degree. As a result, it is a common and useful approach
to analyze the quantum or experimental data by comparing them with a corresponding
semi-classical model and distill the key ingredient of the physical process.

In addition to capturing the mechanism of the HHG, a semi-classical model could
also serve as a foundation for making predictions for experimentalists on some crucial
properties of the HHG. For example, the three-step model for gas-phase HHG can
actually provide a formula for the cutoff energy of the HHG and reproduce the quadratic
dependence of the energy on the electric field amplitude observed in experiments. With
the quantitative and qualitative description of the cutoff energy accurate to this degree,
physicists could estimate how far a plateau could extend under different laser strength
and evaluate the applicability of the gaseous HHGs under the different setup of a laser.
This ability to make predictions also signifies the need to construct a semi-classical model
for HHG in solid systems.

One of the very important semi-classical model for solid-phase HHG is proposed
by Vampa at al., who has extended the idea of a parabolic energy dispersion of a free
electron in the gas-phase HHG to the complex energy dispersion in solid systems [4]. This
extended semi-classical model also describes the solid-phase HHG in three steps similar
to the original three-step model. Based on this model, an approximated formula for the
cutoff energy is proposed, albeit under very strong simplification of the band structure
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[5]. The complex structure of the energy bands in solids really poses a huge obstacle for
a simple picture so a well-accepted model like the three-step model in gas-phase HHG
has not yet been achieved in the realm of solid-phase HHG.

The semi-classical model for the solid-phase HHG could be further improved by
including other mechanisms in solids. The specific factor we want to investigate here
is the of Umklapp scattering. When an electron-hole pair is created by a strong laser
and move inside a crystal, it is natural to expected that the pair would have chances to
undergo scattering with the lattice. The scattering events should, in principle, modify
the trajectory of the pair and its possibility to recombine. The HHG power spectrum
from photons emitted from the recombination then should also altered to some degree
by the scattering. We would show that this kind of scattering could be integrated into
Vampa’s semi-classical model by creating a new scattered trajectory in addition to the
conventional non-scattered trajectory whenever such a scattering event occurs. This
idea has been proposed in previous studies and the appearance of multiple plateaus in
the HHG power spectrum is attributed to such a scattering effect [7].

In the first section of this chapter, we will briefly discuss the three-step model for
gas-phase HHG and introduce the generalized three-step model proposed by Vampa et
al. in details for the solid-phase HHG. Also, the actual procedures for the calculations
are explicitly shown. In the second section, the adaptation of the model to incorporate
Umklapp scattering is introduced, together with its implementation.

3.1 Semi-classical Model for the HHG in Gases and Solids

The HHGs from gas systems have been well-studied by the semi-classical model known
as the three-step model [13, 12], and attempts to generalize the model to the HHG in
solid systems has also been made over the years [yue˙imperfect˙2020, 4, 5, 7]. Here
we will briefly introduce the three-step model and then describe one of the important
generalization proposed by Vampa et al. from gaseous to solid systems [4].

The three-step model, as its name suggests, describes the HHG in a gas system as
three distinctive steps:

� Ionization of a molecule by the laser, creating ions and effectively free electrons.

� Acceleration of the free electrons in vacuum, gaining energy from the laser.

� Recombination of the electrons with the ions, releasing the gained energy as high-
energy photons.

In the first step, a high-intensity laser shining on gas molecules (generally inert gas
mono-atomic molecules like He) in a gas chamber produces ionized molecules and ion-
ized electrons. These electrons responsible for the HHG could be effectively seen as
free electrons as they are very far away from the ionized parent molecule and thereby
unaffected by the attractive force of the ions. To be more precise, the travel distances
of these electrons are much larger than the length scale of the molecule so the laser
force dominates the motion of the electrons. As for the ionized molecule, it is considered
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stationary compared to the motion of the ionized electrons during the whole process of
the HHG due to its much-larger mass. In the second step, the ionized electron now is
driven by the external laser and move in place far from the ionized parent molecule. The
motion of the electron at this stage can be accurately captured by classical mechanics
simply with a free electron accelerated by the laser. The electron gains energy from the
laser and accumulates it in terms of its kinetic energy. Finally, in the third step, the
force of the oscillating laser changes its direction and pushes the electron back to the
ionized parent molecule. If the electron recombines with the parent ion, it releases its
high kinetic energy by emitting a high-energy photon. This completes one cycle of the
HHG in a gas system.

The most important consequence of the three-step model is that it gives the whole
process of the gas-phase HHG a very simple physical picture. One could intuitively
estimate the change of the HHG when the laser is altered by the classical mechanics in
the second step instead of complicate quantum dynamics. Furthermore, by simulating
the classical trajectories of the model and compare the signals from experiments or
quantum simulations, one could analyze the source of the HHG and distinguish the
major contributor of the process. This analysis is then the time-frequency analysis
which we have already discussed about in Chapter 2.1.3. In addition to the simple
picture, the model also allows for prediction of the cutoff energy Uc of the corresponding
power spectrum:

Uc = Ip + 3.17Up (3.1)

where Ip is the ionization potential and Up =
q2F 2

0

4Mω2
0
is the ponderomotive energy with

F0 and ω0 the electric field amplitude and angular frequency of the laser, respectively.
Although the actual value of the cutoff energy could deviate from Eq. 3.1, its quadratic
dependence on electric field amplitude (through Up) is indeed in accordance with ex-
periments for gas-phase targets. This ability to estimate the cutoff energy is crucial for
developing applications based on the HHG.

The very success of the three-step model in gas systems inspires the adaption of the
model to the HHG in solid systems. And one of the very important adaptation is made
by Vampa et al. through the incorporation of the band structure[4]. In the second step of
the three-step model, the motion of a free electron driven by a laser can be equivalently
treated as an electron resides in a parabolic band and move under the influence of the
laser. For solid-phase HHG, the idea of this parabolic band is extended to the actual
band structure of the solid system. The generalized three-step model describes the HHG
in solid systems by the following three characteristic steps:

� Excitation of an electron from a valence band to a conduction band, creating an
electron-hole pair.

� Acceleration of the electron-hole pair by the laser force, gaining energy prescribed
by the band structure.

� Recombination of the electron-hole pair, emitting a photon with energy of the band
energy difference.
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Figure 3.1: A schematic illustration for the generalized three-step model. The blue
and red curves describe a valence band and a conduction band. The steps of excitation,
acceleration, and recombination are marked by I, II and III, respectively.

These three steps are illustrated schematically in Fig. 3.1. For the first step, laser
excites an electron from the top of a valence band to the bottom of a conduction band
and an electron-hole pair is created, as shown by the process I in Fig. 3.1. In the
real space, the electron and the hole are assumed to be in the same position at this
instance. In the second step (process II in Fig. 3.1), the electron and the hole will be
driven by the laser and move in k-space according to the acceleration theorem with their
crystal momentum over time being K(t). In the real space, the electron and the hole
also propagate with their instantaneous velocity specified by the corresponding group
velocity vgn(k) = 1

ℏ∇kEnk, (n ∈ {c, ν}). For the final step, during the motion of the
electron and the hole, they are considered to collide with each other and recombine if
they move to the same position in real space. The electron in the conduction band then
drops down to the valence band as shown in process III of Fig. 3.1 and releases its extra
energy, namely the energy difference between the two bands, by creating a photon of
that energy. These three steps complete a cycle of photon emission for solid-phase HHG.

Now we will explicitly show the procedures for implementing the three-step model
for solid-phase HHG. The description here will be limited to a one-dimensional system
since the semi-classical model for both of the quantum models described in the previous
chapter effectively reduces to such a one-dimensional model. In addition, we also consider
only the solid systems of direct band gap with its band gap locates at Γ point (k = 0)
and has zero group velocity at this point.

We should first define the physical quantities involved in the calculation. After
an electron is excited by a laser, or equivalently an electron-hole pair is created, at
time tex, we can calculate the relative position between the electron and the hole
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x(t) = xe(t) − xh(t) where xe(t) and xh(t) are the displacement of the electron and
the hole, respectively. Note that the relative velocity of the electron and the hole
v(t) = dx(t)

dt is equivalent to their corresponding relative group velocity, namely v(t; tex) =
vgc (K(t; tex)) − vgν(K(t; tex)) where K(t; tex) is the displacement in crystal momentum
for the electron-hole pair created at time tex:

K(t; tex) = − q
ℏ
[A(t)−A(tex)] , t ≥ tex. (3.2)

The calculation of the semi-classical model is carried out by the following procedures:

1. Choose an excitation time tex in the duration of the laser pulse.

2. Set up the initial condition in real space: x(t = eex) = 0 and v(t = tex) = 0.

3. Calculate the trajectory in the real space by one time step according to x(t) =∫ t
tex
v(t′; tex)dt

′.

4. If x(tr) = 0 at certain time tr, a recombination has occurred. The time is then
designated as recombination time tr.

5. Calculate the energy of emitted photon ℏω from this recombination by:

ℏω = EcK(tr;tex) − EνK(tr;tex). (3.3)

6. Go back to step 3 and repeat for x(t) at another time step until reaching the end
of the pulse.

7. Go back to the first step and repeat with a new excitation time t′ex until the
excitation time reaches the end of the pulse.

The numerical calculation of x(t) is carried out by Runge-Kutta method to the 4th order
with time step ∆tRK . Also, the deterministic condition x(tr) = 0 is substituted by the
condition x(tr − ∆tRK) × x(tr + ∆tRK) ≤ 0 because absolute zero is unattainable in
the numerical calculation. Note that with the substituted condition the program may
fail to detect a recombination when the trajectory x(t) just touches the time axis in the
x− t plane without passing it. This kind of scenario could be reduced by using a smaller
∆tRK . As a result, when checking the convergence of the time step, one should make
sure not only the trajectory x(t) =

∫ t
tex
v(t′; tex)dt

′ but also the condition x(tr) = 0 reach
convergence.

