Universitätsklinikum Hamburg-Eppendorf

Institut für Pathologie

Prof. Dr. Guido Sauter

Untersuchung zur Lysophosphatidylcholin Acyltransferase 1 (LPCAT1) Expression beim Mammakarzinom

Publikationsdissertation

zur Erlangung des Grades eines Doktors der Medizin an der Medizinischen Fakultät der Universität Hamburg.

vorgelegt von:

Aurelia Sophie von Hassel

Hamburg 2021

Angenommen von der Medizinischen Fakultät der Universität Hamburg am: 12.10.2021

Veröffentlicht mit Genehmigung der Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der/die Vorsitzende: Prof. Dr. Volkmar Müller

Prüfungsausschuss, zweite/r Gutachter/in: Prof. Dr. Guido Sauter

INHALTSVERZEICHNIS

I.	Artikel								
II.	Dars	Darstellung der Publikation							
	1.0	Einleitung							
	2.0	Material und Methoden	S. 11						
		2.1 Patienten	S. 11						
		2.2 Immunhistochemie	S. 11						
	3.0	Ergebnisse	S. 12						
	4.0	Diskussion	S. 13						
	5.0	Zusammenfassung	S. 15						
	6.0	Abstract	S. 16						
	7.0	0 Literaturverzeichnis							
III.	Dars	tellung des Eigenanteils	S. 20						
IV.	Dank	sagung	S. 21						
V.	Lebenslauf								
VI.	Eide	sstaatliche Erklärung	S. 23						

Research Paper

Up-regulation of lysophosphatidylcholine acyltransferase 1 (LPCAT1) is linked to poor prognosis in breast cancer

Patrick Lebok^{1,*}, Aurelia von Hassel^{1,*}, Jan Meiners², Claudia Hube-Magg¹, Ronald Simon¹, Doris Höflmayer¹, Andrea Hinsch¹, David Dum¹, Christoph Fraune¹, Cosima Göbel¹, Katharina Möller¹, Guido Sauter¹, Frank Jacobsen¹, Franziska Büscheck¹, Kristina Prien¹, Till Krech^{1,3}, Rainer Horst Krech³, Albert von der Assen⁴, Linn Wölber⁵, Isabell Witzel⁵, Barbara Schmalfeldt⁵, Stefan Geist⁶,Peter Paluchoswski⁶, Christian Wilke⁷, Uwe Heilenkötter⁸, Luigi Terracciano⁹, Volkmar Müller⁵, Waldemar Wilczak¹, Eike Christian Burandt¹

 ¹Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
 ²General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
 ³Department of Pathology, Clinical Center Osnabrück, Osnabrück D-49076, Germany
 ⁴Breast Cancer Center, Niels-Stensen Clinic, Franziskus-Hospital Harderberg, Georgsmarienhütte D-49124, Germany
 ⁵Department of Gynecology and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
 ⁶Department of Gynecology, Regio Clinic Pinneberg, Pinneberg D-25421, Germany

⁷Department of Gynecology, Regio Clinic Elmshorn, Elmshorn D-25337, Germany

⁸Department of Gynecology, Regio Clinic and Senior Citizen Center Itzehoe, Itzehoe D-25524, Germany

⁹Cantonal Hospital Basel, University of Basel, Basel CH-4031, Switzerland

*Equal contribution

Correspondence to: Ronald Simon; email: r.simon@uke.de

Keywords: breast cancer, LPCAT1, TMA, prognosis, immunohistochemistryReceived: July 16, 2019Accepted: September 9, 2019Published: September 16, 2019

Copyright: Lebok et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Dysregulation of lipid metabolism is common in cancer. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been implicated with various cancer types. Here we analyzed by immunohistochemistry its expression in 2,197 breast cancers. LPCAT1 staining was found in 97.8% of 1,774 interpretable tumors, including 48.1% with weak, 28.7% with moderate, and 14.4% with strong expression. The frequency of LPCAT1 positivity depended on the histological tumor type. Moderate or strong LPCAT1 positivity was more common in cancers of no special type (NST) (46.2%) than in lobular carcinomas (25.9%; p<0.0001). Strong LPCAT1 was associated with BRE grade, tumor cell proliferation and overall survival in all cancers and in the subgroup of NST cancers (p<0.0001, each). In the subset of NST cancers the prognostic effect of LPCAT1 expression was independent of pT, and BRE grade (p<0.0001 each). A comparison with molecular features showed that LPCAT1 was strongly associated with estrogen receptor negativity (p<0.0001), progesterone receptor negativity (p<0.0001), amplification of HER2 (p<0.0001) and MYC (p=0.0066), as well as deletions of PTEN (p<0.0001) and CDKNA2 (p=0.0151). It is concluded that LPCAT1 overexpression is linked to adverse tumor features and poor prognosis in breast cancer. These data also highlight the important role of lipid metabolism in breast cancer biology.

INTRODUCTION

Breast cancer is the most common cancer in females worldwide and is also the leading cause of cancerrelated deaths in the female population [1]. Surgical removal of the cancer is the standard therapy. Whether adjuvant systemic treatment is performed or not depends on the individual risk situation. The histological grade, tumor size and presence of lymph node metastasis are basic parameters to assess the prognosis of individual patients. Additional molecular analyses are increasingly employed but still not sufficient to reliably determine tumor aggressiveness [2, 3]. The analysis of further molecular properties could eventually improve the reliability of prediction of tumor aggressiveness.

Previous studies have described activation of lipid biosynthesis and lipid remodeling to occur commonly in cancer cells [4]. The phospholipid biosynthesis/ remodeling enzyme lysophosphatidylcholine acyltransferase 1 (LPCAT1) is a key enzyme in the lipidremodeling pathway known as Lands cycle [5]. LPCAT1 has a physiological role in the lung where it the dipalmitoyl phosphatidylcholine generates component of pulmonary surfactant [6, 7], in noninflammatory platelet-activation factor remodeling pathway [8] and in retinal photoreceptor homeostasis [9]. Overexpression of LPCAT1 was recently described in colorectal cancer [10], prostate cancer [11], lung cancer [12] and clear cell renal cell carcinomas [13]. LPCAT1 overexpression led to a significant growth advantage in cultured colorectal cancer cells [10].

A recent study on a cohort of 80 patients has suggested that up-regulation of LPCAT1 in breast cancer may contribute to tumor progression and predict early tumor recurrence [14]. To broaden our knowledge on LPCAT1 as a biomarker in breast cancer we tested 2,197 breast cancer samples for LPCAT1 expression and analyzed associations with histologically and molecularly defined cancer subgroups as well as follow-up information. Our data identify and validate high LPCAT1 expression as a strong prognostic biomarker for early tumor recurrence in breast cancer.

RESULTS

Technical issues

A total of 1,774 (80.7%) of 2,197 tumor samples were interpretable in our TMA analysis. Non-informative cases (473 spots; 19.3%) were due to missing tissue samples or the absence of unequivocal cancer tissue in the TMA spot.

LPCAT1 expression in normal breast tissue and breast cancer

Normal breast tissues showed moderate to strong LPCAT1 expression in luminal cells under the selected experimental conditions. In cancer, detectable LPCAT1 immunostaining was seen in 1,619 of our 1,774 (91.3%) tumors and was considered weak in 48.1%, moderate in 28.7% and strong in 14.4% of tumors. A fraction of 8.7% showed no detectable LPCAT1 staining and was classified as negative. Representative images of LPCAT1 immunostainings are shown in Figure 1. LPCAT1 expression varied between histological breast cancer subtypes (Table 1). Strong LPCAT staining was for example more often seen in papillary (18.5%) and NST (16.2%) than in lobular carcinomas (5.7%; p<0.0001 for lobular vs. NST cancers). Strong LPCAT staining was also seen in some rare breast cancer subtypes including carcinoma with apocrine differentiation (5 of 12 strongly positive), carcinoma with medullary features (11 of 60) and glycogen-rich clear cell type (3 of 13).

Association with tumor phenotype and molecular features

High levels of LPCAT1 immunostaining were significantly linked to unfavorable tumor features including high pT stage, high BRE grade, estrogen and progesterone receptor negativity, and HER2 amplification (p<0.0001 each). This was also seen for the subgroup of NST carcinomas (Table 1). The comparison of LPCAT1 expression with previously described other genomic alterations such as c-MYC- amplification [15] as well as deletions of PTEN [16–18] and CDKNA2 [19, 20]

Figure 1. LPCAT1 staining in breast cancer with (A) negative, (B) weak, (C) moderate and (D) strong staining.

