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1 Introduction

This thesis is concerned with the study of double obstacle problems for functionals with linear

growth mainly focusing on the area functional. The underlying problem is the minimization of

functionals over some domain Ω ⊂ Rn, i.e. can be written in general like

min

∫
Ω

f(Du(x)) dx

for some integrand f : Rn → R. Often the integrand is assumed to be convex. Those functionals, or

more precisely the integrands, can be classified by their growths for large arguments. For example,

they can have linear growth (1-growth), like the total variation TV[ . ] or the area functional A[ . ],

quadratic (2-growth), like Dirichlet integral the Dir[ . ] or more generally of p-growth, like the

p-energy for 1 ≤ p < +∞. The total variation and the area functional are defined by

TV[u] =

∫
Ω

|Du(x)|dx and A[u] =

∫
Ω

√
1 + |Du(x)|2 dx

for suitable function u and it is easy to see, that the integrands | . | and
√
1 + | . |2 behave like linear

functions for large arguments. In contrast, the Dirichlet integral has an integrand which growths

quadratic and the functional is given by

Dir[u] =

∫
Ω

|Du(x)|2 dx.

Similarly, the p-energy is given by

Ep[u] =
∫
Ω

|Du|p dx

and thus coincides with the total variation for p = 1 and the Dirichlet integral for p = 2.

In addition to the minimization of those functionals, it is common to include further requirements,

like the Dirichlet boundary values

u = u0 on ∂Ω

for given boundary values u0, or to constrain the admissible functions by obstacles or even both.

There exists different versions of obstacle constraints, like the single lower obstacle constraint

u ≥ ψ1, the single upper obstacle constraint u ≤ ψ2 or the combination of both, the double

obstacle constraint, with

ψ1 ≤ u ≤ ψ2.

Here, ψ1, ψ2 are functions defined on Rn with values in R ∪ {±∞} and for the double obstacle

problem those the lower obstacle is assumed to be less or equal to the upper obstacle, i.e. ψ1 ≤ ψ2.

The double obstacle problem contains the single ones by setting, for example, the upper obstacle

ψ2 = +∞ and thus obtain the single lower obstacle case. There are many different obstacles which

can be considered. To mention a few for the single lower obstacles, one can set the lower obstacle

ψ1 to be a continuous functions or a characteristic functions 1A of a sets A ⊂ Rn, which are equal

1 on A and 0 else, but one could also implement constraints that are active only on a given set
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A ⊂ Rn by considering the obstacle function with given real-valued function on a set A and −∞
else. Further, it is possible to consider thin obstacles, like a function having the value 0 on an

(n−1)-dimensional submanifold of Ω like the boundary of a (smooth) domain inside or intersecting

Ω and −∞, the characteristic functions of (n− 1)-dimensional submanifolds and many more and

more general ones. As it turns out, the consideration of functionals with linear growth under

the thin single or double obstacles with or without Dirichlet boundary condition is challenging,

since the usual theory regarding the typically considered function spaces and the thinness of the

obstacles, which can be considered for those, reach a borderline case. This fact will be explained

in little more detailed after more light is shed on the mathematical background. For functionals

with p-growth, especially the Dirichlet integral and other functionals with quadratic growth, a

broader literature than for the linear case exist, parts of which will be presented or referred to in

Section 1.5. First results related to the study of functionals of linear growth with thin obstacles

was done for the minimization of the area by a related approach to the here presented, namely

by the parametric approach in contrast to the here presented non-parametric approach. This and

the many other useful results connecting both theories are the reason, why this thesis is mainly

concerned with the study of the area functional. As a side note, one readily speaks about the non-

parametric Plateau problem and the non-parametric Plateau problem with obstacles if those are

included instead of the minimization of the area functional with or without obstacles, respectively.

Before those concepts are introduced mathematically, an example is presented to illustrate the

obstacle problem and make the thin obstacle problem more tangible and depict difficulties which

indeed arises mathematically. This example originates from the description of minimal surfaces by

soap films or bubbles. Those minimal surfaces are, as it will be described in the following section,

closely related to minimizers of the area functional A[ . ] and the mentioned parametric approach

for minimal surfaces. This kind of analogy is often used, see for example [39, Introduction] or [52,

Introduction], and can be described as follows:

Minimizing the area functional for some given boundary value means to search for a surface with

least area under those fulfilling the boundary condition. If the boundary values are represented by

a closed wire curve, a spanned soap film will assume a shape with minimal area spanned by the

given wire, thus forming a minimal surface.

To depict the obstacle constraint, a simple configuration may be assumed: The boundary is given

by a circular wire and the minimal surface will obviously be the enclosed circular disc. If an object,

e.g. a book or a ball, is placed from below part-way through the circle, the soap film will dislocate

by bending upwards and the object will represent an obstacle from below. Similarly, if the object

is placed from above, an obstacle from above is given.

For the thin obstacle, a very thin sheet can be taken as an obstacle, which is placed perpendicular

to the plane containing the wire. If the sheet is thin and sharp enough, a phenomenon can occur

which also appears in the mathematical treatment of the given problem:

The soap film can slide downwards on the sides of the sheet without tearing and forms a soap film

with a slit where the sheet is. The difficulty here is that the surface does not fulfill the obstacle

constraint anymore, since the soap film does not lie above the sheet and additionally, because the

slit is thin, the surface area is not changed in comparison to the starting configuration and thus

the violation of the obstacle condition is not penalized.

The next question, which may arise, is what happens if an even lower dimensional object is placed
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as an obstacle like a pencil lead or a needle. Unfortunately, there is very little theory available and

there is no hope to provide results for this case with the approaches contained in this thesis.

The first ones to tackle double obstacle problem with thin obstacles in context of minimal surfaces

were De Giorgi, Colombini and Piccinini in [13] using the parametric approach, which will be

explained in the following paragraphs. Therefore, the next section introduces the parametric and

non-parametric approach and gives a brief historical overview. Afterwards, the double obstacle

problem is stated in the parametric and non-parametric setting with emphasis on the difficulties

arising from enforcing thin obstacles and the first and second major result of this thesis is presented.

Then, a different and again connected approach to obstacle problems via variational inequalities

is summarized and the third major result of this thesis is stated. Next, a small overview over the

existing theory and literature is provided before the introduction is closed by the structure of this

thesis.

1.1 Parametric and non-parametric minimal surfaces

The study of minimal surfaces is a very interesting topic on its own. The problem was stated

in various ways and in many different branches in mathematics like Analysis, Geometry, Partial

Differential Equations, Geometric Measure Theory and Calculus of Variations. The general task

is to minimize the (generalized) area of an n-dimensional surface under given constraints like a

given (n− 1)-dimensional boundary and in different ambient spaces like in the space Rn+N , where

n,N ∈ N. Here, N is called the co-dimension of the underlying problem and n ≥ 2 is often

assumed.

In the research on minimal surfaces of arbitrary dimension n and co-dimension N = 1, the two

main approaches besides the classical parametric theory, which is restricted to n = 2 and was

solved independently by Douglas in [22] and Radó in [55, 56] around 1930 using parametrized

disc-type surfaces, and the semi-classical theory, which uses only Lipschitz functions and is basi-

cally restricted to domains satisfying the boundary slope condition, are the parametric and non-

parametric approach.

The parametric approach is due to articles by De Giorgi and by Caccioppoli in the early 1960s, who

studied minimal surfaces as boundaries of (n+ 1)-dimensional sets. They introduced the perime-

ter P(E) of a set E as a generalized circumference of a set where only points with a generalized

normal vector are considered. While De Giorgi introduced the concept, Caccioppoli gave a simpler

equivalent definition which is used nowadays. For sets E with C1 boundaries, the perimeter gives

the same value as the (n− 1)-dimensional Hausdorff measure of the boundary of the set:

P(E) = Hn−1(∂E).

The definition of the perimeter can be found in Definition 2.20. Sets with finite perimeter are

called Caccioppoli sets. One way to state the minimization problem is to only allow variations E

of a given set Caccioppoli set E0 in a given open set Ω ⊂ Rn+1 and define the boundary values by

requiring E = E0 outside of Ω:

inf{P(E) : E has finite perimeter and E \ Ω = E0 \ Ω}
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A more localized version requires only that E0 has finite perimeter in an open set A which contains

Ω. Then it is possible to minimize the perimeter P(E,A) of E in A:

inf{P(E,A) : E has finite perimeter in A and E \ Ω = E0 \ Ω}.

Using this version, it is possible to treat sets E0 with unbounded perimeter.

Those results extend the classical parametric Plateau problem to higher dimensions than n = 2.

This is also the reason, why it is still called parametric approach besides not really involving para-

metric surfaces like in the classic formulation.

The parametric approach leads to a well-established regularity theory, showing that minimal sur-

faces have no singularities in dimensions 1 to 7 and for higher dimensions can only have singularities

up to Hausdorff dimension n− 8.

Returning to the initial example, the spanned soap film is considered a part of some object like a

soap bubble and the wire defines the boundary outside of which the the bubble may not be varied

anymore.

In contrast, the non-parametric approach deals with surfaces which are graphs of scalar functions

defined on a given set Ω ⊂ Rn. The name originates from the fact that the parameterization

cannot be chosen freely, since one is restricted only to graphs. The area functional for a function

u ∈ C1(Ω,R) is defined by

A[u] =

∫
Ω

√
1 + |∇u|2 dx.

This definition of area can be generalized for Lipschitz and even Sobolev functions. A further gen-

eralization is the extension to BV functions. Those are functions u in L1(Ω) whose distributional

derivative can be represented by a Radon measure Du. In that sense, the area can be written with

the help of the total variation of a vector-valued measure as A[u] = |(Ln,Du)|(Ω).
In the first given example, the soap film is modeled by the graph of the function u.

Comparing both approaches, M. Miranda proved in [50], see also [39], that both lead to the same

minimal surface in the following sense:

u is a minimizer of the area functional

⇔
U = {(x, t) ∈ Ω×R : t < u(x)} is of least perimeter in Ω×R.

Even a local statement of this type remains true as well as one for unbounded graphs. By connecting

these theories, the regularity results for the parametric case are extended the non-parametric

setting. In reverse, it is possible to use well known comparison principles established in the non-

parametric setting to prove uniqueness of minimal surfaces for given boundary values.

1.2 Parametric obstacle problems and the De Giorgi measure

In the parametric setting, unlike in the introductory example, obstacles can be seen as inner

obstacle, i.e. the objects are contained in the soap bubble and the final configuration has to

contain the object, or outer obstacles, i.e. objects outside the bubble which have to stay outside

of the configuration.
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Thus the double obstacle may be stated like in [20]: For a given open set Ω and given obstacle sets

O1, O2 ⊂ Rn with O1 ∩O2 = ∅, the goal is to investigate the following infimum

inf{P(E,Ω) : E has finite perimeter in Ω, O1 ⊂ E and E ∩O2 = ∅}.

Here, two major difficulties occur which have to be solved for the non-parametric problem in a

similar way:

1. An additional term or a way to penalize the violation of the obstacles is needed which provides

a lower semicontinuous functional and does not change the infimum.

2. To realize the first point a precise notion of the sets is needed, since thin parts should be

taken into account but are ignored by the perimeter. For example, a line segment L in R2

has perimeter P(L,R2) = 0.

The process described in the first point is called relaxation. The general idea is to replace a given

functional, in this case the perimeter on those restricted sets, with a lower semicontinuous one

which agrees on the domain of definition with the original one and has the same infimum, which

is enforced by requiring a so-called recovery sequence. For more details, see Definition 2.48. The

second point was solved by De Giorgi using the measure theoretic closure which gives a notion of

the set up to Hn−1 null sets.

In [20], the relaxed problem was proven to be

inf {P(E,Ω) + ς((O1 \ E) ∩ Ω) + ς(O2 ∩ E ∩ Ω) : E has finite perimeter in Ω} (1.1)

with suitable assumptions. Here, ς denotes the De Giorgi measure, which in a broad sense measures

the circumference of lower dimensional sets. As before, the goal is to minimize the perimeter, but

violations of the obstacles are penalized by the two additional terms, each for the given obstacle

separately. While the Hausdorff measure might seem sufficient for the measurement of the subsets

violating the obstacles, since for sets contained in a countable union of C1-hypersurfaces the mea-

sure coincides with two times the Hausdorff measure, Hutchinson proved in [41] that ς ̸= 2Hn−1.

The construction by Hutchinson uses the main difference between the two geometrical measures 1
2 ς

and Hn−1, namely that the first is measuring the half of the circumference of a set while the later

is defined as the infimum over the sum of the diameter to the power n− 1 of coverings by suitable

sets, like balls, of the set and thus is sort of measuring the diameter for n = 2. The construction

and a sketch of the related proofs will be presented in Section 3.1, since it justifies the interest in

the De Giorgi measure.

Thus, the functional in (1.1), with the De Giorgi measure replaced by two times the Hausdorff

measure, may be used as the relaxation with a priori knowledge of the obstacle like in the intro-

ductory example but not in general. For more details regarding the counterexample and the usage

of the De Giorgi measure, see Section 3.

1.3 Non-parametric obstacle problems

May a domain Ω ⊂ Rn, a suitable function space X, boundary values u0 : ∂Ω → R and two

obstacle functions ψ1 ≤ ψ2 be given. For a convex functional with linear growth, i.e. functionals
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where the integrand f : Rn → [0,+∞) is convex and fulfills the estimates

a|z| ≤ f(z) ≤ b(1 + |z|) ∀z ∈ Rn

for some positive constants a, b, the minimization problem can be stated as follows:

inf

∫
Ω

f(Du) dx in Xu0,ψ1,ψ2

where the admissible class Xu0,ψ1,ψ2
is defined by

Xu0,ψ1,ψ2 := {u ∈ X : u = u0 on ∂Ω and ψ1 ≤ u ≤ ψ2}.

Since the classical space C1 for which such functionals are well-defined has bad analytic prop-

erties, the considered function space X is usually the Sobolev space W1,1(Ω) or the space of

functions of bounded variations BV(Ω). The Sobolev space W1,1 consists of L1-functions with a

weak/distributional derivative that can be represented by an L1 function while for the space BV

the derivative is a finite Radon measure. While the functional is well-defined on W1,1 without any

further input, since the derivative is given by a function, it needs to be extended for BV functions

to functionals on measures. The reason to consider this larger function space is that W1,1 is not

closed under weak* convergence and its closure is the space of functions of bounded variation. Con-

cerning those spaces a proper meaning has to be given to the boundary and obstacle constraint,

since every function in W1,1 and BV has many different representatives. While the first task can be

interpreted using trace theorems for the spaces, respectively, the obstacle condition yields different

results assuming the condition to hold almost everywhere with respect to the Lebesgue measure

Ln or almost everywhere with respect to the (n− 1)-dimensional Hausdorff measure Hn−1.

The Ln-a.e. constraint does not add to the difficulty of proving the existence of solutions, since,

for example, BV(Ω) ∩ {ψ1 ≤ u ≤ ψ2 Ln-a.e.} is closed under weak* convergence in BV for a

suitable domain Ω and suitable obstacles ψ1 ≤ ψ2. The direct method then yields the existence of

a minimizer under the usual convexity assumption for the integrand and coercivity assumption for

the functional.

Meanwhile, the Hn−1-a.e. constraint makes the problem harder even for the single obstacle case:

With the introductory example in mind, the area functional for given boundary values |(Ln,Du)|(Ω)
on BV(Ω) is to be minimized on the open ball of radius 2 around the origin, i.e. on Ω = B2

2(0) ⊂ R2.

Furthermore, let the boundary values be u0 = 0 on the sphere S12(0) and the obstacle be ψ = 1

on the line L := {0} × [−1, 1]. To define ψ on the whole of R2 set ψ = −∞ on Rn \ L. Since

W1,1(Ω) ⊂ BV(Ω) it is possible to consider the following sequence:

uk(x) = max{1− k dist(x, L), 0} ∈ W1,1(Ω).

While for every k the sequence fulfills the constraint uk ≥ ψ everywhere even in the classical sense,

since the uk are continuous, the weak* limit is uk
∗
⇁ u with u ≡ 0 on B2(0), which obviously

violates the obstacle constraint on L. In addition, A[0] < A[w] on the set {w ∈ BV(Ω) : w =

0 on S12(0) and w ≥ 1 enforced Hn−1-a.e. on L}. Even if another representative of u is chosen like

u = 0 on Ω \ L and u = 1 on L, it does not change the value of A[u] and thus does not take the
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obstacle into account. The main problem here and as for the parametric problem is that the set

of admissible functions, which in general is convex but not a subspace anymore, is not closed and

thus the infimum over the functional values of the admissible set differs from the possible limits. In

addition, the functions in the considered function space are only defined Ln-a.e., but the function

values has to be made sense of Hn−1-a.e. Those problems leads to the same difficulties as in the

parametric settings:

1. A precise representative of the involved functions is needed.

2. A penalizing term has to be added to account for violations of the obstacle constraints.

In [13], Carriero, Dal Maso, Leaci and Pascali considered the single obstacle problem for functionals

with linear growth and proved that the relaxation F
ψ

u0
in L1 to the functional

Fψu0
[u] =

∫
Ω

f(Du) dx on W1,1
u0,ψ

(Ω)

extended by the value +∞ to L1(Ω) \W1,1
u0,ψ

(Ω), with f like above together with some additional

assumptions, Ω Lipschitz domain, u0 ∈ L1(∂Ω) and

W1,1
u0,ψ

(Ω) := {u ∈ W1,1(Ω) : u = u0 on ∂Ω and u∗ ≥ ψHn−1-a.e. on Ω}

is given by

F
ψ

u0
[u] =

∫
Ω

f(Du) +

∫
Ω

(ψ − u+)+ dςf∞ on BV(Ω).

In this formulation, ςf∞ is the generalized De Giorgi measure, which is influenced by the integrand

and is connected to the De Giorgi measure ς in the parametric problem and sometimes even

coincides with it, for example, for the area functional and the total variation. The
∫
Ω
f(Du)

is an extension of the function
∫
Ω
f(Du) to BV(Ω) where the boundary values and a possible

difference to the prescribed boundary values is accounted for and thus is actually dependent of u0.

The superscripts ‘∗’ and ‘+’ indicate the Lebesgue and the upper representative of the function,

respectively, and the subscript ‘+’ stands for the maximum function of the term and 0. A precise

description is given in the first part of the Preliminaries 2.

Using that as a starting point, it seems reasonable to assume that the relaxation in L1 of

Fψ1,ψ2
u0

[u] =

∫
Ω

f(Du) dx on W1,1
u0,ψ1,ψ2

(Ω)

with

W1,1
u0,ψ1,ψ2

(Ω) := {u ∈ W1,1(Ω) : u = u0 on ∂Ω and ψ1 ≤ u ≤ ψ2 holds Hn−1-a.e. on Ω}

and the same extension to L1 is given similarly by the following functional:

F
ψ1,ψ2

u0
[u] =

∫
Ω

f(Du) +

∫
Ω

(ψ1 − u+)+ dςf∞ +

∫
Ω

(u− − ψ2)+ dςf̃∞ on BV(Ω)
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with u− = −(−u)+ and a similar notation as above. The only significant change is a modification

of the generalized De Giorgi measure to adjust for upper obstacles, which coincides with ςf∞ , for

example, for symmetric integrands f and thus is also equal to ς in the case of the area functional

or total variation. Indeed, this is first major result proven in Section 4:

Result 1. Let an open bounded set Ω with Lipschitz boundary, a convex function f : Rn 7→ R

such that a, b > 0 exists with a|z| ≤ f(z) ≤ b(1 + |z|) and boundary values u0 ∈ L1(∂Ω) be given.

If there exists at least a function v in W1,1
u0,ψ1,ψ2

(Ω) such that Fψ1,ψ2
u0

[v] < +∞, then the relaxation

is given by

F
ψ1,ψ2

u0
[u] =

∫
Ω

f(Du) +

∫
Ω

(ψ1 − u+)+ dςf∞ +

∫
Ω

(u− − ψ2)+ dςf̃∞ on BV(Ω).

The additional requirement of the existence of the function v corresponds to the assumption, that

the original problem has at least one finite competitor, i.e. Fψ1,ψ2
u0

[u] <∞ at least for one function

u ∈ W1,1(Ω).

Additionally, results without boundary condition and with the original functional having the do-

main of definition being the corresponding subspace of BV instead of W1,1 are presented.

Relying on the first major result, a similar connection as between the parametric and non-

parametric minimal surfaces is proven for the double thin obstacle problem in Section 5:

Result 2. The minimizers of the relaxed parametric and relaxed non-parametric double obstacle

problem for minimal surfaces coincide in the graph-type setting, i.e. if the lower parametric obstacle

O1 and the upper parametric obstacle are given as the subgraph of the lower non-parametric obstacle

function ψ1 and the supergraph of the non-parametric obstacle functions ψ2, respectively:

u is (locally) a minimizer of A
ψ1,ψ2

u0

⇔
U = {(x, t) ∈ Ω×R : t < u(x)} (locally) minimizes

P(E,Ω×R) + ς((O1 \ E) ∩ Ω×R) + ς(O2 ∩ E ∩ Ω×R).

To close the paragraph, the main difference of obstacle problems for functionals with linear growth

and functionals with p-growth for p > 1 is enlightened. For functionals with p-growth, the function

space of choice is W1,p, i.e. functions in Lp with the weak derivative representable by an Lp function

or a suitable subspace. To work with functions in W1,p with p > 1 has some benefits such as the

closedness under weak(*) convergence and the availability of representatives up to quasi every

point, i.e. up to null sets of the p-capacity capp. This notion is finer than the Hn−1-measure

and thus allows to study problems with even thinner obstacles enforced, see for example [49]. In

comparison, in the case p = 1 the cap1 null sets agree with those having zero Hausdorff measure

and thus the representatives available are defined on sets comparable to the sets where the obstacle

constraints are enforced.
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1.4 Variational inequalities with obstacles and free boundary problems

Another way to treat obstacle problems is to use variational inequalities. While a connection

between variational problems and partial differential equations is made by the Euler-Lagrange-

Equation, the theory changes as soon as there are obstacles involved. In a simple setting with

a smooth obstacle and the restriction to W1,1-functions, i.e. without considering functions of

bounded variations, a connection of the theories in calculus of variations, variational inequalities

and partial differential equations is simple to deduce:

Assuming u ∈ W1,1(Ω) is the minimizer of A[ . ] in W1,1
u0,ψ

(Ω) for some given ψ ∈ W1,1(Ω) and

a Lipschitz domain Ω to given boundary values u0 ∈ L1(∂Ω). To calculate the Euler-Lagrange-

Equation one usually would compute the directional derivative at u in every direction which does

not change the boundary values, i.e. W1,1
0 (Ω), which consists of Sobolev functions having zero

boundary values in some sense, or a dense subset of the function space like C∞
0 (Ω). Since u is

assumed to be the minimizer, the derivative of the functional in each direction must be 0. By the

obstacle condition there is a restriction for the admissible functions and thus not every direction

is possible. For example, on the contact set {u = ψ} the direction must equal 0 or the obstacle

constraint is violated. It seems reasonable to allow positive variations on the contact set, which

means to restrict the direction to one-sided ones. Allowing that, the derivative at the minimizer u

does not need to be 0 anymore but instead greater or equal to 0, meaning that in every direction

the value of the area functional increases:

d

dt+
A[u+ tφ]

∣∣∣∣
t=0

≥ 0 ∀φ admissible. (1.2)

The superscript ‘+’ indicates that only variations in the positive direction of φ are permitted. To

tighten the notation, the direction φ can be rewritten in the following way:

A function φ such that the function v = u + t0φ is a valid competitor which fulfills the obstacle

constraint v ≥ ψ at least for a small t0 > 0 will also fulfill those constraints for all 0 ≤ t < t0.

Rewriting leads to φ̃ = t0φ = v − u. Since this is possible for every direction and one gets a legal

direction φ̃ for every function v ≥ ψ one can assume, without loss of generality, φ = v−u ∈ W1,1
0 (Ω)

with v ∈ W1,1
u0,ψ

(Ω). Returning to (1.2) leads to

0 ≤ d

dt+
A[u+ tφ]

∣∣∣∣
t=0

=

∫
Ω

Du ·D(v − u)√
1 + |Du|2

dx (1.3)

for all φ constructed in the above way and we thus obtain the variational inequality (1.3). In

addition, if u is in C2(Ω), one can integrate by parts and, since each v can be written as the sum

of the obstacle ψ and a non-negative function w, obtains

0 ≤
∫
Ω

−div

(
Du√

1 + |Du|2

)
(v − u) dx

=

∫
Ω∩{u=ψ}

−div

(
Du√

1 + |Du|2

)
w dx+

∫
Ω∩{u>ψ}

−div

(
Du√

1 + |Du|2

)
φdx
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for all admissible φ and thus by construction w. Applying the fundamental theorem of the calculus

of variations, with w ≥ 0 in mind, yields the following obstacle problem/free boundary problem

formulated in terms of partial differential equations

div

(
Du√

1+|Du|2

)
≤ 0 on {u = ψ},

div

(
Du√

1+|Du|2

)
= 0 on {u > ψ},

u ≥ ψ on Ω,

u = u0 on ∂Ω.

(1.4)

The interpretation of the partial differential equations is that, away from obstacles, the solution

fulfills the minimal surface equation and, if the solution u is equal to the obstacle, with the com-

parison principle for minimal surfaces in mind, it must be a supersolution. Often the boundary

∂{u = ψ} is called free boundary and the regularity of that is fascinating on its own.

Another interesting question is, under which assumptions on the minimizer and the integrand is

the variational inequality sufficient to give a minimizer, i.e. when will u be a minimizer if it satisfies

a variational inequality.

This connection and Euler-Lagrange-Equations become more challenging if the BV case is consid-

ered and, in addition, the thin double obstacle constraint is involved. With a glance at the paper

by Ancelotti [4], it seems reasonable to prove a similar version for BV functions and is presented

in section 6 as the third major result in this thesis:

Result 3. Under usual assumptions on f , u0, ψ2 and ψ2, the one-sided derivatives of F
ψ1,ψ2

(u0)

exist, and thus an associated variational inequality can be computed. Further, a subset Du of the

admissible directions exists, such that the derivative for those directions φ ∈ Du is given by

d

dt+
F
ψ1,ψ2

(u0) [u+ tφ]

∣∣∣∣
t=0

=
d

dt+
F [u+ tφ]

∣∣∣∣
t=0

−
∫

{ψ−u+>0}

φ+ dςf∞ +

∫
{u−−ψ2>0}

φ− dςf̃∞ .

Additionally, if a function u fulfills the variational inequality

d

dt+
F
ψ1,ψ2

(u0) [u+ tφ]

∣∣∣∣
t=0

≥ 0 for all φ ∈ Du,

it is also a minimizer of F
ψ1,ψ2

(u0) .

1.5 The De Giorgi measure and thin obstacles problems in the literature

The De Giorgi measure has different applications, the first being to consider lower dimensional

obstacles and the second to give a sufficient condition for some Radon measure µ and function g

such that the functional ∫
Ω

f(x, u,Du) dx+

∫
Ω

g(x, u) dµ

is lower semicontinuous for suitable functions f . It was introduced in [20] to solve the parametric

thin double obstacle problem. This result was partially presented by Piccinini at a summer school
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with published lecture notes [54] and a similar version to the original was published by De Giorgi

in [19]. Thereafter Colombini proved a new representation for the De Giorgi measure in [15].

Afterwards, de Acutis presented in [18] a first regularity result near the obstacle for the parametric

minimal surface problem with a single thin obstacle being an (n− 1)-dimensional manifold in Rn.

Next, Hutchinson revealed a counterexample to prove ς ̸= 2Hn−1 in [41]. Later Carriero, Leaci

and Pascali introduced in [11] and [12] a generalized version of the De Giorgi measure which can

handle more general functionals than the area functional and in some sense is capable of dealing

with integrands with p growth, p ≥ 1, to suit and be able to treat the second application. Those

results were again used by Pallara in [53]. In [13], Carriero, Dal Maso, Leaci and Pascali determined

the relaxation for the non-parametric single obstacle problem, using the generalized versions of the

De Giorgi measure with p = 1, and later considered limits of such relaxed functionals in [14].

The results by De Giorgi in [20] were extended to metric measures spaces by Kinnunen, Korte,

Shanmugalingam and Tuominen in [43] and some regularity results for minimizers of the parametric

Plateau problem with a single thin obstacle was established by Fernández-Real and Serra in [26]

by approximating thin obstacles with wedge-like sets.

Next, a small overview of the literature dealing with the non-parametric minimal surface problem

with a single thin obstacle and the corresponding variational inequality is given: Those were mainly

studied by Giusti in [35, 36, 37, 38], Frehse in [31, 32] and Nitsche in [52]. A regularity result for

n = 2 was proven by Kinderlehrer in [42]. Lately, Focardi and Spadaro proved an advanced

regularity result at the thin obstacle in [29] based, amongst other sources, on [27, 28] and using

a version of Almgren’s frequency function. Other important contributions, including Frehse [32],

were based on variational inequalities and many others dealing with thin obstacles problems for

quadratic functionals, mainly the Dirichlet integral

Dir[u] =

∫
Ω

|Du|2 dx.

A very rich and broad literature is available for studying this and similar quadratic functionals.

Combined with a version of a thin obstacle, such problems are known as the Signorini problem

with lots of contributions by various authors. Although some ideas and proofs can be used for

the study of thin obstacles for functionals of linear growth, this problem is not this thesis’ main

concern and thus the presentation of some literature is skipped and the reader is referred to [29,

Introduction] for a short and thus not complete overview on this topic.

At this stage, it should be mentioned, that almost all the presented sources for the non-parametric

problem, besides those in [13], have in common that the thin obstacle is defined only on nice

sets like (a countable union of) smooth manifolds or even segments of hyperplanes. Many restrict

themselves to only consider the ball Bn1 (0) or half ball Bn1 (0) ∩ {xn > 0} as the domain and the

thin obstacle to live on Bn1 (0) ∩ {xn = 0}. Often the values of the obstacle function are assumed

to be regular or even 0.

Another recent result is the dual formulation for the non-parametric minimal surface and total

variation problem with a single obstacle due to Scheven and Schmidt in [62].

The study of thin obstacle problems appears in many branches of mathematics, in physics and other

fields of application. Sometimes they are stated as free boundary problems or as a type of Signorini

problem. Those keywords lead to a very rich literature with a varying degree of connection to the

here presented topics.
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1.6 Structure of the thesis

The goal of this thesis is to generalize the results achieved by Carriero, Dal Maso, Leaci and

Pascali in [13], to prove the representation formula for the double obstacle problem and derive a

comparison between the parametric and non-parametric solutions of the double obstacle problem

for the area functional. Further, variational inequalities are studied for functionals with linear

growth and involving thin obstacles. The thesis is divided into 5 further sections:

� In the first, some general notions for sets, basic function spaces and measures are fixed. Then

the theory of BV functions, sets of finite perimeter and the extension of functionals of linear

growth to functionals on measures are recalled as well as the idea of relaxation including some

examples. For this kind of extension, a closer look on the recession function is provided. Main

tools like Reshetnyak’s theorem with some extended results are presented.

� Based on the results from De Giorgi, Colombini and Piccinini [20], Hutchinson [41], Piccinini

[54], and Carriero, Dal Maso, Leaci and Pascali [13], a short overview on the De Giorgi

measure, the mentioned counterexample by Hutchinson and the generalization of the De

Giorgi measure, which is using an anisotropic perimeter in the construction, is provided.

Some basic proofs for estimates and inequalities are presented to show the basic properties

of those measures and to point out one of the differences between the proof in [13] and the

generalized result for the single obstacle problem proven at the end of this section.

� The third section is devoted to the study of the non-parametric double obstacle problem.

First, a convergence almost everywhere result is shown for the gradients of an area-strictly

converging sequence. Next, a cut-off theorem is presented to overcome the difficulty of us-

ing only one-sided approximations like in the single obstacle case. Subsequently, a recovery

sequence is constructed first for W1,1 and then for BV functions with finite energy with-

out enforcement of the boundary condition. Afterwards, a Dirichlet boundary condition is

implemented for the double obstacle problem.

� Since the relaxation of the area functional was determined in the previous section, a com-

parison between the non-parametric and the parametric case can be investigated and the

equivalence result is proven like in the obstacle-free setting. This is mainly done by following

the proof of M. Miranda, approximations of the sets and estimating the De Giorgi measure

for general sets of the type S × (0, 1). This section closes with some notes regarding the

double obstacle problem for the area functional with a separation function v ∈ BV and some

regularity observations for a certain double obstacle problem.

� In the final section, the theory of Euler equations for functionals with linear growth based on

[4] is summarized and a version with only one-sided derivatives is proven leading to variational

inequalities. Those results are then extended to the obstacle case and a simpler inequality is

presented, which is sufficient for minimality.
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2 Preliminaries

In this section, we first gather some general notation on sets, measures and basic function spaces

before we define functions of bounded variations and sets of finite perimeter, note some fine prop-

erties and later give the needed definitions and main tools to treat functionals on measures and

construct relaxations in our setting. Definitions and theorems concerned with Radon measures

and convergence theorems by Reshetnyak are partially stated in a more extensive way to be able

to provide some more general results for auxiliary statements, but are not needed for the main

results in this generality.

The open ball with radius r > 0 and center x ∈ Rn is denoted by Bnr (x) := {y ∈ Rn : |y−x| < r},
the sphere with the same properties Sn−1

r (x) = ∂Bnr (x) is the topological boundary of Bnr (x). The

superscript n is often omitted in both definitions if the dimension is clear through the setting or

other information.

A∆B stands for the symmetric difference (A \B) ∪ (B \A). A set A is compactly contained in Ω

if A ⊂ Ω◦ where the superscript ‘◦’ denotes the topological interior of the set and the overlined set

is the topological closure of the given set. A ⋐ Ω stands for the closure of A being compact and

contained in the open set Ω, i.e. A ⊂ Ω.

Ln denotes the n-dimensional Lebesgue measure andHk the k-dimensional Hausdorff measure with

k ≥ 0. For a Ln-measurable set A, we write |A| for the Lebesgue measure of A while for a function

| . | is the modulus and for a measure it is the total variation. In general, measurability refers to

Ln-measurability if not stated otherwise. The Lebesgue measure of the unit sphere is denoted by

ωn := |Bn1 (0)| and, as an reminder, we have Hn−1(Sn−1
1 (0)) = nωn. For general definitions, lemmas

and theorems like Fatou’s Lemma, dominated convergence or those concerned with convergence in

measure, almost everywhere convergence, convergence in the Lp spaces, we stick to the notion and

versions provided in [23, Kapitel IV, §5] and [3, Theorem 1.19, 1.20 and 1.21].

As is customary, B(X) denotes the Borel σ-algebra of all Borel subsets, i.e. the smallest σ-algebra

generated by open sets in X. For a (signed and/or vector-valued) measure ν and a positive mea-

sure µ defined on the same measure space, we say ν is absolutely continuous with respect to µ

if |µ|(A) = 0 implies |ν|(A) = 0 and write ν ≪ µ. For example, we have Ln ≪ Hn−1. For two

measures ν ≪ µ with µ being σ-finite, we define by ν
µ the Radon-Nikodym density of ν with respect

to µ. Two measures µ and ν defined on the same measure space are singular if a set A exists with

|µ|(A) = 0 = |ν|(X \A) and we write µ ⊥ ν, see for example [24, Definition 1.22].

For a locally compact and separable metric space X, the space of all signed Radon measures is

denoted RMloc(X,R
m). If in addition the total variation of the signed Radon measure is finite,

the space is denoted by RM(X,Rm). Further, we always assume the completion of the σ-algebra

with respect to a given Radon measure µ, like presented in [3, Definition 1.11 (c)] for the measure

space. As usual, the target space is omitted for m = 1 or if the target space is clear from the

context. We are usually going to deal with locally compact subsets X ⊂ Rn or even just open

bounded sets Ω endowed with the euclidean norm | . |, but stick here to the general notation to be

able to present some theorems and lemmas in the general framework. The weak* convergence on

RMloc(X,R
m) and RM(X,Rm) is defined as the weak convergence of measures. The weak conver-

gence of measures is given by the duality with the (completion of the) space of smooth functions

with compact support C0
cpt(X,R

m) := {u : X → Rm is continuous on X and suppu ⋐ X} with
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respect to the supremum norm.

For the restriction of a measure µ to a given set A, we use Federer’s notation µ A which is defined

by

µ A(B) := µ(B ∩A).

If µ is a Borel measure or Radon measure, then µ A is a Borel or Radon measure for a Borel set

A or locally compact Borel set A, respectively.

Regarding typical function spaces on an open set Ω, we stick to the following notation: Ck(Ω)

denotes the k times continuously differentiable functions, a subscript ‘cpt’ indicates compact sup-

port and a subscript ‘0’ the closure of Ckcpt(Ω) under the supremum norm. Further, a subscript ‘b’

indicates the associated subspace of bounded functions.

The space of Lipschitz function on Ω is denoted by C0,1(Ω) and we have the following theorem by

Rademacher, which ensures Ln-a.e. differentiability of Lipschitz functions:

Theorem 2.1 (Rademacher, [24, Theorem 3.2.]).

A (locally) Lipschitz function f : Rk → Rm is differentiable Lk-a.e.

This theorem is important, for instance, in connection with chain rules for Sobolev functions and

functions of bounded variation.

Other important spaces are the Sobolev spaces. Since we are interested only in functionals with

linear growth, we only give the definition of the Sobolev space W1,1:

Definition 2.2 (Sobolev space W1,1, see [3, Definition 2.3 and 2.4]).