3.2 Semi-classical Model with Umklapp Scattering

Despite the direct analogy between the three-step model and the generalized one from
gas systems to solid systems, there are many mechanisms not included in the generalized
three-step model. One of them is the scattering between electrons and the lattice (sea
of positively-charged ions). In the second step of the generalized three-step model, an
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electron is treated as an effectively-free electron driven by a laser and moves in the energy
landscape, namely energy dispersion, formed according to the lattice potential. That
is, a parabolic energy dispersion meant for a free electron is distorted to a complicate
band structure to reflect the energy structure created by the lattice force. And this
energy structure is taken in the semi-classical model to account for the force of the
lattice implicitly so as to treat the electron as an effectively-free particle only subjected
to the force of the external laser. As a result, this effectively-free electron picture in the
second step of the generalized three-step model ignores any scattering with the lattice.

The neglect of such scattering could be questionable as it might make a difference
for the solid-phase HHG. Under a typically setting for generating high-order photons
in a solid system, electron-hole pairs responsible for the light emission would generally
travel a distance of several lattice cells. Therefore, one would expect the electron-hole
pairs have chances to scatter with some ions during the process. If such scattering does
occur, the scattered electron-hole pair should have quite different speed and direction
compared to those before the scattering. This suggests the trajectory of the electron-hole
pair would be altered to a great extent, leading to a modified chance of recombination
and photon emission in the future. As a consequence, it is natural to think the HHG
power spectrum would be altered by the scattering in a crystal.

The scattering could be integrated into the generalized three-step model by a small
modification in the second step. We will demonstrate this here by first looking at the
scattering process in the k-space. In principle, as an electron passes a point, which is
addressed as a scattering point in our context, in a band where a neighboring band has
very similar or even the same energy, the electron would have chances to move to this
neighboring band by shifting its crystal momentum by a reciprocal lattice vector. This
process is typically known as Bragg scattering or Umklapp scattering. In Fig. 3.2, such a
process is illustrated with a conduction band (solid curve) and the shifted ones (dotted
curves) of a one-dimensional system. Note that the scattering points for this specific
band structure is found at the cross points of the band and the shifted ones. Before
the scattering, an electron driven by a laser happens to be moving toward a scattering
point as indicated by the process I in Fig. 3.2. After passing the scattering point,
there are two possible paths: the non-scattered path and the scattered path, which are
represented by the process II and II’ in Fig. 3.2, respectively. The idea and the effect of
the scattering would become more clear when we observe the two different paths in the
real-space. For path II, the velocity of the electron will change continuously with time so
the corresponding trajectory xe(t) will be a smooth curve without abrupt bending. On
the other hand, for path II’ the discontinuous group velocity of the electron when going
from the conduction band to the shifted conduction band leads to a abrupt bending in
xe(t) at the time of scattering. The trajectory will not look smooth due to this scattering.
The behavior of the electron of the path II’ then looks like a classical particle hitting
an obstacle and scattered off. This reestablishes the familiar idea of scattering. From
this example in one-dimensional system, it is clear that we need to consider not only the
conventional non-scattered path but also the scattered path in order to take account for
the effect of Umklapp scattering. Therefore, we can incorporate Umklapp scattering into
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Figure 3.2: A sketch for the two possible paths for an electron which undergoes Umklapp
scattering in the crystal-momentum space. The process I indicates an electron moving
towards the scattering point located at zone boundary. The process II and II’ describe
the non-scattered and scattered paths, respectively.

the generalized three-step model by creating a scattered trajectory whenever a scattering
point is traveled through by an electron-hole pair. In other words, in the second step of
the generalized three-step model, a trajectory will branch into two trajectories, one for
the non-scattered and the other for the scattered, at the time of scattering.

In summary, our semi-classical model with Umklapp scattering describes the HHG
in solid systems by the following three steps:

� Excitation of an electron from a valence band to a conduction band, creating an
electron-hole pair.

� Acceleration of the electron-hole pair by the laser force, gaining energy prescribed
by the band structure. The trajectory of the pair branches into one scattered
trajectory and one non-scattered trajectory if a scattering point is passed.

� Recombination of the electron-hole pair, emitting a photon with energy of the band
energy difference.

Note that step one and three remain exactly the same as those in the generalized three-
step model, and step two is modified by the addition of trajectory branching. We will see
in Chapter 4 our model can reproduce the quantum result and describes the structure
of multiple plateaus, which is unavailable in the three-step model without scattering.
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3.2.1 Implementation of the Model with Umklapp Scattering

The implementation of the semi-classical model with Umklapp scattering deserves a bit
more attentions because of the possible exponential growth of branching trajectories.
Notice that the number of trajectories is doubled every time an electron passes through
a scattering point and it depends sensitively on the setup of the laser pulse. For example,
increasing laser intensity would lead to larger span in the crystal-momentum space for
an electron-hole pair and enable the pair to reach more scattering points. Additionally,
using a longer pulse with more optical cycle will also increase the repetition of an electron-
hole pair passing a scattering point. Due to the large number of trajectories from the
complex scattering process, it would not be computationally efficient to fully simulate
the new semi-classical model to the end of the pulse.

A simple solution is to stop branching or just terminate the simulation of a trajec-
tory once it becomes less important. For example, we can disregard scattered trajectories
if the current trajectory has already undergone Umklapp scattering for several times,
because in general a multi-scattered electron-hole pair are very unlikely to meet and
recombine in the future. In practice, this is carried out by stopping branching at scat-
tering points for doubly-scattered trajectories. Also, we can neglect the photon emission
beyond first recombination due to the nature of quantum spreading of the electron-hole
wave packets in real-space. This allows us to terminate a trajectory at the time of first
recombination.

The implementation of the model could be listed in the following steps:

1. Choose an excitation time tex in the duration of the laser pulse.

2. Set up the initial condition in real space: x(t = tex) = 0 and v(t = tex) = 0.

3. Calculate the trajectory in the real space by one time step according to x(t) =∫ t
tex
v(t′; tex)dt

′.

4. In each time step, designate a recombination event and recombination time t = tr
if the condition x(t) = 0 is satisfied. Then:

� Calculate the energy ℏω of emitted photon by ℏω = EcK(tr;tex) − EνK(tr;tex).

� Jump to the last step.

5. In each time step, designate a scattering event and scattering time ts if the con-
dition K(t; tex) − ks = 0, where ks is one of the scattering points, is satisfied.
Then:

� Create a scattered trajectory if the total number of scattering is no more than
two.

� Stay with the current trajectory if the total number of scattering is larger
than two.

6. Go back to step 3 and repeat for x(t) at another time step until reaching the end
of the pulse.
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7. Go back to the first step and repeat with a new excitation time t′ex until the
excitation time reaches the end of the pulse.

For the same reason in the previous section, the deterministic conditionK(t; tex)−ks = 0
is substituted by the condition [K(t − ∆tRK ; tex) − ks] × [K(t + ∆tRK ; tex) − ks] ≤ 0.
Again, this substituted condition is sensitive to the time step ∆tRK and its convergence
should be verified.
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Chapter 4

The Effects of Scattering and a
Static Field on the HHG in Solids

We study the dynamics of solid-phase HHG with the effects of scattering and a static
field through the comparison between quantum and semi-classical models. As data from
experiments or ab initio quantum simulations is generally a result of intricate dynamics,
it is very difficult to delineate the mechanisms involved. In this study, to clarify a
connection between the HHG in the energy range of interest and the external laser, we
employ simplified quantum models, namely the one-dimensional quantum model and the
parabolic two-band model introduced in Chapter 2. Furthermore, in order to develop
microscopic insight into the phenomena, we follow the conventional approach in the
community of HHG studies, namely a comparison between quantum and semi-classical
models. To be more precise, we will use the semi-classical models to retrace the HHG
signal from quantum simulations and establish its characteristics in the aspect of the
scattering and a static field.

In the investigation of scattering effects, we begin by briefly looking at the differ-
ent dependence of the cutoff energy on the electric field amplitude of the external laser
between a parabolic band and a non-parabolic band, which is the Kane’s band in our
case, within the generalized three-step model. The empirical formula of the cutoff for
the non-parabolic band is also proposed, which could serve as a quick estimation for
experiments on solids with band structure in the form of the Kane’s band. With a
basic understanding of the behavior of the cutoff, we then move to the main investiga-
tion. Quantum simulations based on the one-dimensional quantum model using a model
potential formulated in Sec. 2.1 are performed and their quantum data is compared
with the predictions from the generalized three-step model with Umklapp scattering
described in Sec. 3.2. Multiple plateaus are observed in quantum simulations, and the
semi-classical model successfully captures the cutoff energy for each plateau. In addi-
tion, with the help of the time-frequency analysis, we show that the major contribution
to each plateau comes from the recombination of electron-hole pairs undergo a different
number of scattering. Finally, we present a semi-classical approach extended by using
the concept of the mean-free path to incorporate the general scattering effects in solid.
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From this semi-classical model, the wavelength independence of the cutoff energy in
solid-phase HHG could be reproduced.

For the effect of a static field, we use the parabolic two-band model derived in Sec. 2.2
and compare the results with the predictions from the generalized three-step model in
Sec. 3.1. It is observed that the cutoff energy of the HHG power spectrum splits into
two by the static field. The two cutoffs depend on the static electric field amplitude in
the opposite way: one increases and the other decreases with the increasing static field.
However, the increasing cutoff will saturate at maximum energy at a certain electric
field amplitude and starts to decrease with the stronger static field. From the semi-
classical model, it could be shown that the splitting of the cutoff energy is a result of
broken symmetry induced by the static field, which removes the two-fold degeneracy of
trajectories for the electron-hole pairs.

This chapter consists of two major parts corresponding to the two subjects mentioned
above. In section 4.1, we present our studies on the effect of Umklapp scattering on the
solid-phase HHG. Additionally, the alternative approach to general scattering effects in
solids is also presented at the end of this section. In section 4.2, the effect of a static
field on solid-phase HHG are demonstrated and discussed. In both of the two sections,
the setup of the related models and numerical parameters are also given at the start of
each section.