	LPCAT1 IHC result (%)					
	Ν	Negative	Weak	Moderate	Strong	Р
All cancers	1774	8.7	48.1	28.7	14.4	
Histology						< 0.0001
No special type (NST)	1277	7.8	46.0	30.0	16.2	
Lobular carcinoma	228	11.4	62.7	20.2	5.7	
Medullary carcinoma	60	6.7	35.0	40.0	18.3	
Cribriform carcinoma	53	22.6	50.9	18.9	7.5	
Tubular carcinoma	38	18.4	57.9	23.7	0.0	
Papillary carcinoma	27	11.1	37.0	33.3	18.5	
Mucinous carcinoma	50	2.0	54.0	34.0	10.0	
Other and rare types*	41	4.9	39.0	29.3	26.8	
Tumor stage						0.0176
pT1	638	9.2	52.2	27.9	10.7	
pT2	856	7.9	46.6	28.6	16.8	
pT3	101	10.9	47.5	22.8	18.8	
pT4	202	8.4	42.6	34.2	14.9	
Nodal status						0.2865
pN0	768	9.0	50.0	28.0	13.0	
pN1	656	8.2	47.7	29.3	14.8	
pN2	102	9.8	37.3	33.3	19.6	
BRE grade						< 0.0001
1	415	14.5	59.8	22.2	3.6	
2	668	7.8	54.2	27.4	10.6	
3	570	4.7	35.4	34.4	25.4	
ER status						< 0.0001
Negative	406	5.9	32.0	33.3	28.8	
Positive	1289	9.7	52.8	27.2	10.3	
PR status						< 0.0001
Negative	1056	8.7	45.9	27.7	17.7	
Positive	567	9.2	52.2	29.5	9.2	
HER2 status						< 0.0001
Normal	1153	9.1	51.2	28.4	11.3	
Amplified	245	5.7	31.4	29.0	33.9	

Table 1. LPCAT1 immunostaining and breast cancer phenotype.

*including carcinoma with apocrine differentiation and metaplastic carcinoma of no special type.

revealed significant associations with LPCAT1 upregulation (p<0.02; Table 2). LPCAT1 expression was unrelated to MDM2 amplifications (p=0.67).

Association with tumor cell proliferation

Data on tumor cell proliferation as evaluated by KI67 immunohistochemistry were available from a previous

study [19]. These were correlated with the present LPCAT1 staining. The mean Ki67LI increased from 23.5 \pm 1.2 for LPCAT1 negative cancers to 37.3 \pm 1.0 for cancers with strong LPCAT1 expression (p<0.0001; Table 3). This association was also seen in all tumor subsets with identical pT stage, nodal, ER, PR and HER2 status, BRE grade (only in grade 2 and 3).

Table 2. LPCAT1 staining and genomic alterations.

			LPCAT1 IHC (%)				
		Negative	Weak	Moderate	Strong	Р	
DTEN	Normal (n=906)	9.1	49.6	28.8	12.6		
PIEN	Deleted (n=220)	5.9	35.5	29.1	29.5	≤0.0001	
	Normal (n=992)	9.9	48.4	28.7	13.0		
c-MYC	Gain (n=258)	6.6	42.2	31.0	20.2		
	Amplification (n=64)	3.1	42.2	31.3	23.4	0.0066	
CDIMA	Normal (n=832)	8.8	47.1	29.1	15.0		
UDKNZA	Deleted (n=151)	7.3	37.1	30.5	25.2	0.0151	
MDM2	Normal (n=1469)	8.5	47.9	28.9	14.8		
IVIDIVIZ	Amplified (n=94)	9.6	43.6	27.7	19.1	0.6727	

Table 3. LPCAT1 expression and Ki67-labeling index.

	LPCAT1	Ν]	Ki67L	[LPCAT1	Ν	K	i67Ll	[
	Negative	135	23.5	±	1.2		Negative	46	22.7	±	1.1
All	Weak	717	24.7	±	0.5	BRE grade 2	Weak	304	23.1	±	0.7
p<0.0001	Moderate	432	30.0	±	0.7	p<0.0001	Moderate	157	24.6	±	0.8
P 0.0001	Strong	219	37.3	±	1.0		Strong	61	30.6	±	0.8
	Negative	50	20.7	±	1.8		Negative	25	35.2	±	2.9
pT1	Weak	258	21.1	±	0.8	BRE grade 3	Weak	170	34.8	±	1.1
p<0.0001	Moderate	148	25.9	±	1.1	p<0.0001	Moderate	158	40.2	±	1.2
	Strong	56	34.9	±	1.7		Strong	124	42.6	±	1.3
	Negative	57	23.8	±	2.0		Negative	22	34.0	±	3.4
pT2	Weak	340	27.1	±	0.8	ER neg.	Weak	116	32.1	±	1.5
p<0.0001	Moderate	200	32.8	±	1.1	p<0.0001	Moderate	115	38.8	±	1.5
	Strong	120	38.4	±	1.4		Strong	103	43.3	±	1.6
	Negative	10	23.1	±	5.2		Negative	110	21.7	±	1.2
рТЗ	Weak	41	27.1	±	2.5	ER pos.	Weak	568	23.6	±	0.5
p=0.0253	Moderate	19	33.7	±	3.7	p<0.0001	Moderate	303	26.7	±	0.7
	Strong	18	39.3	±	3.8		Strong	110	31.7	±	1.2
	Negative	17	30.2	±	3.2		Negative	82	24.2	±	1.6
pT4	Weak	76	25.2	±	1.5	PR neg.	Weak	431	25.2	±	0.7
p=0.0035	Moderate	60	29.7	±	1.7	p<0.0001	Moderate	252	32.2	±	0.9
	Strong	25	36.4	±	2.7		Strong	168	39.9	±	1.2
	Negative	56	20.6	±	1.9		Negative	48	22.4	±	1.9
pN0	Weak	311	23.9	±	0.8	PR pos.	Weak	243	24.4	±	0.8
p<0.0001	Moderate	183	29.5	±	1.1	p=0.0435	Moderate	152	27.5	±	1.0
	Strong	88	37.6	±	1.5		Strong	41	27.9	\pm	2.0
	Negative	58	24.6	±	1.9		Negative	89	24.2	±	1.5
pN+	Weak	297	25.8	±	0.8	HER2 norm.	Weak	497	24.6	±	0.6
p<0.0001	Moderate	186	30.9	±	1.1	p<0.0001	Moderate	277	29.5	±	0.9
	Strong	97	37.0	±	1.5		Strong	110	36.8	±	1.4

	Negative	50	18.5	±	1.5		Negative	14	30.4	±	3.6
BRE	Weak	201	17.8	±	0.7	HER2 amp.	Weak	63	33.1	±	1.7
Grade 1 n=0 1291	Moderate	78	20.7	±	1.2	p=0.0072	Moderate	61	36.2	±	1.7
r <u>2</u>)1	Strong	12	22.2	±	3.0		Strong	73	40.1	±	1.6

Prognostic significance of LPCAT1 expression

Raw survival data were available for 1,774 cancers with interpretable IHC results. Strong LPCAT1 expression was closely associated with shortened overall survival (p=0.0043; Figure 2A). The association between strong LPCAT1 expression and poor prognosis was even more pronounced in the subgroup of NST cancers (p=0.0006; Figure 2B) and in the nodal positive subset (p=0.0022; Figure 2C) but was not seen in nodal negative cancers (p=0.1716; Figure 2D). Multivariate analysis for NST cancers including pT stage, nodal status, BRE grade and hormone receptors did not identify LPCAT1 expression as an independent prognosticator of survival (Table 4).

DISCUSSION

Our immunohistochemical analysis showed positive LPCAT1 staining in 91.2% of tumors, including 14.4% with strong staining and 76.8% with weak to moderate

staining. Since the staining intensity of LPCAT1 in normal breast glands was usually moderate, these data suggest that LPCAT1 is overexpressed in about 15% of breast cancers. Our data are consistent with a previous study by Abdelzaher and Mostafa comparing LPCAT1 expression in 80 breast cancers of NST and 30 nonneoplastic epithelial breast tissues [14]. In this study, LPCAT1 immunostaining was found to be higher in tumor tissue than in non-neoplastic epithelial breast tissue.

