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Abstract

The discovery of a new class of materials, the so-called topological insulators with conducting
edges and insulating bulk, leads to a topological classification of materials with unprecedented
electrical properties. Graphene is a time-reversal symmetric topological insulator exhibiting
the quantum spin Hall effect. This effect can be described by the Kane-Mele model, which
attributes the resulting quantized spin Hall conductance to the existence of helical edge states
localized at the zigzag edges of the graphene honeycomb lattice. A multi-orbital tight-binding
model can be used for the description of edge states in graphene nanoribbons. Such a model
permits to discuss the electrical properties of the edge states in graphene nanoribbons under
realistic experimental conditions, such as a sample deformation, and by considering electronic
interactions in half-filled or doped samples. In this work a mean-field approach is used to
describe the two magnetic phases occurring in half-filled graphene nanoribbons with zigzag
edges. The energy gap of the magnetic ground state and first exited state of a single-orbital
model comprised of the carbon pz-orbitals is compared to that of a multi-orbital model,
which respects the electronic interactions due to the finite occupation of the 3d-orbitals.
A non-magnetic phase is found for different amounts of hole and electron doping and the
qualitative changes due to the inclusion of the 3d-orbitals are examined. The 2s- and other
2p-orbitals of graphene become important when deformations of the honeycomb lattice cause
a coupling of the in-plane σ- and out-of-plane π-bands. This leads to a deformation-induced
spin-orbit coupling, which competes with the intrinsic spin-orbit coupling to determine the
spin-alignment of the edge states in bent samples. Using an effective tight-binding model
comprised of 2s-, 2px-, 2py- and 2pz-orbitals, this competition is analyzed numerically and
analytically and a dominance of bending-induced spin-orbit coupling over the intrinsic spin-
orbit coupling of the 2p-orbitals is found for moderate bending strengths. A difference occurs,
when this competition is considered in an effective 9-orbital model, additionally including
the 5 3d-orbitals of carbon. The 3d-orbitals couple directly to the 2pz-orbitals due to the
lattice geometry and therefore the intrinsic spin-orbit coupling of the 3d-orbitals has a larger
influence of the spin-orientation of the edge states, than the intrinsic spin-orbit coupling of
the 2p-orbitals. As a central result of this work, the description of edge states in deformed
samples is found to require both σ- and 3d-bands. Especially for measuring the strength
of the intrinsic 3d-orbital spin-orbit coupling, a quantity which is not precisely known in
graphene, a better understanding of the processes behind the spin alignment of the edge
states under realistic experimental conditions is of great importance.





Zusammenfassung

Die Entdeckung einer neuen Materialklasse, den sogenannten Topologischen Isolatoren, wel-
ches einen Isolator mit elektrisch leitenden Randzuständen darstellt, führte zu einer topo-
logischen Klassifizierung von Materialen mit beispiellosen elektrischen Eigenschaften. Gra-
phen ist ein topologischer Isolator mit Zeitumkehrsymmetrie, welcher den Quanten Spin
Hall Effekt zeigt. Dieser Effekt kann mittels des Kane-Mele Modells beschrieben werden,
welches die quantisierte Spin Hall Leitfähigkeit der Existenz von helikalen Randzuständen
zuschreibt, die sich an den Zigzag-Rändern des Graphen Honigwabengitters bilden. Ein Viel-
Orbital Modell stark gebundener Elektronen kann für die Beschreibung von Randzuständen
in Graphen Nanoribbons verwendet werden. Ein solches Modell erlaubt es, die elektrischen
Eigenschaften der Randzustände in Graphen unter experimentell realistischen Bedingun-
gen zu betrachten, wie zum Beispiel Deformationen oder Elektronen-Wechselwirkungen in
halb gefüllten oder dotierten Proben. In dieser Arbeit wird ein Selbstkonsistenz-Ansatz für
die Elektronen-Wechselwirkung verwendet, um die zwei entstehenden magnetischen Phasen
in halbgefüllten Graphen Nanoribbons mit Zigzag-Rändern zu beschreiben. Die Energielü-
cke zwischen dem magnetischen Grund- und dem ersten angeregten Zustand innerhalb des
Ein-Orbital Modells für die pz-Orbitale von Kohlenstoff wird mit dem eines Viel-Orbital Mo-
dells verglichen, welches auch die Elektronen-Wechselwirkungen aufgrund der endlichen 3d-
Orbital Besetzung berücksichtigt. Überdies wird eine nicht-magnetische Phase für Dotierung
mit Elektronen oder Löchern gefunden und die qualitativen Unterschiede durch die Berück-
sichtigung der 3d-Orbitale werden untersucht. Die 2s- und übrigen 2p-Orbitale in Graphen
werden wichtig, wenn Deformation des regelmäßigen Honigwabengitters ein Koppeln der σ-
Bänder innerhalb der Graphenebene und der π-Bänder orthogonal zur Ebene verursachen.
Dies führt zu einer Deformations-induzierten Spin-Bahn-Kopplung, welche mit der intrinsi-
schen Spin-Bahn-Kopplung um die Spinausrichtung der Randzustände in diesen deformierten
Proben konkurriert. Mithilfe eines weiteren effektiven Modells stark-gebundener Elektronen,
bestehend aus 2s-, 2px-, 2py- und 2pz-Orbitalen, wird dieser Wettbewerb analytisch und
numerisch beschrieben und es stellt sich die Dominanz der Deformations-induzierten Spin-
Bahn-Kopplung bereits für kleine Deformationen heraus. Dies ändert sich, wenn das Kon-
kurrieren der unterschiedlichen Terme in einem 9-Orbital Modell betrachtet wird, welches
zusätzlich die 5 3d-Orbitale von Kohlenstoff berücksichtigt. Die 3d-Orbitale koppeln direkt
an die 2pz-Orbitale aufgrund der Gittergeometrie und daher ist der Einfluss der intrinsischen
Spin-Bahn-Kopplung der 3d-Orbitale größer, als der der 2p-Orbitale. Ein zentrale Ergebnis
dieser Arbeit ist, dass die Beschreibung der Randzustände in deformierten Graphenproben
sowohl σ-, als auch d-Bänder benötigt. Insbesondere für das Verständnis des Einflusses der
3d-Orbital Spin-Bahn-Kopplung, dessen Stärke in Graphen weiterhin schwierig zu bestimmen
ist, ist ein besseres Verständnis der Prozesse hinter der Spinausrichtung der Randzuständen
unter realistischen experimentellen Bedingungen von großer Wichtigkeit.
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1. Introduction

The development of the band theory of solids [1] in the early days of the formulation of
quantum mechanics [2–4], has provided physicists with an arsenal of new methods to discover
and describe phenomena with previously unknown depth and accuracy. The exploration of
the theoretical framework has lead to understanding a whole range of material classes, such as
superconductors [5, 6] or semiconductors [7, 8], which are still active research subjects today
and enjoy application in many technological areas [9–19]. Despite the great success of band
theory, however, it took almost a century to identify and harness an underlying structure,
hidden in the symmetries of the band structures of solids. It lead to the formulation of
topological band theory [20]. Topology is one of the central branches of modern mathematics
and deals with the classification of sets, by allowing the definition of closed and open subsets
[21]. This has far-reaching consequences, for example it allows to relate different sets with
each other via very general features, the so-called topological invariants. These invariants
depend only on the structure of the sets, rather than the individual objects they are comprised
of. One area for the application of topology is geometry, where topological invariants may
be assigned to manifolds at the example of the Euler characteristic [22], corresponding to
the number of holes of this manifold. A torus, a representative of a manifold with Euler
characteristic 1, is therefore topologically equivalent to a cup, because of their identical
topological invariant. In the same way a ball is topologically equivalent to a bottle, a pretzel
to a t-shirt and the written Arabian number eight to a pair of pants. Both a pretzel and a
t-shirt can be continuously deformed to a flat sheet with three holes, see Fig. 1.1. During
this stretching and compressing, the number of holes does not change. Thus the number of
holes can be considered an invariant that identifies equivalence classes of objects.

The key discovery required for the specification of topological band theory was the assign-
ment of topological invariants to the band structure of solids, creating equivalence classes
of their Hamiltonians with gapped and gapless spectra [23]. In this case the phase space
of states of these Hamiltonians takes the role of the manifold and topological invariants are
assigned in a similar manner [24]. In this context they are called TKNN invariant [25] or
Z2-index [26]. The definition of these invariants makes use of the symmetries of the systems,
such as time-reversal symmetry or charge conjugation and differentiate between a topological
and trivial insulator [20].

While Landau theory [27] has provided good explanations for the phase transitions that
were encountered until recently, the discovery of a new kind of phase transition required the
underlying structure given by the topological invariants, which serves as explanation for the
existence of different topological phases. The classical Hall effect was discovered in 1879 by
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1. Introduction

Figure 1.1.: Both a pretzel and a t-shirt contain three holes and are thus topologically equivalent
to each other, according to the Euler characteristic.

Edwin Hall, who found that a voltage perpendicular to a current within a two-dimensional
conductor is created by a transversal magnetic field [28]. The charge building up at different
edges of the conductor compensates for the Lorentz force caused by the magnetic field and
thus, no topological classification was required for understanding this phenomenon. The
quantum Hall effect on the other hand, discovered by Klaus von Klitzing [29], revealed a
surprising addition to the theory of the classical effect, because at high magnetic fields and
low temperatures, the Hall conductance becomes quantized. An intricate plateau structure
was found, that was astonishingly robust with respect to the geometry or quality of the
sample. The quantization of the Hall conductance by integer multiples of the constant e2/h
lead to precise measurement of the electrical resistance, but required the development of a
geometric interpretation, such that it could be linked to a topological invariant [30].

A theoretical model later proposed by Haldane [31], which exhibits the quantum anomalous
Hall effect, relies on a periodic magnetic field with zero magnetic flux through the unit cell of
graphene. Because it occurs without the splitting in Landau levels, this type of quantum Hall
effect is referred to as ”anomalous”. The Hall conductance becomes quantized in this model,
because of broken time-reversal symmetry. Thus, it is a realization of a Chern insulator [32]
and the Chern number in this context is the TKNN invariant. There are different types of
Chern insulators, where the Chern number assumes integer values and other types, where it
assumes fractional values. This results in the integer quantum Hall effect (QHE) [25] or the
fractional QHE [33]. In both types of Chern insulators the topological nature is manifesting
in a bulk topological invariant and an edge topological invariant, which are identical [20] - a
principle known as the bulk-boundary correspondence [34].

The above types of Hall effects have in common, that they are all related to transport
mechanisms of the particle charges at the sample edges. Another range of effects describe
the spin transport at the edges of a sample and are thus called spin Hall effects [35–37]
in analogy to the classical Hall effect. They refer to a spin current in a system subject
to an electric field [38]. This effect can also be realized in two-dimensional semiconductors
and manifests in a vanishing charge Hall conductance, but a finite spin Hall conductance.
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The quantum mechanical analogue to the spin Hall effect is the quantum spin Hall effect,
where the spin Hall conductance becomes quantized at low temperatures [39]. Time-reversal
symmetry is required for this effect to occur [40] and since the Chern number is only defined
in time-reversal broken systems, the TKNN invariant has to be replaced by a Z2-index, as
Kane and Mele found out [26, 41]. The model proposed for the quantum spin Hall effect, can
effectively be described by two copies of the Haldane model linked by spin-orbit coupling [31]
- one model for each type of spin. This way the time reversal-symmetry is maintained and the
spin-up electrons feature a chiral integer quantum Hall effect, while the spin-down electrons
exhibit an anti-chiral integer quantum Hall effect - both with opposing TKNN invariant -
and thus the total TKNN invariant is zero. Since this system is time-reversal symmetric, it
is called a topological insulator, rather than a Chern insulator [23, 42, 43]. Bernevig, Hughes
and Zhang have introduced a model, alternative to Kane and Mele, in order to explain the
quantum spin Hall effect via strain in the graphene lattice, which gives rise to an effective
magnetic field [44, 45]. Similar to the Chern insulator, where the Hall conductance can be
quantized according to fractional or integer values, also the spin Hall conductance of the
topological insulator can be quantized in both manners [46–48]. All of the aforementioned
topologically non-trivial insulators have in common, that there exists a metallic state at the
interface to a material with different topological order [49, 50].

The first experimental realization of a topological insulator was in HgTe quantum wells
[45, 51] and shortly after, a realization of a three-dimensional topological insulators has been
found in Bi1−xSbx [52, 53]. These days the quantum spin Hall effect and topological insulator
are studied rather ubiquitously [54, 55]. Additionally, more exotic types of topological insu-
lators are being realized, such as photonic topological insulators [56–59] or candidates with
exciton-polaritons [60] instead of electrons or photons. Such quasi-particles are a product
of strongly coupled quantum-well excitons and cavity photons, which condense in a chiral
edge mode of a microcavity. A magnetic topological insulator, another type of non-trivial
insulators, but with magnetic order in addition to an intriguing band topology, has recently
been found in the layered van-der-Waals compound MnBi2Te4 [61]. Topological insulators
are of primary interest in the area of spintronics [62, 63], because the mechanisms for spin
transport are expected to lead to more efficient electronic devices [40] with much lower power
consumption [64, 65].

Parallel to the discovery and theoretical predictions in the field of topological insulators, a
compound with peculiar characteristics emerged as an interesting research subject [66, 67].
Graphene is an allotrope of carbon, with a two-dimensional bipartite lattice structure known
as the honeycomb lattice [68, 69]. While the initial description of the band structure of
graphite date back until the middle of the 20th century [70–72] and graphene has already
been theorized at the time [31], it took until very recently to synthesize and measure its
characteristics [73–76]. Graphene has been identified as a candidate for hosting topological
edge states at zigzag edges, because the models for explanation of the quantum spin Hall
effect are based on the honeycomb lattice structure of graphene [26].

In Fig. 1.2 a) the two types of edges for the honeycomb lattice are shown, the armchair

3



1. Introduction

a) b)

Figure 1.2.: a) Zigzag and armchair edges in a flat sample of graphene. b) A graphene nanotube
with zigzag edges.

and zigzag edges. Due to symmetry of the Brillouin zone of graphene, the gap crossing edge
states can only occur at the zigzag-type [77]. In b) a carbon nanotube with zigzag edge
is given, which is also a candidate for hosting edge states. In this case the curvature of
the system, gives rise to deformation-induced spin-orbit coupling, which competes with the
intrinsic spin-orbit coupling of the carbon atoms and determines the electric properties of
such samples [78].

For a realization of a topological insulator, the time-reversal invariant intrinsic spin-orbit
coupling is of significance, because it lends a helicity to the conduction channels, which is
required for the spin transport at the edges [79]. In graphene, the intrinsic spin-orbit coupling
is found to be very small [80, 81], however. Attempts to increase the spin-orbit coupling in
graphene have been made via deformation [82] of the crystal lattice, via hydrogenation [83],
fluorination [84], by plasmonic excitations [85] or by increasing it with proximity effects. For
this the graphene sample is placed on a substrate, such as transition-metal dichalcogenides
(TMDC) [86] or WS2 [87].

Ab-initio calculations of the band structure of graphene have revealed that the band gap
of graphene is mainly given by the intrinsic spin-orbit coupling in the d-orbitals. A com-
mon practice is the formulation of a tight-binding model [88], which describes the π-bands
of the hexagonal crystal lattice via nearest-neighbor hopping. The higher-in-energy orbitals
are often times included by next-nearest-neighbor hopping [80], but another approach is the
inclusion of the d-orbital states in the Hilbert space directly. This leads to a multi-orbital
tight-binding model of graphene. It has many advantages to depart from an effective treat-
ment of the additional orbitals, because other influences to the graphene sample, such as
strain and bending of the lattice, can be treated in a direct way, rather than implementing
each effectively. A prime example is the computation of electronic interactions. A multi-
orbital tight-binding model allows the formulation of an extended Hubbard model, which
includes Coulomb interactions due to the additional orbitals. This leads to a more refined
description of the effect of the electronic interactions on the band structure of graphene.
Other methods for the computations of ground states of interacting systems, such as dy-
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namical mean-field theory (DMFT) [89], density functional theory (DFT) [90, 91] or the
Green’s function (GF) method for computing the transport properties of graphene [92], can
provide a more accurate picture of the relevance of correlations in the graphene sample. The
interactions are not expected to play a dominant role, however, and therefore the reduced
computational effort of treating the extended Hubbard model in the mean-field approxima-
tion provides more flexibility in the choice of system sizes and is less involved than other
computational methods, which is altogether beneficial to computation speed.

In this thesis a multi-orbital tight-binding model of graphene is formulated with the aim
to compute the magnetic ground state of zigzag nanoribbons under different interaction
strengths and sample sizes. The internal energies of different magnetic phases are compared.
The topologies of the ground state and first excited state are analyzed and the influence of the
Coulomb interaction strengths in different orbitals is discussed. Additionally, a non-magnetic
phase is treated and analyzed with respect to electron or hole doping. The results obtained
from the single-orbital model are compared to those of the multi-orbital model by analyzing
the d-orbital occupation and internal energy contribution due to the more sophisticated
implementation of the Coulomb interaction.

As spin-orbit coupling is a necessary factor for the helicity of the edge states in graphene,
the effect of intrinsic and Rashba-type spin-orbit coupling on the edge state dispersion is
analyzed without electronic interactions and their topology and spin textures are studied.
Deformation of the regular graphene lattice leads to Rashba-type spin-orbit coupling due to
the broken inversion symmetry of the sample. After an understanding of the Rashba-type
spin-orbit coupling both on bulk graphene and on the gap crossing edge states has been
gained, the occurrence of deformation-induced spin-orbit coupling is examined in detail. For
this purpose the multi-orbital tight-binding model is extended to include the sp2- in addition
to the d-orbitals. A perturbative treatment of the intrinsic spin-orbit coupling among p-
and d-orbitals leads to a detailed understanding of the spin-alignment of the edge states in
bent ribbons. Using different bending profiles, localized bulk states are found, which localize
mostly around points of extremal deformation curvature.

Together, the results of the mean-field and spin-orbit coupling considerations lead to a
refined understanding of the topological characteristics of the gap crossing edge states in
graphene nanoribbons with zigzag edges under realistic experimental conditions. This may
help to understand the measurements of edge states magnetic moments in graphene samples,
which is still elusive. It also underpins the importance of the d-orbital intrinsic spin-orbit
coupling in the analysis of deformation-induced spin-orbit coupling, which has not found
detailed consideration in the literature as of yet.

As a first step the origin of spin-orbit coupling is discussed in Chapter 2 and how it arises
naturally from a fully relativistic treatment of a fermion under the influence of an electric field
via the Dirac equation. In the next step the role of symmetries in crystals is discussed and
how group theory may be used to compute effective spin-orbit coupling terms arising from
specific symmetries. For this k ·p-theory is briefly touched. This type of perturbation theory
allows to use symmetry groups to find the relevant states for the description of the dispersion
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1. Introduction

relation at different points in the Brillouin zone of solids. Furthermore, Löwdin perturbation
theory is discussed, which permits the reduction of an extended Hilbert space to a subspace
of more influential states, that regard the effect of other weakly coupled states perturbatively.
These theories are then used to discuss two types of effective spin-orbit coupling terms, the
Dresselhaus- and Rashba-type - both arising to different broken symmetries of the crystal
lattice. Lastly the current experimental and theoretical status regarding the analysis of the
spin-orbit coupling strength in graphene is presented.

For the formulation of a multi-orbital tight-binding model of graphene, matrix elements in
the Slater-Koster approximation are derived in Chapter 3. It follows a treatment of Rashba-
type spin-orbit coupling, as it is arising from the finite overlap of the sp2-hybridized orbitals
and the π-bands as a consequence of the broken inversion symmetry with respect to the
direction perpendicular to the graphene plane. The trigonal warping at the Dirac points of
bulk graphene is a consequence of the Rashba-type spin-orbit coupling. It is discussed by
means of the sublattice spin expectation values, which are tightly connected to the topology
of graphene and encoded in these features of the bulk Hamiltonian. The four relevant states
for the description are then treated analytically with an effective 2× 2-model, allowing for
the computation of the sublattice spin expectation values and winding numbers. They are
compared to numerical results.

In Chapter 4 the properties of graphene as a time-reversal invariant topological insulator
are discussed via the Kane-Mele model. Once the qualities of zigzag graphene nanoribbons
as a model system for hosting helical edge states are established, their dispersion relation is
discussed in the context of a multi-orbital tight-binding model. The influence of Rashba-type
spin-orbit coupling, as well as that of a magnetic field and intrinsic spin-orbit coupling, is
presented by analyzing the helicity and gap crossing behavior of these edge states.

In Chapter 5 the Coulomb interaction among different orbitals is derived in the form of a
multi-orbital Hubbard model, which is then approximated by the mean-field approach.

The three edge phases are presented in Chapter 6 and their topological characteristics are
discussed. In a next step the magnetic properties of the antiferromagnetic and ferromagnetic
edge phases are compared and the influence of the nanoribbon size on their dispersion rela-
tions is treated. The ground state in the single-orbital Hubbard model, only comprised of
pz-orbitals, as well as the first excited magnetic state, is obtained. A non-magnetic phase is
analyzed with respect to electron or hole doping. This analysis is then extended to the multi-
orbital Hubbard model, where the effect of additional interaction strengths in the d-orbitals
are examined.

The occurrence of Rashba-type spin-orbit coupling due to the deformation of the regular
graphene lattice in a non-interacting tight-binding model is discussed in Chapter 7. The
theory for including distortion of the planar graphene lattice via the Slater-Koster approx-
imation is presented. The tight-binding model is extended to contain sp2-orbitals. Then
deformations with constant curvature along and perpendicular to the zigzag edges are ap-
plied and the effect on the edge state dispersion and band structure is assessed. The spin
textures of the edge states are computed and the alignment of the spin at the edges as a
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result of the induced Rashba-type spin-orbit coupling of the sp2-orbitals is compared to that
of the d-orbitals. For deformations with varying curvature, bulk localized states are found,
which occur due to the existence of bending-induced gauge potentials in these ribbons.

In Chapter 8 the results are summarized and opportunities for future exploration are
stated.
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2. Spin-orbit Interaction

2.1. Origin of Spin-orbit Coupling

Spin-orbit coupling is an effect of relativistic origin, which couples the motional degree of
freedom of an electron to one of its intrinsic properties, the spin [93]. Due to the motion of
the electron, static electric fields in a laboratory system are perceived as magnetic fields in
its rest frame. The spin of the electron causes a magnetic dipole moment that couples to
this magnetic field. The atomic or intrinsic spin-orbit coupling originates from the electric
field generated by a positively charged nucleus. Other types of spin-orbit coupling arise due
to electric fields of other origins, such as in a sample that is being placed on a substrate.
This resulting asymmetry of the periodic crystal potential within said sample gives rise to
spin-orbit coupling effects which can be described by the respective point group symmetries
of such external factors [94]. One example is the Dresselhaus-type spin-orbit coupling, which
occurs when a crystals does not exhibit a center of inversion [95]. Another example is the
Rashba-type spin-orbit coupling, occurring when the system lacks a broken mirror symmetry
along a high-symmetry axis [96]. Spin-orbit coupling due to strain of the crystal lattice
or curvature is also possible, both of which may break symmetries in other ways and thus
introduce gaps in the crystal band structure [78, 82]. In the following, a general introduction
of the relativistic origin and description of spin-orbit coupling is given. It is discussed how
the Dirac equation leads to a spin-orbit coupling term in the non-relativistic Pauli equation.
Then examples of the spin splitting of Rashba- and Dresselhaus-type spin-orbit coupling are
given and their symmetry properties are discussed. Lastly, the current experimental status
of measuring spin-orbit coupling in graphene is described.

2.1.1. Relativistic Description of Spin-orbit Coupling

It is a central result of electrodynamics that an electric field in a stationary frame of reference
induces a magnetic field in a frame of reference with relative velocity. Such a situation arises
when electrons orbit the positively charged nucleus of an atom, such that the nuclear electric
potential induces a magnetic field in the rest frame of the electron, which couples to its spin
[97]. Such an interaction is known as spin-orbit coupling. Generally, a magnetic field B⃗
couples to a particle with the spin S⃗ via [98]

Ĥ = − ˆ⃗µS · B⃗, (2.1)
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2.1. Origin of Spin-orbit Coupling

where ˆ⃗µS = −gsµB
ℏ

ˆ⃗
S is the spin magnetic dipole moment, gs = 2 is the spin-g-factor for

the electron and µB = eℏ
2m the Bohr magneton. For an external electric field E⃗ in the

laboratory system, the magnetic field B⃗′ in a frame moving with the velocity v⃗, is given in
good approximation by [98]

B⃗′ ≈ − 1

c2
v⃗ × E⃗, (2.2)

where c is the speed of light. The spin magnetic moment ˆ⃗µS is responsible for a torque
ˆ⃗τ ′ = ˆ⃗µS × B⃗′ =

(
d
ˆ⃗
S
dt

)
rest

in the rest frame of the electron. Computing the spin-orbit

coupling strength by inserting Eq. 2.2 in Eq. 2.1 will result in a wrong magnetic field,
because kinematic effects change the apparent spin and magnetic field in the rest frame of
the electron. A vector in a moving coordinate system will appear differently when observed
from different frames of reference, in particular from rotating ones. The spin ˆ⃗

S of the electron
is such a vector in a rotating frame of reference, which depends on the vector S⃗ itself, as well
as the axis of rotation ω⃗

|ω| . The temporal derivatives in the two systems are related by [99]

(
d
ˆ⃗
S

dt

)
lab

=

(
d
ˆ⃗
S

dt

)
rest

+ ω⃗ × ˆ⃗
S. (2.3)

Here, the
(
d
dt

)
rest derivative is the change in the rotating rest frame of the electron and the(

d
dt

)
lab derivative corresponds to that in the laboratory system. The rest frame of the electron

is not an inertial system, because it is orbiting the atomic nucleus and is thus accelerated
in different directions. For any given moment in time, the orbital motion of the electron
with angular velocity ω⃗ can be taken as a linear velocity v⃗ during a time interval δt in very
good approximation [99, 100]. Due to the motion of the electron, v⃗ will not be collinear to
the velocity during the following time step. Thus, more than one Lorentz-transformation
is required for transforming from the laboratory system to the rest frame of the electron
and in general, two consecutive Lorentz boosts will not only result in another boost, but
in a boost and a rotation. It is assumed that the relative speed ∆v⃗ of the two rest frames
along the electrons path for each time step is small compared to their speed difference to the
laboratory system. Furthermore, both velocities are assumed to be significantly smaller than
the speed of light. Therefore the angle of the rotation after two Lorentz transformations is
∆Ω = − (γ − 1) v⃗×∆v⃗

v2
[99] and for each time step δt, together with γ ≈ 1 + 1

2
v2

c2
,

ω⃗ =
1

2c2

(
˙⃗v × v⃗

)
(2.4)

is the Thomas precession frequency. This is the frequency of the spin magnetic moment
precessing around the magnetic field vector as a consequence of the motion of the rest frame
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2. Spin-orbit Interaction

of the electron. Following [101], Eq. 2.4 is inserted in Eq. 2.3 and the torque in the laboratory
frame becomes (

d
ˆ⃗
S

dt

)
lab

= ˆ⃗µS ×
(
B⃗′ − m

e
ω⃗
)
. (2.5)

This is known as Thomas precession. The acceleration in the Thomas precession frequency
is expressed as ˙⃗v = e

mE⃗ and thus, even though there is no magnetic field in the laboratory

system, the spin of the electron is subject to a torque ˆ⃗τ =

(
d
ˆ⃗
S
dt

)
lab

with an effective magnetic

field

B⃗ = − 1

2c2
v⃗ × E⃗, (2.6)

due the relativistic transformations to a rotating frame of reference. A central potential V (r⃗),
generated by an atomic nucleus for example, causes a radially symmetric electric field E⃗ in
the laboratory system, which allows the apparent magnetic field to be characterized by the
angular momentum ˆ⃗

L of the electron. Substituting eE⃗(r) = −dV
dr

r⃗
r and the definition of the

angular momentum operator ˆ⃗
L = ˆ⃗r× ˆ⃗p in the magnetic field Eq. 2.6, the interaction Eq. 2.1

becomes

Ĥ =
1

2m2c2
1

r

dV (r⃗)

dr
ˆ⃗
L · ˆ⃗S. (2.7)

2.1.2. The Pauli Equation and the Dirac Equation

The Pauli equation is the non-relativistic limit of the Dirac equation [98] and describes part of
the Dirac 4-spinor subject to electric and magnetic fields. It contains the spin-orbit coupling
term Eq. 2.7 as a natural consequence of the Dirac equation describing a relativistic spin-
1/2 fermion in an electric field, even though this fact is not obvious in the latter. The Dirac
equation describes a fermion, which has the relativistic energy

E2 = c2p2 +m2c4, (2.8)

where m and p are its mass and momentum, c is the speed of light. For a quantum mechanical
system, a 4× 4-matrix equation can be formulated, such that it is linear in the 4-component
spinor wave function and fulfills Eq. 2.8. Then, each of the spinor components have energies
+E or −E. The Dirac equation for the wave function |Ψ〉 is(

iℏ
∂

∂t
− ĤD

)
|Ψ〉 = 0, (2.9)
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where the Dirac Hamiltonian HD for a particle with charge e and mass m in an electromag-
netic field, defined by scalar potential ϕ and vector potential A⃗, reads

ĤD = c ˆ⃗α ·
(
ˆ⃗p+ eA⃗

)
+ β̂mc2 − eϕ. (2.10)

Here, the 4× 4 Dirac matrices ˆ⃗α = (α̂x, α̂y, α̂z)
T and β̂ are given by

α̂µ =

 0 σ̂µ

σ̂µ 0

 and β̂ =

σ̂0 0

0 σ̂0

 . (2.11)

The components σ̂µ of α̂µ are the Pauli matrices σ̂x, σ̂y and σ̂z, while σ̂0 is the identity
matrix in two dimensions. The doubly degenerate solutions of Eq. 2.9 with positive energy
correspond to the electron, while those with negative energy to its anti-particle, the positron.
These particles are described by the wave functions ψ and χ for the electron and positron,
respectively, and include an additional degree of freedom, the spin, which arises due to
the four-components of the Dirac equation. Hence, the total wave function has the four
components |Ψ〉 = (ψ↑,ψ↓,χ↑,χ↓). For the free particle, neither the angular momentum
operator, nor the spin operator commute with the Dirac Hamiltonian [98]. The sum of
ˆ⃗
J =

ˆ⃗
S +

ˆ⃗
L, however, is a conserved quantity, as well as the squares of the individual parts

Ŝ2 and L̂2. The Pauli equation, which can be derived from the Dirac equation in the non-
relativistic limit for a particle in a magnetic field, contains a term with these operators.
The Pauli equation only considers the states from the four-component spinor describing the
particle and does not describe their anti-particle counterparts. The two components are
called big and small component of the total wave function |Ψ〉. If the small component is
considered non-relativistic, the coupling between both components can be simplified, such
that the equations for both components can be decoupled in second order. Then,

ĤP |ψ〉 =
(
E −mc2

)
|ψ〉 (2.12)

becomes the eigenvalue equation for the large component |ψ〉 = (ψ↑,ψ↓) and therefore the
Pauli Equation is a 2× 2-matrix equation. The Pauli-Hamiltonian is given as

ĤP =
1

2m
{(ˆ⃗p+ eA⃗) · ˆ⃗σ} · {(ˆ⃗p+ eA⃗) · ˆ⃗σ} − eσ̂0ϕ. (2.13)

It can be expressed in a form similar in appearance as the Schrödinger equation

ĤP =

(
1

2m

(
ˆ⃗p+ eA⃗

)2
− eϕ

)
· σ̂0 +

eℏ
2m

ˆ⃗σ · B⃗. (2.14)

The magnetic moment coupling to a magnetic field is identified as ˆ⃗µS = −gsµB
ℏ

ˆ⃗
S and the

last term is of the form of Eq. 2.7, but with an incorrect factor. The origin of the spin-orbit
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2. Spin-orbit Interaction

coupling term in Eq. 2.14 is B⃗ = ∇⃗ × A⃗, which describes a magnetic field in the laboratory
system. In the case of intrinsic spin-orbit coupling, however, there is no magnetic field in the
rest frame, but only the radially symmetric nuclear electric potential. As discussed in the
previous section, the transformation between rotating frames of reference leads to an effective
magnetic field coupling to the spin magnetic moment reduced by half, when compared to that
stated in Eq. 2.14. If one would decouple the big and small components in higher order, the
non-relativistic treatment of the Dirac equation would exhibit additional terms and account
for the factor of the spin-orbit coupling term correctly as well.
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2.2. Spin-orbit Coupling and Crystal Symmetries

2.2. Spin-orbit Coupling and Crystal Symmetries
The momentum space of solids is commonly described around high-symmetry points, such
that group theoretical arguments can be used to formulate couplings between groups of wave
functions. They are characterized by irreducible representations of point groups. One such
procedure is the k · p- theory [7, 102]. With this method the behavior of energy bands away
from high-symmetry points can be obtained perturbatively by considering a fixed crystal
momentum vector k and the momentum vector p. The resulting models can become very
difficult to solve, because at high symmetry points of the lattices, very many states must be
considered, increasing the dimension of the problem. For reducing this complexity, Löwdin
perturbation theory [103] may be used, where the Hamiltonian describing the interactions
among many bands is reduced to a Hamiltonian acting on only a subspace. More weakly
coupled bands are included perturbatively, leading to effective expressions for the description
of spin-orbit couplings in these types of systems. The description of the zinc blende crystal
structure by Dresselhaus [95] via the k ·p- method has brought forward a spin splitting due to
bulk inversion asymmetry, called Dresselhaus-type spin-orbit coupling [104]. It is rooted in the
fact that zinc blende does not feature a point of inversion in the Brillouin zone, due to the two
different species of atoms in the diamond crystal lattice Td. For the wurtzite structure Sheka
and Rashba [96] used the same approach to derive another type of momentum-dependent
splitting, originating from a missing mirror symmetry of the wurtzite crystal lattice C6ν

[105], called the Bychkov-Rashba-type or Rashba-type spin-orbit coupling. Today, spin-orbit
coupling due to structure inversion asymmetry is generally called Rashba-type spin-orbit
coupling [106]. In this section, the symmetry analysis of a Hamiltonian is discussed and
the k · p - method and Löwdin perturbation theory are briefly summarized. Then, effective
expressions of the Dresselhaus- and Rashba-type spin-orbit coupling are derived.

2.2.1. The Role of Symmetries
Time-reversal Symmetry

This paragraph is based on [34]. The Hamiltonian H is invariant under the operation of
time-reversal symmetry T̂ if [20]

T̂ Ĥ(k)T̂ −1 = Ĥ(−k). (2.15)

There are two types of time-reversal symmetry in a system with an internal symmetry, such
as the spin, namely with the properties T̂ 2 = ±1. The case T̂ = −iσ̂yK̂, where K̂ is the
operation of complex conjugation, leads to the antisymmetric time-reversal operation with
T̂ 2 = −1. It is required for the description of spin-1/2 particles [34] and ensures a symmetry
in the energy spectrum of Ĥ, also known as Kramers degeneracy [107, 108]. If a pair of
eigenstates of the Hamiltonian is related by the time-reversal operation, it follows from the
antiunitary time-reversal operation, that these two states are orthogonal.
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2. Spin-orbit Interaction

Time reversal symmetry accounts for the invariance of the Hamiltonian under reversal of
the direction of time [109] and thus in the Brillouin zone k → −k. Momenta, which are
invariant under inversion of the Brillouin zone are called time-reversal invariant momenta.
Due to the symmetry of the Hamiltonian, eigenstates related by time-reversal symmetry
have identical energy and thus eigenenergies of the Hamiltonian at time-reversal invariant
momenta are at least doubly degenerate. The spin as internal degree of freedom is also
reversed by the time-reversal operation, such that the Kramers degeneracy for the energy E
and states with spin ↑ or ↓ amounts to

E(k)↑ = E(−k)↓ and E(k)↓ = E(−k)↑. (2.16)

If the Hamiltonian is not only time-reversal invariant, but also symmetric under spatial
inversion, the energy spectrum additionally shows

E(k)↑ = E(−k)↑ and E(k)↓ = E(−k)↓. (2.17)

In that case, all energies are spin degenerate [107]. A class of materials known as time-reversal
symmetric topological insulators, which will be discussed in a later chapter, relate their
topological properties to the conservation of time-reversal symmetry [26, 41]. In graphene in
particular, the intrinsic spin-orbit interaction allows to open a gap in the energy spectrum
at the time-reversal invariant momenta while the Kramers degeneracy is not lifted. The
mirror-symmetry along the out-of plane axis of the graphene crystal structure is the reason,
why the spectrum remains spin degenerate [110].

Point Group Symmetries of Crystal Lattices and their Representations

Before discussing how the knowledge of group theory is used to find models for band struc-
ture calculation, an overview of point groups and their representations is given, which is
based on [111]. A set of elements together with an operation (a product operation) forms
a group, if they fulfill a number of conditions. First, the product of any two elements is
also an element of the group. Second, the product operation is associative. Third, a unit
element exists and fourth, an inverse to each of the group elements as a member of the group
exists. A representation of an abstract group is another group of square matrices, homomor-
phic to said abstract group, such that for each two group elements A and B in the abstract
group, matrices D(A) and D(B) exist with D(AB) = D(A)D(B), where D(AB) is uniquely
determined by the element AB. If there exists a similarity transformation1, which reduces
every element of the representation group to block form, the representation is reducible. The
trace of a representation is called character, which is invariant under a similarity transfor-
mation. If a block within a such matrix or the representation itself is not decomposable2,

1Two n × n-matrices F and G are called similar, if there exist an invertible n × n-matrix S, such that
F = SGS−1 [112], relating them by a similarity transformation.

2Relating a representation to a number of irreducible representations, is called decomposition. A represen-
tation can be brought into block-diagonal form, where each block can be treated individually, when its
character is a linear combination of characters for irreducible representations of the group [111].

14



2.2. Spin-orbit Coupling and Crystal Symmetries

it forms an irreducible representation. In the analysis of physical models with respect to
their symmetries, the dimensionality of each irreducible representation is connected to the
degeneracy of the energy levels of the system. If a perturbation is applied to the system,
it may cause a reduction of the symmetry and consequently the degeneracy of the energy
levels decreases. It is common practice to list the irreducible representations of point groups
around high-symmetry points in the Brillouin zone for different types of crystal lattices [113,
114]. Graphene has the point group symmetry D6h at the Γ- and D3h at the K-point [115].

Application of Group Theory to the Computation of Band Structures

One of the first to recognize the importance of symmetries in solid state physics was Wigner
[116]. Group theoretical structures are increasingly important when the models for such
systems, i.e. in the computation of band structures, become more complex. The quantum
mechanical adaption of group theory was tightly connected to the development of the theory
of point groups [113, 117]. The more general space groups still find application in the
discussion of band structures in recent times [118, 119]. As recognized in the literature
[120–123], spin-orbit coupling effects arising from specific types of symmetries play a central
role in the description of the energy bands and it can be the source of very complex spin
structures. Therefore, spin-orbit coupling is commonly described by using symmetry analysis
[124, 125], which will be done in the following sections. In this section, a possible formulation
of the symmetry analysis is briefly summarized for the purpose of describing different types
of spin-orbit coupling in later sections. A popular application of the perturbative description
of energy bands in the vicinity of high-symmetry points was done by Dresselhaus, Kip and
Kittel (DKK) [126]. They formulated a k · p - model for three-bands on the diamond lattice
and obtained the energies in the spinless case for the three degenerate orbitals {dxy, dyz, dxz}.
The latter form a basis of the Γ+

25 irreducible representation of the symmetry group Td at the
Γ-point of the diamond lattice [102]. The k · p - method starts with the idea that instead of
solving the Schrödinger equation for the wave function ψn,k (r) with band index n and vector
k, the Bloch ansatz ψn,k (r) = un,k (r) e

ik·r is made and the problem is rewritten for un,k (r),
such that the extra terms coming from the exponential part can be treated as a perturbation
[111]. Then, the corresponding Schrödinger equation including spin-orbit coupling has the
form3 [93, 104, 127][

p̂2

2m
+ V (r) +

ℏ
4m2c2

p̂ ·
(
ˆ⃗σ × ∇⃗V

)
+

ℏ
m
k · π̂

]
un,k (r) =

(
En (k)−

ℏ2k2

2m

)
un,k (r) .

(2.18)

It is defined π̂ = p̂+ ℏ
4mc2

ˆ⃗σ×∇⃗V , where V (r) is the potential and p̂ = ℏ
i∇ is the momentum

operator. The vector ˆ⃗σ contains the Pauli spin matrices. The last term on the left hand
side of Eq. 2.18, ℏ

mk · π̂, is considered the perturbation, which describes how a variation of
3The factor of the spin-orbit coupling is due to the convention in [95] of using σ⃗, instead of the spin S⃗ = ℏ

2
σ⃗.
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k affects the function un,k (r) at the Γ point. The expansion can also be performed around
other points k0 in the Brillouin zone, by substituting k → k − k0. To highlight the use
of symmetry arguments, the above form of Eq. 2.18 of the Hamiltonian, without including
the spin-orbit coupling term, can be rewritten into the DKK model [102]. The result is a
second-order perturbation theory formulation in the k · p-method

Hrs = 〈r|H (k) |s〉 = ℏ2

m2

∑
i,j

kikj
∑

l,ν,α ̸=Γ

〈r|pi|lαν〉〈lαν|pj |s〉
EΓ − Elα

, (2.19)

where r and s are basis functions transforming according to the Γ+
25 irreducible representation

of Td. This sum contains the states of the representation α in band l, where ν states may be
degenerate with the same energy Elα. The momentum operator matrix elements 〈r|pi|lαν〉
obey certain symmetry relations. Many matrix elements depend on each other and some
are zero, when the A1 representation is not being contained in the character decomposition
of their transformation behavior [27]. As a result, all matrix elements can be reduced to a
number of independent ones - three in this case - which are specific to the three-band model
of the diamond lattice. This symmetry analysis and subsequent reduction of complexity
highlights the power of this approach and illustrates why it is widely used for band structure
calculations. By including the spin in the three-band model, it becomes a six-band model
with states in the basis |J ,mJ〉, labeled by J = L + S, because neither L nor S is a good
quantum number anymore - as a consequence of the inclusion of the spin-orbit coupling term
in Eq. 2.18 [102]. The six-band model describes the light and heavy holes, as well as the
spin-orbit split-off bands in diamond below the Fermi energy. It was treated in very similar
fashion by a number of different authors [102, 122, 123, 128, 129]. More elaborate models,
such as the 8× 8- Kane model or the 14× 14- Kane model [104, 128, 130–133], are generally
used to describe the bands of a wide range of semiconductors around their Fermi level in
more detail. The group theoretical analysis of graphene with the k · p- method started by
considering graphite [72], because a monolayer of this material was not discovered at the
time and it is still subject of active research [115, 134].

2.2.2. Löwdin Perturbation Theory
In larger Hilbert spaces, where a group of states is only weakly interacting with another group
of states, it can be beneficial to treat both groups separately and include their interaction only
effectively. Löwdin perturbation theory [103] is a method for computing a modified Hamilton
operator acting only on a subspace of the larger Hamilton operator. It separates the whole
Hilbert space into group A, for which the equations are solved exactly, and group B, which are
included as additional interactions for group A. This process is called downfolding and it must
be solved approximately, because it contains the energies of the possibly degenerate states of
A, which are not known prior to solving the eigensystem, but are required for its formulation.
As an approximation, these energies are usually substituted by known expressions, close
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to the actual value. Then, the Hamiltonian for the combined system A + B is expressed
as a Hamiltonian UA, only for the subspace of system A, where B is accounted for via
renormalization, resulting in [103]

UA
mn = Hmn +

∑
α∈B

Hmα (1− δmα)Hαn (1− δαn)

E −Hαα
+
∑

α,β∈B

Hmα (1− δmα)Hαβ (1− δαβ)Hβn (1− δβn)

(E −Hαα) (E −Hββ)
+ . . .

(2.20)

Here the indices m and n range only over the states of the system A.

