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Abstract

Declarative memory aids behavioral adaptation by identifying predictors of important con-
sequences. To ensure an efficient retrieval of such self-relevant information considering the
overabundance of everyday impressions, long-lasting memory is formed relatively sparsely.
The present work aimed to characterize principles under which this memory modulation
operates in threatening environments. Prior studies have repeatedly shown an unspecific
modulation of memory for stimuli surrounding salient experiences, but more recent evidence
additionally points towards a more specific enhancement of memory that only affects items
belonging to a motivationally significant category. In Study 1, we successfully replicated a
category-specific ‘online’ memory enhancement, which was characterized by the superior
memory for stimuli from a shock-associated category that were encoded during fear condi-
tioning. This effect prospectively carried over to stimuli from the same category that were
subsequently encoded without the threat of shock. However, our results cast doubt over
claims that this category-specific memory modulation also retroactively affects stimuli from
the shock-associated category that were encoded prior to fear conditioning. In Study 2, we
proposed an even more specific modulation of memory that operates at the level of unique
stimuli. In line with established models, we found that greater physiological arousal elicited by
individual trial outcomes was linked with better subsequent memory performance. Critically,
we present evidence for a novel cognitive account of memory modulation that goes beyond
these influences of physiological arousal and is characterized by an improved memory for
stimuli associated with surprising outcomes, which were formalized as aversive prediction
errors (PEs). In Study 3, we aimed to characterize the neural basis of this PE-driven account
using fMRI. Results suggested a mechanism that is distinct from expectancy-congruent modes
of memory formation associated with an activation of medial-temporal structures and instead
relies on the recruitment of the salience network. Overall, our results paint a nuanced picture
of an adaptive memory system that uses multiple complementary strategies to ensure an
efficient storage of self-relevant information.
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Introduction

Memory allows us to leverage the past to guide future behavior. Particularly episodic
memory, a subtype of declarative memory that captures the contextual and spatial details
of personal experiences, informs decision-making in complex environments (Anderson and
Milson, 1989; Gershman and Daw, 2017; Klein et al., 2010; Shohamy and Adcock, 2010;
Tulving, 1972). One specific strength of episodic memory lies in its potential to enable
effective learning with only limited experience (Botvinick et al., 2019; Pritzel et al., 2017).
Especially in threatening and aversive contexts, this learning from limited data proves useful,
as it minimizes the exposure to potential harm. Consider an experienced police officer
performing traffic stops as part of her daily routine. Almost always, her working day passes
without any remarkable incidents. However, on a single occasion, a stopped driver suddenly
became irritated and drew a firearm, quickly escalating the routine stop into a life-threatening
situation. Although she was not harmed in the incident, identifying, and subsequently
avoiding similarly dangerous situations is critical to long-term survival. Episodic memories
are rich in contextual details and can therefore capture subtle cues of dangerous outcomes.
Theories of adaptive memory assume that this utility for increasing reproductive fitness was a
major evolutionary factor for the development of episodic memory (Klein et al., 2002; Nairne
and Pandeirada, 2008a, 2008b). How can such an adaptive memory system inform decisions
that ensure long-term survival?

Despite its potential to guide behavior, episodic memory plays no explicit role in dominant
computational models of sequential decision making, including model-free and model-based
reinforcement learning (Doya et al., 2002; Kaelbling et al., 1996; Sutton et al., 1992). Instead,
these models assume that learning about the potential value of a choice option in a given
situation (conceptualized as a state) occurs incrementally (Botvinick et al., 2019). Specifically,
relevant information of any new experience is extracted to update either cached state-action
values (in model-free approaches) or parameters of an internal model from which state-action
values can be dynamically computed (in model-based approaches). Afterwards, the remaining
raw perceptual details of an experience can be discarded (Gershman and Daw, 2017). In
behavioral tasks based on a Markov decision process, as commonly applied in experimental
studies of reinforcement learning, an agent faces only a few discrete states that they revisit
many times (Gershman and Daw, 2017; Maia, 2009). Complex real-life situations pose a
more significant challenge. They typically include continuous states that are only partially
observable and might only be visited once (Gershman and Daw, 2017; Niv et al., 2015).
For example, every traffic stop is unique regarding its combination of potentially predictive



stimuli, such as the time of the day, the model of the stopped car, its condition, or the initial
response of its driver. Further, while knowing whether a driver is concealing a gun heavily
influences the threat-level estimate of the situation, the police officer can only learn about this
fact after further investigation (i.e., it is initially unobservable; Whitehead and Lin, 1995).

Non-parametric learning based on episodic memory provides one solution to approximate
values of actions despite these challenges (Gershman and Daw, 2017; Lengyel and Dayan,
2008; Figure 1). In contrast to conventional models of reinforcement learning, these models
assume only a minimal processing of experiences at the time of encoding. Instead, both
perceptual information of an experience, as well as its associated consequences (formalized as
a sum of discounted rewards), are stored in episodic memory. Therefore, the rich information
surrounding the event is retained and accessible later. At the same time, this approach
relegates the computational burden to the time of decision: When a novel situation is
encountered and a decision is to be made, relevant traces of past experiences are first
retrieved from episodic memory. Then, each sampled memory trace is weighted based on
its similarity to the current situation. An overall value estimate for any possible action in
the given situation can finally be obtained by summing the similarity-weighted associated
consequences of the retrieved experiences (Gershman and Daw, 2017). A direct result of
this model’s mode of value computation is that the set of retrievable memories at decision
time has a critical impact on subsequent decisions. Therefore, it might seem desirable to
non-selectively store any personal experience in long-term memory, which would ensure that
subsequent decision making can be informed by the broadest possible data basis. At the same
time, long-lasting episodic memory is known to only be formed for selective events. How can
this apparent contradiction be resolved?

1.1 Models of memory modulation

Considering the many experiences that people make every day, only a small propor-
tion of them will be recallable over long periods of time. For example, unless anything
extraordinary happened, the police officer will typically not remember any routine traffic
stop that she performed several weeks ago. On the other hand, she still vividly remembers
the single incident in her career that developed into a life-threatening situation when an
armed driver aggressively confronted her. Why is stable memory formed only for certain
experiences? Intuitively, one explanation could lie in the limited storage capacities of long-
term declarative memory. Although estimating the exact capacity of long-term memory is
challenging and depends on various assumptions, the finite number of possible synapses
in the brain must ultimately pose an upper limit (Dudai, 1997). On the other hand, prior
studies have demonstrated the enormous capacity of human declarative memory (Brady
et al., 2008; Standing, 1973). An alternative explanation could lie in limited capacities to
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Figure 1. Schematic representation of episodic reinforcement learning (Gershman and Daw, 2017).
Experiences including both perceptual details as well as associated consequences (formalized as a
sum of discounted rewards) are stored in episodic memory. In a novel situation, value estimates can
be computed by summing previous consequences of stored episodic memories, each weighted by an
estimate of their closeness to the current situation. As only such experiences that have been stored in
long-term memory can inform value estimates, this model emphasizes the role of selective memory
formation for subsequent decisions based on episodic memory. Reprinted from Botvinick et al. (2019).
Licensed under CC BY 4.0.

form new memories. Indeed, the sensory systems (e.g., the visual system) act as an early
filter to memory formation by only attending to a subset of the potential sensory input of
any experience (Carrasco, 2011; Humphreys et al., 1998). Available bandwidths in both
encoding and consolidation further restrict the amount of new information that can enter
long-term memory over any period (Feld et al., 2016; Fukuda and Vogel, 2019). Interestingly,
existing memories can sometimes even be selectively forgotten if they prove unreliable (Kim
et al., 2014). Such pruning might serve adaptive memory by removing irrelevant or incorrect
information and therefore give more weight to memories that proved reliable. This provides
an intriguing perspective where the modulation of memory formation is not just because of
limited encoding and consolidation resources but reflects the need for an efficient retrieval of
self-relevant and reliable information.

As decision-making based on episodic memory requires cognitive resources to compute
optimal choices dynamically at decision time, this process associates a cost with each ad-
ditional episode that needs to be processed, which should optimally be outweighed by its
informational gain (Anderson and Milson, 1989; Anderson and Schooler, 2000; Kuhl et al.,
2007). Sampling only a few experiences from memory for each decision seems to be one
way by which the brain satisfies this requirement (Bornstein et al., 2017; Bornstein and
Norman, 2017). While this process optimizes computational efficiency, it also dictates that
each sampled episode contains useful information while avoiding redundancy. Distinguishing
such useful experiences from those with little relevance poses a significant challenge. We here
present two mechanisms that have empirically been shown to modulate memory formation:
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one based on physiological arousal elicited by an experience, the other based on a cognitive
evaluation of informational measures associated with an experience.

1.1.1 Physiological approach

It has long been known that details surrounding highly emotional events, such as the
police officer being confronted by an armed driver, are exceptionally well remembered
(Christianson and Loftus, 1987; LaBar and Cabeza, 2006; Schwabe et al., 2012). This
promotion of memory formation is not just limited to the emotional event itself, but also
extends to stimuli encoded within the temporal context of an emotional event, even in the
absence of a causal link between these two. At the neurobiological level, the amygdala, and
particularly its basolateral subregion, have been identified as central hubs for the modulatory
effects of emotional arousal on long-term memory consolidation (McIntyre et al., 2003;
Roozendaal et al., 2006).

Initiation of memory consolidation
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Figure 2. Amygdala-mediated modulation of memory for arousing experiences. An emotional
learning experience (upper left corner) induces arousal, which prompts the adrenal gland to release
glucocorticoids (e.g., cortisol) and catecholamines (e.g., (nor-)epinephrine). The interaction of
glucocorticoids with norepinephrine in the basolateral amygdala modulates memory consolidation
through its projections to areas involved in long-term memory formation such as the hippocampus and
prefrontal cortex. Reprinted from McGaugh (2000). Reprinted with permission from AAAS.

One popular model of arousal-mediated memory modulation focuses on concurrent
glucocorticoid and noradrenergic activity in the basolateral amygdala in reaction to emotional
experiences (Cahill and McGaugh, 1998; McGaugh and Roozendaal, 2002). The basolateral
amygdala then strengthens consolidation processes through its projections to memory-critical
regions (McGaugh, 2000; Paré, 2003; Roozendaal et al., 2006; Figure 2). While adrenaline
and noradrenaline are released rapidly via the sympathetic nervous system in response to
an emotional experience, the slower release of corticosteroids (including cortisol) from the
adrenal cortex takes several minutes to reach significantly elevated levels (de Kloet et al.,
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2005; Joéls et al., 2012). Accordingly, findings of trial-by-trial differences in memory due to
varying emotional responses to individual stimuli have been attributed to a fast noradrenergic
modulation rather than the slower action of corticosteroids (Bergt et al., 2018; Christianson
et al., 1991; Richardson et al., 2004; Strange and Dolan, 2004). At the neurobiological
level, this alternative view emphasizes arousal-induced locus coeruleus activity that leads
to the secretion of noradrenaline (Mather et al., 2016). Key target regions for the memory-
modulating effects of arousal include the hippocampus and adjacent structures of the medial
temporal lobe (MTL), which have since the classic case of the neurosurgical patient H.M.
been regarded as central for the formation of declarative memory (Scoville and Milner,
1957; Squire, 2009; Squire and Wixted, 2011). Modern neuroimaging techniques have since
corroborated this critical role of the MTL in declarative memory formation. This includes
studies that were able to directly link MTL activation during encoding to subsequent memory
performance (Davachi and Wagner, 2002; Eichenbaum, 2004; Fernandez et al., 1999). In
response to emotional events, the basolateral amygdala exerts further modulatory effects
on the medial prefrontal cortex (mPFC), which is involved in higher-order cognitive and
affective processing (Barsegyan et al., 2010; Frith and Dolan, 1996), but also interacts with
the hippocampus in memory consolidation (Preston and Eichenbaum, 2013). Previous studies
have further shown that the effects of glucocorticoids on memory consolidation depend on
bidirectional interactions between the basolateral amygdala and mPFC (Barsegyan et al.,
2010; Roozendaal, McReynolds, et al., 2009).

A critical issue when testing the physiological account of declarative memory modulation
is the operationalization of arousal. Commonly, studies make use of skin conductance as
the peripheral measure of physiological arousal, which reflects the regulation of sweat gland
activity by the sympathetic nervous system (Dawson et al., 2011). The continuous skin
conductance signal can further be decomposed into a tonic, slow-varying component and
a phasic, fast-varying component (Benedek and Kaernbach, 2010a, 2010b). The slower,
tonic component reflects overall states of physiological arousal. The faster, phasic component
reflects skin conductance responses (SCRs) to individual stimuli. These phasic SCRs have been
linked to amygdala-based processing that is typically associated with the improved memory
for emotional stimuli (Williams et al., 2001). Therefore, the physiological approach predicts
stronger memory enhancement for stimuli that elicit greater phasic SCRs. Such physiological
responses are typical for emotional experiences, but not their sole defining feature (Lench
et al., 2011; Mauss and Robinson, 2009). Particularly, this arousal-centered view largely
ignores the cognitive component of emotional processing. From such an alternative cognitive
perspective, emotional events can often be further characterized by their unpredictability and
subsequent experiences of surprise (Trapp et al., 2018).

1.1 Models of memory modulation



1.1.2 Cognitive approach

An influential formalization of the concepts surrounding surprise and uncertainty was
introduced by Shannon (1948) in his works founding the field of information theory (Atick,
1992). Although originally developed as a theory of information transmission in communica-
tion systems, the underlying principles have since been applied to a wider field of disciplines,
including psychology and neuroscience (Berlyne, 1957; Borst and Theunissen, 1999). It
assumes a system of discrete states, each associated with a known probability. The amount of
information contained within the occurrence of a single state is then defined as the negative
logarithm of its associated probability (Lombardi et al., 2016; Shannon, 1948). Therefore,
rare, or unexpected events are associated with greater surprise and carry more information.
While information theory links surprise to the observation of individual events, the Shannon
entropy, or uncertainty, reflects the expected value of surprise over all possible events and is a
property of the random process rather than individual outcomes (Strange et al., 2005).

A striking observation in human cognition is that identical outcomes can subjectively
elicit different levels of surprise when an individual’s beliefs about the underlying contin-
gencies change (Itti and Baldi, 2009; Knill and Pouget, 2004). For example, a seemingly
harmless bumper sticker would evoke different predictions about the outcome of a traffic
stop depending on the police officer’s knowledge that its symbolism is used by a violent
political movement. Cognitive theories of predictive coding account for this fact by assuming
a mutable internal model of the world from which top-down predictions of expected sensory
input are generated (Friston, 2018; Rao and Ballard, 1999). Comparing these predictions
against observed sensory data in a bottom-up fashion allows the internal model to be up-
dated and generate increasingly accurate predictions, which minimizes future surprise and
increases coding efficiency. Evidence for such error-driven learning has been found in various
domains of perception and cognition, including visual perception (Hosoya et al., 2005; Rao
and Ballard, 1999) and auditory perception (Baldeweg, 2006; Heilbron and Chait, 2018),
but also attention (Spratling, 2008) and reward preferences (O’Doherty et al., 2006). Some
authors have therefore argued that this process of contrasting generated predictions against
perceptual evidence in order to improve an internal model might be a unifying principle of
neural computation (Clark, 2013; Friston, 2010).

At the core of the predictive coding account lie so-called prediction errors (PEs), which
provide a numerical measure of the difference between an expected signal and the actual
outcome. Prominently, they enable learning incrementally about associative relationships in
temporal difference approaches to reinforcement learning (Sutton, 1988) or the Rescorla-
Wagner model of Pavlovian conditioning (Miller et al., 1995; Rescorla and Wagner, 1972).
For example, when applied to Pavlovian fear conditioning, the Rescorla-Wagner model can
explain how an individual incrementally learns to associate an initially neutral stimulus with
a probabilistically linked unconditioned stimulus (UCS; e.g., an aversive shock). Over the
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course of the conditioning procedure, the neutral stimulus turns into a conditioned stimulus
(CS), whose presentation alone induces a conditioned response (CR). To explain this learning
process, the Rescorla-Wagner model assumes for any given trial ¢, that the associative value
V., of a CS x is updated through a trial-unique PE (o) weighted by a constant learning rate
(a; Miller et al., 1995; Niv and Schoenbaum, 2008):

Vﬂct+1 = th +aoy (1.1

The PE o; in trial ¢ is defined as the difference between the value of the outcome of this
trial (R,) and the sum of predictions from all available stimuli in this trial (Vjutq,):

ot = Rt — Viotal, (1.2)

Intuitively, in the Rescorla-Wagner model, outcomes that exceed predictions therefore
produce positive PEs, which in turn increase the associative strength between the CS and
UCS. Predictions that exceed outcomes produce negative PEs, which decrease the associative
strength between the CS and UCS. Notably, the idea of using discrepancy signals to drive
learning is not bound to one specific conceptualization of PEs (Niv and Schoenbaum, 2008).
For example, other learning models might implement an unsigned PE, where, unlike in the
Rescorla-Wagner model, only the magnitude, but not the direction of the discrepancy between

predictions and outcomes is relevant.
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Figure 3. Memory formation scaled with risk and quadratic unsigned reward PEs in Experiment 1
of Rouhani et al. (2018). Participants learned to predict rewards associated with unique stimuli in
either a low- or high-variance condition. When stimuli were encoded in a high-variance environment,
the hit rate in a subsequent memory test was overall increased compared with stimuli encoded in
a low-variance environment. Importantly, greater discrepancies between predicted and received
rewards (i.e., unsigned reward PEs) increased recognition performance at the exemplar-level. The
observed U-shaped relationship between PEs and hit rates implies that both under- and overestimating
rewards had similar memory-promoting effects. Reprinted from Rouhani et al. (2018). Reprinted with
permission from APA.

Despite their prominent role in many cognitive learning models, PEs have historically
received little attention in the field of declarative memory modulation. Only recently, and
mostly in the reward domain, have the memory-modulating effects of novelty and PEs been
explored in more detail (Ergo et al., 2020; Greve et al., 2017; Jang et al., 2019; Quent et al.,

1.1 Models of memory modulation



2021). In one such study, participants saw a series of unique pictures and learned to predict
rewards associated with them (Rouhani et al., 2018; Figure 3). The authors found that
greater discrepancies between predicted and received rewards were associated with improved
memory for the associated pictures in a subsequent recognition test. This memory-promoting
effect of PEs was unsigned: Both the under- and overestimation of rewards enhanced memory
in a similar (quadratic) fashion.

Applying this idea to the aversive domain, we propose that, in addition to driving
incremental learning processes that associate a predictive stimulus (CS) with a conditioned
response (UCS; Miller et al., 1995; Rescorla and Wagner, 1972), a secondary function of
aversive PEs lies in prioritizing stimuli with surprising outcomes for preferential storage
in long-term declarative memory (Trapp et al., 2018). A proposed mechanism behind this
surprise-driven memory modulation lies in PEs’ ability to create event boundaries (Rouhani et
al., 2020). Rather than simply enhancing ‘standard’ processes of memory formation associated
with the MTL, PEs indicate that new information is incongruent with existing knowledge
structures represented by the schema network, which includes the mPFC, angular gyrus, and
precuneus (van Kesteren et al., 2012; Vogel et al., 2018). Therefore, events associated with
high PEs might create a separate memory trace rather than being integrated into existing
schema memory. Particularly the neurotransmitter dopamine might play a key role in this
PE-driven memory enhancement (Shohamy and Adcock, 2010). It is well established that
activation patterns of dopaminergic midbrain neurons in the ventral tegmental area and
substantia nigra track signed reward PEs (Lak et al., 2014; Schultz et al., 1997). Further
studies demonstrated PE-related signaling in a variety of brain regions, most prominently in
the striatum (Glascher et al., 2010; O’Doherty et al., 2003; Pagnoni et al., 2002; Pessiglione et
al., 2006), which receives dense dopaminergic input, but also the frontal cortex, especially the
dorsal anterior cingulate cortex (dACC; Schultz, 2016; Schultz et al., 1998; Seo and Lee, 2007;
Silvetti et al., 2011). While the mesolimbic dopaminergic system has also been theorized
to be involved in the signaling of aversive PEs (Brooks and Berns, 2013; Matsumoto and
Hikosaka, 2009), its neuroendocrinological substrate is overall more controversial (Fiorillo,
2013; Schultz, 2019). It should also be noted that no study has yet directly demonstrated the
critical involvement of dopamine in the PE-driven modulation of declarative memory.

1.2 Levels of memory modulation

Irrespective of the driving forces behind declarative memory modulation, these effects
can emerge at different levels of specificity. After her life-threatening encounter with an
armed driver, which contents of the experience should the police officer preserve in long-term
memory? Should the memory promotion be limited to details of the armed driver? Or should
it also cover impressions preceding the violent encounter, even if they seem inconsequential?

1.2 Levels of memory modulation



Here, we propose three levels of specificity, reaching from a completely unspecific memory
modulation, over such memory modulation that is limited to stimuli from a specific category,
to a highly specific memory modulation that only applies to unique exemplars (Figure 4). As
these levels of specificity are orthogonal to the question of underlying mechanisms, both the
physiological and the cognitive models of memory modulation are in principle compatible
with all three levels of specificity.

Tools Animals
) “

Figure 4. Three levels of specificity in memory modulation. In an exemplary encoding task, participants
see unique pictures of animals and tools. (a) In an unspecific modulation of memory, no semantic link
between a memory-promoting event and the promoted learning material is necessary. Instead, the
mere temporal proximity of a stimulus to a salient event produces superior memory. For example, a
group of participants undergoing an experimental stress induction after encoding might show, relative
to an unstressed control group, an overall improved memory for previously encoded stimuli of both
animals and tools. (b) In a category-based memory modulation, memory for some stimuli, but not
others, will be enhanced based on the motivational significance of their respective category. For
example, memory for pictures from a category associated with aversive electric shocks might be
enhanced compared with pictures from a control category that is not associated with any aversive
shocks (Dunsmoor et al., 2015). (c) The most specific form of memory modulation is exemplar-based.
Here, memory for individual pictures is modulated through trial-unique learning signals, such as
phasic physiological arousal or associated PEs. Example stimuli stem from the Bank of Standardized
Stimuli (Brodeur et al., 2010), licensed under CC BY-SA 3.0.

1.2.1 Unspecific

In its most encompassing form, a modulation of memory can be semantically unspecific.
A typical experiment investigating the effects of stress on memory consolidation involves
participants viewing a series of stimuli for which memory will be tested at a later stage. If
they are confronted with a stress induction procedure in a critical time window before or
after encoding, their memory for these stimuli will typically be improved compared with a
non-stressed control group (Nater et al., 2007; Roozendaal, 2002; Schwabe et al., 2008;
Schwabe et al., 2012; Wolf, 2012). Even though this memory promotion seems to be more
pronounced for emotional than for neutral material (Cahill et al., 2003; Smeets et al., 2008),
the effect is still unspecific in the sense that no semantic link between enhanced stimuli and
the stress procedure that triggers the memory modulation is necessary. To explain these
findings, the neuroendocrinergic model of stress effects on memory consolidation focuses on
the effects of glucocorticoids and adrenal stress hormones in the basolateral amygdala, as
detailed in the physiological model above (Roozendaal, McEwen, et al., 2009).
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A similar line of research focuses on the level of individual neurons, where long-term
potentiation poses the dominant cellular model of long-term memory (Frey and Morris, 1997;
Nicoll and Roche, 2013). According to the synaptic tagging and capture hypothesis (Frey
and Morris, 1997, 1998; Martin and Kosik, 2002; Rogerson et al., 2014), this requires two
separable processes to occur in hippocampal neurons that lead to prolonged increases in
synaptic strength. First, a transient tag is set in a synapse after the stimulation of a neuron.
While relatively weak stimulation of the neuron can be sufficient for this step, associated
physiological changes are only short-lived (i.e., not lasting longer than a few hours). To
achieve long-lasting changes in synaptic signaling, a learning tag set in the previous step needs
to capture additional plasticity-related proteins that are only synthesized in the cell body of
the neuron after stronger stimulation. An important implication of this model is that weak
stimuli that would by themselves not trigger protein synthesis can still be transformed into
long-lasting memories when they capture necessary plasticity-related proteins produced by a
separate, stronger stimulus before their learning tag has decayed. Applying these principles
to the behavioral level, studies reporting behavioral tagging have shown in both rodents
and humans that memory for neutral stimuli could be unspecifically promoted through a
subsequent salient event that has no semantic link to the promoted stimuli (Ballarini et al.,
2013; Ballarini et al., 2009; Moncada et al., 2015).

1.2.2 Category level

Although an unspecific modulation of memory formation minimizes the chance that
important indicators of self-relevant outcomes are missed, it will also promote memory for
many non-informative stimuli. For example, after a traffic stop that turned violent, the police
officer might also experience a promotion of memory for inconsequential details, such as
the brand of coffee she was drinking before initiating the stop. To reduce the number of
experiences in long-term memory that bear little predictive value, an alternative mode of
memory modulation can be limited to a category of stimuli that proved to signal motivationally
significant outcomes. In three separate encoding phases, Dunsmoor et al. (2015) presented
healthy participants a series of unique pictures of animals and tools. Only in the second
intermediate phase, pictures from one category (e.g., animals) were paired with a mild
electric shock in two-thirds of all trials (CS™) while the remaining category (e.g., tools) was
never paired with a shock (CS™). In both encoding phases before fear conditioning (pre-
conditioning) and after fear conditioning (post-conditioning), there was no threat of shock,
as no shock leads were attached. Participants’ recognition memory for pictures from all three
encoding phases was probed either immediately after the last encoding phase, 6h, or 24h
later. This design illustrates the three temporal directions in which a memory modulation can
operate: In a retroactive promotion of memory, previously encoded memories are enhanced
through subsequent experiences. In an online memory promotion, encoding and memory
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promotion occur within the same temporal context. Finally, in a prospective promotion of
memory, the memory-promoting event precedes the encoding of the promoted stimuli.

Regardless of the interval between encoding and retrieval, the authors found a memory
advantage for pictures from the CS* category that were encoded during fear conditioning
over pictures from the CS™ category that were encoded in the same phase (i.e., an online
effect). In the 24h delay group, the authors further found both a category-specific prospective
and a category-specific retroactive promotion of memory for CS* over CS™ items (Figure 5).
Particularly the latter retroactive effect is remarkable, as during the encoding of stimuli in the
pre-conditioning phase, participants had no way of knowing which item category would be
subsequently linked with aversive shocks. Based on the additional observation that the 6h
delay group showed evidence for a category-specific retroactive memory enhancement, but,
unlike the 24h delay group, not for the category-specific prospective memory enhancement,
the authors further speculated that both effects might depend on separate mechanisms. For
the specific retroactive effect, they referred to the tag-and-capture hypothesis, although such
behavioral tagging effects had previously only been observed in the form of an unspecific
memory enhancement.
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Figure 5. Modulation of memory in the 24h weak encoding group of Dunsmoor et al. (2015). In each
of three encoding phases, participants saw unique pictures of animals and tools. In the intermediate
fear conditioning phase, pictures from one category (CS*) were paired with a mild electric shock,
but not pictures from the other category (CS™). Results showed an ‘online’ memory enhancement
for items from the CS* category over items from the CS™ category that were encoded during fear
conditioning. Critically, this memory enhancement for items from the CS* category carried over to
both the pre-conditioning phase (i.e., category-specific retroactive memory enhancement) and the
post-conditioning phase (i.e., category-specific prospective memory enhancement) even though these
items were themselves never paired with any shocks. * p < .05, ** p < .01. Reprinted from Dunsmoor
et al. (2015). Reprinted with permission from Springer Nature Customer Service Centre GmbH.

Since Dunsmoor et al. (2015) provided first evidence for the category-specific retroactive
memory effect, several follow-up studies have been published, including two conceptual
replications aiming to translate the effect into the reward domain. Replacing aversive shocks
with monetary rewards but sticking otherwise close to the classical conditioning procedure of
Dunsmoor et al. (2015) produced both an online category-specific memory modulation as
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well as the category-specific prospective memory effect after a 24h consolidation period, but
provided no evidence for the category-specific retroactive modulation of memory (Oyarzun
et al., 2016). Utilizing instead a delayed match-to-sample task with low- versus high rewards
in an intermediate reward phase, Patil et al. (2017) showed a category-specific retroactive
memory enhancement for items from the subsequently highly rewarded category, even when
those items were encoded before any rewards were introduced. To date, no independent
group of researchers has tried to closely replicate these reports of category-specific retroactive
memory enhancement.

1.2.3 Exemplar level

At the highest level of specificity, the memory modulation can be limited to a single
stimulus. Here, it is important to distinguish modulating effects that were evoked by the
stimulus itself from those that are caused by a separate memory modulating event. For
example, the occurrence of a particular stimulus might by itself induce physiological arousal
or surprise during encoding. In this case, there is no separation between the triggering
event and the target of the memory modulation. Such effects have been observed as a
superior memory for surprising stimuli in oddball paradigms, where a sequence of uniform
stimuli is occasionally interrupted by another deviant (i.e., surprising) stimulus (Cycowicz
and Friedman, 2007; Strange and Dolan, 2004; Strange and Dolan, 2001). Compared with
this simple memory enhancement for the surprising occurrence of rare stimuli, a memory
modulation during associative learning presents a more significant challenge. In the case of
the police officer faced with a violent traffic offender, an adaptive memory system would not
only call for a promotion of the violent behavior itself but should also ensure that predictors
of these threatening outcomes are stored in long-term memory. Therefore, predictive cues of
surprising or arousing outcomes are the focus of this mode of memory modulation, rather
than the outcome itself. Typically, this mode of memory modulation can also be characterized
by a temporal separation, where the target of the memory modulation precedes the triggering
event. Such effects have recently been investigated for stimuli associated with reward PEs
(Ergo et al., 2020; Jang et al., 2019; Rouhani et al., 2018). Whether similar effects occur for
stimuli associated with surprising outcomes in the aversive context is currently unknown. In
addition to this cognitive perspective based on PEs, the physiological approach to memory
modulation hypothesizes that phasic physiological arousal to individual outcomes drives the
memory modulation for associated cues at item level.

1.3 Research goals

Although it has long been known that salient events in temporal proximity to an experi-
ence modulate declarative memory formation, most previous research focused on unspecific
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effects. Only recently, evidence has emerged that such memory modulation can specifically
prioritize memory for stimuli from a motivationally significant category (Dunsmoor et al.,
2015; Patil et al., 2017). These specific effects extended in all three temporal directions:
to stimuli from the relevant category that were encoded during salient events (i.e., online),
after salient events (i.e., prospectively), and even to stimuli that were encoded minutes
before salient events (i.e., retroactively). Particularly the category-specific retroactive memory
promotion would have drastic implications for our understanding of memory consolidation.
However, behavioral evidence for this phenomenon is so far based on only a few studies from
a single group of researchers. In Study 1, we initially set out to closely replicate the first study
providing evidence for a category-specific retroactive strengthening of memory (Dunsmoor
et al., 2015). Overall, results from four adequately powered close replications cast doubt on
the reliability of this effect.

In contrast, the category-specific online modulation of memory proved reliable across all
four experiments. Established physiological models of memory modulation attribute this effect
to increased arousal associated with salient outcomes. Inspired by recent theoretical advances
that emphasized the role of expectancy violations for the superior memory of emotional
events (Trapp et al., 2018), in Study 2 we asked whether an alternative cognitive model based
on aversive PEs can explain these findings. To this end, we reanalyzed data from Study 1
for potential physiological and cognitive drivers of memory formation at the exemplar level.
Based on the large body of evidence for arousal-based memory modulation, we predicted
that increased phasic SCRs close to the encoding of an item would be associated with greater
recognition performance. Following a cognitive approach to memory modulation, we further
hypothesized that unsigned PEs derived from participants’ explicit shock expectancy ratings
could explain memory formation beyond arousal-based effects.

Study 2 provided evidence for exemplar-level effects of both physiological arousal and
unsigned PEs on memory formation in an aversive learning task. Interestingly, we found
that both effects were statistically dissociable. While effects of arousal on memory formation
have been linked to the amygdala and its modulatory influences on memory-critical regions,
including the MTL and the mPFC, the neural mechanism behind the declarative memory
promotion triggered by aversive PEs is still largely unknown. In Study 3, we addressed
this issue by recording brain activity during memory encoding using functional magnetic
resonance imaging (fMRI). We further improved upon the behavioral task such that it allowed
us to assess participants’ prediction uncertainty as well as derive continuous, rather than
binary, PEs. To explain the neural underpinnings of modulating influences of aversive PEs
on memory formation, we considered two competing models. The first model hypothesizes
that PEs strengthen pathways associated with schema-congruent memory formation, which
prominently include the MTL and mPFC. Alternatively, PEs might promote memory by
inducing a qualitative shift in mnemonic processing, which might even lead to a decreased
activation of regions classically associated with declarative memory formation.

1.3 Research goals
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Experimental Studies

2.1 Study 1: How reliable is the category-specific

retroactive enhancement of memory?

Kalbe, F., & Schwabe, L. (in press). On the search for a selective and retroactive
strengthening of memory: Is there evidence for category-specific behavioral tagging? Journal
of Experimental Psychology: General. https://doi.org/10.1037/xge0001075 — (Appendix A)

2.1.1 Background

When seemingly mundane experiences relate to important consequences, an adaptive
memory system should enable their preferential storage in long-term memory (Klein et al.,
2010; Shohamy and Adcock, 2010). The synaptic tag-and-capture hypothesis provides a
neurobiological framework for such a mechanism (Frey and Morris, 1997, 1998; Martin and
Kosik, 2002; Rogerson et al., 2014). Applications to the behavioral level have shown such
retroactive memory enhancement for stimuli preceding salient or stressful events (Ballarini
et al., 2013; Ballarini et al., 2009; Moncada et al., 2015). Critically, this retroactive memory
enhancement was exclusively unspecific, in the absence of a causal or semantic link. However,
recent evidence suggests that the retroactive enhancement of memory can also be limited to
stimuli belonging to a category that gains motivational significance by its association with
aversive shocks (Dunsmoor et al., 2015) or monetary rewards (Patil et al., 2017). While such
a specific retroactive memory enhancement would have considerable implications for our
understanding of declarative memory formation, these effects have not yet been replicated
by an independent group of researchers. Therefore, we aimed here to closely replicate the
study that provided the initial evidence for a category-specific retroactive enhancement of
memory for neutral stimuli from a category that later predicted the occurrence of aversive
shocks (Dunsmoor et al., 2015).

2.1.2 Methods

Across four experiments including data from 285 unique participants, we closely repli-
cated Dunsmoor et al. (2015) regarding aspects such as the procedure, stimuli, and statistical
analysis. In short, participants saw a series of unique pictures of animals and tools across
three separate encoding phases (Figure 6). Only the second, intermediate phase featured
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a fear conditioning procedure where most stimuli of one category (CS*), but not the other
(CS7), were followed by a mild shock. Consistently across all four experiments, we used a 24h
interval between encoding and the following surprise recognition test, which had previously
shown the most robust evidence for the category-specific retroactive memory effect.

Pre-conditioning Fear conditioning Post-conditioning

Ly

Figure 6. Procedure of Study 1, which closely replicated Dunsmoor et al. (2015). Participants saw
unique pictures of animals and tools across three separate encoding phases. Only in the intermediate
fear conditioning phase were pictures from one category (CS*), but not the other category (CS™),
paired with a mild electric shock in two-thirds of all trials. Whether pictures of animals or tools were
paired with shocks was counterbalanced across subjects. We probed recognition memory for pictures
from all three phases 24h after encoding, which had previously produced the most consistent evidence
of category-specific retroactive memory enhancement. Reprinted from Kalbe and Schwabe (in press).

For three out of four experiments, an a priori power analysis indicated a statistical power
of > 95% to detect a category-specific retroactive memory enhancement based on the effect
size reported by Dunsmoor et al. (2015). Experiment 4 was additionally pre-registered and
pre-reviewed. Our statistical analysis closely replicated Dunsmoor et al. (2015), but also
extended it substantially by including alternative measures of memory performance, Bayesian
statistics, and a pooled analysis across all four replications.

2.1.3 Results

In all four experiments, we could consistently replicate the online memory advantage for
CS* items over CS™ items that participants encoded during fear conditioning. However, when
we strictly replicated the analysis strategy from Dunsmoor et al. (2015), none of our four
experiments provided any evidence of a category-specific retroactive enhancement of memory.
Parallel Bayesian analyses consistently favored the null hypothesis rejecting category-specific
retroactive memory enhancement, with substantial evidence for the null hypothesis in two of
the four experiments. In an exploratory analysis focusing only on high confidence recognition
memory, we found a small but significant category-specific retroactive effect in Experiment
2, a trend towards this effect in Experiment 4 (p = .088), and no evidence for this effect in
Experiments 1 and 3. Parallel analyses on the alternative recognition measure of d’ from signal
detection theory (Macmillan and Creelman, 2004; Wickens, 2002) provided no evidence for
category-specific retroactive memory enhancement in any of the four experiments, even when
only high confidence recognition was included. Similarly, in a pooled analysis using linear
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mixed models (Figure 7), only when analyzing high confidence memory based on corrected
recognition scores, we found a small but significant category-specific retroactive memory
effect.
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Figure 7. Results of a pooled analysis of data from all four experiments of Study 1 using linear mixed
models. The left panel shows results when recognition memory was collapsed across confidence, while
the right panel shows parallel results when only high confidence recognitions were treated as hits. Both
corrected recognition (parallel to the analysis in Dunsmoor et al., 2015) and d’ from signal detection
theory are displayed as measures of recognition memory performance. Results provided support
for both a category-specific online memory enhancement, as well as a category-specific prospective
memory enhancement. Significant evidence of the critical category-specific retroactive effect was only
found for high confidence memory and only in corrected recognition, but not in d’. Therefore, these
results cast doubt on the reliability and generalizability of the specific retroactive enhancement of
memory. Data show the fixed effect with error bars reflecting the 95% confidence interval (CI). Dashed
lines show expected effects under the null hypothesis. * p < .05, ** p < .01, *** p < .001. Reprinted
from Kalbe and Schwabe (in press).

2.1.4 Conclusions

Across four close replications, we found no evidence for the category-specific retroactive
memory effect when we strictly replicated the original analysis strategy from Dunsmoor
et al. (2015). Only for high confidence memory, uncorrected for multiple comparisons, and
only in corrected recognition scores, we found a significant category-specific retroactive
memory enhancement in one of four experiments and in a pooled analysis across experiments.
That this effect was not detectable in parallel analyses on memory sensitivity (d’), which is
the empirically better supported measure of recognition memory (Dube and Rotello, 2012;
Pazzaglia et al., 2013; Wixted, 2007), raises further doubts about the generalizability of the
putative retroactive category-specific memory effect. On the other hand, we found reliable
evidence of both the category-specific online enhancement of memory and the category-
specific prospective enhancement of memory.

2.1 Study 1: How reliable is the category-specific retroactive enhancement of
memory?
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2.2 Study 2: Can aversive PEs promote memory for
predictive items beyond the effects of arousal?