A function f ∈ L1(Ω) belongs to the Sobolev space W1,1(Ω) if its distributional derivative is

representable by a L1(Ω,Rn) function v, i.e.∫
Ω

u∇φdx = −
∫
Ω

v φdx ∀φ ∈ C∞
cpt(Ω)

holds and we write v = ∇u.

Next, we take a closer look at the rectifiability of sets, which plays an important role for represen-

tatives of BV functions.

Definition 2.3 (Rectifiable sets, see [3, Definition 2.57] or [63, Definition 0.57]).

Let E ⊂ Rn be a Hk measurable set: Then E is

1. countably k-rectifiable if countably many Lipschitz maps fi : R
k → Rn exist with

E ⊂
∞⋃
i=0

fi(R
k).

2. countably Hk-rectifiable if countably many Lipschitz maps fi : R
k → Rn exist with

Hk

(
E \

∞⋃
i=0

fi(R
k)

)
= 0.

3. Hk-rectifiable if E is countably Hk-rectifiable and Hk(E) < +∞.
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Remark. Further, we say that a set E ⊂ Rn is locally Hk-rectifiable if E ∩K is Hk-rectifiable for

all compact sets K ⊂ Rn.

An extension to this definition is provided in [3, Proposition 2.76] using so-called Lipschitz k-graphs,

but is here slightly rephrased to better suite the statements:

Proposition 2.4 (Alternative characterization for rectifiable sets).

A Hk-measurable set is countably Hk-rectifiable if countably many graphs of Lipschitz functions

fi : R
k → Rn−k and rotations Ri : R

n → Rn exist such that

Hk

(
E \

∞⋃
i=0

RiGfi

)
= 0

with RiGfi := {Ri(x, f(x))t : x ∈ Rk} ⊂ Rn for i ∈ N.

Using [3, Theorem 2.83] we obtain that each countably Hk-rectifiable set admits an approximate

tangent space Hk-a.e. and vice versa, i.e if a set admits an approximate tangent space Hk-a.e.,

it is countably Hk-rectifiable. Thus a normal vector exists Hn−1-a.e. if k = n − 1 is chosen,

where the normal vector is defined as a perpendicular (unit) vector to the approximate tangent

space. Next, [3, Proposition 2.85] guarantees that on the intersection of two rectifiable sets the

approximate tangent spaces of both sets coincide Hk-a.e. on the intersection and thus the normal

vector is inherited from the rectifiable sets at least Hn−1-a.e. in the case k = n−1 and the normal

vectors agree up to a sign. Further, this implies that the intersection of two rectifiable sets is again

rectifiable. We collect this results in the following proposition:

Proposition 2.5 (Normal vectors and intersections of rectifiable sets).

A Hn−1-rectifiable set admits Hn−1-a.e. a normal vector. The intersection of two Hn−1-rectifiable

sets S1 and S2 is again Hn−1-rectifiable. The normal vector for Hn−1-a.e. x ∈ S1 ∩ S2 coincides

with those obtained through S1, S2 and S1 ∩ S2. Further, each measurable subset of an Hn−1-

rectifiable set is again Hn−1-rectifiable and admits a normal vector.

Next, we define the measure theoretical closure of a measurable set (Borel set) A in Rn like in [13,

Section 1] by:

A+ = {x ∈ Rn : lim sup
ρ↘0

ρ−nLn(Bρ(x) ∩A) > 0}.

This coincides with the following definition for L1 functions: We set {u > t} := {y ∈ Ω : u(y) > t}
and denote by

u+(x) = inf
t∈R

{
lim sup
ρ↘0

ρ−nLn(Bρ(x) ∩ {u > t}) = 0

}
,

u−(x) = sup
t∈R

{
lim sup
ρ↘0

ρ−nLn(Bρ(x) ∩ {u < t}) = 0

}

two representatives of the equivalence class of a function u ∈ L1
loc(Ω).

Further, we introduce the function u∗ := 1
2 (u

+ + u−). Obviously we have 1±A = 1A± with the
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characteristic function of A, which is given by

1A(x) =

{
1 if x ∈ A,

0 if x /∈ A.

Referring to the indices ‘+’ and ‘−’ we distinguish between sub- and superscript. The superscript

versions are given above and the subscript ones are defined by

u+(x) := max {u(x), 0} and u−(x) := max {−u(x), 0}.

2.1 Functions of bounded variation and sets of finite perimeter

Functions of bounded variations

For the definitions regarding BV functions and sets of finite perimeter and their properties, we

mainly follow [3, Chapter 3], [24, Chapter 5] and [63].

As mentioned in the introduction, the space W1,1(Ω) for some open Ω ⊂ Rn is often not suitable

to treat problems involving functionals of linear growth since the space is not closed under L1-

convergence or weak* convergence. For example, the sequence uk(x) := kx1[0, 1k ](x)+1( 1
k ,2)

(x) for

k ∈ N is bounded in W1,1((−2, 2)), but has no convergent subsequence. The natural extension is

the space BV, since every bounded sequence in W1,1 has a converging subsequence with limit in

BV and BV is closed under weak* convergence.

Definition 2.6 (BV functions, [3, Definition 3.1]).

A function u ∈ L1(Ω) is a function of bounded variation if the distributional derivative of u has a

representation as a finite Rn-valued Radon measure µ in Ω, i.e. if∫
Ω

udivφdx = −
∫
Ω

φdµ ∀φ ∈ C∞
cpt(Ω,R

n).

We write Du = µ. The vector space of all such functions is denoted by BV(Ω). The space BVloc(Ω)

contains all functions u ∈ L1
loc(Ω) with distributional derivative in RMloc(Ω,R

n).

Obviously the space W1,1 is contained in BV, since the distributional derivative of an W1,1-function

can be written as the measure ∇uLn with the weak derivative ∇u. It is worth mentioning that

|Du| ≪ Hn−1 for every BV function u. This fact answers the question why thinner obstacles like

the 1-dimensional needle for a 2-dimensional surface in R3 can not be considered with the approach

relying on BV functions. Further, as the name implies, BV functions have a finite variation:

Definition 2.7 (Variation, [3, Definition 3.4]).

For u ∈ L1
loc(Ω), one defines the variation of u by

V (u,Ω) := sup


∫
Ω

udivφdx : φ ∈ C1
cpt(Ω,R

n) , sup
Ω

|φ| ≤ 1

 .
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A function u ∈ L1(Ω) belongs only to BV(Ω) if and only if V (u,Ω) <∞. Then the total variation

|Du|(Ω) of the measure µ = Du coincides with the variation V (u,Ω).

An extension to Borel sets B is given by approximation with open sets containing B:

V (u,B) = inf{V (u,A) : A open and B ⊂ A}.

In Definition 2.7, the function space of φ can be replaced with C0(Ω,R
n) or C∞

cpt(Ω,R
n), without

loss of generality. For the total variation of u, we will also use the notation
∫
Ω
|Du|. An important

property of the total variation is the lower semicontinuity with respect to L1-convergence:

Theorem 2.8 (L.s.c. of the total variation, [3, Proposition 3.6]).

For a converging sequence uk ∈ L1(Ω) for k ∈ N, uk → u for k → ∞ in L1(Ω), the following

estimate holds:

|Du|(Ω) ≤ lim inf
k→∞

|Duk|(Ω).

The space BV(Ω) is a Banach space with the norm

||u||BV := ||u||1 + |Du|(Ω),

but the norm is too strong for most applications. Instead weak* convergence and strict convergence

are used:

Definition 2.9 (Weak* and strict convergence, [3, Definition 3.11 and 3.14]).

For uk, u ∈ BV(Ω) for k ∈ N, the sequence uk converges

� weakly* to u in BV if ukLn → uLn weakly* in L1(Ω) and Duk → Du for k → ∞ converges

weakly* as Radon measures, i.e.

lim
k→∞

∫
Ω

φdDuk =

∫
Ω

φdDu ∀φ ∈ C0(Ω),

� strictly to u in BV if uk → u in L1(Ω) and |Duk|(Ω) → |Du|(Ω) for k → ∞.

Unlike the weak* convergence, the strict convergence is induced by the metric

d(u, v) = ||u− v||1 + | |Du|(Ω)− |Dv|(Ω) | .

The weak* convergence is often considered since the following compactness result holds:

Theorem 2.10 (Compactness in BV, [3, Theorem 3.23]).

Every bounded sequence uk ∈ BV(Ω) for k ∈ N has a weakly* converging subsequence in BV(Ω).

The derivative of BV functions can be decomposed in different parts, which helps to understand

the function space better and gives some insight on different representatives. First, we need to

introduce some further sets involved in the study of BV functions:

Definition 2.11 (Approximate discontinuity, [3, Definition 3.63 and 3.67, Proposition 3.69]).

Let a function u ∈ BV(Ω) be given. The set Su denotes the set of approximate discontinuity, i.e.
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all points where the function does not have an approximate limit z ∈ R. The approximate limit is

defined by

lim
r↘0

∫
Br(x)

|u(x)− z|dx = 0.

A subset of Su is the so-called jump set Ju, where at least one-sided approximate limits exist, i.e.

a normal vector νu and two values uext, uint ∈ R exist with

lim
r↘0

∫
Bext

r (x,ν)

|u(x)− uext|dx = 0 and lim
r↘0

∫
Bint

r (x,ν)

|u(x)− uint|dx = 0.

with

Bext
r (x, ν) = {y ∈ Br(x) : (y − x) · ν > 0}

Bint
r (x, ν) = {y ∈ Br(x) : (y − x) · ν < 0}.

Thus, for every point x ∈ Ju, a triple (uext(x), uint(x), νu(x)) exists which is unique up to simulta-

neous permutation of the first two components and the change of the sign of the normal vector νu

to −νu. This construction can be performed on general countably Hn−1-rectifiable sets. Taking

points outside of Ju into account resolves in the values uext and uint being equal.

The following theorem states, how large the set Su \ Ju is and gives some property of Ju.

Theorem 2.12 (Federer-Vol’pert, [3, Theorem 3.78]).

Let u ∈ BV(Ω) be given. Then the set Su is countably Hn−1-rectifiable and

Hn−1(Su \ Ju) = 0 and Ln(Su) = 0

and thus Ju is Hn−1-rectifiable. Moreover, Du Ju = (uext − uint) νuHn−1 Ju and

Tann−1(Ju, x) = ν⊥u

for Hn−1-a.e. x ∈ Ju.

A direct consequence and important statement is that for u, v ∈ BV, we have for Hn−1-a.e.

x ∈ Ju ∩ Jv either νu = νv or νu = −νv since Ju ∩ Jv is rectifiable by Proposition 2.5 and inherits

the normal vector from the larger sets.

Further, we can see u+ as the function taking the highest value at jump points. Similar for the

lower representative u− taking the lowest and the Lebesgue representative u∗ taking the average

value, see for example [3, Section 3.6]. From this definition it is easy to see, that for u ∈ W1,1(Ω)

we have u+ = u− = u∗.

Besides jump points, there exist the absolutely continuous part and another component of the

derivative, which is for example known from the devil’s staircase function, a continuous function

from [0, 1] → [0, 1] with L1-a.e. vanishing derivative which attains the value 0 and 1 at x = 0

and x = 1, respectively. For the standard version of the devil’s staircase function, the derivative

measure is concentrated on the famous 1
3 -Cantor set, which has Hausdorff dimension between 0

and 1. In total, we can decompose the derivative measure in the following parts:
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Definition 2.13 (Decomposition of the derivative, [3, Definition 3.91, Proposition 3.92]).

For a function u ∈ BV(Ω), the derivative measure Du can be decomposed in the following parts:

Du = Dau+Dsu = Dau+Dju+Dcu

Dau denotes the absolutely continuous part of Du which is absolutely continuous with respect to

the Lebesgue measure Ln. It can be written as Du (Ω \ S) with

S :=

{
x ∈ Ω : lim

r↘0
r−n|Du|(Br(x)) = ∞

}
.

In contrast, Dsu = Du S is the singular part of the derivative with respect to the Lebesgue

measure and the existence is provided by the Lebesgue decomposition theorem, see for example

[23, Kapitel VII, 2.6 ]. The singular part can be further decomposed in the following two parts:

� The jump part Dju = Dsu Su = Dsu Ju with the use of Theorem 2.12.

� The Cantor part Dcu = Dsu (Ω \ Su).

Remark. As often used, we sometimes do not distinguish between the measure Dau or the density

of Dau with respect to the Lebesgue measure. It will always be clear from the context, which is

used.

Those parts have many useful properties, one of which is given in the following proposition:

Proposition 2.14 (Properties of the parts of the derivative, [3, Proposition 3.92]).

For given u ∈ BV(Ω), the Cantor part Dcu vanishes on σ-finite sets with respect to Hn−1.

This proposition ensures that the Cantor part does not interfere with the jump part.

With this knowledge obtained it is possible to define traces at least on rectifiable sets, for exam-

ple, on interior rectifiable sets like in [3, Theorem 3.77] or on boundaries of Lipschitz domains. To

treat boundary value problems this information is not enough since the trace is not conserved under

weak* convergence. A way to identify boundary values on Lipschitz domains is to find a BV func-

tion defined on open set O containing Ω with the desired trace. For u0 ∈ L1(∂Ω) := L1(∂Ω,Hn−1),

this can be done using Gagliardo’s theorem found in [33] giving the existence even of an W1,1-

function on O \ Ω. Gluing two BV functions along the boundary ∂Ω gives a BV function on the

superset maybe with a jump part on ∂Ω. This construction sets the outer trace to the desired

one, i.e. uext = u0 with νΩ the outer normal vector to Ω, but does not imply anything for the

values of uint. This has to be taken into account when dealing with partial differential equations

or minimizers of variational integrals. Summarized we have:

Theorem 2.15 (Boundary traces of BV functions, see [3, Theorem 3.87]).

On a Lipschitz domain Ω the trace of a function u ∈ BV(Ω) is given for Hn−1-almost every x ∈ ∂Ω

as uint of the extension of u on ∂Ω.

To be able to solve problems on merely open and bounded sets Ω, a different approach is to use

Dirichlet classes. The basic idea is to prescribe boundary values by a given function v and define
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the desired function space by adding only functions with 0 boundary values, which can be defined

in more general cases than non-zero boundaries. A notion of those classes is provided, for example,

in [46, Section 2.3]:

Definition 2.16 (Dirichlet classes).

For an open bounded set Ω and prescribed boundary value function v ∈ BV(Ω), we define w(u) =

(u− v)1Ω on Rn and set the to v associated Sobolev and BV Dirichlet class

W1,1
v (Ω) :=

{
u ∈ W1,1(Ω) : w(u) ∈ BV(Rn) and |Dw|(∂Ω) = 0

}
BVv(Ω) := {u ∈ BV(Ω) : w(u) ∈ BV(Rn) and |Dw|(∂Ω) = 0} .

Remark. For v ∈ W1,1 and domains Ω with Lipschitz boundary, the presented definitions are equal

and (in even some more cases) equivalent to the commonly used notion W1,1
v (Ω) = v +W1,1

0 (Ω),

where W1,1
0 is defined as the closure of C∞

cpt(Ω) with respect to the W1,1-Sobolev norm. Similarly

for the BV case.

To be able to penalize wrong boundary values, a useful tool is to extend BV functions outside of

a given set Ω and thus fix the exterior trace:

Definition 2.17 (BV extension, see [65, Introduction]).

For an open set Ω, given u ∈ BV(Ω) and u0 ∈ W1,1(Rn), we set

u(x) =

{
u(x) for x ∈ Ω

u0(x) for x ∈ Rn \ Ω
,

and define

BVu0(Ω) := {u ∈ BV(Ω) : u ∈ BV(Rn)} .

Remark. This is the way to interpret
∫
Ω
|Du| for a function u ∈ BV and given boundary values u0

as mentioned in the introduction:

If u ∈ BVu0
(Ω), the boundary term can be interpreted as a the difference of u and u0 at the

boundary. If u ∈ BV(Ω) \ BVu0
(Ω) the value is +∞.

Additionally, if Ω is a Lipschitz domain, we have BVu0
(Ω) = BV(Ω) by Theorem 2.15.

Another useful result is the chain rule for BV functions:

Theorem 2.18 (Chain rule, see [3, Theorem 3.99, 3.101]).

Let u ∈ BV(Ω) and a Lipschitz function f : R→ R be given. Then f ◦ u is belongs to BV(Ω) and

we have

D(f ◦ u) = (f ′ ◦ u∗)DauLn + (f ◦ uext − f ◦ uint)νuHn−1 Ju + f ′ ◦ u∗Dcu.

Similarly, the chain rule holds for vector-valued BV functions v ∈ BV(Ω,Rk) and Lipschitz-

functions f : Rk → Rm with similar formulation. In addition, the following estimate holds:

|D(f ◦ u)| ≤ Lipf |Du|

with the Lipschitz constant Lipf of the function f .
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The last inequality enables us to estimate the derivative of the minimum and maximum of two

different BV functions. A direct consequence is a product rule for bounded functions of bounded

variation:

Corollary 2.19 (Product rule, see Remark to [3, Theorem 3.96]).

For two functions u, v ∈ BV(Ω) ∩ L∞(Ω) and f(x, y) = xy, we have

uv ∈ BV(Ω) and D(uv) = u∗(Dav +Dcv) + v∗(Dau+Dcu) + (f(uext)− f(uint)) νuHn−1 Ju.

Proof. The proof follows directly from the mentioned vector-valued case in 2.18 with f(x, y) = xy

which needs only to be defined on a bounded set, since u, v are assumed to be bounded.

Next, we introduce sets of finite perimeter, some of their properties and a first version of the co-area

formula.

Sets of finite perimeter

Sets of finite perimeter are very important in the study of minimal surfaces and are the base on

which the parametric theory is build. Let us first define the perimeter:

Definition 2.20 (Perimeter, see [3, Definition 3.35]).

A Ln-measurable set E ⊂ Rn is a set of finite perimeter in an open set Ω if the perimeter P(E,Ω)

of E in Ω defined by

P(E,Ω) = |D1E |(Ω) = sup


∫
E

divφdx : φ ∈ C1
cpt(Ω,R

n) with sup
Ω

|φ| ≤ 1


is finite. If Ω = Rn is chosen, we will omit this in the notation and write P(E).

Remark. As mentioned in the introduction, sets E with C1-boundary inside a set Ω have finite

perimeter if Hn−1(∂E ∩ Ω) <∞ and indeed the equality Hn−1(∂E ∩ Ω) = P(E,Ω) holds.

The perimeter inherits some useful properties from the total variation formulation introduced for

BV functions and has other helpful properties:

Proposition 2.21 (Properties of the perimeter, see [3, Proposition 3.38, Theorem 3.39]).

For open Ω′ ⊂ Ω and measurable sets E,F , we have:

1. The perimeter is lower semicontinuous with respect to L1 convergence of sets. The conver-

gence of sets is defined by: Ek, k ∈ N converges to E in L1 if 1Ek
→ 1E for k → ∞ in

L1.

2. A sequence Ek, k ∈ N of bounded volume sup |Ek| <∞ and of bounded perimeter supP(Ek) <

∞ admits a converging subsequence, i.e. there exist kl, l ∈ N such that P(Ekl) → P(E).

3. P(E,Ω′) ≤ P(E,Ω).
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4. P(E,Ω) = P(Rn \ E,Ω) and

P(E ∪ F,Ω) + P(E ∩ F,Ω) ≤ P(E,Ω) + P(F,Ω).

An important definition concerning sets of finite perimeter is the reduced boundary which quantifies

the perimeter by giving insight on points considered for the calculation:

Definition 2.22 (Reduced boundary, see [3, Definition 3.54]).

For a Ln-measurable set E ⊂ Rn and the largest open subset Ω∗ of Rn such that E has locally finite

perimeter in Ω∗, the reduced boundary FE is defined as the set of all points x ∈ supp|D1E | ∩ Ω∗

such that the following limit exists in Rn and has modulus equal 1:

νE := lim
r↘0

D1E(Br(x))

|D1E |(Br(x))
.

νE is a generalized inner normal to the set E.

Next, we can note some properties of the reduced boundary.

Proposition 2.23 (Properties of the reduced boundary, see [3, Chapter 3.5]).

1. For boundary points where a normal vector exists in a classical sense, it agrees with the given

generalization.

2. |D1E | is concentrated on FE and we have D1E = νE |D1E |.

3. The reduced boundary is countably (n− 1)-rectifiable and the perimeter can be represented by

P(E,Ω) = Hn−1 FE(Ω)

for E and Ω as in Definition 2.20. This statement is part of De Giorgi’s structure theorem,

see [3, Theorem 3.59].

4. With the reduced boundary the following version of the Gauss-Green formula can be stated:∫
E

div udx =

∫
FE

uνE dHn−1.

Another interesting boundary type is the essential boundary which is connected to the notion of

densities.

Definition 2.24 (Density and essential boundary).

For a Ln-measurable set E ⊂ Rn and a value t ∈ [0, 1], the set of points E(t) with density t is

given by

E(t) =

{
x ∈ Rn : lim

r↘0

|E ∩ Br(x)|
|Br(x)|

= t

}
,

where

lim
r↘0

|E ∩Br(x)|
|Br(x)|

is called the density at a point x. There can exist points, where the density is not defined, i.e. the
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limit in the definition does not exist. In those cases, one often uses the upper density, where the

limes is changed to a limes superior or to the lower density with the limes inferior.

The essential boundary ∂∗E is then given by Rn \ (E(0) ∪ E(1).

This definition implies that the essential boundary consists of all points which are not fully in or

outside of E. An important role play the points with density 1
2 , since those are closely connected

to the reduced boundary as Federer’s structure theorem implies:

Theorem 2.25 (Federer’s structure theorem).

For a set E with finite perimeter in Ω, we have the following inclusion and related estimate:

FE ⊂ E(0.5) ⊂ ∂∗E

and

Hn−1(Ω \ (E(0) ∪ FE ∪ E(1))) = 0.

This implies that a set of finite perimeter has Hn−1-a.e. density 0, 0.5 or 1 and that Hn−1(E(0.5)\
FE) = 0. Comparing this definitions with the choices of representatives E+ and E−, we have that

E(t) ⊂ E+ for all t > 0 and E+ also contains the Hn−1-null set, where the limit does not exist

but the limes superior is larger 0, i.e. E+ = E(1) ∪ ∂∗E, while E− contains the density 1 points.

Co-area formula and an advanced trace theorem

An important formula to prove many useful results and applications in all kinds off branches in

mathematics is the co-area formula. There exist many different versions in different settings for

the co-area formula, the most common ones are for smooth and Lipschitz functions. Using the

presented definitions, the co-area formula for BV functions is given by:

Theorem 2.26 (Co-area formula, [63, Theorem 1.42] or [3, Theorem 3.40]).

For u ∈ BV(Ω), we have

V (u,Ω) =

∫ +∞

−∞
P({x ∈ Ω : u(x) > t},Ω) dt

and for L1-a.e. t ∈ R, the set {u > t} := {x ∈ Ω : u(x) > t} has finite perimeter. Further, we

have

Du(Ω) =

+∞∫
−∞

D1{u>t}(Ω) dt

and by rewriting the first equality for the variation

|Du|(Ω) =
+∞∫

−∞

|D1{u>t}|(Ω) dt.

Remark. More generalized versions of the co-area exist, where on the left-hand side another function

appears as a product or outer composition part in the integrand which has to be implemented on
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the right-hand side. For this generalized version, we first need to understand how compositions

behave at points or on sets with unbounded derivative. To achieve that, the recession function is

introduced in the next subsection.

With the definition of the perimeter in hand, we can state another trace theorem:

Theorem 2.27 (Trace theorem on sets with P(Ω) = Hn−1(∂Ω) < +∞, [65, Proposition 4.1]).

For a function u ∈ BV(Ω)∩L∞(Ω) and on an open domain Ω with P(Ω) = Hn−1(∂Ω) < +∞ and

every ε > 0, there exists an open set Ωε ⊂ Ω with finite perimeter such that

Ωε ⋐ Ω, |Ω \ Ωε| < ε,

∫
FΩε

|uint|dHn−1 ≤
∫
∂Ω

|uint|dHn−1 + ε.

This suffices to explain boundary values on such domains using lower semicontinuity of the total

variation and the sequence u1Ωε
∈ BV(Rn) for ε↘ 0.

2.2 Recession function and functionals on measures

Recession function

The recession function approximates a given function at infinity to gain a grasp on how, for

example, an integrand f(Du) behaves at points of unbounded derivative Du. Also the recession

function is necessary to extend functionals from W1,1 to the BV setting. There are many different

approaches and many different settings with several nuances to the recession function, but we will

stick to the more basic versions. We mostly follow the definition provided in [13] and compare it

with the definition typical for Young measures provided for example in Kristensen’s and Rindler’s

paper [46] or in the article by Alibert and Bouchitté [1] and thus achieve some further properties.

Definition 2.28 (Recession function part I).

For g : Ω×Rn → R, we define the strong recession function

g∞(x, z) = lim
t→∞
z′→z
x′→x

g(x′, tz′)

t
,

if the limit exists for x ∈ Ω, z ∈ Rn. This definition holds as well for g without dependency on x.

Remark. It is useful to assume x ∈ Ω to be able to treat boundary conditions, as we will see later.

In the case, that is of interest here, the recession function f∞ of a convex function f : Rn → R

with linear growth

a|z| ≤ f(z) ≤ b(1 + |z|)

turns out to be

f∞(z) = lim
t→∞

f(tz)

t
= sup
v∈Rn

{f(z + v)− f(v)} (2.1)
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and thus fulfills the following inequalities:

a|z| ≤ f∞(z) ≤ b|z|. (2.2)

Additionally, we have the following estimate

f(z + w) ≤ f(z) + f∞(w), (2.3)

which is obtained from the second equality in (2.1).

Remark.

1. In the convex setting, it is not necessary to assume the existence of the limit, since by the

linear boundedness the existence is assured.

2. In the case of the area functional a(z) =
√
1 + |z|2, we have a∞(z) = |z| and for every

positively 1-homogeneous function with or without continuous x-dependency the recession

function coincides with the original function.

3. There are many other definitions of different recession functions. The keyword ‘strong’ indi-

cates, that we consider the limit with respect to all variables, other definitions use the limes

superior or inferior to suite their setting better or give the most general version.

4. Even though we assume linear growth in a very restricted way to be able to define a gener-

alized De Giorgi measure later, it is possible to take other growth conditions into account.

Useful are for example just the upper bound f(z) ≤ b(1 + |z|) or for functions f which

can be negative |f(z)| ≤ b(1 + |z|). Further, general lower limits may be assumed like

f(z) ≥ −a(1 + |z|). If the function is x dependent, it is common to allow further alter-

ation by allowing a function Ψ to appear in the estimates. The function is usually bounded,

bounded on bounded sets for unbounded domains Ω or just in L1
loc or L1. Thus, growth

of the following forms may also be considered like g(x, z) ≤ Ψ + b|z|, |g(x, z)| ≤ Ψ + b|z|,
g(x, z) > Ψ−a|z| and many more. For the discussion of quite general Reshetnyak’s theorems,

we will see some of the mentioned modifications. In all conditions, a, b > 0 is assumed.

The last equality in (2.1) can be obtained by convex theory using properties of the supergraph and

recession cones [60, Theorem 8.5.] or by a simple calculation as follows:

Part 1 : First, we show that f(z + w)− f(w) ≤ f∞(z) for all w ∈ Rn:
For fixed w ∈ Rn, we use the convexity property of f to obtain:

f(z + w)− f(w) = f

(
1

2
(2z + w) +

1

2
w

)
− f(w)

≤ 1

2
f (2z + w) +

1

2
f(w)− f(w).
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Iterating this step, we arrive at the following inequality for all n ∈ N and can further estimate:

f(z + w)− f(w) ≤ 1

2n
f(2nz + w)− f(w) +

n∑
k=1

(
1

2

)k
f(w)

=
1

2n
f

(
1

2
2n+1z +

1

2
2w

)
− f(w) +

(
1−

(
1
2

)n+1

1− 1
2

− 1

)
f(w)

≤ 1

2n+1
f(2n+1z) +

1

2n+1
f(2w)−

(
1

2

)n
f(w)

n→∞−→ f∞(z)

The last limit is computed correctly, since f(2w) and f(w) are both bounded by b(1 + |2w|) <∞
for fixed w. Thus, the supremum supw∈Rn f(z+w)− f(w) is bounded from above by the value of

the recession function f∞(z).

Part 2 : For the reversed inequality, we use

f(tz) = f

(
1

1 + t
0 +

t

1 + t
(1 + t)z

)
≤ 1

1 + t
f(0) +

t

1 + t
f((1 + t)z),

which implies
t

1 + t
f((1 + t)z)− f(tz) ≥ − 1

1 + t
f(0).

Using the last inequality with w = tz for t > 0 we obtain

f(z + tz)− f(tz) =
1

1 + t
f((1 + t)z) +

t

1 + t
f((1 + t)z)− f(tz)

≥ 1

1 + t
f((1 + t)z)− 1

1 + t
f(0)

t→∞−→ f∞(z),

where again the boundedness of f(0) ≤ b is used. Thus, the supremum supw∈Rn f(z + w)− f(w)

is bounded from below by the value of the recession function f∞(z).

Part 1 and Part 2 combined prove the desired equality. It is possible to use this results for

x-dependent functionals g(x, z) to obtain this pointwise estimate and therefore (2.3) holds for

functions g as well.

A different view on recession functions, which comes from the theory involving generalized Young

measure, is to define the recession function g∞ of a continuous g as an extension of a transformed

version of g. For that, the two maps T and T−1 are introduced:

Tg(x, z) := (1− |z|)g
(
x,

z

1− |z|

)
for x ∈ Ω, z ∈ B1(0)

and

T−1p(x, z) := (1 + |z|)p
(
x,

z

1 + |z|

)
for x ∈ Ω, z ∈ Rn.

Obviously, those are inverses of each other. To define the recession function, a bounded and

continuous extension of Tf to S1(0) is required.
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Definition 2.29 (Recession function, alternative definition).

Assume g : Ω×Rn → R is continuous and Tg has a bounded continuous extension to Ω× B1(0),

then the recession function is defined as the positively 1-homogeneous extension of the function

Tg : B1(0)× S1(0) → R, i.e.

g∞(x, z) = |z|Tg
(
x,

z

|z|

)
for x ∈ Ω z ̸= 0

and g∞(x, 0) = 0.

Remark.

1. This definition works also for functions f : Rn → R without x-dependency.

2. For such an extension to exist, it is sufficient that g and g∞ are continuous on Ω×Rn, g has

linear growth at infinity and is convex in the second argument. For the functions considered

in this thesis, we have a|z| ≤ f(z) ≤ b(1 + |z|) which suffices for the existence if f is convex,

since f does not depend on x. In those cases, the definitions of the recession functions are

equivalent. It is noteworthy that for g ∈ C0(Ω×Rn), which is positively 1-homogeneous one

has g∞ = g.

The important impact of this definition in our setting is that the recession function can be approx-

imated in dependence of the modulus of z at infinity:

Theorem 2.30 (Convergence to the recession function).

For f : Rn → R convex and with linear growth a|z| ≤ f(z) ≤ b(1 + |z|) for positive constants a, b,

we have:

∀ε > 0 ∃δ > 0 : |f(z)− f∞(z)| ≤ ε|z| for |z| ≥ 1

δ
. (2.4)

Proof. Since Tf is extendable to S1(0) and since we obtained a bounded continuous function

Tf : B1(0) → R on the compact set B1(0), the function Tf is uniformly continuous and for any

given ε̃ > 0 there exists a δ̃ > 0 such

|Tf(y)− Tf(y0)| = |Tf(y)− f∞(y0)| < ε̃ for all y0 ∈ S1(0) and |y − y0| < δ̃,

especially for y = (1− t)y0 or y0 = y
1−t with t ∈ (0, δ̃) for which we have |y| ≥ 1− δ̃. Since f∞ is

positively 1-homogeneous, we further have

|f∞(y0)− f∞(y)| = |f∞(y0)− f∞((1− t)(y0))| ≤ t|f∞(y0)| ≤ δ̃b(1 + |y0|) = δ̃2b.

Without loss of generality, we may assume δ̃ < ε̃ and thus get

|f∞(y)− f(y)| ≤ (1 + 2b)ε̃.
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For y = z
1+|z| , we obtain

Tf(y) =

(
1− |z|

1 + |z|

)
f

 z
1+|z|

1− |z|
1+|z|

 =
1

1 + |z|
f(z)

f∞(y) =
1

1 + |z|
f∞(z)

and together with |z| ≥ 1 we conclude

|f∞(z)− f(z)| ≤ (1 + 2b)ε̃(1 + |z|) ≤ 2(1 + 2b)ε̃|z| (2.5)

for |y| = |z|
1+|z| ≥ 1− δ̃ which can be resolved to

|z| ≥ 1− δ̃

δ̃
.

In conclusion, we achieve the desired estimate for example with the choice δ := min{δ̃, 1} and

ε := 2(1 + 2b)ε̃.

Remark. The outcome is the same if we demand uniform convergence of f(tz)t to f∞(z) for t→ ∞
for all z ∈ S1(0) (or any other Sr(0) or Br(0)), i.e. for all z ∈ S1(0) and

∀ε > 0 ∃δ > 0 :

∣∣∣∣f∞(z)− f

(
tz

t

)∣∣∣∣ < ε for t ≥ 1

δ
.

Using that property, we can estimate for z ̸= 0 using the positive 1-homogeneity of the recession

function

|f∞(z)− f(z)| =

∣∣∣∣∣∣|z|f∞
(
z

|z|

)
− |z|

f
(
|z| z|z|

)
|z|

∣∣∣∣∣∣ ≤ |z|ε for |z| ≥ 1

δ
,

since z
|z| ∈ S1(0). Again it is possible to include the x-dependency with further assumption on the

continuity of g in x like mentioned in [6, Section 2.3].

With the definition of the recession function we can define linear functionals on measures and on

BV functions.

Functionals on measures

The first to study functionals on measures were Goffman and Serrin [40] in the positively 1-

homogeneous case. This result was eventually generalized to the non-homogeneous case using

the perspective function or homogenized integrand, see for example [34], [63, Chapter 2.1] or [64,

Chapter 2.1]. In the following, we provide the definition and derivation in several different cases,

starting with the positively 1-homogeneous version on which the other build upon and follow the

descriptions in [64, Chapter 2.1]:
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Definition 2.31 (Functionals on measures, part I).

Let Ω ⊂ Rn and g : Ω×Rn → R ∪ {+∞} be a lower semicontinuous function, which is positively

1-homogeneous in the second variable, i.e. h(x, tz) = th(x, z) for all t ≥ 0 and (x, z) ∈ Ω × Rn,
and which fulfills the lower bound constraint

h(x, z) ≥ −Γ|z| for all (x, z) ∈ Ω×Rn

with some positive constant Γ <∞. Then, for a ν ∈ RMloc(X,R
n) with X locally compact subset

of Ω, we define the signed Borel measure h( . , ν) on X by choosing an arbitrary Radon measure µ

with |ν| ≪ µ and setting ∫
E

h( . , ν) :=

∫
E

h

(
. ,
ν

µ

)
dµ (2.6)

for every |ν|-finite Borel set E ⊂ X.

It is easy to see that the value does not depend on the choice of µ and one can always take µ = |ν|.
Further, the dimension of Ω and the target space of the Radon measure do not need to agree.

To be able to treat more general functionals, we introduce the perspective function or homogenized

integrand: For an open Ω ⊂ Rn and a Borel function g : Ω × Rn → R ∪ {+∞}, which is not

necessarily positively 1-homogeneous, we define

g : (Ω× (0,∞)×Rn) ∪ (Ω× {0} ×Rn) → R ∪ {±∞}

with

g(x, t, z) = tg
(
x,
z

t

)
for (x, t, z) ∈ (Ω× (0,∞)×Rn)

with the extension g(x, 0, 0) = 0 for x ∈ Ω and

g∞(x, z) := g(x, 0, z) := lim inf
t→0
z′→z
x′→x

g(x′, t, z′) for (x, z) ∈ Ω× (Rn \ {0}) (2.7)

for t = 0. The constructed function g can reproduce the starting function g with t = 1 and a version

of the recession function g∞ for t = 0 and is positively 1-homogeneous with respect to (t, z) and

g∞ is positively 1-homogeneous in z. If the limit t ↘ 0 exists and is not only a limes inferior, we

even get the strong recession function like in Definition 2.28. The additional assumption

f(x, z) ≥ −Ψ(x)− Γ|z|

for some non-negative function Ψ and Γ < +∞, which entails g(x, t, z) ≥ −tΨ(x)− Γ|z| for t > 0,

paired with Ψ being either bounded on bounded subsets of Ω or being such that the limes inferior

is indeed a limes, which ensures g∞ to be the strong recession function, leads to

g∞(x, t) ≥ −Γ|z| for all (x, z) ∈ Ω×Rn.

This provides, that the functional can not attain the value −∞ and that at every point of the set

Ω× {0} ×Rn the function g is lower semicontinuous in z as well as g∞. As before, convexity of g

implies convexity of g in (t, z) and convexity of g∞ in z. Relying on the results from [40] and as
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shown in [64], we can state the following definition:

Definition 2.32 (Functionals on measures, part II).