Significant differences between the individual breast cancer subtypes fit well with the recognized biological differences between tumor entities. However, the most striking result of our study is the strong association of LPCAT1 expression with an unfavorable histological phenotype and clinical outcome. These data are also confirmed by the results of Abdelzaher and Mostafa [14], which describe links between LPCAT1 immunostaining and high-grade, advanced TNM stage, T stage and lymph

Figure 2. LPCAT1 staining and overall survival in (A) all cancers, (B) the no special type (NST) cancer subset, (C) nodal positive, and (D) nodal negative cancers.

Table 4. Cox proportional	hazards for surviv	al of established	l prognostic	parameter	in breast	cancers of no	special
type.							

Variable	Subset	Ν	HR (95% CI)	Р
ER	Negative vs. positive	1998	1.5 (1.2-2.0)	≤0.0001
PR	Negative vs. positive	1907	1.2 (1.0-1.6)	0.1158
HER2 IHC	3 vs. 0	1984	1.2 (0.8-1.5)	0.4753
BRE grade	3 vs. 1	2008	2.1 (1.5-2-9)	≤0.0001
pT stage	4 vs. 1	2161	2.3 (1.7-3.3)	≤0.0001
pN stage	2 vs. 0	1820	5.6 (3.9-8.0)	≤0.0001
LPCAT1 expression	Strong vs. neg./weak/mod.	1772	1.2 (0.8-1.4)	0.7550

"N" gives the total number of all cases with survival data in each category. Hazard ratios (HR), confidence intervals (CI) and P-values correspond to the indicated subsets.

ER (estrogen receptor); PR (progesterone receptor); HR (hazard ratio); CI (confidence interval).

node stage in their series of 80 breast cancer patients. It is noteworthy that the 12% of cancers classified as "strong LPCAT1 expressers" behaved significantly worse than the other cancers, especially when the clinical outcome (overall survival) was taken into account. A striking correlation between strong LPCAT1 expression and unfavorable clinical outcome was also found in more homogeneous cancer subtypes, such as 1,277 cancers of no special type and 758 nodal-positive cancers, suggesting possible clinical applicability of LPCAT1 measurement for prognostic evaluation. That LPCAT1 overexpression is also observed in aggressive forms of a broad variety of other cancer types [21-23] suggests a general role of this protein during tumor progression. Based on its molecular function as a key enzyme of lipid synthesis in the Land's cycle it is believed that LPCAT1 up-regulation reflects a consequence of the increased demand for lipid-depending cellular structures such as membranes and fatty acids in rapidly proliferating tumor cells (reviewed in [24]). This is also supported by work demonstrating that inhibition of enzymes of the Land's cycle limits the growth of cancer cells and reduces tumorigenesis in various tumor cell models [25].

The molecular database attached to our TMA enabled us to study the relationship of LPCAT1 expression with molecular features that had earlier been analyzed on the same TMA. According to our study, expression levels of LPCAT1 were strongly associated with amplifications of HER2 and MYC, negative ER and PR status and PTEN deletions, which are all linked to adverse tumor features and poor patient outcome. Virtually all of these molecules are implicated in the regulation of processes depending on sufficient supply of lipids and fatty acids, such as cell growth and proliferation, and some of them are known to directly contribute to rate limiting steps of lipid metabolism. For example, there is emerging evidence that PTEN controls lipid biosynthesis via its downstream target Maf1 [26]. MYC has been shown to cooperate with sterol regulatory element-binding protein 1 (SREBP1), a transcription factor involved in regulating lipid homeostasis that was shown to promote epithelial-mesenchymal transition in colon cancers [27] and ER regulates expression of at least 20 genes involved in fatty acid metabolism in breast cancer [28].

Activation of lipid metabolism in tumor cell proliferation is widely accepted. This fits well with the strong correlation of Ki67 expression level with high LPCAT1 expression seen in this study. That this relationship retained high statistical significance in various analyzed cancer subgroups defined by an identical status of morphologic or molecular parameters argues for a particular strong role of LPCAT1 for tumor growth. Apart from the need of producing lipids for dividing cells, LPCAT1 expression could also impact tumor cell proliferation by the production of metabolic intermediates for synthesis of cellular signaling molecules [29]. Moreover, Lipid metabolism has been associated with cellular proliferation and energy storage (reviewed in [30], similar to the prominent Warburg effect [29]. It has been suggested that increased lipid metabolism is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect). Various tumors undergo exacerbated endogenous lipid metabolism irrespective of the levels of extracellular lipids [31].

It is a limitation of our study that no data on therapy are available. The rate of LPCAT1 positivity may be higher in case of heterogeneity since we had only one 0.6 mm spot per cancer analyzed. Many data were taken from previous analyses of the same TMA, some of which have been performed more than 10 years ago. This study is an excellent example for how the TMA technology facilitates the development of molecular databases that can be used for every new study. In summary, our data identify LPCAT1 expression as a prognostic biomarker with potential clinical utility in breast cancer. It appears well possible, that LPCAT1 measurement, either alone or in combination, may be utilized for better clinical decision-making in the future. The findings also highlight the potentially important role of lipid metabolism in breast cancer as a parameter for tumor aggressiveness.

MATERIALS AND METHODS

Patients

A preexisting tissue microarray (TMA) with 2,197 human breast cancer samples from paraffin-embedded tissue specimens fixed in 4% neutral buffered formalin was used [19]. The samples were consecutively collected between 1984 and 2000. The median patient's age was 63 years (range 25-101). Raw survival data were available from 1.982 patients. The mean follow-up time was 63 months (range 1-176). The TMA was produced as describe earlier in detail [32]. In short, one 0.6 mm core was taken from a representative cancer tissue block from each patient. The samples were distributed across 6 TMA blocks. A control area containing 20 samples of normal breast tissue was present on each TMA block. Four µm sections of the TMA blocks were transferred to an adhesive coated slide system (Instrumedics Inc., Hackensack, New Jersey) for IHC analysis. The TMA was annotated with data from previous FISH studies for HER2, MYC, CCND1, p53, PTEN, CDKN2A and MDM2 as well as IHC studies on estrogen receptor (ER), progesterone receptor (PR) expression and Ki67-labeling index (Ki67LI) [19, 20, 33, 34].

Immunohistochemistry

Freshly cut TMA sections were immunostained in a single experiment. Slides were deparaffinized and exposed to heat-induced antigen retrieval (5 min, 121°C in Tris-EDTA-citrate buffer at pH 7.8). Primary antibody specific for LPCAT1 (rabbit, Protein Tech; at 1/1350 dilution was applied at 37°C for 60 minutes. Bound antibody was then visualized using the EnVision Kit (Dako, Glostrup, Denmark) according to the manufacturer's directions. LPCAT1 staining was found on the membrane and in the cytoplasm of positive cells. Evaluation of the immunohistochemical staining was performed as previously described [35]. In brief, tumors with complete absence of staining were scored as "negative". Cancers with a staining intensity of 1+ in up to 70 %, or 2+ in \leq 30 % of the tumor cells were scored as "weak". A "moderate" score was given to cancers with a staining intensity of 1 + > 70 %, 2 + in up to 70 %, or 3+ in ≤ 30 % of tumor cells. The score was considered "strong" if staining intensity was 2+ in >70 % of tumor cells or 3+ in > 30 % of tumor cells.

Statistics

Contingency tables and chi-square test were calculated to find associations between LPCAT1 expression and clinico-pathological variables. Anova and F-test was applied for associations between LPCAT1 expression and Ki67LI. Kaplan-Meier curves and the log-rank tests were applied to test for differences between stratified survival functions. Cox proportional hazards regression analysis was performed to test for independence and significance between pathological and molecular variables. JMP 12.0 software (SAS Institute Inc., NC, USA) was used.

Ethics approval

The Ethics Committee of the Ärztekammer Hamburg approved the study protocol (WF-049/09). According to local laws (HmbKHG §12a), patient informed consent was not required. Patient records/information were anonymized and de-identified prior to analysis. All procedures have been performed in compliance with the principles outlined in the Helsinki Declaration.

ACKNOWLEDGMENTS

We thank Mrs. Janett Lütgens, Mrs. Sünje Seekamp and Mrs. Inge Brandt (Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany) for excellent technical assistance.

CONFLICTS OF INTEREST

The authors declare that there is no conflicts of interest.

REFERENCES

- Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65:87–108. <u>https://doi.org/10.3322/caac.21262</u> PMID:<u>25651787</u>
- Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, et al. A multigene assay to predict recurrence of tamoxifen-treated, nodenegative breast cancer. N Engl J Med. 2004; 351:2817–26. <u>https://doi.org/10.1056/NEJMoa041588</u> PMID:15591335
- Müller BM, Kronenwett R, Hennig G, Euting H, Weber K, Bohmann K, Weichert W, Altmann G, Roth C, Winzer KJ, Kristiansen G, Petry C, Dietel M, Denkert C.

