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Abstract

With the rapidly advancing developement of smartphones with integrated cameras, digital image
compression is still a relevant and ongoing research topic. Conventional schemes, such as JPEG
or JPEG 2000, rely on fixed transforms over regular grids. Opposed to this, adaptive thinning is
an image compression scheme that reconstructs an image with linear splines over the anisotropic
Delaunay triangulation of a set of adaptively chosen significant pixels.

The main objective of this thesis is to improve the performance of this scheme, especially on
textured images. To this end, we propose a post-processing procedure that improves selected
regions of the reconstruction by utilizing graph signal processing as a tool to define frequency
spectra on irregular, triangular image domains.

Our approach designs adaptive graphs to exploit signal smoothness of graph signals. To this
end, significant triangular image blocks are classified via the structure tensor based on their
textural content. Graphs are constructed that promote sparseness of the graph Fourier spectrum.
This is achieved either by graph learning methods or a discrete weight model, where the edge
weight is chosen optimally.

Based on the constructed graphs, the signal is transformed via the graph Fourier transform to
the graph spectral domain, where thresholding and quantization can be performed efficiently.

Finally, we show how to implement this scheme, focusing on the transformation and quanti-
zation. We compare it with the adaptive thinning scheme on geometric and natural images.
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Chapter 1

Introduction

Images are omnipresent in this day and age. Due to the rising popularity of mobile smartphones
with modern digital cameras, everyone can capture images wherever and whenever they want.
And due to companies such as Facebook, Instagram or Snapchat encouraging their users to share
their private images, there is no shortage of incentives. Social networks’ prime business area is
based on sharing images, and many companies use this as marketing strategies. Therefore, it is
not surprising that the amount of images taken anually is growing rapidly. In the year 2000, when
film photography was still prevalent, only an estimated 80 billion photos were taken globally [42].
The explosion of digital photography and smartphones led to over 1.4 trillion photos being taken
in 2020. As a consequence, an estimated 7.4 trillion images were stored 2020, and this number is
expected to grow to 9.3 trillion in 2022.

The transition from analog to digital images gave rise to the research on digital image com-
pression. A digital image is a collection of intensity values given on a discrete set of pixels. Storing
a digital image naively with eight bits per pixel, only three 1280× 720 grayscale images would fit
on a 2.88 MB floppy disc, the prevalent storage medium just 30 years ago. Colour images consist
of three colour channels, requiring 24 bits per pixel, so only one 1280 × 720 colour image fits on
a floppy disc.

Even though the data storage technology has rapidly advanced in the recent decades and
storage mediums are several magnitudes larger, so did the size of images. Compact smartphones
have cameras capable of taking images with 108 Megapixels, leading to a naive storage cost of
324 MB. Those images do not only have to be stored, but also transmitted via a mobile internet
connection. Therefore, image compression is still a relevant and ongoing research topic.

The goal of image compression is to store an image in a more compact form, i.e. a represen-
tation that requires fewer bits for encoding than the original image. This is possible for most
images, because their original representation contains a lot of redundant data. Most images are
not a collection of arbitrary intensity values, but rather contain some sort of structure. As such,
neighbouring pixels are usually correlated. Ideally, an image compression technique removes re-
dundant or irrelevant information and efficiently encodes the remaining information. In practice,
it is often necessary to remove both nonredundant and relevant data to achieve the desired com-
pression ratio.

Image transform coding is the most commonly used image compression technique. During
encoding the raw data is transformed to decorrelate it and efficiently extract the relevant infor-
mation. The most widely used transform in image compression is the discrete cosine transform
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Chapter 1. Introduction

(DCT), introduced by Ahmed, Natarajan and Rao in 1974, see [2]. It is a Fourier-related transform
that is similar to the discrete Fourier transform but only uses real numbers. With the DCT as
basis, the JPEG compression standard was developed by the Joint Photographic Experts Group
and introduced in 1992, see [89], and is still the prevalent digital image format.

As a Fourier-related transform, it transfers an image to the frequency domain, where most
frequencies are irrelevant for the image at hand. But it also results in a representation that has
no localization in the spatial domain. Thus, the JPEG committee developed the JPEG 2000
image coding system [9], which was introduced in 2000. It is based on the discrete wavelet trans-
form (DWT), that represents a signal via an orthonormal basis generated by a wavelet, see [12].
The orthonormal basis is constructed by dilation and translation of a mother wavelet, resulting
in a multiresolution analysis, which was introduced in this context by Mallat in 1989, see [63].
In the following years several multiscale methods have been proposed, such as wedgelets [25],
curvelets [6], contourlets [24], bandelets [58], shearlets [57] and the easy path wavelet transform
(EPWT) [71],[72]. The EPWT constructs a graph along the DWT coefficients, so that there is a
strong correlation between neighbouring data points. It therefore links nicely to the graph tech-
niques introduced below.

A method to decorrelate an image without transforming it is given by the adaptive thinning
(AT) algorithm, introduced by Demaret, Dyn and Iske in [21]. It constructs a representative,
sparse subset of significant pixels via a thinning algorithm. Based on the luminances of these
carefully selected pixels, the remaining images are approximated over a Delaunay triangulation.
As a technique to approximate a large set of bivarate scattered data, the method was first created
in [26] for terrain modelling, before being extended to image compression in [15]. Several advance-
ments have been made, such as an improved pixel selection process in [16] and [20], post-processing
techniques in [21] and [17], and efficient contextual coding in [22]. In [19], optimal N-term ap-
proximation rates were shown for the relevant classes of piecewise linear α-horizon functions and
regular functions. [23] generalized the concept of adaptive thinning to approximate video data.
Optimal N-term approximation rates for trivariate α-horizon functions were proven in [50].

In recent years, a new field of signal processing garnered much attention: graph signal process-
ing (GSP) [80], [77]. Opposed to conventional signal processing, where signals lie on a regular grid
in the temporal or spatial domain, graph signals are given on irregular domains. Values of the
graph signals are defined on the vertices of a weighted graph, where the graph weights represent
the pairwise relationships between those data points. Such a flexible representation improves on
fixed transforms like the DCT by defining transforms that are adapted to the actual signal. Based
on spectral graph theory [10], graphs are leveraged as tools to extend techniques and intuitions of
conventional signal processing to the graph domain. To this end, Hammond, Vandergheynst and
Gribonval introduced the graph Fourier transform (GFT) in [41]. It allows structure aware trans-
form coding, which has been applied to a wide variety of applications such as sensor networks [29],
biological networks [46], 3D point cloud processing [86] and machine learning [90], [14].
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Turning to image compression, the GFT is well suited for images that contain sharp bound-
aries, which are not reconstructed well by the DCT. A graph spectral transform on a suitable
graph, i.e. one that captures the image structure, leads to a sparse representation. The challenge
is to design a suitable graph and store it efficiently. Several methods for piecewise smooth and
natural images have been proposed, see for example [79], [45], [69], [75], [33].

In this thesis we combine the AT algorithm with transform coding techniques from GSP. We
aim to balance the good reconstruction of geometrical features by AT with a good reconstruction
of textures in the graph spectral domain. Based on the Delaunay triangulation output by the
AT algorithm, we add textures over a set of significant triangles. Those triangles are usually
heavily textured and we capture these textures with an adaptive weighted matrix. We show how
to construct these adaptive matrices so that they both represent the textures and are efficiently
encoded. The main part of this thesis is organized in five chapters as follows.

Chapter 2 introduces the basic concepts of image compression. We begin with an overview of
the basic definitions for image processing and introduce measurements for the quality of image
compression schemes. Furthermore, the basic principles of transform coding and quantization are
presented. Having laid the foundations, we introduce three popular discrete transforms. First,
the Karhunen-Loève transform (KLT) is introduced as the transform with optimal decorrelative
properties for a signal with a known correlation model. Next, the two-dimensional DCT is pre-
sented along with the JPEG coding scheme. Finally, we introduce the multiresolution analysis as
an important tool in the JPEG-2000 scheme.

In Chapter 3 we introduce the AT method. To this end, we show how to represent an image via
linear splines over a unique Delaunay triangulation. Next, we assign a significance to each pixel in
the thinning process. Based on these significances, a set of most significant pixels is determined
to represent an image most effective. The last two sections present post-processing steps and the
final algorithm.

Relevant techniques from graph signal processing are presented in Chapter 4. Introducing
the basic definitions of weighted graphs and graph signals in the first two sections, we then turn
to generalizing the Fourier transform to graphs. Analogously to conventional signal processing, a
sense of smoothness is presented for graph signals and linked to eigenvectors of the graph Laplacian
matrix. This lets us define the GFT in the last section, that equivalently represents a graph signal
in the vertex and graph spectral domain.

Having introduced the necessary building blocks, we propose our method in Chapter 5. We
start with describing related work on graph spectral image compression found in the literature
in Section 5.1 and explain similarities and differences to our approach. Section 5.2 motivates the
actual signal to be encoded. It is given as the difference between the original image and the AT
reconstruction, which preserves the good representation of sharp edges. The basic compression
scheme for single triangular image blocks is presented in Section 5.3. A graph is constructed
on the pixels of the image block with a fixed edge template. The signal is then transformed
to the graph spectral domain, where filtering methods may be applied. As we aim to capture
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Chapter 1. Introduction

textures with adaptive graphs, the impact of signal smoothness is demonstrated in Section 5.4.
Furthermore, we explain the basic approach via graph learning and discrete weight models. Since
adaptive graphs are only beneficial on textured blocks, we introduce the block structure tensor as
a tool to classify each block in Section 5.5. Depending on its characteristics, each textured block
is classified as isotropic or anisotropic. Section 5.6 explains how to construct weighted graphs on
blocks with anisotropic textures. They are summarized by a dominant gradient, which is the basis
for an adaptive graph template construction similar to [75]. Blocks with isotropic textures are
not so easily summarized. Therefore we introduce two methods for graph construction on them in
Section 5.7. The first one adapts a graph learning algorithm proposed in [33] which is optimized
for high bit-rates. Next, we propose a method with a discrete weight model that is suited for low
bit-rates. Finally, in Section 5.8, we generalize the approach in [45] and compute the optimal edge
weight for weakly correlated pixels in a textured signal.

In Chapter 6 we provide experimental results. In Section 6.1 the experimental setup is ex-
plained in-depth, along with the choice of parameters in the implementation. Section 6.2 shows
the algorithm applied to several geometrical and natural images and compares its performance to
that of the original AT algorithm.
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Chapter 2

Image Compression via Transform Coding

In this chapter we give a basic overview of the fundamental definitions and techniques of image
processing and introduce transform coding image compression schemes.

Image transform coding is the most used image compression technique. It is a reversible process
that transforms the raw data to decorrelate it and efficiently extract the relevant information,
see [74]. A typical compression framework using image transform coding is depicted in Figure 2.1.

original
image data transformation quantization encoding

compressed
image data

Figure 2.1: Typical transform coding framework.

The transformation expands an image signal in terms of a set of basis images and provides
coefficients which quantify their respective contribution. These basis images are given by an
orthonormal matrix and the coefficients are utilized in further processing steps. Choosing a
transformation that efficiently decorrelates the data is key for an efficient compression.

After decorrelating the signal, quantization is applied to reduce the accuracy of the coefficients
to a discrete set suited for encoding. Since the transformation is a reversible process, losses in
quality are introduced in this step.

The quantized coefficient are then encoded efficiently. This is usually done by entropy encoding,
for example using Huffman code, see [47]. Basically, more probably coefficients are given shorter
codewords. Further compression can be achieved by thresholding less important coefficients at
the cost of further distortion.

We start this chapter by introducing the basic definitions for digital image processing, found
for example in [35] and [52]. Afterwards, we introduce the Karhunen-Loève transform (KLT) [74],
which optimizes the decorrelation of a random signal whose satistics are known probabilistically.
As we will see, the KLT requires the eigenvectors of the covariance matrix of the signal and thus
has a very large overhead. This, as well as high computational costs, means that it is rarely used
in practical applications. Various alternative, nonadaptive transforms have been utilized for image
compression, such as the discrete cosine transform [89] or the discrete wavelet transform [9], which
we will discuss in the last two sections.
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Chapter 2. Image Compression via Transform Coding

2.1 Basics of Image Processing

In this thesis, unless otherwise stated, we operate on digital greyscale images. That is, we consider
an image I as a two dimensional collection of greyscale values, i.e.

I(x1, x2), x1 ∈ {1, . . . , X1}, x2 ∈ {1, . . . , X2}.

X1 and X2 are finite natural numbers and form the extent of the vertical and horizontal direc-
tions respectively. We say an image has a resolution of X1 × X2. Each index
(x1, x2) ∈ {1, . . . , X1}×{1, . . . , X2} represents a separate picture element, also known as pixel. All
pixels together form the set P = {(x1, x2) ∈ N× N : 1 ≤ x1 ≤ X1, 1 ≤ x2 ≤ X2}. The greyscale
value is also known as luminance and is a representation of the intensity (brightness) at its re-
spective pixel. It is taken from a discrete set, usually an r-bit unsigned integer, i.e.

I(x1, x2) ∈ {0, 1, . . . , 2r − 1} (2.1)

for r ∈ N+. Hence, a digital image can be represented as an element I ∈ {0, 1, . . . , 2r − 1}P for a
given r-bit length. I(x1, x2) = 0 means no intensity at pixel (x1, x2), so it will be displayed black,
whereas I(x1, x2) = 2r − 1 means full intensity and it will be displayed as white.

As stated above, the goal of image compression is to store an image in a more compact
form. There are two main approaches: lossless and lossy image compression. Losless compression
algorithms compress the file size without any loss to the image quality. This is achieved by coding
the existing data efficiently. Lossy compression on the other hand removes data, which results in
an approximation Ĩ of the original image I. Consequently, while losless compression has a higher
quality, lossy compression is far more effective at reducing the representation cost.

In this thesis we focus on lossy compression schemes that do not change the resolution
or color depth. That is, the set of pixels P and the r-bit length stays the same, so that
Ĩ ∈ {0, 1, . . . , 2r − 1}P. From here on out we will assume the standard r-bit length of r = 8,
which yields an intensity range of {0, . . . , 255}.

Transform Coding

Transforms form the basis of many lossy image compression schemes. A well chosen transform
removes redundancy in the data and compacts the information. This allows the least distortion
when a loss of image quality arises during the quantization step. We focus on one-dimensional dis-
crete transforms, as digital images are given on a discrete set of pixels and most image transforms
are separable. That is, most two-dimensional transforms on signals such as images are realised by
the tensor product of one-dimensional transforms, see [52].
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2.1. Basics of Image Processing

Definition 2.1 Given a discrete signal f ∈ RN , a discrete transform is defined via a transforma-
tion matrix T = [T(k, l)]1≤k≤M, 1≤l≤N ∈ RM×N by

y = Tf . (2.2)

For this thesis we only consider non expansive transformations with N = M , and identify
the transformation with the transformation matrix T ∈ RN×N . We call the transformed signal
y ∈ RN the coefficients of f regarding T. Each entry in y is a superposition of the elements of f ,
weighted by the transformation kernels T(k, l)

y(k) =
N∑
l=1

f(l)T(k, l)

for all 1 ≤ k ≤ N . To reconstruct the input signal, the inverse of T is used as a second trans-
formation matrix. Therefore, we employ orthonormal (unitary in the case of the discrete Fourier
transform) transformation matrices, so that T−1 ∈ RN×N exists and is given by T−1 = TT .

Definition 2.2 Given a discrete coefficient vector y ∈ RN along with an orthonormal transfor-
mation T ∈ RN×N , the inverse transform is given by

f = T−1y = TTy. (2.3)

Applying equations (2.2) and (2.3), we are able to express the input signal in two domains:
the original (spatial in the case of images) domain of the signal and a domain defined by the
transformation matrix. Since T is orthonormal, its rows form an orthonormal system. If we
regard TT columnwise, i.e. TT = (t1 | · · · | tN ), the inverse transform is a superposition of these
columnvectors:

f = TTy =
N∑
k=1

y(k)tk.

Hence, the system {tk}1≤k≤N forms a basis of the original domain. The transformation coefficients
y(k) act as weights of each basis vector.

Note that due to the choice of an orthonormal transformation matrix T, the energy of the
signal remains unchanged

‖f‖2 = fT f = fTTTTf = yTy = ‖y‖2 . (2.4)

Thus, the transformation itself is lossless and does not compress the data. It is instead used to
compact the energy and enable better quantization.
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Chapter 2. Image Compression via Transform Coding

Quantization

In general, a quantizer reduces the accuracy of a large continuous set, see [40]. It maps input
values from an interval R ⊆ R, known as the quantization support, to a discrete set L.

Definition 2.3 A quantizer q : R → L is defined by a set of pairwise disjoint cells C = {Ci, i ∈ I},
where R = ⋃

i∈I Ci, and a set of levels L = {yi, i ∈ I}, where I = {1, . . . ,K} is an index set. It
is given by

q(x) =
K∑
i=1

yi1Ci(x), (2.5)

where 1Ci(x) = 1 if x ∈ Ci and 1Ci(x) = 0 otherwise.

A value x ∈ R is thus quantized to the level yi of its corresponding cell Ci. It is represented
by its index i ∈ I, which is efficiently encoded. Each cell is given by Ci = (ai−1, ai], with the ai’s
acting as thresholds. If the levels yi are equispaced and the threshholds midway between them,
the quantizer is said to be uniform, and the quantization step size is denoted by ∆. An example
of a uniform quantizer can be seen in figure 2.2.

x
0

a0

25

a1

50

a2

75

a3

100

a4

125

a5

150

a6

y1 y2 y3 y4 y5 y6

Figure 2.2: An uniform quantizer that quantizes R = [0, 150] to six levels. The quanti-
zation step size is ∆ = 25.

The quantization step following the transformation is why the choice of transformation matrix,
and thus transform, is critical for a good performance of a compression scheme. The aim of
transforming a signal f is to decorrelate it and compact the contained information to few significant
coefficients in y. Such a decorrelated signal has a few large coefficients, while most coefficients
are of small magnitude and irrelevant. During quantization the irrelevant coefficients are set to 0,
and only large, significant coefficients are encoded.

The Discrete Fourier Transform

One of the fundamental transforms in signal processing is the discrete Fourier transform (DFT).
Even though there are no direct applications in image processing, it demonstrates important
intuitions. We give a very brief overview, focusing on those intuitions. For a more detailed,
technical analysis we refer to [67].

The fundamental idea of the Fourier transform is to represent a signal as a weighted combi-
nation of elemental frequencies. It represents the signal equivalently in the spatial and frequency
domain.

Definition 2.4 The one-dimensional discrete Fourier transform is defined by the transformation
matrix B ∈ RN×N , given by

[B]k,l = 1√
N

e−i2π (k−1)(l−1)
N (2.6)

for all 1 ≤ k, l ≤ N .
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2.1. Basics of Image Processing

We note that the DFT is usually defined for 0 ≤ k, l ≤ N − 1 and with a factor 1
N . The

representation in 2.6 was chosen to comply with the transformation framework introduced above.
The matrix B is complex, so the inverse DFT is given by the conjugate transpose B∗. For a
discrete signal f ∈ RN , the complete Fourier spectrum is given by

f̂ ≡ y = Bf ,

and the kth Fourier coefficient by

f̂(k) ≡ y(k) =
N∑
l=1

f(l) 1√
N

e−i2π (k−1)(l−1)
N

for all 1 ≤ k ≤ N . Following our discussion above, the DFT decomposes f into its constituting
frequencies, given by the vectors

bk = 1√
N

(
e−i2π (k−1)·0

N , . . . , e−i2π (k−1)·(N−1)
N

)T

for all 1 ≤ k ≤ N . Each Fourier coefficient f̂(k) weighs the amount of its corresponding elemental
frequency bk present in f . Lower values of k correspond to low spatial frequencies bk, i.e. vectors
that are smooth and slowly oscillating. In particular, for k = 0 we have b0 = 1√

N
(1, . . . , 1)T , a

constant vector. As k increases, so does the frequency, leading to faster oscillating vectors bk.
Due to the complex quantity in the frequency domain, the DFT is cumbersome in practical

image compression applications and thus rarely used directly. But thanks to the Fast Fourier
Transform the discrete Fourier transform can be computed efficiently in O(n logn), see [11]. As
other transforms (such as the discrete cosine transform, see chapter 2.3) are computed efficiently
by an adapted Fast Fourier Transform as in [61], it is still a very important algorithm in signal
processing as a whole.

Image Evaluation

To evaluate the performance of coding schemes in lossy image compression, rate-distortion theory
is used. It analyzes the trade-off between the coding rate R and induced distortion D. Specifically,
a coding scheme aims to minimize

minD + λR,

where λ ∈ R+ is a weighing parameter. The rate is usually understood as the number of bits to
be stored. For the notion of distortion, no uniformly accepted measure has been developed so far.
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Chapter 2. Image Compression via Transform Coding

We introduce two full reference metrics that compare the approximation Ĩ with a known
reference image I. The standard objective quantative used in classic compression is the peak
signal-to-noise ration (PSNR). We first measure the absolute distortion between I and Ĩ as the
average squared intensity differences per pixel, given by the mean square error (MSE)

η̄2(Ĩ, I) = η2(Ĩ, I)
|P| ,

where

η(Ĩ, I) =
√√√√∑
p∈P

∣∣∣Ĩ(p)− I(p)
∣∣∣2 (2.7)

denotes the approximation error. To put the distortion in perspective to the parameters of the
original image, the PSNR defines a logarithmic rescaling of the MSE.

Definition 2.5 Given an image I along with an approximation Ĩ, the peak signal-to-noise ration
is defined as

PSNR(Ĩ, I) := 10 · log10

(
(2r − 1)2

η̄2(Ĩ, I)

)
, (2.8)

where r is the bit length of I.

The PSNR is the ratio between the maximum possible power of the image and the corrupting
noise, which is the error introduced by the compression. It is measured in decibel (dB) and since
it is the reciprocal of the mean square error, it increases as the approximation quality improves
and the mean square error decreases.

The PSNR is easy to evaluate and has a clear physical meaning and is thus very popular. But
as it simply compares the intensity values on single pixels and does not put them in context to
their neighbourhood, it fails to accurately model human perception. In [96] images are presented
that have the same PSNR but vary in perceived visual quality. Examples of such images are shown
in Figure 2.3. It can clearly be seen that some distortions affect the human visual perception much
more than others. For example, the distortion introduced by filtering with a Gaussian is much
more prominent than mean-shifting the image.

To model human perception, the structural similarity index measure (SSIM) was introduced
in [96]. It relies on the assumption that the human visual system is highly adapted to perceiving
structural information, while also considering luminance and contrast masking terms. Opposed
to the absolute errors measured by the PSNR, the SSIM takes strong inter-dependencies among
pixels into account and estimates perceived errors.

Given an original image I and an approximation Ĩ, the SSIM is composed of three weighted
components, comparing the luminance l(I, Ĩ), contrast c(I, Ĩ) and structure s(I, Ĩ). The following
comparison functions were introduced in [96] and are still widely used today.

The luminance similarity is a function of the estimated mean intensities µI and µĨ,

l(I, Ĩ) =
2µIµĨ + C1

µ2
I + µ2

Ĩ
+ C1

, (2.9)
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2.1. Basics of Image Processing

(a) Original image. SSIM = 1. (b) Mean-shifted image. SSIM = 0.9899.

(c) Salt and pepper noise. SSIM = 0.7548. (d) Gaussian filtered. SSIM = 0.7321.

Figure 2.3: Comparison of images with different types of distortion, all with a PSNR of approx-
imately 24.609. The parameters for each distortion have been fine tuned to result in
an equal PSNR.

where C1 ∈ R+ is a constant chosen to avoid instability. The contrast similarity is given as a
function of the estimated standard deviations σI and σ̃I

c(I, Ĩ) =
2σIσ̃I + C2

σ2
I + σ2

Ĩ
+ C2

, (2.10)

where C2 ∈ R+ is a constant chosen to avoid instability. Lastly, the structure similarity is given
as a function of the estimated correlation coefficient σI,̃I

s(I, Ĩ) =
σI,̃I + C3

σIσ̃I + C3
, (2.11)

again with a constant C3 ∈ R+ to avoid instability. Combining (2.9), (2.10) and (2.11) results in
the SSIM measure

SSIM(I, Ĩ) =
(
l(I, Ĩ)

)α (
c(I, Ĩ)

)β (
s(I, Ĩ)

)γ
, (2.12)

where α, β, γ > 0 adjust the relative importance of each component. The SSIM index maps
(
I, Ĩ
)

11



Chapter 2. Image Compression via Transform Coding

to [0, 1]. Smaller values indicate poorer quality, while SSIM(I, Ĩ) = 1 iff I = Ĩ.
In order to simplify (2.12), the standard choices are α = β = γ = 1 and C3 = C2/2. This

results in the standard SSIM index which we use for the rest of this thesis.

Definition 2.6 The standard SSIM index of an image I and its approximation Ĩ is given by

SSIM(I, Ĩ) :=

(
2µIµĨ + C1

) (
2σI,̃I + C2

)
(
µ2

I + µ2
Ĩ

+ C1
) (
σ2

I + σ2
Ĩ

+ C2
) . (2.13)

We adapt the selection for C1 and C2 as in [96], i.e. C1 = (0.01L)2 and C2 = (0.03L)2, where
L = 2r − 1 is the dynamic range of the pixel values. For 8-bit grayscale images this results in
L = 255.

2.2 Karhunen-Loève Transform

The Karhunen-Loève transform (KLT) was introduced by Karhunen [55] and Loève [60] as a series
expansion for continuous random processes. It is the optimal transform for decorrelating compo-
nents of a vector following a known correlation model, see [52]. Earlier, Hotelling [43] developed
the method of principal componenents, which removes the correlation from the discrete elements
of a random variable. As such, the KLT is also known as Hotelling transform and closely related
to principal component analysis.

The KLT is a non-separable transformation. Hence, we reorder the luminances from a rectan-
gular grid to a line vector. In particular, we express I ∈ {0, 1, . . . , 2r − 1}X1×X2 as a line vector
f ∈ {0, 1, . . . , 2r − 1}X1·X2 via

f((x1 − 1) ·X2 + x2) = I(x1, x2)

for 1 ≤ x1 ≤ X1 and 1 ≤ x2 ≤ X2. Therefore, we consider an image as a one-dimensional discrete
signal f ∈ RN in the following discussion. Let f be a given random signal

f = (f1, . . . , fN )T ∈ RN ,

i.e. as a sequence of random variables fk for 1 ≤ k ≤ N . The mean of f is given by

µf = (µ(f1), . . . , µ(fN ))T := E [f ] ,

where µ is the expected value of a random variable. For simplicity, we consider f ′ = f − µf

and assume, without loss of generality, that µf = 0. In order to apply the KLT the correlation of
the signal is given via its covariance matrix.

Definition 2.7 Given a random vector f ∈ RN , its covariance matrix Σf ∈ RN×N is defined by
the pairwise covariance between the elements

Σf := E
[
(f − µf )(f − µf )T

]
= E

[
f fT

]
.
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2.2. Karhunen-Loève Transform

Since f is real-valued, its covariance matrix is real and symmetric, i.e., ΣT
f = Σf . Therefore,

Σf is diagonizable via
Σf = UfΛf UT

f ,

where Λf = diag(λ1, . . . , λN ) is a real, diagonal matrix containing the eigenvalues of Σf and
Uf = (u1| . . . |uN ) a real orthonormal matrix whose columns are the corresponding eigenvectors
of Σf . Thus, Σf uk = λkuk for all 1 ≤ k ≤ N . These eigenvectors form the basis of the KLT.

Definition 2.8 Given a random signal f ∈ RN along with its covariance matrix Σf = UfΛf UT
f ,

the Karhunen-Loève transform is defined as

y = UT
f f .