2.2.3. Dresselhaus-type Spin-orbit Coupling: Bulk Inversion Asymmetry

Dresselhaus [95] used k · p-theory to determine band splittings of semiconductors with dia-
mond structure due to spin-orbit coupling. First they derived secular equations in the basis
of degenerate unperturbed functions that would transform according to various irreducible
representations of the double point group Td of zinc blende [122, 123]. In a following step,
the degenerate functions are then subject to spin-orbit coupling, which incorporates the sym-
metry of the lattice by symmetries of its matrix elements. Spin splittings occur when along
high-symmetry lines the previously degenerate functions reorder according to the irreducible
representation of the point groups across the Brillouin zone. The main difference of the zinc
blende structure to the diamond structure is the lack of inversion symmetry, as a conse-
quence of the two different types of elements in the crystal. Dresselhaus found that the lower
conduction band Γ6 of zinc blende is spin-split by [95, 135]

E = C0k
2 ± C1[k

2
(
k2xk

2
y + k2yk

2
z + k2zk

2
x

)
− 9k2xk

2
yk

2
z ]

1/2, (2.21)

with two material constants C0 and C1. This splitting is the central feature of the linear
and cubic Dresselhaus-type spin-orbit coupling effect and a result of the absence of inversion
symmetry. Using the theory of invariants, one can derive the Hamiltonian for the conduction
electrons [102, 104, 135] and one can construct the following invariant Hamiltonian in the
{| ↑〉, | ↓〉} space

Ĥ6c6c
k = γc

([
kx
(
k2y − k2z

)]
ŝx + c.p.

)
. (2.22)

Here, c.p. stands for cyclic permutation. This Hamiltonian results in the same splitting as
in Eq. 2.21. For two dimensions, Eq. 2.22 is modified by kz → 〈kz〉 = 0 and k2z → 〈k2z〉 6= 0
and by using the notation k± = kx ± iky it becomes

Ĥb
6c6c = b

 0 1
4k−

(
k2+ − k2−

)
− k+〈k2z〉

1
4k+

(
k2− − k2+

)
− k−〈k2z〉 0

 , (2.23)
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where b is a material constant. In a two-dimensional system it can be rewritten into the
linear Dresselhaus term [136–140]

Ĥ lin
D = −〈k2z〉 (ŝxkx − ŝyky) (2.24)

and the cubic Dresselhaus term

Ĥcub
D = kxky (ky ŝx − kxŝy) . (2.25)

These two effective forms of the Dresselhaus spin-orbit coupling are encountered in models
with explicitly broken inversion symmetry in general. In fact, operators invariant under the
D2d point group as in Eqs. 2.24 and 2.25 are referred to as Dresselhaus-type, because of their
identical transformation behavior.

2.2.4. Rashba-type Spin-orbit Coupling: Structure Inversion Asymmetry

Rashba and Sheka have computed the energy bands of the wurtzite structure and proceeded
in similar fashion to Dresselhaus and employed k · p-theory to the wurtzite structure point
group C6ν [141]. Only terms ∼ k2 in the momentum are retained in the Löwdin perturbative
treatment and the spin-splitting of the Γ6

7 valence band becomes [96]

E1,2 = ak2∥ + bk2⊥ + ε± αk∥, (2.26)

using constants a, b, ε and α, with the in-plane momentum k∥ and out-of-plane momentum
k⊥. Then, an extremum of the energy splitting for both solutions is located on a circle with
radius k∥ ∼ | α2a |. This feature of Eq. 2.26 occurs in situations, when a crystal exhibits a
single high-symmetry axis of at least threefold rotational symmetry [142]. Let such an axis
be parallel to the cartesian z-coordinate. In a two-dimensional system perpendicular to said
axis, an effective Hamiltonian [106]

ĤR = α (ŝ× k)z = α (ŝxky − ŝykx) (2.27)

can be formulated, which has the same qualitative feature of the spin-splitting discussed
above [143]. Causes for the Rashba-type spin-orbit coupling can be electric fields [107, 144,
145], which reduce the symmetry of the system, leading to lifted degeneracies [146] as a
consequence of the Stark effect [80]. In graphene, spin-flip terms due to Rashba-type spin-
orbit coupling connect π-bonds, made up of pz-orbitals, which are symmetric along the z-axis,
to the s-, px- and py-orbitals from the σ-bonds. DFT calculations have shown, that the spin-
orbit coupling from the px- and py-orbitals is much weaker than that of the d-orbitals [110].
Other DFT calculations have shown, that in-plane deformations may enhance the Rashba-
type spin-orbit coupling strongly [147].
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2.2.5. Symmetry Properties of Spin-orbit Coupling
The Rashba Hamiltonian in Eq. 2.27, similar to the linear Dresselhaus Hamiltonian Eq.
2.24, is formulated in a specific coordinate system. In order to discuss such a transformation
behavior, it needs to be known how the individual components transform. This is presented
in the appendix A.1. For a Hamiltonian to be invariant under point group symmetries, it
needs to transform according to the A1 irreducible representation of that group4. Otherwise,
a similarity transformation may be used to show that the Hamiltonian is not invariant un-
der the point group operations, even if it transforms according to any number of irreducible
representations of that group other than A1 [148]. As an example, the rows of the tables
A.7, A.8 and A.9 in the appendix may be used to construct Dresselhaus- and Rashba-type
Hamiltonians and possible choices for basis functions are listed there. They transform ac-
cording to the respective irreducible representations. These products of basis functions are
set apart from each other by their transformation behavior according to different irreducible
representations of the corresponding point groups, as well as their specific choice of coordi-
nates. This is generally expressed in the theory of invariants, which constructs interaction
terms according to their transformation behavior [104]. A possible formulation of the linear
Dresselhaus Hamiltonian is ŝykx+ ŝxky ∼

(
x2 + y2

)
z [149] in a given choice of basis. It does

not transform as a basis function of the A1 irreducible representation of the group D2d. For
this particular symmetry, the group actions are defined in a coordinate system rotated by
45◦ with respect to the above Dresselhaus-type Hamiltonian. For rotating the Hamiltonian
by 45◦, the coordinates need to be changed as kx → kx + ky, ŝy → ŝx + ŝy etc. Then

ŝykx + ŝxky → ŝxkx − ŝyky, (2.28)

which transforms according to xyz - a cubic basis function of the irreducible representation
A1 of D2d. The result has the form of Eq. 2.24. The Rashba part in Eq. 2.27 transforms
according to

(
x2 − y2

)
z. It is a basis function of the irreducible representation A1 of the

group C2ν . As stated above, terms with similar transformation behavior can be used to
create effective Hamilton operators of the same type, but with different orders in which the
coordinates occur or in different coordinate choices. For example by considering higher-
than-linear orders (as the cubic Dresselhaus term, Eq. 2.25) or by swapping kx ↔ τ̂zσ̂x
and ky ↔ σ̂y, with the Pauli matrices in sublattice spin space σ̂i, the explicit form of the
terms can be changed, while their transformation behavior is maintained. By using the
formulation in sublattice spin rather than momentum, a lower-than-linear order used in
low energy approximation is achieved [150]. For a discussion of the identical symmetry
transformation of these terms, also see appendix A.1.

4The A1 irreducible representation is a one-dimensional representation, where the characters of each class of
the group elements are +1.
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2.3. Strength of Spin-orbit Coupling in Graphene

In this section, an overview is given on the status of theoretical and experimental assessment
of the spin-orbit coupling strength in graphene. Today, the spin-orbit coupling gap may be
measured with electron spin resonance, detected via resistivity measurements with graphene
in Hall bar geometry in a magnetic field [151]. The application of a magnetic field on the
carriers in the sample will align the spin magnetic moments to the field direction. If a photon
with an energy matching the resonance frequency starts to interact with a carrier and is thus
allowed to bridge the Zeeman-splitting gap, a spin flip of the carrier can be induced [152].
This spin flip is facilitated by the polarization of the magnetic field vector of the incident
photon perpendicular to the quantization axis of the carriers. Such condition allows for a
finite transition probability to the spin-flip state of the carrier, if additionally the precession
frequency and the photon frequency are in resonance. The sample resistivity is changed,
because holes in the valence and mobile carriers in the conduction band are created by
such an excitation. This measurement technique enables the measurement of the g-factor of
graphene and also the zero-field splitting. Application of this measurement technique results
in direct access of the intrinsic spin-orbit coupling gap, being measured as ∆E = 42.2(8)µeV
[151], as well as another closely matching result [153]. Van-der-Waals heterostructures may
provide a controlled environment to systematically induce and measure spin-orbit coupling
effects in graphene [154].

The spin-orbit interaction is responsible for a quantum interference effect, weak antilocal-
ization (WAL) [87, 155–158], caused by self-interference of electronic wave functions along
closed paths [75, 159]. The presence of spin-orbit coupling locks the momentum of a carrier
to its spin. Consequently counter-propagating carriers are phase-locked and prone to de-
structive interference. This suppresses backscattering and results in a higher conductivity at
zero magnetic field [94, 160]. In graphene, the chirality of the charge carriers is responsible
for the phase shift, that would otherwise be caused by strong spin orbit coupling [152]. Thus,
in this particular case, the system exhibits weak antilocalization, despite rather weak spin-
orbit coupling. Weak localization (WL) on the other hand is an effect of similar quantum
mechanical origin as WAL. At low temperatures, the conductivity of a degenerate electron
gas decreases, due to elastic scattering at impurities of the solid, despite the expected in-
trinsic conductivity. This is caused by long-range coherence of electronic wave-functions,
causing constructive interference and an increased backscattering. The consequence is lower
conductivity at zero magnetic field [157, 161]. The difference between WL and WAL is pre-
cisely the phase locking of spin and propagation, in the case of strong spin-orbit coupling.
The strength of Rashba-type spin-orbit coupling in graphene-on-WS2-type van-der-Waals
heterostructures is measured on the order of 5meV [87] or up to 10meV − 15meV [154].
For Bilayer-graphene on WSe2, the induced Rashba-type spin-orbit coupling is measured
by Landau level structure obtained from electrical transport measurements and a spin-orbit
coupling strength of around 15(5)meV is found [162]. Another type of spin-orbit coupling,
the Ising spin-orbit coupling [163], is fitted to have a magnitude of 2.2(1)meV in this exper-

20



2.3. Strength of Spin-orbit Coupling in Graphene

iment. Ising spin-orbit coupling is a type of Dresselhaus-type spin-orbit coupling, arising in
non-centrosymmetric solids, such as monolayer transition-metal dichalcogenides (TMDCs)
[163]. It can be understood as a Zeeman splitting, which preserves time-reversal symmetry,
by exhibiting a spin-splitting of opposite sign on the two valleys in the Brillouin zone [162,
164]. The modification of graphene band structure in heterostructures other than TMDCs
are possible, for example with Pb and Au [165] or Pb and Ir [166], causing a proximity-
induction of the large spin-orbit coupling. In this case, the hybridization of graphene with
the heavy Pb atoms causes a very large spin-orbit coupling strength of 80meV [165], which
is observed using non-local signals in resistivity measurements and confirmed via WL signals
from fitting to magnetoconductivity data. Other types of metals, such as Cu [167], also result
in proximity-induced spin-orbit couplings of 20meV.

Other methods for increasing the spin-orbit coupling in graphene may be the preparation
of a sample with adatoms, such as fluorine or hydrogen. In this case, the adatom locally
distorts the two-dimensional structure of graphene, such that the following three-dimensional
hybridization is a direct cause for the increased spin-orbit coupling strength. In the case of
hydrogen it amounts to 2.5meV [83]. For fluorinated graphene, not only the distortion of
the lattice, but also the large spin-orbit coupling of the F atoms themselves is suspected
to be responsible for the 9meV increase of the spin-orbit coupling strength over a pristine
graphene sample or the hydrogenated one [168].

Not only experiments have dealt with the characterization of spin-orbit coupling in graphene,
but also theoretical assessments have been performed. Kane and Mele have estimated the in-
trinsic spin-orbit coupling strength of graphene, resulting in a gap at the Dirac points on the
order of 0.1meV [41]. By fitting a similar tight-binding model to band structures obtained by
ab-initio computations, spin-orbit coupling gaps of around 1µeV are obtained [81]. For the
Rashba spin-orbit coupling strength for a typical electric field of 1.7× 10−1Vnm−1, these
models obtained 43µeV and 11µeV, respectively. Other studies have found results for the
intrinsic spin-orbit coupling strength on the order of 4meV, while the resulting gap at the
Dirac point is 1µeV [169]. These numbers were obtained by comparing density-functional
theoretical calculations (DFT), featuring the local density approximation of the exchange-
correlation potential, to tight-binding models that include both σ- and π-bands of graphene.
In this model, the cause of spin-orbit coupling is attributed to the interaction of the σ-bonds
of one atom with the pz-orbital of its neighboring atom. Using other types of DFT calcu-
lations with more sophisticated all-electron potentials [170] instead of pseudo-potentials as
in [169], a value of 50µeV is obtained [171], where a stability of the result with respect to
different types of local-density approximation computation is attested. The value for the
spin-orbit splitting of the σ-band at the Γ-point of 9meV is similar to the one in [169], how-
ever. More rigorous tight-binding model calculations predict a spin-orbit coupling mostly due
to the d-orbitals in graphene, where a gap at the Dirac points of around 23µeV is attributed
to the interactions of the π-band with the d-orbitals rather than to the σ-band states [80].

Other types of spin-orbit coupling can be systematically dissected by symmetry analysis
of the underlying Hamiltonians. In this case, group theoretical arguments for different forms
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of the Hamiltonians are used to discuss a hierarchy of hopping and spin-flipping terms that
could arise in corresponding tight-binding models and exhibit different characteristics.

One type of spin-orbit coupling is the ’pseudospin-inversion-asymmetry’-induced spin-orbit
coupling (PIA) [124, 139]. It is of similar origin as the Rashba-type spin-orbit coupling, com-
ing from a system with broken mirror symmetry along an axis perpendicular to the graphene
plane. However, in rippled graphene, the underlying symmetry group D3d prevents nearest-
neighbor hopping with a simultaneous spin-flip. As a consequence, only next-nearest neigh-
bor hopping with a spin-flip is occurring, which has a different symmetry than the Rashba-
type spin-orbit coupling and exhibits C6ν-symmetry [124]. By using DFT calculations, the
strength of these types of spin-orbit couplings can also be estimated by comparison to tight-
binding models. This way, the spin-orbit coupling strength of graphene on TMDCs, such
as MOS2 and WSe2 is computed [139]. In this setup, intrinsic spin-orbit coupling strengths
on the order of 0.2meV and Rashba-type spin-orbit coupling of 0.13meV (MOS2), up to
0.36meV (WS2) are computed, as well as PIA spin-orbit coupling strengths of −2.23meV
and −3.81meV. A theoretical observation of adatoms on graphene leads to the conclusion -
again via fitting of a tight binding-computation against DFT computations - that the sp3-
hybridization of a hydrogen adatom is the main source for the enhancement of the intrinsic
spin-orbit coupling of graphene [172]. For fluorine however, the hybridization of the fluo-
rine p-orbitals with the carbon p-orbitals is an order of magnitude larger than what would
be otherwise expected for sp3-hybridization alone, because of the strong fluorine spin-orbit
coupling.

Even though much work has been invested so far in the precise determination of the spin-
orbit coupling gap in graphene, a clear and definite answer is yet to be found. While the
overall order of magnitude of the interaction parameter seems to be backed by enough theo-
retical evidence, in experiments, results are still elusive due to the weak spin-orbit coupling
in pristine graphene. Thus, it is expected that in the future different methods of increasing
the spin-orbit interactions will be proposed in order to obtain experimental verification of
various other aspects of spin physics in graphene.
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3.1. Introduction
The band structure computation of solids is a common task in theoretical condensed matter
physics and over time many different methods have emerged [173, 174]. One of the first
steps towards the band structure computation of graphene were taken with the formulation
of a tight-binding model for graphite [70]. Today, much is known about graphene [88] and
the tight-binding model is used for the description of a wide selection of solids, whereas the
parameters of the model are usually fitted against other first principle calculations [80]. For
the purpose of this thesis, a sample of graphene will be described by a multi-orbital tight-
binding model, which consists of several orbitals per lattice site, as well as a spin degree
of freedom. The zone-folding technique is applied, where a unit cell of several atoms is
considered periodic in one or two directions [88, 175]. Two-dimensional periodic boundary
conditions may be used to describe bulk graphene, whereas only one-dimensional periodic
boundary conditions introduce edges in the system. The dangling bonds of the carbon atoms
at the edges will be assumed to be terminated by hydrogen bonds, similar in electronegativity
to carbon, and therefore the electrons of the sp2-hybridized orbitals do not contribute to the
band structure [50, 176, 177]. Consequently, the electronic states can be separated into in-
plane and out-of-plane states, which do not couple among each other, even at the edges. The
in-plane σ-band states are mostly responsible for the lattice geometry, while the out-of-plane
π-band states determine the electronic properties, as long as the hexagonal structure of the
sample is not perturbed. Therefore the 2px-, 2py- and 2s-orbitals do not need to be regarded
for most computations discussed in this thesis. For the description of external factors, such
as an electric field, which may lead to Rashba-type spin-orbit coupling, the sp2-hybridized
orbitals become relevant, however. In order to reduce the number of orbitals in the model,
an effective term describing the Rashba-type spin-orbit coupling originating from an external
electric field will be introduced, because it may describe the effect on the π-bands accurately,
without the required complexity of the added σ-states in the system. On the other hand the
higher-energy d-orbitals are important for spin-orbit coupling effects. This will influence the
electronic properties of the π-bands and therefore the d-orbitals are included in the tight-
binding model without making use of effective terms. Graphene nanoribbons with a zigzag
edge are metallic in general, because of the flat bands crossing the gap, which belong to the
states residing at these edges. Bulk graphene is a semiconductor with a tiny gap arising from
intrinsic-spin orbit coupling that is easily overcome by doping [80, 178].

A multi-orbital tight-binding model in the mean-field approximation provides a flexible
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method, such that many of these features may be obtained accurately [179].
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3.2. Definition of a Multi-band Tight-binding Model
3.2.1. The Geometry of Graphene
Graphene is an atomically flat two-dimensional allotrope of carbon, which forms a hexagonal
lattice structure via sp2-hybridized orbitals. Carbon has six electrons, where two electrons
are contained in the 1s states and the other four in the 2s and 2p-orbitals. In the sp2-
hybridization, the 2s-, 2px- and the 2py-orbitals form three bonding and three anti-bonding
σ-orbitals, that extend in 120◦ angles in a plane from each atomic site. The electrons in the
inner-most shell, the 1s state of carbon, are not influenced by the hybridization and therefore
each atom contributes three electrons to the three sp2-hybridized orbitals, filling the σ-states.
Then one electron per atomic site is left, which occupies the next energetically low-lying pz-
orbitals. Thus graphene has half-filled π-bonds. Due to symmetry, the pz-orbitals do not
interact with the orbitals forming the σ-bonds. The resulting lattice structure is the so-called
honeycomb lattice, which can be described as two super-imposed triangular lattices. In the
following it is considered a triangular lattice with a two-atomic basis, such that each atom
in graphene can be attributed to either sublattice A or B. The resulting structure is shown
in Fig. 3.1 a) with the two sublattices displayed in black and red. Then the Bravais lattice
is spanned by the vectors

a1 =
√
3a (1, 0) a2 =

√
3a

2

(
1,
√
3
)
, (3.1)

where a = 1.42 nm is the lattice constant of graphene [69]. The vectors pointing from one
site to its nearest neighbors are denoted by the vectors

δ1 =
a

2

(√
3, 1
)

δ2 =
a

2

(
−
√
3, 1
)

δ3 = −a (0, 1) . (3.2)

The two atoms in the unit cell are non-equivalent, and consequently the resulting Brillouin
zone also exhibits a triangular shape, with two non-equivalent so-called Dirac points. These
points coincide with the crystallographic K and K ′-points of the honeycomb lattice, see Fig
3.1 b).

3.2.2. The Tight-binding Approximation for a Single Band
The general assumption of the tight-binding approximation is that electrons in the crystal
are tightly localized around a specific atomic nucleus, while they interact with the nuclei of
the surrounding atoms perturbatively [93]. Let the atoms be located at positions R, then
the Hamilton operator H for an electron is expressed as

H =
p2

2m
+
∑
R′

V
(
r−R′) (3.3)

= HR +
∑

R′ ̸=R

V
(
r−R′) , (3.4)
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a) b)

Figure 3.1.: a) The honeycomb lattice of graphene with two super-imposed triangular lattices A and
B and the lattices vectors. The primitive two-atomic unit cell is marked in gray. b) The dispersion
relation of graphene around the Fermi energy E = 0.

where the second part of the sum in Eq. 3.4 is the perturbation to the atomic Hamiltonian
HR, due to the crystal lattice surrounding site R. This problem can be solved, when a
localized basis at each atomic site is considered, such as the localized Wannier states [93].
Then the tight-binding model is described by a transition matrix element t, the hopping, from
one site to one of its neighbors. Due to the strong localization of the basis states around
a specific lattice site, it is a valid approximation to only consider nearest neighbor-hopping
matrix elements. Matrix elements among sites located further apart are considered to be
negligibly small. As an approximation to the localized Wannier states, atomic orbitals φn(r)
with a set of quantum numbers n are often used [80, 93, 150]. In the atomic orbital basis,
states located at different lattice sites are not orthogonal, in contrast to the Wannier states,
such that the finite overlap among these basis states must be respected during the solution
of the eigenvalue problem. Comparisons of the tight-binding model with DFT computations
have shown, however, that this overlap may be neglected for the low-energy description of
graphene [80]. Thus a single-orbital tight-binding model in real space with atomic orbitals
as basis states may be formulated as [50]

H = t
∑
R

3∑
i=1

â†Rb̂R+δi + h.c., (3.5)

where the operators â†R and b̂†R+δi
create an electron in the unit cell at position R and

R+ δi and their adjoint annihilates an electron at these positions. They satisfy the fermion
anticommutation relations, respectively [50]. The coordinate system has been chosen as in
Fig. 3.1 a), such that each R coincides with the lattices A. The transition matrix element t
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for nearest neighbors is usually obtained from fitting the tight-binding model to experimental
data [88]. Most of these results are on the order of |t| = 3 eV and this value will be used
throughout this thesis [150]. The tight-binding model may also be used to fit a larger portion
of the Brillouin zone, but then next-nearest-neighbor hopping must be included for more
accurate results. This description will be extended towards a multi-orbital tight-binding
model and only a nearest-neighbor approximation will be used. For the representation of
the Hamiltonian in reciprocal space, the creation and annihilation operators in Eq. 3.5 are
Fourier transformed via [50]

âR =
1√
N

∑
k

eikRα̂k b̂R =
1√
N

∑
k

eikRβ̂k (3.6)

and the corresponding creation operators in analogy. The number of unit cells is given as
N . Then a single-band tight-binding model in reciprocal space at point k can be formulated,
resulting in [50, 80, 93]

Hk = t

3∑
i=1

e−iδikα̂†
kβ̂k + h.c.. (3.7)

3.2.3. The Low-energy Description of Graphene
From the single-band Hamiltonian in Eq. 3.7 one can obtain a 2 × 2-model in the basis of
the A and B sublattices, by first rewriting the sum of phase factors

∑3
i=1 e

−iδik in terms of
the lattices vectors a1 and a2, such that

γk := 1 + e−ika2 + e−ik(a2−a1) (3.8)

can be defined. The phase due to e−ikδ3 can be absorbed into the creation and annihilation
operators. Then the Hamilton operator can compactly be written as

Hk = t

 0 γ∗k

γk 0

 . (3.9)

The basis states are those states located at the two sublattices A and B. Solving Hk in the
Brillouin zone results in the dispersion relation depicted in Fig. 3.1 b). This model is a good
approximation around the two Dirac points, the points where conduction and valence band
become degenerate. Thus, Eq. 3.9 can approximated by a low-energy description, applicable
for the close vicinity of these points. For that, γk is approximated around the Dirac points
K(′) = (± 4π

3
√
3
, 0), resulting in the low-energy Hamiltonian

H0 = −vFℏ(τ̂zσ̂xkx + σ̂yky). (3.10)
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Real-valued Functions Rλ
l Complex Functions ϕml Linear Combination

s = 1√
4π

s = 1√
4π

Y00 = s = Y 0
0

pz =
√

3
4π

z
r p0 =

√
3
4π · z

r Y1,0 = pz = Y 0
1

px =
√

3
4π

x
r p−1 =

1√
2

√
3
4π

(x−iy)
r Y1,1 = px =

√
1
2

(
Y −1
1 − Y 1

1

)
py =

√
3
4π

y
r p1 = − 1√

2

√
3
4π

(x+iy)
r Y1,−1 = py = i

√
1
2

(
Y −1
1 + Y 1

1

)
dz2 =

√
5

16π
(3z2−r2)

r2
d0 =

√
5

16π
(3z2−r2)

r2
Y2,0 = dz2 = Y 0

2

dxz =
√
12
√

5
16π

xz
r2

d1 = −
√
6
√

5
16π

(x+iy)z
r2

Y2,1 = dxz =
√

1
2

(
Y −1
2 − Y 1

2

)
dyz =

√
12
√

5
16π

yz
r2

d−1 =
√
6
√

5
16π

(x−iy)z
r2

Y2,−1 = dyz = i
√

1
2

(
Y −1
2 + Y 1

2

)
dx2−y2 =

√
3
√

5
16π

(x2−y2)
r2

d2 =
√

3
2

√
5

16π
(x+iy)2

r2
Y2,2 = dx2−y2 =

√
1
2

(
Y −2
2 + Y 2

2

)
dxy =

√
12
√

5
16π

xy
r2

d−2 =
√

3
2

√
5

16π
(x−iy)2

r2
Y2,−2 = dxy = i

√
1
2

(
Y −2
2 − Y 2

2

)
Table 3.1.: Real and complex valued atomic orbitals [181]. The cartesian wave functions are real-
valued functions and denoted Rλ

l (x) := Ylλ and identified with the naming convention pz, dxz etc.
The conversion to the complex spherical coordinates ϕml (x) := Y m

l as eigenfunctions to the angular
momentum operators L̂2 and L̂z with quantum numbers l and m are given. The spherical harmonics
are defined in Eq. 3.17.

The components kx and ky are regarded in close vicinity to the Dirac points via the approx-
imation k ≈ K(′) + (kx, ky). The constant vF = −3ta

2ℏ ≈ 1× 106ms−1 is the Fermi velocity.
In order to write Eq. 3.10, the valley isospin τ̂z = ±1 is introduced, which specifies the Dirac
cone for which the Hamiltonian is formulated, as it is originating from the relative sign of
K and K

′ . The two sublattices obtain a sublattice spin σ̂z = ±1, compactly expressing the
two-dimensional basis from Eq. 3.9 for states at lattices A and B. The physical description
of the sublattice spin is different to that of the real spin ŝ, because of its transformation
behavior [180]. For details regarding the transformation of real and sublattice spin, refer to
the appendix A.1.

The Slater-Koster Approximation

The Slater-Koster approximation [182] reduces the computation of matrix elements of neigh-
boring sites among different orbitals to a geometrical problem. In this approximation, the
interaction matrix elements are reduced to two-center integrals, which only depend on the
relative displacement of the atomic sites in the model. These expressions are then formulated
via polynomials in the displacement vectors and material-specific constants. The symmetry
of the d-orbitals requires several material parameters in order to correctly account for their
relative orientation. The contribution from the d- to the pz-orbitals is mediated via Vpdπ,
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3.2. Definition of a Multi-band Tight-binding Model

while the d-orbitals among each other couple via Vddδ and Vddπ [80], shown in Fig. 3.2 a). A
choice of basis states widely used in tight-binding computations, due to their alignment along
the cartesian coordinate axes, is the real-valued cubic harmonics Rλ

l (x) := Ylλ [181]. In this
definition the index λ denotes the different orbitals for each angular momentum quantum
number l. The Slater-Koster approximation makes use of the symmetries of the spherical
orbitals and relates them to the matrix elements of the cartesian orbitals. The radially sym-
metric and complex spherical harmonics ϕml (x) := Y m

l have the angular momentum quantum
number l and its z-projection m. There are different conventions found in the literature re-
garding the complex phase of the orbital wave functions and two sets of wave functions are
stated in Tab. 3.1. Matrix elements between the real-valued orbitals are computed by first
expressing the real valued orbitals as linear combinations of complex ones. This is done via
a unitary transformation Ulmn, such that(

UlmnRλ
l

)
(x) =

∑
m

blmλ(lmn)ϕml (x) , (3.11)

where appropriate and site-dependent coefficients blmλ(lmn) are defined. Ulmn and these
coefficients depend on the local coordinate system at each lattice site. The three indices
lmn are the so-called directive cosines, which define a vector spanning in the direction from
one site to one of its neighbors with unit length, see Fig. 3.2 b). The two vectors of each
tripod, tangential to the graphene plane, are obtained by fixing the direction from a site
to one of its nearest neighbors by the vector d = (l,m, n). The other tangential vector is
perpendicular to that direction and the normal vector is perpendicular to both tangential
vectors and parallel to the surface normal. This tripod defines the local coordinate system
at each site and the x-axis is given by the direction of d. Using the above considerations
the interaction of a cartesian orbital λ with quantum number l1 and at another orbital ν at
distance R with l2 is given by [183]

(
Rλ

l1 (x+R)V (x+R)Rν
l2 (x)

)
= 2

min(l1,l2)∑
m>0

Om
l1,l2{Re

[
b̄l1mλ(lmn)bl2mν(lmn)

]
}, (3.12)

where V (x +R) is the crystal potential of the atoms surrounding site ν. In this definition
Om

l1l2
are the material parameters in the two-center approximation - e.g. O1

12 = Vpdπ - stated
by the matrix elements using the complex atomic orbitals,

δipO
p
jk =

(
ϕij (x+R)V (x+R)ϕpk (x)

)
. (3.13)

Thus, each interaction matrix element is reduced to a polynomial of the coefficients arising in
the unitary transformation between the real and complex valued atomic orbitals. The matrix
element connecting the pz-orbitals on two neighboring sites becomes independent of direction
of the relative displacement, due to the radial symmetry of the pz-orbitals. However, the
material parameter Vppπ in the corresponding matrix element may change, if the relative
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3. Tight-binding Model

a) b)

Figure 3.2.: a) The interactions among pz and d-orbitals stated as the material-specific Slater-Koster
parameters. b) A hexagon of the graphene lattice in curved space with a tripod of local coordinate
axis shown for each site.

distance of neighboring atoms deviates from the lattice constant a. Such a situation would
describe strain in graphene, which will not be considered in this work. The interaction
parameter Vppπ directly relates to t in the single-band model Eq. 3.9. Polynomials for the
interaction of pz- and d-orbitals for the case of a flat graphene lattice can be found in the
literature [80]. Slater-Koster parameters specific to graphene can be found in [69, 80] and
given in Tab. 3.2.

3.2.4. A Multi-orbital Tight-binding model of Graphene

For a multi-orbital tight-binding model, the basis of the Hamiltonian in Eq. 3.5 is extended,
such that states with different quantum numbers are included for each site. In that case,
hopping among nearest neighbors is possible in a variety of ways, depending on the orbital of
the two sites in each case and their relative orientation. Consequently the transition matrix
element is written with indices µ and ν for the atomic orbital basis states pz, dxz, dyz, dxy,
dx2−y2 and dz2 [80]. Due to orthogonality of the basis states, no hopping among different
orbitals on the same lattice site is possible. Thus, transitions between these states are not
given unless spin-orbit coupling is also considered, which will be discussed in the following
sections. In that case real spin degree of freedom will also be required. As discussed above,
computing the hopping matrix elements among the d-orbitals, requires the displacement
vector from one site to the next. The tight-binding Hamiltonian for the multi-orbital model
in reciprocal space is formulated as [80]

Hk =
∑
µν

Eµδµν(α̂
µ†
k α̂

ν
k + β̂µ†k β̂νk) +

∑
µν

3∑
i=1

e−iδiktµν(δi/a)α̂
µ†
k β̂

ν
k + h.c. (3.14)
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3.2. Definition of a Multi-band Tight-binding Model

a)

b)

Figure 3.3.: a) An example of the numbering of the sites of the tight-binding model. The rows are
labeled 1 to N and there are four columns. This results in a rectangular unit cell. b) Low-energy
spectrum of the tight-binding model around the two Dirac points. The band gap at the Dirac point
is overemphasized.

It is important to note, that tµν(δi/a) is used for a transition from one site to the neighboring
site displaced by δi, whereas tµν(−δi/a) is used for the opposite direction. The lattice
constant is denoted a as in the previous case. Additionally the energy of the pz-orbitals is
fixed as Ep := 0 eV and the energy of the d-orbitals as Ed := 12 eV, see Tab. 3.2. This energy
is included as on-site contribution in Eq. 3.14 for the d-orbitals of each sublattice separately.
The tight-binding model will be used to describe edge states in the following chapters and
a larger unit cell comprised of more than two sites will be employed. The geometry used
in the model is depicted in Fig. 3.3 a). It consists of N rows of atoms, arranged with two
zigzag edges at the top and bottom of the ribbon. The number of columns will be set to 4,
but it can be extended if needed. Furthermore, the tight-binding model includes periodic
boundary conditions along the x-direction, parallel to the zigzag edge. The Hamiltonian of
the nanoribbon with zigzag edges, which is used in this thesis, is given in the appendix, see
Eq. B.3. For the description of bulk graphene the periodic boundary conditions can also be
closed along y, such that the Hamiltonian in Eq. B.3 leads to Eq. 3.14. The two-dimensional
dispersion relation obtained from Eq. 3.14 is shown in Fig. 3.3 b). Here the rectangular
shape of the unit cell is reflected in the shape of the Brillouin zone and only two Dirac points
are depicted. Per site there are a total of 12 states, one pz-orbital and the five d-orbital
states, each with two spin components. Due to their symmetry, only the dxz- and dyz-states
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3. Tight-binding Model

Vppπ Vpdπ Vddπ Vddδ Vppσ Vpdσ Vddσ Ed Ep

−3 eV −0.69 eV −0.3 eV 2.25 eV −8.1 eV 3.6 eV 3.3 eV 12 eV 0 eV

Table 3.2.: The tight-binding parameters for graphene as used in the Slater-Koster approximation.

couple to the pz-states. The energetic separation of the d-orbitals from the Fermi energy
by 12 eV, causes them to be only sparsely populated. Even though the intrinsic spin-orbit
coupling, as will be discussed in a later section, couples various d-orbitals with each other, it
is advantageous to only consider the dxz- and dyz-states in the calculations. The occupation
of the dx2−y2 , dxy- and dz2-orbitals arising only due to intrinsic spin-orbit coupling can be
neglected, because their inclusion does not affect the numerical results of the band structure
at the Dirac- or Γ-points on the µeV-scale.

The Density of States

The density of states is an important quantity for determination of the electric properties
of solids. For each k-value, the spectrum of the Hamiltonian is computed and the number
of energies that are located in a specific energy interval is counted. This binning procedure
is using Gaussian bins, that have a small width, such that they approximate δ-distributions
[184]. By choosing ωE = 1× 10−3t and sampling the energy range in steps of 1× 10−3t the
association

δ(E − Ei) ∼
1√
2πω2

E

e
− (E−Ei)

2

2ω2
E (3.15)

is used. The index i covers the states of the Hilbert space and k the different points of the
reciprocal space. Due to finite k-space sampling, the discrete nature of the energy bands is
depicted as small variations in the density of states. The density of states is defined as

ρ(E) =
1

Ntot

∑
k,i

δ(E − Ek,i), (3.16)

but system sizes with N ≥ 40 rows have shown to not display the aforementioned variations
anymore, see Fig. 3.4, for a non-interacting system with N = 40 and dxz- and dyz-orbitals
and one-dimensional closed periodic boundary conditions parallel to the zigzag edge. The
edge states close to E = 0 result in a pronounced peak in the density of states. For the results
presented in this thesis, the reciprocal space is sampled by 801 points within [−4π

3 , 4π3 ) for
practical reasons, because the number of states becomes very large, especially if d-orbitals
are considered.
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3.3. Intrinsic Spin-orbit Coupling

Figure 3.4.: The density of states ρ for the energy E in units of t for a system with one-dimensional
periodic boundary conditions along the zigzag edge with N = 40 and dxz- and dyz-orbitals. A peak
around E/t = 0 originates from the states localized at the sample edges.

3.3. Intrinsic Spin-orbit Coupling
The derivation of the intrinsic spin-orbit coupling interaction in matrix representation is
similar to [80, 82]. From the solution of the angular part of the Schrödinger equation for the
hydrogen atom, the spherical harmonics may be obtained, which will be used here. These
are given in the Condon-Shortley phase convention [185, 186] as

Y m
l (θ,ϕ) =

√
(2l + 1) (l −m)!

4π (l +m)!
Plm (cos θ) eimϕ, (3.17)

where the associated Laguerre Polynomials are defined by [187]

Pm
l (x) =

(−1)m

2ll!

(
1− x2

)m/2 dl+m

dxl+m

(
x2 − 1

)l
. (3.18)

The Y m
l (θ,ϕ) are eigenfunctions to the L̂2 and L̂z operators with eigenvalues L̂zY

m
l =

ℏmY m
l and L̂2Y m

l = ℏ2l (l + 1)Y m
l , as they have been used in Sec. 3.2.3. In this basis, the

spin is included via direct product, e.g. |pz, ↑〉 = |pz〉 ⊗ | ↑〉, etc. For an angular momentum
operator Ĵ , the matrix elements in the basis |j,m〉 are derived [188] via

〈j′,m′|Ĵx|j,m〉 = 〈j′,m′| Ĵ+ + Ĵ−
2

|j,m〉

=
ℏ
2
{δjj′δm′,m+1 [(j −m) (j +m+ 1)]1/2

+ δjj′δm′,m−1 [(j +m) (j −m+ 1)]1/2} (3.19)
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3. Tight-binding Model

and with

〈j′,m′|Ĵy|j,m〉 = 〈j′,m′| Ĵ+ − Ĵ−
2i

|j,m〉

=
ℏ
2i
{δjj′δm′,m+1 [(j −m) (j +m+ 1)]1/2

− δjj′δm′,m−1 [(j +m) (j −m+ 1)]1/2}. (3.20)
Using Eqs. 3.19 and 3.20 and the elements of the Hilbert space |l,m〉 on the space of the
l = 1 quantum number, the different parts of the operator ˆ⃗

L are derived as

L̂+ =


0

√
2 0

0 0
√
2

0 0 0

 L̂− =


0 0 0
√
2 0 0

0
√
2 0

 L̂z =


1 0 0

0 0 0

0 0 −1

 (3.21)

and for the spin ˆ⃗
S, they are the Pauli matrices ŝx, ŝy and ŝz. Using Eqs. 3.19 and 3.20, the

Hamiltonian for the spin-orbit coupling can be written in terms of the ladder operators

ˆ⃗
L · ˆ⃗S =

[
L̂+Ŝ− + L̂−Ŝ+

2
+ L̂zŜz

]
. (3.22)

In atoms, the cartesian atomic orbitals px, py and pz may be expressed via the complex
spherical harmonics [181], which were discussed in Sec. 3.2.3 and stated in Tab. 3.1. They
are no eigenfunctions of the angular momentum operator L̂z. If the linear combinations in
terms of the spherical harmonics are respected, the representation of the spin-orbit coupling
operator in the basis {|px, ↑〉, |px, ↓〉, |py, ↑〉, |py, ↓〉, |pz, ↑〉, |pz, ↓〉} is [80]

HP
SOC = ξp


0 −iŝz iŝy

iŝz 0 −iŝx

−iŝy iŝx 0

 (3.23)

and in the same compact notation, in the basis of directed d-orbitals with both spin com-
ponents and ordered as {dxy, dx2−y2 , dxz, dyz, dz2}, the intrinsic spin-orbit coupling operator
becomes

HD
SOC = ξd



0 2iŝz −iŝx iŝy 0

−2iŝz 0 iŝy iŝx 0

iŝx −iŝy 0 −iŝz i
√
3ŝy

−iŝy −iŝx iŝz 0 −i
√
3ŝx

0 0 −i
√
3ŝy i

√
3ŝx 0


. (3.24)
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3.3. Intrinsic Spin-orbit Coupling

Here the parameters for the spin-orbit coupling strengths are denoted ξp and ξd, respectively.
Due to the term δjj′ in Eqs. 3.19 and 3.20, there is no spin-orbit coupling matrix element
between l = 1 and l = 2 states. In order to discuss the splitting of the π-bands at the Dirac
cones, the intrinsic spin-orbit coupling Eq. 3.24, is reduced to a low-energy form, on the
basis {|A ↑〉, |A ↓〉, |B ↑〉, |B ↓〉} of the pz-orbitals. In analogy to the Rashba Hamiltonian
Eq. 2.27, it leads to the form [26]

HSOC = ξdτ̂z ŝzσ̂z. (3.25)

This reduced form of the intrinsic spin-orbit coupling Hamiltonian may be used to compute
the gap at the Dirac points and a gap of 2λI = 9

V 2
pdπ

E2
d
ξd = 26µeV is obtained for a parameter

of ξd = 0.8meV [80].
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3. Tight-binding Model

3.4. Rashba-type Spin-orbit Coupling

Rashba-type spin-orbit coupling originates from breaking the mirror symmetry along an axis
perpendicular to the graphene plane, which has at least three-fold symmetry [106]. Such
a structure-inversion asymmetry leads to a form of spin-momentum-locking [142, 145, 189,
190], resulting ultimately in a spin-orbit coupling term of the form Eq. 2.27. This spin-
orbit coupling causes a so-called trigonal warping, an effect that splits each Dirac cone at
the K and K ′ point into 4 distinct cones. Before this particular effect of the Rashba-type
spin-orbit coupling is discussed in the following sections, an effective term in the low-energy
representation is stated. In the basis of directed orbitals in spherical coordinates the Stark
effect, due to an electric field perpendicular to the flat graphene plane, introduces matrix
elements among states located at identical lattice sites, such that integrals of the type

〈φi|ẑ|φj〉 =
∫
φ∗
i (r) r cos θ φj(r)d3r (3.26)

have to be solved, where e.g. i = pz and j = s denote the different quantum numbers of
the hydrogen orbitals φi and φj . The interaction couples either on-site s- and pz-orbitals,
py- and dyz-orbitals, px- and dxz-orbitals or dz2- and pz-orbitals, due to the symmetry of the
atomic wave functions. In this case the dominant contribution to the π-bands is due to the
on-site coupling of s- and pz-orbitals [145], while the influence of the d-orbital coupling via
the Stark effect is small in comparison and can be neglected [80]. The finite overlap of the
pz-orbitals with the sp2-orbitals at each lattice site can lead to a transition from the π-bands
to the sp2-hybridized bands, followed by a hopping to the sp2-orbitals at a neighboring site.
There, the intrinsic spin-orbit coupling in the p-orbitals allows an electron to return to the
π-bands with a spin flip [82]. This is depicted in Fig. 3.5. Such an interaction may be cast
into an effective term, describing hopping among pz-orbitals, together with a spin-flip. It can
be derived via Löwdin partitioning, where the influence of the hopping in the sp2-orbitals and
the intrinsic spin-orbit coupling may be expressed effectively via a a term in the subspace of
sublattice and real spin states of only the pz-orbitals. The resulting real-space representation
of the effective Rashba-type spin-orbit coupling among the pz-orbitals is given as [26, 150]

ĤR = iλR
∑
⟨ij⟩

ĉ†i (ŝ× dij)z ĉj . (3.27)

In this notation the operators ĉi represent either âi or b̂i similar to Eq. 3.5, depending on the
sublattice at the sites i or j. The vector dij is the vector pointing from site i to site j and ŝ
is the vector containing the Pauli spin matrices. λR is the parameter denoting Rashba-type
spin-orbit coupling strength. A full expression is discussed by Rakyta et al. [191]. It may
first be Fourier decomposed and then expanded around the Dirac points. This leads to an
interaction matrix in the basis {ψA↑,ψB↑,ψA↓,ψB↓} at the K-point, where the pz-orbitals
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3.4. Rashba-type Spin-orbit Coupling

Figure 3.5.: A schematic overview of the effective term of the Rashba-type spin-orbit coupling
originating from an electric field. The z-component of the real spin is indicated by an arrow at each
orbital.

located at sublattices A or B with their respective spin indicated, are of the form

ĤK
R =


0 0 0 −3λRa

2 (kx + iky)

0 0 3iλR 0

0 −3iλR 0 0

−3λRa
2 (kx − iky) 0 0 0

 . (3.28)

Only taking the zeroth-order of Eq. 3.28 into account leads to the effective term in Eq. 2.27
[41, 82, 150].

