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Zusammenfassung

In dieser Arbeit betrachten wir Defekte und verallgemeinerte Orbifolds in 3-dimen-
sionalen topologischen Quantenfeldtheorien (TQFTn) des Reshetikhin-Turaev-
Typs (RT). Die verallgemeinerten Orbifolds erlauben es, neue TQFTn zu kon-
struieren, und zwar mittels einer Zustandssumme innerhalb einer fixierten TQFT
mit Defekten (d.h., dass deren Quellkategorie die von dekorierten stratifizierten
Bordismen ist). Den Input, den dieses Verfahren benötigt, nennt man ein Orbifold-
Datum. Die wichtigsten Ergebnisse dieser Arbeit sind die Konstruktion einer mo-
dularen Fusionskategorie aus einem Orbifold-Datum in TQFTn vom RT-Typ, sowie
der Beweis, dass die entsprechenden verallgemeinerten Orbifolds selbst wieder vom
RT-Typ sind. Weiter untersuchen wir auch einige Beispiele von modularen Fusions-
kategorien, die sich auf diese Weise erhalten lassen, wodurch wir unseren Ansatz
mit anderen Konstruktionen auf modularen Fusionskategorien in Verbindung set-
zen. Wir zeigen, wie sich das verwenden lässt, um einige Klassifikationsprobleme
von modularen Fusionskategorien anzugehen. Schließlich wenden wir die obigen
Ergebnisse an, um Flächendefekte zu untersuchen, die zwei verschiedene TQFTn
des RT-Typs trennen.

Abstract

In this work we discuss defects and generalised orbifolds in 3-dimensional topologi-
cal quantum field theories (TQFTs) of Reshetikhin-Turaev (RT) type. Generalised
orbifolds provide one with a way to construct new TQFTs via a state-sum con-
struction, internal to a fixed defect TQFT, i.e. having decorated stratified bordisms
as the source category. The input needed for this procedure is called an orbifold
datum. The main results of this work consist of constructing modular fusion cat-
egories out of orbifold data in the defect TQFTs of RT type and proving that the
resulting generalised orbifolds are themselves TQFTs of RT type. We also explore
several examples of modular fusion categories obtained this way, relating our ap-
proach to other constructions on modular fusion categories and demonstrating how
it can be used to address some classification problems concerning them. Finally, we
apply the above results to study surface defects separating two different theories
of RT type.
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of orbifold graph TQFTs, a version of which appears as Construction 6.7 in this
work. The coauthors Nils Carqueville, Gregor Schaumann and Daniel Scherl have
worked out a large amount of details regarding the proofs of the crucial Lemmas 6.2
and 6.4. In this work I sketch them in the Appendix B, which is a somewhat sim-
plified version of a similar appendix in [CMRSS1]. My contribution to [CMRSS2]
is both the idea and the details of the proof of the isomorphism between the
Reshetikhin-Turaev orbifold graph TQFT and the graph TQFT obtained from the
modular fusion category associated to an orbifold datum (here stated in Theo-
rem 6.13). As explained below, the proof was inspired by a similar equivalence of
the TQFTs of Turaev-Viro-Barrett-Westburry and Reshetikhin-Turaev types laid
out by Turaev-Virelizier in the book [TV]. My idea of constructing 2-skeleta out
of surgery presentations of 3-manifolds and using the pipe functors (introduced by
me in [MR1] and reviewed in Section 5.4) is however characteristic to [CMRSS2]
and by extension to this thesis.

The last chapter is based on the work [KMRS]. This project was initiated by
Christoph Schweigert, who suggested to implement domain walls between two non-
identical theories of Reshetikhin-Turaev type via an internal state sum construction
and compare the outcome to the model independent analysis of [FSV]. My con-
tributions to [KMRS] include the definition of the resulting defect TQFT worked
out with the help of Ingo Runkel (see Section 9.1), as well as the definition of the
algebraic datum which we used to label the domain walls (Definition 9.1). The de-
tails in Section 9.3 on module traces obtained from sphere defects and Section 9.4
on the Witt trivialisation needed for the comparison to [FSV] were largely worked
out by Vincent Koppen and myself.
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vi



Contents

Zusammenfassung/Abstract iii

Eidesstattliche Versicherung/Declaration of oath vi

1. Introduction ix

2. Categorical preliminaries 1
2.1. Categories and functors . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2. Multifusion categories . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3. Modular fusion categories . . . . . . . . . . . . . . . . . . . . . . . 8
2.4. Algebras and modules . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5. Relative tensor products . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6. Bi- and tricategories . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7. Module categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. Reshetikhin-Turaev graph TQFT 26
3.1. Bordisms with embedded ribbon graphs . . . . . . . . . . . . . . . . 26
3.2. Invariants of closed manifolds . . . . . . . . . . . . . . . . . . . . . 30
3.3. Definition of the graph TQFT . . . . . . . . . . . . . . . . . . . . . 33
3.4. Properties of the graph TQFT . . . . . . . . . . . . . . . . . . . . . 34

4. Reshetikhin-Turaev defect TQFT 37
4.1. Defect bordisms and defect TQFTs . . . . . . . . . . . . . . . . . . 37
4.2. Defect labels for RT TQFT . . . . . . . . . . . . . . . . . . . . . . 42
4.3. Ribbonisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4. Definition of the defect TQFT . . . . . . . . . . . . . . . . . . . . . 49
4.5. Properties of the defect TQFT . . . . . . . . . . . . . . . . . . . . . 51

5. Orbifold data and the associated MFCs 57
5.1. Algebraic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2. Interpretation as defects . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3. Ribbon structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4. Pipe functors and semisimplicity . . . . . . . . . . . . . . . . . . . . 74
5.5. Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6. Reshetikhin-Turaev orbifold graph TQFT 89
6.1. Foamification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2. Definition of the orbifold graph TQFT . . . . . . . . . . . . . . . . 96
6.3. Properties of the orbifold graph TQFT . . . . . . . . . . . . . . . . 97
6.4. Isomorphism to graph TQFT of RT type . . . . . . . . . . . . . . . 100
6.5. State spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vii



7. Examples of orbifold data 113
7.1. Condensations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2. Drinfeld centres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8. Examples in categories of Ising type 134
8.1. Orbifold data via polynomial equations . . . . . . . . . . . . . . . . 135
8.2. Ising-type modular categories . . . . . . . . . . . . . . . . . . . . . 140
8.3. Fibonacci-type solutions inside Ising categories . . . . . . . . . . . . 141
8.4. Analysing CA via pipe functors . . . . . . . . . . . . . . . . . . . . . 145

9. Domain walls 151
9.1. Bulk phases from condensable algebras . . . . . . . . . . . . . . . . 151
9.2. Domain walls between Reshetikhin-Turaev theories . . . . . . . . . 156
9.3. Module traces from sphere defects . . . . . . . . . . . . . . . . . . . 158
9.4. Witt equivalence of modular categories . . . . . . . . . . . . . . . . 161
9.5. Equivalence of the two descriptions of domain walls . . . . . . . . . 165

A. Monadicity for separable biadjunctions 167

B. Equivalent skeleta for surfaces and 3-manifolds 172
B.1. 1-skeleta for surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.2. 2-skeleta for 3-manifolds . . . . . . . . . . . . . . . . . . . . . . . . 179

C. Orbifold data for the non-Euler complete theory 181

D. Computations for Chapter 8 186
D.1. Deriving the polynomial equations (P1)-(P8) . . . . . . . . . . . . . 186
D.2. Evaluating the T 3-invariant . . . . . . . . . . . . . . . . . . . . . . 190

E. Computations for Chapter 9 198

References 200

viii



1. Introduction

The concept of a defect in a field theory is used to describe a variety of phenomena:
phase transitions, domain walls, boundary conditions, etc. More abstractly, a defect
can be understood as a spacetime region of positive codimension in which the field
theory behaves somehow differently. A generic spacetime of a field theory which
admits defects is therefore stratified. Defects usually carry labels (e.g. a boundary
condition) describing the nature of them. One can also talk about codimension-1
defects between two different bulk theories. By abuse of terminology, we apply the
term “defect” to the codimension-0 strata as well, which are then labelled by bulk
theories. Line defects in theories of dimension 3 and higher (e.g. in Chern-Simons
theory) are also commonly referred to as Wilson lines.

Mathematically, an n-dimensional topological field theory (TQFT) with defects
can be formalised as a symmetric monoidal functor [CRS1]

Zdef : Borddef
n (D)→ Vectk , (1.1)

in an analogous way to that of the Atiyah-Segal approach. Here Borddef
n (D) is

the category of n-dimensional oriented1 stratified bordisms with strata carrying
labels from a predetermined set D. A very simple, yet illustrative example is that
of 1-dimensional defect TQFTs in which the bulk theories (1-strata) are labelled
by finite dimensional vector spaces and point defects (0-strata) by linear maps. It
inspires the point of view that looking at implementations of defects in TQFTs is as
natural as looking at morphisms in a category. Similarly, each n-dimensional defect
TQFT can be thought of as giving rise to an n-category, which has bulk theories
as objects and codimension-k defects as k-morphisms. Naturally, such algebraic
structures are hardly tractable for higher values of n, but in low dimensions, namely
n = 2, 3, they were addressed rigorously in [Ca, CMS, CR2, DKR, FSV].

Defects can also be used to describe symmetries of field theories. In particular,
in the presence of a symmetry by a finite group G one can define a codimension-1
defect labelled by g ∈ G such that the states on both sides are related by the
action of g. Associated to such defects there is the orbifold construction which
produces a new field theory by gauging the symmetry. Roughly it works as fol-
lows: the spacetime manifold is filled with a G-foam, i.e. a network of defects
whose codimension-0 strata are contractible, codimension-1 strata are labelled by
elements of G and the labels for higher codimension strata are produced by some
appropriate construction. The evaluation then works by summing over all possible
labels of all codimension-1 strata.

1One can adapt the definition of defect TQFTs to other tangential structures as well, but in
this work we focus on oriented bordisms only.
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Figure 1.1: 2d foam labelled by an orbifold datum A = {A0,A1}

Having a defect TQFT Zdef one can similarly define a generalised orbifold con-
struction which produces a new ordinary TQFT (i.e. a symmetric monoidal functor
Bordn → Vectk). In it, the role of the G-symmetry is played by a so called orbifold
datum. An orbifold datum consists of a subset A ⊆ D containing a single label for
a stratum of each positive codimension, which are then used to label the strata
of the foam (see Figure 1.1). A must satisfy certain requirements which ensure
independence of the choice of the foam. Generalised orbifolds incorporate both
the ones obtained from a G-symmetry, as well as some new instances. For exam-
ple, the 3-dimensional Turaev-Viro-Barrett-Westbury theory can be obtained as a
generalised orbifold of the trivial 3-dimensional TQFT [CRS3, Sec. 4].

The primary goal of this work is to explore 3-dimensional defect TQFTs and
the associated generalised orbifold constructions. In particular we focus on the
Reshetikhin-Turaev (RT) construction, which given a modular fusion category
(MFC) C yields a 3-dimensional TQFT [RT, Tu]

ZRT
C : B̂ordrib

3 (C)→ Vectk . (1.2)

Here B̂ordrib
3 (C) denotes the category of 3-dimensional bordisms with embedded C-

coloured ribbon graphs (which are built into the construction to mimic Wilson lines
and their junctions) and the hat indicates extra geometrical structure necessary to
cancel a gluing anomaly. The construction can be extended to a defect TQFT [KSa,
FSV, CRS2]

Zdef
C : B̂orddef

3 (DC)→ Vectk , (1.3)

where the set DC of defect labels is as follows:

• all 3-strata have the same label C;

• 2-strata are labelled by symmetric separable Frobenius algebra objects in C;

x
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Figure 1.2: Orbifold datum A = (A, T, α, α, ψ, φ).

• 1-strata are labelled by multimodules of the Frobenius algebras which label
the adjacent 2-strata (a multimodule being an object in C which is simultane-
ously a module over multiple algebra objects, such that the different actions
commute);

• 0-strata are labelled with multimodule morphisms.

In this case an orbifold datum is a tuple A = (A, T, α, α, ψ, φ), where A is the
Frobenius algebra labelling 2-strata, T is an A-A⊗A-bimodule labelling trivalent
edges, α and α are labels for the 0-strata at the intersections of two T -lines (two
labels for each orientation) and the morphism ψ : 1C → A, as well as the scalar φ ∈
k× constitute some extra data to account for certain normalisation factors [CRS3].

The main task we address in this work is determining, whether the generalised
orbifold

ZorbA
C : B̂ord3 → Vectk (1.4)

of the defect RT TQFT Zdef
C is itself a TQFT of RT type, i.e. equivalent to the func-

tor (1.2) with C replaced by some other modular fusion category CA, constructed
out of the orbifold datum A. The answer turns out to be affirmative and is shown
in three steps:

i) given an orbifold datum A = (A, T, α, α, ψ, φ) in the defect RT TQFT ob-
tained from a modular fusion category C, constructing a new modular fusion
category CA;

ii) extending the construction of generalised orbifolds in dimension 3 to include
embedded ribbon graphs; for the TQFTs of RT type this extends the func-
tor (1.4) to

ZorbA
C : B̂ord3(CA)→ Vectk ; (1.5)

iii) showing that the two TQFTs ZorbA
C and ZRT

CA are isomorphic.
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One can isolate two directions in which the above problem can be expanded. The
first one is more algebraic in nature and revolves around understanding the con-
struction yielding the category CA from step i) above. This also involves providing
one with families of examples, of which we consider three in this work:

• when the orbifold datum A is given by a condensable algebra (i.e. haploid
(or connected) commutative ∆-separable Frobenius algebra) A in a modular
fusion category C;

• when A is an orbifold datum in C = Vectk, built from a spherical fusion
category S with non-vanishing global dimension DimS;

• when A is an orbifold datum in a multiplicity-less modular fusion category C,
which satisfies a number of simplifying assumptions, allowing one to reduce
the conditions on A into a set of polynomial equations.

In the first example the category CA turns out to be equivalent to the category Cloc
A

of local A-modules and in the second one to the Drinfeld centre Z(S). The category
CA thus unifies these two important constructions into a single algebraic setting.
The third example was designed as an illustration how more complicated modular
fusion categories can arise from simpler ones with the outcome not necessarily being
a Drinfeld centre. In particular we solve the aforementioned polynomial equations
for an ansatz of an orbifold datum in the categories of Ising type. We note that
completely understanding the construction of CA is at the moment of writing still
a work in progress.

The second direction in which we expand the analysis of generalised orbifolds of
RT TQFTs is more to the side of mathematical physics and aims to exploit the
isomorphism of TQFTs ZorbA

C
∼= ZRT

CA from step iii) above to better understand
some aspects of the theories of RT type. In particular, for two orbifold data A and
A′ in a modular fusion category C we look at domain walls between two theories
of RT type, obtained from CA and CA′ . Domain walls between non-identical bulk
theories could not be handled with the defect TQFT (1.3), but treating them as
generalised orbifolds of a single theory C allows one to replace both of them with
defect foams, the domain wall being a surface defect in Zdef

C at which the two
foams can end. In this work we formulate this generalisation for the orbifold data
obtained from condensable algebras and compare it to a more model-independent
way to analyse the domain walls proposed in [FSV].

Below we give a more detailed overview of the above results, along with some of
their implications and possible future questions to address.
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(a)

=

(b)

(c)

P7→

(d)

Figure 1.3: (a) The structure maps and (b) one of the conditions on an object
(M, τ1, τ2) of CA. (c) Braiding morphism of two objects M,N ∈ CA. (d)
Pipe functor P : ACA → CA.

Modular categories from orbifold data

The construction of the category CA was done in [MR1] in collaboration with Ingo
Runkel. The objects of CA turn out to be triples of the form (M, τ1, τ2) where M
is an A-A-bimodule and τ1, τ2 are A-A⊗ A module morphisms M ⊗ T → T ⊗M
subject to certain conditions. Equivalently, they describe line defects living on
the 2-strata of the foam which can cross to adjacent 2-strata with the help of
morphisms τ1, τ2 (see Figure 1.3a). The conditions that objects of CA must satisfy
allow these strata to be moved across the 0-strata of the foam (see Figure 1.3b).

The interpretation of the objects of CA as defect labels enable one to perform
some intricate constructions with them. For example, the braiding of two objects
M,N ∈ CA is defined by creating a “bubble”, along the two sides of which the
M - and N -strands can pass over one another (see Figure 1.3c). One can also
introduce objects of CA having an “internal structure”, for example we define the
“pipe functor” P : ACA → CA by surrounding a line, labelled by an A-A-bimodule
M , with two A-labelled 2-strata and four T -labelled 1-strata (see Figure 1.3d).
This functor can be thought of as the free construction of objects of CA, as it is

xiii



adjoint to the forgetful functor U : CA → ACA. It plays a great role both in showing
that CA is in fact semisimple, and in showing that CA is modular.

Let us mention some notions, which seem to have close relations to the construc-
tion of the category CA that at the moment of writing are still yet to be explored.
Firstly, the notion of an orbifold datum in RT theories is very similar to that
of a monoidal category enriched over a braided category [MP], and, equivalently,
to module tensor categories [MPP]. The latter also appear in the description of
so-called anchored planar algebras [HPT]. A monoidal category enriched over a
modular category C is shown in [MP] to be equivalently given by a pair (S, F ),
where S is a fusion category and F : C → Z(S) a braided functor. Most no-
tably, the notion of an enriched centre [KZ3] seems to be closely related: a functor
F : C → Z(S) yields a new braided category by taking the commutant of F (C)
in Z(S). The examples of condensations and Drinfeld centres mentioned above
(which are also investigated in [MR1]) are both instances of enriched centres. We
expect CA to be an enriched centre in general2.

Other constructions on modular categories are given by taking modules of a
Hopf monad. In [CZW] it was shown how it specialises to condensations. On
the other hand, it also specialises to taking the Drinfeld centre which cannot be
achieved from our construction, since C and CA have the same anomaly factor.
Hence while the two constructions are non-equivalent, there is still a non-trivial
overlap between the theory of Hopf monads and orbifold data, which would be
interesting to explore.

Finally, we note that orbifold data are related to the so called condensation
algebras, a notion which was introduced in [GJ] with the aim to formalise the
relation between two TQFTs arising as topological orders of two gapped quantum
systems due to a phase change. Indeed, the datum of a condensation algebra when
applied to TQFTs of RT type seems very similar to an orbifold datum and their
physical interpretations also seem to coincide.

RT theories are closed under generalised orbifolds

This is a two-part work [CMRSS1, CMRSS2] in collaboration with Nils Carqueville,
Ingo Runkel, Gregor Schaumann and Daniel Scherl. The construction of the mod-
ular category from [MR1] can be adapted to any 3-dimensional defect TQFT to-
gether with an orbifold datum in it. Using it one can extend the orbifold TQFT to
include also embedded ribbon graphs. It is known from [CMS] that such TQFTs
yield tricategories with duals. An orbifold datum and the associated category of
Wilson lines can be respectively seen as a datum in the corresponding tricategory

2We are grateful to David Penneys and David Reutter for bringing the enriched centre to our
attention and for suggesting its relation to CA.
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and an algebraic invariant of it. We analyse this point of view in [CMRSS1] along
with some questions on combinatorial presentations of 3-manifolds with embedded
ribbon graphs.

In the follow-up paper [CMRSS2] we specialise the above outcome to the case
of RT TQFT. The equivalence of the two TQFTs ZorbA

C and ZRT
CA is then shown by

modifying the proof of a known equivalence between TQFTs of RT and Turaev-
Viro-Barrett-Westbury (TVBW) types as explained in [TVire, TV]. Having the
explicit description of the category CA from [MR1] is essential for the proof, as it
relies greatly e.g. on the properties of the pipe functor P : ACA → CA mentioned
above.

The isomorphism of the two TQFTs suggests an interesting parallel to the com-
parison of TQFTs of TVBW and RT types. Let us denote the former by ZTV

S ,
where S denotes a spherical fusion category, which is needed as an input. The
isomorphism ZTV

S
∼= ZRT

Z(S) (when treating both functors as having the source and

target as in (1.2) with C = Z(S)) to the RT type theory obtained from the Drinfeld
centre Z(S) is provided in [TVire, TV]. It enables higher flexibility when work-
ing with ZRT

Z(S), as the TVBW-type theory is defined by a state-sum construction
and is therefore more “local” than a theory of RT type, which is obtained from
surgery invariants of 3-manifolds, by definition being “global”. Due to the defini-
tion of ZorbA

C via an internal state sum construction, the isomorphism ZorbA
C

∼= ZRT
CA

provides similar opportunities to an RT theory obtained from a MFC that is not
necessarily a Drinfeld centre. The orbifold datum A is then an analogous input to
that of the spherical fusion category S in the TVBW construction. As conjectured
above, CA is an enriched centre, so one sees that just like state-sum constructions
are equivalent to RT theories for Drinfeld centres, the internal state-sum construc-
tions should be equivalent to RT theories for the enriched centres.

We note that an alternative proof of the isomorphism ZTV
S
∼= ZRT

Z(S) is laid out

in [BalK1, BalK2, BalK3]. It differs from the one in [TVire, TV] in that it treats
both TQFTs as 3-2-1 extended, i.e. 2-functors with 3-dimensional bordisms with
corners as the source category. By replacing ZRT

CA with the 3-2-1 extended TQFT
introduced in [BDSV] (also requiring a MFC as an input3, which conjecturally in
this case would also be CA), one could try to generalise the isomorphism ZorbA

C
∼=

ZRT
CA to this setting as well. At the moment, the obstacle is that the 3-2-1 extended

TQFT in [BDSV] has not been yet generalised to a 3-2-1 extended defect TQFT,
which one would need to perform the internal state-sum construction. Exploring
the extended versions of defect TQFTs is a possible direction for future projects.

3It was not yet shown that the construction in [BDSV] when restricted to bordisms without
corners yields an RT theory, but this claim is widely believed to be true.
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Inversion of E6-condensation

Let us discuss the last of the three examples of orbifold data and the associated
MFCs mentioned above. It was explored in detail in the work [MR2], in collab-
oration with Ingo Runkel4. The idea of this project was to look at the modular
category C(sl(2), 10) of integrable modules of the affine Lie algebra ŝl(2) at level 10.
Algebra objects in C(sl(2), 10) are classified by Dynkin diagrams of certain type,
one of which, E6, gives a condensable algebra. The category of its local modules is
equivalent to C(sp(4), 1), having 3 simple objects (i.e. of rank 3) which exhibit Ising
fusion rules. The goal was then to “invert” this, i.e. find an orbifold datum in the
E6 condensation which would give back C(sl(2), 10). This was achieved by making
an ansatz for an orbifold datum A = (A, T, α, α, ψ, φ) in a modular category C
whose fusion rules are multiplicity-less. The ansatz in particular required that the
Frobenius algebra A is a direct sum of copies of the tensor unit in C. This allows
one to write down the conditions for A as a system of polynomial equations which,
in a concrete case like the categories of Ising type, can be solved using computer
algebra. In the end this illustrated how finding an orbifold datum in a seemingly
non-complicated category (i.e. the Ising one, of rank 3) can yield a rather com-
plicated one (i.e. C(sl(2), 10), of rank 11) also when they are not equivalent to
Drinfeld centres.

One of the motivations for this example stems from the classification of modular
fusion categories. There is, up to equivalence, only a finite number of modular
fusion categories with a given number of simple objects [BNRW1], a property called
rank-finiteness. It therefore makes sense to classify such categories by number of
simple objects (the rank). This has been done up to rank 5 [RSW, BNRW2], and
rank 6 is in progress [Gr, Cr]. A systematic approach to produce more exotic
examples of modular categories is to consider Drinfeld centres, see e.g. [HRW, EG,
JMS, GM] for more details and references. The problem we would like to advocate
with the simple example is:

Try to construct new MFCs by systematically studying orbifold data A
in a given MFC C of low rank e.g. by solving the simplified polynomial
equations obtained from the conditions on A and then computing CA.

Another motivation stems from the study of topological phases of matter. Namely,
unitary modular categories C model anyons in two-dimensional topological phases
of matter, see e.g. [RW], and MFCs, obtained by condensations, describe the pro-
cess of anyon condensation [Ko] (hence our use of the terms condensation, con-
densable algebra). Since the Ising category does not support universal quantum
computation, but C(sl(2), 10) does (see [NR, RW]), it would be interesting to see

4Both of us are grateful to Terry Gannon for suggesting this example
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if the fact that a generalised orbifold can turn the former into (a close relative of)
the latter has applications in topological quantum computation.

Domain walls between RT theories

The last result presented in this thesis is based on the work [KMRS], in collab-
oration with Vincent Koppen, Ingo Runkel and Christoph Schweigert, where we
sought to provide a construction of a defect TQFT labelling the 3-strata with orb-
ifold data in a fixed modular category C. To achieve this one needs to look at
surface defects between two foams labelled by different orbifold data A and A′. In
light of the equivalence of RT and orbifold TQFTs, this is the same as looking at
surface defects between two RT theories labelled by modular categories CA and CA′ .
It is argued in [FSV] that such defects are parametrised by a pair (W , F ), where
W is a fusion category and

F : CA � C̃A′ → Z(W) (1.6)

is a braided equivalence (here for a braided category B, B̃ denotes the category
with the mirrored braiding). Two modular categories are called Witt equivalent
if there exists an equivalence like the one in (1.6) for some fusion category W
(to be referred to as a Witt trivialisation). We therefore can relate the analysis
of 3-dimensional defect TQFTs of RT type with that of the Witt equivalence
relation. In [KMRS] we have completed this project for orbifold data obtained
from condensable algebras in a fixed modular category C. We have found that a
surface defect between two 3-strata, labelled by condensable algebras A,B ∈ C
(or rather by the corresponding orbifold data) can be labelled by a symmetric
separable Frobenius algebras in the category ACB of A-B-bimodules, which can be
equipped with a specific monoidal structure due to A and B being commutative.
The category ACB also is the one playing the above role of W in a choice of Witt
trivialisation of the pair of condensations Cloc

A and Cloc
B .

Structure of the thesis

Excluding the introduction, this work consists of 8 chapters numbered 2 to 9,
which thematically can be further subdivided into prerequisite chapters 2, 3 and 4,
main material chapters 5 and 6, and the chapters on examples and applications 7,
8 and 9. The appendix sections A-E contain supplementary material on various
topics, some of it original (e.g. some more lengthy computations) and the other
part being reviews of some secondary prerequisites.

The chapters 3, 4 and 6 are dedicated to defining the TQFT functors (1.2), (1.3)
and (1.5) respectively. All of them are organised after the following pattern: i)
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define the source category of decorated bordisms; ii) describe the aspects of its
construction; iii) state the definition; iv) explore some of the properties which are
used later. In the last step we use the “Property” environment, which should be
interpreted as a mixture of the “Proposition”, “Example” and “Remark” environ-
ments. In each of them we state a property of the respective TQFT, which in
principle could be formulated (and in most cases has been formulated in one of
the references) rigorously as a proposition, but doing so we deemed as too much
of a digression and instead we either described it more informally as a remark, or
illustrated it with an example, assuming that the generalisation is straightforward.

Let us briefly review the material presented in each of the chapters. A more
detailed overview is positioned at the beginning of each chapter.

• Chapter 2 collects most of the general categorical notions that are used
throughout the text, a lot of it based on the books [BakK, EGNO, TV].
In it we also introduce the separable Frobenius algebras, which are treated
slightly differently than in the source literature [FRS1, FFRS], which is why
we review them in more detail.

• Chapter 3 contains the definition of the Reshetikhin-Turaev TQFT ZRT
C , ob-

tained from a MFC C. We mostly follow [Tu, Ch. IV], although the definition
itself is stated differently using the universal construction of [BHMV], as it
makes some properties, e.g. the functoriality of ZRT

C , more transparent. The
main prerequisite for it is understanding the material on MFCs laid out in
section 2.3.

• Chapter 4 discusses stratified manifolds and defect TQFTs in general and
states the definition and some properties of the Reshetikhin-Turaev defect
TQFT Zdef

C . It relies heavily on the works [CRS1, CMS, CRS2], with only
very minor changes, the most noteworthy of which is our use of 1-skeleta,
instead of the dual triangulations in defining the internal 2-dimensional state-
sum construction. We review the defect TQFT Zdef

C quite thoroughly, since
it is one of the most important tools used later. The prerequisites for this
chapter include the sections 2.4 and 2.5 on separable Frobenius algebras, as
well as the definition and the properties of ZRT

C in chapter 3.

• Chapter 5 introduces the most important construction of this work: that of
the category CA. We discuss the various structures on it: tensor product,
dualities, braiding, twists. We also prove that it is semisimple and, under
a very natural assumption of A being simple (i.e. CA being fusion, instead
of multifusion), that it is in fact a MFC. The material in this chapter first
appeared in [MR1]. New to this thesis is the use of separable (instead of
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stronger ∆-separable) Frobenius algebras, which results in a slight general-
isation of the results in [MR1]. Naturally, sections 2.3 on MFCs and 2.4
and 2.5 on separable Frobenius algebras are prerequisites for this chapter.
We also make use of the interpretation of CA in terms of defect TQFT Zdef

C ,
so chapter 4 is a prerequisite as well.

• Chapter 6 both introduces the generalised orbifold TQFT ZorbA
C and proves

the isomorphism of TQFTs ZorbA
C

∼= ZRT
CA . The definition of ZorbA

C is com-
parable to that of Zdef

C , being itself an internal 3-dimensional state-sum con-
struction. The main prerequisites for this chapter therefore are the previous
chapters 4 and 5. We base this chapter on the works [CMRSS1, CMRSS2],
acknowledging the results of [CRS3], where the first simpler version of ZorbA

C
was introduced, as an inspiration for them.

• Chapter 7 considers the first two examples of orbifold data mentioned above
(i.e. obtained from condensible algebras and spherical fusion categories). The
orbifold data in both cases were introduced in [CRS3], our focus is on the
associated MFCs CA. The results in this chapter appeared in the second part
of [MR1], a lot of them consist of technicalities, needed for their proofs. As
this chapter is more algebraic in nature, one just needs the material from
chapter 5 as a prerequisite.

• Chapter 8 revolves around the third example of orbifold data mentioned
above (i.e. orbifold data in multiplicity-less MFCs satisfying certain assump-
tions). It is based on the results in [MR2], which are again somewhat techni-
cal. The longest computations are moved to appendix D. Again, the chapter 5
is enough as a prerequisite, with the results of chapter 6 also being marginally
used.

• Chapter 9 is based on the work [KMRS] and discusses the domain walls
between Reshetikhin-Turaev theories. The results in it are twofold: a gener-
alisation of the defect TQFT (1.3) to include different phases of 3-strata, as
well as a comparison of two descriptions of domain walls: one as given by the
new defect TQFT and the other as proposed in [FSV]. The latter reference
was a great inspiration for the results in this chapter and is summarised in
section 9.2. This is the only chapter that uses some higher-categorical notions
more extensively; we review them very briefly in sections 2.6 and 2.7.

Finally, we note that the appendix B, in which the 1- and 2-skeleta of 2- and 3-
manifolds is discussed, is based on a similar appendix to the work [CMRSS1]. The
two of them are somewhat complementary in the material they present: the former
focuses on 1-skeleta of surfaces and treats 2-skeleta for 3-manifolds by analogy,
while the presentation in the latter is the opposite.
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lienė, my brother Adomas Mulevičius, his wife Jiang Pan and their son, my dear
nephew, Aleksandras Mulevičius.
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2. Categorical preliminaries

This chapter contains the basic prerequisites on which we will rely in later sec-
tions. We mostly just review our preferences regarding terminology and notations.
More details on the material in Sections 2.1-2.3 can be found, for example, in the
books [BakK, EGNO, TV]. Sections 2.4, 2.5 introduce a slight generalisation of the
notion of a symmetric ∆-separable Frobenius algebra and then adapt some of the
results, found e.g. in [FRS1, FFRS]. The remaining Sections 2.6 and 2.7 serve as a
very light exposition to some higher categorical notions, most of them emerging in
applications to defect TQFTs (to be discussed in Section 4.1 below). Our reliance
on them will be relatively marginal (with a possible exception in Chapter 9), and
so they are discussed with less rigour, referring e.g. to [Ca, CMS, CR2, Schm] for
more details.

2.1. Categories and functors

We assume some familiarity with monoidal (rigid, braided, etc.) categories, func-
tors and natural transformations. In this section we review some aspects of these
and related notions, in particular those that are more specific to this work.

• A monoidal category C is equipped with a monoidal (or tensor) product func-
tor ⊗ : C ×C → C which has a unit 1 = 1C ∈ C and the associator and unitor
natural isomorphisms

a : (−⊗−)⊗− ⇒ −⊗ (−⊗−) , l : 1⊗− ⇒ IdC , r : −⊗1⇒ IdC (2.1)

satisfying the pentagon and triangle identities. For notational simplicity we
will sometimes omit the tensor product symbol ⊗.

• A monoidal functor between two monoidal categories C, D is a functor
F : C → D with an assigned monoidal structure, i.e. a natural isomorphism
F2 : F (−)⊗ F (−)⇒ F (−⊗−) and an isomorphism F0 : F (1C)

∼−→ 1D satis-
fying the usual compatibility conditions.

• A monoidal natural transformation between monoidal functors F,G : C → D
is a natural transformation ϕ : F ⇒ G which commutes with the monoidal
structures, i.e.

ϕ1D ◦ F0 = G0 , ϕX⊗Y ◦ F2(X, Y ) = G2(X, Y ) ◦ (ϕX ⊗ ϕY ) . (2.2)

One infers the notion of monoidal equivalence between monoidal categories.
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• A rigid category is a monoidal category C whose each object X ∈ C has
distinguished left and right duals, i.e. objects X∗, ∗X ∈ C together with
(co)evaluation morphisms

evX : X∗ ⊗X → 1 , coevX : 1→ X ⊗X∗ ,

ẽvX : X ⊗ ∗X → 1 , c̃oevX : ∗X ⊗X → 1

(2.3)

satisfying the “snake” identities. A monoidal functor automatically preserves
left/right duals of objects up to a canonical isomorphism.

• A pivotal category is a rigid category C endowed with a pivotal structure, i.e.
a monoidal natural isomorphism δ : IdC ⇒ (−)∗∗. Since for rigid categories
one has X ∼= (∗X)∗ for all objects X ∈ C, a pivotal structure provides one
with a canonical isomorphism X∗ ∼= (∗X)∗∗ ∼= ∗X. It is therefore enough to
consider one of the two duals in pivotal categories, and we will use X∗. A
pivotal functor between pivotal categories is a monoidal functor preserving
the pivotal structure (up to the canonical isomorphism of the double-duals).

• A braided category is a monoidal category C with an assigned braiding, i.e.
a natural isomorphism {cX,Y : X ⊗ Y → Y ⊗ X}X,Y ∈C satisfying the two

hexagon identities. The reverse of C is the braided category C̃ having the
same underlying monoidal category, but equipped with the reverse braiding
{c−1
Y,X : X ⊗ Y → Y ⊗X}X,Y ∈C. A braided category C is called symmetric if

one has cX,Y = c−1
Y,X for all X, Y ∈ C, i.e. if the braiding and its reverse coin-

cide. A braided (resp. symmetric) functor between braided (resp. symmetric)
categories is a monoidal functor preserving the braiding (up to a composi-
tion with the canonical isomorphisms due to the monoidal structure of the
functor).

Any monoidal category C has an associated braided monoidal category, its Drin-
feld centre Z(C). Recall that a halfbraiding on an object X ∈ C is a natural
isomorphism γ : X ⊗ − ⇒ − ⊗ X satisfying the first hexagon identity, i.e. for all
U, V ∈ C the following identity holds:

aU,V,X ◦ γU⊗V ◦ aX,U,V = (idU ⊗γV ) ◦ aU,X,V ◦ (γU ⊗ idV ) . (2.4)

Z(C) is then defined to be the braided monoidal category having:

• objects: pairs (X, γ) where X ∈ C and γ : X ⊗− ⇒ −⊗X is a halfbraiding,

• morphisms: f : (X, γ)→ (Y, δ) is a morphism f : X → Y in C, such that for
all U ∈ C one has

δU ◦ (f ⊗ idU) = (idU ⊗f) ◦ γU ; (2.5)
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• monoidal product: (X, γ)⊗ (Y, δ) := (X ⊗ Y,Γ), where for all U ∈ C

ΓU :=

 (XY )U
aX,Y,U−−−−→ X(Y U)

idX ⊗δ−−−−→ X(UY )
a−1
X,U,Y−−−−→ (XU)Y

γU⊗idY−−−−→ (UX)Y
aU,X,Y−−−−→ U(XY )

 . (2.6)

• monoidal unit: 1Z(C) := (1C, r
−1 ◦ l),

• associator and unitors: as in C,

• braiding: c(X,γ),(Y,δ) := γY .

In case C is pivotal, so is Z(C).
A convenient tool when working with monoidal categories is graphical calcu-

lus. It depicts morphisms in a monoidal category C by so-called string diagrams,
consisting of strands labelled by objects and coupons labelled by morphisms. A
diagram is read from bottom to top. It is customary (although not required) to
omit strands labelled with the unit object and coupons labelled with associator,
unitor and identity morphisms.

When using graphical calculus for a pivotal category C one also adds directions
to strands; a downwards direction corresponds to the dual of an object. The
(co)evaluation morphisms of an object X ∈ C are depicted by bent lines:

evX = , coevX = , ẽvX = , c̃oevX = . (2.7)

An equivalent way to define a pivotal structure on a monoidal category C is to fix
for each object X ∈ C a (left and right) dual X∗ such that the identities

= (=: f ∗) , = (2.8)

hold for all [f : X → Y ] ∈ C (see e.g. [CR1, Lem. 2.12]). These identities imply that
string diagrams up to a plane isotopy with fixed ends of incoming and outgoing
strands yield equal morphisms (see Figure 2.1a).

Let C be a pivotal category, X ∈ C and f ∈ EndC X. The left trace and the right
trace of f are defined to be the following endomorphisms of the monoidal unit:

trl f = , trr f = . (2.9)
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= =

(a)

=

(b)

Figure 2.1: (a) Graphical calculus for a pivotal category C. A morphism is depicted
by a string diagram, consisting of strands labelled by objects and coupons la-
belled by morphisms. A diagram is read from bottom to top, in this example the
diagram depicts a morphism (idY⊗Z ⊗ẽvV ⊗ idW⊗W ∗) ◦ (f ⊗ g ⊗ idV ∗ ⊗ coevW )
where X, Y, Z, U, V,W ∈ C, f : X → Y ⊗ Z, etc. It is customary (although
not required) to omit strands labelled with the tensor unit and coupons labelled
with associators, unitors and identity objects, and to replace (co)evaluation mor-
phisms with bent lines. In the latter case one also adds directions to strands;
a downwards direction corresponds to the dual of an object. The axioms of a
pivotal category imply that string diagrams up to a plane isotopy with fixed
ends of incoming and outgoing strands yield equal morphisms. Coupons having
one ingoing and one outgoing strand sometimes will also be replaced by points
and referred to as point insertions on strands. If the domains are clear from the
context, we will not relabel a point insertion g with the dual morphism g∗ when
it is read “upside down” (as is the case in the third equality in the picture).

(b) Graphical calculus for a ribbon category. In this case the strands can be seen
as directed and framed lines with the framing given by the paper plane. The
diagrams can be deformed up to isotopy as if embedded in (0, 1)× (0, 1)× [0, 1]
with incoming strands starting at fixed points on the line {1/2} × (0, 1) × {0}
and the outgoing ones ending at fixed points on {1/2}× (0, 1)×{1}. The fram-
ing of strands allows one to depict them as ribbons. By a (C-coloured) ribbon
tangle we mean an isotopy class of such embeddings.
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One also defines the left/right (categorical) dimensions of X by

dimlX := trl idX = , dimrX := trr idX = . (2.10)

C is called spherical ([BW1]) if the left and the right traces coincide. In this case
one speaks of the trace of f defined by tr f := trl f = trr f and the (categorical)
dimension of X defined by dimX := dimlX = dimrX. If the underlying category
needs to be emphasised, we will add an index to the notation, e.g. trC f , dimC X.

When using graphical calculus for a braided category C one uses overcrossings
and undercrossings of strands labelled by X, Y ∈ C to depict the braiding mor-
phisms and their inverses:

cX,Y = , c−1
X,Y = . (2.11)

Let C be a braided pivotal category, X ∈ C an object. The left twist and the
right twist of X are defined to be the following invertible endomorphisms of X:

θlX = , θrX = , (θlX)−1 = , (θrX)−1 = . (2.12)

C is called ribbon if the left and the right twists coincide. In this case one speaks
of the twist of X defined as θX := θlX = θrX . A ribbon functor between ribbon
categories is a braided functor which preserves twists.

Graphical calculus allows one to represent a morphism in a ribbon category by
a C-coloured ribbon tangle embedded in (0, 1) × (0, 1) × [0, 1], see Figure 2.1b for
an example. In fact, one can introduce the ribbon category RibC having

• objects: lists
(
(X1, ε1), . . . , (Xn, εn)

)
, Xi ∈ C, εi = ±;

• monoidal product/unit: concatenation/the empty list ∅;

• morphisms/composition: C-coloured ribbon tangles/stacking.
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The graphical calculus can then be formalised as the functor FC : RibC → C sending
a list

(
(X1, ε1), . . . , (Xn, εn)

)
to the tensor product Xε1

1 ⊗ · · · ⊗Xεn
n (where we use

notation X+
i := Xi and X−i := X∗i ) and a ribbon tangle to the corresponding

morphism in C.
Note that a ribbon tangle [L : ∅→ ∅] ∈ RibC which does not have coupons can

be seen as a directed framed link in R3 with components labelled by objects in C.
The element FC(L) ∈ EndC(1) is by definition an isotopy invariant of L.

2.2. Multifusion categories

Let k be an algebraically closed field. In this section we assume some familiarity
with k-linear and abelian categories. Functors between such categories are always
assumed to be k-linear, i.e. linear on the morphism spaces. They then automati-
cally preserve direct sums of finite families of objects.

Let A be a k-linear abelian category. Recall that an object X ∈ A is called
simple if dim EndAX = 1. The category A is called semisimple if all its objects
are isomorphic to finite direct sums of simple objects (the empty direct sum is
the zero object 0 ∈ A) and finitely semisimple if there is only a finite number of
isomorphism classes of simple objects.

Definition 2.1. A multifusion category is a k-linear, finitely semisimple, rigid
monoidal category A such that the tensor product functor ⊗ : A × A → A is
bilinear on morphism spaces. If in addition the tensor unit 1A is simple, it is
called fusion.

A more general notion is that of (multi-)tensor category (see [EGNO, Def. 4.1.1]),
in which one omits semisimplicity and adds the requirement of morphism spaces
to be finite dimensional (which in the above definition is automatic). As most of
the categories that we will encounter are semisimple, this notion, apart from a few
exceptions, will not be used in the sections below.

For a simple object U of a k-linear abelian category A, it is customary to im-
plicitly use the isomorphism k ∼−→ EndA U , λ 7→ λ idU . For an arbitrary object
X ∈ A one can then identify the dual space A(X,U)∗ with A(U,X) using the
(non-degenerate) composition pairing:

A(U,X)⊗k A(X,U)→ k, f ⊗k g 7→ g ◦ f . (2.13)

We will denote by IrrA a set of representatives of isomorphism classes of simple
objects of A. If A is fusion, we in addition assume that 1A ∈ IrrA.

For two k-linear categories A, B, their direct sum is defined as the k-linear
category A ⊕ B having pairs (X, Y ), X ∈ A, Y ∈ B as objects and A(X,X ′) ⊕
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B(Y, Y ′) as morphism spaces between (X, Y ), (X ′, Y ′) ∈ A ⊕ B. The direct sum
is defined additively on each entry. Similarly one introduces the notion of a direct
sum of functors. It is customary to identify e.g. A with the collection of objects
(X, 0) ∈ A⊕ B, X ∈ A. If A and B are abelian/(finitely) semisimple so is A⊕B.
If A and B are multifusion, the direct sum A⊕B too has a canonical structure of a
multifusion category with X ⊗Y = 0 whenever X ∈ A, Y ∈ B and the tensor unit
1A ⊕ 1B. Naturally this can be generalised to define direct sums of finite families
of k-linear categories. A multifusion category is called indecomposable if it is not
monoidally equivalent to a direct sum of two non-trivial (i.e. non-equivalent to {0})
multifusion categories [ENO1, Sec. 2.4]. We note that a multifusion category can
have a non-simple tensor unit and still be indecomposable. The finite-dimensional
bimodules of the semisimple C-algebra C⊕ C are an example of this.

Another construction on two finitely semisimple categories A, B is their Deligne
product A� B, which is the semisimple category consisting of formal direct sums
of objects of the form X � Y , X ∈ A, Y ∈ B, such that direct sums in A and
B distribute with respect to the symbol �. Morphism spaces in A� B are tensor
products of vector spaces of morphisms in A and B. If A and B are multifusion so
is A� B with the tensor unit 1A � 1B, see [EGNO, Cor. 4.6.2].

The simple summands of the tensor unit of a multifusion category can be used
to decompose it (see [EGNO, Rem. 4.3.4]):

Proposition 2.2. Let A be a multifusion category, 1 ∼=
⊕

i∈I 1i be the decompo-
sition of the tensor unit into simples and denote Aij = 1i ⊗A⊗ 1j

(i) All 1i are mutually non-isomorphic and 1i ⊗ 1j
∼= 0 for i 6= j.

(ii) A '
⊕

i,j∈I Aij as finitely semisimple k-linear categories.

(iii) The tensor product is a direct sum of functors ⊗ : Aij ×Akl → Ail with the
product being 0 if j 6= k.

The categories Aij are called the component categories of A. Note that each
simple object of A must lie in one of the Aij. In particular, the diagonal component
categories Aii are fusion with tensor unit 1i.