Consequently, the eigenvectors of Σf are the basis vectors of the KLT, as each component y(k)
is the projection of f onto uk, i.e. y(k) = 〈uk, f〉 = uTk f for all 1 ≤ k ≤ N , where 〈·, ·〉 denotes the
standard inner product. This directly implies the optimal decorrelation property. Let Σy be the
covariance matrix of the coefficient vector y. By using the identity µy = UT

f µf we obtain

Σy = E
[
yyT

]
= E

[
UT

f f(UT
f f)T

]
= UT

f E
[
f fT

]
Uf = UT

f Σf Uf = Λf .

The covariance matrix of y is thus diagonal, so the covariance between two disctinct components
y(i) and y(j) for all 1 ≤ i < j ≤ N is 0. Therefore, the transformed signal is completely
decorrelated.

It should be noted that U is not unique in regard to this property. There are possibly several
orthonormal matrices that result in a completely decorrelated signal. But among all orthonormal
transformations the KLT maximally compacts the energy of the signal. While the total energy of
a signal remains unchanged by a transformation with an orthonormal matrix as shown in (2.4),
the KLT packs the most average energy in K < N samples of coefficients.

Following along the lines of Shannons information measures as in [78], and without going into
any detail, the information contained in the first K coefficients of y = Tf can be represented by

EK(T) =
K∑
k=1

σ2
k,

The KLT maximizes this information function, see [52], among all orthonormal transforms T,
i.e. EK(UT

f ) ≥ EK(T), for all K < N . Note that if T = UT
f , we have σ2

y(k) = λk. Therefore, we
achieve maximum information in the first K components if we order the eigenvalues in descending
order, i.e. λ1 ≥ · · · ≥ λN . Algorithm 1 shows an image compression scheme exploiting these
properties for an image signal f ∈ RN .

Compression is achieved since K < N and since zeros are encoded efficiently. To reconstruct an
approximation f̃ ≈ f from ỹ, we simply apply the inverse KLT. Per our discussion in Section 2.1,

13



Chapter 2. Image Compression via Transform Coding

Algorithm 1: KLT of image signal f
Input: image signal f to be compressed.
Output: efficient coefficient vector ỹ; description of Σf .

1 Estimate Σf .
2 Calculate Σf = UfΛf UT

f with λ1 ≥ · · · ≥ λN .
3 Choose K < N based on desired information or coding cost.
4 Transform f via y = UT

f f and set y(k) = 0 for K < k ≤ N .
5 Encode resulting ỹ.

it is simply given by
f ≈ f̃ = Uf ỹ.

We observe that the inverse KLT requires the full transformation matrix Uf to construct the
approximation f̃ . This results in a large overhead, as a lot of data related to the signal has to be
transferred as well. Additionally, the underlying correlation between pixels has to be estimated.
Clearly this naive approach is not feasible.

In practice, each block to be encoded is first classified into one of several predetermined
stochastic classes. But this leads to more distortion of the reconstructed image. As such, it
is important to select a good set of stochastical classes to achieve a good performance, see for
example [82].

We remark that even though the vector is statistically completely decorrelated, this does not
automatically transfer to optimality in transform coding. While it was shown in [38] that the KLT
is optimal for high-rate transform coding of Gaussian vectors, there are cases where the KLT is
suboptimal, see [28].

2.3 JPEG

The JPEG compression standard was developed by the Joint Photographic Experts Group as a
collaboration between CCITT and ISO. It was introduced in 1992, see [89], and is the most used
digital image format. The JPEG method relies on splitting the image into small 8× 8 blocks and
quantizing the Discrete Cosine Transform (DCT). Unlike the KLT, it is fixed and independent of
the data to be transformed.

Discrete Cosine Transform

The DCT was first described by Ahmed, Natarajan and Rao in 1974, see [2]. Four basic types
of DCT exist, DCT-I to DCT-IV, see [73], with the DCT-II being most used, including in the
JPEG compression scheme. Each type of DCT transforms the signal from the spatial domain to
the frequency domain by representing a signal via different cosine frequencies. They differ in their
respective choice of boundary conditions, the DCT-II for example extends an input vector f ∈ RN

evenly around the indices 1
2 and n+ 1

2 .
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2.3. JPEG

Definition 2.9 The one-dimensional DCT-II is defined by the transformation matrix C ∈ RN×N ,
given by

[C]i,j =
( 2
N

) 1
2
cj cos

(
(i− 1)(j − 1

2)π
N

)

for 1 ≤ i, j ≤ N , where c1 = 1/
√

2 and cj = 1 otherwise.

The factor (2/N) 1
2 cj ensures the orthonormality of C, so that it fits into the transformation

framework introduced in Section 2.1. This factor is usually omitted, which leads to a specific
correspondance with the DFT. Due to the boundary conditions shown above, the DCT-II is, up
to a factor, equivalent to the DFT of 4N inputs of the extended signal. For further processing the
factor is inconsequential, as computational steps such as a following quantization can be chosen
accordingly.

Multivariate DCTs are simply a separable tensor product of DCTs along each dimension, see
[52]. For a two-dimensional rectangular image I ∈ {0, . . . , 255}M×N , the DCT-coefficients are
subsequently given by

[Y]νω = 2cνcω√
MN

M∑
i=1

N∑
j=1

[I]i,j cos
(

(ν − 1)((i− 1
2)π

M

)
cos

(
(ω − 1)(j − 1

2)π
N

)

for 1 ≤ ν ≤M and 1 ≤ ω ≤ N . Thanks to this separable product, the two-dimensional DCT can
be efficiently computed as a combination of two one-dimensional DCTs. Additionally, the DFT
of an even function results in the DCT. Consequently, the DCT can be computed very efficiently
via the fast Fourier transform with a computational complexity of O(N logN) for a signal with
N components [73].

JPEG Compression

At the input to the encoder, the source image I is split into 8×8 blocks and shifted from unsigned
integers to signed integers, i.e., from [0, . . . , 2p − 1]8×8 to

[
−2p−1, . . . , 2p−1 − 1

]8×8. Afterwards,
the two-dimensional DCT is applied to the shifted image blocks. This results in 64 transform
coefficients, the AC coefficient corresponding to the constant basis image and 63 DC coefficients.
Each coefficient represents the relative amount of its associated spatial frequency present in the
input signal. All 64 spatial frequencies are displayed in Figure 2.4.
As in equation (2.4), the energy of the transformed signal remains unchanged. Compression,
and thus distortion, is introduced in the next step: Quantization. Each of the 64 coefficients is
quantized to an index by dividing each DCT coefficient by its corresponding quantizer step size
and rounding to the nearest integer

[Yind]i,j = Round
(

[Y]i,j
[Q]i,j

)
(2.14)

for 1 ≤ i, j ≤ 8. The step sizes are stored in a Quantization Table Q ∈ R8×8, which has to be
specified by the application at the encoder and controls the compression. When the intention is to
compress the image as much as possible, large step sizes are chosen. This leads to low indices after
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Chapter 2. Image Compression via Transform Coding

Figure 2.4: Two-dimensional basis images of the DCT. The frequency increases towards the lower
right corner.

the division in (2.14), and rounding to the nearest integer will eliminate a substantial amount of
coefficients. Ideally, this should be balanced so that visible artifacts are largely supressed. To
this end, psychovisual experiments have been performed to determine perceptual thresholds on
the concept of just noticeable differences for the visual contribution of each cosine basis function.
The result of these experiments led to the standard Quantization Table for JPEG compression

QS =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


. (2.15)

Note that QS is designed to contain low values in the top left, corresponding to low frequencies,
while the quantization step size increases along with the frequency. This is caused by the fact that
the human perception is sensitive to small variations in low frequencies, whereas the reconstruction
of high frequencies is not as important. Simply put, small perturbations of smooth regions are
more noticable than even severe deviations in a high contrast region of the image. For more
information about the construction of quantization matrices we refer to [3].

From the standard quantization matrix in (2.15) we derive different quantization levels, see [1],
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2.3. JPEG

via a quality factor k ∈ [1, 100] by

Qk =


(

100−k
50

)
QS k > 50(

50
k

)
QS k ≤ 50,

where Q50 ≡ QS . A large quality factor leads to lower values of the quantization matrix and thus
less compression and higher quality. For a low quality factor this is reversed.

The resulting sparse matrix Yind comprising the quantized coefficients is then efficiently en-
coded, e.g. via Huffman coding. Reconstruction of the image reverses the preceding steps. First,
the coefficients are reconstructed by multiplying them element-wise with the quantization matrix
obtained by the stored quality factor. Afterwards, the inverse DCT is applied and the resulting
signal shifted back to its original range. This gives the reconstructed image Ĩ ≈ I.

Figure 2.5 shows the JPEG compression applied to a block of the famous Lena image with
different quality factors.

(a) original image block

40 63 112 36 46 27 157 174
77 164 45 43 33 47 169 182
111 43 74 101 109 109 132 155
47 97 113 139 185 112 124 211
51 171 164 175 83 89 195 43
100 143 175 177 86 114 57 45
135 183 196 108 106 154 43 63
211 200 95 89 188 34 44 47

(b) original image values

−143.9 24.8 20 −79.8 −31.1 −24.7 −53.9 17.6
−81.6 −236.5 127.1 −69 5.3 38.9 −26.4 18.9
−70.1 72.1 109 31 17.9 −49 1.2 42.1
−24 28.4 −42.9 −78.3 −109.7 57.8 13.1 −26.5
10.4 −25.9 −17 −22.6 23.1 −7.1 −61.6 58.6
20.6 −52.6 −42.9 −11.8 31.2 −33.6 106.3 14.8
−32.3 12.1 −34.3 23.1 63.1 38.2 30.3 18.5
−5.5 14.3 −10.1 17.2 −55.6 59.5 3.2 9.9

(c) original image coefficients after shift and DCT

(d) Reconstruction with
k = 10.

(e) Reconstruction with
k = 50.

(f) Reconstruction with
k = 90.

Figure 2.5: JPEG compression of a single block with different quality factors
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2.4 JPEG 2000

The JPEG compression standard based on the DCT has many advantages and is still the most
widely used image compression method, but there are several drawbacks. While the small block
size of 8 × 8 reduces computation time, it leads to blocking artifacts, where neighbouring blocks
eliminate a different set of frequencies, which results in different representations of the same
structure. Additionally, the codestream is inflexible, multiple resolutions for example are not
supported.

To adress these problems and several technical issues, the JPEG committee started creat-
ing the JPEG2000 compression standard and introduced it in December of 2000, see [9]. The
JPEG2000 still image coding system is based on a discrete wavelet transform (DWT), which
enables a multiresolution representation of images.

Wavelets

To get an insight into the working of the JPEG2000 standard, we give a brief overview of wavelets
and multi-resolution analyis on the Hilbert space of square integrable functions on the real line,
L2(R). For more details we refer to [85]. The aim is to define an orthonormal basis generated by
a single function by translation and dilation. To this end, a multi-resolution analysis is defined.

Definition 2.10 A multi-resolution analysis is defined as a sequence of nested resolution spaces
U (k) ⊂ U (k−1) for k ∈ Z, satisfying the following conditions:

MR1: The union of all resolution spaces is dense in L2(R), i.e.

⋃
k∈Z
U (k) = L2(R).

MR2: The intersection of all resolution spaces contains only the zero element, i.e.

⋂
k∈Z
U (k) = {0}.

MR3: Dilating a signal x ∈ U (0) by the factor 2k yields a signal in U (k), i.e.

x(t) ∈ U (0) ⇔ x(2−kt) ∈ U (k).

MR4: Translating a signal x ∈ U (k) by an integer multiple of 2k does not alter its resolution,
i.e.

x(t) ∈ U (k) ⇔ x(t− 2kn) ∈ U (k) for all n ∈ Z.

MR5: There is an orthonormal basis {ϕj}j∈Z for U (0), so that ϕj is a translation of a scaling
function ϕ, i.e.

ϕj(t) = ϕ(t− j). (2.16)
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2.4. JPEG 2000

Due to properties MR3 and MR4, an orthonormal basis {ϕkj }j∈Z for U (k) can be derived via

ϕ
(k)
j (t) =

√
2−kϕ(2−kt− j)

Given a scaling function ϕ ∈ L2(R), which characterizes a multi-resolution analysis, it is
possible to construct an orthonormal wavelet basis. We denote the orthogonal complement of
U (k+1) in U (k) as W(k+1), i.e.

W(k+1) ⊥ U (k+1) and W(k+1) ⊕ U (k+1) = U (k).

In this way, the resolution space U (k) is decomposed into a smooth space U (k+1) containing the low
frequency functions and a coarse wavelet spaceW(k+1) that contains the high frequency functions
of U (k). Since U (0) ⊂ U (−1), ϕ ∈ U (0) can be expressed as a linear combination of functions ϕ(−1)

j

via
ϕ(t) =

√
2
∑
j∈Z

a
(0)
j ϕ(2t− j) (2.17)

with some coefficients a
(0)
j for j ∈ Z. Treating the coefficients as an element in `2(R) via

a(0) :=
(
a

(0)
j

)
j∈Z

, property MR5 shows that it has unit norm and is orthogonal to all of its
2-translates. This is the condition required for a low-pass synthesis filter, see [85]. Thus, defining
a second set of coefficients a(1) :=

(
a

(1)
j

)
j∈Z

with

a
(1)
j = (−1)j+1a

(0)
−(j−1), (2.18)

the 2-translates of a(0) and a(1) together form an orthonormal basis for `2(Z). Finally, let

ψ(t) =
∑
j∈Z

a
(1)
j ϕ(2t− n)

for t ∈ R. The function ψ ∈ W(0) is called mother wavelet. By defining its translation analogously
to (2.16) via ψj(t) = ψ(t − j), the collection {ψj}j∈Z is an orthonormal basis for W(0). For ev-
ery resolution k ∈ Z, a wavelet in the corresponding orthogonal complement W(k) is derived by
dilating ψ with a factor 2k: ψ(k)(t) =

√
2−kψ(2−kt). The collection of the dilated and translated

wavelets {ψ(k)
j }j∈Z form an orthonormal basis for W(k). Together, {ψ(k)

j }j,k∈Z form an orthonor-
mal wavelet basis of L2(R).

We now move to the computation of the discrete wavelet transform. Analogously to the theory
above, it gives a multiresolution representation of a discrete signal. At each level the signal is split
into its low and high frequency components. Since the regular DWT is rarely applied in practice,
we skip its introduction. Instead, it was shown in [62] that the DWT can be implemented as a
two-channel subband decomposition of a given discrete signal. Hence, we give a brief overview of
it, as it is the transform utilized in image processing.

Given a one-dimensional discrete signal f ≡ f (0) ∈ RN , the two-channel subband decomposition
is given as a series of low-pass and high-pass filters, denoted by hlow and hhigh respectively.
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Low-pass samples represent the low-resolution version of f . The low-pass filter is defined by the
coefficients of hlow = a(0) as in (2.17) and computed via a convolution, i.e.

f (1)
low(k) = (f (0) ∗ hlow)(k) =

∑
j∈Z

f (0)(j)a(0)(k − j).

High-pass samples on the other hand represent the residual version of the original signal. The
high-pass filter is analogously defined by the coefficients of hhigh = a(1) as in (2.18) and computed
via a convolution, i.e.

f (1)
high(k) = (f (0) ∗ hhigh)(k) =

∑
j∈Z

f (0)(j)a(1)(k − j).

Since half the frequencies in both vectors have been removed, the resulting signals are down-
sampled by a factor two without any loss of information, which we denote by ↓ 2. We are thus
left with two vectors of length N/2, with f (1)

low ↓ 2 comprising the low frequency, and f (1)
high ↓ 2 high

frequency components. This procedure is repeated for the low-pass filtered signals, until a desired
resolution is attained. The output coefficients are f (1)

low ↓ 2, . . . , f (l)
low ↓ 2, f (l)

high ↓ 2. Together they
are stored in an established order in a coefficient vector y ∈ RN . An example of this process is
depicted in figure 2.6.

The original signal is reconstructed by simply reversing the preceding steps. y is split into
individual coefficient vectors which are upsampled by a factor 2 and deconvoluted.

f (0) ∗hhigh

∗hlow

↓ 2

↓ 2

f
(1)
high

f
(1)
low

∗hhigh

∗hlow

↓ 2

↓ 2

f
(2)
high

f
(2)
low

· · ·

Figure 2.6: Filter bank diagram of the two-channel subband decomposition that outputs
the DWT coefficients. Depicted are 2 levels of filtering.

JPEG 2000 compression

At the beginning of the JPEG 2000 compression scheme, the source image I is split into rectangular
blocks. Unlike in regular JPEG compression the blocks can be of any fixed size, even the whole
image can be considered as one block.

The two-dimensional DWT is computed by applying the subband transform separably to the
columns and then to the rows of each block. Figure 2.7(a) shows a two-dimensional DWT with
3 levels. HH refers to twice high-pass filtered coefficients, HL to coefficients first low-pass filtered
and then high-pass filtered and LH to coefficients first high-pass filtered and then low-pass filtered.
Smooth components are contained in LL, which is twice low-pass filtered. The subscript denotes
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LL3 HL3

LH3 HH3

HL2

LH2 HH2

HL1

LH1 HH1

(a) Schematic three level DWT. (b) Three level DWT of Lena

Figure 2.7: A three level DWT given schematically and applied to a natural image.

the level of resolution. As above, this is repeated until a desired resolution level is reached. An
example of a DWT of Lena is depicted in Figure 2.7(b) with three resolution levels.

After applying the wavelet transform, the resulting coefficient matrix E is quantized via

Eind(i, j) = sgn(E(i, j))
⌊ |E(i, j)|

∆b

⌋
,

where ∆b depends on the subband b of each coefficient. The resulting sparse matrix Eind is then
encoded efficiently via EBCOT coding, see [84].

Reconstruction of the image reverses the preceding steps. The coefficients are reconstructed by
multiplying them with the corresponding ∆b. Afterwards, they are upsampled and deconvoluted.
This gives the reconstructed image Ĩ = I.

Space
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(a) Signal given in spatial do-
main.

Space

F
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(b) Signal transformed with
the DCT.

Space

F
re
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cy

(c) Signal transformed with
the DWT.

Figure 2.8: Different representations of a signal.

To explain the advantages of the wavelet based image format, we turn to the resolution of
a signal in the spatial and frequency domain, summarized in Figure 2.8. We refer to [35] for a
more detailed discussion. In the regular representation, a signal is given as sampled values in the
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spatial domain shown in 2.8(a). It is completely localized in space, with no frequency resolution.
When transforming the signal with the DCT to the frequency domain, the exact opposite occurs
as seen in 2.8(b). While it has a good resolution in the frequency domain, the basis functions of
the DCT are periodic and thus have no spatial localization. Transforming a signal with the DWT
admits a mixture as seen in 2.8(c). In low frequencies, a high frequency resolution is paired with
a low spatial localization. As the frequency increases, so does the spatial resolution, whereas the
frequency localization decreases.

This is a result of the dilation and translation of the mother wavelet on each level of the
transform. Recall that a wavelet is derived via

ψ
(k)
j (t) =

√
2−kψ(2−kt− j).

Therefore, the translation factor j decreases exponentially with the scale. The spatial distance
between high frequency wavelets is thus very low, leading to a high spatial resolution. Following
the same argumentation, low frequency wavelets are far apart, leading to a low spatial resolution.
On the other hand, the dilation factor 2−k also behaves exponentially, which leads to an increased
distance in covered frequencies.

This coincides nicely with the human perception of images. For low frequency components of
an image, the exact localization is not as important. High frequency components such as edges on
the other hand are highly localized. Their exact location is important, while the exact sharpness
is not.
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Chapter 3

Adaptive Thinning

In the last chapter we have seen how to apply transform coding to image compression. The aim of
transform coding is to remove the redundancy in an image by transforming it to a chosen transform
domain, e.g. the frequency domain. The key to good compression is to select a target domain
that promotes sparsity of the transform coefficients. JPEG and JPEG2000 use representations
where the basis images give a certain sense of frequency.

But there are other methods to decorrelate the image without transforming it. One approach
is to find a representative, sparse subset of pixels that describe their neighbourhood. By knowing
the luminances of these significant pixels, it is ideally possible to recover a good approximation
of the original image. Of course special care has to be taken to select a suitable subset of pixels.
This may be done via thinning algorithms [36], which are schemes that recursively remove pixels
according to some specific criterion.

The Adaptive Thinning (AT) algorithm by Demaret, Dyn and Iske [15], [21] is such an al-
gorithm. It adopts the concept of a thinning scheme and bases the removal criterion on the
location and sampled values of a pixel mask P. At each step of the thinning algorithm, the sig-
nificance of every pixel is evaluated and the least significant pixel is removed. Once a desired
amount of significant pixels are attained, the original image is approximated by a linear spline
over an anisotropic Delaunay triangulation. We remark that this is not the only scheme utilizing
anisotropic triangulations. For an overview of different compression schemes over triangulations
we refer to [18].

Like the KLT, AT is an adaptive scheme, i.e. it adapts to the characteristics of a given image.
This gives it an inherent advantage over non-adaptive methods such as JPEG or JPEG 2000.
Unlike the KLT, it can be efficiently encoded via contextual coding techniques, see [22]

Thinning algorithm

A thinning (also known as decimation or simplification, see [36]) strategy for digital images is
a recursive, greedy data removal scheme. In each step, the best candidate for removal, called
the least significant pixel, is removed from the current set of pixels. It is chosen based on some
pre-defined removal criterion that depends on the luminance value of each pixel. Recall from
chapter 2.1 that all pixels constitute the set P. By recursively removing a pixel in every step we
obtain a sequence of nested subsets

Pn ⊂ Pn+1 ⊂ · · · ⊂ PN = P. (3.1)
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The scheme starts with the full set P = PN consisting of |P| = N pixels and finishes with a
set Pn of |Pn| = n most significant pixels. Here, the amount of significant pixels n is significantly
smaller than N . It may be chosen at the start to achieve a desired cardinality of Pn or during the
scheme once some predefined condition is met.

After each removal the significance of every pixel has to be re-evaluated. During the iterative
process, this re-evaluation is potenitally very expensive computationally. In order to reduce this
complexity, the AT algorithm employs special data structures and an advantageous local error
indicator. Before introducing it, we start by describing the image representation scheme in the
next sections. It utilizes linear splines over the Delaunay triangulation of Pn.

3.1 Delaunay Triangulations

A triangulation of a set Pn ⊂ R2 containing n ∈ N vertices is a set of triangles that covers the
convex hull of Pn. They are an important tool in numerical mathematics, one example being the
construction of computational grids, and are widely used in various algorithms. For a more in
depth definition and details concerning the usage of triangulations we refer to [13].

Definition 3.1 Given a planar point set Pn of n vertices, a conformal triangulation is a decom-
position of the convex hull of Pn into triangles T ≡ T (Pn) = {T}T∈T , satisfying the following
properties:

• the vertex set of T is Pn,

• the intersection of two distinct triangles is either empty, a vertex or an edge,

• ⋃
T∈T T = Conv(Pn).

A triangle is in this sense defined as the convex hull of three noncollinear planar points.

In this chapter the vertices in Pn will correspond to a set of pixels. While a conformal
triangulation of a pixel set would already be adequate to approximate an image via linear splines,
it is not unique. This would be a severe limitation of the adaptive thinning scheme, as the
triangulation would have to be encoded as well. To this end, we introduce Delaunay triangulations.

Definition 3.2 A Delaunay triangulation D ≡ D(Pn) of a planar point set Pn is a conformal
triangulation such that the circumcircle of any triangle T ∈ D does not contain any point of Pn
in its interior.

An example of a conformal and a Delaunay triangulation of the same point set can be seen in
Figure 3.1. Note that while the triangulation in 3.1(a) contains long, thin triangles, the Delaunay
triangulation over the same point set in 3.1(b) maximizes the minimum angle.

Delaunay triangulations have several important benefits compared to regular conformal trian-
gulations:

• if no four points in Pn are co-circular, i.e. if no 4 points lie on one circle, then the Delaunay
triangulation is unique,
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3.2. Image representation

(a) Conformal triangulation. (b) Delaunay triangulation.

Figure 3.1: Two different triangulations over a point set consisting of 8 points.

• the Delaunay triangulation of a point set Pn of cardinality |Pn| = n can be computed
efficiently in O(n log(n)) steps,

• for any vertex p ∈ Pn, its removal D(Pn \ p) can be computed by a local update.

Of course the first property is not fulfilled for all point sets. In particular, if we consider a
point set P consisting of pixels on a regular grid (as is standard for digital images) or a subset
thereof, this condition will usually not be fulfilled. Fortunately there exist efficient, reproducible
computational methods for choosing a Delaunay triangulation without ambiguity in such a case.
An example of this, namely simulation of simplicity, can be found in [27]. The basic idea is to
perturb the given pixels slightly in a predetermined way, while keeping the perturbation small
enough to not change the nondegenerate positions of points relative to each other. Accordingly,
we will from here on out assume that the Delaunay triangulation D of a point set is unique.

Even though the Delaunay triangulation can be computed efficiently in O(n log(n)) steps,
computing it after every step would be too expensive. The pixel removal was therefore designed
to only require a local update. Figure 3.2 shows the removal of a pixel p ∈ Pn. In the resulting
Delaunay triangulation D(Pn \ p) only the direct cell (i.e. the domain consisting of all triangles
containing p as a pixel) has to be retriangulated. It is consequently computationally very cheap to
remove a pixel during the thinning process, as the local update required only concerns few pixels.
The Delaunay triangulation in 3.2(b) is only calculated based on four pixels. In Figure 3.2 four
triangles in the cell of p in 3.2(a) are replaced by two triangles in 3.2(b) after its removal. All
other cells remain unchanged.

3.2 Image representation

Next, we consider bivariate functions L : Conv(Pn) → R that rely on a triangulation T (Pn) of
a planar point set Pn. We choose to utilize piecewise linear polynomials over each triangle. In
particular, the AT scheme requires continuous, piecewise linear polynomials over a given triangu-
lation.
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p

(a) Delaunay triangulation of a pixel set
before pixel removal.

(b) Delaunay triangulation of the pixel set
with one pixel removed.

Figure 3.2: Pixel removal of p from a pixel set Pn.

Definition 3.3 Given a planar point set Pn along with a conformal triangulation T (Pn), the
linear splines space ST is defined as

ST := {L ∈ C (Conv(Pn)) : L|T ∈ Π1 for all T in T } ,

where Π1 denotes the linear space of all bivariate linear polynomials.

The linear spline space ST contains all continuous functions over Conv(Pn) whose restriction
to any triangle T ∈ T is a linear polynomial. We call elements of ST simply linear splines over
T (Pn). Piecewise bivariate linear functions have a simple representation and are uniquely defined
by the values L(p) at each point p ∈ Pn. Hence, ST forms a finite dimensional linear function
space with its dimension given by the number n of vertices in Pn. An example of a linear spline
over the Delaunay triangulation from Figure 3.1(b) is shown in Figure 3.3.

Figure 3.3: Linear spline over the Delauny triangulation from Figure 3.1(b)

AT applied to a digital image I returns a set of adaptively chosen significant pixels Pn along
with their luminances I(p) for all p ∈ Pn. We now show how to reconstruct an approximation
Ĩ to I from this data. To this end, recall from Chapter 2.1 that a digital image I is given as a
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3.3. Selection of Significant Pixels

collection of luminances over a set of pixels P. In order to approximate I, we thus have to ensure
a pixelwise approximation for every pixel p ∈ P, i.e.

I(p) ≈ Ĩ(p).

The basis for this approximation is the function LI,D ∈ SD that interpolates I on Pn. As per
our previous considerations, it is uniquely defined by D ≡ D(Pn) and the luminances I(p) via

LI,D(p) = I(p)

for all significant pixels p ∈ Pn. An approximation Ĩ is computed by letting Ĩ(p) be defined by the
rounded value of LI,D(p). For a digital image the luminances are represented as an r-bit unsigned
integer, but the value of LI,D at each pixel p ∈ P will generally not be an integer. We thus have
to discretize it, which is done by rounding to the nearest integer.

Definition 3.4 Given an image I on a pixel set P along with a set of significant pixels Pn ⊂ P,
the adaptive thinning reconstruction Ĩ is given by

Ĩ(p) = Round (LI,D(p)) ≈ I(p) (3.2)

for every pixel p ∈ P.