4.1 The Effect of Umklapp Scattering on Solid HHG

4.1.1 Setup of the Quantum System under a Model Potential

We would specify the actual numerical setup of the quantum system for studying scatter-
ing effects and briefly discuss the substitution of the band structure in the semi-classical
calculation. In quantum simulations, the model potential V (x) of the Matthieu-type in
the following form are utilized:

V (x) = V0 cos(
2π

L
x) (4.1)

with V0 = 0.37 a.u. and L = 8 a.u. These specific values are taken from the previous
study [7] since we will make several comparisons with their results. The corresponding
band structure is computed by diagonalizing the Hamiltonian and yields a band gap of
ϵg = 4.18 eV and reduced electron-hole effective mass of µ = 0.083 electron mass. The
band structure is shown in Fig. 4.1 (a). For simplicity, in the calculation of semi-classical
models, this numerically solved band structure is substituted by the Kane’s band to
reduce the complication induced by tunneling between bands. Notice that, in principle,
one can employ the numerically evaluated band structure shown in Fig. 4.1 (a), by taking
account of the quantum transitions between different bands with a non-zero energy gap.
To comply with the definition of non-scattered trajectories discussed in Chapter 3 and
neglect the complication in the states due to tunneling processes, we substitute the band
structure solved numerically from the potential in Eq. 4.1 with the Kane’s band, which
always has zero energy gap between the current band and shifted bands. As a result,
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the effect of tunneling processes could be neglected in the semi-classical model. The
comparison between the electron-hole band structure EDiff (k) = Eck −Eνk solved from
the quantum system and the Kane’s band is shown in Fig 4.1 (b). The Kane’s band
takes the form:

ϵKane(k) = ϵg

√
1 +

|k|2
µϵg

(4.2)

with the band gap energy ϵg and the reduced electron-hole effective mass µ taking the
values directly from the numerically solved band structure in Fig. 4.1 (a).

As for the laser pulse used in the simulations, its vector potential A(t) has the
following form:

A(t) =
F0

ω0
sin4

(π
τ
t
)
sin(ω0t) (4.3)

and 0 if t ̸∈ [0, τ ]. The photon energy is set to ℏω0 = 387 meV and the pulse duration
is chosen to be τ = 96.1 fs. We will investigate the electron dynamics by changing the
peak amplitude F0.

For the numerical simulations of the one-dimensional quantum system, the number
of grid points in a unit cell Nr is set to 30 and the number of grid points in the first
Brillouin zone Nk is set to 352. In the time propagation of the Schrödigner’s equation,
the time step ∆t is set to 1 attosecond. As for the semi-classical calculations, the total
number of excitation time texconsidered within the full pulse duration is set to 3000 and
the time step ∆tRK is set to 0.01 fs.

4.1.2 The Cutoff Energy Dependence in the Semi-classical Models

We first examine the difference in the cutoff energy dependence on the electric field
amplitude between a conventional parabolic band and the Kane’s band using the gen-
eralized three-step model. A general one-dimensional parabolic band ϵPara takes the
form:

ϵPara(k) =
|k|2

2µ
+ ϵg (4.4)

where µ and ϵg are the reduced effective mass of an electron-hole pair and band gap. By
employing the same effective electron-hole mass and band gap like those in the Kane’s
band and perform the generalized three-step model described in Chapter 3, one could
obtain the cutoff energy Uc for various electric field amplitude F0. Their relation is
described in Fig. 4.2. Note that the square root of ponderomotive energy is proportional
to F0. Also, both of the axes are in the dimension-less form through the normalization
with band gap ϵg.

From Fig. 4.2, it is clear that in the weak-field region (Up/ϵg being around 0 to 1)
the cutoff energy from either the parabolic band or the Kane’s band is essentially the
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Figure 4.1: (a) Electronic band structure of the one-dimensional model with the lattice
potential described in Eq. 4.1 is shown. The valence bands and conduction bands are
described by the blue-solid lines and the red-dotted lines, respectively. (b) Comparison
of the electron-hole band (red-solid lines) and the Kane’s band (blue-dotted lines). This
figure is taken directly from our publication [6].
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band are shown as green-dashed line and red-solid line, respectively. The analytical
expression for the strong-field approximation, Uc/ϵg = 3(Up/ϵg)

1/2, is described as the
blue-dotted line. This figure is taken from our publication [6].
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same. This is of no surprise as the Kane’s band approaches the parabolic band near Γ
point. That is,

lim
k→0

ϵKane(k) = ϵPara(k). (4.5)

On the other hand, we see huge differences in the strong-field region (Up/ϵg ≥ 3) where
the parabolic band shows quadratic dependence on electric field amplitude while the
Kane’s band yields linear dependence. The quadratic dependence of the cutoff energy
for the parabolic band can be understood by a direct analogy with the gas-phase HHG
so the cutoff energy would admit the form:

UPara
c = ϵg + 3.17Up. (4.6)

To obtain a similar and simple expression for the case of the Kane’s band, we fit the
cutoff energy predicted from Kane’s band in the strong-field region to a linear function
and obtain the analytical expression:

UKane
c ≈ 3ϵg

√
Up

ϵg
. (4.7)

This analytical expression is also shown in Fig. 4.2 as blue-dotted line. This analytical
expression of cutoff energy is different from previous studies using linear bands, of which
cutoff energy Uk−space

c is estimated to have the expression

Uk−space
c = 4ϵg

√
Up

ϵg
(4.8)

which is larger than the cutoff energy in Eq. 4.7 by one-third. The difference is a result
of different consideration in the semi-classical model: For Eq. 4.8 one consider only k-
space trajectories, which allows for electron-hole recombination at any time; For Eq. 4.7
we consider not only k-space trajectories but also real-space trajectories, which adds
additional constraint that an electron and a hole is allowed to recombine only when
they are in the same place in the real space. This means the possible recombination
energy from model considering both real-space and k-space trajectories is a subset of
that considering only k-space trajectories. As a result, by construction the cutoff energy
in Eq. 4.7 can only be smaller or equal to that in Eq. 4.8.

4.1.3 The HHG Spectrum from Quantum Simulations

Now we start to examine the effect of Umklapp scattering in HHG by observing the
features in the HHG power spectrum. Fig. 4.3 shows the power spectrum from the one-
dimensional quantum simulations under the electric field amplitude F0 = 0.165 V/Å.
Clearly, one could identify multiple plateaus with cutoffs locates at around 13, 28, 44,
and 68 eV. This feature of multiple plateaus is also observed in previous theoretical
studies, and described as the result of band-climbing [7].
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Figure 4.3: The power spectrum of HHGs from quantum simulations with the electric
field amplitude F0 = 0.165 V/Å. Several plateaus are visible and their corresponding
cutoff energy is marked by black arrows around 13, 28, 44, and 68 eV. This figure is
taken from our publication [6].
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In Fig. 4.4, the power spectra of HHG are depicted as a function of electric field am-
plitude in the range of 0 to 0.25 V/Å. The cutoff energy calculated from the generalized
three-step model with Umklapp scattering is also described in the same figure. Here
we show the cutoff energy with respect to different numbers of scattering an electron-
hole pair experienced before the recombination. The maximum energy emitted from an
electron-hole pair undergoes zero, one, and two scattering processes are represented as
solid-black, blue-dashed, and red-dotted lines, respectively. From Fig. 4.4, it is clear
that the cutoff of the first plateau could be predicted by the conventional generalized
three-step model. However, for the cutoff of the second and the third plateaus, they
can only be captured by our generalized three-step model with Umklapp scattering.
Additionally, the general agreement in the cutoff energy of higher plateaus between
quantum simulations and our semi-classical model justifies the validity of our treatment
to Umklapp scattering in the solid-phase HHG. The cutoff energy of higher plateaus
(second and third) captured by our semi-classical model indicates that these plateaus
are induced by Umklapp scattering processes. Our generalized three-step model with
Umklapp scattering could be considered as a complementary model to the previously
proposed band-climbing model in the sense that real-space trajectories are also incorpo-
rated [7].

4.1.4 Time-frequency Analysis

To further investigate the details of the HHG spectra and the validity of our semi-classical
model with Umklapp scattering, we also perform time-frequency analysis, which is de-
scribed in Chapter 2, for the signals from quantum simulations. The Gabor transforma-
tion, with a time window of which full width at half maximum is 1.78 fs, is applied to
the current J(t) from quantum simulations with the electric field amplitude F0 = 0.165
V/Å. The result is described as the color map in Fig. 4.5, together with the predictions
from our semi-classical model as the black dots. Each of the panels of Fig. 4.5 shows the
contribution of electron-hole pairs of different numbers of scattering: Panel (a), (b), and
(c) describe the emission energy and timing for electron-hole pairs with no scattering,
single scattering, and double scattering, respectively.

In Fig. 4.5 (a) the electron-hole pairs undergo no scattering do not contribute to
the second and third plateau. However, from Fig. 4.5 (b) and (c) singly-scattered and
doubly-scattered electron-hole pairs have apparent contribution to the second plateau.
Moreover, Fig. 4.5 (c) indicates doubly-scattered electron-hole pairs contribute to the
third plateau. These results indicate that Umklapp scattering allows for higher energy
emissions by opening up the tunneling channels to higher conduction bands. This again
further confirms the scattering process is the origin of the formation of the high plateaus.

In addition, one could see that the quantum signals are reasonably reproduced by
the semi-classical predictions. The information for actual emission timing and energy
is a distinctive difference from the semi-classical model in previous studies [7] where
electrons and holes recombine at any time. Note that the previous model considers only
k-space trajectories and electrons and holes are assumed to be delocalized. Therefore
these electron-hole pairs can recombine at any separation distance, resulting in photon
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Figure 4.4: The color map shows the calculated HHG power spectra from the one-
dimensional quantum simulations versus the electric field amplitude F0 of the laser. The
cutoff energy computed by our semi-classical model using the Kane’s band is described as
different lines: The cutoff from trajectories without scattering is shown as the black-solid
line. The cutoff from trajectories with single scattering is described as the blue-dashed
line. The cutoff from trajectories with double scattering is shown by the red-dotted line.
This figure is taken from our publication [6].
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Figure 4.5: Time-frequency analysis of the HHG calculated from quantum simulations
are shown as the color map. The emission energy and timing predicted from the general-
ized three-step model with Umklapp scattering are represented as black dots, and their
contribution for no scattering, single scattering, and double scattering are indicated in
panel (a), (b), and (c) respectively. This figure is taken from our publication [6].
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emissions at any time. On the other hand, in our model which considers both real-
and k-space trajectories, electrons and holes are treated like point particles(local). The
recombination of an electron-hole pair is only allowed when they are right at the same
place. And therefore photon emission only occurs at a certain time. Generally speaking,
electrons and holes in the solids are not point particles localized to a point in both
real and k space but are wave packets with finite spreading. The assumption of point
particles in our model gives rise to the deviation between the quantum signal and the
semi-classical predictions in Fig. 4.5. For example, the semi-classical prediction fails to
capture the signals on the left side (around 40 to 50 fs) of the semi-classical predictions
in the second plateau (around 15 to 35 eV).