Let Ω be an open subset Ω ⊂ Rn and g : Ω×Rn → R a Borel function fulfilling

g(x, z) ≥ −Ψ(x)− Γ|z| and g∞(x, z) ≥ −Γ|z|

for (x, z) ∈ Ω × Rn and (x, z) ∈ Ω × Rn, respectively, and with Γ < +∞. Then, for a Radon

measure ν ∈ RMloc(X,R
n) on a locally compact subset X ⊂ Ω with |X ∩ ∂Ω| = 0, Ψ ∈ L1

loc(X)

and a Radon measure µ on X with Ln X + |ν| ≪ µ, we define a signed Borel measure g( . , ν) on

X by setting∫
E

g( . , ν) :=

∫
E

g

(
. ,

Ln Ω

µ
,
ν

µ

)
dµ for every (ΨLn + |ν|)-finite Borel set E ⊂ Ω. (2.8)

Remark.

1. The definition does not depend on the choice of µ, which is easy to check using the posi-

tive 1-homogeneity of g in (t, z). Further, the Definitions 2.31 and 2.32 coincide for lower

semicontinuous and positively 1-homogeneous g.

2. With the particular choice µ = Ln X + |ν|s with the usual Lebesgue decomposition of

ν = νa + νs we arrive at the usually considered functional on measures∫
E

g( . , ν) =

∫
E∩Ω

g( . , νa) dx+

∫
E

g∞
(
. ,
νs

|ν|s

)
d|ν|s (2.9)

for all Borel sets E ⊂ X with |Ψ|Ln(E) + |ν|(E) < +∞. At this point we stress that

|X ∩ ∂Ω| = 0 ensures, that the integral involving the absolute continuous parts with respect

to the Lebesgue measure can be written without dependency of the boundary.

3. In the paper [46] by Kristensen and Rindler, such functionals are treated in the setting of

generalized Young measures, which has added to the theory and provided some interesting

features on the description of such convergences in the BV setting through generalized Young

measures. This allows a better understanding in context of relaxation and by provides better

convergence theorems, as presented in the next part.

4. As a side note, we mention that f may take negative values, and thus Γ is allowed to take

arbitrary real values in contrast to the used constants a, b > 0. The additional constraint

which we put upon our integrand for the double obstacle problem, comes from the interaction

of the recession function and the generalized De Giorgi measure.

5. In general, we are interested in E = Ω or E = Ω. Those cases are considered, for example,

in [4], where the difference between the closure and the open set is under considerations in

connection with boundary concentration effects. For example, with the derivative of BV

functions in mind, jumps can occur at the boundary which has to be tracked for prescribed

boundary values.
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Corollary 2.33 (Addendum to Definition 2.32).

1. The definition still holds under the assumption Ψ ∈ L1(Ω), ν ∈ RMloc(Ω,R
n) with X = Ω

for some open set Ω and with an additional upper bound in the form

|g(x, z)| ≤ Ψ(x) + b|z|

for some finite b > 0. In that case, g( . , ν) is a Radon measure. This formulation is useful

to look at the local behavior of the functional and without considering boundary values.

2. With a given boundary condition the boundary values have to be tracked. In that case, one

usually assumes Ln(∂Ω) = 0, Ψ ∈ L1(Ω) and considers only finite Radon measure ν ∈
RM(Ω,Rn) with X = Ω for some open set Ω. Here, g( . , ν) is even a finite Radon measure.

Back to our BV setting for functionals with convex integrands of linear growth, we can plug in the

derivative measure of a BV function and get dependent on the boundary constraint the following

definitions:

Definition 2.34 (Functionals on BV).

For an open bounded set Ω, f : Rn → R convex and with a|z| ≤ f(z) ≤ b(1+ |z|) for some positive

constants a, b, we define for u ∈ BV(Ω):

F [u] :=

∫
Ω

f(Dau) dx+

∫
Ω

f∞
(

Dsu

|Dsu|

)
d|Dsu|. (2.10)

If in addition boundary values are prescribed by a function u0 ∈ L1(∂Ω) on a suitable domain, i.e.

at least |∂Ω| = 0, or by considering BVu0(Ω) for some u0 ∈ BV(Rn) , we define

Fu0 [u] :=

∫
Ω

f(Dau) dx+

∫
Ω

f∞
(

Dsu

|Dsu|

)
d|Dsu|+

∫
∂Ω

f∞(νΩ(u0 − uint)) dHn−1. (2.11)

for u ∈ BV(Ω) and with the exterior normal vector νΩ to the domain Ω.

Remark.

1. The last term in (2.11) can be understood as a penalizing term for wrong boundary values.

Since weak* convergence does not preserve boundary values, there is no way to enforce them

in general settings but only to penalize the violation of the boundary condition. The term

itself is the portion of the singular part of (2.9) contained in the boundary ∂Ω.

2. These representations hold for integrands g with x-dependency as well as under the assump-

tions of Definition 2.32 with the versions explained in Corollary 2.33.

In fact, the functionals (2.10) and (2.11) are the relaxation of the associated W1,1-functionals. To

be able to prove that and before we define and explain relaxation more detailed, we need to provide

some convergence theorems for such functionals. Prior to this, we state a more generalized version

of the co-area formula for BV functions, which can be found in [17, Lemma 2.4]:
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Theorem 2.35 (Generalized co-area formula).

For an open set Ω ⊂ Rn, u ∈ BVloc(Ω) and a Borel function g : Ω × Rn → [0,+∞], which is

convex and positively 1-homogeneous as a function z 7→ g(x, y, z) for all (x, y) ∈ Ω×R, we have

∫
Ω

g(x,Du) =

∫
R

∫
Ω

g

(
x,

D1Ut

|D1Ut
|

)
d|D1Ut

|

 dt

with Ut = {x ∈ Ω : u(x) ≥ t}.

This co-area formula especially holds for integrands f : Rn → [0,+∞] which are convex and posi-

tively 1-homogeneous and, as shown in [17, Lemma 2.4], even holds, if the integrand is additionally

dependent on the function u itself.

2.3 Reshetnyak’s theorems and area-strict convergence

The lower semicontinuity theorem and continuity theorem for functionals on measures were pro-

vided by Reshetnyak in his paper in [57] for positively 1-homogeneous functionals. With the con-

struction in the last section the semicontinuity theorem can be transferred without much change,

but for the continuity theorem the strict convergence used in the positively 1-homogeneous case

must be adjusted.

Definition 2.36 (Area-strict convergence for Radon measures).

For a locally compact subset X of Rn, we say that νk converges area-strict in RM(X,Rn) to ν if

νk converges weakly* to ν in RM(X,Rn) and in addition

lim
k→∞

∫
X

√
1 + |νk|2 =

∫
X

√
1 + |ν|2. (2.12)

Remark. Area-strict convergence is the strict convergence for the vector-valued measure of νk with

Ln, i.e. it can be written as |(Ln, νk)|(X) → |(Ln, ν)|(X) for k → ∞. For BV functions, this is

analogous to A[uk] → A[u] with the addition of uk → u in L1(Ω) for k → ∞.

Indeed the area-strict convergence is stronger than strict convergence. To see that, the following

example as presented in [59, in Section 2.2] may be used:

Consider on the interval (0, 1) the sequence uk(x) = x + 1
2πk sin(2πkx) in W1,1((0, 1)). Then

∇uk(x) is given by 1 + cos(2πkx) and we can compute:

1. uk → u in L1((0, 1)) with u(x) = x.

2. uk → u weakly* in W1,1((0, 1)) ⊂ BV((0, 1)).

3. ∫
(0,1)

|∇uk|dx =

∫
(0,1)

1 + cos(2πkx) dx = 1 +
1

2πk
[sin(2πkx)]

1
0
k→∞−→ 1 =

∫
(0,1)

|∇u|dx.
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4. Using Jensen’s inequality on the convex function t 7→
√
1 + t2, we obtain∫

(0,1)

√
1 + (1 + cos(2πkx))2 dx =

1

2πk

∫
(0,2πk)

√
1 + (1 + cos(x))2

=
1

2π

∫
(0,2π)

√
1 + (1 + cos(x))2 dx

>

1 +

 1

2π

∫
(0,2π)

1 + cos(x) dx


2

1
2

=
√
1 + 1 =

√
2 =

∫
(0,1)

√
1 + 1dx,

where we have the strict inequality, since the requirement for the equality in the Jensen

inequality is not fulfilled, here: z 7→
√

1 + |z|2 is strict convex and 1+cos(x) is not constant.

As we will see later, area-strict convergence implies strict convergence and thus the statement is

proven. One can interpret this fact the following way: In general, strict convergence in BV does

not prohibit cancelling oscillation effects as presented in the example, while the area integral with

a strict convex integrand accounts for such effects.

Next, we can state both Reshetnyak’s theorems in different versions following [64, Section 2.2].

The first stated result is the lower semicontinuity theorem for the positively 1-homogeneous case

from which the general case follows according to the generalization presented in the last section.

For more details, see for example [3, Theorem 2.38].

Theorem 2.37 (Lower semicontinuity theorem, part I).

For an open set Ω ⊂ Rn and a lower semicontinuous function h : Ω × Rn → [0,+∞], which is

convex and positively 1-homogeneous in the second argument, we have the following estimate: If

νk converges locally weakly* to ν in RMloc(Ω,R
n), then

lim inf
k→∞

∫
Ω

h( . , νk) ≥
∫
Ω

h( . , ν) (2.13)

holds.

As mentioned, this result easily extends to the non-homogeneous version.

Corollary 2.38 (Lower semicontinuity theorem, part II).

For an open set Ω ⊂ Rn with |∂Ω| = 0 and a lower semicontinuous function g : Ω×Rn → [0,∞],

which is convex in the second argument, we have the following estimate: If νk converges locally

weakly* to ν in RMloc(Ω,R
n), then

lim inf
k→∞

∫
Ω

g( . , νk) ≥
∫
Ω

g( . , ν). (2.14)

Similarly, for the BV case, we have:
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Corollary 2.39 (Lower semicontinuity theorem, part III).

For an open set Ω ⊂ Rn with |∂Ω| = 0 and a lower semicontinuous function g : Ω×Rn → [0,∞],

which is convex in the second argument, we have the following estimate: If uk converges weakly*

to u in BV(Ω), then

lim inf
k→∞

∫
Ω

g( . ,Duk) ≥
∫
Ω

g( . ,Du). (2.15)

Remark. This statement coincides with what we defined and know about boundary value problems:

If for a suitable domain Ω, the sequence uk ∈ BVu0(Ω) converges weakly* to some u ∈ BV(Ω)

which does not satisfy the boundary condition, in the term on the left-hand side the closure of Ω

may be dropped, i.e. the functional over Ω and the functional over Ω have the same value, but it

can still appear on the right-hand side.

Further, the closure on both sides may be dropped as presented in [3, Theorem 2.38] for finite

Radon measures even if the sequence does not have the right boundary values.

In contrast to the lower semicontinuity theorems, the continuity theorem provides an explicit value

for strict convergent sequences of Radon measures in the homogeneous case, see for example [3,

Theorem 2.39]:

Theorem 2.40 (Continuity theorem, part I).

For an open set Ω ⊂ Rn, a continuous and in the second argument positively 1-homogeneous

function h : Ω×Rn → R satisfying

|h(x, z)| ≤ Γ|z| for (x, z) ∈ Ω×Rn

for some constant Γ < +∞ and a sequence νk converging strictly in RM(Ω,Rn) to ν, we have

lim
k→∞

∫
Ω

h( . , νk) =

∫
Ω

h( . , ν). (2.16)

For the non-homogeneous version, the strict convergence has to hold for (t, z), implying that the

sequence of Radon measures has to converge in area. Thus, the theorem can be written as:

Corollary 2.41 (Continuity theorem, part II).

For an open set Ω ⊂ Rn with |Ω| < +∞, a continuous function g : Ω×Rn → R satisfying

|g(x, z)| ≤ Γ(1 + |z|) for (x, z) ∈ Ω×Rn

for some constant Γ < +∞ and such that the strong recession function g∞ of g exists, we have for

a sequence νk converging area-strictly in RM(Ω,Rn) to ν the following equality:

lim
k→∞

∫
Ω

g( . , νk) =

∫
Ω

g( . , ν). (2.17)
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Remark.

1. The additional continuity assumption on g is rather obstructive, since it is required in both

arguments and not only the last one. This restriction was removed by Kristensen and Rindler

in [46] and further generalized by Beck and Schmidt in [6, Theorem 3.10] to merely measur-

ability in the first argument. The version is presented after the remarks.

2. With the first remark in mind, the prerequisite of the lower semicontinuity theorem and

continuity theorem differ by the kind of convergence and by the convexity or continuity

assumption in the second variable. In many cases considered, all requirements are fulfilled.

3. In many cases, the area-strict convergence for the continuity theorem can be replaced by

Ψ-strict convergence, i.e.
√
Ψ+ | . |2 is used instead of

√
1 + | . |2, with Ψ ∈ L1(Ω) bounded

away from 0 on every bounded subset of Ω or similar requirements. This is very important

on sets Ω with infinite Lebesgue measure, i.e. where |Ω| = ∞, since for sets with finite

Lebesgue measure one can choose Ψ ≡ 1. Indeed, the Ψ-strict and area strict convergence

are equivalent on sets with finite Lebesgue measure and we will thus only consider the area-

strict convergence on such sets and thus especially on bounded sets Ω.

4. All results regarding recession functions, functionals on measures and (semi-)continuity re-

sults for Radon measures from the last and this subsection as well as the following version of

continuity theorem on Radon measures hold for Rm-valued Radon measures as well with the

basically the same definitions and proofs. We choose here to state only the Rn-valued cases,

since we are mostly interested in functionals on BV, where the dimensions of the domain and

target space of the Radon measure coincide because of the gradient structure.

Theorem 2.42 (Continuity theorem, part III).

For an open subset Ω ⊂ Rn with |∂Ω| = 0, a function g : Ω×Rn → R such that

� g( . , z) is measurable for all z ∈ Rn and such that g(x, . ) is continuous for all x ∈ Ω (i.e.

the function is a Carathéodory function),

� fulfills

|g(x, z)| ≤ Ψ(x) + Γ|z| for all (x, z) ∈ Ω×Rn,

with a constant Γ <∞ and some Ψ ∈ L1(Ω), which is bounded away from 0 on every bounded

subset of Ω, and

� has a strong recession function g∞,

and some νk converging Ψ-strictly to ν in RM(Ω,Rn), we have

lim
k→∞

∫
Ω

g( . , νk) =

∫
Ω

g( . , ν). (2.18)

Again we can use this theorem for the BV case and obtain:

Corollary 2.43 (Continuity theorem, part IV).

For an open subset Ω ⊂ Rn with |∂Ω| = 0, a function g : Ω ×Rn → R like in the theorem before
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and some uk converging Ψ-strictly to u in BV(Ω), we have

lim
k→∞

∫
Ω

g( . ,Duk) =

∫
Ω

g( . ,Du). (2.19)

Remark. This result also proves that area-strict convergence in BV implies strict convergence in

BV and with the counterexample provided, that merely strict convergence does not suffice for the

continuity theorems in the non-homogeneous case.

For more details and proofs on the advanced versions, consider reading [6, Theorem 3.10], [64,

Section 2.2], [46]. Some simple proofs and some different versions are also presented in [66] and a

further discussion in the homogeneous case can be found in [21].

To be able to generate area-strict convergent sequences for BV functions and to use the continuity

theorems for BV functions, the following result was proven in [13] and is helpful for obstacle

problems, since it allows to approximate BV functions in area with W1,1-functions:

Theorem 2.44 (Area-strict approximation from above, see [13, Theorem 3.3]).

Let Ω be a bounded open set of Rn and u ∈ BV(Ω). Then there exists a sequence uk ∈ W1,1(Ω)

converging in area to u on Ω such that u∗k ≥ u+ Hn−1-a.e. on Ω.

This theorem implies the following density property, which also can be proven much easier without

the last theorem:

Corollary 2.45 (Density with respect to area-strict convergence).

For open bounded sets Ω, the space W1,1(Ω) is dense in BV(Ω) with respect to convergence in area.

Another important convergence theorem is provided in [58, Lemma 11.1], see also [46, Lemma 1]:

Theorem 2.46 (Area-strict approximation).

For each bounded open Ω and u ∈ BV(Ω), there exists a sequence uk ∈ W1,1
u (Ω) ∩ C∞(Ω) with

uk = u on ∂Ω and uk → u area-strict in BV(Ω). If u is additionally in W1,1(Ω), the sequence uk

can be chosen such that it converges in W1,1(Ω) to u.

For the proof, see [58, Lemma 11.1] or [46, Appendix A]. The proofs show, that for u ∈ L∞(∂Ω)

the sequence can be chosen such that each element is in L∞ in addition to the other constraints

and for u ∈ L∞(Ω) the sequence can be chosen bounded in L∞(Ω) with sup ||uk||∞ ≤ ||u||∞, see

for example [59, Proposition 2.3].

As mentioned, the space BVu0
(Ω) for suitable Ω is not closed, taking both traces into account.

This plays an important role for boundary value problems and thus an approximation for any

u ∈ BV(Ω) in BVu0
(Ω) is needed. This is no problem for Lipschitz domains, but is also possible

for domains with a weaker condition to the boundary, see [6, Lemma 3.12] and [65, Theorem 1.2]:

Theorem 2.47 (Area-strict approximation with fixed boundary).

For a bounded domain Ω ⊂ Rn with 1Ω ∈ BV(Rn) and |D1Ω| = Hn−1 ∂Ω, a given u0 ∈ W1,1(Rn)

and a function u ∈ BV(Ω) with 1Ωu ∈ BV(Rn), there exists a sequence uk ∈ W1,1
u0

(Ω) converging
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in area to u on Ω, i.e.

uk −→ u in L1,∫
Ω

√
1 + |Duk|2 dx −→

∫
Ω

√
1 + |Du|2.

In addition, the sequence may be chosen such that ∇uk → Dau Ln-a.e.

Remark. The results in Theorem 2.47 may be considered on unbounded Ω. For that, the area-strict

convergence must be switched to Ψ-strict convergence with a non-negative function Ψ ∈ L1(Ω).

Further, in both cases the sequence can be chosen in u0 +C∞
cpt(Ω) ⊂ W1,1

u0
(Ω).

Next, we state the definition of the process of relaxation.

2.4 Relaxation of Dirichlet and obstacle problems

A main tool to treat variational problems is the method of relaxation. The underlying idea is to

replace a given functional with a lower semicontinuous one which attains the same infimum or

minimum. For example, as seen in the introduction, lower dimensional obstacles are not preserved

in general, but the values of the functional may be bounded from below on the class of func-

tions considering the obstacle. Another example is minimization in Dirichlet classes or in general

with boundary conditions. For example, in the space BV the boundary values are preserved for

strictly convergent sequences, but a minimal sequence does not have to have a strictly convergent

subsequence. As mentioned, the Sobolev space W1,1 is not closed under the typical convergences

and thus functionals may not attain the infimum in W1,1 and thus the relaxation will involve BV

functions. In all mentioned cases, a larger space has to be considered, but to do so, the initial

functionals often have to be extended to a larger space. In case of W1,1, the relaxation is often

constructed in the space L1.

For a general functional on a metric space X, the relaxation can be defined in the following way,

see for example [13, Remark 6.1] or [5, Chapter 11]:

Definition 2.48 (Relaxation).

The relaxation F of a given (proper) functional F on a metric space X with values in R ∪ {+∞}
is uniquely determined by the following two conditions:

a) For every u ∈ X and every sequence (uk)k∈N converging to u in X, we have

F[u] ≤ lim inf
k→∞

F[uk].

b) For every u ∈ X, there exists a sequence (uk)k∈N converging to u in X with

F[u] ≥ lim sup
k→∞

F[uk].
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Equivalently, the relaxation of such a functional F can be defined by

F = inf

{
lim inf
k→∞

F[uk] : (uk)k∈N converges to u in X

}
.

Remark.

1. A function f is called proper, if f > −∞ and there exists at least some x ∈ X such that

f(x) < +∞.

2. The property noted in a) in Definition 2.48 ensures the lower semicontinuity of F. The

sequence in b), which is required to exist, is often called recovery sequence and the existence

enforces, that the infimum of the values of the functional and its relaxation are the same.

3. The relaxation can be seen as a special case of Γ-convergence with only constant sequences

of functionals. For more details, see [5, Chapter 12], and on general notes to Γ-convergence

[9] or [48] may be recommended.

4. In general, we are going to use the space L1 with the strong topology, i.e. the topology induced

by the L1-norm, to define our functionals and compute their relaxation. Theoretically, the

space BV could also be considered using the weak* convergence without much change.

Since we will work with convex functions and integrands, we skip convex and quasiconvex envelopes

which are often presented in combination with relaxation and are (partially) contained, for example,

in [5] and are well known aiming experts and instead study some examples.

In the first example, we investigate the relaxation of the area functional in L1 without any additional

constraints:

Example 1: Consider an open bounded set Ω and the area functional on L1(Ω) given by

A[u] =


∫
Ω

√
1 + |∇u|2 dx for u ∈ W1,1(Ω),

+∞ for u ∈ L1(Ω) \W1,1(Ω).

Then the relaxation is given by A = A with

A[u] =


∫
Ω

√
1 + |Du|2 for u ∈ BV(Ω),

+∞ for u ∈ L1(Ω) \ BV(Ω).

Proof. For a sequence uk ∈ L1(Ω) converging with respect to the strong topology to u ∈ L1, we can

encounter the case where the limit is a function in L1(Ω)\BV(Ω). Here, the sequence consists either

of L1(Ω) functions, where the functional A has value +∞ and thus the limit in a) of Definition 2.48

is +∞, an unbounded sequence in W1,1(Ω) with unbounded ||∇uk||1, thus the limit is again +∞,

or a combination of both. In both cases, the limit is +∞. Since uk → u in L1, ||uk||1 is always

bounded and thus the case with unbounded ||uk||1 cannot occur. If the limit u is in BV(Ω), we have

either a sequence with uk ∈ L1(Ω) \W1,1(Ω) and thus lim infk→∞ A[uk] = +∞ ≥ A[u], a sequence

in W1,1(Ω) ⊂ BV(Ω) for which we can use Theorem 2.39 to prove lower semicontinuity or we have

the combination of both. In conclusion, the provided functional A fulfills the lower semicontinuity

requirement for the relaxation. For the second part, we use Corollary 2.45 to obtain a sequence

uk ∈ W1,1(Ω) with uk → u in area and thus especially in L1(Ω), see remark to Definition 2.36. For

38



this sequence, we get, by applying Corollary 2.43, that it is the desired sequence, which fulfills b)

in Definition 2.48.

The second example deals with an additional boundary value constraint again for the area func-

tional:

Example 2: Assume Ω is a bounded Lipschitz domain, which is why we can compute a trace on ∂Ω

and let u0 ∈ W1,1(Ω) define the boundary values via the Dirichlet class W1,1
u0

(Ω). The relaxation

of

Au0
[u] =


∫
Ω

√
1 + |∇u|2 dx for u ∈ W1,1

u0
(Ω),

+∞ for u ∈ L1(Ω) \W1,1
u0

(Ω)

is given by Au0
= Au0

with

Au0 [u] =


∫
Ω

√
1 + |Du|2 +

∫
∂Ω

|u0 − uint|dHn−1 for u ∈ BV(Ω),

+∞ for u ∈ L1(Ω) \ BV(Ω).

Proof. The first part can be proven like in Example 1. Using Theorem 2.46 instead of Corollary

2.45, we obtain the desired functional for u ∈ BVu0
(Ω) and u ∈ L1(Ω)\BV(Ω). For this, note that

since Ω is a Lipschitz domain and by Definition 2.16 for the Dirichlet classes and u ∈ BVu0
(Ω), we

have ∫
Ω

√
1 + |Du|2 =

∫
Ω

√
1 + |Du|2 +

∫
∂Ω

|u0 − uint|dHn−1.

For u ∈ BV(Ω) \ BVu0
(Ω), we note that the weak* closure of BVu0

(Ω) is BV(Ω) and explicit

approximations can be construction like in [7, Lemma B.2].

On more general open domains a similar result may be achieved:

Example 2’: The result in Example 2 remains true for domains Ω satisfying 1Ω ∈ BV(Rn) and

|D1Ω| = Hn−1 ∂Ω. Here, instead of the construction in [7, Lemma B.2] the last step is provided

by Theorem 2.47.

The last example is concerned with obstacles to hold Ln-a.e.
Example 3: If in the setting of Example 1 or Example 2 the additional lower obstacle constraint

with a Borel obstacle function ψ is added, we obtain that the relaxation of

Aψ[u] =


∫
Ω

√
1 + |∇u|2 dx for u ∈ {w ∈ W1,1(Ω) : w ≥ ψ holds Ln-a.e.},

+∞ for u ∈ L1(Ω) \ {w ∈ W1,1(Ω) : w ≥ ψ holds Ln-a.e.}

is given by A
ψ
= Aψ with

Aψ[u] =


∫
Ω

√
1 + |Du|2 for u ∈ {w ∈ BV(Ω) : w ≥ ψ holds Ln-a.e.},

+∞ for u ∈ L1(Ω) \ {w ∈ BV(Ω) : w ≥ ψ holds Ln-a.e.}

and the relaxation of

Aψu0
[u] =


∫
Ω

√
1 + |∇u|2 dx for u ∈ {w ∈ W1,1

u0
(Ω) : w ≥ ψ holds Ln-a.e.},

+∞ for u ∈ L1(Ω) \ {w ∈ W1,1
u0

(Ω) : w ≥ ψ holds Ln-a.e.}
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is given by A
ψ

u0
= Aψ

u0
with

Aψ
u0
[u] =

 Aψ[u] +
∫
∂Ω

|u0 − uint|dHn−1 for u ∈ {w ∈ BV(Ω) : w ≥ ψ holds Ln-a.e.},

+∞ for u ∈ L1(Ω) \ {w ∈ BV(Ω) : w ≥ ψ holds Ln-a.e.}.

The proof is identical to the ones of Example 1 and 2 with the specification that L1 convergence

preserves the obstacle inequality for the limit and finer arguments involving the restriction of using

area-strict approximation from above from Theorem 2.44 instead of approximation preserving the

trace from Theorem 2.46. This can be handled using a similar approach like in the last part of the

proof for Example 2.

The case with the double obstacle problem to hold Ln-a.e. for two Borel obstacles ψ1 ≤ ψ2 can

be treated similarly using an additional truncation argument, which keeps the area-strict sequence

in between the obstacles. This result can be also established by using the argument presented in

Section 4.

Remark. For the readability, we write for the relaxation of functionals involving obstacle term F
ψ

instead of Fψ and so on.

For more general notes on relaxation for the BV setting, the articles [2], [8], [17], [30] and [45] and

the book [10] may be considered. They are adding to the theory among many other sources.
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3 The De Giorgi measure and the single obstacle problem

3.1 The De Giorgi measure and a counterexample by Hutchinson

In this section, we take a closer look at the De Giorgi measure, which is essential for the relaxation

of parametric and non-parametric obstacle problems. We start with the definitions and variations

provided in [20, Chapter 4] and [15].

Definition 3.1 (De Giorgi measure).

For a set E ⊂ Rn and δ > 0, let

ςδ(E) = inf

{
P(B) +

|B|
δ

: E ⊂ B, B open

}
(3.1)

be the δ-De Giorgi measure, where P is the perimeter, and, as for the Hausdorff measure, define

the De Giorgi measure ς by

ς(E) = lim
δ↘0

ςδ(E) = sup
δ>0

ςδ(E). (3.2)

In the original article, the set B had to be in the class Gn, which fixes the representative of a given

set sufficiently for their use of it. More precisely, a set B was in Gn iff the following properties were

fulfilled:

lim
r↘0

r−n|B ∩ Br(x)| = 0 ⇒ x /∈ B,

lim
r↘0

r−n|Br(x) \B| = 0 ⇒ x ∈ B.

Colombini then proved, that the definition provided with open sets is equivalent to the one with

the class Gn. There exist different approaches to De Giorgi’s measure, which we will see later when

a generalized version is presented.

In [20], many extended results were already proven like the fact that ς is a Borel regular measure

and a first estimate of the type

c(n)Hn−1 ≤ ς ≤ C(n)Hn−1 (3.3)

with two constants c, C depending only on the dimension n. At this stage, it was not clear,

whether the introduced measure is equal to 2Hn−1 or not. Also in [20] was proven that for a set

E contained in a countable union of C1-hypersurfaces, which can easily be generalized to E being

Hn−1-rectifiable, the equality

ς(E) = 2Hn−1(E) (3.4)

holds. Still it seemed not possible to prove a formula for the relaxation of the parametric double

obstacle problem with the Hausdorff measure instead of the De Giorgi measure. It turned out that

a set could be found in Federer’s book [25, 2.10.28 and 3.3.20] (with m = 1
2 ) and was proven to be

a counterexample for the equality (3.4) to hold for general Borel sets by Hutchinson in [41]. The

constructed set is a Cantor dust, i.e. a 1-dimensional Cantor set in R2. The main idea behind

41



this construction is to provide a sequence of sets, where each set has a circumference of 4, but can

be rearranged such that the set converges to the diagonal of the unit square with length
√
2 and

therefore indicates that the Hausdorff measure is equal to
√
2. In the following, we introduce the

constructed set and revisit the (sketch of the) proof given by Hutchinson in [41].

First, we define I0 = [0, 1] and set

Ik =

(
1

4
Ik−1

)
∪
(
3

4
+

1

4
Ik−1

)
∀k ∈ N.

For k ∈ N0, we further set

Ck = Ik × Ik,

C =

∞⋂
k=0

Ck

and thus obtain a decreasing sequence of sets with C ⊂ . . . ⊂ Ck+1 ⊂ Ck ⊂ Ck−1 ⊂ . . . ⊂ C0.

Figure 1: construction steps k=0, 1, 2 (from left to right)

For this purely H1-unrectifiable set, we are able to prove the following first estimate:

Theorem 3.2 (Hausdorff measure of C).

The Hausdorff measure of the set C is bounded from above by
√
2.

Proof. Since in each construction step the set Ck consists of 4k squares with side length 4−k and

diagonal length
√
2 · 4−k, we can estimate the Hausdorff premeasure H1

δ(C):

By the choice of k0 such that
√
2 · 4−k0 < δ and by covering each square with a ball of diameter√

2 · 4−k0 , we obtain:

H1
δ(C) ≤ H1

δ(Ck0) ≤ 4k04−k0
√
2 =

√
2.

With H1(C) = lim
δ↘0

H1
δ(C) ≤

√
2, the result is proven.

Indeed, in [25, 3.3.20] it is shown, that H1(C) =
√
2, but because of the length of the proof and

because it is not necessary for our primary goal to disprove ς = 2H1, this is not proven here. Next,

we calculate the value of ς(C):

Theorem 3.3 (De Giorgi measure of C).

For C as given above, the De Giorgi measure of C is equal to 4.
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The proof is divided into two parts, the first provides the inequality ς(C) ≤ 4, which is not

necessarily needed but easy to obtain:

Proof. Part I : We first observe that P(Ck) = 4 and |Ck| = 4−k for all k ∈ N0. For a given ε > 0

and arbitrary k ∈ N, we thus can find a suitable open set Bk with C ⊂ Ck ⊂ Bk, P(Bk) ≤ 4 + ε
2

and |Bk| ≤ 4−k + εδ
2 . With that we obtain by monotonicity:

ςδ(C) ≤ 4 +
1

4kδ
+ ε ∀k ∈ N and ε > 0,

which implies ςδ(C) ≤ 4 (k → ∞ and ε↘ 0) and hence ς(C) ≤ 4 .

Part II: For the second part, we need some auxiliary statements and definitions. The main idea

is to prove that every open set containing C contains the set Ck for some k and estimate the

perimeter using an approximation of the normal vector field to each square contained in Ck. This

is accomplished in the following steps:

1. For any open set A with C ⊂ A, there exists k ∈ N such that Ck ⊂ A.

Proof. Assume that Ck \ A ̸= ∅ for all k. Then there exists a sequence xk ∈ Ck \ A with a

converging subsequence xk → x, since all Ck are compact. Because x is in C ⊂ A and A is

open, we reach a contradiction.

2. Next, we look at the construction of the set and fix a notation for each square and the 4

squares obtained through performing one construction step k 7→ k + 1. For a center point

a = (a1, a2) ∈ R2 and some radius r > 0, we define the square S = S(a, r) ⊂ R2 given by

S(a, r) =
{
x = (x1, x2) ∈ R2 : ∥ x− a ∥∞≤ r

}
.

Further, starting at the top left corner and going left to right and top to down, we define the

corner squares S1, S2, S3 and S4, see Figure 2:

S1 = S

((
a1 −

3

4
r, a2 +

3

4
r

)
,
r

4

)
, S2 = S

((
a1 +

3

4
r, a2 +

3

4
r

)
,
r

4

)
,

S3 = S

((
a1 −

3

4
r, a2 −

3

4
r

)
,
r

4

)
, S4 = S

((
a1 +

3

4
r, a2 −

3

4
r

)
,
r

4

)
.

The corresponding corners of the larger square S are denoted by s1, s2, s3 and s4.

3. Next, we define a property which states an approximating quality to the normal vectorfield

of each square. A vectorfield φ ∈ C1(S,R2) is (S, ε)-normal iff

– |φ(x)| ≤ 1 for all x ∈ S,

– |φ(x)| = 0 if x ∈ ∂S and |x− si| ≤ ε for any i = 1, 2, 3, 4,

– φ(x)
|φ(x)| = ν(x) for all x ∈ ∂S ∩ {|φ(x)| ≠ 0} (ν outward normal to S),

– Dφ(x) · ν(x) = 0 for all x ∈ ∂S.

Here, ‘·’ denotes the matrix-vector product and we note, that the function φ ≡ 0 is (S, ε)-

normal.
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4. For any S, it is easy to construct a (S, ε)-normal function φ, for example, by using mollifica-

tion: One possibility would be to take rectangular ‘neighborhoods’ of parts of the vertices,

which have for some sufficiently small 0 < δ ≪ r
4 a distance of ε+ δ from the corners of the

square S and expands by δ in the perpendicular direction to the contained vertices. On those

‘neighborhoods’ define φ as the constant outward normal vector of the only vertex contained

in the neighborhood and mollify with the usual symmetric mollifier scaled accordingly with
δ
2 . It is easy to verify that the such constructed field φ is (S, ε)-normal. By Stokes formula,

we have ∫
S

divφdx =

∫
∂S

φ · ν dH1 ≤ 8r − 8ε

providing a lower bound. Further, it is possible to construct a (S, ε)-normal function φ such

that
∫
S
divφdx is arbitrary close to 8r − 8ε or, for example, equal to 8r − 9ε.

5. Given (Si, ε)-normal φi on Si for i = 1, 2, 3, 4, we can extend them to a (S, ε)-normal function

φ on S with φ
∣∣
Si

= φi and divφ = 0 on S \
⋃4
i=1 Si.

Figure 2: Square S and subsquares Si Extension φi to φ with sample vectors

Proof. The main idea is to ‘rotate’ the approximating normal vector provided by each φ from

inner boundary parts of Si in S to boundary parts of S. For example, for the right side of

the lower left square, we can define the extension using polar coordinates in the following

way:

For x = (x1, x2) = (a1 − r
2 + ρ cos(ϑ), a2 − r + ρ sin(ϑ)) with 0 ≤ ρ ≤ r

2 and 0 ≤ ϑ ≤ π
2 , we

define

φ(x1, x2) = −
∣∣∣φ3

(
a1 −

r

2
, a2 − r + ρ

)∣∣∣ (− sin(ϑ), cos(ϑ))
T
.

Applying this to every side and by setting φ = 0 on the remaining part of S, the desired

extension is found. Since all vertices of S are vertices of some Si and the normal vectors

are ‘rotated’ smoothly in a way to match the normal vector field of S or be equal to 0, we

obtain that the defined extension is C1 by the last property of (S, ε)-normal fields and the

other properties are passed on accordingly. Thus the extension is indeed (S, ε)-normal for

the same ε as the φi before.

It remains to check, if the extension is divergence free outside of the Si, i = 1, . . . , 4. This is

clear by definition or can be checked using the divergence in polar coordinates.

Finally, we are able to implement the proof. For an open set A containing C, we can

assume A to be bounded: For A with |A| = +∞, we have ς(A) = +∞, since ςδ(A) is

44



+∞ for each δ > 0. For A with |A| < +∞, we can use a suitable projection p on the

ball B2(0), which is Lipschitz continuous with Lipschitz constant 1, decreases the Lebesgue

measure of A and by P(p(A)) ≤ LippP(A) the perimeter, too, using the well known estimate

Hn−1(f(E)) ≤ LipfHn−1(E) for Lipschitz functions f and measurable sets E.

By the first point, we find some k0 such that Ck0 ⊂ A. For given ε > 0, we can find for all 4k

squares Si for i = 1, . . . , 4k in Ck a (Si, ε)-normal function φi with
∫
Si

divφi dx ≥ 4 ·4−k−9ε,

where the radius is provided by 2r = 4−k. Next, we apply the extension iteratively until we

get a (C0, ε)-normal function φ on C0 = [0, 1]2, which is further extended in the vertical and

horizontal direction by the values of the nearest border point and 0 everywhere else from S

to R2. Next, we can find a function η ∈ C1
cpt(R

2) with η(x) = 1 for x ∈ A and can conclude:∫
A

div (ηφ) dx =

∫
A

divφdx =

∫
C0

divφdx

=

∫
Ck

divφdx ≥ 4− 4k · 9ε.

Since ε > 0 was arbitrary and ηφ ∈ C1
cpt(R

2,R2) with |ηφ| ≤ 1 is a suitable candidate in the

Definition 2.20 for the perimeter, P(A) ≥ 4 follows for each considered open set containing

C and, together with the first part, we obtain ς(C) = 4.

In addition to this counterexample, Hutchinson improved the upper bound constant in (3.3) and

proved that

C(n) =
nωn
ωn−1

is optimal. The constant seems reasonable, since it gives the ratio between the circumference of an

sphere and its cross-section area, which is interpreted as a kind of diameter for n = 2. Thus, the

difference between the De Giorgi measure and the Hausdorff measure is reflected in this constant.

3.2 The generalized De Giorgi measure

In this section, we will investigate the De Giorgi measure in a slightly more general version as

presented in [13, Chapter 4] with some aspects influenced by the articles [11], [12] and [53]. In

the following, we are interested in a possibly non-symmetric version of the (generalized) De Giorgi

measure in comparison to the introduced version in [13, Definition 4.1 and 4.2]. Let q : Rn → R+
0

with

1. q(z + w) ≤ q(z) + q(w) for all z, w ∈ Rn,

2. q(tz) = tq(z) for every t > 0 and all z ∈ Rn and

3. a|z| ≤ q(z) ≤ b|z| for some positive constants a, b > 0

be given.

Then we define the generalized δ-De Giorgi measure by:
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Definition 3.4 (δ-De Giorgi measure).

For δ > 0 and for every E ⊂ Rn, we define

ςδq (E) = inf


∫
Rn

q(Du) +
|u|
δ

dx : u ∈ W1,1(Rn), u∗ ≥ 1 holds Hn−1-a.e. on E

 . (3.5)

The corresponding generalized De Giorgi measure is then given by the same construction as the

original De Giorgi measure:

Definition 3.5 (Generalized De Giorgi measure).

For E as above, we define the generalized De Giorgi measure ςq of the set E by

ςq(E) = lim
δ↘0

ςδq (E) = sup
δ>0

ςδq (E). (3.6)

The role of the function q will be played by the recession function f∞ of f . The required properties

of q are automatically fulfilled for convex f with linear growth in the form a|z| ≤ f(z) ≤ b(1+ |z|)
for some a, b > 0: With the convexity of f and Definition 2.28 with remarks we have

1.

f∞(z + w) = lim
t→∞

f(tz + tw)

t
≤ lim
t→∞

(
f(2tz)

2t
+
f(2tw)

2t

)
= f∞(z) + f∞(w).

2. Clear from Definition 2.29.

3. See Equation (2.1).

Using an anisotropic perimeter, i.e. we use q(D1E) instead of |D1E | for sets with finite perimeter,

we can rewrite Definition 3.4 like in [13, Proposition 4.1]:

Proposition 3.6 (Another characterization of the δ-De Giorgi measure).

For E ⊂ Rn and δ > 0, we have

ςδq (E) = inf


∫

FB

q(v) dHn−1 +
|B|
δ

: B is Ln-measureable and Hn−1(E \B+) = 0

 . (3.7)

The proof is similar to the one presented in the original source, but for the sake of completeness

we state the adapted version:

Proof. To distinguish both definitions of the generalized δ-De Giorgi measure we set ς̃δq as the δ-De

Giorgi measure of Proposition 3.6. We prove the statement by showing the inequalities ςδq ≥ ς̃δq

and ςδq ≤ ς̃δq .
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Step 1: With the Definition 3.4 of ςδq and for all ε > 0 we find a function u ∈ W1,1(Rn) such that

u∗ ≥ 1 Hn−1-a.e. on E and

ςδq (E) + ε >

∫
Rn

q(Du) +
|u|
δ

dx.

For t ∈ R, we can set St = {u > t} and denote by νSt the outward unit normal to St defined on

FSt. Using Theorem 2.35, we have

∫
Rn

u+ dx =

+∞∫
0

|St|dt

and ∫
Rn

q(Du) dx =

+∞∫
−∞

∫
FSt

q(νSt) dHn−1 dt.

Thus, we obtain

ςδq (E) + ε ≥
1∫

0

∫
FSt

q(νSt) dHn−1 +
|St|
δ

dt.

Since u∗ ≥ 1 Hn−1-a.e. on E, we have Hn−1
(
E \ (St)+

)
= 0 for all t ∈ (0, 1) and arrive at

ςδq (E) + ε ≥ ς̃δq (E).

Step 2: We may assume that ς̃δq (E) is finite, since otherwise the inequality is trivial. Then, for

every ε > 0, we find some Ln-measurable set B ⊂ Rn with Hn−1(E \B+) and

ς̃δq (E) + ε > q(D1B)(R
n) +

|B|
δ
.

Using [13, Lemma 3.1], we find a sequence wk ∈ W1,1(Rn) for k ∈ N such that w∗
k ≥ 1 Hn−1-a.e.

on B+ and wk → 1B strictly in BV(Rn) and thus especially wk → 1B in L1(Rn) for k → ∞.

Using Theorem 2.40, we obtain

q(D1B)(R
n) = lim

k→∞

∫
Rn

q(wk) dx.

Thus, we have

ς̃δq (E) + ε > lim
k→∞

∫
Rn

q(Dwk) +
|wk|
δ

dx ≥ ςδq (E)

and, since ε > 0 was arbitrary, we get the second inequality.

The statements of Proposition 4.2 as well as Proposition 4.3 in [13] hold as well:

Proposition 3.7 (Properties of ςδq and ςq).

The generalized δ-De Giorgi measure ςδq has for all δ > 0 the following properties:

1. ςδq is non-negative, non-decreasing and countably subadditive.
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2. ςδq is strongly subadditive, i.e. for every E,F ⊂ Rn the following inequality holds:

ςδq (E ∪ F ) + ςδq (E ∩ F ) ≤ ςδq (E) + ςδq (F ).

3. For two sets E,F ⊂ Rn with dist(E,F ) ≥ ε, we have

ςδq (E) + ςδq (F ) ≤
(
1 +

3bδ

ε

)
ςδq (E ∪ F ).

As a conclusion for the measure ςq, we have the following properties:

1’. ςq is non-negative, non-decreasing and countably subadditive.

2’. ςq is strongly subadditive:

ςq(E ∪ F ) + ςq(E ∩ F ) ≤ ςq(E) + ςq(F ).

3’. For two sets E,F ⊂ Rn with dist(E,F ) > 0, we have

ςq(E) + ςq(F ) = ςq(E ∪ F )

and thus the De Giorgi measure is a Borel regular measure on the Borel σ-algebra by the

Carathéodory criterion [3, Theorem 1.49].

Further, we have a similar estimate like in (3.3):

4’. With the same constants as in (3.3), we have

ac(n)Hn−1 ≤ ςq ≤ bC(n)Hn−1.

Proof. The facts that ςδq and ςq are non-negative and non-decreasing follow easily from the defini-

tions. The countable subadditivity follows from [11, Proposition 3.1] for the δ-De Giorgi measure,

and thus for the generalized De Giorgi measure as well, in the same fashion as stated there. Thus

point 1. and 1’. hold.

The strong subadditivity in 2. and 2’. follows from the strong subadditivity of the Lebesgue mea-

sure and of the anisotropic perimeter:

For the sets E and F , we find sequences ek ∈ W1,1(Rn) and fk ∈ W1,1(Rn) converging strictly to

1E and 1F , respectively. Thus ekfk converges in L1(Rn) to 1E∩F and ek + fk − ekfk to 1E∪F .

Since characteristic functions are bounded by 1 and non-negative, the sequences ek and fk can be

chosen bounded by 1 and non-negative as well, like in Theorem 2.44. With that, the product rule

holds and we obtain the following estimate:∫
Rn

q(D(ekfk)) dx+

∫
Rn

q(Dek +Dfk −D(ekfk)) dx

=

∫
Rn

q(ekDfk + fkDek) dx+

∫
Rn

q(Dek +Dfk − ekDfk − fkDek) dx

The first integral on the right-hand side can be estimated using the convexity as well as the positive
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1-homogeneity of q and the non-negativity of ek and fk:∫
Rn

q(ekDfk + fkDek) dx ≤
∫
Rn

q(ekDfk) + q(fkDek) dx

≤
∫
Rn

ekq(Dfk) + fkq(Dek) dx.

Similarly, we get for the second integral on the right-hand side with the upper bound 1 for ek and

fk: ∫
Rn

q(Dek +Dfk − ekDfk − fkDek) dx =

∫
Rn

q ((1− fk)Dek + (1− ek)Dfk) dx

≤
∫
Rn

(1− ek)q(Dfk) + (1− fk)q(Dek) dx.

Combining both estimates leads to∫
Rn

q(D(ekfk)) dx+

∫
Rn

q(Dek +Dfk −D(ekfk)) dx ≤
∫
Rn

q(Dek) + q(Dfk) dx

and, with the strict convergence of ek and fk and Theorem 2.38 used on the left-hand side and

Theorem 2.40 used on the right-hand side of the last equation, we obtain

q(D1E∩F )(R
n) + q(D1E∪F )(R

n) ≤ q(D1E)(R
n) + q(D1F )(R

n),

which proves 2. and thus 2’.

For 3., we slightly modify the proof in [13, Proposition 4.2]:

For each λ > 0, there exists by the definition of ςδq a function u ∈ W1,1(Rn) with u∗ ≥ 1 Hn−1-a.e.

on E ∪ F and

ςδq (E ∪ F ) + λ >

∫
Rn

q(Du) +
|u|
δ

dx.

Next, we choose cut-off functions ηi ∈ C∞(Rn), i = 1, 2, with 0 ≤ ηi ≤ 1, |Dηi| ≤ 3
ε and η1 = 1

on E as well as η2 = 1 on F such that the support is disjoint, i.e. supp η1 ∩ supp η2 = ∅. The

product ηiu is in W1,1(Rn) and fulfills (ηiu)
∗ ≥ 1 on E and F , respectively, for i = 1, 2. Thus, we

can estimate

ςδq (E) ≤
∫
Rn

q(D(η1u)) +
|η1u|
δ

dx,

ςδq (F ) ≤
∫
Rn

q(D(η2u)) +
|η2u|
δ

dx.

Combining both inequalities, using the disjoint supports of the cut-off functions and the properties

of q, we obtain:
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ςδq (E) + ςδq (F ) ≤
∫
Rn

q ((η1 + η2)Du+ uD(η1 + η2)) +
|(η1 + η2)u|

δ
dx

≤
∫
Rn

q(Du) + q(uD(η1 + η2)) +
|u|
δ

dx

≤
∫
Rn

q(Du) + b|u|3
ε
+

|u|
δ

dx

≤
(
1 +

3bδ

ε

)
(ςδq (E ∪ F ) + λ).

Since λ was arbitrary, 3. follows and proves 3’. by the Carathéodory criterion.

Point 4’. is a direct consequence of the estimate a|z| ≤ q(z) ≤ b|z| and the inequality (3.3).

Next, an auxiliary lemma estimating the δ-De Giorgi measure of superlevel sets is presented.

Lemma 3.8 (Estimate of superlevel sets).

For E ⊂ Rn and an arbitrary function ψ : E → R ∪ {±∞}, we have for each δ > 0 the following

relation:

+∞∫
0

ςδq ({x ∈ E : ψ(x) > t}) dt

= inf


∫
Rn

q(Du) +
|u|
δ

dx : u ∈ W1,1(Rn), u∗ ≥ ψ holds Hn−1-a.e. on E

 .

The statement can be found in [12, Proposition 4.3], using the here described setting, and is similar

to [13, Lemma 4.5].

This lemma can be used to prove [13, Proposition 4.4], which is key to prove lower semicontinuity

and to construct recovery sequences for the relaxation of the discussed obstacle problem:

Proposition 3.9 (Lower semicontinuity and a continuity statement for the De Giorgi measure).

For a Borel set E ⊂ Rn and a Borel function ψ : Rn → R∪{±∞} with ψ+ςq(E) < +∞, we obtain

the following two results:

1. For every sequence (uk) ∈ W1,1(Rn) such that uk → 0 in L1(Rn) and u∗k ≥ ψ Hn−1-a.e. on

E, we have ∫
E

ψ+ dςq ≤ lim inf
k→∞

∫
Rn

q(Duk) dx.

2. There exists a sequence uk ∈ W1,1(Rn) with uk → 0 in L1(Ω) and u∗k ≥ ψ Hn−1-a.e. on E

with ∫
E

ψ+ dςq = lim
k→∞

∫
Rn

q(Duk) dx.

Remark. In [62, Lemma 2.10], a slightly different version was established, where for 2. in Propo-

sition 3.9 the sequence could be chosen in W1,1
0 (Ω) for an open set Ω as long as ψ has compact

support in Ω.
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Proof. The proof is identical to the proof of Proposition 4.4. in [13].

To be able to treat upper obstacle problems, we obtain as a direct consequence of Proposition 3.9:

Proposition 3.10 (Another lower semicontinuity and continuity statement).

For a Borel set E ⊂ Rn and a Borel function ψ : Rn → R ∪ {±∞} with ψ+ςq(E) < +∞ and

q̃(z) = q(−z), we obtain the following two results:

1. For every sequence (uk) ∈ W1,1(Rn) such that uk → 0 in L1(Rn) and u∗k ≤ ψ Hn−1-a.e. on

E, we have ∫
E

(−ψ)+ dςq̃ ≤ lim inf
k→∞

∫
Rn

q̃(−Duk) dx = lim inf
k→∞

∫
Rn

q(Duk) dx.

2. There exists a sequence uk ∈ W1,1(Rn) with uk → 0 in L1(Ω) and u∗k ≤ ψ Hn−1-a.e. on E

with ∫
E

(−ψ)+ dςq̃ = lim
k→∞

∫
Rn

q̃(−Duk) dx = lim
k→∞

∫
Rn

q(Duk) dx.

Proof. Apply for 1. the Proposition 3.9 with q̃ on −u∗k ≥ −ψ and note that −u∗k = (−uk)∗. Similar

for 2.

Remark.

1. It is convenient to use the definition q̃(z) = q(−z), since usually only q(Du) appears in the

most calculations. Since we will plug in f∞ instead of q, we also write f̃∞(z) = f∞(−z)
for the adjusted recession function. For a symmetric function f∞ like the absolute value

function, we have f̃∞ = f∞ and thus in this case nothing needs to be adjusted. This implies

that the same recession function can be used for the lower and upper obstacle problem for

the area functional and the total variation functional.

2. Since q̃ fulfills the properties required on the function q stated at the beginning of this section,

all results and properties hold accordingly for ςq̃ instead of ςq.

3. On the first glance it might seem strange that for the upper obstacle a ‘different’ recession

function has to be used. This fact becomes clearer, if one considers Definition 3.5 and notices,

that a possibly preferred direction for the function u to ‘rise’ to or above 1 on E (since we

have no symmetry), needs to be inverted if the function has to ‘decrease’ down and lie below

−1 on a given set E.

Next, we state a useful result on how to calculate the generalized De Giorgi measure of a Lipschitz

graph. This is similar to Proposition 4.6 in [13]:

Proposition 3.11 (De Giorgi measure of Lipschitz graphs).

Let G ⊂ Rn be the graph of a Lipschitz function g : Rn−1 → R. For a Borel set E ⊂ G, we can

compute

ςq(E) =

∫
E

q(νG) + q(−νG) dHn−1. (3.8)
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Proof. Again, the proof is similar to that of Proposition 4.6 in [13] with the main difference, that

we do not have q(ν) = q(−ν). Knowing that, the proof can easily be obtained.

A consequence of this result is that we can rewrite the De Giorgi measure on rectifiable sets:

Proposition 3.12 (De Giorgi measure on rectifiable sets).

Let R ⊂ Rn be a countably Hn−1-rectifiable set. For a Borel subset E of R, we can compute

ςq(E) =

∫
E

q(νR) + q(−νR) dHn−1. (3.9)

Proof. With the alternative definition of rectifiability provided by Proposition 2.4, we may use

Proposition 3.11 on components of the rectifiable sets contained in the Lipschitz graphs. Applying

this on components of E yields the result.

Remark. For the last two propositions, it does not matter if q or q̃ is used in the sense that

q(νR) + q(−νR) = q(νR) + q̃(νR) = q̃(−νR) + q̃(νR).

Thus we will not distinguish on rectifiable sets between the two De Giorgi measures ςq and ςq̃.

3.3 The single obstacle problem revisited

In this section, we derive a representation formula for the relaxation of the functional, related to

the single obstacle problem, at first without boundary constraint:

For some open bounded set Ω and a Borel function ψ : Rn → R ∪ {±∞}, we set

Fψ[u] =

∫
Ω

f(u) dx on W1,1
◦,ψ(Ω)

with Fψ set +∞ on L1(Ω) \ W1,1
◦,ψ(Ω) and with convex integrand f : Rn → [0,∞), which fulfills

a|z| ≤ f(z) ≤ b(1 + |z|) for some constants a, b > 0. The function space W1,1
◦,ψ(Ω) is given by

W1,1
◦,ψ(Ω) := {u ∈ W1,1(Ω) : u∗ ≥ ψ holds Hn−1-a.e. on Ω}.

The relaxation is proven to be

F
ψ
[u] =

∫
Ω

f(Du) +

∫
Ω

(ψ − u+)+ dςf∞ on BV(Ω)

and +∞ on L1 \ BV(Ω). In contrast to [13, Chapter 5], we manage to prove the result with the

convexity and growth condition and leaving out the symmetry and a weaker form of the triangle

inequality f(z+w) ≤ f(z)+ f(w)+ c for some c ≥ 1. The last inequality ensures, that functionals

with integrands like
√

1 + | . | − 1 can be treated without further issues and gives control over the

recession function in the form f∞(z) ≤ f(z) + c. With the results achieved in Theorem 2.30, we
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are able to drop such extra assumptions.

We begin by proving the lower semicontinuity of∫
Ω

f(Du) dx+

∫
Ω

(ψ − u∗)+ dςf∞ .

For the proof, we need the auxiliary statement proven in [12, Lemma 5.3] for symmetric q, see also

[13, Lemma 5.3] for not necessary symmetric q. The difference lies in the usage of q̃ instead of q

in one of the terms or in other words in the sign of the evaluation of one integrand.

Lemma 3.13 (Estimate for the obstacle term).

For an open bounded Ω ⊂ Rn and a Borel function ψ : Rn → R ∪ {±∞} and a sequence uk ∈
W1,1(Ω) converging in L1(Ω) to u ∈ W1,1(Ω), we have for every open set A ⊂ Ω the following

estimate:

∫
A

(ψ − u∗)+ dςq ≤
∫
A

q̃(Du) dx+ lim inf
k→∞

∫
A

q(Duk) dx+

∫
A

(ψ − u∗)+ dςq


=

∫
A

q(−Du) dx+ lim inf
k→∞

∫
A

q(Duk) dx+

∫
A

(ψ − u∗)+ dςq

 ,

where q is like in the previous section.

With this result in hand, we can now prove the following lower semicontinuity result:

Theorem 3.14 (Lower semicontinuity on W1,1).

For an open bounded Ω ⊂ Rn and Borel function ψ : Rn → R ∪ {±∞}, the functional∫
Ω

f(Du) dx+

∫
Ω

(ψ − u∗)+ dx

is lower semicontinuous on W1,1(Ω) with respect to the convergence in L1(Ω), i.e. the functional

is lower semicontinuous along sequences uk ∈ W1,1(Ω) with uk → u in L1(Ω) with u ∈ W1,1(Ω).

Proof. We first follow the lines of the proof of [13, Theorem 5.1]:

Let uk ∈ W1,1(Ω) be a sequence converging in L1 to u. The convergence in L1 implies, that if

|{ψ−u∗ > 0}| > 0, then this holds also true for uk for k large enough and thus |{ψ−u∗k > λ}| > 0 for

some λ small enough. With that, we have
∫
Ω

(ψ−u∗k)+ dςf∞ = +∞ which is clear from Proposition

3.6, see also Remark 4.2 in [13].

If |{ψ − u∗ > 0}| = 0, we find for arbitrary λ > 0 an open set A such that {ψ − u∗ > 0} ⊂ A ⊂ Ω,

|A| < λ and ∫
A

b+ b|Du|dx ≤ λ. (3.10)

We set I =
∫
Ω

(ψ − u∗)+ dςf∞ =
∫
A

(ψ − u∗)+ dςf∞ and can find for each value t < I some compact

set K ⊂ A such that t <
∫
K

(ψ − u∗)+ dςf∞ . Further, we can find two disjoint open sets Ω1 and Ω2
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such that Ω \ A ⊂ Ω1 and K ⊂ Ω2 ⊂ A. By Theorem 2.39, the functional
∫
Ω1

f(Du) dx is lower

semicontinuous and thus we can estimate, using (3.10) and Lemma 3.13:∫
Ω

f(Du) dx+ t <λ+

∫
Ω1

f(Du) dx+

∫
Ω2

(ψ − u∗)+ dςf∞

≤λ+ lim inf
k→∞

∫
Ω1

f(Duk) dx+

∫
Ω2

f∞(−Du) dx

+ lim inf
k→∞

∫
Ω2

f∞(Duk) dx+

∫
Ω2

(ψ − u∗k)+ dςf∞


Since Ω2 ⊂ A, we have ∫

Ω2

f∞(−Du) dx ≤
∫
Ω2

b|Du|dx ≤ λ.

For
∫
Ω2

f∞(Duk) dx, we can estimate in the following way:

For some fixed ε > 0, we use Theorem 2.30 to get a δ > 0 and obtain for any fixed k ∈ N:

� On Ω2 ∩ {|Duk| ≤ 1
δ }: ∫

Ω2∩{|Duk|≤ 1
δ }

f∞(Duk) dx ≤
∫
A

b

δ
dx ≤ λ

δ
.

� On Ω2 ∩ {|Duk| > 1
δ }: ∫

Ω2∩{|Duk|> 1
δ }

f∞(Duk) dx ≤
∫
Ω2

f(Duk) dx+ ε

∫
Ω2

|Duk|dx.

Plugging those estimates in, we obtain

∫
Ω

f(Du) dx+ t < 2λ+
λ

δ
+ lim inf

k→∞

∫
Ω

f(Duk) dx+

∫
Ω

(ψ − u∗k)+ dςf∞ + ε

∫
Ω

|Duk|dx

 .

With λ↘ 0, ε↘ 0 and t↗ I we arrive at

∫
Ω

f(Du) dx+

∫
Ω

(ψ − u∗)+ dςf∞ ≤ lim inf
k→∞

∫
Ω

f(Duk) dx+

∫
Ω

(ψ − u∗k)+ dςf∞

 .

Next, we show that for u ∈ W1,1(Ω) the relaxation of the functional agrees with Fψ, which is given

by

F [u] =

∫
Ω

f(Du) +

∫
Ω

(ψ − u+)+ dςf∞ for u ∈ BV(Ω)

and F = +∞ on L1(Ω) \ BV(Ω).
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Theorem 3.15 (Equality on W1,1).

For ψ, Fψ and Ω as above, we have

F
ψ
[u] = Fψ[u]

for u ∈ W1,1(Ω).

Proof. The proof is identical to the proof for Proposition 6.2 in [13]. By Theorem 3.14 we obtain

F
ψ ≥ Fψ[u] on W1,1(Ω) since the relaxation is the largest lower semicontinuous functional, which is

smaller than the initial functional. The other inequality follows easily with 2. from Proposition 3.9:

For fixed u ∈ W1,1(Ω) with Fψ[u] < +∞, we find a sequence wk ∈ W1,1(Rn) with w∗
k ≥ (ψ−u+)+

Hn−1-a.e. on Ω and with

lim
k→∞

∫
Rn

f∞(∇wk) dx =

∫
Ω

(ψ − u+)+ dςf∞ .

With this and with (2.3), we can estimate

lim sup
k→∞

∫
Ω

f(∇(u+ wk)) dx ≤ lim sup
k→∞

∫
Ω

f(∇u) dx+

∫
Ω

f∞(∇wk) dx

≤ lim sup
k→∞

∫
Ω

f(∇u) dx+

∫
Rn

f∞(∇wk) dx

=

∫
Ω

f(∇u) dx+

∫
Ω

(ψ − u+)+ dςf∞ .

Functions u ∈ W1,1(Ω) such that Fψ[u] = +∞ violate the obstacle constraint and thus a recovery

sequence in this case is given by uk ≡ u.

Finally, we state the theorem which extends the relaxation to BV functions.

Theorem 3.16 (Extension of the relaxation to BV(Ω)).

For ψ, Fψ and Ω as above, we have

F
ψ
= Fψ.

The proof is identical to the proof of Theorem 6.1 presented in [13, Chapter 6] and relies on a

representation lemma for monotone non-increasing functionals on BV, which is used on the obstacle

term. This strategy does not extend to the double obstacle case, which is our main concern in

the subsequent chapters, since we cannot obtain monotonicity for the sum of both obstacle terms.

Therefore, we abstain from going into the details of the proof of Theorem 3.16. Additionally,

another proof is obtained through the proof for the double obstacle problem by setting the upper

obstacle ψ2 ≡ +∞.

Remark. If one wants to add a Dirichlet boundary constraint with a function u0 ∈ L(∂Ω) as in [13,

Chapter 7], Ω is assumed to be a Lipschitz domain and the construction is more involved, since

boundary data has to be tracked. Using the results on the double obstacle problem, this result is

easier obtained, as we will see.
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4 The double obstacle problem

The main goal of this section is to prove the representation formula for the double obstacle problem

for the functional

Fψ1,ψ2
u0

[u] =

∫
Ω

f(∇u) dx for u ∈ W1,1
u0,ψ1,ψ2

(Ω),

which is extended to L1(Ω) by +∞ on L1 \ W1,1
u0,ψ1,ψ2

(Ω). As usual, Ω is an open bounded set,

ψ1 ≤ ψ2 are Borel functions, where the inequality holds Hn−1-a.e., the integrand f : Rn → [0,+∞)

is convex and of linear growth with a|z| ≤ f(z) ≤ b(1 + |z|) for some constants a, b > 0. As in

[13] we will first start with the problem without the boundary constraint and thus it suffices, that

Ω is just an open bounded set. When we later add the boundary constraint in a distinct section,

further requirements on the boundary of Ω will have to be assumed. Before we can start, we need

some auxiliary statements. To be able to adapt parts of proof from the single obstacle problem,

a truncation argument is needed: The main issue is that in the single obstacle case we are free

to approximate from the other side of the obstacle, i.e. if we deal with a single lower obstacle,

we can approximate from above or add non-negative functions like in the proof of Theorem 3.15.

For the double obstacle problem, such constructed functions may disobey the other obstacle and

thus we cannot use one-sided approximations anymore without further care. However, assuming

the existence of a separation function v ∈ W1,1
◦,ψ1,ψ2

(Ω), with W1,1
◦,ψ1,ψ2

(Ω) defined similar to W1,1
◦,ψ

as W1,1
u0,ψ1,ψ2

without the boundary value constraint, we can still use the space in between u and v

to construct a recovery sequence. To be able to do that, a truncation argument is required and to

implement this, we need to find a subsequence for any sequence converging in area such that the

absolutely continuous part of the gradients converge a.e. with respect to the Lebesgue measure.

The later result is presented in the more general setting with arbitrary Radon measures.

4.1 Almost everywhere convergence of the gradients

We want to show that if a sequence of measures converges area-strictly, then it already converges

almost everywhere. For the proof, we need some shifted versions of both Reshetnyak theorems.

For that, we consider a lower semicontinuous function g : Ω×Rn → [0,∞), measurable in the first

argument, convex in the second and with strong recession function g∞ and linear growth, i.e.

g( . , z) ≤ b(1 + |z|)

for some b > 0. We remember that we have

g(x, z + w) ≤ g(x, z) + g∞(x,w) (4.1)

and are able to prove the following versions of convergence theorems with that inequality:

Corollary 4.1 (Shifted lower semicontinuity theorem).

For an open set Ω ⊂ Rn with |∂Ω| = 0 and g as above, we have: If νk converges weakly* to ν in
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RM(Ω,Rn), then for v ∈ L1(Ω,Rn) we have

lim inf
k→∞

∫
Ω

g( . , νk + v) ≥
∫
Ω

g( . , ν + v). (4.2)

Proof. Using mollification, we find for a given v ∈ L1(Ω,Rn) and for each ε > 0 a function

vε ∈ C0
b(Ω) such that ∫

Ω

|vε − v|dx < ε.

Then we investigate ḡε(x, z) = g(x, z + vε(x)) and find by boundedness of vε that the strong

recession function of the shifted function agrees with the original recession function g∞, since we

have using (4.1):

ḡ∞ε (x, z) = lim
t→∞
z′→z
x′→x

g(x′, tz′ + vε)

t
≤ lim

t→∞
z′→z
x′→x

g(x′, tz′) + g∞(x′, vε)

t
≤ g∞(x, z)+ lim

t→∞

b||vε||∞
t

= g∞(x, z),

ḡ∞ε (x, z) = lim
t→∞
z′→z
x′→x

g(x′, tz′ + vε)

t
≥ lim

t→∞
z′→z
x′→x

g(x′, tz′)− g∞(x′, vε)

t
≥ g∞(x, z)− lim

t→∞

b||vε||∞
t

= g∞(x, z)

and thus the claim. Further, g( . , z + vε) is still lower semicontinuous, convex in the second

argument and there exists a constant b̃ = b+ b||vε||∞ > 0 such that ḡε( . , z) ≤ b̃(1 + |z|). Then we

use (4.1) and Corollary 2.38 on g( . , z + vε) and obtain:

lim inf
k→∞

∫
Ω

g(x, νk + v) ≥ lim inf
k→∞

∫
Ω

g(x, νk + vε)−
∫
Ω

g∞(x, vε − v) dx

≥
∫
Ω

g(x, ν + vε)−
∫
Ω

b|v − vε|dx

≥
∫
Ω

g(x, ν + v)− 2b

∫
Ω

|v − vε|dx

≥
∫
Ω

g(x, ν + v)− 2bε.

With ε↘ 0 the proof is complete.

Remark. This theorem obviously also holds with the open set Ω instead of the closure and similarly

we can use the theorem for BV functions, i.e.

lim inf
k→∞

∫
Ω

g( . ,Duk + v) ≥
∫
Ω

g( . ,Du+ v) (4.3)

for uk, u ∈ BV(Ω), uk → u weakly* in BV(Ω) and some v ∈ L1(Ω,Rn).

For the continuity theorem version, we get:
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Corollary 4.2 (Shifted continuity theorem).

For an open bounded set Ω ⊂ Rn with |∂Ω| = 0 and g as above, we have: If νk converges area-

strictly to ν in RM(Ω,Rn), then for v ∈ L1(Ω,Rn) we have

lim
k→∞

∫
Ω

g( . , νk + v) =

∫
Ω

g( . , ν + v). (4.4)

Proof. We argue similarly as for the lower semicontinuity theorem and obtain with Theorem 2.42:

lim sup
k→∞

∫
Ω

g(x, νk + v) ≤ lim sup
k→∞

∫
Ω

g(x, νk + vε) +

∫
Ω

g∞(x, v − vε) dx

≤
∫
Ω

g(x, ν + vε) +

∫
Ω

b|v − vε|dx

≤
∫
Ω

g(x, ν + v) + 2b

∫
Ω

|v − vε|dx

≤
∫
Ω

g(x, ν + v) + 2bε.

With ε↘ 0 and Corollary 4.1 the result is proven.

Remark. This theorem holds obviously for non-convex but still continuous integrands as well as

on open sets Ω and we obtain a version for BV functions, too, namely

lim sup
k→∞

∫
Ω

g( . ,Duk + v) ≤
∫
Ω

g( . ,Du+ v). (4.5)

for uk, u ∈ BV(Ω), uk → u weakly* in BV(Ω) and some v ∈ L1(Ω,Rn).

A similar result was established in [46, Section 5] for gradient Young measures.

Now we are able to prove the following convergence a.e. result:

Theorem 4.3 (Convergence almost everywhere of the absolutely continuous parts).

Let Ω be an open bounded set and νk ∈ RM(Ω,Rn) converge area-strictly to ν ∈ RM(Ω,Rn) for

k → ∞, then there exists a subsequence such that νak → νa a.e., where νak and νa are the absolute

continuous parts (or densities) with respect to the Lebesgue measure.

Proof. Since νk converges area-strictly to ν, it also converges weakly*. Next, we set S as the union

of all singular sets of ν and νk with respect to the Lebesgue measure and thus have |S| = 0 and

νa(S) = 0 = νs(Ω \ S) with the singular part with respect to the Lebesgue measure νs. Similarly,

the equations hold for all νk, k ∈ N as well. By regularity we can find open sets Ol for l ∈ N such

that S ⊂ Ol and |Ol| ≤ 1
l and have, using Corollary 4.1 for open sets (see remark)

lim inf
k→∞

∫
Ol

|νk − νa| ≥ |νs|(Ol) = |νs|(S). (4.6)
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Using Corollary 4.2 for open sets (see remark), we also obtain

lim sup
k→∞

∫
Ω

|νk − νa| ≤ |νs|(Ω) = |νs|(Ol) = |νs|(S). (4.7)

Combining both estimates (4.6) and (4.7), we obtain

0 ≤ lim sup
k→∞

∫
Ω\Ol

|νak − νa| ≤ lim sup
k→∞

∫
Ω\Ol

|νk − νa| ≤ 0.

By a standard argument we can choose for each l an almost everywhere convergent subsequence

on Ω \Ol and by a simple diagonal argument with l → ∞ we get an a.e. convergent subsequence

on Ω \ S and thus on Ω. Since νakLn = νk on Ω \ S, the proof is complete.

Remark. This construction is obviously also possible for more general locally compact metric

measure spaces with some base measure µ. The concept of area-strict convergence on such space

(X,µ) has to be adjusted to strict convergence of the measure |(µ, νk)|(X) to |(µ, ν)|(X) for k → ∞
and we obtain an µ-a.e. convergent subsequence νak → νa with νak and νa now being the absolute

continuous parts with respect to the measure µ.

We can apply this theorem for example on sequences in W1,1(Ω) converging in area to a limit in

BV(Ω):

Corollary 4.4 (A.e. convergence of gradients).

Let (uk)k∈N ∈ W1,1 (or BV) converge in area to u ∈ BV. Then there exists a subsequence with

∇uk → ∇u a.e.

4.2 A truncation argument

To construct a recovery sequence in the way of Theorem 3.15 which obeys both obstacles, we

approximate min{u, v} and max{u, v} separately using only the space provided in {u < v} and

{u > v}, respectively. More precisely, we want use the one-sided approximation on min{u, v} from

above and truncate the sequence by v and similarly for max{u, v}. Thus a truncation argument

for sequence converging from one side, here above, is sufficient. As usual, Ω ⊂ Rn is an open and

bounded set.

Theorem 4.5 (Truncation argument).

Let f and Ω be as in the beginning of this section and f∞ the corresponding recession function.

Let u ∈ BV(Ω) with u ≤ h Ln-almost everywhere for a function h ∈ W1,1(Ω). If uk ∈ W1,1(Ω)

converge area-strictly from above to u and wk ∈ W1,1(Rn) converge in L1 to 0 from above, we have

lim sup
k→∞

∫
Ω

f(Dũk) dx = lim
k→∞

∫
Ω

f(Duk) dx+ lim sup
k→∞

∫
Rn

f∞(Dwk) dx

=

∫
Ω

f(Du) + lim sup
k→∞

∫
Rn

f∞(Dwk) dx

for a not relabeled sub-sequence of ũk = min{uk + wk, h}.
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Proof. The proof relies on the fact that ∇hLn is absolute continuous with respect to Ln and

convergence in measure as well as the Lemma of Fatou. For a given ε > 0, we divide Ω into three

subsets, Ω0 := {u = h}, Ωε := {h − u > ε} and Ω̃ε = Ω \ (Ω0 ∪ Ωε). For reason of simplicity, we

drop the notion of the precise representative in the following proof. We can now estimate on each

of these sets using that, for two BV functions v1 and v2 and thus especially for W1,1(Ω) functions,

we have Dav1 = Dav2 almost everywhere on {v1 = v2}, see [3, Proposition 3.92(a) and Remark

3.93]:

1. On Ω0 we have ∫
Ω0

f(Dũk) dx =

∫
Ω0

f(∇u) dx

=

∫
Ω0

f(Duk) dx+

∫
Ω0

f(∇u) dx−
∫
Ω0

f(∇uk) dx.

Restricting to a subsequence, where ∇uk converges to ∇u almost everywhere provided by

Corollary 4.4, we can use Fatou’s Lemma and conclude, since f is non-negative, with

lim sup
k→∞

∫
Ω0

f(∇u) dx−
∫
Ω0

f(Duk) dx

 ≤ 0

that

lim sup
k→∞

∫
Ω0

f(Dũk) dx ≤ lim sup
k→∞

∫
Ω0

f(Duk) dx.

2. On Ωε we subdivide further for arbitrary but fixed k ∈ N:

If ũk − u < ε the truncation has no effect on ũk and we can estimate with (2.3):∫
Ωε∩{ũk−u<ε}

f(Dũk) dx ≤
∫

Ωε∩{ũk−u<ε}

f(Duk) dx+

∫
Ωε∩{ũk−u<ε}

f∞(Dwk) dx.

Else, the truncation may have an effect and we obtain, using (2.3) and an inequality of the

type f(Dmin{a, b}) ≤ f(∇a) + f(∇b) for a, b ∈ W1,1 which holds at least Ln-a.e.:∫
Ωε\{ũk−u<ε}

f(Dũk) dx ≤
∫

Ωε\{ũk−u<ε}

f(Duk) dx+

∫
Ωε\{ũk−u<ε}

f∞(Dwk) dx

+

∫
Ωε\{ũk−u<ε}

f(Dh) dx.