In order for (3.2) to make sense, and thus for SD to be an approximation space for the
image I, the convex hulls Conv(P) and Conv(Pn) have to coincide. Accordingly, in the initial
perturbation of pixel positions, the four corners of I are unperturbed and the other boundary
pixels are perturbed along the edges of Conv(P). The four corner pixels will not be removed
during the thinning process and are thus contained in every set of significant pixels Pn for any n.

3.3 Selection of Significant Pixels

As the reconstruction Ĩ is strongly dependent on the set of significant pixels Pn, a good choice of
Pn is crucial and is discussed in depth in [20]. In particular, the linear spline LI,D(Pk) should be
close to the original image I for every subset Pk in the sequence (3.1), with n ≤ k ≤ N . Recall from
Chapter 2.1 that the quality of an image approximation can be measured by the peak signal to
noise ratio, see (2.8). Since the PSNR is inversely proportional to the MSE, we construct subsets
Pn ⊂ P in such a way that the approximation error function η in (2.7) is small. For notational
purposes we will denote η(Ĩ, I) ≡ η(Pn,P) if Ĩ is constructed as in (3.2) with D ≡ D(Pn).

The significance of a pixel is defined via the approximation error. It is the error incurred by
its removal from the set Pn.

Definition 3.5 Given an image I on a pixel set P along with a pixel subset Pn ⊆ P, the signifi-
cance of a pixel p ∈ Pn is defined as

η(p) = η (Pn \ p,P) .
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In [21] it was shown that the AT algorithm is significantly improved by considering least
significant pixel pairs instead of single pixels. A pair of pixels is said to be least significant in Pn
if it minimizes the significance, and thus the approximation error, among all possible pixel pairs.

Definition 3.6 Given an image I on a pixel set P along with a pixel subset Pn ⊆ P, the pixels
{p∗1, p∗2} ⊂ Pn ⊂ P are a least significant pixel pair in Pn iff

η(p∗1, p∗2) = min
{p1,p2}⊂Pn

η(p1, p2),

where the significance of a pixel pair {p1, p2} ⊂ Pn is simply

η(p1, p2) = η (Pn \ {p1, p2},P)) .

Finally, a pixel is said to be least significant in Pn if it belongs to a least significant pixel pair
and has the smaller significance among the pair.

Definition 3.7 Given an image I on a pixel set P along with a subset Pn ⊆ P, a pixel p∗ ∈ Pn is
least significant in Pn iff it belongs to a least significant pixel pair (p∗, p) ⊂ Pn × Pn and satisfies

η(p∗) ≤ η(p).

3.4 Post-processing

Given a certain amount of significant pixels n, we wish to approximate an image I optimally . To
this end, we aim to find P∗n, the set of pixels that minimizes the approximation error among all
sets of pixels with size n

η(P∗n,P) = min
Pn⊂P,
|Pn|=n

η(Pn,P).

Unfortunately, finding such a set is NP-hard and therefore infeasible to solve algorithmically.
This is the reason a greedy thinning algorithm is used to approximate the optimal set P∗n. Even
though the AT algorithm chooses the optimal set in each step as seen above, the resulting set
of significant pixels Pn may differ substantially from P∗n. To improve the performance of the
scheme, a pixel exchange was introduced by Demaret and Iske in [17] as a local optimization
post-processing procedure.

Given a set Pn ⊂ P, let Pn = P \ Pn be the complement of Pn in P. A pixel pair
(p1, p̄2) ∈ Pn×Pn is said to be exchangeable iff the removal of p1 and a subsequent addition of p̄2

to Pn reduces the error incurred by approximation, i.e. iff η((Pn \ {p1}) ∪ {p̄2},P) < η(Pn,P). If
there are no further exchangeable pairs of pixels (p1, p̄2) ∈ Pn × Pn, the Delaunay triangulation
D(Pn) is locally optimal and is used from here on out.

Having aquired a locally optimal set of significant pixels, the PSNR is further reduced by a
least squares approximation, see [48] for a brief introduction. It was first integrated into the AT
algorithm in [21].
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Given the locally optimal set Pn of significant pixels, there is no guarantee that the linear spline
constructed as an interpolant to I over Pn in (3.2) is the best possible linear spline L∗I,D ∈ SD.

Definition 3.8 Given an image I on P and a set of most significant pixels Pn ⊂ P, the linear
spline L∗I,D ∈ SD is called the best approximation to I from SD iff it minimizes

∑
p∈P

∣∣∣L∗I,D(p)− I(p)
∣∣∣2 = min

L∈SD

∑
p∈P
|L(p)− I(p)|2 . (3.3)

Since SD is a finite-dimensional linear space and Pn ⊂ P, the best approximation exists and
is unique. Ĩ constructed from L∗I,D is the reconstruction of I output by the AT algorithm. It is
determined by the set of significant pixels Pn (along with its unique Delaunay triangulation D(Pn))
and its optimal luminances I∗(p) = L∗I,D(p) for p ∈ Pn. The number of parameters describing
L∗I,D depends on the amount n of significant pixels.

3.5 Adaptive Thinning Algorithm

Having discussed all necessary steps, we summarize the AT algorithm in Algorithm 2. We are
given an image I ∈ {0, 1, . . . , 2r − 1}P for a bit length r as luminances of a set of pixels arrayed
in a rectangular grid with resolution N = X1 × X2. Additionally, the desired amount n of
significant pixels as well as the amount s of post-processing exchanges are specified. n can also
be conditionally set during the algorithm once the approximation quality has fallen under a given
threshold, but this does not change the algorithm. Each of the possible s post-processing pixel
exchanges strictly reduces the approximation error, until a potential locally optimal Delaunay
triangulation is attained. For large data sets it is not always feasible to compute the locally
optimal Delaunay triangulation, thus an upper bound on pixel exchanges is necessary.

Algorithm 2: Adaptive Thinning
Input: original image I on original pixel set PN ; amount n of significant pixels; amount s

of post-processing swaps
Output: significant pixels P∗n; quantized luminances I∗q.

1 Calculate unique Delaunay triangulation D(PN ) after simulation of simplicity.
2 for k = 1, . . . , N − n do
3 Find a least significant pixel pN−k+1 ∈ PN−k+1.
4 Let PN−k = PN−k+1 \ {pN−k+1}.
5 Retriangulate the cell of pN−k+1 and update significance of affected pixels.

6 Convert resulting set of pixels Pn into a locally more optimal set P∗n via s pixel exchanges.
7 Perform least squares approximation which results in optimal luminances I∗ over P∗n.
8 Encode significant pixels P∗n and quantized luminances I∗q via contextual coding.

After the set of significant pixels P∗n is adaptively chosen and quantized luminances I∗q are
determined, they have to be encoded efficiently. To this end, contextual coding was utilized in [22].
Briefly put, contextual coding makes use of causal information to give context to the mode of the
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current symbol at the encoder and decoder. Information to be exploited are clusters of significant
pixels and the size of edges of triangles contrasted to their difference in luminances.

Finally, the reconstruction of the image at the decoder is shown in Algorithm 3.

Algorithm 3: Reconstruction of I
Input: significant pixels P∗n; quantized luminances I∗q.
Output: approximation Ĩ ≈ I

1 Perturb P∗n by the same rules applied at the encoder and compute the unique Delaunay
triangulation D(P∗n).

2 Reconstruct L∗I,D ∈ SD from Ĩ∗q.
3 Reconstruct Ĩ.

An example of a compression of the well-known test image Lena is shown in Figure 3.4.
The image resolution is 256 × 256, for a total of |P| = 65536 pixels with a bit length r = 8,
see 3.4(a). Consequently, the greyscale values of the luminances are in {0, . . . , 255}, so that
I ∈ {0, . . . , 255}256×256. We let the AT algorithm remove 61536 pixels, so that we obtain
4000 = n = |Pn| significant pixels. Finally, we let s = 5000, so that a maximum of 5000 post-
processing pixel exchanges take place. After acquiring the optimal luminances, the quantization
is also performed with a step size of 8. The sparse set P4000 of significant pixels can be seen
in 3.4(b) and its unique Delaunay triangulation in 3.4(c). Reconstructing I by linear splines over
the Delaunay triangulation D(P4000) yields the approximation Ĩ seen in 3.4(d). Ĩ admits a PSNR
value of 34.3408 dB when compared to the original image I.
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(a) Original image I. (b) Set of significant pixels P4000.

(c) Delaunay triangulation D(P4000). (d) Reconstruction Ĩ of I.

Figure 3.4: AT reconstruction of Lena over a set of 4000 significant pixels.
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Chapter 4

Graph Signal Processing

In the last chapter we have shown how to efficiently approximate digital images via linear splines
over Delaunay triangulations. The approximation with linear splines is necessary for a unique
reconstruction over a given triangulation, but also detrimental to the reconstruction of fine scale
detail. To add these fines scale details back to the reconstruction, signal processing techniques for
irregular data domains are essential.

Typically, digital signal processing deals with signals defined in continuous domains, which are
sampled to get a digital representation for further processing. These signals are usually based on a
domain such as space or time and represent evolution of a variable on a regular lattice (luminance
on a two dimensional grid in the case of images). As such, a lot of research in conventional
signal processing is directed at signals sampled over such rigid lattices, such as the DCT or DWT
presented in Chapter 2. However, there are several applications that require a more flexible
geometry. Prime examples for this are sensor, biological or neural networks, but also irregular,
triangular image domains.

A popular method to add flexibility is to model the required domains by graphs. Graphs
are simple structures that consist of some objects (possibly with associated data) and connections
between them. As such, they are able to model pairwise relations between objects, for example the
correlation of neighbouring pixels in an image. In recent years spectral graph theory, see [10], has
been utilized to extend important mathematical tools and ideas from conventional Fourier analysis
to a graph setting. While most of the early research focused on analyzing the underlying graphs,
signals on graphs are of increasing interest. To this end, frequency spectra and expansion bases
for a graph Fourier transform (GFT) [41] have been defined and applied to various problems
as mentioned above. Graph signal processing (GSP) is the field that collects all these results,
see [77], [80].

In this chapter we present the basic principles of graph signal processing, namely graphs
and signals defined on them. Additionally, we extend concepts such as signal smoothness from
conventional signal processing to signals defined on graphs and define a GFT.

4.1 Weighted Graphs

Graphs present a flexible way to model objects and pairwise relations between them. They com-
prise a set of vertices along with a set of edges. Vertices model objects, for example pixels in an
image. Two vertices may be connected by an edge to convey some sense of relation.

Definition 4.1 A finite graph G = (V, E) is an ordered pair of disjoint, finite sets, where V is a
set of vertices (nodes) and E ⊆ V × V a set of edges (links).
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We denote a vertex by v ∈ V and the number of vertices by N ∈ N, so that V = {v1, . . . , vN}
with |V| = N . The edges of a graph are denoted by e ∈ E and the number of edges by M ∈ N, so
that E ⊆ {e = (vi, vj) : vi, vj ∈ V} and |E| = M . We say that E defines a topology on V. Depending
on context, we alternatively denote a vertex by its index, i.e. vi ≡ i, which translates to edges,
i.e. e = (vi, vj) ≡ (i, j). Two disctinct vertices vi, vj ∈ V connected by an edge e ∈ E are said to
be adjacent, denoted by vi ∼ vj , and e is said to be incident to vi and vj . Two distinct edges are
incident if they share a common vertex. An example of a graph GE with VE = {v1, . . . , v7} and
EE = {e1, . . . , e9} is shown in Figure 4.1(a).

In order to characterize the pairwise, symmetric relationship between two distinct pixels, we
introduce weighted undirected graphs.

Definition 4.2 A weighted undirected graph G = (V, E ,W) is an ordered triple, where V and
E are defined as in Definition 4.1 and the edges are weighted via a symmetric, non-negative
weighted adjacency matrix W = [Wi,j ]1≤i,j≤N ∈ RN×N . In particular, an edge e = (vi, vj) ∈ E
connecting vertices vi, vj ∈ V has the weight Wi,j = Wj,i > 0. If vi and vj are not adjacent we
have Wi,j = Wj,i = 0.

We do not allow loops, i.e. edges e = (vi, vi), thus Wi,i = 0 for all 1 ≤ i ≤ N . In this thesis,
the weighted adjacency matrix W indicates similarities or dissimilarities between adjacent pixels
in digital images. Their pairwise relationship is symmetric, hence the choice of undirected graphs.
The edge set is symmetric, i.e. vi ∼ vj ⇔ vj ∼ vi and Wi,j = Wj,i.

From here on out all graphs will be weighted and undirected unless otherwise stated. Addi-
tionally, we refer to the weighted adjecency matrix simply as weight matrix. An example of a
weight matrix can be seen in Figure 4.1(b), where every edge in the previous example graph GE
has been weighted with weight 1.

e1

e 2
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3
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4

e5

e6

e7

e
8

e9

v1 v2

v3

v4

v5

v6 v7

(a) Example graph GE consisting of seven vertices connected by 9 undirected edges.




0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 1 1 0 0
0 1 1 0 1 1 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
0 0 0 0 0 1 0




(b) Weighted adjacency
matrix WE of GE .




2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 4 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 1




(c) Degree matrix DE of
GE .




2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 3 −1 −1 0 0
0 −1 −1 4 −1 −1 0
0 0 −1 −1 3 −1 0
0 0 0 −1 −1 3 −1
0 0 0 0 0 −1 1




(d) Graph Laplacian LE of GE .

Figure 4.1: An example graph GE along with its weight, degree and graph Laplacian matrix.
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The degree d(vi) of a vertex vi ∈ V is the sum of weights of all edges incident to vi, i.e.

d(vi) ≡ di =
∑
vj∈Ni

Wi,j ,

where Ni denotes the neighbourhood of vi, that is all vertices adjacent to vi. Note that the degree
of a vertex may be computed by taking the sum of all elements in the ith row of W. All degrees
constitute the degree matrix D, which is the diagonal matrix that comprises the degrees of every
vertex, i.e. D = diag(d1, . . . , dN ).

The main tool for graph signal processing as presented in [80] is the graph Laplacian matrix.

Definition 4.3 Given a graph G, its (non-normalized) graph Laplacian matrix L is defined as
the difference between its degree matrix D and weight matrix W, i.e.

L := D−W. (4.1)

The degree matrix and graph Laplacian matrix of GE are displayed in Figure 4.1(c) and 4.1(d)
respectively. An extensive overview over the properties of the graph Laplacian can be found in [64]
and [65]. In the following, we present the relevant facts for graph spectral processing on images.

The main building blocks of a GFT are the eigenvalues and eigenvectors of L.

Proposition 4.1 Given a graph G, its graph Laplacian L is a real, symmetric and positive semi-
definite matrix. As such, it admits a complete set of orthonormal eigenvectors {uk}k=0,1,...N−1

and associated real, non-negative eigenvalues {λk}k=0,1,...N−1, satisfying

Luk = λkuk,

for all k = 0, 1, ..., N − 1. �

Note that there is not necessarily a unique set of eigenvectors. We will assume throughout this
thesis that a set of eigenvectors is chosen and fixed. Proposition 4.1 can alternatively be rewritten
with matrices. Let U = [u0| . . . |uN−1] ∈ RN×N be the matrix that comprises the eigenvectors of
L as columns and Λ = diag(λ0, . . . , λN−1) ∈ RN×N the matrix that contains the eigenvalues of L
on its diagonal. Then we have

LU = UΛ.

Note that all elements in a row of L sum to zero, thus 0 is a guaranteed eigenvalue. Moreover,
the amount of such eigenvalues is linked to the number of connected components. A connected
component C of G is a subset C ⊆ V with no edges between C and V \C, in which any two distinct
vertices can be joined by a path that lies completely in C.

Proposition 4.2 Given a graph G, the multiplicity of eigenvalue 0 of L is equal to the number
of connected components in G. If G is connected, the eigenvalue λ0 = 0 will appear exactly once,
with the corresponding eigenvector being a constant vector, i.e. u0 = 1√

N
(1, . . . , 1)T . �
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We denote the full spectrum of L by σ(L) := {λk}k=0,1,...N−1. In this thesis we only regard
fully connected graphs and sort the eigenvalues in ascending order, so that

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1. (4.2)

In some cases it may be beneficial to not have a constant vector as an eigenvector. Hence,
another option is to normalize each weight Wi,j by a factor of 1√

didj
, which yields the normalized

Graph Laplacian.

Definition 4.4 Given a graph G, its normalized graph Laplacian L̃ is defined as

L̃ := D−
1
2 LD−

1
2 .

Even though the first eigenvalue is still zero, its associated eigenvector is not constant. We
denote the eigenvectors of L̃ by {ũl}l=0,...,N−1 and its spectrum by σ(L̃) := {λ̃l}l=0,...,N−1, where
σ(L̃) satisfies

0 = λ̃0 < λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃N−1 ≤ 2.

Both the non-normalized and the normalized graph Laplacian are special cases of generalized
graph Laplacians, see [4]. A generalized graph Laplacian of a graph G is a symmetric matrix M
such that Mi,j < 0 whenever (vi, vj) is an edge of G and Mi,j = 0 if vi and vj are distinct and not
adjacent.

4.2 Graph Signals

To extend the concept of signals to the graph setting, graph signals are defined as real valued
functions that assign each vertex a value.

Definition 4.5 A graph signal f : V → R defined on the vertices of a graph G maps every vertex
v ∈ V to a value f(v) ∈ R.

A graph signal is represented by a vector f ∈ RN , with the ith value in f corresponding to
the value of the ith vertex vi in V. In this thesis we thus use the following terms equivalently
[f ]i ≡ f(i) ≡ f(vi). An example of a graph signal on the example graph GE is provided in
Figure 4.2. For graph signals f ∈ RN the graph Laplacian defines a difference operator, as it
satisfies

(Lf)(i) =
∑
vj∈Ni

Wi,j(f(i)− f(j)).

The Laplacian matrix can alternatively be constructed via the incidence matrix, see [4].
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v1 v2

v3

v4

v5

v6 v7

Figure 4.2: Graph signal on GE . The values at each vertex are represented by the blue bars, where
the length depicts the magnitude and the direction the sign.

Definition 4.6 Given a graph G = (V, E ,W) with E = {e1, . . . , eM} and an arbitrary but fixed
orientation for every edge (i, j) ∈ E, the incidence matrix J ∈ RM×N is defined by

[J]k,i =


−1 if ek = (i, j),

1 if ek = (j, i),

0 otherwise,

for 1 ≤ k ≤M and 1 ≤ i ≤ N .

As the incidence matrix depends on the order of edges E = {e1, . . . , eM}, we assume an
arbitrary but fixed order of edges is given for every weighted graph from here on out. The
incidence matrix JE of GE is displayed in Figure 4.3(a). In order to construct L from J, we let
Ŵ ∈ RM×M be the diagonal matrix with Ŵk,k = Wi,j for every edge ek = (i, j) ∈ E .

Proposition 4.3 Let G be a graph with incidence matrix J and Ŵ as above. The graph Laplacian
L of G is then given by

L = JTŴJ. (4.3)

�




−1 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −1 0 1 0 0 0
0 0 −1 1 0 0 0
0 0 −1 0 1 0 0
0 0 0 −1 1 0 0
0 0 0 −1 0 1 0
0 0 0 0 −1 1 0
0 0 0 0 0 −1 1




(a) Incidence matrix JE
of GE .

e1

e2

e3

e4

e5

e6

e7

e8

e9

(b) Line graph GE,` of GE .

Figure 4.3: Incidence matrix and line graph of GE .
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Note that the construction of L in (4.3) is indpendent of the edge orientation chosen and
identical to the definition in (4.1). Given the incidence matrix of a graph, we are thus able to
reconstruct L just from the diagonal entries of Ŵ, which we alternatively arrange as an edge
weight vector.

Definition 4.7 Given a weighted Graph G = (V, E ,W) with edge set E = {e1, . . . , eM}, we define
the edge weight vector w ∈ RM by

[w]k := Wi,j ,

where Wi,j is the weight of edge ek = (i, j) ∈ E.

The diagonal matrix Ŵ is reconstructed from the edge weight vector by Ŵ = diag(w). In
later chapters it will be useful to consider w as a graph signal on the line graph of G.

Definition 4.8 Given a graph G = (V, E), its line graph G` = (V`, E`) is an unweighted graph
with vertex set V` = E. Each node ve ∈ V` represents an edge e ∈ E and two nodes are adjacent
iff their corresponding edges are incident in G.

The line graph GE,` of GE is displayed in Figure 4.3(b). For easier distinction we use the
terms vertex and edge for the primal graph and node and link for the line graph. Note that the
construction of G` is independent of possible edge weights on G and only depends on its topology.

The edge weight graph signal w ≡ w` : E` → R simply assigns each node e ∈ V` the weight we
of its corresponding edge e ∈ E .

4.3 Graph Signal Smoothness

In conventional signal processing, smooth signals play an important role. They are compressible,
as they can be closely approximated by a small number of coefficients in the spectral domain. More
specifically, in classical Fourier analysis the eigenvalues of the complex exponentials

{
ei2πξt

}
ξ∈R

convey a certain sense of frequency. They are the eigenfunctions of the Laplace-Operator and
act as elemental frequencies. For values of ξ close to zero they are said to be smooth, or of low
frequency. The larger |ξ| gets, the coarser the signal becomes. In this sense, a smooth, low
frequency signal is a function that is slowly osscilating, whereas coarse, high frequency functions
oscillate much more rapidly.

When analyzing signals on graphs, their properties (especially the smoothness) depend on the
intrinsic structure of the data domain. Here, it is represented by the weighted graph G. A smooth
graph signal fs is a signal that varies slowly across the graph, whereas a coarse graph signal fc
oscillates more rapidly along the graph. To be more precise, we consider two vertices vi, vj ∈ V
connected by an edge e = (vi, vj) ∈ E . If the weight Wi,j � 0 is large, a smooth graph signal
has similar values, i.e. |fs(i)− fs(j)| ≈ 0. A coarse graph signal on the other hand could have
dissimilar values.

An example of the influence underlying graphs can have on the smoothness of a graph signal
is shown in Figure 4.4. It shows three graphs, G1, G2 and G3, that share the same vertex set
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4.3. Graph Signal Smoothness

V = {v1, . . . , v9}. We are interested in the smoothness of a given graph signal given on each of
them, namely f = (−1,−3/4,−1/2,−1/4, 0, 1/4, 1/2, 3/4, 1)T . What differs is the selection of edges,
each with weight 1. While f is a smooth signal with respect to G1, as only vertices with similar
values are adjacent, G2 increases the coarseness by adding edges between vertices with dissimilar
values. G3 is the coarsest graph, as almost all edges connect vertices with dissimilar values.

(a) G1 (b) f on G2 (c) f on G3
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Figure 4.4: An example of the importance of the underlying graph. G1, G2 and G3 share the same
vertex set and the same graph signal f = (−1,−3/4,−1/2,−1/4, 0, 1/4, 1/2, 3/4, 1)T is given
on them. The increasing coarseness can be detected visually, via the graph Laplacian
form, as fTL1f = 0.5 < fTL2f ≈ 7.1 < fTL3f ≈ 18.4, or through the graph spectral
representations. After applying the GFT the information on G1 is compacted in the
low frequencies, while the energy is distributed more evenly for coarser graphs.

In order to analyze the smoothness of a signal with respect to a graph, objective measures
have been developed. Differential geometry provides tools to analyze continuous signals on given
geometric structures. Therefore, we turn to discrete calculus on graphs in order to extend these
intuitions and ideas to the graph setting, see [30], [95].

The smallest building block is the directional edge derivative. It measures the variation of a
signal along an edge at a vertex.

Definition 4.9 Given a graph G along with a graph signal f , the edge derivative of an edge
e = (i, j) ∈ E at vertex vi ∈ V is defined as

∂f
∂e

∣∣∣∣
vi

:=
√
Wi,j(f(j)− f(i)).
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Accumulating all edge derivatives at a vertex in a vector results in the graph gradient.

Definition 4.10 Given a graph G along with a graph signal f , the graph gradient of f at a vertex
vi ∈ V is defined as

∇if :=
[
∂f
∂e

∣∣∣∣
vi

]
e∈E so that e=(vi,·)

.

The local variation at vertex vi is defined as its norm, i.e.

‖∇if‖2 :=

 ∑
e∈E, e=(vi,·)

(
∂f
∂e

∣∣∣∣
vi

)2
 1

2

=

 ∑
e∈E, e=(vi,·)

Wi,j (f(j)− f(i))2

 1
2

.

(4.4)

The local variation gives an indication of the local smoothness of f around vertex vi. ‖∇if‖2
tends to be small if f has similar values at a vertex and its neighbourhood or if dissimilar values
are connected via an edge with small weight. For notions of global smoothness we consider the
discrete p-Dirichlet form.

Definition 4.11 Given a graph G along with a graph signal f , the discrete p-Dirichlet form of f
is for p ∈ N defined as

Sp(f) := 1
p

∑
vi∈V
‖∇if‖p2 = 1

p

∑
vi∈V

 ∑
vj∈Ni

Wi,j (f(j)− f(i))2


p
2

. (4.5)

If p = 1, then S1(f) is the total variation of f with respect to the underlying graph. For later
chapters it will be useful to measure the global smoothness by setting p = 2.

Definition 4.12 Given a graph G along with a graph signal f , the graph Laplacian quadratic
form is defined as

S2(f) = 1
2
∑
vi∈V

∑
vj∈Ni

Wi,j(f(j)− f(i))2

=
∑

(i,j)∈E
Wi,j(f(j)− f(i))2 = fTLf . (4.6)

Note from (4.6) that fTLf = 0 iff f is constant along all vertices, i.e. f(i) = c ∈ R for all
1 ≤ i ≤ N . More generally, we observe that fTLf weighs the differences of adjacent values of
a graph signal along an edge by its corresponding edge weight. In smooth signals, an edge with
large weight will connect two vertices with similar values, whereas vertices with dissimilar values
are connected by an edge with low weight. This results in small values of fTLf if the graph signal
is smooth with respect to the graph and large values if it is coarse. The graph Laplacian quadratic
form defines a semi-norm ‖·‖L via

‖f‖L =
∥∥∥L 1

2 f
∥∥∥

2
=
√

fTLf =
√
S2(f).
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4.4. The Graph Fourier Transform

In addition to this, S2(f) = fTLf is cheaply computed. As such, it is the preferred indicator
for the smoothness of a signal with respect to the underlying graph. The above considerations are
confirmed by Figure 4.4, where the values of the graph Laplacian quadratic form of f in regard to
each graph are given. Note that the value increases as the graph gets coarser, from fTL1f = 0.5
to fTL3f ≈ 18.4.

4.4 The Graph Fourier Transform

Similarly to classical Fourier analysis, the eigenvectors of the graph Laplacian carry a sense of
frequency. Graph Laplacian eigenvectors associated with small eigenvalues correspond to low
frequencies, i.e. they are smoother and vary only slowly across the underlying graph. As the
eigenvalues grow, the associated Laplacian eigenvectors become coarser. An example of this can
be seen in Figure 4.5, where we show some eigenvectors of the graph Laplacian of the simple chain
graph with constant edge weight 1 in 4.5(a). While the first eigenvector u0 associated with λ0

is constant, the variations along edges increase for the third eigenvector u2. The eigenvector u5

corresponding to the largest eigenvalue λ5 is very coarse, with large variations along every edge.

v1 v2 v3 v4 v5 v6

(a) Chain graph with 6 vertices.

v1 v2 v3 v4 v5 v6

(b) Eigenvector u0, associated with λ0 = 0.

v1 v2 v3 v4 v5 v6

(c) Eigenvector u2, associated with λ2 = 1.

v1 v2 v3 v4 v5 v6

(d) Eigenvector u5, associated with λ5 ≈ 3.73.

Figure 4.5: Increasing frequency of the eigenvectors of the graph Laplacian demonstrated on a
chain graph.