We could further assess how local an electron-hole pair actually is by including the
spreading of their wave-packets into the semi-classical model. This would allow for
a quantitative measure of the spreading and verification of the assumption of point
particles in the model. In addition to the examination of wave-packet spreading in real
space, it is also worth investigating the spreading in k space. Within the semi-classical
model it is assumed electrons are excited and tunnel to a conduction band only at the
Γ point. This may not be realistic as, in principle, electrons in the region near the
point could also become excited and tunnel to a conduction band. That is, electronic
excitation is in general not localized at the Γ point but has a spreading near the point.
As a quick summary, the finite spreading of the electron-hole wave packet in real space
affects the constraint of the recombination for the pair, and the finite spreading of the
tunneling region near the Γ point affects the excitation channels of the electron-hole
pair.

The generalization of the semi-classical model for the spreading of electron-hole pairs
in real and k space is straight-forward: For the spreading in real space, the condition
for recombination in the semi-classical model is modified such that electrons and holes
are allowed to recombine as long as they are within a specified distance |∆x| instead of
at exactly zero distance. As for the spreading in k space, the initial crystal momentum
of an electron-hole pair now is not limited to the single Γ point but to a small region
centered at the Γ point with a specified radius |∆k|. Beyond these modifications in each
case, the semi-classical model remains unchanged.

In Fig. 4.6 the results from the semi-classical model with different constraints for
recombination are shown: Recombination of an electron and a hole is allowed (a) only
when they are at the same place in real space and (b) when their separation distance
in real space is within 40 a.u. We could see that the relaxation for recombination
constraint in the real space does not improve the semi-classical prediction qualitatively.
This suggests the assumption that electrons and holes are like point particles works
well in real space, at least for this specific quantum system. In Fig. 4.7, the semi-
classical predictions for different excitation channels near Γ point are shown: In panel
(a) excitation occurs exactly at the Γ point. In panel (b) excitation occurs within a
radius of 0.1 a.u. centered at the Γ point. It is clear that the missing predictions on
the left of semi-classical results in the second plateau mentioned earlier now appear.
This indicates that non-zero spreading of excitation channels for electron-hole pairs in
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Figure 4.6: The comparison for semi-classical predictions for recombination occurring
(a) at zero separation distance and (b) within a separation distance of 40 a.u. between
an electron and a hole. The purple circles describe the semi-classical predictions and
the color map describes the time-frequency analysis of HHG. The setup for quantum
simulations is the same as Fig. 4.5.
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Figure 4.7: The comparison for semi-classical predictions for excitation occurring (a)
at exactly Γ point and (b) in a region within 0.1 a.u. from Γ point. The purple circles
describe the semi-classical predictions and the color map describes the time-frequency
analysis of HHG. The setup for quantum simulations is the same as Fig. 4.5.

k space is important and should be taken into account when studying the dynamics of
the solid-phase HHG.

4.1.5 Extension to General Scattering Effects in Solids

We have been studying Umklapp scattering based on the one-dimensional quantum simu-
lations and found that Umklapp scattering plays an essential role in the solid-phase HHG.
However, Umklapp scattering itself might not be enough in higher-dimensional systems
to comprehensively describe the HHG in solids. In solid systems, an electron is not only
subjected to Umklapp scattering but also a variety of other scattering mechanisms like
scattering with impurity, defect, phonon, or other electrons. Generally speaking, it is
very difficult to deal with these complicated scattering events microscopically. Further-
more, while there could only be forward- and backward-scattering in one-dimensional
systems, electrons and holes might be scattered into many different angles in two- or
three-dimensional systems, which effectively suppresses the recombination of the pairs
in the future.

Here we propose a very simple modification inspired by the concept of mean-free-
path to the generalized three-step model in order to account for the effects of general
scattering in solid systems. The idea is quite simple: If an electron-hole pair has trav-
eled a long distance in a crystal, it is in general more likely to be scattered, and its
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chance to recombine in the future would be small. To be more accurate, we made two
assumptions. First, it is assumed that the chance of an electron-hole pair undergoing
a general scattering event in solids would depend on the distance the pair has traveled.
This is reasonable because a large travel distance typically indicates the electron-hole
pair has explored a larger volume of the lattice. If the source of scatterings like impurity
or defect is evenly distributed in a crystal, the pair with larger volume explored would
have a higher chance to encounter a scattering event. Second, we assume the scattered
electron-hole pair would have no chance to recombine after the scattering. This sup-
position should hold as a pair with scattering would have abrupt changes in trajectory
so the electron and the hole would have a difficult time meeting each other. Not only
that, even if they do eventually meet and emit a photon, this photon emission would be
very unlikely to be coherent with photon emission from other electron-hole pairs as the
emission timing is overwhelmed by scattering events. Therefore, the photon emission
from electron-hole pairs undergoes a general scattering should be of little significance
for the final macroscopic HHG.

One thing worth mentioning here is that one should not also apply the conclusion of
the second assumption here to Umklapp scattering as they are intrinsically different in
the sense of coherence. Note that Umklapp scattering discussed in Sec. 3.2 is triggered
by the electron-hole pair passing a scattering point in the crystal-momentum space, and
the motion of the pair is controlled by the external laser. This means the timing of
Umklapp scattering will be controlled by the laser so the photon emissions for these
scattered pairs will be coherent with the laser and thereby could be observed in the
macroscopic HHG power spectrum.

For the actual implementation of the concept into the generalized three-step model,
we first define the absolute travel length l(t):

l(t) =

∫ t

tex

|v(t′)|dt′ (4.9)

where v(t) is the relative velocity of the electron-hole pair at time t. Also, we will set
up a threshold of the absolute travel length lMFP . In the second step of the generalized
three-step model, we keep track of the absolute travel length l(t) of an electron-hole pair
over time. Once this length becomes larger than the threshold lMFP , the electron-hole
pair is considered to encounter a general scattering event and becomes scattered. The
recombination and photon emission of this electron-hole pair after the scattering are
then neglected (namely its trajectory is terminated). In practice, the values of lMFP

will be set to some tens of the lattice constant. We can see that, just like the mean-free
path is the travel distance before any interaction, the threshold of the absolute travel
length lMFP is the travel distance before any scattering event. This is why our approach
here is considered an analogy to the mean-free-path approximation.

The cutoff energy dependence on the wavelength of the laser field with lMFP being
3, 5, and 7 nm are described in Fig. 4.8 as red-dashed, green-dotted, and blue-dashed-
and-dotted curves. Also in the same figure, the result without scattering is shown by
the black-solid curve, which is equivalent to the case of lMFP = ∞. From Fig. 4.8, one
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Figure 4.8: Wavelength dependence of the cutoff energy of HHG from the generalized
three-step model with general scattering effects. The cutoff energy with lMFP equal to 3,
5, and 7 nm are described as red-dashed, green-dotted, and blue-dashed-and-dotted lines.
The result without scattering is also depicted as the black-solid line. The wavelength
independence can be clearly observed in cases with finite lMFP . This figure is taken
from our publication [6].
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can see that in the long-wavelength region the cutoff energy from the model with general
scattering becomes essentially a flat line, suggesting that it is effectively independent of
the wavelength of the laser. Within our model here, this wavelength independence could
be understood as that electron-hole pairs having long travel enabled by long-wavelength
laser are more likely to be scattered during the acceleration process. As recombina-
tion from these long-travel electron-hole pairs, which typically carry higher energy due
to longer acceleration time, are suppressed by scattering, the highest emission energy
gradually saturates with increased laser wavelength [6]. Such wavelength independence
had already been observed in previous experimental studies. The reproduction of this
feature also suggests the suppression of recombination resulted from general scattering
effects in solids plays an important role in wavelength independence of the solid-phase
HHG.

4.2 The Effect of a Static Electric Field on Solid HHG

4.2.1 Setup of the Parabolic Two-band System

For the the parabolic two-band model introduced in Sec. 2.2. The band gap Eg and
reduced effective mass Mr of the parabolic band are set to 9 eV and 0.4 electron mass,
respectively. These values are chosen specifically such that the resulting system gives
clean spectra in time-frequency analysis. As for the laser, the electric field E(t) consid-
ered here is in the following form (with ẑ being the unit vector in z direction):

E(t) = ẑE0 cos
4(π(

t− τ/2

τ
)) cos(ω(t− τ/2)) + ẑEs (4.10)

with the oscillating amplitude E0 = 0.4 V/Å, photon energy ℏω0 = 0.5 eV, and full pulse
width T = 60 fs. The static amplitude Es ranges from 0 to 0.4 V/Å. The electric field
E(t) above is valid within the period t ∈ [0, τ ] and is set to zero outside of the period.

For numerical simulations of the three-dimensional quantum system, the axis kz,
which is the corresponding axis of z axis in reciprocal space, is discretized with 4096
grid points. The axis kr, which is the radial axis of kz, is also discretized by 4096 grid
points. The maximum crystal momentum in kz and kr direction are both set to 4 a.u. In
the time propagation, the time step ∆t is set to 0.08 a.u. and a total of 31200 time steps
are propagated (total time is around 60.34 fs). As for the semi-classical calculations, the
total number of trajectories within the full pulse duration is set to 3000 and the time
step ∆tRK is set to 0.01 fs.

4.2.2 The HHG Spectrum under a Static Field

We will first examine the differences induced by a static field in a solid-phase HHG
power spectrum. In Fig. 4.9, the spectra generated under different strength of the
static field are shown. The results for static electric field Es being 0, 0.04, 0.08, 0.12,
0.16, and 0.20 V/Å are described, respectively, as black, blue, light-blue, pink, red,
and brown lines. From this figure, it is observed that, when the strength of the static
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field becomes stronger, the maximum emission energy for the HHG is also increased
but the overall intensity with emission energy above band gap is lowered by the static
field. Additionally, we perform time-frequency analysis to verify the applicability of

Figure 4.9: The power spectra of HHGs under an additional static electric field, with
various colors indicating different static field strength. The blue, light-blue, pink, red,
and brown lines are results with the static electric field Es being 0.04, 0.08, 0.12, 0.16,
and 0.20 V/Å, respectively. Also, the power spectrum of HHGs without an additional
static field is represented as the black line.

the semi-classical model for the HHG under an additional static field. In the analysis,
the Gabor transformation with a time window of which full width at half maximum is
1 fs is applied to the current obtained from quantum simulations. This result is given in
Fig. 4.10, with the quantum result shown as the color map and semi-classical predictions
as pink dots. The nice agreement between the results of quantum simulations and semi-
classical predictions suggests the generalized three-step model is still applicable when a
static field is appended to the system. As a result, we can facilitate the idea of classical
trajectories to describe the dynamics of the HHG with a static field.

