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Abstract

Ultracold quantum gases in optical lattices constitute a versatile tool for quantum sim-
ulation of strongly correlated many-body systems. Alkaline earth(like) elements such
as strontium or ytterbium possess an ultranarrow optical transition from the electronic
ground state 1S0 to the metastable state 3P0 that might serve as a frequency standard for
time-keeping. High-resolution spectroscopy on the optical ‘clock’ transition is a powerful
analysis tool and allows to resolve interaction-induced energy shifts in a lattice system.
The population of the metastable state 3P0 can conveniently be controlled by the means
of resonant clock laser light and due to its long lifetime, it can be regarded as an addi-
tional degree of freedom for quantum simulation and might be used to realize multi-band
Hubbard models.
In this thesis I present spectroscopic measurements mainly conducted with ytterbium
quantum gases and Fermi-Fermi mixtures of both fermionic isotopes 171Yb and 173Yb. We
coherently address the metastable state 3P0 using a clock-laser at 578 nm characterized by
a narrow laser linewidth of approximately one Hertz. By performing clock-spectroscopy in
a 3D magical optical lattice at 759 nm we are able to drive intra- and interband transitions
and reach a maximum resolution of 26.7(2.4) Hz for a non-band changing transition. The
high spectroscopic resolution allows resolving shifts of the clock transition that are induced
by interactions between atom pairs. We determine interisotope interorbital interactions
in ytterbium Fermi-Fermi mixtures and directly proof the SU(2) ⊗ SU(6) symmetry of
the interactions.
In two spin component gases of 171Yb the antisymmetry required for the two-particle
wave function of two indistinguishable fermions can be realized by a orbitally symmetric
spin singlet or an orbitally antisymmetric spin triplet state. Both states are characterized
by their own molecular potentials giving rise to an interorbital spin-exchange interaction
that spectroscopically is characterized and found to be antiferromagnetic. The antifer-
romagnetic spin-exchange interaction together with the vanishingly small ground state
interaction renders 171Yb a promising candidate for quantum simulation of Kondo lattice
type physics in state-dependent optical lattices. Using 171Yb in both orbital states a state-
dependent optical 1D lattice at wavelength of λSDL = 660 nm is characterized. In a first
set of measurements, we observe spin-exchange dynamics in the state-dependent optical
lattice which can be considered a first step towards quantum simulation of multi-band
Hubbard models.
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Zusammenfassung

Ultrakalte Atome in optischen Gittern stellen ein vielseitiges Werkzeug zur Quantensim-
ulation stark korrelierter Vielteilchensysteme dar. Erdalkali bzw. erdalkaliähnliche Ele-
mente wie Strontium oder Ytterbium besitzen einen ultraschmalen optischen Übergang
vom elektronischen Grundzustand 1S0 zum metastabilen Zustand 3P0, welcher sich als Fre-
quenzstandard zur Zeitmessung eignet. Hochauflösende Spektroskopie auf dem optischen
”Uhren-Übergang” ist eine sensible Analysemethode, die es ermöglicht Energiedifferenzen,
die durch die Wechselwirkung mehrerer Atome in einem optischen Gitter induziert werden,
zu messen. Die Besetzung des metastabilen Zustands kann durch resonantes Laserlicht
zuverlässig kontrolliert werden. Aufgrund der langen radiativen Lebensdauer stellt der
metastabile Zustand einen zusätzlichen Freiheitsgrad dar, der für die Quantensimulation
von multiband Hubbard Modellen oder die Realisierung dissipativer System genutzt wer-
den kann. In dieser Arbeit präsentiere ich spektroskopische Messungen die mit Fermigasen
und Fermi-Fermimischungen beider fermionischer Ytterbium Isotope 171Yb und 173Yb
durchgeführt wurden. Mit Hilfe eines Uhrenlasers, der eine Laserlinien-Halbwertsbreite
von etwa einem Hz aufweist, wird der metastabile Zustand kohärent angeregt. In einem
dreidimensionalen optischen Gitter bei der magischen Wellenlänge λmag = 759 nm können
Intra- und Interbandübergänge zwischen verschiedenen Bloch-Bändern getrieben werden.
Für einen Intrabandübergang wird eine maximale spektroskopische Auflösung erreicht, die
einer spektroskopischen Halbwertsbreite von 26.7(2.4) Hz entspricht. Unter Ausnutzung
der hohen spektroskopischen Auflösung werden interisotop Zweiteilchenwechselwirkungen
in Ytterbium Fermi-Fermimischungen charakterisiert und die der Wechselwirkung zu-
grunde liegende SU(2) ⊗ SU(6) Symmetrie direkt gezeigt. Interorbitale Paare von zwei
171Yb Atomen mit gegensätzlichem Spin können entweder durch einen symmetrischen or-
bitalen und antisymmetrischen Spinzustand oder antisymmetrischen orbitalen und Sym-
metrischen Spinzustand beschrieben werden. Die Spinaustauschwechselwirkung zwis-
chen dem Spinsingulett und Spintriplettzustand wird ebenfalls spektroskopisch vermessen
und als antiferromagnetisch identifiziert. Aufgrund der antiferromagnetischen Spinaus-
tauschwechselwirkung und der verschwindend geringen Grundzustandswechselwirkung ist
171Yb ein vielversprechender Kandidat für die Quantensimulation von Kondo-Gitterphysik
in zustandsabhängigen optischen Gittern. Mit Hilfe von 171Yb in beiden orbitalen Zuständen
wird ein zustandsabhängiges Gitter bei einer Wellenlänge von λSDL = 660 nm charakter-
isiert. In einem ersten Schritt in Richtung der Quantensimulation von multiband Hub-
bardmodellen wird Spinaustauschdynamik im zustandsabhängigen Gitter beobachtet.
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Introduction

Since the first realization of Bose-Einstein condensates (BEC) with dilute gases of ultra-
cold neutral atoms in 1995 [3, 4], soon followed by the creation of degenerate Fermi gases
in 1999 [5], the ultracold quantum gas community has grown rapidly and developed into
a diverse field of research, covering metrology, ultracold chemistry, quantum simulation
and quantum information, to name only a few examples.
A main interest of modern physics is to understand the behavior of quantum many-body
systems. Reducing the complexity of the system under research to an extent that allows
for a microscopic understanding is generally a promising road to understanding the more
complex problem. In many cases, simple models reveal fundamental physical concepts
that can also be applied to the more complex problems. - Although generally nature is
more complicated than the two-body problem, the hydrogen atom or the two-level system,
these models increased our understanding of nature tremendously. Yet, understanding the
interplay of many of those well understood microscopic systems remains extremely chal-
lenging. The physical properties of many interacting particles significantly differ from the
single particle behavior and many-body phenomena such as the emergence of high TC su-
per conductivity in cuprates [6, 7] or spin-liquids in frustrated magnets [8, 9] are subjects
of on-going research. Understanding these phenomena might lead to technical innovations
of great social benefit, and therefore is not purely of large scientific interest. To address
the questions raised by the behavior of certain materials such as high TC super conduc-
tors, theoreticians came up with strongly simplified models such as the Fermi-Hubbard
[10] or the Kondo-lattice model [11–13] which are believed to contain all the ingredients
necessary to explain the yet not understood phenomenon. However, solving even these
strongly simplified models remains challenging as the exponential growth of the Hilbert
space with increasing system size is inherent to all quantum mechanical many-body sys-
tems and cannot be overcome, thus rendering the simulation of a many-body system on
a classical computer an intractable mathematical problem.

To address this problem Richard Feynman in the 1980s suggested to simulate the sys-
tem of interest using devices that themselves obey the laws of quantum mechanics, instead
of using classical computers [14–16]. Universal digital quantum computers, that could be
programmed to simulate an arbitrary quantum system [17], would require an enormous
degree of experimental control and because of that are yet out of reach [18]. However, over
the last decades large progress has been made in the field of so-called analog quantum
simulation [18, 19].
The central idea is to transfer the concept of reducing complexity to the experimental do-
main by building an experimental apparatus that allows to create and observe a quantum
system that is made up from well understood and controllable constituents, and repre-
sents a good approximation of the theory under study. Then, by experimentally tuning
the model parameters the phase diagram of the underlying model can be mapped out.
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Introduction

Ultracold atoms in optical lattices represent such a well controlled experimental plat-
form in many respects [20, 21]. Quantum gas experiments benefit from long coherence
times and many of the system parameters can be conveniently controlled using laser light
and magnetic fields. The idea to use ultracold quantum gases in optical lattice potentials
formed by interfering laser beams to simulate Hubbard physics emerged as early as 1998
[22]. In a fascinating experiment the observation of the paradigmatic super-fluid to Mott
insulator transition [23] [24] demonstrated the capability of the ultracold atomic platform
for quantum simulation and initiated a vast growth of the quantum gas community.
Since then, a variety of different lattice geometries has been realized ranging from sim-
ple cubic lattices [24] to super lattices [25], triangular and honeycomb lattices [26, 27]
or Kagome lattices [28]. In remarkable experiments intriguing phenomena like fermionic
band insulation [29], artificial magnetic fields [30], frustration [31], the Haldane [32] and
Harper-Hofstadter model [33–35]) or the Berry curvature could be studied [36]. While in
the beginning observables were restricted to momentum space using time of flight tech-
niques, experimental and technological advances lead to the development of quantum gas
microscopes, capable of resolving single atoms in a 2D-plane of an optical lattice [37, 38].
This rather new development allows to directly measure correlations. A long standing
goal was reached by the direct observation of antiferromagnetic order in a system of ul-
tracold fermions in an optical lattice [39].
An even more recent development are micro-trap arrays, that allow to trap, detect and
manipulate single atoms and assemble defect-free geometries atom by atom [40, 41]. Mak-
ing use of Rydberg excitation and blockade these systems have been used to demonstrate
the entanglement of a large number of particles [42] or to study the SSH model [43] and
spin liquids [44].

The most common elements used in the quantum gas community are alkali elements
such as lithium, sodium, potassium and in particular rubidium, with a single s-shell
electron, and hence a hydrogen-like level structure. Typical dipole transitions for the alkali
elements show linewidths on the order of several MHz. The van-der-Waals interaction in
ultracold gases is a short-range interaction often modeled as contact interaction, and
hence substantially differs from the coulomb interaction between electrons. Different
experimental approaches aim at the creation of long range interactions to overcome this
limitation using polar molecules [45] or elements with a large magnetic moment such as
chromium [46], dysprosium [47] or erbium [48]. In recent experiments dipolar quantum
gases have been used to study the formation of quantum droplets caused by competing
repulsive and attractive interactions [49, 50].

Alkaline earth (like) elements such as strontium and ytterbium have two outer s-shell
electrons and hence feature a helium-like level scheme with a spin singlet and a spin triplet
manifold. The transitions from the singlet ground state to the triplet state are only weakly
allowed and show small linewidths. For the doubly dipole forbidden transition 1S0 → 3P0,
these are far below one Hz [51]. Optical lattices at a so-called magic wavelength[52], as
well as the invention of the optical frequency comb [53] enabled the development of a new
type of optical lattice clock [54], using the optical 1S0 → 3P0 transition of alkaline earth
(like) elements such as strontium or ytterbium as frequency standard. State-of-the-art
optical lattice clocks outperform current frequency standards [55, 56]. Most optical lattice
clocks load a one-dimensional magic lattice directly from a MOT and do not require quan-
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tum degenerate gases. Yet the combination of high precision spectroscopy and ultracold
quantum gases of alkaline earth (like) elements in optical lattices are highly interest-
ing for quantum simulation applications. On the one hand, high precision spectroscopy
comprises a powerful tool for the analysis of interaction induced shifts in optical lattices
[2, 57–63], on the other hand the lifetime of the long-lived metastable state exceeds the
typical experimental timescale and hence can be used as an additional degree of freedom
for quantum simulation [64–66]. A peculiarity of fermionic alkaline earth (like) elements
is the SU(N ) symmetry [67] (with N = I + 1/2, where I denotes the nuclear spin) of
ground- and excited-state atoms that causes an interorbital spin-exchange interaction,
that has been spectroscopically characterized [2, 57–62, 68]. A novel kind of interorbital
Feshbach resonance allows to tune the interaction between ground and metastable state
atoms [69, 70] and has been used to create orbital Feshbach molecules [71], and might
allow to study exotic superfluidity [72–74]. Particle losses due to strong inelastic collisions
of excited-state atoms allow to engineer dissipative Hubbard systems[1, 75] that might
prove useful for the preparation of highly entangled quantum states [1, 76]. Mixtures of
ytterbium atoms in different orbital states have been proposed for quantum simulation
of multi-band Hubbard models such as the Kondo lattice model, using state-dependent
optical potentials to realize systems of localized atoms in the excited state and itiner-
ant atoms in the ground state that interact via the interorbital spin-exchange interaction
[64–66]. First experiments with 173Yb (nuclear spin I = 5/2) [77] and very recently with
171Yb (with nuclear spin I = 1/2) (see ref. [78] and this thesis) studied spin-exchange
dynamics in state-dependent lattices.
Fermi-Fermi mixtures of 171Yb-173Yb have been proposed for the simulation of two-flavor
symmetry-locking phases [79, 80], which might yield valuable insights for high energy
physics.
In the course of this thesis a variety of experiments have been performed that exploit
the above-mentioned properties of ultracold ytterbium atoms. We employ high preci-
sion spectroscopic methods to study interacting Fermi gases and Fermi-Fermi mixtures
of 171Yb and 173Yb. We characterize SU(2) ⊗ SU(6) symmetric interisotope interorbital
interactions between 171Yb and 173Yb and determine the interorbital spin-exchange in-
teraction of 171Yb. Furthermore as a step towards quantum simulation of Kondo-lattice
physics we study spin-exchange dynamics for a gas of 171Yb in a state dependent optical
lattice.

This thesis is organized as follows:

Section one is dedicated to fundamental properties of the element ytterbium for the op-
eration of a quantum gas machine, the experimental setup and experimental techniques.
I present the experimental apparatus in its current form and especially focus on changes
that have been made over the course of this thesis.

In section two I describe the creation of ytterbium Fermi-Fermi mixtures and Fermi gases
of 171Yb via sympathetic cooling with 173Yb and present characterization measurements.

Section three is dedicated to clock spectroscopy in a magic optical lattice. I establish a
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theoretical framework for understanding clock spectroscopy in the framework of the ytter-
bium experiment and present measurements of intra- and interband transitions. The cur-
rent spectroscopy setup allows for a Fourier limited resolution of ΓFWHM ≤ 26.7(2.4) Hz.
Combining clock spectroscopy and band mapping techniques, we directly probe the dis-
persion relation of the lattice and observe the quasimomentum transfer caused by the
excitation process.

In section four I characterize two-particle interaction induced shifts of the clock tran-
sition for Fermi-Fermi mixtures of 171Yb and 173Yb as well as in two spin component
mixtures of 171Yb employing the spectroscopic techniques presented in the previous sec-
tion. The total antisymmetric wave function required for two indistinguishable particles
in the case of the two-spin mixture of 171Yb gives rise to an interorbital spin-exchange
interaction, that we find to be antiferromagnetic. The spin-exchange interaction Vex is a
crucial parameter for possible simulation of Kondo-lattice physics.

In section five a state-dependent optical lattice at a wavelength of λ = 660 nm is char-
acterized using gases of 171Yb in both orbital states. In a first step towards quantum
simulation of Kondo-lattice-type physics, we prepare an interorbital mixture in different
mF states and observe spin-exchange dynamics.

4



1. Experimental Setup and Methods

In the ytterbium experiment, we create quantum degenerate gases and mixtures of dif-
ferent ytterbium isotopes. We perform high-precision spectroscopy on the optical clock
transition to resolve interaction-induced energy shifts and aim at quantum simulation
and quantum state preparation using the metastable state 3P0 as an experimental degree
of freedom. The ytterbium quantum gas project started more than ten years ago. The
first PhD students S. Dörscher [81] and A.Thobe [82] started setting up the ytterbium
quantum gas machine. Later the team was joined by B. Hundt [83], A. Kochanke [84] and
T. Ponath [85]. The initial setup is described in [86] as well as in the doctoral theses of
A. Thobe and S. Dörscher. Over the years, the apparatus has been constantly modified
and improved. The evolution of the technical setup can be followed in the PhD theses of
the aforementioned people as well as several bachelor, master and diploma theses [87–97].
Based on preparatory work by A. Kochanke [84] and the author [91], the experimental ap-
paratus has been modified to allow for simultaneous trapping and cooling of two different
isotopes enabling to create and manipulate quantum degenerate Fermi-Fermi mixtures
of 171Yb and 173Yb and single isotope gases of 171Yb. In the following, I will first give
an overview of the most important physical properties of the element ytterbium relevant
for the operation of a quantum gas experiment and then describe the experimental appa-
ratus in its current form, as it has been used for the measurements presented in this theses.

Dipole trap frequencies and spin preparation have been characterized by K. Sponselee,
M. Diem and the author. The here presented measurements have been conducted by K.
Sponselee and the author and data analysis has been performed by the author. The phase
noise measurements of the clock laser have been performed and analyzed by the author.
Further details on the experimental apparatus can be found in the doctoral theses of K.
Sponselee[98] and M. Diem [99].
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Figure 1.1.: Reduced level scheme for neutral ytterbium. Shown are the transitions resonantly
addressed in the experiment. All energies and wavelengths according to ref. [100]. Linewidths
according to refs. [101–104].

1.1. Properties of Ytterbium

Ytterbium is a rare earth element. With an atomic number of 70 it can be found next to
the last element of the lanthanide series in the periodic table. It features as many as seven
stable isotopes. The even isotopes 168Yb,170Yb,172Yb,174Yb and 176Yb have a nuclear spin
of I = 0 and obey bosonic statistics, whereas odd isotopes 171Yb, with I = 1/2 and 173Yb,
with I = 5/2 obey fermionic statistics. Table 1.1 shows the natural abundances of the sta-
ble isotopes. The electronic configuration of ytterbium [Xe]4f 146s2 features filled 4f - and

168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb

0.126 % 3.023 % 14.216 % 21.754 % 16.098 % 31.896 % 12.887 %

Table 1.1.: Natural abundances of the stable isotopes of ytterbium according to ref. [105].

6s-shells. Due to the two s-shell valence electrons ytterbium shows similarities to alkaline-
earth elements e.g. strontium. Therefore ytterbium is often called an alkaline-earth like
element. The level structure of ytterbium depicted in figure 1.2 features a singlet and
triplet manifold as known from other two-electron elements such as helium. The ground
state is characterized by a vanishing electronic angular momentum J = 0 and thus carries
an almost vanishing, purely nuclear magnetic moment. Referring to the selection rules
for dipole radiation, so called intercombination transitions from the spin singlet to the
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Figure 1.2.: Electronic level scheme for neutral ytterbium. Shown are the lowest lying states with a
filled 4f shell according to ref. [100].

spin triplet manifold are electric dipole forbidden, as ∆S ̸= 0. However, due to the large
mass of ytterbium, LS coupling is not perfectly realized and state mixing weakly enables
transitions from the 1S0 ground state to the state 3P1. For fermionic isotopes additional
hyperfine mixing caused by the hyperfine interaction enables the doubly dipole forbidden
transitions 1S0 → 3P0,2 [51, 102, 106]. For bosonic isotopes, to enable the 1S0 → 3P0

transition, state mixing has to be induced by applying a dc-magnetic field [107, 108].
In the experiment we resonantly address the transitions 1S0 → 1P1 at λ = 399 nm,
1S0 → 3P0 at λ = 578 nm, 1S0 → 3P1 at λ = 556 nm and 3P0 → 3D1 at λ = 1389 nm,
shown in the reduced level scheme depicted in fig. 1.1. The corresponding linewidths
are summarized in table 1.2. The small natural linewidth of the 1S0 → 3P0 transition of
Γ/2π < 10 mHz [102], combined with the small sensitivity to magnetic fields due to the
vanishing electronic angular momentum of the initial and final state render this transi-
tion well suited to serve as a frequency standard [102] and ytterbium-based optical lattice
clock experiments are operated at metrological institutes around the world [55, 109, 110].

Apart from the optical transitions that are well suited for high-precision spectroscopy,
another outstanding feature of ytterbium is its large mass. Ytterbium is the heaviest
element for which quantum degeneracy has been achieved so far. Therefore ytterbium
is an interesting candidate for experiments aiming at studying mass-dependent or mass-
imbalance dependent phenomena such as Efimov physics [111].
Laser trapping and cooling of ytterbium have been pioneered by the Kyoto group. The
vanishing magnetic moment prevents the use of magnetic traps, and thus quantum de-
generacy has to be achieved by evaporative cooling in all-optical traps. Bose-Einstein
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transition Γ/2π reference

1S0 → 1P1 29.1 MHz [101]
1S0 → 3P0 < 10 mHz [102]
1S0 → 3P1 182 kHz [103]
3P0 → 3D1 308 kHz [104]

Table 1.2.: Natural linewidths of the transitions, resonantly addressed in the experiment. Note that
the values for the clock transition are obtained by ab initio calculations, while the other values are
based on the experimental observation of lifetimes.

168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb

168Yb 251.9(3.4) 117.0(1.5) 89.2(1.7) 65(2) 38.6(2.5) 2.5(3.4) -360(30)
170Yb 63(2) 36.5(2.5) -2.1(3.6) -81(7) -520(50) 209.4(2.3)
171Yb -3(4) -84(7) -580(60) 429(13) 114(15)
172Yb -600(60) 417.6(1.3) 200.5(2.3) 106.2(1.5)
173Yb 199(2) 138.7(1.5) 79.7(1.9)
174Yb 104(15) 54.4(2.3)
176Yb -24(4)

Table 1.3.: Inter and intraisotope s-wave scattering lengths in units of Bohr radii a0 =
5.29177210903× 10−11m, according to ref. [118].

condensation of the bosonic isotope 174Yb has first been achieved in 2003 [112]. Since
then, degeneracy has been reached for multiple isotopes, including both fermionic iso-
topes and different isotope mixtures [113–115].
In the ultracold regime, interactions in quantum gases are restricted to s-wave scattering,
characterized by the s-wave scattering length a. For alkali elements such as potassium
and lithium, magnetic Feshbach resonances allow to tune the interaction parameter over a
broad range enabling studies of e.g. the BEC-BCS crossover [116, 117]. Due to the purely
nuclear angular momentum ytterbium only weakly couples to magnetic fields. There-
fore there are no magnetic Feshbach resonances and thus the interaction parameter is
fixed. However, the different ytterbium isotopes feature largely different s-wave scatter-
ing lengths, and thus choosing a particular element allows a limited choice of interaction
strength. Table 1.3 shows intra- and interisotope s-wave scattering lengths obtained by
two-color photo association [118].
Repulsive scattering lengths of the most abundant bosonic and fermionic isotopes 174Yb

and 173Yb of 174a = 104(15) a0 and 173a = 199(2) a0, respectively allow for effective evap-
orative cooling in single isotope gases. Due to the almost vanishing s-wave scattering
length of 171a = −3(4) a0 reaching quantum degeneracy for 171Yb requires sympathetic
cooling via a second isotope or element and therefore is technically more demanding.
On the other hand, the vanishing s-wave interaction of 171Yb is interesting for quantum
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Figure 1.3.: Schematic of MOT, dipole trap and detection beams. Panel a) depicts the 2D/3D-
MOT configuration. Atoms are initially trapped and cooled in the upper glass cell in a 2D-MOT
on the blue 1S0 → 1P1 transition. Subsequently the atoms are further cooled in a 3D-MOT on the
1S0 → 3P1 transition in the lower glass cell. Panel b) shows the bichromatic dipole trap formed by
three high power beams at λDT1 = 532 nm and λIR1,IR2 = 1064 nm labeled as DT1,IR1 and IR2.
Panel c) shows the imaging beams of the primary detection along x-direction with a magnification
of M = 4.7 and the secondary detection along z-direction with a magnification of M = 2.2. The
main coils are operated either in Helmholtz or anti-Helmholtz configuration to create a quantization
axis or a gradient field for the 3D-MOT, the y-compensation coils are used to set the quantization
axis for clock spectroscopy and spin detection. 2D-MOT coils and compensation coils in x- and
z-direction are omitted for clarity.

simulation applications[64].

1.2. Magneto Optical Trapping

The heart of the ytterbium experiment is a vacuum apparatus that consists of an up-
per and a lower glass cell. A dispenser in the upper glass cell is heated to a temper-
ature of approximately 700 K [81] and emits ytterbium, serving as atom source. To
separate the experimental environment from the atom source and minimize interaction
with the background gas, the upper glass cell and the lower glass cell are connected via
a differential pumping stage. As a consequence the pressure in the lower glass cell is
about plower < 1 × 10−11 mbar while in the upper glass cell the pressure is usually about
pupper ∼ 1 × 10−10 mbar.
First, the atoms are trapped and cooled in a 2D-magneto optical trap (MOT) [119] on
the 1S0 → 1P1 transition. Due to the broad linewidth of Γ = 2π × 29 MHz [101] the
2D-MOT features a high trapping velocity. On the other hand the corresponding Doppler
temperature of TD ≈ 0.7 mK is rather high. Aided by a pushing beam pointing at the
2D-MOT trapping region at an angle from above, atoms are transferred into the lower
glass cell, where they are confined in a 3D-MOT, operated on the intercombination line
1S0 → 3P1. The 2D/3D-MOT configuration is schematically shown in fig. 1.3 a) As the
narrow linewidth of Γ = 2π × 182 kHz [103] corresponds to a small capture velocity, the
frequency of the MOT beams is broadened by applying a saw-tooth shaped frequency
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modulation at fmod ≈ 200 kHz to allow for a larger MOT detuning and to increase
the capture velocity [86]. To reach MOT temperatures close to the Doppler tempera-
ture of TD = 4.4µK the MOT is compressed by simultaneously reducing laser broad-
ening, MOT-detuning and MOT-power, resulting in typical final MOT temperatures of
T3D-MOT ∼ 20µK.
The single isotope MOT performances for both fermionic isotopes 171Yb and 173Yb as
well as the most abundant bosonic isotope 174Yb have been characterized by A. Kochanke
[84] and the author in the course of his master’s thesis [91]. In the past, especially the
2D-MOT for 173Yb has been an experimental bottle neck. Due to a narrow hyperfine
splitting of the 1S0 ↔ 1P1 transition the detuning of the 2D-MOT laser with respect to
the 2D-MOT F = 5/2 → F = 7/2 transition of ∆2D-MOT ≈ −1.2 Γ399 is comparable to
the detuning with respect to the F = 5/2 → F = 3/2 transition, but of opposite sign.
Therefore loading of 173Yb is diminished and the 2D-MOT settings for 173Yb are rather
unconventional. Polarization and alignment of the 2D-MOT beams significantly differ
from the settings optimal for 171Yb and 174Yb. First attempts to avoid experimental
difficulties caused by the narrow hyperfine splitting by operating the 2D-MOT on the
5/2 → 5/2 as proposed in [96, 120] did not succeed.
The MOT loading rates have been improved by increasing the available 2D-MOT power
by exchanging the 2D-MOT laser. This allows to operate the 2D-MOT closer to the
saturation intensity which increases the robustness of the 2D-MOT performance. Nev-
ertheless, the 173Yb 2D-MOT still is very sensitive to misalignment and therefore, the
2D-MOT settings for all other isotopes are a compromise to allow for optimal MOT load-
ing rates of 173Yb. Typically we achieve loading rates of 3× 106 s−1 for 171Yb, 2× 106 s−1

for 173Yb and more than 3 × 106 s−1 for 174Yb.
To create mixtures of both fermionic isotopes, we subsequently load atoms from the
2D-MOT into an uncompressed bi-chromatic 3D-MOT. To do so, the frequency of the
2D-MOT laser is chirped in the experimental cycle to account for the isotope shift of the
2D-MOT transition ∆1P1

= 244 MHz. After 3D-MOT loading, the 3D-MOT is compressed
simultaneously for both isotopes as described above.

1.3. Dipole Traps

The almost vanishing magnetic moment of ytterbium in the electronic ground state pre-
vents the use of magnetic traps. Instead, trapping potentials are created by high power,
red detuned laser beams. The optical dipole potential is determined by the complex po-
larizability α and the intensity I of the laser beam [121]. The dipole potential can be
written as [121]:

Udip = − 1

2ϵ0c
Re{α}I, (1.1)

where ϵ0 denotes the vacuum permittivity and c the speed of light. For a two level system
this expression can be simplified to [121]:

Udip =
3πc2

2ω3
0

Γ

∆
I, (1.2)
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Figure 1.4.: Center of mass oscillations in the IR dipole trap. Center off mass oscillations of an
174Yb BEC excited by displacing the atoms inside the IR trap using a misaligned lattice beam. Panel
a) and b) show the observed center of mass oscillations in the x- and y-directions, for increasing
power of IR1 indicated by colors from light to dark, solid lines indicate a fit of a damped sine, where
shaded areas represent the 95% confidence interval of the fit. Each data point corresponds to a
single measurement. Panel c) shows the trapping frequencies obtained from the fits in panel a) and
b). Errorbars (mostly smaller than the marker size) indicate fit uncertainties. The solid lines indicate
a combined fit of the trapping frequencies as a function of the power in the IR1 and IR2 beams, see
main text for more details. The edges in the fit for the frequencies in y-direction are caused by the
discretization of the trapping potential in the course of the fitting routine.

where ω0 denotes the resonance frequency, Γ the linewidth of the transition and ∆ = ω−ω0

the detuning. The photon scattering rate is given by [121]:

Γscat =
Γ

∆
Udip. (1.3)

Hence to create an attractive potential and simultaneously minimize photon scattering,
it is desirable to use high-power laser beams that are far-red detuned with respect to
the resonance. In the experiment after the MOT stage the pre-cooled atoms are loaded
into a bi-chromatic optical dipole trap, schematically shown in figure 1.3 b). The com-
bined dipole trap consists of a single beam at λDT1 = 532 nm with a maximum power
of PDT1,max ≈ 14 W, referred to as DT1 and a crossed dipole trap at λIR1,2 = 1064 nm
formed by two intersecting beams referred to as IR1 and IR21, with a maximum power of
PIR1 ≈ 1 W and PIR2 ≈ 10 W. While DT1 is tightly focused (with waists wy,DT1 = 18µm
and wx,DT1 = 29µm) and therefore allows for large trapping frequencies and effective
evaporative cooling, the IR-traps feature larger waists (wx,IR1 = 52µm wy,IR1 = 51µm
wy,IR2 = 67µm wz,IR1 = 227µm) to improve the loading of the lowest band of the optical
lattice. To reach quantum degeneracy, the power of DT1 is exponentially decreased to

1Light for DT1 is provided by a Coherent Verdi V
18, while for the IR traps light is provided by

an Innolight Mephisto MOPA
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zero within a time of tDT1,evap = 6 s. Subsequently, in a second evaporation stage the
power of IR1 and IR2 is exponentially decreased by approximately 85% and 30% respec-
tively within tIR,evap = 3 s. The final IR trap powers are adapted to obtain an optimal
performance in terms of particle number and temperature. The trapping potential of
the crossed optical dipole trap at the lowest order can be approximated by an harmonic
oscillator that is characterized by an oscillator frequency ωho.
To characterize the dipole trap potential, we excite center of mass oscillations that oc-
cur at the characteristic frequencies of the dipole trap by displacing the atoms using a
misaligned lattice beam. Fig. 1.4 a) and b) show a measurement of the dipole trap fre-
quencies ωx and ωy as a function of the final power of IR1. We fit the data using a model
of the dipole trap, assuming Gaussian beams with the respective waists, intersecting in
the horizontal plane at x = 0 and z = 0 and offset in the vertical direction by half a waist
of IR2. This allows to determine the third trapping frequency ωz. As shown in fig. 1.4 the
fits describe the data well, however fitting the trapping frequencies is rather tricky and
requires a careful choice of the start parameters. Deviations of the trapping frequencies
in the vertical direction from the fit might indicate a small misalignment of the beams.
At the final IR trap depth, the dipole trap is characterized by a geometrical mean of the
trapping frequencies ω̄ = 3

√
ωxωyωz of typically ω̄ ≈ 40 Hz to ω̄ ≈ 50 Hz. More details on

the dipole trap setup can be found in refs. [83, 84].