Quantitative determination of estrogen receptor, progesterone receptor, and HER2 mRNA in formalinfixed paraffin-embedded tissue—a new option for predictive biomarker assessment in breast cancer. Diagn Mol Pathol. 2011; 20:1–10. https://doi.org/10.1097/PDM.0b013e3181e3630c PMID:21326033

- Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012; 279:2610–23. <u>https://doi.org/10.1111/j.1742-4658.2012.08644.x</u> PMID:22621751
- Kent C. Regulatory enzymes of phosphatidylcholine biosynthesis: a personal perspective. Biochim Biophys Acta. 2005; 1733:53–66. <u>https://doi.org/10.1016/j.bbalip.2004.12.008</u> PMID:<u>15749057</u>
- Bridges JP, Ikegami M, Brilli LL, Chen X, Mason RJ, Shannon JM. LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. J Clin Invest. 2010; 120:1736–48. <u>https://doi.org/10.1172/JCI38061</u> PMID:20407208
- Nakanishi H, Shindou H, Hishikawa D, Harayama T, Ogasawara R, Suwabe A, Taguchi R, Shimizu T. Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1). Expression in alveolar type II cells and possible involvement in surfactant production. J Biol Chem. 2006; 281:20140–47. https://doi.org/10.1074/ibc.M600225200

https://doi.org/10.1074/jbc.M600225200 PMID:<u>16704971</u>

- Harayama T, Shindou H, Ogasawara R, Suwabe A, Shimizu T. Identification of a novel noninflammatory biosynthetic pathway of platelet-activating factor. J Biol Chem. 2008; 283:11097–106. <u>https://doi.org/10.1074/jbc.M708909200</u> PMID:<u>18285344</u>
- Cheng L, Han X, Shi Y. A regulatory role of LPCAT1 in the synthesis of inflammatory lipids, PAF and LPC, in the retina of diabetic mice. Am J Physiol Endocrinol Metab. 2009; 297:E1276–82. <u>https://doi.org/10.1152/ajpendo.00475.2009</u> PMID:<u>19773578</u>
- Mansilla F, da Costa KA, Wang S, Kruhøffer M, Lewin TM, Orntoft TF, Coleman RA, Birkenkamp-Demtröder K. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression in human colorectal cancer. J Mol Med (Berl). 2009; 87:85–97. <u>https://doi.org/10.1007/s00109-008-0409-0</u> PMID:<u>18974965</u>
- 11. Zhou X, Lawrence TJ, He Z, Pound CR, Mao J, Bigler SA. The expression level of lysophosphatidylcholine acyltransferase 1 (LPCAT1) correlates to the progression

of prostate cancer. Exp Mol Pathol. 2012; 92:105–10. https://doi.org/10.1016/j.yexmp.2011.11.001 PMID:22101258

- 12. Fennell DA, Myrand SP, Nguyen TS, Ferry D, Kerr KM, Maxwell P, Moore SD, Visseren-Grul C, Das M, Nicolson MC. Association between gene expression profiles and clinical outcome of pemetrexed-based treatment in patients with advanced non-squamous non-small cell lung cancer: exploratory results from a phase II study. PLoS One. 2014; 9:e107455. https://doi.org/10.1371/journal.pone.0107455 PMID:<u>25250715</u>
- Du Y, Wang Q, Zhang X, Wang X, Qin C, Sheng Z, Yin H, Jiang C, Li J, Xu T. Lysophosphatidylcholine acyltransferase 1 upregulation and concomitant phospholipid alterations in clear cell renal cell carcinoma. J Exp Clin Cancer Res. 2017; 36:66. <u>https://doi.org/10.1186/s13046-017-0525-1</u> PMID:<u>28494778</u>
- Abdelzaher E, Mostafa MF. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) upregulation in breast carcinoma contributes to tumor progression and predicts early tumor recurrence. Tumour Biol. 2015; 36:5473–83. https://doi.org/10.1007/s13277-015-3214-8

PMID:25683484

 Al-Kuraya K, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H, Spichtin H, Maurer R, Mirlacher M, Köchli O, Zuber M, Dieterich H, Mross F, et al. Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res. 2004; 64:8534–40.

https://doi.org/10.1158/0008-5472.CAN-04-1945 PMID:<u>15574759</u>

- 16. Burandt E, Grünert M, Lebeau A, Choschzick M, Quaas A, Jänicke F, Müller V, Scholz U, Bokemeyer C, Petersen C, Geist S, Paluchowski P, Wilke C, et al. Cyclin D1 gene amplification is highly homogeneous in breast cancer. Breast Cancer. 2016; 23:111–19. <u>https://doi.org/10.1007/s12282-014-0538-y</u> PMID:24862872
- Choschzick M, Heilenkötter U, Lebeau A, Jaenicke F, Terracciano L, Bokemeyer C, Sauter G, Simon R. MDM2 amplification is an independent prognostic feature of node-negative, estrogen receptor-positive early-stage breast cancer. Cancer Biomark. 2010-2011; 8:53–60. https://doi.org/10.2223/DMA-2011-0806

https://doi.org/10.3233/DMA-2011-0806 PMID:21896991

 Lebok P, Mittenzwei A, Kluth M, Özden C, Taskin B, Hussein K, Möller K, Hartmann A, Lebeau A, Witzel I, Mahner S, Wölber L, Jänicke F, et al. 8p deletion is strongly linked to poor prognosis in breast cancer. Cancer Biol Ther. 2015; 16:1080–87. https://doi.org/10.1080/15384047.2015.1046025 PMID:25961141

- Ruiz C, Seibt S, Al Kuraya K, Siraj AK, Mirlacher M, Schraml P, Maurer R, Spichtin H, Torhorst J, Popovska S, Simon R, Sauter G. Tissue microarrays for comparing molecular features with proliferation activity in breast cancer. Int J Cancer. 2006; 118:2190–94. https://doi.org/10.1002/ijc.21581 PMID:16331604
- Lebok P, Kopperschmidt V, Kluth M, Hube-Magg C, Özden C, B T, Hussein K, Mittenzwei A, Lebeau A, Witzel I, Wölber L, Mahner S, Jänicke F, et al. Partial PTEN deletion is linked to poor prognosis in breast cancer. BMC Cancer. 2015; 15:963. <u>https://doi.org/10.1186/s12885-015-1770-3</u> PMID:<u>26672755</u>
- Uehara T, Kikuchi H, Miyazaki S, Iino I, Setoguchi T, Hiramatsu Y, Ohta M, Kamiya K, Morita Y, Tanaka H, Baba S, Hayasaka T, Setou M, Konno H. Overexpression of Lysophosphatidylcholine Acyltransferase 1 and Concomitant Lipid Alterations in Gastric Cancer. Ann Surg Oncol. 2016 (Suppl 2); 23:S206–13. <u>https://doi.org/10.1245/s10434-015-4459-6</u> PMID:<u>25752890</u>
- 22. Shida-Sakazume T, Endo-Sakamoto Y, Unozawa M, Fukumoto C, Shimada K, Kasamatsu A, Ogawara K, Yokoe H, Shiiba M, Tanzawa H, Uzawa K. Lysophosphatidylcholine acyltransferase1 overexpression promotes oral squamous cell carcinoma progression via enhanced biosynthesis of plateletactivating factor. PLoS One. 2015; 10:e0120143. https://doi.org/10.1371/journal.pone.0120143 PMID:25803864
- Diefenbach CS, Soslow RA, Iasonos A, Linkov I, Hedvat C, Bonham L, Singer J, Barakat RR, Aghajanian C, Dupont J. Lysophosphatidic acid acyltransferase-beta (LPAAT-beta) is highly expressed in advanced ovarian cancer and is associated with aggressive histology and poor survival. Cancer. 2006; 107:1511–19. https://doi.org/10.1002/cncr.22184 PMID:16944535
- 24. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013; 18:153–61. <u>https://doi.org/10.1016/j.cmet.2013.05.017</u> PMID:<u>23791484</u>
- Flavin R, Peluso S, Nguyen PL, Loda M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 2010; 6:551–62. <u>https://doi.org/10.2217/fon.10.11</u> PMID:20373869
- 26. Johnson DL, Stiles BL. Maf1, A New PTEN Target Linking RNA and Lipid Metabolism. Trends Endocrinol Metab. 2016; 27:742–50.