Empowered by the semi-classical model, we could describe the two features observed
in the HHG power spectrum, namely higher cutoff energy and lowered overall intensity
beyond band gap energy, by some simple physical pictures. The higher maximum emis-
sion energy induced by the static field could be understood as the following: In the case
with no static field, some high-energy electron-hole pairs are unable to recombine after
the oscillatory laser changes its direction because the laser force in this altered direction
is not strong enough to bring the pairs back together for recombination. However, in the
case when an additional static field presents, if this static force is in the same direction
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Figure 4.10: The time-frequency analysis of HHG (color map) and its semi-classical
prediction(pink circles) with the electric field amplitude of the oscillatory laser E0 = 0.4
V/Å and the electric field amplitude of the static field Es = 0.12 V/Å.

as the altered oscillatory laser force most of the time, the total force would push the
paired electron and hole toward each other. Therefore, these high-energy electron-hole
pairs now have higher chances to recombine, emit high-energy photons, and extend the
cutoff energy in the HHG power spectrum.

As for the lowered overall HHG intensity beyond band gap energy, it could be simply
understood by the fact that in general the additional static field is trying to separate elec-
trons and holes away from each other and thereby impedes recombination and lowers the
emission intensity. In the extreme case when the strength ratio Es/E0 = 1, there cannot
be any recombination at all within the semi-classical model because the total electric
force exerting on the electron-hole pair is always pointing in one direction, meaning the
electron and the hole are always being accelerated away from each other. That is to say,
in order to have possible recombination, the oscillatory electric field should overcome
the static electric field in some time windows. And it is the electron-hole pairs excited
in these time windows that could possibly recombine in the future after the total electric
force changes its direction. It is clear that these time windows will gradually diminish
as Es/E0 increases from 0 and eventually disappear at Es/E0 = 1. Consequently, the
possibility for recombination also decreases with the increasing static field, yielding a
lower HHG intensity.

From the two discussions mentioned above, one can see that two mechanisms induced
by the static field are competing with each other: Electron-hole recombination of some
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trajectories is made possible but overall the probability for electron-hole recombination
is lowered. As a result, it is expected that the cutoff energy should not increase indefi-
nitely with increasing static field but reach a maximum and decrease due to the overall
lowered recombination probability. This is indeed observed in quantum simulations. In
fig. 4.11 the color map describes the HHG power spectrum as a function of the static
electric field amplitude and the purple lines describe the cutoff energy from the semi-
classical model (the upper and lower cutoff will be discussed shortly). From this figure,
we can see that with the increasing static electric field amplitude the cutoff energy in-
creases from about 25 eV, reaching its maximum at around 40 eV near Es = 0.15, and
drops thereafter. Notice that the semi-classical model also captures such behavior and
reasonably reproduces the quantum result quantitatively.

Figure 4.11: The power spectrum of the HHG as a function of the electric field amplitude
of the static field Es is shown as the color map. The observed upper and lower cutoffs
from the semi-classical model are both shown as purple lines. Moreover, the band gap
energy of the system Eg = 9 eV is denoted by the black-dotted line.

4.2.3 Splitting of the Cutoff by the Broken Symmetry

Under a static field, the single plateau in a solid-phase HHG power spectrum is split into
two plateaus, creating a spectrum with two cutoffs as shown in Fig. 4.11. This splitting of
the cutoff energy from one to two could be understood by the broken symmetry induced
by the static field. To understand this consequence, let us first consider a conventional
HHG in solids. In the absence of a static field, the intensity of a laser remains exactly
the same over a time translation of half optical cycle. This symmetry in time ensures
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that, if an electron-hole pair is created at time tex, there will be another pair created at
time t′ex = tex+T/2 where T is the period of the oscillating field. This is simply because
the system is excited by the field of the same intensity at the two different times. The
trajectory x(t) of the electron-hole pair created at time tex will be the opposite of the
trajectory x′(t) of the electron-hole pair created at time t′ex because the opposite sign of
the electric field between half cycle is the only difference between the two trajectories.
That is, we have a simple relation x′(t) = −x(t − T/2) between the two trajectories.
Since the two trajectories are merely a shifted inversion of each other, they would also
possess the same return time (time difference in recombination and excitation) and
photon energy for their HHG. In another word, these two trajectories are degenerated
in the sense of emitted photon energy.

Now with a static field applied to the system, the intensity of the laser, which con-
sists of an oscillating and a static component, is no longer the same between each half
cycle. This indicates the two trajectories x(t) and x′(t) mentioned above will no longer
simply be shifted inversion of each other and the emitted photon energy coming from
the two trajectories will no longer be the same. Each of the trajectories now will have its
distinctive emission energy. In a nutshell, the degeneracy of the trajectories is removed
by the static field through symmetry breaking. This could be made clear through the
relation between the gained energy of electron-hole pairs from the laser and its return
time described in Fig. 4.12. In this figure, the case without a static field is represented
by the black-circle curve and the cases with a static field of 0.1 and 0.2 V/Å are de-
scribed by the red- and blue-circle curves, respectively. By comparing the cases with and
without a static field, we can easily see the static field split the curve from one (black) to
two (red or blue), and the splitting is becoming larger and larger under a stronger static
field. This directly shows that the static field removes the degeneracy in the energy of
the photon emission.

The broken symmetry by a static field can also describe the different dependence of
the cutoff energy on the strength of the static field. The two curves in the case with a
static field in Fig. 4.12 corresponds to the different responses to the total electric field
between half cycles. For example, let us consider the case with a static field Es = 0.1
V/Å, namely the two red-circle curves in Fig. 4.12. Note that, when compared with the
case without a static field (black-circle curve), one of the red curves has higher gained
energy and the other has lower gained energy. This could be understood to some extent
when the static field is not strong compared to the oscillating field. Assuming that
electron-hole pairs are mainly created at the peak of the oscillating part of the laser, the
pair will be accelerated more by the laser (consist of an oscillating and a static field)
during the second step if the oscillating field is in the same direction of the static field.
We address this as the enhanced acceleration. This results in a higher gained energy
compared to the case without a static field. On the other hand, if an electron-hole pair
is created at the time when the oscillating field is in the opposite direction of the static
field, the pair will not experience much acceleration during the second step. This is
addressed as the suppressed acceleration. As a result, the gained energy for this pair
would be smaller compared to the case without a static field. Note that as the strength
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Figure 4.12: The energy gained by electron-hole pairs at recombination as a function
of return time is shown. The results with the static electric field amplitude Es being 0,
0.1, and 0.2 V/Å are described as black-, red-, and blue-circle curves, respectively. One
can clearly observe the gained energy for the case without a static field splits from one
curve to two curves when Es is increased.
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Figure 4.13: The cutoff energy predicted by the generalized three-step model as a
function of the electric field strength ratio Es/E0 with E0 = 0.4 V/Å. The upper and
lower cutoffs are designated by the red and the blue lines. The band gap energy Eg = 9
eV is also shown for reference as black-dashed line.

of a static field increases, the degree of enhancement or suppression is also increased.
The different response to the laser leads to a positive dependence of the cutoff energy
(gained energy increases with a static field) for electron-hole pairs subjected to enhanced
acceleration and negative dependence of the cutoff energy (gained energy decreases with
a static field) for pairs with suppressed acceleration when the static field is weak. This
behavior can be clearly observed from the cutoff energy predicted by the generalized
three-step model in Fig. 4.13 with Es < 0.3 V/Å. Our idea here is an analogy to the
concept proposed in previous studies for gas-phase HHG under a weak static field [32].

Beyond a weak static field, we would have to apply some modification to the electron-
hole pairs subjected to suppressed or enhanced acceleration. For the pairs with sup-
pressed acceleration, their contribution to HHG becomes less important under a stronger
static field. Note that pairs would be less likely to be created at the time when the oscil-
lating field is in the opposite direction of the static field because the total laser intensity
becomes smaller with the stronger static field. Also, even if such electron-hole pairs are
created, the emitted photon energy would become smaller and approach band gap as
the suppression of acceleration is larger with the stronger static field.

As for the electron-hole pairs with enhanced acceleration, we should incorporate the
fact that the pairs cannot recombine and emit a photon if they are accelerated too much.
Note that, with the stronger static field, the amount of time that the oscillating field
changes sign and pushes the electrons and holes back together would become smaller,
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leading smaller chance of recombination. Therefore, for electron-hole pairs subjected to
enhanced acceleration, the pairs created at the peak of the oscillating field will contribute
less to HHG under the stronger static field. Since the electron-hole pairs with enhanced
acceleration that are created when oscillating field peaks are less important, the main
contribution to HHG now comes from electron-hole pairs with enhanced acceleration
that are created at the time away from the peak oscillating field. The pairs created at
this time will not be accelerated too much due to the shorter time of acceleration so
they could actually recombine and contribute to HHG. The two mechanisms, namely
more acceleration gives larger emission energy and electron-hole pair creation away from
peak field to avoid too much acceleration, compete with each other and eventually yield
a saturation in cutoff energy with the increasing static field. This saturated cutoff is
indeed observed in Fig. 4.13.

We should emphasize that, in general, the energy of the emitted photon from electron-
hole pairs depends on the electric field the pairs experience between the time of creation
and recombination. The proposed physical picture here aims for a simple semi-classical
description for the process but also at the same time captures the behavior of the cutoff
dependence on a static field.
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Chapter 5

Light Absorption of Core
Electrons

In recent years, the development of free-electron laser (FEL) has created new opportuni-
ties for X-ray spectroscopy [44, 45]. The generation of high-energy photons in the energy
range of the soft X-ray to the hard X-ray in FEL has been realized and demonstrate in
various facilities like FLASH, FERMI, SCALA, and LCLS [46, 47, 48, 49]. One of new
possibility in X-ray spectroscopy enabled by FEL is harmonic generation using a soft X-
ray as a seed. In experiments, second harmonic generation from soft X-ray are observed
and its intensity dependence on different laser parameters are measured [50, 51, 52]. The
trend in developing harmonic generation with a soft X-ray motivates us to consider the
prospect of HHG in solids from an input FEL in the soft X-ray regime. Specifically, we
are interested in developing the theoretical framework modeling the HHG using a soft
X-ray in solid systems.