1.4. Detection

We use standard absorption imaging on the blue 1S0 →1 P1 transition to detect atoms
after time of flight [122]. As indicated in fig. 1.3 c), two different imaging systems allow
to either image along the x- or the z- direction. The main detection along the x-axis has
a magnification of M = 4.7 and uses an EMCCD camera2 optimized for detecting blue
light. The other detection setup features a magnification of M = 2.2 and uses a CCD
camera 3. We take a series of four images: one absorption image and one reference image,
with and without atoms, as well as two dark images, without any detection light. These
four images are processed to achieve a two-dimensional map of the optical density[122]
which is used for further data processing. Atoms prepared in the metastable state 3P0 are
dark to the 399 nm detection light. To image atoms in the ground and excited state in a
single experimental run, we first take an absorption image of the ground-state atoms and
subsequently remove residual ground-state atoms from the field of sight using a pulse of
resonant blue light from the other imaging direction. Afterwards we shine in a pulse of
light at a wavelength of 1389 nm to pump the excited-state atoms to the state 3D1 that
subsequently decays to the ground state 1S0 via the state 3P1. In this way the atoms that
have been excited initially are repumped to the ground state with a theoretical efficiency
of the 97.5% [84] and finally are imaged on the reference picture. Ground and excited state
populations are spatially separated as the excited state atoms undergo typically a 3 ms
longer time of flight. Having direct access to the populations of both electronic states
allows to compute an excited state fraction and thus reduce the effect of shot-to-shot
particle number fluctuations. The repump process does not preserve the mF state and

2Andor, iXon 3A-DU888-DC-QBB 3PCO Pixelfly
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therefore it is not possible to resolve the spin population of the excited state using the OSG
technique after repumping. Yet, a spin-selective detection for the excited state would be a
valuable add-on and preparatory work for the implementation of a spin-selective detection
has already been done by setting up a frequency stabilization for a 1389 nm laser [123].

1.5. Spin Resolved Detection and Spin Manipulation

The fermionic isotopes of ytterbium carry a spin of I = 1/2 (171Yb) and I = 5/2 (173Yb).
For many experiments, it is desirable to work with atoms in certain mF states. Therefore,
it is necessary on the one hand to access the spin information and on the other hand to
be able to manipulate the population of the different mF states.
Spin resolved imaging can be achieved by applying a spin-dependent force spatially sep-
arating the atomic cloud. For alkali elements this can be achieved by applying magnetic
fields whereas for ytterbium due to the purely nuclear magnetic moment, this is incon-
venient. Instead, the spin-dependent force is created optically, using a so-called optical
Stern-Gerlach (OSG) technique [124, 125]. Shortly after the atoms are released from the
trapping potential, during time of flight (TOF), we shine in a σ−-polarized beam that
is 1.4 GHz blue detuned with respect to the 1S0, F = 5/2 → 3P1, F = 7/2 transition of
173Yb and that has a power of P ≈ 35 mW. In the vicinity of the resonance, the ac-
polarizability is spin-dependent and, thus the atoms experience a spin-dependent dipole
force, spatially separating the atomic cloud into its spin components. Due to spatial
restrictions, the beam hits the atoms under an angle of approximately 11◦ with respect
to the horizontal plane. Therefore, the quantization axis has to be turned using the y-
compensation coils to ensure the OSG beam is purely σ−-polarized. Further details on
the optical setup and the spin-dependent potentials can be found in [84]. To manipulate
the mF state of the atoms we use resonant optical pumping on the 1S0 → 3P1 transi-
tion. A magnetic field of typically B = 18 G is applied along the z− axis to provide a
Zeeman splitting sufficiently large to address individual mF states on the 182 kHz broad
1S0 → 3P1 transition. We use the MOT beams on the z-axis to either shine in resonant
σ+ or σ− polarized light to depopulate a certain mF - state and pump the atoms to a state
with a higher or lower mF quantum number. By applying a series of individual pulses
shifted in frequency, atoms can be prepared in a certain spin configuration. The upper
panel of fig. 1.5, shows a spin-resolved absorption image of a six spin component gas of
173Yb. The lower panels show images of gases prepared in a single mF state. A small
fraction of atoms is pumped to states with lower mF number by off-resonant scattering of
σ− polarized OSG photons and therefore some atoms are detected between the positions
that correspond to different mF states. Spin detection and manipulation for 171Yb is
done analogously. We use the same OSG beam for both isotopes, since at ∆ = 1.4 GHz
with respect to the 1S0, F = 5/2 → 3P1, F = 7/2 of 171Yb it provides a sufficiently large
differential polarizability for both mF states to resolve the spin populations. The transi-
tion of 1S0, F = 1/2 → 3P1, F = 3/2 used for the 3D-MOT of 171Yb is only detuned by
∆ = −2.67(14) MHz [126] with respect to the 1S0, F = 5/2 → 3P1, F = 5/2 transition of
173Yb. Therefore when working with Fermi-Fermi mixtures we first apply optical pumping
for 171Yb, which unintentionally affects the spin population of 173Yb, and only afterwards
perform optical pumping for 173Yb, which does not affect the spin population of 171Yb.
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Figure 1.5.: Spin detection and manipulation using the optical Stern Gerlach technique and optical
pumping. The first row of panel a) shows an OSG picture of a six spin mixture of 173Yb. In rows
two to seven optical pumping has been applied to prepare the atoms in a single mF state. Panel b)
shows the integrated OD corresponding to the single spin images from panel b). Solid lines indicate
fits using a 1D Fermi profile

In this way a proper spin preparation for both isotopes is achieved. Hence, by the means
of optical pumping various spin configurations for gases of both fermionic isotopes and
Fermi-Fermi mixtures can be prepared.

1.6. Optical Lattices for Ytterbium Atoms in Different
Orbital States

Tailored optical lattice potentials pave the way for quantum simulation of solid-state
physics with ultracold atoms. Fueled by the observation of the paradigmatic super-fluid
to Mott insulator transition [24], quantum simulation of Hubbard models with ultra-
cold atoms in optical lattices gained much attention. The more recent measurements of
topologic quantities of Bloch bands in hexagonal optical lattices [36, 127] and the direct
observation of antiferromagnetic ordering in a quantum gas microscope [128] underlines
the capacity of ultracold gases in optical lattices for quantum simulation.
Optical lattices at a so-called magic wavelength, characterized by an equal polarizability
αg = αe for atoms in ground and excited states, have been a breakthrough for metrology,
paving the way for optical lattice clocks with unprecedented accuracy [52, 55]. On the
other hand, state-dependent lattices, with αe/αg ≫ 1 have been proposed for quantum
simulation of multi-band Hubbard models as e.g. the Kondo-Lattice model[64–66]. In the
following, I will briefly introduce optical lattices. A comprehensive discussion of optical
lattices in the context of ultracold atoms, can be found in ref. [129]. A general discussion
of lattice physics can be found in many textbooks such as ref. [130].

The simplest possible optical lattice is formed by two lattice beams intersecting under
an angle θ with equal frequencies, ω1 = ω2 and wavevectors |k1| = |k2|. The intensity
distribution of a laser beam coupled out of an optical fiber and propagating in z direction
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Figure 1.6.: Band structure of a one dimensional lattice. Panel a) shows the dispersion relation
of the four lowest bands (indicated by colors from dark blue to light green) for a lattice depth of
Vlat = 3Erec. For comparison, the dispersion relation of a free particle is shown in light gray. Dashed
vertical lines indicate the edges of the first Brillouin zone. Panel b) shows energy spectrum of the
four lowest bands as a function of the lattice depth. Energies are given with respect to the minimum
energy of the lowest band at the specific lattice depth.

I(r, z) usually is well approximated by a Gaussian beam [131]. In the vicinity of the axis
of propagation, r ≪ w0, (where r denotes the radial position and w0 the waist of the
beam), and close to the waist z ≪ zR (where zR denotes the Rayleigh range) the electric
field can be well approximated in terms of plane waves:

E1,2(r, t) = E0e
i(ωt+k1,2r) (1.4)

The sum of both E1 and E2 reads:

E1(r, t) + E2(r, t) = E0e
i(ωt+k1r) + E0e

i(ωt+k2r). (1.5)

The dipole potential is proportional to the intensity I(r) = |E1 + E2|2 that is given by:

I(r) = 4E2
0 cos2

(
1

2
(k1 − k2)r

)
(1.6)

The wave vectors have the same absolute value k = |k1| = |k2| and hence one can write:

klat = k1 − k2 = |k|
√

2 − 2 cos(θ)êklat , (1.7)

where êklat denotes the unit vector in the direction of klat. Eq. The dipole potential an
atom experiences, is proportional to the intensity Vlat ∼ I(r) and using eq. 1.6 and eq. 1.7
it can be rewritten as:

Vlat(r) = V0 cos2(klatr). (1.8)
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The resulting periodic optical lattice potential is described by a Bravais lattice with
primitive lattice vector a = π/klatêlat and reciprocal lattice vector G = π/|a|êlat. The
lattice Hamiltonian is given by:

Hlat =
p

2m
+ Vlat(r), (1.9)

and obeys Hlat(r) = Hlat(r + R), where R denotes a Bravais lattice vector. According
to Bloch’s theorem the eigenstates of the lattice Hamiltonian eq. 1.9 are given by Bloch
states of the form [130]:

ψn
q (r) = eiqrunq(r), (1.10)

where the function unq(r) obeys the same periodicity as the Hamiltonian unq (r + R) =
unq(r). The momentum p is not a good quantum number anymore and is replaced by the
quasimomentum q. The eigenergies En(q) form discrete bands labeled by the band index
n ∈ N. Both, the eigenergies and the eigenstates obey the symmetry En(q +G) = En(q)
and ψn

q+G(r) = ψn
q (r) and the quasimomentum hence is only defined up to a vector of the

reciprocal lattice G. Figure 1.6 a) shows the three lowest bands for a Vlat = 3Erec deep
lattice potential. As the lattice depth increases the bandwidth decreases and the band
gap increases.
The Bloch wave functions describe particles delocalized over the lattice. Often, especially
in deep lattice potentials it is more instructive to describe the system in terms of a localized
basis. The Wannier functions constitute an alternative set of eigenstates, describing
particles localized at individual lattice sites, and are connected to the Bloch wave functions
via [132] :

wn
Ri

(r −Ri) =
1√
N

∑
q

e−iqRiψn
q (r). (1.11)

Here Ri denotes a lattice vector while N is the number of primitive cells and the sum
goes over q in the first Brillouin zone.
Hubbard models [10] describe the dynamics of interacting particles in a lattice using the
tight binding approximation [130] and are commonly used to describe ultracold atoms in
optical lattices: Atoms reside at individual lattice sites, can hop to neighboring lattice
sites and interact with other atoms at the same lattice site. Tunneling and interaction are
characterized by energies t and U . Tunneling is restricted to nearest neighbor hopping
and interactions are restricted to on-site interactions, long range interaction and higher-
order tunneling processes are neglected.
The Fermi Hubbard Hamiltonian describing spin 1/2 atoms in a lattice, in second quan-
tization is given by [10]:

HFH = t
∑
⟨i,j⟩,σ

(
c†i,σcj,σ + c†i,σcj,σ

)
+ U

∑
i

ni,σni,σ′ , (1.12)

where c†i,σ and ci,σ denote the fermionic creation and annihilation operators creating or
annihilating an atom of spin σ at lattice site i, respectively, whereas ni,σ and ni,σ′ denote
the fermionic number operators. The tunneling energy t is determined by the wavefunction
overlap of neighboring lattice sites Ri and Rj and is given by the matrix element [133]:

t =

∫
w∗

Ri
(r)HwRj

(r) dr, (1.13)
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Figure 1.7.: Schematic of the lattice and spectroscopy setup. Panel a) shows the three beams form-
ing the 2D lattice in the vertical plane. An out-of-plane polarization of the lattice beams corresponds
to a triangular lattice geometry while an in plane polarization corresponds to a honeycomb lattice.
Throughout this thesis we use a triangular 2D lattice. A beam of light at λ = 1389 nm is used to
transfer atoms from the metastable state 3P0 to the ground state 1S0 via excitation to the state
3D1 and subsequent radiative decay. Panel b) shows the 1D lattice at either λ1D,mag = 759 nm or
λ1D,SDL = 660 nm that is superimposed with the clock spectroscopy beam at λclock = 578 nm.

whereas the Hubbard on-site interaction parameter U is given by [133]:

U = g

∫
|wR(r)|4 dr. (1.14)

In the limit of s-wave interactions, the interaction strength g is determined by:

g =
4πℏ2a
m

, (1.15)

where a denotes the s-wave scattering length, m the atomic mass and ℏ the reduced
Planck constant.
Combining 1D-lattices in x, y and z-directions a three-dimensional simple cubic lattice
potential can be realized. There are various schemes to realize more sophisticated lattice
geometries as e.g. honeycomb lattices or superlattices (see e.g. ref. [129] for a compre-
hensive review of different optical lattice types for ultracold atom experiments). At the
ytterbium experiment, we use a one-dimensional lattice along the z-axis and a triangular
lattice in the vertical x− y plane, that is formed by three interfering beams intersecting
under an angle of 120 degrees with a linear polarization out-of-plane, as described in [26].
Figure 1.7 shows the lattice-beam configuration at the experimental glass cell. Note that
by turning the polarization of the 2D-lattice beams the lattice potential can be trans-
formed into a honeycomb lattice. However, for all experiments presented in this thesis
the 2D-lattice potential is restricted to a triangular geometry. The 1D-lattice along the
z-axis is superimposed with the clock laser beam, used to excite atoms to the metastable
state 3P0. For the spectroscopic measurements presented in this thesis, the 2D-lattice is
used as a confining potential, holding the atoms against gravity. Therefore, the triangu-
lar geometry is not of further importance but has to be accounted for when calculating
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Figure 1.8.: Polarizability of the 1S0 and 3P0 states according to a calculation presented in [81],
taking into account the most prominent known transitions. While the predicted value of the magic
wavelength significantly deviates from experimentally determined value of λmag = 759nm [108, 134,
135]. The computed polarizabilities are expected to better agree with the experiment close to
resonances. More accurate, relativistic many-body calculations of static and dynamic polarizabilities
for the states 1S0 and 3P0 can be found in [136].

Wannier integrals necessary to determine Hubbard on-site interactions.
The light shift ∆E that an atom in initial state i experiences, when interrogated by

a laser beam at wavelength λ, can be obtained by means of perturbation theory and is
given by [121]:

∆Ei =
∑
j ̸=i

| ⟨j|Hint|i⟩ |2

Ei − Ej
, (1.16)

where ⟨j|Hint|i⟩ denotes the matrix transition element for initial state i and final state
j. The corresponding eigenenergies are denoted by Ei,j and the sum goes over all possible
final states with i ̸= j. As for different states i, the final states j are generally different,
the dipole potential depends on the electronic state of the atom. Therefore at a given
lattice laser wavelength the lattice depth in general differs for atoms in the ground state
1S0 and the excited state 3P0 in. Figure 1.8 shows a calculation of polarizabilities for
ground and metastable state atoms according to ref. [81]. At certain wavelengths the
polarizabilities are equal which therefore are referred to as magic wavelengths. Optical
lattices operated at a magic wavelength have been a major breakthrough for metrology
enabling high-resolution spectroscopy [52], free of differential ac-stark shifts. Ytterbium
has a magic wavelength at λmag = 759 nm [108, 134, 135]. The precise values exper-
imentally determined for different ytterbium isotopes are summarized in tab. 1.4. In
the lab a Ti:Sa laser4 provides about 3.5 W of light at the magic wavelength, that is
used for the one and two dimensional lattices. Further details on the magic lattice setup
can be found in [83, 84, 137]. While for high-resolution spectroscopy it is crucial to
work at the magic wavelength a state dependent lattice, that is deep for atoms in the
metastable state and shallow for ground state, atoms offers intriguing possibilities for

4Coherent MBR 110
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isotope νmag reference

174Yb 394.799 475(35) THz [108]
171Yb 394.798 329(10) THz [134]
173 Yb 394.82(2) THz [135]

Table 1.4.: Experimentally determined magic lattice frequencies for different ytterbium isotopes.
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Figure 1.9.: Isotope Shifts for the MOT and clock transitions for 171Yb and 174Yb relative to 173Yb,
as reported in refs. [126, 134, 138–140]. Distances are not to scale.

quantum simulation applications[64–66]. A solid state laser5 provides about 500 mW of
light at λSDL = 660 nm that is used to create a state dependent 1D-lattice (SDL) along
the z-direction, characterized by a ratio of lattice depths for ground and excited state
atoms of Vlat,e/Vlat,g ≈ 5.55(32). The SDL is characterized in sec. 5. Further details on
the optical setup of the state dependent lattice can be found in refs. [84, 90].

1.7. Laser Systems

In the ytterbium lab we use a multitude of lasers at several different wavelengths. While
the optical lattices and dipole traps have low to moderate requirements concerning fre-
quency stability as they all are operated in the far-detuned regime, the near-resonant
and resonant light used for magneto optical trapping, imaging and clock spectroscopy
demands active frequency stabilization. The absolute stability requirements are very dif-
ferent as the linewidths of the relevant transitions 1S0 → 1P1,

1S0 → 3P1 and 1S0 → 3P0

vary about 9 orders of magnitude between Γ1P1
= 2π× 29 MHz, Γ3P1

= 2π× 182 kHz and
Γ3P0

< 2π × 10 mHz [101–103]. Additionally the isotope shifts between 171Yb and 173Yb
(see fig. 1.9) require to span a broad frequency range of up to 6.2 GHz. The laser systems
used in the ytterbium lab have in large parts been designed and set up prior to my time as
PhD student at the experiment. Therefore, detailed discussions of design considerations
and technical implementations can be found in ref. [82, 84, 85, 91].
However, during the past years, some of the laser systems have been modified and im-
proved. In the following, I will discuss the laser systems providing light for resonant
addressing of the 1P1,

3P1 and 3P0 states. I will focus on recent modifications and fre-
quency stabilizations schemes, as a profound understanding is necessary to operate the
lab.

5Cobolt Flamenco
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1.7.1. Frequency Stabilization in the Ytterbium Laboratory

There are different ways to achieve frequency stability. Typically it is a good choice to use
Doppler-free saturation spectroscopy (see e.g. [141]) on transitions of interest to create
an error signal that can be used to lock the laser. For rubidium, a compact spectroscopy
setup can be realized using vapor cells. However, the low vapor pressure of ytterbium
prohibits the use of vapor cells. Instead, an oven has to be used to create an atom beam
that can be used for spectroscopy. In the early days of the experiment a beam apparatus
has been utilized to perform spectroscopy and stabilize lasers on the blue and green tran-
sitions 1S0 → 1P1 and 1S0 → 3P1 [82]. Unfortunately, the achieved frequency stability
was not satisfactory for a reliable and stable operation of the experiment.
Another way to achieve frequency stability is to utilize a resonance of an optical resonator
as a frequency reference and use the Pound-Drever-Hall (PDH) technique to create an
error signal for frequency stabilization [142, 143]. The PDH technique provides an er-
ror signal with a high signal-to-noise ratio and a steep slope, well-suited for frequency
stabilization and laser linewidth narrowing. A resonator possesses an infinite number of
equally spaced resonances, that can be used for frequency stabilization. While this of-
fers flexibility in terms of frequencies the laser can be stabilized to, stabilizing the laser
to a particular absolute frequency e.g. close to a particular atomic transition requires
knowledge of the laser frequency up to a free spectral range (FSR). The resolution of a
wavelength meter is sufficient to resolve the free spectral range of a 10 cm long cavity with
a free spectral range of ∆FSR ≈ 1.5 GHz, and thus can conveniently be used to solve the
first problem. To achieve long term stability it is necessary to isolate the resonator from
environmental disturbances such as pressure and temperature fluctuations in a vacuum
chamber. By manufacturing the resonator from materials that feature a zero crossing of
the coefficient of thermal expansion and actively stabilizing the cavity’s temperature to
the temperature of the zero crossing the effect of temperature fluctuations can be mini-
mized.
In the laboratory, three different resonators are used to stabilize lasers on the blue, green
and yellow transitions. To bridge isotope shifts, for 171Yb, 173Yb and 174Yb of up to
∼ 6.2 GHz (see fig. 1.9), we employ offset locking techniques to transfer the stability
achieved by the PDH frequency locking to other lasers operated at the desired frequencies.

Frequency Stabilization according to Pound, Drever and Hall

In the following, I will briefly introduce the Pound-Drever-Hall frequency stabilization
according to ref. [144].

Consider a resonator consisting of two mirrors with reflectivities r1, r2 placed at a
distance of L. The resonance condition is then given by λ = 2L/n, with n ∈ N. The
resonances are equally spaced in frequency, seperated by a free spectral range (FSR)
∆FSR = c/2L, where c denotes the speed of light. The linewidth of the resonance is
determined by the finesse F that is given by the reflectivity of the mirrors. For r = r1 = r2
it reads: F = π

√
r/(1 − r).

To realize a closed feedback cycle for frequency stabilization it is crucial to be able to
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analyze whether the actual frequency is below or above the desired frequency. Assuming
an incoming electric field of Ein = E0 · eiωt the reflected electric field can be expressed as
Eref = F (ω)Ein, where F (ω) denotes the complex reflection coefficient given by [144]:

F (ω) =
r
(
e

iω
∆FSR − 1

)
1 − r2e

iω
∆FSR

. (1.17)

Scanning the frequency across the cavity resonance, one observes a phase shift of 2π and
a dip in the reflected intensity as the resonator becomes transparent on resonance. While
the reflected intensity is symmetric, with respect to the resonance and therefore does not
allow to identify whether the actual frequency is red or blue detuned, the phase of the light
is antisymmetric around the resonance frequency. It therefore allows to unambiguously
identify whether the actual frequency is blue or red detuned with respect to the resonance
and thus can be used to apply a negative feedback loop. The Pound-Drever-Hall technique
utilizes interference between a carrier and sidebands obeying a fixed phase relation with
respect to the carrier to access the phase information of the reflected light and create an
error signal that can be used for frequency stabilization.
We typically use electro optical modulators (EOMs) to modulate the phase of the light
and create sidebands. Assuming a light frequency ω and a modulation frequency Ω the
modulated electric field can be described by[144]:

E(t) = E0 · eiωt+iβ sinΩt. (1.18)

Here E0 denotes the amplitude of the electric field while β represents the modulation
depth. Equation 1.18 can be rewritten in terms of Bessel functions Jk(β) as [144]:

E(t) = E0

(
J0(β)eiωt +

∑
k=1

Jk(β)e(ω+kΩ)t +
∑
k=1

(−1)kJk(β)e(ω−kΩ)t

)
, (1.19)

where k denotes the order of the Bessel function. Measuring the reflected intensity[144]:

Pref = Pc|F (ω)|2 + Psb(|F (ω + Ω)|2 + |F (ω − Ω)|2)
+2
√
PcPsb(Re{F (ω)F ∗(ω + Ω) − F (ω)F ∗(ω − Ω)}) cos Ωt

+2
√
PcPsb(Im{F (ω)F ∗(ω + Ω) − F (ω)F ∗(ω − Ω)}) sin Ωt

(1.20)

and demodulating the signal at the modulation frequency Ω yields the Pound, Drever
and Hall error signal. Analyzing the amplitude of the error signal as a function of the
modulation depth yields an optimum modulation depth of β = 1.08. Figure 1.10 shows
a schematic PDH frequency stabilization setup. An EOM is used to create sidebands
at a frequency Ω. Subsequently, the light passes an optical diode and is coupled into
the resonator. Light back-reflected from the resonator is reflected by the optical diode
and directed onto a photodiode. To create the error signal, the photodiode signal is
demodulated at the modulation frequency Ω using the same (or another phase stable)
RF-source that is used for the creation of the sidebands. Finally, the error signal is
fed into a frequency control circuit e.g. a PID controller that is used to apply negative
feedback to the frequency of the laser. For an external cavity diode laser (ECDL) this
can be achieved e.g. by modulating the laser diode current.
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Figure 1.10.: Schematic PDH frequency stabilization setup. See main text for a detailed description.

1.7.2. Blue Laser System

Master Laser

A frequency-doubled diode laser6 provides up to 300 mW of light at 399 nm for imaging
and the 2D-MOT push beam and serves as a master laser for the blue transition. Over
the course of this thesis the entire setup has been rebuilt by the author.
As mentioned earlier, the previously-used atom beam spectroscopy did not yield a suffi-
ciently good error signal to allow for reliable frequency stabilization of the imaging laser.
Therefore we decided to use an optical resonator as a frequency reference instead. Over
the course of his bachelor thesis M. Hagenah (who was co-supervised by the author) built
a resonator using a Zerodur spacer with glued mirrors that have been coated in house [97].
As it turned out, the drift of the resonance was too large to be compensated for using
AOMs. Therefore, we decided to switch to a commercial resonator system7 based on a
resonator with mirrors optically contacted to the spacer, both made out of ULE glass.
The custom-made multichroic coatings of the mirrors yield a finesse of ∼ 3000 for 798 nm,
1285 nm and 1389 nm. Therefore, different lasers can simultaneously be referenced to the
resonator. We lock the fundamental mode of the blue master laser at λ = 798 nm to the
resonator, whose temperature is stabilized to the CTE zero crossing of the ULE spacer
to improve the long-term frequency stability. The setup used for frequency stabilization
is schematically shown in fig. 1.11. A resonant free space EOM 8 creates sidebands at
∼ 20 MHz. The frequency of the light is shifted by approximately 80 MHz by an AOM
in double pass configuration (omitted in fig. 1.11) and then is coupled into a one-to-
two, 50:50 fiber splitter. A fiber collimator with a de-adjusted lens is used to focus the
outcoupled beam onto the incoupling facette of the resonator and couple light into the
cavity. Back-reflected light is coupled back into the fiber splitter. The intensity of the
reflected light is measured at the remaining port of the fiber coupler using a home-built
photodiode. The measured signal is fed into a PDH-detection unit9, (also used to drive
the EOM) to create an error signal that is finally fed into a control circuit10 that imposes

6Toptica Photonics DL-TA-SHG pro
7Stable Laser Systems
8Qubig EO-20-M3-VIS

9Qubig EO-20-L3-IR
10Toptica FALC 110
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Figure 1.11.: Frequency stabilization setup for the blue master laser.

negative feedback onto the diode current and piezo voltage of the ECDL laser. A fiber
splitter allows to built a compact setup that apart from the outcoupler does not require
any further mode-matching or polarizing optics. However, to simultaneously achieve a
good cavity mode match and a high fiber coupling efficiency for the back-reflected light
requires careful adjustment and positioning of the fiber outcoupler. A beam sampler in
front of the cavity allows to superimpose light at 798 nm and 1389 nm, and to use the
cavity as a frequency reference for both wavelengths. An analogue setup used to stabilize
a laser at the repump wavelength 1389 nm has been built over the course of the master’s
thesis of N. Pintul [123]. To distinguish between different transversal cavity modes we
observe the beam profile of light transmitted through the resonator using a simple com-
mercial camera. To choose the correct cavity resonance for frequency stabilization, the
frequency of the laser is monitored using a wavelength meter.
Changing the frequency stabilization to the cavity-based setup vastly increased the sta-
bility of the experiment. The experiment can be operated unsupervised for many hours
and overnight and therefore the data acquisition time could be drastically increased.

The blue master laser is stabilized at a detuning of ∆ ≈ −160 MHz with respect to
the 1S0 → 3P1 transition of 173Yb and provides resonant and near-resonant light used
for absorption imaging of two different isotopes and the 2D-MOT push-beam. Therefore
the isotope shift has to be bridged using AOMs. The laser system features three inde-
pendent branches for x- and y-axis imaging and the 2D-MOT push beam as shown in
fig. 1.12. Each branch again is divided into two different branches. One is shifted by
+160 MHz to the resonance of 173Yb using an 80 MHz AOM in double pass configuration.
The other can either be shifted to the resonance of 171Yb or 174Yb by ∆f = +404 MHz
or ∆f = −428 MHz, respectively, using a 200 MHz AOM in double pass configuration.
The two branches subsequently are superimposed again employing a 50:50 beamsplitter
and finally the light is coupled into a single-mode optical fiber guiding light to the main
experiment.
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Figure 1.12.: Blue master laser system. Panel a) schematically shows the different branches of the
blue master laser system. The laser’s output power is split up into four different branches, used
to offset lock the 2D-MOT laser, imaging along x- and z-direction and for the 2D-MOT pushing
beam. Panel b) schematically depicts one of the three branches used for x- and y-axis imaging and
2D-MOT beam. Each branch is again split up into two different branches, the frequency of the light
is shifted to the resonance of the different isotopes using an 80 MHz AOM (AOM-1) and an 200
MHz AOM (AOM-2) in double pass configuration, respectively. Subsequently, the two branches are
superimposed again, and light is coupled into an optical fiber, guiding light to the main experiment.
The AOMs allow for fast switching and enable double isotope imaging by changing the frequency of
the imaging light for absorption and reference image.

2D-MOT Laser

Due to the broad linewidth of the 1S0 → 1P1, reaching the saturation intensity of
Isat = πhcΓ/3λ3 ≈ 60 mW/cm2 requires a lot of power. The pointing stability of the MOT
beams can be increased by using fiber coupled telescopes, though for light in the blue part
of the optical spectrum this is difficult. Scattering processes as e.g. Rayleigh scattering
are more likely (∝ 1/λ4) for shorter wavelengths, and the fiber coupling efficiency is
decreased compared to higher wavelengths eg. in the infrared. Due to solarization, the
optical fibers degrade [145] and have to be exchanged regularly. Therefore, the 2D-MOT
laser system has been built as a free-space setup, avoiding fiber associated losses but with
deteriorated pointing stability. In the past the 2D-MOT performance especially for the
fermionic isotope 173Yb has been the bottle neck of the experiment, partly due to the
2D-MOT laser power being limited to P2D-MOT laser ≈ 300 mW, yielding a mean intensity
of Imean < 0.5 Isat in the 2D-MOT beams. Exchanging the 2D-MOT laser by a new
high power version with an output power of up to 1.5 W, allowed to increase the mean
intensity of the 2D-MOT beams and to reach saturation intensity. Thereby the effect of
power fluctuations could be decreased. Due to different sizes of the new laser’s housing,
the 2D-MOT laser setup has been rebuilt by B. Santra, K. Sponselee, and the author over
the course of this work. A detailed description of the optical setup can be found in the
doctoral thesis of K. Sponselee [98].
The frequency of the 2D-MOT laser is referenced to the master laser using an offset lock
based on a digital phase detector [146] and using the locking electronics of the laser 11. The

11Toptica DLC locking option
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Figure 1.13.: Offset locking scheme for the 2D-MOT laser. A portion of the light emitted by the
2D-MOT laser is superimposed with light emitted from the master laser, that is stabilized to a
resonance of a cavity (see sec. 1.7.2). The beat signal is measured with a photo diode and fed into
a phase detector [146], where it is compared to a reference signal from a frequency generator. The
error signal is fed to a PID controller applying negative feedback to the laser diode current and piezo
voltage of the ECDL laser. The frequency generator performs a frequency sweep triggered by the
experiment control to switch between a 2D-MOT of 173Yb and 171Yb.

frequency stabilization setup is schematically shown in figure 1.13. A beat note between
the blue master laser and the 2D-MOT laser is detected using a fast photodiode12. The
signal is amplified and fed into a home-built phase detection circuitry based on ref. [146].
The beat note is compared to a reference signal generated by a frequency generator 13 and
internally multiplied by a factor of n = 25. The digital, step-function-shaped, error signal
is fed to the laser driving electronics and used to lock the laser using an internal PID
circuitry. While the digital error signal restricts the frequency stability of the lock, the
frequency of the 2D-MOT laser can conveniently be changed by the isotope shift within
the experimental cycle by applying a frequency chirp to the reference signal of the phase
detector, as schematically shown in figure 1.13. In this way subsequent loading of different
isotopes into the bi-chromatic 3D-MOT can be realized.