Recall that the Grothendieck ring Gr(A) of a multifusion category A is the
commutative ring with Z-basis given by the set IrrA together with the product

i · j =
∑
k∈IrrA

Nk
ij k, i, j ∈ IrrA , N

k
ij := dimA(i⊗ j, k) . (2.14)

If A is fusion, the Frobenius-Perron dimension is defined as the unique ring ho-
momorphism FPdim: Gr(A) → R, such that FPdim(i) > 0 for all i ∈ IrrA. The
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Frobenius-Perron dimension of A is defined as

FPdim(A) :=
∑
i∈IrrA

(FPdim(i))2 . (2.15)

The following result then provides a convenient way to prove equivalence of two
fusion categories, see [EGNO, Prop. 6.3.3].

Proposition 2.3. A functor F : A → B between fusion categories A and B is
an equivalence iff it is fully faithful (i.e. isomorphism on morphism spaces) and
FPdim(A) = FPdim(B).

Proposition 2.2(i) implies that for a multifusion category A one has EndA(1) ∼=
k⊕|I|. In particular, if A is in addition pivotal, the left/right traces of endomor-
phisms and the left/right categorical dimensions of objects are tuples of scalars in
k. The sphericality condition can be simplified as follows, see e.g. [TV, Lem. 4.4].5

Proposition 2.4. A pivotal multifusion category A is spherical iff diml i = dimr i
for all i ∈ IrrA.

For a spherical fusion category S, the categorical dimensions are simply scalars
in k. One defines its global dimension to be the scalar

DimS :=
∑
i∈IrrS

(dim i)2 . (2.16)

Note that the categorical and Frobenius-Perron dimensions are in general different
notions: the former is an element of the field k, whereas the latter is always real
and non-negative.

2.3. Modular fusion categories

Let B be a braided multifusion category. The braiding provides equivalences
Bij ' Bji of the component categories, which together with Proposition 2.2(i)
implies that the off-diagonal component categories are trivial. It follows that if B
is indecomposable then it is fusion. We will focus on the case of braided fusion
categories only.

We remark that it is not a priori clear, that the Drinfeld centre Z(A) of a
multifusion category A is itself a multifusion category, since in general it need not
be semisimple. Still, the decomposition in Proposition 2.2(ii) at least allows one to
focus on the Drinfeld centres of fusion categories only (see e.g. [KZ1, Thm. 2.5.1]):

5In this reference the fusion case is considered, but the argument for the multifusion case is the
same.
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Proposition 2.5. If A is an indecomposable multifusion category, then Z(A) is
a braided tensor category and is braided equivalent to Z(Aii) for each i.

The following definition will be of central importance in the upcoming chapters:

Definition 2.6. Let B be a braided fusion category.

i) An object T ∈ B is called transparent if for all X ∈ B one has

cT,X ◦ cX,T = idX⊗T . (2.17)

ii) B is called non-degenerate if each of its transparent objects is isomorphic to
1
⊕n for some n ≥ 0.

iii) A modular fusion category (MFC) is a non-degenerate ribbon fusion category.

The most trivial example of a MFC is the category Vectk of finite dimensional
vector spaces. Another class of examples is provided by the following (see [Mü2,
Thm. 3.16], [ENO1, Thm. 2.3, Rem. 2.4]):

Proposition 2.7. Let S be a spherical fusion category. Then Z(S) is a MFC if
and only if DimS 6= 0. The condition DimS 6= 0 always holds if char k = 0.

The following statement is convenient when looking for equivalences between
non-degenerate (and therefore also modular) braided fusion categories (see [DMNO,
Cor. 3.26]):

Proposition 2.8. Suppose char k = 0. Then a braided functor F : C → D between
braided fusion categories C and D, with C non-degenerate, is automatically fully-
faithful.

For a MFC C, let us define the following object/endomorphism pair:

C :=
⊕
i∈IrrC

i , d :=
⊕
i∈IrrC

dim i · idi (∈ EndC C) , (2.18)

along with the scalars:

p+ :=
∑
i∈IrrC

θi · (dim i)2 , p− :=
∑
i∈IrrC

θ−1
i · (dim i)2 , (2.19)

where here and below, for i ∈ IrrC, θi ∈ k× denotes the scalar which corresponds
to the twist morphism of i under the usual identification EndC i ∼= k. When using
graphical calculus for the morphisms of C, we say that a closed strand carries
the Kirby colour, in case it is coloured with the object C and has a single point
insertion labelled by the morphism d.

9



Proposition 2.9. Let C be a ribbon fusion category. Then the following are
equivalent

i) C is a MFC;

ii) The ribbon functor

C � C̃ → Z(C), X � Y 7→ (X ⊗ Y, γdol
X,Y ) , (2.20)

where γdol
X,Y is the “dolphin” half-braiding defined for all U ∈ C by

(γdol
X,Y )U := , (2.21)

is an equivalence;

iii) the s-matrix is invertible, where

sij := trC
(
ci,j ◦ cj,i

)
, i, j ∈ IrrC; (2.22)

iv) for all i ∈ IrrC the following identity holds

= c · δi,1 · (2.23)

for some c 6= 0; moreover, in this case one necessarily has c = Dim C (in
particular, the global dimension of a MFC is automatically non-zero).

The equivalence of the statements i), ii) and iii) in the above proposition are
shown e.g. in [EGNO, Prop. 8.20.12]. The two directions of the equivalence to the
statement iv) can be found in [BakK, Cor. 3.1.11] and [KO, Lem. 4.6]

Proposition 2.9 implies the following properties of a MFC C:

• the scissors identity : for an object X ∈ C one has

= Dim C
∑
p

(2.24)
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where bp run through a basis of C(1, X) and bp is the dual basis of C(X,1)
with respect to the composition pairing, i.e. bq ◦ bp = δpq id1 ∈ EndC 1 ∼= k.;

• one has the following relation (see [BakK, Cor. 3.1.11]):

p+p− = Dim C ; (2.25)

in particular, the scalars p+, p− are both non-zero;

• the following identities hold for any collection of objects X1, . . . , Xn ∈ C
(see [BakK, Lem. 3.1.5])

= p+ · , = p− · . (2.26)

In the upcoming applications to TQFTs, a MFC C will always have an assigned
choice for the square root

D :=
√

Dim C . (2.27)

The scalar

δ :=
p+

D
=

D

p−
(2.28)

is then called the anomaly of C. In case we need to differentiate between several
MFCs, we will add an index to the notation, e.g. CC, dC, p

±
C , DC, δC.

2.4. Algebras and modules

We assume some familiarity with algebras in a (multi)fusion category C and refer
to [FRS1, FFRS] for more details. For an algebra A ∈ C, we denote the categories
of left and right modules by AC and CA respectively. For two algebras A,B ∈ C,
the category of A-B-bimodules is denoted by ACB. We call an algebra A ∈ C
semisimple, if the category of its left modules AC (equivalently, that of the right
modules CA or bimodules ACA, see [DMNO, Prop. 2.7]) is semisimple. An algebra
A is called haploid (or connected) if one has dim C(1, A) = 1. A haploid algebra A
is necessarily a simple object in AC, CA and ACA, but the converse is not true (take
for example the matrix algebra in Vectk, which is simple as a bimodule over itself,
but not haploid).
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A Frobenius algebra in a multifusion category C is a tuple

A ∈ C , µ : A⊗ A→ A , η : 1→ A , ∆: A→ A⊗ A , ε : A→ 1 (2.29)

where (A, µ, η) is an associative unital algebra and (A,∆, ε) is a coassociative

counital coalgebra, such that with , , , denoting the multiplication, comulti-
plication, unit and counit morphisms, one has

= = . (2.30)

If C is pivotal, a Frobenius algebra A is in addition called symmetric if

= (2.31)

If C is braided, we define the opposite of an algebra A (to be denoted by Aop)
and the tensor product of two algebras A,B ∈ C to be the algebras obtained from
A and A ⊗ B by equipping them with the following multiplication (and, in the
latter, case unit) morphisms:

, , . (2.32)

If A and B are Frobenius algebras, so are Aop and A ⊗ B upon equipping them
with the comultiplications (and, in the latter case, counit)

, , . (2.33)

If A, B are in addition symmetric, so are Aop and A⊗B.

12



For any algebra A ∈ C, the dual L∗ of a left module L = (L, λ : A⊗L→ L) ∈ AC
is a right A-module with the action

(2.34)

Similarly, the dual of a right module is a left module and consequently the bimod-
ules are closed under taking duals. For two algebras A,B ∈ C, the objects of ACB
and Bop⊗AC are in bijection with the left action of Bop ⊗ A on M ∈ ACB and the
right action B on L ∈ Bop⊗AC given by:

, . (2.35)

A (left) module over a Frobenius algebra A ∈ C is a module L of the underlying
algebra. If A is symmetric, it has a canonical (left-)comodule structure with the
coaction

:= . (2.36)

One easily generalises this to right modules and bimodules of Frobenius algebras.

Recall that an algebra A ∈ C is called separable if the multiplication µ : A⊗A→
A has a section in ACA, i.e. an A-A-bimodule morphism s : A → A ⊗ A such that
µ ◦ s = idA. One has:

Proposition 2.10. A Frobenius algebra A ∈ C is separable if and only if there is
a morphism ζ : 1→ A such that

= (2.37)
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Proof. A is obviously separable if such ζ exists. On the other hand, if A is separable
with s : A→ A⊗ A such that µ ◦ s = idA, take ζ := (ε⊗ idA) ◦ s ◦ η. Then

= = = = = , (2.38)

where one uses that s is an A-A-bimodule morphism and therefore commutes with
(co)multiplication morphism of A.

Convention 2.11. For later convenience, we will assume that a morphism ζ : 1→
A as in (2.37) is obtained as a multiplicative square of another morphism ψ : 1→ A,
i.e. ζ = µ ◦ (ψ⊗ψ). Moreover, we will always make an additional assumption that
such ψ has a multiplicative inverse, i.e. a morphism ψ−1 : 1→ A such that

µ ◦ (ψ ⊗ ψ−1) = µ ◦ (ψ−1 ⊗ ψ) = η . (2.39)

Slightly abusing the terminology, by separable Frobenius algebra we will mean a
pair (A,ψ), i.e. the morphism ψ (and therefore also the section of µ) is fixed as a
structure. If ψ = η, the section is given by the comultiplication ∆: A → A ⊗ A.
In this case we say that A is ∆-separable.
For a left A-module L, right A-module K and an A-A-bimodule M we introduce
the following invertible endomorphisms

ψLl = := , ψKr = := , ωM = := .

(2.40)
Note that ψLl , ψKr , ωM are not in general (left-, right-, bi-)module morphisms, as ψ
is not in general central. However they do commute with (left-, right- bi-)module
morphisms under composition.

We will mostly work with symmetric separable Frobenius algebras A = (A,ψ). In
graphical calculus, morphisms, consisting of compositions of (co)unit and (co)multi-
plication as well as (co)evaluation maps of A can be interpreted as surfaces, con-
sisting of ribbon strands which branch out at the vertices. Together, (co)unitality,
(co)associativity, the Frobenius property (2.30) and the symmetry property (2.31)
allow one to freely deform such a surface. The strands need not even be directed,
as the symmetry property provides one with a canonical isomorphism A ∼= A∗.
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Figure 2.2: In graphical calculus, morphisms composed of (co)unit,
(co)multiplication and (co)evaluation morphisms of a symmetric separa-
ble Frobenius algebra A can be changed by replacing the corresponding graph
by a thin surface and deforming it. The separability property (2.37) allows one
to omit holes in the surface as indicated by the second step in the figure. The
symmetry property is used to canonically identify A with its dual A∗.

The holes in such surfaces can also be omitted if there is a ψ2-insertion on the
boundary of it, see Figure 2.2. In graphical calculus, the modules of A serve as
boundary lines for such surfaces. The ψ-insertions are compatible with action and
coaction on modules L ∈ AC and K ∈ CA, in the sense that the following identities
hold

= , = , = , = . (2.41)

Working with separable Frobenius algebras is not much different from working
with ∆-separable ones. For example, having a separable Frobenius algebra A =
(A,ψ) and two left modules L,L′ ∈ AC, the map

C(L,L′)→ AC(L,L′) , f 7→ (2.42)

is an idempotent projecting onto the subspace AC(L,L′) ⊆ C(L,L′). Analogous
maps can also be defined to project onto the spaces of right- and bimodule mor-
phisms.

Separable algebras are known to be semisimple ([DMNO, Prop. 2.7]). For a
symmetric separable Frobenius algebra A = (A,ψ) this can be conveniently shown
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using adjunctions: As explained in Appendix A, for any pair of k-linear categories
A, B, a biadjunction6 between functors X : A → B, Y : B → A is called separable,
if the natural transformation ε ◦ η̃ : IdB ⇒ IdB is invertible (here η̃ : IdB ⇒ XY is
the unit of the adjunction Y a X and ε : XY ⇒ IdB is the counit of the adjunction
X a Y ). Suppose now that the category A is finitely semisimple, B is idempotent
complete, and that there exists a separable biadjunction between A and B. Then
it is shown in Proposition A.3 that B is finitely semisimple as well. We apply this
for A = C and B = AC, CA or ACA. To this end, let

IndlA : C → AC
X 7→ A⊗X ,

IndrA : C → CA
X 7→ X ⊗ A ,

IndAA : C → ACA
X 7→ A⊗X ⊗ A

(2.43)
be the induced module functors and denote by U l

A, U r
A, UAA the corresponding

forgetful functors. One has

Proposition 2.12. (IndlA, U
l
A), (IndrA, U

r
A), (IndAA, UAA) are pairs of biadjoint

functors and in each case the biadjunction is separable.

Proof. We only show the argument for the pair (IndlA, U
l
A). Recall that a datum

for the two adjunctions IndlA a U l
A and U l

A a IndlA can be given by the two pairs
of unit/counit natural transformations

η : IdC ⇒ U l
A ◦ IndlA , ε : IndlA ◦ UA

l ⇒ Id
AC ,

η̃ : Id
AC ⇒ IndlA ◦ U l

A , ε̃ : U l
A ◦ IndlA ⇒ IdC ,

(2.44)

such that for all X ∈ C and L ∈ AC one has

εIndlAX
◦ IndlA(ηX) = idIndlAX

, U(εL) ◦ ηUL = idUL , (2.45)

ε̃UL ◦ U(η̃L) = idUL , IndlA(ε̃X) ◦ η̃IndlAX
= idIndlAX

. (2.46)

We set

ηX = , εL := , η̃L = , ε̃X := . (2.47)

The conditions (2.45) and (2.46) are then clear, for example one has

εIndlAX
◦ IndlA(ηX) = = = = = idIndlAX

.

(2.48)

6In this work, the term biadjunction means a pair of functors, which are both left and right
adjoints of each other, not to be confused with a notion of adjunction on bicategories.
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Finally, the separability condition εL ◦ η̃L = idL follows from the identity (2.37)
(with ζ = ψ2, see Convention 2.11) and the definition of the coaction (2.36).

It is easy to check that the categories AC, CA and ACA are idempotent complete,
which yields:

Corollary 2.13. The categories AC, CA and ACA are finitely semisimple.

2.5. Relative tensor products

For an algebra A in a (multi)fusion category C, the relative tensor product of a right
A-module K = (K, ρ) and a left A-module L = (L, λ) is defined as the difference
cokernel [EGNO, Def. 7.8.21]

K ⊗A L := coker[K ⊗ A⊗ L ρ⊗idL− idK ⊗λ−−−−−−−−−→ K ⊗ L] . (2.49)

In case A = (A,ψ) is a separable Frobenius algebra in a multifusion category C,
the relative tensor product can be computed as follows: Recall that the image
of an idempotent p ∈ EndC X, p ◦ p = p, is an object im p ∈ C together with
projection and inclusion morphisms π : X ↔ im p : ı such that ı ◦ π = p and
π ◦ ı = idim p. For K, L as above, consider the following idempotent and the
corresponding projection/inclusion:

PK,L := , π = , ı = . (2.50)

Proposition 2.14. Let A = (A,ψ) be a separable Frobenius algebra, K ∈ CA and
L ∈ AC. Then K ⊗A L ∼= imPK,L.

Proof. The diagram

K ⊗ A⊗ L K ⊗ L imPK,L

Q′

ρ⊗idL− idK ⊗λ q

0
q′

u
(2.51)

commutes for an arbitrary object Q′ ∈ C and a morphism q′ : K ⊗ L → Q′ such
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that q′ ◦ (ρ⊗ idL− idK ⊗λ) = 0, where one takes

q = , u = . (2.52)

Using the properties of π, ı, q′ and the separability of A, one can also check that
u is unique. The pair (imPK,L, q) is therefore a cokernel.

We will use the proof of Proposition 2.14 to define morphisms involving the
relative tensor product K⊗AL, as morphisms involving the regular tensor product
K ⊗ L in C which satisfy some conditions. More explicitly, for arbitrary objects
X ∈ C, K ∈ CA, L ∈ AC define the subspaces of morphisms

CXK,A,L ⊆ C(K ⊗ L,X) , CK,A,LX ⊆ C(X,K ⊗ L) (2.53)

where f̂ ∈ CXK,A,L and ĝ ∈ CK,A,LX satisfy

= , = . (2.54)

We say that the elements of CXK,A,L and CK,A,LX commute with the A-actions. One
has the bijections

C(K ⊗A L,X)↔ CXK,A,L , f 7→ f̂ := , ĥ 7→ h := ,

C(X,K ⊗A L)↔ CK,A,LX , g 7→ ĝ := , k̂ 7→ k := .

(2.55)
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Note that the ψ-insertions in (2.55) cannot be eliminated by choosing other possible
conventions for the idempotent PKL in (2.50), for example altering its definition
so that both of the ψr-insertions are at the bottom (resp. top) would change the

expressions of f̂ (resp. ĝ) to have two ψ−1
r -insertions.

Remark 2.15. For objects X, Y ∈ C, the composition

C(X,K ⊗A L)× C(K ⊗A L, Y )→ C(X, Y ) (2.56)

is preserved by the bijection (2.55) only up to additional ψ-insertions:

= . (2.57)

The composition is preserved properly if A is ∆-separable.

Convention 2.16. Later we will often encounter objects X defined as images
of idempotents similar to the one in (2.50) (possibly involving several actions of
different algebras). The corresponding projection/inclusion morphisms will also be
denoted by horizontal lines. We will assume it to be clear how to generalise the
bijections (2.55) and we will occasionally use them to define morphisms having a
tensor factor X in the domain or codomain. By abuse of notation, we will drop the
overhats as in (2.53) and will refer to the Remark 2.15 to account for the possible
appearance of ψ-insertions upon composing.

For any algebra A ∈ C, the tensor product (2.49) provides the category of bi-
modules ACA with a monoidal structure with unit 1

ACA := A. For a symmetric
separable Frobenius algebra A = (A,ψ) we can instead use Proposition 2.14, as the
morphisms in (2.50) for M,N ∈ ACA are A-A-bimodule morphisms. The associator
for M,N,K ∈ ACA, as well as the left/right unitors of M ∈ ACA and their inverses
are given by

aM,N,K = , lM = , rM = , l−1
M = , r−1

M =

(2.58)
(or rather obtained by mapping them to morphisms (M ⊗A N) ⊗A K → M ⊗A
(N ⊗A K), A⊗AM →M , etc. adapting the bijection (2.55)).
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If C is pivotal and A symmetric, ACA inherits from C a natural pivotal structure
where the dual of M ∈ ACA is M∗ (with the two A-actions given similarly as
in (2.34)) and the (co)evaluation morphisms given by

evM = , coevM = , ẽvM = , c̃oevM = .

(2.59)

Note that because of Remark 2.15, the left and right traces of f ∈ End
ACAM have

additional ψ2-insertions, for example

trl f = , trr f = . (2.60)

Note also that ACA need not be spherical even if C is (however if A is in addition
haploid, ACA is automatically spherical [Mü1, Thm. 5.12]).

Proposition 2.17. Let µ ∈ ACA be a simple A-A-bimodule. Then the morphisms
diml µ, dimr µ ∈ End

ACA(A) are non-zero.

Proof. Since A is the monoidal unit in the pivotal category ACA and µ is simple, one
has for example dim ACA(A, µ∗⊗A µ) = dim ACA(µ, µ) = dim ACA(µ∗⊗A µ,A) = 1.
Since the morphisms c̃oevµ, evµ are non-zero, so is their composition diml µ. The
argument for diml µ is then the same.

Applying Proposition 2.17 forA = 1C, one gets the following ([BakK, Lem. 2.4.1])

Corollary 2.18. Let C be a pivotal fusion category. Then for a simple object
i ∈ IrrC the left/right categorical dimensions diml i/dimr i are non-zero.

Proposition 2.19. Let (A,ψ) be a symmetric separable Frobenius algebra in a
pivotal fusion category C and λ ∈ AC, κ ∈ CA, µ ∈ ACA simple objects. Then
trC(ψ

λ
l )2, trC(ψ

κ
r )2, trC ω

2
µ are non-zero.

Proof. We show this for the left module λ only, the proofs for simple right and
bimodules are similar.

20



For a simple object i ∈ IrrC, fix a basis {bp} of the space C(i, λ) along with the
dual basis {bp} of C(λ, i) with respect to the composition pairing, i.e. bq◦bp = δpq·idi.
Define the following bimodule morphisms

βp := , βq := (2.61)

Since λ is simple, there are scalars X i,λ
pq ∈ k, such that

βp ◦ βq = X i,λ
pq · idλ . (2.62)

Precomposing both sides of (2.62) with (ψλl )2 and taking the trace in C yields:

X i,λ
pq ·trC(ψλl )2 = = = = dimC i ·δpq . (2.63)

Since for p = q and i such that C(i, λ) 6= {0} the right hand side is non-zero, one
gets trC(ψ

λ
l )2 6= 0.

2.6. Bi- and tricategories

Recall that a bicategory B consists of

• a collection of objects, which we will also call B by abuse of notation,

• categories B(α, β) for each pair of objects α, β ∈ B, whose objects are called
1-morphisms morphisms are in turn called 2-morphisms of B,

• composition functors ⊗ : B(β, γ) × B(α, β) → B(α, γ) for all α, β, γ ∈ B,
together with associativity isomorphisms,

• a unit for each B(α, α), together with unit isomorphisms for the composition.

For more details and for the axioms these data have to satisfy, see e.g. [Le]. Bi-
categories have a version of graphical calculus, in which strands and coupons are
labelled with 1- and 2-morphisms while the 2-dimensional patches between them
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(a) (b)

Figure 2.3: Examples of graphical calculus for (a) a pivotal bicategory B (the
picture depicts a 2-morphism involving objects α1, . . . , α5 ∈ B, 1-morphisms
X, Y, Z, U, V,W and 2-morphisms f , and g between them) (b) a Gray category T
(the picture depicts a 3-morphism involving objects u1, . . . , u4 ∈ T , 2-morphisms
α1, . . . , α6, 1-morphisms X, Y, Z,W and a 3-morphism f between them).

are labelled with the corresponding objects. In particular, the datum of a bicat-
egory with one object is equivalent to a monoidal category. One can also define
structures on bicategories which allow one to make their graphical calculus richer,
for example in a pivotal bicategory each 1-morphism X ∈ B(α, β) has a two-sided
dual (or biadjoint) X∗ ∈ B(β, α) together with (co)evaluation 2-morphisms sat-
isfying analogous conditions to those in (2.8), see [KSt, §2], [Ca, Sec. 2.2]. The
graphical calculus then allows one to introduce orientations to the lines, see Fig-
ure 2.3a.

A functor between bicategories B, B′ is a mapping between objects F : B → B′
together with a collection of functors {B(A,B)→ B′(Fα, Fβ)}α,β∈B equipped with
natural transformations, analogous to the monoidal structure on a functor between
two monoidal categories. As with 1-categories, we say that a functor F : B → B′
is an equivalence if there is a functor in the opposite direction such that the two
compositions are isomorphic to identity functors. Again analogous to 1-categories,
F is an equivalence iff the corresponding functors on the categories of 1-morphisms
are equivalences (i.e. F is fully faithful) and each object of B′ has an invertible 1-
morphism to an object in the image of F (i.e. F is essentially surjective), cf. [Le].

A tricategory is a “3-dimensional” analogue of a bicategory. A Gray category
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is a strictified notion of a tricategory, i.e. with some coherence data eliminated (a
full strictification of tricategories is however not possible in general, see [GPS]). A
Gray category consists of a collection of objects T , for each pair of objects u, v ∈ T
a (strict) bicategory T (u, v), as well as more data and requirements related to the
composition of 1- and 2-morphisms. For more details, see e.g. [CMS, Sec. 3.1.2].
Gray categories have a version of graphical calculus, in which 3-morphisms are
depicted as cubes, subdivided by planes, lines and points, labelled by 1-, 2- and
3-morphisms respectively, see Figure 2.3b for an example. In a Gray category with
duals, one adds orientations to these components, as well as structure allowing one
to bend the planes and lines in the graphical calculus, much like one can bend the
lines in pivotal categories and bicategories, see [CMS, Sec. 3.2.2].

2.7. Module categories

Let A be a multifusion category. By a (left) A-module category we will mean a
finitely semisimple k-linear category M together with a k-bilinear action . : A ×
M→M and natural isomorphisms (−⊗−) .− ⇒ − . (− .−) and 1C .− ⇒ IdM
satisfying the usual pentagon and triangle identities. AnA-module functor between
A-module categories M and N is a k-linear functor F : M → N equipped with
natural isomorphism F (− . −) ⇒ − . F (−) satisfying compatibility conditions.
Natural transformations of A-module functors F,G : M → N are required to
commute with the structure morphisms of F and G. A module category is called
indecomposable if it is not equivalent (as a module category) to a direct sum of
two non-trivial module categories. Detailed definitions can be found in [EGNO].7

Let A ∈ A be a semisimple algebra. Then the category AA of right A-modules
is a left A-module category with the action X . (M,ρ) := (X ⊗M, ρ̃), where the

right A-action is given by ρ̃ =
[
(X ⊗M) ⊗ A ∼−→ X ⊗ (M ⊗ A)

idX ⊗ρ−−−−→ X ⊗M
]
.

Two algebras are said to be Morita equivalent if their respective categories of right
modules are equivalent as A-module categories. One has by [Os], and e.g. [EGNO,
Cor. 7.10.5.(i)]:

Proposition 2.20. LetM be an A-module category. Then there exists a semisim-
ple algebra A ∈ A such that M' AA as module categories.

LetA-Mod be the bicategory ofA-module categories, functors and natural trans-
formations and AlgA be the bicategory of semisimple algebras in A, their bimod-
ules and bimodule morphisms. Building on Proposition 2.20 one gets (cf. [EGNO,
Prop. 7.11.1, Thm. 7.10.1]):

7We stress again that we assume all module categories to be semisimple. This is only a special
case of the exact module categories considered in [EGNO] but sufficient for our purposes.
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Proposition 2.21. Let A,B ∈ A be semisimple algebras, M,N ∈ A be A-B-
bimodules and [f : M → N ] a bimodule morphism. The functor AlgA → A-Mod
defined on

objects: A 7→ AA
1-morphisms: M 7→ [−⊗AM : AA → AB]
2-morphisms: f 7→ {idL⊗Af}L∈AA

(2.64)

is an equivalence of bicategories.

The following is a convenient criterion to compare the module categories of two
fusion categories A and B, see [Mü1] and [ENO2, Thm. 3.1]:

Proposition 2.22. The bicategories A-Mod and B-Mod are equivalent if and only
if Z(A) ' Z(B) as braided tensor categories.

Let C be a pivotal fusion category and let A ∈ C be a symmetric separable
Frobenius algebra. The question of what extra structure the C-module category
CA has in this situation was addressed in [Schm], where the following notion was
introduced:

Definition 2.23. A module trace on a module category M of a pivotal fusion
category C is a collection of linear maps ΘM : EndMM → k, M ∈ M, such that
for all X ∈ C and M,N ∈M:

i) One has
ΘM(g ◦ f) = ΘN(f ◦ g) (2.65)

for all f ∈M(M,N) and g ∈M(N,M).

ii) The following pairing is non-degenerate:

ωM,N : M(M,N)⊗kM(N,M)→ k, f ⊗k g 7→ ΘM(g ◦ f) . (2.66)

iii) For f ∈ EndM(X .M) let f : M →M be given by

f := (evX . idM) ◦ (idX∗ .f) ◦ (c̃oevX . idM)

(we have omitted coherence isomorphisms for readability). Then

ΘX.M(f) = ΘM(f). (2.67)

Module traces satisfy the following uniqueness property [Schm, Prop. 4.4]:

Proposition 2.24. Suppose char k = 0. Then if an indecomposable module cate-
goryM has a module trace Θ, then any other module trace Θ′ will be proportional
to Θ, i.e. Θ′ = z ·Θ, z ∈ k×.
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For a symmetric separable Frobenius algebra A = (A,ψ) in a spherical fusion
category C, the module category CA has a module trace

ΘM(f) := trr(f ◦ ψ2
r) , M ∈ CA , f ∈ EndCA(M) . (2.68)

Indeed, the cyclicity condition (2.65) is implied since ψ-insertions commute with
module morphisms because of the definitions (2.40), the non-degeneracy of the
pairing (2.66) is implied by Proposition 2.19 and the partial trace condition (2.67)
follows since C is spherical. Combining Proposition 2.20 with [Schm, Sec. 6], one
has:

Proposition 2.25. Let C be a spherical fusion category andM a C-module cate-
gory with module trace. Then there exists a symmetric separable Frobenius algebra
A ∈ C, such that M' CA as module categories.

Definition 2.26. We let C-Modtr be the bicategory of C-module categories with
module trace, module functors and natural transformations and FrobAlgssep

C be the
bicategory of symmetric separable Frobenius algebras in C, their bimodules and
bimodule morphisms.

Note that in the definition of C-Modtr we do not require the module functors to be
compatible with module traces (so-called isometric functors, see [Schm, Def. 3.10]).
By Propositions 2.21 and 2.25 we get

Proposition 2.27. The functor FrobAlgssep
C → C-Modtr defined analogously as in

(2.64) is an equivalence of bicategories.
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3. Reshetikhin-Turaev graph TQFT

A modular fusion category C yields a 3-dimensional graph TQFT

ZRT
C : B̂ordrib

3 (C)→ Vectk (3.1)

via the Reshetikhin-Turaev (RT) construction. Its source category is the (centrally
extended) category of 3-dimensional bordisms with embedded C-coloured ribbon
graphs (hence the term graph TQFT ). The purpose of the ribbon graphs is to
mimic networks of Wilson line operators; an object of C is interpreted as the
datum assigned to a Wilson line (by analogy with Chern-Simons theory, where
Wilson lines are labelled by representations of the gauge group).

In this chapter we review the construction and some properties of the Reshetikhin-
Turaev graph TQFT. It is one of the most important prerequisites to understand
the material presented afterwards.

3.1. Bordisms with embedded ribbon graphs

In this section we review the source category of the Reshetikhin-Turaev TQFT. For
our purposes it is more convenient to work with smooth rather than topological
manifolds, even though originally the latter were used for this construction, see [Tu,
Sec. IV]. We assume it to be clear how to make this transition rigorously and
accordingly skip most of the technicalities (the smooth setting is also used in [BakK,
Ch. 4]).

Recall that a smooth 3-dimensional bordism M : Σ− → Σ+ is a tuple M =
(M,Σ−,Σ+, ϕ−, ϕ+) where M is a compact oriented 3-dimensional manifold (pos-
sibly with boundary), Σ± are closed compact oriented surfaces (i.e. 2-dimensional
manifolds) and

ϕ− : Σ− × [0, 1)→M , ϕ+ : Σ+ × (−1, 0]→M (3.2)

are orientation preserving embeddings such that

∂M = ∂−M t ∂+M , where ∂±M := ϕ±(Σ± × {0}) . (3.3)

The surfaces Σ− and Σ+ are then called the incoming and outgoing boundaries of
M . The maps ϕ± are called the (germs of) parametrisations of Σ±. An equivalence
of two bordisms M,M ′ : Σ− → Σ+ is an orientation preserving diffeomorphism
f : M → M ′ such that f ◦ ϕ± = ϕ′±. The category of 3-dimensional bordisms
Bord3 is as usual defined to have
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• objects: closed compact oriented surfaces (including the empty surface ∅);

• morphisms: equivalence classes of bordisms;

• composition: the class obtained by gluing two representing bordisms, i.e. for
two bordisms [M1 : Σ→ Σ′], [M2 : Σ′ → Σ′′] one takes the composition to be

[M2] ◦ [M1] = [M1 ∪Σ′ M2]; (3.4)

• identities: for an object Σ, the identity morphism is the class of the cylinder
CΣ := Σ× [0, 1] (with identity parametrisations).

The operation of the disjoint union makes Bord3 into a symmetric monoidal cate-
gory with the empty surface ∅ as the monoidal unit.

Remark 3.1. In what follows we will encounter several categories, which are de-
fined by equipping the objects and morphisms of Bord3 with extra structure. In
doing so one must be careful in defining the analogous notions of parametrisa-
tions of surfaces, equivalences of bordisms, gluing, etc. (in [Tu, Ch. III] this was
formalised with the notion of cobordism theory). We will avoid diving into such
technicalities too deep and will instead provide references where these categories
are explored in more detail. Deviations from the literature, if any, will be kept
marginal.

Fix a ribbon category C.

• Let Σ be an oriented 2-dimensional smooth manifold. A (framed) puncture
is a triple p = (p, n, v) where p ∈ Σ is a point and (n, v) is a basis of TpΣ. We
call the puncture positively oriented if (n, v) is a positive basis and negatively
oriented otherwise. A C-coloured puncture is a puncture with an assigned
object X ∈ C (its label).

• A (C-coloured) punctured surface is a pair Σ = (Σ, P ) where Σ is a compact
oriented 2-dimensional smooth manifold and P is a finite set of (C-coloured)
punctures. The orientation reversal of a punctured surface Σ = (Σ, P ) is
defined to be −Σ := (−Σ, P ). Note that this means that the orientations of
punctures are automatically changed as well.

• A (C-coloured) ribbon bordism is a pair M = (M,R) where M is a compact
oriented smooth 3-bordism and R ⊆M is an embedded (C-coloured) ribbon
graph (i.e. a subspace consisting of smooth oriented strands and coupons
which locally look like (C-coloured) ribbon tangles). Note that the boundary
∂M is a (C-coloured) punctured surface with the set of punctures ∂M ∩ R,
which inherit the framing from the adjacent strands. If ∂M = ∅, we call M
a closed (C-coloured) ribbon 3-manifold.
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Definition 3.2. The category of ribbon bordisms Bordrib
3 is defined to have

• objects: punctured surfaces;

• morphisms: equivalence classes of ribbon bordisms;

• identities: classes of cylinders [0, 1]× Σ for each object Σ.

Similarly one defines the category of C-coloured ribbon bordisms Bordrib
3 (C). Both

Bordrib
3 and Bordrib

3 (C) are symmetric monoidal categories with disjoint union as
the monoidal product.

Remark 3.3. Equivalent ribbon bordisms are related by a smooth orientation pre-
serving diffeomorphism of the underlying 3-bordisms. This allows one to deform
the embedded ribbon graphs up to a smooth isotopy of their tubular neighbour-
hoods (see e.g. [Hir, Thm. 8.1.8]). When working with morphisms of Bordrib

3 and
Bordrib

3 (C) we will mostly ignore the difference between the equivalence class of a
ribbon bordism and its representative. When necessary, we will also depict them
by pictures, see Figure 3.1 for an example.

As we will see later, the invariant that the Reshetikhin-Turaev TQFT assigns to
a closed ribbon 3-manifold M = (M,R) depends on an auxiliary datum resulting
in a choice of a bounding 4-manifold, i.e. a compact oriented 4-manifold W such
that ∂W = M . The dependence is rather weak, in fact only the signature σ(W )
of the intersection pairing H2(W ;R) × H2(W ;R) → R is important. Still, this
causes problems when generalising the invariants to a TQFT, since the signatures
of bounding manifolds are not additive upon gluing, which causes a gluing anomaly.
To eliminate it one equips the objects and morphisms of Bordrib

3 and Bordrib
3 (C)

with extra structure which we now describe.

Recall the following notions (see [Tu, Sec. IV.3] for more details):

• A Lagrangian subspace of a symplectic vector space (H,ω) is a maximal
isotropic subspace λ ⊆ H, i.e. such that ω|λ×λ = 0 and if λ′ is another
subspace with this property such that λ ⊆ λ′ then λ = λ′.

• Given three Lagrangian subspaces λ1, λ2, λ3 ⊆ H, the Maslov index µ(λ1, λ2, λ3)
is defined as follows: define the (not necessarily non-degenerate) pairing on
the subspace (λ1 + λ2) ∩ λ3 by

〈a, b〉 := ω(a2, b), where a = a1 + a2, a1 ∈ λ1, a2 ∈ λ2 . (3.5)

The Maslov index µ(λ1, λ2, λ3) is then defined to be the signature of 〈−,−〉.
By definition µ is antisymmetric in its arguments.
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(a) (b)

Figure 3.1: (a) A morphism in Bordrib
3 (C) with underlying manifold S2 × [0, 1],

depicted here by a closed solid ball with an open ball removed from the interior.
The strands intersect the boundary transversally at the punctures, which are
framed by the pair of tangent vectors (n, v), so that (n, v, s), with s being
the orientation of the strand, is positive with respect to the orientation of the
underlying manifold (assumed right-handed in the picture). The strands can be
though of as ribbons with n being the normal vector.

(b) A simplified notation for the same bordism: the framing of the strands
is assumed to be that of the paper plane, the framings of the punctures are
omitted.

Let Σ be a compact oriented 2-manifold. Then the intersection pairing makes
H1(Σ;R) into a symplectic vector space. Let us denote by Λ(Σ) the set of La-
grangian subspaces of H1(Σ;R). By a Lagrangian space of Σ we mean an element
λ ∈ Λ(Σ). A bordism [M : Σ → Σ′] ∈ Bord3 yields two maps, N∗(M) : Λ(Σ) →
Λ(Σ′) and N∗(M) : Λ(Σ′) → Λ(Σ), defined as follows: for λ ∈ Λ(Σ) one has
γ′ ∈ N∗(M)(λ) if and only if there is γ ∈ λ such that γ − γ′ = 0 in H1(M ;R)
(N∗(M) is defined similarly).

Definition 3.4. The category B̂ordrib
3 is defined to have

• objects: pairs (Σ, λ) where Σ ∈ Bordrib
3 is a punctured surface and λ ∈ Λ(Σ)

is a Lagrangian subspace;

• morphisms: a morphism (Σ, λ) → (Σ′, λ′) is a pair M = (M,n) where
[M : Σ → Σ′] ∈ Bordrib

3 is a ribbon bordism and n ∈ Z is an integer (called

29



the signature of M);

• composition: for two morphisms (M,n) : (Σ, λ)→ (Σ′, λ′) and (M ′, n′) : (Σ′, λ′)
→ (Σ′′, λ′′) the composition is defined by

(M ′, n′) ◦ (M,n) =
(
M ′ ◦M, n+ n′ − µ

(
M∗(λ), λ′, M ′∗(λ′′)

) )
; (3.6)

• identities: (Σ× [0, 1], 0) for each object (Σ, λ).

Similarly one defines the category of B̂ordrib
3 (C). Both of them are symmetric

monoidal categories with the monoidal product (Σ, λ) t (Σ′, λ′) = (Σ t Σ′, λ⊕ λ′)
on objects and (M,n) t (M ′, n′) = (M tM ′, n+ n′) on morphisms. We will refer
to them as signature extensions of Bordrib

3 and Bordrib
3 (C).

Remark 3.5. In the later sections we will also encounter the signature extensions
of other categories based on Bord3, where we assume it to be clear how to adapt
Definition 3.4. In the computational examples below we will never need to handle
e.g. the Lagrangian subspaces of a surface Σ = (Σ, λ) explicitly. Still, the hat
notation will be kept to emphasise when the signature extension is in principle
necessary.

3.2. Invariants of closed manifolds

We now turn to defining the Reshetikhin-Turaev invariants for closed ribbon 3-
manifolds. Roughly, if the underlying 3-manifold is the 3-sphere S3, the invariant
is defined (up to a predetermined factor) to be the number obtained by projecting
the embedded ribbon graph R on a plane and using graphical calculus to read it as
a morphism in EndC(1) ∼= k, where C is a modular fusion category (abbr. MFC, see
Section 2.3), needed for the construction as an input. Other underlying 3-manifolds
can be achieved by representing the corresponding 3-manifold as a framed link L in
S3 using surgery and treating the components of L also as strands of the embedded
ribbon graph, but labelled in a specific way (in particular by the Kirby colour).

We now recall the surgery presentation of closed compact oriented 3-manifolds
on which the Reshetikhin-Turaev invariants are based. More details can be found
e.g. in [PS].

Let S3 ' R3 ∪ {∞} be the 3-sphere with the right-hand orientation and let
L = (L, n, v) be a closed unlabelled ribbon strand (i.e. a framed knot) in S3.
Consider a tubular neighbourhood of L given by an embedding ı : R2 × L ↪→ M
such that for all x ∈ L one has ı(0, 0, x) = x , dı(0,0,x)(e1) = n(x), dı(0,0,x)(e2) = v(x)
and denote U = im ı. The normal vector field n of L induces an oriented curve
γ : L → ∂U on the boundary ∂U = U \ U defined as γ(x) = limt→∞ ı(t, 0, x).
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↔ ↔

Figure 3.2: Kirby-Fenn-Rourke moves relating two surgery presentations.

We let ∂U have the orientation induced from S3 \ U . Pick a diffeomorphism
ϕ : S1 × S1 → −∂U such that ϕ(S1 × {1}) = im γ. We say that the manifold

M = (S3 \ U) ∪ϕ (B2 × S1) (3.7)

is obtained by surgery on S3 along L. In other words, M is obtained from S3 by
cutting out a solid torus and glueing it back via a diffeomorphism of its boundary.
By construction, changing L by an isotopy does not change the diffeomorphism
class of M . Moreover, the orientation of L does not matter, since surgery along
(−L, n,−v) gives the same result. One can however generalise this construction by
performing surgery along a link of ribbon strands in S3 with multiple components.
One has (see [PS, Thm. 19.3, Thm. 19.5])

Theorem 3.6. Every oriented compact connected 3-manifold is diffeomorphic to
a one obtained by surgery on S3 along a framed link. Two links yield diffeomorphic
manifolds if and only if they are related by a finite sequence of Kirby-Fenn-Rourke
moves depicted in Figure 3.2.

For a 3-manifold M , pick a surgery link L with components L1, . . . , Ll. It also
provides M with a choice of a bounding 4-manifold WL (see e.g. [Tu, Sec. 2.1]).
The signature of WL can then be computed directly from L by taking the signature
σ(L) of its linking number matrix

(
lk(Li, Lj)

)
ij

defined as follows: Take a planar

projection of L, so that only two strands are allowed to intersect at one point, with
the intersection being necessarily transversal. For two distinct components Li, Lj
let

lk(Li, Lj) =
1

2
(#overcrossings−#undercrossings) (3.8)

where by overcrossings and undercrossings we mean the crossings like

and (3.9)

between the components Li and Lj (meaning that the crossings of e.g. of Li with
itself are not counted). For the diagonal entries one sets lk(Li, Li) := lk(Li, L

′
i),
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where L′i is a curve obtained from Li by shifting it to the v-direction of its framing
(n, v). The linking number matrix is by definition a symmetric matrix with integer
entries. The signature σ(L) is then computed as usual - the number of positive
eigenvalues minus the number of negative ones - and is an isotopy invariant of the
framed link L.

We are now ready to introduce the Reshetikhin-Turaev invariants of closed 3-
manifolds. The definition needs a modular fusion category C and a choice D of the
square root of the global dimension of Dim C as an input. Recall from Section 2.3
also the definitions of the scalar δ, the Kirby colour object C =

⊕
i i ∈ C and the

morphism d =
⊕

i dim i · idi ∈ EndC C.

For an oriented compact connected 3-manifold M , let L ⊆ S3 be a choice of the
surgery link. Let L(C, d) be the coloured version of L whose components are in
addition assigned the object C and contain a single insertion labelled by d. Recall
from Section 2.1, that the Reshetikhin-Turaev functor FC : RibC → C assigns to
L(C, d) an isotopy invariant FC

(
L(C, d)

)
∈ EndC 1 ∼= k.

Definition 3.7. Let C be a MFC together with a choice of a square root D =
(Dim C)1/2. The Reshetikhin-Turaev invariant of an oriented closed connected 3-
manifold M represented by a surgery link L with |L| components is the scalar

τ(M) := δ−σ(L) D−|L|−1 FC
(
L(C, d)

)
. (3.10)

If M is not connected, τ(M) is defined to be the product of the invariants of the
connected components.

We refer to [Tu, Thm.II.2.2.2] for the proof that τ(M) is indeed a topological
invariant of the manifold M . Note however that the identities (2.26) already imply
the Kirby-Fenn-Rourke moves up to a factor.

The invariant τ(M) is readily lifted to ribbon 3-manifolds with signatures, or
more precisely, bordisms of the form

[(M,R, n) : ∅→ ∅] ∈ B̂ordrib
3 (C) . (3.11)

Indeed, upon representing M by a surgery link L ⊆ S3 one can always deform R
so that it does not intersect the regions of M corresponding to the solid tori that
are glued in place of L. The C-coloured ribbon 3-manifold (M,R) can then be
represented by the tangle L tR in S3 (where the components of L and R may be
non-trivially entangled). One then defines the invariant by (see [Tu, Thm.II.2.3.2])

τ(M,R, n) := δn−σ(L) D−|L|−1 FC
(
L(C, d) tR

)
. (3.12)
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3.3. Definition of the graph TQFT

We are now ready to define the Reshetikhin-Turaev graph TQFT

ZRT
C : B̂ordrib

3 (C)→ Vectk . (3.13)

The definition we provide uses the universal construction of TQFTs as introduced
in [BHMV]. This approach is slightly different from the one in [Tu], but yields the
same result (see Remark 3.10 below).