There are several numerical and theoretical challenges in establishing a practical
model for the dynamical process of HHG using a soft X-ray in solids, and one of the
major challenges is the appropriate description for light absorption of core electrons.
Due to the large photon energy of the X-ray FEL, it is the core electrons deep inside
atoms rather than the valence electrons near Fermi level that are excited by the laser.
To numerically describe these core electrons which concentrates in a tiny space near a
nucleus, a high density of grid points is needed near the nucleus with the real-space
grid representation. This leads to very high computational cost for simulations of such
processes. Therefore, how efficient a numerical approach is also matters a lot in the choice
of theoretical framework. In addition to the numerical challenge, there are also many
theoretical difficulties to overcome for appropriately describing the solid-phase HHG
using a soft X-ray. For instance, in TDDFT, which is an efficient ab initio model with
effective electron-electron interaction [39], the reproduction of light-absorption for core-
electrons is challenging with conventional approximations of the exchange-correlation
functionals. In the conventional mean-field treatment, the occupation of core electrons is
treated effectively in an averaged sense. Similarly, the core holes created from excitation
of core electrons is also treated in the averaged sense. This means the number of core
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holes in a cell could be a fractional value, while in real world it is always an integer.
Here it should be emphasized that we are talking about the number of core holes in
one cell, not the number of core holes per cell calculated from the ratio of the number
of core holes to the number of cells in a crystal. In the real world, a fractional value
of, say 0.5, for the number of core holes per cell simply means (assuming one core
electron per cell) half of cells have one core hole and the rest of the cells has no core
hole. Therefore, in one cell the number of core holes is always an integer. However,
in the mean-field approximation, a fractional value of 0.5 for the number of core holes
per cell would mean every cell has one-half of core holes. This might be of an issue for
accurate description for light absorption of core-electron because it has been well-known
that the photon absorption in solids depends strongly on the number of the core holes
under a high-intensity soft X-ray. The absorption of soft X-ray photons would gradually
decreases with a stronger laser so the absorption eventually saturates. This phenomenon
is typically know as saturable absorption or light-induced transparency.

In order to theoretically describe the solid HHG using a soft X-ray, we need to
examine if the absorption of core electrons could be accurately captured in an efficient
model. If a model successfully reproduces the saturable absorption of core electrons
under soft X-ray, it would thereby serves as a possible candidate for simulating the
solid-phase HHG using a soft X-ray. For our study in this chapter, we simulate a
solid system of bulk aluminum by employing TDDFT with the adiabatic local density
approximation and obtain the absorption coefficient at different intensity of a soft X-ray
laser. Then a pulse propagation in an aluminum film in the classical limit is carried
out by using the intensity-dependent absorption coefficient to see whether the model
could reproduce the saturable absorption. It is found that TDDFT does successfully
capture the phenomenon. Also, with a deeper examination on the process, it is also
confirmed that the model reproduces the saturable absorption in accordance with the
already-established mechanism. Our results here verify that TDDFT could be suitable
for the theoretical framework describing solid-phase HHG using a soft-ray, at least for
the very first step, namely excitation, of the process.

This chapter is composed of the following: In the first section we introduce the sat-
urable absorption and its mechanism behind. Then we discuss the setup of the system
and theoretical framework in the second section. Specifically, the microscopic model
TDDFT for computing absorption coefficients and the macroscopic model for propa-
gation of a soft X-ray pulse are discussed. In the last section, the result of saturable
absorption and correction with some real-world effects are presented.

5.1 Saturable Absorption in Aluminum and its Mechanism

Saturable absorption is the behavior of decreased light absorption under a laser of in-
creased intensity. This phenomenon could make a material which is originally opaque
to a laser gradually become transparent when the laser intensity becomes stronger, and
therefore is sometimes addressed as light-induced transparency. Saturable absorption of
a soft X-ray in aluminum has been well-studied and the mechanisms behind the satura-
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tion are also described by a simple model in the previous study [53].
It is proposed that the core electrons which are responsible for absorbing the incoming

high-energy photon could be depleted by the high-intensity soft X-ray since the thermal
relaxation of excited electrons is not fast enough to supply electrons back to vacancies
in core energy levels. When these core electrons are all excited, there are simply no
energy receiver for incoming photons, leading to saturable absorption of the light. At
the same time, during the excitation of core electrons, the attractive force between core
electrons and their parent ion core is also modified, leading to the shift of the core
energy levels and rendering absorption of high-energy photon unavailable. The idea of
this modified attractive force is that, when core electrons gradually become excited and
move away from the parent ion, the electronic shielding formed by the negatively-charged
core electrons on the positively-charged parent ion will also become weaker. This means
the attractive force from the parent ion acting on the remaining bounded electrons will
become larger with the excitation of core electrons. That is, the remaining electrons are
now more tightly bounded. Generally speaking, core electrons will experience a stronger
increase in attractive force compared to electrons in conduction bands when the shielding
is attenuated, because core electrons are more closer to the ion core and thereby more
sensitive to the weaken shielding. The energy shift of core levels (2p orbitals) and the
conduction band are schematically shown in Fig. 5.1 (a) and (b). As a result, once
many core electrons are excited, it would take more energy to move the remaining core
electrons to the conduction band at Fermi surface. With the energy shift, the energy
of incoming photons of the soft X-ray now is no longer sufficient to excite the more-
bounded core electrons, leading to saturable absorption. This idea is also illustrated
schematically in Fig. 5.1 (c) and (d).

In our examination of core absorption, if saturable absorption is indeed reproduced,
we should also verify whether the phenomenon is induced by the mechanism described
above to ensure the reproduction is not merely a coincidence.

5.2 Theoretical Framework

Here we will consider a setup in the experiment [8], namely directing a soft X-ray to-
wards a thin film of aluminum and measuring its transmission. Our theoretical frame-
work would involve a microscopic simulation based on TDDFT [39] and a macroscopic
calculation of electronic wave propagation in aluminum based on electrodynamics in the
classical limit. We perform microscopic simulations to measure the absorption coeffi-
cient under a soft X-ray with different laser intensities. And Then we use this intensity-
dependent absorption coefficient to calculate attenuation in intensity macroscopically
for a soft X-ray pulse propagating in the Al film. Therefore, the soft X-ray pulse pene-
trating the Al film could be obtained and its transmission through the film can then be
calculated.

In the procedures mentioned above, we have made several assumptions. First, it is
assumed that, when the laser pulse penetrates through the Al film, the change of laser
intensity due to absorption over hundreds of lattice sites is tiny. This is equivalent to
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Bands Before Core Excitations
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(a) (b)
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Figure 5.1: A schematic view for the mechanism of saturable absorption under a soft
X-ray in aluminum. The conduction band is represented by a parabola and the core
energy level for 2p orbitals is described by a flat line. Also, an incoming X-ray photon is
depicted by the yellow lightning. The energy bands (a) before and (b) after excitation of
core electrons are shown in the upper section. In (a) the positive core ion is electronically
shielded by core electrons. In (b), the electronic shielding of the core ion is attenuated
since some core electrons are excited, and the energy bands are now bounded more
tightly, which is indicated by the energy shift of the bands. The interaction between
photon and a core electron (c) before and (d) after the bands are shifted is also described
in the lower section. (c) Before the energy shift, core electrons can absorb the soft X-
ray photon and be excited to the Fermi surface. (d) After the energy shift, the photon
energy of the soft X-ray is not large enough to make the excitation possible.
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cutting the Al film into many even-thinner slices with a thickness of several hundreds
of the lattice constant, and assume the soft X-ray is hardly absorbed within each slice.
Note that the cut is made in the way such that the soft X-ray has normal incidence on
each slice. The assumption allows us to perform the microscopic simulations under an
electric field with fixed maximum amplitude. This approximation would be reasonable
as long as the thickness of the slice is made small to guarantee little absorption within
the slice. Second, within each slice we apply dipole approximation for the laser field to
ease the computational cost. This is valid since the wavelength of the soft X-ray used in
our study is still much larger than the lattice constant of aluminum. Finally, we treat
each slice of the film as a bulk aluminum in the microscopic simulation. The rationale is
that, although the slice is quite thin, the thickness is still in the scale of several hundred
cells so the light absorption is not sensitive to the two surfaces.

5.2.1 Time-dependent Density Functional Theory

For the microscopic simulation, we employ ab initio simulations based on TDDFT,
which involves mapping of an interacting many-electron system to many non-interacting
single-electron systems [39]. If conventional approximations are applied, the model could
be seen as a mean-field approach in the sense that the complicate electron-electron
interaction is treated as an average potential depending solely on the density of electrons.
In this model, the dynamics of the wavefunction of an electron ψ(r; t) is governed by
the time-dependent Kohn-Sham equation:

∂

∂t
ϕ(r; t) = H0 +HH +Hxc (5.1)

whereH0, HH , andHxc are single-electron Hamiltonian, Hatree potential, and exchange-
correlation potential, respectively. The single-electron Hamiltonian contains kinetic en-
ergy in the velocity gauge with vector potential A(t) and potential energy from the
lattice ions U(r):

H0 =
(P − qA)2

2M
+ U (5.2)

with P the momentum operator and M and q the electron mass and charge (sign in-
cluded). The Hartree potential describes the energy from classical Coulomb interaction
between the current electron and other electrons:

HH =

∫
r′

q2n(r′)

|r − r′|
dr′ (5.3)

with n(r) then density of all electrons. For the exchange-correlation potential Hxc =
Hx +Hc, we take the local-density approximation so the exchange part of the potential
Hx is taken from the homogeneous electron gas [54]:

Hx = −3

4

[3n(r)
π

] 1
3

(5.4)
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and the correlation part Hc is given in term of a parametrization by Perdew and Wang
[55].

The vector potential A(t) of the laser pulse used for calculating absorption coefficient
admits the form:

A(t) =
F0

ω0
cos2(

π

τ
(t− τ

2
)) cos(ω0t)x̂ (5.5)

where F0 is the maximum electric field amplitude, τ = 30 fs is the total pulse length,
ℏω0 = 85.5 eV is the photon energy of the soft X-ray, and x̂ is a unit vector in the
positive-x direction. Outside the time domain 0 ≤ t ≤ τ the vector potential is set to
zero. The energy flux, or fluence Φ, for the pulse can be calculated by:

Φ = ϵ0c

∫ τ

0

[
F0 cos

2(
π

τ
(t− τ

2
)) sin(ω0t)

]2
dt (5.6)

with ϵ0 the electric permittivity of vacuum and c the light speed. In this calculation
of fluence we use long-pulse approximation (τ ≫ 2π

ω0
) for the electric field. Note that

the photon energy considered here is different from the experiment [8], because the
absorption spectrum of bulk aluminum from our theoretical simulation has a different
absorption edge so we shift our photon energy such that the same distance from the edge
is achieved. See Fig. 5.3.

The numerical simulation of the TDDFT is carried out by the program Octopus [56].
In the simulation, electrons of an Al atom in the 1s and 2s orbitals are treated as frozen
electrons not participating the photon absorption. The lattice constant for the cubic cell
of Al is set to 4.0485 Å. The spacing for grids in real space is set to 0.15 Å, and the
number of grid points in the crystal-momentum space is set to 27 in each dimension.
For time propagation, the time step is set to 0.02 Å.

5.2.2 Calculation of Transmission

The calculation of transmission of soft X-ray through the Al film is carried out by
propagating a classical wave in the aluminum film with a fluence-dependent absorption
coefficient from the microscopic simulations. We first perform TDDFT simulations under
a soft X-ray pulse and measure the excess energy density ρex of bulk aluminum, which is
the increment in total energy of electrons per unit volume after the pulse. This quantity
could also be interpreted as the absorbed energy per unit area per penetration depth of
the advancing pulse. Therefore, by definition, we can calculate the absorption coefficient
a by:

a = − 1

ϕ(0)

dϕ(z)

dz
=

1

ϕ(0)
ρex (5.7)

where ϕ(z) is the energy flux, or fluence, at a penetration depth z of the pulse. Here
we assume the pulse is propagating in the positive-z direction and the Al film starts at
z = 0 and ends at z = L with L = 53 nm the thickness of the film.
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Figure 5.2: Comparison of the transmission as a function of laser fluence between our
theoretical calculation (blue curve) and the experimental data (purple curve) taken from
the study [8]. Note that, since only the laser intensity is altered in the pulse and the
laser fluence is proportional to the intensity, the axis of fluence can be seen as the axis
of intensity.

By sampling the absorption coefficients at different intensities (or fluence) of the soft
X-ray pulse from microscopic simulations, we can form the absorption coefficients as
a function of fluence a(ϕ) by fitting the sampling points with cubic splines. Then the
fluence at different penetration depth can be solved by numerical integration of Eq. 5.7.
Numerically, we calculate the fluence at the next step ϕ(z + ∆z) from the fluence at
current step ϕ(z) by:

ϕ(z +∆z) = ϕ(z)− ϕ(0)a(ϕ(z))∆z. (5.8)

Finally, the transmission T is calculated as the ratio of the fluence before and after the
Al film, namely T = ϕ(L)

ϕ(0) .

5.3 Absorption of Core Electrons

5.3.1 Saturable Absorption

The calculated transmission of a soft X-ray at different laser fluence (or intensity) is
given in Fig. 5.2 as the blue curve, together with the experimental data (purple curve)
for comparison. From this figure, it is clear that our approach not only reproduces the
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Figure 5.3: The absorption spectrum of aluminum near the LII,III absorption edge from
theoretical calculation (red curve) and experimental data (blue curve) taken from the
previous study [58]. The vector potential of the soft X-ray used in this chapter is also
shown as a sharp yellow peak to illustrate its position in the absorption spectrum. The
FWHM of the laser is around 0.27 eV. Additionally, we also mark the energy difference
of 19 eV between the absorption edge and the laser in the case of our simulation and
the experiment. We select a soft X-ray with photon energy of 85.5 eV instead of 92 eV
used in the experiment because it has the same distance from the edge in the absorption
spectrum.

behavior qualitatively but also gives comparable values to the actual experimental data.
Most importantly, the transmission of the soft X-ray pulse exhibits clear increment when
the laser intensity is increased. This suggests that the Al film becomes more transparent
when subjected to a stronger soft X-ray and therefore the saturable absorption is indeed
reproduced.

To examine the fundamental reason behind the increasing transmission under strong
X-ray, we also calculate the absorption spectrum of bulk aluminum. The absorption
spectrum can be obtained by sending a kicks (a Dirac delta function in time for the elec-
tric field) to the bulk aluminum system and measuring the current density responding to
the kick [57]. In Fig. 5.3, the absorption spectrum of bulk aluminum near LII,III absorp-
tion edge is shown. The experimental data is also plotted in the same figure for ease of
comparison. Despite some differences in the position of peaks, the absorption spectrum
from the TDDFT simulation with a kick reasonably capture the overall structure of the
experimental spectrum. Note that the photon energy of the soft X-ray is well above the
absorption edge for this absorption spectrum from aluminum in the ground state. With
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Figure 5.4: The decrease in energy as a function of fluence for the core level (blue
curve) and a conduction band (red curve) compared to their original energy in the
ground state. The arrow indicates the fluence around 5 J/cm2 where the core level has
huge energy shift. Note that at this large energy shift in the core level the energy shift
in the conduction band is negligible. This makes the photon energy of the soft X-ray
off-resonance and thereby saturable absorption occurs.

this kick technique for calculating absorption spectra, we measure the spectrum of the
bulk aluminum after the application of the soft X-ray pulse at different pulse intensi-
ties. It is found that the general structure of the absorption spectrum remain roughly
the same at different laser intensities, but the structure is shifted to region of higher
energy. The shift could be made more clear by calculating the energy bands after the
application of the soft X-ray pulse. In Fig. 5.4, the change in energy for the core level
and the conduction band compared to their ground-state counterparts are described by
the blue curve and red curve, respectively. From the figure, it is clear that the core-level
energy is much more sensitive to the change of laser fluence compared to the conduction
band energy. In the high fluence region (fluence larger than 5 J/cm2), the core level has
shifted down in energy by around 20 eV while the conduction band only shifts down
by less than 1 eV. This indicates that the energy difference between the core level and
the Fermi surface would increase by around 19 eV, or equivalently the LII,III absorption
edge shift up in energy by around 19 eV. With this shift, the photon energy of the soft
X-ray is no longer above the absorption edge, and therefore the photon can no longer be
absorbed. This is the microscopic description for the saturation in absorption and the
increase in transmission under stronger soft X-ray.

As a quick summary, the behavior of saturable absorption of a soft X-ray in alu-
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minum is indeed reproduced by the our theoretical framework that combines microscopic
TDDFT simulations and macroscopic calculation of classical wave propagation. The suc-
cess comes from the proper description of the attenuated absorption coefficient under a
stronger soft X-ray. Also, by calculation of the energy structure after the pulse, the core
energy levels exhibit a large negative shift, leading to an overall shift of the absorption
spectrum to a higher energy region and rendering photon absorption unavailable. The
mechanism responsible for saturable absorption thus aligns with the description proposed
by previous study [53]. This could serve as an evidence for that TDDFT can accurately
describe the dynamical process of photon absorption of core electrons in aluminum under
a soft X-ray.

5.3.2 Corrections to Transmission from Theoretical Calculation

In this final section of the chapter, we would like to briefly consider some real-world
effects in experiments to improve the quality of the transmission from our theoretical
calculations. For example, in experiment the laser intensity at the focal spot will not be
uniform over the tiny shined area. We could assume a simple Gaussian distribution of
the laser intensity in the focal spot to estimate this effect. In Fig. 5.5, we have calculated
the transmission averaged over the focal spot (red curve), together with the one with-
out focal-spot average (blue curve) and the one from the experiment (purple curve) for
comparison. We can see that the transmission as a function of fluence indeed becomes
more closer to the experimental data. In addition to the effect of focal-spot average,
we could also consider the oxidation of the aluminum film in real experiments. Typi-
cally speaking, the surface of the aluminum film will inevitably suffers from oxidation
due to the very dilute oxygen remaining in a gas chamber. The oxidized compound,
namely Al2O3, has a different absorption coefficient and could lead to some variation of
the overall transmission. To assess the effect of the surface oxidation, we add a 10 nm
aluminum oxide layer on the front and back side of the 53 nm Al film (so the thickness of
the film is totally 73 nm) and the absorption coefficient of the aluminum oxide is set to
3.95× 105/cm for the soft X-ray. This absorption coefficient is assumed to remain con-
stant under various laser fluence. We show the transmission of such a surface-oxidized Al
film (red curve) in Fig. 5.6, together with the one without surface oxidation (blue curve)
and the one from the experiment (purple curve). It is clear that the overall transmission
is decreased, because the surface oxide layer keeps absorbing the soft X-ray irrespective
of the laser intensity. From this result, one could say such surface oxidation does make
a big difference so special care should be taken for observing saturable absorption in
aluminum.
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Figure 5.5: Transmission as a function of laser fluence from theoretical calculation for
the case with focal-spot average (red curve) and the case without focal-spot average
(blue curve). Transmission from the experimental data is also shown as the purple curve
for comparison.
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Figure 5.6: Transmission as a function of laser fluence from theoretical calculation for
the case with surface oxidation (red curve) and the case without surface oxidation (blue
curve). Transmission from the experimental data is also shown as the purple curve for
comparison.
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Chapter 6

Conclusion and Outlook

The development of HHG in gaseous systems over the years has demonstrated the pow-
erful applications and extensive potential of harmonic generation as a tool for physical
investigation. The extension of HHG to the realm of solid systems and the correspond-
ing revamped HHG applications are thus highly anticipated and widely studied in the
community of strong-field physics. This motivates our studies for HHG in solids in the
aspect of its dynamics. Specifically, we aim to investigate the corresponding change
of dynamics as a consequence of scattering effects and a static field. Furthermore, the
realization of X-ray FEL in recent years creates even more potential for HHG in solids
because harmonic generation based on a soft X-ray has now become achievable. Consid-
ering the complexity and novelty of this new field, any theoretical approach describing
the dynamical processes of HHG from a soft X-ray should be proposed with intensive
prudence and robust foundation. Therefore, we have also investigated the applicability
of the ab initio approach based on TDDFT in light absorption of core electrons, which
is a key process for HHG using a soft X-ray. In this final chapter, our results for each
topic mentioned above are summarized and their corresponding outlook is discussed.