1.7.3. Green Laser System

The green laser system for the bi-chromatic 3D-MOT has been designed over the course
of the master’s thesis of the author [91] and has been set up mainly by A. Kochanke [84].
Since then the setup has been extended by an additional laser14 and some components of
the locking setup have been changed. In the following, I will therefore describe the green
laser system in its current form.

The setup is schematically shown in fig. 1.14 a). Light is provided by three different
frequency-doubled lasers referred to as green master laser15, green laser16-2 and green

12Hamamatsu G4176-03
13Keysight 33600A Series Waveform Generator
14Toptica DL-TA-SHG Pro

15Toptica Photonics DL-BoosTA-SHG Pro
16Toptica Photonics DL-TA-SHG Pro
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laser17-3. The green master laser provides light for the 3D-MOT of 173Yb and the OSG
beam used for spin-resolved imaging of both fermionic isotopes. An additional branch
of the laser system might be used for photoassociation (PA) spectroscopy in the future.
Green-laser-2 provides 3D-MOT light for 171Yb or 174Yb while green-laser-3 provides light
for a Raman setup described in ref. [99, 147].
The frequency of the green master laser is referenced to a high-finesse resonator, re-
ferred to as cavity-2, whereas green-laser-2 and green-laser-3 are referenced to the green
master laser employing offset-locking techniques. Cavity-2 is part of the clock laser
setup and can be used to characterize the linewidth of the clock laser in self-heterodyne
measurements[82, 85]. Designed for a wavelength of λ = 578 nm the coating of the cavity
mirrors is broad enough to allow being used as a frequency reference for the green master
laser. The cavity length of L = 7.5 cm yields a free spectral range of ∆FSR ≈ 2 GHz. The
resonator spacer is made of ULE glass, while the the cavity mirrors are made of silica.
Due to technical limitations it is not possible to stabilize the temperature of the resonator
at the temperature of the CTE zero crossing of TCTE,zero = −26(2) ◦C [137]. Instead,
the resonator is stabilized to a temperature of Twork = 0.59 ◦C [137] and the frequency
stability of the cavity-2 setup is diminished. Therefore, the frequency of the green master
laser has to be adjusted on a daily basis to compensate for drifts of the cavity setup. The
frequency of the green master laser is stabilized to ∆ ≈ +400 MHz with respect to the
MOT transition of 173Yb. Beat notes between the green master laser and green-laser-2 and
green-laser-3 are measured via photodiodes(PD) PD-1 and PD-2 and are used to offset
lock green-laser-2 and green-laser-3. Green-laser-2 is referenced to the master laser using
an offset locking technique as described in ref. [148], whereas green-laser-3 is referenced
to the green master laser using a commercial phase detection and locking unit 18. In this
way the frequency of green-laser-2 and green-laser-3 can be tuned over a wide range and
the isotope shifts between 171Yb, 173Yb and 174Yb can be easily bridged.
The optical setup used for PDH frequency stabilization of cavity-2 is similar to the clock
laser locking setup described in ref. [82] and is schematically shown in fig. 1.14 b).
AOM-1 and AOM-2 are used to shift the frequency of the green master laser light to the
cavity resonance. Light is coupled into an optical fiber delivering light onto a breadboard
on a vibration-isolation platform, which is located inside a wooden box to reduce sound.
EOM-1 creates sidebands at approximately 20 MHz used for PDH-frequency stabilization.
Light is coupled into the optical resonator, and an optical isolator is used to spatially filter
light back-reflected from the resonator and direct it onto PD-4. The power transmitted
through the cavity is monitored using PD-5 whereas PD-3 is used to stabilize the laser
power guided onto the vibration isolation platform.
Over the course of this thesis the non-resonant EOM19 that previously had been used to
create sidebands as well as the driving and error detection electronics have been replaced
by a resonant free-space EOM20 and a commercial PDH detection unit21. In this way an
optimal modulation depth of β = 1.08 is reached and the frequency lock’s stability could
be improved. Additionally, the photodiode used for the PDH detection has been replaced
by a fast home-built photodiode.

17Menlo Systems Orange One
18Menlo Systems Syncro
19Linos PM-25

20Qubig EO-20-M3-VIS
21Qubig ADU
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Figure 1.14.: Green laser system. The lasers and the cavity are located on two different optical
tabels. Panel a) schematically shows the green laser system. Panel b) shows the PDH locking setup
for cavity-2. See main text for detailed description.
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The detunings necessary for MOTs and OSG are set by one or multiple AOMs in single- or
double-pass configuration, (omitted in fig. 1.14). Light is guided to the main experiment
using optical fibers. A home-built ‘fiber cluster’ is used to superimpose two beams at the
different MOT frequencies and to divide the available power into four branches used for
the four 3D-MOT beams [91]. Frequency broadening as described earlier in this section
is achieved by modulating the driving frequency of the MOT AOMs at a modulation
frequency of fbroadening ≈ 200 kHz. To compress the MOT and achieve low temperatures,
central frequency, modulation depth and the amplitude of the RF-drive are simultane-
ously ramped in two subsequent steps. Given the modulation frequency of 200 kHz, to
implement these ramps with a digital RF source is not straightforward. Therefore, the
AOM driving signal is generated by an analog RF source, which however is prone to
long-term frequency drifts and shows a slow frequency response. For spin preparation we
switch to a digital RF-source (using an RF-switch) to assure frequency reproducibility
and stability for the short optical pumping pulses. However, a replacement of the analog
driving electronics by a FPGA-controlled digital RF source might yield an improved MOT
performance.
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1.7.4. Clock Laser System

One of the main goals of the ytterbium experiment is to use high-resolution spectroscopy
on the ultra-narrow clock transition 1S0 → 3P0 to observe e.g. interaction induced energy
shifts. While the linewidth of the clock transition has been estimated to be below 10 mHz
[102], the linewidth of a free-running diode laser is typically on the order of ∼ 10−100 kHz,
limiting the spectroscopic resolution. The linewidth of a laser is related to its frequency-
noise characteristics and can be reduced by stabilizing the laser to an external frequency
reference [149]. In practice, this is achieved by frequency locking a laser to an optical
resonator using the Pound-Drever-Hall technique [143]. Reaching laser linewidths of one
Hertz or below requires a high degree of frequency noise suppression and is technically de-
manding. However, state-of-the-art lasers stabilized to cryogenically-cooled single-crystal
silicon resonators reach a sub-10 mHz linewidth [150, 151].
The clock laser system initially has been designed and set up by A. Thobe [82] as well
as T. Rützel[87] and J. Carstens [88]. Later on, the high-finesse resonator has been ex-
changed to improve the stability of the cavity system, and large parts of the locking setup
have been rebuilt to reduce residual amplitude modulation (RAM) by T. Ponath [85].
The short-time linewidth has been characterized to 1 Hz within two seconds [85].
Over the course of this thesis, the setup has been adapted to enable addressing the clock
transition of both fermionic isotopes 171Yb and 173Yb. Also, the former analog fiber noise
cancellation has been exchanged by an all-digital solution developed in the research group
[152]. In the following, I will present the clock laser system in its current form.
Figure 1.15 schematically shows the complete clock laser system. It can be divided into
three functional subsystems used for frequency stabilization, fiber noise cancellation and
control of the spectroscopy beam.

Frequency Stabilization

The clock laser is stabilized to a high-finesse optical resonator using the PDH technique
introduced earlier. The plano-concave resonator22 has a length of L ≈ 7.5 cm, yielding
a free spectral range of ∆FSR = 1.934(3) GHz [85]. The football-shaped cavity spacer
and the mirror substrates are both made of ULE glass that features a CTE zero crossing
close to room temperature. The resonator has been characterized by T. Ponath, finding a
finesse of F = 216.9(4)×103 corresponding to a resonance linewidth of Γres = 8.92(1) kHz
[85]. The CTE zero crossing has been found at a temperature of TCTE-zc = 32.3(1) ◦C [85].
The cavity is vertically mounted and isolated from thermal radiation by two gold-coated
copper heat shields. The resonator and heat shields are placed in a vacuum chamber
operated at a pressure of p ∼ 10−8 mBar. The outer heat shield is stabilized to the tem-
perature of the CTE zero crossing using a thermo-electric cooler (TEC) and a home-built
TEC-driver23. The vacuum setup and the heat shields are described in [82, 87, 88]. To
isolate the cavity from low-frequency noise, the vacuum housing is placed on a breadboard
on a vibration-isolation table24 that is surrounded by a wooden box revetted with acoustic
isolation foam.

22Advanced Thin Films ATF-6030
23based on: Wavelength Electronics WTC3243

24MinusK 150BM-1
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Figure 1.15.: Illustration of the optical setup of the clock laser system. Beam shaping optics, and
some mirrors and waveplates have been omitted for clarity. See main text for a detailed description.

Figure 1.15 schematically shows the clock laser system. A frequency-doubled diode
laser25 provides up to 300 mW of light at λclock = 578 nm. The output power is divided

25Toptica DL-TA-SHG pro
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Figure 1.16.: Double-sideband modulation of the clock beam, modulation at a frequency of fs at a
modulation depth of βs = 1.84 and fPDH at modulation depth βPDH = 1.08.

into two branches for cavity-1 and cavity-2, respectively. Here only the cavity-1 branch
is discussed. The beam passes through AOM-1, AOM-2 and EOM-1 and is subsequently
coupled into an optical fiber that is fed through the wooden box and guides light onto the
vibration-isolation platform. A fiber coupled EOM26 (EOM-2) is used to create sidebands
at fmod = 17.8 MHz at a modulation depth of β = 1.08. To reduce residual amplitude
modulation (RAM) the EOM is temperature stabilized [85]. The power on the vibra-
tion isolation table is measured using photodiode PD-127 and regulated using AOM-2
(alternatively, the power transmitted through the cavity can be regulated using PD-4, see
ref. [85]). The light that is back-reflected from the incoupling mirror is directed onto an
avalanche photodiode 28 using an optical isolator. The measured signal is demodulated
at the modulation frequency fmod using an RF-mixer 29. The resulting error signal is fed
into a fast control circuitry 30, to impose negative feedback to the clock laser frequency.
Fast feedback is induced by modulating the frequency of AOM-1, while slow feedback is
induced using the piezo voltage of the ECDL.
The clock transition of 171Yb is shifted by ∆171 = −1.26 GHz with respect to the clock
transition of 173Yb [140]. Since the cavity provides an absolute frequency reference, to
address the clock transition of 171Yb the isotope shift has to be accounted for by shift-
ing the laser frequency. To do so we employ a dual sideband modulation scheme[153],
schematically depicted in fig. 1.16. As the isotope shift is larger than half the free spec-
tral range ∆171 > 0.5∆FSR it is useful to lock the laser to a higher-lying resonance to
reduce the necessary frequency shift to fs = ∆171 − ∆FSR. EOM-1 is used to create side-
bands at ±fs = 674 MHz. By locking the upper sideband to the cavity resonance the
laser frequency is shifted close to the 171Yb clock transition. A residual detuning can be
accounted for by changing the frequency of AOM-3. While for an optimal PDH-signal
the modulation depth of EOM-2 should be βPDH = 1.08, to obtain maximum power in
the first sidebands the modulation depth of EOM-1 should be βs = 1.84. Applying the
dual-sideband modulation only 18% of the overall power ends up in the resonant side-
band. To achieve the same locking performance and the same intra-cavity power as for

26Jenoptik PM594 with PM APC fibres
27Thorlabs PDA-36
28Femto HCA-S with Si APD Detector, customized

model

29Mini-Circuits ZAD-3+
30Toptica Photonics FALC110
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the single-sideband modulation scheme the overall laser power has to be increased by a
factor of approximately three. EOM-1 is a resonant free space EOM31 with tunable reso-
nance frequency. To achieve a modulation index of βs ∼ 1.8 at a modulation frequency of
fs = 674 MHz the EOM is driven by an RF signal with a power of Pdrive = 35 dBm. Ther-
mal lensing, caused by the EOM crystal changes the beam parameters and thus affects
the efficiency of the subsequent fiber coupling. To avoid misalignment when switching
between the clock laser frequency of 171Yb and 173Yb, we therefore continously drive the
EOM and only change the overall beam power when switching between isotopes. Note
that the non-temperature controlled EOM-1 is subject to RAM. Therefore, to reduce
RAM-related noise, it would be desirable to apply the double-sideband modulation using
solely EOM-2. Serrodyne frequency shifting [154–156] could be an intriguing alternative
to the double sideband modulation scheme and might reduce noise caused by undesirable
light on the avalanche photodiode. However, the generation of a high quality saw-tooth
signal necessary for serrodyne scheme at the modulation frequency fs might be challenging.

Spectroscopy Branch

Behind AOM-1 a large part of the laser light is picked up and passes through AOM-3.
The 0th diffraction order of AOM-3 is coupled into a fiber that guides to a frequency comb
setup that allows measuring the clock laser’s frequency. The 1st diffraction order is cou-
pled into a fiber that guides to the main experiment. The clock laser power on the main
experimental table is stabilized using AOM-3 and PD-6, while the spectroscopy beam is
switched on and off by switching the RF drive of AOM-4 using a high isolation RF-switch
32 with fast switching characteristics. The switching AOM is operated with low RF-power
resulting in a small diffraction efficiency. This way, pointing instabilities can be reduced,
and on the other hand, the power of the beat note used for fiber-noise cancellation is only
weakly reduced when the spectroscopy beam is switched on. By using different AOMs
for switching and intensity regulation we avoid a deformation of the rectangular shaped
clock pulse used for clock due to the transient behaviour of the intensity regulation. The
frequency of the spectroscopy beam is set by changing the driving frequency of AOM-2
via the experimental control software. Thus frequency, intensity and length of the spec-
troscopy pulses are controlled by three individual AOMs.
The first diffraction order of AOM-4 passes through a half-wave and a quarter-wave plate
as well as an optional polarizing beamsplitter used to set the desired polarization of the
spectroscopy beam. The clock laser beam is superimposed with the 1D-lattice using the
same concave mirror that is used to retro reflect the 1D-lattice beam. At the position of
the atoms the spectroscopy beam has a waist of w0,clock = 100µm. The 0th diffraction
order of AOM-4 is back-reflected into the fiber and used for fiber noise cancellation us-
ing AOM-3. PD-6 directly monitors the power in the spectroscopy beam measuring the
residual transmission of the 1st diffraction order of AOM-4 behind a steering mirror. All
acousto optic modulators except for the locking AOM-1 are operated using digital RF
sources sharing a common clock signal that is locked to a GPS referenced oven-controlled
crystal oscillator. This way, differential drifts of the AOM frequencies are avoided. How-

31Qubig EO-T990K3-VIS 32Mini-Circuits ZASWA-2-50DR
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Figure 1.17.: Optical setup for fiber noise detection and cancellation in the clock-spectroscopy
branch. See main text for a detailed description.

ever, the absolute frequency of the clock laser is determined by the cavity’s resonance
frequency, which is subject to fluctuations. To compensate for a slow linear drift caused
by a slow shrinking of the cavity spacer, the driving frequency of AOM-2 is chirped by
about 10 kHz/day (see sec. 3.5 for an analysis of the clock laser frequency drifts).

Fiber Induced Noise Cancellation

A non-polarization maintaining single-mode optical fiber is used to conveniently guide
light from the clock laser system to the main experiment. However, the fiber is sensitive
to vibrations and induces low-frequency phase noise deteriorating the coherence properties
of the clock laser light [157]. To reduce the effect of fiber-induced phase noise, we use
homodyne detection to measure fiber related noise and employ active feedback to suppress
it by up to 40 dB.
The setup for the fiber-induced noise cancellation is shown in fig. 1.17. The input beam

is split into two branches. One acting as a probe beam and the other as a local oscillator
(LO). The probe beam passes AOM-3 in single-pass configuration and is coupled into an
optical fiber. Stress is induced to the fiber, so that it acts as an effective quarter-wave
plate, turning the polarization of the light. The light is coupled out of the fiber, back-
reflected and again passes the fiber, now possessing a polarization turned by 90 degrees
compared to the input beam. The frequency of the light is again shifted by the AOM
and superimposed with the local oscillator on the beam splitter. To achieve a common
polarization between probe and LO beam, a polarizing beam splitter rotated by 45 degrees
is used. Finally PD-5 measures a beat between the probe and the LO beam at twice the
driving frequency of the AOM. The phase difference between the beat signal and an RF-
signal at twice the driving frequency of AOM-3, is measured using a phase detector33.
The resulting error signal is fed to a digital PID controler, applying negative feedback

33Mini-Circuits ZRPD-1
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Figure 1.18.: Spectra of the homodyne photodiode (PD-5) signal, with and without active fiber
noise cancellation. In panel a) the clock laser is locked to the resonance of 171Yb, while in panel b)
it is locked to the resonance of 173Yb.
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Figure 1.19.: Phase noise measurement of the homodyne signal. The phase noise of the free-running
system is depicted in dark blue, while the phase noise of the actively stabilized system is depicted
in light blue. Panel a) shows the data obtained for the clock laser system locked to the resonance
of 171Yb. Panel b) shows the data obtained for the clock laser locked to the resonance of 173Yb.
The active fiber-noise cancellation reduces phase noise by up to more than 40 dB for frequencies
≲ 5 kHz. Servo bumps at ∼ 10 kHz and ∼ 800 kHz in panel a) and at ∼ 10 kHz and ∼ 1MHz
in panel b) indicate the regulation bandwidth of the active fiber noise cancellation and the PDH
frequency stabilization of the clock laser, respectively.

to the phase of the AOM driving signal. Figure 1.18 shows homodyne spectra with and
without active fiber noise cancellation, whereas fig. 1.19 shows the corresponding phase
noise. The active FNC suppresses phase noise by up to 40 dB for frequencies ≲ 5 kHz.
Servo bumps at frequencies of ∼ 10 kHz and ∼ 1 MHz indicate the regulation bandwidth
of the active fiber noise cancellation and the PDH frequency stabilization, respectively.

1.8. Summary

In this chapter, I gave an overview of the experimental apparatus in its current form
and described methods used for the measurements presented in the following chapters.
The apparatus allows to prepare quantum degenerate gases and mixtures of 171Yb, 173Yb,
whereas creating Bose-Einstein condensates of 174Yb requires only a few quick changes. A
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3D-lattice at the magic wavelength of λmag = 759, and a clock laser 578 nm, characterized
by a laser linewidth on the 1 Hz level (within two seconds), allows for high-resolution
spectroscopy on the clock transition 1S0 → 3P0. A state-dependent lattice at λSDL =
660 nm allows to study orbital mixtures with different mobility properties for ground-
and excited-state atoms. By increasing the 2D-MOT power and stabilizing the blue
master laser to an optical resonator, the stability and reliability of the apparatus could
be significantly improved, which allowed to vastly increase the data acquisition time.
Further technical improvements such as replacing cavity-2 by another resonator with a
CTE zero-crossing close to room temperature or replacing the analog RF sources used for
the 3D-MOT broadening might yield a further increase of the experiment’s stability and
therefore be reasonable.
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Ytterbium Quantum Gases and Fermi-Fermi Mixtures

2. Ytterbium Quantum Gases and
Fermi-Fermi Mixtures

We routinely create quantum degenerate gases of 171Yb, 173Yb, 174Yb as well as Fermi-
Fermi mixtures of 171Yb and 173Yb. The creation of single isotope gases of 173Yb and
174Yb with the experimental apparatus is described extensively in the theses of the doc-
toral theses of S. Dörscher, A. Thobe, B. Hundt and A. Kochanke [81–84].
Due to its particular scattering properties, namely a vanishingly small s-wave interaction
[118], 171Yb is subject of various proposals for quantum simulation of the Kondo lattice
model [64–66]. The small s−wave scattering length, however, prevents direct evaporative
cooling of single isotope gases of 171Yb. To reach quantum degeneracy, therefore, it re-
quires sympathetic cooling with another species[114, 115]. Based on preparatory work of
A. Kochanke and the author, over the course of this thesis, the apparatus has been mod-
ified to enable simultaneous magneto-optical trapping of two different ytterbium isotopes
and subsequent evaporation, allowing to create quantum degenerate gases of 171Yb and
Fermi-Fermi Mixtures of 171Yb and 173Yb.
In the following I will present characterization measurements for Fermi-Fermi mixtures of
171Yb and 173Yb.

Fermi gases and Fermi-Fermi mixtures with 171Yb have been characterized by K. Spon-
selee, M. Diem and the author. The here presented measurements have been conducted
by K. Sponselee and the author. Data analysis has been performed by the author.

2.1. Fermi-Fermi Mixtures of 171Yb and 173Yb

For cold gases, quantum degeneracy typically is achieved by first employing laser cooling
in a MOT, eventually followed by a sub-Doppler laser cooling stage and subsequent evap-
orative cooling. Although Bose-Einstein condensation using laser cooling only has been
demonstrated [158], evaporative cooling remains the most commonly used technique.
Evaporative cooling relies on removing the hottest atoms of a gas that subsequently
thermalizes via collisions at a lower temperature and can be achieved by continuously
decreasing the depth of the trap [159]. In the low temperature regime interactions are
limited to s-wave collisions characterized by the s-wave scattering length. For the bosonic
isotope 174Yb the scattering lengths of a = 104(15) a0 allows to efficiently employ evapo-
rative cooling to reach quantum degeneracy. For identical fermions s-wave collisions are
prohibited, thus limiting evaporative cooling for fermionic gases to mixtures of atoms in
different e.g. mF states [5]. The s-wave scattering length a = 199(2) a0 allows for an
effective evaporative cooling of spin mixtures of 173Yb while the almost vanishing scat-
tering length of a = −3(4) a0 for 171Yb prevents evaporative cooling. This limitation can
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be overcome by so-called sympathetic cooling, employing a buffer gas of another species
that interacts with the 171Yb atoms via collisions to cool the sample. Sympathetic cooling
has been demonstrated for various different systems [160, 161] and sympathetic cooling
of 171Yb with a different ytterbium isotope has been demonstrated either using 174Yb
[113, 114] or 173Yb as coolant [115], reaching quantum degeneracy in the latter case.
To create quantum degenerate gases of 171Yb we subsequently load 171Yb and 173Yb into
the bi-chromatic MOT operated on the 1S0 → 3P1 line. After MOT compression both
species are loaded into the dipole trap. In a first evaporation stage the power of the green
dipole trap DT1 is exponentially ramped down. Afterwards we apply resonant optical
pumping first for 171Yb, then for 173Yb, to prepare a certain spin configuration. After
spin preparation the atoms are cooled to quantum degeneracy in a second evaporation
stage, exponentially reducing the power of the IR traps. By varying the MOT loading
times for the different isotopes, while keeping the overall MOT loading time constant we
can tune the isotope ratio N171/(N171 +N173) from a pure gas of 173Yb to an almost pure
gas of 171Yb, as shown in fig. 2.1. Unwanted residual 173Yb atoms might be removed after
evaporation by a resonant blast pulse of imaging light. Note that in the measurement
we used loading times for 173Yb of tload,173Yb ≥ 3 s. For smaller loading times the number
of 171Yb atoms goes down as expected for a non interacting Fermi-gas. To systemati-
cally characterize the different Fermi-Fermi mixtures, we determine the particle numbers
and temperatures for both isotopes. In order to obtain the temperature of the gases
a 2D-Fermi profile n2D(x, y) is fitted to the optical density distribution obtained from
absorption images, given by[162]:

n2D(x, y) = n2D,0

Li2

(
±φ exp

[
−
(

x2

R2
x

+ y2

R2
y

)
Li1(−φ)
Li0(−φ)

])
Li2(±φ)

, (2.1)

to obtain the fugacity φ. Here Lin denotes the polylogarithm of nth order, n2D,0 denotes
the amplitude Rx and Ry denote the radii in x- and y-directions. The degeneracy param-
eter given by the quotient of the temperature T and the Fermi temperature TF can be
determined using the fugacity via [162]:

T

TF
= [−6Li3 (−φ)]−1/3 , (2.2)

and is shown in panel 2.1 b). Given the trapping frequencies ωi of the trapping potential
the temperature of the cloud can be determined using [162]:

T =
mω2

i

2kBφ

R2
i

1 + ω2
i t

2
TOF

. (2.3)

Panel 2.1 c) shows the average of the temperature obtained for the different axes using
eq. 2.3. While we observe different degeneracy parameters for both isotopes, note that
the absolute temperatures of both gases for a certain dipole trap depth are very similar,
indicating that the gases are in thermal equilibrium. Figure 2.1 d)-e) shows the same mea-
surement but for a mixture of a two spin component gas of 171Yb and a spin polarized gas
of 173Yb. Comparing figures 2.1 a)-c) and 2.1 d)-e) we find a similar behavior of the atom
numbers and temperatures. We reach final atom numbers for 171Yb comparable to the
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Figure 2.1.: Atom numbers a) [d)] and degeneracy parameter T/TF b) [e)] and temperatures c) [f)]
for doubly spin polarized mixtures of 171Yb in the mF = −1/2 and 173Yb in the mF = 5/2 state
[for a two spin component mixture of 171Yb and a spin polarized gas of 173Yb in the mF = 5/2
state] as a function of the 171Yb MOT loading time tload,171Yb. To keep the total MOT loading time
constant, we adjust tload,173Yb according to tload,173Yb = 15 s− tload,171Yb. Colors from bright to dark
denote a decreasing final power of IR1 corresponding to smaller trapping frequencies that can be
characterized by the goeometric mean ωIR = 3

√
ωxωyωz. Data points show the weighted average of

up to three measurements, with error bars indicating the standard deviation of the mean.

doubly spin polarized mixtures, while the final number of 173Yb atoms ceases at smaller
171Yb loading times. The degeneracy parameter for 171Yb is significantly increased com-
pared to the doubly spin-polarized gasdegeneracy parameter for the two spin component
gas of 171Yb. For a two spin component gas one actually expects an increased degeneracy
parameter as for the same number of particles the fermi energy decreases.
The data shown in fig. 2.1 has been obtained using single isotope absorption imaging. Yet,
the imaging system, (see sec. 1.7.2) allows to quickly switch between imaging light that
is resonant for 171Yb and 173Yb. Therefore, in analogy to the double imaging technique
used to access the orbital state population during spectroscopy (see sec. 1.4) it allows
imaging one isotope on the absorption image and the other isotope on the reference im-
age. However, due to the different frequencies of the imaging light in the two shots, the
images show increased fringes. Combining double isotope imaging and the optical Stern
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Figure 2.2.: OSG absorption images for ytterbium Fermi-Fermi mixtures in different spin configura-
tions. Panel a) ( b) )shows a mixture of 171Yb and 173Yb prepared in mF = −1/2 (mF = +1/2)
and mF = 5/2 respectively. Panel c) shows a mixture containing all two and six mF states of 171Yb
and 173Yb,respectively. Colors from bright to dark denote an increasing optical density, computed
according to [122]. 171Yb is imaged on the first image and 173Yb on the second image of the imag-
ing sequence. Therefore clouds of 171Yb appear in dark color while clouds of 173Yb appear in bright
color, as due to the image processing the sign of the OD is reversed. To increase the visibility of the
different mF components of 173Yb the maximum of the colorscale has been cut in panel c). The
shown images are the average of ten individual absorption images.

Gerlach technique allows to directly resolve the spin population for both isotopes in a
single shot, as shown in fig. 2.2 for two different doubly spin-polarized mixtures and a
mixture containing atoms in all mF -states for both isotopes.

To characterize the performance of the double isotope imaging to the standard single
isotope imaging during the measurement presented in fig. 2.1 for each loading time and IR
trap value we took three individual images: two standard single isotope absorption images
and one image using the double isotope imaging technique. Figure 2.3 shows a compari-
son of particle numbers and temperatures obtained in single and double isotope imaging
for subsequently taken pictures. Each data point represents a single measurement. The
atom numbers determined from absorption images using the double imaging technique are
very similar. The temperatures determined for 171Yb are comparable, while the temper-
atures determined for 173Yb deviate and systematically appear higher in double imaging.
171Yb is imaged on the first and 173Yb on the second image, therefore we attribute the
higher temperatures to heating caused by the first imaging pulse. The isotope shift is
only on the order of 10 Γ1P0

therefore the 171Yb imaging light is off resonant for 171Yb
but it is not far detuned either. The temperature predominantly affects the wings of the
momentum distribution, hence the region where the signal to noise ratio is smallest. In
addition the double isotope imaging technique decreases the signal-to-noise ratio, as the
background corrections gets more difficult. Hence, to obtain reliable temperature single
isotope imaging should be used. In summary the characterization measurements show
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Figure 2.3.: Characterization of the double isotope imaging. Shown is part of the data of the
measurement shown in fig. 2.1. Blue circles denote data obtained by double imaging, red squares
denote data obtained by single isotope imaging for otherwise the same experimental settings. Panels
a) and d) show atom numbers panel for 171Yb and 171Yb, respectively. Panel c) and d) show the
degeneracy parameters T/TF obtained by fitting a 2D Fermi profile [162] to the optical density
distribution of the 171Yb and 173Yb atoms, respectively. Each data point corresponds to a single
image error bars denote the uncertainties in determining the degeneracy parameter from the fitted
2D-Fermi profile.

that it is possible to determine meaningful particle numbers obtained for both isotopes
and temperatures for the gas imaged first using the double imaging technique. Tempera-
tures obtained for the gas imaged second tend to be unreliable due to heating that occurs
during the imaging process. Note however, that under the assumption that both gases are
in thermal equilibrium it is sufficient to determine only the temperature for one isotope.

2.2. Conclusion and Outlook

In this chapter I presented characterization measurements for Fermi-Fermi mixtures of
171Yb-173Yb respectively quantum gases of 171Yb. With our experimental apparatus we
are able to create either pure gases of 171Yb or mixtures of both fermionic isotopes at
various mixing ratios with N171,173 ≈ (10-40) × 103 atoms and typical temperatures of
T ≈ (0.15-0.35)TF. By removing residual 173Yb atoms using resonant imaging light clean
spin polarized and balanced gases of only 171Yb can be prepared and particle numbers
are typically N171 ≈ (20 − 40) × 103 atoms and temperatures about T ≈ (0.15 − 0.3)TF.
Compared to gases of pure 173Yb with typically N173 ≈ 80×103 and similar temperatures,
the mixtures and gases of 171Yb are smaller. For most experiments however, it is desirable
only to load the lowest band of the optical lattice and in the past an atom number of
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N ∼ 2 × 104 atoms has been a good working point to achieve an efficient loading of the
lowest band [84]. Although there might be room for improvement by optimizing e.g. the
evaporation ramps the achieved performance in terms of particle numbers is sufficient for
most experiments. A comparison between single isotope and double isotope absorption
imaging shows that particle numbers and temperatures obtained by the different imaging
techniques are comparable, yet the single isotope imaging produces more reliable results.
On the other hand double isotope imaging yields good enough results to get a valid im-
pression of the prepared Fermi-Fermi mixture and reduces the number of images needed
to characterize the system by a number of two, which is especially relevant for long mea-
surement series, and allows to increase data acquisition. In the future the imaging could
be improved by increasing the total number of images taken in the detection sequence to
allow for individual reference images for both isotopes.
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3. Probing the Clock Transition

The most outstanding feature of alkaline earth (like) elements, such as strontium and
ytterbium, in the context of cold gases is the existence of a triplet manifold 3P0,1,2 that is
accessible from the singlet ground state 1S0 via an optical transition. In the case of pure
LS coupling these intercombination transitions are dipole or even doubly dipole forbidden
as ∆S ̸= 0 and for 1S0 → 3P0,2 ∆j ̸= ±1. For heavy elements LS coupling is not perfectly
realized and a small admixture of the state 1P1 to the triplet states enables the optical
transition, resulting in narrow linewidths [51, 106]. Especially the transition 1S0 → 3P0

is of interest. Due to the ultra-narrow linewidth, that for ytterbium has been calculated
to be Γ < 10 mHz [102], it is well suited to serve as a frequency standard. Apart from
its use as an optical frequency standard high precision spectroscopy on the optical ‘clock’
transition 1S0 → 3P0 can be used to resolve small energy shifts and therefore is a ver-
satile analysis tool for quantum simulation. The long natural lifetime allows to employ
the metastable state 3P0 as an additional degree of freedom that could be used for quan-
tum simulation of multi-band Hubbard models such as the Kondo lattice model [64, 65].
These applications require a precise experimental control over the optical excitation pro-
cess. Therefore, a detailed understanding of the underlying physics is crucial.
In this chapter a theoretical model of the excitation process based on the paradigmatic
two-level system is introduced. Later-on, the motional degree of freedom is included into
the description, and the excitation of atoms trapped in a magic optical lattice potential
is discussed. Finally, the effects of decoherence and spontaneous decay are discussed in
terms of the density matrix formalism. Along the discussion of the excitation process I
will present spectroscopic measurements employing (mainly) spin polarized gases of 171Yb
and 173Yb in a magic optical lattice.
A description of the two-level system can be found in many textbooks as for example ref.
[163] or ref. [164]. A compact introduction of the density matrix formalism can be found
in ref. [165]. In ref. [166] the authors describe the theory of damped Rabi Oscillations in
terms of a two-level system that is coupled to a thermal bath. For the description of the
two-level system in sec. 3.1 and sec. 3.3 I follow the notation and argumentation of ref.
[164].