https://doi.org/10.1016/j.tem.2016.04.016 PMID:27296319

- Zhai D, Cui C, Xie L, Cai L, Yu J. Sterol regulatory element-binding protein 1 cooperates with c-Myc to promote epithelial-mesenchymal transition in colorectal cancer. Oncol Lett. 2018; 15:5959–65. <u>https://doi.org/10.3892/ol.2018.8058</u> PMID:<u>29556313</u>
- 28. Monaco ME. Fatty acid metabolism in breast cancer subtypes. Oncotarget. 2017; 8:29487–500. <u>https://doi.org/10.18632/oncotarget.15494</u> PMID:<u>28412757</u>
- 29. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144:646–74. <u>https://doi.org/10.1016/j.cell.2011.02.013</u> PMID:<u>21376230</u>
- Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 2013; 6:1353–63. <u>https://doi.org/10.1242/dmm.011338</u> PMID:24203995
- 31. Kuhajda FP. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition. 2000; 16:202–08. <u>https://doi.org/10.1016/S0899-9007(99)00266-X</u> PMID:<u>10705076</u>
- 32. Mirlacher M, Simon R. Recipient block TMA technique. Methods Mol Biol. 2010; 664:37–44. <u>https://doi.org/10.1007/978-1-60761-806-5_4</u> PMID:<u>20690050</u>
- 33. Al Kuraya K, Simon R, Sauter G. Tissue microarrays for high-throughput molecular pathology. Ann Saudi Med. 2004; 24:169–74. <u>https://doi.org/10.5144/0256-4947.2004.169</u> PMID:15307452
- Lebok P, Roming M, Kluth M, Koop C, Özden C, Taskin B, Hussein K, Lebeau A, Witzel I, Wölber L, Geist S, Paluchowski P, Wilke C, et al. p16 overexpression and 9p21 deletion are linked to unfavorable tumor phenotype in breast cancer. Oncotarget. 2016; 7:81322–31.

https://doi.org/10.18632/oncotarget.13227 PMID:27835607

 Weischenfeldt J, Simon R, Feuerbach L, Schlangen K, Weichenhan D, Minner S, Wuttig D, Warnatz HJ, Stehr H, Rausch T, Jäger N, Gu L, Bogatyrova O, et al. Integrative genomic analyses reveal an androgendriven somatic alteration landscape in early-onset prostate cancer. Cancer Cell. 2013; 23:159–70. <u>https://doi.org/10.1016/j.ccr.2013.01.002</u> PMID:<u>23410972</u>

II. DARSTELLUNG DER PUBLIKATION

1.0 Einleitung

Das Mammakarzinom ist die weltweit häufigste Tumorentität der Frau und zugleich auch die häufigste Ursache eines krebsbedingten Versterbens [1]. 2016 traten allein in Deutschland 71.640 Neuerkrankungen bei Frauen auf, 17.853 Patientinnen verstarben an den Folgen einer Brustkrebserkrankung [2]. Therapeutisch wird der Brusttumor in der Regel zunächst chirurgisch entfernt. Zur Vermeidung lokaler Rezidive ist in den überwiegenden Fällen eine anschließende Strahlentherapie erforderlich. Über die Notwendigkeit adjuvanter systemischer Therapieverfahren wird in Abhängigkeit der individuellen Risikokonstellation entschieden. Es stehen heutzutage eine Vielzahl prädiktiver Faktoren und Kenngrößen zur Einschätzung der individuellen Prognose und des Risikos für Tumorrezidive zur Verfügung. Hierbei handelt es sich überwiegend um tumorbiologische Merkmale wie den histologischen Tumortyp, den Bloom-Richardson-Elston Grad (BRE-Grad), den Östrogen-Progesteron- und Human Epidermal Growth Factor Receptor 2 (HER2) Status, die Ki67-Proliferationsaktivität sowie die peritumorale Lymphangioinvasion. Als Prognoseparameter dienen außerdem der Resektionsrandstatus und das individuelle Erkrankungsstadium, das entsprechend der TNM-Klassifikation anhand der Tumorgröße und dem Vorliegen von Lymphknoten- und Fernmetastasen bestimmt wird. Des Weiteren spielen auch patientenbezogene Faktoren wie das Patientenalter und der Menopausenstatus eine Rolle [3]. Trotz der Vielzahl bekannter prognostischer Faktoren ist die Entscheidung über die Notwendigkeit adjuvanter oder neoadjuvanter Therapieverfahren nicht immer eindeutig. Um die Entscheidungsfindung in uneindeutigen klinischen Konstellationen in Zukunft zu erleichtern, sind weitere Untersuchungen molekularer Tumoreigenschaften und ein besseres Verständnis der Tumorbiologie erforderlich.

Dysregulationen des Lipidstoffwechsels sind in Tumorzellen häufig zu finden. Die Aktivierung der Lipidsynthese und des Remodeling-Pathways wurde bereits in mehreren Studien und für verschiedene Tumorentitäten beschrieben [4]. Die Lysophosphatidylcholin Acyltransferase 1 (LPCAT1) ist ein Schlüsselenzym des Lands Zyklus, der den Remodeling-Prozess zur Wiedergewinnung von Phospholipiden beschreibt [5]. Physiologischerweise spielt die LPCAT1 im Körper eine Rolle bei der Synthese von Dipalmitoyl-Phophatidylcholine, einem Hauptbestandteil des pulmonalen Surfactant-proteins [6-7], im Remodeling-Prozess des nicht-inflammatorischen plättchenaktivierenden Faktors [8] und in der Homöostase retinaler Photorezeptoren [9]. Eine Überexpression der LPCAT1 wurde vor Kurzem bereits für das Kolonkarzinom [10], das Prostatakarzinom [11], für Lungenkarzinome [12] und das klarzellige Nierenzellkarzinom [13] beschrieben. Eine Überexpression der LPCAT1 führte in vitro zu einem signifikanten Wachstumsvorteil von Kolonkarzinomzellen [10].

Eine jüngst erschienene Studie einer Kohorte von 80 Patienten deutet darauf hin, dass eine Hochregulierung der LPCAT1 im Mammakarzinom zur Tumorprogression und einem vorzeitigen Tumorrezidiv beitragen könnte [14]. Um unsere Kenntnisse über die LPCAT1 als Biomarker des Mammakarzinoms zu erweitern, untersuchten wir 2.197 Tumorgewebeproben von Mammakarzinomen hinsichtlich der Expression der LPCAT1. Außerdem analysierten wir die Zusammenhänge zwischen der LPCAT1-Expression und histologischen und molekularpathologischen Tumoruntergruppen sowie den klinischen Verlaufsdaten.

2.0 Material und Methoden

2.1 Patienten

Unsere Studie wurde anhand eines präexistierenden Gewebemikroarrays (Tissue micro array, TMA) durchgeführt, der aus Formalin-fixierten und Paraffin-eingebetteten Gewebeproben von 2.197 humanen Mammakarzinomen besteht, welche zwischen den Jahren 1984 und 2000 entnommen wurden. Das mediane Patientenalter betrug 63 Jahre. 1.982 der Tumore lagen klinische Verlaufsdaten mit einem medianen Für Beobachtungszeitraum von 63 Monaten vor. Für den TMA existiert eine Datenbank, die die Ergebnisse vorangegangener Studien zur HER2-, MYC-, CCND1-, p53-, PTEN-, CDKN2Aund MDM2-Expression mittels Floureszenz-in-situ-Hybridisierung sowie die Ergebnisse immunhistochemischer Untersuchungen zur Expression des Östrogenund Progesteronrezeptors und des Ki67-Proliferationsindex enthält [15-18]. Einzelheiten zum Patientenkollektiv und zur Herstellung des TMA sind der Originalpublikation von 2010 zu entnehmen [19].

2.2 Immunhistochemie

Die Immunhistochemie ist eine Untersuchungsmethode, mithilfe derer Proteine mittels eines passenden Antikörpers in einer Antigen-Antikörper-Reaktion sichtbar gemacht werden können. Eine ausführliche Beschreibung des Versuchsablaufs ist in der Originalpublikation enthalten. Das Besondere unseres Versuchsaufbaus ist, dass alle Gewebeproben in einem einzigen Durchgang mit einem für die LPCAT1 spezifischen Antikörper gefärbt wurden.