Kalbe, F., & Schwabe, L. (2020a). Beyond arousal: Prediction error related to aver-
sive events promotes episodic memory formation. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 46(2), 234-246. https://doi.org/10.1037/xlm0000728 —
(Appendix B)

2.2.1 Background

In Study 1, we observed a robust memory modulation for items from the CS* cate-
gory over items from the CS™ category that were encoded online during fear conditioning.
Dunsmoor et al. (2015) provided an arousal-based account of this effect (Cahill and Mc-
Gaugh, 1998; McGaugh, 2018). However, outcomes of CS™ trials were not only associated
with higher levels of arousal, but their outcomes were also partly unpredictable, while CS~
trials never resulted in a shock. From a cognitive perspective, CS* items were therefore
associated with higher levels of uncertainty and a greater number of PEs (Trapp et al., 2018).
We aimed here to investigate whether these aversive PEs drive memory formation at the level
of individual items. Evidence for such a mechanism would parallel recent results from the
reward domain (Jang et al., 2019; Rouhani and Niv, 2021; Rouhani et al., 2018). In line with
arousal-based models, we further predicted that both anticipatory arousal (in reaction to the
stimulus and the anticipation of a shock), as well as outcome-related arousal (in reaction to
the shock or its omission), would enhance subsequent memory. Finally, we tested whether
these putative effects of PEs and arousal on memory are statistically separable.

2.2.2 Methods

We reanalyzed data from Experiment 1 (N = 44 healthy participants) and Experiment
2 (N = 84 healthy participants) of Study 1. As we were interested in the effects of aversive
PEs on subsequent memory formation, our analyses focused only on recognition memory for
the 60 pictures of animals and tools that were encoded in the intermediate fear conditioning
phase. PEs occurred when participants either indicated that they expected a shock, but none
was administered (unexpected shock omission) or when they indicated that they did not
expect a shock, but one was administered (unexpected shock). Arousal was operationalized
separately through anticipatory and outcome-related SCRs. To explain memory formation
at the level of individual items, we fitted generalized linear mixed models (GLMMs) with
a binary response function coding whether participants recognized an item in the surprise
memory test that followed 24h after encoding.

2.2 Study 2: Can aversive PEs promote memory for predictive items beyond the
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2.2.3 Results

In line with arousal-based models, we found that outcome-related SCRs, but not an-
ticipatory SCRs, were at item level associated with better recognition performance in both
experiments. Critically, our results further showed that memory formation was improved
in both experiments for items associated with unsigned PEs compared with items for which
correct predictions were made (Figure 8). When controlling for arousal in a joint model,
we found an additional effect of unsigned PEs at trend-level in Experiment 1 (p = .067)
and a significant effect in Experiment 2. Model comparisons for both experiments further
confirmed that a full model comprising unsigned PEs, anticipatory and outcome-related
arousal explained memory formation significantly better than any model featuring only one
of these predictors. In Experiment 2, we further found that the memory-promoting effects of
PEs were detectable even when only items from the CS™ category were analyzed. This finding
implies that the PE-driven memory enhancement was not a mere artifact of their confounding
with conditioning categories.

Experiment 1 Experiment 2

Log-odds of hit
Log-odds of hit

PE PE PE PE

Figure 8. Effects of unsigned PEs on recognition memory in Experiments 1 and 2 of Study 2. Compared
with trials in which participants correctly predicted the outcome (PE), items from trials featuring
incorrect predictions (PE) had a higher probability of being subsequently recognized. Grey lines show
estimates from individual participants. Thick orange lines show the fixed effect across all participants,
while dashed orange lines show its 95% CI. Adapted from Kalbe and Schwabe (2020a).

2.2.4 Conclusions

The present study provides support for a cognitive model of memory modulation that
operates at the exemplar level by enhancing memory for stimuli associated with aversive
PEs. Our data were also in line with the more traditional model of arousal-based memory
modulation which was supported by consistently improved memory for stimuli followed by
higher outcome-related arousal. Together, these findings indicate that both physiological and
cognitive models can successfully explain memory formation for individual items. Our results
further suggest that both mechanisms might modulate memory formation in an additive
fashion.

2.2 Study 2: Can aversive PEs promote memory for predictive items beyond the
effects of arousal?
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2.3 Study 3: What neural mechanism drives the
memory-modulating effects of aversive PEs?

Kalbe, F., & Schwabe, L. (2021). Prediction errors for aversive events shape long-term
memory formation through a distinct neural mechanism. bioRxiv. https://doi.org/10.1101/
2021.03.19.436177 — (Appendix C)

2.3.1 Background

Study 2 provided behavioral evidence for the long-term memory-promoting effects of
aversive PEs. The neural basis of this effect, on the other hand, is still largely unknown. Based
on the previous literature, we considered two contrasting models to explain the superior
memory for aversive PE-related stimuli. One model assumes that aversive PEs enhance
standard processes of long-term memory formation revolving around the MTL (particularly
the hippocampus and parahippocampal gyrus) and the mPFC (Davachi and Wagner, 2002;
Eichenbaum, 2004; Preston and Eichenbaum, 2013). Alternatively, large aversive PEs might
induce a qualitative shift in mnemonic processing that is characterized by the creation of a
separate memory trace for PE-associated stimuli rather than their integration into existing
schemata (Rouhani et al., 2020; van Kesteren et al., 2012). In this study, we aimed to test
these alternative accounts by recording neural activity using fMRI while participants encoded
unique pictures associated with aversive PEs in a further optimized behavioral task.

2.3.2 Methods

Fifty healthy participants completed an incidental memory task in an MRI scanner while
we additionally recorded skin conductance as a measure of arousal. This task featured a
series of 120 unique pictures, of which some were followed by mild electric shocks that were
partially predictable based on picture categories. In each trial, participants estimated the
probability that a shock would follow, which allowed us to calculate the explicit continuous
PE. To reach a more even distribution of positive and negative PEs, we introduced a third
picture category, which was followed by a shock in only one-third of all trials. In a surprise
recognition test 24h after encoding, participants saw all 120 pictures from the previous day
intermixed with an equal number of previously unseen pictures and categorized them as old
or new. To gain insights into neural mechanisms behind the memory modulating effects of
PEs, we used a combination of univariate fMRI analyses, large-scale network analyses, and
multivoxel pattern analyses (MVPA).

2.3 Study 3: What neural mechanism drives the memory-modulating effects of
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2.3.3 Results

Results confirmed previous findings that PEs modulate memory formation at the item
level, but specific effects depended on their sign. Whereas greater negative PEs (associated
with unexpected shock omissions) were associated with improved recognition performance,
greater positive PEs (associated with unexpected shocks) seemed to impair recognition
performance (Figure 9). Again, a model including both arousal measures and PEs explained
subsequent memory performance best. At the neural level, negative PEs activated the bilateral
anterior insula and the dACC, which are key areas of the salience network (Ham et al., 2013;
Menon and Uddin, 2010). Structures of the medial-temporal encoding network (including
the hippocampus and parahippocampal gyrus), as well as the mPFC, precuneus, and angular
gyrus, which form a schema network (van Kesteren et al., 2012; Vogel et al., 2018), showed
decreased activation in response to negative PEs. In line with the established role of the MTL
in episodic memory formation, greater activation of the (para-)hippocampus during stimulus
presentation was linked with improved subsequent memory. However, improved memory in
response to greater negative PEs was linked with even decreased activation of these regions
(Figure 10A). An additional follow-up analysis of large-scale brain networks showed that
between-network connectivities of the salience and schema network and of the salience and
medial temporal encoding network were increased for larger negative PEs, the former of
which was linked to better recognition performance (Figure 10B).
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Figure 9. Main behavioral findings of Study 3. (A) Signed effects of quadratic PEs on recognition
memory. Whereas negative PEs (reflecting the surprising omission of shocks) were associated with
improved recognition performance, positive PEs (reflecting the surprising delivery of shocks) were
associated with decreased memory performance. Individual grey lines show estimates for individual
participants, while the orange line reflects the estimated fixed effect across participants. (B) Model
comparisons using likelihood-ratio tests revealed that a model combining cognitive measures (i.e.,
uncertainty and PEs) and arousal measures (i.e., anticipatory and outcome-related SCRs) explained
memory formation significantly better than any model including only a single of these predictors
(markings between bars). A substantial improvement in the Akaike information criterion (AIC) for
the full model also confirmed this finding. Furthermore, any single predictor significantly improved
the model fit compared with a baseline model estimating only a random intercept per participant
(markings within each bar). ** p < .01, *** p < .001. Adapted from Kalbe and Schwabe (2021).
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Figure 10. Neural findings of Study 3 (Kalbe and Schwabe, 2021) that linked effects of PEs with
subsequent recognition memory. (A) Items associated with larger negative PEs that were subsequently
recognized were associated with decreased BOLD responses in the right posterior parahippocampal
gyrus (PHC), and at trend level, in the right hippocampus (HC). Black dots show data from individual
participants. Thick red lines show mean betas, while the thin red lines mark 4 1 standard error of the
mean. (B) Larger increases in between-network connectivity for the salience and schema network to
negative PEs were associated with greater memory enhancement. p.o indicates that p-values were
Bonferroni corrected for the number of sequential tests. * psyc < .05 (small volume corrected (SVC),
family-wise-error- and Bonferroni-corrected for the number of regions). Adapted from Kalbe and
Schwabe (2021).

2.3.4 Conclusions

Together, these results indicate that memory-promoting effects of negative PEs are driven
by a neural mechanism that is distinct from standard modes of memory formation. This
mechanism might be orchestrated through the salience network, which has been shown to
modulate other large-scale brain networks including the medial temporal encoding network
(Menon and Uddin, 2010; Sridharan et al., 2008). While we also replicated previous findings
showing that arousal moderated memory formation at the item level, these effects were
separable from those of PEs at both the behavioral and neural levels. Therefore, these results
further point towards a distinct cognitive mechanism that relies on aversive PEs to shape
long-term declarative memory formation in threatening environments.

2.3 Study 3: What neural mechanism drives the memory-modulating effects of
aversive PEs?
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General Discussion

Negative experiences are sometimes perceived as inevitable, but they do not always
come unforeseen. Theories of adaptive memory posit that a major phylogenetic driver in the
development of long-term declarative memory was its potential to detect and subsequently
avoid threatening situations (Klein et al., 2002; Nairne and Pandeirada, 2008a, 2008b).
Consequently, if initially neutral stimuli relate to important outcomes, then not only these
salient outcomes themselves should be kept in long-term memory but also stimuli that predict
their occurrence. To achieve this goal, the literature has so far mostly focused on an unspecific
modulation of memory, where no semantic link between a promoted stimulus and the memory-
promoting event is necessary. Instead, these effects non-selectively promote memory for
stimuli within a limited time frame around the salient experience. More recently, it has been
shown that this memory modulation can also be specific to stimuli from a category that gains
motivational significance, while leaving memory for stimuli from another category unaffected
(Dunsmoor et al., 2015; Oyarzun et al., 2016; Patil et al., 2017). Such category-specific
effects were identified for stimuli encoded within the same temporal context as the salient
experiences (i.e., online), for stimuli encoded after salient experiences (i.e., prospectively),
and, most remarkably, even for stimuli encoded before salient experiences (i.e., retroactively).
Based on the very limited evidence for this phenomenon so far, in Study 1, we aimed to
closely replicate the reported category-specific memory enhancement through aversive shocks
(Dunsmoor et al., 2015). Overall, our results cast doubt on the reliability and generalizability
of the proposed category-specific retroactive effect but provided substantial support for both a
prospective and an online promotion of memory that was specific to items from the category
predictive of electric shocks during fear conditioning. In Study 2, we proposed an alternative
exemplar-level interpretation of this effect. Specifically, we hypothesized that trial-unique
learning signals based on two separate models would explain differential memory formation.
In line with the first, more traditional approach that focuses on the memory-promoting effects
of physiological arousal, we found that trial-level outcome-related SCRs were linked with
improved memory. In addition to this arousal-based account, we built upon recent theoretical
advances (Trapp et al., 2018) and introduced a novel cognitive model that predicts a memory
promotion for stimuli associated with surprising outcomes (i.e., aversive PEs). Results not only
confirmed that aversive PEs were associated with improved memory, but model comparisons
further suggested that these effects were separable from those based on physiological arousal.
Therefore, these results pointed to a novel cognitive account of memory formation that is
separable from long-established arousal-based effects. Study 3 was designed to shed light
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on the neural underpinnings of this novel mechanism. Besides partially replicating effects
behaviorally, the distinction of arousal- versus PE-based memory modulation was also reflected
neurally. Our results suggest that (negative) PEs promote memory through a specific neural
mechanism that is associated with increased activity in the salience network but decreased
activity in networks associated with expected outcomes including both the schema network
as well as the MTL. In contrast to standard modes of memory formation, these decreases in
the activation of medial-temporal structures were associated with the PE-induced memory
improvements, suggesting a distinct neural mechanism.

3.1 Unspecific, category-level, and exemplar-level memory

modulation

Our initial plan for this series of experiments was to explore the cognitive and neural
basis of the putative category-specific retroactive enhancement of memory, as first introduced
by Dunsmoor et al. (2015) and later conceptually replicated in the reward domain by Patil
et al. (2017). Their findings introduced a promising new direction in the field of memory
modulation, which had previously mostly reported unspecific effects. In a typical report of
such unspecific memory modulation, a group of participants experiencing a salient or stressful
event showed, relative to a control group without such an experience, improved memory for
stimuli encoded in temporal proximity (Moncada et al., 2015; Roozendaal, 2002; Schwabe
et al., 2012). Category-specific memory modulation, on the other hand, implies that only
specific stimuli from a category linked with salient outcomes receive this memory promotion.
Reportedly, these effects could be observed in all three temporal directions, based on the
timing of the promoted stimuli relative to the memory-promoting event (Dunsmoor et al.,
2015). In an online enhancement of memory, promoted stimuli and memory-promoting
events occurred in the same temporal context. In a prospective enhancement of memory,
participants first experienced that one category of stimuli predicted salient events and then
showed improved memory for stimuli from the same category encountered at a later stage,
even though these stimuli were themselves never directly paired with the salient events.
Finally, in the retroactive enhancement of memory, initially neutral stimuli were first encoded,
and only later was their respective category linked with salient events, which still prompted a
specific retroactive promotion of these stimuli. This specific retroactive effect is remarkable, as
shock contingencies linking picture categories with aversive shocks could only be inferred once
the subsequent conditioning phase began (Dunsmoor et al., 2015). Therefore, differential
attention between stimulus categories during encoding (Baddeley et al., 1984; Chun and
Turk-Browne, 2007; Craik et al., 1996) could not explain this effect. Instead, Dunsmoor et al.
(2015) argued that these findings would be in line with consolidation effects according to
the synaptic tag and capture hypothesis (Frey and Morris, 1997, 1998; Martin and Kosik,
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2002; Rogerson et al., 2014). However, the exact neurophysiological mechanisms by which
synaptic tagging would be limited to a specific category of stimuli is unclear. Rather, previous
applications of synaptic tagging to the behavioral level in both rodents and humans had only
reported an unspecific retroactive memory modulation (Ballarini et al., 2013; Ballarini et al.,
2009; Moncada et al., 2015).

In Study 1, across four experiments aimed to closely replicate the category-specific
retroactive memory enhancement through aversive fear conditioning (Dunsmoor et al., 2015),
we gathered data from 285 unique participants but found only very limited evidence for
the phenomenon. Specifically, none of the four experiments provided evidence for category-
specific retroactive memory enhancement when we strictly replicated the analysis strategy
from the original study that collapsed recognition memory across confidence (Dunsmoor
et al., 2015). Exploratory high confidence memory analyses showed significant category-
specific retroactive memory enhancement in one of our four experiments, with one additional
experiment showing the effect at trend level. However, it should be noted that we refrained
from correcting for the number of exploratory statistical tests and that none of the reported
effects would have survived such a correction. Even though a pooled analysis across all
four experiments should be able to detect even tiny effects, only the model focusing on
high confidence memory showed a significant category-specific retroactive memory effect.
Interestingly, parallel Bayesian tests on pooled high confidence recognition data provided
even substantial evidence for the null hypothesis rejecting any category-specific retroactive
memory modulation. Together, these findings challenge the reliability of the category-specific
retroactive memory effect.

Our results also cast doubt on the validity of claims that the reported category-specific
retroactive memory effect reflects true memory modulation. Even the limited evidence in
favor of this effect was restricted to corrected recognition as the measure of recognition
memory, which is based on the two-high threshold model (Broder et al., 2013; Snodgrass and
Corwin, 1988). This model can be differentiated from signal detection theory (Macmillan
and Creelman, 2004; Wickens, 2002) and its measure of recognition memory (d’) based
on the assumed shape of the receiver operating characteristic (ROC), which describes the
relationship of hit rates and false alarm rates across variations in the response criterion
(Yonelinas and Parks, 2007). Critically, signal detection theory, which assumes that ROCs
are curvilinear, has much more empirical support than the two-high threshold model, which
assumes that ROCs are linear (Dube and Rotello, 2012; Pazzaglia et al., 2013; Wixted, 2007).
Choosing a recognition measure based on the correct model is critical as only when its
assumptions are met, resulting estimates of recognition memory are independent of response
criteria (Snodgrass and Corwin, 1988). Therefore, if evidence for category-specific retroactive
memory enhancement only emerges in corrected recognition based on the problematic
two-high threshold model, one might hypothesize that these effects reflect changes in the
response criterion rather than actual memory modulation. Indeed, at least in one of the four
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experiments, we found evidence of a more liberal response criterion for pre-conditioning
items from the CS™ category over those from the CS™ category.

In this context, it is also important to consider the so far only successful conceptual
replication of Dunsmoor et al. (2015), which reported category-specific retroactive memory
enhancement for stimuli from a category that was later linked with higher reward opportu-
nities (Patil et al., 2017). Originally, in Study 1, we also reported results from an attempt
to closely replicate these findings from the reward domain, although we later dropped this
experiment from Study 1 to focus entirely on the replication of Dunsmoor et al. (2015).
Notably, our attempt to closely replicate Patil et al. (2017) not only failed to provide evidence
for the specific retroactive memory enhancement through rewards but could not even replicate
the online effect for stimuli directly linked with larger rewards (Kalbe and Schwabe, 2020b).
As these data might also show that our experimental manipulation was overall unsuccessful,
some caution is warranted when interpreting our results as a failure to replicate the specific
retroactive memory effect in the reward context.

Overall, our pattern of results is more in line with a previous conceptual replication
of Dunsmoor et al. (2015) that investigated category-specific retroactive memory enhance-
ment through subsequent rewards that participants encountered in a Pavlovian conditioning
paradigm (Oyarzun et al., 2016). Parallel to our results, these authors found improved mem-
ory for stimuli from a rewarded category over unrewarded stimuli that were encoded during
an intermediate reward phase (i.e., an online memory promotion) and during a post-reward
phase, but no evidence for any specific retroactive memory enhancement. Taken together,
these consistent findings of an online and prospective memory enhancement across multiple
studies, recognition measures, and research groups confirm that memory can be modulated
selectively based on category membership, albeit not retroactively.

For purely category-based effects, all stimuli from a given category should experience, on
average, similar levels of memory promotion. Contrarily, if there are systematic differences in
memory within the same category that cannot be attributed merely to the inherent memora-
bility of the stimulus, this would indicate that an additional mechanism at least supplements
category-level effects. We hypothesized in Study 2 that memory formation during the fear
conditioning phase would be modulated by both cognitive- and arousal-based measures at
the level of individual stimuli (i.e., exemplar-based). Indeed, results showed that stimuli
associated with binary aversive PEs and greater outcome-related arousal were more likely to
be recognized in the memory test 24h after encoding. In isolation, these results would not
necessarily prove an exemplar-level memory modulation. As items from the CS* category
were, relative to items from the CS~ category, associated with both an increased number of
PEs and greater outcome-related SCRs, these item-level predictors are partially confounded
with conditioning categories. Can this confounding explain our findings of exemplar-level
effects? In Study 2, we found that CS* items associated with PEs were recognized significantly
better than CS™ items associated with correct outcome predictions. In other words, we found
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a PE-based memory modulation within the same stimulus category, which provides com-
pelling evidence that our exemplar-level effects were not purely artifacts of confounding with
conditioning categories. Particularly for the online modulation of memory, exemplar-level
effects could underlie apparent category-level effects. At first glance, findings of a prospective
memory enhancement seem to stem from a category- rather than exemplar-based memory
modulation, as participants were no longer required to make any predictions of outcomes, nor
was there the threat of receiving shocks in this encoding phase. At the same time, it cannot
be excluded that the beginning of the post-conditioning phase still served as an extinction
training of previously acquired fear, which would lead to an increased exemplar-level arousal
particularly for early CS* trials (Dunsmoor et al., 2018; Hermans et al., 2006).

3.2 Separating physiological from cognitive accounts of
memory modulation

Beyond identifying different levels at which the modulation of memory operates, a central
goal of this series of experiments was to gain insight into the underlying mechanisms that
select stimuli for preferential storage in long-term memory. Here, we contrasted two models
based on a physiological versus a cognitive approach. In principle, memory phenomena
of all three levels of specificity (i.e., unspecific, category-specific, and exemplar-based) are
compatible with either approach. A typical finding of memory modulation in the stress
literature is that a stressful experience retroactively and unspecifically enhances memory for
stimuli previously encoded under neutral valence (Nater et al., 2007; Schwabe et al., 2008;
Schwabe et al., 2012). The stress literature has often favored a physiological account of
these stress effects by focusing on the well-established effects of adrenal and glucocorticoid
stress hormones in the basolateral amygdala, which modulates activity in memory-relevant
regions such as the MTL and thereby aids memory consolidation (McGaugh, 2000; McIntyre
et al., 2003; Roozendaal et al., 2006; Schwabe et al., 2012). Conceptually similar effects of
unspecific retroactive memory enhancement have been described in the behavioral tagging
framework. Here, memory for neutral stimuli is unspecifically and retroactive enhanced
through subsequent salient experiences, which are often characterized by their novelty (Bal-
larini et al., 2009; Chen et al., 2020; Moncada et al., 2015; Moncada and Viola, 2007).
Whereas behavioral tagging has its roots in the physiological model of synaptic tagging, the
concept of novelty has a strong cognitive notion and is conceptually similar to PEs (Clark,
2018; Kiverstein et al., 2019; Wessel et al., 2012). Inspired by a theoretical account that
links stressful events with expectancy violations (Trapp et al., 2018), we recently showed
that the memory boost for stimuli surrounding stressful events can be reduced by providing
participants with detailed information about the upcoming stressor and therefore reduce
subsequent surprise associated with the stressful situation (Kalbe et al., 2020). While one
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might hypothesize that our cognitive manipulation also reduced the physiological response to
the stressor, both subjective and psychophysiological data indicated similar stress responses re-
gardless of prior information. Overall, these results support a cognitive model that emphasizes
the role of expectancy violations in the unspecific stress-driven modulation of memory.

For the more specific category-based memory modulation, investigations of the underlying
mechanisms are still rare. Dunsmoor et al. (2015) proposed that their findings of category-
specific memory enhancement in the aversive context were mediated by arousal, but provided
no explicit evidence for this hypothesis. A congruent finding with this arousal-based account
were the increased anticipatory SCRs to items from the CS™ category over items from the CS™
category, which reflected successful fear conditioning. On the other hand, if category-specific
effects critically depend on the extend of acquired fear, then one might expect a significant
correlation between the induced arousal during fear conditioning and the overall memory
performance, which we found no evidence for in any of our four close replications.

Another study with a very similar design recorded fMRI during encoding and linked
the specific retroactive memory enhancement to increased activity of the ventral tegmental
area and substantia nigra during the conditioning phase (Clewett et al., 2020). The authors
interpret this finding as an arousal-related neuromodulatory effect on the dopaminergic
system, which supposedly drives the category-specific retroactive effect. However, their failure
to demonstrate any significant category-specific retroactive memory enhancement at the
behavioral level means that these results must be interpreted with caution. Furthermore, these
findings fit similarly within a cognitive perspective of category-specific memory enhancement,
as neurons of the ventral tegmental area and substantia nigra are known for their coding
of PEs (Lak et al., 2014; Schultz et al., 1997). At the behavioral level, outcomes of CS™
trials were further much less predictable as they were probabilistically linked with shocks.
Meanwhile, outcomes of CS™ trials were, at least after participants learned that they were
never followed by a shock, perfectly predictable. However, our data from Study 3 suggest that
this overall difference in the entropy of outcomes alone cannot explain the superior memory
for items from the CS™ category. Specifically, we found in Study 3 that items from the CS?*
category, associated with a two-thirds shock probability, were recognized significantly better
than items from the CSP* category, associated with a one-third shock probability. Since shock
probabilities of one-third and two-thirds lead to an equal Shannon entropy, this factor alone
cannot explain these memory differences. Moreover, we found no evidence that the greater
number of shocks in the CS?* category could explain these differences in memory. Rather, our
analyses at the exemplar level suggested that different types of PEs predominantly associated
with these conditioning categories contributed to these findings.

Identifying and characterizing such exemplar-level memory effects were our primary
goals in Studies 2 and 3. In line with established models focusing on physiological arousal
(McGaugh, 2000; Mclntyre et al., 2003; Roozendaal et al., 2006), we found in both studies
that phasic SCRs predicted subsequent memory formation. However, only those SCRs elicited
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by the outcome of the trial (i.e., whether a shock occurred) were reliably and positively
associated with subsequent memory. For SCRs during stimulus encoding and in anticipation of
shocks, we found either no association with subsequent memory or even a negative association
with subsequent memory in Experiment 2 of Study 2. Our key focus in Studies 2 and 3 was the
exemplar-level memory modulation based on the cognitive measures of aversive PEs. Across
slightly different conceptualizations of aversive PEs in Studies 2 and 3, we found memory
modulating effects even after accounting for several control variables. Interestingly, effects of
outcome-related SCRs and PEs share a similar temporal profile. Both effects emerge only after
the end of the stimulus presentation, meaning that their effects cannot be easily explained by
enhanced encoding due to increased attention to the stimulus (Baddeley et al., 1984; Chun
and Turk-Browne, 2007; Craik et al., 1996). Both effects are also retroactive, albeit on a
much narrower time scale compared with the concept of behavioral tagging (Dunsmoor et al.,
2015; Moncada et al., 2015; Patil et al., 2017). This similarity in the temporal dynamics of
arousal- and PE-based effects might indicate that both are different manifestations of the
same underlying mechanism. Consistent with this hypothesis, outcome-related SCRs have
previously been shown to reflect PEs in aversive environments, particularly the unexpected
omission of shocks (de Berker et al., 2016; Spoormaker et al., 2012; but see Bach and
Friston, 2012). Contrarily, our data from Studies 2 and 3 consistently showed that arousal
and aversive PE-based effects were statistically separable. The best fitting model in both
studies was always based on a combination of arousal with aversive PEs, suggesting that
both measures contributed uniquely to memory formation. However, while skin conductance
is one of the most established measures of arousal in fear learning experiments (Bach and
Melinscak, 2020; Lonsdorf et al., 2017), it does not necessarily capture all aspects of arousal
(Neiss, 1988) and also tracks other constructs such as cognitive demand (Botvinick and Rosen,
2009). Still, these results suggest that aversive PEs modulate memory through a mechanism
that goes beyond the prominent effects of physiological arousal. In this case, one would also
expect the neural mechanism behind the PE-driven memory enhancement to deviate from the
amygdala-associated pathways that are assumed to underlie arousal-based effects on memory
(McGaugh, 2000; McIntyre et al., 2003; Roozendaal et al., 2006).

3.3 A distinct mechanism underlying effects of aversive
PEs on memory

We specifically designed Study 3 to investigate neural mechanisms of the aversive PE-
driven memory modulation by recording fMRI during encoding. Overall, results provided little
support for the hypothesis that a simple promotion of standard memory processes revolving
around the MTL is behind this effect (Eichenbaum, 2004; Fernandez et al., 1999; Squire
and Wixted, 2011), as theorized by neurobiological models focusing on physiological arousal
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(McGaugh, 2000; Roozendaal et al., 2006). During stimulus presentation, increased activity
in the MTL was indeed associated with greater subsequent memory performance, replicating
earlier findings (Davachi and Wagner, 2002; Eichenbaum, 2004; Fernandez et al., 1999).
Critically, this relationship between MTL activity and subsequent memory seemed to reverse
with large negative PEs, which only emerged after the stimulus presentation. Here, we found
even decreased activation in response to larger negative PEs in both the MTL and the mPFC.
Greater decreases in MTL activation in response to large negative PEs were further linked
with an improved subsequent memory. At first glance, this finding appears to be not only
in stark contrast to the vast literature linking increased hippocampal activity to improved
episodic memory formation (Davachi and Wagner, 2002; Eichenbaum, 2004; Fernandez et al.,
1999), but also seems to contradict our earlier findings that showed a positive link between
hippocampal activity and subsequent memory during stimulus presentation. However, it
should be noted that the negative link between (para-)hippocampal activity and subsequent
memory in response to large negative PEs only emerged as the outcome of a trial was revealed
and therefore when the stimulus had already disappeared. Still, these findings suggest that a
qualitatively distinct neural mechanism drives the memory-modulating effects of aversive PEs.

This mechanism was characterized by a markedly increased activity in the anterior insula
and the dACC in response to negative PEs. Both areas are assumed to be involved in error
monitoring (Bastin et al., 2016; Botvinick et al., 2004; Preuschoff et al., 2008), but they
also form key regions of the salience network, which responds to behaviorally salient events,
such as outcomes that conflict with prior expectations (Ham et al., 2013; Menon and Uddin,
2010). The salience network has further been identified as a modulator of other large-scale
brain networks (Menon and Uddin, 2010; Sridharan et al., 2008). In a subsequent analysis of
large-scale brain networks, we found increased between-network connectivity in response to
large negative PEs between the salience network and the medial temporal encoding network
(at trend level), as well as between the salience network and the schema network. The
schema network, which encompasses the angular gyrus, precuneus, and mPFC, integrates
new information into existing memory structures (van Kesteren et al., 2012; Vogel et al.,
2018). When predictive stimuli are not followed by their expected outcome, this signals that
the particular exemplar stands out and cannot be easily integrated into an existing memory
schema, leading instead to a separate memory trace (Rouhani et al., 2020; van Kesteren
et al., 2012). In line with this notion, we found that greater between-network connectivity
between the salience network and the schema network to large PEs was linked with improved
subsequent memory performance.

One might speculate whether this distinction between the cognitive PE-based approach
and the physiological arousal-based approach to memory modulation can also be translated to
the neuroendocrinological level. Reward PEs are strongly linked with the action of dopamine
in the mesolimbic system, particularly in the ventral tegmental area, substantia nigra, and
ventral striatum (Lak et al., 2014; O’'Doherty et al., 2003; Pagnoni et al., 2002; Pessiglione
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et al., 2006; Schultz et al., 1997). Although the neuroendocrinological substrate of aversive
PEs is overall more controversial (Fiorillo, 2013; Schultz, 2019), a critical involvement of the
mesolimbic dopamine system has still been suggested (Brooks and Berns, 2013; Matsumoto
and Hikosaka, 2009). On the other hand, the memory-promoting effects of physiological
arousal have been linked to the rapid secretion of noradrenaline in response to arousing
stimuli (Hauser et al., 2019; Joéls et al., 2011; Schwabe et al., 2012). Future studies could
directly test this account by using pharmacological manipulations that modulate dopaminergic
or noradrenergic receptors. In case of a double dissociation, manipulating the dopaminergic
system should selectively affect the PE-based memory modulation, while manipulating the
noradrenergic system should selectively affect the memory-modulating effects of arousal.

3.4 Future directions

Overall, our findings of a cognitive memory modulation that uses PE-signals to select
stimuli with unexpected consequences for storage in long-term memory introduce a new
perspective on declarative memory formation in threatening environments. Even though this
aversive PE-mediated memory modulation resembles recent findings in the reward domain
and beyond (Calderon et al., 2021; Clark and Chang, 2021; Rouhani and Niv, 2021; Rouhani
et al., 2018; Rouhani et al., 2020), some key aspects need further clarification by future
research. One such issue is the exact shape of the relationship between PEs and subsequent
memory formation. Both Studies 2 and 3 showed consistent support for the link of negative
aversive PEs (associated with unexpected shock omissions) with improved memory formation.
For positive PEs (associated with unexpected shock deliveries), results were less consistent.
The data from Study 2 favored a memory-promoting effect of positive PEs, although their
low rate of occurrence made this finding less reliable. In contrast to these previous results,
after modifying the behavioral task to balance the distribution of PEs in Study 3, we found
opposite, memory decreasing effects of positive PEs. Based on neural data from Study 3
showing that larger positive PEs were associated with clusters of increased activity in areas
linked to sensorimotor functions, we speculated that their memory decreasing effect might
be due to distracting influences of the aversive shock on mnemonic processing. Whether
these memory-decreasing effects of positive PEs also generalize beyond the specific encoding
context inside the MRI scanner remains a critical issue for future research.

Another issue that has been identified by our research group and is currently under
investigation concerns the scope of memory modulation observed in this series of experiments.
The associative learning literature often distinguishes learning based on temporal contiguity
versus contingency (Hammond, 1980; Schultz, 2006). Applied to the present research
question, if the observed effects of PEs were contiguity-based, then the mere temporal
proximity of the promoted stimulus relative to the surprising outcome would be the critical
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component that enables the modulation of memory formation. Contrarily, if this effect
depends on contingency, then a surprising outcome should modulate memory only for such
stimuli that contributed to the (incorrect) prediction, possibly even when a larger temporal
gap separates these two. In the experiments presented in this work, predictive stimuli were
always immediately followed by their respective outcome. Therefore, both contiguity and
contingency were equally present in each trial. To dissociate influences of both components,
our research groups currently runs an experiment that includes additional neutral stimuli
after participants completed their prediction in each trial, but before the respective outcome
is revealed. If temporal contiguity were sufficient, then these neutral stimuli should also be
modulated by subsequent surprising outcomes, even when they are completely non-predictive.
If the effect critically depends on contingency, then only memory for the stimulus that gave
rise to the incorrect prediction should be modulated, but not memory for the interleaved
non-predictive stimulus.

The exact nature of memory that can be modulated by aversive PEs is a more general
issue. In all three of our studies, we assessed memory modulation through recognition
performance. Although the correct recognition of an item implies at least familiarity, we
cannot infer that an individual could also recollect the broader context a stimulus was
encountered in. According to dual-process theories, recognition memory is supported by both
familiarity- and recollection-based processes (Diana et al., 2006; Rugg and Yonelinas, 2003;
Yonelinas, 1994). However, if our observed memory modulation does indeed serve behavioral
adaptation by identifying and avoiding aversive outcomes, then the mere familiarity with a
previously encountered predictive stimulus is insufficient. Instead, to form adaptive decisions
based on such memories, an individual must also be able to recall the specific outcome that
was associated with the predictive stimulus (Gershman and Daw, 2017), as enabled only by
recollection-based memory. Future studies should address this issue by not only probing the
recognition of predictive stimuli but also of their respective outcomes.

Finally, our findings might improve interventions in fear- and trauma-related disorders,
which are often characterized by aberrant episodic memory functioning (Airaksinen et al.,
2005; Berntsen et al., 2003; Sartory et al., 2013). Regarding empirically well-supported
treatments based on exposure therapy (Bohnlein et al., 2020; Foa et al., 1991; Rauch et al.,
2012), our consistent findings of memory-promoting effects of negative aversive PEs from
Studies 2 and 3 suggest that therapists should activate patients’ fear-related expectations
prior to the confrontation with the feared stimulus. The subsequent observation that feared
consequences stay out constitutes a large negative PE and should therefore lead to stable
fear-incongruent declarative memory. Whether these considerations are indeed beneficial for
the therapeutic practice would have to be clarified by future studies.
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Figure 11. Integration of our results with the proposed framework of declarative memory modulation.
A common feature of all the effects captured by this framework is that memory for a stimulus is
modulated by a separate event. Three displayed dimensions of this memory modulation include its
specificity (in ascending order: unspecific, category-based, or exemplar-based), the assumed underlying
mechanisms (physiological or cognitive), and the temporal directionality of effects (retroactive,
online, and prospective). In summary, any form of memory modulation could be attributed to both
physiological and cognitive variables. In the case of unspecific effects, stressful events have long been
known to modulate memory for surrounding stimuli in a retroactive, online, and prospective fashion.
Dominant accounts attribute this effect to adrenal stress hormones, but more recent research has
begun to additionally explore the role of cognitive factors, including expectancy violation and novelty.
The key focus of our series of studies were the more specific category-based and the most specific
exemplar-based modulation of memory. In line with previous reports (Dunsmoor et al., 2015; Patil
et al., 2017), in Study 1 we found evidence for category-specific memory enhancement both online
and prospectively, but not retroactively. These effects were compatible with both a physiological and a
cognitive account. Our Studies 2 and 3 focused on a retroactive exemplar-based memory modulation
that might partially underlie these apparent category-level effects. Results suggested that physiological
and cognitive drivers reflect separable mechanisms that both contribute to the exemplar-based memory
modulation. Whether this parallelism is similarly present in the category-specific and the unspecific
modulation of memory needs to be clarified by future research. Note that provided references are
non-exhaustive examples of experimental studies in support of each specific effect.

3.5 Conclusions

Looking back at the introductory example of the police officer facing potentially threaten-
ing situations while performing traffic stops, results from our three studies paint a nuanced
picture of an adaptive memory system that operates at multiple levels of specificity and uses
different strategies to prioritize relevant over irrelevant information for storage in long-term
memory. It has long been known that stressful or dangerous events, such as a stopped driver
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suddenly drawing a firearm, produce arousal that not only ensures that impressions of the
firearm itself are likely to be remembered, but that this memory enhancement also extends
to inconsequential details that were encoded in the same temporal context. However, based
on our cognitive PE-based approach, an early warning that the driver might draw a weapon
would reduce associated levels of surprise and therefore the unspecific memory enhancement
(Kalbe et al., 2020). Could the escalating traffic stop also promote memory only for a specific
category of stimuli? For example, if the perpetrator drove a pickup truck, would surrounding
memories of encounters with other pickup trucks also receive a memory enhancement? Our
data suggest that this might be the case, but only for those trucks that are encountered after-
ward (i.e., prospectively) not beforehand (i.e., retroactively). At the highest level of specificity,
we demonstrated that a modulation of memory can be limited to unique stimuli that relate to
unexpected consequences. For example, a car with aggressive bumper stickers depicting guns
would raise suspicion that the driver could be armed. If this suspicion turns out to be true,
but the situation stays manageable, this experience will not necessarily be remembered over
long periods. On the other hand, if the car with the aggressive bumper stickers turns out to
belong to a peaceful old lady, this would constitute a large negative PE, leading to a higher
chance that the police officer will form stable memory for this schema-incongruent experience.
Conversely, if all signs point to a routine traffic stop, but the situation unexpectedly turns
violent, will this positive PE lead to stable memory for the possibly missed indicators of the
violent outcome? As our findings regarding this question were overall inconsistent, future
research will need to further address this question.

In conclusion, an adaptive declarative memory system needs to prioritize self-relevant
over irrelevant information. One major challenge is to build stable memory not only for
salient events themselves, but also for predictors of such events. This memory modulation
was the common focus of all three of our studies. It can occur at multiple levels of specificity,
including unspecific, category-specific, and, most centrally, exemplar-based effects (Figure
11). Besides the established contributions of physiological arousal to the superior memory for
emotional experiences, we introduce a PE-based cognitive approach that is separable from
physiological models both behaviorally and neurally. Our findings demonstrating a memory
modulation of stimuli linked with unexpected outcomes reveal new connections with similar
effects in reward-based learning, bridge the gap between the traditionally separate fields
of declarative and associative learning, and broaden our understanding of how declarative
memory enables us to leverage past experiences in threatening environments.
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On the Search for a Selective and Retroactive Strengthening of Memory: Is
There Evidence for Category-Specific Behavioral Tagging?