Measurements presented in sec. 3.2.2 and sec. 3.5 have been conducted by M. Diem, K.
Sponselee and the author, data analysis has been performed by the author. Measurements
presented in sec. 3.3 and 3.2.1 have been conducted by K. Sponselee and the author. Data
analysis has been performed by the author. Theory plots presented in this chapter have
been made by the author.
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3.1. Two-Level System

Consider a single two-level system with states |g⟩ and |e⟩ and corresponding eigenenergies
Eg = 0 and Ee = ℏω0 representing the ground state 1S0 and the metastable state 3P0. The
non-interacting Hamiltonian is given by:

H0 = ℏω0 |e⟩⟨e| (3.1)

In the presence of an electromagnetic field:

E =
1

2
εE0

(
eiωt + e−iωt

)
, (3.2)

with amplitude E0, frequency ω and polarization vector ε, the states are coupled via the
electric dipole interaction. The Hamiltonian of the system can be written as:

H = H0 + Hint, (3.3)

where the interaction part of the Hamiltonian Hint is given by:

Hint = ⟨e|d|g⟩E |e⟩⟨g| + ⟨g|d|e⟩E |g⟩⟨e| . (3.4)

Here, d denotes the electric dipole operator. The matrix element ⟨g|d|e⟩ can be expressed
in terms of the Rabi frequency:

Ω := − ⟨g|d|e⟩E0

ℏ
. (3.5)

Using the definition of the Rabi frequency eq. 3.5 and applying the rotating wave approx-
imation, the interaction Hamiltonian reads:

Hint =
ℏΩ

2

(
eiωt |g⟩⟨e| + e−iωt |e⟩⟨g|

)
. (3.6)

The time evolution of the system is governed by the Schrödinger equation iℏ∂t |ψ⟩ = H |ψ⟩.
For a state |ψ⟩ = cg(t) |g⟩ + ce(t) |e⟩, one finds:

∂tcg |g⟩ + ∂tce |e⟩ = −iω0ce |e⟩ + i
Ω

2
eiωtce |g⟩ − i

Ω

2
e−iωtcg |e⟩ (3.7)

Projecting out the states |g⟩ and |e⟩ and applying the rotating frame transformation
c̃e = cee

iωt, one finds the two coupled differential equations:

∂tcg =
−iΩ

2
c̃e (3.8)

∂tc̃e = i∆c̃e − i
Ω

2
cg (3.9)

Here, the detuning ∆ := ω − ω0 is introduced. For an atom initially in the ground
state, characterized by cg(0) = 1 and c̃e(0) = 0, the solution of the differential equations
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Figure 3.1.: Rabi oscillations in a two level system. Panel a) shows the excitation probability Pe

as a function of the detuning and interrogation time. Light to dark colors indicate an increasing
excitation probability. Vertical (horizontal) lines indicate the position of the cuts shown in panel b) (
panel c) ). Panel b) shows spectra for different interrogation times. Panel c) shows Rabi oscillations
for different detunings.

eqs. 3.8-3.9 is given by:

cg(t) = ei∆t/2

[
cos

(
Ω̃t

2

)
− i∆

Ω̃
sin

(
Ω̃t

2

)]
(3.10)

c̃e(t) = −iei∆t/2Ω

Ω̃
sin

(
Ω̃t

2

)
(3.11)

where Ω̃ =
√

Ω2 + ∆2 denotes the effective Rabi frequency. The probability to find an
atom in the excited state is given by Pe = |ce|2 with:

Pe(t) =
Ω2

Ω̃2
sin2

(
Ω̃t

2

)
. (3.12)

Figure 3.1 a) shows eq. 3.12 as a function of the interrogation time t and detuning ∆.
On resonance ∆ = 0 the excitation probability oscillates at the bare Rabi frequency Ω
and one observes a complete population transfer from the ground state |g⟩ to the excited
state |e⟩. The excitation probability reaches its maximum at t = (2n−1)π/Ω̃ with n ∈ N.
In the following, pulses that meet the condition tπ = π/Ω are called π-pulses. For in-
creasing detuning ∆ the effective Rabi frequency Ω̃ increases, while the amplitude of the
Rabi oscillation decreases, as shown in fig. 3.1 c). Figure 3.1 b) shows spectra calculated
for different interrogation times t. The spectroscopic lineshape significantly changes for

45



Probing the Clock Transition

different interrogation times. For t = π/Ω the central peak reaches Pe = 1, while for
increasing interrogation time the side lobes of the sinc2 become more prominent.
From an experimentalist’s point of view the figures of merit for spectroscopy typically
are high contrast and high spectroscopic resolution. As pointed out before, the highest
contrast is achieved using π-pulses (t = π/Ω), while the spectroscopic linewidth ΓFWHM

(full width at half maximum) depends on the Rabi frequency and for t = π/Ω can be
approximated by ΓFWHM ≈ 1.6 Ω/2π. Hence, the resolution increases with decreasing
Rabi frequency. Experimentally the Rabi frequency can be conveniently controlled by
changing the power of the spectroscopy beam. For ytterbium at a given intensity I the
Rabi frequency can be estimated by Ω ≈ 77 Hz

√
I, with [I] = mW cm−2 [167].

3.2. Spectroscopy in a Magic Optical Lattice

So far, we have considered a two-level system without motional degrees of freedom. Real
atoms in the lab framework, of course, move and have to obey energy and momentum
conservation.
Consider a photon at wavelength λphot and an atom of mass m at velocity v. The atom’s
momentum can be expressed as patom = ℏkatom, where katom = 2π/λde Broglie is determined
by the de Broglie wavelength of the atom λde Broglie = h/mv. The momentum of the photon
is given by pphot = ℏkphot, where kphot = 2π/λphot is determined by the wavelength of the
photon. Momentum conservation for an optical excitation process can then be expressed
as:

p′
atom = patom + pphot. (3.13)

Here patom denotes the atom’s momentum in the initial state, while p′
atom denotes the

atom’s momentum in the excited state. Energy conservation requires that the energy of
the excited atom E ′

atom is the sum of the atom’s energy prior to the excitation Eatom and
the photon’s energy Ephot:

E ′
atom = Eatom + Ephot. (3.14)

The energy of the atom is the sum of an internal part Eint,g/e, describing the electronic
state of the atom, and a kinetic part, that for a free particle is given by the dispersion
relation:

Ekin =
ℏ2k2

2m
. (3.15)

The energy of the photon is given by Ephot = ℏω. Using these definitions one can rewrite
eq. 3.14:

ℏ2

2m
(katom + kphot)

2 + Eint,e =
ℏ2

2m
k2
atom + Eint,g + ℏω. (3.16)

Solving eq. 3.16 for the photons’s energy ℏω yields:

ℏω = ℏvatomkphot +
ℏ2k2

phot

2m
+ ℏω0, (3.17)

where we have used the definition of the atomic resonance frequency ω0 = (Eint,e −
Eint,g)/ℏ, and the de Broglie wavelength. Equation 3.17 explicitly shows that the tran-
sition frequency is shifted by the photon recoil energy Erec = ℏ2k2

phot/2m (in our case
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Figure 3.2.: Doppler broadening of the 1S0 → 3P0 transition. a) Spectrum of the 1S0 → 3P0

transition obtained for N ∼ 50 × 103 atoms in a shallow optical lattice at a lattice depth of s1D ≈
1Erec. The blue line denotes a Gaussian fit with the shaded area representing the 95% confidence
interval. The red line shows a spline fit to the data to guide the eye, and emphasize the band gaps
that begin to open at f−f0 ≈ −3 kHz and f−f0 ≈ 1 kHz. The overall lineshape is well described by
a Gaussian, indicating that the transition is motionally broadened. A Gaussian fit yields a linewidth
of ΓDoppler ≈ 10 kHz and corresponding a temperature of T ≈ 120 nK. b) Doppler broadening
ΓDoppler for a thermal gas as a function of the temperature T . The vertical line indicates the Doppler
temperature of the 1S0 → 3P1 MOT of TDoppler = 4.4µK

Erec,clock ≈ h× 3.5 kHz) and the Doppler shift ℏvatomkphot.
Experimentally, we usually probe ensembles of several thousand atoms that obey a certain
momentum distribution. In the thermal regime, the momentum distribution of a free gas
is described by a Maxwell-Boltzmann distribution while in the quantum degenerate regime
the momentum distribution is given by a Fermi-Dirac or Bose-Einstein distribution for
Fermions or Bosons, respectively. As every velocity experiences a different Doppler shift
the spectral linewidth of the transition is broadened. The so-called Doppler-broadened
linewidth (full width at half maximum) ΓDoppler of a thermal gas is a function of the
temperature T and given by [168]:

ΓDoppler =
f0
c

√
kBT

m
8 log(2). (3.18)

Here f0 denotes the resonance frequency, c the speed of light and kB the Boltzmann
constant. For a gas of Ytterbium atoms that is cooled to the Doppler temperature
TDoppler ≈ 4.4µK in the 3P1 MOT, this yields a linewidth of ΓDoppler ≈ 60 kHz which
is still orders of magnitude too large for metrological applications.
By further cooling the atoms employing sub-Doppler laser cooling techniques or evap-
orative cooling schemes, the linewidth can be further reduced. However, the lowest
reachable temperatures are limited and even at temperatures as low as T = 1 nK the
spectroscopic linewidth (assuming for simplicity a thermal distribution) is still limited to
ΓDoppler ∼ 102 Hz as can be seen in Figure 3.2 b).
In 2003 Katori et al. [52] proposed a scheme for an optical lattice clock based on the
1S0 → 3P0 transition of 87Sr, employing an optical lattice at a ‘magic’ trapping wave-
length λmagic to overcome Doppler broadening and the differential ac-light shift induced
by the optical trap. Optical lattice clocks based on alkaline earth(like) atoms in magic

47



Probing the Clock Transition

-1 -0.5 0 0.5 1
q[ /a]

-2

-1

0

1

2

E
1
(q

+
q)

-E
1
(q

) 
[k

H
z] a)

-1 -0.5 0 0.5 1
q[ /a]

5

10

15

E
2
(q

+
q)

-E
1
(q

) 
[k

H
z] b)

Figure 3.3.: Spectroscopic dispersion relation for a quasimomentum transfer of ∆q = −1.31 a) for
the intraband transition n = 1 → n = 1, and b) for the interband transition n = 1 → n = 2, colors
from dark to light indicate an increasing lattice depth of s1D = (1, 5, 10, 20)Erec.

optical lattices nowadays reach an unprecedented stability of 10−18 [55, 56] and might
become the next time standard.
As the magical optical lattice is a prerequisite for high-resolution spectroscopy, it is nec-
essary to understand the excitation process in the presence of a lattice potential. The
lattice consists of interfering laser beams forming a periodic intensity landscape. Due to
the optical dipole force the atoms experience a potential Vlat that is proportional to the
light intensity I(r) and the real part of the complex polarizability α(λ):

Vlat ∼ Re(α(λ))I(r). (3.19)

As described previously in sec. 1.6, in general the complex polarizability α(λ) differs
for atoms in different electronic states. Here, we focus on the particular case of an
optical lattice at a so-called ‘magic’ wavelength for which the differential polarizability
∆α = αe(λ) − αg(λ) vanishes. As described in sec. 1.6, in a periodic potential the
momentum p is replaced by the quasimomentum q, which is only defined up to a reciprocal
lattice vector. The dispersion relation of the free particle E(k) = ℏ2k2/2m is replaced by a
bandstructure En(q) that depends on the depth of the potential, the lattice geometry and
the band index n ∈ N. In the following, the description is restricted to one-dimensional
lattices and therefore given in terms of scalar values instead of vectors.
Due to the non-zero photon momentum the clock excitation process in an optical lattice
is associated with a finite quasimomentum transfer of ∆q. The frequency corresponding
to the transition of a ground-state atom in band n = i to an excited state in band n′ = j
therefore is given by:

ωi,j(q) =
1

ℏ
(Ej,e(q + ∆q) − Ei,g(q) + Eint,e − Eint,g) (3.20)

and in particular is a function of the quasi momentum. Here, the subscripts e, g refer
to the energies for the ground- and excited-state atom, respectively. At the magic wave-
length ground- and excited-state atoms, however, experience the same light shift, and
thus the lattice potentials for ground- and excited-state atoms are the same at a given
quasimomentum Ei,g(q) = Ei,g(q). For a one-dimensional lattice the momentum transfer
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Figure 3.4.: Spectra obtained for 1 × 103 atoms equally spaced in quasimomentum space, as a
function of lattice depth s1D. The left panel shows the line shape obtained for a transition where
initial and final band are the same n = 1 → n′ = 1, with Ω11 = 2π × 330Hz. The right panel
shows the line shapes obtained for a transition from the first to the second band n = 1 → n = 2
with Ω12 = 2π × 330Hz. Here, the quasimomentum-dependent coupling strength, caused by the
different Franck-Condon overlap has not been taken into account. (For an analysis including the q
dependence of the Rabi frequency see ref.[82] and ref.[170]

∆kphot associated with an optical excitation results in a quasimomentum transfer of [169]:

∆q =
λlat
λclock

cos(θ), (3.21)

where θ denotes the angle between the photon’s wave vector and the lattice vector. With
λclock = 578 nm and λmagic = 759 nm and a clock laser beam superimposed with the lattice
one finds ∆q = ±1.31. Figure 3.3 a) and b) show the spectroscopic dispersion relation
Ei,j(q) = Ej,e(q + ∆q) − Ei,g(q) for the transitions n = 1 → n′ = 1 and n = 1 → n′ = 2
for ∆q = −1.31 at different 1D lattice depths s1D. Due to the quasimomentum transfer
the spectroscopic bands are asymmetric with respect to q = 0. As the lattice depth
increases the bands flatten and in the limit of s1D → ∞ the transition frequency is
independent of the quasimomentum and the spectroscopic linewidth is free of motional
broadening. To understand how the optical lattice affects the spectroscopic signal let us
assume a filled first Brillouin zone, with N atoms equally spaced in quasimomentum space.
Corresponding to eq. 3.20, at a given clock laser frequency ω the detuning is a function of
the quasimomentum ∆(q, i, j) = ω−ωi,j(q). The excitation probability pe(Ω,∆(q), tint) of
an atom at quasimomentum q for a given clock laser frequency ω, Rabi frequency Ω and
interrogation time tint can be computed using eq. 3.12. The main experimental observable,
the excited-state fraction, for a certain transition is then given by:

ne,i,j =
1

N

N∑
n=1

pe(Ω,∆(qn, i, j), tint). (3.22)

In general, the Rabi frequency Ω depends on the quasimomentum q. However, in the
tight binding regime the Rabi frequency varies only slowly within the Brillouin zone and
the approximation is justified [170, 171]. For very shallow lattices the Franck-Condon
[172] factor strongly depends on the quasimomentum and therefore eq. 3.22 does not de-
scribe the spectroscopic response correctly. A calculation of the excitation probabilities
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Figure 3.5.: Left: Spectroscopic linewidth ΓFWHM as a function of the width of the spectroscopic
dispersion relation Dspec, both in units of the Rabi frequency fRabi = 330Hz for transitions with n =
1 → n′ ∈ {1, 2, 3}. Right: width of the spectroscopic dispersion relation Dspec over fRabi = 330Hz
as a function of the lattice depth for transitions with n = 1 → n′ ∈ {1, 2, 3}.

including the quasimomentum-dependent Franck-Condon factors can be found in ref.[82].
Figure 3.4 shows the spectroscopic lineshapes of the intraband transitions n = 1 → n′ = 1
(fig. 3.4 a) ) and the interband transition n = 1 → n′ = 2 (fig. 3.4 b) ) for a Rabi fre-
quency of Ω11 = Ω12 = 2π × 330 Hz and interrogation time of tint = π/Ω as a function
of the 1D lattice depth, according to eq. 3.22. For small lattice depths the spectroscopic
features are broadened and the maximum of the excited state fraction decreases. At the
edges of the spectroscopic feature the excited state fraction is enhanced, which can be
connected to Van-Hove singularities in the density of states [169, 171]. With increasing
lattice depth the spectroscopic feature narrows, the maximum of the excited-state fraction
increases and the lineshape transforms into a sinc2 determined by the interrogation time
and the Rabi frequency. In contrast to the spectroscopic feature of the n = 1 → n′ = 1
transition, the spectroscopic feature of the n = 1 → n′ = 2 transition shows an asym-
metry at small lattice depths and the transformation into a sinc2 occurs at higher lattice
depths. Figure 3.5 a) shows the numerically obtained linewidth ΓFWHM as a function of
the width of the spectroscopic dispersion relation Dspec (in units of Hertz) over the Rabi
frequency Ω = 2π × 330 Hz. For a ratio of 2πDspec/Ω ≳ 3 the spectroscopic linewidth is
determined by Dspec which itself is determined by the lattice depth as shown in fig. 3.5
b). For a ratio 2πDspec/Ω ≲ 0.1 the linewidth is Fourier limited and reaches a minimum
of ΓFWHM ≈ 1.6Ω/2π.
Using these relations one can estimate the minimal Fourier limited linewidth reachable
at a given lattice depth. For example at a lattice depth of s1D = 50Erec, the bandwidth
of the spectroscopic dispersion relation for an intraband transition n = 1 → n′ = 1 is
Dspec < 0.5 Hz. Fourier limitation is reached for Rabi frequencies of Ω ≳ 2π × 5 Hz,
resulting in an estimated minimal Fourier limited linewidth of ΓFWHM ≳ 8 Hz.

3.2.1. Clock Spectroscopy in a Shallow Optical Lattices

To probe the spectroscopic response as a function of the lattice depth, we prepare a
spin-polarized gas of 171Yb predominantly in the lowest band of the optical lattice and
take spectra for different 1D lattice depths. We detect atoms in the ground and the
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Figure 3.6.: Sideband spectroscopy on the 1S0 → 3P0 transition for N ∼ 50 × 103 atoms using
pulses of tint = 2.55ms at a Rabi frequency for the intraband transition of Ω ≈ 2π× 330Hz. Shown
is the excited-state fraction as a function of the detuning ∆ for different depths of the 1D lattice
s1D. The 2D lattice depth was set to s2D ≈ 17Erec. Solid lines denote fits of eq. 3.22 to the
intraband transition (blue) and the interband transitions (green). The maximum amplitude of the
spectroscopic signal, the resonance frequency and the Rabi frequency are used as fitting parameters.
The amplitude of the red sideband, that is reduced compared to the blue sideband indicates that
atoms are predominantly loaded into the lowest band.

excited state and use bandmapping to observe the population of the different bands with
momentum resolution.
Figure 3.2 a) shows a spectrum for a lattice depth of s1D = 1Erec. Although bandgaps at
f − f0 ≈ −3 kHz and f − f0 ≈ 1 kHz are already visible, the overall lineshape is still well
described by a Gaussian, as one would expect for a Doppler broadened line. Figure 3.6
shows spectra for lattice depths between s1D = 5Erec and s1D = 20Erec. Several distinct
spectroscopic features correspond to intra- and interband transitions, respectively. We
identify the central feature as the intraband transition n = 1 → n′ = 1, whereas the
features to the left and right are identified as the red and blue sidebands n = 2 → n′ = 1
and n = 1 → n′ = 2, respectively. For this particular measurement, the evaporation ramp
has been stopped at an early stage to load a significant fraction of atoms into the second
band and demonstrate the existence of the red sideband. Nonetheless, the red sideband
has a lower weight than the blue sideband, indicating that the atoms are predominantly
loaded into the lowest band of the optical lattice. Comparing the spectroscopic response
of the sidebands and evaluating bandmapping images, it is estimated that about 15%
to 30% of the atoms are loaded into the second band. Typically, we work at lower
particle numbers and temperatures and try to avoid populating higher bands. The Rabi
frequency of the intraband transition Ω12 is estimated to be reduced by a factor of 0.38
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Figure 3.7.: Momentum resolved clock spectroscopy in a s1D = 15Erec deep 1D-lattice. By reso-
nantly driving the clock transition, atoms at a certain quasimomentum q are removed from the first
Brillouin zone of the ground state atoms and reappear in the second Brillouin zone of the excited
state atoms. Panels b) and d) show absorption images of ground- and excited-state atoms after the
1D lattice has been ramped down exponentially within tBM = 0.5ms and a time of flight for a gas of
171Yb. False colors from bright to dark indicate an increasing optical density. Vertical lines indicate
the Brillouin zones corresponding to the Bloch bands of the 1D lattice. Panel a) and b) show the
optical density (OD) integrated along the y-direction. Blue dots correspond to the images shown in
panel c) and d). For comparison grey dots show the integrated OD for an off-resonant clock laser
pulse.

compared to the Rabi frequency of the intraband transition [84] of Ω11 ≈ 2π × 330 Hz.
Therefore, to increase the spectroscopic contrast of the first sideband, we used pulse times
of tint = 2.55 ms with Ω11t > π, however, yet not meeting the π pulse condition of the
interband transition Ω12t < π. As the lattice depth increases, the distance between the
intra- and interband features increases, whereas the widths of the spectroscopic features
decrease as the bands flatten out.
The spectra are modelled by the sum of the intraband transition and the first red and
blue sidebands:

Pe = c1 ne,11 + c2, ne,21 + c1 ne,12. (3.23)

Here, ne,11,ne,21 and ne,12 describe the spectroscopic response of the non-band changing
transition and the sidebands, respectively, according to eq. 3.22. The coefficients c1 and
c2 denote the relative population of the first and second band and c1 + c2 = 1 is assumed.
We fit eq. 3.23 to the data, leaving the Rabi frequencies and the resonance frequencies of
the different transitions as well as the relative population as free parameters. Although,
the transitions n = 1 → n′ = 3, n = 2 → n′ = 2 and n = 2 → n′ = 3 as well as the
quasimomentum-dependence of the Rabi frequency have been omitted, the fit reasonably
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Figure 3.8.: Quasimomentum resolved clock spectroscopy for different 1D lattice depths s1D (same
dataset as in Figure 3.6). Each row of panel a) (panel b)) shows the optical density integrated along
axes perpendicular to the 1D-lattice, obtained from absorption images of ground-state (excited-state
atoms) after the lattice potential has been exponentially ramped down in tBM = 0.5ms and time
of flight. Each row is normalized to the total number of atoms. Every row corresponds to a single
spectroscopic measurement with another detuning of the clock laser. The horizontal position denotes
the quasimomentum. Colors from bright to dark represent an increasing integrated optical density.
While for the panel a) only the first Brillouin zone is depicted, panel b) shows the first, the second
and a small part of the third Brillouin zone. From left to right the 1D lattice depth increases. Panel
c) shows the quasimomentum resolved resonance frequencies obtained from fitting the holes in the
first Brillouin zone of the ground state atoms corresponding, to the n = 1 → n′ = 2 interband
transition for s1D = 5, 8, 10, 15, 20Erec. Solid lines indicate a fit of the spectroscopic dispersion
relation according to eq. 3.20, assuming a quasimomentum transfer of ∆q = −1.31 and leaving the
lattice depth as a fitting parameter. Data is shown for -0.8 < q < 0.8 only, because the determination
of the resonance frequency is unreliable at the edges of the Brillouin zone. Frequencies are given
with respect to the resonance frequency of the intraband transition.

describes the observed lineshapes.
Up to now, we have used the excited-state fraction ne, which is an integral over all quasi-
momenta, as a spectroscopic observable. Combining double imaging and bandmapping al-
lows to directly resolve the quasimomentum-dependence of the clock transition frequency.
Figure 3.7 shows absorption images after time of flight and band mapping with and with-
out driving a transition from the first into the second band. Atoms that are transferred
to the excited state disappear in the Brillouin zone of the ground-state atoms at the cor-
responding quasimomentum qinitial and reappear in the Brillouin zone of the excited-state
atoms, shifted by quasimomentum transfer ∆q associated with the excitation process at
qfinal = qinitial + ∆qphoton. Figure 3.8 a) and b) show quasimomentum-resolved spectra for
intra- and interband transitions. Figure 3.8 a) shows the optical density integrated along
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the direction perpendicular to the lattice in the first Brillouin zone of the ground-state
atoms as a function of the clock laser frequency. Panels from left to right show spectra
for an increasing 1D lattice depth. Three distinct features are visible corresponding to
the intraband transition n = 1 → n′ = 1 and the first two blue sidebands n = 1 → n′ = 2
and n = 1 → n′ = 3. While the frequency of the intraband transition does not shift
as the lattice depth increases, the resonance frequency of the interband transitions in-
creases as the band gaps grow for an increasing lattice depth. At s1D = 1Erec a band
gap between the first and the second band is visible, while the band gap between the
second and the third band is only resolved at higher lattice depths. (The third band is
only barely visible at the left edge of the Brillouin-zone). As the lattice depth increases,
the bands flatten and the resonance frequency of the transitions does not depend on the
quasimomentum. Figure 3.8 b) shows the first, second and a part of the third Brillouin
zone for atoms in the excited state. Atoms that disappeared in the first Brillouin zone of
the ground-state reappear either in the same Brillouin zone for an intraband transition or
in a higher Brillouin zone for the blue sidebands. Below the resonance frequency of the
intraband transition, the first red sideband can be observed. Here, atoms are removed
from the second Brillouin zone of the ground-state atoms, which is not shown in fig. 3.8
a) and reappear in the first Brillouin zone of the excited state atoms (momentum resolved
clock spectra showing the first and the second Brillouin zone for ground and excited state
atoms are shown in App. A ).
For small lattice depths of s1D = 1Erec and s1D = 3Erec, the excitation strength for
intra- and interband transitions strongly depends on the quasimomentum q, which can
be associated to a strong q-dependence of the Franck-Condon factor and is in qualitative
agreement with the calculations presented in ref. [82]. At higher lattice depths, where the
tight-binding approximation is well justified, the excitation strength does not vary over
the Brillouin zone.
Fig. 3.8 c) shows the q-dependent resonance frequency of the blue sideband for lattice
depths between s1D = 5Erec and s2D = 20Erec, extracted from the spectra shown in
panel a). We fit eq. 3.20 to the data, assuming ∆q = −1.31 and leaving the lattice depth
as a free parameter. At small lattice depths of s1D = 5Erec and s1D = 8Erec the data
shows systematic deviations from the fit at the edges of the Brillouin zone. This could
possibly be caused by the harmonic confinement of the 2D-lattice, which, compared to
the 1D-lattice depth, is more significant at small 1D-lattice depths and which has been
neglected in the description of the system. Errors in determining the quasimomentum
could as well play a significant role. However, the reason for the observed deviations
remains an open question that requires further measurements. For an increasing lattice
depth s1D = 5Erec and s1D = 8Erec the deviations become smaller. At s1D = 20Erec the
spectroscopic resolution is not sufficient to resolve the curvature of the spectroscopic band
anymore and therefore, the resonance positions extracted from the momentum resolved
spectra appear as straight line for a large part of the Brillouin zone. Clock spectroscopy in
shallow optical lattices thus allows to resolve the quasimomentum-dependence of the res-
onance frequency and has therefore been extensively discussed in the context of synthetic
spin orbit coupling with optical lattice clocks and synthetic dimensions [169, 171, 173].
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3.2.2. Clock Spectroscopy in a Deep Optical Lattice

Due to the quasimomentum transfer associated with the excitation the spectroscopic
resolution in shallow lattices is limited by the width of the Bloch bands. To obtain a
maximal spectroscopic resolution, the motional and internal degrees have to be decoupled,
which can be achieved in deep optical lattices, where the bands essentially are flat. The
decoupling of motional and internal degrees of freedom is typically characterized by the
so-called Lamb-Dicke parameter η. For an atom in a harmonic potential it is given by
[174]:

η =

√
ωrec

ωtrap

(3.24)

where ωrec and ωtrap denote the recoil frequency associated with the optical excitation and
the trapping frequency, respectively. The Lamb-Dicke parameter decreases with increasing
trapping frequency and in a deep lattice the Lamb-Dicke regime, characterized by η2 ≪ 1
[174] is reached. In the Lamb-Dicke regime coupling to higher or lower vibrational states
is suppressed and the Rabi frequencies for exciting the next higher or lower vibrational
state n+ 1 or n− 1 are given [175]:

Ωn,n+1 = Ωη
√
n+ 1 (3.25)

Ωn,n−1 = Ωη
√
n, (3.26)

Therefore, working in deep optical lattices allows to probe the clock transition free of
detrimental Doppler and recoil effects [54]. At a typical working depth of the 1D-lattice
of s1D = 50Erec, the Lamb-Dicke parameter corresponds to η2 = 0.12. Taking into
account the available lattice laser power it has been estimated that a lattice depth of
s1D = 150Erec corresponding to η2 ≈ 0.07 [82, 84] can be reached.

To probe the achievable spectroscopic linewidth, we prepare a spin polarized gas of
N ∼ 10 × 103 atoms 173Yb in a deep magic lattice at s1D = 60Erec and s2D = 25Erec,
corresponding to a Lamb-Dicke parameter η2 = 0.11. We take spectra of the n = 1 → n′ =
1 transition and step by step reduce the Rabi frequency while increasing the interrogation
time to fulfill the π-pulse condition. The obtained spectra are shown in fig. 3.9. Fitting
eq. 3.12 to the data yields the Rabi frequencies Ω. The linewidth ΓFWHM is numerically
obtained from the fitted spectra. The linewidth of ΓFWHM = 26.7(2.4) Hz observed at
a Rabi frequency of Ω = 2π × 10(6) Hz using pulses with a length of tpulse = 34 ms, is
the smallest spectroscopic linewidth measured at the ytterbium experiment so far. The
visibility of small side-lobes of the sinc2 indicates that the linewidth is still limited by
the interaction time and therefore we conclude that it is Fourier-limited. Note that we
compensated for a linear drift of the clock cavity resonance during the experiment by
applying a frequency ramp to an AOM in the clock laser setup and, a posteriori, by
analyzing the residual linear drift using the resonance frequencies measured in several
clock spectra.
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Figure 3.9.: High-resolution spectroscopy with spin polarized gases of 10 × 103 atoms of 173Yb in
a deep optical lattice at s1D = 60Erec and s2D = 25Erec. Shown is the excited state fraction as a
function of the clock laser detuning. Every data point represents a single measurement. Error bars
indicate the uncertainty of the determination of the excited state fraction. Colors from light to dark
indicate an increasing Rabi frequency Ω. Solid lines represent a best fit according to eq. 3.12 for
a fixed pulse time t of t = 7ms, t = 15ms and t = 34ms. The legend lists Rabi frequencies, the
spectroscopic linewidths ΓFWHM and the parameter Ωt obtained from the fits. Shaded areas show
the 95% confidence interval of the fit.