Positive Zellen wiesen eine Färbung im Bereich des Zytoplasmas und der Zellmembran auf. Zur Beurteilung der LPCAT1-Expression wurde ein Score mit vier Kategorien, zusammengesetzt aus der Färbungsintensität (0, 1+, 2+, 3+) und des prozentualen Anteils gefärbter Tumorzellen, wie folgt gebildet:

- I. Negativ: Keine LPCAT1-Färbung darstellbar.
- II. Schwach: Tumoren mit einer F\u00e4rbungsintensit\u00e4t von 1+ in ≤ 70\u00c6 der Tumorzellen oder einer F\u00e4rbeintensit\u00e4t von 2+ in ≤ 30\u00f6 der Tumorzellen.
- III. Moderat: Tumoren mit einer F\u00e4rbungsintensit\u00e4t von 1+ in > 70\u00c8, 2+ in ≤ 70\u00c8 oder 3+ in ≤ 30\u00c8 der Tumorzellen.
- IV. Stark: Tumoren mit einer F\u00e4rbeintensit\u00e4t von 2+ in > 70\u00f6 oder 3+ in > 30\u00f6 der Tumorzellen.

3.0 Ergebnisse

Die LPCAT1-Expression konnte in 1.774 (80,7%) von 2.197 Tumoren beurteilt werden. In 1.619 (91,3%) der 1.774 interpretierbaren Gewebeproben konnte eine LPCAT1-Färbung nachgewiesen werden. Davon zeigten 48,1% eine schwache, 28,7% eine moderate und 14,4% eine starke Expression der LPCAT1. 8,7% der Gewebeproben wurden als negativ klassifiziert. Eine ausführliche Darstellung der Ergebnisse unserer Studie ist der beigefügten Originalpublikation zu entnehmen. Nachfolgend sind die Kernaussagen zusammengefasst:

- I. Die LPCAT1-Expression ist abhängig vom histologischen Tumortyp. In lobulären Karzinomen tritt eine starke LPCAT1-Expression signifikant seltener auf als in den unspezifischen invasiven (NST) Karzinomen.
- II. Eine starke LPCAT1-Expression ist mit einem ungünstigen Tumorphänotyp (fortgeschrittenes pT-Stadium, hoher BRE-Grad, Hormonrezeptor-Negativität und einer HER2-Amplifikation) assoziiert.
- III. Eine LPCAT1-Expression ist mit einer c-MYC-Amplifikation, einer PTEN- und CDKNA2-Deletion assoziiert.
- IV. Es besteht kein Zusammenhang zwischen der LPCAT1-Expression und einer MDM2-Amplifikation.
- V. Eine LPCAT1-Expression ist mit einer erhöhten Tumorzellproliferation assoziiert.
- VI. Eine starke LPCAT1-Expression ist mit einer niedrigeren Überlebenswahrscheinlichkeit assoziiert.
- VII. Die LPCAT1-Expression ist kein unabhängiger prognostischer Parameter (im Vergleich zu: pT-Stadium, BRE-Grad, Nodal- und Hormonrezeptorstatus) f
 ür die Überlebensdauer.

4.0 Diskussion

In unserer immunhistochemischen Analyse konnte in 91,2% der Tumorgewebeproben eine LPCAT1-Färbung nachgewiesen werden. 14,4% der Proben wiesen eine starke, 76,8% eine schwache bis moderate Färbungsintensität auf. Da die LPCAT1-Färbung auch im gesunden Brustdrüsengewebe meist moderat ausgeprägt war, deuten diese Daten darauf hin, dass die LPCAT1 in ungefähr 15% der Brusttumoren überexprimiert wird. Damit kommen wir zu einem ähnlichen Ergebnis wie Abdelzaher und Mostafa in ihrer Studie zur Expression der LPCAT1, in der sie 80 Gewebeproben invasiver Mammakarzinome ohne speziellen Typ (NST) und 30 Gewebeproben nicht-neoplastischen, epithelialen Brustdrüsengewebes untersuchten [14]. Sie stellten fest, dass die immunhistochemische LPCAT1-Färbung in den Tumorgewebeproben signifikant stärker ausgeprägt war als in den Proben des nicht-neoplastischen Brustdrüsengewebes.

Die von uns nachgewiesenen signifikanten Unterschiede der LPCAT1-Färbung zwischen den verschiedenen Brustkrebstypen sind gut mit den bekannten Unterschieden zwischen den verschiedenen Tumorentitäten in Einklang zu bringen. Bemerkenswert ist vor allem unsere Erkenntnis, dass ein starker Zusammenhang zwischen der LPCAT1-Expression und einem ungünstigen histologischen Phänotyp sowie einer schlechten klinischen Prognose besteht. Auch Abdelzaher und Mostafa gelangten zu diesem Ergebnis. Sie konnten einen Zusammenhang zwischen der immunhistochemischen LPCAT1-Färbung und einem hohen Tumormalignitätsgrad, einem lokal fortgeschrittenen Tumorstadium und einem positivem Nodalstatus feststellen. Auffällig war vor allem auch, dass eine starke LPCAT1-Färbung, die in der Studie von Abdelzaher et al. bei ungefähr 12% der Tumore auftrat, einen signifikant schlechteren klinischen Verlauf in Bezug auf die Überlebensdauer zur Folge hatte. In homogeneren Subgruppen von Tumoren, beispielsweise in der Gruppe der 1.277 Mammakarzinome ohne speziellen Typ (NST) und der Gruppe der 758 Patienten mit positivem Nodalstatus, konnten wir eine besonders enge Korrelation zwischen der LPCAT1-Expression und einem ungünstigen klinischen Verlauf feststellen. Dies könnte auf einen möglichen klinischen Anwendungsbereich der LPCAT1-Bestimmung im Rahmen der prognostischen Evaluation dieser Tumoren hinweisen.

Dass die LPCAT1-Überexpression bereits für eine Vielzahl anderer aggressiver Tumorformen beschrieben wurde [20-22], legt nahe, dass dieses Protein eine allgemeine Rolle bei der Entwicklung von Tumorzellen spielt. Es wird angenommen, dass die Hochregulation der LPCAT1, die eine Schlüsselfunktion im Rahmen der Lipidsynthese im Lands Zyklus bekleidet, Zeichen eines erhöhten Bedarfs an Membranproteinen und Fettsäuren der schnell proliferierenden Tumorzellen ist [23]. Diese Annahme wird auch durch Studien bekräftigt, die belegen, dass eine Inhibition von Enzymen des Lands Zyklus das Wachstum von Tumorzellen hemmt und die Entstehung von Tumoren in verschiedenen Tumorzellmodellen reduziert [24].

Die zu unserem TMA zugehörige Datenbank ermöglicht es uns, die Beziehung zwischen der LPCAT1-Expression und verschiedenen molekularen Tumoreigenschaften zu untersuchen, die in der Vergangenheit am selben TMA bestimmt worden waren. In unserer

hier vorgestellten Untersuchung konnten wir einen engen Zusammenhang zwischen dem Ausmass der LPCAT1-Expression und einer Amplifikation des HER2- und MYC-Gens, eines negativen Östrogen- und Progesteron-Rezeptorstatus sowie einer PTEN-Deletion finden, die ihrerseits wiederum ebenfalls mit ungünstigen Tumoreigenschaften und einem schlechteren klinischen Verlauf in Verbindung gebracht werden. Nahezu alle diese Moleküle sind an der Regulation von Prozessen beteiligt, die von einer ausreichenden Zufuhr an Fetten und Fettsäuren abhängen, wie das Zellwachstum und die Zellproliferation. Über einige ist außerdem bekannt, dass sie auch unmittelbar direkt Einfluss auf die Aktivität des Fettstoffwechsels nehmen. Für das PTEN-Enzym gibt es beispielsweise Hinweise darauf, dass es über Maf1 die Lipidsynthese der Zellen maßgeblich beeinflusst, was außerdem den epidemiologisch nachgewiesenen Zusammenhang zwischen der Entstehung von Tumoren und einem gestörten Fettstoffwechsel im Rahmen der Adipositaserkrankung auf molekularer Ebene erklären könnte [25]. Das MYC-Protein scheint in Zusammenhang mit dem sterol regulatory element-binding Protein 1 (SREBP1) zu stehen, einem regulatorischen Transkriptionsfaktor der Lipidhomöostase, das außerdem die Epithelial-mesenchymale Transition beim Kolonkarzinom fördert, sodass Tumorzellen die Fähigkeit zur Migration und Metastasierung erlangen [26]. Auch über den Östrogenrezeptor wird die Expression einer Vielzahl von Genen reguliert, die am Fettsäurestoffwechsel des Mammakarzinoms beteiligt sind [27].