3.4.1. The Trigonal Warping of Rashba-type Spin-orbit Coupling
The spinless single-orbital model for the honeycomb lattice exhibits two non-equivalent Dirac
cones in the reciprocal space. Since the two Dirac cones are related by time-reversal sym-
metry, they exhibit opposite winding numbers, as a consequence of their different chirality
[192], which affects the alignment of momentum and sublattice spin in their vicinity. In this
section the effect of the trigonal warping due to the Rashba-type spin-orbit coupling will be
discussed in context of their winding numbers, in which this alignment is encoded. Together
with the Hamiltonian for pristine graphene at the K-point, the Hamiltonian in Eq. 3.28
results in a trigonal warping of the Dirac cones, and Rashba-type spin-orbit coupling splits
each cone into four distinct ones. An example is depicted in Fig. 3.6, where the two bands
(upper valence and lower conduction band) around the Fermi level are shown for the K and
K ′ point. At the original location of each Dirac cone, a point remains, where the bands touch.
The other three additional cones extend in an angle of 2π

3 around it. For the description of
the splitting of a single Dirac point, the origin is fixed at the position of the original Dirac
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a) b)

Figure 3.6.: The trigonal splitting at a) the K point and b) at the K ′ point. Here λR = 0.067 eV,
as in Eq. 3.28.

cones ± 4π
3
√
3a

. The three minima of the energy bands appear located at a distance 3vλλR/v
2
F

from the central cone, where vλ = 3λRa
2ℏ � λR and vF = 3ta/(2ℏ) as occurring in Eq. 3.28.

There are two parabolic bands located further away from the Fermi edge which are not shown
in Fig. 3.6. They are the upper conduction and lower valence band. The eigenstates of the
Hamiltonian are obtained at points in k-space forming a circular path around each Dirac
cone and the sublattice spin expectation value is computed with them. The components of
the vector (〈σ̂x〉, 〈σ̂y〉) are then used to discuss the alignment of the sublattice spin for these
states. In Fig. 3.7 the sublattice spin expectation values around all of the four Dirac cones at
both K and K ′ points are depicted. One can see that at the K-point (a and b) the winding
number is 1, while at the K ′-point it is −1.

The Winding Numbers of the Trigonal Splitting

For the winding numbers, integration paths in reciprocal space with a very small radius
around the Dirac points are used. The components of the sublattice spin expectation values
are computed using, k⃗(t) = k (cos t, sin t), as

〈ˆ⃗σ(t)〉 = (〈σ̂x(t)〉, 〈σ̂y(t)〉, 〈σ̂z(t)〉) , (3.29)

where each of the 〈σ̂i(t)〉 is to be understood as the expectation value of the corresponding
sublattice spin operator at the momentum k(t). With this vector, after it is normalized for
numerical stability, the winding number ν is obtained via [34]

ν =
1

2π

∫ π

−π
〈ˆ⃗σ(t)〉 ×

(
d
dt〈

ˆ⃗σ(t)〉
)

dt, (3.30)
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a) b)

c) d)

Figure 3.7.: The sublattice spin expectation value for graphene taken on a path around all four
Rashba-split Dirac cones. At the K-point: a) lower conduction band and b) valence band, at the
K ′-point: c) conduction band and d) valence band. Each arrow has the components 〈σ̂x〉 and 〈σ̂y〉 is
depicted at the point in k-space for which it is computed. The winding numbers are 1, 1,−1,−1 for
a,b,c,d.

for each of the four eigenstates of the Hamiltonian individually. This results in the winding
numbers presented in Tab. 3.3. As can be seen, the winding numbers of the four individual
Rashba-split Dirac cones add up (in row Σ) to what is obtained when the circle encloses all
four cones at once, given in Fig. 3.7. The expression for the winding number, Eq. 3.30, can
be viewed as the number of times that the sublattice spin expectation values rotate, while the
momentum - at which it is computed - revolves around a Dirac point. Along each of the four
circular paths in k-space the sublattice spin changes its orientation, resulting in a winding
number of ±1 [75, 159]. The upper conduction band does only have a non-trivial winding
number at the location of the central cone. This central cone of the lower conduction and
that of the upper valence band exhibits a winding number of ±2 and the three outer Dirac
cones ∓1, see Fig. 3.8. For the lower valence, at the locations of the three off-center cones,
there is no cone and thus a non-trivial winding number is only found at the location of the
central Dirac point. The analytical computation of the winding numbers is discussed in the
next section.
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(qx, qy) V K′
low V K′

up CK′
low CK′

up V K
low V K

up CK
low CK

up

(± cos 4π
3 ,± sin 4π

3 ) 0 −1 −1 0 0 1 1 0

(± cos 2π
3 ,± sin 2π

3 ) 0 −1 −1 0 0 1 1 0

(0, 0) −1 2 2 −1 1 −2 −2 1

(±1, 0) 0 −1 −1 0 0 1 1 0

Σ −1 −1 −1 −1 1 1 1 1

Table 3.3.: Winding numbers of the respective Dirac cone around the trigonally split Dirac cones,
due to Rashba spin-orbit coupling in a radius of 3vλλR around the K (K ′) point for the up(per)
and low(er) valence (V) and conduction band (C). All coordinates are given relative to the respective
Dirac cone, (− for K ′ and + for K) and (0, 0) marks the central cone. The sum of all cones is denoted
Σ.

An Analytical Model for Computation of the Sublattice Spin Expectation Values

The following analytical results have been obtained in the Bachelor thesis of Kazankin-Berg
[193], which was planned and supervised by the author, where more details can be found.
Expectation values for the sublattice spin expectation values of the upper valence and lower
conduction bands at the K and K ′ points are shown in Fig. 3.8. The 4 × 4-dimensional
Hamiltonian in Eq. 3.28 can be used to compute the expectation value of 〈σ̂x〉 and 〈σ̂y〉 for
the lower conduction band of the central cone at the K-point analytically. In order to achieve
this, the eigenstates of the system are analytically solved and their expectation values for
the sublattice spins computed. This results in long functional relations with polynomials in
kx, ky, vλ and λR. These can then be approximated in a Taylor-series in lowest order of
interaction parameters vλ and λR. Using kx + iky = |k| · eiϕ, one obtains 〈σ̂x〉 ∼ k · sin 2ϕ
and 〈σ̂y〉 ∼ k · cos 2ϕ. This method does not work for the three outer cones, because the
resulting expressions exhibit many singularities in the interaction parameters of the Rashba
Hamiltonian. Therefore an analytical 2×2-dimensional model is developed, which allows the
calculation for the sublattice spin expectation values around the off-center cones. The result
for the central cone above is reproduced by this reduced model1.

As a first step, Löwdin perturbation theory is used and the basis {ψA↑,ψB↑,ψA↓,ψB↓} is
reduced to only two relevant states. The Rashba spin-orbit coupling in Eq. 3.28 introduces
a coupling of one spin component on one sublattice with the opposite spin-component of the
opposite sublattice. The magnitudes of the two matrix elements for these interactions differ,
as 3λRa

2ℏ � λR, and thus the Hamiltonian can be separated into two weakly coupled sections.
The graphene Hamiltonian for the K-point is now considered as the coupling between the
two pairs of states {ψA↑,ψB↓} and {ψB↑,ψA↓}. After reordering, the Hamiltonian can be

1The discussion is limited to the K-point, because the procedure is similar for the K′-point.
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written as Haa Hab

Hba Hbb

ga
gb

 = E

ga
gb

 . (3.31)

Here one part of the Hilbert space is given by ga = {ga↑, ga↓} = {ψA↑,ψB↓} and the other
part for b analogously. Then for the gb component, with the identity element on the b-space
1b, the expression

gb = (E · 1b −Hbb)
−1 ·Hba · ga (3.32)

is obtained, which is used in the corresponding equation for ga. This leads to an effective
Hamiltonian only on the subspace for ga, where the energy E is approximated to be negligibly
small. The resulting Hamiltonian according to the Löwdin downfolding method is obtained
via Heff = Haa −Hab ·H−1

bb ·Hba and given as

HK
eff =

 0 −ℏvλk − i
ℏ2v2F k∗2

3λR

−ℏvλk∗ + i
ℏ2v2F k2

3λR
0

 (3.33)

in the basis {ψA↑,ψB↓}. A similar result has been obtained for the approximation of twisted
bilayer graphene [192].

From Eq. 3.31, the expectation values for the 4 × 4-model of the sublattice spin are
computed via 〈σ̂i〉 = (g∗a, g

∗
b )σ̂i(ga, gb)

T and can be expressed as

〈σ̂x〉 = 2 · Re
(
ga↑g

∗
b↑
)
+ 2 · Re

(
ga↓g

∗
b↓
)

(3.34)
〈σ̂y〉 = −2 · Im

(
ga↑g

∗
b↑
)
+ 2 · Im

(
ga↓g

∗
b↓
)
. (3.35)

In order to obtain an analytical expression for the expectation values Eqs. 3.34 and 3.35, the
operator in the expression for gb, Eq. 3.32, is Taylor-expanded in lowest order in q⃗ around
any of the four Rashba-split Dirac cones by replacing k⃗ from the complex expression with

q⃗ + K⃗j → (qx +Kj
x) + i · (qy +Kj

y) ≈ |Kj |eiδj (3.36)

for the momentum q⃗ around the j-th non-central Rashba-split cone Kj . The coordinates
of these three cones are defined relative to the central Dirac point and therefore the phase
δj = arctanKj

x/K
j
y is specific to each of the cones. For the central cone, the resulting

expression is in lowest order ∼ |q|, because there q⃗ → |q|eiϕ, while a constant term is derived
for the non-central cones in lowest order, independent of |q|, because |q| � |Kj |.

By using these expressions, the sublattice spin expectation values in Eqs. 3.34 and 3.35 are
simplified. Because the terms |Kj |eiδj for the off-center cones do not depend on |q|, ga↑g∗b↓
can be expressed in terms of only the ga or only the gb coefficients.
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3. Tight-binding Model

Figure 3.8.: Four examples of the sublattice spin expectation values around at the location in k-
space of the four Dirac cones. Each arrow shows the sublattice spin direction with the components
〈σx〉 and 〈σy〉 at the respective point in k-space. For each cone, the winding numbers ν are indicated.
The inset shows the location of the bands around the Fermi energy. left: a) Expectation values for
the lower conduction band at the K-point. b) Lower valence band at the K-point, which is more
remote from the Fermi edge than the upper valence band. right: c) Lower conduction band and d)
lower valence band at the K ′-point.
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3. Tight-binding Model

This effectively decouples both pairs of states. As a consequence, the expectation values of
the sublattice spin in 〈σ̂x/y,eff〉 for the j-th off-center cones are computable via the effective
2× 2-Hamiltonian in Eq. 3.33 by

〈σ̂x,eff〉 = 2Re(ga↑g∗a↓) (3.37)
〈σ̂y,eff〉 = −2Im(ga↑g

∗
a↓). (3.38)

This leads to the expectation values of the 4× 4-Hamiltonian via

〈σ̂x〉 = −2
vλ
vF

· [〈σ̂jx,eff〉 · sin δj − 〈σ̂jy,eff〉 cos δj ] (3.39)

〈σ̂y〉 = −2
vλ
vF

· [〈σ̂jx,eff〉 · cos δj + 〈σ̂jy,eff〉 sin δj ], (3.40)

with constant vλ = 3λRa
2ℏ � λR for the off-center cones. The expressions for the 〈σ̂x/y,eff〉

are derived as e.g. 〈σ̂x,eff〉 ∼ 6 cosϕ√
5+4 cos 2ϕ

, which resembles a cosine-like functional relation,
that closely matches the numerical results in Fig. 3.8. The terms ∼ sin δj in Eqs. 3.39
and 3.40 are important, because they correspond to the correct relative phase of the x- and
y-components of the sublattice spin expectation values. As can be seen in Fig. 3.8, the
sublattice expectation values around all three outer Dirac cones for each of the bands are
almost identical, apart from a rotation. This rotation is encoded in the δj .

In the case of the central cone, the lowest order expansion of Eq. 3.33 is linear in q⃗, such
that the simplified expressions for the expectation values become

〈σ̂x〉 = −4
ℏvF
3λR

|q| · [〈σ̂center
x,eff 〉 · sinϕ− 〈σ̂center

y,eff 〉 cosϕ] (3.41)

〈σ̂y〉 = −4
ℏvF
3λR

|q| · [〈σ̂center
x,eff 〉 · cosϕ+ 〈σ̂center

y,eff 〉 sinϕ]. (3.42)

In this case, the phase ϕ = arctan qx/qy is introduced, which depends on the coordinates of
the momentum q⃗. This way, the sublattice expectation values for the central cone at the
K-Dirac point are verified to be 〈σ̂x〉 ∼ |q| · sin 2ϕ and 〈σ̂y〉 ∼ |q| · cos 2ϕ, confirming the
result obtained from the 4× 4-model.

A full list of the expressions for 〈σ̂center
x,eff 〉, 〈σ̂center

y,eff 〉, 〈σ̂jx,eff〉 and 〈σ̂jy,eff〉 can be found in [193].

44



3.5. Magnetic Field and Staggered Sublattice Potential

3.5. Magnetic Field and Staggered Sublattice Potential

A central feature of the effect of strong magnetic fields on an electron is the splitting of
the electronic energies into Landau levels [71, 194]. In a two-dimensional solid, subject to
a perpendicular magnetic field, the electrons move around the plane in cyclotron orbits.
The area enclosed by these orbits is proportional to the magnetic flux and the energy and
degeneracy of these orbits depend on the strength of the field as well. A central concept by
Aharanov and Bohm in 1959 [195] was that electrons in magnetic fields are not affected by
the magnetic field directly, but rather by the underlying vector potential. This is encoded in
the electronic motion as so-called Peierls phase in two dimensions.

3.5.1. The Peierls Substitution

The Peierls substitution [196, 197] is a geometrical phase that an electron picks up, when it
moves in an external magnetic field B⃗ = ∇⃗ × A⃗, described by the vector potential A⃗. The
tight-binding description of the electronic band structure takes into account the structure
of the vector potential, which modifies the canonical momentum of the charged particle
and thus the hopping amplitude is not real anymore, but acquires a spatially-varying phase
[198]. In the Landau gauge, the vector potential for a constant magnetic field in z-direction
B⃗ = (0, 0,B) is A⃗ = (−By, 0, 0) [199]. This relates the canonical momentum p⃗ to the
mechanical momentum Π⃗ = p⃗− eA⃗ [148], where the individual components do not commute
anymore, due to the vector potential [194]

[Πx, Πy] = ieℏBz. (3.43)

This results in the Peierls phase, which associates these commutation relations with the
hopping terms of the tight-binding model. As a consequence, electronic motion along a
closed circuit acquires a phase directly proportional to the number of enclosed magnetic flux
quanta. In the honeycomb lattice, the smallest closed circuit a particle can take is around one
hexagon of the lattice and the smallest number of flux quanta possibly enclosed is ϕ0 = h

e , a
singular magnetic flux quantum. This is illustrated in Fig. 3.9 a). The phase acquired for
each hopping is Φi,i+1. The phase Φtot around one hexagon is equal to

Φtot =
6∑

i=1

Φi,i+1 = − e
ℏ

∫
hex

A⃗ · dr⃗ = 2π

ϕ0
B · Fhex, (3.44)

where Fhex = a23
√
3

2 is the surface of the hexagon, a is the lattice constant - one edge length
of the hexagon - and B · Fhex is the flux. By parametrization of one hopping along one of
the vectors δi, connecting neighboring lattices sites, the integral leading to the phase can be
formulated as Φi,j = − e

ℏ
∫ r⃗j
r⃗i
A⃗dr⃗ = − e

ℏ
∫ 1
0 A⃗(r⃗(t))

˙⃗r(t)dt, where r⃗(t) = r⃗i + (r⃗j − r⃗i)t+ r⃗i and
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Φtot

Φ61

Φ12

Φ23

Φ34

Φ45

Φ56

a)
b)

Figure 3.9.: a) The total phase and individual phases acquired for the hopping along a close path
around one primitive cell of graphene. b) Hofstadter butterfly for the honeycomb lattice as computed
from the tight binding model for graphene discussed in this thesis. The lattice is finite with 40× 40
sites and contains only pz-orbitals. All data points within the wings of the butterfly are due to finite
size effects.

˙⃗r(t) = r⃗j − r⃗i, connecting two sites i and j located at r⃗i and r⃗j , respectively. The result is

Φi,j =
2π

ϕ0
B(ryi +

1

2
(ryj − ryi )) · (r

x
j − rxi ), (3.45)

where the x- or y-components of the three displacement vectors δ1, δ2 and δ3 replace r⃗j − r⃗i,
as indicated in Fig. 3.9 a). There the hopping amplitudes from atom i to atom j acquire
the factor eiΦij . Apart from one absolute position of the i-th atom, denoted ryi , the phase
only depends on the relative displacement of the two neighbors. It is also only finite, if the
x-components of these displacements differ. The total flux is then proportional to the area of
the hexagon Fhex [187]. One can show, that the Peierls phase in graphene leads to the Harper
equation for the honeycomb lattice [200–202], which describes a fractal structure known as
the Hofstadter butterfly [203]. This fractalization of the band structure is determined by
the number of flux quanta passing through the unit cell of the graphene sample [204]. If the
number of flux quanta is related to the number of primitive unit cells by a rational number,
a magnetic unit cell does not fall together with a primitive cell across the lattice anymore.
Therefore the boundaries of the magnetic unit cells are not those of the Brillouin zone any
longer, such that band gaps open. The shape of the band structure is specific to the lattice
geometry and the way of splitting depends on the ratio of the magnetic flux through the
magnetic unit cell and the flux through a primitive unit cell. The resulting shape is the
Hofstadter butterfly, as depicted in Fig. 3.9 b) for the hexagonal lattice. Here 40× 40 atoms
forming a finite size honeycomb lattice are subjected to a magnetic field with varying fluxes,
where the ratio of both the flux quanta in the whole lattice and the number of magnetic unit
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3.5. Magnetic Field and Staggered Sublattice Potential

cells is a rational number. The figure is computed from the tight binding model described
in this chapter, but without the inclusion of d-orbitals or spin-orbit coupling. Without any
closed periodic boundary conditions, the sample has a finite number of lattice sites and four
edges. This limits the number of possible fractions in which way the magnetic unit cells can
form within the honeycomb lattice. Therefore at some energies the splittings deviate slightly
from those for the Hofstadter butterfly for the infinite lattice, as can be seen in the wings of
the butterfly in Fig. 3.9 b), where the butterfly for the periodic system does not exhibit any
energy levels.

3.5.2. The Zeeman Term
A magnetic field is not only changing the momentum of an electron, as discussed in the last
section, but the magnetic moment of its motion couples to the magnetic field vector, such
that its energy changes as well. The magnetic interaction energy of a charged particle in a
magnetic field is [205]

Hmag = −gµB
ˆ⃗
JB⃗, (3.46)

with the total angular momentum ˆ⃗
J and the magnetic field B⃗. Here g is the Landè factor

and µB the Bohr magneton. For orbital- and spin-magnetic moments g is either 1 or 2
respectively. In the basis of sites, orbitals and projections on the quantization axis along the
z-direction - as discussed in this chapter - the matrix elements of Hmag for orbital o at site i
can be written as [97, 206]

〈−µ⃗s · B⃗〉o,i = msgsµBB, (3.47)

the the Landè-factor gs = 2 for the spin and ms = ±1/2 for either of the two spin components.
This essentially shifts the spin up components up in energy by 1/2µBB and the spin down
components by −1/2µBB. Since the d-orbitals are only sparsely populated, only the md

l = 0
and mp

l = 0 components of the angular momentum multiplet for both p- and d-orbitals are
considered and interactions thereof.

3.5.3. The Staggered Sublattice Potential
The staggered sublattice potential is another effect that mediates energy shifts on specific
states in the tight-binding model by acting on the different spin species [207]. Graphene and
similar compounds with bipartite lattices, such as transition-metal dichalcogenides, exhibit
an SU(2) quantum number, which relates to the relative occupations of the sublattices and
leads to the sublattice spin. The interaction Hstag of the staggered sublattice potential can
be understood as a Zeeman effect acting on the sublattice spin and thus on the different
constituents of the two-atomic basis. Let σ⃗ be the sublattice spin, then the matrix elements
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are independent of orbital or real spin and only depend on the type of basis atom and thus
its sublattice spin

Hstag = δσ̂z, (3.48)

where δ is the interaction strength. Such a situation can arise, if e.g. a planar material with
two-atomic basis is brought in contact with a substrate with two-atomic basis of different
lattice constant. An example for this is graphene on hexagonal Boron nitride [208]. There
the lattice mismatch causes each of the two basis atoms to be subject to a different potential,
resulting in a gauge field. This can be described as an energy shift proportional to the
sublattice spins of the atoms. In the context of topological insulators, a system may be
rendered topologically trivial by the application of such potential [26, 41].
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4.1. Introduction
The conducting edge or surface states, which are central to the peculiar properties of topo-
logical insulators, are a direct result of the transition at the contact surface of two materials
with different topological orders [209]. At a boundary for example, which connects areas with
different topological states, electrons can propagate reflectionless in the direction parallel to
the interface, because of the broken time-reversal symmetry of the system [210].

Apart from the quantum Hall effect, where this novel state of matter was first discovered, a
number of related effects of similar nature were soon found [33, 41, 44, 211–213]. In general,
states of matter capable of exhibiting such effects are collectively classified as topological
insulators [23, 42].

The classification of such systems makes use of the conservation of various symmetries
and hence Hamiltonians are commonly described by their invariance under specific transfor-
mations. It ultimately led to the 10-fold way, which has its roots in random-matrix theory
[214–216]. It describes which symmetries in which spatial dimensions result in what kind of
topological insulator - if it is possible to exist at all.

Experimental evidence for this novel state of matter has been rich and it could be observed
in different materials, such as HgTe and CdTe semiconductor quantum wells [42, 211]. In
graphene, the chirality of the edge states could be verified [217] as a first step to prove its
topological characteristics. For bilayer bismuth the truly one-dimensional character of the
edge states has been observed and their topological properties verified, such as coherent
propagation without backscattering [218]. If edge states are helical, their momentum is tied
with their spin [79, 213] and the edge states feature pairs of counter-propagating states.
In case of the Chern insulator, each edge is chiral, the edge states on each edge propagate
in only one direction and because time-reversal symmetry is broken, they do not have a
counter propagating partner at the same edge [79]. In graphene, the sublattice structure
is responsible for the fact that electrons and holes have opposing chiralities. This peculiar
sublattice structure is originating from the existence of two Dirac cones in the graphene
reciprocal lattice [219–222].

In the following, the Kane-Mele model of a topological insulator is introduced by high-
lighting the bulk-boundary correspondence, which leads to the edge states. After that the
behavior of these edge states is analyzed by numerical computation using the tight-binding
model presented in the previous chapter.
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4.2. Bulk-boundary correspondence in Graphene
The bulk-boundary correspondence is a theorem that states that the bulk characteristics and
the edge characteristics should both reflect the topological character of the system equally
well and in agreement.

When two bulk materials meet at an interface, one with trivial and the other with non-
trivial Chern number, the energy gap must close at the contact point. This is significant,
because a material with non-trivial Chern number cannot pass to a trivial insulator without
also changing its bulk topological invariant. It also causes the existence of zero energy
states exactly at the fringe, where tightly localized states can exist, in order to facilitate
the transition between the two topologically different materials [23]. The chirality of the
interface states can be seen if the solution of a real space Hamiltonian at such an interface
is analyzed, which shows the localization of the states and their linear group velocity, such
that the gap between the conduction and valence band is bridged [209]. This relation is
called bulk-boundary correspondence and the pure existence of gapless edge states is enough
to qualify for the aforementioned transition from one Chern number to another [34]. In the
case of a Chern insulator, the difference of the number of left moving and right moving states
per edge is the edge topological invariant [23, 25, 209].

4.2.1. Bulk Topological Invariant
For the derivation of the bulk-topological invariant the spinless Hamiltonian in Eq. 3.9 is
used and in the sublattice spin basis (σi denote the Pauli matrices for i ∈ {x, y, z}), such a
Hamiltonian can be expressed as [34]

H = d (k) · σ, (4.1)

where d (k) is a vector mapping the two dimensional space of momenta onto a three-
dimensional space of 2 × 2-dimensional Hamiltonians. By solving the eigenvalue problem
of the Hamiltonian in Eq. 4.1, the components of d (k) can be identified with the expec-
tation values of the sublattice spin 〈σ〉. Then a function is defined, k : {0, 2π} → R2,
t 7→ k(t) = (kx(t), ky(t)), such that its two components describe a circle in k-space. With
this, the Chern number can be computed as [34]

ν =
1

2π

∫ 2π

0

(
d (k(t))

|d (k(t)) |
× d

dt

(
d (k(t))

|d (k(t)) |

))
z

dt. (4.2)

This definition is only valid for a Chern insulator. Graphene without a time-reversal symmetry-
breaking magnetic field does not belong to this class of materials. Nonetheless the bulk
topological invariant of the spinless case of a two-band model for graphene can be computed,
which results in the windings shown in Fig. 3.7 and winding numbers in Tab. 3.3. The
windings around the Dirac cones for the simple two-band model can be verified by inserting
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a path in k-space, as explained above, in the low-energy form of the graphene Hamiltonian
Eq. 3.10 and the winding numbers can be computed. The latter is a conserved quantity,
such that the sum of the winding numbers of the trigonal warping due to the Rashba-type
spin-orbit coupling resembles the winding number around all four cones [187, 193].

4.2.2. The Existence of Edge States
This section is based on [223]. For graphene, terminated by edges in one dimension, Eq. 4.1
can be used to show that there must exist zero energy states. In the sublattice representation,
without real spin, d (k) = t (1 + cosk a1 + cosk(a2 − a1),− sink a1 − sink(a2 − a1), 0). The
vectors a1 and a2 are the lattice vectors defined in Eq. 3.1. In the low-energy approximation
around one of the Dirac points, together with Eq. 4.1, this leads to Eq. 3.10. The zigzag
edge is parallel to the x-direction and to account for this fact, d is first rewritten in kx and
ky coordinates. Then one obtains a part that is depending on the now pseudomomentum ky,
separated in the component d∥ in the xy-plane and on d⊥ perpendicular to it,

d∥ = 2t cos

√
3a

2
kx(cos

3a

2
ky,− sin

3a

2
ky, 0) (4.3)

d⊥ = (0, 0, 0) (4.4)

and another in-plane component that is independent of ky and defines the offset from the
origin, namely

d0 = (t, 0, 0). (4.5)

The theorem 1a presented in [223] now states that if d∥ encloses the origin, which is the case
when the radius of d∥ is larger then the displacement d0, the energy of the zero modes is
given by |d⊥|, which in this case is zero. For fixed momentum ky, this defines a condition for
kx, where the edge states have zero energy, namely

1 < 2 cos

√
3a

2
kx. (4.6)

It leads to the interval − 2π
3
√
3a

< kx < 2π
3
√
3a

, where the zero energy modes exist. The
verification of this will be shown in Sec. 4.4, when the dispersion relation of the graphene
tight-binding model with edges is discussed.
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4.3. The Kane-Mele model
The Kane-Mele model [26, 41] is an extension of the model proposed by Haldane [31]. Hal-
dane’s original model exhibits the integer quantum Hall effect, due to the inclusion of a
time-reversal breaking field, which respects all symmetries of the lattice and does not lead
to a net flux through the unit cell. Due to this field, the Hamiltonian acquires chirality.
Furthermore, the time-reversal breaking leads to closing and reopening of the band gap at
only one of the Dirac points of the graphene lattice. This gap is then of the opposite sign
compared to the other, which sets the Hamiltonian into a topological state [31, 41]. In the
Kane-Mele model the time-reversal symmetry is restored, where two copies of the Haldane
model are linked by intrinsic spin-orbit coupling, such that each state has a time-reversal
symmetric partner. This way, the net magnetic flux is still zero and each model individu-
ally exhibits the integer quantum Hall effect. Kane and Mele argue, that another effect of
similar nature as the quantum Hall effect exists nonetheless, which features spin transport
at the edges of a topological insulator, instead of charge transport. The Kane-Mele model
is described by a tight-binding Hamiltonian for the π-bands of a honeycomb lattice, such as
graphene, with hopping parameter t. This hopping is given in the first term in

H = t
∑
⟨ij⟩

ĉ†i ĉj + iλSO
∑
⟨⟨ij⟩⟩

νij ĉ
†
i ŝ

z ĉj + iλR
∑
⟨ij⟩

ĉ†i (ŝ× dij)z ĉj + λν
∑
i

ξiĉ
†
i ĉi, (4.7)

with the creation and annihilation operators ĉ†i and ĉi for an electron at site i. The second
term describes the intrinsic spin-orbit coupling via next-nearest-neighbor hopping and an
interaction parameter λSO. It is a mapping from the higher d-orbitals in the space of the
π-band [26, 80]. The matrix element νij is +1 if the hopping along two neighboring sites is
clockwise and it is −1 if the hopping follows a counter-clockwise path. This term is what links
the two spin species together. Within one spin type the low-energy form of the intrinsic spin-
orbit coupling assumes the form of a magnetic field. But the sign of this field is opposite for
each spin species and thus it conserves time-reversal symmetry when both spins are considered
as a whole. The third term breaks the mirror-symmetry along the direction perpendicular
to the graphene plane and describes the Rashba-type spin-orbit coupling within the π-band.
The vector dij is the displacement vector between the two neighbors i and j and the vector
ŝ is the vector containing the Pauli matrices, which are defined on the real spin space. The
fourth and last term is a staggered sublattice potential. For one of the sublattices ξi = 1
and for the other ξi = −1, which causes a transition from the quantum spin Hall topological
phase to that of the trivial insulator at 3

√
3λSO < λν [26]. Even though the Rashba-type

spin-orbit coupling and the staggered sublattice potential perturb the ŝz conservation and the
two-fold rotational symmetry of the system, still a finite region around the unperturbed point
in parameter space exhibits the quantum spin Hall effect [26]. If the staggered sublattice
potential becomes too strong, such that λν > 3

√
3λSO, the system leaves the topological

state and becomes insulating. The same holds true for the Rashba-type spin-orbit coupling,
which does not destroy the quantum topological state as long as λR < 2

√
3λSO.
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4.4. Helical Edge States

a) b)

Figure 4.1.: a) The population of two edge states of graphene as a solution to the tight-binding
model at the Γ-point. The population of one state is indicated by blue and that of the other by red
color. At finite momenta, the edge states acquire exponentially small bulk population. b) Dispersion
relation of a N = 30 nanoribbon with only pz-orbitals. The energy bands of the edge states are shown
in black and those of the bulk states in gray.

For the computation of the quantum spin Hall effect, the tight-binding model with edges
as given by Eq. B.3 is used. The periodic boundary conditions are kept along the x-direction,
but opened along the y-direction and terminated by a zigzag edge at each end. A spatial
occupation of the solution of the one-dimensionally periodic graphene sample is depicted in
Fig. 4.1 a), where the periodic axis is also taken parallel to the x-direction. In this plot
the occupation per site of two of the eigenstates for kx = 0 is indicated by coloring - blue
coloring resembles one edge state and the red color another. The edge states are confined to
one edge each and exclusively located at either sublattice. A band structure featuring edge
states is shown in Fig. 4.1 b). For a semi-infinite sample, the edge states would loose their
edge character only for 2π

3
√
3
< |kx · a|, where no midgap states are expected to exist anymore

[224]. Notice, that in the tight-binding model described here, the unit cell is twice as wide as
in the literature [210, 224] and in order to reflect the smaller Brillouin zone, all translations
leading to the condition for the edge states Eq. 4.6 must obtain a factor of 1/2. Then the
condition for the edge states becomes − 4π

3
√
3
< kx ·a < − 4π

3
√
3
, which is observable in the band

structure in Fig. 4.1 b).
Finite size effects open up a small gap already in the close vicinity of the Dirac points.

The gap for finite systems exactly at the point kx = 4π
3
√
3a

is dependent on the nanoribbon
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size. With N as the number of rows of the nanoribbon, the gap is proportional to 3π
2

1
W+1

with W = 3N
2 −1 being the ribbon width of the nanoribbon in units of lattice constant a [50].

As a result the gap closes, as N grows. Nonetheless, the edge-like states cross the gap, such
that the nanoribbon is insulating in the bulk, but conducting at the edges. In fact all zigzag
nanoribbons are considered metallic [49], while the bulk of graphene is a semimetal. The
helicity of the edge states is only given when intrinsic spin-orbit coupling is present - either
by the second nearest-neighbor hopping as in Eq. 4.7 or via the actual matrix elements Eq.
3.24 and an extended Hilbert space with d-orbitals. The intrinsic spin-orbit coupling opens
up a gap at the Dirac points, such that the edge bands obtain a slope. This gap is on the
order of 26µeV [80], corresponding to 0.3K.

The nature of this type of gap, which shifts the energy of one real-spin type at one Dirac
point in one direction and in the opposite direction at the other Dirac point, causes the
states to obtain this helicity. Consequently, the group velocity of the edge states connects
the valence band at one Dirac cone with the conduction band at the other continuously.
Without the intrinsic spin-orbit coupling, the gap at the Dirac points would not open and
thus the states with different helicities, but located at identical edges, would be degenerate
everywhere between the two Dirac points. This is also why no spin currents could flow and
thus the quantum spin Hall effect could not be observed, as the direction of propagation had
no way of knowing which spin component at each edge had which helicity [79]. If only one
type of spin species would be considered in the model, states on opposite edges would travel
in opposite directions [207, 225] and chirality, the locking of sublattice spin and propagation
direction, could be defined [75]. In a time-reversal symmetric topological insulator, the
chirality is lifted, because each edge obtains another state of opposite spin and opposite
propagation direction due to Kramers degeneracy and therefore the system is said to exhibit
counter-propagating spin-filtered edge states [26, 41] instead of chiral edge states. The edge
states are propagating without backscattering at nonmagnetic impurities. In the quantum
Hall effect, the dissipationless transport is facilitated, because at each edge no channel for
possible backscattering is available, while in the quantum spin Hall effect the destructive
interference of the two counter-propagating states at each edge suppresses backscattering
[39]. The analysis of helicity becomes more complicated, when additional effects on the band
structure from the d-orbitals are taken into account, which change the dispersion relation
of the edge states locally, even without intrinsic spin-orbit coupling. Such a situation is
depicted in Fig. 4.2. There, two band structures are depicted, one with only pz-orbitals
(left) and one with also dxz- and dyz-orbitals (right), and with intrinsic spin-orbit coupling.
The nanoribbons have both N = 30 rows and 4 columns. Including intrinsic spin-orbit
coupling of magnitude ξd = 0.8meV does not change the dispersion relation on the right of
Fig. 4.2 at this energy scale, compared to the one without intrinsic spin-orbit coupling. A
finite slope of the edge states is observable for all kx 6= 0 in the case of included d-orbitals. For
the case with only pz-orbitals, the slope remains zero, but the edge states are still confined
to the edges, fulfilling Eq. 4.6. Due to the similar transformation behavior, see appendix
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4.4. Helical Edge States

Figure 4.2.: Half of a dispersion relation of a nanoribbon of size N = 30 with only pz-orbitals (left)
and additionally dxz- and dyz-orbitals with intrinsic spin-orbit coupling ξd = 0.8meV (right). The
slope of the edge state energy due to the inclusion of the d-orbitals is visible, as well as an energy
shift at kx = 0.

A.1, the momentum and sublattice spin can be interchanged, such that in analogy to the
alignment of momentum and spin, leading to helicity kŝ

|k| , the edge helicity [151] becomes the
alignment of real spin and sublattice spin 〈σ̂z · ŝz〉, which is a good quantum number.

The presence of two states with opposing real spin at each edge is not changed by the
addition of the d-orbitals. Since the deformation of the edge bands is not originating from
a gap opening at the two Dirac points, all four energy bands of the edge states obtain the
same slope. Hence the finite slope is not leading to helicity, similar to the intrinsic spin-orbit
coupling, because the real spin is not locked to the propagation direction.
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4. Graphene as a Topological Insulator

4.5. Edge States with Rashba-type Spin-orbit Coupling and
Magnetic Field

Figure 4.3.: The four edge states in a nanoribbon with 10 rows of atoms. The density of states is
depicted on the left, where the parts of the bands with low dispersion result in peaks. The bands are
colored by edge and real spin, showing a degeneracy of bands with positive edge helicity and of bands
with negative helicity. It is ξd = 2.1 eV and λR = 0.06 eV.

The topological characteristics of the graphene nanoribbon can be understood when the
occupation of lattice sites and spin polarization of the edge states is considered at the same
time, revealing information about their helicity. In a model with 10 rows of atoms, pz-,
dxz- and dyz-orbitals and with Rashba spin orbit coupling of strength λR = 0.06 eV, the
bands remain fourfold degenerate only at kx · a = 0. Here, the intrinsic spin-orbit coupling
is overemphasized with ξd = 2.1 eV for a stronger effect on the band structure, but leads
to qualitatively similar results at smaller values of ξd, because the Rashba-type spin-orbit
coupling is very small. In Fig. 4.3 the edge states are depicted, where the energy bands are
colored by the edge and real spin expectation values of the edge states. Since both edges
belong to different sublattices, this labeling is equivalent to the sublattice spin.

The edge states dispersing with positive group velocity have parallel alignment of real-
and sublattice spin, since the purple and red curves have positive edge helicity 〈ŝz · σ̂z〉.
The other two curves are their time-reversal partners, which have negative edge helicity. A
trigonal warping in the lower conduction and upper valence band is visible in the vicinity
of the Dirac cones. At around kx · a = ±1, the bands start to split and the ŝz degeneracy
is lifted, which occurs due to the influence of the Rashba spin-orbit coupling. At around
kx · a = ±1.5 both pairs of bands exhibit largest splitting. Both states |E1 ↑〉 and |E2 ↓〉
are mixed, such that ŝz is no longer conserved. The same happens with the other two states
with negative helicity, |E1 ↓〉 and |E2 ↑〉.
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4.5. Edge States with Rashba-type Spin-orbit Coupling and Magnetic Field

Figure 4.4.: Result of the calculation as in Fig. 4.3 with ξd = 2.1 eV and λR = 0.06 eV, colored
by the ŝy component of the real spin. The Rashba spin-orbit coupling acts on the bands at the
Dirac points and couples states of opposite spins, such that a gap of ŝy polarized states arises at
kx · a = ±1.0.

The density of states for the crossing is shown in the left of Fig. 4.3 and the gapless crossing
of the edge states is indicated by the gapless density of states everywhere around the Fermi
edge at −131meV. An asymmetry of the dispersion - mainly due to the shift of Vpdπ - is
caused by the interaction among the d-orbitals with Vddδ. The change of the slopes of the
bands introduced by the Rashba-type spin-orbit coupling at kx · a = ±1.5 is indicated by a
peak in the density of states. The low-energy expression for the Rashba spin-orbit coupling
around the Dirac points, Eq. 2.27, shows a dependence of the y-component of the real spin
on the momentum kx and thus on the alignment with the sublattice spin σ̂x. At some point
this Rashba spin-orbit coupling, which is a bulk property, starts to affect the dispersion of
the edge states, the closer they are to either of the Dirac cones. As a consequence, both a
splitting at kx ·a = ±1.5 and a polarization of the ŝy-component take place. This can be seen
if the states in Fig. 4.3 were colored by their ŝy-expectation value, which is shown in Fig. 4.4.
While a four-fold degeneracy of the energy is observed in the vicinity of the Brillouin zone
center, the splitting of the bands around the Dirac points happens due to the ŝy-polarization
along the direction of momentum kx, leading to a remaining two-fold degeneracy.

Next, the edge states with intrinsic spin-orbit coupling are subjected to a magnetic field
of strength B = 25T, but no Rashba spin-orbit coupling. Then the ŝz-polarization is main-
tained, but the degeneracy of the edge states at kx · a = 0 is lifted. This is shown in Fig.
4.5, where the edge states again cross the energy gap. The magnetic field lifts the spin de-
generacy and destroys time-reversal symmetry. As depicted, the red and purple curve with
positive helicity (parallel real and sublattice spins) still disperse with positive group velocity,
but are non-degenerate in energy for every kx · a. The same is true for the other two states
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4. Graphene as a Topological Insulator

Figure 4.5.: Dispersion relation of the four edge states in a nanoribbon with 10 rows and ξd = 2.1 eV,
without Rashba-type spin-orbit coupling, but under the influence of a magnetic field of strength
B = 25T. The states are colored by edge and real spin component.

with opposite edge helicity. Those two states with real spin ↑ are higher in energy than the
two ↓-states, because of the Zeeman splitting by the magnetic field. Hence two peaks are
shown in the density of states, one for each real-spin species. The resulting material is a
Weyl semimetal, because it has edge band crossings, which are singly degenerate [226, 227]
and can thus be regarded as a time-reversal broken topological insulator. If additionally
Rashba spin-orbit coupling of again λR = 0.06 eV is introduced, as shown in Fig. 4.6, the
coupling of different ŝz values at identical edges changes the material to a trivial insulator.
However, the density of states remains finite everywhere, because the dispersion of the bands
obscures the band gap. The only indication of the avoided crossing is the additional peak in
the density of states in Fig. 4.6 at −135meV, which expresses the second saddle point in the
dispersion relation. The other two peaks at at −118meV and at at −133meV are identical
to the previous case in Fig. 4.5. In this situation the density of states cannot be used to
classify the topological state of the system. As in the previous case without a magnetic field,
the polarization of the ŝy-component is responsible for the splitting away from kx · a = 0,
c.f. Fig. 4.7. At the Brillouin zone center the Rashba-type spin-orbit coupling is zero. At
kx ·a = ±0.5, however, the two ŝz-components for each edge couple and a gap opens, making
the material truly insulating and thus topologically trivial.
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4.5. Edge States with Rashba-type Spin-orbit Coupling and Magnetic Field

Figure 4.6.: Additionally to the parameters ξd = 2.1 eV and B = 25T of Fig. 4.5, the Rashba spin-
orbit coupling strength is set to λR = 0.06 eV. The dispersion relation then shows avoided crossings
at kx · a = ±0.5.

Figure 4.7.: Dispersion relation depicted in Fig. 4.6 for the four edge states in a nanoribbon with
10 rows and ξd = 2.1 eV, λR = 0.06 eV and a magnetic field B = 25T, colored by ŝy component. The
influence of the Rashba spin-orbit coupling is shown, where the polarization of the ŝy components
introduces an avoided crossing at kx · a = ±0.5. At kx · a = 0 the faded area corresponds to areas of
the Brillouin zone of small ŝy-polarization.
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5. Electronic Interaction in a Multi-Orbital
Hubbard Model

Up until now the independent-electron picture has been considered. Including interactions
may drastically change the electronic properties of the edge states in graphene nanoribbons,
because different magnetic phases have different electronic and magnetic characteristics. This
may determine whether the ground state of these ribbons is a topologically insulating phase
or not. In reality, magnetic edge states are not very likely to be observed. Passivation
with hydrogen atoms may help meeting the requirements. Overpassivation of edge atoms,
however, can cause the Fermi edge to be far away from the magnetic instability, such that
experimentally available samples are non-magnetic by default [177]. So far many experi-
mental efforts have been undertaken to find magnetic edge states, employing methods such
as scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) [228].
These methods probe and confirm the local density of electronic states at the zigzag edges
of graphene nanoribbons. More recent experiments have found a gap opening in the local
density of states which depends on the ribbon size, confirming magnetic ordering of the
edges phases [47, 229], even at room temperature [230]. Other efforts include near-edge x-
ray absorption (NEXAFS) or electron-spin resonance (ESR) on samples of graphene [231].
Many of these experiments have claimed to prove the existence of magnetic edge states, but
the accuracy of these findings allow for explanations other than the occurrence of magnetic
edge states [232]. Furthermore, experiments usually probe only either the edge character of
electronic states in graphene or the alignment of the spin degree of freedom - but not both
simultaneously, such that a combination of NEXAFS and ESR should be used to investigate
these two features at the same time.