Felix Kalbe and Lars Schwabe
Department of Cognitive Psychology, Institute of Psychology, Universitdt Hamburg

Storing motivationally salient experiences preferentially in long-term memory is generally adaptive.
Although such relevant experiences are often immediately obvious, a problem arises when the relevance
of initially ambiguous events becomes evident sometime after encoding. Is there a mechanism that ena-
bles the retroactive enhancement of specific memories? Recent evidence suggests the existence of such
a mechanism that selectively strengthens weak memories for neutral stimuli from one category when
their respective category gains motivational significance later. Although such a selective retroactive
memory enhancement has considerable implications for adaptive memory, evidence for this phenom-
enon is based on only few studies. Here, we report data from four attempts to replicate category-specific
retroactive memory enhancements for neutral stimuli from a category that was later predictive of aver-
sive electric shocks. Although our data showed enhanced memory for the arousing stimuli themselves
as well as related subsequent stimuli, none of our experiments provided any evidence for category-spe-
cific retroactive memory enhancement when strictly replicating the analysis strategy from the original
study. In an additional analysis focusing on high confidence memory only, one of four experiments indi-
cated a significant retroactive memory effect but only in corrected recognition and not in d’ based on
signal detection theory. In an analysis pooled across all experiments, we found a small but significant
retroactive memory effect again solely for high-confidence corrected recognition, although the corre-
sponding Bayesian analysis indicated even substantial evidence for the null hypothesis. Overall, our
data cast doubt on the reliability and generalizability of the proposed selective retroactive enhancement

of initially weak memory.
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Our memories provide not only a window into the past but may
also guide our future behavior. In particular, detailed memories of past
experiences allow predicting future events as well as the potential
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consequences of actions and can therefore serve as a basis for opti-
mized choices in complex environments (Gershman & Daw, 2017;
Murty et al., 2016). However, of the numerous experiences that we
make every day, only few are of significant value for future decisions.
According to the theory of adaptive memory, these motivationally sig-
nificant experiences should be preferentially stored in episodic mem-
ory (Nairne et al., 2007; Naime & Pandeirada, 2008; Shohamy &
Adcock, 2010). Phylogenetically, such an adaptive memory might
have been critical to survival by allowing the identification and subse-
quent avoidance of potentially threatening situations, thereby improv-
ing fitness (Naime & Pandeirada, 2008). The preferential memory
processing is relevant because limited memory resources during both
encoding and retrieval should optimally be reserved for motivationally
relevant experiences.

Such motivationally salient experiences are usually immediately
obvious to an individual. Exciting or stressful experiences elicit physi-
ological arousal during encoding, a well-known factor that promotes
episodic memory formation (Cahill & McGaugh, 1998; LaBar &
Cabeza, 2006; McGaugh, 2018; Schwabe et al., 2012; Vogel &
Schwabe, 2016). However, other events appear initially neutral or
mundane and their link to important consequences is only later
revealed. Consider a bank customer entering her local branch as usual,
when another presumed customer is leaving in a hurry. She barely
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notices his face. Soon it is revealed to her that the person she saw leav-
ing had just robbed the bank and she realizes that she will soon be
asked by the police to give a detailed description of the alleged rob-
ber’s unmasked face. Because the initial encounter with the alleged
robber was not particularly remarkable and therefore not paralleled by
significant arousal, his face was not encoded preferentially. Is there still
a mechanism to make such initially weak memories last? Adaptive
memory would call for a mechanism that temporarily and nonselec-
tively stores recent experiences and transfers them to long-term mem-
ory when a motivationally significant event follows within a certain
time window. Indeed, such a mechanism was first discovered at the
synaptic level and inspired the tag and capture hypothesis (Frey &
Morris, 1997, 1998; Martin & Kosik, 2002; Rogerson et al., 2014).
According to this hypothesis, at least two distinguishable steps are nec-
essary to achieve long-term potentiation for initially weak experiences,
the dominant neurophysiological model of long-term memory (Bliss
& Collingridge, 1993; Malenka & Nicoll, 1999). First, weak stimula-
tion of a neuron creates a local transient tag at a synapse, which decays
within hours and by itself is insufficient to create long-lasting memo-
ries. To produce long-term potentiation, additional plasticity-related
proteins are required that result from a stronger stimulation of the neu-
ron. These proteins bind to the synaptic tag set earlier (i.e., the captur-
ing step) inducing long-term physiological changes in synaptic
signaling. Critically, plasticity related proteins evoked through strong
stimulation of the neuron can bind to synaptic tags set earlier through
unrelated weak stimulation and therefore create lasting memories for
events that would by themselves be too weak to produce long-term
potentiation (Moncada & Viola, 2007; Redondo & Morris, 2011).
This mechanism therefore provides a neurophysiological basis for the
retroactive memory enhancement of events with an initially unclear
motivational significance (Moncada et al., 2015).

Evidence that the synaptic tag and capture hypothesis can be
translated to behavior has been found in both rodents (Almaguer-
Melian et al., 2012; Ballarini et al., 2009; de Carvalho Myskiw
et al., 2013; Moncada & Viola, 2007; Wang et al., 2010) and more
recently in humans (Ballarini et al., 2013). In paradigms demon-
strating a behavioral tagging mechanism, participants first superfi-
cially encode stimuli. This encoding session is then followed by
either a significant event (e.g., an aversive or novel experience) or
a nonsignificant control event. Subsequent memory tests typically
show that the significant event—compared with a neutral control
event—retroactively enhanced memory for the previously encoded
stimuli. In these paradigms, retroactive memory enhancements are
usually unspecific in the sense that an event enhances memory for
any stimuli encoded within a certain time window before the sig-
nificant event, even if these are not directly linked to the latter. In
the case of the bank robbery, such unrelated details might include
the color of the tie the bank clerk was wearing at the time of the
robbery. From an adaptive memory perspective, promoting
memory for such irrelevant details might be regarded as sub-
optimal when they lack any predictive value for the memory-
promoting event.

A recent study suggests that there is—in addition to rather
broad and unspecific behavioral tagging—a retroactive mem-
ory enhancement that is highly specific (Dunsmoor et al.,
2015). This study combined an incidental encoding task with a
fear learning procedure. In a preconditioning phase, partici-
pants first encoded neutral pictures of animals and tools and
were asked to indicate to which of the two categories a picture

belonged. Following this weak encoding session, in a Pavlov-
ian fear conditioning phase, additional, previously unseen pic-
tures from the same two categories were presented. Pictures
from one of the two categories (i.e., either animals or tools;
CS™) were followed by an aversive electric shock in two thirds
of all trials, while pictures from the remaining category (CS")
were never followed by a shock. Whether shocks followed
pictures of animals or tools was counterbalanced across par-
ticipants. A postconditioning phase with an identical proce-
dure as the preconditioning phase but novel stimuli followed
the fear-conditioning phase. To test participants’ memory for
stimuli from the three encoding phases, a surprise recognition
test followed either immediately, 6 hr, or 24 hr later (manipu-
lated between subjects). In this recognition test, participants
saw all previously presented pictures of animals and tools to-
gether with the same number of previously unseen (new) pic-
tures from both categories and classified each picture as either
old or new. Results showed an enhanced recognition perform-
ance for CS™ pictures encoded during fear-conditioning com-
pared with CS™ pictures encoded in the same phase in all three
delay groups. In the 24-hr delay group, this CS™ memory car-
ried over to pictures presented after the fear-conditioning
phase, although these items were never paired with a shock
themselves. Most importantly, however, the authors found cat-
egory-specific retroactive memory enhancements in both the
6-hr and 24-hr delay groups, as indicated by better recognition
of CS™ pictures encoded before the fear-conditioning com-
pared with CS™ pictures encoded in the same phase. This find-
ing is particularly remarkable because participants had no
information about shock contingencies being linked to one of
the two categories when these pictures were encoded. When
the recognition test followed immediately after the encoding,
no category-specific retroactive memory enhancement was
observable, suggesting the critical involvement of consolida-
tion processes. Interestingly, there also was a negative linear
relationship between the size of the retroactive memory effect
and the temporal proximity of preconditioning items to the
fear-conditioning procedure, suggesting that pictures from the
CS™ category that were encoded first (i.e., furthest from the
following fear-conditioning) received the strongest memory
enhancement. Furthermore, another group of participants
encoded stimuli from the preconditioning phase more strongly
through repeated presentation of each picture. These partici-
pants showed no signs of category-specific retroactive mem-
ory enhancement after 24 hr, indicating that only initially
weak memories are susceptive to this effect, a finding that is
congruent with the literature on synaptic tagging (Frey &
Morris, 1997, 1998; Martin & Kosik, 2002; Rogerson et al.,
2014).

Another study from the same group of authors showed that
selective, category-specific retroactive memory enhancements
cannot only be triggered through aversive events, but also
through reward (Patil et al., 2017). Following a similar design
as the study by Dunsmoor et al. (2015), the authors showed
that memory for initially neutral pictures of animals and tools
could be enhanced for the category that was later associated
with high compared with low reward opportunities in a delayed
matching-to-sample task. Notably, in this task, participants
were rewarded for correct responses, whereas shocks were
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independent of participants’ actions in the study by Dunsmoor
et al. (2015). In contrast to these findings, another study from
an independent lab using a similar classical conditioning pro-
cedure as Dunsmoor et al. (2015) featuring monetary reward
instead of aversive shocks obtained no evidence for category-
specific retroactive memory enhancement (Oyarzun et al.,
2016). To our knowledge, no other studies so far have investi-
gated category-specific retroactive memory enhancement, nei-
ther in the aversive, nor in the appetitive domain.

The findings showing a selective, retroactive memory enhance-
ment are exciting; they provide novel insights into how our memory
works and may have considerable practical implications for clinical
or legal settings. A selective behavioral tagging mechanism may
also inspire new tools for boosting memory retrospectively. Given
the far-reaching implications of selective, retroactive memory
enhancements, we initially aimed to shed light on the cognitive
mechanisms underlying this effect. However, what started as an
attempt to unravel the fundamental mechanisms underlying selective
behavioral tagging, turned out to be a search for the phenomenon
itself. We present here evidence from four experiments aimed to rep-
licate findings of category-specific retroactive memory enhancement
through aversive electric shocks (Dunsmoor et al., 2015).

Experiment 1: Testing the Fear-Related Category-
Specific Retroactive Memory Enhancement

Experiment 1 was designed to replicate findings of category-
specific retroactive memory enhancement in the context of an
aversive learning task (Dunsmoor et al., 2015). Because the
experiment of Dunsmoor et al. (2015) showed that observed retro-
active memory effects were most pronounced in a recognition test
24 hr after encoding, we used here a 24-hr interval between encod-
ing and recognition test. Instead of the original stimulus set, we
used pictures that were conceptually very similar to those used by
Dunsmoor et al. (2015); that is, also pictures from the categories
‘animals’ and ‘tools’. Procedural differences included the placing
of the shock electrode on the lower leg (rather than on the wrist as
in the original study) and employing a two-stage recognition test
(rather than a single-stage as in the original study) that first asked
participants to indicate whether an item was old or new, followed
by their certainty with this decision. As further discussed below,
we implemented a different CS-UCS timing compared with
Dunsmoor et al. (2015). Finally, we did not control for stimulus
typicality across encoding phases because this aspect was not men-
tioned in Dunsmoor et al. (2015). Instead, it was only revealed
during later stages of the peer-review process for this article that
Dunsmoor et al. (2015) controlled for stimulus typicality. This
aspect is later explicitly addressed in Experiment 4.

Method
Participants

Forty-four healthy participants (30 women) between 19 and 33
years of age took part in this experiment (M = 25.05, SD = 3.75).
This sample size was based on an a priori sample size calculation
with G*Power 3 (Faul et al., 2007). Dunsmoor et al. (2015)
reported retroactive memory improvements from a paired #-test for
items conceptually related to the CS™ compared with items related

to the CS™ in the 24-hr retrieval group with weak encoding (n =
30) and obtained a ¢ value of 2.48 with an effect size of d,, = .41.
Based on this information, Cohen’s d,, another measure of effect
size in within-subject designs used by G*Power, can be calculated
using the following formula (Lakens, 2013):

t
Cohen's d, = W
Using the values reported by Dunsmoor et al. (2015) yielded the
following estimate for Cohen’s d.:

2.48
V30

We treated this effect size as a point estimate for the category-spe-
cific retroactive memory effect in our power analysis. This indi-
cated that, using a two-tailed paired #-test with o = .05, at least 41
participants would be required to detect such an effect with 80%
certainty. This target sample size also represents an approximately
40% increase compared with the 24-hr group in the original study
(n = 30). Exclusion criteria for participation in this experiment
comprised any current or past physical or mental illness, electric
medical devices such as pacemakers, and pregnancy in women.
Participants gave written informed consent prior to testing and
received a monetary compensation of 20€ after completing the
experiment. The ethics committee of the Faculty of Psychology
and Human Movement Sciences of the Universitit Hamburg
approved the study protocol.

Cohen's d, = =0.45

Materials

As in the original study, stimuli were 180 color photographs of
animals and 180 color photographs of tools isolated on white
backgrounds. We acquired photographs from the Bank of Standar-
dized Stimuli (Brodeur et al., 2010; Brodeur et al., 2014) and from
publicly available Internet sources. All photographs were of neu-
tral valence and selected to be unique exemplars of their respective
category. For example, there were not two different photographs
of dogs or two different photographs of hammers. From the total
pool of 360 photographs, 180 (90 animals, 90 tools) were ran-
domly selected per participant to serve as learning items, while the
remaining 180 served as lures for the surprise recognition test on
the second experimental day. The 180 learning items were then
randomly allocated to the three different incidental encoding
phases for the first experimental day, such that each phase featured
30 photographs of animals and 30 photographs of tools.

Procedure

The first experimental day featured an incidental encoding ses-
sion with three phases: a preconditioning phase, a fear conditioning
phase, and a postconditioning phase. Approximately 24 hr later,
participants completed a surprise recognition test for photographs
that had been presented in all three encoding phases on the previous
day. Unlike in the study by Dunsmoor et al. (2015), we did not vary
the interval between encoding and recognition test between subjects
but kept it fixed at 24 hr, because the 24 hr group had previously
shown the clearest evidence for both category-specific retroactive
and prospective memory enhancement. Additionally, another study
featuring a reward learning task also demonstrated category-specific
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retroactive memory enhancement only after a 24-hr interval, but not
in an immediate recognition test, suggesting a crucial role of a suffi-
ciently long consolidation period before the recognition test (Patil
etal., 2017).

Upon arrival on the first experimental day, participants gave
written informed consent and received detailed written instructions
about the following three learning phases. Importantly, they were
not informed that the study investigated episodic memory, nor that
a recognition test would follow on the second experimental day. In
the preconditioning phase, participants saw 30 photographs of ani-
mals and 30 photographs of tools in a pseudorandomized order,
such that no more than three photographs from the same category
could appear in a row. Each stimulus was presented for 2.5 s, dur-
ing which participants should indicate whether the photograph
showed an animal or a tool by pressing the ‘1’ or 2’ button on the
computer keyboard (see Figure 1). Each stimulus was followed by
a black fixation cross on a white background for 6 s = 2 s. The
allocation of buttons to each of the two categories was counterbal-
anced across participants. The total duration of the preconditioning
phase was approximately 8 min.

Before the conditioning phase, we attached electrodes on the dis-
tal phalanx of the second and third finger of the left hand to record
skin conductance responses (SCRs). Skin conductance was meas-
ured using a MP-160 BIOPAC system (BIOPAC systems, Goleta,
CA). An additional STM-200 module (BIOPAC systems, Goleta,
CA) was connected to the MP-160 for electrical stimulation. The
stimulation electrode was placed on the right lower leg, approxi-
mately 25 cm centrally above the heel. To determine the individual
stimulation intensity, we used a standardized procedure consisting
of twelve 200-ms single-pulse shocks with an initial intensity of 20
V. After each trial, participants rated the shock that they had just
received as either painful or not painful in a forced-choice fashion.
Whenever a shock was rated as not painful, its intensity was
increased slightly in the following trial. Similarly, whenever partici-
pants rated a shock as painful, the intensity was decreased slightly.
The goal was to select an intensity that participants perceived as

Figure 1
Procedure in Experiments 14

Pre-conditioning

4

=

Fear conditioning

unpleasant, but not painful. In total, these steps following the pre-
conditioning phase took approximately 10 min.

The following conditioning phase again consisted of 30 photo-
graphs of animals and 30 photographs of tools, none of which had
been presented before. As in the preconditioning phase, stimuli
were presented in a pseudorandomized order, so that no more than
three photographs from the same category appeared in a row. Each
photograph was presented centrally on the screen for 4.5 s, during
which participants were instructed to make a binary prediction
about the possible occurrence of a following shock using the ‘1’
and ‘2’ buttons on the keyboard, corresponding to no shock and
shock, respectively. In 20 of the 60 trials in this phase, a 200-ms
electric shock was presented immediately after the offset of the
photograph. Note that in Dunsmoor et al. (2015), shocks cotermi-
nated with photograph presentation, leading to a 200ms relative
offset of the shock in our replication attempt. This procedural dif-
ference was unintentional and addressed in a later experiment
(Experiment 4).

Importantly, shock contingencies were linked to the item cate-
gories, such that one image category (e.g., tools) served as the
CS™ category, whereas the remaining category (e.g., animals) was
never paired with a shock and thus served as the CS™ category.
Whether photographs of animals or tools served as the CS™ cate-
gory was counterbalanced across participants. In CS™ trials, the
shock probability was two thirds, with a fixed number of 20
shocks occurring in the 30 CS™ trials. In CS™ trials, on the other
hand, none of the photographs was followed by a shock. Partici-
pants were not informed about category-shock contingencies but
had to learn them by trial and error. To avoid that participants
could misinterpret shocks as consequences of their actions, they
were explicitly told that their choices had no effect on the proba-
bility that a shock would occur (Dunsmoor et al., 2015). Each trial
was followed by a black fixation cross on a white background for
8 * 2 s, which enabled measuring the relatively slow SCRs eli-
cited by electric shocks and allowed skin conductance levels to
return to baseline before the next trial started. The total duration of
the conditioning phase was approximately 12 min. After the

Post-conditioning

e /\

Note. In each phase, participants saw 60 unique photographs of animals and tools. During pre- and postconditioning, they were instructed to categorize
each photograph as an animal or tool. During fear conditioning, photographs from one category (CS™; animals in the example above) were followed by
an electric shock in two-thirds of all trials, whereas photographs of the remaining category (CS™; tools in the example above) were never followed by a
shock. Whether photographs of animals or tools served as the CS™ category was counterbalanced across participants. For each photograph, participants
were instructed to indicate whether they expected that a shock would follow. Note that in Experiment 3, the interval between preconditioning and
Pavlovian fear conditioning was increased by 10 min, based on previous reports that this would lead to increased category-specific retroactive memory
enhancement (Dunsmoor et al., 2015). Approximately 24h after encoding, participants completed a surprise recognition test in which they saw all previ-
ously presented photographs of animals and tools together with the same number of new photographs and indicated for each of them whether they
thought it had been presented on the previous day. See the online article for the color version of this figure.
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conditioning phase, we removed both the SCR- and the shock-
electrodes. Participants then rated the shock intensity on a scale
from 1 (not unpleasant at all) to 10 (extremely unpleasant).

The subsequent postconditioning phase consisted of 60 previ-
ously unseen photographs (30 animals and 30 tools) and otherwise
followed an identical procedure as the preconditioning phase.
Thus, the duration of the postconditioning phase was approxi-
mately 8 minutes again.

Participants returned for a memory test 22 hr to 26 hr after
encoding on the first experimental day. They first completed a
short questionnaire to assess whether they had already anticipated
the following recognition test. To this end, after being informed
about the following memory test, they rated how surprised they
were about the upcoming memory test on a scale from 1 (not sur-
prised at all) to 5 (very surprised). For later analyses, we inverted
the scale of this measure so that larger values indicate less surprise
as in Dunsmoor et al. (2015). Next, they received written instruc-
tions explaining details of the recognition test. In the recognition
test, they were presented all 180 photographs from the three
encoding phases of the previous day intermixed with an equal
number of “new” photographs (i.e., photographs that had not been
presented previously). Half of these lures were photographs of ani-
mals and half were photographs of tools. Stimuli were presented
one by one centrally on a white background. For each of these
photographs, participants first decided whether it was “old” or
“new” in a forced-choice fashion. Then, participants had to indi-
cate how confident they were that this decision was correct by
pressing buttons corresponding to very unsure (German: sehr
unsicher), rather unsure (eher unsicher), rather sure (eher sicher)
and very sure (sehr sicher). If in any of the two stages no response
was given within 5 s, the rest of the trial was skipped. Between tri-
als, a black fixation cross on a white background was presented
centrally for 1.5s = 5.

Data Analysis

Confirmatory statistical analyses were kept as close as possible
to the analyses described in the original study by Dunsmoor et al.
(2015). Specifically, these memory analyses were performed on
corrected recognition scores to account for different response cri-
teria between subjects. These were derived by subtracting the indi-
vidual per image category false alarm rate from the per image
category and per phase hit rate. Responses were collapsed across
confidence, that is, only the forced-choice decision between “old”
and “new” items was considered for memory performance.
Besides #-tests on corrected recognition scores as reported by Dun-
smoor et al. (2015), we also report #-tests on sensitivity scores (d’)
based on signal detection theory (Macmillan & Creelman, 2005;
Wickens, 2002). Before computing their z scores from the standard
normal distribution, hit- and false-alarm-rates were restricted to
the range of 1% to 99%. All t-tests were two-tailed.

Further, Bayes factors were calculated using the tfestBF R-func-
tion from the BayesFactor package to directly compare the ade-
quacy of the null hypothesis Hy that the true effect is equal to zero
against the one-sided alternative hypothesis H; that the effect is
greater than zero. We applied a Cauchy prior distribution with a
default scale parameter of r = .707 (Morey et al., 2018; Rouder
et al., 2009). The resulting BF';y metric indicates relative evidence
for the H; versus the Hy such that values greater than 1 favor the

alternative hypothesis H; and values smaller than 1 favor the null
hypothesis Hy. We interpret values greater than 3 as substantial
evidence for the H;, while values smaller than 1/3 are interpreted
as substantial evidence for the Hy (Jarosz & Wiley, 2014).

As a manipulation check for successful fear conditioning, we ana-
lyzed skin conductance data obtained during the second encoding
phase using both (a) a continuous decomposition analysis (CDA) and
(b) a more classic through-to-peak (TTP) analysis, which was more
similar to the SCR analysis in Dunsmoor et al. (2015), using Ledalab
Version 3.4.9 (Benedek & Kaernbach, 2010). First, the skin conduct-
ance signal was downsampled to a resolution of 50 Hz and optimized
using four sets of initial values. The minimum amplitude threshold
was set to .01 uS. For each trial during the conditioning phase, we
derived anticipatory SCRs as the average phasic driver within a
response window of .5 s to 4.5 s after each stimulus onset to obtain
CDA-estimates. Like Dunsmoor et al. (2015), we also obtained more
classic through-to-peak results, expressed as the sum of significant
SCR-amplitudes within the specified response window. Importantly,
as shocks always appeared exactly 4.5 s after stimulus onset and there-
fore outside the response window, the resulting estimates could not
have been biased by the UCS.

Results and Discussion
Successful Fear Conditioning

An analysis of skin conductance responses confirmed that our
procedure successfully induced conditioned fear for items from
the CS™ category. During the conditioning phase, participants
showed significantly higher anticipatory SCRs to CS* items com-
pared with CS™ items (TTP: #[43] = 4.20, p < .001, d,,, = .51;
CDA: 1[43] =4.79, p < .001, d,,, = .52; Figure 2).

Anticipation of the Recognition Test

On the second experimental day, participants were first informed
about the following recognition test for photographs from the previous
day and then rated how surprised they were by this task on a scale
ranging from 1 (very surprised) to 5 (not surprised at all). Responses
from six participants were missing. The average response in the
remaining sample was 3.08 (SD = .97), showing that, on average, par-
ticipants were moderately surprised. Four participants indicated that
they were not surprised at all. Exclusion of these four participants had
no effect on the pattern of results. Therefore, these participants were
still included in the following analysis.

Overall Memory Performance

Overall, participants performed well in the recognition task (see
Table 1), as reflected in a markedly higher average hit rate for
items from all three encoding phases (i.e., the rate of correctly
classifying previously seen photographs as old) of 69.6% (SD =
.11) than the false alarm rate (i.e., the rate of incorrectly classify-
ing previously unseen photographs as old) of 24.4% (SD = .09).

No Evidence for Category-Specific Retroactive Memory
Enhancement

To address our main research question, we investigated how
recognition performance for the photographs presented on the first
experimental day was affected by the encoding phase (before, dur-
ing or after the fear conditioning) and the conditioning category
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Figure 2

Successful Fear Conditioning as Indicated by Average Anticipatory Skin Conductance Responses
(SCRs) in Experiments 1-4 That Were Estimated Using a Through-to-Peak Analysis Similar to
Dunsmoor et al. (2015)
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Note. In all four experiments, participants showed significantly greater anticipatory skin-conductance responses
during fear conditioning to CS™ items compared with CS™ items, confirming a successful fear induction. TTP =
through-to-peak. Error bars represent =1 SEM.

ik p < 001

(CS™ or CS7) an item belonged to through a repeated-measures Finally, we also tested for preconditioning items the previously
ANOVA on corrected recognition scores. For the factor phase, reported positive linear relationship between the temporal distance
Mauchly's test indicated that the sphericity assumption was vio- to the conditioning phase and the size of category-specific retroac-
lated, W = .85, p = .030. Hence, results for the factor phase are tive memory enhancements (Dunsmoor et al., 2015). To this end,
reported after applying a Greenhouse-Geisser correction. Overall, CS™ and CS™ preconditioning items were each binned in tertiles
corrected recognition scores differed according to the phase an corresponding to trials 0—10, 11-20, and 21-30 relative to the con-

item was encoded in, F(1.69, 72.73) = 17.1, p < .001, n’g = .05. ditioning phase. A repeated-measures ANOVA with the corrected
Whether an item belonged to the conditioned category, on the recognition advantage for CS* items compared with CS™ as the

other hand, had no significant overall effect on recognition per- dependent variable and the time bin as a within-subject factor
formance, although a trend was visible, F(1, 43) = 3.92, p = .054, showed no significant effect of time bins, F(2, 86) = .20, p = .82,
m%g = .01. There was no significant interaction between the encod- Mm% = .002. In contrast with previous reports (Dunsmoor et al.,

ing phase and the conditioning category an item belonged to, F(2, 2015), this finding indicates that the relative time of encoding of
86) = 1.65, p = .20, m*g = .004. We further performed paired - an item within the preconditioning phase had no effect on a puta-
tests comparing the corrected recognition for items from the CS™ tive category-specific retroactive memory enhancement.

category versus items from the CS™ category separately per phase.

. . Complementary Analyses
These confirmed previous findings of an enhanced memory forma- P Y Y

tion for CS™ items versus CS™ items in the conditioning phase, Although previous analyses showed no evidence for any category-
1(43) =231, p =.025, d,, = .35 (Figure 3, upper left panel; Dun- specific retroactive memory enhancement, these relied on classic fre-
smoor et al. 2015). At trend level, there was evidence that this quentist statistics and can therefore only indicate evidence against, but

memory benefit persisted for CS* items over CS™ items in the not in support of the null hypothesis. To this end, we reanalyzed previ-
postconditioning phase, even though these photographs were never ously reported classic paired #-tests with their Bayesian counterparts
directly paired with the UCS, #(43) = 1.82, p = .076, d,, = .29. (see the Method section). For items encoded during the conditioning
Critically, for items that were encoded during the preconditioning phase, these provided substantial support for the alternative hypothesis

phase, there was no evidence for a category-specific retroactive of a positive memory effect for CS™ compared with CS™ item from the
memory enhancement for CS™ items over CS™ items, #(43) = .36, same phase, BF ;o = 3.53. Similarly, for items encoded after fear condi-
p=.72,d,, = .06. tioning, results also favored the alternative hypothesis of a memory
Table 1

Retrieval Memory Results in Experiment 1, Mean Proportion of Responses by Certainty

CS* CS™
Measure DO MO MN DN DO MO MN DN

Preconditioning 0.603 0.148 0.129 0.120 0.571 0.162 0.126 0.141
Conditioning 0.580 0.148 0.134 0.138 0.511 0.154 0.154 0.181
Postconditioning 0.521 0.158 0.152 0.170 0.482 0.145 0.168 0.205
New 0.121 0.126 0.236 0.518 0.121 0.119 0.227 0.533

Note. DO = definitely old; MO = maybe old; MN = maybe new; DN = definitely new.
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Figure 3

Recognition Performance Expressed as Hit Rate Minus False Alarm Rate in Experiments 1-4 by

Encoding Phase and Conditioning Category
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Note. In all four experiments, recognition was improved for items from the CS* category that were encoded during
Pavlovian fear conditioning. Only in Experiment 2 was this effect significantly carried over to items encoded after
the end of the fear conditioning. Most importantly, none of the four experiments provided any evidence for cate-
gory-specific retroactive memory enhancement. Error bars represent =1 SEM.

*p < 05, %% p < 01, #%% p < 001,

advantage for CS™ items relative to CS™ items, although evidence was
only anecdotal, BF;, = 1.41. Most importantly, for preconditioning
items, Bayesian analysis further provided substantial support for the
null hypothesis rejecting any category-specific retroactive memory
enhancement, BF ;= .22.

Dunsmoor et al. (2015) performed all memory analyses on cor-
rected recognition scores, defined as hit rates minus false alarm rates.
Here, we repeated their main analyses using sensitivity scores (d’)
based on signal detection theory, another common measure of recogni-
tion performance in the memory literature (Macmillan & Creelman,
2005; Wickens, 2002). These parallel analyses showed no significant
differences between CS™ and CS™ items in any of the three encoding
phases, all rs < 1.60, all ps > .12. In the online supplemental
materials, we further present results of parallel analyses using general-
ized linear mixed-effect models, showing an identical pattern of results
as in the analysis based on memory sensitivity.

To identify possible factors hindering us from replicating the
category-specific retroactive memory effect, we performed addi-
tional analyses beyond merely replicating the analysis strategy
reported by Dunsmoor et al. (2015). Notably, participants were
slightly less surprised by the recognition test than in the original
study. However, there was no significant correlation between

memory test anticipation and recognition performance, Spear-
man’s ry = .22, p = .18. Further, overall memory performance per
participant did not correlate with induced arousal during fear con-
ditioning (measured through mean SCRs to CS* minus mean
SCRs to CS™), TTP: Spearman’s ry, = —.01, p = .93, CDA: Spear-
man’s ry = —.01, p = .95. Only in very few trials of the recognition
test, participants failed to respond quickly enough rejecting the
notion that this might have biased our results. The mean number
of missed trials per participant was .39 (SD = .75) of 360.

Experiment 2: Testing the Fear-Related Category-
Specific Retroactive Memory Enhancement With
Increased Statistical Power and the Original Stimulus Set

Despite successful fear conditioning and a replication of the
procedure and analysis strategy from Dunsmoor et al. (2015), we
found no evidence for category-specific retroactive memory
enhancements in Experiment 1. It should be noted that, although
conceptually very similar, Experiment 1 did not use the original
stimulus set. Additionally, there were subtle differences in the pro-
cedure. For example, in our recognition test, “old” versus “new”
decisions and memory confidence were tested separately for each
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item, while this was a single step in the original study (Dunsmoor
et al., 2015). Although there is no theoretical justification how
these small deviations from the original study should prevent the
detection of the proposed category-specific retroactive memory
effect, we aimed to investigate whether we could replicate the
findings when using the original stimulus set and sticking closer to
the original procedure. Therefore, we contacted the lead author of
the original study and asked him to provide us the stimulus materi-
als, including all experimental instructions, which were used in the
original study (Dunsmoor et al., 2015). We received these materi-
als and used them for a direct replication of the original study by
Dunsmoor et al. (2015). Additionally, we substantially increased
the sample size compared with Experiment 1 to minimize the
chance of null findings attributable to insufficient statistical power.
Experiment 2 used the same variation in the CS-UCS timing as
Experiment 1. Further, we did not control for stimulus typicality in
this experiment as this aspect was not mentioned in Dunsmoor et
al. (2015) and brought forward to us at a later stage.

Method
Participants

Eighty-four healthy participants (60 women) between 19 and 35
years of age took part in Experiment 2 (M = 25.23, SD = 4.08).
Four participants had to be excluded from the analysis, either
because they did not return for the memory test on the second ex-
perimental day or because of technical and experimenter errors.
Because these exclusions, there was a slight imbalance regarding
the between-subjects factor conditioned image category, such that
for 41 participants tools served as CS* category, whereas animals
served as CS™ category for only 39 participants. We examined
whether this slight imbalance affected our results by randomly
excluding two participants with tools as the CS* category from
our analysis (10 permutations). Because the pattern of results
remained unchanged, the following analyses were performed for
the full sample of 80 participants. Again, the target sample size
was determined using an a priori power analysis in G¥*Power 3
(Faul et al., 2007) with the aim to considerably increase the statis-
tical power compared with Experiment 1 and thereby minimize
the chance of null findings due to an insufficient sample size. As
in Experiment 1, we assumed d, = .45 as a point-estimate for the
previously reported category-specific retroactive memory effect
(Dunsmoor et al., 2015). A two-tailed paired z-test with o = .05
required at least 82 participants to achieve a statistical power of
.98. Exclusion criteria were identical to Experiment 1. None of the
participants from Experiment 1 participated in this experiment. As
before, participants received a monetary compensation of 20€.
The study protocol was approved by the ethics committee of the
Faculty of Psychology and Human Movement Science at the Uni-
versitit Hamburg.

Materials

For this experiment, we used the stimulus set from the study by
Dunsmoor et al. (2015), consisting of 180 color photographs of
animals and 180 color photographs of tools isolated on white
backgrounds. As in Experiment 1, photographs were of neutral va-
lence and each tool and animal represented a unique exemplar of
its respective category. The stimulus set was randomly divided

into learning items and lures per participant and learning items
were allocated to the three encoding phases in the same manner as
in Experiment 1.

Procedure

The procedure in this experiment was largely identical to
Experiment 1, except for some minor changes to achieve consis-
tency with the original study (Dunsmoor et al., 2015). More pre-
cisely, we changed the location of the stimulation electrode from
the right lower leg to the right wrist. Because this area tends to be
more sensitive to electric stimulation, we also reduced the initial
intensity in the procedure for determining the pain threshold from
20V in Experiment 1 to 10V in this experiment. Furthermore, we
replaced the two-step forced-choice decision in the surprise recog-
nition test on the second experimental day with a task assessing
both “old” versus “new” decisions and certainty in a single step as
reported in the original study (Dunsmoor et al., 2015). More pre-
cisely, for each stimulus in the recognition test, participants per-
formed only a single button press with the four possible options
that the currently presented item was either definitely old (German:
sicher alt), maybe old (eher alt), maybe new (eher neu), or defi-
nitely new (sicher neu) by pressing the “17, “2”, “3”, or “4” button
on the keyboard, respectively. Additionally, the 5-s time limit per
response that was used in Experiment 1 was removed. In sum,
Experiment 2 used the same experimental procedure and stimuli
as the study by Dunsmoor et al. (2015) but a significantly larger
sample size.

Data Analysis

The statistical analysis was identical to Experiment 1 and the
statistical analysis of Dunsmoor et al. (2015), complemented by
analyses based on signal detection theory parameters and a Bayes-
ian analysis.

Results and Discussion
Successful Fear Conditioning

An analysis of skin conductance data indicated that our proce-
dure successfully induced conditioned fear for CS™ items. Specifi-
cally, during Pavlovian conditioning participants showed greater
anticipatory SCRs to items from the CS™ category compared with
items from the CS™ category (TTP: #[79] = 4.75, p < .001, d,, =
48; CDA: 1[79] = 4.32, p < .001, d,,, = .35; Figure 2).

Anticipation of the Recognition Test

As in Experiment 1, participants rated how surprised they were
by the recognition test on a scale ranging from 1 (very surprised)
to 5 (not surprised at all). On average, they indicated that they
were moderately surprised (M = 3.11, SD = 1.12). Nine partici-
pants chose the not surprised at all option. Because excluding
these participants did not affect the pattern of results, they were
still included in the following analyses.

Overall Memory Performance

Participants performed overall very well in the surprise recogni-
tion test (see Table 2) with an average hit rate for items from all
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Table 2
Retrieval Memory Results in Experiment 2, Mean Proportion of Responses by Certainty
CS* CS™

Measure DO MO MN DN DO MO MN DN
Preconditioning 0.421 0.224 0.216 0.138 0.388 0.245 0.245 0.123
Conditioning 0.454 0.227 0.205 0.114 0.331 0.265 0.267 0.137
Postconditioning 0.352 0.219 0.258 0.171 0.298 0.230 0.307 0.165
New 0.078 0.169 0.368 0.386 0.083 0.174 0.381 0.362
Note. DO = definitely old; MO = maybe old; MN = maybe new; DN = definitely new.

three encoding phases of 60.9% (SD = .14) and an average false
alarm rate of 25.2% (SD = .10).

No Evidence for Category-Specific Retroactive Memory
Enhancement

We performed a repeated-measures ANOVA on corrected rec-
ognition scores to identify factors affecting memory formation
over the task. As in Experiment 1, the recognition performance
generally differed between phases, F(2, 158) = 26.8, p < .001,
Mg = .06. The recognition performance was also generally differ-
ent between CS™ and CS™ items, F(1, 79) = 17.0, p < .001, n°g =
.03. Finally, there was a significant interaction between the encod-
ing phase and the item category, indicating that the effect of mem-
bership of an item to the CS* versus CS™ category differed
between the encoding phases, F(2, 158) = 6.66, p = .002, nzG =
.007. To further qualify these results, we performed paired #-tests
comparing corrected recognition scores for items belonging to the
CS™ versus CS™ category separately per phase. For photographs
presented during Pavlovian conditioning, we obtained an enhanced
memory for CS™ items compared with CS™ items, #(79) = 4.89,
p < .001, d,, = .53 (Figure 3, upper right panel). This memory
benefit for items belonging to the CS™ category carried over to the
postconditioning phase, even though shock leads were removed
beforehand, as indicated by improved corrected recognition
scores, #(79) = 3.32, p = .001, d,, = .33. Most importantly, despite
the high statistical power in this replication study, corrected recog-
nition scores provided no evidence for a retroactive memory
enhancing effect for items from the CS* category over items from
the CS™ category presented before the Pavlovian conditioning
phase, #79) = 1.28, p = .20, d,,, = .14. As in Experiment 1, we also
tested for preconditioning items the previously reported linear
relationship between their temporal distance and the size of the
category-specific retroactive memory effect using the same proce-
dure as in Experiment 1. Contrary to this hypothesis, a repeated-
measures ANOVA with the corrected recognition advantage for
CS™ items compared with CS™ items as the dependent variable
and the time bin as a within-subject factor showed no significant
effect of time bins, F(2, 158) = 1.08, p = .34, nZG = .007. This
finding shows that the relative time of encoding of an item within
the preconditioning phase had no effect on the proposed category-
specific retroactive memory enhancement.

Complementary Analyses

As in Experiment 1, we performed additional Bayesian paired
t-tests to quantify relative evidence for the null versus the alternative
hypotheses regarding effects of fear conditioning on memory

formation in the different encoding phases. These confirmed previ-
ous findings by showing substantial evidence for the alternative hy-
pothesis of an enhanced memory for CS™ versus CS™ items that
were encoded during Pavlovian conditioning, BF;, = 6223. Simi-
larly, a Bayesian analysis indicating substantial support for the hy-
pothesis of a memory advantage for CS* over CS™ items that were
encoded after fear conditioning, BF;y = 36.38. Most critically, for
the comparison of CS* and CS™ items encoded before fear condi-
tioning, results from the Bayesian analysis spoke against category-
specific retroactive memory enhancement, although unlike in
Experiment 1, evidence for the null hypothesis was only anecdotal,
BF;p = 48.