Es wird weithin angenommen, dass die Aktivierung des Fettstoffwechsels die Tumorproliferation beeinflusst. In Übereinstimmung hierzu konnten wir eine hohe Korrelation zwischen der Expression von Ki67 und der LPCAT1 feststellen. Dass dieser Zusammenhang auch für die verschiedenen Untergruppen von Tumoren mit identischen morphologischen oder molekularen Parametern statistisch signifikant blieb, unterstreicht die hohe Bedeutung der LPCAT1 für das Tumorwachstum. Eine erhöhte LPCAT1-Expression könnte die Tumorzellproliferation auch auf einem anderen Weg als über die Deckung des erhöhten Lipidbedarfs von Tumorzellen beeinflussen. Die Produktion metabolischer Zwischenstufen in der Synthese zellulärer Signalmoleküle könnte ein weiterer Mechanismus sein, über den die LPCAT1-Expression zu einer Steigerung der Tumorzellproliferation führt [28]. Darüber hinaus wurde der Lipidmetabolismus bereits im Rahmen des sogenannten Warburg-Effektes mit der zellulären Proliferation und Energiespeicherung in Verbindung gebracht. Es wird vermutet, dass ein erhöhter Fettstoffwechsel entweder benötigt wird, um das Wachstum der sich schnell teilenden Zellen zu unterstützen, oder, um die gesteigerte Glykolyse aufrechtzuerhalten, was durch den Warburg-Effekt beschrieben wird [29]. Viele Tumore unterliegen unabhängig vom extrazellulären Lipidgehalt einem endogenen exazerbierten Lipidmetabolismus [30].

Dass unsere Studie keine Daten zu Therapieverfahren beinhaltet, ist bedauernswert. Die Rate von LPCAT1-exprimierenden Tumoren könnte in Wirklichkeit höher sein als in unserer Studie beobachtet. Dies ist dadurch zu begründen, dass Tumorgewebeproben generell eine hohe Heterogenität aufweisen und wir lediglich eine Stanzbiopsie von 0,6 mm Durchmesser pro Tumor untersuchten. Einige der verwendeten molekularpathologischen Daten stammen von vorangegangenen Untersuchungen desselben TMA, die teilweise schon vor über zehn Jahren erhoben wurden. Die vorgelegte Arbeit ist somit ein hervorragendes Beispiel dafür, dass die TMA Technologie die Entwicklung einer molekularen Datenbank, die als Grundlage jeder weiteren Analyse dient, erheblich vereinfacht.

Abschließend lässt sich festhalten, dass unsere Daten die Relevanz der LPCAT1-Expression als Prognoseparameter und auch dessen potentiellen klinischen Nutzen belegen. Es scheint gut vorstellbar, dass die LPCAT1-Expression entweder für sich genommen oder in Kombination mit weiteren prognostischen Biomarkern in Zukunft bei klinischen Entscheidungsfindungen mit einbezogen werden könnte. Die Ergebnisse dieser Studie unterstreichen außerdem die große Bedeutung des Lipidmetabolismus als Kriterium für die Beurteilung der Tumoraggressivität des Mammakarzinoms.

5.0 Zusammenfassung

Dysregulationen des Lipidstoffwechsels sind in Tumorzellen häufig vorzufinden. Die Lysophosphatidylcholin Acyltransferase 1 wurde bereits mit verschiedenen Tumorentitäten in Verbindung gebracht. In der vorliegenden Studie untersuchten wir die Expression der LPCAT1 mittels Immunhistochemie anhand von 2.197 Gewebeproben von Mammakarzinomen. Eine LPCAT1-Färbung konnte in 97,8% der 1.774 interpretierbaren Tumorgewebeproben gefunden werden. 48,1% der Tumoren wiesen eine schwache, 28,7% eine moderate und 14,4% eine starke Färbung auf. Die Intensität der LPCAT1-Färbung war abhängig vom histologischen Tumortyp. Eine moderate oder starke Expression der LPCAT1 wurde häufiger in invasiven Karzinomen ohne speziellen Typ (46,2%) im Vergleich zu den lobulären Karzinomen (25,9%) gefunden (p<0.0001). Eine hohe LPCAT1-Expression korrelierte in allen Tumorproben sowie in der Subgruppe der invasiven Karzinome ohne speziellen Typ mit dem BRE-Grad, der Tumorzellproliferation und der Überlebensdauer des Patienten (jeweils p<0.0001). In der Untergruppe der NST Karzinome war die prognostische Aussagekraft sogar unabhängig vom histologischen Tumorstadium (pT-Stadium) und dem BRE-Grad (jeweils p<0.0001). Ein Vergleich der molekularpathologischen Tumoreigenschaften zeigte, dass die LPCAT1-Expression in engem Zusammenhang mit einem negativen Östrogen- und Progesteron-Rezeptorstatus (jeweils p<0.0001), einer HER2- (p<0.0001) und MYC-Amplifikation (p=0.0066), sowie einer PTEN-Deletion (p<0.0001) und einer Deletion des CDKNA2-Gens (p=0.0151) steht. Wir kamen zu dem Ergebnis, dass die Überexpression der LPCAT1 mit ungünstigen Tumoreigenschaften und einer schlechteren Prognose assoziiert ist. Unsere Daten unterstreichen außerdem den großen Einfluss des Lipidmetabolismus auf die Tumorbiologie des Mammakarzinoms.

6.0 Abstract

Dysregulation of lipid metabolism is common in cancer. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been implicated with various cancer types. Here we analyzed by immunohistochemistry its expression in 2,197 breast cancers. LPCAT1 staining was found in 97.8% of 1.774 interpretable tumors, including 48.1% with weak. 28.7% with moderate, and 14.4% with strong expression. The frequency of LPCAT1 positivity depended on the histological tumor type. Moderate or strong LPCAT1 positivity was more common in cancers of no special type (NST) (46.2%) than in lobular carcinomas (25.9%; p<0.0001). Strong LPCAT1 was associated with BRE grade. tumor cell proliferation and overall survival in all cancers and in the subgroup of NST cancers (p<0.0001, each). In the subset of NST cancers the prognostic effect of LPCAT1 expression was independent of pT, and BRE grade (p<0.0001 each). A comparison with molecular features showed that LPCAT1 was strongly associated with estrogen receptor negativity (p<0.0001), progesterone receptor negativity (p<0,0001), amplification of HER2 (p<0.0001) and MYC (p=0.0066), as well as deletions of PTEN (p<0.0001) and CDKNA2 (p=0.0151). It is concluded that LPCAT1 overexpression is linked to adverse tumor features and poor prognosis in breast cancer. These data also highlight the important role of lipid metabolism in breast cancer biology.

7.0 Literaturverzeichnis

- 1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65:87–108.
- Robert Koch Institut. Bericht zum Krebsgeschehen in Deutschland 2016 [Online]. https://www.rki.de/DE/Content/Gesundheitsmonitoring/Krebsregisterdaten/krebs_nod e.html, [Stand 12.05.2020; 15:30 Uhr].
- Interdisziplinäre S3-Leitlinie für die Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms Der Deutschen Krebsgesellschaft, Langversion 4.3, Februar 2020 [Online]. https://www.leitlinienprogrammonkologie.de/fileadmin/user_upload/Downloads/Leitlinien/Mammakarzinom_4_0/Versi on_4.3/LL_Mammakarzinom_Langversion_4.3.pdf [Stand 29.05.2020; 11:30 Uhr].
- 4. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012; 279:2610–23.
- 5. Kent C. Regulatory enzymes of phosphatidylcholine biosynthesis: a personal perspective. Biochim Biophys Acta. 2005; 1733:53–66.
- Bridges JP, Ikegami M, Brilli LL, Chen X, Mason RJ, Shannon JM. LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. J Clin Invest. 2010; 120:1736–48.
- Nakanishi H, Shindou H, Hishikawa D, Harayama T, Ogasawara R, Suwabe A, Taguchi R, Shimizu T. Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1). Expression in alveolar type II cells and possible involvement in surfactant production. J Biol Chem. 2006; 281:20140–47.
- Harayama T, Shindou H, Ogasawara R, Suwabe A, Shimizu T. Identification of a novel noninflammatory biosynthetic pathway of platelet-activating factor. J Biol Chem. 2008; 283:11097–106.
- Cheng L, Han X, Shi Y. A regulatory role of LPCAT1 in the synthesis of inflammatory lipids, PAF and LPC, in the retina of diabetic mice. Am J Physiol Endocrinol Metab. 2009; 297 (6):E1276–82.
- Mansilla F, da Costa KA, Wang S, Kruhøffer M, Lewin TM, Orntoft TF, Coleman RA, Birkenkamp-Demtröder K. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression in human colorectal cancer. J Mol Med (Berl). 2009; 87:85–97.
- Zhou X, Lawrence TJ, He Z, Pound CR, Mao J, Bigler SA. The expression level of lysophosphatidylcholine acyltransferase 1 (LPCAT1) correlates to the progression of prostate cancer. Exp Mol Pathol. 2012; 92:105–10.
- Fennell DA, Myrand SP, Nguyen TS, Ferry D, Kerr KM, Maxwell P, Moore SD, Visseren-Grul C, Das M, Nicolson MC. Association between gene expression profiles and clinical outcome of pemetrexed-based treatment in patients with advanced nonsquamous non-small cell lung cancer: exploratory results from a phase II study. PLoS One. 2014; 9 (9):e107455.