For a given object Σ ∈ B̂ordrib
3 (C), consider the vector spaces

V(Σ) = spank
{

[M ]
∣∣ [M : ∅→ Σ] ∈ Bordrib

3 (C)
}
,

V′(Σ) = spank
{

[M ]
∣∣ [M : Σ→ ∅] ∈ Bordrib

3 (C)
}
,

(3.14)

i.e. the infinite dimensional vector spaces with bases given by the sets of equivalence
classes of extended C-coloured ribbon bordisms of types ∅→ Σ and Σ→ ∅. One
utilises the Reshetikhin-Turaev invariant to define the pairing

βΣ : V′(Σ)× V(Σ) → k
([M ′], [M ]) 7→ τ(M ′ ◦M)

. (3.15)

Let
radr βΣ =

{
v ∈ V(Σ)

∣∣ βΣ(v′, v) = 0 for all v′ ∈ V′(Σ)
}

(3.16)

be the right radical of the pairing βΣ.

Definition 3.8. One defines the functor ZRT
C : B̂ordrib

3 (C)→ Vectk

• on objects Σ ∈ B̂ordrib
3 (C):

ZRT
C (Σ) := V(Σ)/ radr βΣ ; (3.17)

• on morphisms [M : Σ→ Σ′] ∈ B̂ordrib
3 (C):

ZRT
C (M) : ZRT

C (Σ) → ZRT
C (Σ′)

[∅ H−→ Σ] 7→ [∅ H−→ Σ
M−→ Σ′]

. (3.18)

To obtain a well defined graph TQFT it remains to equip ZRT
C with a monoidal

structure, for which there is a natural candidate:

Proposition 3.9. ZRT
C = (ZRT

C , ZRT
C,2 , Z

RT
C,0 ), where

ZRT
C,2 (Σ,Σ′) : ZRT

C (Σ)⊗k Z
RT
C (Σ′) → ZRT

C (Σ t Σ′)
[M ]⊗k [M ′] 7→ [M tM ′]

,
ZRT
C,0 : ZRT

C (∅) → k
[M ] 7→ τ(M)

is a symmetric monoidal functor.
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Remark 3.10. 1. The proof of Proposition 3.9 is not trivial, as the universal
construction of [BHMV] does not guarantee that the maps ZRT

C,2 are indeed
isomorphisms. This however was proven in [DGGPR] for a generalisation of
the Reshetikhin-Turaev TQFT obtained from a not necessarily semisimple
modular tensor category. This generalisation yields the above construction in

the semisimple case. The proof of monoidality fails if the objects of B̂ordrib
3 (C)

are not equipped with Lagrangian subspaces, so the use of the extended

category B̂ordrib
3 (C) is necessary (see [GW] for more details on this).

2. The original definition in [Tu, Ch. IV] does not use the universal construction,
so a priori it is not clear that the TQFT of [Tu] and ZRT

C as defined above
are isomorphic. However this follows from Lemma 6.14 below, as the two
TQFTs give the same invariants on closed manifolds (cf. [Tu, Thm. II.2.3.2])
and have isomorphic state spaces (compare [Tu, (IV. 1.4.a)] and [DGGPR,
Prop. 4.16]).

3.4. Properties of the graph TQFT

Property 3.11. From the definition it follows that the graph TQFT ZRT
C is linear

with respect to addition and scalar multiplication of coupons of embedded ribbon
graphs. Moreover, upon evaluation one can compose the coupons as well as remove
a coupon labelled with an identity morphism, i.e. the following exchanges are
allowed:

↔ , ↔ . (3.19)

This means in particular that one can perform graphical calculus on the embedded
ribbon graphs. For example, if a ribbon graph R in a 3-bordism M has no free ends
and has a contractible open neighbourhood in M , it can be exchanged for a single
coupon labelled with FC(R) ∈ EndC(1). By the terminology of [TV, Sec. 15.2.3],
graph TQFTs with this property are called regular.

Property 3.12. Let S2
P ∈ B̂ordrib

3 (C) be the unit 2-sphere in R3 with (n + m)
punctures, n of which are located at the bottom of the sphere at the intersection
with yz plane and are labelled by objects X1, . . . , Xn ∈ C (in this order from left
to right), while the rest m are located at the top and labelled by Y1, . . . , Ym ∈ C.
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Furthermore, for a morphism f ∈ C(X1 · · ·Xn, Y1 · · ·Ym) let [Bf : ∅ → SP ] ∈
B̂ordrib

3 (C) be the unit ball with an embedded ribbon graph consisting of an f -
labelled coupon and strands connecting it to the punctures of SP , all of which lie
in the yz-plane, i.e.

SP = , Bf = . (3.20)

Then one has the following isomorphism of vector spaces:

C(X1 · · ·Xn, Y1 · · ·Ym) ∼= ZRT
C (S2

P ) , f 7→ [Bf : ∅→ S2
P ] . (3.21)

This follows from the fact that any bordism ∅→ S2
P can be obtained by performing

surgery on the interior of Bf and the resulting components of the embedded ribbon
graph and the Kirby-coloured surgery link can be absorbed into a single coupon.

Property 3.13. An analogous argument as in Property 3.12 can be made to de-

termine the vector space assigned by ZRT
C to a punctured surface Σ ∈ B̂ordrib

3 (C)
of genus g > 0. In particular, ZRT

C (Σ) is spanned by bordisms of the form
[(Hg, R) : ∅ → Σ], where Hg is a solid handlebody with the boundary Σ. The
spanning set can then be further reduced by only taking the ribbon graphs R lying
at the core of Hg and having strands labelled by the simple objects of C. For such
handlebodies we will use the graphical presentation

, (3.22)

where each of the vertical solid cylinder represents one of the handles of Hg, by
taking its top and bottom ends as identified. For simplicity, the above depiction
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is only for the case of Σ having a single X ∈ C labelled puncture, the other labels
being

i1, i2, . . . , ig, j, k1, . . . , kg−1 ∈ IrrC

f ∈ C(i1, Xj), h1 ∈ C(j, i1k1), h2 ∈ C(k1i2, i2k2), . . . hg ∈ C(kg−1ig, ig) .

If one lets f, h1, . . . hg run through the bases of their respective spaces, one can
check that the handlebodies (3.22) actually form a basis of the space ZRT

C (Σ), which
yields the following isomorphism:

ZRT
C (Σ) ∼=

⊕
i1,...,kg−1∈IrrC

C(i1, Xj)⊗k C(j, i1k1)⊗k C(k1i2, i2k2)⊗k · · · ⊗k C(kg−1ig, ig)

∼= C(1, XL⊗g), , L :=
⊕
i∈IrrC

i⊗ i∗ , (3.23)

where one uses the duals and the braiding of C to obtain the isomorphism in the
second line.

Property 3.14. Some simple invariants of 3-manifolds are:

ZRT(S3, 0) = D−1, ZRT(S2 × S1, 0) = 1, (3.24)

ZRT(S1 × S1 × S1, 0) = | IrrC |mod char k . (3.25)

The S3-invariant allows one to rewrite the formula (3.12) for the invariant of a
ribbon 3-manifold (M,R, n) represented by the surgery link L tR in S3 as

ZRT
C (M,R, n) = δn−σ(L) ·D−|L| · ZRT(S3, LC tR, 0) . (3.26)

The other two invariants are simply instances of a more general observation: Due
to the functoriality of ZRT (or in fact any graph TQFT), for any surface Σ ∈
B̂ordrib

3 (C) the invariant of Σ × S1 is the trace of the identity map on ZRT(Σ). If
chark = 0, it is equal to the dimension of the state space of Σ, otherwise to the
dimension modulo char k, i. e.

ZRT(Σ× S1, 0) = dimZRT(Σ) mod char k . (3.27)

We have already seen explicitly in (3.12) that dimZRT(S2) = 1, and the state
space of a punctureless torus S1 × S1 has a basis consisting of solid tori with
non-contractible loops labelled by i ∈ IrrC (see Property 3.13).
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4. Reshetikhin-Turaev defect TQFT

In this chapter we review the construction and some properties of the Reshetikhin-
Turaev defect TQFT

Zdef
C : B̂orddef

3 (DC)→ Vectk (4.1)

obtained from a modular fusion category C. In a nutshell, Zdef
C extends the graph

TQFT ZRT
C so that it can evaluate stratified bordisms, i.e. with both embedded

ribbon graphs, embedded surfaces and even networks of intersecting surfaces. The
evaluation works by reducing stratifications into networks of ribbon graphs using an
internal state-sum procedure which exploits the properties of symmetric separable
Frobenius algebras in C. This idea was already used in [FRS1] for computing
correlators in rational conformal field theory and was adapted for surface defects
in TQFTs in [KSa]. It was then explained in a more model independent analysis
in [FSV] and brought to the functorial form (4.1) in [CRS2].

4.1. Defect bordisms and defect TQFTs

In the following two sections we explain the source category in (4.1). More details
can be found in [CMS, Sec. 2] on which this review is based.

• An n-dimensional stratified manifold is a pair M = (M,T) where M is an
oriented n-dimensional topological manifold and T is a filtration of M into
topological spaces

∅ = T(−1) ⊆ T(0) ⊆ T(1) ⊆ · · · ⊆ T(n) = M (4.2)

to be called the stratification of M , such that

– for each j = 0, . . . , n, Tj := T(j) \T(j−1) has a structure of an oriented
smooth j-dimensional manifold (for j = n the orientation is taken to be
the same as that of M); the connected components of Tj are called the
strata (or j-strata if the dimension needs to be emphasised) of M ;

– if s and t are two strata and s ∩ t 6= ∅, then s ⊆ t (in this case we say
that s and t are adjacent);

– the total number of strata of M is finite.

In case M has boundary one requires in addition:

– the interior ofM is a stratified manifold with stratification T∩(M\∂M);

– ∂M is a stratified manifold with stratification ∂ T where ∂ T(j−1) =
T(j) ∩∂M , j = 0, . . . , n (in particular all 0-strata ofM lie in the interior);
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– for all strata s of M , either ∂s = ∅ or ∂s ⊆ ∂M and s, ∂M intersect
transversally.

The orientation reversal −M of a stratified manifold is defined by reversing
the orientation of all strata.

• A morphism between two stratified manifolds (M,T), (M ′,T′) is a continuous

map f : M → M ′ so that one has f(Tj) ⊆ Tj ′ and for each stratum s of M
there is a stratum s′ of M ′ such that f(s) ⊆ s′ and the restriction f

∣∣
s
: s→ s′

is smooth and orientation preserving. In case M and M ′ have boundaries,
one in addition requires f

∣∣
∂M

: ∂M → ∂M ′ to be a morphism of stratified
manifolds.

• We will work with the so-called defect manifolds, which are stratified mani-
folds with an additional regularity condition, imposed by requiring each point
to have a neighbourhood which, as a stratified manifold, is isomorphic to a
certain local model. For dimensions 2 and 3 they are depicted in Figures 4.1
and 4.2. Compact closed defect 2-manifolds will also be called defect surfaces.

• A 3-dimensional defect bordism is defined by analogy to a usual 3-dimensional
oriented bordism: it is a tuple M = (M,Σ−,Σ+, ϕ−, ϕ+) where M is a 3-
dimensional compact defect manifold, Σ± are defect surfaces, ϕ± are germs
of embeddings of defect manifolds

ϕ− : Σ− × (−1, 0] ↪→M , ϕ+ : Σ+ × [0, 1) ↪→M (4.3)

such that ∂M = ∂−M t ∂+M , where M± := ϕ±(Σ± × {0}). An equivalence
between defect bordisms M and M ′ is an isomorphism f : M → M ′ of the
underlying stratified manifolds such that f ◦ ϕ± = ϕ′±.

Like for strands and coupons of ribbon graphs in Section 3.1, we consider labels
for the strata of a defect bordism. The labelling scheme is formalised by a so-called
(3-dimensional) defect datum D = (D3, D2, D1, D0) where Dj, j = 0, . . . , 3 are the
sets of labels for the j-strata (technically, the possible labels of a stratum also
depend on the labels of the adjacent strata; we will avoid making this too general
since the adjacency rules will be clear for each example of a defect datum that we
will encounter; see [CRS3, Def. 2.4] for more details). We use the terms D-coloured
defect surface Σ and D-coloured defect bordism M to emphasise that the strata of
Σ and M are labelled according to the defect datum D. The isomorphisms and
equivalences between D-coloured defect surfaces and bordisms are always assumed
to preserve the labels.
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Figure 4.1: Local models for a defect surface Σ: each point has a neighbourhood,
isomorphic to one of the above stratified open discs. There are infinitely many
models of the third type (with arbitrary many (or none) 1-strata adjacent to the
0-stratum), and any choice of orientation for the 0-stratum and the 1-strata is
allowed.

Figure 4.2: Local models for a 3-dimensional defect bordism: each point has a
neighbourhood, isomorphic to one of the above stratified open balls (or open half-
balls if the point lies in the boundary). There are infinitely many models of the
third and the fourth type, and any choice of orientations is allowed. Note that the
model of the fourth type is a cone of a defect 2-sphere with a 0-stratum at the tip.
In the four pictures in the first line the purpose of the horizontal equator circle is
solely to emphasise that the pictures are to be thought of as 3-dimensional.
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Definition 4.1. Let D be a 3-dimensional defect datum.

• We denote by Borddef
3 and B̂orddef

3 correspondingly the category of defect
bordisms and its signature extension (by analogy to Definition 3.4). Similarly

one introduces the categories Borddef
3 (D) and B̂orddef

3 (D) of D-coloured defect
bordisms. Disjoint union equips them with a structure of symmetric monoidal
categories.

• A (3-dimensional) defect TQFT is a symmetric monoidal functor

Z : B̂orddef
3 (D)→ Vectk . (4.4)

Let us review some generalities and terminology related to defect TQFTs

• Formally, by defect we will mean a stratum which has a label assigned. We
will also use the words point, line, surface and bulk as synonyms of 0-, 1-,
2- and 3-stratum. Point defects are also called point insertions while the
labelled 3-strata will also be referred to as phases or bulk theories. We will
call a surface defect a domain wall if we want to stress that it can separate
different bulk phases.

• For any defect TQFT Z there is a natural choice of the set D0 of labels
of point defects: For a 0-stratum p of a (D-coloured) defect bordism, take
the vector space Z(S2

p) as the new label set, where S2
p is a defect 2-sphere

obtained as a boundary component after removing a small open ball B◦p
surrounding p. The evaluation procedure is then defined as follows: Let

[M : Σ→ Σ′] ∈ B̂orddef
3 (D) be a defect bordism with point defects p1, . . . , pn

labelled by vi ∈ Z(S2
pi

), i = 1, . . . , n. Denoting M◦ := M \ (B◦p1 t · · · tB
◦
pn),

one gets a linear map

Z(M◦) : Z(S2
p1

)⊗ · · · ⊗ Z(S2
pn)⊗ Z(Σ)→ Z(Σ′) . (4.5)

The invariant of M is then defined by

Z(M)(−) := Z(M◦)(v1 ⊗ · · · ⊗ vn ⊗−) . (4.6)

Note that effectively this procedure can only extend the set of labels for a
point p, as for a predefined label set D0 and a suitable label f ∈ D0, the
stratified ball Bp(f) := [B◦p(f) : ∅ → S2

p ], obtained as the closure of the
stratified open ball B◦p with p labelled by f , provides one with the canonical
element in the space Z(S2

p), obtained as the image of 1 ∈ k under the map
Z(Bp(f)) : k→ Z(S2

p). If the map f 7→ Z(Bp(f))(1) is surjective for all point
defects, the defect TQFT Z is called D0-complete. If two labels in D0 have
the same image under this map, Z does not distinguish them.
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• Point defects in a D0-complete defect TQFT can be fused (or composed): two
point defects p1, p2 next to each other can be replaced by a single point defect
p, labelled by the vector in Z(S2

p), obtained from the closed ball Bp1,p2 : ∅→
S2
p containing both p1 and p2. Removing a small open ball B◦ from a 1-, 2-

or 3-stratum (not surrounding any other point defects) provides one with the
trivial (or identity) label for point defects in this configuration. In this case,
two point defects are said to be inverses of each other if their composition is
the trivial point defect.

• For a D0-complete defect TQFT Z : B̂orddef
3 (D) → Vectk one can extend

the defect datum D to a defect datum D�, whose labels for an i-stratum
s, i = 1, 2, 3, consist of pairs (L, γ), where L ∈ Di is a suitable label for s
and γ ∈ D0 is a label for an invertible point defect on s. This yields a new

defect TQFT Z� : B̂orddef
3 (D�)→ Vectk, the Euler completion of Z, defined

as follows: Introduce the map8 W : B̂orddef
3 (D�)→ B̂orddef

3 (D), acting as the
forgetful functor on objects and on a D�-coloured bordism M replacing the
label (L, γ) for an i-stratum s with the label L while adding an additional
point insertion on s labelled with γχsym(s), where

χsym(s) := 2χ(s)− χ(s ∩ ∂M) (4.7)

is the symmetric Euler characteristic (which ensures that the number of γ-
insertions is compatible upon gluing and does not make a distinction be-
tween the incoming and outgoing boundaries of a bordism). One then de-
fines Z� := Z ◦ W . We call a defect TQFT Z Euler complete if there
exist relabelling maps ρi : D

�
i → Di, i = 1, 2, 3, extending to a functor

ρ : B̂orddef
3 (D�) → B̂orddef

3 (D), such that Z� = Z ◦ ρ. Similarly one can
define the Euler completeness with respect to i-strata for a fixed value of
i = 1, 2, 3 only.

• The defect datum can encode a variety of information and/or restrict the
possible stratifications. For example, the Reshetikhin-Turaev graph TQFT
ZRT
C obtained from a modular fusion category C as defined in Section 3.3

can be seen as a defect TQFT with no surface defects, lines labelled by both
framings and the objects of C, and points labelled by the morphisms of C.
Note that ZRT

C is D0-complete (see Property 3.12).

• Let Z : B̂orddef
3 (D)→ Vectk be a defect TQFT. To each pair of labels u, v ∈

D3 of 3-strata one can assign a pivotal bicategory Bu,v which has (see [CMS,
Sec. 3.3], [DKR, Sec. 2.4]):

8W is not a functor since upon composing the stratified bordisms in its image one gets more
than one point insertion on the strata, see [CRS1, Sec. 2.5].

41



– objects: labels for 2-strata between two 3-strata labelled by u, v, oriented
so that the normal vector points towards u;

– 1-morphisms: (lists of)9 labels for 1-strata having two adjacent 2-strata
labelled with objects in Bu,v;

– 2-morphisms: labels for 0-strata whose adjacent 1-strata are 1-morphisms
of Bu,v.

The bicategory of surface defects as sketched above belongs to a more general
construction assigning a tricategory with duals to a 3-dimensional defect
TQFT. This is explained in detail in [CMS].

4.2. Defect labels for RT TQFT

Let A1, . . . , An and B1, . . . , Bm be symmetric separable Frobenius algebras. By an
A1 · · ·An-B1 · · ·Bm-multimodule we will mean an object M ∈ C with structures of
a left Ai-module and a right Bk-module for all i = 1, . . . , n and k = 1, . . . ,m such
that

= , = , = . (4.8)

with the first two identities holding for all 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ m
and the third one for all i = 1, . . . , n and k = 1, . . . ,m. For the cases n = 0 (resp.
m = 0) the algebra acting from the left (right) is not present. Alternatively, a
multimodule M can be defined as a A1 ⊗ · · · ⊗ An-B1 ⊗ · · · ⊗ Bm-bimodule. One
can also talk about relative tensor products of multimodules. A morphism between
(relative tensor products of) multimodules can be seen either as a morphism of
the corresponding bimodules, or a morphism between (regular tensor products of)
the underlying objects in C which commutes with actions of all the algebras (cf.
Convention 2.16).

For a modular fusion category C, there is a set of defect data DC, with

• DC3 : 3-strata have no labels, or equivalently they all carry the same label C.

• DC2 : 2-strata are labelled by symmetric separable Frobenius algebras in C.

9Using lists of 1-strata-labels as 1-morphisms allows one to define composition as concatenation.
We will ignore this technicality in what follows.
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Figure 4.3: Neighbourhood of a line defect l with several adjacent 2-strata. The
framing of l as well as the orientations of the 2-strata are paper plane.

• DC1 : in our setting all 1-strata will be framed. A framed 1-stratum that has
no adjacent 2-strata is labelled by an object of C (alternatively, a 1C-1C-
multimodule).

Suppose a 1-stratum l has n + m > 0 adjacent 2-strata. We require l
to have a neighbourhood isomorphic to the one shown in Figure 4.3 with
A1, . . . , An, B1, . . . , Bm ∈ DC2 labelling the adjacent 2-strata. We then label l
with an A1 · · ·An-B1 · · ·Bm-multimodule M ∈ C.

• DC0 : point insertions on an A ∈ DC2 labelled 2-stratum are labelled by A-A-
bimodule morphisms. 0-strata that have adjacent 1-strata are labelled by the
morphisms of (relative tensor products of) multimodules as well as data to
make them into coupons: a plane orientation, compatible with the framings
of the adjacent 1-strata and an order on them. We will later see that the
resulting defect TQFT will turn out to be D0-complete.

The use of the local model in Figure 4.3 in principle restricts the possible ori-
entations of the 2-strata adjacent to a 1-stratum. Although in later sections this
will not be used, we argue that in Property 4.12 of the defect TQFT Zdef

C defined
below, that the construction we provide can be generalised to also include arbi-
trary orientations, as for given A ∈ DC2 , labelling a 2-stratum s with the opposite
algebra Aop instead of A will yield the same result upon evaluation with Zdef

C as
flipping the orientation of s. A further generalisation also allows one to eliminate
the framings of the 1-strata by equipping the multimodules with a so-called cyclic
structure. These technicalities are discussed in detail in [CRS2].

Remark 4.2. For an algebra A ∈ DC2 , an A-A-bimodule M is the same as an
A-A-multimodule and can be used to label 1-strata having two adjacent A-labelled
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2-strata. Diverting from the rigorous definition of a stratum, in this case we will
sometimes say “an M -labelled line on an A-labelled 2-stratum”, as if these two
adjacent 2-strata are the same.

Example 4.3. Let M = (M,T) ∈ B̂orddef
3 (DC) be a DC-coloured defect bordism

which has no 2-strata, i.e. T(1) = T(2). Then M can be seen in a natural way

as a ribbon bordism (M,R) ∈ B̂ordrib
3 (C) where the embedded ribbon graph is

R := T(1), i.e. it has the 1-strata of M as strands (already framed and labelled
by the objects of C) and the 0-strata as coupons (or more precisely, as junctions
labelled by the morphisms of C, where the parametrisations are encoded in the
parts of the defect datum which we do not discuss here). For such defect bordisms,
the defect TQFT (4.1) will restrict to the Reshetikhin-Turaev TQFT, i.e. one will
have Zdef

C (M,T) = ZRT
C (M,R).

4.3. Ribbonisation

We will define the Reshetikhin-Turaev defect TQFT Zdef
C in terms of the “ribbon-

isation” map

R : B̂orddef
3 (DC)→ B̂ordrib

3 (C) , (4.9)

which, as will momentarily become apparent, is not a functor since it does not
preserve identity morphisms and depends on auxiliary data. It converts a DC-
coloured ribbon bordism M into a C-coloured ribbon bordism by exchanging each
surface defect with a ribbon graph. Intuitively, this exchange can be thought of
as punching a number of holes in the surface defect and taking the deformation
retract, see Figure 4.4 (in [FSV, Sec. 6], exactly this idea was introduced to classify
surface defects satisfying certain conditions). The graphical calculus of symmetric
separable Frobenius algebras (see Figure 2.2) allows one to label such ribbon graphs
in a very natural way. In the rest of the section we formalise this idea, following
the treatment of [CRS2].

For M = (M,T) ∈ Borddef
3 and ε > 0, let Uε T(1) denote a shrinking family of

tubular neighbourhoods of T(1). For a 2-stratum s of M we define the external
closure of s to be the topological space

s := lim
ε→0

s \ Uε T(1) , (4.10)

i.e. obtained as a limit (in the category of topological spaces) by removing from s
smaller and smaller tubular neighbourhoods of 0- and 1-strata from s. In practice,
s is similar to the closure s of the stratum s in M , but keeps the edges from being
identified e.g. if s is adjacent to the same line twice. The external closure s is an
oriented 2-manifold with boundary and has an obvious projection map π : s→ s.
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Figure 4.4: Ribbonisation of an A = (A,ψ) ∈ DC2 labelled surface by “punching
holes”. The boundary of a hole receives a ψ-insertion, the strands can be ori-
ented arbitrarily, as long as the vertices can be labelled by the (co)multiplication
morphisms of A.

Definition 4.4. An admissible 1-skeleton of a 2-stratum s of a defect bordism
M = (M,T) ∈ Borddef

3 is a stratification t of s such that

• each 2-stratum is diffeomorphic to R2 or R× [0, 1) (in particular contractible
and does not intersect ∂M in more than one segment);

• each point of t(1) has a neighbourhood isomorphic to one of the local models
in Figure 4.5;

• π(∂t(1)) ∩ T(0) = t ∩ ∂T (1) = ∅.

A choice of an admissible 1-skeleton on s induces a stratification on the boundary
∂s = s∩∂M consisting of a finite set of oriented points dividing it into a collection of
open intervals; we will call such a stratification a 0-skeleton of ∂s. When talking of
admissible 1-skeleta for the 2-strata of M in plural we mean a collection t = {t(s)}
of admissible 2-skeleta such that π(∂t(1)(s))∩ π(∂t(1)(s′)) = ∅ for distinct 2-strata
s and s′ of M (so that the points as in Figure 4.5e-4.5h belonging to s and s′ do
not coincide). Similarly we will refer to 0-skeleta for 1-strata of a defect surface.

Remark 4.5. The 1-strata of an admissible 1-skeleton of s have a canonical fram-
ing which is induced from the orientation of s. Similarly, the 0-strata of a 0-skeleton
carry framings, which makes these points into framed punctures (see Section 3.1).

Lemma 4.6. Let M ∈ Borddef
3 .

i) Two admissible 1-skeleta t1, t2 for the 2-strata of M which restrict to the
same 0-skeleta on the boundaries are related by a finite number of local
moves shown in Figure 4.6.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Local models of a point on a 0- or 1-stratum of an admissible 1-skeleton
of a 2-stratum.

ii) Any set of 0-skeleta for the 1-strata of ∂M can be extended to a set of
admissible 1-skeleta for the 2-strata of M .

The proof reduces an arbitrary 1-skeleton to one obtained as the Poincaré dual
of a triangulation. The bl-moves in Figure 4.6 are known to imply the (dual)
Pachner moves, which are used to transform one triangulation into another. The
only complication arises due to admissibility constraints on the orientations. We
sketch these details in Appendix B.

We now discuss the labelling conventions for an admissible 2-skeleton t for a
2-stratum s of M = (M,T) ∈ Borddef

3 . Let us introduce some terminology:

• We call the points in π(t(1)) ∩ T(1) the intersection points of t and T. The
orientation of an intersection point is positive if the adjacent 1-stratum of t
is directed away from it and negative otherwise (as depicted on the second
line in Figure 4.5).

• Let σ be a 2-stratum of s. By a 1-stratum adjacent to σ we will mean either an
adjacent 1-stratum of s or a non-empty open segment (π(σ)∩l)\(π(t(1))∩T(1))
of a 1-stratum l of M (oriented the same way as l).
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�
b−1

b-move

�

l-move

�

∂b-move

�

∂l-move

�

p-move

�

l2-move

Figure 4.6: Moves on a set of admissible 1-skeleta for the 2-strata of a defect bordism
M . The b- and l-moves are applied in the interior of a 2-stratum s, while the rest
of them are applied in the neighbourhood of a point of ∂s which is projected on
a 1-stratum of M , rather than on ∂M . The l2-move is the only one involving 1-
skeleta from two different (germs of) 2-strata, adjacent to the same 1-stratum; the
other adjacent 2-strata are not depicted. The label p in the depiction of the p-move
refers to a 0-stratum of M , it too can have other adjacent 1- and 2-strata. There
are several versions of each move, as the orientations are not listed; each move can
be applied if the orientations on both sides are admissible (i.e. compatible with
the local models in Figure 4.5) and agree at the boundary. This can sometimes
prevent an inverse b-move, while the rest of the moves are always possible if the
orientation of a newly created 1-stratum is chosen admissibly.
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Definition 4.7. Let M ∈ B̂orddef
3 (DC) and s be an A = (A,ψ) ∈ DC2 labelled

2-stratum of M . An admissible A-coloured 1-skeleton for s consists of

• an admissible 1-skeleton t for s;

• for each 2-stratum σ of s (where the stratification of s is given by t) a special
point pσ ∈ l where l is a 1-stratum adjacent to σ; in addition, for distinct
2-strata σ, σ′ of s one requires pσ 6= pσ′ .

These data are assigned the following labels:

• the 1-strata of s are labelled by A, the positively (resp. negatively) oriented
0-strata of s as depicted in the local model in Figure 4.5b (resp. Figure 4.5c)
are labelled by the coproduct (resp. product) morphisms of A;

• each positively (resp. negatively) oriented intersection point as depicted in
the local models in Figures 4.5e and 4.5g (resp. 4.5f and 4.5h) is labelled
by the coaction (resp. action) morphisms of A on K, where K ∈ DC1 is the
multimodule labelling the 1-stratum of M containing the intersection point;

• for each 2-stratum σ of s, if the adjacent 1-stratum l such that pσ ∈ l is
labelled by K ∈ DC1 (in particular labelled by A ∈ DC1 if l lies in the interior
of s), then pσ is labelled by ψKl/r if σ ∩ ∂M 6= ∅ and (ψKl/r)

2 otherwise. Here

ψKl/r means the choice between the morphisms ψKl and ψKr determined as

follows: If l is a 1-stratum of t bounding σ from the right (resp. left) in the
local model in Figure 4.5a, one chooses ψAl (resp. ψAr ); if l is a 1-stratum of M
bounding σ from the right (resp. left) like in the local models in Figures 4.5e
and 4.5f (resp. in Figures 4.5g and 4.5h) one chooses ψKl (resp. ψKr );

A set of admissible DC-coloured 1-skeleta for the 2-strata of M is a set {t(s)} of
admissible As-coloured 1-skeleta for each 2-stratum s of M labelled by As ∈ DC2
such that all special points are distinct.

Let Σ = (σ, t) ∈ B̂orddef
3 (DC) be a DC-coloured defect surface with the stratifica-

tion t and let τ be a set of 0-skeleta for its 1-strata. We define

R(Σ, τ) ∈ B̂ordrib
3 (C) (4.11)

to be the underlying oriented surface Σ with the set of punctures t(0) ∪
⋃
l τ

(0)(l)
(see Remark 4.5), where l runs over the 1-strata of Σ. A point p ∈ t(0) is already
labelled by a multimodule K ∈ DC1 , whereas a point p ∈ τ (0)(l) is labelled by the
algebra object A ∈ DC1 labelling l.
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For a defect bordism [M = (M,T): Σ → Σ′] ∈ B̂orddef
3 (DC), let t be a set of

DC-coloured 1-skeleta for the 2-strata of M which restricts to sets of 0-skeleta τ
and τ ′ for the 1-strata of Σ and Σ′. Denote by tI and tS the sets of intersection
points of t and T, and of special points of t. We define[

R(M, t) : R(Σ, τ)→ R(Σ′, τ ′)
]
∈ B̂ordrib

3 (C) (4.12)

to be the underlying 3-manifold M with the embedded ribbon graph

R = T(1) ∪
⋃
s

t(1)(s) ∪ tI ∪ tS , (4.13)

i.e. its strands are the 1-strata of both M (labelled by the multimodules in DC1 )
and t (labelled by the algebra objects in DC2 ) and the coupons are the 0-strata of
both M (labelled by multimodule morphisms) and t (labelled by (co)multiplication
morphisms), as well as the intersection points (labelled by (co)actions) and the
special points of t (labelled by the ψ-morphisms of the corresponding algebra).

4.4. Definition of the defect TQFT

The penultimate step in defining the defect TQFT Zdef
C is the following

Lemma 4.8. Let [M : Σ → Σ′] ∈ B̂orddef
3 (DC) and let t1, t2 be two sets of DC-

coloured 1-skeleta for the 2-strata of M which restrict to the same 0-skeleta τ , τ ′

on Σ and Σ′. Then one has

ZRT
C
(
R(M, t1)

)
= ZRT

C
(
R(M, t2)

)
. (4.14)

Proof. We need to show that upon the evaluation with ZRT
C one can apply the

moves in Figure 4.6 on t1, t2. This is however guaranteed by how the algebraic
structures constituting the label sets DC were chosen. In particular, the b-move
follows from the separability (2.37) and the symmetry (2.31) properties of algebras
in DC2 (the special points labelled by ψ-insertions in Definition 4.7 were introduced
solely for this purpose). The l-move follows from the symmetry and Frobenius prop-
erty (2.30). Similarly, the moves ∂ b and ∂ l follow from the symmetry property
and the fact that the adjacent line is labelled by a module of the corresponding
algebra. The p-move follows from labelling the 0-strata with multimodule mor-
phisms, which commute with the algebra actions. The l2-move follows from the
identities (4.8) defining multimodules.

In light of Lemma 4.8, one only needs to eliminate the dependence on the 0-
skeleta on the boundary, which is achieved by a standard limit construction which
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we now describe. Let Σ be an object in B̂orddef
3 (DC) and let τ, τ ′ be two sets of

0-skeleta for its 1-strata. Consider the defect cylinder CΣ := Σ × [0, 1] and the
linear map

Φτ ′

τ :=
[
ZRT
C
(
R(CΣ, t)

)
: ZRT
C
(
R(Σ, τ)

)
→ ZRT

C
(
R(Σ, τ ′)

)]
, (4.15)

where t is an arbitrary set of 1-skeleta for the 2-strata of CΣ restricting to τ , τ ′ on
Σ× {0}, Σ× {1}. For three sets τ , τ ′, τ ′′ of 0-skeleta of Σ one has

Φτ ′′

τ ′ ◦ Φτ ′

τ = Φτ ′′

τ . (4.16)

In particular, each map Φτ
τ is an idempotent.

With this preparation, we can now reformulate the construction in [CRS2] as
follows:

Construction 4.9. Let C be a modular fusion category. The Reshetikhin-Turaev
defect TQFT

Zdef
C : B̂orddef

3 (DC)→ Vectk (4.17)

is defined as follows:

1. For an object Σ ∈ B̂orddef
3 (DC), we set

Zdef
C (Σ) = colim

{
Φτ ′

τ

}
, (4.18)

where τ, τ ′ range over all sets of 1-skeleta for the 1-strata of Σ.

2. For a morphism [M : Σ→ Σ′] ∈ B̂orddef
3 (DC), we set Zdef

C (M) to be

Zdef
C (Σ) ↪→ ZRT

C
(
R(Σ, τ)

) ZRT(R(M,t))−−−−−−−→ ZRT
C
(
R(Σ′, τ ′)

)
� Zdef

C (Σ′) , (4.19)

where t is an arbitrary set of 1-skeleta for the 2-strata of M that restricts
to sets τ and τ ′ of 0-skeleta for the 1-strata of Σ and Σ′ respectively. The
inclusion is part of the data of the colimit, and the projection is obtained
from the universal property.

Remark 4.10. In practice, for an object Σ ∈ B̂orddef
3 (DC), the state space can be

conveniently computed as the image of the idempotent Φτ
τ , i.e.

Zdef
C (Σ) ∼= im Φτ

τ . (4.20)
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Remark 4.11. Labelling a 2-stratum with a symmetric separable Frobenius alge-
bra (A,ψ) ∈ DC2 and introducing the ψ-insertions in the ribbonisation procedure
is similar to the 2-dimensional state-sum construction in [LP]. There one requires
the morphism µ ◦ ∆ ◦ η : 1 → A (the window element) to have a multiplicative
inverse, which is then used to cancel the extra factors appearing at each 2-stratum
of a 1-skeleton. Our approach is however slightly more general: take for example
the case chark = 0 and the algebra A = X ⊗X∗ for a non-zero object X ∈ C with
dimX = 0. The window element is then zero hence non-invertible, but one can
nonetheless find a suitable ψ-insertion as follows: Let

⊕
α iα be a decomposition of

X into simple objects with πα, ıα denoting the corresponding projection/inclusion.
Define a morphism ξ ∈ EndC(X) by ξ :=

∑
α(dim iα)−1/2ıα ◦ πα. Then one has

tr ξ2 = dim EndC(X) 6= 0, which can be used to define the ψ-insertion

ψ := (dim EndC(X))−1/2 · [1 coevX−−−→ X ⊗X∗ ξ⊗idX∗−−−−→ X ⊗X∗] , (4.21)

so that the assumptions in Convention 2.11 hold. Note also, that as long as the
condition (2.37) holds, the ψ-insertions in the ribbonisation procedure need not
even be invertible. Such generalisation is however not necessary for our purposes.

4.5. Properties of the defect TQFT

Property 4.12. Let MA,ε be a DC-coloured defect bordism, where A ∈ DC2 and
ε ∈ {±} parametrise the label and the orientation and of a fixed closed 2-stratum
s of M . Then one has

Zdef
C (MA,−) = Zdef

C (MAop,+) , (4.22)

i.e. the orientation of s can be flipped by relabelling it with the opposite algebra
(see Section 2.4). This is because after the ribbonisation procedure one can rotate
the strands coming from the skeleta of the 2-strata so that their framing faces the
opposite direction. Doing this to the coupons labelled by the (co)multiplication
morphisms results in crossings as in the definition of the opposite algebra (cf. (2.32)
and (2.33)):

→ , → . (4.23)

One can also use this to introduce orientations for the 2-strata adjacent to a multi-
module M which are different from those imposed by the local model in Figure 4.3:
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(a) (b) (c) (d)

Figure 4.7: (a) A 0-stratum p . (b) The defect cylinder C = S2
p×[0, 1] presented as a

closed ball with an open ball removed. (c) A choice CR : S2
R → S2

R of ribbonisation
of C. (d) The closed ball ∅→ S2

R corresponding to the image Φ(f).

If an A-labelled 2-stratum in the local model does not have the paper plane ori-
entation, the multimodule M has instead an Aop-action and the ribbonisation
procedure is changed so that in this case the intersection points are labelled with
(co)action morphisms with a half-twist of the adjacent A-strand as follows:

, , , . (4.24)

Property 4.13. The defect TQFT Zdef
C is D0-complete (see Section 4.1). Let

us demonstrate this with a simple example of a point defect p adjacent to three
2-strata, labelled by algebras A = (A,ψA), B = (B,ψB), C = (C,ψC) in DC2
and three 1-strata, labelled by A-C-bimodule M1, C-B-bimodule M2 and A-B-
bimodule N as shown in Figure 4.7a. We need to compute the vector space assigned
by Zdef

C to the stratified 2-sphere S2
p , obtained as a new boundary component after

removing a small open ball B◦p surrounding p, which can be done using the formula
(4.20). To this end, let us use the presentation of the cylinder C = S2

p × [0, 1]

as well as a choice [CR : S2
R → S2

R] ∈ B̂ordrib
3 (C) for its ribbonisation as depicted

in Figures 4.7b and 4.7c and set Φ := ZRT
C (CR) : ZRT

C (S2
R) → ZRT

C (S2
R). From

Property 3.12 of the Reshetikhin-Turaev TQFT we obtain the explicit isomorphism
ZRT
C (S2

R) ∼= C(M1M2, N). For f ∈ C(M1M2, N), the image Φ(f) corresponds to a
bordism ∅ → S2

R depicted in Figure 4.7d. One recognises the pair of A- and B-
lines as the projector onto the space ACB(M1M2, N) of A-B-bimodule morphisms,
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and the C-line as the projector onto the relative tensor product M1 ⊗C M2. One
therefore obtains the isomorphism

ACB(M1 ⊗C M2, N) ∼= im Φ , f 7→ . (4.25)

The space on the left-hand side is precisely the subset of DC0 of the suitable labels
for the point p. The ribbon bordism on the right is a choice of ribbonisation for
the defect bordism Bp(f) : ∅→ S2

p .
This example can be generalised for point defects p with an arbitrary configu-

ration of adjacent 1- and 2-strata. We note in particular that the fusion of point
insertions on 1- and 2-strata correspond to compositions of the respective multi-
module and bimodule morphisms, with the trivial label being given by the identity
morphism.

Property 4.14. The defect TQFT Zdef
C is Euler complete with respect to surfaces.

Indeed, let (A,ψ) ∈ DC2 be the symmetric separable Frobenius algebra having the
(co)multiplication and (co)unit morphisms µ, η (∆, ε) which labels a 2-stratum
s. Then for an invertible A-A-bimodule morphism γ : A → A, adding a γχsym(s)-
insertion on s corresponds to relabelling s with a symmetric separable Frobenius
algebra (Aγ, ψγ), having the same underlying object A ∈ C and the rescaled mor-
phism ψγ := γ ◦ ψ, as well as the following rescaled structure morphisms:

multiplication: γ−1 ◦ µ , unit: γ ◦ η ,

comultiplication: ∆ ◦ γ−1 , counit: ε ◦ γ .
(4.26)

To see this one can argue as follows: If an admissible 1-skeleton t of a 2-stratum s
(assumed for simplicity to have no adjacent 1-strata) is obtained as the Poincaré
dual of a triangulation of s, one can employ the usual formula χ(s) = V − E + F
to compute its Euler characteristic. We assign to each triangle a γ2-insertion to its
face (i.e. a 0-stratum of t) and a γ−1-insertion to each of its three edges (so that a
1-stratum of t gets a γ−1-insertion if it touches the boundary and a γ−2-insertion
otherwise), while the vertices (i.e. 2-strata of t) already receive the γ2-insertion from
the ψγ-labelled special points of t. Since γ is an A-A-bimodule morphism, for each
triangle one can fuse the insertions assigned to it into a single γ−1-insertion, which
is why the (co)multiplication of Aγ are as in (4.26). Collecting all γ-insertions on
s, the number of them adds exactly to χsym(s) (see (4.7)).
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(a) (b) (c)

Figure 4.8: Upon evaluation with Zdef
C , two parallel lines labelled by K,L (a) can be

fused into a single line labelled by K ⊗A L (b). Evaluating the cylinder containing
the projection morphism π : K⊗L→ K⊗AL (c) provides an isomorphism between
the two state spaces. Its inverse is obtained from a similar cylinder containing the
inclusion ı : K ⊗A L→ K ⊗ L.

The modules of the algebras A and Aγ are in a bijection: one makes a left A-
module (L, λ) and a right A-module (K, ρ) into the corresponding Aγ-modules by
taking the rescaled action morphisms λγ and ργ defined by

λγ := λ ◦ (γ−1 ⊗ idL) , ργ := ρ ◦ (idK ⊗γ−1) . (4.27)

We remark that the Euler completeness for surfaces would not have been achieved
if the label set DC2 was taken to be the symmetric ∆-separable Frobenius algebras
only, as was the case in [CRS2]. Our approach allows one to hide the point in-
sertions inside the ribbonisation procedure, which makes e.g. the figures depicting
DC-coloured defect bordisms easier to understand since the point insertions do not
clutter them.

Property 4.15. Let M be a defect bordism and let l1, l2 be two parallel 1-strata
labelled by multimodules K and L, connected by a 2-stratum s labelled by A ∈ DC2
(see Figure 4.8a). Upon ribbonisation, s gets replaced by a ribbon graph connecting
l1 and l2, which upon evaluation with ZRT

C can be replaced by the idempotent (2.50),
projecting K⊗L onto K⊗AL. The same result can be obtained by replacing l1, l2
and s with a single 1-stratum labelled with K ⊗A L (see Figure 4.8b). If l1, l2 end
on the boundary or on 0-strata in M , the endpoints also need to be relabelled (and
in the case of endpoints on the boundary, a cylinder as in Figure 4.8c provides an
isomorphism between the surfaces with different decorations).
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Zdef
C




= Zdef

C




.

Figure 4.9: Upon evaluation with Zdef
C , a contractible 2-stratum s labelled by A ∈

DC2 can be removed by forgetting all A-actions on the multimodules Mi which
decorate adjacent 1-strata.

Property 4.16. Let s be a 2-stratum labelled with an algebra (A,ψ) ∈ DC2 , which
is bounded by 1-strata labelled by multimodules M1,M2, . . . ,Mn (and by some
0-strata between them). Assume that s is contractible, as illustrated on the left-
hand side of Figure 4.9. Then, upon evaluation with Zdef

C , s can be removed by
adding a single ψ2-insertion on one of the 1-strata, adjacent to s, with the actions
of A on M1,M2, . . . ,Mn otherwise forgotten to make them into valid new labels.
This is summarised in Figure 4.9. To show this identity, one can argue that during
the ribbonisation procedure the 1-skeleton of s can be taken to have a single 2-
stratum.

Property 4.17. The vector spaces assigned by Zdef
C to a DC-coloured defect sur-

face Σ can be constructed similarly as the vector spaces assigned by ZRT
C to the

punctured surfaces (see Property 3.13). In particular, they are spanned by de-
fect handlebodies Hg, obtained by retracting the stratification on the boundary
Σ to the core of Hg (much like for ZRT

C , the ribbon graphs in the handlebod-
ies (3.22) were positioned at the core with extra strands connecting them to the
punctures). To see this, let us investigate an example of a 2-torus T 2

l with a single
non-contractible A = (A,ψ) ∈ DC2 labelled loop. We use the presentation of the
cylinder C = T 2

l × [0, 1] as in Figure 4.10a, where it is depicted by a cylinder of an
annulus with the top and bottom ends identified. A choice CR : T 2

R → T 2
R for the

ribbonisation of C is shown in Figure 4.10b. We compute Zdef
C (T 2

l ) as the image
of the map Φ := [ZRT

C (CR) : ZRT
C (T 2

R)→ ZRT
C (T 2

R)] using the formula (4.20). From
Property 3.13 we know that the vector space ZRT

C (T 2
R) is spanned by the solid tori

H(i, f) with an i ∈ IrrC labelled strand at the core, and an f ∈ C(i, Ai) insertion,
connected to the A-labelled puncture of T 2

R by an A-labelled strand. The image
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(a) (b) (c) (d)

Figure 4.10: Computation of the vector space Zdef
C (T 2

l )

over Φ then corresponds to the composition CR ◦H(i, f) : ∅ → T 2
R shown in Fig-

ure 4.10c. Upon evaluating with ZRT
C , the parallel A- and i-lines can be exchanged

for a single line, labelled by the induced module A ⊗ i, which has point insertion
labelled by the left module morphism, obtained from composing the ψr- and f -
insertions. By the semisimplicity of the category AC of left modules, A⊗ i can be
decomposed into simple left modules, with the point insertions replaced by scalar
factors. The space im Φ is therefore spanned by the ribbonisations of the stratified
solid tori H(λ) as in Figure 4.10d, where λ is a simple left A-module, labelling the
line at the core. In fact, the set {H(λ)}λ where λ ∈ Irr

AC constitutes a basis of the
space Zdef

C (T 2
l ), see [FRS1, Thm. 5.18].

Property 4.18. As was explained in [FSV, Sec. 6], the dependence of the invari-
ants, produced by the defect TQFT Zdef

C , on the label (A,ψ) ∈ DC2 of a 2-stratum
is only up to the Morita class (see Section 2.7) of the algebra A. This is because in
the “hole punching” interpretation (Figure 4.4) one had a freedom to choose the
label for the boundary of the hole, effectively exchanging the algebra A for the al-
gebra K⊗AK∗ for some right A-module K, which is known to be Morita equivalent
to A. Our approach with separable algebras, which yields the ψ-insertions, also
allows one to control the various factors, which would otherwise appear after such
an exchange. For example, when exchanging A = 1 with the Morita equivalent
algebra X ⊗X∗ for an object X∗, the factor due to adding a hole is dimX, which
in the setting of Remark 4.11 can be eliminated if X ⊗ X∗ is equipped with the
ψ-insertion (4.21).
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5. Orbifold data and the associated MFCs

A notion of an orbifold datum for an n-dimensional defect TQFT Z was intro-
duced in [CRS1] as an input needed to perform an internal state sum construction,
which in turn yields a new n-dimensional TQFT, a generalised orbifold of Z. The
main goal of this work is to explore generalised orbifolds of the 3-dimensional
Reshetikhin-Turaev defect TQFT Zdef

C , obtained from a modular fusion category
C. In particular, we address the question whether they themselves are TQFTs of
Reshetikhin-Turaev type. The answer, as will be shown in Chapter 6, turns out
to be affirmative. Therefore, in this case an orbifold datum can be alternatively
seen as a certain algebraic input A in the modular fusion category C, which yields
a new modular fusion category CA. In this chapter we define the category CA and
prove some of its properties. The exposition is mostly algebraic, we present some
of the interpretation of orbifold data and the associated modular fusion categories
in terms of defect TQFTs in Section 5.2, but it will mostly be postponed until
Chapter 6.

Orbifold data for modular fusion categories were first introduced in [CRS3]. The
material below is based on [MR1]. For the rest of the chapter we fix a modular
fusion category C.

5.1. Algebraic definitions

Let A = (A,ψ) be a symmetric separable Frobenius algebra in C. In what follows,
we will often encounter A-A ⊗ A-bimodules and various relative tensor products
involving them. Recall from Section 4.2, that an A-A⊗A bimodule T is the same
as A-A,A-multimodule, i.e. an object T ∈ C together with a left and two right
A-actions, such that

= , = , i ∈ {1, 2} , (5.1)

where the right actions of the first and the second A factor are distinguished by
the indices 1, 2. Similarly, the left A-action will be indicated by 0 whenever we
find it necessary to avoid ambiguity. The notation (2.40) for the ψ-insertions is
adapted in this case as

:= , := , i ∈ {1, 2} . (5.2)
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Note that because of (5.1), the morphisms ψ0, ψ1, ψ2 commute under composition.

For a left A-module L, let us denote by T ⊗1 L and T ⊗2 L the relative tensor
products with respect to the corresponding right A-action on T , i.e.

T ⊗1 L ∼= im , T ⊗2 L ∼= im . (5.3)

Note that T ⊗1 L and T ⊗2 L are A-A-bimodules, with the right A-actions given
by

, (5.4)

and the left A-action obtained from the one on T . If M is an A-A-bimodule,
T ⊗1M and T ⊗2M are themselves A-A⊗A-bimodules. Indeed, for T ⊗1M (resp.
T ⊗2 M) the first right A-action is obtained from the one on M (resp. as in (5.4)),
while the second A-action is as in (5.4) (resp. obtained from the one on M). This
can be easily generalised further, e.g. for an A-A ⊗ A-bimodule T , the dual T ∗ is
an A⊗A-A-bimodule, T ⊗1 T , T ⊗2 T are A-A⊗A⊗A bimodules, T ∗ ⊗0 T is an
A⊗A-A⊗A-bimodule, etc. When defining any explicit morphisms between objects
obtained by taking such relative tensor products we will use the Convention 2.16
to present them as morphisms between the regular tensor products (between the
underlying objects in C), commuting with the corresponding A-actions.

With this preparation we are ready to state the following (cf. [CRS3, Sec. 3.2])

Definition 5.1. An orbifold datum in C is a tuple A = (A, T, α, α, ψ, φ) where

• (A,ψ) is a symmetric separable Frobenius algebra in C;

• T is an A-A⊗ A-bimodule in C;

• α : T ⊗2 T → T ⊗1 T , is an A-A⊗ A⊗ A-bimodule morphism
with the inverse α : T ⊗1 T → T ⊗2 T ;

• φ ∈ k×;

which satisfies the conditions (O1)-(O8) in Figure 5.1.
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= (O1)

= (O2) = (O3)

= (O4) = (O5)

= (O6) = (O7)

= = = ·φ−2
(O8)

Figure 5.1: Conditions on an orbifold datum A = (A, T, α, α, ψ, φ).
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= (T1) = (T2)

= (T3)

= (T4) = (T5) i ∈ {1, 2}

= (T6) = (T7) i ∈ {1, 2}

Figure 5.2: Conditions on an object (M, τ1, τ2) ∈ CA.

60



Remark 5.2. Let A = (A, T, α, α, ψ, φ) be an orbifold datum in C. In the definition
above we used the Convention 2.16 applied to the A-A⊗A⊗A-bimodule morphisms
α : T ⊗2T ↔ T ⊗1T : α which allows one to define it as morphisms T ⊗T → T ⊗T
in C such that

= , = , = , (5.5)

= , = , = . (5.6)

The conditions (O2), (O3) are just spelled-out requirements for α and α to be
inverses of each other (with the additional appearance of a ψ2-insertion as explained
in Remark 2.15). The identities (O1)-(O8) imply other similar identities, e.g. the
following are the dual versions of (O6) and (O7)

= , = . (5.7)

We are now ready to introduce the main construction of this work.

Definition 5.3. Let A = (A, T, α, α, ψ, φ) be a defect datum in a modular fusion
category C. Define the category CA to have:

• objects: triples (M, τ1, τ2), where

– M is an A-A-bimodule;

– τ1 : M ⊗0 T → T ⊗1 M , τ2 : M ⊗0 T → T ⊗2 M are A-AAA-bimodule
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isomorphisms, with inverses τ1, τ2, denoted by

τ1 = , τ2 = , τ1 = , τ2 = , (5.8)

such that the identities (T1)-(T7) in Figure 5.2 are satisfied (note that
the identities (T4) and (T5) are just spelled out requirements for τi and
τi to be the inverses of each other);

• morphisms: a morphism f : (M, τM1 , τM2 )→ (N, τN1 , τ
N
2 ) is an A-A-bimodule

morphism f : M → N such that τNi ◦ (f ⊗0 idT ) = (idT ⊗if) ◦ τMi , i = 1, 2,
or graphically

= , i = 1, 2 . (M)

For an object (M, τ1, τ2) ∈ CA we will refer to the morphisms τ1, τ2, τ1, τ2 as its
T -crossings.

The conditions (T1)-(T3) imply other similar identities, for example:

=

(T8′)

=

(T9′)

=

(T10′)

=

(T11′)

=

(T12′)

=

(T13′)
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=

(T14′)

=

(T15′)

=

(T16′)

An orbifold datum A also provides one with two further categories CA1 , CA2 which
we will find useful later:

Definition 5.4. Define the categories CiA, i = 1, 2 as follows:

• objects of CiA are pairs (M, τi) where M ∈ ACA and τi : M ⊗0 T ↔ T ⊗iM : τi
are a T -crossing and its inverse, i.e. they satisfy the identities (T1) and (T4)-
(T7) (for i = 1) and (T3)-(T7) (for i = 2);

• morphisms of CiA are bimodule morphisms satisfying the identity (M) (for
the given value of i only).

We equip CA with the following monoidal structure:

• product:

(M, τM1 , τM2 )⊗ (N, τN1 , τ
N
2 ) := (M ⊗A N, τM,N

1 , τM,N
2 ) , (5.9)

where the T -crossings are

τM,N
i := , τM,N

i := , i = 1, 2 ; (5.10)

• unit: 1CA := (A, τA1 , τ
A
2 ) where the T -crossings are

τAi := , τAi := , i = 1, 2 ; (5.11)

• associators and unitors: as in ACA.

Similarly one also defines monoidal structures on C1
A and C2

A.
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(a) (b) (c) (d)

Figure 5.3: Orbifold datum A = (A, T, α, α, ψ, φ) as defect labels.

Definition 5.5. We call an orbifold datum A in C simple if dim EndCA(1CA) = 1.

If M = (M, τ1, τ2) is an object of CA, so is the dual bimodule M∗, where the
T -crossings are

τi := , τi := , i = 1, 2 . (5.12)

One can use the identities (T1)-(T7) to show that the duality morphisms (2.59) of

ACA are also morphisms in CA, i.e. they satisfy (M). The category CA (and similarly
also C1

A and C2
A) therefore has a natural pivotal structure.

5.2. Interpretation as defects

An orbifold datum A = (A, T, α, α, ψ, φ) in a MFC C can also be interpreted as a
collection of defect labels for the defect TQFT Zdef

C (see Chapter 4):

• (A,ψ), being a symmetric separable Frobenius algebra, belongs in the set DC2
of labels for 2-strata (see Section 4.2).

• T is an A-AA-multimodule, i.e. belongs in the label set DC1 and can therefore
be used to label a 1-stratum with three adjacent A-labelled 2-strata whose
orientations are as depicted in Figure 5.3a. Similarly, the dual object T ∗ is
an AA-A-multimodule and can label a 1-stratum with the configuration of
adjacent 2-strata as shown in Figure 5.3b.

• α and α are morphisms between the relative tensor products T ⊗1 T , T ⊗2

T of the respective multimodules, i.e. belong in the label set DC0 , and are
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valid labels for 0-strata having four adjacent T -labelled 1-strata (two of them
incoming and two outgoing), as well as six adjacent A-labelled 2-strata in
configurations shown in Figures 5.3c and 5.3d. For conventional reasons
only, we assign to a point which can be labelled by α (resp. α) the positive
(resp. negative) orientation.

• φ is a scalar and can be used to label point insertions on 3-strata.

As was done in Figure 5.3, it is arguably clearer to present a morphism f between
relative tensor products of multimodules by a 3-dimensional figure indicating a
neighbourhood of a 0-stratum labelled by f . This way the commutation of the
various algebra actions is transparent from the adjacent 2-strata, for example the
identities (5.5) and (5.6) are evident in Figures 5.3c and 5.3d by how the 2-strata
overlap. If two ingoing or outgoing lines share an adjacent 2-stratum labelled
by A ∈ DC2 , a relative tensor product with respect to the A-action is implied
between their respective multimodules. Like in string diagrams in C, the identity
morphisms need not be depicted and we sometimes use coupons, instead of points,
to emphasise which strands are incoming/outgoing. For example, for a pair of
right/left A-modules K ∈ CA, L ∈ AC and a morphism f ∈ EndC(K ⊗A L) one
denotes

idK⊗AL = , f = . (5.13)

We will sometimes omit some of the labels and/or orientations, if they are clear
from the context. Composition of morphisms presented in this way corresponds to
stacking the 3-dimensional pictures.

To obtain a string diagram in C from a 3-dimensional picture one first applies the
ribbonisation procedure in the definition of Zdef

C (as if the picture depicted a strat-
ification of a closed 3-ball with the outer edges ending on the boundary) and then
cancels the ψ-insertions at the strands which intersect the boundary (to ensure that
the corresponding morphism between multimodules is given according to Conven-
tion 2.16). This is illustrated in Figure 5.4, the computation in Property 4.13 of
Zdef
C also serves as an example.
With the above convention in mind, the conditions (O1)-(O8) on an orbifold

datum A = (A, T, α, α, ψ, φ) can be depicted as in Figure 5.6.

65



→ → →

Figure 5.4: Using the ribbonisation procedure to convert a 3-dimensional picture
into a string diagram in C.

Figure 5.5: T -crossings τ1, τ2, τ1, τ2 of an object M ∈ CA (in this order)
as defect labels.

Remark 5.6. More concisely, the 3-dimensional pictures we use can be interpreted
as 3-morphisms in the tricategory associated to the defect TQFT Zdef

C (see Sec-
tion 4.1), presented using the 3-dimensional graphical calculus as briefly reviewed
in Section 2.6. We refer to [CMS] for more details on this.

As was the case with an orbifold datum, an object (M, τ1, τ2) ∈ CA can be
interpreted as a collection of defect labels: M for 1-strata with two adjacent A-
labelled 2-strata and τ1, τ2, τ1, τ2 for 0-strata at the intersection of two 1-strata,
one labelled with M and the other with T (see Figure 5.5). In this notation, the
conditions (T1)-(T7) correspond to the identities in Figure 5.7. For two objects
M,N ∈ CA, the T -crossings of of M ⊗N as defined in (5.10) become
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= (O1)

=
(O2)

=
(O3)

=
(O4)

=
(O5)

=
(O6)

=
(O7)

= = = (O8)

Figure 5.6: Conditions on an orbifold datum A = (A, T, α, α, ψ, φ) in 3d-form.
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= (T1) = (T2)

= (T3)

= , = (T4)

= , = (T5)

= , = (T6)

= , = (T7)

Figure 5.7: Conditions on an object (M, τ1, τ2) ∈ CA in 3d-form.
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τM,N
1 = , τM,N

2 = , (5.14)

(similarly for the inverses τM,N
1 , τM,N

2 ). The duality morphisms of M ∈ CA, by
definition being inherited from the category ACA of A-A-bimodules and hence given
by (2.59), have the 3-dimensional presentations

evM = , coevM = , (5.15)

ẽvM = , c̃oevM = . (5.16)

The T -crossings of the dual M∗ ∈ CA, as defined in (5.12), correspond to

τM
∗

1 = , τM
∗

2 = , (5.17)

(similarly for the inverses τM
∗

1 , τM
∗

2 ).

Remark 5.7. In the references [CRS3, MR1], on which this exposition is based,
only the symmetric ∆-separable Frobenius algebras were used to label 2-strata.
Consequently, the counterpart defect TQFT Zdef

C was not Euler complete with
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respect to surfaces (see Section 4.1 and Property 4.14), and an orbifold datum
A = (A, T, α, α, ψ, φ) was defined to take into account the completion, as this
allowed one to consider more interesting examples (like the one producing Drinfeld
centres from Vectk, see Section 7.2 below). In particular, the entry ψ in A was
taken to be the label for an invertible point insertion on A-labelled 2-strata, or
more algebraically, an invertible A-A-bimodule morphism A→ A. Such ψ-labelled
point insertions would then also appear in the 3-dimensional presentation of the
conditions (T1)-(T7), etc.

Our approach with symmetric separable Frobenius algebras allows one to hide
the ψ-insertions in the ribbonisation step and therefore makes the 3-dimensional
presentations clearer. Still, when exploring the examples in later sections, we prefer
to switch back to the setting of ∆-separable algebras. We review the definitions of
orbifold data and the category CA in this setting in Appendix C.

5.3. Ribbon structure

For a pair of objects M,N ∈ CA, define the morphisms cM,N : M ⊗AN → N ⊗AM ,
c−1
M,N : N ⊗AM →M ⊗A N as follows:

cM,N := φ2 · , c−1
M,N := φ2 · . (5.18)

That the notation c−1
M,N is indeed justified is part of the claim in Proposition 5.9

below.

Lemma 5.8. For all M,N ∈ CA the following identities hold:

= , = .

(5.19)
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Proof. Repeatedly using the identities (O1)-(O8) and (T1)-(T7), for the first iden-
tity one has

(O6)
=

(T4)
=

(T1)

(T3)
=

(T16′)
=

(T6)
=

(T6)
=

(O6)
=

(O8)
= φ−2 · .

Similarly one can show the second identity.

Proposition 5.9. {cM,N}M,N∈CA defines a braiding on CA.

Proof. One must check that for M,N ∈ CA, the morphisms cM,N and c−1
M,N are

natural in M , N , satisfy the hexagon identities, are inverses of each other and that
the identity (M) holds. All of this can be done by repeatedly applying (O1)-(O8),
(T1)-(T7) and (M); we only show one of the hexagon identities for cM,N . Using
Lemma 5.8 one gets:
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(5.18)
= φ2 · Lem.5.8

= φ2 ·

(T5)
= φ2 · = φ2 · = .

Since at this point the category CA is both braided and pivotal, one can introduce
the left/right twist morphisms and their inverses for an object M ∈ CA in the usual
way (2.12) as partial traces of the braiding morphisms cM,M , c−1

M,M , or explicitly

θlM := φ2 · , θrM := φ2 · , (5.20)

(θlM)−1 := φ2 · , (θrM)−1 := φ2 · . (5.21)
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Proposition 5.10. CA is ribbon.

Proof. We need to show that for an object M ∈ CA one has θlM = θrM . One has:

= φ2 · = φ2 · (5.22)

where in the first equality we used (O8), (T5) and (M) to create a bubble and move
the coupon on it, and in the second equality we used (T4) to move the M -strand
onto the 2-stratum to the back (note that both this 2-stratum and the strand lying
in it have opposite to paper/screen plane orientation, hence the stripy pattern).
Next, using the auxiliary identities in Lemma 5.8 together with (T5) and (T6) one
gets:

= =

= = ,

which upon substituting back to (5.22) and applying (O8), (T5) and (M) once
more, yields the desired result.
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Remark 5.11. Applying the ribbonisation procedure as explained in Figure 5.4
to (5.18) and (5.20) one obtaines the following string diagrams for M,N ∈ CA

cM,N = φ2 · , θM = φ2 · . (5.23)

5.4. Pipe functors and semisimplicity

In this section we show that the categories CA, C1
A, C2

A are semisimple. This is done
by constructing in each case a separable biadjunction to the semisimple category

ACA and utilising Proposition A.3 from Appendix A.
Let us define four functors

ACA C1
A

C2
A CA

H1

H21H2

H12

. (5.24)

Namely, for any bimodule M ∈ ACA, define two bimodules H1(M), H2(M) together

with T -crossings τ
H1(M)
1 , τ

H2(M)
2 and their inverses by

H1(M) := H2(M) := (5.25)

τ
H1(M)
1 := τ

H2(M)
2 := (5.26)
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τ
H1(M)
1 := τ

H2(M)
2 := (5.27)

The definitions of H1(M) and H2(M) here mean the images of the idempotents
like the one in Remark 5.16 below.

Next, for K ∈ C2
A define H12(K) to have the same underlying bimodule as H1(K),

and set

τ
H12(K)
1 := τ

H1(K)
1 , τ

H12(K)
1 := τ

H1(K)
1 . (5.28)

The remaining T -crossings are defined as follows:

τ
H12(K)
2 := , τ

H12(K)
2 := . (5.29)

For H21 one proceeds analogously. Given L ∈ C1
A, H21(L) has the same bimodule

and the T -crossing τ2 as H2(L) with the remaining T -crossings given by

τ
H21(L)
1 := , τ

H21(L)
1 := . (5.30)
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Consider now the following commuting square of forgetful functors:

ACA C1
A

C2
A CA

U21

U1

U12

U2 . (5.31)

We have:

Proposition 5.12. (H1, U1), (H12, U12), (H2, U2), (H21, U21) are pairs of biadjoint
functors and in each case the biadjunction is separable.

Proof. We only show the argument for the pair (H1, U1), the other cases can be
handled similarly. One defines the unit/counit natural transformations

η : IdC ⇒ U1 ◦H1 , ε : H1 ◦ U1 ⇒ Id
AC ,

η̃ : Id
AC ⇒ H1 ◦ U1 , ε̃ : U1 ◦H1 ⇒ IdC ,

(5.32)

for the two adjunctions H1 a U1 and U1 a H1 for each object M ∈ ACA, N ∈ C1
A by

ηM = φ2 · εN = (5.33)

η̃N = ε̃M = φ2 · (5.34)

The identities

εH1M ◦H1ηM = idH1M , U1εN ◦ ηU1N = idU1N , (5.35)

ε̃U1N ◦ U1η̃N = idU1N , H1ε̃M ◦ η̃H1M = idH1M . (5.36)
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are shown by repeatedly applying the identities (O1)-(O8), e.g. for (5.35) one has

φ−2 · εH1M ◦H1ηM

= = = = φ−2 · idH1M ,

φ−2 ·H1ε̃M ◦ η̃H1M

= = = = φ−2 · idU1N ,

and the identities (5.36) are shown similarly. That the biadjunction is separable,
follows from

εN ◦ η̃N = = φ−2 · = φ−2 · idN .
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Proposition 5.13. The categories C1
A, C2

A and CA are finitely semisimple.

Proof. We use the results of Appendix A. From Corollary 2.13 we already know
that ACA is finitely semisimple. By Proposition 5.12, it is enough to show that C1

A,
C2
A and CA are idempotent complete. We show this for C1

A only, since other cases are
analogous. Let p : N → N be an idempotent in C1

A. Then it is also an idempotent
in ACA and hence has a retract (S, e, r) in ACA. We equip S with the T -crossings

τS1 := [S ⊗0 T
e⊗0idT−−−−→ N ⊗0 T

τN1−→ T ⊗1 N
idT ⊗1r−−−−→ T ⊗1 S] ,

τS1 := [T ⊗1 S
idT ⊗1e−−−−→ T ⊗1 N

τN1−→ N ⊗0 T
r⊗0idT−−−−→ S ⊗0 T ] .

(5.37)

It is easy to check that they indeed satisfy the axioms of a T -crossing, e.g.

= = =

(∗)
= = = (5.38)

where in step (∗) we used that p is a morphism in C1
A. The argument that e and r

are morphisms in C1
A is similar. (S, e, r) is therefore a retract in C1

A.

Combining Propositions 5.10 and 5.13 one gets

Corollary 5.14. CA is a ribbon multifusion category.

Remark 5.15. Note that the diagram in (5.31) commutes with identity natural
isomorphism, U := U1 ◦U21 = U2 ◦U12 : CA → ACA, as each path sends an object in
CA to its underlying bimodule. By Proposition 5.12, both H21◦H1 and H12◦H2 are
biadjoint to U , and hence in particular naturally isomorphic. Thus the diagram
in (5.24) commutes as well. Indeed the two functors P1, P2 : ACA → CA obtained

78



from it are explicitly defined on a bimodule M ∈ ACA by

P1(M) := , P2(M) := , (5.39)

and the natural isomorphism ϕ : P1 ⇒ P2 is defined by

ϕM := , ϕ−1
M := . (5.40)

Below we will work exclusively with the functor P := P2 and will refer to it as the
pipe functor.

The braiding morphisms (5.18) involving a pipe object P (M), M ∈ ACA can be
simplified, for example for N ∈ CA one has

cPM,N = , c−1
N,PM = . (5.41)

Remark 5.16. For a bimodule M ∈ ACA and a bimodule morphism [f : M →
N ] ∈ ACA, the definitions of the underlying bimodule of P (M) ∈ CA, as well as the
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morphism P (f) ∈ CA can be stated more algebraically in terms of string diagrams
as follows:

P (M) := im , P (f) := . (5.42)

5.5. Modularity

In this section we will in addition assume that A is a simple orbifold datum (see
Definition 5.5), so that by Corollary 5.14, CA is a ribbon fusion category. We will
show that CA is in fact modular.

Let us start with some tools which will be helpful when performing computations
in CA. For objects M,N ∈ CA and a morphism [f : M → N ] ∈ C between the
underlying objects, define the averaged morphism f : M → N to be the A-A-
bimodule morphism

f := φ4 · . (5.43)

One can check that f is a morphism in CA. Moreover, if f ∈ CA, then f = f ,
i.e. averaging is an idempotent on the morphism spaces of C, projecting onto the
morphism spaces of CA (much like the one in (2.42), projecting onto the morphism
spaces of AC).

Remark 5.17. Similar averaging maps can be defined to project on the morphism
spaces of categories C1

A, C2
A. We list them, as well as (5.43) in 3-dimensional notation

in Figure 5.8.

The next tool allows one to compute traces of endomorphisms and dimensions
of objects in CA in terms of the underlying MFC C.
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φ4·

(a)

φ2·

(b)

φ2·

(c)

Figure 5.8: Projecting a morphism [f : M → N ] ∈ C on (a) the space CA(M,N)
for M,N ∈ CA; (b) the space C1

A(M,N) for M,N ∈ C1
A; (c) the space C2

A(M,N) for
M,N ∈ C2

A.

Lemma 5.18. Let A be a simple orbifold datum in C. For M ∈ CA and f ∈
EndCA(M) one has:

trCA f · trC ω2
A = trC(f ◦ ω2

M) , (5.44)

where on the right hand side of (5.44), f is treated as a morphism in EndCM . In
particular, one has

dimCA M · trC ω2
A = trC ω

2
M . (5.45)

Proof. Since 1CA := A is simple, one has

= trCA f · . (5.46)

Precomposing both sides with ω2
A and taking the trace in C one gets

(i)
=

(ii)
=

(iii)
= = trCA f · ,

(5.47)
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where in step (i) we used the definitions (2.40), in step (ii) the fact that the left
action commutes with both f and ψMr , as well as the Frobenius and symmetry
properties (2.30) and (2.31) of A, and in step (iii) the separability condition (2.37)
of A (as always for ζ = ψ2, see Convention 2.11).

To show that CA is modular, we will use the condition in Proposition 2.9iv)
by relating the Kirby colour (CCA , dCA) in CA with the Kirby colour (CC, dC) in C
and exploiting the modularity of C. This relation is formulated in the following
important technical lemma.

Let R be a any morphism in the category RibCA of CA-coloured ribbon tangles
(for the sake of generality, we do not assume that R is closed, i.e. it can have free
incoming/outgoing strands), and let L be an uncoloured oriented framed knot.
As in Section 3.2, let L t R denote a fixed ribbon tangle consisting of possibly
entangled, but not intersecting components of L and R. For an object M ∈ CA
and a morphism f ∈ EndCA M , let L(M, f) denote the colouring of L by the object
M with a single f -labelled insertion.

Lemma 5.19. One has the following identity:

FCA
(
L(CCA , dCA) t R

)
· trC ω2

A

= FCA
(
L
(
P (A⊗ CC ⊗ A), P ((ψAr )2 ⊗ dC ⊗ (ψAl )2)

)
t R

)
. (5.48)

Proof. For M ∈ CA and f ∈ EndCA M , let us abbreviate

Q(M, f) := FCA
(
L(M, f) t R

)
, Q(M) := Q(M, idM) . (5.49)

Note that Q is linear with respect to direct sums on the first argument and arith-
metical operations on the second argument. Moreover, since L is a closed loop, it is
cyclic with respect to the compositions on the second argument, i.e. for M,N ∈ CA,
f ∈ CA(M,N), g ∈ CA(N,M) one has

Q(M, g ◦ f) = Q(N, f ◦ g) . (5.50)

The biadjunction between the pipe functor P : ACA → CA and the forgetful
functor U : CA → ACA yield the following decompositions for a pair of simple objects
∆ ∈ IrrCA , µ ∈ Irr

ACA :

∆
ACA∼=

⊕
ν∈Irr

ACA

ν ⊗ ACA(ν,∆) , P (µ)
CA∼=
⊕

Λ∈IrrCA

Λ⊗ ACA(µ,Λ) , (5.51)

where the label over the isomorphism sign indicates the category in which it holds
and tensor products with vector spaces is to be interpreted as multiplicities in the
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decomposition. One has:

Q(CCA , dCA) · trC ω2
A =

∑
Λ∈IrrCA

dimCA Λ · trC ω2
A ·Q(Λ)

(5.45)
=

∑
Λ∈IrrCA

trC ω
2
Λ ·Q(Λ)

(5.51)
=

∑
Λ∈IrrCA
ν∈Irr

ACA

trC ω
2
ν · dim ACA(ν,Λ) ·Q(Λ)

(5.51)
=

∑
ν∈Irr

ACA

trC ω
2
ν ·Q

(
P (ν)

)
. (5.52)

To proceed, let us fix for each pair of simple objects k ∈ IrrC, ν ∈ Irr
ACA a basis

{bp} of the space C(k, ν), along with the dual basis {bp} of C(ν, k) with respect to
the composition pairing, i.e. bq ◦ bp = δpq · idk. Furthermore, define the following
morphisms in ACA(A⊗ k ⊗ A, ν) and ACA(ν,A⊗ k ⊗ A):

βp := , βq := . (5.53)

One obtains the relation

βp ◦ βq = δpq ·
dimC k

trC ω2
ν

· idν , (5.54)

from a similar computation as in the proof of Proposition 2.19 (by the statement
of which one also has trC ω

2
ν 6= 0 so that the relation above is well defined). By

Proposition 2.12, the induction functor IndAA : C → ACA and the forgetful functor
UAA : ACA → C are biadjoint, so one has the isomorphism ACA(A ⊗ k ⊗ A, ν) ∼=
C(k, ν). The relation (5.54) therefore shows that {βp} and {βp} constitute bases
of the spaces ACA(A⊗ k⊗A, ν) and ACA(ν,A⊗ k⊗A) respectively. Using this, let
us introduce the scalars Ωk,ν

pq ,Ψ
k
νpq ∈ k such that

= Ωk,ν
pq · idk , =

∑
ν∈Irr

ACA

∑
p,q

Ψk
νpq · , (5.55)

which is allowed since (ψAr )2⊗idk⊗(ψAl )2 is an A-A-bimodule morphism. A relation
between these sets of scalars can be determined as follows: pre- and postcomposing
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the left-hand side of the second identity in (5.55) with βq ◦ ω2
ν and βp respectively

and taking the trace in C one obtains

deform
=

(2.37)
= = Ωk,ν

pq · dimC k . (5.56)

Doing the same with the right-hand side and using (5.54) yields Ψk
νpq ·

(dimC k)2

trC ω2
ν

, so
that one has

Ωk,ν
pq =

dimC k

trC ω2
ν

·Ψk
νpq . (5.57)

The computation (5.52) can now be continued as follows:∑
ν∈Irr

ACA

trC ω
2
ν ·Q

(
P (ν)

) (5.55)
=

∑
ν∈Irr

ACA
k∈IrrC

∑
p

Ωk,ν
pp · dimC k ·Q

(
P (ν)

)
(5.57)
=

∑
ν∈Irr

ACA
k∈IrrC

∑
p

(dimC k)2

trC ω2
ν

·Ψk
νpp ·Q

(
P (ν)

)
(5.54)
=

∑
ν∈Irr

ACA
k∈IrrC

∑
p,q

dimC k ·Ψk
νpq ·Q

(
P (ν) , P (βp ◦ βq)

)
(5.50)
=

∑
ν∈Irr

ACA
k∈IrrC

∑
p,q

dimC k ·Ψk
νpq ·Q

(
P (A⊗ idk⊗A) , P (βq) ◦ P (βp)

)
(5.55)
=

∑
k∈IrrC

dimC k ·Q
(
P (A⊗ idk⊗A) , P ((ψAr )2 ⊗ idk⊗(ψAl )2))

)
= Q

(
P (A⊗ idk⊗A) , P ((ψAr )2 ⊗ dC ⊗ (ψAl )2))

)
. (5.58)
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We are now in a position to prove the most important result of this chapter. To
keep a better track of the ψ-insertions, let us write down the braidings (5.41) in
terms of string diagrams using Convention 2.16:

cPM,N = , cPM,N = .

(5.59)

Theorem 5.20. Let A be a simple orbifold datum in C. Then

i) CA is a modular fusion category;

ii) trC ω
2
A 6= 0 and Dim CA =

Dim C
φ8 · (trC ω2

A)2
.

Proof. Let ∆ ∈ IrrCA be a simple object of CA. Following Proposition 2.9iv), let us
introduce a morphism L∆ ∈ EndCA ∆ defined as follows (the string diagrams are
understood to be in CA):

L∆ := , so that L∆ · trC ω2
A

Lem.5.19
= .

(5.60)
Let {bp} be a basis of C(1C,∆) with the dual basis {bp} of C(∆,1) with respect to
the composition pairing. Using (5.41) one has:

trCA L∆ · (trC ω2
A)2 = trC(L∆ ◦ ω2

∆ · trC ω2
A)
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(5.60)
=

deform
=

(2.24)
= Dim C

∑
p

(∗)
=

Dim C
φ4

∑
p

(∗∗)
=

Dim C
φ4

∑
p

(5.1)
=

Dim C
φ8

∑
p

φ4 .

(5.61)

Step (∗∗) is best checked in reverse: the A-strings can be removed using the in-
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tertwining properties of τi and the separability property of A. In step (∗) we have
changed the ψ∆

r insertion into ψ∆
l by moving it along the top T -loop and then

performed two computations, each of which combines two of the four T -loops into
one. We will only show the first:

(O5)
=

(T16′)
=

(T6)

deform
=

(T2)
=

(T5)

(O7)
=

(O8)
= · φ−2 .

The last term in (5.61) contains the average of a morphism as defined in (5.43)
which projects onto CA(A,∆). The sum over p therefore computes the trace of this
projection and one has

trC(L∆ ◦ ω2
∆ · trC ω2

A) =
Dim C
φ8

· dim CA(A,∆) =
Dim C
φ8

· δA,∆ . (5.62)

It follows that trC ω
2
A 6= 0, as the right hand side is non-zero for A = ∆. This

proves the first claim in part (ii) of the theorem.
Recall from Corollary 2.18 that since CA is fusion, dimCA ∆ 6= 0 for all simple

∆ ∈ CA. Using this, we finally get

L∆ =
trCA L∆

dimCA ∆
· id∆ =

trCA L∆ · trC ω2
A

dimCA ∆ · trC ω2
A

· id∆ =
trC(L∆ ◦ ω2

A) · trC ω2
A

dimCA ∆ · (trC ω2
A)2

· id∆

=
Dim C

dimCA ∆ · φ8 · (trC ω2
A)2
· δA,∆ · id∆ =

Dim C
φ8 · (trC ω2

A)2
· δA,∆ · id∆ . (5.63)

Proposition 2.9iv) now implies part (i) and the remaining claim in part (ii).

87



Remark 5.21. As we know from Chapter 3, the applications of modular fusion
categories to TQFTs require choosing a square root of the global dimension. For C
and A as in Theorem 5.20, if C is equipped with a root DC =

√
Dim C, then there

is a natural choice for CA, namely

DCA :=
DC

φ4 · trC ω2
A

. (5.64)

When necessary, we will always assume CA to be equipped with this root.

Our main interest in an orbifold datum A in a MFC C is going to be the
MFC CA it produces. To this end, let us introduce two (rather strong) notions
of an isomorphism of orbifold data. Firstly, a T -compatible isomorphism ([CRS3,

Def. 3.12]) of A = (A, T, α, α, ψ, φ) to Ã = (A, T̃ , α̃, α̃, ψ, φ) is given by an isomor-

phism ρ : T → T̃ of A-A⊗ A-bimodules, such that

(ρ⊗ ρ) ◦ α = α̃ ◦ (ρ⊗ ρ) . (5.65)

Secondly, given a scalar ξ ∈ k×, one can define a new orbifold datum

Aξ = (Aξ, Tξ, ξα, ξα, ξ
−1/2ψ, ξ1/2φ) , (5.66)

where the algebra Aξ has the same underlying object A ∈ C and the (co)multimpli-
cation and (co)unit morphisms (µ, η,∆, ε) replaced by (ξ1/2µ, ξ−1/2η, ξ1/2∆, ξ−1/2ε)
and Tξ = T with the actions of Aξ on Tξ being those of A on T , multiplied by ξ1/2.
It is easy to check that Aξ again satisfies the conditions (O1)-(O8). We will refer
to Aξ as a rescaling of A.

Proposition 5.22. Let A, Ã and Aξ be orbifold data in C, such that Ã and A are
related by a T -compatible isomorphism, and such that Aξ is a rescaling of A for
some ξ ∈ k×. Then CA, CÃ and CAξ are equivalent as ribbon fusion categories.

Proof. Given a T -compatible isomorphism ρ : T → T̃ , define the functor F : CA →
CÃ as (M, τM1 , τM2 ) 7→ (M, τ̃M1 , τ̃M2 ), where

τ̃Mi := [M ⊗A T̃
idM ⊗ρ−1

−−−−−→M ⊗A T
τi−→ T ⊗iM

ρ⊗idM−−−−→ T̃ ⊗iM ], i = 1, 2 . (5.67)

On morphisms, F acts as the identity. One checks that τ̃i, i = 1, 2 are indeed
T̃ -crossings. For M,N ∈ CA the objects F (M ⊗N) and F (M)⊗ F (N) are equal,
giving F a natural monoidal structure, which preserves braidings and twists.

Similarly the functor CA → CAξ , (M, τM1 , τM2 ) 7→ (M, ξτM1 , ξτM2 ) gives a ribbon
equivalence between CA and CAξ .
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6. Reshetikhin-Turaev orbifold graph TQFT

Let C be a modular fusion category and A an orbifold datum in it (see Chapter 5).
In this chapter we define the Reshetikhin-Turaev orbifold graph TQFT

ZorbA
C : B̂ordrib

3 (CA)→ Vectk , (6.1)

obtained by performing an internal 3-dimensional state sum construction in the
defect TQFT Zdef

C introduced in Chapter 4. The construction is reminiscent to
that of 3-dimensional state sum TQFTs due to Turaev-Viro-Barrett-Westburry,
which in fact is a special case of (6.1), as was shown in [CRS3, Sec. 4]. We also
prove that ZorbA

C is isomorphic to the Reshetikhin-Turaev graph TQFT ZRT
CA built

from the modular fusion category CA associated to A.
This chapter is based on [CRS1, CMRSS1], where graph TQFTs were first in-

troduced as an internal state sum construction in an arbitrary 3-dimensional de-
fect TQFT, and on [CRS3, CMRSS2], where the specialisation to the case of the
Reshetikhin-Turaev defect TQFT Zdef

C was explored.

6.1. Foamification

As will become apparent below, the definition of the orbifold graph TQFT ZorbA
C

in terms of the defect TQFT Zdef
C is analogous to the definition of Zdef

C in terms of
the graph TQFT ZRT

C . We start with the notion of an admissible 2-skeleton (cf.
Definition 4.4):

Definition 6.1. An admissible 2-skeleton of a bordism M ∈ Bord3 is a stratifica-
tion T of M such that

• each 3-stratum is diffeomorphic to R3 or R2× [0, 1) (in particular contractible
and does not intersect ∂M in more than one connected component);

• each point of T(2) has a neighbourhood isomorphic (as oriented stratified
manifold) to one of the local models in Figure 6.1.

The qualifier “admissible” refers to the restriction on orientations of adjacent strata
of T. Note that an admissible 2-skeleton restricts to an admissible 1-skeleton on
the boundary ∂M10.

One can modify a given 2-skeleton as stated in the following (cf. Lemma 4.6):

10Except for, as evident from comparing Figures 4.5 and 6.1, the orientations of the 0-strata on
∂M . This is due to notational differences in [CRS1] and [CRS3], we will ignore them in this
chapter and address them in Appendix B.2.
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Figure 6.1: Local models of a point on a 0-, 1- or 2-stratum of an admissible
2-skeleton of a bordism M ∈ Bord3.

Lemma 6.2. Let M ∈ Bord3.

i) Two admissible 2-skeleta T1, T2 of M , which coincide on the boundary ∂M ,
are related by a finite number of the so-called admissible BLT moves shown
in Figure 6.2.

ii) Any admissible 1-skeleton of ∂M can be extended to an admissible 2-skeleton
of M .

As was the case in dimension 2, one can prove Lemma 6.2 by reducing an ar-
bitrary 2-skeleton to a one obtained as the Poincaré dual of a triangulation. The
unoriented BLT-moves imply the (dual) Pachner moves, so once again it is enough
to consider the admissibility constraints on the orientations. We briefly sketch
some details of the proof in the appendix section B.2, mostly by adapting the
proof in dimension 2.

Anticipating the definition of the graph TQFT (6.1), let us introduce a gener-
alisation of admissible 2-skeleta, allowing one to present bordisms with embedded
ribbon graphs as well. The notions in the definition below are borrowed from [TV,
Sec. 14].

Definition 6.3. Let M = (M,R) ∈ Bordrib
3 . A (positive, admissible) ribbon dia-

gram ofM is a pair (T, ı), where T is an admissible 2-skeleton ofM and ı : R ↪→ T(2)

is an embedding such that:
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B

�
B−1

B-move

L

�
L−1

L-move

T

�
T−1

T-move

Figure 6.2: BLT-moves on an admissible 2-skeleton M . The orientations are not
indicated; each move can be applied if the orientations on both sides are chosen
to be admissible (i.e. compatible with the local models in Figure 6.1). This can
sometimes prevent an inverse L-move, the rest of the moves are always possible if
the orientation of the newly created strata are chosen admissibly.
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• ı(R) ∩ T(0) = ∅;

• ı
∣∣
∂R

= id∂R;

• the coupons of R are embedded into the 2-strata of T; the restriction of ı on
T(2) \T(1) is smooth with framings of strands and orientations of coupons in
ı(R) determined by the 2-strata they lie in; the ribbon graph obtained from
ı(R) by smoothing out the intersection points with T(1) is isotopic to R;

• a point w at which a strand r of ı(R) intersects a 1-stratum l of T has a
neighbourhood isomorphic to one of the following local models:

(6.2)
We call such points w the (positive) switches of the ribbon diagram T and
denote the set of them by Tsw.

On the boundary ∂M , a ribbon diagram restricts to what we will call an (admissi-
ble) 1-skeleton of a punctured surface Σ. It consists of an admissible 1-skeleton t,
such that the punctures of Σ lie in the 1-strata of t and the framings of punctures
are determined by the orientations of 1-strata.

In order to relate two ribbon diagrams of a ribbon bordism (M,R) ∈ Bordrib
3 ,

the BLT moves need to be supplemented by the (admissible) ω-moves depicted in
Figure 6.3. They are versions of the analogous moves that appear in [TV, Sec.
14.3] for the case of 2-skeleta with unoriented 0- and 1-strata (where the moves
corresponding to ω9 and ω10 are denoted by ω9,0,1 and ω9,1,0 respectively). The
setting of [TV] also allowed the embedding ı of a ribbon diagram (T, ı), representing
the ribbon graph R in M , to have double points, marked as overcrossings and
undercrossings. In our setting this will not be necessary, mostly because we use
the stratifications as in (5.18) to define the braiding in the category CA. This
could be utilised to simplify the set of ω-moves, but would also make us digress
more from the reference [TV], on which this approach is based. Note that with
the braiding (5.18) in mind, the moves ω1, ω2, ω3 can be recognised as the framed
Reidemeister moves.
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Lemma 6.4. Let M = (M,R) ∈ Bordrib
3 .

i) Two positive admissible ribbon diagrams T1, T2 of M which coincide on
the boundary ∂M are related by a finite number of admissible BLT- and
ω-moves.

ii) Any admissible 1-skeleton of the punctured surface ∂M can be extended to
a positive admissible ribbon diagram of M .

Proof. The BLT moves are the only ones that change a ribbon diagram (T, ı) away
from the embedding ı(R). Hence when restricting to ribbon diagrams T1, T2,
which differ only away from the embeddings ı1(R), ı2(R), the statement follows
from Lemma 6.2.

In [TV], the notion of a 2-skeleton comes with orientations for 2-strata, while
0- and 1-strata do not carry orientations (contrary to our setting). Let us refer
to the original variant of ω-moves in [TV, Sec. 14.3.1] as ωTV-moves. Lemma 6.4
then follows if in the proofs of [TV], we can restrict to ωTV-moves which lift to
ω-moves. This is indeed the case: whenever a new 2-stratum appears in the con-
struction of [TV, Sec. 14.4-14.7] (i.e. when “attaching a bubble”, c.f. Lemma 14.7
and Figure 14.13 of loc. cit.), there is a choice of orientation for this 2-stratum,
and upon close inspection we notice that one of these choices is compatible with a
(unique) choice of orientations for the new 0- and 1-strata, which makes the entire
ribbon diagram admissibly oriented.

We now introduce a rather predictable labelling convention for admissible ribbon
diagrams. Let C be a MFC and A = (A, T, α, α, ψ, φ) an orbifold datum in C.
Recall from Section 5.2 that the components of A and objects of CA have a natural
interpretation as defect labels for the defect TQFT Zdef

C . The local neighbourhoods
of such defects (see Figures 5.3 and 5.5) correspond precisely to the local models
of a ribbon diagram (listed in Figure 6.1 and (6.2)).

Definition 6.5. Let M = (M,R) ∈ B̂ordrib
3 (CA) be a CA-coloured ribbon bordism.

An A-coloured (admissible positive) ribbon diagram is a ribbon diagram T = (T, ı)
of the underlying unlabelled ribbon bordism (M,R), together with the following
labellings and additional points:

• the 2- and 1-strata of the underlying admissible skeleton T are labelled with
A and T respectively, the positively (resp. negatively) oriented 0-strata as in
Figure 6.1 by α (resp. α);

• the switch between an (N, τ1, τ2) ∈ CA labelled strand of ı(R) and a T -labelled
1-stratum of T as depicted in each case in (6.2) is labelled correspondingly
by τ1, τ2, τ1 and τ2;

93



ω1

�
ω2

�

ω3

� ω4

�

ω5

�
ω6

�

ω7

�
ω8

�

ω9

�

ω10

�

Figure 6.3: ω-moves. The orientations are omitted, but assumed to be admissible
(i.e. compatible with the local models in Figure 6.1 and (6.2)) and agree at the
boundary on both sides of each move.
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• each 3-stratum u of T is assigned a special point p ∈ u \ ∂M , labelled by φ
if u intersects the boundary and φ2 otherwise; the set of special points of T
will be denoted by Tφ.

In case R = ∅, one also talks about an admissible A-coloured 2-skeleton T of
M . On the boundary, an A-coloured ribbon diagram restricts to an A-coloured
1-skeleton of punctured surfaces.

The final ingredient in defining the orbifold graph TQFT (6.1) is the “foamifi-
cation” map

F : B̂ordrib
3 (CA)→ B̂orddef

3 (DC) , (6.3)

which is an analogue of the ribbonisation map (4.9) used to define the defect TQFT
Zdef
C (in particular it is also not a functor).

For an object Σ = (Σ, P ) ∈ B̂ordrib
3 (CA), where P denotes the set of punctures,

and a choice of an A-coloured admissible 1-skeleton t of Σ we define

F (Σ, t) ∈ B̂orddef
3 (DC) (6.4)

to be the surface the underlying surface Σ with the stratification:

∅ = t(−1) ⊆ (t(0) ∪P ) ⊆ t(1) ⊆ t(2) = Σ , (6.5)

i.e. obtained from t by adding the punctures as new 0-strata. Note that the strata
of F (Σ, t) are labelled according to the defect datum DC: the 1-strata by the
algebra A ∈ DC1 , the 0-strata by either the A-A ⊗ A-bimodule T ∈ DC1 or by the
underlying A-A-bimodules of the objects of CA.

For a bordism M = [(M,R) : Σ → Σ′] ∈ B̂ordrib
3 (CA) and an A-coloured ribbon

diagram T = (T, ı) for (M,R), which restricts to A-coloured 1-skeleta t, t′ of
punctured surfaces Σ, Σ′, we define

[F (M,T): F (Σ, t)→ F (Σ′, t′)] ∈ B̂orddef
3 (DC) (6.6)

to be the underlying bordism M with the stratification

∅ = T(−1) ⊆
(

T(0) ∪ ı(R(0)) ∪ Tsw ∪Tφ

)
⊆
(

T(1) ∪R
)
⊆ T(2) ⊆ T(3) = M ,

(6.7)
i.e. obtained from T by adding the (segments of) strands of R as new 1-strata and
the coupons of R, as well as the switches and the special points of T as new 0-
strata. Note once again, that the strata of F (M,T) are correctly labelled according
to the defect datum DC.
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6.2. Definition of the orbifold graph TQFT

We repeat the steps in Section 4.4, starting with the independence of Zdef
C on the

foamification.

Lemma 6.6. Let [M : Σ → Σ′] ∈ B̂ordrib
3 (CA) and let T1, T2 be two A-coloured

admissible ribbon diagrams of M which restrict to the same A-coloured 1-skeleta
of the punctured surfaces Σ, Σ′. Then one has

Zdef
C
(
F (M,T1)

)
= Zdef

C
(
F (M,T2)

)
. (6.8)

Proof. We need to check that upon evaluation with Zdef
C one can perform the BLT-

and the ω-moves. All of them are implied by the identities (O1)-(O8) and (T1)-(T7)
(or more conveniently, their 3-dimensional form in Figures 5.6 and 5.7). Indeed,
the 3 B-moves (when counting the orientations) correspond to (O8), 6 of the 9
lune moves correspond to (O2)-(O7), one of the 19 T-moves corresponds to (O1).
Showing that (O1)-(O8) imply the BLT moves with other orientations as well can
be checked by hand with the methods remarked in the appendix section B.2 (see
also [CRS1, Lem. 3.15, Prop. 3.18], [CMRSS1, Lem. 2.11]).

The ω-moves follow from (T1)-(T7) even more directly: The Reidemeister moves
ω1-ω3 follow from defining the braiding in CA by (5.18) and Proposition 5.9. Show-
ing ω4 is similar to the proof of Proposition 5.10. ω5 and ω6 are implied by
the fact that the (co)-evaluation morphisms (5.15), (5.16) and the braiding mor-
phisms (5.18) satisfy (M). ω7 is implied by Lemma 5.8. ω8 is a restatement
of (M). Finally, the moves ω9, ω10 follow from the identities (T1)-(T3) and their
variations.

Let Σ ∈ B̂ordrib
3 (C) be a punctured surface and let t, t′ be two admissible A-

coloured 1-skeleta. Consider the cylinder CΣ := Σ× [0, 1] and the linear map

Ψt′

t :=
[
Zdef
C
(
F (CΣ,T)

)
: Zdef
C
(
F (Σ, t)

)
→ Zdef

C
(
F (Σ, t′)

)]
, (6.9)

where T is an arbitrary A-coloured ribbon diagram of CΣ, restricting to t, t′ on
Σ× {0}, Σ× {1} (by Lemma 6.6 the map Ψt′

t is independent of the choice of T).
For three A-coloured 1-skeleta t, t′, t′′ of Σ one has

Ψt′′

t′ ◦Ψt′

t = Ψt′′

t . (6.10)

In particular, each map Ψt
t is an idempotent.

Construction 6.7. Let C be a modular fusion category and A an orbifold datum
in it. The Reshetikhin-Turaev orbifold graph TQFT

ZorbA
C : B̂ordrib

3 (CA)→ Vectk (6.11)

is defined as follows:
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1. For an object Σ ∈ B̂ordrib
3 (CA), we set

ZorbA
C (Σ) := colim

{
Ψt′

t

}
, (6.12)

where t, t′ range over all sets of A-coloured admissible 1-skeleta for the punc-
tured surface Σ.

2. For a morphism [M : Σ→ Σ′] ∈ B̂ordrib
3 (CA), we set ZorbA

C (M) to be

ZorbA
C (Σ) ↪→ Zdef

C
(
F (Σ, t)

) Zdef
C (F (M,T))
−−−−−−−−→ Zdef

C
(
F (Σ′, t′)

)
� ZorbA

C (Σ′) , (6.13)

where T is an arbitrary A-coloured ribbon diagram of M that restricts to
A-coloured 1-skeleta t and t′ of the punctured surfaces Σ and Σ′ respectively.
As in (4.19), the inclusion and the surjection maps are given by the data and
the universal property of the colimit.

Remark 6.8. As in (4.20), the state spaces of ZorbA
C are isomorphic to the images

of the idempotents Ψt
t,

ZorbA
C (Σ) ∼= im Ψt

t . (6.14)

6.3. Properties of the orbifold graph TQFT

Property 6.9. The orbifold graph TQFT ZorbA
C (like the Reshetikhin-Turaev

graph TQFT ZRT
CA , see Property 3.11) is a regular graph TQFT, i.e. upon evaluation

one can perform graphical calculus on the embedded ribbon graphs. This follows
from Property 4.13 of the defect TQFT Zdef

C , stating that it is D0-complete and the
composition of point insertions corresponds to the composition of the multimodule
morphisms labelling them. Indeed, upon choosing an admissible A-coloured rib-
bon diagram and evaluating with Zdef

C , without loss of generality one can assume
e.g. that the two coupons being composed lie in the same A-labelled 2-stratum and
interpret them as 0-strata labelled by the corresponding A-A-bimodule morphisms.

Property 6.10. After applying the foamification procedure, the chosen stratifi-
cation by an admissible A-coloured ribbon diagram can be further modified upon
evaluating the resulting defect bordism with Zdef

C . In particular, some CA-coloured
strands/coupons of an embedded ribbon graph can be exchanged for more com-
plicated configurations of defects. For example, a strand labelled by an object
P (M), obtained from applying the pipe functor P : ACA → CA (see Remark 5.15)
to a bimodule M ∈ ACA, can be exchanged for the “pipe” stratification made of
four T -labelled 1-strata with an M -labelled line in the middle as depicted in (5.39)
(for P := P2). Similarly, coupons labelled with braiding morphisms of two objects
M,N ∈ CA can be exchanged for the stratifications in (5.18) (with the φ2-factor
either as a prefactor to the resulting invariant, or made into a point insertion in the
interior of the bubble). Braidings with an object P (M) can be instead exchanged
for the stratifications in (5.41).
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(a) (b) (c)

Figure 6.4: (a) The 3-sphere with an embedded f ∈ EndCA(A) labelled coupon
S3
f , depicted as a cube with boundary representing the point at infinity. (b) The

admissible A-coloured ribbon diagram T for S3
f . (c) A ribbonisation for the defect

3-manifold F (S3
f ,T).

Example 6.11. Let f ∈ EndCA(A) and let S3
f = [(S3

f , 0) : ∅ → ∅] be the mor-

phism in B̂ordrib
3 (CA) represented by the 3-sphere with a single embedded f -labelled

coupon (with the entry 0 ∈ Z referring to the signature, see Definition 3.4). Since
A is the tensor unit in CA, the coupon does not need to have adjacent strands, see
Figure 6.4a. We compute the invariant ZorbA

C (S3
f ) ∈ k. Let T be an admissible

A-decorated ribbon diagram consisting of an embedded 2-sphere containing the
coupon. The resulting foamification F (S3

f ,T) is depicted in Figure 6.4b. Note
that T has two 3-strata (the “inside” and the “outside” of the defect sphere),
each of which gets a φ2-insertion as prescribed by adding the special points in
Definition 6.5.

Next we consider the ribbonisation R(F (S3
f ,T), t ) where t is the 1-skeleton of the

defect sphere with an f -insertion as shown in Figure 6.4c. By the Property 3.14,
the invariant assigned by ZRT

C to the 3-sphere S3 is D−1
C , the inverse of the square

root of the global dimension of C, see (2.16), (2.27). One therefore has:

ZorbA
C (S3

f ) = Zdef
C
(
F (S3

f , T )
)

= ZRT
C
(
R
(
F (S3

f , T ), t
) )

= φ4 · trC(f ◦ ω2
A) · ZRT

C (S3) = φ4 · trC(f ◦ ω2
A) ·D−1

C , (6.15)

where in the third equality we collected the φ-insertions into a single prefactor
and simplified the ribbon graph into an A-labelled loop with an f ◦ ω2

A : A → A
insertion. If A is in addition a simple orbifold datum (i.e. if CA is fusion, see
Definition 5.5), one can identify the scalar f ∈ EndCA(A) ∼= k with the trace trCA f .
Applying the expression (5.64) then yields

ZorbA
C (S3

f ) = φ4 · trC ω2
A ·D−1

C · f = D−1
CA · f . (6.16)
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(a) (b) (c)

Figure 6.5: (a) An admissible A-coloured ribbon diagram T for the cylinder C =
S2
M× [0, 1] depicted as a closed ball with an open ball removed. On the boundary T

restricts to a 1-skeleton t of the punctured surface S2
M consisting of the M -labelled

puncture with an adjacent A-labelled 1-stratum. In the interior of T, the two T -
labelled 1-strata have adjacent A-coloured 2-strata forming “bubbles” between the
two boundary components. (b) The bordism Bf : ∅ → S2

t . (c) Ribbonisation of
CT ◦Bf : ∅→ S2

t .

The resulting invariant is therefore precisely ZRT
CA (S3

f ). In fact, since any CA-
coloured ribbon graph R in S3 can be simplified into a single coupon, this shows
that more generally the equality

ZorbA
C

(
(S3, R), 0

)
= ZRT

CA

(
(S3, R), 0

)
(6.17)

holds. In Section 6.4 this will play a role in showing that the two graph TQFTs are
isomorphic. Note that at this point we have not yet shown that the equality (6.17)
holds when the signatures are not 0 as we have not shown that the anomalies of C
and CA coincide. This is done in Lemma 6.17 below.

Example 6.12. Let S2
M ∈ B̂ordrib

3 (CA) be the 2-sphere with a single M ∈ CA
labelled puncture. We compute the vector space ZorbA

C (S2
M). Let T be the admis-

sible A-coloured ribbon diagram of the cylinder C = S2
M × [0, 1] restricting to a

1-skeleton t on the boundary as depicted in Figure 6.5a, and let[
CT : S2

t → S2
t

]
:= F (C,T) ∈ B̂orddef

3 (DC) (6.18)

be the corresponding foamification. By definition one has

ZorbA
C (S2

M) ∼= im Ψt
t , where Ψt

t =
[
Zdef
C (CT) : Zdef

C (S2
t )→ Zdef

C (S2
t )
]
. (6.19)
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The vector space Zdef
C (S2

t ) can be identified with ACA(A,M) by sending an A-A-
bimodule morphism f : A → X to Zdef

C (Bf ) where Bf : ∅ → S2
t is the stratified

closed ball bordism as in Figure 6.5b. One has the equality

Ψt
t(f) = f , (6.20)

where [f : A → M ] ∈ CA is the averaged morphism introduced in (5.43) (with the
3-dimensional representation in Figure 5.8a). Indeed, Ψt

t(f) corresponds to the
evaluation Zdef

C (CT ◦Bf ) which can be computed by ribbonising the argument and
rearranging the result as in Figure 6.5c. We conclude that

ZorbA
C (S2

M) ∼= CA(A,M) ∼= ZRT
CA (S2

M) . (6.21)

Note that for a morphism f ∈ CA(A,M), the defect bordism Bf is a choice of
foamification of the bordism Bf : ∅→ S2

M as introduced in (3.20).

6.4. Isomorphism to graph TQFT of RT type

In this section we prove the TQFTs of Reshetikhin-Turaev type close under orb-
ifolds, or more precisely, that the following holds:

Theorem 6.13. There is an isomorphism between the graph TQFTs

ZorbA
C , ZRT

CA : B̂ordrib
3 (CA)→ Vectk . (6.22)

The proof is similar to that of the isomorphism between the TQFTs of Turaev-
Viro type obtained from a spherical fusion category S with dimS 6= 0 and the
Reshetikhin-Turaev TQFTs obtained from the Drinfeld centre Z(S), see [TV,
Ch. 17]. It relies on the following technical lemma [TV, Lem. 17.2]:

Lemma 6.14. Let M be a monoidal category and let F,G : M → Vectk be
monoidal functors. Moreover, suppose that

i) F is non-degenerate, i. e. for all objects X ∈M one has

F (X) ∼= spank F
(
M(1, X)

)
; (6.23)

ii) for all X ∈M one has

dimF (X) ≥ dimG(X) ; (6.24)

iii) for all ϕ ∈ EndM(1) one has

F (ϕ) = G(ϕ) (6.25)

(where we omitted the structural isomorphisms F (1M) ∼= k ∼= G(1M)).

Then there is a unique monoidal natural isomorphism between F and G.
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This lemma will be applied for M = B̂ordrib
3 (CA), F = ZRT

CA and G = ZorbA
C .

For this one needs to make sure that the conditions i), ii), iii) hold. Note that i)
is already fulfilled by definition of the Reshetikhin-Turaev TQFT (recall that by
definition the vector space ZRT

C (Σ) for a punctured surface Σ is defined as a quotient
of the linear span of the bordisms of type [∅ → Σ], see (3.17)). Condition iii)
translates into the statement that the TQFTs ZRT

CA and ZorbA
C yield equal invariants

of closed CA-coloured ribbon 3-manifolds, which is verified below. Finally, we show
that the condition ii) holds in Section 6.5. Note that the condition ii) is only

relevant for the case char k 6= 0, since otherwise, for all Σ ∈ B̂ordrib
3 (CA), the

invariants of Σ×S1 already yield the dimensions of the corresponding state space,
see (3.27).

For the rest of the section we focus on showing, that for a closed CA-coloured

ribbon manifold M = [(M,R, n) : ∅ → ∅] ∈ B̂ordrib
3 (CA), with the embedded

CA-coloured ribbon graph R and signature n ∈ Z, one has

ZorbA
C (M) = ZRT

CA (M) . (6.26)

For this one needs to relate the presentations of M in terms of surgery on S3 and
as an admissible A-coloured ribbon diagram, which is achieved in the following

Construction 6.15. For a choice L of a surgery link for M we construct an
admissible A-coloured ribbon diagram TL for (M,R) as follows:

i) Following Section 3.2, let L t R be the ribbon graph in S3 ' R3 ∪ {∞} repre-
senting (M,R) i.e. consisting of possibly linked components of L and R such that
surgery along L yields (M,R). Project LtR on the outwards oriented unit 2-sphere
so that the coupons do not intersect the strands, the intersections of strands are
pairwise distinct and transversal, and the framings of components of L t R agree
with the orientation of the 2-sphere. The intersection points are marked to dis-
tinguish between “overcrossings” and “undercrossings”. For simplicity we assume
that there are no crossings between the strands of R, which can be achieved by
exchanging them with coupons labelled with braiding morphisms. Below we iden-
tify L and R with their projection images in S2.

ii) Surround each strand of L by additional 1- and 2-strata as shown in Figure 6.6a.
As we will see later, this is done intentionally to mimic the stratification correspond-
ing to a “pipe” object of CA as explained in Remark 5.15. The crossings between
the components of L and R are exchanged for the stratifications as in Figures 6.6b
and 6.6c, analogous to those corresponding to the braiding morphisms involving
the pipe objects. The crossings between the components of L are handled in the
same way, which results in a more intricate stratification shown in Figure 6.6d.
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iii) Perform surgery along L (see Section 3.2): for each component Li of L let Ui be
its tubular neighbourhood and let ϕi : S

1×S1 → −∂(S3\Ui) be the diffeomorphism
along which the gluing with a solid torus B2 × S1 is performed, i.e. such that
ϕi(S

1 × {1}) coincides with the framing of Li. We make this into a gluing of two
stratified manifolds as follows: Provide the solid tori with stratifications by two
oriented meridian discs

d1 = B2 × {eiπ/2} and d2 = (−B2)× {e−iπ/2} . (6.27)

Since the 1-strata on ∂Ui run parallel to the curve left by the framing of Li, we can
assume that ϕi is an isomorphism of stratified surfaces, i.e. ϕi maps S1 × {e±iπ/2}
to the 1-strata of ∂Ui, see Figure 6.7a. This yields the manifold M together with
a stratification TL, whose strata (besides those belonging to R) are unlabelled.

iv) To show that TL is a ribbon diagram for (M,R), one needs to argue that all
its 3-strata are contractible. For a component Li of L, let V1, V2 be the 3-strata
inside the pipe stratification added in step ii). Before the surgery, V1 and V2 are
diffeomorphic to open solid tori. After the surgery their topology is changed: one
can move the pipe stratification together with V1, V2 across the diffeomorphism ϕi
into the interior of the solid torus where they look like open solid cylinders and are
evidently contractible (see Figures 6.7b and 6.7c).

v) Define the admissible A-coloured ribbon diagram TL by labelling the 2-, 1- and
0-strata of TL with A, T and α/α and adding the appropriate φ-insertions as in
Definition 6.5.

The number of 3-strata in TL is 2 + 2|L|, where |L| is the number of components
of L. Indeed, the 2-sphere in step i) creates two 3-strata and for each component
of L the pipe stratification creates two more 3-strata.

Let us now use the admissible A-coloured ribbon diagram TL for (M,R) to
compute the invariant ZorbA

C (M,R, n). In parallel we illustrate the computation
with the explicit example of the invariant of the ribbon 3-manifold (S3,∅, 0), for
which we use the surgery link W having one component with a single twist, i.e.

W = . (6.28)

This example will also later help us compute the anomaly of the MFC CA.
Recall the notation, introduced before the statement of Lemma 5.19: for an

object M ∈ CA and a morphism f ∈ EndCA(M), L(M, f)tR will mean the ribbon
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↔

(a)

↔

(b)

↔

(c)

(d)

Figure 6.6: Exchanging surgery lines with tubes. Each 2-stratum has the paper-
plane orientation, 1-strata have orientations as indicated. Strands that belong to
the ribbon graph R carry a label of some object M = (M, τ1, τ2) ∈ CA.
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(a)

(b) (c)

Figure 6.7: For each component Li, the 3-strata V1, V2 in the interior of the sur-
rounding pipe become contractible after surgery. The pictures only show a strip of
the pipe: it is actually closed and can be adjacent to other 2-strata or the strands
of R (which are ignored in this illustration). The inner white tube represents the
solid torus with the two meridian disks d1, d2, that is being glued along ϕi during
surgery (for this tube the top and the bottom can be thought of as identified).
Moreover, ϕi maps the boundaries of the discs d1, d2 in ∂Ui to the meridian lines
on the boundary of the solid torus. The pictures (a), (b) and (c) all depict the
same configuration, in (b) and (c) the pipe stratification is moved inside the solid
torus along ϕi.
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graph, obtained from L t R by colouring the components of L with M together
with a single f -insertion. For brevity, let us denote

P := P (A⊗ CC ⊗ A) , dP := P ((ψAr )2 ⊗ dC ⊗ (ψAl )2)
)
, (6.29)

where the object/morphism pair (CC, dC) is the Kirby colour for the MFC C,
see (2.18).

Lemma 6.16. Let A be a simple orbifold datum in a MFC C and M = (M,R, n),
L as above. Then the following identity holds:

ZorbA
C (M,R, n) = δ

n−σ(L)
C ·D−|L|−1

C · φ4|L| · FCA
(
L(P, dP ) tR

)
, (6.30)

where FCA : RibCA → Vectk is the Reshetikhin-Turaev functor, and one uses the
isomorphism EndCA(A) ∼= k to read FCA

(
L(P, dP ) tR

)
as a scalar.

Proof. For the invariants of closed manifolds one has by definition:

ZorbA
C (M) = Zdef

C
(
F (M,TL)

)
, (6.31)

where F is the foamification map (6.3). We apply the properties of the defect
TQFT Zdef

C to modify the stratification TL in several steps:

i) For each component Li of L, the meridian discs of the solid tori glued in
during surgery (i. e. d1, d2 as in (6.27)) extend to contractible 2-strata of
F (M,TL). By Property 4.16, upon evaluating with Zdef

C they can be removed,
leaving ψ2-insertions on the adjacent T -labelled 1-strata. The rest of TL

does not intersect the link L, i.e. it can be moved away to not intersect the
boundaries of the solid tori, along which the surgery is performed.

ii) By definition of Zdef
C via the Reshetikhin-Turaev TQFT ZRT

C and the formula
(3.26) for the invariants of closed manifolds, one can further proceed by
replacing the link L with its coloured version L(CC, dC) and adding the overall

factor δ
n−σ(L)
C ·D−|L|C . The resulting stratification of S3 for the example surgery

link W in (6.28) is depicted in Figure 6.8b.

iii) By Property 6.10, the components of the labelled surgery link L(CC, dC),
along with the pipe stratifications surrounding them, can be exchanged for
the 1-strata labelled by the objects P ∈ CA, i.e. by the pipe objects obtained
from the induced bimodule A ⊗ CC ⊗ A ∈ ACA. As an intermediate step in
this change one uses the Property 4.15 and the isomorphisms T ⊗2 A ∼= T
of A-A ⊗ A-bimodules in order to apply the definition (5.42) with M =
A ⊗ CC ⊗ A. For each component of L(CC, dC), the dC-insertion and the
two ψ2-insertions in the surrounding stratification obtained in step i) can
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be collected into a single dP -insertion. The stratifications that replaced the
crossings of strands in the construction of TL (i. e. the ones depicted in Figures
6.6b, 6.6c and 6.6d) can in turn be replaced with coupons labelled by the
braiding morphisms for P .

iv) The previous step yields an overall factor φ4|L| (which previously served as
φ2-insertions for the 3-strata inside the pipe stratifications surrounding the
components of L) and simplifies the stratification of S3 to an A-labelled
2-sphere with the graph L(P, dP ) t R projected on it as well as the two
remaining φ2-insertions in its 3-strata (see Figure 6.8c for how it looks for
the example surgery link W ). The ribbon graph L(P, dP )tR can be further
exchanged for a single coupon labelled with f = [FCA(L(P, dP )tR) : A→ A].
At this point one recognises the remaining stratification of S3 as the ribbon
diagram used in Example 6.11. Using the computation (6.16) and collecting
all prefactors, one obtains the formula (6.30).

We now proceed to compare the expression (6.30) with the invariant ZRT
CA (M,R, n),

which is obtained by adapting (3.12) for the MFC CA. One of the main differences
in the two formulas is using the colouring (P, dP ) of the surgery link L for ZorbA

C and
the colouring (CCA , dCA) for ZRT

CA . The two colourings are however already related
in Lemma 5.19. We apply it first to compare the anomalies (see (2.28)):

Lemma 6.17. The modular fusion categories C and CA have the same anomaly,
i.e. δC = δCA .

Proof. We compare two computations of the invariant ZorbA
C (S3,∅, 0), one using

the empty surgery link as in the Example 6.11 and the other using the surgery link
W in (6.28). The former one is obtained from (6.17) and (3.24). For the latter, note
that one has σ(W ) = 1 and it follows from (2.19) that FCA(W (CCA , dCA)) = p+

CA .
One uses the formula (6.30) together with Lemma 5.19 to compute:

D−1
CA = ZorbA

C (S3,∅, 0) = δ−1
C ·D

−1
C · φ

4 ·D−1
CA · FCA

(
W (P, dP )

)
= δ−1

C ·
(

DC

φ4 · trC ω2
A

)−1

·D−1
CA · p

+
CA

(5.64),(2.28)
= δ−1

C ·D
−1
CA · δCA , (6.32)

which yields the result.

Finally, a similar computation as in the proof of Lemma 6.17 can be performed
to prove

Lemma 6.18. Let [(M,R, n) : ∅ → ∅] ∈ B̂ordrib
3 (CA) be a closed CA-coloured

ribbon 3-manifold with the embedded ribbon graph R and signature n ∈ Z. One
has:

ZRT
CA (M,R, n) = ZorbA

C (M,R, n) . (6.33)
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(a) (c)

(b)

Figure 6.8: Illustration of the proof of Lemma 6.16 for the case of surgery link W
in (6.28): (a) Projecting W on a 2-sphere in S3 as in step i) of Construction 6.15.
(b) Surrounding W with pipe stratifications and adding labels. (c) Exchanging
the pipes with P -labelled strands with Pd-insertions and replacing crossings with
coupons.
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Proof. Since both invariants are multiplicative with respect to connected compo-
nents, it is enough to consider the case when M is connected. One has:

ZRT
CA (M,R, n)

(3.12)
= δ

n−σ(L)
CA ·D−|L|−1

CA · FCA
(
L(CCA , dCA) tR

)
Lem.6.17

=
Lem.5.19

δ
n−σ(L)
C ·D−|L|−1

CA · 1

(trC ω2
A)|L|

· FCA
(
L(P, dP ) tR

)
(6.30)
= D

−|L|
CA · 1

(trC ω2
A)|L|

·D|L|C · φ
−4|L| · ZorbA

C (M,R, n)

= D
−|L|
CA ·

(
DC

φ4 · trC ω2
A

)|L|
· ZorbA
C (M,R, n)

(5.64)
= ZorbA

C (M,R, n) . (6.34)

Having proved this, we have shown that the condition iii) of Lemma 6.14 for
F = ZRT

CA and G = ZorbA
C is satisfied. The remaining condition ii) is addressed in

the following section.

6.5. State spaces

We now compare the vector spaces assigned to a punctured surface Σ ∈ B̂ordrib
3 (CA)

by the graph TQFTs ZorbA
C and ZRT

CA . It is enough to consider the case of Σ having
a single M = (M, τ1, τ2) ∈ CA labelled puncture (this follows from [TV, Lem. 15.1]
and the fact that upon evaluation both TQFTs allow to compose the coupons of
embedded ribbon graphs). In Example 6.11 we already looked at the case when Σ
has genus 0 so here we will assume Σ to have genus g > 0.

Recall from Property 3.13 that the vector space ZRT
CA (Σ) is spanned by the (classes

of) CA-coloured ribbon bordisms Hg = [(Hg, R) : ∅ → Σ], where Hg is a solid
handlebody of genus g and R is a ribbon graph, positioned at the core of Hg

with strands labelled by the simple objects of CA (except for the one labelled with
M ∈ CA, which may or may not be simple, see (3.22)).

On the other hand, to compute the vector space ZorbA
C (Σ) we will use the

formula (6.14). The admissible A-coloured ribbon diagram T for the cylinder
CΣ = Σ × [0, 1] that we utilise is depicted in Figure 6.9, where we use a similar
presentation as in (3.22): each of the g handles is depicted as a vertical cylinder
with the ends identified. To arrive at the ribbon diagram T, we proceed in three
steps illustrated in Figure 6.10, where we show only the part involving the leftmost
handle:
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Figure 6.9: An admissible A-coloured ribbon diagram T for the cylinder CΣ =

Σ×[0, 1] over an object Σ ∈ B̂ordrib
3 (CA) with a single puncture labelled by M ∈ CA.

i) one starts by adding to CΣ vertical A-labelled 2-strata connecting the bound-
ary components as shown in Figure 6.10a;

ii) the two boundary components are then separated by further stratification
with A-labelled 2-strata, T -labelled 1-strata, and 0-strata labelled with the
appropriate T -crossings of M , resembling the one in the definition of the pipe
functor as shown in Figure 6.10b;

iii) finally one adds the horizontal A-labelled strata as in Figure 6.10c, to make
the 3-strata of CΣ contractible.

T has four 3-strata, each of which touches a boundary component of CΣ and
therefore receives a φ-insertion.

The steps needed to compute the spanning set of the space ZorbA
C (Σ) are schemat-

ically shown in Figure 6.11, and we now proceed to explain them. Let t be the
restriction of the ribbon diagram T to Σ, and denote the foamifications of Σ and CΣ

by Σt := F (Σ, t) and CT
Σ := F (CΣ,T), respectively. We need to compute the image

of the idempotent

Ψt
t =

[
Zdef
C (CT

Σ) : Zdef
C (Σt)→ Zdef

C (Σt)
]
. (6.35)
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(a) (b) (c)

Figure 6.10: Constructing the A-coloured ribbon diagram of CΣ in Figure 6.9; only
the leftmost handle is shown.

From Property 4.17 of the defect TQFT Zdef
C we know that the space Zdef

C (Σt)
is spanned by the (classes of) genus g defect handlebodies [Ht

g : ∅ → Σt] in

B̂orddef
3 (DC), where the stratification of Ht

g is obtained by retracting the strati-
fication t on Σ to the core of the handlebody. One has:

Ψt
t(H

t
g) = CT

Σ ◦Ht
g . (6.36)

The defect handlebody on the right-hand side of (6.36) is shown in Figure 6.11a,
where, as in Figure 6.10, only the first handle is depicted. The labels consist of
arbitrary A-A-bimodules Y , Y ′, Y ′′, Y ′′′, Z, as well as A-A-bimodule morphisms

f : Y → X ⊗A Y ′′′ , g : Y ′′′ → Y ⊗A Z (6.37)

and A-A⊗ A-bimodule morphisms

h : T ⊗1 Y → Y ′ ⊗0 T , h′ : Y ′ ⊗0 T → T ⊗2 Y
′′ (6.38)

(similarly in the handles not depicted in the figure). Using the pipe functor
P : ACA → CA, the stratification inside the handlebody can be exchanged for the
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(a) (b) (c)

Figure 6.11: Sets of handlebodies, spanning the vector space im Ψt
t
∼= ZorbA

C (Σ).

one depicted in Figure 6.11b, where the points are labelled by morphisms

f̃ = , g̃ = , (6.39)
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h̃ = φ · , h̃′ = φ · , (6.40)

all of which satisfy (M) and are therefore morphisms in CA. By the semisimplic-
ity of CA, one can decompose Ψt

t(H
t
g) into a linear combination of handlebodies

with stratification as in Figure 6.11c, where ∆,∆′,Γ are simple objects of CA, and
ϕ : ∆→M ⊗A ∆′ and γ : ∆′ → ∆⊗A Γ are morphisms in CA. Note that such han-
dlebodies are exactly admissible ribbon diagrams of the ones spanning the space
ZRT
CA (Σ). One therefore concludes that

dimZRT
CA (Σ) ≥ dimZorbA

C (Σ) (6.41)

and so the condition ii) of Lemma 6.14 for F = ZRT
CA and G = ZorbA

C is satisfied.
Together with Lemma 6.18, this proves Theorem 6.13. The isomorphism of the
two TQFTs of course implies that the two state spaces are actually isomorphic:

ZRT
CA (Σ) ∼= ZorbA

C (Σ) . (6.42)
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7. Examples of orbifold data

In this chapter we analyse two examples of modular fusion categories, associated
to orbifold data. The first example, laid out in Section 7.1, explores the orbifold
datum B, obtained from a condensable algebra B in a modular fusion category C
(see Definition 7.1 below). In this case CB is equivalent to the category of local
modules of B. The second example, presented in Section 7.2, deals with the orbifold
datum AS in C = Vectk, built from a spherical fusion category S with non-vanishing
global dimension DimS. The associated modular fusion category CAS then turns
out to be equivalent to the Drinfeld centre Z(S).

The orbifold data in both of the examples were introduced in [CRS3] and their
associated modular fusion categories were studied in [MR1].

7.1. Condensations

Recall that an algebra B in a braided category C is called commutative if one has

= , (7.1)

or alternatively, if B = Bop. We call a (left) B-module M local (or dyslectic) if

= . (7.2)

Here we will focus on commutative algebras in a MFC C.

Definition 7.1. A condensable algebra in a MFC C is a symmetric ∆-separable
haploid Frobenius algebra B ∈ C. The full subcategory of BC of local B-modules
will be denoted by Cloc

B and referred to as the B-condensation of C.

Remark 7.2. The term “condensable algebra” is borrowed from applications of
fusion categories to condensed matter physics, see e.g. [Ko, Def. 2.6], [CZW, Ex.
3.2.4]. Sometimes it is also used to refer to an étale algebra in a non-degenerate
braided fusion category, which is a haploid (or connected) commutative separable
algebra, i.e. without an assigned Frobenius structure (see e.g. [DMNO, Def. 3.1
& Ex. 3.3ii)]). An étale algebra A is automatically Frobenius and symmetric if
dimA 6= 0, see [FRS1, Lem. 3.7, Cor. 3.10, Lem. 3.11].
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Let us review some of the basic properties of the B-condensation of C. We refer
to [FFRS] for more details.

• Since B is commutative, for any B-module M the morphisms on both sides
of (7.2) define right B-actions on M , which yields two bimodules M+ and
M−. Local modules are precisely those for which one has M+ = M−; when
talking about the right action on M ∈ Cloc

B we will always mean the one given
by (7.2).

• One uses the tensor product of BCB to equip Cloc
B with tensor product and

duals. Furthermore, the braiding on C induces a braiding on Cloc
B , for all

M,N ∈ Cloc
B defined by (with omitted inclusions/projections onto the relative

tensor products according to Convention 2.16)

cM,N := , c−1
M,N := . (7.3)

Because of the identity (7.2), the twist of an arbitrary object M ∈ Cloc
B

coincides with the twist of the underlying object in C, which makes Cloc
B into

a ribbon category. Note in particular, that the twist of the underlying object
of the condensable algebra B ∈ C is trivial, i.e. θB = idB.

• Since B is ∆-separable, the condensation Cloc
B is finitely semisimple. More-

over, since B is haploid, the tensor unit 1ClocB
:= B is a simple object, so

Cloc
B is fusion. It was proven in [KO] and [DMNO, Cor. 3.30] that the B-

condensation Cloc
B is in fact a MFC.

For the remainder of the section we show that the B-condensation can be ob-
tained as a MFC associated to an orbifold datum B in C with

B =
(
B, BBBB, α = α = ∆ ◦ µ, ψ = η, φ = 1

)
, (7.4)

where the commutativity of the algebra B allows one to treat B as a B-B ⊗ B-
bimodule and the composition [∆◦µ : AA→ AA] of the product and the coproduct
of B as a B-B ⊗ B ⊗ B-bimodule morphism. It was shown in [CRS3] that B is
indeed an orbifold datum, i.e. satisfies the identities (O1)-(O8).

Theorem 7.3. Let B be a condensable algebra in a MFC C and B the orbifold
datum as in (7.4). Then B is simple and one has CB ' Cloc

B as k-linear ribbon
categories.
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Proof. Define a functor F : Cloc
B → CB as follows: Given a local module M , equip

it with the canonical bimodule structure and define the T -crossings (for T = B as
in (7.4)) to be

= := . (7.5)

All of the identities (T1)-(T7) then hold and are easy to check, e.g. for (T1) one
has:

= =
(∗)
= = = .

In (∗) one uses the fact that the right action of M comes from (7.2). A morphism
in CB is precisely a B-module morphism, i.e. F is fully faithful. Since B is simple
as a left module over itself (because B is haploid), this shows that the orbifold
datum B is simple.

It is easy to check that F preserves tensor products, braidings and twists, hence
it only remains to check that it is an equivalence. We show that F is essentially
surjective.

Let (M, τ1, τ2) ∈ CB. Since τ1, τ2 are B-B ⊗B-bimodule morphisms, one has:

= = , = = . (7.6)

For example in the first equality for τ1 we think of the right B-action as the action
of the first tensor factor of B ⊗ B and in the second equality as the action of the
second tensor factor. Since M ∼= B ⊗B M ∼= M ⊗B B, the T -crossings τ1, τ2 can
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be recovered from the following invertible B-module morphisms τ̂1, τ̂2 : M →M :

τ̂i := , i = 1, 2. (7.7)

We can then relate the left and right action on M as follows:

(7.6)
= = = ⇒ = .

Similarly, the identities for τ2 in (7.6) imply

= .

Hence M is a local module with the canonical bimodule structure. It remains to
show that the T -crossings are as in (7.5). Using the identity (T1) one has

= ⇔ = .

Examining both sides of the last equality gives:

left-hand side: = = = τ̂1,
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right-hand side: = = = τ̂1 ◦ τ̂1.

Hence one has τ̂1 = τ̂1 ◦ τ̂1 and since it is invertible, τ̂1 = idM , which in turn implies
that τ1 is precisely as in (7.5). The identity (T3) implies the same for τ2.

Combining the above result with Theorem 5.20 gives an independent proof that
Cloc
B is modular. For the orbifold datum (7.4) one has trC ω

2
A = dimC B and φ = 1,

so the second part of Theorem 5.20 yields

Dim Cloc
B =

Dim C
(dimC B)2

. (7.8)

Both modularity and the above dimension formula are already known from [KO].

Remark 7.4. For a B-B-bimodule M ∈ BCB and an object X ∈ C, applying the
pipe functor P : BCB → CB on M and on the induced bimodule B ⊗X ⊗ B yields
the objects

P (M) ∼= im , P (B ⊗X ⊗B) ∼= im , (7.9)

where the horizontal B-lines play the role of the idempotent (2.50), which commute
with the actions of B because of commutativity and enforce the relation (7.1) on
the images. The isomorphisms (7.9) follow from the definition (5.42) and using the
obvious isomorphisms B ⊗B M ∼= M , etc.

Remark 7.5. A condensable algebra B ∈ C can be used to label 2-strata in the
defect TQFT Zdef

C . Because of the commutativity condition (7.1), such surface
defects can be thought of as having no orientation assigned, see Property 4.12.
Moreover, B can be considered as a multimodule over any number of copies of B,
and therefore also used to label 1-strata having any number of B-labelled 2-strata
adjacent to it. Since the twist of the object B ∈ C is trivial, B-labelled 1-strata can
be interpreted as having no framing assigned. This makes the resulting orbifold
graph TQFT ZorbB

C particularly easy to handle, which will be exploited in Chapter 9
to introduce domain walls between different orbifold theories of type (7.4).
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7.2. Drinfeld centres

In this section, let S be a spherical fusion category such that DimS 6= 0 (this
condition is only relevant if chark 6= 0). Recall from Proposition 2.7, that in
this case the Drinfeld centre Z(S) is a MFC. We show that it can be obtained
as a MFC associated to a certain orbifold datum AS in the trivial modular fusion
category Vectk of finite dimensional k-vector spaces. This orbifold datum appeared
in [CRS3, Sec. 4.2] and will be presented in the setting of ∆-separable Frobenius
algebras and Euler completion summarised in Appendix C.

Let us define the natural transformation ψ : IdS ⇒ IdS by taking for each X ∈ S

ψX :=
∑
i, π

dim
1/2
S (i) · [X π−→ i

π̄−→ X] . (7.10)

Here, i in the sum ranges over IrrS , π over a basis of S(X, i), and π̄ is the cor-
responding element of the dual basis of S(i,X) with respect to the composition
pairing S(i,X) ⊗k S(X, i) → S(i, i) ∼= k. We now define AS = (A, T, α, α, ψ, φ)
with:

A =
⊕
i∈IrrS

S(i, i) ∼=
⊕
i∈IrrS

k, T =
⊕

l,i,j∈IrrS

S(l, ij),

α :
⊕
l,a,i,j,k

S(l, ia)⊗k S(a, jk)︸ ︷︷ ︸
∼=
⊕
l,i,j,k S(l, i(jk))

−→
⊕
l,b,i,j,k

S(l, bk)⊗k S(b, ij)︸ ︷︷ ︸
∼=
⊕
l,i,j,k S(l, (ij)k)

,

[
l
f−→ i(jk)

]
7−→

[
l
f−→ i(jk)

a−1
i,j,k−−−→ (ij)k

ψ−2
ij ⊗idk−−−−−→ (ij)k

]
,

α :
⊕
l,b,i,j,k

S(l, bk)⊗k S(b, ij)︸ ︷︷ ︸
∼=
⊕
l,i,j,k S(l, (ij)k)

−→
⊕
l,a,i,j,k

S(l, ia)⊗k S(a, jk)︸ ︷︷ ︸
∼=
⊕
l,i,j,k S(l, i(jk))

,

[
l
g−→ (ij)k

]
7−→

[
l
g−→ (ij)k

ai,j,k−−−→ i(jk)
idi⊗ψ−2

jk−−−−−→ i(jk)

]
,

ψ :
[
i
f−→ i
]
7−→

[
i
f−→ i

ψi−→ i
]

, φ2 =
1

DimS
=

(∑
i∈IrrS

dim2
S(i)

)−1

. (7.11)

Here, we abuse notation by denoting the morphism ψ : A → A (which labels the
point insertions in the setting of Appendix C) in the orbifold datum and the natural
transformation ψ : IdS ⇒ IdS from (7.10) with the same symbol. The left action of
[f : k → k] ∈ A on [m : l → ij] ∈ T , i, j, k, l ∈ IrrS is precomposition and the first
(resp. second) right action is postcomposition with (f ⊗ idj) (resp. (idi⊗f)) (if the
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composition is undefined, the corresponding action is by 0). The isomorphisms in
the definitions of α, α given by composition. For example, in the source object of
α, the explicit form of the isomorphism is f ⊗k g 7→ (idi⊗g) ◦ f .

Theorem 7.6. Let S be a spherical fusion category with DimS 6= 0, AS the
orbifold datum as in (7.11) and C = Vectk. Then AS is simple and CAS ∼= Z(S) as
k-linear ribbon categories.

Together with Theorem 5.20 this gives an alternative proof that Z(S) is modular.
Furthermore, for the orbifold datum (7.11) one has trC ω

2
A = DimS, so the second

part of Theorem 5.20 yields

DimZ(S) = (DimS)2 . (7.12)

Modularity and the dimension of Z(S) are of course already known from [Mü2].

Remark 7.7. It was shown in [CRS3, Sec. 4] that the TQFT, obtained as the
generalised orbifold of the trivial TQFT (i.e. obtained from the trivial MFC Vectk)
using the orbifold datum AS (without embedded ribbon graphs) coincides with
the TQFT of Turaev-Viro-Barrett-Westbury (TVBW) type, obtained from the
spherical fusion category S [TViro, BW2, TVire, TV]. The orbifold graph TQFT
from Chapter 6 in principle allows one to generalise this result to bordisms with
embedded ribbon graphs: By Theorem 6.13, both graph TQFTs are isomorphic to
the Reshetikhin-Turaev (RT) TQFT, obtained from the Drinfeld centre Z(S). In
this sense, Theorem 6.13 generalises the known equivalence between the TQFTs
of TVBW and RT types for Drinfeld centres, proved by Turaev-Viralizier [TVire,
TV] and Balsam-Kirillov [BalK1, BalK2, BalK3] (the latter proof also applies to
extended TQFTs, which we do not discuss in this work). Namely, Theorem 6.13
proves a similar result for an orbifold datum A in a MFC C also when CA is not
necessarily a Drinfeld centre.

The proof of Theorem 7.6 is somewhat lengthy and technical. It is presented
in the rest of the section and organised as follows: In Section 7.2.1 we define an
auxiliary category A(S) which is proved to be equivalent to the centre Z(S) as
a linear category. Then in Sections 7.2.2 and 7.2.3 we show that CAS ∼= A(S) as
linear categories, and that the orbifold datum AS is simple. Composing the two
equivalences gives a linear equivalence F : Z(S)→ CAS . In Section 7.2.4 we equip
F with a monoidal structure and show that it preserves braidings and twists.

We emphasise again, that the orbifold datum AS is presented in the setting of ∆-
separable algebras and Euler completion. This means that the identities (O1)-(O8)
for AS and the identities (T1)-(T7) will be exchanged for the identities (O1∆)-
(O8∆) and (T1∆)-(T7∆) listed in Appendix C. If necessary, their 3-dimensional
presentations can be ribbonised as explained in Section 5.2 and illustrated in Fig-
ure 5.4.
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7.2.1. Auxiliary category A(S) and equivalence to Z(S)

Definition 7.8. Define the category A(S) to have

• objects : triples (X, tX , bX), where X ∈ S and tX : X ⊗ (−⊗−)⇒ (X ⊗−)⊗−,
bX : X⊗(−⊗−)⇒ −⊗(X⊗−) are natural transformations between endofunctors
of S × S, such that the following diagrams commute for all U, V,W ∈ S:

X(U(VW ))

(XU)(VW )

((XU)V )W

X((UV )W ) (X(UV ))W

tXU,VW a−1
XU,V,W

idX ⊗a−1
U,V,W

tXUV,W

tXU,V ⊗idW

, (7.13)

X(U(VW ))

U(X(VW )) U((XV )W )

(U(XV ))W

X((UV )W ) (X(UV ))W

bXU,VW

idU ⊗tXV,W

a−1
U,XV,W

idX ⊗a−1
U,V,W

tXUV,W

bXU,V ⊗idW

, X(U(VW ))

U(X(VW )) U(V (XW ))

(UV )(XW )

X((UV )W )

bXU,VW

idU ⊗bXV,W

a−1
U,V,XW

idX ⊗a−1
U,V,W

bXUV,W

;

(7.14)

• morphisms: ϕ : (X, tX , bX)→ (Y, tY , bY ) is a natural transformation
ϕ : X ⊗− ⇒ Y ⊗−, such that the following diagrams commute for all U, V ∈ S

X(UV )

Y (UV )

(Y U)V

(XU)V

ϕUV tYU,V

tXU,V
ϕU⊗idV

, X(UV )

Y (UV )

U(Y V )

U(XV )

ϕUV bYU,V

bXU,V
idU ⊗ϕV

. (7.15)
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Proposition 7.9. The functor E : Z(S)→ A(S), acting

• on objects: E(X, γ) := (X, tX , bX), where for all U, V ∈ S

tXU,V :=

[
X(UV )

a−1
X,U,V−−−−→ (XU)V

]
,

bXU,V :=

[
X(UV )

a−1
X,U,V−−−−→ (XU)V

γU⊗idV−−−−→ (UX)V
aU,X,V−−−−→ U(XV )

]
; (7.16)

• on morphisms: E
(

[(X, γ)
f−→ (Y, δ)]

)
:= {X ⊗ U f⊗idU−−−→ Y ⊗ U}U∈S .

is a linear equivalence.

Proof. It is easy to see that E(X, γ) is indeed an object in A(S) and that E(f) is
a morphism in A(S). In the remainder of the proof we show that E is essentially
surjective and fully faithful.

As a preparation, given an object (X, t, b) ∈ A(S) ∈ A(S) we derive some prop-
erties of t and b. For V,W ∈ S, consider the following diagram, whose ingredients
we proceed to explain:

X(1(VW ))

(X1)(VW )

((X1)V )W

X((1V )W ) (X(1V ))W

X(VW )

X(VW )

(XV )W

X(VW ) (XV )W

t1,V W a−1
X1,V,W

idX ⊗a−1
1,V,W

t1V,W

t1,V ⊗idW

̂t1,V W a−1
X,V,W

id

tV,W

t̂1,V ⊗idW

∼

∼

∼

∼ ∼

. (7.17)

We abbreviate tX by t, and we use the following notation for all U ∈ S:

t̂1,U :=

[
XU

idX ⊗l−1
U−−−−−→ X(1U)

t1,U−−→ (X1)U
rX⊗idU−−−−→ XU

]
,

t̂U,1 :=

[
XU

idX ⊗r−1
U−−−−−→ X(U1)

tU,1−−→ (XU)1
rXU−−→ XU

]
, (7.18)

b̂1,U :=

[
XU

idX ⊗l−1
U−−−−−→ X(1U)

b1,U−−→ 1(XU)
lXU−−→ XU

]
,

b̂U,1 :=

[
XU

idX ⊗r−1
U−−−−−→ X(U1)

bU,1−−→ U(X1)
idU ⊗rX−−−−−→ UX

]
.
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This notation will be used in the remainder of this section, too.
By taking U = 1 in (7.13), the inner pentagon in (7.17) commutes and all squares

commute by definition of t̂1,U , by naturality or by monoidal coherence, and hence
the outer pentagon commutes as well. Leaving out the identity edge, we get the
following commutative diagram for all V,W ∈ S:

X(VW )

X(VW )

(XV )W

(XV )W

̂t1,V W a−1
X,V,W

tV,W t̂1,V ⊗idW

. (7.19)

Similarly, by taking V = 1 and W = 1 in (7.13) one in the end gets the following
two commuting diagrams:

∀U,W ∈ S :

X(UW ) (XU)W

(XU)W

tU,W

tU,W
t̂U,1⊗idW

,∀U, V ∈ S :

X(UV ) (XU)V

X(UV )

tU,V

t̂UV,1

tU,V . (7.20)

These diagrams imply that for all U ∈ S one has t̂U,1 = idU .
Repeating the above procedure of setting individual objects to 1 also for two

diagrams in (7.14) yields three more conditions. Namely, for all U, V,W ∈ S one

has b̂1,U = idU and the following diagrams commute:

X(UW )

U(XW ) U(XW )

(UX)W

(XU)W

bU,W

idU ⊗̂t1,W
a−1
U,X,W

tU,W b̂U,1⊗idW

,

X(UV ) U(XV )

U(V X)(UV )X

bU,V

idU ⊗b̂V,1

a−1
U,V,X

b̂UV,1 . (7.21)

Let ηU := [XU
t̂1,U−−→ XU ] and γU := [XU

η−1
U−−→ XU

b̂U,1−−→ UX] for all U ∈ S.
We claim that γ is a half-braiding for X and that η is an isomorphism (X, t, b)→
E(X, γ) in A(S).

We start by showing that η is indeed a morphism in A(S). First note that (7.19)
now reads

tU,V =

[
X(UV )

ηUV−−→ X(UV )
a−1
X,U,V−−−−→ (XU)V

η−1
U ⊗idV−−−−−→ (XU)V

]
. (7.22)
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Together with the definition of E(X, γ) in (7.16) we see that this is precisely the
first condition in (7.15). Plugging (7.22) into the first diagram in (7.21) results in

bU,V =

 X(UV )
ηUV−−→ X(UV )

a−1
X,U,V−−−−→ (XU)V

γU⊗idV−−−−→ (UX)V
aU,X,V−−−−→ U(XV )

idU ⊗η−1
V−−−−−→ U(XV )

 . (7.23)

This is precisely the second condition in (7.15).
Checking that γ satisfies the hexagon condition is now a direct consequence of

plugging (7.23) into the second diagram in (7.21).
Altogether, this shows that E is essentially surjective.
To get that E is fully faithful, let ϕ : E(X, γ)→ E(Y, δ) be a morphism in A(S).

Setting U = 1 in the first condition in (7.15) yields that for all V ∈ S one has
ϕV = ϕ̂1 ⊗ idV , where

ϕ̂1 :=

[
X

r−1
X−−→ X1

ϕ1−→ Y 1
rY−→ Y

]
. (7.24)

Setting V = 1 in the second condition in (7.15) shows that ϕ̂1 commutes with the
half-braidings γ and δ. Altogether, ϕ is in the image of E.

7.2.2. The functor D from A(S) to CAS

In this subsection we define a functor D : A(S)→ CAS . We start by defining D on
objects. Let (X, t, b) ∈ A(S) and denote the components of D(X, t, b) by

D(X, t, b) =: (M, τ1, τ2, τ1, τ2) . (7.25)

We will go through the definition of the constituents step by step, starting with
the A-A-bimodule M .

For n ≥ 1, an A⊗n-module is an Irr×nS -graded vector space and a morphism
between modules is a grade-preserving linear map. In particular, an A-A-bimodule
M is a vector space with a decomposition M =

⊕
i,j∈IrrS

Mij, where for Mij only
the S(i, i)-S(j, j) action is non-trivial. For the bimodule M in (7.25) we set

M =
⊕

i,j∈IrrS

Mij with Mij = S(i,Xj) , (7.26)

with action of S(i, i) (from the left) and S(j, j) (from the right) given by pre- and
postcomposition, respectively.

Next we turn to defining τi and τi. We will need two ingredients. The first are
certain A-AA-bimodule isomorphisms σx, x = 0, 1, 2, which are defined as

M ⊗0 T =
⊕

l,i,j,a∈IrrS

S(l, Xa)⊗k S(a, ij)
σ0−−→

⊕
l,i,j∈IrrS

S(l, X(ij))
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[l
f−→ Xa]⊗k [a

g−→ ij] 7−→ [l
(idX ⊗g)◦f−−−−−−→ X(ij)] ,

T ⊗1 M =
⊕

l,i,j,a∈IrrS

S(l, aj)⊗k S(a,Xi)
σ1−−→

⊕
l,i,j∈IrrS

S(l, (Xi)j)

[l
f−→ aj]⊗k [a

g−→ Xi] 7−→ [l
(g⊗idj)◦f−−−−−→ (Xi)j)] ,

T ⊗2 M =
⊕

l,i,j,a∈IrrS

S(l, ia)⊗k S(a,Xj)
σ2−−→

⊕
l,i,j∈IrrS

S(l, i(Xj))

[l
f−→ ia]⊗k [a

g−→ Xj] 7−→ [l
(idi⊗g)◦f−−−−−→ i(Xj))] . (7.27)

To describe the second ingredient, it will be useful to relate linear maps between
morphism spaces in S to actual morphisms in S as described in the following
remark.

Remark 7.10. Let TnB : S × · · · × S → S be the functor which takes the n-fold

tensor product with a given bracketing B. Consider the Irr
×(n+1)
S -graded vector

space VB :=
⊕

l,i1,...,in
S(l,TnB(i1, . . . , in)). For two bracketings B, B′, one has a

linear isomorphism{
natural transformations TnB ⇒ TnB′

} ∼−−→
{

graded linear maps VB → VB′
}
,

given by postcomposition. That is, it takes a natural transformation ϕ to the
graded linear map[

l
f−→ TnB(i1, . . . , in)

]
7−→

[
l
f−→ TnB(i1, . . . , in)

ϕi1,...,in−−−−−→ TnB′(i1, . . . , in)
]
. (7.28)

This is easily generalised for functors obtained from TnB by fixing some of the
arguments.

Recall the natural transformations t, b that form part of the object (X, t, b) on
which we are defining the functor D. The second ingredient needed to define τi, τi
are four families of morphisms (τ ′i)UV , (τi

′)UV in S which are natural in U, V ∈ S:

[
X(UV )

(τ ′1)UV−−−−→ (XU)V
]

:=
[
X(UV )

tUV−−→ (XU)V
ψ−2
XU⊗idV−−−−−→ (XU)V

]
,[

X(UV )
(τ ′2)UV−−−−→ U(XV )

]
:=

[
X(UV )

bUV−−→ U(XV )
idU ⊗ψ−2

XV−−−−−−→ U(XV )
]
,[

(XU)V
(τ1′)UV−−−−→ X(UV )

]
:=

[
(XU)V

t−1
UV−−→ X(UV )

idX ⊗ψ−2
UV−−−−−−→ X(UV )

]
,[

U(XV )
(τ2′)UV−−−−→ X(UV )

]
:=

[
U(XV )

b−1
UV−−→ X(UV )

idX ⊗ψ−2
UV−−−−−−→ X(UV )

]
. (7.29)
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Combining these two ingredients, we define τi, τi in (7.25) to be:

τ1 :=
[
M ⊗0 T

σ0−→ S(l, X(ij))
(τ ′1)ij◦(−)
−−−−−→ S(l, (Xi)j)

σ−1
1−−→ T ⊗1 M

]
,

τ2 :=
[
M ⊗0 T

σ0−→ S(l, X(ij))
(τ ′2)ij◦(−)
−−−−−→ S(l, i(Xj))

σ−1
2−−→ T ⊗2 M

]
,

τ1 :=
[
T ⊗1 M

σ1−→ S(l, (Xi)j)
(τ1′)ij◦(−)−−−−−−→ S(l, X(ij))

σ−1
0−−→M ⊗0 T

]
,

τ2 :=
[
T ⊗2 M

σ2−→ S(l, i(Xj))
(τ2′)ij◦(−)−−−−−−→ S(l, X(ij))

σ−1
0−−→M ⊗0 T

]
. (7.30)

The verification that these morphisms satisfy (T1∆)-(T7∆) will be part of the proof
of Proposition 7.11 below.

The action of D on a morphism ϕ : (X, tX , bX)→ (Y, tY , bY ) in A(S) is

D(ϕ) :=
[
D(X, tX , bX) =

⊕
i,j∈IrrS

S(i,Xj)
ϕj◦(−)−−−−−→

⊕
i,j∈IrrS

S(i, Y j) = D(Y, tY , bY )
]
.

(7.31)

Proposition 7.11. The functor D : A(S) → CAS is well-defined and a linear
equivalence.

Proof. The proof that D(X, t, b) is indeed an object in CAS is a little tedious and
will be given in Subsection 7.2.3 below. For now we assume that this has been
done and continue with the remaining points.

To see that D(ϕ) : D(X, tX , bX) → D(Y, tY , bY ) is a morphism in CAS we have
to verify the identities in (M). We will demonstrate this for τ1 as an example.
Denote the underlying A-A-bimodules of D(X, tX , bX) and D(Y, tY , bY ) as M and
N , respectively, and consider the following diagram:

M ⊗0 T T ⊗1 M

N ⊗0 T T ⊗1 N

⊕S(l,X(ij)) ⊕S(l, (Xi)j) ⊕S(l, (Xi)j)

⊕S(l, Y (ij)) ⊕S(l, (Y i)j) ⊕S(l, (Y i)j)

⊕(tXij )∗ ⊕(ψ−2
Xi⊗id)∗

⊕(tYij)∗ ⊕(ψ−2
Y i⊗id)∗

⊕(ϕij)∗ ⊕(ϕi⊗id)∗ ⊕(ϕi⊗id)∗

σ0

σ0

σ1

σ1

τM1

τN1

D
(ϕ

)⊗
0
id

id
⊗

1
D

(ϕ
)

(7.32)
Here, all direct sums run over i, j, l ∈ IrrS . The notation (−)∗ stands for postcom-
position with the corresponding morphism. The left innermost square commutes
by (7.15), and the right innermost square commutes by naturality of ψ. The top
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and bottom squares are just the definition of τ1 in (7.29) and (7.30). That the
rightmost square commutes is immediate from the definition of σ1 in (7.27), while
for the leftmost square one needs to invoke in addition the naturality of ϕ.

So far we have shown that the functor D is well-defined. We now check that it
is essentially surjective and fully faithful.

Let (M, τ1, τ2, τ1, τ2) be an arbitrary object in CAS . As above, we decompose
M =

⊕
i,j∈IrrS

Mij, where for Mij only the S(i, i)-S(j, j) action is non-trivial.

Since τ1 is an A-AA-bimodule isomorphism M ⊗0 T
∼−→ T ⊗1 M , we have a graded

linear isomorphism

τ1 :
⊕

i,j,l,a∈IrrS

Mla ⊗k S(a, ij)
∼−−→

⊕
i,j,l,b∈IrrS

S(l, bj)⊗k Mbi , (7.33)

Specialising to i = 1 gives linear isomorphisms, for all l, j ∈ IrrS ,⊕
a∈IrrS

Mla ⊗k S(a,1j)︸ ︷︷ ︸
∼=Mlj

∼−−→
⊕
b∈IrrS

S(l, bj)⊗k Mb1 , (7.34)

Setting X =
⊕

b∈IrrS
b ⊗ Mb1 ∈ S, we see that this implies M ∼=

⊕
l,j S(l, Xj)

as A-A-bimodules. We may thus assume without loss of generality that in fact
M =

⊕
l,j S(l, Xj) for some X ∈ S.

Define t, b by inverting the first two defining relations in each of (7.29) and (7.30)
(this is possible by Remark 7.10). We need to verify that t, b satisfy the conditions
in (7.13) and (7.14).

Consider condition (T1∆) satisfied by τ1. Along the same lines as was done
in (7.32), one can translate (T1∆) into an equality of two graded linear maps⊕
S(l, X(i(jk))) →

⊕
S(l, ((Xi)j)k). Both of these maps are given by postcom-

position, resulting in a commuting diagram of morphisms in S, for all i, j, k shown
in Figure 7.1. Since t, a and ψ are natural transformations, one can cancel all
arrows with ψ, which then yields precisely the diagram (7.13). Similarly, (T2∆),
(T3∆) give the two diagrams in (7.14).

It remains to show that D is fully faithful. Faithfulness is clear from (7.31).
For fullness, let f : D(X, tX , bX) → D(Y, tY , bY ) be a morphism in CAS . By
Remark 7.10, f is given by postcomposition with a natural transformation ϕ :
X ⊗ − ⇒ Y ⊗ −. The identities (M) impose that the two diagrams in (7.15)
commute. Thus ϕ is a morphism in A(S) and f = D(ϕ).

Corollary 7.12. The orbifold datum AS is simple.

Proof. By Proposition 7.11, the functor D : A(S) → CAS is a linear equivalence.
Since CAS is semisimple (Proposition 5.13), so is A(S). Any object of the form
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X(i(jk))

(Xi)(jk)

((Xi)j)k

X((ij)k) (X(ij))k

(Xi)(jk) ((Xi)j)k

X((ij)k) ((Xi)j)k

X((ij)k) (X(ij))k

ti,jk

ψ−2
Xi⊗idjk a−1

Xi,j,k

ψ−2
(Xi)j

⊗idk

idX ⊗a−1
ijk

idX ⊗(ψ−2
ij ⊗idk)

id
X
⊗

(ψ
2 ij
⊗

id
k
)

t (
ij
),
k

ψ
−
2

X
(i
j)
⊗

id
k

tij⊗idk

(ψ−2
Xi⊗idj)⊗idk

Figure 7.1: Condition (T1∆) on an A-A bimodule M =
⊕

l,j∈IrrS
S(l, Xj), X ∈ S.

(1S , t, b) is simple in A(S), as 1S is simple in S. For an appropriate choice of t, b
we have D(1S , t, b) ∼= 1CAS , the tensor unit of CAS . Using once more that D is an
equivalence, we conclude that 1CAS is simple in CAS .

7.2.3. Conditions on T -crossings

Here we complete the proof of Proposition 7.11 by showing that D(X, t, b) from
(7.25) satisfies conditions (T1∆)–(T7∆).

For condition (T1∆), the computation is the same as in the proof of essential
surjectivity of D, just in the opposite direction, i.e. one starts by writing (7.13) as
the diagram in Figure 7.1. Analogously, (7.14) produces (T2∆), (T3∆).

Conditions (T4∆) and (T5∆) are straightforward to check from the definitions
(7.29) and (7.30).

Since (T6∆) and (T7∆) involve duals, it is helpful to express the (vector space)
dual bimoduleM∗ ofM =

⊕
l,a S(l, Xa) in terms of the bimoduleM∨ :=

⊕
l,a S(l, X∗a).

Given a basis {µ} of S(l, Xa), we get the basis {µ∗} of the dual vector space
S(l, Xa)∗ and the basis {µ̄} of S(Xa, l), which is dual to {µ} with respect to the
composition pairing. Let us fix an isomorphism M∗ →M∨ as follows:

ζ : M∗ −→M∨ , µ∗ 7−→ dimS a

dimS l

[
a
∼−→ 1a

coevX ⊗ id−−−−−−→ (XX∗)a
∼−→ X(X∗a)

µ̄−→ Xl
]

(7.35)
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Using ζ, one can translate the evaluation and coevaluation maps from vector space
duals to the new duals M∨. For example,

coevM :=
[
A −→M ⊗AM∗ id⊗ζ−−−→M ⊗AM∨] ,

c̃oevM :=
[
A −→M∗ ⊗AM

ζ⊗id−−→M∨ ⊗AM
]
, (7.36)

where the unlabelled arrow is the canonical coevaluation in vector spaces. Explic-
itly, this gives the A-A-bimodule maps

evM : M∨ ⊗AM → A , ⊗k 7→ δl,k ,

coevM : A→M ⊗AM∨ , idl 7→
∑
a,µ

⊗k

dimS a

dimS l



ẽvM : M ⊗AM∨ → A , ⊗k 7→ δl,k
dimS l

dimS a

c̃oevM : A→M∨ ⊗AM , idl 7→
∑
a,µ

 dimS l

dimS a

⊗k (7.37)

The choice (7.35) makes the expression for evM simpler but the other three duality
maps still contain the dimension factors. Using isomorphisms given by composition
similar to those in (7.27), one can also write these maps as (by abuse of notation
we keep the same names for the maps)

evM : S(l, X∗(Xl))→ S(l, l), λ 7→

 l
λ−→ X∗(Xl)

a−1
X∗,X,l−−−−→ (X∗X)l

evX ⊗ idl−−−−−→ 1l
ll−→ l

 ,
coevM : S(l, l)→ S(l, X(X∗l)), µ 7→

[
l
µ−→ l

l−1
l−−→ 1l

coevX−−−→ (XX∗)l
aX,X∗,l−−−−→ X(X∗l)

]
,
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ẽvM : S(l, X(X∗l))→ S(l, l), ν 7→


l
ν−→ X(X∗l)

idX ⊗ψ−2
X∗l−−−−−−→ X(X∗l)

a−1
X,X∗,l−−−−→ (XX∗)l

ẽvX⊗idl−−−−→ 1l
ll−→ l

ψ2
l−→ l

 ,

c̃oevM : S(l, l)→ S(l, X∗(Xl)), ξ 7→


l
ξ−→ l

l−1
l−−→ 1l

c̃oevX−−−→ (X∗X)l
aX∗,X,l−−−−→ X∗(Xl)

idX∗ ψ
−2
Xl−−−−−→ X∗(Xl)

idX∗ ⊗(idX ⊗ψ2
l )

−−−−−−−−−→ X∗(Xl)

 .
(7.38)

For example to get the expression for coevM one uses the identity:

=
∑
a,µ

dimS a

dimS l
(7.39)

Note that these are dualities in ACA. To obtain the dualities in CAS some extra
ψ-insertions are needed, see (C.2), (C.3).

Given this reformulation of the duality morphisms, the verification of (T6∆),
(T7∆) works along the same lines as (T1∆)-(T3∆).

7.2.4. Ribbon structure of the composed functor

Denoting the composed functor by F := D ◦ E, we obtain the following corollary
to Propositions 7.9 and 7.11.

Corollary 7.13. The functor F : Z(S)→ CAS , acting

• on objects: F (X, γ) := (
⊕

k,l∈IrrS
S(l, Xk), τ1, τ2, τ1, τ2), where for all i, j, l ∈ IrrS

the T -crossings and their pseudo-inverses are (we omit writing out the isomor-
phisms σi from (7.27) explicitly)

τ1 : S(l, X(ij))→ S(l, (Xi)j), λ 7→
[
l
λ−→ X(ij)

a−1
X,i,j−−−→ (Xi)j

ψ−2
Xi⊗idj−−−−−→ (Xi)j

]

τ2 : S(l, X(ij))→ S(l, i(Xj)), µ 7→

 l
µ−→ X(ij)

a−1
X,i,j−−−→ (Xi)j

γi⊗idj−−−→ (iX)j
ai,X,j−−−→ i(Xj)

idi⊗ψ−2
Xj−−−−−→ i(Xj)


τ1 : S(l, (Xi)j)→ S(l, X(ij)), ν 7→

[
l
ν−→ (Xi)j

aX,i,j−−−→ X(ij)
idX ⊗ψ−2

ij−−−−−→ X(ij)

]
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τ2 : S(l, X(ij))→ S(l, i(Xj)), ξ 7→

 l
ξ−→ i(Xj)

a−1
i,X,j−−−→ (iX)j

γ−1
i ⊗idj−−−−−→ (Xi)j

aX,i,j−−−→ X(ij)
idX ⊗ψ−2

ij−−−−−→ X(ij)

 ;

• on morphisms: F ([(X, γ)
f−→ (Y, δ)]) :=

[
S(l, Xk) → S(l, Y k) ∀k, l ∈ IrrS

[l
g−→ Xk] 7→ [l

g−→ Xk
f⊗idk−−−→ Y k]

]
is a linear equivalence.

Recall from Section 2.1 that a monoidal structure on the functor F consists of
an isomorphism

F0 : 1CAS
∼−→ F (1Z(S)), (7.40)

in CAS as well as a collection of isomorphisms

F2((X, γ), (Y, δ)) : F (X, γ)⊗CAS F (Y, δ)→ F (X ⊗ Y,Γ), (7.41)

in CAS (where the halfbraiding Γ of X⊗Y is as in (2.6)), natural in (X, γ), (Y, δ) ∈
Z(S), satisfying the usual compatibility conditions (see e.g. [TV, Sec. 1.4]). We
set:

F0 :
⊕
i∈IrrS

S(i, i)→
⊕
i∈IrrS

S(i,1i),
[
i
f−→ i
]
7→
[
i
f−→ i

ψ−1
i−−→ i

l−1
i−−→ 1i

]
. (7.42)

As in Section 7.2.2 we get the isomorphisms

F (X, γ)⊗CAS F (Y, δ) ∼=
⊕

l,r∈IrrS

S(l, X(Y r)), F (X ⊗ Y,Γ) ∼=
⊕

l,r∈IrrS

S(l, (XY )r).

(7.43)
For all l, r ∈ IrrS , set

F2((X, γ), (Y, δ)) :
[
l
f−→ X(Y r)

]
7→
[
l
f−→ X(Y r)

idX ⊗ψY r−−−−−→ X(Y r)
a−1
X,Y,r−−−→ (XY )r

]
.

(7.44)
One can check that they are indeed morphisms in CAS and satisfy the compatibil-
ities. F = (F, F0, F2) is therefore a monoidal equivalence.

Recall, that F is a braided functor if it preserves the braiding morphisms, i.e.

F2((Y, δ), (X, γ)) ◦ cF (X,γ),F (Y,δ) = F (c(X,γ),(Y,δ)) ◦ F2((X, γ), (Y, δ)). (7.45)

For M =
⊕

l,r∈IrrS
S(l, Xr), N =

⊕
l,r∈IrrS

S(l, Y r) with T -crossings τMi , τNi , i =
1, 2, let us calculate the braiding morphism cM,N ∈ CAS explicitly.
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Let us consider the morphism

Ω := φ2 · , (7.46)

where the string diagram is to be read in Vectk, with M , N , T , ψ, φ as above. The
braiding in CAS is obtained by taking the partial trace of the morphism Ω with
respect to T (so that (7.46) yields the expression for cM,N in (C.4)). This amounts
to a family of linear maps S(l, X(Y (ij)))→ S(l, Y (X(ij))), i, j, l ∈ IrrS , which are
postcompositions with

Bij :=
1

DimS
·[

X(Y (ij))
idX ⊗ψY (ij)−−−−−−−→ X(Y (ij))

idX ⊗(τ ′1
Y )ij−−−−−−−→ X((Y i)j)

(τ ′2
X)Y i,j−−−−−→ (Y i)(Xj)

ψ2
Y i⊗ψ

2
Xj−−−−−→ (Y i)(Xj)

(idY ⊗ψ2
i )⊗(idX ⊗ψ2

j )
−−−−−−−−−−−−→ (Y i)(Xj)

(τ ′1
Y )i,Xj−−−−−→ Y (i(Xj))

idY ⊗(τ ′2
X)ij−−−−−−−→ Y (X(ij))

idY ⊗ψX(ij)−−−−−−−→ Y (X(ij))
]
.

We now need to trace the above morphism over T , for which we need the dual T ∗.
Similar to Section 7.2.3 it is useful to work with T∨ :=

⊕
i,j,r∈IrrS

S(ij, r) instead.
Given a basis {α} of S(r, ij), the basis {α∗} of the dual vector space S(r, ij)∗

and the composition-dual basis {ᾱ} of S(ij, r), we fix the isomorphism T ∗ → T∨,
α∗ 7→ ᾱ. Using this isomorphism, the relevant evaluation and coevaluation maps
are

[ẽvT : T ⊗1,2 T
∨ → A] =

[ ⊕
i,j∈IrrS

S(l, ij) ⊗k S(ij, r) → S(l, l)

f ⊗k g 7→ δk,r g ◦ f

]
,

[coevT : A→ T ⊗1,2 T
∨] =

[
S(l, l) →

⊕
i,j∈IrrS

S(l, ij) ⊗k S(ij, l)

idl 7→
∑

i,j,α α ⊗k ᾱ

]
.
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All in all, we get the braiding to be the map

S(l, X(Y r))→ S(l, Y (Xr)), 7→
∑
i,j,α

. (7.47)

For M = F (X, γ), N = F (Y, δ), the T -crossings are as given in Corollary 7.13.
Using these expressions, the braiding (7.47) and the monoidal structure (7.44), one
concludes that the left hand side of (7.45) is a family of linear maps S(l, X(Y r))→
S(l, (Y X)r), i, j, l ∈ IrrS , obtained from postcomposition with morphismsX(Y r)→
(Y X)r, which in graphical calculus are as shown in Figure 7.2. In the last equality
there we used∑
i,j

dimS i · dimS j ·N r
ij =

∑
i,j

dimS i · dimS j
∗ ·N j∗

ir∗ =
∑
i

dimS i · dimS i · dimS r

= DimS · dimS r . (7.48)

Substituting the braiding c(X,γ),(Y,δ) := γY of two objects (X, γ), (Y, δ)Z(S), one
immediately finds the right hand side of (7.45) to be given by postcomposition
with the morphism in the last diagram of Figure 7.2. The condition (7.45) then
holds and hence F is a braided equivalence.

Finally, recall that the twist of M ∈ CAS is given by adapting the morphism
θM in (C.4). Using the calculation in Figure 7.2 and the expressions (7.38) for
(co-)evaluation maps one computes that the twist θF (X,γ) is a family of maps
S(l, Xk)→ S(l, Xk), obtained from postcomposition with

= = , (7.49)

where in the last equality one adapts (2.12) to the category Z(S). This is the same
morphism as F (θ(X,g)) and therefore F is a ribbon equivalence and with that the
proof of Theorem 7.6 is complete.
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1

DimS
∑
i,j,α

=
1

DimS
∑
i,j,α

· dimS i · dimS j

dimS r

=
1

DimS
∑
i,j,α

· dimS i · dimS j

dimS r

=
1

DimS
∑
i,j

·
dimS i · dimS j ·N r

ij

dimS r
= .

Figure 7.2: Left hand side of (7.45). Here, in the first equality one uses the natural
transformation property of ψ and the half-braidings, in the third we
abbreviate N r

ij = dimS(r, ij).
.
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8. Examples in categories of Ising type

As was shown in Chapter 5, orbifold data can be used to construct new modular
fusion categories out of a given one. In this chapter, we look at orbifold data
A = (A, T, α, α, ψ, φ) in a modular fusion category C such that several simplifying
assumptions are fulfilled, namely:

(A1) The category C is multiplicity-less, i.e. for i, j, k ∈ IrrC one has

Nk
ij := dim C(i⊗ j, k) ∈ {0, 1} . (8.1)

(A2) A is given in the setting of ∆-separable Frobenius algebras and Euler com-
pletion (see Appendix C) with the algebra A and the bimodule morphism
ψ : A→ A having the form

A =
⊕
a∈B

1a , ψ =
⊕
a∈B

ψa · id1a , ψa ∈ k× (8.2)

where B is a finite set and an index a ∈ B is used to distinguish different
copies of 1, i.e. 1a = 1.

(A3) The A-A⊗ A-bimodule T decomposes as

T =
⊕
a,b,c∈B

atbc , each atbc is either simple or 0. (8.3)

The bimodule structure of T is such that atbc is an 1a-(1b ⊗ 1c)-bimodule,
where the action of the corresponding summand 1d, d ∈ B is via the unitor
morphisms in C and the other summands act by zero.

(A4) There is a distinguished element ι ∈ B, such that

atιb = atbι =

{
1 , if a = b

0 , if a 6= b
(8.4)

The orbifold datum A can then be described by a set of polynomial equations,
much like the pentagon equation for the associator of a fusion category. We list
them in Section 8.1. Then in Section 8.3 we look at the concrete example when C
is a modular category of Ising type over k = C, i.e. has three simples 1, σ, ε with
fusion rules

ε⊗ ε ∼= 1 , ε⊗ σ ∼= σ , σ ⊗ σ ∼= 1 ⊕ ε . (8.5)

In this case the polynomial equations describing an orbifold datum can be solved
with the help of computer algebra. We also demonstrate how the knowledge on the
construction of the category CA and its relations to the Reshetikhin-Turaev defect
TQFT allow one to indirectly compute some of its properties.

This chapter is based on the results in [MR2].
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8.1. Orbifold data via polynomial equations

Let C be a MFC satisfying the assumption (A1). It is going to be useful to fix a
non-zero element (i.e. a basis) of those spaces C(i ⊗ j, k), i, j, k ∈ IrrC which are
1-dimensional (i.e. non-zero). We will denote this element, as well as its dual in
C(k, i⊗ j) with respect to the composition pairing by

λ(ij)k = , λ(ij)k = , (8.6)

If i = 1 and k = j we choose λ(1j)j to be the left unitor [lj : 1 ⊗ j → j] of C. In
the same way, we choose λ(i1)i to be the right unitor [ri : i⊗ 1→ i].

The associator morphisms are encoded in the F -matrix and its inverse G, whose
elements are indexed by i, j, k, l, p, q ∈ IrrC. They are defined by the following
relations:

=
∑
q∈IrrC

F (ijk)l
pq , =

∑
q∈IrrC

G(ijk)l
pq .

(8.7)
Since λ(1x)x and λ(x1)x are unitors, if at least one of i, j, k is 1 and the corresponding

F -matrix element is not automatically zero by the fusion rules, we have F
(ijk)l
pq = 1.

Similarly, the braiding morphisms are given by the R-matrix and its inverse, whose
elements are, for i, j, k ∈ IrrC:

= R(ij)k , = R−(ij)k . (8.8)

For an orbifold datum A in C such that the assumptions (A1)-(A3) are satisfied
one gets decompositions α =

⊕
a,b,c,d∈B α

a
bcd, α =

⊕
a,b,c,d∈B α

a
bcd, where

αabcd :
⊕
p∈B

atbp ⊗ ptcd −→
⊕
q∈B

atqd ⊗ qtbc , (8.9)
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αabcd :
⊕
p∈B

atpd ⊗ ptbc −→
⊕
q∈B

atbq ⊗ qtcd . (8.10)

The conditions these data must satisfy are somewhat simpler if one uses the fol-
lowing rescaled version of morphisms αabcd instead:

αabcd =
1

ψ2
c

fabcd , a, b, c, d ∈ B , (8.11)

where fabcd are morphisms having the same source and target as αabcd in (8.10).
Similarly, we denote by gabcd a rescaling of αabcd (we will see later that this is the
inverse of fabcd):

αabcd
∣∣
pq

=
ψ2
c

ψ2
pψ

2
q

gabcd
∣∣
pq
, (8.12)

where we use the notation

αabcd
∣∣
pq
, fabcd

∣∣
pq

: atbp ⊗ ptcd −→ atqd ⊗ qtbc ,

αabcd
∣∣
pq
, gabcd

∣∣
pq

: atpd ⊗ ptbc −→ atbq ⊗ qtcd , (8.13)

for the restrictions of αabcd, f
a
bcd, α

a
bcd and gabcd to the corresponding direct summands.

For i ∈ IrrC, we introduce scalars fa, ibcd, pq and ga, ibcd, pq such that

fabcd
∣∣
pq

=
∑
i∈IrrC

fa, ibcd, pq , gabcd
∣∣
pq

=
∑
i∈IrrC

ga, ibcd, pq . (8.14)

One can now translate the conditions (O1∆)-(O8∆) into equations for these scalars.
The result is:

Proposition 8.1. Under the assumptions (A1), (A2), (A3), giving an orbifold
datum in C is equivalent to giving a set of scalars

fa, ibcd, pq, ga, ibcd, pq, ψa, φ, a, b, c, d, p, q ∈ B, i ∈ IrrC, (8.15)

which satisfy the equations (P1)-(P8) in Table 8.1.

The reformulation of conditions (O1∆)-(O8∆) in terms of the scalars defining
the orbifold datum under assumptions (A1)–(A3) is tedious but straightforward.
As an example, the computation for the identity (O1∆) is given in Appendix D.1.
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∑
i,j∈IrrC

F
(atre rtsd stbc)g
k i G

(atbp ptcq qtde)g
j m F

(stbc atsq qtde)g
i j R(atsq stbc)j R−(stbc i)g

· fa, isde, qr f
a, j
bcq, ps

=
∑

x∈B,l∈IrrC

F
(atre rtbx xtcd)g
k l G

(atbp ptxe xtcd)g
lm fp, mcde, qx f

a, l
bxe, pr f

r, k
bcd, xs (P1)

∑
q∈B

fa, ibcd, qr · g
a, i
bcd, pq = δpr N

i
atpd ptbc

(P2)

∑
q∈B

ga, ibcd, qr · f
a, i
bcd, pq = δpr N

i
atbp ptcd

(P3)

∑
d∈B,i,j∈IrrC

ψ2
bψ

2
d

ψ2
qψ

2
p

fa, jbcd, pq g
a, i
b′cd, qp F

(ptcd m qtbc)j

atbp atqd
G

(ptcd m qtb′c)i
atqd atb′p

·R(ptcd atbp)j R−(atb′p ptcd)i dim j

dim atqd

dim i

dim atbp
= δbb′ N

atbp
m qtbc

(P4)

∑
b∈B,i,j∈IrrC

ψ2
bψ

2
d

ψ2
pψ

2
q

ga, jbcd, pq f
a, i
bcd′, qp F

(ptbc m qtcd)j

atpd atbq
G

(ptbc m qtcd′ )i
atbq atpd′

·R−(ptbc atpd)j R(atpd′ ptbc)i dim j

dim atbq

dim i

dim atpd
= δdd′ N

atpd
m qtcd

(P5)

∑
c∈B,i,j∈IrrC

ψ2
aψ

2
c

ψ2
qψ

2
p

fa, jbcd, pq g
a′, i
bcd, qp G

(atqd m ptcd)j
atbp qtbc

F
(a′ tqd m ptcd)i
qtbc a′ tbp

· dim j

dim qtbc

dim i

dim atbp
= δaa′ N

atbp
atqd m (P6)

∑
a∈B,i,j∈IrrC

ψ2
aψ

2
c

ψ2
pψ

2
q

ga, jbcd, pq f
a, i
bc′d, qp F

(atpd m qtcd)j
ptbc atbq

G
(atpd m qtc′d)i
atbq ptbc′

· dim j

dim atbq

dim i

dim ptbc
= δcc′ N

ptbc
m qtcd

(P7)

∑
b,c∈B

ψ2
bψ

2
c dim atbc =

∑
b,c∈B

ψ2
bψ

2
c dim btca =

∑
b,c∈B

ψ2
bψ

2
c dim ctab = ψ2

aφ
−2 (P8)

Table 8.1: Polynomial equations defining an orbifold datum A in a modular fusion
category C under assumptions (A1)–(A3). The sum over d ∈ B in (P4) is restricted
to those d for which atqd 6= 0. Analogous restrictions apply to the sums over B in
(P5)–(P7).
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Remark 8.2. The identities (P2) and (P3) show that

fabcd :
⊕
p∈B

atbp ⊗ ptcd ←→
⊕
q∈B

atqd ⊗ qtbc : gabcd (8.16)

are indeed inverse to each other. In particular, the scalars ga, ibcd, pq are uniquely

determined by the scalars fa, ibcd, pq.

Our interest in orbifold data A in a MFC C is only up to a ribbon equivalence
of the resulting associated MFC CA. In Section 5.5 we showed two ways to obtain
from A an equivalent orbifold datum: a rescaling Aξ for ξ ∈ k× and a T -compatible

isomorphism ρ : T → T̃ . One can use them to eliminate some variables in the
equations (P1)–(P8).

Consider a T -compatible isomorphism ρ : T → T of orbifold data satisfying the
assumptions (A1)–(A3). In this case one has:

ρ =
⊕
a,b,c∈B

aλbc · idatbc , (8.17)

where there is one scalar aλbc ∈ k× for each non-zero atbc. It follows from (5.65)
that α and α̃ are related by

α̃abcd
∣∣
pq

=
aλqd qλbc

aλbp pλcd
· αabcd

∣∣
pq
, a, b, c, d, p, q ∈ B , (8.18)

or equivalently, the sets of scalars fa, ibcd, pq, g
a, i
bcd, pq, f̃

a, i
bcd, pq, g̃

a, i
bcd, pq are related by

f̃a, ibcd, pq =
aλqd qλbc

aλbp pλcd
· fa, ibcd, pq , g̃a, ibcd, pq =

aλbq qλcd

aλpd pλbc
· ga, ibcd, pq . (8.19)

Evidently, if fa, ibcd, pq, g
a, i
bcd, pq, ψa, φ solve the equations in Table 8.1, then so do

f̃a, ibcd, pq, g̃
a, i
bcd, pq, ψa, φ. We exploit this invariance to simplify the search for solutions

by imposing the additional unitality assumption (A4), so that one has the following

Lemma 8.3. Suppose assumptions (A1)–(A4) hold. Let a, b, c ∈ B be such that

atbc 6= 0. Then the morphisms faιbc, f
a
bιc, f

a
bcι are determined by the scalars fa, atbcιbc, ab ,

fa, atbcbιc, cb , fa, atbcbcι, ca , all of which are non-zero. Via a suitable transformation of the form
(8.19), we can achieve that

fa, atbcι b c, ab = fa, atbcb ι c, cb = fa, atbcb c ι, ca = 1 . (8.20)

138



Proof. One quickly determines that the expression in (8.14) e.g. for fabcι has a single
term when p = c, q = a and vanishes otherwise. That the corresponding scalars
are non-zero is implied by the invertibility conditions (P2) and (P3).

The normalisation can be shown as follows: Take c = d = ι, p = q = e, r = s = b,
m = k = 1, g = atbe in the condition (P1). Then assuming atbe 6= 0 one can simplify
the resulting equation to

fa, atbebιe, eb = f e, 1ιιe, eι · f
b, 1
bιι, ιb. (8.21)

Any transformation (8.19) such that for all b, e ∈ B one has

bλbι =
(
f b, 1bιι, ιb

)−1

, eλιe = f e, 1ιιe, eι (8.22)

then results in f̃a, atbebιe, eb = 1. After this transformation, setting b = c = s = ι,
p = q = a, r = d, k = 1, m = g = atde, in (P1) and assuming atde 6= 0 one finds

that f̃a, atdeιde, ad = 1 already holds. Similarly, by taking d = e = q = ι, r = s = a,

p = c, m = 1, k = g = atbc and assuming atbc 6= 0 one finds that f̃a, atbcbcι, ca = 1 holds
too.

Let us look at some simple properties of the category CA which can be determined
from having an orbifold datum A presented as a solution to the equations (P1)–
(P8). We start with a criterion for the simplicity of A, which is obtained by
applying the projector (5.43) on A-A-bimodule endomorphisms of A:

Proposition 8.4. Under the assumptions (A1)–(A3) we have

φ4
∑

a,b,d,p∈B

ψ2
b ψ

2
d dim atpd dim ptba = dim CA(A,A) mod chark. (8.23)

In particular, if char(k) = 0, A is simple if and only if the left-hand side yields 1.

Next we turn to the global dimension of CA: Using the assumptions (A1)-(A3)
and substituting the scalars in Proposition 8.1, by Theorem 5.20 one gets

Dim CA =

∑
i∈IrrC

(dim i)2

φ8 ·
(∑

b∈B ψ
4
b

)2 . (8.24)

Finally, we turn to computing the number |IrrCA| of (isomorphism classes of)
simple objects in CA in case A is simple. We will do this with the help of the
equivalence of TQFTs ZorbA

C
∼= ZRT

CA (see Theorem 6.13). Recall from Property 3.14
that if char k = 0, the Reshetikhin-Turaev invariant ZRT

C (T 3) of the 3-torus T 3 =
S1 × S1 × S1 is precisely |IrrCA|. One has:
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Lemma 8.5. For a modular fusion category C and a simple orbifold datum A
satisfying assumptions (A1)–(A3), we have

Zorb,A
C (T 3) =

φ2 ·
∑

a,b,c,d,e,f,g∈B
r,s,t,u,v,w∈IrrC

ψ2
aψ

2
cψ

2
eψ

2
f

ψ2
bψ

2
dψ

2
g

f e, rafc, bg f
e, s
caf, gd f

e, u
fca, db g

e, t
acf, db g

e, v
fac, gd g

e, w
cfa, bg

·
∑

x,y,z,k,l,m∈IrrC

Lbcf, wteba, ur

∣∣
x
Ldca, usefd, vt

∣∣
y
Lgaf, srecg, wv

∣∣
k

· dim z

dim l

dim v

dim k
F

(r z y)v
k u F

(s k x)u
l w G(t x z)u

rm G
(s ym)u
t l

· Txyz, klm , (8.25)

where

Lbcf, wteda, ur

∣∣
x

= Nw
etda btcf

N t
etad btcf

dimx

dim btfc
F

(etad btcf x)r

btfc t
G

(etda btcf x)u
w btfc

,

Txyz, klm =
∑

p,j∈IrrC

dim j

dim p

θj
θpθx

R−(z x)m G
(p z y)p
p k G

(p k x)j
p l F

(p ym)j
l p F (p z x)j

mp ,

and the expression for the L-symbol holds when btfc 6= 0 and is set to zero other-
wise.

The proof is a rather technical computation which we present in Appendix D.2.
In light of the previous remark, one gets

Proposition 8.6. Suppose that chark = 0. For a modular fusion category C
and a simple orbifold datum A satisfying assumptions (A1)–(A3), the number of
isomorphism classes of simple objects in CA is given by (8.25).

8.2. Ising-type modular categories

For the rest of the chapter, we work over the field of complex numbers, k = C.

A braided fusion category of Ising-type is a special case of a Tambara-Yamagami
category, where the underlying abelian group is Z2 [TY, Si]. Including also the
ribbon twist, there are 16 different modular fusion categories of Ising-type [DGNO,
App. B],

Iζ,ε , where ζ8 = −1 , ε ∈ {±1} . (8.26)

We will use the abbreviation
λ = ζ2 + ζ−2 , (8.27)

140



which implies that λ2 = 2. The category Iζ,ε has three simple objects, I = {1, ε, σ}.
Here, 1, ε form the Z2-subgroup of the fusion ring, and σ⊗σ ∼= 1⊕ε. The quantum
dimensions and twist eigenvalues of the simple objects are

dim(1) = 1 , dim(ε) = 1 , dim(σ) = ελ ,
θ1 = 1 , θε = −1 , θσ = εζ−1 .

(8.28)

The R-matrices of Iζ,ε are given by

R(εε)1 = −1 , R(σσ)1 = ζ , R(σσ)ε = ζ−3 , R(σε)σ = R(εσ)σ = ζ4 . (8.29)

The F -matrices with one internal channel are

F
(εεε)ε
11

= 1 ,

F
(εεσ)σ
σ1 = 1 , F

(εσε)σ
σσ = −1 , F

(σεε)σ
1σ = 1 ,

F
(σσε)ε
σ1 = 1 , F

(σεσ)ε
σσ = −1 , F

(εσσ)ε
1σ = 1 ,

(8.30)

as well as F
(ijk)1
ik = 1 for i, j, k ∈ I whenever the F -matrix is allowed by fusion, i.e.

when 1 is a summand of i ⊗ j ⊗ k. Finally, the only F -matrix with two internal
channels is

F
(σσσ)σ
11

= F
(σσσ)σ
1ε = F

(σσσ)σ
ε1 =

1

λ
, F (σσσ)σ

εε = −1

λ
. (8.31)

The G-matrix in this case is obtained from the relation G
(ijk)l
pq = F

(kji)l
pq (see

e.g. [FRS1, Eqn. (2.61)]).

The global dimension of Iζ,ε and its anomaly are given by

Dim(Iζ,ε) =
∑
i∈I

dim(i)2 = 4 ,

δIζ,ε =
1√

Dim(Iζ,ε)

∑
i∈I

dim(i)2 θi = εζ−1 . (8.32)

8.3. Fibonacci-type solutions inside Ising categories

Here we find all solutions for orbifold data in Ising-type categories for a particular
ansatz for A and T .

Fix ζ and ε as in Section 8.2. We will work in the modular fusion category Iζ,ε.
We make the ansatz B = {ι, ϕ} and

A = 1ι ⊕ 1ϕ , atbc =


1 ; either 0 or 2 of a, b, c are ϕ

σ ; all of a, b, c are ϕ

0 ; else

(8.33)

141



This mimics the fusion rules of a Fibonacci category in that both ıtϕϕ and ϕtϕϕ
are non-zero (i.e. reminiscent of “ϕ⊗ ϕ ∼= ı⊕ ϕ”). We therefore call the solutions
below of Fibonacci type.

Let h ∈ C satisfy

h3 = ζ and h is a primitive 48th root of unity . (8.34)

We fix the following values for f , ψ, φ2:

ψ2
ι φ

2 =
1

3− h4 − h−4
, ψ2

ϕφ
2 = − h10 + h−10

3− h4 − h−4
· ε ,

f ι, σϕϕϕ, ϕϕ = h , fϕ, εϕϕϕ, ϕϕ = h5 , fϕ, 1ϕϕϕ, ιι =
1

h12(h2 − h−2)
,

fϕ, 1ϕϕϕ, ϕϕ = −h−1 fϕ, 1ϕϕϕ, ιι , fϕ, 1ϕϕϕ, ιϕ f
ϕ, 1
ϕϕϕ, ϕι =

λ

h
fϕ, 1ϕϕϕ, ιι . (8.35)

The value of φ2 ∈ C× can be chosen arbitrarily and then fixes those of ψ2
ι , ψ

2
ϕ.

Similarly, the value of, say, fϕ, 1ϕϕϕ, ιϕ ∈ C× is arbitrary, fixing that of fϕ, 1ϕϕϕ, ϕι.

Theorem 8.7. Every orbifold datum in Iζ,ε which has A, T as specified in (8.33)
and satisfies the normalisation condition (8.20) is given by (8.35) with h subject
to (8.34). Different choices for φ2, fϕ, 1ϕϕϕ, ιϕ ∈ C× are related by rescalings and by
T -compatible isomorphisms.

Proof. Let us first note that by Lemma 8.3 one can set

fa, ibcd, pq = N i
atbp ptcd

N i
atqd qtbc

, a, b, c, d, p, q ∈ B , i ∈ I (8.36)

whenever at least one of b, c, d is ι ∈ B. For the rest of the f -coefficients which are
not automatically zero by the fusion rules we use the abbreviations

f ι, σϕϕϕ, ϕϕ = h , fϕ, 1ϕϕϕ, ιι = fιι , fϕ, 1ϕϕϕ, ιϕ = fιϕ , fϕ, 1ϕϕϕ, ϕι = fϕι ,

fϕ, 1ϕϕϕ, ϕϕ = f1ϕϕ , fϕ, εϕϕϕ, ϕϕ = f εϕϕ . (8.37)

Next we consider some of the equations implied by (P1):

a b c d e p q r s g m k equation

ι ϕ ϕ ϕ ϕ ϕ ι ϕ ι 1 1 1 f 2
ιι + hfιϕfϕι = 1 (a)

ι ϕ ϕ ϕ ϕ ϕ ι ϕ ϕ 1 1 1 fιιfιϕ = −hfιϕf1ϕϕ (b)

ι ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ε ε ε h(f εϕϕ)2 = h2ζ3 (c)

ϕ ϕ ϕ ϕ ϕ ι ϕ ι ϕ σ σ σ h2fιι = ζfιϕfϕι
λ

(d)

ϕ ϕ ϕ ϕ ϕ ι ϕ ϕ ι σ σ 1 fιι = hfιϕfϕι
λ

(e)

ϕ ϕ ϕ ϕ ϕ ι ϕ ϕ ϕ σ σ 1
fιϕfεϕϕ
ζ3λ2

=
fιϕf1ϕϕ
λ

(
h− ζ

λ

)
(f)

(8.38)
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Let us denote z = hfιϕfϕι. Substituting (8.38 e) into (8.38 a) yields z2 + λ2z = λ2.
Substituting (8.27) gives z2 + 2z = 2, which implies

z = −1 + δ
√

3 , δ = ±1 . (8.39)

In particular, h, fιϕ, fϕι are all non-zero. Other constants can then also be ex-
pressed in terms of z as follows:

fιι
(8.38 e)

=
z

λ
, f1ϕϕ

(8.38 b)
= − z

λh
, f εϕϕ

(8.38 f)
=

ζ3

h

(
ζ

λ
− h
)
· z . (8.40)

In particular, fιι and f1ϕϕ are non-zero. Substituting (8.40) into (8.38 d) yields the
relation ζ = h3. Using this, one can conclude that also f εϕϕ 6= 0.

Conditions (P2) and (P3) are equivalent to expressing the constants ga, ibcd, pq,
a, b, c, d, p, q ∈ B, i ∈ I in terms of the ones in (8.36) and (8.37):

ga, ibcd, pq = N i
atpd ptbc

N i
atbq qtcd

, if ι ∈ {b, c, d} ,

gι, σϕϕϕ, ϕϕ =
1

h
, gϕ, 1ϕϕϕ, ιι = −hf1ϕϕ , gϕ, 1ϕϕϕ, ιϕ = hfιϕ, gϕ, 1ϕϕϕ, ϕι = hfϕι ,

gϕ, 1ϕϕϕ, ϕϕ = −hfιι , gϕ, 1ϕϕϕ, ϕϕ =
1

f εϕϕ
, (8.41)

the rest of them being automatically zero.

Among the equations given by the condition (P8) only two are distinct, namely

ψ4
ι + ψ4

ϕ =
ψ2
ι

φ2
, 2ψ2

ιψ
2
ϕ + ελψ2

ϕ =
ψ2
ϕ

φ2
. (8.42)

The solutions to (P8) therefore are

ψ2
ι =

1

2φ2

(
1− νελ√

6

)
, ψ2

ϕ =
ν

φ2
√

6
, ν = ±1 . (8.43)

At this point the solutions are collected in (8.40), (8.39) and (8.43) and para-
metrised by (h, δ, ν), where h24 = −1 (implied by (8.26)) and δ, ν ∈ {1,−1}. Plug-
ging them into (P4)-(P7) and into the remaining equations implied by (P1), one
finds11 that h must be a primitive 48th root of unity and that δ, ν are determined
by h and ε as follows, writing h = exp

(
πni
24

)
,

n 1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47
δ − + + − − + + − − + + − − + + −
εν − − + + + + − − − − + + + + − −

11For most of these computations we used the computer algebra system Mathematica.
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The signs can be expressed explicitly in terms of h and ε as

δ =
2h4 − h12

√
3

, ν =
h6 + h−6

√
2

δε . (8.44)

With the expressions derived above one can now verify11 that (8.35) indeed gives
all solutions to (P1)–(P8).

Different choices for φ2 are trivially related by a rescaling as in (5.66) (if A is
defined via the ∆-separable setting and Euler completion, the rescaling is Aξ =
(A, T, ξα, ξα, ξ−1/2ψ, ξ1/2φ), i.e. in contrast with (5.66), the algebra A and the
module T are left unmodified).

It remains to show that different choices of fιϕ, fϕι such that hfιϕfϕι = λfιι give
orbifold data that are related by T -compatible isomorphisms. To see this, take all
constants aλbc in (8.17) (which correspond to a non-zero atbc) to be equal to one,
except for ϕλϕϕ. Using (8.19) to compute the effect on the f -coefficients shows
that all but fιϕ and fϕι are invariant, and that the latter two get multiplied by
(ϕλϕϕ)2 and (ϕλϕϕ)−2, respectively.

Let us denote the orbifold datum obtained in Theorem 8.7 by Ah,ε. By Proposi-
tion 5.22 (and Theorem 8.7), different choices for φ2, fϕ, 1ϕϕϕ, ιϕ ∈ C× lead to equiva-
lent ribbon fusion categories (Ih3,ε)Ah,ε . Hence it makes sense not to include these
choices into the notation for the orbifold datum Ah,ε.

Starting from the data in (8.33)–(8.35), by direct computation11 from (8.23) and
Proposition 8.6, and by Theorem 5.20 one obtains:

Proposition 8.8. The orbifold datum Ah,ε is simple. The category (Ih3,ε)Ah,ε is a
modular fusion category with 11 simple objects and has global dimension

Dim
(
(Ih3,ε)Ah,ε

)
= 24

(
h2 + h−2

)−2
. (8.45)

Remark 8.9. The ansatz (8.33) was obtained by trying the to invert a condensa-
tion of a MFC (see Section 7.1). In particular, one takes the MFC C(sl(2), 10) of

integrable highest weight representations of the affine Lie algebra ŝl(2)10. It has
11 simple objects, denoted by the Dynkin labels 0, 1, . . . , 10 and has a condens-
able algebra A = 0 ⊕ 6, the so-called E6 algebra. The resulting condensation is
known to be C(sp(4), 1) (see e.g. [DMS, Ch. 17.5] and [Os]), which is a category of
Ising type (see [DMNO, Sec. 6.4]). The resulting ansatz (8.33) is inspired by some
observations, suggesting that the Morita class of the algebra A ⊗ A is related to
inverting condensations and the fact that for the E6 algebra A, the algebras A⊗A
and A ⊕ A are Morita equivalent, the latter being two copies of the tensor unit
in the condensation Cloc

A . In the present example we “pretend” not to know this
information, illustrating what one can feasibly achieve by exploring the category
CA knowing only the orbifold datum A.
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8.4. Analysing CA via pipe functors

Let A = (A, T, α, α, ψ, φ) be an orbifold datum in a modular fusion category C.
Finding the simple objects and tensor products of CA requires analysing the pos-
sible T -crossings, which can be complicated. In this section we will illustrate that
one can obtain some of that information already from looking only at the un-
derlying bimodules. In particular, we exploit the properties of the pipe functor
P : ACA → CA defined in Section 5.4. Recall that it is biadjoint to the forgetful
functor U : ACA → CA.

For simple bimodules µ, ν ∈ Irr
ACA we define the constants

Xµν = dim CA(P (µ), P (ν)) =
∑

Λ∈IrrCA

dim CA(P (µ),Λ) dim CA(Λ, P (ν)) . (8.46)

Applying the adjunction, this can be rewritten as (we do not write out the forgetful
functor)

Xµν = dim ACA(P (µ), ν) =
∑

Λ∈IrrCA

dim ACA(µ,Λ) dim ACA(Λ, ν) . (8.47)

In particular, the first equality shows that Xµν describes how the underlying bi-
module of P (µ) decomposes into simple bimodules,

P (µ)
ACA∼=

⊕
ν∈Irr

ACA

Xµν ν . (8.48)

Every simple object of CA appears as direct summand of some P (µ) (use the unit
or counit of the adjunction to see this). Thus one can attempt to find the simple
objects of CA by using the above information about Hom spaces to decompose all
the P (µ).

Under assumptions (A1)–(A3), the simple objects of ACA are of the form axb,
where x ∈ I and a, b ∈ B, and the left and right actions of A are by the unitors of
1a and 1b respectively. By specialising (5.42) one gets (if A is defined using the ∆-
separable setting and Euler completion, there are no ψ- (hence also ω-) insertions
in (5.42)):

P (axb) =
⊕

p,q,r,s,v∈B
ptrv ⊗ rtua ⊗ x⊗ st

∗
ub ⊗ qt

∗
sv . (8.49)

Let us now specialise these general considerations to the concrete example of the
orbifold datum A = Ah,ε in C = Ih3,ε as given in Section 8.3. Note that the precise
values of h and ε are immaterial as we only need the fusion rules of Iζ,ε and the
expressions for A and T in (8.33). Applying the fusion rules of Iζ,ε gives
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Xaxb, pyq = dim ACA ( P (axb), pyq )

=
∑
i,j,k∈I

∑
r,s,u,v∈B

N i
ptrv , rtua N

j
i,x N

k
j, st∗ub

Ny
k, qt∗sv

. (8.50)

The simple A-A-bimodules are

ι1ι , ϕ1ϕ , ιει , ϕεϕ , ισϕ , ϕσι︸ ︷︷ ︸
grade 0

, ι1ϕ , ϕ1ι , ιεϕ , ϕει , ισι , ϕσϕ︸ ︷︷ ︸
grade 1

. (8.51)

The grading indicated above is respected by the tensor product ⊗A, and it turns
out that the matrix X is block-diagonal with respect to this grading.12 Indeed,
a straightforward computation shows that, in the above ordering of the simple
bimodules,

(
Xaxb, pyq

)
=


2 3 0 1 1 1
3 8 1 6 5 5
0 1 2 3 1 1
1 6 3 8 5 5
1 5 1 5 4 4
1 5 1 5 4 4

⊕


3 3 1 1 1 5
3 3 1 1 1 5
1 1 3 3 1 5
1 1 3 3 1 5
1 1 1 1 2 4
5 5 5 5 4 14

 . (8.52)

Let us first focus on the grade-0 block of X. We already know a simple object
of CA, namely the tensor unit A = ι1ι ⊕ ϕ1ϕ. Hence, we may as well decompose
each P (µ) as

P (µ) ∼= CA(P (µ), A)︸ ︷︷ ︸
=ACA(µ,A)

A⊕ P (1)(µ) , (8.53)

where now P (1)(µ) does no longer contain A as a direct summand. Equivalently,

P (1)(µ) ∼=
⊕

Λ∈IrrCA ,Λ6=A
ACA(µ,Λ) Λ . (8.54)

In terms of the P (1)(µ) we can define a new matrix X
(1)
µν = dim CA(P (1)(µ), P (1)(ν)),

which can be written as

X(1)
µν =

∑
Λ∈IrrCA ,Λ 6=A

dim ACA(µ,Λ) dim ACA(Λ, ν)

= Xµν − dim ACA(µ,A) dim ACA(A, ν) . (8.55)

12Actually, ACA is graded by Z2 × Z2, but only the indicated Z2 is respected by X.
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Explicitly, the grade-0 summand X(1)
∣∣
grade 0

is given by
2 3 0 1 1 1
3 8 1 6 5 5
0 1 2 3 1 1
1 6 3 8 5 5
1 5 1 5 4 4
1 5 1 5 4 4

−


1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 =


1 2 0 1 1 1
2 7 1 6 5 5
0 1 2 3 1 1
1 6 3 8 5 5
1 5 1 5 4 4
1 5 1 5 4 4

 . (8.56)

The first diagonal entry reads dim CA(P (1)(ι1ι), P
(1)(ι1ι)) = 1, which means that

P (1)(ι1ι) =: ∆ is itself a simple object of CA.

Note that we can write X
(1)
µν = dim CA(P (1)(µ), P (ν)) = dim ACA(P (1)(µ), ν), and

so can still read off the decomposition into simple bimodules form the first row of
the above matrix:

∆ = ι1ι ⊕ ϕ1
⊕2
ϕ ⊕ ϕεϕ ⊕ ισϕ ⊕ ϕσι . (8.57)

procedure, we now define P (2) and X(2) by excluding the simple objects A and ∆
from the sum. One finds that X(2)

∣∣
grade 0

is given by
1 2 0 1 1 1
2 7 1 6 5 5
0 1 2 3 1 1
1 6 3 8 5 5
1 5 1 5 4 4
1 5 1 5 4 4

−


1 2 0 1 1 1
2 4 0 2 2 2
0 0 0 0 0 0
1 2 0 1 1 1
1 2 0 1 1 1
1 2 0 1 1 1

 =


0 0 0 0 0 0
0 3 1 4 3 3
0 1 2 3 1 1
0 4 3 7 4 4
0 3 1 4 3 3
0 3 1 4 3 3

 . (8.58)

The third diagonal entry shows that P (2)(ιει) is a direct sum of two non-isomorphic
simple objects in CA, which we denote by E1 and E2. The corresponding row again
gives the decomposition into bimodules as

E1 ⊕ E2 = ϕ1ϕ ⊕ ιε
⊕2
ι ⊕ ϕε

⊕3
ϕ ⊕ ισϕ ⊕ ϕσι . (8.59)

From (8.47) – applied to P (2) – one obtains a constraint on how to distribute the
bimodules between E1 and E2. Namely, for each µ we have

X(2)
µµ ≥

(
dim ACA(µ,E1)

)2
+
(

dim ACA(µ,E2)
)2
. (8.60)

It follows that each Ei must contribute one copy of ιει, and that no one of the Ei
can contain all three copies of ϕεϕ. If we denote the summand that contains ϕ1ϕ

by E1, the remaining possibilities are

E1 = ϕ1ϕ ⊕ ιει ⊕ ϕε
⊕(1+u)
ϕ ⊕ ισ

⊕x
ϕ ⊕ ϕσ

⊕y
ι

E2 = ιει ⊕ ϕε
⊕(2−u)
ϕ ⊕ ισ

⊕(1−x)
ϕ ⊕ ϕσ

⊕(1−y)
ι

, u, x, y = 0, 1 . (8.61)
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If we denote by X(3) the matrix obtained by the sum in (8.47) with simple objects
A,∆, E1, E2 omitted, we find

X(3)
∣∣
grade 0

=


0 0 0 0 0 0
0 2 0 3− u 3− x 3− y
0 0 0 0 0 0
0 3− u 0 2 1 + δux 1 + δuy
0 3− x 0 1 + δux 2 1 + δxy
0 3− y 0 1 + δuy 1 + δxy 2

 . (8.62)

From the second row we deduce that there are two further non-isomorphic simple
objects Φ1, Φ2, such that

Φ1 ⊕ Φ2 = ϕ1
⊕2
ϕ ⊕ ϕε

⊕(3−u)
ϕ ⊕ ισ

⊕(3−x)
ϕ ⊕ ϕσ

⊕(3−y)
ι . (8.63)

The only way to satisfy the bound given by the diagonal entries is to have u =
x = y = 1 and to distribute the bimodule direct summands equally between Φ1

and Φ2. Thus Φ1 = Φ2 as bimodules (but not as objects in CA).
At this point we have found the bimodule part of all simple objects of grade

0. One can repeat the procedure to obtain those of grade 1 as well. In this case
two solutions are possible: one yielding 6 simple objects, and the other 5. From
Proposition 8.8 we already know that there are 11 simple objects in total, which
eliminates the first solution.

In order to study the tensor products of these 11 simple objects of CA via their
underlying bimodules, it is helpful to use a matrix notation for the direct sum
decomposition:

M = ιWι ⊕ ιXϕ ⊕ ϕYι ⊕ ϕZϕ  M =

(
W X
Y Z

)
. (8.64)

The tensor product ⊗A is then given by matrix multiplication. In this notation,
the decomposition of the simple objects in CA into simple bimodules is13

grade 0 grade 1

A =

(
1 0
0 1

)
S1 =

(
σ 1

1 2σ

)
∆ =

(
1 σ
σ 21 + ε

)
S2 =

(
σ ε
ε 2σ

)
E1 =

(
ε σ
σ 1 + 2ε

)
Ψ1 =

(
0 1

1 σ

)
(8.65)

13Here we write multiplicities as multiplying by integers and “+” instead of “⊕” for better
readability, that is, we work with entries in the Grothendieck ring of C.

148



dim 1 1.93.. 2.73.. 3.34.. 3.73.. 3.86..

C(sl(2), 10) 0, 10 1, 9 2, 8 3, 7 4, 6 5

(Ih3,ε)Ah,ε A, E2 Ψ1, L Φ1, Φ2 S1, S2 ∆, E1 Ψ2

Table 8.2: Simple objects of C(sl(2), 10) and of (Ih3,ε)Ah,ε for h = exp(πi19
24

), sorted
by quantum dimension. For C(sl(2), 10) the Dynkin label 0, 1, . . . , 10
is used to denote the simple objects, and for (Ih3,ε)Ah,ε the notation in
(8.65) is used.

E2 =

(
ε 0
0 ε

)
Ψ2 =

(
0 1 + ε

1 + ε 2σ

)
Φ1 = Φ2 =

(
0 σ
σ 1 + ε

)
L =

(
0 ε
ε σ

)
Thus, in this example all simple objects of CA except for Φ1, Φ2 are uniquely
characterised by their underlying bimodule. Since taking duals is compatible with
the underlying bimodule, in particular all simple objects except for possibly Φ1/2

are self-dual.

The underlying bimodules determine the quantum dimensions of objects in CA
(in this case using (C.2),(C.3), since the orbifold datum A = Ah,ε is given in
terms of ∆-separable algebras and Euler completion). Namely, if M ∈ CA and
M =

∑
a,b∈B aMb as an A-A-bimodule with aMb ∈ C, then, for a ∈ B,

dimCA(M) =
∑
b∈B

ψ2
b

ψ2
a

dimC(aMb) . (8.66)

In particular, it follows that the above expression is independent of the choice
of a ∈ B (for A simple), which in itself is a non-trivial condition if one tries to
understand which bimodules can appear in objects of CA.

We can therefore use the expressions in (8.65) to compute the quantum dimen-
sions of the 11 simple objects. We have done that for h = exp(πi19

24
) and recovered

the quantum dimensions of C(sl(2), 10), see Table 8.2 and Remark 8.9.
Direct sum decompositions in CA cannot be uniquely identified by the underlying

bimodules, not even up to the ambiguity of Φ1 vs. Φ2. For example,

Ψ1 ⊗A Ψ1
∼=
(
1 σ
σ 21 + ε

)
. (8.67)

In this case, the right hand side could be the underlying bimodule of ∆ or of
A⊕Φ1/2. (However, since Ψ1 is self-dual, its tensor square in CA has to contain the
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tensor unit A of CA as a direct summand, and so the second decomposition is the
correct one in CA.) We verified that – taking Ψ1 has the generator – the iterated
tensor products of Ψ1 are compatible with those of C(sl(2), 10).

The quantum dimensions of simple objects are also useful in showing the follow-
ing result.

Proposition 8.10. The 32 modular fusion categories (Ih3,ε)Ah,ε for the 16 possible
values of h and ε ∈ {±1} are pairwise non-equivalent as C-linear ribbon categories.

Proof. A ribbon equivalence preserves the global dimension and the anomaly. It is
shown in Lemma 6.17 that the MFCs C and CA have equal anomalies. Hence the
anomaly δ of (Ih3,ε)Ah,ε is equal to that of Ih3,ε as stated in (8.32).

A ribbon equivalence also preserves the quantum dimension of simple objects,
and from this one can verify that any equivalence must map Ψ1 for one choice of
(h, ε) to either Ψ1 or L for any other choice (h′, ε′).

Abbreviating D = (Ih3,ε)Ah,ε , altogether we see that the triple of numbers(
Dim(D) , δD , dimD(Ψ1)

)
(8.68)

is a ribbon invariant. Note that dimD(Ψ1) = dimD(L), so it does not matter
whether we use Ψ1 or L. From (8.45), (8.32) and (8.35) we read off the explicit
values to be (

24
(
h2 + h−2

)−2
, εh−3 , −ε(h10 + h−10)

)
. (8.69)

It is straightforward to check that this distinguishes all 32 possibilities.

Remark 8.11. The above computation does not prove that one of the MFCs
(Ih3,ε)Ah,ε is equivalent to C(sl(2), 10), it merely serves to illustrate how orbifold
data can be used to construct new MFCs and to indirectly get some of their
properties. As mentioned in Remark 8.9, the ansatz (8.33) was obtained from an
heuristic reasoning why it should invert the E6-algebra condensation in C(sl(2), 10).
Together with the outcome of the above computations for the number of simple
objects and their quantum dimensions, one can conjecture that for different values
of h, the MFCs (Ih3,ε)Ah,ε constitute C(sl(2), 10) and its Galois conjugates.
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9. Domain walls

In Chapter 4 we reviewed the construction of the Reshetikhin-Turaev defect TQFT
Zdef
C , obtained from a modular fusion category C. By definition, the label set DC3

for bulk phases consisted only of a single element, namely that describing the
Reshetikhin-Turaev TQFT obtained from C. In this chapter we provide a gen-
eralisation of Zdef

C , which includes different labels for bulk phases, in particular
they are labelled by the condensable algebras in C. Equivalently the bulk phases
can be thought of as labelled by the instances of orbifold data discussed in Sec-
tion 7.1, or by the Reshetikhin-Turaev theories, obtained from condensations Cloc

A

for condensable algebras A ∈ C. In addition, we investigate the bicategory of do-
main walls between two bulk phases and compare it to the one obtained from the
model-independent analysis in [FSV], which we review in Section 9.2. We find that
the two bicategories agree.

The material in this chapter is based on [KMRS].

9.1. Bulk phases from condensable algebras

Throughout this section, let C be a MFC. Below we describe a generalisation14

Zdef
C,w : B̂orddef

3 (DC,w)→ Vectk (9.1)

of the defect TQFT Zdef
C , which extends the label sets of the defect datum intro-

duced in Section 4.2, i.e. one has DCi ⊆ DC,wi , for i = 0, 1, 2, 3. We start with some
definitions needed to define the elements of the sets of DC,w. Recall Definition 7.1
of a condensable algebra in C.

Definition 9.1. Let C be a MFC and A,B ∈ C two condensable algebras. A
(symmetric, separable) Frobenius algebra over (A,B) is a (symmetric, separable)
Frobenius algebra F ∈ C, which is simultaneously an A-B-bimodule, such that

= = , = = ,

Note that A⊗B is an example of such an algebra.

14The symbol w in the notations Zdef
C,w and DC,w is there to emphasise that the defect TQFT

admits domain walls between different bulk theories.
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Remark 9.2. i) Because of the Frobenius property (2.30), the compatibility con-
ditions of A- and B-actions with the product of F in the above definition imply
similar identities with the coproduct, i.e. one has

= = , = = .

ii) In what follows, symmetric separable Frobenius algebras F ∈ C over (A,B) will
be used to label domain walls separating two bulk theories labelled by A and B.
The crossings are chosen in such a way that the A-phase is “above” the defect,
while the B-phase is “below”, assuming that the defect itself is oriented towards
the A-phase.

Let A, B, F be as in the Definition 9.1 above. A left F -module M ∈ C and a
right F -module N ∈ C are automatically A-B-bimodules with actions

:= , := , (9.2)

:= , := . (9.3)

It is easy to check that these are the unique A- and B- actions on M and N such
that the following identities hold:

= = , = = ,

= = , = = .

(9.4)
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A morphism of (left, right) modules M , N is a morphism f : M → N , commuting
with the F - (and therefore also A-, B-) actions. Because of the above argument,
there is no need to introduce “left or right modules over (A,B)”. However, the
situation is different for bimodules, where one obtains two a priori different A-
B-bimodule structures. Since the application to line defects requires all of the
identities in (9.4) to hold simultaneously for a bimodule M = N , we define:

Definition 9.3. Let F1, F2 ∈ C be algebras over (A,B). An F1-F2-bimodule over
(A,B) is an F1-F2-bimodule M such that the left A-actions and right B-actions
induced via (9.2) and (9.3) by F1 and F2 respectively, are equal.

Like in Section 4.2, we introduce the notion of a multimodule of the algebras
as in Definition 9.1, which will be used to label line defects. To this end, let
A0, A1, . . . , An and B0, B1, . . . , Bm be a condensable algebras in C with A0 = B0,
An = Bm and let Fi, i = 1, . . . , n and Gk, k = 1, . . . ,m be symmetric separable
Frobenius algebras over (Ai, Ai−1) and (Bk, Bk−1) respectively. By an F1 · · ·Fn-
G1 · · ·Gm-multimodule we will mean a multimodule M of the underlying Frobenius
algebras (meaning the actions of Fi and Gk commute as in (4.8)) such that

i) for i = 1, . . . , n − 1, (resp. k = 1, . . . ,m − 1) the two Ai-actions obtained
from Fi and Fi+1 (resp. Bk-actions obtained from Gk and Gk+1) by analogy
to (9.2) and (9.3) are equal;

ii) for i = k = 0 (resp. i = n, k = m), the two Ai = Bk actions obtained from
F0 and G0 (resp. from Fn and Gm) are equal.

One can also talk about relative tensor products of such multimodules

The defect datum DC,w can now be defined as follows (cf. Section 4.2):

• DC,w3 : 3-strata are labelled by condensable algebras in C.

• DC,w2 : 2-strata separating two 3-strata labelled by A,B ∈ DC,w3 and oriented
towards the one labelled by A are labelled by symmetric separable Frobenius
algebras over (A,B).

• DC,w1 : a framed 1-stratum that has no adjacent 2-strata is labelled by a local
module M ∈ C loc

A (see (7.2)), where A ∈ DC,w3 labels the adjacent 3-stratum.

Suppose a 1-stratum l has n + m > 0 adjacent 2-strata. We require l
to have a neighbourhood isomorphic to the one shown in Figure 9.1 with
F1, . . . Fn, G1, . . . , Gm ∈ DC,w2 labelling the adjacent 2-strata and A0, . . . An,
B0, . . . , Bm ∈ DC,w3 , A0 = B0, An = Bm labelling the adjacent 3-strata. We
then label l with an F1 · · ·Fn-G1 · · ·Gm-multimodule M ∈ C.
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Figure 9.1: Neighbourhood of a line defect l with several adjacent 2-strata.

• DC,w0 : point insertions on an F ∈ DC,w2 labelled 2-stratum are labelled by F -F -
bimodule morphisms, while 0-strata that have adjacent 1-strata are labelled
by the morphisms of (relative tensor products of) multimodules.

We do not state the explicit definition of the defect TQFT Zdef
C,w, but rather

remark that it is defined in terms of Zdef
C in a very similar way the orbifold graph

TQFT ZorbA
C was defined in terms of Zdef

C in Chapter 6. For example, let M ∈
B̂orddef

3 (DC,w) be a closed DC,w-coloured defect 3-manifold, which for simplicity is
assumed to not have 0- or 1-strata. The steps to compute the invariant Zdef

C,w(M)
are then the following:

• Let s be a 2-stratum of M , labelled by a symmetric separable Frobenius
algebra F ∈ DC,w2 over (A,B), where A,B ∈ DC,w3 . Pick an F -coloured
admissible 1-skeleton t for s. The lines and points of t can then be thought
of as defects in Zdef

C , having adjacent A and B labelled lines and surfaces (see
Figure 9.2a and Remark 7.5). Do this for all 2-strata of M .

• Let u and v be the A- and B-labelled 3-strata adjacent to s. Since s can be
thought of as a “boundary component” of both u and v, one can extend t
(as well the 1-skeleta of the other 2-strata adjacent to u and v) to admissible
2-skeleta Tu, Tv of u, v (see Lemma 6.2), which can in turn be coloured by
the orbifold data corresponding to A and B discussed in Section 7.1. Doing
this for all 3-strata results in the analogue of the foamification procedure of
M , producing a closed DC-coloured defect 3-manifold Mf .

• One defines:
Zdef
C,w(M) := Zdef

C (Mf) . (9.5)

The independence on the choices of the 1- and 2-skeleta for the 2- and 3-strata
of M can be shown as follows: In the interior of the 3-strata one can apply the
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(a)

↔

(b)

↔

(c)

Figure 9.2: (a) The multiplication morphism of an algebra F over (A,B) as point
defect in Zdef

C . F can be used to label both a 2-stratum and 1-strata with four
adjacent 2-strata, labelled by A, F , B, F . (b) The separability property of F
implements the b-move at the boundary of A- and B-labelled 2-skeleta. (c) The
Frobenius property of F implements the l-move.

BLT moves (see Figure 6.2, Lemma 6.2) upon evaluating with Zdef
C . On the

2-strata, for example s, the properties of the symmetric separable Frobenius
algebra F allow one to change the 1-skeleton into any other 1-skeleton using
the bl moves, which, because of the A and B actions on F , also change the
2-skeleta of u and v (see Figures 9.2b and 9.2c).

With some effort the evaluation procedure above can be generalised to arbitrary
stratifications of M . In particular, the use of local modules in DC,w1 to label the
1-strata in the bulk theories allows one to include such lines in the construction by
using the admissible ribbon diagrams instead of 2-skeleta. The bordisms with non-
empty boundary can be handled by taking the limit over 1-skeleta on the boundary
as it was done in Construction 6.7.

Remark 9.4. i) The defect TQFT Zdef
C,w has many of the properties of Zdef

C . For
example it is also D0-complete and Euler complete with respect to surfaces (see
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Properties 4.13, 4.14). If F ∈ DC,w2 is a Frobenius algebra over (A,B), its opposite
F op is a Frobenius algebra over (B,A) and can be used to reverse the orientation
of an F -labelled 2-stratum.

ii) Zdef
C,w is indeed a generalisation of Zdef

C as restricting DC,w3 to the trivial condens-
able algebra 1C yields Zdef

C by definition. The bulk theory for a general condensable
algebra A ∈ DC,23 is isomorphic to ZRT

ClocA
, the Reshetikhin-Turaev theory obtained

from the condensation Cloc
A . Indeed, without having 2-strata, the definition of Zdef

C,w
simplifies to that of the orbifold graph TQFT ZorbA

C , with the orbifold datum A
obtained from the condensable algebra A as in Section 7.1. The claim then follows
from Theorems 7.3 and 6.13. The defect TQFT Zdef

C,w is therefore able to handle
domain walls, between the Reshetikhin-Turaev theories labelled by MFCs Cloc

A and
Cloc
B for two condensable algebras A,B ∈ C.

Let us apply the construction of the bicategory of surface defects to the defect
TQFT Zdef

C,w mentioned in Section 4.1. Assuming that the adjacent bulk theories are

labelled with algebras A,B ∈ DC,w3 , it readily yields the bicategory in the following

Definition 9.5. Let A,B ∈ C be condensable algebras. We denote by FrobAlgssep
C,A,B

the bicategory

• having symmetric separable Frobenius algebras over (A,B) in C as objects,

• FrobAlgssep
C,A,B(F1, F2) being the category of F1-F2-bimodules over (A,B) and

their morphisms,

• the composition of two bimodules F1MF2 and F2MF3 being the tensor product
M ⊗F2 N over the respective algebra,

• for each object F , the unit being F seen as a bimodule over itself.

9.2. Domain walls between Reshetikhin-Turaev theories

In the remainder of this chapter we prefer to sometimes use the term Wilson line
to refer to a (framed) 1-stratum in a bulk and defect Wilson line to refer to a
1-stratum within a surface defect. This terminology is used in [FSV], which we
summarise in this section and rely upon in later sections. For the rest of the chapter
we will assume that the characteristic of the ambient field k is 015.

15This is mostly to use the results of [DMNO] on Witt equivalence of MFCs, and those of [Schm]
on module traces. Both references assume char k = 0, and even though the generalisations to
arbitrary fields seem possible, one might expect some nuances to arise.
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Recall from Section 4.1 that surface defects between two bulk theories in a 3-
dimensional defect TQFT can be collected into a bicategory which has such sur-
face defects as objects, Wilson lines separating two surface defects as 1-morphisms
and point insertions as 2-morphisms. The bicategory of surface defects between
two bulk theories of Reshetikhin-Turaev type was studied from this point of view
in [FSV]. The surface defects in question were only considered locally, i.e. not as
part of a stratification of a compact manifold and without providing a construction
of a defect TQFT. Indeed, one can define a natural bicategory of surface defects
separating two bulk theories labelled by MFCs C and D, even before an exact
construction of a complete defect TQFT is known. Concretely, the algebraic de-
scription given in [FSV] is: Let W be a pivotal fusion category such that there is
a braided equivalence

F : C � D̃ ∼−→ Z(W) . (9.6)

Then the bicategory of surface defects is W-Mod, the bicategory of W-module
categories, module functors and natural transformations, see Section 2.7. A defect
between the two bulk theories can therefore only exist if the modular categories C
and D describing them are Witt equivalent (see Definition 9.7 below).

Let us review the argument of [FSV]. Having a surface defect s, the labels
for defect Wilson lines within it form a category W . The topological nature of
Wilson lines implies that W is monoidal and pivotal; we also assume it to be
fusion. Having an X ∈ C labelled Wilson line in the bulk, one can bring it next
to s so that it becomes a defect Wilson line F→(X) ∈ W . Since it is merely
“hovering” next to s, it can cross to the other side of any defect Wilson line
W ∈ W , i.e. one has a family of morphisms F→(X) ⊗W → W ⊗ F→(X), which
assemble into a half-braiding for F→(X). This implies the existence of a functor of
braided categories F→ : C → Z(W). An analogous argument then gives a functor

F← : D̃ → Z(W). For X ∈ C, Y ∈ D we then define the functor in (9.6) by
F (X ⊗ Y ) := F→(X)⊗ F←(Y ) and assume it to be an equivalence.

One can then consider two parallel defect Wilson lines. One of them has defect
condition s to both sides. According to the preceding discussion, it is labelled by
an object W ∈ W . The other defect Wilson line separates defect conditions s
and s′ and is labelled by an object W ′ of a category Ws′ . Fusing the two Wilson
lines yields a new Wilson line which must be labelled by an object W .W ′ ∈ Ws′ .
Since this should also be compatible with point insertions on the Wilson lines, we
get an action W × Ws′ → Ws′ , so that Ws′ gets the structure of a W-module
category. Thus, the bicategory of defect conditions is equivalent to the bicategory
of W-module categories.

Let s and s′ be two surface defects as in the setting above with the corresponding
categories W and V of surface Wilson lines. Note that by the argument above
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(a) (b)

Figure 9.3: (a) Point defect labelled by a morphism f ∈M(M,N). (b) Removing a
small neighbourhood of the defect point produces a boundary component S2

M,N .

one must have a braided equivalence Z(W) ' Z(V). By Proposition 2.22 this
implies that the bicategories W-Mod, V-Mod of module categories of W and V
are equivalent. The choice of W and the equivalence as in (9.6) therefore serves as
a choice of “coordinates” which help describing the abstract bicategory of surface
defects in a more concrete way.

9.3. Module traces from sphere defects

Let us now extend the treatment in [FSV] by considering a hypothetical defect
TQFT Z, whose bulk theories are of Reshetikhin-Turaev type, whose defects are
described as in Section 9.2. As we have seen, surface defects separating theories
labelled by C and D are described by module categories of a fusion categoryW , for
which there is an equivalence C � D̃ ' Z(W). We show that under a reasonable
assumption on Z, the module categories in question are of a particular type, namely
they have a module trace (see Definition 2.23).

Before proceeding, let us focus for a moment on possible labels for point inser-
tions on a surface defect. In particular, consider a point insertion separating two
lines between two surface defects, one labelled with W (as a module category over
itself), and the other by aW-module categoryM. By the previous section, the lines
are labelled by module functors W →M (equivalently, objects M,N ∈ M which
correspond to module functors −.M,−.N : W →M, see Proposition 2.21). The
point insertion is labelled by a natural transformation between the module functors
(equivalently, a morphism in f : M → N which corresponds to the natural trans-
formation {idW .f}W∈W), see Figure 9.3a. Another way of labelling such point
insertions is the D0-completion mentioned in Section 4.1: Remove a small open
ball surrounding the point in question. It leaves a boundary component which is
a stratified 2-sphere S2

M,N , to which the defect TQFT Z assigns a vector space
Z(S2

M,N) (see Figure 9.3b). The point insertions can then be labelled by vectors
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(a) (b)

Figure 9.4: (a) The manifold B3
M : The boundary of the cube represents a single

point in S3 ' R3∪{∞}, the rest of which corresponds to the interior of the cube.
The sphere in the middle represents the incoming boundary component S2

M,M .
(b) The manifold PM,N : Similar to (a), but has two boundary components S2

M,N

and S2
N,M . Note that as a stratified 3-manifold it is isomorphic to the cylinder

S2
M,N × [0, 1].

in this vector space. The assumption we make on Z is that it is D0-complete, i.e.
the map

M(M,N) → Z(S2
M,N)

f 7→ Z




, (9.7)

is an isomorphism of vector spaces. Here the image of f ∈ M(M,N) is to be
understood as follows: The picture in the argument of Z represents a stratified
solid ball, seen as a bordism ∅ → S2

M,N . Consequently, evaluation gives a linear
map k→ Z(S2

M,N) whose image of 1 ∈ k produces a vector in Z(S2
M,N). We remark

that in the case C = D =M =W , i.e. when there is no surface defect, the map is
indeed an isomorphism and one recovers the state space that the RT TQFT assigns
to a 2-sphere with two punctures (see Property 3.12).

We now define a module trace Θ on aW-module categoryM describing a surface
defect as follows: For M ∈ M, let B3

M be the stratified sphere S3 with a removed
open ball as in Figure 9.4a. It has a single boundary component S2

M,M , which we
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assume to be an incoming boundary. Evaluating with the TQFT we obtain the
linear map

Z(B3
M) : Z(S2

M,M)→ Z(∅) , (9.8)

which by precomposing with (9.7) can be seen as a map EndMM → k.

Proposition 9.6. The collection of maps ΘM := Z(B3
M), M ∈ M is a module

trace on M.

Proof. The properties of a module trace can be shown by using the fact that upon
evaluation with Z only the topological configuration of defects is important:

i) A simple deformation yields an isomorphism of stratified manifolds

' . (9.9)

By using (9.7) on morphisms g ◦ f and f ◦ g one gets ΘM(g ◦ f) = ΘN(f ◦ g).

ii) To show that the pairing ωM,N as in (2.66) is non-degenerate, it is enough to
provide a copairing

ΩM,N : k→M(N,M)⊗kM(M,N), (9.10)

such that
(ωM,N ⊗k idM,N) ◦ (idM,N ⊗kΩM,N) = idM,N ,

(idN,M ⊗kωM,N) ◦ (ΩM,N ⊗k idN,M) = idN,M .
(9.11)

Let PM,N be the stratified manifold as in Figure 9.4b. Interpreting both its
boundary components as incoming, one gets a bordism Pω : S2

M,N t S2
N,M →

∅. Together with the identification in (9.7), the evaluation with the TQFT
Z(Pω) gives a pairing M(N,M) ⊗C M(M,N) → k which by (2.66) and
the definition of Θ is equal to ωM,N . Similarly, interpreting the boundary
components of PM,N as outgoing one gets a bordism PΩ : ∅→ S2

N,M t S2
M,N .

We define ΩM,N := Z(PΩ). It remains to show that the identities (9.11) hold.
They follow from the functoriality of the TQFT Z and isomorphisms

Pω ∪S2
M,N

PΩ ' S2
N,M × [0, 1] , Pω ∪S2

N,M
PΩ ' S2

M,N × [0, 1] , (9.12)
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i.e. gluing two copies of PM,N across a suitable boundary component gives a
cylinder.

iii) The partial trace condition (2.67) follows from the isomorphism of stratified
manifolds obtained by moving the W -line over the point at infinity in S3:

' . (9.13)

A noteworthy consequence of this result is that the fusion category W is spher-
ical. Indeed, W as an indecomposable module category over itself has a module
trace given by the left categorical trace, which is then proportional to the one in
Proposition 9.6 due to Proposition 2.24. The isomorphism (9.13) forM =W and
M = 1W yields

ΘWf = ΘW ∗f
∗ , W ∈ W , f ∈ EndWW . (9.14)

9.4. Witt equivalence of modular categories

Definition 9.7. Two MFCs C and D are Witt equivalent if there exists a spherical
fusion category S and a ribbon equivalence C � D̃ ' Z(S), which we call a Witt
trivialisation.

Remark 9.8. i) The notion of Witt equivalence was introduced in [DMNO] for
non-degenerate braided fusion categories, i.e. without an assigned ribbon structure.
There are hence two Witt groups: that of modular fusion categories and that of
non-degenerate braided fusion categories. For the application in this work, the
version with ribbon structure is the relevant one.

ii) Witt equivalence is indeed an equivalence relation on MFCs. The set of equiv-
alence classes forms the so-called Witt group whose multiplication is induced by
the Deligne product, the unit is given by the class consisting of Drinfeld centres
and the inverses are given by braiding reversal due to existence of the equivalence
(2.20), see [DMNO].
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As was already mentioned in Section 9.2, the notion of Witt equivalence turns
out to be of central importance in the analysis of surface defects in 3-dimensional
TQFTs. The following characterisation of Witt equivalence is formulated in [DMNO,
Prop. 5.15] for non-degenerate braided fusion categories; we recall the proof to show
that the argument applies in the ribbon case:

Proposition 9.9. Two MFCs D, E are Witt equivalent iff there exists a modular
fusion category C and two condensable algebras A,B ∈ C such that D ' Cloc

A and
E ' Cloc

B as ribbon fusion categories.

Proof. Having a Witt trivialisation D� Ẽ ∼−→ Z(S) for some spherical fusion cate-
gory S, one can take the Deligne product of both sides with E and use the equiv-
alence (2.20) to get a ribbon equivalence F : D � Z(E) → E � Z(S) and then set
C := E � Z(S). As a Drinfeld centre, Z(S) possesses a Lagrangian algebra, i.e. a
commutative separable haploid algebra B′, such that Z(S)loc

B′ ' Vectk as braided
fusion categories. By [BalK1, Thm. 2.3], [DMNO, Lem. 3.5], the algebra B′ has the
underlying object B′ ∼=

⊕
i∈IrrS

i⊗ i∗ in S and therefore

dimZ(S) B
′ = dimS B

′ = DimS 6= 0 . (9.15)

By [FRS1, Cor. 3.10], B′ is Frobenius. One sets B = 1E �B′. Similarly, one picks
a Lagrangian algebra A′ in Z(E) and sets A = F (1D � A′).

For the rest of the section, let C, A, B be as in the proposition above. We

will look for an explicit Witt trivialisation of Cloc
A � C̃loc

B . Let us consider the
semisimple category ACB with A-B-bimodules in C as objects and bimodule maps as
morphisms. We equip it with the following monoidal product: for each M,N ∈ ACB
we set

MA⊗BN := im . (9.16)

Note that the monoidal unit 1
ACB := A⊗ B is in general not a simple object and

ACB is therefore a multifusion category.
The category ACB has a natural pivotal structure with the (co)evaluation mor-

phisms for each M ∈ ACB being

evM = , coevM = , ẽvM = , c̃oevM = .

(9.17)
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Remark 9.10. i) In the case A = B, the category ACA has A-A-bimodules as
objects but its tensor product is not the tensor produce over A. Since the
latter is the more usual tensor product on ACA, we stress this point in order
to avoid confusion.

ii) ACB is equivalent to the category CA⊗B of right modules of A ⊗ B in C. In
general, to define a tensor product of right modules of a separable Frobenius
algebra it needs a half-braiding with respect to which it is commutative. In
the case of the algebra A⊗ B ∈ C it is given by the “dolphin” half-braiding
(2.21). Note that A ⊗ B is in general not commutative with respect to the
braiding of C.

The multifusion category ACB is defined in such a way that algebras and their
bimodules in it correspond to algebras and their bimodules in C over (A,B) in the
sense of Definitions 9.1 and 9.3. In particular we have (see also Definitions 9.5 and
2.26):

Lemma 9.11. There is an equivalence of bicategories FrobAlgssep
C,A,B ' FrobAlgssep

ACB .

Proof. Let F ∈ ACB be an algebra. Then F is also an object in C and it is
equipped with the multiplication given by [F ⊗ F → FA⊗BF → F ], where the
first morphism is the projection to the tensor product in ACB and the second
morphism is the multiplication of F in ACB. This multiplication in C satisfies the
relations in Definition 9.1 because of how the tensor product in ACB is defined (see

(9.16)). One then takes the morphism [1C
ηA⊗ηB−−−−→ A⊗B ηF−→ F ] as the unit, where

ηA, ηB are the units of A and B and ηF is the unit of F in ACB. To compare
the bimodules it is enough to notice that the tensor product in ACB ensures that
the two A- and the two B-actions as in (9.2), (9.3) coincide. A similar argument
applies to (symmetric, separable) Frobenius algebras as well.

Proposition 9.12. The functor

Cloc
A � C̃loc

B → Z(ACB), M �N 7→ (M ⊗N, γdol
M,N), (9.18)

is a ribbon equivalence. Here γdol
M,N is an analogue of the “dolphin” half-braiding,

defined for all K ∈ ACB by

γdol
M,N,K := . (9.19)
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Proof. First we show that Cloc
A � C̃loc

B ' Z(ACB) as braided multifusion categories.
Indeed, one has obvious equivalences of braided categories

Cloc
A � C̃loc

B ' (C � C̃)loc
A�B ' Z(C)loc

A⊗B . (9.20)

It is known (see [Schb, Cor. 4.5]) that for any monoidal categoryM and a commu-
tative algebra (C, γ) ∈ Z(M), one has a braided equivalence Z(M)loc

(C,γ) ' Z(MC),
where one uses the half-braiding γ of C to define the monoidal product in MC .
Applying this to the right hand side of (9.20) one obtains the result.

Next we show that the explicit functor (9.18) is a braided equivalence. First, using
that M and N are local modules one can check that γdol

M,N,K does indeed satisfy
the hexagon identity. Next, by the argument above, Z(ACB) is fusion and has

the same Frobenius-Perron dimension as Cloc
A � C̃loc

B . The functor (9.18) is then
a braided functor between non-degenerate braided fusion categories and therefore
fully faithful by Proposition 2.8. Hence by Proposition 2.3 it is an equivalence.

Finally, the explicit equivalence (9.18) implies in particular that Z(ACB) is spher-
ical: it is enough to check that the left and the right dimensions of simple objects
coincide (see Proposition 2.4). We know that all simple objects are of the form
µ ⊗ ν for µ ∈ IrrClocA , ν ∈ IrrClocB for which the left/right dimensions in Z(ACB)

are the product of those of µ and ν and are hence equal. The category Z(ACB)
is therefore also ribbon (see [TV, Lem. 4.5]). The equivalence (9.18) can also be
checked to preserve braidings and twists and is therefore a ribbon equivalence.

Remark 9.13. The category ACB need not be spherical, even though its Drinfeld
centre Z(ACB) is spherical, as shown in the proof above. Indeed, the left and the
right traces of f ∈ End

ACB(M) in general need not be equal:

trl f = = 6= = trr f . (9.21)

Proposition 9.12 in particular implies that Z(ACB) is fusion and hence that ACB
is indecomposable. Proposition 2.5 then in turn implies the existence of a braided
equivalence Z(ACB) ' Z(F) where

F := (ACB)ii (9.22)

is any component category of ACB, and which is then automatically fusion. An
explicit equivalence is given by

Z(ACB)→ Z(F), M 7→ 1F A⊗BM . (9.23)
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Indeed, we show in the Appendix E that (9.23) is in fact a ribbon functor. Then,
since Z(ACB) and Z(F) are non-degenerate and have equal Frobenius-Perron di-
mensions, by Propositions 2.3 and 2.8 it is an equivalence.

The composition of the functors (9.18) and (9.23) is then a Witt trivialisation

for Cloc
A � C̃loc

B .

9.5. Equivalence of the two descriptions of domain walls

Let C be a MFC and A,B ∈ C condensable algebras. We have looked at two
ways to describe domain walls separating two theories of Reshetikhin-Turaev type
labelled by MFCs Cloc

A and Cloc
B . The first one comes from the construction of the

defect TQFT Zdef
C,w defined in Section 9.1, while the second one is a physics inspired

argument from [FSV], which was summarised in Section 9.2 and expanded upon
in Section 9.3. Below we argue that both descriptions are essentially the same in
the sense that the resulting bicategories of domain walls are equivalent.

We know from Section 9.1 and Lemma 9.11 that the bicategory of domain walls
obtained from the defect TQFT Zdef

C,w is equivalent to FrobAlgssep

ACB . Following Sec-
tion 9.4, let F be a component category of the multifusion category ACB. The

existence of the Witt trivialisation Cloc
A � C̃loc

B

∼−→ Z(F) implies that the bicategory
of domain walls according to [FSV] is F -Modtr (see Definition 2.26). We have:

Theorem 9.14. One has the following commutative diagram of equivalences, in-
clusion and forgetful functors between bicategories:

F -Modtr FrobAlgssep
F FrobAlgssep

ACB

F -Mod AlgF Alg
ACB

include forget

iii)

∼ ∼
iv)

forget

i)

∼ ∼
ii)

. (9.24)

Proof. We exploit various relations between bicategories introduced in Sections 2.7
and 9.4.

Equivalence i) in (9.24) is given by Proposition 2.21, and equivalence iii) follows
from Proposition 2.27. It is clear that the left square commutes (on the nose).

Equivalence ii) is given by inclusion. Indeed, for any indecomposable multifusion
category A and its component category Aii, an algebra A ∈ Aii is automatically
an algebra in A by providing it with the unit [1 � 1i

η−→ A] where 1i ∈ Aii ⊂ A
is the restriction of the tensor unit. The inclusion is fully faithful, meaning that
upon inclusion of two algebras A,B ∈ Aii, the corresponding bimodule categories

A(Aii)B and AAB are equivalent. Moreover, any simple algebra in A is Morita
equivalent to one in Aii (see e.g. [KZ2, Rem. 3.9]), which implies the essential
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surjectivity of the inclusion. It is easy to check that in case A is pivotal, the
inclusion preserves the structure of a symmetric separable Frobenius algebra, which
then gives equivalence iv), as well as commutativity of the right square (again on
the nose).
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A. Monadicity for separable biadjunctions

Let A, B be categories, and let X : A → B, Y : B → A be biadjoint functors with
units and counits denoted by

, , , . (A.1)

Furthermore we will assume that this biadjunction is separable, i.e. the natural
transformation

:= . (A.2)

is invertible. The endofunctor T := [Y X : A → A] becomes a ∆-separable Frobe-
nius algebra in the strict monoidal category EndA via the structure morphisms

:= , := ,

:= , := . (A.3)

Let AT be the category of T -modules in A. Its objects are pairs(
U ∈ A , [ρ : T (U)→ U ]

)
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and a morphism (U, ρ) → (U ′, ρ′) is a morphism [f : U → U ′] ∈ A, such that the
following diagrams commute:

TT (U) T (U)

T (U) T

µU

T (ρ) ρ

ρ

,

U T (U)

U

id

ηU

ρ ,

T (U) T (U ′)

U U ′

T (f)

ρ ρ′

f

. (A.4)

Let ? be the category with only one object and only the identity morphism. In
what follows, it is going to be useful to identify any category A with the category
of functors ?→ A and natural transformations in the obvious way. The conditions
(A.4) can then be written graphically as

= , = ,

= . (A.5)

Define the functor Ŷ : B → AT to be the same as Y , except that the image is
equipped with the following T -action:

:= . (A.6)

Definition A.1. Let A be a category.

• An idempotent [p : U → U ] ∈ A is called split, if it has a retract, i.e. a triplet
(S, e, r) where S ∈ A, e : S → U , r : U → S, such that e is mono, r ◦e = idS,
e ◦ r = p.
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• A is called idempotent complete if every idempotent is split.

Proposition A.2. If B is idempotent complete, then Ŷ is an equivalence.

Proof. We will give an inverse X̂ : AT → B. Let M ∈ AT . Define the following
morphism [pM : X(M)→ X(M)] ∈ B:

pM := . (A.7)

One quickly checks that it is an idempotent. Set X̂(M) = im p. To prove that it
is indeed an inverse, one computes

X̂Ŷ (R) = im , Ŷ X̂(M) = im .

(A.8)
The morphisms in pairs

, and ,

are then inverses of each other.
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Now letA, X, Y (and hence also X̂, Ŷ ) in addition be k-linear additive categories
and functors.

Proposition A.3. Suppose A is idempotent complete and finitely semisimple.
Then so is AT .

Proof. We first show idempotent completeness of AT . Given an idempotent p :
M → M in AT and a retract e : S → M , r : M → S in A with p = e ◦ r, one can
equip S with a T -action as follows,

ρS =
[
T (S)

T (e)−−→ T (M)
ρM−−→M

r−→ S
]
. (A.9)

With respect to this action, e and r are morphisms in AT , so that (S, e, r) becomes
a retract in AT .

Next we show semisimplicity of AT . Let M,N ∈ AT and let ı : M → N be mono
in AT . Since A is semisimple, there is π̃ : N → M in A, such that π̃ ◦ ι = idM .
Define

π := . (A.10)

One checks that π : N →M is a morphism in AT and

π ◦ ı =

= = = idM .

It follows that N ' M ⊕ X for X = ker(ı ◦ π), and so all subobjects are direct
summands. The kernel exists as it is the image of the idempotent idN −ı ◦ π.

For finiteness we show that every T -module M ∈ AT is a submodule of an

induced T -module, i.e. a one of the form Ind(U) := [?
U−→ A T−→ A] for some object
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U ∈ A. Indeed, pick U = M and the following morphisms: Υ : M → Ind(M) and
Π : Ind(M)→M

Υ := , Π := (A.11)

One can check that Υ and Π are module morphisms and that Π ◦Υ = idM , hence
M is indeed a submodule of Ind(M). Every simple T -module is then a submodule
of Ind(V ) where V ∈ A is simple and since there are finitely many of those, AT
must have finitely many simple objects.
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B. Equivalent skeleta for surfaces and 3-manifolds

In this appendix we sketch the proofs of Lemmas 4.6 and 6.2, stating that 1- and 2-
skeleta for 2- and 3-manifolds respectively are related by finite sequences of certain
moves on them. We note that both of them are just versions of well-known results,
the purpose of this exposition is to argue that they also hold for the admissible of
1- and 2-skeleta, which for our purposes are more convenient to use. In doing so
we merely reduce this case to the ones that can be found in the literature.

We will use the oriented Pachner moves on the triangulations of manifolds as an
intermediate tool. Recall that:

• An abstract simplicial complex is a pair (X,Σ) consisting of a set X (the set
of vertices) and a subset of the power set Σ ⊆ PX (the set of faces) such
that {x} ∈ Σ for all x ∈ X and if σ ∈ Σ and τ ⊆ σ then τ ∈ Σ.

• If X is finite, one can define the geometric realisation to be the topological
space |(X,Σ)| obtained as a union of convex hulls of each face σ ∈ Σ in
spanRX with the standard topology. When referring to a face σ of |(X,Σ)|
we will mean the convex hull of a face σ ∈ Σ. If the vertices of a face carry
an order, e.g. σ = {x1, . . . , xk+1}, we equip it with the orientation given by
the vectors (x2 − x1, . . . , xk+1 − x1) .

• A triangulation of an n-dimensional manifold M is a pair X = (X, f), where
X = (X,Σ) is a finite abstract simplicial complex such that if σ, σ′ ∈ Σ then
σ ∩ σ′ is either empty or a face of X, and f : |(X,Σ)| → M is a homeo-
morphism. Note that a triangulation on M induces a triangulation on the
boundary ∂M .

• The Poincaré dual of an n-dimensional manifold M with a triangulation
(X,Σ) is the stratification of M ' |(X,Σ)| obtained by taking for each face
σ of |(X,Σ)| the convex hull of the barycentres of all faces containing σ. This
means that each k-face σ gets replaced by an “orthogonal” (n−k)-stratum s;
If the triangulation is oriented, i.e. if the faces of |(X,Σ)| have an orientation
assigned, we orient the strata of the Poincaré dual by the convention that
the ordered pair (s, σ) gives the orientation of M . By the same convention,
orienting the strata of the Poincaré dual fixes the orientations of the faces.

• The Poincaré duals of (unoriented) triangulations of 1-, 2- and 3-dimensional
manifolds are by definition examples of (unoriented) skeleta. We will call
them ∇-skeleta to emphasise that not all skeleta are obtained this way. An
admissible triangulation of a 1-, 2- or 3-dimensional manifold M is an oriented
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(a) (b)

Figure B.1: Examples of orientation conventions for a single globally ordered n-
face and its Poincaré dual in cases (a) n = 2 and (b) n = 3. Recall that the
orientations are picked so that the pair (s, σ), consisting of a stratum and a face
that it is dual to, yields the orientation of the ambient plane/volume (here in both
cases assumed to be right-handed). In dimension 2 the globally ordered ∇-skeleta
are admissible, while in dimension 3 there is a purely coincidental discrepancy
between the orientations of lines which we address in Section B.2.

triangulation whose Poincaré dual is an admissible ∇-skeleton. A globally or-
dered triangulation of M is a triangulation X with an assigned total order
on the set of vertices of X (and is therefore oriented). A globally ordered
∇-skeleton is the Poincaré dual of a globally ordered triangulation. In Fig-
ure B.1 we illustrate how the orientations of the faces of a globally ordered
triangulation and those of the strata if its Poincaré dual are related.

One has (see [CRS1, Prop. 3.3]):

Proposition B.1. Any two globally oriented triangulations which agree on the
boundary are related by a finite sequence of oriented Pachner moves shown in
Figure B.2 for dimensions 2 and 3.

It was shown in [CRS1, Prop. 3.18] that the admissible moves bl and BLT on
admissible ∇-skeleta imply the oriented Pachner moves on the corresponding tri-
angulations, so Proposition B.1 already implies Lemmas 4.6 and 6.2 for globally
oriented ∇-skeleta. Furthermore one has:

Lemma B.2. Let M be an n-dimensional manifold, n = 2, 3. An (unoriented)
(n− 1)-skeleton T of M is a ∇-skeleton if and only if
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1-3

�
2-2

�

(a)

1-4

�
2-3

�

(b)

Figure B.2: The Pachner moves for triangulations of n-dimensional manifolds. (a)
The moves 1-3 and 2-2 for n = 2, (b) the moves 1-4 and 2-3 for n = 3. Similarly
one defines the oriented Pachner moves, in which case the involved faces have
orientations induced by an order on the vertices. The newly created vertex in the
moves 1-3 and 1-4 can be assigned an arbitrary new value extending this order,
which also fixes the orientations of the newly created faces.

i) every stratum of T is contractible;

ii) for each stratum s of T, each two germs of n-strata adjacent to s strata
belong to distinct n-strata;

iii) if two strata s, s′ of T are adjacent to the same set of n-strata, then s = s′.

Proof. The conditions (i)-(iii) are satisfied for any ∇-skeleton.
Conversely, from a skeleton T that satisfies these conditions we obtain an ab-

stract simplicial complex by taking the set X of vertices to be the set of n-strata
of M and with the set of faces Σ defined as follows: From Figures 4.5 (for n = 2)
and 6.1 (for n = 3) we see that each i-stratum is adjacent to exactly n+1− i germs
of n-strata. Therefore by condition ii) each i-stratum s of T yields an (n+ 1− i)-
element subset of X, which by condition iii) are all distinct. We set Σ to be the
collection of these subsets. By construction, (X,Σ) satisfies the conditions of a
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triangulation. The strata of the Poincaré dual of |(X,Σ)| are then in canonical
bijection with the strata of M . Using the condition i) one can construct a home-
omorphism |(X,Σ)| → M preserving the stratifications by using the fact that a
self-homeomorphism of the unit sphere can be extended to a self-homeomorphism
of the unit ball.

B.1. 1-skeleta for surfaces

Let Σ be an oriented 2-manifold with boundary. For an admissible 1-skeleton t of
Σ we denote by t the underlying unoriented 1-skeleton.

Lemma B.3. Let t be an admissible 1-skeleton for Σ, such that ∂t is an admissible
∇-skeleton. Then there is an admissible ∇-skeleton t′ for Σ and a sequence of
admissible bl-moves from t to t′.

Proof. We show that one can bring t to a skeleton t′ which satisfies the conditions
of Lemma B.2 without using the inverse b-move, which ensures that the orienta-
tions of the newly created 1-strata can be chosen in such a way that the moves
are admissible. Condition i) is achieved by performing the b-move on all non-
contractible 1-strata. Condition ii) is achieved by making copies of the 1-strata
which are adjacent to the same 2-stratum twice as follows:

b-move−−−−→ 2× l-move−−−−−→ , (B.1)

and by surrounding a 0-stratum with new 1-strata:

3× b-move−−−−−−→ 4× l-move−−−−−→ ,

(B.2)
Note that the condition ii) cannot be achieved this way for the 1-strata intersecting
∂Σ, but there is no need, since ∂t is already a ∇-skeleton. The condition iii) can
then be achieved similarly.
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To utilise Proposition B.1 one needs a stronger condition on orientations, namely
that the orientations of the ∇-skeleta are given by a global order.

Lemma B.4. Let t be an admissible 1-skeleton of Σ and l a contractible 1-stratum
with two distinct adjacent 0-strata p1 and p2, such that

1. l ∩ ∂Σ = ∅,

2. the other two germs of 1-strata, adjacent to pi, are not both oriented towards
or away from pi.

Then the orientation of l, p1 and p2 can be at once changed by a finite sequence of
admissible bl-moves.

Proof. One has for example:

b-move−−−−→ 2x l-move−−−−−→

2x l-move−−−−−→ b−1-move−−−−−→ . (B.3)

Lemma B.5. Let t, t′ be two admissible 1-skeleta for Σ, such that

i) t = t′ is a ∇-skeleton;

ii) ∂t = ∂t′.

Then there is a sequence of admissible bl-moves from t to t′.

Proof. Let X and X ′ be the corresponding admissible triangulations (see Fig-
ure B.3a for an illustration). Apply to each 2-face of X a 1-3 Pachner move,
orienting each new edge towards the newly created vertex (Figure B.3b), which
yields an oriented triangulation X. Each Pachner move is oriented, so the mod-
ification corresponds to a sequence of admissible bl moves on t. The edges that
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(a) (b) (c)

Lem. B.4−−−−−→

(d)

Figure B.3: Fixing orientations with the help of Pachner moves and Lemma B.4.

are both in X and X and do not lie in the boundary have exactly two adjacent
2-faces, on which we apply an oriented 2-2 Pachner move, setting the orientation
of the new edge arbitrarily (Figure B.3c). This yields an oriented triangulation

X̃, which again is obtained from X by a sequence of admissible bl-moves on their
Poincaré duals. Applying the same procedure to X ′ one similarly obtains oriented
triangulations X ′ and X̃ ′. Note that X̃ ′ differs from X̃ only by the orientations
of edges created in the second step. The Poincaré duals of these edges satisfy the
conditions of Lemma B.4 and so their orientations can be flipped by a sequence
of admissible bl-moves (Figure B.3d), bringing X̃ to X̃ ′. In the end one obtains a

sequence of invertible bl-moves X ↔ X ↔ X̃ ↔ X̃ ′ ↔ X ′ ↔ X ′.

Corollary B.6. Let t, t′ be two admissible 1-skeleta for Σ such that ∂t = ∂t′ is a
globally ordered ∇-skeleton. Then there is a finite sequence of admissible bl moves
from t to t′.

Proof. One makes t into an admissible ∇-skeleton by the help of Lemma B.3 and
then flips the orientations of 1-strata as necessary to make it into a globally ordered
∇-skeleton t∇. Similarly, t′ is made into a globally ordered ∇-skeleton t′∇. By
Proposition B.1, t∇ can be made into t′∇.

At this point all that remains in order to prove Lemma 4.6 is to show that the
condition on the boundary of a 1-skeleton in Corollary B.6 can be lifted. To this
end, let M = (M,T) ∈ Borddef

3 be a defect bordism and let s ⊆M be a 2-stratum.
The external closure s (see (4.10)) is then an oriented 2-manifold with boundary.
The boundary ∂s is itself stratified by lines, which are projected on T(1) and lines
that lie in ∂M . Let us call a line of the first kind an inner line and of the second
kind a boundary line. The boundary of a 1-skeleton t of s must be held unchanged
at the boundary lines, while they can be changed at the inner lines by the moves ∂ b
and ∂ l. The moves p and l2 allow one to ignore the 0-strata of M and, the choices
of 1-skeleta of the other 2-strata of M . To fulfil the condition of Corollary B.6 we
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(a) (b)

∂ b move−−−−→ ∂ l move−−−−→

(c)

b move−−−→ ∂ l move−−−−→

(d)

Figure B.4: Modifying a 1-skeleton of a 2-stratum of M ∈ Borddef
3 near the bound-

ary. The dotted line on the shaded surface represents the imaginary boundary line,
at which the 0-skeleton can be freely modified.

show that, regardless of the stratification of ∂s, t can be changed inside a germ of
the boundary ∂s × [0, 1) ↪→ s so that t restricts to a globally ordered ∇-skeleton
on ∂s×{1/2}, which we will call the imaginary boundary. There are several cases
to consider

1. Let b be a non-contractible boundary line. Then t has at least one line that
ends on b. Apply a b-move on this line near the boundary so that the interior
of the new 2-stratum intersects b×{1/2}, see Figure B.4a. On the imaginary
boundary there are now at least two points, the orientation of one of which
can be chosen arbitrarily. One can now repeat the process.

2. Let b be a contractible boundary line. Then at the side of it there must be
an adjacent inner line e. Apply a ∂ b-move on e and proceed similarly as in
case 1, see Figure B.4b.

3. Let e be an inner line. If t = ∅, which is possible if s is contractible, one
uses a combination of ∂ b- and ∂ l-moves to add a single line intersecting e as
shown in Figure B.4c. Once e has at least one adjacent e line, one can use
combinations of b- and ∂ l-moves to add an arbitrary number of lines with
arbitrary orientations, see Figure B.4d.

This finally proves Lemma 4.6.
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B.2. 2-skeleta for 3-manifolds

In this appendix section we sketch the proof of Lemma 6.2. This can be done by
merely repeating the steps in Section B.1 for the admissible 2-skeleta of 3-manifolds
and the BLT moves relating them. The detailed proof along these lines is available
in [CMRSS1, App. A].

Let us mentioned a small conventional caveat regarding the admissibility of ori-
entations of 2-skeleta. Recall that in Section 6.1, an admissible 2-skeleton of a
bordism M ∈ Bord3 was defined so that each point has a neighbourhood, corre-
sponding to one of the local models in Figure 6.1. The globally ordered ∇-skeleta
would then in principle not be admissible, as their 1-strata are oriented the other
way (compare the local models to Figure B.1b). This discrepancy arises due to the
difference in conventions used in [CRS1] and [CRS3]: in the main text we follow
those of [CRS3], as we rely greatly on the algebraic results presented there. Here
we will make the following

Convention B.7. In this section only, the 1-strata of admissible 2-skeleta of 3-
manifolds are assumed to have orientations, opposite to the ones listed in the local
models in Figure 6.1. This does not change the validity of the proof below.

With this convention, globally ordered ∇-skeleta of M are indeed admissible.
Moreover, admissible 2-skeleta induce admissible 1-skeleta on the boundary ∂M ,
i.e. with the orientations exactly as in Figure 4.5.

We now turn to proving Lemma 6.2:

• If T is an admissible 2-skeleton for M , such that ∂ T is an admissible ∇-
skeleton, then there is an admissible ∇-skeleton T′ for M and a sequence
of admissible BLT moves from T to T′ (cf. Lemma B.3). This is because
one can use the B- and L-moves to make the strata contractible and use the
BLT moves to surround the 1- and 0-strata of T with newly created strata
as follows:

→ , → ,

which is then used to fulfil the conditions of Lemma B.2. All this can be
done without using the inverse L-move, so the BLT moves can be assumed
to be admissible.
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• Let s be a contractible 2-stratum, which does not intersect ∂M and such that
for each 1-stratum l, adjacent to s, the other two 2-strata adjacent to l do
not both induce the same orientation on l. Then the orientations of s and
those of the adjacent to s 0- and 1-strata can be changed by a sequence of
admissible BLT moves (cf. Lemma B.4). This is because one make a copy s′

of s having the opposite orientation to that of s:

→ ,

and then apply similar moves in reverse to remove s.

• If T and T′ are admissible ∇-skeleta of M , such that ∂ T = ∂ T′ and which
otherwise differ only by the orientations (i.e. T = T′), then there is a sequence
of admissible BLT moves from T to T′ (cf. Lemma B.5). To show this one
adapts the proof of Lemma B.5: subdivide each 3-face using the Pachner 1-4
move orienting towards the new vertex; apply the Pachner 2-3 move at each
inner 2-face; the orientations of the newly created 2-faces can be flipped like
in the previous step.

• At this point Lemma B.2 is shown when ∂ T = ∂ T′ is a globally ordered
∇-skeleton of ∂M (cf. Corollary B.6). One can then pre- and postcompose
the stratified bordisms (M,T), (M,T′) with stratified cylinders ∂M × [0, 1],
which at a patch of ∂M look like

, .

They then implement the admissible bl-moves on the boundary and can there-
fore be used to bring any admissible 2-skeleton of ∂M to a globally ordered
∇-skeleton.
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C. Orbifold data for the non-Euler complete theory

In this appendix section we review the definitions of orbifold data and the asso-
ciated categories for the version of the defect TQFT Zdef

C , which labels surface
defects with symmetric ∆-separable Frobenius algebras only, and is therefore not
Euler complete with respect to surfaces (see Remark 5.7). This setting is used in
some of our main references, for example [CRS2, CRS3, CMRSS1, MR1, MR2]; it
has a disadvantage of making the 3-dimensional graphical calculus as introduced
in Section 5.2 cluttered with point insertions, and an advantage of making ex-
plicit calculations easier in some of the examples. The setting in the main text
is in principle more general, as a symmetric ∆-separable Frobenius algebra with
an invertible point insertion can be exchanged for a single symmetric separable
Frobenius algebra as explained in the Property 4.14.

Let C be a MFC. In the setting of ∆-separable algebras one defines an orbifold
datum in C to be a tuple A = (A, T, α, α, ψ, φ), where the entries are as follows:

• A is a symmetric ∆-separable Frobenius algebra (a label for 2-strata);

• T is an A-A ⊗ A bimodule (a label for lines with three adjacent 2-strata as
in Figure 5.3a);

• α : T ⊗2 T ↔ T ⊗1 T : α are A-A ⊗ A ⊗ A-bimodule morphisms (labels for
points as in Figures 5.3c, 5.3d);

• ψ : A → A is an invertible A-A-bimodule morphism (label for a point inser-
tion on an A-labelled 2-stratum);

• φ ∈ k× (label for a point on a 3-stratum),

and are required to satisfy the conditions in Figure C.1.

Similarly one defines the category CA to have objects (M, τ1, τ2, τ1, τ2), where

• M is an A-A-bimodule (label for lines on A-labelled 2-strata);

• τ1 : M ⊗0 T ↔ T ⊗1 M : τ1 and τ2 : M ⊗0 T ↔ T ⊗2 M : τ2 are A-A ⊗ A-
bimodule morphisms (labels for points as in Figure 5.5),

which satisfy the conditions in Figure C.2. As in the main text, the morphisms of
CA are taken to be A-A-bimodule morphisms, such that the identity (M) holds.

The ψ-insertions on 2-strata also appear in defining some structural morphisms
in the associated categories CA, C1

A, C2
A, for example:
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• The crossing morphisms of the tensor product of two objects M,N ∈ CA are

τM,N
1 = , τM,N

2 = , (C.1)

(similarly for τM,N
1 , τM,N

2 ).

• The (co)evaluation morphisms for M ∈ CA are redefined as

evM = , coevM = , (C.2)

ẽvM = , c̃oevM = . (C.3)

• The braiding morphisms for M,N ∈ CA, as well as the twist of M become

cM,N = φ2 · , θM = φ2 · , (C.4)

(similarly for c−1
M,N , θ−1

M ).
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The definition of the orbifold graph TQFT ZorbA
C remains the same with one ex-

ception: In the definition of an admissible A-coloured ribbon diagram of a bordism

M = (M,R) ∈ B̂ordrib
3 (CA), each 2-stratum s of M acquires an additional ψχsym(s)-

insertion (where χsym is the symmetric Euler characteristic, see (4.7)), and for each
coupon c of R, the leftmost and the rightmost 2-strata adjacent to c acquire one
additional ψ-insertion each; when computing χsym(s) the boundary segments of
coupons in R are treated like boundary segments of ∂M . The latter modification
is introduced to make sure that, upon evaluating with ZorbA

C , the coupons of R
can be composed in the same way as A-A-bimodule morphisms. Indeed, by the
definition of ZorbA

C in terms of Zdef
C , for two such morphisms f and g, which can

be composed into g ◦ f , then evaluates to the same vector independent on whether
their coupons are composed or not:

Zdef
C




= Zdef

C




. (C.5)
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= (O1∆)

=
(O2∆)

=
(O3∆)

=
(O4∆)

=
(O5∆)

=
(O6∆)

=
(O7∆)

= = = (O8∆)

Figure C.1: Conditions on A = (A, T, α, α, ψ, φ) with point insertions
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= (T1∆) = (T2∆)

= (T3∆)

= , = (T4∆)

= , = (T5∆)

= , = (T6∆)

= , = (T7∆)

Figure C.2: Conditions on (M, τ1, τ2) ∈ CA with point insertions
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D. Computations for Chapter 8

D.1. Deriving the polynomial equations (P1)-(P8)

The polynomial equations (P1)-(P8) are derived from the conditions (O1∆)-(O8∆)
on an orbifold datum A = (A, T, α, α, ψ, φ) in a MFC C, presented in the setting
of a symmetric ∆-separable Frobenius algebra A with an invertible point inser-
tion ψ : A → A (see Appendix C) and satisfying the assumptions (A1)–(A3). By
assumption (A2), the algebra A is a direct sum of copies of the tensor unit, in-
dexed by the elements of a set B. In the pictures below, we indicate for each
surface the index (which runs through the elements of B) that was used to repre-
sent the corresponding A-action when converting the conditions (O1∆)-(O8∆) into
the polynomial equations (P1)-(P8) in Table 8.1.

P1∆ :

=

P2∆ :

=

P3∆ :

=
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P4∆ :

=

P5∆ :

=

P6∆ :

=

P7∆ :

=

P8∆ :

= = = φ−2 ·

Let us now provide the explicit derivation of the equation (P1). The other
equations can then be handled similarly.

In terms of string diagrams, the equation (O1∆) has the same form as the equa-
tion (O1) in Figure 5.1, where instead of (5.2) one uses the definition

:= . (D.1)

for the ψ0-insertion. Under assumptions (A1)-(A3) it is equivalent to the collection
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of identities

=
∑
x∈B

, a, b, c, d, e, p, q, r, s ∈ B , (D.2)

where we used (8.11) and cancelled the appearances of ψ on both sides. Notice that
the indexing matches the 3-dimensional presentation (P1∆) above. For example, on
the left-hand side of (D.2), the object atbp at the bottom left corresponds in (P1∆)
to the bottom left line, which is connected to the surface labelled a on the left, and
to two surfaces labelled b and p on the right.

Let us decompose the source and target of the morphism in (D.2) into simple
objects by composing both sides with

, , g, k,m ∈ IrrC . (D.3)

On the left-hand side one gets:

=
∑

i,j∈IrrC

fa, isde, qrf
a, j
bcq, ps (D.4)
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=
∑

i,j∈IrrC

fa, isde, qr f
a, j
bcq, ps F

(atre rtsd stbc)g
k i G

(atbp ptcq qtde)g
j m , (D.5)

where in the second equality one inserts a projection/inclusion into g from the
products j⊗ qtde and i⊗ stbc and uses (8.7). The remaining diagram can be quickly
evaluated as follows:

= = R(atsq stbc)j R−(stbc i)g

= R(atsq stbc)j R−(stbc i)g F
(stbc atsq qtde)g
i j · idg . (D.6)

Similarly we compute the right hand side of (D.2) upon composing with the mor-
phisms in (D.3):

∑
x∈B

=
∑

x∈B, l∈IrrC

fp, mcde, qx f
a, l
bxe, pr f

r, k
bcd, xs

189



=
∑

x∈B, l∈IrrC

fp, mcde, qx f
a, l
bxe, pr f

r, k
bcd, xs N

m
ptcq qtde

Nk
rtsd stbc

=
∑

x∈B, l∈IrrC

fp, mcde, qx f
a, l
bxe, pr f

r, k
bcd, xs F

(atre rtbx xtcd)g
k l G

(atbp ptxe xtcd)g
lm · idg . (D.7)

Comparing coefficients in (D.5) and (D.7) gives condition (P1) in Table 8.1.

D.2. Evaluating the T 3-invariant

In this section we compute the invariant ZorbA
C (T 3) of the 3-torus T 3 = S1 ×

S1 × S1 where the orbifold datum A = (A, T, α, α, ψ, φ) in a MFC C satisfies the
assumptions (A1)-(A3). We use the following admissible A-coloured 2-skeleton for
T 3:

. (D.8)

Here T 3 is depicted as a cube with the opposite sides identified, all of the 2-strata
have the paper plane orientation and a ψ2-insertion due to A being a symmetric
∆-separable Frobenius algebra (see Appendix C). The labels a, b, . . . , g on each
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2-stratum match the index of the summand 1 in the direct sum decomposition of
the corresponding copy of A as used below.

Next one ribbonises the above 1-skeleton and evaluates it with the Reshetikhin-
Turaev TQFT ZRT

C as described in Section 4.4. Using the expressions (8.10), (8.11),
(8.12), (8.14) for α and α one gets:

Zorb,A
C (T 3) =

φ2 ·
∑

a,b,c,d,e,f,g∈B
r,s,t,u,v,w∈IrrC

ψ2
aψ

2
cψ

2
eψ

2
f

ψ2
bψ

2
dψ

2
g

f e, rafc, bg f
e, s
caf, gd f

e, u
fca, db g

e, t
acf, db g

e, v
fac, gd g

e, w
cfa, bg

· ZRT
C (T 3

rib) . (D.9)

where

T 3
rib := . (D.10)

To evaluate the invariant of the torus (D.10), let us introduce the scalars Lbcf, wteda, ur

∣∣
x
,

where a, b, c, d, e ∈ B and x, u, r, w, t ∈ IrrC, such that

=
∑
x∈IrrC

Lbcf, wteda, ur

∣∣
x

. (D.11)
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We claim that the following equality holds:

Lbcf, wteda, ur

∣∣
x

= Nw
etda btcf

N t
etad btcf

dimx

dim btfc
F

(etad btcf x)r

btfc t
G

(etda btcf x)u
w btfc

. (D.12)

Indeed, use the identity

=
∑
k∈IrrC

dim k

dim j
(D.13)

to rewrite the left-hand side of (D.11) as

=
∑
x∈IrrC

dimx

dim btfc

=
∑
x∈IrrC

dimx

dim btfc
G

(etda btfc x)u
w btfc

F
(etad btcf x)r

btfc t
. (D.14)

We now focus on evaluating the invariant of the torus T 3
rib as in (D.10). Let us

denote by T 3
(a), T

3
(b), . . . , T 3

(f) the 3-tori with embedded ribbon graphs as depicted
in Figure D.1. One has:

ZRT
C (T 3

rib) =
∑

x,y,k∈IrrC

Lbcf, wteba, ur

∣∣
x
Ldca, usefd, vt

∣∣
y
Lgaf, srecg, wv

∣∣
k
· ZC(T 3

(a)) , (D.15)

where

ZRT
C (T 3

(a)) =
∑
z∈IrrC

dim z

dimu
· ZRT
C (T 3

(b)) , ZRT
C (T 3

(b)) = F
(r z y) v
k u · ZRT

C (T 3
(c)) ,

192



(a) (b)

(c) (d)

(e) (f)

Figure D.1: Three-torus with a series of embedded ribbon graphs as used in the
calculation in (D.15).
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ZRT
C (T 3

(c)) =
dim v

dim k
· ZRT
C (T 3

(d)) , ZRT
C (T 3

(d)) =
∑

l,m∈IrrC

F
(s k x)u
l w G(t x z)u

rm · ZRT
C (T 3

(e)) ,

ZRT
C (T 3

(e)) = G
(s ym)u
t l · ZC(T 3

(f)) , ZRT
C (T 3

(f)) =
dimu

dim l
· Txyz, klm ,

where in the last equation we use the notation

Txyz, klm := ZRT
C





. (D.16)

Combining all of the equations in (D.15) one already obtains (8.25). It remains to
derive the expression for Txyz, klm.

By Property 3.14, the invariant of T 3 = S1 × S1 × S1 can also be computed as
the trace of the operator invariant assigned to the cylinder C = S1 × S1 × [0, 1].
The same is true if T 3 has an embedded ribbon graph, in which case C can have
punctures on its boundary. For the cylinder corresponding to the 3-torus in the
argument of ZRT

C in (D.16) we will use the graphical representation

(D.17)

where the outer tube represents the manifold S2 × S1 (the ends of the tube on
the left and on the right are assumed to be identified and the boundary circle of a
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vertical slice corresponds to the point at infinity of S2). The two small inner tubes
represent the boundary components (seen here as obtained by removing two solid
tori from S2×S1). The tube at the bottom corresponds to the incoming boundary
component, while the one at the top to the outgoing one.

By Property 3.13, the vector space assigned to a 2-torus with a single z ∈ IrrC
labelled puncture is isomorphic to

⊕
q∈IrrC

C(q, q⊗ z) and its dual to
⊕

p∈IrrC
C(p⊗

z, p). The image of a basis element λ(qz)q and evaluation with the dual basis element
λ(pz)p are obtained by gluing the solid tori

and

to the incoming and outgoing boundary respectively. One then has:

Txyz, klm =
∑
p∈IrrC

ZRT
C




. (D.18)

Now, the invariant of S2× S1 is equal to the trace of the operator invariant of the
cylinder S2 × [0, 1]. The vector space assigned to a 2-sphere with three punctures
labelled by p, y, p∗ as in (D.18) is C(1, p⊗ y ⊗ p∗) with the dual C(p⊗ y ⊗ p∗,1).
Using the basis

with dual
1

dim p
(D.19)
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one has:

Txyz, klm =
∑
p∈IrrC

Np
py

dim p

︸ ︷︷ ︸
=:Γ

. (D.20)

The scalar represented by the string diagram Γ can be expressed as follows:

Γ = G
(p z y)p
p k ·

= G
(p z y)p
p k Nk

zy ·

(∗)
= G

(p z y)p
p k

∑
j∈IrrC

G
(p k x)j
p l ·

= G
(p z y)p
p k

∑
j∈IrrC

G
(p k x)j
p l F

(p ym)j
l p ·
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= G
(p z y)p
p k

∑
j∈IrrC

G
(p k x)j
p l F

(p ym)j
l p Np

py ·

(∗∗)
= G

(p z y)p
p k

∑
j∈IrrC

G
(p k x)j
p l F

(p ym)j
l p R−(z x)m θj

θxθp
F (p z x)j
mp · dim j .

In step (∗) we omitted Nk
zy as it is implicit in G

(pzy)p
pk . In step (∗∗) we omitted Np

py

for the same reason, and we used the identities

= , = F (p z x)j
mp · dim j . (D.21)

Substituting the above expression for Γ into (D.20) yields exactly the expression
for Txyz, klm in Lemma 8.5.
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E. Computations for Chapter 9

Let C be a modular fusion category and A,B ∈ C condensable algebras. We show
here that the component category F := (ACB)ii is spherical and that the functor
(9.23) is ribbon.

From Proposition 2.2 we know that one has a decomposition A ⊗ B ∼=
⊕

i Fi
where Fi ∈ ACB are simple and mutually non-isomorphic. Each Fi is canonically a
symmetric ∆-separable Frobenius algebra in ACB and the decomposition of A⊗B
is an isomorphism of algebras in ACB. Objects of F can therefore be seen as objects
of ACB such that only the action of F := Fi is non-trivial. F , as a pivotal category,
is hence equivalent to F -F -bimodules in ACB. By Lemma 9.11, F is automatically
a symmetric ∆-separable Frobenius algebra over (A,B) in C and F is in turn
equivalent to F -F -bimodules over (A,B) in C.

The key observation now is that F is haploid in C, i.e. dim C(1, F ) = 1. Indeed,
according to Proposition 2.2 one has dim ACB(A ⊗ B,F ) = 1 and one can check
that the induction/forgetful functors

Ind: C → ACB
X 7→ A⊗X ⊗B ,

U : ACB → C
M 7→ M

(E.1)

are biadjoint to each other (cf. Proposition 2.12). For a morphism [f : M →M ] ∈
F we now have:

trl f
(1)
=

(2)
=

1

dimF
=

1

dimF

(3)
=

1

dimF
= = trr f . (E.2)

Here, in step (1) one applies the definition of a left trace (2.9) (as an endomorphism
of the tensor unit, i.e. of F ) to the category of F -F -bimodules over (A,B). For
step (2) one notes that η, (dimF )−1ε can be taken for the inclusion/projection
morphisms 1→ F and F → 1 (this follows from Proposition 2.19 as F is haploid
and therefore simple, as well as ∆-separable, and the relation ε ◦ η = dimF , which
applies to symmetric ∆-separable Frobenius algebras, see [FRS1, Eq.(3.49)]). In
(3) we use that C is ribbon, hence spherical. F is therefore a spherical fusion
category.
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It remains to show that the functor (9.23) is ribbon. Having objects (M,γ) ∈
Z(ACB) and N ∈ ACB we note that because of the decomposition A⊗ B ∼=

⊕
i Fi

one can write the half-braiding γN as a sum

[γN : MA⊗BN → NA⊗BM ] =
∑
i,j

[
γijN : M ⊗Fi N → N ⊗Fj M

]
. (E.3)

In particular, if N is in F , the sum has a single term γiiN , i.e. the half-braiding re-
stricts to the component in F . Since γ consists of isomorphisms, we see that M has
only diagonal components in the decomposition ACB '

⊕
ij Fi A⊗B ACB A⊗B Fj.

Therefore, braidings and twists in Z(F) are simply projections of braidings and
twists in Z(ACB) onto the component F and the functor (9.23) is precisely this
projection.

199



References

[BakK] B. Bakalov, A.Jr. Kirillov, Lectures on tensor categories and modular functors,
University Lecture Series 21, AMS, 2001.

[BalK1] B. Balsam, A.Jr. Kirillov, Turaev-Viro invariants as an extended TQFT,
arXiv:1004.1533 [math.GT]

[BalK2] B. Balsam, A.Jr. Kirillov, Turaev-Viro invariants as an extended TQFT II,
arXiv:1010.1222 [math.QA]

[BalK3] B. Balsam, A.Jr. Kirillov, Turaev-Viro invariants as an extended TQFT III,
arXiv:1012.0560 [math.QA]

[BDSV] B. Bartlett, C.L. Douglas, C.J. Schommer-Pries, J. Vicary, Modular categories
as representations of the 3-dimensional bordism 2-category arXiv:1509.06811
[math.AT]

[BHMV] C. Blanchet, N. Habegger, H. Masbaum, P. Vogel, Topological quantum field
theories derived from the Kauffman bracket, Topology 34:4 (1995), 883–927.

[BNRW1] P. Bruillard, S. H. Ng, E. Rowell, Z. Wang, Rank-finiteness for modular cate-
gories, J. Am. Math. Soc. 29 (2016) 857–881, [1310.7050 [math.QA]].

[BNRW2] P. Bruillard, S.-H. Ng, E.C. Rowell, Z. Wang, On classification of modular
categories by rank, Int. Math. Res. Not. 2016 (2016) 7546–7588, [1507.05139
[math.QA]].

[BW1] J.W. Barrett, B.W. Westbury, Spherical categories, Adv. Math. 143 (1999)
357-375 [hep-th/9310164].

[BW2] J.W. Barrett, B.W. Westbury, Invariants of piecewise linear three manifolds,
Trans. Am. Math. Soc. 348 (1996) 3997-4022 [hep-th/9311155].

[Ca] N. Carqueville, Lecture notes on 2-dimensional TQFT, Banach Center Publ.
114 (2018) 49–84, [1607.05747 [math.QA]].

[CMS] N. Carqueville, C. Meusburger, G. Schaumann, 3-dimensional defect TQFTs
and their tricategories, Adv. Math. 364 (2020) 107024, [arXiv:1603.01171].

[CMRSS1] N. Carqueville, V. Mulevičius, I. Runkel, D. Scherl, G. Schaumann, Orbifold
graph TQFTs, arXiv:2101.02482 [math.QA].
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