Although Dunsmoor et al. (2015) based their critical analyses
on corrected recognition scores, we also aimed to replicate their
findings using memory sensitivity scores (d'). As expected, results
were very similar to those based on corrected recognition scores.
Specifically, we found improved memory for CS* items encoded
during fear conditioning compared with CS™ items from the same
phase, #(79) = 4.31, p < .001, d,, = .49. This improved memory
sensitivity for CS™ items also carried over to the postconditioning
phase, #(79) = 2.58, p = .012, d,, = .27. As for corrected recogni-
tion scores, there was no evidence for category-specific retroactive
memory enhancement in memory sensitivity scores (d’), #(79) =
1.28, p = .20, d,, = .14. Again, analyses based on generalized lin-
ear mixed-effect models showing the same pattern of results are
included in the online supplemental materials.

To identify possible factors contributing to the lack of category-
specific retroactive memory enhancements in this experiment, we
again performed additional analysis beyond those reported by Dun-
smoor et al. (2015). Although participants were slightly less sur-
prised by the recognition test than in Dunsmoor et al. (2015), there
again was no significant correlation between the anticipation of the
memory test and recognition performance, Spearman’s r; = .15, p =
.19. Further, individual memory performance did not correlate with
induced arousal during fear conditioning (measured through mean
SCRs to CS* minus mean SCRs to CS™), TTP: Spearman’s r, =
—.08, p =.50; CDA: Spearman’s r, = —.01, p = .95.

Experiment 3: Testing the Effect of an Increased
Interval Between Preconditioning and Fear-
Conditioning on Category-Specific Retroactive
Memory Enhancement

Thus far, we were unable to find any evidence for category-spe-
cific retroactive memory enhancements for weakly encoded stim-
uli belonging to a category that was later associated with the
occurrence of shocks in a fear conditioning paradigm. Experiment
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2 showed the absence of the category-specific retroactive memory
effect could not be attributed to the stimulus set, nor to small devi-
ations in the procedure. Additionally, as Experiment 2 had high
statistical power, it is highly unlikely that the absence of the cate-
gory-specific retroactive memory effect was due to an insufficient
sample size.

This third replication attempt was designed to investigate one
aspect that moderated the size of the category-specific retroactive
memory effect in the original study, namely the interval between
the encoding during the preconditioning phase and the subsequent
fear-conditioning (Dunsmoor et al., 2015). It had been shown that
items from the preconditioning phase that were presented the lon-
gest before fear-conditioning showed the strongest category-spe-
cific retroactive memory enhancement, whereas this effect seemed
to diminish the closer items were encoded relative to the condi-
tioning phase (Dunsmoor et al., 2015). This finding was in line
with previous work on nonspecific behavioral tagging in rodents,
which suggests that there might be a minimal interval between the
weak encoding (setting the tag) and associated arousing event to
enable retroactive memory enhancement (de Carvalho Myskiw
et al., 2013; Moncada et al., 2015). However, it is important to
note that, in these experiments investigating unspecific behavioral
tagging, the interval between initial weak encoding and the subse-
quent memory promoting event was relatively long, typically
more than one hour. Dunsmoor et al. (2015), on the other hand,
observed positive effects of the temporal distance of a precondi-
tioning item to conditioning procedure at a much shorter time
scale, that is, only minutes. Here, we built the encoding-condition-
ing interval on the finding from Dunsmoor et al. (2015) to maxi-
mize the chances of detecting a category-specific retroactive
memory enhancement. Therefore, in this third experiment, we
increased the interval between the preconditioning and the fear
conditioning phase by 10 minutes to investigate whether this
change could produce the category-specific retroactive memory
enhancement that was not detectable in Experiments 1 and 2.
Apart from this single aspect, we retained both the procedure and
the high statistical power from Experiment 2. Therefore, the 200-
ms variation in the CS-UCS timing compared with Dunsmoor et
al. (2015) was also retained in this experiment. Again, we did not
control for stimulus typicality in this experiment as this aspect was
not mentioned in Dunsmoor et al. (2015) and brought forward to
us only at a later stage.

Method
Participants

Eighty-four healthy volunteers (59 women) between 18 and 33
years of age participated in this experiment (M = 25.11, SD =
3.57). Six participants had to be excluded from the analysis, either
because they did not return for the memory test on the second ex-
perimental day or because of technical and experimenter errors.
As in Experiment 2, these exclusions led to a slight imbalance
regarding the between-subjects factor conditioned image category,
such that for 40 participants tools served as CS™ category, whereas
animals served as CS™ category for only 38 participants. Again,
we examined whether this imbalance affected our results by ran-
domly excluding two participants with tools as the CS™ category
from our analysis (10 permutations). Because the pattern of results

remained unchanged, the following analyses were performed for
the full sample of 78 participants. The target sample size was cal-
culated using an a priori power analysis with identical parameters
as in Experiment 2. Exclusion criteria were identical as in Experi-
ments 1 and 2. None of the participants had previously participated
in Experiment 1 nor in Experiment 2. Again, participants received a
monetary compensation of 20€. The study protocol was approved
by the ethics committee of the Faculty of Human Movement Sci-
ence at the Universitit Hamburg.

Materials

We used the same stimulus set as in Experiment 2, correspond-
ing to the material used by Dunsmoor et al. (2015) and consisting
of 180 color photographs of animals and 180 color photographs of
tools isolated on white backgrounds. As in Experiment 1 and
Experiment 2, per participant, half of the stimuli from each cate-
gory were randomly selected as learning items, whereas the
remaining half served as lures. The learning items were allocated
to each of the three encoding phases in the same manner as in
Experiment 1 and Experiment 2. Furthermore, the assignment of
photographs of tools and animals as CS* and CS™, respectively,
was counterbalanced across participants.

Procedure

The only difference compared with the procedure in Experiment
2 was the extension of the interval between the preconditioning
phase and the subsequent fear conditioning phase. This change
was based on the finding that the category-specific retroactive
memory effect was positively correlated with the temporal dis-
tance between the encoding of an item and the following fear con-
ditioning procedure in the original study (Dunsmoor et al., 2015)
as well as evidence from studies in rodents (de Carvalho Myskiw
et al., 2013; Moncada et al., 2015). In this experiment, when par-
ticipants finished the preconditioning phase—unlike in Experiment
1 and 2—we did not immediately attach the electrodes. Instead,
participants were first presented the following series of question-
naires: The State-Trait Anxiety Inventory (Spielberger, 1983), a
multidimensional mood questionnaire (Steyer et al., 1997), a
chronic stress questionnaire (Schulz et al., 2004), the Beck
Depression Inventory (Beck et al., 1996), the Social Interaction
Anxiety Scale (Mattick & Clarke, 1998), and the Positive and
Negative Affect Schedule (Watson et al., 1988). After participants
had worked on these questionnaires for exactly 10 minutes, they
were interrupted and told that the remaining questions could be
finished at a later stage. In fact, questionnaires were only added to
keep participants occupied during the prolonged interval before
the fear-conditioning. For this reason, we also chose a greater
number of questionnaires than could usually be completed within
10 minutes, so that no participant would finish them earlier. After-
ward, the experiment continued in the same manner as described
for Experiment 2, by first attaching electrodes and determining the
pain threshold (taking an additional approximately 10 min), before
the start of the fear-conditioning phase, followed by the postcondi-
tioning phase and the 24-hr-delayed recognition test.

Data Analysis

The statistical analysis was identical to Experiments 1 and 2.
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Results and Discussion
Successful Fear Conditioning

As in both previous experiments, an analysis of skin conduct-
ance data confirmed that our procedure was successful in inducing
conditioned fear for CS* items. SCR data for one additional par-
ticipant were missing due to experimenter error. For the remaining
sample of 77 participants, during Pavlovian fear conditioning an-
ticipatory SCRs to items from the CS™ category were significantly
higher compared with items from the CS™ category (TTP: #[76] =
3.97, p < .001, d,, = .39; CDA: #[76] = 4.10, p < .001, d,,, = .30;
Figure 2).

Anticipation of the Recognition Test

As in the previous experiments, participants rated how surprised
they were by the recognition test on a scale ranging from 1 (very
surprised) to 5 (not surprised at all). Data from one participant
were missing as a result of experimenter error. On average, the
remaining 77 participants indicated moderate levels of surprise
(M =295, SD = .97). Three participants chose the not surprised at
all option. Because excluding these participants did not affect the
pattern of results, they were still included in the following analyses.

Overall Memory Performance

As in Experiments 1 and 2, participants performed overall very
well in the surprise recognition test (see Table 3) with an average
hit rate for items from all three encoding phases of 62.7% (SD =
.16) and an average false alarm rate of 23.1% (SD = .10).

No Evidence for Category-Specific Retroactive Memory
Enhancement

To analyze factors affecting memory performance for the
different phases of the task, we ran a repeated-measures ANOVA
on corrected recognition scores. As in the two previous experi-
ments, corrected recognition scores generally differed between
phases, F(2, 154) =35.72, p < .001, n2G =.08. Corrected recogni-
tion scores were also generally different between items from the
CS* and CS~ categories, F(1, 77) = 17.8, p < .001, n’g = .03.
Finally, this effect of item category membership differed between
the encoding phases, as indicated by a significant interaction
between the encoding phase and the item category, F(2, 154) =
22.12, p < .001, m’g = .03. To further qualify these results, we
performed paired 7-tests to compare corrected recognition scores
for items belonging to the CS™ versus CS™ category separately per

encoding phase. As in Experiments 1 and 2, these showed an
enhanced memory performance for CS* items encoded during
Pavlovian conditioning compared with CS™ items encoded in the
same phase, #77) = 6.60, p < .001, d,,, = .77 (Figure 3, lower left
panel). As in Experiment 1, there also was a trend toward
improved recognition memory for CS* items encoded after Pav-
lovian conditioning compared with CS™ items encoded in the
same phase, although unlike in Experiment 2, this trend was not
statistically significant, #(77) = 1.90, p = .061, d,,, = .19. Above all,
despite the increase in the interval between encoding and Pav-
lovian conditioning, we obtained no evidence for a retroactive
enhancement of memory for CS* items compared with CS™ items
encoded before Pavlovian conditioning in corrected recognition
scores, t#(77) = .17, p = .86, d,, = .02. Notably, even at descriptive
level, the memory difference between CS* and CS™ items encoded
before fear conditioning was negligible. We again tested the possi-
bility of a previously suggested linear trend between precondition-
ing items’ temporal distance to the conditioning phase and the size
of retroactive memory enhancement. As in Experiment 1 and 2, a
repeated-measures ANOV A with the corrected recognition advant-
age for CS* items compared with CS™ items as the dependent
variable and the time bin as a within-subject factor showed no sig-
nificant effect of time bins, F(2, 154) = .17, p = .85, ,qu =.001.
This indicates that the relative time of encoding of an item within
the preconditioning phase had no effect on putative category-spe-
cific retroactive memory enhancement.

Complementary Analyses

As for both previous experiments, to quantify relative evidence
for the null versus the alternative hypothesis of memory enhance-
ments through fear learning in each of the three encoding phases,
we conducted complementary Bayesian paired #-test. As before,
these indicated substantial evidence for enhanced memory forma-
tion of CS™ relative to CS™ items that were encoding during fear
conditioning, BF;y = 4727037. A corresponding Bayesian analysis
for the postconditioning phase also favored the alternative hypoth-
esis of enhanced memory for CS™ items, although evidence was
only anecdotal, BF;y = 1.34. As in both previous experiments, the
Bayesian analysis favored the null hypothesis rejecting the notion
of category-specific retroactive memory enhancements and as in
Experiment 1, evidence for the null hypothesis was substantial,
BF;,=.14.

Whereas previous analyses focused on corrected recognition
scores to closely replicate Dunsmoor et al. (2015), we also per-
formed parallel analyses on memory sensitivity (d’). These yielded

Table 3
Retrieval Memory Results in Experiment 3, Mean Proportion of Responses by Certainty
CS* CS™

Measure DO MO MN DN DO MO MN DN
Preconditioning 0.407 0.242 0.225 0.126 0.420 0.235 0.221 0.125
Conditioning 0.481 0.256 0.166 0.097 0.352 0.255 0.261 0.132
Postconditioning 0.341 0.227 0.256 0.175 0.310 0.235 0.272 0.183
New 0.070 0.156 0.362 0.412 0.066 0.169 0.372 0.393
Note. DO = definitely old; MO = maybe old; MN = maybe new; DN = definitely new.
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the same pattern of results as analyses based on corrected recogni-
tion. Specifically, the analysis based on d’ confirmed previous
findings of enhanced memory for CS™ items encoded during fear
conditioning, #(77) = 5.95, p < .001, d,,, = .69. For items encoded
after conditioning, a similar, but nonsignificant trend was obtained,
#77) = 1.72, p = .089, d,,, = .20. Above all, memory sensitivity
scores (d") indicated no evidence for any category-specific retroac-
tive memory enhancement for CS* items from the preconditioning
phase, #(77) = .45, p = .65, d,, = .05. Again, analyses based on
generalized linear mixed-effect models showing the same pattern
of results are presented in the online supplemental materials.

As in all previous experiments, there was no significant correla-
tion between the anticipation of the memory test and recognition
performance, Spearman’s r; = —.04, p = .74. Again, individual
memory performance did not correlate with induced arousal dur-
ing fear conditioning (measured through mean SCRs to CS™ minus
mean SCRs to CS™), TTP: Spearman’s r, = —.04, p = .76; CDA:
Spearman’s ry = .11, p = .36.

Experiment 4: Replicating Category-Specific
Retroactive Memory Enhancements After Adopting
Original UCS Timings and Balanced Stimulus
Typicality Across Phases

The three previous experiments aimed to replicate findings of
category-specific retroactive memory enhancements for stimuli
from a category that was later associated with shock occurrences
in a fear conditioning procedure. Compared with Experiment 1,
Experiments 2 and 3 adopted additional details from the original
procedure, namely the original stimulus set and the same format
for the recognition tests. Based on comments from authors of the
original study and reviewers, two additional deviations from
Dunsmoor et al. (2015) were identified that applied to Experiments
1 to 3. First, in the original study, shocks coterminated with the
stimulus presentation during fear-conditioning, whereas in Experi-
ments 1-3 shock onsets were administered exactly at the point of
stimulus offsets. Although this only leads to a 200-ms relative dif-
ference between studies (i.e., one shock length), it implies that
stimuli were still present when shocks occurred in Dunsmoor et al.
(2015), whereas in our Experiments 1 to 3 shocks followed imme-
diately after stimulus offset. We address this issue here by using
exactly the same shock timings that were used in Dunsmoor et al.
(2015).

Second, Dunsmoor et al. (2015) controlled typicality and super-
ordinate categories of stimuli, such that these were balanced across
each of the three encoding phases and the recognition test.
Unfortunately, they did not report on this in their study and we
only learned about this aspect through the peer review process for
this article. This contrasts with our procedure in Experiments 1-3,
in which the set of stimuli was randomly distributed to each
encoding phase. Therefore, our allocation of stimuli was unique
per participant. We aimed to investigate whether this procedural
difference might explain the lack of category-specific retroactive
memory enhancements in our previous experiments. This fourth
replication attempt had been preregistered and prereviewed before
the beginning of data collection. The preregistration can be found
at https://osf.io/9hzmk.

Method
Participants

Eighty-four healthy men and women between 18 and 34 years
of age participated in this experiment (M = 25.17, SD = 4.26).
Data from 13 participants had to be excluded because of an error
in an early version of the experimental software that would in
some trials incorrectly administer shocks to CS™ items. Because
these exclusions might negatively affect the statistical power, we
decided to recruit replacements for these 13 participants. One
additional participant had to be excluded due to technical problems
on the first experimental day. Therefore, the final sample included
in the memory analysis consisted of 83 participants.

As in Experiment 2, there was a slight imbalance regarding the
between-subjects factor conditioned image category, such that for
42 participants tools served as CS™ category, whereas animals
served as CS™ category for 41 participants. Again, we examined
whether this imbalance affected our results by randomly excluding
two participants with tools as the CS™ category from our analysis
(10 permutations). Because the pattern of results remained
unchanged, the following analyses were performed for the full
sample of 83 participants. The target sample size was calculated
using an a priori power analysis with identical parameters as in
Experiment 2 and 3. Exclusion criteria were identical as in Experi-
ment 1, 2, and 3. None of the participants had previously partici-
pated in any of the other Experiments. Participants received a
monetary compensation of 30€. The study protocol was approved
by the ethics committee of the Faculty of Psychology and Human
Movement Science at the Universitit Hamburg.

Materials

We used the same stimulus set as in Experiments 2 and 3, corre-
sponding to the material used by Dunsmoor et al. (2015) and con-
sisting of 180 color photographs of animals and 180 color
photographs of tools isolated on white backgrounds. Unlike in
Experiments 1-3, stimuli were not randomly allocated as learning
items or distractors. Instead, we received the fixed stimulus alloca-
tion table that was used in Dunsmoor et al. (2015; Joseph E. Dun-
smoor, personal communication, August 13, 2018) which was
intended to match each of the encoding phases in terms of stimulus
typicality and superordinate categories. In an online pilot-study,
we recruited an additional independent sample of 41 participants
(31 women, 10 men; aged 19 — 42 years; M = 26.55, SD = 6.08)
who rated the typicality of all 360 stimuli. In random succession,
they saw all 360 photographs (180 animals and 180 tools) and
rated how typical each photograph was for its respective category
on a scale from 1 (very untypical) to 10 (very typical). Ratings
were self-paced (i.e., there was no time limit per photograph).

Results showed that simply adopting the allocation table from
Dunsmoor et al. (2015) would lead to significant differences in
typicality between encoding phases. After swapping four pho-
tographs of tools and two photographs of animals between sets,
we obtained even typicality per category across sets (Figure 7
in the online supplemental materials). This procedure ensured
that we had comparable typicality ratings per category across
sets on the one hand, while sticking as closely as possible to the
stimulus allocation used in Dunsmoor et al. (2015). The result-
ing stimulus sets consisted of three encoding sets with 30
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photographs of animals and 30 photographs of tools each and a
fourth set consisting of 90 photographs of animals and 90 pho-
tographs of tools that were used as lures in the recognition test.
For each participant, the allocation of encoding sets to encoding
phases was randomized. Further, as in all previous experiments,
the assignment of photographs of tools and animals as CS* and
CS, respectively, was counterbalanced across participants.

Procedure

The procedure in this experiment was identical to Experiment 2,
except that we changed the timing of the shock (i.e., the UCS) dur-
ing fear conditioning to be identical to Dunsmoor et al. (2015).
During fear conditioning, a 200-ms shock occurred (under the
same contingencies as in the previous two experiments), presented
4.3 s after stimulus onset and thus coterminated with the stimulus.

Data Analysis

The statistical analysis was identical to Experiment 1 and 3, and
the statistical analysis of Dunsmoor et al. (2015), complemented
by additional exploratory and a Bayesian analysis.

Results and Discussion
Successful Fear Conditioning

We again performed an analysis of skin conductance data to
confirm the success of our fear-conditioning procedure. SCR data
for twelve participants were not usable because of equipment mis-
configuration. For the remaining sample of 71 participants, the
TTP analysis (i.e., a more traditional approach of analyzing SCR
data also utilized by Dunsmoor et al., 2015) indicated successful
Pavlovian fear conditioning as expressed in increased anticipatory
SCRs to CS™ items compared with CS™ items, #(70) = 4.59, p <
.001, d,,, = .48; for the CDA there was no significant effect, #(70) =
1.24,p=.22,d,, = .08 (see Figure 2).

Anticipation of the Recognition test

Again, participants rated how surprised they were by the recog-
nition test on a scale ranging from 1 (very surprised) to 5 (not sur-
prised at all). On average, they indicated that they were
moderately and slightly more surprised than in Experiments 1-3
(M =2.82, SD = 1.14). Eight participants reported being not sur-
prised at all. Because excluding these participants did not affect
the pattern of results, they were still included in the following
analyses.

Overall Memory Performance

As in all three previous experiments, participants performed
overall well in the recognition test (see Table 4). The average hit
rate for items from all three encoding phases was 62.8% (SD =
.14), with an average false alarm rate of 26.2% (SD = .10).

No Evidence for Category-Specific Retroactive Memory
Enhancement

As in all three previous experiments, we ran a repeated-meas-
ures ANOVA on corrected recognition scores to analyze factors
affecting memory performance for the different phases of the task.
For the factor phase, Mauchly's test indicated that the sphericity
assumption was violated, W = .89, p = .008. Hence, results for the
factor phase are reported after applying a Greenhouse-Geisser cor-
rection. Corrected recognition scores generally differed between
phases, F(1.80, 147.30) = 18.19, p < .001, 1’ = .036. They were
also generally different between items from the CS™ and CS™ cate-
gories, F(1, 82) = 17.61, p < .001, %G = .022. Finally, this effect
of item category membership differed between the encoding
phases, as indicated by a significant interaction between the en-
coding phase and the item category, F(2, 164) = 10.19, p < .001,
M’s = .012. These results were further qualified by paired t-tests
comparing corrected recognition scores for items belonging to the
CS™ versus CS™ category separately per encoding phase. As in all
three previous experiments, these showed an enhanced memory
performance for CS™ items encoded during Pavlovian condition-
ing compared with CS™ items encoded in the same phase, #(82) =
5.75, p < .001, d,, = .58 (Figure 3, lower right panel). As in
Experiments 1 and 3, there also was a (nonsignificant) trend to-
ward improved recognition memory for CS* items encoded after
Pavlovian conditioning compared with CS™ items encoded in the
same phase, #(82) = 1.71, p = .091, d,, = .14. Most importantly,
even after additionally adopting the exact UCS-CS timings from
Dunsmoor et al. (2015) and controlling for stimulus typicality
across phases, we obtained no evidence for a category-specific ret-
roactive enhancement of memory for CS™ items compared with
CS™ items encoded before Pavlovian conditioning in corrected
recognition scores, #(82) = 1.37, p = .18, d,,, = .14. We again tested
the possibility of a previously suggested linear trend between pre-
conditioning items’ temporal distance to the conditioning phase
and the size of retroactive memory enhancement. As in all three
previous experiments, a repeated-measures ANOVA with the cor-
rected recognition advantage for CS™ items compared with CS™
items as the dependent variable and the time bin as a within-subject

Table 4
Retrieval Memory Results in Experiment 4, Mean Proportion of Responses by Certainty
CS* CS™

Measure DO MO MN DN DO MO MN DN
Preconditioning 0.412 0.243 0.226 0.120 0.375 0.243 0.243 0.139
Conditioning 0.497 0.229 0.186 0.088 0.348 0.257 0.251 0.144
Postconditioning 0.364 0.240 0.250 0.146 0.332 0.231 0.275 0.162
New 0.090 0.179 0.393 0.339 0.084 0.171 0.377 0.367
Note. DO = definitely old; MO = maybe old; MN = maybe new; DN = definitely new.
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factor showed no significant effect of time bins, F(2, 164) = .68, p = .51,
M%g = .004. Thus, we could not find any effect of the relative time of
encoding of an item within the preconditioning phase on the size of the
putative category-specific retroactive memory enhancement.

Complementary Analyses

We conducted complementary Bayesian paired #-tests to quan-
tify relative evidence for the null versus the alternative hypothesis
of memory enhancements through fear learning in each of the
three encoding phases. As before, these indicated substantial evi-
dence for enhanced memory formation of CS* relative to CS™
items that were encoding during fear conditioning, BF;y =
176943. A corresponding Bayesian analysis for the postcondition-
ing phase slightly favored the null hypothesis of no memory
advantage for CS™ items, although evidence was only anecdotal,
BF;p = .93. As in the three previous experiments, the Bayesian
analysis favored the null hypothesis rejecting the notion of cate-
gory-specific retroactive memory enhancements, although evi-
dence for the null hypothesis was only anecdotal, BF;y = .54.

In addition to analyses focusing on corrected recognition scores
to closely replicate Dunsmoor et al. (2015), we also performed
parallel analysis on memory sensitivity (d’). These yielded the
same pattern of results as analyses based on corrected recognition.
Specifically, analysis based on d’ confirmed previous findings of
enhanced memory for CS™ items encoded during fear condition-
ing, #(82) =5.37, p < .001, d,, = .57. For items encoded after con-
ditioning, there were no significant differences in ¢’ between CS™
and CS™ items, #(82) = 1.36, p = .18, d,, = .14. Most importantly,
memory sensitivity scores (d’) indicated no evidence for any cate-
gory-specific retroactive memory enhancement for CS* items
from the preconditioning phase, #(82) = 1.12, p = .27, d,, = .11.
Analyses based on generalized linear mixed-effect models again
showed the same pattern of results and are included in the online
supplemental materials.

As in all three previous experiments, we found no significant
correlation between the anticipation of the memory test and recog-
nition performance, Spearman’s ry = .13, p = .25. Again, individ-
ual memory performance did not correlate with induced arousal
during fear conditioning (measured through mean SCRs to CS™
minus mean SCRs to CS™), TTP: Spearman’s r, = .03, p = .78;
CDA: Spearman’s ry = .01, p = .91.

Analyses Focusing on High Confidence Hits

Although Dunsmoor et al. (2015) collapsed responses from the
surprise recognition test across confidence, we also reanalyzed our
data by focusing only high confidence hits using the same paired #-
tests on corrected recognition scores as reported in the article,
complemented by their Bayesian counterparts to quantify the rela-
tive evidence for the null versus the alternative hypothesis of cate-
gory-specific retroactive memory enhancement. For this analysis,
we used a definition of high confidence hits that treated any rather
old responses like new responses (Dunsmoor et al., 2012; Keller &
Dunsmoor, 2020). Therefore, only definitely old responses could
result in either a hit or a false alarm, whereas rather old responses
were always scored as either misses or correct rejections depend-
ing on the actual status of the item. Note that focusing on high
confidence hits therefore implies a different scoring of existing

responses, while no trials were omitted from the recognition
analysis.

For Experiment 1, these analyses focusing on high confidence
hits showed no evidence for category-specific retroactive memory
enhancement on corrected recognition scores, #(43) = 1.05, p =
.30, d,, = .18, BF;y = .46, nor on memory sensitivity (d"), 1(43)
58, p = .56, d,, = .11, BF;, = .27. In contrast to previously
reported results after collapsing across memory confidence, for
Experiment 2 an analysis focusing on high confidence hits showed
the proposed category-specific retroactive enhancement on cor-
rected recognition scores, #(79) =2.31, p =.024,d,, = .22, BFjy =
2.95, but not on memory sensitivity (d'), #79) = 1.30, p = .20,
d,, = .14, BF;y = .50. For Experiment 3, results were again
consistent with those obtained from the analysis of recognition
collapsed over confidence and showed no evidence for category-
specific retroactive memory enhancement in neither corrected rec-
ognition, #(77) = .98, p = .33, d,,, = .10, BF ;o = .07, nor in memory
sensitivity (d), ((77) = .67, p = .50, d,,, = .08, BF;, = .08. Like-
wise, analyses on high confidence memory for Experiment 4 pro-
vided again neither evidence for the category-specific retroactive
memory effect on corrected recognition, #82) = 1.72, p = .088,
d,, = .19, BF;, = .95, nor on memory sensitivity (d"), #(82) = .20,
p=.84,d,, =.08, BF;p=.14.

Response Bias Analysis

A possible explanation for the inconsistent findings between
corrected recognition and d’ regarding high-confidence memory in
Experiment 2 (and at trend level in Experiment 4) could be that
findings appearing to show category-specific retroactive memory
enhancement in corrected recognition for high confidence hits
instead reflect a response bias toward more liberal old responses
for items from the CS* category without any actual difference in
memory sensitivity between items from the CS* versus CS™ cate-
gory that were encoded during preconditioning (Dougal & Rotello,
2007; Rotello et al., 2008). We investigated this possibility by cal-
culating response bias scores ¢ based on signal detection theory
(Macmillan & Creelman, 2005; Wickens, 2002) and comparing
them for items from the CS™ versus CS™ category separately for
each experiment and encoding phase. Detailed results from this
analysis are provided in the online supplemental materials (Tables
1-4). In short, we found that participants overall showed a bias to
classify items from the CS™ category (over item from the CS™ cat-
egory) as old when these were encoded during fear-conditioning.
For the critical influence of response biases on findings of cate-
gory-specific retroactive memory enhancement, Experiments 2
and 4 were the most interesting, because these were the only two
experiments in which an analysis of high confidence corrected rec-
ognition provided some evidence for this effect (although only at
trend level in Experiment 4). In Experiment 2, participants
descriptively, but nonsignificantly, showed a slightly increased
response bias in the high-confidence hit rate toward items from the
CS™ category that were encoded before fear-conditioning, #79) =
1.25, p = .21, d,,, = .14. For Experiment 4, this effect was signifi-
cant, indicating that participants more liberally classified precondi-
tioning items from the CS* category (compared with items from
the CS™ category) as ‘old’, regardless of their actual status, #(82) =
2.06, p = .042, d,, = .22. For Experiments 1 and 3, there was no



This document is copyrighted by the American Psychological Association or one of its allied publishers.

This article is intended solely for the personal use of the individual user

d is not to be disseminated broadly.

ON THE SEARCH FOR SELECTIVE BEHAVIORAL TAGGING 15

significant difference in response bias for high confidence memory
of items from the preconditioning phase (both ps > .36).

Pooled Analysis Across All Experiments

Experiments 1-4 were designed to replicate the previously
reported finding of a category-specific retroactive memory
enhancement through subsequent electric shocks (Dunsmoor et al.,
2015). Although we varied certain aspects regarding stimuli and
the procedure between these experiments, the procedure of Experi-
ments 1-4 was conceptually very similar. To summarize findings
from the four studies in a combined statistical model, we pooled
data across experiments and fit separate linear mixed-effects mod-
els for both corrected recognition and memory sensitivity (d’)
using the R library Ime4 (Bates et al., 2015) for each of the three
conditioning phases. In each of these three models, the conditioned
category an item belonged to (binary coding: 0 for CS™; 1 for
CS™) was treated as a fixed effect (Hedges & Vevea, 1998) to
explain corrected recognition scores. Additionally, random inter-
cepts were fitted both per subject and per experiment, to account
for differences in memory performance between participants and
procedural differences between experiments, respectively. To fur-
ther qualify the results reported in the previous section, we also
ran separate models for memory collapsed over confidence levels
and high confidence memory only, respectively.

Even after pooling data collapsed across confidence (parallel to
Dunsmoor et al., 2015) from Experiments 1-4 with a total of 285
unique participants, there was no evidence for category-specific retro-
active memory enhancement, as indicated by neither a significant
effect of conditioning category membership of preconditioning items
on corrected recognition scores, f = .015, 95% CI [—.003, .033], ¢
(284) = 1.66, p = .097, BF;p = .17, nor a significant effect of

conditioning category membership of preconditioning items on d’, B =
.03, 95% CI [—.028, .090], #(284) = 1.03, p = .30, BF;p = .12 (see Fig-
ure 4). Bayes factors obtained in both cases indicated substantial evi-
dence for the null hypothesis speaking against category-specific
retroactive memory enhancement. Although there was no evidence for
a selective retroactive memory effect, the pooled analysis revealed that
CS" photographs encoded during fear-conditioning were significantly
better recognized than CS™ photographs, as reflected in both corrected
recognition, B = .10, 95% CI [.084, .124], #(284) = 10.07, p < .001,
BF;p = 544211770, and in d', B = .31, 95% CI [.24, .38], #(284) =
8.93, p < .001, BF;p = 13621099. Finally, the pooled analysis col-
lapsed over confidence confirmed results from Experiment 2 that this
memory enhancement for CS™ photographs relative to CS™ photo-
graphs carried over to the postconditioning phase, even though these
items were never directly paired with the UCS. This was reflected in
both corrected recognition, B = .039, 95% CI [.021, .056], #(284) =
437, p < .001, BF;p=3.75, and in &', p = .099, 95% CI [.043, .155],
1(284) =347, p < .001, BF ;o= 1.30.

Next, we fitted the same pooled models for the exploratory analyses
on high confidence recognition memory. This pooled analysis showed
a significant category-specific retroactive memory enhancement in cor-
rected recognition scores, although a Bayesian analysis of this model
indicated substantial evidence for the null hypothesis, thus speaking
against a category-specific retroactive memory enhancement, f§ = .20,
95% CI [.0008, .039], #(284) = 2.05, p = .042, BF;y = .22. The same
analysis on ¢ indicated no significant category-specific retroactive
memory enhancement and substantial evidence for the null hypothesis,
B =.02, 95% CI [—.045, .089], #(284) = .64, p = .52, BF ;o = .10. As
for the analysis collapsed across confidence levels, the analysis focus-
ing on high confidence recognition memory revealed clear evidence
that CS™ photographs encoded during fear-conditioning were signifi-
cantly better recognized than CS™ photographs in both corrected

Figure 4
Results of a Pooled Analysis Across Data From Experiments 1-4 Using Linear-Mixed Effect
Models
Overall memory High confidence memory
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Note. The left panel shows the advantage in CS™ over CS™ recognition performance after collapsing across
memory confidence, whereas the right panel shows parallel results for high confidence memory only. In both
analyses, items from the CS™ category encoded during both Pavlovian fear conditioning and after fear condi-
tioning were recognized significantly better compared with items from the CS™ category encoded within their
respective phase, as reflected in both corrected recognition scores and d’ from signal detection theory. For
items encoded before the conditioning phase, there was a retroactive enhancement for items from the CS™ vs.
CS™ category when only high confidence memory was analyzed, but not when overall memory performance
was analyzed. Moreover, this effect for high confidence memory was only present for corrected recognition,
but not for d’. Error bars represent 95% confidence intervals.
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recognition scores, f§ = .12, 95% CI [.10, .14], 1(284) = 10.60, p <
001, BF;p = 126 X 10"; as well as d', B = .32, 95% CI [.25, .40],
1(284) = 8.09, p < .001, BF;y = 2938815. Finally, the pooled analysis
for high confidence recognition memory confirmed that this memory
advantage also carried over to the postconditioning phase, as reflected
in significantly increased CS™* over CS™ scores in both corrected rec-
ognition, B = .037, 95% CI [.021, .054], #284) = 447, p < .00,
BF;p=3.62, as well as in d’, B = .087, 95% CI [.022, .152], #(284) =
2.62, p=.009, BF )y = .49.

General Discussion

Adaptive episodic memory has been theorized to preferentially
store motivationally significant experiences that can be useful to
guide future behavior (Nairne et al., 2007; Nairne & Pandeirada,
2008; Shohamy & Adcock, 2010). How can such an adaptive pri-
oritization be achieved for stimuli that appear neutral during
encoding, but are subsequently revealed to relate to important con-
sequences? Recently, a possible mechanism has been suggested
that retroactively and selectively promotes memory for initially
neutral items when their respective category is later predictive of
either aversive or appetitive events (Dunsmoor et al., 2015; Patil
et al., 2017). These findings have challenged existing models of
episodic memory formation by demonstrating for the first time
that postencoding processes can selectively enhance memory for a
specific group of stimuli, but not others, based on the (categorical)
relatedness of the stimuli to the emotional event. In this frame-
work, memories can exist in a weak, transient form (‘tagged’) that
relies on a subsequent event (‘capture’) to store them permanently.
This tag and capture framework had previously been developed at
the level of individual neurons and was referred to as synaptic tag-
ging (Frey & Morris, 1997, 1998). Studies in rodents and more
recently in humans have successfully translated this framework to
the behavioral level (Ballarini et al., 2009, 2013; de Carvalho
Myskiw et al., 2013; Moncada et al., 2015). Importantly, these
studies investigated general, nonselective retroactive effects on
memory, irrespective of a semantical link between tagged stimuli
and the subsequent memory-promoting event. Only recently, it has
been reported that retroactive enhancements may selectively pro-
mote memory for one category of stimuli that has been linked to a
subsequent arousing event, while leaving irrelevant stimuli unaf-
fected (Dunsmoor et al., 2015; Patil et al., 2017). In addition to
this category-specific retroactive (backward) effect, selective cate-
gory-specific memory enhancements were also observed when
appetitive or aversive stimuli were present during encoding
(online) and for items from the relevant category that were
encoded after these salient stimuli were present (i.e., a forward
effect). Together, these findings of highly selective backward and
forward memory effects are in contrast to more traditional models
of memory formation, which have focused on effects that are
driven through the allocation of attention during online encoding
(Mulligan, 1998; Uncapher & Rugg, 2005) and general offline
effects of physiological arousal that enhance consolidation in a
nonselective fashion (McGaugh, 2015), irrespective of the seman-
tic or conceptual relatedness of stimuli. In particular, the finding of
a category-specific retroactive memory enhancement is incompati-
ble with previous attentional models, as unlike online and forward
enhancements, this backward effect cannot be explained by
increased attention to stimuli from the category that had been

linked with salient outcomes, since this associative link was only
established after the encoding of these items. Therefore, this
highly selective retroactive memory enhancement is at the heart of
this new framework.

In a series of four experiments, we aimed to replicate findings
of the first published study showing category-specific retroactive
memory enhancement for initially neutral stimuli through a fol-
lowing Pavlovian fear-conditioning procedure that linked aversive
electric shocks to only one category of stimuli (Dunsmoor et al.,
2015). Based on recent reports (Dunsmoor et al., 2015; Patil et al.,
2017), we expected that memory for the initially neutral items
would retroactively be enhanced when these are later revealed to
belong to a relevant category. In sharp contrast to our hypotheses,
analyses of overall recognition memory performance (as in Dun-
smoor et al., 2015) failed to produce any evidence for a category-
specific retroactive memory enhancement through aversive learn-
ing in all four experiments. Parallel Bayesian analyses provided
substantial evidence for the null hypothesis speaking against a cat-
egory-specific retroactive memory effect in Experiments 1 and 3
and anecdotal evidence for the null hypothesis in Experiments 2
and 4.

In a pooled analysis across all four experiments, we observed a
similar pattern of results: When recognition memory was col-
lapsed over confidence, evidence for category-specific retroactive
memory enhancement was found neither in corrected recognition
scores, nor in memory sensitivity (d'). In both cases, Bayes factors
indicated substantial evidence for the null hypothesis. Only when
additional analyses focused on high confidence memory and cor-
rected recognition was there some evidence for the predicted cate-
gory-specific retroactive memory effect, which was however only
significant in one out of four experiments and was not paralleled
by a significant improvement in memory sensitivity (d’), nor was
it supported by a Bayesian analysis.

How can the inconsistencies between the previous reports of
category-specific retroactive memory enhancements and the cur-
rent findings be explained? Although close replications can be
challenging (Stroebe & Strack, 2014) and seemingly small devia-
tions from the original procedure can dramatically affect the repli-
cability of a finding (Noah et al., 2018; Wagenmakers et al.,
2016), Experiments 1, 2, and 4 were designed to match the proce-
dure of the previous studies regarding various aspects such as tim-
ing, instructions, and stimuli, while substantially increasing the
sample size. We focused only on the group of participants in
which there was a 24-hr interval between encoding and recogni-
tion test, as these participants had shown the most robust evidence
for category-specific retroactive memory enhancement (Dunsmoor
et al., 2015). Other groups featured in the original study, such as
an immediate retrieval or a strong encoding 24-hr retrieval group
had not shown evidence for category-specific retroactive memory
enhancement. Importantly, these group differences only become
meaningful once the existence of the phenomenon is demonstrated
in the first place. Achieved statistical powers were generally
greater than 95% (except for Experiment 1, which used a sample
size comparable to previous reports suggesting a selective behav-
ioral tagging effect). Thus, a lack of statistical power is very
unlikely.

Two further aspects that could have potentially affected the rep-
licability of category-specific retroactive memory enhancements in
Experiments 1-3 were (a) deviations in the relative timing of the
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CS to the UCS compared with Dunsmoor et al. (2015) and (b) the
random allocation of stimuli to each learning phase instead of con-
trolling for typicality across their respective categories. In Dun-
smoor et al. (2015), each 200-ms shock coterminated with the end
of the stimulus presentation, whereas in our Experiments 1-3, the
200-ms shocks started with the end of the stimulus presentation.
This resulting a 200-ms deviation in CS-UCS timing compared
with Dunsmoor et al. (2015) was unintentional. Potentially, this
issue could be relevant as the differential timing between CS und
UCS can be used to differentiate between trace and delay condi-
tioning, which involve different processes (Kochli et al., 2015;
McLaughlin et al., 2002; Weike et al., 2007). However, trace con-
ditioning would only be present if an additional pause were imple-
mented between stimulus offset and the following UCS. Because
this was not the case in Experiments 1-3, our procedure may still
be considered a delay conditioning procedure like the one used
in Dunsmoor et al. (2015). Moreover, we obtained significantly
higher anticipatory SCRs for CS™ compared with CS™ items,
indicating that our fear conditioning manipulation was success-
ful. Furthermore, we could replicate the memory benefit for CS™
items that were presented during fear conditioning and partly the
prospective memory effect for items that were presented after
fear-conditioning, indicating that, despite the deviation in CS-
UCS timing, the UCS was still able to modulate memory in
Experiments 1 to 3. To our knowledge, there is no theoretical
justification why only the retroactive effect, but not the online,
nor the prospective effect should be affected by this difference in
timing. Finally, after explicitly addressing the issue of CS-UCS
timing in Experiment 4, we obtained a similar pattern of results
as in Experiments 1-3 that most prominently did not show any
signs of category-specific retroactive memory enhancement.

Regarding stimulus typicality, we unfortunately only learned
during the peer review process that Dunsmoor et al. (2015) kept
stimulus typicality constant across learning phases as this aspect
was not mentioned at all in their original article. Even after balanc-
ing stimulus typicality across encoding phases in Experiment 4,
we still found no evidence for any category-specific retroactive
memory enhancement.

Another factor that has been suggested to moderate the extent of
category-specific memory enhancement is the interval between the
encoding of initially neutral stimuli and the following significant (ei-
ther aversive or appetitive) event. Specifically, Dunsmoor et al.
(2015) reported a linear trend between the distance of learning items
to the following significant event and the strength of category-spe-
cific retroactive memory enhancement. This linear trend is in line
with previous work on nonspecific behavioral tagging in animals sug-
gesting that a minimal interval between initial learning and the fol-
lowing event is necessary for such effects to unfold (de Carvalho
Myskiw et al., 2013; Moncada et al., 2015). We specifically
addressed this issue in Experiment 3 by extending the interval
between preconditioning and subsequent Pavlovian conditioning. It
is important to note that, for practical reasons, this interval had to be
at least approximately 10 min even in Experiments 1, 2, and 4. This
time was needed to attach electrodes and adjust shock intensities and
should correspond with Dunsmoor et al. (2015). For Experiment 3,
we effectively doubled this interval to 20 min, which did not lead to
the expected increase of the putative category-specific retroactive
memory effect. Furthermore, none of Experiments 1, 2, 3, or 4 pro-
vided any evidence for the previously reported linear trend between

the temporal distance of an item of the preconditioning phase to the
conditioning procedure and the size of category-specific retroactive
memory enhancement.

Retroactive memory effects have been further theorized to only
strengthen initially weak memories, but to have no additional ben-
efit for already strongly encoded stimuli (Dunsmoor et al., 2015;
Moncada & Viola, 2007; Wang et al., 2010). Accordingly, it could
be speculated that our sample of participants included better learn-
ers, which might have prevented category-specific retroactive
memory enhancement due to strong initial encoding. However,
recognition performance in the present experiments was, with the
exception of Experiment 1, comparable with previous studies
reporting selective retroactive memory enhancements (Dunsmoor
et al., 2015; Patil et al., 2017). Because Experiment 1 featured
both a slightly different set of stimuli (although from the same cat-
egories) as well as a different format for the recognition test, this
might explain the slightly increased overall preconditioning per-
formance in this experiment compared with Dunsmoor et al.
(2015). Both aspects were addressed in Experiments 2, 3, and 4
such that these featured the same set of stimuli and the same rec-
ognition test procedure. In these three experiments, we obtained
similar memory performances during preconditioning as in Dun-
smoor et al. (2015): For instance, CS™ preconditioning items were
correctly classified as definitely old in 42.6% of all cases for the
24-hr retrieval group in Dunsmoor et al. (2015) and the corre-
sponding performance ranged from 37.5% to 42.0% in our Experi-
ments 2—4 (Tables 2—4). This renders overly strong memories as
explanation for the absence of a selective retroactive memory
effects rather unlikely. Additionally, despite participants indicating
that they were overall slightly less surprised by the recognition test
compared with Dunsmoor et al. (2015) and it cannot be completely
ruled out that such differences may have influenced our results,
although this would clearly question the robustness of the sug-
gested category-specific tagging effect, there is no clear theoretical
rationale why such a subtle difference should abolish the tagging
effects. None of our experiments revealed any correlation between
levels of surprise and memory performance.

It might be argued that emotion has a higher impact on memory
for items recognized with high confidence (Kim & Cabeza, 2009;
Phelps & Sharot, 2008). We therefore ran additional analysis that
focused on high confidence memory only. In one of the four
experiments (Experiment 2), this exploratory recognition analysis
based on corrected recognition scores and focusing on high confi-
dence hits showed a significant category-specific retroactive mem-
ory effect, although a parallel Bayesian analysis indicated that
evidence was nonsubstantial. For Experiment 4, there was a non-
significant trend in the same direction (p = .088). Interestingly,
this retroactive memory enhancement for high confidence hits in
Experiment 2 and respective trend in Experiment 4 were only de-
tectable in corrected recognition scores, but not in memory sensi-
tivity (d’) from signal detection theory. Further, in the remaining
two experiments, there was no evidence for a category-specific ret-
roactive effect for high confidence memory and a Bayesian analy-
sis on high confidence corrected recognition contrarily favored the
null hypothesis. A pooled analysis across all four experiments that
focused on high confidence corrected recognition showed a small
but significant category-specific retroactive memory effect. A
parallel Bayesian analysis, however, showed even substantial
evidence for the null hypothesis rejecting the notion of category-
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specific retroactive memory enhancement. The same pooled
analysis for memory sensitivity (d') was much clearer: Neither for
recognition scores collapsed across confidence, nor for those fo-
cusing on high confidence hits was there any evidence for the
category-specific retroactive memory effect, with a parallel
Bayesian analysis indicating substantial evidence for the null hy-
pothesis in both cases. Although it is to be acknowledged that
the two experiments in which we obtained an effect or a similar
trend for a retroactive effect in high confidence memory might
be considered the closest replication attempts to Dunsmoor et al.
(2015), even in these experiments the evidence was not robust
across memory parameters.

In the face of the findings of a significant category-specific ret-
roactive memory effect for high confidence corrected recognition
scores in Experiment 2 and the pooled analysis, it must also be
noted we run multiple analyses (overall memory analysis, high
confidence memory analysis, linear mixed models) across multi-
ple parameters (corrected recognition score and d’) and multiple
experiments. This wide array of tests comes with a significantly
increased risk of false positives (i.e., an inflated alpha-error
rate). Only in one of the four experiments, there was a significant
result and only in corrected recognition scores, but not in d’ from
signal detection theory (Macmillan & Creelman, 2005; Wickens,
2002). As we aimed for the maximum sensitivity regarding pos-
sible effects, we did not correct for the relatively high number of
statistical tests. If any correction for multiple testing was per-
formed, none of the effects or trends for high confidence memory
would be even close to statistical significance. Therefore, addi-
tional caution against interpreting the findings on high confi-
dence memory as a successful replication of category-specific
retroactive memory enhancement is warranted.

The observed discrepancy in results between analyses based on d’
versus corrected recognition scores is interesting because both meth-
ods of estimating discrimination performance rely on different mod-
els of recognition memory (Snodgrass & Corwin, 1988). Whereas d’
is rooted in signal detection theory (Macmillan & Creelman, 2005;
Wickens, 2002) and assumes curvilinear receiver operating character-
istics (ROCs), corrected recognition scores as calculated by Dun-
smoor et al. (2015) stem from the two-high-threshold model of
recognition (Broder et al., 2013; Snodgrass & Corwin, 1988) and
assume linear ROCs. The issue of selecting the correct model is par-
ticularly important as we also found that participants showed for
items from the CS™ category a more conservative response bias ¢
(from signal detection theory) than for items from the CS* category
for high confidence responses at least in Experiment 4. Ideally, this
response bias should not influence memory discrimination scores, as
it does not reflect true memory but rather a response tendency.
Indeed, when that the assumptions of signal detection theory are cor-
rect, memory sensitivity (d’) and response bias (c) are theoretically
independent from each other (Snodgrass & Corwin, 1988). Likewise,
if the model underlying corrected recognition scores is correct (i.e.,
the two-high-threshold model), these scores should equally be inde-
pendent of the response bias. Although there has been some debate
regarding the question which of these two approaches is generally
more appropriate in the memory context, most empirical findings
favor the use of signal detection theory (and therefore d’) over the
two-high-threshold model (associated with corrected recognition)
when analyzing recognition performance (Dube & Rotello, 2012;
Pazzaglia et al., 2013; Slotnick & Dodson, 2005). Future research on

the category-specific retroactive memory effect should optimally
report results from both measures, consider theoretical implications if
such an effect was detectable in only one measure but not the other,
and consider possible response biases.

It should be noted that, although none of our four experiments
provided consistent evidence for the existence of category-specific
retroactive (‘backward’) memory enhancement, there was some
evidence for the selective online and forward memory enhance-
ments. In line with category-specific online effects, in all four
experiments we consistently found a memory advantage for items
from the CS™ category that were presented during Pavlovian fear
conditioning compared with items from the CS™ category encoded
in the same learning phase. This finding corroborates previous
studies showing enhanced memory for stimuli linked to arousing
events (Dunsmoor et al., 2015; Dunsmoor & Kroes, 2019; Salehi
et al., 2010; Vogel & Schwabe, 2016). In the context of adaptive
memory, such a mechanism enables the preferential storage of
stimuli that are associated with threat which may facilitate coping
to similar situations in the future (Nairne et al., 2007; Nairne &
Pandeirada, 2008). It is important to note that this memory
enhancement for CS" items in Experiments 1 to 4 was evaluated
by comparing them with CS™ items from the same category.
Therefore, an alternative interpretation of these findings could be
that CS™ items encoded during fear conditioning did not experi-
ence a memory promotion per se, but instead that memory for CS™
items was diminished through fear conditioning. Modifying the
task to test these two options is beyond the scope of our replication
attempt.

Beyond selective backward and online memory enhancements,
the proposed tag-and-capture framework predicts category-spe-
cific memory enhancement in a forward, prospective direction.
Our results provided indeed evidence for a selective influence of
emotionally arousing events on the encoding of subsequent
related events. More specifically, the enhanced memory for stim-
uli paired with aversive shocks seemed to extend to subsequent
stimuli belonging to the same category as the CS™. Although
there was clear evidence for such a selective forward enhance-
ment in the pooled analysis across all four experiments, it is to
be noted that this effect was only significant in Experiment 2 and
at trend level in Experiments 1, 3, and 4, suggesting a small to
moderate effect.

Together, our results suggest a selective memory enhancement
for aversive, threat-related stimuli, both online, while a threat is
present (e.g., during the fear conditioning procedure), and in a
forward direction for threat-related stimuli that are encoded after
the threat (e.g., in the postconditioning phase). Both, the online
and forward effects may be related to changes in stimulus sali-
ency. During encoding stimuli predictive of motivationally rele-
vant events will be more salient. Likewise, the previously
learned association between stimuli and aversive events may
increase the saliency of subsequently encoded stimuli that are
conceptually linked to the threat-related stimuli. Such increases
in saliency may help stimuli to directly exceed the threshold for
long-term memory storage. The resulting selectivity in episodic
memory has considerable impact on the architecture of our auto-
biographical memory and, although being generally adaptive,
may propel dysfunctional memory in a variety of psychiatric dis-
orders, such as anxiety disorders (Airaksinen et al., 2005; Coles
et al,, 2007; de Quervain et al., 2017), posttraumatic stress
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disorder (Brown et al., 2014; Isaac et al., 2006), or depression
(Airaksinen et al., 2007; Lemogne et al., 2006; McDermott &
Ebmeier, 2009). In contrast to the online and forward memory
enhancements, selective backward enhancements would require
the retroactive enhancement of initially weakly encoded (tagged)
stimuli to overcome the threshold for long-term storage. Most
importantly, however, we obtained only very limited evidence
for a selective retroactive (backward) memory enhancement.
This raises the question how the brain adapts when certain stim-
uli only gain relevance after their initial encoding. One solution
in line with previous studies is by nonselectively enhancing
memory for events preceding an aversive (e.g., stressful) event,
regardless of their relation to the relevant event (Cahill et al.,
2003; Smeets et al., 2008). In fact, we cannot exclude that such a
general, unspecific memory enhancement took place in our
experiments. For example, memory for items from the precondi-
tioning phase might have been promoted unspecifically through
the following fear-conditioning procedure. Even in Dunsmoor et
al. (2015), such a general effect might have played a role in addi-
tion to category-specific enhancements for CS™ items. However,
because this task was specifically designed to investigate cate-
gory-specific, rather than general retroactive memory enhance-
ment through the within-subject comparison of CS™ and CS~
items, this question is beyond the scope of this replication
attempt.

Another solution that has not been considered by the literature
so far could be that in these cases, an even more specific retroac-
tive enhancement takes place, which does not apply to a rela-
tively wide array of stimuli of the same category but only
strengthens the memory trace of a single stimulus. Relating back
to the example of the bank costumer’s encounter with the bank
robber, importance lies on the memory for only the specific face
of the robber and not for other faces seen shortly before (e.g.,
that of all men). Therefore, adaptive memory would call for a
memory promotion of only the specific face and not other faces
from the same abstract category. Whether such a mechanism
exists, however, is currently unknown and needs to be tested in
future research.

In summary, the present series of experiments searched for
category-specific, selective retroactive memory enhancement of
initially neutral stimuli as suggested by two recent studies (Dun-
smoor et al., 2015; Patil et al., 2017). Our data yielded only very
limited evidence for a category-specific retroactive memory
enhancement in line with Dunsmoor et al. (2015). We acknowl-
edge that although we aimed to stick as closely as possible to the
experimental procedure reported by Dunsmoor et al. (2015), subtle
differences between studies (e.g., related to the specific sample)
can hardly be ruled out. The fact that we did not obtain any evi-
dence for a category-specific retroactive memory enhancement
when strictly replicating the reported analysis across four separate
experiments, with three of them being highly powered, suggests
that this effect is not reliable. At least, the present data clearly
question the generalizability of the suggested category-specific
retroactive memory enhancement. Still, arousing events might
promote episodic memory for recently encountered stimuli in a
general, nonselective fashion, as previous evidence suggests
(Christianson et al., 1991; McGaugh, 2018; McGaugh & Roozen-
daal, 2002). These findings of nonselective memory enhancement
are in line with previous applications of the synaptic tag-and-

capture mechanism to the behavioral level, which demonstrated
memory enhancement for weakly encoded stimuli through follow-
ing arousing events even in absence of a semantical link between
these two (Ballarini et al., 2009, 2013; de Carvalho Myskiw et al.,
2013). From a theoretical point of view, this nonselective mem-
ory promotion might be regarded as a “safe” alternative to a cate-
gory-specific retroactive memory promotion, since it does not
require a model of events and their putative consequences, which
is at risk to be incorrect and might therefore miss important pre-
dictors of significant outcomes. On the other hand, such nonspe-
cific memory promotion is not only inefficient as invalid cues are
subjected to the same memory promotion as valid cues but might
also contribute to psychopathology associated with errant mem-
ory functions such as posttraumatic stress disorder (Brown et al.,
2014; Pitman, 1989). Elucidating how our memory balances the
need for efficiency on the one hand and the need for an enhanced
storage of experiences that preceded a significant event on the
other hand remains a challenge for future research.

Context Paragraph

Our lab focusses on how emotion and stress can bias memory
formation. Thus, we were intrigued by recent reports (Dun-
smoor et al., 2015; Patil et al., 2017) suggesting a highly specific
behavioral tagging mechanism according to which an emotion-
ally arousing event could retroactively enhance memory selec-
tively for preceding events that were conceptually relevant to
the emotional event. The proposed mechanism would be highly
adaptive in that it would enable our memory to retroactively
enhance selectively the storage of material that turned out to be
important later on. We aimed to elucidate the mechanisms
underlying this selective, retroactive memory enhancement.
However, when we tried to replicate the effect in the first place,
we originally did not find evidence for a selective retroactive
memory enhancement. Only in specific exploratory analyses
proposed during the peer-review process, we obtained some lim-
ited evidence for the effect. Given the tremendous implications
of the suggested retroactive and selective memory enhancement
for understanding memory in general and for disorders such as
PTSD, we believe that it is important to bring the findings of
this series of experiments to the attention of our colleagues. Our
hope is that these findings will inspire new theories and experi-
mental paradigms to address the fundamental issue of how our
memory can preferentially store events that are relevant for a
subsequent emotional episode.
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Experiment 1
Mixed-effect analysis

As an alternative analysis of the effects of fear conditioning on recognition
performance across encoding phases, we estimated generalized linear mixed-effect models
(GLMMs) with a logit-link function using the /me4 R package (Bates et al., 2015). The
dependent variable was participants’ binary classification of an item as either old (coded 1) or
new (coded 0) in each trial of the recognition task, with collapsed responses across
confidence. As fixed effects, we added category membership of an item (coded O for CS
items and coded 1 for CS* items), the phase the item was encountered in, as well as their
interaction. As the encoding phase was categorical, we used dummy coding with ‘new’ items
(i.e., lure items that only occurred in the recognition test) serving as the reference category.
Additionally, we estimated random intercepts for each participant. Specifying a random
intercept for each item led to singular fit in this experiment. Therefore, this specific random
effect was omitted for this experiment.

Results showed a non-significant trend towards a positive interaction between
conditioning category and the fear-conditioning phase, f = 0.41, 95% CI [-0.006, 0.835], z =
1.93, p = .053. In other words, participants tended to be more likely to correctly classify
previously seen items from the fear-conditioning phase as old when these were from the CS*
category. There was no evidence for an interaction between the conditioning category and the
post-conditioning phase, rejecting the notion of a proactive memory effect, f =-0.001, 95%
CI[-0.41, 0.40], z = 0.006, p = .99. Most importantly, there was no evidence for any
category-specific retroactive memory enhancement as indicated by the lack of an interaction
between the conditioning category and the pre-conditioning phase, B = 0.07, 95% CI [-0.35,

0.49], z=0.31, p = .75.
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Response bias

Supplementary Table 1
Comparison of the response bias ¢ between conditioning categories in Experiment 1

Collapsed across confidence Only high confidence

Pre-Conditioning Conditioning Post-Conditioning  Pre-Conditioning Conditioning Post-Conditioning

M (SD); CS* -0.005 (0.302)  0.025 (0.304)  0.109 (0.295) 0.491 (0.435)  0.510(0.419)  0.607 (0.448)
M (SD); CS~  0.053(0.345) 0.151(0.400)  0.217 (0.360) 0.547 (0.357)  0.632(0.439)  0.675 (0.383)
dav -0.177 -0.358 -0.329 -0.142 -0.283 -0.164
1(43) -0.969 -1.944 -1.801 -0.932 -1.645 -1.052
p .34 .058 .079 .36 A1 .30

Note: Smaller values of ¢ indicate a more liberal response bias, while larger values of ¢ indicate a more conservative
response bias. d., t, and p refer to the comparison of the response bias ¢ between items from the CS* vs. CS- category.
Negative values of d,, indicate a bias towards more conservative responses for items from the CS- category, while positive
values of d,, indicate a bias towards more conservative responses for items from the CS* category.
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Item analysis

To examine whether certain items were remembered at particularly high rates or
associated with increased false alarm probabilities, we estimated separate generalized linear
mixed-effect models (GLMMs) for ‘new’ and ‘old’ items with a logit-link function using the
Ime4 R package (Bates et al., 2015). These models only included an intercept as a fixed effect
to explain whether an item would be correctly classified as either old or new (coded O for
incorrect and 1 for correct). Additionally, we estimated random intercepts for each item
presented in the recognition test. Supplementary Figure 1 shows the distribution of per-item
intercepts and photograph category membership (i.e., animals vs. tools) for previously seen

items, while Supplementary Figure 2 shows the same distribution for lure items.

animal tool

30

Count

101

0 1 2 0 1 2
(Intercept)
Supplementary Figure 1. Distribution of per-item intercepts in Experiment 1 reflecting the

probability of correctly classifying previously seen photographs as ‘old’ in the recognition
test.
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Animal Tool
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Supplementary Figure 2. Distribution of per-item intercepts in Experiment 1 reflecting the

probability of correctly classifying previously unseen photographs as ‘new’ in the recognition
test.
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Experiment 2

Mixed-effect analysis

As for Experiment 1, we ran an alternative analysis of the effects of fear conditioning
on recognition performance across encoding phases by estimating generalized linear mixed-
effect models (GLMMs). We used the same model as in Experiment 1, but additionally
estimated a random intercept for each specific item of the recognition test.

Results replicated those reported in the main text by showing a memory advantage for
CS* items encoded during fear-conditioning (i.e., a significant interaction between
conditioning category and the fear-conditioning phase), § = 0.41, 95% CI [0.26, 0.56], z =
5.41, p <.001. Likewise, results showed that this effect also extended to items that were
encoded after fear-conditioning (i.e., a significant interaction between the conditioning
category and the post-conditioning phase), f = 0.21, 95% CI [0.06, 0.36], z = 2.83, p = .005.
Again, this analysis showed no evidence for category-specific retroactive memory
enhancement (i.e., no significant interaction between the conditioning category and the pre-

conditioning phase),  =0.11, 95% CI [-0.04, 0.26], z = 1.43, p < .16.
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Response Bias

Supplementary Table 2
Comparison of the response bias ¢ between conditioning categories in Experiment 2

Collapsed across confidence Only high confidence

Pre-Conditioning Conditioning Post-Conditioning  Pre-Conditioning Conditioning Post-Conditioning

M (SD); CS*  0.153 (0.346)  0.095 (0.367)  0.275 (0.268) 0.901 (0.403) 0.857 (0.459)  0.996 (0.372)
M (SD); CS”  0.171 (0.412)  0.213(0.441)  0.320 (0.396) 0.964 (0.499)  1.059 (0.535) 1.103 (0.481)
dav -0.047 -0.294 -0.137 -0.140 -0.408 -0.249
1(79) -0.335 -1.908 -0.875 -1.251 -3.556 -2.061
p 74 .060 .38 21 <.001 .043

Note: Smaller values of ¢ indicate a more liberal response bias, while larger values of ¢ indicate a more conservative
response bias. d., t, and p refer to the comparison of the response bias ¢ between items from the CS* vs. CS- category.
Negative values of d,, indicate a bias towards more conservative responses for items from the CS™ category, while positive
values of d,, indicate a bias towards more conservative responses for items from the CS* category.



SUPPLEMENTARY MATERIAL

Item analysis

We ran parallel GLMM:s as in Experiment 1 to examine whether certain items were
remembered at particularly high rates or associated with increased false alarm probabilities.
Supplementary Figure 3 shows the distribution of per-item intercepts and photograph
category membership (i.e., animals vs. tools) for previously seen items. Supplementary

Figure 4 shows the same distribution for ‘new’ items.
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Supplementary Figure 3. Distribution of per-item intercepts in Experiment 2 reflecting the

probability of correctly classifying previously seen photographs as ‘old’ in the recognition
test.
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Supplementary Figure 4. Distribution of per-item intercepts in Experiment 2 reflecting the

probability of correctly classifying previously unseen photographs as ‘new’ in the recognition
test.



SUPPLEMENTARY MATERIAL 9

Experiment 3

Mixed-effect analysis

As an alternative analysis of the effects of fear conditioning on recognition
performance across encoding phases, we again applied the same GLMM as in Experiment 2.

Again, results replicated the memory advantage for CS™ items encoded during fear
conditioning (i.e., a significant interaction between conditioning category and the fear-
conditioning phase), p = 0.70, 95% CI [0.54, 0.85], z = 8.62, p < .001. There was also a (non-
significant) trend towards improved memory formation for CS™ items that were encoded after
fear-conditioning (i.e., an interaction between the conditioning category and the post-
conditioning phase), B = 0.13, 95% CI [-0.02, 0.28], z = 1.70, p = .089. As in both previous
experiments, we found no evidence for any category-specific retroactive memory
enhancement (i.e., no significant interaction between the conditioning category and the pre-

conditioning phase), B =-0.02, 95% CI [-0.18, 0.13], z = 0.27, p = .79.
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Response Bias

Supplementary Table 3
Comparison of the response bias ¢ between conditioning categories in Experiment 3

Collapsed across confidence Only high confidence

Pre-Conditioning Conditioning Post-Conditioning  Pre-Conditioning Conditioning Post-Conditioning

M (SD); CS* 0.198 (0.381)  0.048 (0.389)  0.306 (0.408) 0.948 (0.443)  0.851 (0.440) 1.045 (0.419)
M (SD); CS~  0.170 (0.453)  0.241 (0.404)  0.339 (0.435) 0.940 (0.422)  1.049 (0.444) 1.114 (0.423)
dav 0.068 -0.486 -0.078 0.018 -0.449 -0.163
t(77) 0.534 -4.002 -0.679 0.170 -4.046 -1.477
p .59 <.001 .50 .87 <.001 14

Note: Smaller values of ¢ indicate a more liberal response bias, while larger values of ¢ indicate a more conservative
response bias. d,, ¢, and p refer to the comparison of the response bias ¢ between items from the CS* vs. CS category.
Negative values of d,, indicate a bias towards more conservative responses for items from the CS™ category, while positive
values of d,, indicate a bias towards more conservative responses for items from the CS* category.
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Item analysis

We ran parallel GLMMs as in Experiments 1 and 2 to examine whether certain items
were remembered at particularly high rates or associated with increased false alarm
probabilities. Supplementary Figure 5 shows the distribution of per-item intercepts and
photograph category membership (i.e., animals vs. tools) for previously seen items.

Supplementary Figure 6 shows the same distribution for ‘new’ items.
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Supplementary Figure 5. Distribution of per-item intercepts in Experiment 3 reflecting the

probability of correctly classifying previously seen photographs as ‘old’ in the recognition
test.
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Supplementary Figure 6. Distribution of per-item intercepts in Experiment 3 reflecting the

probability of correctly classifying previously unseen photographs as ‘new’ in the recognition
test.
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Experiment 4

Typicality ratings and stimulus allocation

Prior to data collection for Experiment 4, we obtained typicality ratings for each of the
360 photographs used by Dunsmoor et al. (2015). As simply adopting their allocation of
photographs to encoding phases would have led to unequal typicality across phases, we
performed a total of 6 swaps to ensure that typicality would be comparable across phases (see
main text for details). We tested the resulting stimulus sets for any systematic differences in
typicality using a repeated measures ANOVA with object category (i.e., animals vs. tools)
and encoding phase as within-subject factors (Supplementary Figure 7). Mauchly's Test
indicated that the sphericity assumption was violated for both the factor encoding phase (W =
0.75, p =.049) as well as for the interaction between encoding phase and object category (W
=0.51, p <.001). Therefore, a Greenhouse-Geisser correction was applied for these effects.
Results showed that photographs of animals were generally rated as more typical than
photographs of tools, F(1, 40) = 118.78, p < .001, n’g = .38. Critically, there was neither a
significant main effect of encoding phase, F(2.61, 104.51) = 0.90, p = .43, n’c = .0003, nor a
significant interaction between encoding phase and object category, F(2.15, 85.98) =0.12, p

= .90, n = .00005.
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Supplementary figure 7. Mean typicality ratings of photographs used in Experiment 4 by
encoding phase and object category. Error bars show + 1 standard error of the mean. An
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independent sample of 41 participants rated how typical each photograph was for its
respective category (i.e., as an animal or tool) on a scale from 1 (‘very untypical’) to 10
(‘very typical’). Note that in Experiment 4, it was randomized across participants which of
the three encoding sets would be allocated to which of the three encoding phases (pre-
conditioning, conditioning, and post-conditioning).

Mixed-effect analysis

We again applied the same GLMM as in Experiments 2 and 3 as an alternative analysis
of the effects of fear conditioning on recognition performance across encoding phases.

In line with previous results, we found a memory advantage for CS* items that were
encoded during fear-conditioning (i.e., a significant interaction between conditioning
category and the fear-conditioning phase), = 0.53, 95% CI [0.38, 0.68], z =7.01, p <.001.
As in Experiment 3, we again found a non-significant trend towards improved memory for
CS* items that were encoded in the post-conditioning phase (i.e., an interaction between
conditioning category and the post-conditioning phase), B = 0.13, 95% CI [-0.01, 0.27], z =
1.77, p = .076. Most importantly and in line with all three previous experiments, we found no
evidence for category-specific retroactive memory enhancement (i.e., no interaction between
conditioning category and the pre-conditioning phase), = 0.09, 95% CI [-0.05, 0.24], z =

1.22,p = .22.
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Response Bias

Supplementary Table 4
Comparison of the response bias ¢ between conditioning categories in Experiment 4

Collapsed across confidence Only high confidence

Pre-Conditioning Conditioning Post-Conditioning  Pre-Conditioning Conditioning Post-Conditioning

M (SD); CS* 0.114 (0.360) -0.013 (0.400)  0.185 (0.343) 0.869 (0.436)  0.755(0.472)  0.944 (0.435)
M (SD); CS~  0.196 (0.352)  0.212 (0.390) 0.275 (0.352) 0.966 (0.430)  1.008 (0.458) 1.033 (0.453)
dav -0.233 -0.567 -0.258 -0.223 -0.544 -0.201
1(82) -1.667 -3.940 -1.936 -2.065 -5.042 -2.028
p .099 <.001 056 .042 <.001 .046

Note: Smaller values of ¢ indicate a more liberal response bias, while larger values of ¢ indicate a more conservative
response bias. da, t, and p refer to the comparison of the response bias ¢ between items from the CS* vs. CS- category.
Negative values of d,, indicate a bias towards more conservative responses for items from the CS- category, while positive
values of d,, indicate a bias towards more conservative responses for items from the CS* category.
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Item analysis

We ran parallel GLMMs as in the three previous experiments to examine whether
certain items were remembered at particularly high rates or associated with increased false
alarm probabilities. Supplemental Figure 8 shows the distribution of per-item intercepts and
photograph category membership (i.e., animals vs. tools) for previously seen items.

Supplemental Figure 9 shows the same distribution for ‘new’ items.

Animal Tool
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Supplementary Figure 8. Distribution of per-item intercepts in Experiment 4 reflecting the

probability of correctly classifying previously seen photographs as ‘old’ in the recognition
test.
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Supplementary Figure 9. Distribution of per-item intercepts in Experiment 4 reflecting the

probability of correctly classifying previously unseen photographs as ‘new’ in the recognition
test.
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Beyond Arousal: Prediction Error Related to Aversive Events Promotes

Episodic Memory Formation

Felix Kalbe and Lars Schwabe
University of Hamburg

Stimuli encoded shortly before an aversive event are typically well remembered. Traditionally, this
emotional memory enhancement has been attributed to beneficial effects of physiological arousal on
memory formation. Here, we proposed an additional mechanism and tested whether memory formation
is driven by the unpredictable nature of aversive events (i.e., aversive prediction errors). In a combined
Pavlovian fear conditioning and incidental memory paradigm, participants saw initially neutral pictures
from 2 distinct categories, 1 of which was associated with a risk to receive an electric shock. During
encoding, we measured both physiological arousal and explicit prediction errors to explain memory
differences in a surprise recognition test that followed approximately 24 hr later. In a first experiment,
we show that physiological arousal, expressed as outcome-related skin conductance responses, was
associated with improved recognition memory, corroborating arousal-based models. Critically, unsigned
binary prediction errors derived from explicit shock expectancy ratings in each trial were also linked to
enhanced recognition and model fits showed that the impact of prediction errors on memory was
dissociable from the impact of arousal. In a second experiment, we replicated and extended the findings
of the first experiment by demonstrating that the memory-promoting effect of prediction errors remained
even after controlling for arousal. The present data point to prediction error-related learning as a cognitive
mechanism that contributes to the emotional enhancement of memory, above and beyond the well-

established effects of arousal in emotional memory formation.

Keywords: episodic memory, prediction errors, arousal, associative learning, fear conditioning

Information that is encoded within close temporal proximity to
an aversive event is typically well remembered (Cahill & Mc-
Gaugh, 1998; Christianson & Loftus, 1987; Christianson, Loftus,
Hoffman, & Loftus, 1991; LaBar & Cabeza, 2006; Schwabe, Joéls,
Roozendaal, Wolf, & Oitzl, 2012). Although generally adaptive as
it might help to avoid threatening situations in the future (Nairne,
Thompson, & Pandeirada, 2007), the superior memory for stimuli
encoded around the time of an aversive event may also contribute
to fear-related psychopathologies such as phobia or posttraumatic
stress disorder (de Quervain, Schwabe, & Roozendaal, 2017; Dun-
smoor & Paz, 2015; Pitman, 1989).

The enhanced memory for information linked to an aversive
event is exemplified by Pavlovian fear conditioning, in which an
initially neutral conditioned stimulus (conditional stimulus [CS]™)
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precedes an aversive unconditioned stimulus (UCS; LaBar &
Cabeza, 2006; Maren, 2001). Several studies demonstrated that
subsequent memory for the CS™ is much better than for another
stimulus (CS ™) that was also repeatedly presented but never paired
with the UCS (Dunsmoor, Murty, Davachi, & Phelps, 2015;
Schwarze, Bingel, & Sommer, 2012). Recent evidence shows that
the memory boosting effect of aversive events is not limited to
individual items but might also operate at the category level. For
example, when several pictures of one category (e.g., animals,
CS™) were followed by an aversive shock, even nonshocked
pictures from that category were better remembered in a subse-
quent surprise memory test compared with pictures from a non-
shocked control category (e.g., tools, CS™; Dunsmoor et al., 2015).

Classically, the emotional enhancement of memory in general
and the superior memory for CS™ versus CS™ items, in particular,
has been attributed to the physiological arousal that is elicited by
aversive stimuli such as the CS™ in fear learning (Cahill, Prins,
Weber, & McGaugh, 1994; LaBar & Cabeza, 2006; McGaugh,
2018; Schwarze et al., 2012). More specifically, aversive experi-
ences are well-known to prompt the secretion of catecholamines,
including the release of adrenaline and noradrenaline (Joéls &
Baram, 2009). In the periphery, adrenergic arousal is reflected, for
instance, in increased skin conductance responses (SCRs). At the
brain level, adrenergic arousal increases the activity of the baso-
lateral amygdala, which then strengthens memory formation pro-
cesses in other areas such as the hippocampus (LaBar & Cabeza,
2006; McGaugh & Roozendaal, 2002; Pape & Pare, 2010; Phelps,
2004).
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While the role of physiological arousal in the enhanced memory
for items encoded shortly before aversive events is well docu-
mented, there may still be other mechanisms contributing to this
memory enhancement. In particular, aversive events are often
unpredictable in nature and characterized by a discrepancy be-
tween expectations and outcomes, so-called prediction errors. The
Rescorla-Wagner model (Rescorla & Wagner, 1972), a classic
model in the domain of associative learning, describes how pre-
diction error signals can prompt learning. At the core of this
model, the strength of association between a CS and a UCS is
updated iteratively after each trial through a prediction error that is
weighted by both the salience of the CS and a learning rate
parameter linked to the UCS (Walkenbach & Haddad, 1980). The
prediction error is formalized as the difference between the actual
US presented in a given trial and the summed predicted values of
all the cues present on this trial (Miller, Barnet, & Grahame, 1995).
Mathematically, this surprise signal is obtained by subtracting the
expected signal from the observed outcome signal. The prediction
error is therein conceptualized as a continuous variable, meaning
that prediction errors can differ in magnitude depending on the
extent to which observed and predicted outcomes differ. In the
Rescorla-Wagner model, prediction errors are also treated as a
signed variable, meaning that they will be negative when expec-
tations exceed observed outcomes for the given trial and positive
when outcomes exceed expectations.

Various basic cognitive domains, such as visual processing
(Hosoya, Baccus, & Meister, 2005; Rao & Ballard, 1999), auditory
processing (Baldeweg, 2006; Smith & Lewicki, 2006), and atten-
tion (Feldman & Friston, 2010; Spratling, 2008) have been dem-
onstrated to involve top-down predictions that are matched against
sensory input signals (Wacongne et al., 2011). In the domain of
reinforcement learning, reward prediction errors are used to update
state-action values, allowing agents to choose optimal actions by
updating their internal models of complex environments (Holler-
man & Schultz, 1998; Maia, 2009; Schultz, 2000; Schultz, Dayan,
& Montague, 1997). The widespread evidence for predictive cod-
ing in various domains has led some authors to suggest that
forming predictions might be one fundamental principle of neural
computation in the brain (Bubic, von Cramon, & Schubotz, 2010;
Clark, 2013; Friston, 2010).

More recently, prediction errors have been reconceptualized as
general teaching signals (Bar, 2007; Clark, 2013) that may en-
hance memory for ongoing aversive events (Trapp, O’Doherty, &
Schwabe, 2018). This is based on the notion that aversive events,
besides the physiological arousal that they induce, can be charac-
terized by their unpredictability (de Berker et al., 2016). Thus, they
are linked to prediction errors that may be interpreted as evidence
that an agent’s present model of the environment is insufficient or
that necessary information is missing. Prediction errors may, pre-
sumably through their effects on the dopaminergic system (Schultz
& Dickinson, 2000; Shohamy & Adcock, 2010), promote a state
that enables rapid learning of ongoing events. According to this
view, it might be hypothesized that the enhanced memory for
stimuli that precede an aversive event is at least partly due to the
prediction error associated with this event. Indeed, there is first
evidence from reward learning suggesting that prediction errors
might promote episodic memory formation in humans (Jang, Nas-
sar, Dillon, & Frank, 2018; Rouhani, Norman, & Niv, 2018).
Similarly, a recent study manipulated both participants’ prior ex-

pectations and following evidence to actively control prediction
errors and found that these prediction errors led to improved
one-shot declarative learning (Greve, Cooper, Kaula, Anderson, &
Henson, 2017).

However, to date it remains completely unknown whether pre-
diction errors may contribute to the enhanced memory for infor-
mation linked to aversive events and, even more importantly,
whether the putative contribution of a prediction error to the
superior memory for events encoded shortly before an aversive
event goes beyond the impact of physiological arousal on memory.

Thus, we aimed here to determine the role of prediction errors,
above and beyond physiological arousal, in the superior memory
for stimuli that precede aversive events. In two experiments, we
asked participants to predict the occurrence of aversive electric
shocks in a combined Pavlovian fear conditioning and incidental
memory encoding paradigm. In this task, unique pictures of ex-
emplars from two categories (animals and tools) were presented.
Pictures from one of the two categories were followed by an
electric shock with a probability of two thirds, while pictures from
the remaining category were never followed by a shock. In each
trial, participants predicted the occurrence of a shock in a forced-
choice fashion, while we measured SCRs as indicators of physio-
logical arousal. Therefore, we collected data on both prediction
errors and physiological arousal during encoding. Memory for the
previously presented pictures was assessed in a surprise recogni-
tion test about 24 hr later. We hypothesized that recognition
performance would be enhanced for pictures that were linked with
incorrect shock predictions and that these memory advantages
could not be fully explained by the increased physiological arousal
elicited by the aversive event.

Experiment 1

Experiment 1 was designed to test the role of prediction errors
in episodic memory formation in the context of aversive fear
conditioning. Specifically, we aimed to investigate whether pre-
diction errors can explain memory advantages for events associ-
ated with aversive stimuli beyond the well-known memory effects
of physiological arousal on subsequent remembering. To this end,
participants completed an incidental memory task in which they
were instructed to predict whether a picture would be followed by
an electric shock, while we recorded SCRs as a physiological
measure of arousal.

Method

Participants. Forty-four healthy men and women between 19
and 33 years of age (M = 25.05, SD = 3.75) participated in this
experiment. This sample size was based on an a priori sample size
calculation with the software G*Power 3 (Faul, Erdfelder, Lang, &
Buchner, 2007) to achieve a statistical power of .90 to detect a
medium sized effect (d. = 0.5) using a two-tailed dependent
means ¢ test at &« = .05. Exclusion criteria comprised any current
physical or mental illness, life-time history of any neurological
disorder, electronic medical devices such as pacemakers, and preg-
nancy in women. Each participant gave written informed consent
before testing and received a monetary compensation of 20€.
Ethical approval for the study protocol was obtained from the
ethics committee of the Faculty of Psychology and Human Move-
ment Sciences of the University of Hamburg.
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Materials. Stimuli were 180 color pictures of animals and 180
color pictures of tools isolated on white backgrounds. Pictures
were acquired from the Bank of Standardized Stimuli (BOSS;
Brodeur, Dionne-Dostie, Montreuil, & Lepage, 2010; Brodeur,
Guérard, & Bouras, 2014) as well as from publicly available
Internet sources. All pictures were chosen to be of neutral valence,
to avoid ceiling effects in memory performance and any interfer-
ence between stimulus-related arousal on the one hand and pre-
diction errors or arousal induced by the aversive event on the other
hand. They were selected to be unique exemplars of their respec-
tive category. For example, there were not two pictures of different
dogs or two pictures of different hammers. Sixty pictures were
used during the learning session on experimental Day 1 and 120
pictures for encoding tasks that were unrelated to the purpose of
the present study and took place before or after the learning
session. More important, this task did not feature any aversive
events, nor were participants asked to make any predictions. The
remaining 180 stimuli were used as lures during the recognition
test. The order in which individual items were presented was
randomized across participants. Likewise, the allocation of each
stimulus as either learning item or lure was randomized per par-
ticipant.

Procedure. The experiment took place on two consecutive
days, with encoding session on experimental Day 1 and the test
session on experimental Day 2. Upon arrival at the lab on exper-
imental Day 1, participants gave written informed consent and
completed a demographic questionnaire. They then received writ-
ten instructions that they were going to see a series of pictures of
animals and tools and that some pictures would be followed by a
brief electric shock after the picture had disappeared. Participants
were instructed to try to predict whether a shock would be follow-
ing the current picture. We did not inform participants about the
underlying shock contingencies, but participants should learn these
by trial and error, using the electric shocks as feedback to improve
their predictions (see Figure 1). Participants were not informed
about the subsequent memory test for the shown pictures.

To measure SCRs as indicators of physiological arousal and
conditioned fear, electrodes were placed on the distal phalanx of
the second and third finger of the left hand. Skin conductance was
measured using the MP-160 BIOPAC system (BIOPAC systems,
Goleta, CA). For electrical stimulation, we used the STM-200
module connected to the MP-160. A stimulation electrode was
placed on the right lower leg, approximately 25 cm centrally above
the heel. Stimulation intensity was adjusted individually to be
unpleasant but not painful using a standardized procedure. More
specifically, a total of twelve 200 ms single pulse shocks were
administered, with an initial intensity of 20 V. After each trial,
participants rated whether the shock had been painful in a forced-
choice fashion using the “left” (“not painful”) and “right” (“pain-
ful”) keys. Whenever participants rated the shock as not painful, its
intensity for the next trial was increased slightly. Analogous, when
participants rated the shock as painful, it was decreased slightly.

During the encoding session, 30 pictures of animals and 30
pictures of tools were presented in a pseudorandomized order so
that no more than three pictures from the same category appeared
in a row. Each picture was presented only once. In each trial, a
picture from one of the two categories was presented centrally on
a computer screen for 4.5 s, during which participants were re-
quested to make their binary prediction whether an electric shock

was going to follow using the left and right arrow keys on the
computer keyboard. A 200 ms electric shock with the intensity
determined for a participant before (see above) was presented
immediately after the offset of some of the pictures. Critically,
shock contingencies were linked to item categories (i.e., tools vs.
animals). For each participant, one of the two item categories was
randomly determined to be the CS™ category, while the other
served as the CS™ category. Which stimulus category served as
CS™ and CS™, respectively, was counterbalanced across partici-
pants. For each CS™ trial, the probability of a 200 ms single-pulse
shock was two thirds, so that 20 out of 30 CS™ trials were followed
by a shock. In the 30 trials that featured images from the CS™
category, no shocks were administered. Between pictures, a black
fixation cross was presented centrally on a white background with
a variable duration of 8 = 2 s, which allowed us to measure the
relatively slow SCRs elicited by the pictures and the electric shock.
After completion of the conditioning phase, electrodes were re-
moved, and participants rated the intensity of shocks on a scale
from 1 (not unpleasant at all) to 10 (extremely unpleasant).

On experimental Day 2, 22 to 26 hr after the encoding session,
participants returned for a surprise recognition test. First, they
completed a short questionnaire to assess whether they anticipated
a memory test and then rated how surprised they were about the
recognition test on a scale from 1 (not surprised at all) to 5 (very
surprised). Next, they received written instructions explaining
details of the following recognition test. During the recognition
test, participants were presented all pictures they had seen on
experimental Day 1 (90 pictures of animals, 90 pictures of tools)
as well as 180 “new” pictures (90 pictures of animals, 90 pictures
of tools) that had not been presented on the previous day. Each trial
started with a central black fixation cross on a white background
for 1.5 = 0.5 s, followed by an “old” or “new” picture presented
centrally on the computer screen. For each item, participants made
a two-staged forced-choice decision. First, participants had 5 s to
indicate whether the currently presented picture was old (presented
on the previous day) or new (not presented before) using the left
and right arrow keys, respectively. Then, participants had 5 s to
indicate how confident they were with this decision by pressing
buttons corresponding to “very unsure,” “rather unsure,” “rather
sure,” and “very sure.”

Data analysis. For each trial, we derived a binary unsigned
prediction error, which was calculated as the absolute value of the
difference between participants’ explicit binary shock expectancy
ratings (coded 0 when no shock was expected and coded 1 when
a shock was expected) and the actual outcome of the trial (coded
0 when no shock occurred and 1 when a shock occurred in the
current trial). The resulting prediction error is, therefore, also
binary, attaining O for any correct prediction (i.e., either an ex-
pected shock or an expected shock omission) and 1 for any
incorrect prediction (i.e., either an unexpected shock or an unex-
pected shock omission). It is important to note differences in this
conceptualization of prediction errors from other common learning
models, such as the Rescorla-Wagner model (Rescorla & Wagner,
1972), that assume prediction errors to be continuous.

SCRs were analyzed using Continuous Decomposition Analysis
in Ledalab Version 3.4.9 (Benedek & Kaernbach, 2010). Specifi-
cally, we derived the average phasic driver within the specified
response window. First, skin conductance data were down-
sampled to a resolution of 50 Hz and optimized using four sets of

.
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Task design. In each of the 60 trials of a combined incidental learning and fear conditioning task,

participants saw a picture of an animal or a tool and predicted whether they would receive an aversive electric
shock or not. One of the two stimulus categories (animals or tools) was randomly selected as the conditional
stimulus (CS™) category, while the other served as the CS™ category. Twenty out of the 30 CS™ pictures were
followed by a mild electric shock, while the 30 CS™ pictures were never followed by a shock. Participants were
not instructed about these contingencies but had to learn them by trial and error. Memory for the pictures was
tested in a surprise recognition test about 24 hr after encoding. See the online article for the color version of this

figure.

initial values. For the anticipatory SCR, the response window was
set from 0.5 to 4.5 s after stimulus onset. For the outcome-related
SCR, the response window was set from 4.5 to 7.9 s after stimulus
onset. More important, aversive electrodermal stimulation always
occurred exactly 4.5 s after stimulus onset; thus, leaving the
anticipatory SCR unaffected by the shock itself. The minimum
amplitude threshold was set to 0.01 wS for both the anticipatory
and the outcome-related SCR. Resulting estimates of average
phasic driver within each response window were returned in uS. It
should be noted that these estimates are sensitive to interindividual
baseline skin conductance differences because of physiological
factors such as the thickness of the corneum (Figner & Murphy,
2011). To account for these interindividual baseline differences,
we standardized both the anticipatory and the outcome-related
SCR by dividing the average phasic driver estimated in each trial

by the maximum average phasic driver for each participant ob-
served in any of the 60 trials.

To investigate how prediction errors and physiological arousal
impacted the ability to recognize pictures presented during inci-
dental encoding on the next day, we fitted generalized linear mixed
models (GLMMs) with a logit link function using the Ime4 R
package (Bates, Michler, Bolker, & Walker, 2015). Compared
with a “classic” analysis of proportions of binary recognition per
condition and per participant, GLMMs have several advantages,
such as increased statistical power and being less prone to spurious
results (Dixon, 2008; Jaeger, 2008). Following guidelines to max-
imize the generalizability of these models, we included the max-
imal random effects structure, treating subjects as random effects
for both the intercept and all slopes of the fixed effects included in
the model (Barr, Levy, Scheepers, & Tily, 2013). The recognition
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of an individual item was treated as the binary dependent variable,
coded ‘0’ for misses and ‘1 for hits. In line with previous research
on episodic memory (Bartlett, Till, & Levy, 1980), our analysis
focused on high-confidence responses, that is, only trials in which
participants indicated that they were either rather sure or very sure
were considered. Such high-confidence recognitions have been
linked to a hippocampus-based recollection rather than only fa-
miliarity with an item, which is assumed to depend on the perirhi-
nal cortex (Eichenbaum, Yonelinas, & Ranganath, 2007). We
fitted models using different sets of independent variables, such as
prediction errors and measures of arousal and compared their
goodness of fits using likelihood ratio tests to select the most
appropriate model, indicating which factors drive episodic mem-
ory formation most strongly.

Results and Discussion

Anticipation of the memory test. To assess whether partici-
pants had expected a recognition test on the second experimental
day, they gave ratings from 1 (not surprised at all) to 5 (very
surprised). Questionnaire data from six participants were missing.
In the remaining sample of 38 participants, the mean response was
2.92 (SD = 0.97), indicating that, on average, participants were
moderately surprised. Only four participants indicated that they
had anticipated the recognition test by choosing the not surprised
at all option. These four participants were still included in the
analysis and excluding them did not change the pattern of results.

General memory performance. On average, participants
correctly recognized 69.5% (SD = .12) of all pictures that they had
seen on the previous day (hit rate). When counting only high-
confidence recognitions (i.e., responses with rather sure and very
sure confidence ratings) as hits and low-confidence recognitions as
misses, the hit rate decreased slightly to 54.5% (SD = .15). In
comparison, the false alarm rate (i.e., incorrectly classifying a new
picture as old) was overall low to moderate at 24.4% (SD = .09).
More important, the false alarm rate for items from the CS™
category (M = .25, SD = .10) was comparable with the false alarm
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Figure 2.

rate for items from the CS™ category (M = .24, SD = .13), #(43) =
035, p = .72, d,, = 0.06.

Successful fear conditioning. Physiological data from antic-
ipatory skin conductance responses confirmed that fear condition-
ing was successful. On average, participants showed significantly
greater anticipatory SCRs to CS™ items compared with CS ™ items,
1(43) = 4.79, p < .001, d,, = 0.52. To further analyze when
participants first began to show signs of conditioned fear, we
divided the task into six consecutive blocks, each consisting of 10
trials (Figure 2A). As expected, in the first 10 trials of the task,
participants did not yet show increased anticipatory SCRs to CS™
items compared with CS™ items, #(43) = 132, p = .19, d,, =
0.13. Starting from the second block (Trials 11-20); however, we
consistently found that anticipatory SCRs were greater for CS™
items than for CS™ items in all five remaining blocks (all ps <
.004). This shows that conditioned fear was acquired relatively fast
and lasted over the whole encoding phase. An analysis of variance
(ANOVA) with block and condition as within-subject factors
revealed that anticipatory SCRs were affected by both the condi-
tion, F(1, 43) = 22.04, p < .001, m% = .042, as well as the block,
F(5,215) = 13.71, p < .001, n3 = .072. There was no significant
interaction between these two factors, F(5, 215) = 1.49, p = .19,
M& = .004. The lack of a significant Condition X Block interaction
is not necessarily surprising, given the fact that anticipatory SCRs
differentiated very quickly between CS™ and CS~ items. An
ANOVA might, therefore, not have enough power to detect such
small differences within the first few trials, as SCRs were clearly
distinct for CS* and CS™ stimuli in all following trials. At the
descriptive level, however, we found that mean anticipatory SCRs
were almost identical in the first five trials for CS™ items (M =
0.44 S, SD = 0.21 wS) versus CS™ items (M = 0.42 pS, SD =
0.24 WwS), providing additional evidence that anticipatory re-
sponses for both conditions were initially comparable.

Improved memory for CS* items compared with CS ™~ items.
As expected, the average hit rate for items from the CS™ category
(M = .73, SD = .14) was significantly higher than for items from
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Average anticipatory skin conductance responses by block and condition. Apart from the first 10

trials, anticipatory skin conductance responses were always significantly higher for items from the conditional
stimulus (CS ™) category compared with items from the CS™ category in both Experiment 1 (A) and Experiment
2 (B), confirming that the fear conditioning procedure was successful. Error bars represent SEM. * p < .05.
* p < .01. " p < .001. See the online article for the color version of this figure.
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the CS™ category (M = .66, SD = .15), 1(43) = 2.35, p = .023,
d,, = 0.42. This finding is generally in line with the classic model
that attributes memory advantages for CS™ items to increased
physiological arousal associated with these items.

Prediction errors. Recent evidence suggests that episodic
memory formation might not only be driven by physiological
arousal during encoding, but also by errors made in predicting
future outcomes (Jang et al., 2018; Rouhani et al., 2018). We
requested participants to make explicit binary predictions about
shock outcomes in each trial. On average, participants made in-
correct predictions in 27.8% (SD = .10) of all trials. As expected,
the average number of prediction errors decreased as the task
progressed, r(58) = —.34, p = .008. This finding indicates that
participants learned the contingency between picture category and
shock very well. Because of the partial reinforcement schedule,
however, prediction errors occurred also after the contingency was
learned. Notably, participants made substantially more prediction
errors for CS™ items (M = .45, SD = .09) compared with CS™
items (M = .11, SD = .14), #(43) = 18.11, p < .001, d,,, = 2.96.
On the other hand, it should be noted that prediction errors were
still conceptually different enough from the CS™/CS™ categories
so that their effects could be differentiated. This was reflected by
an only moderate association, at item level, between binary pre-
diction errors and the binary category membership of an item (CS™
vs. CS™), ¢ = .38, p < .001. This significant moderate association
is likely because of prediction errors occurring far more often in
CS™ trials. On the other hand, participants made prediction errors
in less than half of CS™ trials, leaving enough variance in predic-
tion errors even if only CS™ trials are considered.

Similarly, prediction errors exhibited a small but significant
point-biserial correlation with standardized anticipatory SCRs,
r(2,624) = .10, p < .001. The same was true for the outcome-
related SCRs, r(2,624) = .12, p < .001. Again, these findings are
not at all surprising, as SCRs might partly reflect uncertainty and
surprise, two concepts that are also linked to prediction errors, and
it has been demonstrated before that prediction errors may lead to
a certain state of arousal (de Berker et al., 2016). On the other
hand, as correlation coefficients were small, we still expected that
effects of these two concepts (i.e., arousal and prediction errors)
would be separable in a GLMM.

Effects of encoding order on memory performance. The
serial position of an individual item within the encoding session
could potentially influence memory performance for this item in
the following recognition test. For example, participants might
show greater attention to items that appear early in the encoding
task, leading to better recognition of these early items (i.e., a
primacy effect). Awareness of such an effect would be critical, as
it might be confounded with other measures that have varying
frequencies over the course of the task, such as prediction errors,
which become less frequent as the encoding session progresses.
To investigate whether the probability of correctly recognizing
an item in the memory test depends on the relative position of the
item within the task, we fitted a GLMM with the position of each
item within the encoding session (i.e., the trial number) as the sole
independent variable to explain differences in item recognition on
the following day. This revealed no effect of the serial position of
an item during encoding on memory formation, z = 0.56, p = .57,
B = 0.002.

Modeling recognition at item level. So far, we have shown
that, on average, items from the CS™ category were better recog-
nized after 24 hr than items from the CS™ category. Two plausible
underlying mechanisms have been identified. First, we showed
that CS™ items provoked increased anticipatory SCRs compared
with CS™ items, suggesting that physiological arousal may pro-
mote episodic memory. In addition, however, we showed that CS™
items were also associated with a substantially increased rate of
prediction errors for aversive electric shocks, providing initial
evidence for an intriguing alternative model in which the observed
memory advantage for CS™ items is linked to an increased pre-
diction error for this category. To test these two models, we fitted
GLMMs at item level, treating the binary recognition of an item
presented on Day 1 as the dependent variable.

First, to test the model of arousal-induced memory enhance-
ments at item level, we treated the standardized anticipatory SCR
in each trial as the sole independent variable to predict the binary
recognition of an item. As we expected this model to best reflect
fear conditioning-induced memory effects, we treated it as a base-
line model for later comparisons. Surprisingly, estimates obtained
after fitting the model revealed no significant effect of the antic-
ipatory SCR on item recognition, z = 0.81, p = 41, B = 0.22.
Next, we added the standardized outcome-related SCR as an
additional predictor that reflects physiological arousal after the
outcome in a trial has become apparent (i.e., either a shock or no
shock). This additional variable showed the expected positive
relationship with item-specific recognition performance, indicating
that higher SCRs were associated with improved recognition, z =
2.82, p = .005, B = 0.76, in line with models of arousal-induced
memory enhancement.

In a first minimal model of prediction error-induced memory
enhancements, we added the unsigned binary prediction error as
the sole independent variable. This revealed that episodic memory
was indeed enhanced for trials in which an incorrect shock pre-
diction was made, z = 2.20, p = .027, B = 0.46.

To investigate the possibility that the effects of physiological
arousal and the effects of prediction errors on memory might
reflect distinct mechanisms, we added both measures of arousal
(i.e., anticipatory and outcome related SCRs) to the previously
defined minimal model that featured only the binary prediction
error as the sole independent variable. Again, this revealed no
significant effect of anticipatory SCRs on item recognition, z =
0.24, p = .81, B = —0.07. Larger outcome-related SCRs, on the
other hand, were again associated with better item recognition, z =
2.52, p = .012, B = 0.72. For prediction errors, there was a strong
trend in the direction that recognition was improved in trials with
incorrect predictions, yet this trend did not reach statistical signif-
icance, z = 1.83, p = .067, 3 = 0.36.

Using likelihood ratio tests, we next compared the previously
introduced models to identify which of them is best suited to
describe the mechanisms underlying episodic memory forma-
tion in this task (Figure 3A). Critically, the combined model
with the anticipatory and outcome-related SCRs as well as
prediction errors best reflected the observed recognition perfor-
mance. As such, its model fit was significantly better compared
with the model that only featured the anticipatory and outcome-
related SCR as independent variables, x*(5) = 15.52, p = .008.
This shows that prediction errors play a role beyond physio-
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Figure 3. Generalized linear mixed-model (GLMM) fit indices for models with different sets of independent
variables to predict the binary recognition of an item in the incidental learning paradigm in Experiment 1 (A)
and Experiment 2 (B). Smaller values indicate a better model fit. Notably, the best-fitting model in both
experiments combines both measures of physiological arousal and prediction errors, suggesting that both
processes contribute to episodic memory formation. Comparisons between models refer to results from
likelihood ratio tests. * p < .05. ™" p < .01. ™" p < .001.

logical arousal in episodic memory formation. On the other
hand, adding the two measures of physiological arousal (i.e.,
anticipatory and outcome-related SCRs) also improved the
model fit compared with a model that only relies on prediction
errors as the single independent variable, x*(9) = 20.63, p =
.014. Thus, both physiological arousal and prediction errors
seem to be important factors in episodic memory formation,
each contributing to improve predictions in a combined model.
One potential alternative explanation for our results could be
that our measurement of arousal through SCRs does not capture
all aspects of physiological arousal. If this was the case, then it
would be possible that prediction errors only seemingly predict
memory formation beyond arousal because they reflect aspects
of arousal that are not fully captured through SCRs. We as-
sumed that such an effect would be particularly strong in the
case of unexpected shocks, which should elicit larger outcome-
related physiological responses. To test whether the putative
contribution of prediction errors to memory formation is mainly
driven by such unexpected shocks, we disregarded all trials in
which participants incorrectly predicted that no shock would
follow; thus, leaving only trials with either correct predictions
or unexpected no shocks. Again, we fitted a GLMM to explain
the binary recognition of an item with prediction errors, antic-
ipatory and outcome-related SCRs as independent variables. In
this model, we found that unexpected no shocks, which include
a prediction error but low outcome-related arousal, were asso-
ciated with an improved recognition on the following day, even
after controlling for both SCR measures, z = 2.00, p = .045,
B = 0.43. Thus, we find a positive link between prediction
errors and item recognition even after controlling for arousal
and when excluding trials that featured unexpected shocks.
So far, we have shown that prediction errors improved memory
for items encoded shortly before the associated aversive outcome
became apparent or not, resulting in a possible prediction error. In
other words, the effects of prediction errors identified so far have

been retroactive in nature. To investigate whether prediction errors
might also promote memory for unrelated items in the opposite,
proactive direction, we fitted a model with the binary unsigned
prediction error of the previous trial as the sole independent
variable to explain memory for the current item. We found no
effect of prediction errors from the previous trial on the probability
of recognizing the item from the current trial, z = 1.57, p = .12,
B = —0.24. Therefore, memory advantages associated with pre-
diction errors seem to be mainly retroactive and specific to related
items, rather than also proactive and generalizable to unrelated
items.

Finally, we hypothesized that prediction errors might improve
memory independent of the fear conditioning-based memory dif-
ference between CS™ and CS™ items. If this was the case, we
should be able to find memory advantages induced by prediction
errors even within a conditioned stimulus category. Because of
characteristics of our task, prediction errors were rare in CS™ trials
(11%), but much more prevalent in CS™ trials (45%). Therefore,
we fit a model with binary prediction errors as the sole indepen-
dent variable to predict the recognition of an individual item, but
this time only included CS™ trials. Even though the parameter
estimate for prediction errors was only slightly diminished com-
pared with the same model fit on all trials and in the expected
direction, its effect did not reach significance, z = 1.34, p = .18,
B = 0.33. We suspected that this might have been because of
insufficient statistical power, as including only CS™ item removed
half of all trials from this analysis in a generally rather small
sample.

Nonetheless, Experiment 1 overall provided evidence that pre-
diction errors for aversive events were associated with improved
item recognition in a surprise memory test on the following day.
Critically, these effects of prediction errors on episodic memory
could not be fully explained by traditional models based on phys-
iological arousal during encoding.
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Experiment 2

Experiment 2 was designed to replicate and clarify the findings
of Experiment 1. Specifically, in Experiment 1 we observed two
effects of prediction errors at descriptive level that did not reach
statistical significance. First, we hypothesized that prediction er-
rors would improve episodic memory even when controlling for
measures of physiological arousal. Second, we hypothesized that
prediction errors would influence memory even if only CS™ trials
are considered. To ensure an appropriate statistical power to detect
these possible effects, we almost doubled the sample size com-
pared with Experiment 1 while keeping the procedure largely
identical.

Method

Participants. Eighty-four healthy men and women between
18 and 35 years of age (M = 25.23, SD = 4.08) participated on
two consecutive days. Four of these participants were excluded
from analysis because they either did not complete the task or
because of experimenter error. The target sample size was deter-
mined a priori in G*Power 3 to achieve a power of .95 to detect an
effect size obtained for the memory advantage for CS™ compared
with CS™ items observed in Experiment 1 (d, =~ 0.4) using a
two-tailed dependent means ¢ test at « = .05. Our decision to
increase the statistical power compared with Experiment 1 was
based on the observation of some statistical trends in the previous
experiment that we aimed to clarify. None of the participants from
Experiment 1 participated in Experiment 2. Again, participants
received a monetary compensation of 20€ for the completion of the
experiment, which was approved by the ethics committee of the
Faculty of Psychology and Human Movement Science at the
University of Hamburg.

Materials. To rule out the possibility that our results in Ex-
periment 1 could be item specific, we used a new set of stimuli in
Experiment 2. These had previously been utilized in a similar
incidental learning procedure (Dunsmoor et al., 2015). Again, the
stimulus set consisted of 180 color pictures of animals and 180
color pictures of tools on white backgrounds. As in Experiment 1,
all stimuli were of neutral valence.

Procedure. The procedure for Study 2 was mostly identical as
in Study 1. We changed the location where the stimulation elec-
trode was placed from the right lower leg to the back of the right
hand near the wrist to make results more comparable with studies
utilizing a similar fear conditioning paradigm (Dunsmoor et al.,
2015). As this area tends to be more sensitive to electrical stimu-
lation, the initial intensity in the procedure to determine the pain
threshold was reduced to 10 V instead of 20 V. We also replaced
the two-step forced-choice decision in the surprise recognition test
with a single-step decision that included both whether participants
regarded the currently presented picture as old or new as well as
participants’ confidence with this decision. Thus, on each trial,
participants performed a single button press on either the ‘1,” ‘2,
3, or ‘4’ key at the upper left of the keyboard, indicating that the
current item was “definitely old,” “maybe old,” “maybe new,” or
“definitely new,” respectively.

Data analysis. The statistical analysis was identical to Exper-
iment 1.

Results and Discussion

Anticipation of the memory test. Overall, participants were
moderately surprised by the recognition test on the second exper-
imental day, as indicated by a mean rating of 2.89 (SD = 1.12) on
a scale from 1 (not surprised at all) to 5 (very surprised). A total
of nine participants answered that they were not surprised at all. As
in Experiment 1, these nine participants were still included in the
following analyses and excluding them did not affect the pattern of
results.

General memory performance. The average hit rate in Ex-
periment 2 was 63.9% (SD = .14) and, therefore, comparable with
Experiment 1. Treating only high-confidence recognitions (i.e.,
correct definitely old responses) as hits reduced the hit rate to
39.3% (SD = .17), considerably lower than in Experiment 1. We
suspected that this difference was because of changes in the
procedure how confidence was assessed in Experiment 2, which,
unlike Experiment 1, did not include a rather sure rating. We
found a similar false alarm rate as in Experiment 1 at 25.2% (SD =
.10). The false alarm rate for items from the CS™ category (M =
.25, SD = .11) was comparable with the false alarm rate for CS™
items (M = .26, SD = .14), (79) = 0.51, p = .61, d,, = 0.07.

Successful fear conditioning. As in Experiment 1, anticipa-
tory SCRs provided physiological evidence that our procedure was
successful in inducing conditioned fear. More specifically, average
anticipatory SCRs to items from the CS™ category were signifi-
cantly larger than anticipatory SCRs to items from the CS™ cate-
gory, #(79) = 4.32, p < .001, d,,, = 0.35. Analogous to Experiment
1, we further divided the task into six consecutive blocks, each
consisting of 10 trials, to identify when participants started to show
first signs of conditioned fear (Figure 2B). Again, in the first 10
trials of the task, participants did not yet show a significantly
increased anticipatory SCRs to CS™ items compared with CS™
items, although a trend was already visible, #(79) = 1.84, p = .07,
d,, = 0.16. In all five remaining blocks representing Trials 11 to
60, we consistently found that anticipatory SCRs were greater for
CS™ items than for CS™ items (all ps < .02). This demonstrates
that conditioned fear emerged relatively fast and lasted over the
whole encoding session. As in Experiment 1, a repeated measures
ANOVA revealed that the anticipatory SCRs depended on both the
condition, F(1, 79) = 19.10, p < .001, n& = .018, as well as the
block, F(5, 395) = 40.10, p < .001, ng = .105. There was no
significant interaction between condition and block, F(5, 395) =
0.62, p = .68, n& = .0001. At descriptive level, however, we found
that within the first five trials, there was almost no difference in
mean anticipatory SCRs between CS™ items (M = 0.60 p.S, SD =
0.33 wS) compared with CS™ items (M = 0.61 pS, SD = 0.28
wS), providing additional evidence that anticipatory responses for
both conditions were initially comparable.

Improved memory for CS* items compared with CS™ items.
As expected, we could replicate the previous finding of improved
recognition for items from the CS™ category. More specifically,
the average hit rate for CS™ items (M = .68, SD = .18) was
significantly higher than for CS™ items (M = .60, SD = .18),
#(79) = 3.53, p < .001,d,, = 0.47.

Prediction errors. On average, participants made incorrect
predictions in 26.0% (SD = .06) of all trials. They learned the
underlying picture-shock contingencies very well, as reflected in
the observation that the average proportion of prediction errors
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decreased as the task progressed, r(58) = —.62, p < .001. As in
Experiment 1, participants made substantially more prediction
errors in trials in which CS™ pictures were displayed (M = .45,
SD = .09) compared with trials that displayed CS™ pictures (M =
.07, SD = .09), (79) = 29.14, p < .001, d,, = 4.44. Still,
prediction errors were conceptually differentiable from the CS™/
CS™ categories as indicated by only a medium-sized association
between binary prediction error and category membership (CS™
vs. CS™) atitem level, ¢ = .44, p < .001. Again, we assumed that
this significant association mostly reflects that prediction errors
were far more common in CS ™ trials. On the other hand, prediction
errors did occur in less than half of all CS™ trials, leaving enough
differential variance to separate these two concepts. As in Exper-
iment 1, we found an only small but significant point-biserial
correlation between prediction errors and the standardized antici-
patory SCR, r(4,858) = .10, p < .001. This was paralleled by a
small to moderate significant point-biserial correlation between
prediction errors and the standardized outcome-related SCR,
r(4,858) = .21, p < .001. Corroborating findings from Experiment
1, this likely reflects how uncertainty and surprise might be con-
nected to both arousal measures and prediction errors. More im-
portant, however, as correlation coefficients were only small, we
expected that effects of these two concepts on episodic memory
formation could be differentiated in a GLMM.

Effects of encoding order on memory performance. To
explore possible effects of the serial position of an item within the
encoding session, we fitted a GLMM with the trial number of each
item as the sole independent variable to explain differences in item
recognition on the following day. As in Experiment 1, this re-
vealed that memory formation was not influenced by the serial
position of an item during encoding, z = 146, p = .14,
B = —0.005.

Modeling recognition at item level. For a more precise anal-
ysis of mechanisms underlying episodic memory formation, we
fitted the same GLMMs as in Experiment 1 to predict the binary
recognition of individual items. We started with the same baseline
model as in Experiment 1 with the standardized anticipatory SCR
as the sole independent variable. As in Experiment 1, this revealed
no significant effect of the anticipatory SCR on recognition per-
formance, z = 1.47, p = .14, B = —0.38. Next, we added the
standardized outcome-related SCR as an additional independent
variable to the model. In this model, surprisingly, we found that
anticipatory SCRs were linked to a decreased chance that an item
would be recognized, z = 2.01, p = .039, = —0.54. We could,
however, replicate the finding from Experiment 1 that the
outcome-related SCR was associated with better item recognition,
z =3.29,p <.001, B = 1.02.

Fitting a simple model with binary prediction errors as the single
independent variable to predict item recognition, we replicated the
finding from Experiment 1 that prediction errors were linked to
improved recognition performance, z = 4.32, p < .001, = 0.73.
In a combined model, we added both measures of physiological
arousal (i.e., anticipatory and outcome-related SCR) together with
prediction errors as independent variables. In this model, the
anticipatory SCR was again associated with reduced recognition,
z = 2.75, p = .006, B = —0.72. Congruent with all previous
findings, there was also a positive effect of outcome-related SCRs
on item recognition, z = 2.93, p = .003, B = 0.90. Most important,
however, in this combined model, we found a significant positive

effect of prediction errors on recognition even when accounting for
measures of physiological arousal through SCRs, z = 4.19, p <
.001, B = 0.67. This demonstrates that prediction errors influence
item recognition through other mechanisms than the well-known
arousal-based effects.

Next, we compared all previously introduced models using
likelihood ratio test to identify the model that best reflects under-
lying mechanisms of episodic memory formation in Experiment 2
(Figure 3B). The results mimicked the pattern observed in Exper-
iment 1. Again, the model combining physiological arousal mea-
sures (i.e., anticipatory and outcome-related SCRs) with prediction
errors showing the best fit to predict the recognition of individual
items. This combined model fit our recognition data significantly
better than the model that only featured measures of physiological
arousal, XZ(S) = 31.79, p < .001, demonstrating that the role of
prediction errors in episodic memory formation goes beyond
arousal. Likewise, the combined model also had a significantly
better fit than the model that only included the prediction error to
explain recognition differences, X2(9) = 46.64, p < .001. In line
with Experiment 1, these findings demonstrate that episodic mem-
ory formation is influenced by both arousal and prediction errors.

As in Experiment 1, we considered the possibility that the
putative positive effect of prediction errors on memory formation
beyond arousal might be because of the way we measure arousal
through SCRs, which might not capture every aspect of physio-
logical arousal. To investigate this possibility, we again excluded
all trials with unexpected shocks, for which we assumed a partic-
ularly pronounced physiological response should follow. Including
only the remaining trials, which featured either correct predictions
or unexpected no shocks, we fit a GLMM with the binary recog-
nition of an item on the following day as the dependent variable
and prediction errors, anticipatory and outcome-related SCRs as
the independent variables. As in Experiment 1, prediction errors
were still associated with an improved item recognition even after
controlling for arousal and excluding all trials with unexpected
shocks, z = 3.97, p < .001, B = 0.90.

The results from Experiment 2 so far provide evidence that
prediction errors retroactively promote memory for related items.
As in Experiment 1, we further investigated whether prediction
errors also affected memory for subsequent unrelated pictures, in
a proactive manner. We fitted a model with the unsigned binary
prediction error in the previous trial as a single independent
variable to explain memory for the current picture. Although not
significant, there was a tendency indicating that prediction errors
might also have a proactive, memory-promoting effect for directly
following pictures, z = 1.88, p = .06, = 0.34.

Like in Experiment 1, prediction errors were rare for items of
the CS™ category (7%), but common for items of the CS™ cate-
gory (45%) because of task characteristics. We hypothesized that,
in this larger sample, we might be able to identify memory im-
provements through prediction errors even when analyzing only
trials from the CS™ category. This finding would be particularly
interesting, as it would indicate that the effects of prediction errors
on memory formation cannot solely be attributed to the increased
number of prediction errors for CS™ items. It would, therefore,
point to a general role of prediction errors for aversive events in
memory formation.

To test whether prediction errors may account for variability in
memory for CS™ items, we again fitted a model with the binary
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prediction error as a single independent variable to predict the
recognition of an item, including only items from the CS™ cate-
gory. With the increased sample size in this experiment, we found
a positive effect of prediction errors on the recognition perfor-
mance for CS™ items only, z = 2.95, p = .003, B = 0.58. In other
words, when two pictures were both from the CS™ category, but
for one an incorrect prediction was made, this item was more likely
to be recognized later than the item for which a correct prediction
was made. This finding provides striking evidence that prediction
errors for aversive events generally improve memory formation.

General Discussion

Classic models of emotional memory formation have attributed
the enhanced memory for information linked to aversive events to
increased physiological arousal during encoding (Cahill et al.,
1994; McGaugh, 2018; McGaugh & Roozendaal, 2002). Based on
the assumption that aversive events are often characterized by their
unpredictability (de Berker et al., 2016; Trapp et al., 2018), we
hypothesized that the memory enhancement for stimuli linked to
aversive events might additionally be driven by an element of
surprise (i.e., prediction errors) that has not been accounted for by
purely arousal based models. To test this hypothesis, we exposed
participants to a combined fear conditioning and incidental learn-
ing paradigm that featured partially predictable aversive shocks
while we collected data on both physiological arousal and predic-
tion errors to predict 24 hr delayed memory performance. In line
with the model of arousal enhanced memory formation, we found
that outcome-related arousal predicted, on a trial-by-trial basis,
whether an item was later recognized. Most important, however,
our data show that, in addition to arousal, binary unsigned predic-
tion errors derived from participants’ explicit shock predictions
were associated—on a trial-by-trial basis—with enhanced recog-
nition. In support of the idea that the impact of a prediction error
on memory goes beyond the mere effect of arousal, a model that
included both measures of physiological arousal and the unsigned
prediction error to explain recognition significantly outperformed
models featuring only one of these measures. This pattern of
results was replicated in a second experiment in a larger sample. In
addition, we showed in this second experiment the memory facil-
itating effect of prediction errors when only items from the CS™
category were included; thus, demonstrating the robustness of this
effect and that the facilitating effect of prediction errors on memory
remained stable even after controlling for the influence of arousal.
Together, these findings provide strong evidence that prediction errors
promote, above and beyond physiological arousal, memory formation
for stimuli linked to aversive events.

While our findings point to a new mechanism involved in the
formation of episodic memories for stimuli linked with emotional
events, they provide also further evidence for the well-established
model of arousal-based memory enhancement (McGaugh, 2018).
In particular, SCRs, a common indicator of autonomic arousal,
elicited by the outcome in each trial (i.e., either a shock or no
shock) were linked to enhanced item recognition. Somewhat sur-
prisingly, anticipatory SCRs, reflecting arousal in anticipation of a
possible shock, had either no effect on item recognition (Experi-
ment 1) or were even associated with a decreased recognition
performance (Experiment 2). These divergent findings between
anticipatory SCRs, associated with either no effect (Experiment 1)

or even a negative effect on memory encoding (Experiment 2), and
outcome-related SCRs, linked to enhanced memory formation,
might be explained through different processes underlying these
measures of physiological arousal. Outcome-related SCRs have
been demonstrated to partly reflect surprise (i.e., prediction errors),
while anticipatory SCRs have been associated with concepts such
as uncertainty and fear (de Berker et al., 2016). Therefore, it is
tempting to speculate that fear-related anticipatory arousal during
the encoding might, unlike surprise, act as a distractor and hence
have negative effects on memory formation. However, the nega-
tive effect of anticipatory SCRs on memory formation was not
consistent across our two experiments and, therefore, remains to be
interpreted with caution.

The key finding of our experiments, however, is that the en-
hanced memory for stimuli paired with aversive events is not
exclusively because of the associated physiological arousal, as
measured through SCRs, but also due to a violation of expecta-
tions. These prediction errors facilitated recognition memory in-
dependent from the beneficial effects of arousal. In line with
models of adaptive memory (Anderson & Milson, 1989; Nairne &
Pandeirada, 2008; Nairne et al., 2007; Shohamy & Adcock, 2010)
proposing that memory is essential to guide future behavior, the
impact of prediction errors was inherently retroactive in nature.
Prediction errors enhanced memory for preceding stimuli that were
linked to the incorrect prediction but not for stimuli that followed
the prediction error, suggesting that the prediction error does not
open a “bidirectional” window of enhanced memory formation but
selectively favors memory for preceding events. To explain these
findings, we propose that prediction errors might transiently put
agents into a state of enhanced information processing (Trapp et
al., 2018), which also extends to the recently encoded stimulus that
the prediction error originated from. At the neural level, the
dopaminergic system is a likely candidate to be involved in the
observed effects. Rouhani et al. (2018) explained memory promot-
ing effects of prediction errors in reward learning through dopa-
minergic modulation of the hippocampus. This is plausible be-
cause the coding of reward prediction errors through dopamine is
well established (Schultz & Dickinson, 2000). Which neurotrans-
mitter system is carrying the aversive prediction error, however, is
less clear (Delgado, Li, Schiller, & Phelps, 2008).

Prediction errors may indeed be a driving force that promotes
adaptive memory, allowing the efficient storage selectively of
those memories that are relevant to guide future behavior (Nairne
& Pandeirada, 2008; Nairne et al., 2007; Shohamy & Adcock,
2010). The enhanced storage of information linked to previously
unexpected events, makes especially this information more avail-
able in memory that may help to make more accurate predictions
in the future. In accordance with this assumption, prediction errors
became less frequent as the task progressed. This finding might be
problematic if it was interpreted as an indicator of task disengage-
ment in later trials. However, it is important to note that, even in
later stages of the task, participants’ mean shock expectancy rat-
ings for CS™ items were clearly below 80%. One explanation for
this finding could be that pictures from the CS™ category were not
continuously paired with the UCS (rate of 66%), which likely kept
participants more alert and made task disengagement less likely.

The neural underpinnings of arousal-induced memory changes
are very well documented: emotional events activate (3-adrenergic
receptors in the basolateral amygdala that then modulates the
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consolidation of memories in other areas such as the hippocampus
(Cahill & McGaugh, 1996, 1998; McGaugh, 2018; McGaugh &
Roozendaal, 2002). Neural signatures for aversive prediction er-
rors, on the other hand, have mainly been localized in the striatum
(Li, Schiller, Schoenbaum, Phelps, & Daw, 2011; Robinson,
Frank, Sahakian, & Cools, 2010; Robinson, Overstreet, Charney,
Vytal, & Grillon, 2013; Seymour, Daw, Dayan, Singer, & Dolan,
2007; Seymour et al., 2004). Thus, it appears likely that prediction
errors promote memory for aversive events through a different
neural pathway focusing around the striatum compared with the
amygdala-based effect of arousal.

Although we argue that physiological arousal and prediction
errors exert separable influences on memory, arousal and predic-
tion errors may not necessarily be independent of one another. In
particular, there is first evidence that prediction errors might be
reflected in outcome-related SCRs (Spoormaker et al., 2012; but
see Bach & Friston, 2012) and a recent study suggested that
physiological arousal could be tuned by environmental uncertainty
(de Berker et al., 2016). This evidence points to the intriguing
possibility that arousal is, at least partly, the result of a prediction
error. In line with this observation, we found small, but significant
positive correlations between prediction errors and outcome-
related SCRs in both of our experiments, which might suggest that
outcome-related SCRs were partially driven by prediction errors.
Nevertheless, it is important to note that a combined model of
physiological arousal and prediction errors could explain memory
performance significantly better than models that relied solely on
physiological arousal or prediction errors alone. Furthermore, in
Experiment 2, we showed that prediction errors were associated
with enhanced recognition even after controlling for arousal. These
data suggest that the effects of arousal and prediction error are at
least partly independent of each other.

It should be noted that, although SCRs are commonly used to
measure physiological arousal in studies concerned with both fear
conditioning (Beckers, Krypotos, Boddez, Effting, & Kindt, 2013;
Dengerink & Taylor, 1971; Epstein & Clarke, 1970) and stress
(Fowles, Roberts, & Nagel, 1977; Jacobs et al., 1994; Lazarus,
Speisman, & Mordkoff, 1963), there might be certain components
of arousal responses that are not fully captured by SCRs. This is
demonstrated by the finding that different indices of physiological
arousal do not always correlate (Neiss, 1988). SCRs have also
been found to measure concepts beyond physiological arousal,
such as the anticipation of cognitive demand (Botvinick & Rosen,
2009). Therefore, it is possible that prediction errors enhance
memory through an aspect of physiological arousal that cannot
be measured through SCRs. Similarly, it is possible that SCRs
were linked to an improved memory formation not exclusively
because of arousal, but also because of other factors that they
measure, such as cognitive demand. Future research should ad-
dress this limitation by using a wider array of arousal measures
such as pupil diameter and subjective stress ratings. One consistent
finding across both experiments, however, was that prediction
errors were associated with an improved item recognition beyond
arousal as measured through SCRs, even if we excluded any trials
featuring unexpected shocks. As we assumed greater physiological
arousal for unexpected shocks compared with unexpected shock
omissions, this finding could be interpreted as evidence against the
possibility that our results were biased by an imperfect arousal
measurement through SCRs.

While numerous studies have demonstrated predictive coding in
a variety of cognitive domains (Feldman & Friston, 2010; Holler-
man & Schultz, 1998; Hosoya et al., 2005; Maia, 2009; Rangel,
Camerer, & Montague, 2008; Rao & Ballard, 1999; Smith &
Lewicki, 2006; Spratling, 2008), prediction errors were related to
the formation of human long-term memory only very recently.

Two recent studies showed that surprise during reward learning
may promote episodic memory formation (Jang et al., 2018; Rou-
hani et al., 2018). Our findings are generally in line with these
studies but extend them significantly. We demonstrate for the first
time that prediction errors are critical in memory formation related
to aversive events and that this impact of prediction errors goes
beyond the effect of physiological arousal, which is at the heart of
traditional models on emotional memory formation. While it can-
not be ruled out that, in the context of these prior studies, some
participants perceived receiving a smaller than expected monetary
reward as aversive, outcomes were always positive, meaning they
never had to fear losing any money. Our study, on the other hand,
used aversive electric shocks, which have been extensively used to
induce conditioned fear in experimental contexts as a model for
psychopathology.

It is also important to note conceptual differences between our
findings and classic learning models that rely on prediction errors,
such as the Rescorla-Wagner model (Rescorla & Wagner, 1972).
In the Rescorla-Wagner model, each stimulus is typically pre-
sented several times and the associative strength between UCS and
CS is updated after each episode through a weighted prediction
error. In other words, the prediction error facilitates learning to a
stimulus that is presented repeatedly. We, on the other hand, show
here that the prediction error promotes episodic memory for an
individual stimulus that is presented only once during encoding.

Demonstrating the relevance of prediction errors in memory
formation related to aversive events is particularly relevant be-
cause episodic memories for aversive events play a key role in
several psychopathologies, including phobia or posttraumatic
stress disorder (de Quervain et al., 2017; Dunsmoor & Paz, 2015;
Pitman, 1989).

In summary, we show here that superior memory for informa-
tion paired with aversive events is, at least partly, driven by
prediction errors. While classical models of emotional memory
formation focused largely on emotional arousal, the present find-
ings point to a cognitive mechanism that contributes to memory
formation related to aversive events. Taking this cognitive side of
emotional memory formation into account may enhance our un-
derstanding of adaptive emotional memory and might ultimately
have relevant implications for treating psychopathologies that are
characterized by aberrant memory for emotional events.
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ABSTRACT

Prediction errors (PEs) have been known for decades to guide associative learning, but their
role in episodic memory formation has been discovered only recently. To identify the neural
mechanisms underlying the impact of aversive PEs on long-term memory formation, we used
functional magnetic resonance imaging while participants saw a series of unique stimuli and
estimated the probability that an aversive shock would follow. Our behavioral data showed
that negative PEs (i.e., omission of an expected outcome) were associated with superior
recognition of the predictive stimuli, whereas positive PEs (i.e., presentation of an unexpected
outcome) impaired subsequent memory. While medial temporal lobe (MTL) activity during
stimulus encoding was overall associated with enhanced memory, memory-enhancing effects
of negative PEs were linked to even decreased MTL activation. Additional large-scale
network analyses showed PE-related increases in crosstalk between the ‘salience network’
and a frontoparietal network commonly implicated in memory formation for expectancy-
congruent events. These effects could not be explained by mere changes in physiological
arousal or the prediction itself. Our results suggest that the superior memory for events
associated with negative aversive PEs is driven by a distinct neural mechanism that might

serve to set these memories apart from those with expected outcomes.

Keywords: arousal, associative learning, medial temporal lobe, salience network, schema

network



Imagine meeting Barack Obama in the supermarket. Most likely, this event would
deviate strongly from what you expected during your grocery shopping, resulting in a
prediction error (PE). PEs are considered a to be driving force in reinforcement learning,
during which an organism learns incrementally to achieve pleasant and avoid unpleasant
states (Glimcher, 2011; Niv, 2009). Moreover, it may be expected that single episodes
encoded in the context of a high PE should be preferentially stored in episodic memory.
Although this would aid behavioral adaptation (Gershman & Daw, 2017; Shohamy &
Adcock, 2010), PEs received little attention in episodic memory research (for early
exceptions, see Henson & Gagnepain, 2010; Mizumori, 2013). Only recently, behavioral
evidence started to accumulate showing that PEs associated with appetitive or aversive events
may promote episodic memory formation of nearby events (Ergo et al., 2020; Greve et al.,
2017; Jang et al., 2019; Kalbe & Schwabe, 2020; Rouhani et al., 2018). A fundamental
question concerns how PEs boost long-term memory formation.

One way through which PEs may promote memory for surrounding events is by
enhancing well-known mechanisms of long-term memory formation strongly linked to the
medial temporal regions, including the hippocampus and parahippocampal gyrus (Alvarez &
Squire, 1994; Eichenbaum, 2001). It is further well established that hippocampal memory
formation is enhanced by emotional arousal through a process thought to be mediated by the
amygdala, which strengthens memory formation processes in the hippocampus,
parahippocampal gyrus, and related areas that together form a "medial temporal encoding
network" (MTEN, Hermans et al., 2014; McGaugh & Roozendaal, 2002; Richardson et al.,
2004; Strange & Dolan, 2004). Thus, one hypothesis would be that PE-driven episodic
memory enhancements are due to increases in medial temporal lobe activation.

Alternatively, PEs might drive long-term memory formation through mechanisms that
are critically distinct from those known to underlie common memory formation. Initial

behavioral evidence suggests that PE-effects on episodic memory formation go beyond the



effects of physiological arousal (Kalbe & Schwabe, 2020). Furthermore, events associated
with high PEs have been suggested to create event boundaries and establish a new latent
context resulting in a separate memory trace (Rouhani et al., 2020). These behavioral findings
point to the alternative that PEs might induce a qualitative shift in mnemonic processing.
Specifically, an alertness response in reaction to unexpected outcomes (Metereau & Dreher,
2013; Summerfield & Egner, 2009) may be mediated by the salience network (Fouragnan et
al., 2018; Ham et al., 2013), mainly comprised of the bilateral anterior insula and the dorsal
anterior cingulate cortex (dACC; Garrison et al., 2013; Ham et al., 2013). At the same time, if
high PE events are processed separately from expected events that match existing knowledge
structures represented in what is referred to as a schema (Ghosh & Gilboa, 2014), it can be
further predicted that PEs result in a decreased recruitment of the neural ‘schema-network’,
comprised mainly of the angular gyrus, the precuneus, and the medial prefrontal cortex
(mPFC; van Kesteren et al., 2012; Vogel et al., 2018a). Accordingly, this alternative view
predicts that the enhanced memory for events encoded in the context of high PEs is due to an
activation of the salience network, accompanied by an even reduced activation of areas
implicated in memory formation for events that are in line with prior experience (i.e., the
MTEN and ‘schema-network’).

To test these alternative hypotheses, participants performed an incidental encoding
task in which they saw a series of stimuli from different categories that were associated with
different probabilities to receive a mild electric shock. Comparing shock expectancy ratings
given by participants in each trial to the actual trial outcome indicated whether participants
experienced a negative PE (unexpected shock omission), a positive PE (unexpected shock), or
no PE at all (Delgado et al., 2008; McHugh et al., 2014; Schultz, 1998). Memory was probed
in a recognition test 24 hours after encoding. To unravel the neural mechanisms underlying
PE-related enhancements of episodic memory, we used behavioral modelling, arousal

measurement, and fMRI in combination with large-scale network analysis.



MATERIALS AND METHODS

Participants

Sixty-one healthy volunteers (35 women, 26 men; mean age+SD=24.97+4.65 years)
participated in this experiment. Eleven participants had to be excluded from the analysis due
to excessive head motion in the scanner (>5Smm within a single experimental block; N= 2),
incidental finding of a frontal lesion (N=1), missing >25% of responses on the task (N=6),
selecting only extreme ratings (i.e., 0% and 100%; N=1), or not returning for the second
experimental day (N=1). To determine the target sample size, we performed an a-priori power
analysis based on previous findings of binary aversive PE effects on episodic memory
formation (Kalbe & Schwabe, 2020). As this study used a conceptually similar generalized
linear mixed-effect model, we applied a simulation-based approach using the SIMR R package
(Green & MacLeod, 2016). We assumed the same effect size but increased the number of
trials from 60 to 120 to account for the modified design in the present study. This indicated
that a sample size of N=50 participants would result in a statistical power of above .95. All
participants met safety criteria for MRI and electrodermal stimulation, had normal or
corrected-to-normal vision, were right-handed, had never studied psychology nor
neuroscience, did not suffer from any psychiatric or neurological conditions, and reported no
alcohol abuse, nor use of any illicit drug. They were paid 45€ upon completion of the second
experimental day. The study protocol was approved by the ethics board of the University of

Hamburg and all participants provided written informed consent prior to their participation.

Experimental procedure
The experiment took place on two consecutive days. On the first experimental day,

participants completed a combined incidental encoding and fear learning task in the MRI



scanner (Figure 1A). About 24 hours later, they completed a surprise recognition test for
stimuli presented during the encoding session.

At the beginning of the first experimental day, participants provided informed consent
and were prepared for the MRI scanner by placing a pair of MRI-safe gelled disposable
electrodes (BIOPAC systems, Goleta, CA, USA) over the thenar eminence of the left hand to
measure skin conductance as an indicator of physiological arousal during the encoding task
using the BIOPAC MP-160 system (BIOPAC systems, Goleta, CA, USA). Another pair of
electrodes was placed on the right side of the right lower leg, approximately 20cm above the
ankle, and used to administer aversive electric shocks during the fear learning task. Shocks
were applied using the BIOPAC STMISOC (BIOPAC systems, Goleta, CA, USA) connected
to a BIOPAC STM100C stimulator (BIOPAC systems, Goleta, CA, USA). After participants
were placed in the scanner, they first completed an unrelated task that included stimuli that
were critically distinct from the stimuli used in this experiment.

Prior to the start of the fear learning task, shock intensity was adjusted to be unpleasant
but not painful by administering a series of test shocks that increased in intensity until
participants rated the shocks as not yet painful but highly unpleasant. Participants then
received detailed written instructions about the following fear learning task. On each trial,
participants saw an image that was presented centrally on a screen for 4.5s (Figure 1A).
Beneath each image, participants saw a slider that always started at 50% and could be
adjusted to any integer value between 0% and 100% by using the left and right buttons of an
MRI-compatible response box (Current Designs Inc., Philadelphia, USA). Participants were
instructed that while each image was present, they should adjust the slider to a value that
corresponded with their prediction of the probability that a shock would follow. Participants
were requested to confirm their rating by pressing the central button on the response box. In
40 out of the total of 120 trials, a 200ms shock to the right lower leg followed immediately

after image offset. Between trials, there was a jittered white fixation cross presented for 5s to



8s. This relatively long inter-trial interval allowed us to observe the slowly emerging SCR in
response to each outcome as well as to separate trials at the neural level. Critically, the
probabilities of a shock were linked to image categories. While participants were explicitly
instructed that they would see images of vehicles, clothing, and tools, they were not told that
these categories would be linked to pre-defined shock contingencies. Participants were
informed that their predictions would have no effect on the probability that a shock would
occur, but that their aim should still be to improve their predictions over the course of the
task. Out of 40 occurrences of the CS*" category, 27 were followed by a shock, corresponding
to a shock probability of approximately 2/3. Likewise, 40 occurrences of the CS®™ category
were followed by a shock in 13 trials, leading to a shock probability of approximately 1/3 for
the CS®. Finally, the 40 occurrences of the CS- category were never followed by a shock.
The six possible combinations of image categories (i.e., vehicles, clothing, tools) with
conditioning categories (i.e., CS*, CS"™, CS") were counterbalanced across participants.
Participants completed four blocks with 30 trials each, resulting in a total of 120 trials.
Between blocks, participants had the opportunity to ask the experimenter to slightly reduce
the shock intensity in cases when shocks had become painful.

After an interval of 22h to 26h, participants returned for a surprise recognition test
outside of the MRI scanner. In this recognition test, they saw all 120 images that had been
presented on the previous day randomly intermixed with the same number of previously
unseen (‘new’) images from the same three categories (40 new images per category). For each
image, participants had a maximum of 6s to indicate whether the current image had been
presented on the previous day (‘old’) or not (‘new’) and how confident they were, using
buttons corresponding to ‘definitely old’, ‘maybe old’, ‘maybe new’, and ‘definitely new’.
Between each of the 240 trials of the recognition test (120 old, 120 new), a white fixation

cross appeared centrally for 1 to 2s.



MRI data acquisition

Functional MRI data were acquired during the incidental encoding session on a Siemens
Magnetom Prisma 3T scanner equipped with a 64-channel head coil. For each of the four
functional runs, approximately 185 volumes were recorded using a multi-band echo-planar
imaging (EPI) sequence with the following parameters: 60 axial slices of 2mm depth, slice
orientation parallel to the AC-PC line, phase-encoding in AP direction, repetition time (TR)
of 2000ms, echo time (TE) of 30ms, 60-degree flip angle, 224mm X% 224mm field of view
(FOV), 2mm isotropic resolution, EPI factor of 112, echo distance of 0.58ms. For each block,
four images were recorded before the start of the behavioral task to ensure equilibrium
magnetization. These initial images were discarded as dummy scans during further analyses.
Following the last functional run, a T1-weigthed scan was acquired with 256 slices, coronal
orientation, repetition time (TR) of 2300ms, echo time (TE) of 2.12ms, a 240mm x 240mm

field of view (FOV), and a 0.8mm x 0.8mm x 0.9mm voxel size.

Behavioral analysis

For each individual trial, the prediction uncertainty (PU) was derived from participants’
shock predictions, while signed PEs (sPE) were calculated by contrasting predictions with
actual outcomes. Specifically, the PU is a continuous variable that can take any value between
0 (least possible uncertainty) and 1 (maximum uncertainty) and was calculated as:

PU(t)=1— |P(t) —0.5] x2

Where P(?) is the continuous explicit shock prediction made by the participant in trial ¢
(ranging from O to 1).

The sPE in trial ¢ is a continuous variable that can take any value between -1 and +1 and
was calculated as:

SPE(t) = 0(t) — P(t)



Where O(?) is the binary outcome in trial ¢ (coded O when no shock occurred and 1
when a shock occurred). Note that the sign of the sPE contains information about the outcome
of the trial. sPEs <0 could only occur in unshocked trials, while sPEs >0 could occur when a
shock occured. Only for sPE=0, the binary outcome of the trial is ambiguous.

The prediction uncertainty PU(t) for any trial ¢ can also be calculated directly from the
sPE (but not vice versa) using:

PU(t) =1—||sPE(t)| — 0.5] x 2

To test influences of uncertainty, PEs, and arousal (measured through SCRs) on
episodic memory formation, we performed mixed-effects logistic regression at the level of
individual trials, as implemented in the /me4 R package (Bates et al., 2015). The binary
recognition of a previously presented item (collapsed over confidence ratings) was treated as
the dependent variable, coded O for misses and coded 1 for hits. Following recommendations
to maximize the generalizability of these models (Barr et al., 2013), we included the
maximum random effects structure, estimating random intercepts and random slopes per
predictor per subject. We did not include random intercepts per item to account for different

baseline memorability as their inclusion led to singular fit in some models.

Skin conductance analysis

During the incidental encoding session of the first experimental day, we recorded
electrodermal activity as a measure of physiological arousal. These data were analyzed in
Ledalab Version 3.4.9 (Benedek & Kaernbach, 2010) using a Continuous Decomposition
Analysis (CDA) to derive the average phasic driver within given response windows. In short,
the CDA aims to separate the continuous skin conductance data into a tonic, stimulus-
independent component, and a phasic, stimulus-driven component. To obtain more precise

estimates of the underlying sudomotor nerve activity compared with more traditional methods



such as a through-to-peak analysis, the CDA only considers changes in the phasic component
in response to an event. As a first measure, we defined anticipatory SCRs as reactions
occurring from the onset of the decision in each trial (i.e., the confirmation of the shock
rating) until the end of the stimulus presentation (i.e., exactly 4.5s after stimulus onset).
Additionally, we defined outcome-related SCRs to occur 0.5s after the outcome of the current
trial was revealed (i.e., whether a shock would occur or not) until 2.9s after the outcome onset
to ensure that this measure would capture activity evoked by the current trial, but not the
following. Skin conductance data were downsampled from 1000Hz to S0Hz and optimized
using four sets of initial values. The minimum amplitude threshold was set to 0.01uS for both
anticipatory and the outcome-related SCRs. Individual physiological factors, such as the
thickness of the corneum can greatly affect the range of observed SCRs (Figner & Murphy,
2011). To account for this interindividual variability, both the anticipatory and the outcome-
related SCRs were standardized by dividing the average phasic driver estimate by the

maximum average phasic driver value observed in any trial.

fMRI preprocessing

Functional MRI data were preprocessed in MATLAB using SPM12
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12). First, functional volumes were spatially
realigned to the first image in the time series. This step also yielded six motion parameters
used in univariate analyses to control for motion-related activation artifacts. Realigned
volumes were co-registered to each participant’s structural image. Then, images were
spatially normalized into standard stereotactic (MNI) space using unified segmentation. For
univariate fMRI analyses, the normalized functional images were additionally smoothed with
an 8mm full-width half-maximum Gaussian kernel. For multivoxel pattern analysis, the

unsmoothed normalized images were used.



Univariate fMRI analyses

Based on results from behavioral modelling, we identified (1) quadratic prediction
uncertainty, (2) quadratic signed PEs, and (3) physiological arousal (measured through
anticipatory and outcome-related SCR, respectively) as key variables to explain episodic
memory formation in this fear learning task. To investigate the neural basis of these effects,
we modelled the fMRI time series using generalized linear models (GLMs). These models
included regressors of the onsets of the stimulus and outcome presentation as predictors of
interest, and nuisance regressors to account for head movement (i.e., the six movement
parameters derived from spatial realignment. As behavioral data suggested separable effects
of positive vs. negative quadratic prediction errors on memory formation, we fitted separate
models for unshocked trials (corresponding to negative PEs) and shocked trials
(corresponding to positive PEs). Both models featured onsets of stimuli with shock
expectancy and prediction uncertainty as parametric modulators. To control for possible
effects of arousal, standardized anticipatory SCRs were also placed as an additional
parametric modulator on stimulus onsets. A second regressor featured onsets of outcomes
with quadratic prediction errors as the critical parametric modulator. Again, we controlled for
possible confounding effects of arousal by placing standardized outcome-related SCRs as an
additional parametric modulator on outcome onsets.

For the estimation procedure, data from each of the four experimental blocks were
concatenated using the spm_fmri_concatenate function in SPM12, a high-pass filter at
1/128Hz was applied, and an AR(1) process was used to adjust for temporal autocorrelation.
Second-level analysis were constructed from each subject’s first level contrasts using a
standard one-sample t-test approach in SPM. We thresholded all resulting t-maps using a
whole-brain voxel-level family-wise error corrected P value of prwr<.05.

To link differences in neural activity with subsequent recognition performance, we

specified two additional univariate fMRI models: The first model aimed to identify clusters



linked with subsequent recognition during the encoding of individual stimuli and used
stimulus onsets a regressor with the binary subsequent recognition of an item as the sole
parametric modulator. To elucidate the neural basis of the memory-enhancing effects of PEs,
we specified an additional univariate fMRI model with onsets of outcomes (i.e., when a PE
occurred) as a regressor and PEs (ranging between 0 and 1), the binary subsequent
recognition of an item (coded O for misses and 1 for hits) and their interaction as parametric
modulators. These models were estimated separately for shocked and unshocked trials to
account for the opposite effects of negative vs. positive PEs on memory using the same
procedure as described above. Based on the vast literature linking structures of the medial
temporal lobe with declarative memory formation (Alvarez & Squire, 1994; Eichenbaum,
2001), we defined the bilateral hippocampus, as well as the bilateral (posterior)
parahippocampal gyrus as regions of interests and performed small volume corrections, which
were additionally corrected for the number of tests using Bonferroni correction. Voxels
belonging to each of these regions with a probability threshold of 50% were identified based

on an existing anatomical atlas (Harvard-Oxford structural atlas; Desikan et al., 2006).

Multivoxel pattern analyses (MVPA)

To test which of the regions identified in the univariate analysis contained pattern information
about (1) the extent of PEs and (2) the probability that an encoded item would later be
recognized, we performed a multivoxel pattern analysis (MVPA; Kriegeskorte, 2011). As PEs
are continuous, decoding them from neural data constitutes a regression problem, while the
later recognition of an item is binary, and its decoding therefore constitutes a classification
problem. Hence, these problems required slightly different machine learning algorithms,
although both were selected from the class of support vector machines and the general data

preparation and model fitting procedure was very similar for both problems.



The MVPA was performed on t-maps that were generated in SPM12 from the
unsmoothed, normalized functional data from each participant. Separate generalized linear
models were estimated to extract several trial-specific t-maps of each of the following points
in time relative to each outcome: -4, -2, 0, 2, 4. Extracting multiple activation maps per trial in
this way allowed us to address specifically the question when exactly relevant pattern
information was present. Note that stimulus onsets were always 4.5s before outcome onsets
and were therefore represented by the offset -4. Also note that the temporal distance of 2s
between offsets corresponds with the TR of the EPI sequence. In each GLM, each single
onset of the outcome event, offset by the currently estimated point in time, was entered as its
own regressor. Therefore, for each trial and offset, we generated unique beta-maps, which
were then transformed to t-maps to normalize them (Misaki et al., 2010). The GLM used the
same parameters as in the univariate analyses, namely, concatenation of experimental blocks,
a high-pass filter at 1/128Hz, and an AR(1) process to adjust for temporal autocorrelation.

T-maps representing individual trials and offsets per participant were then further
processed in Python 3 using the Nilearn module (Abraham et al., 2014). Whole-brain t-maps
were masked with ROIs identified in the univariate analysis. Specifically, in the case of larger
regions (e.g., insula), we created new masks by identifying the peak voxel per region from the
second level analysis of univariate results reported earlier and including voxels within a 6mm-
radius of each peak voxel. For the bilateral hippocampus, we used existing anatomical masks
(Harvard-Oxford structural atlas; Desikan et al., 2006).

To prepare extracted data from each ROI for use with common machine learning
algorithms, the 4-dimensional t-maps (three spatial and one temporal dimension) were
reshaped to a samples-by-features matrix (number of trials x number of voxels in ROI).
Further, data were z-standardized using the StandardScaler implementation in scikit-learn
(Pedregosa et al., 2011). To predict PEs from neural data, we trained a support vector

regression (SVR) with a linear kernel as implemented in scikit-learn with the regularization



hyperparameter C fixed at 1 and the negative mean squared error as the performance metric.
Similarly, to predict the binary recognition of an item, we trained a linear support vector
classifier using the LinearSVC implementation in scikit-learn with the regularization
parameter C fixed at 1 and the area under the receiver operating characteristic (ROC) curve as
the performance metric to account for imbalanced classes due to uneven numbers of hits and
misses for each participant. For both decoding tasks, we used leave-one-block-out cross-
validation to evaluate decoding performance, such that three blocks were always used for
training and the remaining block was used for validation. Performance metrics from all four
possible training-validation combinations were averaged to compute the mean performance.
To establish a baseline performance at chance level that can be used to compare each
fitted model against, for each “true” performance score, we also performed the exact same
preprocessing and training procedure using 100 separate random permutations of the true
labels as a permutation test (Nichols & Holmes, 2002). Therefore, the above-chance-
performance of a predictive model could be conceptualized here as the distance between the

performance achieved with true labels and the mean performance in the permutation test.

Large-scale network-connectivity analyses

We performed analyses of functional connectivity in the CONN toolbox (Whitfield-Gabrieli
& Nieto-Castanon, 2012) to assess how within- and between-network connectivities of
memory-relevant brain networks differed depending on PE magnitudes. As this analysis did
not allow for continuous parametric modulators, we instead split PEs into low (|sSPE|<0.5) vs.
high (JsSPE[>0.5). Our analyses focused on PE effects at outcome time for unshocked trials.
However, in the specific GLM for this analysis, we included onset regressors for each
combination of the following factors: stimulus vs. outcome onsets, shocked vs. unshocked,
and low vs. high PEs. This resulted in a total of 8 regressors in this model. In a first-level

analysis, to denoise data, we applied a linear detrending and a standard band-pass filter of



0.008 to 0.09 Hz. Besides the just mentioned effects of PEs, we added white matter,
cerebrospinal fluid, and movement regressors obtained from spatial realignment as additional
confounds to the model. Further analysis focused on pre-defined regions of interest and
networks implemented in the CONN toolbox: (i) dorsal anterior cingulate cortex, bilateral
anterior insula, bilateral rostral prefrontal cortex and bilateral supramaginal gyrus forming the
salience network (Menon, 2011); (i1) medial prefrontal cortex, bilateral angular gyrus and
precuneus forming the schema network (van Kesteren et al., 2012; Vogel et al., 2018a); and
(111) bilateral hippocampus, bilateral anterior parahippocampal gyrus, and bilateral posterior
parahippocampal gyrus as the medial temporal encoding network (Fernandez et al., 1999;

Shrager et al., 2008).

RESULTS

Successful fear learning

Physiological and explicit rating data indicated successful fear learning. Specifically,
standardized anticipatory SCR differed significantly between CS categories, F(2,98)=3.62,
p=.030, nc=.011 (Figure 1B). Post-hoc paired t-tests revealed that participants showed
increased anticipatory SCRs to both CS** pictures (t(49)=2.38, pcor=.042 (Bonferroni-
corrected), day=0.27) and CS®* pictures compared with CS™ pictures (t(49)=2.10, p=.041,
Peor=.082 (Bonferroni-corrected), d.v=0.20). Explicit shock ratings further showed that
participants learned to associate picture categories with their respective shock probabilities
over the course of the task (Figure 1C). Participants had a significantly higher shock
expectancy for CS** than for CS®™ (t(49)=11.53, pcorr<.001 (Bonferroni-corrected), day=2.67)

and for CS® than for CS™ (t(49)=10.81, pcorr<.001 (Bonferroni-corrected), day=1.87).
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Figure 1. Experimental task and performance parameters

(A) Participants completed a combined incidental encoding and fear learning task and a
surprise recognition test for its contents about 24h later. In the encoding task, participants saw
a series of unique pictures from three different categories (clothing, vehicles, and tools) linked
to fixed probabilities to receive an electric shock (CS* - 67%, CS®* - 33%, and CS™ - 0%). On
each trial, participants indicated their shock expectation. Approximately 24 h later, they saw
all pictures from the previous day intermixed with the same number of new pictures and
categorized each picture as either ‘old’ or ‘new’.

(B) Mean standardized anticipatory skin conductance responses (SCR) confirmed successful
fear conditioning, as reflected in significantly elevated SCR to both CS** and CS®* items
compared with CS items. Black dots show data from individual participants. Thick red bar
represents group mean, while thin red bars show + 1 standard error of the mean.

(C) Participants’ mean shock expectancy ratings (thick lines) approached the true shock
probabilities (dotted lines) relatively fast, although there was a tendency to overestimate
shock probabilities. Thin lines represent data from individual participants.

(D) Signed PEs were distributed relatively symmetrical for CS*" and CS® pictures around
zero. PEs for CS™ pictures were mostly zero, reflecting that participants learned that items
from this category were never paired with a shock.

T p<.05, * peorr<.05 (Bonferroni-corrected).

From participants’ explicit shock expectancy ratings, we derived signed PEs by
contrasting each prediction with the binary outcome (i.e., unshocked or shocked) in the
respective trial (see Methods). Resulting PEs ranged from -1 to 1, with negative values in

cases of unexpected shock omissions and positive values in cases of unexpected shocks, while



greater distances from O in both directions indicated greater discrepancies between predictions
and outcomes. Importantly, the distribution of signed PEs varied almost symmetrically around
0 (Figure 1D), allowing similarly reliable conclusions about effects of both negative PEs and
positive PEs. Moreover, the explicit shock ratings allowed us to directly assess participants’
prediction uncertainty, which ranged from 0 (maximal certainty, corresponding to predictions

of 0% or 100%) to 1 (maximal uncertainty, corresponding to a prediction of 50%).

Overall recognition memory performance

In the recognition test 24 hours after encoding, participants performed overall very well, as
indicated by markedly higher hit rates (i.e., the rate of correctly classifying previously seen
pictures as ‘old’) than false alarm rates (i.e., the rate of incorrectly classifying unseen pictures
as ‘old’), Mhitrate=60.9% (SD=0.149), MFarate=21.1% (SD=0.098). Participants were
significantly more certain with their responses for hits (M=0.59; SD=0.18) than for false
alarms (M=0.26, SD=0.20), t(49)=15.92, p<.001, day=1.70.

A repeated-measures ANOVA showed that hit rates differed significantly between CS
categories, F(2,98)=7.29, p=.001, ng?>=0.05. For false alarm rates, on the other hand, there was
no such difference between CS categories, F(2,98)=0.25, p=.77, n6*>=.003, suggesting that the
actual memory but not the response bias differed between CS categories. Post-hoc paired t-
tests showed that hit rates were selectively enhanced for items from the CS** category, which
was associated with a shock probability of 67%, compared with both items from the CS®*
category (t(49)=4.15, pcorr<.001 (Bonferroni-corrected), dayv=0.54), which was associated with
a shock probability of 33%, and the CS™ category (t(49)=2.64, pcor=-022 (Bonferroni-
corrected), dav=0.40; Figure 2A), which was never followed by a shock. Enhanced recognition
performance for CS** items was also obtained when hits and false alarms were integrated to
the sensitivity d’ based on signal detection theory: A repeated measures ANOVA confirmed

that d’ was generally different between CS categories (F(2,98)=3.70, p=.028, ng?=.03), with



post-hoc t-tests confirming an increased memory sensitivity for CS*" items compared with
both CS® items (t(49)=2.28, p=-027, pcorr=-053 (Bonferroni-corrected), day=0.38) and CS”
items (t(49)=2.42, pcorr=-038 (Bonferroni-corrected), day=0.35).

At first glance, one might assume that these differences are simply due to differences
in (arousing) shock presentations between CS categories. However, our data did not support
this interpretation. The greater proportion of shocked items could not explain the improved hit
rate for the CS** category: A repeated-measures ANOVA to explain hit rates indicated no
memory advantage for shocked over unshocked items per se (F(1,49)=1.12, p=.294,
Nnc?=.022). Further, a 2x2 repeated-measures ANOV A confirmed increased hit rates for CS**
over CSP* items even after controlling for shocks (F(1,49)=19.47, p<.001, nc*=.08). Notably,
this ANOVA even showed a tendency towards decreased hit rates for shocked items
(F(1,49)=3.76, p=.058, nc*=.006), with no significant interaction (F(1,49)<0.001, p=.997,
nG2<.0001). These findings indicate that differences between CS categories in the number of
presented shocks cannot explain the differential memory performance and that other factors

drive the boost in memory.
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Figure 2. General recognition performance by CS category.

(A) Hit rates for items from the CS** category were significantly larger compared with both
CS®" and CS" items. Although CS** items had the highest shock probability, this could not
explain their increased hit probability as hit rates for shocked items even tended to be lower
than for unshocked items (Supplemental Figure 1).



(B) False alarm rates were comparable for all three conditioning categories, showing that the
CS-type did not affect the mnemonic response bias.
Black dots show data from individual participants. Thick red bar represent group means,
while thin red bars show + 1 standard error of the mean.
* peorr<.05 (Bonferroni-corrected), *** peorr<.001 (Bonferroni-corrected)
Aversive PEs and prediction uncertainty modulate episodic memory formation beyond
arousal
To explain episodic memory formation in the incidental encoding task at trial level, we fitted
generalized linear mixed-effects models (GLMMs) with a binary response variable (hit vs.
miss) and a logit link function (i.e., mixed-effects logistic regression) using the /me4 R
package (Bates et al., 2015). The dependent variable was the recognition of an item in the
surprise recognition test, coded O for misses and 1 for hits. We applied the maximum random
effects structure (Barr et al., 2013), estimating random intercepts and random slopes of all
predictors per subject.

We fitted three initial models over all trials (including both negative and positive PEs)
using (1) linear PEs, (2) quadratic PEs, and (3) a variant of quadratic PEs assuming that

effects of negative vs. positive PEs would be in opposite directions based on the following

inverted S-shaped transformation:

o= {5 i3
Model comparisons using the Akaike information criterion (AIC) to identify the optimal
model while also considering increased model complexity favored the inverted S-shaped
model (AIC = 7420.8) over both the linear (AIC=7425.2) and the quadratic model
(AIC=7434.3). Results from this inverted S-shaped model indicated that negative PEs
enhanced memory formation, while positive PEs decreased memory formation, $=0.27, 95%-
CI11[0.07, 0.47], z=2.68, p=.007. Even after adding the binary occurrences of shocks to the

model, this effect remained significant (f=0.58, 95%-CI [0.29, 0.87], z=3.30, p<.001),

rejecting the notion that aversive shocks alone drive this effect. Further, we asked whether the



PE-effect is mainly driven by the CS™ category, whose items were never followed by shock
and could therefore only produce negative, but not positive PEs. Even after excluding all trials
featuring CS™ items, the S-shaped PE-effect remained virtually unchanged, $=0.30, 95%-CI
[0.11, 0.49], z=3.01, p=.002, suggesting that the observed PE effects was not primarily owing
to CS items. Therefore, trials from all three conditioning categories (i.e., CS*, CS**, and CS")
were included in the following analyses.

Results so far suggest that greater negative PEs and greater positive PEs had opposite
effects on episodic memory formation, with the former increasing and the latter decreasing
the probability of a subsequent hit. However, this model assumes both effects to be equally
strong in each participant. To further investigate whether this assumption is justified, we next
fitted models separately for negative and positive PE trials with quadratic PEs as the sole
independent variable to explain the binary recognition of an item (Figure 3A). For negative
PEs, we again observed a memory enhancement with greater PE magnitude, f=0.49, 95%-CI
[0.15, 0.82], z=2.85, p=.004. The same model for positive PEs confirmed that greater PE
magnitude was instead associated with decreased memory performance, =-0.73, 95%-CI [-
1.12, -0.34], z=3.67, p<.001. Random s per subject from both models were moderately
negatively correlated, indicating that participants that showed a stronger memory benefit from
negative PEs also showed a stronger memory decrease from positive PEs, r=-.395, t(48)=2.98,

p=.005 (Figure 3B).
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Figure 3. Behavioral model of long-term memory formation reveals modulating
influences of prediction errors and prediction uncertainty

(A) Results from a trial-level mixed-effect logistic regression show opposite effects of
positive and negative prediction errors on later memory. Quadratic negative prediction errors
(associated with unexpected shock omissions; left half) were linked with improved memory
formation for associated pictures. In contrast, quadratic positive prediction errors (associated
with shocks; right half) were linked with decreased memory formation. Orange line indicates
estimated fixed effects of PEs, while thin black lines show PE effects estimated separately per
participant.

(B) Effects of quadratic negative and positive PEs were negatively correlated at the level of
participants.

(C) Prediction uncertainty was, independently of outcomes, associated with decreased hit
probabilities. As in (A), the orange line indicates the estimated fixed effect, while thin black
lines show participant-specific effect estimates.

(D) Model comparisons showed that a full model combining PEs, uncertainty, and
anticipatory and outcome-related SCRs explained memory formation better than any model
containing only one of these measures. This was confirmed by both likelihood-ratio tests as
well as the lowest (i.e., best) AIC value for this model. Notably, any model containing only a
single predictor (i.e., either PEs, uncertainty, or SCRs) also performed significantly better
than our baseline model comprised only of any a random intercept per participant
(comparisons indicated by markings within each bar).

*# p<.01, #** p<.001.



An alternative explanation for the memory-modulating effects of PEs could be that the
mere expectation of an aversive shock drives the effect on long-term memory. If this were the
case, then contrasting the explicit shock predictions with observed outcomes should not
explain memory formation beyond the influence of mere predictions. To test this alternative
account, we first fitted a mixed-effects logistic regression model with participants’ explicit
shock predictions (ranging from O to 1) to explain the binary recognition of an item. Indeed,
greater expectancy of a shock was associated with an increased probability that the item
would subsequently be recognized, $=0.40, 95%-CI [0.12, 0.67], z=2.83, p=.005. After
adding the subsequent binary occurrence of shocks, this positive effect of predictions
remained ($=0.44, 95%-CI1 [0.16, 0.73], z=3.08, p=.002), while shocks themselves were not
found to affect the probability that an item would be recognized (f=-0.04, 95%-CI [-0.20,
0.13], z=0.46, p=.65). To test whether PEs could explain memory formation beyond main
effects of predictions and outcomes, we added them to the model using the inverted S-shaped
transformation reported above. In contrast to the previous models, this model no longer
indicated any memory-modulating effects of mere predictions, B=-0.67, 95%-CI [-1.53, 0.20],
z=1.50, p=.13. However, aversive shocks were now associated with increased hit
probabilities, =0.83, 95%-CI [0.18, 1.47], z=2.51, p=.012. Most importantly, PEs again
explained memory formation depending on their sign, =1.22, 95%-CI [0.37, 2.08], z=2.81,
p=.004. Further evidence that the model adding both outcomes and PEs fitted the data better
compared with the prediction-only model came from a likelihood-ratio test, ¥%(9)=26.72,
p=.002. This was also reflected in a smaller AIC value for the model adding both outcomes
and PEs (AIC=7366.7) compared with the prediction-only model (AIC=7375.4). Finally, as
reported above, we did not find any improved recognition performance for items from the
CS category over items from the CS™ category, even though these were associated with

significantly higher shock expectancies.



Closely related to both predictions and PEs, uncertainty about possible outcomes has
been proposed to affect episodic memory formation as well (Stanek et al., 2019). In contrast
to shock predictions, uncertainty is maximal when participants believe that the probability of
a shock is 50% (i.e., maximal entropy). As before, we investigated effects of prediction
uncertainty on memory formation using two mixed-effects logistic regression models with (1)
linear uncertainty and (2) quadratic uncertainty as the sole independent variable to explain the
binary recognition of an item. Because prediction uncertainty is independent of outcomes,
these models included both unshocked and shocked trials. Results favored a linear model
(AIC =7408.2) over the quadratic model (AIC = 7418.2) and suggested a tendency towards a
negative relationship between prediction uncertainty and memory formation for the associated
item, B=-0.29, 95%-CI [-0.58, 0.008], z=1.91, p=.056 (Figure 3C). In other words, when
participants were more uncertain in terms of their shock prediction, it tended to be less likely
that they would later recognize the associated item.

Classic models of episodic memory formation in aversive contexts emphasized the
memory promoting role of physiological arousal (Cahill & McGaugh, 1998; McGaugh,
2018). Therefore, we tested in a next step whether the PE-related memory changes that we
observed here could be explained by physiological arousal. To this aim, we fitted a mixed-
effects logistic regression model with standardized anticipatory SCRs and standardized
outcome-related SCRs as the only two predictors for the binary recognition of an item. In this
model, neither anticipatory SCRs (B=-0.14, 95%-CI [-0.58, 0.30], z=0.63, p=.531), nor
outcome-related SCRs (f=0.26, 95%-CI [-0.11, 0.64], z=1.37, p=.170), had any significant
effect on memory, suggesting that physiological arousal (expressed through SCR) did not
drive long-term memory formation.

In a final mixed-effects logistic regression model, we included quadratic PEs,
quadratic prediction uncertainty, anticipatory and outcome-related SCR in parallel to

investigate whether previous results from simpler models would still hold after accounting for



other memory-modulating variables. Since this model was again applied to trials including
both negative and positive PEs, we again entered PEs using the previously introduced
inverted S-shaped transformation. Results confirmed our previous findings that PEs had
memory-promoting effects in the case of unexpected shock omissions and memory-
decreasing effects in the case of unexpected shocks, f=0.44, 95%-CI [0.20, 0.67], z=3.62,
p<.001. Further, this combined model confirmed our previous findings of memory decreasing
effects of prediction uncertainty, B=-0.39, 95%-CI [-0.68, -0.09], z=2.56, p=.010. As before,
standardized anticipatory SCRs had no significant effect on episodic memory formation, B=-
0.17, 95%-CI [-0.62, 0.29], z=0.72, p=.47. Notably, unlike in the simpler SCR model,
outcome-related SCRs showed a positive effect on memory formation, f=0.63, 95%-CI [0.18,
1.08], z=2.76, p=.006. Therefore, only after accounting for effects of PEs and uncertainty on
memory formation, additional arousal-related influences occurred.

Separate model comparisons using likelihood ratio tests confirmed that the full model
including PEs, uncertainty, and physiological arousal (measured by both anticipatory and
outcome-related SCRs) was the most appropriate. This suggests that all three components
uniquely and additively contribute to long-term memory formation. Compared with a simple
baseline model containing only a random intercept for each participant, adding any type of
predictor from the full model (i.e., either PEs, uncertainty, or physiological arousal)
significantly improved the fit (all ps<.002; Figure 3D). Critically, the full model containing all
three types of predictions led to the lowest AIC value. The full model also significantly
improved the fit compared with any model containing only a single type of predictor (all

ps<.001; Figure 3D).



Medial temporal activity during stimulus presentation is associated with subsequent
memory

To link neural data with memory formation, we first ran a subsequent memory
analysis in which we asked which changes in brain activity during stimulus presentation
would generally be predictive of the subsequent recognition of an item. Note that this analysis
does not yet capture any effects of PEs, which only emerged at a later stage when the outcome
of the respective trial was revealed. We modelled the pre-processed fMRI time series using a
generalized-linear model (GLM) with stimulus onsets as a regressor and the binary
subsequent recognition of an item as its sole parametric modulator (see Methods). Based on
the rich literature linking the medial temporal lobe with episodic memory formation (Alvarez
& Squire, 1994; Eichenbaum, 2001), we specified the bilateral hippocampus and the bilateral
posterior parahippocampal gyrus as two candidate regions predicting subsequent memory and
performed a small volume correction. In line with the literature, results showed that improved
memory formation during encoding was positively linked with clusters of activity in the left
posterior parahippocampal gyrus, t(49)=4.90, psvc=.001 (FWE-corrected), psvc=.002 (FWE-
and Bonferroni-corrected; Figure 4), right posterior parahippocampal gyrus, t(49)=4.16,
psvc=.006 (FWE-corrected), psvc=.012 (FWE- and Bonferroni-corrected) and, at trend level,
in the right hippocampus, t(49) = 3.89, psvc=.031 (FWE-corrected), psvc=.062 (FWE- and

Bonferroni-corrected) .
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Figure 4. Univariate fMRI analysis of subsequent memory

(A) Congruent with the existing literature on medial temporal lobe involvement in declarative
memory formation, greater activation of the hippocampus (HC) as well as the posterior
parahippocampal gyrus (PHC) during stimulus presentation were overall associated with
improved subsequent memory performance.

(B) Contrarily, for items associated with larger negative PEs that were later recognized, we
found decreased BOLD responses in the right hippocampus and the right parahippocampal
gyrus when the outcome of the trial was revealed.

All displayed voxels were thresholded at p<.001 (uncorrected) for display purposes only.
Black dots indicate beta estimates from individual participants, while the red line shows the
mean beta estimate over all participants. T psvc<.05 (FWE-corrected) * psvc<.05 (FWE- and
Bonferroni-corrected), ** psvc<.01 (FWE- and Bonferroni-corrected).

Negative PEs are associated with greater activation of the salience-network, paralleled
by decreased activation of medial temporal lobe and schema-networks

To elucidate the neural basis of negative PE-related memory enhancements, we first
asked which brain areas are modulated by negative PEs. Our results (all findings significant
at the whole-brain level at p<.05, FWE corrected) show that negative PEs were associated
with large clusters of increased activity in the bilateral anterior insula and the dACC, which
are key regions of the salience network (Menon, 2011; Figure SA-B). In addition, negative
PEs were associated with significant decreases in activation in large portions of the bilateral
hippocampus and parahippocampal gyrus (Figure 5D). Although it is important to note that
this decrease in medial temporal lobe activity occurred only after outcomes were revealed and
therefore after the offset of the to-be-remembered stimulus, this finding is in stark contrast to
both our findings linking medial temporal activity during stimulus presentation with
improved memory and earlier studies demonstrating this relationship (Ferndndez et al., 1999;

Shrager et al., 2008). These findings therefore provide first evidence that the PE-induced



memory enhancement that we observed here might involve a neural mechanism that is
critically different from standard modes of memory formation. In addition to decreased
activation in the medial temporal lobe, we also observed decreased activity for negative PEs
in the mPFC, precuneus, and left angular gyrus (Figure 5C-E), all three of which have been
described as part of the schema network that links current information to existing knowledge
structures (van Kesteren et al., 2012; Vogel et al., 2018a). This finding might be taken as first
evidence that the superior memory for items associated with large negative PEs is associated
with a distinct neural mechanism that sets these PE events apart from those with expected
outcomes.

Same as negative PEs, prediction uncertainty in unshocked trials was associated with
decreased activation in the prefrontal cortex, although this cluster was located significantly
more dorsally for uncertainty (Supplemental Figure 2A). Additionally, we observed decreased
activation in the bilateral middle temporal gyrus (Supplemental Figure 2B), likely reflecting
decreased visual processing of stimuli associated with greater prediction uncertainty, which
might explain the reduced memory for items associated with uncertainty.

For mere shock expectancy, we found no significant changes in activation in any
areas that were previously linked with PEs (i.e., dACC, insula, hippocampus, mPFC,
precuneus, angular gyrus). Instead, shock expectancy was only associated with changes in
occipital areas, which might reflect visual processing of the slider that participants used to
give their expectancy rating (Supplemental Table 3). This finding complements results from
the behavioral models suggesting that the deviation of outcomes from predictions (i.e., PEs) is

critical for memory modulation, rather than the mere expectation of an aversive stimulus.
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Figure 5. Univariate fMRI analysis to identify regions associated with negative PEs
Negative PEs were linked with increased BOLD responses in the bilateral insula and the
dorsal anterior cingulate cortex (dACC), (A-B) and decreased BOLD responses in the medial
prefrontal cortex (mPFC), precuneus, bilateral hippocampus (HC), bilateral parahippocampal
gyrus (PHC), and left angular gyrus (C-E). Only voxels significant at p<.05 after whole-brain
family-wise error (FWE) correction (peak level) are displayed. Black dots indicate beta
estimates from individual participants, while the red line shows the mean beta estimate over
all participants. *** prwge<.001.
Decreased medial temporal activation to larger negative PEs is linked to improved
memory formation

In a next step, we assessed changes in brain activity that were directly associated with
the enhanced memory for negative PEs. To this end, we fitted an additional univariate fMRI
model with onsets of unshocked outcomes (rather than stimulus onsets) as a regressor and
PEs, the binary subsequent recognition of an item and their interaction as parametric

modulators (see Methods). Our analysis focused on the interaction between PEs and

subsequent recognition, as this specific interaction links the processing of PEs with their



effects on memory formation. As in the previous analyses on subsequent memory, we focused
our analysis on the hippocampus and the posterior parahippocampal gyrus using a small
volume correction. In sharp contrast to our previous subsequent memory analysis at stimulus
onset, we found for items associated with larger negative PEs that were subsequently
recognized clusters of decreased BOLD activity in the right posterior parahippocampal gyrus,
t(49)=3.87, psvc=.015 (FWE-corrected), psvc=.030 (FWE- and Bonferroni-corrected; Figure
4B). Additionally, there was a similar non-significant trend in right hippocampus, t(49)=3.65,
psvc=.062 (FWE-corrected), psvc=.124 (FWE- and Bonferroni-corrected). These results
suggest a distinct medial temporal lobe involvement in overall memory formation and PE-

driven memory enhancements.

Negative PEs are associated with altered connectivity within and between memory-
relevant neural networks

Based on the theoretical distinction between ‘standard” memory processing of events
that are in line with prior knowledge and an alternative mode of memory formation for events
that are linked to unexpected outcomes, we further hypothesized that items associated with
high negative PEs are particularly well remembered because they alter contributions of three
main memory networks: (1) the salience network (represented by anterior insula and dACC;
Ham et al., 2013; Menon, 2011; Metereau & Dreher, 2013; Seeley et al., 2007), (2) the
medial-temporal encoding network (represented by bilateral hippocampus and bilateral
parahippocampus), and (3) the schema network (represented by mPFC, precuneus, and
angular gyrus; van Kesteren et al., 2012; Vogel et al., 2018a). To address this hypothesis, we
analyzed functional connectivity within and between these networks depending on PE
magnitudes. For this analysis, we defined a separate GLM with 8 regressors based on
combinations of the following factors: onset type (stimulus vs. outcome), outcome (shocked

vs. unshocked), and PE magnitude (low if |SPE| < 0.5; high otherwise). After pre-processing



the raw times series (see Methods), we based our analysis on the implemented network atlas
consisting of several ROIs each to compute within- and between-network correlations (Figure
6A). Here, we focused on the contrast between high and low (negative) PEs at the time when
the outcome of each trial was revealed. Results showed significant PE-related changes in the
connectivity between large-scale networks. Specifically, for large vs. small negative PEs we
obtained significantly increased functional connectivity between the salience network and
both the schema network (t(49)=2.68, pcorr=-030 (Bonferroni-corrected), d.y=0.344) and, at
trend level, the medial-temporal encoding network (t(49)=2.18, p=.034, pcor=.10 (Bonferroni-
corrected), dav=0.355; Figure 6B); the connectivity between the schema network and the
medial-temporal network did not depend on PEs in unshocked trials, t(49)=0.29, p=.773,
Peorr=1 (Bonferroni-corrected), day=0.046). When we correlated the two PE-related increases
in between network connectivity with memory, we found that the increase in functional
connectivity between the salience and schema networks was relevant for long-term memory
formation, as indicated by its significant correlation with improved hit rates for high negative
PE items, r=0.320, t(48)=2.34, pcor=.048 (Bonferroni-corrected; Figure 6C); salience-MTEN
correlation with hit rates for high negative PE items: r=0.147, t(48)=1.03, p=.31, pconr=.616
(Bonferroni-corrected). Furthermore, within-network connectivity tended to be decreased for
large compared with small negative PEs in the medial-temporal encoding network
(t(49)=2.44, p=.018, pcorr=.055 (Bonferroni-corrected), dy=0.307), but not in the salience
network (t(49)=1.60, p=.115, pcon=.346 (Bonferroni-corrected) day=0.218), nor in the schema

network (t(49)=1.24, p=.221, pcon=.664 (Bonferroni-corrected), day=0.221; Figure 6D).
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Figure 6. Negative prediction error magnitude is associated with altered within- and
between-network connectivity in memory-relevant networks

(A) We investigated PE-associated changes in the activity within and between the salience
network (rostral prefrontal cortex, supramaginal gyrus, anterior insula, and dACC), schema
network (mPFC, precuneus, and angular gyrus) and medial-temporal encoding network
(hippocampus and anterior/posterior parahippocampal gyrus).

(B) Large (vs. small) PEs were associated with significantly increased cross-network
connectivity of the salience network with both the schema-network and the medial-temporal
encoding network. Thick red bar represent group means, while thin red bars show + 1
standard error of the mean.

(C) Increases in functional connectivity between salience network and schema network in
response to large negative PEs correlated with greater memory enhancement for large
negative PEs.

(D) Large (vs. small) PEs were associated with significantly decreased within-network
functional connectivity in the medial temporal encoding network.

T p<.05, * peorr<.05 (Bonferroni-corrected).

Activity patterns predictive for both PEs and item recognition
Our above analyses showed increased activity for negative PEs in regions of the

salience network (dACC and bilateral anterior insula). Regions of the schema network

(mPFC, angular gyrus, and precuneus) and the medial temporal lobe, however, showed



decreases in activation with larger negative PEs, with the latter being directly linked to
improved subsequent recognition. To further elucidate the mechanism through which
(negative) PEs facilitate memory formation, we used multivoxel pattern analysis based on
activity patterns of areas identified in the univariate analysis to investigate whether a single
region would contain both (1) pattern information that can be used to decode PEs and (2)
pattern information that predicts subsequent recognition memory (see Methods).

Our results showed that regions associated with negative PEs in the univariate analysis
also contained pattern information that enabled us to decode the magnitude of negative PEs
(see Supplemental Figure 3). Although PEs were decoded above chance already before the
outcome presentation which may be due to uncertainty effects, PEs could be decoded best
around the time window when the outcome of a trial was revealed and shortly thereafter. The
subsequent recognition of an item could only be decoded significantly above chance level
with patterns of activity from the insula that occurred around the time the outcome (and by
implication, the PE) of trial was revealed (see Supplemental Figure 3). However, this effect
did not survive a correction for multiple comparisons and therefore needs to be interpreted

with great caution.

Positive PEs are associated with parietal and temporal lobe modulation

So far, our analysis focused on neural underpinnings of the memory-enhancing effects
of negative PEs. However, our behavioral findings also pointed to a memory impairment
related to positive PEs. To investigate the neural basis of this detrimental effect on memory,
we specified parallel models for shocked trials. These revealed that larger positive PEs per se
were associated with increased activity in two smaller clusters located in the left superior
parietal lobule and the right middle temporal gyrus and decreased activity in the left

supramarginal gyrus (see supplemental table S1).



To specifically investigate specific neural activity in response to positive PEs that
might underlie their memory decreasing effects, we fitted a univariate fMRI model with
onsets of shocked outcomes as a regressor and PEs, the binary subsequent recognition of an
item and their interaction as parametric modulators (see Methods). As in the parallel model
for unshocked trials, our analysis focused on the interaction between PEs and subsequent
recognition, as this specific interaction links the processing of PEs with their effects on
memory formation. Again, we focused our analysis on the hippocampus and the posterior
parahippocampal gyrus. Neither the hippocampus, nor the posterior parahippocampal gyrus
contained any voxels that specifically linked positive PEs with subsequent memory formation
(all psvc>.05, FWE corrected). Even under a very liberal threshold of p<.001 (uncorrected),
there were no significant voxels in any of the two regions. An additional explorative analysis
at whole-brain level further showed no other clusters with increased or decreased levels of
activation for the interaction of positive PEs with subsequent memory (all prwe > .05).

While prediction uncertainty was negatively associated with subsequent memory in
behavioral results, we found no significant clusters that were specifically associated with
uncertainty in shocked trials (all prwe>.05). For shock expectancy, which had behaviorally
been positively linked with memory, we replicated the findings from unshocked trials.
Specifically, shock expectancy was only associated with changes in occipital areas, possibly
reflecting visual processing of the slider that participants used to give their expectancy rating
(Supplemental Table 3). This lack of an overlap between the neural signatures of shock
expectancy and positive PEs might be taken as evidence that these two reflect separate
cognitive processes, in line with our behavioral findings that PE-effects on memory go

beyond mere expectancy effects.



DISCUSSION

For decades, PEs have been known to act as teaching signals in reinforcement learning
(Cohen, 2008; Schultz, 1998; Sutton & Barto, 1981). However, it was only rather recently
discovered that PEs may shape memory formation for episodes preceding the PE event (Ergo
et al., 2020). Here, we combined fMRI with behavioral modelling and large-scale network
connectivity analyses to elucidate the mechanisms through which PEs associated with
aversive events modulate the formation of long-term memories. Our results provide evidence
that negative PEs for aversive events promote memory formation for preceding stimuli
through a mechanism that is distinct from common mechanisms of long-term memory
formation. Importantly, the proposed PE-related memory storage mechanism could not be
attributed to well-known effects of physiological arousal on memory formation or the effect
of a specific prediction itself.

Traditionally, enhanced episodic memory formation has been linked to the medial
temporal lobe, including the hippocampus and the parahippocampal gyrus (Davachi &
Wagner, 2002; Eichenbaum, 2004; Fernandez et al., 1999; Mayes et al., 2007; Reed & Squire,
1997; Shrager et al., 2008). In line with this assumption, we found that activity in the
hippocampus and posterior parahippocampal gyrus during stimulus presentation was linked to
subsequent memory performance. The negative PE-related memory enhancement, however,
was not linked to enhanced but even to decreased medial temporal lobe activity. Further,
when participants experienced a negative PE, the connectivity within the medial-temporal
encoding network tended to be reduced. While activity in the medial temporal lobe was
reduced for negative PEs, we obtained significantly increased activity in the anterior insula
and dACC for negative PE events. Both of these regions have previously been implicated in
error monitoring, conscious perception of errors, and aversive PE signaling (Bastin et al.,
2016; Fazeli & Biichel, 2018; Garrison et al., 2013; Preuschoff et al., 2008; Taylor et al.,

2007; Ullsperger et al., 2010). Moreover, both the anterior insula and the dACC are key



regions of the salience network (Ham et al., 2013; Menon, 2011), which signals biologically
relevant events and the need for a behavioral or cognitive change (Dosenbach et al., 2006;
Kerns, 2004). Furthermore, the salience network has been proposed to dynamically change
the control of other large-scale networks (Sridharan et al., 2008). In line with this idea, we
obtained here a trend for increased functional connectivity between the salience network and
the medial-temporal encoding network for negative PEs.

In addition to the negative PE-related decrease in medial temporal activity, there was
also a marked decrease in the activity of angular gyrus, precuneus, and mPFC for events
associated with negative PEs. Together, these areas form a ‘schema-network’, in which the
mPFC is thought to detect a congruency of events with prior knowledge and to then integrate
these events into existing knowledge representations (van Kesteren et al., 2012; Vogel et al.,
2018b). When the organism experiences large PEs, this indicates that new information
conflicts with prior knowledge and should therefore be stored separately from existing
schema-congruent memories (van Kesteren et al., 2012). This idea is supported by the
obtained negative PE-associated decrease in areas constituting the schema network.
Moreover, there was also increased connectivity between the salience network and the
schema-network when individuals experienced a negative PE and this PE-related change in
large-scale network connectivity was directly correlated with the negative PE-driven memory
enhancement. Together these findings suggest that the negative PE-induced enhancement of
episodic memory is not driven by an enhancement of common medial temporal mechanisms
of memory formation but by a distinct mechanism that is linked to the salience network and
separates PE events from experiences that are in line with prior knowledge.

The salience network has often been related to physiological arousal (Xia et al., 2017;
Young et al., 2017) which is well known to mediate the superior memory for emotionally
arousing events (Cahill & McGaugh, 1998; McGaugh, 2018). Although one might assume

that high negative PEs may have elicited arousal which then enhanced memory storage, our



data speak against this alternative and suggest that negative PE-related memory enhancement
was not due to increased physiological arousal. First, aversive shocks per se had no influence
on memory formation. Moreover, only in a combined model featuring additionally
uncertainty and PEs, larger outcome-related SCRs were linked to improved recognition
performance. Even in this combined model, we still found clear evidence for complementary
effects of PEs (and uncertainty) beyond arousal measures. Importantly, specific neural
clusters associated with negative PEs were identified in a model that controlled for
physiological arousal. These results indicate that the effects of PEs on episodic memory
formation cannot be explained by traditional arousal-based models. Further, although greater
shock expectancy was by itself linked to enhanced memory formation, we found that effects
of PEs, which contrast such expectations with observed outcomes, explained recognition
beyond main effects of shock expectations and observed outcomes. This speaks against an
alternative account of our findings in which the mere prediction of an aversive event, possibly
through increased attention to the predictive stimulus, is sufficient to explain our observed
effects on memory formation.

It is also important to note that our findings go above and beyond previous results
showing an enhanced memory for novel or surprising stimuli (Cycowicz & Friedman, 2007,
Strange & Dolan, 2004). We show here that, rather than the novelty of a stimulus, the
discrepancy between expected and experienced consequences of a stimulus affected its
memorability. This is particularly remarkable as these consequences were only revealed after
a stimulus had already disappeared, thus ruling out a simple increase of attentional
processing.

Previous behavioral findings could not differentiate effects of negative and positive PEs
in an aversive context (Kalbe & Schwabe, 2020) and studies on the role of reward-related PEs
yielded inconsistent findings as to whether the direction of the PE matters for episodic

memory formation (Ergo et al., 2020; Jang et al., 2019; Rouhani et al., 2018). Interestingly,



we found that memory effects depended on the sign of PEs, with negative PEs being
associated with better recognition performance and larger positive PEs showing opposite,
negative effects on recognition performance. The neural signature of positive PEs was clearly
distinct from the neural underpinnings of negative PEs. Positive PEs were associated with
clusters of increased activation in the left superior parietal lobule and the right middle
temporal gyrus and decreased activation of the left supramarginal gyrus. The superior parietal
lobe has been linked to internal representations of sensory inputs before (Wolpert et al., 1998)
as well as to contralateral sensorimotor coding of body parts (Wolbers, 2003). As the electric
shock was applied to the right leg and increased superior marginal activation was observed in
the left hemisphere, the observed activity pattern might point to increased processing of the
electric shock. Furthermore, the supramarginal gyrus has been previously associated with
motor planning (Potok et al., 2019) and unexpected somatosensory feedback perturbation
(Golfinopoulos et al., 2011). Thus, it is tempting to speculate that positive PEs resulted in
more pronounced processing of the (unexpected) electric shock, which distracted from the
mnemonic processing of the encoded stimulus and hence led to decreased subsequent
recognition memory.

Closely related but conceptually distinct from PEs is prediction uncertainty. While PEs
only become apparent after an outcome has been revealed, uncertainty emerges as soon as a
potentially threatening stimulus is presented. We found that uncertainty about the possible
occurrence of a shock was associated with decreased recognition performance. At the neural
level, uncertainty was paralleled by decreased activation in bilateral medial occipital areas,
possibly reflecting diminished visual processing of stimuli associated with uncertain
outcomes, which might explain the uncertainty-related impairment in recognition. In addition,
uncertainty was associated with reduced mPFC activation, a region implicated in beliefs and

the inference of hidden states (Starkweather et al., 2018; Yoshida & Ishii, 2006).



In summary, we provide behavioral and neural evidence for a critical impact of aversive
PEs on long-term memory formation for events preceding the PE, thereby bridging the
traditionally separated fields of associative learning and long-term memory. In addition to the
magnitude of the PE, our results show that the direction of the PE affects memory formation.
Whereas positive PEs reduced subsequent memory, negative PEs promoted memory
formation. In particular for negative PEs, our results suggest a qualitative shift in the
contributions of large-scale neural networks to memory formation. Negative PEs reduced the
processing of events in the schema network and the medial-temporal encoding network both
of which are involved in ‘standard’ long-term memory formation. Instead, such schema-
incongruent experiences might be particularly well remembered because they are encoded
distinctly from more mundane experiences, perhaps at an exemplar-level, in a process that is
likely mediated through the salience network. Importantly, these memory enhancements and
related neural changes could not be explained by the prediction itself or mere changes in
physiological arousal, thus pointing to a rather ‘cognitive’ mechanism of memory
enhancement. These findings may have relevant implications for the treatment of fear-related
mental disorders, suggesting that it might be beneficial to explicitly activate patients’ negative
outcome expectations prior to the exposure to the feared stimulus, as the absence of the feared
consequence in the therapeutic context should produce strong fear-incongruent memories.
More generally, our results provide novel insights into the mechanisms underlying the
exceptional memory for episodes in the context of unexpected events, such as meeting Barack

Obama in the supermarket.
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SUPPLEMENTARY MATERIAL
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Supplemental Figure 1. Hit rates by CS category and trial outcome.

Hit rates for items from the CS** category were larger compared with both CS* and CS
items. Importantly, the greater number of aversive shocks for CS** items could not explain
this memory difference, as participants descriptively even showed slightly decreased hit rates
for shocked (compared with unshocked) items in both the CS*" and CS®* category.
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Supplemental Figure 2. Univariate fMRI analysis to identify regions associated with
uncertainty in unshocked trials

For prediction uncertainty in unshocked trials, we obtained decreased BOLD responses in the
mPFC and bilateral occipital areas (A, B). Only voxels significant at 5%-level after whole-
brain family-wise error (FWE) correction (peak level) are displayed. Black dots indicate beta
estimates from individual participants, while the red line shows the mean beta estimate over
all participants. Thin red bars show + 1 standard error of the mean. *** prwg<.001.



Decoding of prediction errors [[] original labels  [] permutation test

> insula hippocampus dACC mPFC precuneus left angular gyrus
Fkk ke . *k - ok Fkk * * dedek
-0.1204,, *** ~0.105] 4u " -0.160 N ~0.1701 -0.1704,, "
dk * *
L ok ** —0.180 **
0 -0.125 - .
S 0125 -0.108 -0.170 0.180
© -0.1801
2 —0.130+ -0.190 -0.190
@© -0.110 -0.180 1 ;
{2
© -0.1351
z -0.200 1 -0.1901 -0.2004
-0.112 -0.190
-0.140
-0.2101 -0.210
stimulus outcome
) | = s - o | = I - | = | = s | .
B Decoding of subsequent recognition
*
0.530
0.530 0.520
0.520 0.520
0.520- 05201 05201
o 0.510
M 0,510 0.510
& 0510 0.5101 0.510+
o 0.500 0.500
& 0500 0.500
0.500 04904 0,490 0.500
0.490 0.490
: : 04901, — : 04801 : 080, o4s0 :
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
s relative to outcome s relative to outcome s relative to outcome s relative to outcome s relative to outcome s relative to outcome

Supplemental Figure 3. Decoding of prediction errors and subsequent recognition using multivoxel pattern analysis
(MVPA)

(A) Activity patterns from regions associated with negative PEs in the univariate analysis could be used to decode the magnitude
of negative PEs. Best decoding performance was generally achieved around the time the outcome was revealed.

(B) Subsequent recognition of an item could be decoded significantly above chance level using patterns of activity from the
insula specifically when the outcome of a trial was revealed.

* p<.05, ** p<.01, *** p<.001.



Supplemental Table 1. Univariate fMRI results for PEs

Effect Direction Region X y z T p(FWE)
Negative PEs right anterior insula 32 22 -8 8.51 2.09 x 10°®
(cluster extend threshold: k > 10) left anterior insula -34 18 4 8.01 9.97 x 10
dACC 8 26 42 7.63 3.39x 107
right inferior frontal gyrus 48 26 22 5.68 1.43 x 102
right middle frontal gyrus 42 12 30 5.52 2.31x 102
left hippocampus 26 -20 -16 8.49 220 x 10°°
precuneus -12 -56 18 8.41 2.89 x 106
mPFC -8 50 -6 8.27 4.45x%x10°
left angular gyrus -44 -70 26 7.86 1.64 x 10°°
right hippocampus 24 -22 -18 7.11 1.73 x 10
left middle temporal gyrus -62 -12 -16 6.61 8.29 x 104
left superior frontal gyrus -24 36 50 6.05 4.74 x 1073
left primary motor cortex 28 28 60 5.85 8.66 x 1073
left caudate -8 24 10 5.74 1.20 x 102
right middle temporal gyrus 60 -4 -22 5.58 1.94 x 102
Positive PEs left superior partietal lobule -32 =72 52 6.05 3.01 x 103
(no cluster extend threshold) left lateral temporal cortex -64 -40 -8 5.47 1.72 x 102
left supramarginal gyrus -60 -30 40 540 2.10 x 102

All displayed peaks were significant at p < .05 after whole-brain voxel-level family-wise error correction. Additional minimal
cluster extend thresholds of k < 10 were only applied were indicated.




Supplemental Table 2. Univariate fMRI results for uncertainty

Effect Direction Region X y zZ T p(FWE)
Uncertainty (unshocked trials) positive right middle frontral gyrus 46 24 34 6.08 5.27 x 1073
negative right extrastriate cortex 50 -70 6 11.89 376 x 10!
left extrastriate cortex 40  -74 4 1176 5.63x 10"
left postcentral -44 -30 62 8.38 3.88 x 106
right cuneus 20 82 40 749 6.53 x 10
right lingual gyrus 16 -62 -4 7.09 229 x 10
left lingual gyrus -14 =72 0 7.01 2.90 x 10*
mPFC -4 62 18 676  646x10*
left middle temporal gyrus -64 -16 -10 6.71 7.61 x 10
dorsal posterior cingulate area -10 -24 46 6.67 8.67 x 107
right primary visual cortex 12 -78 2 6.56 1.18 x 1073
left temporal pole -58 4 24 6.39 2.06 x 1073
right fusiform area 42 -28 -16 637 2.13x 103
inferior temporal area 24 =72 28 6.34 2.35x 107
right anterior cingulate area 8 -12 50 6.34 2.37 x 1073
right superior parietal lobule 28 -54 62 6.21 3.55 x 1073
left fusiform area 40  -46 24 585 1.07 x 10

All displayed peaks were significant at p < .05 after whole-brain voxel-level family-wise error correction and clusters extended a threshold
of k = 10 voxels. For shocked trials, there were no significant voxels under this criterion.




Supplemental Table 3. Univariate fMRI results for predictions

Effect

Direction Region X y z T p(FWE)
Prediction (unshocked trials) positive right lingual gyrus 12 =72 -6 13.45 <1x101"?
left precentral -36 -26 54 6.95 2.85x 10
left supplemental motor area -14 -8 64 5.33 4.09 x 1072
negative left lingual gyrus -10 -76 -6 14.18  <1x101"?
Prediction (shocked trials) positive right lingual gyrus 10 -74 -2 8.85 6.83 x 107
negative left lingual gyrus -10 -78 -4 9.11 3.00 x 10”7

All displayed peaks were significant at p < .05 after whole-brain voxel-level family-wise error correction and clusters extended a

threshold of k = 10 voxels.




UH

43 Universitat Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

FAKULTAT

FUR PSYCHOLOGIE UND

BEWEGUNGSWISSENSCHAFT

Institut fiir Bewegungswissenschaft
Institut fiir Psychologie

Erklarung gemaR (bitte Zutreffendes ankreuzen)

O § 4 (1c) der Promotionsordnung des Instituts fiir Bewegungswissenschaft der Universitat
Hamburg vom 18.08.2010

O § 5 (4d) der Promotionsordnung des Instituts fiir Psychologie der Universitiat Hamburg vom
20.08.2003

Hiermit erklare ich,

(Vorname, Nachname),

dass ich mich an einer anderen Universitat oder Fakultat noch keiner Doktorprifung unterzogen oder
mich um Zulassung zu einer Doktorprufung bemiiht habe.

Ort, Datum Unterschrift

Studien- und Priifungsbiiro Bewegungswissenschaft « Fakultdt PB « Universitdt Hamburg « Mollerstrae 10 « 20148 Hamburg
Studien- und Priifungsbiiro Psychologie « Fakultdt PB « Universitat Hamburg « Von-Melle-Park 5 « 20146 Hamburg

www.pb.uni-hamburg.de



UH

. L FAKULTAT
a3 Universitat Hamburg FUR PSYCHOLOGIE UND
DER FORSCHUNG | DER LEHRE | DER BILDUNG BEWEGUNGSWISSENSCHAET

Institut fiir Bewegungswissenschaft
Institut fiir Psychologie

Eidesstattliche Erkldrung nach (bitte Zutreffendes ankreuzen)

O § 7 (4) der Promotionsordnung des Instituts fiir Bewegungswissenschaft der Universitat
Hamburg vom 18.08.2010

O § 9 (1c und 1d) der Promotionsordnung des Instituts fiir Psychologie der Universitit Hamburg
vom 20.08.2003

Hiermit erklare ich an Eides statt,

1. dass die von mir vorgelegte Dissertation nicht Gegenstand eines anderen Prifungsverfahrens
gewesen oder in einem solchen Verfahren als ungentigend beurteilt worden ist.

2. dass ich die von mir vorgelegte Dissertation selbst verfasst, keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt und keine kommerzielle Promotionsberatung in An-
spruch genommen habe. Die wortlich oder inhaltlich ibernommenen Stellen habe ich als sol-
che kenntlich gemacht.

Ort, Datum Unterschrift

Studien- und Priifungsbiiro Bewegungswissenschaft « Fakultat PB « Universitdt Hamburg « Mollerstrae 10 « 20148 Hamburg
Studien- und Priifungsbiiro Psychologie « Fakultdt PB « Universitat Hamburg « Von-Melle-Park 5 « 20146 Hamburg

- www.pb.uni-hamburg.de



	Titlepage
	Committee
	Acknowledgements
	Abstract
	Contents
	Abbreviations
	1 Introduction
	1.1 Models of memory modulation
	1.1.1 Physiological approach
	1.1.2 Cognitive approach

	1.2 Levels of memory modulation
	1.2.1 Unspecific
	1.2.2 Category level
	1.2.3 Exemplar level

	1.3 Research goals

	2 Experimental Studies
	2.1 Study 1: How reliable is the category-specific retroactive enhancement of memory?
	2.1.1 Background
	2.1.2 Methods
	2.1.3 Results
	2.1.4 Conclusions

	2.2 Study 2: Can aversive PEs promote memory for predictive items beyond the effects of arousal?
	2.2.1 Background
	2.2.2 Methods
	2.2.3 Results
	2.2.4 Conclusions

	2.3 Study 3: What neural mechanism drives the memory-modulating effects of aversive PEs?
	2.3.1 Background
	2.3.2 Methods
	2.3.3 Results
	2.3.4 Conclusions


	3 General Discussion
	3.1 Unspecific, category-level, and exemplar-level memory modulation
	3.2 Separating physiological from cognitive accounts of memory modulation
	3.3 A distinct mechanism underlying effects of aversive PEs on memory
	3.4 Future directions
	3.5 Conclusions

	References
	A Appendix A: Study 1
	B Appendix B: Study 2
	C Appendix C: Study 3