3.3. Optical Bloch Equations

Up to now, we have used a single particle description to analyze the spectroscopic mea-
surements. In the experiment we usually work with a cloud of approximately (1-4) × 104

atoms, thus working with many almost identical copies of the same simple two-level sys-
tem simultaneously. The statistical properties of an ensemble of quantum systems can
conveniently be described in terms of the density matrix (see e.g. ref. [165] for an intro-
duction of the density operator).
Consider an ensemble of N subsystems. If all N subsystems are in the same state ψi,
the state of the ensemble is referred to as a pure state and the expectation value of the
observable A is given by:

⟨A⟩ = ⟨ψi|A|ψi⟩ . (3.27)

In the more general case, where the quantum states of the individual subsystems are not
identical, the state of the ensemble is referred to as a mixed state. The expectation value
of A is then given by

⟨A⟩ =
∑
i

pi ⟨ψi|A|ψi⟩ , (3.28)

56



Probing the Clock Transition

were pi denotes the probability of an arbitrary subsystem to be in the state ψi. The
density matrix describing the ensemble is defined as:

ρ =
∑
i

pi |ψi⟩ ⟨ψi| , (3.29)

and allows to write the expectation value as:

⟨A⟩ = tr(ρA). (3.30)

Given the density matrix of a system, it is straightforward to distinguish between pure
and mixed states, as tr(ρ2) = 1 for pure states and tr(ρ2) < 1 for mixed states.
For the two level system the density matrix is given by:

ρ =

(
ρee ρeg
ρge ρgg

)
=

(
cec

∗
e cec

∗
g

c∗ecg cgc
∗
g

)
(3.31)

The diagonal elements of the density matrix describe the population of the states |g⟩ and
|e⟩. Non-zero off-diagonal elements indicate a coherent superposition of different quantum
states (therefore, they are usually referred to as ‘coherences’).
The time evolution of the density matrix is governed by the Von-Neumann equation[165]:

∂tρ = − i

ℏ
[H, ρ] . (3.32)

Using the two-level Hamiltonian, derived earlier in sec. 3.1 to describe the atom-light
interaction, and applying the rotating frame transformation:

ρ̃ee = ρee, ρ̃gg = ρgg, ρ̃ge = ρgee
−iωt, ρ̃eg = ρ̃∗ge, (3.33)

the Von-Neumann equation yields four coupled differential equations[164]:

∂tρee = i
Ω

2
(ρ̃eg − ρ̃ge) (3.34)

∂tρgg = −iΩ
2

(ρ̃eg − ρ̃ge) (3.35)

∂tρ̃ge = −i∆ρ̃ge − i
Ω

2
(ρee − ρgg) (3.36)

∂tρ̃ge = i∆ρ̃eg + i
Ω

2
(ρee − ρgg) . (3.37)

that are known as the ‘optical Bloch equations’ (OBE) [176] and describe the time evo-
lution of the ensemble.
The density matrix of the two-level system can be expressed in terms of the Pauli matrices
σi:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (3.38)

as together with the identity matrix 1 they form a basis for the space of Hermitian 2 × 2
matrices. The density matrix can thus be written as [165]:

ρ̃ =
1

2
(1+ s · σ) . (3.39)
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Figure 3.10.: Rabi oscillations in the Bloch sphere representation. Panel a) shows the excited-state
fraction ne as a function of the interrogation time tint for different detunings ∆ as indicated by
different colors. Panel b) shows the time evolution of the Bloch vector during the Rabi oscilllations
shown in panel a). Circles indicate the orbit of the Bloch vector and arrows denote the Bloch vector
after an interogation time of tint = π/Ω̃. Different colors indicate different detunings ∆.

The vector s is called Bloch vector and is given by:

s =

sxsy
sz

 =

 ρeg + ρge
i(ρeg − ρge)
ρee − ρgg

 . (3.40)

The x- and y-components of the Bloch vector are determined by the in- and out-of-phase
components of the coherences, while the z-component is determined by the population
difference of the two states.
According to the optical Bloch equations 3.34-3.37, the time evolution of the Bloch vector
is given by [164]:

∂ts = (Ωex − ∆ez) × s. (3.41)

The vectors ex and ez denote the unit vectors in x- and z-direction, respectively. To
gain a more intuitive understanding of the quantum state of the ensemble and its time
evolution, it is beneficial to visualize the Bloch vector. Figure 3.10 b) shows the time
evolution of the Bloch vector for Rabi oscillations at different detunings as described by
eq. 3.41. The tip of the Bloch vector is bound to the Bloch sphere and precesses around
the direction of the vector Ω = Ωex −∆ez. On resonance ∆ = 0 the precession orbit lies
in the y− z plane and the precession frequency Ω̃ is given by the bare Rabi frequency Ω,
whereas for increasing detuning |∆| > 0 the precession orbit tilts into the x-direction, its
radius decreases and the precession frequency Ω̃ increases.

Thus far, the description is analog to the single particle two-level system discussed
before. However, up to now we have only considered a closed quantum system, that does
not suffer from dissipation and decoherence. Experimentally decoherence and dissipation
usually occur as damping and one typically strives to minimize the effects of decoherence.
Nevertheless, this is only possible to a certain degree and for example the coupling of a
system to the vacuum is inevitable.
To take into account spontaneous emission and decoherence, the optical Bloch equations
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Figure 3.11.: Time evolution of the two-level system obtained by numerically solving the damped
optical Bloch equations, taking into account spontaneous emission at a rate of Γs = Ω/4. Panel a)
shows the excited-state fraction ne as a function of the interrogation time tint for different detunings∆
as indicated by the color. Panel b) shows the time evolution of the Bloch vector for different detunings
∆ indicated by color. The straight lines show the time evolution for tint = 0 to tint = 5 × 2π/Ω.
Arrows show the Bloch vector at tint = π/Ω̃.

have to be modified by some additional terms. In refs. [166, 177] the authors derive the
time evolution of the density matrix, considering a two-level system coupled to a (thermal)
bath, taking into account different internal and external relaxation channels. Here, we
will focus on spontaneous decay and dephasing only and omit particle loss as a source of
relaxation. The time evolution of the density matrix then is given by [164]:

∂tρee = i
Ω

2
(ρ̃eg − ρ̃ge) − Γsρee (3.42)

∂tρgg = −iΩ
2

(ρ̃eg − ρ̃ge) + Γsρee (3.43)

∂tρ̃ge = − (γ⊥ + i∆) ρ̃ge − i
Ω

2
(ρee − ρgg) (3.44)

∂tρ̃ge = − (γ⊥ − i∆) ρ̃eg + i
Ω

2
(ρee − ρgg) . (3.45)

Due to spontaneous emission atoms in the excited state |e⟩ decay into the ground state
|g⟩ at a rate Γs given by the natural linewidth of the transition. This is described by the
∓Γρee terms in eq. 3.42 and eq. 3.43. The terms γ⊥ρ̃ge and γ⊥ρ̃eg in equations eq. 3.44
and eq. 3.45, describe the decay of the coherences or, in other words, the decay of the
transversal (with respect to the z-axis) component of the Bloch vector. The coefficient
γ⊥ is given by [164]:

γ⊥ =
Γs

2
+ γ, (3.46)

where the coefficient γ takes into account decoherence caused e.g. by laser phase noise
or collisions (see ref. [178] for a study of collisional dephasing in an optical lattice clock
experiment). Figure 3.11 shows the time evolution of the driven two-level system taking
into account spontaneous emission at a rate of Γs = Ω/4 for different detunings ∆. Fig-
ure 3.11 a) shows the excited-state fraction ne as a function of the interrogation time tint
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Figure 3.12.: Time evolution of the two-level system obtained by numerically solving the damped
optical Bloch equations taking into account decoherence at a rate of γ⊥ = Ω/4. Panel a) shows
the excited-state fraction ne as a function of the interrogation time tint for different detunings ∆ as
indicated by the color. Panel b) shows the time evolution of the Bloch vector for different detunings
∆. The straight lines show the time evolution for tint = 0 to tint = 5 × 2π/Ω. Arrows show the
Bloch vector at tint = π/Ω̃.

for different detunings ∆. The spontaneous emission damps the Rabi oscillation and in
the limit of a large interrogation time the excited-state fraction approaches a finite value
that depends on the detuning ∆. Figure 3.11 b) shows the corresponding time evolution
of the Bloch vector. Due to spontaneous emission the length of the Bloch vector is re-
duced over time, and the precession orbits observed in the resonant case are transformed
into spirals. Figure 3.12 shows the time evolution of the two-level system under the as-
sumption of purely transversal decoherence, that could be realized by e.g. laser phase
noise. Figure 3.12 a) shows the excited-state fraction ne as a function of the interrogation
time tint. The purely transversal decay leads to a damping of the oscillations, however,
in the limit of long interrogation times the excited-state fraction approaches ne = 0.5,
independent of the detuning.
Spontaneous decay and transversal damping not only affect the the appearance of the
Rabi oscillations, but as well the spectroscopic lineshape. Figure 3.13 a) shows line-
shapes computed for pulse times of tint = π/Ω for purely spontaneous decay (Γs ≥ 0 and
γ⊥ = Γs/2.) Figure 3.13 b) shows the lineshapes for purely transversal decay γ⊥ ≥ 0. As
the damping increases, in both cases the maximum of the excited-state fraction ne de-
creases while the linewidth ΓFWHM increases. The decrease of the spectroscopic contrast
is stronger for purely spontaneous decay, the increase in linewidth and the change of the
lineshape is stronger for purely transversal decay. For both cases considered in the limit
of strong damping the side lobes of the sinc2 wash out and the lineshape transforms into
a Lorentzian. In the limit of Ω ≫ γ⊥ and Ω ≫ Γs the spectroscopic linewidth approaches
ΓFWHM ≈ 1.6Ω/2π, and hence is fully determined by the excitation pulse - the linewidth
is ‘Fourier’ limited.

Considering the theoretical linewidth of the 1S0 →3 P0 transition of ytterbium of
Γ < 2π×10 mHz [102], the effect of the spontaneous decay on the spectroscopic linewidth
is negligible, and hence neglected in data analysis. Note, however, that the lifetime of
atoms in the metastable state in the magic optical lattice is on the order of τ ≈ 4 s, and
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Figure 3.13.: Spectroscopic line shapes obtained from numerically solving the damped optical Bloch
equations for a) purely spontaneous decay and b) purely transversal decay. Colors from light to dark
indicate an increasing damping coefficient Γs or γ⊥, respectively. Insets show the spectroscopic
linewidths ΓFWHM as function of the damping Γs and γ⊥, respectively

thus significantly smaller than the lifetime associated with spontaneous decay (see sec. 5).
To probe the coherence properties of the system, we prepare a gas of spin-polarized 173Yb
in a deep optical lattice, drive the clock transition and observe Rabi flopping. As there
is no double occupancy due to the Pauli principle (also doubly occupied sites would be
shifted in energy), one can preclude interaction-induced dephasing [178]. Nonetheless, the
possible sources of decoherence are manifold. They include for example, laser phase noise,
fluctuations of the lattice laser wavelength, fluctuations of the magnetic fields, and the
inhomogeneity of the spectroscopy beam. Figure 3.14 a) to c) show Rabi oscillations for
different mF states of 173Yb, driven with π polarized clock laser light at the same intensity.
Each panel shows two different measurements. Due to a drift of the clock laser frequency
over the course of the measurement, both measurements have been recorded at different
detunings. Therefore, Rabi flopping occurs at different effective Rabi frequencies Ω̃. To
account for the linear drift of the clock laser, after each Rabi oscillation measurement
we take spectra and determine the resonance positions, which subsequently are used to
perform an a posteriori drift compensation and to determine the time-dependent detun-
ing during the Rabi oscillation measurement. Panels d) to f) show the spectra after the
drift compensation has been applied (to account for different Rabi frequencies of the clock
transition, for different mF states the pulse length has been adapted to fulfill the π-pulse
condition). Frequencies are denoted with respect to the resonance frequencies obtained
from a sinc2 fit and vertical lines indicate the detuning at which the Rabi oscillations have
been recorded. The width of the vertical lines indicates the drift over the course of the
Rabi oscillation sequence.
Whereas the drift of approximately ∆drift ≈ 15 Hz over the course of the Rabi oscillation
measurement is small compared to the observed linewidths of the mF = 5/2 and mF = 3/2
transitions with ΓmF=5/2/∆drift ≈ 20 and ΓmF=3/2/∆drift ≈ 13, the drift of approximately
∆drift ≈ 20 Hz over the course of the Rabi oscillation measurement of the mF = 1/2
transition is comparable to the Rabi frequency with ΓmF=1/2/∆drift ≈ 3, and therefore
significantly affects the Rabi oscillation measurements. To account for the drift, we fit
the numerically obtained solutions of the damped optical Bloch equations to the data,
using a time dependent detuning ∆(t), as obtained from the drift analysis, and use the
Rabi frequencies Ω, the damping rate γ⊥ and the amplitude of the oscillations as fit pa-
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Figure 3.14.: Rabi Oscillations ( panels a) to c) ) and spectra ( panels d) to f) ) of the clock
transition for different mF states of 173Yb, taken at the same clock laser intensity. Panels a) and
d) show data for mF = 5/2, panels b) and e) for mF = 3/2 and panels c) and f) for mF = 1/2.
Vertical lines in panels a) to c) indicate the pulse times tclock used for the spectra in panels d) to f).
Panels a) to f) show two data sets each indicated by different colors. The spectra are used to analyze
the clock laser drift and perform an a posteriori linear drift compensation. Therefore, the detuning
during the Rabi oscillation measurements becomes time dependent. Vertical shaded areas in panels
d) to f) indicate the range of the drift of the detuning during the Rabi oscillations in panels a) to c).
Solid lines indicate fits using numerical solutions of the damped optical Bloch equations assuming an
negligible spontaneous decay and setting Γs = 0. Shaded areas indicate 95 % confidence intervals of
the fits. The spectroscopic linewidths specified in panels d)-f) is the numerically determined linewidth
at full width at half maximum.

rameters. The fits are shown in fig. 3.14 a) to c) and show good agreement with the data.
The Rabi frequencies of the mF = 1/2 and mF = 3/2 transitions are reduced with respect
to the Rabi frequency of the mF = 5/2 transition. The obtained values are in excellent
agreement with the expected spin-dependence caused by the Clebsch-Gordan coefficients
for the different transitions, which are given by cCG,5/2 = −

√
35/7, cCG,5/2 = −3

√
35/35

and cCG,1/2 = −
√

35/35 (see ref. [92]). From the fits we obtain an average transversal
damping rate of γ̄⊥ = 2π× 5(1) Hz. A transversal decoherence of this order of magnitude
is in good qualitative agreement with the so far smallest observed spectroscopic linewidth
of ΓFWHM = 26.7(2.4) Hz.
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Figure 3.15.: Panel a) shows the spectrum of the two-level system as a function of the detuning ∆.
Dashed lines correspond to the eigenenergies of the bare states whereas solid lines show the dressed
eigenstates of the coupled two-level system. The colors of the lines indicate the projection of the
dressed state onto the bare excited state |e⟩. Panel b) shows the transfer efficiency from ground to
excited state of a 50Ω broad RAP for different sweep velocities, characterized by α = ∂t∆/Ω2.

3.4. Excited State Preparation Using a Rapid Adiabatic
Passage

High-fidelity excited-state preparation using π− pulses requires an exact knowledge of the
Rabi and the resonance frequency. The Rabi frequency can conveniently be controlled by
means of an intensity regulation, whereas keeping the clock laser on resonance for a long
time is experimentally rather challenging as the clock laser frequency undergoes linear
and non-linear drifts due to the limited stability of the reference cavity (see sec. 3.5).
Increasing the Rabi frequency improves the stability, as compared to the spectroscopic
linewidth the drift becomes smaller. However, the achievable Rabi frequency is limited by
the available laser power. Another option for excited-state preparation is to invoke state
transfer using a rapid adiabatic passage (RAP). The RAP is a commonly used technique
that allows for a high-fidelity state transfer and, at the same time, is technically easy to
implement and robust against experimental imperfections such as drifts of the excitation
laser frequency. In the following, I will briefly introduce the theory of the rapid adiabatic
passage. A detailed discussion of the RAP can be found in various textbooks as e.g.
ref.[163]. Here, I follow the notation and argumentation of ref. [164].

Let us again consider a coupled two-level system, which in the rotating wave approxi-
mation, is described by the Hamiltonian [164]:

H = ℏ

0 Ω
2

Ω
2

−∆

 . (3.47)
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Figure 3.16.: Time evolution of the Bloch vector during a frequency chirp from ∆initial = −25Ω to
∆final = 25Ω, characterized by α = ∂t∆/Ω2. For α > 0 the state transfer from ground to excited
state is incomplete and decreases for an increasing value α.

Diagonalizing the Hamiltonian yields the dressed or adiabatic states |±⟩ and new eigenen-
ergies E±. The new eigenstates can be expressed in terms of the uncoupled states [164]:

|+⟩ = sin θ |g⟩ + cos θ |e⟩ (3.48)

|−⟩ = cos θ |g⟩ − sin θ |e⟩ , (3.49)

with the mixing angle θ defined by[164]:

tan(2θ) = −Ω

∆
. (3.50)

The corresponding eigenenergies are given by [164]:

E± = −ℏ∆

2
± ℏΩ̃

2
. (3.51)

Figure 3.15 a) shows the eigenenergies of the dressed states |±⟩ as a function of the
detuning ∆, showing a so-called ‘avoided crossing´. The color coding illustrates the
projection of the dressed states onto the excited state. In the limit of ∆ → −∞ the |+⟩
state is given by the ground state, while in the limit of ∆ → ∞ it is given by the excited
state. The idea of the RAP is to chirp the detuning from a large negative value to a
large positive value slowly enough to ensure that the atom stays in the same adiabatic
state, thereby flipping its diabatic state from ground to excited state or vice versa. If the
detunings are changed too quickly, the atom will tunnel through the gap of the avoided
crossing and ends up in the other adiabatic state, not flipping its diabatic state. This is
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know as a Landau-Zener transition and the probability of a transition |±⟩ → |∓⟩ is given
by the Landau-Zener formula[164]:

PLZ = exp

(
− πΩ2

2|∂t∆|

)
. (3.52)

In the limit of Ω2 ≫ |∂t∆|, the state population adiabatically follows the dressed state and
is therefore transferred to the excited state. On the other hand, in the limit Ω2 ≪ |∂t∆|,
the population tunnels across the gap to the other dressed state and therefore stays in the
ground state. Figure 3.15 a) shows the excited state fraction as a function of the detuning
for different values of α = ∂t∆/Ω

2. As the chirp velocityvchirp = ∂t∆ increases compared
to the Rabi frequency, the state transfer becomes incomplete. The chirp velocity experi-
mentally can be conveniently controlled and therefore a fast RAP can be used to prepare
samples with a certain ratio of ground and excited state atoms. Fig. 3.16 depicts the rapid
adiabatic passage for different values of α = ∂t∆/Ω

2 in the Bloch sphere representation.

3.5. Drifts of the Clock Laser Frequency

The stability of the clock laser relies on the stability of the length of the high finesse
resonator that it is locked to (see sec. 1.7.4). The cavity spacer is placed inside a vacuum
chamber and stabilized to the temperature of the CTE zero crossing of the spacer to
minimize fluctuations due to temperature instability.
Nonetheless, the clock laser frequency is subject to drifts that can be described by a
linear and a non-linear component. Due to material creep, the length of ULE made
cavities slowly shrinks, and thereby causes a drift of the cavity’s resonance frequency
that is characterized by fractional frequency drift rates of ∆̇f/f0 of typically 10−16/s
to 10−17/s and shows day-to-day fluctuations on the order of 10−17/s [179, 180]. On a
timescales of days to weeks, the drift associated to material creep can be well described
by a linear model [85] and in the experiment, we a priori compensate for a linear drift by
continuously applying a slow frequency chirp to the RF-drive of an AOM in the clock laser
system. A residual linear drift might be compensated for, a posteriori, when analyzing
the spectroscopic data. Nevertheless, it is more convenient to account for the linear drift
directly by the a priori drift compensation, as otherwise the frequency windows used
for spectroscopy have to be constantly adapted. To quantify the drift of the clock laser
frequency and to find the right settings of the linear drift compensation, it is necessary to
measure the clock laser frequency against the atomic resonance on a timescale of many
hours or ideally days. Figure 3.17 shows a measurement of the atomic clock resonance
over the course of 17 hours. Figure 3.17 a) shows exemplary spectra obtained for a spin
balanced gas of 171Yb at different magnetic fields. Two distinct spectroscopic features
correspond to atoms at singly occupied lattice sites in either mF = 1/2 or mF = −1/2.
The spectra are fitted by the sum of two sinc2 functions according to eq. 3.12 to determine
the resonance positions f↓ and f↑. Given the resonance positions of the two mF states the
actual magnetic field B can be calibrated according to B = (f↑ − f↓) / (−399.0(1) Hz/G)
[68]. The clock laser detuning with respect to th the clock resonance frequency f0 (at zero
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Figure 3.17.: Analysis of the clock laser frequency drifts. Panel a) shows spectra of a two spin
component gas of 171Yb at different magnetic fields. Atoms are excited using pulses of clock laser
light with a pulse length of tpulses = 3.2ms at a Rabi frequency of Ω = 2π × 153(3)Hz. Data
points represent single measurements with error bars representing the uncertainty of the excited-
state fraction. The two spectroscopic features correspond to atoms at singly occupied lattice sites in
the mF = ±1/2 and are fitted using the sum of two sinc2 functions, indicated by solid lines. Shaded
areas represent the 95% confidence intervals of the fits. Panel b) shows the clock laser detuning
with respect to the clock resonance frequency at zero magnetic field ∆f0 = −1/2(f↑+f↓), obtained
from spectra as shown in panel a) measured over the course of 17 hours. Detunings are given with
respect to the first data point of the measurement. Each data point corresponds to the resonance
frequency obtained from a single spectrum. Error bars indicate the propagated fit uncertainty. Due
to technical reasons, no data was recorded between t ≈ 10 h and t ≈ 15 h.

magnetic field) ∆f0 = flaser − f0 is obtained by:

∆f0 = −1/2(f↑ + f↓). (3.53)

Figure 3.17 b) shows ∆f0 measured over the course of 17 hours. The drift shows a distinct
time dependence, that is be modeled by:

∆f0(t) = ∆f0,0 + ∆drift,lin(t) + ∆comp(t) + ∆drift,non-lin(t). (3.54)

Here ∆f0,0 describes ∆f0 at t = 0, the linear drift of the cavity is ∆drift,lin(t) = clint and
∆comp(t) = ccompt denotes the a priori linear drift compensation applied during the mea-
surement and has been set to ∆comp(t) = −0.1632 Hz/s·t. The non-linear drift is described
by ∆drift,non-lin(t). While for the first seven hours of the measurement, shown in the inset
of fig. 3.17 b), the measured detunings are characterized by an RMS of 9 Hz, for longer
time scales the measured detuning ∆f0 continously increases. In a prior measurement,
correlations between temperature fluctuations on the order of ∆T = ±50 mK, measured
on the outer side of the vacuum chamber of the cavity-1 setup, and drifts of the cavity
resonance frequency on the order of 1 kHz have been found [85]. Therefore, we associate
the large drift observed in fig. 3.17 to a response of the cavity to a temperature change.
According to ref. [85] close to the temperature of the CTE zero TCTE,ZC crossing, the shift
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Figure 3.18.: Residual drift of the clock laser frequency. Panel a) shows residuals of the fit used to
describe the measured clock laser detuning at the atomic resonance ∆f0 , presented in fig. 3.17.Panel
b) shows the overlapped Allan deviation of the fractional frequency as a fucntion of averaging time
τ for the data shown in fig. 3.17 and the residuals after subtraction of systematic drifts (see text for
details). The Allan deviations have been computed using ref.[181].

of the resonance frequency caused by a change of temperature can be described by:

∆ν(t) ∝ −(Tcav(t) − TCTE,ZC)2 (3.55)

Using an exponential ansatz for the time dependence of the cavity temperature T (t) =
∆Te−(t−t0)/τ , the time-dependent shift of the resonance frequency has the form [85]:

∆ν(t) = c1e
−2(t−t0)/τ + c2e

−(t−t0)/τ + ν0 (3.56)

We fit eq. 3.54 to the measured data, using eq. 3.56 as an ansatz for the non-linear
drift ∆drift,non-lin(t). We obtain the linear and non-linear drift coefficients clin and cnlin
as well as the time constant τ . The fit is shown in fig. 3.17 b), whereas the residuals
of the fit are shown in fig. 3.18. The data is well described by the fit and the residuals
show an RMS of 6 Hz. The linear drift rate of the cavity resonance is determined to
be clin = 0.1168(8) Hz/s, which yields a frequency drift of 10.1(1) kHz/day. Given the
absolute frequency of the clock transition1 [134] this corresponds to a fractional frequency
drift of ∆ν̇/ν = 2.2 × 10−16/s. In a previous measurement, shortly after the rebuilt of
the cavity-1 setup in September 2016, the linear drift of the cavity resonance has been
characterized and found to be clin = 0.318(1) Hz/s. The measurement presented here,
has been conducted in October 2019, and hence indicates a reduction of the linear drift
by a factor of approximately 0.4 over the course of three years. The time constant of
the temperature equillibration τcav here is found to be τcav = 10.31(15)h. Figure 3.18 b)
shows the overlapping Allan deviation (see e.g. ref. [182] for a detailed description of the
Allan deviation) calculated for the frequency data shown in fig. 3.17 before and after the
subtraction of systematic drifts. The Allan deviation increases for the uncorrected data

1Here we assume for simplicity that the measured
frequency corresponds to the bare atomic tran-

sition.
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Figure 3.19.: Long-term measurement of the resonance frequency f↑ of the |g, ↑⟩ → |e, ↑⟩ at a
magnetic field of B = 16.5G. Panel a) and c) shows fits of spectra recorded on two different days
over the course 20 and 17 hours, respectively Panel b) and d) shows the clock laser detuning at the
resonance obtained from the individual spectra shown in panel a) and c) as a function of time. Solid
lines indicate fits of a linear model, with shaded areas representing 95% confidence intervals of the
fits. The residuals of the fits are shown in panels c) and f).

for increasing averaging time, while for the data that has been corrected for a systematic
drift shown in fig. 3.18 a) the Allan deviation decreases from σ = 1.3 × 10−14 at an aver-
aging time of τ = 1590 s to σ = 3.4×10−15 at an averaging time of τ = 12720 s. However,
the data set is small, and therefore these values should be taken with care. Due to the
long cycle time of the experiment ( in this measurement tcycle = 53 s), it takes about
half an hour to record a single spectrum. In comparison, atomic lattice clocks do not
require evaporative cooling and the experimental cycle is much faster. In ref.[183] cycle
times of tcycle < 0.5 s are reported, which allow acquiring 100 times more data in the same
time. Figure 3.19 a) to c) and d) to f) shows two different long-term measurements of the
mF = +1/2 resonance frequency. The measurements have been conducted several weeks
after the measurement presented in fig. 3.17 and in the meantime care has been taken
to keep the clock laser in lock as much as possible and to minimize disturbances to the
cavity setup. The a priori drift compensation has been set to ∆comp(t) = −0.1118 Hz/s t.
Fig. 3.19 a) (d)) shows the fits of 17 (36) spectra recorded over the course of approxi-
mately 20 (17) hours. Fig. 3.19 b) (e)) shows the clock laser detuning at the resonance
frequency f↑of the |g, ↑⟩ → |e, ↑⟩ transition, obtained from the fits of the spectroscopic
feature shown in panel a) (d)) as a function of time. The detuning increases over time and
a linear increase is fitted to the data as indicated by the different colors in fig. 3.19 b). We
obtain residual linear drift rates of clin,res = −0.0021(1) Hz/s for the data shown in panel
b) and clin,res = −0.0031(4) Hz/s for the data shown in panel e), indicating that the drift
is overcompensated by the a priori drift compensation. The measured residual drift rates
correspond to total linear drifts of clin,res = 0.1097(1) Hz/s and clin,res = 0.1087(1) Hz/s,
respectively. The values are comparable to the linear drift of clin,res = 0.1168(8) Hz/s
found in the previously presented measurement and reflect the day-to-day fluctuations of
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the drift rate. The measured values are in good agreement with the fluctuations of the
fractional drift rate on the order of 10−17/s expected according to ref. [180]. The residuals
of the fits shown in fig. 3.19 c) and fig. 3.19 f) are characterized by an RMS of 12 Hz and
16 Hz, respectively.
To summarize, we have found that the clock laser frequency is subject to linear and
non-linear drifts. A linear drift can be associated with a slow length change of the res-
onator caused by material aging. Temperature fluctuations cause non-linear drifts. On
the timescale of days the clock laser frequency might drift non-linearly over several 100
Hz or more. However, on the time scale of a few up to 20 hours, the observed drift often
is well approximated by a linear ansatz. Depending on the cycle time of the experiment
and the desired span and resolution, it typically takes 20 to 45 minutes to record a single
spectrum. After subtraction of systematic drifts, on this timescale we find residual non-
linear fluctuations that are characterized by an RMS on the order of 10 Hz. Given the
absolute frequency of the clock transition νclock,171 = 518 295 836 590 865.2(0.7) Hz [134]
this corresponds to an RMS of the fractional frequency on the 10−14 level. Constant moni-
toring and logging of the temperature of the cavity vaccum chamber could lead to a better
understanding of the non-linear short-term and long-term drifts, and an improvement of
the temperature stability would increase the frequency stability of the clock laser. On the
other hand, the ultimate road to achieving better frequency stability is to actively stabi-
lize the clock laser to the atomic resonance. Such an atomic clock operation constitutes
a long-term goal, requiring online data evaluation of spectroscopic measurements and an
almost entirely autonomous experiment operation.
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3.6. Conclusion

In this chapter, I introduced the theoretical framework that allows describing clock spec-
troscopy on the 1S0 → 3P0 transition in a magic optical lattice. The description starts with
a simple two-level system and is extended to include damping due to spontaneous decay
and decoherence. I have presented spectroscopic measurements with spin-polarized ytter-
bium gases of 171Yb and 173Yb in a magic optical lattice, driving either intra- or interband
transitions. In a deep optical lattice, a minimal spectroscopic resolution, characterized
by a spectroscopic linewidth of ΓFWHM = 26.7(2.4) Hz, is reached. Combining clock spec-
troscopy and bandmapping techniques, the spectroscopic dispersion relation in shallow
optical lattice is observed directly. The data analysis shows good agreement between the
observed spectroscopic lineshapes and a simple model combining a two-level system with
the dispersion relation of an optical lattice. High-fidelity excited-state preparation can be
achieved using a rapid adiabatic passage. Finally, the frequency of the cavity-stabilized
clock laser has been measured against the atomic resonance. An analysis of the observed
frequency drift yields a linear drift of approximately 110 mHz/s, that is associated with
material aging. After the subtraction of a systematic drift, fluctuations of the clock laser
frequency show an RMS on the level of 10 to 20 Hz, corresponding to an RMS of the
fractional frequency of 10−14.
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4. Clock Spectroscopy of Interacting
Fermi Gases and Fermi-Fermi
Mixtures

In the previous section, I presented spectroscopic measurements conducted mainly with
spin-polarized ytterbium quantum gases on the 1S0 → 3P0 clock transition. A spectro-
scopic linewidths on the order of ΓFWHM ∼ 30 Hz has been achieved and the lattice system
was characterized by the means of clock spectroscopy.
Spin-polarized gases in optical lattices are non-interacting, as the Pauli principle precludes
any double occupancy. Adding a second species realized by either another spin compo-
nent or another isotope or element lifts this restriction and allows for double occupancy.
Atoms at the same lattice site interact via s-wave scattering and therefore experience an
energy shift according to the Hubbard on-site interaction U . The intra- and interisotope
s-wave interactions of ytterbium atoms in the ground state 1S0 have been studied us-
ing two-color photo-association in early experiments of the Kyoto group [118]. Here, we
study interorbital two-body interactions between atoms in the ground and excited state.
In comparison clock resonance frequency of atoms at singly occupied lattice sites, the
resonance that corresponds to the excitation of an atom that resides at a doubly occupied
lattice site is shifted by ∆f = (Ueg − Ugg) /h. High precision clock spectroscopy allows
resolving and characterizing these interaction shifts.
While atom pairs of different isotopes constitute two distinguishable Fermions, pairs of
the same isotope constitute two indistinguishable Fermions and therefore require a totally
antisymmetric wave-function that can be realized by either an orbital symmetric spin sin-
glet or an orbital antisymmetric spin triplet state. Each of those states is characterized
by its own molecular potential, giving rise to an interorbital spin-exchange interaction.
Here we study interorbital interactions of atom pairs in interacting doubly spin-polarized
Fermi-Fermi mixtures of 171Yb and 173Yb and two spin component gases Fermi of 171Yb.
Whereas interorbital spin-exchange interactions have previously been studied in gases of
173Yb [57, 58] and 87Sr [61, 184] it has rather recently been studied in 171Yb [2, 62, 68].

This section is divided into two parts. In sec. 4.1 I will present measurements of interor-
bital interisotope interactions in Fermi-Fermi mixtures of 171Yb and 173Yb. We directly
show the SU(2)⊗ SU(6) symmetry of the interaction and characterize the lifetimes of the
interorbital interisotope pairs.
In sec. 4.2 I will present measurements of interorbital interactions in two spin-component
gases of 171Yb. The direct and spin-exchange part of the interorbital interaction is spec-
troscopically determined and we confirm its antiferromagnetic nature, which has been
observed in recent experiments by the Kyoto and Munich group [62, 68].
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The measurements of the interorbital interisotope interactions have been performed and
analyzed by K. Sponselee and the author. A first series of measurements has been con-
ducted by K. Sponselee, M. Diem, N. Pintul and the author.
A first series of measurements of the spin-exchange interaction in171Yb has been con-
ducted and analyzed by K. Sponselee, M. Diem and the author. The final measurements
shown here have been conducted by K. Sponselee and M. Diem and the author with the
help of N. Pintul. Data analysis has been performed by K. Sponselee and the author.

The main results of this chapter have been published in [2].
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4.1. Interorbital Interactions in an Ytterbium
Fermi-Fermi Mixture with SU(2)⊗ SU(6) Symmetry

Over the past decades mixtures of ultracold atomic gases realized by atoms in different
hyperfine states [185–188], different isotopes [114, 189–191], different elements[192–198]
and different orbital states [57, 184, 199] have been used to study intriguing physics such
as the formation of hetero-nuclear [195] and dipolar molecules [200–202], polaronic quasi-
particles [203–206] or interaction-induced insulating phases [200, 207–211] and quantum
magnetism [128, 212, 213]. For quantum simulations of solid-state models it is usually
desirable to work with (effective) spin 1/2 systems to mimic the behavior of electrons.
Ultracold atoms, however, are not restricted to spin 1/2 systems and therefore allow to
study high spin systems. Ultracold gases of 40K with (F = 9/2) have been used to ob-
serve spin changing dynamics[214, 215], while for alkaline earth(like) elements such as
ytterbium ( with I = 5/2 for173Yb) and strontium (I = 9/2 for 87Sr) the ground state
s-wave interaction shows a SU(N = 2I + 1) symmetry, characterized by the absence of
spin changing collisions. Fermi-Fermi mixtures of 171Yb and 173Yb as first realized by
the Kyoto group [115] exhibit an exotic SU(2) ⊗ SU(6) symmetry and might be useful to
study two-flavor symmetry locking phases [79, 80].
Here we study elastic and inelastic interorbital interactions of Fermi-Fermi gases of 171Yb-
173Yb. Therefore we prepare doubly spin polarized gases of typically N171/173 ≈ (10 −
40) × 103 atoms at temperatures of T ≈ (0.25 − 0.55)TF in a magical optical lattice. By
the means of resonant optical pumping we prepare different spin configurations, that are
in the following denoted as |g,mF,171; g,mF,173⟩.

4.1.1. Elastic Interactions

To probe the elastic interorbital interactions we perform spectroscopy on the clock transi-
tion of 171Yb or 173Yb, using rectangular π pulses of tpulse = 1.6 ms or tpulse = 1.55 ms that
yield a Fourier limited spectroscopic linewidth of ΓFWHM ≈ 500 Hz and ΓFWHM ≈ 516 Hz,
respectively. Figure 4.1 a) shows exemplary spectra of doubly spin-polarized gases pre-
pared in the |g,−1/2; g, 5/2⟩ configuration, for spectroscopy on the clock transition of
171Yb for different 1D-lattice depths. The three different observed spectroscopic features
are attributed to single atoms of 171Yb, interacting interisotope pairs excited to the state
|e,−1/2; g, 5/2⟩ and single atoms of 171Yb that are excited to the second band of the op-
tical lattice. The resonance frequency of the blue sideband depends on the lattice depth
and is used to determine s1D for each individual spectrum. The interaction induced energy
shift of the interorbital interisotope pairs can be expressed in terms of Hubbard on-site
interactions:

∆171
173Ueg =171

173 Ueg −171
173 Ugg (4.1)

and

∆171
173Uge =171

173 Uge −171
173 Ugg. (4.2)
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Figure 4.1.: Clock spectra of an interacting Fermi-Fermi mixture for different 1D lattice depths
driving the clock transition of 171Yb. Panel a) shows a complete spectrum with three spectroscopic
features corresponding to singly occupied lattice sites, doubly occupied sites shifted by the interorbital
interisotope interaction and singly occupied lattice sites that are excited to the second Bloch band
of the 1D-lattice. Panel b) shows the interorbital interisotope interaction feature in detail a detailed
view. Frequencies are given with respect to the non-band changing transition of single atoms.
The frequency offset of the blue motional sideband is used to determine the lattice depth of the
1D-lattice. Solid lines indicate fits using a sinc2 model for the non band changing transition and
Lorentzians otherwise. The non-band changing single particle resonance is used for an a posteriori
drift compensation. The 2D-lattice was operated at a depth ofs2D = 16.971(15)Erec, whereas a
magnetic field of B = 8.8G was applyed in the vertical direction. The figure is adapted from the
published version [2]. ©2021 American Physical Society.
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Figure 4.2.: Interorbital interisotope interaction shift ∆171
173Ueg (panel a)) and ∆171

173Uge (panel b)) as
a function of the 1D lattice depths. Solid and dashed lines respectively show fits of equation 4.3 to
the data leaving the inte-orbital interisotope s- wave scattering lengths as a free parameter. Every
data point represents the interaction shift obtained from a single spectrum, as shown in figure 4.1.
Error bars representing the uncertainty in determining the interaction shifts and the 1D-lattice depths
from the spectra are smaller than the marker size. For the measurements presented in panel a) the
2D-lattice was operated at s2D = 16.971(15)Erec, whereas for the measurements in panel b) it was
operated at a depth of s2D = 16.13(17)Erec. The figure is adapted from the published version [2].
©2021 American Physical Society.

Here and throughout this section the notation 171
173Xij corresponds to the quantity X for

an atom of 171Yb in orbital state i and an atom of 173Yb in orbital state j. U denotes the
Hubbard on-site interaction given by [2]:

171
173Uij =

4π171
173aij
2µ

∫
dr|w0(s1D, s2D, r)|4, (4.3)

where 171
173aij denotes the s-wave scattering length, µ the reduced mass of the atom pair

and w0(s1D, s2D) denotes the single particle Wannier function.
The single-particle resonance frequency for atoms trapped in a magic lattice is not affected
by the lattice depth, whereas we observe a shift to higher resonance frequencies for the
two-particle transition as the lattice depth increases. This is associated with an increasing
Wannier integral and underlines the two-particle nature of the transition. To characterize
the interaction, we perform spectroscopic measurements at different 1D-lattice depths.
From the observed interaction-induced shift, we deduce the s-wave scattering length con-
nected to the interorbital interisotope interaction using eq. 4.3.
Figure 4.2 shows interaction shifts measured in doubly polarized Fermi-Fermi mixtures

in different spin configurations as a function of the 1D lattice depth. Panel a) shows
data obtained exciting 171Yb whereas panel b) shows data obtained when exciting 173Yb.
By fitting the lattice depth dependence of ∆171

173Ueg(s1D) and ∆171
173Uge(s1D) according to

eq. 4.3 we obtain the differential s-wave scattering lengths, ∆171
173ae,-1/2;g,5/2 = 498(1) a0 and
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∆171
173ae,-1/2;g,3/2 = 495.7(1.3) a0, when exciting 171Yb and ∆171

173ag,-1/2;e,5/2 = 481.3(1.8) a0
and ∆171

173ag,1/2;e,5/2 = 482.9(1.3) a0, when exciting 173Yb. (The measured differential in-
teraction parameters are summarized in tab. 4.1.) Within experimental uncertainty the
pairs of scattering lengths corresponding to 171

173Ueg and 171
173Uge are equal, and indicate a

symmetry of the interaction. For the 171Yb-173Yb Fermi-Fermi mixture there are as many
as twelve different combinations of atoms in different mF states, that in general could
be characterized by different interorbital interisotope interactions. Due to the close-to-
perfect decoupling of nuclear spin and electronic angular momentum in the involved states
1S0 and 3P0, however, we expect the interaction to obey an SU(2) ⊗ SU(6) symmetry
and be equal for all mF configurations. In the following I will argue that it is sufficient
to probe two different spin configurations to show the SU(2) ⊗ SU(6) symmetry of the
interaction.
The Hamiltonian of the underlying rotationally symmetric s-wave interaction commutes
with the total spin operator F 2. The total spin operator F = f1 + f2 and the magne-
tization along the z-axis M = m1 + m2 are given by the sum of the total spins of the
individual atoms f1,2 and the spin components along the z-axis m1,2. The interaction
Hamiltonian hence can be written in terms of eigenfunctions |F,M⟩ of the operator F 2

[91]:

Hint =
2πℏ
2µ

δ (r1 − r2)
Fmax∑

F=Fmin

+F∑
M=−F

aF |F,M⟩ ⟨F,M | . (4.4)

Here δ (r1 − r2) denotes the Dirac δ functions for atoms at positions r1 and r2, while
aF denotes the s-wave scattering wavelength corresponding to a scattering channel with
quantum number F , that in general is different for different total spins F . In the experi-
ment however we observe and prepare atoms in the magnetization basis |m1,m2⟩ that is
connected to the interaction basis by a basis transformation[2]:

|m1,m2⟩ =
∑

m1+m2=M

cF,Mm1,m2
|F,M⟩ . (4.5)

Here the summation is carried out over all states |F,M⟩ with M = m1 +m2 and the co-
efficients cF,Mm1,m2

denote the corresponding Clebsch-Gordan coefficients. For Fermi-Fermi
mixtures of 171Yb and 173Yb with f1 = 1/2 and f2 = 5/2 there are only two possible
scattering channels characterized by a total spin quantum number of F = 2 and F = 3.
According to eq. 4.5 it is therefore sufficient to show that for two different spin configura-
tions |m1,m2⟩ and |m′

1,m
′
2⟩ the interaction strength is equal, to prove the SU(2)⊗ SU(6)

symmetry. The two different spin configurations can be chosen almost arbitrarily, yet at
least one spin configuration has to be a superposition of F = 3 and F = 2 states with
two non-vanishing Clebsch-Gordan coefficients.
To probe the SU(2) ⊗ SU(6) symmetry for both interaction parameters 171

173Ueg and 171
173Uge

we therefore perform interaction spectroscopy on the clock transition of 171Yb for gases
in the spin configurations:

|−1/2; 5/2⟩ =

√
1

6
|3, 2⟩ −

√
5

6
|2, 2⟩ (4.6)

|−1/2; 3/2⟩ =

√
1

3
|3, 1⟩ −

√
2

3
|2, 1⟩ (4.7)
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171Ybe-
173Ybg

171Ybg-
173Ybe

∆a−1/2,5/2 498(1) 481.3(1.8)
∆a−1/2,3/2 495.7(1.3)
∆a1/2,+5/2 482.9(1.3)
∆a2 501.2(2.5) 481(2)
∆a3 485(8) 482.9(1.3)
∆ā 497.4(8) 482(1)
ā -83(60) -98(60)

Table 4.1.: Summary of the elastic interaction parameters measured for 171Ybe-
173Ybg and 171Ybg-

173Ybe in different spin configurations in units of Bohr radii a0.

and on the clock transition of 173Yb for gases in the spin configurations:

|−1/2; 5/2⟩ = |3, 3⟩ (4.8)

|1/2; 5/2⟩ =

√
1

6
|3, 2⟩ −

√
5

6
|2, 2⟩ (4.9)

for various 1D lattice depths. Using eqs.4.6-4.7 and eqs. 4.8-4.9,respectively and the in-
teraction shifts measured for the different spin configurations we compute the scattering
lengths a2 and a3 that characterize the interorbital interisotope interactions. For the
171Ybe-

173Ybg interaction we find: ∆a2 = 501.2(2.5) a0 and ∆a3 = 485(8) a0, whereas for
the 171Ybg-

173Ybe interaction we find: ∆a2 = 481(2) a0 and ∆a3 = 482.9(1.3) a0. For both
interactions the values obtained for a2 and a3 are equal within experimental uncertainties,
therefore proving the SU(2) ⊗ SU(6) symmetry of the interactions.
The mean scattering lengths for the two different interorbital interactions of ∆171

173āeg =
497.4(8) a0 and ∆171

173āge = 482(1) a0 are similar but not identical. While the different
ground state interisotope interactions for different ytterbium isotope pairs are well ex-
plained by a mass-scaling model[118], the observed differences of the interorbital interac-
tions cannot be explained in this way, as the reduced mass is the same. Therefore, our
measurements could prove valuable for further studies of the molecular potential, that go
beyond mass scaling.
To underline the precision of our spectroscopic measurements we have given differential
values for interaction shifts and s-wave scattering lengths. Using the literature value for
the s-wave scattering length of the interisotope ground-state interaction agg = −580(60) a0
[118], for the absolute values of the interorbital interisotope scattering lengths we obtain
mean values of 171

173āeg = −83(60) a0 and 171
173āge = −98(60) a0, corresponding to attractive

interactions.
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Figure 4.3.: Loss rates of the interorbital interisotope pairs. Panel a) shows the data obtained for
171Ybe −171 Ybg, panel b) for

171Ybg −171 Ybe. Different colors denote different spin configurations.
Each data point is averaged several times and error bars indicate the propagated fit uncertainty.
Solid lines indicate a fit to eq. 4.10. Shaded areas indicate 95% confidence intervalls. For the
measurements presented in panel a) the lattices were operated at depths of s1D = 24.0(2)Erec and
s2D = 16.0(1)Erec. For the measurements presented in panel b) the lattices were operated at depths
of s1D = 34.7(6)Erec and s2D = 17.0(4)Erec. For the measurements The figure is adapted from the
published version [2]. ©2021 American Physical Society.

4.1.2. Inelastic Interactions

To characterize the inelastic part of the different interorbital interisotope interactions, we
excite atom pairs using pulses of clock laser light and observe the number of atoms in the
excited state, that equals the number of doublons Nd(t) as a function of hold time. The
observed decay of Nd(t) is fitted using an exponential ansatz: Nd(t) = Nd,0 exp(−Γintt),
leaving the initial number of doublons Nd and the decay rate Γint as free parameters.
Analogue to the measurement of the elastic interactions, we repeat the measurement
for different 1D lattice depths and obtain a decay rate Γint for each lattice depth. To
distinguish between one-body and two-body decay we characterize the one body decay
rate by measuring the lifetime of excited-state atoms on singly occupied lattice sites Γ0.
The two body decay rate is then given by 171

173Γeg/ge = Γint − Γ0 and is connected to the
inelastic loss coefficient 171

173βeg/ge by:

171
173Γeg/ge =171

173 βeg/ge

∫
dr|w0(s1D, s2D)|4. (4.10)

We fit eq. 4.10 to the data and obtain the two inelastic loss coefficients 171
173βeg = 1.69(7)×

10−12 cm3s−1 and 171
173βeg = 1.79(5)× 10−12 cm3s−1 for the two different spin configurations

|e,−1/2; g, 5/2⟩ and |e,−1/2; g, 3/2⟩. For the 171Ybg−173Ybe mixture in the configurations
|g, 1/2; e, 5/2⟩ and |g,−1/2; e, 5/2⟩ we obtain 171

173βge = 3(1) × 10−15 cm3s−1 and 171
173βge =

4.6(7) × 10−15 cm3s−1. (To give an overview, the values are summarized in tab. 4.2.)
The inelastic loss coefficients for different spin configurations of 171Ybe −171 Ybg and
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171Ybe-
173Ybg

171Ybg-
173Ybe

β−1/2,5/2 1.69(7) × 10−12 3(1) × 10−15

β−1/2,3/2 1.79(5) × 10−12

β1/2,+5/2 4.6(7) × 10−15

Table 4.2.: Summary of the inelastic loss coefficients measured for 171Ybe-
173Ybg and

171Ybg-
173Ybe

in different spin configurations in units of cm3 s−1.

171Ybg −171 Ybe are the same within experimental uncertainties, however, different from
the case of elastic interactions this does not allow to infer the symmetry of the inelastic
interactions. The loss coefficients for the orbital configuration 171Ybe −171 Ybg are larger
than the loss coefficients of 171Ybg−171 Ybe by a factor of about 400. Which is in contrast
to the elastic interactions that we have found to be similar. The reason for the large
difference of the loss coefficients is currently unclear. Understanding the decay mechanism
and the molecular potentials requires further experimental and theoretical work.

4.1.3. Coherent Addressing of Interisotope Pairs

In another set of experiments, we study the coherence properties of Rabi oscillations driven
on the clock transition of single atoms and interisotope pairs. As discussed in chapter 3
the coupling of a two-level system to a (thermal) bath causes decoherence. In general,
the specific origin of decoherence is hard to identify as possible sources are manifold.
However, clock spectroscopy in the ytterbium Fermi-Fermi mixture allows comparing the
coherence properties of two distinctly different systems: atoms at singly occupied lattice
sites and interacting interisotope pairs.
For one-dimensional optical lattice clocks it has been shown that elastic interactions be-
tween ground and excited-state atoms cause a collisional shift of the clock transition and
collisional dephasing decreases the coherence properties [178]. As interactions increase
with increasing density for an optimal operation of a one-dimensional optical lattice clock,
the atom number is limited [178].
Three-dimensional lattices allow to reduce the effect of interactions, increase the atomic
density [216] and resolve frequency shifts between single atoms and interacting atom pairs
residing at the same lattice site.
To probe the coherence properties of the clock transition for single atoms and interisotope
pairs, we prepare a doubly spin-polarized Fermi-Fermi mixture as before and drive Rabi
oscillations on the single-particle and the interaction-shifted transition of 171Yb as shown
in fig. 4.4 a) and c). After each Rabi oscillation measurement, we take a spectrum of
the transition under observation and determine the resonance frequency. This allows to
perform an a posteriori drift compensation and obtain the clock laser’s time dependent
detuning with respect to the resonance frequency during the Rabi oscillation measure-
ments.

While for single atoms on the timescale of the measurement of t = 10 ms damping
is small (see fig. 4.4 a)) for the interisotope pairs damping of the oscillation and thus
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Figure 4.4.: Rabi oscillations of the 1S0 → 3P0 transition of 171yb for atoms at singly occupied lattice
sites a) and for lattice sites occupied by a pair of 171Yb and 173Yb. Each data point represents a
single measurement. Different colors represent different runs of the experiment. After each Rabi
oscillation measurement, we take a spectrum (as shown in panel b) and c)) to obtain the detuning
of the clock laser during the Rabi oscillation measurement, indicated by a grey vertical line. We use
the spectra shown in panel b) to perform an aposteriori drift compensation. Solid lines in panels a)
and c) denote fits of a numerical solution of the optical Bloch equations, leaving the Rabi frequency
and the transversal damping as free parameters. Solid lines in panel b) denote a fit of sinc2 function
in panel d) of a Lorentzian. Shaded areas represent 95% confidence intervals of the fits. Error bars
indicating the uncertainty of the determination of the excited state fraction ne are smaller than the
marker size. Lattices have been operated at depths of S1D = 30Erec and S1D = 17Erec.

increased decoherence is clearly visible (see fig. 4.4 c)). To quantify the damping, we
fit the numerically obtained solutions of the damped optical Bloch equations eqs. 3.42-
3.45 for a given time dependent detuning ∆(t) to the data, leaving the Rabi frequency
Ω and the transversal damping γ⊥ as free parameters, while assuming negligible spon-
taneous decay Γ0 = 0. The obtained Rabi frequencies for single atoms and interisotope
pairs of Ωsingles = 2π × 335(2) Hz and Ωpairs = 2π × 347.5(3.3) Hz are similar, whereas
the transversal damping obtained from the fit differs by almost an order of magnitude,
with γ⊥,singles = 2π × 3.6(1.7) Hz and γ⊥,pairs = 2π × 33(3) Hz. (The values given here
are the weighted averages of three measurements.) As discussed in chapter 3 transversal
damping affects the spectroscopic lineshape, and for large damping the sinc2 expected for
a rectangular pulse transforms into a Lorentzian. While in the spectrum of the single-
atom transition, one observes a sinc2 for the interisotope pairs, side lobes are not visible
indicating a significant transversal damping. Therefore, we fit the spectra of interacting
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Figure 4.5.: Rabi Oscillations of the 1S0 → 3P0 transition of 173yb for atoms at singly occupied
lattice sites a) and for lattice sites occupied by a pair of 173Yb and 171Yb. After each Rabi oscillation
measurement, we take a spectrum (as shown in panel b) and c)) to obtain the detuning of the clock
laser during the Rabi oscillation measurement, indicated by a grey vertical line. We use the spectra
shown in panel b) to perform an a posteriori drift compensation. Solid lines in panels a) and c)
denote fits of a numerical solution of the optical Bloch equations, leaving the Rabi frequency and
the transversal damping as free parameters. Solid lines in panel b) denote a fit of sinc2 function in
panel d) of a Lorentzian. Shaded areas represent 95% confidence intervals of the fits. Data points
correspond to single measurements, error bars indicating the uncertainty of the determination of
the excited state fraction ne are smaller than the marker size. Lattices were operated at depths of
S1D = 26Erec and S2D = 17Erec.

pairs by a Lorentzian that well describes the data.
We perform the same measurement but now excite 173Yb atoms, and observe a similar
behavior, as shown in fig. 4.5. Fitting numerical solutions of the optical Bloch equations
to the data, as described before, we obtain Rabi frequencies of Ωsingle = 2π×322.7(1.6) Hz
and Ωpairs = 2π × 349.8(4.9) Hz, and transversal damping coefficients of γ⊥,singles =
2π × 14(1) Hz and γ⊥,pairs = 2π × 103(13) Hz. The Rabi frequencies and transversal
damping rates determined in both measurements are summarized in tab. 4.3.
Compared to the Rabi frequencies of the single-particle transition, the Rabi frequencies

of the interisotope pairs are increased by 4% when exciting 171Yb and 8% when excit-
ing 173Yb. At lowest order we expect the Rabi frequencies to be the same, however, an
interaction-induced deformation of the single particle wave functions would lead to a differ-
ent dipole matrix element and could explain the different Rabi frequencies. The problem
of two interacting atoms in a harmonic trap can be solved analytically [217, 218] and the
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171Ybe-
173Ybg

171Ybg-
173Ybe

Ωsingles/2π 335(2) 322.7(1.6)
Ωpairs/2π 347.5(3.3) 349.8(4.9)
γ⊥,singles/2π 3.6(1.7) 14(1)
γ⊥,pairs/2π 33(3) 103(13)

Table 4.3.: Summary of the Rabi frequencies and transversal damping parameters obtained for
ytterbium Fermi-Fermi mixtures either exciting 171Yb or 173Yb, in units of Hz. The given values are
the weighted mean of the values obtained in three individual measurements.

anharmonicities of an optical lattice potential can be treated perturbatively [219, 220].
A comparison of the measured Rabi frequencies with theory could yield a deeper under-
standing and possibly allow determining the interorbital interisotope interactions in an
approach complementary to the spectroscopic measurements presented above.
However, the uncertainties of the determined Rabi frequencies might be underestimated.
In Fig. 4.5 c) the fits systematically overestimate the first maximum of the Rabi oscil-
lations indicating that the underlying model might not properly display the physics of
the system under observation. The model is simplified and for example does not include
inelastic losses. However, the direct measurement of the inelastic loss rates presented in
the previous section suggests that for pairs in the 171Ybg −173 Ybe configuration inelastic
losses are negligible on the time scale of the measurement and therefore most likely do
not explain the deviation of the fit. To definitely preclude systematic errors further mea-
surements are necessary. For the interisotope pairs, the transversal damping is increased
by about an order of magnitude, compared to the transversal damping of the correspond-
ing single-particle transitions. Whereas the source of decoherence for the single-particle
transition is hard to identify as possible sources are manifold, (including e.g., laser phase
noise, lattice laser frequency noise, or magnetic field noise, to name only a few) we at-
tribute the larger transversal damping obtained for the interacting pairs to two sources
of decoherence the single atoms are not affected by. On the one hand, the interisotope
interorbital transition frequency depends on the Wannier integral and thus is affected by
lattice inhomogeneities, as well as shot to shot fluctuations of the lattice depth. On the
other hand, interaction with the second atom might cause collisional dephasing, damping
the Rabi oscillations.
Unfortunately, it is not possible to distinguish between interaction-induced and lattice-
induced dephasing. To gain a deeper understanding of the underlying physics, it might
be promising to compare the coherence properties of the two-particle transition to single-
particle interband transitions as the interband transitions are sensitive to lattice depth
and inhomogeneity as well. The spectroscopic band structure measurements presented
in chapter 3 showed a rather good agreement with theory, which instead points into the
direction of a high degree of homogeneity of the 1D-lattice. Based on a calculation that
takes into account the Gaussian intensity profile of the lattice beams, the frequency broad-
ening caused by the lattice inhomogeneity has been estimated to be very small [98], and
hence most likely is negligible. Therefore we think that the damping of the Rabi oscilla-
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tions is mainly caused by collisional dephasing. However, analyzing the homogeneity of
the lattice remains and determining the source of decoherence remains an open task for
the future.
Comparing transitions involving two- and three- or more-particles also might yield a better
understanding of the dephasing mechanism. While in bosonic gases of 174Yb or fermionic
gases of 87Sr multi-particle interactions have been observed [221], we have not been able to
find a spectroscopic feature of triply occupied lattice sites in the ytterbium Fermi-Fermi
mixtures - neither for mixtures of spin polarized 171Yb and two spin components of 173Yb
nor for mixtures of spin polarized 173Yb and two spin components of 171Yb (for more
details see ref.[98]) which could indicate strong three particle losses. Bose-Fermi mixtures
of 174Yb and 171Yb or 174Yb and 173Yb featuring a repulsive interspecies interaction could
be a promising candidates to study multi-particle interorbital interisotope interactions
and different degrees of decoherence.

4.1.4. Conclusion and Outlook

We have characterized elastic and inelastic interorbital interisotope interactions in ytter-
bium Fermi-Fermi mixtures and directly proven the underlying SU(2)⊗SU(6) symmetry.
The elastic interactions have been found to be attractive and similar for the 171Ybe−171Ybg

and 171Ybg −171 Ybe configuration which we attribute to the large degree of symmetry of
the molecular potential. On the other hand the inelastic interactions measured in both
electronic configurations differ by a factor of 400 hundred. The difference is currently not
understood. And further experimental and theoretical work is required to get a deeper
understanding of the molecular potential. We have compared Rabi oscillations on the
clock transition for single atoms and interacting interisotope pairs in different configu-
rations. For the interisotope pairs we found a transversal damping approximately eight
times larger than for the single particle transition. This is most likely associated to colli-
sional dephasing. The Rabi frequencies for the two-particle transition have been found to
be increased by 4% and 8% respectively, which possibly could be an interaction-induced
effect. To clarify this behavior a calculation of the analytical solution of two interacting
atoms in an harmonic trap would be beneficial. Our measurements constitute an interest-
ing starting point for further studies of the molecular potential of interisotope ytterbium
pairs and could be complemented by studies of interorbital interactions in different mix-
tures including for example bosonic 174Yb in the future.
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4.2. Interorbital Spin-Exchange Interaction in 171Yb

Over the last years, the interorbital spin-exchange interaction in gases of alkaline-earth
(like) elements has gathered much attention. It has been proposed to be used for quan-
tum simulation of orbital magnetism or the Kondo-lattice model [64–66] and has been
characterized for gases of 173Yb and 87Sr some years ago [58, 184, 222]. In 173Yb the
interorbital spin-exchange interaction has been found to be ferromagnetic and extraor-
dinary large [58, 222]. The realization of the Kondo lattice model with ultracold atoms
however, requires an antiferromagnetic spin-exchange interaction, and a vanishing ground-
state interaction [64]. In the following we will characterize the interorbital spin-exchange
interaction for gases of the other fermionic ytterbium isotope 171Yb, that features a van-
ishingly small ground-state interaction.

The interorbital spin-exchange interaction of 171Yb has also been characterized in refs.
[62, 68].

4.2.1. Spectroscopy Hamiltonian

Here I discuss the spectroscopy Hamiltonian for 171Yb, following the detailed derivation
of the spectroscopy Hamiltonian for 173Yb in refs. [82, 135].

Previously we have considered interactions between two atoms of different isotopes
constituting two distinguishable particles. Now we consider two atoms of 171Yb, with
spin mF = ±1/2, that occupy the same lattice site, representing two indistinguishable
fermionic particles. The two particle wave function can be written as a product state of
an orbital wave function and a spin wave function. For both atoms in either the ground
or excited state the antisymmetry of the wave function required for two indistinguishable
fermionic particles is realized by a symmetric orbital state and an antisymmetric spin
singlet state and can be written as:

|gg⟩ = |g, g⟩ ⊗ 1√
2

(|↑↓⟩ − |↓↑⟩) (4.11)

|ee⟩ = |e, e⟩ ⊗ 1√
2

(|↑↓⟩ − |↓↑⟩) (4.12)

If one atom is in the ground state and the other atom in the excited state 3P0, the total
antisymmetry of the wave function can be achieved in two different ways. Either by a
symmetric orbital triplet and antisymmetric spin singlet wave function or the other way
around by an antisymmetric orbital singlet and a symmetric spin triplet wave function.
In the following we denote these states as |eg+⟩ and |eg−⟩ given by:

∣∣eg+
〉

=
1√
2

(|e, g⟩ + |g, e⟩) ⊗ 1√
2

(|↑↓⟩ − |↓↑⟩) (4.13)∣∣eg−〉 =
1√
2

(|e, g⟩ − |g, e⟩) ⊗ 1√
2

(|↑↓⟩ + |↓↑⟩). (4.14)
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Together with the states (|e, g⟩ − |g, e⟩)/
√

2 ⊗ |↑↑⟩ and (|e, g⟩ − |g, e⟩)/
√

2 ⊗ |↓↓⟩ these six
states form the interaction basis. However in the following we restrict our considerations
to the subspace formed by the four basis states given by eqs. 4.11-4.14, as the other two
states are not accessible via excitation with π-polarized clock laser light as will be shown
later. The two-particle Hamiltonian at vanishing magnetic field can be written as:

H = Hel + Hint + HL, (4.15)

and is comprised by the sum of the bare electronic Hamiltonian Hel the atomic interaction
Hamiltonian Hint and the coupling Hamiltonian HL describing the atom light interaction.
The bare electronic Hamiltonian Hel is spin independent and in the frame rotating at the
laser frequency it is given by:

Hel = ℏ∆ (|gg⟩ ⟨gg| − |ee⟩ ⟨ee|) . (4.16)

Here ∆ = ω − ω0 describes the detuning with respect to the atomic resonance. Each
of the four states |gg⟩ |eg+⟩ |eg−⟩ and |ee⟩ is characterized by its own molecular poten-
tial and Hubbard on-site interaction Ugg, Uee and Ueg± . The corresponding interaction
Hamiltonian reads:

Hint = Ugg |gg⟩⟨gg| + Uee |ee⟩⟨ee| + Ueg+
∣∣eg+〉〈eg+∣∣+ Ueg−

∣∣eg−〉〈eg−∣∣ . (4.17)

The single particle Hamiltonian HL,π,1 describing the interaction of a single atom with
π-polarized clock laser light is given by:

HL,π,1 =
ℏΩ

2
(|e ↑⟩⟨g ↑| − |e ↓⟩⟨g ↓| + h.c.) . (4.18)

Here h.c. denotes the hermitian conjugate. The two terms in eq. 4.18 have opposite sign
due to the opposite signs of the Clebsch-Gordan coefficients for the transitions of the
different mF -states. The two-body Hamiltonian then reads :

HL,π = H(1)
L,π,1 ⊗ 1

(2) + 1
(1) ⊗H(2)

L,π,1. (4.19)

Here 1 denotes the identity matrix and the superscripts (1) and (2) indicate that the
operators act on the first or the second particle, respectively. Applying HL,π to the
interaction basis one finds only two non-vanishing matrix elements ⟨eg−|HL,π|gg⟩ and
⟨ee|HL,π|eg−⟩ and the two-particle Hamiltonian hence can be rewritten as[82]:

HL,π =
ℏ
√

2Ω

2

(∣∣eg−〉 ⟨gg| − |ee⟩
〈
eg−
∣∣+ h.c.

)
. (4.20)

In particular, one finds that the ground state |gg⟩ only couples to the spin triplet state
|eg−⟩. Compared to the single particle transition the coupling is enhanced by a factor of√

2, which is associated to superradiant behavior [223].
At finite magnetic field the energy levels of the atoms experience a Zeeman shift according
to the orbital and mF -state. The single particle Zeeman Hamiltonian HZ,1 reads [82]:

HZ,1 = EZ,g↓ |g ↓⟩⟨g ↓| + EZ,g↑ |g ↑⟩⟨g ↑| + EZ,e↓ |e ↓⟩⟨e ↓| + EZ,e↑ |e ↑⟩⟨e ↑| . (4.21)
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Here the terms EZ,g↓, EZ,g↑, EZ,e↓ and EZ,e↑ denote the single particle Zeeman shifts at a
certain magnetic field B. Applying the two-particle Zeeman Hamiltonian HZ, given by
[82]:

HZ = H(1)
Z,1 ⊗ 1

(2) + 1
(1) ⊗H(2)

Z,1, (4.22)

to the interaction basis, one finds that the Zeeman Hamiltonian is not diagonal in the
interaction basis and by using the identities EZ,g↓ = −EZ,g↑ and EZ,e↓ = −EZ,e↑ it can be
shown that[82]:

HZ |gg⟩ = 0 (4.23)

HZ |ee⟩ = 0 (4.24)

HZ

∣∣eg+〉 = EZ(B)
∣∣eg−〉 (4.25)

HZ

∣∣eg−〉 = EZ(B)
∣∣eg+〉 . (4.26)

Here EZ(B) denotes the B-field dependent differential Zeeman shift between atoms of the
same spin in the orbital state 1S0 and 3P0. For 171Yb it is given by EZ(B) = δgBmF ,
with δg = −399.0(1)Hz/G [68]. The atomic Hamiltonian Hat = Hel + Hint + HZ in the
interaction basis thus can be written in matrix notation as [82]:

Hat =


Ugg + ℏ∆ 0 0 0

0 Ueg+ EZ(B) 0
0 EZ(B) Ueg− 0
0 0 0 Uee − ℏ∆

 (4.27)

The Zeeman interaction mixes the states |eg+⟩ and |eg−⟩. Diagonalizing the Hamiltonian
eq. 4.27 yields new eigenstates |+⟩ and |−⟩ given by:

|+⟩ = c1(B)
∣∣eg+〉+ c2(B)

∣∣eg−〉 (4.28)

|−⟩ = c1(B)
∣∣eg−〉− c2(B)

∣∣eg+〉 , (4.29)

with corresponding eigenenergies E± given by [2]:

E± = V ± Vex

√
1 +

(
EZ(B)

Vex

)2

. (4.30)

Here V = (Ueg+ +Ueg−)/2 denotes the direct and Vex = (Ueg+ −Ueg−)/2 the spin-exchange
part of the interaction. The mixing coefficients c1 and c2 are given by [2]:

c1(B) =
|Vex| +

√
V 2
ex + E2

Z(B)√
2V 2

ex + 2E2
Z(B) + 2|Vex|

√
V 2
ex + E2

Z(B)
(4.31)

c2(B) =
|EZ(B)|√

2V 2
ex + 2E2

Z(B) + 2|Vex|
√
V 2
ex + E2

Z(B)
. (4.32)

In the limit of B → ∞ one finds c1 = c2 = 1/
√

2 while for B = 0 one finds c1 = 1 and
c2 = 0.
Now we can write the complete Hamiltonian for an arbitrary magnetic field:

H = Hel + Hint + HZ + HL, (4.33)
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Figure 4.6.: Single particle (left) and two particle transitions (right) for a two component fermi gas
of 171Yb. Shown are the relevant transitions and energy shifts caused by the Zeemann effect and
two-body interactions. The frequency f0 denotes the bare atomic resonance frequency. Distances
are not to scale.

which in matrix notation reads:

H =



Ugg + ℏ∆ ℏ
√
2Ω
2
c2(B) ℏ

√
2Ω
2
c1(B) 0

ℏ
√
2Ω
2
c2(B) E+ 0 ℏ

√
2Ω
2
c2(B)

ℏ
√
2Ω
2
c1(B) 0 E−

ℏ
√
2Ω
2
c1(B)

0 ℏ
√
2Ω
2
c2(B) ℏ

√
2Ω
2
c1(B) Uee − ℏ∆


. (4.34)

At finite magnetic field the ground state |gg⟩ couples to the state |±⟩, as indicated in
fig. 4.6. Note however, that the matrix transition elements ⟨eg±|H|gg⟩ scale with the
mixing coefficients c1 and c2. Therefore the effective Rabi frequencies Ω± =

√
(2)c2/1Ω0

of the optical transitions depend on the magnetic field and especially for small magnetic
fields are different.

With these formulas at hand we are well equipped to understand the spectra of inter-
acting two spin component gases of 171Yb.

4.2.2. Spectroscopic Characterizations of the Interorbital
Spin-Exchange Interaction

To probe the interorbital spin-exchange interaction we prepare a spin balanced gas of 171Yb
of N171 ≈ (15 − 35) × 103, load it into an magical optical lattice with s1D = 50(2)Erec

and s2D = 25.0(3)Erec and perform clock spectroscopy with π-polarized clock laser light
using a clock beam intensity that corresponds to a Rabi frequency of Ω0 = 2π×345(2) Hz
for the single particle transition. Figure 4.7 shows an exemplary spectrum taken at a
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Figure 4.7.: Clock spectrum of an interacting two spin component gas of 171Yb at a magnetic field
of B = 13.1G. We find four spectroscopic features that can be attributed to single atoms in the
states mF = ±1/2 and interacting atom pairs in the interorbital states |+⟩ and |−⟩. Shown is the
excited state fraction ne as a function of the clock laser detuning ∆. For the single atom features
labeled by |↑⟩ and |↓⟩ we used pulses of tpulse = 1.45ms, corresponding to a Rabi frequency of
Ω0 = 2π × 345(2)Hz. For the two particle features the pulse duration has been adapted to account
for the sub- and superradiant properties of the states |±⟩. The solid line denotes a fit of four sinc2

functions used to find the resonance positions. The shaded area indicates the 95% confidence interval
of the fit. Data points are the average of three measurements. Error bars indicating one standard
deviation are typically smaller than the symbol size. The figure is adapted from the published version
[2]. ©2021 American Physical Society.

magnetic field of B = 13.1 G. We find four spectroscopic features. The most prominent
two peaks can be attributed to single atoms in the spin states mF = ±1/2, while the two
smaller peaks are associated to atom pairs in the interorbital states |±⟩. By comparing
the Rabi frequencies of the two interorbital features we identify the resonance at lower
frequency as the transition |gg⟩ → |+⟩ and the resonance at the higher frequency as the
|gg⟩ → |−⟩ transition as the Rabi frequency of the |gg⟩ → |+⟩ increases for an increasing
magnetic field, while the Rabi frequency of the |gg⟩ → |−⟩ transition decreases for an
increasing magnetic field, as shown in fig. 4.8. The one and two-particle transitions, are
shifted with respect to the bare atomic transition frequency f0, due to the Zeeman effect
and the two-particle interactions, as schematically shown in fig. 4.6. The frequencies of
the four spectroscopic features visible in fig. 4.7 are given by:

hf↓ = hf0 + EZ,↓(B) (4.35)

hf↑ = hf0 + EZ,↑(B) (4.36)

hf+ = hf0 + ∆V + ∆Vex

√
1 +

(
EZ(B)

∆Vex

)2

(4.37)

hf− = hf0 + ∆V − ∆Vex

√
1 +

(
EZ(B)

∆Vex

)2

, (4.38)

with ∆V = (Ueg+ + Ueg−) /2−Ugg and ∆Vex = (Ueg+ − Ueg−) /2−Ugg. Here EZ,↑(B) and
EZ,↓(B) denote the differential Zeeman shifts for atoms in the states mF = ±1/2. As
the differential Zeeman shift EZ(B) and the ground state interaction Ugg are known we
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Figure 4.8.: Measurement of the Rabi frequencies Ω±. Panel a) and b) show Rabi oscillations
on the interorbital transitions |gg⟩ → |−⟩ and |gg⟩ → |+⟩, for different magnetic fields. Solid
lines indicate a fit of the numerical solutions of the optical Bloch equations, neglecting spontaneous
emission as described in 3. To obtain the bare Rabi frequencies the maximum excited state fraction
has been fixed to the value of ne,max = 0.115(4), found in the spectroscopic measurement presented
in fig. 4.9, while the detuning, the bare Rabi frequency and the transversal damping have been left
as free parameters. Data points represent the average of two to three measurements with error
bars (smaller than the marker size) denoting one standard deviation. Panel c) shows a comparison
of the obtained Rabi frequencies Ω± and the theoretical curves calculated using eq. 4.30 with the
spectroscopically measured values of V and Vex. Data points show the Rabi frequencies obtained
from the fits shown in Panel a) and b) with errorbars indicating the uncertainty of the fit. Panel c)
is adapted from the published version [2]. ©2021 American Physical Society.

can use this system of equations to determine f0, the magnetic field B and obtain the
quantities of interest Ueg+ and Ueg− (see ref. [98] for more details).
To determine the interorbital interaction parameters we take spectra at different magnetic
fields as shown in fig. 4.9 a). To achieve an optimal spectroscopic contrast we account
for the different Rabi frequencies of the interorbital transitions caused by the magnetic
field dependent state mixing by adapting the clock laser pulse length to fulfill the π pulse
condition.
We average the interaction parameters ∆Ueg± = Ueg± − Ugg computed for each spec-
trum and find ∆Ueg−/h = 3.53(4) kHz and ∆Ueg+/h = 2.32(3)kHz, corresponding to
a direct and spin-exchange interaction energy of∆V/h = 2.896(11) kHz and ∆Vex/h =
−0.60(2) kHz. We compute the Wannier integrals for the used lattice depths of s1D =
50Erec and s2D = 25 Erec and use eq. 1.14 to obtain the lattice depth independent s-
wave scattering lengths. Using the literature value of the ground state s-wave scattering
length agg = −3(4) a0 obtained by two color photo association measurements [118], we
find s-wave scattering lengths of aeg+ = 203(5) a0 and aeg− = 308(6) a0. As a cross check
we compare measured Rabi frequencies for the interorbital transitions and the expected
values obtained from eq. 4.31 and eq. 4.32 using the measured values of aeg± finding a
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Figure 4.9.: Spectroscopic determination of the interorbital direct and spin-exchange interactions
of 171Yb. Panel a) shows clock spectra of the two component Fermi gas of 171Yb at different
magnetic fields, for clarity offset in the y-direction. Panel b) shows the resonance positions of the
single particle and two-particle transitions obtained from fitting the sum of four sinc2 functions to
the spectra presented in panel a), as a function of the magnetic field. Solid lines show the energy
branches E± according to eq. 4.30 computed with the weighted means of the values obtained for V
and Vex. Dashed lines show the Zeeman Shift of Ez = −399.0(1)Hz/GmFB as reported in [68].
The figure is adapted from the published version [2]. ©2021 American Physical Society.

good agreement (see fig. 4.8 c)).

4.2.3. Conclusion and Outlook

We have spectroscopically characterized interorbital interactions in two spin component
gases of 171Yb and have determined the corresponding s-wave scattering lengths aeg+ =
203(5) a0 and aeg− = 308(6) a0. The interorbital spin-exchange interaction in 171Yb has
recently been characterized by the Kyoto and Munich groups finding values of aeg+ =
225(13) a0 and aeg− = 355(6) a0 [62] and aeg+ = 240(4) a0 and aeg− = 389(4) a0 [68], re-
spectively. The here measured value of aeg+ = 203(5) a0 is in agreement with the value
measured by the Kyoto group but not with the value reported by the Munich group. The
measured value of aeg− = 308(6) a0 deviates from the values measured by both groups.
The difference between the value measured in our experiment and the value measured by
the Kyoto group is, however, comparable to the difference between the values reported
by the Kyoto and Munich groups. At the given moment it is unclear what causes the
difference of the measured values. A difference between the measurements presented here
and the measurements conducted by the Kyoto and the Munich groups are the lattice
potentials. Whereas we use a combined lattice potential formed by a one-dimensional
lattice and a triangular 2D-lattice, the Kyoto and Munich groups work with simple cubic
lattices. However, the lattice geometry is taken into account in the calculation of the
Wannier integrals, and hence this does not explain the deviation of the different measure-
ments, which therefore remains an open question.
On the other hand, the findings of all three measurements correspond to an antiferro-
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agg(a0) aeg+(a0) aeg−(a0) βeg±(cm3s−1) βee(cm3s−1) reference

−3(4) [226]
203(5) 308(6) This work [2]
225(13) 355(6) [62]
240(4) 389(4) ≤ 2.6(3) × 10−16 4.8(2.1) × 10−12 [68]

Table 4.4.: Summary of elastic and inelastic interorbital interaction parameters for 171Yb.

magnetic spin-exchange interaction Vex < 0 and therefore show a qualitative agreement.
Elastic and inelastic interaction parameters for 171Yb measured in different experiments
are summarized in tab. 4.4
The almost vanishing ground state interaction and the moderate antiferromagnetic spin-
exchange interaction render 171Yb an ideal candidate for quantum simulation of the
Kondo-lattice model[64, 65]. It would be beneficial to be able to tune the spin-exchange
interaction, which could possibly be achieved employing confinement induced resonances
224, 225 but remains to be demonstrated. Therefore, studying the spin-exchange inter-
action as a function of the lateral confinement could be a reasonable next step.
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5. Orbital Mixtures in a State
Dependent Lattice

Over the last decades, ultracold gases in optical lattices have been used extraordinar-
ily successfully for quantum simulation of Hubbard models [21, 227]. Ultracold atoms
in combination with optical lattices constitute a versatile experimental toolbox as many
system parameters such as interaction strength, lattice depth and geometry can be con-
veniently controlled, and therefore in many cases, allow to tailor Hamiltonians of interest.
Though the s-wave interaction of ytterbium is fixed due to the lack of magnetic Feshbach
resonances, which therefore restrict the utility of this element for quantum simulation
applications, it offers other degrees of freedom. The SU(N) symmetry of the s-wave
interactions allows considering the spin degree of freedom as a synthetic dimension. Cou-
pling multiple spin levels of 173Yb in a lattice system by Raman transitions has been used
to create a finite lattice system, combining real and synthetic dimensions, and allowed
to observe chiral edge currents, in analogy to quantum Hall systems [34]. In a similar
approach the metastable state 3P0 has been used to create a two-leg ladder and to observe
chiral currents [169].
So far, most approaches to quantum simulation of lattice systems with cold atoms have
been restricted to single-band models. However, it is known that in solid-state systems,
interactions between itinerant band electrons and localized spins are of great importance.
Related theories[228] developed by and named after P. W. Anderson [229] and J. Kondo
[230] describe the interaction of conduction-band electrons with a single impurity. Per-
turbatively treating the interaction between conduction-band electrons and a magnetic
impurity, J. Kondo obtained a logarithmic log(T ) contribution for the electric resistivity,
that could explain the minimum in resistivity observed for impure gold [231]. However, the
divergence of the log(T ) term at low temperatures fueled the search for a non-perturbative
theory describing the system known as the Kondo problem [12]. In the following decades
the Kondo problem was solved by K.G Wilson using numerical renormalization group
theory [232] and by N. Andrei and P. Wiegmann using the Bethe Ansatz to diagonalize
the Kondo Hamiltonian [233, 234]. The model, usually dealing with d-electrons, has been
adapted by Coqblin and Schriefer [235] to describe Cerium impurities that are character-
ized by a 4f 1 configuration.
The Kondo lattice model (KLM) and the periodic Anderson model extend the single
impurity models to a lattice of impurities and are commonly used to describe intermetal-
lic rare-earth and actinide compounds[12, 13]. These materials show low-temperature
anomalies that are connected to the formation of f -bands characterized by a large effec-
tive mass. Therefore these systems are referred to as heavy-fermion materials [12, 13].
Heavy-fermion materials show a variety of low-temperature behaviors such as magnetic or-
dering, Kondo insulation or unconventional superconductivity [13]. To grasp the behavior
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of heavy-fermion materials, a precise understanding of the interaction of conduction-band
electrons and localized magnetic moments is necessary.
Ultracold alkaline-earth (-like) atoms in optical lattices have been proposed for quantum
simulation of the Kondo lattice model [64–66]. The metastable state 3P0 is conveniently
accessible and radiatively stable on experimental timescales. State-dependent optical
potentials allow to create optical lattices that feature tunneling coefficients different by
orders of magnitude for ground- and excited-state atoms and are therefore feasible to
create systems of mobile ground and localized excited-state atoms. The interorbital spin-
exchange interaction between ground and excited-state atoms emulates the spin-exchange
interaction between itinerant electrons and localized spin. Given these ingredients it is
expected that engineering the Kondo lattice Hamiltonian HKLM [64, 235]:

HKLM = −
∑

⟨i,j⟩,m

Jg(c
†
igmcjgm + h.c.) + Vex

∑
i,m,m′

c†igmc
†
iem′cigmciem′ , (5.1)

in a system of ultracold atoms is feasible. Here Jg denotes the tunneling energy for
ground-state atoms and Vex the interorbital spin-exchange energy. The fermionic creation
and annihilation operators c†igm and cigm correspond to the creation and annihilation op-

erators of a ground-state atom in the spin state m at lattice site i, whereas c†iem and ciem
denote operators corresponding to the creation and annihilation of an excited-state atom
in the spin state m at lattice site i. It has been shown by S. Doniach that in a one dimen-
sional Kondo lattice, a second order phase transition from an antiferromagnetic ground
state to a heavy-Fermi liquid characterized by Kondo singlet formation occurs, as the
exchange coupling is increased above a critical value [11]. Below the critical value, in the
antiferromagnetic phase the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction[236] is
dominant, characterized by a temperature TRKKY given by [11, 64]:

kBTRKKY ∼ V 2
ex/Jg. (5.2)

Above the critical value the relevant energy scale is given by the Kondo temperature:

kBTKondo ∼ Jge
−cJg/|Vex|. (5.3)

Here c denotes a dimensionless constant on the order of one [64]. The corresponding
phase diagram is known as the ‘Doniach’ phase diagram [11]. According to ref.[64] in the
antiferromagnetic KLM (Vex < 0) heavy-Fermi liquid behavior is expected for Jg ≲ |Vex|
and temperatures below the Kondo temperature TKondo, which for Jg ∼ Vex is on the order
of Vex. Though tuning the spin-exchange coupling using confinement induced resonances
has been proposed [225, 237], reaching temperatures low enough to observe heavy-Fermion
behavior might be challenging.

The Hamiltonian for a gas of atoms in the ground and the excited state in a state-
dependent optical lattice is given by [64]:

HSDL = −
∑

⟨i,j⟩,m,α

Jα(c†iαmcjαm + h.c.) +
∑
i,α

Uαα

2
niα(niα − 1)

+V
∑
i

nignie + Vex
∑

i,m,m′

c†igmc
†
iem′cigmciem′ .

(5.4)
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Figure 5.1.: Illustration of ground- and excited-state atoms depicted as blue and red spheres respec-
tively in a state-dependent optical lattice. In the limit of Je ≫ Jg it is possible to realize a system
of localized excited-state and itinerant ground state-atoms. Interorbital pairs at a shared lattice site
interact via the interorbital spin exchange interaction.

Here the α ∈ [g, e] describes the electronic state of the atom, V and Vex describe the direct
and exchange part of the interorbital interactions, respectively, while Uαα describes the
on-site interaction between two ground- or excited-state atoms. The residual harmonic
confinement caused by the intensity profile of the lattice laser beams has been neglected.
Assuming one excited-state atom per lattice site and a strongly state-dependent lattice
characterized by negligible tunneling for excited-state atoms Je ≈ 0 as well as a vanishing
ground state on-site interaction Ugg ≈ 0 the SDL Hamiltonian eq. 5.4 transforms into the
Kondo lattice Hamiltonian eq. 5.1.

While for 173Yb the ground state s-wave scattering length is given by 173agg = 199(2)a0,
for 171Yb it almost vanishes with 171agg = −3(4)a0 [118] (the non-interacting case a = 0
is within uncertainty). Hence neglecting the ground-state on-site interaction for 171Yb
is well justified. The interorbital spin exchange interaction for 173Yb is ferromagnetic
[58, 222] while it is antiferromagnetic for 171Yb (see sec. 4 and refs. [62, 68]) and hence
closer to the solid state analogue. Therefore 171Yb constitutes an intriguing candidate for
studying Kondo-lattice-type physics in state-dependent optical lattices. First inspiring
studies of spin-exchange in one-dimensional state-dependent optical lattices with 173Yb
[77] showed spin-exchange rates tunable by the perpendicular confinement and fueled the-
oretical interest [238].

In the ytterbium lab, we use light at 660 nm to create a state-dependent optical lat-
tice for ytterbium atoms. The laser system setup has been set up by A. Skottke and
is described in detail in ref.[90]. In the following, I will present characterization mea-
surements of the state-dependent lattice and first experiments demonstrating interorbital
spin-exchange in a gas of 171Yb in the state-dependent lattice. Similar measurements have
been presented in a recent publication by the Kyoto group [78].
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The experiments presented in this chapter have been conducted by K. Sponselee, M.
Diem and mainly the author. Data analysis has been performed by the author.
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Figure 5.2.: Momentum-resolved modulation spectroscopy of a spin polarized gas of 171Yb ground-
state atoms in the state-dependent optical lattice. Panel a) shows the momentum-resolved exci-
tation spectrum. Each horizontal line represents the OD obtained from an absorption image after
bandmapping and ToF, integrated along the direction perpendicular to the SDL and normalized to
its maximum. Colors from dark to bright denote the optical density. The lattice-depth modulation
induces a particle hole excitation. Particles appear in the second and third Brillouin zone while in the
first Brillouin zone a reduced optical density indicates a hole. A fit of a 1D-lattice band structure to
the particle excitation spectrum f(q), extracted from the data shown in panel a) is shown in panel
b) and yields a ground-state lattice depth of sSDL,g = 4.33(8)Erec. Data points shown in grey have
been excluded from the fit.

5.1. Lattice Depth Calibration

Based on a calculation of the complex polarizabilities of the ground and excited state
(see sec. 1) at a wavelength of λSDL = 660 nm, we expect that the lattice depths for
ground and excited state differ by a factor ofαe/αg = 5.5 [84]. The magic wavelength
predicted by this calculation significantly deviates from the actual magic wavelength as
pointed out before, however it is expected to show better results in the proximity of
resonances. Precise knowledge of the lattice potential is necessary to correctly predict the
relevant timescales for dynamics in the optical lattice. Therefore we calibrate the lattice
depth for both ground- and excited-state atoms utilizing momentum resolved lattice-
modulation spectroscopy [239]. To do so, we prepare a spin polarized gas of ground- or
excited-state atoms of 171Yb predominantly in the lowest band of the combined three
dimensional lattice formed by the triangular magic 2D lattice and the state-dependent
1D lattice. We weakly modulate the intensity of the state-dependent lattice beam at
a frequency fmod and thereby drive a transition ψn(q) → ψ′

n(q) from the ground band
n = 0 to a higher band n′. The transition frequency is determined by the band structure
of the lattice and therefore the particle-hole excitation spectrum that is observed using
band mapping[29, 240] is used to determine the lattice depth. Figure 5.2 a) shows the
momentum-resolved lattice-modulation spectrum for a gas of ground-state atoms in a
sSDL,g = 4.33(8)Erec deep lattice. We observe particle hole pairs corresponding to the
excitation in the lowest and the higher Brillouin zone. From the spectrum shown in panel
a) we extract the particle excitation resonance frequencies and fit the differential band
structure ∆E(q) = En′(sSDL, q)−E0(sSDL, q) to determine the actual lattice depth sSDL as
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Figure 5.3.: Momentum-resolved modulation spectroscopy of a spin polarized gas of 171Yb atoms
prepared in the metastable state 3P0 in the state-dependent optical lattice. Panel a) shows the
momentum-resolved excitation spectrum. Each horizontal line represents the the optical density
obtained from an absorption image after bandmapping and ToF, integrated along the direction
perpendicular to the SDL. Each row is normalized to its maximum. Colors from dark to bright
denote the optical density. The lattice depth modulation induces a particle hole excitation. Particles
appear in the third Brillouin zone. Corresponding holes in the first Brillouin zone are not visible.
Panel b) shows a fit of a 1D-lattice band structure to the particle excitation spectrum f(q), extracted
from the data shown in panel a) that yields an excited-state lattice depth of sSDL,e = 11.7(5)Erec.

shown in fig. 5.2 panel b). We perform the same measurement but with atoms prepared
in the metastable state to determine the lattice depth for atoms in the excited state and
the polarizability ratio αe/αg. Figure 5.3 shows the lattice-modulation spectrum obtained
for excited-state atoms in a sSDL,e = 11.7(5)Erec deep lattice. Typically for excited-state
atoms, the achieved data quality is worse than for ground-state atoms. However, the
small relative uncertainty of the determined lattice depth of approximately 4% underlines
the quality of the calibration method. To calibrate the intensity regulation used for
the state-dependent lattice, we perform lattice modulation spectroscopy for excited- and
ground-state atoms at different set levels of the intensity regulation. The obtained lattice
depths are shown in fig. 5.4. We fit a coupled linear model:

sSDL,g = c UPD (5.5)

sSDL,e =
αe

αg

c UPD (5.6)

leaving the slope c and the polarizability ratio as free parameters. The obtained po-
larizability ratio of αe/αg = 5.5(3) is in excellent agreement with the expected value of
αe/αg = 5.5. Figure 5.4 shows the Hubbard tunneling parameter J calculated for ground-
and excited-state atoms as a function of the ground-state lattice depth sSDL,g for a polar-
izability ratio of αe/αg = 5.5. The tunneling rate for excited-state atoms quickly drops
and for lattice depths sg ≳ 2Erec it is smaller by more than an order of magnitude. Hence
we conclude that a system of localized excited state atoms and simultaneously itinerant
ground state atoms is realizable at a lattice wavelength of 660 nm.

In the following the lattice depths of the state-dependent lattice will be given in terms
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Figure 5.4.: Calibration of the SDL photodiode used for intensity regulation. Blue and red data
points show the lattice depth obtained from lattice modulation spectroscopy as presented in fig. 5.2
and fog. 5.3 for ground- and excited-state atoms respectively. Solid lines show the calibration curves
obtained from a shared fit that yields a polarizability ratio of αe/αg = 5.5(3). Panel b) shows the
tunneling energy J calculated for the measured polarizability ratio as a function of the ground-state
lattice, depth for atoms in the ground (blue line) and excited state (red line). For ground-state lattice
depths of sg ≳ 2Erec the tunneling energies differ by more than an order of magnitude.

of the ground-state lattice depth sSDL,g, the excited state lattice depth is then given by
sSDL,e = 5.5(3) sSDL,g.

5.2. Excited-State Preparation in the SDL

Whereas magic optical lattices allow to probe the clock transition with high resolution,
in a state dependent lattice the transition is broadenend. In the following, I will present
straightforward calculations to estimate the broadening and shift of the clock transition
for atoms in the state-dependent lattice. The differential light shift is given by:

∆E(λ, I) = (αe(λ) − αg(λ)) I. (5.7)

At the magic wavelength the differential polarizability ∆α = αe − αg vanishes and the
frequency of the clock resonance is not affected by the light shift. Away from the magic
wavelength this is explicitly not the case and the resonance frequency depends on the
depth of the trapping potential. Therefore the Gaussian intensity profile of the lattice
beams leads to a broadening of the transition as the potential depth becomes position
dependent.
To estimate the effect of the broadening induced by the state-dependent lattice we assume
a Gaussian intensity profile of the lattice beam given by [131]:

ISDL(r, z) = I0

(
w0,SDL

w(z)

)2

e
−2r2

w2(z) (5.8)
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where w(z) denotes the waist at position z and is given by [131]:

w(z) = w0,SDL

√
1 +

(
z

zR

)2

. (5.9)

Here w0 denotes the waist of the lattice beam, while zR represents the Rayleigh range. The
waist of the lattice beams has been determined to be w0,SDL = 78µm [90]. The potential
is given by Vg/e = V0,g/eI(r, z), with V0,g/e < 0, and hence its position dependence is given
by the intensity distribution of the lattice laser.
The combined three-dimensional lattice potential formed by the one-dimensional state-
dependent lattice at λSDL = 660 nm and the triangular 2D lattice at λ2D = 759 nm can
be described by a Bravais lattice with lattice vectors a1 a2 a3 given by [129]:

a1 = a2D

1
0
0

 , a2 =
a2D
2

√
3

1
0

 and a3 = aSDL

0
0
1

 , (5.10)

with a2D = 2λ2D/3 and aSDL = λSDL/2. Any lattice site position Ri,j,k can thus be written
as Rijk = ia1 + ja2 + ka3 with i, j, k ∈ N. The cylindrical coordinates used in eq. 5.8
thus can be parameterized by:

r = |ia1 + ja2| (5.11)

z = ka3 (5.12)

to compute the potential depths Vi,j,k at a certain lattice site Rijk. In the limit of a
deep lattice individual lattice sites can be approximated by harmonic oscillators with an
oscillator frequency of:

ωho(Rijk) =

√
2V (Rijk)kSDL

m
, (5.13)

corresponding to a ground state energy of the harmonic oscillator of E0 = ℏωho(Rijk)/2.
The frequency shift of the clock-transition is then given by:

∆f = (Ve + E0,e) − (Vg + E0,g) . (5.14)

To compute the clock-transition frequency shift for every individual lattice site and
estimate the broadening of the transition caused by the Gaussian intensity distribution
we have to assume a certain lattice occupation. In a lowest order approximation we
assume that due to the slow dynamics caused by the large atomic mass of ytterbium the
spatial distribution determined by the dipole traps is mapped onto the lattice. Figure 5.5
a) shows the mean shift of the clock resonance ∆̄f as a function of the ground-state lattice
depth sSDL,g calculated for 105 lattice sites inside a cigar-shaped volume with an aspect

ratio of
√

1/3. Figure 5.5 b) shows the the spread of resonance frequencies caused by
the intensity profile of the lattice beams at different lattice depths. At a lattice depth
of sSDl,g = 20Erec for lattice parameters of w0 = 78µm, αe/αg = 5.5 and 105 lattice
sites the individual resonance frequencies are spread over ∆fRMS ≈ 1 kHz. According to
the previous analysis of the excitation process in shallow lattices (see sec. 3), for efficient
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Figure 5.5.: Light shifts in the state-dependent lattice. Panel a) shows the mean light shift ∆̄f
as a function of the ground-state lattice depth. Panel b) shows a histogram of the light shifts
calculated for 105 lattice sites of our optical lattice assuming a polarizability ratio of αe/αg = 5.5.
To compare the effective broadening for different lattice depths, the mean light shift ∆̄f is subtracted.
For the computation, individual lattice sites are approximated by harmonic oscillators, which is a valid
approximation in the limit of a deep lattice. Colors from dark to bright indicate an increasing ground-
state lattice depth.

state transfer via π-pulses the Rabi frequency has to be larger than the broadening by
at least one order of magnitude. For the sSDL,g = 20Erec deep lattice this would require
Rabi frequencies of Ω > 2π× 50 kHz limiting the the achievable Fourier limited linewidth
to Γ > 80 kHz. To resolve the spectroscopic features of the individual spin states of
171Yb the Zeeman splitting should be significantly larger than the linewidth (e.g. four
times). The differential Zeeman shift between the ground- and excited state of 171Yb is
given by ∆fZ = δgmFB, with δg = −399.0(1) Hz/G [68]. Hence, a Zeeman splitting of
δfZ > 4Γ = 240 kHz requires a magnetic field of B > 600 G, which cannot be reached
with the actual setup.
In the spin 1/2 system of 171Yb for a transition with ∆J = 0, due to the selection rules,
σ+ and σ− polarized light only couples one transition each, allowing to address a certain
spin state without the need of a particular Zeeman splitting. To do so, we change the
polarization of the clock beam from linear to circular polarization and the main coils
provide a quantization axis along the z-direction. Further we use a broad rapid adiabatic
passage with ∆fchirp ≫ ∆fbroadening to effectively transfer atoms from |g, ↓⟩ → |e, ↑⟩ or
|g, ↑⟩ → |e, ↓⟩. As discussed in chapter 3 the transfer efficiency of a rapid adiabatic passage
depends on the speed of the frequency chirp. Figure 5.6 b) shows the state transfer of
a rapid adiabatic passage on the σ− transition, for different chirp speeds. According to
sec. 3.4 varying the RAP chirp velocities or at a given RAP span the chirp time tRAP

allows to control the ratio of ground- and excited-state atoms. Due to the required large
magnetic fields spin-resolved excitation of the clock state using π pulses of π-polarized
light is technically difficult implement. State preparation using σ+ or σ− transitions
benefits from the selection rules and constitutes a good alternative.
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Figure 5.6.: Excited state preparation in the state-dependent lattice using a σ− polarized RAP.
Panel a) shows the transition addressed by the σ− polarized clock laser. Panel b) shows the excited-
state preparation with an adiabatic passage for increasing RAP times tRAP = 2ms, tRAP = 3ms and
tRAP = 9ms, indicated by colors from dark to bright. Solid lines indicate fits to a sigmoid function
to guide the eye. We associate the non-zero excited-state fraction at the beginning of the frequency
ramp with excitation prior to the RAP that most likely is caused by incorrect switching and shuttering
of the clock beam prior to the RAP.