In the study of scattering effect on solid-phase HHG, we extended the generalized
three-step model through the incorporation of Umklapp scattering, which was carried
out by branching classical trajectories in the model whenever a scattering event occurred.
The results of the extended semi-classical model were compared with those from quan-
tum simulations of a one-dimensional quantum system. It was shown that the features of
multiple plateaus in the HHG spectrum from quantum simulations were reasonably cap-
tured by the extended semi-classical model. The contribution of scattered trajectories
was also identified clearly through time-frequency analysis for each plateau. Therefore,
we have concluded the multi-plateau in HHG power spectra from a solid system is a
direct consequence of Umklapp scattering, which opens up more emission channels for
created electron-hole pairs. Additionally, in order to deal with general scattering effects
in solids, we have also proposed a simple modification to the generalized three-step model
by the concept of the mean-free path. It was shown that the wavelength independence
of cutoff energy observed in experiments is reproduced, and thereby we have conclude
that the mechanism for such wavelength independence is the general scattering in solid
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systems. Despite of the strong evidence proposed, special attention should be paid when
comparing the results of our theoretical studies on scattering effects with those from
real-world experiments. One clear discrepancy here is the missing multiple plateaus in
experiments using common semi-conductors as targets. In theoretical simulations, if in-
finite numerical accuracy is granted, one could in principle have infinite many plateaus
since there is always non-zero probability for electrons excited to infinitely higher bands.
This is of course meaningless in reality as the probability of the excitation is so low so the
corresponding signal will be overwhelmed by noise or is simply beyond the accuracy of
experimental measurement. In addition, as mentioned in Chapter 4, higher dimension-
ality of a system may also lead to lower probability of recombination for electron-hole
pairs. This could diminish the signal of multiple plateaus already at the theoretical level.
How important these factors are in real-world systems remains to be answered in the
future.

As for the investigation on the effect of a static field on solid-phase HHG, we have
found that one single plateau in a HHG power spectrum splits into two plateaus with
their corresponding cutoff depends differently with respect to the static field. The lower
cutoff decreases gradually to the band gap of the system with increasing strength of the
static field. On the other hand, the higher cutoff increases with the increasing static
field, saturates at a maximum, and then decreases gradually to the band gap. The two
different behaviors are described by the broken dynamical symmetry of the system due
to the additional static field. We should point out here that our theoretical investigation
assumes the target remain intact under the application of the laser and a static field.
However, when an oscillating field and the static field align in the same direction, the
strength of the total electric field could be very large and damages the target material.
Therefore, in real-world experiments, one may not be able to extend the HHG plateau,
which is important for the synthesis of ultra-short pulses, by a large margin through by
tuning the static field to attain the maximum energy for the higher cutoff. Whether this
is a real issue would be another interesting question in solid-phase HHG waiting to be
answered.

On the topic of verifying the applicability of the theoretical approach for HHG from
a soft X-ray, we have employed TDDFT with the adiabatic local density approximation
to describe the light absorption for core electrons in an Al film under a soft X-ray. Our
results have revealed that absorption coefficients calculated from the model do lead to
the well-known saturable absorption. Also, it is confirmed that the model accurately
reproduced the the correct physical mechanism that induced the saturable absorption.
As a result, our study here could be another supporting evidence for ab initio simulations
using TDDFT to describe HHG in solids under a soft X-ray. In spite of the excellent
reproduction of the phenomenon, we should still be very cautious about connecting our
theoretical results with those from real-world experiments. There are some mechanisms
which might affect the light absorption of core electrons but they are neglected in our
model. For example, Auger decay might also take a part in the process of light absorption
and increase the rate of de-excitation. This leads to the higher core-electron population
under a soft X-ray and thereby higher overall light absorption. It would be important to
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investigate these kind of mechanisms which could not be completely ruled out from the
question to further ensure the absorption process is reproduced by TDDFT in a reliable
way.

The major contribution of our theoretical works discussed in the thesis to the com-
munity of solid-phase HHG lies in the investigation of scattering effects on the HHG
power spectrum. The incorporation of Umklapp scattering into the generalized three-
step model provides a systematic and procedural approach for handling the scattering
effect in the semi-classical description of the HHG. The code for this extended semi-
classical model is also publicly available [59]. Additionally, to the author’s knowledge,
it is the first time that the wavelength independence of cutoff energy of the HHG could
be described by such a simple model with general scattering effects. As for the other
projects, our theoretical observation on the behavior of split cutoffs would suggest a
new possibility of synthesizing ultra-short pulse by utilizing the larger plateau region.
Moreover, the success in reproduction of saturable absorption of core electrons suggests
ab initio simulations based on TDDFT with the conventional mean-field approximation
could serve as a good candidate for describing HHG using a soft X-ray in bulk aluminum.

Looking forward, there are a lot of interesting follow-up research for the topics pre-
sented in this thesis. For the influence of scattering for HHG in solids, it would be tempt-
ing to study the effect microscopically through ab initio simulations of three-dimensional
systems so one could tell the importance of the scattering effects in scenarios more closer
to real experiments. It might even allow people to answer why the higher plateaus shown
in theoretical simulations are missing in the real world and establishes a more accurate
understanding of the scattering effects in solid-phase HHG. On the topic of adding a
static field, it would be of high interest to derive an analytical estimation or even an
explicit formula for the higher and lower cutoff in HHG spectra as a function of a static
field, because many applications of HHG depend on the cutoff energy. As mentioned
earlier, physicists have been synthesizing ultra-short pulse from HHG in the plateau
region. One might be able to create an even-shorter ultra-short pulse using the larger
plateau region induced by a static field. For this application, it would be crucial to know
the actual dependence of the higher and lower cutoff energy and the maximum energy
of the higher cutoff achievable in a system. Finally, for HHG using a soft X-ray, it would
be interesting to study the HHG directly through TDDFT and see if the generalized
three-step model could be applied to this special scenario. Naturally, modification to
the semi-classical model is expected since excitation rate is no longer the same in each
optical cycle due to shifting core levels. Establishing a new semi-classical model analo-
gous to the three-step model could advance the adaptation of applications in gas-phase
HHG to HHG using a soft X-ray. Considering that the energy and time scale of an X-ray
is so different from the infrared laser commonly used in HHG, exciting applications at a
whole new level, like sub-attosecond ultra-short pulse, may come even closer to reality.

Our works in this thesis are an attempt to expand the current knowledge of light-
matter interaction, and broaden our view in the microcosm populated with electrons and
atoms. The physical community of strong-field physics is making strides in this exciting
adventure, and hopefully our works presented here push the foot for another step on
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the road. At this rate, I believe the development of HHG would continue to enable the
creation of even stronger and sharper illuminating pulses that enlighten the darkness
beyond the front line of human knowledge.
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Appendix A

Proof of the Equation

In this appendix, we will prove the equation utilized in the derivation of the simple
two-band parabolic model discussed in Chapter 2. This equation is (for m ̸= n):∫

ΩC

u∗mK(t)(r)
∂

∂K(t)
unK(t)(r)dr =

−ℏ
EmK(t) − EnK(t)

∫
ΩC

u∗mK(t)(r)
−iℏ∇
M

unK(t)(r)dr

(A.1)

which is actually a special case of the general relation:

∂EnK(t)

∂K(t)
δmn =

ℏ
ΩC

∫
ΩC

u∗mK(t)(r)
−iℏ∇
M

unK(t)(r)dr + δmn
K(t)ℏ2

M

+ [EmK(t) − EnK(t)]
1

ΩC

∫
ΩC

u∗mK(t)(r)
∂

∂K(t)
unK(t)(r)dr (A.2)

with m ̸= n.
This could be shown true by starting with K(t) derivative of Eq. 2.20 and the

followings:

∂

∂K(t)
[EnK(t)unK(t)(r)] =

∂

∂K(t)
[H [K(t)]unK(t)(r)] (A.3)

∂EnK(t)

∂K(t)
unK(t)(r) + EnK(t)

∂unK(t)(r)

∂K(t)
= ℏ

−iℏ∇+ ℏK(t)

M
unK(t)(r) +H [K(t)]∂unK(t)(r)

∂K(t)
.

(A.4)
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Then we multiple umK(t)r on both sides and integrate over one cell in real space:

∂EnK(t)

∂K(t)

1

ΩC

∫
ΩC

u∗mK(t)(r)unK(t)(r)dr +
EnK(t)

ΩC

∫
ΩC

u∗mK(t)(r)
∂unK(t)(r)

∂K(t)
dr

=
ℏ
ΩC

∫
ΩC

u∗mK(t)(r)
−iℏ∇+ ℏK(t)

M
unK(t)(r)dr +

1

ΩC

∫
ΩC

u∗mK(t)(r)H
[K(t)]∂unK(t)(r)

∂K(t)
dr

=
ℏ
ΩC

∫
ΩC

u∗mK(t)(r)
−iℏ∇
M

unK(t)(r)dr +
ℏ2K(t)

M

1

ΩC

∫
ΩC

u∗mK(t)(r)unK(t)(r)dr+

EmK(t)

ΩC

∫
ΩC

u∗mK(t)(r)
∂unK(t)(r)

∂K(t)
dr. (A.5)

Note that

1

ΩC

∫
ΩC

u∗mK(t)(r)unK(t)(r)dr = δmn

so we simply have:

δmn

∂EnK(t)

∂K(t)
+
EnK(t)

ΩC

∫
ΩC

u∗mK(t)(r)
∂unK(t)(r)

∂K(t)
dr

=
ℏ
ΩC

∫
ΩC

u∗mK(t)(r)
−iℏ∇
M

unK(t)(r)dr + δmn
ℏ2K(t)

M
+
EmK(t)

ΩC

∫
ΩC

u∗mK(t)(r)
∂unK(t)(r)

∂K(t)
dr.

(A.6)

By collect similar terms, Eq. A.2 is retained.
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