This subjective impression is validated through the Courant-Fischer Theorem, see [4]. By
applying the theorem to the graph Laplacian L, the eigenvalues and eigenvectors can be defined
iteratively via the Rayleigh quotient.
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Proposition 4.4 Given a graph G, its spectrum σ(L) := {λ0, . . . , λN−1} is given by

λ0 = min
f∈RN
‖f‖2=1

fTLf , (4.7)

λk = min
f∈RN
‖f‖2=1

f⊥span(u0,...,uk−1)

fTLf (4.8)

for 1 ≤ k ≤ N − 1. The eigenvector uk is the minimizer of the kth problem. �

Proposition 4.4 links the eigenvalues and eigenvectors to the graph Laplacian quadratic form,
which measures the smoothness of a graph signal. We begin with the eigenvector corresponding to
u0 = 0, which is a constant vector with norm 1 in (4.7). As the index k increases, the eigenvector
uk minimzing (4.8) has a larger value for fTLf and is thus coarser than the previous eigenvectors
corresponding to lower indices.

The classical Fourier transform decomposes a signal f ∈ L1(R) into its elemental frequencies.
Likewise, the Graph Fourier Transform (GFT) decomposes a graph signal f ∈ RN , given on the
vertices of a graph G, into its elemental frequencies. In this context the elemental frequencies are
given by the eigenvectors uk with frequency λk for 0 ≤ k ≤ N − 1. Depending on context, we
designate both λk and k as the frequency of an elemental frequency. To this end, we analogously
define the GFT as the expansion of a graph signal in terms of the eigenvectors of the corresponding
graph Laplacian.

Definition 4.13 Given a graph G along with a graph signal f , the graph Fourier transform f̂ ∈ RN

is defined as
f̂ := UT f . (4.9)

In contrast to the classical setting, where the Fourier transform f̂ ∈ C (R) is defined on the
whole real line, the GFT is only defined on discrete values, namely the spectrum σ(L) of L.
Therefore, in later analysis of signals, we only consider a discrete set of frequencies. The Fourier
coefficient of a specific eigenvalue λk ∈ σ(L) for 0 ≤ k ≤ N − 1 is given by

f̂(λk) ≡ f̂(k) = 〈f ,uk〉 =
N∑
i=1

f(i)uk(i)

The GFT as defined in (4.9) generalizes the two-dimensional DCT in the following sense, as
shown in [94]. Consider a graph G in which the vertices are spatially arranged in a regular two-
dimensional grid. Each vertex is connected to its direct horizontal and vertical neighbours with
an edge that has weight 1. Then the GFT degenerates to the two-dimensional DCT. This is the
reason we use the non-normalized graph Laplacian for now, as its GFT is at least as good as the
DCT.

In [94] it is further shown that the GFT is optimal in decorrelating a certain class of signals.
Consider a signal f ∈ RN following a zero mean Gaussian Markov Random Field with respect to
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4.4. The Graph Fourier Transform

a graph G and precision matrix Q. Then the Laplacian matrix L of G corresponds to the precision
matrix Q and the graph Fourier transform is the KLT.

The inverse graph Fourier transform simply reverses the graph Fourier transform.

Definition 4.14 Given a graph G along with a Fourier coefficients f̂ ∈ RN , the inverse graph
Fourier transform is defined as

f = Uf̂ . (4.10)

Recall that U is an orthonormal matrix, so that

f := UUT f = Uf̂ .

Thus, a graph signal f may be reconstructed via its graph Fourier coefficients f̂ . This can be
understood as a weighted sum, where the graph Fourier coefficient f̂(k) weighs the contribution of
its associated elemental frequency uk. In particular, a specific graph signal value is reconstruced
via

f(i) =
N−1∑
k=0

f̂(λk)uk(i)

for 1 ≤ i ≤ N .

v1 v2 v3 v4 v5 v6

(a) Graph signal f on a chain graph in the vertex
domain.

-1.5

-1

-0.5

0

0.5

0 1 2 3 4

(b) The transformed signal f̂ in the graph spectral do-
main.

Figure 4.6: Equivalent representation of a graph signal in the vertex and graph spectral domain.
On the left is the standard graph signal that resides on the vertices of a graph. The
same signal transformed to the graph spectral domain is shown on the right, where the
Fourier coefficient f̂(k) of each eigenvector uk is mapped over the associated eigenvalue
λk for 0 ≤ k ≤ 5. Note that the graph signal in (a) has mean zero. Consequently, we
have f̂(λ0) = 0.

These two transforms give us two equivalent ways to represent a graph signal in different
domains: (i) the vertex domain, which corresponds to the conventional time or spatial domain,
and (ii) the graph spectral domain, which corresponds to the frequency domain in conventional
signal processing. An example of the two representations in different domains is depicted in
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Figure 4.6, where a graph signal on the chain graph in 4.5(a) is converted to the graph spectral
domain.

With the Definition in (4.9) the Parseval relation holds, see [81], i.e. for any graph signals
f ,g ∈ RN we have

〈f ,g〉 = 〈f̂ , ĝ〉.

Consequently, the energy of a signal remains unchanged by the GFT, since

‖f‖22 = 〈f , f〉 = 〈f̂ , f̂〉 = ‖f̂‖22. (4.11)

Even though the total energy remains unchanged, its concentration may change depending on the
underlying graph. An example of this is seen in Figure 4.4, where the graph Fourier transform of
a signal is shown on three increasingly coarser graphs. While most of the energy on the smoothest
graph is contained in one coefficient associated with a low frequency, the energy is more evenly
distributed on the coarser graphs. Our focus from now on will be to construct graphs so that a
given signal is compressible on them. Following the discussion above, it will be important to select
weights that weigh edges between pixels with large intensity differences lowly, while allowing large
weights between similar pixels.
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Chapter 5

Combining Adaptive Thinning and Graph Sig-
nal Processing

We have introduced the method of adaptive thinning in Chapter 3, that efficiently reconstructs
images with linear splines over a Delaunay triangulation of carefully selected significant pixels.
Afterwards, Chapter 4 introduced graph signal processing as a tool to define frequency spectra on
irregular image domains.

In this chapter we show how to combine both approaches and propose a post-processing scheme,
named simply ATGSP, for the adaptive thinning algorithm. It utilizes graph spectral processing to
improve the compression by adaptive thinning. To be more specific, we add additional information
on triangles that are reconstructed poorly and have visual impactful information missing. Graphs
are constructed on them and the individual triangle signals are treated as graph signals and
compressed.

Due to the reconstruction with linear splines, most visually detrimental triangles will be tex-
tured. Textures provide an important contribution to the visual quality, especially the repetetive
structure of texture patterns is crucial for a good visual quality, see [83]. Therefore, we adapt
tools from the literature and develope techniques that construct weighted graphs to capture and
enhance these texture patterns. To this end, the blocks are classified as either smooth, textured
with a dominant principal gradient or complexly textured with the structure tensor. We show
how to construct graphs so that the given signal is smooth in regard to them.

For now we focus on the theoretical aspect, before discussing the practical implementation in
Chapter 6. An overview of the proposed ATGSP scheme can be seen in Figure 5.1. The individual
steps will be explained in more detail in the following sections.

5.1 Related Work on Graph Spectral Image Compression

Before we introduce graph signal processing on triangular image blocks, we describe alternative
techniques found in the literature for image compression utilizing GSP.

While it has already been used extensively in image processing such as image restoration, see
for example [7], [44], [87], [92], image filtering, see for example [34], [66], [91], and image segmen-
tation, see for example [53], [93], [59], we focus on image compression utilizing the GFT in this
section. For a more extensive overview of all the topics mentioned above, we refer to the survey
paper [8].
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original image I

adaptive thinning

AT reconstruction
Ĩ

triangulation D(Pn)

texture signal It

significant triangles

smooth blocks
blocks with dominant

principal gradient
complex blocks

edge weights edge weights

non-adaptive 8-way
connectivity graph

weighted adaptive graph
weighted 4-way

connectivity graph

coefficient description mode description graph description

Figure 5.1: Overview of the proposed ATGSP compression scheme. A texture signal is derived
from the AT reconstruction. Significant triangles are classified into three classes and
their signals compressed. For textured image blocks adaptive graphs are constructed.
Each significant signal is transformed via the GFT. Based on the classification, the
coefficient, mode and graph description have to be encoded.

The basic approach of image compression via GSP is fairly straightforward. Here, we only give
a brief overview and refer to Section 5.3 for a more detailed discussion. Each of the approaches
introduced in this section splits an image into

√
N×
√
N pixel blocks, reducing the computational

cost. This is the fundamental difference to our proposed method, where the image blocks are given
as triangles of a triangulation generated by AT. Additionally, we aim to add extra detail only to
selected areas of the AT reconstruction, namely those with notable visual distortions. As a result,
we assume low bit rates and signals with a high textural content, see Sections 5.2 and 5.4.

Given an image signal f ∈ RN on a set of pixels Pf , an associated weighted graph G = (V, E ,W)
is constructed. The vertices V of the graph are the pixels Pf . A graph signal fG is constructed from
the image signal by assigning each vertex the intensity of its corresponding pixel, i.e. fG(v) = f(p)
if vertex v ∈ V corresponds to pixel p ∈ Pf .

To encode the graph signal f , it is transferred to the graph spectral domain via the GFT,
where suitable filtering methods can be applied. At the decoder, the quantized coefficients f̂ind
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are transferred back to the vertex domain via the inverse GFT, which results in an approximation
f̃ ≈ f . As in conventional image processing, the key to good compression is to compact most
energy into a few coefficients.

Since the GFT is fully defined by L, which in turn depends on the choice of W, it is of utmost
importance to select a suitable edge set E and weights W yielding the best compression perfor-
mance. In the graph setting, this means to select a graph G so that the image signal f is smooth
with regard to it.

The approach in [79] designs an edge-adaptive transform, where the edge weights are in the
set {0, 1}. Edge detection is applied to each block and generates a binary edge map. A graph is
generated from the edge map by connecting each vertex to its four immediate neighbours only if
there is no sharp edge between them. This implies a strong correlation between the connected
pixels. An edge-adaptive transform is then generated by constructing L from the constructed
weighted graph. The encoder compares the rate-distortion performance of the edge-adaptive
transform with that of the DCT and selects the method that yields the lower rate-distortion
cost. Selecting the weights in {0, 1} leads to disconnected graphs, which increases the coefficient
transmission cost. Additionally, the triangles given by the AT algorithm already give a good
approximation of edges, yielding an extra edge description unnecessary.

In [45], the authors optimize the GFT for piecewise smooth images. They consider both
weighted and unweighted transforms, where the weighted GFT imposes edge weights to be in
the discrete set {wo, 1}. The optimal edge weight wo ∈ (0, 1] for weakly correlated pixels is
derived so that the resulting GFT approximates the KLT on a piecewise smooth model signal.
For each block signal a graph learning problem is defined. It optimizes the transformation in
rate-distortion terms. A further reduction of the transmission and complexity cost is achieved via
a lookup table that stores the most popular graphs. At the encoder it compares the performance
of a low-resolution GFT with a high resolution GFT and selects the more efficient transform. As
this approach is optimized for piecewise smooth images, it is not compatible with our setting. We
do, however, generalize the derivation of an optimal edge weight wo for weakly correlated pixels
to natural images in Section 5.8.

An optimization problem is also formulated in [33] to minimize the rate-distortion terms, but
explicitly accounts for the graph-transmission cost. They treat the weights as a signal that lies on
the line graph. Hence, they are not limited to discrete edge weights and are thus able to reflect the
pairwise relationship between pixels better. While this method is designed for natural images, it
assumes a high bit rate, which does not always transfer to our setting. Nevertheless, we adapt the
optimization problem to our needs in section 5.7.1, but compare it with a new method assuming
low bit rates.

The approach in [75] utilizes the structure tensor as a tool to summarize the distribution of
the gradient. Blocks with a dominant principal gradient are clustered into groups depending on
the angle of the principal gradient. For each cluster, a graph template is designed to reflect the
structure of the image on its blocks. As we operate on natural images, not all image blocks have a
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dominant principal gradient. We adapt this approach for triangular image blocks with a dominant
gradient in Section 5.6.

A similar approach is chosen in [69], which introduces a new class of graph transforms named
graph template transform. It exploits a priori information known about a block and represents
it using a graph template. Building upon this information, it imposes a sparsity pattern on the
graph Laplacian to minimize the graph transmission cost and approximates the KLT. But while it
is effective at constructing a graph so that f is smooth in regard to it, encoding it is still inefficient.

5.2 Geometric and Textural Components of an Image

An image can be regarded as a composition of three parts:

• the geometric part of an image comprises the large geometrical features of an image,

• the textural part is the part of an image that contains the fine scale details (textures),

• and noise is a deviation of a signal from its true value by a small, random quantity.

Noise is introduced by external factors, usually during image acquisition, and is present in
many images. To mitigate the level of noise, algorithms decompose an image into the true signal
part and a noise part. This may be done for example by spatial, transform or frequency filtering
methods, dictionary learning methods or hybrid methods. For a comprehensive overview of de-
noising techniques we refer to [37]. From here on out we assume that a given image is essentially
noise-free.

Thus, we are only interested in decomposing an image into its geometric and textural compo-
nents. An exact, objective distinction between these two components is difficult, as the definition
of each component is vague and depends on the image at hand. Depending on scale, the tex-
tures contained in one image may be the geometric component of another one at a smaller scale.
Typically, the main geometrical features that comprise the geometric component are separated by
decisive edges and generally correspond to low frequencies in the frequency domain. Textures are
usually of a local, periodically oscillating nature and generally correspond to high frequencies.

For example, if we again consider the image Lena in Figure 5.2(a), the main geometrical
features are Lena in the foreground, comprising separate minor objects like her hat, face and
shoulder, as well as some separate pieces of furniture in the background. Conversely, fine scale
details such as the structure of the straw hat, its feathers and her hair constitute the textural
part.

Having made this intuitive disctinction between the geometry and textures of an image, we
consider a reconstruction by AT. As discussed in Chapter 3, we approximate an image I by
linear splines over the Delaunay triangulation D(Pn) of an adaptively chosen pixel set Pn, for
4 ≤ n ≤ |P|. Since the most significant pixels in Pn are selected to minimize the loss of PSNR,
pixel-pairs straddling sharp edges are usually contained in Pn. On the other hand, pixels in regions
with only small variations in intensity values are more likely to be eliminated during the thinning
process. Therefore, significant pixels are expected to be concentrated around the edges of an
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(a) Original image of Lena. (b) Set of significant pixels P2500.

(c) Delaunay triangulation D(P2500). (d) AT reconstruction Ĩ.

Figure 5.2: Original image of Lena along with a set of significant pixels, its Delaunay triangulation
and the corresponding AT reconstruction.

image. As a consequence, a reconstruction by AT is able to capture the geometric component of
an image very well.

The same is not true for fine scale details. While the choice of linear splines as an approximation
space is essential due to the unique interpolation property on triangulations, it is detrimental to
the reconstruction of textures. Since the significant pixels are concentrated around edges, there
are potentially large regions with a low concentration of them, that are consequently covered by
large triangles. For a sparse set Pn with n � |P|, comprising only few significant pixels, these
regions may very well contain visually significant textures. Linear splines are inherently unsuitable
to represent textures, since approximating I with linear splines over large triangles will flatten out
most fine scale details. Accordingly, a reconstruction by AT is not able to capture most textures
of an image.

This is supported by the exemplary AT reconstruction over n = 2500 significant pixels shown
in Figure 5.2. As predicted, they are concentrated around sharp edges in 5.2(b). Heavily tex-
tured regions such as the straw hat or her hair contain only few significant pixels. Therefore, the
Delaunay triangulation D(P2500) in figure 5.2(c) covers those regions with large triangles. When
comparing the reconstruction in figure 5.2(d) to the original image, these regions look flat and
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devoid of any structure. The feathers of the hat are an example of the vague definition of textures.
Even though viewing the image one would classify them as small scale details, single feathers are
distinct enough that the AT algorithm maintains a high concentration of pixels in this area.

As the AT algorithm approximates the geometric components of an image very well, our
goal from here on out is to add textures for a better visual quality. Since the PSNR is a bad
representation of visual quality, especially regarding textures, we evaluate the image quality via
the SSIM as introduced in Section 2.1 for the rest of this thesis. To decompose the image I into
its geometric and textural part, we assume the reconstruction Ĩ by AT to constitute the geometric
component. We consequently define the difference between I and Ĩ as the textures.

Definition 5.1 Given an image I along with an reconstruction by adaptive thinning Ĩ, we denote
the textural component of an image by It and define it as

It := I− Ĩ. (5.1)

We focus on the compression of visually significant sections of the textural component It.
Note that while It ∈ {−255, . . . , 0, . . . , 255}P has a potentially large range, due to the definition
of It and the nature of the approximation Ĩ its values will generally be contained in a limited
range around 0. This is advantageous for quantization in Section 6.1.4, as a smaller quantization
support reduces the quantization error. Figure 5.3(a) shows It as the difference between I and
Ĩ in figures 5.2(a) and 5.2(d) respectively. Even though the intensities are scaled up to the full
intensity range, the background is mainly smooth, whereas the hat, hair and feathers are coarse.
Additionally, the original structure of the straw hat is mostly contained in It.

The AT reconstruction Ĩ relies on the Delaunay triangulation D(Pn). Therefore, we utilize the
triangles in it as the basic image blocks for further processing. Employing techniques from GSP,
we add extra information on triangles T ∈ D(Pn) to approximate It on them. Unfortunately, a
triangulation of a point set with n vertices consists of |(D(Pn))| ∼ 2n triangles due to the Euler
characteristic, see [13]. Adding information for every triangle would clearly be infeasible. Rather,
we select a set of most significant triangles Tsig ⊂ D(Pn).

We will show how to select a specific set Tsig in Section 6.1.1 based on the desired reconstruction
quality. Generally, triangles in Tsig add the most visual quality among all triangles in D(Pn). They
are usually large and contain important textures, which increases the visual quality when they are
combined with Ĩ. Figure 5.3(b) displays the most significant textured triangles from It in 5.3(a)
for a medium quality. Most triangles in Tsig depict either textures on the hat and hair or moderate
edges in the background. Notably, few significant triangles lie on the feathers of Lenas hat. This
is due to the choice of significant pixels in the AT algorithm, which results in small triangles in
this region.
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(a) Textural component It.
−59

0

54

(b) Significant triangles Tsig of It.

Figure 5.3: Textural component It of I given by Lena in figure 5.2. For a better visual recognition,
the intensities are shifted and rescaled to the full intensity range {0, . . . , 255}.

5.3 Basic Compression of Textures

In this section we show the basic reconstruction scheme for the texture component of a given im-
age by demonstrating it on a single significant triangle. As discussed above, we treat the texture
image signal as a graph signal on a graph given by vertices defined by the pixels in the triangle.
Our aim is to acquire a sparse, quantized representation of the signal in the graph spectral domain
that is to be encoded. Figure 5.4 shows the basic outline of this process.

texture
image data It

image data
as signal fT

Laplacian
matrix LT

transformed

signal f̂T

thresholded and quantized

signal f̂ind

Figure 5.4: Basic reconstruction technique for a significant triangle T ∈ Tsig ⊂ D(Pn).

Let It be the texture component of an image I as in (5.1), where Ĩ is the AT reconstruction on
the significant pixel set Pn. Furthermore, T ∈ Tsig ⊂ D(Pn) is a specific significant triangle over
which additional information is to be added. In order to treat It as a graph signal, we reevaluate
the perception of triangles. A triangle T ∈ D(Pn) is defined in Definition 3.1 as the convex hull
of three noncollinear planar points in Conv(Pn). To construct a discrete graph, we discretize T
by interpreting it as the pixels in the region of the triangle.

Definition 5.2 Let I be a digital image along with a triangulation D(Pn) of a significant pixel
set Pn. Given a triangle T ∈ D, we define its corresponding discrete triangle as

Td = {p1, . . . , pN} := P ∩ T.
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Chapter 5. Combining Adaptive Thinning and Graph Signal Processing

From here on out, we do not explicitly distinguish between discrete triangles and regular trian-
gles as in Definition 3.1. It should always be apparent from context which definition is applicable
and we simply denote T ≡ Td. We call T either triangular image block or simply image block if
the context is unambiguous.

To transfer the texture signal It on T to a graph setting, we construct a connected graph
GT = {VT , ET ,WT } on the set of pixels T and regard It on T as a signal fT on GT .

Naturally VT = T , where each vertex is associated with a pixel and we may use the terms
interchangably. Next, we simply let the value of fT at a vertex be the luminance of its associated
pixel, i.e. fT (v) = It(p) if vertex v ∈ VT is associated with p ∈ T . Note that in this definition the
graph signal depends on the order of vertices. For the rest of this thesis we assume that a unique
ordering for every triangular image block is given.

The choice of topology, i.e. the edge set ET , has to be given more care. T is given as a
collection of pixels over a regular two-dimensional grid, which forms the basis of the following
considerations. Recall that the texture component of an image is the fine scale detail and of
oscillating nature, whereas the reconstruction by AT created a global context for each pixel of a
triangle. Consequently, we aim to select a graph that captures the small-scale, local variations
of intensities in the neighbourhood of a pixel. This is done by connecting pixels based on their
physical distance. Two choices utilized in this thesis are the 4-way and 8-way connectivity graph.

Definition 5.3 Let V ⊂ {(x1, x2) ∈ N× N : 1 ≤ x1 ≤ X1, 1 ≤ x2 ≤ X2} be a finite vertex set on
a regular two-dimensinal grid. The 4-way connectivity graph is defined as

E4 := {(vi, vj) ∈ V × V : vi = vj ± (1, 0) ∨ vi = vj ± (0, 1)} ,

and the 8-way connectivity graph as

E8 := {(vi, vj) ∈ V × V : vi = vj + k · (1, 0) +m · (0, 1), where k,m ∈ {−1, 0, 1}} .

They are constructed from a set of pixels by connecting each vertex to its direct vertical and
horizontal neighbours in the 4-way connectivity graph and additionally to its diagonal neighbours
in the 8-way connectivity graph. Examples of both the 4-way and 8-way connectivity graph on a
set of pixels are depicted in Figure 5.5. In Delaunay triangulations D the minimum angle of all
triangles is maximized. Long, thin triangles are therefore avoided in the construction of D. Thus,
we can assume that the 4-way and 8-way connectivity graphs of T ∈ Tsig ⊂ D are connected.
For now we choose the 8-way connectivity graph, since it gives a better context for the localized
correlation between pixels.

After constructing the edge set ET , the corresponding weight for each edge has to be selected
in the construction of WT . We have seen in Chapter 4.3 that the smoothness, and thus the
compressibility, of a signal depends on the intrinsic structure of its underlying graph. Especially
for textured image blocks the weights in WT should be chosen in a fashion that charaterizes
the signal, i.e. high weights on edges between similar pixels and low weights between dissimlar
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v7 v8 v9 v10

v4 v5 v6

v2 v3

v1

(a) 4-way connectivity graph
on V.

v7 v8 v9 v10

v4 v5 v6

v2 v3

v1

(b) 8-way connectivity graph
on V.

Figure 5.5: Examples of connectivity graphs as given in Definition 5.3 on a triangular image block.
The vertex set is given by V = {v1, . . . , v10}.

vertices. One common way of doing this is via the Gaussian similarity function, see [88], so that

Wi,j = exp
(
−|fT (i)− fT (j)|2

2α2

)
(5.2)

for all edges (vi, vj) ∈ ET given a parameter α ∈ R+. But encoding this graph directly is
infeasible, as the amount of edges in graphs constructed as above generally exceeds the amount
of vertices.

Sections 5.6 and 5.7 aim to construct an efficiently encodable graph for textured image blocks
so that fT is smooth with regard to it. Therefore, we postpone this discussion to those sections.
For smooth blocks without much detail, most of the weights in (5.2) are close to one. Consequently,
the standard choice for WT is to set the weight of every edge equal to 1, i.e. Wi,j = 1 for every
edge (i, j) ∈ ET . Figure 5.6 shows an exemplary construction of the weighted graph GT and graph
signal fT over a triangular image block T = {p1, . . . , p10} consisting of 10 pixels.
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1 1
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v7 v8 v9 v10

v4 v5 v6

v2 v3
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(a) Weighted graph GT with con-
stant edge weight 1.

←−

p7 p8 p9 p10

p4 p5 p6

p2 p3

p1

(b) Pixels belonging to trian-
gular image block T

−→ fT =




It (p1)
It (p2)
It (p3)
It (p4)
It (p5)
It (p6)
It (p7)
It (p8)
It (p9)
It (p10)




(c) Graph signal fT

Figure 5.6: Construction of a graph GT and signal fT from a given image It over a Triangle T
comprising 10 pixels.

Having transferred It on T to a graph setting, we aim to acquire a sparse representation of the
signal. This is achieved by transforming the signal fT to the graph spectral domain via the GFT.
To this end, we construct the graph Laplacian LT from the weight matrix WT and compute its
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eigen-decomposition LT = UTΛTUT
T . We then transform fT via

f̂T = UT
T fT . (5.3)

Following our earlier discussion in Sections 2.1 and 4.4, this decomposes fT into its elemental
frequencies uk. The coefficient f̂T (λk) gives the amount of its corresponding frequency uk present
in fT for all 0 ≤ k ≤ |T | − 1. Due to the construction of graphs so that the texture signals are
smooth with regard to them, most information will be concentrated in few coefficients. This leads
to a good reconstruction of fT even when only considering a few relevant coefficients.

Some representative elemental frequencies of a smooth graph on an isosceles triangular image
block with 1275 vertices are shown in Figure 5.7. Clearly, the fine scale details increase as the
frequency increases. While u1 is constant, u5 and u10 contain some moderately smooth variations.
The density and oscillation of the details in uk increase with k, until u1275 consists only of very
fine oscillations.

u1 u5 u10 u30

u75 u150 u750 u1275

Figure 5.7: A selection of elemental frequencies uk of a smooth graph on an isosceles triangular
image block comprising 1275 pixels. Each eigenvector is rescaled to show the underly-
ing structure. Note that the fine scale details contained in each eigenvector uk increase
as its corresponding frequency λk increases.

5.4 Signal Smoothness for Textured Blocks

Similarly to the DCT in the JPEG compression scheme in Section 2.3, the GFT in (5.3) is
reversible and causes no noteworthy coding gain. It is instead used to enable better quantization
as introduced in Section 6.1.4. Due to the choice of standard edge weight 1, smooth triangular
image blocks are compressible. They are reconstructed well with just a few low-frequency elemental
frequencies displayed in Figure 5.7.

More care has to be given to image blocks that are heavily textured. They contribute more to
the degradation of the visual quality of the reconstruction by AT and are subsequently more likely
contained in Tsig. We have seen in Section 4.3 that the smoothness of a signal f depends on the
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5.4. Signal Smoothness for Textured Blocks

intrinsic structure of the data domain given by W, measured by the graph Laplacian quadratic
form fTLf . If the edge weights of a graph given by L capture the similarities of connected pixels in
the signal, f is smooth and fTLf will be small. Our aim from here on out is therefore to construct
weighted graphs that are efficiently encoded and capture the structure of textures to exploit signal
smoothness.

(a) Texture image I. (b) Reconstruction of I on Gc
with SSIM = 0.5536.

(c) Reconstruction of I on Ga
with SSIM = 0.8455.
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(e) f̂a = UT
a f .

Figure 5.8: Stereotypical texture image block I transformed via 4-way connectivity graphs. Ga is
adaptive to I, while Gc assigns constant weights to all edges. The reconstructions are
based on the ten absolutely largest Fourier coefficients.

The importance of such a graph selection is illustrated in Figure 5.8. It shows a stereotypical
texture image I containing small scale details. 5.8(a) shows the original 50×50 pixel image signal
comprising 3 × 4 pixel substructures. We construct two simple 4-way connectivity graphs, one
that adapts to the image and another that does not. In the adaptive graph Ga, edges between
substructures are assigned weight 0.05, while edges within are assigned weight 1. The second
graph Gc is non-adaptive and simply assigns constant weight 1 to every edge. We let f be the
corresponding graph signal to I on Ga and Gc, albeit shifted to have zero mean so that f̂(λ0) = 0.
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The image signal f is transformed to the graph spectral domain via f̂c = UT
c f and f̂a = UT

a f .
Figures 5.8(d) and 5.8(e) show the Fourier coefficients f̂a and f̂c respectively. Note that the total
energy of the signal is spread out much more on the spectrum σ(Lc). On the other hand, the
contribution of most frequencies λk ∈ σ(La) is negligible. More of the total information of f is
contained in just a few low-frequency Fourier coefficients in f̂a compared to f̂c.

This is supported when reconstructing f using only the ten absolutely largest Fourier coeffi-
cients of f̂a and f̂c. Figure 5.8(c) depicts the reconstruction based on Ga. It shows a predominantly
accurate representation of the substructures, especially the edges between them are distinct. The
basic gray scale intensitiy values are reconstructed, even though some deviations exist. On the
other hand, the reconstruction based on f̂c in Figure 5.8(b) reproduces only the basic intensitiy
gradient. It fails to reconstruct any of the structures contained in the original image. The in-
creased image quality of the reconstruction with an adaptive graph is reflected in the SSIM values.
Reconstruction with the non-adaptive graph result in a SSIM value of 0.5536, which is a lot worse
than the value for a reconstruction with the adaptive graph with a SSIM value of 0.8455.

Recall from Section 2.1 that a good transformation optimizes the rate-distortion problem given
by

minD + λR.

Since we aim to design adaptive transformations for suitable image blocks, the total coding cost
needs to reflect both the cost of transmitting the signal coefficients, denoted by Rc(f ,L), as well
as the cost of the transform description, denoted by RL(L). Note that the transform cost is
essentially the description cost of L. This gives us the following optimization problem

min
L∈RN×N .

L graph Laplacian

D(f ,L) + λ (Rc(f ,L) +RL(L)) .

However, if we consider a uniform scalar quantizer with constant step size ∆ ∈ R+ for all
transform coefficients and assuming high bit rates, i.e. small ∆, the expected value of distortion
D is approximated by

D = N∆2

12 ,

see [40]. N is the amount of coefficients, which remains constant for different orthonormal trans-
forms. For simplicity, we therefore assume that the expected distortion is independent of the
transformation for high bit rates. Hence, we only minimize the rate terms.

Definition 5.4 Given an image signal f ∈ RN , the optimal GFT for uniform quantization as-
suming high bit rates is defined as the minimizer of

min
L∈RN×N .

L graph Laplacian

Rc(f ,L) +RL(L).

Section 5.7.1 shows how to define proxies for both rates in the case of complex textured blocks.
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A different approach to reduce the graph transmission cost RL(L) is to constrain possible
weights to a small, discrete set. To this end, we consider three different possible relations between
neighbouring pixels:

Strong correlation: they are strongly correlated if their intensities are very similar. This
happens if they are part of a smooth region of an object.

Weak correlation: they are weakly correlated if their intensities are moderately dissimilar.
This happens if they are part of a textured region of an object.

No correlation: they are not correlated if their intensities are very dissimilar. This happens
if they are part of different geometrical features and bridge a sharp edge.

Recall that the image blocks we are considering are triangles given by the triangulation D(Pn)
of a set of significant pixels Pn. We have seen in Section 5.2 that they are aligned with sharp
edges and describe them well. Hence, we assume that there are no uncorrelated pixels in a specific
significant image block. Consequently, we choose edge weights from the discrete set Wi,j ∈ {wo, 1}
for some wo ∈ (0, 1). Neighbouring pixels are connected via an edge with weight 1 if they are
strongly correlated and by an edge with weight wo otherwise. Sections 5.6 and 5.7.2 describe
construction methods for graphs with discrete weights, while Section 5.8 shows how to select an
optimal edge weight wo for weakly correlated pixels.

5.5 Classification of Blocks

To distinguish between smooth and textured blocks, we need to estimate the local structure in
each image block. Previous approaches have utilized the structure tensor (ST) as a tool for this
purpose. In [33] it was used as a means to set parameters for an optimization problem, while [75]
extracted the dominant principal gradient for ensuing processing. We go one step further and
classify all image blocks via the ST and select an appropriate GFT for each class. To this end,
we first generalize the ST to an arbitrary domain and apply it to triangular image domains.

For a more detailed overview of the ST we refer to [51].

5.5.1 Block Structure Tensor

The ST summarizes the dominant directions and associated magnitudes of the gradient over a
specified window and gives a measure for their coherence. For two-dimensional domains the
discrete ST is a 2 × 2 matrix that represents partial derivatives in a specified neighbourhood of
a pixel. As we want to summarize the texturedness of a given image block T ∈ Tsig, we modify
the conventional definition of the two-dimensional ST. This lets us evaluate the ST of a complete
triangular block.
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Definition 5.5 Given an image I, the 2-dimensional block structure tensor over a pixel set T ⊂ P
is defined as

ST := 1
|T |


∑
p∈T

(Gx(p))2 ∑
p∈T

Gx(p)Gy(p)∑
p∈T

Gx(p)Gy(p)
∑
p∈T

(Gy(p))2

 ,
where Gx(·) and Gy(·) are the horizontal and vertical partial derivatives respectively, evaluated at
a pixel.

The factor 1/|T | replaces a weight function w : T → R in the conventional ST centered at a
single pixel. Each pixel thus has the same impact on the block structure tensor and

∑
p∈T

w(p) = 1

is fulfilled. This normalizes the block structure tensor and ensures comparability between
differently sized blocks. From here on out all structure tensors will be on blocks, therefore we
refer to them simply as structure tensor or ST.

Performing an eigen-decomposition on the two-dimensional ST ST , we obtain eigenvalues λ1

and λ2, which we order so that λ1 ≥ λ2 ≥ 0. The corresponding eigenvectors u1 and u2 summarize
the distribution of the gradient ∇G = (Gx, Gy)T in the pixel block T . λ1 and λ2 show the strength
of the directional intensity change along u1 and u2 respectively. u1, corresponding to the larger
eigenvalue λ1, is the principal gradient. The relative difference between λ1 and λ2 is quantified by
the coherence.

Definition 5.6 Given a block structure tensor ST with eigenvalues λ1 ≥ λ2 ≥ 0, where λ1 > 0,
the coherence cT is defined as

cT :=
(
λ1 − λ2
λ1 + λ2

)2
.

The coherence cT indicates the degree of anisotropy of the gradient, with 0 ≤ cT ≤ 1. If the
gradient is totally aligned with u1, then λ1 > λ2 = 0 and cT = 1. On the other hand, we have
λ1 = λ2 > 0 for an isotropic structure where the gradient has no preferred direction and thus
cT = 0. Finally, if λ1 = λ2 = 0, the intensities in the blocks are constant.

This lets us divide the image blocks into three texture classes:

Class 1: smooth blocks with only a small or no detectable gradient in any direction if
λ1 ≈ λ2 ≈ 0.

Class 2: blocks with a dominant principal gradient if λ1 � λ2 ≈ 0, i.e. if cT is large.
Class 3: blocks with no dominant gradient direction and a complex structure if both λ1 � 0

and λ2 � 0, i.e. if cT is small.

An example of a classification on Lena with a resolution of 256 × 256 pixels can be seen
in Figure 5.9. The textured signal It in 5.9(a) is again derived utilizing the AT reconstruction
with n = 2500 significant pixels. D(P2500) is split into the three classes outlined above. Small
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image blocks containing less than 20 pixels are not considered in 5.9. If λ1 < 35 for a block T ,
it is considered smooth. Textured blocks with λ1 ≥ 35 are classified into Class 2 if cT > 0.1,
otherwise into Class 3. For a better visual distinguishability, we again shifted and rescaled It to
the full intensity space as above. Figure 5.9(b) shows the smooth blocks of It contained in Class
1. Even though there is some detail given, there are no sharp edges or sudden shifts in intensity.
In contrast, the remaining two classes show a lot more fine scale detail. But while this detail
in figure 5.9(c) is aligned along mostly one direction, it is more complex in figure 5.9(d), as is
expected of Class 3.

(a) Textural part It of Lena. (b) Smooth image blocks, belonging to Class 1.

(c) Textured image blocks with a principal gra-
dient, belonging to Class 2.

(d) Textured image blocks with complex fea-
tures, belonging to Class 3.

Figure 5.9: Decomposition of the textural component It of an image of Lena on 256× 256 pixels,
based on Ĩ with 2500 significant pixels. It is decomposed into the three texture classes
introduced above.

5.5.2 Block Structure Tensor on Graphs

In order to construct the ST, we have to sample the partial derivatives Gx(p) and Gy(p) at every
pixel p ∈ T . To this end, we construct a 4-way connectivity auxiliary graph H = (VH, EH,WH)
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with VH = T and constant edge weight Wi,j = 1 for all e = (vi, vj) ∈ EH. Recall from Chapter 4.3
that the graph gradient at a vertex vi ∈ VH is given by

∇if =
[
∂f
∂e

∣∣∣∣
vi

]
e∈EH so that e=(vi,·)

,

where the edge derivative of a single edge e = (vi, vj) is defined as

∂f
∂e

∣∣∣∣
vi

=
√
Wi,j(f(j)− f(i)).

Due to the choice of a 4-way connectivity graph, ∇if comprises a maximum of four possible
components along two vertical and two horizontal edges, see Figure 5.10(b). To calculate the
directional partial derivatives, we let v ∈ T be a vertex in the interior of T and vl, vr, vt, vb ∈ T
the vertices to the left, right, top and bottom of v respectively. They are connected to v via the
edges el, er, et, eb ∈ EH respectively. Due to the constant edge weight 1, the graph gradient is

∇vf =



∂f
∂el

∣∣∣
v

∂f
∂er

∣∣∣
v

∂f
∂et

∣∣∣
v

∂f
∂eb

∣∣∣
v

 =


f(vl)− f(v)
f(vr)− f(v)
f(vt)− f(v)
f(vb)− f(v)

 . (5.4)

We define the directional partial derivatives as

Gx(v) := ∂f
∂er

∣∣∣∣
v

+
(
− ∂f
∂el

∣∣∣∣
v

)
= f(vr)− f(vl),

Gy(v) := ∂f
∂eb

∣∣∣∣
v

+
(
− ∂f
∂et

∣∣∣∣
v

)
= f(vb)− f(vt).

(5.5)

Note that the derivatives in (5.4) are oriented away from vertex v. To orient them uniformly from
left to right and from top to bottom, we reverse the direction of ∂f

∂el

∣∣∣
v

and ∂f
∂et

∣∣∣
v

in (5.5). This
evaluation of Gx and Gy is similar to the image gradient widely used in edge detection, see for
example [52], but constrained to triangular blocks defined on graphs.

For pixels not in the interior of T we choose a replicating boundary condition. That is, pixels
not in T are assumed to be of equal value as v. If a direct neighbour v∗ as above does not exist
for v ∈ T , we set f(v∗) = f(v) in (5.4). This implies ∂f

∂e∗

∣∣∣
v

= 0 for e∗ = (v, v∗) /∈ EH in (5.5).

5.6 Blocks with Dominant Principal Gradient

We first turn to the graph construction on image blocks in Class 2 with a dominant principal
gradient. The approach here is similar to [76], where image blocks are clustered into K groups on
which a graph with adaptive edges and edge weights is designed. We reduce the overhead cost by
considering only four groups with fixed graph templates and select the edge weights to be in the
set {wo, 1}.

As introduced in Section 5.5, a texture block T ∈ D(Pn) belongs to Class 2 if λ1 > λ2 ≈ 0
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(a) Image block T with EH.
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(b) The four neighbours of v in the in-
terior of T .

Figure 5.10: Computation of partial derivatives Gx and Gy on an image block T . Red edges
contribute to the computation of Gx and blue edges to the computation of Gy.

and cT is large. The ST eigenvalues λ1 and λ2 reflect the distribution of the gradient in a block.
Thus, the eigenvector u1, corresponding to λ1, represents the principal gradient, i.e. the vector
maximally aligned with the block gradient. An adaptive GFT can exploit this information for
coding gain.

Given a triangular image block T belonging to Class 2 along with its principal gradient u1,
we construct a graph GT that is connected and represents the structure of the signal. Edges
connecting pixels with similar intensity values should have standard weight 1 and edges between
pixels with dissimilar values should have weight wo. Some examples of Class 2 image blocks from
Lena in Figure 5.3 are shown in Figure 5.11.

(a) Image block in Group 4
with cT = 0.2755.

(b) Image block in Group
2 with cT = 0.3094.

(c) Image block in Group 3
with cT = 0.3693.

Figure 5.11: Examples of image blocks in Class 2, along with the eigenvectors of the ST and their
coherence. The principal gradient u1 is shown in red and u2 in blue. We remark
that the blocks are not to scale.

As the gradient is aligned with u1 in T , we expect large intensity differences in the direction of
u1. On the other hand, similar intensity values should be predominant in the direction orthogonal
to u1. Consequently, we assign weight wo to edges that align somewhat with u1 and weight 1 to
edges that are mostly orthogonal to u1.
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To this end, we distinguish between four groups of blocks based on the direction of u1. We
assign each group a suitable graph template to subsequently construct GT . A block with dominant
principal gradient is assigned a group by selecting the orientation qu1 ∈ {0◦, 45◦, 90◦, 135◦} that
is most orthogonal to u1. This can be understood as a quantization of gradient directions. Based
on the predominant gradient direction, we modify the regular 8-way connectivity graph template.
The weight of edges orthogonal to qu1 is set to 0, edges aligned with qu1 are assigned weight 1
and all other edge weights are set to wo:

• Group 1: u1 is most orthogonal to qu1 = 0◦ and T consists mostly of horizontal struc-
tures. Vertical edges are assigned weight 0, diagonal edges weight wo and horizontal
edges weight 1.

• Group 2: u1 is most orthogonal to qu1 = 45◦ and T consists mostly of structures from
bottom-left to top-right. Diagonal edges along this orientation are assigned weight 1,
horizontal and vertical edges weight wo and all other edges weight 0.

• Group 3: u1 is most orthogonal to qu1 = 90◦ and T consists mostly of vertical struc-
tures. Horizontal edges are assigned weight 0, diagonal edges weight wo and vertical
edges weight 1.

• Group 4: u1 is most orthogonal to qu1 = 135◦ and T consists mostly of structures from
top-left to bottom-right. Diagonal edges along this orientation are assigned weight 1,
horizontal and vertical edges weight wo and all other edges weight 0.

The resulting groups and group templates are shown in figure 5.12(a). For example, a block
with principal gradient u1 as in 5.12(a) belongs to Group 3 since it is most orthogonal to qu1 = 90◦.
Depending on the principal gradient u1, the graph template of the associated region is applied to
the block. Basis for this is the standard 8-way connectivity graph, where each vertex is adjacent to
its eight neigbours. The weights are then adjusted in accordance to the selected group template,
where assigning weight 0 removes the edge from ET . Figure 5.12(b) shows how to apply the graph
template for a block with qu1 = 90◦.

u1
0◦180◦

Group 1
Group 2
Group 3
Group 4

(a) Graph templates corresponding to groups 1 to 4. (b) Graph constructed for T in
Group 3.

Figure 5.12: Classification of image blocks with a dominant principal gradient u1 into four groups,
along with the corresponding graph templates. Continuous lines represent edges with
weight 1 and dashed lines edges with weight wo.
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The influence of the structure introduced by the graph templates can be seen in Figure 5.13,
where we take a model trianglular image block T and display some elemental frequencies for
the different groups. T consists of 1275 pixels arrayed in an isosceles triangle. We consider the
elemental frequencies u5, u10, u30, u750 and u1275 of graphs Gk, each constructed in accordance
to the graph template of Group k, for 1 ≤ k ≤ 4. The weight between weakly correlated pixels is
set to wo = 0.25.

Gc, u5 Gc, u10 Gc, u30 Gc, u750 Gc, u1275

G1, u5 G1, u10 G1, u30 G1, u750 G1, u1275

G2, u5 G2, u10 G2, u30 G2, u750 G2, u1275

G3, u5 G3, u10 G3, u30 G3, u750 G3, u1275

G4, u5 G4, u10 G4, u30 G4, u750 G4, u1275

Figure 5.13: Selection of elemental frequencies uk of an isosceles triangle with 1275 pixels on Gc
and Gk, 1 ≤ k ≤ 4, rescaled to the whole image range [0, 255].

For comparison, we show the elemental frequencies of a 8-way connectivity graph Gc with
constant edge weight 1 in the first row, as seen in Figure 5.7. Note that these elemental frequencies
are mainly isotropic and do not have a clear directional texture. This changes when we consider
any of the four directional groups described above.

Although the basic textures are similar in the three smaller frequencies, they still show a
clear alignment in the direction established by the graph template. As the frequency increases,
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we observe larger deviations to the textures given by the constant graph. They are still aligned
along the established direction but more localized. This localization is an additional benefit of
this scheme for capturing textures. Eigenvectors uk tend to have a similar structure for similar
values of k, especially in large frequencies. Typically, this results in similar structures with different
localizations. Hence, localized features in a textured block are represented well by single elemental
frequencies. Finally, u1275 shows the eigenvectors corresponding to the highest frequency. As they
are the coarsest eigenvectors of the underlying graphs, we observe that while the larger scale is
still aligned with the template, large differences occur along edges orthogonal to qu1.

To summarize the previous discussion, we note that the alignment with the template is present
among all frequencies, albeit more pronounced in lower frequencies.

(a) Original signal f on T . (b) Reconstruction from f̂c.
SSIM = 0.7044.

(c) Reconstruction from f̂2.
SSIM = 0.8826.
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(d) f̂c and f̂2.
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(e) f̂1, f̂3 and f̂4.

Figure 5.14: Fourier coefficients of a stereotypical signal f with a dominant principal gradient
orthogonal to qu1 = 45◦. Additionally, reconstructions with two Fourier coefficients
of f over Gc and G2 are shown. The reconstruction from f̂2 is clearly superior.

In order to support the theory above, we compare the performance of a constant graph and
different adaptive graphs on a stereotypical image block in Group 2. To this end, we let T be
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5.6. Blocks with Dominant Principal Gradient

a triangular image block with an image signal f belonging to Group 2, see Figure 5.14. T is
again an isosceles triangle consisting of 1275 pixels, with f given on T containing structures from
bottom-left to top-right, depicted in Figure 5.14(a). We construct a smooth graph Gc and adaptive
graphs Gk for 1 ≤ k ≤ 4 according to the graph template of each respective group. During the
construction of the adaptive graphs, the edge weight for weak transitions is set to wo = 0.25. We
compute their graph Fourier coefficients f̂c, f̂k for 1 ≤ k ≤ 4 as in (5.3).

Figure 5.14(d) compares f̂c (blue signal) with f̂2 (red signal). Since more energy in f̂2 is
compacted in the lower frequencies along with larger single coefficients, it is clear that f is smoother
in regard to G2 than to Gc. This is confirmed by a reconstruction with the two largest Fourier
coefficients in f̂c and f̂s, see Figure 5.14(b) and 5.14(c) respectively. The reconstruction on G2

manages to reconstruct the basic diagonal structure, with a SSIM-value of 0.8826. This is a lot
better than a reconstruction on Gc that fails to do so completely, which is reflected in a lower
SSIM-value of 0.7044.

Figure 5.14(e) displays the Fourier coefficients of the other groups. The coefficients f̂1 and f̂3

are very similar, which was to be expected as they are both semi-aligned with the regular main
structures. Both are evidently coarser than f̂2, since their main energy is concentrated in higher
frequencies than even f̂c, with a peak in very high frequencies. As expected, f̂4 is the coarsest,
since its underlying template assumes structures orthogonal to those present in f .

This subjective impression is supported by the values of the graph Laplacian quadratic forms.
Each adaptive graph has a comparable amount of edges with weight 1 and edges with weight
wo, thus the values of fTLkf for 1 ≤ k ≤ 4 are comparable. G2 has the lowest value with
fTL2f ≈ 3.67 × 106, which again indicates the smoothness of f in regard to G2. The values for
G1 and G3 are equal, fTL1f = fTL3f ≈ 1.29× 107, which is almost four times the value of G1. G4

again performs the worst, with fTL4f ≈ 2.2× 107.
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1
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1.1

1.15

adaptive

constant

(a) λ1 ≥ 35 and cT ≥ 0.2.
0 5 10 15 20
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1.1
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adaptive
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(b) λ1 ≥ 100 and cT ≥ 0.2.
0 5 10 15 20

1

1.05

1.1

1.15

adaptive
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(c) λ1 ≥ 35 and cT ≥ 0.4.

Figure 5.15: Percentage of energy contained in k largest Fourier coefficients on blocks in Class 2.
Only those blocks are taken into account that fulfill the constraints.

To demonstrate the performance on a natural image, we again consider Lena. Here we re-
construct I with n = 4000 significant pixels, as this is more reasonable in a practical application.
As above, we compare the performance of adaptive graphs constructed with the graph template
of their respective groups with that of a constant graph Gc. Figure 5.15 shows the average cu-
mulative squared energy of the first k largest Fourier coefficients on image blocks T in Class 2.
The cumulative squared energy is displayed in relation to the energy contained in f̂c for different
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choices of cutoff-values for the coherence cT for λ1.
We observe that the GFT with adaptive graphs accumulates more energy than the corre-

sponding constant graph, especially when considering few Fourier coefficients. Increasing the
cutoff-value for λ1 leads to more energy compacted in the same amount of Fourier coefficients,
since this signifies more structured texture patterns. The accumulated energy increases consider-
ably more if we increase the cutoff-value for the coherence. This is expected, since this signifies
more alignment in one direction, which greatly benefits the compression via adaptive graphs based
on qu1 . We remark that the improved visual quality due to emphasized texture patterns is not
reflected in this measure.

5.7 Blocks with complex features

In this section we turn to the graph construction on image blocks T ∈ D(Pn) in Class 3. Unlike
in the last section, T contains complex features and the gradient has no predominant direction. It
is therefore not possible to summarize the textures on T by a simple directional vector. Examples
of image blocks in Class 3 are shown in figure 5.16.

(a) Complex image block
with cT = 0.0860.

(b) Complex image block with
cT = 0.0124.

(c) Complex image block
with cT = 0.0196.

Figure 5.16: Examples of image blocks in Class 2, along with the eigenvectors of the ST and their
coherence. The eigenvector u1 is shown in red and u2 in blue. We remark that the
blocks are not to scale.

We approach the problem with two different models. The first approach follows along the lines
of [33]. It defines an optimization problem that minimizes the rate-distortion cost as in Defini-
tion 5.4. In the second approach we choose weights in a block from a discrete set {wo, 1}. But
here we explicitly assume low bit rates and construct the graph accordingly. During the encoding
we evaluate which mode is more suitable to encode the given signal, see Section 6.1.3.
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5.7. Blocks with complex features

To compress the signal efficiently, we reduce the transmission cost of the transform. Recall
from Section 4.4 that given a graph G, its graph Laplacian L is constructed from its incidence
matrix J and edge weight vector w via

L = JTdiag(w)J. (5.6)

In order to reduce the graph transmission cost, we fix the incidence matrix J and thus the
topology of the graph. As a graph with fixed incidence matrix is represented by w, the graph
transmission cost grows proportionally with the amount of edges M = |E| in G. Therefore, we
apply the simpler 4-way connectivity template for the topology of G, since it contains only about
half as many edges as the 8-way connectivity graph.

Having fixed the topology of G, we compute L simply from w. To reduce the transmission
cost further, we interpret w in both approaches as a graph signal on the unweighted line graph
G` of G, see Section 4.2. Note that the line graph is uniquely determined by the pixels in T and
the topology defined above. We weigh G` by assigning each link in E` weight 1. Subsequently, we
construct the graph Laplacian L` ∈ RM×M of G` and compute its eigen-decomposition , so that
L` = U`Λ`UT

` . Since w ≡ w` is a signal on G`, we compute its GFT. It transforms w from the
vertex domain to the graph spectral domain via

ŵ = UT
` w.

Thus, we can represent L equivalently by ŵ. We again aim to select w so that it is recon-
structable by few Fourier coefficients in ŵ. What remains to be done is to construct the weight
vector w ∈ (0, 1]M which additionally reflects the similarities between neighbouring pixels.

5.7.1 Optimization of the Graph Transform

Recall from Definition 5.4 that the optimal GFT minimizes the total cost for the graph description
of a signal f on an image block

min
L∈RN×N .

L graph Laplacian

Rc(f ,L) +RL(L).

We recast this minimization problem by constructing L as in (5.6), so that Rc and RL depend
on w

min
w∈RM

Rc(f ,w) +RL(w). (5.7)

To solve this problem, we follow along the lines of [45] and [33], starting by introducing rate
proxies for Rc(f ,w) and RT (w).
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As per our previous discussion in Section 5.4, we evaluate the coefficient description cost Rc
of a transform based on the smoothness of the image signal with regard to the graph. We have
already discussed how the graph Laplacian quadratic form is a measure for the smoothness of
signal. Consequently, we use the proxy proposed in [45] and [56], namely

Rc(f ,w) = fTJTdiag(w)Jf

= fTLf

= fT
(
N−1∑
k=0

λkukuTk

)
f

=
N−1∑
k=0

λk(fTuk)(uTk f)

=
N−1∑
k=0

λk
(
f̂(λk)

)2
,

(5.8)

where uk and λk, for 0 ≤ k ≤ N − 1, are the kth eigenvector and eigenvalue of L and f̂(λk) is the
kth Fourier coefficient. Equation (5.8) shows that fTLf is an eigenvalue-weighted sum of squared
transform coefficients. As such, the DC coefficients corresponding to eigenvalue λ0 = 0 are not
taken in account. But since the topology is fixed and we assume to have a connected graph, we
can ignore this cost.

For the transform description cost RL(w), we treat w as a signal on the line graph. To this
end, we transform w to the graph spectral domain and evaluate the coding cost of ŵ. Even though
we treat both f and w as graph signals, we do not use the same coding cost approximation for
ŵ that we used for f̂ . The purpose of the approximation in (5.8) is to obtain a graph so that f
is smooth with regard to it. But we know that the current image block has a complex structure,
so w will not be smooth with regard to the constant graph G`. Instead, as proposed in [33], we
measure the transmission cost based on the sparsity of ŵ. In [62] it was shown that the cost
of coding a vector is proportional to the number of non-zero coefficients. Thus, the proxy for
the transform description cost has to quantify the sparsity of ŵ. Unfortunately, minimizing the
sparsity of ŵ is NP-hard, see [32], and therefore infeasible. Similarly to compressive sensing, we
instead approximate the sparsity of ŵ by the `1-norm, so that

RL(w) := ‖ŵ‖`1 =
∥∥∥UT

` w
∥∥∥
`1
. (5.9)

Before combining the proxies of the rate optimization in (5.7), we limit possible choices of w.
Recall that our construction of W in Chapter 4 only permitted positive weights. Furthermore,
for a controlled quantization, we set the maximum weight to 1, so that 0 < w ≤ 1, where 0 and 1
denote the constant 0 and 1 vector respectively. In fact, most common weighting functions (such
as the Gaussian weighting function introduced in Section 5.2) select weights in the range (0, 1],
see [39].

Additionally, we penalize low weights by adding a logarithmic term, as is often done in graph
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learning problems, see [54]. This is necessary because the smoothness measure fTLf does not
reflect the relation between weights. Choosing a lower weight for an edge is always better when
measuring the smoothness by fTLf . Thus, a low weight is selected between dissimilar values,
but also between similar values. The relation between the weights is completely disregarded. By
adding the logarithmic term, lower weights are only selected when the corresponding vertices have
dissimilar values, which coincides with our understanding of smoothness. The logarithmic term
has the additional benefit that it guarantees w > 0, which lets us omit the lower bound w > 0.

By combining (5.7), (5.8) and (5.9) and taking the previous considerations into account, we
obtain the following optimization problem:

min
w∈RM

fTLf + α
∥∥∥UT

` w
∥∥∥
`1
− β1T log(w),

s.t. w ≤ 1.
(5.10)

To solve this problem, recall that fTLf can be rewritten as the weighted sum of the squared
differences along edges. This lets us rewrite the first term in (5.10).

fTLf =
∑

(i,j)∈E
Wi,j(f(j)− f(i))2 = sTw,

where s ∈ RM is the vector that contains the squared intensity differences along each edge, i.e.
s(e) = (f(i)− f(j))2 for an edge e = (i, j). We remark that s only depends on J and f , not on w.
Finally, we rewrite the problem in (5.10) as

min
w∈RM

sTw + α
∥∥∥UT

` w
∥∥∥
`1
− β1T log(w),

s.t. w ≤ 1.
(5.11)

This is a convex constrained minimization problem with respect to w and solved efficiently by
interior-point methods, see [5].

5.7.2 Thresholding Edge Differences

While the optimization in the previous section results in an optimal GFT for high bit rates, this
does not necessarily transfer to low bit rates. To account for this, we propose an alternative ap-
proach to construct the edge weight vector w. According to the discussion in Section 5.4, we select
the possible edge weight for each edge e = (i, j) ∈ E from a discrete set Wi,j ∈ {wo, 1} for some
wo ∈ (0, 1). This lets us encode each edge weight as a 1-bit signal. While this already reduces the
graph description cost significantly, we can improve this by transforming w to the graph spectral
domain. Each elemental frequency u`,k defines a 1-bit signal when considering the sign of each
element. When reconstructing w from ŵ, the exact values are not important, only the signs are.
This leads to a more forgiving reconstruction scheme even with few Fourier coefficients.
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The approach has to fulfill two criteria: (i) distinguish between weak and strong correlation
and (ii) emphasize the importance of correlation. Criterium (i) is obvious, since assigning an edge
weak or regular weight defines the weight vector w. Criterium (ii) is important, since a perfect
reconstruction is almost impossible for low bit rates. Additionally, edge differences have a wide
variety of values. Large dissimilarities along edges are very important for the reconstruction and
should be reconstructed more accurately. This approach is designed to emphasize the right choice
for very similar or dissimilar values at the cost of misclassifying less important edges.

To distinguish between weakly and strongly correlated pixels, we threshold the intensity dif-
ferences along the edges of G. If the intensity difference along an edge e = (vi, vj) is large, we
select a low weight Wi,j = wo, otherwise regular weight Wi,j = 1.

Given an image signal f on a triangular image block in Class 3 and the line graph G` of this
block, we collect the intensity differences of neighbouring pixels in a vector d ∈ RM , i.e.

d(e) = f(i)− f(j)

for every edge e = (vi, vj) ∈ E . We set the weight for every edge based on d and a threshold
γ ∈ R+. The threshold is chosen based on the mean and variance of the image signal, see
Section 6.1.3. Once γ is fixed, the weight of an edge e = (vi, vj) ∈ E is chosen via

Wi,j = w(e) =

wo if |d(e)| > γ,

1 if |d(e)| ≤ γ.
(5.12)

We translate the intensity differences by γ, i.e.

dγ = |d| − γ1.

This lets us reframe the classification in (5.12) as

Wi,j = w(e) =

wo if dγ(e) > 0,

1 if dγ(e) ≤ 0.
(5.13)

Note that for a given incidence matrix J and weight wo, the graph Laplacian L can be re-
constructed directly from dγ , only depending on its sign. Therefore, we compress the translated
intensity difference vector dγ instead of the weight vector w. To this end, we treat dγ as a graph
signal on G` and consider

d̂γ = UT
` dγ .

As above, we can apply filtering methods on d̂γ in the graph spectral domain to encode dγ .
The advantage of encoding dγ is the high absolute values of similar and dissimilar values. If
dγ(e) ≈ 0 for an edge e ∈ E , then the intensity difference along e is moderately large and the
classification is not as important. If on the other hand |dγ(e)| � 0, then the intensity difference
along e is either small or very large. It is crucial that those edges are assigned the correct weight,
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i.e. we = 1 iff dγ(e)� 0 and we = wo iff dγ(e)� 0.
In practice, we select only the absolute largest Fourier coefficients of d̂γ for encoding, re-

sulting in a thresholded vector d̂γ,th. Due to the unchanged energy of a signal after a GFT in
equation (4.11), we have

∥∥∥d̂γ − d̂γ,th
∥∥∥2

2
=
∥∥∥UT

` (dγ − dγ,th)
∥∥∥2

2
= ‖dγ − dγ,th‖22 .

While this does not guarantee a perfect reconstruction, large absolute values of dγ are more
probable to be approximated good enough that the sign is correct.

5.8 Edge Weights

Having applied the discrete edge weight model in both of the previous sections, we now turn to
computing wo. The question is how to choose the weight wo ∈ (0, 1) between weakly correlated
pixels, so that the resulting GFT has the best possible performance. We derive the optimal weight
wo with methods from statistical analysis, where we show that the resulting GFT approximates
the KLT for a class of significant signals.

The approach here is based on [45], where the optimal edge weight was derived for piecewise
smooth images, where each block is assumed to only have one weak transition. We extend on that
concept by considering more complex signals with several weak transitions.

Chapter 2.2 has shown the optimal properties of the KLT regarding decorrelation and com-
paction of energy contained in a signal f ∈ RN . This is achieved by transforming f with the
eigenvector matrix of the signal’s covariance matrix Σf . As discussed above, it is not feasible to
apply the KLT directly. Consequently, we aim to construct a GFT that approximates the KLT.
This is done by selecting a weight wo so that the eigenvectors of the resulting Laplacian matrix L
approximate the eigenvectors of Σf .

As per our discussion in Section 5.4, a signal only contains strongly or weakly correlated
neighbouring pixels. For simplicity, we will derive the optimal edge weight in one dimension and
carry the weight over to two dimensions.

We construct a one-dimensional model texture signal x = (x1, . . . , xN )T ∈ RN . If a successive
pixel pair (xk−1, xk) is strongly correlated, we say they lie in a smooth transition region S, i.e.
(k− 1, k] ∈ S. For a weak correlation between xk−1 and xk they lie in a weak transition region T ,
i.e. (k − 1, k] ∈ T . This results in a partition of (1, N ],

(1, N ] = S ∪ T = S ∪
(
m⋃
i=1

(ki − 1, ki]
)
,

with m weak transitions at pixels {k1, . . . , km} ⊂ {2, . . . , N}. We now model x by a first order
autoregressive process.
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Definition 5.7 A model texture signal x = (x1, . . . , xN ) ∈ RN with m weak transitions at pixels
{k1, . . . , km} is defined by

xk =


ρ if k = 1,

xk−1 + εk if 1 < k ≤ N and (k − 1, k] ∈ S,

xk−1 + (−1)jgk + εk if 1 < k ≤ N and (k − 1, k] ∈ T , where k = kj ,

(5.14)

where εk ∼ N (0, σ2
s), ρ ∼ N (0, σ2

1) and gk ∼ N (µg, σ2
g) for some σ2

1, σ
2
s , σ

2
g ∈ R+ and µg ∈ R+.

The first entry ρ in the signal corresponds to a corner vertex of a triangle, as it anchors the
signal. As the signal to be compressed is given by It = I − Ĩ, the values of It are expected to
be around zero, so we assume ρ to have mean µρ = 0. But since Ĩ is constructed by the best
approximation as in (3.3), the variance σ2

1 is not zero. We are considering natural images, so even
in smooth regions there are going to be small variations between neighbouring pixels. This is
modeled by adding independant and identically distributed (i.i.d.) variations εk. Across the weak
transition region T the variation is larger, modeled by adding i.i.d. random gaps gk ∼ N (µg, σ2

g).
An example of a model texture signal x can be seen in Figure 5.17(a).

k

xk

η

1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a) Model texture signal x ∈ R14.

1 1 wo 1 1 wo 1 1 wo 1 1 wo 1
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

(b) Chain graph Gx corresponding to x.

Figure 5.17: A texture signal x ∈ R14 as defined in Definition 5.7 with four weak transitions at
k1 = 4, k2 = 7, k3 = 10 and k4 = 13 along with its corresponding 2-connectivity
chain graph Gx with weight wo ∈ (0, 1).

In order to approximate the KLT with a GFT, we first compute the covariance matrix Σx for
a given model texture signal. We begin by stating a small technical Lemma.
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Lemma 5.1 The matrix F ∈ RN×N , given by

F =



1 0 · · · · · · 0

−1 1 . . . ...

0 −1 1 . . . ...
... . . . . . . . . . 0
0 · · · 0 −1 1


, (5.15)

is invertable and F−1 ∈ RN×N is given by

F−1 =


1 0 · · · 0

1 1 . . . 0
...

... . . . ...
1 1 · · · 1

 .

Proof: Since F ∈ RN×N is a lower triangular matrix, we have det(F) = 1, thus F is invertible.
Next, we consider left-multiplying with F−1 for a given matrix A = [ai,j ]1≤i,j≤N ∈ RN×N . Since
F−1 is a lower triangular matrix with constant value 1 on and below the diagonal, left-multiplying
with it sums up all entries to the top of a given entry, i.e.

[
F−1A

]
i,j

=
i∑

k=1
ak,j . (5.16)

Letting A = F, we obtain the desired result

[
F−1F

]
i,j

=

1 if i = j,

0 if i 6= j,

for all 1 ≤ i, j ≤ N . �

Next, we compute the covariance matrix Σx. In the following, we assume that x ∈ RN

is a model texture signal as defined in Definition 5.7 with m weak transitions at the indices
{k1, . . . , km} ⊂ {3, . . . , N − 1}. Note that we require the first and last transition to be smooth for
technical purposes.

Lemma 5.2 The covariance matrix Σx of a model texture signal x is given by

[Σx]i,j = σ2
1 + (min(i, j)− 1) · σ2

s + min(indi, indj) · σ2
g

for 1 ≤ i, j ≤ N , where indi denotes the nearest lower weak transition index, i.e. indi = l if
kl ≤ i < kl+1, with indi = 0 if i < k1.
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Proof: Let x ∈ RN be a model texture signal as above. We expand x by

x1 = ρ,

xk − xk−1 =

εk + (−1)jgk if k = kj ,

εk otherwise

for 1 < k ≤ N . This can be expressed in matrix form via

Fx = b, (5.17)

where F ∈ RN×N is defined as in (5.15) and b ∈ RN is given by

b =



ρ

ε2
...

gk1 + εk1
...

−gk2 + εk2
...

gk3 + εk3
...
εN



, (5.18)

with the variations εk in smooth regions. Lemma 5.1 in combination with (5.17) lets us express
x as

x = F−1b.

The covariance matrix Σx now computes as

Σx = E
[
(x− µx)(x− µx)T

]
= E

[
xxT

]
− µxµ

T
x ,

(5.19)

where µx = (µ1, . . . , µN )T = E [x]. Note that we applied the linearity property of expectations in
the second equation, see [68].

Since E [ρ] = E [εl] = 0 for 2 ≤ l ≤ N and E
[
gkj

]
= µg for kj ∈ {k1, . . . , km}, we have

µ(k) =


−µg k ∈

bm/2c⋃
l=1
{k2l−1, . . . k2l − 1}

0 otherwise.
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for all 1 ≤ k ≤ N . Therefore, µxµ
T
x ∈ RN×N is given by

[
µxµ

T
x

]
i,j

=


µ2
g if i, j ∈

bm/2c⋃
l=1
{k2l−1, . . . k2l − 1}

0 otherwise.
(5.20)

The equation (5.19) in combination with (5.17) implies

Σx = E
[
F−1bbT (F−1)T

]
− µxµ

T
x

= F−1E
[
bbT

]
(F−1)T − µxµ

T
x .

(5.21)

To compute E
[
bbT

]
, we first note that all εk, 1 < k ≤ N and gkl , 1 ≤ l ≤ m are pairwise

independent. Hence, we have

E [εiεj ] = δijσ
2
s for 1 < i ≤ j ≤ N,

E
[
(εki ± gki)(εkj ± gkj )

]
=

σ
2
s + µ2

g + σ2
g if 1 ≤ i = j ≤ m,

±µ2
g if 1 ≤ i 6= j ≤ m,

(5.22)

where we have again applied the linearity property of expectations in the second equation. In-
serting b as in (5.18) and applying (5.22) yields

[
E
[
bbT

]]
i,j

=



E
[
ρ2] if i = j = 1,

E [εiεj ] if i, j /∈ {k1, . . . , km},

E
[(
εi + (−1)liµg

) (
εj + (−1)ljµg

)]
if i = kli , j = klj ∈ {k1, . . . , km},

E
[(
εi + (−1)liµg

)
εj
]

if i = kli ∈ {k1, . . . , km} 63 j,

E
[
εi
(
εj + (−1)ljµg

)]
if j = klj ∈ {k1, . . . , km} 63 i,

=



σ2
1 if i = j = 1,

δijσ
2
s if i, j /∈ {k1, . . . , km},

σ2
s + µ2

g + σ2
g if i = j ∈ {k1, . . . , km},

(−1)li+ljµ2
g if i = kli 6= j = klj ∈ {k1, . . . , km},

0 otherwise,

where δij is the Kronecker delta satisfying

δij =

1 if i = j,

0 if i 6= j.

75



Chapter 5. Combining Adaptive Thinning and Graph Signal Processing

Written in matrix form, we have

E
[
bbT

]
=



σ2
1
σ2
s

. . .
σ2
s+µ2

g+σ2
g −µ2

g µ2
g

. . .
−µ2

g σ2
s+µ2

g+σ2
g −µ2

g

. . .
µ2
g −µ2

g σ2
s+µ2

g+σ2
g

. . .
σ2
s



=



σ2
1
σ2
s

. . .
σ2
s+σ2

g

. . .
σ2
s+σ2

g

. . .


+



0
. . .

µ2
g −µ2

g µ2
g

. . .
−µ2

g µ2
g −µ2

g

. . .
µ2
g −µ2

g µ2
g

. . .


=: S + M,

(5.23)

where the dots represent σ2
s in S and 0 in M. In order to compute Σx, we need to evaluate (5.21).

To this end, we split E
[
bbT

]
= S + M into two parts as in (5.23). M ∈ RN×N comprises the

expected values µg and S ∈ RN×N the rest, so that

[M]i,j =

(−1)li+ljµ2
g if i = kli , j = klj ∈ {k1, . . . , km},

0 otherwise,

[S]i,j =



σ2
1 if i = j = 1,

σ2
s + σ2

g if i = j ∈ {k1, . . . , km},

σ2
s if 1 < i = j /∈ {k1, . . . , km},

0 otherwise.

To compute F−1S
(
F−1)T and F−1M

(
F−1)T , we again consider left-multiplying with F−1 and

right-multiplying with
(
F−1)T for a given matrix A = [ai,j ]1≤i,j≤N ∈ RN×N . As in the proof of

Lemma 5.1, we have [
F−1A

]
i,j

=
i∑

k=1
ak,j . (5.24)

Analogously, since
(
F−1)T is an upper triangular matrix with constant value one on and above

the diagonal, right-multiplying with it sums up all entries to the left of a given entry, i.e.

[
A
(
F−1

)T ]
i,j

=
j∑
l=1

ai,l. (5.25)

Combining (5.16) and (5.25) shows that F−1A
(
F−1)T sums up all entries of A to the top and
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left of a given entry: [
F−1A

(
F−1

)T ]
i,j

=
i∑

k=1

j∑
l=1

ak,l.

Applying this multiplication to S and M yields[
F−1S

(
F−1

)T ]
i,j

= σ2
1 + (min(i, j)− 1)σ2

s + min(indi, indj)σ2
g ,

[
F−1M

(
F−1

)T ]
i,j

=


µ2
g if i, j ∈

bm/2c⋃
l=1
{k2l−1, . . . k2l − 1}

0 otherwise,
(5.26)

where indi = l if kl ≤ i < kl+1, with indi = 0 if i < k1. From (5.20) and (5.26) we see that
µxµ

T
x = F−1M

(
F−1)T . This, in combination with (5.21) implies the desired result

Σx = F−1E
[
bbT

] (
F−1

)T
− µxµ

T
x

= F−1S
(
F−1

)T
+ F−1M

(
F−1

)T
− µxµ

T
x

= F−1S
(
F−1

)T

=



σ2
1 σ2

1 σ2
1 ··· σ2

1 ··· σ2
1 ··· σ2

1
σ2

1 σ2
1+σ2

s σ2
1+σ2

s ··· σ2
1+σ2

s ··· σ2
1+σ2

s ··· σ2
1+σ2

s

σ2
1 σ2

1+σ2
s σ

2
1+2σ2

s ··· σ2
1+2σ2

s ··· σ2
1+2σ2

s ··· σ2
1+2σ2

s

...
...

... . . . ...
...

...
σ2

1 σ2
1+σ2

s σ
2
1+2σ2

s ··· σ2
1+(k1−1)σ2

s+σ2
g ··· σ2

1+(k1−1)σ2
s+σ2

g ··· σ2
1+(k1−1)σ2

s+σ2
g

...
...

...
... . . . ...

...
σ2

1 σ2
1+σ2

s σ
2
1+2σ2

s ··· σ2
1+(k1−1)σ2

s+σ2
g ··· σ2

1+(k2−1)σ2
s+2σ2

g ··· σ2
1+(k2−1)σ2

s+2σ2
g

...
...

...
...

... . . . ...
σ2

1 σ2
1+σ2

s σ
2
1+2σ2

s ··· σ2
1+(k1−1)σ2

s+σ2
g ··· σ2

1+(k2−1)σ2
s+2σ2

g ··· σ2
1+(n−1)σ2

s+mσ2
g


.

�

In order to relate the KLT to the GFT, we compute the corresponding precision matrix Px,
i.e. the inverse of Σx.

Lemma 5.3 For a signal x ∈ RN as defined in (5.14), the precision matrix Px = (Σx)−1 is a
tridiagonal matrix given by

[Px]i,j =



0 if |i− j| > 1,
1
σ2

1
+ 1

σ2
s

if i = j = 1,
1
σ2
s

if i = j = N,

2 1
σ2
s

if 1 < i = j < N, i /∈ {k1, . . . , km},
1
σ2
s

+ 1
σ2
g+σ2

s
if i = j ∈ {k1 − 1, k1, . . . , km − 1, km},

− 1
σ2
g+σ2

s
if i+ 1 = j ∈ {k1, . . . , km} or j + 1 = i ∈ {k1, . . . , km},

− 1
σ2
s

otherwise.
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In matrix form we have

Px =



1
σ2

1
+ 1
σ2
s
− 1
σ2
s

− 1
σ2
s

2 1
σ2
s
− 1
σ2
s

... ... ...
− 1
σ2
s

2 1
σ2
s

− 1
σ2
s

− 1
σ2
s

1
σ2
s

+ 1
σ2
g+σ2

s
− 1
σ2
g+σ2

s

− 1
σ2
g+σ2

s

1
σ2
g+σ2

s
+ 1
σ2
s
− 1
σ2
s

− 1
σ2
s

2 1
σ2
s
− 1
σ2
s

... ... ...
− 1
σ2
s

2 1
σ2
s
− 1
σ2
s

− 1
σ2
s

1
σ2
s



,

with jumps between rows kj − 1 and kj for all kj ∈ {k1, . . . , km}.

Proof: Let x ∈ RN be a model texture signal as above. We first show PxΣx = IdN , where IdN
is the N ×N identity matrix. To this end, we compute [PxΣx]i,j for all 1 ≤ i, j ≤ N . Due to the
specific structure of Px, we distinguish different cases for 1 ≤ i ≤ N . In the following, we denote
the ith row of Px by rowi(Px) and the jth column analogously by coljPx.

Case 1: i = 1. In this case we have

rowi (Px) =
(

1
σ2
s

+ 1
σ2

1
− 1
σ2
s

0 · · · 0
)
.

Therefore, multiplication with colj (Σx) for 1 ≤ j ≤ N yields

[PxΣx]1,j =


(

1
σ2
s

+ 1
σ2

1

)
σ2

1 − 1
σ2
s
σ2

1 = 1 if j = 1,(
1
σ2
s

+ 1
σ2

1

)
σ2

1 − 1
σ2
s

(
σ2

1 + σ2
s

)
= 0 for 2 ≤ j ≤ N.

Case 2: i = N . In this case we have

rowi (Px) =
(
0 · · · 0 − 1

σ2
s

1
σ2
s

)
.

Therefore, multiplication with colj (Σx) for 1 ≤ j ≤ N yields

[PxΣx]N,j =

−
1
σ2
s

(
σ2

1 + (n− 2)σ2
s +mσ2

g

)
+ 1

σ2
s

(
σ2

1 + σ2
s(n− 1) +mσ2

g

)
= 1 if j = N

− 1
σ2
s

2 (
σ2

1 + (j − 1)σ2
s +mσ2

g

)
+ 1

σ2
s

(
σ2

1 + σ2
s(j − 1) +mσ2

g

)
= 0 for 1 ≤ j ≤ N − 1.

Case 3: i = kl − 1 for kl ∈ {k1, . . . , km}. In this case we have

rowi (Px) =
(
0 · · · 0 − 1

σ2
s

1
σ2
s

+ 1
σ2
g+1 − 1

σ2
g+1 0 . . . 0

)
.
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Therefore, multiplication with coli (Σx) yields

[PxΣx]i,i =− 1
σ2
s

(
σ2

1 + (kl − 3)σ2
s

)
+
(

1
σ2
s

+ 1
σ2
g + σ2

s

)(
σ2

1 + (kl − 2)σ2
s

)
+ 1
σ2
g + σ2

s

(
σ2

1 + (kl − 2)σ2
s

)
= 1.

Multiplication with colj (Σx) for 1 ≤ j < i yields

[PxΣx]i,j =− 1
σ2
s

(
σ2

1 + (j − 1)σ2
s

)
+
(

1
σ2
s

+ 1
σ2
g + σ2

s

)(
σ2

1 + (j − 1)σ2
s

)
− 1
σ2
g + σ2

s

(
σ2

1 + (j − 1)σ2
s

)
= 0,

and multiplication with colj (Σx) for i < j ≤ N yields

[PxΣx]i,j =− 1
σ2
s

(
σ2

1 + (i− 2)σ2
s

)
+
(

1
σ2
s

+ 1
σ2
g + σ2

s

)(
σ2

1 + (i− 1)σ2
s

)
− 1
σ2
g + σ2

s

(
σ2

1 + iσ2
s + σ2

g

)
= 1 + 1

σ2
g + σ2

s

(
−σg − σ2

s

)
= 0.

Case 4: i = kl for kl ∈ {k1, . . . , km}. In this case we have

rowi (Px) =
(
0 · · · 0 − 1

σ2
g+σ2

s

1
σ2
s

+ 1
σ2
g+σ2

s
− 1
σ2
s

0 . . . 0
)
.

Therefore, multiplication with coli (Σx) yields

[PxΣx]i,i =− 1
σ2
g + σ2

s

(
σ2

1 + (kl − 2)σ2
s

)
+
(

1
σ2
g + σ2

s

+ 1
σ2
s

)(
σ2

1 + (kl − 1)σ2
s + σ2

g

)
− 1
σ2
s

(
σ2

1 + (kl − 1)σ2
s + σ2

g

)
= 1
σ2
g + σ2

s

(
−σ2

1 − (kl − 2)σ2
s + σ2

1 + (kl − 1)σ2
s + σ2

g

)
= 1
σ2
g + σ2

s

(
σ2
s + σ2

g

)
= 1.

Multiplication with colj (Σx) for 1 ≤ j < i yields

[PxΣx]i,j =− 1
σ2
g + σ2

s

(
σ2

1 + (j − 1)σ2
s

)
+
(

1
σ2
g + σ2

s

+ 1
σ2
s

)(
σ2

1 + (j − 1)σ2
s

)
− 1
σ2
s

(
σ2

1 + (j − 1)σ2
s

)
= 0,

and multiplication with colj (Σx) for i < j ≤ N yields

[PxΣx]i,j =− 1
σ2
g + σ2

s

(
σ2

1 + (i− 2)σ2
s

)
+
(

1
σ2
g + σ2

s

+ 1
σ2
s

)(
σ2

1 + (i− 1)σ2
s + σ2

g

)
− 1
σ2
s

(
σ2

1 + iσ2
s + σ2

g

)
= 1
σ2
g + σ2

s

(
σ2
s + σ2

g

)
− 1 = 0.
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Case 5: For all other choices of i we have

rowi (Px) =
(
0 · · · 0 − 1

σ2
s

2 1
σ2
s
− 1
σ2
s

0 . . . 0
)
.

Therefore, multiplication with colj (Σx) for 1 ≤ j ≤ N yields

[PxΣx]i,j =


− 1
σ2
s

(
σ2

1 + (i− 2)σ2
s

)
+ 2 1

σ2
s

(
σ2

1 + (i− 1)σ2
s

)
− 1

σ2
s

(
σ2

1 + (i− 1)σ2
s

)
= 1 if i = j,

− 1
σ2
s

(
σ2

1 + (i− 2)σ2
s

)
+ 2 1

σ2
s

(
σ2

1 + (i− 1)σ2
s

)
− 1

σ2
s

(
σ2

1 + iσ2
s

)
= 0 for i < j,

− 1
σ2
s

(
σ2

1 + (j − 1)σ2
s

)
+ 2 1

σ2
s

(
σ2

1 + (j − 1)σ2
s

)
− 1

σ2
s

(
σ2

1 + (j − 1)σ2
s

)
= 0 for i > j.

Combining these five cases, we obtain

[PxΣx]i,j = δij ,

or PxΣx = IdN in matrix form. Since Σx and Px are symmetric, we obtain the desired result:

PxΣx = IdN = (PxΣx)T = ΣT
x PT

x = ΣxPx.

�

Finally, we construct the 2-connectivity chain graph Gx corresponding to a model texture
signal x ∈ RN . It consists of N vertices V = {v1, . . . , vN}, where each vertex is connected to its
direct neighbours, i.e. E = {(vi, vi+1) : 1 ≤ i < N}. Edges across a weak transition region are
assigned weight 1

σ2
g+σ2

s
, i.e. Wkj−1,kj = 1

σ2
g+σ2

s
if kj ∈ {k1, . . . km}. All other edges are assigned

weight 1
σ2
s
, i.e. Wj−1,j = 1

σ2
s

for 2 ≤ j ≤ N with j /∈ {k1, . . . , km}). An example for Gx can be seen
in figure 5.17(b).

Comparing the graph Laplacian matrix Lx derived from Gx with the precision matrix Px in
Lemma 5.3, we observe that they are equivalent except for the first entry, where

[Px]1,1 = [Lx]1,1 + 1
σ2

1
. (5.27)

But since the variance σ2
1 of the first entry is fairly larger than zero, Px and Lx are approxi-

mately equivalent. Px and Σx share the same set of eigenvectors, see [94], which form the basis
of the KLT. Consequently, the derived GFT approximates the KLT for model texture signals x
as defined above.

We finally norm Gx by multiplying its weight matrix W by σ2
s , so thatWj−1,j = 1 for 2 ≤ j ≤ N

with j /∈ {k1, . . . , km}. Hence, in order to approximate the optimal decorrelation property of the
KLT, we set the weight for weak correlation as

wo = σ2
s

σ2
g + σ2

s

. (5.28)

We show how to choose wo ∈ (0, 1) for applicable blocks in Section 6.1.2.
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Chapter 6

Experimental Results

In the previous chapter we have introduced the theoretical foundations of the ATGSP post-
processing scheme, which improves the visual quality of specific triangular image blocks in an
adaptive thinning reconstruction. It classifies them as either smooth or textured, and constructs
adaptive weighted graphs on the latter. They are designed so that the texture image signal is
smooth in regard to them. Transforming the signals with a respective GFT results in a sparse
Fourier spectrum, with most information concentrated in few Fourier coefficients.

Building on this theoretical basis, we show how to implement the ATGSP scheme in this
chapter. We begin by describing the experimental setup, starting with the selection of significant
triangles that constitute Tsig. For textured triangular image blocks, we estimate the optimal
edge weight and construct an adaptive matrix. Afterwards, the coefficients are thresholded and
quantized. Having described the setup, we show examples of natural images compressed by
ATGSP.

We remark that the ATGSP scheme is still in a very early developement stage, therefore no
complete implementation is given. In particular, we did not interfere in the selection process of
significant pixels in the AT algorithm, which yields suboptimal triangulations for our scheme.
Instead, we focus on the transformation process, which was implemented in Matlab. The ATGSP
coefficients are computed and quantized, but not actually encoded. Therefore, we compare the
ATGSP scheme exclusively with unaltered AT reconstructions.

6.1 Experimental Setup

Building on the theoretical basis introduced in Chapter 5, we show the practical implementation
of our scheme to increase the visual quality of Ĩ. For the whole section we let I be a digital image
on a pixel set P. The AT reconstruction Ĩ is given over the Delaunay triangulation D(Pn) of a set
Pn ∈ P comprising n significant pixels.

We begin by describing the selection process for the set of significant triangles Tsig. Afterwards
we discuss how the compression of It = I− Ĩ for a single significant triangle T ∈ Tsig ⊂ D(Pn) is
performed in practice.

As shown in Section 5.3, we construct a graph G (V, E ,W) on T and let f be the graph signal
of It on G. While the choice of vertices V = T is identical for all T ∈ Tsig, more care has to be
given to the construction of E and W. Finally, we discuss how to threshold and quantize the
resulting coefficients.
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The quality of the compression in ATGSP is controlled via a level of quality 1 ≤ q ≤ 100.
Low values of q indicate lower quality along with higher compression, whereas high values indicate
better quality at the cost of lower compression. It influences the compression quality twofold: it
affects (i) the selection of significant triangles and (ii) the quantization on image blocks. Similarly
to the JPEG compression scheme in Section 2.3, point (ii) is affected through a quality factor
qF ∈ R+ derived from q, given by

qF =


60

110−q if q > 50,
q+25

75 if q ≤ 50.

This leads to a quality factor of 1/3 ≤ qF ≤ 6.

6.1.1 Selection of Significant Triangles

Recall from Section 5.2 that we aim to improve the visual quality of the AT reconstruction Ĩ by
adding information of It = I− Ĩ over selected triangular image blocks. A crucial point for image
improvement via graph spectral processing as introduced in Chapter 5 is therefore the selection of
significant triangles. Since the AT reconstruction Ĩ excels at preserving geometrical features and
sharp edges, we focus on heavily textured regions in I that are not represented well in Ĩ. To this
end, we select those triangles T ∈ D(Pn) where It contains fine scale details.

Chapter 5.5 introduced the structure tensor ST as a tool to identify the textural content of an
image block T through its eigenvalues λ1 ≥ λ2 ≥ 0. Based on the magnitude of λ1 and coherence
cT , the block is classified into one of three classes. Smooth blocks in Class 1 are characterized by
a small eigencalue λ1 ≈ 0. Although λ1 is large for both other classes, blocks with a principal
dominant gradient in Class 2 additionally have a large coherence. Lastly, blocks in Class 3 have
a small coherence and feature a complex structure that is not described by a single vector.

In order to classify each image block T ∈ D(Pn), we introduce two thresholds ϕλ, ϕc ∈ R+.
First we partition the set of all triangular image blocks D(Pn) = TS ∪ TT into a set of smooth TS

and textured triangles TT based on λ1. In particular, T ∈ TS iff λ1 ≤ ϕλ and T ∈ TT iff λ1 > ϕλ

for a specific image block T ∈ D(Pn). For later sections it is necessary to further subdivide the
set of textured image blocks TT = TD ∪ TC. All blocks T with a dominant principal gradient are
assigned to TD, that is T ∈ TD iff cT ≥ ϕc. On the other hand, blocks T with complex textures
are assigned to TC, that is T ∈ TC iff cT < ϕc.

In order to set the threshold values for the implementation, recall that in Definition 5.5 the
structure tensor of a block T was defined with a normalization factor 1/|T |. Thus, ϕλ can be
chosen to be independent of the size of each image block. In practice, a value of ϕλ = 35 gives a
satisfactory distinction between smooth and textured image blocks.
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When comparing the coding cost for adaptive graphs, triangles with complex textures are sig-
nificantly more expensive than triangles in Class 2, where the graph structure depends simply on
one of four quantized directions. Therefore, we set ϕc = 0.1 relatively low, so that most textured
image blocks are assigned Class 2 with a cheaply encoded graph. Only if the textures are very
complex and isotropic do we assign Class 3.

Having established the partition into smooth and textured triangles, we turn to the choice
of Tsig. As discussed above, we prioritize textured triangles, so most significant triangles will be
elements of TT. Even though all image blocks in TT are textured for our purposes, they have a
different influence on the visual perception of the reconstruction. To this end, we first introduce
a local SSIM.

As discussed in Section 5.2, we measure visual quality of a reconstruction via the SSIM intro-
duced in Section 2.1. Since we consider small, localized image blocks, computing the SSIM based
on the whole image would be too expensive. Therefore, we compute the estimated significance
SSIML(T ) of a textured image block T ∈ TT locally. This measure is further designed to weigh
the trade-off between two main criteria: distortion versus block size. Large distortions over a
block should obviously have a high priority, but we need to balance this with the block size. An
equal amount of coefficients on a large block hold more information than the same amount of
coefficients on a smaller block. Hence, it may be worthwile to consider a slightly less textured but
larger image block instead. The conventional SSIM value does not take signal size into account,
and thus a single outlier pixel in a small block may have a disproportionate significance.

We achieve a good balance between both criteria by weighing the local SSIM of the original
image I and the AT reconstruction Ĩ on T by the number of vertices N = |T |

SSIML(T ) = N ·
(
1− SSIM

(
IT , ĨT

))
.

Large values of SSIML indicate a large block combined with a bad visual quality of the AT
reconstruction. Hence, we prioritize blocks with larger values of SSIML. To this end, we order
the elements of TT in descending order of their local SSIM value, so that TT = {Tk : 1 ≤ k ≤ |TT|}
with SSIML(Ti) ≥ SSIML(Tj) for 1 ≤ i ≤ j ≤ |TT|. Based on the selected quality level q, a
percentage of image blocks in TT are selected to be significant, namely q%. For a specific Ti ∈ TT

we have Ti ∈ Tsig iff i < |TT| · q
100 .

While textured image blocks are our main concern, there may be some smooth image blocks
that are visually detrimental in Ĩ. Thus, we select a small additional amount of smooth image
blocks and include them in the set of significant triangles. Analogously to the case above, we sort
the image blocks in TS in descending order of the local SSIM. Image blocks with a larger local
SSIM value are again prioritized. The amount of significant smooth image blocks in Tsig is set
adaptively after thresholding and quantizing the textured significant triangles with C coefficients,
see Section 6.1.4. It is controlled through an additional level of quality 0 ≤ qS ≤ 1. Starting with
the first image block in TS, we threshold and quantize smooth image blocks until qS · C further
coefficients are selected.
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6.1.2 Estimating Optimal Edge Weight

Before constructing the weight matrix W, we estimate the optimal edge weight wo ∈ (0, 1] for
weakly correlated pixels in a textured image block T ∈ TT. Recall from Section 5.8 that for a
model texture signal as in Definition 5.7, the optimal edge weight between weakly correlated pixels
is given by

wo = σ2
s

σ2
g + σ2

s

, (6.1)

where σ2
s , σ2

g ∈ R+ are the variances of the variations in smooth regions and the random gaps at
weak transitions respectively.

The design of the model texture signal was chosen to characterize an ideal case, where the
locations of smooth and weak transition regions are known deterministically and the statistics
of ε ∼ N (0, σ2

s) and g ∼ N (µg, σ2
g) known probabilistically. In practice however, neither the

locations nor statistics of smooth and weak transition regions are known in a given texture signal.
Therefore, we need to locate the weak transition regions and then estimate σ2

s and σ2
g .

To this end, we construct an unweighted auxiliary graph H = (VH, EH) with VH = T . For
the edge set EH we apply the 4-way connectivity template if T ∈ TC and the 8-way connectivity
template if T ∈ TD. We partition the resulting edge set EH into two sets, EH = ES ∪ ET . Edges
in a smooth region are assigned to ES , while edges in weak transition regions are assigned to ET .
In particular, an edge e = (vi, vj) ∈ EH is assigned to a set based on the absolute difference of
intensities along them in comparison to a threshold δ ∈ R+, i.e.

e ∈ ES ⇔ |d(e)| = |f(j)− f(i)| ≤ δ,

e ∈ ET ⇔ |d(e)| = |f(j)− f(i)| > δ,
(6.2)

where d ∈ RM is the vector of intensity differences, obtained via the incidence matrix by d = Jf .
An arbitrary orientation has to be set for each edge, which is inconsequential for the computation
of σ2

s and σ2
g .

We assume each smooth variation as an i.i.d. random variable, i.e. d(e) ∼ N (µs, σ2
s) for all

smooth edges e ∈ ES . The variance σ2
s is estimated via

σ2
s = 1
|ES |

∑
e∈ES

(d(e)− µs)2 , (6.3)

see [68], where µs is the expected value of the smooth variation. Note that contrary to the model
texture signal, we do not necessarily have µs = 0. It is estimated by

µs = 1
|ES |

∑
e∈ES

d(e). (6.4)

To compute the variance σ2
g of the random gap g, recall from Definition 5.7 that for an edge
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e = (vi, vj) ∈ ET we assumed

d(e) = f(j)− f(i) = (−1)kg + ε⇔ d(e)− ε = (−1)kg

for some k ∈ {0, 1} and smooth variation ε ∼ N (µs, σ2
s). In order to estimate σ2

g , we further
assume that µg > 0 and set k accordingly. The variance is estimated as in (6.3) by

σ2
g = 1
|ET |

∑
e∈ET

(|d(e)− µs| − µg)2 , (6.5)

where the expected value µg is given similarly to (6.4) by

µg = 1
|ET |

∑
e∈ET

|d(e)− µs| .

In order to estimate the optimal edge weight wo, it remains to set the threshold δ. To select
δ, we first examine the characteristics of a textured image block. As it displays fine scale details
of varying degree, we expect a significantly larger variance over transition edges than on smooth
edges. Hence, we assume σ2

g ≥ 1.5 · σ2
s and are thus able to give an upper bound to (6.1):

wo = σ2
s

σ2
g + σ2

s

≤ 0.4.

Additionally, we set a lower bound for the optimal edge weight wo. Very small values of wo lead
to a disproportional large separation between weakly correlated pixels. This may cause seemingly
non-correlated pixels in a single block and leads to a graph Fourier transform with disconnected
blocks. Hence, we limit wo by

0.05 ≤ wo ≤ 0.4.

Finally, we determine δ via an iterative process. The inital threshold δ1 is set as the mean of
the absolute differences of intensities, i.e.

δ1 = 1
MH

MH∑
i=1
|d(i)| .

In any of the iteration steps, wko is computed as in (6.1), with σ2
s and σ2

g estimated as in (6.3)
and (6.5) respectively and δ = δk. If wko ≥ 0.4 we set δk+1 = 0.9 · δk and go to the next iteration
step. Otherwise, for wko < 0.4, the iteration terminates and we set wo = max(wko , 0.05). We
remark that an initial value of w1

o < 0.05 happens very rarely for natural textured signals, thus
only lowering the threshold during the iteration has proven sufficient.
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6.1.3 Construction of the Weight matrix

Having computed the optimal edge weight wo for weakly correlated pixels, we turn to the con-
struction of the weight matrix W. Recall that T is in one of three classes, based on its structure
tensor. Class 1 constists of smooth blocks, Class 2 of textured blocks with a dominant principal
gradient and Class 3 of blocks with complex textures. Each class has a different construction
method for E and W.

Smooth blocks do not have textures that are pronounced enough to justify the additional
overhead cost for a graph description. Thus, the standard graph for image blocks is chosen, which
is the 8-way connectivity graph with constant edge weight 1, see Section 5.3.

The textures on image blocks with a dominant principal gradient are efficiently summarized
by the principal gradient. Thus, the edges and the weight matrix are constructed based on the
graph template of the corresponding group, see Section 5.6. Groups are assigned via the quantized
edge orientation qu1 ∈ {0◦, 45◦, 90◦, 135◦} that is most orthogonal to the principal gradient u1. It
is hence selected by

qu1 = argmin
q∈{0,π4 ,π2 , 3π

4 }

∣∣∣〈u1, (cos q, sin q)T 〉
∣∣∣ .

The edge weight wo for weakly correlated pixels is computed as shown in the previous section.
We remark that we do not compute wo with the graph weights given by the corresponding graph
template, since the principal gradient only gives an indication of structure. Even for a large co-
herence there are irregularities inflating the variances in (6.1).

In contrast, the complex textures on image blocks in Class 3 are not easily summarized. We
introduced two methods in Section 5.7 to construct the edge weight vector w. First, a weight
vector wc ∈ RM with continuous weights was designed to select the optimal GFT for high bit
rates. The second approach designed the weight vector wd ∈ {wo, 1}M with discrete weights based
on a threshold γ ∈ R+. In practice, we apply both methods and select the graph that minimizes
the smoothness of f in regard to it. For both approaches the edge set E is constructed by the
4-way connectivity template to minimize the amount M of data in w.

In order to optimize the GFT we minimize

min
w∈RM

sTw + α
∥∥∥UT

` w
∥∥∥
`1
− β1T log(w),

s.t. w ≤ 1
(6.6)

and let the minimizer be wc. To this end, we first set values for the parameters α, β > 0. Recall
that α weighs the sparseness of ŵ via the `1-norm, where ŵ are the graph Fourier coefficients
of w in regard to G`. Since we apply the optimization to blocks with complex textures, we
expect that consecutive edges have dissimilar intensity differences along them. Therefore, we
emphasize the importance of constructing a weight vector w with compacted values in the graph
spectral domain by choosing a large α. In comparison, the penalty for small weights Wi,j ≈ 0,
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influenced by the choice of β, is less important. Consequently, we set β significantly smaller than
α. For the implementation we chose the values of α and β by fine tuning, letting α = 10M and
β = 0.01M . The optimization problem in (6.6) is a convex constrained minimization problem and
solved efficiently via interior-point methods. In the implementation we used the fmincon function
of the Matlab optimization toolbox. For the initial vector w0, we employ the Gaussian weight
function, so that

[w0]e = exp
(
−|f(j)− f(i)|2

α

)
(6.7)

for e = (i, j) ∈ E , where the Gaussian parameter α is given by

α = 1
3 · max

(i,j)∈E
|f(j)− f(i)|2 .

In the second approach wd, is constructed by fixing a threshold γ ∈ R+ and assigning either
weight 1 or wo to an edge based on the sign of dγ , see Section 5.7.2. Selecting the threshold
γ corresponds to assigning edges weak and strong correlation. It is thus closely related to the
computation of the optimal edge weight wo. Therefore, we set γ = δ, where δ is the threshold
computed in Section 6.1.2 that assigned weak and strong correlation to edges during the construc-
tion of a sensible edge weight wo.

In order for wc and wd to be encoded efficiently, recall that they are both graph signals on
the line graph G`. Thus, we convert w ∈ {wc,wd} to the graph spectral domain via

ŵ = UT
` w, (6.8)

where L` = U`Λ`UT
` is the eigen-decomposition of the graph Laplacian of G`. Due to the choice

of large α in (6.6) and the exploitation of the structure of U` in the second method, we expect the
significant characteristics of w to be compacted in few coefficients. In order to reduce the graph
transmission cost, we threshold ŵ and select only the absolute largest coefficients for encoding
via a threshold ϕw ∈ R

ŵth(k) =

ŵ(k) if |ŵ(k)| ≥ ϕw,

0 if |ŵ(k)| < ϕw

(6.9)

for all 1 ≤ k ≤ M . In practice, we have observed that very few coefficients are necessary to
represent the elemental structure of an edge weight signal sufficiently well. Thus, ϕw is chosen to
admit five Fourier coefficients. To this end, we let |ŵ1| ≥ · · · ≥ |ŵ5| be the five absolute largest
Fourier coefficients and set ϕw = |ŵ5| in the implementation. We reconstruct the edge weight
vector via the inverse GFT from the thresholded edge weight vector ŵth

w ≈ wth = U`ŵth.

For w = wc we exploit the characteristics of the optimization further. First, recall that
wc ∈ (0, 1]M . Since this property is not guaranteed for a reconstruction with a sparse ŵth, we
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rescale wth to the acceptable range of weights [0.05, 1] introduced in Section 6.1.2 via

wrs(k) = 0.95 · wth(k)−wmin
wmax −wmin

+ 0.05 (6.10)

for all 1 ≤ k ≤ N , where wmin and wmax are the minimal and maximal coefficients in wth

respectively. But due to the rescaling in (6.10) the constant eigenvector u`,0 corresponding to
λ0 ∈ σ(L`) is irrelevant to the construction of wrs. Thus, we set ŵ(1) = 0 before thresholding.

Moreover, the choice of a large α may lead to an even more effective compaction of coefficients.
Hence, we set two boundaries for ϕw. First, if a coefficient is small compared to the largest co-
efficient ŵ1, its significance in reconstructing wc is negligible. Second, if the relative difference
between two consecutive weights is small, the significance in reconstructing wc for smaller coef-
ficients is also negligible. In the implementaion we have thus limited ϕw via ϕw ≥ 0.2 · |ŵ1| and
ϕw = |ŵk| if |ŵk| > 0.4 · |ŵk+1| for some 1 ≤ k ≤ 4.

Having constructed both wc,rs and wd,th, we select one of them for further processing. To
select either Lc,rs or Ld,th as the basis for the GFT on a specific block T with complex textures,
we evaluate the smoothness of f in regard to both of them. As seen before, the smoothness of a
graph signal depends on the structure of the underlying graph. Since the topology E is fixed, the
smoothness of a graph signal is only affected by the edge weight vectors. We again measure the
smoothness of f in regard to a graph through the graph Laplacian quadratic form, while taking
the inherent preference of a lower edge weight into account. Similar to Section 5.7.1 we employ a
logarithmic penalty. Hence, we evaluate the smoothness s(f , w̃) of f in regard to an edge weight
vector w̃ ∈ {wc,rs,wd,th} by

s(f , w̃) = fT L̃f − 1T log w̃

= fTJTdiag(w̃)Jf − 1T log (w̃),
(6.11)

where 1 denotes the constant 1 vector. We compare the smoothness of both edge weight vectors
and select the minimizer of (6.11), i.e.

w̃ = argmin
w∈{wc,rs,wd,th}

s(f ,w).

The corresponding graph Laplacian is then constructed via

L̃ = JTdiag(w̃)J.

6.1.4 Coefficient Thresholding and Quantization

In Section 5.3 we have shown how to convert an image signal f on a block T to the graph spectral
domain. To this end, a graph G was constructed on the pixels of T and a GFT was defined via
the graph Laplacian L of G

f̂ = UT f , (6.12)

where U is the eigenvector matrix of L, defined via the eigen-decomposition L = UΛUT .
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Equation (6.12) represents the graph signal f equivalently in the graph spectral domain. This
does not decrease the energy of the signal, see (4.11). In the previous sections we examined
how to construct a weight matrix that compacts the energy of the signal. We now exploit the
compactness of energy in the graph spectral domain by thresholding small Fourier coefficients.
Additionally, we reduce the accuracy of Fourier coefficients to a discrete set through quantization.
Our aim for this section is thus twofold: discard information from f̂ that is not visually significant
and quantize the remaining data to prepare it for encoding.

First, we consider textured image blocks. In Chapter 5 we described how to construct adaptive
graphs G so that a signal f on a textured block is smooth with regard to it. Most of the relevant
information of f is therefore contained in a small amount of coefficients in f̂ . Hence, we set most
of the coefficients 0, based on a threshold ϕf̂

f̂th(k) =

f̂(k) if
∣∣∣f̂(k)

∣∣∣ ≥ ϕf̂ ,

0 if
∣∣∣f̂(k)

∣∣∣ < ϕf̂ .
(6.13)

The choice for this threshold depends on the characteristics of an image. Keeping the number
of total coefficients the same, there is a trade-off between the amount of triangles improved and
the detail given on each improved triangle. An image with some large and many small, negligible
textured image blocks would benefit from a large ϕf̂ , while the opposite is true for images with
many medium sized textured image blocks. The optimal choice of ϕf̂ is still unclear. In this
thesis, we set it to admit 15% of coefficients in f̂ , up to a maximum of 10 · qF coefficients. This
has proven to result in good SSIM values.

Having thresholded f̂ , we employ a uniform quantizer for the quantization of f̂th. In this
thesis, we assume a fixed rate for the coeffcients, where all theoretical binary codewords are of
equal length. We select four bits, since the construction of It = I− Ĩ generates a relatively small
range of possible signal values. Thus, the quantization has 24 = 16 levels.

For an optimal result, the quantization support, and thus the step size, is chosen adaptively
for each image. This is achieved by first transforming all significant textured image blocks and
quantizing them in a second stage. While transforming each textured significant triangular image
block, the overall smallest and largest Fourier coefficients are stored and later included in the
header for later reconstruction. In particular, we have

f̂min = min
T∈Tsig∩TT

min
1≤i≤|T |

f̂T (i),

f̂max = max
T∈Tsig∩TT

max
1≤i≤|T |

f̂T (i).
(6.14)

The support of the quantization is subsequently chosen as [bf̂minc, df̂maxe]. Consequently, we
set the quantization step size to

∆ =

⌈
f̂max

⌉
−
⌊
f̂min

⌋
15 . (6.15)
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Thus, the quantization levels are given by

yi = ∆ · Round
(
bf̂minc

∆

)
+ i∆

for 0 ≤ i ≤ 15. From there, we compute the index to be potentially encoded of a Fourier coefficient
f̂(k) via

f̂ind(k) = Round
(

f̂th(k)
∆

)

for 1 ≤ k ≤ N . Finally, the complete quantization rule is

f̂q(k) = ∆ · Round
(

f̂th(k)
∆

)
. (6.16)

Turning to smooth image blocks, we note that no extra structure is introduced to U through the
choice of weights. Hence, the elemental frequencies behave in a way similar to the base frequencies
of the conventional DCT, with our usual understanding of visible frequency. Therefore, in order
to quantize and threshold f we take an approach similar to the quantization matrices in the JPEG
scheme introduced in Section 2.3. Since f ∈ RN is given as a vector, we consider quantization
vectors.

Definition 6.1 Given a Laplacian matrix L ∈ RN×N of a graph G, a quantization vector is a
vector q ∈ RN , where each element q(k), 1 ≤ k ≤ N , represents the quantizer step size of its
corresponding frequency λk−1 ∈ σ(L).

Note that the definition given here is unrelated to prototype vectors from vector quantization.
Given a quantization vector q, we obtain the usually sparse, quantized signal to be encoded f̂ind

by dividing each Fourier coefficient by its corresponding quantizer step size and rounding to the
nearest integer as in (2.14). In order to minimize the data to be encoded, q is chosen to only
depend on the block size N and be otherwise independent of the signal f . To acquire the quantizer
step sizes, we have to determine the psychovisual importance of each base frequency given by the
eigenvectors in U. Doing this even for a small set of representative triangles exceeds the scope of
this thesis, as the large amount of varying shapes and sizes make psychovisual experiments very
cumbersome.

Instead, we build upon the plentiful research conducted on quantizing JPEG images. In (2.15)
a standard quantization matrix QS was given for an 8 × 8 pixel block. Each entry denotes the
quantization step size of its corresponding elemental frequency shown in Figure 2.4. Psychovisual
experiments have shown that degrading horizontal or vertical textures has a different influence on
the perceived quality of an image reconstruction. This is reflected in the standard quantization
matrix, where different step sizes are selected for essentially the same textures rotated by 90
degrees.

To generalize the quantization matrix to our setting, we utilize a novel quantization matrix
introduced in [31]. It does not treat each entry individually, but sets step sizes for each frequency
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order. As the JPEG compression scheme analyzes signals on 8 × 8 pixel blocks, there are 15
orders of frequency, given by the k-antidiagonals in QS for −7 ≤ k ≤ 7. Transferred to a standard
quantization vector, we have

qS = (16, 14, 13, 15, 19, 28, 37, 55, 64, 83, 103, 117, 117, 111, 90)T ∈ R15, (6.17)

where each component in qS corresponds to an order of frequency.
While 15 orders of frequency are sufficient for an 8 × 8 image block, when considering graph

signals in the graph spectral domain it generally is not. A graph signal f ∈ RN with N data
points has |σ(L)| frequency orders. Large blocks usually have the largest impact on the SSIM,
so we mostly have |σ(L)| > 15. Additionally, the graph frequency orders are not evenly spaced.
Thus, the vector given in (6.17) is not adequate for most image blocks in TS.

To adapt qS to each specific block size we define a linear spline interpolant hS : [0, 1] → R+

of qS , so that hS(k−1
14 ) = qS(k) for 1 ≤ k ≤ 15. Next, we normalize the frequencies orders of L

via λ̄k = λk
λN−1

for 0 ≤ k ≤ N − 1. Finally, since we know the image blocks to be smooth and only
require crucial information to be encoded, we consider a lower level of quantization. Thus, the
final quantization vector qT ∈ RN of a smooth image block T is given by

qT (k) = 2.5 · hS
(
λ̄k−1

)
for all 1 ≤ k ≤ N .

While the values in (6.17) are suitable for coefficients derived during the JPEG scheme, the
values of graph Fourier coefficients tend to be smaller. The range of extremal graph Fourier
coefficients in an image is taken from (6.14). As an approximation we assume the DCT coefficients
in the JPEG scheme to be in the range [−128, 128]. Therefore, in order to threshold and quantize
f̂ , we compute the coefficients to be encoded via

f̂ind(k) = Round

 256∣∣∣df̂maxe − bf̂minc
∣∣∣ · f̂(k)

qT (k)


for 1 ≤ k ≤ N . The complete quantization rule is given by

f̂q(k) = qT (k)

∣∣∣df̂maxe − bf̂minc
∣∣∣

256 · f̂ind(k). (6.18)

Finally, we turn to quantizing the adaptive graph descriptions. To this end, we quantize
wo with a uniform quantizer with step size ∆wo = 0.05 and eight levels L = {0.05, 0.10, . . . , 0.4}.
Thus, the discrete value of the optimal edge weight is given by wo,q ∈ {k ·0.05}1≤k≤8 and computed
via

wo,q =
(⌊

wo
∆wo

− 1
2

⌋
+ 1

)
·∆wo .

The quantization step size ∆wo is chosen so that wo,q can be stored in three bits, while still
being an adequate approximation wo,q ≈ wo.
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In order to quantize ŵth, we distinguish between the continuous and discrete mode. The edge
weight coefficient vector of the discrete mode is in the range of the regular coefficients. Therefore,
it is quantized as in (6.16). For the continuous mode the range is considerably smaller, as the
data to be encoded is in the range [0.05, 1]. In practice it is sufficient to constrain ŵc,rs ∈ [−2, 2]M

and uniformly quantize it with ∆w = 0.5 and eight levels as above, so that

ŵind(k) =
⌊wc,rs(k)

∆w

⌋
,

and
ŵq(k) = ∆w

(⌊wc,rs(k)
∆w

⌋
+ 0.5

)
,

for all 1 ≤ k ≤M .

6.1.5 Algorithm and Image Reconstruction

Finally, we are in a position to fully describe the ATGSP algorithm. The input of the algorithm is
given by the original image I, an AT reconstruction Ĩ and a quality level 1 ≤ q ≤ 100. Additionally,
an optional smooth quality level 0 ≤ qS ≤ 1 may be provided. If no qS is given, the standard
value qS = 0.05 is set.

First, the texture image It = I − Ĩ is set, which is the signal we aim to approximate. Each
triangular image block is classified via the structure tensor. Small blocks are automatically clas-
sified as smooth, since the graph description overhead would negate any benefits. As explained in
Section 6.1.1, we order TT and TS in descending order according to their local SSIM value.

Next, the adaptive weight matrix of every textured image block in Tsig is created. We remark
that even during the transformation phase the quantized matrices are used. Section 6.1.3 has
shown that the overhead for adaptive graphs on image blocks with complex textures is rather
large. Therefore, we employ another threshold ϕa ∈ R+ that sets a minimal block size for complex
adaptive graphs. If a block T ∈ TC is small, i.e. |T | ≤ ϕa, it is transformed with a non-adaptive
graph, i.e. one that has the standard 8-way connectivity topology with constant edge weight 1.
Only if |T | > ϕa is an adaptive graph constructed as described in Section 6.1.3. The threshold ϕa
is selected based on the quality factor qF and depends on the image resolution X1 ×X2. In the
implementation it is given by

ϕa =
⌊
max

(0.00075 ·X1 ·X2
qF

, 0.0005 ·X1 ·X2 , 20
)⌋

.

Every significant textured block is tranformed via f̂ = UT f and the quantization step size
is computed as in (6.15). Afterwards, the Fourier coefficients are thresholded and quantized as
in (6.13) and (6.1.4) respectively.

Once all textured blocks T ∈ Tsig ∩ TT are transformed and quantized, we turn to smooth
blocks. As discussed in Section 5.2, smooth blocks of It do not contribute as much to the visual
quality of an image. Therefore, we only use a small percentage of them, controlled by qS . In
particular, if C ∈ N0 coefficients are used to describe the textured blocks, qS · C coefficients are
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selected to describe smooth blocks. To this end, we transform smooth image blocks via f̂ = UT f
and quantize the coefficients as in (6.1.4), until the desired amount of coefficients to describe
smooth blocks is reached. The selection of T ∈ TS is based on the ordering imposed above.

Algorithm 4: ATGSP
Input: original image I; AT reconstruction Ĩ; triangulation D(Pn); quality q; optional

smooth quality qS .
Output: quantized coefficients f̂ind; graph description ŵind or qu1 and wo,ind;

⌊
f̂min

⌋
;⌈

f̂max
⌉
.

1 Let It = I− Ĩ.
2 Compute classification of every T ∈ D(Pn) based on structure tensor.
3 Compute priority queue for TT and TS.
4 while k < q

100 · |TT| do
5 Create Laplacian matrix Lk based on classification of Tk ∈ TT.
6 Compute f̂k = UT

k fk.

7 Compute quantization step size ∆.
8 while k < q

100 · |TT| do
9 Threshold f̂k.

10 Quantize f̂k based on ∆.

11 while S < qS · C do
12 Create smooth Laplacian matrix Lk.
13 Compute f̂k = UT

k fk.
14 Quantize f̂k.

The quantized coefficients f̂ind are output together with the adaptive graph descriptions, i.e.
ŵth for complex blocks and qu1 and wo,q for dominant blocks, as well as f̂min and f̂max. An overview
of the algorithm is displayed in Algorithm 4.

Algorithm 5: Inverse ATGSP
Input: AT reconstruction Ĩ; quantized coefficients f̂ind; graph description ŵind or qu1 and

wo,ind;
⌊
f̂min

⌋
;
⌈
f̂max

⌉
.

Output: ATGSP reconstruction IATGSP.
1 Compute quantization step size ∆.
2 for k = 1, . . . , |Tsig| do
3 Reconstruct Lk and fq,k.
4 Compute fq,k = Uk f̂q,k.
5 Add signal fq,k to Ĩ.

To reconstruct the compressed image, first the quantization step size ∆ is recomputed. Based
on the graph description, the coefficients f̂q are reconstructed as in (6.16) or (6.18). The adap-
tive graph Laplacians are reconstructed either by selecting the corresponding graph template
or via (6.8). Finally, the image block signals are reconstructed via fATGSP = Uf̂q. The final
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reconstruction IATGSP ≈ I is constructed by converting each graph signal fATGSP back to the
pixel setting and adding it to Ĩ. An overview of the process is displayed in Algorithm 5.

6.2 Comparison with Adaptive Thinning on Natural Images

Having described the implementation, we evaluate it on a selection of natural images. As men-
tioned above, we do not actually encode the quantized coefficients in this thesis. Therefore, we
compare our method ATGSP exclusively with the AT compression method in terms of SSIM per-
formance. The basis is the optimal AT reconstruction, i.e. the best approximation over the locally
optimal significant pixel set, see Section 3.4.

For a fair comparison, we consider an overhead cost of one byte for every significant image
block. Furthermore, even though we quantized all coefficients in Section 6.1.4 to four bits, we con-
sider every coefficient, even those for graph descriptions, to be one byte to account for additional
overhead costs. Keep in mind that this is not exact and only a rough estimate.

(a) Original image of Snoopy. (b) Delaunay triangulation D(P3000).

(c) AT reconstruction over P5000 with
SSIM = 0.9845.

(d) ATGSP reconstruction with 76 coefficients
and SSIM = 0.9848.

Figure 6.1: Reconstruction of the image Snoopy via AT and ATGSP.
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6.2. Comparison with Adaptive Thinning on Natural Images

Every image considered below has a resolution of 256 × 256 and a bit length of r = 8. We
consider the standard test images Lena as well as additional test images with varying textural
prominence found in [49]. All experiments were performed using the GSPBOX open-source soft-
ware library [70] in Matlab.

We first compare the two schemes on the image Snoopy, displayed in Figure 6.1. The purpose
of this comparison is to test the behaviour of ATGSP on images reconstructed very well by AT.
In this example, the AT algorithm constructs the Delaunay triangulation D(Pn) over a set of
n = 3000 most significant pixels seen in Figure 6.1(b). The AT reconstruction of the image is
shown in 6.1(c). Afterwards, we apply the ATGSP algorithm with a quality of q = 20 to it.
Figure 6.1(b) also displays the significant triangles Tsig. Red triangles are in Tsig ∩ TT and blue
triangles in Tsig ∩ TS. ATGSP selects only 76 additional coefficients to reconstruct the signals on
those triangles.

Snoopy is a geometrical image, i.e. an image with sharp edges and almost no textures. The
AT reconstruction in 6.1(c) is very good, as is evident by a very good visual quality and a SSIM
of 0.9845. Thanks to the good AT reconstruction and lack of textured image parts, ATGSP does
not select many significant triangles, as is desired. This results in only a marginally better re-
construction with a SSIM of 0.9848. Comparing the two reconstructions with the original image,
there is no visible distortion.
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(b) Flower.
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(c) Pony.

Figure 6.2: Quality-SSIM curves for different n of the images Lena, Flower and Pony.

Having confirmed that the ATGSP post-processing algorithm does not impair a good perfor-
mance of AT on geometrical images, we now turn to textured images. Before examining specific
images in-depth, we consider the quality q in the ATGSP scheme. The ATGSP post-processing
scheme adds information for textured image blocks. For constant file sizes, this can be understood
as a trade-off between accurately reconstructing geometric features with AT versus reconstructing
textures with ATGSP. Hence, there are two possible approaches: (i) improve a small amount of
significant triangles on an AT reconstruction with a relatively large amount of significant pix-
els or (ii) start with an AT reconstruction with less significant pixels and add textures over a
large amount of significant triangles. Recall that due to the overhead for an adaptive GFT only
q% of the triangles classified as textured are selected, namely those with large SSIMlocal. These
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comprise large and heavily textured image blocks. Therefore, we expect most visual information
to be already added for a low quality.

To quantify this presumption, we show the SSIM of the representative images Lena, Flower
and Pony, reconstructed with ATGSP on different levels of qualities q in Figure 6.2. They were
chosen due to their differing textural content. Indeed, we observe vast improvements to the image
quality measured via the SSIM for lower qualities. While there are still improvements in the higher
quality range, it is not as pronounced. Thus, we adopt approach (i) and select low qualities q.

n AT SSIM AT filesize ATGSP SSIM ATGSP coefficients
1000 0.8250 1586 B 0.8692 1655
2000 0.8777 2847 B 0.9076 1615
3000 0.9049 3992 B 0.9250 1341
4000 0.9232 5040 B 0.9361 1038
5000 0.9351 6037 B 0.9443 854
6000 0.9435 6988 B 0.9497 642
7000 0.9490 7918 B 0.9536 489
8000 0.9545 8789 B 0.9571 333
9000 0.9591 9637 B 0.9608 254
10000 0.9627 10458 B 0.9638 175

Table 6.1: Comparison of AT and ATGSP reconstructions over a selection of n significant pixels
with q = 20. For each n, the respective SSIM values are given along with the filesize of the AT
file and the additional coefficients used in the ATGSP algorithm.

We start with an in-depth comparison of AT and ATGSP on the standard test case Lena as
an image that comprises a balanced amount of textures and geometries. A quality level of q = 20
is used, so that we only add textures to 20% of significant triangles. Next, we have to choose the
amount n of significant pixels. To this end, we compare the SSIM of AT and ATGSP for different
n in Table 6.1. While the filesize of the AT reconstruction grows steadily, the amount of ATGSP
coefficients used declines, along with the improvement by ATGSP. This is as expected, since less
significant pixels imply larger triangles with more textural content.

Table 6.1 shows the trade-off between the choices of n. For a small amount of significant pixels
the triangles are large, which means much information can be described with few coefficients. But
this also leads to a worse approximation of the geometry and more textured triangles. This is
observed in the experiment, where the improvement by ATGSP for small n is considerable, but
not as good as simply adding more significant pixels in the AT algorithm. On the other hand, for
a large amount of significant pixels the image blocks are small, which leads to a very good recon-
struction of the geometry and small triangles. This results in very few triangles being considered
textured, which means only few additional textures are reconstructed. The size n is chosen to lie
inbetween these extrema, where a good performance of ATGSP compared to pure AT is observed.
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(a) Original image Lena. (b) Delaunay triangulation D(P5000).

(c) AT reconstruction over P6000 with
SSIM = 0.9435.

(d) ATGSP reconstruction with 854 coefficients
and SSIM = 0.9443.

Figure 6.3: Reconstruction of the image Lena via AT and ATGSP.

The original image I is once more shown in Figure 6.3(a). We reconstruct the image with the
ATGSP method over a set of n = 5000 significant pixels. The Delaunay triangulation D(P5000)
is shown in 6.3(b). Textured significant triangles are again highlighted in red, while smooth
significant triangles are depicted in blue. Note that most of the hat is considered textured, along
with parts of her hair, feathers and some of the background structure. This is as expected, since
those are the regions we subjectively classified as textured in the discussion in Section 5.2.

We compare the ATGSP reconstruction IATGSP in 6.3(d) with an AT reconstruction Ĩ over
n = 6000 significant pixels in 6.3(c). Even though ATGSP uses only 854 coefficients compared to
the 951 additional bytes pure AT uses, the SSIM value of IATGSP is larger than that of Ĩ, namely
0.9443 versus 0.9435. Both reconstructions capture the geometry of the image well, while IATGSP

has a significantly better portrayal of the textures as seen in Figure 6.4. With the added textures,
the ATGSP reconstruction looks more natural than its AT counterpart with flat blocks. While
this is a subtle difference, it leads to a better subjective visual quality.
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(a) ATGSP reconstruction over D(P5000) and 854 additional coefficients.

(b) AT reconstruction over D(P6000).

Figure 6.4: Comparison of reconstructed textures on the hat of Lena.

Finally, we turn to compression of mainly textured images, where we consider the textured
images Flower and Pony. As they are both heavily textured, we set n = 4000 smaller as above
to obtain larger image blocks. Since there are a lot of textures to reconstruct, we set qS = 0
and ignore smooth triangles completely. The reconstruction of heavily structured images with
linear splines is intrinsically of poor quality, and triangular artefacts are apparent in both of the
following examples.

First, we turn to the image Flower in Figure 6.5, where the flower is a clear geometrical
feature with a background pattern given by the fabric. In order to capture most large triangles
in 6.5(b), we chose q = 27 to be relative large. The ATGSP algorithm reconstructs the image with
4399 additional coefficients, so we compare it to the AT reconstruction over P8500. Comparing the
SSIM values, we note that the ATGSP reconstruction performs fairly better with a value of 0.8001
compared to 0.7957. In terms of visual quality the flat triangular artefacts are mostly suppressed
in 6.5(d).

Next, we turn to the image Pony in Figure 6.6. We set q = 10, which gives us a good rep-
resentation of large, textured triangles in 6.6(b). As above, the ATGSP algorithm with 1573
additional coefficients performs better than its comparable AT reconstruction over P5500 with a
SSIM value of 0.8346 versus 0.8324. While both reconstructions exhibit triangular artefacts, they
are less pronounced in 6.6(d). Especially the mother pony in the background is fully covered by
significant triangles and thus reconstructed well.
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Our final conclusion is that the ATGSP post-processing algorithm is a good addition to the
AT adaptive coding scheme, even in its very early developement stage. It does not impair the
good performance of it on geometrical images and improves the reconstruction of textured images
noticeably.

(a) Original image Flower. (b) Delaunay triangulation D(P4000).

(c) AT reconstruction over P8500 with
SSIM = 0.7957.

(d) ATGSP reconstruction with 4399 coeffi-
cients and SSIM = 0.8001.

Figure 6.5: Reconstruction of the image Flower via AT and ATGSP.
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(a) Original image Pony. (b) Delaunay triangulation D(P4000).

(c) AT reconstruction over P5500 with
SSIM = 0.8324.

(d) ATGSP reconstruction with 1573 coeffi-
cients and SSIM = 0.8346.

Figure 6.6: Reconstruction of the image Pony via AT and ATGSP.
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Chapter 7

Summary and Outlook

This thesis was concerned with the compression of digital images via the proposed compression
scheme ATGSP. It improved on the AT compression scheme by adding textures on significant
triangles.

After providing a brief overview of conventional image compression techniques, we introduced
the AT algorithm as a means to adaptively approximate a given digital image I. It selects a
sparse set of most significant pixels Pn, over which the ansisotropic Delaunay triangulation D(Pn)
is generated. The reconstruction Î is then given by a linear spline, defined by optimal luminances
of the pixels in Pn. While the representation of geometric features is very good, we have shown
that linear splines are inherently unsuitable to reconstruct textures.

We therefore turned to graph signal processing to balance the good reconstruction of geometries
by AT with a good representation of textures in the graph spectral domain. GSP defines frequency
spectra on irregular domain, such as triangular image blocks. It introduces graph signals f ∈ RN

defined on weighted graphs G = (V, E ,W). Based on the graph Laplacian L, a graph Fourier
transform was defined that transfers f to the graph spectral domain via f̂ = UT f .

Combining AT and GSP, we proposed our post-processing scheme ATGSP. Additional infor-
mation of the textural part It of an image is added over a set of significant triangles Tsig. We
have shown that it is sensible to define It as the difference between the original image and the AT
reconstruction, i.e. It = I− Î.

Each triangular image block T ∈ Tsig was converted to the graph setting, by identifying the
pixels with vertices, which inherently defined the graph signal f . More care had to be given to
the construction of E and W in order to construct graphs that exploit the smoothness of f . To
this end, we introduced the block structure tensor and classified the significant triangles based
on their textures. For each class a graph was constructed that imposed sparseness in the graph
spectral domain.

For smooth image blocks without textures, the 8-way connectivity graph was chosen. On
anisotropically textured blocks, the graph was constructed via a graph template that was based
on the dominant principal gradient u1. Isotropic textured blocks required more care. A Graph
learning approach was compared with a discrete weight model based on the smoothness of f in
regard to them. For both textured classes an optimal edge weight wo was derived, so that the
resulting GFT approximates the KLT.

Finally, we described the experimental setup, including thresholding and quantization. Based
on this implementation, we compared our proposed ATGSP method to the unaltered AT com-
pression scheme on natural images.
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While the numerical experiments on natural images in Section 6.2 show a promising recon-
struction on textured images, the ATGSP scheme is still in a very early stage and there is room
for further improvement.

Comparing the reconstructions of different images, especially the textures on Lenas hat and
on the mother pony were reconstructed very well. This is caused by the relatively large triangles
that cover those regions in the Delaunay triangulation D, which results in a small amount of
overhead being necessary for a good texture reconstruction. The selection of significant triangles
as in Section 6.1.1 is completely dependent on D output by the AT algorithm. Due to the choice
of significance in the AT algorithm, it will cover heavily textured ares with small triangles, which
is detrimental to our proposed coding scheme.

In future work, the first step is to either include the texturedness of an area in the AT algorithm
or perform further pixel exchanges to combine similarly textured image blocks. While covering
uniformly textured regions with large triangles is detrimental to the regular AT coding scheme,
together with ATGSP it would improve the representation of textures considerably. Removing
pixels from textured regions, it also increases the concentration of significant pixels around edges,
leading to a better geometry representation. This should be paired with an efficient encoding of
coefficients and graph descriptions integrated into the AT coding scheme.

But while large textured blocks are beneficial for the performance of ATGSP in a quality sense,
the computational cost is quite high. The eigenvalue decomposition of L ∈ RN×N has a worst
case computational cost of O(N3). Even though only local blocks are chosen and the computation
of every block is independent, so that the algorithm is parallelizable, it is still quite expensive.
This is especially detrimental compared to algorithms such as JPEG or JPEG 2000 utilizing
the fast Fourier transform. The computational cost may possibly be improved by exploiting the
known structure of L or computing approximating eigenvectors. Additionally, it may possibly be
advantageous to utilize the non-normalized graph Laplacian L̂. Due to the absence of a constant
eigenvector and σ(L̂) ⊂ [0, 2], it may benefit the performance and computational cost.

Next, we discussed that there is no general insight on specific elemental frequencies given the
wide variety of shapes and sizes of triangles. Therefore, improving the selection and thresholding
methods in Section 6.1 should increase the performance of ATGSP. Especially the thresholding of
f̂ would profit from an adaptive selection depending on the elemental frequencies. Furthermore,
the optimal values of q and qs depend on the image. Setting these automatically would be a
considerable improvement.

Finally, the ATGSP algorithm can be generalized to color images and videos. A popular
colour domain for colour images is the YCbCr domain, where the Y channel contains the luminance
information while the other two contain the chrominance information. They are usually correlated,
which could be expoloited by the ATGSP method. Videos can be considered as a sequence
of images. The AT scheme applied to them constructs a Delaunay tetrahedralization over the
domain, based on a similar construction as in Chapter 3. It might be worthwile to adapt the
ATGSP algorithm, especially the perception of textures, to improve the reconstructed videos.

102



Bibliography

[1] M. Abdelrazek. Image compression using dct upon various quantization. International Jour-
nal of Computer Applications, 137:11–13, 03 2016.

[2] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE Transactions on
Computers, C-23(1):90–93, 1974.

[3] A. Ahumada and H. Peterso. Luminance-model-based dct quantization for color image com-
pression. Proc SPIE Human Vision, Visual Process Display III, 1666, 12 1997.

[4] T. Biyikoglu, J. Leydold, and P. F. Stadler. Laplacian eigenvectors of graphs: Perron-
Frobenius and Faber-Krahn type theorems. Springer, 2007.

[5] S. P. . Boyd. Convex optimization. Cambridge Univ. Press, 18. print. edition, 2015.

[6] E. J. Candes and D. L. Donoho. Curvelets: A surprisingly effective nonadaptive representa-
tion for objects with edges. Technical report, Stanford Univ Ca Dept of Statistics, 2000.

[7] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovacevic. Signal denoising on graphs
via graph filtering. In 2014 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), pages 872–876, 2014.

[8] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng. Graph spectral image processing. Proceedings
of the IEEE, 106(5):907–930, 2018.

[9] C. Christopoulos, A. Skodras, and T. Ebrahimi. The jpeg2000 still image coding system: An
overview. Consumer Electronics, IEEE Transactions on, 46:1103 – 1127, 12 2000.

[10] F. R. Chung and F. C. Graham. Spectral graph theory. Number 92. American Mathematical
Soc., 1997.

[11] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

[12] I. Daubechies. Orthonormal bases of compactly supported wavelets. Communications on
Pure and Applied Mathematics, 41(7):909–996, 1988.

[13] M. De Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf. Computational geometry.
Springer, third edition, 2008.

[14] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. CoRR, abs/1606.09375, 2016.

[15] L. Demaret and A. Iske. Scattered data coding in digital image compression. Curve and
Surface Fitting: Saint-Malo 2002, pages 107 – 117, 2003.

103



Bibliography

[16] L. Demaret and A. Iske. Advances in digital image compression by adaptive thinning. Annals
of the MCFA, 3:105–109, 2004.

[17] L. Demaret and A. Iske. Adaptive image approximation by linear splines over locally optimal
delaunay triangulations. IEEE Signal Processing Letters, 13(5):281–284, 2006.

[18] L. Demaret and A. Iske. Anisotropic triangulation methods in adaptive image approximation.
In E. H. Georgoulis, A. Iske, and J. Levesley, editors, Approximation Algorithms for Complex
Systems, pages 47–68, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[19] L. Demaret and A. Iske. Optimally sparse image approximation by adaptive linear splines
over anisotropic triangulations. In 2015 International Conference on Sampling Theory and
Applications (SampTA), pages 463–467, 2015.

[20] L. Demaret, N. Dyn, M. S. Floater, and A. Iske. Adaptive thinning for terrain modelling and
image compression. In Advances in multiresolution for geometric modelling, pages 319–338.
Springer, 2005.

[21] L. Demaret, N. Dyn, and A. Iske. Image compression by linear splines over adaptive trian-
gulations. Signal Processing, 86(7):1604–1616, 2006.

[22] L. Demaret, A. Iske, and W. Khachabi. Contextual Image Compression from Adaptive Sparse
Data Representations. In R. Gribonval, editor, SPARS’09 - Signal Processing with Adaptive
Sparse Structured Representations, Saint Malo, France, April 2009. Inria Rennes - Bretagne
Atlantique.

[23] L. Demaret, A. Iske, and W. Khachabi. Sparse Representation of Video Data by Adap-
tive Tetrahedralizations, pages 101–121. Springer London, London, 2012. doi: 10.1007/
978-1-4471-2353-8 6. URL https://doi.org/10.1007/978-1-4471-2353-8_6.

[24] M. N. Do and M. Vetterli. Contourlets: a directional multiresolution image representation.
In Proceedings. International Conference on Image Processing, volume 1, pages I–I. IEEE,
2002.

[25] D. L. Donoho et al. Wedgelets: Nearly minimax estimation of edges. Annals of statistics, 27
(3):859–897, 1999.

[26] N. Dyn, M. S. Floater, and A. Iske. Adaptive thinning for bivariate scattered data. Journal
of Computational and Applied Mathematics, 145(2):505 – 517, 2002.
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loève transform. In 2017 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), pages 1436–1439, 2017.

[83] H. Tamura, S. Mori, and T. Yamawaki. Textural features corresponding to visual perception.
IEEE Transactions on Systems, man, and cybernetics, 8(6):460–473, 1978.

[84] D. Taubman. High performance scalable image compression with ebcot. IEEE Transactions
on image processing, 9(7):1158–1170, 2000.

[85] D. Taubman and M. Marcellin. JPEG2000 Image Compression Fundamentals, Standards
and Practice. Springer Publishing Company, Incorporated, 2013.

[86] D. Thanou, P. A. Chou, and P. Frossard. Graph-based compression of dynamic 3d point
cloud sequences. IEEE Transactions on Image Processing, 25(4):1765–1778, 2016.

[87] D. Tian, H. Mansour, A. Knyazev, and A. Vetro. Chebyshev and conjugate gradient filters
for graph image denoising. In 2014 IEEE International Conference on Multimedia and Expo
Workshops (ICMEW), pages 1–6, 2014.

108



Bibliography

[88] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

[89] G. K. Wallace. The jpeg still picture compression standard. IEEE transactions on consumer
electronics, 38(1):xviii–xxxiv, 1992.

[90] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph
neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):4–24,
2021.

[91] S. Yagyu, A. Sakiyama, and Y. Tanaka. Pyramidal image representation with deformation:
Reformulation of domain transform and filter designs. In 2016 IEEE International Conference
on Image Processing (ICIP), pages 3608–3612, 2016.

[92] K. Yamamoto, M. Onuki, and Y. Tanaka. Deblurring of point cloud attributes in graph
spectral domain. In 2016 IEEE International Conference on Image Processing (ICIP), pages
1559–1563, 2016.

[93] J. Yuan, E. Bae, X.-C. Tai, and Y. Boykov. A continuous max-flow approach to potts model.
In K. Daniilidis, P. Maragos, and N. Paragios, editors, Computer Vision – ECCV 2010, pages
379–392, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
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Appendix A. Zusammenfassung

A Zusammenfassung

Aufgrund der kontinuierlichen Entwicklung von Smarphones mit integrierten Kameras ist die
Bildkompression von digitalen Bildern nach wie vor ein relevantes Forschungsgebiet. Herkömm-
liche Komprimierungsmethoden wie JPEG oder JPEG 2000 basieren auf einer Transformations-
kodierung über gleichmäßige zweidimensionale Gitter. Im Gegensatz dazu komprimiert die Adap-
tive Thinning Methode Bilder, indem sie sie mit linearen Splines über der anisotropen Delaunay
Triangulierung einer kleinen Menge adaptiv gewählter, signifikanten Bildpunkte approximiert.

Das Hauptziel dieser Arbeit ist die Verbesserung der Adaptive Thinning Methode, insbeson-
dere für texturiert Bilder. Zu diesem Zweck stellen wir einen Nachbearbeitungs-Algorithmus vor,
der ausgewählte Regionen eines approximierten Bildes verbessert, indem die graphenbasierte Sig-
nalverarbeitung angewendet wird, um eine Fourier Transformation auf unregelmäßigen Strukturen
zu definieren.

Unsere Methode konstruiert adaptive Graphen um die Glattheit von Bildsignalen auszunutzen.
Hierfür werden signifikante dreieckige Bildblöcke mithilfe des Strukturtensors aufgrund ihres Tex-
turgehalts klassifiziert. Für jede Klasse wird ein Graph konstruiert, der die Spärlichkeit im graph-
ischen Frequenzbereich begünstigt. Dazu wird entweder versucht einen optimalen Graphen zu
erlernen oder ein diskretes Gewichtungmodel angewendet, bei dem die Gewichte optimal gewählt
sind.

Basierend auf den konstruierten Graphen wird das Signal mit der graphenbasierten Fourier
Transformation in den graphischen Frequenzbereich übertragen, wo irrelevante Information ent-
fernt, und die Koeffizienten anschließend quantisiert werden.

Abschließend stellen wir die praktische Implementierung dieser Methode vor, wobei wir uns auf
die Transformation und Quantisierung konzentrieren. Wir vergleichen unsere mit der Adaptive
Thinning Methode auf geometrischen und texturierten Bildern.
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B Publications derived from this dissertation
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Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

I hereby declare upon oath that I have written the present dissertation independently and have
not used further resources and aids than those stated.

Ort, Datum | city, date Unterschrift | signature

117


	Table of contents
	Introduction
	Image Compression via Transform Coding
	Basics of Image Processing
	Karhunen-Loève Transform
	JPEG
	JPEG 2000

	Adaptive Thinning
	Delaunay Triangulations
	Image representation
	Selection of Significant Pixels
	Post-processing
	Adaptive Thinning Algorithm

	Graph Signal Processing
	Weighted Graphs
	Graph Signals
	Graph Signal Smoothness
	The Graph Fourier Transform

	Combining Adaptive Thinning and Graph Signal Processing
	Related Work on Graph Spectral Image Compression
	Geometric and Textural Components of an Image
	Basic Compression of Textures
	Signal Smoothness for Textured Blocks
	Classification of Blocks
	Block Structure Tensor
	Block Structure Tensor on Graphs

	Blocks with Dominant Principal Gradient
	Blocks with complex features
	Optimization of the Graph Transform
	Thresholding Edge Differences

	Edge Weights

	Experimental Results
	Experimental Setup
	Selection of Significant Triangles
	Estimating Optimal Edge Weight
	Construction of the Weight matrix
	Coefficient Thresholding and Quantization
	Algorithm and Image Reconstruction

	Comparison with Adaptive Thinning on Natural Images

	Summary and Outlook
	Back Matter
	Bibliography
	Nomenclature
	Appendices
	Zusammenfassung 
	Publications derived from this dissertation
	Declaration