5.3. Lattice Lifetimes

Quantum simulation applications involving the metastable state 3P0 as a degree of freedom
require a lattice lifetime of the excited-state atoms that exceeds the timescale dominating
the dynamics of the system under investigation. Thus for the lattice experiments the
lifetimes should be larger than the timescales associated to tunneling and super-exchange
processes, at least by an order of magnitude, to achieve a separation of time scales.
Figure 5.7 shows a previous measurement of lattice lifetimes in an all magical lattice for
173Yb[83]. While the 1/e lifetime of ground state atoms is found to be τg ≈ 18.5 s, a
sample initially prepared in the excited state shows a reduced lifetime of τe ≈ 4.3 s. After
a hold time of thold = 8 s about 40% of the atoms that initially have been prepared in the
metastable state decayed back into the ground state.
The wavelength of the state-dependent lattice is closer to the 1S0 → 3P1 and 3P0 → 3S0

transitions at 556 nm and 649 nm, respectively, than the magic lattice wavelength. As
the off-resonant scattering rate scales as Γscat ∝ I/∆2 [121], a shorter lattice lifetime,
especially of the excited-state atoms is expected.
To characterize the lattice lifetimes of ground-state atoms in the SDL, we load spin-
polarized gases of 171Yb into the combined lattice potential formed by the one-dimensional
state-dependent lattice and the triangular magic lattice and observe the atom number
decay as a function of the lattice hold time, as shown in fig. 5.8 a). We perform the same
measurement for different lattice depths and fit the observed decrease of the atom number
with an exponential decay. Figure 5.8 b) shows the extracted 1/e lifetimes τg. We do not
observe a significant lattice depth dependence of the atom number decay (yet the error
bars are large). We conclude that lattice photon scattering induced losses for ground-
state atoms are negligible, while back ground gas scattering probably is the dominant loss
mechanism. We obtain an average lifetime of τSDL,g = 24.4(1.2) s, that is comparable to
the lifetime of τmag,g ≈ 18.5 s found for a gas of 173Yb in an all magical lattice.
We conduct the same experiment, but now prepare a spin-polarized gas in the metastable
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Figure 5.7.: Lifetime measurement for ground and excited state atoms of 173Yb in an all magic
lattice, with s1D = 50Erec and s2D = 18.8Erec. Grey squares show the particle number for a
spin-polarized sample prepared in the ground state as a function of lattice hold time thold. Blue and
orange circles indicate the time evolution of the particle numbers of ground and excited state atoms
Ng and Ne, respectively, for a sample initially prepared in the excited state using a rapid adiabatic
passage. Ne with RAP and Ng without RAP are fitted by a decaying exponential whereas Ng with
RAP is fitted with N(t) = N0(1− exp(−t/τ)), respectively. The figure is adapted from [83].

state 3P0 via a rapid adiabatic passage. Residual ground state atoms are removed by a
pulse of resonant blue light. We detect the population of ground and excited state, and
resolve the spin population of the ground state atoms using the OSG-technique 1.5. In
addition to particle losses caused by background gas scattering and off-resonant lattice
photon scattering, the metastable state naturally decays with a rate of Γ0 into the ground
state. However, as the linewidth is estimated to be smaller than 10 mHz [102] we expect
spontaneous decay to be negligible on the experimental timescale. Yet as shown in fig. 5.7
even in the magic lattice we observe a decay of excited state atoms on timescales faster
than the natural lifetime of the metastable state, which most likely is associated to a
lattice light induced process. On the other hand the SDL is only detuned by 11 nm with
the respect to the 3P0 → 3S1 transition at 649 nm and therefore off-resonant scattering is
expected to be more prominent compared to the magic lattice.
Figure 5.9 shows the ground- and excited-state population as a function of lattice hold time
for different lattice depths. We observe a lattice-depth-dependent decay of the excited-
state atom number and an increase of the ground-state population, which is faster than
expected for spontaneous decay. According to ref. [241] this can be explained by off-
resonant Raman scattering from 3P0 → 3P1 with intermediate state 3S1 and subsequent
radiative decay from the 3P1 state into the ground state 1S0. The time evolution of the
particle numbers for ground and excited state atoms Ne and Ng can be described by two
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Figure 5.8.: Life times of ground state atoms in the SDL. Panel a) shows the atom number as a
function of lattice hold time. Colors from dark to bright indicate an increasing 1D lattice depth s1D.
Data points for a lattice depths of s1D = 8.6 and s1D = 12.9 are the average of three measurements,
with error bars indicating the standard deviation of the mean. Data points for a lattice depths of
s1D = 4.3 correspond to single measurements. Solid lines represents the fit of an exponential decay
and shaded areas show the 95% confidence interval. The determined lifetimes shown in panel b)
do not significantly differ. The solid line shows a weighted mean yielding an average lifetime of
τg = 24.4(1.2) s with the shaded area representing the 95% confidence interval.

coupled differential equations:

Ṅe = −Γloss,eNe − (Γ0 + Γlat)Ne (5.15)

Ṅg = −Γloss,gNg + (Γ0 + Γlat)Ne, (5.16)

here Γloss,g/e describes losses of ground and excited state atoms, respectively, while Γlat

describes a lattice photon scattering induced decay of excited-state atoms into ground
state atoms. The analytical solutions to equations 5.15 and 5.16 read [241]:

Ne(t) = Ne(0) exp(−[Γloss,e + Γ0 + Γlat]t) (5.17)

Ng(t) =

(
Ne(0)

1 − exp(−[Γloss,e − Γloss,g + Γ0 + Γlat]t)

1 + (Γloss,e − Γloss,g)/(Γ0 + Γlat)
+Ng(0)

)
exp(−Γloss,gt) (5.18)

According to the expected linear scaling of the off-resonant photon scattering rate with the
intensity [121], the lattice depth dependence of the lattice photon scattering is modeled
using a linear ansatz for Γlat:

Γlat(s) = clat
Hz

Erec

sSDL,g. (5.19)

Different from the results presented in [241], in our measurements we observe a lattice
depth dependence of the loss rate Γloss,e. This suggests that not all atoms which decay
to the ground state via lattice-photon scattering are trapped. This behavior might be
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Figure 5.9.: State-dependent lattice lifetime measurement for atoms in the metastable state. The
number of atoms in the excited state denoted by orange colors and ground-state atoms denoted by
blue colors, is shown as a function of lattice hold time. Different symbols indicate different SDL
lattice depths as denoted in the legend. Solid lines represent a combined fit of the complete data
set using the solutions of the coupled equations eq. 5.17 and eq. 5.18. Shaded areas show 95%
confidence intervals of the fit. Data points are the average of three individual measurements, with
error bars indicating the standard deviation of the mean.

associated to the low value of the ground-state lattice depths which are smaller than
the lattice depths used in ref. [241] by a factor of ten, and do not fulfill the Lamb-
Dicke condition. At the low to moderate depths for ground state atoms due to tunneling
processes, losses caused by inelastic eg collisions might play a role. To account for the
lattice depth dependence of the excited-state atom loss we use a linear ansatz for Γloss,e

Γloss,e(s) = closs,e
Hz

Erec

sSDL,g + closs,e,0. (5.20)

Using the value of Γloss,g = 41.7(1.7) mHz obtained from the ground-state lifetime mea-
surement and assuming a spontaneous decay rate of Γ0 = 10 mHz the entire data set is
fitted using, eq. 5.17-5.18 leaving the decay rates Γloss,e(s) and Γlat(s) as free parameters.
From the fit we determine the lattice-photon scattering induced decay to be:

Γlat = 0.041(2)
Hz

Erec

sSDL,g. (5.21)

Accordingly the excited-state loss is determined to be:

Γloss = 0.065(7)
Hz

Erec

sSDL,g + 0.39(5) Hz. (5.22)

Our finding indicates that about 65(7)% of the atoms that undergo lattice-photon induced
decay are lost whereas about 41(1)% are trapped and appear as ground state atoms in
fig. 5.9.

As the lattice-photon scattering-induced decay to the ground state involves radiative de-
cay of an intermediate state, e.g. 3P1, the decay process is not spin-preserving. Analysing
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the spin population of the ground state atoms, we find that about 39.1(5)% of the atoms
exhibit a spin-flip, whereas 60.9(5)% remain in the initial mF state, which we associate
with different Clebsch-Gordan coefficients for spin-changing and spin-preserving decay
channels. For the decay from 3P1, F = 3/2,mF = ±1/2 to the 1S0 ground states these
are given by

√
3/3 and

√
6/3 [92], respectively, and therefore are in qualitative agreement

with the measured value. Further characterization of the losses in the optical lattice are
beyond the scope of this thesis and are left for future work.
In conclusion, we have characterized the lattice lifetimes of ground and excited atoms in
the state-dependent lattice. The lifetime of ground-state atoms does not depend on the
lattice depths and is on the order of 20 s. Compared to the all magic lattice, the lifetime
for excited state atoms on the order of τe ∼ 1s is significantly reduced, and crucially
depends on the lattice depth. Yet the lifetimes are much larger than the experimental
timescale and the ground-state tunneling times which are typically on the order of mil-
liseconds. Therefore, we conclude that despite the reduced lattice lifetime in the SDL, the
observation of spin-exchange dynamics in the state-dependent lattice should be possible.

5.4. Observation of Spin-Exchange Dynamics in a State
Dependent Lattice

As a first step towards quantum simulation of multi-band systems with 171Yb, we aim to
observe orbital spin-exchange dynamics in the state-dependent lattice. The experiments
presented in the following were inspired by experiments conducted by the Munich group
with 173Yb in a one-dimensional state-dependent lattice at λSDL = 670 nm [77], that show
a spin-exchange rate, tunable by the 2D magic lattice confinement. Very recently, we
became aware of a study similar to the measurements presented in the following with
171Yb in a state-dependent lattice at 650.7 nm [78].
We start with a spin-polarized gas of 25 − 35 × 103 ground state atoms prepared in
the |g, ↑⟩ state at a temperature of T ≈ 0.3TF in a deep optical lattice. The 2D-
lattice is operated at s2D = 30Erec whereas the state-dependent lattice is operated at
a depth of sSDL,g = 17Erec. A fast rapid adiabatic passage using σ− polarized light with
∆fRAP = 120 kHz and tRAP = 2 ms is used to transfer approximately half of the atoms to
the excited state |e, ↓⟩ at a magnetic field of B = 9 G. Subsequently the state-dependent
lattice is ramped down to a final value between sSDL,g = 1.1Erec and sSDL,g = 3.2Erec

within 10 ms, to allow for tunneling and to initiate dynamics. The magnetic field is ramped
down to a final value of B = 2 G. Interorbital spin-exchange processes are expected to
decrease the spin polarization of the ground and excited state. We use absorption imag-
ing combined with repumping and OSG techniques to detect the population of ground
and excited state with spin resolution for ground-state atoms. To detect spin-exchange
dynamics we observe the population of the different states as a function of the SDL hold
time .
Figure 5.10 shows exemplary absorption images obtained for a final depth of the state-

dependent lattice of sSDL,g = 1.1Erec for different SDL hold times. Three different clouds
correspond to atoms in the excited state, and in the different mF -states of the ground
state. Figure 5.11 shows atom numbers determined from the absorption images normal-
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Figure 5.10.: Absorption images for different SDL hold times, thold, at a lattice depth of sSDL,g =
1.1Erec. Visible are three different clouds corresponding to ground-state atoms, indicated in red
and excite-state atoms indicated in blue. The spin population for ground-state atoms is resolved
using the OSG technique. As the SDL hold time increases the population of the states |e⟩ and |g, ↑⟩
decreases, while the population of the state |g, ↓⟩ increases. Every image is the average of three
individual images.

ized to the total number of atoms at thold = 10µs, for lattice depths of a) sSDL,g = 3.1Erec,
b) sSDL,g = 2.2Erec and c) sSDL,g = 1.1Erec. For all three lattice depths we observe a loss
of excited state atoms and the number of atoms in the state |g, ↑⟩ decreases, while the
number of atoms in the state |g, ↓⟩ increases.
In the prepared system many processes can drive particle number dynamics. In anal-
ogy to [78, 222] we use a simple rate-equation-based model to describe the dynamics
of the system. We distinguish several processes that affect the particle number dynam-
ics. Background losses ultimately limit the lifetime of ground and excited state atoms
in the optical lattice. These losses have been characterized previously and correspond to
decay rates Γloss,g and Γloss,e(sSDL,g). Lattice-photon scattering-induced decay of excited-
state atoms to ground-state atoms increases the number of ground state atoms, and has
been characterized by a rate of Γlat(sSDL,g). Due to the different Clebsch-Gordan coef-
ficients for the different radiative decay channels involved, the spin of the excited state
atoms is not preserved. Based on Clebsch-Gordan coefficients for the decay of the state
3P1, F = 3/2,mF = ±1/2, we assume that 2/3 of the decay processes are spin-preserving
while 1/3 is spin-changing (see e.g. ref. [92] for the Clebsch-Gordan coefficients). Inelas-
tic collisions between excited-state atoms with different spins correspond to a loss rate
of Γee while inelastic collisions of atoms in different orbitals correspond to a loss rate
of Γeg. Interorbital spin-exchange processes reduce the spin polarization of ground- and
excited-state and are described by a rate γex.
Considering the four different states of the system |g, ↓⟩, |g, ↑⟩, |e, ↓⟩ and |e, ↑⟩ The
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particle-number dynamics is modeled by four coupled differential equations:

Ṅg,↑ = γex(Ne,↑Ng,↓ −Ne,↓Ng,↑) − ΓegNg,↑(Ne,↑ +Ne,↓) + Γlat(
2

3
Ne,↑ +

1

3
Ne,↓) − Γloss,gNg,↑

(5.23)

Ṅg,↓ = γex(Ne,↓Ng,↑ −Ne,↑Ng,↓) − ΓegNg,↓(Ne,↓ +Ne,↓) + Γlat(
1

3
Ne,↑ +

2

3
Ne,↓) − Γloss,gNg,↓

(5.24)

Ṅe,↑ = γex(Ne,↓Ng,↑ −Ne,↑Ng,↓) − ΓegNe,↑(Ng,↑ +Ng,↓) − ΓeeNe,↑ne,↓ −Ne,↑(Γloss,e + Γlat)
(5.25)

Ṅe,↓ = γex(Ne,↑Ng,↓ −Ne,↓Ng,↑) − ΓegNe,↓(Ng,↑ +Ng,↓) − ΓeeNe,↑Ne,↓ −Ne,↓(Γloss,e + Γlat).
(5.26)

We fit a numerically obtained solution of equations 5.23-5.26 to the data, leaving γex,
Γee and Γeg as well as the initial populations as fitting parameters, while for Γlat, Γloss,f

and Γloss,e we use the values obtained in the characterization measurements presented in
sec. 5.3. The fits to equations 5.23-5.26 are shown in figure 5.11 and reasonably reproduce
the observed dynamics. Figure 5.12 shows the loss and spin-exchange rates as well as the
initial state populations as obtained from the fits. The extracted spin-exchange rates
between γex = 12(7) Hz for sSDL,g = 3.2Erec and γex = 56(8) Hz for sSDL,g = 1.1Erec

exceed the rates measured for lattice-photon induced decay by an order of magnitude.
Therefore, we conclude that the depolarization of the ground state population is not
caused by lattice-photon scattering induced decay of excited-state atoms but indeed is a
direct consequence of interorbital spin-exchange processes.
As the experiments start with a spin-polarized sample due to the Pauli principle there
is no initial double occupancy. The interorbital spin-exchange and the two-body losses
considered in equations eqs. 5.23-5.26 therefore require tunneling and are supposed to be
of super-exchange kind. As depicted in fig. 5.12 panel a) the rates for two-body losses and
spin-exchange increase as tunneling times increase. Especially the increase of the excited-
state pair losses as the lattice depth is decreased from sSDL,g = 2.2Erec to sSDL,g = 1.1Erec,
is noteworthy and to our understanding is connected to excited-state tunneling. At a
lattice depth of sSDL,g = 1.1Erec the tunneling times for ground- and excited state atoms
becomes comparable and hence, for lattice depths below sSDL,g < 2Erec excited-state
atoms cannot be considered localized. Connecting the observed spin-exchange rates to
the spin-exchange interaction measured in sec. 4.2, however, is difficult as it would require
a mircoscopical model taking into account correlations, that are unknown. Initially, we
assumed that prior to the start of the dynamics, the system is exclusively prepared in the
states |g, ↑⟩ and |e, ↓⟩. However, the fit results presented in figure 5.12 b) suggest that
ne,↓ = 20.5(1.6)% of the atoms initially are prepared in the state |e, ↑⟩. This could be
caused by several reasons:

� The polarization of the clock laser is not set properly and thus during the rapid
adiabatic passage we do not only drive the σ− but also the π transition and hence
the other spin state is populated as well.

� In this particular measurement we underestimate the loss rate Γloss,e. During the
fitting routine this is compensated for by overestimating ne,↓ and Γee.
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Figure 5.11.: Particle number dynamics in the SDL normalized to the total number of atoms at
thold = 10µs. Panel a) to c) show data obtained for a set lattice depth of the state-dependent lattice
of sSDL,g = 1.1Erec, sSDL,g = 2.2Erec and sSDL,g = 3.2Erec. Orange circles show the number of
atoms in the excited state, while blue downward pointing triangles represent the number of ground
state atoms in mF = −1/2. Upward pointing triangles show the number of ground state atoms
in mF = 1/2. Solid lines indicate fits to the differential equations 5.23-5.26. Data points are the
weighted average of three individual images and error bars indicate one standard deviation. Shaded
areas show the 95% confidence intervals of the fits.

� The all-classical model is not capable to properly describe the dynamics of the
system as non-classical many-body effects play an important role (compare e.g. [1]
for dissipative dynamics in a the Fermi-Hubbard model).

We tried fitting the data with a fixed initial population, however the data is significantly
better described by leaving the initial population as a free parameter. Given the fact that
with our current set-up we cannot access the spin population of the excited state this is
well justified.

5.5. Conclusion and Outlook

In this chapter I have presented measurements with gases of 171Yb in a one-dimensional
state-dependent lattice at λSDL = 660 nm. I have characterized lattice lifetimes and the
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Figure 5.12.: Panel a) shows the loss and spin-exchange rates obtained from the fits shown in
fig. 5.11. Data points are connected by lines as a guide to the eye. Panel b) shows the initial
population of the different states as a function of the set lattice depth as obtained from the fits
shown in fig. 5.11.

lattice-photon scattering-induced decay of excited-state atoms. The measured polarizabil-
ity ratio of αe/αg = 5.5(3) allows to create lattice potentials with vastly different mobility
properties for atoms in ground and excited state. The differential light shift causes a
lattice-depth dependent shift of the clock transition, while the Gaussian intensity distri-
bution of the lattice beams cause a broadening of the transition for the atomic ensemble.
For our currently reachable magnetic fields, the broadening prevents a spin-selective ad-
dressing of the clock transition using π−polarized light. Nevertheless combining optical
pumping on the 1S0 → 3P1 transition and excitation with σ± polarized light allows to
prepare different interorbital spin configurations. However, as the spin population of the
excited state is not accessible it is not possible to monitor the spin-state preparation
for excited-state atoms. Finally, I presented first measurements showing spin-exchange
dynamics in a state-dependent lattice. Our measurements show similar results to mea-
surements recently reported by the Kyoto group [78] and represent an important step
towards quantum simulation of Kondo lattice type physics. Heavy Fermion behavior is
expected for temperatures well below the Kondo temperature TK. According to ref. [78]
the Kondo temperature can be estimated by:

kBTK = D
√

2|Vex|ρ exp

(
− 1

2|Vex|ρ

)
, (5.27)

whereD and ρ denote the bandwidth and the density of states and are estimated to beD =
2Jg and ρ = 1/(2πJg), respectively. Figure 5.13 a) shows the Hubbard parameters Jg, Vdir,
and Vex, for a 2D lattice depth of s2D = 30Erec and a variable 1D lattice depth of the state
dependent lattice1. Using eq. 5.27 and the values obtained for Jg and Vex we can estimate
the Kondo temperature for our experimental settings as shown in fig. 5.13 b). According

1To account for the state dependent confinement
of the lattice the interaction parameters Vex

and Vdir have been computed using a Wannier
integral of the form

∫
wg(r)

2we(r)
2dr, where

wg,e(r) denotes the Wannier function for an
atom in the ground or excited state, respectively
[242].
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Figure 5.13.: Hubbard parameters in the state dependent lattice and the Kondo temperature cal-
culated according to eq. 5.27 for a 2D lattice depth of s2D = 30Erec.

to ref. [78] the eq. 5.27 is only valid for |Vex|ρ < 0.6. This is the region left of the vertical
line in fig. 5.13. For our experimental settings we obtain a maximum Kondo temperature
of ∼ 3 nK. Experimentally reaching temperatures this low with the current setup is
rather impossible, or might be at least extremely challenging. Yet, the experimentally
measured temperatures of the gases are obtained for a bulk cloud in a dipole trap. In
a lattice it is more reasonable to discuss temperatures rather in terms of entropy. In
quantum gas microscopes entropy-engineering has been successfully used to enter the low
temperature regime of the Fermi-Hubbard model and observe antiferromagnetic ordering,
which requires very low temperatures as well [39]. Therefore, it cannot be excluded that
there might be ways to reach the Kondo temperature as well. Other groups however,
obtained larger values of the Kondo temperature, which experimentally might be better
feasible: In ref. [78] the Kondo temperature is estimated to be on the order of 10 nK.
Whereas in ref. [243] the authors argue that using confinement induced resonances for
173Yb on the one hand the spin-exchange interaction can be tuned to be antiferromagnetic
and on the other hand the Kondo temperature is experimentally well within reach. For
future work especially the preparation of a distinct initial state remains a challenging
task. Emulation of the KLM Hamiltonian eq. 5.1 requires half filling for the localized
spins/excited state atoms. Given the diminished degree of control over the orbital state
caused by the differential light shift in the state-dependent lattice, developing precise
preparation schemes for quantum simulation applications remains a challenging open task.
The same holds for observables allowing to detect heavy Fermion behavior.
To gain more control over the spin population in the excited state, we plan to implement
a spin-selective detection scheme, based on spin-selective repumping techniques. To this
end, we plan to replace the current repumping laser by a frequency stabilized diode laser,
to allow for spin selective addressing of the repumping transition. A PDH frequency
stabilization of the new repumping laser has been setup by N. Pintul over the course of
her master’s thesis [123], that has been co-supervised by the author.
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6. Outlook

In this thesis I presented a versatile apparatus that allows creating ytterbium quantum
gases of fermionic 171Yb and 173Yb as well as Fermi-Fermi mixtures of both isotopes.
Resonant optical pumping on the 1S0 → 3P1 transition and coherent clock spectroscopy
on the 1S0 → 3P0 transition offer a great extent of control over spin and orbital degrees
of freedom. Some 104 atoms can be loaded into the lowest Bloch-band of a combined
3D optical lattice formed by a one-dimensional and a two-dimensional triangular lattice
at the magic wavelength of λmag = 759 nm. The 1S0 → 3Po clock transition is probed
using a narrow linewidth laser at a wavelength of λclock = 578 nm which is stabilized to
an ultrastable high-finesse resonator and characterized by a laser linewidth on the order
of 1 Hz. In a deep magic lattice a maximal spectroscopic resolution, characterized by a
spectroscopic linewidth of 26.7(2.4) Hz, has been reached. However, drifts of the clock
laser frequency effectively hinder working at the highest resolution for extended periods.
In the future, the long-term stability of the clock laser frequency could be improved by
actively stabilizing the laser to the atomic resonance.
By the means of clock spectroscopy we characterized elastic and inelastic interorbital inter-
isotope two-particle interactions in Fermi-Fermi mixtures of 171Yb and 173Yb and directly
showed the SU(2) ⊗ SU(6) symmetry of the elastic interactions. We find similar elastic
interactions for pairs of 171Ybe−171 Ybg and 171Ybg−171 Ybe, which is associated to a high
degree of symmetry of the molecular potential. The inelastic interactions for the different
electronic configurations differ, however, by a factor of roughly 400. Our measurement
possibly can improve the understanding of the molecular potential of interisotope eg-pairs.
In the future, our studies could be complemented by spectroscopic measurements of differ-
ent ytterbium mixtures involving the bosonic isotope 174Yb. In contrast to the ytterbium
Fermi-Fermi mixture, Bose-Fermi mixtures with 174Yb are characterized by a repulsive
interisotope s-wave interaction [118]. Interorbital multi-body interactions have been stud-
ied previously in gases of 174Yb [221]. Therefore, ytterbium Bose-Fermi mixtures might
pave the way towards the observation of interorbital interisotope multibody interactions.
These systems might also be well suited to study interaction-induced decoherence in a
well-controlled and distinctly different environment. Mixtures of 171Yb-173Yb have also
been proposed for the investigation of three-body bound states [244], or the simulation of
two-flavor symmetry-locking phases [79, 80].
Furthermore the interorbital spin-exchange interaction in two spin-component gases of
171Yb has been studied and its previously measured [62, 68] antiferromagnetic nature
has been confirmed. The antiferromagnetic spin-exchange interaction and the vanishing
ground state interaction render 171Yb an intriguing candidate for quantum simulation of
the Kondo-Lattice model in state-dependent optical potentials.
A state-dependent optical 1D lattice at a wavelength of λSDL = 660 nm has been charac-
terized, and in a step towards quantum simulation of multi-band Hubbard models interor-
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bital spin-exchange dynamics in a gas of 171Yb in the state-dependent lattice have been
observed. However, reaching temperatures well below the Kondo temperature with the
current experimental setup will be very challenging and might instead require quantum-
gas-microscope techniques. Yet, a system with distinctly different mobility properties for
ground- and excited-state atoms can be realized. In a similar system of 171Yb in a state-
dependent lattice at λ = 671.5 nm transport properties altered by the interspecies inter-
action have been recently studied [245]. The current setup could be used to develop more
advanced state preparation protocols, which are necessary because the state-dependent
lattice diminishes the degree of control over the metastable state due to the non-vanishing
light shift.
In previous measurements not described in this thesis (see refs. [1, 98]) we studied dissipa-
tive dynamics in a dissipative 1D-Fermi-Hubbard system of 173Yb atoms in the metastable
state in a magic optical lattice. The observed particle number dynamics indicate the
formation of a highly entangled Dicke-state [98]. 171Yb allows to study the dissipative
Fermi-Hubbard model in a different parameter regime as the elastic and inelastic excited-
state interactions are different. Studies of dissipative dynamics with 171Yb would therefore
complement our previous studies.
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Synthetic magnetic fields for ultracold neutral atoms. Nature, 462(7273):628–632,
(2009). doi: 10.1038/nature08609.
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Clock-line photoassociation of strongly bound dimers in a magic-wavelength lattice.
(2020), arXiv:2003.10599 [cond-mat.quant-gas]. arXiv:2003.10599.
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Momentum Resolved Clock Spectra

A. Momentum Resolved Clock Spectra

Figures A.2 to A.8 show momentum resolved spectra for ground and excited state atoms
(see sec. 3.2.1 for a detailed explanation). Figure A.1 shows spectra calculated using
eq. 3.20 for a lattice depth of s1D = 5Erec.
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Figure A.1.: Momentum resolved spectra of the lowest lying transitions for ground and excited state
atoms calculated for a lattice depth of s1D = 5Erec assuming a quasimomentum transfer δq = −1.31
and taking into account transitions from the lowest and the second Bloch Band.
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Figure A.2.: Momentum resolved clock spectra for a lattice depth of s1D = 1Erec for ground-
and excited-state atoms. Horizontal lines correspond to absorption images after time of flight and
bandmapping, integrated along the direction perpendicular to the 1D lattice. The average of six
images without clock excitation is subtracted.
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Figure A.3.: Momentum resolved clock spectra for a lattice depth of s1D = 3Erec for ground-
and excited-state atoms. Horizontal lines correspond to absorption images after time of flight and
bandmapping, integrated along the direction perpendicular to the 1D lattice. The average of six
images without clock excitation is subtracted.
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Figure A.4.: Momentum resolved clock spectra for a lattice depth of s1D = 5Erec for ground-
and excited-state atoms. Horizontal lines correspond to absorption images after time of flight and
bandmapping, integrated along the direction perpendicular to the 1D lattice. The average of six
images without clock excitation is subtracted.
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Figure A.5.: Momentum resolved clock spectra for a lattice depth of s1D = 8Erec for ground-
and excited-state atoms. Horizontal lines correspond to absorption images after time of flight and
bandmapping, integrated along the direction perpendicular to the 1D lattice. The average of six
images without clock excitation is subtracted.
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Figure A.6.: Momentum resolved clock spectra for a lattice depth of s1D = 10Erec for ground-
and excited-state atoms. Horizontal lines correspond to absorption images after time of flight and
bandmapping, integrated along the direction perpendicular to the 1D lattice. The average of six
images without clock excitation is subtracted.
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Figure A.7.: Momentum resolved clock spectra for a lattice depth of s1D = 15Erec for ground-
and excited-state atoms. Horizontal lines correspond to absorption images after time of flight and
bandmapping, integrated along the direction perpendicular to the 1D lattice. The average of six
images without clock excitation is subtracted.
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Figure A.8.: Momentum resolved clock spectra for a lattice depth of s1D = 20Erec for ground-
and excited-state atoms. Horizontal lines correspond to absorption images after time of flight and
bandmapping, integrated along the direction perpendicular to the 1D lattice. The average of six
images without clock excitation is subtracted.
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Thobe, Bastian Hundt, André Kochanke und Thomas Ponath. gilt mein Dank auch den
vielen Studierenden, die im Rahmen von Diplom-, Bachelor- und Masterarbeiten an dem
Projekt beteiligt waren. Besonders nennen möchte ich Maximilian Hagenah, Lars Hilbig,
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uns oft mit seinem Wissen und Können ausgeholfen hat. Außerdem geht mein Dank an
Reinhard Mielck, Ralf Lühr, Dieter Barlösius, Ellen Gloy und Janina Neubert, die mir an
verschiedenen Stellen sehr geholfen haben.
Andreas Hemmerich danke ich für die Übernahme des Zweitgutachtens.
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