It is hard to produce a large enough amount of samples with sufficiently clean and precise
zigzag edges to be able to collect conclusive results [233]. A model for the description of
electronic interactions, which may be capable helping the understanding of magnetism in the
edges of graphene nanoribbons, is the Hubbard model [234–236]. It allows for inclusion of
the electronic interaction in the tight-binding approach by an on-site interaction term and
it is the simplest model for discussing the mutual influence of the interaction and kinetic
energy [237]. Variations of this model are also possible, such as a range of extended Hubbard
models, which may include interactions also from neighboring atoms. In the model presented
in this work, instead of a spatially extended Hubbard model, a multi-orbital Hubbard model
in the mean-field approximation is used, where a single site is subject to on-site interaction
terms from different orbitals [238]. In many cases edge states in graphene nanoribbons
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are discussed by using density-functional theory (DFT) [91, 239], where the ground state
energy is described by using a functional, which is called the exchange-correlation potential.
This potential may be used to solve the Schrödinger equation effectively in a single-particle
picture, by using formulae to express an effective exchange-correlation potential. One of the
common approximations in the literature is the so-called local-spin-density approximation
(LSDA) [93, 240]. Others might be the local density approximation or the generalized gradient
approximation.

However, for the goal of computing the magnetic edge states in a spatially extended
graphene sample, a mean-field method may suffice, because the number of states and atoms
limits the efficiency of DFT calculations and the loss of accuracy may be negligible. Such an
approach leads to the Hartree-Fock Equations. Because of their non-linear character, these
equations must be solved iteratively, such that a self-consistent solution for the electronic
wave functions can be found. In the following, the onset of magnetism is covered. Then the
formulation of electronic interactions in a multi-orbital Hubbard model is discussed. In a next
step, the model is approximated with a mean-field, before the principle of self-consistently
solving such a mean-field approach is described.
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5. Electronic Interaction in a Multi-Orbital Hubbard Model

5.1. Onset of Magnetism in Graphene Nanoribbons
In order to explain the onset of spontaneous ferromagnetism, a model derived by Stoner
[237] can be used to quantify the competition between kinetic energy and repulsion due to
the Coulomb interaction. In Stoner’s model it is shown that the susceptibility for a critical
Coulomb interaction strength Ucrit causes parallel alignment of spins, which depends on the
density of states at the Fermi energy ρ(EF ). The critical Coulomb interaction according to
the Stoner model is

1 ≤ Ucrit · ρ(EF ). (5.1)

If the density of states at the Fermi energy becomes very large, even small electronic inter-
action strengths are enough to compete with the kinetic energy of the states, resulting in a
preferred parallel spin alignment.

Two-dimensional graphene is a zero-gap semiconductor, and without edge states, it has zero
density of states at the Fermi energy [241]. As a consequence, bulk graphene is non-magnetic
in the ground state. In the case of edge states of graphene nanoribbons, the dispersion of the
bands at the Fermi energy is rather flat, due to the localization of the corresponding states
at the edges. The very small bandwidth, due to the small kinetic energy of the edge states,
leads to a peak in the density of states at the Fermi energy and causes a tendency for edge
magnetism.

Graphene has a bipartite lattice and in this case, the Hubbard model at half-filling can
be mapped onto an effective antiferromagnetic Heisenberg model [241]. Due to the two
sublattices of the system, each sublattice on its own exhibits ferromagnetic ordering, but as
the neighbors of each site belong to different sublattices, neighboring states are polarized in
opposite directions. In the case of nanoribbons with zigzag edges, the edge states populate
the outermost sites of the ribbon and each edge belongs to a different sublattice exclusively.
Consequently, the spins along each edge align in parallel and a local ferrimagnetic ordering of
the spins is found. For sites further away from the edges the strength of this spin polarization
is weaker as a result of the localization of the edge states. Both edges may exhibit a very
large spin polarization, while the whole lattice may still feature a zero total spin magnetic
moment, in agreement with Lieb’s theorem [242]. This theorem states that the ground state
of a bipartite lattice at half-filling with equal number of sites of each sublattice, exhibits a
zero spin magnetic moment.

Due to the localized nature of the edge states, the system can be regarded as a Heisenberg
model with two step ladder geometry, which exhibits ferromagnetic intra-edge exchange and
antiferromagnetic inter-edge exchange [241]. The magnitude of the parameters obtained by
numerical fitting reveals, that the inter-edge exchange is two orders of magnitude smaller than
the intra-edge exchange, suggesting that the alignment of the the edges magnetic moments
for U = 0.1t is nearly independent. While the intra-edge exchange is barely affected by
the distance between the edges, the inter-edge exchange decreases rapidly, if the edges are
further apart. A more detailed analysis shows, that the inter-edge exchange (also called
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superexchange) arises due to three contributions, the band energy, the exchange energy and
spin polarization [243], all favoring an alignment of the magnetic moments at each edge
opposite to each other. This will be discussed in more depth, when the properties of each
edge magnetic phase are analyzed in the next chapter.

The influence of the d-orbitals, which affect the dispersion relation of the π-like edge
states, is expected to play a role in the magnetic properties of the ground state, because the
occurrence of magnetization depends on the density of states at the Fermi energy.

Other than that, the amount of doping of such a system shifts the Fermi energy away from
the magnetic instability. As a result, the onset of magnetization and the phase of the ground
state may be determined by breaking electron-hole symmetry or observing the system away
from half-filling [49].
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5.2. Electronic Interaction in the Single-orbital Hubbard Model
The Hamilton operator for interacting electrons in a solid in spatial representation is [93]

H =
N∑
i=1

p2
i

2me
+

N∑
i=1

V (ri) +
1

2

∑
i ̸=j

e2

|ri − rj |
, (5.2)

where V (r) is the potential of the periodic lattice and N is the number of electrons in the
system with the mass me. The representation is suited to describe the electronic interaction,
but the first two terms of the Hamiltonian Eq. 5.2 are diagonal in the Bloch basis [237],
while the latter is diagonal in that of the real space basis, instead. Therefore a conversion to
Fock space via the field operators ϕ̂(r) is performed, where ϕ̂(r) =

∑
i ϕi(r)ĉki and ϕ̂†(r) =∑

i ϕ
∗
i (r)ĉ

†
ki

annihilate and create a particle at position r. Here the wave functions ϕ∗i (r) and
ϕi(r) can be any single-particle basis set for the Hilbert space, like a real space representation,
such as the localized Wannier functions, or the Bloch basis set, defined by the band index n,
the momentum vector k and the spin σ [93]. By using these field operators the interaction
part of the Hamiltonian Eq. 5.2 can be expressed in the second quantization representation
as [237]

H1 =
1

2

∫
d3r1

∫
d3r2 ϕ̂

†(r1)ϕ̂
†(r2)

e2

|r1 − r2|
ϕ̂(r2)ϕ̂(r1). (5.3)

The non-interacting part H0 of the Hamiltonian has been largely dealt with in Chapter
3 and is thus not discussed here again. As described there, a real-space representation of a
system can be found by using a set of localized Wannier functions at the individual atomic
sites, but an approximation to them via the atomic orbital basis is used, in order to exploit
their symmetries. By formulating the non-interacting part of the Hamiltonian Eq. 5.2 as
tight-binding model, where the electrons are confined to a site and hopping among different
sites i and j is enabled by a hopping matrix element tij , the interacting part in Eq. 5.3 can
be included, by using the atomic orbitals in Eq. 5.2 with site index i, such that the total
Hamiltonian in second quantization reads [244]

H =
∑

i,j,σ,σ′

ti,j ĉ
†
i,σ ĉj,σ′ +

1

2

∑
σ,σ′

∑
i,j,k,l

ui,j,k,lĉ
†
i,σ ĉ

†
j,σ′ ĉk,σ′ ĉl,σ. (5.4)

Band indices n and n′ at each creation and annihilation operator are suppressed here. The
matrix elements are given as [93]

ti,j =

∫
d3r ϕ∗(r−Ri)

(
p2

2m
+ V (r)

)
ϕ(r−Rj) (5.5)

and

ui,j,k,l =

∫
d3r1

∫
d3r2 ϕ

∗(r1 −Ri)ϕ
∗(r2 −Rj)

e2

|r1 − r2|
ϕ(r2 −Rk)ϕ(r1 −Rl). (5.6)
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In this context, Hubbard [234–236, 245] introduced a single-band model for the Coulomb
interaction of electrons, which is called the Hubbard model,

H = −t
∑
⟨i,j⟩

∑
σ∈{↑,↓}

ĉ†i,σ ĉj,σ + U
∑
i

n̂i,↑n̂i,↓. (5.7)

This model is comprised of one band with two types of spin and the Coulomb interactions are
limited to short-range on-site interactions with strength U . Thus, all of the field operators
in the sum in the second term of Eq. 5.4 are taken at the same site and do not have a band
index. The hopping matrix element is confined to nearest neighbors only and independent
of the site indices. The model includes the spin, reflected in the last term of Eq. 5.7,
where the repulsion between states of opposite spins at the same sites is incorporated via
the density operators n̂i,σ for site i and spin σ. It serves as a basic model for the description
of electronic interaction. Extensions to the original Hubbard model have been made and
resulted in different kinds of extended Hubbard models [246–248], which may include long-
range interactions or multi-band tight-binding models, such as discussed in the next section
of this chapter. These models require an extension of the single-orbital Hubbard model to
more than one orbital, such that band indices will be included in the following. In this
case, an exchange term may also be introduced into the multi-orbital Hubbard model which
couples on-site wave functions of different orbitals. Screening and long-range correlation
are neglected [249]. For the description of metals where the Fermi energy lies within the
conduction band of the system, using only a single-orbital Hubbard model may be justified.
However in the case presented here, the influence of the higher energy d-orbitals on the total
energy of the model is of interest and therefore more than one orbital is regarded.
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5.3. Definition of a Multi-orbital Hubbard Model

From the general formulation of the interaction operator in Eq. 5.4, only terms coupling
states located at the same site will be included and therefore no explicit site index is written.
The orbital indices i, j, k, l will be labeled either by p, when pz-orbital are regarded or n,
when any of the five d-orbitals are considered. The interaction matrix elements ui,j,k,l will
be denoted

〈ij|V̂ |kl〉 :=
∫

d3r1

∫
d3r2 ϕ

∗
i,σ (r1)ϕ

∗
j,σ′ (r2)

V

|r1 − r2|
ϕk,σ′ (r1)ϕl,σ (r2) . (5.8)

Adding an orbital index to the wave functions in Eq. 5.6, leads to the term describing the
interaction among pz-orbitals

Hpp = 〈pp|V̂ |pp〉 ĉ†p↑ĉ
†
p↓ĉp↓ĉp↑. (5.9)

The interaction matrix element Up among pz-orbitals is computed via Up := 〈pp|V̂ |pp〉. This
is the Coulomb repulsion of two electrons of opposite spins in the pz-orbital at a single
site. By including d-orbitals in the tight-binding model, various combinations for electronic
interactions in Eq. 5.4 are possible. The first is

H1
pd =

∑
n,σ,σ′

〈pn|V̂ |pn〉ĉ†pσ ĉ
†
nσ′ ĉnσ′ ĉpσ. (5.10)

Here the Coulomb repulsion among electrons in pz-orbitals with any of the d-orbitals is de-
scribed. In practice the d-orbitals are located far away from the Fermi energy, while the
band structure is dominantly described by the pz-orbitals already. As a consequence, the
Coulomb repulsion among different d-orbitals in Eq. 5.8 is neglected in this work. There-
fore Eq. 5.10 contains only terms, where i = k = p labels a state in a pz-orbital and
j = l = n ∈ {dxz, dyz, . . . } one of the five d-orbitals and vice versa. Since more than one
orbital is included in the extended Hubbard model, another interaction term may arise,
namely

H2
pd =

∑
n,σ,σ′

〈pn|V̂ |np〉ĉ†pσ ĉ
†
nσ′ ĉpσ′ ĉnσ. (5.11)

As before, one of the indices describes a pz-orbital, while the other refers to any of the 5 d-
orbitals and no other interaction matrix elements are considered. By defining the real matrix
elements Vn := 〈pn|V̂ |pn〉 for the Coulomb repulsion depending on a pz-orbital and the n-th
d-orbital and Jn := 〈pn|V̂ |np〉 for the Coulomb exchange interaction matrix elements, the
relevant parts of the electronic interaction Hamiltonian in the multi-orbital Hubbard model
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can be summarized as

Hpd = Hpp +H1
pd +H2

pd (5.12)
= Upĉ

†
p↑ĉ

†
p↓ĉp↓ĉp↑

+
∑
n

(
Vn

(
ĉ†p↑ĉ

†
n↓ĉn↓ĉp↑ + ĉ†p↓ĉ

†
n↑ĉn↑ĉp↓ + ĉ†p↑ĉ

†
n↑ĉn↑ĉp↑ + ĉ†p↓ĉ

†
n↓ĉn↓ĉp↓

)
+Jn

(
ĉ†p↑ĉ

†
n↓ĉp↓ĉn↑ + ĉ†p↓ĉ

†
n↑ĉp↑ĉn↓ + ĉ†p↑ĉ

†
n↑ĉp↑ĉn↑ + ĉ†p↓ĉ

†
n↓ĉp↓ĉn↓

))
. (5.13)

By comparing the terms in this interaction Hamiltonian, it becomes clear that the terms in
the last two lines, where all four operators share the same spin, are identical apart from one
permutation. This results in a relative sign, whereas they have different prefactors Vn and
Jn and therefore the terms can be rearranged to

Hee
pd =Upn̂p↑n̂p↓ +

∑
n

(
Vn (n̂p↑n̂n↓ + n̂p↓n̂n↑) + Jn

(
ĉ†p↑ĉ

†
n↓ĉp↓ĉn↑ + ĉ†p↓ĉ

†
n↑ĉp↑ĉn↓

)
+(Vn − Jn) (n̂p↑n̂n↑ + n̂p↓n̂n↓)

)
, (5.14)

where the particle number operators n̂iσ := ĉ†iσ ĉiσ have been inserted. The Coulomb repulsion
of electrons with different spins in the pz-orbital at a single site is given by the first term in
Eq. 5.14 and by the second term, when one of the electrons occupies a d-orbital instead. In
the third term the non-classical exchange is shown, which represents the energy of exchanging
the spin of electrons in different orbitals. The last term describes the Coulomb repulsion of
electrons in different orbitals, but with identical spin. There are similar forms of the above
electronic interaction Hamiltonian in the literature [237, 250–252]. The magnitude of the
parameters derived here is discussed in a later section.
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5.4. Decomposition of the Electronic Interaction Operator into
the Mean-field Approximation

In this section the terms in the many-body Hamiltonian Eq. 5.14 are rewritten, such that
they can be solved iteratively with the mean-field method. Spin-rotational invariance may be
of importance, if the spin conservation along the z-axis is perturbed, i.e. by Rashba-type spin-
orbit coupling. Therefore in the following derivation, additional terms for maintaining spin-
rotational invariance are introduced in the mean-field approximation. These terms will be
zero in the numerical computations performed in this work, but are stated for completeness,
because the Hubbard model is also spin-rotational invariant.

5.4.1. Interaction among pz-orbitals
The density operators in Eq. 5.9, e.g. n̂↑, are expressed as a fluctuation ∆n̂↑ around their
mean-value 〈n̂↑〉. Then the terms quadratic in the fluctuation are neglected. It follows for
the electronic densities [237]

n̂↑n̂↓ = (〈n̂↑〉+∆n̂↑) (〈n̂↓〉+∆n̂↓) ≈ −〈n̂↑〉〈n̂↓〉+ n̂↑〈n̂↓〉+ n̂↓〈n̂↑〉. (5.15)

While approximating the two-body operator as an effective potential, this reformulation does
not conserve spin rotational invariance [245] and is only valid for systems, where the spin
ŝz-component is conserved. For the formulation of a spin-rotational invariant mean-field
approximation, additional terms may be formed from the two density operators, because
these are comprised of two field operators, each. Rearrangement of the field operators leads
to

n̂↑n̂↓ = ĉ†↑ĉ↑ĉ
†
↓ĉ↓ = −ĉ†↑ĉ↓ĉ

†
↓ĉ↑. (5.16)

The decomposition of the Eq. 5.16 into the mean-field picture is

−ĉ†↑ĉ↓ĉ
†
↓ĉ↑ ≈ −

(
−〈ĉ†↑ĉ↓〉〈ĉ

†
↓ĉ↑〉+ ĉ†↑ĉ↓〈ĉ

†
↓ĉ↑〉+ ĉ†↓ĉ↑〈ĉ

†
↑ĉ↓〉

)
, (5.17)

where again terms quadratic in the fluctuations are neglected. These expectation values will
be zero when the system does not contain ŝz-non-conserving terms. The pairs of operators
in this decomposition can be identified with the spin raising Ŝ† = ĉ†↑ĉ↓ and lowering operator
Ŝ− = ĉ†↓ĉ↑, which will form the x- and y-components of the spin Ŝx = 1

2

(
Ŝ† + Ŝ−

)
and

Ŝy = 1
2i

(
Ŝ† − Ŝ−

)
. By identifying 〈Ŝz〉 = 1

2 (〈n̂↑〉 − 〈n̂↓〉) and 〈n̂〉 = 〈n̂↑〉 + 〈n̂↓〉, the
following relations can be established

〈n̂↑〉〈n̂↓〉 =
1

4

(
〈n̂〉2 − 4〈Ŝz〉2

)
(5.18)

n̂↑〈n̂↓〉+ n̂↓〈n̂↑〉 =
1

2

(
n̂〈n̂〉 − 4Ŝz〈Ŝz〉

)
. (5.19)
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Together, they lead to the relations Ŝ−〈Ŝ†〉+ Ŝ†〈Ŝ−〉 = 2Ŝx〈Ŝx〉+ 2Ŝy〈Ŝy〉 and 〈Ŝ†〉〈Ŝ−〉 =
〈Ŝx〉2 + 〈Ŝy〉2. The mean-field electron-electron interaction of the Hubbard model for the
pz-orbitals can then be written as the sum of the two decompositions

n̂↑n̂↓ ≈
n̂〈n̂〉
2

− 2S⃗〈S⃗〉 − 〈n̂〉2

4
+ 〈S⃗〉〈S⃗〉. (5.20)

This operator conserves spin-rotational invariance, because all spin components are treated
on equal footing.

5.4.2. Interaction among pz- and d-orbitals
In this section, one of the terms in Eq. 5.14, ĉ†p↑ĉ

†
n↓ĉp↓ĉn↑, will be decomposed the same

way as in the previous section. The spin-rotational invariance-conserving parts will obtain a
sign relative to the other non-conserving parts, due to the commutation relations of the field
operators. It follows

ĉ†p↑ĉ
†
n↓ĉp↓ĉn↑ ≈− 〈Ŝ†

p〉Ŝ−
n − 〈Ŝ−

n 〉Ŝ†
p + 〈ĉ†n↓ĉp↓〉ĉ

†
p↑ĉn↑

+ 〈ĉ†p↑ĉn↑〉ĉ
†
n↓ĉp↓ − 〈ĉ†p↑ĉn↑〉〈ĉ

†
n↓ĉp↓〉+ 〈Ŝ†

p〉〈Ŝ−
n 〉. (5.21)

Here the spin-rotational invariance is ensured through the spin raising and lowering operators
for each of the orbitals. If all of the two-body operators are decomposed into mean-field
operators, the result is

Hpd ≈ Up

2

(
n̂〈n̂〉 − 4Ŝz〈Ŝz〉 −

(
〈n̂〉2

2
− 2〈Ŝz〉2

))
+
∑
n

[
Vn

(
〈n̂p↑〉n̂n↓ + 〈n̂n↓〉n̂p↑ + 〈n̂p↓〉n̂n↑ + 〈n̂n↑〉n̂p↓ − 〈n̂p↑〉〈n̂n↓〉 − 〈n̂p↓〉〈n̂n↑〉

)
+Jn

(
〈ĉ†n↓ĉp↓〉ĉ

†
p↑ĉn↑ + 〈ĉ†p↑ĉn↑〉ĉ

†
n↓ĉp↓ − 〈ĉ†p↑ĉn↑〉〈ĉ

†
n↓ĉp↓〉+ 〈ĉ†p↓ĉn↓〉ĉ

†
n↑ĉp↑

+〈ĉ†n↑ĉp↑〉ĉ
†
p↓ĉn↓ − 〈ĉ†n↑ĉp↑〉〈ĉ

†
p↓ĉn↓〉

)
+(Vn − Jn)

(
〈n̂p↑〉n̂n↑ + 〈n̂n↑〉n̂p↑ − 〈n̂n↑〉〈n̂p↑〉 − 〈ĉ†p↑ĉn↑〉ĉ

†
n↑ĉp↑ − 〈ĉ†n↑ĉp↑〉ĉ

†
p↑ĉn↑

+〈ĉ†n↑ĉp↑〉〈ĉ
†
p↑ĉn↑〉+ 〈n̂p↓〉n̂n↓ + 〈n̂n↓〉n̂p↓ − 〈n̂n↓〉〈n̂p↓〉 − 〈ĉ†p↓ĉn↓〉ĉ

†
n↓ĉp↓

−〈ĉ†n↓ĉp↓〉ĉ
†
p↓ĉn↓ + 〈ĉ†n↓ĉp↓〉〈ĉ

†
p↓ĉn↓〉

)]
, (5.22)

where terms for conserving spin-rotational invariance are not included, for the reasons men-
tioned above. In this Hamiltonian the site index is suppressed, but all of these expectation
values are site-dependent. For the full result with all terms ensuring spin-rotational invari-
ance, see the appendix Eq. C.1.
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5.5. Parameters of the Electronic Interaction and Limits of the
Model

Experimentally obtained data for graphene cannot be used to formulate precise parameters
for the Coulomb interaction in graphene, unfortunately [49]. Therefore a discussion on the
expected magnitude of these parameters is given here. As Hubbard prognosed in his work
[234–236], a hierarchy of interactions for the electron-electron interaction can be established.
They assumed parameters for the repulsion on the order of U ∼ 10 eV, for coupling pz- and d-
orbitals of Vn ∼ 2 eV and Jn ∼ 0.5 eV for the exchange [237]. Hence the matrix elements of the
Coulomb repulsion play a dominant role, compared to those of the exchange. Using PySCF,
a Python package for self-consistent-field calculations [253], an estimate for the parameters
is calculated directly for the ccpvdz basis set of an isolated carbon atom. It is a rough
approximation, because no screening is considered. Screening due to electrons from the other
carbon atoms in a graphene lattice should not be neglected, because of the delocalized nature
of the half-filled pz-orbitals [254, 255]. The Coulomb interaction parameters, computed by
using PySCF, are on the order of U ∼ 13 eV, Vn ∼ 9 eV and Jn ∼ 2 eV for the dxz- and
dyz-orbitals. Only these two orbitals will be considered additionally to the pz-orbitals from
now on, because the other d-orbitals do not couple to the pz-orbitals due to their symmetry,
justifying such an approximation. In any case, it is found for the other three d-orbitals that
the Coulomb repulsion is also of the same magnitude Vn ∼ 9 eV, but the exchange is smaller
for the dz2 and dx2−y2-orbitals, giving Jn ∼ 0.5 eV. In the literature the order of magnitude
of these parameters is different from what was computed via PySCF.

In the case of graphene nanoribbons with zigzag edges, local effects due to the edge states
have been found to introduce correlations into these systems, affecting the onset of magnetism
[254]. Rigorous quantum chemical computations find values for the intra-atomic Coulomb
repulsion on the order of about 20 eV, which are then reduced to around 3 eV due to screening
by the 4s electrons [240]. Remarkably, the single-orbital model can adequately describe
many-electron effects in graphene [49].

In order to obtain parameters from experimental data and ab-initio calculations, the single-
orbital Hubbard model is compared to DFT calculations. It has been found to agree best
with the first principle results when U/t ∼ 1.1 − 1.3 in the case of generalized-gradient
approximation to the exchange-correlation functional, where the range of U = 3.0 eV −
3.5 eV is assumed, which is also found in experiments [49]. However, fitting the single-
orbital Hubbard model to local spin-density approximation yield U/t = 0.9 [49, 256] and
by employing magnetic resonance studies, U is suggested to be at least of the order of 3 eV
[49, 257]. Using quantum Monte Carlo computations with t ∼ 3 eV the interaction strength
U ∼ 7 eV is found to be the maximum value for that a single-orbital Hubbard model is
sufficiently accurate. Increasing U any further, leads to passing a Mott-Hubbard transition,
where an antiferromagnetically ordered insulating state is reached [49].

Given the uncertainty of the actual value of the parameters and the accuracy of the model,
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the parameters used in this work are varied between U ∼ 0 eV and U ∼ 2.3t ≈ 7 eV, in order
to account for the possible parameter ranges, while Jn and Vn are also considered in com-
parable magnitudes. While the general magnetic properties of the full DFT calculation can
adequately be described by a single-orbital Hubbard Hamiltonian, the multi-orbital model
will be required for considering the influence of the d-orbitals on the properties of the edge
states in the ground state of graphene. Due to the small occupation of orbitals other than
pz, correlations of the electrons in graphene do not play a dominant role [258]. Thus, em-
ploying mean-field methods is a good approximation in the parameter ranges discussed here,
as suggested by [179]. Other than that, a spatially extended Hubbard model is not used in
this work, because the contributions to the electronic interaction due to neighboring atoms
are weak compared to those in a single site.
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5.6. Computing the Self-consistent Field
In problems where a self-consistent solution is required, some sort of convergence criterion
is formulated. The solution is considered self-consistent, if after a number of iterations, it
fulfills this requirement. In order to start solving the mean-field problem, values for the
matrix elements in the Hamiltonian in Eq. 5.22 must be fixed before the first iteration.
The characteristics of the initial set of matrix elements will strongly affect the efficiency of
reaching a solution, such that a good guess helps to lower computation time. In quantum
chemical applications, usually a density-matrix is computed [259] and the convergence of
its entries is considered an appropriate measure. The occupation of electrons in pz- and
d-orbitals is compared against the previous step as

∆ρ =
∑
k,σ

(
ρk,σi − ρk,σi−1

)
. (5.23)

The populations for the i-th iteration of the k-th state of spin σ are given by the respective
diagonal element of the density matrix ρk,σi = 〈ψ|ρσ,σi,k,k|k,σ〉〈k,σ|ψ〉 = 〈nik,σ〉. Practically,
a convergence on the order of ∆ρ ∼ 10−10 between iterations is reached after only a few
steps, if only pz-orbitals are considered. Inclusion of the two d-orbitals usually converges
towards ∼ 10−12 within 12-15 iterations and ∼ 10−20 within 40 iterations, depending on
the initial guess. When such a high number of iterations is used, the energy of the resulting
system converges with an accuracy of 1× 10−9 eV to 1× 10−7 eV for single- and multi-orbital
computations. Due to the finite sampling of the reciprocal space in the computation, the
numerical error may be on the order of 1× 10−1meV. The python code written for this
project uses 20 nodes of the local PHYSnet cluster to perform direct diagonalization of the
Hamilton operator at a sampling of 801 points across the Brillouin zone in parallel during
each iteration. With this method 35 iterations of a multi-orbital Hubbard model with two
d-orbitals and N = 8 rows take about 75 hours and for N = 12 about 150 hours. The general
procedure on how to compute the occupation of states in a solid, as well as the chemical
potential is common in theoretical solid state physics or quantum chemistry [93, 245, 259]
and a good overview is given in [184], which is adapted here. A solution is computed from
a Hamiltonian in the mean-field approximation. From the band structure of the system the
density of states is computed, see Sec. 3.2.4, and from the density of states, the occupation of
states is obtained, according to the Fermi-Dirac distribution [148]. The number of particles
for half-filling corresponds to the number of sites of the system. By imposing the result of
the integral to be equal to the particle number of a half-filled system, this method allows for
computation of the chemical potential µ. The number of occupied states is

n =

∫ ∞

−∞
ρ(E)

1

e(E−µ)/kBT + 1
dE. (5.24)

The computation is started, where in the Fermi-Dirac distribution kBT = 3.45× 10−4 eV.
This is done for convergence purposes, because of the strong slope at the chemical potential
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for zero temperature. The above values correspond to T = 4K, but the computation is
considered to lead to similar results at T = 0. In practice the chemical potential is obtained,
by varying µ in the integral in Eq. 5.24 and numerically solving it, until both sides of the
equation match up, while n is fixed. For a solution with a broken particle-hole symmetry
it is required to fix n with a small offset from half-filling. This way the computation may
converge to a system with electron or hole doping. The expectation values of the number
operators at each point k in the Brillouin zone for the orbitals o and spins σ at site i are
then given by

〈n̂iσ,o(k)〉 =
∑
j,σ′,o′

1

e
(Eσ′

j,o′ (k)−µ)/kBT
+ 1

〈χj
σ′,o′(k)|n̂

i
σ,o|χ

j
σ′,o′(k)〉. (5.25)

It is to be noted here, that the expectation values in the matrix elements of the Hamiltonian
5.22 depend on the point k in reciprocal space as well. Other expectation values necessary
for the mean-field computation are derived in analogy to Eq. 5.25. The internal energy of
the system is obtained by considering the number of occupied states of each energy, leading
to

Eint =

∫ ∞

−∞
ρ (E)

E

e(E−µ)/kBT + 1
dE. (5.26)

With the internal energy, the phase diagram in later sections will be characterized, because
the temperature is only included for convergence purposes. The free energy is given by
F = Eint −TS, which would be required for finite temperatures. The entropy S is computed
via

S = −kB
∫ ∞

−∞
dE F (E) lnF (E) + (1− F (E)) ln (1− F (E)), (5.27)

where F (E) = 1
e(E−µ)/kBT+1

is the Fermi-Dirac distribution.
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6. Magnetic Phases of Edge States in
Graphene Nanoribbons

6.1. Description of the Phases
In graphene nanoribbons with interactions different types of edge magnetism can occur [213,
241]. All have in common that the properties of the edges are somewhat extraordinary,
compared to those of the bulk. For the magnetic states at half-filling, the spins always
polarize in parallel along a single edge. Sites in close vicinity to the edges, belonging to
the same sublattice, show a finite spin polarization in the same direction and those sites
belonging to the other sublattice polarize in the opposite direction. This local ferrimagnetic
spin-alignment is strongest near each edge, but it decays into the bulk, such that the ribbons
only show a very weak spin polarization in their centers.

The magnetic phase where the spin polarization of the two edges is opposite has a band
structure with a gap at the Fermi level. This gapped phase will be called antiferromagnetic
edge phase (AFM), because of the antiparallel spin polarization of the two edges relative to
each other. In this case, each sublattice has the same direction of spin polarization everywhere
in the sample. Since both edges belong to different sublattices, they assume an opposing spin
polarization.

The other type of magnetic solution at half-filling is the ferromagnetic edge phase (FM),
which does not show a band gap. Since here both edges have parallel spin alignment, the
direction of spin polarization for each sublattice must switch its sign at the center of the
ribbon, which leads to a domain wall. A variety of other states with varying degree of
edge magnetism can be found, once weak doping is considered [260], but with considerable
amount of doping, a non-magnetic phase is obtained. Doping may be used to control the
edge magnetization, because the Fermi energy is shifted from the instability of the density of
states, which is required for the onset of magnetism. Therefore, the interactions of the edges
at opposing ends of the sample can be influenced by the charge carrier concentration and
consequently, doping provides a method for controlling the magnetic properties of the ground
state [49]. The remaining phases can be considered intermediate phases, occurring at finite,
but much smaller doping than the non-magnetic phase. It has been shown via non-collinear
density functional theory that doping can cause the magnetic edges to attain non-parallel
spin [261]. Furthermore, the band structures of these phases may show similarities to both
magnetic phases at half-filling, but have their spins align partly in the graphene plane.

In this thesis, the focus is laid on only three different solutions to the mean-field problem,
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the two magnetic phases obtained for a half-filled system and the non-magnetic phase for
larger doping. There is no spin polarization in the non-magnetic phase, but a charge in-
homogeneity with increased occupation of the edge sites. The topological properties of the
three phases are discussed by analyzing their symmetries. In a next step the influence of
the d-orbitals of graphene on the properties of the phases is discussed by considering the
electronic interactions therein. The effect of different interaction strengths is examined, as
well as the energetic separation of the pz- and d-orbitals. For the non-magnetic phase, the
amount of doping and its effect on the internal energy and Fermi energy is explored.

In order to obtain the energy of these phases, the spin-rotational invariance-conserving
terms in the mean-field interaction are not required, because the conservation of ŝz will not
be violated. While the Hartree-Fock approximation can overestimate magnetic order, it is
found to be sufficiently accurate for describing the weak magnetic correlation of the edge
states in graphene [241]. Considering strong correlation effects is not expected to change the
magnetic ground state of zigzag nanoribbons, which justifies the mean-field approximation
further [50].

6.1.1. Breaking Symmetries

The mean-field Hamiltonian in the form of Eq. 5.22 satisfies several symmetries, whereas
the symmetry of the initial guess for the matrix elements affects the symmetry of the self-
consistent solution. For obtaining a specific solution, it is relevant whether the initial guess
breaks a specific symmetry, such as particle-hole symmetry (PHS) or time-reversal (TR)
symmetry. For the AFM solution, spin-spatial symmetry needs to be broken such that one
side of the sample exhibits one spin alignment and the other side of the sample an opposite
alignment. For the FM edge phase on the other hand, TR symmetry must be broken. This
can be realized if the state used for initial guess of matrix elements exhibits a spin-magnetic
moment, e.g. an equally distributed spin-imbalance across the sample or a spin polarization,
where the spins at both edges are aligned in parallel and the bulk is not polarized at all.
Finally, for the non-magnetic case, PHS must be broken, which is achieved by doping.

6.1.2. Non-magnetic Edge Phase

The non-magnetic phase may arise from doping of the graphene sample while maintaining
time-reversal invariance. It is topologically very similar to the situation where no electron-
electron interactions are considered. All four edge states cross the band gap, similar to the
non-interacting system.

In Fig. 6.1 a) the four edge bands are plotted and colored by their bulk chirality-expectation
value 〈 σ̂x·kx

|kx| 〉, which is well defined around the Dirac points. The energy is fourfold degenerate
at kx = 0. In Fig. 6.1 b) the real spin and sublattice spin expectation values are shown for
the four bands, and each band is colored by its respective expectation value. The sublattice
spin of edge 1 corresponds to the up component, which denotes sublattice A, while edge 2
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a) b)

c)

d)

Figure 6.1.: a) The dispersion relation of the four edge states for N = 12 in the non-magnetic phase
colored by the bulk chirality for U = 0.6t. The system is doped with ∆N = 1.92 electrons above
half-filling. b) The states are colored by sublattice A on edge 1 and B on edge 2, which are labeled by
E1 or E2, together with the real spin expectation value. The dashed lines indicate the other states.
c) The density expectation value for the non-magnetic phase. The surplus of population is located at
the sample edges without spin polarization. d) A schematic overview of a the occupation additional
to half-filling at each site.

corresponds to sublattice B and the down component. The labels E1 and E2, denoting the
different edges, are used for that purpose. The bands cross according to the edge helicity
〈σ̂z · ŝz〉 [151], which is a good quantum number in the vicinity of the Γ-point. For larger
nanoribbons, the area of sublattice and real spin polarization in the Brillouin zone center
increases. Since it is computationally more involved, much larger nanoribbons do not find
consideration in this thesis. The dispersion relation of the non-magnetic phase resembles the
non-interacting single-orbital system with an effective next-nearest-neighbor hopping t′ > 0
and an overall energy shift, similar to the right of Fig. 4.2. In Fig. 6.1 c) density expectation
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for the non-magnetic phase is shown per site1 i. The density expectation value per spin is

〈ni〉 =
1

2
(〈n↑,i〉+ 〈n↓,i〉) . (6.1)

The sites located at the outer zigzag edge are indicated by dashed lines. The unpolarized
occupation of the edges compared to the bulk is increased, with both spin polarizations in
equal amounts. If the system were to be doped with holes, the population there would be
slightly diminished. A schematic overview of the spatial distribution of the phase is given
in Fig. 6.1 d), where the sites with an occupation other than half-filling are indicated grey,
while the size is proportional to the amount. At each edge only sites belonging to the same
sublattice are occupied.

In the two spin-polarized magnetic phases, the Stoner criterion provides an explanation,
why the pronounced peak of the density of states at the Fermi edge leads to the onset of
magnetism, which is seen in the dispersion relation in Fig. 6.1 a). Doping the sample with
electrons or holes moves the Fermi energy away from this instability region and the resulting
solution does not exhibit a magnetic moment anymore [49, 177, 260]. In the case of U = 0.6t
at half-filling, the Fermi energy is shifted to EF = 0.3t, but the energy of the non-magnetic
phase exhibits a larger shift. This will be discussed in-depth in Sec. 6.3.

6.1.3. Ferromagnetic Edge Phase
It is a result from the Hartree-Fock approximation of the Hubbard model, that the Hubbard
interaction causes electronic states of spin-up and -down to split [240].

In the FM phase both edges of the system show parallel spin polarization with respect
to each other, resulting in a finite spin-magnetic moment of the sample. Consequently, the
states in Fig. 6.2 a) are not four-fold degenerate. The energies are shown for a nanoribbon
with N = 12 rows and 4 columns at U = 0.6t. The edge chirality 〈σ̂z · ŝz〉 is a good quantum
number for the edge states and they polarize accordingly, as can be seen in Fig. 6.2 b), where
the crossing of the four states is shown individually. The states are colored by the edge they
are located at and which spin polarization 〈ŝz〉 they have. The remaining edge states are
indicated by dashed lines and it can be seen that the two spin-down states are higher in
energy than the two spin-up states, while each edge hosts one type of spin. Whether the two
spin-up or spin-down states are higher in energy, depends on the initial state. This result
here is energetically degenerate with the solution obtained from a time-reversed initial state.

Closer to the Dirac cones, the kinetic exchange lowers the energy for antisymmetric spatial
wave functions. Two states with mostly opposite spin cross the band gap in the vicinity of
each Dirac point. The mechanism of the coupling of states localized at two opposing edges
can be described in analogy to the superexchange mechanism [177, 243]. Here an exchange
in spatially distant electronic wave functions is mediated through the bulk. The spin gap at

1The sites are labeled column-wise in ascending order starting with 0 on the top of the leftmost column and
ending with site 47 on the bottom right.
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a) b)

c)

d)

Figure 6.2.: a) The dispersion relation of a graphene nanorribon with N = 12 rows with U = 0.6t
in the ferromagnetic edge phase. The bands are colored according to their bulk chirality. b) The edge
chirality σ̂z · ŝz, of the edge states from a). The bands are separated for better visibility and the other
states are drawn with dashed lines for comparison. c) The expectation value of the magnetization
resolved per lattice site. The four edge atoms are marked with dashed vertical lines. d) A schematic
overview of which atoms are polarized by which spin.

the Brillouin zone center follows from a ferromagnetic spin exchange. This will be discussed
in the next section in detail.

From a topological standpoint, chiral symmetry is the reason for the occurrence of gap-
crossing states [34]. The FM phase exhibits chiral symmetry, because the state of the system
with parallel relative spin alignment of the edges remains symmetric when interchanging both
sublattices. As a consequence, C2-rotational symmetry is preserved, which is reflected in the
dispersion relation. This can be seen in Fig. 6.2 b), where the dispersion of lower-energy
spin-up states at the two edges remains symmetric with reversing the sign of the momentum
kx [262]. The same is true for the other two bands. As the system has explicitly broken time-
reversal symmetry, the spin states are not degenerate anymore [49]. The local magnetization
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is

〈mi〉 =
1

2
(〈n↑,i〉 − 〈n↓,i〉) , (6.2)

see Fig. 6.2 c). A parallel spin polarization of the two edges is visible, while most of
the bulk remains unpolarized. The sites in close vicinity to the edges exhibit a very small
spin polarization in the opposite direction, showing the aforementioned locally ferrimagnetic
structure. A schematic view of this is depicted in Fig. 6.2 d). The electronic density on the
other hand is distributed equally across the sample. Current experimental efforts have not
succeeded in verifying magnetic edge states as of yet [262].

6.1.4. Antiferromagnetic Edge Phase
In the AFM phase, both edges exhibit opposing spin polarization with respect to each other,
while a locally ferrimagnetic ordering among the sublattices at sites close to each edge is
present. Again the spins along each edge are aligned in parallel, but in this phase the total
spin magnetic moment is zero. The band structure shows a clear gap. Spin-spatial broken
symmetry is required to obtain the AFM solution [49, 263]. As can be seen in Fig. 6.3 a),
the dispersion relation of a nanoribbon with N = 12 rows and 4 columns at U = 0.6t exhibits
a band gap, indicating that the AFM phase is insulating [110]. Similar to the previous two
phases, the bulk chirality σ̂x · kx

|kx| remains only a good quantum number in the vicinity of
the Dirac cones. The band gap near the Dirac points is influenced by the width of the
nanoribbon, which will be discussed in Sec. 6.2.1. In one-dimensional systems, no finite-
momentum long-range spin-order is expected, when the system exhibits full spin-rotational
symmetry [50, 264]. Therefore the AFM phase is not caused by long-range order.

In Fig. 6.3 b) the product of sublattice and real spin expectation values is again used to
color each of the states. One can see that the two states where 〈σ̂z · ŝz〉 = −1 are lower
in energy than both with parallel relative sublattice and real spin alignment, 〈σ̂z · ŝz〉 = 1.
Thus, for the two occupied states, the real and sublattice spin are antiparallel. Topologically,
the antiferromagnetic exchange interaction acts as a staggered sublattice potential, which
introduces a spin-dependent gap with opposite sign for states localized at different edges
and thus destroys the topologically insulating phase [26, 265]. The origin of the gap is the
broken chiral symmetry [266] originating from the spin polarization of the edges in opposing
directions.

In Fig. 6.3 c) the magnetic expectation value of the AFM phase is shown, resolved per
nanoribbon site. Similar to the case of the FM phase, the electronic density is equally
distributed across the whole sample. A schematic of the distribution of the spin is given in
Fig. 6.3 d).
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a) b)

c)

d)

Figure 6.3.: a) The dispersion of the four edge states in a graphene nanoribbon with N = 12 rows, 4
columns and at U = 0.6t in the antiferromagnetic phase. b) The states are colored by their sublattice
spin and real spin quantum numbers. The gap is separating states with opposite edge chirality ŝz · σ̂z.
c) The expectation value of the magnetization and density resolved per site. The four edge atoms are
marked with vertical dashed lines. d) A schematic overview of which atoms are polarized by which
spin.
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6.2. Comparison of the two Magnetic Phases
In this section, the two magnetic solutions are compared with each other. The energetic
competition of these two phases can be explained by a mechanism called inter-edge superex-
change, which will be discussed first. Then the magnetization of the edge atoms and the
bulk is treated and how it is affected by the interaction strength.

6.2.1. Inter-edge Superexchange

The theoretical model which can be used to describe the theory of superexchange among
states localized at different edges of graphene nanoribbons has been discussed in the literature
[243, 267] and is reproduced here to analyze the band structures of the two magnetic phases.
The Hamilton operator in the mean-field picture for a one-dimensional periodic ribbon with
edges takes the form

H =
∑
⟨x,x′⟩

∑
⟨i,j⟩,σ

tij ĉ
†
x,i,σ ĉx′,j,σ + U

∑
x,i,σ

n̂x,i,σ〈n̂x,i,σ̄〉. (6.3)

Here the indices i and j are intra-unit cell indices, whereas the indices x and x′ label different
unit cells along the periodic direction, parallel to the zigzag edges. Without the interactions,
a similar Hamiltonian has been examined in-depth in Sec. 3.2.2, but including a periodic and
a non-periodic direction is important here for discussing the valence and conduction bands
which describe the edge states.

In Eq. 6.3 the annihilation (and creation) operators ĉ(†)x,i,σ destroy or create a particle at
site i in unit cell x with spin σ. For computing the energy of the magnetic phases self-
consistently, it is enough to only consider the valence and conduction bands, which is a very
good approximation [267]. This can be done by performing the Fourier transformation, where
bands other than the valence and conduction bands are projected out via [267]

ĉ†x,i,σ =
1√
L

∑
k

e−ikx(ψ∗
k,+(i)ĉ

†
k,σ,+ + ψ∗

k,−(i)ĉ
†
k,σ,−) (6.4)

at the same time. The operator ĉ(†)k,σ,± annihilates (creates) a particle in the conduction band
(+) or valence band (−) with momentum k and spin σ. The spin-degenerate valence and
conduction bands of the non-interacting system have wave functions ψk,±. They have the
energies defined by HU=0

k ψk,± = ±T (k)ψk,±, where H =
∑

kHk, which leads to the common
single-particle dispersion for the edge states shown in the left of Fig. 4.2. The Fourier
transformation of the Hubbard interaction term in Eq. 6.3 in a basis similar to Eq. B.1 is
diagonal in k.

The valence and conduction bands, which are given by the edge states, can be separated
into states localized on the left (L) and right (R) side of the sample. For this purpose the
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operators

ĉ
(†)
k,σ,L :=

1

2

(
ĉ
(†)
k,σ,+ + ĉ

(†)
k,σ,−

)
(6.5)

ĉ
(†)
k,σ,R :=

1

2

(
ĉ
(†)
k,σ,+ − ĉ

(†)
k,σ,−

)
(6.6)

are defined. The wave functions for the states mostly localized on the left or right side of the
ribbon are given by ψk,L := 1√

2
(ψk,− + ψk,+) and ψk,R := 1√

2
(ψk,+ − ψk,−) [243], in analogy

to the operators in Eqs. 6.5 and 6.6. Then it follows that the two L/R states both have the
same energy T (k).

The expectation values of the density operators at each site i of the unit cell are taken
as 〈n̂i,σ〉 = 1

2 + mP (i)σ̄, where mP (i) is the magnetization at each site for phase P ∈
{FM, AFM}, which is defined below, and σ = ±1 [267]. From the strict localization of the
two edge states on different sublattices, it follows that ψk,L(i) ·ψk,R(i) = 0 at every intra-unit
cell site i and at each k individually [243]. This leads to the 2× 2-Hamiltonian per spin for
the FM phase

H =
∑
k,σ

(ĉ†k,σ,R, ĉ
†
k,σ,L)

U
2 − σ∆FM (k) T (k)

T (k) U
2 − σ∆FM (k)

ĉk,σ,R
ĉk,σ,L

 , (6.7)

and for the AFM phase

H =
∑
k,σ

(ĉ†k,σ,R, ĉ
†
k,σ,L)

U
2 − σ∆AFM (k) T (k)

T (k) U
2 + σ∆AFM (k)

ĉk,σ,R
ĉk,σ,L

 (6.8)

in the L/R-basis [243]. The spin splitting at the Brillouin zone center for phase P is defined
as

∆P (k) := U
∑
i

|ψk,L(i)|2mP (i) (6.9)

and the magnetization for each of the phases is given by [243]

mAFM (i) :=

∫ π
a

−π
a

dk
(
|ψk,L(i)|2 − |ψk,R(i)|2

)
Pol(k) (6.10)

mFM (i) :=

∫ k0

−k0

dk
(
|ψk,L(i)|2 + |ψk,R(i)|2

)
. (6.11)

The left-right polarization is given by Pol(k), which ranges between 0 and 1, and is determined
by the self-consistent solution of the mean-field equations for the AFM phase.
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a) b)

Figure 6.4.: Multiple band structures of the edge states for nanoribbons with N rows and U = 0.6t.
a) The FM phase and b) the AFM phase. The energy of the states crossing the Fermi level are shown
in dashed gray lines for better visibility. The two types of gaps ∆α and ∆β are shown.

In this model, the off-diagonal entries in Eqs. 6.7 and 6.8, obtained from the non-
interacting Hamiltonian, have the effect of an inter-edge hopping. This hopping increases
for momenta away from the Brillouin zone center and causes a larger mixing of the edge
states with identical spins localized on opposite ends of the sample. This is what causes
a symmetric-antisymmetric polarization [243], which competes with the left-right polariza-
tion at each k. The diagonal entries in Eqs. 6.7 and 6.8 describe the energy splitting due
to the different spin polarizations of the self-consistent solutions. If both spin species are
included, the Hamiltonian for the AFM phase has the two-fold degenerate eigenenergies
E(k) = ±

√
∆AFM (k)2 + T (k)2, which are separated by an energy gap. For |k| < |k0| it is

T (k) ≈ 0, such that ∆AFM (k) controls the linear combination of valence and conduction
bands which forms the occupied states. At the Brillouin zone border, the valence and con-
duction bands minimize their energy by forming an antisymmetric linear combination due
to increased inter-edge hopping as a result of the energy T (k), because for |k0| < |k| it is
∆AFM (k) ≈ 0. The momentum k0 is used to denote the point where the influence of the
two polarizations interchanges [243] and it is important to note, that the AFM phase can
minimize its energy at both the Brillouin zone center and border, without crossing the band
gap, with the same two occupied states. The gap ∆α, which will be examined below, is
defined at k0, see Fig. 6.4.

For the FM states, the spin polarization of the states at the Brillouin zone center is
governed by ∆FM (k), leading to the occupation of left-right polarized states with identical
spins at each edge. Precisely at k0 the influence of T (k) becomes larger than that of ∆FM (k),
such that it is again energetically favorable for the occupied states to form antisymmetric
states with respect to the inter-edge hopping, but as a result two states must cross the band
gap. The occupied bands for |k| < |k0| do not contribute to mFM (i) because of a lack of
spin-polarization. This leads to the four energies E(k) = ±∆FM (k)± |T (k)| [243].

The energetic difference of the AFM and FM phase is almost exclusively given by the higher
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Figure 6.5.: left and center: The two gaps ∆α in the vicinity of the Dirac points and ∆β at the
Brillouin zone center for the two phases AFM (darker shade) and FM (lighter shade) for three different
Coulomb interaction strengths U = 0.2t, U = 0.5t and U = t. The number N of rows is varied. right:
The gap ∆β for N = 22 as a function of U .

energy of the two gap crossing states in the vicinity of k0 [243]. These considerations allow
for an analysis of the gaps in the dispersion relations of graphene nanoribbons of different
size and interaction strengths. For this, two gaps are defined,

∆α :=
√

∆P (k0)2 + 4|T (k0)|2 (6.12)

∆β := 2∆P (0), (6.13)

which are depicted in Fig. 6.4 a). Here the band structures for the FM phase (shown in a)
and the AFM phase (b) are depicted for U = 0.6t and the number of rows of the nanoribbon
is indicated. Since the eigenvalues of the AFM phase are doubly degenerate, which is not the
case for the FM phase, where this degeneracy is only occurring at the Brillouin zone center,
the appropriate states for comparing the gaps must be chosen. Therefore the choice of the
gap crossing bands of the FM phase used for this analysis are marked bold, while the others
are depicted via dashed lines. The gap close to the Dirac point ∆α is defined at the point k0
in the Brillouin zone where the two bands of the AFM phase exhibit smallest gap, whereas
in the case of the FM phase, two edge states (the dashed lines) cross the gap.
∆β is defined as the splitting between the pairs of bands at the Brillouin zone center. The

gap sizes for ∆α and ∆β are shown in Fig. 6.5 (left and center), as a function of the number
of rows of the nanoribbon N . ∆α becomes smaller when N increases because of the size
dependence of the inter-edge hopping [243], which has a similar origin as the localization of
the edge states in finite size nanoribbons, discussed in Chapter 4. For larger U , ∆α becomes
larger, because of the larger band separation in the Brillouin zone center.
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a) b)

Figure 6.6.: a) The energy differences for the magnetic phases AFM and FM as a function of U for
three different ribbon sizes N . b) The energy difference of the two magnetic phases as a function of
N .

The gap ∆β is mainly influenced by the magnetization of the lattice. Due to the exponen-
tially small overlap of the edge states in very wide ribbons, it converges to approximately
UmP [237]. The total magnetization of the lattices mP is slightly different for the two phases,
because in the FM phase the magnetization of sites belonging to a single sublattice switches
sign at the ribbon center. This is not the case for the AFM phase as was was explained
in Secs. 6.1.3 and 6.1.4. As a consequence the magnetization in the FM phase exhibits a
domain wall, which causes an overall smaller magnetization, resulting in a smaller gap ∆β.
Therefore this gap is size-dependent - especially in narrow nanoribbons - and becomes nearly
identical for both phases in longer ribbons. The increasing size of ∆β for larger interaction
strengths is shown in Fig. 6.5 (right), where ∆β for nanoribbons of N = 22 rows for different
U is depicted. The result is numerically identical for AFM and FM phases at the scale of
this figure, and the gap in both phases is proportional to U .

6.2.2. Energy of the Magnetic Edge Phases

In this section, the energies of the two magnetic phases are compared. The theorem by Lieb
for the ground state of the bipartite lattice in the case of repulsive electronic interactions was
already mentioned. More precisely, it states that the ground state at half-filling has a total
spin of |S| = |B|−|A|

2 [242], where |A| and |B| correspond to the number of sites belonging to
the two sublattices A and B. It follows from this, that the ground state at half-filling should
always be the AFM edge phase, regardless of ribbon size and for every U > 0. In order
to verify the magnetic ground state of the system, the energy differences of the two phases
are computed for different interaction strengths and ribbon lengths. The energy differences
are shown in Fig. 6.6 a) for three different ribbon sizes as U is varied. As can be seen the
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Figure 6.7.: The expectation value of 〈m〉Edge for an edge atom in the FM and AFM phase.

energy difference is up to 50meV at U = 1.9t for N = 8. The AFM phase is always the
phase with lower energy, in agreement with Liebs theorem. The smaller edge separation in
smaller ribbons, such as N = 8, results in a larger energy benefit for the AFM phase, due
to the inter-edge superexchange mechanism. The larger N , as can be seen in Fig. 6.6 b),
the smaller this energy gain, regardless of U . In the continuum limit both phases become
degenerate. This result can also be related to Lieb’s theorem, because the ground state at
half-filling would still have a vanishing total spin polarization, similar to the AFM phase.

6.2.3. Magnetization at the Edges
In Fig. 6.7 the magnetization 〈m〉Edge =

1
2

(
〈n↑,Edge〉 − 〈n↓,Edge⟩

)
of an edge site in a nanorib-

bon for N = 8 and N = 20 as function of U is depicted for the two magnetic phases. The
magnetization becomes larger as U increases, converging to 〈m〉Edge ' 0.2 for U ' 2.0t.
Since along one edge all sites belong to the same sublattice and exhibit ferromagnetic spin
alignment, the staggered magnetization of the AFM and FM phase become comparable. For
larger ribbons it is nearly identical for both phases, as explained in a previous section. At
N = 20, 〈m〉Edge is identical for both phases on the scale of Fig. 6.7, and for N = 8 it is only
slightly different (〈mAFM 〉 − 〈mFM 〉)/〈mAFM 〉 = 2.6× 10−2, as previously reported in [50].
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6.3. The Non-magnetic Solution at Different Filling Factors
In this section, the energy of the non-magnetic phase is discussed. The computations per-
formed in this work consider the same doping per spin, such that doped solutions with a
finite spin magnetic moment are avoided. A half-filled system has a number of particles
equal to the number of sites N ′ = 4N = 48. The total doping ∆N of the sample is defined
as the occupation difference of the system above or below the half-filled lattice. On the left
of Fig. 6.8 a) the dispersion relation of a hole-doped nanoribbon in the nonmagnetic phase
is depicted. The doping is ∆N = −3.8 and, for such hole doped system, the edge state dis-
persion at the Brillouin zone center is bent downwards. On the right of the same figure, the
case for electron doping with ∆N = 1.74 indicates an upward bent dispersion. If the doping
is increased to ∆N = 3.8, all bands are similar in appearance, but are shifted upwards in
comparison. In b) of Fig. 6.8 the electronic densities are depicted for each site of the lattice.
For hole doping, the electronic densities of all lattice sites are reduced from half-filling and
the edge sites exhibit prominent gaps in the electronic densities, while for electron doping
the electronic density is slightly elevated in the bulk and the edge sites show clear peaks.
On the right of the figure, the electronic density per spin of a bulk site (i = 8) is shown at
U = 1.0t for different electron doping. A strong proportionality on ∆N is observed.

6.3.1. Energy of the Non-magnetic Phase
Next, the influence of doping on the internal energy of the non-magnetic phase is exam-
ined. For this, the Hubbard model Hamiltonian, Eq. 5.9 is considered before the mean-field
approximation. The single-orbital model at filling of 1

2 per site can be rewritten as [268]

Hee
pp = U

∑
i

(
n̂iσ − 1

2

)(
n̂iσ̄ − 1

2

)
= U

∑
i

n̂iσn̂iσ̄ − U

2

∑
i

(n̂iσ + n̂iσ̄) +
UN ′

4
. (6.14)

Here i is the site index. While the chemical potential is set to zero, a shift of the Fermi
energy EF by U

2 , due to the half-filling condition, is evident in this form of the Hamiltonian.
Furthermore, an energy shift of UN ′

4 is obtained. The energy shift for a doped compared to
a half-filled system can be derived with a filling per spin of 1

2 + ∆N
2N ′ . Here the total doping

per lattice ∆N is divided in equal amounts on each site and spin. Then the energy shift of
the doped system is not UN ′

4 anymore, but a polynomial quadratic in ∆N , given by

E(U ,∆N) =
UN ′

4
+
U∆N

2
+
U∆N2

4N ′ . (6.15)

The energy of a doped nanoribbon with N = 8 and U = 0.6t is shown in Fig. 6.9 a).
Around ∆N = 0 there is a region, where the energy is nearly linearly depending on ∆N .
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a)

b)

Figure 6.8.: a) left: The dispersion relation of a nanoribbon with N = 12 with pz-orbitals where
U = 1.6t and ∆N = −3.8. right: The same system with ∆N = 1.74 (yellow) and ∆N = 3.8 (red).
b) left: Density expectation values with N = 12, with U = 1.6t and ∆N = −3.8 (green), ∆N = 1.74
(yellow) and ∆N = 3.8 (red). right: Density of expectation value of a bulk site i = 8 for U = 1.0t
shows a quadratic dependency on ∆N .

At approximately |∆N | > 1.3, however, a stronger quadratic dependency on the doping is
observable. This separates the effect of doping into two different regimes. As a consequence,
there is a preferred amount of doping, which is energetically favorable and given at the
transition point ∆N ≈ −1.3 from one regime into the other. In Fig. 6.9 b) different dispersion
relations are depicted to illustrate the two different regimes.

The energy in each case is shifted to coincide with the Fermi energy, such that E−EF = 0
in each case. Increasing the filling of the lattice in equal amounts, shifts the Fermi energy in
nearly equal steps for up to a doping of ∆N = 0.96. Due to finite size effects at a finite doping
of around ∆N = 1.28 the Fermi energy is shifted by a much larger amount than for the weaker
cases. The results can be compared to those for even larger doping in Fig. 6.8 a), where
larger energy shifts are also observable. The reason for the finite size effects is, that enough
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a) b)

Figure 6.9.: a) The energy of the non-magnetic phase for different amounts of doping for N = 8 and
U = 0.6t. b) Dispersion relations for different amounts of doping for the same system. The Fermi
energy of all phases is shifted to coincide with E = 0 in the plots.

doping is introduced, such that the bulk bands at the Dirac cones also become filled, which
changes the energy dependency of the doped nanoribbons from weakly quadratic to strongly
quadratic, as shown in Fig. 6.9 a). This is more evident, when a quadratic polynomial of
the form

E(U ,∆N) = a1(U)∆N2 + a2(U)∆N + a3(U). (6.16)

is fitted against this data. Linear functions can be used for the three functions a1(U), a2(U)
and a3(U), such that

aj(U) = aj1 · U + aj2 (6.17)

for j ∈ {1, 2, 3}. Apart from finite size effects, such as the k-space resolution of the compu-
tations, which translate to numeric errors in the fitting parameters, the predictions of Eq.
6.15 are met quite well. The term a32 in Eq. 6.16 is given by the system without interaction
and is very close to the energy of the two magnetic phases. The term a31 is fitted to be
equal to N ′

4 . The terms a21 = 1
2 and a22 = 0, are achieved by the fitting very well. The term

a11 =
1

4N ′ is also reproduced.
The term a12 on the other hand is not present in the energy shift in Eq. 6.15, but obtained

as result of the fit. It is independent of the interaction strength and only denotes the energy
shift due to increased doping. It is ∼ N ′−1, similar to a11, but originates from the filled bulk
bands in the band dispersion of the nonmagnetic phase as a consequence of the doping.

In Fig. 6.10 the energy dependency of the doped solution for a constant doping per site of
∆N
N ′ = 0.041 is shown. For all U the energy shows a linear relation to N ′, because the first

term of the energy shift in Eq. 6.15 is linear in N ′ and the most dominant. The second term
is constant for constant U and ∆N , and the last term ∆N2 is ∼ N ′−1, such that it becomes
less relevant for the energy of larger ribbons.
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Figure 6.10.: The energy of the non-magnetic phase for constant doping per site ∆N
N ′ = 0.041 for

varying length and different interaction strengths U = 0.2t, 0.6t and t.

6.3.2. The Fermi Energy
The two regimes of doping discussed in the last section, also show in the Fermi energy. For
strong doping of |∆N | > 2 and for different U the Fermi energy is shown in Fig. 6.11 a).
A function arctan (∆N) fits very well to the data, which is indicated in the figure. For
zero doping, the Fermi energy would correspond to that of the magnetic phases, shown by
a horizontal bar in the figure. For smaller doping, however, the Fermi energy exhibits a
different dependency, namely tan (∆N), given in Fig. 6.11 b). Here the dashed lines show
the dependency of the larger doping, where the transition point of the two regimes is at
approximately |∆N | > 1.3.

The different behavior of the Fermi energy in the two doping regimes can be understood
in the light of the density of states, which was discussed at the hands of Fig. 3.4 for ribbons
without electronic interactions. The small doping regime corresponds to the peak around
E/t = 0, which is also occurring in the non-magnetic phase of graphene. Once larger doping is
considered, the Fermi energy is moved away from the central peak, such that the Dirac cones
start to become filled. In two-dimensional graphene, this behavior would follow EF (∆N) =
vFℏ

√
π∆N [269]. Due to the very small system considered here, the Dirac cones consist of

only a few bands, such that arctan (∆N) fits better to the data for the larger doping regime.
For the smaller doping regime, the tan (∆N) behavior is similar in appearance to that of the
zeroth Landau level in graphene samples with a magnetic field [269].

In very large, but finite size nanoribbons, the amount of doping at which the bulk states
at the Dirac points become filled, becomes very small, due to the small separation of the
bulk energy bands, which reduces the small-doping regime to only a very narrow interval of
doping.
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a) b)

Figure 6.11.: a) The Fermi energy for N = 8, different U and larger doping can be fitted to
arctan (∆N). b) For smaller doping the Fermi energy can be fitted via tan (∆N). The dashed lines
correspond to the larger doping fit. The horizontal bars indicate the Fermi energy of the two magnetic
phases at half-filling, respectively.
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6.4. The Two Magnetic Phases in the Multi-orbital Tight-binding
Model

Figure 6.12.: The two different band splittings indicated in Fig. 6.5 for the FM (lighter) and AFM
(darker) phases in a multi-orbital model at U = t and V = J = 0 for nanoribbons of different sizes.
The results from the single orbital case (dashed) are also shown.

In this section, the multi-orbital results including the dxz- and dxy-orbitals and intrinsic
spin-orbit coupling with ξd = 0.8meV are presented. For this, nanoribbons of N = 8 are
used, because qualitatively no different behavior is expected for larger ribbons. First, the
change of the dispersion relation of the two magnetic phases is compared with the single-
orbital model. Then the d-orbital occupation of the two magnetic phases is examined and
lastly the magnetic ground state in the multi-orbital model is discussed.

6.4.1. ∆α and ∆β

The energy splittings ∆α and ∆β in the dispersion relation of the single-orbital model have
been defined in Fig. 6.4 a) and are reexamined here again in light of the new model. As
a consequence of the presence of the d-orbitals in the system, ∆α and ∆β for the multi-
orbital model become reduced, which is shown in Fig. 6.12. Electrons partly occupying the
d-orbitals, rather than the pz-orbitals, are not only subject to the electronic interaction of
strength U = t, but also of the d-orbital repulsion and exchange parameters, which are given
by V = 0 and J = 0 in this case. As a consequence of the finite d-orbital occupation, the
effective U of the electrons occupying mostly the pz-orbitals is a little smaller than in the
single-orbital model, resulting in a reduced separation of the energy bands, on the order of
10meV. This will be shown in the next section by examining the multi-orbital Hamiltonian.

The strength of the intrinsic spin-orbit coupling for varying values up to ξd = 16meV
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a) b)

c) d)

Figure 6.13.: Total d-state occupation of a ribbon with N = 8 plotted for different interaction
strengths. Both FM and AFM phase have identical occupation in each case.

is found to not lead to any numerical differences compared to the results obtained here.
This can be understood in light of the effect of the electronic interactions, which are on the
100meV-scale. The interactions overshadow any effect on the sub-meV scale, which is the
expected energy scale of the gap opening from the intrinsic spin-orbit coupling. Therefore,
the parameter ξd is kept fixed at 0.8meV in the following computations.

6.4.2. d-state Occupation
The finite d-state occupation depends in the electronic interaction, which is discussed in the
following. In order to derive how the occupation of the d-orbital depends on the electronic
interactions, the procedure in Eq. 6.14 must be applied to the d-orbital Hubbard Hamiltonian
Eq. 5.14. For this the Hamiltonian is again considered before the mean-field approximation.
At half-filling the pz-orbitals have an occupation per site and spin of ∆Np

2N ′ = 1
2 − ϵ and the

d-orbitals of ∆Nd
2N ′ = ϵ for some small ϵ > 0. This leads to a shift of the d-orbital energy,
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proportional to 2V − J from Ed, because for the electronic interactions per site in the d-
orbitals follows that

Hee
d =

∑
n,σ

[
V

(
n̂pσ − ∆Np

2N ′

)(
n̂nσ̄ − ∆Nd

2N ′

)
+ Jĉ†pσ ĉ

†
nσ̄ ĉpσ̄ ĉnσ

+(V − J)

(
n̂pσ − ∆Np

2N ′

)(
n̂nσ − ∆Nd

2N ′

)]
− Ed

∑
n,σ

n̂nσ (6.18)

=
∑
n,σ

[
V n̂pσn̂nσ̄ + Jĉ†pσ ĉ

†
nσ̄ ĉpσ̄ ĉnσ + (V − J)n̂pσn̂nσ

]
−
∑
nσ

(
Ed +

∆Np

2N ′ (2V − J)

)
n̂nσ

−
∑
nσ

∆Nd

2N ′ (2V − J) n̂pσ +
∑
nσ

(2V − J)
∆Np

2N ′
∆Nd

2N ′ . (6.19)

The index n labels the different d-orbitals. An additional site index i is omitted here, similar
to previous discussions, but by including a sum over this index the multi-orbital equivalent
of Eq. 6.14 is obtained. The three terms inside the first sum in Eq. 6.19 are given by the
Hubbard Hamiltonian for the d-orbitals. The last term in the first line is the shifted d-orbital
energy. The first term of the second line is a shift of the Fermi energy, affecting mostly the
energy of the pz-orbitals. The last term is a total energy shift, due to the finite occupation
of both p- and d-orbitals.

The influence of the parameters V and J on the numerical results are discussed next. When
V and J are kept constant, an increasing U leads to an increased occupation of the d-orbitals,
shown in Fig. 6.13 a). The occupations for both AFM and FM phases are identical. When
the electronic interactions V and J are reduced, the occupation of the d-orbitals becomes
larger, because the electrons have lower interaction energy in this case. If the interaction
is increased to V = 2t and J = 2t, this occupation becomes much smaller. In b) of the
figure, it is shown that regardless of U the d-state occupation is reduced with increasing
V . Furthermore, the occupation becomes nearly identical for both U , when V = 2t. This
effect is reversed when changing J , due to the opposite sign in the Hamiltonian in Eq. 6.19.
Furthermore, its influence on the occupation is smaller than that of V , as can be seen in c).
Since the effect of V on the d-state occupation is dominant, as shown in d), the effect of J
depends on it. For negative V , the d-state occupation is large, such that changing J has a
large influence. If V is large and positive, the d-state occupation is very small and changing
J has nearly no influence.

The d-orbital occupation affects the magnetism of the different sites in the ribbon only
slightly, as is shown in Fig. 6.14 for the AFM phase in an N = 12 ribbon. Here the occupation
of p-orbitals and d-orbitals is computed per site and spin, as well as the magnetization per
site and spin for two cases V = 2t and V = −2t. The overall qualitative picture of the single-
orbital results for the AFM phase is not changed, but the finite occupation of d-orbitals, leads
to a nearly constant occupation of the bulk, which is reduced at the edge sites. The density
variation in 〈nd〉 is only visible, when the d-orbital occupation is enhanced by V = −2t (red),
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Figure 6.14.: The expectation value of magnetization per site and occupation per site and spin for
N = 12, U = 1.6t and J = 0.5t for V = −2t (red) and V = 2t (black).

otherwise the single-orbital result is reproduced, where no density variation is observed in
the sample.

6.4.3. Magnetic Ground State

Next, the energy difference of the two magnetic phases is computed and compared to the
single-orbital results. The d-orbitals affect the two magnetic phases in the same way. One
indicator for this is that both phases have an identical d-orbital occupation for any combi-
nation of pz-orbital repulsion U , d-orbital repulsion V and exchange J , as was discussed in
the previous section.

Therefore, the energy shift of the magnetic solutions due to the d-orbital occupation in
the last term in Eq. 6.19 is the same for both phases. The direct consequence is that no
combination of U > 0, V > 0 and J > 0 is expected to lead to an FM ground state which
would oppose the single-orbital result for Lieb’s theorem. The only possibility for U > 0 to
reach a magnetic ground state with finite spin magnetic moment would be having V < 0, such
that an increased d-orbital occupation and interaction strengths thereof could dominate the
p-orbital interaction. Then Liebs theorem for attractive interactions could lead to a ground
state with finite spin magnetic moment, even though U > 0.

In Fig. 6.15 a) the energy difference of the AFM and FM phase for N = 8 for varying
U is shown, alongside the single-orbital result (dashed line). Here V = J = 0, such that
the system differs from the single-orbital model only by the presence of the d-orbitals, which
is shown to have a negligible influence for U ≤ 1.5t. For higher interaction strengths the
energy of the pz-orbitals is shifted up, such that the energy difference is influenced on the
order of meV, due to the reduced occupation of the p-orbitals and the resulting smaller spin
splitting at the Brillouin zone center. In b) the length N of the ribbon is varied for U = t,
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a) b)

c) d)

Figure 6.15.: The energy difference of AFM and FM phase. The single-orbital results are given by
the dashed lines as comparison. For N = 8 and a) different U , where V = 2t and J = 2t. b) For
U = t and J = V = 0. c) U = 1.6t (dashed) and U = t (solid), J = ±1.5t and for different V . d)
U = 1.6t, for different V as a function of J .

again where V = J = 0, showing no effect at these interaction strengths whatsoever. In c)
the energy difference for U = 1.6t (dashed) and U = t (solid) with varying V shows that an
increased U leads to the aforementioned increased effect of the d-orbitals, which is strongest
for negative V and positive J . This constellation leads to a diminished energy difference of
the AFM and the FM phases, but is not enough to lead to an FM ground state. In d), the
influence of the d-orbitals is increased, by setting V = −2t, such that in combination with
J = t, the two phases become identical in energy. Again the similar roles of J and V are
observed, but with differences in their impact. For larger J > t, no solution of the mean-field
computations could be obtained, because bulk states become energetically close to the edge
states at these interaction strengths.

In conclusion, Lieb’s theorem is fundamentally protected by the band structure differences
between AFM and FM phases. The only way to make the FM phase energetically favorable
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a) b)

c)

Figure 6.16.: Energy differences between FM and AFM phases for N = 8, when the d-orbital
separation Ed from the pz-orbitals is varied. a) J = 2t and U = 0.6t b) Ed = 9 eV and U = 1.6t c)
Ed = 9 eV and J = 2t.

is to have V < 0, such that enough bulk states are created in the band gap, which leads
to an entirely different system with different states, where the AFM phase with the same
properties as described in the beginning of this chapter is likely not to occur. This case is
out of the scope of this thesis, however.

6.4.4. The d-orbital energy separation Ed

A way to increase the d-orbital occupation, other than changing the electronic interaction
strengths, is to have a lower d-orbital energy separation Ed from the pz-orbitals. This would
not correspond to graphene anymore, where Ed = 12 eV. Then the FM and AFM phases
would become energetically close already for smaller V < 2t. This is shown in Fig. 6.16 a),
where Ed is decreased and V varied for constant U and J . One can clearly observe, how a
smaller Ed = 9 eV requires only V = −0.5t for the two phases to have identical energy, and
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a much smaller Ed = 4.5 eV allows this even for positive V . For Ed = 9 eV a positive J has
a larger influence, than for Ed = 12 eV, which can be seen when Fig. 6.16 b) is compared to
the results in Fig. 6.15 d). While a larger U generally leads to a larger energetic difference
between the two phases in favor for the AFM phase, a critical value of V = −0.5t has the
same influence on the energy difference in all cases. This is shown in Fig. 6.16 c) for J = 2t.
No self-consistent solution could be obtained where EFM < EAFM , such that the data points
in Figs. 6.16 a) are only given in a limited range of V .

These findings indicate, that the d-orbital energy shift in the second term of Eq. 6.19
is directly impacting the d-orbital energy separation Ed, as predicted. The lowering of the
d-orbital energy closer to the Fermi level changes the valence and conduction bands, because
the hybdridization with the π-bands changes their dispersion, such that the relative energy
of the two magnetic phases is affected.
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6.5. The Non-magnetic Phase in the Multi-orbital Tight-binding
Model

6.5.1. d-state Occupation and Energy of the Non-magnetic Phase
In this section, the energetic dependency of the non-magnetic phase is analyzed, similar to
the single-orbital case, but with the added complexity of different occupation of different
orbitals. In Fig. 6.17 a) the energy of the non-magnetic phase for N = 8 is depicted for
different doping levels. Here U and J are kept constant. A positive V raises the energy and
negative V lowers it. In Fig. 6.17 b) the effect of variation of J shows the opposite behavior
and a much weaker influence. A quadratic dependency is given in both cases, which fits the
data very well. The energy minimum is not at zero doping, but between ∆N = −2 and
∆N = −1, corresponding to significant hole doping.

In order to analyze the energetic dependency of the nonmagnetic phase, the d-orbital
occupation ∆Nd for some doping ∆N is discussed. The result is shown in Fig. 6.18 a), where
a negative V again leads to significant occupation of d-orbitals, because of the lower energy
separation from the pz-orbitals in this case. In Fig. 6.18 b) and c) the energy of the non-
magnetic phase from Fig. 6.17 is plotted against the occupation ∆Nd, showing a quadratic
dependency of the energy in both cases. The overall energy is only slightly influenced by the
different interaction strengths V and J and behaves very similar, while only the d-orbital
occupation differs. Next, the d-orbital occupation is expressed as a quadratic polynomial in
V and in the total doping ∆N , which leads to

∆Nd(V ,∆N) = ∆N2

(
2∑

α=0

a2,αV
α

)
+∆N

(
2∑

α=0

a1,αV
α

)
+

2∑
α=0

a0,αV
α. (6.20)

The constants ai,j for i, j ∈ {0, 1, 2} are given by fitting the polynomial to the data in Fig.
6.18 a).

For an understanding of the energy shift due to the electronic interactions, the last term
in Eq. 6.19 is considered away from half-filling, which is then added to the energy shift
of the pz-orbitals in Eq. 6.15, where the d-orbital and p-orbital occupations are expressed
by the doping ∆N . Thus, the pz-orbital occupation per site and spin ∆Np

2N ′ is replaced by
1
2 +

∆̃Np

2N ′ , where the latter term denotes the amount of doping ∆N−∆Nd
2N ′ in the pz-orbital.

Then the total occupation of each site per spin is 1
2 +

∆N
2N ′ =

1
2 +

∆̃Np

2N ′ + ∆Nd
2N ′ . The energy of

the non-magnetic phase is obtained by summing over the two d-orbitals n, the two spins σ
and over N ′ sites, resulting in

E(∆N ,U ,V , J) =
UN ′

4
+
U (∆N −∆Nd)

2
+
U (∆N −∆Nd)

2

4N ′

+ (2V − J)

(
1

2
+

∆N −∆Nd

N ′

)
∆Nd. (6.21)
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a) b)

Figure 6.17.: The energy of the non-magnetic phase for different doping ∆N of the lattice for N = 8.
It is U = t and J = t (a) or V = t (b).

It is important to note that this energy does only depend on the total doping ∆N , as ∆Nd

is directly related to the total doping via Eq. 6.20. For constant U and J , Eq. 6.21 can be
simplified to a function, in appearance very similar to Eq. 6.20, resulting in a polynomial in
∆N and V , where cubic and higher terms can be neglected.

The derived energy shift of the non-magnetic phase in Eq. 6.21 only relies on a fit with the
d-orbital occupation, but allows to predict the magnitude of the impact on the energy due to
the different electronic interaction strengths very well. Similar to the discussion regarding Eq.
6.16, a term ∼ ∆N2, which is independent of any interaction U , V or J occurs in the fit, but
not in the model. As before, this term arises from the strong doping, which is independent
of the interaction strength, because bulk states are filled. Thus, neither the presence, nor
interaction strength of the d-orbitals lead to a considerable physical consequence for the non-
magnetic phase, similar to what was already found for the two magnetic phases at half-filling.

6.5.2. The Fermi Energy

As a consequence of the d-orbitals in the system, electron-hole symmetry is broken, which
leads to an asymmetry in the Fermi energy, for different amounts of doping. This can be
seen for different V in Fig. 6.19 a) and for different J in b) at around ∆N = ±1. The
single-orbital result is shown as dashed curve as well. One can see that V = −t has a lower
Fermi energy for all doping strengths, compared to V = 0 and V = t. This is understood
with the influence of the d-orbital occupation on the Fermi energy in Eq. 6.19. In the other
figure, J = t has a lower Fermi energy than J = −t, while all multi-orbital results are lower
than the single-orbital results in general. Together with the energy shift from the electronic
interactions in the pz-orbitals in Eq. 6.15, the overall influence of the electronic interactions
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a) b)

c)

Figure 6.18.: a) Total d-state occupation of an N = 8 nanoribbon, for U = t and J = t for different
V . b) and c) The energy of the non-magnetic phase for the same system plotted against the d-state
occupation. Quadratic fits are indicated by the lines in the three figures.

on the Fermi energy is given by

EF =
U∆Np

2N ′ +
∑
n

∆Nd

2N ′ (2V − J) . (6.22)

Since ∆Np < ∆N , the first term of Eq. 6.22 is smaller in the multi-orbital model than in the
single-orbital case, resulting in the overall smaller Fermi energy. The second term is much
smaller than the first, because ∆Nd � ∆Np. A negative V and positive J lower the Fermi
energy, in agreement with the numerical calculations.
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a) b)

Figure 6.19.: Fermi energy for different doping strengths, where U = t and J = 0 for different V
(left) and for V = t with different J (right).

6.6. Summary of the Tight-binding Model Results

In this chapter the two magnetic phases with FM and AFM configuration have been compared
with each other in terms of their physical properties and energy. The energy splitting due to
the electronic interactions has been analyzed with respect to the superexchange mechanism.
For the single orbital model, the AFM phase is always lower in energy than the FM phase,
in agreement with Liebs theorem. Furthermore, the non-magnetic phase has been discussed
and a small and a large doping regime have been found, where the energy and Fermi energy
exhibit different dependencies on the amount of doping in the system. The non-magnetic
phase has an energetic minimum for finite hole doping. This finding is experimentally of
high relevance, because of a possible Fermi level shifts of graphene introduced by a substrate.
Graphene adsorbed on SiO2 has been shown to exhibit a hole doping effect [270], which could
be used to explain the absence of magnetic edges in experiments. The energy minimum in
this work, which was found for very narrow ribbons, is very likely to be encountered in
realistic systems, since for very larges ribbon this energy minimum is found already at much
smaller doping strengths. Therefore, the Fermi level shift of the substrate could be enough
to explain the absence of magnetic edge states in experiments.

In the multi-orbital model, the presence of the d-orbital states was found to change the
energy splitting of the two magnetic phases, due to the occupation of these orbitals. This
lead to a reduced pz-orbital occupation, which diminishes the effective electronic interaction
strength U for the p-orbitals. A negative d-orbital repulsion V and positive exchange interac-
tion J was found to increase the population of the d-orbitals further and enhance this effect
even more. While this changed the relative energy of the FM and AFM phases, no qualitative
difference of the physical properties could be found for different U > 0, |V | < 2t and |J | < 2t
or lengths N of the ribbons. If V is decreased or J is increased up to a certain value, addi-
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tional states will become energetically close to the edge states, such that no self-consistent
solution could be found. Changing the energetic separation of the d- and pz-orbitals would
reduce the interaction strength where the two magnetic phases become energetically close,
but again no FM ground state could be found. Thus, a magnetic ground state with zero spin
magnetic moment in agreement with Lieb’s theorem has been confirmed for all parameter
choices.

Lastly, the non-magnetic phase in the multi-orbital tight-binding model was examined
and the d-orbital occupation as result of the doping was discussed. This lead to a modified
energetic relation to the doping compared to the single-orbital result. The Fermi energy was
also analyzed and how different interaction strengths and levels of doping contribute to it.
The main difference compared to the single-orbital model comes from the reduced occupation
of the pz-orbitals which results in a diminished effective p-orbital interaction contribution to
the Fermi energy, similar to the two magnetic phases.
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7.1. Introduction: Deformation of Graphene Lattice
In recent years research on the change of the electronic and topological properties of graphene
under deformations has lead to the investigation of many interesting new effects. This is true
also for materials such as TMDCs [271, 272]. Curvature in carbon nanotubes has shown to
increase the weak intrinsic spin-orbit coupling of graphene quite substantially [273]. As was
discussed in previous chapters of this work, the horizontal mirror symmetry in flat graphene
ensures the conservation of the spin-component perpendicular to the lattice structure, but
breaking that symmetry leads to additional spin-orbit coupling effects [125]. In the literature
it has been shown, that corrugations in graphene lead to spin-orbit coupling proportional
to the curvature of these deformations [274]. In general a deformation of a regular lattice
structure may include both bending and strain, but in many studies either feature is examined
individually. The change in distances among nearest neighbors may be neglected in a weak
bending situation, such that the effect of relative orientation of the atomic orbitals at different
lattice sites may be considered dominant. As a consequence, interactions that were previously
vanishing due to symmetry become possible and in particular lead to interesting textures of
spin orientation of the edge states of graphene [78, 213, 273].

The spin-orbit coupling of the states is affected by the curvature, because σ- and π-bands
start to mix [275]. In lowest order this causes a change in the electrochemical potential and
breaks particle-hole symmetry, because of the resulting change of the π-band population.
Uniaxial strain, which modifies the hopping matrix elements of the system in a given spatial
direction, distorts the Brillouin zone of the hexagonal lattice structure and can facilitate the
modification of the graphene topology by opening a gap at the Dirac points [194, 276, 277].
Strain and the hybridization of π- and σ-bands in bent systems lead to gauge fields, which may
cause effects similar to an external magnetic fields [278]. This can be seen for example, when
the Dirac equation is formally considered on curved space [279]. In a more rigorous approach
to the bending problem, the curvature effect can be cast into the form of a pseudomagnetic
field [280, 281], where the curvature of the deformation gives rise to a formally identical
description of the Dirac fermions in curved space as the Landau quantization in a magnetic
field.

Combining deformations with actual magnetic fields, triggers a distinction of the two
valleys of the Brillouin zone of graphene and mid-gap states at each of these points may
arise. Such a description then contains a position- and direction-dependent Fermi velocity
[279, 282, 283].
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An in-plane deformation of the regular lattice due to strain changes the bond angle and dis-
tance of the lattice sites and leads to an enhancement of Rashba-type spin-orbit coupling and
even Dresselhaus-type spin-orbit coupling may arise [147]. The comparison of tight-binding
calculations with LDA computations have revealed that the change in hopping parameters
due to strain is caused by the electronic density redistribution and change in bond length
[284].

The Rashba-type spin-orbit coupling originating from the curvature-induced coupling of
σ- and π-bands, may result in interesting spin textures [82, 285]. A central part in the
discussions presented in this chapter is the qualitative effect of different deformations on
the energy and spin alignment of the edge states in graphene nanoribbons. Furthermore,
different multi-orbital tight-binding models are used to describe the effect of bending on
these low-energy states.

105



7. Deformation of Graphene Nanoribbons

7.2. Description of Bent Graphene Nanoribbons
In the previous chapters of this work, the case of flat graphene was discussed exclusively. If
however the geometry of the array of carbon atoms is perturbed by bending, the resulting
local curvature and the intrinsic spin-orbit coupling lead to different kinds of spin textures
at the edge. Up until now, the literature on this topic was mainly focusing on the effect of
the σ- and π-band hybridization, where the effect of higher-energy d-orbitals is completely
neglected. It is a central result of this work, that these orbitals may not be neglected in
the description of spin-orbit coupling effects in bent graphene nanoribbons. The reason is
the dominating effect of the atomic d-orbital spin-orbit coupling over the atomic p-orbital
spin-orbit coupling on the π-bands in these ribbons.

Other main results of this chapter include the influence of the intrinsic spin-orbit coupling
on the spin alignment of the edge states under different deformations. In order to understand
the influence of the bending on the couplings of the orbitals, a range of effective terms is
derived from a tight-binding Hamiltonian of bent graphene. For the numerical computation
the tight-binding model from Chapter 3.2.4 is extended to include s-, px- and py-orbitals
additionally to the pz-orbitals. The bending will be introduced by modifying the three-
dimensional position of the lattice sites in the tight-binding model. The numerical results
are discussed by comparing spin alignment due to deformations perpendicular to and along
the zigzag edge.

7.2.1. Derivation of Transition Matrix Elements

As was stated in the discussion of the multi-orbital tight-binding model in Chapter 3, only the
dxz- and dyz-orbitals couple to the pz-orbitals in the case of flat graphene due to symmetry.
If however the angle between the local normal vector defining the orbital angular momentum
quantization axis and the vector in the direction of the next-nearest neighbor is different than
π/2, the other three d-orbitals become coupled to the pz-orbitals, as well. The same holds
true for the sp2-hybridized orbitals. In a bent system, the smaller energetic separation of the
σ-bands causes a strong coupling to the pz-bands, while the coupling of the d-orbitals to the
pz-orbitals increases very weakly. The procedure of computing the matrix elements in the
Slater-Koster approximation depending on the angles θ between the normals at neighboring
sites is outlined in the appendix D. With an azimuthal angle ϕ according to the relative
positions of the sites 0 and 1 within the lattice, the angle θ between normals at these sites is
computed as illustrated in Fig. 7.1 a) and its value is directly proportional to the curvature
of the bending.

For computations in this work a deformation of the graphene sample is only regarded along
one of the coordinate axes at a time. Not all of the bonds in the lattice run parallel to these
directions, however. Due to the angles of the bonds with respect to the bending direction,
the bending angle θ depends not only on the overall deformation of the lattice, but also on
the bond within the sample. As shown in Fig. 7.1 b), for bending perpendicular to the zigzag
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a) b)

Figure 7.1.: a) The coupling between a pz-orbital at site 0 and a dxz-orbital at site 1 is changed by
a bending angle θ. The angle θ is defined as the relative angle between the normals located at two
neighboring lattice sites. b) For bending perpendicular to the zigzag edge, the angles of the bonds
are θ and θ/2. The projection of the curved graphene and flat graphene including the normals at the
four lattice sites in the figure are depicted as guide to the eye.

edge, the polar angle θ varies along the bending direction due to the different directions of
the bonds. As stated in [78, 213], the interaction of the pz-orbitals with the sp2-hybridized
orbitals due to bending results in a term similar to the Rashba-type spin-orbit coupling at the
two Dirac points. This is expected for the d-orbitals as well, but the coupling strengths should
be different than in the sp2-hybridized case, because of the different geometrical symmetries
of the sp2- and d-orbitals [285]. Also the effective strength of the p- and d-orbital intrinsic
spin-orbit coupling on the edge states is different [80]. Physically, Rashba-type spin-orbit
coupling arises in bent samples, because inversion symmetry breaking allows the pz-orbitals
to couple to the px- or py-orbitals at neighboring sites. The intrinsic spin-orbit coupling
allows a transition among p-orbitals at the same site. This results in an effective hopping in
the π-bands with an additional spin-flip, similar to the Rashba-type spin orbit coupling in an
external electric field perpendicular to the flat graphene plane, see Eq. 3.27. The resulting
matrix elements in the Slater-Koster approximation for the tight-binding model are given in
Tabs. 7.1, 7.2, 7.3, and 7.4.
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µ1/ν0 s px py pz

s Vssσ Vspσ cos (ϕ) cos (θ) Vspσ cos (θ) sin (ϕ) Vspσ sin (θ)

px −Vspσ cos (ϕ) cos (θ)
Vppπ sin (ϕ)

2

+(Vppσ + (Vppπ − Vppσ) sin (θ)
2) cos (ϕ)2

(Vppσ − Vppπ) cos (ϕ) cos (θ)
2 sin (ϕ) (Vppσ − Vppπ) cos (θ) cos (ϕ) sin (θ)

py −Vspσ cos (θ) sin (ϕ) (Vppσ − Vppπ) cos (ϕ) cos (θ)
2 sin (ϕ)

Vppπ cos (ϕ)
2

+(Vppσ + (Vppπ − Vppσ) sin (θ)
2) sin (ϕ)2

(Vppσ − Vppπ) cos (θ) sin (θ) sin (ϕ)

pz −Vspσ sin (θ) (Vppσ − Vppπ) cos (θ) cos (ϕ) sin (θ) (Vppσ − Vppπ) cos (θ) sin (θ) sin (ϕ) (Vppσ − Vppπ) sin (θ)
2 + Vppπ

Table 7.1.: The Slater-Koster matrix elements for the relative angle θ of the normals between orbital µ at site 1 and orbital
ν at site 0 for the s- and three p-orbitals. The spatial orientation of the orbitals is mainly given by the angle ϕ. Due to the
different parity of the s- and p-orbitals some matrix elements are similar up to a sign.

µ1/ν0 px

dxz sin (θ)((−
√
3Vpdσ cos(θ)

2 + Vpdπ(cos (θ)
2 − sin (θ)2)) cos (ϕ)2 − Vpdπ sin (ϕ)

2)

dyz (2Vpdπ −
√
3Vpdσ) sin (θ) cos (θ)

2 sin (ϕ) cos (ϕ)

dxy
1
2 cos (θ)(−2Vpdπ(cos (ϕ)

2 − sin (ϕ)2) sin (ϕ) + 2 sin (ϕ) cos (ϕ)2(
√
3Vpdσ cos (θ)

2 + 2Vpdπ sin (θ)
2)

dz2
1
4 cos (θ) cos (ϕ)(Vpdσ − 3Vpdσ(cos (θ)

2 − sin (θ)2)− 4
√
3 sin (θ)2)

dx2−y2
1
2 cos (θ) cos (ϕ)(2Vpdπ + (−2Vpdπ +

√
3Vpdσ) cos (θ)

2(cos (θ)2 − sin (θ)2))

Table 7.2.: The Slater-Koster matrix elements for the relative angle θ of the normals between orbital µ at site 1 and orbital ν
at site 0 for the px- and the five d-orbitals.
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µ1/ν0 py

dxz (2Vpdπ −
√
3Vpdσ) cos (θ)

2 sin (θ) sin (ϕ) cos (ϕ)

dyz sin (θ)(−Vpdπ cos (ϕ)2 + (−
√
3Vpdσ cos (θ)

2 + Vpdπ(cos (θ)
2 − sin (θ)2)) sin (ϕ)2)

dxy
1
2 cos (θ)(Vpdπ cos (ϕ) + Vpdπ cos (3ϕ) + (

√
3Vpdσ cos (θ)

2 + 2Vpdπ sin (θ)
2)2 sin (ϕ)2 cosϕ)

dz2
1
4 cos (θ)(Vpdσ − 3Vpdσ(cos (θ)

2 − sin (θ)2)− 4
√
3Vpdπ sin (θ)

2) sin (ϕ)

dx2−y2
1
2 cos (θ)(−4Vpdπ cos (ϕ)

2 + (cos (ϕ)2 − sin (ϕ)2)(
√
3Vpdσ cos (θ)

2 + 2Vpdπ sin (θ)
2)) sin (ϕ)

Table 7.3.: The Slater-Koster matrix elements for the relative angle θ of the normals between orbital µ at site 1 and orbital ν
at site 0 for the py- and the five d-orbitals.

µ1/ν0 pz

dxz (
√
3Vpdσ sin (θ)

2 + Vpdπ(cos (θ)
2 − sin (θ)2)) cos (ϕ) cos (θ)

dyz (
√
3Vpdσ sin (θ)

2 + Vpdπ(cos (θ)
2 − sin (θ)2)) sin (ϕ) cos (θ)

dxy (
√
3Vpdσ − 2Vpdπ) cos (ϕ) sin (θ) cos (θ)

2 sin (ϕ)

dz2 −1
4 sin (θ)(Vpdσ + 4

√
3Vpdσ cos (θ)

2 − 3Vpdσ(cos (θ)
2 − sin (θ)2))

dx2−y2 −1
2(
√
3Vpdσ − 2Vpdπ)(cos (ϕ)

2 − sin (ϕ)2) cos (θ)2 sin (θ)

Table 7.4.: The Slater-Koster matrix elements for the relative angle θ of the normals between orbital µ at site 1 and orbital ν
at site 0 for the pz- and the five d-orbitals.109
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7.3. Perturbation Theory for Bending of Graphene

In this section, an effective single-orbital tight-binding model is derived in order to describe
the occurrence of Rashba-type spin-orbit coupling terms in deformed graphene. The for-
malism is adapted from [286, 287], where the downfolding of a multi-orbital Hamiltonian
in flat graphene is described. An example of a multi-orbital tight-binding Hamiltonian in
real space is given in Eq. B.1. Let such single-particle Hamiltonian have closed periodic
boundary conditions, such that it can be written compactly as Ĥ =

∑
⟨i,j⟩,α,β t

ij
α,β ĉ

†α
i ĉ

β
j with

annihilation (and creation) operators ĉµ(†)l for site l and orbital µ. The orbitals at the dif-
ferent sites are connected by the direction-dependent hopping matrix elements tijα,β, which
are limited to nearest-neighbor hopping. In this derivation, the orbitals under consideration
are the three p-orbitals and the s-orbital. The single-particle wave function that is used as
ansatz for solving the Schrödinger equation Ĥψ = εψ with energy ε is obtained by applying
the field operator ψ̂† =

∑
µ,l aµ,lĉ

µ†
l on the vacuum, such that ψ := ψ̂†|0〉. The energy ε is

close to the energy of the p-orbitals εp and equations for the coefficients of ψ can be derived
from the tight-binding Hamilton operator. The energy of the s-orbitals will be denoted εs.
Additionally to the hopping, intrinsic spin-orbit coupling among p-orbitals with parameter
ξp, as given by the ˆ⃗

L
ˆ⃗
S-operator, is included in the derivation. Such terms will be considered

as perturbation of the single-orbital model. Furthermore, a deformation of graphene induces
hopping matrix elements among different orbitals, which are zero in flat graphene, due to
symmetry. Non-zero hopping matrix elements in flat graphene are changed in bent graphene,
as well. However, for the purpose of the derivation of Rashba-type spin-orbit coupling pre-
sented in this section, the terms arising from the bending-induced hopping matrix elements
are of primary interest.

The coefficients of the wave function ψ at a specific site 0 are denoted as aα,0 and those of
the three adjacent sites n ∈ {1, 2, 3} by aα,n, where the orbital index α ∈ {s,x, y, z} denotes
either the s- or px-, py- and pz-orbitals. The coefficients of the next-nearest-neighboring sites
of site 0 are denoted as aα,n′ . The hopping parameters in bent graphene are locally depending
on the relative angle θ of the quantization axes at each of the sites, which are parallel to the
local surface normals of the deformed graphene plane. For each hopping matrix element, a
combined index θi := (θ,ϕ)i is written, where both the bond angle ϕ and bending angle θ for
the respective bond are included. The relative angles between site 0 and site n are denoted
θn and between each n and n′ by θn′ . In the following, a short-hand notation for the matrix
elements along these bonds is given. The matrix elements are next labeled by θn, such that
tαβ(θn) := t0nα,β for hopping form site 0 to n and as tαβ(θn′) for the one between n and n′.
The Pauli matrices acting on the spin-space are denoted ŝx, etc.

With this, the equations for the coefficients at site 0 and its neighboring sites resulting
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from the Schrödinger equation are expressed as

(ε− εp)az,0 = −iŝyξpax,0 + iŝxξpay,0 +
∑
n

tzz(θn)az,n +
∑
m

tzx(θn)ax,n

+
∑
n

tzy(θn)ay,n +
∑
n

tzs(θn)as,n, (7.1)

as well as

(ε− εp)ax,0 = iŝyξpaz,0 − iŝzξpay,0 +
∑
n

txz(θn)az,n +
∑
n

txy(θn)ay,n

+
∑
n

txx(θn)ax,n +
∑
n

txs(θn)as,n (7.2)

(ε− εp)ay,0 = −iŝxξpaz,0 + iŝzξpax,0 +
∑
n

tyz(θn)az,n +
∑
n

tyy(θn)ay,n

+
∑
n

tyx(θn)ax,n +
∑
n

tys(θn)as,n (7.3)

(ε− εs)as,0 =
∑
n

tss(θn)as,n +
∑
n

tsx(θn)ax,n +
∑
n

tsy(θn)ay,n +
∑
n

tsz(θn)az,n. (7.4)

In the low-energy approximation, the energy ε in the Schrödinger equation is close to εp
and can approximated to be identical to it in higher-order processes. This would lead to
divergences, but the next-nearest neighbor hopping from the s- to the pz-orbitals causes
an energy shift, due to the offset εs from ε, which will remove this issue. By treating the
px-, py- and s-orbitals as virtual states in the second-order perturbation theory, their effect
on the pz-orbitals is considered only effectively. This method describes effective hopping
paths [286], which will renormalize the relative energies of the s- and p-orbitals and also the
nearest-neighbor hopping. Furthermore, it will introduce a next-nearest neighbor hopping
and include the intrinsic spin-orbit coupling as a spin-dependent next-nearest neighbor hop-
ping. In the case of bent graphene, it will also introduce effective Rashba-type spin-orbit
coupling terms.

For flat graphene, the matrix element in the single-orbital model for pz-orbitals is given by
tzz(θ = 0) = Vppπ. The px-, py- and s-orbitals form sp2-hybridized states with the non-zero
hopping matrix elements txy, txs, tys and tss. In general, a deformation of graphene leads to
the non-zero matrix elements tsz(θn), txz(θn), and tyz(θn), because of the broken symmetry
along the surface normal of the lattice. The resulting Rashba-type spin-orbit coupling terms
arising from this perturbation will be shown to depend on the latter matrix elements.

Next, the multi-orbital model is cast into an effective single-orbital model. For this, hop-
ping from one s-orbital to a neighboring one, as it appears in Eq. 7.4, can be neglected, due
to their large energy offset from ε [287]. Thus, for the s-component at any site n and its
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neighbors n′ in Eq. 7.4, it follows that

(ε− εs)as,n =
∑
n′

tsx(θn′)ax,n′ +
∑
n′

tsy(θn′)ay,n′ +
∑
n′

tsz(θn′)az,n′ . (7.5)

Next, the equations for the ax,0 and ay,0 components as in Eq. 7.2 and Eq. 7.3 are rewritten
by eliminating the component for the s-orbitals at all sites n via Eq. 7.5. For the first, it
follows

(ε− εp)ax,0 = iŝyξpaz,0 − iŝzξpay,0 +
∑
n

txz(θn)az,n +
∑
n

txy(θn)ay,n

+
∑
n

txx(θn)ax,n +
∑
n

txs(θn)

ε− εs

[∑
n′

tsx(θn′)ax,n′ + tsy(θn′)ay,n′ + tsz(θn′)az,n′

]
.

(7.6)

The same is done for the ax,n component, resulting in

(ε− εp)ax,n = iŝyξpaz,n − iŝzξpay,n +
∑
n′

txz(θn′)az,n′ +
∑
n′

txy(θn′)ay,n′

+
∑
n′

txx(θn′)ax,n′ +
∑
n′

txs(θn′)

ε− εs

[∑
n′′

tsx(θn′′)ax,n′′ + tsy(θn′′)ay,n′′ + tsz(θn′′)az,n′′

]
.

(7.7)

The next-nearest neighbor terms with index n′′ in the brackets in Eq. 7.7 also include the
original site 0. The terms for this site can be rewritten as ε′ax,0. This term describes
an energy contribution, which shifts the energy εp of this orbital at this site. This shift
in Eq. 7.7 also occurs in the corresponding equation for ay,n. It is of the form ε′aα,0 =∑

n′
tαs(θn′ )
ε−εs

tsα(θn′)aα,0, where α ∈ {x, y}. It is important that for ε ≈ εp the terms tαs(θn′)
for the px- and py-orbitals are non-zero, even for flat graphene. This ensures that the energy
difference ε − εp − ε′, which will occur in Eq. 7.7, is non-zero for ε ≈ εp and the seemingly
problematic divergence in Eq. 7.1 for zero θn is removed. The model presented here is valid
in the low energy approximation. Thus, only small deformations will be considered, and
therefore the matrix elements in the energy shift ε′ will be considered to be approximately
identical to those in flat graphene. Thus, ε′ ≈ 3

4

V 2
spσ

εp−εs
is the energy shift for both px- and

py-orbitals, which is the reduction of energy, when the in-plane p-orbitals couple together
with the s-orbital. Next, Eqs. 7.6, 7.7 and the corresponding equations for ay,0 and ay,n
are inserted into Eq. 7.1, such that the s-orbitals are eliminated from the equations. If the
effective hopping is restricted to next-nearest neighbors, Eq. 7.1 can be cast into

(ε− εp − ε′′)az,0 = An +Bn + Cn +Ann +Bnn + Cnn (7.8)
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with nearest-neighbor and next-nearest-neighbor terms with index n and nn, respectively.
The energy shift ε′′ originates from the second-order hopping from site 0 back to itself, similar
to how ε′ arises and therefore site 0 is excluded from the sums for the next-nearest neighbor
terms. It will be zero for a flat system. The expression for ε′′ is given below.

The term An describes the nearest-neighbor hopping among pz-orbitals directly via tzz(θn).
Due to intrinsic spin-orbit coupling, an on-site transition from a pz-orbital to either a px-
or py-orbital is also possible, followed by a hopping to a neighboring px- or py-orbital and
a transition back to a pz-orbital. This results in another nearest-neighbor hopping term.
Together, they are given by

An :=
∑
n

tzz(θn)az,n +

(
ξp
ε′

)2∑
n

(txx(θn) + tyy(θn)) az,n. (7.9)

Furthermore, the pz-orbitals are coupled by the bending-induced Rashba-type spin-orbit
coupling terms Bn and Cn, which are

Bn :=
ξp
ε′

∑
n

(iŝxtyz(θn)− iŝytxz(θn)) az,n

− ξp
ε′

∑
n

(iŝxtzy(θn)− iŝytzx(θn)) az,n = 0 (7.10)

Cn := −2

(
ξp
ε′

)2∑
n

(iŝxtzy(θn)− iŝytzx(θn)) az,n. (7.11)

Both of these are comprised of hopping matrix elements, which are non-zero only in bent
graphene. The term Bn is formally linear in the intrinsic spin-orbit coupling parameter ξp.
It vanishes, however, due to the symmetries of the matrix elements as given in Tab. 7.1, as
tαz(θn) = tzα(θn) for both α ∈ {x, y}, due to the parity of the p-orbitals, but it is stated
here for completeness. While Bn would describe an on-site transition from a pz- to either
a px- or py-orbital, followed by a bending-induced hopping to a neighboring pz-orbital, the
term Cn occurs due to two on-site transitions among different p-orbitals. This higher-order
term is quadratic in ξp. Both processes are depicted in Fig. 7.2. The on-site transition from
a pz- to a px- or py-orbital causes a spin-flip, while the one from a px- to a py-orbital does
not. This is derived in Eq. 3.23. Consequently, both of these Rashba terms exhibit a similar
spin-dependence.

Effective next-nearest neighbor hopping matrix elements are introduced by the deformation

113



7. Deformation of Graphene Nanoribbons

as well, which will be denoted Ann and result in

Ann :=
∑

n,n′ ̸=0

(
ξp
ε′

)2 1

ε′
[tzx(θn)txz(θn′) + tzy(θn)tyz(θn′)] az,n′ (7.12)

− 1

εs

∑
n,n′ ̸=0

tzs(θn)tsz(θn′)az,n′ +
1

ε′

∑
n,n′ ̸=0

[tzx(θn)txz(θn′) + tzy(θn)tyz(θn′)] az,n′ (7.13)

−
(
ξp
ε′

)2 1

εs

∑
n,n′ ̸=0

[txs(θn)tsx(θn′) + tys(θn)tsy(θn′)] az,n′ . (7.14)

The first term is a result of the bending-induced coupling of pz-orbitals to px- and py-orbitals,
which are shifted from their original energy εp by the hybridization energy ε′. The second
and third term describe a hopping from a pz-orbital to either an s-, px- or py-orbital, followed
by a hopping to another pz-orbital. These terms are dominant compared to the first, as a
consequence of the energy shift and the size of the matrix elements - in particular those
related to the s-orbitals. The fourth term describes an on-site spin-orbit coupling transition
from the pz-orbitals to the px- or py-orbitals, followed by two hoppings and a transition back
to a pz-orbital at a next-nearest-neighboring site. Due to the quadratic order in ξp, this term
is small.

The two spin-dependent next-nearest neighbor terms Bnn and Cnn denote a higher-order
Rashba-type spin-orbit coupling term and the effective intrinsic spin-orbit coupling term,
respectively. The latter is different compared to that of flat graphene, however, because the
bending changes the isotropy of the lattice. The two terms are given by

Bnn :=

i
ξp

(ε′)2

∑
n,n′ ̸=0

(ŝy [tzx(θn)txx(θn′) + tzy(θn)tyx(θn′)]− ŝx [tzx(θn)txy(θn′) + tzy(θn)tyy(θn′)]) az,n′

− i
ξp

(ε′)2

∑
n,n′ ̸=0

(ŝy [txx(θn)txz(θn′) + txy(θn)tyz(θn′)]− ŝx [tyx(θn)txz(θn′) + tyy(θn)tyz(θn′)]) az,n′

(7.15)

− i
ξp
ε′εs

∑
n,n′ ̸=0

(ŝy [tzs(θn)tsx(θn′)− txs(θn)tsz(θn′)]− ŝx [tzs(θn)tsy(θn′)− tys(θn)tsz(θn′)]) az,n′

(7.16)

Cnn :=

(
ξp
ε′

)2 iŝz
εp − εs

∑
n,n′ ̸=0

[txs(θn)tsy(θn′)− tys(θn)tsx(θn′)] az,n′ , (7.17)

where higher orders of ξp are omitted. The matrix elements entering the intrinsic spin-orbit
coupling term Cnn stay non-zero even without bending. Bnn has a similar effective order as
the intrinsic spin-orbit coupling, it describes hopping among next-nearest neighbors, followed
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by an on-site spin-flip, resulting in linear order in ξp, but quadratic order in the hopping
matrix elements. Such process is shown in Fig. 7.2. It is important to note, that the terms
in Eq. 7.15 do not cancel each other in general, despite their similar appearance. The
same holds true for Eq. 7.16, because the different matrix elements are unequal in case of
θn 6= θn′ . For uniaxial deformations this is always the case, due to the different orientations
of the bonds in the lattice and the resulting bending, as was discussed in Fig. 7.1. The
next-nearest neighbor hopping terms in Eq. 7.14 back to site 0 cause the aforementioned
energy shift of the pz-orbitals

ε′′ ≈ 1

ε′

∑
n

[tzx(θn)txz(θn) + tzy(θn)tyz(θn)]−
1

εs

∑
n

tzs(θn)tsz(θn)

+ 2
ξ2p
ε′

+

(
ξp
ε′

)2 1

ε′

∑
n

[tzx(θn)txz(θn) + tzy(θn)tyz(θn)]

−
(
ξp
ε′

)2 1

εs

∑
n

[txs(θn)tsx(θn) + tys(θn)tsy(θn)] , (7.18)

due to the hybridization of the in-plane and out-of-plane orbitals. The first two terms of Eq.
7.18 are very small, because of the quadratic order in ξp. The second term is small compared
to the dominant third term, but both are small for small deformations, because all of the
occurring matrix elements are zero for θ = 0. The last term is also negligible. The energy
shift of the edge atoms is largely given by the bending-induced hybridization of pz- and s-
orbitals. If the edge sites of a graphene sample are not passivated with hydrogen atoms, the
energy shift is approximately zero. However, the third term in Eq. 7.18 largely overestimates
the energy shift for passivated edge atoms by several orders of magnitude. The reason is that
the sp2-hybridization of the hydrogen atoms at the edge sites in case of passivation shifts the
energy of the hydrogen s-orbitals, such that the contribution is reduced.

Rashba-type Spin-orbit Coupling Originating from Deformation or Electric Field

The derived bending-induced Rashba terms act on the ŝx- and ŝy-components in a similar
way as the Rashba-type spin-orbit coupling originating from an electric field perpendicular
to a flat graphene sample, as in Eq. 2.27. However, the interaction in this section contains
hopping matrix elements which couple next-nearest neighbors and which are only non-zero
in a bent sample. Without Rashba-type spin-orbit coupling, a transition from a pz-orbital
to another p-orbital is only possible with a spin-flip due to intrinsic spin-orbit coupling,
but returning to the pz-orbital reverses the effect. The main similarity of the bending-
induced Rashba-type spin-orbit coupling and the one originating from an external electric
field perpendicular to a flat graphene sample is the induced transition between orbitals which
would otherwise only be coupled by intrinsic spin-orbit coupling. This way, hopping among
neighboring and next-nearest-neighboring pz-orbitals may be facilitated via an intermediate
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Figure 7.2.: A schematic overview of the different bending-induced Rashba-type spin-orbit coupling
effects. The z-component of the real spin is indicated by an arrow at each orbital. The lowest-order
term corresponds to the term Bn. Higher-order terms include either a second on-site transition,
corresponding to Cn, or a hopping to a next-nearest neighbor, which leads to Bnn. The transition
from px to py at site 0 in the middle figure does not include a spin-flip, due to the matrix elements in
the ˆ⃗

L
ˆ⃗
S-operator. A possible variation of hopping path, also leading to Bnn, is depicted in grey.

transition to the sp2-hybridized orbitals, without reversing the spin-flip of the intrinsic spin-
orbit coupling. An external electric field allows for an on-site transition between s- and pz-
orbitals in flat graphene, but a deformation of the sample induces a coupling of neighboring
orbitals. Even though the two Rashba-type terms are very similar in their effect on the spin,
they have different group theoretical characteristics. The principal plane mirror asymmetry
(PIA) is used in the literature [124] to denote a spin-flipping next-nearest neighboring term,
such as the bending-induced Rashba-type spin-orbit coupling discussed in this work. The
Rashba-type spin-orbit coupling originating from an electric field, however, is a spin-flipping
nearest-neighbor term.

Numerical Estimations of the Different Spin-orbit Coupling Terms

The different Slater-Koster parameters of the tight-binding model used in this estimation
will be given in the next section in greater detail. For a bending angle1 of θ ≈ 0.03, which
corresponds to a bending radius of R = 4nm, the energy shift of the px- and py-orbitals due
to the hybridization with the s-orbitals in flat graphene is given by ε′ ≈ 2.828 eV. This value
deviates only by 2meV from that of flat graphene and it is in line with the value 2.79 eV
obtained in [82], which is the band separation of sp2-hybridized bands and π-bands.

With the above value for θ, the bending-induced Rashba-type term Cn in Eq. 7.11 is on
the order of

(
ξp
ε′

)2
(Vppσ−Vppπ)θ ≈ 1µeV. The terms in Bnn, as in Eqs. 7.15 and 7.16, are on

1θ is given in rad.
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the order of ξp
(ε′)2 (Vppσ −Vppπ)Vppπθ ≈ 0.6meV and ξp

ε′εs
V 2
ppσθ ≈ 0.2meV. The term Cnn is on

the order of
(
ξp
ε′

)2 V 2
spσ

εs
≈ 10 µeV. In a bent system, the different spin-orbit coupling terms

compete for an alignment of the spin along the local axis of quantization or along the bending
direction. Their relative magnitude is therefore a good indication of which terms dominate
the spin alignment and this will be discussed in detail in the next section. By comparing the
different magnitudes discussed here, it is evident that the influence of the deformation on the
spin structure is mostly determined by Bnn, which is a next-nearest neighbor contribution.
The nearest-neighbor Rashba term Cn does not influence the spin alignment at all, while the
other nearest-neighbor Rashba term Bn is not even present. The next-nearest neighbor term
Cnn is very weak in comparison to Bnn.
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7.4. Multi-orbital Tight-binding Model with σ-Bands
Extension of the Tight-binding Model with s-, px- and py-orbitals

The multi-orbital tight-binding model described in Sec. 3.2.4 is extended to also include
s-, px- and py-orbitals with the Slater-Koster approximation. The three p-orbitals share the
same energy, but the s-orbitals in this model are shifted by approximately −8.37 eV relative
to the three p-orbitals [80]. The remaining parameters are used as Vssσ = −5.73 eV and
Vspσ = 5.62 eV [80]. The intrinsic spin-orbit coupling among the p-orbitals is included via
Eq. 3.23. The commonly accepted magnitude of the intrinsic spin-orbit coupling in the
p-orbitals is given by ξp = 5meV [78].

The sp2-hybridization of the graphene lattice is perturbed, because the lattice has an
edge. In the low-energy approximation, which was used to study either the effective single-
orbital tight-binding model or the multi-orbital model as in the previous chapters, the energy
separation from the pz- to the in-plane orbitals is large enough, such that the latter can be
neglected. The intrinsic spin-orbit coupling effects among p-orbitals could be neglected there
as well. In the description of bending on the other hand, the broken symmetry of the lattice
will directly affect the edge states, because the dangling bonds of the broken sp2-hybridization
at the edge sites will couple to the pz-orbitals and affect the edge state dispersion. Therefore
the passivation of the edge sites with hydrogen atoms has to be included in the model
explicitly. The tight-binding model is extended to have additional sites at the edges, as
depicted in Fig. 7.3 a). The hydrogen atoms are only considered to exhibit localized s-
orbitals, which are coupled to the four orbitals at each edge site. The parameters for this
coupling are different from the bonds among carbon atoms, they will be denoted by an
additional index H, and are given by V H

ssσ = −6.84 eV and V H
spσ = 7.8 eV. Their energy shift

relative to the three p-orbitals of graphene is −2.49 eV [78].

Dislocation of Lattice Sites in Deformed Samples

The computation of a Hamiltonian of the tight-binding model for a bent sample presented
in this chapter is similar to that of a flat graphene sample from previous considerations.
Obtaining the relative displacement vectors of the sites in the bent scenario, however, becomes
a central task. For the geometrical determination of the atomic positions, two different
directions of deformation are considered, a deformation along and another perpendicular to
the zigzag edge. A circular deformation has constant curvature along one cartesian axis and
zero curvature along the other. It is characterized by a bending radius R. The atomic sites are
first dislocated in space to account for the actual sample shape in the bending computation.
From this, the interatomic displacement vectors required for the Slater-Koster approximation
are computed. When the relative coordinates of each pair of sites are determined according
to a function of the bending radius R, which describes the corresponding deformation, the
relative distances of the sites must not change compared to the flat system. For extreme
curvatures in real systems on the other hand, the atomic distances in curved space and flat
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a)

b)

Figure 7.3.: a) The graphene carbon atoms at the edges are passivated with hydrogen atoms. One
edge state is localized at the red sites, the other at the blue sites. b) An example of the normal
vector at an edge of a nanoribbon. The vectors pointing to the two nearest neighbors (red and green)
determine to the local normal vector (blue) at a site. The normals at neighboring sites have a different
orientation (black). The spin polarization S⃗ is obtained in site-dependent local coordinates, where
the local quantization axis is parallel to the local normal vector.

space may differ significantly. Therefore the computations are only regarded in the small
bending regime.

Another type of bending is the sinusoidal deformation, where the curvature varies along
the spatial direction. This deformation is characterized by an amplitude and a wavelength.

Local Normal Vectors

In order to describe the spin polarization of the edge atoms, a local quantization axis in
curved space is defined. It is taken as the local normal vector of the lattice at the respective
edge atom’s position, which is depicted in Fig. 7.3 b). For obtaining this normal, two vectors
pointing to a nearest neighbor of a site, each, are used. The vector product of the two is
then parallel to the local normal vector.
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7.5. Deformation Effects
In this section the dispersion relation and spin polarization of the edge states under different
deformations of the flat graphene nanoribbon is discussed. For this purpose, the 4-band
tight-binding model, which was introduced in the last section, is used to discuss the spin
alignment under different circular deformations of the regular graphene lattice. The different
lattice symmetries of the deformed samples are shown to lead to different symmetries of the
edge state dispersion relations.

7.5.1. Spin-orbit Coupling due to Deformation
For the discussion presented in this section, only uni-directional deformations of the graphene
lattice with constant curvature will be considered, which are either taken parallel to the
zigzag-direction or perpendicular to it. As was discussed in the previous section, the second
term of the spin-dependent next-nearest neighbor hopping Bnn in Eq. 7.16 is most relevant
for the spin-texture of the graphene sample. The reason is that the pz-orbitals couple to
the s-orbitals only due to the deformation, and therefore the interaction matrix elements are
highly-dependent on the bending direction. In contrast, the px- and py-orbitals couple to the
s-orbitals in flat graphene already, which is only slightly changed by the bending.

The different influence of the bending along or perpendicular to the zigzag edge is depicted
in Fig. 7.4. If the bending is taken along the x-direction, which is the periodic direction of
the sample, the bending will only change the red bonds in a), because the black ones do not
have an x-component and are thus left unchanged. This will have great consequences for the
magnitude of the matrix elements for the pz- and s-orbitals. If the bending is taken along
the y-direction, as indicated in b), the violet bonds will have a reduced bending contribution
of θ/2, compared to the red ones where the angle is θ. In order to discuss the influence of
the direction of bending on Eq. 7.16, the next-nearest neighbor hopping is discussed along
two specific bonds. Consider a successive hopping along path 1, followed by a hopping along
path 2, as depicted in Fig. 7.4 c). As the bending acts as a perturbation, the in-plane
directive cosines are approximately those of flat graphene and are thus given by the relative
displacement b ∈ {δ1, δ2, δ3} of the neighboring sites, e.g. in Tab. 7.1 sin (ϕn) = bn,y and
cos (ϕn) = bn,x. Then, Eq. 7.16 becomes

Bnn =
iξp
ε′εs

V 2
spσ (ŝy [sin (θ2)b1,x − sin (θ1)b2,x]− ŝx [sin (θ2)b1,y − sin (θ1)b2,y]) , (7.19)

and for circular bending along the x-direction it can be reduced to

Bx
nn =

iξp
ε′εs

V 2
spσ

(
ŝy

[
sin (θ) · 0− 0 ·

√
3/2
]
− ŝx [sin (θ) · 1− 0 · 1/2]

)
= − iξp

ε′εs
V 2
spσ ŝx sin (θ). (7.20)
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a) b) c)

Figure 7.4.: a) Schematic of the bonds in the bent graphene cell which change when bending is
applied. Black represents the bonds that correspond to that of flat graphene. a) For bending along
x only the bonds with a component along the zigzag edge are affected, as indicated in red. b) For
bending along y all bonds in the sample have a component along the y-direction, but the horizontal
bonds are affected less, indicated by the violet color. c) An illustration of a hopping path required for
the computation of the bending-induced Rashba-type spin-orbit coupling term Bnn. The edge sites
are depicted in blue.

Consequently, for bending parallel to the edge only the x- component of the spin in the
Rashba-type term in Eq. 7.20 is present. Due to the symmetry of the matrix elements, this
term is zero for hopping along two consecutive zigzag bonds and for any other hopping paths
between two next-nearest-neighbors it is identical to Eq. 7.20. When the bending is taken
along the y-direction, the symmetry of the lattice results in a similar effect on the spin, with
a different direction of spin-polarization. This is shown next, where Eq. 7.19 becomes

By
nn =

iξp
ε′εs

V 2
spσ

(
ŝy

[
sin (θ/2) · 0− sin (θ) ·

√
3/2
]
− ŝx [sin (θ/2) · 1− sin (θ) · 1/2]

)
. (7.21)

The deformations here are only considered for very small angles, and thus sin (θ/2) ≈
sin (θ)/2. Then the last term in Eq. 7.21 cancels out and the Rashba-type spin-orbit coupling
parameter is left with the y-component of the spin, which results in

By
nn = − iξp

ε′εs
V 2
spσ

√
3/2ŝy sin (θ). (7.22)
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The same functional dependencies hold true for any other hopping path in the sample, but
for hopping along two consecutive zigzag bonds By

nn will be zero, similar to Bx
nn. The fact

that both Eq. 7.20 and Eq. 7.22 are proportional to tsz(θ) = Vspσ sin (θ), is consequence of
the symmetry of the Rashba-type term and its dependence on the deformation strength.

For sinusoidal deformations, where the curvature is not constant, the above considerations
are not fulfilled, such that one would expect the spin components in the different directions
not to cancel. For the deformations with varying curvature along the y-direction considered
later in this work, the cancellation of the ŝx-component is still approximately true, however,
because the curvature difference on the scale of two neighboring bonds of the lattice is still
very small. This will be different for the deformations along the x-direction, because there
the curvature variation will be assumed to be larger.

The case of deformation with constant curvature along the x-direction will not be discussed
in this work, because it is not possible to construct a tight-binding model with constant
curvature along the periodic direction [78].

7.5.2. Energy Degeneracy in Bent Ribbons
In this section, the effect of the different directions of spin alignment on the energy spectrum
is discussed. Bending with constant curvature along the zigzag direction of a graphene
sample, in combination with the periodicity, is what makes up a single wall carbon nanotube
with zigzag configuration. These systems are described by a chiral vector2, which denotes
the principal axis of the tube. In the case presented here, the tube has the configuration
(n, 0), where n is even. Such a system is symmetric with respect to inversion, due to its
cylindrical structure [288]. Additionally, zigzag nanotubes are symmetric with respect to
all group operations of the two-dimensional point group C2ν [289]. The constant curvature
along the zigzag edge causes the spins to align along the principal axis of the nanotube. This
situation is illustrated in the top of Fig. 7.5. The inversion symmetry is maintained by the
fact that a cylinder is invariant under swapping r with −r. As can be seen in the figure, the
symmetry of the sample ensures that energies E of the states fulfill

E(1, ↓,−k) = E(2, ↓,k) (7.23)
E(1, ↑,k) = E(2, ↑,−k), (7.24)

where the additional parameter denotes edge 1 or 2. These states are labeled by another
parameter ↑ or ↓, with respect to the local quantization axis in the xz-plane. As was discussed
in Sec. 2.2.1, time-reversal symmetry leads to two-fold degeneracy of the energy bands and
in conjunction with inversion symmetry to a spin degeneracy of all bands.

For bending perpendicular to the edges, the spins align in the yz-plane, which is oriented
perpendicular to the sample edges, see bottom of Fig. 7.5. The z-components of the local

2The chiral vector c⃗ = na⃗1+ma⃗2 with two integers n and m and the lattice vectors of the honeycomb lattice
denotes the periodicity of a nanotube and is commonly written as (n,m) [69].
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Figure 7.5.: Illustration of the spin alignment for a deformation along the zigzag edge (top) and
perpendicular to the edges (bottom). In the top case, the spins align in the xz-plane and in the
bottom case in the yz-plane. In the bottom picture the z-components of the local quantization axes
at each edge are not parallel, as indicated by the tripods.

coordinate systems at each edge are not parallel, which is indicated by the tripods in the
figure. Replacing x→ −x and y → −y are valid symmetry operations of such a sample, but
replacing z → −z is not, and thus the sample is not inversion symmetric, while all operations
of the point group C2ν are still intact. Such a sample only exhibits two-fold degenerate bands,
due to Kramers theorem.

7.5.3. Deformation Pseudo Potentials
Using a procedure discussed in [290], the occurrence of a pseudomagnetic field within the
sublattice spin space is introduced in the following. Let the single-orbital graphene Hamilto-
nian for the following discussion be the Hamiltonian in Eq. 3.7 and let the hopping matrix
elements be explicitly dependent on the bond direction δi as also discussed in Chapter 3.
Let the hopping matrix elements additionally be depending on the position r, such that
t = t(r, δi). This spatial dependence of the hopping matrix element is responsible for the
occurrence of the pseudomagnetic field, as will be shown in the following. It was discussed
before, that the nearest-neighbor hopping changes in a deformed sample, according to the
first term in Eq. 7.9. Due to this term, t(r, δi) will be assumed to change compared to its
non-bent counterpart, such that

t(r, δi) ≈ t(δi) + δt(r, δi)

= t+ δt(r, δi) (7.25)

For weak deformations where δt(r, δi) � |t|, it is a valid approximation, to only consider the
dominant first term in the Fourier expansion of Eq. 3.5 [290]. With this, Eq. 3.7 in the basis
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{|pz,A〉, |pz,B〉} can be rewritten as

Hk = t(1 + e−ia2k + e−ia3k)α†
kβk

+ (δt(r, δ1)e
−ia2k + δt(r, δ2)e

−ia3k + δt(r, δ3))α
†
kβk + h.c.. (7.26)

Next, an expansion around the Dirac points K(′) is performed, such that k → (± 4π
3
√
3
, 0) +

(qx, qy) and the valley isospin τ = ±1 is used to denote the corresponding Dirac point. It
follows

Hk =
3ta

2ℏ
(−τqx + iqy)α

†
kβk +

(
δt(r, δ1)e

− 2iπτ
3 + δt(r, δ2)e

2iπτ
3 + δt(r, δ3)

)
α†
kβk + h.c..

(7.27)

The first term is the Hamiltonian for undeformed graphene and the second one describes the
pseudopotential due to bending. With vF = 3|t|a

2ℏ and the definition of the pseudopotential

Hk = vF

 0 −τqx − iqy

−τqx + iqy 0

+ vF

 0 Ax − iτAy

Ax + iτAy 0

 , (7.28)

the two components of the vector potential A⃗ = (Ax,Ay) are found to be [290]

vFAx = δt(r, δ3)−
1

2
(δt(r, δ1) + δt(r, δ2)) (7.29)

vFAy = −
√
3

2
(δt(r, δ2)− δt(r, δ1)). (7.30)

Pseudomagnetic Field

The pseudomagnetic field B⃗ is only generated if the components of the vector potential
change spatially via

Bz(r) =
∂Ay(r)

∂x
− ∂Ax(r)

∂y
, (7.31)

which is not the case for bending with constant curvature. If the bending is taken with
constant curvature parallel to the zigzag edge (along x), then δt(r, δ1) = δt(r, δ2) = const.
and δt(r, δ3) = 0. Then

vFAx = −δt(r, δ1) = const. (7.32)
vFAy = 0 (7.33)
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If the bending is taken perpendicular to the zigzag edge, along the y-direction, then δt(r, δ1) =
δt(r, δ2) = const. and δt(r, δ3) = const. 6= δt(r, δ1). Then

vFAx = δt(r, δ3)−
1

2
(δt(r, δ1) + δt(r, δ2)) = const. (7.34)

vFAy = 0, (7.35)

which is qualitatively similar to the previous case. If the bending is taken parallel to the
zigzag edge, but with sinusoidal deformation, then the vector potential becomes spatially
dependent (on x) via δt(x, δ1) 6= δt(x, δ2) and δt(x, δ3) = 0, such that

vFAx = −1

2
(δt(x, δ1) + δt(x, δ2)) (7.36)

vFAy = −
√
3

2
(δt(x, δ2)− δt(x, δ1)). (7.37)

This generates a pseudomagnetic field, because

Bz(x) =
∂Ay(x)

∂x
− ∂Ax(x)

∂y
= −

√
3

2vF

∂(δt(x, δ2)− δt(x, δ1))

∂x
. (7.38)

The condition δt(x, δ1) 6= δt(x, δ2) is fulfilled for curvatures, where the wavelength of the
sinusoidal deformation is on the order of the lattice constant. But the derivative of the two
deformations δt(x, δ1) and δt(x, δ2) will be nearly identical in this case and thus the resulting
pseudomagnetic is very small.

Lastly, the case of bending perpendicular to the zigzag edge with sinusoidal deformation
is considered. In such a situation, the vector potential is spatially dependent on y, and with
1
2δt(y, δ3) ≈ δt(y, δ1) = δt(y, δ2) it follows

Bz(y) = − 1

2vF

∂(δt(y, δ3))

∂y
. (7.39)

Again, the change of the hopping matrix element is identical for both zigzag bonds, but
different for the bonds perpendicular to the zigzag edge, such that a pseudomagnetic field
can be generated in this case. The results for different bending types (circular or sinusoidal)
are summarized in Tab. 7.5 for both bending directions.

Pseudo Scalar Potential

In addition to the pseudo vector potential A⃗, a pseudo scalar potential Φ(r) is induced by
the deformation, because of the modified next-nearest-neighbor hopping in bent graphene
[274]. Such a contribution will add a term to Eq. 3.5 and accounts for hopping from and to
sites of identical sublattice via

Hnnn = t′
∑
R

3∑
i=1

(
â†RâR+ai + b̂†Rb̂R+ai

)
+ h.c., (7.40)
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direction type A⃗ Bz

⊥
circular Ax = const., Ay = 0 0

sinusoidal Ax(y) 6= 0, Ay(y) = 0 Bz(y) ∼ ∂Ax
∂y

‖
circular Ax = const., Ay = 0 0

sinusoidal Ax(x) 6= 0, Ay(x) 6= 0 Bz(x) ∼ ∂Ay

∂x

Table 7.5.: Summary of the deformation-induced vector potentials and resulting magnetic fields.
The direction of bending is either parallel (‖) or perpendicular to the zigzag edge (⊥) and has either
constant curvature (circular) or varying curvature (sinusoidal).

where the next-nearest-neighbor hopping is given by t′and the lattice vector a3 is introduced
in addition to those in Eq. 3.1. The next-nearest-neighbor hopping, similar to the nearest-
neighbor hopping, becomes spatially-dependent, such that

t′(r,ai) ≈ t′(ai) + δt′(r,ai)

= t′ + δt′(r,ai). (7.41)

Due to the next-nearest-neighbor matrix elements regarding the σ-band model, it follows that
t′ = 0, while δt′(r,ai) is given by Eq. 7.13. In the case of d-orbitals, t′ 6= 0 and an additional
term is added to δt′(r,ai), which will be discussed in Sec. 7.7. The Fourier transformation
of Eq. 7.40 leads to

Hnnn
k = 2

3∑
i=1

(
t′ + δt′(r,ai)

)
cos (kai)

(
α†
kαk + β†kβk

)
+ h.c. (7.42)

and the expansion around the Dirac and Γ-points results in

Φ(r)K/K′
= −

3∑
i=1

δt′(r,ai) Φ(r)Γ = 2

3∑
i=1

δt′(r,ai). (7.43)
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7.6. Bent Graphene Nanoribbons with s- and p-orbitals
In the following, the 4-band tight-binding model is used to discuss the effect of deformation on
the edge states of graphene nanoribbons. An important influence on the resulting edge state
dispersion is the inversion symmetry with respect to the center of the deformed nanoribbon.
Different cases of deformation will be discussed, where a circular or a sinusoidal type of
bending is applied to the nanoribbons.

7.6.1. Circular Bending Perpendicular to the Edge
As a first step a circular deformation in the direction perpendicular to the zigzag edges
is applied to the sample. A schematic illustration of the bending of the sample, which is
performed such that the lattice sites are displaced in the yz-plane with a constant radius of
curvature, is given in Fig. 7.7 c). The matrix elements are then computed from their relative
displacements. Parts of the results presented here have been obtained elsewhere already [78],
but are reviewed and extended here for gaining a better understanding of the other types of
deformation as well. In Fig. 7.6 a) the dispersion relation of a bent nanoribbon with 16 rows
and 4 columns is shown, where the edges are passivated with hydrogen atoms. The bending
radius is R = 30nm and the intrinsic spin-orbit coupling parameter of the p-orbitals used
here is ξp = 5meV. In this and in the following sections, the momentum has been rescaled
by a factor3 4 compared to previous chapters. The edge states cross the band gap, as can be
seen in the right of the figure, but due to the deformation, the π-like bands of the edge states
exhibit a small energy shift of ≈ 2.6meV. The broken inversion symmetry of the sample lifts
the two-fold spin degeneracy of the states, such that an onset of the trigonal splitting can
be observed closer to the Dirac points of the Brillouin zone similar to what was discussed in
Chapter 4.5. At the Brillouin zone center, the edges states are localized at their respective
edges.

The dispersion of the edge states is governed by the deformation of the ribbon in the
vicinity of the edges, which influences the next-nearest-neighbor hopping, mostly by the
first term in Eq. 7.13. If however the intrinsic spin-orbit coupling parameter ξp were to be
increased to larger values, such as ξp = 100meV, the deformation would not play a significant
role at the Brillouin zone center anymore, because it was not the dominant interaction in
the system compared to the intrinsic spin-orbit coupling. The onset of the Rashba trigonal
warping would still be prominently observable due to the broken inversion symmetry of the
system. In Fig. 7.6 b) the expectation values 〈ŝx〉, 〈ŝy〉 and 〈ŝz〉 are shown for the four
edge states. The states are clearly spin-polarized and the spin tilts along the y-direction.
The amount of spin alignment with respect to the sample plane depends sensitively on the
deformation strength and at this point the states are already fully 〈ŝy〉-polarized. Therefore

3An increasing the number of rows in the unit cell of the graphene samples may lead to the occurrence of
multiple copies of the band structure in a given k-space interval. Therefore this factor is included to set a
relevant interval with only one copy, which has practical reasons.
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a)

b)

Figure 7.6.: a) Band structure of a nanoribbon with a unit cell of 16 rows and 4 columns with
ξp = 5meV. Circular bending perpendicular to the edge with bending radius R = 30nm is applied.
On the right is a zoom on the detail features of the edge states bands. b) 〈ŝx〉, 〈ŝy〉 and 〈ŝz〉 expectation
values of the four edge states.

there is no 〈ŝx〉- or 〈ŝz〉-component, which is consistent with the discussion in Sec. 7.5.1.
In the following, the analysis will be focused on the competition of the bending-induced in
comparison with the intrinsic spin-orbit coupling. Central to this is the direction of spin
polarization of the edge states. Therefore, the components of the spin expectation value 〈ˆ⃗s〉
of an edge atom l is computed via

〈ŝi(l)〉 =
∑
σ,σ′

∑
µ,ν

a†l,µ,σal,ν,σ′ ŝσ,σ
′

i , (7.44)

where the coefficients of the wave function used in Sec. 7.3 are written with an additional
spin index σ, which also denotes the components of the spin Pauli matrix. In Eq. 7.44 the
basis of wave functions with a set of quantum numbers with respect to the local quantization
axis is used. Therefore the projection of the expectation value 〈ˆ⃗s〉 on the local normal n⃗ is
used to compute the angle ϕ, allowing to quantify the alignment of spin and sample. The
projection of the spin will be identical for the sites along each edge and while the quantization
axes of the two states at a single edge are identical, their respective axis is not parallel to the
quantization axis of the states at the opposite edge, see Sec. 7.5.2. The angle ϕ, which was
motivated in Fig. 7.3 b), is shown in Fig. 7.7 a) for ξp = 5meV in dependence of the inverse
radius of curvature 1

R ∼ θ. A schematic of the edge sites and the direction of the spin is also
shown in c) of the figure. The alignment of the spin is very sensitive to the deformation,
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a) b)

c)

Figure 7.7.: a) The angle ϕ of the spin relative to the quantization axis at an edge site of a ribbon
with 16 rows and 4 columns for varying 1

R . b) The critical radius 1/Rc, where the spins align parallel
to the surface normal is plotted against the intrinsic spin-orbit coupling parameter ξp in units of
ξ0p = 5meV. c) d) Schematic of the circular deformation. The spin alignment is indicated by the
colors, corresponding to those in a).

as already for 1
R ≈ 0.007 nm−1 the two edge states at each edge align their spin completely

in-plane, even though the sample is barely deformed. The alignment of 〈ˆ⃗s〉 with respect to
the local normal at the sample edges defines the angle

ϕ = arccos
〈ˆ⃗s〉 · v⃗
|〈ˆ⃗s〉||v⃗|

≈ π

2
− 〈ŝz〉, (7.45)

where v⃗ = v⃗1× v⃗2 is given by the normal vector at an edge site l and is obtained from vectors
pointing to two of its neighbors, as defined in Fig. 7.3 b). The magnitude of the z-component
of the spin is mainly governed by a competition of the terms |Cnn| and |Bnn|, as in Eqs. 7.17
and 7.16. Therefore, a measure of the the spin alignment can be found in

|Cnn (θ) |
|Bnn (θ) |

=
ξ2pεsε

′
√
3
2 V

2
spσ cos (θ)

ξp(ε′)2εs
√
3
2 V

2
spσ sin (θ)

≈ 1

ε′
ξp
θ

(7.46)
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Figure 7.8.: Band structure of a nanoribbon with a unit cell with 16 rows and 4 columns with
ξp = 5meV, but no passivation with hydrogen atoms at the edges. The radius of curvature is
R = 30nm. On the right a detail of the edge states dispersion is depicted.

for small deformations. If this term diverges (or is very large), the spin is (mostly) aligned in
z-direction and if it is very small, it is mostly aligned in y-direction. The effective intrinsic
spin-orbit coupling term |Cnn| scales as ∼ ξ2p , while the bending-induced term scales as
|Bnn| ∼ ξp and therefore, an increased ξp leads to stronger ŝz-polarization of the edge states.

When the curvature increases, the spins successively align perpendicular to the local axis
of quantization, which is clearly seen in the behavior of the angle ϕ ∼ 1

(1/R) in Fig. 7.7 a)
and is also found in Eq. 7.46. Thus, the influence of the intrinsic spin-orbit coupling Cnn

decays as 1
(1/R) . In other words: The effect of the bending-induced Rashba-type spin-orbit

coupling will increase with increased bending angle θ ∼ 1
R and is inversely proportional to

ξp. The point where both edge states exhibit a spin-projection with their local normal of
ϕ = 90◦ is mainly given by ξp and will be denoted the critical inverse bending radius 1

Rc

in the following. As it is the point where the bending-induced spin-orbit coupling clearly
dominates over the intrinsic one, it can be considered a measure of this competition, and it
will therefore be central to the discussion in the following.

Let the proportion of Bnn and Cnn be fixed, such that the spins fully align in the sample
plane. Then at any given ξp, Eq. 7.46 can be used to compute 1

Rc , because it directly follows
that

1

Rc
=

|Bnn,c|
|Cnn,c|

ξp
ε′
, (7.47)

which is shown in Fig. 7.7 b) for a ribbon with 16 columns and 4 rows for varying ξp. The
linear relation of 1

Rc on ξp is confirmed for larger values, but the approximation becomes
inaccurate for smaller ξp, due to the neglected terms in Eq. 7.15 and the approximation of
relating Eq. 7.46 with ϕ in Eq. 7.45.
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Role of Edge Passivation

In a single-orbital model with pz-orbitals, the low-energy description of graphene is ade-
quate without considering the s-, px- and py-orbitals, because of their symmetry. If the
tight-binding model is extended and these additional orbitals are included, the broken sp2-
hybridization of the sample creates localized states at the edges, due to the dangling bonds.
These states are indicated by two doubly degenerate bands in the dispersion relation, shown
in the left of Fig. 7.8 at −1.2 eV and −2.5 eV at the Γ-point. While the occurrence of
these states due to the lack of the passivation does not influence the π-bands at the Fermi
energy in a flat sample, the passivation becomes relevant, when the sample is deformed. As
was shown above, a central aspect of the deformation is the direction-specific coupling of
the pz-orbitals at a given site with the s-orbitals of the neighboring sites. When a sample
without passivation of the edge sites with hydrogen atoms is deformed along the direction
perpendicular to the edges, the pz-orbitals at the edges do not have such a target s-orbital,
which affects the dispersion relation of the edge states in the unpassivated case compared to a
passivated system. In the right of Fig. 7.8, a dispersion of the edge states for an unpassivated
sample with a radius of curvature R = 30nm is shown. Compared to the passivated edge
state dispersion in Fig. 7.6, the lack of energy shift at the Γ-point is observed. Other than
that, the broken symmetry of the lattice at the edges indicates that the dispersion of the
edges is described directly by the third term in Eq. 7.18, which is to great extend given by
the coupling of the edge sites to the neighboring hydrogen atoms. For higher momenta, the
dispersion of the edge states of the passivated and unpassivated cases becomes comparable
and an energy splitting of 0.25meV at kx · a ≈ 0.4 is observed in both cases. An overall shift
of the passivated edge band is, however, still not reproduced by the unpassivated case. In
the following the passivation of the edge sites will always be assumed.

7.6.2. Sinusoidal Bending Perpendicular to the Edge

The deformation along the y-direction was only considered with constant curvature up to now.
This had two major implications. First, the sample does not exhibit inversion symmetry,
and second, the edge bands are always hybridized with the s-orbitals of the neighboring
atoms, because of the finite overlap due to the bending. Both of these features can be
controlled individually, once a variation of curvature in the form of a sinusoidal deformation4

is considered. Such a sinusoidal deformation h(y) of the lattice sites polarizes pz- and s-
orbitals differently in different parts of the ribbon, depending on the phase of the deformation.
If the sample edges are located at the nodes of the sinusoidal deformation, the polarization
will be zero and thus the bulk contribution to the edge dispersion is rather flat. When
the wavelength of the deformation is changed, such that the edges are located at the hills

4This function describes the displacement along the z-direction of the sites of a ribbon in dependence of their
y-coordinates. It is chosen in such way, that the interatomic distances are kept unchanged from those of
the flat ribbon and only the angles change.
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a) b)

Figure 7.9.: a) Dispersion relation of a nanoribbon with 16 rows and 4 columns for ξp = 5meV,
with a sinusoidal deformation of wavelength λ ≈ 14.7 a and amplitude A = a, where a is the lattice
constant. The edge states are colored by 〈ŝy〉 = ±1. b) The sublattice spin expectation values show
that in the Brillouin zone center the edge states are complete localized at the edges.

and valleys of h(y), the dispersion becomes stronger, because of the energy shift due to the
pz-s-hybridization at the edges.

In the following the center of the ribbon is always considered to be at a node of h(y)
for a sinusoidal deformation, which will enforce inversion symmetry, regardless of amplitude
A or wavelength λ of the deformation. If the phase of the deformation is shifted, such
that the center of the ribbon is located at a hill or valley of h(y) on the other hand, the
inversion symmetry is broken, while a mirror symmetry is still intact. This corresponds to
a cosinusoidal deformation. In both cases the center of inversion (or the symmetry axis) is
not coinciding with a lattice site. The main difference of the systems arising from this phase
shift of the deformation, is the missing energy degeneracy, as was discussed in Sec. 7.5.2.
Both of these aspects will be discussed below, but before, the similarities compared to the
deformation with constant curvature will be highlighted.

In Fig. 7.9 a) the edge state dispersion of a nanoribbon with a sinusoidal deformation of
λ ≈ 14.7a and an amplitude of A = a is shown. The y-component of the spin expectation
value for each of the states is used to color the dispersion, which is polarized to nearly ±1
and where 〈ŝz〉 ≈ 0.05. There is no x-component, similar to the case with constant curvature.
The wavelength is chosen in a way, that the edges are located at two hills of h(y), similar
to the case depicted in Fig. 7.10 c). The finite curvature at the edges is responsible for the
energy shift of −38meV at the Brillouin zone center. At this particular point the edge states
are four-fold degenerate and the 〈ŝy〉-polarization indicates a crossing. The states are fully
sublattice spin polarized, as can be seen in Fig. 7.9 b).

Next, the impact of the deformation on the edge state dispersion is studied. A nanorib-
bon with 20 rows is considered, but the wavelength of the deformation is varied, while the
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a)

b)

c)

d)

e)

Figure 7.10.: Dispersion relations of edge states for sinusoidal deformation with amplitude A = 0.5a
for different wavelengths λ, where the center of the sample is always at a node of the deformation,
such that it is inversion symmetric. The sample has 20 rows and 4 columns with ξp = 5meV.
a) λ ≈ 47.9 a, b) λ ≈ 23.8 a, c) λ ≈ 15.7 a, d) λ ≈ 11.6 a, e) λ ≈ 9.0 a.

amplitude is kept constant at A = 0.5a. The center of the ribbon is always at a node of the
deformation, such that mirror symmetry is ensured. The results are depicted in Fig. 7.10.

In a) λ ≈ 47.9 a is chosen, such that both edges are located at a valley of h(y) and λ/2
fits in the length of the ribbon. This deformation is similar in appearance as the circular
deformation, but here the local quantization axes of the edge states are collinear, ensuring
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a)

b)

c)

d)

e)

Figure 7.11.: Dispersion relations of edge states for sinusoidal deformation with amplitude A = 0.5a
for different wavelengths λ, where the center of the sample is always at a valley of the deformation.
The sample does not exhibit inversion symmetry, it has 20 rows and 4 columns with ξp = 5meV.
a) λ ≈ 47.9 a, b) λ ≈ 23.8 a, c) λ ≈ 15.7 a, d) λ ≈ 11.6 a, e) λ ≈ 9.0 a.

two-fold degeneracy with respect to the ↑- and ↓-spin-projections on this axis. The almost
flat dispersion of the edge states is a result of the very small curvature at the edges. The
states exhibit a small energy shift away from E = 0 and a small slope, due to the energy
splitting ∼ 1µeV away from the Brillouin zone center, as a result of the intrinsic spin-orbit
coupling. In Fig. 7.10 b) the sample exhibits one full oscillation of h(y) and both edges
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are located at nodes of the sinusoidal deformation. This case is qualitatively similar to a),
because the curvature at the edge sites is zero and the influence of the bulk does not have a
significant impact. For higher momenta, the energy splitting of the edge states has doubled
compared to a). In c) λ is 2/3 of the ribbon length and the edges are located at the valleys of
the deformation. The curvature is large enough, such that a comparable dispersion relation
of the circular deformation can be observed.

In d) λ is 1/2 of the ribbon length and the dispersion of the edge states is again almost
flat. This indicates, that the lack of pz-s-hybridization of the edges is responsible for the lack
of edge dispersion, despite the deformation with larger curvature in the bulk. An increased
overall energy shift of ∼ 0.1meV, compared to a) is observed. In e) the much higher curvature
causes a strong dispersion of the edges and a larger shift across the whole Brillouin zone,
which reaches ∼ 30meV at the center.

As a next step, the procedure is repeated for the cosinusoidal deformation, which breaks
the inversion symmetry of the ribbon, by shifting the center of the ribbon from a node to a hill
of h(y). The same ribbons with a deformation of amplitude A = 0.5a are considered and the
same wavelengths are chosen, which results in the dispersions relations depicted in Fig. 7.11.
Similar to the previous figure, the cases in a)-c) show very little influence on the dispersion of
the edge states, due to the small curvature of h(y). The broken inversion symmetry leads to
similar results as in the previous section with circular deformation but in a) the weak energy
splitting is not visible on the scale of the figure. In Fig. 7.11 d), the curvature at the edges
becomes dominant over the energy splitting, similar to the previous Fig. 7.10 e), because in
both cases the edges are located at valley and are thus subject to the maximum curvature
induced by the deformation. The energy shifts of both cases differ, because of their different
wavelengths. In Fig. 7.11 e) the curvature of the deformation is strong enough to noticeably
deform the dispersion relation, even though the edges are located at the nodes of h(y) and
thus not subject to pz-s-hybridization. The overlap of the the edge states with the bulk sites
lead to curvature effects, because of the bending-induced next-nearest-neighbor hopping.

The results obtained in this subsection can be related to the band splitting dispersions of
the FM and AFM magnetic phases, which were discussed in Sec. 6.1. The missing z ↔ −z
symmetry of the FM phase has a similar degeneracy lifting effect on the bands as the ribbons
in Fig. 7.11, while the intact symmetry of the AFM phase relates to those in Fig. 7.10.

7.6.3. Bending Parallel to the Edge

In this section, a deformation parallel to the periodic direction is considered. An example
of a graphene nanoribbon with one-dimensional periodic boundary condition and constant
curvature along this direction is a single wall carbon nanotube. Discussed in Sec. 7.5.2,
the spins at the edges in this case align parallel to the edges for increased curvature. If
the curvature in this case was to be non-constant, the Rashba-type spin-orbit coupling due
to the varying bending angle results in a spin polarization with components along all three
directions. In this discussion, a nanoribbon with 16 rows and 8 columns is considered, in
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order to have enough sites along the periodic direction for one full oscillation of λ = 6.15 a
with an amplitude of A = 0.5 a. A schematic of the edge is shown in Fig. 7.12 f), where
the sites of the unit cell are shown in purple and the atoms of the neighboring unit cell in
yellow. A schematic of the sinusoidal deformation of the sample along the zigzag direction is
depicted in Fig. 7.3 b). The dispersion relation is shown in Fig. 7.12 a), where ξp = 50meV.
Also, a detail of the edge states is depicted on the right of the figure.

The dispersion of the edge states exhibits a different slope compared to the bending per-
pendicular to the periodic direction. The sign of the slope has changed compared to bending
along the y-direction, because of the second term in Eq. 7.14. The varying bending angle as
a result of the varying curvature along the edge causes a variation of the sign of the next-
nearest-neighbor contribution, which changes to an effective positive next-nearest-neighbor
hopping t′. A shift of −1.3meV at the Brillouin zone center is found.

The spin expectation values of the edge states are given in Fig. 7.12 b). The spin aligns
mostly in the xz-plane, but exhibits a finite ŝy-component, as opposed to the previous defor-
mations, where no spin component perpendicular to the deformation direction was induced.
In Fig. 7.12 c) the energies of the edge states are colored by edge and spin expectation value.
As in previous cases, the helicity of the states is conserved and the states cross according to
their 〈σ̂z · ŝz〉-expectation values. In addition, the states are fully sublattice-spin polarized,
as can be seen in Fig. 7.12 d). In e), a nanoribbon with 22 rows and 8 columns is considered
with λ = 4.17 a and A = 0.8 a. The wider unit cell introduces additional bulk bands and the
deformation perturbs the translational symmetry of the flat edge states strongly. It thereby
causes band folding around the Dirac cones.
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c) d)

e)

f)

Figure 7.12.: a) Dispersion relation of the nanoribbon with 16 rows and 8 columns with ξp = 50meV
with a sinusoidal deformation of A = 0.5 a and λ = 6.15 a. b) The spin expectation values of the
edge states. c) Edge state dispersion colored by edge and ŝz expectation value. d) The sublattice
spin expectation value of the edge states. e) Dispersion relation, where 22 rows and 8 columns and
ξp = 50meV with A = 0.8 a and λ = 4.17 a. f) A schematic of the deformation. The purple sites
belong to the same unit cell and the yellow ones to neighboring unit cells.
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7.7. Localized States in Bent Nanoribbons

In this section, the occurrence of bulk localized states is discussed, which arise due to bending-
induced gauge potentials. These potentials have different sources, such as the nearest- and
next-nearest-neighbor hopping matrix elements, which may lead to a vector potential, causing
a pseudomagnetic field and a scalar gauge potential.

In general, a pseudomagnetic field in localized highly-curved regions of graphene nanorib-
bons leads to sublattice spin-polarized states, confined to these regions [281, 290]. In Eq.
7.39 the generation of a pseudomagnetic field as a result of the spatially-dependent nearest-
neighbor hopping was discussed. For bending along the direction perpendicular to the zigzag
edges, the pseudo vector potential causes a pseudomagnetic field, whenever the curvature
varies along the bending direction. In the case of a sinusoidal deformation h(y), the cur-

vature κ(y) = ∂2h(y)
∂y2

/
√
1 + ∂h

∂y

2
3

is zero at the nodes, while it increases closer to a valley.
Directly at a valley, the curvature reaches a maximum, and it decays again when the next
node is approached. Thus the derivative of the curvature ∂κ(y)

∂y changes sign at the valleys of
the sinusoidal deformation.

Using a relation of the curvature and its bending angle θ(y) = a · κ(y) [187], with the
lattice constant a, it is straight-forward to show that the pseudomagnetic field in Eq. 7.39
as a result of the variation Vppπ − tzz (θ) in the nearest-neighbor hopping in the term An in
Eq. 7.9, is given by

Bz =
2ℏa
3

(
1− Vppσ

Vppπ

)
κ(y)

∂κ(y)

∂y
. (7.48)

The pseudomagnetic field can be used to explain the nearly-flat dispersion of the localized
states around points of extremal curvature in the ribbon. This mechanism works on basis
of the same principle as the localization of states at zigzag edges of flat graphene nanorib-
bons, which was discussed in previous chapters. The sample edges exhibit a sublattice-spin
polarizing potential, which is caused by a change of the topological constant at the sample
boundaries and leads to localized states with flat dispersion.

In the bulk, the generation of localized states is facilitated by a change of sign of the
pseudomagnetic field as a consequence of a variation of the vector potential A(y). If this effect
is very strong, sublattice-spin polarized localized states are created, which have exponentially
small occupation of nearby bulk sites [290]. Similar to the gap-crossing edge states, these
bulk states show a flat energy dispersion around the Brillouin zone center. Thus, a strong
deformation of a sample may have an effect similar to that of an actual edge, where the
regular sample lattice is terminated.

In addition to the vector potential A(y), another gauge potential, the scalar potential Φ(y),
occurs for sinusoidal deformation perpendicular to the sample edges. By doing an analysis
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a)
c) d)

b)

e)

f)

Figure 7.13.: a) A schematic overview of the bent nanoribbon with amplitude A = 2.9a and wave-
length λ = 15 a. b) Dispersion of a bent ribbon with 16 rows, 4 columns and ξp = 5meV. Several
bulk bands are highlighted. c) and d) Spatial distribution of the states color-coded by the bands from
a). Spin expectation values of the four bulk states from the green bands e) and of the four bulk states
from the purple bands f) as given in a).

of the energy shift ε′′, the dominant terms in Eq. 7.18 lead to the scalar potential

Φ(y) = − 1

εs
V 2
spσa

2κ(y)2 +
1

ε′
(Vppσ − Vppπ)

2 1

2
a2κ(y)2. (7.49)

Since it arises from a variation of the next-nearest-neighbor hopping, Φ(y) stabilizes the
sublattice polarization, because it enhances the interaction with the pseudomagnetic field as
a consequence of the stronger confinement to states belonging to either sublattice [290].

For an inversion-symmetric sinusoidal deformation with A = 2.9a and a wavelength of
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Figure 7.14.: a) The pseudomagnetic field B changes sign and b) the scalar potential Φ(y) exhibits
minima at points of extremal deformation.

λ = 15 a, a nanoribbon with 16 rows and 4 columns is considered, where ξp = 5meV. This is
schematically depicted in Fig. 7.13 a). The edges are located at nodes of the deformation. In
b) the dispersion relation of this ribbon is shown, which is similar in appearance to previous
dispersions relations for such bending, with the exception of two prominent bands, depicted
in green and purple. These bands are comparably flat, similar to the edge states and shifted
by 1.3 eV and 1.5 eV from the Fermi energy. There are two green bands with nearly identical
spatial distribution. The site occupation of one of them is shown in Fig. 7.13 c)5. Each of the
two bands is two-fold spin-degenerate. The other four purple bands are also doubly-energy
degenerate and have a slightly different spatial distribution, which can be seen in Fig. 7.13
d). The 〈ŝi〉-expectation values shown in Figs. 7.13 e) and f) indicate that the states are
polarized in the yz-plane, similar to the edge states. The findings confirm those regarding
the direction-dependent spin-alignment from previous section also for these bulk states.

The states of the purple bands are localized around the hills of the deformation a little
more than the green states and the ratio of their spin expectation values is slightly different.
The states cannot be separated in states localized around only one of the two areas and they
are completely real spin-, but not fully sublattice spin-polarized, such that all states exhibit
a finite occupation at both sides of the ribbon. The lack of total sublattice-spin polarization
of these localized bulk states is an indicator for the contribution of the pseudomagnetic field
in Eq. 7.48 to their localization and that the scalar potential in Eq. 7.49 also has a large
influence. In Fig. 7.14 a) the pseudomagnetic field |Bz(y)| is shown. The sign change of Bz(y)
at points of extremal curvature is visible, as well as the large magnitude of approximately
B ∼ 104T, causing the weak sublattice polarization, observable in Figs 7.13 c) and d). This
result is in good agreement with the value of 105T expected for the occurrence of fully
sublattice spin polarized edge states obtained by Sasaki et al. [290].

5Both spatial distributions are given schematically in coordinates for a flat ribbon, because using the curved
ribbon coordinates would lead to a deformed projection. Thus the y-coordinates in the two spatial distri-
butions actually range from −7a to +7a as indicated by the y-coordinates in Fig. 7.13 a).
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In Fig. 7.14 b) the scalar potential Φ(y) is shown. It is observable that the points of lowest
potential energy coincide with the points where Bz(y) changes sign. The scalar potential is
negative everywhere in the sample.

In a next step, the amplitude and wavelength of the deformation is reduced, in order to keep
the curvature at the valleys and hills constant, but include more oscillations in the ribbon.
The result is shown in Fig. 7.15 for a deformed nanoribbon with 16 rows, where A = 1.5 a
and λ = 7.5 a. In the dispersion relation, shown in ii), there are six flat bands observable.
These correspond to four states each and are labelled A-F. The edge states of the system are
at −1 eV. The states still cross the band gap despite the deformation, which is indicated by
the black circle in ii) and are well localized at the edges, as shown in a), where the spatial
distribution at kx = 0 is depicted. The four states of the B band split into two bands away
from the Γ-point of the Brillouin zone, as can be seen from the green circle in ii). The spatial
distribution of two states from B is shown in b), and the comparable features indicate that
the four states are very similar, despite their energy separation. The states are localized
close to the edges, but with a dominant occupation of the sites around at the nearby hill and
valley of the deformation. The states C-F, shown in c)-f), have also a significant localization
on sites belonging to the points of extremal curvature. This is particularly noticeable in E
and F. The former consists of states, which are located at only four sites directly at an area
with maximum curvature. The latter has dominant contribution at all the four valleys and
hills.

In addition to the states presented here, there are many more flat bands in the dispersion
relation for this nanoribbon, higher in energy. While it is possible to use different deforma-
tions, to bring the energy of such states closer to E = 0, the energy of the edge states (A)
will also shift as a result. For the deformation strengths applied in this work, no other flat
bands could be observed energetically close to the edge states.

To summarize, the curvature of the deformation leads to a variation of the nearest- and
next-nearest-neighbor hopping. This variation is shown to lead to sublattice spin-polarizing
pseudomagnetic fields and stabilizing scalar potentials. Together, they may facilitate the
creation of localized bulk states with nearly flat dispersion. While the curvature required for
the existence of perfectly localized and sublattice spin-polarized states might be very strong,
moderate deformations, on the order of the lattice constant a are already enough to create
the gauge potentials required for localized bulk states. It is possible for these deformation
strengths to occur in experiments and they may not always be fully eliminated. Thus, the
analysis provided in this section may serve as an estimate of the charge inhomogeneities
introduced by bending of graphene nanoribbons.
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i)

a) A b) B

ii)

c) C d) D e) E f) F

Figure 7.15.: A deformed nanoribbon with 16 rows, where ξp = 5meV, A = 1.45 a and λ = 7.5 a. i) The sites of the sample.
ii) The dispersion relation features several flat bands. The black circle shows the gap crossing states and the green circle a
splitting of the band B. a)-f) corresponds to the spatial distribution states at kx = 0 where the bands are labeled A-F.
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7.8. Perturbation Theory for Bending of Graphene with s-, p- and
d-orbitals

Previous considerations have only treated s- and p-orbitals and their effect on the spin struc-
ture of graphene under deformations. Similar to the tight-binding model for the description
of d-orbitals in flat graphene [286, 287], the additional bending-induced interactions from d-
to p-orbitals also lead to the occurrence of Rashba-type spin-orbit coupling, a potential shift
and an effective next-nearest-neighbor hopping term. Thus, in order to correctly derive the
spin-orbit coupling interactions in bent graphene nanoribbons, the coupling of d- to p-orbitals
must be accounted for as well.

The d-orbitals are separated from the p-orbitals by the energy εd and the d-band atomic
spin-orbit interaction is given by the parameter ξd. While the energy separation of the s- and
d-orbitals is ∼ 20 eV, such that the s-d-coupling can be neglected in very good approximation,
bending induces transitions between the in-plane p-orbitals and the in- and out-of-plane d-
orbitals in general.

Before a full 9-orbital model is used to derive the Rashba-type spin-orbit coupling, a
reduced 5-orbital model with px-, py- and pz- and only two of the five d-orbitals, the dxz-
and dyz-orbitals, is used to derive an effective term arising due to the d-orbital atomic spin-
orbit coupling. Since the s-p-coupling was already derived and analyzed in the previous
sections, the p-d-interactions are examined first, before a study of the full interplay of all
terms in the 9-orbital model is undertaken. Due to the symmetry of the atomic orbitals,
an effective description for understanding the nature of these interactions does not require
all five d-orbitals, because the dxz- and dyz-orbitals are the dominant contributions. For
understanding this 5-orbital model, the equations for each of the orbitals, similar to Eqs. 7.1
to 7.3 are rewritten to account for the interactions to the other orbitals. This results in the
set of equations

(ε− εp)aα,0 =
∑

α′∈{x,y,z}

Λα′
α aα′,0 +

∑
n,α′∈{x,y,z}

tα,α′(θn)aα′,n +
∑
n

∑
β∈{xz,yz}

tα,β(θn)aβ,n

(7.50)

(ε− εd)aβ,0 =
∑

β′∈{xz,yz}

Υβ′

β aβ′,0 +
∑

n,α′∈{x,y,z}

tβ,α′(θn)aα′,n +
∑
n

∑
β′∈{xz,yz}

tβ,β′(θn)aβ′,n,

(7.51)

where the index α ∈ {x, y, z} denotes the p-orbitals and the index β ∈ {xz, yz} the d-orbitals.
Thus, the last two terms in Eqs. 7.50 and 7.51 denote the hopping to neighboring p- and
d-orbitals. The matrix elements Λµ

ν and Υµ
ν denote the p-orbital intrinsic spin-orbit coupling

given in Eq. 3.23 and the d-orbital spin-orbit coupling in Eq. 3.24, respectively. The p-d-
matrix elements are given in Tabs. 7.2, 7.3 and 7.4. The required matrix elements for the
coupling of the occurring d-orbitals are stated in Tab 7.6 for completeness. By a similar
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µ1/ν0 dxz dyz

dxz

sin (ϕ)2(Vddδ + (Vddπ − Vddδ) sin (θ)
2)

+1
8(Vddδ + 4Vddπ + 3Vddσ

−(Vddδ − 4Vddπ + 3Vddσ) cos (4θ)) cos (ϕ)
2

−1
4 cos (θ)

2(Vddδ + 2Vddπ − 3Vddσ

+(Vddδ − 4Vddπ + 3Vddσ)(cos (θ)
2 − sin (θ)2))×

2 sin (ϕ) cos (ϕ)

dyz

−1
4 cos (θ)

2(Vddδ + 2Vddπ − 3Vddσ

+(Vddδ − 4Vddπ + 3Vddσ)(cos (θ)
2 − sin (θ)2))×

2 sin (ϕ) cos (ϕ)

cos (ϕ)2(Vddδ + (Vddπ − Vddδ) sin (θ)
2)

+1
8(Vddδ + 4Vddπ + 3Vddσ

−(Vddδ − 4Vddπ + 3Vddσ) cos (4θ)) sin (ϕ)
2

Table 7.6.: The Slater-Koster matrix elements for the relative angle θ of the normals between the
dxz- and dyz-orbitals. They are denoted µ1 and ν0, where the indices 1 and 0 label corresponding
sites.

procedure as in Sec. 7.3, the orbitals of neighboring sites are expressed as pz-orbitals of next-
nearest-neighboring sites. The terms obtained in the 5-orbital model, can later be added
to the previous 4-model, because the s-d-interaction is neglected. As a result, the effective
hopping for the pz-orbitals of the 4-orbital model in Eq. 7.8 can be modified to

(ε− εp − ε′′ − ε′′d)az,0 = An +Bn + Cn +Ann +Bnn + Cnn +AD
nn +BD

nn + CD
nn, (7.52)

with the additional terms AD
nn, BD

nn and CD
nn. The effective contributions are a next-nearest-

neighbor hopping

AD
nn =

1

ε− εd

∑
n,n′ ̸=0

[tz,xz (θn) txz,z (θn′) + tz,yz (θn) tyz,z (θn′)] az,n′ , (7.53)

and the effective intrinsic spin-orbit coupling

CD
nn = − iξdŝz

ε2d

∑
n,n′ ̸=0

[tz,yz (θn) txz,z (θn′)− tz,xz (θn) tyz,z (θn′)] az,n′ . (7.54)

Due to the coupling of the pz- and d-orbitals, an additional energy shift is obtained

ε′′d =
1

εd

∑
n

[tz,xz (θn) txz,z (θn) + tz,yz (θn) tyz,z (θn)] ≈
3V 2

pdπ

εd
. (7.55)

While the dispersion relation of the edge states of a multi-orbital tight-binding model for
flat ribbons has already been discussed briefly in Sec. 4.4, the dispersion in Fig. 4.2 can
directly be attributed to the term AD

nn. The coupling of the pz- with the dxz- and dyz-orbitals
leads to an effective next-nearest-neighbor model with a corresponding intra-lattice hopping
t′d > 0. This is in contrast to the effective bending-induced hopping parameter t′p < 0 among
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s- and p-orbitals, which leads to a different band dispersion and is observable in Fig. 7.6 a).
Furthermore, t′d occurs in flat graphene, while t′p does not and thus |t′d| > |t′p| for moderate
deformations. The term AD

nn is at least an order of magnitude larger than the corresponding
one Ann, even for very strong deformations. Thus the edge state dispersion of the effective
5-orbital model is only slightly deviating from that of a flat graphene sample with pz-, dxz-
and dyz-orbitals. There also occurs a Rashba-type spin-orbit coupling contribution

BD,0
nn = − iξp

ε′εd

∑
n,n′ ̸=0

(ŝy [tx,xz (θn) txz,z (θn′) + tx,yz (θn) tyz,z (θn′)]

−ŝx [ty,xz (θn) txz,z (θn′) + ty,yz (θn) tyz,z (θn′)]) az,n′ . (7.56)

Surprisingly, the Rashba contribution does not depend on the intrinsic spin-orbit coupling
parameter ξd of the d-orbitals, but that of the p-orbitals. The reason is, that the hopping
from the p-orbitals to the d-orbitals is dominant, compared to the hopping among d-orbitals.
The terms in Eq. 7.56 do not have the correct symmetry to describe general deformations,
however. This is indicated by the fact that the deformation-induced spin-polarization is not
reflected correctly, because of the broken angular momentum conservation in the reduced
5-orbital model for arbitrary deformations. This is only possible if all five d-orbitals are
considered. Therefore, an extended multi-orbital model is described next, which leads to the
full interaction. As discussed above, the following derivation is stated without the s-orbitals.
Because the dominant contribution to the atomic d-orbital spin-orbit coupling is given by Eq.
7.54 already, only the term BD

nn in Eq. 7.52 will be modified by this approach. Otherwise
the full 9-orbital model is also given by Eq. 7.52.

The equations for any site n and any neighboring sites n′ are rewritten as in Eq. 7.6 for
the p- and d-orbitals, such that

(ε− εp)aα,n =
∑
α′

Λα′
α aα′,n +

∑
n′,α′

tα,α′(θn′)aα′,n′ +
∑
n′

∑
β

tα,β(θn′)aβ,n′ (7.57)

(ε− εd)aβ,n =
∑
β′

Υβ′

β aβ′,n +
∑
n′,α′

tβ,α′(θn′)aα′,n′ +
∑
n′

∑
β′

tβ,β′(θn′)aβ′,n′ , (7.58)

where the index α ∈ {x, y, z} again denotes the p-orbitals and the index β ∈ {xy,xz, yz,x2−
y2, z2} all five d-orbitals. The equations Eq. 7.57 and 7.58 can the be used analogously to
Eq. 7.1 to find an effective next-nearest-neighbor hopping from a pz-orbital at site 0 to a
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pz-orbital at its next-nearest-neighboring sites n′. This leads to

(ε− εp)az,0 =
∑
α

Λα
z

1

ε′

∑
α′

Λα′
α aα′,0 +

∑
n

∑
α′

tα,α′(θn)aα′,n +
∑
n

∑
β

tα,β(θn)aβ,n


+
∑
α

∑
n

tz,α(θn)
1

ε′

∑
α′

Λα′
α aα′,0 +

∑
n′

∑
α′

tα,α′(θn′)aα′,n′ +
∑
n′

∑
β

tα,β(θn′)aβ,n′


+
∑
β

∑
n

tz,β(θn)
1

ε− εd

∑
β′

Υβ′

β aβ′,n +
∑
n′

∑
α

tβ,α(θn′)aα,n′ +
∑
n′

∑
β′

tβ,β′(θn′)aβ′,n′ .


(7.59)

The third term in the first line of Eq. 7.59 leads to the Rashba-type spin-orbit coupling. It
also describes terms of third order in either the intrinsic spin-orbit coupling or the hopping.
Those will not be considered in this perturbation theory. The eighth term, in the last line,
leads to the effective next-nearest-neighbor hopping, which has an effective form as in Eq.
7.53 due to the dominant matrix elements of pz-, dxz- and dyz-orbitals. Due to the p-orbital
intrinsic spin-orbit coupling it follows for the effective Rashba-type spin-orbit coupling term
BD,1

nn that

BD,1
nn =

∑
α

Λα
z

1

ε′

∑
n

∑
β

tα,β(θn)
1

εd

∑
n′ ̸=0

tβ,z(θn′)az,n′ . (7.60)

Using Eq. 3.23, Λx
z = −iŝyξp, Λy

z = iŝxξp and Λz
z = 0 are obtained. Thus, the effective

Rashba-type contribution becomes

BD,1
nn = − iξp

ε′εd

∑
n,n′ ̸=0

ŝy
∑

β

tx,β(θn)tβ,z(θn′)

− ŝx

∑
β

ty,β(θn)tβ,z(θn′)

 az,n′ . (7.61)

It is straightforward to show, that Eq. 7.56 is contained in this full expression. There
is another bending-induced Rashba-type term, which arises due to the intrinsic spin-orbit
coupling in the d-orbitals. It is contained in the seventh term, in the last line of Eq. 7.59,
which can be rewritten as

CD
nn +BD,2

nn =
∑
β

∑
n

tz,β(θn)
1

(ε− εd)2

∑
β′

Υβ′

β

∑
n′ ̸=0

tβ′,z(θn′)az,n′ , (7.62)

and is given by

BD,2
nn =− iξd

ε2d

∑
n,n′ ̸=0

3∑
l=1

v(l)
[
ŝy
(
tz,p(l,1)(θn)tp(l,2),z(θn′)− tz,p(l,2)(θn)tp(l,1),z(θn′)

)
−ŝx

(
tz,q(l,1)(θn)tq(l,2),z(θn′)− tz,q(l,2)(θn)tq(l,1),z(θn′)

)]
az,n′ (7.63)
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and

CD
nn = − iξdŝz

ε2d

∑
n,n′ ̸=0

2∑
l=1

w(l)
[
tz,r(l,1)(θn)tr(l,2),z(θn′)− tz,r(l,2)(θn)tr(l,1),z(θn′)

]
az,n′ . (7.64)

For this notation,

(p(l, 1), p(l, 2)) ∈ {(xz,xy), (x2 − y2, yz), (z2, yz)} (7.65)
(q(l, 1), q(l, 2)) ∈ {(xz, z2), (x2 − y2,xz), (xy, yz)} (7.66)
(r(l, 1), r(l, 2)) ∈ {(xz, yz), (xy,x2 − y2)} (7.67)

are introduced, which denote all of the pairs of orbitals relevant in the respective terms. The
factors v(l) ∈ {1, 1,

√
3} and w(l) ∈ {1, 2} arise due to the numerical factors in the intrinsic

spin-orbit coupling operator Eq. 3.24. The bending-induced d-orbital spin-orbit coupling in
Eq. 7.63 is small, due to the second-order process in the energetically separate d-orbitals and
because the bending-induced hopping matrix elements are small for small θ. It is important
however, that BD,2

nn ∼ ξd, which will be of relevance in the following section. The effective
form of the intrinsic spin-orbit coupling in Eq. 7.64, contains a dominant contribution, given
by Eq. 7.54. Although CD

nn has the same appearance as BD,2
nn , the contribution to the

spin alignment of the former is much more relevant, because the matrix elements txz,z(θ)
and tyz,z(θ) are much larger than txy,z(θ) or tx2−y2,z(θ). The full bending-induced d-orbital
Rashba-type spin-orbit coupling for the effective 9-orbital model in Eq. 7.52 is given by
BD

nn = BD,1
nn +BD,2

nn . A schematic overview of these terms is given in Fig. 7.17.

7.8.1. Bending in a Multi-orbital Tight-binding Model with s-, p- and d-orbitals
The central aspects of the dispersion relation of a multi-band tight-binding model with dxz-
and dyz-orbitals in addition to the pz-orbitals has already been discussed in Sec. 4.4. The
addition of dx2−y2-, dxy- and dz2-orbitals alone have little impact on the dispersion relation
of the edge states in bent graphene, because of the weak coupling due to the large energy
separation and weak coupling of pz- and d-orbitals. This changes dramatically, when the
other p-orbitals are included. As was motivated in the previous section, the interplay of
px-, py- and d-orbitals in a bent sample is of central importance, such that in this section
a 9-orbital tight-binding model is used to obtain numerical results. The dispersion relation
of a ribbon with 16 rows and 4 columns is depicted in Fig. 7.16 a), where a deformation
perpendicular to the edges with a radius of R = 10nm is applied. It is ξp = 5meV and
ξd = 0.9meV. The dispersion of the edge states is dominated by the slope introduced by
the coupling of pz-, dxz- and dyz-orbitals, which is also occurring in flat graphene and is only
slightly modified in the deformed case, whereas the additional d-orbitals contribute very little.
A shift of 151meV is observed, as well as the 〈ŝy〉-polarization, which is shown in Fig. 7.16
b). Due to the broken inversion symmetry of the system, the bands exhibit a spin-splitting of
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∼ 0.5meV at kx ·a ≈ 0.4, similar to previous findings for circular deformations perpendicular
to the edges.

In order to illustrate the influence of the atomic spin-orbit coupling on the band dispersion,
the energy difference of the edge bands with and without spin-orbit coupling is plotted in
Fig. 7.16 c). On the left figure, the difference

∆E(k) = E(k, ξp, ξd)− E(k, ξp = 0, ξd = 0) (7.68)

is depicted for the 9-orbital model. This result is numerically identical to that of the 4-orbital
model with only s- and p-orbitals at the scale of this figure, despite the different dispersion
of the bands. A band crossing is observable, because the spin-orbit coupling lifts the four-
fold energy degeneracy, as a result of the broken symmetry, compared to the case without
intrinsic spin-orbit coupling. These findings are qualitatively similar to what was reported
in [78]. In the right figure, the difference

∆E(k) = E(k, ξp, ξd)− E(k, ξp, ξd = 0) (7.69)

is shown. It is on the order of µeV and thus the influence of the d-orbital intrinsic spin-orbit
coupling on the bending-induced energy splitting is only marginal compared to that of the
p-orbitals. An energy splitting is nearly completely absent in bent ribbons when only pz- and
d-orbitals are considered. Next, the effect of the different effective spin-orbit coupling terms
will be discussed and extended upon those of the 4-orbital model from Sec. 7.3.

In a 6-orbital model consisting of only pz- and the five d-orbitals the spin alignment among
d- and pz-orbitals alone is extremely weak, compared to that in Sec. 7.3. In this model,
the alignment is determined by the competition of the bending-induced d-orbital spin-orbit
coupling BD,2

nn and intrinsic d-orbital spin-orbit coupling CD
nn. Both are shown schematically

in Fig. 7.17. Geometrical factors arising from the in-plane directive cosines can be neglected
for an estimate of the order of magnitude. Furthermore, the influence of the term BD,2

nn is
very weak, compared to the term BD,1

nn . Then

|CD
nn|

|BD,2
nn |

≈
ε2d

ξdV
2
pdπ

ξdV
2
pdσ

ε2d

1

θ
=
V 2
pdσ

V 2
pdπ

1

θ
≈ 103, (7.70)

when the usual bending angle of θ ≈ 0.03 is assumed. The very large value resulting from Eq.
7.70 indicates that the bending-induced d-orbital Rashba-type spin-orbit coupling BD,2

nn does
not play a significant role, compared to the intrinsic spin-orbit coupling CD

nn. Apart from this,
the spin alignment in Eq. 7.70 is independent of the intrinsic spin-orbit coupling parameter
ξd. This is verified by computing the angle ϕ of the edge spin alignment with the local normal
for the 6-orbital model, which is shown in Fig. 7.18 a). In this figure, a nanoribbon with 16
rows and ξd = 5 · ξ0d = 4meV, where ξ0d = 0.8meV, is considered without edge passivation.
A very weak influence of the bending-induced Rashba-type spin-orbit coupling is observed.
Increasing the intrinsic d-orbital spin-orbit coupling parameter to ξd = 100 · ξ0d does not lead
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a) b)

c)

Figure 7.16.: a) Dispersion relation of a ribbon with 16 rows and 4 columns R = 10nm, where
ξp = 5meV and ξd = 0.9meV. b) The states are colored by their 〈ŝy〉-polarisation ±1. c) The energy
difference of the edge states where ξp = 5meV, ξd = 0.9meV is compared with ξp = 0, ξd = 0 (left)
and ξp = 5meV, ξd = 0.9meV is compared with ξp = 5meV, ξd = 0 (right).

to an observable difference of the results in Fig. 7.18 a), suggesting the independency of
the competitions of the different spin-orbit coupling types of ξd. As a comparison, the 4-
orbital model with s- and p-orbitals, from Eq. 7.46, results in |Cnn|

|Bnn| ≈ 5× 10−2 for the same
parameters. This shows that the predictions of both multi-orbital tight-binding models differ
by at least 4 orders of magnitude. The comparison suggests that both models tend to over-
or underestimate the spin-orbit coupling contributions either in favor of the bending-induced
Rashba-type spin-orbit coupling or in favor of the intrinsic spin-orbit coupling. In order to
give a realistic estimation of the bending-induced spin alignment at the graphene edge, the
dominant terms of each of the two models are compared to each other. This competition of
the dominant spin-orbit coupling terms in the effective 9-orbital model in Eq. 7.71 is given by
the two different p-d-Rashba-type spin-orbit coupling terms, as well as the s-p-Rashba-type
and both effective intrinsic p- and d-orbital spin-orbit coupling terms. This consideration
leads to

|Cnn + CD
nn|

|Bnn +BD,1
nn +BD,2

nn |
(ξp, ξd) ∼

(
a0ξ

2
p

a1ξp + a2ξd
+

b0ξd
a1ξp + a2ξd

)
1

θ
, (7.71)
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Figure 7.17.: Examples of different hopping paths which result in the different effective spin-orbit
coupling terms Cnn, CD

nn, BD,1
nn and BD,2

nn . The intrinsic p-orbital spin-orbit coupling is denoted pSOC
and that of the d-orbitals dSOC. The terms CD

nn and BD,2
nn are identical except for the dSOC transition

at site 1, where there is no spin flip induced in the former case, but in the latter.

where the constants6 a0, a1, a2 and b0 contain the Slater-Koster parameters Vpdπ, Vpdσ, as well
as Vspσ and numerical factors, due to the tij(θn)ti′j′(θn′) and the different ε. Additionally,
a0 ∼ 1

eV , while a1, a2 and b0 are unitless. Eq. 7.71 evaluates to 0.15 for θ = 0.03 and is in
between the two extreme values of the reduced models. The contribution of Bnn is a larger
than BD,1

nn and both are vastly larger than BD,2
nn . When ξp is varied, such that ξ0p � ξp, it is

also ξ0d � ξp. Here |Cnn| � |Bnn| and therefore a0ξp
a1

� 1. Also a2 � a1, because |Bnn| is
the dominant bending-induced contribution. Since |Cnn| < |CD

nn| in general, the first term in
Eq. 7.71 is smaller than the second, but it becomes relevant at large ξp. For varying ξp and
constant ξd = ξ0d, Eq. 7.71 is approximately

|Cnn + CD
nn|

|Bnn +BD,1
nn +BD,2

nn |
(ξp, ξ

0
d) ∼

(
a0
a1
ξp +

1
a1
b0ξ0d

ξp +
a2
b0

)
1

θ
∼ 1

ξpθ
. (7.72)

6These constants can be worked out in detail from the different spin-orbit coupling terms in Eq. 7.71, but
are chosen here to only represent the general functional dependency in terms of ξp, ξd and θ. Their full
expression is not important for the discussion here and a more detailed treatment is out of the scope of
this work.
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a) b)

c) d)

Figure 7.18.: The angle ϕ between the spin-polarization and the local normal of a 20 row nanoribbon
with ξd = 4meV computed with a 6-orbital tight-binding model including pz- and the five d-orbitals
in a) and with the 9-orbital model in b). Here the spin alignment of the full 9-orbital model (solid)
and the reduced 4-orbital model (dashed) is depicted for a ribbon with 16 rows. The critical inverse
radius of curvature 1/Rc in the 9-orbital model for the same ribbon when c) ξp and d) ξd is varied.
Here ξ0p = 5meV and ξ0d = 0.8meV.

The nearly constant offset, observable where ξp ≈
√

b0ξ0d
a0

, corresponding to ξp/ξ
0
p ≈ 5, is

2a0
a1

√
b0ξ0d
a0

. When ξd is varied, with the same approximations as in the previous case, it
follows from the second term of Eq. 7.71 that

|Cnn + CD
nn|

|Bnn +BD,1
nn +BD,2

nn |
(ξ0p , ξd) ∼

ξd
θ
. (7.73)

Here the spin alignment offset for ξd/ξ0d = 0 is a0
a1
ξ0p .

A numerical evaluation of the 9-orbital model for an N = 16 nanoribbon under circular
bending along the y-direction leads to a spin-alignment comparable to the case of the 4-
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orbital model. Again the critical inverse radius of curvature is computed, where the two edge
spins completely align inplane, such that ϕ = 90◦. The result is depicted in Fig. 7.18 b). As
before in the 4-orbital model (dashed curve), the spin alignment is ∼ (1/Rc)−1. However,
the result for the 9-orbital model (solid) indicates a larger bending required to align the edge
spin in the graphene plane.

Furthermore, when ξp is varied, which is shown in Fig. 7.18 c), a completely different
picture compared to the 4-orbital model is observed. While 1

Rc ∼ ξp in the previous case,
now 1

Rc ∼ ξ−1
p , but with an offset. The d-orbital intrinsic spin-orbit coupling on the other

hand, shows 1
Rc ∼ ξd - also with an offset, as depicted in Fig. 7.18 d). Both of these results

are in line with the consideration in Eqs. 7.72 and 7.73, as the resulting function can be used
to fit the data very well with appropriate choice of constants in both cases.

This finding is a strong indication that the effect of deformation and introduction of
bending-induced spin-orbit coupling requires a multi-orbital tight-binding model, which in-
cludes both σ- and d-bands in addition to the pz-orbitals in order to correctly describe the
effect on the edge states.

For the understanding this behavior in the scope of this model, the influence of the different
orbitals on the pz-orbitals is most important. The deformation of graphene leads to a very
strong effect on the spin-alignment of the edge states, attributed to the bending-induced
coupling of the s- and p-orbitals. The intrinsic spin-orbit coupling of the d-orbitals on the
other hand diminishes the effect of the bending on the alignment - much more than that
of the p-orbitals. Due to the bending, the s-, px- and py-orbitals couple only ∼ θ to the
pz-orbitals, whereas the dxz- and dyz-orbitals couple due to the lattice symmetry, which
is already the case in flat graphene. Therefore, the intrinsic d-orbital intrinsic spin-orbit
coupling has a much stronger influence on the π-bands, than the intrinsic p-orbital spin-orbit
coupling. For the deformation-induced spin-orbit coupling, the roles are reversed. The large
energy difference of the d-orbitals from the pz-orbitals reduces the influence of the bending-
induced coupling of the d-orbitals to a minimum. The s-, px- and py-orbitals on the other
hand are energetically much closer to the pz-orbitals and thus even small deformations have
a larger impact on the π-bands. As a result the interplay of intrinsic and bending-induced
spin-orbit coupling originating from all additional orbitals is needed in order to correctly
model spin-alignment of the edge states in deformed nanoribbons.

7.8.2. Localized States
For the same parameters used in the 4-orbital model in Fig. 7.13 a), the effect of the
sinusoidal deformation on the bulk states in the 9-orbital model is computed. The resulting
dispersion relation is depicted in Fig. 7.19. On the left of the figure, several bulk bands are
observed, which are not found in the results for the 4-orbital model. One band (denoted B) is
particularly close to the edge state bands (A). Around the Γ-point, the dispersion relation of
the edge states is qualitatively similar to that of the 4-orbital model for bent ribbons. Since
the sinusoidal deformation with amplitude A = 2.9 a introduces a strong dispersion of the
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Figure 7.19.: left: Dispersion relation of a deformed nanoribbon with 16 rows, where ξp = 5meV,
ξd = 0.9meV, A = 2.9 a and λ = 15 a, computed with the 9-orbital model. right: Detail of the edge
state dispersion relation.

edge states, on the order of 100meV, the dispersion due to the d-orbitals of approximately
5meV is insignificant. The spatial distribution of the different states is depicted in Fig.
7.20 a-f) and labelled accordingly. The four states B are localized around points of maximal
curvature. C are two pairs of states with nearly identical spatial distribution, as well as two
pairs denoted D and two pairs denoted E. In F and G two sets of two-fold degenerate states
are shown, which are localized only at either side of the ribbon. As before in the 4-orbital
model, the sign change of the pseudomagnetic field leads to localized states. This was argued
to be mostly the case, when the pseudomagnetic field switches between large positive and
large negative values in a very small spatial region. Due to the additional orbitals, however,
more localized state are observed, which are also more sensitive to the pseudomagnetic field.
As a result, the sign change at y = 0 in Fig. 7.14 a) also leads to localized states, which can
be seen in Fig. 7.20 in D and E.
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Figure 7.20.: A deformed nanoribbon with 16 rows, where ξp = 5meV, ξd = 0.9meV, A = 2.9 a and λ = 15 a, computed
with the 9-orbital model. i) The sites of the sample. ii) The dispersion relation of the ribbon. a)-f) corresponds to the spatial
distribution of states at kx = 0, where the bands are labeled A-G.
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7.9. Summary of Deformations of Graphene
In this chapter, different deformations have been discussed and their effect on the edge spin
direction of narrow graphene nanoribbons has been analyzed. For this purpose, a 4-orbital
tight-binding model has been derived analytically, which was then used to obtain effective
bending-induced spin-orbit coupling terms. These terms were then analyzed with respect
to the symmetry breaking of circular deformations perpendicular to and along the zigzag
edge of the nanoribbons. Then the spin alignment of the edge states in bent nanoribbons
was computed numerically with different curvatures. It was found both analytically and
numerically that increased intrinsic spin-orbit coupling strength leads to stronger tendency
for the edge spins to align along their local quantization axis. In that case stronger curvature
is needed to align the spins along the graphene plane.

Following this, various sinusoidal deformations along and perpendicular to the zigzag edge
of the nanoribbons were computed numerically. In the deformation perpendicular to the
edges, the edge state dispersion is only affected, when the deformation exhibits a finite
curvature close to the edges of the sample. For the deformation parallel to the edges, not
only a y-component of the edge spins was observed, as in the previous case, but also an x-
component occurs, as consequence of the varying curvature along the deformation direction.

Using the sinusoidal deformation perpendicular to the edges, with large deformation am-
plitude and thus with large curvature, localized states were observed. These states are
energetically closer to the edge states than other bulk states and have a strong localization
around points with extremal curvature.

In a next step, the analytical 4-orbital tight-binding model was extended to also include the
5 d-orbitals, leading to an effective 9-orbital tight-binding model. The additional bending-
induced effective spin-orbit coupling terms were derived and analyzed. Due to the d-orbital
intrinsic spin-orbit coupling, a stronger bending was required to align the edge spins in-plane,
than what was predicted by the 4-orbital model. The analytical results were confirmed by the
numerical computations and a dominant effect of the intrinsic d-orbital spin-orbit coupling
compared to the p-orbital spin-orbit coupling was found.

Lastly, the 9-orbital model was used to compute localized bulk states in strongly bent
ribbons. Due to the additional orbitals, more localized states, which come energetically close
to the edge state dispersion, with stronger sensitivity to the deformation-induced pseudo-
magnetic field were observed.
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8. Summary And Outlook

The contribution of this thesis is a better understanding of the gap crossing edge states
of graphene nanoribbons with zigzag edges under intrinsic and extrinsic spin-orbit coupling
and electronic interactions with particular attention turned to their topological properties.
The edge magnetic phases discussed in this thesis have different characteristics and electric
properties, exhibiting insulating, half-metallic or conducting behavior. These phases were
previously discussed in the literature [291], but a concise discussion of the nanoribbon size
and its influence on the different edge magnetic phases was lacking. The non-magnetic phase
was only mentioned for small doping [213, 260], but the strong doping case was not touched.
Additionally, the discussion of the edge magnetic phases has been widened to an extended
Hubbard model, containing the higher-in-energy d-orbitals [80] and Coulomb interactions
therein. While it was previously well known, that the deformation of a planar graphene
sample leads to different types of spin-orbit coupling [78], previous discussions were limited
to the effect of the σ-bands on the π-band dispersion. It was found that the intrinsic d-orbital
rather than the intrinsic p-orbital spin-orbit coupling competes with the deformation-induced
Rashba-type spin-orbit coupling of the s- and p-orbitals for the spin-alignment of the edge
states.

In the following, the results of this thesis are summarized and it is discussed how the
insights on the spin-orbit coupling and electronic interactions lead to a better understanding
of the topological phase of zigzag edge carbon nanoribbons. Lastly, an outlook is given,
which proposes a direction for further research.

Summary

Chapter 1 provides an introduction to the topic of topological insulators and motivates
the new classification of topological phases. The advantages of using a multi-orbital tight-
binding model in this projects are highlighted and the flexibility of the model is emphasized
in prospect of using an on-site Hubbard interaction in the mean-field approximation for
considering electronic interactions.

Special attention is given to the description of spin-orbit coupling in Chapter 2. The oc-
currence of spin-orbit coupling is discussed, as it arises from the motion of the charge carriers
in an electric field, originating from either an atomic nucleus, the crystal geometry or other
external sources. Two prominent examples are the Rashba- and Dresselhaus-type spin-orbit
coupling. Symmetry properties of terms in the low-energy approximation of a Hamiltonian
are discussed. The intrinsic spin-orbit coupling in graphene is particularly weak, such that
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an overview is given on the current experimental status regarding its measurement. Addi-
tionally, various efforts to increase the spin-orbit coupling via external factors are discussed.

Details regarding the construction of a tight-binding model are given in Chapter 3. The
Slater-Koster approximation is used to define the interaction matrix element for a nearest-
neighbor hopping in the tight-binding model. As a first result, the trigonal warping effect at
the Dirac points of bulk graphene is analyzed, as it originates from Rashba-type spin-orbit
coupling. For this, the x- and y-expectation values of the sublattice spin of the conduction
and valence bands around each of the Dirac points and the corresponding winding numbers
are computed. The trigonal warping is found to split each Dirac cone into four distinct
ones, each with its own winding number. However, the total winding number is found to
be equal to the sum of the four numbers, which is a consequence of the topological nature
of these winding numbers. Such a winding number relates to the topologically insulating or
trivial phase of graphene, because the chirality of each of the Dirac cones leads to a phase
between the two components of the wave functions for each of the sublattices, which in
turn affects the winding numbers in sublattice spin space. A 2× 2-model is derived in the
{ψA↑,ψB↓}-subspace and it is shown how the sublattice spin expectation values for the lower
conduction and upper valence band can be computed analytically with this model in very
good approximation.

Following the computational details of the model in the previous chapters, the properties
of graphene as a topological insulator are stated in Chapter 4. Special emphasis is laid on
the topological edge states and their dispersion relation in the multi-orbital tight-binding
model. The effects of Rashba-type spin orbit coupling on the gap crossing of the edge states
is discussed by real and sublattice spin expectation values. It is found that the resulting
system remains topologically non-trivial, provided that the intrinsic spin-orbit coupling is
large enough, which is rooted in the fact that the edge states in such a time-reversal invariant
topological insulator are topologically protected [41]. While a magnetic field explicitly breaks
time-reversal symmetry, graphene in a magnetic field becomes a Weyl semimetal [226, 227],
because at each edge states with both types of spin occur, such that for each spin component,
the states still cross the energy gap. If however the time-reversal symmetry required for the
topological insulator is broken, and also the inversion symmetry is lifted, the edge states do
not cross the band gap and the material becomes topologically trivial. This result is obtained
when both a magnetic field and Rashba-type spin-orbit coupling were considered at the same
time.

A treatment of electronic interactions in a multi-orbital Hubbard model is the topic of
Chapter 5. A Hamilton operator for electronic interaction is formulated in terms of the
p- and d-orbitals, which is then transformed into the mean-field approximation. The self-
consistent field method for solving such problem is laid out.

In Chapter 6, the non-magnetic phase is described, which is topologically similar to the
non-interacting system, but has a density accumulation on the edge sites. Two magnetic
phases are also analyzed. First, the ferromagnetic edge phase (FM) is discussed, which
exhibits gap crossing edge state, and after that the topologically trivial antiferromagnetic
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8. Summary And Outlook

edge phase (AFM) is treated, which does exhibit a band gap. The energy splittings of the
two magnetic phases are examined in terms of the nanoribbon length and the exponentially
decreasing overlap of the edge states is discussed in terms of increasing pz-orbital repulsion. A
systematic study of the single-orbital model with respect to the ribbon length and interaction
parameter reveals that the AFM phase is always the magnetic ground state, in agreement
with Lieb’s theorem.

Then the energy dependency of the non-magnetic phase on the filling factor is analyzed. A
small and a large doping regime are found, where in the first regime only the different edge
bands and in the second also the bulk bands become filled. This leads to a different scaling
behavior of the energy in the two regimes and an energetic minimum is found, which defines
an energetically preferred doping strength at the transition point from one regime into the
other. It is argued that the occurrence of the non-magnetic phase could be the reason why
the experimental verification of magnetic edges in graphene ribbons is still elusive, by relating
it to the possible hole doping effects of a substrate [270].

In the multi-orbital model, the magnetic ground state remains the AFM phase for all
parameter choices, even attractive electronic interactions in the d-orbitals. However, the oc-
cupation of the higher energy d-orbitals as a consequence of the attractive forces is shown to
have a significant impact on the energy difference between the two magnetic phases nonethe-
less. The d-orbital occupation can also be increased, by lowering the energy separation
between pz- and d-orbitals, which diminishes the energy gap between the magnetic ground
state and first exited state, but does not create a magnetic ground state with finite spin
magnetic moment. In a last step, the energy of the non-magnetic phase in terms of doping is
analyzed, where in a multi-orbital tight-binding model, the finite d-state population has to
be accounted for. In order to find an effective model for discussing the energy-dependence of
the doping, the d-orbital occupation for different electronic interaction strengths is computed
numerically.

The topic of deformation of a flat graphene sample is discussed in Chapter 7. The de-
formation breaks the inversion symmetry with respect to the normal of the graphene plane.
Therefore transition matrix elements between sp2-hybridized orbitals and π-bands become
finite, leading to a deformation-induced Rashba-type spin-orbit coupling. It is found that for
the circular bending perpendicular to the edges at strong curvature the edge states acquire
a non-zero ŝy-component, which lifts their two-fold ŝz-degeneracy. The alignment of the
local spin polarization of the edge atoms in bent ribbons with constant curvature relative
to the local surface normals indicates that the deformation-induced spin-orbit coupling from
the d-orbitals is affecting the in-plane spin polarization less than that of the sp2-orbitals.
The influence of the intrinsic spin-orbit coupling of the d-orbitals, however, is found to be
much more relevant for the spin-polarization along the local surface normal than that of the
p-orbitals. Altogether the direction of spin-polarization is mostly given by a competition
of intrinsic d-orbital spin-orbit coupling and deformation-induced spin-orbit coupling arising
from the coupling of π- and σ-bands. This leads to a formulation of a 9-orbital tight-binding
model, where this is shown by numerically computing the spin alignment and its dependency
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Figure 8.1.: a) The angle θ where uniaxial strain is applied to the graphene plane. b) Dispersion
relation with the two Dirac cones and strain along the y direction, corresponding to θ = π

2 , does not
lead to Dirac cone merging. c) Strain with θ = 0 causes a merging of the Dirac cones.

on the different spin-orbit coupling strengths. Analytical expressions for the spin-dependent
next-nearest-neighbor hoppings in this model are derived, with which the numerical results
are underpinned.

Furthermore, bent nanoribbons with sinusoidal deformation perpendicular to the zigzag
edges are examined in a tight-binding model with only s- and p-orbitals. Here localized
states are found with predominant occupation of lattice sites around areas of the ribbon
with extremal curvature. This is repeated for the 9-orbital model, with similar results.
Nanoribbons bent along the zigzag edge with sinusoidal curvature are also analyzed. The
varying curvature leads to a spin-polarization with components in all three spatial directions.

Outlook

A model used in the literature, which allows the analysis of the interplay of intrinsic spin-
orbit coupling and Hubbard interaction with respect to the topological state of a system with
hexagonal lattice, is the Kane-Mele-Hubbard (KMH) model [292]. This model combines the
Kane-Mele model in Eq. 4.7 with an additional Hubbard term and leads to a rich phase
diagram [293, 294]. The ground state of bulk graphene with the parameter choices for the
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8. Summary And Outlook

interaction and spin-orbit coupling strengths similar to this work is found to be topologically
insulating. A magnetically ordered state is reached for strong interactions larger than what
is considered here [295]. Including a sublattice potential into the KMH model allows for
the occurrence of a spin-polarized quantum Hall insulating phase, which is caused by the
Coulomb interaction in a system with broken sublattice symmetry [296].

The KMH model can be extended to also include Rashba-type spin-orbit coupling [297].
This addition is found to alter the result of the KMH model only for very strong Rashba-type
interaction, where collinear magnetic states are less favorable and magnetism with in-plane
spin alignment occurs [292].

While the above considerations deal with two-dimensional graphene, the finite coupling of
the edge states in zigzag ribbons, leads to the energy gap in the antiferromagnetic ground
state [110, 291, 298], which was discussed in detail in this work. Therefore, the results
obtained, among those reported by others [50, 110], could be regarded as a step towards
applying the KMH model to systems with finite size and realistic parameter choices.

In planar graphene, the alignment of the real spin polarization parallel to the sample
plane, together with Coulomb interactions, leads to spin mixing and results in a gap opening
in the edge magnetic phases of graphene nanoribbons [299]. Such an effect is also expected,
when the curvature-induced Rashba-type spin-orbit coupling affects the spin alignment. The
correct inclusion of Rashba-type spin-orbit coupling via deformations or external electric
fields in this case requires the spin-rotational invariance in the mean-field Hamiltonian in Eq.
5.22.

Therefore, an interesting direction for further research might be the inclusion of Coulomb
interaction in the sp2-hybridized orbitals of graphene used to describe deformations, because
this would lead to a multi-orbital tight-binding model with sensitivity for the geometric
distortions of the lattice. This is particularly interesting, because it would allow to further
understand the occurrence of magnetic edges in graphene ribbons under realistic experimental
conditions.

Furthermore, the transport properties of the edge states in graphene nanoribbons are
strongly affected by the edge shape [224, 300]. As a result small deviation from the regular
zigzag geometry, due to a vacant site or passivation with an atom of large electro-negativity
[301], may change the effect of Coulomb interactions or that of bending on the edge states
dispersion entirely [263].

Strain along one direction, shown in Fig. 8.1 a) introduces a spatial modification of the
hopping in the graphene lattice. This modifies the shape of the Brillouin zone, as shown in
Fig. 8.1 b), which can ultimately lead to a merging of the two Dirac cones, depicted in c).
With focus on electronic interactions, further studying the magnetic ground state in strained
graphene nanoribbons could also lead to many insights. Restoring the topologically non-
trivial state by this method has already been theorized [302] and could also help to further
understand experimental results.
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A. Spin-orbit Coupling Symmetries

A.1. Computing the Transformation Behavior of Spin-orbit
Coupling Operators

In this section, the derivation of the transformation behavior of real space and reciprocal
space coordinates and of real spin and sublattice spin operators is presented. For this, the
effect of symmetry operations on the respective coordinates or spins is compared to character
tables. By doing so, similar transformation behavior is obtained, which makes these operators
and products comparable.

A.1.1. Sublattice Spin Transformation Behavior

At first the sublattice spin transformation behavior is discussed. It is shown in Fig. A.1, how
the two sublattices transform according to different symmetry transformations of the point
group C2ν . The mirroring operation σxz swaps sublattices, while the other mirroring opera-
tion σyz leaves them invariant. The rotation C2 also swaps the sublattices, while the identity
element E does not. Hence these operations can be represented by a two-dimensional matrix
acting on a vector in the sublattice spin basis, where the x-component of the vector denotes
↑ and the y-component ↓ in the sublattice basis. The respective representation of the group
elements is listed in Table A.1. For establishing how products of sublattice and reciprocal
space vectors transform, the transformations of momentum vectors need also be related to
the group C2ν . For that their transformation behavior is expressed as a transformation in
real space. A mirroring or rotation in real space may also affect the orientation of reciprocal
space. An operation in real space that interchanges the sublattices (flips the sublattice spin),
such as σxz in Table A.1, changes the valley in reciprocal space. This means that the valley
isospin τz is flipped. As a consequence the valley isospin changes in the same way as the
sublattice spin changes. And thus, for each non-diagonal matrix in Tab. A.1, τz obtains a

E =

1 0

0 1

 C2 =

0 1

1 0

 σxz =

0 1

1 0

 σyz =

1 0

0 1


Table A.1.: The operations of the point group C2ν in the basis of the sublattices A and B.
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b)

Figure A.1.: The group operations of C2ν . The unit cell of graphene with coordinate system and
symmetry operations. The atom at position A is associated with sublattice spin up, i.e. | ↑〉, and the
one with at position B with down, that is | ↓〉. The mirror operation σxz, as well as a rotation by the
angle π, interchange the sublattices.

E =

1 0

0 1

 C2 =

−1 0

0 −1

 σxz =

1 0

0 −1

 σyz =

−1 0

0 1


Table A.2.: The operations of the point group C2ν in the basis of the the real space coordinates x
and y.

sign, such that

E : τ̂z → τ̂z (A.1)
C2 : τ̂z → −τ̂z (A.2)
σxz : τ̂z → −τ̂z (A.3)
σyz : τ̂z → τ̂z. (A.4)

In order to find the transformation of the momenta kx and ky, the effect of the operations
given in Tab. A.1 are computed by using ki ∼ ∂

∂xi
. Hence the reciprocal coordinates trans-

form identical as their real space counterparts x and y. However, also the valley isospin has
to be transformed for the correct coordinates in the low-energy description for graphene. A
representation of the operations in Tab. A.1 on the real space (and thus reciprocal space)
coordinates is given in Tab. A.2. Together with the transformation behavior of the valley
isospin from Eqs. A.1-A.4 and the reciprocal space vectors in Tab. A.2 in place, the sublat-
tice spin transformation behavior can be related to reciprocal space. Now products of the
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C2ν σ̂x σ̂y σ̂z τ̂z kx ky

E +1 +1 +1 +1 +1 +1

C2 +1 −1 −1 −1 −1 −1

σxz +1 −1 −1 +1 +1 −1

σyz +1 +1 +1 −1 −1 +1

Table A.3.: The effect of the group actions of C2ν on sublattice spin and crystal momenta.

two can be constructed via Tab. A.3 and related to basis functions in Tab. A.7. From Tab.
A.3 it can be seen, that σ̂y transforms as ky, but σ̂x does not transform as kx. The reason is
that in the reciprocal space the valleys of the K and K ′-points transform identically, but in
the sublattice spin space they do not. Hence the valley isospin τz needs to be included when
sublattice spin and momentum are interchanged, and thus the pairs {σ̂x, σ̂y} ∼ {τ̂zkx, ky} are
identical in their transformation behavior. This is also the reason, why the Hamiltonian for
graphene differs from the actual Dirac Hamiltonian when the formulation of the sublattice
spin is compared to that of the real spin.

A.1.2. Real Spin Transformation Behavior

The real spin transformation behavior is different than that of the real space and sublattice
spin, because the Pauli matrices span SU(2), the complex spinor space. A representation of
the group O(3) on the Pauli matrices is [148]

Un = cos
ϕ

2
ŝ0 + in⃗ˆ⃗s sin

ϕ

2
, (A.5)

where ˆ⃗s is the direction of the spin vector spanned by the Pauli matrices. These correspond
to rotations in a plane with normal vector n⃗ by the angle ϕ. A reflection on a plane with
normal vector n⃗ is represented by

Σα = −in⃗ˆ⃗s. (A.6)

A group symmetry on the real spin matrices ŝi is applied by

D (g) ŝiD (g)† = ±ŝj , (A.7)

where D (g) is the representation of the group action in spinor space defined by a group
element g. Therefore the operations of the groups under discussion here are made up of
operations of the type given in Eq. A.5 and Eq. A.6. For instance a roto-inversion, e.g. S1

4 ,
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is made up of a rotation around π
2 and a consecutive mirroring in the plane perpendicular to

the z axis. The resulting operation is given by

S1
4 =

−i√
2
ŝz −

1√
2
ŝ0. (A.8)

For the group C2ν only the group elements E, C2, σxz = C ′
2 and σyz = C ′′

2 are required.
When applying these to ŝx, ŝy and ŝz, they affect only the signs of the spin operators,
since C2ν has only one-dimensional irreducible representations. The result of applying the
group elements of C2ν to the real spin matrices is given in Tab. A.4. In this table the
signs of the individual group operations of C2ν on the Pauli matrices can be related to the
irreducible representations for the group encoded in the respective character table, Tab.
A.7. One can deduce for instance, that ŝx transforms like the irreducible representation
B2. Thus it can be represented by one of its basis functions. A basis function comprised
of real space coordinates for the same irreducible representation would be yz. In this way
the transformation behavior of the real space coordinates x,y and z is made comparable
and therefore products of real space, reciprocal space, real spin and sublattice spin can be
analyzed according to their symmetries. For a more complicated group, the same procedure
can be used and the transformation behavior established. A two-dimensional representation
of the group D2d acting on the group elements of SU(2) is given in Tab. A.5. If the basis
{ŝx, ŝy} is chosen, the elements of group D2d produce the representation in Tab. A.6, which
coincide with the representation for the real space coordinates x and y. By consulting the
character table of D2d, Tab. A.9, it is established, that for the two-dimensional irreducible
representation E, the spin matrices for this group behave as ŝy ∼ xz and ŝx ∼ yz, similar
to what was previously discussed for C2ν . That concludes the discussion on transformation
behaviors of these operators under point group symmetry elements.

E C2 σxz σyz ŝi

1 −1 −1 1 ŝx

1 −1 1 −1 ŝy

1 1 −1 −1 ŝz

Table A.4.: The irreducible representations of the group C2ν applied to ŝx, ŝy and ŝz. The rows
correspond a specific Pauli matrix , where the elements in the different columns are applied according
to Eqs. A.5 and A.6.
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E = ŝ0 E−1 = ŝ0

C2 = −iŝz (C2)
−1 = iŝz

S1
4 = −i√

2
ŝz − 1√

2
ŝ0

(
S1
4

)−1
= i√

2
ŝz − 1√

2
ŝ0

S2
4 = −i√

2
ŝz +

1√
2
ŝ0

(
S2
4

)−1
= i√

2
ŝz +

1√
2
ŝ0

C ′
2 = −iŝx (C ′

2)
−1 = iŝx

C ′′
2 = −iŝy (C ′′

2 )
−1 = iŝy

σ1d = −i ŝx−ŝy√
2

(
σ1d
)−1

= i
ŝx−ŝy√

2

σ2d = −i ŝx+ŝy√
2

(
σ2d
)−1

= i
ŝx+ŝy√

2

Table A.5.: The transformation matrices of the group D2d on the SU(2) group elements. Here ŝ0
represents the identity matrix in two-dimensions.

E =

1 0

0 1

 C2 =

−1 0

0 −1

 σ1d =

 0 −1

−1 0

 σ2d =

0 1

1 0



C ′1
2 =

1 0

0 −1

 C ′2
2 =

−1 0

0 1

 S1
4 =

0 −1

1 0

 S2
4 =

 0 1

−1 0


Table A.6.: The operations of the point group D2d in the basis of the spatial coordinates x and y.
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A.2. Character Tables

A.2. Character Tables

C2ν E C2 σv (xz) σv (yz) linear order quadratic order cubic order

A1 +1 +1 +1 +1 z x2, y2, z2 x2z, y2z

A2 +1 +1 −1 −1 xy xyz

B1 +1 −1 +1 −1 x xz

B2 +1 −1 −1 +1 y yz

Table A.7.: The character table for the point group C2ν [114].

C4ν E 2C4 C2 2σv 2σd linear order quadratic order cubic order

A1 +1 +1 +1 +1 +1 z x2 + y2 z
(
x2 + y2

)
A2 +1 +1 +1 −1 −1

B1 +1 −1 +1 +1 −1 x2 − y2 z
(
x2 − y2

)
B2 +1 −1 +1 −1 +1 xyz

E +2 0 −2 0 0 (x, y) (xz, yz)

Table A.8.: The character table for the point group C4ν [114].

D2d E 2S4 C2 2C ′
2 2σd linear order quadratic order cubic order

A1 +1 +1 +1 +1 +1 x2 + y2 xyz

A2 +1 +1 +1 −1 −1 z
(
x2 − y2

)
B1 +1 −1 +1 +1 −1 x2 − y2

B2 +1 −1 +1 −1 +1 z xy z
(
x2 + y2

)
E +2 0 −2 0 0 (x, y) (xz, yz)

Table A.9.: The character table for the point group D2d [114].
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B. Multi-orbital Tight-binding Model With
Zigzag Edges

Figure B.1.: Definition of the multi-orbital tight-binding model with zigzag edges, periodic in the
x-direction. The sites A and B are labeled accordingly.

The definition of the multi-orbital tight-binding model with zigzag edges is performed
in analogy to the single-orbital models presented in [50, 150]. A tight-binding model is
defined with periodic boundary conditions in the x-direction and terminated by zigzag edges
along y. The unit cell of the model consists of P columns, labelled with the index p and
N rows, marked by the index m. Each primitive cell contains 2 sites, named A and B.
Due to the geometry of the lattice, see Fig. B.1, the definition of the tight-binding model
must distinguish between rows of odd and even m. The periodicity is then given by the
index h, which is the periodic index used in the Fourier transformation into reciprocal space.
Additionally, the index s is added for the spin and the indices µ and ν for the other orbitals
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at each site. The real space Hamiltonian is then given by

Hµνs =
∑
h

N∑
m odd

−tµν(δ⃗1/a)
P∑

p=1

b̂†µshmpâ
νs
hmp − tµν(−δ⃗2/a)

P−1∑
p=1

â†µshm(p+1)b̂
νs
hmp


+
∑
h

N∑
m even

−tµν(δ⃗1/a)
P−1∑
p=1

b̂†µshm(p+1)â
νs
hmp − tµν(−δ⃗2/a)

P∑
p=1

â†µshmpb̂
νs
hmp


+
∑
h

N∑
m odd

−tµν(−δ⃗2/a)â†µs(h+1)m1b̂
νs
hmP +

∑
h

N∑
m even

−tµν(δ⃗1/a)b̂†µs(h+1)m1â
νs
hmP

+
∑
h

N−1∑
m=1

−tµν(δ⃗3/a)
P∑

p=1

â†µshmpb̂
νs
h(m+1)p

+
∑
h

N∑
m=1

P∑
p=1

(
â†µshmpâ

νs
hmp + b̂†µshmpb̂

νs
hmp

)
Eµ,ν + h.c.. (B.1)

In this Hamiltonian, the first two lines describe the vertical hopping along the zigzag direction
for odd row numbers and the second line that for even row numbers. The third line includes
the periodic boundary condition for the transition from one unit cell h to the next h+1 and
the fourth line describes the vertical hopping between different rows and the last the energy
shift of different orbital types. Here it is defined Eµ,ν = Ed if µ = ν ∈ {d} and Eµ,ν = 0
otherwise. In a next step the ladder operators are Fourier transformed by

âµshmp =
1√
H

∑
kx

eikxx
A
hmpα̂µs

kxmp b̂µshmp =
1√
H

∑
kx

eikxx
B
hmp β̂µskxmp, (B.2)

with H being the number of unit cells. The complex conjugate of these operators is defined
analogously. xAhmp and xBhmp are the x-coordinates of the A and B atoms in the primitive
cell in column p and row m in unit cell h. This leads to the multi-orbital tight-binding
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Hamiltonian

Hµνs
kx

=

N∑
m odd

−tµν(δ⃗1/a)
P∑

p=1

β̂†µskxmpα̂
νs
kxmpe

−ikxδx1 − tµν(−δ⃗2/a)
P−1∑
p=1

α̂†µs
kxmp+1β̂

νs
kxmpe

−ikxδx2


+

N∑
m even

−tµν(δ⃗1/a)
P−1∑
p=1

β̂†µskxmp+1α̂
νs
kxmpe

−ikxδx1 − tµν(−δ⃗2/a)
P∑

p=1

α̂†µs
kxmpβ̂

νs
kxmpe

−ikxδx2


+

N∑
m odd

−tµν(−δ⃗2/a)α̂†µs
kxm1β̂

νs
kxmP e

−ikxδx2 e−ikxP ·ax1

+
N∑

m even
−tµν(δ⃗1/a)β̂†µskxm1α̂

νs
kxmP e

ikxδx1 e−ikxP ·ax1

+

N−1∑
m=1

−tµν(δ⃗3/a)
P∑

p=1

α̂†µs
kxmpβ̂

νs
kxm+1p

+
N∑

m=1

P∑
p=1

(
α̂†µs
kxmpα̂

νs
kxmp + β̂†µskxmpβ̂

νs
kxmp

)
Eµ,ν + h.c.. (B.3)

The x-components of the δ1 and δ2 vectors (labelled δx1 and δx2 ) are identical up to a sign.
Thus, terms of the form e

±ikxδx1/2 can be absorbed into the ladder operators. If periodic
boundary conditions along y are additionally included in Eq. B.3, the description can be
simplified by setting H = 1, N = 1 and P = 1. This will result in the Hamiltonian Eq. 3.14
given in Chapter 3.
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C. Multi-orbital Mean-field Hamiltonian With
Spin-rotational Invariance

The full Hamiltonian in the mean-field approximation for the multi-orbital Hubbard model including terms for
conserving spin-rotational invariance is given by

Hpd ≈ Up

2

(
n̂p〈n̂p〉 − 4S⃗p〈S⃗p〉 −

〈n̂p〉2

2
+ 2〈S⃗p〉2

)
+
∑
n

[
Vn

(
〈n̂p↑〉n̂n↓ + 〈n̂n↓〉n̂p↑ − 〈n̂p↑〉〈n̂n↓〉 − 〈ĉ†p↑ĉn↓〉ĉ

†
n↓ĉp↑ − 〈ĉ†n↓ĉp↑〉ĉ

†
p↑ĉn↓ + 〈ĉ†n↓ĉp↑〉〈ĉ

†
p↑ĉn↓〉

)
+Vn

(
〈n̂p↓〉n̂n↑ + 〈n̂n↑〉n̂p↓ − 〈n̂p↓〉〈n̂n↑〉 − 〈ĉ†p↓ĉn↑〉ĉ

†
n↑ĉp↓ − 〈ĉ†n↑ĉp↓〉ĉ

†
p↓ĉn↑ + 〈ĉ†n↑ĉp↓〉〈ĉ

†
p↓ĉn↑〉

)
+Jn

(
− 〈Ŝ†

p〉Ŝ−
n − 〈Ŝ−

n 〉Ŝ†
p + 〈ĉ†n↓ĉp↓〉ĉ

†
p↑ĉn↑ + 〈ĉ†p↑ĉn↑〉ĉ

†
n↓ĉp↓ − 〈ĉ†p↑ĉn↑〉〈ĉ

†
n↓ĉp↓〉+ 〈Ŝ†

p〉〈Ŝ−
n 〉
)

+Jn

(
− 〈Ŝ−

p 〉Ŝ†
n − 〈Ŝ†

n〉Ŝ−
p + 〈ĉ†p↓ĉn↓〉ĉ

†
n↑ĉp↑ + 〈ĉ†n↑ĉp↑〉ĉ

†
p↓ĉn↓ − 〈ĉ†n↑ĉp↑〉〈ĉ

†
p↓ĉn↓〉+ 〈Ŝ−

p 〉〈Ŝ†
n〉
)

+(Vn − Jn)
(
〈n̂p↑〉n̂n↑ + 〈n̂n↑〉n̂p↑ − 〈n̂n↑〉〈n̂p↑〉 − 〈ĉ†p↑ĉn↑〉ĉ

†
n↑ĉp↑ − 〈ĉ†n↑ĉp↑〉ĉ

†
p↑ĉn↑ + 〈ĉ†n↑ĉp↑〉〈ĉ

†
p↑ĉn↑〉

)
+(Vn − Jn)

(
〈n̂p↓〉n̂n↓ + 〈n̂n↓〉n̂p↓ − 〈n̂n↓〉〈n̂p↓〉 − 〈ĉ†p↓ĉn↓〉ĉ

†
n↓ĉp↓ − 〈ĉ†n↓ĉp↓〉ĉ

†
p↓ĉn↓ + 〈ĉ†n↓ĉp↓〉〈ĉ

†
p↓ĉn↓〉

)]
. (C.1)
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D. Rotation of the Transition Matrix
Elements in the Slater-Koster
Approximation

Various different approaches for computing the two-center approximation integrals can be
found in the literature [303, 304]. For specific purposes, some are more suitable than others.
In opposition to the one presented in Chapter 3 for highlighting the computation of the
polynomials in the Slater-Koster paper [182], an approach by Elena and Meister [303] is
discussed here, which can be used to obtain the transition matrix elements when rotated
with respect to each other, which is particularly useful in bending computations. A similar
treatment also used in this section is found elsewhere [305, 306]. Using a representation of
the Wigner d-function

dlmm′(β) = 2−l(−1)l−m′ [
(l +m)!(l −m)!(l +m′)!(l −m′)!

]1/2
×

k<∑
k=k>

(−1)k(1− cosβ)l−k−(m+m′)/2(1 + cosβ)k+(m+m′)/2

k!(l −m− k)!(l −m′ − k)!(m+m′ + k)!
, (D.1)

with k< = min(l−m, l−m′), k> = max(0,−m−m′) and l< = min(l1, l2) the following matrix
elements yield the two-center integrals in dependence of the polar angle θ and azimuthal angle
φ

〈l1m1|H|l2m2〉(φ, θ)

=

l<∑
m′=1

[
Sl1
m1m′(φ, θ)S

l2
m2m′(φ, θ) + T l1

m1m′(φ, θ)T
l2
m2m′(φ, θ)

]
(l1l2|m′|)

+ 2Am1(φ)Am2(φ)d
l1
|m1|0(θ)d

l2
|m2|0(θ)(l1l20). (D.2)

Here the material-specific parameters (l1l20) and (l1l2|m′|) are the usual Slater-Koster pa-
rameters, e.g. Vssσ in the former and Vppπ in the latter case. For the compact notation in
Eq. D.2 the following two functions are introduced,

Sl
mm′ := Am

[
(−1)m

′
dl|m|m′ + dl|m|−m′

]
(D.3)

and

T l
mm′ := Bm(1− δm0)

[
(−1)m

′
dl|m|m′ − dl|m|−m′

]
, (D.4)
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Figure D.1.: The definition of the azimuthal and polar angle in the Slater-Koster approximation.

making use of

Am(φ) =

{
(−1)m[τ(m) cos (|m|φ) + τ(−m) sin (|m|φ)] if m 6= 0
1√
2

if m = 0
(D.5)

and

Bm(φ) =

{
(−1)m[τ(−m) cos (|m|φ)− τ(m) sin (|m|φ)] if m 6= 0

0 if m = 0
(D.6)

with the Heaviside function

τ(m) =

{
1 if m ≥ 0

0 if m < 0
. (D.7)
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