- Du Y, Wang Q, Zhang X, Wang X, Qin C, Sheng Z, Yin H, Jiang C, Li J, Xu T. Lysophosphatidylcholine acyltransferase 1 upregulation and concomitant phospholipid alterations in clear cell renal cell carcinoma. J Exp Clin Cancer Res. 2017; 36:66.
- Abdelzaher E, Mostafa MF. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) upregulation in breast carcinoma contributes to tumor progression and predicts early tumor recurrence. Tumour Biol. 2015; 36:5473–83.
- Lebok P, Kopperschmidt V, Kluth M, Hube-Magg C, Özden C, B T, Hussein K, Mittenzwei A, Lebeau A, Witzel I, Wölber L, Mahner S, Jänicke F, et al. Partial PTEN deletion is linked to poor prognosis in breast cancer. BMC Cancer. 2015; 15:963.
- Ruiz C, Seibt S, Al Kuraya K, Siraj AK, Mirlacher M, Schraml P, Maurer R, Spichtin H, Torhorst J, Popovska S, Simon R, Sauter G. Tissue microarrays for comparing molecular features with proliferation activity in breast cancer. Int J Cancer. 2006; 118:2190–94.
- 17. Al Kuraya K, Simon R, Sauter G. Tissue microarrays for high-throughput molecular pathology. Ann Saudi Med. 2004; 24:169–74.
- Lebok P, Roming M, Kluth M, Koop C, Özden C, Taskin B, Hussein K, Lebeau A, Witzel I, Wölber L, Geist S, Paluchowski P, Wilke C, et al. p16 overexpression and 9p21 deletion are linked to unfavorable tumor phenotype in breast cancer. Oncotarget. 2016; 7:81322–31.
- 19. Mirlacher M, Simon R. Recipient block TMA technique. Methods Mol Biol. 2010; 664:37–44.
- Uehara T, Kikuchi H, Miyazaki S, Iino I, Setoguchi T, Hiramatsu Y, Ohta M, Kamiya K, Morita Y, Tanaka H, Baba S, Hayasaka T, Setou M, Konno H. Overexpression of Lysophosphatidylcholine Acyltransferase 1 and Concomitant Lipid Alterations in Gastric Cancer. Ann Surg Oncol. 2016 (Suppl 2); 23:206–13.
- Shida-Sakazume T, Endo-Sakamoto Y, Unozawa M, Fukumoto C, Shimada K, Kasamatsu A, Ogawara K, Yokoe H, Shiiba M, Tanzawa H, Uzawa K. Lysophosphatidylcholine acyltransferase1 overexpression promotes oral squamous cell carcinoma progression via enhanced biosynthesis of platelet- activating factor. PLoS One. 2015; 10 (3):e0120143.
- 22. Diefenbach CS, Soslow RA, Iasonos A, Linkov I, Hedvat C, Bonham L, Singer J, Barakat RR, Aghajanian C, Dupont J. Lysophosphatidic acid acyltransferase-beta (LPAAT-beta) is highly expressed in advanced ovarian cancer and is associated with aggressive histology and poor survival. Cancer. 2006; 107:1511–19.
- 23. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013; 18:153–61.
- 24. Flavin R, Peluso S, Nguyen PL, Loda M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 2010; 6:551–62.

- 25. Johnson DL, Stiles BL. Maf1, A New PTEN Target Linking RNA and Lipid Metabolism. Trends Endocrinol Metab. 2016; 27:742–50.
- Zhai D, Cui C, Xie L, Cai L, Yu J. Sterol regulatory element-binding protein 1 cooperates with c-Myc to promote epithelial-mesenchymal transition in colorectal cancer. Oncol Lett. 2018; 15:5959–65.
- 27. Monaco ME. Fatty acid metabolism in breast cancer subtypes. Oncotarget. 2017; 8:29487–500.
- 28. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144:646–74.
- 29. Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 2013; 6:1353–63.
- 30. Kuhajda FP. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition. 2000; 16:202–08.

III. DARSTELLUNG DES EIGENANTEILS

Eigenanteil

- Auswahl des Themas
- Literaturrecherche zur Rolle der LPCAT1 und des Lipidmetabolismus in der Onkogenese, sowie zu Prognoseparametern, molekularen und genetischen Veränderungen des Mammakarzinoms.
- Datenakquisition und Datenbankgenerierung (weitere Verlaufsdaten).
- Unterstützung des Pathologen bei der immunhistochemische Analyse der LPCAT1-Expression.
- Mitwirkung bei der statistischen Auswertung der Ergebnisse.
- Erstellung einer ersten Version des Manuskriptes.

Anteil der Co-Autoren

- IHC-Analyse: PD Dr. Eike Burandt
- Statistische Analyse: Prof. Dr. Ronald Simon
- Korrektur des Manuskriptes: PD Dr. Patrick Lebok, Prof. Dr. Guido Sauter
- Studiendesign, Studienkoordination und fachliche Revision des Manuskriptes: PD Dr. Patrick Lebok, PD Dr. Eike Burandt, Prof. Dr. Guido Sauter
- Fachliche Beiträge zum Manuskript: Dr. Jan Meiners, Dr. Claudia Hube-Magg, Dr. Doris Höflmayer, Dr. Andrea Hinsch, Dr. David Dum, PD Dr. Christoph Fraune, Dr. Cosima Völkel, Dr. Katharina Möller, PD Dr. Frank Jacobsen, Dr. Franziska Büscheck, Dr. Kristina Prien, PD Dr. Till Krech, Prof. Dr. Rainer Horst Krech, Dr. Albert von der Assen, Prof. Dr. Linn Wölber, Prof. Dr. Isabell Witzel, Prof. Dr. Barbara Schmalfeldt, Dr. Stefan Geist, Dr. Peter Paluchoswski, Dr. Christian Wilke, Dr. Uwe Heilenkötter, Prof. Dr. Volkmar Müller, Prof. Dr. Waldemar Wilczak.
- Herstellung des TMA: Prof. Dr. Luigi Terraciano, Prof. Dr. Guido Sauter

IV. DANKSAGUNG

An erster Stelle möchte ich mich bei Prof. Dr. Guido Sauter, PD Dr. Eike Burandt, PD Dr. Patrick Lebok, Prof. Dr. Ronald Simon, Dr. Martina Kluth und Dr. Claudia Hube-Magg für die ausgezeichnete wissenschaftliche Betreuung und Unterstützung bedanken.

Ein besonderer Dank gebührt auch Christina Möller-Koop, Janett Lüttgens und Karin Breitmeyer, die mir über die Jahre allzeit als Ansprechpartner mit Rat und Tat zur Seite standen.

Nicht zuletzt möchte ich meinen Eltern, Großeltern, guten Freunden und langjährigen Weggefährten, insbesondere auch meinem Freund Werner Rath, für die liebevolle emotionale Unterstützung und Begleitung während des Studiums und bei der Fertigstellung dieser Arbeit danken.

V. LEBENSLAUF

Lebenslauf wurde aus datenschutzrechtlichen Gründen entfernt.

VI. EIDESSTAATLICHE VERSICHERUNG

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Ich erkläre mich einverstanden, dass meine Dissertation vom Dekanat der Medizinischen Fakultät mit einer gängigen Software zur Erkennung von Plagiaten überprüft werden kann.

Unterschrift: