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Abstract
Understanding the interaction of matter with ultrashort attosecond light pulse pro-
vides fundamental insights into the structure of matter. The electronic properties
are reflected in wave packets dynamics. The ability to trace the evolution of elec-
trons in wave packets is a big challenge. It requires ultrashort pulse duration and
precise pulse characterization. In this thesis the time-delayed scanning of the atom
is used to (1) characterize the inner atomic dynamics, via excitation of the atom by a
time-delayed attosecond extreme ultraviolet (XUV) and femtosecond optical field,
and to (2) characterize a laser field, via multiphoton ionization of the atom by the
autocorrelation function of the field.

The first part of the thesis explores the capability of attosecond transient absorption
spectroscopy to characterize the dynamics of inner-shell-excited systems. I discuss
an unusual kind of pump-probe experiment, where information is gained from the
absorption spectrum of an attosecond XUV pulse, which serves as a pump pulse at
the same time. The optical pulse in this kind of experiment gives a reference time
that provides a possibility to measure the time evolution of a system of interest. In
the study, I use different theoretical approaches, treating one or both of the pulses
as perturbative or non-perturbative. I present an analytical theory of attosecond
transient absorption spectroscopy for perturbatively dressed systems and illustrate
how the attosecond transient absorption signal reveals the real-time attosecond dy-
namics of the atom. In addition, I apply our study to atomic Xe and compare the
theoretical predictions with experimental results.

In the second part of the thesis a new method for laser pulse characterization is
presented. It is based on a machine learning algorithm and is used to study mul-
tiphoton autocorrelations in Ar. I analyze the time-delay dependence of the ion-
ization probability for given laser pulse parameters, such as photon energy, pulse
intensity and pulse duration. Taking into consideration the mapping between the
ionization-probability time-delay pattern and pulse parameters I use a machine-
learning algorithm to retrieve the best approximation function for the laser pulse
from experimentally measured multiphoton autocorrelation in Ar.
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Deutsche version:
Zusammenfassung
Das Verständnis der Wechselwirkung von Materie mit ultrakurzen Attosekunden-
Lichtpulsen liefert grundlegende Einsichten in die Struktur von Materie. Die elek-
tronischen Eigenschaften zeigen sich in der Dynamik von Wellenpaketen. Die En-
twicklung der Elektronen in Wellenpaketen zu verfolgen, stellt eine große Heraus-
forderung dar. Ultrakurze Pulsdauern und präzise Puls-Charakterisierung sind
dafür erforderlich. In dieser Arbeit wird das zeitverzögerte Scannen des Atoms
verwendet, um (1) die inneratomare Dynamik zu charakterisieren, durch Anre-
gung des Atoms mit einem zeitverzögerten Attosekunden-Feld im extrem ultravi-
oletten (XUV) Bereich und einem Femtosekunden-Feld im optischen Bereich. Das
zeitverzögerte Scannen des Atoms wird darüber hinaus dazu verwendet, um (2)
das Laserfeld zu charakterisieren, über Multiphotonen-Ionisation des Atoms durch
die Autokorrelationsfunktion des Feldes.

Der erste Teil der Arbeit untersucht das Potenzial der transienten AttosekundenAb-
sorptionsspektroskopie im Hinblick auf die Charakterisierung der Dynamik von In-
nerschalenangeregten Systemen. Ich diskutiere eine ungewöhnliche Art von Pump-
Probe-Experiment, bei dem Information aus dem Absorptionsspektrum
eines Attosekunden-XUV-Pulses gewonnen wird, welcher gleichzeitig auch als An-
regungspuls dient. Der optische Puls in dieser Art von Experiment liefert eine Ref-
erenzzeit und so die Möglichkeit, die Zeitentwicklung eines Systems von Interesse
zu messen. In der Studie verwende ich unterschiedliche theoretische Ansätze, die
einen oder beide Pulse störungstheoretisch oder nicht-störungstheoretisch behan-
deln. Ich stelle eine analytische Theorie zu transienter Attosekunden-
Absorptionsspektroskopie für störungstheoretisch beeinflusste Systeme vor und
zeige auf, wie das transiente Attosekunden-Absorptionssignal die Echtzeit-
AttosekundenDynamik des Atoms offenbart. Überdies wird die Theorie auf atom-
ares Xe angewandt und die theoretischen Vorhersagen werden mit experimentellen
Ergebnissen verglichen.

Im zweiten Teil der Arbeit wird eine neue Methode zur Laserpuls-Charakterisierung
präsentiert. Sie basiert auf einem Algorithmus für maschinelles Lernen und wird
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verwendet, um MultiphotonenAutokorrelationen in Ar zu untersuchen. Die Ab-
hängigkeit der Ionisationswahrscheinlichkeit von der Zeitverzögerung wird für bes-
timmte Laserpulsparameter analysiert, wie Photonenergie, Pulsintensität und Puls-
dauer. Unter Berücksichtigung der Zuordnung zwischen Ionisationswahrscheinlichkeits-
Zeitverzögerungsmuster und Pulsparametern wende ich einen Algorithmus für
maschinelles Lernen an, um die beste Näherungsfunktion für den Laserpuls zu
finden, ausgehend von experimentell gemessener Multiphotonen-Autokorrelation
in Ar.
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Chapter 1

Introduction

The key mechanisms that provide ways to observe and control the complicated dy-
namics inside of an atom are electron excitations and ionizations, induced by ultra-
short laser pulses [1]. As a many-particle system evolves, the time scale of the elec-
tronic motion is determined by the energy difference between the electronic states
that the electron evolves into. Since the typical energy difference between the elec-
tronic states of molecules and atoms is in the range of 0.1 - 100 eV, the corresponding
time scales lie in the range of 0.05 - 50 fs. The rapid technological progress in build-
ing lasers with attosecond light pulses [2, 3, 4, 5, 6] has opened up the possibility
of studying fundamental questions related to the quantum dynamics of electrons
on their natural time scale and explore fundamental mechanisms in chemical and
physical processes in a time-resolved manner [7]. The attosecond physics commu-
nity is closely tied to the strong-field physics community since intense laser pulses
are involved, especially in the generation of attosecond pulses. In this context sev-
eral review articles have been written in strong-field physics [8, 9, 10, 11, 12] and
attosecond physics [13, 14, 15], which focus more on ionization processes and sys-
tem dynamics, respectively.

More than a decade after the generation of isolated attosecond extreme ultraviolet
(XUV) pulses, various types of attosecond spectroscopy have been developed to in-
vestigate time-resolved electron dynamics in a variety of systems ranging from no-
ble gas atoms and polyatomic molecules to metallic, dielectric, and semiconducting
materials. This technology is now being extended to study more complex gas-phase
and solid-state phenomena, primarily caused by strong electron correlation effects
[16, 17, 18, 19]. Broadband attosecond XUV pulses provide multiple electronic ex-
citations in a system, which gives an opportunity to reveal quantum interferences
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and determine the lifetimes of short-lived states.

One of the most effective methods for time-resolved studies is the pump-probe ex-
periment [20]. In such a pump-probe setup, the first light pulse (pump) initiates
the dynamics being studied and the interaction with the second light pulse (probe)
probes it. By scanning the delay time between the two pulses one obtains a se-
quence of probe measurements that can be seen as a movie of the pump-induced
dynamics. The time resolution in pump-probe approaches is determined mostly
by the ability to accurately control the pump-probe delay τ , which can be already
measured up to subattosecond precision [21].

Various physical processes can be studied, depending on the intensity and photon
energy, and the specific combination of pump and probe pulses. Most of attosecond
pump-probe experiments use a femtosecond near-infrared (NIR) pulse and an at-
tosecond ultraviolet (UV) pulse [1]. Either pulse can be used as a pump or as a probe
pulse. NIR pulses are usually strong-field pulses, which lead to non-perturbative
tunnel ionization. UV pulses, on the other hand, generally lead to electronic exci-
tation and to perturbative ionization. To date, a number of attosecond experiments
have involved strong-field interaction with a few-cycle laser pulse and a pertur-
bative interaction with an attosecond XUV pulse [22]. Understanding results from
these experiments is nontrivial and often requires high-level theoretical calculations
to model strong-field light-matter interactions that significantly affect the electronic
states of the system.

A common measure for characterizing the nature of field-induced ionization is the
Keldysh parameter γ [23], which is given by

γ =

√
Ip

2Up
, (1.1)

where Ip is the ionization potential of the electronic state and Up = E2/(4ω2) is
the ponderomotive potential, which is the average energy of a free electron oscil-
lating in the electric field with amplitude E and frequency ω. The Keldysh pa-
rameter distinguishes between two ionization regimes: perturbative (γ � 1) and
non-perturbative (γ � 1) multiphoton ionization (or tunneling). However, γ alone
is not always a sufficient measure to reveal whether ionization is perturbative or
non-perturbative [24]. In particular, at photon energies comparable or larger than
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the ionization potential (ω & Ip) the ionization process is rather more accurately
described by a perturbative picture also for γ < 1, contrary to what the Keldysh
parameter would suggest. In general, for the case of (γ � 1), the ionization lies in
the perturbative regime and the light-matter interaction can be seen as a correction
to the field-free system. The system gets ionized by absorbing a certain number of
photons and the final state of the system is a result of a countable and well-defined
number of light-matter interactions. These n light-matter interactions are exactly
captured by the nth - order perturbation correction. In case of the non-perturbative
regime γ � 1, the light-matter interaction can be considered as a local potential that
strongly distorts the Coulomb potential and already after a few Bohr radii the field-
induced potential starts to dominate the motion of the electrons. In this regime it is
reasonable to treat the Coulomb potential of the system rather than the field as the
perturbation. This distortion of the Coulomb potential by the electric field creates
a potential barrier, which can be overcome by the electron by tunneling through
this barrier and, consequently, out of the system. The Coulomb potential becomes
negligible for an electron once it has tunneled to the outer side of the barrier, and
its dynamics are governed by the field-induced potential. In pump-probe experi-
ments, where strong-field ionization is induced by an optical pump pulse, and the
XUV pulse serves as a probe, information on the strong-field induced dynamics in
the residual ion can be obtained, such as ion quantum-state distributions [25, 26]
and orbital alignment [27, 28]. At lower field strengths, when the XUV pulse is the
pump and the optical field acts as the probe, laser-dressing and molecular align-
ment effects may be investigated [29, 30, 31, 32, 33, 15, 34, 35, 36].

1.1 Transient absorption spectroscopy

A pump-probe delay experiment can measure the spectral properties of a probe
pulse, which are transmitted through a sample excited by a pump pulse [37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. This technique is called transient
absorption spectroscopy [52, 53, 54, 55] because the information is obtained from
the absorbed/transmitted light. It is a versatile method that can be used to study
real-time dynamics in various states of matter like gas, liquid, and plasma phases.

Initially, transient absorption spectroscopy has been used on the femtosecond time
scale for probing solid state systems [56] and chemicals [57, 58]. However, with
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the advent of attosecond light pulses [2, 3, 4, 5, 6], it has been extended into the
attosecond regime as well [59, 60]. There are two important factors that determine
the quality of the time resolution: the duration of the probe pulse and the variation
of time delay from pulse to pulse in the pump-probe delay. Due to the advancement
in attosecond technology, especially in controlling the phase of single frequency
components in ultrashort pulses, this uncertainty has been decreased up to a few
femtoseconds.

By using attosecond pulses, not only does one obtain high attosecond resolution,
but also a broad frequency spectrum, due to their short duration. Using the broad
spectrum, we can access different atomic excitations with a single pulse. This al-
lows one, for example, to access the phase relations between the different probed
electronic states. The coherent superposition of quantum states leads to the dynam-
ical evolution of the system under investigation. This coherent superposition is a
result of an attosecond pulse which coherently populates bright (dipole allowed)
electronic states creating an electronic wave packet. Each system under investiga-
tion has a characteristic time scale at which its physical properties vary in accor-
dance with the frequency spacing between the coherently excited states of the wave
packet. In literature we can find a number of studies regarding pump-probe pulses
to investigate Rydberg-electron dynamics in atoms [59, 61, 62, 63, 64, 65, 66, 67].
The studies reveal that electronic coherences were seen under various conditions
ranging from one-photon one-electron excitations, multiphoton one-electron exci-
tation to one-photon two-electron excitation. In these studies, the key point in prob-
ing the wave packet was light-induced interference of the investigated states. This
leads to the modulation of those quantities that are experimentally observed, i.e.,
the transmitted photons or the emitted photoelectrons. In the aforementioned stud-
ies, a missing factor for the characterization of electronic wave packets is that it has
only been limited to the excited valence or Rydberg electron, but not to the deeply
bound electrons or the corresponding holes. Extending the observation of electronic
coherences to deeply bound electronic states one can expect it to serve as a marker
in site-selective and element-specific studies of complex systems.

In our studies [68, 69], we address the possibility for the experimental observa-
tion of core-excited wave-packet coherence by attosecond transient absorption spec-
troscopy (ATAS) of atoms. We initiate a core-excited wave packet by using an at-
tosecond XUV pulse. A time-delayed ultrashort laser pulse in the NIR regime is
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considered to probe the wave packet and thus monitor its time evolution. We detect
the resulting modification of the transmitted XUV spectrum. The aim of our study
is to explore XUV-NIR transient absorption spectra and to validate as to whether
excited-electron dynamics or inner-shell hole dynamics are encoded in the time-
resolved spectra. We employ a complete theoretical analysis in order to completely
understand and maximize the information content [70, 60, 71, 72, 73, 67, 74, 75, 76,
77, 78] of the attosecond transient absorption signal. We provide insight through
elementary explanations of the signals observed in attosecond transient absorption
(ATA) experiments. We demonstrate that various aspects of coherent electron dy-
namics can be revealed when wave packets prepared by an attosecond pump pulse
are probed using an NIR pulse. We show that the presence of a dressing field or a
slight modification of the spectrum of the probe pulse can dramatically change the
simulated ATAS results. Thus, our work also suggests that a precise NIR pulse char-
acterization in the target region is necessary for a qualitatively and quantitatively
accurate interpretation of experimental ATAS data, due to the high sensitivity of
Rydberg electrons to the NIR electric fields.

1.2 Pulse characterization

A comprehensive characterization of laser beams is of great importance [79]. How-
ever, an accurate characterization of ultrashort picosecond or femtosecond pulses
is known to be difficult due to the slow operation of the electronic devices. Pho-
todiodes and oscilloscopes provide at best a response time of 200 fs approximately,
whereas laser pulses can be as short as few femtoseconds. Alternatively, laser pulses
can be analyzed using autocorrelators. There are devices for measuring the auto-
correlation function of the pulse’s electric field or its intensity. An autocorrelation
function is described by the correlation of a signal with a delayed copy of itself as
a function of delay. The basic principle of an autocorrelator operation is to check
the correlation of the temporal pulse trace with itself when a beam splitter creates
two copies of the incoming pulse, which are superimposed in a nonlinear medium.
The interaction between the two is based on some non-linearity, while a necessary
condition is to have a temporal overlapping between the two. In principle it sounds
simple, however it is complicated to measure the duration of the pulse with an au-
tocorrelation trace being unaware of the pulse shape. This is due to the fact that
the information about the phase profile is not provided by most of the intensity
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autocorrelation techniques. For very short pulses with a duration below 10 fs, ac-
curate autocorrelation measurements are difficult to perform due to limited phase-
matching bandwidth of the nonlinear crystal, even if these crystals are constructed
really thinly.

I have developed a method based on a machine learning algorithm for the char-
acterization of laser pulses by analyzing the ionization probability of Argon (Ar)
gas by time-delayed replicas of the laser field. It exploits the autocorrelation tech-
nique for measuring the pulse parameter as was suggested by Prof. F. Calegari
and Dr. A. Trabattoni. As a first step our method requires theoretical simulation
of the multiphoton autocorrelation for a larger variety of pulse parameters. Mul-
tiphoton autocorrelations were calculated with the time-dependent configuration-
interaction singles (TDCIS) approach (see Chapter 2). Exposing a gas to a strong
laser field one can excite or ionize its atoms. The probability of ionization depends
on the pulse parameters, such as photon energy, pulse intensity, and pulse dura-
tion. These parameters can directly be extracted from the laser field autocorrelation
function. Further I have trained a machine learning model to these data and even-
tually have obtained a tool to retrieve pulse parameters from observed ionization
probabilities. Exploiting the unknown functional relationship between the combi-
nation of these parameters and the ionization probability, I use a machine-learning
algorithm to model the multiphoton autocorrelation in Ar to retrieve the best ap-
proximation function for the laser pulse.

1.3 Structure of the thesis

This work consists of two main parts that discuss important aspects of attosecond
science, respectively. The first part is devoted to a theoretical study of physical
processes inside the atom and exploring the capabilities of ATAS to monitor deep
inner-shell dynamics. In the transient absorption spectroscopy setup considered,
wave packets are prepared by an attosecond XUV pulse and probed by a femtosec-
ond NIR pulse. I clarify which aspects of the dynamics can be revealed when the
wave packets are probed using an NIR pulse, and which are more difficult to detect
— excited-electron dynamics or inner-shell hole dynamics. I also investigate the
effect of an additional NIR dressing field on the transient absorption spectrum.
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In the second part I present a new method for pulse characterization, which is based
on a machine learning technique. This method is based on the dependence of ion
yields on the laser autocorrelation function. I perform ab-initio calculations of the
Ar gas ionization by the overlapping femtosecond laser fields, and use these data
to train the machine learning algorithm for precise characterization of the field.

In Chapter 2 I provide a theoretical background of the ab-initio simulation of a
light-matter interaction and, in particular, the background of the time-dependent
configuration-interaction-singles approach.

In Chapter 3 I focus specifically on the theory of ATAS for overlapping pump and
probe pulses. The theory is derived for pump-probe experiment, where the infor-
mation is gained from the absorption spectrum of an attosecond XUV pulse, which
serves as a pump pulse at the same time, whereas the optical probe pulse gives a
reference time that provides a possibility to measure the time evolution of a system
of interest.

In Chapter 4 I illustrate the basic features of the ATAS experiment by applying the
analytical expressions obtained in Chapter 3 to an artificial few-level system char-
acterized by level spacings matching XUV and optical energies. By focusing on a
simple few-level atom, I perform an analysis of the ATA signal dependence on the
time decay between the attosecond XUV pulse and the optical dressing pulse. An
elementary explanation of the signals one can obtain in such experiments is pro-
vided.

In Chapter 5 I present the numerical simulation of ATAS experiment for a Xe atom.
I provide a comparison of our theoretical predictions with experiment and discuss
the importance of the careful characterization of the pulse when studying real-time
attosecond dynamics of the electrons inside the atom.

In Chapter 6 I explore the multiphoton autocorrelation in Ar. I present the analysis
of a big set of calculations performed using TDCIS approach in order to study the
ionization-probability delay-patterns dependence on parameters of the autocorre-
lated field. Analysis of these delay patterns allowed to approximate them with a
rather simple function of a few parameters, which are eventually used for a pulse
characterization.
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In Chapter 7 I present the machine learning technique for the characterization of
the femtosecond laser pulses using multiphoton autocorrelation in Ar.

1.4 My Contributions

1.4.1 Theoretical contributions

An analytical theory of ATAS was derived for perturbatively dressed systems. This
theory is applicable to the analysis of processes observed in pump-probe experi-
ments if both pump and probe fields are sufficiently weak. A two-stage approach
based on perturbation theory was used to obtain an analytical expression for the
attosecond-resolved transient absorption signal.

1.4.2 Code development

Based on the resulting analytical expressions a MATLAB code was written that al-
lows the simulation of a transient absorption spectroscopy signal and explore the
physical reasons behind certain parts of the signal in detail. Several different rou-
tines were written to efficiently compute the results and produce plots.

Another MATLAB code was written that allows to carry out similar simulations by
solving the time-dependent Schrödinger equation numerically. Non-perturbative
treatment of an optical pulse allows us to perform calculations for any shape of the
optical pulse. In addition, the code includes an option to add multiple optical fields,
which can be temporally centered arbitrarily - the middle of the pulse can be fixed
relative to the attosecond pump pulse or can be shifted with the time delay. This
flexibility allows for experiments to be reproduced more thoroughly.

1.4.3 Machine learning modeling

In order to have a proper characterization of the pulse, a python based code was
developed and implemented. It uses a machine learning algorithm to analyze and
reconstruct the shape of a laser pulse from the probability of its autocorrelation
function to ionize argon gas. This code is based on modern machine learning al-
gorithm implementations using libraries like scikit-learn, pandas, matplotlib and
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seaborn. The regression method was employed along with the grid search cross-
validation for the tuning of the hyper-parameters. Given a set of ion yields, the
training model provides a careful characterization of the pulse, allowing for the re-
trieval of the pulse intensity, spectrum and the chirp, which can appear as the pulse
travels through the lenses and mirrors, which may significantly modify the pulse
duration.
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Chapter 2

Theoretical Background

The analysis of the absorption and emission of electromagnetic radiation is a power-
ful method for exploring the quantum world of atoms and molecules. The ability to
produce well-defined laser pulses provides an opportunity to study the underlying
structure and mechanisms of these microscopic systems with a very high resolu-
tion. By knowing the spectrum of the radiation pulse as it enters the system, it is
possible to establish a direct relationship between the final spectrum of the pulse
after having passed through the system and the internal structure of the system.

My work is devoted to the theoretical study of the electron dynamics inside an
atom using ultrashort electromagnetic pulses. This requires the solution of the time-
dependent Schrödinger equation. In my research, I use an ab-initio approach when
performing the calculations with the configuration interaction dynamics package
for multichannel dynamics (XCID) code [80], and when deriving a theory for at-
tosecond transient absorption spectroscopy of a dressed system [68, 69].

The XCID code is ideal for the simulation of strong-field interactions with an atom.
In our work, we use it to calculate the probability of multiphoton ionization of an
atom. However, it is not suited to use this approach to study the dynamics of atomic
deep shells, which is the subject of the first part of our work. Since the XCID code
does not fully take into account relativistic effects, some information may be lost
and the data obtained can be misleading. Therefore, we derive a theory for ATAS
employing an atomic model built within the relativistic Dirac-Fock approach thus
allowing us to take into account relativistic effects.
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2.1 Time-dependent Schrödinger equation

A nonstationary processes driven in a system by an electromagnetic field can be
described with the time-dependent Schrödinger equation (TDSE)

i
∂

∂t
|Ψ, t〉 = Ĥ(t)|Ψ, t〉, (2.1)

where Ĥ(t) is the Hamiltonian and |Ψ, t〉 is the wave function of the system. The
atom under consideration is a multi-electron system and its electrons are interacting
with each other due to the Coulomb interaction among them. The dynamics of any
given electron thus depends on the dynamics of all the other electrons in the sys-
tem. A precise description of electron correlations remains a difficult task, although
their importance for physical and chemical properties had been realized already in
the early years of quantum mechanics. The exact wave function is analytically not
known even for the simplest multielectron system, that being the helium atom, con-
taining two electrons. For any realistic system, the exact N -electron wave function
needs to be approximated to make it computationally tractable. In the commonly
used mean-field approximation the N electrons are treated as being independent,
but interact with each other via a common mean-field potential.

2.2 Mean-field approximation

The Hartree–Fock (HF) method is one of the most popular theories, that treats
many-body electronic states based on a mean-field approximation, where the N -
electron wave function |Ψ〉 is approximated as a single Slater determinant, |Φ〉, com-
prised of one-particle wave functions |φn〉:

|Ψ〉 ≈ |Φ〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) ... φ1(rN)

φ2(r1) φ2(r2) ... φ2(rN)

... ... ... ...

φN(r1) φN(r2) ... φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.2)



2.2. Mean-field approximation 13

The set of one-particle functions φn is obtained by minimizing the electronic energy
E = 〈Φ|F̂ |Φ〉 resulting in the Hartree-Fock equation

F̂ |φn〉 = εn|φn〉. (2.3)

The Fock operator reads

F̂ = T̂ + V̂nuc + V̂ H(r) + V̂ x(r), (2.4)

where the kinetic energy operator T̂ ≡
N∑
n=1

p̂2
n/2, and the nucleus-electron interac-

tion V̂nuc ≡ −
N∑
n=1

Z/|r̂n|. The Hartree potential

V̂ H(r) =
N∑
n=1

∫
d3r′
|φn(r′)|2

|r− r′|
(2.5)

together with the last term V x(r) describes electron interactions with each other and
compose the mean-field potential VMF (r) = V̂ H(r)+V̂ x(r). The last term V̂ x(r) is the
exchange interaction operator. In Hartree-Fock approach the exchange interaction
is a nonlocal one-particle operator

V̂ x(r)φi(r) = −
N∑
k=1

∫
d3r′

φ∗k(r
′)φi(r

′)φk(r)

|r− r′|
. (2.6)

Hartree-Fock method can be simplified into Hartree-Fock-Slater by replacing the
exchange interaction with a local potential,

V̂ x(r) = −3

2

[
3

π

N∑
k=1

|φk(r)|2
]1/3

. (2.7)

The set {φn} has to be optimized for each different electronic configuration under
consideration. Self-consistency of the HF solution is achieved when the HF equa-
tions are satisfied for all orbitals |φn〉.

The Hartree-family methods usually overestimate the energy of the ground state
by an amount known as the correlation energy, which plays an important role in
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many chemical problems. The multiconfiguration Hartree-Fock approach avoids
this problem considering a linear combination of Slater determinants to approxi-
mate the N -electron wave function. This brings the model closer to the full N -body
problem, and, in the limit of an infinite number of determinants, recovers the real
ground state energy.

The full N -electron Hamiltonian including the light-matter interaction is given by

Ĥ(t) =
N∑
n=1

(
T̂ + V̂nuc + V̂MF (r)

)
+ Ĥ1 + p̂A(r, t), (2.8)

where

Ĥ1 =
1

2

N∑
n6=n′

1

|r̂n − r̂n′ |
−

N∑
n=1

V̂MF (r), (2.9)

denotes the many-electron part, which describes the Coulomb interactions beyond
the HF mean-field level. The light-matter interaction is described within the veloc-
ity form p̂A(r, t), where A(r, t) is the vector potential of the electromagnetic field
and p̂ is a momentum. Here we make a dipole approximation, thusA(r, t)→ A(t).

A convenient basis set must be found in order to solve the electronic structure prob-
lem in which the wave function can be expanded. A big disadvantage of quan-
tum many-body theories is that they quickly become too hard to be solvable on a
computer, and the amount of correlation that can be described has to be restricted.
The time-dependent-configuration-interaction-singles (TDCIS) approach is an ab-
initio electronic-structure technique, where the time-dependent wave function is
restricted to single particle-hole excitations from the ground-state determinant into
spin-singlet configurations.
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2.3 Time-Dependent-Configuration-Interaction-Singles

The configuration-interaction (CI) method is based on the idea that an N -electron
state is expressed as a linear combination of the HF ground state |Φ0〉 and all possi-
ble n-particle-n-hole (np-nh) configurations |Φa1...an

i1...in
〉,

|Ψ(t)〉 =

α0(t) +
N∑
n=1

n∑
a1<...<an
i1<...<in

αa1...an
i1...in

(t)ĉ†a1
ĉi1 ...ĉ

†
an ĉin

 |Φ0〉

= α0(t)|Φ0〉︸ ︷︷ ︸
ground state

+
∑
a1,i1

αa1
i1

(t)|Φa1
i1
〉︸ ︷︷ ︸

singles 1p-1h

+
∑
a1<a2
i1<i2

αi1i2a1a2
(t)|Φi1i2

a1a2
〉

︸ ︷︷ ︸
doubles 2p-2h

+ ...︸︷︷︸
multiples np-nh

.
(2.10)

In the Full-CI method all np-nh configurations are included, providing in such a
way an exact N -electron wave function.

Within the CI-Singles (CIS) approach, only one-particle—one-hole excitations |Φa
i 〉

with respect to the Hartree-Fock ground state |Φ0〉 are considered. Therefore, the
wave function is expanded in the CIS basis as

|Ψ(t)〉 = α0(t)|Φ0〉+
∑
a,i

αai (t)|Φa
i 〉, (2.11)

where the index i symbolizes an initially occupied orbital and a denotes an unoccu-
pied (virtual) orbital, which the particle can be excited into. Specifically, the singlet
excitations,

|Φa
i 〉 =

1√
2

(
c†a↑ci↑ + c†a↓ci↓

)
|Φ0〉, (2.12)

are considered here, where the operators c†pσ and cpσ create and annihilate electrons,
respectively, in the spin orbitals |φpσ〉, with p and σ denoting indices for the spatial
and spin part of the wave function.
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Inserting the wave function expansion [Eq. (2.11)] into the Schrödinger equation
[Eq. (2.1)] and projecting onto the states |Φ0〉 and |Φa

i 〉 yields

iα̇0(t) =A(t)
∑
i,a

〈Φ0|p̂|Φa
i 〉αai (t),

iα̇ai (t) =(εa − εi)αai (t) +
∑
j,b

〈Φa
i |Ĥ1|Φb

j〉αbj(t)

+A(t)

(
〈Φa

i |p̂|Φ0〉α0(t) +
∑
j,b

〈Φa
i |p̂|Φb

j〉αbj(t)

)
,

(2.13)

(2.14)

where εp denotes the energy of the orbital |φp〉 (see Eq. 2.3.).

In our calculations we use the XCID program package [80], which employs the TD-
CIS method to calculate time-resolved quantum wavepacket dynamics triggered
by electric field pulses. The differential equations (2.13) and (2.14) in XCID code are
solved by numerical time propagation using either the fourth order Runge-Kutta
algorithm or the Lanczos propagation. Thus, the coefficients αai (t) can be used to
analyze ionization and excitation processes in a channel-resolved manner. In this
way, quantities that can be inferred from the N -electron wave function, such as the
ionization probability, cross sections, and other quantities can be calculated. In or-
der to retrieve an ionization or excitation probability of the atom we use a special
quantity provided by XCID code: the ion density matrix [80, 81],

ρIDM(t) = Trα
[
|Ψ(t)〉〈Ψ(t)|

]
, (2.15)

which entails information about the statistical state of the full system. Here Trα
stands for the trace over al virtual orbitals α.

2.4 Spin-orbit coupling in XCID

In large atoms, whoseZ is comparable to the speed of light c ≈ 137 (in atomic units),
core electrons reach relativistic speeds. This causes a length contraction which af-
fects the screening of the attractive nuclei potential by the core electrons. This has
important consequences for the valence electrons and the chemistry of large Z-
elements. In order to treat heavy atoms appropriately it is, in particular, necessary
to include relativistic spin-orbit splitting in the Hamiltonian. In the XCID treatment
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spin-orbit splitting is introduced for the occupied orbitals. The degenerate-state
perturbation theory is used to treat spin-orbit coupling within the (n, l)-subshell.
The occupied orbitals φi that are approximate eigenstates to the spin-orbit coupled
Hamiltonian with quantum numbers i = (ni, li, si, ji,m

j
i ) can be written as

φi(r, θ, ϕ) =
uni,lii (r)

r

〈li,mi − 1
2
; 1

2
,+1

2
|ji,mi〉Yli,mi− 1

2
(θ, ϕ)

〈li,mi + 1
2
; 1

2
,−1

2
|ji,mi〉Yli,mi+ 1

2
(θ, ϕ)

 . (2.16)

The radial un,l(r) and spherical Yl,m(θ, ϕ) parts are given by the non-relativistic HF
model. For the virtual orbitals the derivative of the potential decreases rapidly such
that spin-orbit splitting decreases and may be neglected. The optimal represen-
tation for the virtual orbital is, therefore, a = (na, la, sa,m

l
a,m

s
a). Specifically, the

|na, la, sa,ml
a〉 doublet is given

φa(r, θ, ϕ) =
una,laa (r)

r
Yla,mla(θ, ϕ)

 δmsa, 12

δmsa,− 1
2

 (2.17)

The XCID framework was developed on the basis of non-relativistic electronic-
structure theory, and artificially introduced spin-orbit coupling affects exclusively
the hole, not the particle. Thus, some electron dynamics inside of an atom that may
be observed in a real experiment when studying inner-shell electron dynamics are
not covered in the simulations. In contrast, in relativistic atomic structure, only
total momentum J and parity P are conserved by the atomic (light-unperturbed)
Hamiltonian, and unless the excited electron is ionized, the angular momentum j

of the hole is not conserved. To be able to capture the relativistic effects in ATAS we
perform analytical and numerical calculations, in which the atomic model we use
is built using the multiconfiguration Dirac-Hartree-Fock method.

2.5 Dirac–Fock-Slater method in FAC

For a fully relativistic treatment of the electrons, one should use quantum electro-
dynamics. But this very precise theory is also extremely complex for all but the
simplest systems. Therefore, we use approximate Hamiltonians to avoid working
in the full Fock space of quantum electrodynamics. The relativistic analogue of the
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Hartree–Fock self-consistent field method is the Dirac–Hartree–Fock method. The
multiconfiguration Dirac-Fock model is obtained by using the Dirac operator

HD = βmc2 + c

3∑
i=1

αipi, (2.18)

where m is a mass of a particle, pi are the components of its momentum operator,
and c is the speed of light. It incorporates relativistic effects into the Hartree-Fock
model. The energy levels of an atom withN -electrons are obtained by diagonalizing
the relativistic Fock matrix

ĤR =
N∑
i=1

ĤD(i) + V̂nuc + V̂MF (r̂). (2.19)

Both Hartree–Fock and Dirac–Hartree–Fock methods are independent particle mod-
els where each electron ”feels” the field of nuclei V̂nuc and the average field of other
electrons V̂MF (r̂). The derivation of Dirac–Hartree–Fock equations is the same as
in the nonrelativistic framework. The basis-state wave functions |Φn〉 are approx-
imated with the Slater determinant of relativistic one–particle functions, built of
four–component spinors of the one–electron state

φn,κ,m(r, θ, ϕ) =
1

r

 Pn,κ(r)χκ,m(θ, ϕ, σ)

iQn,κ(r)χ−κ,m(θ, ϕ, σ)

 , (2.20)

where χκ,m is the usual spin-angular function, n is the principal quantum num-
ber, κ = (l − j)(2j + 1) is the relativistic angular quantum number, and m is the
z-component of the total angular momentum j. The one-electron radial orbitals
Pn,κ(r) and Qn,κ(r) must satisfy the coupled Dirac equation(

d

dr
+
κ

r

)
Pn,κ(r) = α

(
εnκ − V (r) +

2

α2

)
Qn,κ(r)(

d

dr
− κ

r

)
Qn,κ(r) = −α

(
εnκ − V (r)

)
Pn,κ(r)

(2.21)

where α is the fine structure constant, εnκ are the energy eigenvalues of the radial
orbitals, and V (r) is a local central field.

In FAC Dirac-Fock-Slater approach (with Slater form of exchange potential from
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Eq. (2.7)) is used to calculate the ground state configuration and to obtain a mean-
field V (r). The basis function (including high Rydberg orbitals) are obtained by
solving Dirac equation (Eq. (2.21)). The approximate atomic state functions are
given by mixing the basis states |Φn〉with the same symmetry

|Ψ〉 =
∑
a

ba|Φa〉 (2.22)

where bn are the mixing coefficients obtained from diagonalizing the Hamiltonian
H ′R = HD+Vnuc+

∑
i<j 1/|ri−rj|. The radiative transition rates are calculated in the

single multipole approximation. This means that the interference between different
multipoles is not taken into account, although rates corresponding to arbitrary mul-
tipoles can be calculated. For a given multipole operator ÔL

M , and initial and final
states of the transition |Φi〉 and |Φf〉, the line strength of the transition is

Sfi = |〈Φf ||ÔL
M ||Φi〉|2 (2.23)
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Part I

Inner atomic dynamics using ATAS
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Chapter 3

Theoretical description of ATAS

This chapter is based on the results published in Ref. [68]. Here I derive a theoreti-
cal description of ATAS for temporally and spatially overlapping XUV and optical
pulses. The information is gained from the absorption spectrum of an attosecond
XUV pulse, which coherently excites a system. The optical pulse dresses a system
and in such a way gives a reference time that provides a possibility to measure the
evolution of a system. The intensity of the optical laser field is assumed to be low
enough to provide only a dressing of the system, which means that due to interac-
tion with a laser field all states of the atom can be described in terms of a Floquet
picture [82]. For the theoretical description of the processes of relevance here the
semiclassical approximation is used, by treating the electronic system under study
as a quantum object and using the classical Maxwell equations for the electromag-
netic field. In view of the rather small pulse intensities of currently available attosec-
ond sources, perturbation theory may be considered as an excellent framework for
treating the effect of the attosecond pulse.

The theoretical description of ATAS allows one to study intra-atomic dynamics in
detail and draw conclusions from the resulting ATAS spectrum.

3.1 Perturbative treatment of XUV probe pulse

I perform analysis of the transient absorption signal as a function of the time de-
lay between the attosecond excitation pulse and the femtosecond pulse, treating
the XUV pulse perturbatively. I employ the electric-dipole approximation and as-
sume that the XUV and optical pulses are both linearly polarized along the z-axis.
Following the logic presented in Ref. [60], I start by solving the time-dependent
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Schrödinger equation:

i
∂

∂t
|Ψ, t〉 = Ĥ(t)|Ψ, t〉, (3.1)

Ĥ(t) = Ĥ0 − E0 − εd(t)Ẑ − εxuv(t)Ẑ, (3.2)

where Ĥ0 is the unperturbed Hamiltonian of the electronic system, E0 is its ground-
state energy, Ẑ is the component of the electric dipole operator along the polariza-
tion direction of the electromagnetic field, and εd(t) and εxuv(t) are the amplitude
of the dressing (NIR) and attosecond (XUV) electric fields, respectively. Assuming
the effect of the attosecond XUV pulse can be treated perturbatively, the solution of
Eq. (3.1) is:

|Ψ, t〉 = |Ψd, t〉+ |Ψd, t〉(1) + ..., (3.3)

where |Ψd, t〉 is the optically-dressed electronic state vector in the absence of the at-
tosecond pulse and |Ψd, t〉(1) is the first-order correction with respect to the attosec-
ond pulse, evolving in the optical dressing field εd(t). I employ the time-evolution
operator Ûd(t, τ) to determine the optically-dressed state vector

|Ψd, t〉 = Ûd(t, τ)|Ψ0〉. (3.4)

Here τ is a time before the system is optically dressed and |Ψ0〉 is the initial state.
The dipole moment of the electronic system along the z-axis can be expressed as:

D(t) = 〈Ψ, t|Ẑ|Ψ, t〉 = Dd(t) +D(1)(t) + ... (3.5)

The term Dd(t) describes harmonic generation driven by the dressing pulse only,
and D(1)(t) is the dipole moment correction to first order with respect to εxuv(t),

Dd(t) = 〈Ψd, t|Ẑ|Ψd, t〉, (3.6)

D(1)(t) = i

t∫
−∞

dt′εxuv(t′)〈Ψd, t|ẐÛd(t, t′)Ẑ|Ψd, t
′〉+ c.c. (3.7)
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3.2 Wave-packet time-propagation method

Assuming that the attosecond pulse is shorter than all relevant electronic time scales
[60], I approximate it by a delta function εxuv(t) = Axuvδ(t − t0), where t0 is the
moment when the attosecond pulse interacts with the system. Hence,

D(1)(t) =

0, t < t0,

iAxuv〈Ψd, t|ẐÛd(t, t0)Ẑ|Ψd, t0〉+ c.c., t ≥ t0.
(3.8)

It is assumed throughout that the dressing field εd(t) is not strong enough to excite
the ground state of the system. Therefore, 〈Ψd, t| ≈ 〈Ψ0| and |Ψd, t0〉 ≈ |Ψ0〉. As a
consequence,

D(1)(t) =

0, t < t0,

iAxuv〈Ψ̃, t0|Ûd(t, t0)|Ψ̃, t0〉+ c.c., t ≥ t0,
(3.9)

where

|Ψ̃, t0〉 = Ẑ|Ψ0〉 (3.10)

is the initial state of the electronic wave packet right after excitation by the XUV
pulse at t = t0. Thus, introducing the autocorrelation function

C(t, t0) = 〈Ψ̃, t0|Ψ̃, t〉, (3.11)

where

|Ψ̃, t〉 = Ûd(t, t0)|Ψ̃, t0〉 (3.12)

reflects the time evolution of the XUV-excited system in the dressing field, the
dipole moment is given by

D(1)(t) =

0, t < t0,

iAxuvC(t, t0) + c.c., t ≥ t0.
(3.13)

Autocorrelation function C(t, t0) is computed by employing the following numer-
ical strategy. Unitary wave-packet propagation (in the absence of Auger decay) is
ensured by approximating the relevant time-evolution operator for a time step from
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t to t+ ∆t through

Ûd(t+ ∆t, t) ≈ e−iĤd(t+ ∆t
2

)∆t, (3.14)

which has an error that, to leading order, scales as ∆t3. Note that the Hamiltonian
in Eq. (3.14),

Ĥd(t) = Ĥ0 − E0 − εd(t)Ẑ, (3.15)

does not include the XUV field.

To perform a numerical solution a finite set of inner-shell-excited eigenstates {|ΨI〉}
is calculated and the corresponding inner-shell-excited wave packet is expanded in
this subspace

|Ψ̃, t〉 =
∑
I

aI(t)|ΨI〉. (3.16)

Upon combining Eqs. (3.14) and (3.16) an expression for the propagation of the
vector of expansion coefficients is obtained

a(t+ ∆t) = e−iHd(t+ ∆t
2

)∆ta(t), (3.17)

where (a)I = aI and (Hd)IJ = 〈ΨI |Ĥd|ΨJ〉, and I ,J are indices that run from 1 to N
where N is the size of the finite set. Taking into account the initial condition

aI(t0) = 〈ΨI |Ψ̃, t0〉 = 〈ΨI |Ẑ|Ψ0〉. (3.18)

Eq. (3.17) is solved. The diagonalization of the instantaneous Hamiltonian matrix
in each time step provides the eigenvalues Ẽk and eigenvectors vk of the operator
Hd in efficient way. Hence,

a(t+ ∆t) =
∑
k

e−iẼk(t+ ∆t
2

)∆tvk(t+ ∆t)v†k(t+ ∆t)a(t). (3.19)

Via

C(t, t0) =
∑
I

a∗I(t0)aI(t) (3.20)

I obtain the autocorrelation function required for the evaluation of Eq. (3.13).



3.3. Perturbative treatment of the dressing pulse 27

Once the XUV-induced dipole moment in the presence of laser dressing is available,
the XUV cross section can be calculated

σ(1)(ω) =
4πω

c
Im
[D̃(1)(ω)

ε̃x(ω)

]
, (3.21)

where D̃(1)(ω) and ε̃x(ω) are the Fourier transforms ofD(1)(t) and εx(t), respectively.
Computed with Eq. (3.21) XUV cross sections for the dressed Xe atom are presented
and discussed in Chapter 5 on the example of Xe.

3.3 Perturbative treatment of the dressing pulse

For the case of a weak NIR pulse perturbation theory can be used for both XUV and
optical pulses. A perturbative analysis of the transient absorption signal as a func-
tion of the time delay between the attosecond excitation pulse and the femtosecond
dressing pulse is performed. Treating the dressing field perturbatively allows for
an elementary explanation of the signals one can obtain in ATA experiments.

To perform a perturbative analysis I separate the t dependence in 〈Ψd, t|ẐÛd(t, t′)Ẑ|Ψd, t
′〉

from the t′ dependence in Eq. (3.7). To this end the following identity is employed

Ûd(t, t
′) = Ûd(t, t0)Û -1

d (t′, t0), (3.22)

which is correct for any reference time t0. Employing Eqs. (3.7) and (3.22), the dipole
moment correction along the z-axis can be written as

D(1)(t) = i
∑
f

[ t∫
−∞

dt′εxuv(t′)F0f (t)Ff0(t′)−
t∫

−∞

dt′εxuv(t′)F ∗0f (t)F
∗
f0(t′)

]
= iAxuv

∑
f

[
F0f (t)Ff0(τ)− F ∗0f (t)F ∗f0(τ)

]
θ(t− τ),

(3.23)

where θ(t−τ) is the Heaviside function. The functions Fmn(t) in Eq. (3.23) represent
transition dipole matrix elements between optically dressed states |Ψm〉 and |Ψn〉,

Fmn(t) = 〈Ψm|Û -1
d (t, t0)ẐÛd(t, t0)|Ψn〉. (3.24)



28 Chapter 3. Theoretical description of ATAS

Using Eq. (3.23) and taking into account that the dipole moment D(1)(t) is a real
function, I obtain from Eq. (3.21)

σ(1)(ω, τ) = i
4πω

c

∑
f

∞∫
−∞

dt
[
F0f (t)Ff0(τ)− F ∗0f (t)F ∗f0(τ)

]
θ(t− τ)Im

[
eiω(t−τ)

]

=
2πω

c

∑
f

∞∫
τ

dt
[
F0f (t)e

iωtFf0(τ)e−iωτ − F0f (t)e
−iωtFf0(τ)eiωτ + c.c.

]
.

(3.25)

In order to explore the spectroscopic properties of the atomic cross-section function
σ(1)(ω, τ) I perform a perturbative analysis of the impact of the dressing field on a
system. Applying perturbation theory, the time-evolution operator Ûd(t, t0) in the
presence of the dressing field [see Eq. (3.4)] can be written as follows:

Ûd(t, t0) = e−i(Ĥ0−E0)(t−t0)
[
1− i

∫ t

t0

dt′V̂d(t
′)Û I

d (t′, t0)
]

= e−i(Ĥ0−E0)(t−t0)
[
1− i

∫ t

t0

dt′V̂d(t
′)−

∫ t

t0

dt′
∫ t′

t0

dt′′V̂d(t
′)V̂d(t

′′) + ...
]
,

(3.26)

where

Û I
d (t, t0) = 1− i

t∫
t0

dt′V̂d(t
′)Û I

d (t′, t0) (3.27)

is the time-evolution operator in the interaction picture and

V̂d(t) = −εd(t)ei{Ĥ0−E0}(t−t0)Ẑe−i{Ĥ0−E0}(t−t0) (3.28)

is the perturbation by the optical dressing field.

When evaluating Eq. (3.23), I make use of a complete set of eigenstates of Ĥ0. Be-
cause the excited states accessed may lie in the electronic continuum, this involves,
strictly speaking, an integration over states. However, by focusing on bound states
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and autoionizing states only, I replace the integration by a summation over a dis-
crete set of states |Ψf〉with a complex energy

Ĥ0|Ψf〉 = (Ef − i
Γf
2

)|Ψf〉. (3.29)

Here Ef is the real part of the energy and the non-negative real number Γf is the de-
cay rate of the state |Ψf〉 (Γf = 0 for bound states). As a consequence of this choice,
Ĥ0 is not Hermitian, and, therefore, the time-evolution operator Ûd is not unitary,
i.e. Û -1

d (t, t0) 6= Û †d(t, t0). This is important, because in the analytical treatment that
follows, the inverse of Ûd(t, t0) is required

Û -1
d (t, t0) =

[
1 + i

∫ t

t0

dt′(Û I
d (t′, t0))-1V̂d(t

′)
]
ei(Ĥ0−E0)(t−t0)

=
[
1 + i

∫ t

t0

dt′V̂d(t
′)−

∫ t

t0

dt′
∫ t′

t0

dt′′V̂d(t
′′)V̂d(t

′) + ...
]
ei(Ĥ0−E0)(t−t0),

(3.30)

which differs from Û †d(t, t0) as conjugation is not applied to the Hamiltonian Ĥ0.

I now apply Eqs. (3.26) and (3.30) to Eq. (3.24). Resonant excitation involving XUV
light tends to lead to the formation of an inner-shell hole accompanied by an excited
electron (for atoms heavier than helium). For a given inner-shell hole, the decay rate
is relatively insensitive to the state of the excited electron. Thus, I assume the decay
rates to be equal to each other for all states (Γn = Γf ), except for the ground state
(Γ0 = 0). As a consequence, through second order in the dressing field, Ff0 can be
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decomposed as follows:

Ff0(t) =F 00
f0 (t) + F 01

f0 (t) + F 10
f0 (t) + F 02

f0 (t) + F 20
f0 (t) + F 11

f0 (t) + ...

= f 00
f0(t)e

Γf
2
t〈Ψf |Ẑ|Ψ0〉

+
∑
a

f 01
fa0(t)e

Γf
2
t〈Ψf |Ẑ|Ψa〉〈Ψa|Ẑ|Ψ0〉

+
∑
α

f 10
fα0(t)e

Γf
2
t〈Ψf |Ẑ|Ψα〉〈Ψα|Ẑ|Ψ0〉

+
∑
ab

f 02
fba0(t)e

Γf
2
t〈Ψf |Ẑ|Ψb〉〈Ψb|Ẑ|Ψa〉〈Ψa|Ẑ|Ψ0〉

+
∑
αβ

f 20
fαβ0(t)e

Γf
2
t〈Ψf |Ẑ|Ψα〉〈Ψα|Ẑ|Ψβ〉〈Ψβ|Ẑ|Ψ0〉

+
∑
aα

f 11
fαa0(t)e

Γf
2
t〈Ψf |Ẑ|Ψα〉〈Ψα|Ẑ|Ψa〉〈Ψa|Ẑ|Ψ0〉+ ...

(3.31)

The functions fmnfxy0 are [n+m]-th order integrals for transitions from the initial |Ψ0〉
to the final state |Ψf〉 through the states |Ψx〉, |Ψy〉 (see Table 3.1). I use letters a and
b for states associated with the perturbation of the initial state by the dressing field
and the letters α and β for the dressing of the final state. The expression for F0f (t)

differs from that for F ∗f0(t) solely by the sign of the exponents proportional to Γf .

3.4 Analytical structure of the cross section

3.4.1 Atomic cross section in a time-delay domain

Assuming that initial-state dressing is negligible, all the terms involving indices a
and b in Eq. (3.31) can be set to zero, thus perturbative expansion of F0f (t) can be
simplified to the following expression:

F0f (t) =
[
f 00
f0(t)

]∗
e−

Γf
2
t〈Ψ0|Ẑ|Ψf〉

+
∑
x

[
f 10
fx0(t)

]∗
e−

Γf
2
t〈Ψ0|Ẑ|Ψx〉〈Ψx|Ẑ|Ψf〉

+
∑
xy

[
f 20
fxy0(t)

]∗
e−

Γf
2
t〈Ψ0|Ẑ|Ψy〉〈Ψy|Ẑ|Ψx〉〈Ψx|Ẑ|Ψf〉+ ...

(3.32)
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t1 t2 t

FIGURE 3.1: Rectangular-shaped dressing pulse that starts at time
t1 = 0 and ends at t2. Duration of the pulse is cosen to be an inte-

ger multiple of the period 2π/ωd.

In the following, I assume that the optical dressing pulse has a rectangular shape:

εd(t) = Ad

(
θ(t− t1)− θ(t− t2)

)
sin(ωdt), (3.33)

as shown in Figure 3.1. In Eq. (3.33), ωd is the photon energy of the dressing field
andAd is the field amplitude. The dressing pulse is assumed to start at t1 = 0. Thus,
the time τ associated with the attosecond XUV pulse is the delay of the attosecond
XUV pulse relative to the beginning of the optical dressing pulse.

Functions fmnfxy0(t) introduced in Eq. (3.32) are given in Table 3.1 for the dressing
pulse in Eq. (3.33).

Here, I made the choice t0 → −∞ when evaluating Eq. (3.24) using Eqs. (3.26) and
(3.30). The energy differences ∆

(n)
x± appearing in Table 3.1 are

∆(0)
x = Ex − E0;

∆
(1)
x± = Ex − E0 ± ωd;

∆
(2)
x± = Ex − E0 ± 2ωd.

(3.34)

(3.35)

(3.36)
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TABLE 3.1: Functions fmnfxy0(t)

Function Condition Expression

f00
f0(t) -∞ < t <∞ ei∆

(0)
f t

f10
fx0(t) -∞ < t < t1 0

t1 < t < t2 Bfx
1 ei∆

(1)
f+t −Bfx

2 ei∆
(1)
f−t − Afx(t1)ei∆

(0)
x t

t2 < t <∞
[
Afx(t2)− Afx(t1)

]
ei∆

(0)
x t

f20
fxy0(t) -∞ < t < t1 0

t1 < t < t2 Dfxy
1 ei∆

(2)
f+t −Dfxy

2 ei∆
(0)
f t +Dfxy

3 ei∆
(2)
f−t

−Dfxy
4 ei∆

(1)
x+t +Dfxy

5 ei∆
(1)
x−t − Cfxy(t1)ei∆

(0)
y t

t2 < t <∞
[
Cfxy(t2)− Cfxy(t1)

]
ei∆

(0)
y t

The other quantities used in Table 3.1 are listed in the following:

Bfx
1 =

Ad
2

1

i(Ef − Ex + ωd)
;

Bfx
2 =

Ad
2

1

i(Ef − Ex − ωd)
;

(3.37)

(3.38)

Afx(t) =
Ad
2
f1(Ef − Ex, ωd, t), (3.39)

where

f1(∆, ω, t) =
ei(∆+ω)t

i(∆ + ω)
− ei(∆−ω)t

i(∆− ω)
; (3.40)

Dfxy
1 = −A

2
d

4

1

(Ef − Ex + ωd)(Ef − Ey + 2ωd)
;

Dfxy
2 = −A

2
d

4

(
1

(Ef − Ex + ωd)(Ef − Ey)
+

1

(Ef − Ex − ωd)(Ef − Ey)

)
;

Dfxy
3 = −A

2
d

4

1

(Ef − Ex − ωd)(Ef − Ey − 2ωd)
;

(3.41)

(3.42)

(3.43)
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Dfxy
4 =

A2
d

4

f1(Ef − Ex, ωd, t1)

i(Ex − Ey + ωd)
;

Dfxy
5 =

A2
d

4

f1(Ef − Ex, ωd, t1)

i(Ex − Ey − ωd)
;

(3.44)

(3.45)

Cfxy(t) =Dfxy
1 ei(Ef−Ey+2ωd)t −Dfxy

2 ei(Ef−Ey)t +Dfxy
3 ei(Ef−Ey−2ωd)t

−A
2
d

4
f1(Ef − Ex, ωd, t1)f1(Ex − Ey, ωd, t).

(3.46)

XUV one-photon cross section from Eq. (3.25) can be written as:

σ(1)(ω, τ) =
2πω

c

∑
f

(
F̃0f (ω, τ)Ff0(τ)e−iωτ − F̃0f (−ω, τ)Ff0(τ)eiωτ + c.c.

)
, (3.47)

where

F̃0f (ω, τ) =

∞∫
−∞

dt F0f (t)θ(t− τ)eiωt (3.48)

is the Fourier transform of the function F0f (t)θ(t − τ). In order to construct the
XUV one-photon cross section [Eq. (3.47)], I further require F̃0f (ω, τ). The function
F̃0f (ω, τ) has the same structure as Eq. (3.32), but with the functions

[
fmnfxy0(t)

]∗
e−

Γf
2
t

replaced with

f̃nm0yxf (ω, τ) =

∞∫
τ

dt
[
fmnfxy0(t)

]∗
e−

Γf
2
teiωt. (3.49)

Explicit form of functions f̃mnfxy0(t) is listed in Table 3.2 below.

The functions f2(∆, ω)
∣∣∣tb
ta

appearing in Table 3.2 are

f2(∆, ω)
∣∣∣tb
ta

= f0(∆ + ω, tb)− f0(∆ + ω, ta), (3.50)

f0(∆, t) =
ei∆t

i∆
. (3.51)

In view of Eq. (3.47), the analytical structure of F̃0f (ω, τ) determines the resonance
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TABLE 3.2: Functions f̃mnfxy0(t)

Function Condition Expression

f̃00
f0(ω, τ ) -∞ < τ <∞ f0(∆

(0)
f , ω)

∣∣∣∞
τ

f̃10
fx0(ω, τ ) -∞ < τ < t1 0

t1 < τ < t2 Bfx
1 f2(∆

(1)
f+, ω)

∣∣∣t2
τ
−Bfx

2 f2(∆
(1)
f−, ω)

∣∣∣t2
τ
− Afx(t1)f2(∆

(0)
x , ω)

∣∣∣t2
τ

t2 < τ <∞
[
Afx(t2)− Afx(t1)

]
f2(∆

(0)
x , ω)

∣∣∣∞
t2

f̃20
fxy0(ω, τ ) -∞ < τ < t1 0

t1 < τ < t2 Dfxy
1 f2(∆

(2)
f+, ω)

∣∣∣t2
τ
−Dfxy

2 f2(∆
(0)
f , ω)

∣∣∣t2
τ

+Dfxy
3 f2(∆

(2)
f−, ω)

∣∣∣t2
τ
−

−Dfxy
4 f2(∆

(1)
x+, ω)

∣∣∣t2
τ

+Dfxy
5 f2(∆

(1)
x−, ω)

∣∣∣t2
τ
− Cfxy(t1)f2(∆

(0)
y , ω)

∣∣∣t2
τ

t2 < τ <∞
[
Cfxy(t2)− Cfxy(t1)

]
f2(∆

(0)
y , ω)

∣∣∣∞
τ

peaks in the XUV one-photon cross section as a function of ω. In general F̃0f (ω, τ)

has the form

F̃0f (ω, τ) =
∑
k

Ck
e−i(∆k−i

Γf
2
−ω)τ

i(∆k − iΓf
2
− ω)

, (3.52)

where each ∆k is one of the quantities presented in Eqs. (3.34)-(3.36). Thus, the ∆k

define the poles of F̃0f (ω, τ) in the complex ω plane. The peaks of σ(1)(ω, τ) at the
∆k correspond to XUV transitions accompanied by the absorption or emission of
zero [Eq. (3.34)], one [Eq. (3.35)], or two [Eqs. (3.36)] dressing laser photons, or one
absorption and one emission Eq. (3.34).

In such a way, the presence of a dressing field allows for an excitation of the light-
induced states (LIS) [83, 84, 85]. The XUV absorption spectrum contains all absorp-
tion lines corresponding to states that can be excited according to the dipole selec-
tion rules: bright states [Eq. (3.34)] and LIS [Eq. (3.35)]. The magnitude of the corre-
sponding peak is determined by the coefficient Ck. This coefficient in Eq. (3.52) de-
pends on whether the attosecond pulse precedes the dressing pulse (−∞ < τ < t1),
whether the attosecond pulse overlaps with the dressing pulse (t1 < τ < t2), or
whether the attosecond pulse arrives after the dressing pulse is over (t2 < τ < ∞),
but remains constant and does not change with τ inside these regions. Thus, from
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Eq. (3.47) it follows, that positions of atomic absorption peaks are determined by
the F̃0f (ω, τ) function and are located at the photon energy ω = ∆k, and their oscil-
lation with the time delay τ is described by the product of the function Ff0(τ) and
the exponential numerator of function F̃0f (ω, τ).

3.4.2 Atomic cross section in a Fourier-energy domain

In order to identify the associated oscillation frequencies, I take the Fourier trans-
form of σ(1)(ω, τ) with respect to the delay τ between the attosecond XUV pulse and
the optical dressing pulse:

σ̃(1)(ω, ω′) =

∞∫
−∞

dτ σ(1)(ω, τ)eiω
′τ . (3.53)

From Eq. (3.47) one can see that the cross-section function σ̃(1)(ω, ω′) in a Fourier-
energy domain can be written as

σ̃(1)(ω, ω′) =
2πω

c

∑
f

(
F̃f (ω, ω′)− F̃f (−ω, ω′) + F̃∗f (ω,−ω′)− F̃∗f (−ω,−ω′)

)
,

(3.54)

where

F̃f (ω, ω′) =

∞∫
−∞

dτF̃0f (ω, τ)Ff0(τ)ei(ω
′−ω)τ . (3.55)

To get the analytical structure of F̃f (ω, ω′) function it is useful to view it as a sum of
F̃xyf (ω, ω′) functions as

F̃f (ω, ω′) =
∑
xy

(
F̃xyf (ω, ω′)

∣∣∣
τ<t1

+ F̃xyf (ω, ω′)
∣∣∣
t1<τ<t2

+ F̃xyf (ω, ω′)
∣∣∣
t2<τ

)
× 〈Ψ0|Ẑ|Ψf〉〈Ψf |Ẑ|Ψx〉〈Ψx|Ẑ|Ψy〉〈Ψy|Ẑ|Ψ0〉.

(3.56)

In Eq. (3.56) I separate F̃xyf (ω, ω′) functions with respect to excitation time τ , whether
it precedes the dressing pulse, overlaps with it, or happens after the dressing pulse
is over. Here the indexes x and y are used for the dark and bright intermediate
states correspondingly, which can serve as an intermediate state for the electron
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while getting excited from the ground state |Ψ0〉 to the final state |Ψf〉. Due to our
assumption that the dressing pulse can not affect the ground state |Ψ0〉, the function

F̃xyf (ω, ω′)
∣∣∣
t2<τ

= 0. (3.57)

It means, that if the excitation takes place when the dressing field is over, the amount
of XUV light, transmitted through the sample will remain constant, because there
will be no dynamics driven by the dressing field and thus no oscillations in a cross-
section function. For the τ < t1 scenario, when the XUV excitation precedes the
dressing pulse, F̃xyf (ω, ω′) reads

F̃xyf (ω, ω′)
∣∣∣
τ<t1

=

[
f 20
fxy0(−ω, t1)

∣∣∣
τ<t1

+ f 20
fxy0(−ω, t1)

∣∣∣
t1<τ<t2

+ f 20
fxy0(−ω, t1)

∣∣∣
t2<τ

]∗
× f0(∆

(0)
f − ω + ω1, t1).

(3.58)
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for the case, when the XUV overlaps with the dessing pulse

F̃xyf (ω, ω′)
∣∣∣
t1<τ<t2

=
1

i(∆
(0)
f − ω)

f̃20
fxy0(ω′ −∆

(0)
f , t1)

+[
Byx

1 f0(∆
(1)
x+ − ω, t2)−Byx

2 f0(∆
(1)
x− − ω, t2)−Ayx(t1)f0(∆(0)

y − ω, t2)

]∗
f̃10
xf0(ω′ − ω, t1)−

[
Byx

1

i(∆
(1)
x+ − ω)

]∗
f̃10
xf0(ω′ −∆

(1)
x+, t1)−

[
Byx

2

i(∆
(1)
x− − ω)

]∗
f̃10
xf0(ω′ −∆

(1)
x−, t1)−

[
Ayx(t1)

i(∆
(0)
y − ω)

]∗
f̃10
xf0(ω′ −∆(0)

y , t1)−

[(
Ayx(t2)−Ayx(t1)

)
f0(∆(0)

y − ω, t2)

]∗
f̃10
xf0(ω′ − ω, t1)

+[
Dyxf

1 f0(∆
(2)
f+ − ω, t2)−Dyxf

2 f0(∆
(0)
f − ω, t2) +Dyxf

3 f0(∆
(2)
f− − ω, t2)−Dyxf

4 f0(∆
(1)
x+ − ω, t2)+

Dyxf
5 f0(∆

(1)
x− − ω, t2)− Cyxf (t1)f0(∆(0)

y − ω, t2)

]∗
f2(∆

(0)
f − ω, ω1)

∣∣∣t2
t1
−

[
Dyxf

1 f2(−2ωIR, ω1)
∣∣∣t2
t1

i(∆
(2)
f+ − ω)

−
Dyxf

2 f2(0, ω1)
∣∣∣t2
t1

i(∆
(0)
f − ω)

+
Dyxf

3 f2(2ωIR, ω1)
∣∣∣t2
t1

i(∆
(2)
f− − ω)

−
Dyxf

4 f2(∆
(0)
f −∆

(1)
x+, ω1)

∣∣∣t2
t1

i(∆
(1)
x+ − ω)

+

Dyxf
5 f2(∆

(0)
f −∆

(1)
x−, ω1)

∣∣∣t2
t1

i(∆
(1)
x− − ω)

−
Cyxf (t1)f2(∆

(0)
f −∆

(0)
y , ω1)

∣∣∣t2
t1

i(∆
(0)
y − ω)

]∗
f2(∆

(0)
f − ω, ω1)

∣∣∣t2
t1

+[(
Cyxf (t2)− Cyxf (t1)

)
f2(∆(0)

y ,−ω)
∣∣∣∞
t2

)

]∗
f2(∆

(0)
f − ω, ω1)

∣∣∣t2
t1
.

(3.59)
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By making use of the analytical results presented in Equations (3.58) and (3.59), one can see

that the function F̃f (ω, ω′) has the following structure:

F̃f (ω, ω′) =
∑
kj

Akj(ω, ω
′)

i(∆k −∆j + ω′)
, (3.60)

where the functions Akj(ω, ω′) have no poles as a function of ω′. The XUV one-photon cross

section σ̃(1)(ω, ω′) has poles, as a function of ω′, at positions ∆j −∆k, in which ∆’s are the

energies of states allowed to be excited: bright states [Eq. (3.34)] and LIS [Eqs. (3.35)-(3.36)].

In physical terms, the states excited by the XUV pulse interfere with each other, causing the

oscillation in the XUV absorption spectrum. The energy of these oscillations is determined

by the energy difference of these states.

3.5 Summary

Using the analytical framework presented in this chapter, one can roughly predict what

kind of oscillations can be observed in a particular system under the action of overlapping

fields, in the case when the system can be represented as a superposition of states. The

analysis of the structure of σ(ω, τ) and σ̃(ω, ω′) reveals how the cross section changes as a

function of delay time τ . From Eqs. (3.25) and (3.24) it follows that nonzero cross section

requires nonzero dipole moment:

〈Ψ0|Ẑ| × (...)|Ψf 〉〈Ψf |(...)× |Ẑ|Ψ0〉, (3.61)

where 〈Ψf |(...)× |Ẑ|Ψ0〉 corresponds to dipole matrix elements of excitation processes, and

〈Ψ0|Ẑ| × (...)|Ψf 〉 corresponds to de-excitation process. Reading the total dipole matrix

element and estimating which field is responsible for each transition I can figure out the

amount of energy gained by the system at each step of excitation. Here I show it as an

example of the excitation of the system from the ground state |Ψ0〉 to the final state |Ψf 〉 by

one XUV photon ωxuv and two dressing photons ωd with a following de-excitation from the

final to the ground state directly:

〈 Ψ0 | Ẑ | Ψf 〉︸ ︷︷ ︸
E0 − Ef − ω′xuv

〈 Ψf | Ẑ | Ψx 〉︸ ︷︷ ︸
Ef − Ex ± ωd

〈 Ψx | Ẑ | Ψy 〉︸ ︷︷ ︸
Ex − Ey ± ωd

〈 Ψy | Ẑ | Ψ0 〉,︸ ︷︷ ︸
Ey − E0 + ωxuv
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where |Ψx〉 and |Ψy〉 are the intermediate states which appear only in the presence of the

dressing photon ωd. Blue arrows represent the processes driven by the attosecond XUV field

and red arrows represent the processes driven by the dressing pulse. The direction of the

arrows (left or right) defines the type of the process (emission or absorption). Keeping in

mind that the total amount of energy in a system remains conserved one can find the energy

of the absorption peaks by reading the excitation dipole moment from right to left and

summarize the energy gained by the system: from the first bracket I get main absorption

peaks ωxuv = E0 − Ey. The next steps give the energy of additional absorption peaks (LIS):

ωxuv = E0 − Ey + Ey − Ex ± ωd = E0 − Ex ± ωd

ωxuv = E0 − Ey + Ey − Ex ± ωd + Ex − Ef ± ωd =

E0 − Ef

E0 − Ef ± 2ωd

(3.62)

The oscillation energies of those absorption peaks with a time delay τ may be retrieved in

a similar way by simply adding together absorbed and emitted energy the way it is shown

in a table below:

emission absorption corresponding oscillation

E0 − Ef − ω′xuv

Ey − E0 + ωxuv Ey − Ef
Ex − E0 ± ωd + ωxuv Ex − Ef ± ωd + ωxuv

Ef − E0 ± 2ωd + ωxuv ±2ωd

Ef − E0 + ωxuv 0

3.6 Conclusion

The analytical treatment of the ATA spectrum, presented in this chapter, provides an in-

strument to study the interference effects and correlations inside the system in detail. The

presented technique is suitable not only for atoms, but for more complex systems as well.

In the next chapter (Chapter 4) I demonstrate, using a model atom as an example, which ef-

fects can be recorded on the ATA spectrum and how different excitation pathways interfere

with each other.
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Chapter 4

Analysis of ATA signal of
perturbatively dressed system

The results presented in this chapter have been published in Ref. [68], of which I am the first

author, and has been included verbatim: Kolbasova, Santra, Appl. Sci., 9(7), 1350 (2019).

In order to have a better understanding of how the attosecond transient absorption sig-

nal reveals the real-time attosecond dynamics of the system I illustrate it by applying our

analytical solution from Section 3.4 to a model atom. I focus on the situation in which

the attosecond XUV pulse is used to create a coherent superposition of electronic states.

The resulting dynamics can be detected in the spectrum of the transmitted XUV pulse by

manipulating the electronic wave packet using a carrier-envelope-phase-stabilized optical

dressing pulse. In addition to coherent electron dynamics triggered by the attosecond pulse,

the transmitted XUV spectrum encodes information on electronic states made accessible by

the optical dressing pulse. I illustrate these concepts through calculations performed for a

few-level model.

4.1 Few-level model atom

By focusing on a simple few-level atom, I perform an analysis of the ATA signal dependence

on the time delay between the attosecond XUV pulse and the optical dressing pulse. The

model considered is shown in Figure 4.1. The corresponding energy levels and transition

dipole matrix elements, which underlie the numerical results shown in the following, are

presented in Tables 4.1 and 4.2, respectively. The numbers employed do not correspond

to any real atom. In order to illustrate the basic features of the kind of ATA spectroscopy

considered in this research, we employ an artificial few-level system characterized by level

spacings matching XUV and optical energies. A key assumption is that parity is a good
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FIGURE 4.1: Level structure of the few-level atom employed to illus-
trate ATA spectroscopy. XUV transitions from the ground state are
shown in blue. Red arrows indicate laser dressing of the excited states.

The superscripts represent the parity of each state.

TABLE 4.1: Energy levels of the model atom in atomic units.

E0+ E1− E2− E3− E1+ E2+

0 2.1888 2.2238 2.2360 2.1889 2.2238

quantum number, which allows us to clearly distinguish between bright and dark states

(with respect to excitation from the ground state). The model in Figure 4.1 is intended as a

pedagogical tool for identifying generic features of σ(1)(ω, τ) and σ̃(1)(ω, ω′).

As a consequence of its large spectral bandwidth, the attosecond XUV pulse can excite the

atom from its ground state 0+ to any of the bright states i−, i = 1, 2, 3, which have a negative

parity (see Figure 4.1). The dressing pulse with photon energy ωd is weak and cannot, by

assumption, affect the ground state, but can couple a bright state i− to a dark state j+, by

exchanging with the atom one dressing-laser photon (energy change by ±ωd) or to a bright

state j− by exchanging with the atom two dressing-laser photons (energy change by±2ωd).

TABLE 4.2: Transition dipole matrix elements 〈i−|Ẑ|j+〉.

Ẑ |0+〉 |1+〉 |2+〉
〈1−| 0.25 0.33 0.33
〈2−| 0.42 0.33 0.33
〈3−| 0.33 0.33 0.33
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Because 0+ and the dark states j+, j = 1, 2, have the same parity (see Figure 4.1), the latter

cannot be excited via one-photon absorption from the ground state, i.e., the corresponding

transition dipole moments are zero. However, in the presence of the dressing laser, they

can give rise to light-induced states (LIS) [83, 84, 85]. In general, the energy of a LIS is

determined by the energy difference to the dark state, however LIS associated with the

valence transitions could be Stark shifted in the presence of the IR field. As a function of the

XUV photon energy ω, the following transition energies can be observed in the transmitted

spectrum of the attosecond pulse:

ω = Ei− − E0+ for a transition to a bright state i−, and

ω = Ei+ ± ωd − E0+ and ω = Ei− ± 2ωd − E0+ , respectively, for LIS.

Excited states of the atom have a finite decay rate Γ = Γf and relax through fluorescence or

Auger decay, which leads to a finite width of the absorption peaks. In our model, the decay

rate Γ is assumed to be the same for all excited states i+ and i− (Γ = 1/263 a.u.).

4.2 XUV induced dynamics inside the model atom

In Figure 4.2, the XUV one-photon cross section σ(1)(ω, τ) [Eq. (3.25)] for our model atom is

presented for three different time delays τ . In all figures below I use a rectangular dressing

pulse [see Eq. (3.33)] with amplitude Ad = 0.06 a.u., photon energy ωd = 0.10 a.u. and

duration t2 = 3141 a.u. ≈ 11.95/Γ a.u., unless stated otherwise. As there are three bright

states i− in our model atom, one can see three main peaks in all panels of Figure 4.2, which

correspond to the XUV transitions 0+ → i−. The small additional peaks in Figure 4.2 (b,c)

correspond to transitions to LIS. Numerical values for the transition energies are listed in

Table 4.3.

TABLE 4.3: Resonance energies (dressing photon energy ωd = 0.10 a.u.).

i=1 i=2 i=3
Ei− − E0+ − 2ωd 1.9889 2.0238 2.0361
Ei− − E0+ 2.1888 2.2238 2.2360
Ei− − E0+ + 2ωd 2.3888 2.4238 2.4360
Ei+ − E0+ − ωd 2.089 2.124
Ei+ − E0+ + ωd 2.289 2.324
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FIGURE 4.2: Atomic cross section σ(1)(ω, τ) of a model atom dressed
by a laser pulse with a field strength Ad = 0.06 a.u., photon energy
ωd = 0.10 a.u. and duration t2 = 3141 a.u. ≈ 11.95/Γ a.u., at different
excitation time delay: (a) τ � −1/Γ; (b) τ = 0; (c) τ = −0.05/Γ. Panel
(a) corresponds to a cross section of a non-dressed model atom, only
three main absorption peaks are present. Small side peaks on panels
(b) and (c) correspond to LIS, which can be detected on a ATA spectrum
as an emitted light (positive cross section) or absorbed light (negative

cross section).

If dressing comes long after or before the excitation by the attosecond pulse, only the peaks

associated with the bright states can be observed in the absorption spectrum as illustrated

in Figure 4.2 (a). When the time delay between the pulses gets shorter, optical dressing be-

comes possible, causing the appearance of LIS transition peaks as well as changes in the

height of the bright-state transition peaks. New features can be positive or negative indi-

cating whether the attosecond XUV beam is attenuated or amplified at the corresponding

photon energy ω.
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FIGURE 4.3: Difference in absorption spectrum of attosecond XUV
pulse ∆σ(1) = σ(1)(ω, τ) − σ(1)(ω,∞) caused by delayed dressing by
NIR pulse (Eq. 3.33). The time delay τ between the attosecond XUV
pulse and start t1 = 0 a.u. of a NIR pulse is shown in y-axes, and the
photon energy ω is shown on x-axes. In the middle of the plot one can
see three main absorption peaks oscillating with the time delay τ in
the overlapping region [0 3141 a.u.]. Blurring yellow lines on the sides
from the main absorption peaks correspond to a LIS, which become

accessible in a presence of a dressing field.

In Figure 4.3 the full map of a difference ∆σ(1) = σ(1)(ω, τ) − σ(1)(ω,∞) is shown as a

function of photon energy ω and excitation time delay τ . Interference of different excitation

paths from the ground state 0+ to a final f state [see Eq. (3.25)] gives rise to an oscillation

in the XUV one-photon cross section of all peaks [86], which can be observed in Figure 4.3

in the overlap region between the optical dressing pulse and the attosecond XUV pulse.

Focusing at the LIS peaks in Figure 4.3 one can see that the oscillations become weaker after
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FIGURE 4.4: |σ̃(1)(ω, ω′)|, i.e., the modulus of the Fourier transform of
the XUV one-photon cross section σ(1)(ω, τ), calculated with Eq. (3.54).
Upper panel represents the the integral of |σ̃(1)(ω, ω′)| over Fourier

range, and the left panel the integral over photon energy range.

τ ≈ 2230 a.u. as the time available to dress an excited state gets shorter and becomes com-

parable with the excited-state lifetime. Thus, the probability of interference with another

transition path through a dressed state goes down. This “ringing” of the system driven by

the excitation pulse can be observed even if the dressing pulse comes after the excitation

and the pulses do not overlap, if the excited state can survive till the dressing comes. This

can be seen in the region of negative τ in Figure 4.3. Finally, if the attosecond pulse comes

after the dressing pulse, the XUV one-photon cross section remains constant and the height

of the three main peaks at ω = Ei− − E0+ does not change with the time delay τ , as the

dressing pulse, by assumption, does not affect the ground state of the system.

Studying the “ringing” allows us to reveal the real-time attosecond dynamics inside the

atom. To this end, I take the Fourier transform of σ(1)(ω, τ) with respect to the time delay,

which gives an opportunity to study the reasons behind the oscillations observed. The

absolute value of the resulting function σ̃(1)(ω, ω′) [Eq. (3.54)] is plotted in Figure 4.4. The

oscillations of σ(1)(ω, τ), caused by the excitation-paths interference, have the energies ω′ =

∆i −∆j [see Sec. 3.4]. In accordance with the dipole selection rules, these are
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TABLE 4.4: Oscillation energies ω′ [a.u.] of the ATA peaks, dependent
on the electronic structure of the atom (2ωd = 0.20 a.u. is not in the

table).

i=1 i=2 i=3

|Ei− − E(i+1)−| 0.0350 0.0122 0.0472∗

|E1+ − Ei− + ωd| 0.1000 0.0650 0.0528

|E2+ − Ei− + ωd| 0.1350 0.1000 0.0878

|E1+ − Ei− − ωd| 0.0999 0.1350 0.1472

|E2+ − Ei− − ωd| 0.0650 0.0999 0.1122

∗ Energy difference E3− − E1−

ω′ = 2ωd,

ω′ = |Ei− − Ej− |,

ω′ = |Ei+ − Ej− ± ωd|.

Corresponding values for our model atom are shown in Table 4.4. All these energies are

present in the oscillations of main peaks of the ATA spectrum, except those that do not

include this concrete state in the interference process, such as ω′ = |Ei− − Ej− | for the

absorption peak ω = |Ek+ − E0+ |, where k 6= i and k 6= j.

Set of peaks of the Fourier spectrum of the XUV one-photon cross section (which is pro-

jected onto the ω′-axis in Figure 4.4 is marked with a green color), corresponds to the energy

differences

ω′ = |Ei− − Ej− |.

They appear due to the coupling of two bright i− states by the dressing field. This makes

it possible for the atom to be excited into the state i− with a following de-excitation from

the j− state. The rest of the peaks of the Fourier spectrum of the XUV one-photon cross

section, except the peaks at the ω′ = 2ωd, are caused by the interference of the bright state

with a LIS. These interferences can be observed as diagonal features, which go from one

interfering state to another. In such a way, in the middle of Figure 4.4 there are the peaks

corresponding to the energy differences,

ω′ = |Ei− − Ej+ ± ωd|,
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which are caused by the interference of the bright state Ei− with a LIS ω = Ej+ ± ωd. To

be more precise, the oscillation energies marked in blue on the left in Figure 4.4 correspond

to the oscillations caused by the interference of the state i− (i = 2, 3) with the positively

dressed LIS (ω = E1+ + ωd):

ω′ = |E1+ − Ei− + ωd|,

and interference of the state 1− with the negatively dressed LIS (ω = E2+ − ωd)

ω′ = |E2+ − E1− − ωd|.

In a same way, the oscillation energies marked with yellow color correspond to the case of

opposite sign of a dressing:

ω′ = |E1+ − Ei− − ωd|,

and

ω′ = |E2+ − E1− + ωd|.

The remaining energies of this type in the very middle of Figure 4.4 correspond to:

ω′ = |E2+ − E3− ± ωd|.

Oscillation at the energy ω′ = 2ωd = 0.2 a.u. is characteristic for all cross section peaks.

This feature was theoretically predicted and measured as subcycle fringes in laser-dressed

helium atoms [83, 84, 85]. It is noteworthy that the oscillation energy of these LIS peaks

depends only on the photon energy of the dressing pulse and not on the electronic structure

of the atom. In contrast, the energy ω′ = |Ei−−Ej− | of the main peaks’ oscillations does not

depend on the energy of the dressing pulse at all, which testifies that the XUV excitation

creates a coherent superposition of the i− states.

4.3 Analysis of sensitivity of ATAS

In this section I analyze the dependence of the oscillation strengths on parameters of the sys-

tem and the parameters of the dressing pulse to see which information could be imprinted

on a ATAS spectrum and what the conditions are to observe them.
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FIGURE 4.5: Fourier spectrum of the oscillations it the dressing field ωd
= 0.10 a.u. of the absorption lines ω = E3− − E0+ and ω = E1− − E0+

(green: 〈3−|Ẑ|0+〉 = 0.33; red: 〈3−|Ẑ|0+〉 = −0.33).

One of the important atomic parameters is the transition dipole matrix element between two

states〈i−|Ẑ|j−〉. Its magnitude defines the probability of the dipole transition. In Figure 4.2

one can see that the Fourier peaks of the transition into 1− are markedly weaker in com-

parison with 2− and 3−, as the 1− transition dipole matrix element from the ground state

is smaller (see Table 4.2). Moreover, our results obtained with Eq. (3.54) show a sensitivity

of ATA spectroscopy to the relative signs of the transition dipole matrix elements involved

in the process. In Figure 4.5, I compare Fourier spectra of the oscillations of two different

absorption peaks, where two cases are shown that differ from each other only through the

sign of the transition dipole matrix. One can see significant changes in the amplitude of

the Fourier peaks not only in the spectrum at ω = E3− − E0+ , which directly depends on

parameters of the 3− state, but also in the spectrum at ω = E1− −E0+ . This underscores the

strong effective coupling between the 3− and 1− states. The change of the relative phase

of these two dipole moments strongly affects the oscillation amplitudes that are explicitly

dependent on transitions into LIS, whereas oscillations at the energies ω′ = Ei− − Ej− re-

main almost the same (the ω′ = E3− − E1− = 0.0472 a.u. on Figure 4.5). The sensitivity

to the relative phase, for transitions into LIS, can be understood as follows. If two bright

states, here 1− and 3−, are coupled by the dressing pulse to a dark state j+, and the products

〈0+|Ẑ|1−〉〈1−|Ẑ|j+〉 and 〈0+|Ẑ|3−〉〈3−|Ẑ|j+〉 have opposite signs, then their contributions

to the corresponding LIS peaks will attenuate each other. As a consequence of the destruc-

tive interference of the two pathways to the state j+, the LIS peaks are suppressed.

The impact of the parameters of the dressing pulse is shown in Figure 4.6. The panels show

σ̃(1)(ω, ω′) for the absorption peaks ω = E1− − E0+ (green line) and ω = E1+ − E0+ + ωd

(red line) calculated with Eq. (3.54) for two different dressing photon energies ωd = 0.10 a.u.

(left panels) and ωd = 0.15 a.u. (right panels) and different durations t2 − t1 of the dressing

pulse. Comparing the left and right panels of Figure 4.6 one can see that position of the

peaks ω′ = Ei− − Ej− remain unaffected, and the peaks that depend on ωd are shifted.
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FIGURE 4.6: Fourier spectra σ̃(1)(ω, ω′) at ω = E1− − E0+ (green line)
and ω = E1+ − E0+ + ωd (red line) for different pulse durations of the
dressing field (decay rate of all excited states Γ is kept constant). The
pulse durations used are integers of the dressing field period. Left and
right panels correspond to the dressing photon energies ωd = 0.10 a.u.

and ωd = 0.15 a.u., respectively.

As the effective coupling strength depends on the photon energy of the dressing field, the

amplitudes of all peaks are affected by the ωd change. The peak heights are sensitive to how

close ωd is to a resonant transition energy between the states i− and j+. With increasing

dressing-pulse duration the relative heights of the peaks remain the same and all the peaks

become sharp and clear.

In Figure 4.7 |σ̃(1)(ω, ω′)| is shown, i.e., the modulus of the Fourier transform of the XUV

one-photon cross section σ(1)(ω, τ), calculated with Eq. (3.54), calculated separately for the

regions τ < t1 and t1 < τ < t2. In case of the XUV excitation happening strictly before

the dressing pulse the initial wave packet is simply a superposition of bright states. The

dynamics inside the system will be defined by the evolution of this wave packet with time.

However if the life time of the excited state is long enough for the state to survive until the
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(a)

(b)

FIGURE 4.7: |σ̃(1)(ω, ω′)|, i.e., the modulus of the Fourier transform of
the XUV one-photon cross section σ(1)(ω, τ), calculated with Eq. (3.54)

separately for the region (a) τ < t1 and (b) t1 < τ < t2.
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dressing field comes, it can decay after being dressed. For these reasons in Figure 4.7 (a)

not only the bright peaks ω = Ei− of a cross section are imprinted, but the dark states

as well. All the cross section peaks oscillate with the energy ω′ = Ek − Ei− , where Ek is

the energy of a cross section peak of the photon energy ω. If the excitation by the XUV

pulse happens in a presence of a dressing pulse, initial wave packet is a superposition of

the bright states together with LIS. It provides much more complicated dynamics inside the

system. In Figure 4.7 (b) the oscillations of the main cross-section peaks (ω = Ei− − E0)

are not restricted by ω′ = Ej− − Ei− components, but also indicate an interference with all

LIS through the ω′ = ELIS − Ei− oscillations. All the possible oscillations are imprinted

on a Fourier transform spectrum of the XUV one-photon cross section t1 < τ < t2, but the

oscillations caused by the excited state interference of the main peaks are more prominent

than those for the LIS. For the later ones, whose accessibility strongly depends on a a period

of the dressing field, oscillation ω′ = 2ωd is so much stronger that the inference packs are

not visible.

In Figure 4.8 the influence of different excitation paths in |σ̃(1)(ω, ω′)| are explored separately

from each other. We evaluate the |σ̃(1)(ω, ω′)| from Eq. (3.54) reducing the set of possible

excitation scenarios. Function F̃f (ω, ω′) from Eq. (3.56) can be decomposed as:

F̃f (ω, ω′) =
∑
abcd

F̃abcdf (ω, ω′), (4.1)

where

F̃abcdf (ω, ω′) =

∞∫
−∞

dτF̃ ab0f (ω, τ)F cdf0(τ)ei(ω
′−ω)τ . (4.2)

Taking into account second order of perturbation by the dressing pulse, function F̃f (ω, ω′)

in general reads

F̃f (ω, ω′) = F̃0020
f (ω, ω′) + F̃0110

f (ω, ω′) + F̃0200
f (ω, ω′) + F̃0220

f (ω, ω′). (4.3)

The last term requires interaction with 4 dressing photons instead of 2, so the probability

of the corresponding processes is negligibly small comparing to the processes described by

the other terms. In Figure 4.8 we solve Eq. (3.54) considering the F̃f (ω, ω′) to be equal to:

(a) simply the F̃0200
f (ω, ω′) term

(b) all terms except F̃0200
f (ω, ω′): in other words F̃0110

f (ω, ω′) + F̃0020
f (ω, ω′).

Similar for the lower panels of Figure 4.8:
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(c) F̃0110
f (ω, ω′), and

(d) F̃0020
f (ω, ω′) + F̃0200

f (ω, ω′),

(e) F̃0020
f (ω, ω′) and

(f) F̃0200
f (ω, ω′) + F̃0110

f (ω, ω′).

This representation give us a way to see clearly that the F̃0200
f (ω, ω′) term is responsible for

the situations described above for the Figure 4.7 (a), and F̃0020
f (ω, ω′) describes the opposite

situation, when the initial wave packet is a superposition of the bright and light-induced

states, but is allowed to decay only through one of the bright states. Finally, the term

F̃0110
f (ω, ω′) represents the situation where both excited and decaying states in a process

have to be one-time dressed.

It is worthy of note that some of the terms interfere constructively whereas another terms

interfere destructively. An example of constructive interference are the terms F̃0200
f (ω, ω′)

and F̃0020
f (ω, ω′), shown in Figures 4.8 (a) and (e) correspondingly. In a summation they give

exactly the F̃0020
f (ω, ω′)+F̃0200

f (ω, ω′) picture, shown in Figure 4.8 (d). The term F̃0110
f (ω, ω′)

instead interferes with two other terms destructively. The result of its interference with the

F̃0200
f (ω, ω′) or F̃0020

f (ω, ω′) terms removes the oscillation frequencies in common from the

|σ̃(1)(ω, ω′)| picture, as imprinted in Figure 4.8 (b) and Figure 4.8 (f) correspondingly. As

one can see in Figure 4.4 the strongest oscillation for all cross-section peaks is ω′ = 2ωd,

and observation of the frequencies, which reflect more interesting wave-packet dynamics is

complicated.

4.4 Conclusion

We have applied our analytical theory of attosecond transient absorption spectroscopy for

perturbatively dressed systems (see Chapter 3), to a model atom in order to study in de-

tail which aspects of real-time attosecond dynamics inside the atom can be revealed from

the ATA spectrum. When a broadband attosecond XUV pulse excites a superposition of

bright states, the presence of an optical dressing pulse gives rise to modulations of the ab-

sorption peaks connected to the population of bright states and, in addition, allows the

population of LIS, which can be observed as new absorption lines in the ATA spectrum.

Their positions depend on the photon energy of the dressing pulse. The modulations of the

bright-state absorption peaks are caused by the dressing-laser-driven coherent coupling of

the bright states to dark states and, via the dark states, to other bright states. The amplitude

of a bright state excited by the attosecond XUV pulse can, thus, be enhanced or reduced via
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population transfer from or to other bright states by the dressing pulse. Therefore, the inter-

ference between the direct and the dressing-field-mediated pathways gives rise to periodic

modulations of the bright-state absorption peaks as a function of the pump-probe delay.

The energies associated with these modulations do not depend on the photon energy of

the optical dressing pulse but on the energy differences among the bright states coherently

populated by the attosecond XUV pulse. The developed theory also shows the sensitivity

of ATA spectroscopy to the relative signs of the transition dipole moments among the states

involved in the interaction. A change in sign affects the interference of different quantum

pathways, which can be observed via the strength of the corresponding modulations of an

absorption peak.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.8: Individual impact of different excitation paths in ATAS
spectrum |σ̃(1)(ω, ω′)| and their interference. The oscillations caused by
(a) excitation by one XUV photon and decay from a dressed state; (c)
excitation and decay from the dressed states; (e) excitation to a dressed
state and decay form non-dressed state are shown in the left column.
On the right side (b,d,f) ATAS spectra calculated excluding the corre-

sponding term from the left side (a,c,e) are shown.
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Chapter 5

Numerical simulation of ATA signal
of dressed Xe atom

Some of the results presented in this chapter have been published in Ref. [69], of which I

am the first author, and has been included verbatim:

Kolbasova, Hartmann, Jin, Blättermann, Ott, Son, Pfeifer, Santra, Phys. Rev. A 103, 043102

(2021).

Copyright (2021) by the American Physical Society. Reproduced with permission of the

American Physical Society for the purpose of this thesis.

Here, I explore the possibility of the experimental observation of core-excited wave-packet

coherence by ATAS of Xenon. By using an attosecond XUV pulse a core-excited wave packet

is initiated. In order to probe the wave packet and monitor its evolution in time, a time-

delayed ultrashort laser pulse in the near-infrared (NIR) regime is employed and the result-

ing modification of the transmitted XUV spectrum is detected. The main goal of my study

is to explore XUV-NIR transient absorption spectra and to elucidate as to whether excited-

electron dynamics or inner-shell hole dynamics are encoded in the time-resolved spectra. In

the previous Chapter 4 I provided an elementary explanation of the signals one can obtain

in ATAS experiments based on a perturbative treatment for both pump and probe pulses.

In the current work, I apply a non-perturbative treatment for the probe pulse to accommo-

date a wide range of experimentally accessible pulse properties. In the end of this chapter

I provide a comparison of our theoretical predictions with the experiment carried out by T.

Pfeifer’s group.

In order to make a careful comparison with experiment it is crucial to use the exact shape

of the pulse in simulation. The analytical treatment I present in a previous chapter is not

possible for any shape of the laser pulse. Thus in this chapter I investigate the possibility
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FIGURE 5.1: Energy-loss spectrum of xenon, obtained at an incident
electron energy of 1.5 keV and with an energy resolution of 70 meV.
The broken lines indicate the probable positions of weak transi-
tions. Figure is taken from [87] (DOI: 10.1088/0022-3700/10/12/026).
© IOP Publishing. Reproduced with permission. All rights reserved.

of the experimental observation of core-excited wave-packet coherence by ATAS by numer-
ical simulations for the Xe atom. Particularly, I am interested in two scenarios: when the

initial wave-packet dynamics is induced by XUV only - similarly to the situation discussed

in a previous chapter; and when the initial wave-packet dynamics is induced by XUV in

the presence of an additional optical dressing field. In the considered setup a broadband

XUV pulse with a central frequency ωxuv ≈ 65 eV resonantly excites an electron from the

4d shell populating Rydberg states. Energies of the excited states of Xe were experimentally

investigated by G.C. King et al. using electron impact with high resolution. The energy-loss

spectrum of xenon, obtained at an incident electron energy of 1.5 keV is presented in Fig-

ure 5.1, which is taken from Ref. [87]. In this spectrum one can see the peaks corresponding

to bright states (4d−1np1), which could be excited from the Xe ground state by absorption

of one XUV photon, and two dark states 4d−15d1 and 4d−16d1. Other states, such as ns or

nf , were too difficult to detect in their experiment.

We perform simulations of the XUV-NIR transient absorption spectra for Xe atom, excited

by XUV in the absence and presence of an additional dressing field using the XCID code

[80]. We use the calculated dipole moment D(1)(t) to find |σ̃(1)(ω, ω′)| employing Eqs. (3.21)

and (3.53). The result of Fourier transformed ATA signal is presented in Figure 5.2. In

accordance with the theoretical predictions from the previous chapters, Figure 5.2 (a) illus-

trates the oscillations ω′ = 2ωIR for all absorption peaks. The presence of the dressing pulse

provides an additional oscillation energy ω′ = ωIR.

https://doi.org/10.1088%2F0022-3700%2F10%2F12%2F026
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FIGURE 5.2: Fourier transformed ATA signal of Xe atom induced by
a time-delayed NIR pulse and (a) XUV, or (b) XUV in the presence of
an additional NIR dressing field. |σ̃(1)(ω, ω′)| is calculated with XCID
code. XUV pulse parameters: ωxuv = 65.28 eV, duration 0.4 fs, strength
3.5 TW/cm2; NIR pulse parameters: ωIR = 1.66 eV, duration ≈ 5 fs,
strength 1.12 TW/cm2. Dressing field is a copy of an NIR pulse (≈ 5%
of its intensity), centered and propagated together with the XUV pulse.

Since relativistic effects in the Xe atom can play an important role in the processes under

investigation, some transitions that may be observed in a real experiment are not covered in

our XCID calculations. To be able to verify the significance of relativistic effects in Xe core-

hole dynamics I also perform numerical calculations using the Xe model, which is built

using relativistic configuration-interaction method. More specifically, relativistic effects are

taken into account using the Dirac-Coulomb Hamiltonian and the basis wave functions are

obtained from a local potential corresponding to an effective average configuration [88, 89].

Since the angular quantum number j of the electronic hole is not expected to be conserved

in fully relativistic atomic-structure theory, the actual eigenstates, which could be probed in

ATAS experiment cannot be expected to have well-defined j. Indeed, the calculations with

the relativistic multiconfiguration Dirac-Hartree-Fock method show that some states of Xe

are a mixture of configurations with different angular momentum j of the hole. Taking into

account such states allows to capture in our numerical calculations the transitions that can

not be reproduced by TDCIS.

5.1 Calculation of atomic parameters for Xe

To build a reliable atomic model it is crucial to use realistic parameters for the states in-

volved. Even though there are lots of experimental data available regarding electromagnetic

transitions in various atomic species, these data are not sufficiently complete. Therefore, the

first-principles atomic-structure software is employed to calculate the missing information.
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In the simulations presented in this chapter, I use the atomic structure and transition dipole

matrix elements calculated by R. Jin with the Flexible Atomic Code (FAC) [90]. A set of or-

bitals is constructed based on the Dirac-Fock-Slater effective local potential for the ground

configuration of neutral Xe. A diagonalization of the Hamiltonian matrices for core-excited

states is performed which are constructed from initial and final nonrelativistic electron con-

figurations.

Further, I employ transition energies from experimental data [87, 91], whenever available,

and complement them with energies from the FAC calculations. Only few Xe 4d-excited

dark states have been so far observed experimentally. For those known levels, our FAC

calculations differ almost uniformly from experimental values by ∼ 1.7 eV. Accordingly, I

correct all calculated energies using this shift.

In the Xe model employed I distinguish between bright (dipole-allowed) and dark (dipole-

forbidden) states. I include the states with principal quantum number n ≤ 8 for the bright

and n ≤ 20 for the dark states and confirm that our results are converged with this choice.

Parameters of the states are listed in Table in Appendix A. Assuming the lifetime of all

excited states to be defined by the Auger decay of a 4d hole, I replace the energy eigenval-

ues Ẽk in Eq. (3.19) with Ẽk − iΓ/2. Here, Γ = 0.111 eV is the decay width of a 4d hole,

corresponding to a lifetime of ∼ 6 fs [92]. Thus, the state vector |Ψ̃, t〉 that underlies the

autocorrelation function C(t, t0) [see Eq. (3.20)] undergoes exponential decay.

As a consequence of its large spectral bandwidth, the attosecond XUV pump pulse can

excite the Xe atom from its ground state JP = 0+ to any of the bright states JP = 1−,

creating a wave packet with a high degree of coherence. We assume the probe laser field

not to be strong enough to affect the Xe ground state. However, it can couple a bright state

1− to a dark state J+, by exchanging one NIR photon with the atom, or it can couple to

another bright state 1− by exchanging two NIR photons. Since the ground state 0+ and the

dark states J+ have the same parity, the latter cannot be excited via one-photon absorption

from the ground state (i.e., the corresponding transition dipole moments are zero); but in

the presence of the dressing laser field, they can give rise to accessible light-induced states

(LIS) [83, 84, 85]. The LIS in the absorption spectrum are then interpreted, in the frequency

domain, as the intermediate states of processes that involve the absorption or emission of

an additional dressing NIR photon.

In Figure 5.3, the computed XUV cross section of Xe without any additional electromagnetic

field (red curve) and dressed by a field with a photon energy of ∼ 0.7 eV and a peak inten-

sity of ∼ 5× 1010 W/cm2 (green curve) are presented. In the absence of a dressing field, the

attosecond XUV pulse coherently populates the Xe bright states 4d9np1 (n ≥ 6). When the
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FIGURE 5.3: XUV cross section of Xe (upper panel) in the absence (red)
and presence (green) of a dressing field ωIR = 0.7 eV, and energy levels
of Xe (lower panel) with one excited 4d electron (red: bright states,
green: dark states). Arrows designate which dark states correspond to

the most important LIS. Adapted from Ref. [69] ©2021 APS .

atom gets dressed by the laser field, transitions to LIS become available. Dipole-allowed

LIS can be observed as additional absorption lines. When the bright and dark states are not

one-NIR-photon resonant with each other, the LIS energy is one NIR photon away from the

dark state. However, when they are in resonance, the result is a so-called Autler-Townes

doublet, where the energy is determined by light-induced Rabi splitting [74]. Similarly, in

the nonresonant case, there are, in general, AC Stark shifts. In the lower panel of Figure 5.3,

the dotted arrows show the parent dark state for the most important LIS. Accessibility of LIS

and their corresponding particle-hole wave-packet dynamics depends on the phase prop-

erties of the NIR laser field, which provides rich manifolds of dynamics to be explored with

time-delayed ATAS.

5.2 Wave-packet dynamics induced by XUV only

From the dependence of the XUV transient-absorption cross section σ(ω, τ) on the time

delay τ between the attosecond XUV and the NIR laser field, one can study the dynamics of

inner-shell-excited particle-hole wave packets induced by the XUV pulse (superpositions

of odd-parity states only). In the following, I take the Fourier transform of σ(ω, τ) with

respect to τ . Figure 5.4 shows 2D maps of the square root of the resulting XUV one-photon

cross section
√
|σ̃(ω, ω′)| for photon energies ω that cover the main 4d-excited states. The

square root allows us to make more features visible on the figures presented below. Here
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FIGURE 5.4: Square root of the Fourier transform amplitude of the
XUV cross section σ(ω, τ) of Xe (

√
|σ̃(ω, ω′)|). In (a)-(c) the photon en-

ergy of the probe field is ωIR = 0.7 eV and in (d)-(f) ωIR = 1.7 eV. The
duration of the probe field is one period of the field, T , in (a) and (d),
two periods 2T in (b) and (e), and 6T in (c) and (f). Adapted from Ref.

[68] ©2021 APS.

and below ω′ is the Fourier energy associated with τ .

As a probe field, I use a Gaussian-shaped NIR field

εd(t) = AIR Re

[
e
− 4 ln(2)

χ2
IR

(t−t0)2

eiωIRt
]
, (5.1)

with an amplitude of AIR = 0.0012 a.u. The central frequency ωIR is chosen as 0.7 eV for
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(a)-(c) and 1.7 eV for (d)-(f), and the pulse duration χIR is one optical cycle T = 2π/ωIR for

(a,d), two times T for (b,e), and six times T for (c,f), where T = 2.4 fs for ωIR = 1.7 eV and

T = 6.0 fs for ωIR = 0.7 eV.

The dynamics of inner-shell-excited particle-hole wave packets induced by the XUV pulse

lead to oscillations of the atomic cross section as a function of the time delay. Fourier en-

ergies ω′ of these oscillations corresponds to the energy differences among the interfer-

ing states of the wave packet. This interference appears as “diagonal” features from one

odd-parity state to another on the 2D map
√
|σ̃(ω, ω′)| in Figs. 5.4 (a,d). The peaks around

ω′ ≈ 1.3 eV correspond to the interference of bright states with the same angular momentum

j of the 4d hole but different principal quantum number of the Rydberg p electron (n = 6

and n = 7), i.e., the difference between 4d−1
5/26p1 and 4d−1

5/27p1 (66.375 − 65.110 = 1.265 eV)

and between 4d−1
3/26p1 and 4d−1

3/27p1 (68.345 − 67.039 = 1.306 eV). On the other hand, the

peaks around ω′ ≈ 2 eV result from the interference of bright states with different angular

momentum j of the 4d hole but the same n of the excited p electron (for example, 1.929 eV

for n = 6 and 1.970 eV for n = 7). The latter peaks are strongly suppressed relative to the

former peaks due to weak coupling between states with different angular momentum j of

the 4d hole. Due to dipole selection rules, transition from one odd-parity state to another

requires an even number of photons. Therefore, the resonances ω′ ≈ 1.3 eV and ω′ ≈ 2 eV

are more pronounced in Figure 5.4 (a), where the photon energy is ωIR = 0.7 eV, than in

Figure 5.4 (d) (ωIR = 1.7 eV), as 2ωIR is closer to those resonances.

The strong peaks around ω′ ≈ 3.4 eV in Figs. 5.4 (d-f) rather appear as a “horizontal” fea-

ture. Although one can see in Figure 5.4 (d) the “diagonals” between the states 4d−1
5/26p1

(ω = 65.110 eV) and 4d−1
3/27p1 (ω = 68.345 eV), for the state 4d−1

3/26p1 (ω = 67.039 eV) there is

no such diagonal, because there is no coupled bright state at 2ωIR away (i.e., neither at 64 eV

nor at 70 eV is there a coupling partner included in the simulation). However, its cross sec-

tion also reveals fairly strong ω′ ≈ 3.4 eV oscillations with the time delay. The reason is the

following. When the duration of the probe pulse becomes longer than the lifetime of the 4d-

excited state, the observation of the inner-shell-excited particle-hole wave packet dynamics

induced by the XUV becomes more difficult. The laser field creates active valence-electron

dynamics throughout its duration, which strongly affects the atomic cross section for all

absorption peaks. Accessibility of those states directly depends on the laser field potential,

which leads to the “horizontal” features on the 2D map of
√
|σ̃(ω, ω′)| in Figs. 5.4 (c,f). The

dominant frequency of the cross section oscillations as a function of the time delay between

the XUV and NIR pulses becomes ω′ = 2nωIR (n = 1, 2, ...). Thus, the horizontal features

are around ω′ ≈ 1.4 eV in Figure 5.4 (c) and ω′ ≈ 3.4 eV in Figure 5.4 (f). This tendency al-

ready appears for the pulse duration of 2T in Figure 5.4 (b,e). These horizontal 2ω structures
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FIGURE 5.5: Fourier-transformed XUV cross section |σ̃(ω, ω′)| for the
4d−1

5/26p1 state of Xe at ω = 65.1 eV. The duration of the laser pulse is
4T and the photon energy ωIR is 0.9 eV (upper panel) and 0.7 eV (lower
panel). Red vertical lines are used to mark bright-state–bright-state
resonances and black dashed lines for LIS–bright-state resonances.

Adapted from Ref. [68] ©2021 APS.

become broader with shorter pulses due to the larger Fourier bandwidth.

In Figure 5.5, the Fourier spectrum of the main absorption peak 4d−1
5/26p1 (ω ≈ 65.1 eV) is

presented for a probe-pulse duration of 4T . The upper panel corresponds to ωIR = 0.9 eV

and the lower one to ωIR = 0.7 eV. These energies ωIR of the laser field were chosen in

order to create more interesting wave packet dynamics and to be able to observe more

resonances ω′ ≈ 2nωIR (n = 1, 2, ...). Different colors are used for three different cases:

(i) coherent excitation; (ii) “incoherent” excitation, where only the 4d−1
5/26p1 state is allowed

to be excited by the XUV field; and (iii) only 4d−1
5/26p1 is allowed to be excited by the XUV

and no interactions are allowed between the bright states through the dark states. Rela-

tively short probe-pulse durations provide an energy spectrum that is sufficiently broad to

observe inner-shell-excited wave packet dynamics induced by the XUV. The red vertical

lines mark the bright–bright resonance positions for the 4d−1
5/26p1 state. The black dotted

lines represent the bright-state–LIS transitions. Although the bright–LIS interference peak

at ω′ = 2ωIR is dominant for both values of ωIR, the bright–bright interference peaks at
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ω′ = 2 eV (upper panel) and ω′ = 1.3 eV (lower panel) can still be seen under coherent

excitation. For incoherent excitation, those bright–bright interference peaks are absent.

The main challenge with detecting the inner-shell hole dynamics is that their impact on the

NIR-modulated XUV cross section is much weaker than the impact of the Rydberg-electron

dynamics induced by the probe field. By reducing the duration of the NIR laser field one

can decrease the effect of the latter dynamics, but it will also increase the width of the

interference peaks in the Fourier spectrum. In order to observe inner-shell hole dynamics,

the optimal laser pulse duration is comparable with the lifetime of the excited state (χIR ≈
1/Γ). Also the NIR photon energy needs to be close to the resonance ωIR = |E−1 − E

−
2 |/2,

where E−1 and E−2 are the energies of two bright states with different inner-shell holes (but

the same state for the Rydberg electron). Another important requirement for observing

inner-shell hole dynamics is sufficiently large dipole moments between the E−1 / E−2 states

and a dark state E+
i that can couple them.

5.3 Wave-packet dynamics induced by XUV in the

presence of a dressing field

In this section, I study the situation when the XUV pulse overlaps with a dressing NIR

field that is a weak copy of the probe NIR field (i.e., the dressing field is to be carefully

distinguished from the probe field). Being in temporal overlap with the XUV pulse, the NIR

dressing field enables us to investigate the coherent coupling and wave-packet dynamics

between both odd-parity and even-parity inner-shell excited states [93, 65]. The intensity

of such dressing NIR field usually reaches 1-5% of the delayed probe NIR field, which is

sufficient to induce significant couplings, as demonstrated in the following.

In Figure 5.6 I investigate the dependence of the absorption peak oscillations on the strength

of the probe AIR and dressing Ad pulses. Here ωIR = 1 eV is used. Oscillation at ω′ = 2ωIR

reveals the processes that involve the absorption of two laser photons, such as interference

between two one-time dressed states, or between the original state and the double-dressed

state. The cross section of these two-photon processes is proportional to the product of

the strength of the fields, which causes the dressing. For the process where the dressing

is caused by the probe field only, the cross section is σ̃(ω, ω′ = 2ωIR) ∝ A2
IR, and for the

process involving both probe and dressing fields, it gives σ̃(ω, ω′ = 2ωIR) ∝ AIRAd. Os-

cillations at ω′ = ωIR appear only in the presence of the dressing field, because it creates

coherence between odd-parity and even-parity atomic eigenstates. They reflect processes in

which three laser photons are involved, one of them being a dressing-field photon. Thus, to
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FIGURE 5.6: Fourier-transformed XUV cross section |σ̃(ω, ω′)| of Xe at
ω = 65.1 eV in the presence of a dressing field for different strengths of

the probe (AIR) and dressing (Ad) fields (ωIR = 1 eV).

leading order in Ad, σ̃(ω, ω′ = ωIR) is proportional to AdA2
IR. These scalings are confirmed

by Figure 5.6.

Figure 5.7 shows the square root of the Fourier-transformed ATAS of Xe for a dressing field

with an amplitude ofAd = 0.2AIR. Note that 20% of the amplitude corresponds to 4% of the

intensity. For the short pulses in Figs. 5.7 (a,d) the “diagonal” features, corresponding to the

dynamics inside the wave packet, are created by the XUV pulse in presence of the dressing

NIR field. Originally the present dressing field provides a coupling with one photon ωIR

between the bright and dark states, such as bright state 4d−1
3/26p1 (4d−1

5/26p1) and dark state

4d−1
3/26s1 (4d−1

5/26s1). Although the intensity of the dressing field is weak, it leads to a very

strong coupling in the case of ωIR = 1.7 eV. For example, the diagonal features around

1.3 eV in Figure 5.7 (d) are more prominent than those in Figure 5.4 (d). For the long pulses

in Figs. 5.7 (c,f), the “horizontal” features emerge around 1.4 eV and 2.1 eV in (c), and 1.7

and 3.4 eV in (f), respectively, which correspond to ω′ = nωIR (n = 1, 2, 3, ...).

To analyze these oscillations in more detail I present in Figure 5.8 the Fourier-transformed

ATAS at the main absorption peak 4d−1
5/26p1 in the presence of the dressing field. The photon

energy ωIR and pulse duration are the same as used in Figure 5.5. In contrast to Figure 5.5,

the resonances between bright states and dark states are visible (black solid lines), which

are caused by the coherence between odd-parity and even-parity atomic eigenstates. The

strongest oscillations have Fourier energies ω′ = nωIR (n = 1, 2, 3...) for both photon en-

ergies shown. The strength of these oscillations depends on whether harmonics of ωIR are

energetically close enough to drive an interference between two excitation paths, as well as
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FIGURE 5.7: Square root of the Fourier transform amplitude of the
XUV cross section of Xe (

√
|σ̃(ω, ω′)|) in the presence of a dressing field.

In (a)-(c) the photon energy of the probe field is ωIR = 0.7 eV and in
(d)-(f) ωIR = 1.7 eV. The duration of the probe field is one period of the
field, T , in (a) and (d), two periods 2T in (b) and (e), and 6T in (c) and

(f). Adapted from Ref. [68] ©2021 APS.

on the strength of the dipole moments of the states involved in the interaction.
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FIGURE 5.8: Fourier-transformed XUV cross section in the presence
of a dressing field with amplitude Ad = 0.2AIR for the 4d−1

5/26p1 state
with ω = 65.1 eV fixed. The duration of the laser pulses is 4T and the
photon energy ωIR is 0.9 eV (upper panel) and 0.7 eV (lower panel).
Red solid lines mark bright–bright resonances, black solid lines mark
bright–dark resonances, and black dashed lines indicate LIS–bright

resonances. Adapted from Ref. [68] ©2021 APS.

5.4 Comparison with experiment

In the experiment, a helium-filled, differentially-pumped hollow-core fiber (Femtolasers

Kaleidoscope) and chirped mirrors (PC70, Ultrafast Innovations) were used to generate al-

most octave-spanning NIR pulses at a central photon energy of ωIR = 1.6 eV and 1-mJ pulse

energy from a commercial Ti:sapphire laser system (Femtolasers HE/HR). The pulses are

characterized using the DScan technique [94, 95], which reveals a pulse-intensity duration

of 4.3 fs. The coherent XUV light is produced from HHG in neon driven by the NIR pulses

and has a continuous spectrum over the range of 40-70 eV photon energy. The NIR and

XUV pulses co-propagate, and an aperture controls the NIR power without affecting the

central XUV beam. Using a piezo-driven split-mirror, which is combined with a spatial fil-

ter unit, a time delay of sub-30 attosecond stability was introduced between the NIR and

XUV pulses. Afterwards, both beams are reflected off a toroidal mirror, which refocuses
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the beams into the target gas cell, after which an XUV spectrometer is used to measure the

spectrum of the transmitted XUV light with 45 meV resolution [96]. The thin-foil aluminum

filters used in the spatial filter unit to block the NIR light are known to contain micro-holes

that allow a small fraction of the NIR pulse to pass. This leakage is temporally locked to the

XUV radiation and constitutes a weak replica of the main NIR pulse with typically a few

percent of its power, realizing the dressing-pulse geometry as described in Section 5.3.

When the XUV pulse interacts with the xenon atom at photon energies above 65 eV, elec-

tronic transitions from the 4d core shell to unoccupied np levels (n ≥ 6) are triggered (note

that transitions to nf levels are suppressed in Xe [97]). For each principal quantum number

n, a fine-structure doublet of absorption lines is created due to spin-orbit interaction [98] of

the hole. Here, the focus was on the absorption lines at 65.11 eV and 67.04 eV for the case of

n = 6, because these are the strongest transitions of the series. These core-excited states de-

cay rapidly via the Auger process leading to lifetimes of less than 6.5 fs, which corresponds

to natural line widths of approximately 0.1 eV, respectively, with the natural line shape, to

a good approximation, being described by a Lorentzian profile [98, 92]. Compared to the

1.31 eV splitting of the Xe+ 5p hole states that have also been encountered in previous ex-

periments [26, 99, 100], the spin-orbit splitting of these core-excited states is substantially

stronger and amounts to 1.93 eV (for n→∞, the energy splitting converges to 1.97 eV [98]).

Note that the above absorption lines correspond to the energies used in our calculation as

listed in Table A.1 (4d−1
5/26p1 and 4d−1

3/26p1).

Figure 5.9 presents a comparison of the experimental and simulated Fourier-transformed

XUV cross sections as a function of ω and ω′. In simulation 1 (Fig. 5.9), the laser pulse

ε(t) measured experimentally in front of the HHG gas cell was employed. Although the

simulated spectrum reproduces most of the features of the experimental spectrum, some of

them are missing. The second stronger oscillation of the main peaks of the experimental

spectrum has a Fourier energy ω′ = 2 eV. It is absent in the simulated spectrum 1. It can be

seen more clearly in the Fig. 5.10, where a slice of the XUV cross section at ω = 65.1 eV in

the ω′ and τ domains is presented. In simulation 2 (Fig. 5.9)a modified pulse with a much

stronger 2-eV energy component is used. It allows to achieve a better agreement with the

experimentally observed spectra.

A comparison of the pulse shapes (Fig. 5.11) and a description of how to construct the pulse

shape is presented at the end of this section. The intensity of the probe field defines the

depth of the cross section σ(ω, τ) attenuation (in the lower panel of Figure 5.10), and the

intensities of the probe and dressing fields together determine the strength of oscillations

with the time delay τ . Guided by this correlation, the strength of the probe field was chosen
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FIGURE 5.9: Square root of experimental and simulated XUV spectra
|σ̃(ω, ω′)|. In simulation 1, the nominal pulse shape from experiment is
used. In simulation 2, a modified pulse shape is used as described in

the text.

as AIR = 0.0009 a.u. and 0.0012 a.u. for simulations 1 and 2, respectively. The intensity of

the dressing pulse is 5% of the intensity of the probe laser field in both cases.

The diagonal streaks in the experimental panel are reproduced in both simulation panels.
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FIGURE 5.10: Experimental and simulated XUV cross sections at ω =
65.1 eV in the Fourier energy and time delay domains. Adapted from

Ref. [68] ©2021 APS.

All three panels in Figure 5.9 show pronounced 4d−1
5/26p1 (ω = 65.110 eV) and 4d−1

3/26p1 (ω =

67.039 eV) peaks at ω′ ≈ 1.4 eV. The associated time-domain dynamics are a consequence of

dressing-field-mediated coupling between the 6p and 6s Rydberg-electron states. Without

the dressing field, the 1.4 eV beating disappears.

Looking at the τ dependence of the XUV cross section in Figure 5.10, one can see that the

discrepancy between simulation 1 and experiment appears near τ = 0 and at negative

delay, i.e., when the XUV pulse overlaps with or comes after the NIR pulse. When the XUV

pulse comes first (τ > 0), both simulations are in good agreement with experiment. The

discrepancies at negative τ might be an indication that the NIR field interacting with the

Xe atoms differs from the NIR field characterized in front of the HHG gas cell. This could

be caused by laser field interaction with the optics or plasma in the HHG gas cell. Field

Ionizing Media (FIM) are known to be able to add a chirp to the trailing part of a laser pulse

[101]. Owing to the phase modulation induced by plasmas in FIM, the laser frequency

increases with time (positive chirp) at the leading edge, and then decreases (negative chirp)

back to the original frequency in the remaining part of the pulse [102]. Guided by this,

the chirp effect was applied to the experimentally measured spectral amplitude A(ω) and
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FIGURE 5.11: Pulses used in simulations 1 and 2, in the Fourier energy
and time domains. Adapted from Ref. [68] ©2021 APS.

spectral phase φ(ω),

ε±ch(ω) = A(ω)e−iφ(ω) exp{±iaω2}. (5.2)

Then, I add together their inverse Fourier transforms ε±ch(t), applying the switching function

f(t) = 1
2

{
1 + 2

π arctan
(
t−b
c

)}
,

Ech(t) = f(t)ε−ch(t) + {1− f(t)} ε+
ch(t). (5.3)

Here a, b, and c are free parameters. The magnitude of the FIM-induced chirp depends on

the properties of the HHG gas cell, including the percentage of ionization of the HHG target

gas. If this phenomenon leads to an enhancement of the pulse spectrum in the vicinity of

2 eV, laser-mediated coupling to 4d−1ns1 (n > 10) and 4d−1nd1 (n ≥ 8) Rydberg states will

be activated. In the simulation 2 parameters a = 15 fs2, b = 0 fs, and c = 0.8 fs are employed.

This choice gives improved agreement with the experimental results and is consistent with

Refs. [103, 104], where a dynamic blue shift from a carrier wavelength of 750 nm (1.65 eV)

to some 550 nm (2.25 eV) was observed in HHG in Ne. Even though our guess regarding

the pulse-phase modifications in the HHG gas cell does not provide perfect agreement with

experiment for the XUV cross section in the negative delay domain (τ < 0), it reproduces

the main features of the XUV cross section and gives fairly good agreement in the Fourier
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energy domain (Figures 5.9 and 5.10). This makes it plausible that the FIM-induced chirp

effect may have affected the experimental data.

5.5 Conclusion

I demonstrated that various aspects of coherent electron dynamics can be revealed when

wave packets prepared by an attosecond pump pulse are probed using an NIR pulse. It

is shown that inner-shell hole dynamics are much more difficult to detect than Rydberg-

electron dynamics, because the dynamics of the inner-shell hole are defined mostly by the

degree of coherence of the wave packet initially created by the XUV pulse, whereas Ryd-

berg electrons get strongly dressed by the NIR pulse, thereby producing strong quantum

coherence effects that are reflected in the ATAS. Typically, the transition dipole moment be-

tween states with different angular momentum j of the hole is much weaker than for states

with the same j. This makes the evolution of wave-packet components with different hole j

mostly independent from each other and, thus, not so sensitive to the presence of the probe

field. For this reason, the ATA Xe spectrum calculated using the XCID code (Figure 5.2)

shows the same interference pattern as the ATA spectrum calculated taking into account a

mixture of configurations with different aperture angular momenta j. The presented analy-

sis suggests that, in order to detect inner-shell hole dynamics using an NIR probe field, it is

necessary to minimize the effect of the laser field on the Rydberg levels, which can be done

by decreasing the field exposure time and by using fields that are far off resonance.

I show that the presence of a dressing field or a slight modification of the spectrum of the

probe pulse can dramatically change the simulated ATAS results. Thus, our work also sug-

gests that a precise NIR pulse characterization in the target region behind the HHG gas cell

is necessary for a qualitatively and quantitatively accurate interpretation of experimental

ATAS data, due to the high sensitivity of Rydberg electrons to the NIR electric fields.
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Part II

Pulse characterization using machine
learning approach
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Chapter 6

Multiphoton autocorrelation in Ar

In this chapter we explore the multiphoton autocorrelation in Ar atom in order to be able

to use it for the characterization of laser pulse. We use the XCID code for numerical sim-

ulations of Ar ionization by the autocorrelated laser field, i.e., two identical time-delayed

copies of the same pulse. The ionization probability depends on the parameters of the ion-

izing laser field, such as photon energy, pulse intensity and duration. These parameters

are known for each time delay for the autocorrelated laser field. I investigate a simple ap-

proximation function, which provides a flexibility in time-delay resolution of ionization

probability functions. The results of this chapter are later used in Chapter 7 to develop a

machine-learning-based technique for laser pulse characterizations.

6.1 Experimental setup

In my simulations I consider the laser field autocorrelation obtained by splitting the initial

laser pulse E0(t) in two identical copies and further recombination after inserting a certain

time-delay τ . In Fig. 6.1 a scheme of the simplest experimental setup for this purpose

is presented. The initial beam E0(t) is characterized by frequency-resolved optical gating

method (FROG) after being processed and focused. This beam is split by the beamsplitter

(BS1) into two beams E1(t) and E2(t). One of them gets delayed by the system of mounting

mirrors E2(t)⇒ E2(t+ τ). For the recombination after the delay stage a beamsplitter (BS2)

is used, instead of a drilled mirror, because it allows to provide the same intensity for each

arm on a target. If the beamsplitters BS1 and BS2 have the same thickness, they have exactly

the same properties and cause the same dispersion changes in the two arms. This way both

arms provide almost identical pulses. However the phase of each pulse changes randomly

via different number of bounces of mirror and it’s not the same in the two arms. After
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FIGURE 6.1: Experimental setup. BS1 and BS2 are the beamsplitters,
FROG is a Frequency-resolved optical gating device.

recombination we obtain the new pulse

Esum(t, τ) = E1(t) + E2(t+ τ). (6.1)

While traveling through the mirrors and lenses, which are required for the pulse focusing,

the pulse can get some unintended modifications. The most common among them is a

so-called chirp — a signal in which the frequency increases (up-chirp) or decreases (down-

chirp) with time. Chirp is usually expressed in the spectral domain through the range group

delay dispersion (GDD), and in this work one expects GDD = 0–20 fs2. For the broadband

pulses, such a range dramatically affects the pulse duration. For example, if we assume a

transform-limited (no chirp) duration of 5 fs, a chirp of GDD = 20 fs2 increases the pulse

duration up to 10 − 12 fs and the autocorrelation would be much longer. In Figure 6.2

one can see an illustration how the chirp characterized by GDD ≈ 20 fs2 changes a pulse

duration from initial χt = 200 a.u. (4.84 fs) to χt = 450 a.u. (10.89 fs) keeping the spectrum

unchanged at the same time. In this work, I assume the experimental setup to be perfect to

ensure both pulse and its replica to have the same chirp.

In this work I apply aforementioned approach to characterize a laser pulse with a central

photon energy ω ≈ 1.65 eV (central wavelength λ ≈ 750 nm). In the multiphoton ionization

regime, a pulse with an intensity I = E2
sum that satisfies the Keldysh parameter is consid-

ered. The duration of the pulse of the E0(t) is expected to be 5− 7 fs transform limited.
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FIGURE 6.2: Comparison of a chirped and not-chirped electric field of
a time duration χt = 4.84 fs and χt = 10.89 fs (a) in a time domain and

(b) frequency domain.

6.2 Theoretical background

Theoretical modeling of the atom interaction with a laser field requires the representation

of the field in a time domain. Here we derive an expression for a chirped Gaussian pulse in

the time domain. In frequency domain the chirp k is usually introduced in electric field as

E(ω) = exp

[
− 4 log(2)(ω − ω0)2

χ2
ω

+ ik(ω − ω0)2 + iϕ

]
= exp

[
− k0(ω − ω0)2 + iϕ

]
,

(6.2)

where ω0 is a central frequency of the field, χω is a FWHM of the field spectrum. By intro-

ducing parameter k0,

k0 =
4 log(2)

χ2
ω

− ik =
χ2
t

16 log(2)
− ik, (6.3)

one can see in Eq. 6.2, how the chirp k leads to an increased pulse duration.

Being a complex number, k0 can be expressed in an exponential representation as

k0 = |k0|eiα0 = |k0| cosα0 + i|k0| sinα0. (6.4)
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In such a way one can write an electric field in the time domain as

Ẽ(t) =
1

2π

∞∫
−∞

E(ω)e−iωtdω

=
1

2π

√
π

k0
e

(it)2

4k0 e−i(ω0t+iϕ0)

=
1

2
√
π|k0|

e
− t2

4|k0|
cosα0e

−i(ω0t−ϕ0+
α0
2
− t2

4|k0|
sinα0)

.

(6.5)

The real electric field in the time domain reads

E(t) =Re
[
Ẽ(t)

]
=

1

2
√
π|k0|

e
− t2

4|k0|
cosα0 cos

(
ω0t− ϕ0 +

α0

2
− t2

4|k0|
sinα0

)
=

1

2
√
π|k0|

e−at
2

cos
(
ω0t− ϕ− bt2

)
,

(6.6)

where a = cosα0
4|k0| and b = sinα0

4|k0| . The actual time duration X of the chirp-modified pulse, i.e.,

the FWHM of its envelope, can be found with the following formula:

X2 =
2 log(2)4|k0|2

Re[k0]
=
χ4
t + 82 log(2)2k2

χ2
t

; (6.7)

6.3 Numerical parameters of XCID

Using the TDCIS package of XCID code, we performed calculations on an argon (Ar) atom.

The electronic configuration for Ar is [Ne]3s23p6. In our calculations, we only allow the 3p

and 3s orbitals to be active, whereas all other orbitals are frozen (not affected by the laser

field). The laser field amplitude in our calculations is E0 = 0.015 a.u. and its frequency

ω = 0.061 a.u. Classically, an ionized electron that can recollide with its parent ion can

travel r ≈ E0/ω
2 = 4 a.u. before recollision. Therefore, to perform a precise and stable

calculation we chose the edge of the grid at rmax = 80 a.u. and a grid size of N = 300 grid

points. In numerical calculations when the wave packet reaches the end of the numerical

grid, artificial reflections arise, which lead to unphysical results. They can be suppressed by

applying a complex absorbing potential (CAP) [105, 106, 107, 108, 109, 110] near the end of
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the grid. Thus, the single-electron part of the Hamiltonian

Ĥ0 = F̂ − iζŴ , (6.8)

is the sum of the time-independent Fock operator F̂ and a complex absorbing potential CAP

W (r) = θ(r − rabs)(r − rabs)2, (6.9)

where θ(r) is the Heaviside step function, and r is the distance from the origin. This CAP is

zero until the absorption radius rabs, after which it is a quadratically growing potential. The

CAP strength ζ has to be chosen carefully to avoid reflections from the grid wall rmax or the

CAP [105, 110]. In our calculations ζ = 0.5. In order to eliminate any CAP-induced pertur-

bation of recolliding trajectories, we have put our absorbing potential at rabs = 50 a.u. The

maximum angular-momentum value allowed in our calculations for the dipole is lmax = 10

and the orbitals with Hartree-Fock energies higher than 20 a.u. (real part of the orbital en-

ergies) were determined to not contribute significantly and have been omitted from the

propagation calculations

6.4 Analysis of multiphoton autocorrelation of Ar

In this section, I analyze delay patterns of multiphoton autocorrelation of an Ar calculated

with TDCIS and explore the dependence of the ionization probability P (τ) on pulse param-

eters. Using the representation of the E(t) described above [Eq. (6.6)], I have added a new

option of the chirped pulse to the TDCIS code, and calculated the ionization probability of

Ar atom exposed to a pair of identical laser pulses E1(t) and E2(t + τ) delayed relative to

each other. Pulse E1(t) differs from E2(t) only through the phase value φ. The calculations

were performed using a large set of pulse parameters: the FWHM of the pulse intensity

was considered in the range 200 ≤ χt ≤ 550 a.u., the phase φ of each pulse replica can vary

from 0 to 2π, and the chirp k can take values in the range 0 ≤ k ≤ 15000 a.u. For each set of

parameters the calculations were done for 51 time-delay points τ .

For any set of pulse parameters and any time-delay point τ , the ionization probability P (τ)

depends on a phase difference ∆φ = φ1−φ2, but not on a specific combination of φ1 and φ2.

Besides, the ionization probability for the negative phase shift P (τ,−∆φ) is exactly the same

as the positive phase shift but inverted in time P (−τ,∆φ), which is illustrated in Figure 6.3

on the example of the relative phase shift ∆φ = π/4 and ∆φ = −π/4.

Moreover, in the setup considered in this work, the ionization probability does not depend
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FIGURE 6.3: Comparison of the time-delay pattern of the Ar ion yield
for the case of ∆φ = π/4 (blue curve) and ∆φ = −π/4 (red curve).

Both curves are exact copies of each other but inverted in time.

FIGURE 6.4: Comparison of the time-delay pattern of the Ar ion yield
for the case of the pulse FWHM χt = 450 a.u. and k = 0 a.u. (blue),
and a case χt = 200 a.u. and k = 15000 a.u. For both cases the actual
pulse duration is almost the same, but the spectrum width is different

(see Figure 6.3)

on the sign of a chirp, i.e. P (τ, k) = P (τ,−k). In Figure 6.4 we compare the dependence of

the ionization probability on the time delay for the pulse χt = 450 a.u. with k = 0 a.u. and

the pulse χt = 200 a.u. with k = 15000 a.u. (which are shown in Figure 6.2). Although these

pulses look quite dissimilar in both domains, the corresponding ionization probabilities are

very much alike. However, our technique is sensitive enough to distinguish between them.

The envelope of the P (τ) for the pulse χt = 450 a.u. has a smaller FWHM compared to the

pulse χt = 200 a.u. with k = 15000 a.u., because the latter provides a broader width of the

spectrum.

In such a way, for any set of pulse parameters χt, ∆φ, k, and for each time delay τ , the ion

yield is determined by

• the duration of the combined pulse Esum(t, τ) = E0(t) + E0(t+ τ);

• the interference spectrum of the combined pulse at the given τ ;

• the intensity of the combined pulse Isum = E2
sum;
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FIGURE 6.5: Dependence of the ion yield on the field intensity I shows
a range of intensities, which satisfy a power-law P (I) = CIn, where
C = 1.87351026 and n = 8.679. The illustration is given for overlapping
(τ = 0) pulses with no relative phase delay between them (∆φ = 0),

I = E2
0 and spectrum FWHM χt = 400 a.u.

The dependence of the ionization probability on the intensity of the pulse Isum = E2
sum is

not uniform for all the pulse parameters and has to be clarified for each specific combination

of χt and k. For a given delay τ = 0, I performed a number of TDCIS calculations for a range

of intensities and then fit a power law

P (I) = CIn, (6.10)

where C and n are parameters. In Figure 6.5 we illustrate that, for the range of the pulse

intensities 0.00018 < I < 0.00023 a.u. (field strength 0.0135 < E0 < 0.015 a.u.), the ion-

ization probability dependence on the field intensity P (I) fits the power law in Eq. (6.10)

with C = 1.87351026 and n = 8.679. The binding energy for the upper shell of Ar is

Eb ≈ 15.7–15.9 eV, thus ionization requires at least 9–10 of photons ω = 1.65 eV. How-

ever, as the short pulses provide a broad photon energy spectrum, the ionization may on

occasion require a smaller amount of photons, which will lead to n < 9 in a power law in

Eq. (6.10).

In general, for any given pulse E0(t), the ionization probability P (τ) depends on the lo-

cal intensity for the corresponding time delay. However, as demonstrated in Figure 6.6,

if I universally use the power law determined for the time delay τ = 0 for all other time

delays, the prediction error is relatively small. In Figure 6.6 (a) and (c) we present ioniza-

tion probability P (τ), calculated with the TDCIS code (data points are shown with circles)

for a different intensities of the pulse E0(t). From the known delay pattern P (τ) at a field

strength of E0 = 0.015 a.u., I retrieve the delay patterns for other intensities (predicted P (τ)

are shown with a solid lines in Figure 6.6 (a) and (c)), by using the power law determined
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FIGURE 6.6: Application of the power law Eq. (6.10) defined for the
τ = 0 time delay to other time delays is examined. The ionisa-
tion probability time-delay pattern for the pulse E0 = 0.015 a.u. is
extrapolated on the cases of lower field intensities, using the same
power-law for all time delays. In (a) and (c) the ionization probabil-
ity P (τ) calculated with TDCIS code (data points are shown with cir-
cles) is compared with a extrapolated curve, calculated using PE0(τ) =
PE0=0.015(τ)(E0/0.015)n for a range of field intensities I = E2

0 . Panels
(b) and (d) show the prediction error in percent units. Accuracy of a
power-law is illustrated by the example of pulse χt = 400 a.u., k = 0

with a phase shift ∆φ = 0 and ∆φ = 2π
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for the time delay τ = 0. In the Figure 6.6 (b) and (d) one can see the corresponding per-

centage prediction error for each time delay and each field strength. The prediction error

does not exceed 4%. In both Figures (a) and (c) we use the same power law, determined for

the time delay τ = 0 and ∆φ = 0, which shows that the same power-law can be used with

the same prediction accuracy for any value of ∆φ.

6.5 Approximation with a simple formula

In order to provide a choice of resolution in the time-delay patterns of the ionization prob-

ability P (τ) without running an additional TDCIS calculations, we introduce the approxi-

mation function:

P ′(τ) = P0

[
G(τ − t0) cos

[
ω′(τ − t0) +

φ′

2

]nG(τ−t0)m
]2

, (6.11)

where G(τ) = exp
[
−4 ln(2)τ2/σ2

]
is a Gaussian envelope with a full width at half maxi-

mum σ. The amplitude P0 of the function P ′(τ) and parameters σ, ω′, φ′, n and m are free

parameters, which have to be adjusted for the best fit of P ′(τ) with the known points of

P (τ). The envelope of P (τ) is centred at τ = t0, where the two laser fields have zero time

delay. The oscillation frequency ω′ is the same as the photon energy of the pulse ω.

The parameter φ′ let us capture the dependence of P (τ) on the phase shift ∆φ of the pulses

( φ′ ≈ ∆φ ). Comparison of the phase shift ∆φ and phase of a fitting function φ′ for the

100 arbitrary pulses is presented in Fig. 6.7. The fitting parameters for two cases, which

differ from each other only through the phase difference ∆φ, are the same. Thus, knowing

the ionization probability P (τ) for a certain ∆φ value, one can easily extrapolate it to other

values of ∆φ using Eq. (6.11).

To find the best fitting parameters, we use the lmfit package in Python. For any given pulse

duration χt and chirp k, the best fit accuracy comes for the case of ∆φ = 0, because P (τ)

for τ = 0 provides the best guess for P0 parameter. A good strategy turns out to be finding

the fitting parameters σ, t0, φ′, n and m for the case of ∆φ = 0 and using them as an initial

guess for fitting P (τ) for other pulses with the same duration χt and chirp k. In Figure 6.8

the fitted data for the pulses of χt = 200 a.u. but k = 0 and k = 15000 a.u. are presented

to demonstrate sufficiently small fitting errors (an average fitting error of less than 1% per

delay point) for sufficiently well-sampled maxima.

Taking into consideration the mapping between parameters of the laser pulse E0(t) and

parameters of the corresponding approximation function P ′(τ) we can use the latter in a
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FIGURE 6.7: Comparison of the phase shift ∆φ (black dots) and phase
of a fitting function φ′ (orange dots) for the 100 arbitrary pulses.

machine learning algorithm to retrieve the shape of the pulse. For the machine learning

algorithm it is better to switch from the standard pulse parameters such as duration χt and

chirp k to a set of new parameters presented in a table below:

Actual duration of a single pulse E0(t): X =
√

χ4
t+162 log(2)2k2

χ2
t

Spectral width of a single pulse E0(t): χω = 8 log(2)
χt

Strength of a single pulse E0(t): E0

Phase difference between E0(t) and E0(t+ τ): ∆φ
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∆φ = 0 ∆φ = 0

∆φ = π/2 ∆φ = π/2

∆φ = π ∆φ = π

FIGURE 6.8: Approximation of the calculated ion yield P (τ)
(green stars) with the fitting function P ′(τ) (red line) for the pulse
χt = 200 a.u. with the k = 0 (left panels) and k = 12000 a.u. (right

panels) and different phase shifts ∆φ.





89

Chapter 7

Machine learning

In this chapter I present a machine learning model to retrieve the best approximation func-

tion for the laser pulse. It takes into consideration the mapping between the autocorrelation

of the laser field and the corresponding ionization-probability time-delay pattern of Ar. This

method involves approximating the time-delay pattern by a few-parameter function. Feed-

ing these parameters to the machine learning model as a training set provides us with the

predicted pulse shape. Multiphoton autocorrelations in Ar are calculated with the TDCIS

code.

7.1 Linear regression

Regression analysis is a technique that finds the relationship between a dependent and an

independent variable (one or more than one). In order to understand in detail I start by

explaining the simplest of the regression models, i.e., linear regression. The linear regres-

sion algorithm is one of the fundamental supervised machine-learning algorithms due to

its relative simplicity and well-known properties. In linear regression the model assumes

the linear relationship between the dependent variable y and the set of independent vari-

ables X = (x1, ..., xn): y = β0 + β1x1 + ... + βnxn + ξ, where n is the number of predic-

tor, βi are the regression coefficients, and ξ is the random error. Linear regression calcu-

lates the predicted weights (b0, b1, ..., bn), which are used to define the regression function

f(X) = b0 + b1x1 + ...+ bnxn. f(X) captures the dependencies between the inputs and out-

puts. The prediction, f(Xi), for each observation i = 1, ..., N should be in a close proximity

to the actual response yi. Tracking the differences f(Xi) − yi will finally provide us with

the residuals, smaller the residual the better is the prediction. In order to achieve the best
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weights the sum of squared residuals for all observations should be minimum.

η =

N∑
i=1

(f(Xi)− yi)2. (7.1)

This approach is called the method of least squares. However, for our purposes, the as-

sumption of a linear relationship between input and output may be too rough of an ap-

proximation.

7.2 Ensemble Learning

Depending on the type of the dataset i.e., linear or non-linear one needs to choose a regres-

sion model. In this work, I use the so-called ensemble-learning method [111]. A model that

consists of more than one individual model is known as an ensemble model. It is a tech-

nique which calculates the predictions from various machine learning algorithms together

without any dependence on one another so as to predict results more accurately than any

single model. Noise, bias and variance are some of the important factors that cause er-

rors in learning models. Models based on the ensemble method reduce these factors and

provide stability and accuracy of predicted results. Ensemble learning algorithms can be

sub-divided as follows.

Boosting is an iterative, sequential technique which utilizes weighted averages to turn

weak learners into strong learners. The learner algorithms are always learning from the

data but are not always completely accurate. Sometimes they are weak and poor when it

comes to learning the relationships between inputs and target. Boosting adjusts the weight

of an observation based on the last regression. The first algorithm is trained on the en-

tire data set and the subsequent algorithms are built by fitting the residuals (differences

between observed and predicted values of data) of the first algorithm. One algorithm is

learning from other which in turn boosts the learning. Boosting in general decreases the

bias error. It has shown better predictive accuracy than bagging (described below) but it

also tends to overfit the training data. Therefore, parameter tuning becomes an important

part of boosting algorithms to make it avoid overfitting.

Bootstrapping (or Bagging) is a technique in which random samples are selected from the

overall dataset with replacement (subsets of training data set) for predicting results. It gives

a much better insight towards bias and variance within the dataset. Exposing different

subsets to each model is the key to use their collective output at the end. The combination
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of multiple models decreases variance and produces more reliable predictions than a single

model. Hence, the problem of overfitting is taken care of.

Stacking is a method based on the concept of meta learners where it combines models of

different types. It considers heterogeneous weak learners and operates them in parallel and

finally combines them using a meta-model to make predictions based on the different weak

model outputs. It consists of the following steps: i) splitting the training data set into two

disjoint sets, ii) training different base learners on one of the sets, iii) testing the trained base

learners on the second set and iv) using the predictions from the base learners as inputs and

considering the correct responses as the output, a higher level learner is trained.

7.3 Random forest regression

The traditional machine learning algorithms usually give low accuracy, and can easily un-

dergo overfitting. In this work, I use one of the random forest (RF) algorithms [111]. It does

not have this problem since it is a combination of machine learning algorithms like multiple

decision trees. It belongs to the category of bagging technique. The algorithm is combined

with a series of tree regressors, each tree cast a unit vote for the most popular regressor, then

combine these results and gives the final sort result. This scheme allows to improve the ac-

curacy and avoid overfitting. The RF algorithm is not biased, since, there are multiple trees

and each tree is trained on a subset of data. Basically, the algorithm relies on the power of

"the crowd", therefore the overall biasedness of the algorithm is reduced. The RF algorithm

is usually very stable, and even if a new data point is introduced to the dataset the overall

algorithm is not affected much since new data may impact one tree, but it is very hard for

it to impact all the trees.

The RF method consists of the following steps: pick a number N of random records from

the dataset, build a decision tree based on these N records, then choose the number of

trees one wants in the algorithm and repeat first two steps. For a new record, each tree

in the forest predicts a value for output. The final value can be calculated by taking the

average of all the values predicted by all the trees in forest. In RF, each decision tree in the

ensemble is constructed from a sample taken with replacement from the training set. The

best split of each decision node of a tree is found either from all input features or a random

subset with an adjusted size. Individual decision trees typically exhibit high variance and

tend to overfit, but these two sources of randomness serve to decrease the variance of the

forest estimator. The injected randomness in forests yields decision trees with somewhat

decoupled prediction errors. By taking an average of those predictions, the overall error is

getting smaller. RF achieves a reduced variance by combining diverse trees. The reduction
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of variance yields an overall better model. The scikit-learn implementation we use in our

work combines regressors by averaging their probabilistic prediction, instead of letting each

regressor vote for a single answer [112].

7.4 Pulse characterization

Here, I will explain the step-by-step evaluation of the best pulse parameters using machine

learning via the RF method. First, I provide the algorithm with a learning data set: for

the pulses with known spectrum width χω and real pulse duration X I provide with the

corresponding parameters t0, σ, φ′, n and m of the ionization-probability approximation

function P ′(τ) [Eq. (6.11)], as it is shown in a table below.

χω X t0 σ φ′ n m

0.021 390.632 4.518e-02 7.158 1.232e-01 4.995 0.275
0.020 367.897 2.363e-18 6.886 1.000e+00 7.291 0.011
0.019 282.843 -2.042e-17 5.224 9.999e-01 7.450 -0.008
0.019 483.472 1.535e-16 8.825 4.233e-10 7.111 0.046
0.019 548.992 2.643e-17 9.785 1.000e+00 7.123 0.116

. . . . . . . . . . . . . . . . . . . . .
0.009 637.559 -1.315e-02 10.437 7.327e-01 9.457 0.171
0.009 688.291 2.334e-02 11.195 2.672e-01 9.401 0.200
0.009 688.291 -2.334e-02 11.195 7.327e-01 9.401 0.200
0.009 574.116 3.764e-03 9.457 2.672e-01 9.568 0.136
0.009 574.116 -3.762e-03 9.457 7.327e-01 9.568 0.136

We let the algorithm find correlations between the features and the target (pulse parame-

ters) in the learning data. The correlation has been calculated using Pearson’s correlation

coefficient [113], which is based on the method of covariance. It measures the relation-

ship between two continuous variables. The strength of the relationship depends on the

value of the correlation coefficient and its value varies from -1 to +1. A correlation matrix

is presented in Figure 7.1 where each cell represents the correlation coefficients for differ-

ent variables. This matrix shows the correlation between all the possible pairs of values.

The correlation map shows a strong negative correlation between χω and coefficient n (cor-

relation coefficient is −0.91) and strong positive correlation between X and coefficient σ

(correlation coefficient is 0.99). High correlation between parameters X and χω of the laser

field with one of parameters of the approximation function P ′(τ) gives an opportunity to
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FIGURE 7.1: Correlation matrix.

reconstruct the shape of the laser pulse from the Ar gas ionization response. Instead, the

low-correlated features are filtered out by the algorithm and are not used for prediction.

To proceed, we use a RF algorithm to find the best prediction model. The search is ac-

companied by a grid-search cross-validation method to determine the optimal values to be

used for the hyperparameters of our model from a specified range of values. Grid-search

cross-validation is an exhaustive search over hyperparameters. There are many parameters

in the RF method that require attention to come up with optimised values of hyperparam-

eters i.e., n_estimators – number of trees in the forest, max_depth – maximum depth of the

tree, max_features – number of features (σ, n and m etc.) to be used, min_sample_split – mini-

mum number of samples required to split a node along with other parameters. Grid-search

cross-validation uses the list of parameters provided and performs an exhaustive search by

implementing a "fit" and a "score" method along with several other methods like predict,

predict_proba and decision_function. Finally, a grid is created and the parameters of the es-

timators used to apply these methods are optimized by cross-validation over a specified

parameter grid. Model validation techniques serve for assessing how the results of a sta-

tistical analysis will generalize to an independent data set. Learning the parameters of a

prediction function and testing it on the same data is a methodological mistake, as a model

that would just repeat the labels of the samples that it has just seen would have a perfect

score but would fail to predict anything useful on yet unseen data. This situation is called

overfitting. To avoid it, we hold out part of the available data as a test set, when performing
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(a)

(b)

FIGURE 7.2: Comparison of the actual parameters (a) duration X and
(b) spectrum width χω of the 100 pulses with the predicted values
found with a best prediction model by RF algorithm. Black line shows

the trend of a perfect prediction.

a (supervised) machine learning experiment.

In our case the best model from grid-search for prediction of pulse duration X has an accu-

racy of 98.86 % and for spectrum width of the pulse χω is 99.77 %. In Figs. 7.2 we present

an accuracy of the best prediction model for (a) the real pulse duration X and (b) the spec-

trum width χω. In Fig. 7.2 the actual values of the pulse parameters are given on x-axis and

the predicted values on y-axis. Orange points with the error bars provide the comparison

of a predicted and actual value of parameter (a) duration X , and (b) spectrum width χω.

Black line shows the trend of a perfect guess. The accuracy of prediction for the duration

X is rather good. Prediction for the spectrum width χω is more efficient for the pulses of a
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FIGURE 7.3: Comparison of the actual parameters (a) duration X , and
(b) spectrum width χω of the 100 pulses (black dots) with the predicted
values. Orange dots with errorbar represent the values found with
a best prediction model by RF algorithm. Green dots with errorbar

represent the values found with a linear regression algorithm.

(a)

(b)

narrow spectrum.

In order to demonstrate the validity of the analysis in terms of final predictions, we com-

pare the results of RF method with linear regression model. In Fig. 7.3 a comparison with

a linear regression algorithm prediction is presented. The actual values of the pulse pa-

rameters are shown with black color and the predicted with our RF algorithm values with

orange dots with error bars. Green dots correspond to a values predicted with a linear re-

gression algorithm. One can see that prediction with the RF algorithm works pretty good

for both duration and spectrum prediction, whereas the linear regression technique gives
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FIGURE 7.4: Comparison of the overall error in pulse reconstruction
using linear regression (green dots) and RF techniques (orange dots).

worse results in a spectrum FWHM prediction.

The overall error in the pulse reconstruction from the P (τ) function in our technique is

less than 4 %. In Figure 7.4 the overall error for the pulse prediction for a linear regression

technique is compared with the prediction error with RF algorithm. In Figure 7.5 we present

the comparison of the actual pulseE0(t) (shown in black) used in simulations with the pulse

shape predicted by RF method (orange line) and with linear regression model (green line).

It can be noted that Figure 7.5 consists only of those cases with the largest prediction error.

7.5 Conclusion

The machine learning method I presented in this chapter characterizes laser pulses with a

good accuracy. The approximation function P ′(τ) from Chapter 6 [Eq. (6.11)] that I use in

this method is very simple and does not capture all the features of the P (τ). Finding a better

approximation function will improve the accuracy of the pulse characterization. However,

even with a P ′(τ) from Eq. (6.11) the accuracy of a pulse characterization is already satis-

factory. Decision trees are computationally expensive to train and, they carry a big risk of

overfitting, and tend to find local optima because they cannot go back after they make a

split. To address these weaknesses, we turn to RF which illustrates the power of combining

many decision trees into one model. Exploiting a RF technique makes our method flexible

for more sophisticated approximation functions, which could have more fitting parameters

or/and which parameters could have strongly non-linear dependence on the actual pulse

parameters. It can be concluded from the above mentioned machine learning analysis that

the RF method can be applied to train and predict pulse shapes based on the pulse param-

eters.
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FIGURE 7.5: Comparison of the actual pulse E0 shape used in simula-
tions P (τ) with the pulse shape found by our method from the P (τ)
(orange line), and by linear regression technique (green line) is pre-

sented for the cases with the biggest prediction error.

time [a.u.]
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Chapter 8

Summary and outlook

Within my doctoral work, I performed a theoretical study of the processes driven in the

atomic systems under the influence of a time-delayed electromagnetic field. Depending

on the field parameters, different processes in the atom can be driven and thus various

phenomena can be studied. The XUV pulse provides access to processes involving the

inner shells of the atom. Conversely, an NIR field affects mostly the Rydberg electrons and

upper shells of the atom. Depending on the strength of the NIR field acting on the atom

either electronic excitation or ionization may be induced. In this work, we characterized

the inner-atomic dynamics, via excitation of the atom by a time-delayed attosecond XUV

and femtosecond optical field. In addition, we were able to characterize the laser field, and

retrieve its pulse parameters by calculating the autocorrelation function of the field during

multiphoton ionization processes of the atom.

I have derived an analytical theory of attosecond transient absorption spectroscopy for per-

turbatively dressed systems, which is applicable to the analysis of processes observed in

pump-probe experiments, provided both the pump and the probe fields are sufficiently

weak. The presented technique is suitable for more complicated systems as well. The time-

delayed dressing of the excited system provides a tool for the detection of the interference

processes inside of the system, as well as coupling between the system states. The analyti-

cal expressions derived allow for the study of different aspects of the dynamic inside of the

system separately from each other. Thus, the derived theoretical framework may provide

insight as to how particular laser-driven atomic phenomena reveal themselves experimen-

tally.

I proceeded by applying the aforementioned analytical theory to a model atom so as to ex-

plore the capabilities of ATAS. Having a freedom to choose the parameters of the system

allows us to highlight different features, which in principle can be observed using ATAS
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technique with weak XUV and NIR pulses. By exploring the dependence of the ATA spec-

trum on the parameters of the atom, it was shown how different excitation paths interfere

with each other, which caused oscillations in the XUV cross section of an XUV photon ab-

sorption with a time delay. It is illustrated that the time-delay cross-section oscillation is

sensitive to the magnitude and the relative phase (sign) of the dipole moment between the

states of the atom involved in a process. Also, the dependence of ATA spectrum on the pulse

parameters revealed that shorter pulses are more suitable for observations of inner-atomic

dynamics. By limiting the available excitation pathways and examining them separately, it

is shown how they participate in the general ATA spectrum. In such a way the destructive

and constructive interference of a process is illustrated.

Finally, I have applied the developed theory to a real atomic system. I have presented

a numerical simulation of an ATAS experiment on a Xe atom and compared our results

with the experiment. It is demonstrated that various aspects of coherent electron dynamics

can be revealed when wave packets prepared by an attosecond pump pulse are probed

using an NIR pulse. It was demonstrated that inner-shell hole dynamics are much more

difficult to detect than Rydberg-electron dynamics. The dynamics of the inner-shell hole

are defined mostly by the degree of coherence of the wave packet initially created by the

XUV pulse. Conversely, Rydberg electrons produce strong quantum-coherence effects due

to the dressing by the NIR pulse, which are reflected in the ATA spectrum. The transition

dipole moment between states with different angular momentum j of the (inner-shell) hole

is much weaker than for the states with the same j. Therefore, the evolution of wave-packet

components with a different j of the corresponding hole, are mostly independent from each

other, and thus not so sensitive to the presence of the probe field. Our analysis suggests

that, in order to detect inner-shell hole dynamics using an NIR probe field, it is necessary to

minimize the effect of the laser field on the Rydberg levels, which can be done by decreasing

the field exposure time and by using fields that are far off resonance.

Also in my work, it is shown that the presence of a dressing field or a slight modification

of the spectrum of the probe pulse can dramatically change the ATA spectrum. Thus, a pre-

cise NIR pulse characterization is necessary for a qualitatively and quantitatively accurate

interpretation of experimental ATAS data.

Thus, the second part of my work is devoted to precise pulse characterization. I present a

machine-learning method to characterize a laser pulse with a good accuracy. The method

is based on the analysis of a multiphoton autocorrelation in Ar. First, I calculated the mul-

tiphoton autocorrelation for a larger variety of data using the XCID code for multichannel
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ionization dynamics, which exploits TDCIS method for treating atomic processes. Study-

ing the obtained time-delay patterns, I found an approximation function of few parame-

ters, which allows for an arbitrary change in resolution of a calculated time-delay pattern

without the need for additional calculations with XCID (which can be extremely time con-

suming). Secondly, I have trained a machine-learning model to find correlations between

the parameters of the pulse and parameters of the approximation function for the corre-

sponding ionization-probability delay pattern. Thus, eventually a tool is obtained to re-

trieve pulse parameters from observed ionization probabilities. Our method is flexible to

deal with experimentally measured time-delay patterns with not-well-defined zero time de-

lay, or patterns measured with a different (even non-uniform) time-delay steps. Moreover,

our method can be applied for a characterization of the pulse of a different photon energy

as well. Though, approximation function that is used in our method is very simple to use

and highly time efficient, it however does not capture all the features of the ionization-

probability time-delay dependence. Finding a better approximation function will improve

the accuracy of the pulse characterization. However, even with the suggested approxima-

tion function from Eq. (6.11) the accuracy of pulse characterization is already satisfactory.
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Appendix A

TABLE A.1: Energies and transition dipole moments of the 4d-excited
states of Xe used in our ATAS calculations, significant for convergence.
The states listed below ground state (GS) are dark states, whereas the
states listed horizontally in the first row are JP = 1− bright states. The

values in parentheses are for np1/2; otherwise for np3/2.

state, JP 4d−1
5/2

6p1 4d−1
3/2

6p1 4d−1
5/2

7p1 4d−1
3/2

7p1 4d−1
5/2

8p1 4d−1
3/2

8p1

E, eV 65.110 67.039 66.375 68.345 67.150 69.150

GS 0 −0.182 −0.138 ( 0.052 ) −0.106 −0.015 ( –0.083 ) −0.072 −0.020 ( –0.054 )

4d−1
3/2

6s1
1/2

2+ 65.67 −0.039 −8.989 ( 3.521 ) 0.000 −0.032 ( –0.796 ) 0.000 −0.042 ( –0.302 )

4d−1
5/2

6s1
1/2

2+ 63.707 9.548 0.075 ( 0.092 ) 1.047 0.000 ( 0.000 ) 0.444 0.000 ( 0.000 )

4d−1
3/2

7s1
1/2

2+ 67.877 0.088 −8.029 ( 2.757 ) −0.038 −3.805 ( –19.266 ) 0.002 −0.466 ( –1.829 )

4d−1
5/2

7s1
1/2

2+ 65.830 9.200 −0.127 ( –0.066 ) 19.236 −0.069 ( 0.050 ) 2.324 −0.004 ( 0.000 )

4d−1
3/2

8s1
1/2

2+ 68.587 0.022 −1.810 ( 0.695 ) 0.061 −2.735 ( –17.592 ) −0.034 −11.786 ( –30.662 )

4d−1
5/2

8s1
1/2

2+ 66.538 1.948 −0.029 ( –0.013 ) 19.052 0.062 ( –0.078 ) 32.021 −0.045 ( 0.050 )

4d−1
3/2

9s1
1/2

2+ 68.907 0.012 −0.944 ( 0.369 ) 0.014 −0.703 ( –3.565 ) 0.046 −9.644 ( –28.448 )

4d−1
5/2

9s1
1/2

2+ 66.858 1.004 −0.016 ( –0.007 ) 3.561 0.011 ( –0.016 ) 31.964 0.037 ( –0.067 )

4d−1
3/2

10s1
1/2

2+ 69.078 0.008 −0.620 ( 0.244 ) 0.007 −0.367 ( –1.793 ) 0.010 −2.084 ( –5.374 )

4d−1
5/2

10s1
1/2

2+ 67.028 0.657 −0.010 ( –0.004 ) 1.765 0.006 ( –0.008 ) 5.581 0.006 ( –0.013 )

4d−1
3/2

11s1
1/2

2+ 69.179 0.006 −0.453 ( 0.179 ) 0.005 −0.240 ( –1.159 ) 0.005 −1.044 ( –2.631 )

4d−1
5/2

11s1
1/2

2+ 67.130 0.479 0.000 ( –0.003 ) 1.134 0.004 ( –0.006 ) 2.692 0.003 ( –0.006 )

4d−1
3/2

12s1
1/2

2+ 69.245 0.005 −0.353 ( 0.140 ) 0.004 −0.176 ( –0.841 ) 0.000 −0.671 ( –1.677 )

4d−1
5/2

12s1
1/2

2+ 67.195 0.373 0.000 ( 0.000 ) 0.821 0.003 ( –0.004 ) 1.706 0.002 ( –0.004 )

4d−1
3/2

13s1
1/2

2+ 69.289 0.004 −0.286 ( 0.113 ) 0.000 −0.137 ( –0.653 ) 0.000 −0.486 ( –1.209 )

4d−1
5/2

13s1
1/2

2+ 67.239 0.302 0.000 ( 0.000 ) 0.636 0.002 ( –0.003 ) 1.225 0.001 ( –0.003 )

4d−1
3/2

14s1
1/2

2+ 69.321 0.003 −0.239 ( 0.095 ) 0.000 −0.111 ( –0.529 ) 0.000 −0.376 ( –0.934 )

4d−1
5/2

14s1
1/2

2+ 67.271 0.252 0.000 ( 0.000 ) 0.515 0.002 ( –0.003 ) 0.945 0.001 ( –0.002 )

4d−1
3/2

15s1
1/2

2+ 69.345 0.003 −0.203 ( 0.081 ) 0.000 −0.093 ( –0.441 ) 0.000 −0.304 ( –0.755 )

4d−1
5/2

15s1
1/2

2+ 67.295 0.214 0.000 ( 0.000 ) 0.429 0.001 ( –0.002 ) 0.763 0.001 ( –0.002 )

4d−1
3/2

16s1
1/2

2+ 69.364 0.002 −0.176 ( 0.070 ) 0.000 −0.079 ( –0.377 ) 0.000 −0.254 ( –0.629 )

4d−1
5/2

16s1
1/2

2+ 67.314 0.186 0.000 ( 0.000 ) 0.366 0.001 ( –0.002 ) 0.636 0.001 ( –0.002 )

4d−1
3/2

17s1
1/2

2+ 69.378 0.002 −0.155 ( 0.061 ) 0.000 −0.069 ( –0.327 ) 0.000 −0.217 ( –0.537 )

4d−1
5/2

17s1
1/2

2+ 67.328 0.163 0.000 ( 0.000 ) 0.318 0.001 ( –0.002 ) 0.542 0.001 ( –0.001 )

Continued on next page
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Table A.1 – continued from previous page

state, JP 4d−1
5/2

6p1 4d−1
3/2

6p1 4d−1
5/2

7p1 4d−1
3/2

7p1 4d−1
5/2

8p1 4d−1
3/2

8p1

E, eV 65.110 67.039 66.375 68.345 67.150 69.150

GS 0 −0.182 −0.138 ( 0.052 ) −0.106 −0.015 ( –0.083 ) −0.072 −0.020 ( –0.054 )

4d−1
3/2

18s1
1/2

2+ 69.389 0.002 −0.137 ( 0.055 ) 0.000 −0.061 ( –0.288 ) 0.000 −0.189 ( –0.466 )

4d−1
5/2

18s1
1/2

2+ 67.339 0.145 0.000 ( 0.000 ) 0.279 0.001 ( –0.001 ) 0.471 0.001 ( –0.001 )

4d−1
3/2

19s1
1/2

2+ 69.399 0.002 −0.123 ( 0.049 ) 0.000 −0.054 ( –0.256 ) 0.000 −0.166 ( –0.411 )

4d−1
5/2

19s1
1/2

2+ 67.349 0.130 0.000 ( 0.000 ) 0.249 0.001 ( –0.001 ) 0.414 0.000 ( –0.001 )

4d−1
3/2

20s1
1/2

2+ 69.407 0.002 −0.111 ( 0.044 ) 0.000 −0.049 ( –0.230 ) 0.000 −0.148 ( –0.366 )

4d−1
5/2

20s1
1/2

2+ 67.357 0.117 0.000 ( 0.000 ) 0.223 0.001 ( –0.001 ) 0.369 0.000 ( –0.001 )

4d−1
5/2

5d1
3/2

2+ 65.439 1.051 0.000 ( 0.000 ) 1.622 0.005 ( –0.008 ) 2.274 0.002 ( –0.006 )

4d−1
5/2

5d1
5/2

2+ 65.439 4.693 0.000 ( 0.000 ) 7.310 0.023 ( –0.037 ) 10.330 0.010 ( –0.027 )

4d−1
3/2

5d1
5/2

2+ 67.408 0.098 −4.935 ( –2.958 ) 0.052 5.944 ( –6.669 ) 0.034 6.723 ( –10.642 )

4d−1
3/2

5d1
3/2

2+ 67.409 −0.029 −0.513 ( 5.785 ) 0.000 −8.621 ( –2.275 ) 0.000 −12.389 ( –0.935 )

4d−1
5/2

5d1
5/2

0+ 65.647 3.624 0.000 ( 0.000 ) 5.637 0.018 ( –0.028 ) 7.956 0.008 ( –0.019 )

4d−1
3/2

5d1
3/2

0+ 67.513 −0.043 3.149 ( –1.040 ) −0.022 0.629 ( 5.027 ) −0.014 1.960 ( 6.746 )

4d−1
5/2

6d1
3/2

2+ 66.495 0.252 0.000 ( –0.001 ) −2.938 0.000 ( –0.029 ) −1.495 0.000 ( 0.019 )

4d−1
5/2

6d1
5/2

2+ 66.495 2.068 −0.030 ( –0.010 ) −21.661 −0.023 ( 0.082 ) −10.576 0.000 ( 0.000 )

4d−1
3/2

6d1
5/2

2+ 68.475 0.038 −2.063 ( –1.384 ) −0.115 −17.572 ( 20.009 ) 0.016 −6.607 ( 11.368 )

4d−1
3/2

6d1
3/2

2+ 68.475 −0.013 −0.045 ( 2.271 ) 0.025 26.151 ( 9.130 ) −0.001 14.159 ( 3.112 )

4d−1
5/2

6d1
5/2

0+ 66.495 1.565 −0.007 ( –0.015 ) −16.526 −0.093 ( –0.147 ) −8.097 0.056 ( 0.095 )

4d−1
3/2

6d1
3/2

0+ 68.475 0.005 1.230 ( –0.302 ) −0.167 −2.861 ( –15.956 ) 0.100 −3.272 ( –7.981 )

4d−1
5/2

7d1
3/2

2+ 66.963 0.371 −0.004 ( –0.002 ) 0.688 0.001 ( –0.001 ) −9.928 −0.004 ( –0.017 )

4d−1
5/2

7d1
5/2

2+ 66.968 1.355 −0.021 ( –0.008 ) 2.617 0.005 ( –0.012 ) −34.973 −0.002 ( 0.064 )

4d−1
3/2

7d1
5/2

2+ 69.014 0.028 −1.402 ( –1.053 ) 0.016 2.515 ( –2.204 ) −0.085 −27.138 ( 36.900 )

4d−1
3/2

7d1
3/2

2+ 69.020 0.000 −0.240 ( 1.523 ) −0.004 −2.564 ( –0.616 ) 0.010 43.188 ( 10.952 )

4d−1
5/2

7d1
5/2

0+ 66.982 1.057 −0.010 ( –0.009 ) 2.025 0.006 ( 0.003 ) −27.479 −0.104 ( –0.139 )

4d−1
3/2

7d1
3/2

0+ 69.027 −0.004 0.881 ( –0.260 ) 0.009 0.000 ( 1.536 ) −0.172 −9.172 ( –25.357 )

4d−1
5/2

8d1
3/2

2+ 67.191 0.940 −0.015 ( –0.006 ) 1.758 0.004 ( –0.008 ) 3.157 0.002 ( –0.007 )

4d−1
5/2

8d1
5/2

2+ 67.188 0.325 −0.005 ( –0.002 ) 0.597 0.001 ( –0.002 ) 1.030 0.000 ( –0.001 )

4d−1
3/2

8d1
5/2

2+ 69.238 0.020 −0.990 ( –0.780 ) 0.012 1.773 ( –1.530 ) 0.009 2.709 ( –3.140 )

4d−1
3/2

8d1
3/2

2+ 69.242 0.000 −0.223 ( 1.071 ) 0.000 −1.816 ( –0.656 ) −0.002 −2.976 ( –0.137 )

4d−1
5/2

8d1
5/2

0+ 67.199 0.749 −0.009 ( –0.006 ) 1.394 0.005 ( –0.001 ) 2.477 0.004 ( 0.002 )

4d−1
3/2

8d1
3/2

0+ 69.246 −0.005 0.635 ( –0.197 ) 0.000 0.091 ( 1.163 ) 0.008 0.211 ( 1.751 )

4d−1
5/2

9d1
3/2

2+ 67.312 0.197 −0.003 ( –0.001 ) 0.345 0.001 ( –0.001 ) 0.585 0.000 ( –0.001 )

4d−1
5/2

9d1
5/2

2+ 67.314 0.725 −0.011 ( –0.004 ) 1.284 0.004 ( –0.006 ) 2.226 0.002 ( –0.005 )

4d−1
3/2

9d1
5/2

2+ 69.363 0.016 −0.750 ( –0.585 ) 0.009 1.262 ( –1.105 ) 0.007 1.844 ( –2.227 )

4d−1
3/2

9d1
3/2

2+ 69.365 0.000 −0.173 ( 0.818 ) 0.000 −1.331 ( –0.507 ) 0.000 −2.296 ( –0.338 )

4d−1
5/2

9d1
5/2

0+ 67.319 0.566 −0.008 ( –0.004 ) 0.999 0.003 ( –0.002 ) 1.725 0.003 ( 0.000 )

4d−1
3/2

9d1
3/2

0+ 69.368 −0.005 0.484 ( –0.154 ) 0.000 0.084 ( 0.857 ) 0.002 0.307 ( 1.359 )

4d−1
5/2

10d1
3/2

2+ 67.388 −0.057 0.000 ( 0.000 ) −0.095 0.000 ( 0.000 ) −0.149 0.000 ( 0.000 )

4d−1
5/2

10d1
5/2

2+ 67.389 0.592 0.000 ( 0.000 ) 1.010 0.003 ( –0.005 ) 1.648 0.001 ( –0.004 )

Continued on next page
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Table A.1 – continued from previous page

state, JP 4d−1
5/2

6p1 4d−1
3/2

6p1 4d−1
5/2

7p1 4d−1
3/2

7p1 4d−1
5/2

8p1 4d−1
3/2

8p1

E, eV 65.110 67.039 66.375 68.345 67.150 69.150

GS 0 −0.182 −0.138 ( 0.052 ) −0.106 −0.015 ( –0.083 ) −0.072 −0.020 ( –0.054 )

4d−1
3/2

10d1
5/2

2+ 69.438 −0.012 0.600 ( 0.431 ) −0.007 −0.911 ( 0.865 ) −0.005 −1.237 ( 1.625 )

4d−1
3/2

10d1
3/2

2+ 69.439 0.000 −0.112 ( 0.672 ) 0.000 −1.071 ( –0.361 ) 0.000 −1.763 ( –0.220 )

4d−1
5/2

10d1
5/2

0+ 67.393 0.448 0.000 ( 0.000 ) 0.763 0.003 ( –0.002 ) 1.242 0.002 ( –0.001 )

4d−1
3/2

10d1
3/2

0+ 69.441 −0.004 0.385 ( –0.124 ) −0.002 0.072 ( 0.664 ) 0.000 0.256 ( 1.010 )

4d−1
5/2

11d1
3/2

2+ 67.437 0.022 0.000 ( 0.000 ) 0.038 0.000 ( 0.000 ) 0.063 0.000 ( 0.000 )

4d−1
5/2

11d1
5/2

2+ 67.438 0.486 0.000 ( 0.000 ) 0.809 0.002 ( –0.004 ) 1.267 0.001 ( –0.003 )

4d−1
3/2

11d1
5/2

2+ 69.487 −0.010 0.500 ( 0.273 ) −0.005 −0.601 ( 0.726 ) −0.004 −0.746 ( 1.265 )

4d−1
3/2

11d1
3/2

2+ 69.488 −0.003 −0.024 ( 0.595 ) 0.000 −0.952 ( –0.196 ) 0.000 −1.487 ( 0.000 )

4d−1
5/2

11d1
5/2

0+ 67.441 0.367 0.000 ( 0.000 ) 0.609 0.002 ( –0.002 ) 0.953 0.001 ( –0.001 )

4d−1
3/2

11d1
3/2

0+ 69.489 −0.004 0.316 ( –0.102 ) −0.002 0.060 ( 0.534 ) 0.000 0.209 ( 0.786 )

4d−1
5/2

12d1
3/2

2+ 67.470 0.020 0.000 ( 0.000 ) 0.035 0.000 ( 0.000 ) 0.055 0.000 ( 0.000 )

4d−1
5/2

12d1
5/2

2+ 67.471 0.408 0.000 ( 0.000 ) 0.667 0.002 ( –0.003 ) 1.016 0.001 ( –0.003 )

4d−1
3/2

12d1
5/2

2+ 69.521 −0.008 0.420 ( 0.179 ) −0.004 −0.417 ( 0.613 ) −0.003 −0.477 ( 1.015 )

4d−1
3/2

12d1
3/2

2+ 69.521 −0.004 0.019 ( 0.520 ) 0.000 −0.831 ( –0.107 ) 0.000 −1.253 ( 0.078 )

4d−1
5/2

12d1
5/2

0+ 67.474 0.308 0.000 ( 0.000 ) 0.503 0.002 ( –0.002 ) 0.764 0.001 ( –0.001 )

4d−1
3/2

12d1
3/2

0+ 69.522 −0.003 0.266 ( –0.087 ) −0.002 0.052 ( 0.443 ) 0.000 0.174 ( 0.636 )

4d−1
5/2

13d1
3/2

2+ 67.496 −0.011 0.000 ( 0.000 ) −0.017 0.000 ( 0.000 ) −0.023 0.000 ( 0.000 )

4d−1
5/2

13d1
5/2

2+ 67.497 0.349 0.000 ( 0.000 ) 0.564 0.002 ( –0.003 ) 0.842 0.001 ( –0.002 )

4d−1
3/2

13d1
5/2

2+ 69.546 −0.007 0.360 ( 0.177 ) −0.004 −0.389 ( 0.514 ) −0.003 −0.449 ( 0.845 )

4d−1
3/2

13d1
3/2

2+ 69.547 −0.003 0.000 ( 0.437 ) 0.000 −0.684 ( –0.120 ) 0.000 −1.019 ( 0.014 )

4d−1
5/2

13d1
5/2

0+ 67.498 0.263 0.000 ( 0.000 ) 0.425 0.001 ( –0.002 ) 0.633 0.001 ( –0.001 )

4d−1
3/2

13d1
3/2

0+ 69.547 −0.003 0.228 ( –0.075 ) −0.001 0.045 ( 0.375 ) −0.001 0.148 ( 0.530 )

4d−1
5/2

14d1
3/2

2+ 67.517 −0.029 0.000 ( 0.000 ) −0.045 0.000 ( 0.000 ) −0.064 0.000 ( 0.000 )

4d−1
5/2

14d1
5/2

2+ 67.517 0.302 0.000 ( 0.000 ) 0.484 0.002 ( –0.002 ) 0.711 0.001 ( –0.002 )

4d−1
3/2

14d1
5/2

2+ 69.568 −0.006 0.313 ( 0.165 ) −0.003 −0.352 ( 0.439 ) −0.002 −0.405 ( 0.718 )

4d−1
3/2

14d1
3/2

2+ 69.567 −0.002 −0.012 ( 0.375 ) 0.000 −0.579 ( –0.118 ) 0.000 −0.856 ( –0.012 )

4d−1
5/2

14d1
5/2

0+ 67.518 0.229 0.000 ( 0.000 ) 0.366 0.001 ( –0.002 ) 0.537 0.001 ( –0.001 )

4d−1
3/2

14d1
3/2

0+ 69.568 −0.003 0.198 ( –0.065 ) −0.001 0.039 ( 0.324 ) −0.001 0.127 ( 0.451 )

4d−1
5/2

15d1
3/2

2+ 67.533 0.036 0.000 ( 0.000 ) 0.056 0.000 ( 0.000 ) 0.081 0.000 ( 0.000 )

4d−1
5/2

15d1
5/2

2+ 67.534 0.265 0.000 ( 0.000 ) 0.421 0.001 ( –0.002 ) 0.612 0.001 ( –0.002 )

4d−1
3/2

15d1
5/2

2+ 69.584 0.005 −0.275 ( –0.151 ) 0.003 0.316 ( –0.382 ) 0.002 0.362 ( –0.621 )

4d−1
3/2

15d1
3/2

2+ 69.584 −0.002 −0.016 ( 0.328 ) 0.000 −0.501 ( –0.111 ) 0.000 −0.734 ( –0.023 )

4d−1
5/2

15d1
5/2

0+ 67.535 0.201 0.000 ( 0.000 ) 0.319 0.001 ( –0.002 ) 0.464 0.001 ( –0.001 )

4d−1
3/2

15d1
3/2

0+ 69.584 −0.002 0.175 ( –0.057 ) −0.001 0.035 ( 0.283 ) −0.001 0.111 ( 0.391 )

4d−1
5/2

16d1
3/2

2+ 67.547 0.038 0.000 ( 0.000 ) 0.060 0.000 ( 0.000 ) 0.085 0.000 ( 0.000 )

4d−1
5/2

16d1
5/2

2+ 67.547 0.234 0.000 ( 0.000 ) 0.370 0.001 ( –0.002 ) 0.534 0.001 ( –0.001 )

4d−1
3/2

16d1
5/2

2+ 69.597 0.005 −0.244 ( –0.137 ) 0.003 0.284 ( –0.337 ) 0.002 0.325 ( –0.544 )

4d−1
3/2

16d1
3/2

2+ 69.597 −0.002 −0.017 ( 0.290 ) 0.000 −0.440 ( –0.102 ) 0.000 −0.641 ( –0.028 )

Continued on next page
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Table A.1 – continued from previous page

state, JP 4d−1
5/2

6p1 4d−1
3/2

6p1 4d−1
5/2

7p1 4d−1
3/2

7p1 4d−1
5/2

8p1 4d−1
3/2

8p1

E, eV 65.110 67.039 66.375 68.345 67.150 69.150

GS 0 −0.182 −0.138 ( 0.052 ) −0.106 −0.015 ( –0.083 ) −0.072 −0.020 ( –0.054 )

4d−1
5/2

16d1
5/2

0+ 67.548 0.179 0.000 ( 0.000 ) 0.282 0.001 ( –0.001 ) 0.407 0.001 ( –0.001 )

4d−1
3/2

16d1
3/2

0+ 69.597 −0.002 0.155 ( –0.051 ) −0.001 0.031 ( 0.251 ) −0.001 0.098 ( 0.343 )

4d−1
5/2

17d1
3/2

2+ 67.557 0.038 0.000 ( 0.000 ) 0.060 0.000 ( 0.000 ) 0.084 0.000 ( 0.000 )

4d−1
5/2

17d1
5/2

2+ 67.557 0.210 0.000 ( 0.000 ) 0.330 0.001 ( –0.002 ) 0.472 0.001 ( –0.001 )

4d−1
3/2

17d1
5/2

2+ 69.607 0.004 −0.219 ( –0.126 ) 0.002 0.257 ( –0.300 ) 0.002 0.293 ( –0.483 )

4d−1
3/2

17d1
3/2

2+ 69.608 −0.001 −0.018 ( 0.259 ) 0.000 −0.391 ( –0.094 ) 0.000 −0.567 ( –0.030 )

4d−1
5/2

17d1
5/2

0+ 67.558 0.161 0.000 ( 0.000 ) 0.252 0.001 ( –0.001 ) 0.361 0.000 ( –0.001 )

4d−1
3/2

17d1
3/2

0+ 69.608 −0.002 0.139 ( –0.046 ) −0.001 0.028 ( 0.224 ) −0.001 0.088 ( 0.305 )

4d−1
5/2

18d1
3/2

2+ 67.566 0.038 0.000 ( 0.000 ) 0.058 0.000 ( 0.000 ) 0.082 0.000 ( 0.000 )

4d−1
5/2

18d1
5/2

2+ 67.566 0.189 0.000 ( 0.000 ) 0.296 0.001 ( –0.002 ) 0.422 0.000 ( –0.001 )

4d−1
3/2

18d1
5/2

2+ 69.616 0.004 −0.198 ( –0.115 ) 0.002 0.235 ( –0.270 ) 0.001 0.266 ( –0.432 )

4d−1
3/2

18d1
3/2

2+ 69.616 −0.001 −0.018 ( 0.233 ) 0.000 −0.350 ( –0.087 ) 0.000 −0.506 ( –0.031 )

4d−1
5/2

18d1
5/2

0+ 67.567 0.145 0.000 ( 0.000 ) 0.227 0.001 ( –0.001 ) 0.323 0.000 ( –0.001 )

4d−1
3/2

18d1
3/2

0+ 69.616 −0.002 0.126 ( –0.042 ) −0.001 0.025 ( 0.202 ) −0.001 0.079 ( 0.273 )

4d−1
5/2

19d1
3/2

2+ 67.573 0.036 0.000 ( 0.000 ) 0.056 0.000 ( 0.000 ) 0.079 0.000 ( 0.000 )

4d−1
5/2

19d1
5/2

2+ 67.573 0.171 0.000 ( 0.000 ) 0.268 0.001 ( –0.001 ) 0.380 0.000 ( –0.001 )

4d−1
3/2

19d1
5/2

2+ 69.623 0.004 −0.180 ( –0.106 ) 0.002 0.215 ( –0.244 ) 0.001 0.244 ( –0.390 )

4d−1
3/2

19d1
3/2

2+ 69.623 −0.001 −0.017 ( 0.211 ) 0.000 −0.316 ( –0.081 ) 0.000 −0.456 ( –0.031 )

4d−1
5/2

19d1
5/2

0+ 67.574 0.132 0.000 ( 0.000 ) 0.206 0.001 ( –0.001 ) 0.292 0.000 ( –0.001 )

4d−1
3/2

19d1
3/2

0+ 69.623 −0.002 0.115 ( –0.038 ) −0.001 0.023 ( 0.184 ) −0.001 0.072 ( 0.247 )
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