These estimates together imply∫
Ωε

f(Dũk) dx ≤
∫
Ωε

f(Duk) dx+

∫
Ωε

f∞(Dwk) dx+

∫
Ωε∩{ũk−u≥ε}

f(Dh) dx.

At this stage we notice that for k → ∞ and by the convergence of wk to 0 and uk +wk to u
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in measure and Dh being in L1(Ω) we can estimate:∫
Ωε∩{ũk−u≥ε}

f(Dh) dx→ 0.

Thus the last term may be omitted in the limit.

3. For Ω̃ε, we have Ln(Ω̃ε) → 0 for ε↘ 0 and can simply estimate∫
Ω̃ε

f(Dũk) dx ≤
∫
Ω̃ε

f(Duk) dx+

∫
Ω̃ε

f∞(Dwk) dx+

∫
Ω̃ε

f(Dh) dx.

Further, we have

lim
ε↘0

∫
Ω̃ε

f(Dh) dx = 0

and again this term may be omitted in the final calculation.

Combining all results, we arrive at

lim sup
k→∞

∫
Ω

f(Dũk) dx ≤ lim sup
k→∞

∫
Ω

f(Duk) dx+

∫
Rn

f∞(Dwk) dx.

Since uk converges in area to u, the rest of theorem follows easily, where the equality instead of

= is obtained through the lower semicontinuity of
∫
Ω

f(Du) dx and the non-negativity of the other

terms.

This truncation theorem has some nice implications on the manipulation of the sequences occurring

in this thesis. The first ensures the area-strict convergence for a truncated sequence.

Corollary 4.6 (Truncation of an area-strictly convergent sequence).

If uk ∈ W1,1(Ω) converge area-strictly to u ∈ BV(Ω) from above with u ≤ h Ln-a.e. for some

h ∈ W1,1(Ω), then there exists a subsequence such that min{uk, h} converges in area to u.

Proof. Apply Theorem 4.5 with wk = 0 and f(z) =
√

(1 + |z|2). With the lower semicontinuity of

the functional we obtain the desired result.

Next, we show that the from above in area converging sequence can be chosen monotonic.

Corollary 4.7 (Monotonic area-strict approximation from above).

For u ∈ BV(Ω), there exists a non-increasing sequence uk ∈ W1,1(Ω) converging in area from above

to u.

Proof. By Theorem 2.44 we obtain a sequence uk, converging in area from above to u. Using

Corollary 4.6 iteratively with hn = un, n ∈ N on uk with k ≥ n we obtain the desired sequence.

Further, it follows that a sequence provided by 2. from Proposition 3.9 can also be truncated by

a function h ≥ ψ, h ∈ W1,1 without changing the provided estimate:
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Corollary 4.8 (Truncation of sequence converging to the obstacle term).

If wk ∈ W1,1(Rn) converge in L1(Rn) to 0 with the estimate from 2. in Proposition 3.9, then for

h > ψ, h ∈ W1,1(Rn) the sequence min{wk, h} fulfills the estimate as well.

Proof. Use Theorem 4.5 with u ≡ 0 ≡ uk.

Remark. Such sequence wk can also be chosen monotone decreasing with the same argument like

in the proof of Corollary 4.7.

Last and most important, the statement of Theorem 4.5 remains true if instead of f a shifted

integrand is used:

Corollary 4.9 (Truncation argument for shifted integrand).

Assume the same assumptions as in Theorem 4.5. For a given v ∈ L1(Ω;Rn) and with the integrand

f(.+ v), we have

lim sup
k→∞

∫
Ω

f(Dũk + v) dx ≤ lim sup
k→∞

∫
Ω

f(Duk + v) dx+ lim sup
k→∞

∫
Rn

f∞(Dwk) dx

≤
∫
Ω

f(Du+ v) + lim sup
k→∞

∫
Rn

f∞(Dwk) dx.

Proof. The proof is identical to the one provided for Theorem 4.5 with the use of the shifted version

of Reshetnyak’s continuity theorem provided in Corollary 4.2, see also the associated remark.

Remark. All results in this section hold as well if one considers sequences area-strict approximations

from below and wk ≤ 0, since the truncation argument can be applied for such sequences in a

similar fashion. For wk ≤ 0 it is convenient to use f∞(Dwk) = f̃∞(−Dwk) to be able to apply the

continuity part of Proposition 3.10 without further changes.

4.3 Relaxation of the double obstacle problem

We first begin with proving that the functional

Fψ1,ψ2 [u] =

∫
Ω

f(Du) +

∫
Ω

(ψ1 − u+)+ dςf∞ +

∫
Ω

(u− − ψ2)+ dςf̃∞ on BV(Ω)

and Fψ1,ψ2 [u] = +∞ on L1(Ω) \BV(Ω) is lower semicontinuous for open bounded Ω, f and ψ1, ψ2

like in the beginning of this section. Under the assumption that a function v ∈ W1,1(Ω) exists

such that for the two Borel functions (obstacles) ψ1, ψ2 : Rn → R ∪ {±∞} holds ψ1 ≤ v∗ ≤ ψ2

Hn−1-a.e., we provide afterwards a recovery sequences to prove that this functional is indeed the

relaxation of Fψ1,ψ2 and thus the first major result announced in the introduction, yet first without

boundary conditions.

Theorem 4.10 (Lower semicontinuity of Fψ1,ψ2).

The functional Fψ1,ψ2 is lower semicontinuous with respect to convergence in L1.
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Proof. We are only looking at limit functions u ∈ BV(Ω) with Fψ1,ψ2 [u] <∞. In the other cases,

either the function u

a) is in L1(Ω) \ BV(Ω) and we trivially get the lower semicontinuity,

b) violates the obstacle condition even in the Ln-a.e. sense and thus uk for all k large enough as

well, similar to the proof in Theorem 3.14, and one obtains that at least one of the integrals

with respect to the generalized De Giorgi measure is infinite, or

c) at least one of the integrals with respect to the generalized De Giorgi measure is +∞, where

the following estimate can be used:

If, without loss of generality,
∫
Ω

(ψ1 − u+)+ dςf∞ = +∞ and we have uk → u in L1, we can

restrict ourselves to the case uk ∈ BV(Ω), since otherwise the functional takes the value

+∞ constantly. For this sequence, we can estimate, using the lower semicontinuity of Fψ1

provided by Theorem 3.16:

lim inf
k→∞

Fψ1,ψ2 [uk] ≥ lim inf
k→∞

Fψ1 [uk] ≥ Fψ1 [u] = +∞.

For the case Fψ1,ψ2 [u] < ∞ and given uk ∈ L1(Ω) with uk → u in L1(Ω), we again can restrict

ourselves to uk ∈ BV(Ω). Then we divide Ω in the two Borel sets Ω1 := {u− ≤ ψ2} and Ω2 :=

{u− > ψ2}. We have (u− −ψ2)+ = 0 on Ω1 and since u+ ≥ u− > ψ2 ≥ ψ1, we get (ψ1 −u+)+ = 0

on Ω2. Since f(Du) + (ψ1 − u+)+ςf∞ and f(Du) + (u− − ψ2)+ςf̃∞ are regular measures, we can

find for given ε > 0 disjoint compact sets Kε
1 ⊂ Ω1 and Kε

2 ⊂ Ω2 such that

[f(Du) + (ψ1 − u+)+ςf∞ ](Ω1)− ε ≤ [f(Du) + (ψ1 − u+)+ς](K
ε
1),

[f(Du) + (u− − ψ2)+ς](Ω2)− ε ≤ [f(Du) + (u− − ψ2)+ςf̃∞ ](Kε
2).

Since Kε
1 and Kε

2 are disjoint, we can find disjoint open sets Kε
1 ⊂ Oε1 and Kε

2 ⊂ Oε2. Using

Theorem 3.16 on Oε1 and Oε2, we obtain

[f(Du) + (ψ1 − u+)+ςf∞ ](Ω1)− ε ≤ [f(Du) + (ψ1 − u+)+ςf∞ ](Kε
1)

≤ [f(Du) + (ψ1 − u+)+ςf∞ ](Oε1)

≤ lim inf
k→∞

∫
Oε

1

f(Duk) dx+

∫
Oε

1

(ψ1 − u+k )+ dςf∞ ,

[f(Du) + (u− − ψ2)+ςf̃∞ ](Ω2)− ε ≤ [f(Du) + (u− − ψ2)+ςf̃∞ ](Kε
2)

≤ [f(Du) + (u− − ψ2)+ςf̃∞ ](Oε2)

≤ lim inf
k→∞

∫
Oε

2

f(Duk) dx+

∫
Oε

2

(u−k − ψ2)+ dςf̃∞

for any given uk ∈ L1(Ω), k ∈ N with uk → u in L1. Both estimates combined and with ε↘ 0 the

proof is complete.

Next, we provide the proof for the representation of the relaxation, first for functions u ∈ W1,1(Ω)

and then the general case u ∈ BV(Ω).
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Theorem 4.11 (Relaxation for functions in W1,1(Ω)).

For u ∈ W1,1(Ω), we have with f , f∞ and Ω as before:

F
ψ1,ψ2

[u] = Fψ1,ψ2 [u].

Proof. By lower semicontinuity provided by Theorem 4.10 we have F
ψ1,ψ2 ≥ Fψ1,ψ2 . It remains to

construct a recovery sequence, to prove F
ψ1,ψ2 ≤ Fψ1,ψ2 :

First of all we only consider u ∈ W1,1(Ω) with Fψ1,ψ2 [u] <∞ since otherwise the constant sequence

uk = u suffices. Using Proposition 3.9 and 3.10, we obtain two sequences wk and wk ∈ W1,1(Rn)

with w∗
k ≥ (ψ1 − u∗)+, (w

k)∗ ≤ −(u∗ − ψ2)+ = −(ψ2 − u∗)− and with

lim sup
k→∞

∫
Rn

f∞(Dwk) dx ≤
∫
Ω

(ψ1 − u∗)+ dςf∞

as well as

lim sup
k→∞

∫
Rn

f̃∞(−Dwk) dx ≤
∫
Ω

(u∗ − ψ2)+ dςf̃∞ .

Using Corollary 4.8 the sequences can be chosen such that 0 ≤ wk ≤ (v − u)+ and 0 ≥ wk ≥
−(v − u)−, where v ∈ W1,1(Ω) is the given function, which lies in between the obstacles, i.e.

ψ1 ≤ v∗ ≤ ψ2. This leads to ψ1 ≤ u + wk + wk ≤ ψ2 for the Lebesgue representatives Hn−1-a.e.,

since we can estimate on {u ≤ v} with wk = 0 and (v − u)+ = v − u:

ψ1 ≤ u+ wk = u+ wk + wk = u+ wk ≤ u+ v − u = v ≤ ψ2

and on {u ≥ v} with wk = 0 and −(v − u)− = v − u we obtain:

ψ1 ≤ v = u+ v − u = u+ wk = u+ wk + wk = u+ wk ≤ ψ2.

Plugging the sequence in, we can estimate, using (2.3):

lim sup
k→∞

Fψ1,ψ2 [u+ wk + wk] ≤ F[u] + lim sup
k→∞

∫
Rn

f∞(Dwk) dx+

∫
Rn

f∞(Dwk) dx


= F[u] + lim sup

k→∞

∫
Rn

f∞(Dwk) dx+

∫
Rn

f̃∞(−Dwk) dx


≤ Fψ1,ψ2 [u].

And thus we have F
ψ1,ψ2

= Fψ1,ψ2 on W1,1.

Next, we need a way to adapt this method for u ∈ BV(Ω).

Theorem 4.12 (Relaxation for functions in BV(Ω)).

For an open bounded set Ω and the functional Fψ1,ψ2 with two Borel functions ψ1 ≤ ψ2 Hn−1-a.e.,

a convex integrand f : Rn → [0,+∞) of linear growth with a|z| ≤ f(z) ≤ b(1 + |z|), the relaxation
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of Fψ1,ψ2 is given by

F
ψ1,ψ2

= Fψ1,ψ2 .

Proof. Since we know, that Fψ1,ψ2 is lower semicontinuous and agrees with F
ψ1,ψ2

on W1,1(Ω),

we only need to provide a recovery sequence for u ∈ BV(Ω) and can limit ourselves to provide

this exclusively for u ∈ BV(Ω) with Fψ1,ψ2 [u] < +∞ since otherwise uk ≡ u for all k ∈ N may

be used. Next, we use Theorem 2.44 to obtain a sequence uk ∈ W1,1(Ω) converging in area to

uv = min{u, v} from above. Further, we obtain a sequence wk ∈ W1,1(Ω) from Proposition 3.9

with 0 ≤ wk → 0 in L1, (wk)
∗ ≥ (ψ1 − u+)+ and with

lim sup
k→∞

∫
Rn

f∞(Dwk) dx ≤
∫
Ω

(ψ1 − u+)+ dςf∞

and define ũk := min{uk + wk, v}. Similarly, we get a sequence uk ∈ W1,1(Ω) converging in area

from below to uv := max{u, v} and by Proposition 3.10 a sequence wk ∈ W1,1(Ω) with 0 ≥ wk → 0

in L1, (wk)
∗ ≤ −(u− − ψ2)+ and with

lim sup
k→∞

∫
Rn

f̃∞(−Dwk) dx ≤
∫
Ω

(u− − ψ2)+ dςf̃∞

and define ũk := max{uk + wk, v}.
Then we define uk = ũk + ũk − v with ψ1 ≤ uk ≤ ψ2, since on {u ≤ v}, we have ũk = v and

ũk fulfills the constraint by construction like in the W1,1-case and on {u ≥ v}, we have similarly

ũk = v and ũk fulfills the obstacle constraint. Further, uk converges to u in L1(Ω). Now we can use

Corollary 4.9 with the integrands f∞( . −Dauv), f
∞( . −Dauv) and with the associated recession

function which is equal to f∞, and the fact Dau+Dv = Dauv +Dauv to conclude

lim sup
k→∞

∫
Ω

f(Duk) dx ≤ lim sup
k→∞

∫
Ω

f(Duk −Dau+Dau) dx

≤ lim sup
k→∞

∫
Ω

f(Dau) dx

+

∫
Ω

f∞(Dũk −Dauv) dx+

∫
Ω

f∞(Dũk −Dauv) dx


≤
∫
Ω

f(Dau) dx+

∫
Ω

f∞(Duv −Dauv) +

∫
Ω

f∞(Duv −Dauv)

+

∫
Ω

(ψ1 − u+)+ dςf∞ +

∫
Ω

(u− − ψ2)+ dςf̃∞

=

∫
Ω

f(Du) +

∫
Ω

(ψ1 − u+)+ dςf∞ +

∫
Ω

(u− − ψ2)+ dςf̃∞ .

In the last step, we used that f∞(Dsuv) + f∞(Dsuv) sum up to f∞(Dsu), since Dcuv and Dcuv

are mutually singular and possible split jump parts, i.e. if u− < v∗ < u+, add up correctly, since

they have the same direction νu and f∞(νu)(v
∗−u−)+ f∞(νu)(u

+− v∗) = f∞(νu)(u
+−u−).
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Since the major difficulty in the proofs is the construction of the recovery sequence with the help

of the truncation argument which is applicable for limits in BV, we obtain the following trivial

corollary:

Corollary 4.13 (Double obstacle problem in a BV-setting).

Let Ω be an open set, f, f∞, ψ1, ψ2 as before. Further define the functional∫
Ω

f(Du) for u ∈ BV◦,ψ1,ψ2
(Ω)

extended by +∞ to L1(Ω) \ BV◦,ψ1,ψ2
(Ω), where

BV◦,ψ1,ψ2(Ω) = {u ∈ BV(Ω) : ψ1 ≤ u+ and u− ≤ ψ2 holds Hn−1-a.e. on Ω}.

If there exists a function v ∈ W1,1(Ω) with ψ1 ≤ v∗ ≤ ψ2 Hn−1-a.e., then the relaxation of the

functional is given by Fψ1,ψ2 .

It is unsatisfactory that the separation function v has to be in W1,1, but the proofs heavily rely on

the absolute continuity of the separation functions and thus concentration effects are a problem.

The relaxation with only a BV separation function v, i.e. ψ1 ≤ v+ and v− ≤ ψ2 is a point of

interest for further research in the general setting, while for the area functional a result is obtained

using the parametric theory, see Section 5.4.

4.4 Relaxation of the Dirichlet double obstacle problem

In this section, we additionally assume that the open bounded set Ω has either Lipschitz boundary

or that Ω fulfills P(Ω) = Hn−1(∂Ω) and there exists a constant M > 0 such that we have the

bounds −M ≤ ψ1 ≤ ψ2 ≤ M and thus are able to define a trace on the boundary, see Theorem

2.27 and [61, Lemma 2.3]. The boundedness of the obstacles enforces the boundedness of all

u ∈ BV(Ω) with finite functional value Fψ1,ψ2
u0

< +∞, i.e. provides u ∈ L∞(Ω). Further, we

assume that the function v ∈ W1,1(Ω) with ψ1 ≤ v∗ ≤ ψ2 on Ω can be extended to a W1,1 function

on a ball Br such that Ω ⋐ Br and in addition fulfills v∗ = u0 on ∂Ω for given boundary values

u0 ∈ L1(∂Ω,Hn−1) or u0 ∈ W1,1(Br). Under those assumptions, we have:

Theorem 4.14 (Relaxation of the Dirichlet double obstacle problem).

For Ω and v as described above and for integrands as defined at the beginning of Section 4, we have

F
ψ1,ψ2

u0
= Fψ1,ψ2

u0
,

with

Fψ1,ψ2
u0

[u] =

∫
Ω

f(Du) +

∫
Ω

(ψ1 − u+)+ dςf∞ +

∫
Ω

(u− − ψ2)+ dςf̃∞

for u ∈ BV(Ω) and Fψ1,ψ2
u0

= +∞ on L1(Ω) \ BV(Ω).

Remark. Although Fψ1,ψ2
u0

seems to not depend on u0, the boundary penalization is again encoded

66



in
∫
Ω

f(Du), since a portion of the integral on the singular set u is given by

∫
∂Ω

f∞(νΩ(u0 − uint)) dHn−1,

where νΩ is the exterior normal to Ω and uint the inner trace of u on ∂Ω.

Proof. First we extend v ∈ W1,1(Ω) to v ∈ W1,1(Br) with Ω ⋐ Br. Further, we set ψ1 = ψ2 = v

on Br \ Ω and consider the relaxation of Fψ1,ψ2 on Br. Theorem 4.12 yields that the relaxation is

equal to Fψ1,ψ2 on Br. Next, we notice that all u ∈ BV, where Fψ1,ψ2 [u] is finite, are equal on

Br \ Ω and, since ψ1 ≤ v∗ = uext ≤ ψ2 on ∂Ω, we have (ψ1 − u+)+ = (u− − ψ2)+ = 0 on ∂Ω and

thus the integral terms involving the obstacles are 0 on ∂Ω. In reverse, every function u ∈ BV(Ω)

such that ũ = 1Ωu + 1Br\Ωv ∈ BV(Br) can be extended in this way and yields finite values of

Fψ1,ψ2 [u] on Br. Thus

Fψ1,ψ2
u0

[u,Ω] +

∫
Br\Ω

f(Dv) = Fψ1,ψ2 [ũ,Br],

which proves the claim.

Remark. In the same way, the result of Corollary 4.13 extends to the addition of boundary values.

Another application of these results is to allow inner boundary parts like for slit domains, i.e.

domains with interior cuts, enforcing the values by the obstacles. If, for example, the domain

B2
1(0) \ ([0, 1]× {0}) is considered with some boundary values u0 on S11(0) ∪ ([0, 1]× {0}), we can

consider the obstacles ψ1 = ψ2 = u0 on S11(0)∪([0, 1]× {0}) and ψ1 = −∞ = −ψ2 else, the relaxed

functional for integrands f like before is given for u ∈ BV(B2
1(0)) by∫

B1(0)\([0,1]×{0})

f(Du) +

∫
S1
1(0)

f∞(νB1(0)(u0 − uint)) dH1

+

∫
[0,1]×{0}

f∞

((
0

1

)
(u0 − uint,1)

)
+ f∞

((
0

−1

)
(u0 − uint,−1)

)
dH1

where Proposition 3.11 was used to rewrite the obstacle term involving the slit. The representatives

uint,±1 are the corresponding (inner) traces with respect to the given normal vector (0,±1)t.

In general cases, where the slit is the graph of an Lipschitz function, a similar result can be

established. If the slit is unrectifiable, wrong boundary values are penalized in the sense of the

obstacle constraint, i.e with an integral with respect to the generalized De Giorgi measures ςf∞ and

ςf̃∞ . Obviously one can consider domains with more slits and theoretically also domains, where

slits touch each other and so on.
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5 Connection between the parametric and non-parametric

double obstacle problem for the area functional

A connection between the parametric and non-parametric minimal surface problem is their coin-

cidence if dealing with a graph-type setting. As stated in the introduction, u is a minimizer of

the non-parametric problem iff the subgraph is of least perimeter. Since for the single and double

obstacle problems the additional obstacle terms in both settings look quite similar, it seems that

even in this setting, they may have the same or a similar connection. Since we have no general

uniqueness result yet, we can only hope to show that in a non-parametric setting, both problems

yields the same infimum and thus the subgraph of a non-parametric minimizer is a parametric

minimizer as well. In the parametric and non-parametric case we therefore have to deal with De

Giorgi-measures acting on different spaces, i.e. on Rn+1 for the parametric and on Rn for the

non-parametric and we thus switch and adapt our notation to ςn := ς| . | for the De Giorgi measure

with n-dimensional domain of definition and similarly ςn+1 and thus indicate the dimension using

a superscript if needed.

In this section we will only consider single and double obstacle problems of the non-parametric

type on a bounded open set Ω, i.e. the parametric obstacles O1 and O2 are given as the sub-

and supergraphs of Borel functions ψ1, ψ2 : Rn → R ∪ {±∞} such that ψ1 ≤ ψ2, ψ1 ≤ v+ and

v− ≤ ψ2 holds Hn−1-a.e. on Ω for some separation function v which we first assume to be in W1,1.

Thus the Hn−1-a.e. required inequalities can be stated as ψ1 ≤ v∗ ≤ ψ2. For the single obstacle

problem we will without loss of generality only consider the lower single obstacle problem and in

that case set ψ2 = +∞. Under the given assumptions, the relaxation from Section 4 is defined and

the corresponding non-parametric functional is given by

Aψ1,ψ2 [u] =

∫
Ω

√
1 + |Du|2 +

∫
Ω

(ψ1 − u+)+ dςn +

∫
Ω

(u− − ψ2)+ dςn for u ∈ BV(Ω).

The parametric area functional can be written as

Pψ1,ψ2(E) = P(E,Ω×R) + ςn+1((O1 \ E+) ∩ (Ω×R)) + ςn+1(O2 ∩ E− ∩ (Ω×R)).

We start by stating the important results for the equality of parametric and non-parametric prob-

lems for the area functional presented in [39] which is based on [50] and introduces a construction

of a subgraph from a suitable set of finite perimeter, which decreases the perimeter. Further, we

state some approximation results, which are helpful so avoid reduction effects and be able to treat

the obstacle problem and discuss the right translation between parametric and non-parametric

problems. After the preparatory section, we prove a first inequality, which shows that the pre-

sented construction does not only decrease the perimeter but also correctly takes into account the

obstacle functionals. In the next step, we show that the obstacle terms in the parametric and non-

parametric setting of the right representative of a subgraph and function, respectively, are equal

and thus prove that the subgraph of a non-parametric minimizer is a parametric minimizer of the

corresponding problem. In the last two sections, we improve the non-parametric double obstacle

problem for the area-functional by allowing BV separation functions and provide a continuity result

at the obstacle for minimizers of the double obstacle problem for the area functional.
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5.1 Graphification and approximation of Caccioppoli sets

We begin with a connection between the subgraph and the area integral as presented in [39,

Theorem 14.6]:

Theorem 5.1 (Connection between the area integral and perimeter of the subgraph).

For u ∈ BV, we have ∫
Ω

√
1 + |Du|2 = P(Su,Ω×R)

with Su = {(x, t) ∈ Ω×R : t < u(x)}.

Remark. Considering obstacle problems, one may be inclined to use a notation, where the graph

is included, i.e. define Su with the defining inequality t ≤ u(x). In this case, the theorem remains

true but will not yield any advantage regarding the coverage of obstacle parts as we will discuss

towards the end of this subsection. We therefore use the definition in the theorem.

Next, we present [39, Theorem 14.8], which allows us to pass from arbitrary sets to subgraph-type

sets with smaller perimeter:

Theorem 5.2 (Graphification).

Let E ⊂ Ω×R be measurable. Suppose that

(i) for almost every x ∈ Ω we have

lim
t→+∞

1E(x, t) = 0,

lim
t→−∞

1E(x, t) = 1,

(ii) the symmetric difference E0 = E∆(Ω× (−∞, 0)) has finite measure.

Then the function

wE(x) = lim
k→∞

 k∫
−k

1E(x, t) dt− k


is in L1(Ω) and ∫

Ω

√
1 + |DwE |2 ≤ P(E,Ω×R).

This is already enough to prove the equality for the obstacle-free case.

Remark. By Fubini’s theorem, we have that |E0| = ||wE ||1 and that the wk,E =
k∫

−k
1E(x, t) dt− k

converge in L1 to wE . Further, if we consider a set E of finite perimeter in Ω×R, an application

of the isoperimetric inequality will often guarantee the part (ii) of the assumptions and from (ii)

and again with the isoperimetric inequality one can show the assumption (i). More precisely, if

we consider suitable boundary values, which, for example, are given as the subgraph of a W1,1

function outside of Ω × R, the prerequisites are fulfilled. For the double obstacle problem it is

often possible to consider the problem without boundary conditions where the assumptions can

be obtained through the obstacle condition. In contrast, it is not possible to do so for the single
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obstacle problem, since Ω×R obviously will contain the obstacle and have zero perimeter in Ω×R
and, for example, in the case with a single lower obstacle it is easy to construct an from above

unbounded obstacle such that no non-parametric minimizer can exist.

Next we revisit the definitions of the De Giorgi measure to be able to state a first approximation

result, which is interesting on its own:

Theorem 5.3 (Equivalence of definitions of the De Giorgi measure, see also [15, Theorema 4]).

Let Ω be open and E be a Borel set. It is then equivalent to define the δ-De Giorgi measure in Ω

with open sets

ςδ(E,Ω) = inf

{
P(B,Ω) +

|B ∩ Ω|
δ

: B open and E ∩ Ω ⊂ B

}
or measurable sets

ς̃δ(E,Ω) = inf

{
P(B,Ω) +

|B ∩ Ω|
δ

: B is Ln −measurable and Hn−1((E \B+) ∩ Ω) = 0

}
and we have

ςδ(E,Ω) = ς̃δ(E,Ω).

Thus, both generate the same measure for δ ↘ 0 which agrees with the in Section 3 defined one for

Ω = Rn, i.e.

ς(E,Ω) = lim
δ↘0

ςδ(E,Ω) = lim
δ↘0

ς̃δ(E,Ω).

Similar as before, the limits can be changed to suprema.

The first approximation results allows us to cover the reduced/essential boundary in an open set

with arbitrary small change in the perimeter and the Lebesgue measure:

Proposition 5.4 (Approximation of the perimeter covering the essential/reduced boundary).

Let Ω be an open set and E a Borel set with finite perimeter in Ω. Then for each ε > 0 there exist

open sets Bε such that FE ⊂ ∂∗E ⊂ Bε, |Bε ∩ Ω| < ε and

P(E ∪Bε,Ω) ≤ P(E,Ω) + ε.

Similarly, we can find for an arbitrary subset A of E+ with finite De Giorgi measure open covers

Bε with the same properties, i.e. |Bε ∩ Ω| < ε and P(E ∪Bε,Ω) ≤ P(E,Ω) + ε.

Proof. First we note, that the essential boundary of E in Ω has finite Hausdorff measure, i.e.

Hn−1(∂∗E ∩ Ω) < +∞, and thus has also finite De Giorgi measure ς(∂∗E ∩ Ω) < +∞ by (3.3).

With the definition of the De Giorgi measure with open sets, we can find for each ε > 0 some δ1 > 0

such that ςδ(∂∗E) > ς(∂∗E)− ε for 0 < δ ≤ δ1. Further we can find by the definition of the δ-De

Giorgi measure open sets Bδ,ε containing ∂∗E such that P(Bδ,ε,Ω) +
|Bδ,ε∩Ω|

δ ≤ ςδ(∂∗E,Ω) + ε.

Since ςδ(∂∗E,Ω) + ε ≤ ς(∂∗E,Ω) + ε < +∞, we can estimate

|Bδ,ε ∩ Ω| ≤ δ (ς(∂∗E,Ω) + ε)
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and thus can find δ2 such that |Bδ,ε ∩ Ω| < ε for 0 < δ ≤ δ2. Therefore we can find for each

ε > 0 some 0 < δε ≤ min{δ1, δ2, ε}, which can be chosen monotonically increasing, i.e. δε ≤ δε′ for

0 < ε < ε′, and such that ςδε(∂∗E,Ω) ≥ ς(∂∗E,Ω) − ε as well as corresponding sets Bε = Bδε,ε

which fulfill P(Bε,Ω)+
|Bε∩Ω|
δε

≤ ςδε(∂∗E,Ω)+ε and |Bε∩Ω| < ε. Since the intersection of finitely

many open sets is again open, we may replace Bε by Bε ∩Ω without losing any properties. It now

remains to estimate the perimeter. We have, using Proposition 2.21:

P(E ∪Bε) ≤ P(E,Ω) + P(Bε,Ω)− P(E ∩Bε,Ω)

≤ P(E,Ω) + P(Bε,Ω) +
|Bε|
δε

− P(E ∩Bε,Ω)−
|Bε ∩ E|

δε

≤ P(E,Ω) + ςδε(∂∗E,Ω) + ε− ςδε(∂∗E,Ω)

≤ P(E,Ω) + ε,

where we used that P(E ∩Bε,Ω)+ |Bε∩E|
δε

≥ ςδε(∂∗E,Ω), since by definition of the open set Bε we

have ∂∗E ⊂ E+ ∩Bε ⊂ (E ∩Bε)+ and thus the claimed is proven using the alternate definition of

the δ-De Giorgi measures and Theorem 5.3.

The proof for arbitrary subsets of E+ with finite De Giorgi measure is identical.

Since we will have to construct parametric recovery sequences for the double obstacle problem,

we need approximations which do not interfere with the obstacle constraint. Thus, we state the

following proposition:

Proposition 5.5 (Truncated approximation of obstacle parts).

Consider some set E with finite perimeter in Ω × R and a lower obstacle O1 as the subgraph of

a Borel function ψ1 such that ςn+1(O1 \ E+,Ω ×R) is finite. Then there exists a sequence Cε of

open sets of finite perimeter with O1 \ E+ ⊂ Cε, |Cε| < ε and

P(E ∪ Cε,Ω×R) → P(E,Ω×R) + ςn+1(O1 \ E+,Ω×R)

for ε→ 0. In addition, if a separation function v ∈ W1,1(Ω) (or v ∈ BV(Ω)) is given and we have

ψ1 ≤ v+ and thus O1 ⊂ S+
v , we instead may use the sets Cε ∩ Sv instead of Cε.

Proof. With a similar argument as in Theorem 5.4, we obtain open sets Cε containing O1 \ E+

and with P(Cε,Ω)+
|Cε∩Ω|
δε

≤ ςδε(O1 \E+,Ω)+ ε, where δε is chosen like above. We then can use

the lower semicontinuity of Pψ1 (= Pψ1,+∞) to obtain

Pψ1(E) ≤ lim inf
ε↘0

P(E ∪ Cε,Ω×R)

and use Proposition 2.21 as well as that ςδ ≤ ς holds for all δ > 0 and all sets from the definition
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of the De Giorgi measure to get the upper bound

P(E ∪ Cε,Ω×R) ≤ P(E,Ω×R) + P(Cε,Ω×R)

≤ P(E,Ω×R) + P(Cε,Ω×R) + |Cε|
δε

≤ P(E,Ω×R) + ςδε,n+1(O1 \ E+,Ω×R) + ε

≤ P(E,Ω×R) + ςn+1(O1 \ E+,Ω×R) + ε

and thus the first part of the claim. For the second, we replace Cε with Cε ∩ Sv and note that

Cε ∪ Sv converges in L1 to Sv. With the inequality

P(Cε ∩ Sv,Ω×R) ≤ P(Cε,Ω) + P(Sv,Ω×R)− P(Cε ∪ Sv,Ω×R),

together with the lower semicontinuity of the perimeter and thus

lim sup
ε↘0

(P(Sv,Ω×R)− P(Cε ∪ Sv,Ω×R)) ≤ P(Sv,Ω×R)− P(Sv,Ω×R) = 0,

we obtain the second part of the claim.

Remark. We can obviously combine Proposition 5.4 and 5.5 and replace E with E ∪ Bε in the

statement of Proposition 5.5. Another direct consequence of this approximation is stated in the

following corollary:

Corollary 5.6 (Truncated approximation of the reduced boundary).

In the setting of Proposition 5.5, we can extend Proposition 5.4 as follows: We can find open sets

Bε containing (a subset of) ∂∗E such that

P(E ∪ (Bε ∩ Sv),Ω×R) → P(E,Ω),

where Sv is the subgraph of the separation function v ∈ W1,1(Ω) (or BV(Ω)). Further, with Cε

from Proposition 5.5, we obtain the convergence

Pψ1(E) = lim
ε↘0

P(E ∪ ((Bε ∪ Cε) ∩ Sv)).

Although, the sets Bε∩Sv and Cε∩Sv are possibly not open anymore, we still have that ∂∗E∩S+
v ⊂

Bε ∩ S+
v and O1 \ E+ ⊂ Cε ∩ S+

v .

Proof. Follows directly from the proof of Proposition 5.4 and 5.5 together with Proposition 2.21.

Next we state an approximation stemming from the study of the minimizers of constant mean

curvature functionals: Consider some nonempty set Ω with finite positive volume and perimeter,

i.e. 0 < P(Ω) + |Ω| < +∞ and consider the minimizers Eλ ⊂ Ω of the functional

P(E) + λ|Ω \ E| (5.1)
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which is defined on sets E contained in Ω. Then one obtains the following result, see for example

[68, Theorem 2.3] and for the proof [16] and [67].

Theorem 5.7 (Approximation of Caccioppoli sets and λ↗ ∞).

The (possibly non-unique) minimizers Eλ of (5.1) fulfill

(i) ∂Eλ ∩ Eλ(0) = ∅ for all λ > 0, i.e. the topological boundary contains no points of density

zero for the set Eλ.

Furthermore, as λ↗ +∞, we have

(ii) Eλ ↗ Ω in the sense that Eλ1 ⊂ Eλ2 if λ1 < λ2 and |Ω \ Eλ| → 0.

(iii) P(Eλ) ↗ P(Ω)

Additionally, one can show that ∂Eλ converges to ∂Ω in the Hausdorff distance if Ω is bounded.

Remark.

1. We will use this approximation to reduce certain parts of considered sets to tackle the upper

obstacle constraint and on the complement of considered sets to enlarge other parts of the

set in a suitable sense to tackle the lower obstacle constraint. The main goal is to get rid of

points of density 1 and 0 in the topological boundary, respectively.

2. The problem of the mentioned density 1 (and 0) points in the topological boundary also

appears in the regularity theory for parametric minimal surfaces where one usually wants to

show that the topological boundary is contained in the reduced boundary/essential boundary

and use this information to provide regularity.

Before we begin with the proofs of the desired results, we need to answer the question on how to

relate the parametric and non-parametric obstacle constraint. Starting from the non-parametric

constraint with a separation function v ∈ W1,1 which fulfills ψ1 ≤ v∗ ≤ ψ2 , we need to find corre-

sponding sets for the parametric problem. For the results like lower semicontinuity of the paramet-

ric double obstacle functional proved in [20] and [43] to hold, we need disjoint obstacle sets. This

implies, that the choice U1 := {(x, t) ∈ Ω×R : t ≤ ψ1(x)} and U2 := {(x, t) ∈ Ω×R : t ≥ ψ2(x)}
is not suitable, since they intersect on the coincidence set {ψ1 = ψ2}. Another point against

adding the graphs of ψ1 and ψ2 to the obstacles is a problem regarding density 0 and 1 points

of the sub-/supergraph which are in the graph of the considered function. At this stage it is not

clear whether this problem is of solely technical nature but if, for example, the graph of a function

u ∈ BV has so many points (x, u∗(x)) which are both density 0 points for the subgraph of u and

contact points with the lower obstacle in the sense of u ∗ (x) = ψ1(x), that they together have

positive De Giorgi measure, then those points are not seen in the non-parametric setting but are

seen in the parametric one and thus would lead to a discrepancy between both theories. One can

easily show that at least for minimizers in the single obstacle case such a configuration can not

occur and similarly can be excluded in the double obstacle case if enough space between the two

obstacles is left. But if a BV-function u exists such that the mentioned density 0 or 1 points have

positive De Giorgi measure, a minimizer could be forced to contain those points in its graph using

suitable obstacles, for example ψ1 = u = ψ2 on a suitable subset of Ω.

If we instead consider the subgraph of ψ1 as the lower obstacle, i.e. O1 = Sψ1 , and the supergraph
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of ψ2 as the upper obstacle, i.e. O2 = Sψ2 = {(x, t) ∈ Ω ×R : t > ψ2(x)}, such problems do not

occur: The sets are disjoint (or at least there exist disjoint representatives, since ψ1 ≤ ψ2 holds

Hn−1-a.e.) and we still have that if a set S with finite perimeter and of subgraph type contains

O1, that the function corresponding function fulfills ψ1 ≤ w+
S . As mentioned in the definition of

the subgraph of a BV function, the perimeter of the subgraph and the perimeter of the union of

graph and subgraph have the same perimeter and thus the area-part of the considered problem is

not touched.

Since we have to deal with representatives of functions and sets, we need to provide some connec-

tions and note some properties which we will use without further mention during the proofs:

The definition u+(x) = inf
t∈R

{
lim sup
ρ↘0

ρ−nLn(Bρ(x) ∩ {u > t}) = 0

}
of the upper representative

of a function u ∈ BV (or L1
loc) function implies some useful properties and a connection to the

representatives of the sub- and supergraph. We notice that Ln(Bρ(x) ∩ {u > t}) is monotonic in

t, i.e. for t1 ≤ t2 we always have

Ln(Bρ(x) ∩ {u > t2}) ≤ Ln(Bρ(x) ∩ {u > t1}).

This implies that

� if for a given t0 we have lim sup
ρ↘0

ρ−nLn(Bρ(x) ∩ {u > t0}) > 0 we already have u+ ≥ t0 and

� if for a given t0 we have lim
ρ↘0

ρ−nLn(Bρ(x) ∩ {u > t0}) = 0 we already have u+ ≤ t0.

Similarly for the lower representative u−(x) = sup
t∈R

{
lim sup
ρ↘0

ρ−nLn(Bρ(x) ∩ {u < t}) = 0

}
.

If we now consider the relation to the measure theoretical concept on sets, we quickly find by the

graph-type structure and Fubini’s theorem that Su+ ⊂ S+
u and the difference lies basically in the

set Gu+∩S+
u , where Gu := {(x, u(x)) ∈ Ω×R}. Similarly one has S(u−) ⊂ (Su)− and the difference

lies in the points contained in S−
u ∩ Gu− . Since the graph of the function does not contribute to

the obstacle terms by the choice of the obstacles, we can freely interchange those sets.

To close this subsection, we state some notes regarding representatives:

1. If we consider a separation function v ∈ BV, we may choose some representative of the

function which fulfills both obstacle constraints simultaneously and use that without further

notice. For the certain representatives of the sets, the choice will not matter. Further, we

may always assume ψ1 ≤ ψ2 on Ω by changing the functions on a Hn−1 null set.

2. As the obstacles are disjoint, it is possible to find for each set E with E− ⊂ E ⊂ E+ a

suitable representative Ẽ with

Pψ1,ψ2(E) = P(Ẽ,Ω×R) + ςn+1((O1 \ Ẽ) ∩ (Ω×R)) + ςn+1(O2 ∩ Ẽ ∩ (Ω×R)).

A particular choice, like introduced in [20] and [43], is given by Ẽ = (E∪(E+∩O1))\(O2\E−),

which obviously fulfills ςn+1(O1 \ E+) = ςn+1(O1 \ Ẽ) and ςn+1(O2 ∩ E−) = ςn+1(O2 ∩ Ẽ).

With the discussion before, we may thus change the choice of obstacles and consider O+
1 ∪O1

or Sψ+
1
∪Sψ instead of O1 and O−

2 ∪O2 or S(ψ−
2 )∪Sψ2 instead of O2 without really changing

the functional.
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3. This discussion gives us a hint on how to divide the given obstacles in thin and thick parts.

The thick parts of the lower obstacle can be described by ψ+
1 and the thin parts are given as

ψ1 on the set where ψ1 > ψ+
1 . Similarly for the upper obstacle with ψ−

2 and the set ψ2 < ψ−
2 .

Obviously this decomposition is not unique.

5.2 Approximation of obstacle terms and the first inequality regarding the

parametric and non-parametric double-obstacle problem

To tackle the general double obstacle problem, we first study the single obstacle problem and

consider an example to enlighten some difficulties to tackle and explain, why the approximations

introduced in the previous section are needed:

Consider the domain Ω = (−1, 1) and the obstacle function ψ1 = 21{1} and the corresponding

parametric obstacle O1 = ((−1, 1) × (−∞, 0)) ∪ ({0} × [0, 2)). Then E = (−1, 1) × (−∞, 0] ∪
([0, 1) × (0, 1]) ∪ ((−1, 0] × [1, 2]) is a set with finite perimeter and eligible for the single obstacle

problem. We have O1 \ E+ = ∅, but the measure theoretical closure of the graphification is given

by (−1, 1)× (−∞, 1] and thus the set {0} × (1, 2) ⊂ O1 with positive ςn+1-measure is not covered

anymore. This implies, that the graphification may uncover obstacle parts which were covered

before. In this particular case it is easy to see that the single obstacle functional is reduced by

the graphification, but in more general cases this needs to be proven. A first step to counter such

cancellation is to enlarge the set with the help of Proposition 5.4 as an approximation. To handle

obstacle parts, which are not covered by the original set, Proposition 5.5 is helpful. In the double

obstacle case one needs to be even more careful, since for the upper obstacle one needs to shrink

the set during such approximation, we will apply Corollary 5.6 one time on a certain subset of the

reduced boundary and the not covered part of the lower obstacle to extend the given set and a

second time on the rest of reduced boundary and the covered part of the upper obstacle to reduce

the set, thus forming a ‘dual’ approach.

The second approximation introduced in Theorem 5.7 will help to ensure that the graphification

of the newly obtained approximation will indeed cover the obstacle. It unfortunately works only

on Caccioppoli sets with finite volume, which in our case are subsets in Rn+1. To circumvent this

restriction, we will use truncations of the type E ∩ (Ω× (−k, k)) for a given set E. Since this set

will in general not have finite perimeter as Ω need not to have finite perimeter, we will later need

to approximate general domains Ω. To start the proof, we start first with an easier case, namely

with only a bounded single lower obstacle:

Lemma 5.8 (Inequality for the bounded single obstacle problem).

Let Ω be a bounded open set in Rn with finite perimeter and let the parametric single lower obstacle

O1 = {(x, t) ∈ Ω × R : t < ψ1(x)} for some bounded Borel function ψ1 with |ψ1| ≤ M be given.

Then we have that the graphification wE of a set E, which fulfills the assumptions of Theorem 5.2

and has finite parametric single obstacle functional value

Pψ1(E) := P(E,Ω×R) + ςn+1(O1 \ E+,Ω×R) <∞,
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has finite Aψ1 value and the following inequality holds:

Aψ1 [wE ] ≤ Pψ1(E).

Proof. Let E be a set such that Pψ1(E) < +∞. This especially implies that the perimeter of

E is finite. First we assume that E is bounded from above, i.e. there exists some k, such that

E ⊂ Ω × (−∞, k) and later use the result to obtain the general case. Without loss of generality,

we may choose k > M .

For given ε > 0 we find by Proposition 5.4 and 5.5 sets Bε containing ∂
∗E and sets Cε containing

O1 \ E+ such that E ∪Bε ∪ Cε has finite perimeter in Ω×R, converges for ε↘ 0 to E and

P(E ∪Bε ∪ Cε,Ω×R) → Pψ1(E).

Since ψ1(x) ≤M , we may also truncate the sets Bε and Cε, and instead consider the approximation

by E ∪ ((Bε ∪ Cε) ∩ Ω× (−∞, k + 1)) and by Corollary 5.6, we are still left with

P(E ∪ ((Bε ∪ Cε) ∩ Ω× (−∞, k + 1)),Ω×R) → Pψ1(E).

For easier notation we set Aε = E ∪ ((Bε ∪ Cε) ∩ Ω × (−∞, k + 1)) and note that the sets

∂∗E ∩ (Ω× (−∞,M ] and O1 \ E+ are still openly covered and contained in the set Aε, since the

truncations of Bε ∩ (Ω× (−∞, k + 1)) and Cε ∩ (Ω× (−∞, k + 1)) are still open and contain the

mentioned sets, respectively.

If we want to verify that the graphification of Aε fulfills the obstacle condition, i.e. w+
Aε

≥ ψ1, we

quickly find that this can not be verified in general. A major problem are the points of density 1

which lie in the topological boundary of E. Thus we will use the second approximation given in

Theorem 5.7 to circumvent this. To be able to apply this Theorem, we need to rewrite our terms,

since it, at least without further proof, works only for bounded sets:

Since ψ1 is bounded, we have that E+ contains the set Ω× (−∞,−M ] and thus A+
ε as well. Next

consider the set kAε = Aε ∩ (Ω × (−k − 1, k + 1)). Since Ωk := Ω × (−k − 1, k + 2) has finite

perimeter in Rn+1, and Aε has finite perimeter in Ω×R, we obtain that kAε has finite perimeter

in Rn+1:

P(kAε) ≤ P(Aε,Ω×R) + |Ω|+ 2(k + 2)P(Ω).

The inequality can easily be obtained using the Hausdorff measure of the reduced boundary which

obviously is contained in (FAε)∩(Ω×R)∪∂Ωk, since −k−1 < −M holds and Aε ⊂ Ω×(−∞, k+1).

Next, consider a ball BR such that Ω ⊂ BR and the set Qk = BR × (−k − 1, k + 2) and define the

set kZε = Qk \ kAε as the complement of kAε in Qk. It is easy to see, compare for example [3,

Remark 4.2], that

P(kAε, Qk) = P(kZε, Qk) =
1

2

(
P(kAε) + P(kZε)− P(Qk)

)
(5.2)

Now we apply Theorem 5.7 on kZε and obtain for λ ≫ 1 sets kZλε ⊂ kZε which converge in L1

and in the perimeter to kZε for λ → ∞ and such that ∂kZλε ∩ kZλε (0) = ∅. We further define the

sets kAλε := Qk \ (kZλε ∪ (Qk \ (Ω× (−k − 1, k + 1))) and observe that kAε ⊂ kAλε ,
kAλε converges
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to kAε for λ → ∞ in L1 and in the perimeter, i.e. |kAλε \ kAε| → 0 and P(kAλε ) → P(kAε) for

λ → ∞. We then can easily verify that F(kAλε ) ∩ FQk = F(kAε) ∩ FQk for all λ > 0, and that

F(kAε) ∩ FΩ× (−k − 1, k + 1) ⊂ F(kAλε ) ∩ FΩ× (−k − 1, k + 1). Using those estimates and the

principle used in equation (5.2), we obtain

P(kAλε ,Ωk) ≤ P(kAλε , Qk)−Hn(F(kAλε ) ∩ (FΩ)× (−k − 1, k + 1))

≤ P(kAλε , Qk)−Hn(FkAε ∩ (FΩ)× (−k − 1, k + 1))

and thus

P(kAε,Ωk) = lim
λ→∞

P(kAλε ,Ωk).

Further, we can choose for each ε > 0 some λε, such that |P(kAλε
ε ,Ωk) − P(kAε,Ωk)| < ε and

|kAλε
ε \ kAε| < ε. Next we extend the constructed sets to Ak,ε := kAλε

ε ∪ Ω × (−∞,−M ] and

observe that E ⊂ Ak,ε, Ak,ε → E in L1 and P(Ak,ε,Ω×R) → P(E,Ω×R) for ε↘ 0.

Next we consider the graphification of Ak,ε and take a closer look at the obstacle O1:

By construction, we have that O1 ⊂ Ak,ε. Further, we have that for each point (x, t) ∈ O1 ⊂ Ω×R
there exists a radius ρ > 0 such that Bρ(x, t) ⊂ Ak,ε: To verify this, we notice that either

(x, t) /∈ E+ and thus is covered by the open set Cε ⊂ Ak,ε or (x, t) ∈ E+. Now there are again two

possibilities: Either (x, t) ∈ E+ \E(1) and is thus contained in the open set Bε or (x, t) ∈ E(1) in

which case we will show that there exists either such ball or we arrive at a contradiction:

If no such ball exist, we find for each ρ > 0 a point in Bρ((x, t)) which is outside Ak,ε and thus

get that (x, t) ∈ ∂Ak,ε ∩ Ωk, noting that k > M and thus t < k. This implies that the point

(x, t) ∈ E(1) ∩ ∂Ak,ε ⊂ Ak,ε(1) ∩ ∂Ak,ε and thus a contradiction to (i) of Theorem 5.7, since this

implies that, by construction of kAλε , ∂
kZλε

ε ∩ kZλε
ε (0) ̸= ∅.

Next we fix x ∈ Ω such that w±
Ak,ε

are defined and consider the line Lx = {x} × [−M,ψ1(x)) ⊂
{x} × [−M,M ]. For any given η > 0, the set Lηx = {x} × [−M,ψ1(x) − η] is compact. Thus

at each point of Lηx there exists an open ball contained in Ak,ε and we can find a finite open

cover of Lηx with finitely many of such balls and an rη > 0 such that a cylinder of the form

{z ∈ Ω : |z − x| < rη} × [−M,ψ1(x) − η] is contained in Ak,ε. The radius rη can be chosen

monotonically increasing in η, which we will assume from now on. Since Bnrη (x) × [−∞,−M ] is

automatically contained in Ak,ε, we obtain that Bnrη (x) × [−∞, ψ1(x) − η] ⊂ Ak,ε and for the

graphification wAk,ε
holds Ln({wAk,ε

(x) < ψ1(x) − η} ∩ Bnρ (x)) = 0 for ρ < r η
2
. Since η > 0 was

arbitrary, we even have by the definition of the lower representative w−
Ak,ε

(x) ≥ ψ1(x). Thus the

lower and upper representative of wAk,ε
fulfill w±

Ak,ε
(x) ≥ ψ1(x) and wAk,ε

satisfies the obstacle

constraint. Further and similar to the proof of Theorem 5.2 and the preceding auxiliary lemma in

[39] together with the estimates obtained through Proposition 5.4 and 5.5, we can estimate∫
Ω

√
1 + |DwAk,ε

|2 ≤ P(Ak,ε,Ω×R)

≤ Pψ1(E) + 3ε.

The term 3ε stems from the approximation of kAε with Ak,ε and the approximation of Pψ1(kE)

by P(kAε) using the truncated versions of Bε and Cε. Now we can let ε ↘ 0 and obtain that

Ak,ε → E in L1 which implies that wAk,ε
→ wE in L1, see, for example, remark to Theorem 5.2.
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By lower semicontinuity of Aψ1 , we arrive at

Aψ1 [wE ] ≤ Pψ1(E)

and thus the result is proven in the case where E is bounded from above in the xn+1-variable.

To obtain the general case, use truncations El := E ∩ (Ω× (−∞, l) of E with l > M together with

the estimate

P(El,Ω×R) ≤ P(E,Ω×R) +
∫
Ω

1E(x, l) dHn(x),

like in the proof of Theorem 5.2 in [39]. Applying the bounded from above case with k = l, we

observe that

Aψ1 [wEl
] ≤ Pψ1(El) ≤ Pψ1(E) +

∫
Ω

1E(x, l) dHn(x),

since l was chosen larger then M . Noticing that we have∫
Ω

1E(x, l) dHn(x) → 0 for l → ∞

and El → E in L1, which can easily be obtained like in the remark to Theorem 5.2, we arrive at

Aψ1 [wE ] ≤ lim inf
l→∞

Aψ1 [wEl
] ≤ lim

l→∞

Pψ1(E) +

∫
Ω

1E(x, l) dHn(x)

 = Pψ1(E)

and the general claim is proven.

Next, we consider the first double obstacle case. A noteworthy problem which arises in the double

obstacle case is that the approximation by enlargement like in the single obstacle case may stand in

conflict with the upper obstacle. Similarly, reducing the set may interfere with the lower obstacle.

The idea is to truncate such approximations by the subgraph and supergraph of a separation

function.

Lemma 5.9 (Inequality for the bounded double obstacle problem).

Let Ω be a bounded open set in Rn with finite perimeter and let O1 = Sψ1
and O2 = Sψ2 for some

bounded Borel functions ψ1, ψ2 with |ψ1|, |ψ2| ≤ M and such that a function v ∈ W1,1(Ω) exists

with ψ1 ≤ v∗ ≤ ψ2. Then, we have that the graphification wE of a set E with finite parametric

double obstacle functional value

Pψ1,ψ2(E) := P(E,Ω×R) + ςn+1(O1 \ E+,Ω×R) + ςn+1(E− ∩O2,Ω×R) <∞

has finite Aψ1,ψ2 value and the following inequality holds:

Aψ1,ψ2 [wE ] ≤ Pψ1,ψ2(E).

Remark. In the following proof, one has to be more careful regarding the representatives. For the

single obstacle case, we could state that Ω×(−∞,−M ] ⊂ E+ and had to some extent not to worry
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about the exact representatives. In the double obstacle case, we again have that Ω× (−∞,−M ] ⊂
E+ ⊂ Ω × (−∞,M ] and the same holds for E−, but not necessary for the set E itself. Since

the choice of the representative does not change the perimeter and the right representative is

automatically chosen for the De-Giorgi obstacle terms, we will assume, without loss of generality,

that Ω × (−∞,−M ] ⊂ E ⊂ Ω × (−∞,M ] and we will deliberately switch representatives when

dealing with the perimeter of a set.

Further, it is clear, that the sets considered in this Lemma fulfill the requirements of Theorem 5.2.

Proof. We divide the proof into four steps. In the first, we approximate the set by enlarg-

ing/reducing the set to cover O1 and uncover O2 as well as the corresponding parts of the essential

boundary. In the second step, we approximate the set to get rid of certain density 1 and 0 points

as in the single obstacle case. In the third step, we check the graphification of the obtained sets

for their interaction with the obstacles and, finally, consider the limit of our approximation in the

last step of the proof.

Step 1. First, we have that E is bounded and thus no truncation of the set will be needed. We then

start similar to the proof of Lemma 5.8 and by Corollary 5.6 find for given ε > 0 sets Bε containing

this time (∂∗E)∩Sv and the portion {x ∈ FE∩FSv : νE = νSv
} of FE∩FSv where the normal vec-

tors align as well as the null sets (∂∗E∩∂∗Sv)\(FE∩FSv) and where the normal vector of FE∩FSv
does not exist, compare Proposition 2.5. Then, we define Sv := {(x, t) ∈ Ω × R : t > v(x)} and

find similarly sets B̃ε which cover ∂∗E ∩ Sv and the portion of FE ∩ FSv where the normal

vectors align as well as the null set (∂∗E ∩ ∂∗Sv) \ (FE ∩ FSv) . We can now consider the set

(E ∪ (Bε ∩ Sv)) \ (B̃ε ∩ Sv). By Corollary 5.6 we can ensure

P((E ∪ (Bε ∩ Sv)) \ (B̃ε ∩ Sv),Ω×R) ≤ P(E,Ω×R) + 2ε

and by construction find that

ςn+1(O1 \ ((E ∪ (Bε ∩ Sv)) \ (B̃ε ∩ Sv))+,Ω×R) ≤ ςn+1(O1 \ E+,Ω×R),

ςn+1(O2 ∩ ((E ∪ (Bε ∩ Sv)) \ (B̃ε ∩ Sv))−,Ω×R) ≤ ςn+1(O2 ∩ E−,Ω×R).

To verify those estimates, assume for example that x ∈ O2 \E− is in ((E∪ (Bε∩Sv))\ (B̃ε∩Sv))−.
We first note that v− ≤ ψ2 and thus O2 ∩ Sv

−
and O2 ∩ (Sv)− is a Hn null set. Thus we may

assume x /∈ E− and x /∈ S−
v , which implies that x ∈ ∂∗E ∩∂∗Sv. Since (∂∗E ∩∂∗Sv)\ (FE ∩FSv)

is (besides being a null set) only reached by E ∪ (Bε ∩ Sv), because B̃ε ∩ Sv was subtracted, we

have that x /∈ (∂∗E ∩ ∂∗Sv) \ (FE ∩FSv) and by construction also not in the subset of FE ∩FSv
where no normal vector exists. As a side note, we can argue here with Sv instead of Bε ∩ Sv since

we obviously have (Bε ∩ Sv)+ ⊂ S+
v . For x ∈ FE ∩ FSv, we would obtain that x is in addition

a density 1 point of E ∪ Sv, which implies that the normal vectors of E and Sv show in opposite

directions. The considerations leads to x ∈ B̃ε implying x /∈ ((E ∪ (Bε ∩ Sv)) \ (B̃ε ∩ Sv))− but

merely x ∈ F((E ∪ (Bε ∩ Sv)) \ (B̃ε ∩ Sv)). Arguing similar for x ∈ O1 ∩E+, the claim is verified.

Next, we find by Corollary 5.6 some sets Cε containing O1 \ E+ and C̃ε containing O2 ∩ E− and

observe that

Pψ1,ψ2((E∪((Bε∪Cε)∩Sv))\(B̃ε∪C̃ε∩Sv)),Ω×R) = P((E∪((Bε∪Cε)∩Sv))\(B̃ε∪C̃ε∩Sv)),Ω×R)
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and

P((E ∪ ((Bε ∪ Cε) ∩ Sv)) \ (B̃ε ∪ C̃ε ∩ Sv)),Ω×R) ≤ Pψ1,ψ2(E) + 4ε.

For easier notation, we set Aε := (E ∪ ((Bε ∪ Cε) ∩ Sv)) \ (B̃ε ∪ C̃ε ∩ Sv)) and continue with the

second step.

Step 2. Using Theorem 5.7 and arguing as in the proof of Lemma 5.8, we can again obtain a

sequence Aλε converging in L1 and in the perimeter in Ω × R to Aε: We have that Aε ⊂ Aλε , A
λ
ε

converges for λ→ ∞ to Aε in L1 and in the perimeter and additionally fulfills that ∂Aλε∩Ãλε (1) = ∅.
Relying on the truncation like in the proof of Proposition 5.5 and as will be shown below, we may

adjust the sequence by truncating the parts added to Aε by A
λ
ε and thus obtain Âλε := Aε∪(Aλε∩Sv),

which still converges in L1 and in the perimeter to Aε, and fulfills Aε ⊂ Âλε but maybe loses the

property regarding density 1 points in the topological boundary if the considered point is contained

in the reduced/essential boundary of Sv. The approximation properties regarding the convergence

in L1 are trivial to show as well as the fact that Aε ⊂ Âλε . The stated convergence in the perimeter

can be verified using Aε ⊂ Aλε and Proposition 2.21, to obtain

P(Aε ∪ (Aλε ∩ Sv),Ω×R) = P(Aλε ∩ (Aε ∪ Sv),Ω×R)

≤ P(Aλε ,Ω×R) + P(Aε ∪ Sv,Ω×R)− P(Ãλε ∪ Sv,Ω×R)

and thus the convergence in the perimeter follows with the lower semicontinuity of the perimeter.

We may further choose suitable λε as in the proof of Lemma 5.8, i.e. that Aε and A
λε
ε differ in the

perimeter and in L1 only by an ε.

In a similar fashion and now using interior approximation of Aε, we can construct Ãλε ⊂ Aε which

converge in L1 and in the perimeter to Aε and fulfill that ∂Ãλε ∩ Ãλε (1) = ∅. More precisely, we

use Theorem 5.7 on Aε ∩ (Ω × (−M − 1,M)) and add Ω × (−∞,−M ] to the newly obtained

approximation. Arguing like in the single obstacle cases ensures, that the stated properties hold.

Now we can consider the set Eε = (Aε ∪ (Aλε
ε ∩ Sv)) \ (Ãλε

ε ∩ Sv) after adjusting λε, such that

P(Eε,Ω×R) ≤ P(Aε,Ω×R) + 2ε

holds. This can be done arguing like in the first part of this step and by monotonicity of Aλε and

Ãλε in λ.

Altogether, we constructed a sequence of sets Eε which, considering each time the right represen-

tative, contain O1 but do not contain O2, converge to E in L1 for ε↘ 0 as well as in the perimeter

P(Ek,ε,Ω×R) → Pψ1,ψ2(E). Further, the sets Eε have some boundary properties regarding den-

sity 1 points in the topological boundary on parts of the set and contain by Sv truncated cylinders

around [−M,ψ1(x)−η] and by Sv truncated cylinders around [ψ2(x)+η,M ] for all η > 0, which we

will explain and use in the third step to conclude properties of the graphification of Eε regarding

the obstacles.

Step 3. We can now consider the (subgraph of the) graphification SwEε
and observe, as in the

proof in the single obstacle case, that Eε contains for each η > 0 a truncated cylinder around each

line contained in O1 − η, i.e. for all x we have that Lηx := {x} × [−M,ψ1(x) − η] is contained

in a cylinder Uηx = Bnrη (x) × (−∞, ψ1(x) − η] ⊂ Aλε
ε and thus Uηx ∩ Sv is contained in Aλε

ε , since

the adjustments with Ãε ∩ Sv in step 2 do not take away any points in Sv and hence do not
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interfere. This implies that Uηx ∩ Sv is still a subset of Eε. Remembering that by our setting we

have that Ω× (−∞,M ] ⊂ E+
ε , we can draw the conclusion that w+

Eε
(x) ≥ ψ1(x) for all x ∈ Ω by

the definition of the upper representative and Uηx ∩ Sv implying w+
Eε

(x) ≥ ψ1(x)− η for all η > 0

since Sv+ contains O1. Arguing in a similar fashion for the upper obstacle, i.e. finding a cylinder

in the complement of E−
ε around {x} × [ψ2(x) + η,M ] ⊂ {x} × [−M,M ] which get truncated by

Sv, we have that w−
Eε

(x) ≤ ψ2(x) for all x ∈ Ω.

Step 4. By estimating all approximation steps, we get in the same fashion as for the single obstacle

case that

|Eε∆E| ≤ 6ε and P(Eε,Ω×R) ≤ Pψ1,ψ2(E) + 6ε

and thus Eε → E in L1 and P(Eε,Ω × R) → Pψ1,ψ2(E) by lower semicontinuity for ε ↘ 0. This

implies as described for the single obstacle case that wEε
→ wE in L1, which leads to

Aψ1,ψ2 [wE ] ≤ lim inf
ε↘0

Aψ1,ψ2 [wEε
] ≤ Pψ1,ψ2(E)

and the desired inequality is proven.

With Lemma 5.9 in hand, we can prove the general statement:

Theorem 5.10 (Inequality for the general double obstacle case).

Let Ω be a bounded open set in Rn and let O1 = Sψ1 and O2 = Sψ2 for some bounded Borel

functions ψ1, ψ2 be given such that a function v ∈ W1,1(Ω) exists with ψ1 ≤ v∗ ≤ ψ2. Then, we

have that the graphification wE of set E, which fulfills the assumptions of Theorem 5.2 and has

finite parametric double obstacle functional value

Pψ1,ψ2(E) := P(E,Ω×R) + ςn+1(O1 \ E+,Ω×R) + ςn+1(E− ∩O2,Ω×R),

has finite Aψ1,ψ2 value and the following inequality holds:

Aψ1,ψ2 [wE ] ≤ Pψ1,ψ2(E).

Proof. We first assume that Ω has finite perimeter. For given k > 0, we observe that the set

Ek = E ∩ (−k, k) ∪ Ω× (−∞, k] has finite perimeter in Ω×R, more precisely, we have

P(Ek,Ω×R) ≤ P(E,Ω×R) +
∫
Ω

1 + 1E(x, k)− 1E(x,−k) dHn(x) ≤ P(E,Ω×R) + 2|Ω|,

compare for example the proof of Theorem 5.2 in [39]. Further, we set ψ1,m = min{ψ1,m} and

ψ2,m = max{ψ,−m} and observe that for k ≥ m we have

Pψ1,m,ψ2,m(Ek) ≤ Pψ1,ψ2(E) +

∫
Ω

1 + 1E(x, k)− 1E(x,−k) dHn(x).

For this, it is important to note that we have ψ1,m ≤ ψ1 and ψ2,m ≥ ψ2 and thus the estimate

follows trivially for k ≥ m. We notice further, that Ek contains Ω × (−∞,−k − 1) and does not

intersect Ω× (k+1,+∞). Thus we may replace the function ψ1,m by ψ1,m,k = max{ψ1,m,−k− 1}
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and the function ψ2,m by ψ2,m,k = min{ψ2,m, k+ 1} without changing the value of the functional,

i.e. Pψ1,m,ψ2,m(Ek) = Pψ1,m,k,ψ2,m,k(Ek). We now can apply Lemma 5.9 with the separation

function vm = min{max{v,−m},m} and obtain for each k ≥ m that

Aψ1,m,ψ2,m [wEk
] ≤ Pψ1,ψ2(E) +

∫
Ω

1 + 1E(x, k)− 1E(x,−k) dHn(x).

Taking the limit k → ∞, we have wEk
→ wE in L1 and observe that

Aψ1,m,ψ2,m [wE ] ≤ Pψ1,ψ2(E),

for all m ∈ N, where we used that by the remark to Theorem 5.2, the integral term
∫
Ω

1+1E(x, k)−

1E(x,−k) dHn(x) vanishes for k → ∞. Since this holds for all m ∈ N , we may send m→ ∞ and

obtain with the monotone convergence theorem that

Aψ1,ψ2 [wE ] ≤ Pψ1,ψ2(E).

It remains to prove that this result holds for arbitrary open bounded sets Ω and not only for those

of finite perimeter:

For fixed E consider the Radon measure µ(A) =
∫
A

√
1 + |DwE |2+

∫
A

(ψ1−w+
E)++(w−

E −ψ2)+ dςn.

First we prove that µ(Ω) <∞:

Assume µ(Ω) = +∞. Then we find for each l > 0 a compact set Kl ⊂ Ω such that µ(Kl) ≥ l.

Since Ω is open and Kl compact, we can find for each point x ∈ ∂Kl a ball Brx,l
(x) ⊂ Ω. Covering

the topological boundary of Kl in such a way and noting that the boundary is again compact, we

find a finite subcover of the topological boundary with Brxi,l
(xi), i = 1, . . . , n. Consider now the

set Ωl := Kl ∪
⋃n
i=1 Brxi,l

(xi), which has finite perimeter and fulfills µ(Ωl) ≥ µ(Kl) ≥ l by the

non-negativity of µ. Choosing l > Pψ1,ψ2(E) and applying the result for sets of finite perimeter on

the set Ωl, we reach a contradiction and thus µ(Ω) < +∞.

Since µ(Ω) < +∞, we find for given ε by regularity some compact set Kε such that |Ω \Kε| < ε

and µ(Kε) ≥ µ(Ω) − ε. We can again cover ∂Kε with balls Brx,l
(x) ⊂ Ω for x ∈ ∂Kε, choose a

finite subcover Brxi,l
(xi), i = 1, . . . , n and define the set Ωε = Kε ∪

⋃n
i=1 Brxi,l

(xi). Now we arrive

again at a set Ωε of finite perimeter with |Ω \ Ωε| ≤ |Ω \Kε| ≤ ε and µ(Ωε) ≥ µ(Kε) ≥ µ(Ω)− ε.

Applying again the result obtained for sets of finite perimeter, we arrive at

Aψ1,ψ2 [wE ]− ε ≤ Pψ1,ψ2(E)

for all ε > 0 and the claimed result follows for ε↘ 0.

Remark. This proof can also be applied locally on suitable subsets of the domain Ω and on suffi-

ciently regular domains even with boundary values given by a W1,1 separation function, which is

defined on a suitable larger set like a ball containing Ω for the non-parametric problem and as a

subgraph of the given function for the parametric problem, similar to Theorem 14.9 in [39].

To obtain that the subgraph of wE is indeed a minimizer of the parametric double obstacle problem

if E is already a minimizer in the cases, where the assumptions of Theorem 5.2 automatically hold,
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we need to prove that Aψ1,ψ2 [wE ] ≥ Pψ1,ψ2(SwE
). While the part of the area functional and the

perimeter is already obtained by Theorem 5.1, a connection for the obstacle terms is missing and

its acquirement is the goal of the next section.

5.3 Relationship between the n- and (n+1)-dimensional De Giorgi measure

and the second inequality

To prove the desired result, we need to show that

ςn+1(S+
u \O1 ∩ (Ω×R)) =

∫
Ω

(ψ1 − u+)+ dςn

or at least that the left hand side is smaller then the right hand side together with an analogous

result for the upper obstacle. To achieve that, we first prove a connection between the n- and the

(n + 1)-dimensional De Giorgi measure for sets of the type E ⊂ Rn and E × I ⊂ Rn × R with

an interval I, respectively. From this case, the desired (in-)equality will follow easily by applying

a Cavalieri-type principle. Before we state and prove the theorem involving this equality, we shall

recall some helpful tools:

First we state a version of the co-area formula for rectifiable sets from [47, Theorem 18.8], which

will allow us to estimate the perimeter of an (n+ 1)-dimensional object by its slices:

Theorem 5.11 (Co-area formula for (locally) Hn−1-rectifiable sets).

If E is a locally Hn−1-rectifiable set in Rn and f : Rn → R is a C1 function, then∫
R

Hn−2(E ∩ {f = t}) dt =
∫
E

|∇Ef |dHn−1 (5.3)

with tangential gradient

∇Ef = ∇f − (∇f · νE)νE

for a normal vector νE of E which exists by the remark to Definition 2.3.

In addition, for any Borel function g ≥ 0 or g ∈ L1(Rn,Hn−1 E), we have∫
R

∫
E∩{f=t}

g dHn−2 dt =

∫
E

g|∇Ef |dHn−1. (5.4)

Remark. At this stage we have to mention, that a Lipschitz function f : Rn → R is not only

differentiable Ln-a.e. as stated in Theorem 2.1 but tangentially differentiable at Hn−1-a.e. point

of a (locally) Hn−1-rectifiable set, see [47, Theorem 11.4], and thus the original statement is for

merely Lipschitz functions.

Next, we define slices for a set E ⊂ Rn+1 by

Et := {x ∈ E : xn+1 = t} (5.5)

and set x′ as the first n components of x ∈ Rn, i.e. x = (x′, xn+1). With that, we can connect

83



points in the reduced boundary of a measurable set E ⊂ Rn+1 and its slices Et starting at (5.4):

We use (5.4) on the set FE ⊂ Rn+1 and the function f(x) = xn+1 and obtain∫
FE

g|ν′E |dHn =

∫
R

∫
(FE)t

g dHn−1 dt (5.6)

for a Borel function g which is either non-negative or in L1(Rn,Hn FE). Using g ≡ 1 and

|ν′E | ≤ |νE | = 1, we obtain ∫
FE

dHn ≥
∫

FE

|ν′E |dHn =

∫
R

∫
(FE)t

dHn−1 dt. (5.7)

Further, one can use (5.6) to prove an adaptation of [47, Theorem 18.11]:

Theorem 5.12 (Slicing of boundaries).

If E is a set of locally finite perimeter in Rn+1, then for a.e. t ∈ R the horizontal section Et of E

is a set of locally finite perimeter in Rn × {t}, with

Hn−1 (FEt∆(FE)t) = 0, (5.8)

ν′E(x, t) ̸= 0 for Hn−1-a.e. x ∈ (FE)t (5.9)

and

νEt
=

ν′E( . , t)

|ν′E( . , t)|
Hn−1-a.e. on (FE)t. (5.10)

At this point, it is important to distinguish and emphasize the difference between FEt = F(Et) as

the reduced boundary of the slice in Rn×{t} and (FE)t which is the slice of the reduced boundary

of E.

Moreover, if E has finite Lebesgue measure and Hn({x ∈ FE : νE(x) = ±en+1}) = 0 , then

vE(t) = Hn(Et) for (t ∈ R) is such that vE ∈ W1,1
loc(R), with

d

dt
vE(t) = −

∫
(FE)t

(νE)n+1 (x, t)

|ν′E(x, t)|
dHn−1(x) for a.e. t ∈ R.

Using (5.8) in (5.7) we obtain:

Hn(FE) ≥
∫
R

Hn−1(FEt) dt. (5.11)

With this preparation we are able to prove the following connection between the (n+ 1)- and the

n-dimensional De Giorgi measure:

Theorem 5.13 (De Giorgi measure on specific sets).

For E ⊂ Rn, we have

ςn(E) = ςn+1(E × (0, 1)). (5.12)

We split the proof into different parts:
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Lemma 5.14 (First inequality between De Giorgi measures of different dimensions).

For E ⊂ Rn, we have

ςn+1(E × (0, 1)) ≤ ςn(E).

Proof. We can assume ςδ,n(E) < ∞, since otherwise the inequality is trivial by monotonicity of

ςδ,n. By the definition of ςδ,n (see 3.1) we find for each ε > 0 an open set Eδ,ε ⊂ Rn with E ⊂ Eδ,ε

and

P(Eδ,ε) +
|Eδ,ε|
δ

≤ ςδ,n(E) + ε (5.13)

and thus

P(Eδ,ε) ≤ ςδ,n(E) + ε and

|Eδ,ε| ≤ δ(ςδ,n(E) + ε). (5.14)

Next, we use the inequality P(A× (0, 1)) ≤ P(A)+ 2Ln(A), which is still to be proven, and obtain

for the open set Eδ,ε × (0, 1) ⊂ Rn+1 with (E × (0, 1)) ⊂ (Eδ,ε × (0, 1)) that

ςδ,n+1(Eδ,ε × (0, 1)) ≤ P(Eδ,ε × (0, 1)) +
|Eδ,ε × (0, 1)|

δ

≤ P(Eδ,ε) + 2|Eδ,ε|+
|Eδ,ε|
δ

≤ ςδ,n(E) + ε+ 2δ(ςδ,n(E) + ε),

where (5.13) and (5.14) were used. Sending δ ↘ 0 and ε↘ 0 proves the desired result.

It remains to prove

P(E × (0, 1)) ≤ P(E) + 2Ln(E).

First we note that (F(E × (0, 1)))t = FE × {t} up to Hn−1-null sets for a.e. t ∈ (0, 1) by

Theorem 5.12, especially (5.8) and the fact that every slice is a shifted version of E. This results

in combination with (5.7) in

Hn (F(E × (0, 1)) ∩ (Rn × (0, 1)))) = P(E).

Further, since F(E × (0, 1)) ⊂ ((FE)× (0, 1)) ∪ (E × ({0} ∪ {1})), it suffices to estimate

Hn(F(E × (0, 1)) ∩ (E × ({0} ∪ {1}))) ≤ 2Ln(E).

Combining both estimates, we obtain the desired inequality.

Next, we want to prove the second inequality:

Lemma 5.15 (Second inequality for De Giorgi measures of different dimensions).

For E ⊂ Rn, we have

ςn+1(E × (0, 1)) ≥ ςn(E).
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For this proof, we need a little more preparation, since we want to construct a set Z ⊂ Rn for each

open set S ⊂ Rn+1 with E × [0, 1] ⊂ S and for which P(S) + |S|
δ ≤ ςδ,n+1(E × (0, 1)) + ε holds,

such that Z fulfills the corresponding inequality in Rn for the set E. To do so, we need to adjust

the sets S:

Lemma 5.16 (Truncation with half-spaces reduces the perimeter).

Given a set E ⊂ Rn with finite perimeter and finite volume, then the set E ∩H with a half-space

H has a smaller perimeter, i.e.

P(E ∩H) ≤ P(E).

Proof. Step 1 : For a function η ∈ C1
cpt(R

n) with 0 ≤ η and, without loss of generality, H =

Rn−1 × (−∞, 0), we have η1H ∈ BV(Rn) with

|D(η1H)| ≤ |∇η|Ln H + ηHn−1 ∂H.

Then we can estimate the following by using integration by part on the half-space Rn \H

|D(η1H)|(Rn) ≤
∫
H

|∇η|dx+

∫
∂H

η dHn−1

=

∫
H

|∇η|dx−
∫

Rn\H

∂nη dx

≤
∫
Rn

|∇η|dx.

Step 2 : Let E be a set with finite perimeter and volume. Then 1E is in BV and we can find

a sequence 0 ≤ ηk ≤ 1 with ηk ∈ C1
cpt(R

n) and ηk → 1E strict in BV. We obviously have

ηk1H → 1H1E = 1H∩E in L1(Rn). By the above argument the sequence is bounded in BV

and there exists a weakly* converging subsequence ηkl1H
∗
⇁ 1H∩E in BV. Using the lower semi-

continuity of the perimeter and step 1., we obtain

|D1H∩E |(Rn) ≤ lim inf
l→∞

|D(ηkl1H)|(Rn)

≤ lim
l→∞

∫
Rn

|∇ηkl |dx = P(E).

Now we can proceed with the proof of Lemma 5.15:

Proof. W.l.o.g we can assume ςn+1 = (E × (0, 1)) < ∞. To show the desired inequality we will

show that for each open set S ⊂ Rn+1 with Hn(E × (0, 1) \ S+) = 0 we can find a set Z ⊂ Rn

with Hn−1(E \ Z+) = 0 and ςδ,n(Z) ≤ ςδ,n+1(S). First of all by truncating S with Lemma 5.16

with the hyper-spaces H1 := Rn× (−∞, 1) and H2 := Rn× (0,+∞), we only reduce the perimeter

and Lebesgue-measure of the set S and do not change any properties regarding E × (0, 1) ⊂ S+.

Because of that it is enough to consider only sets S ⊂ Rn × (0, 1). Since Hn(E × (0, 1) \ S+) = 0

it is clear by using Fubini’s theorem that for H1-a.e t the (S+)t contains E × {t}.
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For choosing the correct slice for our inequality, we define Snt := {x ∈ Rn : (x, t) ∈ (S+)t} and

can find for any λ > 0 a t0 ∈ (0, 1) with

P(Snt0) +
|Snt0 |
δ

≤ ess inf
t∈(0,1)

(
P(St) +

|St|
δ

)
+ λ (5.15)

using Theorem 5.12 with (5.8) and (5.11). Further, we can assume
(
Snt0
)+

contains E.

Now, since FSnt0 × (0, 1) ⊂ F(Snt0 × (0, 1)), we can estimate using (5.15) and (5.7) for t ∈ (0, 1) to

obtain

P(Snt0 ,R
n) +

|Snt0 |
δ

≤ Hn(FSnt0 × (0, 1)) +
|Snt0 × (0, 1)|

δ
=

1∫
0

Hn−1(FSnt0) +
|Snt0 |
δ

ds

≤
1∫

0

Hn−1(FSs) +
|Ss|
δ

+ λ ds

=

1∫
0

∫
(FSs)

|v′S |dHn−1 ds+
|S × (0, 1)|

δ
+ λ

≤ P(S) +
|S|
δ

−Hn(F(S × (0, 1)) \ (FS × (0, 1))) + λ.

In the last estimate |v′S | ≤ 1 was used and all parts where |v′S | = 0 were added but only those at

t = 0 and t = 1 subtracted. With λ small enough and δ ↘ 0, the result follows.

Proof. (of Theorem 5.13) Combining the estimates of Lemma 5.14 and 5.15 yields the result.

Now we have ςn(E) = ςn+1(E × (0, 1)). By a simple scaling argument we get ςn(E) = 1
λ ς
n+1(E ×

(0, λ)) and, using the translation invariance of ς, we obtain ςn+1(E ×M) = ςn(E)L1(M) for each

M ∈ B(R), since open intervals generate B(R). Since R is σ-finite with respect to L1, we have by

[23, Kapitel V, 1.3 Satz] that ςn ⊗ L1 is a measure equal to ςn+1 on sets in B(E) × B(R) and by

[23, Kapitel V, 1.5 Satz und Definition] the product measure is unique as long as ςn is defined on

an σ-finite set with a corresponding (completed) σ-algebra, i.e. E is a σ-finite set. We thus obtain

ςn+1 = ςn ⊗ L1 on such sets. Indeed we will consider the sets {ψ1 − u+ > 0} and {u− − ψ2 > 0}
which, if

∫
Rn

(ψ1 − u+)+ + (u− − ψ2)+ dςn is finite, is also σ-finite with respect to the De Giorgi

measure. Using the product measure on such sets we arrive at∫
E

f+ dςn = ςn+1(F ) with F = {(x, t) ∈ Rn+1 : x ∈ A and 0 ≤ t ≤ f(x)} (5.16)

as long as E ∩ {f > 0} is σ-finite with respect to the De Giorgi measure ςn.

Applying this result, we arrive at:

Theorem 5.17 (Equality of the obstacle term).

Let Ω, ψ1, ψ2 and O1, O2 be like in Theorem 5.10 and u ∈ BV with Aψ1,ψ2 [u] <∞. Then

ςn+1(O1 \ S+
u ,Ω×R) =

∫
Ω

(ψ1 − u+)+ dςn
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and similar

ςn+1(S−
u ∩O2,Ω×R) =

∫
Ω

(u− − ψ2)+ dςn.

Proof. Since Aψ1,ψ2 [u] is finite, we have that the set T1 = {x ∈ Ω : (ψ1(x)−u+(x)) > 0} is σ-finite.

Using the definition of S+
u and u+, we find that L1((S+

u \ O1) ∩ {x} × R) = (ψ1(x) − u+(x))+.

Applying Cavalieri’s principle for the product measure ςn+1 = ςn×L1 on T1 ×R, we arrive at the

first claim. The second follows analogously.

Combining the result of Theorem 5.10 and 5.17, we arrive at:

Theorem 5.18 (Non-parametric minimizer of the parametric double obstacle problem).

Let Ω, ψ1, ψ2 and O1 and O2 be like in Theorem 5.10. Further, let E be a minimizer of Pψ1,ψ2

such that the assumptions of Theorem 5.2 are met. Then, SwE
is also a minimizer of Pψ1,ψ2 .

Proof. Applying Theorem 5.1, 5.10 and 5.17, we have

Pψ1,ψ2(SwE
) = Aψ1,ψ2 [wE ] ≤ Pψ1,ψ2(E) = min

A
Pψ1,ψ2(A)

and thus SwE
is again a minimizer or Pψ1,ψ2 .

With Theorem 5.18 the second major result of this thesis follows:

Theorem 5.19 (Relation between parametric and non-parametric double obstacle problem).

Let Ω be an open bounded set, ψ1, ψ2 : Rn → R ∪ {±∞} be two Borel functions such that a

separation function v ∈ W1,1 exists with ψ1 ≤ v∗ ≤ ψ2 holds Hn−1-a.e. Further, let u ∈ BVloc(Ω)

be a local minimizer of Aψ1,ψ2 , i.e. u minimizes Aψ1,ψ2 on each open set A ⋐ Ω. Then the set

U = {(x, t) ∈ Ω ×R : t < u(x)} minimizes the parametric double obstacle problem Pψ1,ψ2 locally

(on A×R).

Proof. Let A ⋐ Ω ⊂ Rn be an open set and B be a Caccioppoli set in Ω × R which coincides

with U outside of some compact set K ⊂ A×R. Then U ∩ (A×R) and B ∩ (A×R) satisfy the

conditions (i) and (ii) of Theorem 5.2 and the graphification wB of the competitor B coincides

with u outside of A.

Assume now that B has smaller parametric double obstacle functional value than U . Then we

obtain by Theorem 5.1, 5.17 and 5.10 that Aψ1,ψ2 [wB , A] < Aψ1,ψ2 [u,A] and thus a contradiction.

Therefore U is a local minimizer of Pψ1,ψ2 .

Remark.

1. The reverse implication of the main result, i.e. that a set of subgraph type that minimizes

the parametric double obstacle problem with obstacles O1, O2 like in Theorem 5.19 follows

trivially by 5.17 and that for each function u the subgraph Su is eligible for the parametric

double obstacle problem.
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2. The general approach of Theorem 5.19 can be exploited for the functional Aψ1,ψ2
u0

if we have

a minimizer u ∈ BV(Ω) and Ω is a bounded domain such that u0 can be extended by a

function u0 ∈ W1,1(Br) to a ball Br ⊃ Ω where ψ1 ≤ u∗0 ≤ ψ2 holds Hn−1-a.e. in Ω.

Then this equivalence holds on Ω×R by the same argument, where the obstacles are set to

ψ1 ≡ ψ2 ≡ u0 on Br \ Ω.

3. Obviously, this result also extends to the single obstacle problem using ψ1 ≡ −∞ or ψ2 ≡ +∞
for the upper or lower obstacle problem.

5.4 The non-parametric double obstacle problem revisited

In Section 4, we have seen that in the non-parametric setting a W1,1 separation function between

the obstacles is needed to be able to use the truncation theorem in a proper way. Applying the

truncation theorem with a BV-separation function failed and could not be fixed. The usage of

the parametric theory can circumvent this difficulty. Consider the proof of Theorem 5.10. If it is

possible to obtain the same result without using truncated obstacles, the in the proof constructed

sequence wEε could be used as a recovery sequence for arbitrary function u ∈ BV with finite

functional value Aψ1,ψ2 [u] < ∞ by setting E = Su. The change from a W1,1 to a BV separating

function is not an issue, since one can still apply the truncation results from Proposition 5.5 with

the subgraph of a BV function v which satisfies ψ1 ≤ v+ and v− ≤ ψ2. The main part to notice is

that S+
v still contains the lower obstacle O1 and similarly O2 ⊂ Ω \ S.v and thus the proof works

identically. Now we can state the full version of the double obstacle problem for the area functional

and thus extend the result of 4.13 in that specific case:

Theorem 5.20 (The general non-parametric double obstacle problem for the area functional).

Let Ω be a bounded open set in Rn and let O1 = Sψ1 and O2 = Sψ2 for some bounded Borel

functions ψ1, ψ2 be given such that ψ1 ≤ ψ2 holds Hn−1-a.e. and a function v ∈ BV(Ω) exists with

Hn−1-a.e. inequalities ψ1 ≤ v+ and v− ≤ ψ2. Then, the relaxation of∫
Ω

√
1 + |Du|2 for u ∈ BV◦,ψ1,ψ2(Ω)

extended by +∞ to L1(Ω) \ BV◦,ψ1,ψ2(Ω) is given by Aψ1,ψ2 .

Proof. We first introduce an improvement of the proof of Theorem 5.10 to apply it later on each

subgraph of eligible function u ∈ BV withAψ1,ψ2 [u]: Given is a set E which satisfies the prerequisite

of Theorem 5.2 with Pψ1,ψ2(E) < ∞. The main idea is to not simply cut off a given set at ±k,
but instead consider the set Ek = E ∩ (Ω× (−k, k)) ∪ (Sv \ (Ω× (−k, k)) and notice that

Pψ1,ψ2(Ek) ≤ Pψ1,ψ2(E,Ω×R) + 2|Ω|+ P(Sv,Ω×R)
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and Ek → E in L1 as well as

P(Ek,Ω×R) ≤Hn(FE ∩ (Ω× (−k, k)) +Hn(FSv \ (Ω× (−k, k)))

+

∫
Ω

1E(x,−k) + 1Sv
(x, k)− 21E(x,−k)1Sv

(x, k) dHn(x)

+

∫
Ω

1E(x, k) + 1Sv
(x, k)− 21E(x, k)1Sv

(x, k) dHn(x)

for almost all k > 0, where the inequality follows similarly as in the proof of Theorem 5.2 in [39].

Without loss of generality consider an Ω of finite perimeter in Rn or apply the approximation like

in the end of proof of Theorem 5.10. Using the approximations like in the proof of Lemma 5.8

and 5.9 on (Ek ∩ Ω × (−k − 1, k + 1)) with Qk = BR × (−k − 1, k + 1) and the usual truncation

of the set, which gets added to Ek, by Sv and the truncation of the set, which gets subtracted

from Ek, by S
v, we obtain for almost all k > 0 sets Ẽk,ε ⊂ Ω× (−k − 1, k + 1) which are close to

Ek ∩ (Ω× (−k − 1, k − 1) in L1 and the perimeter can be bounded by

P(Ẽk,ε,Ω× (−k − 1, k + 1)) ≤P(Ek,Ω× (−k − 1, k + 1))

+ ςn+1(O1 \ E+,Ω×R) + ςn+1(O2 ∩ E−,Ω×R) + ε,

since the truncation enforces that Ek agrees with Sv in Ω× (−k− 1,−k) and Ω× (k, k+ 1). This

also yields that Ek,ε := Ẽk,ε ∪ Sv \ (Ω× (−k, k)) is close to Ek in L1 and in the perimeter to the

parametric double obstacle functional, more precisely, we have

P(Ek,ε,Ω×R) ≤ Pψ1,ψ2(Ek) + ε

for almost all k > 0. Considering the obstacle O1, we easily can verify that O1 ⊂ E+
k,ε and moreover

that O1 ⊂ Sw+
Ek,ε

at least Hn-a.e., since for almost every x with

1. ψ1(x) ≤ −k, we have O1 ∩ {x} ×R ⊂ Sv+ ∩ {x} ×R ⊂ S+
v ∩ {x} ×R,

2. −k < ψ1(x) ≤ k we have that Ek,ε ∩ (Ω× [−k, k]) contains for each η > 0 a by Sv truncated

cylinder of the form Brη × [−M,ψ1(x) − η] ∩ Sv around x × [−k, ψ1(x) − η]. This implies

that by the definition of the upper representative v+, Sv+ and S+
v that O1 ∩ (Brη (x)×R) ⊂

S+
v ∩ (Br(x)×R) ⊂ S+

wEk,ε
∩ (Br(x)×R), since Sv ∩ (Br(x)× (−∞,−k) is also contained in

Ek,ε by construction. Hence, O1 ∩ {x} ×R ⊂ Sw+
Eε,k

.

3. Finally and arguing like in 2. together with v+ ≥ ψ1, the same result follows for ψ1(x) > k.

Arguing similarly for the upper obstacle, we have that wEk,ε
fulfills the double obstacle constraint

and converges for ε↘ 0 to wEk
together with

Aψ1,ψ2 [wEk
] ≤ Pψ1,ψ2(Ek).

Letting k → ∞, we obtain that P(Ek,Ω×R) → Pψ1,ψ2(E) and wEk
→ wE in L1 and thus

Aψ1,ψ2 [wE ] ≤ Pψ1,ψ2(E).
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Now we may apply this result on each subgraph E = Su of functions u with finite Aψ1,ψ2 [u] and a

suitable diagonal sequence with ε↘ 0 and suitable k → ∞ to obtain a recovery sequence. Together

with Theorem 5.18, the proof is finished, since this gives us

Aψ1,ψ2 [u] = Pψ1,ψ2(Su).

Remark. In retrospective, the relaxation of the double obstacle problem for the area functional

could be proven using Theorem 5.18 and the results for the parametric double obstacle problem

for the area functional. Similarly, if for a non-parametric functional a parametric version with the

same approximation properties exists, the results of Corollary 4.13 extends to those functionals.

5.5 Some continuity result at the obstacles for minimizers of the double

obstacle problem

In this section, we briefly discuss the regularity of solutions of the double obstacle problem for

the area functional in the non-parametric setting. In general, on the contact sets {u = ψi} for

i = 1, 2 we expect the regularity of the obstacle ψi and away from obstacles we have the usual

local regularity of minimal surfaces. It is interesting to study regularity up to the obstacles, which

in general may be as bad as possible depending on the obstacles. Even if only thin obstacles are

allowed, they can define values on a dense subset of Ω and thus can restrict the minimizer to only

one option. Because of that, it is reasonable to consider nice settings, like for example in [26] for the

parametric or in [29] for the non-parametric case. Most of the time the domain Ω ⊂ Rn is set to be a

unit ball and smooth obstacles contained in one diameter of the ball are considered. The prescribed

boundary values on the unit sphere should be compatible with the obstacle where, in the case n ≥ 2,

the diameter touches the boundary. Here, we consider Ω = B1(0) and thin obstacles whose support

is contained in B′
1(0) = B1(0) ∩ (Rn−1 × {0}). Even if the thin obstacle is smooth or constant,

one cannot expect a global regularity, since even in the case n = 1 it is clear that for a domain

Ω = (−1, 1), boundary values u0 = 0 for x = ±1 and a single obstacle ψ = 1 at x = 0 and ψ = −∞
on [−1, 1] \ {0} the minimizer is not smooth on the whole domain. In this case, the minimizer is

given by u(x) = 1−|x| which is only Lipschitz but not differentiable on the whole domain. Similar

results are established in [26, Theorem 1.7] showing that for flat obstacles, at least on B 1
2
(0), the

minimizers are reasonably smooth on B+
1
2

(0) ∪ B′
1
2

(0) with B+
1
2

(0) = B 1
2
(0) ∩

(
Rn−1 × (0,+∞)

)
and on B−

1
2

(0) ∪B′
1
2

(0) with B−
1
2

(0) = B 1
2
(0) ∩

(
Rn−1 × (−∞, 0)

)
. Similarly, in the non-parametric

setting, regularity on B+
1 (0) ∪ B′

1(0) and B−
1 (0) ∪ B′

1(0) is established in [29, Theorem 1.1] under

a symmetry assumption with respect to Rn−1 × {0}.
For the double obstacle problem, we note that if ψ1 = ψ2 on B′

1(0) and ψ1 = −ψ2 = −∞ otherwise,

the regularity/continuity at the obstacle switches to those at the boundary for the domains B+
1 (0)

and B−
1 (0). For example, if u0 is continuous on B′

1(0) and ψi = u0 for i = 1, 2 on B′
1(0), we can

use [39, Theorem 15.9] following the results of [51] to establish continuity at the active obstacle on

B′
1(0):
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Theorem 5.21 (Continuity at the boundary).

For an open bounded set Ω ⊂ Rn with Lipschitz boundary and u0 ∈ L1(∂Ω,Hn−1), let v be the

minimizer of

Au0
[u,Ω] =

∫
Ω

√
1 + |Du|2 dx+

∫
∂Ω

|u0 − uint|dHn−1.

Then, if u0 is continuous at a point x0 and ∂Ω has non-negative mean-curvature in a generalized

sense near x0, v attains continuously the value of u0 at x0, i.e.

lim
Ω∋x→x0

v(x) = u0(x0).

Now we are able to prove the following result:

Proposition 5.22 (Continuity at the obstacle/boundary).

Let ψ0 ∈ C0(B′
1(0)) and u0 ∈ L1(∂B1(0),Hn−1) be given. For an easier notation we set u0 = ψ0

on B′
1(0) and further define the obstacles ψ1 = ψ2 = u0(= ψ0) on B′

1(0) and ψ1 = −∞ = −ψ2

otherwise. Then, the minimizer v of Aψ1,ψ2
u0

on B1(0) coincides on B+
1 (0) with the minimizers

of Au0
[u,B+

1 (0)] and on B−
1 (0) with the minimizers of Au0

[u,B−
1 (0)] and is continuous in B1(0).

Further, if u0 is even continuous on B′
1(0)∪∂B1(0), the minimizer is continuous on the closed ball

and thus at the obstacle and up to the boundary.

Remark. Even if u0 is defined on ∂B1(0)∪B′
1(0), the boundary values constraint in the functional

Aψ1,ψ2
u0

[u,E] is only considered on ∂E for E ∈ {B1(0),B
±
1 (0)}.

Proof. By classical results, see for example [39, Theorem 14.3], we have that the minimizers of

Aψ1,ψ2
u0

[u,B1(0)], Au0
[u,B+

1 (0)] and Au0
[u,B−

1 (0)] are continuous (smooth) on B1(0)\B′
1(0), B

+
1 (0)

and B−
1 (0), respectively. Since the boundary of B+

1 (0) and B−
1 (0) is Lipschitz and has non-negative

mean curvature, we obtain with the use of Theorem 5.21 two minimizers v1 of Au0
[u,B+

1 (0)] and

v2 of Au0
[u,B−

1 (0)] are continuous on B+
1 (0)∪B′

1(0) and B−
1 (0)∪B′

1(0), respectively, and thus can

be combined to a continuous function v over the whole domain B1(0). It remains to prove that v

is indeed a minimizer of Aψ1,ψ2
u0

:

For that, we use Proposition 3.11 and rewrite the functional, remembering f∞(z) = |z| for the

area functional for some arbitrary u ∈ BV(B1(0)):∫
B1(0)

√
1 + |Du|2+

∫
∂B1(0)

|u0 − uint|dHn−1 +

∫
B1(0)

(ψ1 − u+)+ + (u− − ψ2)+ dς

=

∫
B+

1 (0)

√
1 + |Du|2 +

∫
∂B1(0)∩B+

1 (0)

|u0 − uint|dHn−1

+

∫
B−

1 (0)

√
1 + |Du|2 +

∫
∂B1(0)∩B−

1 (0)

|u0 − uint|dHn−1

+ 2

∫
B′

1(0)

(u0 − u+)+ + (u− − u0)+ dHn−1 +

∫
B′

1(0)

u+ − u− dHn−1.

Now we need to investigate the last line. On the set, where u does not jump, we have
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2

∫
B′

1(0)\Ju

(u0 − u+)+ + (u− − u0)+ dHn−1 +

∫
B′

1(0)\Ju

u+ − u− dHn−1

= 2

∫
B′

1(0)\Ju

(u0 − u)+ + (u0 − u)− dHn−1

= 2

∫
B′

1(0)\Ju

|u0 − u|dHn−1.

On B′
1(0)∩ Ju we have the triple (u+, u−,±en) Hn−1-a.e. In those cases, the trace is with respect

to B+
1 (0) and B−

1 (0) has to be considered more carefully. Since u− < u+ we only have three cases:

The first case is u− < u+ ≤ u0 and we obtain pointwise for the integrands:

2
(
(u0 − u+)+ + (u− − u0)+

)
+ u+ − u− = 2

(
u0 − u+

)
+ u+ − u− = u0 − u+ + u0 − u−.

In the second case, we have u0 ≤ u− < u+ and we similarly obtain

2
(
(u0 − u+)+ + (u− − u0)+

)
+ u+ − u− = 2

(
u− − u0

)
+ u+ − u− = u+ − u0 + u− − u0.

In the last case, we have u− < u0 < u+ and thus

2
(
(u0 − u+)+ + (u− − u0)+

)
+ u+ − u− = u+ − u− = u+ − u0 + u0 − u−.

Combining this results, we arrive in each case at the integrand |u0 − u+| + |u0 − u−| and thus

obtain

Aψ1,ψ2
u0

[u,B1(0)] = Au0
[u,B+

1 (0)] +Au0
[u,B−

1 (0)].

From this it is clear, that v is a minimizer of Aψ1,ψ2
u0

since otherwise a minimizer w would satisfy

either

Au0
[w,B+

1 (0)] < Au0
[v,B+

1 (0)] = Au0
[v1,B

+
1 (0)],

Au0
[w,B−

1 (0)] < Au0
[v,B−

1 (0)] = Au0
[v2,B

−
1 (0)]

or both. This contradicts that v1 and v2 are minimzers of Au0
[u,B+

1 (0)] and Au0
[u,B−

1 (0)], re-

spectively. If u0 is in addition continuous on ∂B1(0) ∪B′
1(0), the continuity of v on B1(0) follows

from Theorem 5.21.

Similarly, some specific cases may be traced back to existing regularity theory for single obstacle

problems, but we still miss a theory for the double obstacle problem even in the mentioned case

with ψ1 ̸= ψ2 on B′
1(0). This could be an interesting point for further research, which may be

enriched by the equivalence of the parametric and non-parametric problem from Theorem 5.19.
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6 Variational inequalities via one-sided directional derivatives

In the introduction, the relationship between obstacle problems, variational inequalities and partial

differential equations with additional constraints have been mentioned at least in the W1,1-case. We

have seen that to handle double obstacle problems for functionals with linear growth we need the

space of functions of bounded variation for which Anzellotti introduced a notion of Euler equations

in [4]. If dealing with obstacle problems, the choice for directional derivatives is restricted by the

obstacle. This leads to a restriction on the directions which on the other side allows for more

integrals to to be covered. For example, if we consider the total variation, we cannot compute the

directional derivative at a point where the original function is 0, since the absolute value function

is not differentiable at 0. If instead only one-sided derivatives are considered, this difficulty can be

overcome.

To introduce this theory and compute the derivatives, we present in the first subsection the main

results by Anzellotti, before we provide a framework for one-sided derivatives in the setting. Last,

we tackle the derivatives and variational inequalities obtained through obstacle terms and provide

a theorem which proves at least in some cases the equivalence between the solutions of variational

inequalities and minimizers of associated functionals.

Before we begin, we have to mention another approach to Euler equations, which is also applicable

to obstacle problems, and compare it with the approach given in this section: It is (often) possible

and useful to derive Euler equations from dual formulations of a given problem, like done in [44], [7,

Chapter 2] or [62]. The later also involves Euler equation for the one-sided (thin) obstacle problem

for the total variation and the area functional and one of their main results, see [62, Introduction,

Theorem 3.6 and 3.9], is the dual formulation of the minimization of the one-sided (thin) obstacle

problem, which uses a duality between BV functions and S∞
− functions. S∞

− is defined as the space

of sub-unit vector fields in L∞ whose distributional divergence exists as a non-positive Radon

measure. Further one can see that in the obstacle free case, the duality still holds with sub-unit

vector-fields with vanishing distributional divergence.

If one tries to implement such result for the double obstacle problems many difficulties arise. A

major one is that one loses the conditions on the sign of the divergence and thus no representation

theorem of Riesz type can be applied for the required vector-fields and domain splitting arguments

to get such condition back only work in trivial cases. Thus, for the double obstacle problem this

directions seems to be not promising.

6.1 Differentiability results by Anzellotti

For the general setting, we consider on an open bounded set Ω ⊂ Rn, a non-negative Borel function

f : Ω × Rn → [0,+∞) such that the strong recession function f∞ exists. For the following

statements, like in [4], it is enough to demand the existence of a weaker form of the recession

function of the form

f∞(x, z) = lim
t→∞

f(x, tz)

t
,
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and thus dropping the additional regularity with regards to the x-variable. This is enough to

explain a functional of the form

I[µ] :=

∫
Ω

f(x, µ)

for a Radon measure µ ∈ RM(Ω,Rn) like in (2.9). Further, the non-negativity may be dropped

if |f(., z)| ≤ b(1 + |z|) is assumed. For simplicity, we assume f to be non-negative nevertheless.

In the following, if we consider boundary conditions or penalizing terms on the boundary appear,

we also require Ω to have either Lipschitz boundary and the recession function to be continuously

extendable to Ω like in (2.7). Next, we state the main results from [4] with regards to functionals

on Radon measures which can be found in Theorem 2.4 and 2.5

Theorem 6.1 (Differentiability of functionals on measures).

Assume that for all x ∈ Ω the function f(x, z) is differentiable in z for all z ∈ Rn and f∞(x, z) is

differentiable for all z ∈ Rn \ {0}. Assume also that the derivatives with regard to the z-variable

are bounded, i.e.

|fz(x, z)| ≤M and |f∞z (x, z)| ≤M.

Then the functional I[µ] :=
∫
Ω

f( . , µ) is differentiable at the point µ in direction β iff |β|s ≪ |µ|s

and in this case one gets

d

dt
I[µ+ tβ]

∣∣∣∣
t=0

=

∫
Ω

fz( . , µ
a) · βa dx+

∫
Ω

f∞z

(
. ,
µs

|µ|s

)
· β

s

|β|s
d|β|s

with the common notation of the absolute continuous parts µa, βa and the singular parts µs, βs

w.r.t. the Lebesgue measure.

If f(x, z) is not differentiable in z for some x ∈ Ω at z = 0, the statement remains true under

the additional assumptions that for such x, where f is not differentiable in z at z = 0 we have

f(x, 0) = 0 and that βa = 0 almost everywhere on the set T = {x ∈ Ω : µa(x) = 0}.

Remark. Obviously, Theorem 6.1 can be stated with respect to some other measure than the

Lebesgue measure and remains true if the x-dependency of f is dropped.

Next, we specifically turn to the BV case and sum up the results from Theorem 3.6 and parts of

Theorem 3.7 and 3.9 in [4]:

Theorem 6.2 (Differentiability of functionals on BV).

Assume that for all x ∈ Ω the function f(x, z) is differentiable in z for all z ∈ Rn and f∞(x, z) is

differentiable for all z ∈ Rn \ {0}. Assume also that

|fz(x, z)| ≤M and |f∞z (x, z)| ≤M.

Then the functional F [u] :=
∫
Ω

f( . ,Du) is differentiable at u ∈ BV(Ω) in direction φ iff |Dsφ| ≪

|Dsu| and in such case one has

d

dt
F [u+ tφ]

∣∣∣∣
t=0

=

∫
Ω

fz( . ,D
au) ·Daφdx+

∫
Ω

f∞z

(
. ,

Dsu

|Dsu|

)
· Dsφ

|Dsφ|
d|Dsφ|
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with the common notation of the absolutely continuous parts Dau, Daφ and the singular parts Dsu,

Dsφ w.r.t. the Lebesgue-measure.

If f is not differentiable at z = 0 for some x ∈ Ω, the statement remains true under the additional

assumptions that for such x ∈ Ω we have f(x, 0) = 0 and Daφ = 0 almost everywhere on the set

T = {x ∈ Ω : Dau(x) = 0}.
Additionally, if boundary values are fixed by a given function u0, we have an extra penalizing term

to consider. Thus we are looking at
∫
Ω

f(x,Du) +
∫
∂Ω

f∞(x, νΩ[u0 − uint]) dHn−1 with the outward

normal νΩ. The additional term is again differentiable at u ∈ BV if φ = 0 Hn−1-a.e. where u = u0

in ∂Ω and the derivative can be computed by

d

dt

∫
∂Ω

f∞( . , νΩ[u0 − u− tφ]) dHn−1

∣∣∣∣∣∣
t=0

= −
∫
∂Ω

f∞z

(
. , νΩ

u0 − u

|u0 − uint|

)
νΩφdHn−1.

The theorems treat the two general cases of the total variation with f(z) = |z|, which is not

differentiable in {0}, and the area functional with f(z) =
√
1 + |z|2. For the total variation

case, the directions are even further restricted because of the non-differentiability at {0} and the

additional condition has to be satisfied. For the boundary term, the problem is essentially the

same.

Closing this part, we state that if u is a minimizer of such a given functional, the derivatives

obtained through Theorem 6.2 have to vanish, i.e.

d

dt
F [u+ tφ]

∣∣∣∣
t=0

= 0 for all φ allowed.

These equations are generalized Euler equations.

The remaining question is if, in reverse, solutions of those Euler equations are again minimizers.

The result is given by Theorem 3.10 in [4], which we will compare later in context of the same

question regarding variational inequalities for obstacle problems.

6.2 Variational inequalities for functionals of linear growth

Since we are interested in the one-sided directional derivative to be able to treat obstacle problems,

we assume t > 0 and can state the following two versions connected to the Euler equations presented

in Theorem 6.1 and Theorem 6.2 without distinguishing the two cases, since the absolute value

function is one-sided differentiable in {0}. With the definition

f̄z(x, z, y) := lim
t↘0

f(x, z + ty)− f(x, z)

t
,

i.e. the one-sided direction derivative in the z variable in the direction y, we obtain:

Theorem 6.3 (One-sided differentiability of functionals on measures).

Assume that for all x ∈ Ω the function f(x, z) is one-sided directionally differentiable in z for all

z ∈ Rn and f∞(x, z) is one-sided directionally differentiable for all z ∈ Rn. Assume also that all
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one-sided derivatives at all z ∈ Rn are bounded by M , i.e. for all z ∈ Rn we require

|f̄z(x, z, y)| ≤M and |f̄∞z (x, z, y)| ≤M

to hold for each y ∈ Sn−1
1 (0). Then the functional I[µ] :=

∫
Ω

f( . , µ) is one-sided directional differ-

entiable at the point µ in direction β with

d

dt+
I[µ+ tβ]

∣∣∣∣
t=0

=

∫
Ω

f̄z( . , µ
a, βa) dx+

∫
Ω

f̄∞z

(
. ,
µs

|µ|s
,
βas

|β|as

)
d|β|as +

∫
Ω

f∞( . , βss)

with the notation of the absolute continuous part βas and the singular part βss of βs w.r.t. µs.

Remark. If f is differentiable at some point then fz(x, z) · y and f̄z(x, z, y) coincide. In the case

of the absolute value function a(z) = |z| on Rn, we can calculate āz at 0 in direction φ ∈ Rn as

follows:
d

dt+
|(0 + tφ)|

∣∣∣∣
t=0

= |φ|.

In that case, āz(0, φ) = |φ| and especially āz(0, 0) = 0.

Proof. Following the proof of Anzellotti to Theorem 2.4 and Theorem 2.5 the result follows easily

using t > 0: We have:

I[µ+ tβ] =

∫
Ω

f( . , µa + tβa) dx+

∫
Ω

f∞
(
. ,
µs + tβas

|µs|

)
d|µs|+

∫
Ω

f∞( . , tβss).

With the definition of f̄z, the first term is clear. The second follows through simple calculation

like in [4]. For the last, we have by the positive homogeneity of f∞ in the second variable∫
Ω

f∞( . , tβss) = t

∫
Ω

f∞( . , βss),

since t > 0 and we thus do not have to deal with the non-differentiability of |z| at 0 and do not

have to enforce βss to vanish like in the proof to Theorem 2.4.

To be more precise, in the setting in [4] we would have to be able to differentiate
∫
Ω

f∞( . , tβss). If

t > 0 we simply have

d

dt

∫
Ω

f∞( . , tβss) =
d

dt
t

∫
Ω

f∞( . , βss) =

∫
Ω

f∞( . , βss).

For t < 0, we similarly have

d

dt

∫
Ω

f∞( . , tβss) =
d

dt
− t

∫
Ω

f∞( . ,−βss) = −
∫
Ω

f∞( . ,−βss).

For both derivatives to agree at t = 0 for all allowed βss, we either need βss to vanish or f∞ to

be linear, which, besides from the trivial case f∞ = 0, does not occur since we assumed f to be

non-negative.
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Applying Theorem 6.3 to the BV case we obtain:

Corollary 6.4 (One-sided differentiability for functionals on BV).

Assume that for all x ∈ Ω the function f(x, z) is one-sided directional differentiable in z for all

z ∈ Rn and f∞(x, z) is one-sided directional differentiable for all z ∈ Rn. Assume also that all

one-sided derivatives at all z ∈ Rn are bounded by M as in Theorem 6.3. Then the functional

F [u] :=
∫
Ω

f(x,Du) is one-sided directionally differentiable at the point u in direction φ with

d

dt+
F [u+ tφ]

∣∣∣∣
t=0

=

∫
Ω

f̄z( . ,D
au,Daφ) dx+

∫
Ω

f̄∞z

(
. ,

Dsu

|Dsu|
,
Dasφ

|Dasφ|

)
d|Dasφ|

+

∫
Ω

f∞
(
. ,

Dsφ

|Dssφ|

)
d|Dssφ|

with the notation as above.

Proof. This is a direct consequence of Theorem 6.3.

Remark. In the case, that the requirements of Theorem 6.1 or Theorem 6.2 are met, the results

can be reproduced from Theorem 6.3 and Theorem 6.4, respectively, combining the results from

the directions given by the measures β and −β or the directions given by the functions φ and −φ.
If obstacles are involved, it will in general be not possible anymore to choose both measures or

both functions, since for example φ may be admissible but −φ may not be. Such phenomenon

occurs, for example, on the contact set of the function u and the obstacle ψ. If a lower obstacle

is assumed, φ could still be chosen positive at such point, since u + tφ ≥ 0, but −φ would lead

to u − tφ < ψ, which is not admissible. For the relaxations obtained in Section 4, the problem

remains on thick obstacle parts. In addition, one has to deal with the additional obstacle terms.

Before we treat the obstacle terms, we take a closer look on the boundary terms for which we

obtain the following theorem:

Theorem 6.5 (Differentiability of boundary terms).

Under the assumptions of Theorem 6.4, we have

d

dt+

∫
∂Ω

f∞( . , νΩ(u0 − u− tφ)) dHn−1

∣∣∣∣∣∣
t=0

=

∫
∂Ω

f∞( . , sgnφ(u0 − u)νΩ)ãz(u0 − u, φ) dHn−1

with a(z) = |z|.

Proof. The proof follows from direct calculation using

f∞(x, νΩ(u0 − u− tφ)) = f∞
(
x, νΩ

u0 − u− tφ

|u0 − u− tφ|

)
|u0 − u− tφ|

if |(u0 − u−+tφ)| ≠ 0.

First, for Hn−1-a.e. x ∈ ∂Ω where u0 − u ̸= 0, we have that u0−u−tφ
|u0−u−tφ| =

u0−u
|u0−u| for t↘ 0.
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In the second case, we have u0 − u = 0 and φ ̸= 0 and thus

f∞(x, νΩ(u0 − u− tφ)) = f∞
(
x, νΩ

φ

|φ|

)
t|φ|.

In the last case, we have φ = 0 and thus the derivative vanishes.

Combining those results, we arrive at

d

dt+

∫
∂Ω

f∞( . , νΩ(u0 − u− tφ)) dHn−1

∣∣∣∣∣∣
t=0

=

∫
∂Ω

f∞( . , sgnφ(u0 − u)νΩ)ãz(u0 − u, φ) dHn−1

with

sgnφ(u0 − u) =

{
sgn(u0 − u) for |u0 − u| ≠ 0,

sgn(φ) else.

Similar to the Euler equations, we now get inequalities if we consider the derivatives at minimizers

u. Thus, we get
d

dt+
F [u+ tφ] ≥ 0 for all φ allowed.

This type of inequalities we call variational inequality and here the same question arises as by the

Euler equation about the connection between solutions of the variational inequality and minimizers

of the related functional. Similarly, we will answer this in the relevant case, where the directions

are restricted. In the other case, where all directions are allowed, the result is equivalent to the

case of the Euler equation.

6.3 Differentiability of the obstacle terms

In this part, we assume that the function f : Rn → [0,+∞) is convex and of linear growth as in

Section 4. We now take a closer look at the obstacle term O[u + tφ] =
∫
Ω

(ψ − (u + tφ)+)+ dςf∞ ,

where ψ : Ω → [−∞,+∞] is a Borel function and u, φ ∈ BV(Ω). Further, for fixed u, we restrict

ourselves to consider only functions φ such that O[u+ tφ] is finite for 0 ≤ t ≤ t0 for some t0 > 0.

As we will see in the next subsection it is enough to consider only such directions φ where O[u+tφ]

is finite for some t = t0 > 0 and t = 0. This implies that the functional is finite for all 0 ≤ t ≤ t0.

To compute the derivative we start by investigating the integrand (ψ− (u+ tφ)+)+ and discuss it

with respect to the different representatives, which may occur for φ ∈ BV(Ω). We can distinguish

the following three different cases with the reminder that on Ω \ Ju the representatives u+ and u∗

are equal:

i) On Ω \ Sφ the function φ∗ is approximately continuous and thus we have

ψ − (u+ tφ)+ = ψ − u+ − tφ∗.

ii) On the set, where only φ jumps, i.e. on Jφ \ Ju, and on the set where the functions u and φ

jump and where the sides of u+ and φ∗ coincide, i.e. on Jφ ∩ Ju ∩ {νu = νφ}, where νu and
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νφ are given by the triples (u+, u−, νu) and (φ+, φ−, νu), we have

ψ − (u+ tφ)+ = ψ − u+ − tφ+.

iii) On the set, where u and φ jump, but the sides of u+ and φ− coincide, i.e. on the set

Jφ∩Ju∩{νu = −νφ}, where νu and νφ are given by the triples (u+, u−, νu) and (φ+, φ−, νφ),

we have

ψ − (u+ tφ)+ = ψ −max{u+ + tφ−, u− + tφ+}.

For the points ii) and iii), we use that Ju, Jφ and Ju ∩ Jφ are rectifiable by 2.5 and the normal

vector on the intersections νu and νφ agrees Hn−1-a.e. up to the sign.

In this situations, the derivative with respect to t can be computed and we obtain:

i)
d

dt+
(
ψ − u+ − tφ∗) = −φ∗.

ii)
d

dt+
(
ψ − u+ − tφ+

)
= −φ+.

iii) If u+ + tφ− > u− + tφ+, we have

d

dt+
(
ψ − u+ − tφ−) = −φ−,

if u+ + tφ− < u− + tφ+, we have

d

dt+
(
ψ − u− − tφ+

)
= −φ+

and, for completeness, if u+ + tφ− = u− + tφ+, we obtain

d

dt+
(
ψ −max{u+ + tφ−, u− + tφ+}

)
= −φ+.

Roughly speaking, this implies that the obstacle functional is monotonically decreasing and thus

variations in negative direction increase the functional and in positive decrease it or keep it the

same. Further, for φ ≥ 0, we have 0 ≤ O[u + tφ] ≤ O[u] < +∞ for t > 0, but for φ ≤ 0 we need

to assure the finiteness to be able to compute the derivative. To do so, we have to determine the

sets, where the variations play a role, since the set, where the integrand of O[u + tφ] is greater

than zero, is not necessarily a subset or superset of {(ψ − u+)+ > 0}, i.e. the set where u violates

the obstacle. More precisely, we may have derivative terms on some subset of A1 = {ψ − u+ < 0}
or A2 = {ψ − u+ = 0} for some t > 0 if the suitable representative of φ is negative and such that

ψ − (u + tφ)+ > 0, i.e. the variation with tφ leads to a violation of the obstacle. In contrast, we

may have no such term in a subset of A3 = {ψ − u+ > 0} for fixed t > 0 if (u + tφ)+ ≥ ψ, i.e.

the variation with tφ leads the function to fulfill the obstacle constraint. Besides that, we need to

distinguish which derivative matters in case iii).

The following lemmas show that the case of a subset of A1 may be ignored for t ↘ 0 and the

set A3 is fully accounted for and also will allow us to observe, what happens on A2. For the first
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results, we consider only φ like in the cases i) and ii) from above, i.e. that either u does not jump

or the jumps align like in case ii). Thus we have (u+ tφ)+ = u+ + tφ+ Hn−1-a.e. and obtain:

Lemma 6.6 (Some convergence result).

For u, φ, ψ as above and such that O[u+ tφ] is finite for all 0 ≤ t ≤ t0 for some t0 > 0, we have

d

dt+

∫
{u+>ψ}

(ψ − u+ − tφ+)+ dςf∞

∣∣∣∣∣∣∣
t=0

= 0.

Proof. Since u+ > ψ and thus u fulfills the obstacle condition, we have φ+ < 0 on the set, where

u+ + tφ+ < ψ. We now define the set B(t) = {ψ − u+ − tφ+ > 0} ∩ {u+ > ψ} for 0 < t ≤ t0 and

notice that B(t1) ⊂ B(t2) for 0 < t1 < t2 by monotonicity. Since O[u+ tφ] is finite, the sets B(t)

have at most Hausdorff dimensions n− 1 and are clearly contained in the thin part of the obstacle

up to a Hn−1-null set. To be able to compute the derivative of O[u + tφ] on B(t) with respect

to (positive) t at 0, we will prove the finiteness of
∫

B(t)

−φ+ dt for (small) t ≥ 0 and estimate the

derivative by this term: We have∫
{u+>ψ}

(ψ − u+ − tφ+)+ dςf∞ < +∞

for 0 < t ≤ t0 and thus∫
{u+>ψ}

(ψ − u+ − t0φ
+)+ dςf∞ =

∫
B(t0)

ψ − u+ − t0φ
+ dςf∞ < +∞

and ∫
{u+>ψ}

(
ψ − u+ − t1φ

+
)
+
dςf∞ =

∫
B(t1)

ψ − u+ − t1φ
+ dςf∞ < +∞

for all 0 < t1 < t0. Combining both estimates and by monotonicity, positivity of the integrand

and the fact that

0 ≤
∫

B(t1)

ψ − u+ − t0φ
+ dςf∞ ≤

∫
B(t0)

ψ − u+ − t0φ
+ dςf∞ < +∞,

we arrive at the finiteness of ∣∣∣∣∣∣∣
∫

B(t1)

φ+ dςf∞

∣∣∣∣∣∣∣ < +∞.

By monotonicity of B(t) and since φ+ < 0 we have the finiteness for each 0 ≤ t < t1 < t0 and

since t1 was arbitrary but smaller than t0 we have the finiteness for all 0 ≤ t < t0. Now we can

estimate the difference quotient on those sets:

1

t
(O[u+ tφ,B(t)]−O[u,B(0)]) =

∫
B(t)

ψ − u+

t
− φ+ dςf∞ .
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We can further estimate by the definition of B(t) that 0 ≥ ψ−u+

t ≥ φ+ and we thus obtain

0 ≤ 1

t
(O[u+ tφ,B(t)]−O[u,B(0)]) ≤

∫
B(t)

−φ+ dςf∞

and it only remains to show that the integral on the right-hand side is vanishing for t ↘ 0. To

do so, we reduce to the case where B(t) has finite Hausdorff measure: Since O[u+ tφ] is finite for

0 ≤ t ≤ t0, we have that |B(t)| = 0, but Hn−1(B(t)) may still be infinite.

Since
∫

B(t)

|φ+|dςf∞ < +∞, we obtain that B(t) is σ-finite with respect to Hn−1 and thus also with

respect to ςf∞ . Using this, we find for each 0 < t ≤ t0 a subset B̃ε(t) ⊂ B(t) with Hn(B̃ε(t)) < +∞
and ∫

B(t)\B̃ε(t)

|φ+|dςf∞ < ε

for any given ε > 0. A possible choice would be a set, where |φ+| > δ for a suitable small δ.

Further, by monotonicity, we can choose B̃ε(t1) = B(t1) ∩ B̃ε(t2) for 0 < t1 < t2 = t0
2 . Sending

ε↘ 0 allows us to restrict ourselves to the case where B(t) has finite Hn−1-measure.

Next, we consider the set B0 :=
⋂
t>0B(t). Since B(t) has finite Hausdorff measure and the

sequence is monotone, we have Hn−1(B0) = Hn−1(B(0) = lim
t↘0

Hn−1(B(t)), see for example [24,

Theorem 1.2]. Since B(0) = ∅ up to Hn−1-null sets, we are finished.

This proof implies the following corollary:

Corollary 6.7 (Vanishing derivative).

For given u ∈ BV(Ω), let u, φ be in L1(B(t),Hn−1) with B(t) = {u < 0} ∩ {u+ tφ ≥ 0}. Then, if∫
B(t)

u+ tφdςf∞ is finite for all 0 ≤ t ≤ t0,
∫

B(t)

φdςf∞ is finite for 0 < t < t0 and we have

∫
B(t)

φdςf∞ → 0 for t↘ 0

and thus the limit set B0 = lim
t↘0

B(t) does not contribute to the derivative with respect to t of∫
Ω

(u+ tφ)+ dςf∞ .

Relying on this corollary and with the equivalent version where B(t) is replaced by

{u > 0} ∩ {tφ ≥ u}, we can compute the derivative on A3 if (u+ tφ)+ = u+ + tφ+:

Lemma 6.8 (Derivative on a set).

Under the finiteness assumption on O[u + tφ] for 0 ≤ t ≤ t0 for some t0 > 0 and for u, φ ∈ BV

with (u+ tφ)+ = u+ + tφ+, we have on the set {ψ − u+ > 0} the following derivative:

d

dt+

∫
{ψ−u+>0}

(ψ − (u+ tφ)+ dςf∞

∣∣∣∣∣∣∣
t=0

=

∫
{ψ−u+>0}

−φ+ dςf∞ ,

where the integral on the right-hand side can take values in [−∞,+∞).
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Proof. For φ+ ≤ 0, we can compute the derivative directly, using the finiteness of O[u+ tφ]:

1

t
(O[u+ tφ]−O[u]) = −

∫
{u+<ψ}

φ+ dςf∞ .

For φ+ > 0, we have to be a bit more careful: Applying Corollary 6.7 and by a similar argumen-

tation as for Lemma 6.6, we obtain that the set where u+ + tφ+ > ψ is vanishing if (φ+)+ is

summable over A3. If it is not summable, we have by finiteness of O[u+ tφ] for the derivative:

1

t
(O[u+ tφ]−O[u]) = −

∫
{u+<ψ}∩{u++tφ+<ψ}

φ+ dςf∞− 1

t

∫
{u+<ψ}∩{u++tφ+≥ψ}

ψ−u+ dςf∞ . (6.1)

If the set {u+ + tφ ≥ ψ} does not vanish with respect to Hn−1, the derivative at t = 0 is −∞,

since we have for the last appearing integral

0 ≥ −1

t

∫
{u+<ψ}∩{u++tφ+≥ψ}

ψ − u+ dςf∞ → −∞.

If the Hausdorff measure of the set vanishes, then the difference quotient behaves for t > 0 like

−
∫

{u+<ψ}∩{u++tφ+<ψ}

φ+ dςf∞ ,

and since φ+ is not summable by assumption and {u+ < ψ} ∩ {u+ + tφ+ < ψ} → {u+ < ψ} for

t↘ 0, the derivative at t = 0 is again −∞.

Now it only remains to clarify, what happens on the set, where u and φ jump and u+ and φ− are

aligned on one side. Before we do that, we fix some notation. As explained in Definition 2.11,

we can identify the function values for some x ∈ Ju for a BV function u by a triple (uext, uint, ν)

which is unique up to permutation of the first two components and a simultaneous change of the

sign of the normal vector. In this Section, we fix the order by setting the triple to be (u+, u−, νu)

and define the hereby given jump set to be Jνuu . For two BV functions u, φ and for Hn−1-a.e. x in

the intersection Jνuu ∩ Jνφφ , we have by Proposition 2.5 either νu = νφ or νu = −νφ. To distinguish

these two cases, we write J+
u,φ for the subset of Jνuu ∩ Jνφφ if νu = νφ and J−

u,φ else. Now we can

state we following lemma:

Lemma 6.9 (Estimate on the intersection of jumpsets, the missing case).

Let some function u, φ ∈ BV(Ω) be given such that O[u + tφ] is finite for 0 ≤ t ≤ t0 for some

t0 > 0. On the set C(0) = J−
u,φ ∩ {ψ − u+ > 0} we have

d

dt+

∫
C(t)

(ψ − (u+ tφ)+)+ dςf∞

∣∣∣∣∣∣∣
t=0

=

∫
C(0)

−φ− dςf∞

with C(t) = J−
u,φ ∩ {ψ − (u+ tφ)+ > 0}.

103



Proof. We distinguish into three cases depending on the sign of the representatives of φ:

1. In the first case, we assume φ+ ≤ 0. Here, we have the finiteness on C1(t) = C(t)∩{φ+ ≤ 0}
of ∫

C1(t)

(ψ − (u+ tφ)+)+ dςf∞ < +∞ for 0 ≤ t ≤ t0.

We can divide C1(t) further in the part C+
1 (t) = C1(t) ∩ {u+ + tφ− ≥ u− + tφ+} and

C−
1 (t) = C1(t) \ C+

1 (t). On C+
1 (t) we can now estimate, using Proposition 3.12, 4’. in

Proposition 3.7 and the finiteness of |Djφ|(Ω) to obtain∫
C+

1 (t)

ψ − u+ − tφ+ dςf∞ ≥
∫

C+
1 (t)

ψ − u+ − tφ− dςf∞ − t0bCn|Djφ| > −∞

and we already have by monotony∫
C+

1 (t)

ψ − u+ − tφ+ dςf∞ ≤
∫

C+
1 (t)

ψ − u+ − tφ− dςf∞ .

By adding the integral over C−
1 (t) and similarly interchanging u+ and u−, we obtain the

finiteness of ∣∣∣∣∣∣∣
∫

C1(t)

ψ − u+ − tφ+ dςf∞

∣∣∣∣∣∣∣ < +∞ for all 0 ≤ t ≤ t0

and thus, similarly to the proof of finiteness in Lemma 6.6, the finiteness of

−∞ <

∫
C1(t)

φ− dςf∞ <

∫
C1(t)

φ+ dςf∞ ≤ 0 for 0 ≤ t < t0.

Now we can use Corollary 6.7 using u+ − u− and −tφ+ ≥ 0 to obtain that the part of the

integral, where u++ tφ− < u− does not add to the derivative for t↘ 0 and thus the integral

part over {u+ + tφ− < u− + tφ+} ⊂ {u+ + tφ− < u−} does neither. This implies that only

the function −φ− appears as the integrand of the derivative over C1(0).

2. In the second case, we have φ+ > 0 ≥ φ− and define C2(t) = C(t) ∩ {φ+ > 0 ≥ φ−}. Here,

we obtain the needed finiteness by estimating

0 ≤
∫

C2(t)

φ+ dςf∞ ≤
∫

C2(t)

φ+ − φ− dςf∞ ≤ bCn|Djφ|(Ω) < +∞

and similarly

0 ≥
∫

C2(t)

φ− dςf∞ ≥
∫

C2(t)

φ− − φ+ dςf∞ ≥ −bCn|Djφ|(Ω) > −∞.

Thus, we can use again similar arguments like in Lemma 6.6 and Corollary 6.7 with u+−u∗,
where u∗ = u++u−

2 < u+, and −tφ− and with u∗−u− and tφ+ to obtain that the part of the
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integral where u++ tφ− < u∗ does not add to the integral in the limit t↘ 0 and neither does

the part where u− + tφ+ > u∗. Together this implies that only the function −φ− appears as

the integrand of the derivative over C2(0).

3. In the last case, we have φ− ≥ 0. Here, we have to differ into two subcases:

In the first, we assume that φ+ and thus φ− as well are summable on C3(0) with respect

to the De Giorgi measure ςf∞ , where C3(t) = C(t) ∩ {φ− ≥ 0}. By monotonicity, i.e. since

C3(t1) ⊃ C3(t2) for 0 ≤ t1 ≤ t2 ≤ t0, we also have the summability on C3(t) for 0 ≤ t ≤ t0.

Now can use Corollary 6.7 to obtain, that the integral over the set where u− + tφ+ > u+

does not add to the derivative for t ↘ 0 and neither does {u− + tφ+ > u+ + tφ−} ⊂
{u− + tφ+ > u+}. This implies that in this case the function −φ− appears as the integrand

of the derivative over C3(0).

In the second case, φ+ and thus φ− as well are not summable over C3(0). Here, we can argue

like for 6.1 and note, that the representative chosen does not matter, since all combinations

for the integrand of φ+ and φ− deliver the same value, namely −∞.

Combining all cases we arrive at the stated claim.

Remark. The non-summability in the very last case is no trouble, since O[u + tφ] < +∞ for

0 ≤ t ≤ t0. Thus the derivative can still be computed, but tends to −∞.

By Lemma 6.6 together with Corollary 6.7 we achieve that the set A1 does not contribute to the

derivative, where the missing case of the derivative on J−
u,φ ∩ A1 is added by using the concepts

established in the proofs in Lemma 6.9 by the 1. and 2. point. For example, for φ+ ≤ 0, we have

that Hn−1-a.e. only the integrand −φ− matters and we obtain the finiteness of the derivative like

in 1. for the adapted sets B(t) and can then argue like in the proof of Lemma 6.6 with φ− instead

of φ+. Similarly for the second case.

Further, we obtained by the calculations after Corollary 6.7 and by Lemma 6.9 point 3. that the

set A3 counts fully for the computation of the derivative and that the integrand to appear in the

derivative at t = 0 in case iii) is given by −φ+ on subset of J+
u,φ and −φ− on J−

u,φ.

Now we are able to state the full derivative of such obstacle terms, remembering that we still may

have some derivative on A2:

Theorem 6.10 (Derivative of the obstacle term).

Assume u, φ ∈ BV(Ω) such that O[u+ tφ] is finite for all 0 ≤ t ≤ t0 for some t0 > 0. Then

d

dt+
O[u+ tφ]

∣∣∣∣
t=0

=−
∫

{ψ−u+>0}\J−
u,φ

φ+ dςf∞ −
∫

{ψ−u+>0}∩J−
u,φ

φ− dςf∞ (6.2)

−
∫

{ψ−u+=0, φ+<0}\J−
u,φ

φ+ dςf∞ −
∫

{ψ−u+=0, φ−<0}∩J−
u,φ

φ− dςf∞ ,

where we used that φ+ = φ∗ on Ω \ Jφ.

Proof. The first two integrals on the right-hand side are known. The third term is clear and the

finiteness is easily given by the finiteness of O[u + tφ]. The fourth integral term is obtained very

similarly to the proof of point 1. and 2. in Lemma 6.9.
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Remark. The important thing to notice is that the assumption O[u + tφ] < +∞ for 0 ≤ t ≤ t0

for some t0 > 0 is very powerful and necessary but, as we will see in the next section, exactly

the condition, which we want. Here, we note that on the sets where φ+ < 0 or φ− < 0 we

obtain summability of those parts by finiteness of O[u+ tφ]. Next, we mention that, by the lower

semicontinuity obtained in Section 4, the computation of a derivative is nonsensical if we have

O[u] = +∞ and thus lim
t↘0

O[u+ tφ] = +∞.

In this section, we computed the derivative of the obstacle integral term for the lower obstacle.

Similarly, this is possible for the upper obstacle term, but we skip the precise formulation because

of the lengthy formula.

Combining the results of the previous subsection and this, we acquire the derivative of the relax-

ation of the double obstacle functional under the given conditions. The expression of the derivative

is lengthy and hard to verify whether a function u satisfies the corresponding variational inequality.

Therefore, we prove in the next section some useful results for the allowed directions φ and give an

easier formula, which a given function under certain restriction has to verify to be an minimizer of

the double obstacle functional.

6.4 Directions and minimizers

A main argument needed in the previous subsection is the finiteness of O[u + tφ] for 0 ≤ t ≤ t0

for some constant t0 > 0. To achieve that not only for the obstacle functional, but on the whole

functionals Fψ1,ψ2

(u0)
and Fψ

(u0)
= Fψ,+∞

(u0)
, where boundary values u0 may or may not be prescribed,

we prove the following lemma:

Lemma 6.11 (Finiteness of the functionals).

For functions u, φ, v ∈ BV, a suitable domain Ω and f as in Subsection 4.4, we have:

1. Fψ1,ψ2

(u0)
is convex and thus

Fψ1,ψ2

(u0)
[λu+ (1− λ)v] < +∞ for λ ∈ [0, 1]

if Fψ1,ψ2

(u0)
[u] < +∞ and Fψ1,ψ2

(u0)
[v] < +∞.

2. If Fψ1,ψ2

(u0)
[u] < +∞ and Fψ1,ψ2

(u0)
[u+ t0φ] < +∞ for a t0 > 0, then Fψ1,ψ2

(u0)
[u+ tφ] < +∞ for

all 0 ≤ t ≤ t0.

Proof. We only need to prove 1., since 2. easily follows from 1.

Since f and f∞ are linear, as well as the boundary term, we have only to be careful at the obstacle

terms, since the map u+ v 7→ (u+ v)+ is not always linear. More precisely we may have trouble

on a subset of J−
u,v. Here, we have to take the jump part into account. Since the Ju and Jφ

are rectifiable, and we are on a subset of the intersection of those, this subset is rectifiable by

Proposition 2.5, we have

f∞(Dju) J−
u,v = f∞(νu)(u

+ − u−)Hn−1 J−
u,v,

f∞(Djv) J−
u,v = f∞(−νu)(v+ − v−)Hn−1 J−

u,v.

106



On the set D = {(λu + (1 − λ)v)+ = λu+ + (1 − λ)v−} ∩ {ψ − (λu + (1 − λ)v)+ > 0} we can

estimate: ∫
D

(ψ − λu+ − (1− λ)v−)f∞(νu) + (ψ − λu+ − (1− λ)v−)f∞(−νu) dHn−1

= λ

∫
D

ψ − u+ dςf∞ + (1− λ)

∫
D

ψ − v− dςf∞ (6.3)

and

f∞(Dj(λu+ (1− λ)v))(D) =

∫
D

((λu+ + (1− λ)v−)− (λu− + (1− λ)v+))f∞(νu) dHn−1

=

∫
D

λ(u+ − u−)f∞(νu) dHn−1 +

∫
D

(1− λ)(v− − v+)f∞(νu) dHn−1

=λf∞(Dju)(D) + (1− λ)f∞(Djv)(D)

+

∫
D

(1− λ)(v− − v+)f∞(νu) + (1− λ)(v− − v+)f∞(−νu) dHn−1

=λf∞(Dju)(D) + (1− λ)f∞(Djv)(D) +

∫
D

(1− λ)(v− − v+) dςf∞ ,

(6.4)

where we used Proposition 3.12 and its remark in the last step. Adding (6.3) and (6.4) we have

f∞(Dj(λu+ (1− λ)v)(D) +

∫
D

ψ − (λu+ (1− λ)v)+ dςf∞

= λf∞(Dju)(D) + (1− λ)f∞(Djv)(D) + λ

∫
D

ψ − u+ dςf∞ + (1− λ)

∫
D

ψ − v+ dςf∞

≤ λf∞(Dju)(D) + (1− λ)f∞(Djv)(D) + λ

∫
D

(ψ − u+)+ dςf∞ + (1− λ)

∫
D

(ψ − v+)+ dςf∞ .

A similar computation on {(λu + (1 − λ)v)+ = λu− + (1 − λ)v+} ∩ {ψ − (λu + (1 − λ)v)+ > 0}
and for the upper obstacle terms gives us the convexity of Fψ1,ψ2

(u0)
and thus the lemma is proven.

For this, we note that by ψ1 ≤ ψ2 only one obstacle may be violated at a certain point and thus

the calculation for the upper and lower obstacle terms do not intervene.

Remark. Without such detailed insight on the calculation with the generalized De Giorgi measure,

the convexity follows from the convexity of Fψ1,ψ2 , too. One simply can chose the recovery sequence

for u, v, namely sequences uk, vk ∈ W1,1(Ω), k ∈ N, with

lim
k→+∞

F[uk] = Fψ1,ψ2 [u] and lim
k→+∞

F[vk] = Fψ1,ψ2 [v].

Using the lower semicontinuity and λuk + (1 − λ)vk → λu + (1 − λ)v in L1(Ω), we obtain by the
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convexity of Fψ1,ψ2 the convexity of Fψ1,ψ2 :

Fψ1,ψ2 [λu+ (1− λ)v] ≤ lim inf
k→+∞

Fψ1,ψ2 [λuk + (1− λ)vk]

≤ lim inf
k→+∞

λFψ1,ψ2 [uk] + (1− λ)Fψ1,ψ2 [vk]

= λFψ1,ψ2 [u] + (1− λ)Fψ1,ψ2 [v].

Lemma 6.11 implies, that for the double obstacle problem we are allowed to vary in direction of

any v with finite functional value Fψ1,ψ2
u0

[v] < +∞, which seems reasonable.

It remains to check, whether functions satisfying the variational inequality are also minimizers

for the functional. Since it is very hard to check if a functional satisfies the general variational

inequality for the double obstacle, we will limit the directions and will still be able to prove from

this reduced version that functions satisfying the new variational inequality are minimizers of the

double obstacle functional:

Definition 6.12 (Restricted directions).

Given some function u ∈ BV(Ω) such that Fψ1,ψ2

(u0)
[u] < +∞, we define the set of restricted direction

by

Du =
{
φ = v − u ∈ BV(Ω) : v ∈ W1,1(Ω) and Fψ1,ψ2

(u0)
[v] < +∞

}
,

i.e. directions v − u, where v satisfies the obstacle constraint and has the right boundary values.

This restriction seems reasonable, since the functions v in the Definition suffice to approximate

Fψ1,ψ2

(u0)
[w] for all w ∈ BV(Ω), such that the functional is finite. This implies a kind of density of

the directions. Next, we state some obvious properties involving the directions Du.

Proposition 6.13 (Some properties of u+ tφ for φ ∈ Du).
For u with Fψ1,ψ2

(u0)
[u] < +∞ and Du like in Definition 6.12, we have:

1. Fψ1,ψ2

(u0)
[u+ tφ] < +∞ for t ∈ [0, 1],

2. Ds(u+ tφ) = (1− t)Dsu and thus |Dsφ| ≪ |Dsu| and |Ds(u+ tφ)| ≪ |Dsu| for t ∈ [0, 1],

3. {ψ1 − (u + tφ)+ > 0} ⊂ {ψ1 − u+ > 0} and {(u + tφ)− − ψ2 > 0} ⊂ {u− − ψ2 > 0} for

t ∈ [0, 1].

4. If a Dirichlet boundary condition is involved, we additionally have {uint + tφ ̸= u0} ∩ ∂Ω ⊂
{uint ̸= u0} ∩ ∂Ω for t ∈ [0, 1].

Proof.

1. Clear by Lemma 6.11.

2. By the definition of Du we can write φ = v − u for some v ∈ W1,1(Ω). Thus, we have

Dsφ = −Dsu and Ds(u+ tφ) = (1− t)Dsu and the statement follows.

3. Clear, since v satisfies the obstacle constraint in the definition of Du.

4. Follows easily from u + tφ = (1 − t)u + tv and v satisfying the boundary constraint in the

trace sense.
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Now we are able to state the reduced derivative of Fψ1,ψ2 at u ∈ BV(Ω) in directions Du:

Theorem 6.14 (Reduced directions and variational inequality).

For u as described and φ ∈ Du, we have

d

dt+
Fψ1,ψ2 [u+ tφ]

∣∣∣∣
t=0

=
d

dt+
F [u+ tφ]

∣∣∣∣
t=0

−
∫

{ψ1−u+>0}

φ− dςf∞ +

∫
{u−−ψ2>0}

φ+ dςf̃∞ .

Thus, a minimizer u of Fψ1,ψ2 fulfills the reduced variational inequality

d

dt+
F [u+ tφ]

∣∣∣∣
t=0

−
∫

{ψ1−u+>0}

φ− dςf∞ +

∫
{u−−ψ2>0}

φ+ dςf̃∞ ≥ 0 ∀φ ∈ Du. (6.5)

If boundary values u0 are involved, we need to replace F by Fu0 .

Proof. The proof follows trivially from Theorem 6.10 and the properties given in Proposition 6.13.

More precisely, by 2. from Proposition 6.13, we have that J+
u,φ is empty for all φ ∈ Du and by

3. we have that u + tφ violates the obstacle constraint at most one points where u violates the

obstacle constraint and thus we have no terms on the set {ψ1 = u+} and {ψ2 = u−}.

It remains to show that functions satisfying the reduced variational inequality are also minimizers

of the functional.

Theorem 6.15 (Variational inequality and minimizers).

Assume u ∈ BV with Fψ1,ψ2

(u0)
[u] < +∞ satisfies the variational inequality (6.5), then u is also a

minimizer of Fψ1,ψ2 .

Proof. Consider any competitor v ∈ BV. Without loss of generality, we assume Fψ1,ψ2

(u0)
[v] < +∞.

For this v, we find a recovery sequence vk ∈ W1,1(Ω) with

lim
k→+∞

Fψ1,ψ2

(u0)
[vk] = Fψ1,ψ2

(u0)
[v].

Then, for each k, we have φk := vk − u ∈ Du. Using the variational inequality and convexity, we

obtain

Fψ1,ψ2

(u0)
[vk] = Fψ1,ψ2

(u0)
[u+ 1 · φk] ≥ Fψ1,ψ2

(u0)
[u+ 0 · φk] +

d

dt+

∣∣∣∣
t=0

Fψ1,ψ2

(u0)
[u+ tφk] ≥ Fψ1,ψ2

(u0)
[u].

With k → ∞ we have

Fψ1,ψ2

(u0)
[v] ≥ Fψ1,ψ2

(u0)
[u]

and the proof is complete.

The proof is very similar to the proof of Theorem 3.10 in [4]. In the obstacle-free case, i.e. if we

set ψ1 = −∞ = −ψ2, we obtain a more general result, since we can treat integrands f( . , z) which

are only one-sided differentiable in z like the total variation integrand f(z) = |z|. To achieve that,

we allow more directions to be considered and only obtain a variational inequality instead of an
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equality, which is a natural trade-off. If the function f is differentiable in z, both theorems lead

to the same result. Generally, there is no chance that one can still use variational equalities if

obstacles are involved and one has to stick to the here presented (reduced) variational inequality.
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[56] T. Radó. The problem of the least area and the problem of Plateau. Mathematische Zeitschrift,

32:763–795, 1930.

[57] Y.G. Reshetnyak. Weak convergence of completely additive vector functions on a set. Sib.

Math. J., 9:1039–1045, 1968.

[58] F. Rindler. Calculus of Variations. Universitext. Springer International Publishing, 2018.

[59] F. Rindler and G. Shaw. Liftings, Young Measures, and Lower Semicontinuity. Archive for

Rational Mechanics and Analysis, 232:1227–1328, 2019. doi:10.1007/s00205-018-01343-8.

[60] R. Rockafellar. Convex Analysis. Princeton University Press, 1972.

[61] C. Scheven and T. Schmidt. BV supersolutions to equations of 1-Laplace and minimal surface

type. J. Differ. Equations, 261(3):1904–1932, 2016.

[62] C. Scheven and T. Schmidt. On the dual formulation of obstacle problems for the total

variation and the area functional. Ann. Inst. Henri Poincaré, Anal. Non Linèaire, pages
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Abstract

Obstacle problems appear in many different fields of mathematics. In this thesis, we improve

the known results of [13] by removing two of the stated prerequisites on the integrand for the

relaxation of single obstacle problems for non-parametric functionals of linear growth by using

insights on the recession function and modifications of the De Giorgi measure. Further, we

identify the relaxation of the double obstacle problem and obtain a full counterpart to the

parametric double obstacle problem for the area functional treated by De Giorgi in [20] by

using a truncation argument which leads to new approximation results. For the proof of that

truncation, a convergence almost everywhere result is established for gradients of an in area

converging sequence of BV functions. Additionally, we are able to prescribe boundary values

in a broader sense to the double obstacle problem, which allows us to treat usual Dirichlet

problems with or without obstacles as well as ‘inner’ boundary parts on a slit domain. With

the relaxation formula for the double obstacle problem to the area functional, we prove the

equivalence of the non-parametric and parametric obstacle problem in the graph setting using

tools from the obstacle-free case and approximations. Further, we use a similar approach to

slightly generalize the relaxation result for the double obstacle problem for the area functional.

Finally, we develop variational inequalities for functionals of linear growth and especially for

relaxations of obstacle problems relying on one-sided directional derivatives. For the obstacle

case, a reduced variational inequality is stated, which is sufficient to be a minimizer of the

relaxation of the corresponding double obstacle problem.



Zusammenfassung

Hindernisprobleme treten in vielen verschiedenen Bereichen der Mathematik auf. In dieser

Arbeit werden die bekannten Ergebnisse aus [13] verbessert und es wird gezeigt, dass zwei

der dort angegebenen Anforderungen an den Integranden für die Relaxierung von Hindernis-

problemen für nichtparametrische Funktionale mit linearem Wachstum weggelassen werden

können. Dies wird durch eine genauere Betrachtung der Rezessionsfunktion und Modifika-

tion des De-Giorgi-Maßes erreicht. Weiterhin wird eine Darstellungsformel für die Relaxie-

rung des Doppelhindernisproblems bewiesen und somit ein Äquivalent zum parametrischen

Doppelhindernisproblem für das Flächenfunktional, welches von De Giorgi in [20] behandelt

wurde, auch für das nichtparametrische Problem gezeigt. Diese basiert auf der Verwendung

eines Abschneidearguments, welches zusätzlich zu neuen Approximationsresultaten führt. In

den Beweis dieses Abschneidearguments geht die fast-überall Konvergenz für die Gradien-

ten einer in Fläche konvergierenden Folge von BV-Funktionen ein, welche ebenfalls bewiesen

wird. Zusätzlich werden Randwertaufgaben im Zusammenhang mit Doppelhindernisproble-

men behandelt, welche in einem verallgemeinerten Sinne normale Randwerteprobleme mit

oder ohne Hindernisse als auch Gebiete mit inneren Randstücken berücksichtigen können. Mit

der Relaxierung des Doppelhindernisproblems für das Flächenfunktional wird die Äquivalenz

des nichtparametrischen und parametrischen Hindernisproblems mit der Herangehensweise für

den Graphenfall ohne Hindernis und mit Hilfe von Approximationen bewiesen. Des Weiteren

wird ein ähnlicher Ansatz genutzt um den Satz über die Relaxierung des Doppelhindernispro-

blems für das Flächenfunktional etwas zu verallgemeinern. Schließlich werden Variationsun-

gleichungen für Funktionale mit linearem Wachstum und insbesondere für die Relaxierungen

von Hindernisproblemen entwickelt. Dafür werden hauptsächlich einseitige Richtungsableitun-

gen verwendet. Für den Hindernisfall wird eine reduzierte Variationsungleichung angegeben,

die hinreichend ist, um Minimierer der Relaxierung des zugehörigen Doppelhindernisproblems

zu sein.
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